

Dr. Hubert Wagner

Übungen zur Vorlesung Übersetzerbau Wintersemester 2011/12 Übungsblatt 1

Aufgabe 1.1 Konstruktorsignatur

(12 Punkte)

- 1. Wir betrachten endliche Binärbäume, deren Knoten mit ganzen Zahlen markiert sind. Diese Binärbäume wollen wir durch Tupel (M,b) repräsentieren, wobei M eine endliche, präfixabgeschlossene Teilmenge von $\{0,1\}^*$ und $b:M\to\mathbb{Z}$ ist. Die Präfixabgeschlossenheit von M bedeutet:
 - $\varepsilon \in M$ und
 - ist $xa \in M$ mit $x \in \{0,1\}^*$ und $a \in \{0,1\}$, dann ist auch $x \in M$

In einem Binärbaum stellt jedes Wort $x \in M$ einen Knoten von M dar, b(x) ist die Markierung des Knotens x mit einer ganzen Zahl. ε ist die Wurzel des Binärbaums. Ist $x0 \in M$, so ist x0 der linke Sohn des Knotens x. Ist $x1 \in M$, so ist x1 der rechte Sohn von x. (Ein Knoten kann durchaus nur einen Sohn besitzen.)

Geben Sie für Binärbäume dieses Typs eine geeignete Konstruktorsignatur Σ an. Bestimmen Sie induktiv die Menge der Σ -Grundterme.

2. Wir lassen nun die an M gestellte Bedingung der Endlichkeit fallen, so dass ein Baum auch unendlich lange Zweige besitzen kann. Geben Sie für Binärbäume dieses Typs eine geeignete Destruktorsignatur an.

Aufgabe 1.2 S-sortige Funktionen und Homomorphismen (8 Punkte) Gegeben sei die Signatur $\Sigma = (\{s,e\},\{1,bool\},\{p:e\times e\to e,apl:s\times e\to bool\}).$ Wir betrachten die beiden folgenden Σ -Algebren:

- $A = (\{A_s, A_e\}, \{apl_A : A_s \times A_e \to Bool, p_A : A_e \times A_e \to A_e\})$ mit $A_s = \{f \mid f : \{0\}^* \to Bool\}, A_e = \{0\}^*, p_A(0^n, 0^m) = 0^{n+m}$ und $apl_A(f, x) = f(x)$.
- $B = (\{B_s, B_e\}, \{apl_B : B_s \times B_e \to Bool, p_B : B_e \times B_e \to B_e\})$ mit $B_s = \mathfrak{P}(\mathbb{N}), B_e = \mathbb{N},$ $p_B(n, m) = n + m$ und $apl_B(M, n)$ gleich T genau dann, wenn $n \in M$.

Geben Sie einen Σ -Homomorphismus $h:A\to B$ an, so dass h_s und h_e injektive Abbildungen sind.