Week 3 - Problem Set

最新提交作业的评分

100%

1. Suppose a MAC system (S,V) is used to protect files in a file system

1/1 分

by appending a MAC tag to each file. The MAC signing algorithm ${\cal S}$

is applied to the file contents and nothing else. What tampering attacks

are not prevented by this system?

- Changing the name of a file.
- Changing the first byte of the file contents.
- Appending data to a file.
- Replacing the contents of a file with the concatenation of two files on the file system.

✓ 正确

The MAC signing algorithm is only applied to the file contents and

does not protect the file name.

2. Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K 1/1 $\mathfrak B$, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$.

Which of the following is a secure MAC: (as usual, we use \parallel to denote string concatenation)

$$V'(k, m, t) = V(k, m \oplus m, t)$$

$$V'(k,m,t) = egin{cases} V(k,m,t) & ext{if } m
eq 0^n \ ext{"1"} & ext{otherwise} \end{cases}$$

$$lacksquare S'(k,m) = S(k,m \oplus 1^n)$$
 and

$$V'(k,m,t) = V(k,m \oplus 1^n,t).$$

✓ 正确

a forger for (S', V') gives a forger for (S, V).

$$egin{array}{c} igspace S'(k,m) = egin{cases} S(k, rac{1^n}{}) & ext{if } m = 0^n \ S(k,m) & ext{otherwise} \end{cases}$$
 and

$$V'(k,m) = egin{cases} V(k,1^n,t) & ext{if } m=0^n \ V(k,m,t) & ext{otherwise} \end{cases}$$

$$S'(k,m)=S(k,m)[0,\ldots,$$
 126] and

$$V'(k, m, t) = [V(k, m, t || 0) \text{ or } V(k, m, t || 1)]$$

(i.e.,
$$V'(k,m,t)$$
 outputs ``1" if either $t ig\| 0$ or $t ig\| 1$

is a valid tag for m)

,

✓ 正确

a forger for (S',V') gives a forger for (S,V).

 $igsim S'(k,\,m) = igl[t \leftarrow S(k,m), egin{array}{c} ext{output } (t,t) \end{array}igr)$ and

$$V'ig(k,m,(t_1,t_2)ig) = egin{cases} V(k,m,t_1) & ext{if } t_1 = t_2 \ ext{"0"} & ext{otherwise} \end{cases}$$

(i.e., $V'ig(k,m,(t_1,t_2)ig)$ only outputs "1"

if t_1 and t_2 are equal and valid)

✓ 正确

a forger for (S^\prime,V^\prime) gives a forger for (S,V).

3. Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0). Suppose instead we chose a random IV for every message being signed and include

the IV in the tag.

In other words, $S(k,m) := ig(r, \ \operatorname{ECBC}_r(k,m)ig)$

where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as the IV. The verification algorithm V given key k, message m, and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r(k,m)$ and outputs ``0" otherwise.

The resulting MAC system is insecure.

An attacker can query for the tag of the 1-block message m and obtain the tag (r,t). He can then generate the following existential forgery: (we assume that the underlying block cipher operates on n-bit blocks)

- $\ \, igoplus \,$ The tag $(r\oplus 1^n,\ t)$ is a valid tag for the 1-block message $m\oplus 1^n.$
- igcup The tag $(r,\ t\oplus r)$ is a valid tag for the 1-block message $0^n.$
- \bigcirc The tag $(r \oplus t, m)$ is a valid tag for the 1-block message 0^n .
- \bigcirc The tag $(m \oplus t, \ r)$ is a valid tag for the 1-block message 0^n .

✓ 正确

The CBC chain initiated with the IV $r\oplus m$ and applied to the message 0^n will produce exactly the same output as the CBC chain initiated with the IV r and applied to the message m. Therefore, the tag $(r\oplus 1^n,\ t)$ is a valid existential forgery for the message $m\oplus 1^n$.

4. Suppose Alice is broadcasting packets to 6 recipients

 B_1,\ldots,B_6 . Privacy is not important but integrity is.

In other words, each of B_1,\dots,B_6 should be assured that the

packets he is receiving were sent by Alice.

Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k. Alice computes a tag for every packet she sends using key k. Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid.

Alice notices that this scheme is insecure because user B_1 can

 $f(k, \cdot) = tag$ $f(k, \cdot) = tag$ $f(k, \cdot) = tag$ $f(k, \cdot) = tag$

1/1 分

use the key \boldsymbol{k} to send packets with a valid tag to

users B_2, \ldots, B_6 and they will all be fooled into thinking

that these packets are from Alice.

Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}.$

She gives each user B_i some subset $S_i \subseteq S$

of the keys. When Alice transmits a packet she appends 4 tags to it

by computing the tag with each of her 4 keys. When user B_i receives

a packet he accepts it as valid only if all tags corresponding

to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .

How should Alice assign keys to the 6 users so that no single user

can forge packets on behalf of Alice and fool some other user?

✓ 正确

Every user can only generate tags with the two keys he has.

Since no set S_i is contained in another set S_i , no user i

can fool a user j into accepting a message sent by i.

5. Consider the encrypted CBC MAC built from AES. Suppose we

compute the tag for a long message \boldsymbol{m} comprising of \boldsymbol{n} AES blocks.

Let m' be the n-block message obtained from m by flipping the

last bit of m (i.e. if the last bit of m is b then the last bit

of m' is $b\oplus 1$). How many calls to AES would it take

1/1 分

to compute the tag for m' from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size)

O 5

 \bigcirc n

O 6

4

. / TEA

You would decrypt the final CBC MAC encryption step done using k_2 ,

the decrypt the last CBC MAC encryption step done using k_1 ,

flip the last bit of the result, and re-apply the two encryptions.

6. Let H:M
ightarrow T be a collision resistant hash function.

1/1 分

Which of the following is collision resistant:

(as usual, we use \parallel to denote string concatenation)

$$H'(m) = H(m) \| H(m)$$

✓ II

a collision finder for H' gives a collision finder for H.

$$H'(m) \equiv H(m) \bigoplus H(m \oplus 1^{|m|})$$

$$f_1(x, y) = AES(y, x) \bigoplus y$$

where AES(x, y) is the AES-128 encryption of y under key x.

Your goal is to find two distinct pairs (x_1, y_1) and (x_2, y_2) such that $f_1(x_1, y_1) = f_1(x_2, y_2)$.

Which of the following methods finds the required (x_1, y_1) and (x_2, y_2) ?

Choose x_1, y_1, x_2 arbitrarily (with $x_1 \neq x_2$) and let $v := AES(y_1, x_1)$.

Set $y_2 = AES^{-1}(x_2, v \oplus y_1 \oplus x_2)$

Choose x_1, y_1, y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1, x_1)$.

Set $x_2 = AES^{-1}(y_2, v \oplus y_1)$

lacktriangledown Choose x_1,y_1,y_2 arbitrarily (with $y_1 \neq y_2$) and let $v:=AES(y_1,x_1)$.

Set $x_2 = AES^{-1}(y_2, v \oplus y_1 \oplus y_2)$

Choose x_1, y_1, y_2 arbitrarily (with $y_1 \neq y_2$) and let $v := AES(y_1, x_1)$.

Set $x_2 = AES^{-1}(y_2, v \oplus y_2)$

正确

You got it!

AES $(y_1, x_1) \oplus y_1 = AES(y_2, x_2) \oplus y_2$ $\chi_2 = AES^{-1}(y_2, y_3 \oplus y_1 \oplus AES(y_1, x_1))$ key $\chi_1 = AES^{-1}(y_1, y_1 \oplus y_2 \oplus AES(y_2, x_3))$

which of the following methods in as the required (x_1,y_1) and (x_2,y_2) :

- \bigcirc Choose x_1,x_2,y_1 arbitrarily (with $x_1\neq x_2$) and set $y_2=AES(x_1,x_1)\oplus AES(x_2,x_2)$
- $\ \, igoplus$ Choose x_1,x_2,y_1 arbitrarily (with $x_1 \neq x_2$) and set $y_2=y_1 \oplus AES(x_1,x_1) \oplus AES(x_2,x_2)$
- igcap Choose x_1,x_2,y_1 arbitrarily (with $x_1
 eq x_2$) and set $y_2 = y_1 \oplus AES(x_1,x_1)$
- $igcomes_1,x_2,y_1$ arbitrarily (with $x_1
 eq x_2$) and set $y_2=y_1\oplus x_1\oplus AES(x_2,x_2)$

✓ 正确

Awesome!

AES (x1, X1) ⊕ y, = AES (X2, X2) ⊕ y2

1/1分

10. Let H:M o T be a random hash function where $|M|\gg |T|$ (i.e. the size of M is much larger than the size of T).

In lecture we showed

that finding a collision on H can be done with $O\!\left(|T|^{1/2}\right)$

random samples of H. How many random samples would it take

until we obtain a three way collision, namely distinct strings $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$

in M such that H(x) = H(y) = H(z)?

- $\bigcirc O(|T|^{2/3})$
- $\bigcirc O(|T|^{1/2})$
- $\bigcirc O(|T|)$
- $O(|T|^{1/3})$

✓ 正确

An informal argument for this is as follows: suppose we collect n random samples. The number of triples among the n samples is n choose 3 which is $O(n^3)$. For a particular triple x,y,z to be a 3-way collision we need H(x)=H(y) and H(x)=H(z). Since each one of these two events happens with probability 1/|T| (assuming H behaves like a random function) the probability that a particular triple is a 3-way collision is $O(1/|T|^2)$. Using the union bound, the probability that some triple is a 3-way collision is $O(n^3/|T|^2)$ and since we want this probability to be close to 1, the bound on n follows.