Байесовская оптимизация

Алексей Зайцев Руководитель лаборатории Сколтех

Skoltech

Про что лекция

1. Напоминание про регрессию на основе гауссовских процессов

2. Суррогатное моделирование и Байесовская оптимизация

з. Лучшие практики в Байесовской оптимизации

Идея регрессии на основе гауссовских процессов

Skoltech

Идея регрессии на основе гауссовских процессов

Априорные знания про значения функции

Апостериорные знания про значения функции

Усредним по всем функциям

Свойства регрессии на основе гауссовских процессов

- Нелинейные прогноз
- Интерполяция
- Гладкость (зависит от ковариационной функции)
- Оценка неопределенности
- Выбор параметров с помощью метода максимума правдоподобия
- Явные и быстрые формулы для прогноза

Оценка среднего и дисперсии для регрессии на основе гауссовских процессов

Аналитические формулы для среднего и дисперсии:

$$\begin{split} \rho(f_*|\mathbf{y}) &= \mathcal{N}\left(f_*|\mu_*, \sigma_*^2\right), \\ \mu_* &= \mathbf{k}_*^{\mathrm{T}}[\mathbf{K} + \sigma^2 \mathbf{I}_m]^{-1}\mathbf{y}, \ \sigma_*^2 = K_{**} - \mathbf{k}_*^{\mathrm{T}}[\mathbf{K} + \sigma^2 \mathbf{I}_m]^{-1}\mathbf{k}_* \\ \mathbf{K} &= \left\{K(\mathbf{x}_i, \mathbf{x}_j)\right\}_{i,j=1}^n \ \mathbf{k}_* = \left\{K(\mathbf{x}_*, \mathbf{x}_i)\right\}_{i=1}^m \text{ and } K_{**} = K(\mathbf{x}_*, \mathbf{x}_*) \\ \mu_* &= \sum_{i=1}^m \alpha_i K(\mathbf{x}_*, \mathbf{x}_i), \ \boldsymbol{\alpha} = [\mathbf{K} + \sigma^2 \mathbf{I}_m]^{-1}\mathbf{y} \end{split}$$

Pipeline Байесовской оптимизации

Какую функцию хотим оптимизировать?

Минимизируем тяжелую функцию в многомерном пространстве. Можем сделать ограниченное количество В запусков.

$$f(x)\to \min_{x\in X}$$

Функция обычно:

- Тяжелая
- Гладкая
- Но наблюдаем мы ее с шумом

Наша задача:

- Оптимизация гиперпараметров модели

Базовые подходы

- Не принимают во внимание прошлые вычисления
- В общем случае нужно экспоненциальное по размерности количество вычислений целевой функции

Алгоритм: как такую оптимизацию устроить

- 1. Генерируем начальную выборку
- 2. Учим суррогатную регрессионную модель на этой выборке
- 3. Оптимизируем суррогатную модель + ее неопределенность вместо исходной тяжелой модели, получили еще одну точку
- 4. Переучили суррогатную модель
- 5. Повторяем пока не закончится бюджет

Проблемы нет: теперь работает нормально

Прогноз неопределенности $\alpha_{LCB}(\mathbf{x}) = -\mu_*(\mathbf{x}) + \zeta \cdot \sigma_*(\mathbf{x})$

Оценка

Максимизируем $lpha_{LCB}(\mathbf{x})$

Почти обучение с подкреплением

Skoltech

Acquisition function, функция выгоды LCB

Максимизируем Lower Confidence Bound

$$\alpha_{LCB}(\mathbf{x})$$

Если максимизируем, то смотрим на Upper Confidence Bound

Теорема: мы достаточно быстро сойдемся к минимуму, *ζ* должна расти как корень из количества итераций.

Функция выгоды балансирует exploration и exploitation

Функция выгоды Expected Improvement

$$\Delta(\mathbf{x}) = y_{\text{best}} - \mu_*(\mathbf{x}), \ y_{\text{best}} = \min_{i=1,...,m} y_i,$$

$$\alpha_{EI}(\mathbf{x}) = \int \max(0, y_{\text{best}} - y_*) p(y_* | \mathbf{x}) dy_* =$$

$$= \Delta(\mathbf{x}) \Phi(-\Delta(\mathbf{x}) / \sigma_*(\mathbf{x})) + \sigma_*(\mathbf{x}) \varphi(\Delta(\mathbf{x}) / \sigma_*(\mathbf{x}))$$

 $= E \max(0, y_{best} - y_*)$

Мы считаем математическое ожидание улучшения

Функция выгоды Tree Parson Estimator TPE

Пусть у нас есть две генеративных модели

$$P(x \mid bad) = P(x|y > y_{min})$$

$$P(x \mid good) = P(x|y \le y_{min})$$

Перспективность точки:

$$\frac{P(x \mid \text{good})}{P(x \mid \text{bad})}$$

Это пропорционально Expected improvement

Такой метод используется в HyperOpt и Optuna

Функция выгоды Tree Parson Estimator TPE

Пусть у нас есть две генеративных модели

$$P(x \mid bad) = P(x|y > y_{min})$$

$$P(x \mid good) = P(x|y \le y_{min})$$

Перспективность точки:

$$\frac{P(x \mid \text{good})}{P(x \mid \text{bad})}$$

Это пропорционально Expected improvement

Такой метод используется в HyperOpt и Optuna

Skoltech

Сэмплирование Томпсона

Апостериорное распределение на функциях

На каждой итерации:

- Сэмплируем функцию
- Берем ее минимум

На практике медленней, но не застревает в локальных оптимумах

Функция выгоды Прирост энтропии

$$\alpha_{ES}(\mathbf{x}) = \mathcal{H}[p(\mathbf{x}_{min}|\mathbf{y})] - \mathbb{E}_{p(y|\mathbf{y},\mathbf{x})}[\mathcal{H}[p(\mathbf{x}_{min}|\mathbf{y} \cup \{\mathbf{x},y\})]]$$

Мы считаем как улучшается наше знание про локацию минимума

- Явно посчитать уже не получается, нужно использовать методы Монте-Карло для приближенного вычисления интегралов
- Достаточно надежный метод
- Аналогично можно считать прирост знания не про точку минимума, а про значение в этой точке

Детали оптимизации

Используем

- усеченные (truncated) нормальные распределения для непрерывных гиперпараметров
- категориальные распределения для дискретных

Как выглядит Expected Improvement

- Очень неприятная функция для оптимизации
- Но ее просто считать и нам не нужен истинный максимум
- Поэтому запускаем мультистарт 5-10 итераций и берем лучший результат

Параллельная оптимизация

- Если мы хотим учить модели параллельно, то мы можем добавить штраф за то, что мы похожи на предыдущую точку
- Все работает неплохо потому что функция сложная для многомерного входа

Оптимизация с ограничениями

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in X} \quad c.t. \ c(\mathbf{x}) \ge 0$$

Зависит от ограничений

- В общем строим и для них модели
- Штрафуем за нарушение ограничений в модели

Приложения Байесовской оптимизации

- Оптимизация гиперпараметров, в том числе AlphaGo
- Суррогатная оптимизация: оптимизация сложных инженерных изделий
- Оптимизация свойств молекул в пространстве представлений
- Оптимизация в роботехнике
- Bayesian Optimization for a Better Desert

Связанная задача – активное обучение

- Как нам собрать такую выборку, чтобы построенная для нее модель была самой лучшей?
- Будем собирать данные последовательно, на каждом шаге нужно выбрать точку, которую нужно разметить
- У нас тоже возникает функция выгоды какую точку брать? В этом случае речь только про exploration
- Оптимальный критерий с точки зрения теории найти точку с наибольшей оценкой неопределенности
- На практике еще хорошо бы «смотреть в будущее»: как нам улучшить интеграл по неопределенности?

$$egin{aligned} p(f_*|\mathbf{y}) &= \mathcal{N}\left(f_*|\mu_*,\sigma_*^2
ight), \ \mu_* &= \mathbf{k}_*^{\mathrm{T}}[\mathbf{K} + \sigma^2 \mathrm{I}_m]^{-1}\mathbf{y}, \ \sigma_*^2 &= \mathcal{K}_{**} - \mathbf{k}_*^{\mathrm{T}}[\mathbf{K} + \sigma^2 \mathrm{I}_m]^{-1}\mathbf{k}_*. \end{aligned}$$

Выводы

Выводы

- Байесовская (суррогатная) оптимизация позволяет быстро находить оптимумы тяжелых функций
- Она часто используется для оптимизации гиперпараметров
- Вариант по умолчанию Ожидаемое улучшение ЕІ или Парзеновская оценка на основе деревьев ТРЕ

Skoltech

Ссылки

• Вводный материал про регрессию на основе гауссовских процессов https://thegradient.pub/gaussian-process-not-quite-

for-dummies/

• Основная книжка про использование гауссовских процессов в машинном обучении https://gaussianprocess.org/gpml/

• Книжка про Байесовскую оптимизацию, 2023 https://bayesoptbook.com/

 Лекция про Байесовскую оптимизацию с конференции UAI

https://www.youtube.com/watch?v=C5nqEHpdyoE

Дополнительные слайды

Многомерное гауссовское распределение

Плотность одномерного гауссовского распределения

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2\right)$$

Плотность многомерного гауссовского распределения

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Условное гауссовское распределение

Плотность многомерного гауссовского распределения

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{d}{2}|\boldsymbol{\Sigma}|^{\frac{1}{2}}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Skoltech

Гауссовский случайный процесс

Совместное распределение для любого множества точек - нормальное

$$f(\mathbf{x}) \sim \mathcal{GP}(\cdot | \mu(\mathbf{x}), K(\mathbf{x}, \mathbf{x}'))$$

Регрессия на основе гауссовских процессов

$$K(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp \left\{ -\sum_{i=1}^d \frac{(x_i - x_i')^2}{2r_i^2} \right\}$$

Skoltech

Метод максимума правдоподобия для оценки параметров

$$\mathcal{L} = -\log p(\mathbf{y}|\boldsymbol{\theta}) = \underbrace{\frac{1}{2}\log \det \mathbf{C}(\boldsymbol{\theta})}_{regularization} + \underbrace{\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{C}^{-1}(\boldsymbol{\theta})\mathbf{y}}_{data-fit} + \underbrace{\frac{m}{2}\log(2\pi)}_{log},$$

- Умеем считать правдоподобие
- Умеем считать производные
- Запускаем градиентный спуск до сходимости, часто глобальный оптимум один