Set cover problem An universe U of elements Impud: $\alpha_1, \alpha_2, \ldots, \alpha_n$ a collection of subsets of U $C = \{ S_1, S_2, \dots S_m \}$ a weight function w; s-> R+ Find a minimum cost subsellection c'ec such that $\bigcup_{S_i' \in C'} S_2' = \bigcup_{S_i' \in C'}$

TIP

for each set si we take a binary decision variable xi such that

zi = si is in the solution if Si is not in the Solution

objective is.

min \(\mathbb{M}_2 \mathbb{M}_2' \mathbb{M}_2' \) S[**€C**

8.t. \(\sigma_i > 1\) a; Esite

* ajeU

The for set cover.

Siece Wi Xi "

Siece Site Cover. $\forall a_i \in \bigcup$ $\sqrt{\frac{5}{a_j \in s_i \in c}}$ 7; € 50, 13 ponsider the sets are bounded.

| bounded:
| | Sil = x for each siec V Each element aj belongs to ad most x set ≥: for all aj € U.

Marinum flow

Given a directed graph Ge (ME) with two nodes S and I and positive capacities

C: E-> R+

Find the maximum amount of flow that ean be sent from 8 to t such that

i) capacity constraint:

For each edge ethe flow pass through e is bounded by its capacity.

ii) flow conservation:

At each vertex vother than into v should equal to the total flow one of v.

take an edge from to S whose capacity is w. fts on the flow from the to S.

maximise fts Fij an the flow from i-th vertex to jth vertex i., (i,i) E E. constaints: eapacity of ij < ci; + (2, i) compression J. (2i) EE J. (2i) EE fij >

Scheduling jobs on unrelated
Scheduling jobs on unrelated parallel machines.
Given a set J of jobs and machines.
machines.
(bii) be the process the
Job j to machine c
the good is to schedule the
ists on the machines so as to
minimize the makespan.
1 man haveell
manimum process time of any machine
$M_2 = \frac{8}{10}$
m2
m _K 5

t be the makespan. zij
jobjisscheduled on
machine i xij = (1 job j ix 8 cheduled on machine i

o otherwise. minimise t 8.t. $\sum_{i \in M} x_{ij} = 1 \quad \forall j \in J$ Existry <t + icm J Zije Sonis Hiem je J

Independent Set postlem Griven a graph & & (V, E) and a weight function wood of Pt The goal is to find a cost Set of vertices VICV such that any two readjacents verifices in vis non-adjacents Servis Is \$\frac{1}{2}\frac{1}{2 {42, 44} IS of cost 11