Practice quiz on the Cartesian Plane

PUNTOS TOTALES DE 5

1. Which of the following points in the Cartesian Plane is on the y-axis?

1 / 1 puntos

- \bigcirc (1,1)
- (0,-5)
- $\bigcirc (-5,0)$
- \bigcirc (5,0)

✓ Correcto

The y-axis is defined to be all points in the Cartesian plane with zero as x-coordinate. The point (0,-5) meets that requirement.

2. Find the distance between the points A = (2, 2) and C = (3, 3):

1 / 1 puntos

- O 1
- \bigcirc 0
- O 2
- \bigcirc $\sqrt{2}$

✓ Correcto

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$.

In this case (a,b)=(2,2) and (c,d)=(3,3), so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.

- 3. Find the point-slope form of the equation of the line that goes between A=(1,1) and B=(5,3):
 - $\bigcirc y = \frac{1}{2}x$
- $\bigcirc y-3=rac{1}{2}\left(x-1
 ight)$
- $\bigcirc y-1=\frac{1}{2}(x-5)$

✓ Correcto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope $m=rac{3-1}{5-1}=rac{1}{2}$

We can choose either ${\cal A}$ or ${\cal B}$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1 / 1 puntos

$$y-1=2(x-2)$$
?

- \bigcirc (0,0)
- \bigcirc (2,3)
- (2,1)
- \bigcirc (3, 2)

✓ Correcto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, $\,$ 0 = 0, so this point lies on the line.

- \bigcirc -1
- 0
- 2
- \bigcirc 0

✓ Correcto

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0)\in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.

Practice quiz on Types of Functions

PUNTOS TOTALES DE 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A\to B$?

1 / 1 puntos

$$\bigcirc \ f(a)=4a,$$
 for each $a\in A$

$$f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$$

$$\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$$

$$f(1) = 5, f(2) = 8, and $f(10) = 40.$$$

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 puntos

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

$$\bigcirc T(a) = + \text{ and } D(a) = S$$

$$\bigcirc T(a) = - \text{ and } D(a) = H$$

$$\bigcirc T(a) = - \text{ and } D(a) = S$$

✓ Correc

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

- 3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?
 - (2,-1)
- $\bigcirc (0,-1)$
- \bigcirc (1,0)
- $\bigcirc \ (-1,0)$

✓ Correcto

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

1 / 1 puntos

- \bigcirc The graph of g(x) = x + 2
- \bigcirc The graph of f(x)=2x
- lacktriangle The graph of h(x) = x 1
- \bigcirc The graph of $s(x)=x^2$

✓ Correcto

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1\neq 4$, so the point (2,4) is not on the graph of h.

5.	Suppose that $h(x) = -3x + 4$. Which of the following statements is true? • h is a strictly decreasing function • h is a strictly increasing function • h is neither a strictly increasing function nor a strictly decreasing function. • All statements are correct • h Correcto • A function h is called strictly decreasing if whenever h h , then $h(h)$ h	1/1 puntos
	Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R}\to\mathbb{R}$ is a strictly increasing function, with $f(3)=15$ Which of the following is a possible value for $f(3.7)$? -3 14.7 3 $\bullet 17$	1/1 puntos
	\checkmark Correcto A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$.	
	Since $f(3) = 15$ is given and $3 < 3.7$, it must be that $15 < f(3.7)$, and this answer satisfies that.	

Graded quiz on Cartesian Plane and Types of Function

CALIFICACIÓN DEL ÚLTIMO ENVÍO

100%

1. Which of the following points in the Cartesian Plane have positive x-coordinate and negative y-coordinate? 1/1 puntos

- $\bigcirc (-4,5)$
- (7,-1)
- \bigcirc (5,7)
- \bigcirc (0,0)
 - ✓ Correcto

The x-coordinate, 7, is positive, and the y-coordinate, -1, is negative.

2. Which of the following points is in the first quadrant of the Cartesian Plane?

1 / 1 puntos

- (7,11)
- $\bigcirc (-5,1)$
- $\bigcirc (-4, -7)$
- \bigcirc (5, -1)
 - ✓ Correcto

The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.

3. Let A, B, C, D be points in the Cartesian Plane, and let the set $S = \{B, C, D\}$

Suppose that the distances from A to B,C,D are 5.3,2.1, and 11.75, respectively.

Which of the following points is the nearest neighbor to the point A in the set S?

- A
- O D
- B
- C

The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1/1 puntos

- 5
- \bigcirc 25
- \bigcirc 1
- \bigcirc -25

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

- \bigcirc -1
- 0
- $\bigcirc \sqrt{2}$
- \bigcirc 0

✓ Correcto

The slope of this line segment is $\ \frac{0-1}{1-0} = -1$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

1 / 1 puntos

- y-4=2(x-5)
- \bigcirc (5,4)
- $\bigcirc y 5 = -2(x 4)$
- y-4=-2(x-5)

✓ Correcto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

$$\bigcirc y = 5x + 2$$

$$\bigcirc y = 8x - 3$$

$$\bigcirc y = 5x$$

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

1 / 1 puntos

1 / 1 puntos

$$\bigcirc y = 5x$$

$$y = 5x + 2$$

$$y = -3x - 8$$

$$\bigcirc y = 8x - 3$$

✓ Correcto

The the slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. This line has a y-intercept of 2 which is the same as the given line.

9.	How many lines contain both the point $A=(1,1)$ and the point $B=(2,2)$?	1 / 1 puntos
	O 2	
	1	
	○ None	
	infinitely many	
	\checkmark Correcto $ \mbox{The line with equation } y=x \mbox{ is the one and only line that meets the stated requirements. } $	
	Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many different functions $F:A o Z$ are possible?	1/1 puntos
(There are infinitely many	
() 1	
(a 4	
(There are none	
	$igwedge$ Correcto A function $F:A o Z$ is a rule which assigns an element $F(a)\in Z$ to each element $a\in A$.	
	There are two elements in A ; namely, a and b . For each of these elements, there are two assignment choices we could make: x and y .	
	Here are the four possible functions:	
	$F(a)=x, F(b)=y, \operatorname{OR}$	
	$F(a)=y, F(b)=x, \operatorname{OR}$	
	F(a)=x, F(b)=x, OR	

F(a) = y, F(b) = y.

11. How many graphs contain both the point $A=\left(0,0\right)$ and the point $B=\left(1,1\right)$	1/1 puntos
○ None	
Infinitely many	
\bigcirc 2	
\bigcirc 1	
\checkmark Correcto The graphs of $f(x)=x, g(x)=x^2, h(x)=x^3, s(x)=x^4, \ldots$ all contain both A and B	
12. Suppose that $g:\mathbb{R} o\mathbb{R}$ is a continuous function whose graph intersects the x -axis more than once. Which of the following statements is true?	1/1 puntos
$\bigcirc \ g$ is strictly decreasing.	
$\bigcirc \ g$ is strictly increasing.	
All of the above.	
lacktriangledown g is neither strictly increasing nor strictly decreasing.	
✓ Correcto	

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly

decreasing.

13. Find the slope of the line segment between the points A=(1,1) and B=(5,3).

1 / 1 puntos

- \bigcirc 4
- \bigcirc 2
- $\bigcirc \sqrt{20}$
- \odot $\frac{1}{2}$

✓ Correcto

The slope of this line segment is $\, rac{3-1}{5-1} = rac{1}{2}$, where 3-1 is the rise and 5-1 is the run.