МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 4

з дисципліни «Дискретна математика»

Виконав:

Студент групи КН-113

Волошин Володимир

Викладач:

Мельникова Н.І.

Львів – 2019р.

Тема: Основні операції над графами. Знаходження остова мінімальної ваги за алгоритмом Пріма-Краскала.

Мета роботи: Набуття практичних вмінь та навичок з використання алгоритмів Пріма і Краскала.

Варіант № 7

Завдання № 1. Розв'язати на графах наступні задачі:

- 1.Виконати наступні операції над графами:
- 1) знайти доповнення до першого графу,
- 2) об'єднання графів,
- 3) кільцеву суму G1 та G2 (G1+G2),
- 4) розщепити вершину у другому графі,
- 5) виділити підграф A, що складається з 3-х вершин в G1 і знайти стягнення A в G1 (G1\ A),
- 6) добуток графів.

Розв'язок:

5) Виберемо підграф A з вершинами V1, V7, V5. Тоді G1\ A буде:

2. Знайти таблицю суміжності та діаметр графа.

7

Розв'язок:

Таблиця суміжності:

	V1	V2	V3	V4	V5	V6	V7	V8	V9
V1	0	1	0	1	0	1	1	0	1
V2	1	0	1	1	0	0	0	0	0
V3	0	1	0	1	0	0	1	0	1
V4	1	1	1	0	1	0	1	0	1
V5	0	0	0	1	0	1	1	0	1
V6	1	0	0	0	1	0	1	0	0
V7	1	0	1	1	1	1	0	0	0
V8	0	0	0	0	0	0	0	0	1
V9	1	0	1	1	1	0	0	1	0

Діаметр = 3.

3. Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Розв'язок:

Метод Краскала

Крок	Малюнок	Пояснення	Вибрані ребра
1	2 -2 - 5 - 7 - 8 4 1 -3 3 - 6 3 9 - 4 - 11 1 -2 -6 4 7 - 7 - 10 4	Вибирається ребро з найменшою вагою. Серед ребер (1,3) та (1,4) довільним чином було вибрано перше.	(1,3)
2	2 2 5 7 8 4 2 2 5 7 9 4 10 4 3 7 7 7 10 4	Тепер найменшим є (1,4). Його і вибираємо. Таким же чином будемо діяти і далі.	(1,3), (1,4)
3	2 -2 -5 -7 -8 4 1 -3 3 -6 3 9 -4 -11 4 -3 -7 -7 -10 4	Було вибрано ребро (3,5)	(1,3), (1,4),(3,5)
4	2 2 5 7 8 4 1 3 3 6 3 9 4 10 4 3 7 7 7 10	Було вибрано ребро (2,5), а ребро яке утворить цикл, тобто (1,2), одразу закреслюємо синім кольором і воно надалі розглядаися не буде. Будемо так діяти і далі.	(1,3),(1,4),(3,5),(2,5)
5	2 2 5 7 8 4 1 3 9 6 3 9 4 11 4 3 7 7 7 10 4	Було вибрано ребро (4,6), а (3,6) закреслено	(1,3),(1,4),(3,5),(2,5), (4,6)
6	2 2 5 7 8 4 1 3 3 6 3 9 4 11 4 2 7 7 10 4	Обираємо (4,7)	(1,3),(1,4),(3,5),(2,5), (4,6),(4,7)
7	2 5 7 8 4 1 3 9 6 7 9 4 10	Було вибрано ребро (6,10), а (7,10) та (2,7) закреслено	(1,3),(1,4),(3,5),(2,5), (4,6),(4,7),(6,10)
8	1 3 6 7 9 4 11 4 3 7 4 7 10	Було вибрано ребро (10,11)	(1,3),(1,4),(3,5),(2,5), (4,6),(4,7),(6,10),(10,11)

9	Було вибрано ребро (9,11), а (7,9) і (5,9) закреслено	(1,3),(1,4),(3,5),(2,5), (4,6),(4,7),(6,10),(10,11), (9,11)
10	Було вибрано ребро (8,11), а (8,6) і (5,7) закреслено.	(1,3),(1,4),(3,5),(2,5), (4,6),(4,7),(6,10),(10,11), (9,11), (8,11)

Метод Прима

Крок	Малюнок	Пояснення	Вибрані ребра
1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Вибираємо довільну точку та прилегле ребро з найменшою вагою. Нехай це буде точка 1 і ребро (1,3)	(1,3)
2	2-2-3-7-3 4-3-7-7-10-4-11	Тепер серед іциндентних ребер обираємо ребро з найменшою вагою. Так будемо діяти і надалі. Обрано ребро(1,4)	(1,3),(1,4)
3	2 - 2 - 3 - 7 - 3 4 1 3 3 - 5 7 9 - 4 - 11 2 6 3 7 - 7 - 10 4	Обрано ребро (3,5)	(1,3),(1,4),(3,5)
4	1 33 6 3 9 4 10 2 6 4 7 10 4 3 7 7 7 10	Обрано ребро (2,5), а ребро (1,2) закреслено, оскільки воно утворить цикл. Так будемо діяти і надалі.	(1,3),(1,4),(3,5),(2,5)
5	1 3 6 3 9 4 11 4 3 7 7 10 4	Було вибрано ребро (4,6), а ребро (3,6) закреслено .	(1,3),(1,4),(3,5),(2,5), (4,6)
6	1 3 2 5 7 9 4 11 4 3 - 7 4 7 10 4	Було вибрано ребро (6,10).	(1,3),(1,4),(3,5),(2,5), (4,6),(6,10)

7	1 3 6 5 7 9 -4 -11 4 9 7 4 7 10 4	Було вибрано ребро (4,7), а ребра (2,7) та (7,10) закреслено.	(1,3),(1,4),(3,5),(2,5), (4,6),(6,10),(4,7)
8	1 3 6 5 7 9 -4 -11 4 3 7 7 10 4	Було вибрано ребро (7,9).	(1,3),(1,4),(3,5),(2,5), (4,6),(6,10),(4,7), (7,9),
9		Було вибрано ребро (10,11), а ребро (9,11) закреслено.	(1,3),(1,4),(3,5),(2,5), (4,6),(6,10),(4,7), (7,9),(10,11)
10		Було вибрано ребро (8,12), а ребро (6,8) та (5,8) закреслено.	(1,3),(1,4),(3,5),(2,5), (4,6),(6,10),(4,7), (7,9),(10,11),(8,11)

Завдання №2. Написати програму, яка реалізує алгоритм знаходження остового дерева мінімальної ваги згідно свого варіанту.

Варіант № 7

За алгоритмом Прима знайти мінімальне остове дерево графа. Етапи розв'язання задачі виводити на екран. Протестувати розроблену програму на наступному графі:

Програмна реалізація:

```
#include <iostream>
#include <fstream>
using namespace std;
//Функція виводу масиву на екран
void PrintArray(int** arr, int size)
       for (int i = 0; i < size; i++)</pre>
              for (int j = 0; j < size; j++)</pre>
                     if (arr[i][j] != 0)
                             cout << "|" << arr[i][j] << "|\t";</pre>
                     else
                             cout << arr[i][j] << "\t";</pre>
              cout << endl<<endl;</pre>
       }
       cout <<
}
//Функція знаходження мінімального значення
int FindMin(int* arr, int size)
{
       for (int i = 1; i < size; i++){</pre>
              if (arr[0] > arr[i])
                     arr[0] = arr[i];
       }
       return arr[0];
}
int main()
{
       setlocale(LC_ALL, "Ukr");
       int size = 11;
       int** arr1 = new int* [size];//створення першого двовимірного динамічного масиву
       for (int i = 0; i < size; i++)</pre>
              arr1[i] = new int[size];
       int** arr2 = new int* [size];//створення другого двовимірного динамічного масиву
       for (int i = 0; i < size; i++)</pre>
              arr2[i] = new int[size];
       for (int i = 0; i < size; i++){//Ініціалізація масивів нулями
              for (int j = 0; j < size; j++){</pre>
                     arr1[i][j] = 0;
                     arr2[i][j] = 0;
              }
       }
       int num_of_edges = 18;
       int weight = 0, vertex1 = 0, vertex2 = 0;
       ifstream fin("FILE.txt"); //Зчитування даних про граф з файлу
       if (!fin.is_open())
              cout << "Error\n";</pre>
       else {
              for (int i = 0; i < num_of_edges; i++){</pre>
                     fin >> weight;
                     fin >> vertex1;
                     fin >> vertex2;
                     arr1[vertex1 - 1][vertex2 - 1] = weight;
                     arr1[vertex2 - 1][vertex1 - 1] = weight;
              }
```

```
fin.close();
       /*for (int i = 0; i < num_of_edges; i++) // Ввід даних вручну
              cin >> weight;
              cin >> vertex1;
              cin >> vertex2;
              arr1[vertex1 - 1][vertex2 - 1] = weight;
              arr1[vertex2 - 1][vertex1 - 1] = weight;
       }*/
      PrintArray(arr1, size);
      int min[100], min_size = 0, counter = 0, step = 1, n_of_chosens = 1;
              int* chosens = new int [size];//Створення динамічного масиву
              chosens[counter] = 0;
              bool end = false;
      while(!end)
              end = true;
              min_size = 0;
                     for (int n = 0; n < size; n++)//Видалення потрібних рядків
                            arr1[chosens[counter]][n] = 0;
              for (int j = 0; j < n_of_chosens; j++) {</pre>
                     for (int i = 0; i < size; i++){//Пошук можливих наступних ребер
                            if (arr1[i][chosens[j]] > 0){
                                   min[min_size] = arr1[i][chosens[j]];
                                   min_size++;
                                   end = false;
                            }
                     }
              int minimum = FindMin(min, min_size);//Знаходження мінімального значення з них
              for (int j = 0; j < n_of_chosens; j++){</pre>
                     for (int i = 0; i < size; i++){</pre>
                            if (arr1[i][chosens[j]] == minimum){ //Прирівнювання значень та
знаходження вибраного ребра та номеру рядка
                                   arr2[i][chosens[j]] = arr1[i][chosens[j]];
                                   arr2[chosens[j]][i] = arr1[i][chosens[j]];
                                   n_of_chosens++;
                                   counter++;
                                   chosens[counter] = i;
                                   goto link;
                            }
                     }
      link:
              cout << "Step " << step <<endl;</pre>
              step++;
              PrintArray(arr2, size);
      cout << "\nМінімальне остове дерево:";</pre>
      for (int i = 0; i < size; i++) {//Виведення мінімального остового дерева
              for (int j = i; j < size; j++) {</pre>
                     if (arr2[i][j] > 0)
                            cout << "(" << i + 1 << "," << j + 1 << ") ";
              }
       }
       return 0;
}
```

Результат выконання програми :

ep 11	L 0	[3]	1	0	0	0	0	0	0	0
	0	0	0	[2]	0	1	0	0	0	0
I	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	[2]	0	0	0	0	0
	[2]	0	0	0	0	0	4	0	0	0
	0	0	[2]	0	0	0	0	0	[2]	0
	[1]	0	0	0	0	0	0	[3]	[3]	0
	0	0	0	4	0	0	0	0	0	0
	0	0	0	0	0	[3]	0	0	0	4
	0	0	0	0	2	[3]	0	0	0	0
	0	0	0	0	0	0	0	4	0	0