# INTRO TO DATA SCIENCE ORTHOGONALIZATION FOR REGRESSION

## Consider the following **polynomial regression** model:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Consider the following **polynomial regression** model:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

## Consider the following **polynomial regression** model:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

A: Yes, because it's linear in the  $\beta$ 's!

## Consider the following **polynomial regression** model:

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \varepsilon$$

Q: This represents a nonlinear relationship. Is it still a linear model?

A: Yes, because it's linear in the  $\beta$ 's!

"Although polynomial regression fits a *nonlinear* model to the data, as a statistical estimation problem it is *linear*, in the sense that the regression function E(y|x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression." — Wikipedia

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

Polynomial regression allows us to fit very complex curves to data.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

But there is a problem with the model we've written down so far.



This model displays **collinearity**, which means the predictor variables are highly correlated with each other.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

```
> x <- seq(1, 10, 0.1)
> cor(x^9, x^10)
[1] 0.9987608
```

This model displays **collinearity**, which means the predictor variables are highly correlated with each other.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n + \varepsilon$$

Collinearity causes the linear regression model to "break down", because it can't tell the predictor variables apart.

This model displays **collinearity**, which means the predictor variables are highly correlated with each other.

$$y = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n$$

For identical features, this results in a singularity.

Collinearity causes the linear regression model to "break down", because it can't tell the predictor variables apart.

Q: What can we do about this?

Q: What can we do about this?

A: Replace the correlated predictors with uncorrelated predictors.

Q: What can we do about this?

A: Replace the correlated predictors with uncorrelated predictors.

$$y = \alpha + \beta_1 f_1(x) + \beta_2 f_2(x^2) + ... + \beta_n f_n(x^n) + \varepsilon$$

Q: What can we do about this?

A: Replace the correlated predictors with uncorrelated predictors.

$$y = \alpha + \beta_1 f_1(x) + \beta_2 f_2(x^2) + ... + \beta_n f_n(x^n) + \varepsilon$$

#### OPTIONAL NOTE

These polynomial functions form an *orthogonal basis* of the function space.