ФОРМАЛЬНЫЕ ТЕОРИИ

Понятие формальной теории

Формальная теория строится следующим образом.

- 1. Определяется *множество формул*, или правильно построенных выражений, образующих язык теории.
 - 2. Выделяется подмножество формул, называемых аксиомами теории.
- 3. Задаются *правила вывода теории*. Правило вывода $R(F_1,...,F_n,G)$ это вычислимое отношение на множестве формул. Часто правила записываются в виде: $\frac{F_1,...F_n}{G}$. Это также может обозначаться: $F_1,...,F_n \vdash G$.

Формулы $F_1,...,F_n$ называются *посылками* правила R или *гипотезами*, а G – его *следствием* или *заключением*.

формальной существует два теории типа высказываний: высказывания самой теории (теоремы), которые рассматриваются как чисто формальные объекты, определенные ранее и высказывания о теории (о свойствах ее теорем, доказательств и т.д.), которые формулируются на языке, внешнем ПО отношению К теории, метаязыке И называются метатеоремами.

Формула G называется *теоремой теории* T, если в T существует вывод G из пустого множества формул.

Формальная теория T называется pазрешимой, если существует алгоритм, позволяющий отличить теорему от не теоремы.

Формальная теория T называется *непротиворечивой*, если в ней нельзя одновременно доказать формулу F и ее отрицание.

Формальная теория T называется *полной* относительно содержательной теории S, если каждое истинное высказывание S отображается в некоторую теорему теории T.

Исчисление высказываний как формальная теория

Исчисление высказываний как формальная теория определяется следующим образом.

- 1. Алфавит исчисления высказываний состоит из переменных высказываний: A, B, C..., знаков логических связок: $\lor, \land, \neg, \rightarrow$ и скобок (,).
 - 2. Формулы исчисления высказываний:
 - переменное высказывание является формулой;
 - если A и B формулы, то $(A \lor B)$, $(A \land B)$, $(A \rightarrow B)$, \overline{A} также формулы;
 - других формул нет.
- 3. *Аксиомы* тождественно-истинные высказывания, входящие в любую теорию в качестве законов.

Рассмотрим две системы аксиом. Первая непосредственно использует все логические связки.

Система аксиом 1.

 $A1.10 \neg \neg A \rightarrow A$.

$$A1.1 A \rightarrow (B \rightarrow A);$$

 $A1.2 (A \rightarrow B) \rightarrow (A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C));$
 $A1.3 (A \land B) \rightarrow A;$
 $A1.4 (A \land B) \rightarrow B;$
 $A1.5 A \rightarrow (B \rightarrow (A \land B));$
 $A1.6 A \rightarrow (A \lor B);$
 $A1.7 B \rightarrow (A \lor B);$
 $A1.8 (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C));$
 $A1.9 (A \rightarrow B) \rightarrow ((A \rightarrow B) \rightarrow A);$

Другая система использует только две связки: \rightarrow и \neg . При этом сокращается алфавит исчисления (выбрасываются знаки \lor , &) и соответственно определение формулы.

Система аксиом 2.

$$A2.1 A \rightarrow (B \rightarrow A);$$

$$A2.2 (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B)) \rightarrow (A \rightarrow C));$$

$$A2.3 (\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A).$$

Приведенные системы аксиом равносильны, так как порождают одно и то же множество формул.

Возможны и другие системы аксиом, равносильные приведенным выше системам. Если сравнить эти систем аксиом. Система аксиом 2 является более компактной и обозримой. Система аксиом 1 более богата и выводе различных формул короче.

4. Правила вывода.

Правило подстановки. Если выводимая формула F содержит некоторую переменную A (обозначим этот факт F(A)) и существует произвольная формула B, то формула F(B), получающаяся заменой всех вхождений A на формулу B, также выводима в исчислении высказываний:

$$B: \frac{F(A)}{F(B)}.$$

Пример: Пусть даны формулы $F=A \land C \rightarrow A$ и $B=C \rightarrow A$.

Если выполнить подстановку формулы B в формулу F вместо формулы A, то получим новую формулу F .

$$F': \frac{A \wedge C \to A}{(C \to \overline{A}) \wedge (C \to \overline{A})}.$$

Если проверить значения двух формул F и F' по таблицам истинности, то мы получим тождество двух формул.

Правила заключения. При выводе формулы из множества аксиом и посылок используют два основных правила заключения: modus ponens и modus tollens.

Правило *Modus Ponens*: если A и $A \rightarrow B$ есть выводимые формулы, то B также выводимая формула, т.е. $\frac{A, A \rightarrow B}{B}$.

Формальная запись высказывания (умозаключения, рассуждения) в виде формулы $(A \cdot (A \to B)) \to B$. Проверка правильности рассуждения проводится по таблице истинности.

Проверка тавтологии при помощи эквивалентных преобразований:

$$(((A \to B) \cdot A) \to B) = \overline{((\overline{A} \lor B) \cdot A)} \lor \overline{B} = (A \cdot \overline{B} \lor \overline{A}) \lor B = \overline{A} \lor \overline{B} \lor B = \overline{A} \lor 1 \equiv 1.$$

Пример: Дано суждение: «Сумма внутренних углов многоугольника равна 180° (*A*). Если сумма внутренних углов многоугольника равна 180° (*A*), то многоугольник есть треугольник (*B*). Следовательно, дан треугольник ()».

$$\frac{A, A \to B}{B}$$
.

Пример: Дано суждение: «Если лекция скучная (A), то студент спит (B). Лекция скучная (A)». Необходимо сделать вывод.

$$\frac{A, A \to B}{B}$$

Следовательно, студент спит (B).

Правило $Modus\ Tollens$: если формулы \overline{A} и $B{\to}A$ есть выводимые формулы, то \overline{B} также выводимая формула, т.е $\frac{\overline{A},B{\to}A}{\overline{B}}$.

Пример: Дано суждение: «Если лекция скучная (B), то студент спит (A). Студент не спит(\overline{A})». Необходимо сделать вывод.

$$\frac{\overline{A}, B \to A}{\overline{B}}$$

Следовательно, лекция не скучная (B).

Для построения выводов в исчислении высказываний применяется метод дедукции, основанный на выявлении общих закономерностей в процессе построения доказательств вывода формул.

 $Teopema\ \partial e\partial y$ кции. Если $F_1,\ldots,F_{n-1},F_n\vdash G$, то $F_1,\ldots,F_{n-1}\vdash F_n\to G$. В частности, если $F\vdash G$, то $\vdash F\to G$.

Например, покажем с применением теоремы дедукции, что аксиома 2.3 выводима из системы аксиом 1.

- 1. Подставим в аксиому 1.9 $\neg A$ вместо $A: (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow \neg \neg A)$.
- 2. Затем применяем два раза правило заключения (*Modus Ponens*) и получаем ($\neg A \rightarrow B$), (($\neg A \rightarrow \neg B$) $\vdash \neg \neg A$).
- 3. Так как из аксиомы 1.10 следует по правилу заключения, что $\neg \neg A \vdash A$, то получаем $(\neg A \rightarrow B)$, $((\neg A \rightarrow \neg B) \vdash A)$.
- 4. Переставим гипотезы в полученной выводимости, так их порядок неважен по определению выводимости: $(\neg A \rightarrow \neg B)$, $((\neg A \rightarrow B) \vdash A)$.
- 5. Затем двойное применение теоремы дедукции дает аксиому 2.3: $(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow A)$.

Рассмотрим теперь *примеры вывода в исчислении высказываний*. Пример: Покажем, что формула $A \rightarrow A$ выводима из системы аксиом 2:

$$\vdash A \rightarrow A$$
.

1. $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$

(подстановка в аксиому $A2.2 A \rightarrow A$ вместо B и A вместо C)

- 2. $A \rightarrow ((A \rightarrow A) \rightarrow A (nodcmaнoвка в аксиому A2.1 A \rightarrow A вместо B)$
- 3. $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$

(из шагов 2,1 по правилу заключения Modus Ponens)

4. $A \rightarrow (A \rightarrow A)$ (подстановка в аксиому A2.1 A вместо B)

5. $A \rightarrow A$ (из шагов 4,3 по правилу заключения Modus Ponens)

Пример: Докажем, что $A \vdash B \rightarrow A$

Пусть А выводима. Тогда из A и аксиомы A2.1 по правилу заключения получаем $\frac{A,A \to (B \to A)}{B \to A}$, что и доказывает искомую выводимость.

Полученную выводимость $A \vdash B \to A$ вместе с правилом подстановки можно рассматривать, как правило $\frac{A}{B \to A}$: «если формула A выводима, то выводима и формула $B \to A$, где B – любая формула».

Метод дедуктивного вывода

Теорема дедукции F_1 , F_2 , ..., $F_n \vdash B$ равносильна доказательству \vdash $(F_1 \land F_2 \land ... \land F_n \rightarrow B)$. Если каждая $F_i = H$, то $F_1 \land F_2 \land ... \land F_n = H$, а если $(F_1 \land F_2 \land ... \land F_n \rightarrow B) = H$, то B = H.

Следовательно, при истинности всех посылок и истинности импликации (по правилу m.p.), заключение всегда будет истинным.

Для исчисления предикатов также имеет место теорема дедукции: если $A_1, A_2, \ldots, A_n \vdash B$, то $\vdash A_1 \rightarrow (A_2 \rightarrow (\ldots, (A_n \rightarrow B) \ldots))$.

Используя правила эквивалентных преобразований алгебры высказываний, можно показать дедуктивный характер вывода заключения:

1)
$$\vdash (F_1 \land F_2 \land ... \land F_n \rightarrow B);$$

$$(2) \vdash ((F_1 \land F_2 \land ... \land F_n) \lor B);$$

$$7) \vdash (F_1 \rightarrow (F_2 \rightarrow \dots \rightarrow (F_{n-1} \rightarrow (F_n \rightarrow B))\dots)$$

Так формируется система дедуктивного вывода от посылок до заключения.

Пример: Дано суждение: «Всякое общественно опасное деяние (A) наказуемо (B). Преступление (C) есть общественно опасное деяние (A). Дача взятки (D) - преступление (C). Следовательно, дача взятки наказуема?".

$$\frac{A \to B, C \to A, D \to C}{D \to B}$$

- 1) $F_1 = A \rightarrow B$ посылка;
- 2) $F_2 = C \rightarrow A$ посылка;
- 3) $F_3 = D \rightarrow C$ посылка;
- 4) $F_4 = C \rightarrow B$ заключение по правилу подстановки;
- 5) $F_5 = D \rightarrow B$ заключение по правилу подстановки.

Следовательно, дача взятки (D) наказуема (B).