Models & Markets

Comparing 2018 Midterm Predictions

Question

- What is the best way to predict elections?
- When does each method perform best? Why?

Hypothesis

Prediction markets will outperform models

Why Predict Elections?

- Resource allocation
- Strategy adjustment
- Quantitative journalism
- Uncertainty is scary!

How to Predict Elections?

- 1. Opinion polling
- 2. Poll aggregation
- 3. Forecasting models
- 4. Prediction markets

Forecasting Models

Forecasting Models

- 21st Century Invention
- Quantitative inputs
- Express uncertainty
- Probabilistic
- Proprietary

Who will win the presidency?

Chance of winning

71.4%

Electoral votes

■ Hillary Clinton	302.2
■ Donald Trump	235.0
■ Evan McMullin	0.8
Gary Johnson	

Popular vote

■ Hillary Clinton	48.5%
■ Donald Trump	44.9%
Gary Johnson	5.0%
■ Other	1.6%

FORECAST

PRESIDENT SENATE

By Natalie Jackson and Adam Hooper Additional design by Alissa Scheller

PUBLISHED MONDAY, OCT. 3, 2016 12:56 P.M. EDT UPDATED TUESDAY, NOV. 8, 2016, 12:43 A.M. EST

CLINTON 98.0%

1.7%

Model Process

Most election models work in something like the following way: [1] they calculate the <u>most likely</u> <u>outcome</u> in a particular state... and then [2] they determine the <u>degree of uncertainty</u> around that estimate.

Nate Silver

[1] Model Inputs

- 1. Weighted poll aggregation
- 2. CANTOR imputation
- 3. Fundamentals
 - incumbency
 - fundraising
 - previous election
 - scandals, etc

[2] Model Uncertainty

- Fewer polls
- Lopsided race
- Further away
- Polls disagree
 - With one another
 - With fundamentals

Model Variables

- 1. Date
- 2. Election
- 3. Party
- 4. Special
- 5. Incumbency
- 6. Voteshare(s)
- 7. Probability

Prediction Markets

Prediction Markets

- Exchange-traded binary options
- Efficient market hypothesis
- Elections, terrorism, shipwrecks
- Dubious legality
 - Academic waiver from CFTC

Market Contracts

- \$850 limit
- Buyers on either side
- \$1 or \$0 based on outcome
- Sell at any time
- Price change

Contract	Latest Yes Price	Best Offer	Best Offer
Joe Biden	24¢ 1¢*	25¢ Buy Yes Buy No	76¢
Bernie Sanders	22¢ 1¢.	22¢ Buy Yes Buy No	79¢
Pete Buttigieg	18¢ NC	19¢ Buy Yes Buy No	82¢
Kamala Harris	14¢ NC	15¢ Buy Yes Buy No	86¢
Andrew Yang	9¢ 1¢.	10¢ Buy Yes Buy No	91¢
Elizabeth Warren	8¢ 1¢♠	9¢ Buy Yes Buy No	93¢

Market Variables

- 1. ID
- 2. Question
- 3. Name
- 4. Contract
- 5. Date
- 6. Volume
- 7. Price

Comparing Methods

Reading data

```
"https://fivethirtyeight.com/data/..." %>%
read_memento(timestamp = "2018-11-06") %>%
read_csv(col_types = cols(
  Democrat_Won = col_logical(),
  Republican_Won = col_logical(),
            = col_logical(),
  uncalled
  forecastdate
                 = col_date("%m/%d/%y"),
                 = col_factor())
  category
```

Formatting data

```
model_district %>%
 bind_rows(model_seat, .id = "chamber") %>%
 unite(state, district,
       col = race,
       sep = "-") %>%
rename(date = forecastdate,
        prob = win_probability) %>%
 filter(name != "Others") %>%
 arrange(date, name)
```

Models

- 1. Date
- 2. Election
- 3. Party
- 4. Voteshare
- 5. Probability

Markets

- 1. Date
- 2. Market
- 3. Contract
- 4. Volume
- 5. Price

Comparing data

```
markets dem %>%
 inner_join(model_dem) %>%
rename(model = prob,
       market = close) %>%
 gather(key = method,
        value = prob) %>%
 inner_join(results) %>%
mutate(brier = (winner - prob)^2)%>%
mutate(hit = (prob > 0.5) == winner)
```


Date	Race	Method	Prob	Pred	Win	Hit
8/1	AZ-S1	Market	66	1	1	1
8/1	AZ-S1	Model	74	1	1	1
8/1	CA-12	Market	91	1	1	1
8/1	CA-12	Model	100	1	1	1
8/1	CA-22	Market	30	0	0	1
8/1	CA-22	Model	5	0	0	1
8/1	CA-39	Market	61	1	1	1
8/1	CA-39	Model	38	0	1	0

Proportion of Correct Predictions by Week

PredictIt Markets and FiveThirtyEight Model

Proportions Test

- Market proportion:
- Model proportion:
- Lower bound:
- Upper bound:
- X-squared =
- p-value =
- Alternative hypothesis:

- 86.0343%
- 83.8057%
- 1.158%
- 3.2999%
- 16.794
- 0.000042

Two sided

	TRUE		FALSE		
	Markets	Model	Markets	Model	
TRUE	79.5 (51.2)	84.5 (51.2)	40.6 (9.7)	36.5 (9.7)	
FALSE	59.3 (4.3)	63.7 (6.5)	23.0 (34.3)	16.8 (32.1)	

Brier Score

- Democrat has has 70% chance
- Democrat wins on election day
- Brier Score = $(0.70-1)^2 = 0.09$

$$BS = \frac{1}{N} \sum_{t=1}^{N} (f_t - o_t)^2$$

Brier T-Test

- Market mean:
- Model mean:
- Lower bound:
- Upper bound:
- t =
- p-value =
- Alternative hypothesis:

- 0.1084
- 0.1091
- -0.005
- 0.0035
- -0.33902
- 0.7346
- Difference

Expected Probabilities and Actual Proportions of Democratic Victory

Expected probabilities binned by rounding to the nearest 10%

