The Large Volatility and the Slow Recovery of the Job-Finding Rate

Andrew Liu

May 20, 2021

Motivation

- ▶ The job-finding rate exhibits large volatility and slow recovery
 - Contradict textbook search-and-matching model:
 - Volatility: Shimer puzzle
 - Convergence: Know little
- ▶ Important to understand the slow recovery
 - Guide for empirical work
 - ► Policy to accelerate recovery

The Large Drop and Slow Recovery

Figure: Aggregate Shock, Market Tightness, and Job-Finding Rate

What I Do

► The goal of the paper is two-fold:

1. Derive analytic expression for job-finding rate volatility and convergence

In a class of efficient search-and-matching model a la Kehoe et al. 2020

Nest the textbook search-and-matching model

Results: The Job-Finding Rate Convergence

- ► Convergence is fast in the perfect foresight equilibrium
 - ► Half life is 3 month under standard parameterization

- Rational expectation equilibrium:
 - ► Transmission almost entirely through the aggregate shock
 - ► The job-finding rate co-moves with the shock

What I Do Cont.

- 2. Extend the model to generate slow convergence
 - Two types of workers with human capital:
 - ► No-Depreciation (ND)
 - Fast-Depreciation (FD)
 - → Endogenous unemployment pool composition
 - ► Match quality shock and firms' hiring standards
 - ightarrow Endogenous match efficiency which depends on human capital
 - Complementarity between human capital and match efficiency
 - → Multiple equilibria

Model Intuition

Results: Dynamics

- Dynamics depend on shock size
 - ► Small shock: recover to initial steady state
 - Large shock:
 - ND workers: Recover
 - ► FD workers: Diverge to "corner equilibrium"
 - ightarrow Lower match efficiency and job-finding rate
- ▶ The relation between match efficiency and the unemployment pool
 - More low match efficiency worker \rightarrow Low aggregate match efficiency E.g. Barnichon et al. 2015
 - lacktriangle Negative match efficiency shock ightarrow Low match efficiency worker

Results: Recovery

- ▶ To recover from the corner equilibrium
 - ► Positive aggregate shock
 - Human capital shock
- ▶ Timing of policy intervention is important:
 - ► Small early intervention is sufficient
 - Late intervention more difficult because human capital too low

Literature

► Search-and-matching model: Kehoe et al. 2020

▶ Match efficiency: Barnichon et al. 2005

Firms' hiring standards: Sedláček 2014

▶ Human capital loss during unemployment: Ortego-Marti 2017abc

Overview

- 1. Introduction
- 2. The Economy
- 3. Equilibrium
- 4. Characterizing the Job-Finding Rate Elasticity
- 5. A Model with Two Types of Workers
- 6. Quantitative Analysis

The Economy

A Class of Efficient Search-and-Matching Model

- ▶ Directed search with human capital z: Continuous time Kehoe et al. 2020
- ▶ Human capital growth depending on labor force status

$$\frac{dz_{j,t}}{z_{j,t}} = g_j dt, \quad j = e, u$$

- ▶ Job-finding rate λ_{wt} , vacancy-filling rate λ_{vt}
- ▶ Labor market exit rates ϕ_e and ϕ_u
- ightharpoonup Separation rate δ
- ightharpoonup Labor market entry ζ
- Aggregate shock

$$\frac{dA_t}{A_t} = g_a dt + \sigma_a dW_{a,t}$$

Consumption

Consumption:

$$C_t = A_t \int z e_t(z) dz + bA_t \int z u_t(z) dz - \kappa A_t \int z v_t(z) dz$$

- Measures
 - ightharpoonup Employment $e_t(z)$
 - ▶ Unemployment $u_t(z)$
 - ightharpoonup Vacancy $v_t(z)$
- Production:
 - ► Employed A_tz
 - ightharpoonup Unemployed bA_tz
- ▶ Vacancy posting cost $\kappa A_t z$

Preference

A family maximizes expected discounted utility

$$\mathbb{E}_0 \left[\int_0^\infty e^{-\beta t} \frac{(C_t - X_t)^{1-\alpha}}{1-\alpha} dt \right]$$

where X_t is exogenous habit

Stochastic discount factor:

$$Q_t = e^{-\beta t} (C_t - X_t)^{-\alpha}$$

▶ Define the surplus consumption ratio $S_t = (C_t - X_t)/C_t$

$$Q_t = e^{-\beta t} (S_t C_t)^{-\alpha}$$

ightharpoonup Directly specify the log surplus consumption ratio $s_t = \log(S_t)$

$$ds_t = (1 - \rho_s)(s - s_t)dt + \sigma_a \lambda_a(s_t)dW_{a,t}$$

The Competitive Search Equilibrium

Submarket and Worker's Value Function

- ▶ Submarket indexed by $(z, W_t(z))$
 - \triangleright $W_t(z)$ chosen by the firms
- Matching technology:

$$m(u_t, v_t) = Bu_t^{\eta} v_t^{1-\eta}$$

Let $M_t(z)$ be post-match value for a worker

$$(\delta + \phi_e)M_t(z) = \delta U_t(z) + \mathbb{E}_t \left[dM_t(z_t) + M_t(z) \frac{dQ_t}{Q_t} \right]$$

where $U_t(z)$ is the value of unemployment

$$(\lambda_{wt}(z) + \phi_u)U_t(z) = bA_tz + \lambda_{wt}(z)(M_t(z) + W_t(z)) + \mathbb{E}_t\left[dU_t(z_t) + U_t(z)\frac{dQ_t}{Q_t}\right]$$

Firm's Value Function

Let $Y_t(z)$ be the revenue of a firm in submarket z

$$(\delta + \phi_e)Y_t(z) = A_t z + \mathbb{E}_t \left[dY_t(z_t) + Y_t(z) \frac{dQ_t}{Q_t} \right]$$

▶ In the symmetric equilibrium, the optimal choice of $W_t(z)$ is

$$\eta[Y_t(z) - W_t(z)] = (1 - \eta)[W_t(z) + M_t(z) - U_t(z)]$$

- ► This is equivalent to the Nash bargaining condition
- ► Free entry condition:

$$\kappa A_t z = \lambda_{vt}(\theta_t(z))[Y_t(z) - W_t(z)]$$

Equilibrium

The value functions are linear in z:

$$Y_t(z) = Y_t z$$
, $W_t(z) = W_t z$, $M_t(z) = M_t z$, $U_t(z) = U_t z$

Define

- $\blacktriangleright \mu_{et} = Y_t + M_t$ the total value of a match
- $\blacktriangleright \mu_{ut} = U_t$ the joint outside option

- $ightharpoonup r_{ft} = -\mathbb{E}_t \Big(rac{dQ_t}{Q_t}\Big)$ the risk-free rate
- $ightharpoonup Z_{et} = \int z e_t(z) dz$, $Z_{ut} = \int z u_t(z) dz$ aggregate human capital
- ▶ The system has the same structure as a RBC model

$$\begin{split} & \left[\left(\delta + \phi_e - g_e \right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t} \right) \right] \mu_{et} = A_t + \delta \mu_{ut} + \mathbb{E}_t (d\mu_{et}) \\ & \left[\left(\eta \lambda_{wt} + \phi_u - g_u \right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t} \right) \right] \mu_{ut} = b A_t + \eta \lambda_{wt} \mu_{et} + \mathbb{E}_t (d\mu_{ut}) \end{split}$$

- $ightharpoonup r_{ft} = -\mathbb{E}_t \Big(rac{dQ_t}{Q_t}\Big)$ the risk-free rate
- $ightharpoonup Z_{et} = \int z e_t(z) dz$, $Z_{ut} = \int z u_t(z) dz$ aggregate human capital
- ▶ The system has the same structure as a RBC model

$$\begin{split} & \left[\left(\delta + \phi_e - g_e \right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t} \right) \right] \mu_{et} = A_t + \delta \mu_{ut} + \mathbb{E}_t (d\mu_{et}) \\ & \left[\left(\eta \lambda_{wt} + \phi_u - g_u \right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t} \right) \right] \mu_{ut} = b A_t + \eta \lambda_{wt} \mu_{et} + \mathbb{E}_t (d\mu_{ut}) \\ & \kappa A_t = (1 - \eta) \lambda_{vt} (\mu_{et} - \mu_{ut}) \end{split}$$

- $ightharpoonup r_{ft} = -\mathbb{E}_t \Big(rac{dQ_t}{Q_t}\Big)$ the risk-free rate
- $ightharpoonup Z_{et} = \int z e_t(z) dz$, $Z_{ut} = \int z u_t(z) dz$ aggregate human capital
- ▶ The system has the same structure as a RBC model

$$\begin{split} &\left[\left(\delta + \phi_e - g_e\right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t}\right)\right] \mu_{et} = A_t + \delta \mu_{ut} + \mathbb{E}_t (d\mu_{et}) \\ &\left[\left(\eta \lambda_{wt} + \phi_u - g_u\right) - \mathbb{E}_t \left(\frac{dQ_t}{Q_t}\right)\right] \mu_{ut} = bA_t + \eta \lambda_{wt} \mu_{et} + \mathbb{E}_t (d\mu_{ut}) \\ &\kappa A_t = (1 - \eta) \lambda_{vt} (\mu_{et} - \mu_{ut}) \\ &\frac{\mathrm{d}Z_{et}}{\mathrm{d}t} = (g_e - \phi_e - \delta) Z_{et} + \lambda_{wt} Z_{ut} \\ &\frac{\mathrm{d}Z_{ut}}{\mathrm{d}t} = (g_u - \phi_u - \lambda_{wt}) Z_{ut} + \delta Z_{et} + \zeta \\ &ds_t = (1 - \rho_s)(s - s_t) dt + \sigma_a \lambda_a(s_t) dW_{a,t} \end{split}$$

- $ightharpoonup r_{ft} = -\mathbb{E}_t \Big(rac{dQ_t}{Q_t} \Big)$ the risk-free rate
- $ightharpoonup Z_{et} = \int z e_t(z) dz$, $Z_{ut} = \int z u_t(z) dz$ aggregate human capital
- ▶ The system has the same structure as a RBC model

The Job-Finding Rate and the Value Functions

The free-entry condition relates the job-finding rate to the value functions

$$\log(\lambda_{wt}) = \chi + \left(\frac{1-\eta}{\eta}\right)\log\left(\frac{\mu_{\mathsf{et}} - \mu_{ut}}{A_t}\right)$$

- $\stackrel{\mu_{et}-\mu_{ut}}{A_t}$ is the benefit of opening a vacancy
- ▶ The elasticity is large iff $\frac{\mu_{et} \mu_{ut}}{A_t}$ responds to the shock

$$\mathbb{E}_t \begin{bmatrix} d\mu_{et} \\ d\mu_{ut} \end{bmatrix} = \underbrace{\begin{pmatrix} \left[\delta + \phi_e - g_e & -\delta \\ -\eta \lambda_{wt} & \eta \lambda_{wt} + \phi_u - g_u \right]}_{B_1: \text{ search model}} + \underbrace{\begin{pmatrix} -\mathbb{E}_t \left(\frac{dQ_t}{Q_t}\right) & 0 \\ 0 & -\mathbb{E}_t \left(\frac{dQ_t}{Q_t}\right) \end{pmatrix}}_{B_2: \text{ preference}} \end{pmatrix} \begin{bmatrix} \mu_{et} \\ \mu_{ut} \end{bmatrix} + \begin{bmatrix} -A_t \\ -bA_t \end{bmatrix}$$

Characterizing the Job-Finding Rate Elasticity and Convergence

The Risk-Free Rate

Lemma

The risk-free rate to a first order approximation in the log surplus consumption ratio s_t is

$$r_{ extit{ft}} = -\mathbb{E}_tigg(rac{dQ_t}{Q_t}igg)pprox -[a_Q+b_Q(s_t-s)]$$

where

$$a_Q = -\beta - \alpha g_a + rac{1}{2} \alpha \sigma_a^2 \left(rac{lpha}{S^2} + 1
ight) ext{ and } b_Q = lpha (1-
ho_s) - rac{lpha \sigma_a^2 (lpha + S - 1)}{S^2}$$

▶ With CRRA preference $Q_t = e^{-\beta t} C_t^{-\alpha}$, $b_Q = 0$

$$r_{\rm ft} = -\beta - \alpha g_{\rm a}$$

▶ If no growth in productivity $g_a = 0$

$$r_{\rm ft} = -\beta$$

Characterizing the Job-Finding Rate Elasticity

Proposition

The elasticity of the job-finding rate with respect to the log surplus consumption ratio s_t near $s_t = s$ is

$$\frac{\partial \log(\lambda_{wt})}{\partial s_t} = \underbrace{\frac{b_Q e^{\Theta_1}}{1 - \rho_s}}_{\text{Preference}} \left[\underbrace{\frac{c_h}{-(\gamma_h + a_Q + \Theta_2)} + \frac{c_l}{-(\gamma_l + a_Q + \Theta_2)}}_{\text{Search Model}} \right] \overline{\mu}^{-1}$$

where $\gamma_h < \gamma_I < 0$ are two eigenvalue of the matrix B_1 , c_I and c_h are weights of the eigenvalues, and $\overline{\mu}$ is the long-run average match surplus without shocks.

▶ The job-finding rate elasticity can be decomposed into

$$\begin{aligned} \text{Preference} \times \text{(Short-Run Benefit} \\ &+ \text{Long-Run Benefit)} \end{aligned}$$

Potential Source of Large Elasticity: Search Model

▶ The search model part can be decomposed into

Short-run Benefit + Long-run Benefit

- ▶ The benefits reflect the expected discount value of vacancy creation
- ▶ The Short-run benefit is always small:
 - Discount by job-finding, which is around 0.46 per month
- ▶ In the textbook search-and-matching model, long-run benefit = 0
 - Long-run discount rate is the same across employment status
 labor market exit rate
- Conclusion: small job-finding rate elasticity in the textbook model

Potential Source of Large Elasticity: Search Model

Large job-finding elasticity needs differential long-run discount

- Human capital growth
- Labor market exit rate

Corollary

Differential human capital growth rates or labor market exit rates can lead to positive long-run benefits and hence large job-finding rate elasticity

Parameter Values and the Job-Finding Elasticity

- ▶ The job-finding rate elasticity depends on human capital growth rates
- ▶ Cannot generate large elasticity if HK depreciates fast during unemployment
 - ► Empirically: 20% workers with wage growth < -20%
 - \rightarrow Job-finding rate 10% more volatile
 - Numerically: Job-finding rate elasticity halved

Corollary

The model cannot generate large job-finding rate elasticity if the human capital depreciation is large during unemployment.

Job-Finding Rate Convergence

- ▶ I derive the half-life in the perfect foresight equilibrium
 - Constant human capital
 - Job-finding rate near the steady-state value
- ► Conclusion: Half-life around 3 months
- ▶ This implies that the job-finding rate co-moves with the aggregate shock
 - If there is no other state variables
- Numerically study importance of other state variables (human capitals)

Figure: Convergence of Job-Finding Rate

Job-Finding Rate Elasticity and Convergence: Summarize

Model: two mismatch with the data:

▶ Job-finding rate elasticity small if human capital depreciates fast

▶ Job-finding rate co-moves with the aggregate shock

A Model with Two Types of Workers

Model Extension

I make two addition to the model:

- 1. Two types of workers
 - ND workers: no human capital depreciation during unemployment
 - FD workers: fast human capital depreciation
 - ▶ Rubinstein et al. (2006): 20% of workers have 22% wage loss per annum
- 2. Endogenous match efficiency more
 - ▶ Driven by firms' hiring standards + match quality shock: Sedláček 2014
 - Firms' hiring standards depend on human capital: Quintini (2011), Pollmanm-Schult (2005)

Model Extension

- ► Two types of workers *n*, *f*
 - ▶ Submarkets are defined by (n, z) and (f, z)
 - Job-finding rate is

$$\lambda_{j,wt}(z) = \overline{m}_{j,t}(z)\theta_{j,t}^{1-\eta}, \quad j \in \{n,f\}$$

Match efficiency:

$$\overline{m}_{j,t}(z) = B_{j,t} \mathbb{P}(q_j z \geqslant p_j), \quad q_j \sim N(a_{j,q}, \sigma_{j,q}), \quad j \in \{n, f\}$$

- p_i is firms' hiring standards
- q_j is match quality shock
- Only part of the matches will be formed
- \triangleright $B_{j,t}$ could vary with the aggregate shock
- ► Match efficiency is endogenous
 - ▶ Depends on workers' human capital
 - ► Time varying with the aggregate shock

Value Function and Aggregation

▶ All the value functions are the same except for the expected revenue:

$$(\delta + \phi_e)Y_{j,t}(z) = A_tq_jz + \mathbb{E}_t\left[dY_{j,t}(z_t) + Y_{j,t}(z)\frac{dQ_t}{Q_t}\right], \quad j \in \{n, f\}$$

Aggregate consumption is

$$C_{t} = n_{t} \left(A_{t} \int \chi_{n}(z) z e_{nt}(z) dz + b A_{t} \int z u_{nt}(z) dz - \kappa A_{t} \int z v_{nt}(z) dz \right)$$

$$+ f_{t} \left(A_{t} \int \chi_{f}(z) z e_{ft}(z) dz + b A_{t} \int z u_{ft}(z) dz - \kappa A_{t} \int z v_{ft}(z) dz \right)$$

where $\chi_i(z) \equiv \mathbb{E}(q_i|q_iz \geqslant p_i)$: expected match quality

- ► The model cannot aggregate linearly
 - Aggregate consumption depends on the distribution
 - Matching function depends on the distribution

Aggregation Cont.

► Simplification:

Match efficiency depends only on aggregates:

$$\overline{M}_{j,t} = B_{j,t} \mathbb{P}[q_j(Z_{j,et} - Z_{j,ut}) \geqslant p_j] \in \left[\underline{B}_j, \overline{B}_j\right], \quad q_j \sim N(a_{j,q}, \sigma_{j,q}), \quad j \in \{n, f\}$$

- Linear solution exists as before
- Consistent with firms' hiring standards
 - ▶ Numerically equivalent to the disaggregate version if log-linearizing the model
- Captures two features:
 - 1. Pro-cyclical match efficiency: $\mathbb{P}[q_j(Z_{j,et} Z_{j,ut}) \geqslant p_j]$ increasing in $Z_{j,et}$
 - 2. Counter-cyclical match quality:
 - $ightharpoonup \chi_{j,t} = \mathbb{E}[q_j | q_j(Z_{j,et} Z_{j,ut}) \geqslant p_j]$ decreasing in $Z_{j,et}$
 - Firms accept better match to compensate lower human capital on average

Complementarity and Multiple Equilibria

Complementarity between the match efficiency and human capital:

- ► The complementarity results in multiple equilibria
 - Could stuck in an equilibrium with low match efficiency and job-finding rate

Interaction with Aggregate Shock

- ▶ I illustrate the dynamics when interacting with the aggregate shock
- ▶ Denote the interior equilibrium IE and the corner equilibrium CE
- Assume the aggregate shock lasts for three period
- Dynamics differ with shock sizes

Figure: The Model Dynamics

Quantitative Analysis

Match Efficiency Functional Form

► The match efficiency is

$$\overline{M}_{j,t} = B_{j,t} \mathbb{P}[q_j(Z_{j,et} - Z_{j,ut}) \geqslant p_j] \in \left[\underline{B}_j, \overline{B}_j\right], \quad q_j \sim N(a_{j,q}, \sigma_{j,q}), \quad j \in \{n, f\}$$

▶ I assume the functional form of $B_{i,t}$

$$B_{j,t} = B_j(\mu_{j,et} - \mu_{j,ut}), \quad j \in \{n, f\}$$

- → affected by the aggregate shock via match surplus
- ▶ State variables: s_t , $Z_{i,et}$, $Z_{i,ut}$
- ▶ I approximate the match efficiency using global Chebyshev polynomial

Model Calibration: Calibrated Parameters

Table: Parameterization

Panel A: Parameters	Panel B: Moments			
Endogenously Chosen		Targeted	Data	Model
g _a , mean productivity growth (%p.a.)	2.22	Mean productivity growth (%p.a.)	2.22	2.22
σ_{a} , s.d. productivity growth (%p.a.)	1.84	S.d. productivity growth (%p.a.)	1.84	1.84
B_n , match efficiency, ND workers	0.545	Mean job-finding rate, ND workers	0.46	0.46
B_f , match efficiency, FD workers	0.355	Mean job-finding rate, FD workers	0.31	0.31
κ , hiring cost	0.975	Mean unemployment rate	5.9	5.9
β , time preference factor	0.001	Mean risk-free rate (%p.a.)	0.92	0.92
S , mean of state S_t	0.057	S.d. risk-free rate (%p.a.)	2.31	2.31
α , inverse EIS	5	Maximum Sharpe ratio (p.a.)	0.45	0.45
$\sigma_{q,n}$, match quality variance, ND workers	0.35	S.d. job-finding rate, ND workers	6.66	6.63
$\sigma_{q,f}$, match quality variance, FD workers	0.48	S.d. job-finding rate, FD workers	8.10	8.10

Model Calibration: Assigned Parameters

Table: Parameterization

Panel A: Parameters		Panel B: Moments		
Assigned		Results	Data	Model
b, home production parameter	0.6	Autocorr job-finding rate	0.94	0.98
δ , separation rate	0.028	S.d. unemployment rate	0.75	0.77
η , matching function elasticity	0.5	Autocorr unemployment rate	0.97	0.98
$\phi_{n,f}$, labor market exit rate	0.0028	Corr unemployment, job-finding rate	-0.96	-0.98
ρ_s , persistence of state	0.9944			
$g_{n,e}, g_{f,e}$, employed HK growth (%p.a.)	3.5			
$g_{f.u}$, unemployed HK growth (%p.a.)	-22			

Aggregate Job-Finding Rate

► The aggregate job-finding rate is

$$\lambda_{wt} = \frac{\xi_t}{1 + \xi_t} \lambda_{f,wt} + \frac{1}{1 + \xi_t} \lambda_{n,wt}, \quad \xi_t = \frac{u_{f,t}}{u_{n,t}}$$

▶ Depends on the unemployment composition

- If more FD workers in the unemployment pool
 - ightarrow Job-finding rate behaves like FD workers'

Convergence of the Job-Finding Rate

- ▶ I study the convergence of the aggregate job-finding rate
 - Vary size of the shock
 - Fix half-life of the shock to be 2 months
 - → Shock is 5% of the initial value in 6 months
- ► Small shock: 5% decline in the job-finding rate

Convergence: Small Shock

Figure: Convergence of Job-Finding Rate: Small Shock

Convergence: Medium Shock

- ▶ Increase the size of the shock so that the job-finding rate decline by 15%
- ▶ Job-finding rate: large decline and slow recovery
- Human capital decline leads to lower match efficiency and job-finding rate

Figure: Aggregate

Convergence: Medium Shock Cont.

Figure: Convergence of Job-Finding Rate: Medium Shock

Convergence: Large Shock

- ▶ Increase the size of the shock so that the job-finding rate decline by 25%
- ▶ Job-finding rate diverges to the corner equilibrium

Figure: Aggregate

Convergence: Large Shock Cont.

Figure: Convergence of Job-Finding Rate: Large Shock

Ergodic Distribution

- ► The model features local determinacy
 - ► Implication: ergodic distribution figure
- ▶ The ND workers are in the corner equilibrium 8% of the time
- ▶ The FD workers 14% of the time
- ▶ Overall average time in recession: 9%
 - ▶ Data from 1989 to 2019: 10%

Job-Finding Rate Path

- ▶ I feed in the aggregate productivity shock time series
 - ► The baseline model
 - ► The two-type model

- Start the model at the steady state
- ► Compare with the empirical job-finding rate path

Job-Finding Rate Path Cont.

Job-Finding Rate Path by Workers' Type

(a) Job-Finding Rate

(b) Match Efficiency

Comparison Between the Two Types of Workers

- ▶ The two types of workers behave differently under large shock
 - 1. Initial decline in job-finding rate:
 - Determined by job-fining rate elasticity
 - Larger outflow of employed human capital
 - 2. Human capital depreciation during unemployment
 - ► Slower inflow of unemployed human capital

Unemployment Pool Composition

▶ The unemployment pool slowly dominated by the FD workers

- ▶ Barnichon et al 2015: long-term unemployment drives low match efficiency
- My model: low match efficiency could drive long-term unemployment

Recovery From the Corner Equilibrium

- ► Two shocks can recover the economy
 - Positive aggregate shock
 - ► Human capital shock
- Experiment: 3% human capital increase at month 24

- ► Recovery similar to the Great Recession
 - Human capital captures anything other than aggregate technology
 E.g. (search) effort
 - Consistent with Manovskii et al. 2014
 Recovery due to the end of UI extension

Timing of Policy Intervention

- Timing of policy intervention is important
 - Smaller early intervention sufficient
 - Human capital has not declined by much
- ► Comparison: 0.5% human capital shock at month 6

Recovery By Positive Aggregate Shock

- Positive technology shock can recover the economy
- Early intervention more effective
 25% positive shock in month 6 versus 24

Figure: Recovery by Aggregate Shock

Conclusion

- 1. Search-and-matching model with constant match efficiency
 - Derive job-finding rate elasticity and convergence
 - Elasticity too small if human capital depreciates fast
 - Convergence too fast
 - Transmission depends entirely on the aggregate shock
- 2. Extension: Two types of workers + firms' hiring standards
 - ► Endogenous match efficiency
 - Multiple equilibria
 - Slow recovery due to human capital decline
 - → Lower match efficiency and job-finding rate
 - Could stuck in the corner equilibrium
 - Recovery from the corner equilibrium
 - → Early intervention important

Appendix

Match Efficiency Variation

Bargaining Power Variation

Ergodic Distribution Cont.

(b) FD Workers

back