Logic of Action: STIT Logic

Yudai Kubono

July 16, 2023

Shizuoka University, Graduate School of Science and Technology

Logic of Action

- ▶ PDL (Propositional Dynamic Logic) $[p]\varphi$: 'For every possible execution of program p, φ holds afterwards.'
- PAL (Public Announcement Logic) $[\varphi!]\psi$: ' ψ is true after the truthful public announcement φ .'
- ► STIT logic

STIT Logic

- ► STIT stands for 'See To It That.'
- ightharpoonup stit φ : 'an agent see to it that φ is true.'
- ► STIT logic does not directly describe actions.

Fundamental Notion

To formalize the notion of action, begin with two general observations:

- $\dot{\mathrm{i}}$. usually an agent is not able to select one possible future to become the unique actual future, but
- ii. by his action he can make sure that certain futures, which before his action are possible, are no longer possible after his action. (Segerberg et.al., 2013)

Syntax

Let $\mathcal P$ be a countable set of atomic propositions, $\mathcal G$ be a countable set of agents. The language $\mathcal L$ is the set of formulas generated by the following grammar:

$$\mathcal{L} \ni \varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \operatorname{stit}_{i} \varphi,$$

where $p \in \mathcal{P}$ and $i \in \mathcal{G}$. Other logical connectives \vee , \rightarrow , and \leftrightarrow are defined in the usual manner.

Semantics

A stit model M is a tuple $\langle T, \leq, \{C_i^m\}_{m \in T, i \in \mathcal{G}}, V \rangle$, where:

- T is a set of moments;
- \leq is a partial order of T, such that, for any m_1, m_2, m_3 , if $m_1 \leq m_3$ and $m_2 \leq m_3$, then $m_1 \leq m_2$ or $m_2 \leq m_1$;
- $C_i^m: H_m \to 2^{(H_m)}$ is a fuction, where H_m is a collection of maximal sets of linearly ordered moments that contain m.
- $V: \mathcal{P} \times H \times T \to \{1,0\}$, where H is a collection of maximal sets of linearly ordered moments;
- ▶ We call $h \in H$ a history.

For a history $h \in H$ and a moment $m \in M$, a satisfaction relation \vDash is given as follows:

$$\begin{split} (h,m) &\vDash p \ \textit{iff} \ V(p,h,m) = 1; \\ (h,m) &\vDash \neg \varphi \ \textit{iff} \ (h,m) \nvDash \varphi; \\ (h,m) &\vDash \varphi \wedge \psi \ \textit{iff} \ (h,m) \vDash \varphi, \ \text{and} \ (h,m) \vDash \psi; \\ (h,m) &\vDash \text{stit}_i \varphi \ \textit{iff} \ C_i^m(h) \subseteq \|\varphi\|_m, \end{split}$$

where $\|\varphi\| := \{h \in H_m \mid (h, m) \vDash \varphi\}.$

- For each $m, i, h, C_i^m(h)$ refers to the possible histories after all actions open to i at m in h.
- ▶ The definition of stit operator is called that of Chellas stit.

Example: a Chainstore Game

- $G = \{e, c\}$
- $\bullet \ p^i_{\{0,1,2,4\}} \colon \mbox{`i obtains payoff } \{0,1,2,4\} \mbox{'}$

 \blacktriangleright $(h_1,1) \vDash \mathrm{stit}_e \neg p_4^c$: 'e see it to that c is not able to obtain payoff 4 at 1 in h_1 .'

Conclusion

► STIT logic expresses futures that agents achieve by their actions, whatever the opponents do.

- ► Analysis of strategic action.
- ► Applying the idea to other logic, such as awareness logic.
- ▶ 足立さん誕生日おめでとうございます。

Reference

- [1] Segerberg, K., Meyer, J.-J., and Kracht, M. (2013). The Logic of Action. https://plato.stanford.edu/entries/logic-action.
- [2] Horty, J. F. and Belnap, N.. (1995). The Deliberative Stit: A Study of Action, Omission, Ability, and Obligation. *Journal of Philosophical Logic*, 24(6):583-644.