R4.A.13 Apprentissage Profond

Lecture 4

Convolutional neural networks

Data augmentation, Batch normalization, Dropout Transfer learning et Finetuning

Minh-Tan Pham, Matthieu Le Lain BUT2 INFO, 2023-2024

IUT de Vannes, Université Bretagne Sud

minh-tan.pham@univ-ubs.fr

Planning

- Data augmentation
- > Batch normalization
- > Dropout
- > Transfer learning and finetuning
- ➤ Lab Assignments

- Apply some transformations -> increase the number of training samples
- Applied to training set, NOT to validation/test sets

Flipping

Cropping

- Apply some transformations -> increase the number of training samples
- Applied to training set, NOT to validation/test sets

Color jittering

Translation, rotation, rescaling,...

- Help to enhance the model ability to generalize to unseen data by exposing it to more diverse and varied training samples
- Act as a <u>regularization technique</u> → avoid model overfitting (model learns the training set to well but poorly on unseen data (test data)

Image credits: wikipedia

Batch normalization

- Normalize the input of each layer by adjusting and scaling the activations
- Use to mean and standard-deviation of the mini-batch for the normalization
- Used in most NN/CNN architectures

BatchNorm (BN)

- Perform BN before the activation function (ReLu)
- Reduce a strong dependence on initialization
- Improve the gradient flow through the network

Example: ...-[Conv]-[BN]-[ReLu]-[Pool]...-[FC]-[BN]-[Relu]-...

How to apply in pytorch?

```
import torch
import torch.nn as nn
# Define a simple neural network
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.fc1 = nn.Linear(784, 256) # Input size: 784, Output size: 256
        self.bn1 = nn.BatchNorm1d(256) # Batch normalization after first fully conne
        self.fc2 = nn.Linear(256, 10) # Input size: 256, Output size: 10 (for class:
    def forward(self, x):
        x = torch.relu(self.bn1(self.fc1(x))) # Applying batch normalization after
       x = self.fc2(x)
       return x
# Instantiate the neural network
model = NeuralNetwork()
```

How to apply in pytorch?

```
class CNN(nn.Module):
   def __init__(self):
       super(CNN, self).__init__()
       self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=
       self.bn1 = nn.BatchNorm2d(16)
       self.relu = nn.ReLU()
       self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
       self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride
       self.bn2 = nn.BatchNorm2d(32)
        self.fc = nn.Linear(32 * 8 * 8, 10) # Assuming input image size of 32×32 and
   def forward(self, x):
       x = self.relu(self.bn1(self.conv1(x)))
       x = self.maxpool(x)
       x = self.relu(self.bn2(self.conv2(x)))
       x = self.maxpool(x)
       x = x.view(x.size(0), -1) # Flatten the tensor for fully connected layers
       x = self.fc(x)
       return x
```

Dropout

Dropout

Dropout

- A regularization technique
- Randomly remove some neuron connections (by setting a probability 0.5 for example)
- Avoid overfitting

Dropout

How to apply in pytorch?

```
class CNNWithDropout(nn.Module):
   def __init__(self):
       super(CNNWithDropout, self).__init__()
       self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=
       self.relu = nn.ReLU()
       self.dropout1 = nn.Dropout(p=0.2) # Apply dropout with a probability of 0.2
       self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
       self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride
       self.dropout2 = nn.Dropout(p=0.2) # Apply dropout with a probability of 0.2
       self.fc = nn.Linear(32 * 8 * 8, 10) # Assuming input image size of 32×32 and
   def forward(self, x):
       x = self.relu(self.conv1(x))
       x = self.dropout1(x)
       x = self.maxpool(x)
       x = self.relu(self.conv2(x))
       x = self.dropout2(x)
       x = self.maxpool(x)
       x = x.view(x.size(0), -1) # Flatten the tensor for fully connected layers
       x = self.fc(x)
       return x
```

Remarks

Data augmentation, batch normalization and dropout techniques do not add more parameters to a network

Transfer learning and finetuning

Transfer learning

- Learn a new task (target) through the transfer of knowledge from a related task (source) which has been trained.
- Use weights from pre-trained CNN as initialization to train new network

Finetuning

- Fine-tuning: replace and retrain some last layers on top of the CNN using new dataset
- Fine-tune a network with transfer learning is much faster and easier than training from scratch (construct and train a new network)
- Relevant when <u>using small number of trained samples</u>

Reuse Pretrained Network

Improve network

Finetuning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

It is common to:

- pretrain a CNN on a very large dataset (ImageNet)
- use the pre-trained network to ne-tune the new task

ImageNet dataset:

- 1000 object classes
- 1.2M trained images
- 100k test images

1. Train on Imagenet

2. Small Dataset (C classes)

Use CNN backbone as feature extractor

3. Bigger dataset

Finetuning few layers or all the network

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Pytorch pretrained models

- AlexNet
- ConvNeXt
- DenseNet
- EfficientNet
- EfficientNetV2
- GoogLeNet
- Inception V3
- MaxVit
- MNASNet
- MobileNet V2
- MobileNet V3

- RegNet
- ResNet
- ResNeXt
- ShuffleNet V2
- SqueezeNet
- SwinTransformer
- VGG
- VisionTransformer
- Wide ResNet

https://pytorch.org/vision/stable/models.html

Finetuning with pytorch

Finetuning the convnet

Load a pretrained model and reset final fully connected layer.

```
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num ftrs, len(class names)).
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer ft = optim.SGD(model ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
```

Using CNN as feature extractor

ConvNet as fixed feature extractor

Here, we need to freeze all the network except the final layer. We need to set requires_grad = False
to freeze the parameters so that the gradients are not computed in backward().

You can read more about this in the documentation here.

```
model_conv = torchvision.models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()
```

Lab assignment

Practical lab: Comparing training from scratch vs transfer learning

- Based on the Lab2, create a jupyter notebook file named R4A13_lab3.ipynb
- Based on this tutorial (<u>https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html</u>), your task will be to compare 3 approaches: <u>training from scratch</u> (as done in Lab2), <u>CNN-based feature extraction</u> and <u>finetuning</u>, on the CIFAR-10 dataset
- Perform experiments using 2 different networks among the following: SqueezeNet, AlexNet, VGG and ResNet
- At the end you should create a comparative table as follows (same number of epochs for training)

Model	Number of trainable params	Test accuracy	Training time per epoch
From scratch			
CNN1 (feat_extract)			
CNN1 (finetuning)			
CNN2 (feat_extract)			
CNN2 (finetuning)			

Note that you need to submit your compiled notebook with all outputs

References and Sources

Convolutional neural networks for visual recognition - Stanford

https://cs231n.github.io/

Neural networks and deep learning (free online book)

http://neuralnetworksanddeeplearning.com/index.html

Machine learning course – Oxford

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

Neural network course - Hugo Larochelle

https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Deep learning course – François Fleuret

https://fleuret.org/dlc/