Задание по курсу «Квантовая механика II»

Автор заметок: Хоружий Кирилл

От: 17 февраля 2022 г.

Заметки с семинара

Вырожденный случай. Пусть теперь

$$\hat{H}_0 | n^{(0)}, a \rangle = E_n | n^{(0)}, a \rangle, \quad a = 1, \dots, k.$$

Тогда

$$|n\rangle = \sum c_a |n^{(0)}, a\rangle + \sum_{n=1}^{\infty} \lambda^p |n^{(p)}\rangle, \quad \hat{H} |n\rangle = E_n |n\rangle.$$

Дополнительно накладываем уловие

$$\langle n^{(0)}, a | n \rangle = c_a, \quad \Rightarrow \quad \langle n^{(0)}, a | n^{(k)} \rangle = 0,$$

при $k\geqslant 1$. При этом всё равно выполняется

$$\langle n^{(0)}, a | n^{(0)}, b \rangle = \delta_{ab}.$$

Подставляя это всё в стацонарное уравнение Шрёдигера, группируя по λ , находим

$$(V - \varepsilon_1 \mathbb{1}) \mathbf{c} = 0.$$

Накладывая дополнительное условие $c \neq 0$, находим

$$\det(V - \varepsilon_1 \mathbb{1}) = 0.$$

T1

Линейное возмущение. Во-первых будем работать в представление операторов \hat{a} и \hat{a}^{\dagger} :

$$\hat{x} = \frac{x_0}{\sqrt{2}} (\hat{a} + \hat{a}^{\dagger}), \quad \hat{p} = \frac{p_0}{\sqrt{2}} (\hat{a} - \hat{a}^{\dagger}), \quad x_0 = \sqrt{\frac{\hbar}{m\omega}}, \quad p_0 = \frac{\hbar}{x_0}.$$

Рассмотрим возмущение, вида

$$\hat{V} = \alpha x$$
.

Заметим, что в первом порядке

$$V_{nn} = \frac{\alpha x_0}{\sqrt{2}} \langle n | \hat{a} + \hat{a}^{\dagger} | n \rangle = 0.$$

Тогда для второго порядка рассмотрим

$$V_{kn} = \frac{\alpha x_0}{\sqrt{2}} \left(\langle k | \sqrt{n} | n-1 \rangle + \sqrt{n+1} | n+1 \rangle \right) = \frac{\alpha x_0}{\sqrt{2}} \left(\sqrt{n} \delta_{k,n-1} + \sqrt{n+1} \delta_{k,n+1} \right).$$

Теперь находим Δ_2 :

$$\Delta_2 = \frac{\alpha x_0^2}{2} \left(\frac{n}{\hbar \omega} - \frac{n+1}{\hbar \omega} \right) = -\frac{\alpha^2}{2m\omega^2}.$$

Действительно, при замене переменных в \hat{H}_0 можем увидеть, что вторая поправка даёт точный ответ:

$$\hat{H} = \frac{m\omega^2}{2} \left(\hat{x} + \frac{\alpha}{m\omega^2} \right)^2 - \frac{\alpha^2}{2m\omega^2} + \frac{\hat{p}^2}{2m}.$$

Нелинейное возмущение. Рассмотрим возмущение вида

$$\hat{V} = Ax^3 + Bx^4$$

Тогда первая поправка к энергии:

$$\Delta_1^B = V_{nn} = \frac{3B\hbar^2}{4m^2\omega^2}(2n^2 + 2n + 1), \quad \Delta_1^A = 0.$$

Вторую поправку найдём через

$$V_{kn}^{A} = A \left(\frac{x_0}{\sqrt{2}}\right)^3 \left(3\delta_{k,n-1}n\sqrt{n} + 3\delta_{k,n+1}(n+1)\sqrt{n+1} + \delta_{k,n+3}\sqrt{(n+1)(n+2)(n+3)} + \delta_{k,n-3}\sqrt{n(n-1)(n-2)}\right).$$

Тогда

$$\Delta_2^A = -\frac{A^2\hbar^2}{8m^3\omega^4} (30n^2 + 30n + 1), \quad \Delta \approx \Delta_1^B + \Delta_2^A.$$

T2

Атом-ион. Рассмоотрим возмущение, вида

$$\hat{V} = -oldsymbol{d}_{ ext{at}} \cdot oldsymbol{E}_{ ext{moh}}, \hspace{5mm} oldsymbol{E}_{ ext{moh}} = rac{Qoldsymbol{r}}{r^3}, \hspace{5mm} oldsymbol{d}_{ ext{at}} = \sum_{i=1}^{r} e_i oldsymbol{r}_i.$$

Живём в парадигме

$$\hat{\mathbb{P}} \psi_{\text{at}} = \lambda_p \psi_{\text{at}}, \quad \lambda_p = \pm 1, \qquad \hat{\mathbb{P}} \hat{\boldsymbol{r}} = -\hat{\boldsymbol{r}} \hat{\mathbb{P}}, \quad \hat{\mathbb{P}}^2 = 1.$$

Для начала заметим, что

$$\Delta_1 = \langle \psi_{\rm at} | \hat{V} | \psi_{\rm at} \rangle = - \boldsymbol{E}_{\scriptscriptstyle {
m HOH}} \cdot \langle \boldsymbol{d}_{\scriptscriptstyle {
m aT}} \rangle = 0.$$

Для второй поправки

$$\Delta_2 \sim -\frac{1}{r^4}.$$

Атом-атом. Возмущение теперь вида

$$\hat{V} = -\frac{1}{r^3} \left(3(\boldsymbol{d}_1 \cdot \boldsymbol{n})(\boldsymbol{d}_2 \cdot \boldsymbol{n}) - \boldsymbol{d}_1 \cdot \boldsymbol{d}_2 \right), \qquad \boldsymbol{n} = \frac{\boldsymbol{r}}{r}.$$

Первая поправка как обычно

$$\Delta_1 = \langle \psi_1 | d_1^{\alpha} | \psi_1 \rangle \langle \psi_2 | d_2^{\beta} | \psi_2 \rangle \delta_{\alpha\beta} = 0.$$

Зато вторая поправка

$$\Delta_2 \sim -\frac{1}{r^6}.$$

T3

Рассмотрим процесс, вида

$$^{3}_{1}\mathrm{H} \longrightarrow ^{3}_{2}\mathrm{He} + e^{-} + \bar{\nu}_{e}.$$

Энкергия в основном состоянии

$$U_H = -\frac{e^2}{r}, \qquad U_{He} = -\frac{2e^2}{r}.$$

Волновые функции:

$$\psi_{100}^{H} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}, \qquad \psi_{100}^{He} = \sqrt{\frac{2^3}{\pi a^3}} e^{-2r/a}.$$

При n=2: $l=0,\pm 1,$ тогда

$$\psi_{200}^{He} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a} \left(1 - \frac{r}{a} \right).$$

Заметим, что остальные функции можем игнорировать, но для этого на них нужно посмотреть:

$$\psi_{2,1,-1}^{He} = \frac{2^{5/2}}{8a\sqrt{\pi a^3}} e^{-r/a} e^{-i\varphi} r \sin \theta;$$

$$\psi_{2,1,0}^{He} = \frac{2^{5/2}}{4a\sqrt{2\pi}a^3} e^{-r/a} r \cos \theta;$$

$$\psi_{2,1,1}^{He} = \bar{\psi}_{2,1,-1}^{He}.$$

Тогда искомая вероятность

$$w_{100} = |\langle \psi_{100}^{He} | \psi_{100}^{H} \rangle|^2 \approx 0.7,$$

$$w_{200} = |\langle \psi_{200}^{He} | \psi_{100}^{He} \rangle|^2 \approx 0.25,$$

с их отношением $w_{100}/w_{200} \approx 2.8$.

T4

Электростатика. Вспоминаем, что

$$\Delta \varphi = -4\pi \rho_0, \quad \frac{4\pi}{3}\rho_0 r^3 = -e > 0, \quad r_0 \approx 10^{-13} \text{ cm}.$$

Расписываем лапласиан в сферических координатах:

$$\Delta\varphi(r) = \nabla^2\varphi(r) = \varphi'' + \frac{2}{r}\varphi' = \frac{1}{r}(r\varphi)'', \quad \Rightarrow \quad r\varphi = -4\pi\rho_0 \iint r,$$

а значит

$$\varphi = \frac{e}{r_0^3} \frac{r^2}{2} + C_1 + \frac{C_0}{r}.$$

Считая $\Delta \varphi$ понимаем, что $\delta(r)$ быть не должно, а значит $C_0=0$. По условиям сшивки находим, что

$$U = \begin{cases} -e^2/r, & r \geqslant r_0 \\ e^2r^2/2r_0^3 + C_1e, & r_1 \leqslant r_0 \end{cases} \Rightarrow C_1 = -\frac{3}{2}\frac{e}{r_0}.$$

Итого, искомый потенциал

$$\varphi = \frac{e}{r_0^3} \frac{r^2}{2} - \frac{3}{2} \frac{e}{r_0}.$$

Кванты. Поправку можем найти, как

$$\Delta_1 = \langle \psi | \hat{V} | \psi \rangle = \int_0^{r_0} r^2 \, dr \int_{-1}^1 \, d\cos\theta \int_0^{2\pi} \, d\varphi \left(\frac{e^2 r^2}{2 r_0^3} - \frac{3}{2} \frac{e}{r_0} + \frac{e^2}{r} \right) = \frac{2e^2}{5a} \left(\frac{r_0}{a} \right)^2.$$

T5

Помним, что

$$\psi_{100} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}, \quad a = \frac{\hbar}{mc\alpha_{em}}.$$

Также помним, что

$$d = er$$
, $\hat{V} = -d \cdot E = -eEr \cos \theta$.

При этом мы знаем, что

$$\Delta = -\frac{1}{2}\alpha_{ij}E^iE^j,$$

где α_{ij} – тензор поляризуемости.

Замечаем, что всё также

$$\Delta_1 = \langle \psi_{100} | \hat{V} | \psi_{100} \rangle = 0.$$

Вторую поправку можем найти, как

$$\Delta_2 = \langle n^{(0)} | \hat{V} | n^{(1)} \rangle.$$

Поиск возмущения. Волновую функцию $\psi^{(1)}$ можем найти, как решение уравнения, вида

$$\left(-\frac{\hbar^2}{2m} \Delta - \frac{e^2}{r} \right) \psi^{(1)} = -\frac{e^2}{2a} \frac{1}{n^2} \psi^{(1)} + \frac{\varepsilon E r \cos \theta}{\sqrt{\pi a^3}} e^{-r/a}.$$

Ищем решение в виде

$$\psi^{(1)}(\mathbf{r}) = \sum_{l,m} R_l(r) Y_{l,m}(\theta, \varphi).$$

Подставляя, находим

$$-\frac{\hbar^2}{2m}\Delta\psi_{l,m} = -\frac{\hbar^2}{2m}\frac{1}{r}(rR_l)''Y_{l,m} + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}R_lY_{l,m}.$$

Так как $Y_{10} \sim cos\theta$, то нам подходит только ψ_{10} , а значит

$$\psi^{(1)}(r) = \frac{eE}{\sqrt{\pi a^3}} e^{-r/a} \cos \theta \cdot f(r).$$

Подставляя это в модифицированное уравнение Шрёдингера, найдём f(r). Так приходим к диффуру

$$\frac{f''}{2} + f'\left(\frac{1}{r} - \frac{1}{a}\right) - f\frac{1}{r^2} = -r\frac{1}{ae^2}.$$

Далее будем искать f в виде полинома второй степени: $f(r) = Ar + Br^2$. Тогда

$$A = \frac{a}{e^2}, \quad B = \frac{1}{2e^2}, \quad \Rightarrow \quad f(r) = \frac{ra}{e^2} + \frac{r^2}{2e^2}.$$

А значит искомая функция

$$\psi^{(1)} = \frac{eE}{\sqrt{\pi a^3}} e^{-r/a} \cos \theta \cdot \frac{r}{e^2} \left(a + \frac{r}{2} \right).$$

Сдвиг по энергии. Интегрируя $\psi^{(1)}$, находим

$$\Delta_2 = \int_0^\infty r^2 \, dr \int_{-1}^1 \, d\cos\theta \int_0^{2\pi} \, d\varphi \frac{1}{\pi a^3} e^{-2r/a} \cos\theta \times (-eEr\cos\theta) \, \frac{ra}{e^2} \left(1 + \frac{r}{2a}\right) = -\frac{9}{4} E^2 a^3.$$

Сопостовляя с поляризуемостью, находим

$$\alpha = \frac{9}{2}a^3.$$

T6

Теперь

$$\hat{H} = \frac{\hat{p}^2}{2m} - \frac{e^2}{r} + \hat{V},$$

где $\hat{V}=-eE\hat{z}$. Известно, что n=2, тогда вырождение $n^2=4$. Можем явно выписать несколько функций

$$|200\rangle = \frac{2}{\sqrt{4\pi}} \left(\frac{z}{2a}\right)^{3/2} e^{-r/2a} \left(1 - \frac{r}{2a}\right),$$

$$|210\rangle = \sqrt{\frac{3}{4\pi}}\cos\theta \left(\frac{1}{2a}\right)^{3/2} e^{-r/2a} \frac{r}{\sqrt{3}a},$$

а для $|211\rangle$ и $|21-1\rangle$ важно только что есть фактор $e^{im\varphi}.$

Действительно,

$$\langle 21m|\hat{V}|21m'\rangle = 0, \quad m, m' = \pm 1.$$

Осталось посчитать

$$\kappa \stackrel{\text{def}}{=} \langle 200 | \hat{V} | 210 \rangle = \int_{\mathbb{R}^3} \dots d^3 \mathbf{r} = 3eE \frac{a}{z}.$$

Получилось матрица ненулевыми коэффициентами только в первом блоке 2 на 2:

$$\hat{V} = \begin{pmatrix} 0 & \kappa \\ \kappa & 0 \end{pmatrix}, \qquad \lambda_1 = \kappa, \quad \lambda_2 = -\kappa, \quad \lambda_3 = \lambda_4 = 0.$$

Решая секулярное уравнение, находим

$$E_2 = -\frac{\text{Ry}}{2^2}, \quad \left[\hat{H} + \hat{V} - (E_2 \pm \kappa)\mathbb{1}\right] |\psi\rangle = 0, \quad \Rightarrow \quad \mathbf{c}_+ = \frac{1}{\sqrt{2}} (1, 1, 0, 0), \quad \mathbf{c}_- = \frac{1}{\sqrt{2}} (1, -1, 0, 0).$$

Энергии расщепления

$$E^+ = E_2^{(0)} + \kappa, \quad E^- = E_2^{(0)} - \kappa.$$

T9 + T10

И снова задача на решение нестационарного уравнения Шрёдингера. Пусть в невозмущенном варианте всё ||z|, возмущением будет σ_+ поляризованная волна, падающая по Oz.

Гамильтониан систеы:

$$\hat{H} = -\boldsymbol{\mu} \cdot \boldsymbol{H}, \quad \boldsymbol{\mu} = \frac{e\hbar}{2mc} \boldsymbol{s} g,$$

где g = 2. Магнитное поле

$$\boldsymbol{H} = \boldsymbol{H}_0 + \boldsymbol{e}_x h \cos(\omega t) + \boldsymbol{e}_y h \sin \omega t.$$

Тогда \hat{H} перепишется в виде

$$\hat{H} = \frac{|e|H_0}{2mc}\hbar\sigma_z + \frac{|e|h}{2mc}\hbar\left(\sigma_x\cos(\omega t) + \sigma_y\sin(\omega t)\right).$$

введем обозначения

$$\Omega_0 \stackrel{\text{def}}{=} \frac{|e|H_0}{mc}, \quad \Omega' = \frac{|e|h}{mc}.$$

Вводя σ_{\pm} переходим к

$$\hat{H} = \frac{1}{2}\Omega_0 \sigma_z + \frac{1}{2}\hbar\Omega' \left(\sigma_+ e^{-i\omega t} + \sigma_- e^{i\omega t}\right).$$

Далее будем решать нестационаное уравнение Шрёдингера

$$i\hbar\partial_t\chi = \hat{H}\xi, \qquad \chi(t) = \exp\left(-\frac{i}{2}\tilde{\Omega}t\sigma_z\tilde{\chi}(t)\right).$$

Подставляем и находим

$$i\hbar\partial_t\chi=\exp\left(-\frac{i}{2}t\tilde{\Omega}\sigma_z\right)\left(\frac{1}{2}\hbar\tilde{\Omega}\sigma_z+i\hbar\partial_t\right)\tilde{\chi},$$

которое в свою очередь равно

$$i\hbar\partial_t\chi = \hat{H}\exp\left(-\frac{i}{2}t\tilde{\Omega}\sigma_z\right)\tilde{\chi}.$$

Домножим это всё слева на $\exp\left(\frac{i}{2}\tilde{\Omega}t\sigma_z\right)$, так приходим к

$$\left(\frac{1}{2}\hbar\tilde{\Omega}\sigma_z + i\hbar\partial_t\right)\tilde{\xi} = \left(\frac{1}{2}\hbar\Omega_0\sigma_z + \frac{1}{2}\hbar\Omega'\left(\tilde{U}^+\sigma_+\tilde{U}e^{-i\omega t} + \tilde{U}^+\sigma_-\tilde{U}e^{i\omega t}\right)\right)\tilde{\chi}.$$

Введем обозначения

$$\sigma_{\pm} = e^{\frac{i}{2}\tilde{\Omega}t\sigma_z}\sigma_{\pm}e^{-\frac{i}{2}\tilde{\Omega}t\sigma_z}.$$

Помним коммутаторы для σ , получаем

$$\frac{d}{dt}\sigma_{\pm}(t) = \pm i\tilde{\Omega}\sigma_{\pm}(t),$$

где

$$\sigma_{\pm}(0) = \sigma_{\pm}, \quad \Rightarrow \quad \sigma_{\pm}(t) = \sigma_{\pm}e^{\pm i\tilde{\Omega}t}.$$

Замечаем, что наша жизнь становится лучше, если $\tilde{\Omega}=\omega,$ а значит

$$i\hbar\partial_t\tilde{\chi} = \left(\frac{1}{2}\hbar\left(\Omega_0 - \omega\right)\sigma_z + \frac{1}{2}\hbar'\left(\sigma_+ + \sigma_-\right)\right)\tilde{\chi}.$$

Новый $\hat{\hat{H}}$ можем переписать в виде

$$\hat{\tilde{H}} = \frac{1}{2}\hbar \begin{pmatrix} \Omega_0 - \omega & \Omega' \\ \Omega' & -(\Omega_0 - \omega) \end{pmatrix} \stackrel{\mathrm{def}}{=} \begin{pmatrix} E_1 & V \\ V & -E_1 \end{pmatrix}.$$

Перехоим к базису, диагонализирующем $\hat{\tilde{H}}$. Находим его собственные числа:

$$E_{\pm} = \pm \sqrt{V^2 + E_1^2}.$$

Считая, что $\Omega_0,\Omega'\gg\omega$ и $\Omega^2=\Omega_0^2+\Omega'^2$, можем получить

$$E_{\pm} pprox \pm rac{\hbar}{2} \Omega \left(1 - \omega rac{\Omega_0}{\Omega^2}
ight)$$

Вспоминаем, что

$$\Omega_0 = \frac{|e|H_0}{mc}, \quad \Omega' = \frac{|e|h}{mc}, \quad \Omega = \frac{|e|H}{mc}, \quad \Rightarrow \quad \frac{\Omega_0}{\Omega} = \frac{H_0}{H} = \cos\theta.$$

Тогда

$$E_{\pm} = \pm \frac{\hbar}{2} \left(\Omega + \omega \cos \theta \right).$$

Теперь вводим собственные вектора

$$|\uparrow(t)\rangle = e^{-\frac{i}{\hbar}E_{+}t}|\uparrow\rangle, \qquad |\downarrow(t)\rangle = e^{\frac{i}{\hbar}E_{-}t}|\downarrow\rangle.$$

Собственно, сами собственные векторы

$$\begin{pmatrix} E_1 - E_{\pm} & V \\ V & -E_1 - E_{\pm} \end{pmatrix} \boldsymbol{v} = 0, \quad \Rightarrow \quad \boldsymbol{v} = \frac{2}{\hbar} \begin{pmatrix} E_1 + E_{\pm} \\ V \end{pmatrix} \approx \begin{pmatrix} \Omega_0 - \omega \pm (\Omega - \omega \cos \theta) \\ \Omega' \end{pmatrix}.$$

Тогда матрица перехода

$$S = \begin{pmatrix} \Omega_0 - \omega + \Omega - \omega \cos \theta & \Omega_0 - \omega - \Omega + \omega \cos \theta \\ \Omega' & \Omega' \end{pmatrix}.$$

Находим к ней обратную

$$S^{-1} = \frac{1}{2\Omega'(\Omega - \omega\cos\theta)} \begin{pmatrix} \Omega' & -\Omega_0 + \omega + \Omega - \omega\cos\omega t \\ -\Omega' & \Omega_0 - \omega + \Omega - \omega\cos\theta \end{pmatrix}.$$

Тогда

$$\tilde{\xi}(t) = S \begin{pmatrix} e^{\frac{i}{2}E_+t} & 0\\ 0 & e^{-\frac{i}{2}E_-t} \end{pmatrix} S^{-1} |\chi(0)\rangle.$$

Перемножая, находим

$$|\tilde{\chi}(t)\rangle_1 = \cos\left(\frac{E_+ t}{\hbar}\right) + i(\omega - \Omega_0)\sin\left(\frac{E_+ t}{\hbar}\right), |\tilde{\chi}(t)\rangle_2 \qquad \qquad = \frac{i\Omega'\sin\left(\frac{E_+ t}{\hbar}\right)}{\Omega - \omega\cos\theta},$$

а искомая величина будет

$$|\chi(t)\rangle = e^{-\frac{i}{2}\omega t \sigma_z} |\tilde{\chi}(t)\rangle.$$

Поляризация. Осталось найти

$$\mathbf{P} = \langle \xi(t) | \boldsymbol{\sigma} | \xi(t) \rangle,$$

которое считать и считать, а получится

$$\begin{split} P_x &= \sin \varphi \left(\cos \varphi (1 - \cos \Omega t) \cos \omega t - \sin \Omega t \sin \omega t \right), \\ P_y &= \sin \varphi \left(\cos \varphi (1 - \cos \Omega t) \sin \omega t + \sin \Omega t \cos \omega t \right), \\ P_z &= \cos^2 \varphi + \sin^2 \varphi \cos \Omega t, \end{split}$$

где было введено обозначение

$$\sin \varphi = \frac{\Omega}{\Omega - \omega \cos \theta}, \quad \cos \varphi = \frac{\omega - \Omega_0}{\Omega - \omega \cos \theta}.$$

Next. Вообще

$$\begin{pmatrix} P_x \\ P_y \end{pmatrix} = \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix} \begin{pmatrix} \tilde{P}_x \\ \tilde{P}_y \end{pmatrix},$$

поэтому поляризаця «следует» за H.

Фаза Берри. Её можно посчитать, как

$$\Delta_c \gamma = \oint A_\mu \, da^\mu = \oint_0^{2\pi} A_\varphi \, d\varphi, \qquad A_\varphi = \langle \psi | \partial_\mu | \psi \rangle = i \langle \uparrow | \partial_\varphi | \uparrow \rangle.$$

где а – адиабатически меняющийся параметр гамильтониана.

Знаем, что

$$\left|\uparrow\right\rangle = \cos\left(\frac{\theta}{2}\right)\left|+\right\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)\left|-\right\rangle.$$

Тогда

$$A_{\varphi} = -\sin^2\frac{\theta}{2} = \frac{1}{2}\left(\cos\theta - 1\right),\,$$

тогда искомая фаза Берри

$$\Delta_c \gamma = \pi \left(\cos \theta - 1 \right).$$

Связь с телесным углом можны найти, посчитав

$$\Omega = \int_0^1 d\cos\theta' \int_0^{2\pi} d\varphi = 2\pi \left(1 - \cos\theta\right),\,$$

действительно пропорциональны.