Teoria Cuantica de Campos

Prof. Javier Garcia - Fisica Online 7 de febrero de 2019

Definición. El promedio de f(x), denotado por $\langle f(x) \rangle$, es la cantidad evaluada como

$$\langle f(x)\rangle = \frac{\int_{-\infty}^{\infty} f(x)e^{\frac{-a}{2}x^2} dx}{\int_{-\infty}^{\infty} e^{\frac{-a}{2}x^2} dx}$$

1. Calcule $\langle x \rangle$.

Lo primero es reconocer el integrando del denominador como la función de densidad de probabilidad de una Gaussiana $(N(0, \frac{1}{\sqrt{a}})$. La varianza es $\sigma^2 = \frac{1}{a}$. Por tanto el denominador es constante, $\sqrt{\frac{2\pi}{a}}$. Queda claro que con la simetría de la Gaussiana, cualquier potencia impar daría un promedio de 0.

2. Calcule $\langle x^2 \rangle$

Esto corresponde al 'segundo momento central' de la normal, que para este caso, corresponde con la varianza σ^2 . Voy a usar σ en vez de a y al final la pongo de nuevo.

3. Calcule $\langle x^{2n} \rangle$, para todo n natural.

Usando la función Gamma(z), se puede obtener una expresión para este promedio de la manera siguiente. Voy a hacer dos cambios de variables, $y=\frac{x}{\sqrt{2}\sigma}$ y $w=y^2$:

$$\langle x^{2n} \rangle = \frac{\int_{-\infty}^{\infty} x^{2n} e^{\frac{-x^2}{2\sigma^2}} dx}{\sqrt{2\pi\sigma^2}}$$

$$\langle x^{2n} \rangle = \frac{\int_{-\infty}^{\infty} 2^n \sigma^{2n} y^{2n} \sqrt{2\sigma} e^{-y^2} dx}{\sqrt{2\pi\sigma^2}}$$

$$\langle x^{2n} \rangle = \left(\frac{\sqrt{2}2^{n+1} \sigma^{2n+1}}{\sqrt{2\pi\sigma^2}}\right) \int_0^{\infty} y^{2n} e^{-y^2} dy$$

$$\langle x^{2n} \rangle = \left(\frac{2^{n+1} \sigma^{2n}}{\sqrt{\pi}}\right) \int_0^{\infty} \frac{w^n e^{-w}}{2\sqrt{w}} dw$$

$$\langle x^{2n} \rangle = \left(\frac{2^n}{a^n \sqrt{\pi}}\right) \Gamma\left(n + \frac{1}{2}\right)$$