

What are need to complete the racing??

- Calculating algorithm: Determination of correct value within timing constraints
 - ► Interrupt, System timer module

- Sensing
 - ► Line scan: Vadc
 - ► Motor speed: Gpt12
- Actuating
 - ▶ DC motor, Servo motor: GtmTom
- Debugging
 - ► ASC & Terminal

Project association

- System timer module
- **■** iLLD (Infineon Low Level Driver)
- Communication
- Analog to digital converter
- Pulse width modulation
- Pulse accumulation

iLLD

Provide interface functions and variables

iLLD Demos

Infineon Low Level Driver

		0		
📗 .metadata	2019-04-12 오후	파일 폴더		
LibSrc	2019-04-12 오후	파일 폴더		iLLD
뷀 МуАрр	2019-04-12 오후	파일 폴더		Application
	2019-04-12 오후	파일 폴더		Project
RemoteSystemsTempFiles	2019-04-12 오후	파일 폴더		
** README.md	2019-04-07 오후	Markdown File	2KB	

src: Work space

STM

Weekly Calendar									
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
6 am									
7 am									
8 am									
9 am									
10 am									
11 am									
noon									
1 pm									
2 pm									
3 pm									
4 pm			Lib			PC			
5 pm						i			
6 pm					Lib				
7 pm		Cafe							
8 pm									
9 pm									
10 pm									

Algorithm (Main)

– computer work

Interrupt (Timer)

– phone call

Algorithm (Main)

– computer work

- 64-bit free-running counter of the STM
- Use of SPB clock as source clock of the STM
- Generation of a service request (interrupt) based on compare match with STM content

Update of the compare value

ASC

Host System

Target System

Download

Debugging program

- 16 bytes TxFIFO, 16 bytes RxFIFO
- Pack / unpack capabilities of the Tx and Rx FIFO
- Interrupt generation

ASCLIN_Intro_B.vsd

ADC

A/D Converter

- Physical parameters (temperature, pressure, light intensity, and etc.)
 - Continuous and analog
- Unfortunately, microcontroller only understands '0' and '1'
- A/D converter can convert physical parameters into digital variables

A/D Converter technologies

- Successive-approximation converter
- Integration-based converters
- Counter type converters
- Parallel converters

Successive-approximation converter

Advantages

- The conversion time is fixed and independent of the magnitude of the analog sample
- Each conversion process is independent and unique of the results of previous conversions

Disadvantages

- The hardware implementation is quite complex
- Relative to other conversion techniques, successive-approximation is slower

Successive-approximation converter

Quantization and resolution of A/D Converter

- ► Terms
 - V_{ARFF}: Analog reference
 - V_{AGND}: Analog ground
- Resolution

=
$$(V_{AREF}-V_{AGND}) / (Number of steps)$$

$$= (V_{AREF} - V_{AGND}) / 2^{b}$$

- Example
 - $-V_{AREF} = 5V, V_{AGND} = 0V, 12$ -bit A/D Converter
 - Resolution = $(5 0)/2^{12}$ = 1.22 mV/steps

- Programmable conversion sequence (single or repeated)
- Selectable conversion resolution (8/10/12 bits)
- Conversions triggered by software, timer events, or external events
- Conversion speed and sample time adjustable to adapt to sensors and reference

PWM

The way to generate the analog signal at the digital system

Signal:

AM: (Amplitude Modulation)

FM:
(Frequency Modulation)

Pulse Width Modulation (PWM)

► A powerful technique for controlling analog circuits with a processor's digital outputs

$$Duty\ Cycle(\%) = \frac{Ontime}{period} \times 100$$

Effective Voltage(V) = $VDC \times Duty Cycle$

Applications

- Telecommunication
- Power delivery
- ► Motor Control
- Voltage regulation
- ...

X Reference: Afrotechmods(https://www.youtube.com/watch?v=YmPziPfaByw)

- Basic principles of PWM output generation
 - ► Counter, Period, Duty, Polarity, Operation Mode

Features of CCU6 (Capture/Compare Unit)

- Three capture/compare channels (Timer 12)
- One independent compare channels (Timer 13)
- Supply of 16-bit resolution
- Concurrent update of T12 and T13 registers
- Generation of center or edge-aligned PWM
- Support of single shot mode

Copyright @ ACE Lab, All rights reserved

PA

- Useful for event counting, pulse width measurement, pulse generation, and frequency multiplication
- Features of the GPT12
 - ► Maximum resolution: f_{GPT}/4 (GPT1) and f_{GPT}/2 (GPT2)
 - ▶ 3 independent timers/counters
 - Timers/counters can be concatenated
 - 4 operating modes:
 - Timer Mode
 - Gated Timer Mode
 - Counter Mode
 - Incremental Interface Mode
 - Reload and capture functionality
 - Separate interrupts

- Input edges on PA input pin increment the 16-bit counter
- In addition, the following may occur:
 - ► The pulse accumulator overflow bit may set
 - An interrupt is generated to CPU, if enabled.

Calculation of the motor speed (I)

- Rising or falling edges of the encoder pulses are counted by the pulse accumulator in the MCU
- Pulse accumulator
 - A function of the micro processor
 - Counting the number of encoder pulses
 - The counting number is stored in the 16 bit register

Calculation of the motor speed (II)

Signal processing

▶ Basic equation

$$\omega = \frac{d\theta}{dt} = \frac{\Delta \text{Pulse}}{\text{GearRatio} \times \text{PulsePerRev} \times T_s} \times 2\pi \text{ [rad/s]}$$

$$= \frac{\text{(Current counter value - Previous counter value)}}{\text{GearRatio} \times \text{PulsePerRev} \times T_s} \times 60 \text{ [RPM]}$$

Counter overflow handling

- ► The counter register reaches its maximum value
- Maximum counter value of the 16 bit counter: 2¹⁶ -1 = 65,534 (0xFFFF)
- ► Handling method 1 (Addition of 2¹⁶)
 - DeltaCounter = CNT₁+2¹⁶-CNT₂
- Handling method 2 (Counter reset)
 - DeltaCounter = CNT₁

