МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №__1__ по курсу «Методы машинного обучения»

Тема: «Разведочный анализ данных. Исследование и визуализация данных.»

исполнитель:	Цитульский А.М. _{ФИО}			
группа ИУ5-21М	подпись			
	"29"032019 г.			
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е			
	подпись			
	""2019 г.			

Москва - 2019

Текстовое описание данных

Набор данных: https://www.kaggle.com/spscientist/students-performance-in-exams)

Содержит следующие колонки:

- gender пол (M = 1, Ж = 0)
- race/ethnicity paca (5 групп)
- parental level of education уровень образования родителей
- lunch обед перед тестированием (стандарный = 1, нет/уменьшенный = 0)
- test preparation course подготовка к тесту (завершена = 0, незавершена = 1)
- math score балл по математике
- reading score балл по чтению
- writing score балл по письму

Импорт библиотек

3

1

```
In [0]: import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")

In [4]: from google.colab import drive
drive.mount('/content/drive', force_remount=True)

os.listdir('/content/drive/My Drive/Colab Notebooks/')

# Будем анализировать данные только на обучающей выборке
data = pd.read_csv('/content/drive/My Drive/Colab Notebooks/StudentsPerformance.c
sv', sep=",")
```

Mounted at /content/drive

Основные характеристики датасета

0

2

```
In [23]:
             data.head()
Out[23]:
                                             parental level of
                                                                        test preparation
                                                                                                     reading
                                                                                                                 writing
                                                                                            math
                 gender
                          race/ethnicity
                                                                lunch
                                                    education
                                                                                            score
                                                                                                        score
                                                                                                                   score
             0
                       0
                                       1
                                             bachelor's degree
                                                                    1
                                                                                       1
                                                                                               72
                                                                                                          72
                                                                                                                      74
              1
                       0
                                      2
                                                 some college
                                                                    1
                                                                                       0
                                                                                               69
                                                                                                           90
                                                                                                                      88
              2
                       0
                                       1
                                                                                       1
                                                                                                          95
                                              master's degree
                                                                    1
                                                                                               90
                                                                                                                      93
```

0

1

1

47

76

57

78

associate's degree

some college

44

75

```
In [6]:
         data.shape
 Out[6]: (1000, 8)
 In [8]: data.columns
 Out[8]: Index(['gender', 'race/ethnicity', 'parental level of education', 'lunch',
                 'test preparation course', 'math score', 'reading score',
                 'writing score'],
                dtype='object')
In [22]:
         data.dtypes
Out[22]: gender
                                          int64
                                          int64
         race/ethnicity
         parental level of education
                                         object
                                          int64
         test preparation course
                                          int64
         math score
                                          int64
         reading score
                                          int64
                                          int64
         writing score
         dtype: object
 In [7]: # Проверим наличие пустых значений
          # Цикл по колонкам датасета
          for col in data.columns:
              # Количество пустых значений - все значения заполнены
              temp null count = data[data[col].isnull()].shape[0]
              print('{} - {}'.format(col, temp_null_count))
         gender - 0
         race/ethnicity - 0
         parental level of education - 0
         lunch - 0
         test preparation course - 0
         math score - 0
         reading score - 0
         writing score - 0
In [21]: | data['test preparation course'].unique()
Out[21]: array([1, 0])
 In [0]:
         from sklearn.preprocessing import LabelEncoder
          labelencoder = LabelEncoder()
          data['race/ethnicity'] = labelencoder.fit_transform(data['race/ethnicity'])
          data['gender'] = labelencoder.fit_transform(data['gender'])
          data['lunch'] = labelencoder.fit_transform(data['lunch'])
          data['test preparation course'] = labelencoder.fit_transform(data['test preparati
          on course'])
```

In [24]: # Основные статистические характеристки набора данных data.describe()

Out[24]:

	gender	race/ethnicity	lunch	test preparation course	math score	reading score	writing score
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1000.000000	1000.000000
mean	0.482000	2.174000	0.645000	0.642000	66.08900	69.169000	68.054000
std	0.499926	1.157179	0.478753	0.479652	15.16308	14.600192	15.195657
min	0.000000	0.000000	0.000000	0.000000	0.00000	17.000000	10.000000
25%	0.000000	1.000000	0.000000	0.000000	57.00000	59.000000	57.750000
50%	0.000000	2.000000	1.000000	1.000000	66.00000	70.000000	69.000000
75%	1.000000	3.000000	1.000000	1.000000	77.00000	79.000000	79.000000
max	1.000000	4.000000	1.000000	1.000000	100.00000	100.000000	100.000000

Информация о корреляции признаков

In [25]: data.corr()

Out[25]:

	gender	race/ethnicity	lunch	test preparation course	math score	reading score	writing score
gender	1.000000	-0.001502	0.021372	-0.006028	0.167982	-0.244313	-0.301225
race/ethnicity	-0.001502	1.000000	0.046563	-0.017508	0.216415	0.145253	0.165691
lunch	0.021372	0.046563	1.000000	0.017044	0.350877	0.229560	0.245769
test preparation course	-0.006028	-0.017508	0.017044	1.000000	-0.177702	-0.241780	-0.312946
math score	0.167982	0.216415	0.350877	-0.177702	1.000000	0.817580	0.802642
reading score	-0.244313	0.145253	0.229560	-0.241780	0.817580	1.000000	0.954598
writing score	-0.301225	0.165691	0.245769	-0.312946	0.802642	0.954598	1.000000

Визуальное исследование датасета

In [60]: !ipython nbconvert -to pdf "/content/drive/My Drive/Colab Notebooks/LR1.ipynb"

[TerminalIPythonApp] WARNING | Subcommand `ipython nbconvert` is deprecated and will be removed in future versions.

[TerminalIPythonApp] WARNING \mid You likely want to use `jupyter nbconvert` in the future

[NbConvertApp] WARNING | pattern u'\u2014to' matched no files

[NbConvertApp] WARNING | pattern u'pdf' matched no files

[NbConvertApp] Converting notebook /content/drive/My Drive/Colab Notebooks/LR1.i pynb to html

[NbConvertApp] Writing 1363390 bytes to /content/drive/My Drive/Colab Notebooks/LR1.html

Диаграмма рассеяния

```
In [26]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='math score', y='reading score', data=data)
```

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f791bcba470>


```
In [28]: fig, ax = plt.subplots(figsize=(10,10))
    sns.scatterplot(ax=ax, x='math score', y='reading score', data=data, hue = 'lunc h')
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7918d60fd0>

In [29]: sns.relplot(x='math score', y='reading score', data=data, hue = 'lunch', col = 't
 est preparation course')

Out[29]: <seaborn.axisgrid.FacetGrid at 0x7f7918bc7588>


```
In [30]: sns.relplot(x='math score', y='reading score', data=data, hue = 'lunch', col = 'g
ender')
```

Out[30]: <seaborn.axisgrid.FacetGrid at 0x7f791728ac50>

Jointplot

Out[33]: <seaborn.axisgrid.JointGrid at 0x7f7916f6ac50>

Парные диаграммы

In [27]: sns.pairplot(data)

Out[27]: <seaborn.axisgrid.PairGrid at 0x7f791bcfee48>


```
In [35]: sns.pairplot(data, hue = "lunch")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kde.py:494: Run
timeWarning: invalid value encountered in true_divide
 binned = fast_linbin(X,a,b,gridsize)/(delta*nobs)
/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kdetools.py:34:
RuntimeWarning: invalid value encountered in double_scalars
 FAC1 = 2*(np.pi*bw/RANGE)**2

Out[35]: <seaborn.axisgrid.PairGrid at 0x7f7916e33898>

Ящик с усами

```
In [41]: sns.boxplot(x=data['math score'])
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7915b10cf8>


```
In [44]: sns.catplot(x='lunch', y='math score', hue ='test preparation course', col = 'gen der', data=data, kind="box", height=4, aspect=.7)
```

Out[44]: <seaborn.axisgrid.FacetGrid at 0x7f7915a9a908>

Violin plot

```
In [49]: fig, ax = plt.subplots(2, 1, figsize=(10,10))
    sns.violinplot(ax=ax[0], x='math score', data=data)
    sns.distplot(data['math score'], ax=ax[1])
```

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7915503cc0>

In [53]: sns.catplot(x="lunch", y="math score", hue ='test preparation course', col = 'gen
der', color = 'b', data=data, kind="violin", split=True, height=4, aspect=.7);

