Detection of SQL Injection with a Machine Learning Approach

Presenter: Urmi Patel

Subject: Cyber Security (CP8320)

Final Project Presentation

Table of Content

SQL Injection
Goal/ Motivation
Dataset description
Machine learning process
Models / Algorithms
Comparisons of various models
Detailed Analysis
Experiment and results
Conclusion
Future work and challenges

SQL Injection

- SQLI is a common type of attack that uses malicious SQL code for manipulating the database to access the data that was not intended to be exposed.
- Recent vulnerability reports found that web-based systems can receive up to 26 attacks/min.

Goal

- Develop a machine learning (ML) based classifier using supervised learning methods to identify whether the inputted data by user contains SQLI vulnerabilities or not!!!
- Tried various models and the best was chosen based on model accuracy.

← → C localhost:81/Log/login.php	
Login	
User name: or 1=1 #	
Password:	
login	

Machine Learning Process

Tool: Google Colab

Language: Python

Machine Learning Approach

Dataset Description

```
1 union all select 1,2,3,4,5,6,name from sysobjects where xtype = 'u' --

1 uni/**/on select all from where

'or '1' = '1

'or '1' = '1

'lutl_http.request ('httP://192.168.1.1/')||'

'|| myappadmin.adduser ('admin', 'newpass') || '

'AND 1 = utl_inaddr.get_host_address (( SELECT SYS.LOGIN_USER FROM DUAL )) AND 'i' = 'i

'AND 1 = utl_inaddr.get_host_address (( SELECT SYS.LOGIN_USER FROM DUAL )) AND 'i' = 'i

'AND 1 = utl_inaddr.get_host_address (( SELECT SYS.LOGIN_USER FROM DUAL )) AND 'i' = 'i

1 description of the property of the prop
```

SQL Code – 1 Non-SQL Code - 0

She eating biscuits afterwards	0
This unusual call-out	0
The fact dog spotted unbelievable	0
Specialist Technical Rescue Officer Peter Lau said: " Ruby lucky escape	0
" The potential could seriously injured worse	0
Ruby taken vets check-up found fine exhaustion dehydration	0
Miss Hall , Halifax , West Yorkshire , said: " Watching rescue terrifying	0
" I could believe first place	0
It amazing get back arms	0
The vet said became exhausted collapsed would probably fallen	0

Dataset Description

Sentences	Label
SQL or Non-SQL	1 or 0

- Total two columns and 4200 rows.
- Each row has SQL or Non-SQL sentences.
- Use 1 for SQL sentences and 0 for Non-SQL sentences.

Supervised Learning Method

Preprocessing Data

Removing NULL values from the dataset

Removing duplicate sentences from the dataset

Perform vectorization

Used scikit-learn library

Transform text into a vector on the basis of frequency of each word

Split training and testing data

80% for training

20% for testing

Naïve Bayes SVM **KNN** Logistic **Decision Tree** CNN Regression

Naïve Bayes

- Simple and most effective Classification algorithm.
- Building fast machine learning models that can make quick predictions.
- It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.

SVM

- SVM(support vector machine) is a margin-based classifier.
- SVM maps training examples points in a space and creates a line between them based on the calculation.
- New test element mapped into that same space and predicted to belong to a category based on which side they fall.

KNN Graph

KNN

- K nearest neighbor
- Identify K nearest neighbour of "c".
- Similar things are near to each other.
- Generally, neighbors share similar characteristics and behavior that's why they can be treated as they belong to the same group.

Decision Tree

- Decision tree builds classification or regression models in the form of a tree structure.
- It breaks down a dataset into smaller and smaller subsets.

Tree Graph

Logistic Regression

- The model is used for binary classification (1 or 0)
- Logistic regression models the data using the sigmoid function.
- There is a fixed threshold value pre-decided for each scenario.
- If the probability is greater than 0.5, the predictions will be classified as class 1.
 Otherwise, class 0 will be assigned.

Models - CNN (Convolutional Neural Network)

- Neural networks made with layers of neurons which are core processing units of the network.
- CNN has hidden layers called convolutional layers, it also has non convolutional layers too.
- Neural networks takes a data as an input, trains them to recognize the pattern and then predicts the output for a new set of similar data.
- Neural networks may take hours or days to train the model.

Hyper Parameter Tunning in CNN

Epoch	Batch Size	Accuracy
10	16	0.9642
10	32	0.9762
5	32	0.9533
10	44	0.9361
15	40	0.9702

- 1. Dataset = 4000 rows
- 2. Split 80-20 = 3200(training) and 800 (testing)
- 3. Batch size = 32 then 3200 / 32 = 100 (each epoch take 100 rows)
- 4. Shuffled dataset every time
- 5. If epoch = 10 then (epoch 1 -> 100, epoch 2 -> 100, ... up to epoch 10)

Results

Loss Curve for CNN

Epoch 1 -> 100 rows , calculate loss for each row and average them to calculate loss for 1 epoch

Accuracy Curve for CNN

Experiment

Conclusion

- Used Machine learning methods to identify whether the inputted data by user contained SQLI vulnerabilities or not!!!
- Performed various supervised learning algorithms and neural networks.
- CNN proved to be the best algorithm for used dataset, gave highest accuracy.
- Experiment proved successful, giving correct responses.

Future work

- More algorithm and complex neural networks can be applied.
- Try NLP based BERT model to identify SQL injection.

Challenge

Each time model's accuracy and loss gives slightly different output because of its nature of shuffling data.

Time consuming when doing hyper parameter tunning.

Thank You

