Optimal Control WS20/21: Homework 1

Daniel Bergmann

December 4, 2020

a) Discretize cost functional:

$$J \approx x_N^T Q x_N + \sum_{k=0}^{N-1} x_k^T Q x_k + u_k^T R u_k$$
 (1)

b) Matrix representation of discretized linear dynamics:

We know

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
 (2)

Discretizing with time step size h

$$x_k \stackrel{\text{def}}{=} x(kh) \stackrel{\text{def}}{=} x(t_k)$$

and inserting it into (2) yields therefore for the state x_{k+1} the expression

$$x_{k+1} = e^{Ah(k+1)}x_0 + \int_0^{(k+1)h} e^{A((k+1)h-\tau)}Bu(\tau)d\tau$$
(3)

$$= e^{Ah} \left[e^{Akh} x_0 + \int_0^{kh} e^{A(kh-\tau)} Bu(\tau) d\tau \right] + \int_{kh}^{(k+1)h} e^{A(hT+h-\tau)} Bu(\tau) d\tau. \tag{4}$$

Where we assume that the steering signal u is constant between the discretization time samples t_k . We simplify this expression by substituting with $v(\tau) = kh + h - \tau$ and obtain

$$x_{k+1} = e^{Ah} x_k - \left(\int_{v(kh)}^{v((k+1)h)} e^{Av} dv \right) B u_k$$
 (5)

$$= e^{Ah}x_k - \left(\int_h^0 e^{Av} dv B\right) u_k. \tag{6}$$

$$=\underbrace{e^{Ah}}_{=:A_d} x_k + \underbrace{\left(\int_0^h e^{Av} dv B\right)}_{=:B_L} u_k. \tag{7}$$

This verifies the given Matrix representation.

c) Euler Approximation:

$$\dot{x}(t_k) \approx \frac{x(t_{k+1}) - x(t_k)}{h}. (8)$$

Rearranging (8) yields

$$x(t_{k+1}) - x(t_k) \approx h\dot{x}(t_k) \tag{9}$$

$$= hAx(t_k) + hBu(t_k) \tag{10}$$

$$\iff x(t_{k+1}) \approx (I + Ah)x(t_k) + hBu(t_k)$$
 (11)

$$x_{k+1} \approx \underbrace{(I + Ah)}_{=:A_{\text{end}}} x_k + hBu_k. \tag{12}$$

Relation to (7):

By the definition of the matrix exponential, we have

$$A_d = e^{Ah} = \sum_{k=0}^{\infty} \frac{A^k h^k}{k!}.$$
 (13)

Neglecting all quadratic and higher terms yields with A_d from **b**)

$$A_d \approx I + Ah = A_{\rm eul}$$

which is exactly the matrix obtained by the euler approximation.