1. (a) (4 points) Consider the following eight bit binary sequence of numbers:

1010 1110

Each of the following interprets this sequence differently. For each interpretation, state if the statement is true of false. If it is false, write the correct interpretation.

$(EA)_{16}$ in hexadecimal format:	False, $(AE)_{16}$
-46 in decimal when using sign/magnitude repres	sentation: True
-81 in decimal when using two's complement repr	resentation: False,-82
174 when using unsigned representation:	True

- (b) (3 points) State whether the following statements about the binary representation of numbers are *true* or *false*. Give **brief** explanations for the statements that are *false*.
 - Both two's complement and one's complement representation define two zeroes, one positive and one negative.

Solution: False, there's only one representation for two's complement.

• Using N bits it is only possible to represent $2^{N-1} - 1$ different numbers when a two's complement number system is used.

Solution: False. These are only the positive numbers, in total all numbers from -2^{N-1} to $2^{N-1}-1$ can be represented.

• While there are methods to represent both positive and negative integers, it is not possible to represent fractions or real numbers using binary numbers.

Solution: False, fixed and floating point number systems can be used to represent such numbers.

First Session Exam Page 2 of 15