FR801xH 硬件应用指南

Bluetooth Low Energy SOC

Rev: V1.0

2020.2.29

www.freqchip.com

目 录

1. FR801xH 系列芯片简介	2 ·
2. 封装定义	3 -
2.1 FR8012HB 封装	3 -
2.2 FR8016HA 封装	4-
2.3 FR8018HA 封装	- 5 -
2.4 FR801xH 引脚定义	6 -
3. 参考设计	9 -
3.1 FR8012HB 参考设计	9 -
3.2 FR8016HA 参考设计	- 9 -
3.3 FR8018HA 参考设计	10 -
4. 应用设计注意事项	11 -
4.1 电源	11 -
4.2 射频	12 -
4.3 晶振	13 -
4.4 GPIO	14 -
4.5 通过 ADC 采样分压电路分压获取电池电压	14 -
4.6 中断管脚接线	14 -
4.7 LED 管脚接线	15 -
4.8 系统设计	15 -
5. PCB 天线	16 -
联系方式 Contact Information	17 -
修订历史 Revision History	17 -

1. FR801xH 系列芯片简介

- FR801xH集成 RF、Baseband、PMU、CODEC、SPI、IIC、UART、GPIO、ADC、PWM、Keyboard scan 等模块,支持蓝牙 V5.1,支持标准 SIG Mesh、HomeKit。应用于智能手环、语音遥控器、智能家居等方案。
- 布局合理,走线清晰,接地良好是做好设计的基本要求。FR801xH 较少的外围器件,可以使用双面板进行设计,从而节省成本。双面板设计时 PCB 顶层用于摆件和走信号线,底层走电源线并尽可能保证一个完整的地平面。
 - FR801xH 系列型号
 - FR8012HB,内置 2Mbits Flash, SOP16 封装。
 - FR8016HA, 内置 4Mbits Flash, QFN32_0404_P0.4T0.75 封装。
 - FR8018HA,内置 4Mbits Flash, QFN48_0606_P0.4T0.75 封装。

2. 封装定义

2.1 FR8012HB 封装

● FR8012HB 采用 SOP16 封装

2.2 FR8016HA 封装

● FR8016HA 采用 QFN32 4x4 封装

SYMBOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
A	0.70	0.75	0. 80 0. 05 0. 25		
A1	0	0.02			
b	0.15	0.20			
с	0. 18	0.20	0.25		
D	3. 90	4.00	4. 10		
D 2	2.70	2. 80	2. 90		
e	0. 40BSC 2. 80BSC				
Ne					
Nd	2. 80BSC				
Е	3. 90	4.00	4. 10		
E2	2. 70	2. 80	2. 90		
L	0. 25	0.30	0. 35 0. 40		
h	0.30	0.35			
L/F载体尺寸	122X122				

2.3 FR8018HA 封装

● FR8018A 采用 QFN48 6x6 封装

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min. Max.		Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203	REF.	0.008	0.008REF.	
D	5.924	6.076	0.233	0.239	
E	5.924	6.076	0.233	0.239	
D1	3.700	3.900	0.146	0.154	
E1	3.700	3.900	0.146	0.154	
k	0.200MIN.		0.008	BMIN.	
b	0.150	0.250	0.006	0.010	
е	0.400	TYP.	0.016	STYP.	
L	0.324	0.476	0.013	0.019	

2.4 FR801xH 引脚定义

符号	说明
1	数字输入
0	数字输出
DIO	数字双向传输
Al	模拟输入
AO	模拟输出
AIO	模拟双向传输
PWR	电源
GND	地

弓	引脚号				
FR8018HA	FR8016HA	FR8012HB	引脚名	类型	引脚功能
1	27	13	PA3	DIO	SDA1/I2SDIN/PWM3_P/SSPDIN/UTXD0/UTXD1/ANTCTL1/PDMDAT/PWM2_N
2	28	14	PA2	DIO	SCL1/I2SDOUT/PWM2_P/SSPDOUT/URXD0/URXD1/ANTCT L0/PDMCLK/PWM3_N
3	29	-	PA1	DIO	SDA0/I2SFRM/PWM1_P/SSPCSN/UTXD0/UTXD1/ANTCTL0 /PDMDAT/PWM0_N
4	30	-	PA0	DIO	SCL0/I2SCLK/PWM0_P/SSPCLK/URXD0/URXD1/CLKOUT/P DMCLK/PWM1_N
5	31	-	PA7	DIO	SDA1/I2SDIN/PWM1_P/SSPDIN/UTXD0/UTXD1/ANTCTL0/PDMDAT/PWM0_N
6	32	-	PA6	DIO	SCL1/I2SDOUT/PWM0_P/SSPDOUT/URXD0/URXD1/CLKO UT/PDMCLK/PWM1_N
7	1	-	PA4	DIO	SCL0/I2SCLK/PWM4_P/SSPCLK/URXD0/URXD1/CLKOUT/P DMCLK/PWM5_N
8	2	-	PA5	DIO	SDAO/I2SFRM/PWM5_P/SSPCSN/UTXD0/UTXD1/ANTCTL1 /PDMDAT/PWM4_N
-	3	-	LED2	0	指示灯控制脚
-	4	-	N/A	-	悬空
9	5	15	RF	AIO	天线接口
10	6	3, 16	GND	GND	地

11	7	1	XTALO_24M	AO	24MHz 晶振输出端
12	8	2	XTALI_24M	Al	24MHz 晶振输入端
13	9	-	MIC_BIAS	AO	麦克风电源输出
14	10	-	MIC_IN	Al	麦克风输入
15	11	-	VMID	Al	共模电源输出
16	12	-	AOUT_P	AO	音频差分输出正端
17	13	-	AOUT_N	AO	音频差分输出负端
18	14	-	RSTP	Al	复位脚 (高电平有效)
19	15	-	VCHG	PWR	充电输入
20	16	4	VBAT	PWR	电源输入
21	17	5	BSW	AO	DC/DC 输出
22	18	6	BFB	AI	DC/DC 反馈输入端
23	19	7	LDO_OUT	AO	LDO 电源输出(软件可配输出电源范围 1.8V-3.5V)
24	-	-	XTALI_32K	Al	32KHz 晶振输入端
25	-	-	XTALO_32K	AO	32KHz 晶振输出端
26	20	-	PD7	DIO	SDA1/I2SDIN/PWM1_P/SSPDIN/UTXD0/UTXD1/ANTCTL1/
					PDMDAT/PWM0_N/ADC3
27	21	8	PD6	DIO	SCL1/I2SDOUT/PWM0_P/SSPDOUT/URXD0/URXD1/CLKO
					UT/PDMCLK/PWM1_N/ADC2
28	22	9	PD5	DIO	SDA0/I2SFRM/PWM5_P/SSPCSN/UTXD0/UTXD1/ANTCTL0
					/PDMDAT/PWM4_N/ADC1
29	23	10	PD4	DIO	SCL0/I2SCLK/PWM4_P/SSPCLK/URXD0/URXD1/ANTCTL0/
					PDMCLK/PWM5_N/ADC0
30	24	11	PC7	DIO	SDA1/I2SDIN/PWM5_P/SSPDIN/UTXD0/UTXD1/SWDIO/P
					DMDAT/PWM4_N
31	25	12	PC6	DIO	SCL1/I2SDOUT/PWM4_P/SSPDOUT/URXD0/URXD1/SWTC
					K/PDMCLK/PWM5_N
32	26	-	PC5	DIO	SDA0/I2SFRM/PWM5_P/SSPCSN/UTXD0/UTXD1/SWV/PD
22			DC4	510	MDAT/PWM4_N
33	-	-	PC4	DIO	SCL0/I2SCLK/PWM4_P/SSPCLK/URXD0/URXD1/ANTCTL1/
34			PC3	DIO	PDMCLK/PWM5_N SDA1/I2SDIN/PWM3_P/SSPDIN/UTXD0/UTXD1/SWV/PDM
34	-	-	F C3		DAT/PWM2 N
35	_	<u> </u>	PC2	DIO	SCL1/I2SDOUT/PWM2_P/SSPDOUT/URXD0/URXD1/SWV/
			102		PDMCLK/PWM3 N
36	-	-	PC1	DIO	SDA0/I2SFRM/PWM1_P/SSPCSN/UTXD0/UTXD1/SWV/PD
					MDAT/PWM0_N

37	-	-	PC0	DIO	SCL0/I2SCLK/PWM0_P/SSPCLK/URXD0/URXD1/SWV/PDM CLK/PWM1_N
38	-	-	PD3	DIO	SDA1/I2SDIN/PWM3_P/SSPDIN/UTXD0/UTXD1/WLANRX/PDMDAT/PWM2_N
39	-	-	PD2	DIO	SCL1/I2SDOUT/PWM2_P/SSPDOUT/URXD0/URXD1/WLAN TX/PDMCLK/PWM3_N
40	-	-	PD1	DIO	SDA0/I2SFRM/PWM1_P/SSPCSN/UTXD0/UTXD1/BLERX/P DMDAT/PWM0_N
41	-	-	PD0	DIO	SCL0/I2SCLK/PWM0_P/SSPCLK/URXD0/URXD1/BLETX/PD MCLK/PWM1 N
42	-	-	PB4	DIO	SCL0/I2SCLK/PWM4_P/SSPCLK/URXD0/URXD1/CLKOUT/P DMCLK/PWM5_N
43	-	-	PB6	DIO	SCL1/I2SDOUT/PWM2_P/SSPDOUT/URXD0/URXD1/ANTCT L1/PDMCLK/PWM3_N
44	-	-	PB7	DIO	SDA1/I2SDIN/PWM3_P/SSPDIN/UTXD0/UTXD1/CLKOUT/P DMDAT/PWM2_N
45	-	-	PB5	DIO	SDA0/I2SFRM/PWM5_P/SSPCSN/UTXD0/UTXD1/ANTCTL0 /PDMDAT/PWM4_N
46	-	-	PB1	DIO	SDA0/I2SFRM/PWM1_P/SSPCSN/UTXD0/UTXD1/BLERX/P DMDAT/PWM0_N
47	-	-	PB2	DIO	SCL1/I2SDOUT/PWM2_P/SSPDOUT/URXD0/URXD1/WLAN TX/PDMCLK/PWM3_N
48	-	-	PB3	DIO	SDA1/I2SDIN/PWM3_P/SSPDIN/UTXD0/UTXD1/WLANRX/PDMDAT/PWM2_N

3. 参考设计

3.1 FR8012HB 参考设计

3.2 FR8016HA 参考设计

3.3 FR8018HA 参考设计

4. 应用设计注意事项

4.1 电源

- FR801xH 系列芯片供电电源电压范围为 1.8V~4.3V, 可使用锂电池、纽扣电池、干电池供电。
- 电源引脚 MIC_BIAS、VMID、VCHG、VBAT、LDO_OUT 的滤波电容尽量靠近 IC 相应引脚放置,滤波电容的地 必须就近接到 IC 的地,确保滤波效果。
- 应用中不需要麦克风功能时,麦克风电路部分元件可以省去; VMID 脚电容可以省掉。
- 应用中不需要充电功能时,充电电路部分元件可以省去。
- BSW 为内部 DC/DC 模块 1.5M 开关信号输出脚, L2 电感靠近 BSW 脚放置, C11 滤波电容靠近 L2 放置, 走线 尽量短和宽且先经电容后再进芯片引脚。
- L2 电感值不小于 4.7uH,推荐 10uH,额定电流大于 50mA,直流电阻小于 10hm,选用功率叠层电感或者绕线电感。电感因实际工作电流超过额定电流会导致饱和,造成电感发热、输出纹波、效率变低。
- 芯片底部焊盘至少放9个地孔连接到地平面,确保接地良好。

4.2 射频

- 射频走线需要走 500hm 阻抗线,走线尽量短和宽,不要有过孔,最好和芯片同层。不能走直角,尽量使用圆弧走线或 135°角走线,走线宽度保持一致,避免分支走线,周围地孔屏蔽。确保射频走线底层有完整的地平面,并且与芯片底 部的 GND 相连。
- 预留 π 形匹配电路,靠近芯片 RF 脚放置,用于天线匹配,天线匹配阻抗往 50Ω方向调,元件参数值根据天线和 PCB 布局实测后确定。
- 天线尽量使用倒 F 形。
- 天线必须放置在板边,严禁被 GND 包裹,且正反面需要净空区,远离金属和电池,远离高频噪声源。

4.3 晶振

- 晶振走线尽量短,尽量不要有过孔,与 RF 微带线之间用地线隔离。负载电容靠近晶振放置,晶振底层尽量不要走其它信号线,晶振周围包地处理。晶振为敏感元件,不得靠近磁感应元件,远离 BSW 脚的电感。
- 晶振选用 24MHz, 频率公差+/-10PPM, 负载电容 6pF-12pF(具体值通过实测系统后确定)。由于晶振自身 频偏过大,工作温度稳定度差等原因,可能会导致 FR801xH 性能指标下降,甚至无法工作。推荐选用外壳接 地的贴片晶振,性能更加稳定。
- 实际应用中,即使物料不变,由于布局、PCB 板材等差异会产生频偏,因此每个方案量产前都需要取几台样机测量一下频偏,通过调整晶振负载电容或者相应寄存器的值使得频偏控制在+/-30KHz 以内。

4.4 GPIO

- 所有管脚可以被配置为输入和输出 2 种状态。GPIO 管脚的高电平输出为 LDO_OUT 脚电压,LDO_OUT 脚电压值可通过 API 配置。在电池电压 VBAT 大于 3.0V 时,固定为 3.0V,电池电压 VBAT 小于 3.0V 时, LDO_OUT = VBAT。GPIO 做为输入模式时的门限是,高电平需要 > 0.7 *LDO_OUT 脚电压,低电平需要 < 0.3* LDO OUT 脚电压。
- 管脚 PA2、PA3 在系统初始化运行时,内部固化的 rom code 会配置为 uart0 的控制管脚。PA3 会输出内部 uart 打印信息,PA2 会接收外部的打印信息。
- LED2 上电默认高电平且内部有强上拉,其它 IO 默认为 floating 状态。

4.5 通过 ADC 采样分压电路分压获取电池电压

- 分压电路建议采用 2 分压或 3 分压电路,ADC 的采样范围为 0~LDO_OUT,LDO_OUT 值可以调用 pmu_set_aldo_voltage()函数在 user_entry_before_ble_init()入口函数内设置。
- 如果不设置,则系统默认为 3.0V,建议测量管脚 LDO OUT 以确认该电压值。
- 假设 LDO_OUT 电压值设置为 3.0V, 在电池电压 VBAT 大于时, 固定为 3.0V, 电池电压 VBAT 小于 3.0V 时, LDO OUT = VBAT。
- 分压电路建议采取如下电路,分压电阻为 2 个 10M 欧,降低功耗,电容 C 大于 10nF 即可。

注意:这里只是做一个 ADC 采样的示例,VBAT 可以换其他的待测量电压值。获取电池电压,也可以直接调用 driver adc.c 中 adc get result 函数,参数配置成获取 VABT 即可获取,不需要外接分压电路。

4.6 中断管脚接线

● 当外部模块有中断管脚要接入芯片的 GPIO 管脚时,如果中断脚高电平时电压大于 3.0V,需要在模块的中断脚与芯片的 GPIO 管脚之间加入 1 kΩ限流电阻,否则中断管脚会拉高芯片内部的 LDO_OUT 电压。

4.7 LED 管脚接线

● 使用芯片自带的 LED 管脚控制 LED 时,建议使用灌流驱动的方式(如图 4.7.1)。

4.8 系统设计

- 每个方案量产前,需要抽取几台样机,根据实际使用的晶振、天线进行频偏和天线阻抗匹配调试。如果不做 频偏和天线阻抗匹配调试,会影响射频性能,表现为搜索连接时间长、收发数据不稳定、断线等等。
- 系统中有电机等高功率器件,在 PCB 设计时,务必把蓝牙部分的 GND 回路与高功率器件的 GND 回路分开,然后单点连接到电源地。

5. PCB 天线

● PCB 板载天线可满足一般应用需求,但是性能稍差、易受干扰,优点是成本低廉、整机组装方便。对于产品 尺寸小、性能要求高的应用,请选用贴片陶瓷天线或外置天线。

● 倒 F 天线

联系方式 Contact Information

Website: www.freqchip.com
Sales Email: sales@freqchip.com
Phone: +86-21-5027-0080

修订历史 Revision History

Feedback:

Freqchip welcomes feedback on this product and this document. If you have comments or suggestions, please send an email to doc@freqchip.com.

Reversion Number	Reversion Date	Description
V1.0	2020.2.29	Initial Draft