Thème: Milieux: interactions, interfaces, homogénéité, ruptures

LA CÉRAMIQUE

Objectif:

Comprendre le phénomène de diffusion des éléments nocifs présents dans une pièce de céramique suite à une négligence dans certaines étapes de fabrication.

PLAN

- I. Structure d'une pâte céramique
- II. Comment fabriquer une céramique?
- III. Mise en évidence expérimentale
- IV. Modélisation physique de la diffusion particulaire des éléments nocifs
 - 1. Equation de diffusion
 - 2. Résolution analytique de l'équation de diffusion
 - 3. Résolution numérique de l'équation de diffusion
 - a/ Discrétisation
 - **b/ Code Python**
 - c/ Résultats

I. Structure d'une pâte céramique?

II. Comment fabriquer une céramique?

- 1/ Choix de la matière première
- 2/ Broyage
- 3/ Compactage & Mise en forme
- 4/ Frittage
- 5/ Métallisation

Comment fabriquer une céramique?

1/ Choix de la matière première

2/ Broyage

3/ Compactage & Mise en forme

4/ Frittage

5/ Métallisation

Rupture de l'homogénéité de la matrice argileuse.

Des zones plus concentrées en éléments nocifs que d'autres

Apparition de pores :
Transmission
d'éléments nocifs
vers les aliments

III. Mise en évidence expérimentale

Description de l'expérience

Collecte des échantillons de petites tailles, de différentes pièces de céramique

Mise en évidence expérimentale

Résultats de l'expérience

Après plusieurs observations, nous pouvons classer les images obtenues en deux groupes

Premier groupe

J. inm

Matrice argileuse à aspect homogène : grains de quartz fins, assez bien distribués.

Deuxième groupe

Matrice argileuse à *aspect hétérogène* : grains de quartz grossiers et mal distribués.

IV. Modélisation physique de la diffusion particulaire des éléments nocifs

 $n = \frac{N}{V}$: densité particulaire

N : nombre de

particules

V : volume

1. Equation de diffusion?

Par analogie avec la loi de Fourier et la loi d'*Ohm* locale, il existe une loi caractérisant la diffusion de la matière appelée **loi de Fick** : $\vec{j} = -D . \overline{grad}$ (n) : densité de courant de particules.

D : coefficient de diffusion.

Bilan de particules: Variation du nombre de particules dans dV = Nombre de particules entrantes - Nombre de particules sortantes :

$$\frac{dN}{dt} = \frac{\partial N(en)}{dt} - \frac{\partial N(sort)}{dt}$$

On obtient :
$$\frac{\partial n}{\partial t}$$
 . S . dx = S (j(x) – j(x+dx))

Donc:
$$\frac{\partial n}{\partial t} = -\frac{\partial j}{\partial x}$$

Conclusion:

$$\frac{\partial n}{\partial t}$$
 = D . $\frac{\partial^2 n}{\partial x^2}$: Equation de diffusion particulaire unidimensionnelle

2. Résolution analytique de l'équation de diffusion

- * Hypothèse : D est une constante.
- * **Méthode**: Transformation de Fourier.
- * **Définition**: la transformation de *Fourier* d'une fonction **f** est :

$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$$
; et la transformation de *Fourier* inverse est :

$$f(x) = \frac{1}{\sqrt{2\Pi}} \int_{-\infty}^{+\infty} g(k) e^{ikx} dk$$

* Résolution :

On a
$$\frac{\partial n}{\partial t} = D \cdot \frac{\partial^2 n}{\partial x^2}$$

On applique la transformation de Fourier de part et d'autre de cette égalité :

$$\frac{D}{\sqrt{2\Pi}} \int_{-\infty}^{+\infty} \frac{\partial^2 n}{\partial x^2} e^{-ikx} dx = \frac{1}{\sqrt{2\Pi}} \int_{-\infty}^{+\infty} \frac{\partial n}{\partial t} e^{-ikx} dx$$

D. TF
$$\left(\frac{\partial^2 n}{\partial x^2}\right) = \frac{\partial}{\partial t} \left(\text{T.F (n(x,t))}\right)$$

$$\rightarrow -D \cdot k^2 \cdot g(k,t) = \frac{\partial}{\partial t} \left(g(k,t)\right) \quad \left(\text{car T.F }\left(\frac{d^2 f}{dx^2}\right) = -k^2 \cdot g(k)\right)$$

$$\rightarrow g(k,t) = A(k) \cdot e^{-Dk^2 t}$$

On se propose à ce stade de trouver A(k) = g(k,0)...

Il nous faut une condition initiale...

Prenons par exemple une gaussienne $n(x,0)=e^{\frac{-x^2}{2}}$

$$g(k,t) = T.F (n(x,0)) \cdot e^{-Dk^2t}$$

Finalement, on applique la transformation de *Fourier* inverse sur g(k,t) et on obtient :

$$n(x,t) = \frac{1}{\sqrt{2Dt+1}} \cdot e^{\frac{-x^2}{4Dt+2}}$$

3. Résolution numérique de l'équation de diffusion

- * Equation de diffusion particulaire 2D : $\frac{\partial n}{\partial t} = D \cdot (\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2})$
- * **Hypothèse**: D est une constante.
- a/ Discrétisation (fonction continue ———— valeur discrète) :

Pour simplifier les notations :
$$\begin{cases} x_i \longrightarrow i \\ y_j \longrightarrow j \\ t_k \longrightarrow k \end{cases}$$

$$.n(i,j,k+1) = n(i,j,k+dt) \approx n(i,j,k) + dt \cdot \frac{\partial n}{\partial t} t = t_k$$

$$.\frac{\partial n}{\partial t} = ?$$

$$t = t_k$$

$$n(i-1,j,k) = n(i-dx,j,k) \approx n(i,j,k) - dx \cdot \frac{\partial n}{\partial x} + \frac{dx^2}{2} \cdot \frac{\partial^2 n}{\partial x^2}$$

En faisant la somme on obtient :

$$\frac{\partial^2 n}{\partial x^2} \approx \frac{n(i+1,j,k) + n(i-1,j,k) - 2 \cdot n(i,j,k)}{dx^2}$$

De la même façon on obtient :

$$\frac{\partial^2 n}{\partial y^2} \approx \frac{n(i,j+1,k) + n(i,j-1,k) - 2 \cdot n(i,j,k)}{dy^2}$$

En utilisant l'équation de diffusion, on aura:

$$\frac{\partial n}{\partial t} = D \cdot \left(\frac{n(i+1,j,k) + n(i-1,j,k) - 2 \cdot n(i,j,k)}{dx^2} + \frac{n(i,j+1,k) + n(i,j-1,k) - 2 \cdot n(i,j,k)}{dy^2} \right)$$

<u>Finalement</u>:

$$\mathsf{n}(\mathsf{i},\mathsf{j},\mathsf{k}+1) \approx \mathsf{n}(\mathsf{i},\mathsf{j},\mathsf{k}) + \mathsf{dt} \cdot \mathsf{D} \cdot (\frac{n(i+1,j,k) + n(i-1,j,k) - 2 \cdot n(i,j,k)}{dx^2} + \frac{n(i,j+1,k) + n(i,j-1,k) - 2 \cdot n(i,j,k)}{dy^2}$$

b/ Code Python:

```
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
im=Image.open("MatHomog.png")
T=np.array(im)
n,p,l=T.shape
L=np.zeros((n,p))
for i in range(n):
   for j in range (p):
       L[i][j]=0.2989*T[i][j][0]+0.5870*T[i][j][1]+0.1140*T[i][j][2]
def AspectHomogène():
   dx = 1/p #Pas spatial suivant x
   dy = 1/n #Pas spatial suivant y
   dt = 10  #Pas temprel
   D = 0.1 #Coefficient de diffusion
   npt = 10 #nombre de pas temporel
   dx2 = dx**2
   dy2 = dy**2
   M = np.zeros([n,p,npt])
```

```
for i in range(n):
        for j in range(p):
            M[i,j,0]=L[i][j]
    for k in range(npt-1):
        for i in range (1, n-1):
            for j in range (1, p-1):
                x = M[i,j,k] + dt^*D^*((M[i+1,j,k] - 2^*M[i,j,k] + M[i-1,j,k])/dx^2 +
                                          (M[i,j+1,k] -2*M[i,j,k] + M[i,j-1,k])/dy2)
                if np.isinf(x) or np.isnan(x) :
                     x=1
                M[i,j,k+1] = x
    return (M)
M=AspectHomogène()
fig = plt.figure(1)
img = plt.subplot(111)
im = img.imshow(M[:,:,-1])
fig.colorbar(im)
```

c/ Résultats :

Résultats sous condition initiale : Matrice argileuse homogène

Résultats sous condition initiale : Matrice argileuse hétérogène

Merci pour votre attention