UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO SUPERIOR DE BACHARELADO EM ENGENHARIA AEROESPACIAL

Willian Ribeiro de Paula

TRABALHO 2

SUMÁRIO

1	INTRODUÇÃO	3
2	METODOLOGIA	4
2.1	CONTROLE DE VEÍCULO ESPACIAL (VE) COM SPIN	2
2.1.1	Manobra de Spin-up	2
2.1.1.1	Objetivo do controle	2
2.1.1.2	Hipóteses da modelagem	2
2.1.1.3	Atuadores e sensores	4
2.1.1.4	Estrutura do controlador	5
2.1.1.5	Equações do movimento	5
2.1.1.6	Forma de ajuste dos parâmetros do controlador	6
2.1.2	Flat spin	6
2.1.2.1	Objetivo do controle	6
2.1.2.2	Hipóteses da modelagem	6
2.1.2.3	Atuadores e sensores	7
2.1.2.4	Estrutura do controlador	7
2.1.2.5	Equações do movimento	7
2.1.2.6	Forma de ajuste dos parâmetros do controlador	8
2.1.2.7	Controle ativo de nutação ANC	8
2.1.2.8	Objetivo do controle	8
2.1.2.9	Hipóteses da modelagem	8
2.1.2.10	Atuadores e sensores	8
2.1.2.11	Estrutura do controlador	8
2.1.2.12	Equações do movimento	ç
2.1.2.13	Forma de ajuste dos parâmetros do controlador	10
2.2	CONTROLE DE VEÍCULO ESPACIAL EM TRÊS EIXOS COM REALIMEN-	
	TAÇÃO DE QUATÉRNIO E RODAS DE REAÇÃO	10
2.2.1	Objetivo do controle	
2.2.2	Hipóteses da modelagem	10
2.2.3	Atuadores e sensores	10
2.2.4	Estrutura do controlador	11
2.2.5	Equações do movimento	11
2.2.6	Forma de ajuste dos parâmetros do controlador	12
3	IMPLEMENTAÇÃO	13
4	INTERPRETAÇÃO DOS RESULTADOS	14
4.1	EXEMPLO 7.1	
4.2	EXEMPLO 7.3	16
4.3	EXEMPLO 7.14	19
4.4	EXEMPLO 7.18 E 7.19	22
4.5	EXEMPLO 7.20 E 7.21	
5	CONCLUSÃO	
	REFERÊNCIAS RIRI IOGRÁFICAS	25

1 INTRODUÇÃO

O presente trabalho tem o objetivo de implementar os exemplos de controle de atitude de veículos espaciais visto em (André Luis da Silva, 2022). O trabalho foi dividido em metodologia, na qual se exemplifica os conteúdos teóricos necessários para implementar e compreender os dados da simulações, Implementação, na qual é apresentando como foi implementado o código das simulações, Interpretação, na qual são mostrados os gráficos das simulações e o entendimento deles e a Conclusão, na qual é feita uma analise do que pode ser aprendido e aproveitado durante o desenvolvimento do trabalho.

2 METODOLOGIA

2.1 CONTROLE DE VEÍCULO ESPACIAL (VE) COM SPIN

2.1.1 Manobra de Spin-up

2.1.1.1 Objetivo do controle

A manobra de *Spin-up* tem como objetivo imprimir uma rotação adequada em torno de um eixo principal de um satélite, de tal forma que garanta a estabilização giroscópica natural, com o objetivo de apontar o eixo de simetria em uma direção do espaço inercial. Além disso, vale ressaltar que essa manobra não é responsável por apontar o eixo de *spin* na direção desejada, antes da execução dela, deve-se efetuar uma manobra para esse apontamento.

2.1.1.2 Hipóteses da modelagem

Para a modelagem, adota-se as seguintes hipóteses:

- O torque de gradiente gravitacional é desprezado, assim como qualquer outro torque perturbativo;
- O veículo é perfeitamente rígido, sem qualquer dissipação de interna de energia;
- Os *thrusters* estão perfeitamente alinhados e geram momento somente em torno do eixo z, com amplitude M_z constante;

2.1.1.3 Atuadores e sensores

O hardware normalmente utilizado para essa aplicação é dado abaixo: Para os sensores:

• Giroscópio, o qual é utilizado para medir a velocidade de rotação em torno do eixo z

Para os atuadores:

Conjunto de thrusters que geram um momento constante em torno do eixo z e operam na condição liga-desliga. Caso deseja-se uma ação sem indução de translação, usa-se 2 pares de thrusters.

2.1.1.4 Estrutura do controlador

A estrutura do controlador normalmente é implementado pelas seguintes formas:

- Um relé temporizador que propárica o disparo dos thrusters por um determinado intervalo de tempo pré-programado pelo computador de controle de atitude;
- Um amplificador de potência para acionar os thrusters, no qual o seu tempo de acionamento é configurado por um computador de controle de atitude que tem o seu próprio timer interno
- Uma variação do segundo item, na qual o tempo de acionamento é variável, por meio da modulação por largura de pulso, gerada pelo computador de controle de atitude. Diferente dos outros dois controles anteriores, esse controle é implementado em malha fechada;

2.1.1.5 Equações do movimento

A dinâmica do problema é representada pelas equações seguintes:

$$J\dot{\omega}_x - (J - I_{zz})\omega_z\omega_y = 0 \tag{2.1}$$

$$J\dot{\omega}_y - (J - I_{zz})\omega_z\omega_y = 0 \tag{2.2}$$

$$I_{zz}\dot{\omega}_z = M_z \tag{2.3}$$

Onde:

- ω_x , ω_y e ω_z são as velocidades angulares do satélite com respeito a um referencial inercial, escritas no sistema de referencia do corpo (SRC);
- I_{xx}, I_{yy} e I_{zz} são os momentos de inércia principais ;
- $J=I_{xx}=I_{yy}$ (corpo axissimétrico) são os momentos de inércia dos eixos transversais:

Modelando ${\cal M}_z$ como um pulso retangular aplicado em um intervalo de duração T, temos:

$$\omega_z = \frac{M_z}{I_{zz}} para \ 0 \le t \le T \tag{2.4}$$

$$\omega_z = \frac{M_z}{I_{zz}} T \ para \ t > T \tag{2.5}$$

Caso as condições iniciais de ω_x e ω_y sejam não nulas ao iniciar a manobra de *spin-up*, o veículo espacial vai apresentar nutação e precessão após adquirir o *spin* desejado. Essa dinâmica é dada pelas equações abaixo:

Para as velocidades angulares:

$$\omega_x = \omega_x(0)\cos\frac{J - I_{zz}M_z t^2}{2JI_{zz}} + \omega_y(0)\sin\frac{J - I_{zz}M_z t^2}{2JI_{zz}}$$
(2.6)

$$\omega_y = \omega_y(0) \cos \frac{J - I_{zz} M_z t^2}{2J I_{zz}} - \omega_x(0) \sin \frac{J - I_{zz} M_z t^2}{2J I_{zz}}$$
(2.7)

Para os ângulos, quando utilizado a sequência de Euler 1-2-3, de nutação (θ_2) e ângulo de precessão $(\theta_1 + \frac{\pi}{2})$:

$$\theta_1 = \sqrt{\frac{\pi J}{M_z}} \left(\omega_x(0) C \left(\sqrt{\frac{M_z}{J\pi}} t \right) - \omega_y(0) S \left(\sqrt{\frac{M_z}{J\pi}} t \right) \right) \tag{2.8}$$

$$\theta_2 = \sqrt{\frac{\pi J}{M_z}} \left(\omega_y(0) C \left(\sqrt{\frac{M_z}{J\pi}} t \right) + \omega_x(0) S \left(\sqrt{\frac{M_z}{J\pi}} t \right) \right) \tag{2.9}$$

Onde C(.) e S(.) são as integrais de Fresnel

2.1.1.6 Forma de ajuste dos parâmetros do controlador

O único parâmetro para o ajuste desse controle de malha aberta é o tempo de acionamento T dos *thruster* de *spin*. Ele é feito por meio da equação (2.5), a qual pode ser reescrita como:

$$T = \frac{I_{zz}}{M_z} n \tag{2.10}$$

O valor de M_z é dado pelo projeto e teste dos *thrusters*, enquanto que I_{zz} é um parâmetro da estrutura do veículo espacial. Dessa forma, T é dado pela velocidade de *spin* n desejada pelo projeto do veículo espacial.

2.1.2 Flat spin

2.1.2.1 Objetivo do controle

O objetivo da manobra *Flat spin*, ou manobra de reorientação passiva, é alterar o eixo de spin. A alteração ocorrerá do eixo intermediário de inércia ou do eixo de menor de inércia para o eixo de maior de inércia. Para que isso ocorra, é necessário existir um componente de dissipação interna no veículo espacial.

2.1.2.2 Hipóteses da modelagem

As hipóteses adotadas são as mesmas do problema de *spin-up*, com exceção que o satélite é uma satélite de duplo *spin* com a presença de um elemento dissipativo de energia, o qual é um corpo rígido com um reservatório de propelente esférico.

2.1.2.3 Atuadores e sensores

Utilizam-se os seguintes hardwares:

- Sensores: manobras passivas normalmente n\u00e3o se utiliza sensores, mas pode-se utilizar girosc\u00f3pios para ativar os disparos de thrusters;
- Atuadores: Um elemento de dissipação interna de energia,neste caso, o próprio reservatório de combustível;

2.1.2.4 Estrutura do controlador

Como se trata de um controle passivo, normalmente não se utiliza um controlador. Entretanto, em alguns casos, pode-se implementar um controlador (analógico ou digital) para coordenar os disparos de *thrusters*, caso haja esse elemento no satélite.

2.1.2.5 Equações do movimento

A dinâmica do *flat spin* é dado pelas equações abaixo:

$$(I_{xx} - J)\dot{\omega}_x = (I_{yy} - I_{zz})\omega_y\omega_z + \mu\sigma_x + M_x$$
(2.11)

$$(I_{yy} - J)\dot{\omega}_y = (I_{zz} - I_{xx})\omega_z\omega_x + \mu\sigma_y + M_y$$
(2.12)

$$(I_{zz} - J)\dot{\omega}_z = (I_{xx} - I_{yy})\omega_x\omega_y + \mu\sigma_z + M_z$$
 (2.13)

$$\dot{\sigma}_x = -\dot{\omega}_x - \left(\frac{\mu}{J}\right)\sigma_x - \omega_y\sigma_z + \omega_z\sigma_y \tag{2.14}$$

$$\dot{\sigma}_y = -\dot{\omega}_y - \left(\frac{\mu}{J}\right)\sigma_y - \omega_z\sigma_x + \omega_x\sigma_z \tag{2.15}$$

$$\dot{\sigma}_z = -\dot{\omega}_z - \left(\frac{\mu}{J}\right)\sigma_z - \omega_x\sigma_y + \omega_y\sigma_x \tag{2.16}$$

Onde:

- σ_x, σ_y e σ_z são as velocidade angulares relativas entre o propelente e o corpo rígido em torno dos eixos principais;
- μ é o coeficiente de amortecimento viscoso entre o fluido propelente e as paredes do tanque:
- M_x , M_y e M_z são os torques de controle em torno dos eixos principais;

2.1.2.6 Forma de ajuste dos parâmetros do controlador

Como a manobra de **flat spin** é realizada por um controle passivo e não tem controlador, não há ajuste de parâmetros do controlador. Mas essa manobra passiva poderia ser ajustada por meio do ajusto dos parâmetros do dispositivo dissipador de energia.

2.1.2.7 Controle ativo de nutação ANC

2.1.2.8 Objetivo do controle

O objetivo do controle é reduzir a amplitude do ângulo de nutação induzido pela velocidade angular transversal do veículo espacial.

2.1.2.9 Hipóteses da modelagem

Adota-se as seguintes hipóteses:

- As pertubações externas e incertezas internas são ignoradas;
- O veículo espacial é axis simétrico;
- O corpo é rígido;
- Assume-se momentos de controle M_x e M_y ;

2.1.2.10 Atuadores e sensores

Normalmente utiliza-se os seguintes componentes de hardware:

- Sensores: acelerômetros para medir as acelerações induzidas pela nutação e giroscópios para medir componentes transversais da velocidade do corpo;
- Atuadores: *thrusters*, no caso mais simples somente 1 par de *thrusters* axiais, mas ainda terá um efeito de translação. Caso queira anular isso, deve-se usar 2 pares.

2.1.2.11 Estrutura do controlador

Normalmente ele tem duas implementações:

 Analógica, na qual portas lógicas podem comparar as leituras dos acelerômetros ou giroscópios., que irão controlar o disparo dos thrusters seguindo uma lógica de disparo pré-determinada; Com o uso de um computador digital, o qual recebe a leitura dos sensores e implementa uma função com a lógica de acionamento dos thrusters;

2.1.2.12 Equações do movimento

A dinâmica desse movimento é dado pelas equações abaixo:

$$J\dot{\omega}_x - (J - I_{zz})\omega_z\omega_y = M_x \tag{2.17}$$

$$J\dot{\omega}_v - (J - I_{zz})\omega_z\omega_v = M_v \tag{2.18}$$

$$I_{zz}\dot{\omega}_z = M_z \tag{2.19}$$

Onde ω_x , ω_y e ω_z são as velocidades angulares inerciais escritas nos eixos do SRC.

A solução do sistema de equações anteriores, com algumas simplificações, é dado, para pulsos retangulares dos *thrusters*, em três partes: antes do pulso, durante o pulso e após o pulso. Considerando os pulso com largura T e amplitude M, temos:

Para $0 \le t < t_1$:

$$\omega_x(t) = \omega_{y,0} \sin \lambda t \tag{2.20}$$

$$\omega_{\nu}(t) = \omega_{\nu,0} \sin \lambda t \tag{2.21}$$

Para $t_1 \le \mathsf{t} < t_1 + \mathsf{T}$:

$$\omega_x(t) = \left(\omega_{y,0} \frac{M}{J\lambda} \cos \lambda t_1\right) \sin \lambda t - \frac{M}{J\lambda} \sin \lambda t_1 \cos \lambda t \tag{2.22}$$

$$\omega_y(t) = \left(\omega_{y,0} \frac{M}{J\lambda} \cos \lambda t_1\right) \cos \lambda t - \frac{M}{J\lambda} \sin \lambda t_1 \cos \lambda t - \frac{M}{J\lambda}$$
 (2.23)

Para $t > t_1 + T$:

$$\omega_x(t) = \left(\omega_{y,0} + \frac{M}{J\lambda}(\cos\lambda t_1 - \cos\lambda(t_1 + T))\right)\sin\lambda t + \frac{M}{J\lambda}(-\sin\lambda t_1 + \sin\lambda(t_1 + T))\cos\lambda t$$
(2.24)

$$\omega_y(t) = \left(\omega_{y,0} + \frac{M}{J\lambda}(\cos\lambda t_1 - \cos\lambda(t_1 + T))\right)\cos\lambda t - \frac{M}{J\lambda}(-\sin\lambda t_1 + \sin\lambda(t_1 + T))\sin\lambda t$$
(2.25)

Após o tempo t $> t_1$ + T,após aplicação do pulso, pode-se verificar o ângulo de nutação θ pela equação:

$$an \theta = \frac{J\omega_{xy}}{I_{zz}n}$$
 (2.26)

$$\omega_{xy}^2(t) = \sqrt{\omega_x^2(t) + \omega_y^2(t)}$$
 (2.27)

Onde:

- n: velocidade angular do eixo de simetria;
- ω_{xy} : velocidade angular transversal;

2.1.2.13 Forma de ajuste dos parâmetros do controlador

No algoritmo de controle, o único parâmetro ajustável é a largura do tempo de aplicação T do pulso de aplicação do *thruster* e o tempo t_1 entre a aplicação dos pulsos. Esses parâmetros estão presentes nas seguintes equações:

$$t_1 = \frac{3\pi}{2\lambda} - \frac{T}{2} \tag{2.28}$$

$$\omega_{xymin} = \omega_{y,0} - \frac{2M}{J\lambda} \sin \frac{\lambda T}{2} \tag{2.29}$$

2.2 CONTROLE DE VEÍCULO ESPACIAL EM TRÊS EIXOS COM REALIMENTAÇÃO DE QUATÉRNIO E RODAS DE REAÇÃO

2.2.1 Objetivo do controle

O objetivo da estratégia do controle é apontar o satélite para alguma direção de referência no espaço inercial, a partir de uma qualquer, provendo estabilidade com respeito a esta condição de equilíbrio.

2.2.2 Hipóteses da modelagem

2.2.3 Atuadores e sensores

O hardware normalmente utilizado é:

- Sensores: giroscópios para mensurar a velocidade angular inercial decomposta nos eixos do sistema de referência do corpo (SRC). Para medir a atitude, utiliza-se sensores de estrela, os quais ainda podem ser combinados com sensores solares ou sistema de navegação inercial com integração de velocidade angular;
- Atuadores: normalmente utiliza-se um conjunto de 3 rodas de reação com eixos de torque alinhados com os eixos do SRC;

2.2.4 Estrutura do controlador

Para o controlador, utiliza-se um computador digital que recebe os dados dos sensores, calcula o comando a partir de uma lei de controle e envia os mesmos para os atuadores. Normalmente, esses computadores digitais não tem potencia necessária para fornecer o sinal para os atuadores, dessa forma, emprega-se um driver de controle para processar a saída de baixa potência do computador digital. Esse drive também implementa a lógica de controle das rodas de reação.

2.2.5 Equações do movimento

A dinâmica desse movimento, descrito em quaternários, é dado pelas equações:

$$q = -\omega \times \mathbf{q} + q_4 \omega \tag{2.30}$$

$$\dot{q}_4 = -\omega \cdot \mathbf{q} \tag{2.31}$$

$$q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} \tag{2.32}$$

Considerando um controle proporcional derivativo, a expressão da lei de controle é definida nas equações abaixo:

$$u = -Kq_e - C\omega (2.33)$$

$$q_e = -e_e \sin \frac{\phi_e}{2} \tag{2.34}$$

$$q_{4e} = \cos\frac{\phi_e}{2} \tag{2.35}$$

Onde K é a matriz de ganhos de erro e C a matriz de ganhos da velocidade. q_e e q_{4e} são a parte vetorial e escalar do quatérnio de erro. e_e é o vetor unitário do eixo de Euler do quatérnio de erro e ϕ_e é o ângulo principal do quatérnio de erro.

Para escolha das matrizes K e C, pode-se escolher os 4 conjuntos de equações, as quais torna o sistema de malha fechada globalmente estável em torno do ponto de equilíbrio: $\omega=0$ e q=0.

$$K = kI_3, C = diag(c_1, c_2, c_3)$$
 (2.36)

$$K = \frac{k}{q_4^3} I_3, \ C = diag(c_1, c_2, c_3)$$
 (2.37)

$$K = k * sgn(q_4)I_3, C = diag(c_1, c_2, c_3)$$
 (2.38)

$$K = (\alpha I_3 + \beta I_3)^{-1} I_3, \ K^{-1} C > 0$$
 (2.39)

2.2.6 Forma de ajuste dos parâmetros do controlador

Os parâmetros de ajuste do controlador são as matrizes K e C, as quais dependem da lei de controle escolhida.

3 IMPLEMENTAÇÃO

De forma geral, os código foram escritos na linguagem de programação do software MATLAB. Além disso, implementou-se modelos no Simulink para resolver os problemas 7.18 ao 7.21 do livro do Tewari. Para resolver numericamente os modelos de dinâmica de cada problema, empregou-se a função ode45 do MATLAB, com exceção dos problemas 7.18 ao 7.21, nos quais utilizou-se a opção *auto* do Simulink, na qual o *solver* do simulink escolhia automaticamente o método de resolução numérico.

Nessa seção não será tratado os comentários sobre as funções implementadas no código, pois já existe esses comentários no próprio código do MATLAB.

4 INTERPRETAÇÃO DOS RESULTADOS

Antes de comentar as simulações de cada exemplo, é preciso ressaltar que nos scripts desenvolvidos do Matlab, não se implementou a restrição de que os ângulos devem estar no intervalo [0,360º], ou seja, haverá alguns gráficos com valores de ângulos superiores a 360º, mais isso somente quer dizer que o corpo deu mais de uma volta sobre o eixo analisado.

4.1 EXEMPLO 7.1

O exemplo 7.1 trata da manobra de controle *spin-up*, a qual tem o objetivo de colocar um rotação no eixo principal do satélite. O eixo principal é o eixo z e é feita a simulação com e sem controle ativo de nutação.

O resultado da simulação sem considerar o controle ativo de nutação é dado nos gráficos 4.1 e 4.2:

Figura 4.1 – Variáveis de estado do problema sem o ANC

Figura 4.2 - Outros resultados importantes da simulação sem o ANC

No gráfico 4.1,é possível verificar o comportamento ondulatório do ω_x e ω_y , devido a condição inicial ω_{x0} ser diferente de zero, e que, apesar dos valores deles não serem constante, a soma deles é constante, o que é coerente com a teoria. Além disso, por não ter um controle de nutação ativo, há a presença de oscilação nos ângulos θ_1 e θ_2 .

No gráfico 4.2, é confirmar novamente o comportamento oscilatório de θ_1 e θ_2 devido a formação de uma elipse no gráfico θ_2 x θ_1 , além de verificar uma pequena oscilação na nutação e precessão, que ocorre devido a ausência do ANC e da condição inicial do problema ser diferente de zero.

O resultado da simulação considerando o controle ativo de nutação é dado pelos gráficos 4.3, 4.4 e 4.5:

Figura 4.3 – Variáveis de estado do problema com o ANC

Figura 4.4 – Outros resultados importantes da simulação com o ANC

No gráfico 4.3, é possível verificar o efeito do ANC. As variáveis de estados, após 100 s aproximadamente, não apresentam um valor oscilatório. O gráfico de ω_z dá a impressão que o seu valor é oscilatório, mas isso provavelmente só ocorre devido a precisão numérica do MATLAB, pois os valores de ω_z só variam na quarta casa decimal. Apesar do ANC suprimir o valor oscilatório de θ_2 , ele induz um pequeno erro de referencia, pois o seu valor não atinge 0.

No gráfico 4.4 é possível verificar novamente que o ANC suprimiu o caráter oscilatório dos ângulos θ_2 e θ_1 , pois o gráfico dessas grandezas possuem um ponto inicial, representado

Figura 4.5 – Ação de controle do ANC

* no gráfico, e um ponto final claro, representado por um círculo. Além disso, verifica-se que a precessão e a nutação não oscilam mais a partir do tempo t = 120.

No gráfico 4.5, é possível verificar a ação de controle por pulsos de onda, a qual representaria as ações dos *thrusters*. Na simulação, encontrou-se uma amplitude do pulso de 10 N.m e uma largura de pulso de 3s.

4.2 EXEMPLO 7.3

O exemplo 7.3 trata da manobra de *flat spin*, a qual realiza a troca de orientação do veículo espacial de forma passiva. O elemento passivo é o próprio tanque de propelente do veículo espacial. Além disso, na simulação tentou-se mostrar o caráter caótico desse comportamento, ou seja, que a resposta do sistema dinâmico varia radicalmente para uma variação muito pequena das condições iniciais do sistema dinâmico.

O resultado da simulação, utilizando a condição inicial: $\omega_{x0}=0.1224,\,\omega_{y0}=0$ e $\omega_{z0}=2.99$ é dado abaixo:

Figura 4.6 – Variáveis de estados do problema para $\omega_{x0}=0.1224$

Figura 4.7 – Outras variáveis importantes do problema para $\omega_{x0}=0.1224$

Figura 4.8 – ω_z x ω_z para $\omega_{x0}=0.1224$

O resultado da simulação, utilizando a condição inicial: $\omega_{x0}=0.125,~\omega_{y0}=0$ e $\omega_{z0}=2.99$ é dado abaixo:

Figura 4.9 – Variáveis de estados do problema com $\omega_{x0}=0.125$

Por meio da análise dos gráficos 4.6 a 4.11 é possível verificar que uma mudança

Figura 4.10 – Outras variáveis importantes do problema para $\omega_{x0}=0.1224$

Figura 4.11 – ω_z x ω_z para $\omega_{x0}=0.1224$

ínfima na condição inicial ω_{x0} (cerca de 2.1%) muda completamento o resultado do comportamento dinâmico do corpo. Isso pode ser explicado pela lugar geométrico entre a quantidade de movimento H e a energia cinética T, do corpo, que é uma polhode. A condição inicial do problema vai afetar em qual região a dinâmica do corpo irá iniciar e saber o momento exato na qual a solução passa de uma região estável para um região instá-

vel é extremamente difícil ou impossível, mesmo sabendo descrever esse lugar geométrico completamente, por isso a manobra *flat spin* possui esse comportamento caótico.

4.3 EXEMPLO 7.14

O problema 7.14 trata do controle do veículo espacial nos três eixos utilizando realimentação de quatérnio.

O resultado da simulação é dado pelos gráficos **??** a **??**. Utilizou-se o controlador com a estrutura 1 apresentada na seção de metodologia e os ganhos k = 100, c1 = 90, c2 = 90 e c3 = 90. Escolheu-se esses ganhos de forma arbitrária (não houve nenhum cálculo para isso), visando uma resposta pouco oscilatória e com amplitudes da ação de controle menores.

Figura 4.12 – Componentes da velocidade angular de rotação $\omega e doquatrnioq$

Figura 4.13 – Ação de controle

No gráfico 4.12 é possível verificar que o controle conseguiu realizar o seu objetivo, o qual é zerar os componentes dos vetores da velocidade angular e da parte vetorial do quatérnio e fazer a parte escalar do quatérnio igual a 1.

Figura 4.14 – Lugares geométricos entre q2 x q1, q3 x q1 e q3 x q2 e o ângulo principal

Figura 4.15

No gráfico 4.13 é possível verificar a ação de controle do controlador, a qual tem um caráter oscilatório inicial rápido e amplitudes aparentemente pequenas para o veiculo espacial do problema.

No gráfico 4.14 há o caminha geométrico entre as componentes vetoriais do quatérnio. Aparentemente, não é possível extrair uma lógica do comportamento dessas quantidades,

eles parecem não ter um comportamento definido.

No gráfico 4.14 é possível verificar o comportamento dos ângulos θ_1 , θ_2 , $e\theta_3$. Apesar desses ângulos convergirem em um tempo curto, o valor da amplitude da oscilação inicial é muito grande, o que pode ser um problema para a missão do veículo espacial. Isso poderia ser resolvido ou mitigado com um projeto mais criterioso do controlador.

4.4 EXEMPLO 7.18 E 7.19

Não foi possível retirar interpretações dos problemas 7.18 e 7.19, pois não se conseguiu implementá-los corretamente no MATLAB. O erro apresentado na simulação é dado na figura 4.16. Provavelmente o erro decorre dos valores utilizados no problema da simulação serem muito pequenos o que pode levar a uma imprecisão grande na representação desses valores no MATLAB, após sucessivas operações de multiplicações de matrizes e no calculo da inversa da matriz. Apesar do problema da precisão da função "place"do MATLAB ter sido comentado em aula, não conseguiu-se resolver o problema de implementação dos problemas 7.18 e 7.19 no MATLAB.

Figura 4.16 – Erro no Simulink

Error using problema7p19 (line 113)
Error due to multiple causes.
Caused by:
Error using problema7p19 (line 113)
Complex signal mismatch. 'Output Port 1' of 'diagrama_problema7p19/Sum2' is a signal of numeric type complex. However, it is driving a signal of numeric type real
Error using problema7p19 (line 113)
Complex signal mismatch. 'Input Port 1' of 'diagrama_problema7p19/Transfer Fcn' expects a signal of numeric type real.
However, it is driven by a signal of numeric type complex

4.5 EXEMPLO 7.20 E 7.21

Apesar dos exemplos 7.20 e 7.21 terem sido simulados pelo Simulink, o resultado dessa simulação parece estar errado, devido as variáveis do problema, representadas nos gráficos 4.17 e 4.18, terem um módulo muito pequeno, com exceção do h_x e h_z do gráfico 4.18, o que não permite fazer uma interpretação desses problemas. Esses resultados podem parecer errados devido a uma implementação errado do Matlab ou um domínio pequeno sobre o assunto desses 2 problemas, o que leva pensar que os gráficos estão errados.

Figura 4.17 – Variáveis de estado do problema 7.20

Figura 4.18 – Variáveis de estado do problema 7.21

5 CONCLUSÃO

Apesar de não ter concluído o trabalho integralmente, foi possível verificar que é possível realizar análises importantes sobre a atitude de um veículo espacial, mesmo utilizando modelos simplificados que não considera diversas pertubações. Além disso, foi possível verificar a dificuldade da implementação desses modelos simplificados e das estratégias de controle estudadas durante o curso.

Para os exemplos 7.1, 7.3 e 7.14 foi possível verificar o comportamento teórico deles nas implementações do MATLAB. Em relação aos exemplos 7.18 ao 7.21 não foi possível verificar o comportamento deles durante a simulação, pois não se conseguiu resolver os problemas de implementação do código, apesar deles terem sido executados durante as aulas do curso.

REFERÊNCIAS BIBLIOGRÁFICAS

André Luis da Silva. Aulas 09 a 14. 2022.