

HIGH SPEED CMOS TIMER

GENERAL DESCRIPTION

The ALD555 timer is a high performance monolithic timing circuit built with advanced silicon gate CMOS technology. It offers the benefits of high input impedance, thereby allowing smaller timing capacitors and longer timing cycle; high speed, with typical cycle time of 500ns; low power dissipation for battery operated environment; reduced supply current spikes, allowing smaller and lower cost decoupling capacitors. It is capable of producing accurate time delays and oscillations in both monostable and astable operation. It operates in the one-shot (monostable) mode or 50% duty cycle free running oscillation mode with a single resistor and one capacitor. The inputs and outputs are fully compatible with CMOS, NMOS or TTL logic.

There are three matched internal resistors (approximately $200 \mathrm{K}\Omega$ each) that set the threshold and trigger levels at two-thirds and one-third respectively of V+ These levels can be adjusted by using the control terminal (pin 5). When the trigger input is below the trigger level, the output is in the high state and sourcing 2mA. When threshold input is above the threshold level at the same time the trigger input is above the trigger level, the internal flip-flop is reset, the output goes to the low state and sinks up to 10mA. The reset input overrides all other inputs and when it is active (reset voltage less than 1V), the output is in the low state.

FEATURES

- Functional equivalent to NE555 with greatly expanded high and low frequency ranges
- · High speed, low power, monolithic CMOS technology
- Low supply current: 100μA typical
- Extremely low trigger, threshold and reset currents:1pA typical
- High speed operation -- 2MHz oscillation
- · Low operating supply voltage of 2 to 12V
- · Operates in both monostable and astable modes
- Fixed 50% duty cycle or adjustable duty cycle
- CMOS, NMOS and TTL compatible input/output
- · High discharge sinking current of 80mA
- · Low supply current spikes

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range *						
0°C to +70°C	0°C to +70°C	-55°C to +125°C				
8-Pin Small Outline Package (SOIC)	8-Pin Plastic DIP Package	8-Pin CERDIP Package				
ALD555SAL	ALD555PAL	ALD555DA				

^{*} Contact factory for leaded (non-RoHS) or high temperature versions.

APPLICATIONS

- High speed one-shot (monostable) pulse generation
- Precision timing
- Sequential timing
- · Long delay timer
- Pulse width and pulse position modulation
- · Missing pulse detector
- · Frequency divider

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V+		13.2V
Input voltage range		-0.3V to V+ +0.3V
Power dissipation		600 mW
Operating temperature range	SAL, PAL packages	0°C to + 70°C
	DA package	55°C to +125°C
Storage temperature range		65°C to +150°C
Lead temperature, 10 seconds		+260°C

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ V+ = +5V unless otherwise specified

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply Voltage	V+	2		12	V	
Supply Current	IS		100	180	μΑ	Outputs Unloaded
Timing error / Astable mode Initial Accuracy	t _{err}		1.0	2.2	%	C = 0.1μF
Drift with Temperature ¹ Drift with Supply Voltage ¹	Δt/ΔT Δt/ΔV+		10.0 0.1		ppm/°C %/V	$R_A = 1KΩ$ $R_B = 1KΩ$
Threshold Voltage	V _{TH}	3.233	3.333	3.433	V	
Trigger Voltage	V _{TRIG}	1.607	1.667	1.737	V	
Trigger Current ²	I _{TRIG}		.001	0.2	nA	
Reset Voltage	V _{RST}	0.4	0.7	1.0	V	
Reset Current ²	I _{RST}		.001	0.2	nA	
Threshold Current ²	I _{TH}		.001	0.2	nA	
Control Voltage Level	V _{CONT}	3.273	3.333	3.393	V	
Output Voltage Drop (Low)	V _{OL}		0.2	0.4	V	I _{SINK} = 10mA
Output Voltage Drop (High)	V _{OH}			4.2	V	I _{SOURCE} = -2mA
Rise Time of Output 1	t _r		15	30	ns	$R_L = 10M\Omega$
Fall Time of Output 1	t _f		10	30	ns	C _L = 10pF
Discharge Transistor Leakage Current	I _{DL}		.01		nA	
Discharge Voltage Drop	V _{DISC}		0.5 0.2	1.0 0.4	V V	I DISCHARGE = 80mA I DISCHARGE = 30mA
Maximum Frequency Astable Mode	f _{MAX}	1.4	2		MHz	$R_{A} = 470\Omega$ $R_{B} = 200\Omega$ $C_{T} = 200pF$

Notes: ¹ Sample tested parameters. ² Consists of junction leakage currents with strong temperature dependence.

TYPICAL PERFORMANCE CHARACTERISTICS

FREQUENCY CHANGE (%)

SUPPLY CURRENT (uA)

DISCHARGE OUTPUT SINK CURRENT AS A FUNCTION OF DISCHARGE LOW VOLTAGE

MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING

FREE RUNNING FREQUENCY AS

FREQUENCY CHANGE IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

TIME DELAY IN THE MONOSTABLE MODE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)

TYPICAL APPLICATIONS

ASTABLE MODE OPERATION 50% DUTY CYCLE

Frequency $f = 1/(1.4 R_C)$

ASTABLE MODE OPERATION (FREE RUNNING OSCILLATOR)

Frequency f = 1.46 / (RA + 2RB)C Duty Cycle DC = RB / (RA + 2RB)

MONOSTABLE MODE OPERATION (ONE SHOT PULSE) Pulse Delay $td = 1.1 R_C$

SOIC-8 PACKAGE DRAWING

8 Pin Plastic SOIC Package

	Millimeters		Inches	
Dim	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A ₁	0.10	0.25	0.004	0.010
b	0.35	0.45	0.014	0.018
С	0.18	0.25	0.007	0.010
D-8	4.69	5.00	0.185	0.196
E	3.50	4.05	0.140	0.160
е	1.27 BSC		0.050	BSC
н	5.70	6.30	0.224	0.248
L	0.60	0.937	0.024	0.037
Ø	0°	8°	0°	8°
S	0.25	0.50	0.010	0.020

PDIP-8 PACKAGE DRAWING

8 Pin Plastic DIP Package

	Millimeters		Inc	hes
Dim	Min	Max	Min	Max
Α	3.81	5.08	0.105	0.200
A ₁	0.38	1.27	0.015	0.050
A ₂	1.27	2.03	0.050	0.080
b	0.89	1.65	0.035	0.065
b ₁	0.38	0.51	0.015	0.020
С	0.20	0.30	0.008	0.012
D-8	9.40	11.68	0.370	0.460
E	5.59	7.11	0.220	0.280
E ₁	7.62	8.26	0.300	0.325
е	2.29	2.79	0.090	0.110
e ₁	7.37	7.87	0.290	0.310
L	2.79	3.81	0.110	0.150
S-8	1.02	2.03	0.040	0.080
Ø	0°	15°	0°	15°

CERDIP-8 PACKAGE DRAWING

8 Pin CERDIP Package

	1		T		
	Millimeters		Inches		
Dim	Min	Max	Min	Max	
Α	3.55	5.08	0.140	0.200	
A ₁	1.27	2.16	0.050	0.085	
b	0.97	1.65	0.038	0.065	
b ₁	0.36	0.58	0.014	0.023	
С	0.20	0.38	0.008	0.015	
D-8		10.29		0.405	
E	5.59	7.87	0.220	0.310	
E ₁	7.73	8.26	0.290	0.325	
е	2.54 BSC		0.100	BSC	
e ₁	7.62 BSC		0.300	BSC	
L	3.81	5.08	0.150	0.200	
L ₁	3.18		0.125		
L ₂	0.38	1.78	0.015	0.070	
S		2.49		0.098	
Ø	0°	15°	0°	15°	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Advanced Linear Devices:

ALD555SAL ALD555PAL ALD555SAL-TR