

Grundlagen der Energietechnik Teil 3: Grundlagen der Leistungselektronik

Vorlesung (2)

Prof. Dr.-Ing. Regine Mallwitz Institut für Elektrischen Maschinen, Antriebe und Bahnen - IMAB

Was machen wir heute?

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - 3.2.1. M1C, M2C, M3C, B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiquadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

M2U-Schaltung mit ohmscher Last

Zeigerdarstellung

Kenngrößen der M2U-Schaltung mit ohmscher Last

Gleichstromseitige Leistung

$$P_d = \frac{E1^2}{R1}$$

Wechselstromseitige Scheinleistung

$$S_{ges} = \frac{\sqrt{2} \cdot E1^2}{R1}$$

Leistungsfaktor

$$\lambda = \frac{1}{\sqrt{2}}$$

M2U-Schaltung mit ohmsch-induktiver Last

L1=1H R1=10 Ω E=230V

M2U-Schaltung mit ohmsch-induktiver Last

M2U: Zusammenfassung

Aufbau und Funktionsweise (Spannungsverläufe, Stromverläufe) für

- Ohmsche Last
- Ohmsch-induktive Last (ohne Freilaufdiode)

M3U-Schaltung mit ohmsch-induktiver Last

M3U-Schaltung

mit ohmsch-induktiver Last

Pulszahl p=3 pro Netzperiode

M3U-Schaltung

mit ohmsch-induktiver Last

Pulszahl p=3 pro Netzperiode

Allgemeine Berechnung des Gleichspannungsmittelwertes für p ≥ 2:

$$U_{di0} = \frac{1}{\frac{2\pi}{p}} \int_{-\frac{\pi}{p}}^{\frac{\pi}{p}} \sqrt{2}E \cdot \cos(\omega t) d(\omega t) = \frac{p}{2\pi} \sqrt{2}E \int_{-\frac{\pi}{p}}^{\frac{\pi}{p}} \cos(\omega t) d(\omega t) = \frac{p}{2\pi} \sqrt{2}E (\sin(\omega t)]_{-\frac{\pi}{p}}^{\frac{\pi}{p}}$$

ideelle Leerlaufspannung

$$U_{di0} = \frac{p}{2\pi} \sqrt{2} E(\sin(\omega t)]_{-\frac{\pi}{p}}^{\frac{\pi}{p}} = \frac{p}{2\pi} \sqrt{2} E \cdot 2 \cdot \sin\frac{\pi}{p} = E \frac{p\sqrt{2}}{\pi} \sin\frac{\pi}{p}$$

bzw.
$$\frac{U_{di0}}{E} = \frac{p\sqrt{2}}{\pi} \sin \frac{\pi}{p}$$

M3U-Schaltung mit ohmsch-induktiver Last

Der Strom kommutiert von einer Diode auf die nächste Diode.

M3U - Schaltung

Berücksichtigung des induktiven Anteils der Netzimpedanz:

M3U - Schaltung

Berücksichtigung des induktiven Anteils der Netzimpedanz:

M3U - Schaltung

Gleichrichter – Mittelpunktschaltung M3U (1903)

Drehstrom: 220 Volt / 75 Amp. / 50 Perioden Gleichstrom: 100/140 Volt / 150 Ampere Gleichstrom: 140/165 Volt / 65 Ampere

Gleichrichterschrank

- mit Handrad zur Spannungsregelung
- mit Sichtfenster (geschwärzte Glasscheibe) zur Beobachtung der Entladungen des Gleichrichters
- Quecksilberdampfgleichrichter wandelten dreiphasigen Wechselstrom in Gleichstrom um.
- Die drei Phasen wurden an die Graphitanoden in den drei großen Armen angeschlossen

http://www.hts-homepage.de/Klingerpark/Klinger5.html

Quecksilberdampfgleichrichter ermöglichten hohe Leistungen bei hohem spezifischen Gewicht und hohen Verlusten

Quecksilberdampfgleichrichter in der Maschinenhalle der Zeche Zollern II/IV in Dortmund-Bövinghausen (560V/1330A)

Gleichrichter – Brückenschaltungen

 $\begin{array}{ll} \text{E1=E2=115V} \\ \text{L1 =} & \text{1H} \\ \text{R1=} & \text{10} \\ \text{f=} & \text{50Hz} \\ \end{array}$

→ B2U

 $U_{Last} = VM3 = VM1 - VM2$

INAB Institut für Elektrische Maschiner Antriebe und Bahnen Prof. Dr.-Ing. R. Mallwitz

Spannungsverläufe

Stromverläufe

Kenngrößen der ungesteuerten Gleichrichter – Brücke B2U

Die <u>erzeugte Gleichspannung</u> ergibt sich aus der Summe von 2 in Reihen geschalteten M2U:

$$\frac{U_{di0}}{E} = \frac{4\sqrt{2}}{\pi}$$

Der <u>Leistungsfaktor</u> ist bei hinreichend großer Glättungsdrossel:

$$\lambda = \frac{P}{S} = \frac{\frac{4\sqrt{2}}{\pi}E \cdot I_d}{2 \cdot E \cdot I_d} = \frac{2\sqrt{2}}{\pi} = 0.9$$
 (M2U: 0,637)

 Unter Annahme eines gegebenen Spannungsabfalls U_T an einer Diode ergibt sich eine <u>Verlustleistung</u> von:

$$P_{V.ges} = 2 \cdot I_d \cdot U_T$$

Ungesteuerte Gleichrichter – Brücke B6U

INAB Institut für Elektrische Maschiner
Antriebe und Bahnen
Prof. Dr.-Ing. R. Mallwitz

Ungesteuerten Gleichrichter – Brücke B6U

→ Die B6U kann als Reihenschaltung von 2 M3-Schaltungen aufgefasst werden.

- → Für L1 = L2 und R1 = R2 gilt $I_{d1} = I_{d2}$
- → Der Neutralleiter ist stromfrei und kann auch entfallen!

	M3 RL-Last	B6 RL-Last
Netz- stromverlauf		
Stromform- faktor I _{RMS} /I _{AV}	$\sqrt{3} = 1,73$	$\sqrt{\frac{3}{2}} = 1,225$
Leistungs- faktor P/S _{ges}	0,477	0,675
Max. Ventil- spannung	2ê	ê
Ventilverluste	I_d*U_F	$2*I_d*U_F$

Ungesteuerten Gleichrichter – Brücke B6U

Gleichrichter-Brücken: Ausführungsbeispiele

VRSM = $250V\sim$, $I_d = 5A (T_C \approx 50^{\circ}C)$ L x B x H = $32mm \times 5,6mm \times 17mm$

 $V_{RSM} = 250V \sim$

Quelle: Semikron

 $I_d = 12 ... 35 \text{ A } (T_C = 55^{\circ}\text{C})$ L x B x H = 29mm x 29mm x 11/24mm

Quelle: Fairchild

 $V_{RSM} = 400V \sim$ $I_{d} = 60A (TC = 102^{\circ}C)$ $L \times B \times H = 65mm \times 48mm \times 34mm$

Gleichrichter-Brücken: Einsatzbeispiele

Beispiel: Ladegerät Laptop

Was haben wir heute gemacht?

- Ungesteuerte Gleichrichter
 - M2U und M3U
 - B2U und B6U

Was kommt in der nächsten Vorlesung?

- Leistungshalbleiter:
 - Bipolare Leistungshalbleiter
 - Feldgesteuerte Leistungshalbleiter

Leistungselektronik @ Institut für Elektrische Maschinen, Antriebe und Bahnen

Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)

M: r.mallwitz@tu-braunschweig.de

T.: +49 (0)531 3913901

M.Sc. Robert Keilmann

 $M: \ \underline{r.keilmann@tu-braunschweig.de}$

T.: +49 (0)531 3917910

www.imab.de

