Hackathon – Granville – Octobre 2016

Synthèse du sous-projet d'infrastructure radio permettant aux participants (hackathoniens) de:

- •Transmettre les informations remontés par des objets se déplacant dans Granville
- Offrir une API pour récupérer ces informations
- Mettre au points des objets avec capteurs GPS comme exemple
- •Les Objets doivent être très éconnome en énergie

Agenda

- 1) Présentation du concept
- 2) Création d'un compte sur le cloud LORIOT
- 3) Passerelle LoRaWAN:
 - a) Mise en place matériel de la passerelle
 - b) Déclaration de la passerelle sur LORIOT
 - c) Installation du logiciel LORIOT sur la passerelle
- 1) Déclaration d'une application LoRaWAN
- 2) Déclaration d'un client LoRaWAN (et récupération des informations d'authentification)
- 3) Configuration (matériel & logiciel) d'un client LoRaWAN à base d'arduino UNO
- 4) Ajout d'un capteur GPS à l'arduino
- 5) Synthèse des problèmes et évolutions à prévoir

Le concept déployé

Objets avec:

- puce radio LoRa et pile protocolaire LoRaWAN
- capteurs (position, température, etc.)

La solution d'infrastrucure LoRaWAN

- Trouver une solution d'infrastructure LoraWAN rapide à utiliser pour la démonstration
- https://www.loriot.io/
 - Offre cloud de serveurs LoRaWAN
 - Permet la déclaration d'une passerelle et de 10 clients gratuitement
 - Propose de multiples API (WebSocket, TLS, etc.)

Création d'un compte gratuit

~

~

Passerelle LoRaWAN

- Rôle:
 - Récupérer les informations des clients radio
 - Transmettre ces informations à un serveur
- Matériel à disposition
 - PC x86 sous Ubuntu Linux (LinkLabs LL-BST-8)
 - Une interface réseau Ethernet avec accès Internet
 - Module radio LoRa SX1301

Déclaration de la passerelle

Installation du logiciel Loriot sur la passerelle

That's it. Gateway successfully registered. Go to the gateway detail page

Downloads

LORIOT Gateway binary

loriot_linklabs_ll-bst-8_sx1301_ref_USB_1.0.1.tgz

Installation guide Link Labs LORIOT.io gateway setup and installation guide

```
wget https://eu1.loriot.io/home/gwsw/loriot_linklabs_ll-bst-8_sx1301_ref_USB_1.0.1.tgz
tar xzvf loriot_linklabs_ll-bst-8_sx1301_ref_USB_1.0.1.tgz
chmod +x loriot_linklabs_ll-bst-8_sx1301_ref_USB_1.0.1
./loriot_linklabs_ll-bst-8_sx1301_ref_USB_1.0.1
INFO: LORIOT.io Gateway Version 1.0.1
INFO: Acquired EUI 00-0D-B9-FF-FF-43-49-8C from interface enp1s0
 INFO: Connecting to gateway configuration server ...
 CFG: HTTP response HTTP/1.1 200 OK
 CFG: Content-type application/json; charset=utf-8
 CFG: Timestamp
                    Sat, 29 Oct 2016 13:50:39 GMT
 BOARD: running PUBLIC network, clock fed from radio #1
 RADIO: radio 0 enabled, SX1257, center frequency 867500000, RSSI offset -166.0, TX enabled
 RADIO: radio 1 enabled, SX1257, center frequency 868500000, RSSI offset -166.0, TX disabled
INFO: Gateway HAL Version: 3.1.0; Options: ftdi;
 INFO: Starting LoRa Concentrator
 INFO: Concentrator started, daemonizing ...
```

Vérification de la passerelle

Enregistrement d'un client

Récupération des clés d'authentification

_		_	
Gateway RSSI	s in range SNR S		
-84	8.8 a	a minute ago	
Last dat	a (10 latest re	cords)	
SeqNo	Time	Port	Data
57	a minute		7b 22 32 32 31
56	3 minutes		7b 22 32 32 31
54	7 minutes		7b 22 32 32 31
53	9 minutes		7b 22 32 32 31

LoRaWAN AES128 Keys

AppKey Application Key (Device Key)	42C1BD949C8A34B59222C3D060167075 If you want to enable over-the-air join, add or derive the device's application key.				
NwkSKey Network Session Key	3FECDD098AC3969355E0FBC6266C1EC9				
AppSKey Application Session Key	6DB06890973069303679E8B8BE5C0C8F				
NOTE: When copy-pasting an AES128 key, use it as it is. It is a cryptographic key without the notion of endianness					
See the <u>device guides</u> for personalized, device specific configuration commands					

Mise en place d'un client LoRaWAN

- Objectif: Envoyer la position géographique de l'objet
- Plateforme matériel:
 - Clone de l'Arduino Uno (fonctionne en 5V)
 - Module LoRa inAir9 (fonctionne en 3.3V)
 - Module GPS ublock neo6m (fonctionne en 3.3V)
 - · Batterie solaire
- Bibliothèques arduino
 - LoRaWAN (la plus légère possible): https://github.com/things4u/LoRa-LMIC-1.51
 - La softserial (incluse de base) pour le GPS
- Attention:
 - Nous avons quitté le monde de l'informatique pour entrer dans celui de l'électronique. La consommation électrique est très réduite, mais les capacités aussi (2Ko de RAM sur l'Arduino Uno uniquement).
 - La tension indiquée (5V ou 3.3V) est valable pour l'alimentation mais aussi pour le niveau des signaux numériques.
 - Il est donc très fortement conseillé de convertir les signaux, mais il est possible que ça fonctionne sans cette conversion: Dans notre cas le module LoRa n'en avais pas besoin mais c'était obligatoire pour le module GPS.

Le module GPS GY-GPS6MV2

- Utilise une puce Ublox Neo6M-v2
- Intègre une EEPROM et batterie
- Fonctionnement 3.3V
- Interface de communication: UART (série)
 - Vitesse: 9600 baud
 - Un fil pour l'émission (TX)
 - Un fil pour la reception (RX)

Arduino UNO et GPS Neo-6M

On commence par tester le GPS seul: il s'agit de la configuration la plus simple.

Le module GPS fonctionne en 3.3V et n'a pas de tolérance:

- Le niveau électrique du signal en réception sur le GPS doit être obligatoirement égale à 3.3V, donc usage d'un diviseur de tension obligatoire.
- Par contre l'Arduino UNO tolère de recevoir le signal 3.3V du GPS à la place d'un 5V. Pas de diviseur ici du coup.

Arduino UNO et GPS Neo-6M

```
#include <SoftwareSerial.h>
                                                                            Sur le moniteur IDE on reçoit du GPS du texte au format NMEA:
                                                                            https://fr.wikipedia.org/wiki/NMEA 0183
//Créer un objet SoftwareSerial nommé gps
//Broche 4 réception (RX) et broche 3 en émission (TX)
                                                                            Paramétrage terminé!
SoftwareSerial gps(4, 3); // RX, TX
                                                                            $GPGGA,221440.00,4850.41095,N,00135.38252,W,1,08,1.11,41.5,M,47.5,M,.*79
                                                                            $GPGSA,A,3,15,13,24,20,18,10,19,12,...,1.85,1.11,1.49*02
void setup() {
                                                                            $GPG$V,3,1,11,10,16,321,32,12,16,207,47,13,51,129,22,15,78,193,31*70
  //Configure le port série du moniteur IDE a 9600
                                                                            $GPGSV,3,2,11,17,26,097,18,18,32,290,38,19,18,119,26,20,27,219,47*77
  Serial.begin(9600);
                                                                            $GPGSV,3,3,11,24,55,274,38,28,29,047,20,33,32,198,38*4F
                                                                            $GPGLL.4850.41095.N.00135.38252.W.221440.00.A.A*73
  while(!Serial);
                                                                            $GPRMC,221441.00,A,4850.41098,N,00135.38246,W,0.053,,291016,,,A*68
  //Configure le port série du GPS a 9600
                                                                            $GPVTG.,T.,M,0.053,N,0.098,K,A*24
  gps.begin(9600);
                                                                            $GPGGA,221441.00,4850.41098,N,00135.38246,W,1,08,1.11,41.8,M,47.5,M,,*7D
  delay(1000);
                                                                            $GPGSA,A,3,15,13,24,20,18,10,19,12,...,1.85,1.11,1.49*02
  Serial.println("Paramétrage terminé!");
                                                                            $GPGSV,3,1,11,10,16,321,31,12,16,207,46,13,51,129,22,15,78,193,31*72
                                                                            $GPGSV,3,2,11,17,26,097,18,18,32,290,38,19,18,119,26,20,27,219,46*76
                                                                            $GPGSV,3,3,11,24,55,274,38,28,29,047,20,33,32,198,37*40
void loop() {
                                                                            $GPGLL,4850.41098,N,00135.38246,W,221441.00,A,A*7A
  //Si GPS disponible alors affiche les données sur le
                                                                            $GPRMC,221442.00,A,4850.41098,N,00135.38243,W,0.049,,291016,,,A*65
port série du moniteur IDE
                                                                            $GPVTG M.0.049.N.0.091 A*26
  if(gps.available()) Serial.write(gps.read());
                                                                       Heure GMT
                                                                                                                         vitesse
                                                                                                                                        date
                                                                                                          longitude
                                                                                            latitude
                                                                      22h14m42s
```

Sketch uses 3,298 bytes (10%) of program storage space. Maximum is 32,256 bytes. Global variables use 323 bytes (15%) of dynamic memory, leaving 1,725 bytes for local variables. Maximum is 2,048 bytes.

Le module radio LoRA inAIR9

- Utilise une puce radio Semtech SX1276
- Fréquence radio LoRa: 868MHz et 915MHz
- Fonctionnement: 3.3V
- Connecteur Antenne: SMA
- Interface de communication:
 - Un port SPI
 - 5 ports.de.donnée.DIO (Data Input/Output) et un reset

Operating Mode	DIOx Mapping	DIO5	DIO4	DIO3	DIO2	DIO1	DIO0
	00	ModeReady	CadDetected	CadDone	FhssChangeChannel	RxTimeout	RxDone
ALL	01	ClkOut	PIILock	ValidHeader	FhssChangeChannel	FhssChangeChannel	TxDone
	10	ClkOut	PIILock	PayloadCrcError	FhssChangeChannel	CadDetected	CadDone
	11	-	-	-	-	-	-

L'interface SPI (Serial Peripheral Interface)

 L'interface de communication du module inAIR9 est plus complexe que celle utilisée par le GPS: Il ne s'agit plus d'un simple port série à 2 fils (RX/TX) mais d'une interface SPI à 4 fils:

• La documentation de l'Arduino est obligatoire pour savoir ou connecter les câbles:

https://www.arduino.cc/en/Reference/SPI

- On notera qu'il manque un port: le SS, Nous allons devoir utiliser un port numérique de l'arduino pour ce rôle
- Il faudra donc un minimum de 4 fils

La librairie LoRa-LMIC-1.51 pour Arduino

- Étudions la librairie en ouvrant le fichier d'exemple:
- https://github.com/things4u/LoRa-LMIC-1.51/blob/master/libraries/lmic-v1.51/examples/nano-lmic-v1.51-F/nano-lmic-v1.51-F.ino

3 ports Data I/O (0,1,2) sont aussi utilisés en plus et a brancher sur port numérique 4,5,7

La librairie LoRa-LMIC-1.51 pour Arduino

 Continuons l'étude pour trouver ou déclarer les clés d'authentification indiquées lors de la déclaration du client LoRa

```
AppKey
  // LORAWAN Application identifier (AppEUI)
  // Not used in this example
   static const u1_t APPEUI[8] PROGMEM = { 0xBE, 0x7A, 0x00, 0x00, 0x00, 0xEE, 0xFF, 0xC0 };
                                                                                                                                                                                                                                                                                                                                                                                                                                                    EUI
// LoRaWAN DevEUI, unique device ID (LSBF)
// Not used in this example
   static const u1_t DEVEUI[8] PROGMEM = { 0x69, 0x69
                                                                                                                                                                                                                                                                                                                                                                                                                  NwSkey
  // LoRaWAN NwkSKey, network session key
  // Use this key for The Things Network
   unsigned char NwkSkey[16] = \{0x3F, 0xEC, 0xDD, 0x09, 0x8A, 0xC3, 0x96, 0x93, 0x55, 0xE0, 0xBA, 0xC3, 0xC3,
   0xFB, 0xC6, 0x26, 0x6C, 0x1E, 0xC9 };
                                                                                                                                                                                                                                                                                                                                                                                                                                                    AppSKey
  // LoRaWAN AppSKey, application session key
  // Use this key to get your data decrypted by The Things Network
   unsigned char AppSkey[16] = \{0x6D, 0xB0, 0x68, 0x90, 0x97, 0x30, 0x69, 0x30, 0x36, 0x79, 0x80, 0x80,
   0xE8, 0xB8, 0xBE, 0x5C, 0x0C, 0x8F };
```

La librairie LoRa-LMIC-1.51 pour Arduino

Et le message à envoyer

```
void do_send(osjob_t* j) {
    (...)
    strcpy((char *) mydata,"{\"Hello\":\"World\"}");
    LMIC_setTxData2(1, mydata, strlen((char *)mydata), 0);
Les données reçue par le GPS seront a mettre dans mydata

Les données reçue par le GPS seront a mettre dans mydata

// World\"}");
// World\"}");
// Miccontinuation of the continuation o
```

Attention: 64octets uniquement!

uint8_t mydata[64];

Câblage électrique du module radio LoRA

inAir9	Arduino UNO
3v3	3.3V
0V	GND
СК	ICSP - SCK
SI	ICSP - MOSI
SO	ICSP - MISO
CS	D10
D0	D4
D1	D5
D2	D7

Attention: les niveaux électriques sont différents entre l'Arduino UNO (5V) et l' inAir9 (3.3V). Dans notre cas cela a fonctionné sans problème, mais l'usage d'un adapteur de tenson est fortement recommandé!

Compiler le sketch d'exmeple

- Une fois renseigné les clés d'authentification, lancer le programme d'exemple qui ne fait rien que d'envoyer un «Hello World»
- Première remarque: Malgré l'usage de la version «légère» de la bibliothèque, il ne reste plus de 500 octets de disponible en SRAM:

Sketch uses 24,786 bytes (76%) of program storage space. Maximum is 32,256 bytes. Global variables use 1,547 bytes (75%) of dynamic memory, leaving 501 bytes for local variables. Maximum is 2,048 bytes.

Low memory available, stability problems may occur.

Pas de place pour le module SoftSerial (GPS)!

Vérification des messages reçus

Utilisation de l'API Websocket

ιμ'ι LORIO Τ	Connected to BE	E7A06C8	Disconnect	De	code d	lata	Send data WebSocket Application
Device EUI	Local time	Freq [MHz]	Data rate RSSI	SNR	Seq #	Port	Payload
₹69696969696969	10/29/2016, 8:48:31 PM				3	1	7b 22 47 50 53 22 3a 22 50 61 73 20 64 69 73 70 6f 21 22 7d
₹69696969696969	10/29/2016, 8:46:31 PM				2	1	7b 22 47 50 53 22 3a 22 50 61 73 20 64 69 73 70 6f 21 22 7d
₹69696969696969	10/29/2016, 7:25:17 PM				1	1	[empty payload]
₹69696969696969	10/29/2016, 6:50:22 PM				4	1	21 21 21
₹69696969696969	10/29/2016, 6:50:12 PM				3	1	04 aa
₹69696969696969	10/29/2016, 6:48:09 PM				2	1	23 23
₹69696969696969	10/29/2016, 6:47:24 PM				1	1	[empty payload]
₹69696969696969	10/29/2016, 6:43:01 PM				3	1	21 21 21 21 21 21 21 21 21 21 21 21 21 2
₹69696969696969	10/29/2016, 6:38:55 PM				1	1	b8 b
₹69696969696969	10/29/2016, 6:38:09 PM				4	1	b8 06 07 07 07 07 07
₹69696969696969	10/29/2016, 6:36:39 PM				3	1	04 8e
₹69696969696969	10/29/2016, 6:36:30 PM				2	1	b8 b8
₹69696969696969	10/29/2016, 6:35:54 PM				1	1	01 89 89 10 ff ff
₹69696969696969	10/29/2016, 6:02:49 PM				6	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 6:00:49 PM				5	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:58:49 PM				4	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:56:49 PM				3	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:54:49 PM				2	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:52:49 PM				1	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:45:32 PM				24	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
T69696969696969	10/29/2016, 5:43:32 PM				23	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:41:32 PM				22	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
T69696969696969	10/29/2016, 5:37:32 PM				20	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:35:32 PM				19	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:33:32 PM				18	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:31:32 PM				17	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
₹69696969696969	10/29/2016, 5:29:32 PM				16	1	7b 22 5a 41 44 22 3a 22 50 61 72 74 6f 75 74 21 22 7d
						-	

Conclusion

- L'Arduino UNO ne semble pas adapté pour pouvoir utiliser la grosse librairie LoRaWAN ET un GPS en même temps
 - 2Ko de SRAM n'est pas suffisant, ou alors un travail beaucoup plus long (pas possible en 48h) à prévoir pour alléger la librairie
 - Une tension de 3.3V simplifierai énormément le câblage
- Module conseillé:
 - Arduino 101, 29€ (24 Ko de SRAM, I/O 3.3V avec tolérance 5V)
 - Arduino Zero, 43€ (32Ko de SRAM, I/O 3.3V)