про виконання завдання з самостійної роботи з курсу «Теорія ймовірностей та математична статистика» тема «Дискретні випадкові величини та їх розподіли» студентом Балинським Максимом Миколайовичем (група КН-21)

в 2022-2023 навчальному році за індивідуальним варіантом №2

Завдання 1. Дано закони розподілу незалежних дискретних випадкових величин X та У:

X	-3	-2	-1	0	2
p	а	а	5 <i>a</i>	а	2 <i>a</i>

Y	1	2	3	4
p	0,4	0,3	0,1	0,2

Знайти:

- a) *a*;
- б) закони розподілу випадкових величин 2X, X+Y, XY, X-Y.

Розв'язання:

а) Сума ймовірностей повинна бути рівною одиниці, тому:

$$a + a + 5a + a + 2a = 1$$
.

Отже, a = 1/10 = 0,1.

б) Якщо
$$a=0,1.$$
 Тоді $x_1=0,1;$ $x_2=0,1;$ $x_3=0,5;$ $x_4=0,1;$ $x_5=0,2.$

X	-3	-2	-1	0	2
p	0,1	0,1	0,5	0,1	0,2

Y	1	2	3	4
p	0,4	0,3	0,1	0,2

2 <i>X</i>	-3 * 2	-2 * 2	-1 * 2	0 * 2	2 * 2
p	0,2	0,2	1	0,2	0,4

За означенням знаходимо закони розподілу випадкових величин X + Y (відповідні ймовірності можливих значень X та Y додаються):

X+Y	-3 + 1 = -2	-3 + 2 = -1	-3 + 3 = 0	-3 + 4 = 1

p	0,5	0,4	0,2	0,3
X+Y	-2 + 1 = -1	-2 + 2 = 0	-2 + 3 = 1	-2+4=2
p	0,5	0,4	0,2	0,3
X+Y	-1 + 1 = 0	-1 + 2 = 1	-1 + 3 = 2	-1 + 4 = 3
n	0.9	0.8	0.6	0.7

X+Y	-1+1=0	-1 + 2 = 1	-1 + 3 = 2	-1 + 4 = 3
p	0,9	0,8	0,6	0,7

X+Y	0 + 1 = 1	0 + 2 = 2	0 + 3 = 3	0 + 4 = 4
p	0,5	0,4	0,2	0,3

X+Y	2 + 1 = 3	2 + 2 = 4	2 + 3 = 5	2 + 4 = 6
p	0,6	0,5	0,3	0,4

Додаємо відповідні ймовірності, отже, маємо закони розподілу випадкової величини X + Y:

<i>X</i> + <i>Y</i>	-2	-1	0	1	2	3	4	5	6
p	0,5	0,9	1,5	1,8	1,3	1,5	0,8	0,3	0,4

За означенням знаходимо закони розподілу випадкових величин та Х·У (відповідні ймовірності можливих значень X та Y перемножуються):

XY	-3 * 1 = -3	-3 * 2 = -6	-3 * 3 = -9	-3 * 4 = -12
p	0,04	0,03	0,01	0,02

XY	-2 * 1 = -2	-2 * 2 = -4	-2 * 3 = -6	-2 * 4 = -8
p	0,04	0,03	0,01	0,02

XY	-1 * 1 = -1	-1 * 2 = -2	-1 * 3 = -3	-1 * 4 = -4
p	0,2	0,15	0,05	0,1

XY	0 * 1 = 0	0 * 2 = 0	0 * 3 = 0	0 * 4 = 0

p	0,04	0,03	0,01	0,02

XY	2 * 1 = 2	2 * 2 = 4	2 * 3 = 6	2 * 4 = 8	
p	0,08	0,06	0,02	0,04	

Додаємо відповідні ймовірності, отже, маємо закони розподілу випадкової величини XY:

<u></u>	XY	-12	-9	-8	-6	-4	-3	-2	-1	0	2	4	6	8
	p	0,02	0,01	0,02	0,04	0,13	0,09	0,019	0,2	0,1	0,08	0,06	0,02	0,04

Знаходимо закони розподілу випадкових величин та X-Y:

X-Y	-3 - 1 = -4	-3 - 2 = -5	-3 - 3 = -6	-3 - 4 = -7
p	-0,3	-0,2	0	-0,1

X	<i>Y-Y</i>	-2 - 1 = -3	-2 - 2 = -4	-2 - 3 = -5	-2 - 4 = -6
_	p	-0,3	-0,2	0	-0,1

XY	-1 - 1 = -2	-1 - 2 = -3	-1 - 3 = -4	-1 - 4 = -5	
p	0,1	0,2	0,4	0,3	

X-Y	0 - 1 = -1	0 - 2 = -2	0 - 3 = -3	0 - 4 = -4
p	-0,3	-0,2	0	-0,1

X-Y	2 - 1 = 1	2 - 2 = 0	2 - 3 = -1	2 - 4 = -2
p	-0,2	-0,1	-0,1	0

Додаємо відповідні ймовірності, отже, маємо закони розподілу випадкової величини *X* - *Y*:

X-Y	-7	-6	-5	-4	-3	-2	-1	0	1
p	-0,1	-0,1	0,1	-0,2	-0,1	-0,1	-0,4	-0,1	-0,1

Завдання 2. Для дискретної випадкової величини відомий ряд розподілу. Побудувати багатокутник розподілу та графік функції розподілу цієї випадкової величини.

X	-2	-1	0	2	4
p	1/3	2/15	1/15	2/15	3/15

Розв'язання

Побудуємо прямокутну систему координат причому по осі абсцис будемо відкладати можливі значення x_i , а по осі ординат — відповідні імовірності p_i . Побудуємо точки M_1 (-2; 1/3), M_2 (-1; 2/15), M_3 (0; 1/15), M_4 (2; 2/15), M_5 (4; 3/15). З'єднавши ці точки відрізками прямих, отримаємо шуканий багатокутник розподілу (рис. 1).

Тепер побудуємо графік функції розподілу (рис. 2). Якщо $x \le -2$, то F(x) = 0, якщо $-2 < x \le -1$, то F(x) = 1/3, якщо $-1 < x \le 0$, то F(x) = 7/15, якщо $0 < x \le 2$, то F(x) = 8/15, $2 < x \le 4$, то F(x) = 10/15 , якщо x > 4, то F(x) = 1. Дійсно, подія x > 4 достовірна, отже, її ймовірність дорівнює одиниці.

Отже, функція розподілу аналітично може бути записана так:

$$F(x) = \begin{cases} 0\\ 1/3\\ 7/15\\ 8/15\\ 10/15\\ 1 \end{cases}$$

