推荐系统

2018.11.17

协同过滤

步骤:

- 1. 收集用户偏好
- 2. 找到相似的用户或物品
- 3. 计算推荐

协同过滤

用户行 为	类 型	特征	作用
评分	显 大	整数量化的偏好,可能的取值是 [0,n],n 一般取值为 5 或者是 10	通过用户对物品的评分,可以精确的得到用户的 偏好
投票	显式	布尔量化的偏好,取值是 0 或 1	通过用户对物品的投票,可以较精确的得到用户 的偏好
转发	显 :	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以精确的得到用户的偏好。 如果是站内,同时可以推理得到被转发人的偏好 (不精确)
保存书 签	显示	布尔量化的偏好,取值是0或1	通过用户对物品的投票,可以精确的得到用户的 偏好。
标记标 签 (Tag)	显示	一些单词,需要对单词进行分析,得到偏好	通过分析用户的标签,可以得到用户对项目的3 解,同时可以分析出用户的情感,喜欢还是讨厌
评论	显示	一段文字,需要进行文本分析,得到偏好	通过分析用户的评论,可以得到用户的情感,喜欢还是讨厌

相似度计算

用 Pearson 比较多

相似度计算

❤ 欧几里德距离 (Euclidean Distance)

$$d(x, y) = \sqrt{(\sum (x_i - y_i)^2)}$$
 $sim(x, y) = \frac{1}{1 + d(x, y)}$

❷ 皮尔逊相关系数 (Pearson Correlation Coefficient)

$$p(x, y) = \frac{\sum x_i y_i - n\overline{xy}}{(n-1)s_x s_y} = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

✓ Cosine 相似度 (Cosine Similarity)

$$T(x, y) = \frac{x \bullet y}{\|x\|^2 \times \|y\|^2} = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$$

邻居的选择

- A. 固定数量的邻居
- B. 基于相似度门槛的邻居

最好用 B

一、协同过滤

基于用户的协同过滤

协同过滤是基于统计的,需要两两计算,计算量很大 在用户中找相似度,A,B,C 写成向量,计算相似度,[1,0,1,0];[0,1,0,0];[1,0,1,1].

用户/物品	物品A	物品B	物品C	物品D
用户A	√		√	推荐
用户B		√		
用户C	√		√	√

问题:

用户评分矩阵 R 稀疏;

需要推断矩阵中空格处的值

对于新用户,很难找到邻居用户,冷启动问题

对于一个物品,所有最近邻居都在其上没有多少打分,那么这个物品永远不会被推荐给邻居 用户

方案:

相似度计算 最好用皮尔逊相似度

考虑共同打分物品的数目,如乘上 min(n,N)/N n:共同打分数 N: 指定阈值 对打分进行归一化处理 设置一个相似度阈值,用阈值做一个半径

基于用户的协同过滤,这个算法不太常用,表太大,用户太多,买的东西相对于所有物品很少,人的喜好容易变化

基于物品的协同过滤

用户/物品	物品A	物品B	物品C
用户A	√		√
用户B	√	√	√
用户C	√		推荐

计算性能高,物品好打标签,能用的信息多

e.g.

 $r_51 = (0.41^2 + 0.59^3)/(0.41 + 0.59) = 2.6$

Sim(1,m)分别是 1 和 1 的相似度, 1 和 2 的相似度... 找出相似度高的 3 号和 6 号 相似度作为权重参数 设定一个阈值为 3.5 因为 2.6<3.5 所以就不推荐了

用户冷启动问题

引导用户把自己的一些属性表达出来 利用现有的开放数据平台 根据用户注册属性

物品冷启动问题

文本分析 主题模型 打标签 推荐排行榜单

两种方法比较

	UserCF	ItemCF
性能	适用于用户较少的场合,如果用户过多,计算用户相似度矩阵 的代价交大	适用于物品数明显小于用户数的场合,如果物品很多,计算物品相似度矩阵的 代价交大
领域	实效性要求高,用户个性化兴趣要求不高	长尾物品丰富,用户个性化需求强烈
实时性	用户有新行为,不一定需要推荐结果立即变化	用户有新行为,一定会导致推荐结果的实时变化
冷启动	CO. SOUTHOUS OF PROPERTY OF SALES FOR THE	新用户只要对一个物品产生行为,就能推荐相关物品给他,但无法在不离线更新物品相似度表的情况下将新物品推荐给用户(但是新的item到来也同样是冷启动问题)
推荐理由	很难提供令用户信服的推荐解释	可以根据用户历史行为归纳推荐理由

应用场景

基于用户的推荐 实时新闻、突然情况

基于物品的推荐 图书、电子商务、电影

二、隐语义模型

用户和物品之间有着隐含的关系 隐含因子让计算机理解就好 将用户和物品通过中间隐含因子联系起来

N 个用户, M 个商品

矩阵分解 N F F M, F 个隐藏因子与 SVD 差不多,但是比 SVD 简单 隐藏因子要有价值

❤ 隐语义模型

	item 1	item 2	item 3	item 4			class 1	class 2	class 3			item 1	item 2	item 3	item 4
user 1	R11	R12	R13	R14	_	user 1	P11	P12	P13		class 1	Q11	Q12	Q13	Q14
ıser 2	R21	R22	R23	R24	_	user 2	P21	P22	P23	X	class 2	Q21	Q22	Q23	Q24
user 3	R31	R32	R33	R34		user 3	P31	P32	P33		class 3	Q31	Q32	Q33	Q34

P.Q 是参数, 所以要放在正则化惩罚项中

✓ 隐语义模型求解

が 梯度下降方向:
$$\frac{\partial C}{\partial P_{Uk}} = -2(R_{UI} - \sum_{k=1}^{K} P_{U,k} Q_{k,I}) Q_{kI} + 2\lambda P_{Uk}$$

$$\frac{\partial C}{\partial Q_{kI}} = -2(R_{UI} - \sum_{k=1}^{K} P_{U,k} Q_{k,I}) P_{Uk} + 2\lambda Q_{kI}$$

② 连代求解:
$$P_{Uk} = P_{Uk} + \alpha((R_{UI} - \sum_{k=1}^{K} P_{U,k} Q_{k,I}) Q_{kI} - \lambda P_{Uk})$$

$$Q_{kI} = Q_{kI} + \alpha((R_{UI} - \sum_{k=1}^{K} P_{U,k} Q_{k,I}) P_{Uk} - \lambda Q_{kI})$$

协同过滤:统计建模思想 隐语义:机器学习思想

隐语义模型负样本选择

对每个用户,要保证正负样本的平衡(数目相似) 选取那些很热门,而用户没有行为的物品 对于用户-物品集 K{(u,i)} 其中如果(u,i)是正样本,则为 r_ui=1,负样本则为 r_ui=0

隐语义模型参数选择

隐特征的个数 F, 通常 F=100

学习率 alpha,别太大 0.01 交叉验证

正则化参数 lambada,别太大 0.01 0.1 交叉验证

正负样本比例 负样本/正样本比例 ratio 5-10

ratio	准确率	召 回 率	覆盖率
1	21.74%	10.50%	51.19%
2	24.32%	11.75%	53.17%
3	25.66%	12.39%	50.41%
5	26.94%	13.01%	44.25%
10	27.74%	13.40%	33.87%
20	27.37%	13.22%	号 Windows 24.30%

三、推荐系统评估标准

❤ 评估标准:

令R(u)是根据用户在训练集上的行为给用户作出的推荐列表,T(u)是用户在测试集上的行为列表

- R, 是推荐上的列表
- T,是行为上的列表,比如 test

✅ 评估标准:

② 覆盖率: Coverage =
$$\frac{\left|\bigcup_{u \in U} R(u)\right|}{\left|I\right|}$$

$$H = -\sum_{i=1}^{n} p(i) \log p(i)$$

多样性: Diversity =
$$1 - \frac{\sum_{i,j \in R(u),i \neq j} s(i,j)}{\frac{1}{2} |R(u)| (|R(u)| - 1)}$$

覆盖率可以按照覆盖种类算,也可按照熵值来算,熵值越大,覆盖率越大 尽可能广的推荐东西