DAX for creating tables and columns

DAX IN POWER BI

Carl Rosseel

Curriculum Manager at DataCamp

DAX stands for data analysis expressions

• DAX is a formula expression language used in multiple Microsoft analytics tools

- DAX formulas include functions, operators and values to perform advanced calculations
- DAX formulas are used in:
 - Measures
 - Calculated columns
 - Calculated tables
 - Row-level security

The power of DAX

- It opens up new capabilities:
 - Joins, filters, measures and calculated fields become part of your toolbox
- DAX + Power Query = a powerful data analysis tool:
 - Dive deeper into the data and extract key insights
 - Use DAX for rapid prototyping

Measures vs calculated columns

Calculated Columns:

- Calculated on data import
- Visible in data & report Pane

Order_ID	Sales	Pofit	Cost
3151	\$77.88	\$3.89	\$73.99
3152	\$6.63	\$1.79	\$4.84
3153	\$22.72	\$10.22	\$12.50
3154	45.36	\$21.77	\$23.59

Measures vs calculated columns

Calculated Columns:

- Calculated on data import
- Visible in data & report Pane

Order_ID	Sales	Pofit	Cost
3151	\$77.88	\$3.89	\$73.99
3152	\$6.63	\$1.79	\$4.84
3153	\$22.72	\$10.22	\$12.50
3154	45.36	\$21.77	\$23.59

Measures:

- Calculated at query run-time
- Visible only in report pane

Total Sales = SUM(Orders[Sales])

Region	Total Sales
Central	\$501,239.89
East	\$678,781.24
West	\$391,721.91
South	\$725.457.82
Total	\$2,297,200.86

- Row context: (1)
 - "The current row"
 - DAX calculated columns

```
COST = Orders[Sales] - Orders[Profit]
```

- Row context: (1)
 - "The current row"
 - DAX calculated columns

Order_ID	Sales	Pofit	Cost
3151	\$77.88	\$3.89	\$73.99
3152	\$6.63	\$1.79	\$4.84
3153	\$22.72	\$10.22	\$12.50
3154	45.36	\$21.77	\$23.59

- Query context: (2)
 - Refers to the subset of data that is implicitly retrieved for a formula
 - Controlled by slicers, page filters, table columns and row headers
 - Controlled by chart/visual filters
 - Applies after row context

- Query context: (2)
 - Example: Filter data by Region.

Region	Total Sales
Central	\$501,239
East	\$678,781
West	\$391,721
South	\$725.457

- Query context: (2)
 - Example: Filter data by State.

State	Total Sales
Alabama	\$13,724
Arizona	\$38,710
Arkansas	\$7,669
California	\$381,306

- Filter Context: (3)
 - The set of values allowed in each column, or in the values retrieved from a related table
 - By using arguments to a formula or by using report filters on row and column headings
 - Applies after query context

There are three types of context: row, query and filter context.

• Filter Context (3)

Total Costs East = CALCULATE([Total Costs], Orders[Region] = 'East')

Region	Total costs	Total costs East
Central	\$617,039	
East	\$587,258	\$587,258
West	\$461,534	
South	\$344,972	
Total	\$2,010,804	\$587,258

Context in a nutshell

World wide importers dataset

- A fictitious wholesaler who imports and distributes novelty goods
- The dataset consists of:
 - A fact table that detailing sales transactions
 - Multiple other dimension tables:
 - Dates
 - Customers
 - Cities
 - Employees
 - Stock Items

Let's practice!

DAX IN POWER BI

DAX for calculated tables and columns

DAX IN POWER BI

Carl RosseelCurriculum Manager

Let's practice!

DAX IN POWER BI

Methods to create DAX measures

DAX IN POWER BI

Carl RosseelCurriculum Manager

Implicit vs explicit measures

Implicit

- Automatically created by Power BI
- Comes directly from the Database
- E.g.: If we drag Sales to values of a table, Power BI will automatically sum it
- Using a dropdown menu we can define the aggregation: sum, average, count, ...

Explicit

- Writing measures in an explicit way
- E.g.: Total Sales = SUM(Orders[Sales])
- Offer flexibility

Why explicit measures are preferred

- Reduces confusion of what a measure is or does
 - o Total Sales = SUM(Orders[Sales])
 - Total Sales is more clear than Sales (SUM, AVG, MIN, ...?)
- Reusable within other measures
 - o Total Sales East = CALCULATE([Total Sales],Orders[Region] = 'East')
- Can be given a custom name to explain its functionality
- Makes maintenance of complex models more sustainable

Best practices

- Keep DAX measures grouped together:
 - Measures are free to move to any table
 - This is in contrast with calculated columns, which belong to a specific table

- Format and comment with DAX:
 - Use indentations to increase understanding
 - Shift Enter to start a new line
 - Tab to indent
 - Add comments after a //

Use variables to improve your formulas

- Stores the result of an expression as a named variable
- Can be used as an argument to other measure expressions
- Four main advantages:
 - Improve performance
 - Improve readability
 - Simplify debugging
 - Reduce complexity

Syntax:

- VAR <name> = <expression>
 - Name = The name of the variable
 - A DAX expression which returns a scalar or table value
 - Followed by a RETURN statement

Use variables to improve your formulas - example

• Calculate the sales from last year and store it as a variable

```
VAR
SALESPRIORYEAR = CALCULATE([SALES], SAMEPERIODLASTYEAR('DATE'))
RETURN
```

Use the variable in a formula

```
Sales growth = [Sales] - SALESPRIORYEAR
```

Use variables to improve your formulas - example

• All together it would look like this:

```
Sales growth =

VAR

SALESPRIORYEAR = CALCULATE([SALES], SAMEPERIODLASTYEAR('DATE'))
RETURN

Sales growth = [Sales] - SALESPRIORYEAR
```


Let's practice!

DAX IN POWER BI

DAX and measures

DAX IN POWER BI

Carl RosseelCurriculum Manager

Let's practice!

DAX IN POWER BI

