CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Magnetic Disk

Lecture No.- 02

Recap of Previous Lecture

Topic Magnetic Disk ~

Topic Disk Capacity

Topic Disk Access Time

Disk Addressing Topic

Pipeline Processing Topic

Speed Up Topic

anes) A file is stoned on 5 consecutive tracks on all their sectors > no. of sectors = 5 *200 = 1000 No. of sections / track = 200 Disk rolat => (6000 Spm) > 1 rotat time = 10 ms seek time = 10 msec file access time = msec ?

$$= (5 * 10) + 5 * \frac{10}{2} + 1000 * \frac{10}{200}$$

$$= 50 + 25 + 50$$

$$= 125 \text{ msec}$$

Assume all 5 tracks are under a cylinder in last Quest's then

file access time =
$$10 + 5 * \frac{10}{2} + 1000 * \frac{10}{200}$$

Cylinder:

Collect of same radius tracks from all surfaces, form a cylinder.

Disk is accessed cylinder wise to save seek time.

Topic: Disk Addressing < quinde no, surface no, sector no)

Assume

- Disk has 3 platters with 2 recording surfaces on each > no of surfaces in lisk = 6
- Number of tracks per surface = 4
- Number of sectors per track = 5

cylinder

(0,0,0) othsector

(0,0,1) 1st

surface (0,0,2) 2nd

(0,0,3)3rd

Cylinder 1 30th sector <1,0,0> 31st <1,0,1> surface o 32 nd (1,0,2) 3320 <1,0,3> 34 th <1,0,4> 53 1, surface 5 (1, 5, 0) 55th sector (1,5,4) 59th sector

Address: <1,5,2)
belongs to which sector no? no of sectors before cylinder 1 = 30 (1 complete cylinder) no. of sectors covered before surface 5 = 5*5
in cylinder 1 = 25

(5 complète surfaces oto 4) sector of surface = 2

Address => < C, h, S > sector no.

Suface no.

Add belongs to sector = (C*nc) + (h*nt) + 5

nc = no. of sectors per cylinder = no. of surfaces in disk * nt nt = -11 _____ per track

$$c = \left\lfloor \frac{53}{30} \right\rfloor = 1$$

$$h = (53\%30)/5 = 4$$

#Q. A hard disk has 16 sectors per track, 4 platters each with 2 recording surfaces and 32 cylinders. The address of a sector is given as a triple (c,h,s), where c is the cylinder number, h is the surface number and s is the sector number. Thus, the 0th sector is addressed as (0,0,0), the 1st sector as (0,0,1), and so on.

The address (12, 6, 12) corresponds to sector number?

$$n_t = 16$$
 $n_c = 8 * 16 = 128$
 $sector no. = (12 * 128) + (6 * 16) + 12$
 $= 1644$

$$C = \frac{1644}{128} = 12$$

$$h = \frac{(1644) \cdot 128}{16} = 6$$

$$5 = \frac{(1644) \cdot 128}{16} = 12$$

$$add = \frac{(12,6,12)}{128}$$

#Q. A hard disk has 16 sectors per track, 4 platters each with 2 recording surfaces and 32 cylinders. The address of a sector is given as a triple $\langle c,h,s \rangle$, where c is the cylinder number, h is the surface number and s is the sector number. Thus, the 0th sector is addressed as $\langle 0,0,0 \rangle$, the 1st sector as $\langle 0,0,1 \rangle$, and so on.

The address of 867th sector?

$$n_t = 16$$
 $n_c = 8*16 = 128$
 $c = \lfloor 867/128 \rfloor = 6$
 $h = \lfloor (867\% 128)/16 \rfloor = 6$
 $s = (867\% 128)/16 = 3$

#Q. Consider a hard disk with 36 recording surfaces (0-35) having 10000 cylinders (0-9999) and each track contains 64 sectors (0-63). Data in disk are organized cylinder-wise and the addressing format is <cylinder no., surface no., sector no.>. A file in the disk is stored starting from address (1660, 28, 38). What is the sector number of the first sector of the file in the disk?

$$nt = 64$$
 $nc = 36 * 64 = 2304$

#Q. In above questions if a file is stored on 55788 sectors in contiguous manner then what is the sector number of the last sector of the file?

#Q. Calculate the address in format <c, h, s> for the last sector of the file?

$$C \left[\frac{3882257}{2304} \right] = 1685$$

$$h = \left[\frac{3882257}{3882257} \right] = 0$$

$$S = \left(\frac{3882257}{2304} \right) = 0$$

#Q. Consider a hard disk with 16 recording surfaces (0-15) having 16384 cylinders (0-16383) and each track contains 64 sectors (0-63). Data storage capacity of in each sector is 512 Bytes. Data are organized cylinder-wise and addressing format is <cylinder no., surface no., sector no.>. A file of size 42797 KB is stored in the disk and the starting disk location of the file is <1200, 9, 40>. What is the cylinder number of the last sector of the file, if it is stored in a contiguous manner?

$$n_t = 64$$
 $n_c = 16 * 64 = 1024$

$$C = [1315009/1024] = 1284$$

$$h = [(1315009\%, 1024)/64] = 3$$

$$5 = (1315009\%, 1024)\%/64 = 1$$

(1284, 3, 1)

Topic: Parallel Processing

Parallel Processing: Simultaneous data processing

Types:

- Vector Processing
- Array Processing
- ✓ Pipeline Processing (Pipelining)

Topic: Flynn's Classification of Computers

- 1. SISD (single Inst' stream single Data stream)
- 2. SIMD 11 Multiple 11 Pipeline processor
- 3. MISD multiple —11 single —11 > not practical
- 4. MIMD multiple ____ => superscalar computers (multiple pipelines)

Topic: Pipeline Processing

Pipelining is useful, When same processing is applied over multiple inputs

Topic: Pipeline Processing

- Technique to decompose a sequential process into sub-operations
- Sub-operations are performed in segments or stages
- Task: One operation performed in all segments

Lono. of inputs to be processed.

Topic: Pipelining Example

(4+5-1) = 8 cycles

cycles		Person 1 (cut)	Person 2 (stitch)	(Finish)	Person 4(Pack)
1	10 min	cut 1			
2	20 min	cut 2	stitch2	finish 1	
3	30 min	Cuty	stitch 3	finish 2	Pack 1
5	50 min	Cut ₅	stitchy	finish,	Packz
6	60 min		stitch5	finishy	Packs
F	Fomin	_		finishs-	Packy
8	80 min		-		Packs

Topic : Pipeline Cycle Time

Min. time in which all segments can finish their respective sub-operations.

Topic: General Consideration About Pipeline

Consider a k segment pipeline with clock cycle time = t_p to perform n tasks

time needed to perform 1st task =
$$k$$
 k*tp

time needed to perform remaining $(n-1) = (n-1)$ $(n-1)*tp$

Total time needed to perform all ntasks = $(k+n-1)$ $(k+n-1)tp$

Topic: General Consideration About Pipeline

Consider a non-pipeline system that takes t_n time to perform a task

Topic: General Consideration About Pipeline

Performance of a pipeline is given by Speed up ratio.

Speed up (5) =
$$\frac{n \circ n - pipeline time}{pipeline time}$$

 $S = \frac{n * tn}{(k+n-1) tp}$

when no. of tasks in creases

$$S_{ideal} = \frac{t_n}{t_p}$$

max speed up

Special case:

if one operation takes same time in pipeline & non-pipeline both then $t_n = k * t_p$

Sideal = K

2 mins Summary

Topic

Disk Addressing

Topic

Pipeline Processing

Topic

Speed Up

Happy Learning THANK - YOU