

Covid-19 Sentiment Analysis

Big Data Science – Course Project Kenzo MILLEVILLE & Dilawar ALI

Project goals

- Visualize the spatiotemporal global sentiment of the Covid-19 pandemic in
 a web application
- Gather tweets mentioning the pandemic, preprocess them and perform sentiment analysis
- Geocode tweets which are not geolocated, aggregate them on location and country
- Visualize results in an intuitive and scalable web application, by using WebGL-powered maps and word clouds

Application architecture

- Data collection from open dataset and Twitter API
- Preprocessed via NLTK, sentiment analysis via TextBlob
- Data is stored with Django in an SQL database, with spatial operations via
 the GEOS interface

Application architecture

- Public API exposes data manipulations to frontend web application or third-party apps
- Frontend is made with ReactJs and deck.gl, to provide a scalable and dynamic interface
- Data can be filtered and analysed in real time

Map visualizations

- On application load, a request is made to get all of the tweets (without the text) and they are clustered in a hex map.
- When hovering over the map, information about tweets in that area is shown

Map visualizations

- An alternative visualization aggregates the data per country, for some countries we have chosen and gathered data for (gathered tweets in a radius around major cities of each country)
- By using geojson data of the countries, we can visualize them as well

Interactivity

- The currently visible data can be filtered (client side) and the user can swap between both visualisations
- By filtering on the client side, we avoid additional requests
- When zooming in/out, the hexagons are recalculated dynamically
- Hovering over a feature shows the amount of tweets and average sentiment for that area, based on the current filter options

Interactivity

- By clicking on a feature on the map, a word cloud is shown for all tweets insidethat
- This is done via a POST request to the server, with all the IDs of tweets inside that
 feature
- For the countries visualization, we show 3 word clouds (All, Positive, and Negative tweets)

Scalability

- The Django database with a NGINX server is highly scalable (e.g. Instagram)
- Deck.gl map overlays can support up to millions of points by using GPU acceleration
- The main problem is downloading the data from the server, but this can be done incrementally or the tweets can be clustered beforehand (e.g. per 50 or 100 km)

 \triangleright

Customizability

- By using high-level libraries, each part of the application can be customized
 and
 optimized
- The application logic consists of loosely coupled functions and components, which can be adjusted individually
- By using ReactJS and Django, the strengths of Python (data manipulation)
 and Javascript (interactivity) are combined

Conclusion

- With open data and the Twitter API we were able to perform sentiment analysis on a global scale
- The data is visualized in a dynamic spatiotemporal map, with filter functionalities
- The application can easily be customized and extended, the exposed API can also be used to power third-party applications
- ▶ Link to live demo: https://tw06v072.ugent.be/wordcrowd/covid/

Questions??

<u>dilawar.ali@ugent.be</u> <u>kenzo.milleville@ugent.be</u>

