Practical 8: Iterative Calculation

(a) Program for Iterative Calculation

Problem Statement: Write and execute scilab code for the following:

Evaluate e^{0.5} and compare with the true value 1.648721. Use 6 terms to evaluate each series and compute true and approximate relative error (upto 3 significant figures as terms are add)

```
e^x = 1+x/1!+x^2/2!+x^3/3!+....+x^n/n!+...
```

Scilab Code:

```
clc;
clear;
n=3;
es=0.5*(10^{(2-n)});
x=0.5;
f(1)=1;
ft=1.648721;
et(1)=(ft-f(1))*100/ft;
ea(1)=100;
i=2;
while ea(i-1)>=es
  f(i)=f(i-1)+(x^{(i-1)})/(factorial(i-1));
  et(i) = (ft-f(i))*100/ft;
  ea(i)=(f(i)-f(i-1))*100/f(i);
  i=i+1;
end
for j=1:i-1
  disp("Approximate estimate of error(%)=",ea(j),"True % relative
error=",et(j),"Result=",f(j),"Term Number",j)
  disp("----")
end
```

Output:

"Approximate estimate of error(%)="
7.6923077
"True % relative error="
1.4387516
"Result="
1.625
"Term Number"
3.
""
"Approximate estimate of error(%)="
1.2658228
"True % relative error="
0.1751459
"Result="
1.6458333
"Term Number"
4.

"Approximate estimate of error(%)="
0.1579779
"True % relative error="
0.0171951
"Result="
1.6484375
"Term Number"
5.
""
"Approximate estimate of error(%)="
0.0157953
"True % relative error="
0.0014001
"Result="
1.6486979
"Term Number"
6.
""
->

(b)Program to calculate the roots of quadratic equation using the formula.

Problem Statement: Write scilab code to evaluate roots of quadratic equation $x^2+5x-6=0$.

Scilab Code:

```
clc;
clear;
disp('Roots of x^2+5*x-6=0');
p=poly([-6 5 1],"x","coeff");
r=roots(p);
disp("Roots of x^2+5*x-6=0 are:",r);
```

Output:

```
"Roots of x^2+5*x-6=0"

"Roots of x^2+5*x-6=0 are:"

-6. + 0.i
1. + 0.i
```

(c)Program to evaluate e^x using infinite series

Problem Statement: The exponential function e^x is given by

```
e^x = 1+x/1!+x^2/2!+x^3/3!+....+x^n/n!+...
```

Evaluate this function at x=5 i.e calculate write a scilab code for above mentioned function.

Scilab Code:

```
clc;
clear;
sum=1;
x=5;
for i=1:100
    sum=sum+((x^i)/factorial(i));
end
printf("\n e^5=%0.4f",sum);
```

Output:

```
e^5=148.4132
```