Reference Formuale

Focus : (ae, 0)Directrix : $x = \frac{a}{e}$

Parabola (e=1)

Equation:

$$y^2 = 4ax$$

Parametric form : $(at^2, 2at)$

Ellipse (0 < e < 1)

Equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Parametric form : $(a\cos t, b\sin t)$

Hyperbola (e > 1)

Equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Parametric form : $(a \sec t, b \tan t)$

Group law on Parabola

Given any parabola, there exists an affine transformation that takes it to the curve $y = x^2$.

Figure 1: $R = P \oplus Q$

We define the parametric coordinates of the point R as (r, r^2) . We compare the slopes of the two lines PQ and OR to obtain the co-ordinates of R.

$$\frac{r^2 - o^2}{r - o} = \frac{p^2 - q^2}{p - q}$$
$$r = p + q - o$$

We define a homomorphism from the points on the parabola to R as $\phi((x, x^2)) = x - o$. The map that is defined is a bijection hence it is an isomorphism. The curve shown in the figure is \mathbb{R}^2 however the algebra performed remains the same if the field is changed to \mathbb{C}^2 .

Solving for curves in finite fields

We first investigate the solution set of a curve when working with finite field \mathbb{Z}_p .

$$\mathcal{C} = \{(x_1, x_2, \cdots, x_n) \in \mathbb{Z}_p^n \mid condition\} \subseteq \mathbb{Z}_p^n$$

We notice that \mathbb{Z}_p^n contains a finite number of points (p^n) and so will V. So it is a valid approach to just verify which points out of these will satisfy the condition.

We now see the solution for one such problem

$$V = \{(x, y, z) \in \mathbb{Z}_n^3 \mid x^2 + y^2 = z^2\}$$

We take a different approach to the problem. We set z as a parameter and plot the various curves for different values of z. Now the problem is simplified to two variables for each value of z. We see that we can embed \mathbb{Z}_p^2 in \mathbb{R}^2 such that $\mathbb{Z}_p^2 \subset \mathbb{R}^2$.

that we can embed \mathbb{Z}_p^2 in \mathbb{R}^2 such that $\mathbb{Z}_p^2 \subset \mathbb{R}^2$. For every $z \in \mathbb{Z}_p$, Define $\mathcal{V}_z = \{(x,y) | x^2 + y^2 = z^2\}$

Notice that:

$$V = \bigcup_{z \in \mathbb{Z}_p} \mathcal{V}_z \cap \mathbb{Z}_p^2$$

Figure 2: The figure represents the mod 5 solutions