Science Decision | CM: 10

Par Lorenzo

21 novembre 2024

0.1 Représentation de type $(X,\succeq) \to (\mathbb{R},\geq)$: cas fini

 $Soit \succ sur X$

Proposition 0.1.

Soit X fini, une codition nécessaire et suffisante (C.N.S) pour qu'existe une fonction $\exists f: (X,\succ) \to (\mathbb{R},\gt)$ tel que $x\succ y \iff f(x)\gt f(y)$ si et seulement $si\succ est$ un ordre faible stricte.

Démonstration 0.1.

Preuve condition nécessaire, on montre $\neg Q \implies \neg P \equiv P \implies Q$

Asymétrie: Soient $x, y \in X$ tel que $x \succ y \implies f(x) < f(y) \implies \neg f(x) < f(y) \implies \neg y \succ x$ donc asymétrique.

Negativement transitive: Soient $x, y, z \in X$ tels que $\neg x \succ y \land \neg y \succ z \Longrightarrow \neg f(x) > f(y) \land \neg(y) > f(z) \Longrightarrow f(x) \leq f(y) \land f(y) \leq f(z) \Longrightarrow f(x) \leq f(z) \Longrightarrow \neg(x) > f(z) \Longrightarrow \neg x \succ z$ Finalement negativement transitive.

Preuve condition suffisante, on montre $Q \Longrightarrow P$, Soit \succ un o.f.s sur X Soit $x \in X$ on définit: $\forall x = \{y \in X \mid x \succ y\}$ Soit $f(x) = Card(\forall x)$ si $X = \mathbb{Z}$