

有限元编程指北

作者: W. Huang 时间: Jan 10, 2024

目录

第1章	deal.ll 的安装与使用	1
1.1	安装教程	1
1.2	使用方法	2
焙 2 辛	椭圆方程	1
		2
2.1	变分形式推导	
2.2	编程指北1:最基础的求解技术	
	2.2.1 框架	
	2.2.2 生成网格	
	2.2.3 初始化稀疏线性系统	
	2.2.4 装配刚度矩阵	6
	2.2.5 求解稀疏线性系统	8
	2.2.6 输出结果与计算误差	9
	2.2.7 主函数	9
2.3	编程指北 2: 代数多重网格	10
第3章	Stokes 方程	11
3.1	变分形式推导	11
3.2	编程指北 1: Uzawa 方法	12
	3.2.1 Uzawa 方法简述	12
	3.2.2 框架	12
	3.2.3 初始化稀疏线性系统	16
	3.2.4 装配刚度矩阵	
	3.2.5 求解稀疏线性系统	
	3.2.6 输出结果	
	3.2.7 计算误差	
	3.2.8 主函数	
3.3	5.2.6 王函数 · · · · · · · · · · · · · · · · · · ·	
3.3	3.3.1	
	3.3.2 框架	
	3.3.3 初始化稀疏线性系统	
	3.3.4 装配刚度矩阵	29
	3.3.5 定义预优器	31
	3.3.6 求解稀疏线性系统	33
	3.3.7 输出结果	34
	3.3.8 计算误差	34
	3.3.9 主函数	35

第1章 deal.II 的安装与使用

本教程在 Ubuntu 22.04 上亲测可用。

1.1 安装教程

首先,用 apt 安装一些必要的包(已安装的包可以跳过):

```
sudo apt install gcc
sudo apt install g++
sudo apt install gfortran
sudo apt install make
sudo apt install cmake
sudo apt install libopenmpi-dev
sudo apt install libboost-dev
sudo apt install libnetcdf-dev
sudo apt install libmatio-dev
sudo apt install libmatio-dev
sudo apt install libhdf5-dev
sudo apt install libmetis-dev
```

点此下载 Trilinos 13.4.0。下载完成后解压,创建文件 install.sh,将以下内容写入:

```
cd Trilinos-trilinos-release-13-4-0
mkdir build
cd build
cmake
-DTrilinos_ENABLE_Amesos=ON
-DTrilinos_ENABLE_Epetra=ON
-DTrilinos_ENABLE_EpetraExt=ON
-DTrilinos_ENABLE_Ifpack=ON
-DTrilinos_ENABLE_Aztec00=0N
-DTrilinos_ENABLE_Sacado=ON
-DTrilinos_ENABLE_SEACAS=ON
-DTrilinos_ENABLE_Teuchos=ON
-DTrilinos_ENABLE_MueLu=ON
-DTrilinos_ENABLE_ML=ON
-DTrilinos_ENABLE_ROL=ON
-DTrilinos_ENABLE_Tpetra=ON
-DTrilinos_ENABLE_COMPLEX_DOUBLE=ON
-DTrilinos_ENABLE_COMPLEX_FLOAT=ON
-DTrilinos_ENABLE_Zoltan=ON
-DTrilinos_VERBOSE_CONFIGURE=OFF
-DTPL_ENABLE_MPI=ON
-DBUILD_SHARED_LIBS=ON
-DCMAKE_VERBOSE_MAKEFILE=OFF
-DCMAKE_BUILD_TYPE=RELEASE
-DCMAKE_INSTALL_PREFIX:PATH=$HOME/share/trilinos \
../
```

```
make install -j8
```

保存, 然后打开终端, 执行:

```
bash install.sh
```

需要等待大约半小时,在等待的过程中可以先把接下来的 p4est 安装好。

点此下载 p4est 2.8.5.5。下载完成后解压,创建文件 p4est-setup.sh,点击打开脚本链接,复制全部内容,将其写入刚刚创建的文件并保存。现在打开终端,运行:

```
chmod u+x p4est-setup.sh
./p4est-setup.sh p4est-2.8.5.5-9ddbb.tar.gz $HOME/share/p4est
```

点此下载 deal.II 9.5.1。解压,并进入解压后的文件夹。等 Trilinos 安装完成后,打开终端,执行:

```
mkdir build

cd build

cmake -DCMAKE_INSTALL_PREFIX=/usr/local \
-DDEAL_II_WITH_MPI=ON \
-DDEAL_II_WITH_METIS=ON \
-DDEAL_II_WITH_UMFPACK=ON \
-DDEAL_II_WITH_P4EST=ON \
-DP4EST_DIR=$HOME/share/p4est \
-DDEAL_II_WITH_TRILINOS=ON -DTRILINOS_DIR=$HOME/share/trilinos/ \
../

sudo make install -j8
```

安装完成后可以执行测试(也可以不测试):

```
make test
```

1.2 使用方法

从附件的任何一个代码文件夹里拷贝一份 CMakeLists.txt 出来,放到你的代码目录中。假设你的代码文件为 yourcode.cc, 打开刚刚拷贝的文件,将里面的第 6 行改为:

```
set(TARGET "yourcode")
```

保存后打开终端, 依次执行:

```
mkdir build
cd build
cmake ..
make release
make
```

即可编译你的程序, 然后输入

```
./yourcode
```

即可运行。

第2章 椭圆方程

2.1 变分形式推导

考虑齐次 Neumann 边界条件的椭圆方程

$$\begin{cases}
-\Delta u + u = f, & \text{in } \Omega, \\
\mathbf{n} \cdot \nabla u = 0, & \text{on } \partial \Omega.
\end{cases}$$
(2.1)

与测试函数作积分,得到

$$(-\Delta u + u, \phi) = (f, \phi). \tag{2.2}$$

通过分部积分降一阶,并将齐次 Neumann 边界条件代入,得到

$$(\nabla u, \nabla \phi) + (u, \phi) = (f, \phi). \tag{2.3}$$

从而得到有限元空间中的变分形式

$$(\nabla u_h, \nabla \phi_h) + (u_h, \phi_h) = (f, \phi_h), \quad \forall \phi_h \in V_h. \tag{2.4}$$

对应的稀疏线性系统为:

$$A\mathbf{u} = \mathbf{f},\tag{2.5}$$

其中

$$A(i,j) = (\nabla \phi_i, \nabla \phi_j) + (\phi_i, \phi_j), \quad i, j = 1, ..., N.$$
 (2.6)

$$\mathbf{f}(i) = (f, \phi_i), \quad i = 1, ..., N.$$
 (2.7)

 $\phi_1, ..., \phi_N$ 是所有的基函数。

这一章中, 我们采用精确解 $u(x,y) = \cos(\pi x)\cos(\pi y)$ 进行测试, 右端项 $f = 2\pi^2 u$ 。

2.2 编程指北1: 最基础的求解技术

2.2.1 框架

首先引入必要的头文件:

```
#include <deal.II/grid/tria.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_out.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/fe/fe_simplex_p.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/mapping_fe.h>
#include <deal.II/dofs/dof_renumbering.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
```

```
#include <deal.II/lac/dynamic_sparsity_pattern.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/numerics/data_out.h>
using namespace dealii;
```

定义精确解与右端项:

```
class Solution : public Function<2>{
  public:
    double value(const Point<2> & p, const unsigned int component = 0) const{
      return cos(M_PI*p[0]) * cos(M_PI*p[1]);
    };

  virtual Tensor<1, 2>
    gradient(const Point<2> & p, const unsigned int component = 0) const{
      Tensor<1, 2> grad;
      grad[0] = -M_PI * sin(M_PI*p[0]) * cos(M_PI*p[1]);
      grad[1] = -M_PI * cos(M_PI*p[0]) * sin(M_PI*p[1]);
      return grad;
    };
};

double f(const Point<2> &p){
      return (2*M_PI*M_PI) * cos(M_PI*p[0]) * cos(M_PI*p[1]);
}
```

接下来我们定义有限元方法的类。有限元算法的主要步骤为:生成网格、初始化稀疏线性系统、装配刚度矩阵与右端项、求解稀疏线性系统、输出结果。在这些步骤中,有一些重要的东西,它们应该作为成员变量:网格、有限元系统(这里我们选择 \mathcal{P}_k 元系统 $\operatorname{FE_SimplexP}$)、自由度处理器、稀疏模式(即标记稀疏矩阵非零元素位置的工具)、稀疏矩阵、右端项向量、解向量。我们再引入一个 level 变量,表示网格的加密层级。最终,我们需要向用户提供一个构造函数和一个"一键运行"的函数。所以我们的类定义如下:

```
class Elliptic{
public:
    Elliptic(const int &level);
    void run();

private:
    void make_grid();
    void setup_system();
    void assemble_system();
    void solve();
    void output_results() const;

int level;
    Triangulation<2> triangulation;
    FE_SimplexP<2> fe;
    DoFHandler<2> dof_handler;
```

```
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;

Vector<double> solution;
Vector<double> system_rhs;
};
```

在构造函数中,我们需要把 \mathcal{P}_k 元系统的 k 定下来,这里我们选择线性元,即 k=1。我们还需要把自由度处理器与网格绑定。同时我们为用户提供一个参数,用于输入网格加密层级。

```
Elliptic::Elliptic(const int &level)
: level(level),
  fe(1),
  dof_handler(triangulation)
{}
```

现在, 让我们先把"一键运行"的函数给写了:

```
void Elliptic::run()
{
   make_grid();
   setup_system();
   assemble_system();
   solve();
   output_results();
}
```

2.2.2 生成网格

接下来我们依次实现有限元算法的每一个步骤。第一步是生成网格,我们采用规则的三角网格,并进行 level 次加密。

```
void Elliptic::make_grid()
{
   GridGenerator::subdivided_hyper_cube_with_simplices(triangulation, 1);
   triangulation.refine_global(level);
}
```


图 2.1: level=3 时生成的网格

2.2.3 初始化稀疏线性系统

接下来是初始化稀疏线性系统。首先需要将自由度处理器与有限元系统绑定,自由度处理器会根据你的有限元系统生成所需的自由度,例如在线性元系统中,每个网格顶点就是一个自由度。我们还可以通过 dof_handler.n_dofs()知道自由度的总数。

```
void Elliptic::setup_system()
{
   dof_handler.distribute_dofs(fe);
   std::cout << "DoF Nunbers: " << dof_handler.n_dofs() << std::endl;</pre>
```

在 deal.II 中,稀疏矩阵的初始化需要一个"稀疏模式",它用于标记稀疏矩阵中所有可能的非零元素位置,例如在线性元中,当自由度 i 与 j 对应的顶点相邻时,我们就说这两个自由度是**关联**的,矩阵的 (i,j) 位置就有可能非零,从而应该出现在稀疏模式中。deal.II 为我们提供了自动生成稀疏模式的函数,它生成一个标记了所有关联自由度动态稀疏模式(意味着你仍然可以自己向里面加一些东西,但这里不需要),然后我们将它拷贝为静态稀疏模式。

接下来可以根据稀疏模式来初始化稀疏矩阵了,同时我们也初始化向量。

```
system_matrix.reinit(sparsity_pattern);
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
}
```

2.2.4 装配刚度矩阵

接下来是装配刚度矩阵,**重点!!!** 首先我们要决定在每个网格单元上用何种积分公式来计算积分,由于我们需要计算 (ϕ_i, ϕ_j) ,它是一个二次函数的积分,因此我们希望积分公式的代数精度至少为 2 阶,因此我们选择 2 点高斯积分公式(具有 3 阶代数精度)。

```
void Elliptic::assemble_system()
{
    QGaussSimplex<2> quadrature_formula(fe.degree + 1);
```

接下来,FEValues 将为你提供每个网格单元中每个积分节点上的信息,在任何一个网格单元中,我们需要知道基函数在每个积分节点上的取值、基函数的梯度在每个积分节点上的取值、积分节点对应的权重、积分节点的位置(用于代入 f 求右端项)。因此我们初始化如下:

我们装配刚度矩阵的思路是这样的: 枚举每一个三角形单元 \mathcal{K} , 这个三角形单元上的所有自由度为 1,2,...,m (例如线性元中为 1,2,3, 对应于三角形单元三个顶点处的值; 二次元中为 1,2,3,4,5,6, 对应于三角形单元三个顶点和三条边的中点处的值),对应基函数 $\phi_1,\phi_2,...,\phi_m$ 。我们计算

$$A_{\mathcal{K}}(i,j) = (\nabla \phi_i, \nabla \phi_j)_{\mathcal{K}} + (\phi_i, \phi_j)_{\mathcal{K}}, \quad i, j = 1, 2, ..., m.$$

$$(2.8)$$

这叫 **局部刚度矩阵**,计算 \mathcal{K} 上的数值积分时,我们需要枚举积分节点,求积分节点上的值,并乘上积分节点的 权重,然后累加。然后我们需要知道三角形单元上的自由度 1,2,...,m 在所有自由度中的编号 $d_1,d_2,...,d_m$ (我们称作**索引数组**),然后将局部刚度矩阵"贡献"到全局刚度矩阵中:

$$A(d_i, d_j) + = A_{\mathcal{K}}(i, j), \quad i, j = 1, 2, ..., m.$$
 (2.9)

对于右端项, 我们计算

$$\mathbf{f}_{\mathcal{K}}(i) = (f, \phi_i)_{\mathcal{K}}, \quad i = 1, 2, ..., m.$$
 (2.10)

这叫 局部右端项,同样的,需要枚举积分节点来计算,最后我们将它"贡献"到全局右端项中:

$$\mathbf{f}(d_i) + = \mathbf{f}_{\mathcal{K}}(i), \quad i = 1, 2, ..., m.$$
 (2.11)

我们已经知道了原理,现在来写代码。首先是确定每个三角单元里的自由度数量(例如线性元为3),然后定义局部刚度矩阵与局部右端项,然后是索引数组。

```
const unsigned int dofs_per_cell = fe.n_dofs_per_cell();

FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);

Vector<double> cell_rhs(dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
```

现在开始枚举三角单元,在每一个三角单元内,首先要清空局部刚度矩阵与局部右端项,然后通过 fe_values 来获取这个三角单元中的信息,并将获取到的积分节点位置信息提取出来。

接下来, 枚举积分节点以计算三角形上的积分。首先是计算局部刚度矩阵:

```
for (const unsigned int q_index : fe_values.quadrature_point_indices())
{
   for (const unsigned int i : fe_values.dof_indices())
   for (const unsigned int j : fe_values.dof_indices())
    cell_matrix(i, j) +=
        (fe_values.shape_grad(i, q_index) * // grad phi_i(x_q)
        fe_values.shape_grad(j, q_index) + // grad phi_j(x_q)
        fe_values.shape_value(i, q_index) * // phi_i(x_q)
        fe_values.shape_value(j, q_index) // phi_j(x_q)
        ) * fe_values.JxW(q_index); // 积分节点的权重
```

然后是计算局部右端项:

现在,让我们来获取索引数组,并将局部刚度矩阵与局部右端项"贡献"给全局:

2.2.5 求解稀疏线性系统

装配好刚度矩阵之后,我们就可以求解稀疏线性系统了。我们当然是使用迭代法,所以需要一个控制器来确定何时停止迭代,它需要控制最大迭代次数、终止迭代的误差。

```
void Elliptic::solve()
{
    SolverControl solver_control(5000, 1e-6 * system_rhs.12_norm());
```

我们选择共轭梯度法来求解,如下。PreconditionIdentity()表示无预优器,以后我们将会使用多重网格作为预优器,这一章暂时不管。

```
SolverCG<Vector<double>> solver(solver_control);
solver.solve(system_matrix, solution, system_rhs, PreconditionIdentity());
}
```

2.2.6 输出结果与计算误差

最后是输出结果,没什么好说的:

```
void Elliptic::output_results() const
{
   DataOut<2> data_out;
   data_out.attach_dof_handler(dof_handler);
   data_out.add_data_vector(solution, "solution");
   data_out.build_patches();
   std::ofstream output("solution.vtk");
   data_out.write_vtk(output);
```

然后我们计算解的 L^2 范数误差。在数学上,计算 L^2 范数需要计算一个积分,这个积分需要通过自适应数值积分方法计算,deal.II 为我们提供了计算误差范数的函数,首先计算每个网格单元上的 L^2 误差,然后累积得到全局 L^2 误差,我们只需要提供必要的信息即可,见代码注释。

```
Vector<double> difference_per_cell(triangulation.n_active_cells());
 VectorTools::integrate_difference(MappingFE<2>(fe), // 自由度到顶点坐标的映射
                            dof_handler,
                                           // 自由度处理器
                             solution,
                                            // 数值解向量
                                           // 精确解
                             Solution(),
                             difference_per_cell, // 每个单元上的误差结果
                             QGaussSimplex<2>(fe.degree + 1), // 数值积分公式
                             VectorTools::L2_norm); // 误差范数
 const double L2_error =
   VectorTools::compute_global_error(triangulation,
                              difference_per_cell,
                              VectorTools::L2_norm);
 std::cout << "L2-norm error: " << L2_error << std::endl;</pre>
}
```

注意,这样输出 L^2 误差会很精确,但也很慢,网格大的时候几乎是求解耗时的 5 倍,因此不建议使用。其实我们只需要粗略计算 L^2 误差,我们可以用枚举三角单元、枚举积分节点的方式自己写一个函数,这一章我们暂时不写。

2.2.7 主函数

主函数随便写写就好了。

```
int main(int argc, char* argv[])
{
  int level;
  std::cin >> level;
  Elliptic solver(level);
  solver.run();
  return 0;
}
```

完整代码见 elliptic 文件夹。

2.3 编程指北 2: 代数多重网格

这个小节我们来引入多重网格。deal.II 支持的几何多重网格是基于四边形网格上的 Q_k 元的,在实际应用中, Q_k 元很常用也很好用,但在我们这门课程里并不使用。想学习相关内容,请移步 deal.II 官方教程的 step-16。我们介绍一个代数多重网格。首先需要引入头文件

```
#include <deal.II/lac/generic_linear_algebra.h>
```

除了 solve 函数,其余部分与之前一样,我们来重写 solve。首先需要引入代数多重网格,以及包含多重网格各项的参数结构体:

```
void Elliptic::solve()
{
   TrilinosWrappers::PreconditionAMG preconditioner;
   TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
```

我们来看多重网格包含了哪些参数。以下是 deal.II 官方文档中给出的定义:

```
TrilinosWrappers::PreconditionAMG::AdditionalData::AdditionalData (const bool
                                                                                                  elliptic = true,
                                                                                                  higher_order_elements = false,
                                                             const unsigned int
                                                                                                  n_cycles = 1,
                                                             const bool
                                                                                                  w_cycle = false,
                                                                                                  aggregation_threshold = 1e-4,
                                                             const std::vector< std::vector< bool >> & constant_modes = std::vector<std::vector<bool>>>(0),
                                                             const unsigned int
                                                                                                 smoother_sweeps = 2,
                                                             const unsigned int
                                                                                                 smoother_overlap = 0,
                                                                                                 output_details = false,
                                                             const char *
                                                                                                smoother_type = "Chebyshev",
                                                             const char *
                                                                                                coarse_type = "Amesos-KLU"
```

图 2.2: PreconditionAMG 的各项参数

对于新手而言,我们只建议调整 higher_order_elements、w_cycle、smoother_sweeps 这三个参数。当你使用 \mathcal{P}_k ($k \geq 2$) 元时,可以设置 higher_order_elements 为 true;默认的多重网格循环是 V-cycle,可以设置 w_cycle 为 true 以切换为 W-cycle,通常会比 V-cycle 的效果要好;smoother_sweeps 是磨光次数,默认的 2 次 通常是最好的,某些情况下 1 可能会好一些。

下面我们来初始化 preconditioner:

```
additional_data.w_cycle = true;
preconditioner.initialize(system_matrix, additional_data);
```

剩下的部分和以前一样,只要把预优器换成我们的 preconditioner 即可。最后可以输出 CG 迭代次数来看看多重网格的效果如何。

注意,由于我们使用了Trilinos的包,它是依赖MPI的,所以我们要在main()函数的第一行加上:

```
Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
```

完整代码见 ellipticAMG 文件夹。

第3章 Stokes 方程

3.1 变分形式推导

考虑如下形式的 Stokes 方程:

$$\begin{cases}
-\Delta \mathbf{u} + \nabla p = \mathbf{f}, & \text{in } \Omega, \\
\nabla \cdot \mathbf{u} = 0, & \text{in } \Omega, \\
\mathbf{u} = 0, & \text{on } \partial \Omega.
\end{cases}$$
(3.1)

内积上测试函数 $(\mathbf{v},q)^T$, 并将齐次边界条件代入, 得到:

$$\begin{pmatrix}
-\Delta \mathbf{u} + \nabla p \\
\nabla \cdot \mathbf{u}
\end{pmatrix}, \begin{pmatrix} \mathbf{v} \\
q \end{pmatrix} \end{pmatrix}_{\Omega}$$

$$= (-\Delta \mathbf{u} + \nabla p, \mathbf{v})_{\Omega} + (\nabla \cdot \mathbf{u}, q)_{\Omega}$$

$$= (\nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega} + (p, \nabla \cdot \mathbf{v})_{\Omega} + (\nabla \cdot \mathbf{u}, q)_{\Omega}.$$

所以有变分形式:

$$(\nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega} + (p, \nabla \cdot \mathbf{v})_{\Omega} + (\nabla \cdot \mathbf{u}, q)_{\Omega} = (\mathbf{f}, \mathbf{v}), \quad \forall \mathbf{v} \in H_0^1(\Omega), q \in L_0^2(\Omega).$$
(3.2)

我们记有限元空间 $W_h = V_h \times Q_h$,其中 $V_h = [\mathcal{P}_2]^d$ (d 是空间维数), $Q_h = \mathcal{P}_1$,记 V_h 的基函数为 $\phi_1, ..., \phi_N$ (向量函数), Q_h 的基函数为 $\psi_1, ..., \psi_M$,那么 W_h 的基函数为:

$$\Phi_i = \begin{pmatrix} \phi_i, \\ 0 \end{pmatrix}, \quad i = 1, ..., N; \tag{3.3}$$

$$\Phi_{N+i} = \begin{pmatrix} \mathbf{0}, \\ \psi_i \end{pmatrix}, \quad i = 1, ..., M. \tag{3.4}$$

我们记有限元变分解 $(\mathbf{u}_h, p_h)^T = \sum_i \alpha_i \Phi_i$,并记 $\Phi_{i,\mathbf{u}}$ 为 Φ_i 在 V_h 上的分量, $\Phi_{i,p}$ 为 Φ_i 在 Q_h 上的分量,代入 变分形式,可以得到如下形式的线性系统:

$$A\alpha = \mathbf{b}.\tag{3.5}$$

其中

$$\mathcal{A}(i,j) = (\nabla \Phi_{i,\mathbf{u}}, \nabla \Phi_{j,\mathbf{u}}) + (\nabla \cdot \Phi_{i,\mathbf{u}}, \Phi_{j,p}) + (\Phi_{i,p}, \nabla \cdot \Phi_{j,\mathbf{u}}). \tag{3.6}$$

事实上,我们将上面的式子对于 i=1,...,N 和 i=N+1,...,M 分别写出来,并扔掉等于零的项,可以得到下面这些方程:

$$\sum_{j=1}^{N} (\nabla \Phi_{i,\mathbf{u}}, \nabla \Phi_{j,\mathbf{u}}) \alpha_j + \sum_{j=N+1}^{M} (\nabla \cdot \Phi_{i,\mathbf{u}}, \Phi_{j,p}) \alpha_j = (\mathbf{f}, \Phi_{i,\mathbf{u}}), \quad i = 1, ..., N;$$
(3.7)

$$\sum_{i=1}^{N} (\nabla \cdot \Phi_{j,\mathbf{u}}, \Phi_{i,p}) \alpha_{j} = 0, \quad i = N+1, ..., M;$$
(3.8)

所以 (3.5) 是一个对称的鞍点型线性系统,我们可以把它写成下面的分块形式

$$\begin{pmatrix} A & B^T \\ B & O \end{pmatrix} \begin{pmatrix} \alpha_{\mathbf{u}} \\ \alpha_p \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{0} \end{pmatrix}$$
(3.9)

其中

$$A(i,j) = (\nabla \phi_i, \nabla \phi_j), \quad B(i,j) = (\psi_i, \nabla \cdot \phi_j). \tag{3.10}$$

在这一章中, 我们均取精确解

$$\mathbf{u}(\mathbf{x}) = \pi(\sin^2(\pi x_1)\sin(2\pi x_2), -\sin(2\pi x_1)\sin^2(\pi x_2)),\tag{3.11}$$

$$p(\mathbf{x}) = \cos(\pi x_1)\sin(\pi x_2),\tag{3.12}$$

并导出右端项 (建议自己用 WolframAlpha 算一下):

$$f_1(\mathbf{x}) = \pi \sin(\pi x_1) \sin(\pi x_2) - 2\pi^3 (-1 + 2\cos(2\pi x_1)) \sin(2\pi x_2), \tag{3.13}$$

$$f_2(\mathbf{x}) = -\pi \cos(\pi x_1) \cos(\pi x_2) + 2\pi^3 (-1 + 2\cos(2\pi x_2)) \sin(2\pi x_1). \tag{3.14}$$

接下来的两篇编程指北可以独立阅读,从实用性角度出发建议阅读 Uzawa 方法,从完成作业的角度出发建议阅读预优 MinRes 方法。

3.2 编程指北 1: Uzawa 方法

3.2.1 Uzawa 方法简述

Uzawa 方法并不在这门课的编程要求内,但是它实现起来最简单,而且据我测试,它比预优 MinRes 方法、投影法、Schur 分解直接求解法等一众方法都要更快。因此,在这份编程指北中,我们首先介绍这种方法,但不作理论分析。

Uzawa 方法对速度与压强进行轮流更新, 即, 重复如下两步迭代:

(Uzawa-1) $\alpha_{\mathbf{u}} \leftarrow A^{-1}(\mathbf{f} - B^T \alpha_n);$

(Uzawa-2) $\alpha_p \leftarrow \alpha_p + M_O^{-1} B \alpha_{\mathbf{u}}$.

上面涉及到两个逆矩阵的计算,代价略大。从实用角度出发,我们更愿意使用非精确的 Uzawa 方法。即: 将上述迭代中的 A^{-1} 用一轮多重网格 W-Cycle 松弛替代(记做 C_W),将 M_O^{-1} 用 (diag M_Q) $^{-1}$ 替代:

(Inex-Uzawa-1) $\alpha_{\mathbf{u}} \leftarrow \alpha_{\mathbf{u}} + C_W(\mathbf{f} - B^T \alpha_p - A\alpha_{\mathbf{u}});$

(Inex-Uzawa-2) $\alpha_p \leftarrow \alpha_p + (\text{diag } M_Q)^{-1} B \alpha_{\mathbf{u}}$.

可以证明,精确与非精确的 Uzawa 方法具有一样好的收敛性。在实际使用中,非精确 Uzawa 的表现通常要好得多。现在我们开始介绍非精确 Uzawa 方法的编程。

3.2.2 框架

首先引入必要的头文件

```
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/function.h>
#include <deal.II/base/utilities.h>
#include <deal.II/base/tensor_function.h>

#include <deal.II/lac/block_vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/block_sparse_matrix.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/affine_constraints.h>
#include <deal.II/lac/affine_constraints.h>
#include <deal.II/lac/generic_linear_algebra.h>
```

```
#include <deal.II/lac/linear_operator.h>
#include <deal.II/lac/packaged_operation.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_renumbering.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_simplex_p.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>
using namespace dealii;
#include <iostream>
#include <fstream>
#include <memory>
```

为了方便,我们引入下面的计时器。注意,传统的 clock() 函数无法用于计时,因为 deal.II 运用了大量的并行技术。

```
#include <chrono>

struct CPUTimer
{
    using HRC = std::chrono::high_resolution_clock;
    std::chrono::time_point<HRC> start;
    CPUTimer() { reset(); }
    void reset() { start = HRC::now(); }
    double operator() () const {
        std::chrono::duration<double> e = HRC::now() - start;
        return e.count();
    }
};
```

首先来定义右端项函数与精确解,注意右端项函数是一个向量函数,所以我们需要继承 TensorFunction。 精确解我们以分量形式返回,前两个分量是速度,第三个分量是压强,见代码。

```
template <int dim>
class RightHandSide : public TensorFunction<1, dim>
{
public:
```

```
RightHandSide()
   : TensorFunction<1, dim>()
 virtual Tensor<1, dim> value(const Point<dim> &p) const override;
};
template <int dim>
Tensor<1, dim> RightHandSide<dim>::value(const Point<dim> &p) const
 Tensor<1, dim> ans;
 ans[0] = M_PI * sin(M_PI*p[0]) * sin(M_PI*p[1])
          -\ 2*M_PI*M_PI*M_PI* (-1. + 2.*cos(2*M_PI*p[0])) * sin(2*M_PI*p[1]);
 ans[1] = -M_PI*cos(M_PI*p[0])*cos(M_PI*p[1])
          + 2*M_PI*M_PI*M_PI * (-1. + 2.*cos(2*M_PI*p[1])) * sin(2*M_PI*p[0]);
 return ans;
}
template <int dim>
class TrueSolution : public Function<dim>
public:
 TrueSolution()
   : Function<dim>()
 {}
 virtual double value(const Point<dim> &p,
                    const unsigned int component = 0) const override;
};
template <int dim>
double TrueSolution<dim>::value(const Point<dim> &p,
                           const unsigned int component) const
 if(component == 0)
   return M_PI * pow(sin(M_PI*p[0]), 2.) * sin(2.*M_PI*p[1]);
 else if(component == 1)
   return -M_PI * pow(sin(M_PI*p[1]), 2.) * sin(2.*M_PI*p[0]);
 else if(component == 2)
   return -cos(M_PI*p[0]) * sin(M_PI*p[1]);
 return 0;
}
```

现在来定义主类。这里我们用了一个模板参数 \dim ,它可以让我们的代码在二维和三维中通用。主要的过程和椭圆方程一样,只是多了一个用于计算 L^2 误差的函数。另外,注意到我们把稀疏矩阵和向量都改成了分块的版本,这是因为我们的线性系统是分块的。我们还使用到了 FESystem,它可以将一些有限元系统"打包"。最后增加的 constraints 对象是 deal.II 中处理 Dirichlet 型边界条件的标准模块。

```
template<int dim>
```

```
class StokesProblem
{
public:
 StokesProblem(const int &);
 void run();
private:
 void make_grid();
 void setup_system();
 void assemble_system();
 void solve();
 void compute_L2_error();
 void output_results(const unsigned &);
 unsigned int level;
 Triangulation<dim> triangulation;
 FESystem<dim>
                  fe;
 DoFHandler<dim> dof_handler;
 BlockSparsityPattern sparsity_pattern;
 BlockSparseMatrix<double> system_matrix;
 BlockVector<double> system_rhs;
 BlockVector<double> solution;
 BlockVector<double> checker;
 BlockVector<double> block_diag_MQ;
 AffineConstraints<double> constraints;
};
```

现在,在构造函数中,我们要声明有限元系统 $[\mathcal{P}_2]^d \times \mathcal{P}_1$,这里用 d dim 可以让我们的代码在二维和三维中通用(后文中,未经特殊说明,均默认二维情况,此时我们一共有三个有限元系统)。其余部分和椭圆方程一样,如下。

```
template<int dim>
StokesProblem<dim>::StokesProblem
  (const int &level):
  level(level),
  fe(FE_SimplexP<dim>(2) ^ dim, FE_SimplexP<dim>(1)),
  dof_handler(triangulation)
{}
```

接下来我们还是先把一键运行的函数写了,这次我们加上计时器,以便观察每个步骤分别的耗时,并在最后调用我们自己的函数来计算误差。

```
template<int dim>
void StokesProblem<dim>::run()
{
   make_grid();
   CPUTimer timer;
```

```
std::cout << "Level: " << level << "-----" << std::endl;
 std::cout << "Setup..." << std::endl;</pre>
 setup_system();
 timer.reset();
 std::cout << "Assembling..." << std::endl;</pre>
 assemble_system();
 std::cout << " " << timer() << "s." << std::endl;
 timer.reset();
 std::cout << "Solving..." << std::endl;</pre>
 solve();
 std::cout << " " << timer() << "s." << std::endl;
 std::cout << "Output results..." << std::endl;</pre>
 output_results();
 std::cout << "Computing error..." << std::endl;</pre>
 compute_L2_error();
}
```

接下来我们分别实现每一个步骤。第一个步骤 make_grid 和椭圆方程是完全一样的,这里不再展示。我们直接来看 setup_system。

3.2.3 初始化稀疏线性系统

同样的,首先需要将有限元系统绑定到自由度控制器。接下来我们需要对自由度进行排序,我们需要确保 $\Phi_1,...,\Phi_N$ 对应的自由度确实是前 N 个自由度,这样最后得到的线性系统才能按我们所预期的那样呈现分块结构。我们需要一个数组来说明第 i 个有限元系统属于第几个分量,我们一共有三个有限元系统,前两个系统属于第 0 个分量(速度分量)、后一个系统属于第 1 个分量(压强分量),因此我们定义一个这样的数组,并将它传入 component_wise 函数,这样自由度就能按我们的预期排序。

```
template<int dim>
void StokesProblem<dim>::setup_system()
{
   dof_handler.distribute_dofs(fe);

   std::vector<unsigned> block_component(dim+1, 0);
   block_component[dim] = 1;
   DoFRenumbering::component_wise(dof_handler, block_component);
```

接下来引入处理 Dirichlet 边界条件的标准模块,我们在这个模块中定义速度分量的齐次 Dirichlet 边界条件,这里的 component_mask(velocities) 表示该边界条件仅针对速度分量。而 velocities 是我们定义的从第 0 个有限元系统开始的一个向量类型系统,即速度分量对应的有限元系统,我们不用关心内部实现。最后需要调用 close() 以完成 constraints 模块的初始化。当 Dirichlet 边界条件不是齐次时,需要自己写一个边界条件的函数,格式和右端项函数一样。

```
const FEValuesExtractors::Vector velocities(0);
```

接下来我们可以输出一下速度分量、压强分量分别有几个自由度

接下来我们考虑稀疏模式应该如何初始化。默认的初始化方式是这样的:如果自由度 i 与自由度 j 在同一个三角单元中,那么就将 (i,j) 加入稀疏模式。但是,现在事情变了,比如说,如果自由度 i 与自由度 j 分别属于第 0 个有限元系统和第 1 个有限元系统,那么 $(\nabla \Phi_{i,\mathbf{u}}, \nabla \Phi_{j,\mathbf{u}}) = 0$,这样一来 (i,j) 就没必要加入稀疏模式了。事实上,如果我们不把这些没必要的位置加入稀疏模式,我们得到的稀疏模式会比默认的小一半以上!

不难发现,在 Stokes 方程中,对于两个在同一个三角形单元中的自由度 i, j,位置 (i, j) 需要被加入稀疏模式,当且仅当符合下面三个条件之一:

- 两个自由度均属于第0个有限元系统;
- 两个自由度均属于第1个有限元系统;
- 其中一个自由度属于前两个有限元系统、另一个自由度属于第2个有限元系统。

我们需要创建一个表格来表示哪些位置是有必要加入稀疏模式的,然后将表格与 constraints 模块传入创建动态稀疏模式的函数中,详见代码。代码中用了一个异或布尔运算,是对上述条件的一个精巧表示,读者可以思考一下。

```
BlockDynamicSparsityPattern dsp(dofs_per_block, dofs_per_block);

Table<2, DoFTools::Coupling> coupling(dim+1, dim+1);

for (unsigned int c = 0; c < dim + 1; ++c)

   for (unsigned int d = 0; d < dim + 1; ++d)
    if ((c==d) ^ (c==dim || d==dim))
        coupling[c][d] = DoFTools::always;
    else
        coupling[c][d] = DoFTools::none;

DoFTools::make_sparsity_pattern(
        dof_handler, coupling, dsp, constraints, false);
sparsity_pattern.copy_from(dsp);
system_matrix.reinit(sparsity_pattern);</pre>
```

最后是创建分块的向量。

```
solution.reinit(dofs_per_block);
system_rhs.reinit(dofs_per_block);
checker.reinit(dofs_per_block);
block_diag_MQ.reinit(dofs_per_block);
}
```

3.2.4 装配刚度矩阵

我们的框架还是: 枚举三角网格、计算局部刚度矩阵与局部右端项、贡献给全局。另外,由于我们要计算 $\operatorname{diag}(M_O)$,所以我们还需要一个局部 $\operatorname{diag}(M_O)$,我们用向量来存储对角矩阵。下面是我们需要的一些局部变量:

我们需要计算 $\mathbf{f} = (f_1, f_2)$ 在每个积分节点的值,并且存起来,deal.II 将向量函数的返回值定义为一个一阶 张量 Tensor<1,dim>,所以我们需要一个长度为 $\mathbf{n}_{\mathbf{q}}$ -points 的一阶张量型数组。

```
const RightHandSide<dim> right_hand_side;
std::vector<Tensor<1, dim>> rhs_values(n_q_points, Tensor<1, dim>());
```

接下来是两个神奇的模块,可以帮助我们提取 $\Phi_{i,\mathbf{u}}$ 与 $\Phi_{i,p}$ 。有了它们,我们就可以用 $\mathbf{fe_values}$ [velocities] . $\mathbf{shape_value}(\mathbf{i},\mathbf{q})$ 表示 $\Phi_{i,\mathbf{u}}(x_q)$,以及 $\mathbf{fe_values}$ [pressure] . $\mathbf{shape_value}(\mathbf{i},\mathbf{q})$ 表示 $\Phi_{i,p}(x_q)$ 。当然, $\nabla\Phi_{i,\mathbf{u}}(x_q)$ 和 $\nabla\cdot\Phi_{i,\mathbf{u}}(x_q)$ 也可以用类似的方法表示。

```
const FEValuesExtractors::Vector velocities(0);
const FEValuesExtractors::Scalar pressure(dim);
```

接下来是一些局部变量,用于存储 $\nabla \Phi_{i,\mathbf{u}}(x_q), \nabla \cdot \Phi_{i,\mathbf{u}}(x_q), \Phi_{i,\mathbf{u}}(x_q), \Phi_{i,p}(x_q)$ (i 取遍三角单元中的所有自由度)

```
std::vector<Tensor<2, dim>> grad_phi_u(dofs_per_cell);
std::vector<double> div_phi_u(dofs_per_cell);
std::vector<Tensor<1, dim>> phi_u(dofs_per_cell);
std::vector<double> phi_p(dofs_per_cell);
```

接下来开始枚举三角单元,初始化 fe_values,并计算好右端项函数在这个单元的所有积分节点上的值。

现在枚举积分节点 x_q , 并对所有的自由度 i, 将 $\nabla \Phi_{i,\mathbf{u}}(x_q)$, $\nabla \cdot \Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,p}(x_q)$ 计算好。

剩下的部分就是按照 (3.6) 式来计算局部的 $A_{\mathcal{K}}(i,j)$,局部右端项和局部 $\operatorname{diag}(M_Q)$ 的计算无需多言。注意,由于 $A_{\mathcal{K}}$ 是对称的,我们可以只计算它的下三角部分。

```
for (unsigned int i = 0; i < dofs_per_cell; ++i)</pre>
   for (unsigned int j = 0; j \le i; ++j)
     {
      local_matrix(i, j) +=
        ( grad_phi_u[i][0] * grad_phi_u[j][0] // (1)
          + grad_phi_u[i][1] * grad_phi_u[j][1]
          - div_phi_u[i] * phi_p[j]
                                             // (2)
          - phi_p[i] * div_phi_u[j])
                                            // (3)
        * fe_values.JxW(q);
                                             // * dx
     }
   local_rhs(i) += phi_u[i] // phi_u_i(x_q)
                 * rhs_values[q] // * f(x_q)
                 * fe_values.JxW(q); // * dx
   local_diag_MQ(i) +=
        (phi_p[i] * phi_p[i])
        * fe_values.JxW(q);
 }
}
```

现在,我们根据对称性来填充 A_K 的上三角部分

```
for (unsigned int i = 0; i < dofs_per_cell; ++i)
  for (unsigned int j = i + 1; j < dofs_per_cell; ++j)
    local_matrix(i, j) = local_matrix(j, i);</pre>
```

最后,将局部矩阵与向量贡献给全局。这里我们不再手动枚举、贡献,而是直接使用 constraints 模块的内置函数。(注意, 当存在 Dirichlet 边界条件时,必须使用这种方式来将局部信息贡献给全局)

3.2.5 求解稀疏线性系统

现在到了激动人心的部分,我们要开始求解线性系统了。首先是初始化多重网格,为了代码简单,我们仍然使用 Trilinos 的代数多重网格。

```
template<int dim>
void StokesProblem<dim>::solve()
{
   TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
   additional_data.higher_order_elements = true;
   additional_data.w_cycle = true;

TrilinosWrappers::PreconditionAMG A_preconditioner;
   A_preconditioner.initialize(system_matrix.block(0,0), additional_data);
```

现在, $\operatorname{diag}(M_Q)$ 被存到了分块向量 $\operatorname{block_diag_MQ}$ 的压强分量中,我们需要把它提取出来作为一个普通向量,然后将每个元素求倒数得到 $\operatorname{diag}(M_Q)^{-1}$ 。

```
auto diag_MQ_inverse = block_diag_MQ.block(1);
for(auto& p : diag_MQ_inverse) p = 1. / p;
```

接下来是 Uzawa 迭代过程中需要用到的一些临时量

```
Vector<double> rhs(solution.block(0).size());
Vector<double> correction_u(solution.block(0).size());
Vector<double> correction_p(solution.block(1).size());
int uzawa_steps = 0;
```

接下来我们引入一些"语法糖",我们把分块矩阵、分块向量的每一个块起一个名字,和我们数学上的表述统一起来,接下来我们就可以像写数学表达式一样写代码了。注意,线性算子只是一个包装,稀疏矩阵和向量之间的乘法运算符是没有被定义的,需要用成员函数 vmult 来实现,但当我们将稀疏矩阵包装成线性算子后,我们就可以用乘法运算符了。

```
const auto B = linear_operator(system_matrix.block(1,0));
const auto BT = linear_operator(system_matrix.block(0,1));
const auto A = linear_operator(system_matrix.block(0,0));
const auto & f = system_rhs.block(0);
```

```
auto & u = solution.block(0);
auto & p = solution.block(1);
```

现在正式开始 Uzawa 迭代。第一步是计算 $rhs=\mathbf{f}-B^T\alpha_p-A\alpha_{\mathbf{u}}$,然后对它进行一次多重网格作用得到 $\alpha_{\mathbf{u}}$ 的校正,将它加给 $\alpha_{\mathbf{u}}$ 。然后需要调用一次 distribute 来将 Dirichlet 边界条件赋值给速度分量。

```
do{
  uzawa_steps++;
  rhs = f - BT * p - A * u;
  A_preconditioner.vmult(correction_u, rhs);
  u += correction_u;
  constraints.distribute(solution);
```

接下来是按 (Inex-Uzawa-2) 来校正 α_p 。

```
correction_p = B * u;
for(unsigned i = 0; i < p.size(); i++)
  correction_p[i] *= diag_MQ_inverse[i];
p += correction_p;</pre>
```

最后,我们需要计算整个系统的残差,当残差的二范数达到容许误差时,结束迭代。

```
system_matrix.vmult(checker, solution);
checker -= system_rhs;
}while(checker.12_norm() >= 1e-7*system_rhs.12_norm());
```

我们可以观察 Uzawa 迭代一共进行了几轮 (通常不超过 100 轮, 且轮数不随网格加密而增加)。

```
std::cout << " " << uzawa_steps << " Uzawa iterations." << std::endl;
}</pre>
```

3.2.6 输出结果

我们要把解向量拆分成速度向量分量、压强标量分量来分别输出,所以需要一些声明,即:前两个有限元系统是速度向量分量的一部分、后一个有限元系统是压强标量分量。具体见代码。

然后传进 add_data_vector 里输出即可。我们传给 build_patches 里的参数表示在输出时,对每个三角形单元输出几个点的值;当不传值时,只输出三角形三个顶点的值;当传入 2 时,会额外输出三角形三边中点的值,可以让我们画出的图像更光滑一些。

3.2.7 计算误差

我们这里只计算 L^2 误差, 计算公式是:

$$E_{u_1}^2 = \int_{\Omega} |u_1 - u_{h,1}|^2 dx \approx \sum_{K \in \mathcal{T}} \sum_{q} |u_1(x_q) - u_{h,1}(x_q)|^2 w_q.$$
 (3.15)

其中 x_q 是积分节点的坐标, w_q 是积分节点的权重,q 取遍 \mathcal{K} 上的所有积分节点。 E_{u_2} 和 E_p 类似。

为了使计算结果能够体现出收敛阶,我们需要一个至少3阶代数精度的积分公式,这里我们用了3点高斯积分公式,它具有5阶代数精度。

代码的思路和装配矩阵一样,但省去了贡献给全局的步骤,如下。

```
template <int dim>
void StokesProblem<dim>::compute_L2_error()
 QGaussSimplex<dim> quadrature_formula(3);
 FEValues<dim> fe_values(fe,
                      quadrature_formula,
                      update_values | update_quadrature_points |
                        update_JxW_values);
 const unsigned int n_q_points = quadrature_formula.size();
 const TrueSolution<dim> true_solution;
 std::vector<Tensor<1, dim>> numerical_results_u(n_q_points);
 std::vector<double>
                         numerical_results_p(n_q_points);
 const FEValuesExtractors::Vector velocities(0);
 const FEValuesExtractors::Scalar pressure(dim);
 double err_u1 = 0.;
 double err_u2 = 0.;
 double err_p = 0.;
 for (const auto &cell : dof_handler.active_cell_iterators())
     fe_values.reinit(cell);
     fe_values[velocities].get_function_values(solution, numerical_results_u);
     fe_values[pressure].get_function_values(solution, numerical_results_p);
     auto q_points = fe_values.get_quadrature_points();
```

值得注意的是,我们这样算出的并不是 $||u_1 - u_{h,1}||_{L^2}$,只是一个近似值,但用于计算收敛阶已经足够。要算出误差的精确值,要将每个三角形不断切分成小三角形计算下去,直到三角形足够小或者结果足够可信。精确计算误差的 L^2 范数代价是很大的,甚至比求解的耗时更久,所以我们不推荐这么做。

3.2.8 主函数

主函数随便写写就好了。注意因为我们用了 Trilinos 的代数多重网格,所以要加上一句 MPI 的初始化。

```
int main(int argc, char *argv[]){
   Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
   int level;
   std::cin >> level;
   StokesProblem<2> stokes(level);
   stokes.run();
   return 0;
}
```

完整代码见文件夹 stokesUzawa。

3.3 编程指北 2: 预优 MinRes 方法

3.3.1 预优 MinRes 方法介绍

预优 MinRes 方法是这门课的编程要求。而在这门课的作业中,线性系统 (3.9) 被进一步地分块为:

$$\begin{pmatrix} A_1 & O & B_1^T \\ O & A_2 & B_2^T \\ B_1 & B_2 & O \end{pmatrix} \begin{pmatrix} \alpha_{u_1} \\ \alpha_{u_2} \\ \alpha_p \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \mathbf{0} \end{pmatrix}$$
(3.16)

这也不难理解,我们只需要把 $\Phi_1,...,\Phi_M$ 进一步排序为:

$$\begin{pmatrix} \xi_1 \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \xi_s \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \xi_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \xi_s \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \psi_1 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \psi_m \end{pmatrix}$$
(3.17)

即可,其中 $\xi_1,...,\xi_s$ 是 \mathcal{P}_2 的基函数, $\psi_1,...,\psi_m$ 是 \mathcal{P}_1 的基函数。

MinRes 方法是一种求解对称系统的方法,不要求正定性。deal.II 为我们提供了 SolverMinRes,它的接口和

椭圆方程中用到的 SolverCG 完全一样。我们要做的事情就是定义预优器。根据作业要求,预优器为:

$$\begin{pmatrix} A_{\Delta} & & \\ & A_{\Delta} & \\ & & \operatorname{diag}(M_Q)^{-1} \end{pmatrix}, \tag{3.18}$$

其中 A_{Δ} 表示针对 \mathcal{P}_2 元上 Poisson 方程的多重网格 V-cycle 的一次作用。

3.3.2 框架

首先引入必要的头文件

```
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/function.h>
#include <deal.II/base/utilities.h>
#include <deal.II/base/tensor_function.h>
#include <deal.II/lac/block_vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/block_sparse_matrix.h>
#include <deal.II/lac/solver_minres.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/lac/affine_constraints.h>
#include <deal.II/lac/generic_linear_algebra.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_tools.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/dofs/dof_renumbering.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_simplex_p.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/fe/mapping_fe.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/matrix_tools.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>
using namespace dealii;
#include <iostream>
#include <fstream>
#include <memory>
```

为了方便,我们引入下面的计时器。注意,传统的 clock() 函数无法用于计时,因为 deal.II 运用了大量的并行技术。

```
#include <chrono>
struct CPUTimer
{
    using HRC = std::chrono::high_resolution_clock;
    std::chrono::time_point<HRC> start;
    CPUTimer() { reset(); }
    void reset() { start = HRC::now(); }
    double operator() () const {
        std::chrono::duration<double> e = HRC::now() - start;
        return e.count();
    }
};
```

首先来定义右端项函数与精确解,注意右端项函数是一个向量函数,所以我们需要继承 TensorFunction。 精确解我们以分量形式返回,前两个分量是速度,第三个分量是压强,见代码。

```
template <int dim>
class RightHandSide : public TensorFunction<1, dim>
public:
 RightHandSide()
   : TensorFunction<1, dim>()
 virtual Tensor<1, dim> value(const Point<dim> &p) const override;
};
template <int dim>
Tensor<1, dim> RightHandSide<dim>::value(const Point<dim> &p) const
 Tensor<1, dim> ans;
 ans[0] = M_PI * sin(M_PI*p[0]) * sin(M_PI*p[1])
          - 2*M_PI*M_PI*M_PI * (-1. + 2.*cos(2*M_PI*p[0])) * sin(2*M_PI*p[1]);
 ans[1] = -M_PI*cos(M_PI*p[0])*cos(M_PI*p[1])
          + 2*M_PI*M_PI*M_PI * (-1. + 2.*cos(2*M_PI*p[1])) * sin(2*M_PI*p[0]);
 return ans:
}
template <int dim>
class TrueSolution : public Function<dim>
public:
 TrueSolution()
   : Function<dim>()
 {}
```

现在来定义主类。这里我们用了一个模板参数 \dim ,它可以让我们的代码在二维和三维中通用。主要的过程和椭圆方程一样,只是多了一个用于计算 L^2 误差的函数。另外,注意到我们同时有一个分块稀疏矩阵和稀疏矩阵,这两个矩阵的内容是完全一样的,只是存储方式不一样,在后文中我们将会知道为什么要用两种方式存储同一个矩阵。我们还使用到了 FESystem,它可以将一些有限元系统"打包"。最后增加的 constraints 对象是 deal.II 中处理 Dirichlet 型边界条件的标准模块。

```
template <int dim>
class StokesProblem
public:
 StokesProblem(const unsigned&);
 void run();
private:
 void setup_dofs();
 void assemble_system();
 void solve();
 void output_results() const;
 void refine_mesh();
 void compute_L2_error();
 int level;
 Triangulation<dim> triangulation;
 FESystem<dim>
                 fe;
 DoFHandler<dim> dof_handler;
 std::vector<types::global_dof_index> dofs_per_block;
 AffineConstraints<double> constraints;
 BlockVector<double> block_diag_MQ;
```

```
Vector<double> solution;
Vector<double> system_rhs;

BlockSparsityPattern sparsity_pattern;
BlockSparseMatrix<double> system_matrix;

SparsityPattern full_sparsity_pattern;
SparseMatrix<double> full_system_matrix;
};
```

现在,在构造函数中,我们要声明有限元系统 $[\mathcal{P}_2]^d \times \mathcal{P}_1$,这里用 d im 可以让我们的代码在二维和三维中通用(后文中,未经特殊说明,均默认二维情况,此时我们一共有三个有限元系统)。其余部分和椭圆方程一样,如下。

```
template<int dim>
StokesProblem<dim>::StokesProblem
  (const int &level):
  level(level),
  fe(FE_SimplexP<dim>(2) ^ dim, FE_SimplexP<dim>(1)),
  dof_handler(triangulation)
{}
```

接下来我们还是先把一键运行的函数写了,这次我们加上计时器,以便观察每个步骤分别的耗时,并在最后调用我们自己的函数来计算误差。因为生成网格太简单了,我们这次就不单独写一个函数,而是直接写在 run() 里面。

```
template <int dim>
void StokesProblem<dim>::run()
 GridGenerator::subdivided_hyper_cube_with_simplices(triangulation, 1);
 triangulation.refine_global(level);
 CPUTimer timer;
 std::cout << "Level " << level;</pre>
 std::cout << " -----" << std::endl;
 setup_dofs();
 timer.reset();
 assemble_system();
 std::cout << timer() << "s" << std::endl;
 timer.reset();
 std::cout << " Solving..." << std::endl << std::flush;</pre>
 solve();
 std::cout << " Solved in " << timer() << "s" << std::endl;
 std::cout << " Outputing... " << std::endl << std::flush;</pre>
 output_results();
```

```
std::cout << " Computing L2 error... " << std::endl << std::flush;
compute_L2_error();
}</pre>
```

3.3.3 初始化稀疏线性系统

同样的,首先需要将有限元系统绑定到自由度控制器。接下来我们需要对自由度根据(3.17)式进行排序,这样最后得到的线性系统才能按我们所预期的那样呈现(3.16)式的分块结构。事实上,component_wise函数默认的排序方式就符合我们的要求。

```
template <int dim>
void StokesProblem<dim>::setup_dofs()
{
   dof_handler.distribute_dofs(fe);
   DoFRenumbering::component_wise(dof_handler);
```

接下来引入处理 Dirichlet 边界条件的标准模块,我们在这个模块中定义速度分量的齐次 Dirichlet 边界条件,这里的 component_mask(velocities) 表示该边界条件仅针对速度分量。而 velocities 是我们定义的从第 0 个有限元系统开始的一个向量类型系统,即速度分量对应的有限元系统,我们不用关心内部实现。最后需要调用 close() 以完成 constraints 模块的初始化。当 Dirichlet 边界条件不是齐次时,需要自己写一个边界条件的函数,格式和右端项函数一样。

接下来我们可以获取一下每个有限元系统分别有几个自由度,即 (3.17) 式中的 s, s, m。

```
dofs_per_block = DoFTools::count_dofs_per_fe_block(dof_handler);
```

接下来我们考虑稀疏模式应该如何初始化。默认的初始化方式是这样的:如果自由度 i 与自由度 j 在同一个三角单元中,那么就将 (i,j) 加入稀疏模式。但是,现在事情变了,比如说,如果自由度 i 与自由度 j 分别属于第 0 个有限元系统和第 1 个有限元系统,那么 $(\nabla\Phi_{i,\mathbf{u}},\nabla\Phi_{j,\mathbf{u}})=0$,这样一来 (i,j) 就没必要加入稀疏模式了。事实上,如果我们不把这些没必要的位置加入稀疏模式,我们得到的稀疏模式会比默认的小一半以上!

不难发现,在 Stokes 方程中,对于两个在同一个三角形单元中的自由度 i,j,位置 (i,j) 需要被加入稀疏模式,当且仅当符合下面三个条件之一:

- 两个自由度均属于第0个有限元系统;
- 两个自由度均属于第1个有限元系统;
- 其中一个自由度属于前两个有限元系统、另一个自由度属于第2个有限元系统。

我们需要创建一个表格来表示哪些位置是有必要加入稀疏模式的,然后将表格与 constraints 模块传入创建动态稀疏模式的函数中,详见代码。代码中用了一个异或布尔运算,是对上述条件的一个精巧表示,读者可以思考一下。

```
Table<2, DoFTools::Coupling> coupling(dim + 1, dim + 1);
for (unsigned int c = 0; c < dim + 1; ++c)</pre>
```

```
for (unsigned int d = 0; d < dim + 1; ++d)
  if ((c==d) ^ (c==dim || d==dim))
    coupling[c][d] = DoFTools::always;
  else
    coupling[c][d] = DoFTools::none;

BlockDynamicSparsityPattern dsp(dofs_per_block, dofs_per_block);
DoFTools::make_sparsity_pattern(
  dof_handler, coupling, dsp, constraints, false);
sparsity_pattern.copy_from(dsp);
system_matrix.reinit(sparsity_pattern);</pre>
```

接下来我们还要初始化另一个稀疏矩阵,它和分跨稀疏矩阵的内容完全一样,只是以非分块的形式存储,所以还是用刚才的 Table 来创建即可。

最后是创建向量以及分块向量。其中 $\operatorname{diag}(M_Q)$ 采用分块向量存储是因为,当我们在装配矩阵时将局部 $\operatorname{diag}(M_Q)$ 贡献给全局,它会自然地存储在向量的压强分量位置,而分块向量可以让我们很方便地取出压强分量。

```
system_rhs.reinit(dof_handler.n_dofs());
solution.reinit(dof_handler.n_dofs());
block_diag_MQ.reinit(dofs_per_block);
}
```

3.3.4 装配刚度矩阵

我们的框架还是:枚举三角网格、计算局部刚度矩阵与局部右端项、贡献给全局。另外,由于我们要计算 ${
m diag}(M_Q)$,所以我们还需要一个局部 ${
m diag}(M_Q)$,我们用向量来存储对角矩阵。下面是我们需要的一些局部变量:

```
Vector<double> local_rhs(dofs_per_cell);
Vector<double> local_block_diag_MQ(dofs_per_cell);
std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
```

我们需要计算 $\mathbf{f} = (f_1, f_2)$ 在每个积分节点的值,并且存起来,deal.II 将向量函数的返回值定义为一个一阶 张量 Tensor<1,dim>,所以我们需要一个长度为 $\mathbf{n}_{\mathbf{q}}$ -points 的一阶张量型数组。

```
const RightHandSide<dim> right_hand_side;
std::vector<Tensor<1, dim>> rhs_values(n_q_points, Tensor<1, dim>());
```

接下来是两个神奇的模块,可以帮助我们提取 $\Phi_{i,\mathbf{u}}$ 与 $\Phi_{i,p}$ 。有了它们,我们就可以用 $\mathbf{fe_values}$ [velocities] .shape_value(i,q) 表示 $\Phi_{i,\mathbf{u}}(x_q)$,以及 $\mathbf{fe_values}$ [pressure].shape_value(i,q) 表示 $\Phi_{i,p}(x_q)$ 。当然, $\nabla \Phi_{i,\mathbf{u}}(x_q)$ 和 $\nabla \cdot \Phi_{i,\mathbf{u}}(x_q)$ 也可以用类似的方法表示。

```
const FEValuesExtractors::Vector velocities(0);
const FEValuesExtractors::Scalar pressure(dim);
```

接下来是一些局部变量,用于存储 $\nabla \Phi_{i,\mathbf{u}}(x_q)$, $\nabla \cdot \Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,p}(x_q)$ (i 取遍三角单元中的所有自由度)

```
std::vector<Tensor<2, dim>> grad_phi_u(dofs_per_cell);
std::vector<double> div_phi_u(dofs_per_cell);
std::vector<Tensor<1, dim>> phi_u(dofs_per_cell);
std::vector<double> phi_p(dofs_per_cell);
```

接下来开始枚举三角单元,初始化 fe_values,并计算好右端项函数在这个单元的所有积分节点上的值。

现在枚举积分节点 x_q , 并对所有的自由度 i, 将 $\nabla \Phi_{i,\mathbf{u}}(x_q)$, $\nabla \cdot \Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,\mathbf{u}}(x_q)$, $\Phi_{i,\mathbf{p}}(x_q)$ 计算好。

```
for (unsigned int q = 0; q < n_q_points; ++q)
{
   for (unsigned int k = 0; k < dofs_per_cell; ++k)
   {
      grad_phi_u[k] = fe_values[velocities].gradient(k, q);
      div_phi_u[k] = fe_values[velocities].divergence(k, q);
      phi_u[k] = fe_values[velocities].value(k, q);
      phi_p[k] = fe_values[pressure].value(k, q);
}</pre>
```

剩下的部分就是按照 (3.6) 式来计算局部的 $A_{\mathcal{K}}(i,j)$,局部右端项和局部 $\operatorname{diag}(M_Q)$ 的计算无需多言。注意,由于 $A_{\mathcal{K}}$ 是对称的,我们可以只计算它的下三角部分。

```
for (unsigned int i = 0; i < dofs_per_cell; ++i)</pre>
   for (unsigned int j = 0; j \le i; ++j)
      local_matrix(i, j) +=
        ( grad_phi_u[i][0] * grad_phi_u[j][0]
          + grad_phi_u[i][1] * grad_phi_u[j][1] // (1)
          - div_phi_u[i] * phi_p[j]
                                            // (2)
          - phi_p[i] * div_phi_u[j])
                                             // (3)
        * fe_values.JxW(q);
                                             // * dx
   local_block_diag_MQ(i) +=
        (phi_p[i] * phi_p[i]) // (4)
        * fe_values.JxW(q); // * dx
   local_rhs(i) += phi_u[i]
                                // phi_u_i(x_q)
                 * rhs_values[q] // * f(x_q)
                 * fe_values.JxW(q); // * dx
 }
}
```

现在, 我们根据对称性来填充 A_K 的上三角部分

```
for (unsigned int i = 0; i < dofs_per_cell; ++i)
  for (unsigned int j = i + 1; j < dofs_per_cell; ++j)
    local_matrix(i, j) = local_matrix(j, i);</pre>
```

最后,将局部矩阵与向量贡献给全局。这里我们不再手动枚举、贡献,而是直接使用 constraints 模块的内置函数。(当存在 Dirichlet 边界条件时,必须使用这种方式来将局部信息贡献给全局) 注意到我们要把 $A_{\mathcal{K}}$ 贡献两次,一次是给分块方式存储的稀疏矩阵,另一次是给非分块方式存储的稀疏矩阵。

3.3.5 定义预优器

预优器是一个拥有成员函数 vmult 的对象,该成员函数用于描述预优器的作用,原型如下:

```
void vmult(Vector<double> &dst, const Vector<double> &src) const;
```

它有两个参量,以第二个常引用参量 src 作为输入,经过预优器作用后,以第一个引用参量 dst 作为输出。

根据作业要求,预优器应该对第一速度分量、第二速度分量分别施以一次多重网格 V-cycle 作用,对压强分量施以一次 ${\rm diag}(M_Q)^{-1}$ 的作用。这就要求我们能够提取分量,但是传进来的 ${\rm src}$ 不是分块向量,不能直接提取分量,所以我们要把它先转换成分块向量。

```
void PreconditionStokes::vmult(Vector<double> &dst, const Vector<double> &src) const
{
    BlockVector<double> block_src;
    BlockVector<double> block_dst;
    block_src.reinit(dofs_per_block);
    block_dst.reinit(dofs_per_block);
    block_src = src;
```

现在对每个分量分别施以对应的作用:

```
A_preconditioner[0].vmult(block_dst.block(0), block_src.block(0));
A_preconditioner[1].vmult(block_dst.block(1), block_src.block(1));

for(unsigned i = 0; i < diag_MQ_inverse.size(); i++)
  block_dst.block(2)[i] = block_src.block(2)[i] * diag_MQ_inverse[i];</pre>
```

最后将结果转换回普通向量:

```
dst = block_dst;
}
```

通过 vmult 函数可以看出,类 PreconditionStokes 的成员变量至少需要包括:

- 多重网格模块 A_preconditioner[2];
- 存储 $\operatorname{diag}(M_Q)^{-1}$ 的向量 $\operatorname{diag_MQ_inverse}$;
- 初始化分块向量所需的 dofs_per_block。

而初始化这些成员函数需要:分块方式存储的 A、 $\operatorname{diag}(M_Q)$ 、用于说明分块方式的数组。因此,我们可以写出预优器类的定义:

现在,只剩一个初始化函数需要我们实现。首先将说明分块方式的数组拷贝给成员变量:

```
void PreconditionStokes::initialize(
   const BlockSparseMatrix<double>& system_matrix,
   const BlockVector<double>& block_diag_MQ,
```

```
const std::vector<types::global_dof_index>& dofs_per_block_input)
{
   dofs_per_block = dofs_per_block_input;
```

接下来初始化 Trilinos 的多重网格模块, 开启高阶元参数:

```
TrilinosWrappers::PreconditionAMG::AdditionalData additional_data;
additional_data.higher_order_elements = true;

A_preconditioner[0].initialize(system_matrix.block(0,0), additional_data);
A_preconditioner[1].initialize(system_matrix.block(1,1), additional_data);
```

最后提取 $block_diag_MQ$ 的压强分量得到 $diag(M_Q)$,并求逆:

```
diag_MQ_inverse = block_diag_MQ.block(2);
for(auto& p : diag_MQ_inverse) p = 1. / p;
}
```

3.3.6 求解稀疏线性系统

有了预优器,求解稀疏线性系统就很简单了。首先是求解控制器,传入最大迭代次数、容忍误差。然后定义一个 MinRes 求解器。

```
template <int dim>
void StokesProblem<dim>::solve()
{
    SolverControl solver_control(50000, 1e-6 * system_rhs.12_norm());
    SolverMinRes<Vector<double>> minres(solver_control);
```

接下来创建一个 PreconditionStokes 对象,并按我们自己定义的方式传入初始化参数:

接下来调用 minres.solve()进行求解。注意,这个成员函数只能接受非分块方式存储的稀疏矩阵和向量,这就是我们之所以用两种方式存储刚度矩阵的原因!

然后是将 Dirichlet 边界条件赋值给解:

```
constraints.distribute(solution);
```

最后可以输出看看 MinRes 总迭代轮数。(通常不超过 100 轮, 且轮数不随网格加密而增加。如果将预优器换成 PreconditionIdentity, 即无预优, 我们将会观察到迭代轮数指数级增加)

3.3.7 输出结果

我们要把解向量拆分成速度向量分量、压强标量分量来分别输出,所以需要一些声明,即:前两个有限元系统是速度向量分量的一部分、后一个有限元系统是压强标量分量。具体见代码。

```
template <int dim>
void StokesProblem<dim>::output_results() const
{
    std::vector<std::string> solution_names(dim, "velocity");
    solution_names.emplace_back("pressure");

std::vector<DataComponentInterpretation::DataComponentInterpretation>
    data_component_interpretation(
    dim, DataComponentInterpretation::component_is_part_of_vector);
data_component_interpretation.push_back(
    DataComponentInterpretation::component_is_scalar);
```

然后传进 add_data_vector 里输出即可。我们传给 build_patches 里的参数表示在输出时,对每个三角形单元输出几个点的值; 当不传值时,只输出三角形三个顶点的值; 当传入 2 时,会额外输出三角形三边中点的值,可以让我们画出的图像更光滑一些。

3.3.8 计算误差

我们这里只计算 L^2 误差, 计算公式是:

$$E_{u_1}^2 = \int_{\Omega} |u_1 - u_{h,1}|^2 dx \approx \sum_{K \in \mathcal{T}} \sum_{q} |u_1(x_q) - u_{h,1}(x_q)|^2 w_q.$$
 (3.19)

其中 x_q 是积分节点的坐标, w_q 是积分节点的权重,q 取遍 \mathcal{K} 上的所有积分节点。 E_{u_2} 和 E_p 类似。

为了使计算结果能够体现出收敛阶,我们需要一个至少3阶代数精度的积分公式,这里我们用了3点高斯积分公式,它具有5阶代数精度。

代码的思路和装配矩阵一样,但省去了贡献给全局的步骤,如下。

```
update_values | update_quadrature_points |
                       update_JxW_values);
const unsigned int n_q_points = quadrature_formula.size();
const TrueSolution<dim> true_solution;
std::vector<Tensor<1, dim>> numerical_results_u(n_q_points);
std::vector<double>
                         numerical_results_p(n_q_points);
const FEValuesExtractors::Vector velocities(0);
const FEValuesExtractors::Scalar pressure(dim);
double err_u1 = 0.;
double err_u2 = 0.;
double err_p = 0.;
for (const auto &cell : dof_handler.active_cell_iterators())
 {
   fe_values.reinit(cell);
   fe_values[velocities].get_function_values(solution, numerical_results_u);
   fe_values[pressure].get_function_values(solution, numerical_results_p);
   auto q_points = fe_values.get_quadrature_points();
   for (unsigned int q = 0; q < n_q_points; ++q)</pre>
       auto jxw = fe_values.JxW(q);
       err_u1 += pow(true_solution.value(q_points[q], 0) - numerical_results_u[q][0], 2.) * jxw;
       \label{eq:continuous}  \text{err\_u2 += pow(true\_solution.value(q\_points[q], 1) - numerical\_results\_u[q][1], 2.) * jxw;} 
       err_p += pow(true_solution.value(q_points[q], 2) - numerical_results_p[q], 2.) * jxw;
     }
 }
std::cout << "
                  u1 error: " << sqrt(err_u1) << std::endl;
std::cout << "
                    u2 error: " << sqrt(err_u2) << std::endl;</pre>
std::cout << "
                    p error: " << sqrt(err_p) << std::endl << std::flush;</pre>
```

值得注意的是,我们这样算出的并不是 $||u_1-u_{h,1}||_{L^2}$,只是一个近似值,但用于计算收敛阶已经足够。要算出误差的精确值,要将每个三角形不断切分成小三角形计算下去,直到三角形足够小或者结果足够可信。精确计算误差的 L^2 范数代价是很大的,甚至比求解的耗时更久,所以我们不推荐这么做。

3.3.9 主函数

主函数随便写写就好了。注意因为我们用了 Trilinos 的代数多重网格, 所以要加上一句 MPI 的初始化。

```
int main(int argc, char *argv[])
{
   Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);
   int level;
   std::cin >> level;
```

```
StokesProblem<2> flow_problem(level);
flow_problem.run();
return 0;
}
```

完整代码见文件夹 stokesMinRes。