Machine Learning Gradient Descent

Mostafa S. Ibrahim *Teaching, Training and Coaching for more than a decade!*

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / MSc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

© 2023 All rights reserved.

Please do not reproduce or redistribute this work without permission from the author

Optimization

- An optimization problem is one that involves minimizing or maximizing a function
- Last time, we found the minimum of $f(x) = 3x^2 + 4x + 7$ using an **analytical** solution
 - Find derivative f'(x)
 - \circ Set to zero f'(x) = 0
 - Find x: the minimum for a function with a global minimum
- The previous approach won't work for the more complex functions coming up!
- Let's find the minimum in an iterative way for the same f(x)

Gradient Descent

- Our goal is to find the x that has the minimum y (analytically $x = -\frac{2}{3}$)
- We'd like to find the answer, but in an iterative manner!
- Start from an initial location, e.g. x = 0
- Strategy: keep moving x with $\Delta x = 0.01$ in the direction that makes it closer to the optimal point!
- Should we go left or right? -0.01 vs 0.01

- $f(x) = 3x^2 + 4x + 7$
- f'(x) = 6x + 4

Positive slope case

- Intuitively, we would like to move towards the left side (negative Δx)
- What is the slope sign at x = 0?
 - o f'x(0) = 4: positive slope
- This means we need to move in the opposite direction of the slope!
- Then, keep moving towards the left until reaching a point with zero slope
 - o The minimum!

- $f(x) = 3x^2 + 4x + 7$
- f'(x) = 6x + 4

Negative slope case

- What if we started from x = -1.3?
- Intuitively, we would like to move towards the right side (positive Δx)
- What is the slope sign at x = -1.3?
 - o f'x(0) = -3.8: negative slope
- This means we need to move in the opposite direction of the slope!
- Then, keep moving towards the right until reaching a point with zero slope
 - o The minimum!

- $f(x) = 3x^2 + 4x + 7$
- f'(x) = 6x + 4

Gradient Descent

- An iterative algorithm to find the local minimum
 - Start from an initial location.
 - Keep moving in the opposite direction of the gradient
- So far we used **fixed** $\Delta x = 0.01$
 - But this constant can cause issues based on the steepness of the curve
 - It can be very slow. It can make big moves close to the minimum!
- How can we make it dynamic? Use the gradient value itself!
- However, this value itself has the potential to be very big
 - Let's multiply by a small value
 - Let's call it the **learning rate (Ir)**. It is a hyperparameter
 - A hyperparameter is a parameter whose value is used to control the learning process

Parameter and Hyperparameter

- Our model for a simple line has 2 parameters: m and c
 - We would like to **learn** these 2 lines
- We needed an extra parameter, the learning rate (and precision)
 - We call these hyperparameters
 - We typically don't learn them
 - But we experimentally try different values to find suitable ones

Stopping Criteria

- One simple criteria is the number of iterations (e.g. 100 iterations)
 - O But what if we need more?
 - However, it's still good to force an end!
- Another way is the precision
 - At each iteration we have the old x and the new x
 - Once the 2 values are almost the same, stop the program
- The best is to use both

```
step_size = 0.01  # learning rate
cur_x = -7.5
```

```
for iter in range(100):
    gradient = f_derivative(cur_x)
    cur_x -= gradient * step_size # move in opposite direction
```


Effect of large step size (learning rate)

- We may suffer from an oscillating behaviour around the minimum value
 - This means that it keeps missing the minimum, instead jumping to positive and negative directions on either side of the minimum

Code Tour

Question!

 Do we need to decrease the step size (LR) over time for the algorithm to converge?

No, the gradient descent itself will take smaller steps when getting closer to the minima

```
for iter in range(100):
    gradient = f_derivative(cur_x)
    cur_x -= gradient * step_size
```


Global vs Local

- When the function has a single u-shape, it will have a single global minimum
 - We call them convex functions
- However, if it has multiple u-shapes, it will have several minimums
 - We call them local **minima**, except the best the most minimum among all of them
- Consider the function

$$x^4 - 6x^2 - x - 1$$

- There are 2 local minimum ys
 - \circ X = -1.68, Y = -8.3
 - \circ X = 1.17, Y = -11.7 (global)
- Where do we end if we start
 from: -2.4, -0.15, 0.1, 2.39
- Let's run it

Graph of function of multivariate variables

- What about functions that have 2 variables? Or multivariate?!
- Consider for example:

$$f(x, y) = 3(x + 2)^2 + (y - 1)^2$$

- Now, both x and y should be updated
- Analogy: To head to the south-west, people don't usually move directly from east-west, and then north-south. Typically, the shortest path (i.e. moving along both coordinates simultaneously) is preferred!
- This function has a global minimum
- we can't move both x and y at the same time when looking at a tangent

Graph of function of multivariate variables

- A typical solution for multivariate problems that you can't solve simultaneously
 is to try solving per variable and combining the results
 - o Intuition: can we reduce it to 1D movements per variable?
- Therefore, we apply the partial derivative for each variable
 - Which mainly fixes on one variable (a 1D slice from this variable's perspective)
- The overall algorithm will just be extended from 1D to 2D
 - Compute a partial derivative for every variable
 - Make an update to all of them together

Slicing a graph on output dimension (z)

- If you slice the graph with a plane that is parallel to the xy-plane, then all **z-values** will be equal
 - For example, if z represents some cost function, then all such (x, y) solutions will have the same cost
 - This is how we create <u>contour plots</u>

$$2x^2 - 4xy + y^4 + 2$$

- This function has more than local minima
- Coding common mistake
 - Computing the partial derivative of each variable using the old state
 - Don't use the changed state

Terminology

- In programming, a parameter is a variable in a method definition.
 - The **arguments** are the values you pass when calling the function
 - Parameter = Variable. Argument = Value
- In ML/neural network, a parameter is a weight value
 - Parameter = Value (connection weight)
- A model is set of parameters (weights) that we save for later inference
 - (m, c) for the line equation
- A hyperparameter is a parameter whose value is used to control the learning process
 - Learning rate is one of the most critical hyperparameters to handle
 - Specially its initial value. Secondly, how to decay
 - We will comeback to it again later

Gradient Descent

- Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function
- <u>Iterative</u> Optimization
 - Start from an initial solution.
 - Keep iterating to improve the last solution (tail recursion)
- First-order
 - Only first-order derivatives make use of this method
 - In other words, we compute derivatives only once
- Another alternative to Gradient Descent is Newton's method
 - Useful, but there are several <u>impractical</u> challenges

Lectures flow so far

- We wanted to do House Price Prediction (Supervised / Regression)
- The data seems coming from a line
 - Let's find the best line. This treatment is called linear regression
- Given data and line, we defined a cost (error) function
- We want to minimize the function (find parameters that gives min error)
- Gradient descent: general technique that given a function F, iteratively it finds its (local) minima
- Next: Let's get back to linear regression + gradient descent

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."