

Local vs Global Alignments

Global Alignment

Local Alignment

tccCAGTTATGTCAGgggacacgagcatgcagagac

aattgccgccgtcgttttcagCAGTTATGTCAGatc

better alignment to find conserved segment

Local vs Global Alignments

- The <u>Global Alignment Problem</u> tries to find the longest path between vertices (0,0) and (n,m) in the edit/alignment graph.
 - The Needleman–Wunsch algorithm
- The Local Alignment Problem tries to find the longest path among paths between **arbitrary vertices** (*i,j*) and (*i', j'*) in the edit graph
 - The Smith–Waterman algorithm

Local alignments: why?

- Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions
- Example
 - Homeobox genes have a short region called the homeodomain that is highly conserved between species
 - A global alignment would not find the homeodomain because it would try to align the ENTIRE sequence

Multidomain proteins

The local alignment problem

• Goal: Find the best local alignment between two strings

• Input: Strings \mathbf{v} , \mathbf{w} and scoring matrix δ

 Output: Alignment of substrings of v and w whose alignment score is maximum among all possible alignment of all possible substrings

Local alignment: example

Local alignment: running time

- In the grid of size $n \times n$ there are $\sim n^2$ vertices (i,j) that may serve as a source and $\sim n^2$ vertices (i',j') that may serve as a sink.
- For each such pair of vertices, computing alignments from (i,j) to (i',j') takes O(n²) time

We do NOT go with this algorithm!

The local alignment recurrence

- The largest value of $s_{i,j}$ over the whole edit graph is the score of the best local alignment.
- The recurrence:

$$S_{i,j} = max \begin{cases} 0 \\ S_{i-1,j-1} + \delta(v_i, w_j) \\ S_{i-1,j} + \delta(v_i, -) \\ S_{i,j-1} + \delta(-, w_j) \end{cases}$$

Notice there is only this change from the original recurrence of a Global Alignment

Complexity: O(N²), or O(MN)

Local Alignment Example

0 0 0 0

Match: +1

Scoring indels: naive approach

- A fixed penalty σ is given to every indel:
 - - σ for 1 indel,
 - -2σ for 2 consecutive indels
 - -3σ for 3 consecutive indels, etc.
- Can be too severe penalty for a series of 100 consecutive indels

Arbitrary gap penalty?

- There are many such edges!
- Adding them to the graph increases the running time of the alignment algorithm by a factor of **n** (where **n** is the number of vertices)
- So the complexity increases from $O(n^2)$ to $O(n^3)$

Affine gap penalties

• In nature, a series of *k* indels often come as a single event rather than a series of *k* single nucleotide events:

Affine gap penalties

Score for a gap of length x is:

$$-(\rho + \sigma x)$$

where $\rho > 0$ is the penalty for introducing a gap:

gap opening penalty

 ρ will be large relative to σ :

gap extension penalty

pecause you do not want to add too much of a penalty for extending the gap

Affine gap penalty recurrences

$$D(i,j) = max \left\{ egin{array}{ll} D(i-1,j) + \sigma & ext{Continue gap in } y ext{ (deletion)} \\ S(i-1,j) + (\sigma +
ho) & ext{Start gap in } y ext{ (deletion)} \end{array}
ight.$$

$$I(i,j) = max \left\{ egin{array}{l} I(i,j-1) + \sigma \ S(i,j-1) + (\sigma +
ho) \end{array}
ight.$$

Continue gap in x (insertion) Start gap in x (insertion)

$$S(i,j) = max \left\{ egin{array}{l} S(i-1,j-1) + \delta(x_i,y_j) \ I(i,j) \ D(i,j) \end{array}
ight.$$

Match or mismatch End with deletion End with insertion

Substitution Matrices

BLOSUM62 matrix