第二章 第3-4讲

- 4、理想的 p^+n 结为 T=300 K 时均匀掺杂的冶金结。掺杂浓度的关系为 $N_A=40N_D$ 。内建电势差为 $V_D=0.69$ V。反偏电压 $V_R=5$ V。设 $n_i=1.5\times10^{10}$ cm⁻³, $\epsilon_r=11.9$ 。计算:(1) N_A 、 N_D ;(2) x_p 、 x_n ;(3) $|E_{max}|$;(4) C'(单位面积的势垒电容)
- 5、考虑反偏电压 8V 时的硅 p+n 结。当 P 区掺杂浓度变为原来的四倍时, (1) 求内建电势差的变化量; (2) 求势垒电容的变化比率。
- 6、反偏电压 VR=1 V,T=300 K 时,GaAs PN 结的总势垒电容为 1.2 pF。其中一侧的掺杂浓度为 5×10^{16} cm⁻³,内建电势差 VD=1.2 V。设 $ni=1.8\times10^6$ cm⁻³, $\epsilon r=13.1$ 。(1)计算另一侧的掺杂浓度;(2)结的横截面积;(3)当结电容变为 0.8 pF 时的反偏电压 VR。

第二章 第5-6讲

- 1、突变硅 p+n 结中 n 区的掺杂浓度为 $Nd=4\times10^{15}$ cm⁻³。当雪崩击穿发生时,耗尽区宽度是多少,假设 n 区足够长?
- 2、硅 pn 结的掺杂浓度为 Nd=Na= 5×10^{18} cm-3。发生齐纳击穿时的临界电场为 10^{6} V/cm。设 ni= 1.5×10^{10} cm-3, ϵ r=11.9。求击穿电压的值(不忽略内建电势)。
- 3、二极管的掺杂曲线如图所示,即 n^+pp^+ 二极管。反偏时,耗尽区必须处于 p 区内,以防止过早的击穿。p 区的掺杂浓度为 2×10^{15} cm⁻³。 ϵ_r =11.9。计算使耗尽区处于 p 区内并且不发生击穿的反偏电压,假设 p 区长度为(a)75 μ m、(b)150 μ m。确定每种情况下,是耗尽区最大宽度先产生还是击穿先产生(忽略内建电势)? (可以当成 n^+p 结构考虑)

要求:

计算最终结果保留三位有效数字,本次作业 3.20(下周三)上课交。