

INTRODUCTION

LA PROBLÉMATIQUE

Jusqu'à quel point peut-on améliorer l'efficacité du Pancréas Artificiel ?

PLAN

O1 Le Pancréas Artificiel
Composants et contraintes

02 La mesure du glucose en continu

03 La modélisation de la dynamique glucose-insuline

04 Le filtre de Kalman étendu

01

LE PANCRÉAS ARTIFICIEL

Composants et contraintes

LES COMPOSANTS DU PANCRÉAS ARTIFICIEL

Capteur de glucose en continu Algorithme mathématique de contrôle de la glycémie (Appareil de commande)

Pompe à insuline

Traitement en boucle fermée

Les principales limitations au développement d'un pancréas artificiel :

La prise de repas

L'exercice physique

L'exactitude des mesures du capteur

Le stress

La variabilité intra et inter individuelle

Une bonne compréhension de l'interaction glucose-insuline

LA MESURE DU GLUCOSE EN CONTINU

Le retard dans la réponse du liquide interstitiel aux variations du glucose plasmatique est de 5 à 10 minutes

La relation entre la glycémie et la concentration en glucose dans le fluide interstitiel:

$$\frac{dV_2G_2}{dt} = K_{21}V_1G_1 - (K_{12} + K_{02})V_2G_2$$

G1: Concentration en glucose dans le sang

G2: Concentration en glucose dans le fluide interstitiel

LA MODÉLISATION DE LA DYNAMIQUE GLUCOSE-INSULINE

Il existe plusieurs modèles mathématiques du métabolisme glucidique : Modèle de DALLA MAN, Modèle de Hovorka, Modèle de Bergman ...

Le modèle de Bergman ou le modèle minimal

- Le plus utilisé
- O Un modèle simple avec peu de paramètres (déterminés à partir du test IVGTT).

DYNAMIQUE DU GLUCOSE

$$\frac{dG(t)}{dt} = Apport - Consommation$$

$$Ug(t) = \beta \exp(-drate.t)$$

 $Japp = P1 Gb + Ug$
 $Jcons = P1 G(t) + X(t) G(t)$

$$\frac{dG(t)}{dt} = -P1 G(t) - X(t) G(t) + P1 Gb + Ug$$

$$X(t) = \frac{P3}{P2} (I(t) - Ib)$$

DYNAMIQUE DE L'INSULINE

$$\frac{dI(t)}{dt} = Apport - D\acute{e}gradation$$

Japp = Ib n +
$$\gamma$$
 G (t)
Jdeg = n I (t) + γ h

$$\frac{dI(t)}{dt}$$
 = n (Ib - I(t)) + γ (G(t) - h)

$$\frac{dI(t)}{dt} = -nI + \frac{1}{Vi} \text{ Ui}$$

LE COMPARTIMENT INTERSTITIEL

$$\frac{dX(t)}{dt} = -P2X(t) + P3I(t) - P3IB$$

LE MODÈLE COMPLET

$$\frac{dG(t)}{dt} = -P1 G(t) - X(t) G(t) + P1 Gb + Ug$$

$$\frac{dX(t)}{dt} = -P2 X(t) + P3 I(t) - P3 Ib$$

$$\frac{dI(t)}{dt} = -n I(t) + \frac{1}{vi} Ui$$

Gb = 200 mg/dl

 $n = 0.10 \text{ min}^{-1}$

Ib = $0 \mu U/ml$

G0 = 0 mg/dl

 $P1 = 0.028735 \text{ min}^{-1}$

 $I0 = 0 \, \mu U/ml$

 $P2 = 0.028344 \text{ min}^{-1}$

 $X0 = 0 \text{ min}^{-1}$

 $P3 = 5.0353 \times 10^{-5} \text{ min}^{-2}$

Vi = 12 L

Essai 1 : (repas exogène sans insuline) (0-300) min

Cet essai consiste à exciter le système par l'équation : $Ug(t) = \beta \exp(-drate.t)$ avec $\beta = 60$ et drate = 0.1 en tant qu'une perturbation du repas à t = 0.

Essai 2 : (Administration de l'insuline exogène sans repas) (300-600) min

Dans le second test, une injection d'insuline exogène est appliquée sur le modèle de Bergman selon la fonction suivante :

Ui(t)=a.exp(-b.t); où $a = 60 \mu U / ml \text{ et b} = 0.1 \text{ min}^{-1}$.

Essai 3 : Épreuve de jeûne (Repas =0, Insuline=0)(600-1000)min

LE FILTRE DE KALMAN ÉTENDU

PRÉSENTATION DU FILTRE DE KALMAN:

L'ALGORITHME DU FKE CONTIENT CINQ ÉQUATIONS:

Phase de prédiction:

$$x_{k+1/k} = x_{k/k} + Tf(x_{k/k}, U_k)$$

$$P_{k+1/k} = Fd_k P_{k/k} Fd_k^{t} + Q_k$$

Phase de correction:

$$K_{k+1} = P_{k+1/k} H_k^t (H_k P_{k+1/k} H_k^t + R_k)^{-1}$$

$$X_{k+1/k+1} = X_{k+1/k} + K_{k+1}(y_{k+1} - H_k X_{k+1/k})$$

$$P_{k+1/k+1} = P_{k+1/k} - K_{k+1}H_kP_{k+1/k}$$

DISCRÉTISATION DU MODÈLE DE BERGMAN

$$\frac{dG(t)}{dt} = -P1 G(t) - X(t) G(t) + P1 Gb + Ug$$

$$\frac{dX(t)}{dt} = -P2 X(t) + P3 I(t) - P3 Ib$$

$$\frac{dI(t)}{dt} = -n I(t) + \frac{1}{Vi} \text{ Ui}$$

$$X' = \begin{bmatrix} -P1 & -G & 0 \\ 0 & -P2 & P3 \\ 0 & 0 & -n \end{bmatrix} \times \begin{bmatrix} G \\ X \\ I \end{bmatrix} + \begin{bmatrix} 1 & P1 GB & 0 \\ 0 & -P3 IB & 0 \\ 0 & 0 & 1/Vi \end{bmatrix} \times \begin{bmatrix} Ug \\ 1 \\ Ui \end{bmatrix}$$

Le système est sous la forme : X' = f(x,U)

Avec :
$$x = [G X I]^t$$
; $U = [Ug 1 Ui]^t$

1. Phase de prédiction :

$$x_{k+1/k} = x_{k/k} + Tf(x_{k/k}, U_k)$$

Le système s'écrit:

$$G_{k+1/k} = G_{k/k} - TP1 G_{k/k} - TX_{k/k} G_{k/k} + TP1 Gb + TUg$$

$$X_{k+1/k} = X_{k/k} - TP2 X_{k/k} + TP3 I_{k/k} - TP3 Ib$$

$$I_{k+1/k} = I_{k/k} - Tn I_{k/k} + \frac{T}{Vi} Ui$$

$$P_{k+1/k} = Fd_k P_{k/k} Fd_k^{t} + Q_k$$

La matrice Jacobienne du système :

$$Fd_{k} = \begin{bmatrix} \partial G_{k+1}/\partial G_{k} & \partial G_{k+1}/\partial X_{k} & \partial G_{k+1}/\partial I_{k} \\ \partial X_{k+1}/\partial G_{k} & \partial X_{k+1}/\partial X_{k} & \partial X_{k+1}/\partial I_{k} \\ \partial I_{k+1}/\partial G_{k} & \partial I_{k+1}/\partial X_{k} & \partial I_{k+1}/\partial I_{k} \end{bmatrix}$$

$$= \begin{bmatrix} (1 - TP1 - TX_{k}) & -TG_{k} & 0\\ 0 & (1 - TP2) & TP3\\ 0 & 0 & (1 - Tn) \end{bmatrix}$$

La matrice de covariance de l'erreur d'estimateur :

Au début:
$$P_{k/k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

La matrice de covariance de l'erreur de modélisation :

Cov (x,y) =
$$\frac{1}{N} \sum_{i=1}^{N} (xi - \bar{x}) (yi - \bar{y})$$

$$Q_{k} = \begin{bmatrix} Q1 & 0 & 0 \\ 0 & Q2 & 0 \\ 0 & 0 & Q3 \end{bmatrix}$$

2. Phase de correction:

Le gain de Kalman:

$$K_{k+1} = P_{k+1/k} H_k^t (H_k P_{k+1/k} H_k^t + R_k)^{-1}$$

$$P_{k+1/k} = Fd_k P_{k/k} Fd_k^{t} + Q_k$$

$$h(x_k) = [G \ 0 \ 0]^t$$

La matrice Jacobienne de sortie :

$$H_{k} = \frac{\partial (h(x_{k}))}{\partial x} | x_{k} = x_{k/k}$$

$$\mathbf{H}_{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

La matrice de covariance de l'erreur du capteur :

Cov (x,y) =
$$\frac{1}{N} \sum_{i=1}^{N} (xi - \bar{x}) (yi - \bar{y})$$

$$R = \begin{bmatrix} R1 & 0 & 0 \\ 0 & R2 & 0 \\ 0 & 0 & R3 \end{bmatrix}$$

$$x_{k+1/k+1} = x_{k+1/k} + K_{k+1}(y_{k+1} - H_k x_{k+1/k})$$

 y_{k+1} : Vecteur de sortie du système

$$P_{k+1/k+1} = P_{k+1/k} - K_{k+1} H_k P_{k+1/k}$$

La situation actuelle et les futures directions du pancréas artificiel

ANNEXES

Implémentation du modèle minimal:

```
import numpy as np
import matplotlib.pyplot as plt
from math import *
    Gb=200
   Ib=0
   p1=0.028725
   p2=0.028344
   p3=5.0353*(10**(-5))
10 n=0.10
11
    G0=0
12
    I0=0
13
    X0=0
14
   Vi=12
15
   B=60
16
   drate=0.1
   F0=np.array([G0,X0,I0])
17
18
    p5=200
19
20
    def Ug(B,drate,t):
         return B*exp(-drate*t)
21
22
23
    def Ui(G,p5):
24
         if G>p5:
25
             return G-p5
26
         else:
27
             return 0
28
```

```
29
   # Essai 1
30
31
32
    def F(T,t):
33
        G, X, I=T
34
        return np.array([((-p1)*G)-(X*G)+(p1*Gb)+Ug(B,drate,t),((-p2)*X)+(p3*I)-(p3*Ib),(-n*I)])
35
36
37
    def Euler(P,t0,tf,y0,n):
38
        h=(tf-t0)/n
39
        y=y0
40
        t=t0
41
        Y=[y0]
42
        T=[t0]
43
        for k in range(n):
            y=y+h*P(y,t)
44
45
            t=t+h
46
            Y.append(y)
47
            T.append(t)
48
        return T,Y
49
50
   sol= Euler(F,0,300,F0,1000)
51
   Y= sol[1]
52
53
   Y=np.array(Y)
   G=Y[:,0]
54
   G=G[1:]
55
   X=Y[:,1]
56
   I=Y[:,2]
57
58
    Z=np.linspace(0,300,1000)
59
    Z2=np.linspace(300,600,1000)
60
61
   I02=200
62
    a=60
63
    b=0.1
64
65
   plt.plot(Z,G,label="Glucose Exogène")
   plt.legend()
66
67 plt.show()
```

```
69
70
    # Essai 2
71
72
73
    def Ui2(B2,drate,t):
        return B2*exp(-drate*t)
74
75
76
77
78
    def F2(T,t):
79
        G, X, I=T
        return np.array([((-p1)*G)-(X*G)+(p1*Gb)+Ug(0,drate,t),((-p2)*X)+(p3*I)-(p3*Ib),(-n*I)+((1/
    Vi)*(Ui2(a,b,t)))])
81
82
    G02=G[-1]
83
84
   F02=np.array([G02,X0,I02])
85
86
   sol2= Euler(F2,300,600,F02,1000)
   Y2= sol2[1]
87
   Y2=np.array(Y2)
   G2=Y2[:,0]
   X2=Y2[:,1]
90
91
    I2=Y2[:,2]
92
    G2=G2[0:-1]
94
    plt.plot(Z,G,label="Glucose Exogène")
95
96
    plt.plot(Z2,G2,label="Insuline Exogène")
    plt.legend()
97
   plt.show()
98
99
```

```
100
101
     # Essai 3
102
104
    I03=0
105
    B3=0
    G03=G2[-1]
106
107
108
109
     def Ug3(B3,drate,t):
         return B3*exp(-drate*t)
110
111
112
113
114
    def F3(T,t):
115
         G, X, I=T
116
         return np.array([((-p1)*G)-(X*G)+(p1*Gb)+Ug3(B,drate,t),((-p2)*X)+(p3*I)-(p3*Ib),(-n*I)])
117
118
    F03=np.array([G03,X0,I03])
119
    sol3= Euler(F3,600,1000,F03,1000)
    Y3=sol3[1]
122
    Y3=np.array(Y3)
123
    G3=Y3[:,0]
124
    X3=Y3[:,1]
125
    I3=Y3[:,2]
126
127
    G3=G3[0:-1]
128
129
130
     Z3=np.linspace(600,1000,1000)
131
132
133
134
    plt.plot(Z,G,label="Glucose Exogène")
135
    plt.plot(Z2,G2,label="Insuline Exogène")
    plt.plot(Z3,G3,label="Jeûne")
136
    plt.legend()
137
    plt.show()
138
139
```

MERCI DE VOTRE ATTENTION