

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	C _e =
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the danage.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

1.2D + 1.6S + 0.5W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>394.34</u>	<u>4820.59</u>	k
Compressive Load =	4021.68	<u>4680.48</u>	k
Lateral Load =	405.38	2596.58	k
Moment (Weak Axis) =	0.82	0.39	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 129694.3 in-lbs Resisting Force Required = 1813.91 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3023.18 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 598.73 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1496.82 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 598.73 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	<u>35 in</u>	<u>36 in</u>	37 in	38 in	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs	

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1181 lbs	1181 lbs	1181 lbs	1181 lbs	1898 lbs	1898 lbs	1898 lbs	1898 lbs	-171 lbs	-171 lbs	-171 lbs	-171 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1669 lbs	1669 lbs	1669 lbs	1669 lbs	2309 lbs	2309 lbs	2309 lbs	2309 lbs	-2214 lbs	-2214 lbs	-2214 lbs	-2214 lbs
F _V	202 lbs	202 lbs	202 lbs	202 lbs	1093 lbs	1093 lbs	1093 lbs	1093 lbs	954 lbs	954 lbs	954 lbs	954 lbs	-1197 lbs	-1197 lbs	-1197 lbs	-1197 lbs
P _{total}	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10410 lbs	10626 lbs	10842 lbs	11058 lbs	11766 lbs	11982 lbs	12198 lbs	12414 lbs	2151 lbs	2280 lbs	2410 lbs	2539 lbs
M	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	2992 lbs-ft	2992 lbs-ft	2992 lbs-ft	2992 lbs-ft	4700 lbs-ft	4700 lbs-ft	4700 lbs-ft	4700 lbs-ft	3811 lbs-ft	3811 lbs-ft	3811 lbs-ft	3811 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	1.77 ft	1.67 ft	1.58 ft	1.50 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	253.8 psf	252.8 psf	251.9 psf	250.9 psf	256.2 psf	255.1 psf	254.1 psf	253.1 psf	270.5 psf	269.0 psf	267.6 psf	266.3 psf	6.7 psf	10.1 psf	13.4 psf	16.4 psf
f _{max}	361.9 psf	357.9 psf	354.1 psf	350.5 psf	342.8 psf	339.4 psf	336.1 psf	332.9 psf	406.6 psf	401.4 psf	396.4 psf	391.7 psf	117.1 psf	117.5 psf	117.8 psf	118.1 psf

Maximum Bearing Pressure = 407 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 3074.5 \text{ ft-lbs}$

Resisting Force Required = 2108.26 lbs S.F. = 1.67

Weight Required = 3513.76 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	324 lbs	710 lbs	230 lbs	952 lbs	2602 lbs	878 lbs	128 lbs	208 lbs	34 lbs		
F _V	239 lbs	233 lbs	244 lbs	174 lbs	170 lbs	192 lbs	240 lbs	234 lbs	241 lbs		
P _{total}	9683 lbs	10069 lbs	9589 lbs	9861 lbs	11511 lbs	9788 lbs	2864 lbs	2944 lbs	2771 lbs		
М	963 lbs-ft	948 lbs-ft	979 lbs-ft	720 lbs-ft	719 lbs-ft	776 lbs-ft	961 lbs-ft	945 lbs-ft	967 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.34 ft	0.32 ft	0.35 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	221.6 psf	233.6 psf	218.0 psf	241.1 psf	288.6 psf	235.7 psf	25.5 psf	28.8 psf	22.5 psf		
f _{max}	335.6 psf	345.8 psf	333.8 psf	326.3 psf	373.8 psf	327.5 psf	139.3 psf	140.6 psf	137.0 psf		

Maximum Bearing Pressure = 374 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.094 k	Maximum Axial Load =	3.352 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>42%</u>	Utilization =	<u>45%</u>
Diagonal Strut			
Maximum Axial Load =	1.854 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting fo	r double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>25%</u>		
	4		
		Struts under compression are transfer from the girder. Single end of the strut and are subject	e M12 bolts are

shown to demonstrate the load le M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, $\Delta_{MAX} =$ 0.883 in 0.883 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

 $\varphi F_L St =$

Sx=

 $M_{max}St =$

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

 $M_{max}Wk =$

1.152 k-ft

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))}/(1.6b/t)$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 104.56 \text{ in}$ J = 1.08 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$

$$\phi F_1 = \phi F_1 = 29.0 \text{ ksi}$$

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

4.14

$$L_{b} = 104.56$$

$$J = 1.08$$

$$190.335$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$φF_L = φb[Bc-1.6Dc^*√((LbSc)/(Cb^*)]$$
 $φF_L = 28.9$

3.4.16

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

 $M_{max}Wk =$

3.904 k-ft

Compression

 $M_{max}St =$

3.4.9

b/t =

12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$

3.323 k-ft

 $\varphi F_L =$ 31.6 ksi

b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$

33.3 ksi

 $\varphi F_L =$

3.4.10 Rb/t =18.1 S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L =$ 31.09 ksi

> $\phi F_1 =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in² 58.55 kips $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(B_{C} - \frac{\theta_{y}}{2} F_{CY}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$k_1Bn$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{100 \text{ p}}{46.7}$$

 $\varphi F_L = \varphi b[\text{Bp-1.6Dp*b/t}]$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{cases} 1.6Dt \\ 1.1 \end{cases}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

27.5

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 k-ft$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$x = 279836 \text{ mm}$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{aligned} \text{h/t} &=& 24.5 \\ S1 &=& \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &=& 36.9 \\ \text{m} &=& 0.65 \\ \text{C}_0 &=& 27.5 \\ \text{Cc} &=& 27.5 \\ S2 &=& \frac{k_1 Bbr}{mDbr} \\ \text{S2} &=& 77.3 \\ \phi \text{F}_{\text{L}} &=& 1.3\phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &=& 43.2 \text{ ksi} \end{aligned}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$
 $M_{max}Wk = 1.460 \text{ k-ft}$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$
 $b/t = 24.5$
 $S1 = 12.21$
 $S2 = 32.70$

$$\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

663.99 mm² A = 1.03 in²

6.29 kips $P_{max} =$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 $L_b =$ 69.80 in 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56

Weak Axis:

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

S2 = 141.0
$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max} St = 1.460 \text{ k-ft}$

$$S2 = C_t$$

 $S2 = 141.0$
 $GE_t = 1.17 GV ECV$

3.4.18

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c[Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

:

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5,454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-68.563	-68.563	0	0
2	M14	٧	-68.563	-68.563	0	0
3	M15	V	-105.961	-105.961	0	0
4	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	155.825	155.825	0	0
2	M14	٧	118.427	118.427	0	0
3	M15	V	62.33	62.33	0	0
4	M16	У	62.33	62.33	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Z	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												ĺ
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																i
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	494.312	2	1086.14	1	.947	1	.004	1	0	1	0	1
2		min	-644.912	3	-1145.901	3	-54.629	5	295	4	0	1	0	1
3	N7	max	.043	9	1164.902	1	832	12	002	12	0	1	0	1
4		min	14	2	-67.752	3	-311.832	4	629	4	0	1	0	1
5	N15	max	0	15	3093.603	1	0	9	0	9	0	1	0	1
6		min	-1.63	2	-303.337	3	-293.68	4	604	4	0	1	0	1
7	N16	max	1889.811	2	3600.368	1	0	9	0	9	0	1	0	1
8		min	-1997.371	3	-3708.143	3	-54.337	5	298	4	0	1	0	1
9	N23	max	.053	14	1164.902	1	16.507	1	.033	1	0	1	0	1
10		min	14	2	-67.752	3	-300.393	5	611	4	0	1	0	1
11	N24	max	494.312	2	1086.14	1	061	12	0	12	0	1	0	1
12		min	-644.912	3	-1145.901	3	-55.453	5	298	4	0	1	0	1
13	Totals:	max	2876.524	2	11196.054	1	0	9						
14		min	-3287.456	3	-6438.785	3	-1062.256	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.654	1	455.605	1	-8.894	12	0	15	.279	1	0	4
2			min	5.199	12	-549.718	3	-200.295	1	014	1	.015	12	0	3
3		2	max	99.654	1	318.419	1	-6.983	12	0	15	.138	4	.507	3
4			min	5.199	12	-387.057	3	-153.642	1	014	1	.006	12	419	1
5		3	max	99.654	1	181.234	1	-5.072	12	0	15	.077	5	.839	3
6			min	5.199	12	-224.395	3	-106.989	1	014	1	053	1	69	1
7		4	max	99.654	1	44.049	1	-3.16	12	0	15	.041	5	.994	3
8			min	5.199	12	-61.733	3	-60.337	1	014	1	144	1	812	1
9		5	max	99.654	1	100.929	3	-1.08	10	0	15	.009	5	.972	3
10			min	5.199	12	-93.137	1	-32.062	4	014	1	184	1	785	1
11		6	max	99.654	1	263.591	3	32.969	1	0	15	008	12	.775	3
12			min	2.997	15	-230.322	1	-25.395	5	014	1	174	1	61	1
13		7	max	99.654	1	426.253	3	79.621	1	0	15	006	12	.401	3
14			min	-8.066	5	-367.507	1	-22.486	5	014	1	113	1	286	1
15		8	max	99.654	1	588.915	3	126.274	1	0	15	.001	2	.186	1
16			min	-20.85	5	-504.693	1	-19.576	5	014	1	071	4	149	3
17		9	max	99.654	1	751.576	3	172.927	1	0	15	.161	1	.807	1
18			min	-33.633	5	-641.878	1	-16.667	5	014	1	088	5	875	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	99.654	1	779.063	1	-8.308	12	.014	1	.373	1	1.577	1
20			min	5.199	12	-914.238	3	-219.579	1	001	3	.012	12	-1.777	3
21		11	max	99.654	1	641.878	1	-6.397	12	.014	1	.161	1	.807	1
22			min	5.199	12	-751.576	3	-172.927	1	0	15	.004	12	875	3
23		12	max	99.654	1	504.693	1	-4.485	12	.014	1	.069	4	.186	1
24			min	5.199	12	-588.915	3	-126.274	1	0	15	003	3	149	3
25		13	max	99.654	1	367.507	1	-2.574	12	.014	1	.032	5	.401	3
26			min	5.199	12	-426.253	3	-79.621	1	0	15	113	1	286	1
27		14	max	99.654	1	230.322	1	663	12	.014	1	0	15	.775	3
28			min	4.992	15	-263.591	3	-37.225	4	0	15	174	1	61	1
29		15	max	99.654	1	93.137	1	13.684	1	.014	1	007	12	.972	3
30			min	-5.211	5	-100.929	3	-26.546	5	0	15	184	1	785	1
31		16	max	99.654	1	61.733	3	60.337	1	.014	1	005	12	.994	3
32			min	-17.995	5	-44.049	1	-23.637	5	0	15	144	1	812	1
33		17	max	99.654	1	224.395	3	106.989	1	.014	1	0	3	.839	3
34			min	-30.779	5	-181.234	1	-20.727	5	0	15	097	4	69	1
35		18	max	99.654	1	387.057	3	153.642	1	.014	1	.088	1	.507	3
36			min	-43.563	5	-318.419	1	-17.818	5	0	15	104	5	419	1
37		19	max	99.654	1	549.718	3	200.295	1	.014	1	.279	1	0	1
38			min	-56.347	5	-455.605	1	-14.909	5	0	15	122	5	0	3
39	M14	1	max	61.485	4	497.327	1	-9.192	12	.009	3	.327	1	0	4
40			min	2.654	12	-431.372	3	-207.603	1	013	1	.017	12	0	3
41		2	max	54.917	1	360.141	1	-7.281	12	.009	3	.203	4	.401	3
42			min	2.654	12	-309.224	3	-160.95	1	013	1	.008	12	464	1
43		3	max	54.917	1	222.956	1	-5.369	12	.009	3	.116	5	.67	3
44			min	2.654	12	-187.077	3	-114.297	1	013	1	022	1	78	1
45		4	max	54.917	1	85.771	1	-3.458	12	.009	3	.064	5	.806	3
46			min	2.654	12	-64.929	3	-67.645	1	013	1	12	1	948	1
47		5	max	54.917	1	57.218	3	-1.546	12	.009	3	.014	5	.811	3
48			min	-1.594	5	-51.415	1	-49.655	4	013	1	168	1	966	1
49		6	max	54.917	1	179.365	3	25.661	1	.009	3	007	12	.683	3
50			min	-14.378	5	-188.6	1	-40.977	5	013	1	166	1	836	1
51		7	max	54.917	1	301.513	3	72.313	1	.009	3	006	12	.422	3
52			min	-27.162	5	-325.785	1	-38.068	5	013	1	113	1	558	1
53		8	max	54.917	1	423.66	3	118.966	1	.009	3	0	10	.029	3
54			min	-39.946	5	-462.971	1	-35.159	5	013	1	119	4	13	1
55		9	max	54.917	1	545.807	3	165.619	1	.009	3	.145	1	.446	1
56			min	-52.73	5	-600.156	1	-32.249	5	013	1	151	5	496	3
57		10	max	83.797	4	737.341	1	-8.011	12	.013	1	.35	1	1.17	1
58			min	2.654	12	-667.955	3	-212.272	1	009	3	.011	12	-1.153	3
59		11	max	71.013	4	600.156	1	-6.099	12	.013	1	.204	4	.446	1
60			min	2.654	12	-545.807	3	-165.619	1	009	3	.003	12	496	3
61		12	max	58.229	4	462.971	1	-4.188	12	.013	1	.114	4	.029	3
62			min	2.654	12	-423.66	3	-118.966	1	009	3	009	1	13	1
63		13	max	54.917	1	325.785	1	-2.276	12	.013	1	.06	5	.422	3
64			min	2.654	12	-301.513	3	-72.313	1	009	3	113	1	558	1
65		14	max	54.917	1	188.6	1	365	12	.013	1	.011	5	.683	3
66			min	2.654	12	-179.365	3	-50.727	4	009	3	166	1	836	1
67		15	max	54.917	1	51.415	1	20.992	1	.013	1	007	12	.811	3
68			min	2.654	12	-57.218	3	-41.218	5	009	3	168	1	966	1
69		16	max	54.917	1	64.929	3	67.645	1	.013	1	004	12	.806	3
70			min	-5.016	5	-85.771	1	-38.308	5	009	3	12	1	948	1
71		17	max		1	187.077	3	114.297	1	.013	1	.002	3	.67	3
72			min	-17.8	5	-222.956	1	-35.399	5	009	3	126	4	78	1
73		18			1	309.224	3	160.95	1	.013	1	.127	1	.401	3
74			min	-30.584	5	-360.141	1	-32.49	5	009	3	155	5	464	1
75		19			1	431.372	3	207.603	1	.013	1	.327	1	0	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	
76			min	-43.368	5	-497.327	1	-29.58	5	009	3	189	5	0	3
77	M15	1_	max	97.704	5	565.649	1	-9.132	12	.014	_1_	.375	4	0	2
78			min	-58.832	1	-226.669	3	-207.533	1	007	3	.016	12	0	3
79		2	max	84.92	5	408.206	1	-7.221	12	.014	_1_	.257	4	.212	3
80			min	-58.832	1	-165.294	3	-160.88	1	007	3	.008	12	527	1
81		3	max	72.136	5	250.763	1	-5.309	12	.014	_1_	.154	5	.358	3
82			min	-58.832	1	-103.918	3	-114.228	1	007	3	022	1	884	1
83		4	max	59.352	5	93.321	1	-3.398	12	.014	1	.087	5	.437	3
84			min	-58.832	1	-42.543	3	-76.509	4	007	3	121	1	-1.071	1
85		5	max	46.568	5	18.833	3	-1.486	12	.014	1	.023	5	.45	3
86			min	-58.832	1	-65.954	2	-63.456	4	007	3	169	1	-1.087	1
87		6	max	33.784	5	80.209	3	25.731	1	.014	1	007	12	.397	3
88			min	-58.832	1	-221.564	1	-54.738	5	007	3	166	1	932	1
89		7	max	21	5	141.584	3	72.383	1	.014	1	006	12	.277	3
90			min	-58.832	1	-379.007	1	-51.829	5	007	3	122	4	607	1
91		8	max	8.216	5	202.96	3	119.036	1	.014	1	0	10	.09	3
92			min	-58.832	1	-536.449	1	-48.92	5	007	3	155	4	111	1
93		9	max	-2.968	15	264.335	3	165.689	1	.014	1	.145	1	.572	2
94			min	-58.832	1	-693.892	1	-46.011	5	007	3	201	5	163	3
95		10	max	-3.122	12	851.335	1	-8.071	12	.007	3	.374	4	1.4	2
96			min	-58.832	1	-325.711	3	-212.341	1	014	1	.011	12	483	3
97		11	max	-2.1	15	693.892	1	-6.159	12	.007	3	.255	4	.572	2
98			min	-58.832	1	-264.335	3	-165.689	1	014	1	.004	12	163	3
99		12	max	-3.122	12	536.449	1	-4.248	12	.007	3	.15	4	.09	3
100			min	-58.832	1	-202.96	3	-119.036	1	014	1	009	1	111	1
101		13	max	-3.122	12	379.007	1	-2.336	12	.007	3	.081	5	.277	3
102			min	-58.832	1	-141.584	3	-77.626	4	014	1	113	1	607	1
103		14	max	-3.122	12	221.564	1	425	12	.007	3	.017	5	.397	3
104			min	-58.832	1	-80.209	3	-64.574	4	014	1	166	1	932	1
105		15	max	-3.122	12	65.954	2	20.922	1	.007	3	007	12	.45	3
106			min	-68.394	4	-18.833	3	-54.983	5	014	1	169	1	-1.087	1
107		16	max	-3.122	12	42.543	3	67.575	1	.007	3	004	12	.437	3
108			min	-81.178	4	-93.321	1	-52.073	5	014	1	13	4	-1.071	1
109		17	max	-3.122	12	103.918	3	114.228	1	.007	3	.001	3	.358	3
110			min	-93.961	4	-250.763	1	-49.164	5	014	1	165	4	884	1
111		18	max	-3.122	12	165.294	3	160.88	1	.007	3	.127	1	.212	3
112			min	-106.745	4	-408.206	1	-46.255	5	014	1	209	5	527	1
113		19	max	-3.122	12	226.669	3	207.533	1	.007	3	.326	1	0	2
114			min	-119.529	4	-565.649	1	-43.346	5	014	1	257	5	0	5
115	M16	1	max	92.69	5	524.372	1	-8.717	12	.012	1	.282	1	0	2
116			min		1	-201.825	3	-200.761	1	01	3	.014	12	0	3
117		2	max		5	366.93	1	-6.805	12	.012	1	.18	4	.185	3
118				-111.299	1	-140.449		-154.108		01	3	.005	12	483	1
119		3	max		5	209.487	1	-4.894	12	.012	1	.107	5	.304	3
120		Ť	min		1	-79.073	3	-107.455		01	3	052	1	795	1
121		4	max		5	52.517	2	-2.982	12	.012	1	.06	5	.357	3
122			min		1	-17.698	3	-60.802	1	01	3	143	1	937	1
123		5	max		5	43.678	3	-1.071	12	.012	1	.017	5	.343	3
124		Ĭ	min	-111.299	1	-105.398	1	-42.852	4	01	3	183	1	908	1
125		6	max		5	105.053	3	32.503	1	.012	1	007	12	.262	3
126		Ť	min		1	-262.841	1	-35.999	5	01	3	173	1	708	1
127		7	max		5	166.429	3	79.156	1	.012	1	006	12	.115	3
128				-111.299	1	-420.283	1	-33.09	5	01	3	113	1	341	2
129		8	max		5	227.805	3	125.808	1	.012	1	0	10	.202	1
130			min		1	-577.726	1	-30.181	5	01	3	098	4	099	3
131		9	max		12	289.18	3	172.461	1	.012	1	.16	1	.913	1
132				-111.299	1	-735.168		-27.271	5	01	3	127	5	379	3
IUZ			1111111	111.200		700.100		L1.L11	J	.01	J	.141	U	.013	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-5.502	12	892.611	1	-8.486	12	.012	1	.372	1	1.795	1
134			min	-111.299	1	-350.556	3	-219.114	1	01	3	.013	12	725	3
135		11	max	-2.586	15	735.168	1_	-6.575	12	.01	3	.184	4	.913	1
136			min	-111.299	1	-289.18	3	-172.461	1	012	1	.005	12	379	3
137		12	max	-5.502	12	577.726	1_	-4.663	12	.01	3	.097	4	.202	1
138			min	-111.299	1_	-227.805	3	-125.808	1	012	1	003	3	099	3
139		13	max	-5.502	12	420.283	_1_	-2.752	12	.01	3	.047	5	.115	3
140			min	-111.299	1_	-166.429	3	-79.156	1	012	1	113	1	341	2
141		14	max	-5.502	12	262.841	_1_	84	12	.01	3	.002	5	.262	3
142				-111.299	1_	-105.053	3	-47.823	4	012	1_	173	1_	708	1
143		15	max	-5.502	12	105.398	1_	14.15	1	.01	3	007	12	.343	3
144				-111.299	_1_	-43.678	3	-37.122	5	012	1_	183	1_	908	1
145		16	max	-5.502	12	17.698	3	60.802	1	.01	3	005	12	.357	3
146			min	-111.299	1_	-52.517	2	-34.213	5	012	1	143	1	937	1
147		17	max	-5.502	12	79.073	3	107.455	1	.01	3	0	12	.304	3
148		40	min	-111.299	1_	-209.487	1	-31.304	5	012	1	127	4	795	1
149		18	max	-5.502	12	140.449	3	154.108	1	.01	3	.09	1	.185	3
150		40	min	-119.178	4_	-366.93	1_	-28.394	5	012	1	146	5	483	1
151		19	max	-5.502	12	201.825	3	200.761	1	.01	3	.282	1	0	2
152	MO	4		-131.962	4_	-524.372	1_	-25.485	5	012	1	175	5	0	5
153	<u>M2</u>	1		1057.912	1	2.066	4	.797	1	0	12	0	3	0	1
154		2	min		<u>3</u> 1	.504	<u>15</u>	<u>-48.423</u>	<u>4</u> 1	0	<u>4</u> 12	0	1	0	15
155 156		2		1058.386 -1012.608	3	2.029 .495	<u>4</u> 15	.797 -48.834	4	0	4	016	4	0	4
		3	min	1058.859	<u>ა</u> 1	1.991			1	_	12	016 0	1	0	_
157 158		3	min	-1012.252	3	.487	<u>4</u> 15	.797 -49.245	4	0	4	031	4	001	15
159		4		1059.333	<u> </u>	1.954	4	.797	1	0	12	0	1	0	15
160		4	min	-1011.897	3	.478	15	-49.657	4	0	4	047	4	002	4
161		5		1059.807	<u> </u>	1.917	4	.797	1	0	12	.001	1	002	15
162		5		-1011.542	3	.469	15	-50.068	4	0	4	063	4	003	4
163		6		1060.281	_ <u>3_</u> 1	1.88	4	.797	1	0	12	.003	1	0	15
164		0	min	-1011.186	3	.461	15	-50.479	4	0	4	079	4	003	4
165		7		1060.754	1	1.843	4	.797	1	0	12	.002	1	- <u>005</u> 0	15
166			min	-1010.831	3	.452	15	-50.891	4	0	4	095	4	004	4
167		8		1061.228	1	1.806	4	.797	1	0	12	.002	1	001	15
168			min	-1010.476	3	.443	15	-51.302	4	0	4	112	4	004	4
169		9		1061.702	1	1.769	4	.797	1	0	12	.002	1	001	15
170			min	-1010.121	3	.434	15	-51.713	4	0	4	128	4	005	4
171		10		1062.176	1	1.732	4	.797	1	0	12	.002	1	001	15
172				-1009.765	3	.426	15	-52.125	4	0	4	145	4	005	4
173		11		1062.649	1	1.695	4	.797	1	0	12	.003	1	001	15
174				-1009.41	3	.417	15	-52.536	4	0	4	161	4	006	4
175		12	max	1063.123	1	1.658	4	.797	1	0	12	.003	1	002	15
176				-1009.055	3	.408	15	-52.947	4	0	4	178	4	007	4
177		13		1063.597	1	1.621	4	.797	1	0	12	.003	1	002	15
178			min	-1008.699	3	.4	15	-53.359	4	0	4	195	4	007	4
179		14	max	1064.071	1_	1.584	4	.797	1	0	12	.003	1	002	15
180				-1008.344	3	.391	15	-53.77	4	0	4	213	4	008	4
181		15		1064.544	1_	1.547	4	.797	1	0	12	.004	1	002	15
182				-1007.989	3	.382	15	-54.181	4	0	4	23	4	008	4
183		16		1065.018	_1_	1.51	4	.797	1	0	12	.004	1_	002	15
184				-1007.633	3	.373	15	-54.593	4	0	4	247	4	009	4
185		17		1065.492	_1_	1.473	4	.797	1	0	12	.004	1	002	15
186				-1007.278	3	.365	15	-55.004	4	0	4	265	4	009	4
187		18		1065.966	1_	1.436	4_	.797	1	0	12	.004	1	002	15
188			_	-1006.923	3	.356	15	-55.415	4	0	4	282	4	01	4
189		19	max	1066.439	_1_	1.399	4	.797	1	0	12	.005	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]			LC	z-z Mome	LC_
190			min	-1006.568	3	.347	15	-55.827	4	0	4	3	4	01	4
191	M3	1_	max	452.717	2	9.022	4	.343	1	0	12	0	1_	.01	4
192			min	-600.879	3	2.133	15	717	5	0	4	019	4	.002	15
193		2	max	452.547	2	8.15	4	.343	1	0	12	0	1	.006	4
194			min	-601.007	3	1.928	15	11	5	0	4	019	4	.001	12
195		3	max	452.377	2	7.278	4	.641	4	0	12	0	1	.003	2
196			min	-601.135	3	1.723	15	.017	12	0	4	019	4	0	3
197		4	max	452.206	2	6.406	4	1.248	4	0	12	0	1	0	2
198			min	-601.263	3	1.518	15	.017	12	0	4	018	4	002	3
199		5	max	452.036	2	5.534	4	1.855	4	0	12	0	1	0	15
200			min	-601.39	3	1.313	15	.017	12	0	4	018	4	004	6
201		6	max	451.866	2	4.662	4	2.462	4	0	12	.001	1	001	15
202			min	-601.518	3	1.108	15	.017	12	0	4	017	5	006	6
203		7	max	451.695	2	3.79	4	3.069	4	0	12	.001	1	002	15
204			min	-601.646	3	.903	15	.017	12	0	4	015	5	008	6
205		8	max	451.525	2	2.918	4	3.676	4	0	12	.001	1	002	15
206			min	-601.774	3	.698	15	.017	12	0	4	014	5	01	6
207		9	max	451.355	2	2.046	4	4.283	4	0	12	.002	1	003	15
208			min	-601.902	3	.493	15	.017	12	0	4	012	5	011	6
209		10	max	451.184	2	1.174	4	4.891	4	0	12	.002	1	003	15
210			min	-602.029	3	.288	15	.017	12	0	4	01	5	012	6
211		11	max	451.014	2	.332	2	5.498	4	0	12	.002	1	003	15
212			min	-602.157	3	007	3	.017	12	0	4	008	5	012	6
213		12	max	450.844	2	122	15	6.105	4	0	12	.002	1	003	15
214			min	-602.285	3	572	6	.017	12	0	4	005	5	012	6
215		13	max	450.673	2	327	15	6.712	4	0	12	.002	1	003	15
216		10	min	-602.413	3	-1.444	6	.017	12	0	4	002	5	012	6
217		14	max	450.503	2	531	15	7.319	4	0	12	.002	1	002	15
218		17	min	-602.54	3	-2.316	6	.017	12	0	4	0	12	011	6
219		15	max	450.333	2	736	15	7.926	4	0	12	.005	4	002	15
220		13	min	-602.668	3	-3.188	6	.017	12	0	4	0	12	002	6
221		16	max	450.162	2	941	15	8.533	4	0	12	.009	4	003	15
222		10	min	-602.796	3	-4.06	6	.017	12	0	4	0	12	002	6
223		17	max	449.992	2	-1.146	15	9.14	4	0	12	.014	4	001	15
224		17	1	-602.924	3	-4.932	6	.017	12	0	4	0	12		6
225		18	min	449.822	2	-4.9 <u>32</u> -1.351	15	9.748	4		12	.018	4	005 0	15
		10	max						12	0			12		
226		10	min	-603.051	3	-5.804	6	.017 10.355		0	<u>4</u> 12	0		003	6
227		19	max	449.651	2	-1.556	15		4	0		.023	4	0	1
228	N. 1. 4	4	min	-603.179	3	-6.676	6	.017	12	0	4	0	12	0	
229	M4	1		1161.836	1	0	1	831	12	0	1	.016	4	0	1
230				-70.051	3	0	1	-310.836		0	1	0	12	0	1
231		2		1162.006	1	0	1	831	12	0	1	0	1	0	1
232			min		3	0	1	-310.983		0	1	02	4	0	1
233		3		1162.176		0	1	831	12	0	1	0	12	0	1
234			min	-69.796	3	0	1	-311.131		0	1	056	4	0	1
235		4		1162.347	1_	0	1	831	12	0	1	0	12	0	1
236		-	min	-69.668	3	0	1	-311.279		0	1	091	4	0	1
237		5		1162.517	1_	0	1	831	12	0	1	0	12	0	1
238		_	min		3	0	1	-311.426		0	1	127	4	0	1
239		6		1162.687	1	0	1	831	12	0	1	0	12	0	1
240				-69.413	3	0	1	-311.574		0	1	163	4	0	1
241		7		1162.858	_1_	0	1	831	12	0	1	0	12	0	1
242			min		3	0	1	-311.722		0	1	199	4	0	1
243		8	max	1163.028		0	1	831	12	0	1	0	12	0	1
244			min	-69.157	3	0	1	-311.869	4	0	1	234	4	0	1
245		9	max	1163.198	1_	0	1	831	12	0	1	0	12	0	1
246			min	-69.029	3	0	1	-312.017	4	0	1	27	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
247		10	max	1163.369	1	0	1	831	12	0	1	0	12	0	1
248			min	-68.902	3	0	1	-312.165	4	0	1	306	4	0	1
249		11	max	1163.539	1	0	1	831	12	0	1	0	12	0	1
250			min	-68.774	3	0	1	-312.312	4	0	1	342	4	0	1
251		12	max	1163.709	1	0	1	831	12	0	1	0	12	0	1
252			min	-68.646	3	0	1	-312.46	4	0	1	378	4	0	1
253		13	max	1163.88	1	0	1	831	12	0	1	001	12	0	1
254			min	-68.518	3	0	1	-312.607	4	0	1	414	4	0	1
255		14	max	1164.05	1	0	1	831	12	0	1	001	12	0	1
256			min	-68.39	3	0	1	-312.755	4	0	1	45	4	0	1
257		15	max	1164.221	1	0	1	831	12	0	1	001	12	0	1
258			min	-68.263	3	0	1	-312.903	4	0	1	486	4	0	1
259		16	max	1164.391	1	0	1	831	12	0	1	001	12	0	1
260			min	-68.135	3	0	1	-313.05	4	0	1	521	4	0	1
261		17		1164.561	1	0	1	831	12	0	1	001	12	0	1
262			min	-68.007	3	0	1	-313.198	4	0	1	557	4	0	1
263		18	_	1164.732	1	0	1	831	12	0	1	002	12	0	1
264		1	min		3	0	1	-313.346	4	0	1	593	4	0	1
265		19		1164.902	1	0	1	831	12	0	1	002	12	0	1
266		1.0	min	-67.752	3	0	1	-313.493	4	0	1	629	4	0	1
267	M6	1		3343.058	1	2.226	2	0	1	0	1	0	4	0	1
268	1110		min	-3275.134	3	.326	12	-48.981	4	0	4	0	1	0	1
269		2		3343.532	1	2.197	2	0	1	0	1	0	1	0	12
270			min	-3274.779	3	.311	12	-49.393	4	0	4	016	4	0	2
271		3		3344.005	1	2.168	2	0	1	0	1	0	1	0	12
272		-	min	-3274.423	3	.297	12	-49.804	4	0	4	032	4	001	2
273		4		3344.479	1	2.139	2	0	1	0	1	0	1	0	12
274			min	-3274.068	3	.282	12	-50.215	4	0	4	048	4	002	2
275		5		3344.953	1	2.11	2	0	1	0	1	0	1	0	12
276		1	min	-3273.713	3	.268	12	-50.627	4	0	4	064	4	003	2
277		6		3345.427	<u> </u>	2.081	2	0	1	0	1	0	1	0	12
278		-	min	-3273.358	3	.254	12	-51.038	4	0	4	08	4	003	2
279		7	max		<u> </u>	2.052	2	0	1	0	1	0	1	0	12
280			min	-3273.002	3	.239	12	-51.449	4	0	4	096	4	004	2
281		8		3346.374	<u> </u>	2.023	2	0	1	0	1	0	1	0	12
282		0	min	-3272.647	3	.225	12	-51.861	4	0	4	113	4	005	2
283		9		3346.848	<u> </u>	1.995	2	0	1	0	1	0	1	0	12
284		1 9	min	-3272.292	3	.21	12	-52.272	4	0	4	13	4	005	2
285		10		3347.321	<u> </u>	1.966	2	0	1	0	1	0	1	0	12
286		10	_	-3271.936	3		12	-52.683	4		4	_	4		2
287		11	min	3347.795		.196 1.937				0		146		006	12
		11			<u>1</u>		12	0 53.005	1	0	1_1	163	1	0	
288		10	min		3	.181		-53.095	1	0	<u>4</u> 1		1	007	12
289		12		3348.269 -3271.226	2	1.908	2 12	52.506	4	0		10		0	12
290		12	min		<u>3</u> 1	.167		-53.506	1	0	<u>4</u> 1	18	1	007	12
291		13		3348.743		1.879	3	0	_	0	<u> </u>	0		0	
292		4.4	min		3	.151		-53.917	4	0	4	198	4	008	2
293		14		3349.216	1	1.85	2	<u>0</u>	1	0	1_1	0	1	0	12
294		4.5	min		3_	.129	3	-54.329	4	0	4_	215	4	008	2
295		15		3349.69	1_	1.821	2	0	1	0	1_1	0	1	001	12
296		40	min		3	.107	3	-54.74	4	0	4_	232	4	009	2
297		16		3350.164	1_	1.793	2	0	1	0	1	0	1	001	12
298			min		3_	.086	3	<u>-55.151</u>	4	0	4_	25	4	01	2
299		17		3350.638	1	1.764	2	0	1	0	1	0	1	001	12
300			min		3_	.064	3	-55.563	4	0	4	268	4	01	2
301		18		3351.111	1_	1.735	2	0	1	0	1	0	1	001	12
302			min		3	.042	3	-55.974	4	0	4	285	4	011	2
303		19	max	3351.585	1	1.706	2	0	1	0	_1_	0	1	001	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
304			min	-3268.739	3_	.021	3	-56.385	4_	0	4_	303	4	011	2
305	<u>M7</u>	1		1769.504	2	9.031	6	0	_1_	0	1_	0	1	.011	2
306			min	-1851.407	3_	2.12	15	-1.025	<u>5</u>	0	4_	019	4	.001	12
307		2		1769.334	2	8.159	6	0	_1_	0	_1_	0	1	.008	2
308			min	-1851.534	3_	1.915	15	418	5	0	4_	019	4	0	3
309		3		1769.163	2	7.287	6	.249	4	0	1	0	1	.005	2
310			min	-1851.662	3_	1.71	15	0	_1_	0	4	019	4	003	3
311		4		1768.993	2	6.415	6	.856	4	0	1	0	1	.002	2
312				-1851.79	3	1.505	15	0	1_	0	4	019	4	004	3
313		5		1768.823	2	5.543	6	1.464	_4_	0	1	0	1	0	2
314			min	-1851.918	3	1.3	15	0	1_	0	4	019	4	006	3
315		6		1768.652	2	4.671	6	2.071	_4_	0	_1_	0	1_	001	15
316			min	-1852.045	3	1.095	15	0	1_	0	4	018	4	007	3
317		7	max	1768.482	2	3.799	6	2.678	4	0	_1_	0	1	002	15
318			min	-1852.173	3	.89	15	0	1	0	4	017	4	008	4
319		8	max	1768.312	2	2.927	6	3.285	4	0	_1_	0	1_	002	15
320			min	-1852.301	3	.685	15	0	1	0	4	015	4	01	4
321		9	max	1768.141	2	2.055	6	3.892	4	0	1	0	1	003	15
322			min	-1852.429	3	.472	12	0	1	0	4	013	4	011	4
323		10	max	1767.971	2	1.332	2	4.499	4	0	1	0	1	003	15
324			min	-1852.556	3	.133	12	0	1	0	4	012	4	012	4
325		11	max	1767.801	2	.652	2	5.106	4	0	1	0	1	003	15
326			min	-1852.684	3	364	3	0	1	0	4	009	4	012	4
327		12	max	1767.63	2	027	2	5.713	4	0	1	0	1	003	15
328			min	-1852.812	3	873	3	0	1	0	4	007	4	012	4
329		13	max		2	34	15	6.321	4	0	1	0	1	003	15
330			min	-1852.94	3	-1.433	4	0	1	0	4	004	4	011	4
331		14	max		2	545	15	6.928	4	0	1	0	1	002	15
332			min	-1853.068	3	-2.305	4	0	1	0	4	0	4	011	4
333		15	_	1767.119	2	75	15	7.535	4	0	1	.003	5	002	15
334		10	min	-1853.195	3	-3.177	4	0	1	0	4	0	1	009	4
335		16		1766.949	2	955	15	8.142	4	0	1	.006	4	002	15
336		10	min	-1853.323	3	-4.049	4	0.142	1	0	4	0	1	008	4
337		17		1766.779	2	-1.16	15	8.749	4	0	1	.01	4	001	15
338		- ' '	min	-1853.451	3	-4.921	4	0.743	1	0	4	.01	1	005	4
339		18		1766.608	2	-1.365	15	9.356	4	0	1	.015	4	0	15
340		10	min	-1853.579	3	-5.793	4	0	1	0	4	0	1	003	4
341		19		1766.438	2	-1.57	15	9.963	4	0	1	.019	4	0	1
342		19		-1853.706	3	-6.665	4	0	1	0	4	.019	1	0	1
343	M8	1		3090.536	<u>ა</u> 1		1	0	1	0	1	.013	4	0	1
	IVIO					0				0	1	.013	1		1
344		2		-305.637 3090.707	3	0	<u>1</u> 1	-297.207	<u>4</u> 1	0	1	0	1	0	1
					<u>1</u> 3	0	1	0 -297.354		0	1	021	4	0	1
346		2		-305.509	_		1		4_		1		1		1
347		3		3090.877	1	0		0	1_1	0	1	0		0	
348		1		-305.381	3	0	1_	-297.502	4	0		055	4	0	1
349		4		3091.047	1_	0	1	0	1_1	0	1	0	1	0	1
350		_		-305.254	3	0	1_	-297.649	4	0	1_	089	4	0	1
351		5		3091.218	1	0	1	0	_1_	0	1	0	1	0	1
352				-305.126	3	0	1	-297.797	4	0	1	123	4	0	1
353		6		3091.388	1_	0	1	0	1_	0	1	0	1	0	1
354				-304.998	3	0	1_	-297.945	4_	0	1_	157	4	0	1
355		7		3091.559	_1_	0	1_	0	_1_	0	1_	0	1_	0	1
356				-304.87	3	0	1_	-298.092	4	0	1_	192	4	0	1
357		8		3091.729	_1_	0	1_	0	_1_	0	_1_	0	1	0	1
358				-304.743	3	0	1	-298.24	4	0	1	226	4	0	1
359		9		3091.899	_1_	0	_1_	0	_1_	0	_1_	0	1	0	1
360			min	-304.615	3	0	1	-298.388	4	0	1_	26	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
361		10		3092.07	_1_	0	1	0	1	0	1	0	1	0	1
362				-304.487	3	0	1	-298.535	4	0	1	294	4	0	1
363		11		3092.24	_1_	0	1	0	1	0	1_	0	1	0	1
364				-304.359	3	0	1	-298.683	4	0	1	329	4	0	1
365		12	max		1_	0	1_	0	1	0	1	0	1	0	1
366		40		-304.232	3	0	1	-298.83	4	0	1	363	4	0	1
367		13		3092.581	1_	0	1	0	11	0	1	0	1	0	1
368		1.1	+	-304.104	3	0	1	-298.978	<u>4</u> 1	0	1	397	1	0	1
369		14		3092.751	1	0	1	0 -299.126	4	0	1	422	4	0	1
370 371		15		-303.976 3092.921	<u>3</u> 1	0	1	0	1	0	1	432 0	1	0	1
371		13		-303.848	3	0	1	-299.273	4	0	1	466	4	0	1
373		16		3093.092	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10		-303.72	3	0	1	-299.421	4	0	1	5	4	0	1
375		17		3093.262	_ <u></u>	0	1	0	1	0	1	0	1	0	1
376		17		-303.593	3	0	1	-299.569	4	0	1	535	4	0	1
377		18		3093.432	1	0	1	0	1	0	1	0	1	0	1
378				-303.465	3	0	1	-299.716	4	0	1	569	4	0	1
379		19	+	3093.603	1	0	1	0	1	0	1	0	1	0	1
380			min		3	0	1	-299.864	4	0	1	604	4	0	1
381	M10	1		1057.912	1	1.981	6	04	12	0	1	0	4	0	1
382			min		3	.447	15	-48.871	4	0	5	0	3	0	1
383		2	max	1058.386	1	1.944	6	04	12	0	1	0	10	0	15
384				-1012.608	3	.439	15	-49.282	4	0	5	016	4	0	6
385		3	max	1058.859	1	1.907	6	04	12	0	1	0	12	0	15
386			min	-1012.252	3	.43	15	-49.694	4	0	5	032	4	001	6
387		4	max	1059.333	1	1.87	6	04	12	0	1	0	12	0	15
388			min	-1011.897	3	.421	15	-50.105	4	0	5	047	4	002	6
389		5	max	1059.807	_1_	1.833	6	04	12	0	1	0	12	0	15
390			min		3	.413	15	-50.516	4	0	5	064	4	002	6
391		6		1060.281	1_	1.796	6	04	12	0	1	0	12	0	15
392			min		3	.404	15	-50.928	4	0	5	08	4	003	6
393		7		1060.754	_1_	1.759	6	04	12	0	1	0	12	0	15
394				-1010.831	3_	.395	15	-51.339	4	0	5	096	4	004	6
395		8		1061.228	1_	1.721	6	04	12	0	1	0	12	0	15
396				-1010.476	3	.386	15	<u>-51.75</u>	4	0	5	113	4	004	6
397		9		1061.702	1_	1.684	6	04	12	0	1	0	12	001	15
398		40	min		3	.378	15	-52.162	4	0	5	129	4	005	6
399		10		1062.176 -1009.765	1	1.647	6	04	12	0	1	146	12	001	15
400 401		11	min	1062.649	<u>3</u>	.369 1.61	1 <u>5</u>	-52.573 04	<u>4</u> 12	0	<u>5</u>	146 0	12	005 001	15
402		11		-1002.049	3	.36	15	-52.984	4	0	5	163	4	006	6
403		12		1063.123		1.573	6	04	12	0	1	0	12	001	15
404		12		-1009.055	3	.352	15	-53.396	4	0	5	18	4	006	6
405		13		1063.597	1	1.536	6	04	12	0	1	0	12	002	15
406		10		-1008.699	3	.343	15	-53.807	4	0	5	197	4	007	6
407		14		1064.071	1	1.499	6	04	12	0	1	0	12	002	15
408				-1008.344	3	.334	15	-54.218	4	0	5	214	4	007	6
409		15		1064.544	1	1.462	6	04	12	0	1	0	12	002	15
410				-1007.989	3	.325	15	-54.63	4	0	5	232	4	008	6
411		16		1065.018	1	1.425	6	04	12	0	1	0	12	002	15
412				-1007.633	3	.317	15	-55.041	4	0	5	249	4	008	6
413		17		1065.492	1	1.388	6	04	12	0	1	0	12	002	15
414				-1007.278	3	.308	15	-55.452	4	0	5	267	4	009	6
415		18		1065.966	1	1.351	6	04	12	0	1	0	12	002	15
416				-1006.923	3	.299	15	-55.864	4	0	5	285	4	009	6
417		19	max	1066.439	1_	1.314	6	04	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
418			min	-1006.568	3	.291	15	-56.275	4	0	5	303	4	009	6
419	M11	1	max	452.717	2	8.964	6	017	12	0	1_	0	12	.009	6
420			min	-600.879	3	2.095	15	766	4	0	4	019	4	.002	15
421		2	max	452.547	2	8.092	6	017	12	0	1	0	12	.005	6
422			min	-601.007	3	1.89	15	343	1	0	4	019	4	.001	15
423		3	max	452.377	2	7.22	6	.455	5	0	1	0	12	.003	2
424			min	-601.135	3	1.685	15	343	1	0	4	019	4	0	3
425		4	max	452.206	2	6.348	6	1.062	5	0	1	0	12	0	2
426			min	-601.263	3	1.48	15	343	1	0	4	019	4	002	3
427		5	max	452.036	2	5.476	6	1.669	5	0	1	0	12	001	15
428			min	-601.39	3	1.275	15	343	1	0	4	018	4	004	4
429		6	max	451.866	2	4.604	6	2.277	5	0	1_	0	12	002	15
430			min	-601.518	3	1.07	15	343	1	0	4	017	4	007	4
431		7	max	451.695	2	3.732	6	2.884	5	0	1	0	12	002	15
432			min	-601.646	3	.865	15	343	1	0	4	016	4	009	4
433		8	max	451.525	2	2.86	6	3.491	5	0	1_	0	12	002	15
434			min	-601.774	3	.66	15	343	1	0	4	014	4	01	4
435		9	max	451.355	2	1.988	6	4.098	5	0	1	0	12	003	15
436			min	-601.902	3	.455	15	343	1	0	4	013	4	011	4
437		10	max	451.184	2	1.116	6	4.705	5	0	1	0	12	003	15
438			min	-602.029	3	.25	15	343	1	0	4	011	4	012	4
439		11	max	451.014	2	.332	2	5.312	5	0	1_	0	12	003	15
440			min	-602.157	3	007	3	343	1	0	4	008	4	012	4
441		12	max	450.844	2	16	15	5.919	5	0	1	0	12	003	15
442			min	-602.285	3	629	4	343	1	0	4	006	4	012	4
443		13	max	450.673	2	365	15	6.526	5	0	1	0	12	003	15
444			min	-602.413	3	-1.501	4	343	1	0	4	003	4	012	4
445		14	max	450.503	2	57	15	7.133	5	0	1	.001	5	003	15
446			min	-602.54	3	-2.373	4	343	1	0	4	002	1	011	4
447		15	max	450.333	2	775	15	7.741	5	0	1	.005	5	002	15
448			min	-602.668	3	-3.245	4	343	1	0	4	003	1	009	4
449		16	max	450.162	2	98	15	8.348	5	0	1	.008	5	002	15
450			min	-602.796	3	-4.117	4	343	1	0	4	003	1	008	4
451		17	max	449.992	2	-1.185	15	8.955	5	0	1	.012	5	001	15
452			min	-602.924	3	-4.989	4	343	1	0	4	003	1	006	4
453		18	max	449.822	2	-1.39	15	9.562	5	0	1	.017	5	0	15
454			min	-603.051	3	-5.861	4	343	1	0	4	003	1	003	4
455		19	max	449.651	2	-1.595	15	10.169	5	0	1	.021	5	0	1
456			min	-603.179	3	-6.733	4	343	1	0	4	003	1	0	1
457	M12	1	max	1161.836	1_	0	1	17.075	1	0	1	.015	5	0	1
458				-70.051	3	0	1	-301.173	4	0	1	002	1	0	1
459		2	max	1162.006	_1_	0	1	17.075	1	0	1	0	12	0	1
460			min	-69.924	3	0	1	-301.32	4	0	1	02	4	0	1
461		3		1162.176	1_	0	1	17.075	1	0	1	.002	1_	0	1
462			min	-69.796	3	0	1	-301.468	4	0	1	055	4	0	1
463		4	max	1162.347	_1_	0	1	17.075	1	0	1	.004	_1_	0	1
464			min		3	0	1	-301.616	4	0	1	089	4	0	1
465		5	max	1162.517	_1_	0	1	17.075	1	0	1	.006	_1_	0	1
466			min		3	0	1	-301.763	4	0	1	124	4	0	1
467		6	max	1162.687	_1_	0	1	17.075	1	0	1	.008	_1_	0	1
468			min		3	0	1	-301.911	4	0	1	159	4	0	1
469		7	max	1162.858	1_	0	1	17.075	1	0	1	.01	1	0	1
470			min	-69.285	3	0	1	-302.059	4	0	1	193	4	0	1
471		8	max	1163.028	1	0	1	17.075	1	0	1	.012	1	0	1
472			min	-69.157	3	0	1	-302.206	4	0	1	228	4	0	1
473		9	max	1163.198	1	0	1	17.075	1	0	1	.013	1	0	1
474			min	-69.029	3	0	1	-302.354	4	0	1	263	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

475	Member	Sec		Axial[lb]						Torque[k-ft]					1
475		10		1163.369	1_	0	1_	17.075	11	0	1	.015	1	0	1
476		4.4	min	-68.902	3	0	1_	-302.502	4	0	1	297	4	0	1
477		11		1163.539	1	0	1_	17.075	11	0	<u>1</u> 1	.017	1_4	0	1
478		40	min	-68.774	3	0	1	-302.649	4	0	1	332	4	0	1
479		12		1163.709	1	0	1	17.075	1_4	0	1	.019	4	0	1
480		12	min	-68.646	3	0	•	-302.797	4	0		367	_	0	
481		13	max	1163.88	1_	0	1_	17.075	11	0	1	.021	1	0	1
482		4.4	min	-68.518	3_	0	1_	-302.944	4	0	1_	402	4	0	1
483		14	max	1164.05	1	0	1_	17.075	1	0	1	.023	1	0	1
484		4.5	min	-68.39	3	0	1_	-303.092	4	0	1_	436	4	0	1
485		15		1164.221	1_	0	1_	17.075	1	0	1	.025	1	0	1
486		10	min	-68.263	3	0	1_	-303.24	4	0	1	471	4	0	1
487		16		1164.391	_1_	0	_1_	17.075	1	0	1	.027	1	0	1
488			min	-68.135	3	0	1_	-303.387	4	0	1	506	4	0	1
489		17	max	1164.561	_1_	0	_1_	17.075	_1_	0	_1_	.029	1_	0	1
490			min	-68.007	3	0	1_	-303.535	4	0	1_	541	4	0	1
491		18		1164.732	_1_	0	_1_	17.075	1	0	_1_	.031	1	0	1
492			min	-67.879	3	0	1_	-303.683	4	0	1_	576	4	0	1
493		19	max	1164.902	_1_	0	_1_	17.075	1	0	_1_	.033	1	0	1
494			min	-67.752	3	0	1_	-303.83	4	0	1	611	4	0	1
495	M1	1	max	200.301	_1_	549.684	3	56.292	5	0	1_	.279	1	0	15
496			min	-14.909	5	-453.249	1	-99.464	1	0	3	122	5	014	1
497		2	max	201.013	1	548.539	3	57.752	5	0	1	.218	1	.268	1
498			min	-14.577	5	-454.776	1	-99.464	1	0	3	087	5	342	3
499		3	max	386.713	3	523.514	1	12.304	5	0	3	.156	1	.54	1
500			min	-249.82	2	-397.194	3	-98.996	1	0	1	051	5	672	3
501		4	max	387.247	3	521.987	1	13.764	5	0	3	.095	1	.215	1
502			min	-249.108	2	-398.339	3	-98.996	1	0	1	043	5	425	3
503		5	max	387.781	3	520.46	1	15.224	5	0	3	.033	1	005	15
504			min	-248.396	2	-399.484	3	-98.996	1	0	1	034	5	177	3
505		6	max	388.315	3	518.933	1	16.684	5	0	3	001	12	.071	3
506			min	-247.684	2	-400.629	3	-98.996	1	0	1	03	4	431	1
507		7	max	388.849	3	517.406	1	18.144	5	0	3	005	12	.32	3
508				-246.972	2	-401.775	3	-98.996	1	0	1	09	1	753	1
509		8	max	389.383	3	515.879	1	19.604	5	0	3	0	15	.57	3
510			min	-246.26	2	-402.92	3	-98.996	1	0	1	151	1	-1.073	1
511		9	max	403.815	3	35.151	2	64.241	5	0	9	.094	1	.668	3
512			min	-162.27	2	.459	15	-153.973	1	0	3	161	5	-1.222	1
513		10	max	404.349	3	33.624	2	65.701	5	0	9	0	12	.649	3
514				-161.557	2	005	5	-153.973	1	0	3	122	4	-1.234	1
515		11		404.883	3	32.097	2	67.161	5	0	9	005	12	.632	3
516				-160.845	2	-1.885	4	-153.973	1	0	3	101	4	-1.245	1
517		12		419.217	3	255.933	3	173.923	5	0	1	.148	1	.551	3
518				-102.931	5	-554.008	1	-95.217	1	0	3	269	5	-1.1	1
519		13		419.751	3	254.787	3	175.383	5	0	1	.089	1	.393	3
520		10		-102.599	5	-555.535	1	-95.217	1	0	3	16	5	755	1
521		14		420.285	3	253.642	3	176.843	5	0	1	.03	1	.235	3
522		17		-102.266	5	-557.062	1	-95.217	1	0	3	051	5	41	1
523		15		420.819	3	252.497	3	178.304	5	0	<u> </u>	.059	5	.078	3
524		10		-101.934	5	-558.588	1	-95.217	1	0	3	029	1	064	1
525		16					3	179.764	5	0	<u>3</u> 1	029 .17	_	.295	2
		16		421.353	3	251.352						088	5		
526		47		-101.602	<u>5</u>	-560.115	1	-95.217	1	0	3		1	079	3
527		17		421.887	3	250.207	3	181.224	5	0	1	.282	5	.631	1
528		40		-101.27	5	-561.642	1_1	-95.217	1	0	3	147	1	234	3
529		18	max	25.152	5	528.12	1	-5.503	12	0	5	.242	5	.315	1
530		40		-201.467	_1_	-200.761	3	-133.528		0	2	213	1	115	3
531		19	max	25.484	_5_	526.593	<u> 1</u>	-5.503	12	0	5	.175	5	.01	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-200.755	1	-201.906	3	-132.068	4	0	2	282	1	012	1
533	M5	1	max	439.146	1	1828.403	3	105.219	5	0	1	0	1_	.028	1
534			min	16.617	12	-1546.209	1	0	1	0	4	262	4	0	15
535		2	max	439.858	1	1827.258	3	106.679	5	0	1	0	_1_	.989	1
536			min	16.974	12	-1547.736	1	0	1	0	4	197	4	-1.132	3
537		3	max	1225.716	3	1523.275	1	65.978	4	0	4	0	1	1.916	1
538			min	-867.983	2	-1242.644	3	0	1	0	1	131	4	-2.232	3
539		4	max	1226.25	3	1521.748	1	67.438	4	0	4	0	1_	.971	1
540			min	-867.271	2	-1243.79	3	0	1	0	1	09	4	-1.46	3
541		5	max	1226.784	3	1520.221	1	68.898	4	0	4	0	1	.033	9
542			min	-866.559	2	-1244.935	3	0	1	0	1	047	4	688	3
543		6	max	1227.318	3	1518.694	1	70.358	4	0	4	0	1	.085	3
544			min	-865.846	2	-1246.08	3	0	1	0	1	004	5	916	1
545		7	max	1227.852	3	1517.167	1	71.819	4	0	4	.04	4	.859	3
546			min	-865.134	2	-1247.225	3	0	1	0	1	0	1	-1.858	1
547		8	max	1228.386	3	1515.64	1	73.279	4	0	4	.085	4	1.633	3
548			min	-864.422	2	-1248.37	3	0	1	0	1	0	1	-2.799	1
549		9	max	1252.732	3	116.947	2	212.688	4	0	1	0	1	1.886	3
550			min	-690.697	2	.465	15	0	1	0	1	24	4	-3.173	1
551		10			3	115.42	2	214.149	4	0	1	0	1	1.82	3
552			min	-689.985	2	.004	15	0	1	0	1	107	4	-3.213	1
553		11	max	1253.8	3	113.893	2	215.609	4	0	1	.026	4	1.755	3
554			min	-689.273	2	-1.57	6	0	1	0	1	0	1	-3.252	1
555		12		1278.343	3	779.513	3	242.948	4	0	1	0	1	1.537	3
556		'-	min	-515.566	2	-1643.773	1	0	1	0	4	387	4	-2.894	1
557		13		1278.877	3	778.368	3	244.408	4	0	1	0	1	1.053	3
558		13	min	-514.854	2	-1645.3	1	0	1	0	4	236	4	-1.874	1
559		14	+	1279.411	3	777.223	3	245.869	4	0	1	0	1	.571	3
560		14	min	-514.142	2	-1646.827	1	0	1	0	4	084	4	852	1
561		15		1279.945	3	776.077	3	247.329	4	0	1	.069	4	.233	2
562		13	min	-513.43	2	-1648.354	1	0	1	0	4	0	1	0	13
563		16		1280.479	3	774.932	3	248.789	4	0	1	.223	4	1.202	2
564		10	min	-512.718	2	-1649.881	1	0	1	0	4	.223	1	393	3
565		17				773.787	•	250.249			1	.378	4	2.218	1
		17	1	1281.013	2	-1651.408	3		4	0	<u> </u>		1		_
566		10	min	-512.006 -17.327				0	1	0	4	0		873	3
567		18	max		12	1797.753	1	_		0	4	.382	<u>4</u> 1	1.14	1
568		40	min	-438.95	1	-700.399	3	-32.555	5	0	1	0	•	455	3
569		19	max	-16.971	12	1796.226	1	0	1	0	4	.363	<u>4</u> 1	.025	1
570	140	4	min	-438.238	1	-701.544	3	-31.095	5	0		0	_	02	3
571	<u>M9</u>	1_	max		1	549.684	3	99.464	1	0	3	015	12	0	15
572			mın		12			5.198	12	0	4	279	1_	014	1
573		2	max		1	548.539	3	99.464	1	0	3	011	12	.268	1
574			min	9.25	12	-454.776		5.198	12	0	4	218	1_	342	3
575		3		386.713	3	523.514	1	98.996	1	0	1	008	12	.54	1
576			min	-249.82	2	-397.194	3	5.157	12	0	3	156	1_	672	3
577		4	1	387.247	3	521.987	1	98.996	1	0	1	005	12	.215	1
578		_	min	-249.108	2	-398.339	3	5.157	12	0	3	095	_1_	425	3
579		5		387.781	3	520.46	1	98.996	1	0	1	002	<u>12</u>	005	15
580		_			2	-399.484	3	5.157	12	0	3	046	4	177	3
581		6		388.315	3	518.933	1	98.996	1	0	1	.028	_1_	.071	3
582			min		2	-400.629	3	5.157	12	0	3	02	5	431	1
583		7	max		3	517.406	1	98.996	1_	0	1	.09	_1_	.32	3
584			min	-246.972	2	-401.775	3	5.157	12	0	3	002	5	753	1
585		8		389.383	3	515.879	1	98.996	1	0	1	.151	1_	.57	3
586			min	-246.26	2	-402.92	3	5.157	12	0	3	.008	12	-1.073	1
587		9	max	403.815	3	35.151	2	153.973	1	0	3	005	12	.668	3
588			min	-162.27	2	.473	15	7.806	12	0	9	196	4	-1.222	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	404.349	3	33.624	2	153.973	1	0	3	.002	1	.649	3
590			min	-161.557	2	.012	15	7.806	12	0	9	121	4	-1.234	1
591		11	max	404.883	3	32.097	2	153.973	1	0	3	.097	1_	.632	3
592			min	-160.845	2	-1.771	6	7.806	12	0	9	068	5	-1.245	1
593		12	max	419.217	3	255.933	3	210.052	4	0	3	007	12	.551	3
594			min	-90.11	10	-554.008	1	4.689	12	0	1	324	4	-1.1	1
595		13	max	419.751	3	254.787	3	211.512	4	0	3	004	12	.393	3
596			min	-89.516	10	-555.535	1	4.689	12	0	1	193	4	755	1
597		14	max	420.285	3	253.642	3	212.972	4	0	3	002	12	.235	3
598			min	-88.923	10	-557.062	1	4.689	12	0	1	062	4	41	1
599		15	max	420.819	3	252.497	3	214.433	4	0	3	.071	4	.078	3
600			min	-88.33	10	-558.588	1	4.689	12	0	1	.001	12	064	1
601		16	max	421.353	3	251.352	3	215.893	4	0	3	.205	4	.295	2
602			min	-87.736	10	-560.115	1	4.689	12	0	1	.004	12	079	3
603		17	max	421.887	3	250.207	3	217.353	4	0	3	.339	4	.631	1
604			min	-87.143	10	-561.642	1	4.689	12	0	1	.007	12	234	3
605		18	max	-9.073	12	528.12	1	111.478	1	0	2	.32	4	.315	1
606			min	-201.467	1	-200.761	3	-94.423	5	0	3	.01	12	115	3
607	·	19	max	-8.717	12	526.593	1	111.478	1	0	2	.282	1	.01	3
608			min	-200.755	1	-201.906	3	-92.963	5	0	3	.014	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.178	1	.008	3	1.194e-2	1	NC	1	NC	1
2			min	917	4	025	3	004	2	-1.622e-3	3	NC	1	NC	1
3		2	max	0	1	.218	3	.046	1	1.329e-2	1	NC	5	NC	2
4			min	917	4	004	9	025	5	-1.497e-3	3	962.241	3	5261.34	1
5		3	max	0	1	.416	3	.108	1	1.465e-2	1	NC	5	NC	3
6			min	917	4	129	1	031	5	-1.371e-3	3	531.243	3	2204.251	1
7		4	max	0	1	.536	3	.16	1	1.601e-2	1	NC	5	NC	3
8			min	917	4	201	1	023	5	-1.245e-3	3	417.085	3	1475.121	1
9		5	max	0	1	.566	3	.186	1	1.737e-2	1	NC	5	NC	3
10			min	917	4	198	1	007	5	-1.12e-3	3	396.322	3	1265.328	1
11		6	max	0	1	.506	3	.179	1	1.872e-2	1	NC	5	NC	3
12			min	918	4	123	1	.007	15	-9.939e-4	3	440.985	3	1317.869	
13		7	max	0	1	.375	3	.14	1	2.008e-2	1_	NC	5	NC	3
14			min	918	4	008	9	.008	10	-8.682e-4	3	584.956	3	1689.935	
15		8	max	0	1	.209	3	.081	1	2.144e-2	1	NC	1	NC	3
16			min	918	4	.005	15	0	10	-7.426e-4	3	1002.451	3	2959.505	1
17		9	max	0	1	.302	1	.031	4	2.28e-2	1_	NC	4	NC	1
18			min	918	4	.009	15	007	10	-6.169e-4	3	1887.231	1	7408.75	4
19		10	max	0	1	.363	1	.023	3	2.415e-2	1_	NC	3	NC	1
20			min	918	4	011	3	016	2	-4.912e-4	3	1262.55	1	NC	1
21		11	max	0	12	.302	1	.025	3	2.28e-2	1	NC	4	NC	1
22			min	918	4	.009	15	02	5	-6.169e-4	3	1887.231	1	NC	1
23		12	max	0	12	.209	3	.081	1	2.144e-2	1_	NC	1_	NC	3
24			min	918	4	.005	15	02	5	-7.426e-4	3	1002.451	3	2959.505	1
25		13	max	0	12	.375	3	.14	1	2.008e-2	1_	NC	5	NC	3
26			min	918	4	008	9	007	5	-8.682e-4	3	584.956	3	1689.935	1
27		14	max	0	12	.506	3	.179	1	1.872e-2	1_	NC	5	NC	3
28			min	918	4	123	1	.008	15	-9.939e-4	3	440.985	3	1317.869	1
29		15	max	0	12	.566	3	.186	1	1.737e-2	1_	NC	5	NC	3
30			min	918	4	198	1	.015	10	-1.12e-3	3	396.322	3	1265.328	1
31		16	max	0	12	.536	3	.16	1	1.601e-2	1_	NC	5	NC	3
32			min	918	4	201	1	.013	10	-1.245e-3	3	417.085	3	1475.121	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC				
33		17	max	0	12	<u>.416</u>	3	.108	1 1.465e-2	_1_	NC	5_	NC	3
34			min	918	4	129	1	.008	10 -1.371e-3	3	531.243	3	2204.251	1
35		18	max	0	12	.218	3	.046	1 1.329e-2	_1_	NC	5_	NC	2
36			min	918	4	004	9	.002	10 -1.497e-3	3	962.241	3	5261.34	1
37		19	max	0	12	.178	1	.008	3 1.194e-2	1	NC	1	NC	1
38			min	918	4	025	3	004	2 -1.622e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.272	3	.007	3 7.245e-3	1	NC	1	NC	1
40			min	674	4	554	1	003	2 -4.214e-3	3	NC	1	NC	1
41		2	max	0	1	.53	3	.031	1 8.531e-3	1	NC	5	NC	2
42			min	674	4	897	1	038	5 -5.058e-3	3	683.504	1	6470.388	5
43		3	max	0	1	.752	3	.084	1 9.817e-3	1		15	NC	3
44			min	674	4	-1.197	1	046	5 -5.902e-3	3	364.143	1	2841.216	1
45		4	max	0	1	.912	3	.134	1 1.11e-2	1		15	NC	3
46			min	674	4	-1.426	1	032	5 -6.746e-3	3	268.552	1	1765.665	
47		5	max	0	1	.999	3	.163	1 1.239e-2	1		15	NC	3
48			min	674	4	-1.567	1	006	5 -7.59e-3	3	231.001	1	1453.889	1
49		6	max	0	1	1.011	3	.16	1 1.368e-2	1		- 15	NC	3
50		+ •	min	674	4	-1.62	1	.012	10 -8.433e-3	3	219.554	1	1475.096	
51		7	max	0	1	.96	3	.128	1 1.496e-2	1		15	NC	3
52			min	674	4	-1.596	1	.007	10 -9.277e-3	3	224.59	1	1856.269	1
53		8	max	- <u>074</u> 0	1	.871	3	.075	1 1.625e-2	1			NC	2
54			min	674	4	-1.522	1	0	10 -1.012e-2	3	241.928	1	3186.835	
55		9	max	0	1	.781	3	.048	4 1.753e-2	1		15	NC	1
56		1 3	min	674	4	-1.436	1	006	10 -1.096e-2	3	265.431	1	4777.601	4
57		10	max	074 0	1	.737	3	.021	3 1.882e-2	1		<u>1</u> 15	NC	1
58		10	min	674	4	-1.393	1	014	2 -1.181e-2	3	279.039	1	NC	1
59		11	max	<u>074</u> 0	12	<u>-1.393 </u>	3	.022	3 1.753e-2	<u> </u>		<u></u> 15	NC	1
60		+	min	674	4	-1.436	1	037	5 -1.096e-2	3	265.431	1	6564.116	_
61		12	max	074 0	12	.871	3	.075	1 1.625e-2	<u> </u>		<u></u> 15	NC	2
62		12	min	674	4	-1.522	1	043	5 -1.012e-2	3	241.928	1	3198.667	1
63		13	max	<u>074</u> 0	12	.96	3	.128	1 1.496e-2	<u> </u>		<u>1</u> 15	NC	3
64		13	min	674	4	-1.596	1	028	5 -9.277e-3	3	224.59	1	1856.269	1
65		14	max	<u>074</u> 0	12	1.011	3	.16	1 1.368e-2	<u> </u>		<u></u> 15	NC	3
66		14		674	4	-1.62	1	001	5 -8.433e-3	3	219.554	1	1475.096	
67		15	min	<u>074</u> 0	12	.999	3	.163	1 1.239e-2	1		<u></u> 15	NC	3
68		15	max	675	4	-1.567	1	.013	10 -7.59e-3	3	231.001	1	1453.889	1
69		16	min		12	.912	3	.134	1 1.11e-2	<u> </u>		<u></u> 15	NC	3
70		10	max	0 675	4	-1.426	1	.011	10 -6.746e-3	3	268.552	1	1765.665	
71		17	min		12							<u> </u>		
		17	max	0		.752	3	.084	1 9.817e-3	<u>1</u> 3			NC 2044 24C	3
72		40	min	<u>675</u>	4	<u>-1.197</u>	1	.006	10 -5.902e-3	<u>3</u>	364.143	1_	2841.216	
73		18		0	12	.53	3	.05	4 8.531e-3	1	NC COO FOA	5	NC 4504 550	2
74		40	min	<u>675</u>	4	897	1	0	10 -5.058e-3	3	683.504	1_	4584.559	
75		19	max	0	12	.272	3	.007	3 7.245e-3	1_	NC	1	NC	1
76			min	675	4	<u>554</u>	1	003	2 -4.214e-3	3	NC	1_	NC	1
77	M15	1_	max	0	12	.279	3	.006	3 3.496e-3	3_	NC	1	NC	1
78		_	min	<u>539</u>	4	<u>554</u>	1	003	2 -7.397e-3	1_	NC	<u>1</u>	NC	1
79		2	max	0	12	.449	3	.031	1 4.196e-3	3_	NC NC	5	NC 1017 010	2
80		_	min	<u>539</u>	4	926	1	052	5 -8.72e-3	1_	628.901	1_	4647.619	
81		3	max	0	12	.6	3	.085	1 4.895e-3	3_		<u>15</u>	NC	3
82			min	539	4	-1.25	1	064	5 -1.004e-2	1_	336.037	1_	2826.786	
83		4	max	0	12	.718	3	.135	1 5.595e-3	3		<u>15</u>	NC	3
84		-	min	<u>539</u>	4	<u>-1.493</u>	1	047	5 -1.137e-2	1	249.047	<u>1</u>	1758.751	1
85		5	max	0	12	.796	3	.163	1 6.294e-3	3		<u>15</u>	NC	3
86		_	min	539	4	-1.638	1	013	5 -1.269e-2	1_	215.786	1_	1448.783	
87		6	max	0	12	.832	3	.161	1 6.994e-3	3		<u>15</u>	NC	3
88		-	min	539	4	-1.683	1	.012	10 -1.401e-2	1_	207.198	<u>1</u>	1469.784	
89		7	max	0	12	.832	3	.128	1 7.694e-3	3_	7939.14	<u> 15</u>	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	539	4	<u>-1.642</u>	1	.008	10 -1.534e-2	1	214.908	1_	1848.155	
91		8	max	0	12	.807	3	.087	4 8.393e-3	3		<u>15</u>	NC	2
92			min	539	4	<u>-1.547</u>	1	.001	10 -1.666e-2	1_	235.613	1_	2663.469	
93		9	max	0	12	.774	3	.06	4 9.093e-3	3		15	NC	1
94		40	min	539	4	<u>-1.442</u>	1	005	10 -1.798e-2	1_	263.37	1_	3839.888	4
95		10	max	<u>0</u>	1	.756	3	.019	3 9.793e-3 2 -1.931e-2	3	NC	<u>15</u>	NC NC	1
96		11	min	539	4	<u>-1.39</u>	3	013 .022		<u>1</u> 3	279.606	1_	NC NC	
97			max	0 539	4	.774	1		1 9.093e-3 5 -1.798e-2	<u>3</u>	9518.176 263.37	<u>15</u> 1	4902.503	5
98		12	min		1	<u>-1.442</u>	3	049		•			NC	
99		12	max	0 539	4	.807 -1.547	1	.075 058	1 8.393e-3 5 -1.666e-2	<u>3</u>	8611.987 235.613	<u>15</u> 1	3176.018	1
101		13	min	<u>539</u> 0	1	.832	3	.128	1 7.694e-3	3		15	NC	3
102		13	max	539	4	-1.642	1	038	5 -1.534e-2	1	214.908	1	1848.155	1
103		14		<u>539</u> 0	1	.832	3	<u>036</u> .161	1 6.994e-3		7717.97	15	NC	3
104		14	max	539	4	-1.683	1	004	5 -1.401e-2	<u>3</u> 1		1	1469.784	1
105		15	min max	<u>539</u> 0	1	<u>-1.063</u> .796	3	.163	1 6.294e-3	3	207.198 8086.935	15	NC	3
106		13	min	539	4	-1.638	1	.013	10 -1.269e-2	1	215.786	1	1448.783	1
107		16	max	<u>339</u> 0	1	<u>-1.036</u> .718	3	.135	1 5.595e-3	3	9373.787	15	NC	3
108		10	min	539	4	-1.493	1	.011	10 -1.137e-2	1	249.047	1	1758.751	1
109		17		<u>539</u> 0	1	<u>-1.493 </u>	3	.095	4 4.895e-3	3	NC	15	NC	3
110		17	max min	539	4	-1.25	1	.006	10 -1.004e-2	1	336.037	1	2436.918	
111		18	max	0	1	<u>-1.25</u> .449	3	.065	4 4.196e-3	3	NC	5	NC	2
112		10	min	539	4	926	1	0	10 -8.72e-3	1	628.901	1	3586.583	
113		19	max	0	1	.279	3	.006	3 3.496e-3	3	NC	1	NC	1
114		19	min	539	4	554	1	003	2 -7.397e-3	1	NC NC	1	NC	1
115	M16	1	max	<u>539</u> 0	12	.173	1	.005	3 6.421e-3	3	NC NC	1	NC NC	1
116	IVITO		min	15	4	096	3	003	2 -1.118e-2	1	NC NC	1	NC	1
117		2	max	0	12	.005	4	003 .045	1 7.371e-3	3	NC NC	5	NC	2
118			min	15	4	057	2	037	5 -1.235e-2	1	1135.763	2	5329.297	1
119		3	max	0	12	.026	3	037 .107	1 8.322e-3	3	NC	5	NC	3
120		3	min	15	4	22	2	047	5 -1.353e-2	1	634.306	2	2219.174	1
121		4	max	0	12	.05	3	.16	1 9.272e-3	3	NC	5	NC	3
122		-	min	15	4	31	2	036	5 -1.471e-2	1	508.872	2	1480.109	
123		5	max	0	12	.042	3	.186	1 1.022e-2	3	NC	5	NC	3
124		-	min	15	4	316	2	014	5 -1.588e-2	1	502.469	2	1266.174	1
125		6	max	0	12	.004	12	.179	1 1.117e-2	3	NC	5	NC	3
126			min	15	4	24	2	.007	15 -1.706e-2	1	601.515	2	1314.726	
127		7	max	0	12	.005	4	.141	1 1.212e-2	3	NC	5	NC	3
128			min	15	4	099	2	.01	10 -1.823e-2	1	943.583	2	1677.633	
129		8	max	0	12	.123	1	.082	1 1.307e-2	3	NC	4	NC	3
130			min		4	135	3	.003	10 -1.941e-2		3059.696			
131		9	max	0	12	.279	1	.04	4 1.403e-2	3	NC	5	NC	1
132		<u> </u>	min	15	4	2	3	004	10 -2.059e-2	1	2200.214	1	5800.725	_
133		10	max	0	1	.349	1	.017	3 1.498e-2	3	NC	5	NC	1
134		10	min	15	4	228	3	012	2 -2.176e-2	1	1328.76	1	NC	1
135		11	max	0	1	.279	1	.024	1 1.403e-2	3	NC	5	NC	1
136			min	15	4	2	3	029	5 -2.059e-2	1	2200.214	1	8574.298	_
137		12	max	0	1	.123	1	.082	1 1.307e-2	3	NC	4	NC	3
138		12	min	15	4	135	3	03	5 -1.941e-2	1	3059.696	2	2902.434	
139		13	max	0	1	.005	6	.141	1 1.212e-2	3	NC	5	NC	3
140		13	min	15	4	099	2	013	5 -1.823e-2	1	943.583	2	1677.633	
141		14	max	0	1	.004	12	.179	1 1.117e-2	3	NC	5	NC	3
142		17	min	15	4	24	2	.008	15 -1.706e-2	1	601.515	2	1314.726	
143		15	max	0	1	.042	3	.186	1 1.022e-2	3	NC	5	NC	3
144		13	min	15	4	316	2	.014	12 -1.588e-2	1	502.469	2	1266.174	
145		16	max	0	1	.05	3	.16	1 9.272e-3	3	NC	5	NC	3
146		10	min	15	4	31	2	.012	12 -1.471e-2	1	508.872	2	1480.109	
170			111001	. 10	7	.01		.012	12 1.7/10-2		000.012	_	1700.103	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

4.47	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.026	3	.107	1	8.322e-3	3_	NC	5_	NC 2010 171	3
148		10	min	<u>15</u>	4	22	2	.009	12	-1.353e-2	1_	634.306	2	2219.174	1
149		18	max	0	1	.004	6	.054	4	7.371e-3	3	NC	5	NC	2
150		1.0	min	15	4	057	2	.003	10	-1.235e-2	1_	1135.763	2	4261.338	
151		19	max	.001	1	.173	1	.005	3	6.421e-3	3	NC	_1_	NC NC	1
152	140		min	149	4	096	3	003	2	-1.118e-2	1_	NC	1_	NC	1
153	M2	1_	max	.007	1	.006	2	.013	1	2.687e-3	5	NC	1_	NC	2
154		+_	min	007	3	011	3	857	4	-3.007e-4	_1_	NC	1_	80.624	4
155		2	max	.007	1	.005	2	.012	1	2.729e-3	5	NC	1_	NC	2
156		_	min	006	3	<u>011</u>	3	787	4	-2.837e-4	_1_	NC	1_	87.822	4
157		3	max	.006	1	.004	2	.011	1	2.772e-3	5	NC	_1_	NC	2
158			min	006	3	01	3	<u>717</u>	4	-2.667e-4	_1_	NC	1_	96.376	4
159		4	max	.006	1	.003	2	.01	1	2.814e-3	5	NC	_1_	NC	2
160			min	006	3	01	3	648	4	-2.497e-4	1_	NC	1_	106.643	4
161		5	max	.005	1	.002	2	.009	1	2.856e-3	5_	NC	1_	NC	2
162			min	005	3	01	3	58	4	-2.327e-4	1_	NC	1_	119.104	4
163		6	max	.005	1	.001	2	.008	1	2.898e-3	<u>5</u>	NC	_1_	NC	2
164			min	005	3	01	3	514	4	-2.157e-4	_1_	NC	<u>1</u>	134.43	4
165		7	max	.005	1	0	2	.007	1	2.941e-3	_5_	NC	_1_	NC	1
166			min	004	3	009	3	45	4	-1.986e-4	1_	NC	1_	153.574	4
167		8	max	.004	1	0	15	.006	1	2.986e-3	4_	NC	_1_	NC	1
168			min	004	3	009	3	388	4	-1.816e-4	1_	NC	1_	177.928	4
169		9	max	.004	1	0	15	.005	1	3.033e-3	4	NC	<u>1</u>	NC	1
170			min	004	3	008	3	33	4	-1.646e-4	1_	NC	1_	209.589	4
171		10	max	.004	1	0	15	.004	1	3.081e-3	4	NC	1_	NC	1_
172			min	003	3	008	3	274	4	-1.476e-4	1_	NC	1_	251.845	4
173		11	max	.003	1	0	15	.003	1	3.129e-3	4	NC	1_	NC	1
174			min	003	3	007	3	223	4	-1.306e-4	1	NC	1	310.087	4
175		12	max	.003	1	0	15	.003	1	3.176e-3	4	NC	1_	NC	1
176			min	003	3	007	3	176	4	-1.136e-4	1	NC	1	393.67	4
177		13	max	.002	1	0	15	.002	1	3.224e-3	4	NC	1_	NC	1
178			min	002	3	006	3	133	4	-9.655e-5	1	NC	1	520.033	4
179		14	max	.002	1	0	15	.001	1	3.272e-3	4	NC	1	NC	1
180			min	002	3	005	3	095	4	-7.954e-5	1	NC	1	724.84	4
181		15	max	.002	1	0	15	0	1	3.32e-3	4	NC	1	NC	1
182			min	001	3	004	3	063	4	-6.252e-5	1	NC	1	1090.925	4
183		16	max	.001	1	0	15	0	1	3.367e-3	4	NC	1	NC	1
184			min	001	3	004	6	037	4	-4.551e-5	1	NC	1	1849.778	4
185		17	max	0	1	0	15	0	1	3.415e-3	4	NC	1	NC	1
186			min	0	3	003	6	018	4	-2.849e-5	1	NC	1	3875.196	4
187		18	max	0	1	0	15	0	1	3.463e-3	4	NC	1_	NC	1
188			min	0	3	001	6	005	4	-1.147e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.511e-3	4	NC	1	NC	1
190			min	0	1	0	1	0	1	7.241e-8	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-1.172e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-7.29e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.019	4	6.575e-5	4	NC	1_	NC	1
194			min	0	2	003	6	0	12	1.586e-6	12	NC	1	NC	1
195		3	max	0	3	001	15	.037	4	8.606e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	12	3.288e-6	12	NC	1	9296.11	5
197		4	max	0	3	002	15	.054	4	1.655e-3	4	NC	1	NC	1
198			min	0	2	008	6	0	12	4.991e-6	12	NC	1	6859.282	5
199		5	max	.001	3	003	15	.07	4	2.45e-3	4	NC	1	NC	1
200			min	0	2	011	6	0	12	6.694e-6	12	8967.629	6	5752.015	5
201		6	max	.002	3	003	15	.084	4	3.245e-3	4	NC	2	NC	1
202			min	001	2	014	6	0	12	8.397e-6	12	7226.192	6	5204.65	5
203		7	max	.002	3	004	15	.098	4	4.04e-3	4	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Deciding	1 1 7 5 1 1 5 5 5 1 1 7 5 1 6 5 1 1
Min 002 2 019 6 0 12 1.18e-5 12 5533.513 6 4959.15	7 5 1 3 5 1 5 5 1 7 5 1 6 5 1 1 2 5 1 1 1 1
Decoration	1 3 5 1 5 5 1 7 5 1 6 5 1 2 5
Decoration Dec	1 5 5 1 7 5 1 6 5 1 2 5 1
10 max	1 5 5 1 7 5 1 6 5 1 2 5 1
210	5 5 1 7 5 1 6 5 1 2 5
11	1 7 5 1 6 5 1 2 5 1
Decomposition Color Colo	7 5 1 6 5 1 2 5 1
213 12 max .004 3 004 15 .157 4 8.014e-3 4 NC 5 NC 214 min 003 2 02 6 0 12 1.861e-5 12 5086.902 6 7277.83 215 13 max .004 3 004 15 .167 4 8.809e-3 4 NC 5 NC 216 min 003 2 019 6 0 12 2.032e-5 12 5432.45 6 9003.93 217 14 max .004 3 004 15 .177 4 9.603e-3 4 NC 5 NC 218 min 003 2 017 6 0 12 2.02e-5 12 6054.268 6 NC 219 15 max .005 3 003 15 .188 4 1.04e-2	1 6 5 1 2 5 1
214	6 5 1 2 5 1 1
215 13 max .004 3 004 15 .167 4 8.809e-3 4 NC 5 NC 216 min 003 2 019 6 0 12 2.032e-5 12 5432.45 6 9003.93 217 14 max .004 3 004 15 .177 4 9.603e-3 4 NC 5 NC 218 min 003 2 017 6 0 12 2.202e-5 12 6054.268 6 NC 219 15 max .005 3 003 15 .188 4 1.04e-2 4 NC 3 NC 220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2	1 2 5 1 1
216 min 003 2 019 6 0 12 2.032e-5 12 5432.45 6 9003.93 217 14 max .004 3 004 15 .177 4 9.603e-3 4 NC 5 NC 218 min 003 2 017 6 0 12 2.202e-5 12 6054.268 6 NC 219 15 max .005 3 003 15 .188 4 1.04e-2 4 NC 3 NC 220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12	2 5
217 14 max .004 3 004 15 .177 4 9.603e-3 4 NC 5 NC 218 min 003 2 017 6 0 12 2.202e-5 12 6054.268 6 NC 219 15 max .005 3 003 15 .188 4 1.04e-2 4 NC 3 NC 220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 <	1
218 min 003 2 017 6 0 12 2.202e-5 12 6054.268 6 NC 219 15 max .005 3 003 15 .188 4 1.04e-2 4 NC 3 NC 220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 <td< td=""><td>1</td></td<>	1
219 15 max .005 3 003 15 .188 4 1.04e-2 4 NC 3 NC 220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4	1
220 min 003 2 014 6 0 12 2.372e-5 12 7124.537 6 NC 221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4 NC 1 NC 226 min 004 2 006 1 0 12 2.883e-5 12 NC	
221 16 max .005 3 002 15 .198 4 1.119e-2 4 NC 1 NC 222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4 NC 1 NC 226 min 004 2 006 1 0 12 2.883e-5 12 NC 1 9831.69 227 19 max .006 3 0 5 .235 4 1.358e-2 4	1
222 min 004 2 011 6 0 12 2.542e-5 12 9060.747 6 NC 223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4 NC 1 NC 226 min 004 2 006 1 0 12 2.883e-5 12 NC 1 9831.69 227 19 max .006 3 0 5 .235 4 1.358e-2 4 NC 1 NC 228 min 004 2 003 1 0 12 3.053e-5 12 NC	1
223 17 max .005 3 002 15 .21 4 1.199e-2 4 NC 1 NC 224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4 NC 1 NC 226 min 004 2 006 1 0 12 2.883e-5 12 NC 1 9831.69 227 19 max .006 3 0 5 .235 4 1.358e-2 4 NC 1 NC 228 min 004 2 003 1 0 12 3.053e-5 12 NC 1 8428.60 229 M4 1 max .003 1 .004 2 0 12 1.568e-4 <t< td=""><td>1</td></t<>	1
224 min 004 2 008 1 0 12 2.713e-5 12 NC 1 NC 225 18 max .006 3 0 15 .222 4 1.278e-2 4 NC 1 NC 226 min 004 2 006 1 0 12 2.883e-5 12 NC 1 9831.69 227 19 max .006 3 0 5 .235 4 1.358e-2 4 NC 1 NC 228 min 004 2 003 1 0 12 3.053e-5 12 NC 1 8428.60 229 M4 1 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 230 min 0 3 006 3 235 4 -9.801e-4 5	1
226 min 004 2 006 1 0 12 2.883e-5 12 NC 1 9831.69 227 19 max .006 3 0 5 .235 4 1.358e-2 4 NC 1 NC 228 min 004 2 003 1 0 12 3.053e-5 12 NC 1 8428.60 229 M4 1 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 230 min 0 3 006 3 235 4 -9.801e-4 5 NC 1 105.66 231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 <t< td=""><td>1</td></t<>	1
227 19 max .006 3 0 5 .235 4 1.358e-2 4 NC 1 NC 228 min 004 2 003 1 0 12 3.053e-5 12 NC 1 8428.60 229 M4 1 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 230 min 0 3 006 3 235 4 -9.801e-4 5 NC 1 105.66 231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	2
228 min 004 2 003 1 0 12 3.053e-5 12 NC 1 8428.66 229 M4 1 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 230 min 0 3 006 3 235 4 -9.801e-4 5 NC 1 105.66 231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	5 1
229 M4 1 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 230 min 0 3 006 3 235 4 -9.801e-4 5 NC 1 105.66 231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	2
230 min 0 3 006 3 235 4 -9.801e-4 5 NC 1 105.66 231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	
231 2 max .003 1 .004 2 0 12 1.568e-4 1 NC 1 NC 232 min 0 3 006 3 216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	3
232 min 0 3006 3216 4 -9.801e-4 5 NC 1 115.01 233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	
233 3 max .002 1 .004 2 0 12 1.568e-4 1 NC 1 NC	3
234 min 0 3 - 005 3 - 197 4 -9.801e-4 5 NC 1 126.12	3
235 4 max .002 1 .003 2 0 12 1.568e-4 1 NC 1 NC	3
236 min 0 3005 3178 4 -9.801e-4 5 NC 1 139.47	
237 5 max .002 1 .003 2 0 12 1.568e-4 1 NC 1 NC	3
238 min 0 3005 3159 4 -9.801e-4 5 NC 1 155.67	
239 6 max .002 1 .003 2 0 12 1.568e-4 1 NC 1 NC	3
240 min 0 3004 3141 4 -9.801e-4 5 NC 1 175.60	
	3
	2
243 8 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 244 min 0 3004 3107 4 -9.801e-4 5 NC 1 232.14	1 4
245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC	2
246 min 0 3003 3091 4 -9.801e-4 5 NC 1 273.25	
247	2
248 min 0 3003 3076 4 -9.801e-4 5 NC 1 328.06	
249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC	2
250 min 0 3003 3061 4 -9.801e-4 5 NC 1 403.49	
251	2
252 min 0 3002 3048 4 -9.801e-4 5 NC 1 511.52	
253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC) 4
254 min 0 3002 3037 4 -9.801e-4 5 NC 1 674.40	
255	1
256 min 0 3002 3026 4 -9.801e-4 5 NC 1 937.37	1
257	1 1 4 1
258 min 0 3001 3018 4 -9.801e-4 5 NC 1 1404.70	1 1 4 1
259 16 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC	1 1 4 1 3 4 1
260 min 0 3001 301 4 -9.801e-4 5 NC 1 2365.00	1 1 4 1 3 4 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	1.568e-4	_1_	NC	_1_	NC	1
262			min	0	3	0	3	005	4	-9.801e-4	5	NC	1_	4887.938	4
263		18	max	0	1	0	2	00	12	1.568e-4	_1_	NC	_1_	NC	1
264			min	0	3	0	3	002	4	-9.801e-4	5_	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.568e-4	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-9.801e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.022	1	.025	2	0	1	2.834e-3	4	NC	3	NC	1
268			min	022	3	034	3	866	4	0	1_	2774.552	2	79.759	4
269		2	max	.021	1	.023	2	0	1	2.873e-3	4	NC	3	NC	1
270			min	021	3	032	3	<u>795</u>	4	0	1_	3060.48	2	86.881	4
271		3	max	.02	1	.02	2	0	1	2.912e-3	4	NC	3	NC	1
272		-	min	<u>019</u>	3	03	3	725	4	0	1	3409.002	2	95.344	4
273		4	max	.019	1	.018	2	0	1	2.951e-3	4_	NC	3	NC	1
274		_	min	018	3	029	3	<u>655</u>	4	0	1_	3839.256	2	105.501	4
275		5_	max	.017	1	.016	2	0	1	2.99e-3	4	NC	3_	NC	1
276			min	017	3	027	3	586	4	0	1_	4378.567	2	117.83	4
277		6	max	.016	1	.014	2	0	1	3.03e-3	4	NC F007.00	3_	NC 400,004	1
278		-	min	016	3	025	3	<u>52</u>	4	0	1_	5067.08	2	132.994	4
279		7	max	.015	1	.012	2	0	1	3.069e-3	4_	NC	1_	NC 454 888	1
280		_	min	015	3	023	3	<u>455</u>	4	0	1_	5965.803	2	151.936	4
281		8	max	.014	1	.01	2	0	1	3.108e-3	4	NC	1_	NC 470,000	1
282			min	013	3	021	3	393	4	0	1_1	7171.316	2	176.032	4
283		9	max	.012	1	.008	2	0	1	3.147e-3	4	NC 0044 202	1_	NC 007.050	1
284		10	min	012	3	02	3	333	4	0	1_1	8844.383	2	207.359	4
285		10	max	.011	1	.006	2	0	1	3.186e-3	4	NC NC	1_	NC 240,400	1
286		4.4	min	011	3	018	3	277	4	0	1_1	NC NC	1_	249.169	4
287		11	max	.01	1	.005	2	0	1	3.225e-3	4	NC NC	1_	NC 200 707	1
288		40	min	01	3	016	3	225	4	0	1_1	NC NC	1_	306.797	4
289		12	max	.009	1	.003	2	0	1	3.264e-3	4	NC NC	1	NC	1
290 291		13	min	008 .007	3	014 .002	2	<u>177</u> 0	1	3.304e-3	<u>1</u> 4	NC NC	1	389.502 NC	1
292		13	max	007	3	012	3	134	4	0.3046-3	1	NC NC	1	514.539	4
293		14	min	.007	1	.001	2	134 0	1	3.343e-3	4	NC NC	1	NC	1
294		14	max	006	3		3	096	4	0.3436-3	1	NC NC	1	717.204	4
295		15		.005	1	01 0	2	<u>096 </u>	1	3.382e-3	4	NC NC	1	NC	1
296		15	max min	005	3	008	3	064	4	0.3026-3	1	NC NC	1	1079.471	4
297		16	max	.004	1	0 	2	0004	1	3.421e-3	4	NC	1	NC	1
298		10	min	004	3	006	3	038	4	0	1	NC	1	1830.451	4
299		17	max	.002	1	_ 000 _	2	036 0	1	3.46e-3	4	NC	+	NC	1
300		17	min	002	3	004	3	018	4	0	1	NC	1	3835.032	4
301		18	max	.002	1	0	2	0	1	3.499e-3		NC	1	NC	1
302		10	min	001	3	002	3	005	4	0.43300	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.538e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0.0000	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1717	<u>'</u>	min	0	1	0	1	0	1	-7.345e-4	4	NC	1	NC	1
307		2	max	.001	3	0	15	.019	4	3.498e-5	4	NC	1	NC	1
308			min	0	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	001	15	.037	4	8.044e-4	4	NC	1	NC	1
310		Ĭ	min	002	2	006	3	0	1	0	1	NC	1	8378.195	
311		4	max	.003	3	002	15	.054	4	1.574e-3	4	NC	1	NC	1
312			min	003	2	009	3	0	1	0	1	NC	1	6140.542	4
313		5	max	.004	3	003	15	.07	4	2.343e-3	4	NC	1	NC	1
314			min	004	2	012	3	0	1	0	1	9034.773	4	5109.906	_
315		6	max	.005	3	003	15	.085	4	3.113e-3	4	NC	1	NC	1
316			min	005	2	014	4	0	1	0	1	7275.181	4	4582.91	4
317		7	max	.006	3	004	15	.099	4	3.882e-3	4	NC	1	NC	1
	_					_						_		_	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			
318			min	006	2	017	4	0	1	0	_1_	6217.898	4	4332.213	
319		8	max	.007	3	004	15	.112	4	4.652e-3	_4_	NC	2	NC	1_
320			min	007	2	019	4	0	1	0	<u>1</u>	5565.315	4_	4269.764	
321		9	max	.008	3	005	15	.124	4	5.421e-3	4	NC	5	NC	1
322			min	008	2	02	4	0	1	0	1_	5177.54	4	4364.598	4
323		10	max	.009	3	005	15	.135	4	6.191e-3	_4_	NC	5_	NC	1_
324			min	009	2	021	4	0	1	0	1_	4986.484	4	4618.757	4
325		11	max	.01	3	005	15	.145	4	6.96e-3	_4_	NC	5	NC	1_
326			min	01	2	021	4	0	1	0	1	4963.81	4	5063.601	4
327		12	max	.011	3	005	15	.155	4	7.729e-3	_4_	NC	_5_	NC	1_
328			min	011	2	021	4	0	1	0	1_	5110.043	4	5769.656	
329		13	max	.012	3	005	15	.165	4	8.499e-3	4	NC	5	NC	1_
330			min	012	2	02	4	0	1	0	1_	5456.137	4	6876.04	4
331		14	max	.013	3	004	15	.175	4	9.268e-3	4	NC	5	NC	1
332			min	013	2	018	4	0	1	0	1	6079.717	4	8664.755	4
333		15	max	.014	3	004	15	.184	4	1.004e-2	4	NC	_1_	NC	1_
334			min	013	2	015	4	0	1	0	1	7153.575	4	NC	1
335		16	max	.015	3	003	15	.194	4	1.081e-2	4	NC	1	NC	1
336			min	014	2	013	4	0	1	0	1	9096.768	4	NC	1
337		17	max	.016	3	002	15	.204	4	1.158e-2	4	NC	1	NC	1
338			min	015	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.017	3	001	15	.214	4	1.235e-2	4	NC	1	NC	1
340			min	016	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.018	3	0	15	.225	4	1.312e-2	4	NC	1	NC	1
342			min	017	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
344			min	0	3	019	3	225	4	-1.155e-3	4	NC	1	110.019	4
345		2	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
346			min	0	3	018	3	207	4	-1.155e-3	4	NC	1	119.762	4
347		3	max	.007	1	.015	2	0	1	0	1	NC	1	NC	1
348			min	0	3	016	3	189	4	-1.155e-3	4	NC	1	131.351	4
349		4	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
350			min	0	3	015	3	171	4	-1.155e-3	4	NC	1	145.265	4
351		5	max	.006	1	.013	2	0	1	0	1	NC	1	NC	1
352			min	0	3	014	3	153	4	-1.155e-3	4	NC	1	162.157	4
353		6	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
354			min	0	3	013	3	136	4	-1.155e-3	4	NC	1	182.934	4
355		7	max	.005	1	.011	2	0	1	0	1	NC	1	NC	1
356			min	0	3	012	3	119	4	-1.155e-3	4	NC	1	208.88	4
357		8	max	.005	1	.01	2	0	1	0	1	NC	1	NC	1
358		Ĭ	min	0	3	011	3	103	4	-1.155e-3	4	NC	1	241.87	4
359		9	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
360			min	0	3	01	3	087	4	-1.155e-3	4	NC	1	284.728	4
361		10	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	009	3	073	4	-1.155e-3	4	NC	1	341.866	4
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	059	4	-1.155e-3	4	NC	1	420.504	4
365		12	max	.003	1	.006	2	059	1	0	1	NC	1	NC	1
366		14	min	0	3	007	3	047	4	-1.155e-3	4	NC	1	533.134	4
367		13	max	.002	1	.005	2	<u>047</u> 0	1	0	1	NC	1	NC	1
368		13	min	0	3	006	3	035	4	-1.155e-3	4	NC	1	702.944	4
369		14		.002	1	.005	2	035 0	1	0	1	NC	1	NC	1
		14	max	.002	3	005	3	025	4	-1.155e-3	4	NC NC	1	977.115	4
370 371		15	min	.002	1	.005 .004	2	<u>025</u> 0	1	0	<u>4</u> 1	NC NC	1	NC	1
		10	max		3				4	_			1		
372		16	min	0		004	3	017		-1.155e-3	4	NC NC	_	1464.429	
373		16	max	.001	1	.003	2	0	1	0	1_1	NC NC	1	NC 2465 664	1
374			min	0	3	003	3	01	4	-1.155e-3	4	NC	1_	2465.664	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		40	min	0	3	002	3	005	4	-1.155e-3	4_	NC	1_	5096.387	4
377		18	max	0	1	0	2	0	1	0	1_	NC	1	NC	1
378		40	min	0	3	001	3	001	4	-1.155e-3	4	NC NC	1_	NC NC	1
379		19	max	0	1	<u> </u>	1	0	1	0 -1.155e-3	1_	NC NC	1	NC NC	1
380	M40	1	min	.007	•			0	12		4		_	NC NC	2
381	M10		max		3	.006 011	3	0		2.821e-3 1.633e-5	<u>4</u> 12	NC NC	1		4
		2	min	007	1			864	12	2.859e-3			1	79.94	2
383			max	.007	3	.005	3	<u> </u>	4	2.659e-3 1.542e-5	4	NC NC	1	NC	4
385		3	min	006 .006	1	011 .004	2	<u>794</u> 0	12	2.897e-3	<u>12</u> 4	NC NC	1	87.077 NC	2
386		3	max	006	3	01	3	723	4	1.451e-5	12	NC NC	1	95.56	4
387		4	min	.006	1	.003	2	<u>123</u> 0	12	2.935e-3	4	NC NC	1	95.56 NC	2
		4	max		3		3	654		1.359e-5		NC NC	1		4
388		-	min	006	1	01			4		12	NC NC	1	105.741 NC	2
389		5	max	.005 005	3	.002 01	3	0 585	12	2.973e-3 1.268e-5	<u>4</u> 12	NC NC	1	118.098	4
391		6	min	.005	1	.001	2	<u>365</u> 0	12	3.011e-3	4	NC NC	1	NC	2
392		0	max	005	3	01	3	518	4	1.177e-5	12	NC NC	1	133.297	4
		7			1				12		-		1		1
393			max	.005	3	0	2	<u> </u>	4	3.049e-3	4	NC NC	1	NC	-
394 395		8	min	004 .004	1	009 0	2	<u>454</u> 0	12	1.086e-5 3.088e-3	<u>12</u> 4	NC NC	1	152.283 NC	1
		-	max		3	009	3	392		9.95e-6		NC NC	1		_
396 397		9	min	<u>004</u>			2	<u>392</u> 0	12		12	NC NC	1	176.435 NC	4
		+ 9	max	.004	3	001				3.126e-3 9.039e-6	4		1		1_1
398		40	min	004		008	3	333	4		12	NC NC	1	207.835	4
399		10	max	.004	3	002	3	0 277	12	3.164e-3 8.128e-6	4	NC NC	1	NC 249.745	4
400		11	min	003		008			4		12		_	NC	1
401			max	.003	3	002 007	15	0 225	12	3.202e-3	4	NC NC	1	307.511	
402		12	min	003	1		15		12	7.217e-6	12		1		1
403 404		12	max	.003 003	3	002 007	3	0 177	4	3.24e-3 6.306e-6	<u>4</u> 12	NC NC	1	NC 390.416	4
405		13	max	.002	1	007 002	15	<u>177</u> 0	12	3.278e-3	4	NC NC	1	NC	1
406		13	min	002	3	002	4	134	4	5.395e-6	12	NC	1	515.76	4
407		14	max	.002	1	000 002	15	134 0	12	3.316e-3	4	NC	1	NC	1
408		14	min	002	3	002	4	096	4	4.483e-6	12	NC NC	1	718.933	4
409		15		.002	1	000 001	15	<u>090</u> 0	12	3.354e-3	4	NC	1	NC	1
410		13	max min	001	3	001 005	4	064	4	3.572e-6	12	NC NC	1	1082.135	4
411		16	max	.001	1	003 001	15	0004	12	3.392e-3	4	NC	1	NC	1
412		10	min	001	3	004	4	038	4	2.661e-6	12	NC	1	1835.139	4
413		17	max	001	1	004	15	030	12	3.431e-3	4	NC	1	NC	1
414		11/	min	0	3	003	4	018	4	1.75e-6	12	NC NC	1	3845.529	4
415		18	max	0	1	<u>003</u> 0	15	0	12	3.469e-3		NC	1	NC	1
416		10	min	0	3	002	4	005	4	8.387e-7	12	NC	1	NC	1
417		19	max	0	1	0	1	<u>.005</u>	1	3.507e-3	4	NC	-	NC	1
418		13	min	0	1	0	1	0	1	-5.54e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.273e-6	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	-7.271e-4		NC	1	NC	1
421		2	max	0	3	0	15	.019	4	5.239e-5	5	NC	1	NC	1
422			min	0	2	003	4	0	1	-3.216e-5		NC	1	NC	1
423		3	max	0	3	001	15	.037	4	8.224e-4	4	NC	1	NC	1
424			min	0	2	006	4	0	1	-6.76e-5	1	NC	1	8817.504	4
425		4	max	0	3	002	15	.054	4	1.597e-3	4	NC	1	NC	1
426			min	0	2	009	4	0	1	-1.03e-4	1	NC	1	6489.438	_
427		5	max	.001	3	003	15	.069	4	2.372e-3	4	NC	1	NC	1
428			min	0	2	012	4	0	1	-1.385e-4		8618.074	4	5425.541	4
429		6	max	.002	3	004	15	.084	4	3.146e-3	4	NC	2	NC	1
430			min	001	2	015	4	0	1	-1.739e-4	1	6970.033	4	4891.898	
431		7	max	.002	3	004	15	.098	4	3.921e-3	4	NC	5	NC	1
TUI			παλ	.002	J	.00+	IU	.030		0.0216-0	7	140	<u> </u>	110	<u> </u>

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	001	2	018	4	0	1	-2.093e-4	1_	5978.114	4	4652.603	
433		8	max	.002	3	005	15	.111	4	4.696e-3	4_	NC	5	NC	1
434			min	002	2	02	4	001	1	-2.448e-4	_1_	5366.156	4_	4618.231	4
435		9	max	.003	3	005	15	.123	4	5.471e-3	4	NC FOOA OAO	5	NC	1
436		40	min	002	2	021	4	002	1	-2.802e-4	1_	5004.213	4_	4760.611	4
437		10	max	.003	3	005	15	.134	4	6.245e-3	4	NC	<u>5</u>	NC FORR OFF	4
438 439		11	min	002 .003	3	022 005	15	002 .145	4	-3.157e-4	<u>1</u> 4	4829.203 NC	_4 5	5088.965 NC	1
440		+	max	002	2	005 022	4	003	1	7.02e-3 -3.511e-4	1	4815.332	4	5648.719	
441		12	max	.002	3	022 005	15	003 .155	4	7.795e-3	4	NC	5	NC	1
442		12	min	003	2	005 021	4	003	1	-3.865e-4	1	4964.208	4	6537.72	4
443		13	max	.004	3	005	15	.165	4	8.569e-3	4	NC	5	NC	1
444		13	min	003	2	02	4	004	1	-4.22e-4	1	5306.716	4	7951.41	4
445		14	max	.004	3	005	15	.174	4	9.344e-3	4	NC	5	NC	1
446		17	min	003	2	018	4	005	1	-4.574e-4	1	5919.047	4	NC	1
447		15	max	.005	3	004	15	.184	4	1.012e-2	4	NC	3	NC	1
448			min	003	2	016	4	006	1	-4.928e-4	1	6970.119	4	NC	1
449		16	max	.005	3	003	15	.194	4	1.089e-2	4	NC	1	NC	1
450			min	004	2	013	4	007	1	-5.283e-4	1	8869.073	4	NC	1
451		17	max	.005	3	002	15	.205	4	1.167e-2	4	NC	1	NC	1
452			min	004	2	009	4	009	1	-5.637e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	.216	4	1.244e-2	4	NC	1	NC	2
454			min	004	2	006	1	01	1	-5.991e-4	1	NC	1	9831.695	1
455		19	max	.006	3	0	10	.228	4	1.322e-2	4	NC	1	NC	2
456			min	004	2	003	1	012	1	-6.346e-4	1	NC	1	8428.607	1
457	M12	1	max	.003	1	.004	2	.012	1	-7.909e-6	12	NC	1_	NC	3
458			min	0	3	006	3	228	4	-1.055e-3	4	NC	1_	108.847	4
459		2	max	.003	1	.004	2	.011	1	-7.909e-6	12	NC	1_	NC	3
460			min	0	3	006	3	209	4	-1.055e-3	4	NC	1_	118.479	4
461		3	max	.002	1	.004	2	.01	1	-7.909e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	005	3	191	4	-1.055e-3	4	NC	1_	129.935	4
463		4	max	.002	1	.003	2	.009	1	-7.909e-6	12	NC	1_	NC	3
464		-	min	0	3	005	3	<u>173</u>	4	-1.055e-3	4	NC	1_	143.69	4
465		5	max	.002	1	.003	2	.008	1	-7.909e-6	12	NC	1_	NC 400,000	3
466			min	0	3	005	3	1 <u>55</u>	4	-1.055e-3	4	NC NC	1_	160.389	4
467		6	max	.002	1	.003	2	.007	1	-7.909e-6	12	NC NC	1_	NC	3
468		7	min	0	3	<u>004</u>	3	137	1	-1.055e-3	4	NC NC	1	180.929	3
469			max	.002	3	.003	3	.006		-7.909e-6	12		1_1	NC 206.58	
470 471		8	min	.002	1	004 .002	2	12 .006	1	-1.055e-3 -7.909e-6	<u>4</u> 12	NC NC	1	NC	2
471		0	max min		3	004	3	104		-1.055e-3		NC NC	1	239.195	
473		9	max	.002	1	.002	2	.005	1	-7.909e-6		NC	1	NC	2
474		-	min	0	3	003	3	088	4	-1.055e-3	4	NC	1	281.564	4
475		10	max	.001	1	.002	2	.004	1	-7.909e-6		NC	1	NC	2
476		10	min	0	3	003	3	073	4	-1.055e-3	4	NC	1	338.051	4
477		11	max	.001	1	.002	2	.003	1	-7.909e-6	12	NC	1	NC	2
478			min	0	3	003	3	06	4	-1.055e-3	4	NC	1	415.793	4
479		12	max	.001	1	.002	2	.003	1	-7.909e-6		NC	1	NC	2
480			min	0	3	002	3	047	4	-1.055e-3	4	NC	1	527.138	4
481		13	max	0	1	.001	2	.002	1	-7.909e-6	12	NC	1	NC	1
482			min	0	3	002	3	036	4	-1.055e-3	4	NC	1	695.008	4
483		14	max	0	1	.001	2	.001	1	-7.909e-6	12	NC	1	NC	1
484			min	0	3	002	3	026	4	-1.055e-3	4	NC	1	966.043	4
485		15	max	0	1	0	2	0	1	-7.909e-6	12	NC	1	NC	1
486			min	0	3	001	3	017	4	-1.055e-3	4	NC	1	1447.772	4
487		16	max	0	1	0	2	0	1	-7.909e-6	12	NC	1	NC	1
488			min	0	3	001	3	01	4	-1.055e-3	4	NC	1	2437.508	4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-7.909e-6	12	NC	1_	NC	1
490			min	0	3	0	3	005	4	-1.055e-3	4	NC	1	5037.924	4
491		18	max	0	1	0	2	0	1	-7.909e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-1.055e-3	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.909e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-1.055e-3	4	NC	1	NC	1
495	M1	1	max	.008	3	.178	1	.918	4	1.384e-2	1	NC	1	NC	1
496			min	004	2	025	3	0	12	-1.94e-2	3	NC	1	NC	1
497		2	max	.008	3	.088	1	.888	4	1.05e-2	4	NC	5	NC	1
498			min	004	2	012	3	009	1	-9.631e-3	3	1502.184	1	9144.624	5
499		3	max	.008	3	.011	3	.857	4	1.796e-2	4	NC	5	NC	2
500		Ť	min	004	2	01	2	013	1	-2.83e-4	1	721.125	1	5011.126	
501		4	max	.007	3	.05	3	.825	4	1.563e-2	4	NC	15	NC	1
502			min	004	2	119	1	012	1	-3.858e-3	3	453.197	1	3599.266	5
503		5	max	.007	3	.102	3	.792	4	1.33e-2	4	9567.734	15	NC	1
504		 	min	004	2	235	1	008	1	-7.619e-3	3	325.654	1	2884.564	_
505		6	max	.007	3	.158	3	.759	4	1.485e-2	1	7552.593	15	NC	1
506		—	min	003	2	348	1	004	1	-1.138e-2	3	255.583	1	2450.544	5
507		7	max	.007	3	.212	3	.724	4	1.989e-2	1	6363.844	15	NC	1
508			min	003	2	45	1	0	3	-1.514e-2	3	214.332	1	2143.865	
509		8	max	.007	3	.257	3	.689	4	2.494e-2	1	5660.922	15	NC	1
510			min	003	2	53	1	0	12	-1.89e-2	3	189.983	1	1915.794	
511		9	max	.007	3	.287	3	.652	4	2.74e-2	1	5293.516	15	NC	1
512		1 3	min	003	2	581	1	0	1	-1.909e-2	3	177.306	1	1768.264	
513		10	max	.003	3	.298	3	.611	4	2.815e-2	1	5181.324	15	NC	1
514		10	min	003	2	598	1	0	12	-1.689e-2	3	173.502	1	1725.478	_
515		11	max	.006	3	.291	3	.567	4	2.889e-2	<u> </u>	5293.309	15	NC	1
516		+ ' '	min	003	2	58	1	0	12	-1.469e-2	3	177.531	1	1765.31	4
517		12	max	.006	3	.267	3	.519	4	2.721e-2	1	5660.432	15	NC	1
518		12		003	2	529	1	001	1	-1.238e-2	3	190.674	1	1896.094	
519		13	min max	.006	3	.227	3	.465	4	2.193e-2	<u> </u>	6362.887	15	NC	1
520		13	min	003	2	446	1	0	1	-9.902e-3	3	216.023	1	2258.845	
		14		.006	3	440 .177	3	.407					15	NC	4
521 522		14	max		2		1	.407	4	1.664e-2 -7.424e-3	1	7550.829 259.199	1	3064.571	4
		15	min	003		<u>343</u> .12		•	12		3		15	NC	1
523		15	max	.006	3		3	.347	12	1.136e-2 -4.947e-3	1	9564.484 333.07	1 <u>0</u>	5000.073	4
524		16	min	003		229	3	0			3		_		_
525		16	max	.006	3	.061		.289	4	1.08e-2	4	NC 469.702	<u>15</u>	NC NC	1
526		47	min	003	2	113	1	0	12	-2.47e-3	3_	468.702	1_	NC NC	1
527		17	max	.005	3	.004	3	.236	4	1.204e-2	4_	NC 755.704	5_	NC NC	1
528		40	min	003	2	005	1	0	12	7.693e-6	<u>3</u>	755.784	1_	NC NC	1
529		18	max	.005	3	.089		.19	4	8.457e-3		NC	5	NC NC	
530		10	min	003	2	<u>048</u>	3	0	12			1589.818	1	NC NC	1
531		19	max	.005	3	.173	1	.149	4	1.651e-2	2	NC	1	NC	1
532	N 4 5		min	003	2	096	3	001	1	-5.563e-3	3	NC NC	1_	NC NC	1
533	<u>M5</u>	1_	max	.023	3	.363	1	.918	4	0	1_1	NC NC	1_	NC NC	1
534			min	016	2	011	3	0	1	-8.602e-6	4	NC NC	1_	NC NC	1
535		2	max	.023	3	.18	1	.895	4	9.203e-3	4_	NC 705.055	5	NC OOAA 55	1
536		_	min	016	2	004	3	0	1	0	_1_	735.355	1_	6814.55	4
537		3	max	.023	3	.034	3	.866	4	1.819e-2	4	NC 244 000	<u>15</u>	NC 4004 000	1
538			min	016	2	031	2	0	1	0	1_1	341.986	1_	4001.292	4
539		4	max	.023	3	.129	3	.833	4	1.482e-2	4	6757.241	<u>15</u>	NC	1
540			min	016	2	289	1	0	1	0	1_	206.426	1_	3091.445	4
541		5_	max	.022	3	.264	3	.798	4	1.145e-2	4_	4711.957	<u>15</u>	NC	1
542			min	015	2	<u>574</u>	1	0	1	0	1_	143.578	1_	2651.275	
543		6	max	.022	3	.418	3	.761	4	8.086e-3	4	3617.774	<u>15</u>	NC	1
544		_	min	015	2	86	1	0	1	0	1_	109.999	1_	2378.583	
545		7	max	.021	3	.57	3	.724	4	4.717e-3	4	2987.517	<u>15</u>	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio L	C (n) L/z Ratio	LC
546			min	015	2	-1.12	1	0	1	0	1	90.676		
547		8	max	.021	3	.698	3	.688	4	1.348e-3	4	2621.896 1	5 NC	1
548			min	014	2	-1.329	1	0	1	0	1	79.475	1945.574	4
549		9	max	.021	3	.781	3	.653	4	0	1	2434.489 1	5 NC	1
550			min	014	2	-1.461	1	0	1	-4.823e-6	5	73.74	1762.818	4
551		10	max	.02	3	.811	3	.611	4	0	1	2377.986 1	5 NC	1
552			min	014	2	-1.505	1	0	1	-4.621e-6	5	72.033	1739.941	4
553		11	max	.02	3	.791	3	.566	4	0	1	2434.576 1	5 NC	1
554			min	014	2	-1.46	1	0	1	-4.419e-6	5	73.847	1790.768	4
555		12	max	.019	3	.723	3	.521	4	8.49e-4	4		5 NC	1
556			min	013	2	-1.325	1	0	1	0	1	79.831		4
557		13	max	.019	3	.612	3	.467	4	2.972e-3	4	2987.958 1	5 NC	1
558			min	013	2	-1.11	1	0	1	0	1_	91.609		4
559		14	max	.018	3	.472	3	.406	4	5.096e-3	4	3618.649 1		1
560			min	013	2	843	1	0	1	0	1_	112.115	0.02.100	4
561		15	max	.018	3	.316	3	.342	4	7.219e-3	4		5 NC	1
562			min	013	2	553	1	0	1	0	1_	148.211		5
563		16	max	.017	3	.158	3	.281	4	9.343e-3	4		5 NC	1
564			min	013	2	267	1	0	1	0	1	216.92		1
565		17	max	.017	3	.011	3	.226	4	1.147e-2	_4_		5 NC	1
566			min	012	2	016	2	0	1	0	1_	367.771		1
567		18	max	.017	3	.183	1	.183	4	5.801e-3	4_	NC 5		1
568			min	012	2	115	3	0	1	0	_1_	805.317		1
569		19	max	.017	3	.349	1	.15	4	0	1_	NC ′		1
570			min	012	2	228	3	0	1	-4.688e-6	4	NC ′	110	1
571	<u>M9</u>	1	max	.008	3	.178	1	.917	4	1.94e-2	3	NC ′		1
572			min	004	2	025	3	0	1	-1.384e-2	1_	NC ′		1
573		2	max	.008	3	.088	1	.893	4	9.631e-3	3	NC 5		1
574			min	004	2	012	3	0	12	-6.673e-3	1_	1502.184		
575		3	max	.008	3	.011	3	.864	4	1.813e-2	4	NC 5		2
576			min	004	2	01	2	0	12	6.608e-7	<u>10</u>	721.125		
577		4	max	.007	3	.05	3	.832	4	1.419e-2	5_		5 NC	1
578		_	min	004	2	<u>119</u>	1	0	12	-4.761e-3	1_	453.197		
579		5	max	.007	3	.102	3	.797	4	1.069e-2	5_		5 NC	1
580		6	min	004 .007	3	235	3	761	12 4	-9.805e-3	<u>1</u> 3	325.654		
581		6	max		2	.158		.761	12	1.138e-2 -1.485e-2		7521.06 1 255.583	5 NC I 2372.1	1
582		7	min	003 .007	3	<u>348</u> .212	3	<u> </u>	4	1.514e-2	1		5 NC	1
583 584			max min	003	2	45	1	<u>724</u> 0	1	-1.989e-2	<u>3</u> 1	214.332		
585		8	max	.003	3	.257	3	.688	4	1.89e-2	3		5 NC	1
586		0	min	003	2	53	1	001	1	-2.494e-2	1	189.983		
587		9	max	.003	3	.287	3	.652	4	1.909e-2	3		5 NC	1
588		3	min	003	2	581	1	0	12	-2.74e-2	1	177.306		
589		10	max	.007	3	.298	3	.611	4	1.689e-2	3		5 NC	1
590		10	min	003	2	598	1	0	1	-2.815e-2	1	173.502		
591		11	max	.006	3	.291	3	.567	4	1.469e-2	3		5 NC	1
592			min	003	2	58	1	0	1	-2.889e-2	1		1772.87	4
593		12	max	.006	3	.267	3	.52	4	1.238e-2	3		5 NC	1
594		12	min	003	2	529	1	0	12	-2.721e-2	1	190.674		
595		13	max	.006	3	.227	3	.465	4	9.902e-3	3		5 NC	1
596		1.0	min	003	2	446	1	0	12	-2.193e-2	1	216.023		
597		14	max	.006	3	.177	3	.405	4	7.424e-3	3		5 NC	1
598			min	003	2	343	1	003	1	-1.664e-2	1	259.199		
599		15	max	.006	3	.12	3	.343	4	6.83e-3	5		5 NC	1
600			min	003	2	229	1	008	1	-1.136e-2	1	333.07		
601		16	max	.006	3	.061	3	.283	4	9.192e-3	5		5 NC	1
602			min	003	2	113	1	011	1	-6.073e-3	1	468.702		1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.004	3	.229	4	1.161e-2	4	NC	5	NC	1
604			min	003	2	005	2	012	1	-7.879e-4	1	755.784	1	NC	1
605		18	max	.005	3	.089	1	.185	4	5.535e-3	5	NC	5	NC	1
606			min	003	2	048	3	009	1	-8.457e-3	1	1589.818	1	NC	1
607		19	max	.005	3	.173	1	.15	4	5.563e-3	3	NC	1	NC	1
608			min	003	2	096	3	0	12	-1.651e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{\sf ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.