# Crash Course on Notation in Programming Language Theory

Jeremy G. Siek Indiana University, Bloomington

> LambdaConf HOP Workshop June 2018

#### Outline

- ► Sets, Tuples, Relations, and Functions
- ► Language Syntax and Grammars
- ► Operational Semantics
- ► Type Systems

#### Sets

A **set** is a collection of objects.

Examples:

$$\emptyset$$
 {o, i, 2}

Order and duplication doesn't matter:

$${O, I, 2} = {2, 0, I} = {I, 2, I, 0, I}$$

Set operations:

$$I \in \{0, 1, 2\} \qquad 3 \notin \{0, 1, 2\}$$

$$\{0, 1\} \cup \{1, 3\} = \{0, 1, 3\} \qquad \{0, 1\} \cap \{1, 3\} = \{1\}$$

$$\{0, 1\} - \{1, 3\} = \{0\}$$

Sets can be infinite:

$$\mathbb{N} = \{o,\, I,\, 2, \ldots\} \qquad \mathbb{Z} = \{\ldots, -2, -I,\, o,\, I,\, 2, \ldots\}$$

Question: if  $X = \{o\} \cup Y$ , is it true that  $o \notin Y$ ?

### **Tuples**

A **tuple** is a sequence of objects. A **pair** is a tuple of two objects.

Example:

$$(0, 1, 2)$$
 or  $(0, 1, 2)$ 

Order and duplication matters:

$$(0, 1, 2) \neq (2, 0, 1)$$
  
 $(0, 1) \neq (0, 0, 1) \neq (0, 0, 1, 1)$ 

Subscript with index to access *n*th object of the tuple:

$$(a, b, c)_{o} = a$$
$$(a, b, c)_{i} = b$$
$$(a, b, c)_{2} = c$$

#### Relations

A relation is a set of pairs.

Example:

$$\{(anne, jane), (mary, anne), (mary, jane)\}$$

Represents associations between entities:



#### **Functions**

A **function** is a relation that associates to each entity at most one other entity.

Example:

$$F = \{(0, 1), (1, 2), (2, 3), (3, 0)\}$$

Represents input/output:



Some functions are infinite:

$$Inc = \{(0, 1), (1, 2), (2, 3), (3, 4), \ldots\}$$

### Definition by Rules

We can define an infinite set by a collection of rules.

Example: *Inc* is the set that contains only those elements specified by the following rules:

- 1.  $(0, 1) \in Inc.$
- 2. For any n and m, if  $(n, m) \in Inc$ , then  $(n + 1, m + 1) \in Inc$ .

It's OK for the rules to be recursive, for example,  $(n, m) \in Inc$  in rule 2.

aka. inductively defined set

#### Nonsensical Rules

Some collections of rules are nonsensical.

- 1.  $(0, 1) \in R$ .
- 2.  $(0, 1) \notin R$ .
- a. If  $(n, m) \in S$ , then  $(n, m + 1) \in S$ .
- b. If  $(n, m) \in S$ , then  $(n + 1, m) \in S$ .

#### Nonsensical Rules

Some collections of rules are nonsensical.

- i.  $(0, 1) \in R$ .
- 2.  $(0, 1) \notin R$ .
- a. If  $(n, m) \in S$ , then  $(n, m + 1) \in S$ .
- b. If  $(n, m) \in S$ , then  $(n + 1, m) \in S$ .

Avoid using negation. Include at least one non-recursive rule.

#### Those Horizontal Lines

Just a notation for if-then rules. Premises go on top, conclusion on the bottom.

#### Recall Inc:

- 1.  $(0, 1) \in Inc.$
- 2. For any n and m, if  $(n, m) \in Inc$ , then  $(n + 1, m + 1) \in Inc$ .

Definition of *Inc* via horizontal lines:

### Derivations Justify Membership

Recall *Inc*:

Rule 
$$I - (0, I) \in Inc$$
 Rule  $2 - (n, m) \in Inc$   $(n + I, m + I) \in Inc$ 

Is  $(2,3) \in Inc$ ?

Yes, and here's why:

(Rule 2) 
$$\frac{(\text{Rule 1}) \quad \overline{(0, 1) \in Inc}}{(1, 2) \in Inc}$$

$$(\text{Rule 2}) \quad \overline{(2, 3) \in Inc}$$

#### **Exercises**

- ▶ Define the even natural numbers  $Even = \{0, 2, 4, 6, ...\}$  using definition-by-rules.
- ▶ Give the derivation for  $4 \in Even$ .
- ► Define the set of all binary trees that satisfy the max-heap property (child's label is less-or-equal to parent's) using definition-by-rules. Examples:



#### Outline

- ► Sets, Tuples, Relations, and Functions
- ► Language Syntax and Grammars
- ► Operational Semantics
- ► Type Systems

### Language Syntax and Grammars

Let's define a language of integer arithmetic, call it *Arith*.

A language is a set of programs, usually an infinite set.

Example:

$$Arith = \left\{ \begin{array}{l} 3, \\ 7, \\ 3+7, \\ -(3+7), \\ 4, \\ -(3+7)+4, \\ \vdots \end{array} \right\}$$

### Syntax via Definition by Rules

Definition by rules to the rescue!

*Arith* is the set containing only those programs justified by the following rules:

- ▶ For any  $n \in \mathbb{Z}$ ,  $n \in Arith$ .
- ► For any e, if  $e \in Arith$ , then  $-e \in Arith$ .
- ► For any  $e_1$  and  $e_2$ , if  $e_1 \in Arith$  and  $e_2 \in Arith$ , then  $e_1 + e_2 \in Arith$ .
- ► For any e, if  $e \in Arith$ , then  $(e) \in Arith$ .

#### Backus-Nauer Form (BNF)

BNF is a notation for definition-by-rules that is specialized to programming languages.

A collection of BNF rules is called a grammar.

derivation = parse tree

### Syntax Conventions in PL Theory

#### Instead of BNF:

We select some variables to range over elements of the sets, e.g.,  $n \in \mathbb{Z}$ ,  $m \in \mathbb{Z}$  and  $e \in Arith$ ,

then replace the set names with the variables:

$$e ::= n \mid -e \mid e + e$$

We omit the rule for parentheses; they are always allowed.

#### Exercise

Give the PL-theory style syntax definition for a language *ArithPair* that includes integer arithmetic and pairs. Example programs:

$$-(2+3,-4)_{o}$$
  $((1+3,(5,2+4))_{I})_{o}$ 

#### Outline

- ► Sets, Tuples, Relations, and Functions
- ► Language Syntax and Grammars
- ► Operational Semantics
- ► Type Systems

### Operational Semantics

Define the meaning of programs by saying what happens when you run them.

Many styles of operational semantics:

- ► big-step semantics
- ► small-step semantics

### Big-step Semantics

A relation named *Eval* between programs and result values.

Notation:

$$e \Downarrow n \equiv (e, n) \in Eval$$

We define *Eval* as the set containing only those program-result pairs justified by the following rules.

$$I - \frac{e \Downarrow n}{-e \Downarrow -n} \qquad P - \frac{e_1 \Downarrow n \quad e_2 \Downarrow m}{e_1 + e_2 \Downarrow n + m}$$

Example:

$$-(3+7)+4 \downarrow -6$$

aka. natural semantics

### Derivation of a big-step



### **Small-step Semantics**

A relation *Step* on programs that does just one computation.

Notation:

$$e \longrightarrow e' \equiv (e, e') \in Step$$

We define *Step* as the set containing only those program-program pairs justified by the following rules.

Example:

$$-(3+7)+4 \longrightarrow -(10)+4 \longrightarrow -10+4 \longrightarrow -6$$

### Derivation of a small-step

$$P_{1} \xrightarrow{\begin{array}{c} P & \hline {3+7 \longrightarrow 10} \\ \hline -(3+7) \longrightarrow -(10) \\ \hline -(3+7)+4 \longrightarrow -(10)+4 \end{array}}$$

#### Exercises

- ▶ Define the set of values for the language *ArithPair*.
- Extend the big-step semantics to handle the language *ArithPair*.
- Extend the small-step semantics to handle the language *ArithPair*.

#### Outline

- ► Sets, Tuples, Relations, and Functions
- ► Language Syntax and Grammars
- ► Operational Semantics
- ► Type Systems

### Type Systems

Consider a language *ArithBool* of integers, Booleans, and conditionals:

$$e ::= n \mid -e \mid e + e$$

$$\mid true \mid false \mid \neg e \mid e \lor e$$

$$\mid \mathbf{if} \ e \ \mathbf{then} \ e \ \mathbf{else} \ e$$

A type classifies values, it is a set of values.

Int = 
$$\{\dots, -2, -1, 0, 1, 2, \dots\}$$
  
Bool =  $\{true, false\}$ 

- A type system **predicts** the type of the result value. (-(3+7)+4) produces an Int,  $(true \lor \neg false)$  produces a Bool.
- ► A type system **enforces** that the arguments of an operation make sense.

  (3 + *false*) is ill-typed

### Programs can "go wrong"

Examples:

$$\exists n. \ 3 + false \downarrow n$$
 $\exists n. \ \text{if } o + o \text{ then } 1 \text{ else } 3 \downarrow n$ 

In a small-step semantics, the reductions get "stuck":

$$3 + false \not\longrightarrow$$
  
if  $0 + 0$  then 1 else 3  $\longrightarrow$  if 0 then 1 else 3  $\not\longrightarrow$ 

### Type System for ArithBool

WellTyped is a relation between programs and types.

Notation: let *T* range over types (Int and Bool).

$$\vdash e: T \equiv (e, T) \in WellTyped$$

Type System: (definition-by-rules yet again!)

# Type Safety

Well-typed programs cannot "go wrong".

—Robin Milner (1978)

Let *v* range over values (integers and Booleans).

Theorem (Type Safety)

*If*  $\vdash$  e: T, then  $e \Downarrow v$  and  $\vdash v: T$  for some v.

#### Rule Induction

Suppose set S is defined by a collection of rules such as

$$\frac{a_1 \in S}{f(a_2) \in S} \quad \frac{a_3 \in S \quad a_4 \in S}{g(a_3, a_4) \in S}$$

You want to prove  $\forall x \in S$ . R(x). It is sufficient to prove:

- $ightharpoonup R(a_1),$
- if  $R(a_2)$ , then  $R(f(a_2))$ , and
- if  $R(a_3)$  and  $R(a_4)$ , then  $R(g(a_3, a_4))$ .

### Proof of Type Safety

By induction on the program e. The premise is that  $\vdash e : T$ .

- ▶ Case e = n:  $n \Downarrow n$  and  $\vdash n$ : Int.
- ► Case |e = -e'|: By the induction hypothesis,  $e' \Downarrow v$  and  $\vdash v$ : Int. So v is an integer. Thus,  $-e' \Downarrow -v$  and  $\vdash -v$ : Int.
- ► Case  $e = \neg e'$ : By the induction hypothesis,  $e' \Downarrow v$  and  $\vdash v$ : Bool. So v is *true* or *false*. Thus,  $\neg e' \Downarrow \neg v$  and  $\vdash \neg v$ : Bool.

:

#### **Exercises**

- ► Devise a type system for the *ArithPair* language.
- ► Prove the Type Safety theorem for your type system.

### Suggested Reading

- ► Types and Programming Languages by Benjamin C. Pierce.
- ► Semantic Engineering with PLT Redex by Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt.
- ► My blog: http://siek.blogspot.com/
- ► Papers in the annual ACM International Conference on Functional Programming (ICFP).
- ► Papers in the annual ACM Symposium on Principles of Programming Languages (POPL).

#### Conclusion

- ► Infinite sets can be defined via definition-by-rules (aka. inductively defined sets).
- ► Use definition-by-rules to define:
  - ► language syntax,
  - ► operational semantics, and
  - ► type systems!
- ► Type Safety is the property that all well-typed programs cannot "go wrong" and the result value is of the expected type.

Recall *Inc*:

Rule 1 
$$(0, 1) \in Inc$$
 Rule 2  $(n, m) \in Inc$   $(n + 1, m + 1) \in Inc$ 

We capture the notion of applying the rules just once, starting from an arbitrary set X, with the following function.

$$F(X) = \{(0, 1)\} \cup \{(n + 1, m + 1) \mid (n, m) \in X\}$$

A set *Y* is **closed under** *F* if applying *F* to *Y* is already in *Y*:

$$F(Y) \subseteq Y$$

The intersection of all such *Y*'s is the set *Inc*:

$$Inc = \bigcap \{Y \mid F(Y) \subseteq Y\}$$

#### Theorem (Knaster-Tarski)

Suppose  $X = \bigcap \{Y \mid F(Y) \subseteq Y\}$  and F is a monotone function. Then X is a least fixed point of F.

**Proof**. First we show that *X* is a fixed point of *F*.

$$F(X) = \bigcap \{F(Y) \mid F(Y) \subseteq Y\}$$

$$F(X) \subseteq X$$

$$F(F(X)) \subseteq F(X)$$

$$X \subseteq F(X)$$

$$X = F(X)$$

$$F \text{ monotone}$$

$$G(X)$$

$$G(X)$$

$$G(X)$$

$$G(X)$$

$$G(X)$$

$$G(X)$$

$$G(X)$$

$$G(Y)$$

Next we show that X is the <u>least</u> fixed point. Suppose X' is another fixed point.

$$X' = F(X')$$
 
$$F(X') \subseteq X'$$
 
$$X \subseteq X' \qquad \text{def. of } X$$

So by the Knaster-Tarski Theorem, *Inc* is the least fixed point of *F*, that is,

$$Inc = F(Inc)$$
 for any  $X'$ , if  $X' = F(X')$ , then  $Inc \subseteq X'$ 

### Definitional Interpreter

A recursive procedure that performs the computation.

Example interpreter for Arith:

$$eval: Arith 
ightarrow \mathbb{Z}$$
  $eval(n) = n$   $eval(-e) = -eval(e)$   $eval(e_1 + e_2) = eval(e_1) + eval(e_2)$ 

Example run:

$$eval(-(3+7)+4) = -6$$

## Definitional interpreter for ArithBool

$$eval: ArithBool 
ightarrow \mathbb{Z}$$
 $\vdots$ 
 $eval(true) = true$ 
 $eval(false) = false$ 
 $eval(\neg e) = \neg eval(e)$ 
 $eval(e_1 \lor e_2) = eval(e_1) \lor eval(e_2)$ 
 $eval(\textbf{if } e_1 \textbf{ then } e_2 \textbf{ else } e_3) = \begin{cases} eval(e_2) & \text{if } eval(e_1) = true \\ eval(e_3) & \text{if } eval(e_1) = false \end{cases}$ 
 $eval \text{ is a partial function.}$