CPSC 368 / CPSC 516

Instructions:

• These problems will not be graded, however, you are encouraged to write solutions.

Problems:

- P.1. The goal of this problem is to bound bit complexities of certain quantities related to linear programs. Let $A \in \mathbb{Q}^{m \times n}$ be a matrix and $b \in \mathbb{Q}^m$ be a vector and let L be the bit complexity of (A, b). (Thus, in particular, L > m and L > n.) We assume that $K = \{x \in \mathbb{R}^n : Ax \le b\}$ is a bounded, full-dimensional polytope in \mathbb{R}^n .
 - (a) Prove that there is an integer $M \in \mathbb{Z}$ and a matrix $B \in \mathbb{Z}^{m \times n}$ such that $A = \frac{1}{M}B$ and the bit complexities of M and every entry in B are bounded by L.
 - (b) Let C be any square and invertible submatrix of A. Consider the matrix norm $\|C\|_2 := \max_{x \neq 0} \frac{\|Cx\|_2}{\|x\|_2}$. Prove that there exists a constant d such that $\|C\|_2 \leq 2^{O(L \cdot [\log(nL)]^d)}$ and $\|C^{-1}\|_2 \leq 2^{O(nL \cdot [\log(nL)]^d)}$.
 - (c) Prove that every vertex of K has coordinates in \mathbb{Q} with bit complexity $O(nL \cdot [\log(nL)]^d)$ for some constant d.
- P.2. Recall that an undirected graph G = (V, E) is said to be bipartite if the vertex set V has two disjoint parts L, R and all edges go between L and R. Consider the case when n := |L| = |R| and m := |E|. A perfect matching in such a graph is a set of n edges such that each vertex has exactly one edge incident to it. Let \mathcal{M} denote the set of all perfect matchings in G. Let $1_M \in \{0,1\}^E$ denote the indicator vector of the perfect matching $M \in \mathcal{M}$. Consider the function

$$f(x) := \ln \sum_{M \in \mathcal{M}} e^{\langle x, 1_M \rangle}.$$

- (a) Prove that f is convex.
- (b) Consider the bipartite perfect matching polytope of G defined as

$$P := \operatorname{conv}\{1_M : M \in \mathcal{M}\}.$$

Give a polynomial time separation oracle for this polytope.

(c) Prove that, if there is a polynomial time algorithm to evaluate f given the graph G as input, then one can count the number of perfect matchings in G in polynomial time.

Since the problem of computing the number of perfect matchings in a bipartite graph is $\#\mathbf{P}$ -hard, we have an instance of convex optimization that is $\#\mathbf{P}$ -hard.

P.3. Let S be a nonempty family of subsets of $\{1, 2, ..., n\}$. For a set $S \in S$, let $1_S \in \mathbb{R}^n$ be the indicator vector of S, i.e., $1_S(i) = 1$ if $i \in S$ and $1_S(i) = 0$ otherwise. Consider a function $f : \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) := \ln \sum_{S \in \mathcal{S}} e^{\langle x, 1_S \rangle}.$$

Prove that the gradient of f is L-Lipschitz continuous for some L > 0 that depends polynomially on n with respect to the Euclidean norm.