الاحتمالات

J. مصطلحات

- 1) تجربة عشوائية: هي كل تجربة لا يمكن توقع نتيجتها رغم معرفة مجموعة النتائج الممكنة
- 2) مجموعة الإمكانيات Ω: هي مجموعة النتائج الممكنة في تجربة عشوائية ولها تسميات أخرى مثل: (الحادثة الأكيدة، المجموعة الشاملة أو مجموعة المخارج)
 - Ω الحادثة A: هي مجموعة جزئية من
 - 1.3) الحادثة الأولية: هي حادثة تحتوي على عنصر وحيد
 - 2.3) الحادثة المستحيلة φ: هي الحادثة الخالية
 - A الحادثة العكسية \overline{A} : هي الحادثة التي تحوى كل عناصر Ω ما عدا عناصر \overline{A}
 - $: \Omega$ من B دنهٔ أخرى من B
 - B هي العناصر المشتركة بين $A\cap B$ (4
 - ي بدون تكرار B هي العناصر المشتركة و الغير مشتركة بين $A \cup B$ المشتركة بين الم
 - $A \cap B = \phi \Leftarrow$ و $A \cap B = A$ (6
 - 7) A و B حادثتان مستقلتان: احتمال الحادثة A لا يؤثر في احتمال الحادثة B و العكس.

II. قانون الاحتمال

 $i\in\mathbb{N}^*$ عيث e_i هو المخرج رقم $\Omega=\{e_1,e_2,e_3,\dots\dots,e_n\}$ لتكن

- e_i هو احتمال تحقق المخرج (1
- A ويساوي مجموع احتمالات الحوادث الأولية للحادثة P(A) ويساوي مجموع احتمالات الحوادث الأولية للحادثة (2
 - <u>خواص:</u>
 - $0 \le P(A) \le 1$ $0 \le P_i \le 1$ •
 - $P_1 + P_2 + P_3 + \dots + P_n = 1$ if $\sum_{i=1}^n P_i = 1$
 - $P(\phi) = 0$ $P(\Omega) = 1$

III. تساوى الاحتمال

- 1) تجربة متساوية الاحتمال: هي تجربة عشوائية حيث كل الحوادث الأولية لها نفس الاحتمال
 - 2) مصطلحات تساوي الاحتمال:

"زهر نرد غير مزيفة" ، "قطعة نقود متوازنة" ، "كريات لا نفرق بينها عند اللمس" ...

 $\frac{1}{2}$ المصطلحات لاعتبار $\frac{1}{2}$ المصطلحات بالسؤال بل يتعلق بالسؤال المطروح أيضا (و يمكن للمجموعة الشاملة Ω أن تتغير من سؤال لآخر في نفس التمرين)

3) نتائج:

في حالة تساوي الاحتمال يكون قانون الاحتمال متساوي التوزيع حيث:

$$P(A)=rac{m}{n}=rac{A}{\Omega}$$
عدد عناصر

$$oldsymbol{P}_i = rac{1}{n}$$
كل مخرج و له احتمال e_i

IV. خواص الاحتمالات:

$$P(\overline{A}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$
 إذا كانت A و B حادثتين غير متلائمتين فإن

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A) \leq P(B)$$
: فإن $A \subset B$ اذا كانت

$$P(A\cap B)=P(A) imes P(B)$$
 اذا كانت A و B حادثتان مستقلتان فإن

V. تعاريف لقانون الاحتمال:

$$E = \sum_{i=1}^{n} e_i p_i$$
 الأمل E :

$$V = \sum_{i=1}^{n} e_i^{\ 2} p_i - E^2$$
 التباین $V = \sum_{i=1}^{n} \left(e_i - E \right)^2 p_i$ والتباین کا

 $\sigma = \sqrt{V}$: σ الانحراف المعياري σ

لم الأمل يمثل الوسط الحسابي في سلسلة إحصانية إذا اعتبرنا عناصر Ω هي قيم الطبع و قيم P_i هي التواترات π

X المتغير العشوائي X

 Ω المتغير العشوائي X هو دالة عددية معرفة على Ω

$$I = \{x_1, x_2, x_3, ..., x_n\}$$
 أي X أي المجموعة قيم X أي المجموعة قيم X

VII. قانون الاحتمال للمتغير العشوائي

 $P(X=x_i)$ او أو P_i أو أو P_i أو المخرج المخرج المخرج X_i أو المخرج قانون الاحتمال للمتغير المعشوائي X

VIII. تعاريف للمتغير العشوائي X:

$$E(X) = \sum_{i=1}^{n} X_i P_i$$
 : E الأمل الرياضياتى الأمل الرياضياتى الأمل الرياضياتى

$$V(X) = \sum_{i=1}^{n} X_{i}^{2} P_{i} - (E(X))^{2}$$
 التباین $V(X) = \sum_{i=1}^{n} (X_{i} - E(X))^{2} P_{i}$ والتباین $V(X) = \sum_{i=1}^{n} X_{i}^{2} P_{i}$

$$\sigma = \sqrt{V(X)}$$
 : σ الانحراف المعيارى σ

مصطلحات

السمّي تجربةً عشوائيّةً كلُّ تجربة الأيمكنُ الجزمُ بنتيجتها رغم معرفة مجموعة إمكانياتها الكلية.

 $\Omega = \{e_1, e_2, \dots, e_n\}$ في نسمي مجموعة الإمكانيات المجموعة الشّاملة و نرمز لها بـ $\{e_1, e_2, \dots, e_n\}$ عنصر عنصر و منها مخرجاً.

• Card(A) من Ω تُسمّى حادِثةً و نرمز لعدد عناصرها بـ A

الله إذا كان Card(A) = 1 فإنّ A تُسمّى حادثةً أوليّة. \oplus

أَسمّي Ω الحادثة الأكيدة ، ونُسمّي ∅ (المجموعة الحالية) الحادثة المُستحيلة.

 $A \cap B$ • الحادثة " A و B " هي المجموعة التي تضمُّ العناصرَ المُشتركة بين A و B ، و نرمزُ لها بـ $A \cap B$ •

 $egin{aligned} rac{1}{2} & A \cap B = \emptyset \end{aligned}$ إذا كان $B = A \cap B = \emptyset$ نقول عن $A \cap B = \emptyset$

 $A \cup B$ هي المجموعة التي تضمُّ كلّا من عناصر A و B ، و نرمزُ لها بـ $A \cup B$ » B

 $oldsymbol{A}$ وهي المجموعة التي تضمَّ جميع عناصر Ω ماعدا عناصر \overline{A} وهي المجموعة التي تضمَّ

نعرّف قانون احتمال تجربة عشوائية ، عندما نُرفق بكلّ مخرج e_i الحقيقي الموجب p_i ويُسمّى احتمال $\sum_{i=1}^{n} \frac{e_1}{e_2} \frac{e_2}{e_3} \frac{e_3}{e_2} \frac{e_2}{e_3} \frac{e_2}{e_3} \frac{e_3}{e_2}$

 $\sum_{i=1}^n p_i = 1$ عبد $\begin{vmatrix} e_1 & e_2 & e_3 & \cdots & e_n \\ \hline p_1 & p_2 & p_3 & \cdots & p_n \end{vmatrix}$: e_i تحقق المخرج

احتمال الحادثة A هو العدد الحقيقي الموجب (P(A) ويساوي مجموع احتمال حوادثها الأوليّة ، فمثلا ،

 $P(A) = p_3 + p_5 + p_{11}$: فإنّ $A = \{e_3, e_5, e_{11}\}$

• $p_1 = p_2 = p_3 = \dots = p_n$: نقول عن تجربة أنّها متساوية الاحتمال إذا كان

يَشَارُ إلى تساوي الاحتمال بعبارات مثل: زهرة نرد أصلية أو غير مزيّفة ، قطعة نقود متوازنة ،
 كريّات لايُفرق بينها عند اللمس ٠٠٠ إلخ.

إذا كانت التجربة متساوية الاحتمال فإنّ:

 $P(A) = \frac{A}{3}$ عدد الطرق الملائمة لـ $= \frac{Card(A)}{Card(\Omega)}$

خواص الاحتمالات

$$P(\emptyset)=0$$
 و $P(\Omega)=1$ و $0\leq P(A)\leq 1$ و $P(\Omega)=0$ و $P(\Omega)=0$ و $P(\Omega)=0$

$$A \subseteq B \Rightarrow P(A) \le P(B)$$
 6 $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ 6

المتغير العشوائي

 $X(\Omega) = \{x_1, x_2, \dots, x_n\}$: برمز لمجموعة القيم التي يأخذها متغيّر عشوائي X بالمجموعة ($X(\Omega) = \{x_1, x_2, \dots, x_n\}$

 $p(X=x_i)$ عندما نُرفق بكلّ عدد حقيقي x_i الحقيقي الموجب x_i عندما نُرفق بكلّ عدد الحقيقي الموجب x_i

$$\sum_{i=1}^{n} p_i = 1 \quad X = X_i \quad X_1 \quad X_2 \quad X_3 \quad \cdots \quad X_n \quad x_n \quad x_i = p(X = x_i) \quad p_1 \quad p_2 \quad p_3 \quad \cdots \quad p_n$$

4

$\sigma(X)$ الانحراف المعياري	V(X) التباين	E(X) الأمل الرياضياتي	
$\sigma(X) = \sqrt{V(X)}$	$V(X) = \sum_{i=1}^{n} (x_i - E(X))^2 \cdot p_i = E(X^2) - (E(X))^2$	$E(X) = \sum_{i=1}^{n} x_i \cdot p_i$	

في ميدان الألعاب: • الربح المحتمل = المبلغ المتحصل عليه - المبلغ المدفوع

فإنّ اللعبة	إذا كان
في صالح اللاعب	E(X) > 0
ليست في صالح اللاعب	E(X) < 0
عادلة	E(X) = 0

سنة **ثانية** ثانوي الشعب: رياضيات | علوم تجريبية | تقني رياضي

ملخص فئ

مصطلحات وتعاريف

- 🕡 التجربة العشوائية: هي كل تجربة لا يمكن توقع نتيجتها رعم معرفة مجموعة النتائج الممكنة
- مجموعة الإمكانيات Ω : هي مجموعة الإمكانيات في تجربة عشوائية ولها تسميات أخرى مثل (الحادثة الأكيدة، المجموعة الشاملة، مجموعة المخارج)
 - 🥡 الحادثة: 💖 الحادثة الأولية (البسيطة): تحتوى على عنصر وحيد.
 - Ω الحادثة الأكيدة: هي الحادثة التي تحتوي على جميع عناصر Θ الحادثة التي تحتوي على جميع عناصر
 - 🕡 الحادثة المستحيلة (): هي المجموعة الخالية
 - الحادثة العكسية \overline{A} : هي الحادثة التي تحوي جميع عناصر Ω ما عدا عناصر \widehat{R}

قانون الاحتمال

احتمال حادثة: P(A) هو احتمال الحصول الحادثة R حيث:

$$\begin{cases} P(A) = \frac{Card(A)}{Card(\Omega)} \\ 0 \le P(A) \le 1 \end{cases}$$

حيث:

 Ω هو عدد عناصر المجموعة $Card(\Omega)$ ، A هو عدد عناصر المجموعة Card(A)

- $P_1 + P_2 + \dots + P_n = 1$ أي: $\sum_{i=1}^{n} P_i = 1$
- $P(\Omega)=1$ الحادثة الأكيدة هو الحيال الحادثة الأكيدة الأكيدة الحيال الحادثة الأكيدة الأكيدة الحيال ا
- $P(\emptyset)=0$ احتمال الحادثة المستحيلة هو0 أي0

خواص الاحتمال

- Ω لتكن A و B حادثتان من Ω :
- B و A المشتركة وغير المشتركة بين $A \cup B$ و A
 - \bullet العناصر المشتركة بين A و B (بدون تكرار) $A\cap B$
 - $A\cap B=\emptyset$ و A غير متلائمتين معناه A
- $P(A\cap B)=P(A) imes P(B)$ و A حادثتان مستقلتان معناه A
 - $P(\overline{A})=1-P(A)$ فإنّ $A\cup \overline{A}=\Omega$ و $A\cap \overline{A}=\emptyset$ إذا كان $A\cup \overline{A}=0$ و
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ إذا كانت A و B حادثتين كيفيتين فإنّ:
 - $P(A) \leq P(B)$ فإن $A \subset B$ فإن \bullet

تساوئ الاحتمال

- تجربة متساوية الإحتمال: هي تجربة عشوائية حيث كل الحوادث لها نفس الاحتمال
- 🕡 مصطلحات تساوي الإحتمال: "زهرة نرد غير مزيفة" ، "قطعة نقود غير مزيفة" ، "كريات لا نفرق بينها عند اللمس
 - 🕡 ملاحظة مهمة: لا تكفي هذه المصطلحات لاعتبار تساوي الاحتمال بل يتعلق بالسؤال المطروح أيضا.

المتغير العشوائ*ي X*

العدد الحقيقي X_i العدد الحقيقي المتغير العشوائي X_i هو دالة معرفة على $I=\{x_1;x_2;...;x_n\}$ العدد الحقيقي \mathbb{C} الموجب $P(X=x_i)$ ، ونعرفه بالجدول التالى:

x_i	x_1	x_2	:	x_n
$P(X = x_i)$	P_1	P_2	:	P_n

$$E(X): الأمل الرياضياتي: $oldsymbol{arepsilon}$$$

$$V(X)$$
:التباين

$$\sigma(X)$$
:الانحراف المعياري $\widehat{m{v}}$

$$E(x) = \sum_{i=1}^{n} x_i P_i$$

$$V(x) = \sum_{i=1}^{n} (x_i)^2 P_i - (E(X))^2 = \sum_{i=1}^{n} P_i (x_i - E(X))^2$$

$$\sigma(X) = \sqrt{V(X)}$$

$$\sigma(X) = \sqrt{V(x)}$$