

Anomalias de Atualização

Falhas de modelagem podem tornar a manipulação de um banco de dados muito mais complexa do que seria necessário e levam a diversas situações que podem causar erros na atualização dos dados.

Considerando a seguinte relação:

ld (PK)	nome	endereço	depto	gerente	d_nome
001	Sandra	Av 9 de Julho	01////	001	Pesquisa
002	Antônio	Rua 23 de Março	02////	002	Administração
003	Adriana	Av Marechal Deodoro	01////	001	Pesquisa
004	Andrea	Rua XV de Novembro	03	004	Marketing
005	Douglas	Av Rebouças	04	005	Faturamento
006	Marta	Rua 7 de Setembro	02	002	Administração

Anomalias de Inserção

A relação apresentada cria dois tipos de anomalia de inserção:

- Para inserir um novo empregado, teremos que incluir os valores dos atributos do departamento que o empregado trabalha, ou nulls se o empregado ainda não estiver designado a nenhum departamento. Os atributos relativos ao departamento que o empregado trabalha devem ser consistentes com os atributos dos demais empregados alocados no mesmo departamento.
- Não é possível inserir um novo departamento que ainda não tenha nenhum empregado, pois o código do empregado e a chave primária da relação.

Anomalias de Alteração

Se alterarmos algum dado relativo a um departamento, como por exemplo o gerente do departamento, será necessário alterar todas as tuplas dos empregados alocados naquele departamento. Caso contrário o banco de dados se tornará inconsistente.

Anomalias de Exclusão

A exclusão de um empregado que seja o último empregado do departamento, faz com que os dados do departamento sejam perdidos.

Normalização

É o processo de organização eficiente dos dados dentro de um banco de dados cujos objetivos principais são:

- Eliminar dados redundantes (por exemplo, armazenando os mesmos dados em mais de uma tabela).
- Garantir que as dependências entre os dados façam sentido (armazenando apenas dados logicamente relacionados em uma tabela).
- Evitar inconsistências nos dados.

Normalização

Existem cinco estágios de normalização, 1º, o 2º, o 3º, o 4º e o 5º. Para um banco de dados se encontrar em cada um desses estágios ou formas (denominadas formas normais), cada uma de suas tabelas deve atender a alguns pré-requisitos. Os pré-requisitos são cumulativos, isto é, para alcançar a 3º forma normal (3NF), um banco de dados precisa atender aos pré-requisitos das 1º e 2º formas normais.

Normalmente se aplica a normalização até a terceira forma normal, onde se atinge um equilíbrio entre estabilidade e desempenho.

Dependência Funcional

Um atributo B possui uma dependência funcional do atributo A se, para cada valor do atributo A, existe exatamente um único valor do atributo B. A dependência funcional é representada por A → B.

cpf	nome	endereço	município
093.454.123-01	Sandra	Av 9 de Julho	Taubaté
122.454.232-54	Antônio	Rua 23 de Março	São Paulo
132.232.646-92	Adriana	Av Marechal Deodoro	Taubaté
054.634.232-72	Andrea	Rua XV de Novembro	Ourinhos

Observe que existe um dependência entre os valores dos conjuntos, ou seja, nome é função do CPF. Com um número de CPF é possível encontrar o nome da pessoa correspondente. Essa dependência é expressa por:

CPF → **Nome**

1ª Forma Normal

Uma relação está na primeira forma normal (1FN) se os valores de seus atributos são atômicos (simples, indivisíveis) e monovalorados. Em outras palavras, 1FN não permite "relações dentro de relações" ou "relações como atributos de tuplas".

Atualmente a primeira forma normal é considerada como parte da definição formal de uma relação no modelo relacional.

Obtenção da 1ª Forma Normal

- 1) Escolher a chave primária e definir as chaves candidatas da tabela.
- 2) Transformar os atributos compostos em atômicos.
- 3) Eliminar os atributos multivalorados, gerando uma tabela para cada um dos conjuntos de itens repetitivos. A chave primária de cada tabela será a concatenação da chave da tabela original com um atributo da nova tabela que identifique cada linha de forma única. Cada item repetitivo dará origem a uma linha nesta nova tabela.

Considere a seguinte relação:

id	nome	endereço	telefone
001	Sandra	Av 9 de Julho, Taubate - SP	555-1231 555-5413
002	Antônio	Rua 23 de Março, São Paulo - SP	555-6633 555-3426
003	Adriana	Av Marechal Deodoro, Ourinhos - MG	555-3673

Obtenção da 1ª Forma Normal

Passando para a primeira forma normal teremos:

id	nome	endereço	municipio	estado
001	Sandra	Av 9 de Julho	Taubaté	SP
002	Antônio	Rua 23 de Março	São Paulo	SP
003	Adriana	Av Marechal Deodoro	Ourinhos	MG

id	telefone
001	555-1231
001	555-5413
002	555-6633
002	555-3426
003	555-3673

2ª Forma Normal

Uma relação está na segunda forma normal (2FN) se, e somente se, ela está em 1FN e todo atributo que não participa da chave primária é irredutivelmente dependente da chave primária, ou seja, depende de todos atributos da chave primária e não de apenas parte dos atributos da chave primária.

Uma relação que esteja na primeira forma normal e com chave primária simples, automaticamente está na segunda forma normal.

Obtenção da 2ª Forma Normal

- 1) Identificar as colunas que não participam da chave primária da tabela.
- 2) Para cada uma das colunas identificadas, analisar se existe dependência parcial da chave primária.
- 3) Para as colunas dependentes parcialmente da chave:
 - Criar novas tabelas que herdarão a chave parcial e todos os atributos que dependem dessa chave parcial.
 Essa chave parcial será a chave primária da tabela.
 - Excluir da tabela original todas as colunas com dependência parcial da chave.

turma	ra	aluno	nota	faltas	professor	sala	capacidade
001	12312	Paula	7.5	04	Luís	101	50
002	23251	André	7.0	01	Ana	102	45
001	54731	Sandra	8.0	03	Luís	101	50

Obtenção da 2ª Forma Normal

Passando para a segunda forma normal teremos:

PK (ra)

ra	aluno
12312	Paula
23251	André
54731	Sandra

PK (turma)

turma	professor	sala	capacidade
001	Luís	101	50
002	Ana	102	45 ///
			////

PK (turma, ra)

turma	ra	nota	faltas
001	12312	7.5	04
002	23251	7.0	01
001	54731	8.0	03

3ª Forma Normal

Uma relação está na terceira forma normal (3FN) se, e somente se, ela está em 2FN e todo atributo que não participa da chave primária é dependente de forma não transitiva da chave primária, isto é, depende apenas da chave primária e não de outro atributo que não participa da chave primária.

Obtenção da 3ª Forma Normal

- 1) Identificar as colunas que não participam da chave primária da tabela.
- 2) Para cada uma das colunas identificadas, analisar se existe dependência transitiva da chave primária.
- 3) Para as colunas dependentes transitivamente da chave:
 - Criar novas tabelas que herdarão as colunas com dependência transitiva e também a coluna determinante da transitividade. Essa coluna será a chave primária da tabela criada.
 - Excluir da tabela original todas as colunas com dependência transitiva, mantendo a coluna determinante da transitividade.

Obtenção da 3ª Forma Normal

Considere a seguinte relação já na 2FN e com PK (turma):

turma	professor	sala	capacidade
001	Luís	101	50
002	Ana	102	45
003	Silvia	101	50 ////////

Obtenção da 3ª Forma Normal

Passando para a terceira forma normal teremos:

PK (turma)

turma	professor	sala
001	Luís	101
002	Ana	102
003	Silvia	101

PK (sala)

sala	capacidade
101	50
102	45 ///

Forma Normal de Boyce-Codd

Uma relação está na forma normal de Boyce-Codd (FNBC) se e somente se todo determinante da relação for chave candidata.

Toda relação que esteja na FNBC também está na 3FN, mas nem toda relação que esteja na 3FN está na FNBC.

A relação:

PK (aluno, curso)

aluno	curso	professor	
Luís	Banco de Dados	Sílvio	
Ana	Linguagem I	Cláudia	
Ana	Ana Banco de Dados		

Com a seguinte dependência funcional: instrutor -> curso

Esta na 3FN mas não na FNBC. Deve ser decomposto em:

aluno	professor
Luís	Sílvio
Ana	Cláudia
Ana	Sandra

curso	professor
Banco de Dados	Sílvio
Linguagem I	Cláudia
Banco de Dados	Sandra

4ª Forma Normal

Uma relação está na quarta forma normal (4FN), se e somente se, estiver na FNBC e não existirem dependências multivaloradas

A relação abaixo não está na 4FN pois a chave primária pode ser decomposta em dependências diferentes:

funcionário	habilidade	idioma	
Luís	digitação	inglês	
Ana	digitação	inglês	
Ana	taquigrafia //	alemão	

Pode ser decomposta nas seguintes tabelas:

funcionário	habilidade		
Luís	digitação		
Ana	digitação		
Ana	taquigrafia		

funcionário	idioma
Luís	inglês
Ana	inglês
Ana	alemão

5ª Forma Normal

Uma relação está na quinta forma normal (5FN), se e somente se, está na 4FN e não tem nenhuma dependência de junção.

A relação:

representante	empresa	produto
Ana	Ford	carros
Ana	Ford	caminhões
Ana	GM	carros
Luís	GM //	caminhões

Não pode ser decomposta nas tabelas abaixo porque as junções entre elas criaria tuplas inexistentes na tabela

original:

representante	empresa
Ana	Ford
Ana	GM
Luís	GM

empresa	produto
Ford	carros
Ford	caminhões
GM	carros
GM	caminhôes

representante	produto		
Ana	carros		
Ana	caminhões		
Luís	caminhões		

1) A tabela abaixo representa as vendas numa loja de CDs, faça as alterações necessárias para atingir a 3FN. Considerar que cada CD tem apenas um cantor e que o preço do CD pode variar de uma compra para outra. Cada cliente compra um mesmo CD apenas uma vez.

cliente	cod_cd	cantor	música	duração	preço	data_compra
Alice	1/156/1	Marisa Monte	Beija Eu	2:20 ////	D¢ 20 00	23/06/2009
			Chocolate	3:05////	R\$ 20,00	
	878650	Tom Jobim	Corcovado	2:50	D# 25 00	
			Sabiá	2:10	R\$ 25,00	

J

2) A tabela abaixo representa os pedidos de uma loja de softwares, faça as alterações necessárias para atingir a 3FN.

pedido	data	fornecedor	cnpj	endereço	produto	nome	quant	preço
001 21/01/09					033A	DOS	04	R\$ 130
	Casa Software	8888	R. Lapa, 77	002M	Corel	01	R\$ 499	
					145J	ABC	13	R\$ 255
002 15/02/09		5/02/09 BrasilSoftware	5555	555 Al. Itú, 49	002M	Corel	02	R\$ 450
	15/02/09				083P	ZAPT	10	R\$ 85
					145J	ABC	50	R\$ 110
				/////	///////			

3) Na relação abaixo:

PEDIDO = {numero-pedido, codigo-cliente, data-pedido, nome-cliente, codigo-cidade-cliente, nome-cidade-cliente} Foram identificadas as seguintes dependências funcionais:

- numero-pedido -> codigo-cliente
- numero-pedido -> data-pedido
- •codigo-cliente -> nome-cliente
- codigo-cliente -> codigo-cidade-cliente
- codigo-cidade-cliente -> nome-cidade-cliente
 Coloque a relação na 3FN.

4) Na relação abaixo:

BOLETIM = {matricula-aluno, codigo-materia, numeroprova, nota, data-da-prova, nome-aluno, endereço-aluno, nome-materia}

Foram identificadas as seguintes dependências funcionais:

- matricula-aluno, codigo-materia, numero-prova -> nota
- codigo-materia, numero-prova -> data-da-prova
- matricula-aluno -> nome-aluno, endereço-aluno
- codigo-materia -> nome-materia

Coloque a relação na 3FN.

5) A relação abaixo é usada para controlar o registro de voo:

Voo = {numero-voo, data, codigo-aeronave, modelo-aeronave, maximo-passageiros, cod_rota, cod_aeroporto-origem, nome_aeroporto-origem, cidade-origem, horario-saida, cod_aeroporto-destino, nome_aeroporto-destino, cidade-destino, horario-chegada, distancia, numero-passageiros, codigo-tripulante1, nome-tripulante1, cargo-tripulante1, ..., codigo-tripulanteN, nome-tripulanteN, cargo-tripulanteN)

Coloque a relação na 3FN.

6) Uma livraria precisa gerenciar os pedidos/compras dos fornecedores e encomendas/vendas dos clientes:

Para cada livro é necessário armazenar os seguintes dados: ISBN, autores, editora, edição, ano de publicação, número de páginas, preço de catálogo, assunto.

Para cada fornecedor é necessário armazenar os seguintes dados: CNPJ, razão social, endereço, telefone, e-mail. Cada fornecedor trabalha apenas com algumas editoras.

Para cada cliente é necessário armazenar os seguintes dados: CPF, nome, endereço, telefone, e-mail.

Para os pedidos é necessário armazenar a data do pedido, CNPJ do fornecedor, livros pedidos e quantidade.

Para cada compra é necessário armazenar o número da nota fiscal, data da compra, CNPJ do fornecedor, livros que foram comprados, quantidade comprada, preço de compra do livro. Cada compra é referente a um único pedido, é necessário identificar esse pedido.

Para as encomendas é necessário armazenar a data da encomenda, o CPF do cliente e o livro encomendado.

Para cada venda é necessário armazenar o número da nota fiscal, data da venda, CPF do cliente, livros que foram comprados, preço pago no livro, se o livro havia sido encomendado anteriormente, é necessário indicar em qual encomenda.

Determinar o esquema do banco de dados na 3FN.