회귀 (regression) 예측

수치형 값을 예측 (Y의 값이 연속된 수치로 표현)

예시

- 주택 가격 예측
- 매출액 예측

도큐먼트

```
In [4]: import pandas as pd
       import numpy as np
       np.set printoptions(suppress=True)
       scikit-learn version 1.2. 이후부터는 load_boston이 삭제되어서 다음과 같이 데이터셋을 불러옴
       from sklearn.datasets import fetch_openml
       boston = fetch_openml(name="boston", version=1, as_frame=True)
In [6]: from sklearn.datasets import fetch openml
       data = fetch_openml(name="boston", version=1, as_frame=True)
        # boston은 sklearn.utils.Bunch 객체
       # Python의 딕셔너리와 유사한 구조, 속성에 점(.)으로 접근 가능
       print(data.keys())
      dict keys(['data', 'target', 'frame', 'categories', 'feature names', 'target names', 'DESCR', 'details', 'url'])
        데이터 로드
In [8]: print(data['DESCR'])
```

```
**Author**:
        **Source**: Unknown - Date unknown
        **Please cite**:
        The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
        prices and the demand for clean air', J. Environ. Economics & Management,
        vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
        ...', Wiley, 1980. N.B. Various transformations are used in the table on
        pages 244-261 of the latter.
        Variables in order:
        CRIM
                 per capita crime rate by town
                 proportion of residential land zoned for lots over 25,000 sq.ft.
        ΖN
        INDUS
                 proportion of non-retail business acres per town
        CHAS
                 Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        NOX
                 nitric oxides concentration (parts per 10 million)
                 average number of rooms per dwelling
        RM
        AGE
                 proportion of owner-occupied units built prior to 1940
        DIS
                 weighted distances to five Boston employment centres
        RAD
                 index of accessibility to radial highways
                 full-value property-tax rate per $10,000
        TAX
        PTRATIO pupil-teacher ratio by town
                 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
        LSTAT
                 % lower status of the population
        MEDV
                 Median value of owner-occupied homes in $1000's
        Information about the dataset
        CLASSTYPE: numeric
        CLASSINDEX: last
        Downloaded from openml.org.
         data['data']에는 X 데이터, data['feature_names']에는 컬럼 명입니다.
In [10]: df = pd.DataFrame(data['data'], columns=data['feature names'])
         Y 데이터인 price도 데이터프레임에 추가 합니다.
```

In [12]: df['MEDV'] = data['target']

In [13]: df.head()

-			-	-	_	-	
(1	1 1			7	.)	- 1	
U	u			ж.	\neg	- 1	_
_	٠.	_	ъ.		_	ы.	

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

컬럼 소개

속성 수 : 13

• CRIM: 범죄율

• ZN: 25,000 평방 피트 당 주거용 토지의 비율

• INDUS: 비소매(non-retail) 비즈니스 면적 비율

• CHAS: 찰스 강 더미 변수 (통로가 하천을 향하면 1; 그렇지 않으면 0)

• NOX: 산화 질소 농도 (천만 분의 1)

• RM:주거 당 평균 객실 수

• AGE: 1940 년 이전에 건축된 자가 소유 점유 비율

• DIS: 5 개의 보스턴 고용 센터까지의 가중 거리

• RAD: 고속도로 접근성 지수

• TAX: 10,000 달러 당 전체 가치 재산 세율

• PTRATIO 도시 별 학생-교사 비율

• **B**: 1000 (Bk-0.63) ^ 2 여기서 Bk는 도시 별 검정 비율입니다.

• LSTAT: 인구의 낮은 지위

• MEDV: 자가 주택의 중앙값 (1,000 달러 단위)

In [15]: # 참고

또한 data.frame에 입력 데이터(data)와 타겟(target)이 합쳐진 데이터프레임이 이미 존재하므로 해당 데이터프레임을 바로 선언 가능 df2 = data.frame df2.head()

Out[15]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

train / test 데이터를 분할 합니다.

In [17]: from sklearn.model_selection import train_test_split

In [18]: x_train, x_test, y_train, y_test = train_test_split(df.drop('MEDV', axis=1), df['MEDV'])

In [19]: x_train.shape, x_test.shape

Out[19]: ((379, 13), (127, 13))

In [20]: x_train.head()

Out[20]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
	225	0.52693	0.0	6.20	0	0.504	8.725	83.0	2.8944	8	307.0	17.4	382.00	4.63
	176	0.07022	0.0	4.05	0	0.510	6.020	47.2	3.5549	5	296.0	16.6	393.23	10.11
	108	0.12802	0.0	8.56	0	0.520	6.474	97.1	2.4329	5	384.0	20.9	395.24	12.27
	316	0.31827	0.0	9.90	0	0.544	5.914	83.2	3.9986	4	304.0	18.4	390.70	18.33
	371	9.23230	0.0	18.10	0	0.631	6.216	100.0	1.1691	24	666.0	20.2	366.15	9.53

In [21]: y_train.head()

Out[21]: 225 50.0

23.2 176

108 19.8 17.8 316

371 50.0

Name: MEDV, dtype: float64

평가 지표 만들기

MSE(Mean Squared Error)

$$(rac{1}{n})\sum_{i=1}^n (y_i-x_i)^2$$

예측값과 실제값의 차이에 대한 제곱에 대하여 평균을 낸 값

MAE (Mean Absolute Error)

$$(rac{1}{n})\sum_{i=1}^n |y_i-x_i|$$

예측값과 실제값의 차이에 대한 절대값에 대하여 평균을 낸 값

RMSE (Root Mean Squared Error)

$$\sqrt{(rac{1}{n})\sum_{i=1}^n(y_i-x_i)^2}$$

예측값과 실제값의 차이에 대한 제곱에 대하여 평균을 낸 뒤 루트를 씌운 값

평가 지표 만들어 보기

```
In [33]: import numpy as np
In [34]: pred = np.array([3, 4, 5])
         actual = np.array([1, 2, 3])
In [35]: def my mse(pred, actual):
             return ((pred - actual)**2).mean()
In [36]: my mse(pred, actual)
Out[36]: 4.0
In [37]: def my mae(pred, actual):
             return np.abs(pred - actual).mean()
In [38]: my_mae(pred, actual)
Out[38]: 2.0
In [39]: def my rmse(pred, actual):
             return np.sqrt(my mse(pred, actual))
In [40]: my_rmse(pred, actual)
Out[40]: 2.0
         sklearn의 평가지표 활용하기
In [42]: from sklearn.metrics import mean absolute error, mean squared error
In [43]: my_mae(pred, actual), mean_absolute_error(pred, actual)
Out[43]: (2.0, 2.0)
In [44]: my_mse(pred, actual), mean_squared_error(pred, actual)
```

```
Out[44]: (4.0, 4.0)
```

모델별 성능 확인을 위한 함수

```
In [46]: import matplotlib.pyplot as plt
         import seaborn as sns
         my predictions = {}
         colors = ['r', 'c', 'm', 'y', 'k', 'khaki', 'teal', 'orchid', 'sandybrown',
                    'greenyellow', 'dodgerblue', 'deepskyblue', 'rosybrown', 'firebrick',
                   'deeppink', 'crimson', 'salmon', 'darkred', 'olivedrab', 'olive',
                   'forestgreen', 'royalblue', 'indigo', 'navy', 'mediumpurple', 'chocolate',
                   'gold', 'darkorange', 'seagreen', 'turquoise', 'steelblue', 'slategray',
                   'peru', 'midnightblue', 'slateblue', 'dimgray', 'cadetblue', 'tomato'
         def plot predictions(name , pred, actual):
             df = pd.DataFrame({'prediction': pred, 'actual': y test})
             df = df.sort values(by='actual').reset index(drop=True)
             plt.figure(figsize=(12, 9))
             plt.scatter(df.index, df['prediction'], marker='x', color='r')
             plt.scatter(df.index, df['actual'], alpha=0.7, marker='o', color='black')
             plt.title(name , fontsize=15)
             plt.legend(['prediction', 'actual'], fontsize=12)
             plt.show()
         def mse_eval(name_, pred, actual):
             global predictions
             global colors
             plot predictions(name , pred, actual)
             mse = mean squared error(pred, actual)
             my predictions[name ] = mse
             y value = sorted(my predictions.items(), key=lambda x: x[1], reverse=True)
```

```
df = pd.DataFrame(y value, columns=['model', 'mse'])
    print(df)
    min = df['mse'].min() - 10
    max = df['mse'].max() + 10
    length = len(df)
    plt.figure(figsize=(10, length))
    ax = plt.subplot()
    ax.set yticks(np.arange(len(df)))
    ax.set yticklabels(df['model'], fontsize=15)
    bars = ax.barh(np.arange(len(df)), df['mse'])
    for i, v in enumerate(df['mse']):
        idx = np.random.choice(len(colors))
        bars[i].set color(colors[idx])
        ax.text(v + 2, i, str(round(v, 3)), color='k', fontsize=15, fontweight='bold')
    plt.title('MSE Error', fontsize=18)
    plt.xlim(min , max )
    plt.show()
def remove model(name ):
    global my predictions
    try:
        del my_predictions[name_]
    except KeyError:
        return False
    return True
```

LinearRegression

도큐먼트

```
In [49]: from sklearn.linear_model import LinearRegression
In [50]: model = LinearRegression(n_jobs=-1)
```

```
In [51]: # 데이터의 CHAS와 RAD가 category 타입이라서 그대로 predict를 하면 TypeError가 발생
        # 마찬가지로 train 데이터도 타입을 변경해서 fit을 해주는게 일관성 유지에 도움
        x test.dtypes
Out[51]: CRIM
                    float64
         ΖN
                    float64
         INDUS
                   float64
                   category
         CHAS
         NOX
                   float64
         RM
                    float64
                   float64
         AGE
         DIS
                   float64
         RAD
                   category
                   float64
         TAX
                    float64
         PTRATIO
                    float64
                   float64
         LSTAT
         dtype: object
          • n_jobs: CPU코어의 사용
In [53]: # astype으로 타입 변경
        x train = x train.astype(float)
        x_test = x_test.astype(float)
In [54]: model.fit(x_train, y_train)
Out[54]:
            LinearRegression
        LinearRegression(n_jobs=-1)
In [55]: pred = model.predict(x test)
In [56]: mse_eval('LinearRegression', pred, y_test)
```

LinearRegression

model mse
0 LinearRegression 34.179865

MSE Error

규제 (Regularization)

학습이 과대적합 되는 것을 방지하고자 일종의 penalty를 부여하는 것

L2 규제 (L2 Regularization)

- 각 가중치 제곱의 합에 규제 강도(Regularization Strength) λ를 곱한다.
- λ를 크게 하면 가중치가 더 많이 감소되고(규제를 중요시함), λ를 작게 하면 가중치가 증가한다(규제를 중요시하지 않음).

L1 규제 (L1 Regularization)

- 가중치의 제곱의 합이 아닌 **가중치의 합**을 더한 값에 규제 강도(Regularization Strength) λ를 곱하여 오차에 더한다.
- 어떤 가중치(w)는 실제로 0이 된다. 즉, 모델에서 완전히 제외되는 특성이 생기는 것이다.

L2 규제가 L1 규제에 비해 더 안정적이라 일반적으로는 L2규제가 더 많이 사용된다

릿지(Ridge) - L2 규제

 $Error = MSE + \alpha w^2$

라쏘(Lasso) - L1 규제

Error = MSE + lpha |w|

```
In [61]: from sklearn.linear model import Ridge
         from sklearn.model selection import cross val score
In [62]: def plot coef(columns, coef):
             coef df = pd.DataFrame(list(zip(columns, coef)))
             coef df.columns=['feature', 'coef']
             coef df = coef df.sort values('coef', ascending=False).reset index(drop=True)
             fig, ax = plt.subplots(figsize=(9, 7))
             ax.barh(np.arange(len(coef df)), coef df['coef'])
             idx = np.arange(len(coef df))
             ax.set vticks(idx)
             ax.set yticklabels(coef df['feature'])
             fig.tight layout()
             plt.show()
In [63]: from sklearn.linear model import Lasso
In [64]: # 값이 커질 수록 큰 규제입니다.
         alphas = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]
In [65]: for alpha in alphas:
             lasso = Lasso(alpha=alpha)
             lasso.fit(x train, y train)
             pred = lasso.predict(x test)
             mse eval('Lasso(alpha={})'.format(alpha), pred, y test)
```

Lasso(alpha=100)

model mse 0 Lasso(alpha=100) 89.411990 1 LinearRegression 34.179865

Lasso(alpha=10)

model mse 0 Lasso(alpha=100) 89.411990 1 Lasso(alpha=10) 58.044117

2 LinearRegression 34.179865

MSE Error

Lasso(alpha=0.1)

4 LinearRegression 34.179865

MSE Error

Lasso(alpha=0.01)

Lasso(alpha=0.001)

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Lasso(alpha=0.1)	36.070849
4	Lasso(alpha=0.01)	34.341542
5	Lasso(alpha=0.001)	34.191145
6	LinearRegression	34.179865

MSE Error

Lasso(alpha=0.0001)

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Lasso(alpha=0.1)	36.070849
4	Lasso(alpha=0.01)	34.341542
5	Lasso(alpha=0.001)	34.191145
6	Lasso(alpha=0.0001)	34.180940
7	LinearRegression	34.179865

In []:

```
In [66]: lasso_100 = Lasso(alpha=100)
    lasso_100.fit(x_train, y_train)
    lasso_pred_100 = lasso_100.predict(x_test)

lasso_001 = Lasso(alpha=0.001)
    lasso_001.fit(x_train, y_train)
    lasso_pred_001 = lasso_001.predict(x_test)

In [67]: plot_coef(x_train.columns, lasso_100.coef_)
```



```
In [70]: lasso 001.coef
Out[70]: array([ -0.08885369,
                                0.04077299,
                                              0.05501038,
                                                           1.32930809,
                -16.68692403,
                                4.77025401,
                                             -0.02046479,
                                                           -1.34802031,
                  0.24070115, -0.01316838, -0.8800191,
                                                           0.00860612,
                 -0.36576961])
         ElasticNet
         I1_ratio (default=0.5)
           • I1_ratio = 0 (L2 규제만 사용).
           • I1_ratio = 1 (L1 규제만 사용).
           • 0 < I1_ratio < 1 (L1 and L2 규제의 혼합사용)
        from sklearn.linear model import ElasticNet
In [74]: ratios = [0.2, 0.5, 0.8]
In [75]: for ratio in ratios:
             elasticnet = ElasticNet(alpha=0.5, 11 ratio=ratio)
             elasticnet.fit(x train, y train)
             pred = elasticnet.predict(x test)
```

mse_eval('ElasticNet(l1_ratio={})'.format(ratio), pred, y_test)

ElasticNet(I1_ratio=0.2)

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Lasso(alpha=0.1)	36.070849
4	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
5	Lasso(alpha=0.01)	34.341542
6	Lasso(alpha=0.001)	34.191145
7	Lasso(alpha=0.0001)	34.180940
8	LinearRegression	34.179865

ElasticNet(I1_ratio=0.5)

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Lasso(alpha=0.1)	36.070849
4	<pre>ElasticNet(l1_ratio=0.5)</pre>	34.639468
5	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
6	Lasso(alpha=0.01)	34.341542
7	Lasso(alpha=0.001)	34.191145
8	Lasso(alpha=0.0001)	34.180940
9	LinearRegression	34.179865

30 40 50 60 70 80 90

ElasticNet(I1_ratio=0.8)

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Lasso(alpha=0.1)	36.070849
4	<pre>ElasticNet(l1_ratio=0.8)</pre>	34.851407
5	<pre>ElasticNet(l1_ratio=0.5)</pre>	34.639468
6	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
7	Lasso(alpha=0.01)	34.341542
8	Lasso(alpha=0.001)	34.191145
9	Lasso(alpha=0.0001)	34.180940
10	LinearRegression	34.179865

In [78]: plot_coef(x_train.columns, elsticnet_80.coef_)

Scaler

In [81]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

In [82]: x_train.describe()

Out[82]:

:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRA
c	ount	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000
r	mean	3.399125	11.920844	10.696755	0.068602	0.548541	6.301731	67.548021	3.847623	9.292876	402.348285	18.447
	std	8.474678	23.623431	6.848942	0.253110	0.112711	0.691178	28.064872	2.072292	8.513682	166.392966	2.117 ⁻
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.863000	6.000000	1.137000	1.000000	188.000000	12.600
	25%	0.076890	0.000000	4.930000	0.000000	0.448000	5.901500	45.050000	2.120350	4.000000	277.000000	17.400
	50%	0.222120	0.000000	8.140000	0.000000	0.524000	6.223000	74.800000	3.317500	5.000000	330.000000	18.900
	75%	2.851870	20.000000	18.100000	0.000000	0.624000	6.630000	94.000000	5.214600	8.000000	666.000000	20.200
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	10.710300	24.000000	711.000000	22.000
4												

StandardScaler

평균(mean)을 0, 표준편차(std)를 1로 만들어 주는 스케일러

```
In [85]: std_scaler = StandardScaler()
```

In [86]:	std_sc	d_scaled = std_scaler.fit_transform(x_train)												
In [87]:	round(pd.Data	Frame(st	td_scale	ed).desc	ribe(),	2)							
Out[87]:		0	1	2	3	4	5	6	7	8	9	10	11	12
	count	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00
	mean	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00
	std	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	min	-0.40	-0.51	-1.50	-0.27	-1.45	-3.53	-2.20	-1.31	-0.98	-1.29	-2.77	-4.02	-1.48
	25%	-0.39	-0.51	-0.84	-0.27	-0.89	-0.58	-0.80	-0.83	-0.62	-0.75	-0.50	0.20	-0.77
	50%	-0.38	-0.51	-0.37	-0.27	-0.22	-0.11	0.26	-0.26	-0.50	-0.44	0.21	0.38	-0.22
	75%	-0.06	0.34	1.08	-0.27	0.67	0.48	0.94	0.66	-0.15	1.59	0.83	0.42	0.55
	max	10.11	3.73	2.49	3.68	2.86	3.59	1.16	3.32	1.73	1.86	1.68	0.43	3.53

MinMaxScaler

min값과 max값을 0~1사이로 정규화

```
In [90]: minmax_scaler = MinMaxScaler()
    minmax_scaled = minmax_scaler.fit_transform(x_train)

In [91]: round(pd.DataFrame(minmax_scaled).describe(), 2)
```

Out[91]:		0	1	2	3	4	5	6	7	8	9	10	11	12
	count	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00	379.00
	mean	0.04	0.12	0.38	0.07	0.34	0.50	0.65	0.28	0.36	0.41	0.62	0.90	0.30
	std	0.10	0.24	0.25	0.25	0.23	0.14	0.30	0.22	0.37	0.32	0.23	0.23	0.20
	min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	25%	0.00	0.00	0.16	0.00	0.13	0.41	0.42	0.10	0.13	0.17	0.51	0.95	0.14
	50%	0.00	0.00	0.28	0.00	0.29	0.48	0.73	0.23	0.17	0.27	0.67	0.99	0.25
	75%	0.03	0.20	0.65	0.00	0.49	0.56	0.94	0.43	0.30	0.91	0.81	1.00	0.41
	max	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

RobustScaler

중앙값(median)이 0, IQR(interquartile range)이 1이 되도록 변환.

outlier 값 처리에 유용

```
In [94]:    robust_scaler = RobustScaler()
    robust_scaled = robust_scaler.fit_transform(x_train)
In [95]:    round(pd.DataFrame(robust_scaled).median(), 2)
```

```
Out[95]: 0
                0.0
                0.0
          2
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
                0.0
          11
          12
                0.0
          dtype: float64
          파이프라인
In [97]: from sklearn.pipeline import make pipeline
In [98]: elasticnet_pipeline = make_pipeline(
             StandardScaler(),
             ElasticNet(alpha=0.1, l1_ratio=0.2)
In [99]: elasticnet_pred = elasticnet_pipeline.fit(x_train, y_train).predict(x_test)
In [100... mse_eval('Standard ElasticNet', elasticnet_pred, y_test)
```

Standard ElasticNet

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Standard ElasticNet	36.313071
4	Lasso(alpha=0.1)	36.070849
5	<pre>ElasticNet(l1_ratio=0.8)</pre>	34.851407
6	<pre>ElasticNet(l1_ratio=0.5)</pre>	34.639468
7	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
8	Lasso(alpha=0.01)	34.341542
9	Lasso(alpha=0.001)	34.191145
10	Lasso(alpha=0.0001)	34.180940
11	LinearRegression	34.179865


```
In [101... elasticnet_no_pipeline = ElasticNet(alpha=0.1, l1_ratio=0.2)
    no_pipeline_pred = elasticnet_no_pipeline.fit(x_train, y_train).predict(x_test)
    mse_eval('No Standard ElasticNet', elasticnet_pred, y_test)
```

No Standard ElasticNet

	model	mse
_		
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Standard ElasticNet	36.313071
4	No Standard ElasticNet	36.313071
5	Lasso(alpha=0.1)	36.070849
6	<pre>ElasticNet(l1_ratio=0.8)</pre>	34.851407
7	<pre>ElasticNet(l1_ratio=0.5)</pre>	34.639468
8	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
9	Lasso(alpha=0.01)	34.341542
10	Lasso(alpha=0.001)	34.191145
11	Lasso(alpha=0.0001)	34.180940
12	LinearRegression	34.179865

Polynomial Features

도큐먼트

다항식의 계수간 상호작용을 통해 **새로운 feature를 생성**합니다.

예를들면, [a, b] 2개의 feature가 존재한다고 가정하고,

degree=2로 설정한다면, polynomial features 는 [1, a, b, a^2, ab, b^2] 가 됩니다.

```
In [105... | from sklearn.preprocessing import PolynomialFeatures

In [106... | poly = PolynomialFeatures(degree=2, include_bias=False)

In [107... | poly_features = poly.fit_transform(x_train)[0]

In [108... | poly_features
```

```
Out[108... array([
                       0.52693
                                                         6.2
                                                                          0.
                       0.504
                                        8.725
                                                        83.
                                                                          2.8944
                       8.
                                      307.
                                                                        382.
                                                        17.4
                                        0.27765522,
                                                                          3.266966
                       4.63
                                                         0.
                                        0.26557272,
                                                                         43.73519
                       0.
                                                         4.59746425,
                       1.52514619,
                                        4.21544 ,
                                                       161.76751
                                                                          9.168582 ,
                     201.28726
                                        2.4396859 ,
                                                         0.
                                                                          0.
                       0.
                                                                          0.
                                        0.
                                                         0.
                                        0.
                                                                          0.
                       0.
                                                         0.
                                        0.
                       0.
                                                        38.44
                                                                          0.
                       3.1248
                                                       514.6
                                       54.095
                                                                         17.94528
                      49.6
                                     1903.4
                                                       107.88
                                                                       2368.4
                                        0.
                                                         0.
                      28.706
                                                                          0.
                       0.
                                                                          0.
                                        0.
                                                         0.
                                                                          0.254016
                       0.
                                        0.
                                                         0.
                       4.3974
                                       41.832
                                                         1.4587776 ,
                                                                          4.032
                     154.728
                                        8.7696
                                                       192.528
                                                                          2.33352
                      76.125625
                                      724.175
                                                        25.25364
                                                                         69.8
                    2678.575
                                      151.815
                                                      3332.95
                                                                         40.39675
                    6889.
                                      240.2352
                                                       664.
                                                                      25481.
                    1444.2
                                 , 31706.
                                                       384.29
                                                                          8.37755136,
                      23.1552
                                      888.5808
                                                        50.36256
                                                                       1105.6608
                      13.401072 ,
                                       64.
                                                      2456.
                                                                        139.2
                                       37.04
                                                     94249.
                                                                       5341.8
                    3056.
                  117274.
                                     1421.41
                                                       302.76
                                                                       6646.8
                      80.562
                                 , 145924.
                                                      1768.66
                                                                                    ])
                                                                         21.4369
```

In [109... x_train.iloc[0]

```
0.52693
Out[109...
          CRIM
           ΖN
                        0.00000
           INDUS
                        6.20000
           CHAS
                        0.00000
           NOX
                        0.50400
                        8.72500
           RM
           AGE
                       83.00000
           DIS
                        2.89440
           RAD
                        8.00000
           TAX
                      307.00000
           PTRATIO
                       17.40000
           В
                      382.00000
           LSTAT
                        4,63000
           Name: 225, dtype: float64
In [110...
          poly pipeline = make pipeline(
              PolynomialFeatures(degree=2, include bias=False),
              StandardScaler(),
              ElasticNet(alpha=0.1, l1 ratio=0.2)
          poly pred = poly pipeline.fit(x train, y train).predict(x test)
In [111...
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\linear model\ coordinate descent.py:697: ConvergenceWarning: Objective did n
         ot converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regula
         risation. Duality gap: 2.638e+01, tolerance: 2.953e+00
           model = cd fast.enet coordinate descent(
In [112... mse eval('Poly ElasticNet', poly pred, y test)
```

Poly ElasticNet

	model	mse
0	Lasso(alpha=100)	89.411990
1	Lasso(alpha=10)	58.044117
2	Lasso(alpha=1)	37.042408
3	Standard ElasticNet	36.313071
4	No Standard ElasticNet	36.313071
5	Lasso(alpha=0.1)	36.070849
6	<pre>ElasticNet(l1_ratio=0.8)</pre>	34.851407
7	<pre>ElasticNet(l1_ratio=0.5)</pre>	34.639468
8	<pre>ElasticNet(l1_ratio=0.2)</pre>	34.523999
9	Lasso(alpha=0.01)	34.341542
10	Lasso(alpha=0.001)	34.191145
11	Lasso(alpha=0.0001)	34.180940
12	LinearRegression	34.179865
13	Poly ElasticNet	24.048146

