CS-E4340 - Cryptography D:

Lecture 9: Fully Homomorphic Encryption

Russell W. F. Lai

Introduction

- † Symmetric-key encryption usually destroys all utility of the encrypted message No meaningful computation can be performed over the encrypted message.
- † Public-key encryption schemes are usually (only) linearly homomorphic
- † Fully homomorphic encryption (FHE) allows arbitrary computation over encrypted data.
- † Given arbitrary f and Enc(x), homomorphically evaluating f over Enc(x) gives Enc(f(x)).

- $\dagger\,$ Symmetric-key encryption usually destroys all utility of the encrypted message
 - No meaningful computation can be performed over the encrypted message.
- † Public-key encryption schemes are usually (only) linearly homomorphic.
- † Fully homomorphic encryption (FHE) allows arbitrary computation over encrypted data.
- † Given arbitrary f and Enc(x), homomorphically evaluating f over Enc(x) gives Enc(f(x)).

- † Symmetric-key encryption usually destroys all utility of the encrypted message
 - No meaningful computation can be performed over the encrypted message.
- † Public-key encryption schemes are usually (only) linearly homomorphic.
- † Fully homomorphic encryption (FHE) allows arbitrary computation over encrypted data.
- † Given arbitrary f and Enc(x), homomorphically evaluating f over Enc(x) gives Enc(f(x)).

- † Symmetric-key encryption usually destroys all utility of the encrypted message
 - No meaningful computation can be performed over the encrypted message.
- † Public-key encryption schemes are usually (only) linearly homomorphic.
- † Fully homomorphic encryption (FHE) allows arbitrary computation over encrypted data.
- † Given arbitrary f and Enc(x), homomorphically evaluating f over Enc(x) gives Enc(f(x)).

- † Alice has secret data x.
- † Alice wants to compute f(x) for some public f.
- † Computing f is expensive \implies Delegate to Bob.

Alice
$$(pk, sk) \leftarrow KGen(1^{\lambda})$$

$$ctxt_x = Enc(pk, x)$$

$$ctxt_{f(x)} = f(ctxt_x)$$

$$ctxt_{f(x)} = f(ctxt_x)$$

- † Bob learns nothing about x
- † Alice's work only depends on x, not f.
- † 2 rounds of communication (optimal).

- † Alice has secret data x.
- † Alice wants to compute f(x) for some public f.
- † Computing f is expensive \implies Delegate to Bob.

- † Bob learns nothing about x
- † Alice's work only depends on x, not f.
- † 2 rounds of communication (optimal).

- † Alice has secret data x.
- † Alice wants to compute f(x) for some public f.
- † Computing f is expensive \implies Delegate to Bob.

- † Bob learns nothing about x.
- † Alice's work only depends on x, not f.
- † 2 rounds of communication (optimal).

Lecture Overview

In this lecture, we will

- † introduce the notion of fully homomorphic encryption (FHE)
- † construct FHE from public-key encryption with (almost-)bilinear decryption
- † construct FHE from learning with errors (LWE)

Definition of Fully Homomorphic Encryption

Syntax

Just like public-key encryption (KGen, Enc, Dec) but with additional evaluation algorithm Eval.

```
† Key Generation: (pk, sk) \leftarrow KGen(1^{\lambda})
```

- † Encryption: ctxt \leftarrow Enc(pk, x)
- † Decryption: $x \leftarrow \text{Dec}(sk, ctxt)$
- † Evaluation: ctxt \leftarrow Eval(pk, f, ctxt₁, . . . , ctxt_n)

Correctness

Correctness = decryption correctness + evaluation correctness

- † Key Generation: $(pk, sk) \leftarrow KGen(1^{\lambda})$
- † Encryption: ctxt \leftarrow Enc(pk, x)
- † Decryption: $x \leftarrow \text{Dec}(sk, ctxt)$
- † Evaluation: ctxt \leftarrow Eval(pk, f, ctxt₁, ..., ctxt_n)
- † Decryption Correctness:

$$Dec(sk, Enc(pk, x)) = x.$$

† Evaluation Correctness: If $Dec(sk, ctxt_i) = x_i$ for all $i \in [n]$, then

$$Dec(sk, Eval(pk, f, ctxt_1, \dots, ctxt_n)) = f(x_1, \dots, x_n).$$

IND-CPA-Security

Same as IND-CPA-security for PKE.

IND-CPA-Security of FHE Π : For any PPT adversary \mathcal{A} ,

$$\left| \text{Pr} \Big[\text{IND-CPA}_{\Pi,\mathcal{A}}^0(1^{\lambda}) = 1 \Big] - \text{Pr} \Big[\text{IND-CPA}_{\Pi,\mathcal{A}}^1(1^{\lambda}) = 1 \Big] \right| \leq \text{negl}(\lambda)$$

where

$$\begin{split} &\frac{\text{IND-CPA}_{\Pi,\mathcal{A}}^{b}(1^{\lambda})}{(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KGen}(1^{\lambda})} \\ &(x_0,x_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\ &\mathsf{ctxt}^* \leftarrow \mathsf{Enc}(\mathsf{pk},x_b) \\ &b' \leftarrow \mathcal{A}(\mathsf{ctxt}^*) \\ &\mathbf{return} \ b' \end{split}$$

FHE from PKE with (Almost-)Bilinear Decryption

(From Daniele Micciancio's "Fully Homomorphic Encryption from the Ground Up" @ Eurocrypt 2019)

Warm-Up: The Noise-Free Case

Given PKE scheme $\Pi = (KGen, Enc, Dec)$ for message space \mathbb{Z}_q with following properties:

```
† Bilinear decryption:
```

```
\ddagger \ \mathsf{Dec}(\mathsf{sk},\mathsf{ctxt}) + \mathsf{Dec}(\mathsf{sk}',\mathsf{ctxt}) = \mathsf{Dec}(\mathsf{sk} + \mathsf{sk}',\mathsf{ctxt})
```

$$= \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}) + \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}') = \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt} + \mathsf{ctxt}')$$

‡ For any
$$a \in \mathbb{Z}_a$$
, $a \cdot \operatorname{Dec}(\operatorname{sk},\operatorname{ctxt}) = \operatorname{Dec}(a \cdot \operatorname{sk},\operatorname{ctxt}) = \operatorname{Dec}(\operatorname{sk},a \cdot \operatorname{ctxt})$

† Corollary: For any linear function L over \mathbb{Z}_q , the following hold

```
Key-Homomorphism: L(\text{Dec}(sk_1, ctxt), \dots, \text{Dec}(sk_k, ctxt)) = \text{Dec}(L(sk_1, \dots, sk_k), ctxt)
```

‡ Ciphertext-Homomorphism:
$$L(\text{Dec}(\mathsf{sk},\mathsf{ctxt}_1),\ldots,\text{Dec}(\mathsf{sk},\mathsf{ctxt}_k)) = \text{Dec}(\mathsf{sk},L(\mathsf{ctxt}_1,\ldots,\mathsf{ctxt}_k))$$

Goal: Build FHE $\Pi' = (KGen', Enc', Dec', Eval')$ for \mathbb{Z}_q .

(We ignore the minor problem that Π is completely broken for now.)

Warm-Up: The Noise-Free Case

Given PKE scheme $\Pi = (KGen, Enc, Dec)$ for message space \mathbb{Z}_q with following properties:

- † Bilinear decryption:
 - 1 Dec(sk, ctxt) + Dec(sk', ctxt) = Dec(sk + sk', ctxt)
 - $1 \quad Dec(sk, ctxt) + Dec(sk, ctxt') = Dec(sk, ctxt + ctxt')$
 - ‡ For any $a \in \mathbb{Z}_q$, $a \cdot \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}) = \mathsf{Dec}(a \cdot \mathsf{sk}, \mathsf{ctxt}) = \mathsf{Dec}(\mathsf{sk}, a \cdot \mathsf{ctxt})$
- † Corollary: For any linear function L over \mathbb{Z}_q , the following hold:
 - ‡ Key-Homomorphism: $L(\text{Dec}(\mathsf{sk}_1,\mathsf{ctxt}),\ldots,\text{Dec}(\mathsf{sk}_k,\mathsf{ctxt})) = \text{Dec}(L(\mathsf{sk}_1,\ldots,\mathsf{sk}_k),\mathsf{ctxt})$
 - ‡ Ciphertext-Homomorphism: $L(\text{Dec}(sk, \text{ctxt}_1), \dots, \text{Dec}(sk, \text{ctxt}_k)) = \text{Dec}(sk, L(\text{ctxt}_1, \dots, \text{ctxt}_k))$

Goal: Build FHE $\Pi' = (KGen', Enc', Dec', Eval')$ for \mathbb{Z}_q .

(We ignore the minor problem that Π is completely broken for now.)

Warm-Up: The Noise-Free Case

Given PKE scheme $\Pi = (KGen, Enc, Dec)$ for message space \mathbb{Z}_q with following properties:

- † Bilinear decryption:
 - $\ddagger \ \mathsf{Dec}(\mathsf{sk},\mathsf{ctxt}) + \mathsf{Dec}(\mathsf{sk}',\mathsf{ctxt}) = \mathsf{Dec}(\mathsf{sk} + \mathsf{sk}',\mathsf{ctxt})$

 - ‡ For any $a \in \mathbb{Z}_a$, $a \cdot \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}) = \mathsf{Dec}(a \cdot \mathsf{sk}, \mathsf{ctxt}) = \mathsf{Dec}(\mathsf{sk}, a \cdot \mathsf{ctxt})$
- † Corollary: For any linear function L over \mathbb{Z}_q , the following hold:
 - ‡ Key-Homomorphism: $L(\text{Dec}(\mathsf{sk}_1,\mathsf{ctxt}),\ldots,\text{Dec}(\mathsf{sk}_k,\mathsf{ctxt})) = \text{Dec}(L(\mathsf{sk}_1,\ldots,\mathsf{sk}_k),\mathsf{ctxt})$
 - ‡ Ciphertext-Homomorphism: $L(\text{Dec}(sk, \text{ctxt}_1), \dots, \text{Dec}(sk, \text{ctxt}_k)) = \text{Dec}(sk, L(\text{ctxt}_1, \dots, \text{ctxt}_k))$

Goal: Build FHE $\Pi'=$ (KGen', Enc', Dec', Eval') for \mathbb{Z}_q . (We ignore the minor problem that Π is completely broken for now.)

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

† Let ctxt_{sk} be public.

- † Given ctxt_x and ctxt_{v-sk} = $y \cdot$ ctxt_{sk}.
- † Define the linear function $L(\cdot) = \text{Dec}(\cdot, \text{ctxt}_x)$.
- † Compute $\operatorname{ctxt}_{L(v \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{v \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_x and $\text{ctxt}_{v \cdot \text{sk}}$, we can get $\text{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_{x} and $\operatorname{ctxt}_{y \cdot \operatorname{sk}} = y \cdot \operatorname{ctxt}_{\operatorname{sk}}$.
- † Define the linear function $L(\cdot) = \text{Dec}(\cdot, \text{ctxt}_x)$.
- † Compute $\operatorname{ctxt}_{L(y \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{y \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_{x} and $\operatorname{ctxt}_{v \cdot \operatorname{sk}}$, we can get $\operatorname{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_x and $\operatorname{ctxt}_{y \cdot \operatorname{sk}} = y \cdot \operatorname{ctxt}_{\operatorname{sk}}$.
- † Define the linear function $L(\cdot) = Dec(\cdot, ctxt_x)$.
- † Compute $\operatorname{ctxt}_{L(v \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{v \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_x and $\text{ctxt}_{v \cdot \text{sk}}$, we can get $\text{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_x and $\operatorname{ctxt}_{y \cdot \operatorname{sk}} = y \cdot \operatorname{ctxt}_{\operatorname{sk}}$.
- † Define the linear function $L(\cdot) = Dec(\cdot, ctxt_x)$.
- † Compute $\operatorname{ctxt}_{L(y \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{y \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_x and $\text{ctxt}_{v \cdot \text{sk}}$, we can get $\text{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_{x} and $\operatorname{ctxt}_{y \cdot \operatorname{sk}} = y \cdot \operatorname{ctxt}_{\operatorname{sk}}$.
- † Define the linear function $L(\cdot) = Dec(\cdot, ctxt_x)$.
- † Compute $\operatorname{ctxt}_{L(y \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{y \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_{x} and $\operatorname{ctxt}_{v \cdot \operatorname{sk}}$, we can get $\operatorname{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_{x} and $\operatorname{ctxt}_{y \cdot \operatorname{sk}} = y \cdot \operatorname{ctxt}_{\operatorname{sk}}$.
- † Define the linear function $L(\cdot) = Dec(\cdot, ctxt_x)$.
- † Compute $\operatorname{ctxt}_{L(y \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{y \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_{x} and $\operatorname{ctxt}_{v \cdot \operatorname{sk}}$, we can get $\operatorname{ctxt}_{x \cdot v}$.

Observeation: $Dec(y \cdot sk, ctxt_x) = Dec(sk, y \cdot ctxt_x) = Dec(sk, ctxt_{x \cdot y}) = x \cdot y$. Idea: Encrypt $y \cdot sk$ and evaluate $Dec(\cdot, ctxt_x)$ homomorphically.

- † Let ctxt_{sk} be public.
- † Given ctxt_x and $\operatorname{ctxt}_{y\cdot\operatorname{sk}}=y\cdot\operatorname{ctxt}_{\operatorname{sk}}.$
- † Define the linear function $L(\cdot) = Dec(\cdot, ctxt_x)$.
- † Compute $\operatorname{ctxt}_{L(y \cdot \operatorname{sk})} = L(\operatorname{ctxt}_{y \cdot \operatorname{sk}})$.
- † Since $L(y \cdot sk) = Dec(y \cdot sk, ctxt_x) = x \cdot y$, we have $ctxt_{L(y \cdot sk)} = ctxt_{x \cdot y}$.

Summary: From ctxt_x and $\text{ctxt}_{y \cdot \text{sk}}$, we can get $\text{ctxt}_{x \cdot y}$.

To get an FHE Π' :

```
† Key Generation: Let pk' = (pk, ctxt_{sk}) and sk' = sk.
```

† Encryption:
$$Enc'(pk', x) = ctxt'_x = x \cdot ctxt_{sk}$$

- † Decryption: $Dec'(sk, ctxt'_x)$:
 - $\ddagger x \cdot \mathsf{sk} \leftarrow \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}'_x).$
 - ‡ Recover x from $x \cdot sk$.

† Homomorphic Addition: Eval'(pk', +, ctxt'_x, ctxt'_y):

$$ctxt'_y + ctxt'_y (= ctxt_{x\cdot sk} + ctxt_{y\cdot sk} = ctxt'_{x+y}).sk = ctxt'_{y+y})$$

† Homomorphic Multiplication: Eval'(
$$pk'$$
, \times , $ctxt'_x$, $ctxt'_y$)

- ‡ Let $L(\cdot) = Dec(\cdot, ctxt'_x) = Dec(\cdot, ctxt_{x \cdot sk})$.
- ‡ Output $\operatorname{ctxt}_{L(v,sk)} = L(\operatorname{ctxt}_{v}') = L(\operatorname{ctxt}_{v,sk}')$.
- ‡ (By $L(y \cdot sk) = Dec(y \cdot sk, ctxt_{x \cdot sk}) = x \cdot y \cdot sk$, we get $ctxt'_{x \cdot y} = ctxt_{x \cdot y \cdot sk}$.)

- † Recall that Π is insecure, so does Π' .
- † To get security, as in Regev's and Dual-Regev encryption, add noise to keys and/or ciphertexts.
- † Noisy linear decryption: $Dec(\cdot, ctxt_x) \approx L_{ctxt_x}(\cdot)$ where $L_{ctxt_x}(sk) = x + error$
- † Error accumulation: Suppose ctxt_x has error e_x and ctxt_y has error e_y
 - ‡ $\operatorname{ctxt}_x + \operatorname{ctxt}_v$ has error $e_x + e_v$.
 - $\ddagger a \cdot \text{ctxt}_{\vee}$ has error $a \cdot e_{\vee}$.

To apply the transform $\Pi \to \Pi'$, need to tackle two challenges:

- † $Dec(\cdot, ctxt_x)$ is non-linear \implies cannot homomorphically evaluate
- † $L_{\text{ctxt}_{y \cdot \text{sk}}}$ has large coefficients $\implies L_{\text{ctxt}_{y \cdot \text{sk}}}(\text{ctxt}_{y \cdot \text{sk}})$ has large error

- † Recall that Π is insecure, so does Π' .
- † To get security, as in Regev's and Dual-Regev encryption, add noise to keys and/or ciphertexts.
- \dagger Noisy linear decryption: $\mathsf{Dec}(\cdot,\mathsf{ctxt}_x) pprox \mathit{L}_{\mathsf{ctxt}_x}(\cdot)$ where $\mathit{L}_{\mathsf{ctxt}_x}(\mathsf{sk}) = x + \mathsf{error}$
- † Error accumulation: Suppose ctxt_x has error e_x and ctxt_y has error e_y
 - ‡ $\operatorname{ctxt}_x + \operatorname{ctxt}_v$ has error $e_x + e_v$.
 - $\ddagger a \cdot \operatorname{ctxt}_x \text{ has error } a \cdot e_x.$

To apply the transform $\Pi \to \Pi'$, need to tackle two challenges:

- † $Dec(\cdot, ctxt_x)$ is non-linear \implies cannot homomorphically evaluate
- † $L_{\text{ctxt}_{x\cdot\text{sk}}}$ has large coefficients $\implies L_{\text{ctxt}_{x\cdot\text{sk}}}(\text{ctxt}_{y\cdot\text{sk}})$ has large error

- † Recall that Π is insecure, so does Π' .
- † To get security, as in Regev's and Dual-Regev encryption, add noise to keys and/or ciphertexts.
- † Noisy linear decryption: $Dec(\cdot, ctxt_x) \approx L_{ctxt_x}(\cdot)$ where $L_{ctxt_x}(sk) = x + error$.
- † Error accumulation: Suppose ctxt_x has error e_x and ctxt_y has error e_y
 - ‡ $\operatorname{ctxt}_x + \operatorname{ctxt}_v$ has error $e_x + e_v$.
 - ‡ $a \cdot \operatorname{ctxt}_x$ has error $a \cdot e_x$.

To apply the transform $\Pi o\Pi'$, need to tackle two challenges.

- † $Dec(\cdot, ctxt_x)$ is non-linear \implies cannot homomorphically evaluate
- † $L_{\mathsf{ctxt}_{x\cdot\mathsf{sk}}}$ has large coefficients $\implies L_{\mathsf{ctxt}_{x\cdot\mathsf{sk}}}(\mathsf{ctxt}_{y\cdot\mathsf{sk}})$ has large error.

- † Recall that Π is insecure, so does Π' .
- † To get security, as in Regev's and Dual-Regev encryption, add noise to keys and/or ciphertexts.
- † Noisy linear decryption: $Dec(\cdot, ctxt_x) \approx L_{ctxt_x}(\cdot)$ where $L_{ctxt_x}(sk) = x + error$.
- † Error accumulation: Suppose ctxt_x has error e_x and ctxt_y has error e_y
 - ‡ $\operatorname{ctxt}_x + \operatorname{ctxt}_v$ has error $e_x + e_v$.
 - ‡ $a \cdot \text{ctxt}_x$ has error $a \cdot e_x$.

To apply the transform $\Pi \to \Pi'$, need to tackle two challenges:

- † $Dec(\cdot, ctxt_x)$ is non-linear \implies cannot homomorphically evaluate.
- † $L_{\text{ctxt}_{v\cdot\text{sk}}}$ has large coefficients $\implies L_{\text{ctxt}_{v\cdot\text{sk}}}(\text{ctxt}_{v\cdot\text{sk}})$ has large error.

Handling Large-Scalar Multiplication

We construct another scheme Π'' from the (now noisy) schemes Π' and Π :

- † Let $\mathsf{ctxt}''_{\mathsf{x}} = (\mathsf{ctxt}'_{\mathsf{x}}, \mathsf{ctxt}'_{\mathsf{x},2}, \dots, \mathsf{ctxt}'_{\mathsf{x},2\ell})$ where $\ell = |\log q|$ and each component has error e.
- \dagger To compute $\operatorname{ctxt}_{a\cdot x}'$ from $a\in\mathbb{Z}_q$ and ctxt_x'
 - Write down binary decomposition $a = \sum_{i=0}^{\ell} a_i \cdot 2^i$.
 - ‡ Output $\operatorname{ctxt}'_{a \cdot x} := \sum_{i=0}^{\ell} a_i \cdot \operatorname{ctxt}'_{x \cdot 2^i}$.
 - ‡ Note: $\operatorname{ctxt}'_{e,x}$ has error at most $e \cdot \log q$.
- † Repeat the above for $a \cdot 2 \mod q, \dots, a \cdot 2^{\ell} \mod q$ to get

$$\mathsf{ctxt}''_{a\cdot x} = \big(\mathsf{ctxt}'_{a\cdot x}, \mathsf{ctxt}'_{a\cdot x\cdot 2}, \dots, \mathsf{ctxt}'_{a\cdot x\cdot 2^\ell}$$

Handling Large-Scalar Multiplication

We construct another scheme Π'' from the (now noisy) schemes Π' and Π :

- † Let $\mathsf{ctxt}''_x = (\mathsf{ctxt}'_x, \mathsf{ctxt}'_{x,2}, \dots, \mathsf{ctxt}'_{x,2\ell})$ where $\ell = |\log q|$ and each component has error e.
- \dagger To compute $\mathsf{ctxt}'_{a\cdot x}$ from $a\in\mathbb{Z}_q$ and ctxt'_x :
 - ‡ Write down binary decomposition $a = \sum_{i=0}^{\ell} a_i \cdot 2^i$.
 - ‡ Output $\operatorname{ctxt}'_{a \cdot x} := \sum_{i=0}^{\ell} a_i \cdot \operatorname{ctxt}'_{x \cdot 2^i}$.
 - ‡ Note: $\operatorname{ctxt}'_{e,x}$ has error at most $e \cdot \log q$.
- † Repeat the above for $a \cdot 2 \mod q, \dots, a \cdot 2^{\ell} \mod q$ to get

$$\operatorname{ctxt}''_{a\cdot x} = (\operatorname{ctxt}'_{a\cdot x}, \operatorname{ctxt}'_{a\cdot x\cdot 2}, \dots, \operatorname{ctxt}'_{a\cdot x\cdot 2^\ell}]$$

Handling Large-Scalar Multiplication

We construct another scheme Π'' from the (now noisy) schemes Π' and Π :

- † Let $\mathsf{ctxt}''_{\mathsf{x}} = (\mathsf{ctxt}'_{\mathsf{x}}, \mathsf{ctxt}'_{\mathsf{x},2}, \dots, \mathsf{ctxt}'_{\mathsf{x},2\ell})$ where $\ell = |\log q|$ and each component has error e.
- \dagger To compute $\mathsf{ctxt}'_{a\cdot x}$ from $a\in\mathbb{Z}_q$ and ctxt'_x :
 - ‡ Write down binary decomposition $a = \sum_{i=0}^{\ell} a_i \cdot 2^i$.
 - ‡ Output $\operatorname{ctxt}'_{a \cdot x} := \sum_{i=0}^{\ell} a_i \cdot \operatorname{ctxt}'_{x \cdot 2^i}$.
 - ‡ Note: $\operatorname{ctxt}'_{a \times}$ has error at most $e \cdot \log q$.
- † Repeat the above for $a \cdot 2 \mod q, \dots, a \cdot 2^{\ell} \mod q$ to get

$$\mathsf{ctxt}''_{a\cdot x} = (\mathsf{ctxt}'_{a\cdot x}, \mathsf{ctxt}'_{a\cdot x\cdot 2}, \dots, \mathsf{ctxt}'_{a\cdot x\cdot 2^\ell})$$

- † We revisit the transform $\Pi \to \Pi'$ and apply it to Π'' .
- $\dagger \ \ \text{To recap: } \mathsf{ctxt}_x'' = (\mathsf{ctxt}_{x \cdot \mathsf{sk}_i \cdot 2^j})_{i=1,j=0}^{n,\ell} \ \text{and } \mathsf{ctxt}_y'' = (\mathsf{ctxt}_{y \cdot \mathsf{sk}_i \cdot 2^j})_{i=1,j=0}^{n,\ell}.$
- † To compute $\operatorname{ctxt}''_{x \cdot y} = \left(\operatorname{ctxt}_{x \cdot y \cdot \operatorname{sk}_i \cdot 2^j}\right)_{i=1, j=0}^{n, \ell}$, for each (i, j):
 - ‡ Let $L_{i,j}(\cdot) \approx \text{Dec}(\cdot, \text{ctxt}_{x \cdot \text{sk}_i \cdot 2^j})$
 - ‡ Write $L_{i,i}(sk) = \sum_{h} a_h \cdot sk_h$ where $a_h = \sum_{k}^{\ell} a_{h,k} \cdot 2^k$.
 - ‡ Compute $\operatorname{ctxt}_{x \cdot y \cdot \operatorname{sk}_i \cdot 2^j}$ by

$$\sum_{h} \sum_{k} a_{h,k} \cdot \mathsf{ctxt}_{y \cdot \mathsf{sk}_{h} \cdot 2^{k}} = \mathsf{ctxt}_{y \cdot \sum_{h} \sum_{k} a_{h,k} \cdot \mathsf{sk}_{h} \cdot 2^{k}}$$

$$= \mathsf{ctxt}_{y \cdot L_{l,j}(\mathsf{sk})}$$

$$\approx \mathsf{ctxt}_{y \cdot \mathsf{Dec}(\mathsf{sk}, \mathsf{ctxt}_{x \cdot \mathsf{sk}_{l} \cdot 2^{l}})}$$

$$= \mathsf{ctxt}_{x \cdot y \cdot \mathsf{sk} \cdot \cdot 2^{l}}$$

† If ctxt_x'' and ctxt_y'' have error e, then $\operatorname{ctxt}_{x \cdot y}''$ has error roughly $e \cdot n \cdot \log q$.

Bootstrapping: Bring Down the Noise

- † In Π'' , evaluating a depth-d circuit f on ctxt_x brings noise level from e to $\approx e \cdot (n \cdot \log q)^d$.
- † If d is too large, the noise blows up and decryption of $ctxt_{f(x)}$ will fail.
- † Gentry's "Bootstrapping" technique brings down the noise level of $\text{ctxt}_{f(x)}$ (if it hasn't blown up yet):
 - ‡ Given ctxtsk with low noise level.
 - ‡ Evaluate exact decryption $\mathsf{Dec}(\cdot,\mathsf{ctxt}_{f(x)})$ homomorphically on $\mathsf{ctxt}_{\mathsf{sk}}$
 - Since $Dec(sk, ctxt_{f(x)}) = f(x)$, we get another ciphertext $ctxt_{f(x)}$.
 - ‡ Noise level of $c\hat{x}t_{f(x)}$ only depends on noise level of $ctxt_{sk}$ and complexity of $Dec(\cdot, ctxt_{f(x)})$, but not noise level of $ctxt_{f(x)}$.
 - ‡ Choose parameters so that the noise level after bootstrapping is low enough to perform some computation ⇒ Can perform arbitrary computation.

Bootstrapping: Bring Down the Noise

- † In Π'' , evaluating a depth-d circuit f on ctxt_x brings noise level from e to $\approx e \cdot (n \cdot \log q)^d$.
- † If d is too large, the noise blows up and decryption of $ctxt_{f(x)}$ will fail.
- † Gentry's "Bootstrapping" technique brings down the noise level of $\text{ctxt}_{f(x)}$ (if it hasn't blown up yet):
 - ‡ Given ctxtsk with low noise level
 - ‡ Evaluate exact decryption $\mathsf{Dec}(\cdot,\mathsf{ctxt}_{\mathit{f}(x)})$ homomorphically on $\mathsf{ctxt}_{\mathsf{sk}}$
 - ‡ Since $Dec(sk, ctxt_{f(x)}) = f(x)$, we get another ciphertext $ctxt_{f(x)}$.
 - ‡ Noise level of $c\hat{x}t_{f(x)}$ only depends on noise level of $ctxt_{sk}$ and complexity of $Dec(\cdot, ctxt_{f(x)})$, but not noise level of $ctxt_{f(x)}$.
 - ‡ Choose parameters so that the noise level after bootstrapping is low enough to perform some computation ⇒ Can perform arbitrary computation.

Bootstrapping: Bring Down the Noise

- † In Π'' , evaluating a depth-d circuit f on ctxt_x brings noise level from e to $\approx e \cdot (n \cdot \log q)^d$.
- † If d is too large, the noise blows up and decryption of $ctxt_{f(x)}$ will fail.
- † Gentry's "Bootstrapping" technique brings down the noise level of $\text{ctxt}_{f(x)}$ (if it hasn't blown up yet):
 - ‡ Given ctxt_{sk} with low noise level.
 - ‡ Evaluate exact decryption $Dec(\cdot, ctxt_{f(x)})$ homomorphically on $ctxt_{sk}$.
 - \ddagger Since Dec(sk, ctxt_{f(x)}) = f(x), we get another ciphertext ctxt_{f(x)}.
 - ‡ Noise level of $c\hat{x}t_{f(x)}$ only depends on noise level of $ctxt_{sk}$ and complexity of $Dec(\cdot, ctxt_{f(x)})$, but not noise level of $ctxt_{f(x)}$.
 - Choose parameters so that the noise level after bootstrapping is low enough to perform some computation ⇒ Can perform arbitrary computation.

Bootstrapping: Bring Down the Noise

- † In Π'' , evaluating a depth-d circuit f on ctxt_x brings noise level from e to $\approx e \cdot (n \cdot \log q)^d$.
- † If d is too large, the noise blows up and decryption of $ctxt_{f(x)}$ will fail.
- † Gentry's "Bootstrapping" technique brings down the noise level of $\text{ctxt}_{f(x)}$ (if it hasn't blown up yet):
 - ‡ Given ctxt_{sk} with low noise level.
 - ‡ Evaluate exact decryption $Dec(\cdot, ctxt_{f(x)})$ homomorphically on $ctxt_{sk}$.
 - ‡ Since $Dec(sk, ctxt_{f(x)}) = f(x)$, we get another ciphertext $ctxt_{f(x)}$.
 - ‡ Noise level of $c\hat{x}t_{f(x)}$ only depends on noise level of $ctxt_{sk}$ and complexity of $Dec(\cdot, ctxt_{f(x)})$, but not noise level of $ctxt_{f(x)}$.
 - ‡ Choose parameters so that the noise level after bootstrapping is low enough to perform some computation ⇒ Can perform arbitrary computation.

Bootstrapping: Bring Down the Noise

- † In Π'' , evaluating a depth-d circuit f on ctxt_x brings noise level from e to $\approx e \cdot (n \cdot \log q)^d$.
- † If d is too large, the noise blows up and decryption of $ctxt_{f(x)}$ will fail.
- † Gentry's "Bootstrapping" technique brings down the noise level of $ctxt_{f(x)}$ (if it hasn't blown up yet):
 - ‡ Given ctxt_{sk} with low noise level.
 - ‡ Evaluate exact decryption $Dec(\cdot, ctxt_{f(x)})$ homomorphically on $ctxt_{sk}$.
 - ‡ Since $Dec(sk, ctxt_{f(x)}) = f(x)$, we get another ciphertext $ctxt_{f(x)}$.
 - ‡ Noise level of $c\hat{x}t_{f(x)}$ only depends on noise level of $ctxt_{sk}$ and complexity of $Dec(\cdot, ctxt_{f(x)})$, but not noise level of $ctxt_{f(x)}$.
 - ‡ Choose parameters so that the noise level after bootstrapping is low enough to perform some computation ⇒ Can perform arbitrary computation.

Fully Homomorphic Encryption from Learning with Errors (The Gentry-Sahai-Waters (GSW) Construction)

Gadget Matrix

† Let $\ell = |\log q|$. Define the "gadget matrix" for mapping binary representations to q-ary ones:

Denote binary-decomposition operator by $\mathbf{G}^{-1}(\cdot)$ (not a matrix!), e.g. if n=2 and q=7 then

$$\mathbf{G} = \begin{pmatrix} 1 & 2 & 4 & & \\ & & 1 & 2 & 4 \end{pmatrix} \qquad \text{and} \qquad \mathbf{G}^{-1} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

† Note that for any $\mathbf{X} \in \mathbb{Z}_q^{n \times m}$, $m = n \cdot (\ell + 1)$, we have $\mathbf{G} \cdot \mathbf{G}^{-1}(\mathbf{X}) = \mathbf{X} \mod q$.

18 / 24

Basic Algorithms

- † Key Generation:
 - ‡ Sample $\bar{\mathbf{A}} \leftarrow \mathbb{Z}_q^{(n-1) \times m}$, $\mathbf{s} \leftarrow \mathbb{Z}_q^{n-1}$, $\mathbf{e} \leftarrow \mathbb{Z}_\beta^m$

 - ‡ Output pk := $\mathbf{A} := \begin{pmatrix} \mathbf{\bar{A}} \\ \mathbf{b}^T \end{pmatrix}$, sk = \mathbf{s} .
 - ‡ Note that $(-\mathbf{s}^T \quad 1) \cdot \mathbf{A} = \mathbf{e}^T \approx \mathbf{0}^T \mod q$
- † Encryption of $x \in \{0,1\}$: $\mathbf{R} \leftarrow \mathbb{Z}_{\beta}^{m \times m}$, $\mathsf{ctxt} := \mathbf{C} := \mathbf{A} \cdot \mathbf{R} + x \cdot \mathbf{G} \bmod q$
- † Decryption:

$$\bar{\mathbf{x}} := (-\mathbf{s}^T \quad 1) \cdot \mathbf{C}$$

 $\bar{x} := \text{last entry of } \bar{\mathbf{x}}$

$$x = \begin{cases} 0 & |\bar{x}| < q/4 \\ 1 & \text{otherwise} \end{cases}$$

Decryption Correctness

Public and secret keys satisfy:

$$(-\mathbf{s}^{\mathsf{T}} \quad 1) \cdot \mathbf{A} = \mathbf{e}^{\mathsf{T}} \mod q.$$

Ciphertexts are of the form:

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{R} + x \cdot \mathbf{G} \mod q.$$

Decryption:

$$\bar{\mathbf{x}} = (-\mathbf{s}^{\mathsf{T}} \quad 1) \cdot \mathbf{C}
= \mathbf{e}^{\mathsf{T}} \cdot \mathbf{R} + x \cdot (-\mathbf{s}^{\mathsf{T}} \quad 1) \cdot \mathbf{G} \mod q
\bar{\mathbf{x}} = \underbrace{\mathbf{e}^{\mathsf{T}} \cdot \mathbf{r}}_{\text{short}} + x \cdot 2^{\ell} \mod q$$

- † Note $2^{\ell} \approx q/2$.
- † If $|\mathbf{e}^T \cdot \mathbf{r}| < q/4$ then decryption is correct.

IND-CPA-Security

Like Regev's PKE and left as exercise.

We first describe homomorphic addition and multiplication:

- † Homomorphic Addition: $\mathbf{C}_0 + \mathbf{C}_1 \mod q$
- † Homomorphic Multiplication: $\mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \mod q$

$$\mathbf{C}_0 + \mathbf{C}_1 = (\mathbf{A} \cdot \mathbf{R}_0 + x_0 \cdot \mathbf{G}) + (\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G}) = \mathbf{A} \cdot (\underbrace{\mathbf{R}_0 + \mathbf{R}_1}_{\text{short}}) + (x_0 + x_1) \cdot \mathbf{G} \mod q$$

$$\mathbf{C}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) = (\mathbf{A} \cdot \mathbf{R}_{0} + x_{0} \cdot \mathbf{G}) \cdot \mathbf{G}^{-1}(\mathbf{C}_{1})$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{C}_{1}$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot (\mathbf{A} \cdot \mathbf{R}_{1} + x_{1} \cdot \mathbf{G})$$

$$= \mathbf{A} \cdot (\mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{R}_{1}) + x_{0} \cdot x_{1} \cdot \mathbf{G} \mod q$$

We first describe homomorphic addition and multiplication:

- † Homomorphic Addition: $C_0 + C_1 \mod q$
- † Homomorphic Multiplication: $\mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \mod q$

$$\mathbf{C}_0 + \mathbf{C}_1 = (\mathbf{A} \cdot \mathbf{R}_0 + x_0 \cdot \mathbf{G}) + (\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G}) = \mathbf{A} \cdot (\underbrace{\mathbf{R}_0 + \mathbf{R}_1}_{\text{short}}) + (x_0 + x_1) \cdot \mathbf{G} \mod q$$

$$\mathbf{C}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) = (\mathbf{A} \cdot \mathbf{R}_{0} + x_{0} \cdot \mathbf{G}) \cdot \mathbf{G}^{-1}(\mathbf{C}_{1})$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{C}_{1}$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot (\mathbf{A} \cdot \mathbf{R}_{1} + x_{1} \cdot \mathbf{G})$$

$$= \mathbf{A} \cdot (\mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{R}_{1}) + x_{0} \cdot x_{1} \cdot \mathbf{G} \mod q$$

We first describe homomorphic addition and multiplication:

- † Homomorphic Addition: $C_0 + C_1 \mod q$
- † Homomorphic Multiplication: $\mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \mod q$

$$\mathbf{C}_0 + \mathbf{C}_1 = (\mathbf{A} \cdot \mathbf{R}_0 + x_0 \cdot \mathbf{G}) + (\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G}) = \mathbf{A} \cdot (\underbrace{\mathbf{R}_0 + \mathbf{R}_1}_{\text{short}}) + (x_0 + x_1) \cdot \mathbf{G} \mod q$$

$$\mathbf{C}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) = (\mathbf{A} \cdot \mathbf{R}_{0} + x_{0} \cdot \mathbf{G}) \cdot \mathbf{G}^{-1}(\mathbf{C}_{1})$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{C}_{1}$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot (\mathbf{A} \cdot \mathbf{R}_{1} + x_{1} \cdot \mathbf{G})$$

$$= \mathbf{A} \cdot (\underbrace{\mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{R}_{1}}_{\text{short}}) + x_{0} \cdot x_{1} \cdot \mathbf{G} \mod q$$

We first describe homomorphic addition and multiplication:

- † Homomorphic Addition: $C_0 + C_1 \mod q$
- † Homomorphic Multiplication: $\mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \mod q$

$$\mathbf{C}_0 + \mathbf{C}_1 = (\mathbf{A} \cdot \mathbf{R}_0 + x_0 \cdot \mathbf{G}) + (\mathbf{A} \cdot \mathbf{R}_1 + x_1 \cdot \mathbf{G}) = \mathbf{A} \cdot (\underbrace{\mathbf{R}_0 + \mathbf{R}_1}_{\text{short}}) + (\underbrace{x_0 + x_1}_{\text{Issue: } 1 + 1 = 2 \notin \{0, 1\}}) \cdot \mathbf{G} \mod q$$

$$\mathbf{C}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) = (\mathbf{A} \cdot \mathbf{R}_{0} + x_{0} \cdot \mathbf{G}) \cdot \mathbf{G}^{-1}(\mathbf{C}_{1})$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{C}_{1}$$

$$= \mathbf{A} \cdot \mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot (\mathbf{A} \cdot \mathbf{R}_{1} + x_{1} \cdot \mathbf{G})$$

$$= \mathbf{A} \cdot (\mathbf{R}_{0} \cdot \mathbf{G}^{-1}(\mathbf{C}_{1}) + x_{0} \cdot \mathbf{R}_{1}) + x_{0} \cdot x_{1} \cdot \mathbf{G} \mod q$$

- † Fix: Instead of + and \times , we use NAND.
- † NAND is functionally complete for Boolean functions.
- † Observe that $NAND(x_0, x_1) = 1 x_0 \cdot x_1$ (over \mathbb{Z}).
- † Homomorphic NAND: $\mathbf{G} \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1)$ mo (\mathbf{G} is an encryption of 1 with no noise.)

Why it works'

$$\mathbf{G} - \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) = \mathbf{G} - \mathbf{A} \cdot (\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) + x_0 \cdot \mathbf{R}_1) - x_0 \cdot x_1 \cdot \mathbf{G}$$

$$= \mathbf{A} \cdot (\underbrace{-\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) - x_0 \cdot \mathbf{R}_1}_{\text{chart}}) + (1 - x_0 \cdot x_1) \cdot \mathbf{G} \mod q$$

- † Fix: Instead of + and \times , we use NAND.
- † NAND is functionally complete for Boolean functions.
- † Observe that $NAND(x_0, x_1) = 1 x_0 \cdot x_1$ (over \mathbb{Z}).
- † Homomorphic NAND: $\mathbf{G} \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \bmod q$ (\mathbf{G} is an encryption of 1 with no noise.)

Why it works?

$$\mathbf{G} - \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) = \mathbf{G} - \mathbf{A} \cdot (\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) + x_0 \cdot \mathbf{R}_1) - x_0 \cdot x_1 \cdot \mathbf{G}$$

$$= \mathbf{A} \cdot (\underbrace{-\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) - x_0 \cdot \mathbf{R}_1}_{\text{chart}}) + (1 - x_0 \cdot x_1) \cdot \mathbf{G} \mod q$$

- † Fix: Instead of + and \times , we use NAND.
- † NAND is functionally complete for Boolean functions.
- † Observe that $NAND(x_0, x_1) = 1 x_0 \cdot x_1$ (over \mathbb{Z}).
- † Homomorphic NAND: $\mathbf{G} \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) \bmod q$ (\mathbf{G} is an encryption of 1 with no noise.)

Why it works?

$$\mathbf{G} - \mathbf{C}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) = \mathbf{G} - \mathbf{A} \cdot (\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) + x_0 \cdot \mathbf{R}_1) - x_0 \cdot x_1 \cdot \mathbf{G}$$

$$= \mathbf{A} \cdot (\underbrace{-\mathbf{R}_0 \cdot \mathbf{G}^{-1}(\mathbf{C}_1) - x_0 \cdot \mathbf{R}_1}_{\text{short}}) + (1 - x_0 \cdot x_1) \cdot \mathbf{G} \mod q$$

Bootstrapping and Circular Security

- † To evaluate arbitrary functions, we need bootstrapping, i.e. evaluating Dec(·, ctxt) homomorphically on ctxt_{sk}.
- † Bootstrapping requires including ctxt_{sk} in pk.
- † This causes the security reduction from LWE to IND-CPA-security to fail.
- † To this day, all FHE schemes rely on bootstrapping and a "circular security" assumption: The scheme remains IND-CPA-secure even when given ctxt_{sk}.