

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07053526 A

(43) Date of publication of application: 28.02.95

(51) Int. CI

C07D239/38 A01N 43/54 C07D239/56 C07D239/60

(21) Application number: 05258981

(22) Date of filing: 24.09.93

(30) Priority:

23.10.92 JP 04307813 08.06.93 JP 05163335 (71) Applicant:

NIPPON BAYERAGROCHEM KK

(72) Inventor:

GOSHIMA TOSHIO KITAGAWA YOSHINORI HAYAKAWA HIDENORI SHIBUYA KATSUHIKO **ITOU NARIYUKI** MINEGISHI NATSUKO **UKAWA KAZUHIRO** YAMAOKA TATSUYA **UENO CHIEKO ITO AKIMI** KYO YOSHIKO

(54) HERBICIDAL PYRIDINYLTHIOALKANE **DERIVATIVE**

(57) Abstract:

PURPOSE: To obtain a new pyridinylthioalkane derivative exhibiting effective herbicidal action and having excellent selectivity.

CONSTITUTION: A compound of formula I [R1 is a (halogeno)-1-4C alkyl, a (halogeno)-1-4C alkoxy or halogen; R2 is a (halogeno)-1-4C alkoxy, halogen or a halogeno-1-4C alkyl; R us a 3-7C cycloalkyl which may be substituted by a 1-4C alkyl or a 1-15C alkyl which may be substituted; R is halogen or formula II (R⁵ is O or S; R' is H, a 1-4C alkoxy-carbonyl, carboxyl or a 1-20C saturated carbon chain, a 3-20C unsaturated carbon chain, phenyl, a heterocyclic group, a condensed heterocyclic group, a 3-8C cycloalkyl all of which may be substituted, or formula III or formula IV; (n) is 0-6], e.g. 1-chloro-2-(4,6-

dimethoxy-2-pyrimidinylthio)-3-methylbutane. The compound is obtained by reacting a compound of formula V with a halogenating agent or a compound of formula VI (R7 is CI, Br or I).

COPYRIGHT: (C)1995,JPO

$$\begin{array}{c}
R_{3} \\
\end{array}$$

$$-\mathbf{R}^{\bullet}$$
 $-\mathbf{C}$

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-53526

(43)公開日 平成7年(1995)2月28日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 7 D 239/38		8615-4C		
A01N 43/54	C	9155-4H		
C 0 7 D 239/56		8615-4C		
239/60		8615-4C		

審査請求 未請求 請求項の数4 FD (全176頁)

(21)出願番号	特願平5-258981	(71)出顧人	000232564
			日本パイエルアグロケム株式会社
(22) 出願日	平成5年(1993)9月24日		東京都港区高輪4丁目10番8号
		(72)発明者	五島 敏男
31)優先権主張番号	特願平4-307813		栃木県下都賀郡国分寺町小金井214-18
32)優先日	平4 (1992)10月23日	(72)発明者	北川 芳則
33)優先権主張国	日本 (JP)		栃木県真岡市荒町1085
31)優先権主張番号	特顧平5-163335	(72)発明者	早川 秀則
32) 優先日	平5 (1993) 6月8日		埼玉県鳩ヶ谷市八幡木3-7-1
(33)優先権主張国	日本(JP)	(72)発明者	渋谷 克彦
			栃木県小山市大字神鳥谷1425-2
		(74)代理人	弁理士 川原田 一穂

最終頁に続く

(54) 【発明の名称】 除草性ピリミジニルチオアルカン誘導体

(57)【要約】

【目的】 下記式で表されるピリミジニルチオアルカン 誘導体の合成

【構成】 式:

【化1】

$$\begin{array}{c|c}
R^{1} \\
\hline
N \\
R^{2}
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
\hline
I \\
R - C H_{2} - R^{4}
\end{array}$$

(式中、R¹及びR²はC¬アルコキシ等を示し、R³はC¬アルキル等を示し、R¹はハロゲン等を示す)で表されるピリミジニルチオアルカン誘導体及び除草剤としての利用。

【効果】 本発明化合物は、有効な除草作用を表し、かつ優れた選択性を有す。

【特許請求の範囲】

【請求項1】 式:

$$\begin{array}{c|c}
R^{1} \\
\hline
N \\
\hline
N \\
R^{2}
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
\hline
| \\
C H - C H_{2} - R^{2}
\end{array}$$

式中、R¹は、C₁、アルキル、C₁、アルコキシ、ハ ロゲン原子、ハロゲノーCiaアルキル、又はハロゲノ -C14アルコキシを示し、R²は、C14アルコキ シ、ハロゲン原子、ハロゲノーCロアルキル、又はハ ロゲノーCiaアルコキシを示し、R'は、Ciaアル キル置換されていてもよいCsrシクロアルキル、又は 置換されていてもよいC1-15アルキルを示し、R'は、

*ハロゲン又は 【化2】

を示し、R⁵は、酸素原子、又は硫黄原子を示し、そし てR⁶は、水素原子、任意に置換されていてもよいC 1-20飽和炭素鎖、任意に置換されていてもよいC3-20不 飽和炭素鎖、任意に置換されていてもよいフェニル、任 10 意に置換されていてもよい複素環式基、任意に置換され ていてもよい縮合複素環式基、任意に置換されていても よいC₃₋₈シクロアルキル、任意に置換されていてもよ いCssシクロアルケニル、Ciaアルコキシーカルボ ニル、カルボキシル又はその塩、又は、下記式:

$$-(CH_{2}) n - C - O - CH_{2} - CH - S - N$$

$$= \begin{array}{c} R^{3} \\ | \\ N = \\ N = \\ R^{2} \end{array}$$

(式中、R¹、R²及びR³は、前記と同じ、nは、0 から6の整数を示す)又は、

※【化4】

※

(式中、R¹、R²及びR³は、前記と同じ) を示す、 で表されるピリミジニルチオアルカン誘導体。

【請求項2】 R¹が、メトキシ、ジフルオロメトキシ、 又はトリフルオロメトキシを示し、R²が、メトキシ、 ジフルオロメトキシ、又はトリフルオロメトキシを示 し、R³が、C₁₋₂アルキル置換されていてもよいC se シクロアルキル、又は任意に置換されていてもよい C₁₋₇ アルキルを示し(置換基は、ハロゲン、C₃₋₆シ クロアルキルか又は任意に置換されていてもよいフェニ ル【置換基は、シアノ、ニトロ、ハロゲン、Ciaアル キル、Ciaアルコキシ、ハロゲノーCiaアルキル又 はハロゲノーCュアルコキシから任意に選ばれる}か ら任意に選ばれる)、R'が、クロロ、ブロモ又は 【化5】

を示し、R⁶が、水素原子、

任意に置換されていてもよいCinアルキル(置換基 は、ハロゲン、シアノ、ニトロ、Ciiアルキル置換さ

★れていてもよいCseシクロアルキル、Ci4アルコキ シ、Ci4アルキルチオ、ハロゲノーCi4アルコキ シ、ハロゲノーCコアルキルチオ、カルボキシル又は その塩、Ciaアルキルーカルボニル、Ciaアルコキ シーカルボニル、Ciaアルキルチオーカルボニル、ア ミノ、Ciaアルキルーアミノ、ジーCiaアルキルー アミノ、任意に置換されていてもよいフェニル {置換基 は、シアノ、ニトロ、ハロゲン、Caアルキル、C иアルコキシ、Сиアルキルチオ、ハロゲノーC 40 ₁₄アルキル、ハロゲノーC₁₄アルコキシ又は、ハロ ゲノーCiaアルキルチオから選ばれる)、任意に置換 されていてもよいフェノキシ {置換基は、シアノ、ニト ロ、ハロゲン、Ciaアルキル、Ciaアルコキシ、C uアルキルチオ、ハロゲノーCuアルキル、ハロゲ ノーCi4アルコキシ、ハロゲノーCi4アルキルチ オ、置換されていてもよいフェノキシ〈置換基は、ハロ ゲン、Cuアルキル又はハロゲノーCuアルキルか ら任意に選ばれる〉、置換されていてもよいピリミジル オキシ〈置換基は、ハロゲン、Ciaアルキル又はハロ ★50 ゲノーC₁₄アルキルから任意に選ばれる〉、置換され

ていてもよいキノキサリルオキシ(置換基は、ハロゲ ン、Cirアルキル又はハロゲノーCirアルキルから 任意に選ばれる〉、置換されていてもよいベンゾチアゾ リルオキシ(置換基は、ハロゲン、Ciaアルキル又は ハロゲノーCiaアルキルから任意に選ばれる〉又は、 置換されていてもよいベンゾオキサゾリルオキシ(置換 基は、ハロゲン、Ciaアルキル又はハロゲノーCia アルキルから任意に選ばれる〉から任意に選ばれる〉、 任意に置換されていてもよいフェニルチオ {置換基はシ アノ、ニトロ、ハロゲン、Ciaアルキル、Ciaアル コキシ、Ciaアルキルチオ、ハロゲノーCiaアルキ ル、ハロゲノーCiaアルコキシ、ハロゲノーCiaア ルキルチオ、フェニルーCiaアルコキシ、置換されて いてもよいフェノキシ〈置換基は、ハロゲン、Ciaア ルキル又はハロゲノーCiaアルキルから任意に選ばれ る〉、置換されていてもよいピリミジルオキシ〈置換基 は、ハロゲン、Ciaアルキル又はハロゲノーCiaア ルキルから任意に選ばれる〉、置換されていてもよいキ ノキサリルオキシ〈置換基は、ハロゲン、Cra アルキ ル又はハロゲノーCiaアルキルから任意に選ばれ る〉、置換されていてもよいベンゾチアゾリルオキシ 〈置換基は、ハロゲン、Cia アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉又は、置換されて いてもよいベンゾオキサゾリルオキシ〈置換基は、ハロ ゲン、Ciaアルキル又はハロゲノーCiaアルキルか ら任意に選ばれる〉、から任意に選ばれる〉、ナフチ ル、任意に置換されていてもよいナフトキシ {置換基 は、シアノ、ニトロ、ハロゲン、Ciiアルキル、C цアルコキシ、Сцアルキルチオ、ハロゲノーC 14アルキル、ハロゲノーC14アルコキシ、ハロゲノ -Ciaアルキルチオ、置換されていてもよいフェノキ シ〈置換基は、ハロゲン、Ciaアルキル又はハロゲノ -Ciaアルキルから任意に選ばれる〉、置換されてい てもよいピリミジルオキシ〈置換基は、ハロゲン、C 14アルキル又はハロゲノーC14アルキルから任意に 選ばれる〉、置換されていてもよいキノキサリルオキシ 〈置換基は、ハロゲン、Cia アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉、置換されていて

* C₁₄アルキル又はハロゲノーC₁₄アルキルから任意 に選ばれる〉又は、置換されていてもよいベンゾオキサ ゾリルオキシ〈置換基は、ハロゲン、Ciaアルキル又 はハロゲノーCixアルキルから任意に選ばれる〉、か ら任意に選ばれる}、Ciaアルキルスルホニルオキ シ、又は置換されていてもよいベンゼンスルフォニルオ キシ {置換基は、ハロゲン又はCirアルキルから任意 に選ばれる と、から任意に選ばれる)、を示すか又は、 R⁶が、任意に置換されていてもよいC₂₋₁₂アルケニル (置換基は、ハロゲン、Ci,アルキル、カルボキシル 又はその塩、又は、ハロゲノ又はCiaアルキルによっ て任意に置換されていてもよいフェニルから選ばれ る)、Cs-nアルキニル、Cs-nアルカジエン、任意に 置換されていてもよいフェニル(置換基は、シアノ、ニ トロ、ハロゲン、Ciaアルキル、Ciaアルコキシ、 Craアルキルチオ、ハロゲノーCraアルキル、ハロ ゲノーCロアルコキシ又は、カルボキシル又は、その 塩から選ばれる)、任意に置換されていてもよい5員又 は6員の複素環式基(該複素環のヘテロ原子は酸素原 20 子、硫黄原子、窒素原子から選ばれ、置換基は、シア ノ、ニトロ、ハロゲン、Ci4アルキル、Ci4アルコ キシ、Ciaアルキルチオ、ハロゲノーCiaアルキ ル、ハロゲノーCiaアルコキシ、任意に置換されてい てもよいフェニル {置換基は、ハロゲン、ニトロ、C 14アルキル、C14アルコキシ、ハロゲノーC14ア ルキル又はハロゲノーCロアルコキシから選ばれ る}、フェノキシ、又は、カルボキシル又はその塩から 選ばれる)、任意に置換されていてもよい9員又は10 員の縮合複素環式基(該複素環のヘテロ原子は酸素原 30 子、硫黄原子、窒素原子から選ばれ、置換基は、シア ノ、ニトロ、ハロゲン、Cuアルキル、Cuアルコ キシ、Ci4アルキルチオ、ハロゲノーCi4アルキル 又はハロゲノーCiアルコキシから選ばれる)、C u アルキル又はカルボキシル又はその塩によって置換 されていてもよいCsaシクロアルキル、Craアルキ ル又はカルボキシル又はその塩によって置換されていて もよいCseシクロアルケニル、C14アルコキシーカ ルボニル、カルボキシル又はその塩又は、下記式

(式中、R'、R'又はR'は、前記と同じ、nは、0 から6の整数を示す)又は、

もよいベンゾチアゾリルオキシ(置換基は、ハロゲン、

※【化7】

(式中、R¹、R²又はR³は、前記と同じ)を示す、請求項第1項記載のピリミジニルチオアルカン誘導体。 【請求項3】R¹が、メトキシを示し、R²が、メトキシを示し、R³が、メチル置換されていてもよいシクロペンチル、メチル置換されていてもよいシクロヘキシル、又は、任意に置換されていてもよいC1.1アルキル(置換基は、フルオロ、クロロ、ブロモ、シクロプロパン、シクロペンタン、シクロヘキサンか又は、置換されていてもよいフェニル {置換基は、シアノ、ニトロ、フルオロ、クロロ、ブロモ、メチル、メトキシ、トリフルオロメチル又はトリフルオロメトキシから任意に選ばれる}から任意に選ばれる)を示し、R¹が、クロロ、ブロモ又は

【化8】

を示し、そしてR⁶が、水素原子、 任意に置換されていてもよいC₁₄アルキル(置換基 は、フルオロ、クロロ、ブロモ、シアノ、ニトロ、メチ ル置換されていてもよいシクロペンチル、メチル置換さ れていてもよいシクロヘキシル、Ciaアルコキシ、カ ルボキシル又はそのナトリウム塩、メチルカルボニル、 メトキシカルボニル、アミノ、ジメチルアミノ、任意に 置換されていてもよいフェニル {置換基は、シアノ、ニ トロ、フルオロ、クロロ、メチル、メトキシ、又はカル ボキシルから任意に選ばれる)、任意に置換されていて もよいフェノキシ {置換基は、シアノ、ニトロ、フルオ ロ、クロロ、メチル、任意に置換されていてもよいフェ ノキシ〈置換基は、フルオロ、クロロ、又はトリフルオ ロメチルから任意に選ばれる〉、任意に置換されていて もよいピリジンー2ーイルオキシ〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉、任意に置換されていてもよいキノキサリン-2-イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉、任意に置換されて いてもよいベンゾチアゾールー2ーイルオキシ〈置換基 は、フルオロ、クロロ、又はトリフルオロメチルから任 意に選ばれる〉、又は、任意に置換されていてもよいべ ンゾオキサゾールー2ーイルオキシ〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉から任意に選ばれる〉、任意に置換されていてもよ いフェニルチオ {置換基は、フルオロ、クロロ、メチ ル、フェニルメトキシ、任意に置換されていてもよいフ *50

*ェノキシ〈置換基は、フルオロ、クロロ、Ci,アルキ ル又はハロゲノーCュアルキルから任意に選ばれ る〉、任意に置換されていてもよいピリジルオキシ〈置 10 換基は、フルオロ、クロロ、又はトリフルオロメチルか ら任意に選ばれる〉、任意に置換されていてもよいキノ キサリルオキシ〈置換基は、フルオロ、クロロ、又はト リフルオロメチルから任意に選ばれる〉、任意に置換さ れていてもよいベンゾチアゾリル〈置換基は、フルオ ロ、クロロ、又はトリフルオロメチルから任意に選ばれ る〉、任意に置換されていてもよいベンゾオキサゾリル 〈置換基は、フルオロ、クロロ、又はトリフルオロメチ ルから任意に選ばれる〉から任意に選ばれる〉、ナフチ ル、任意に置換されていてもよいナフトキシ {置換基 は、任意に置換されていてもよいフェノキシ〈置換基 は、フルオロ、クロロ、又はトリフルオロメチルから任 意に選ばれる〉から選ばれる}又は、任意に置換されて いてもよいベンゼンスルフォニルオキシ {置換基は、フ ルオロ、クロロ、又はメチルから任意に選ばれるとから 任意に選ばれる)、を示すか又は、R⁶が、任意に置換 されていてもよいCscアルケニル(置換基は、フルオ ロ、クロロ、ブロモ、カルボキシル又は、任意に置換さ れていてもよいフェニル {置換基は、フルオロ又はクロ ロから選ばれる}から選ばれる)、C34アルキニル、 30 任意に置換されていてもよいフェニル (置換基は、シア ノ、ニトロ、フルオロ、クロロ、ブロモ、エチル、プロ ピル、イソプロピル、 (n-、tert-) ブチル、メ トキシ、エトキシ、トリフルオロメチル又はトリフルオ ロメトキシから選ばれる)、任意に置換されていてもよ い5員又は6員の複素環式基 (該複素環はチエニル、チ アゾリル、イソキサゾリル、チアジアゾリル、イミダゾ リル、ピラゾリル、フリル、ピリジル、ピリミジル、ピ リダジル、ピラジル及びオキサゾリルから選ばれ、該複 素環の置換基は、フルオロ、クロロ、ブロモ、メチル、 40 メトキシ、メチルチオ、トリフルオロメチル、トリフル オロメトキシ、カルボキシル又は、フルオロ、クロロ、 ニトロ、メチル、エチル、メトキシ又はトリフルオロメ チル、置換されていてもよいフェニルから選ばれる)、 任意に置換されていてもよい9員又は10員の縮合複素 環式基 (該縮合複素環はキノリル又はインドリルから選 ばれ、該縮合複素環の置換基は、フルオロ、クロロ、ブ ロモ、メチル、メトキシ、メチルチオ、トリフルオロメ チル、又はトリフルオロメトキシから選ばれるか)又 は、任意に置換されていてもよいシクロプロピル、シク

ロペンチル又はシクロヘキシルを示し(置換基は、メチ

ル、エチル又は、カルボキシルから選ばれる)、任意に 置換されていてもよいシクロペンテニル又はシクロヘキ セニルを示し (置換基は、メチル、エチル又は、カルボ * * キシルから選ばれる)、メトキシカルボニル、カルボキ シル又はその塩、又は下記式

【化9】

$$-(CH_{2})n - C - O - CH_{2} - CH - S - N$$

$$R^{3}$$

$$N$$

$$N$$

$$N$$

$$R^{2}$$

(式中、R'、R'及びR'は、前記と同じ、nは、0 から6の整数を示す)又は、

※【化10】

×

(式中、R¹、R²及びR³は、前記と同じ) を示す、 請求項第1項記載のピリミジニルチオアルカン誘導体。 【請求項4】 請求項第1項記載のピリミジニルチオア ルカン誘導体を有効成分として含有する除草剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ピリミジニルチオアル カン誘導体、その製法及び除草剤としての利用に関す る。

20 開平2年85262号、特開平3年135963号、特

開平3年240777号)。

[0003]

【発明が解決しようとする課題と手段】本発明者等は下 記式(I)で表されるピリミジニルチオアルカン誘導体 を合成することに成功した。式:

★【従来の技術】置換α-ピリミジニルチオカルボン酸誘

導体が除草活性を有することはすでに知られている (特

【化11】

式中、R¹は、Ciaアルキル、Ciaアルコキシ、ハ ロゲン原子、ハロゲノーCロアルキル、又はハロゲノ - C₁₄アルコキシを示し、R²は、C₁₄アルコキ シ、ハロゲン原子、ハロゲノーCェアルキル、又はハ ロゲノーCiaアルコキシを示し、R³は、Ciaアル キル置換されていてもよいCs-7シクロアルキル、又は 置換されていてもよいC₁₋₁₅アルキルを示し、R⁴は、 ハロゲン又は

【化12】

【0004】R⁶は、酸素原子、又は硫黄原子を示し、 そしてR⁶は、水素原子、任意に置換されていてもよい C1-20飽和炭素鎖、任意に置換されていてもよいC3-20 不飽和炭素鎖、任意に置換されていてもよいフェニル、 任意に置換されていてもよい複素環式基、任意に置換さ 40 れていてもよい縮合複素環式基、任意に置換されていて もよいCseシクロアルキル、任意に置換されていても よいCseシクロアルケニル、Ciaアルコキシーカル ボニル、カルボキシル又はその塩、又は、下記式: 【化13】

(I)

9
$$-(C H_{2}) n - C - O - C H_{2} - C H - S - N$$

$$= N$$

$$N = N$$

$$N = N$$

$$N = N$$

$$N = N$$

(6)

(式中、R¹、R²及びR³は、前記と同じ、nは、0 から6の整数を示す)又は、 *【化14】

*

(式中、R¹、R²及びR³は、前記と同じ)を示す。 【0005】本発明化合物は、例えば、下記の方法、 ※式:

【化15】

a) R'がハロゲンを示す場合:

(式中、R¹、R²およびR³は、前記と同じ)で表される化合物をハロゲン化剤とを反応させることにより合成でき、又は、

★基を示す場合:前記式(II)で表される化合物と、 式:

(III)

☆基を示す場合:前記式(II)で表される化合物と、

(II)

【化17】

【0006】b)R'が

【化16】

R 7 -- C--- R 6

(式中、R⁶は前記と同じ、R⁷は塩素原子、臭素原子 又はよう素原子を示す)で表される酸塩化物とを反応さ せることによって合成することができ、又は、

【0007】c)R'が

【化18】

•

◆基を示す場合:式:

(式中、R⁶は、同一又は異なっていてもよく、前記と同じ定義を示す)で表される酸無水物とを反応させることにより合成でき、又は、

—S—C—R

(IV)

【0008】d)R'が

- - -

◆50 【化21】

式: 【化19】

【化20】

$$\begin{array}{c|c}
R^{11} & & & & \\
R^{1} & & & & \\
N & & & & \\
R^{2} & & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & & \\
\downarrow & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{3} & & \\
\end{array}$$

(式中、R¹、R³及びR'は、前記と同じ) で表される化合物と、式:

(式中、R[®]は前記と同じ)で表される化合物とを反応 させることにより合成することができる。

【0009】本発明式(I)の化合物は強力な除草活性を示す。意外にも、驚くべきことに、本発明によれば、式(I)のピリミジニルチオアルカン誘導体は、特開平2年85262号、特開平3年135963号、特開平3年240777号に記載されている置換αーピリミジニルチオカルボン酸誘導体に比して、実質的に極めて卓越した除草活性作用を現わす。

【0010】本発明式(I)の化合物、並びに製造中間 体の各式に於て、ハロゲン及びハロゲノーアルキルのハ ロゲンは、フルオル、クロル、ブロム、ヨードを示し、 好ましくは、クロル又はフルオルを示す。Cnアルキ ル、C₁₄アルコキシ、C₁₄アルキルチオ、並びにハ ロゲノーCiaアルキル、ハロゲノーCiaアルコキ シ、ハロゲノーCiaアルキルチオのアルキル部分は、 直鎖又は分岐状の炭素数が1から4のアルキルを示し、 メチル、エチル、プロピル、イソプロピル、n-(se cー、iso-、tert-) ブチルを示す。炭素鎖1 -20の飽和炭素鎖は、上記C14アルキルで示した例 に加え、n-(sec-、iso-)ペンチル、ヘキシ ル、ヘプチル、オクチル、ノニル、デシル、ウンデシ ル、ドデシル、トリデシル、テトラデシル、ペンタデシ ル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナ デシル、イコシル、1-エチル-1-メチルプロパン、 1,1-ジメチルプロパン等を例示できる。

【0011】炭素数2-20の不飽和炭素鎖は、直鎖又は分岐状のアルケニル、アルキニル、アルカジエニル等を示し、プロパルギル、プロピニル、2-プロペニル、40ビニル、1-プロペニル、9-デセニル、8-トリデセニル、10-ナノデセニル、8-ペプタデセニル、8-ペンタデセニル、1,1-ジメチル-3-ブテニル等を例示できる。5員又は6員の複素環は、窒素、酸素、又は硫黄から選ばれるヘテロ原子を1~4含む環状の基で、例としてはチアジアゾリル、チアゾリル、イミダゾリル、ピラゾリル、フリル、チエニル、ピリジニル、イソキサゾリル、ピリミジニル、ピリダジニル、ピラジニル等をあげることができる。ベンゾ縮合複素環は、上記5員又は6員の複素環が、フェニルと縮合した9~10 ※50

*【化22】

(VI)

※員の2環式基を示し、例としてはキノリル、ベンゾオキサゾリル、ベンゾチアゾリル、ベンゾイミダゾリル、フタラジニル等をあげることができる。

【0012】本発明式(I)に於て好ましくは、R

'は、メトキシ、ジフルオロメトキシ、又はトリフルオロメトキシを示し、R²は、メトキシ、ジフルオロメトキシ、又はトリフルオロメトキシを示し、R³は、C

'2アルキル置換されていてもよいC, シクロアルキル、又は任意に置換されていてもよいC, アルキルを示し(置換基は、ハロゲン、C, シクロアルキルか又は任意に置換されていてもよいフェニル {置換基は、シアノ、ニトロ、ハロゲン、C, アルキル、C, アルコキシ、ハロゲノーC, アルキル又はハロゲノーC, アルコキシから任意に選ばれる} から任意に選ばれる)、R'は、クロロ、ブロモ又は

【化23】

を示し、

30

【0013】R⁶は、水素原子、任意に置換されていて もよいC1-12アルキル(置換基は、ハロゲン、シアノ、 - ニトロ、Ciaアルキル置換されていてもよいCsaシ クロアルキル、Ciaアルコキシ、Ciaアルキルチ オ、ハロゲノーCiaアルコキシ、ハロゲノーCiaア ルキルチオ、カルボキシル又はその塩、Ciaアルキル ーカルボニル、C14アルコキシーカルボニル、C14 アルキルチオーカルボニル、アミノ、C14アルキルー 40 アミノ、ジーC14アルキルーアミノ、任意に置換され ていてもよいフェニル {置換基は、シアノ、ニトロ、ハ ロゲン、Ciaアルキル、Ciaアルコキシ、Ciaア ルキルチオ、ハロゲノーCiaアルキル、ハロゲノーC ıaアルコキシ又は、ハロゲノーCiaアルキルチオか ら選ばれる }、任意に置換されていてもよいフェノキシ {置換基は、シアノ、ニトロ、ハロゲン、Ci,アルキ ル、Ciaアルコキシ、Ciaアルキルチオ、ハロゲノ -Ciaアルキル、ハロゲノ-Ciaアルコキシ、ハロ ゲノーCiaアルキルチオ、置換されていてもよいフェ ノキシ (置換基は、ハロゲン、Cir アルキル又はハロ

ゲノーCIIアルキルから任意に選ばれる〉、置換され ていてもよいピリミジルオキシ〈置換基は、ハロゲン、 Ciaアルキル又はハロゲノーCiaアルキルから任意 に選ばれる〉、置換されていてもよいキノキサリルオキ シ(置換基は、ハロゲン、Cia アルキル又はハロゲノ -Cr アルキルから任意に選ばれる〉、置換されてい てもよいベンゾチアゾリルオキシ(置換基は、ハロゲ ン、Ciaアルキル又はハロゲノーCiaアルキルから 任意に選ばれる〉又は、置換されていてもよいベンゾオ キサゾリルオキシ〈置換基は、ハロゲン、Ciaアルキ ル又はハロゲノーCiaアルキルから任意に選ばれる〉 から任意に選ばれる}、任意に置換されていてもよいフ ェニルチオ {置換基はシアノ、ニトロ、ハロゲン、C₁-₄アルキル、C₁₄アルコキシ、C₁₄アルキルチオ、 ハロゲノーCiaアルキル、ハロゲノーCiaアルコキ シ、ハロゲノーCiaアルキルチオ、フェニルーCia アルコキシ、置換されていてもよいフェノキシ〈置換基 は、ハロゲン、Ciaアルキル又はハロゲノーCiaア ルキルから任意に選ばれる〉、置換されていてもよいピ リミジルオキシ〈置換基は、ハロゲン、Ciaアルキル 又はハロゲノーCirアルキルから任意に選ばれる〉、 置換されていてもよいキノキサリルオキシ〈置換基は、 ハロゲン、Cirアルキル又はハロゲノーCirアルキ ルから任意に選ばれる〉、置換されていてもよいベンゾ チアゾリルオキシ〈置換基は、ハロゲン、Criアルキ ル又はハロゲノーCi,アルキルから任意に選ばれる〉 又は、置換されていてもよいベンゾオキサゾリルオキシ 〈置換基は、ハロゲン、Ci+アルキル又はハロゲノー Ciaアルキルから任意に選ばれる〉、から任意に選ば れる }、ナフチル、任意に置換されていてもよいナフト キシ {置換基は、シアノ、ニトロ、ハロゲン、Cirア ルキル、C14アルコキシ、C14アルキルチオ、ハロ ゲノーCiaアルキル、ハロゲノーCiaアルコキシ、 ハロゲノーCiaアルキルチオ、置換されていてもよい フェノキシ〈置換基は、ハロゲン、Cュアルキル又は ハロゲノーCiaアルキルから任意に選ばれる〉、置換 されていてもよいピリミジルオキシ〈置換基は、ハロゲ ン、Criアルキル又はハロゲノーCriアルキルから 任意に選ばれる〉、置換されていてもよいキノキサリル オキシ〈置換基は、ハロゲン、Cirアルキル又はハロ ゲノーCiaアルキルから任意に選ばれる〉、置換され ていてもよいベンゾチアゾリルオキシ〈置換基は、ハロ *

* ゲン、Craアルキル又はハロゲノーCraアルキルか ら任意に選ばれる〉又は、置換されていてもよいベンソ オキサゾリルオキシ(置換基は、ハロゲン、Cirアル キル又はハロゲノーCirアルキルから任意に選ばれ る〉、から任意に選ばれる〉、Cinアルキルスルホニ ルオキシ、又は置換されていてもよいベンゼンスルフォ ニルオキシ【置換基は、ハロゲン又は、Cinアルキル から任意に選ばれる}、から任意に選ばれる)、を示す か又は、

【0014】R°は、任意に置換されていてもよいC 2-12アルケニル (置換基は、ハロゲン、C14アルキ ル、カルボキシル又はその塩、又は、ハロゲノ又はC ロアルキルによって任意に置換されていてもよいフェ ニルから選ばれる)、Cs-nアルキニル、Cs-nアルカ ジエン、任意に置換されていてもよいフェニル(置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、C 14 アルコキシ、C14アルキルチオ、ハロゲノーC 14アルキル、ハロゲノーC14アルコキシ又は、カル ボキシル又は、その塩から選ばれる)、任意に置換され ていてもよい5員又は6員の複素環式基(該複素環のへ テロ原子は酸素原子、硫黄原子、窒素原子から選ばれ、 置換基は、シアノ、ニトロ、ハロゲン、Craアルキ ル、Ciaアルコキシ、Ciaアルキルチオ、ハロゲノ - C₁₄ アルキル、ハロゲノーC₁₄ アルコキシ、任意 に置換されていてもよいフェニル {置換基は、ハロゲ ン、ニトロ、Ciaアルキル、Ciaアルコキシ、ハロ ゲノーCiaアルキル又はハロゲノーCiaアルコキシ から選ばれる〉、フェノキシ、又は、カルボキシル又は その塩から選ばれる)、任意に置換されていてもよい9 30 員又は10員の縮合複素環式基(該複素環のヘテロ原子 は酸素原子、硫黄原子、窒素原子から選ばれ、置換基 は、シアノ、ニトロ、ハロゲン、Ciaアルキル、Ci ィアルコキシ、CIIアルキルチオ、ハロゲノーCII アルキル又はハロゲノーCirアルコキシから選ばれ る)、Ciaアルキル又はカルボキシル又はその塩によ って置換されていてもよいCsaシクロアルキル、C ロアルキル又はカルボキシル又はその塩によって置換 されていてもよいC3eシクロアルケニル、C14アル コキシーカルボニル、カルボキシル又はその塩又は、下 40 記式

[0015] 【化24】

$$-(CH_{2})n - C - O - CH_{2} - CH - S - N$$

$$R^{3}$$

$$N$$

$$N$$

$$N$$

$$R^{2}$$

(式中、R¹、R²又はR³は、前記と同じ、nは、O から6の整数を示す)又は、 ₩ 50

※【化25】

(式中、R¹、R²又はR³は、前記と同じ)を示す。 【0016】特に好ましくは、R'は、メトキシを示 し、R²は、メトキシを示し、R³は、メチル置換され ていてもよいシクロペンチル、メチル置換されていても よいシクロヘキシル、又は、任意に置換されていてもよ いCirアルキル(置換基は、フルオロ、クロロ、ブロ モ、シクロプロパン、シクロペンタン、シクロヘキサン か又は、置換されていてもよいフェニル {置換基は、シ アノ、ニトロ、フルオロ、クロロ、ブロモ、メチル、メ トキシ、トリフルオロメチル又はトリフルオロメトキシ から任意に選ばれる} から任意に選ばれる) を示し、R 'は、クロロ、ブロモ又は

【化26】

を示し、そして

【0017】R⁶は、水素原子、任意に置換されていて もよいCieアルキル(置換基は、フルオロ、クロロ、 ブロモ、シアノ、ニトロ、メチル置換されていてもよい シクロペンチル、メチル置換されていてもよいシクロへ キシル、Ciaアルコキシ、カルボキシル又はそのナト リウム塩、メチルカルボニル、メトキシカルボニル、ア ミノ、ジメチルアミノ、任意に置換されていてもよいフ エニル{置換基は、シアノ、ニトロ、フルオロ、クロ ロ、メチル、メトキシ、又はカルボキシルから任意に選 ばれる}、任意に置換されていてもよいフェノキシ {置 換基は、シアノ、ニトロ、フルオロ、クロロ、メチル、 任意に置換されていてもよいフェノキシ〈置換基は、フ ルオロ、クロロ、又はトリフルオロメチルから任意に選 ばれる〉、任意に置換されていてもよいピリジン-2-イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉、任意に置換されて いてもよいキノキサリン-2-イルオキシ〈置換基は、 フルオロ、クロロ、又はトリフルオロメチルから任意に 選ばれる〉、任意に置換されていてもよいベンゾチアゾ ールー2ーイルオキシ〈置換基は、フルオロ、クロロ、 又はトリフルオロメチルから任意に選ばれる〉、又は、 任意に置換されていてもよいベンゾオキサゾールー2ー イルオキシ〈置換基は、フルオロ、クロロ、又はトリフ ルオロメチルから任意に選ばれる〉から任意に選ばれ る } 、任意に置換されていてもよいフェニルチオ {置換 基は、フルオロ、クロロ、メチル、フェニルメトキシ、 任意に置換されていてもよいフェノキシ〈置換基は、フ *50 換されていてもよいシクロプロピル、シクロペンチル又

*ルオロ、クロロ、Ciaアルキル又はハロゲノーCia アルキルから任意に選ばれる〉、任意に置換されていて もよいピリジルオキシ〈置換基は、フルオロ、クロロ、 又はトリフルオロメチルから任意に選ばれる〉、任意に 置換されていてもよいキノキサリルオキシ〈置換基は、 フルオロ、クロロ、又はトリフルオロメチルから任意に 選ばれる〉、任意に置換されていてもよいベンゾチアゾ リル〈置換基は、フルオロ、クロロ、又はトリフルオロ メチルから任意に選ばれる〉、任意に置換されていても よいベンゾオキサゾリル〈置換基は、フルオロ、クロ ロ、又はトリフルオロメチルから任意に選ばれる〉から 任意に選ばれる〉、ナフチル、任意に置換されていても よいナフトキシ {置換基は、任意に置換されていてもよ いフェノキシ〈置換基は、フルオロ、クロロ、又はトリ フルオロメチルから任意に選ばれる〉から選ばれる}又 は、任意に置換されていてもよいベンゼンスルフォニル オキシ {置換基は、フルオロ、クロロ、又はメチルから 任意に選ばれる} から任意に選ばれる)、を示すか又 は、

【0018】R⁶は、任意に置換されていてもよいC seアルケニル(置換基は、フルオロ、クロロ、ブロ モ、カルボキシル又は、任意に置換されていてもよいフ エニル {置換基は、フルオロ又はクロロから選ばれる} 30 から選ばれる)、C₃₋₆アルキニル、任意に置換されて いてもよいフェニル(置換基は、シアノ、ニトロ、フル オロ、クロロ、ブロモ、エチル、プロピル、イソプロピ ル、 (n-、tert-) ブチル、メトキシ、エトキ シ、トリフルオロメチル又はトリフルオロメトキシから 選ばれる)、任意に置換されていてもよい5員又は6員 の複素環式基(該複素環はチエニル、チアゾリル、イソ キサゾリル、チアジアゾリル、イミダゾリル、ピラゾリ ル、フリル、ピリジル、ピリミジル、ピリダジル、ピラ ジル及びオキサゾリルから選ばれ、該複素環の置換基 は、フルオロ、クロロ、ブロモ、メチル、メトキシ、メ チルチオ、トリフルオロメチル、トリフルオロメトキ シ、カルボキシル又は、フルオロ、クロロ、ニトロ、メ チル、エチル、メトキシ又はトリフルオロメチル、置換 されていてもよいフェニルから選ばれる)、任意に置換 されていてもよい9員又は10員の縮合複素環式基(該 縮合複素環はキノリル又はインドリルから選ばれ、該縮 合複素環の置換基は、フルオロ、クロロ、ブロモ、メチ ル、メトキシ、メチルチオ、トリフルオロメチル、又は トリフルオロメトキシから選ばれるか)又は、任意に置

はシクロヘキシルを示し(置換基は、メチル、エチル又は、カルボキシルから選ばれる)、任意に置換されていてもよいシクロペンテニル又はシクロヘキセニルを示し(置換基は、メチル、エチル又は、カルボキシルから選 *

* ばれる)、メトキシカルボニル、カルボキシル又はその 塩、又は下記式

[0019]

【化27】

$$-(CH_2)n - C - O - CH_2 - CH - S - N$$

$$R^3$$

$$N$$

$$N$$

$$R^2$$

 (式中、R¹、R²及びR³は、前記と同じ、nは、0
 ※【化28】

 から6の整数を示す)又は、
 ※

$$- \left(\begin{array}{c} O \\ \parallel \\ C - O - C \\ H \\ z - C \\ H - S - \begin{array}{c} N \\ \parallel \\ N \end{array} \right)$$

$$R^{1}$$

(式中、R¹、R²及びR³は、前記と同じ)を示す。★合物を例示することができる。【0020】本発明(I)の化合物として、後記実施例20【0021】にあげた化合物に加え、下記第1、第2及び第3表の化 ★【表1】

第1表

R1	R2	R3	R4	
OCH ₃	OCH ₃	C ₂ H ₅	CI	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	CI	
CH ₃	CH ₃	CH(CH ₃) ₂	CI	•
OCHF ₂	OCHF ₂	CH(CH ₃) ₂	CI	
OCF ₃	OCF ₃	CH(CH ₃) ₂	CI	
осн3	OCH3	CH(CH ₃) ₂	CI	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	CI	:
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂ .	CI	
OCH ₃	осн3	CH(CH ₃)CH ₂ CH ₃	CI	
СНз	CH ₃	C(CH ₃) ₃	CI	
OCH ₃	OCH ₃	C(CH ₃) ₃	CI	
OCHF ₂	OCHF ₂	C(CH ₃) ₃	CI	
OCF ₃	OCF ₃	C(CH ₃) ₃	CI	
OCH ₃	OCH3	(CH ₂) ₄ CH ₃	CI	
OCH3	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	CI	
OCH ₃	OCH3	CH(C ₂ H ₅) ₂	CI	
OCH3	OCH3	C(CH ₃) ₂ CH ₂ CH ₃	CI	
OCH3	OCH3	CH ₂ C(CH ₃) ₃	CI	
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	CI	
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	CI	,

[0022]

	21		22
		第 1 表	(続き)
		_	
R ¹	R ²	R ³	R ⁴ -
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	·CI
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	CI
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	CI
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	` .CI
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	CI
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	CI
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	Cl
OCH ₃	OCH ₃	. C(C ₂ H ₅) ₃	CI
OCH ₃	OCH ₃		CI
осн₃	OCH ₃	CH3.	CI
оснз	OCH ₃	\rightarrow	CI
OCH3	OCH ₃		CI
OCH ₃	OCH ₃	CH₃	CI
OCH ₃	OCH ₃		CI .
ОСН3	OCH ₃	CH³	CI
OCH ₃	OCH ₃ .	CH ₂	CI

[0023]

		第 1 表	(統き)	<u>.</u>
R ¹	R ²	H3	R ⁴	
OCH3	OCH ₃	CH₃ —CH—	CI	
OCH ₃	OCH3	CH₃ —C—	CI	
осн _з	OCH ₃	-CH ₂ -	CI	
OCH ₃	OCH ₃	CH-	CI ·	
OCH ₃	OCH3	CH ₃ CH ₃ CH ₃	CI	
ОСН3	OCH3	CH ₂ -	CI	
OCH3	OCH₃	CH₃ —CH-	CI	
OCH ₃	OCH ₃	CH ₃	CI	
OCH ₃	OCH ₃	-CH ₂ -	CI	

[0024]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH₃ —CH-	Cl
OCH ₃	осн _з	CH ₃	CI
OCH ₃	OCH ₃	-CH₂-€CI	CI
OCH ₃	OCH ₃	—CH- CH₃ —CI	CI
OCH ₃	осн3	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	CI
OCH ₃	OCH ₃	CH₃ −CH-✓	CI
OCH ₃	OCH3	-CH-CH-CH-	CI
осна	OCH3	CH ₂ CF ₃	CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CI	CI
OCH3	OCH ₃	C ₂ H ₅	Br
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃) ₂	Br
OCHF ₂		CH(CH ₃) ₂	8r
OCF ₃	O.CF ₃	CH(CH ₃) ₂	Br

	_	第 1 表	(続き)
		-2	
R ¹	R ²	R ³	R ⁴ "
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	. Br
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	Br
	OCH ₃	CH(CH ₃)CH ₂ CH ₃	Br Br
OCH ₃	_	C(CH ₃) ₃	Br
OCH ₃	OCH ₃		Br Br
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	Br
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	Br
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	Br
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	8r
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	Br
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	Br
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₄ CH ₃	Br .
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	Br
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	Br
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	Br .
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	Br
OCH ₃	OCH ₃	$\overline{}$	Br
OCH ₃	OCH3	CH³	Br
OCH ₃	OCH ₃	\rightarrow	Br
OCH ₃	ОСН3	$\overline{}$	Br

[0026]

		第 1 表	(続き) -	
R ¹	R ²	R ³	R ⁴	
OCH ₃	осн3	≥CH ₃	Br	. •
OCH ₃	OCH ₃	—	Br	
OCH ₃	OCH ₃	CH3	Br	
OCH ₃	OCH ₃	-CH ₂ -	Br	
OCH ₃	OCH ₃	—CH-←	Br	
OCH ₃	OCH ₃	CH₃ CH₃	Br	
OCH ₃	OCH ₃	-CH ₂ -	Br	
OCH ₃	OCH ₃	—CH- CH³	Br	
OCH₃	ОСН3 .	CH ₃	Br .	
OCH ₃	OCH ₃	-CH ₂ -	Br	

[0027]

R ²	R ³	R⁴
OCH₃	CH-CH-CH-	Br
DCH₃	CH ₃	Br
DCH ₃	-CH ₂ -	Br
ОСН₃	CH° CH³ CH³	· Br
OCH₃	−Ç-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ-Ğ	Br
—(DCH3	CH₂-CI	Br ·
осн _з		Br
⊃CH₃	CI	Br
 OCH₃	-CH-CI	Br
	OCH3 OCH3 OCH3 OCH3	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3

		33		34
	•		第 1- 表	(続き)
	R ¹	R²	R ³	R ⁴ -
	٠		-CH₂-√	
٥	CH ₃	OCH ₃	- \/	Br
			ÇH₃	
			—CH-	
C	CH ₃	OCH ₃	\/	Br
			ÇH ₃	
			¢	
	OCH ₃	OCH ₃	CH ₃	. Br
1 6	CH ₃	ОСН3	CH ₂ CF ₃	Br
	CH ₃	OCH ₃	CH ₂ CH ₂ CI	Br
	Ū	J	. -	
				O II O-C-CH ₂ CH ₃
C	CH ₃	OCH3	C(CH ₃) ₂ CH ₂ Br	O-C-CH₂CH₃
}				0
؍ ا	OCH ₃	OCH-	C/CH->-CU-D-	O 11 O-C-(CH ₂) ₁₂ CH ₃
	ЛОПЗ	OCH ₃	C(CH ₃) ₂ CH ₂ Br	(0.12/1201.3
				9
_	2011	0011	0/0// > 0// 0	o-ë- /
'	OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ Br	
_	УС Ы.		0/011 \ 011 D-	0°
	OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ Br	-O-C-(CH ₂) ₇ CH=CH(CH ₂) ₃ CH ₃
				į
0	OCH3	OCH ₃	C(CH ₃) ₂ CH ₂ Br	CI
0	DCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ Br	Br
_		0011		O O-C-CH ₂
	OCH ₃	OCH ³	C(CH ₃) ₂ CH ₂ CI	O-Ü-CH₃

[0029]

【表9】

		第 1 表	(続き) -
R1	R ²	H3	R ⁴
ОСН₃	OCH ₃	C(CH ₃) ₂ CH ₂ CI	O II O-C-CH₂CH₂CH₃
осн3	OCH ₃	C(CH ₃) ₂ CH ₂ CI	-o-c-
ОСНз	OCH ₃	C(CH ₃) ₂ CH ₂ CI	-o-c-(-)-c
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CI	Cl
осн3	OCH ₃	C(CH ₃) ₂ CH ₂ Cl	Br
осн _з	осна	С ₂ Н ₅	O II O-C-CH ₃
осн _з	осн3	CH ₂ CH ₂ CH ₃	O II O-C-CH ₃
OCH ₃	ОСН ₃	CH(CH ₃) ₂	O II O-C-CH ₃
OCHF ₂	OCHF ₂	CH(CH ₃)₂	O-C-CH ₃
OCF ₃	OCF ₃	CH(CH ₃) ₂	O II O-C-CH ₃
осн _з	осн _з	CH ₂ CH(CH ₃) ₂	O II O-C-CH ₃

		第 1 表	(続き)
R ¹	R ²	H3	R ⁴
OCH₃	OCH ₃	СН(СН ₃)СН ₂ СН ₃	O II
OCH ₃	OCH ₃	- С(СН ₃) ₃	—О-С-СН ₃
OCHF ₂	OCHF ₂	C(CH ₃) ₃	-O-C-CH3
OCF ₃	OCF ₃	C(CH ₃) ₃	-O-C-CH₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O-C-CH ₃
OCH ₃	OCH ₃	CH(CH₃)(CH₂)₂CH₃	O-C-CH ³
осн3	осн _з	CH(C ₂ H ₅) ₂	O II CH3
осн _з	осн _з	C(CH ₃)₂CH₂CH ₃	O II
OCH ₃	OCH3	CH ₂ C(CH ₃) ₃	O O O O O O O O
OCH ₃	OCH3	(CH ₂) ₂ CH(CH ₃) ₂	O II O-G-CH ₃
OCH ₃	OCH3	(CH ₂) ₆ CH ₃	O O-C-CH ₃

[0031]

【表11】

第	1	表	(続き)

R1	R ²	R3	R ⁴
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	O II O-C-CH ₃
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O-С-СН ₃
OCH3	ОСНз	C(C ₂ H ₅) ₂ CH ₃	O-С-СН ₃
OCH₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O
OCH3	DCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II O-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	0 II 0-C-CH₃
осн _з	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	0 Ⅱ O-C-CH₃
ОСН3	OCH₃	C(C ₂ H ₅) ₃	O II O-C-CH₃
OCH ₃	OCH3	\longrightarrow	О
OCH ₃	OCH ₃	CH₃	O O-C-CH₃

[0032]

,	41	第 1 表	(続き) -
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	\rightarrow	O O-C-CH ₃
OCH ₃	OCH ₃	$\overline{}$	O-C-CH ₃
осн3	осн _з	CH₃	O O-C-CH ₃
OCH ₃	осн _з	$\overline{}$	-O-C-CH ₃
OCH ₃	OCH ₃	CH3	O O-C-CH ₃
OCH ₃	OCH ₃	-CH ₂ -	-O-C-CH ₃
OCH ₃	OCH ₃	CH ₃ −CH−✓	O II O-C-CH ₃
OCH ₃	осн3	CH₃ CH₃	O II O-C-CH₃
осн ₃	OCH ₃	-CH ₂ -	O II O-C-CH ₃
OCH ₃	OCH ₃	−ċH- CH³	O II CH3

[0033]

		第 1 表	(続き)
R1	. _R 2	R ³	R ⁴
OCH ₃	OCH₃	CH ₃ CH ₃	O-C-CH3
ОСН3.	осн3	-CH ₂ -	O II
OCH ₃	OCH₃	CH ₃	O II
OCH ₃	OCH3	$-\overset{\text{CH}^3}{\overset{\text{CH}^3}{\leftarrow}}$	О II —О−С−СН₃
осн _з	OCH ₃	—CH-⟨	O
осн _з	OCH ₃	-CH ₂	О
OCH ₃	OCH₃	CH ₃ CH ₃	O Ⅱ O-C-CH₃
ОСН₃	OCH ₃	-CH ₂ -CI	O
OCH ₃	OCH₃	-CH ₂ -	O II O-C-CH ₃

[0034]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
ОСН3	OCH ₃	CH-CH-CH	O II —O-C-CH ₃
OCH ₃	OCH ₃	—CH- CH₃ CH₃	-o-c-ch3
OCH3	OCH ₃	-CH ₂ -	O II —O-C-CH₃
OCH3	OCH ₃	CH-CH-F	O II CH3
OCH ₃	OCH ₃	CH ₃ CI	O II O
OCH ₃	OCH ₃	C₂H5	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)₂	O II O-C-CH₂CH₃
. OCH3	осн _з	CH ₂ CH ₂ CH ₂ CH ₃	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O II O-C-CH₂CH₃

第	1	表	(続き)
217	_	-	(-1,

R1	R ²	- R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II O-C-CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II O-C-CH₂CH₃
осн3	OCH3	CH(CH ₃)(CH ₂) ₂ CH ₃	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	O II O-CCH₂CH₃
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₃
OCH ₃	OCH3	CH₂C(CH₃)₃	O II —O−C−CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II —O-C-CH ₂ CH ₃
осн _з	OCH ₃	(CH ₂) ₅ CH ₃	O II —O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O Ⅱ —O-C-CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₃

	49		50
		第 1 表	(続き)
		•	
R ¹	R ²	R ³	R ⁴
осн _з	осн3	C(C ₂ H ₅) ₂ CH ₃	O II O-CCH₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O II O-C-CH ₂ CH ₃ O
OCH ₃	осн ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O O-C-CH ₂ CH ₃
осн3	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II O-CCH ₂ CH ₃
OCH3	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O II O-C-CH₂CH₃
OCH ₃	ОСН₃	C(C ₂ H ₅) ₃	O II —O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	$\overline{}$	O II —O−C−CH₂CH₃
OCH ₃	OCH3	CH₃	O II O-C-CH ₂ CH ₃
OCH ₃	OCH ₃	\longrightarrow	O II
OCH ₃	OCH ₃	$\overline{}$	O II O-C-CH ₂ CH ₃
OCH ₃	OCH3	∠CH³	0 Ⅲ —O-C-CH₂CH₃

ļ 		第 1 表	(続き)	
R ¹	R ²	R ³	R ⁴	-
OCH ₃	OCH₃	→CH ₃	O II O-C-CH₂CH₃	
OCH ₃	OCH ₃	\bigcirc	O ∥ O-C-CH₂CH₃	
OCH ₃	OCH ₃	CH ₂	O II O-C-CH ₂ CH ₃	
OCH ₃	OCH3	CH₃ —CH-	O II —O−G−CH₂CH₃	
OCH ₃	осн _з	-CH₃	O II O-C-CH₂CH₃	
осн _з	OCH3	-CH ₂ -	0 0-CCH₂CH₃	
OCH ₃	OCH ₃	—cн- cн³	O II —O−C−CH₂CH₃	•
OCH ₃	OCH ₃	-cH³	0 II O-C-CH₂CH₃	
OCH ₃	OCH ₃	-CH ₂ -	O II O-C-CH ₂ CH ₃	
осн3	OCH ₃	—CH-CH-CH3	O II O-C-CH₂CH₃	
	•			

		第 1 表	(続き)	
R ¹	R ²	- R3	R ⁴	
OCH ₃	OCH ₃	-cH ₃ CH ₃ CH ₃	O II —O−C−CH₂CH₃	-
OCH ₃	OCH ₃	—CH- CH- CH-	O O-C-CH ₂ CH ₃	
OCH ₃	OCH ₃	-CH ₂	O II -O-C-CH ₂ CH ₃	
OCH3	осн3	CH₃ CH₃	O II O-C-CH₂CH₃	
осн ₃	OCH₃	-CH ₂ -CI	O II O-C-CH ₂ CH ₃	
. OCH₃	осн₃	CI −CH ₂ -	O II O-C-CH ₂ CH ₃	
OCH ₃	осн _з	-CH-CI	O II 	
OCH3	оснз	-cH-∕CH-∕CI	O ∥ O-C-CH₂CH₃	
OCH ₃	OCH ₃	-CH ₂ -F	O O-C-CH₂CH₃	

	55		56
		第 1 表	(続き)
R1	R²	R ³	R ⁴
OCH ₃	∵OCH3	CH ₃ —F	O II O-C-CH₂CH₃
OCH ₃	OCH ₃	CH ₃ CI	O II —O−C−CH₂CH₃
осн _з	ОСН ₃	C ₂ H ₅	O II O-CCH₂CH₂CH₃
осн3	OCH3	CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₃
осн₃	оснэ	CH(CH ₃) ₂	O O-C-CH ₂ CH ₂ CH ₃
OCH₃ ·	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	О О-ССН ₂ СН ₂ СН ₃
осн₃	осн₃	CH ₂ CH(CH ₃) ₂	O II O-C-CH₂CH₂CH₃
осн₃	OCH3	CH(CH₃)CH₂CH₃	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH3	C(CH ₃) ₃	O II —O-C-CH ₂ CH ₂ CH ₃

OCH₃

OCH₃

(CH₂)₄CH₃

第	1	亵	(続き)
243	_		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

R1	R²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH3	CH(C ₂ H ₅) ₂	O O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II —O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	О II —О-С−СН₂СН₂СН₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O I O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	О - -
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₃
ОСН3	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II —O-C-CH₂CH₂CH₃

[0041]

		第 l 表	(統き) -
R ¹	R ²	- R ³	R ⁴
OCH ₃	OCH₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₃
OCH3	OCH ₃	C(C ₂ H ₅) ₃	O II —O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	$\overline{}$	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	——CH³	O II —O−C−CH₂CH₂CH₃
OCH3	осн3	\rightarrow	O II —O−C−CH₂CH₂CH₃
OCH ₃	ОСН3	→	O II —O−C−CH₂CH₂CH₃
ОСН3	OCH3	CH³	O II —O~C~CH₂CH₂CH₃
ОСН3	OCH ₃		O II —O−C−CH₂CH₂CH₃
ОСН₃	OCH ₃	CH3	O II O-C−CH₂CH₂CH₃

[0042]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴ "
OCH ₃	OCH ₃	-CH ₂	O II —O-C-CH₂CH₂CH₃
OCH ₃	осн₃	—сн- <	O II —O−C−CH₂CH₂CH₃
OCH3	осн3	—сн ₃ Сн ₃	O II —O−C−CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -	O O-C-CH₂CH₂CH₃
осн3	OCH ₃	—CH- CH- CH-	O II —O−C−CH₂CH₂CH₃
OCH ₃	ОСН₃	−cH ₃ CH ₃	O II —O−C−CH₂CH₂CH₃
осн3	OCH ₃	-CH ₂ -	O II —O−C−CH₂CH₂CH₃
осн _з	осн _з	—CH-CH-	O II —O−C−CH₂CH₂CH₃
OCH ₃	осн3	-CH ₃ -	O II O-C-CH₂CH₂CH₃
OCH₃	OCH ₃	CH₃ CH-	O II O-C-CH ₂ CH ₂ CH ₃

第	1	表	(続き

R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	-CH ₂	O II O-CCH₂CH₂CH₃
OCH ₃	OCH ₃	CH ₃	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -CI	O II O-CCH ₂ CH ₂ CH ₃
OCH3	OCH ₃	-CH ₂ -	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH3	CH-SCI	O II
OCH ₃	OCH ₃	CH₃ —CH —CH	O II O-C-CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH ₂	O II O-CCH₂CH₂CH₃
OCH ₃	осн _з	—CH- CH- CH- F	O II O-C-CH₂CH₂CH₃
OCH ₃	OCH₃	CH ₃ CI	O II —O−C−CH₂CH₂CH₃

[0044]

R¹ R² R³ R⁴ OCH₃ OCH₃ CC₂H₅ OCH₃ OCH₃ OCH₃ OCH₃ CH₂CH₂CH₃ OCH₃ OCH₃ OCH₃ CH₂CH₂CH₃ OCH₃ OCH₃ OCH₃ CH₂CH₂CH₃ OCH₃ OCH₃ OCH₃ CH₂CH₂CH₂CH₃ OCH₃ OCH₃ OCH₃ OCH₃ CH₂CH(CH₃)₂ OCH₃ OCH₃ OCH₃ OCH₃ CH₂CH(CH₃)₂ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃ OCH₃	_		第 l 表	(続き) <u>-</u>
OCH3 OCH3 CH2CH2CH3 -O-C	R ¹	R ²	R ³	R ⁴
OCH3 OCH3 CH(CH3)2 -0-C	OCH ₃	OCH ₃	C₂H₅	-o-c
OCH3 OCH3 CH2CH2CH3 -0-C	OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c
OCH3 OCH3 CH ₂ CH(CH ₃) ₂ -O-C OCH3 OCH3 OCH3 CH(CH ₃)CH ₂ CH ₃ OCH3 OCH3 C(CH ₃)3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH	OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-c-
OCH ₃ OCH ₃ CH(CH ₃)CH ₂ CH ₃ -O-C	OCH ₃	OCH₃	CH ₂ CH ₂ CH ₂ CH ₃	-o- ⁰
OCH ₃ OCH ₃ C(CH ₃) ₃ OCH	OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-c-
OCH ₃ OCH ₃ (CH ₂) ₄ CH ₃ -O-C	OCH3	OCH ₃	CH(CH₃)CH₂CH₃	
0	OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-
ОСН ₃ ОСН ₃ СН(СН ₃)(СН ₂) ₂ СН ₃ —О-С — О	OCH ₃	OCH ₃	(CH₂)₄CH₃	-o-c
0	OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	-o-c
OCH3 OCH3 CH(C2H5)2 -O-C-	OCH ₃	OCH3	CH(C ₂ H ₅) ₂	-o-c-
				

[0045]

		第 l	(続き)
R ¹	R ²	R ³	R⁴
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₃	-o-c-
ОСН3	OCH ₃	CH ₂ C(CH ₃) ₃	-o-c
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	-o-c-
OCH3	OCH ₃	(CH ₂) ₅ CH ₃	-o-c-
OCH3	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	-o-c
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH3	C(C ₂ H ₅) ₂ CH ₃	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	-o-c
OCH ₃		C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	-o-c
	•		

[0046]

70

	09	第 1 表	(続き)
R1	R ²	R ³	R ⁴
осн3	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	-o-c-
OCH ₃	OCH3	C(C ₂ H ₅) ₃	-o-c
OCH ₃	OCH ₃	$\overline{}$	oë
OCH₃	OCH ₃	CH₃	-o-c-
OCH ₃	OCH3	\longrightarrow	-o-c
OCH ₃	OCH ₃		-o-c
OCH ₃	OCH ₃	CH₃	-o-c
OCH ₃	осн3		o-ë<
OCH ₃	осн3	CH ₃	o-c-
осн _з	OCH ₃	-CH₂-	-o-ë<

[0047]

		第 1 表	(続き)
R ¹	H2	R ³	R ⁴
OCH ₃		—ÇH-✓	-o-c-
OCH ₃	OCH ₃	CH₃ CH₃	-o-ë
OCH ₃	OCH ₃	-CH ₂ -	-o-c-
OCH3	OCH₃	—CH-CH-CH3	-o-c-
OCH ₃	осн₃	CH ₃	-o-c
OCH ₃	OCH3	-CH ₂ -	-o-c
ОСНз	OCH₃	—cн CH₃	-o-c-
OCH3	осн3	-cH₃ CH₃	-o-c-
OCH ₃	OCH ₃	-CH-CH3	-o-ċ-< -o-ċ-<
	•		

•		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₃	-o-c-
OCH ₃	OCH3	-CH ₂ -CI	-o-c
OCH ₃	OCH ₃	-CH ₂	-o-c-
OCH3	осн3	CI CH3	-o-c-
OCH ₃	OCH ₃	CH-CI	-o-c-
OCH ₃	OCH ₃	-CH ₂ -F	-o-c
OCH ₃	ОСН3	-CH ₂	-o-c-
OCH ₃	OCH ₃	—CH-√F	-o-c-
осн3	осн _з	CH ₃ CI	-o-c

[0049]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
осн3	осн ₃	C ₂ H ₅	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	осн3	CH(CH₃)₂	O II
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	O II O-CCH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃

[0050]

	77		78
		第 1 表	(続き)
R ¹	R ²	R3	R ⁴
OCH₃	OCH ₃	CH₂C(CH₃)₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	—O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	O II
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	O O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II O-CCH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O II —O-C-CH2CH2CH2CH3
осн _э	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II —O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	0 II —O-C−CH₂CH₂CH₂CH₃

[0051]

【表31】

79	第 1 表	80 (続き)
R ¹ R ²	R ³	R ⁴
OCH ₃ OCH ₃		O ∥ O-C-CH₂CH₂CH₂CH₃
OCH ₃ OCH ₃	CH³	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃ OCH ₃	\rightarrow	O II OCH ₂ CH ₂ CH ₂ CH ₃
оснз оснз	$\overline{}$	O II
OCH ₃ OCH ₃	CH ₃	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH₃ OCH₃		O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
оснз оснз	CH₃	O II —O-C-CH2CH2CH2CH3
OCH3 OCH3	-CH ₂	O !I OCH ₂ CH ₂ CH ₂ CH ₃
ОСН₃ ОСН₃	—CH-←	O II —O−C−CH₂CH₂CH₂CH₃
оснз оснз	CH3	O II OC-CH₂CH₂CH₂CH₃

[0052]

	81		82
		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ -
OCH ₃	OCH ₃	-CH ₂ -	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH3	—CH-CH-	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
		CH ₃	ç.
OCH ₃	OCH ₃	ĊH₃ ✓	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂ -	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	—CH- CH₃	O II O-C-CH₂CH₂CH₂CH₃
		CH₃	
OCH ₃	OCH ₃	—Ċ— CH₃	O II O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	CH₃ —CH-	O II —O−C−CH₂CH₂CH₂CH₃
		CH ₃	
OCH ₃	OCH ₃	¢- CH₃	O Ⅱ O-C-CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	-CH ₂ -CI	O
			·

		. 第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	-CH₂-	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	CH3 CH3	O II —O−C−CH₂CH₂CH₂CH₃
OCH ₃	OCH ₃	—ÇH-∕CI	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH₃	−CH ₂ -€F	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
OCH ₃	OCH ₃	-CH ₂ -	O II —O-C-CH ₂ CH ₂ CH ₂ CH ₃
осн _з	OCH ₃	СН- СН- Е	O II O-C-CH ₂ CH ₂ CH ₂ CH ₃
осн _з	OCH3	CH ₃ CI	O O-C-CH₂CH₂CH₂CH₃
OCH3	OCH ₃	C ₂ H ₅	O II
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	O II
OCH₃	осн _з	CH(CH ₃) ₂	O

第	1	表	(続き

			(IDL C.)
R ¹	R²	R³	£14 °
			0
осн _з	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O -O-C-C(CH ₃) ₃
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-O-C-C(CH ₃) ₃
ОСН3	OCH3	CH(CH₃)CH₂CH₃	O O-C-C(CH ₃) ₃
осн _з	ОСН₃	C(CH ₃) ₃	O
ОСН₃	OCH ₃	(CH ₂)₄CH ₃	O O-C-C(CH ₃) ₃
осн _з	OCH ₃	CH(CH₃)(CH₂)₂CH₃	O II
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	O Ⅱ O-C-C(CH₃)₃
осн3	осн _з	C(CH ₃) ₂ CH ₂ CH ₃	-0-C-C(CH ₃) ₃
ОСН3	OCH ₃	CH₂C(CH₃)₃	O II
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	O O-C-C(CH ₃) ₃

[0055]

第	1	丧	(統き)

		75 I 6K	(180 6)
. R ¹	R ²	R ³	R ⁴ -
			0
OCH ₃	ОСН ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O O-C-C(CH ₃) ₃
OCH ₃ .	OGH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O Ⅱ O-C-C(CH ₃) ₃
ОСН3	OCH3	C(C ₂ H ₅) ₂ CH ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₄ CH ₃	O
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₅ CH ₃	O II O-C-C(CH₃)₃
ОСН3	OCH3	С(СН ₃) ₂ (СН ₂) ₄ СН ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	O O-C-C(CH₃)₃
OCH ₃	OCH ₃	$\overline{}$	0 0-C-C(CH ₃) ₃
OCH ₃	OCH ₃	СН₃	O O-C-C(CH ₃) ₃

	89		90
		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	\rightarrow	O II O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	$\overline{}$	O II —O-C-C(CH ₃) ₃
OCH ₃	OCH3	≥CH ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH3	$\overline{}$	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	CH3	O II O-C-C(CH ₃) ₃
OCH ₃	OCH3	-CH ₂ -	O Ⅱ O-C-C(CH₃)₃
ОСН3	OCH ₃	—cH-<	O II O-C-C(CH ₃) ₃
осн _э	OCH3	¢√1	O II O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	-CH ₂ -	O II O-C-C(CH ₃) ₃
OCH ₃	осн _з	—cн- cн³	O

[0057]

		第 1 表	⁹² (続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₃	O II O-C-C(CH ₃)3
OCH ₃	OCH ₃	-CH ₂ -	O II
OCH3	OCH ₃	—CH-CH-CH3	
OCH ₃	och₃	-cH ₃ CH ₃	O
OCH ₃	OCH₃	—CH- CH₃	O
OCH ₃	OCH ₃	CH ₃	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	-CH ₂ -CI	O O-C-C(CH ₃) ₃
OCH₃	· OCH3	-CH ₂ -CI	O II O-C-C(CH ₃) ₃
осн₃	осн _з	CH ₃ CH	O II O-C-C(CH ₃) ₃

第	1	亵	(続き	•
---	---	---	-----	---

1			
R1	R²	R3	R ⁴
OCH ₃	OCH ₃	CH ₃ —CI	O-C-C(CH ³) ³
OCH ₃	OCH ₃	-CH ₂ -	O O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	-CH ₂ -	O-C-C(CH³)³
осн₃	OCH ₃	CH₃ —CH√_F	O II O-C-C(CH ₃) ₃
ОСН3	осн _з	CH3 CI	O II O-C-C(CH ₃) ₃
OCH ₃	OCH ₃	C ₂ H ₅	-o-c-(
OCH ₃	OCH ₃	CH₂CH₂CH₃	-o-c-(
осн _э	осн _з	СН(СН ₃)₂	o-c-
OCHF ₂	OCHF ₂	CH(CH ₃) ₂	-o-c-
OCF ₃	OCF ₃	CH(CH ₃) ₂	-o-c-

		第一十一表	(続き)
R ¹	R ²	- R ³	R ⁴
٠.			
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-(
осн _з	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-c-(
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-o-c-
OCH ₃	OCH ₃	C(CH ₃) ₃ -	-o-c-
OCH₃	ОСН ₃	(CH₂)₄CH₃	-o-c-
OCH ₃	OCH₃	СН(СН ₃)(СН ₂) ₂ СН ₃	-o-c-
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	o-c
осн₃	OCH ₃	CH(C₂H₅)₂	-o-c
	•		

[0060]

第	1	表	(続き)

R ¹	H²	R ³	R ⁴
OCH ₃	OCH ₃	CH(C ₂ H ₅) ₂	—о-с—́сн₃
осн _з	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-o-c-\cN
осн _з	OCH ₃	CH ₂ C(CH ₃) ₃	-o-c-NO ₂
OCH ₃	OCH3	(CH ₂) ₂ CH(CH ₃) ₂	-0-C-NO ₂
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-o-ë
осн _з	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	-0-C
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	o-c
OCH ₃	OCH ₃	C(C₂H₅)₂CH₃	-o-c → OCH3
OCH3	осн _з	СН(СН ₃)(СН ₂)₄СН ₃	-0-C-C-C-OCH3

	99		100
		第 1 表	(焼き)
R1	R ²	R ³	R ⁴ -
ОСН₃	OCH3	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-0-C-C-CF ₃
ОСН3	OCH3	CH(CH ₃)(CH ₂) ₅ CH ₃	-o-c
OCH ₃	OCH3	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	o-c-
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	-0-C-CN
OCH ₃	OCH ₃	-	-0-C- -0-C- -0-C₂H ₅
OCH ₃	OCH3	CH₃ —	o-c-
OCH ₃	OCH ₃	-	-0-C-C-C(CH ₃) ₃
OCH ₃	OCH ₃		—O-C-C-CH(CH₃)₂
OCH ₃	OCH ₃	≥CH ₃	$-O-C$ NO_2 NO_2

[0062]

		第 1 表	(続き)
R ¹	R ²	- R³	R ⁴
OCH ₃	ОСН₃	· —	-0-C
OCH ₃	осн _з	CH3	-0-C-(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	-CH ₂	-0-C
OCH ₃	OCH ₃	—сн- < сн - <	-o-c
OCH ₃	ОСН3	CH ₃ CH ₃	-o-c-
OCH ₃	ОСН3	-CH ₂ -	o-c
OCH ₃	OCH ₃	—cH- CH₃	o-c- -
OCH ₃	OCH3	CH ₃ CH ₃ CH ₃	o-c-
OCH ₃	OCH ₃	-CH ₂ -	-o-c-

[0063]

第	1	表	(続き)

		25 1 50	
R ¹	R ²	R ³	R ⁴
осн₃	OCH3	—CH-⟨CH3	-0-C-\NO ₂
OCH ₃	OCH ₃	CH ₃	-0-C-\NO ₂
OCH ₃	OCH ₃	—CH-€	o-c
OCH ₃	OCH₃	CH ₃	-0-C-CF ₃
OCH ₃	OCH₃	-CH ₂ -CI	-o-c
OCH3	OCH₃	CI CH₂- CH₃	-o-c
OCH ₃	OCH ₃	—CH- CI ·	-o-c-CF ₃
OCH3	ОСН3	-CH ₂ -	-o-c-

	105	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₃ —CI	-0-CNO₂
OCH ₃	OCH₃	CH-CH-CI	-o-c-(си
OCH ₃	OCH ₃	-CH ₂ -F	-O-C-C-CH3
OCH ₃	OCH ₃	CH ₃ CH ₃ CI	O-C-CH ₃
OCH₃	OCH ₃	C₂H₅	-o-c-(cı
OCH₃	OCH ₃	CH₂CH₂CH₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃) ₂	o-c-\cı
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-o-c
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-c-(cı

	107	第 1 表	108 (続き)
: R ¹	R ²	R3	R ⁴
осн _з	OCH3	CH(CH ₃)CH ₂ CH ₃	-o-c
OCH ₃	OCH3	C(CH ₃) ₃	o-c
OCH ₃	OCH ₃	(CH ₂) ₄ CH ₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	-o-c
OCH ₃	осн ₃	CH(C ₂ H ₅) ₂	-o-c
OCH₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-o-c
OCH3	OCH ₃	CH ₂ C(CH ₃) ₃	-o-c
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	-o-c
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-0-c-
OCH3	OCH ₃	СН(СН ₃)(СН ₂) ₃ СН ₃	-o-c

	109	第 1 表	(続き)
R1	R ²	R ³	R ⁴ .
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-o-c-(
OCH ₃	OCH ₃	C(C ₂ H ₅) ₂ CH ₃	o-c
OCH ₃	OCH3	CH(CH ₃)(CH ₂) ₄ CH ₃	-o-c-(
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	-o-c
OCH ₃	OCH ₃	СН(СН ₃)(СН ₂₎₅ СН ₃	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₂ (CH ₂) ₄ CH ₃	-o-c
OCH ₃	OCH3	C(C ₂ H ₅) ₃	-o-c
OCH ₃	осн3	$-\!$	-o-c
OCH ₃	OCH ₃	CH3	-o-c-(
	:		

[0067]

第	1	表	(続き)	
•				

R1	R ²	R ³	R ⁴
ОСН₃	OCH ₃	\longrightarrow	-o-c
OCH ₃	OCH ₃	$\overline{}$	-o-c
OCH ₃	OCH3	≥CH ₃	o-c
OCH ₃	OCH ₃	-	-o-c
OCH ₃	OCH3	CH₃	-o-c
OCH ₃	OCH ₃	-CH ₂ -	-0-c
OCH3	OCH ₃	—CH-✓	-o-c-(
OCH ₃	OCH ₃	CH₃ CH₃	-o-c-(
OCH ₃	осн _з	-CH ₂ -C	o-c

[0068]

		第 1 表	(続き)	
R1	R ²	R ³	R ⁴	
OCH ₃	OCH ₃	—CH-€	-o-c	
OCH ₃	OCH ₃	CH ₃ CH ₃ CH ₃	-o-c	
OCH ₃	OCH ₃	-CH ₂ -	-o-c	
OCH3	OCH ₃	CH-CH-CH3	-o-c-(cı	
ОСН₃	ОСН3	-cH ₃ CH ₃	-o-c	
OCH3	OCH ₃	—CH- CH3	-o-c-(cı	
OCH ₃	OCH ₃	-CHz	-o-c	
OCH ₃	OCH ₃	CH ₃	o-c	
OCH ₃	осн _з	-CH ₂ - (_)-CI	-o-ë-(

第	1	亵	(続き)
963		-20	(Ayu C

		İ
H ₅	R ³	R ⁴
OCH ₃	CI -CH ₂ -	o-c-(cı
OCH ₃	CH ₃	-o-c
OCH3	—CH- CH₃ CH₃	-0-c
OCH ₃	-CH ₂ F	-o-c
OCH3	ÇH₃ —ĊH-⟨F	-o-c
OCH ₃	CH ₃ CI	-o-c
OCH ₃	C ₂ H ₅	-o-c-(
OCH ₃	CH ₂ CH ₂ CH ₃	
OCH ₃	CH(CH₃)₂	-o-c-(-N)
	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	OCH ₃ $-CH_{2}$ $-CH_{3}$ $-CH_{3}$ $-CH_{3}$ $-CH_{4}$ $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{3}$ $-CH_{4}$ $-CH_{5}$ $-CH_{3}$ $-CH_{5}$ $-CH_{3}$ $-CH_{4}$ $-CH_{5}$

[0070]

118

	117	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	-o-c-
OCH ₃ .	осн3	CH ₂ CH(CH ₃) ₂	-0-C-(-N)
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-o-c-(-)
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-(-N)
OCH ₃	OCH3	(CH ₂) ₄ CH ₃	-o-c-(-\sqrt{-N}
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	-o-c-(-\square)
OCH₃	OCH ₃	CH(C ₂ H ₅) ₂	-o-c-(-\square\)
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-o-c-(-)
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-_n
			·

[0071]

	113	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴ -
осн ₃	OCH3	CH(CH ₃)₂	-o-c-_N
осн _з	OCH3	C(CH ₃)3 ⁻	o-c-_N_
OCH ₃	OCH ₃	CH(CH₃)₂	-0-C-V-
осн3	осн3	C(CH ₃) ₃	-0-C
OCH3	OCH ₃	CH(CH₃)₂	o-c
OCH ₃	ОСН3	C(CH ₃) ₃	-0-c-_N
OCH₃	ОСН3	CH(CH₃)₂	-o-c-
OCH ₃	осн3	C(CH ₃) ₃	o-c

		第 1 表	(続き)
R ^t	R ²	R ³	R ⁴ -
OCH3	OCH ₃	CH(CH ₃)₂	O - C - N Br
OCH ₃	OCH3		o-c-(-\square\)
OCH ₃	OCH ₃	$\overline{}$	o-c-(-\(\)
OCH ₃	OCH ₃	(CH ₂) ₅ CH ₃	-o-c-(-\square\)
OCH₃	OCH3	CH(CH ₃)(CH ₂) ₃ CH ₃	o-c
OCH ₃	OCH ₃		o-c
OCH3	OCH3	CH(CH ₃)₂	-0-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
OCH ₃	OCH3	С(СН3)3	o-c-_N=_N=_N
OCH ₃	OCH₃	С(СН3)3	-o-c-N=

[0073]

【表53】

		第 1 表	(統き)
R¹	R²	R ³	R ⁴ -
OCH3	OCH ₃	CH(CH3)₂	-0-C-N=
OCH ₃	OCH3	—CH-✓	o-c-(
OCH ₃	OCH ₃	С(СН3)3	-o-c
OCH ₃	OCH ₃	CH(CH₃)₂	-o-c
OCH ₃	OCH₃	С(СНЗ)З	-0-C-(-)-a
OCH₃	OCH3	CH ₃ CH ₃	o-c-(=N)
OCH ₃	OCH3	CH(CH ₃) ₂	-0-C-(-N-CI
ОСН3	OCH ₃	С(СН3)3	-o-c-N

[0074]

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	−ç- CH ₃	-0-C-(-N)
OCH ₃	OCH ₃	CH(CH ₃)₂	-o-c Ne
OCH ₃	OCH₃	-c-CH ₃	o-c-(N
OCH ₃	OCH ₃	С(СН3)3	-0-c
OCH ₃	OCH3	-CH ₂ -CI	-o-c-(-\sqrt{\sq}}}}}}}}}}}}}} \sqite\septrime{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \signtime{\sintitex{\sint{\sintex{\sint{\sint{\sint{\sinti}}}}}}}}}} \end{\sqrt{\sintitta}}}}}}}}} \sqrt{\sqrt{\
OCH ₃	осн _з	-CH ₂	-o-c-(N)
OCH ₃	OCH ₃	CH(CH ₃) ₂	-0-C-Br
осн _з	OCH ₃	С(СН3)3	-o-ë-(s)
OCH ₃	OCH ₃	−CH ₂ −€F	-o-c-(-\square)

		第 1 表	(続き)
R ¹	R ²	H3	R ⁴
OCH ₃	OCH3	CH(CH ₃) ₂	-o-ë-(s)
OCH ₃	OCH3	CH(CH ₃) ₂	-0-C-C-C-CI
OCH ₃	OCH ₃	C₂H₅	O C C
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	_o_cc_c
осн _з	осн _з	CH(CH ₃)₂	_o_c cı
осн _з	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	0-C
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C
OCH ₃	OCH3	(CH ₂) ₄ CH ₃	O-C

[0076]

	129		100
		第 1 表	(税き)
R ¹	R ²	R ³	R ⁴ -
OCH ₃ .	OCH₃	С(СН3)3	-o-ë-(s)
OCH ₃	OCH₃	CH(C ₂ H ₅) ₂	-o-c-(=N-c)
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-0-C
OCH ₃	осн3	C(CH3)3	-0-c-/_N.We
OCH ₃	OCH ₃	ĊH(CH3)2	-o-ç-(-, N. We
OCH₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	-o-c
OCH3	OCH₃	C(C ₂ H ₅) ₂ CH ₃	-o-c
OCH ₃	осн ₃	C(CH ₃) ₂ (CH ₂) ₃ CH ₃	o-c
OCH ₃	OCH ₃	$\overline{}$	-0-C-(=N-CI

,		第 1 表	(続き)
R ¹	R ²	- R ³	R4 -
OCH ₃	OCH ₃	\rightarrow	-o-c
OCH ₃	осн3		-o-c-(=N-c
OCH ₃	осн _з	-CH ₂ -	-o-c-(=N-ci
OCH ₃	OCH3	-CH ₂ -	-o-c-(_N-c1
OCH ₃	OCH3	CH-CH-	-o-c-(-N-c)
OCH ₃	осн _з	—CH-€	-0-c-(-N-ci
OCH₃.	OCH3	-CH ₂ -CI	o-c-(-N-ci
OCH ₃	OCH ₃	CH ₃ CH	-o-c-(-N-ci

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	—CH-€CI	-o-c
OCH ₃	OCH ₃	-CH ₂	-o-c
OCH ₃	OCH ₃	-cH₃ -cH₃ -cH₃	-o-c-=N-ci
OCH ₃	OCH ₃	C ₂ H₅	O II S-C-CH ₃
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	-s-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃) ₂ .	O ∥ —s-c-ch₃
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O II S-C-CH ₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	-S-C-CH ₃
осн3	OCH ₃	CH(CH₃)CH₂CH₃	-S-C-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O s-C-CH ₃

	135	第一1 表	(続き)
R ¹	R ²	R³	R4
OCH ₃	OCH ₃	(CH₂)₄CH₃	O II S-C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂)₂CH ₃	O II S-C-CH₃
OCH ₃	осн _э	CH(C ₂ H ₅) ₂	O II S-C-CH ₃
OCH3	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	O II S-C-CH3
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₃ CH ₃	O
OCH ₃	OCH3	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	O II S-C-CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅) ₃	O Ⅱ —S-C-CH₃
OCH ₃	OCH ₃	─ <	O III S-C-CH ₃
осн ₃	осн₃	→	O II S-C-CH ₃
OCH ₃	OCH ₃	→	-S-C-CH ₃

	131	第 1 表	(続き)
R1	R ²	- R ³	R4
осн3	OCH3	$\overline{}$	O II S-C-CH ₃
OCH ₃	OCH ₃	-CH ₂ -	O II S-C-CH₃
OCH ₃	OCH ₃	—сн- сн- сн₃	-s-c-cH ₃
осна	OCH ₃	-CH ₂ -	—s-C-cH₃
ОСНз	OCH ₃	—CH-(·)	O II s-c-ch ₃
OCH ₃	OСН ₃	CH ₃ CH ₃ CH ₃	O Ⅲ —S-C-CH₃
OCH ₃	OCH ₃	—CH- CH- CH- CH-	O II —S−C−CH₃
осн ₃	осн ₃	CH ₃	O Ⅲ S-C-CH₃
OCH ₃	OCH ₃	-CH₂-	O II S-C-CH ₃
OCH ₃	осн _з	C ₂ H ₅	s-c-

[0081]

140

,	133	第 1 表	(続き)
R1 ·	R ²	R ³ .	R ⁴ -
OCH ₃	осн _з	CH ₂ CH ₂ CH ₃	-s-c-(
OCH ₃	OCH₃	CH(CH ₃) ₂	-s-c
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-s-c-
осн3	OCH3	CH₂CH(CH₃)₂	-s-c-
OCH ₃	ОСН₃	CH(CH₃)CH₂CH₃	-s-c-
OCH ₃	OCH ₃	С(СН ₃) ₃	-s-c-
OCH ₃	OCH3	(CH ₂)₄CH ₃	-s-c-
OCH ₃	OCH ₃	CH(CH ₃)(CH ₂) ₂ CH ₃	-s-c-
осн₃	OCH3	CH(C ₂ H ₅) ₂	-s-c-
			-

[0082]

第	1	裘	(続き)

R1	R ²	R ³	R4
OCH ₃	OCH ₃	C(CH ₃) ₂ CH ₂ CH ₃	-s-c-
OCH ₃	OCH ₃	(CH ₂) ₂ CH(CH ₃) ₂	s-c-
OCH ₃	OCH ₃	(CH₂)₅CH₃	-s-c-
OCH ₃	OCH ₃	$\overline{}$	_s-c-
OCH ₃	OCH3		-s-c-(
OCH ₃	OCH ₃	-CH ₂ -	_s_c
OCH ₃	OCH ₃	CH₃ —CH-	_s-c-
OCH ₃	OCH ₃	-CH ₂ -	_s-c-
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	о o-с-сн=сн-{}
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-o-ё-сн=сн-(_>-сі

		第 1 表	· (続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-Ö—(CH₂)₄CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö—(CH₂)₅CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	О -O-Ё—(СН ₂) ₆ СН ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö—(CH ₂) ₇ CH ₃
ОСН₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-Ö—(CH₂) ₈ CH₃
ОСН3	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	О -О-С—(СН₂) ₉ СН₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	O O-Ċ(CH₂)₁₀CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-O-C-(CH ₂) ₁₁ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O —O-Ö—(CH₂)₁₂CH₃
ОСН₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö-(CH ₂) ₁₃ CH ₃
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-Ö—(CH₂)₁₄CH₃
осн ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₁₅ CH ₃

[0084]

第	1	裘	(続き)
 			·····

	· · · · · · · · · · · · · · · · · · ·		
R ¹	R ²	R ³	R ⁴ -
OCH ₃	OCH ₃	CH₂CH(CH₃)₂	О —О-Ё—(СН ₂) ₁₆ СН ₃
осн _з	OCH ₃	- CH(CH ₃)CH ₂ CH ₂ CH ₃	O — O-Ö(CH ₂) ₁₇ CH ₃
	_	CH ₂ CH(CH ₃) ₂	O 11
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O −O-Ö—(CH₂)₃CH===CH(CH₂)₂CH₃
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	O -O-Ö-(CH₂)₁CH=CH(CH₂)₁CH₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-Ö-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	О -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	. СН(СН ₃)СН ₂ СН ₂ СН ₃	O -O-Ö-(CH ₂) ₈ CH==CH ₂
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH3 -O·C-C⊦ ² CH(CH ₂) ² CH=C(CH ₃) ²
OCH₃	OCH₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-O-C-(CH ₂) ₃

第	1	洝	(続き)

		· · · · · · · · · · · · · · · · · · ·	
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	СН ₂ СН(СН ₃) ₂	O
OCH ₃	OCH ₃	CH(CH3)CH2CH2CH3	O -O-C-CH₂-{\rightarrow}CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-CH ₂ -
OCH ₃	ОСН3	CH(CH ₃)CH ₂ CH ₂ CH ₃	-0-C CH3
OCH ₃	осн3	CH₂CH(CH₃)₂	-0-CH3
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-CH≔CH-(CH₂)₄CH₃
OCH₃	OCH ₃	CH ₂ CH(CH ₃) ₂	О о-с-сн₂-(
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	—O-C-C-CH₂-CH=CH₂ CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O·C-(CH ₂) ₄ CH=CH ₂

_		第 1 表	(続き)
R ¹	R ²	- R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O II -O·C-CH=CH-CH₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ -O-C-C=CH ₂
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O II -O-C-CH ₂ -CH==CH ₂
осн _з	OCH ₃	CH ₂ CH(CH ₃) ₂	O II −O·C−CH=CH₂
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O II O-C-C=CH
осн _э	OCH ₃	СН₂СН(СН₃)₂	O II -O·C-C=C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O II -O·C-C=C-C ₂ H ₅
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₂ C==CH
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-o-c-ch=ch-ch=chch3
OCH ₃	осн3	CH ₂ CH(CH ₃) ₂	O O II II CH3

	151		152
,		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	CH₂CH(CH₃)₂	-o-Ë-
ОСН3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -0-C-CH=CH-{CH₂}₂CH₃
ОСН3	осн ₃	CH₂CH(CH₃)₂	O -O-C-CH ₂ -CH==CH-C ₂ H ₅
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O CH₃ -O·C-C=CH-C₂H₅
OCH ₃	осн3	CH₂CH(CH₃)₂ ˙	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	-0-с-сн=с<сн₃
OCH ₃	осн3	CH₂CH(CH₃)₂	O -O-C-CH=CH-C₂H₅
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₂ CH=CH ₂
ОСН3	OCH ₃	CH ₂ CH(CH ₃) ₂	О СН3 -0.С-С=СН-СН3

	·	第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
ОСН3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O II -O·C-C⊫C(CH ₂) ₄ CH ₃
ОСН3	OCH ₃	CH ₂ CH(CH ₃) ₂	-O·C-(CH ₂) ₂ -
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-(CH ₂) ₂
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	. О II -О-С-СН ₂ СН(СН ₃) ₂
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O CH ₃ -O-C-CHCH ₂ CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	° 0 -O-C-CH₂C(CH₃)₃
ОСН3	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-CCH(C ₂ H ₅) ₂
осн _з	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₂ CH(CH ₃) ₂
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	О -О-С-СН(СН ₃)(СН ₂) ₃ СН ₃
ОСН₃	OCH3	CH ₂ CH(CH ₃) ₂	O O-CCH(C₂H₅)(CH₂)₂CH₃
		· ·	

第	1	表	(続き)

		-	
R1	R ²	R ³	R ⁴
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₂ CH ₃	
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-CH(CH ₃)(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C−CH₂CH(CH₃)CH₂CH₃
OCH ₃	осн ₃	CH ₂ CH(CH ₃) ₂	O -O-C-CH(C ₂ H ₅)(CH ₂) ₃ CH ₃
осн _з	осн ₃	CH(CH ₃)CH ₂ CH ₂ CH ₃	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
OCH ₃	осн3	CH(CH ₃) ₂	о —о-ё-сн=сн- ()
ОСН₃	осн _з	CH(CH₃)CH₂CH₃	о -o-ё-сн=сн-(_>-сі
осн _з	OCH ₃	CH(CH ₃)₂	O -O-Ö—(CH₂)₄CH₃
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	О -O-Ё—(СН ₂) ₅ СН ₃
OCH ₃	OCH ₃	CH(CH ₃)₂	O -O-Ö(CH ₂) ₆ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O −O-Ö—(CH ₂) ₇ CH ₃

OCH₃

OCH₃

OCH₃

OCH3

OCH₃

OCH₃

OCH₃

OCH₃

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
OCH₃	OCH3	CH(CH ₃) ₂	O -O+C-(CH ₂) ₈ CH ₃
осн _з	OCH ₃	CH(CH ₃)CH ₂ CH ₃	О -O-Ё—(СН ₂) ₉ СН ₃
OCH ₃	OCH ₃	· CH(CH ₃) ₂	O -O-Ö-(CH ₂) ₁₀ CH ₃
OCH ₃	ОСН ₃	CH(CH₃)CH₂CH₃	O -O-Ö—(CH₂)₁₁CH₃
OCH ₃	OCH ₃	CH(CH ₃) ₂	O —O-Ö—(CH ₂) ₁₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-Ö—(CH ₂) ₁₃ CH ₃
OCH ₃	осн₃	CH(CH ₃)₂ .	O -O-Ö—(CH ₂)₁₄CH₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-Ö(CH ₂) ₁₅ CH ₃

CH(CH₃)₂

CH(CH₃)CH₂CH₃

CH(CH₃)CH₂CH₃

CH(CH₃)₂

[0091]

<u></u>		第 1 表	(続き)
R ¹ .	R ²	· R³	R ⁴
		•	
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-Ö-(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃
	•		•
OCH ₃	ОСН3	CH(CH ₃)₂	O -O-C-(CH ₂₎₇ CH=CH(CH ₂) ₅ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-O-C-(CH ₂),сн=сн(сн ₂),сн ₃
OCH ₃	OCH ₃	CH(CH ₃) ₂	O -O-Ö-(CH₂) ₈ CHCH₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	О СН ₃ -0-С-СН ₂ СН(СН ₂) ₂ СН=С(СН ₃) ₂
		•	
OCH ₃	OCH3	- СН(СН ₃)₂	O
OCH ₃	OCH ₃	СН(СН₃)СН₂СН₃	O -O-C-(CH ₂) ₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	_о.с.сн₂-Сн₃ _о.с.сн₂-Сн₃ _о.с.сн₂-С
OCH₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-CH₂-

		第 1 表	(続き)
R1	R ²	R ³	R ⁴
OCH3	ОСН₃	CH(CH ₃) ₂	-0-C CH3
осн3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C CH3
OCH3	OCH3	CH(CH ₃) ₂	O II -O·C-CH=CH-(CH ₂) ₄ CH ₃
OCH ₃	OCH₃	CH(CH₃)CH₂CH₃	-0-C-CH ₂ -
OCH ₃	OCH ₃	CH(CH₃)₂	CH ₃ CH ₂ -CH=CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II O-C-(CH ₂) ₄ CH==CH ₂
OCH3	OCH3	CH(CH ₃) ₂	-o-c-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-o-c
OCH ₃	OCH ₃	CH(CH ₃)₂	O II −O-C−CH≔CH−(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O II −O·C−CH₂−CH≔CH−C₂H₅

第	1	袃	(続き)

_R1	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH₃ II - -O·C-C=CH-C₂H₅
OCH ₃	OCH ₃	- CH(CH ₃)CH ₂ CH ₃	-o-c-
OCH ₃	OCH3	CH(CH₃)₂	-0.C-CH=C\(\frac{CH^3}{CH^3}\)
OCH ₃	OCH₃	CH(CH ₃)CH ₂ CH ₃	O II −O·C−CH=CH−C ₂ H ₅
осн _з	оснз	CH(CH ₃) ₂	O -O·C-(CH ₂) ₂ CH=CH ₂
OCH ₃	OCH ₃	СН(СН₃)СН₂СН₃	O CH₃ -O·C-C=CH-CH₃
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II −O·C−CH=CH-CH₃
осн3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O CH ₃ II −O·C−C==CH ₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II -O·C-CH ₂ -CH=CH ₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II -O·C-CH=CH ₂

		第 1 表	(税き)
R ¹	R ²	R³	R ⁴
ОСН3	OCH ₃	CH(CH ₃) ₂	O Ⅱ -O-C-C==CH
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II -O·C-C=C-CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O·C-C=C-C ₂ H ₅
OCH ₃	OCH ₃	CH(CH ₃)₂	O O•C-(CH ₂)₂C≔CH
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II -O-C-CH=CH-CH=CHCH ₃
OCH ₃	OCH3	CH(CH ₃)₂	O O II II OO-CH2-C-CH3
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II -O-C-C≕C(CH ₂) ₄ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O
OCH ₃	осн _з	СН(СН ₃) ₂	O -O-C-(CH ₂) ₂ (CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-C—CH ₂ CH(CH ₃) ₂
OCH ₃	OCH ₃	CH(CH₃)₂	O CH ₃ -O-C-CHCH ₂ CH ₃

1	107	第 1 表	(続き) -
B¹	R ²	- R ³	R ⁴
ОСН3	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C-CH₂C(CH₃)₃
OCH ₃	осн3	CH(CH₃)₂	O II -O-C-CH(C ₂ H ₅) ₂
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O II -O-G-(CH ₂) ₂ CH(CH ₃) ₂
OCH ₃	OCH ₃	CH(CH₃)₂	O - -O-C-CH(CH ₃)(CH ₂) ₃ CH ₃
OCH ₃	OCH ₃	CH(CH₃)CH₂CH₃	O -O-C-CH(C₂H₅)(CH₂)₂CH₃
OCH ₃	осн3	CH(CH ₃) ₂	O -O-C-C(C ₂ H ₅)(CH ₃) ₂
осн3	OCH3	CH(CH ₃)CH₂CH ₃	0 -0-C-CH(CH₃)(CH₂)₂CH₃
OCH ₃	осн _з	CH(CH ₃) ₂	O -0-C - CH ₂ CH(CH ₃)CH ₂ CH ₃
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-C-CH(C₂H₅)(CH₂)₃CH₃
OCH3	OCH ₃	CH(CH ₃) ₂	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂

第	1	表	(続き)

R ¹	R ²	R ³	R ⁴
	OCH3	C(CH ₃) ₃	о о-ёсн=сн- ()
ОСН3	OCH ₃	C(CH ₃) ₃	о ,-o-ёсн=сн-{}-сі
осн _з	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂)₄CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂)₅CH₃
осн3	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂)₅CH₃
OCH₃	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂) ₇ CH₃
OCH3	OCH ₃	C(CH ₃) ₃	O -O-Ö(CH ₂) ₈ CH ₃
OCH3	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂) ₉ CH₃
осн _з	OCH ₃	C(CH ₃) ₃	O O-Ö(CH ₂) ₁₀ CH ₃
ОСН3	OCH ₃	C(CH ₃) ₃	O -O-Ö—(CH₂)₁₁CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O O-Ö(CH₂)₁₂CH₃
OCH ₃	OCH ₃	- C(CH ₃) ₃	O -O-Ö-(CH₂)₁₃CH₃

	171	第 1	表 (続き)
R1	Нs	R3	R4 -
OCH ₃	OCH ₃	C(CH ₃) ₃	О -О-Ё(СН ₂) ₁₄ СН ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O O∙Ö(CH₂)₁₅CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O —O-Ö—(CH ₂) ₁₆ CH ₃
OCH ₃	осн3	C(CH ₃) ₃	O O-Ö(CH ₂) ₁₇ CH ₃
осн _з	осн3	С(СН ₃) ₃	O -O-C-(CH ₂) ₁₉ CH ₃
осн3	OCH3	C(CH ₃) ₃ -	O -O-Ö-(CH₂)₅CH==CH(CH₂)₁CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃
осн _з	осн ₃	C(CH ₃) ₃	O -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃
OCH3	OCH ₃	C(CH ₃) ₃	O -O-Ö-(CH₂)7CH=CH(CH₂)3CH3
OCH ₃	OCH3	C(CH ₃) ₃	O -O-Ö-(CH ₂) ₈ CH===CH ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ -O·C-CH ₂ CH(CH ₂) ₂ CH=C(CH ₃) ₂

		第 1	表(続き)
R ¹	R ²	. R ³	B4
OCH3	OCH ₃	- С(СН ₃)3	-O-C-(CH ₂) ₃ -
ОСН3	OCH₃	C(CH ₃) ₃	-0-C-(CH ₂) ₂ -
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH₂-⟨CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-CH ₂ -
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-C
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O O·C-CH==CH-(CH ₂) ₄ CH ₃
OCH ₃	ОСН₃	C(CH ₃) ₃	-0-C-CH ₂ -
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH₃ —O-C-C-CH₂-CH=CH₂ CH₃

第 1	表	(続き)
-----	---	------

		777 2 22	
R¹	R ²	R ³ .	R4
осн ₃	OCH3	C(CH ₃) ₃	O -O-C-(CH ₂) ₄ CH=CH ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-
OCH ₃	OCH3	C(CH ₃) ₃	o-c-
OCH ₃	OCH ₃	C(CH₃)₃	O -O·C-CH=CH-(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH ₂ -CH=CH-C ₂ H ₅
OCH3	OCH ₃	C(CH ₃) ₃	О сн ₃ _О.Сс=сн-С₂н ₅
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-
OCH₃	OCH3	C(CH ₃) ₃	-O·C-CH=CCCH3
OCH ₃	OCH ₃	C(CH ₃) ₃ -	O II −O·C−CH=CH−C₂H₅
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O·C-(CH ₂) ₂ CH=CH ₂

		第 1	表 (航き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH3
OCH ₃	осн3	C(CH ₃) ₃	O -O·C-CH=CH-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ -C==CH ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O II -O·C-CH ₂ -CH=CH ₂
OCH ₃	ocH₃	C(CH ₃) ₃	O II -O·C-CH=CH ₂
OCH ₃	OCH3	C(CH ₃) ₃	O Ⅱ O-C-C==CH
OCH ₃	OCH ₃	C(CH ₃) ₃	O II -O·C-C⊫C-CH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	0 -O-C-C==C-C₂H₅
OCH ₃	OCH ₃	С(СН ₃) ₃	O II -O·C-(CH ₂)₂C≔CH
OCH ₃	осн _з	C(CH ₃) ₃	O -O-C-CH=CH-CH=CHCH₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O O II II -O-C-CH ₂ -C-CH ₃

[0101]

	179		180
		第 1 表	(続き)
R1	R ²	- R ³	R ⁴
ОСН3	осн3	C(CH ₃) ₃	O -O·C-Ç≡C(CH₂)₄CH₃
OCH ₃	осн3	C(CH ₃) ₃	-O·C-(CH ₂) ₂ -
OCH ₃	осн _з	C(CH ₃) ₃	O II -O·C-(CH ₂) ₂ -CH ₃
осн _з	OCH ₃	C(CH ₃) ₃	O -O-C-CH ₂ CH(CH ₃) ₂
осн _з	OCH ₃	C(CH ₃) ₃	O CH ₃ -O-C-CHCH ₂ CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	O -OC
ОСНз	OCH ₃	C(CH ₃) ₃	O -O-C-CH(C ₂ H ₅) ₂
OCH ₃	OCH ₃	C(CH ₃) ₃	O -O-C(CH ₂) ₂ CH(CH ₃) ₂
ОСН₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH(CH ₃)(CH ₂) ₃ CH ₃
осн₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₂ CH ₃

	101	第 1 3	技(続き)
R ¹	R ²	H ³	R ⁴ "
OCH ₃	осн _з	C(CH ₃) ₃	O · -O-C-C(C ₂ H ₅)(CH ₃) ₂
OCH ₃	OCH3	C(CH ₃) ₃	O -O-C-CH(CH ₃)(CH ₂) ₂ CH ₃
OCH ₃	осн3	- C(CH ₃) ₃	O II −O-C−CH₂CH(CH₃)CH₂CH₃
· OCH3	OCH ₃	C(CH ₃) ₃	O -O-C-CH(C ₂ H ₅)(CH ₂) ₃ CH ₃
OCH ₃	OCH3	C(CH ₃) ₃	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
ОСН₃	OCH ₃		o-ё-сн=сн- ()
ОСН₃	OCH ₃		-o-ссн=сн-(>-сі
ОСН3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O -O-Ö—(CH₂)₄CH₃
OCH ₃	OCH3	-CH ₃	О -O-Ё—(СН ₂) ₅ СН ₃
OCH ₃	осн3	CH ³	О -О-Ё(СН ₂) ₆ СН ₃

		第 1 表	(続き)
R ¹	R ²	R3	R ⁴ .
ОСН₃	ОСН3	CH ₃	O -O•Ö—(CH₂) ₇ CH₃
OCH ₃	OCH ₃	CH ₂ C(CH ₃) ₃	О -O-С-(СН ₂) ₈ СН ₃
OCH ₃	OCH ₃		O -O∙Ö(CH₂) ₉ CH₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O (CH ₂) ₁₀ CH ₃
OCH ₃	OCH₃	CH ₃	O -O-Ö—(CH₂)₁₁CH₃
осн _з	OCH ₃		O O-Ö(CH ₂) ₁₂ CH ₃
осн3	OCH3		O -O-Ö-(CH₂)₁₃CH₃
OCH ₃	ОСН3	CH₃	О -O-С-(СН ₂) ₁₄ СН ₃
OCH3	OCH ₃	CH₃	O −O∙Ö—(CH₂) ₁₅ CH₃
OCH3	осн3	$\overline{}$	O —O-C—(CH ₂) ₁₆ CH ₃
ОСН3	осн3	C(C ₂ H ₅)(CH ₃) ₂	O -O-Ö-(CH ₂) ₁₇ CH ₃

[0104]

【表84】

	199		100	
		第 1 5	技 (続き)	
R ¹	R ²	R3	R ⁴	
осн3	OCH ₃	-	O 	-
OCH ₃	OCH3	-	O -O-Ö-(CH ₂) ₉ CH=CH(CH ₂) ₇ Cl	H ₃
осн _з	OCH ₃	CH³	O -O-C-(CH₂)₁CH=CH(CH₂)₁CH	3
OCH ₃	OCH3	CH₃	Q -O-C-(CH ₂) ₇ CH=CH(CH ₂) ₅ CH ₃)
осн3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-O-С-(СН ₂) ₇ СН=СН(СН ₂) ₃ СН ₃	
осн _з	осн _з	C(C ₂ H ₅)(CH ₃) ₂ ·		
ОСН₃	OCH ₃	$\overline{}$	O CH ₃ -O-C-CH₂CH(CH₂)₂CH=C(CH ₃)	2
OCH ₃	OCH ₃	CH₃	-O-C-(CH ₂) ₃	
OCH ₃	OCH ₃	$\overline{}$	-O-C-(CH ₂) ₂ -	
OCH ₃	OCH ₃	CH₃	-0-C-CH ₂ -CH ₃	<u> </u>
			【表85】	

		第 1 表	(続き)
R ¹	· R²	R ³	R ⁴ -
OCH ₃	осн _з	CH ₃	O-C-CH ₂ -
OCH ₃	OCH ₃	CH3 CI	-0-C
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-0-C-C-CH3
OCH ₃	OCH ₃	G(C ₂ H ₅)(CH ₃) ₂	O -O-C-CH=CH-(CH ₂) ₄ CH ₃
OCH ₃	OCH3	$\overline{}$	O -0-C-CH₂-
OCH ₃	OCH ₃	—	O CH₃ II CH₃ O-C-C-CH₂-CH≔CH₂ CH₃
OCH3	OCH ₃	CH₃	O -O-C-(CH ₂) ₄ CH==CH ₂
OCH ₃	ОСН3	\searrow_{CH^3}	-o-c
осн _з	осн3	-	-o-c-

[0106]

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	-	O -O-C-CH==CH-(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O -O·C-CH ₂ -CH=CH-C ₂ H ₅
OCH ₃	OCH ₃	CH ₃	O CH ₃ -O-C-C=CH ₂ CH ₅
OCH3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-o-c-
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	-0.C-CH=C\(\frac{CH_3}{CH_3}\)
OCH3	OCH ₃	— ·	O II −O·C−CH=CH−C₂H₅
OCH ₃	OCH ₃	CH ₃	O $-O \cdot C - (CH2)2CH = CH2$
OCH3	OCH₃	$\overline{}$	-O.C-C=CH-CH ₃
OCH ₃	осн _з	CH₃	О -0-С-сн=сн-сн ₃
	•		10 01

		第一十一表	(続き)
R ¹	R ²	R ³	R ⁴ .
осн ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O CH ₃ -O-C-C=CH ₂
OCH ₃	OCH ₃	CH ₃	O -O-C-CH ₂ -CH=CH ₂
OCH ₃	осн ₃		O II -O-C-CH=CH ₂
OCH ₃	осн3	$\overline{}$	O II -O-C-C=CH
OCH ₃	осн3	CH3	O -O·C-C=C-CH ₃
OCH ₃	OCH ₃	∑ _{CH³}	O -O·C-C=C-C ₂ H ₅
осн _з	OCH ₃		O -O·C-(CH ₂) ₂ C==CH
ОСН3	осн _з	$\overline{}$	O II -O-C-CH=CH-CH=CHCH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O O II II II -O·C-CH₂-C-CH₃
OCH ₃	осн _з	CH ₃	O -O·G-C=C(CH ₂) ₄ CH ₃

[0108]

第	1	亵	(続き)

R ¹	R²	R ³	R ⁴
осн3	OCH ₃	$-\!$	O -O·C-(CH ₂) ₂
OCH ₃	OCH ₃	-	O-C-(CH ₂) ₂ —CH ₃
OCH ₃	OCH ₃	$\overline{}$	O -O-CCH₂CH(CH₃)₂
OCH ₃	OCH₃	CH₃	O CH₃ II -CHCH₂CH₃
ОСН₃	OCH ₃	CH ₃	O -O-C-CH₂C(CH₃)₃
OCH3	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O II -O-CCH(C₂H₅)₂
OCH ₃	OCH ₃	CH ₃	O -O-C-(CH ₂) ₂ CH(CH ₃) ₂
OCH₃	OCH ₃	→	O II −O-C−CH(CH₃)(CH₂)₃CH₃
OCH ₃	OCH ₃	CH ₃	O II −O-C−CH(C ₂ H ₅)(CH ₂) ₂ CH ₃

[0109]

第	1 .	表	(続き
---	-----	---	-----

		为 · · · · · · · ·	(AVUC)
R ¹	R ²	R ³	R ⁴ -
OCH ₃	ОСН3	C(C ₂ H ₅)(CH ₃) ₂	O -O-C-C(C ₂ H ₅)(CH ₃) ₂
OCH ₃	OCH₃	C(C ₂ H ₅)(CH ₃) ₂	O O-CCH(CH ₃)(CH ₂) ₂ CH ₃
OCH ₃	OCH ₃	C(C ₂ H ₅)(CH ₃) ₂	O II -O-C-CH ₂ CH(CH ₃)CH ₂ CH ₃
OCH ₃	осн₃	- ←	O -O-C-CH(C₂H₅)(CH₂)₃CH₃
осн3	OCH ₃	-	O -O-C-CH(CH ₂ CH ₂ CH ₃) ₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	-о-с-н
OCH ₃	OСН ₃	C(CH ₃) ₃	о осн
OCH ₃	OCH3	CH(CH ₃) ₂	O
OCHF ₂	OCHF ₂	СН(СН ₃) ₂	O
OCF ₃	OCF ₃	CH(CH ₃) ₂	—O—C—CH₂CI
	·		

·····		第 1 表	(統농) -
R ¹	R ²	R ³	R ⁴
OCH₃	ОСН ₃	C(CH ₃) ₃	O OCCH₂CI
OCHF ₂	OCHF ₂	C(CH ₃) ₃	O
OCF ₃	OCF ₃	C(CH ₃) ₃	O
осн ₃	OCH ₃	CH(CH ₃)₂	-0-c-cH CI CH₃
OCH3	OCH ₃	C(CH ₃) ₃	o-ccH CH³
OCH ₃	OCH ₃	CH(CH₃)₂	O II —O-C-CH ₂ CH ₂ CI
OCH3	OCH ₃	C(CH ₃) ₃	O II O CH ₂ CH ₂ CI
OCH ₃	ОСН₃	CH(CH ₃) ₂	O II OCCHBr-CH ₂ Br
ОСН₃	OCH ₃	C(CH ₃) ₃	O Ⅲ —O—C—CHBr·CH₂Br
OCH3	OCH ₃	CH(CH₃)₂	O CH ₃ II IO-C-C=CH ₂
<u> </u>	•		

	第 1 表	(続き)
H ²	R ³	R ⁴
OCH3	CH(CH ₃) ₂	O II O-C-CH ₂ CH ₂ Br
OCH ₃	C(CH ₃) ₃	O II OCCH ₂ CH ₂ Br
осн _з	CH(CH₃)₂	O CI II I
OCH₃	C(CH ₃) ₃	-0-C-CH-
OCH ₃	CH(CH₃)₂	-o-c-
OCH3	C(CH ₃) ₃	-o-c-
OCH ₃	CH(CH₃)₂	o-c
OCH3	C(CH ₃) ₃	o-c-CI
OCH₃	CH(CH₃)₂	o-с(сн ₃
	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	R ² R ³ OCH ₃ CH(CH ₃) ₂ OCH ₃ C(CH ₃) ₃ OCH ₃ C(CH ₃) ₃ OCH ₃ CH(CH ₃) ₂ OCH ₃ CH(CH ₃) ₂ OCH ₃ C(CH ₃) ₃ OCH ₃ C(CH ₃) ₃

		第 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH₃	C(CH ₃) ₃	-0-C-C-CH3
OCH ₃	OCH ₃	CH(CH ₃) ₂	0-CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c CH ₃
OCH ₃	OCH ₃	CH(CH₃)₂	-o-c
OCH₃	OCH3	C(CH ₃) ₃	O-С- <u>/</u>) СН ₃
OCH ₃	OCH3	CH(CH ₃)₂	—()-G———Br
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-Br
OCH3	OCH ₃	CH(CH₃)₂	o-c
	•	·	

, 		第 1 表	(続き)
R1	R ²	R ³	R ⁴
ОСН3	OCH ₃	C(CH ₃) ₃	O Br
осн _з	OCH₃	CH(CH ₃) ₂	-o-c- Br
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c - Br
ОСНз	OCH ₃	CH(CH ₃)₂	o_c
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c
OCH ₃	OCH ₃	сн(сн³)⁵	-o-c
OCH ₃	OCH₃	C(CH ₃) ₃	-o-c
OCH ₃	OCH ₃	СН(СН ₃)₂	-o-c> F

		第 1 表	(統き)
R ¹	R ²	R ³	R ⁴
			-o-c-
OCH ₃	OCH3	C(CH ₃) ₃	F
OCH ₃	OCH3	CH(CH₃)₂	-0-C-NO2
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-NO2
OCH ₃	OCH3	CH(CH₃)₂	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-NO ₂
OCH ₃	OCH ₃	CH(CH ₃)₂	-O-C-NO ₂
OCH₃	OCH₃	C(CH₃)₃	-0-C-NO ₂
OCH ₃	OCH ₃	CH(CH₃)₂	-a-cı

[0115]

	207		208
		第 1 表	(続き)
R ¹	R ²	R ³	R⁴
осн3	OCH ₃	C(CH ₃) ₃	-o-c
осн _з	OCH3	СН(СН ₃)₂ -	-o-c
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c CI
OCH ₃	осн _з	CH(CH³)⁵	-o-c - cı
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c - cı
OCH ₃	OCH3	CH(CH ₃)₂	o-c
OCH ₃	OCH3	C(CH ₃) ₃	-o-c
1	•		

[0116]

		第 1 表	(梲き)
R ¹	H ²	R ³	R ⁴
OCH ₃	. OCH3	CH(CH₃)₂	$-O-C$ CH_3 CH_3
OCH ₃	осн3	C(CH ₃) ₃	CH ₃
OCH3	OCH ₃	CH(CH₃)₂	-o-c CH ₃
OCH ₃	OCH3	C(CH ₃) ₃	-o-c-CH ₃
осн _з	осн3	CH(CH₃)₂	
OCH ₃	осн3	C(CH ₃) ₃	o-c-
OCH₃	осн _з	CH(CH₃)₂	-0-CI

		第 1	表	(続き)	
R ¹	R ²	R ³		R ⁴	
осн ₃ .	OCH ₃	C(CH ₃) ₃		-0-C-C-CI	
ОСН₃	OCH ₃	CH(CH₃)₂		$-0-C$ OCH_3 OCH_3	
OCH3	OCH ₃	C(CH ₃) ₃		OCH ₃	
OCH3	ОСН3	CH(CH ₃)₂		OCH3 OCH3	
OCH3	OCH₃	C(CH ₃) ₃		OCH ₃ OCH ₃	
ОСН₃	осн _з	CH(CH₃)₂		-0-C	
OCH ₃	OCH₃	C(CH ₃) ₃		-0-C	

[0118]

第	1	表	(続き)

		第 1 改	(MACS)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH₃)₂	OCH ₃
OCH ₃	осн3	C(CH ₃) ₃	-o-с — ОСН ₃
OCH ₃	OCH₃	CH(CH ₃)₂	-0-C
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-Ü
OCH ₃	осн _з	CH(CH₃)₂	O NO ₂ -O-C NO ₂
OCH ₃	осн _з	С(СН ₃) ₃	NO ₂ -O-C-NO ₂ NO ₂
осн ₃	осн _з	CH(CH ₃)₂	-0-C-NO ₂

		第 1 表	(税き)
R ¹	R ²	R ³	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	O II —O—C—CH ₂ CH ₂ Br
OCH ₃	OCH ₃	C(CH ₃) ₃	O OCCH ₂ CH ₂ Br
OCH₃	OCH ₃	CH(CH ₃) ₂	-0-C-CH-
OCH ₃	OCH ₃	C(CH ₃) ₃	o_c

[0120]

		第 . 1 表	(続き)
R ¹	R ²	R ³	R ⁴
OCH ₃	. OCH3	C ₂ H ₅	-0-c-cH₂
OCH₃	OCH ₃	CH(CH ₃) ₂	_O-C-CH ₂ €
OCH3	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH ₃	CH₂CH₂CH₃	-0-C-CH₂
OCH₃	OCH ₃	CH(CH₃)₂	-o-с-сн ₂
OCH3	осн _з	C(CH ₃) ₃	o-ç-cH⁵
ОСН ₃	∞H₃	C₂H₅ 	-o-g-cH⁵
OCH ₃	OCH3	CH(CH ₃) ₂	O-G-CH₂- CI
OCH ₃	OCH ₃	C(CH₃)₃	-O-C-CH ₂
OCH3	OCH3	CH₂CH₂CH₃	O-C-CH ₂ -CI
OCH3	OCH₃	CH(CH₃)₂	-0-0-CH ₂ -CH

[0121]

220

219	,	第 1 表	(紀さ)
R ¹	R ²	R ³	R ⁴
OCH ₃	OCH3	C(CH ₃) ₃	-o-Ö-CH ₂
OCH ₃	OCH₃	C₂H₅	O C - CH ₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	O-C-CH ₂
OCH3	OCH ₃	C(CH ₃) ₃	O Br
OOH ₃	OCH3	CH₂CH₂CH₃	O O-C-CH₂
OCH ₃	OCH3	CH(CH ₃) ₂	O -O-C-CH ₂ Br
OCH ₃	∞H ₃	C(CH ₃) ₃	O-C-CH₂ Br
OCH ₃	∞H ₃	CH₂CH₂CH₃	O CH ₃
OCH ₃	OCH ₃	CH(CH ₃) ₂	O -O-C-CH ₂
ссн₃	OCH ₃	C(CH ₃) ₃	O CH ₃
OCH₃	OCH3	C ₂ H ₅	O -O-C-CH ₂ -CH ₃

[0122]

【表102】

		第 1 表	zzz (航き)
R ¹	R²	R ³	R ⁴
OCH ₃	OCH ₃	CH(CH ₃) ₂	O -O-C-CH₂
OCH ₃	OCH ₃	C(CH ₃) ₃	_0-CH₂
OCH ₃	OCH3	CH₂CH₂CH₃	О —о-Ё-СН₂ —СН₃
OCH ₃	OCH3	CH(CH ₃) ₂	_о-С-сн₂ (сн _з
ОСН ₃	OCH₃	C(CH ₃) ₃	O -O-C-CH₂ ()-CH₃
OCH₃	∞H₃	C₂H ₅	о -o-ё-сн ₂
осн,	ссн₃	CH(CH ₃) ₂	-o-с⊓ ₂
OCH₃	OCH ₃	C(CH ₃) ₃	O -O-C-CH ₂
OCH₃	OCH₃	CH₂CH₂CH₃	-o-c-cH₂
OCH₃	OCH ₃	CH(CH₃)₂	-o-с-сн _г
	•		

_		第 1 表	(船き)
R ¹	R ²	R ³	R ⁴
ОСН₃	OCH3	C(CH ₃) ₃	O CI ———————————————————————————————————
OCH₃	OCH₃	CH₂CH₂CH₃⁻	-O-C-CH ₂
OCH₃	ОСН₃	CH(CH₃)₂	O O-C-CH ₂ CI
осн₃	OCH3	C(CH ₃) ₃	O −O-C-CH ₂ CI CI
OCH₃	OCH3	CH₂CH₂CH₃	-0-C-CH ₂ -CI
OCH₃	OCH3	CH(CH₃)₂	O-C-CH ₂ CI
OCH₃	OCH₃	C(CH ₃) ₃	_O-C-CH ₂
			· ·
·			

[0124]

····		第 1 表 (続き)	
R1	R2	R3	R4
OCH ₃	OCH ₃	C ₂ H ₅	_o_o_a+≥oa+4
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	oсағоан,
оснз	осн3	CH(CH ₃) ₂	ocahoah o
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	o_c_araarr
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	o o ocaroarr
осн3	осн3	CH ₂ CH(CH ₃) ₂	0 0-C-04,004,
осн ₃	OCH3	- C(CH ₃) ₃	0
осн _з	осн ₃	C ₂ H ₅	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O
оснз	осн3	CH(CH3)2	O —o-¦;—ch₂oc₂H₅
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O O-ÖCH₂OC₂H₅
осн3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	o —o-ö–a+₂∞₂+₅
оснз	осн3	CH ₂ CH(CH ₃) ₂	O 0-0-0-01-002H²
оснз	OCH3	C(CH ₃) ₃	O OOOH2OC2H6
осн3	OCH3	C ₂ H ₅	_o_o_a+^aa+^aa+^a

[0125]

【表105】

		<u> 第 1 表 (統</u>	§)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O
осн3	осн3	CH(CH ₃) ₂	O
оснз	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	୦ ୦-୯-୦୳.୪୦୯%, ୦୯%
оснз	OCH ₃	CH(CH ₃)CH ₂ CH ₃	୦ ୦-୯-୦୳୵୯୦୳ _୬ ୯୳୬
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	occh²o(ch²)³ch²
OCH ₃	OCH ₃	C(CH ₃) ₃	୦ —୦-୯–୦મ.୦୯୦મ, ଧୁଦ୍ୟ
OCH ₃	OCH3	C ₂ H ₅	o_c_afafaaf o
OCH3	OCH3	CH ₂ CH ₂ CH ₃	—o-c-ананоан,
OCH ₃	OCH ₃	CH(CH ₃) ₂	o-c-afafaaf
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	o ocafafoaf
осн3	OCH3	СН(СН ₃)СН ₂ СН ₃	—o-c-afafoaf
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	0 o-c-ahahoah
OCH ₃	OCH3	C(CH ₃) ₃	_o_c_aમ⁵aศ⁵aस³ o
осн ₃	осн3	C ₂ H ₅	o-o-c-ooH₃
OCH3	оснз	CH ₂ CH ₂ CH ₃	-o-c-c-c-c-

【表106】

		第 1 表 (続き	•)
R1	R2	R3	R4
осн ₃	оснз	CH(CH ₃) ₂	O_O_O—O—H₃
OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O O
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O O
осн3	OCH ₃	C(CH ₃) ₃	O O
осн3	OCH ₃	C ₂ H ₅	0- <u>c-af-c-oof</u>
осн3	OCH ₃	CH ₂ CH ₂ CH ₃	
осн3	OCH ₃	CH(CH ₃) ₂	0 0
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	o-c-a4-c-oa4
осн3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O O O O O O
осн3	OCH3	CH ₂ CH(CH ₃) ₂	—oĊ-αͱ₂-Ċ- ∞ αͱ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	_o_c-a+z-c-oc+s
OCH ₃	осн ₃	C ₂ H ₅	O O
OCH3	осн3	CH ₂ CH ₂ CH ₃	O O O O O O O O O O O O O O O O O O O
OCH ₃	OCH3	CH(CH ₃) ₂	

			Mr 1 === /6=:3-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ĺ	R1	R2	<u>第 1 表 (続き</u> R3	R4
	ОСН3	OCH ₃		O O
				0-c-(a+2)2-c-ca+3
	оснз	OCH3	CH(CH ₃)CH ₂ CH ₃	0-c-(a+2)2-c-0a+3
	OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	•
	-			O_C-(CH2)2-C-OCH3
	OCH3	OCH ₃	C(CH ₃) ₃	O O " " " " C-OCH ₃) ₂ - C-OCH ₃
	OCH ₃	OCH ₃	C ₂ H ₅	•
	00.13	00.13	021 15	-0-0-0-0-6-0-6-0-6-0-6-0-6-0-6-0-6-0-6-
	OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	0 /=\
				-0-c-ar-0-
	осн3	OCH ₃	CH(CH ₃) ₂	-0-C-CH2-O-(-)
				-0-C-CH2-O-
	OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH ₂ -0-
				-0-c-dn ₂ -0-
	OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	O 0-C-OH2-O-(==)
	0011	0011		
	ОСНЗ	ОСНЗ	CH ₂ CH(CH ₃) ₂	-0-c-dr-0-()
	оснз	оснз	C(CH ₃) ₃	
	00113	00113	0(01/3/3	-0-C-0H2-0-(=)
	оснз	OCH3	C ₂ H ₅	
	33110	30110	- 0	-0-0-0H2-0-()-CI
	ОСН3	ОСН3	CH ₂ CH ₂ CH ₃	
				-0-0-0H2-0-()-CI
- 1				

[0128]

		第 1 表 (読き)
R1	R2	R3	R4
OCH3	ОСН3	CH(CH ₃) ₂	-0-c-cH⁵-0-{}-cı
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-0-()-CI
осн3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-CH2-O-(-)-CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-()-CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-0-0H2-0-(=)-CI
осн3	осн ₃	C ₂ H ₅	-0-c-aH5-0-
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	O -0-0-0H ₂ -0-
OCH ₃	OCH ₃	CH(CH ₃) ₂	O -O-C-CH ₂ -O-
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O -0-0-0H ₂ -0-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-c-cH²-0-
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-0-0H ₂ -0-

[0129]

<u> </u>		第 1 表 (続き)
R1	R2	R3	R4
OCH3	OCH ₃	C(CH ₃) ₃	-0-C-CH2-O-
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH2-O-CI
OCH3	OCH3	CH ₂ CH ₂ CH ₃	-0-C-CH2-O-CI
OCH ₃	OCH ₃	CH(CH3)2	-0-C-CI
осн ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O -0-C-CH2-O-
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-aH2-0-(CI
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-CI
OCH3	OCH ₃	C(CH ₃) ₃	-0-C-OH2-O-CI
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-042-0-()-043
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-c-a12-0-(a13

[0130]

·		第 1 表 (読き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	-0-C-CH2·O-()-CH3
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-O-()-CH3
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-c-ar-o
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	-0-C-CH2-O-()-CH3
OCH ₃	OCH3	C(CH ₃) ₃	-0-0-0H2-0-()-0H3
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH2-O-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-CI
OCH3	OCH ₃	CH(CH ₃) ₂	-0-C-CH2-O
OCH3	осн3	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-O-CI
осн ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	O -0-C-CH2-O-
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH2-0-CI

[0131]

	233		240
		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	Ćĺ
			0 -0-0-042-0-0-01
			-0-Ö-CH₂-O-⟨ />-CI
OCH ₃	OCH3	C ₂ H ₅	0
			-0-С-ан²-0-{}-сі
			00000
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	,CI
			-0-c-aH-0-()-cı
OCH ₃	OCH ₃	CH(CH3)2	CI
	2 3	5.1(5.1.0/2	Ω
'			o-ç-a4⁵-o-⟨>-cı
	OCH _o	∪⊓-∪⊓-∪⊓-∪	CI
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	
			-0-C-CH2-O-(=)-CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	,
			-0-0-04-0-(-)-cl
}		•	
оснз	OCH3	CH ₂ CH(CH ₃) ₂	CI
			-0-C-042-0-()-CI
OCH ₃	OCH ₃	C(CH3)3	CI
		, 0,0	
			-0-C-0H2-0-(//-CI
OCH ₃	OCH ₃	C ₂ H ₅	H³Ć
001.13	00113	02.13	
			-0-0-042-0-\cı
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	H³Ć
			0 >= >=
			-0-C-CH2-O-()-CI
Į.		•	

[0132]

【表112】

	241	AN 1 -10	/h+ + \
D4	D0		(統き)
R1 OCHe	R2	R3	R4
OCH ₃	оснз	CH(CH ₃) ₂	H³C
			-0-C-CH2-0-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
			0-C-CH ₂ -O-()-CI
OCH ₃	OCHo	CH ₂ CH ₂ CH ₂ CH ₃	<u> </u>
00113	00113	0112011201120113	O H ₃ C
			-0-c-aH2-0-
OCH ₃	OCH ₃	CH(CH3)CH2CH3	H₃C
	·	. 0, 1	0
			-0-c-a+2-0-<
			- / /
осн3	OCH3	CH ₂ CH(CH ₃) ₂	H₃C
			0-C-CH2-O-<>-CI
			0-C-CH2-O-(/>-CI
		0/01/3	
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₂ C
ł			-0-c-aH²-0-()-ci
			-0-C-042-0-()-CI
осн3	OCH ₃	C ₂ H ₅	CI
00/13	00113	2 , 13	o 04
			-o-c-aH-o-()-cı
•			3 3 3 7 3
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	CI
	· ·	2 2 0	0 CH ₃
			-o-c-aн-o-(
1 .			
OCH3	OCH ₃	CH(CH ₃) ₂	Cĺ
		·	O CH₂
1			-0-c-aH-o-()-cı
			\
OCH3	оснз	CH ₂ CH ₂ CH ₂ CH ₃	CI
			O CH ₃
}			0-0-0H-0-()-c
004-	OCH-	CH(CH*/CH*CH -	
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	0 CH
			-0-C-CH-C-()-C
			3 3 3. 3

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-o-c-aH-o-()-cı
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c-aH-o- o aH² CI
осн ₃	OCH ₃	C ₂ H ₅	-0-C-CH-O-CI CI
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-CH-O-CI CI
осн ₃	OCH ₃	CH(CH ₃) ₂	-0-C-AH-O-CI CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-O-CI CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-QH-0-CI
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-QH-O-CI CI
осн ₃	OCH ₃	C ₂ H ₅	-0-C-QH-0-()-CI

		第 1 表	(続き)
R1	R2	R3	R4
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-o-c-aH-o-()-cı
ОСН3	OCH ₃	CH(CH ₃) ₂	-0-C-QH-0-()-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-O-CD-CI
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	-0-C-CH-O-CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-QH-O- O CH3 CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-αH-0- ο αH₃ -0-C1
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH-O-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-C-QH-0-CI
OCH ₃	OCH ₃	CH(CH ₃) ₂	-0-C-CH-O-CI
осн ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	-0-0-0H-0-CI
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	-0-C-QH-O-

		第 1 表 (<u>(井 よ)</u>
R1	R2		<u>続き)</u> R4
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ -0-C-CH-O-C
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-aH-o-
OCH ₃	OCH ₃	C ₂ H ₅	-o-c-a+-o-
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	-o-c-a+-o-⟨ o a+ cı
OCH ₃	OCH ₃	CH(CH ₃) ₂	-o-¢-a+-o-⟨ o a+- cı
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	o-c-aH-o-<
OCH ₃	оснз	CH(CH ₃)CH ₂ CH ₃	O CH3 CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-QH-0-CI
OCH ₃	OCH3	C(CH ₃) ₃	-0-0-0H-0-(CI
OCH ₃	OCH3	C ₂ H ₅	-0-C-(CH ⁵) ³ -0-CI

[0136]

		第 1 表	(続き)
R1	R2	R3	R4
ОСН3	осн ₃	CH ₂ CH ₂ CH ₃	-0-C-(CH ⁵) ³ -0-CI
осн ₃	осн ₃	CH(CH ₃) ₂	-0-C-(OH ⁵) ³ -0-CI
осн3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O O-C-(OH ₂) ₃ -O-
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O -O-C-(CH ₂) ₃ -O- -CI
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O -O-C-(CH ₂) ₃ -O- -CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O O-C-(CH ₂) ₃ -O- CI
осн ₃	OCH ₃	C ₂ H ₅	О О
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	О О ОСС-ОН
OCH ₃	OCH ₃	CH(CH ₃) ₂	—о-с-с-он 0 0
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	осс-он
оснз	OCH ₃	СН(СН3)СН2СН3	
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	О 0 о-ссан
OCH ₃	OCH ₃	C(CH ₃) ₃	O O

[0137]

【表117】

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	осн3	C ₂ H ₅	
OCH3	OCH ₃	CH ₂ CH ₂ CH ₃	— O— С-ОН2-С-ОН
осн3	OCH3	CH(CH ₃) ₂	о o-c-aн-c-aн
осн3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O-С-ОН²-С-ОН О
оснз	OCH3	СН(СН3)СН2СН3	—о-с-ан²-с-ан О О
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	—o-c-ah-c-aн
OCH ₃	OCH ₃	C(CH ₃) ₃	ОСОН2-СОН
осн3	OCH3	C ₂ H ₅	O O
OCH3	OCH3	CH ₂ CH ₂ CH ₃	
OCH ₃	OCH ₃	CH(CH ₃) ₂	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O-C-(CH ₂) ₂ -C-OH
OCH3	OCH ₃		
OCH3	OCH ₃		O O
оснз	OCH ₃	C(CH ₃) ₃	O O O-C-(OH ₂) ₂ -C-OH
осн ₃	оснз	C ₂ H ₅	O O

[0138]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	осн _з	CH ₂ CH ₂ CH ₃	O O
OCH ₃	осн3	CH(CH ₃) ₂	O O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O O
OCH3	осн3	CH(CH3)CH2CH3	0 0
OCH ₃	осн3	CH ₂ CH(CH ₃) ₂	O O
осн3	OCH ₃	C(CH ₃) ₃	0 0
OCH ₃	OCH3	C ₂ H ₅	O O O O O O O O O O O O O O O O O O O
осн3	оснз	CH ₂ CH ₂ CH ₃	O O
OCH3	OCH3	CH(CH ₃) ₂	O O
осн3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O O
OCH3	осн3	CH(CH ₃)CH ₂ CH ₃	O O
осн3	OCH3	CH ₂ CH(CH ₃) ₂	O O —O-C-CH₂-C-ONa
осн3	осн3	C(CH ₃) ₃	O O
осн3	OCH3	C ₂ H ₅	O O
осн3	OCH ₃	CH ₂ CH ₂ CH ₃	O O

[0139]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	O O
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	O O U U U U U U U U U U U U U U U U U U
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	O O
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O O
OCH ₃	OCH ₃	C(CH ₃) ₃	O O
OCH ₃	OCH ₃	C ₂ H ₅	-o-c-c-c
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-c-c-c-
осн ₃	OCH ₃	CH(CH ₃) ₂	-o-c-c-c-
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	
осн ₃	OCH ₃	СН(СН3)СН2СН3	O OCH ₃
оснз	OCH3	CH ₂ CH(CH ₃) ₂	-0-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-c-c-

[0140]

		(100)	
	257	第 1 表	258 (続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH-0-SO2-CH3
осн3	OСН ₃	CH ₂ CH ₂ CH ₃	-o-c-aно-sozанд
OCH ₃	OCH3	CH(CH ₃) ₂	-0-C-CH3-CH3-CH3
ОСН3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	o cH ₃ o-c-a+o-so₂-{}-a+3
OCH3	OCH3	CH(CH ₃)CH ₂ CH ₃	O CH ₃ O-C-CH-O-SO ₂ -C->-CH ₃
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	0 CH3 -0-C-C+0+0-502-(
OCH3	OCH ₃	C(CH ₃) ₃	O CH3 -0-C-C+0+0-502-C->-CH3
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH2-S-CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-c-c-c-s
ОСН ₃	OCH3	CH(CH ₃) ₂	-0-C-012-S-CI
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH2-S-CI
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	-0-C-CH2-S-CI
осн3	OCH3	CH ₂ CH(CH ₃) ₂	0

[0141]

【表121】

		第 1 表	(続き)
R1	R2	R3	R4
ОСН3	осн ₃	C(CH ₃) ₃	-o-c-a4-s-(>-c1
OCH ₃	OCH ₃	C ₂ H ₅	0-0-12 0-0-12 0-0-12
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	0-04 0-04 -0-0-04 -0-04
OCH3	OCH ₃	CH(CH ₃) ₂	O-OH2 O -O-C-OH2-S
осн _з	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O-CH ₂
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O-OH ₂ O-O-C-OH ₂ -S
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	0 -0-C-CH ₂ -S
OCH ₃	OCH ₃	C(CH ₃) ₃	O-OH2 O-OH2-S

		第 1 表	(続き)
R1	R2	R3	R4
OCH3	OCH3	C ₂ H ₅	o-{
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	-0-c-aH-o
осн ₃	осн ₃	CH(CH3)2	-o-c-oH-o
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-QH-O
осн ₃	OCH3	CH(CH3)CH2CH3	-o-c-aH-o
осн ₃	оснз	CH ₂ CH(CH ₃) ₂	-0-C-OH-O
осн ₃	осн3	C(CH ₃) ₃	-0-C-QH-0
			-o-c-a+o

[0143]

【表123】

		第 1 表	(続き)
R1	R2	R3	R4
ОСН3	ОСН3	C2H5	O_CF,
осн ₃	оснз	CH ₂ CH ₂ CH ₃	O CH
OCH ₃	OCH3	CH(CH ₃) ₂	O CH, -O-C-CH-O O-CF,
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH
осн ₃	осн ₃	СН(СН ₃)СН ₂ СН ₃	O CH
осн ₃	оснз	CH ₂ CH(CH ₃) ₂	O CH,
ОСН _З	OCH ₃	C(CH ₃) ₃	O CH,
оснз	ОСНЗ	C2H5	O CH, CI
			о сн, о-ссно

[0144]

【表124】

265 第 1 表 (続き) R2 R1 R4 R3 ОСН3 осн3 CH₂CH₂CH₃ OCH₃ OCH₃ CH(CH₃)₂ OCH₃ OCH₃ CH₂CH₂CH₂CH₃ OCH3 CH(CH3)CH2CH3 OCH₃ OCH₃ CH₂CH(CH₃)₂ OCH₃ OCH₃ OCH₃ C(CH3)3 **ОСН3** OCH3 C2H5 оснз OCH3 CH2CH2CH3

[0145]

【表125】

		第 1 表	(続き)
R1	R2	R3	R4
осн ₃	OCH ₃	CH(CH ₃) ₂	O CH CI
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	-0-C-CH-O
осн ₃	осн ₃	CH(CH ₃)CH ₂ CH ₃	O CH N CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	-0-C-CH-0
осн ₃	оснз	C(CH ₃) ₃	-0-C-CH-0
OCH ₃	осн _з	C ₂ H ₅	O CH ₃ O CH ₃ O CH ₃ F
осн3	OCH3	CH ₂ CH ₂ CH ₃	-0-0-0H-0 0-N=>-0I 0-N=>-0I 0-N=>-0I F

[0146]

【表126】

270

		第 1 表 ((続き)
R1	R2	R3	R4
осн ₃	OCH ₃	СН(СН3)2	O CH ₃ F -0-C-CH-O
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ F
осн3	осн ₃	СН(СН3)СН2СН3	O CH ₃ F -0-C-CH-O
осн ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O OH3 F O OH3 F -0-C-OH-O
осн3	осн ₃	C(CH ₃) ₃	O CH ₃ F -0-C-CH-O
осн ₃	оснз	C ₂ H ₅	O CH ₃ - CF ₃
осн3	осн ₃	CH ₂ CH ₂ CH ₃	O-(N=)-OF ₃ O-(N=)-OF ₃ O-(N=)-OF ₃

[0147]

【表127】

	271		272
		<u>第 1 表</u>	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	0-\N=\\CF_3
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃
OCH ₃	ОСН3	CH(CH3)CH2CH3	0 CH ₃
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₈ \\ -O-C-CH-O \\ O-__\-\CF ₃
осн ₃	осн3	С(СН3)3	O CH3
ОСН3	OCH ₃	C ₂ H ₅	-0-C-OH-O
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₃	
			-0-C-CH-O

[0148]

	273		274
		第 1 表	(続き)
R1	R2	R3	R4
ОСН3	оснз	CH(CH ₃) ₂	O-\N=\-OF_3
осн ₃	осн ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI -O-C-CH-O N= OF ₃
ОСН3	осн ₃	CH(CH ₃)CH ₂ CH ₃	O CH ₃ CI -O-C-CH-O O N= OF GIA O
осн3	осн ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ () Cí -0-C-CH-O (N=) -CF ₃
осн ₃	оснз	C(CH ₃) ₃	
OCH ₃	OCH ₃	C ₂ H ₅	-0-C-CH-O
OCH ₃	осн ₃	CH ₂ CH ₂ CH ₃	-0-C-CH-O
	· · · · · · · · · · · · · · · · · · ·		-0-C-CH-O

[0149]

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH3 N- CI
осн ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH3 CI
осн ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	O CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O OH O N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O OH N CI
OCH ₃	OCH ₃	C ₂ H ₅	0 OH3 CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	0 CH3 CI

[0150]

		(140)	1474-7
	277	第 1 表 (²⁷⁸ (続き)
R1	R2	R3	R4
осн3	OCH ₃	CH(CH ₃) ₂	O CH ₃ CI
осн3	оснз	CH ₂ CH ₂ CH ₂ CH ₃	O CH ₃ CI
OCH ₃	OCH ₃	CH(CH3)CH2CH3	O CH3 (
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH ₃ CI
осн ₃	OCH ₃	C(CH ₃) ₃	0 0H3 () -0C-0H-0
OCH ₃	OCH ₃	C₂H₅	O CH3 () -00-CH-0

[0151]

		第 1 表 _	(続き)
R1	R2	R3	R4
OCH3	осн3	CH ₂ CH ₂ CH ₃	O CH ₃ CI O CH ₃ CI O CH ₃ CI
OCH ₃	OCH3	CH(CH ₃) ₂	O CH3 CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH3 CI
 OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	0 QH3 () -0C-QH-0
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O CH O N CI
осн3	OCH ₃	C(CH3)3	O CH3 CI

[0152]

【表132】

		第 1 表	(続き)
R1	R2	R3	R4
ОСН3	OCH ₃	C ₂ H ₅	O QH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₃	O CH3 -O CI
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	O CH3 -OC-CH-O
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	O CH ₃ CI
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	O QH3 -OC-QH-Q

[0153]

【表133】

	203		204
		第 1 表	(続き)
R1	R2	R3	R4
оснз	OCH ₃	C(CH ₃) ₃	P CI
			-0-C-CH-O
OCH ₃	OCH ₃	C ₂ H ₅	OCOH2-ON
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	o-c-a+2·an
осн3	OCH ₃	CH(CH ₃) ₂	
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	o-ca+2-av
осн3	OCH3	CH(CH ₃)CH ₂ CH ₃	—o—ç—aH⁵-an
OCH ₃	OCH ₃	CH ₂ CH(CH ₃) ₂	0C0H2-QN
OCH ₃	OCH ₃	C(CH ₃) ₃	oca+2-an
OCH ₃	OCH3	C ₂ H ₅	0-c-(a+3)3-v 0 'a+3
OCH3	OCH3	CH ₂ CH ₂ CH ₃	O
осн ₃	OCH ₃	CH(CH ₃) ₂	O
OCH ₃	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	—O-C-(OH ⁵) ³ -N O OH ³

[0154]

	200	ed	200
		第 1 表 (続き)	
R1	R2	R3	R4
осн ₃	OCH ₃	C(CH ₃) ₃	O C C Br
OCH ₃	OCH ₃	OH2-COH3	oca+³
OCH ₃	OCH ₃	C(CH ₃) ₃	O O-C-OF ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-F-F
OCH ₃	OCH3	C(CH ₃) ₃	O CI SOH ₃
осн _з	осн3	C(CH ₃) ₃	
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₂ C
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-\(\)
OCH ₃	OCH ₃	C(CH ₃) ₃	O Br CH3
осн3	OCH ₃	C(CH ₃) ₃	о-°с-ана₂

[0155]

【表135】

	281		288
		第1表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-a+2-s
OCH ₃	OCH ₃	C(CH ₃) ₃	_o_c_c_c_c_с_ан
осн3	OCH ₃	C(CH ₃) ₃	CI CI O OÖ
OCH ₃	OCH ₃	C(CH ₃) ₃	
ОСН3	OCH3	C(CH ₃) ₃	-o-c
OCH3	OCH3	C(CH ₃) ₃	— о— с — х — х — х — х — х — х — х — х — х
OCH ₃	OCH ₃	C(CH ₃) ₃	—о-с ан=а́н о о о о
осн ₃	OCH ₃	C(CH ₃) ₃	о-с с-ан
осн ₃	OCH ₃	C(CH ₃) ₃	-o-с с с-он
осн3	OCH3	С(СН ₃)3	CI CI O OH OH

	289		290
		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH3	C(CH ₃) ₃	0= C O
осн ₃	OCH3	C(CH ₃) ₃	
OCH3	OCH ₃	C(CH ₃) ₃	-o-cs
OCH3	осн3	C(CH ₃) ₃	O CI
оснз	OCH ₃	С(СН ₃)3	O O C H₃C-S
оснз	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH ₃	C(CH ₃) ₃	O CI
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c
осн3	осн ₃	C(CH ₃) ₃	0 CI

[0157]

【表137】

	291		292
		第 1 表	(続き)
R1	R2	R3	R4
осн ₃	осн ₃	C(CH ₃) ₃	-0-C-(CH ₂)CH ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	$-0-\overset{\text{CI}}{\leftarrow}\overset{\text{CI}}{\longleftarrow}$
OCH ₃	ОСН ₃	C(CH ₃) ₃	-0-c-__________________\
OCH3	OCH ₃	C(CH ₃) ₃	-0-C-CF2-O-()
OCH ₃	OCH ₃	C(CH ₃) ₃	-o-c-_o_N
осн ₃	OCH ₃	C(CH ₃) ₃	
OCH ₃	OCH ₃	C(CH ₃) ₃	—O—Ç—ÁH Ö CH³
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-c-0-0H2
оснз	OCH3	C(CH3)3	-0-C-CH ⁵ -0-CI

[0158]

【表138】

**	1	尨	/全生	*	

R1	R2	第 1 表 (R3	統き) R4
OCH3	OCH ₃	C(CH ₃) ₃	о о сн о сн з
OCH ₃	OCH ₃	С(СН ₃) ₃	O CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	-0-C-(N O O OH OH OH OH
оснз	OCH ₃	C(CH ₃) ₃	OCH3 OCH3 OCH3
оснз	OCH ₃	C(CH ₃) ₃	
осн _з	OCH ₃	C(CH ₃) ₃	O CH ₃ N -C S CH ₃
осн3	осн3	CH(CH ₃) ₂	c-_o_N
OCH3	OCH ₃	CH(CH ₃) ₂	
осн ₃	OCH ₃	CH(CH ₃) ₂	H ₃ C O N
осн ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N O = C C N H ₃ C O N

[0159]

【表139】

第	表	124	3.1	
713 I	200	Bar.	~	•

R1	R2	第 1 表 (i R3	R4
OCH ₃	OCH ₃	CH(CH ₃) ₂	H ₃ C O N
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N
OCH3	OCH ₃	C(CH ₃) ₃	O CI CI CI
осн ₃	OCH ₃	CH(CH ₃) ₂	H ₃ CON
осн3	OCH ₃	C(CH ₃) ₃	H ₃ CON
осн3	OCH ₃	C(CH ₃) ₃	H ₃ C O N CI
осн ₃	осн ₃	C(CH ₃) ₃	H ₃ C O N CH ₃
осн _з	OCH ₃	C(CH ₃) ₃	H ₃ C O N CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃

[0160]

【表140】

沵	1	表	1生	*	ı
'4 2		400	L ATC		

R1	R2	第 1 表 (R3	R4
осн ₃	OCH3	C(CH ₃) ₃	H ² C O N C(CH ³) ³
OCH ₃	OCH ₃	СН(СН ₃) ₂	H ₃ C O N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N CI
осн ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N NO ₂
осн ₃	OCH ₃	C(CH ₃) ₃	H ₃ C N NO ₂
осн ₃	OCH ₃	сн(сн ₃) ₂	O NO ₂ H ₃ C O N NO ₂
осн3	осн ₃	C(CH ₃) ₃	O N NO ₂
OCH ₃	OCH ₃	CH(CH ₃) ₂	H ₃ C O N NO ₂
осн3	OCH ₃	C(CH ₃) ₃	H ₃ C NO ₂

[0161]

【表141】

貓	1	·-	徐	Ł	•	
5H3	1	18	I ATIC	73.		

R1	R2	第 1 表 (R3	R4
осн ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N NO ₂
OCH3	OCH ₃	CH(CH ₃) ₂	H ₃ C O N CF ₃
осн ₃	осн ₃	C(CH ₃) ₃	H ₃ C O N CF ₃
OCH ₃	OCH ₃	C(CH ₃) ₃	H ₃ C O N
оснз	OCH3	C(CH ₃) ₃	O = C C C C C C C C C C
OCH ₃	OCH ₃	C(CH ₃) ₃	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
осн ₃	OCH3	C(CH ₃) ₃	
осн ₃	OCH ₃	сн(сн ₃) ₂	O CI
осн ₃	OCH ₃	C(CH ₃) ₃	O H ₃ C CH ₃

[0162]

【表142】

抓	1	表	(8#	À	١
n	•	2.	17/	•	

R1	R2	第 1 表 (R3	従き) R4
осн ₃	OCH ₃	CH(CH ₃) ₂	O H ₃ C CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн _з	OCH ₃	СН(СН3)2	O CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O C(CH ₃) 3
осн ₃	OCH3	C(CH3)3	O CI CI
осн ₃	OCH ₃	CH(CH ₃) ₂	O CI CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O N
OCH3	OCH ₃	C(CH ₃) ₃	O C(CH ₃) 3
OCH ₃	осн ₃	CH(CH ₃) ₂	O C(CH ₃) 3

[0163]

【表143】

第 1 表 (続き)

R1	R2	R3	長 (続き) R4
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ CH ₃
OCH ₃	OCH3	C(CH ₃) ₃	O CH3
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ C(CH ₃) 3
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн ₃	осн ₃	C(CH ₃) ₃	O N CI
OCH ₃	OQH ₃	CH(CH ₃) ₂	O N CI
OCH3	осн3	C(CH ₃) ₃	O N CI
осн3	OCH3	CH(CH ₃) ₂	O N CI
осн ₃	OCH ₃	C(CH ₃) ₃	CI O N CI
OCH3	осн3	C(CH ₃) ₃	O N CI
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн ₃	осн3	CH(CH ₃) ₂	O CH ₃

[0164]

【表144】

AA.	4	يو.	/ + t	.	
新	1	4 X	(統	₫	}

R1	R2	第 <u>1</u> R3	<u>表 (続き)</u> R4
OCH ₃	осн ₃	C(CH ₃) ₃	O C CH ₃) 3
осн ₃	осн ₃	C(CH ₃) ₃	O CH ₃
осн3	осн3	C(CH ₃) ₃	O CH3 CI
OCH ₃	OCH3	CH(CH ₃) ₂	O CH ₃ CI
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ CI
OCH ₃	осн3	C(CH ₃) ₃	O CH3 CI
осн3	OCH ₃	C(CH ₃) ₃	O CH ₃ CH ₃ CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	-C CH ₃ -C CH ₃) 3
OCH ₃	OCH ₃	CH(CH ₃) ₂	O CH ₃ C(CH ₃) 3
OCH ₃	осн ₃	CH(CH ₃) ₂	
OCH ₃	OCH ₃	C(CH ₃) ₃	-c-\(\bigver_{N=}^{N}\)
осн ₃	OCH ₃	CH(CH ₃) ₂	O
осн ₃	OCH ₃	C(CH ₃) ₃	0

[0165]

【表145】

		第1章	(원호)
R1	R2	R3	R4
осн3	OCH3	CH(CH ₃) ₂	O CH ₃
осн ₃	OCH ₃	C(CH ₃) ₃	O CH ₃
осн ₃	OCH3	C(CH ₃) ₃	о С с сн ₃) 3
осна	OCH3	C(CH ₃) ₃	ON NO2
осна	OCH ₃	CH(CH ₃) ₂	O NO ₂
		C(CH ₃) ₃	O NO ₂
осна	OCH ₃	C(CH ₃) ₃	ON NO2
OCH3	OCH ₃	C(CH ₃) ₃	O -Ö NO ₂
OCH3	осн ₃	С(СН ₃₎₃	-CF ₃
осн3	оснз	СН(СН ₃) ₂	CF ₃

【0166】 【表146】

30	9		310
		第14	본(統き)
R1	R2	R3	R4
осн ₃	OCH ₃	C(CH ₃) ₃	-0-C
осн3	OCH3	C(CH ₃) ₃	H _s C O N F
осн3	OCH3	C(CH ₃) ₃	H ₃ C ON Br
осн3	OCH3	C(CH ₃) ₃	-0-C N -F
осн ₃	OCH ₃	C(CH ₃) ₃	-0-C-N F
ocH₃	OCH ₃	C(CH ₃) ₃	o H _s C O H _s C O H _s C
осн3	осн3	С(СН ₃) ₃	H ₃ C ON CF ₃
осн ₃	OCH ₃	С(СН ₃) ₃	-o-c
осн ₃	оснз	С(СН ₃)3	-0-C-\(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\)
осн3	OCH ₃	C(CH ₃) ₃	O

[0167]

【表147】

		第 1 表	(続き)
R1	R2	R3	R4
OCH ₃	OCH ₃	C(CH ₃) ₃	—o-с —омон
OCH ₃	OCH3	CH(CH ₃)CH ₂ CH ₃	O-C-(OH2)3-N(OH3
осн3	OCH ₃	CH ₂ CH(CH ₃) ₂	O-C-(CH2)3-N CH3
OCH ₃	OCH ₃	C(CH ₃) ₃	O CH ₃ OC(CH ₂) ₃ -N CH ₃
OCH3	оснз	C(CH ₃) ₃	-0-c-(cH ₂) ₃ -0

[0168]

【表148】

第 2 表

R1	R2	R3	n
OCH ₃	OCH ₃	CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	0
OCH ₃	OCH3	CH ₂ CH ₂ CH ₃	2
OCH3	OCH3	CH(CH ₃) ₂	0
OCH ₃	OCH3	CH(CH ₃) ₂	2
OCH ₃	OCH3	CH(CH ₃) ₂	4
OCH ₃	OCH3	CH(CH ₃) ₂	6
OCH3	OCH3	C(CH ₃) ₃	0
OCH ₃	OCH3	C(CH3)3	1
OCH3	OCH3	C(CH ₃) ₃	2
OCH ₃	OCH ₃	C(CH ₃) ₃	3
OCH ₃	OCH ₃	C(CH ₃) ₃	4
OCH ₃	OCH ₃	C(CH ₃) ₃	5
OCH3	OCH3	CH ₂ CH ₂ CH ₃	6
OCH ₃	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	0
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	1
осн3	осн3	CH ₂ CH ₂ CH ₂ CH ₃	2
OCH3	осн3	CH ₂ CH ₂ CH ₂ CH ₃	4
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	0
осн3	OCH3	CH ₂ CH(CH ₃) ₂	2
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	2
OCH ₃	OCH ₃	CH(CH ₃)CH ₂ CH ₃	0

[0169]

【表149】

第 3 表

R1	R2	R3	結合位置
OCH ₃	OCH ₃	CH ₃	р
OCH3	осн3	CH₂CH₃	p
OCH3	OCH3	CH ₂ CH ₂ CH ₃	m
OCH3	осн3	CH ₂ CH ₂ CH ₃	р
OCH3	OCH3	CH(CH ₃) ₂	· O
OCH3	осн3	CH(CH ₃) ₂	m
OCH ₃	OCH3	CH(CH ₃) ₂	р
OCH3	OCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	m
OCH3	OCH3	CH ₂ CH ₂ CH ₂ CH ₃	р
осн3	OCH3	CH(CH ₃)CH ₂ CH ₃	0
осн3	OCH3	CH(CH ₃)CH ₂ CH ₃	m
OCH3	OCH ₃	CH(CH ₃)CH ₂ CH ₃	р
OCH ₃	OCH3	CH ₂ CH(CH ₃) ₂	0
OCH3	OCH ₃	CH ₂ CH(CH ₃) ₂	m
OCH3	оснз	СH ₂ CH(СH ₃) ₂	р
OCH3	OCH3	C(CH ₃) ₃	0
OCH3	OCH ₃	C(CH ₃) ₃	m
OCH3	OCH3	C(CH ₃) ₃	р

【0170】製法 a の例として、例えば、2-(4,6 -ジメトキシ-2-ピリミジニルチオ)-3-メチルブ タノールと塩化チオニルとを用いると、反応式は下記の* *ように表される。

【化29】

【0171】製法bの例として、例えば、2-(4,6 -ジメトキシー2-ピリミジニルチオ)-3-メチルブ

※と、反応式は下記のように表される。

【化30】

タノールと4-クロロフェニルクロライドとを用いる ※

$$\begin{array}{c}
 & H_3C - O \\
 & -HC1 \\
\hline
 & -HCH $

【0172】製法cの例として、例えば、2-(4,6 ージメトキシー2ーピリミジニルチオ) -3-メチルブ タノールと無水酢酸とを用いると、反応式は下記のよう * *に表される。 【化31】

$$\begin{array}{c}
O \\
-HO-C-CH_3\\
\hline
\\
H_3C-O
\end{array}$$

$$\begin{array}{c}
H_3C \\
CH_3\\
\hline
\\
N
\end{array}$$

$$\begin{array}{c}
CH_3\\
CH-CH_2-O-C-CH_3\\
\hline
\\
H_3C-O
\end{array}$$

【0173】製法 dの例として、例えば、1ークロロー 2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチルブタンとチオ酢酸とを用いると、反応 ※ ※式は下記のように表される。 【化32】

***** 50

【0174】上記製法a、b及びcに於て、原料の式 (II) の化合物は、前記R'、R'及びR'の定義に 基づいたものを示し、好ましくは、前記R1、R2およ びR³のそれぞれ好ましい定義に基づいたものを示す。 式(II)の化合物は、特願平4年194529号に記 載されている方法に準じ合成することができる。式(Ⅰ 1) の化合物の例として、下記の化合物をあげることが できる。2-(4,6-ジメトキシ-2-ピリミジニル チオ) -3-メチルブタノール、2-(4,6-ジメト キシ-2-ピリミジニルチオ) -3, 3-ジメチルブタ ノール、2- (4、6-ジメトキシ-2-ピリミジニル チオ) ブタノール、2-(4,6-ジメトキシー2-ピ リミジニルチオ) ペンタノール、2- (4, 6-ジメト キシ-2-ピリミジニルチオ) -3-メチルペンタノー ル、2-(4,6-ジメトキシ-2-ピリミジニルチ オ) -4-メチルペンタノール及び2-(4,6-ジメ トキシー2-ピリミジニルチオ) -2-シクロペンチル エタノール。

【0175】上記製法 a に於て、使用されるハロゲン化 剤の例として、下記の化合物をあげることができる。メタンスルホニルクロライド、塩化チオニル及び臭化チオニル。上記製法 b に於て、原料の式(III)の酸塩化物は、前記 R⁶ および R⁷ の定義に基づいたものを示し、R⁶ は好ましくは、前記 R⁶ の好ましい定義に基づいたものを示し、R⁷ は、好ましくは、塩素又は臭素を示す。式(III)の酸塩化物の例として、下記の化合物をあげることができる。

ベンゾイルクロライド又はブロマイド、ケイヒ酸クロライド又はブロマイド、プロピオン酸クロライド又はブロマイド、ニコチン酸クロライド又はブロマイド、pークロロベンゾイルクロライド又はブロマイド、クロロ酢酸クロライド又はブロマイド、4ークロロー2ーメチルフェノキシ酢酸クロライド、3ーフェニルプロピオン酸クロライド。

*【0176】上記製法 c に於て、原料の式 (IV)の酸無水物は、前記R⁶の定義に基づいたものを示し、R⁶ は好ましくは、前記R⁶の好ましい定義に基づいたもの を示す。式 (IV)の酸無水物の例として、下記の化合物をあげることができる。無水酢酸、無水プロピオン酸、酢酸蟻酸無水物。

【0177】上記製法 d に於て、原料の式 (V) の化合物は、前記R¹、R²、R³及びR¹の定義に基づいたものを示し、R¹、R²、R³は好ましくは、前記R¹、R²、R³の好ましい定義に基づいたものを示す。式 (V) の化合物は、前記製法 a により合成される本発明化合物である。式 (V) の化合物の例として、下記の化合物をあげることができる。1ークロロー2ー30 (4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3ーメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3ーメチルーブタン、1ークロロー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン、1ーブロモー2ー(4,6ージメトキシー2ージメトキシピリミジニルチオ)ー3,3ージメチルーブタン。

【0178】上記製法 d に於て、原料の式 (V I) の化合物は、前記 R⁶の定義に基づいたものを示し、R⁶は好ましくは、前記 R⁶の好ましい定義に基づいたものを示す。式 (V I) の化合物の例として、下記の化合物をあげることができる。チオ酢酸、チオ安息香酸、チオプロピオン酸。

【0179】上記製法 a の実施に際しては、適当な希釈剤として、すべての不活性な有機溶媒を挙げることができる。斯かる希釈剤の例としては、脂肪族、環脂肪族および芳香族炭化水素類(場合によっては塩素化されてもよい)例えば、ペンタン、ヘキサン、シクロヘキサン、石油エーテル、リグロイン、ベンゼン、トルエン、キシレン、ジクロロメタン、クロロホルム、四塩化炭素、

1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン;その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH F)、ジエチレングリコールジメチルエーテル(DG M) ; その他、ケトン類、例えばアセトン、メチルエチ ルケトン(MEK)、メチルイソプロピルケトン、メチ ルイソブチルケトン (MIBK) ; その他、ニトリル類 例えば、アセトニトリル、プロピオニトリル、アクリロ ニトリル;その他、エステル類例えば、酢酸エチル、酢 酸アミル;その他酸アミド類例えば、ジメチルホルムア ミド (DMF)、ジメチルアセトアミド (DMA)、N -メチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ;その他、スルホン、スルホキシド類例え ば、ジメチルスルホキシド (DMSO) 、スルホラン; 等をあげることができる。

【0180】製法aは、実質的に広い温度範囲内におい て実施することができる。一般には、約-20~約12 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または**減**圧下で操作することもできる。製法 a を実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、希釈剤例えばクロロホルム中、1モル量乃至1. 2 モル量のハロゲン化剤を反応させることによって目的 化合物を得ることができる。

【0181】上記製法bの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お よび芳香族炭化水素類 (場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン;その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH F)、ジエチレングリコールジメチルエーテル (DG) M) ; その他、ケトン類例えばアセトン、メチルエチル ケトン (MEK) 、メチルイソプロピルケトン、メチル イソブチルケトン (MIBK) ; その他、ニトリル類例 えば、アセトニトリル、プロピオニトリル、アクリロニ トリル;その他、エステル類例えば、酢酸エチル、酢酸 アミル;その他、酸アミド類例えば、ジメチルホルムア ミド (DMF) 、ジメチルアセトアミド (DMA) 、N ーメチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ;その他、スルホン、スルホキシド類例え

ぱ、ジメチルスルホキシド (DMSO)、スルホラン: その他、および塩基例えば、ピリジン等をあげることが できる。

【0182】製法bは、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 10 示することができる。無機アルカリ金属アミド類、例え ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4-テトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, Nージエチルアニリン、ピリジン、4ー ジメチルアミノピリジン (DMAP)、1,4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1,8-ジアザビシクロ[5,4,0]ウンデクー7ー 20 エン (DBU) 等を挙げることができる。有機リチウム 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、sec-ブチルリチウム、tert-ブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、n-ブチルリチウム・DABCO、n-ブチルリチ ウム・DBU、nーブチルリチウム・TMEDA等を挙 げることができる。

【0183】製法bは、実質的に広い温度範囲内におい て実施することができる。一般には、約-40~約10 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法bを実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、例えばピリジン中、1モル量乃至1.2モル量の 式(III)の酸塩化物反応させることによって目的化 合物を得ることができる。

【0184】上記製法cの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お よび芳香族炭化水素類(場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、エチレンクロライド、クロル ベンゼン、ジクロロベンゼン;その他、エーテル類例え ば、ジエチルエーテル、メチルエチルエーテル、ジイソ プロピルエーテル、ジブチルエーテル、ジオキサン、ジ メトキシエタン (DME) 、テトラヒドロフラン (TH 50 F)、ジエチレングリコールジメチルエーテル (DG

30

324

M) ; その他、ケトン類例えばアセトン、メチルエチル ケトン (MEK) 、メチルイソプロピルケトン、メチル イソブチルケトン (MIBK) ; その他、ニトリル類例 えば、アセトニトリル、プロピオニトリル、アクリロニ トリル;その他、エステル類例えば、酢酸エチル、酢酸 アミル;その他、酸アミド類例えば、ジメチルホルムア ミド (DMF) 、ジメチルアセトアミド (DMA) 、N -メチルピロリドン、1,3-ジメチル-2-イミダゾ リジノン、ヘキサメチルフォスフォリックトリアミド (HMPA) ; その他、スルホン、スルホキシド類例え ば、ジメチルスルホキシド (DMSO) 、スルホラン; その他、および塩基例えば、ピリジン等をあげることが できる。

【0185】製法 c は、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 示することができる。無機アルカリ金属アミド類、例え ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4-テトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, N-ジエチルアニリン、ピリジン、4-ジメチルアミノピリジン (DMAP)、1,4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1, 8-ジアザビシクロ [5, 4, 0] ウンデクー7ー エン (DBU) 等を挙げることができる。有機リチウム 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、n-ブチルリチウム・DABCO、n-ブチルリチ ウム・DBU、nーブチルリチウム・TMEDA等を挙 げることができる。

【0186】製法cは、実質的に広い温度範囲内におい て実施することができる。一般には、約-40~約10 0℃、好ましくは、約0~約60℃の間で実施できる。 また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法cを実施す るにあたっては、例えば、式 (II) の化合物1モルに 対し、例えばピリジン中、1モル量乃至1.2モル量の 式(IV)の酸無水物を反応させることによって目的化 合物を得ることができる。

【0187】上記製法dの実施に際しては、適当な希釈 剤として、すべての不活性な有機溶媒を挙げることがで きる。斯かる希釈剤の例としては、脂肪族、環脂肪族お

よび芳香族炭化水素類(場合によっては塩素化されても よい) 例えば、ペンタン、ヘキサン、シクロヘキサン、 石油エーテル、リグロイン、ベンゼン、トルエン、キシ レン、ジクロロメタン、クロロホルム、四塩化炭素、 1, 2-ジクロロエタン、クロルベンゼン、ジクロロベ ンゼン;その他、エーテル類例えば、ジエチルエーテ ル、メチルエチルエーテル、ジイソプロピルエーテル、 ジブチルエーテル、ジオキサン、ジメトキシエタン (D ME)、テトラヒドロフラン(THF)、ジエチレング リコールジメチルエーテル (DGM) ; その他、ケトン 類例えばアセトン、メチルエチルケトン (MEK)、メ チルイソプロピルケトン、メチルイソブチルケトン (M IBK);その他、ニトリル類例えば、アセトニトリ ル、プロピオニトリル、アクリロニトリル;その他、エ ステル類例えば、酢酸エチル、酢酸アミル;その他、酸 アミド類例えば、ジメチルホルムアミド (DMF) 、ジ メチルアセトアミド (DMA)、N-メチルピロリド ン、1,3-ジメチル-2-イミダゾリジノン、ヘキサ メチルフォスフォリックトリアミド (HMPA);その 他、スルホン、スルホキシド類例えば、ジメチルスルホ キシド (DMSO) 、スルホラン; その他、および塩基 例えば、ピリジン等をあげることができる。

【0188】製法は、酸結合剤の存在下で行うことが でき、斯かる酸結合剤としては、無機塩基としてアルカ リ金属の水酸化物、炭酸塩、重炭酸塩およびアルコラー ト等例えば、炭酸水素ナトリウム、炭酸水素カリウム、 炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウムを例 示することができる。無機アルカリ金属アミド類、例え ば、リチウムアミド、ナトリウムアミド、カリウムアミ ド等を挙げることができる。有機塩基として第3級アミ ン類、ジアルキルアミノアニリン類及びピリジン類、例 えば、トリエチルアミン、1,1,4,4-テトラメチ ルエチレンジアミン (TMEDA)、N, N-ジメチル アニリン、N, N-ジエチルアニリン、ピリジン、4-ジメチルアミノピリジン (DMAP) 、1,4-ジアザ ビシクロ [2, 2, 2] オクタン (DABCO) 及び 1,8-ジアザビシクロ〔5,4,0〕ウンデクー7-エン (DBU) 等を挙げることができる。有機リチウム 40 化合物、例えば、メチルリチウム、n-ブチルリチウ ム、secーブチルリチウム、tertーブチルリチウ ム、フェニルリチウム、ジメチルカッパーリチウム、リ チウムジイソプロピルアミド、リチウムシクロヘキシル イソプロピルアミド、リチウムジシクロヘキシルアミ ド、nーブチルリチウム・DABCO、nーブチルリチ ウム・DBU、nーブチルリチウム・TMEDA等を挙 げることができる。

【0189】製法dは、実質的に広い温度範囲内におい て実施することができる。一般には、約-10~約12 0℃、好ましくは、約0~約50℃の間で実施できる。

20

30

326

また、該反応は常圧の下で行うことが望ましいが、加圧 または減圧下で操作することもできる。製法 d を実施す るにあたっては、例えば、式 (V) の化合物 1 モルに対 し、希釈剤例えばジメチルホルムアミド中、1 モル量乃 至1.2 モル量の酸結合剤例えば水素化ナトリウム、1 モル量乃至1.2 モル量の式 (VI) の化合物を反応さ せることによって目的化合物を得ることができる。

【0190】本発明の活性化合物は、除草剤として使用することができる。雑草とは広義には、望ましくない場所に生育するすべての植物を意味する。本発明化合物は、使用濃度によって非選択性、又は選択性除草剤として作用する。本発明の活性化合物は、例えば下記の植物との間で使用できる。

【0191】双子葉雑草の属:カラシ(Sinapis)、マメグンバイナズナ(Lepidium)、ヤエムグラキヌタソウ(Galium)、ハコベ(Stellaria)、アカザ・アリタソウ(Cheno podium)、イラクサ(Urtica)、ハンゴンソウ・ノボロギク・キオン(Senecio)、ヒユ・ハゲイトウ(Amaranthu s)、スベリヒユ・マツバボタン(Portulaca)、オナモミ(Xanthium)、アサガオ(Ipomoea)、ミチヤナギ(Polygon um)、ブタクサ(Ambrosia)、ノアザミ・フジアザミ(Cir sium)、ノゲシ(Sonchus)、ナス・ジャガイモ(Solanum)、イヌガラシ(Rorippa)、オドリコソウ(Lamium)、クワガタソウ・イヌノフグリ(Veronica)、チョウセンアサガオ(Datura)、スミレパンジー(Viola)、チシマオドロ(Galeopsis)、ケシ(Papaver)、ヤグルマギク(Centa urea)、ハキダメギク(Galinsoga)、キカシグサ(Rotala)、アゼナ(Lindernia)等々。

双子葉栽培植物の属:ワタ(Gossypium)、ダイズ(Glycine)、フダンソウ・サトウダイコン(Beta)、ニンジン(Daucus)、インゲンマメ・アオイマダ(Phaseolus)、エンドウ(Pisum)、ナス・ジャガイモ(Solanum)、アマ(Linum)、サツマイモ・アサガオ(Ipomoe)、ソラマメ・ナンテンハギ(Vicia)、タバコ(Nicotiana)、トマト(Lycopersicon)、ナンキンマメ(Arachis)、アブラナ・ハクサイ・カブラ・キャベツ(Brassica)、アキノノゲシ(Lactuca)、キュウリ・メロン(Cucumis)、カボチャ(Cucurbita)等々。

【0192】単子葉雑草の属:ヒエ(Echinochloa)、エノコロ・アワ(Setaria)、キビ(Panicum)、メヒシバ(Digitaria)、アワガエリ・チモシー(Phleum)、イチゴツナギ・スズメノカタビラ(Poa)、ウシノケグサ・トボシガラ(Festuca)、オヒシバ・シコクビエ(Eleusine)、ドクムギ(Lolium)、キツネガヤ・イヌムギ(Bromus)、カラスムギ・オートムギ(エンバク)(Avena)、カヤツリグサ・パピルス・シチトウイ・ハマスゲ(Cyperus)、モロコシ(Sorghum)、カモジグザ(Agropyron)、コナギ(Monochoria)、テンツキ(Fimbristylis)、オモダカ・クワイ(Sagittaria)、ハリイ・クログワイ(Eleocharis)、ホタルイ・ウキヤグラ・フトイ(Scirpus)、スズメノヒエ(P

aspalum)、カモノハシ(Ischaemum) 、ヌカボ(Agrostis)、スズメノテッポウ(Alopecurus)、ギョウギシバ(Cynodon) 等々。

単子葉栽培植物の属:イネ(Oryza)、トウモロコシ・ホップコーン(Zea)、コムギ(Triticum)、オオムギ(Horde um)、カラスムギ・オートムギ (エンバク) (Avena)、ライムギ(Secale)、モロコシ(Sorghum)、キビ(Panicum)、サトウキビ・ワセオバナ(Saccharum)、パイナップル(Ananas)、アスパラガス(Asparagus)、ネギ・ニラ (Allium)等々。

【0193】本発明化合物の使用は、上記の植物に限定されることはなく、他の植物に対しても同様に適用され得る。また、使用濃度によって、活性化合物は、雑草を非選択的に防除でき、例えば、工場等の産業用地、鉄道軌道、道路そして植林地並びに非植林地等に於いて使用できる。更に、活性化合物は、多年性植物栽培において、雑草防除に使用でき、例えば、植林、観賞用植林、果樹園、ブドウ園、カンキツ果樹園、ナッツ果樹園、バナナ栽培場、コーヒー栽培場、茶栽培場、ゴム栽培場、ギネアアブラヤシ栽培場、ココア栽培場、小果樹園及びホップ栽培地に適用でき、また一年性植物栽培に於いて、選択的雑草防除のために、適用できる。

【0194】本発明の活性化合物は通常の製剤形態にす

ることができる。そして斯かる形態としては、液剤、水和剤、エマルジョン、懸濁剤、粉剤、泡沫剤、ペースト、粒剤、錠剤、エアゾール、活性化合物浸潤-天然及び合成物、マイクロカプセル、種子用被覆剤、燃焼装置を備えた製剤(例えば燃焼装置としては、くん蒸及び煙霧カートリッジ、かん並びにコイル)、そしてULV [コールドミスト(coldmist)、ウオームミスト(warmmist)]を挙げることができる。これらの製剤は、公知の方法で製造することができる。斯かる方法は、例えば、活性化合物を、展開剤、即ち、液体希釈剤;液化ガス希釈剤;固体希釈剤又は担体、場合によっては界面活性剤、即ち、乳化剤及び/又は分散剤及び/又は泡沫形成剤を用いて、混合することによって行なわれる。

【0195】展開剤として水を用いる場合には、例えば、有機溶媒はまた補助溶媒として使用されることができる。液体希釈剤又は担体としては、概して、芳香族炭40 化水素類(例えば、キシレン、トルエン、アルキルナフタレン等)、クロル化芳香族又はクロル化脂肪族炭化水素類(例えば、クロロベンゼン類、塩化エチレン類、塩化メチレン等)、脂肪族炭化水素類〔例えば、シクロヘキサン等、パラフィン類(例えば鉱油留分等)〕、アルコール類(例えば、ブタノール、グリコール及びそれらのエーテル、エステル等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン又はシクロヘキサノン等)、強極性溶媒(例えば、ジメチルホルムアミド、ジメチルスルホキシド等)そして水も挙50 げることができる。液化ガス希釈剤又は担体は、常温常

圧でガスであり、その例としては、例えば、ブタン、プロパン、窒素ガス、二酸化炭素、そしてハロゲン化炭化水素類のようなエアゾール噴射剤を挙げることができる。固体希釈剤としては、土壌天然鉱物(例えば、カオリン、クレー、タルク、チョーク、石英、アタパルガイド、モンモリロナイト又は珪藻土等)、土壌合成鉱物(例えば、高分散ケイ酸、アルミナ、ケイ酸塩等)を挙げることができる。

【0196】粒剤のための固体担体としては、粉砕且つ 分別された岩石(例えば、方解石、大理石、軽石、海泡 石、白雲石等)、無機及び有機物粉の合成粒、そして有 機物質(例えば、おがくず、ココやしの実のから、とう もろこしの穂軸そしてタバコの茎等)の細粒体を挙げる ことができる。乳化剤及び/又は泡沫剤としては、非イ オン及び陰イオン乳化剤〔例えば、ポリオキシエチレン 脂肪酸エステル、ポリオキシエチレン脂肪酸アルコール エーテル (例えば、アルキルアリールポリグリコールエ ーテル、アルキルスルホン酸塩、アルキル硫酸塩、アリ ールスルホン酸塩等)]、アルブミン加水分解生成物を 挙げることができる。分散剤としては、例えば、リグニ ンサルファイト廃液、そしてメチルセルロースを包含す る。固着剤も、製剤(粉剤、粒剤、乳剤)に使用するこ とができ、斯かる固着剤としては、カルボキシメチルセ ルロースそして天然及び合成ポリマー(例えば、アラビ アゴム、ポリビニルアルコールそしてポリビニルアセテ ート等)を挙げることができる。着色剤を使用すること もでき、斯かる着色剤としては、無機顔料 (例えば酸化 鉄、酸化チタンそしてプルシアンブルー)、そしてアリ ザリン染料、アゾ染料又は金属フタロシアニン染料のよ うな有機染料そして更に、鉄、マンガン、ボロン、銅、 コバルト、モリブデン、亜鉛のそれらの塩のような微量 要素を挙げることができる。

【0197】該製剤は、一般には、前記活性成分を0. 1~95重量%、好ましくは0.5~90重量%含有することができる。本発明の活性化合物はそれ自体で、又はそれらの製剤形態で、雑草防除のために、使用でき、また公知除草剤との混合剤としても、使用でき、斯る混 *

* 合剤は、最終的製剤形態又はタンクミックスの双方を可 能にしている。混合剤としての可能な組み合わせとして は、例えば、下記の公知除草剤を例示できる。禾穀類栽 培に於ける雑草防除に対して、4-アミノー6-(1, 1-ジメチルエチル) -3-エチルチオー1、2、4-トリアジン-5 (4H) -オン、1-アミノ-6-エチ ルチオ-3-(2,2-ジメチルプロピル)-1,3,5-トリアジン-2, 4 (1H, 3H) -ジオン、又は N- (2-ベンゾチアゾリル) -N, N' -ジメチルウ レア等々;さとうきび栽培に於ける雑草防除に対して、 10 4-アミノ-3-メチル-6-フェニル-1, 2, 4-トリアジン-5(4H)-オン等々;大豆栽培に於ける 雑草防除に対して、4-アミノー6-(1, 1-ジメチ ルエチル) -3-メチルチオ-1,2,4-トリアジン -5 (4H) -オン等々。驚くべきことに、本発明化合 物のいくつかの混合剤はまた、相乗効果を現わす。

【0198】本発明の活性化合物を使用する場合、そのまま直接使用するか、又は散布用調製液、乳剤、懸濁剤、粉剤、ペーストそして粒剤のような製剤形態で使用するか、又は更に希釈して調製された使用形態で使用することができる。活性化合物は、液剤散布(watering)、噴霧(spraying atomising)、散粒等で使用することができる。本発明活性化合物は、植物の発芽前及び発芽後のいずれにも、使用することができる。また、それらは播種前に、土壌中に取り込まれることもできる。活性化合物の濃度は、実質範囲内でかえることができる。それは、望むべき効果の性質によって、基本的に異なる。除草剤として使用する場合、使用濃度としては、例えば、1ヘクタール当り、活性化合物として、約0.001~約10kg、好ましくは約0.01~約5kgを例示できる。

【0199】次に本発明化合物の製造及び用途を下記の 実施例により、具体的に示すが、本発明はこれのみに限 定されるべきものではない。

【実施例】

[合成例1]

【化33】

$$H_3C \longrightarrow CH_3$$

$$CH$$

$$S - CH - CH_2 \longrightarrow CI$$

$$H_3C \longrightarrow CH_3$$

2- (4, 6-ジメトキシ-2-ピリミジニルチオ) - 3-メチルブタノール (5.0g) をクロロホルム (3 0ml) に溶かし、室温で塩化チオニル (2.5g) を滴下する、滴下終了後40~50℃に1時間加温し、再び室温へ戻し溶媒を減圧留去する。得られた油状物を酢酸エチルに溶かし、水、重曹水、水の順で洗浄し、無水硫 ※50

※酸ナトリウムで乾燥する、有機層を減圧留去し、1-クロロー2-(4,6-ジメトキシー2-ピリミジニルチオ)-3-メチルーブタン(4.5g)を得た。

n_p²⁰1. 5178

【0200】〔合成例2〕

【化34】

2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メチル-1-ブタノール(1.0g)をピリジン(4ml)に溶解し、室温で無水酢酸(4ml)を滴下する。3時間攪拌した後、反応液を氷水中に注ぎ酢酸エチルで抽出し、1規定塩酸水、水の順で洗浄する。無水硫酸ナトリウムで乾燥後、減圧に溶媒を留去し、得られた油状物をシリカゲルカラムクロマトグラフィーで精製す*

* ると、2 - (4, 6 - ジメトキシ-2 - ピリミジニルチオ) - 3 - メチル-1 - ブタノール酢酸(1.0g)を10 得た。 no²⁰1.49

7 4

【0201】 [合成例3] 【化35】

チオ酢酸 (1.1g) のジメチルホルムアミド (30ml) 溶液に炭酸カリウム (2.1g) を室温で加える。 1時間攪拌後、1ークロロー2ー(4,6ージメトキシー2ーピリミジニルチオ)ー3,3ージメチルブタン (2.1g) のジメチルホルムアミド溶液を室温を保ちながら滴下する。滴下後、8時間攪拌し反応液に水を加え、酢酸エチルで抽出する。無水硫酸ナトリウムで乾燥後、減圧下に溶媒を留去し得られた油状物をシリカゲル ※

※クロマトグラフィーで精製すると、2-(4,6-ジメトキシー2-ピリミジニルチオ)-3,3-ジメチルー1-(アセチルチオ)ブタン(1.5g)を得た。

 $n_{D}^{20}1.5430$

【0202】下記に、上記合成例 $1\sim3$ と同様にして合成した化合物を、合成例 $1\sim3$ で合成した化合物と共に記す。

化合物番号1:1-クロロ-2-(4, 6-ジメトキシ-2-ピリミジニルチオ)-3-メチルブタン n_D²⁰1.5178

 $-3-\lambda + \nu - \lambda = 0$ $n_0^{20} 1.5178$

化合物番号2:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メチル-1-ブタノール 酢酸 エステル $n_{\mathfrak{p}}$ n.4974

化合物番号3:1-クロロ-2-(4,6-ジメトキシ-2-ピリミジニルチオ)ブタン mp.68~70.5℃

化合物番号4:2-(4,6-ジメトキシ-2-ピリミジニルチオ) ブタノール 酢酸 エステル n₀²⁰1.5138

化合物番号5:2-(4,6-ジメトキシ-2-ピリミジニルチオ) ブタノール p-クロロ安息香酸 エステル n₀[∞]1.5628

化合物番号6:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 酢酸 エステル n_0 ²⁰1.5156

化合物番号7:2-(4,6-i) ルトキシ-2-i リミジニルチオ) -3,3-i ジメチルブタノール n-i ロピオン酸 エステル

 $n_0^{20}1.5060$

化合物番号8:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール n-酪酸 エステル n₀™1.5043

化合物番号9:2- (4, 6-ジメトキシ-2-ピリミジニルチオ) -3, 3-

ジメチルブタノール シクロプロパンカルボン酸 エステル

n₀ 20 1. 5222

化合物番号10:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

332

-ジメチルブタノール 安息香酸 エステル

 $n_{D}^{20}1.5520$

[0203]

化合物番号11:2-(4,6-i)メトキシ-2-iリミジニルチオ) -4-iチルペンタノール 酢酸 エステル $n_0^{20}1.5112$

化合物番号12:3-シクロヘキシル-2-(4,6-ジメトキシ-2-ピリミジニルチオ)プロパノール n-プロピオン酸 エステル

 $n_0^{20}1.5153$

化合物番号13:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iェニルブタノール 酢酸 エステル $n_0^{20}1.5445$

化合物番号14:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iチルブタノール 吉草酸 エステル n_0 ²⁰1.4807

化合物番号15:2-(4,6-i)メトキシ-2-iリミジニルチオ) -3-iチルブタノール オクタン酸 エステル n_p ²⁰1.4930

化合物番号16:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iチルブタノール ラウリン酸 エステル n_0 ²⁰1.4825

化合物番号17:2-(4,6-i) メトキシ-2-i リミジニルチオ) -3-i チルブタノール ミリスチン酸 エステル

 $n_0^{20}1.4923$

化合物番号18:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3-iチルプタノール p-iメチル安息香酸 エステル

 $n_0^{20}1.5576$

化合物番号19:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メ チルブタノール ピバリン酸 エステル n_{D} 1.4858

化合物番号20:2-(4,6-i) ルーシュー・ 2-i リミジニルチオ) -3-i チルブタノール p-t ertーブチル安息香酸 エステル n_0 20 1.5437

[0204]

化合物番号21:1-クロロ-2-(4, 6-ジメトキシ-2-ピリミジニルチオ) -3, 3-ジメチルブタン n_0 ²⁰1.5334

化合物番号22:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール tert-ブチル酢酸 エステル

n_p²⁰1. 4868

 $n_{D}^{20}1.5430$

化合物番号 24:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 - i -

 $n_0^{20}1.4819$

化合物番号25:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール p-クロロ安息香酸 エステル

 $n_0^{20}1.5229$

化合物番号26:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール α-クロロフェニル酢酸 エステル

 $n_0^{20}1.5481$

化合物番号27:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メ チルペンタノール 酢酸 エステル $n_0^{20}1.5168$

化合物番号 28:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 -ジメチルブタノール ピニル酢酸 エステル

n₀²⁰1. 5079

334

化合物番号29:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルプタノール 2-チオフェンカルボン酸 エステル

n₀²⁰1. 5548

化合物番号30:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 3-クロロプロピオン酸 エステル

 $n_0^{20}1.5006$

[0205]

化合物番号31:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 3-ブロモプロピオン酸 エステル n_0 ²⁰1.5052

化合物番号32:2-(4,6-i) パーション・ 2-i パーション・ 3-i アーション・
n_p²⁰1. 5054

化合物番号33:2-(4,6-i) ルトキシ-2-i リミジニルチオ) -3,3 - ジメチルブタノール 2-i ロモアクリル酸 エステル

 $n_0^{20}1.5148$

化合物番号34:3-(4-メトキシフェニル)-2-(4,6-ジメトキシー2-ピリミジニルチオ)プロパノール 酢酸 エステル

 $n_0^{20}1.5404$

化合物番号35:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール イソ吉草酸 エステル

 $n_0^{20}1.5042$

化合物番号36:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール o-クロロ安息香酸 エステル

n_p²⁰1. 5378

化合物番号37:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール m-クロロ安息香酸 エステル

 $n_0^{20}1.5493$

化合物番号38:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 2-クロロプロピオン酸 エステル n_0 *1.5223

化合物番号39:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール トリフルオロ酢酸 エステル

mp. 67.5 ~ 69.5 ℃

化合物番号40:2-(4,6-i)メトキシ-2-iピリミジニルチオ) -3,3 -iジメチルブタノール n-iカクン酸 エステル

 $n_0^{20}1.4940$

[0206]

化合物番号 41:2-(4,6-i) メトキシ-2-i リミジニルチオ) -3,3 -i メチルブタノール n-i カン酸 エステル

n_p²⁰1. 4859

化合物番号42:2-(4,6-i) ルトキシ-2-i リミジニルチオ) -3,3 ージメチルブタノール ラウリン酸 エステル

 $n_0^{20}1.4903$

化合物番号43:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ミリスチン酸 エステル

 $n_0^{20}1.4820$

化合物番号44:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール ペンタフルオロ安息香酸 エステル

 $n_{\nu}^{n}1.5122$

336

化合物番号 45:2-(4,6-i) メトキシー 2-i リミジニルチオ) -3,3 -ジメチルブタノール 5-0 ロロー 6-i メチルチオニコチン

酸 エステル

n₀²01. 5438

化合物番号46:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール1-(p-クロロフェニル)-6-ト リフルオロメチル-4-ピラゾールカルボン酸 エステル

n₀²⁰1. 5382

化合物番号47:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-2-シ クロペンチルエタノール酢酸 エステル n_0 ²⁰1.5335

化合物番号48:2-(4,6-i)メトキシ-2-iリミジニルチオ)-3,3-ジメチルブタノール 2-iフェノキシメチル安息香酸 エステル n_0 ²⁰1.5507

化合物番号49:2-(4,6-i)ジェトキシ-2-iピリミジニルチオ)-3,3-ジメチルブタノール $\alpha-i$ ピコリン酸 エステル

n₀²⁰1. 5378

化合物番号50:2-(4,6-i)ジェトキシ-2-iピリミジェルチオ)-3,3-iシメチルブタノール ニコチン酸 エステル

 $n_p^{20}1.5452$

[0207]

化合物番号51:2-(4,6-i)ジェトキシー2-iピリミジェルチオ) -3,3 -iジメチルブタノール クロロ酢酸 エステル

 $n_0^{20}1.5200$

化合物番号52:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール イソニコチン酸 エステル

 $n_0^{20}1.5172$

化合物番号53:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 2-クロロイソニコチン酸 エステル

 $n_{p}^{20}1.5320$

化合物番号54:2-(4,6-i)ジェトキシー2-iピリミジニルチオ) -3,3 -iジメチルブタノール シュウ酸 ジエステル

 $n_0^{20}1.5336$

化合物番号 5 5 : 2 - (4, 6 - ジメトキシ- 2 - ピリミジニルチオ) - 3, 3 - ジメチルブタノール フタル酸 ジエステル

 $n_0^{20}1.5298$

 $n_0^{20}1.5361$

化合物番号 5 7:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3-メ チルブタノール メトキシ酢酸 エステル

 $n_0^{20}1.5182$

化合物番号 58:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール メトキシ酢酸 エステル

 $n_0^{20}1.5041$

化合物番号 5 9 : 2 - (4, 6 - ジメトキシ - 2 - ピリミジニルチオ) - 3, 3 - ジメチルブタノール フェノキシ酢酸 エステル

 $n_0^{20}1.5408$

化合物番号60:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール (2,4-ジクロロフェノキシ)酢酸 エステル n₀²⁰1.5309

```
(170)
    337
化合物番号61:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール (4-クロロー2-メチルフェノキシ
        )酢酸 エステル
                              n_{D}^{20}1.5312
化合物番号62:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール αートリフロロメチルーαーメトキシ
         フェニル酢酸 エステル
                              n_0^{20}1.5191
化合物番号63:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 2- (p-トリスルホニルオキシ)プ
                              mp. 81~85℃
         ロピオン酸 エステル
化合物番号64:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール p-クロロフェニルチオ酢酸 エステ
                              n_{D}^{20}1.5704
化合物番号65:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール p-ベンジルオキシフェニルチオ酢酸
          エステル
                              n_0^{20}1.5701
化合物番号66:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール メトキシカルボニルカルボン酸 エス
                              n_0^{20}1.5112
         テル
化合物番号67:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール メトキシカルボニル酢酸 エステル
                              n_0^{20}1.5142
化合物番号68:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 3-メトキシカルボニルプロピオン酸
          エステル
                              n_{p}^{20}1.5142
化合物番号69:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 3-メトキシカルボニルプロピオン酸
          エステル
                              n_0^{20}1.5039
化合物番号70:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール コハク酸モノ エステル
                              n_0^{20}1.5141
化合物番号71:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール コハク酸モノ エステル ナトリウム
化合物番号72:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール シクロヘキサンカルボン酸 エステル
                              n_0^{20}1.5122
化合物番号73:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 1-ブロモ-2, 2-ジメチル酪酸
        エステル
                              n_0^{20}1.5181
化合物番号74:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         ージメチルブタノール ジクロロ酢酸 エステル
                             mp. 87~89℃
化合物番号75:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール チエニル酢酸 エステル
                              n<sub>0</sub><sup>20</sup>1. 5632
化合物番号76:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
         -ジメチルブタノール 1,2-ジクロロマレイン酸モノ エ
         ステル
                              アモルファス
化合物番号77:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3
```

[0209]

-ジメチルブタノール トリクロロ酢酸 エステル

n_p²⁰1. 5283

化合物番号78:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール 4-トリフルオロメチル安息香酸 エ

ステル n₀²⁰1.5126

化合物番号79:2-(4,6-i) パーシャトキシー2-i ピリミジニルチオ) -3,3 ージメチルブタノール 6-0 ロロニコチン酸 エステル

mp. 78~81℃

化合物番号80:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール 2-ヒドロキシカルボニルピコリン酸

エステル n₀²⁰1.5485

[0210]

化合物番号81:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール マレイン酸モノ エステル

 $n_0^{20}1.5323$

化合物番号82:2- (4,6-ジメトキシ-2-ピリミジニルチオ) -3,3

ージメチルブタノール 2ーヒドロキシカルボニルー1ーシク

ロヘキセンカルボン酸 エステル n₀²⁰1.5210

化合物番号83:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

 $-ジメチルブタノール 4,5-ジクロロフタル酸モノ エステル <math>n_0^{20}1.5629$

化合物番号84:2-(4,6-i) パーション・ボージー 2-i ピリミジニルチオ) -3,3 ージメチルブタノール フェニルプロピオン酸 エステル

n₀²⁰1. 5379

化合物番号85:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2ーヒドロキシカルボニルシクロヘキ

サンカルボン酸 エステル

 $n_0^{20}1.5066$

化合物番号86:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2-ヒドロキシカルボニルー1-シク

ロペンテンカルボン酸 エステル mp. 85.5~88℃

化合物番号87:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール フタル酸モノ エステル

n_p²⁰1.5492

化合物番号88:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 2ークロロー4ーフルオロ安息香酸

エステル n₀[∞]1.5439

化合物番号89:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール ベンゾ [b] チオフェン-2-カルボ

ン酸 エステル n_p²⁰1.5879

化合物番号90:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 3-クロロベンゾ [b] チオフェンー

2-カルボン酸 エステル no²⁰1.5865

[0211]

化合物番号91:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 2-メチルチオニコチン酸 エステル

no201. 5653

化合物番号92:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

ージメチルブタノール 3-tertーブチルー2-メチルピ

ラゾール-3-カルボン酸 エステル no*1.5213

化合物番号93:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3

-ジメチルブタノール けい皮酸 エステル

 $n_{D}^{20}1.5724$

化合物番号 94:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 2-[4-(6-クロロ-2-キノキ サニロキシ)フェノキシプロピオン酸 エステル

 $n_0^{20}1.5691$

 $n_0^{20}1.5441$

化合物番号96:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 4-n-ブチル安息香酸 エステル

 $n_0^{20}1.5389$

化合物番号97:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 2,5-ジクロロ安息香酸 エステル

 $n_0^{20}1.5515$

化合物番号98:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール 1,4-ベンゾオキサン-2-カルボン酸 エステル n₀²⁰1.5202

化合物番号99:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3 -ジメチルブタノール イソキサゾリル-5-カルボン酸 エステル mp. 77.5~79.5℃

化合物番号100:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール5-ブロモニコチン酸 エステル

 $n_0^{20}1.5441$

[0212]

化合物番号101:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール2,6-ジクロロイソニコチン酸エステル n_0 *1.5306

化合物番号 $103:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 2,4,5-トリクロロフェノキシ酢酸 エステル <math>n_0^{20}1.5526$

化合物番号 $104:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール 3-ヒドロキシカルボニルイソニコチン酸 エステル <math>n_0^{20}1.5353$

化合物番号105:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチルブタノール 3-クロロチオフェン-2-カル ボン酸 エステル no²⁰1.5523

化合物番号106:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチルブタノール <math>2-メチルプロピオン酸 エステル n_0 ²⁰1.4995

化合物番号107:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3, 3-ジメチル-1-ブタノール 5-メチルイソキサゾリル -3-カルボン酸 エステル mp.90.5~92℃

化合物番号 $108:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,3-ジメチル-1-ブタノール3,5-ジメチルイソキサゾリル-4-カルボン酸 エステル <math>n_0$ ²⁰1.5292

化合物番号109:2-(4,6-ジメトキシ-2-ピリミジニルチオ)-3,

344

3-ジメチル-1-ブタノール 4-メチル-1, 2, 3-チアジアゾリル-5-カルボン酸 エステル

mp. 66.5∼68℃

【0213】 [生物試験例]

試験例1

畑地雑草に対する発芽後茎葉処理試験

活性物質の調整

担体 : アセトン5重量部

乳化剤: ベンジルオキシポリグリコールエーテル1重

量部

活性物質の調合剤は1重量部の活性化合物と、上述の分量の担体および乳化剤とを混合し、乳剤として得られる。その調合剤の所定薬量を水で希釈して調整する。 試験方法

温室内において、畑土壌を詰めた120cm²ポットに、 ヒエ及びイヌビユの各種子を播種覆土し生育させた。1 0日後、上記調整の所定薬量を各試験ポットの供試植物 * *の茎葉部に均一に散布した。散布3週間後に除草効果を 調査した。なお、除草効果は、完全枯死した場合を10 0%とし、無処理と同等の場合は0%とした。

【0214】試験例2

畑地雑草に対する発芽前土壌処理試験 試験方法

10 温室内において、畑土壌を詰めた120cm²ポット表層に、ヒエ、イヌビユの各種子を播種覆土した。上記試験例1と同様に調整した所定の薬量を各試験ポットの土壌表層に均一に散布した。散布4週間後に除草効果の程度を調査した。試験例1及び2の結果を第4表に示す。

[0215]

【表150】

第 4 表

化合物番号	量率	発芽前処理		発芽	麦 処理
	(kg/ha)	Ł١	アオピユ	ヒエ	アオピユ
1	2	100	100	90	95
2	2	100	100	100	100
3	2	90	100	80	80
4	2	100	100	90	90
5	2	95	100	80	100
6	2	100	100	100	100
7	2	100	100	100	100
8	2	100	100	100	100
9	2	100	100	100	100
1 0	2 .	100	100	100	100
1 1	2	95	100	90	90
1 4	2	100	100	90	90
1 5	2	100	100	100	100
1 6	2	100	100	95	90
1 7	2	100	100	90	90
1 8	2	95	100	95	100
1 9	2	95	100	80	90
2 0	2	95	100	80	90
2 1	2	100	100	100	100
2 2	2	100	100	100	100
2 3	2	90	90	80	80
2 4	2	90	90	100	100
2 5	2	100	100	90	100

[0216]

【表151】

第 4 表(統き)

化合物番号	薬 量	発芽前処理		発芽(发処理
	(kg/ha)	t I	アオビユ	ヒエ	アオピユ
2 8	2	90	100	100	80
2 9	2	90	100	100	100
3 1	2	90	100	100	90
3 5	2	90	90	100	90
3 7	2	100	100	80	80
3 8	2	90	100	80	100
4 1	2	80	100	80	80
4 8	2	90	100	50	70
5 0	2	100	100	90	90
5 1	2	100	100	100	90
5 2	2	90	100	90	90
5 3	2	100	100	100	100
5 4	2	100	100	90	90
5 8	2	90	100	100	90
5 9	2	100	100	100	100
6 1	2	90	100	60	90
6 4	2	90	100	90	90
6 5	2	100	90	90	90
6 8	2	90	100	100	80
6 9	2	90	100	90	80
7 1	2	90	90	100	80
7 2	2	90	90	90	100
7 4	2	90	90	100	100

[0217]

【表152】

第 4 表(続き)

化合物番号	重 薬	発芽前処理		発芽後処理	
	(kg/ha)	ヒエ	アオビユ	ヒエ	アオビユ
7 8	2	90	100	100	90
7 9	2	100	90	100	100
8 0	2	90	100	100	100
8 1	2	100	100	100	100
8 2	2	100	100	100	100

[0218]

*により合成することができるとともに、除草剤として有効な作用をあらわす。

【発明の効果】本発明の新規な除草性ピリミジニルチオ アルカン誘導体は、実施例で示された通り、一般的製法 *

フロントページの続き

(72)発明者 伊藤 整志 栃木県小山市駅東通り1-39-1

(72)発明者 峯岸 なつこ栃木県小山市若木町1-9-31

(72)発明者 宇川 和博栃木県小山市駅東通り1-23-13

(72)発明者 山岡 達也

栃木県小山市大字神鳥谷934-7

(72)発明者 上野 知恵子

栃木県小山市大字神鳥谷934-7

(72)発明者 伊藤 暁美

栃木県小山市大字神鳥谷934-7

(72) 発明者 京 嘉子

栃木県小山市大字神鳥谷934-7

、、第4図は分解斜視図である。

傾斜先端、32一係合実部、33一線ばね

出 窮 人 日 本 特 殊 陶 業 株 式 会 社

代理人 康 部 祐 夫

11

13

14

15