

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P71820A

Publications Code 4PM1_02R_2301_MS

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

Types of mark

o M marks: method marks

o A marks: accuracy marks

o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \ne 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Scheme	Marks
1 (a)	$(x)^8$ 7 7 7 3	
	$\left(1 + \frac{x}{4}\right)^8 = 1 + 2x + \frac{7}{4}x^2 + \frac{7}{8}x^3 \text{oe}$	B1M1A1
		[3]
(b)	$1 + \frac{x}{4} = 1.035 \Rightarrow x = 0.14$ oe	B1
	$(1.035)^8 = 1 + 2(0.14) + 1.75(0.14)^2 + 0.875(0.14)^3 = 1.3167$	M1A1 [3]
	[NB: the calculator value is 1.316809037]	
Total 6 mar		al 6 marks

Questio	Notes	Mark
n		S
1	$\left(1+\frac{x}{4}\right)^8$	
(a)	For an attempt at the binomial expansion of $\left(1 + \frac{x}{4}\right)^8$	
	$\left(1 + \frac{x}{4}\right)^8 = 1 + 2x + \dots$	B1
	For either correct third or fourth term. Need not be simplified. + $C_2^8 \times \left(\frac{x}{4}\right)^2$ or $C_3^8 \times \left(\frac{x}{4}\right)^3$	M1
	For the correct expansion fully simplified.	
	$\left(1+\frac{x}{4}\right)^8 = 1+2x+\frac{7}{4}x^2+\frac{7}{8}x^3 \text{OR} \left(1+\frac{x}{4}\right)^8 = 1+2x+1.75x^2+0.875x^3$ Do not ignore subsequent incorrect simplification.	A1 [3]
(b)	Finds the value of x to be substituted.	
	$1 + \frac{x}{4} = 1.035 \Rightarrow x = 0.14$ oe	B1
	Substitutes their value of x into their expansion provided it has at	
	least 2 terms in x. Their $x \neq 1.035$	3.51
	$(1.035)^8 = 1 + 2(0.14) + 1.75(0.14)^2 + 0.875(0.14)^3$	M1
	For the correct value of $(1.035)^8 = 1.3167$ rounded correctly.	A1
	[NB: the calculator value is 1.316809037]	[3]
	Total (6 marks

Question	Scheme	Marks
2(a)	$3x-8 < 5x+3 \Rightarrow x > -\frac{11}{2}$	B1
	$3x-8 < 3x+3 \Rightarrow x > -\frac{1}{2}$	[1]
(b)	$4x^2 - 7x + 1 > 6 - 2x^2 \Longrightarrow$	M1M1
	$6x^{2} - 7x - 5 > 0 \Rightarrow (3x - 5)(2x + 1) > 0$	
	cv's are $x = \frac{5}{3}, -\frac{1}{2} \Rightarrow x < -\frac{1}{2}, x > \frac{5}{3}$	M1A1 [4]
(c)	$-\frac{11}{2} < x < -\frac{1}{2}, \ x > \frac{5}{3}$	B1 ft [1]
	Total	6 marks

Question	Notes	Marks
2(a)	3x-8<5x+3	
	$\Rightarrow x > -\frac{11}{2}$	B1
	$\rightarrow x > -\frac{1}{2}$	[1]
(b)	For rearranging to form a 3TQ	
	$4x^2 - 7x + 1 > 6 - 2x^2 \Rightarrow 6x^2 - 7x - 5 > 0$	M1
	For method to solve their 3TQ. See general guidance for what	
	constitutes an attempt to solve.	M1
	$6x^2 - 7x - 5 > 0 \Rightarrow (3x - 5)(2x + 1) > 0$	
	For writing down their critical values from their factorisation	
	and the correct inequality for their cv's [outside region].	
	cv's are $x = \frac{5}{3}, -\frac{1}{2}$	
	$x < -\frac{1}{2}, \ x > \frac{5}{3}$	M1
	For the correct inequalities only $x < -\frac{1}{2}$, $x > \frac{5}{3}$	A1
	A0 if rejects one region or if inequalities are incorrectly combined.	[4]
	For the correct inequality only $-\frac{11}{2} < x < -\frac{1}{2}, x > \frac{5}{3}$	B1 ft
(c)	For follow through (a) must be a linear inequality and (b) must	[1]
	be of the form $x < a, x > b$ with $b > a$.	
	Total	6 marks

Question	Scheme	Marks
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
		M1A1A1
	Method A	
	$\frac{d^2y}{dx^2} = 3(3e^{3x}\sin 2x + 2e^{3x}\cos 2x) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 6\mathrm{e}^{3x}\cos 2x - 4y$	M1
	$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y \Rightarrow 13y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1 [8]
	Method B	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3y + 2e^{3x}\cos 2x$	
	$\frac{d^2 y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x, \frac{d^2 y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4y$	[M1,M1
	$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y \Rightarrow 13y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1]
	Method C	
	$\frac{d^2 y}{dx^2} = 3(3e^{3x}\sin 2x + 2e^{3x}\cos 2x) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	[M1
	$13y + \frac{d^2y}{dx^2} = 13e^{3x}\sin 2x + (5e^{3x}\sin 2x + 12e^{3x}\cos 2x)$	M1
	$6 \frac{dy}{dx} = 6(3e^{3x} \sin 2x + 2e^{3x} \cos 2x)$	M1
	$(=18e^{3x}\sin 2x + 12e^{3x}\cos 2x)$	
	$LHS = 13e^{3x} \sin 2x + (5e^{3x} \sin 2x + 12e^{3x} \cos 2x)$ $= 18e^{3x} \sin 2x + 12e^{3x} \cos 2x$	M1A1]
	$RHS = 6(3e^{3x}\sin 2x + 2e^{3x}\cos 2x)$	
	$= 18e^{3x} \sin 2x + 12e^{3x} \cos 2x$	
	LHS = RHS	
Total 8 mar		al 8 marks

Questio	Notes	Marks
n		
3	$y = e^{3x} \sin 2x$	
	For an attempt to differentiate the given expression.	

• There needs to be an acceptable attempt to differentiate both	
terms. $e^{3x} \sin 2x \rightarrow ke^{3x} \sin 2x + le^{3x} \cos 2x$ with $k, l \neq 0$ • There need to be two terms added.	
	N
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
One term completely correct.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
or	
$\frac{dy}{dx} = '3e^{3x} \sin 2x' + 2e^{3x} \cos 2x$	A
Fully correct differentiated expression.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	A
Method A	
For an attempt to find $\frac{d^2y}{dx^2}$	
Minimally acceptable attempt is $ke^{3x} \sin 2x + le^{3x} \cos 2x \rightarrow$	
$k(me^{3x}\sin 2x + ne^{3x}\cos 2x) + l(pe^{3x}\cos 2x + qe^{3x}\sin 2x)$	N
k, l as in their first derivative, $m, n, p, q \neq 0$	
$\frac{d^2y}{dx^2} = 3\left(3e^{3x}\sin 2x + 2e^{3x}\cos 2x\right) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	
For substituting y and $\frac{dy}{dx}$ into their $\frac{d^2y}{dx^2}$	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 6\mathrm{e}^{3x}\cos 2x - 4y$	N
For propering to eliminate cos2x by recorrenging their dy	
For preparing to eliminate $\cos 2x$ by rearranging their $\frac{dy}{dx}$	
$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	N
ur ur	
Allow errors in arithmetic but not mathematically incorrect	
process. $dv = d^2v$	
For an unsimplified expression only in terms of y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	
2	N
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y$	
For the required simplified expression with fully correct working.	
	A
$13y + \frac{d^2y}{dx^2} = 6\frac{dy}{dx}$	[
Method B	ı
For an attempt to find $\frac{d^2y}{dx^2}$ using $\frac{dy}{dx} = 3y + 2e^{3x}\cos 2x$	
For all attempt to find — using — = $5v + 2e$ cos $2x$	

Minimally acceptable attempt is $\frac{dy}{dx} = ky + le^{3x} \cos \frac{dy}{dx}$	$2x \rightarrow M1,M$
12	1
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = k \frac{\mathrm{d}y}{\mathrm{d}x} + l(pe^{3x}\cos 2x + qe^{3x})$	(n 2x)
k, l as in their first derivative, $p, q \neq 0$	
$\frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x, \frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x,$	$\int e^{3x} \cos 2x - 4y$
For preparing to eliminate $\cos 2x$ by rearranging their	d.v
$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	M1
Allow errors in arithmetic but not mathematically in	correct
process.	
For an unsimplified expression only in terms of y , $\frac{d}{d}$	α
$\frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 3\frac{dy}{dx} - 9y - 4y$	M1
For the required simplified expression with fully cor-	rect working.
$13y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\frac{\mathrm{d}y}{\mathrm{d}x}$	A1
Method C	
For an attempt to find $\frac{d^2y}{dx^2}$	
Minimally acceptable attempt is $ke^{3x} \sin 2x + le^{3x}$	
$k(me^{3x}\sin 2x + ne^{3x}\cos 2x) + l(pe^{3x}\cos 2x + q)$	$e^{3x}\sin 2x$) M1
k, l as in their first derivative, $m, n, p, q \neq 0$	
$\frac{d^2 y}{dx^2} = 3\left(3e^{3x}\sin 2x + 2e^{3x}\cos 2x\right) + 6e^{3x}\cos 2x - 4e^{3x}$	$\sin 2x$
For substituting y and $\frac{d^2y}{dx^2}$ into the LHS of the result	. M1
For substituting $\frac{dy}{dx}$ into the RHS For simplifying	
of the result	•
For unsimplified expressions for $k(3e^{3x} \sin 2x + \frac{1}{3}e^{3x} \sin 2x +$	$-2e^{3x}\cos 2x$ M1
the LHS and RHS of the result in	
terms of $e^{3x} \sin 2x$ and	
$e^{3x}\cos 2x$ only and method to	
simplify both sides	
For correctly simplifying the LHS and RHS and show	ving equal. A1
	Total 8 marks

Question	Scheme	Marks
4(a)(i)	p=2	B1
(ii)	r=4	B1
		[2]
(b)	$3 - 2 \times 0 + q \rightarrow a = 6$	
	$\frac{3}{2} = \frac{2 \times 0 + q}{0 + 4'} \Longrightarrow q = 6$	M1A1
		[2]
(c)	$0 = \frac{2s + 6'}{s + 4'} \Longrightarrow s = -3$	
	$0 - \frac{1}{s + 4} \rightarrow s - 3$	M1A1
		[2]
	Total 6 marks	

Question	Notes	Marks
4(a)(i)	p=2	B1
		[1]
(ii)	r=4	B1
		[1]
(b)	For using the equation for C, substituting $x = 0$ and $y = \frac{3}{2}$ and attempt to rearrange to find the value of q	
	$\frac{3}{2} = \frac{2 \times 0 + q}{0 + 4} \Rightarrow q = \dots$	M1
	q=6	A1
		[2]
(c)	For using the equation of C to find s	
	$0 = \frac{2s+6}{s+4} \Rightarrow s = \dots$	M1
	s = -3	A1
		[2]
Total 6 mark		l 6 marks

Question	Scheme	Marks
5(a)	$-\frac{1}{12} = \frac{10 - 0}{p - 123} \left[\text{or} -\frac{1}{12} = \frac{0 - 10}{123 - p} \right]$	M1
	$\Rightarrow p - 123 = -12 \times 10 \Rightarrow p = 3*$	A1
		cso [2]
(b)	$y-10 = -\frac{1}{12}(x-3) \Rightarrow 12y+x-123 = 0$	M1A1 [2]
(c)	$m_k = 12$	B1
	$y-10=12(x-3) \Rightarrow y=12x-26$	M1A1 [3]
(d)	At C: $y = 12x - 26$ when $y = 0$, $x = \frac{26}{12}$ oe	M1A1
	Area _{ABC} = $\frac{1}{2} \times 10 \times \left(123 - \frac{13}{6}\right) = \frac{3625}{6}$ ALT	M1A1
	Area = $\frac{1}{2} \begin{vmatrix} 3 & 123 & 13/6 & 3\\ 10 & 0 & 0 & 10 \end{vmatrix} = \frac{3625}{6}$	[M1A1]
		[4]
	Tot	tal 11 marks

Question	Notes	Marks
5(a)	States a correct expression for the gradient in terms of <i>p</i>	
	either $-\frac{1}{12} = \frac{10-0}{p-123}$ or $-\frac{1}{12} = \frac{0-10}{123-p}$	
	1	M1
	and attempts to solve their equation in p	
	$p-123 = -12 \times 10 \Rightarrow p = \dots$	4.1
	Finds the value of $p = 3*$	A1
	Must show an intermediate step e.g. $k = p \pm c$ or $c = \frac{p}{k}$ or $c = kp$	CSO
(b)	Forms an equation using either the formula or $y = mx + c$ with the	[2]
(6)	given values	
	$y-10=-\frac{1}{12}(x-3)$	M1
	OR	
	$y-0=-\frac{1}{12}(x-123)$	
	For the correct equation in the required form $12y+x-123=0$	A1
	Coefficients must be integers.	[2]
	Allow for $r = 1$, $s = 12$, $t = -123$	
(c)	For the gradient of the normal when $x = 3$ is 12	B1
	Forms an equation of the normal using either the formula or y	
	= mx + c with their values of the gradient of the normal.	
	y-12=12(x-3)	M1
	For the correct equation in the required form.	
	y = 12x - 26	A1
(1)		[3]
(d)	Attempts to find the x coordinate at point C	
	y = 12x - 26 when $y = 0$, $x =$	M1
	Their linear equation from (c) with $y = 0$ and attempt to solve.	1011
	For the correct value of x	
	$x = \frac{26}{12} \text{ oe}$	A1
	For attempting to find the area of triangle <i>ABC</i>	711
	Area = $\frac{1}{2} \times 10 \times \left(123 - \frac{13}{6}\right) = \dots$	M1
	or Area = $\frac{1}{2} \begin{vmatrix} 3 & 123 & 13/6 & 3\\ 10 & 0 & 0 & 10 \end{vmatrix}$	
	For the correct area of the triangle $\frac{3625}{6}$ oe	A1
	U	[4]
	isw rounding	1 monto-
	Total I	1 marks

Question	Scheme	Marks
6	$A = \frac{r^2}{2} \times \frac{\pi}{6} = \left(\frac{\pi r^2}{12}\right)$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{2 \times \pi r}{12} = \left(\frac{\pi r}{6}\right)$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$	M1
	Length of arc $AB = \frac{5\pi}{2} = r\frac{\pi}{6} \Rightarrow r = 15$	M1
	$\frac{dA}{dt} = \frac{\pi \times 15}{6} \times 0.2 = \frac{\pi}{2} \left(\text{cm}^2 / \text{s} \right)$	M1A1 [6]
		otal 6 marks

Question	Notes	Marks
6	For using the correct formula for the area of the sector	
	$A = \frac{r^2}{2} \times \frac{\pi}{6} = \left(\frac{\pi r^2}{12}\right)$	B1
	For an attempt to differentiate their expression for the area	
	provided it is in the form $A = kr^2$ where $k \neq 1$ (see general guidance)	M1
	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{2 \times \pi r}{12} = \left(\frac{\pi r}{6}\right)$	
	For a correct statement of chain rule to achieve $\frac{dA}{dt}$	
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ may be seen stated or implied by substitution.	M1
	For using the length of arc when the length of arc is $\frac{5\pi}{2}$	M1
	$\frac{5\pi}{2} = r\frac{\pi}{6} \Longrightarrow (r = 15)$	
	For attempting to find the rate of change of area using a	
	correct chain rule, their $\frac{dA}{dr}$, the given $\frac{dr}{dt}$ and their value for r	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{'\pi'}{6} \times '15' \times 0.2 = \dots$	M1
	For the correct value of $\frac{dA}{dt} = \frac{\pi}{2} \left(\text{cm}^2 / \text{s} \right)$	A1
		[6]
Total 6 mark		otal 6 marks

Question	Scheme	Marks
7	$x = 0, y = 0^2 + 2 = 2$	B1
	$\left[y = x^2 + 2 \Longrightarrow x^2 = y - 2 \right]$	
	$V = \pi \int_{2}^{a} x^{2} dy \Rightarrow 18\pi = \pi \int_{2}^{a} (y-2) dy, = \pi \left[\frac{y^{2}}{2} - 2y \right]_{2}^{a}$	M1,M1
	$18\pi = \pi \left[\left(\frac{a^2}{2} - 2a \right) - \left(\frac{2^2}{2} - 2 \times 2 \right) \right]$	M1
	$0 = a^2 - 4a - 32$	M1A1
	$a^2 - 4a - 32 = (a+4)(a-8) = 0 \Rightarrow a = 8$	M1A1 [8]
	ALT	
	$x = 0, y = 0^2 + 2 = 2$	ID 1
	$\left[y = x^2 + 2 \Longrightarrow x^2 = y - 2 \right]$	[B1
	$18\pi = \pi \int_{2}^{a} (y-2) dy, 18\pi = \pi \left[\frac{(y-2)^{2}}{2} \right]_{2}^{a}$	M1,M1
	$18\pi = \pi \left[\left(\frac{a-2}{2} \right)^2 - \left(\frac{2-2}{2} \right)^2 \right]$	M1
	$18 = \left(\frac{a-2}{2}\right)^2 \Rightarrow 36 = \left(a-2\right)^2$	M1A1
	$a = 2 \pm \sqrt{36} \Rightarrow a = 8$	M1A1]
	Tota	al 8 marks

Question	Notes	Marks
7	The intersection of S with the y-axis is at the point with	
	coordinates $(0, 2)$. May be given as when $x = 0$, $y = 2$	B1
	For a correct statement for the volume, condone missing or	
	incorrect limits and missing π	
	$\left[y = x^2 + 2 \Longrightarrow x^2 = y - 2 \right]$	
	$V = \pi \int_2^a x^2 dy \Rightarrow 18\pi = \pi \int_2^a (y - 2) dy$	M1
	METHOD A	
	For an attempt to integrate the expression which must be in the	
	minimally acceptable form $y \pm 2$	
	$18\pi = \pi \left[\frac{y^2}{2} - 2y \right]_2^a$ [Ignore limits and π for this mark]	M1
	For substituting the limits into their integrated expression to form an equation in <i>a</i> . No simplification is required for this mark.	
	$18\pi = \pi \left[\left(\frac{a^2}{2} - 2a \right) - \left(\frac{2^2}{2} - 2 \times 2 \right) \right]$	M1
	For forming a 3TQ in terms of a $0 = a^2 - 4a - 32$	M1
	For the correct 3TQ	
	$0 = a^2 - 4a - 32$	A1
	For an attempt to solve their 3TQ	
	$a^2 - 4a - 32 = (a+4)(a-8) = 0 \Rightarrow a =$	M1
	For the correct value of $a = 8$	A1
	If $a = -4$ is also stated then it must be rejected.	[8]
	METHOD B	
	For an attempt to integrate the expression which must be in the minimally acceptable form $y \pm 2$	
	$18\pi = \pi \left[\frac{(y-2)^2}{2} \right]_2^a$ [Ignore limits and π for this mark]	M1
	For substituting the limits into their integrated expression to form an equation in <i>a</i> . No simplification is required for this mark.	
	$18\pi = \pi \left[\left(\frac{a-2}{2} \right)^2 - \left(\frac{2-2}{2} \right)^2 \right]$	M1
	For forming an equation in a $18 = \left(\frac{a-2}{2}\right)^2 \Rightarrow 36 = (a-2)^2$	M1A1
	For an attempt to solve their equation.	
	$a = 2 \pm \sqrt{36} \Rightarrow a = 8$	M1A1

Total 8 marks

Question	Scheme	Marks
8(a)	$\alpha + \beta = \frac{k}{3}$ and $\alpha\beta = -\frac{1}{3}$	B1
	$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2 \Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$\alpha^{2} + \beta^{2} = \left(\frac{k}{3}\right)^{3} - 2\left(-\frac{1}{3}\right) = \frac{k^{2}}{9} + \frac{2}{3} = \frac{k^{2} + 6}{9} *$	A1 cso [3]
(b)	$\alpha^4 + \beta^4 = \left(\alpha^2 + \beta^2\right)^2 - 2\alpha^2\beta^2$	M1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2$	M1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2 \Rightarrow k^4 + 12k^2 - 448 = 0$	M1
	$k^4 + 12k^2 - 448 = (k^2 - 16)(k^2 + 28) = 0 \Rightarrow k^2 = 16 \Rightarrow k = 4$	M1A1
(c)	$\alpha^3 + \beta = \beta^3 + \alpha = \alpha^4 + \beta^4 + 2\alpha\beta$	[5]
	Sum: $\frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{\alpha^4 + \beta^4 + 2\alpha\beta}{\alpha\beta}$	M1
	$\frac{\alpha^{3} + \beta}{\beta} + \frac{\beta^{3} + \alpha}{\alpha} = \frac{\frac{466}{81} + 2\left(-\frac{1}{3}\right)}{-\frac{1}{3}} = -\frac{412}{27}$	A1
	Product: $\left(\frac{\alpha^3 + \beta}{\beta}\right) \left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\alpha^4 + \beta^4 + (\alpha\beta)^3 + \alpha\beta}{\alpha\beta}$	M1
	$\left(\frac{\alpha^3 + \beta}{\beta}\right) \left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\frac{466}{81} + \left(-\frac{1}{3}\right)^3 + \left(-\frac{1}{3}\right)}{\left(-\frac{1}{3}\right)} = -\frac{436}{27}$ $3TQ: x^2 + \frac{412}{27}x - \frac{436}{27} = 0 \Rightarrow 27x^2 + 412x - 436 = 0$	A1
	3TQ: $x^2 + \frac{412}{27}x - \frac{436}{27} = 0 \Rightarrow 27x^2 + 412x - 436 = 0$	M1A1
	21 21	[6]
	To	tal 14 marks

Question	Scheme	Marks
8(a)	$\alpha + \beta = \frac{k}{3}$ and $\alpha\beta = -\frac{1}{3}$	B1
	For the correct algebra on $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	For substituting <i>their</i> sum and <i>their</i> product to give a simplified expression for	
	$\alpha^2 + \beta^2 = \left(\frac{k}{3}\right)^3 - 2\left(-\frac{1}{3}\right) = \frac{k^2}{9} + \frac{2}{3} = \frac{k^2 + 6}{9}$ *	A1 cso [3]

(b)	For the correct algebra on $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$	M1
	Or	
	$\alpha^4 + \beta^4 = (\alpha + \beta)^4 - 4\alpha\beta(\alpha^2 + \beta^2) - 6\alpha^2\beta^2$	
	For substituting the values for $\alpha^2 + \beta^2$ (in terms of k) and $\alpha\beta$	
	into their $\alpha^4 + \beta^4$ and equating to $\frac{466}{81}$	N/1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2$	M1
	Or for substituting the values for $\alpha^2 + \beta^2$ (in terms of k), $\alpha +$	
	β and $\alpha\beta$ into their $\alpha^4 + \beta^4$ and equating to $\frac{466}{81}$	
	For forming a simplified quadratic.	
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2 \Rightarrow k^4 + 12k^2 - 448 = 0$	M1
	Or for $\left(\frac{k^2+6}{9}\right)^2 = \frac{448}{81}$	
	Their quadratic must come from an attempt at $\alpha^4 + \beta^4$	
	For solving their quadratic. $h^4 + 12h^2 = 448 - (h^2 - 16)(h^2 + 28) - 0 \rightarrow h^2 - 16 \rightarrow h - 4$	
	$k^4 + 12k^2 - 448 = (k^2 - 16)(k^2 + 28) = 0 \Rightarrow k^2 = 16 \Rightarrow k = 4$	M1
	Their quadratic must come from an attempt at $\alpha^4 + \beta^4$	
	For the correct value of $k = 4$	A1
(c)	If they give $k = \pm 4$ this is A0 For the correct algebra on the sum.	[5]
(C)	_	M1
	$\frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{\alpha^4 + \beta^4 + 2\alpha\beta}{\alpha\beta}$	
	For the correct value of the sum.	
	$\frac{\alpha^{3} + \beta}{\beta} + \frac{\beta^{3} + \alpha}{\alpha} = \frac{\frac{466}{81} + 2\left(-\frac{1}{3}\right)}{-\frac{1}{3}} = -\frac{412}{27}$	A1
	For the correct algebra on the product.	
	$\left(\frac{\alpha^{3} + \beta}{\beta}\right)\left(\frac{\beta^{3} + \alpha}{\alpha}\right) = \frac{\alpha^{4} + \beta^{4} + (\alpha\beta)^{3} + \alpha\beta}{\alpha\beta}$	M1
	For the correct value of the product.	
	$\left(\frac{\alpha^3 + \beta}{\beta}\right)\left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\frac{466}{81} + \left(-\frac{1}{3}\right)^3 + \left(-\frac{1}{3}\right)}{\left(-\frac{1}{3}\right)} = -\frac{436}{27}$	
	$\left(\begin{array}{ccc} \rho & f & \alpha & f \\ \hline & & & \end{array}\right)$ $\left(\begin{array}{c} -\frac{1}{3} \\ \hline & & \end{array}\right)$	A1
	For the 3TQ from their values of the sum and product (used	
	correctly) [= 0 not required for this mark].	
		M1

27 2 412 426 0	A1
$27x^2 + 412x - 436 = 0$ Must have integer coefficients. Accept a multiple of this.	[6]

Question	Scheme	Marks
9(a)	$ar^2 = \frac{27}{2}$	B1
	$a + ar + \frac{27}{2} = \frac{57}{2} \left(\Rightarrow a + ar = 15 \Rightarrow a \left(1 + r \right) = 15 \Rightarrow a = \frac{15}{1 + r} \right)$	M1
	$\left(\frac{15}{1+r}\right)r^2 = \frac{27}{2} \Rightarrow 30r^2 - 27r - 27 = 0 \Rightarrow \left(10r^2 - 9r - 9 = 0\right)$	M1
	ALT $ar^2 = \frac{27}{2}$	B1
	$\frac{57}{2} = \frac{a(r^3 - 1)}{r - 1}$	M1
	$\frac{57}{2} = \frac{27}{2r^2} \times \frac{(r^3 - 1)}{r - 1} \Rightarrow 30r^3 - 57r^2 + 27 = 0$	M1
	$\left(\Rightarrow 10r^3 - 19r^2 + 9 = 0\right)$	
	r: $10r^2 - 9r - 9 = 0 \Rightarrow (5r + 3)(2r - 3) = 0 \Rightarrow r = \frac{3}{2}$	M1A1
	a: $a = \frac{15}{1 + \frac{3}{2}} = 6$	A1
	$S_n = \sum_{r=1}^n \left('6' \div \frac{3}{2} \right) \left(\frac{3}{2} \right)^r \Rightarrow S_n = \sum_{r=1}^n 4 \left(\frac{3}{2} \right)^r *$	M1A1 cso [8]
(b)	$\frac{6(1.5^k - 1)}{1.5 - 1} > 50\ 000$	M1
	$1.5^k > \frac{12\ 503}{3} \Rightarrow \lg 1.5^k > \lg \frac{12\ 503}{3}$	M1
	$k > \frac{\lg \frac{12503}{3}}{\lg \frac{3}{2}} \text{ or } k > \frac{\lg \frac{12503}{3}}{\lg 1.5} *$	A1 [cso] [3]

Total 12 mar		tal 12 marks	
			[1]
(c)	For $k > 20.556$ so $k = 21$		B1

Question	Scheme	Marks
9(a)	For stating, $ar^2 = \frac{27}{2}$	D .1
	<u>L</u>	B1
	For summing the first three terms;	М1
	$a + ar + \frac{27}{2} = \frac{57}{2} \left(\Rightarrow a + ar = 15 \Rightarrow a(1+r) = 15 \Rightarrow a = \frac{15}{1+r} \right)$	M1
	OR	
	$\frac{57}{2} = \frac{a(r^3-1)}{r-1}$	
	For attempting to form a 3TQ using their two expressions for	
	U_3 and S_3	
	$\left(\frac{15}{1+r}\right)r^2 = \frac{27}{2} \Rightarrow 30r^2 - 27r - 27 = 0 \Rightarrow \left(10r^2 - 9r - 9 = 0\right)$	M1
	OR	
	For attempting to form a cubic using their two expressions for	
	U_3 and S_3	
	$\frac{57}{2} = \frac{27}{2r^2} \times \frac{(r^3 - 1)}{r - 1} \Rightarrow 30r^3 - 57r^2 + 27 = 0$	
	For attempting to solve their 3TQ (see general guidance).	3.54
	$10r^2 - 9r - 9 = 0 \Rightarrow (5r + 3)(2r - 3) = 0 \Rightarrow r =$	M1
	OR	
	If following the alt method then this mark is awarded for	
	factorising the cubic into a linear expression and a 3TQ and attempting to solve their 3TQ.	
	$(r-1)(10r^2 - 9r - 9) = 0 \Rightarrow (r-1)(5r+3)(2r-3) = 0$	
	$\Rightarrow r = \cdots$	
	For the correct value of $r = \frac{3}{2}$	A1
	For the correct value of $r = \frac{1}{2}$ For the correct value of $a = \frac{15}{1 + \frac{3}{2}} = 6$	A1
	For attempting to use their a and r to find the correct expression	
	for S_n	

	$S_n = \sum_{r=1}^n \left({}^{\prime} 6' \div \frac{3}{2} \right) \left(\frac{3}{2} \right)^r \Rightarrow S_n = \dots$	M1
	OR	
	For demonstrating that a particular value of r gives the correct	
	term in the sequence.	
	For the correct expression $S_n = \sum_{r=1}^n 4\left(\frac{3}{2}\right)^r *$	A1 cso
	OR	[8]
	For demonstrating that a particular value of r gives the correct	
	term in the sequence and commenting on a correct common ratio.	
(b)	For using the summation formula > 50 000	
	$\frac{6(1.5^k - 1)}{1.5 - 1} > 50 \ 000$	M1
	For rearranging the inequality to achieve,	
	$1.5^k > \frac{12\ 503}{3}$ and takes logs base 10 of both sides	M1
	$\lg 1.5^k > \lg \frac{12\ 503}{3}$	
	For using the laws of logs to make <i>k</i> the subject.	
	$\frac{1}{10}\frac{12}{10}\frac{503}{10}$ $\frac{1}{10}\frac{12}{10}\frac{503}{10}$	
	$k > \frac{18}{3}$ or $k > \frac{18}{3}$ *	A1
	$k > \frac{\lg \frac{12503}{3}}{\lg \frac{3}{2}} \text{ or } k > \frac{\lg \frac{12503}{3}}{\lg 1.5} *$	cso
	_	[3]
(c)	For $k > 20.556 \Rightarrow k = 21$	B1
		[1]
	Total	12 marks

10(a) $\frac{1}{243} = 3^{-5}$ $9^{3y} = 3^{6y}$ $\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} \Rightarrow \frac{9^{3y}}{243} = 3^{(6y-5)} *$ M1A1 of [4] (b) $27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$ $6y - 5 = 3x - 6 \Rightarrow (6y - 3x - 1 = 0)$ M1 $\log_4 2 = \frac{1}{2}$ B1 $\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) \Rightarrow \log_{10} 10 \Rightarrow 6xy = 10$ M1 $3x - 6y - 1 = 0$ $6xy = 10$ M1 $3x - 6y - 1 = 0$ $6xy = 10$ M1 $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 9 Method B $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1 $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1	Question	Scheme	Marks
$\frac{9^{3y}}{243} = 3^{oy} \qquad \qquad B1$ $\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} \Rightarrow \frac{9^{3y}}{243} = 3^{(6y-5)} *$ $M1A1 c$ $(b) \qquad 27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)} \qquad M1$ $6y - 5 = 3x - 6 \Rightarrow (6y - 3x - 1 = 0) \qquad M1$ $\log_4 2 = \frac{1}{2} \qquad B1$ $\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1 \qquad M1$ $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x - 6y - 1 = 0$ $6xy = 10$ $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3} \qquad M1$ $3x - 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6} \qquad A1$ $3x \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $41 y = \frac{10}{3} =$	10(a)	$\frac{1}{2} - 3^{-5}$	B1
$\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} \Rightarrow \frac{9^{3y}}{243} = 3^{(6y-5)} *$ $M1A1 c$ $(b) $			
(b) $27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$ MI $6y - 5 = 3x - 6 \Rightarrow (6y - 3x - 1 = 0)$ MI $\log_4 2 = \frac{1}{2}$ BI $\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ MI $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ MI 3x - 6y - 1 = 0 $6xy = 10$ MI $3x^2 - y - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x^2 - x - 10 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x - 6y - 1 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x - 6y - 1 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x - 6y - 1 \Rightarrow 6y = 6 \Rightarrow y = -1$ AI $y = \frac{5}{3} \Rightarrow \frac{5}{9} \Rightarrow \frac{5}{9} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ MI $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ MI $3x - 6x + \frac{5}{6} = 1 \Rightarrow 3x = 6 \Rightarrow x = 2$ AI		$9^{3y} = 3^{6y}$	B1
(b) $27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$ MI $6y - 5 = 3x - 6 \Rightarrow (6y - 3x - 1 = 0)$ MI $\log_4 2 = \frac{1}{2}$ BI $\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ MI $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ MI 3x - 6y - 1 = 0 $6xy = 10$ MI $3x^2 - y - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x^2 - x - 10 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x - 6y - 1 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ MI $3x - 6y - 1 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ AI $3x - 6y - 1 \Rightarrow 6y = 6 \Rightarrow y = -1$ AI $y = \frac{5}{3} \Rightarrow \frac{5}{9} \Rightarrow \frac{5}{9} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ MI $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ MI $3x - 6x + \frac{5}{6} = 1 \Rightarrow 3x = 6 \Rightarrow x = 2$ AI		$\frac{9^{3y}}{9^{3y}} = 3^{-5} \times 3^{6y} \Rightarrow \frac{9^{3y}}{9^{3y}} = 3^{(6y-5)} *$	M1A1 ago
(b) $ 27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)} $ $ 6y-5 = 3x-6 \Rightarrow (6y-3x-1=0) $ $ \log_4 2 = \frac{1}{2} $ $ \log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1 $ $ 1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10 $ $ 3x-6y-1=0 $ $ 6xy=10 $ $ \frac{\text{Method A}}{6y = \frac{10}{x}} \Rightarrow 3x - \frac{10}{x} - 1 = 0 \Rightarrow 3x^2 - x - 10 = 0 $ $ 3x^2 - x - 10 = (3x+5)(x-2) = 0 \Rightarrow x = 2, -\frac{5}{3} $ $ 3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6} $ $ 3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1 $ $ x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1 $ $ \frac{\text{Method B}}{3x = \frac{5}{y}} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0 $ $ 6y^2 + y - 5 = (6y-5)(y+1) = 0 \Rightarrow y = \frac{5}{6}, -1 $ $ 3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2 $ $ A1$		243 243	
$6y-5=3x-6\Rightarrow (6y-3x-1=0)$ $\log_4 2 = \frac{1}{2}$ $\log_{10} \sqrt{6xy} = \frac{1}{2}\log_{10}(6xy) \Rightarrow \log_{10}(6xy) = 1$ $1 = \log_{10} 10 \Rightarrow \log_{10}(6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x-6y-1=0$ $6xy = 10$ $3x^2 - x - 10 = (3x+5)(x-2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ $3\times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ $3\times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $A1$	(b)	$27^{(x-2)} - 3^{3(x-2)} - 3^{(3x-6)}$	+
$\log_{4} 2 = \frac{1}{2}$ $\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x - 6y - 1 = 0$ $6xy = 10$ $3x^{2} - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ $3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1 M1 M2 M2 M3 M1 M3 M1 M1 M1 M1 M1 M1 M1			
$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x - 6y - 1 = 0$ $6xy = 10$ $3x^{2} - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ $3 \times (2 - 6y - 1) = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ $3 \times (-\frac{5}{3}) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $M1$		$0y - 3 - 3x - 0 \Rightarrow (0y - 3x - 1 - 0)$	M1
$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$ $1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x - 6y - 1 = 0$ $6xy = 10$ $3x^{2} - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ $3 \times (2 - 6y - 1) = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ $3 \times (-\frac{5}{3}) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $M1$		$\log_4 2 = \frac{1}{2}$	B1
$1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$ $3x - 6y - 1 = 0$ $6xy = 10$ Method A $6y = \frac{10}{x} \Rightarrow 3x - \frac{10}{x} - 1 = 0 \Rightarrow 3x^2 - x - 10 = 0$ $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 9 Method B $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		2	
$3x-6y-1=0$ $6xy=10$ Method A $6y = \frac{10}{x} \Rightarrow 3x - \frac{10}{x} - 1 = 0 \Rightarrow 3x^2 - x - 10 = 0$ $3x^2 - x - 10 = (3x+5)(x-2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ M1 $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ M1 A1		$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$	M1
Method A $6y = \frac{10}{x} \Rightarrow 3x - \frac{10}{x} - 1 = 0 \Rightarrow 3x^2 - x - 10 = 0$ $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 [9] Method B $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		$1 = \log_{10} 10 \Rightarrow \log_{10} \left(6xy \right) = \log_{10} 10 \Rightarrow 6xy = 10$	M1
Method A $6y = \frac{10}{x} \implies 3x - \frac{10}{x} - 1 = 0 \implies 3x^2 - x - 10 = 0$ $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \implies x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \implies 6y = 5 \implies y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \implies -6y = 6 \implies y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 $y = \frac{5}{3} \implies \frac{5}{3} - 6y - 1 = 0 \implies 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \implies y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \implies 3x = 6 \implies x = 2$ A1		3x - 6y - 1 = 0	
$6y = \frac{10}{x} \implies 3x - \frac{10}{x} - 1 = 0 \implies 3x^2 - x - 10 = 0$ $3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \implies x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \implies 6y = 5 \implies y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \implies -6y = 6 \implies y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 $y = \frac{5}{y} \implies \frac{5}{y} - 6y - 1 = 0 \implies 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \implies y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \implies 3x = 6 \implies x = 2$ A1		6xy = 10	
$6y = \frac{1}{x} \implies 3x - \frac{1}{x} - 1 = 0 \implies 3x^{2} - x - 10 = 0$ $3x^{2} - x - 10 = (3x + 5)(x - 2) = 0 \implies x = 2, -\frac{5}{3}$ M1 $3 \times 2 - 6y - 1 = 0 \implies 6y = 5 \implies y = \frac{5}{6}$ A1 $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \implies -6y = 6 \implies y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ A1 $[9]$ Method B $3x = \frac{5}{y} \implies \frac{5}{y} - 6y - 1 = 0 \implies 6y^{2} + y - 5 = 0$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \implies y = \frac{5}{6}, -1$ M1 $3x - 6 \times \frac{5}{6} - 1 = 0 \implies 3x = 6 \implies x = 2$ A1		Method A	
$3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$ $3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $A1$		$6y = \frac{10}{x} \implies 3x - \frac{10}{x} - 1 = 0 \implies 3x^2 - x - 10 = 0$	M1
$3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$ $x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $\mathbf{Method B}$ $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $\mathbf{M1}$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $\mathbf{A1}$		$3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$	M1
$x = 2 y = \frac{5}{6} \text{ or } x = -\frac{5}{3} y = -1$ $\frac{\text{Method B}}{3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0}$ $6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ $A1$		0	A1
Method B $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^{2} + y - 5 = 0$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		$3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$	
Method B $3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^{2} + y - 5 = 0$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		$x = 2$ $y = \frac{5}{2}$ or $x = -\frac{5}{2}$ $y = -1$	A1
$3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^{2} + y - 5 = 0$ $6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		6 3 3	
$6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$ $3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$ A1		Method B	
$3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$		$3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$	M1
		$6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$	M1
3, 6, (1) 1, 0, 2, 5, 5		$3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$	A1
$3x-6\times(-1)-1=0 \Rightarrow 3x=-3 \Rightarrow x=-\frac{1}{3}$		$3x-6\times(-1)-1=0 \Rightarrow 3x=-5 \Rightarrow x=-\frac{5}{3}$	
$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$		$r = 2$ $y = \frac{5}{2}$ or $r = -\frac{5}{2}$ $y = -1$	A1
$\begin{bmatrix} x = 2 & y = \frac{1}{6} & 0 & x = -\frac{1}{3} & y = -1 \\ & & & & & & & & & & & & & & & & & & $		$\frac{1}{6}$ $\frac{2}{6}$ $\frac{y-1}{6}$ $\frac{y-1}{3}$	
Total 13 ma		Tot	

Question	Scheme	Marks
10	$\frac{9^{3y}}{243} = 27^{(x-2)}$	
	$\frac{1}{243} = 27$	
	$\log_{10} \sqrt{6xy} = \log_4 2$	
(a)	Writes down $\frac{1}{243} = 3^{-5}$	B1
	writes down $\frac{1}{243}$ = 3	
	May be seen as $\frac{1}{243} = \frac{1}{35}$ later correctly used as 3^{-5} when	
	combining terms.	
	Writes down $9^{3y} = 3^{6y}$	B1
	Combines the terms $\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} = 3^{(6y-5)}$	
	Combines the terms $\frac{1}{243} = 3 \times 3^3 = 3^{33}$	M1
	For the correct expression with no errors.	
	$\frac{9^{3y}}{243} = 3^{(6y-5)} *$	A1
	243	cso
(1.)		[4]
(b)	For dealing with the power of 3 to give $27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$	M1
	For equating the powers of 3 to give the equation	
	$6y-5=3x-6 \Rightarrow (6y-3x-1=0)$	M1
	For stating $\log_4 2 = \frac{1}{2}$	
	2	B1
	For dealing with the square root	
	$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} \left(6xy \right) = \left(\frac{1}{2} \right) \Rightarrow \log_{10} \left(6xy \right) = 1$	M1
	For correctly removing all logarithms from the second equation	M1
	$1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$	
	3x - 6y - 1 = 0	
	6xy = 10	
	Method A	
	For substituting	
	$6y = \frac{10}{x}$ into the linear equation to give $3x - \frac{10}{x} - 1 = 0$ and	M1
	attempting to form a 3TQ $3x^2 - x - 10 = 0$	
	OR for substituting	
	$y = \frac{1}{6}(3x - 1)$ into $6xy = 10$ to give $x(3x - 1) = 10$ and	
	attempting to form a 3TQ $3x^2 - x - 10 = 0$	
	For attempting to solve their 3TQ	
	5	M1
	$3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$	
	l	<u> </u>

For finding the values of <i>y</i>		
$3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$	A1	
O O		
$3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$	A 1	
$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1 [9]	
Answers must be given in pairs, pairing may be implied from		
working.		
Method B		
For substituting		
$3x = \frac{10}{2y} \Rightarrow 3x = \frac{5}{y} \text{ into the linear equation to give } \frac{5}{y} - 6y - 1 = 0$	M1	
and attempting to form a 3TQ $6y^2 + y - 5 = 0$		
OR		
for substituting $x = \frac{1}{3}(6y + 1)$ into $6xy = 10$ to give		
$2(6y + 1)y = 10 \text{ and attempting to form a 3TQ } 6y^2 + y - 5 = 0$		
For attempting to solve their 3TQ		
$6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$	M1	
For finding the values of <i>x</i>		
$3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$	A1	
$3x - 6 \times (-1) - 1 = 0 \Rightarrow 3x = -5 \Rightarrow x = -\frac{5}{3}$		
$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1	
	[9]	
Total 13 marks		

Question	Scheme	Marks
11	$S = \pi r^2 + 2\pi r h$	B1
	$\pi r^2 + 2\pi r h = 625\pi \Rightarrow 2r h = 625 - r^2 \Rightarrow h = \frac{625 - r^2}{2r} *$	3.54.4.4
		M1A1
		[cso]
(b)		[3]
(b)	$V = \pi r^2 \left(\frac{625 - r^2}{2r}\right) \text{ or } \left(V = \frac{625\pi}{2}r - \frac{\pi r^3}{2}\right)$	M1
	$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{625\pi}{2} - \frac{3\pi r^2}{2}$	M1
	$\frac{625\pi}{2} - \frac{3\pi r^2}{2} = 0 \Rightarrow 625 = 3r^2 \Rightarrow r = 14.4337 \Rightarrow r \approx 14.4$	M1A1
	For differentiating their $\frac{dV}{dr}$	
	$\frac{d^2V}{dr^2} = -3\pi r \ (= -136.03 \dots)$	M1
	For concluding that as $\frac{d^2V}{dr^2}$ is negative then the volume is a	A1
	maximum. (Explicit substitution of r is not required).	[6]
(c)	$h = \frac{625 - 14.43375^2}{2.114.43375} = 14.4337 \approx 14.4$	
	2×14.43375	B1ft
		[1]
Total 10 marks		

Question	Scheme	Marks
11	For a correct expression for the surface area of the cup.	
	$S = \pi r^2 + 2\pi rh$	B1
	For equating their expression for the surface area to 625π	
	and attempting to make h the subject.	
	$\pi r^2 + 2\pi r h = 625\pi \Rightarrow 2r h = 625 - r^2 \Rightarrow h = \frac{625 - r^2}{2r}$	M1
	Allow errors in arithmetic but not mathematically incorrect	
	process.	
	For the correct expression for h as shown with no errors.	
	$h = \frac{625 - r^2}{2r} *$	A1
	$n-\frac{1}{2r}$	cso
		[3]

(b)	For the correct volume of the container in terms of r only.	
	$V = \pi r^2 \left(\frac{625 - r^2}{2r} \right)$ or $\left(V = \frac{625\pi}{2} r - \frac{\pi r^3}{2} \right)$	M1
	Minimally acceptable attempt at differentiation, see general	
	guidance, no power to increase.	M1
	$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{625\pi}{2} - \frac{3\pi r^2}{2}$	
	Places their derivative = 0 and attempts to rearrange to find r . Minimally acceptable derivative is of the form $a \pm b\pi r^2$	
	$\frac{625\pi}{2} - \frac{3\pi r^2}{2} = 0 \Rightarrow 625 = 3r^2 \Rightarrow r = \dots$	M1
	For the correct value of <i>r</i>	
	$r = 14.4337 \Rightarrow r \approx 14.4 \text{ (cm)}$	A1
	Must reject negative value if found, award A0 if not rejected.	
	May be implied from subsequent working.	
	For differentiating their $\frac{dV}{dr}$	
	For minimally acceptable attempt to differentiate their first derivative, see general guidance, no power to increase. Or testing gradients or a sketch.	M1
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -3\pi r$	
	For concluding that as $\frac{d^2V}{dr^2}$ is negative then the volume is a	A1
	maximum. (Explicit substitution of r is not required).	[6]
(c)	For the value of h using their value of r	
	$h = \frac{625 - 14.43375^2}{2 \times 14.43375} = 14.4337 \approx 14.4$	B1ft
	Allow for 14.5 if substituting $r = 14.4$	[1]
Total 10 mar		tal 10 marks

htrmathematics.com