CO	MP 3804 Assignment 1:
1)	Dulika Gumaye 101263208
2)	15 FIBBEIBER correct?:
	Proof by Induction:
→	Base cases:
	→ base case for n = 0:
	- Fib Beiber(0) installizes the array so f(0) = -1
	- Fib Beiber (0) calls Beiber (0)
	- Belber(0) makes m=0, then checks if m=0 and since it is, it sets f(0)=0
	- FibBelber(0) then returns $f(0) = 0$, which is equal to $F_0 = 0$
	-> buse case for n=1:
	- FibBeiber (1) inits the array f(0) = -1. f(1) = -1
	- Fib Beiber (1) culls Beiber (1)
	- Beiber (1) makes $m=1$, then checks if $m=0$, since it isn't, it checks $m=1$ and since it is it sets $f(0)=0$ and $f(1)=1$
	- Fib Beiber (1) then returns f(1)=1, which is equal to Fi=1
٠,	Inductive Step:
·	hyp: Assume the algorithm works for n=k=>Assume it computes the correct fibonacci number for 0≤n≤k.
	For each $n \le k$, the algorithm computes F_n . We need to show $F_{k+1} = f(k+1)$ when $n = k+1$ Case: $n = m = k+1$
	- Fib Belber (k4) inits an arroy f(K+1) where all elements are set to -1.
	- Belber (k+1) is called:
	- checks $f(k-1)$ and $f(k)$ are already composed (not -1). If they aren't computed it recursively calls Beiber(k) and Beiber(k-1)
	- ofter $f(k-1)$ and $f(k)$ are computed it computes: $f(k+1) = f(k-1) + f(k)$
	- Which is equal to $f_{k+1} = f_{k-1} + f_{k}$ (by definition of fibonacci seapence)
	\therefore $f(\kappa+1) = F_{\kappa+1} \rightarrow the inductive step holds, and Fib Beiber(n) correctly computes the n4h fibonacci nomber.$
۵۱	
L)	What's the runtime of Fibbuber(n)
	-init array: O(n)
	- the algorithm ensures each valve is only computed once (we saw this example in class)
	is the # calls to Belber(n) is proportional to n (because of this) is (w) memoization)
	ls each call to belber(n) is constant amount of work

3)	1.s FibSwift correct?
	Proof by Induction:
⇒	Pare Cures:
	⇒ base Case for n=0
	- inits the array 50 f(0) = -1
	- FibSwift(0) calls Swift(0)
	- swift (0) makes m=0, then checks if m=0 and since it is it sets f(0)=0
	- FibSwift than returns 0 because f(0)=0
	→ Base Case for n=1
	- inits the array so f(0) = -1 and f(1) = -1
	- FibSwift(1) calls Swift(1)
	- swift (1) makes m=1, then checks if m=0, since it isnt it checks m=1, since it is it makes f(0)=0 and f(1)=1
	- FibSwift than returns 1 because $f(i) = 1$
->	Inductive Step:
	Assume the algorithm works for $n=k=\lambda ssume$ it computes the correct fibonacci number for $0 \le n \le k$.
	For each $n \leq k$, the algorithm computes F_n . We need to show $F_{k+1} = f(k+1)$ when $n = k+1$
	Case: n = m = k+1
	- FioSwift(K+1) Inits an array f(K+1) where all elements are set to -1.
	- Swift (k+1) is called:
	- for k+1≥2, swift recursively calls Swift(b)
	- ofter fle) (and : souft(e-1) since it's recursive) is computed it calculates f(e+1) = f(e) + f(e-1)
	- Which is equal to fen = fe-1+ Fe (by definition of Abonacci seapence)
	: $f(k+1) = F_{k+1} \rightarrow \text{the inductive step holds, and } Fitswift(n) correctly computes the n+h fibonacci number.$
3)	what's the runtime of FibSuift?
	-init array 0(n) >(like Fibberber)
	- the algorithm ensures each valve is only computed once = [: the runtime is 0(n)]
	Listhe # calls to fibSwift (n) is proportional to n (because of this) (we saw this example in class) (we memorization)
	ls each call to fibs.wift (n) 13 constant amount of work

| 1 | T(n) =
$$\begin{cases} 1 & \text{if } n = 1 \\ n^3 + 12 \cdot T(n_1) & \text{if } n \geq T \end{cases}$$
| Indicating: $-7^{16} \ge n$
| T(n) = $n^3 + 12 \cdot T(n_1)$ | $1 \cdot n \geq T$
| T(n) = $n^3 + 12 \cdot T(n_1)$ | $1 \cdot n \geq T(n_1)$ | $\rightarrow T(n_2)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + 12 \cdot T(n_1 + 1)$ | $\rightarrow T(n_2)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + 12 \cdot T(n_1 + 1)$ | $\rightarrow T(n_2)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + 12 \cdot T(n_1 + 1)$ | $\rightarrow T(n_2)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4$ | $\rightarrow T(n_2 + 1)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4$ | $\rightarrow T(n_2 + 1)$ |

= $n^3 + 12 \cdot (n_1^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4 + (n_2^{-3})^4$ | $\rightarrow T(n_2 + 1)$ |

= $(1 + (\frac{12}{73})^4 + (\frac{12}{73})^3 + (\frac{12}{73})$

```
5) Algorithm in Ollogn) time
                                                                                example runthrough:
                                                                            A= 1.2, 3, 4, 5,6,0
 -) getlangest logic: -> assume indux stark at 1 (not 0)
                                                                            e=1, r=n=7, m=4
    hase case:
    - n=1 : return A[i]
                                                                            A[4] < A[5] > yes
                                                                            1=5, r=7, m= 6
   Reconsinc: (n > 2)
   - let e = lett index & r = right index (starts as l=1 r=n)
                                                                            00 ( [ [ ] A > [6] A
   - find the middle of the 2 indeces m = L(1+r)/2]
                                                                            1:5, r=6, m=5
   - check A[m] < A[m+1]
                                                                             A[5] < A[6] > yes
    Lo if yes, call alg. with m+1 = &
                                                                             1-6, r=6
                                                                             1== 1 : largest A[6] = 6
    b if no, call alg. with m=r
 -) Pseudo code:
    getLargest(A, l,r):
    if (==r: return A[1])
    if n≥2:
        m= floor ((++r)/2);
        if A[m] < A[m+1]: return getlargest (A, m+1, r);
        else: return getlangest (A, P, m);
→ Correctness: Proof by Induction
 -> Base case: 1==r then A[L] is returned because there's only a element.
  Inductive step: The alg will return the largest element in any subarray [4, ..., 7]
   -the array property ensures we only have I largest number
   - the alg. compares Alm3 (middle of subarray) with Alim+13 (element to the right of the middle) at each rec call.
   15 If A[m] < A[m+1] we know the largest num must be on the right of A[m] because of the array property.
    15 If A[m]>A[m+1] we know it must be on the left of A[m] because of the array property.
   b the alg. always halves the subarray at each call
      13this reduces the subarray until there is only 1 element left (buse case)
   . We know that since the all takes the largest element of the suburray at each step & reduces whill there's 1 element, the last
   element will be the largest element in the array.
 TIME COMPLEXITY:
                                                                                 T(n) = T(\frac{n}{2}) + O(1)
    work per step when n≥2: - culculate m: addition - constant oli)
                                                                                 Master Theorem: a=1, b=2, d=0
                             - A[m] < A[m+1]: comparison: constant O(1)
                             - make recursive call: constant O(1)
                                                                                 log 21 = 0
    recursive call: each time we do the recursive call we half n so n
                                                                                 d=0=0
                                                                                             .. T(n) = O(1. logn)
                                                                                                       = O(logn)
```

```
6) Algorithm in O(nlogn) time:
> Buse case: (n≤1)
   - n≤1, neturn 0, because no inversions on 0 or 1 elements.
> Accursive: (NZZ)
   - split array into halves & rec. count out-of-order pairs in each half
                                                                                                    because theyre all greater &
                                                                                                    annear before the element from
   - merge two sorted halves & count inversions
   13 count when element from right half is smaller than left half > than that element & every viconimy element have
> Pseudocode:
                                                            merge (A, temp-A, E, m, r):
   inversion Count (A):
                                                                 (aunt = 0;
       n= (en(A);
                                                                 i, k = l; # Index for left subarray (i) / merge (k)
       tcmp-A=[0]*n;
       return merge Count (A, temp-A, O, n-1);
                                                                 j = m+1; # index for right auburray
  mergeCount (A, temp_A, L, r):
                                                                 while i≤m and j≤r:
      if l == r: return 0;
                                                                     # A[i] ≤ A[i]:
      else.
                                                                         temp-A[k] = A[i];
          m= {over ((2+r)/2);
                                                                         1++5
          count = 0;
                                                                    elce :
          count += murge Count (A, temp_A, 2, m);
                                                                         temp_A(K) = A(j),
                                                                         count += (m-i+1) i # all remaining are greaker
          count += marge(ount (A, temp-A, m+1, r);
          count += merge (A, temp_A, e, m, r);
                                                                         1++9
          ruturn count;
                                                                    6++5
                                                                while is m:
                                                                     temp_A(E) = A(i);
                                                                     itt; ktt>
                                                                while jer:
                                                                     temp. A (k) = A(j) >
                                                                     j++; K++;
                                                                for c in range(-e, r+1):
                                                                     A[c] = temp_A[c];
                                                                return counts
```

-) Correctness:	· Proof by 1											
	, Y	induction:										
buse (use:	nal Nao											
- the alg	will retur	n o pecans	c there's r	10 เทพเสเ	ons							
12 Surtoubal 6	нер:											
hyp: Assume 16	ne algo corre	ully counts	out-of-orde	r pours	for any	arnowy of a	re k : k2	. 1. Prove	for Et1:			
	Ī					'						
- wernelnu	nt: A=[a,	.0.	7 1264 5040	"ت] ایرس	A. 102	" "	R Light subperses	. : " . : [a,	,, 7سور			
	ont: by hyp.						J		, 6.13			
	'											
	rectly counts			v								
	unt: calls v	Ĭ I	Ĭ	,								
-	compare cu			subarrey!	2)							
الم الم 1	[i] < Q[j] ,	no inversion	n									
لغ ١٤ النا) > P_[i,] , y	es inversion	pecanse A	olutes tr	u proper	ty				ا دم	[i] - L[<u>۴</u>	<u>1</u>
ls eve	ny remaining	g element w	1 L will a	iso be o	grenter th	nan RCjJ	(because s	orkd), so	counts th	ose inversion	3	, -
> Turk Compl	lexify:			. we. In	.au\ [teass							
Since wa	J	e-Cort For	ナルタ くいいよいい			2141 22012	O(nloch)					
	veed Herge		the solution	,	ION THUIT	CIOCS 11'S	O(nlogn)					
- div. in	veed Herge No L&R	0(1)			1000	Cloc it's	O(nlogn)					
- div. in	vsed Herge nto L & R oranely call t	0(1) he alg. on	<u>h</u> so T		ION TON	CIOC 11.2	O(nlogn)					
- div. in - we recu - menging	veed Merge nto L & R orshely call to 2 sorted a	0(1) he algo on mews takes	<u>h</u> so T 2 0(n)	(<u>n</u>)	(ON) TOTAL	CIOCS 1112	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	(OW) THUM	clocs 11's	O(nligh)					
- div. In - M. recu - merging T(n) = 2	veed Merge nto L & R orshely call to 2 sorted a	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	OW) THUIL	Clock 11's	O(nligh)					
- div. In - M. recu - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	OW THUM	Clock 11's	0(nl\(\omega \))					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	(00)	Clace 11's	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	(00)	Clacs 1175	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n) == 2, b = 2	(<u>n</u>)	(00)	Clock 1115	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n)	(<u>n</u>)	(00)	Clacs 1175	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n)	(<u>n</u>)	(00)	Clocs 1175	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n)	(<u>n</u>)	(00)	Clacs 1175	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n)	(<u>n</u>)	(00)	Clocs 1175	O(nlogn)					
- div. In - W. rew - merging T(n) = 2	vied Merge onto L & R ontively call to 2 sorted a $T(\frac{n}{2}) + O(\frac{n}{2})$	0(1) the algo on mays takes (n) 0	n so T O(n)	(<u>n</u>)	(00)	Clacs 1175	O(nlogn)					

```
7) Algorithm for finding k-closest elements
 -) Buse Case: L=V:
    -subarray is one element, no need to partition further.
   -return A[2]
 3 Recursive:
   Compute Differences.
   - calc difference between each number & 2025
   - create a list where each element is a pour: ex. D[i] = (1 A[i] - 20251, A[i]) → first val is difference & second val is the number
   Find K-th Smallest Difference Using Quick Select:
   Quickerect: (comparison-based)
       - choose pivot randomly -> otherwise may not be o(n), as proven in class
       - partition list so nums smaller than pivot go to left and nums larger go right
       - recursing one half of array
         hif pivot is at index k-1, we found the k-th smallest difference
         15 if proof is too large, we recurse into left
         13 if proof is too small, we recurse into right
  - the k-th smallest val in D gives us a threshold T \rightarrow k-closest nums are \leq T
    L) select those until we have k elements
  - return the aray nW/ k elements
   escudorode:
  quick select (A, l, r, k):
                                                                         partition (A, e, r).
                                                                              :[v]A = q
      if l == r: return A[l]; # base cale
                                                                              ė= l-15
      p = random(l,r) #random 50 0(n)
                                                                               for j in range (e,r):
      A[p], A[r] = A[r], A[p];
                                                                                   : tovia = [i]A 71
      p-new = partition(A, e,r);
      IF K == p_new: return ACK]; # at the proots pos
                                                                                        1.445
      elif k = p_new: return quickselect (A, e, p_new-1, k); #on the left
                                                                                        A[i], A[i] = A[i], A[i];
      elec: return quickselect (A, p-new+1, r.k); #on the right
                                                                              + [i+i] A , [v] A = [v] A , [i+i] A
  closest (A, K):
                                                                              return itl;
       D = [ (I(A[i] -2028) 1, i) for in range ( ien (A))]; * difference
       quick select (0, 0, len(0) -1, k-1);
       C = [A[D[i][i]] for i in range (4)]; # K-closect elemente
        return cs
```

7)								
-> Cornutnuss: Pro	of by Induction							
-) Bute late: {==1	·.							
-return A[4] si	nce this is the	one and only elev	nent					
-) Inductive Step								
hyp: Assume quicked	lect works for	subarray of si	zen where	n <n (find<="" td=""><td>s k-th smallest</td><td>element in ano</td><td>subatrony with</td><td>n < N elements)</td></n>	s k-th smallest	element in ano	subatrony with	n < N elements)
Prove it works f		0				`	, ,	
		n wl size. N oid	es a random	nvot between	0-N and partit	nonc		
	naller = left of	,						
	ger = right of	·						
Case 1: K= pi	•							
		element & alg 1	notions the now	st.				
Case 2: K-p		care a dig	icionii ira pii	.,				
'		nce L us comple	r & smaller e	lements was	stored in the	1044)		
Case 5: K > p		will confectly th	um r in fumilie	T EKENGENI IVI	the left partition			
		ice k is biaw	rt bluggere	lements are s	tored in the	ruht		
· ·		, ,			he right partition	* ·		
we can sa	y the alg work	cs on array o		3	e alg correctly			
→ Time-Complex	9							
- we saw in	class that in a	"good cape" whe	re p=median	the runtime =	- O(n)			
1s to get the	"good case" vi	se random p,	since on ave	wage this gi	ves something c	lose to the	median	
To further p	ove:							
If p=median:			T(n)= O(n)	+ T(m/2)				
- partitioning	takes O(n)		Mouter Theo	rem: a=1,	b=2, d=1			
- we recurre	on a subarre	ny of 1/2	10921 = 0	d>0 ∵	T(n)=0(n)			

```
8) T(N)=1+ T(L11)
    byou can also write In as n<sup>12</sup>
    T(n) = I + T(L n 2) > unfolding
         = 2+T([[[n"]])"2])
         2+T(n1/22)
        € 2+[1+T([([(h/2])/2]) > T(L(Lh/2)/42])
        = 3+T([([([n/2])/2])/2])
         2 3 + T (n 1/23)
         = K+T(N1/24)
          Is we want to find now many rec. Steps (k) it takes to reach I (base case)
           1) but since we have the floor function, the recurrence actually terminates when <2 (because anything <2 floors to 1)
          n 1/2 < 2
    (\frac{1}{2})^{k} \log n < \log 2
        (12)e< 1092/10gn
       Klog (1) < log log 2/log logn | log log2 = log1=0

K < 02 log logn / log(12) | log12 = log1-log2 = -1
            k < -loglogn/-1
            k < loglogn
                                    ... The recurrence time complexity is O(loglogn).
```