Homework 30

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

Question 1

What is the area between the curve $f(x)=\sin^3 x$ and the x-axis from x=0 to $x=\frac{\pi}{3}$?

- $\bigcirc \ \frac{23-9\sqrt{3}}{24}$
- $\bigcirc \frac{-25+15\sqrt{3}}{24}$
- \circ $\frac{29}{24}$

Question 2

Compute the area between the curves $f(x)=e^x\sec^2 x$ and $g(x)=e^x\tan^2 x$ for $0\leq x\leq \pi$.

Hint: if you do this correctly, you will not have to worry about the fact that there are singularities in \sec and \tan ...

- $e^{\pi}-1$
- 0
- \bigcirc π

- $0 1 e^{\pi}$ $e^{\pi} \sec^2 \pi e^{\pi} \tan^2 \pi$

Question 3

What is the area between the curve $y=\sin x$ and the x-axis for $0\leq x\leq \pi$?

- $^{\circ}$ π
- \bigcirc -2

- $-\pi$

Question 4

What is the area between the curve $y=\sin x$ and the x-axis for $0\leq x\leq 2\pi$?

- ²

Question 5

Find the area of the bounded region enclosed by the curves $y=\sqrt{x}$ and

$$y = x^{2}$$
.

Hint: start by drawing the curves in the plane and identifying the appropriate region.

- $-\frac{1}{3}$
- ₀ 3
- \circ $\frac{1}{3}$
- ₀ 1

Question 6

Calculate the Gini index (see the lecture for a definition) of a country where the fraction of the total income earned by the lowest \boldsymbol{x} fraction of the populace is given by the function

$$f(x) = \frac{2}{5} x^2 + \frac{3}{5} x^3$$

- $\bigcirc G(f) = \frac{13}{30}$
- $\bigcirc \ G(f) = \frac{13}{60}$
- $G(f) = \frac{13}{15}$
- $G(f)=rac{5}{6}$
- $G(f) = \frac{5}{12}$
- \bigcirc $G(f)=rac{5}{3}$

Question 7

Consider a cone of height h with base a circular disc of radius r. Let's compute the surface area —the area of the "outside" of the cone, not including the bottom. Following how we computed the area of a circular disc (which is, indeed, such a cone with h=0), we can decompose its area into infinitesimal triangles with base $rd\theta$ and height the slant length $L=\sqrt{h^2+r^2}$. The area element dA is then the area of this infinitesimal triangle. Integrating dA from $\theta=0$ to $\theta=2\pi$ gives the surface area of the cone. What is its value?

If you find this problem difficult, don't worry! We will revisit it in Lecture 36.

- \bigcirc $\pi r L$
- $\pi r^2 L$
- $\frac{1}{3} \pi r^2 L$
- $\frac{1}{2} \pi r^2 L$
- $aggregation 2\pi r^2 L$
- $2\pi rL$
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers