Scaling Hidden Markov Models

Justin T Chiu and Alexander Rush Cornell Tech

March 11, 2021

Hidden Markov Models in NLP

- ► Historically significant latent variable models
- Are thought to be very poor language models
- ▶ We show they are not!

Lessons from Large Neural Language Models

Large models perform better but are ...

- 1. Slow to train
- 2. Prone to overfitting

We must overcome these issues when scaling HMMs

HMMs

For times t, model states $z_t \in \mathcal{Z}$, and tokens $x_t \in \mathcal{X}$,

We wish optimize

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$

3 Techniques for Training Large HMMs

- ▶ Block-sparse emission constraints
 - ♠ Speed
- Compact neural parameterization
 - **1** Generalization
- State dropout
 - **↑** Speed **↑** Generalization

Technique 1: Block-Sparse Emission Constraints

- Reduce cost of marginalization by enforcing structure
- Partition words and states jointly
- Words can only be emit by states in same group

Block-Sparse Emissions: Effect on Inference

Given each word x_t , only the states in the correct group can occur

Technique 2: Neural Parameterization

- A neural parameterization allows for parameter sharing
- Generate conditional distributions from state E_z and token representations E_x

Technique 3: State Dropout

- State dropout encourages broad state usage
- lackbox At each batch, sample dropout mask $oldsymbol{b} \in \{0,1\}^{|\mathcal{Z}|}$

Experiments

- Language modeling on Penn Treebank and Wikitext-2
- Baselines
 - ► Feedforward 5-gram model
 - 2-layer LSTM
 - A 900 state HMM (Buys et al 2018)
- ► Model
 - ▶ 2¹⁵ (32k) state very large HMM (VL-HMM)
 - M = 128 groups (256 states each), obtained via Brown Clustering
 - Dropout rate of 0.5 during training

Results on PTB Validation Data

Results on PTB and WT2 Test Data

State Size Ablation

Validation perplexity on PTB by state size ($\lambda=0.5$ and M=128)

Other Ablations

Model	Param	Train	Val
VL-HMM (2 ¹⁴)	7.2M	115	134
- neural param	423M	119	169
- state dropout	7.2M	88	157

Embedded Structure Prediction

Generalized Softmax

Embedded Inference

Results

Conclusion

- ► HMMs are competitive language models
- Introduced 3 techniques for tackling speed and overfitting
- ▶ A great time to revisit other discrete latent variable models

EOS

Citations