Algèbre de Boole

Michel BERNE

7 octobre 2013

Sommaire

Ι	Relation d'ordre	4
1	Définition	4

Première partie

Relation d'ordre

1 Définition

Soit E un ensemble et R une relation linéaire entre éléments de E. R est un ordre sur $E \Leftrightarrow R$ est réflexive, antisymétrique et transitive.

- réflexive : $\forall a \in E, aRa$ - antisymétrique : $\forall a, b \in E, aRb \land bRa \Rightarrow a = b$ - transitive : $\forall a, b, c \in E, aRc$

Remarque Si pour tous $a, b \in E$ on a $(aRb) \lor (bRa)$, l'ordre est total. Sinon, l'ordre est partiel (certains éléments ne sont pas « comparables » par R car on a ni (aRb) ni (bRa).

Exemples

- 1. Soit $E \neq \emptyset$: l'inclusion définit un ordre (partiel) sur P(E). $A \subset B \Leftrightarrow \forall x, x \in A \Leftrightarrow x \in B$ On n'a ni $A \subset B$, ni $B \subset A$, l'ordre est partiel. D'autre part, on a bien :
 - $-A \subset A$ pour toute $A \in P(E), C$ est réflexive
 - $-(A \subset B \text{ et } B \subset A) \Rightarrow A = B : \text{c'est la définition même de } A = B$
 - $(A \subset B \text{ et } B \subset C) \Rightarrow A \subset C$

C est asymétrique, \subset est donc un ordre de P(E).

- 2. La relation « a divise b » définit un ordre partiel sur \mathbb{N}^* (notation : a|b). En effet, pour tout $a \neq 0, a|a$ donc | est réflexive. (a|b) et $(b|a) \Rightarrow a = b$ donc | est asymétrique. (a|b) et $(b|a) \Rightarrow a|c$ donc | est transitive. Par exemple, 5|15 mais $\neg (4|15)$: l'ordre est donc partiel.
- 3. Représenter la relation a|b sur l'ensemble des diviseurs de 30, puis 60.
 - Les diviseurs de 30:1,2,3,5,6,10,15,30
 - Les diviseurs de 60:1,2,3,4,5,6,10,12,15,20,30,60Sur \mathbb{N} , la relation <