

Abdul Kadir

Pemrograman Komputer

Panduan Berbasis Flowchart Menggunakan Flowgorithm

Dasar Logika Pemrograman Komputer

Panduan Berbasis Flowchart Menggunakan Flowgorithm

Dasar Logika Pemrograman Komputer

Panduan Berbasis Flowchart Menggunakan Flowgorithm

Abdul Kadir

PENERBIT PT ELEX MEDIA KOMPUTINDO

© 300 € 300

Abdul Kadir

@2017, PT Elex Media Komputindo, Jakarta Hak cipta dilindungi undang-undang Diterbitkan pertama kali oleh Penerbit PT Elex Media Komputindo Kelompok Gramedia, Anggota IKAPI, Jakarta 2017 anindita@elexmedia.id

ID: 717052098

ISBN: 978-602-04-5166-4

Dilarang keras menerjemahkan, memfotokopi, atau memperbanyak sebagian atau seluruh isi buku ini tanpa izin tertulis dari penerbit.

Dicetak oleh Percetakan PT Gramedia, Jakarta Isi di luar tanggung jawab percetakan

Belajar adalah bukan semata-mata untuk mendapat skor A

Akan tetapi, lebih pada manfaat sesudahnya yang dapat disumbangkan kepada sesama

Abdul Kadir

ORUM: ElexMedia.co.id/forum

RTAL: Elex Media.id

Prakata

Buku ini dapat digunakan oleh siapa saja yang bermaksud mendalami penyusunan algoritma untuk menyelesaikan masalah dengan komputer. Buku ini menekankan pada penyusunan logika yang berbasis diagram alir (flowchart), yang menjadi fondasi pada pembuatan program komputer. Oleh karena itu, buku ini tidak hanya dapat dipakai oleh mereka yang hendak mempelajari pemrograman komputer, melainkan juga oleh para pengajar bahasa pemrograman komputer. Dengan menerapkan pendekatan yang diberikan pada buku ini, materi dasar pemrograman komputer yang menyangkut pada landasan awal dalam menyelesaikan masalah niscaya akan lebih mudah dipahami oleh siswa/mahasiswa.

Perangkat lunak Flowgorithm digunakan dalam buku ini karena program ini bersifat bebas untuk digunakan, alias tidak perlu membayar untuk menggunakannya. Selain untuk menggambar diagram alir, program ini sekaligus dapat digunakan untuk menguji diagram alir yang disusun sudah sesual dengan yang dikehendaki oleh pembuatnya atau belum. Dengan demikian, pembelajar dapat segera mendapatkan tanggapan atas diagram alir yang dibuat tanpa harus meminta orang lain untuk mengkajinya. Implikasinya, proses pembelajaran secara mandiri dapat dilaksanakan.

Agar dapat menguasai dasar penyelesaian masalah, seyogianya pembelajar mempraktikkan contoh-contoh yang diberikan, kemudian mencoba soal-soal didapatkan dari sumber lain, balk dari kelas maupun buku-buku lain Di samping itu, sebaiknya materi dicoba berdasarkan urutan bab yang tersedia.

Akhirnya, penulis berharap buku ini dapat memberikan manfaat yang seluas-luasnya. Mudah-mudahan, dasar yang diberikan dapat berkontribusi untuk menjadikan para pembelajar dapat menyelesaikan masalah berbasis

komputer dengan mudah dan membuat kelak pembelajar dapat menyusun program dengan mudah pula.

Yogyakarta, September 2017

Salam hangat,

Abdul Kadir

Daftar Isl	viii
3AB 1 Pengantar Sistem Komputer dan Pemrograman	
1.1 Sistem Komputer	2
1.2 Program, Aplikasi, Pemrogram, dan Pemrograman	3
1.3 Bahasa Pemrograman	5
1.4 Kompiler dan Interpreter	7
1.5 Kesalahan Program	9
3AB 2 Berkenalan dengan Algoritma	
2.1 Siklus Pengembangan Program	14
2.2 Pengertian Algoritma	15
2.3 Algoritma Bebas dari Bahasa Pemrograman	18
2.4 Penyusunan Algoritma	19
Contoh 1 – Konversi Suhu	20
Contoh 2 - Nilai Rata-Rata Dua Bilangan	20
Contoh 3 – Penentuan Usia	21
Contoh 4 – Luas Segitiga	22
Contoh 5 – Jumlah Deret	24
Contoh 6 – Jumlah Deret	25
Contoh 7 – Jumlah Deret	28
Contoh 8 – Pembuatan Deret	29
Contoh 9 - Bilangan Terbesar dari Dua Bilangan	30
Contoh 10 - Bilangan Terbesar dari Tiga Bilangan	31
BAB 3 Dasar Diagram Alir	
3.1 Diagram Alir sebagai Alternatif untuk Menyajikan Algoritma	36
3.2 Perangkat Lunak Pembuat Diagram Alir	37
3.3 Jenis Diagram Alir	39

	3.4 Simbol Diagram Alir	., 39
	3.5 Macam Struktur pada Diagram Alir	41
	Struktur Sekuensial	42
	Struktur Seleksi	44
	Struktur Perulangan	53
	Struktur Gabungan	58
	Diagram Alir Terstruktur	., 58
	3.6 Pemahaman Variabel dan Konstanta	64
	3.7 Logika pada Pengambilan Keputusan	66
	3.8 Struktur Logika di Keputusan	67
	Logika "Menyerang Langsung"	67
	Logika Positif	. 69
	Logika Negatif	., 70
	Konversi Logika	71
	3.9 Berbagal Contoh Penyusunan Diagram Alir	72
	Contoh 1 – Konversi Suhu	72
	Contoh 2 - Nilai Rata-Rata Dua Bilangan	73
	Contoh 3 – Luas Segitiga	74
	Contoh 4 – Penukaran Isi Dua Variabel	74
	Contoh 5 - Bilangan Terbesar dari Dua Bilangan	76
	Contoh 6 - Bilangan Terbesar dari Tiga Bilangan	76
	Contoh 7 - Penentuan Bilangan Positif, Nol, dan Negatif	77
	Contoh 8 – Jumlah Deret	., 79
	Contoh 9 – Jumlah Deret	., 80
	Contoh 10 – Pembuatan Deret	81
ВА	AB 4 Dasar Flowgorithm	
	4.1 Pengenalan Flowgorithm	84
	4.2 Instalasi Flowgorithm	86
	4.3 Pemanggilan Flowgorithm pada Kesempatan Lain	89
	4.4 Pembuatan Diagram Allr	., 90
	4.5 Percobaan untuk Mengeksekusi Diagram Alir	99
	4.6 Penyimpanan Diagram Alir	105
	4.7 Pembuatan Diagram Alir Baru	107
	4.8 Keluar dari Flowgorithm	107
	4.9 Pemanggilan Kembali File Diagram Alir	107

4.10 Penyimpanan Kembali Diagram Alir
4.11 Tip Pengeditan Diagram Alir108
BAB 5 Eksplorasi Elemen-Elemen Dasar di Flowgorithm
5.1 Variabel dan Konstanta
5.2 Tipe Data untuk Variabel
5.3 Ekspresi
Operator Aritmetika
Fungsi-Fungsi Matematika121
Konversi Persamaan Matematika
Operator String
Fungsi-Fungsi String
Fungsi-Fungsi untuk Konversi Data
Fungsi Lain-Lain
5.4 Urutan Pengerjaan Ekspresi
5.5 Ekspresi Boolean
5.6 Komentar136
BAB 6 Eksplorasi Fitur pada Flowgorithm
6.1 Pengaturan Gaya Grafik pada Diagram Alir
6.2 Pengeksporan Diagram Alir ke File Gambar
6.3 Pembesaran dan Pengecilan Diagram Alir
6.4 Pengaturan Eksekusi Diagram Alir
6.5 Pengamatan Variabel-Variabel
6.6 Penampil Kode Sumber
6.7 Pengaturan Tata Letak Jendela
6.8 Dokumen Flowgorithm 157
6.9 Pengubahan Bahasa
6.10 Penyembunyian dan Penampilan Gelembung Percakapan 159
BAB 7 Penyelesaian Masalah dengan Struktur Sekuensial dan Seleksi
7.1 Dasar Struktur Sekuensial dan Seleksi
7.2 Pemrograman Defensif
7.3 Penyelesaian Masalah dengan Struktur Sekuensial 167
Contoh 1 - Perhitungan Resistor Paralel
Contoh 2 – Perhitungan Jarak Euclidean 169

Contoh 3 – Persamaan Garis Lurus	71
Contoh 4 - Angsuran Pinjaman Model Flat	73
Contoh 5 - Penghitungan Tinggi Menara	75
7.4 Penyelesaian Masalah dengan Struktur Seleksi	77
Contoh 1 - Penentuan Bilangan Genap atau Ganjil	77
Contoh 2 - Penentuan Persamaan Akar Kuadrat	79
Contoh 3 - Penentuan Segitiga Siku-Siku 1	82
Contoh 4 - Penentuan Kode Hari	86
Contoh 5 - Penentuan Letak Koordinat di Kuadran	88
Contoh 6 – Penentuan Harga	92
Contoh 7 – Body Mass Index	95
BAB 8 Penyelesaian Masalah dengan Perulangan	
8.1 Perulangan Selamanya	00
8.2 Fungsi Pencacah untuk Mengendalikan Perulangan 2	02
8.3 Penggunaan Nilai Sentinel untuk Mengendalikan Perulangan 2	05
8.4 Solusi Perulangan pada Flowgorithm	08
Solusi dengan While	08
Solusi dengan Do2	11
Solusi dengan For2	13
Contoh Penurunan pada For	15
8.5 Contoh Penyelesaian Masalah	17
Contoh 1 – Pembuatan N Bintang2	17
Contoh 2 – Pembuatan Segitiga Bintang Versi 1	19
Contoh 3 – Pembuatan Segitiga Bintang Versi Z	21
Contoh 4 – Pembuatan N Suku Deret Fibonacci	23
Contoh 5 – Deret Kuadrat2	25
Contoh 6 – Pembuatan Deret Bilangan	27
Contoh 7 - Deret Positif Negatif2	29
Contoh 8 – Penghitungan Nilai Pi	31
Contoh 9 – Simulasi Monte Carlo	33
Contoh 10 – Pembuatan Segitiga String2	36
Contoh 11 – Penghitungan Jumlah Huruf Kapital dan Huruf Kecil	Ĺ
di String	39
Contoh 12 - Pengubahan Huruf Kecil Menjadi Huruf Kapital	
di String	41

Contoh 13 - Pengujian Palindrom	244
Contoh 14 - Penentuan Tahun Kabisat	247
Contoh 15 - Penentuan Jumlah Hari	249
Contoh 16 - Faktor Persekutuan Terbesar	252
Contoh 17 – Bilangan Prima	, 254
BAB 9 Operasi dengan Larik	
9.1 Pengenalan Larik	260
9.2 Pembuatan Larik	261
9.3 Pengaksesan Larik	263
9.4 Penyajian Isi Larik dengan Urutan Terbalik	266
9.5 Pengisian Data Melalui Keyboard	268
9.6 Pemasukan Data yang Jumlahnya Bersifat Variabel	270
9.7 Penanganan Data yang Berpasangan	273
9.8 Pencarian Data	275
9.9 Contoh Penyelesaian Masalah	279
Contoh 1 - Pernrosesan Data Statistika Sederhana	279
Contoh 2 - Penyajian Nama Hari	283
Contoh 3 – Laporan Penjualan	287
Contoh 4 – Grafik Penjualan	289
Contoh 5 – Pengurutan Data	292
BAB 10 Pembuatan Fungsi	
10.1 Fungsi dan Pemrograman Modular	302
10.2 Pembuatan Fungsi Sederhana dan Cara Pemanggilannya	302
Pembuatan Fungsi	303
Pengaturan Fungsi untuk Membuat Garis	304
Pernanggilan Fungsi	305
10.3 Penyertaan Parameter	308
10.4 Fungsi dengan Nilai Balik	314
10.5 Pelewatan Larik	317
10.6 Apakah Nilai Argumen Dapat Diubah?	320
10.7 Fungsi Rekursif	326
Daftar Pustaka	329
Tentang Penulis	331

Pengantar Sistem Komputer dan Pemrograman

BAHASAN:

- Sistem komputer
- Program, aplikasi, pemrogram, dan pemrograman
- Kompiler dan interpreter
- Kesalahan program

1.1 Sistem Komputer

Komputer merupakan peralatan elektronik yang bermanfaat untuk melaksanakan berbagai pekerjaan yang dilakukan oleh manusia. Meskipun komputer berasal dari kata "komputasi", komputasi yang memang dilaksanakannya mungkin tidak terlihat secara eksplisit. Ketika orang menggunakan komputer untuk membuat dokumen, berbagai perhitungan yang dilakukan tidak terlihat. Sebagai contoh, ketika pemakai memilih pengaturan "justify" atau rata di batas kiri dan batas kanan dokumen, perhitungan untuk menambahkan karakter-karakter spasi sebenarnya terjadi.

Istilah sistem komputer kerap pula dijumpai. Sistem komputer berarti kombinasi komponen yang dipakai untuk memproses data menggunakan komputer. Komponen-komponen yang dimaksud dapat berupa perangkat lunak (software) dan perangkat keras (hardware).

- Perangkat keras adalah peranti-peranti yang terkait dengan komputer dan terlihat secara fisik. Monitor, hard disk, dan mouse adalah contoh perangkat keras.
- Perangkat lunak adalah instruksi-instruksi yang ditujukan kepada komputer agar dapat melaksanakan tugas sesuai kehendak pemakai. Sistem operasi seperti Windows, Mac OS, dan Linux, dan aplikasi seperti Microsoft Word dan Microsoft Excel adalah contoh perangkat lunak.

Catatan

- Perangkat lunak sering dibedakan menjadi perangkat lunak aplikasi dan perangkat lunak sistem.
- Perangkat lunak yang ditujukan untuk membantu pemakai dalam mengerjakan tugas sehari-hari dinamakan perangkat lunak aplikasi atau sering disebut aplikasi saja.
- Perangkat lunak sistem adalah perangkat lunak yang ditujukan untuk mengelala sumber daya komputer.
 Sistem operasi tergolong dalam perangkat lunak sistem.

- Masukan (Input) berupa data yang dimasukkan ke dalam sistem komputer. Bergantung pada sistem yang ditangani, data dapat berupa angka, teks, citra, atau suara. Sebagai contoh, sensor LM3SDZ dapat digunakan untuk memperoleh suhu lingkungan.
- Pemrosesan (processing) dimaksudkan untuk mengolah data menjadi suatu bentuk yang berguna bagi pemakai. Sebagai contoh, sekumpulan angka perlu diurutkan agar mudah dibaca oleh manusia, gambar yang mengandung derau dapat dibersihkan, sehingga bebas dari derau dan suara yang ditangkap dapat digunakan untuk mengenali orangnya.
- Keluaran (output) menyatakan hasil pemrosesan yang disajikan dengan berbagai cara. Keluaran dapat dikirim ke monitor, printer, atau dalam bentuk suara di loud speaker. Nomor antrean yang ditampilkan pada layar LCD di bank merupakan contoh peranti untuk menampilkan keluaran.

Gambar 1.1 Hubungan masukan, pemrosesan, dan keluaran

Program, Aplikasi, Pemrogram, dan Pemrograman

Di awal telah dijelaskan bahwa perangkat lunak adalah kumpulan instruksi yang ditujukan kepada komputer. Istilah program dan aplikasi lebih sering disebut untuk menyatakan perangkat lunak. Di kalangan profesional teknologi informasi, istilah program biasa digunakan untuk menyatakan hasil karya mereka yang berupa instruksi-instruksi untuk mengendalikan komputer. Di sisi pemakai, hal seperti itu biasa disebut sebagai aplikasi (Gambar 1.2). Jadi, istilah yang digunakan untuk menyatakan hal yang sama lebih ditentukan oleh masalah persepsi.

Gambar 1.2 Program dan aplikasi dari sisi pandang yang berbeda

Terkait dengan program, terdapat istilah pemrogram dan pemrograman. Pembuat program dinamakan pemrogram (programmer). Tugasnya adalah menulis program dan memastikan bahwa program sesual dengan spesifikasi yang dikehendaki. Adapun yang dinamakan pemrograman adalah proses untuk menyelesaikan masalah dalam bentuk langkah-langkah penyelesaian yang dapat dikerjakan oleh komputer (yang disebut algoritma) hingga ke penerjemahan kode dalam suatu bahasa pemrograman, sehingga masalah tersebut benar-benar bisa dieksekusi oleh komputer.

Komputer bekerja atas dasar kode biner atau kode yang mempunyai dua keadaan berupa 0 dan 1. Jika dinyatakan dalam keadaan lampu, kode 0 menyatakan keadaan padam dan kode 1 menyatakan keadaan menyala. Atas dasar inilah, program pada masa awal terciptanya komputer dibuat dengan menggunakan bahasa pemrograman yang berbasis pada kode biner dan dinamakan bahasa mesin.

Pembuatan program dengan bahasa mesin tentu saja memakan waktu yang lama dan membosankan. Itulah sebabnya muncul bahasa rakitan, untuk lebih memudahkan dalam pembuatan program. Pada bahasa ini, kode-kode singkat, seperti MOV untuk menyalin data dan CMP untuk melakukan pembandingan data digunakan. Gambar 1.3 memberikan contoh instruksi dalam bahasa mesin dan bahasa rakitan untuk menyatakan operasi yang serupa untuk menambahkan dua bilangan pada suatu jenis komputer. Tampak bahwa kode dalam bahasa rakitan lebih mudah dipahami oleh manusia daripada kode dalam bahasa mesin. Namun, bahasa rakitan pun masih dirasakan sulit bagi sejumlah pemrogram.

Instruksi dalam bahasa mesin:

Instruksi dalam bahasa rakitan:

ADD A, B

Gambar 1.3 Contoh perintah dalam bahasa mesin dan rakitan

Bahasa mesin dan bahasa rakitan tergolong sebagai bahasa beraras rendah (low level language), yang lebih berorientasi pada mesin. Artinya,

Abdul Kadir adalah penulis senior yang telah menghasilkan puluhan buku di bidang Teknologi Informasi terutama di bidang pemrograman komputer. Beberapa bukunya telah menjadi best seller. Sambil berbagi pengetahuan melalui buku, dia terus aktif melakukan berbagai riset tentang bahasa-bahasa pemrograman dan aplikasinyaserta mengisi berbagai pelatihan di bidang teknologi Informasi dan peningkatan motivasi diri untuk

menulis artikei atau buku. Di waktu yang senggang dia menikmati alunan musik Jazz atau berjalan-jalan mengambil gambar tentang alam dan sekitarnya. Penulis dapat dihubungi melalui alamat e-mail: akadir54@gmail.com.

Catatan:

Untuk melakukan pemesanan buku, hubungi Layanan Langsung PT Elex Media Komputindo:

Gramedia Direct

Jl. Palmerah Barat No. 29-37, Jakarta 10270

Telemarketing/CS: 021-53650110/111

ext: 3901/3902/3292