ECE M146 Introduction to Machine Learning

Prof. Lara Dolecek

ECE Department, UCLA

Today's Lecture

Recap:

Gaussian Discriminant Analysis – scalar case

New topic:

- Gaussian Discriminant Analysis vector case
- Multivariate Gaussian RVs

Today's Lecture

Recap:

Gaussian Discriminant Analysis – scalar case

New topic:

- Gaussian Discriminant Analysis vector case
- Multivariate Gaussian RVs

Recap: GDA in the scalar case

- Instance of generative modeling.
- Class marginals:

Class conditionals:

• Estimate the parameters by taking the derivatives of the log of the joint.

At test time

Today's Lecture

Recap:

Gaussian Discriminant Analysis – scalar case

New topic:

- Gaussian Discriminant Analysis vector case
- Multivariate Gaussian RVs

Now, we generalize to vector input data

Notation:

Conditional pdf is modeled as jointly Gaussian.

• For the vector case, mean and covariance matrix represent:

Properties of the covariance matrix

Properties of the covariance matrix

Properties of the covariance matrix

More on the Jointly Gaussian RVS

• Special case of covariance matrix being diagonal.

Covariance matrix -- examples

 Same idea as in the scalar case: take derivative of the log likelihood, except that we are after vectors and matrices (need to use matrix calculus)

At test time

GDA for multiclass classification

Unequal class covariance matrices

At test time

GDA as Naïve Bayes classifier

 Recall that last time we studied Naïve Bayes classifier that adopts conditional independence:

When this assumption is used in the current setting:

Connections with logistic regression

Connections with logistic regression