Prop: Yfel', If | & SIFI.

Cor: Yf,gel', TFAE:

- (1) f=g a.e.
- (2) Sif-gl=0
- (3) YEEM, If = SE

 $Pf \bigcirc \bigcirc \bigcirc \bigcirc \qquad f=g \quad \text{a.e.} \iff |f-g|=o \text{ a.e.} \iff \int |f-g|=o \ .$

3=0 observe f=g a.e. iff Re(f-g)=0 a.e. and Im(f-g)=0 a.e. f=g this!

Recall $\int_{E} f - \int_{g} = \int_{g} (f-g) \chi_{E} = 0 \quad \forall E \in M$ = $\int_{e} Re(f-g) \chi_{E} + i \int_{e} Im(f-g) \chi_{E}$.

look at the following E & m:

 $\left\{ \operatorname{Re}(f-g) \geqslant 0 \right\} \Rightarrow \operatorname{Re}(f-g)_{+} = 0$ a.e

 $\{Re(f-g) \le v\} \rightarrow Re(f-g)_{-} = 0 \text{ a.e.}$

Smilerly for Im.

||·|| : L' → (0, ~) by ||f|| = ∫ |f|

- $\|\alpha f\|_{l} = \int |\alpha f| = \int |\alpha||f| = |\alpha||f||_{l}$
- $\|f+g\|_1 = \int |f+g| \le \int |f|+|g| = \int |f| + \int |g| = \|f\|_1 + \|g\|_1$. this is a Semiharm

Define L' = L'/2 where frog if f=g a.e.

Observe f~g \iff slf-gl=0

I I'll, descends to a norm on I'.

 $f_i(f,g) = \|f-g\|_i$ is a metric on J_i .

HW: I is complete not p. .

. write $f \in I'$ to mean $f \in I'$ representing its eq. class in I'.

Say $f_n \to f$ in \mathcal{L}' to mean $\int |f_n - f| \to 0$.

Remark I' (m) = L'(m)

Dominated Convergence Theorem Suppose (fn) < I' sit, fn >f a.e.

and $\exists g \in L'$ s.t. $g \ge 0$ and $|f_n| \le g$ a.e. $\forall n$. Then $f \in L'$ and $|f| = \lim_{n \to \infty} |f| = 1$.

(special case: Bdd CT: m(X) < 00 and If n | < M Ym)

By Fatoris Lema.

 $\int g + \int f = \int g + f \leq \lim \inf \int g + f = \int g + \lim \inf \int f n$ $\int g - \int f = \int g - f \leq \lim \int g - f = \int g - \lim g + g = \int g$

D

So $limsup \int f_n \leq \int f \leq lim \inf \int f_n$

Modes of Convergence: (X, m, n) fixed measure space. (f_n) , f are $m-B_c$ Mble fins. $f_n \to f$ can mean:

(pointwise) $f_n(x) \longrightarrow f(x) \quad \forall x \in X$. (a.e.) $f_n(x) \longrightarrow f(x)$ for a.e. $x \in X$

(*)
$$(\ln 1') \quad |f_n - f| \longrightarrow 0$$
(*)
$$(\ln \text{ measure}) \quad \forall \epsilon > 0, \quad m(|f - f_n| >, \epsilon \}) \longrightarrow 0$$

so
$$f_{k}\chi_{E^{c}} \longrightarrow f\chi_{E^{c}}$$
 where $E^{c} = UE_{n}^{c}$.

$$\mu(E) = 0$$
 by cont. from above.

 $\underline{l'} \Rightarrow measure$ Suppose $f_n \rightarrow f$ in $\underline{l'}$. Let $\epsilon > 0$.

$$\mu(\{|f-f_n| > \epsilon\}) = \int_{\{|f-f_n| > \epsilon\}} 1 = \frac{1}{\epsilon} \int_{\{|f-f_n| > \epsilon\}} \epsilon$$

$$\leq \frac{1}{\epsilon} \int_{\{|f-f_n| > \epsilon\}} \epsilon \int_{\{|f-f_n| > \epsilon\}} \epsilon$$

and measure suppose $f_n \to f$ a.u. Let $\epsilon > 0$. Let $\delta > 0$.

find $N \in [N]$ s.f. $n > N \Rightarrow M(f|f-f_n| > \epsilon f) < \delta$.

Since front a.u., JEEM s.t. M(E) < S and for $\chi_{e^e} \longrightarrow f \chi_{e^e}$ unif.