

Optimization

Minjong Lee

Pohang University of Science and Technology (Postech) CSE

Minjong.Lee@postech.ac.kr

Training/Test error and Generalization

Training error

error of training dataset

Test error

Error of test dataset (new and previously unseen data)

Generalization

The ability to perform well on previously unobserved input

Training/Test error and Generalization

Overfitting and Underfitting

- Underfitting
 - The training data and test data have high error rates.
- Overfitting
 - The training data has a low error rate but the test data has a high error rate.

Overfitting and Underfitting

Overfitting and Underfitting

Contents

- Activation function
- Data preprocessing
- Batch Normalization
- Weight initialization
- Fancy optimizers

Activation function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation function: Sigmoid

- $\sigma(x) = 1/(1 + e^{-x})$
- range [0, 1]

- Problem
 - Gradient Vanishing
 - Exp() is very expensive.

Activation function: ReLU

• f(x) = max(0, x)

- Does not saturate (in + region)
- Very computationally efficient

- Problem
 - Dead ReLU

Activation function: ReLU

Dead ReLU

Activation function: LeakyReLU

ReLU activation function

LeakyReLU activation function

Activation functions

Contents

- Activation function
- Data preprocessing
- Batch Normalization
- Weight initialization
- Fancy optimizers

Data problem: Scale

- data
 - (height(m), weight(kg))
 - ex) (1.5m, 70kg)
- The network will be biased to the 'weight'.

- To avoid this problem,
 - we must normalize the data.

Data preprocessing

Assume X is data matrix, each sample in a row

Data preprocessing

Contents

- Activation function
- Data preprocessing
- Batch Normalization
- Weight initialization
- Fancy optimizers

Covariate shift

• There are unexpected shifts in the distribution of layers' input.

Batch normalization

· Input:
$$X \in \mathbb{R}^{N imes D}$$

- What if zero-mean, unit var is too hard of a constraints?
- Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

• Learning $\gamma = \sigma, \beta = \mu$ will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

Per-feature mean. Shape is D

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{ij} - \mu_j)^2$$
 Per-feature var. Shape is D

$$\hat{x}_{ij} = \frac{x_{ij} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Normalized x. Shape is $N \times D$

$$y_{ij} = \gamma_j \hat{x}_{ij} + \beta_j$$

Output. Shape is $N \times D$

Batch normalization

- Makes deep networks much easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!

Other normalization techniques

Contents

- Activation function
- Data preprocessing
- Batch Normalization
- Weight initialization
- Fancy optimizers

Weight initialization

• Init weights with $\mathcal{N}(o, o.o1)$ with tanh(x),

All zero, no learning!

Weight initialization

• Init weights with $\mathcal{N}(0, 1)$ with tanh(x),

tanh $\tanh(x)$ $\frac{d}{dx}\tanh(x) = 1 - \tanh^2(x)$

Local gradient all zero, no learning!

Xavier initialization

• Init weights with $\mathcal{N}(o, Var(W))$ with tanh(x),

• Var(W) =
$$\frac{1}{\sqrt{D_{in}}}$$

• D_{in} : the size of the dimension of input

Xavier initialization

• Init weights with $\mathcal{N}(o, Var(W))$ with tanh(x),

• Var(W) =
$$\frac{1}{\sqrt{D_{in}}}$$

• D_{in} : the size of the dimension of input

He initialization

• Init weights with $\mathcal{N}(o, Var(W))$ with tanh(x),

• Var(W) =
$$\frac{2}{\sqrt{D_{in}}}$$

• D_{in} : the size of the dimension of input

Contents

- Activation function
- Data preprocessing
- Batch Normalization
- Weight initialization
- Fancy optimizers

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD)

Problem

Problem of gradient descent

Zero gradient, gradient descent gets stuck.

Momentum

SGD + Momentum

SGD with momentum is better than only SGD.

$$V_{t} = \beta V_{t-1} + \alpha \nabla_{w} L(W, X, y)$$

$$W = W - V_{t}$$

Importance of learning rate

Fancy optimizer: AdaGrad (Adaptive Gradients)

- Learning rate decay
 - Decay the learning rate for parameters in proportion to their update history (more updates means more decay).

When h is very big, the parameter will start receiving very small updates.

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

Fancy optimizer: RMSProp

• Everything is very similar to AdaGrad, except now we decay the denominator as well.

$$h \leftarrow h + \frac{\partial L}{\partial W} \odot \frac{\partial L}{\partial W}$$
$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

$$h_{i} \leftarrow \rho h_{i-1} + (1 - \rho) \frac{\partial L_{i}}{\partial W} \odot \frac{\partial L_{i}}{\partial W}$$

$$W \leftarrow W - \eta \frac{1}{\sqrt{h}} \frac{\partial L}{\partial W}$$

Fancy optimizer: Adam (Adaptive moment)

RMSProp(learning rate decay) + Momentum

```
알고리즘 5-5 Adam
입력: 훈련집합 \mathbb{X}, \mathbb{Y}, 학습률 \rho, 모멘텀 계수 \alpha_1, 가중 이동 평균 계수 \alpha_2
출력: 최적의 매개변수 \hat{\Theta}
      난수를 생성하여 초기해 Θ를 설정한다.
v = 0, r = 0
    t=1
     repeat
       그레이디언트 \mathbf{g} = \frac{\partial J}{\partial \mathbf{\theta}} 를 구한다.
      \mathbf{v} = \alpha_1 \mathbf{v} - (1 - \alpha_1) \mathbf{g} // 속도 벡터
      \mathbf{v} = \frac{1}{1 - (\alpha_1)^t} \mathbf{v}
       \mathbf{r} = \alpha_2 \mathbf{r} + (1 - \alpha_2) \mathbf{g} \odot \mathbf{g} // 그레이디언트 누적 벡터
        \mathbf{r} = \frac{1}{1 - (\alpha_2)^t} \mathbf{r}
        \Delta \mathbf{\Theta} = -\frac{\rho}{\epsilon + \sqrt{\mathbf{r}}} \mathbf{v}
           \Theta = \Theta + \Delta\Theta
      until (멈춤 조건)
     \hat{\Theta} = \Theta
```


Scheduling learning rate

 SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

When we train NN, we typically start with large learning rate and decay over time.

Fancy optimizers

Early Stopping

Practice

Activation

Batch Normalization

Weight Initialization

Optimizers

Activation

Functions

```
deserialize(...): Returns activation function given a string identifier.
elu(...): Exponential Linear Unit.
exponential (...): Exponential activation function.
gelu(...): Applies the Gaussian error linear unit (GELU) activation function.
get(...): Returns function.
hard_sigmoid(...): Hard sigmoid activation function.
linear(...): Linear activation function (pass-through).
relu(...): Applies the rectified linear unit activation function.
selu(...): Scaled Exponential Linear Unit (SELU).
serialize(...): Returns the string identifier of an activation function.
sigmoid(...): Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)).
softmax(...): Softmax converts a vector of values to a probability distribution.
softplus(...): Softplus activation function, softplus(x) = log(exp(x) + 1).
softsign(...): Softsign activation function, softsign(x) = x / (abs(x) + 1).
swish(...): Swish activation function, swish(x) = x * sigmoid(x).
tanh(...): Hyperbolic tangent activation function.
```

https://www.tensorflow.org/api_docs/python/tf/keras/activations

Batch Normalization

```
tf.keras.layers.BatchNormalization(
    axis=-1,
    momentum=0.99,
    epsilon=0.001,
    center=True,
    scale=True,
    beta_initializer='zeros',
    gamma_initializer='ones',
    moving_mean_initializer='zeros',
    moving_variance_initializer='ones',
    beta_regularizer=None,
    gamma_regularizer=None,
    beta_constraint=None,
    gamma_constraint=None,
    **kwargs
)
```

https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization

Weight Initialization

Classes

```
class Constant: Initializer that generates tensors with constant values.
class GlorotNormal: The Glorot normal initializer, also called Xavier normal initializer.
class GlorotUniform: The Glorot uniform initializer, also called Xavier uniform initializer.
class HeNormal: He normal initializer.
class HeUniform: He uniform variance scaling initializer.
class Identity: Initializer that generates the identity matrix.
class Initializer: Initializer base class; all Keras initializers inherit from this class,
class LecunNormal: Lecun normal initializer.
class LecunUniform: Lecun uniform initializer.
class Ones: Initializer that generates tensors initialized to 1.
class Orthogonal: Initializer that generates an orthogonal matrix.
class RandomNormal: Initializer that generates tensors with a normal distribution.
class RandomUniform: Initializer that generates tensors with a uniform distribution.
class TruncatedNormal: Initializer that generates a truncated normal distribution.
class VarianceScaling: Initializer capable of adapting its scale to the shape of weights tensors.
class Zeros: Initializer that generates tensors initialized to 0.
class constant: Initializer that generates tensors with constant values.
```

https://www.tensorflow.org/api_docs/python/tf/keras/initializers

Weight Initialization

Xavier initialization

fc = layers.Dense(128, kernel_initializer=tf.keras.initializers.GlorotNormal)

fc = layers.Dense(128, kernel_initializer='glorot_normal')

Weight Initialization

- Normal distribution initialization
 - layers.Dense(128, kernel_initializer='normal')

- Xavier initialization
 - layers.Dense(128, kernel_initializer='glorot_normal')

- He initialization
 - layers.Dense(128, kernel_initializer='he_normal')

Optimizers

Classes

```
class Adadelta : Optimizer that implements the Adadelta algorithm.
class Adagrad : Optimizer that implements the Adagrad algorithm.
class Adam : Optimizer that implements the Adam algorithm.
class Adamax : Optimizer that implements the Adamax algorithm.
class Ftrl : Optimizer that implements the FTRL algorithm.
class Nadam : Optimizer that implements the NAdam algorithm.
class Optimizer : Base class for Keras optimizers.
class RMSprop : Optimizer that implements the RMSprop algorithm.
class SGD : Gradient descent (with momentum) optimizer.
```

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

Practice

• With using skills that we learned, try to upgrade the network for better performance!

