

CHEMISTRY ATAR COURSE DATA BOOKLET 2024

Table of contents

Periodic table of the elements	3
Formulae	∠
Jnits	
Constants	
Solubility rules for ionic solids in water	
Colours of selected substances	
x-amino acids	
Standard reduction potentials at 25 °C	8

Copyright

© School Curriculum and Standards Authority, 2024

This document – apart from any third-party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority (the Authority) is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.

Copying or communication for any other purpose can be done only within the terms of the *Copyright Act 1968* or with prior written permission of the Authority. Copying or communication of any third-party copyright material can be done only within the terms of the *Copyright Act 1968* or with permission of the copyright owners.

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative Commons Attribution 4.0 International (CC BY) licence.

An Acknowledgements variation document is available on the Authority website.

This document is valid for teaching and examining until 31 December 2024.

Published by the School Curriculum and Standards Authority of Western Australia 303 Sevenoaks Street CANNINGTON WA 6107

ທ
ij.
\Box
酉
=
⊭
_
a
_
a
4
9
_
+
_
5
0
(D)
=
0
=
a
Ţ
()
<u>ပ</u>
.=
ğ
odi
iodi
riodi
iodi

18	2 Helium helium 4.003	10	neon 20.18	Å	argon 39.95	36	בֿ	krypton 83.80	54	Xe	xenon 131.3	98	Ru	radon	118	Oganesson	
17		6	fluorine 19.00	ر 26	chlorine 35.45	35	Ŗ	79.90	53	—	126.9	85	At	astatine	117	TS tennessine	
16		8	oxygen 16.00	91 Q	sulfur 32.06	34	Se	78.97	52	<u>e</u>	tellurium 127.6	84	Ро	polonium	116	LV	
15		<u> </u>	nitrogen 14.01	51 T	phosphorus 30.97	33	As	74.92	51	Sp	antimony 121.8	83	<u></u>	bismuth 209.0	115	MC	
14		9	carbon 12.01	ր 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	silicon 28.09	32	Ge	germanium 72.63	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Ferovium	
13		5	boron 10.81	13 A 8	aluminium 26.98	31	Ga	69.72	49	In	114.8	81	3 <u>L</u>	thallium 204.4	113	Nihonium minohium	
12						30	Zn	2INC 65.38	48	ပ်	cadmium 112.4	80	ΕĠ	mercury 200.6	112	Copernicium	
1						59	Cn	63.55	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg roentgenium	
10						28	Z	58.69	46	Pd	palladium 106.4	78	Ŧ	platinum 195.1	110	DS darmstadtium	
6						27	ဝ	58.93	45	몺	rhodium 102.9	77		iridium 192.2	109	Mt meitherium	
∞						26	Fe	155.85	44	Ru	101.1	9/	Os	osmium 190.2	108	HS hassium	
7						25	M	54.94	43	ည	tecnnetium	75	Re	rhenium 186.2	107	Bh	
9						24	j	52.00	42	O W	molybdenum 95.95	74	>	tungsten 183.8	106	Sgaborgium	
2						23	>	50.94	41	Q Z	92.91	73	Ta	tantalum 180.9	105	Db dubnium	
4						22		47.87	40	Zr	91.22	72	Ŧ	hafnium 178.5	104	Rf rutherfordium	
က						21	သို့	44.96	39	>	98.91	57-71		lathanoids	89-103	actinoids	
2		⁴ 0	beryllium 9.012	12 Mg	magnesium 24.31	20	S	40.08	38	ร	87.62	56	Ba	barium 137.3	88	Radium	
_	hydrogen 1.008	က	lithium 6.94	= Z	sodium 22.99	19	Y	39.10	37	Ro	85.47	55	S	caesium 132.9	87	francium	

Key:	257	28	59	09	61	62	63	64	92	99	29	89	69	70
	E	ပ္ပ	ቯ	Ž	Pm	Sm	Eu	9	Q L	2	운	Щ	H	X V
Atomic number	lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.2	promethium	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.0
Symbol	88	06	91	92	93	94	95	96	97	86	66	100	101	102
Name	Ac	H	Ра		Q Q	Pu	Am	S	器	ర	ЕS	Fm	δ M	٥ N
standard atomic weight	actinium	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	1													

Key:

[Data source: The International Union of Pure and Applied Chemistry Periodic Table of the Elements (2018)]

Formulae

Number of moles $n = \frac{m}{M} = \frac{\text{mass}}{\text{molar mass}}$

Number of moles of solute n = cV

Number of moles of a gas at STP $n = \frac{v}{22.71}$

Ideal gas law PV = nRT

Parts per million ppm = $\frac{\text{mass of solute (mg)}}{\text{mass of solution (kg)}}$

pH of a solution pH = $-\log_{10} [H^{+}]$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or kelvin (K)

It may be assumed that $0.0 \,^{\circ}\text{C} = 273.15 \,^{\circ}\text{K}$

Energy changes are given in kilojoules (kJ)

Pressures are given in kilopascals (kPa)

Solution concentrations are given in the units moles per litre (mol L-1),

grams per litre (g L-1) or parts per million (ppm)

Constants

Universal gas constant, R = 8.314 J K⁻¹ mol⁻¹

Avogadro constant, N = 6.022 × 10²³ mol⁻¹

Volume of 1.00 mol of an ideal gas at 0.0 °C and 100.0 kPa is 22.71 L

STP is 0.0 °C and 100.0 kPa

Equilibrium constant for water at 25 °C, $K_w = 1.00 \times 10^{-14}$

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions				
Soluble	Insoluble	Slightly soluble			
Most chlorides	AgCl	$PbC\ell_2$			
Most bromides	AgBr	PbBr ₂			
Most iodides	AgI, CuI, PbI ₂				
All nitrates	No eve	ontions			
All ethanoates	No exc	eptions			
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄			

Insoluble in water

Insoluble	Ехсер	otions
Insoluble	Soluble	Slightly soluble
Most hydroxides	NaOH, KOH, Ba(OH) ₂ NH ₄ OH*, AgOH**	Ca(OH) ₂ , Sr(OH) ₂
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃	
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄	
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S	

- * NH₃ dissolves in water to form both NH₃ (aq) and NH₄⁺(aq)/OH⁻(aq)
- ** Ag⁺(aq) reacts with OH⁻(aq) to form insoluble Ag₂O

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colours of selected substances

In general, ionic solids have the same colour as that of any coloured ion they contain. Two colourless ions in general produce a white solid. Selected exceptions to these two basic rules are noted below.

Ionic Solid	Colour
copper(II) carbonate	green
copper(II) chloride	green
copper(II) oxide	black
copper(II) sulfide	black
lead(II) iodide	yellow
lead(II) sulfide	grey
manganese(IV) oxide	black
silver carbonate	yellow
silver iodide	pale yellow
silver oxide	brown
silver sulfide	black

Coloured ions in aqueous solution

Cation	Colour
Cr ³⁺	deep green
Co ²⁺	pink
Cu ²⁺	blue
Fe ²⁺	pale green
Fe ³⁺	pale brown
Mn ²⁺	pale pink
Ni ²⁺	green

Anion	Colour
CrO ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
MnO ₄ -	purple

Other coloured substances

Most gases and liquids are colourless, and most metals are silvery or grey. Selected exceptions to these basic rules are noted below.

Substance	Colour
copper(s)	salmon pink
gold(s)	yellow
nitrogen dioxide(g)	brown
sulfur(s)	yellow

Coloured halogens

Halogen	Colour of free element
F ₂ (g)	yellow
Cl ₂ (g)	greenish-yellow
$Br_2(\ell)$	red
$I_2(g)$	purple
$I_2(s)$	grey

Halogen	Colour of halogen in aqueous solution
Cl ₂ (aq)	pale yellow
Br ₂ (aq)	orange
I ₂ (aq)	brown

Halogen	Colour of halogen in organic solvent			
Br ₂	red			
I_2	purple			

Name	Symbol	Structure		
alanine	Ala	CH ₃ H ₂ N CHCOOH		
arginine	Arg	$\begin{array}{c} & \text{NH} \\ \\ \text{CH}_2 \longrightarrow \text{CH}_2 \longrightarrow \text{CH}_2 \longrightarrow \text{NH} \longrightarrow \text{C} \longrightarrow \text{NH}_2 \\ \end{array}$		
		H ₂ N — CH— COOH		
asparagine	Asn	$\begin{array}{c} O \\ \parallel \\ CH_2 &\longrightarrow C &\longrightarrow NH_2 \\ \mid \\ H_2 N &\longrightarrow CH &\longrightarrow COOH \end{array}$		
		H ₂ N — CH— COOH		
aspartic acid	Asp	CH_2 — COOH $\Big $ H_2 N — CH— COOH		
		H ₂ N — CH— COOH		
cysteine	Cys	CH ₂ — SH		
		H ₂ N — CH— COOH		
glutamine	Gln	$\begin{array}{c} O \\ \parallel \\ CH_2 \longrightarrow CH_2 \longrightarrow C \longrightarrow NH_2 \end{array}$		
		H ₂ N — CH— COOH		
glutamic acid	Glu	CH ₂ — CH ₂ — COOH		
		H ₂ N — CH— COOH		
glycine	Gly	H ₂ N — CH ₂ — COOH		
histidine	His	CH ₂ —N H		
inglouging	llo.	H ₂ N — CH — COOH		
isoleucine	lle	$\begin{array}{c} CH_3 \longrightarrow CH \longrightarrow CH_2 \longrightarrow CH_3 \\ & \\ & \\ H_2 N \longrightarrow CH \longrightarrow COOH \end{array}$		
		H ₂ N — CH— COOH		

Name	Symbol	Structure		
leucine	Leu	CH ₃ — CH — CH ₃ CH ₂		
lysine	Lys	$\begin{array}{c} \text{H}_2\text{N} \longrightarrow \text{CH} \longrightarrow \text{COOH} \\ \\ \text{CH}_2 \longrightarrow \text{CH}_2 \longrightarrow \text{CH}_2 \longrightarrow \text{CH}_2 \longrightarrow \text{NH}_2 \\ \end{array}$		
		H ₂ N — CH — COOH		
methionine	Met	$\operatorname{CH_2}$ — $\operatorname{CH_2}$ — S — $\operatorname{CH_3}$		
		H ₂ N — CH — COOH		
phenylalanine	Phe	CH ₂ —— H ₂ N — CH— COOH		
		H ₂ N — CH— COOH		
proline	Pro	H COOH		
serine	Ser	CH ₂ OH		
		H ₂ N — CH— COOH		
threonine	Thr	CH ₃ — CH — OH		
		H ₂ N — CH— COOH		
tryptophan	Trp	H		
		CH ₂		
		H ₂ N — CH— COOH		
tyrosine	Tyr	CH ₂ —OH		
		H₂N — CH— COOH		
valine	Val	CH ₃ — CH — CH ₃ H ₂ N — CH — COOH		
		H ₂ N — CH— COOH		

Half-reaction			E°(volts)
F ₂ (g) + 2 e⁻	\leftarrow	2 F ⁻ (aq)	+ 2.89
H ₂ O ₂ (aq) + 2 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	2 H ₂ O(<i>l</i>)	+ 1.76
PbO ₂ (s) + SO ₄ ² -(aq) + 4 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$PbSO_{4}(s) + 2 H_{2}O(\ell)$	+ 1.69
2 HCℓO(aq) + 2 H⁺(aq) + 2 e⁻	\rightleftharpoons	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.63
MnO ₄ -(aq) + 8 H ⁺ (aq) + 5 e ⁻	\rightleftharpoons	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au³+(aq) + 3 e⁻	\rightleftharpoons	Au(s)	+ 1.50
HCℓO(aq) + H⁺(aq) + 2 e⁻	\rightleftharpoons	Cℓ⁻(aq) + H₂O(ℓ)	+ 1.49
PbO ₂ (s) + 4 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$Pb^{2+}(aq) + 2 H_2O(\ell)$	+ 1.46
Cℓ₂(g) + 2 e-	\rightleftharpoons	2 Cℓ⁻(aq)	+ 1.36
Cr ₂ O ₇ ²⁻ (aq) + 14 H ⁺ (aq) + 6 e ⁻	\rightleftharpoons	$2 \text{ Cr}^{3+}(aq) + 7 \text{ H}_2 O(\ell)$	+ 1.36
O ₂ (g) + 4 H ⁺ (aq) + 4 e ⁻	\rightleftharpoons	2 H ₂ O(ℓ)	+ 1.23
$Br_{2}(\ell) + 2 e^{-}$	\rightleftharpoons	2 Br ⁻ (aq)	+ 1.08
Ag⁺(aq) + e⁻	\rightleftharpoons	Ag(s)	+ 0.80
Fe ³⁺ (aq) + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	+ 0.77
O ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$H_2O_2(aq)$	+ 0.70
I ₂ (s) + 2 e ⁻	\rightleftharpoons	2 I⁻(aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^{-1}$	\rightleftharpoons	4 OH⁻(aq)	+ 0.40
Cu ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Cu(s)	+ 0.34
S(s)+ 2 H⁺(aq) + 2 e⁻	\rightleftharpoons	H ₂ S(aq)	+ 0.17
2 H⁺(aq) + 2 e⁻	ightharpoonup	$H_2(g)$	0 exactly
Pb ²⁺ (aq) + 2 e ⁻	\leftarrow	Pb(s)	- 0.13
Sn ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Sn(s)	- 0.14
Ni ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Ni(s)	- 0.24
Co ²⁺ (aq) + 2 e ⁻	ightharpoonup	Co(s)	- 0.28
PbSO ₄ (s) + 2 e ⁻	\rightleftharpoons	Pb(s) + SO ₄ ²⁻ (aq)	- 0.36
Cd ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Cd(s)	- 0.40
2 CO ₂ (g) + 2 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$H_2C_2O_4(aq)$	- 0.43
Fe ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Fe(s)	- 0.44
Cr³+(aq) + 3 e-	\rightleftharpoons	Cr(s)	- 0.74
Zn²+(aq) + 2 e⁻	\rightleftharpoons	Zn(s)	- 0.76
2 H ₂ O(ℓ) + 2 e ⁻	\rightleftharpoons	H₂(g) + 2 OH⁻(aq)	- 0.83
Mn ²⁺ (aq) + 2 e ⁻	ightharpoonup	Mn(s)	– 1.18
Aℓ³⁺(aq) + 3 e⁻	\rightleftharpoons	Al(s)	– 1.68
Mg²+(aq) + 2 e⁻	\rightleftharpoons	Mg(s)	- 2.36
Na⁺(aq) + e⁻	\rightleftharpoons	Na(s)	- 2.71
Ca ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Ca(s)	- 2.87
Sr ²⁺ (aq) + 2 e ⁻	\rightleftharpoons	Sr(s)	- 2.90
Ba²+(aq) + 2 e⁻	ightharpoonup	Ba(s)	- 2.91
K⁺(aq) + e⁻	ightharpoonup	K(s)	- 2.94