Chapitre 7

Produit scalaire

I. Produit scalaire

1) Norme d'un vecteur

Définition:

Soit \vec{u} un vecteur du plan, et soit \vec{A} et \vec{B} deux points du plan tels que $\vec{u} = \overrightarrow{AB}$.

La **norme** du vecteur \vec{u} , notée $\|\vec{u}\|$, est la **longueur** du segment [AB] ; on a :

$$\|\vec{u}\| = \|\overrightarrow{AB}\| = AB.$$

Remarque:

Dans un repère orthonormé, si \vec{u} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$, alors $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Propriétés:

Soit \vec{u} et \vec{v} deux vecteurs du plan.

- Pour tout nombre réel k, on a $||k\vec{u}|| = |k| \times ||\vec{u}||$ (notamment, $||-\vec{u}|| = ||\vec{u}||$).
- $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ (inégalité triangulaire).
- $\|\vec{u}\| = 0 \Leftrightarrow \vec{u} = \vec{0}$.

2) Produit scalaire de deux vecteurs

Définition:

Soit \vec{u} et \vec{v} deux vecteurs et A, B et C trois points du plan tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

Le **produit scalaire** des vecteurs \vec{u} et \vec{v} , noté $\vec{u} \cdot \vec{v}$ est le nombre réel défini par :

- si $\vec{u} \neq \vec{0}$ et si $\vec{v} \neq \vec{0}$, alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\widehat{BAC}) = AB \times AC \times \cos(\widehat{BAC})$.
- si $\vec{u} = \vec{0}$ ou si $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$

Exemple:

Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tel que :

$$\|\overrightarrow{AB}\| = AB = 2$$
 et $\|\overrightarrow{AC}\| = AC = 3$ et $\widehat{BAC} = 30^{\circ}$

Leur produit scalaire vaut :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$$

Remarque:

Le produit scalaire $\vec{u} \cdot \vec{v}$ est indépendant des représentants des vecteurs \vec{u} et \vec{v} .

On peut donc prendre des vecteurs de même origine.

Propriétés:

Soit \vec{u} et \vec{v} deux vecteurs colinéaires du plan.

- $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$ s'ils sont de **même sens**.
- $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$ s'ils sont de sens contraires.

<u>Démonstration</u>:

- Si \vec{u} et \vec{v} sont de même sens, alors $\widehat{BAC} = 0^{\circ}$ et donc $\cos(\widehat{BAC}) = 1$ et donc $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$.
- Si \vec{u} et \vec{v} sont de sens contraire, alors $\widehat{BAC} = 180^{\circ}$ et donc $\cos(\widehat{BAC}) = -1$ et donc $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$.

Exemple:

Soit trois points alignés A, B et C alignés dans cet ordre sur une droite graduée, tels que :

$$AB = 3$$
 et $BC = 2$

alors on a
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC = 15$$
, $\overrightarrow{BA} \cdot \overrightarrow{BC} = -BA \times BC = -6$, $\overrightarrow{CB} \cdot \overrightarrow{CA} = CB \times CA = 10$, $\overrightarrow{AB} \cdot \overrightarrow{CB} = -AB \times CB = -6$

Propriété :

On appelle **carré scalaire** du vecteur \overrightarrow{AB} , le nombre $\overrightarrow{AB} \cdot \overrightarrow{AB}$. On le note \overrightarrow{AB}^2 .

On a alors $\overrightarrow{AB}^2 = ||\overrightarrow{AB}||^2 = AB^2$.

3) Formule des projetés orthogonaux

Définition:

Le **projeté orthogonal** d'un point M sur une droite (d) est le point d'intersection de la droite (d) et de la droite perpendiculaire à (d) passant par le point M.

H est le projeté orthogonal de M sur (d)

Propriété:

Soient A, B et C trois points du plan.

Si H est le projeté orthogonal du point C sur la droite (AB) alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$.

Remarques:

- Les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont colinéaires.
- Si $\widehat{BAC} < \frac{\pi}{2}$, alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$.

• Si $\widehat{BAC} > \frac{\pi}{2}$, alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH$.

Exemple:

Soit ABCD un carré de côté a.

On a alors:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AB} = a^2$$

Car le point C se projette orthogonalement en B sur (AB).

4) Formule avec les coordonnées

Propriété:

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan. On a alors :

$$\vec{u} \cdot \vec{v} = xx' + yy'$$
.

Cette forme est l'expression analytique du produit scalaire.

Remarque:

On retrouve bien $\|\vec{u}\|^2 = x^2 + y^2$.

Exemple:

Soient les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ dans une base orthonormée (\vec{i}, \vec{j}) :

$$\vec{u} \cdot \vec{v} = 2 \times 1 + (-1) \times 3 = -1$$
 et $\|\vec{u}\|^2 = 2^2 + (-1)^2 = 5$, d'où $\|\vec{u}\| = \sqrt{5}$.

II. Propriétés du produit scalaire

1) Symétrie et bilinéarité

Propriétés:

- Le produit scalaire de deux vecteurs est **symétrique** : pour tous vecteurs \vec{u} et \vec{v} , on a $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- Le produit scalaire de deux vecteurs est **bilinéaire**, c'est-à-dire que : pour tous vecteurs \vec{u} , \vec{v} et \vec{w} et pour tout réel λ , on a :

$$(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v})$$
 et $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

<u>Démonstration</u>:

On munit le plan d'un repère orthonormé.

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ et $\vec{w} \begin{pmatrix} x'' \\ y'' \end{pmatrix}$ trois vecteurs du plan et λ un nombre réel.

On utilise l'expression analytique du produit scalaire et les propriétés de la multiplication des nombres réels (commutativité et distributivité).

- Symétrie : $\vec{u} \cdot \vec{v} = xx' + yy' = x'x + y'y = \vec{v} \cdot \vec{u}$
- Bilinéarité : $(\lambda \vec{u}) \cdot \vec{v} = (\lambda x) x' + (\lambda y) y' = \lambda xx' + \lambda yy' = \lambda \times (xx' + yy') = \lambda \times (\vec{u} \cdot \vec{v})$ $\vec{u} \cdot (\vec{v} + \vec{w}) = x(x' + x'') + y(y' + y'') = xx' + xx'' + yy' + yy'' = (xx' + yy') + (xx'' + yy'') = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Exemples:

- $5\vec{u} \cdot (3\vec{v} 2\vec{w}) = 5\vec{u} \cdot (3\vec{v}) 5\vec{u} \cdot (2\vec{w}) = 15\vec{u} \cdot \vec{v} 10\vec{u} \cdot \vec{w}$.
- $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\overrightarrow{BA} \cdot \overrightarrow{AC} = \overrightarrow{BA} \cdot (-\overrightarrow{AC}) = \overrightarrow{BA} \cdot \overrightarrow{CA}$.
- Soit ABCD un rectangle avec AB=a et AD=b.

En utilisant la relation de Chasles, on peut décomposer les vecteurs et développer grâce aux propriétés du produit scalaire :

5

$$\overrightarrow{AC} \cdot \overrightarrow{DB} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{DA} + \overrightarrow{AB}) = \overrightarrow{AB} \cdot \overrightarrow{DA} + \overrightarrow{AB} \cdot \overrightarrow{AB} + \overrightarrow{BC} \cdot \overrightarrow{DA} + \overrightarrow{BC} \cdot \overrightarrow{AB}$$

$$\overrightarrow{AC} \cdot \overrightarrow{DB} = \overrightarrow{0} + \overrightarrow{AB} \times \overrightarrow{AB} - \overrightarrow{BC} \times \overrightarrow{DA} + \overrightarrow{0} = a^2 - b^2$$

Propriétés:

Pour tous vecteurs \vec{u} , \vec{v} du plan, on a :

•
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 soit $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + 2\vec{u} \cdot \vec{v}$

•
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2$$
 soit $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

•
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$
 soit $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$

Démonstration :

On utilise les propriétés de symétrie et de bilinéarité du produit scalaire :

$$(\vec{u} + \vec{v})^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v} = \vec{u}^2 + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v}^2 = \vec{u}^2 + 2 \vec{u} \cdot \vec{v} + \vec{v}^2$$

Propriétés :

Pour tous vecteurs \vec{u} , \vec{v} du plan, on a :

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Exemple:

Si AB = 6, AC = 5 et CB = 4, alors :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} (AB^2 + AC^2 - CB^2) = \frac{1}{2} (6^2 + 5^2 - 4^2) = \frac{1}{2} (36 + 25 - 16) = \frac{45}{2}$$

2) Orthogonalité

Définition:

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan, et soit A, B, C et D quatre points tels que :

$$\vec{u} = \overrightarrow{AB}$$
 et $\vec{v} = \overrightarrow{CD}$.

Les vecteurs \vec{u} et \vec{v} sont **orthogonaux** lorsque les droites (AB) et (CD) sont perpendiculaires.

Propriété:

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan.

Les vecteurs \vec{u} et \vec{v} sont **orthogonaux** si, et seulement si, leur produit scalaire est nul.

On écrit
$$\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$$

Démonstration:

Soit A, B et C trois points du plan distincts deux à deux tels que $\vec{u} = \vec{A}B$ et $\vec{v} = \vec{A}C$.

On a
$$\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2) = 0 \Leftrightarrow \|\vec{u}\|^2 + \|\vec{v}\|^2 = \|\vec{u} - \vec{v}\|^2$$
.

Or
$$\|\vec{u}\|^2 = \|\overline{AB}\|^2 = AB^2$$
, $\|\vec{v}\|^2 = \|\overline{AC}\|^2 = AC^2$ et $\|\vec{u} - \vec{v}\|^2 = \|\overline{AB} - \overline{AC}\|^2 = \|\overline{CB}\|^2 = BC^2$

Ainsi $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow AB^2 + AC^2 = BC^2 \Leftrightarrow ABC$ est rectangle en A (théorème de Pythagore).

On conclut $\vec{u} \cdot \vec{v} = 0 \iff \vec{u}$ et \vec{v} sont orthogonaux.

Remarques:

- Par convention, le vecteur nul est orthogonal à tout vecteur du plan.
- Le théorème nous donne une condition nécessaire et suffisante d'orthogonalité de deux droites : les droites (AB) et (CD) sont orthogonales si, et seulement si, $\overline{AB} \cdot \overline{CD} = 0$.
- Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs tels que $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$.

Il ne faut pas en conclure que les vecteurs \vec{v} et \vec{w} sont égaux.

En effet,
$$\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} \iff \vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{w} = 0 \iff \vec{u} \cdot (\vec{v} - \vec{w}) = 0$$

Donc les vecteurs \vec{u} et $\vec{v} - \vec{w}$ sont orthogonaux.

Propriété:

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont **orthogonaux** si, et seulement si :

$$xx' + yy' = 0$$
.

Exemple:

Dans la base orthonormée (\vec{i}, \vec{j}) , on peut montrer que les vecteurs $\vec{u} \begin{pmatrix} 3 - \sqrt{5} \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 3 + \sqrt{5} \\ -2 \end{pmatrix}$ sont orthogonaux.

7

En effet: $\vec{u} \cdot \vec{v} = (3 - \sqrt{5})(3 + \sqrt{5}) + 2 \times (-2) = 3^2 - (\sqrt{5})^2 - 4 = 9 - 5 - 4 = 0$

III. Vecteur normal

Dans toute cette partie, le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) Généralités

Définition:

Soit (d) une droite de vecteur directeur \vec{u} .

Un **vecteur normal** à la droite (d) est un vecteur non nul orthogonal au vecteur \vec{u} .

Exemple:

Le vecteur $\vec{n} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ est orthogonal au vecteur $\vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

En effet, $\vec{n} \cdot \vec{u} = -2 \times 1 + 1 \times 2 = 0$.

 \vec{u} est un vecteur directeur de \mathcal{D} ,

donc \vec{n} est un vecteur normal de \mathcal{D} .

8

Propriétés:

Soit (d) une droite et \vec{n} un vecteur non nul.

- Si \vec{n} est un vecteur normal à (d), alors tout vecteur non nul colinéaire à \vec{n} est un vecteur normal à (d).
- Tout vecteur normal à (d) est orthogonal à tout vecteur directeur de (d).

Exemple:

Soit \mathcal{D} une droite de vecteur normal \vec{n} .

Les vecteurs \vec{n} et $-2\vec{n}$ sont colinéaires, donc le vecteur $-2\vec{n}$ est aussi un vecteur normal à \mathcal{D} .

Propriété:

Soit (d) une droite passant par un point A et de vecteur normal \vec{n} .

Un point M appartient à (d) si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Exemple:

Soit \mathcal{D} la droite passant par le point A(1; 2) et de vecteur normal $\vec{n} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Soit le point B(4; 3).

$$\overrightarrow{AB} \cdot \overrightarrow{n} = (4-1) \times (-1) + (3-2) \times 3 = -3 + 3 = 0$$
.

Le point B appartient donc a \mathcal{D} .

2) Équation cartésienne

Propriété:

Soit a et b deux nombres réels non nuls tous les deux $((a;b)\neq(0;0))$.

La droite (d) admet le vecteur $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ pour **vecteur normal** si, et seulement si, elle admet une **équation cartésienne** de la forme ax + by + c = 0, où $c \in \mathbb{R}$.

<u>Démonstration</u>:

Soit (d) une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ et $A(x_0; y_0)$ un point de (d).

Un point M(x; y) du plan appartient à la droite (d) si, et seulement si, les vecteurs \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux, autrement dit si, et seulement si, $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

Or les coordonnées du vecteur \overline{AM} sont $\begin{pmatrix} x-x_0 \\ y-y_0 \end{pmatrix}$; le produit scalaire $\overline{AM} \cdot \vec{n}$ vaut donc $a(x-x_0) + b(y-y_0)$.

9

Remarques:

- Une droite peut donc être complètement définie par la donnée d'un point et d'un vecteur normal.
- Dans un repère orthonormé du plan $(O; \vec{i}, \vec{j})$, une droite (d) d'équation cartésienne ax + by + c = 0 admet pour vecteur directeur $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ et pour vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$.

De plus, \vec{u} et \vec{n} ont la même norme.

Exemples:

- Un point M appartient à la droite qui passe par A(-2; 3) et qui a pour vecteur directeur $\vec{n} \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ si et seulement si $\vec{n} \cdot \overrightarrow{AM} = 0 \Leftrightarrow 2(x+2) + 5(y-3) = 0 \Leftrightarrow 2x + 5y 11 = 0$.
- Soit (d) la droite d'équation -2x+5y-18=0. Un vecteur normal à (d) est $\vec{n} \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ et un vecteur directeur de (d) est $\vec{u} \begin{pmatrix} -5 \\ -2 \end{pmatrix}$.