

Proiect realizat de Tropin Octavian Clasa a XII-a "T" IPLT "Mircea Eliade" profesor: Guţu Maria

Obiectivele proiectului

- -Descrierea metodei
- -Identificarea particularităților și avantajelor metodei
- -Prezentarea unor exemple pentru metoda dată

În analiză numerică, **metoda tangentei** (de asemenea, cunoscut sub numele de **metoda lui Newton** sau metoda lui Newton-Raphson^[1]), este o metodă de determinare a rădăcinii unei

funcții reale.

Descrierea metodei

Fie dată funcția f (x), care posedă următoarele proprietăți:

- 1. f(x), continuă, pe segmentul [a, b] şi f(a)f (b) < 0.
- 2. Pe segmentul [a, b] există f $'(x) \neq 0$, f $''(x) \neq 0$, continui, şi semnul lor pe [a, b] este constant.

Urmează să se rezolve ecuația f(x) = 0 pentru $x \in [a, b]$ Se va încerca rezolvarea problemei prin trasarea consecutivă a unor tangente la graficul funcției, prima dintre ele fiind construită prin extremitatea E0(x0, y0) a segmentului [a, b], extremitate pentru care se respectă condiția: $f(x0) \times f''(x0) > 0$.

Pasul 1. Verificam daca la capetele intervalului functia ia valori de semn opus.

Pasul 2. Alegem o aproximatie initiala pe intervalul [a, b].

Notam prin x_{o} , capatul intervalului, unde $f^{2}(x) > 0$.

Pasul 3. Calculam x_1 punctul de intersectie al tangentei duse la graficul functiei in punctul $(x_0, f(x_0))$ cu axa Ox.

Pentru a determina acest punct, vom scrie ecuatia dreptei tangenta la grafic in punctul de coordonate $(x_o, f(x_o))$, si anume: $y-f(x_o)=f'(x_o)(x_o-x_o)$.

Daca in ecuatia de mai sus punem y=0, obtinem un numar \mathbf{x}_1 reprezentind abscisa punctului de intersectie al dreptei cu axa Ox:

 $f(x_o) = -f'(x_o)(x_1 - x_o)$ de unde rezulta: $x_1 = -(f(x_o)/f'(x_o)) + x_o$

Pasul 4. Daca $f(x_1)=0$, atunci este radacina cautata, altfel se duce tangenta in punctul $(x_1, f(x_1))$.

Pasul 5. Daca $b/2/a|x_0-x_1|^2 < e$, atunci oprim executia algoritmului, iar in calitate de solutie se va lua valoarea x_1 . In caz contrar iteram procesul pentru urmatoarea aproximare.

In cazul metodei Newton nu este necesar ca sa fie dat intervalul [a, b], care sa contina radacina ecuatiei f(x)=0, dar este suficient sa se determine prima aproximare a radacinii $x=x_0$.

Utilizind metoda Newton este important sa tinem cont de urmatoarea regula: In calitate de prima aproximare x_0 se alege acel capat al intervalului [a, b] cu solutia separata (daca acesta se cunoaste), sau alt careva punct din apropiere, pentru care f(x) are acelasi semn ca si derivata de ordinul doi f''(x).

Algoritmul de calcul pentru un număr dat de aproximări succesive:

Pentru a realiza acest algoritm, este suficient să fie cunoscute descrierile analitice pentru f (x) şi f '(x). Dacă descrierea f '(x) nu este indicată în enunț, urmează să fie calculată. Aproximarea inițială se deduce utilizînd procedeul similar determinării extremității fixe pentru metoda coardelor.

Pasul 1. Determinarea aproximării inițiale x_0 : $c \leftarrow a - f(a)^*(b-a)/(f(b)-f(a))$.

dacă f(c) \times f(a) < 0, atunci $x_0 \in$ a, altfel $x_0 \in$ b; $n \in$ 0.

Pasul 2. Se calculează xn+1 conform formulei $x_{n+1} = x_n + h_n = x_n - \frac{f(x_n)}{f'(x_n)}$

Pasul 3. Dacă n+1 = n, atunci soluția calculată $x \in x_n+1$. SFÎRŞIT. În caz contrar, $n \in n+1$, apoi se revine la pasul 2.

Algoritmul de calcul pentru o exactitate ε dată:

În formula de estimare a erorii figurează mărimile M2 și m1. Atunci cînd valorile lor nu sînt indicate în enuntul problemei, este necesară o preprocesare matematică pentru stabilirea M2 și m1. Suplimentar sînt necesare descrierile analitice pentru f (x) și f '(x).

Pasul 1. Determinarea aproximării inițiale x0: $c \leftarrow a - f(a)*(b-a)/(f(b)-f(a))$.

dacă f(c) × f(a) < 0, atunci x0
$$\leftarrow$$
 a, altfel x₀ \leftarrow b; n \leftarrow 0.
$$x_{n+1} = x_n + h_n = x_n - \frac{f(x_n)}{f'(x_n)}$$
Pasul 2. Se calculează x_n+1 conform formulei

Pasul 3. Dacă M2*sqr(x_{n+1} - x_n)<= ϵ , atunci soluția calculată $x \in x_{n+1}$. SFÎRŞIT. În caz contrar, $n \leftarrow n+1$ și se revine la pasul 2.

Eroarea metodei

Procesul iterativ de calcul poate fi oprit fie după repetarea unui număr prestabilit de ori, fie după atingerea unei exactități cerute.

Eroarea se va estima conform formulei:

$$\varepsilon = \left|\xi - x_{i+1}\right| \le \frac{M_2}{2m_1} (x_{i+1} - x_i)^2,$$
 (7)

unde

 x_{ρ} x_{i+1} – două aproximări succesive ale soluției calculate,

 M_2 – supremul f''(x) pe [a, b],

 m_1 – infimul f'(x) pe [a, b].

Avantajul metodei lui Newton este faptul e o metoda rapid convergenta.

 $\frac{\text{Dezavantajul}}{\text{de plecare } \textbf{x}_0 \text{ trebuie sa fie suficient de aproape de radacina cautata } \textbf{x}^*.$

Un alt dezavantaj al metodei este faptul ca necesita derivata de ordin I.

Exemplu

Fie dată funcția $f(x) = X^3-2x^2+x-3$. Să se scrie un program care va calcula soluția ecuației f(x) = 0 pe segmentul [2; 15] pentru 10 aproximări succesive, utilizînd metoda Newton.

Deoarece numărul de aproximări succesive este fixat, iar extremitățile segmentului cunoscute, atribuirile necesare se vor realiza direct în corpul programului.

```
program cn09;
var a, b, x, c : real;
i, n: integer;
function f(z:real):real;
begin f:=z*z*z-2*z*z+z-3; end;
function fd1(z:real):real;
begin fd1:=3*z*z-4*z+1; end;
```

begin a:=2.1; b:=15; n:=10; i:=0; c:=a-(f(a))/(f(b)-f(a))*(b-a); if f(c)*f(a)<0 then x:=a else x:=b; while i<n do begin i:=i+1; x:=x-f(x)/fd1(x); writeln('i=',i:2,' x=',x:15:12, 'f=',f(x):15:12); end; end.

Rezultate: i= 1 x= 10.23214285700 f=869.11072454000 i= 2 x= 7.06207637180 f=256.52261987000 ...

i= 9 x= 2.17455942470 f= 0.00000009329 i=10 x= 2.17455941030 f= 0.00000000001

Bibliografie

- 1.Google Search, Google, www.google.com/search?q=isaac newton&source=Inms&tbm=isch&sa=X&ved=0ahUKEwj-6q37qpvfAhUrqIsKHXVuAp0Q_AUIDigB &biw=1366&bih=657#imgrc=WTbOouqXZM8YzM:
- 2.Google Search, Google, www.google.com/search?q=metoda newton&source=Inms&tbm=isch&sa=X&ved=0ahUKEwjtj638qpvfAhWuilsKHXg5B6EQ_AUIDigB &biw=1366&bih=657#imgrc=Mfmpd5T75zHqRM:
- 3.Default. *Metode Numerice Aplicatii Lucrarea* 8, iota.ee.tuiasi.ro/~mgavril/Metode/Luc8/MetLuc8.html.
- 4. "Metoda Newton." *Creeaza.com Acasa*, www.creeaza.com/referate/matematica/Metoda-Newton487.php.
- 5. "Metoda Tangentei." *Wikipedia*, Wikimedia Foundation, 9 Mar. 2018, ro.wikipedia.org/wiki/Metoda_tangentei.