CONTENTS Politecnico di Torino.

Crypto 12

Note: this material is not intended to replace the live lecture for students.

Contents

12.1	EC-DH
12.2	EC-Massey-Omura Exchange
12.3	EC-DSA
12.4	EdDSA
12.5	BLS Signature
12.6	EC attacks
	12.6.1 Implementation
	12.6.2 Mathematical's
12.7	Bibliography

$$T = (p, a, b, G, n, h)$$

12.1 EC-DH Politecnico di Torino.

12.1 EC-DH

12.1.1 Elliptic curve Diffie-Hellman (ECDH)

Alice and **Bob** agree to use an elliptic curve E with parameters domain T = (p, a, b, G, n, h).

So $k = k_A = k_B$ is the session key between Alice and Bob.

A and B are the private keys whilst pA, pB are the public keys.

12.1.2 Example ECDH

Alice and **Bob** agree to use an elliptic curve $E: y^2 = x^3 + 2x + 2 \pmod{17}$ and use as generator G = (5, 1). So the parameters domain T are T = (17, 2, 2, (5, 1), 19, 1).

Pick secret key
$$A = 7$$
Compute public $pA = 7 \cdot G = (0, 6)$

Pick secret key $B = 13$

Compute public $pB = 13 \cdot G = (16, 4)$
 $\downarrow pA = (0, 6)$

Pick secret key $B = 13$

Compute public $pB = 13 \cdot G = (16, 4)$
 $\downarrow pB = (16, 4)$
 $\downarrow k_B = 13 \cdot (0, 6)$

So the session key between **Alice** and **Bob** is k = (3, 16)

12.1 EC-DH Politecnico di Torino.

```
12.1.3 multiplication n \cdot P on E
 ''' mult(n,P,a,b,q) = (x1,y1).
          where (x1,y1) is the addition of P n-times on
          the elliptic curve y^2 = x^3 + ax + b \pmod{q}
 \mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}
 def mult(n,P,a,b,q):
     from checkEll import checkEll
     from addition import addition
     if P=="0": return "0"
     if checkEll(P,a,b,q)==False: return "(x,y) not in Ell"
          T="0"
          if n>0:
              bina='{0:b}'.format(n)
              for d in bina:
                   T=addition(T,T,a,b,q)
                   if d=='1': T=addition(T,P,a,b,q)
              if checkEll(T,a,b,q)==True: return T
              else: return "error multiplication"
          elif n==0: return "0"
          else:
              H = (x, (-y)\%q)
              return mult(-n,H,a,b,q)
```

Exercise 12.1.4

Check that the $7 \cdot (16,4) = 13 \cdot (0,6) = (3,16)$ on the elliptic curve of the previous example 12.1.2.

12.1 EC-DH Politecnico di Torino.

Exercise 12.1.5

Alice and Bob are using the ECDH protocol with the elliptic curve

$$E: y^2 = x^3 + x + 6 \pmod{11}$$

Alice's secret key is A = 6. She receives Bob's public key pB = (5, 9).

- 1) Check that pB is a point of E.
- 2) Compute the session key k.

Exercise 12.1.6

After using the ECDH protocol **Alice** and **Bob** posses a session key k = (x, y). The modulus q of the elliptic curve is a 64-bit prime number.

They want to derive a key k_{AES} of AES256 by using the hash function SHA256 as follows:

$$k_{AES} = SHA256(x||y)$$

Is this a good idea?

12.2 EC-Massey-Omura Exchange

Messages M to be exchanged are encoded as points of an elliptic curve E with n points.

12.2.1 EC-Massey-Omura

Alice has a secret key 0 < A < n such that gcd(A, n) = 1. So she can efficiently compute $A^{-1} \pmod{n}$.

Bob has a secret key $0 < \mathsf{B} < n$ such that $\gcd(\mathsf{B}, n) = 1$. So he can efficiently compute $\mathsf{B}^{-1} \pmod{n}$.

12.3 EC-DSA Politecnico di Torino.

12.3 EC-DSA

https://goteleport.com/blog/comparing-ssh-keys

ECDSA & EdDSA

The two examples above are not entirely sincere. Both Sony and the Bitcoin protocol employ ECDSA, not DSA proper. ECDSA is an elliptic curve implementation of DSA. Functionally, where RSA and DSA require key lengths of 3072 bits to provide 128 bits of security, ECDSA can accomplish the same with only 256-bit keys. However, ECDSA relies on the same level of randomness as DSA, so the only gain is speed and length, <u>not security</u>.

The ECDSA protocol is quite similar to the standard DSA. So assume **Alice** wants to sign a message M. She pick an elliptic curve e.g. T = (p, a, b, G, n, h), where the order n of G is a prime number. Here it is how she generate the keys:

12.3.1 Key generation for ECDSA

- 1) Choose a RND integer $d \in \{1, 2, \dots, n-1\}$.
- 2) Compute $B = d \cdot G$.

The keys are:

pk = (p, a, b, n, G, B);

sk = d

Now Alice signs the message M:

12.3.2 ECDSA Signature Generation

- 1) Choose an RND integer K as ephemeral key with 0 < K < n.
- 2) Compute $R = \mathbf{K} \cdot G = (x_R, y_R)$ and set $r = x_R$.
- 3) Compute $s = (\mathsf{hash}(M) + d \cdot r) \cdot \mathsf{K}^{-1} \pmod{n}$. If $s = 0 \pmod{n}$ go to 1).

The signature $Sign_{sk}(M)$ of M is the pair (r, s).

Here the verification process:

12.4 EdDSA Politecnico di Torino.

12.3.3 ECDSA Verification

- 1) Compute the auxiliar $w = s^{-1} \pmod{n}$.
- 2) Compute the auxiliar $u_1 = w \cdot \mathsf{hash}(M) \pmod{n}$.
- 3) Compute the auxiliar $u_2 = w \cdot r \pmod{n}$.
- 4) Compute $P = u_1 \cdot G + u_2 \cdot B = (x_P, y_P)$.
- 5) The $\mathsf{Vrfy}_{\mathsf{pk}}(M,(r,s))$ outputs 1 for a valid signature if $x_P = r \pmod n$ otherwise $\mathsf{Vrfy}_{\mathsf{pk}}(M,(r,s))$ outputs 0.

To proof that the above verification do work notice that:

$$P = (x_P, y_P) = u_1 \cdot G + u_2 \cdot B = w \cdot \mathsf{hash}(M) \cdot G + w \cdot r \cdot d \cdot G$$

then

$$P = (\mathsf{hash}(M) + r \cdot d) \cdot w \cdot G$$

so if (r, s) are valid we get

$$P = \mathbf{K} \cdot G = (x_R, y_R)$$

hence $x_p = r \pmod{n}$.

Exercise 12.3.4

Consider ECDSA on the elliptic curve $E(\mathbb{Z}_{17}): y^2 = x^3 + 2x + 2$ with G = (5,1), n = 19 and $\mathsf{sk} = d = 5$.

Let M be a message with hash(M) = 8.

Sign M and compute the public key pk = (p, a, b, n, G, B).

12.4 EdDSA

EdDSA Original paper

RFC8032 Standard Implementation of EdDSA

EdDSA

12.5 BLS Signature

BLS original paper

Wikipedia: BonehLynnShacham

12.6 EC attacks

The security of deployed asymmetric cryptographic schemes relies on the believed hardness of number theoretic problems such as integer factorization and the computation of discrete logarithms in finite fields or in groups of points on an elliptic curve. However, most real-world cryptographic vulnerabilities do not stem from a weakness in the underlying hardness assumption, but rather from implementation issues such as side-channel attacks, software bugs or design flaws.

[Bos13, Introduction]

12.6.1 Implementation

NOTE 12.6.1

Invalid curve attacks. This attack takes advantage that users do not verify that points belong to the safe elliptical curve. For example, a server receives a point P and calculates $s \cdot P$ (where s is the server's secret key) without verifying that P belongs to the elliptical curve in the protocol. It could happen that the point P belongs to a curve with few points from where it would be possible to calculate a remainder of s modulo the order of P. By repeating this type of request, with different order points, it may be possible to derive s via the Chinese Remainder Theorem (CRT).

12.6 EC attacks Politecnico di Torino.

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

It is crucial to select a different ephemeral key K for different signatures. That is to say, an attacker who knows two signatures (r, s), (r, s') employing the same K can efficiently compute the private key sk.

In December 2010, a group calling itself *failOverflow* announced recovery of the ECDSA private key used by Sony to sign software for the PlayStation 3 game console. However, this attack only worked because Sony did not properly implement the algorithm, because k was static instead of random. As pointed out in the Signature generation algorithm section above, this makes d_A solvable and the entire algorithm useless [7]

12.6.2 Mathematical's

MOV attack: https://crypto.stackexchange.com/questions/1871/how-does-the-mov-attack-work SuperSingular curves: for such curves the DLP is equivalent to DLP on $GF(q^k)$ with $k \leq 6$ (MOV attack).

NOTE 12.6.2

As explained in https://safecurves.cr.yp.to/twist.html: a small-subgroup attack on DH works as follows. Instead of sending a legitimate curve point $e \cdot P$ to Bob, Eve sends Bob a point Q of small order, pretending that Q is her public key. Bob computes $n \cdot Q$ as usual, where n is Bob's secret key; computes a hash of $n \cdot Q$ as a shared secret key for, e.g., AES-GCM; and uses AES-GCM to encrypt and authenticate data. Because Q has small order, there are not many possibilities for $n \cdot Q$; Eve can simply enumerate the possibilities and check which possibility successfully verifies the data. This attack reveals n modulo the order of Q. So as Chinese mathematician Sunzi (3rd century AD) or the Indian mathematician Aryabhata (4th century AD) showed knowledge of n modulo the order of several Q may reveal n.

12.7 Bibliography

Books I used to prepare this note:

[Aumasson18] Jean-Philippe Aumasson, Serious Cryptography: A Practical Introduction to

Modern Encryption, No Starch Press, 2018.

[Paar10] Paar, Christof, Pelzl, Jan, Understanding Cryptography, A Textbook for Stu-

dents and Practitioners, Springer-Verlag, 2010.

Here a list of papers:

[Bos13] Bos J. W. et al: Elliptic Curve Cryptography in Practice, https://eprint.

iacr.org/2013/734.pdf

[DH76] Diffie, W.; Hellman, M. New directions in cryptography, (1976). IEEE Trans-

actions on Information Theory. 22 (6): 644654.

and some interesting links:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

https://safecurves.cr.yp.to/