

T. Lange
Dept.of Radiology, Medical Physics

FID and Spectrum

Magnetic Resonance Larmor Frequency

 B_0

$$v_0 = \gamma^* \times B_0$$

$$(\gamma * = \frac{\gamma}{2\pi})$$

γ: gyromagnetic ratio(property of nucleus)

$$\gamma^*_{H} = 42.577 \text{ Mhz/T}$$

 $\gamma^*_{P} = 17.235 \text{ Mhz/T}$

	1.5 T	3 T
¹H	63.86 MHz	127.73 MHz
³¹ P	25.85 MHz	51.7 MHz

Biologically Important NMR-Visible Nuclei

Relative Sensitivity $\sim |\gamma|^3 \cdot NA$ (NA = natural abundance)

	Spin- quantum number	Gyro- magnetc ratio γ*=γ/2π	Natural abundance [%]	Relative sensitivity for equal number of spins and constant magnetic field strenght	Relative sensitivity corrected for natural abundance
¹ H	1/2	42.58	99.98	1.00	1.00
¹³ C	1/2	10.71	1.11	1.59 10 ⁻²	1.8 10 ⁻⁴
¹⁴ N	1	3.08	99.64	1.01 10 ⁻³	1.0 10 ⁻³
¹⁷ 0	5/2	5.77	0.04	2.91 10 ⁻²	1.1 10 ⁻⁵
¹⁹ F	1/2	40.06	100.00	8.30 10 ⁻¹	8.3 10 ⁻¹
²³ Na	3/2	11.26	100.00	9.27 10 ⁻²	9.3 10 ⁻²
³¹ P	1/2	17.24	100.00	6.64 10 ⁻²	6.6 10 ⁻²
³⁹ K	3/2	1.99	93.08	5.08 10 ⁻⁴	4.7 10 ⁻⁴
⁴³ Ca	7/2	2.87	0.14	6.40 10 ⁻³	9.3 10 ⁻⁶

Nuclei of Biological Interest

¹H metabolites: I-100 mmol/l in the body, high sensitivity

Problems: water suppression (110 mol/1 !!),

fat suppression

overlapping of metabolite peaks

³¹P ~ 10 mmol/l, important for studying energy metabolism

Problems: low sensitivity (100* lower than ¹H MRS)

fast T2 relaxation

basic atom in organic molecules

Problems: only 1% natural abundance of ¹³C

very low sensitivity

→ Sensitivity can be enhanced with hyperpolarization!

1H Spectrum of Brain at High Field

Courtesy: Dept. of Radiology, University of Bonn, Germany

In vivo MRS

Water concentration $\sim 10^4$ times higher than metabolite concentrations => We are interested in the *small* peaks

Chemical Shift - Shielding effect of the electron shell

Shielding/deshielding of the nucleus by the electron shell:

- => different chemical environment for nuclei of same species
- => slightly different local magnetic field
- => slightly different Larmor frequency

The chemical shift scales with B₀ and therefore also with the Larmor frequency!

Hz Scaling

Chemical Shift

$$\delta \text{ [Hz]} = v - v_{\text{ref}}$$

$$\delta \text{ [ppm]} = \frac{v - v_{\text{ref}}}{v_{\text{ref}}} \cdot 10^{6}$$

$$1.5 \text{ T: } \Delta = 177 \text{ Hz}$$

$$3 \text{ T: } \Delta = 354 \text{ Hz}$$

$$\Delta = 2.7 \text{ ppm}$$

 $v_{\text{ref}} = v_{\text{TMS}}$ (TMS: tetramethylsilane Si(CH₃)₄)

1H:

ppm Scaling

Hydrogen Spectrum of Brain at High Field

-0.8

-0.6

-0.4

Courtesy: Dept. of Radiology, University of Bonn, Germany

Metabolites seen in ¹H MR Spectroscopy

J-coupling

→ Intramolecular interaction

J-coupling is equal at all field strengths!

J-coupling - Evolution

Resonance shape is echo time dependent:

=> multiplet looks

up at TE = n/J with even n

down at TE = n/J with odd n

Localisation Techniques

Purpose: Data collection from a well-defined volume of interest (VOI)

- Gradient localization with conventional pulses:
 - PRESS: Point RESolved Spectroscopy
 (Bottomley PA, Ann N Y Acad Sci. 1987;508:333-48)
 - STEAM: <u>STimulated Echo Acquisition Method</u>
 (Haase et al., Radiology 1986;160:787-790)
- Gradient localization with adiabatic pulses:
 - LASER: Localization by Adiabatic SE lective Refocusing (Garwood M et al., J Magn Reson 2001 Dec;153(2):155-77)
- Localization via phase encoding: Chemical Shift Imaging (CSI)

Localisation by Gradients

In each direction a pulse in combination with a gradient field defines one slice => the intersection of these slices is the selected volume of interest

PRESS

- (Point RESolved Spectroscopy)
- selective excitation:
 double spin echo sequence: 90° 180° 180° echo acquisition
- spoiler/crusher gradients: eliminate unwanted coherences from outside the selected volume

PRESS

Method of choice for 1H spectroscopy

PRESS

Method of choice for 1H spectroscopy

Echo Volume Selection

Method of choice for 1H spectroscopy

Spectroscopic Imaging

Chemical

2D-SI Sequence with PRESS Localisation

2D-Spectroscopic Imaging

2D-Spectroscopic Imaging

2D-SI: Outer Volume Suppression

2D-SI Sequence with PRESS Localisation

PRESS: localisation slightly different for different metabolites / chemical shifts!

 Phase encoding: localisation equal for all metabolites / chemical shifts!

Chemical Shift Displacement

Chemical shift displacement artifact:

Gradient strength for given pulse bandwidth Δv_{RF} and slice thickness D :

$$G_{x} = \frac{\Delta v_{RF}}{\gamma^{*} \cdot D}$$

Spatial displacement:

$$\Delta x = \frac{\Delta v_{CS}}{\gamma^* \cdot G_x}$$

=> relative displacement:

$$\frac{\Delta x}{D} = \frac{\Delta v_{CS}}{\Delta v_{RF}}$$

Spectroscopic Imaging vs. SVS

Single voxel spectroscopy:

- © good signal-to-noise ratio
- Rapid: ~2 to 6 min for 8 cc voxel
- 8 selected volume is block-shaped ≠ anatomical shape
- 6 only information on one location

Spectroscopic imaging:

- overview of spatial distribution of metabolites
- Usually higher resolution (~1 ml)
- (B) mostly: longer acquisition times
- (Shim never as good as for SVS)
- 8 signal leakage into neighbouring voxels (PSF)
- Slice should not go through air, bone, major vessels, fat

Water Suppression

Repeated with different flip angles

Methods based on this approach:

- CHESS (Chemical Shift Selective excitation)
- WET (Water Suppression enhanced through T₁ effects)

Outer Volume Suppression (OVS)

Brain Metabolites in ¹H MR Spectroscopy

NAA: N-acetylaspartate

Cr: creatine + phosphocreatine

Cho: choline-containing compounds (PCh, GPC)

Glx: glutamate + glutamine

ml: myo-inositol

Lac: lactate

NAA

Literature and Ressources

- Robin A. de Graaf: "In Vivo NMR Spectroscopy: Principles and Techniques"
- James Keeler: "Understanding NMR Spectroscopy"
- Malcolm H. Levitt:
 "Spin Dynamics: Basics of Nuclear Magnetic Resonance"
- Jeffrey C. Hoch and Alan S. Stern: "NMR Data Processing"

Toolbox for MRS processing: FID-A

https://www.opensourceimaging.org/project/fid-a-advanced-processing-and-simulation-of-mr-spectroscopy/