Model Selection and Inference

Merlise Clyde

September 13, 2017

Last Class

Model for brain weight as a function of body weight

► In the model with both response and predictor log transformed, are dinosaurs outliers?

Last Class

Model for brain weight as a function of body weight

- ► In the model with both response and predictor log transformed, are dinosaurs outliers?
- should you test each one individually or as a group; if as a group how do you think you would you do this using lm?

Last Class

Model for brain weight as a function of body weight

- ► In the model with both response and predictor log transformed, are dinosaurs outliers?
- should you test each one individually or as a group; if as a group how do you think you would you do this using lm?
- do you think your final model is adequate? What else might you change?

Dummy variables

Create an indicator variable for each of the dinosaurs:

```
Animals =
  Animals %>%
   mutate(name = row.names(Animals)) %>%
   mutate(Dino.T = (name == "Triceratops")) %>%
   mutate(Dino.D = (name == "Dipliodocus")) %>%
   mutate(Dino.B = (name == "Brachiosaurus")) %>%
   mutate(Dino = (name %in%
                   c("Triceratops",
                     "Brachiosaurus".
                     "Dipliodocus")))
```

uses the dplyr package and pipes %>% with mutate

New Dataframe

##

Mountain bea	FALSE	FALSE	FALSE	FALSE	8.1	1.35	1	##
						465.00		
Grey v						36.33		
J						27.66		
Guinea							_	
Dipliod	IRUE	FALSE	IRUE	FALSE	50.0	11700.00	6	##

body brain Dino.T Dino.D Dino.B Dino

Dinosaurs as Outliers

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.1504121	0.2006036	10.719710	0.0e+00
log(body)	0.7522607	0.0457186	16.454141	0.0e + 00
Dino.TTRUE	-4.7839476	0.7913326	-6.045432	3.6e-06
Dino.BTRUE	-5.6661781	0.8327593	-6.804101	6.0e-07
Dino.DTRUE	-5.2850740	0.7949261	-6.648510	9.0e-07

► Compare models through Extra-Sum-of Squares

- ► Compare models through Extra-Sum-of Squares
 - ► Each additional predictor reduces the SSE (sum of squares error)

- ► Compare models through Extra-Sum-of Squares
 - ► Each additional predictor reduces the SSE (sum of squares error)
 - ► Adds to model complexity (more parameters) fewer degrees of freedom for error

- Compare models through Extra-Sum-of Squares
 - ► Each additional predictor reduces the SSE (sum of squares error)
 - Adds to model complexity (more parameters) fewer degrees of freedom for error
- Is the addition worth it? Is the decrease "significant"?

$$\frac{\Delta SSE}{\Delta \ df}$$

- Compare models through Extra-Sum-of Squares
 - Each additional predictor reduces the SSE (sum of squares error)
 - Adds to model complexity (more parameters) fewer degrees of freedom for error
- Is the addition worth it? Is the decrease "significant"?

$$\frac{\Delta SSE}{\Delta \ df}$$

How big is big enough?

$$F = \frac{\frac{\Delta SSE}{\Delta \text{ df}}}{\frac{SSE_F}{\text{df}_F}} = \frac{\frac{\Delta SSE}{\Delta \text{ df}}}{\hat{\sigma}^2} \sim F(\Delta \text{ df}, n - p)$$

Simultaneous Test: Anova in R.

```
Model:
```

```
\log(\textit{brain}) = \beta_0 + \log(\textit{body})\beta_1 + \mathsf{Dino.T}\beta_2 + \mathsf{Dino.B}\beta_3 + \mathsf{Dino.D}\beta_4 + \epsilon
```

Hypothesis Test: $\beta_2 = \beta_3 = \beta_4 = 0$

```
anova(brain_out.lm, brain.lm)
```

```
## Analysis of Variance Table

##

## Model 1: log(brain) ~ log(body) + Dino.T + Dino.B + Dino.

## Model 2: log(brain) ~ log(body)

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 23 12.117

## 2 26 60.988 -3 -48.871 30.921 3.031e-08 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3

1. all animals follow the same regression

- 1. all animals follow the same regression
- 2. the rate of change is the same, but a different intercept for dinosaurs (parallel regression)

- 1. all animals follow the same regression
- 2. the rate of change is the same, but a different intercept for dinosaurs (parallel regression)
- 3. different slopes and intercepts for dinosaurs and other animals

- 1. all animals follow the same regression
- 2. the rate of change is the same, but a different intercept for dinosaurs (parallel regression)
- 3. different slopes and intercepts for dinosaurs and other animals
- 4. all dinosaurs have a different mean (outliers)

Sequential Sum of Squares

anova(brain1.lm, brain2.lm, brain3.lm, brain4.lm)

```
## Analysis of Variance Table
##
## Model 1: log(brain) ~ log(body)
## Model 2: log(brain) ~ log(body) + Dino
## Model 3: log(brain) ~ log(body) * Dino
## Model 4: log(brain) ~ log(body) + Dino.T + Dino.B + Dino
    Res.Df RSS Df Sum of Sq F Pr(>F)
##
## 1
       26 60.988
## 2 25 12.505 1 48.483 92.0248 1.665e-09 ***
## 3 24 12.212 1 0.294 0.5578 0.4627
## 4 23 12.117 1 0.094 0.1788 0.6763
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

► Fail to reject Model 3 in favor of Model 4

- ► Fail to reject Model 3 in favor of Model 4
- ▶ Fail to reject Model 2 in favor of Model 3

- ► Fail to reject Model 3 in favor of Model 4
- ► Fail to reject Model 2 in favor of Model 3
- Reject Model 1 in favor of Model 2

- ► Fail to reject Model 3 in favor of Model 4
- ► Fail to reject Model 2 in favor of Model 3
- Reject Model 1 in favor of Model 2
 - Same slope for log(body) for all animals, but different intercepts

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.16	0.19	11.09	0.00
log(body)	0.75	0.04	16.90	0.00
DinoTRUE	-5.22	0.53	-9.84	0.00

Distribution of Coefficients

Joint Distribution under normality

$$\hat{\boldsymbol{\beta}} \mid \sigma^2 \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Distribution of Coefficients

Joint Distribution under normality

$$\hat{\boldsymbol{\beta}} \mid \sigma^2 \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Distribution of SSE

$$SSE \sim \chi^2(n-p)$$

Distribution of Coefficients

Joint Distribution under normality

$$\hat{\boldsymbol{\beta}} \mid \sigma^2 \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

Distribution of SSE

$$SSE \sim \chi^2(n-p)$$

Marginal distribution

$$\frac{\hat{\beta}_j - \beta_j}{\mathsf{SE}(\hat{\beta}_i)} \sim \mathsf{St}(n-p)$$

$$\mathsf{SE}(\hat{eta}_j) = \hat{\sigma} \sqrt{[\mathbf{X}^T \mathbf{X}]^{-1}]_{jj}}$$

Confidence Intervals

$$(1-lpha/2)$$
100% Confidence interval for eta_j
$$\hat{eta}_j \pm t_{n-p,lpha/2} {\sf SE}(\hat{eta}_j)$$

kable(confint(brain2.lm))

	2.5 %	97.5 %
(Intercept)	1.760198	2.5630848
log(body)	0.657346	0.8397591
DinoTRUE	-6.311226	-4.1274760

Converting to Original Units

Model after exponentiating

$$\begin{split} \widehat{\textit{brain}} &= e^{\hat{\beta}_0 + \log(\textit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} e^{\log(\textit{body})\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} \textit{body}^{\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \end{split}$$

Converting to Original Units

Model after exponentiating

$$\begin{split} \widehat{\textit{brain}} &= e^{\hat{\beta}_0 + \log(\textit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} e^{\log(\textit{body})\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} \textit{body}^{\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \end{split}$$

▶ 10% increase in body weight implies a

$$egin{aligned} \widehat{\textit{brain}}_{1.10} &= e^{\hat{eta}_0} (1.10 * \textit{body})^{\hat{eta}_1} e^{\mathsf{Dino}\hat{eta}_2} \ &= 1.10^{\hat{eta}_1} e^{\hat{eta}_0} \textit{body}^{\hat{eta}_1} e^{\mathsf{Dino}\hat{eta}_2} \end{aligned}$$

Converting to Original Units

Model after exponentiating

$$\begin{split} \widehat{\textit{brain}} &= e^{\hat{\beta}_0 + \log(\textit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} e^{\log(\textit{body})\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \\ &= e^{\hat{\beta}_0} \textit{body}^{\hat{\beta}_1} e^{\mathsf{Dino}\hat{\beta}_2} \end{split}$$

▶ 10% increase in body weight implies a

$$egin{aligned} \widehat{\textit{brain}}_{1.10} &= e^{\hat{eta}_0} (1.10 * \textit{body})^{\hat{eta}_1} e^{\mathsf{Dino}\hat{eta}_2} \ &= 1.10^{\hat{eta}_1} e^{\hat{eta}_0} \textit{body}^{\hat{eta}_1} e^{\mathsf{Dino}\hat{eta}_2} \end{aligned}$$

• $1.1^{\hat{\beta}_1} = 1.074$ or a 7.4% increase in brain weight

95% Confidence interval

To obtain a 95% confidence interval, $(1.10^{CI} - 1) * 100$

	2.5 %	97.5 %
body	6.465603	8.332779

Interpretation of Intercept

Evalutate model with predictors = 0

$$\widehat{\log(\mathit{brain})} = \hat{\beta}_0 + \log(\mathit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2$$

Interpretation of Intercept

Evalutate model with predictors = 0

$$\widehat{\log(\textit{brain})} = \hat{\beta}_0 + \log(\textit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2$$

► For a non-dinosaur, if log(body) = 0 (body weight = 1 kilogram), we expect that brain weight will be 2.16 log(grams) ???

Interpretation of Intercept

Evalutate model with predictors = 0

$$\widehat{\log(\textit{brain})} = \hat{\beta}_0 + \log(\textit{body})\hat{\beta}_1 + \mathsf{Dino}\hat{\beta}_2$$

- ► For a non-dinosaur, if log(body) = 0 (body weight = 1 kilogram), we expect that brain weight will be 2.16 log(grams) ???
- Exponentiate: predicted brain weight for non-dinosaur with a 1 kg body weight is

$$e^{\hat{eta}_0}=8.69~\mathrm{grams}$$

Plot of Fitted Values

Predictions for 259 gram cockatoo

Predictions in original units

▶ 95% Confidence Interval for f(x)

Predictions in original units

▶ 95% Confidence Interval for f(x)

▶ 95% Prediction Interval for Brain Weight

CI/Predictions in original units for body=259 g

▶ 95% Confidence Interval for f(x)

```
## fit lwr upr
## 1 0.5637161 0.2868832 1.107684
```

```
exp(pred$fit)
```

```
## fit lwr upr
## 1 0.5637161 0.1131737 2.80786
```

CI/Predictions in original units for body=259 g

▶ 95% Confidence Interval for f(x)

```
## fit lwr upr
## 1 0.5637161 0.2868832 1.107684
```

▶ 95% Prediction Interval for Brain Weight

```
exp(pred$fit)
```

exp(fit\$fit)

```
## fit lwr upr
## 1 0.5637161 0.1131737 2.80786
```

CI/Predictions in original units for body=259 g

▶ 95% Confidence Interval for f(x)

```
exp(fit$fit)
```

```
## fit lwr upr
## 1 0.5637161 0.2868832 1.107684
```

▶ 95% Prediction Interval for Brain Weight

```
exp(pred$fit)
```

```
## fit lwr upr
## 1 0.5637161 0.1131737 2.80786
```

▶ 95% confident that the brain weight will be between 0.11 and 2.81 grams

► Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)

- ► Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units

- Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units
- log transform useful for non-negative responses (ensures predictions are non-negative)

- Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units
- log transform useful for non-negative responses (ensures predictions are non-negative)
- ▶ Be careful of units of data

- Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units
- log transform useful for non-negative responses (ensures predictions are non-negative)
- ▶ Be careful of units of data
 - plots should show units

- Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units
- log transform useful for non-negative responses (ensures predictions are non-negative)
- Be careful of units of data
 - plots should show units
 - summary statements should include units

- Linear predictors may be based on functions of other predictors (dummy variables, interactions, non-linear terms)
- need to change back to original units
- log transform useful for non-negative responses (ensures predictions are non-negative)
- Be careful of units of data
 - plots should show units
 - summary statements should include units
- ▶ Goodness of fit measure: R^2 and Adjusted R^2 depend on scale R^2 is percent variation in "Y" that is explained by the model

$$R^2 = 1 - SSE/SST$$

where
$$SST = \sum_{i} (Y_i - \bar{Y})^2$$