

Term End Examination - May 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: C2+TC2

Equations

Class NBR : 2840/2844

$PART - A (10 \times 3 = 30 \text{ Marks})$ Answer <u>ALL</u> Questions

1. Find the extreme points of the function $f(x, y) = xy + \frac{9}{x} + \frac{3}{y}$

- 2. If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$ find $\frac{\partial(x,y)}{\partial(u,v)}$
- 3. Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$, using polar coordinates.
- 4. Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta = \frac{1}{2} \Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)$ using Gamma functions.
- 5. Determine the constant a, so that the vector $\vec{v} = 3x\vec{i} + (x+y)\vec{j} az\vec{k}$ is solenoidal.
- 6. Find the directional derivative of $\phi = 2xy + z^2$ at the point(1,-1,3) in the direction of $\vec{i} + 2\vec{j} + 2\vec{k}$.
- 7. Solve: $x^2y'' + xy' y = 0$.
- 8. Find the particular integral of $(D^2 + 4)y = \sin 2x$
- 9. Find L[sin(2t+3)]
- 10. Find $L^{-1}\left(\frac{1}{S^2 + 4S + 4}\right)$

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. (a) Find the first three terms of the expansion of the function $e^x cos y$ in a Taylor [7] Series at the point (0,0).
 - (b) Find the maximum value of $x^m y^n z^p$, when x + y + z = a using Lagrange [7] Multiplier Method.

- 12. (a) Change the order of Integration in $\int_0^4 \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$ and hence evaluate the same. [7]
 - (b) Find the area of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, using Gamma functions. [7]
- Verify Divergence theorem for $\vec{F} = x^2\vec{\imath} + y^2\vec{\jmath} + z^2\vec{k}$, where S is a surface of the cuboid formed by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c.
- 14. (a) Solve $(D^2 4D + 3)y = x^2$, Using the Method of Undetermined coefficients. [7]
 - (b) Solve by using Method of Variation of Parameters [7]

$$\frac{d^2y}{dx^2} + 4y = tan2x$$

15. (a) Find the Laplace transform of the square wave given by [7]

$$f(t) = \begin{cases} E; & o < t < \frac{T}{2} \\ -E; & \frac{T}{2} < t < T \end{cases}$$
 and $f(t+T) = f(t)$.

(b) Solve the Differential Equation using the Laplace transform

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$
 given that $y = \frac{dy}{dx} = 1$ at $x = 0$

- 16. (a) By transforming into cylindrical coordinates, evaluate $\int \int \int (x^2 + y^2 + z^2) dx dy$, Taken over the region of space defined by $x^2 + y^2 \le 1$ and $0 \le z \le 1$
 - (b) Show that $\vec{F} = (2x + yz)\hat{\imath} + (4y + xz)\hat{\jmath} (6z xy)\hat{k}$ is irrotational and hence find its scalar potential. [7]
- 17. (a) Find $L^{-1}\left(\frac{2}{(S+1)(S^2+2^2)}\right)$ using convolution theorem. [7]
 - (b) Using Green's theorem evaluate $\int_c [(xy x^2)dx + x^2ydy]$ along the closed curve C formed by y = 0, x = 1 and y = x. [7]

 $\Leftrightarrow\Leftrightarrow\Leftrightarrow$

[7]