

Hyperparameter Optimization by Bayesian Optimization

Jee-Hyong Lee Sungkyunkwan Univ.

Definition

$$\operatorname{arg} \max_{\mathbf{x}} f(\mathbf{x})$$

- You don't know anything about f(x)
- You can query but it is very expensive
- Any good idea??

Any Good Idea??

- No information on f(x) ...
- First choose a random point, x_1 , and evaluate $f(x_1)$
- Guess the shape of f(x) based on $(x_1, f(x_1))$
- Based on the guess, choose the next point, x_2 , and evaluate $f(x_2)$
- Guess shape of f(x) based on $\{(x_1, f(x_1)), (x_2, f(x_2))\}$
- Repeat those steps

Overall Description

Guess the underlying function with known data points (Gaussian process)

2. Select the next point to query based on the guess (Acquisition function)

Where to Query Next

- You expect to be good: Exploitation
- You are uncertain about: Exploration

– How to choose the next point to query?

- Acquisition Function: $\alpha(x)$
 - Return the fitness of x to be evaluated next
 - Choosing the next point

$$next_point = \underset{x}{argmax} \alpha(x)$$

- Requirement of Acquisition Function
 - Needs to balance Exploitation and Exploration
 - Need to be easy to optimize
- How to optimize $\alpha(x)$?

• **GP** posterior gives $\mu(x)$, $\sigma^2(x)$, p(y)

>>

- Closed-Form Acquisition Functions
 - Probability of Improvement

$$\alpha(x) = \frac{f(x_{best}) - \mu(x)}{\sigma(x)}$$

Expected Improvement

$$\alpha(x) = \int_{y} \max(0, y_{best} - y) \cdot p(y)) dy$$

GP Upper Confidence Bound

$$\alpha(x) = \mu(x) - \beta \sigma(x)$$

Acquisition Function

Expected Improvement

The most used acquisition.

$$\alpha(x) = \int_{y} \max(0, y_{best} - y) \cdot p(y) dy$$

Acquisition Function

Probability of Improvement

First used acquisition but Less used in practice.

$$\alpha(x) = \frac{f(x_{best}) - \mu(x)}{\sigma(x)}$$

Acquisition function

UP Upper (lower) Confidence Band

Direct Balance between exploration and exploitation

$$\alpha(x) = \mu(x) - \beta \sigma(x)$$

Acquisition Function

 The choice of the utility may change a lot the result of the optimization.

Acquisition Function

 The best utility depends on the problem and the level of exploration/exploitation required

- Gradient descent methods
 - Eg: Conjugate gradient.
- Lipschitz based heuristics
 - DIRECT
- Evolutionary algorithms:
- Some of these methods can also be used to directly optimize the function

Some acquisition functions are differentiable

```
Algorithm 2: Gradient Descent

input: f: \mathbb{R}^n \to \mathbb{R} a differentiable function
\mathbf{x}^{(0)} an initial solution
output: \mathbf{x}^{\star}, a local minimum of the cost function f.

begin

\mathbf{z} \mid k \leftarrow 0;

while STOP-CRIT and (k < k_{max}) do

\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} - \alpha^{(k)} \nabla f(\mathbf{x});
with \alpha^{(k)} = \arg\min_{\alpha \in \mathbb{R}_+} f(\mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}));

\mathbf{k} \leftarrow k + 1;
return \mathbf{x}^{(k)}

8 end
```

DIRECT

```
Algorithm DIRECT('myfcn',bounds,opts)
     Normalize the domain to be the unit hyper-cube with center c_1
     Find f(c_1), f_{min} = f(c_1), i = 0, m = 1
 2:
     Evaluate f(c_1 \pm \delta e_i, 1 \le i \le n), and divide hyper-cube
 4:
     while i \leq maxits and m \leq maxevals do
 5:
        Identify the set S of all pot. optimal rectangles/cubes
 6:
        for all j \in S
 7:
           Identify the longest side(s) of rectangle j
 8:
           Evaluate myfcn at centers of new rectangles, and divide j into smaller rectangles
 9:
           Update f_{min}, xatmin, and m
10:
        end for
11:
         i = i + 1
12:
    end while
```

DIRECT

Finds good solution in general and doesn't need gradient.
 Not generalizable to non-squared domains.

Performance

Figure 3: Comparisons on the Branin-Hoo function (3a) and training logistic regression on MNIST (3b). (3c) shows GP EI MCMC and GP EI per Second from (3b), but in terms of time elapsed.

Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function evaluations (4a), walltime (4b) and constrained to a grid or not (4c).

Performance

Figure 3: Comparisons on the Branin-Hoo function (3a) and training logistic regression on MNIST (3b). (3c) shows GP EI MCMC and GP EI per Second from (3b), but in terms of time elapsed.

Figure 4: Different strategies of optimization on the Online LDA problem compared in terms of function evaluations (4a), walltime (4b) and constrained to a grid or not (4c).

Performance

Figure 6: Validation error on the CIFAR-10 data for different optimization strategies.

Disadvantage

- Fragility and poor default choices.
 - Getting the function model wrong can be catastrophic.!
- Experiments are run sequentially.
 - We want to take advantage of cluster computing.!
- Limited scalability in dimensions and evaluations.
 - We want to solve big problems.

Disadvantage

Covariance function selection

- This turns out to be crucial to good performance.
- Usually use adaptive Matèrn 3/5 kernel.!

Disadvantage

Choosing Covariance Function

$$C(r) = \frac{2^{1-\Box}}{\Gamma(v)} \quad \frac{P}{\Box} \quad K_{\Box} \quad \frac{P}{\Box} \quad K_{\Box}$$

- Bayesian Optimization
 - Not good if we have many hyperparameters!!
- Why don't we drop some values?

High Dimensional Bayesian Optimization Using Dropout

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, Alistair Shilton IJCAI 2017

Randomly drop some variables

Sample d out of D dimensions of the input x

 I_d : Indices of d out of D dimensions

 I_{D-d} : Indices of leftout D-d dimensions

$$x^d = x^{I_d}, \ x^{D-d} = x^{I_{D-d}}$$

$$x = [x^d, x^{D-d}]$$

→ Use only d dimensions to optimize acquisition function

$$a(x^d) = \mu_{t-1}(x^d) + \sqrt{\beta_t^d} \sigma_{t-1}(x^d)$$
 (UCB function)

three "fill-in" strategies for x_t^{D-d}

• **Dropout-Random**: use a random value in the domain:

$$x_t^{D-d} \sim u(x^{D-d}) \tag{4}$$

• **Dropout-Copy:** copy the value of the variables from the best function value so far: \rightarrow This may be stuck

$$x_t^+ = \operatorname{argmax}_{t' \le t} f(x_{t'})$$
 in local optimum $x_t^{D-d} = (x_t^+)^{D-d}$ (5)

where x_t^+ is the variables of the best found function \rightarrow this problem is value till t iterations.

• **Dropout-Mix:** use a mixture of the above two methods. We use a random value with probability p or copy the value from the variables of the best found function value so far with the probability 1-p.

solved by third strategy

Dropout Algorithm

Algorithm 1 Dropout Algorithm for High-dimensional Bayesian Optimization

```
Input: \mathcal{D}_1 = \{x_0, y_0\}

1: for t = 1, 2, \cdots do

2: randomly select d dimensions

3: x_t^d \leftarrow \operatorname{argmax}_{x_t^d \in \mathcal{X}^d} a(x^d \mid \mathcal{D}_t) (Eq.(3))

4: x_t^{D-d} \leftarrow one of three "fill-in" strategies (Sec 2.)

5: x_t \leftarrow x_t^d \cup x_t^{D-d}

6: y_t \leftarrow \operatorname{Query} y_t \operatorname{at} x_t

7: \mathcal{D}_{t+1} = \mathcal{D}_t \cup \{x_t, y_t\}

8: end for
```

Effect of d

(a) Gaussian mixture function

(b) Schwefel's 1.2 function

High Dimen

Effect of p

(a) Gaussian mixture function

(c) Gaussian mixture function

(b) Gaussian mixture function

(d) Schwefel's 1.2 function

Figure 3: The optimization for the Gaussian mixture function. Higher value is better. Four different dimensions are tested from left to right (a) D = 5 (b) D = 10 (c) D = 20 (d) D = 30. The BO for D = 5 and D = 10 is terminated once it converges. The graphs are best seen in color.

Figure 4: The optimization for Schwefel's 1.2 function. Lower value is better. Four different dimensions are tested from left to right (a) D = 5 (b) D = 10 (c) D = 20 (d) D = 30. The graphs are best seen in color.

Figure 5: Maximum classification accuracy for training data as a function of Bayesian optimization iteration. The number of stages in a cascade classifier is equal to the number of features in three datasets (a) IJCNN1 D = 22, (b) German D = 24, (c) Ionosphere D = 33.