Analysis 1

Mike Desgrottes

August 2020

1

Theorem 1. Prove that the set $A = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1\}$ is open in \mathbb{R}^2 .

Proof. The set (0,1) is open in \mathbb{R} because the set $B(x)=\{y\in\mathbb{R}:|x-y|<1-x\}$ is contained in (0,1). So the neighborhood $B(x,y)=\{(x^{'},y^{'}):x^{'}\in B(x),y^{'}\in B(y)\}$ is contained in A for $(x,y)\in A$. Thus A is open.

Theorem 2. Prove that the set

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

is closed in \mathbb{R}^2

Proof. We defined the set A in terms of the metric on \mathbb{R}^2 .

$$A = \{ z \in \mathbb{R}^2 : |z| \le 1 \}$$

We will show that the compliment of the set is open in \mathbb{R}^2

$$A^c = \{ z \in \mathbb{R}^2 : |z| > 1 \}$$

. We defined the neighborhood

$$B(z) = \{ w \in \mathbb{R}^2, z \in A^c : |z - w| < \epsilon \}$$

where $\epsilon = |z| - 1$. We note that if $w \in B$, then $||z| - |w|| \le |z - w| < |z| - 1$. This implies that $|z| - |w| < |z| - 1 \implies |w| > 1$ or $1 - |z| < |w| - |z| \implies |w| > 1$ and $w \in A^c$. So, $B \subset A^c$.

Theorem 3. Let (X,d) be a metric space. Define $\rho: X \times X \to \mathbb{R}$,

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Prove that ρ *is a metric.*

Proof. Since d(x,y) = d(y,x), then $\rho(x,y) = \rho(y,x)$ for all x,y and $\rho(x,y) = 0 \Leftrightarrow x = y$. To verify the triangle inequality, we see that

$$\rho(x,y) \leq \frac{d(x,z+d(z,y)}{1+d(x,z)+d(y,z)} = \frac{d(x,z)}{1+d(x,z)+d(y,z)} + \frac{d(y,z)}{1+d(x,z)+d(y,z)} \leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(x,z)}{1+d(x,z)} = \rho(x,z) + \rho(y,z)$$

for all $z \in X$.

Thus, ρ is a metric.

Theorem 4. Let A be a bounded closed set of \mathbb{R} , prove that $\inf A$ and $\sup A$ are in A.

Proof. Since A is closed and bounded, it is compact. It implies that its compliment is open. Suppose that inf A and $\sup A$ are not in A. They must be interior points of the compliment of A. The neighborhoods $(\inf A - \epsilon_1, \inf A + \epsilon_1)$ and $(\sup A - \epsilon_2, \sup A + \epsilon_2)$ will be contained A^c for some choice of $\epsilon_1, \epsilon_2 > 0$. This would imply that there exists a lower bound of A in $(\inf A, \inf A + \epsilon_1)$ and an upper bound of A in $(\sup A - \epsilon_2, \sup A)$ which would give rise to a contradiction. So, either $\sup A, \inf A \in A$ or they are limit points of A. Compact sets contain their limit points.

Theorem 5. Let $A_1, ..., A_n$ be subsets of a metric space and let $B = \bigcup_{i=1}^n A_i$. Prove that $\bar{B} = \bigcup_{i=1}^n \bar{A}_i$. Proof. Let B' be the set of limit points of B.

$$\bar{B} = B \bigcup B' = \bigcup_{i=1}^{n} A_i \bigcup \bigcup_{i=1}^{n} A'_i = \bigcup_{i=1}^{n} (A_i \bigcup A'_i) = \bigcup_{i=1}^{n} \bar{A}_i.$$

It remains to show that $B^{'} = \bigcup_{i=1}^{n} A_{i}^{'}$. Let x be a limit points of A_{i} for some i, then any neighborhood around x must intersect A_{i} at a point different than x. So, it also intersects B and it is also a limit point of B. So, $\bigcup_{i=1}^{n} A_{i}^{'} \subset B^{'}$. If x is a limit point of B, then every neighborhood centered at x must intersect B at some point different than x. This imply that it also intersects A_{i} for some i and $B^{'} \subset \bigcup_{i=1}^{n} A_{i}^{'}$

Theorem 6. Let E' be the set of limit points of E. Prove that E' is closed.

Proof. We will show that $(E^{'})^c$ is open. If x is not a limit point of E, then $x \in (E^{'})^c$. This means that there is a neighborhood around x which does not intersect E. The neighborhood in question is a subset of $(E^{'})^c$. so, $(E^{'})^c$ is open.

Theorem 7. Let A be the set of interior points of E. Prove the following.

- (a) A is open.
- (b) If $G \subset E$ and G is open, prove that $G \subset A$.
- (c) Prove that the compliment of A is the closure of the compliment of E.
- (d) Does E and E' always have the same interior?

Proof. (a) By the definition of open set, A is open because all of its points are interior.

- (b) Since G is open, all its elements are interior point of E. Hence, the elements belong to A, the set of all interior points of E. Therefore, $G \subset A$.
- (c) Let $x \in A^c$, then it implies that x is not an interior point of E. So all neighborhoods of x are not contained in E. This can happen because x is not in E or every neighborhood of x intersect E^c . Hence, $x \in E^c \cup (E^c)' = \bar{E}^c$. So, $A^c \subset \bar{E}^c$. If $x \in \bar{E}^c$, then either x is a limit point of E^c or $x \in E^c$, either way no neighborhood of x will be contained in E. So $\bar{E}^c \subset A^c$.
- (d) No, because interior points are not necessarily limit points. So, if $x \in E^{\circ}$ and $x \notin E'$, then E° and E'° will differ.

Theorem 8. Give an example of an open cover of (0,1) which has no finite subcover.

Proof.
$$\bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{2^n})$$

Theorem 9. Which of the following sets are compact? Justify.

- (a) $[0,1] \bigcup [3,4]$ Yes, it is closed and bounded.
- (b) $[0, \infty)$ It is not bounded. It is not compact.
- (c) $A = \{x \in \mathbb{R} : 0 \le x \le 1, x \text{ is irrational }\}$. No, it is not closed. The compliment of this set is not open. Pick a rational number in (0,1), then no neighborhood around that rational number will be contained in the compliment of A.
- (d) $\{1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n},...\}\bigcup\{0\}$ Yes, it is closed and bounded. The compliment of this set is open. For any $n\in\mathbb{N}$, pick any real number in $(\frac{1}{n+1},\frac{1}{n})$, then we can find a neighborhood around that real number that is contained in $(\frac{1}{n+1},\frac{1}{n})$, and it is open. The compliment is $\bigcup_{n=1}^{\infty}(\frac{1}{n+1},\frac{1}{n})\bigcup(-\infty,0)\bigcup(1,\infty)$ which is open.

Theorem 10. Let A and B be compact subsets of a metric space (X,d). Prove that $A \cup B$ is compact.

Proof. Let $\bigcup_{i=1}^{\infty} A_i$ be an open cover of A, and $\bigcup_{j=1}^{\infty} B_j$ be an open cover of B. Since A and B are compact, it implies that we can find a finite subcover of A and B from their respective open cover. So, $A \bigcup B \subset \bigcup_{k=1}^n A_i \bigcup \bigcup_{l=1}^m B_l^1$ which is a finite subcover of $\bigcup_{i=1}^{\infty} A_i \bigcup \bigcup_{j=1}^{\infty} B_j$. Thus, $A \bigcup B$ is compact.

Theorem 11. Let (F_{α}) be a family of connected sets in a metric space (X,d). Assume that $\bigcap_{\alpha} F_{\alpha} \neq \emptyset$. Prove that $\bigcup_{\alpha} F_{\alpha}$ is connected.

Proof. We will prove it by contradiction. Suppose that $\bigcup_{\alpha} F_{\alpha}$ is disconnected with the assumption of the theorem. So, $\bigcup_{\alpha} F_{\alpha} = A \bigcup B$ where A and B are nonempty seperated sets. If there exists a set F_{α} such that $F_{\alpha} \subset A$ or $F_{\alpha} \subset B$ then it contradicts the assumption that $\bigcap_{\alpha} F_{\alpha}$ because separated sets are disjoint. So, for all α , $F_{\alpha} = C \bigcup D$ where $C \subset A$ and $D \subset B$. Since $\overline{C} \subset \overline{A}$ and $\overline{D} \subset \overline{B}$, this imply that C and D do not contain the other's limit points and F_{α} is thus disconnected which is a contradiction. $\bigcup_{\alpha} F_{\alpha}$ is connected.

¹I hope this doesn't cause any confusion. We picked a finite subcover of A which has n elements. I don't mean to say we chose $A_1, A_2, ... A_n$.