8.9: Improper Integrals

Definition. (Improper Integrals over Infinite Intervals)

1. If f is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx.$$

2. If f is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

3. If f is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{a \to -\infty} \int_{a}^{c} f(x) dx + \lim_{b \to \infty} \int_{c}^{b} f(x) dx.$$

where c is any real number. It can be shown that the choice of c does not affect the value or convergence of the original integral.

If the limits in cases 1.– 3. exist, then the improper integrals **converge**; otherwise they **diverge**.

Example. Evaluate $\int_1^\infty \frac{\ln(x)}{x} dx$ and determine if the integral converges or diverges.

Example. Evaluate $\int_{-\infty}^{\infty} \frac{e^{3x}}{1 + e^{6x}} dx$.

Example. For what values of p does $\int_1^\infty \frac{1}{x^p} dx$ converge?

Example (Gabriel's Horn). Let R be the region bounded by the graph of $y = 1/x$ and the x -axis for $x \ge 1$.	
	lid generated when R is revolved around the x -axis?
What is the surface area of t	ne solid generated when R is revolved about the x -axis?
8.9: Improper Integrals	112 Math 1080 Class notes Fall 2021

Definition. (Improper Integrals with Unbounded Integrand)

1. Suppose f is continuous on (a, b] with $\lim_{x\to a^+} f(x) = \pm \infty$. Then

$$\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx.$$

2. Suppose f is continuous on [a,b) with $\lim_{x\to b^-} f(x) = \pm \infty$. Then

$$\int_a^b f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx.$$

3. Suppose f is continuous on [a,b] except at the interior point p where f is unbounded. Then

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to p^{-}} \int_{a}^{c} f(x) \, dx + \lim_{d \to p^{+}} \int_{d}^{b} f(x) \, dx.$$

If the limits in cases 1.-3. exist, then the improper integrals **converge**; otherwise, they **diverge**.

Example. Determine which of the following integrals are improper integrals

$$\int_0^1 \sec(x) \, dx$$

$$\int_{\pi/2}^{3\pi/4} \tan(x) \, dx$$

$$\int_{1}^{e} \ln(x) \, dx$$

$$\int_0^1 \arctan(x) \, dx$$

$$\int_0^{0.5} \ln(x) \, dx$$

$$\int_{-10}^{-1} \frac{1}{x^{1/3}} \, dx$$

Example. Evaluate $\int_1^9 \frac{dx}{(x-1)^{2/3}}$. Does this integral converge or diverge?

Example. Evaluate $\int_{-1}^{1} \frac{e^{2/x}}{x^2} dx$. Does this integral converge or diverge?

Theorem 8.2: Comparison Test for Improper Integrals

Suppose the functions f and g are continuous on the interval $[a, \infty)$, with $f(x) \ge g(x) \ge 0$, for $x \ge a$.

- 1. If $\int_a^\infty f(x) dx$ converges, then $\int_a^\infty g(x) dx$ converges.
- 2. If $\int_a^\infty g(x) dx$ diverges, then $\int_a^\infty f(x) dx$ diverges.

Example. Determine if the integral $\int_2^\infty \frac{x^3}{x^4 - x^3 - 1} dx$ converges or diverges.