Math 104 Homework 7

Natalie Brewer

April 4, 2024

1 Exercises 3.2

- **3.2.6** Decide whether the following statements are true or false. Provide counterexamples for those that are false, and supply proofs for those that are true.
- (a) An open set that contains every rational number must necessarily be all of \mathbb{R} .

False. Consider the set $\mathbb{R}\setminus\{\sqrt{2}\}$. This set clearly contains every rational number but it is not the entirety of \mathbb{R} . It is also open because $\mathbb{R}\setminus\{\sqrt{2}\}=(-\infty,\sqrt{2})\cup(\sqrt{2},\infty)$, a union of open sets.

(b) The Nested Interval Property remains true if the term "closed interval" is replaced by "closed set."

False. For example, $\bigcap_{n=1}^{\infty} [n, \infty) = \emptyset$ where each set $[n, \infty)$ is closed.

(c) Every nonempty open set contains a rational number.

True. Let $O \subseteq \mathbb{R}$ be an open set. For any $x \in O$, there exists a neighborhood $V_{\epsilon}(x) \subseteq O$. By the density of \mathbb{Q} , this interval contains a rational.

(d) Every bounded infinite closed set contains a rational number.

False. Consider the set $A = \{\sqrt{2}\} \cup \{\frac{1}{n} + \sqrt{2} : n \in \mathbb{N}\}$. A is bounded within the interval $[\sqrt{2}, 1 + \sqrt{2}]$ and A is closed because it only has one limit point, $\sqrt{2}$, which it contains. It is also clearly infinite. However, it does not contain any rationals because all elements of the form $\frac{1}{n} + \sqrt{2}$ must be irrational.

(e) The Cantor set is closed.

True. The Cantor set $C = \bigcap_{n=1}^{\infty}$ is an intersection of closed intervals so by our theorem for intersections of closed sets, it is also closed.

2 Exercises 3.3

- **3.3.5** Decide whether the following propositions are true or false. If the claim is valid, supply a short proof, and if the claim is false, provide a counterexample.
- (a) The arbitrary intersection of compact sets is compact.

True. Let F_{λ} be a compact set. Then F_{λ} is closed and bounded. Then the intersection $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ is also clearly bounded. It is closed by the theorem for arbitrary intersections of closed sets.

(b) The arbitrary union of compact sets is compact.

False. Let $K_n = [0, n]$ be a compact set (closed and bounded). The union $\bigcap_{n=1}^{\infty} K_n = [0, \infty)$ is not compact since it is not bounded.

(c) Let A be arbitrary, and let K be compact. Then, the intersection $A \cap K$ is compact.

False. Let A = (1,2) and K = [0,3]. Then the intersection $A \cap K = (1,2) = A$ is not closed and thus, not compact.

(d) If $F_1 \supseteq F_2 \supseteq F_3 \supseteq F_4 \supseteq \cdots$ is a nested sequence of nonempty closed sets, then the intersection $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$

False. Let $F_n = [n, \infty)$ be a closed set. However, the intersection $\bigcap_{n=1}^{\infty} F_n = \emptyset$.

3.3.12 Using the concept of open covers (and explicitly avoiding the Bolzano–Weierstrass Theorem), prove that every bounded infinite set has a limit point.

Let I be a bounded infinite set. There exists a closed interval such that $I \subseteq [-M, M]$.

Suppose I has no limit points. Every $x \in [-M, M]$ has some epsilon-neighborhood $V_{\epsilon}(x)$ that does not intersect I at any point other than itself.

These neighborhoods form an open cover for [-M, M] and thus for I as well. By Heine-Borel, there exists a finite subcover for [-M, M], $\{V_{\epsilon_1}(x_1), ..., V_{\epsilon_N}(x_N)\}$. This is also an open cover for I.

However, each neighborhood $V_{\epsilon_n}(x_n)$ contains at most one element of I, so this implies that I has at most N elements. This contradicts our assumption that I is infinite.

3.3.13 (Extra Credit). Let's call a set *clompact* if it has the property that every closed cover (i.e., a cover consisting of closed sets) admits a finite subcover. Describe all of the clompact subsets of \mathbb{R} .

Clompact sets in \mathbb{R} are merely finite sets. For contradiction, suppose that F is a clompact set with infinite elements. Let $\{\{x\}: x \in A\}$ be a closed cover consisting of singleton sets for each element of A. If there were a finite subcover, then this would imply that A is finite, a contradiction.

3 Exercises 3.4

- **3.4.7** A set E is totally disconnected if, given any two distinct points $x, y \in E$, there exist separated sets A and B with $x \in A$, $y \in B$, and $E = A \cup B$.
- (a) Show that \mathbb{Q} is totally disconnected.

Let $x, y \in \mathbb{Q}$ and x < y. By density of \mathbb{Q} in \mathbb{R} , there exists an irrational number, p, between x and y.

$$\exists r \in \mathbb{Q} : \frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}} \implies x < p < y$$

where $p = \sqrt{2}r$.

Let $A = (-\infty, p) \cap \mathbb{Q}$ and $B = (p, \infty) \cap \mathbb{Q}$. Since $p \notin \mathbb{Q}$, it is clear that $\mathbb{Q} = A \cup B$. \mathbb{Q} is totally disconnected because A and B are separated sets:

$$A \cap \bar{B} = ((-\infty, p) \cap \mathbb{Q}) \cap ([p, \infty) \cap \mathbb{Q}) = \emptyset$$

$$\bar{A} \cap B = ((-\infty, p] \cap \mathbb{Q}) \cap ((p, \infty) \cap \mathbb{Q}) = \emptyset$$

(b) Is the set of irrational numbers totally disconnected?

Yes. For any $x, y \in \mathbb{R} \setminus \mathbb{Q}$ where x < y, there exists $r \in \mathbb{Q}$ such that x < r < y.

Let $A = (-\infty, r) \cap \mathbb{R} \setminus \mathbb{Q}$ and $B = (r, \infty) \cap \mathbb{R} \setminus \mathbb{Q}$. We can see that $\mathbb{R} \setminus \mathbb{Q} = A \cup B$ and that these sets are separated.

$$A \cap \bar{B} = ((-\infty, r) \cap \mathbb{R} \backslash \mathbb{Q}) \cap ([r, \infty) \cap \mathbb{R} \backslash \mathbb{Q}) = \emptyset$$

$$\bar{A} \cap B = ((-\infty, r] \cap \mathbb{R} \setminus \mathbb{Q}) \cap ((r, \infty) \cap \mathbb{R} \setminus \mathbb{Q}) = \emptyset$$

3.4.8 Follow these steps to show that the Cantor set is totally disconnected in the sense described in Exercise 3.4.7.

Let $C = \bigcup_{n=0}^{\infty} C_n$, as defined in Section 3.1.

(a) Given $x, y \in C$, with x < y, set $\varepsilon = y - x$. For each n = 0, 1, 2, ..., the set C_n consists of a finite number of closed intervals. Explain why there must exist an N large enough so that it is impossible for x and y both to belong to the same closed interval of C_N .

The closed intervals of the set C_n each have a length of $(\frac{1}{3})^n$, which converges to 0. So if there exists $N \in \mathbb{N}$ such that

$$\left| \left(\frac{1}{3} \right)^n - 0 \right| < \epsilon = y - x$$

whenever $n \geq N$. This means that you can find an n large enough so that the length of each closed interval is shorter than the distance between x and y, making it impossible for them to belong to the same interval of C_n .

3

(b) Show that C is totally disconnected.

Given $x, y \in C$, define A as the closed interval of C containing x and B as the set of closed intervals of C excluding the one that contains x. We can do this because the previous part showed that x and y belong to separate intervals. Now $C = A \cup B$ clearly and $x \in A$ and $y \in B$.

We can also see that A and B are separated because $\bar{A} = A$ and $\bar{B} = B$ and $A \cup B = \emptyset$. Thus, C is totally disconnected.

4 Exercises 4.2

- **4.2.3** Review the definition of Thomae's function t(x) from Section 4.1.
- (a) Construct three different sequences (x_n) , (y_n) , and (z_n) , each of which converges to 1 without using the number 1 as a term in the sequence.

$$(x_n) = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\} = \frac{n}{n+1}$$
$$(y_n) = \left\{ \frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \dots \right\} = \frac{n+1}{n}$$
$$(z_n) = \left\{ \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \dots \right\} = \frac{n}{n+2}$$

(b) Now, compute $\lim_{n\to\infty} t(x_n)$, $\lim_{n\to\infty} t(y_n)$, and $\lim_{n\to\infty} t(z_n)$.

$$t(x_n) = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\} = \frac{1}{n+1}$$

$$t(y_n) = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\} = \frac{1}{n}$$

$$t(z_n) = \left\{ \frac{1}{3}, \frac{1}{2}, \frac{1}{5}, \dots \right\} = \begin{cases} \frac{1}{n+2} & \text{for odd } n \\ \frac{1}{n/2+1} & \text{for even } n \end{cases}$$

The limit for all three sequences is $\lim_{n\to\infty} t(x_n) = \lim_{n\to\infty} t(y_n) = \lim_{n\to\infty} t(z_n) = 0$.

(c) Make an educated conjecture for $\lim_{x\to 1} t(x)$, and use Definition 4.2.1B to verify the claim. Given $\varepsilon > 0$, consider the set of points $\{x \in \mathbb{R} : t(x) \geq \varepsilon\}$. Argue that all the points in this set are isolated.

Conjecture: $\lim_{x\to 1} t(x) = 0$

Given $\epsilon > 0$, we want to find a delta-neighborhood around 1 such that $x \in V_{\delta}(1)$ implies $t(x) \in V_{\delta}(1)$ $V_{\epsilon}(0)$.

If $\epsilon > 1$, then $\delta = \epsilon$ will work because the neighborhood will include x = 0 and $t(0) = 1 < 0 + \epsilon$, all

irrationals which trivially satisfy $t(x)=0<\epsilon$, and all rationals because $t(\frac{m}{n})=\frac{1}{n}<\epsilon$. If $\epsilon<1$, then there exists $N\in\mathbb{N}$ such that $\frac{1}{N+1}\leq\epsilon<\frac{1}{N}$. We know that x=0 will not be in the neighborhood and that all irrationals satisfy the equation, so we focus on the rationals.

$$\frac{1}{n} < \epsilon$$

$$\frac{1}{n} < \frac{1}{N}$$

$$n > N + 1$$

So we want the denominator of $\frac{m}{n}$ to be greater than N+1. Setting $\delta = \frac{1}{N+1}$ will accomplish this. Suppose $|x-1| < \frac{1}{N+1}$.

$$1 - \frac{1}{N+1} < x < 1 + \frac{1}{N+1}$$
$$\frac{N}{N+1} < x < \frac{N+2}{N+1}$$

5

So the denominator of x must be greater than N+1, and thus $t(x) < \epsilon$.

4.2.8 Compute each limit or state that it does not exist. Use the tools developed in this section to justify each conclusion.

(a)
$$\lim_{x\to 2} \frac{|x-2|}{x-2}$$

Does not exist. Consider the sequences $(x_n) = 2 - \frac{1}{n}$ and $(y_n) = 2 + \frac{1}{n}$. We have $x_n \neq 2$ and $y_n \neq 2$ for all $n \in \mathbb{N}$ and also $\lim x_n = \lim y_n = 2$. However,

$$\lim f(x_n) = \lim \frac{|2 - \frac{1}{n} - 2|}{2 - \frac{1}{n} - 2} = -1$$

$$\lim f(y_n) = \lim \frac{|2 + \frac{1}{n} - 2|}{2 + \frac{1}{n} - 2} = 1$$

which are different so the limit does not exist.

(b)
$$\lim_{x \to \frac{7}{4}} \frac{|x-2|}{x-2}$$

The limit is -1. Let $\epsilon > 0$. We want δ such that $|x - 7/4| < \delta$ implies $|\frac{|x-2|}{x-2} + 1| < \epsilon$. Since $\frac{|x-2|}{x-2}$ either equals 1 or -1, we just want to be close enough to 7/4 so that it is always negative. Therefore setting $\delta = 1/4$ works.

(c)
$$\lim_{x\to 0} (-1)^{[1/x]}$$

Does not exist. Consider the sequences $(x_n) = \frac{1}{2n}$ and $(y_n) = \frac{1}{2n+1}$. Notice that $x_n \neq 0$ and $y_n \neq 0$ and $\lim x_n = \lim y_n = 0$. However,

$$\lim f(x_n) = \lim (-1)^{1/x_n} = \lim (-1)^{2n} = 1$$

$$\lim f(y_n) = \lim (-1)^{1/y_n} = \lim (-1)^{2n+1} = -1$$

which are different so the limit does not exist.

(d)
$$\lim_{x\to 0} \sqrt[3]{x}(-1)^{[1/x]}$$

The limit is 0. Given $\epsilon > 0$, let $\delta = \epsilon^3$. Then if $|x - 0| < \epsilon^3$, it is also true that

$$|\sqrt[3]{x}(-1)^{[1/x]} - 0| < |\sqrt[3]{\epsilon^3}(-1)^{[1/x]}| = |\epsilon(-1)^{[1/x]}| = \epsilon$$

- **4.2.10 (Right and Left Limits).** Introductory calculus courses typically refer to the right-hand limit of a function as the limit obtained by "letting x approach a from the right-hand side."
- (a) Give a proper definition in the style of Definition 4.2.1 for the right-hand and left-hand limit statements:

$$\lim_{x \to a^+} f(x) = L \quad \text{and} \quad \lim_{x \to a^-} f(x) = M.$$

Right-hand limit: Let $f: A \to \mathbb{R}$ and let c be a limit point of A. We say that $\lim_{x \to a^+} f(x) = L$ provided that, for all $\epsilon > 0$, there exists $\delta > 0$ such that whenever $0 < x - c < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

Left-hand limit: We say that $\lim_{x\to a^-} f(x) = L$ provided that, for all $\epsilon > 0$, there exists $\delta > 0$ such that whenever $0 < c - x < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

(b) Prove that $\lim_{x\to a} f(x) = L$ if and only if both the right and left-hand limits equal L.

(\Longrightarrow) Suppose for contradiction that the right limit did NOT equal L. Then for some $\epsilon > 0$, it must be that for all $\delta > 0$ there exists $x \in A$ such that $0 < c - x < \delta$ but $|f(x) - L| > \epsilon$. This implies that there is no delta such that whenever $|x - c| < \delta$ it is also true that $|f(x) - L| > \epsilon$, meaning the limit is not L, a contradiction.

A similar proof for the case where the left limit is not L, since $0 < x - c < \delta$ also implies $|x - c| < \delta$. (\Longleftarrow) The right and left limits both equal L. This means that for any $\epsilon > 0$, there exists $\delta_1 > 0$ such that whenever $0 < x - c < \delta_1$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$. There also exists $\delta_2 > 0$ such that whenever $0 < c - x < \delta_2$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

Let $\delta = \min \delta_1, \delta_2$. Now $|x - c| < \delta$ implies $|f(x) - L| < \epsilon$. This was for an arbitrary ϵ so the limit must be L.

4.2.11 (Squeeze Theorem). Let f, g, and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} h(x) = L$ at some limit point c of A, show that $\lim_{x\to c} g(x) = L$ as well.

Let $\epsilon > 0$ be arbitrary. We want to find a δ such that $|x - c| < \delta$ implies $|g(x) - L| < \epsilon$. Since $\lim_{x \to c} f(x) = L$, there exists δ_f such that whenever $|x - c| < \delta_f$

$$|f(x) - L| < \epsilon$$

Since $\lim_{x\to c} h(x) = L$, there exists δ_h such that whenever $|x-c| < \delta_h$

$$|h(x) - L| < \epsilon$$

Take $\delta = \min\{\delta_f, \delta_h\}$. Now whenever $|x - c| < \delta$, it is also true that

$$-\epsilon < f(x) - L < \epsilon$$

$$-\epsilon < h(x) - L < \epsilon$$

Adding L to both sides and using the fact that $f(x) \leq g(x) \leq h(x)$ gives

$$L - \epsilon < f(x) \le g(x) \le h(x) < L + \epsilon$$

so $|g(x) - L| < \epsilon$.