Real-Time Face Mask Detection in Public Spaces

Enhancing Public Health and Some Supplier Vision

Github link

Nikhil Sama

Introduction

- Objective: Develop a system to detect face mask usage in real-time using computer vision.
- **Purpose**: Ensure compliance with mask mandates in public spaces (e.g., airports, malls, transit).
- Relevance: Critical for public health during pandemics (e.g., COVID-19) and beyond.
- **Scope**: Focus on real-time processing, accuracy, and ethical deployment.

Problem Statement

Challenges in Public Spaces:

- High crowd density complicates monitoring.
- Diverse mask types, lighting, and angles.
- Manual enforcement is inefficient and costly.

Need:

- Automated, scalable, and real-time detection.
- Privacy-preserving and unbiased systems.

Methodology

Data Collection:

- Public datasets: MAFA, RMFD, or custom datasets.
- Labels: Masked, unmasked, incorrectly masked.

Model Selection:

- **Object Detection**: YOLOv8 for speed and accuracy.
- Classification: MobileNetV2 for lightweight edge deployment.

• Training:

- Pre-trained models fine-tuned on mask datasets.
- Augmentation: Rotation, lighting, occlusion.

Challenges

• Technical:

- Small faces in crowded scenes.
- Low-light or occluded environments.

• Ethical:

- Privacy risks with facial data.
- Bias against certain demographics or mask styles.

Operational:

- Scalability in high-density areas.
- Real-time processing on limited hardware.

Future Work

• Improvements:

- Enhance robustness in adverse conditions.
- Integrate with IoT for smart city applications.

Extensions:

- Add crowd density estimation.
- Support multilingual alerts for global deployment.

• Research:

• Explore vision transformers for better accuracy.

Applications

• Public Health:

• Enforce mask mandates in high-risk areas.

• Security:

• Monitor compliance in restricted zones (e.g., hospitals).

• Commercial:

• Ensure safety in retail or workplaces.

• Research:

• Analyze mask-wearing behavior trends.

Results and Evaluation

• Metrics:

- Accuracy: >95% on test datasets.
- FPS: 35+ on NVIDIA Jetson Nano.
- False Positives: <2% for unmasked detection.

• Testing:

- Real-world scenarios: Indoor/outdoor, day/night.
- Crowded vs. sparse environments.

• Limitations:

Performance drops in extreme lighting or dense crowds.

Conclusion

• Summary:

- Developed a real-time face mask detection system.
- Achieved high accuracy and low latency.
- Addressed ethical concerns with privacy and bias mitigation.

• Impact:

- Enhances public health and safety.
- Scalable for various real-world applications.

• Next Steps:

- Deploy pilot in public spaces.
- Collaborate with authorities for policy integration

