Big Brain Benchmarks

Contents

1 Introduction		oduction	2	
2	Preliminaries			
	2.1	Pre-processing	2	
	2.2	Notation	2	
	2.3	Reproducibility and Extensibility		
3	Inference Tasks			
	3.1	Testing	2	
	3.2	Classification	2	
	3.3	Regression	3	
	3.4	Time-Series Prediction	3	
	3.5	Clustering	4	
4	Resi	ults	4	
	4.1	Testing	4	
	4.2	Classification	4	
	4.3	Regression	4	
	4.4		4	
	4.5	Clustering	4	
5	Disc	ussion	4	

Abstract

1 Introduction

2 Preliminaries

2.1 Pre-processing

- 2.1.1 CPAC
- 2.1.2 NIAK
- 2.1.3 Something else
- 2.2 Notation

2.3 Reproducibility and Extensibility

Website for this work including leaderboards: www.bigbrainbenchmarks.org. Python package for download data and running all algorithms:

Direct link to download data:

3 Inference Tasks

3.1 Testing

3.1.1 Data

We use the data from [?] for testing, which is the 1000 Functional Connectome Project Data.

3.1.2 Algorithms

- t-test:
- rank-sum test:
- wilcoxon:
- Lq-test:

3.1.3 Performance Metrics

False positive and false negative rates as well as computational time.

3.2 Classification

3.2.1 Data

ABIDE [?], autistic or not.

3.2.2 Algorithms

- Linear Discriminant Analysis (LDA) o embedding:
- Quadratic Discriminant Analysis (QDA) o embedding:
- Support Vector Machine (SVM):
- Random Forest (RF):
- k-Nearest Neighbor:

For embeddings, we consider:

- PCA:
- Random Projections:
- Iterative Denoising Trees:

3.2.3 Performance Metrics

- Area Under Curve (AUC): Though see [?]
- Npairs:

3.3 Regression

3.3.1 Data

ABIDE [?] age.

3.3.2 Algorithms

- Ridge Regression (RR):
- Linear with Total Variation Penalty (LTV): for spatial and temporal smoothing
- Support Vector Regression (SVR):
- k-Nearest Neighbor Regression:

3.3.3 Performance Metrics

3.4 Time-Series Prediction

3.4.1 Data

3.4.2 Algorithms

- Vector Auto-Regression (VAR):
- Kalman Filter-Smoother (KFS):
- Support Vector Regression (SVR):

3.5 Clustering 5 DISCUSSION

3.4.3 Performance Metrics

• Integrated L2 error for t time steps ahead:

3.5 Clustering

Cameron wanted some unsupervised something in here.

3.5.1 Data

NKI Test-Retest Data. We clustering time-series of each individual to parcellate the brain.

3.5.2 Algorithms

- k-means:
- Spectral Clustering:
- METIS:

3.5.3 Performance Metrics

Something like reliability, e.g.:

- 1. run each clustering algorithm separately on each scan
- 2. compute cluster similarity metric to compare each scan $(2 \times n)$, where n is the number of subjects
- 3. rank each scan according to its ordering relative to the other scan for that individual
- 4. cluster performance is the sum of ranks for each algorithm

4 Results

- 4.1 Testing
- 4.2 Classification
- 4.3 Regression
- 4.4 Time-Series Prediction
- 4.5 Clustering

5 Discussion