

FEDERICO SANTA MARÍA TECHNICAL UNIVERSITY DEPARTMENT OF COMPUTING

SUBJECT:		ACRONYM:
MACHINE LEARNING		INF-393
PREREQUISITES: ILI-280	Credits:	Exam:
	4	Does not have
Weekly Lecture Hours:	Weekly Assistantship Hours:	Weekly Laboratory Hours
4	0	2

GOALS:

Upon passing the subject the student will be able to:

- Know the statistical and computational foundations of learning machines.
- Design and apply learning machines to shape recognition problems: classification, regression, association and forecasting.
- Know and apply the main machine learning algorithms.
- Apply the main algorithms to shape classification and recognition problems.

CONTENTS:

- 1. Statistical concepts in learning: problems of induction and statistical inference, parametric and non-parametric inference models, the generalization of the Glivenko Cantelli Kolmogorov theory.
- 2. Foundations of learning and generalization theory.
- 3. Probability density estimation and learning problem, convergence and convergence conditions for unknown probability measures.
- 4. Empirical risk and minimization principles: Key's theorem from learning theory, bounds and loss functions.
- 5. The perceptron and its generalizations, the Rosenblatt perceptron, the stochastic approximation method.
- 6. Elements of optimization theory Fermat's theorem, Lagrange's multiplier rule and Kühn-Tucker theory.
- 7. Artificial neural networks as generalized regression models.
- 8. The support vector machine (SVM), hyperplane approximation, statistical properties of optimal hyperplanes, generalization to high-dimensional spaces, SVM selection, SVM in shape recognition, SVM in multiple classification problems, applications.

BIBLIOGRAPHY:

- Vapnik, V.: "Statistical Learning Theory", Wiley, New York, 1998.
- Mitchell, T.: "Machine Learning", McGraw-Hill International, Singapore, 1997.
- Golden, R.: "Mathematical Methods for Neural Network Analysis and Design", MA, 1966
- Duda, R., Hart, P., Stork, D.: "Pattern Classification", Wiley, 2001

ELABORATED	H. Allende	OBSERVATIONS:
APPROVED	CC.DD. Agreement 07/08	
DATE	05/27/2008	