Input:

C: regularization parameter tol: numerical tolerance max_passes : max # of times to iterate over α 's without changing $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$: training data

Output:

 $\alpha \in \mathbb{R}^m$: Lagrange multipliers for solution

 $b \in \mathbb{R}$: threshold for solution

$$\circ \text{ Initialize } \alpha_i = 0, \forall i, \quad b = 0.$$

$$\circ$$
 Initialize $passes = 0$.

$$f(x) = \langle \omega, x \rangle + b$$

$$f(x) = \langle \omega, x \rangle + b$$
$$\omega = \sum_{i=0}^{m} \alpha_i y^{(i)} x^{(i)}$$

$$\circ$$
 for $i = 1, ..., m$,

$$\circ$$
 Calculate $E_i = f(x^{(i)}) - y^{(i)}$ using (2).

$$\circ$$
 if $((y^{(i)}E_i < -tol \&\& \alpha_i < C) || (y^{(i)}E_i > tol \&\& \alpha_i > 0))$

$$\circ$$
 Select $j \neq i$ randomly.

$$\circ$$
 Calculate $E_j = f(x^{(j)}) - y^{(j)}$ using (2).

• Save old
$$\alpha$$
's: $\alpha_i^{\text{(old)}} = \alpha_i$, $\alpha_j^{\text{(old)}} = \alpha_j$.

$$\circ$$
 Compute L and H by (10) or (11).

$$\circ$$
 if $(L == H)$

continue to next i.

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

$$\alpha_2 = C$$

$$\alpha_1 = 0$$

$$\alpha_2 = 0$$

$$\alpha_1 = C$$

$$y_1 \neq y_2 \Rightarrow \alpha_1 - \alpha_2 = \gamma$$
 $y_1 = y_2 \Rightarrow \alpha_1 + \alpha_2 = \gamma$

$$\alpha_2 = C$$

$$\alpha_1 = 0$$

$$\alpha_2 = 0$$

$$\alpha_2 = 0$$

$$y_1 = y_2 \Rightarrow \alpha_1 + \alpha_2 = \gamma$$