Outline

- ■前馈神经模型
- 反向传播算法
- 案例分析

通用流程

· 前馈神经网络可以作为一个编码器(encoder)

· 编码(encoding): 把输入文本序列用一个固定向量来进

行表示

文本 → 文本特征(向量)

e.g. 文本每一个词的向量 e.g. 文本长度、文本标点 等特征组成的向量

...

可以看成文本 最终的向量化 表示 一般是sigmoid/softmax单元 e.g. 二元分类,sigmoid<0.5代 表第一类,否则第二类; softmax=[0.6, 0.4]代表第一类

...

案例一: FNN for 依存分析

- 基于文章: A Fast and Accurate Dependency Parser using Neural Networks
- 发表于EMNLP 2014. PDF
- 第一项将神经网络用于**依存**句法分析的工作
- 传统的依存句法分析使用手工特征 ,人工总结特征难以覆盖全面,而 且特征向量非常稀疏,计算速度慢
- 用神经网络分类器做基于转移(transition-based)的贪心 (greedy)模型来缓解上述问题.

单位:斯坦福NLP组

陈丹琦 普林斯顿NLP组 创始人

Christopher Manning

依存分析任务:回顾

Dependency Parsing

词之间的二元非对称依赖关系

形成一棵**连通,非循环,单根,无环,无交叉**的树结构

依存分析任务:回顾

Dependency Parsing

帮助减少句法歧义, 更好地理解句子语义, 服务于后续应用

e.g. I saw the man with the telescope

经典思路: Transition-based (基于转移)

■ 基于移进归约(shift-reduce):包含三个组成部分:一个上下文无关文法,一个堆栈,以及一个将要被分析的 token 列表。首先将待分析的 token 依次输入到堆栈中。栈顶两个元素去与文法规则的右值比较,如果 匹配成功,则元素被语法规则的左值替换(规约)。被用来分析程序语言

状态Configuration: 记录不完整的预测结果

- ·Stack栈(先进后出)
- · Input buffer of words缓存队列
- 依存关系集合(存放依存边)

转移Transition: 控制每一步状态的变化

依存分析目标: 找到一个最终的状态, 其中所有涉及关系的单词都会形成依存树

转移操作

- 每一步Transition做什么:根据当前状态(栈stack,缓冲区 buffer,依存关系dependency),产生一个新的状态
- 开始状态
 - Stack使用根节点root初始化
 - Buffer使用句子中的词序列初始化
 - 依存关系集合为空

- 结束状态
- · Stack有一个根节点
- · Buffer为空 此时,依存关系集合为最终的依存分 析结果
- 此时依存分析也就是:找到一个转移序列,该转移序列实现了从开始 状态到理想结束状态的过程

转移操作

- 转移操作: 改变状态中的 stack, buffer, dependency。
- arc-standard transition-based parser 包含3类动作:

(1) LEFT-ARC:

- •添加一个依存边为*s*1→*s*2,*s*1是栈顶的词(最后入栈),*s*2是第二个词(要求*s*†ack中元素个数大于等于2)
- ·将s2从stack中移除

(2) RIGHT-ARC:

- •添加一个依存边为s2→s1 (要求stack中元素个数大于等于2)
- ·将s1从stack中移除

(3) SHIFT

- ·从buffer中移除第一个词b1(要求buffer中元素个数大于等于1)
- ·b1压入栈

LEFT-ARC

添加依存边s1→s2, stack中移除s2

RIGHT-ARC

添加依存边 $s2\rightarrow s1$, stack中移除s1

SHIFT

从buffer中移除第一个词b1,压入栈

基于转移的依存分析步骤演示

Book me the morning flight

- LEFT-ARC: 创建s1→s2; 删除s2
- RIGHT-ARC: 创建s2→s1; 删除s1
- SHIFT: 删除b1; b1入栈
- 结束状态: stack只有root, buffer为空

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]		LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]		LEFTARC	$(the \leftarrow flight)$
8	[root, book, flight]		RIGHTARC	$(book \rightarrow flight)$
9	[root, book]		RIGHTARC	$(root \rightarrow book)$
10	[root]		Done	

基于转移的依存分析: 贪心策略

每一个步骤贪心地预测下一个要采取的动作,只考虑当前状态下概率最大的动作,完成转移

■ 两种设置: 难点:如何分类? 预言机(oracle):提供操作符

(1) unlabeled: 只预测哪一种动作(left-arc, right-arc, shift)。

(2) labeled: 预测哪一种动作,以及left-arc或right-arc时两个词之间的依存关系。假设一共有n种依存关系,则进行(2n+1)类分类。

MaltParser(2005): 判别式分类器; s1的词和词性, b1的词和词性...

传统分类特征

word part-of-speech tag $s_2.w = \text{has} \land s_2.t = \text{VBZ}$ 查看是否满足? $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$ $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$ $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$ dep. label

传统的分类特征由人工总结。根据状态:词汇、词性、依存关系标由这些indicator features通过拼接构成了一个很大的特征向量,该向量的值是0或1,且0占据非常大的比例,是一个稀疏向量,维度达106-107

传统分类特征

问题1:向量稀疏。在indicator特征中匹配,本身很稀疏;难以表示向量的相互作用(乘法)

问题2:特征不完整。难以总结所有特征模板

问题3: 计算代价昂贵。对词语、词性标签或语法关系标签进行拼接来生成特征字符串,并在包含数百万特征的巨大表格中进行查找。95%以上的解析时间用于特征计算。

 $s_2.w = \text{has} \land s_2.t = \text{VBZ}$ Indicator $s_1.w = \text{good} \land s_1.t = \text{JJ} \land b_1.w = \text{control}$ features $lc(s_2).t = \text{PRP} \land s_2.t = \text{VBZ} \land s_1.t = \text{JJ}$ $lc(s_2).w = \text{He} \land lc(s_2).l = \text{nsubj} \land s_2.w = \text{has}$ dep. label

使用神经网络的分类特征

- 3大问题的解决思路:使用神经网络
- 学习**稠密**(不会出现很多**0**)、**紧凑**(维数远小)的特征表示

向量

dense dim = 200

- 问题:
- ✔ 如何对所有可用信息进行编码?
- ✔ 如何对高阶特征建模?

使用神经网络的分类特征

• 首先考虑到这是一个针对文本数据的处理任务,采用词语的分布式表示: 把每一个词语表示为一个d维的稠密向量 (即词向量Word embeddings).↑

• 理想: 相似的词,则词向量也相近

. 映射到2维平面:

考虑到该任务是一个依存分析任务,词性和依存关系也 是紧密相关的信息:使用向量表示词性和依存关系标签.

NNS (plural noun) should be close to NN (singular noun).

num (numerical modifier) should be close to amod (adjective modifier).

神经依存分析模型结构

在转移中每一个步骤都进行一次预测,每一次预测使用这样一个单隐藏层的神经网络:输入层、隐藏层、以softmax作为输出单元的输出层,实现对状态的更新。

神经网络实际上作为一个分类器组件,完成了文本分类

输入层特征

- 词语特征: 取以下词的词向量
- stack和buffer前3个单词: s1, s2, s3, b1, b2, b3(不够补null_token)
- stack前两个单词的左、右孩子中距离最近的两个孩子:
 lc1(s1), rc1(s1), lc2(s1), rc2(s1), lc1(s2), rc1(s2), lc2(s2), rc2(s2)
- stack前两个单词距离最近左孩子的最近左孩子,最近右孩子的最近右孩子: lc1(lc1(s1)), rc1(rc1(s1)), lc1(lc1(s2)), rc1(rc1(s2))
- 词性特征:
- 以上18个词的词性标记: Stanford POS tagger获得
- 依存边特征
- 以上 后12个词的依存边的标签
- 英文工具: CoNLL Syntactic Dependencies, Stanford Basic Dependencies; 中文工具: Penn2Malt
- 比传统的手工特征工作量小

ROOT has VBZ

输入层特征

. 根据当前状态确定输入特征

隐藏层激活函数: 立方激活函数

$$g(w_1x_1+\ldots+w_mx_m+b)= \sum_{i,j,k}(w_iw_jw_k)x_ix_jx_k+\sum_{i,j}b(w_iw_j)x_ix_j\ldots$$

 x_i, x_j, x_k 可以来自三类特征中的任意一种,使用立方激活函数可以对它们进行建模,更好地捕捉不同种特征之间的相互作用

神经模型训练

- 训练样本选择:本项工作从训练文本和真实(gold)语法解析树中生成训练样本 {(c, t)},其中c是configuration,t是transition.并且遵循一种规则,要让stack尽量短.
- 训练目标/损失函数: 交叉熵Cross entropy loss
- 所有向量均使用反向传播计算梯度
- 优化器: 小批量(mini-batch)的AdaGrad
- 初始化:
 - 词语向量采用预训练的w2v向量. 50维
 - 其他向量(词性、依存关系标签) 随机初始化 (首次使用)

依存分析的评估

UAS: unlabeled 无标记依存准确率

LAS: labeled 有标记依存准确率

Acc = # correct deps
of deps
UAS = 4/5 = 80%
LAS = $2/5 = 40\%$

Gold					
1	2	She	nsubj		
2	0	saw	root		
3	5	the	det		
4	5	video	nn		
5	2	lecture	obj		

Parsed					
1	2	She	nsubj		
2	0	saw	root		
3	4	the	det		
4	5	video	nsubj		
5	2	lecture	ccomp		

其他:

- (1) 依存准确率:中心词预测正确的非根节点词语个数/总非根节点词数
- (2) 根准确率:正确根节点的个数/句子个数
- (3) 完全匹配率: 无标记依存结构完全正确的句子/句子总数

传统特征与稠密特征的比较

✓ 问题 #1: 向量稀疏性

indicator特征是稀疏向量,而本工作使用的是稠密的分布式向量, 能更好地表达词语的语义相似度

✓ 问题 #2: 特征完整性

indicator特征是手工整理的,特征之间可能需要进行组合,而人工 枚举特征非常可能不完整。神经网络方法使用一个立方激活函数, 可以自动地对不同类别、类别内的特征进行组合。

✓ 问题 #3: 计算代价

人工整理特征费时费力,必须对词语、词性标签或语法关系标签进 行拼接来生成特征字符串,并在包含数百万特征的巨大表格中查找 它们。神经网络方法,只需要做一些矩阵操作。

实验1要求

基本要求

完成依存分析模型的构建,包括整体架构、每一层、特别是48个特征的获取

✓ 进阶要求

完成训练数据的构造、损失函数、模型训练过程、测试过程

可以参考http://fancyerii.github.io/books/nndepparser/

后续工作

- A Neural Probabilistic Structured-Prediction Model for Transition-Based Dependency Parsing
- · ACL 2015 (NLP创新的一个方式就是对已有工作的不足进行改进)
- 为什么需要改进? 贪心策略的缺点:每步选择得分最高的操作,得到一个局部最优,不能保证全局最优;无法修正,错误传递。

提出结构化的神经概率依存分析框架,最大化整个动作序列的概率

修改 解码算法 和 训练目标

还有其他优化思路吗?

解码算法

- 编码encoding: 把输入文本序列用一个固定向量来进行表 示
- 解码decoding: 把固定向量转化为输出序列。本任务中解码的目标是给定输入x,找到全局上分数最高的动作序列。
- 贪心策略修改为beam search束搜索策略,每一步骤保留k 个分数最高的预测,取得的总体分数能够更好,效果接近 于exact inference精确推断

精确推理是概率图模型的一类推断算法,希望能计算出条件分布的准确值。

精确推理的计算复杂度会随着图的规模增加发生指数性的增长;且只能用于无环的简单图中,使用范围有限。

句子级概率计算

- 避免局部最优:直接对整个动作序列的概率分布进行建模.
- · 给定一个句子x和神经网络参数,第i个动作序列y_i的概率由 softmax函数根据所有动作序列的分数给出:

序列
$$\mathbf{y}_i$$
的概率: $p(y_i \mid x, \theta) = \frac{e^{f(x, \theta)_i}}{\sum\limits_{y_j \in \text{GEN}(x)} e^{f(x, \theta)_j}}$

序列 y_i 的分数f: 包含的所有动作 a_k 的分数之和

$$f(x, \theta)_i = \sum_{a_k \in y_i} o(x, y_i, k, a_k)$$
 $\mathbf{a_k}$: 第k步的转移动作

o: 神经网络输出

模型结构和前一个工作相同

训练目标/损失

. 句子级的负对数似然损失:

$$L(\theta) = -\sum_{(x_i, y_i) \in (X, Y)} \log p(y_i \mid x_i, \theta)$$

$$= -\sum_{(x_i, y_i) \in (X, Y)} \log \frac{e^{f(x_i, \theta)_i}}{Z(x_i, \theta)}$$

$$= \sum_{(x_i, y_i) \in (X, Y)} \log Z(x_i, \theta) - f(x_i, \theta)_i$$

$$Z(x,\theta) = \sum_{\substack{y_j \in \text{GEN}(x)}} e^{f(x,\,\theta)_j}$$
 Z包含了一个样本所有可能的 预测序列 减少搜索范围: beam search

Z(x, θ)的计算

- 对比学习: 给观测到的数据分配一个较大的概率值, 给 噪声数据分配一个较小的概率值。
- 本任务中,给gold动作序列更大的概率值,给束 (beam)中的错误序列更小的概率值。本任务中的对比 学习属于监督对比学习。
- · 这样,我们只需要对比gold动作序列和beam中的错误序列(噪声序列),而不需要对比全部的序列。beam选中的序列都是分数比较高的,所以我们希望模型可以区分正确答案,和得分高的错误答案。

新的训练目标

■ 采用了对比学习的训练目标:

$$L'(\theta) = -\sum_{(x_i, y_i) \in (X, Y)} \log p'(y_i \mid x_i, \theta)$$

$$= -\sum_{(x_i, y_i) \in (X, Y)} \log \frac{e^{f(x_i, \theta)_i}}{Z'(x_i, \theta)}$$

$$= \sum_{(x_i, y_i) \in (X, Y)} \log Z'(x_i, \theta) - f(x_i, \theta)_i$$

$$Z'(x,\theta) = \sum_{y_j \in \text{BEAM}(x)} e^{f(x,\theta)_j}$$
 Z'选择的范围是BEAM 一个范围有限的束

```
Input: training examples (X, Y)
Output: \theta
                                   搜索和学习集成在一个
\theta \leftarrow pretrained embedding
                                   统一的框架中
for i \leftarrow 1 to N do
                                   随机采样一些训练集数据
   x, y = RANDOMSAMPLE(X, Y)
   \delta = 0
   foreach x_j, y_j \in \mathbf{x}, y do
      beam = \phi
      goldState = null
      terminate = false
                                   每个样本都有一个gold序列
      beamGold = true
      while beamGold and not terminate
      do
                                        循环里decode得到k个预
         beam = DECODE(beam, x_j, y_j)
                                        测序列。如果beam里的
         goldState =
                                        序列有gold,就把其他预
         GOLDMOVE(goldState, x_j, y_j)
                                        测当成负样本,内部循环
         if not ISGOLD(beam) then
                                        终止,进行参数更新;否
             beamGold = false
                                        则重新解码,直到满足内
                                        部循环的终止条件
         if ITEMSCOMPLETE(beam) then
          terminate = true;
                                        Mini-batched
      \delta = \delta + \text{UPDATE}(goldState, beam)
                                        AdaGrad
```

依存分析数据资源

- 句法分析语料库也称为句法树库,包含大规模句子以及 其对应句法树的集合。
- Universal Dependencies treebanks
- 一个在100多种不同人类语言中对语法(词性、形态特征和句法依赖性)进行一致注释的框架

依存分析数据资源

 句法分析语料库也称为句法树库,包含大规模<u>句子以及</u> 其对应<u>句法树</u>的集合。

语料库名称	单词数量	语法类型	语言
英语宾州树库 (PTB)	117万	成分语法	英文
通用依存树库(UD V2.0 CoNLL 2017)	281万	依存语法	多语言
通用依存树库(UD V2.2 CoNLL 2018)	1714万	依存语法	多语言
组合范畴语法树库 (CCGBank)	116万	组合范畴语法	英文
中文宾州树库 6.0 (CTB 6.0)	78万	成分语法	中文
中文宾州树库 7.0 (CTB 7.0)	120万	成分语法	中文
中文宾州树库 8.0 (CTB 8.0)	162万	成分语法	中文
中文宾州树库 9.0 (CTB 9.0)	208万	成分语法	中文
中文语义依存树库(SDP)	52万	语义依存	中文

依存分析数据资源

宾州树库的数据组织结构(中英文相同)

```
((IP (NP-SBJ (DNP (NP-PN (NR 北海市))
                 (DEG 的))
             (NP (NN 崛起)))
     (PU , )
     (VP (VC 是)
         (NP-PRD (CP-APP (IP (IP-SBJ (LCP-TMP (NP (NT 近年))
                                            (LC 来))
                                   (NP-PN-SBJ (NR 广西)
                                              (NN 壮族)
                                              (NN 自治区))
                                   (VP (PP-DIR (P 对)
                                               (NP (NN 外)))
                                       (VP (VV 开放))))
                            (VP (VV 取得)
                                (NP-OBJ (ADJP (JJ 卓著))
                                       (NP (NN 成就))))
                        (DEC 的))
                 (ADJP (JJ 重要))
                 (NP (NN 标志)
                    (NN 之一))))
     (PU 。)) )
```

依存分析工具

Stanford Parser

相关测评任务

- SemEval
- 子任务-中文语义依存评测

结构:中文语义依存树库。从语义角度构建依存关系,定义了 45 个标签用来描述论元 (Argument) 之间的语义关系,19 个标签用来描述谓词 (Predicate) 之间的关系,以及 17 个标签用来提供谓词描述。

案例二: FNN for 文本分类

- Bag of Tricks for Efficient Text Classification
- 2016. PDF

单位: Facebook, 现在的Meta

■ 命名fastText

fast: 在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇

输入层: N元语法特征。

实际上是一个句子所有词的词向量累加

不考虑词序:词袋(bag of words, bow)

更好的特征? 更好的模型设计?

损失: $-\frac{1}{N}\sum_{i=1}^{N}y_i\log(f(BAx_i))$

FNN复习

- (1) 前馈计算每一层的净输入和激活值, 直到最后一层;
- (2) 反向传播计算每一层的误差项 $\delta^{(l)}$,计算每一层参数的偏导数(链式法则+动态规划);
- (3) 根据优化器算法更新参数