Mathematica 4

Janvier 2013, mpsiB

Deux fonctions Mathematica: Map, Apply.

La fonction Map applique une fonction à chaque élément d'une liste en suivant la syntaxe

Map[fonction, liste].

Évaluer les entrées suivantes :

Map[Cos,{Pi,1.2,a}]

 $Map[f,{1,1.5,x}]$

Un écriture abrégée de Map[fonction, liste] est fonction /@ liste Évaluer les entrées suivantes :

First /0 {{a,b},{c,d,e}}
f /0 Table[k^2,{k,1,4}]
Expand /0 Table[(1+x)^k,{k,1,4}]

Cette fonction Map opère de la même façon sur toute expression qui n'est pas une liste. L'évaluation Map[f,expr] applique ainsi la fonction f aux arguments de l'expression expr. Autrement dit Map[f,expr] opère indépendamment de la *tête* de l'expression expr.

```
Clear[f,g]; Map[f,g[x,y,z]]
f /@ Sum[x^k,{k,1,5}]
Log[#]/#& /@ {1,a,x,E}
```

La fonction Apply permet de substituer la tête d'une expression en écrivant : Apply[nouvelle_tête,expression] et une écriture abrégée de Apply[nouvelle_tête,Expression] est :

nouvelle_tête @@ expression.

Évaluer les entrées suivantes :

```
Apply[Plus, {1,a,-2,b}]
Times @@ (a+b+c)
Times @@ (a+1+2)
f @@ g[x]
```

- 1. Construire une fonction qui calcule la moyenne des éléments d'une liste.
- 2. On appelle nombre d'Armstrong tout nombre entier qui est égal à la somme des cubes des chiffres de son écriture en base 10; par exemple

153 est un nombre d'Armstrong puisque $153 = 1^3 + 5^3 + 3^3$. Écrire un programme qui calcule tous les nombres d'Armstrong à 3 ou 4 chiffres. (voir IntergerDigits, Select).

- 3. La fonction FactorInteger donne sous la forme d'une liste de listes la décomposition d'un entiers n en facteur premier. Retrouver l'entier n à partir de cette liste de facteurs.
- 4. Un nombre entier est dit parfait s'il est égal à la somme de ses diviseurs stricts. L'entier 6 est parfait car 6 = 3 + 2 + 1. Construire une « fonction test » parfait [n_] permettant de savoir si un nombre n est parfait (voir Divisors).

En déduire la liste de tous les nombres parfaits inférieurs ou égaux à 10 000.

Exercices divers, au choix

1. (Extrait Centrale 2011)

Pour $n \in \mathbb{N}$, on pose

$$P_n = \sum_{i=0}^n \frac{(nX)^i}{i!}.$$

(a) À l'aide de Mathematica, constater pour plusieurs valeurs de n que les racines du polynôme P_n sont de module inférieur ou égal à 1.

(on pourra utiliser NSolve pour extraire les racines)

- (b) Construire une fonction Mathematica, (zer [n_]:=...), permettant de tracer sur un même graphique le cercle unité et les racines de P_n . Tracer ce graphique pour les valeurs n = 25, 50, 100. (voir ListPlot).
- 2. * Problème de Flavius Josèphe

On considère n personnes assises autour d'une table, numérotées de 1 à n et un entier p.

On « élimine » une à une les personnes de la façon suivante :

Mathematica 4

Janvier 2013, mpsiB

on compte p personnes à partir de celle numérotée 1, cette $p^{\text{ième}}$ personne est éliminée, on compte à nouveau p personnes à partir de la suivante, la $p^{\text{ième}}$ personne est éliminée, ainsi de suite . . .

Écrire une fonction Mathematica, josephe $[n_,p_]$ permettant d'établir l'ordre d'élimination des n personnes.

3. (Nombre de Bernoulli)

On considère la suite $(B_k)_{k\geq 0}$ de nombres rationnels définis par les relations

$$B_0 = 1$$
, $\forall m \ge 1$, $B_m = \frac{-1}{m+1} \sum_{k=0}^{m-1} {m+1 \choose k} B_k$.

Les nombres B_k sont appelés nombres de Bernoulli.

Construire une fonction mathematica, bernoulli[n_], qui fournit la liste des nombres (B_0, B_1, \ldots, B_n) .

4. (Anneau des entiers de Gauss)

On rappelle que l'ensemble $\{a+ib, a, b \in \mathbb{Z}\}\subset \mathbb{C}$ est un anneau noté $\mathbb{Z}[i]$, appelé anneau des entiers de Gauss et que ses éléments inversibles sont -1, 1, -i, i. Un élément non nul $z \in \mathbb{Z}[i]$ est dit premier ou irréductible si z est non inversible et si

$$z = u v \Rightarrow (u \text{ ou } v \text{ est inversible}),$$

et tout entier de Gauss non nul se décompose de manière unique comme produit de facteurs irréductibles. (résultat admis)

Avec *Mathematica*, on obtient cette décomposition avec la fonction FactorInteger et son option GaussianIntegers->True.

Par exemple, évaluer :

FactorInteger[3+4*I,GaussianIntegers->True]
FactorInteger[13+6*I,GaussianIntegers->True]

(a) Donner un nombre premier qui ne soit pas irréductible dans $\mathbb{Z}[i]$.

- (b) Vérifier sur plusieurs exemples qu'un nombre entier premier impair est irréductible dans $\mathbb{Z}[i]$ si et seulement si p = 3 [4]. (on ne demande pas de montrer ce résultat)
- (c) On peut montrer, à l'aide de la fonction

$$N: z = a + ib \mapsto N(z) = |z|^2 = a^2 + b^2$$
,

que tout entier naturel premier p, non irréductible dans $\mathbb{Z}[i]$, peut s'écrire $p = \alpha^2 + \beta^2$, où $\alpha, \beta \in \mathbb{N}$. (On admet ce résultat). Noter que N vérifie N(zz') = N'z)N(z') pour tout z et z' de $\mathbb{Z}[i]$.

Utiliser la fonction FactorInteger de Mathematica pour trouver une telle décomposition pour les premiers 13, 29, 113, 373, ...ou pour tout autre que vous aurez choisi.

5. \bigstar (Extrait Oraux Centrale 2008) Pour $(k, n) \in \mathbb{N}^* \times \mathbb{N}$, on pose

$$f_k(n) = n + \left\lfloor \sqrt[k]{n + \sqrt[k]{n}} \right\rfloor.$$

À l'aide de *Mathematica*, conjecturer une description simple de $\{f_k(n), n \in \mathbb{N}\}.$