

Loan Approval Prediction Project 4

Group 4

Jenipher Flores | Andrew Hawthorne Ryan Blais | Elizabeth Lawal | Fidel Carrillo

Table of Contents

01.

Project

Overview

0

04.

Model

Results

02.

Exploratory

Analysis

05.

Takeaways &

Next Steps

03.

Supervised

Learning

Model

Project Overview

Objective

Using loan approval data, we will develop a supervised learning model to predict whether or not a loan application will be approved based on past approvals/rejections.

Our Dataset

X

<u>Loan-Approval-Prediction-Dataset</u> (Kaggle)

"The loan approval dataset is a collection of financial records and associated information used to determine the eligibility of individuals or organizations for obtaining loans from a lending institution. It includes various factors such as cibil score, income, employment status, loan term, loan amount, assets value, and loan status. This dataset is commonly used in machine learning and data analysis to develop models and algorithms that predict the likelihood of loan approval based on the given features."

Exploratory Analysis

What does the data look like?

	loan_id	no_of_dependents	education	self_employed	income_annum	loan_amount	loan_term	cibil_score	residential_assets_value	commercial_assets_value	luxury_assets_value	bank_asset_value	loan_status
0	1	2	Graduate	No	9600000	29900000	12	778	2400000	17600000	22700000	8000000	Approved
1	2	0	Not Graduate	Yes	4100000	12200000	8	417	2700000	2200000	8800000	3300000	Rejected
2	3	3	Graduate	No	9100000	29700000	20	506	7100000	4500000	33300000	12800000	Rejected
3	4	3	Graduate	No	8200000	30700000	8	467	18200000	3300000	23300000	7900000	Rejected
4	5	5	Not Graduate	Yes	9800000	24200000	20	382	12400000	8200000	29400000	5000000	Rejected

			-
data	.descr	ibe(١,
			/ -

	loan_id	no_of_dependents	income_annum	loan_amount	loan_term	cibil_score	residential_assets_value	commercial_assets_value	luxury_assets_value	bank_asset_value
count	4269.000000	4269.000000	4.269000e+03	4.269000e+03	4269.000000	4269.000000	4.269000e+03	4.269000e+03	4.269000e+03	4.269000e+03
mean	2135.000000	2.498712	5.059124e+06	1.513345e+07	10.900445	599.936051	7.472617e+06	4.973155e+06	1.512631e+07	4.976692e+06
std	1232.498479	1.695910	2.806840e+06	9.043363e+06	5.709187	172.430401	6.503637e+06	4.388966e+06	9.103754e+06	3.250185e+06
min	1.000000	0.000000	2.000000e+05	3.000000e+05	2.000000	300.000000	-1.000000e+05	0.000000e+00	3.000000e+05	0.000000e+00
25%	1068.000000	1.000000	2.700000e+06	7.700000e+06	6.000000	453.000000	2.200000e+06	1.300000e+06	7.500000e+06	2.300000e+06
50%	2135.000000	3.000000	5.100000e+06	1.450000e+07	10.000000	600.000000	5.600000e+06	3.700000e+06	1.460000e+07	4.600000e+06
75%	3202.000000	4.000000	7.500000e+06	2.150000e+07	16.000000	748.000000	1.130000e+07	7.600000e+06	2.170000e+07	7.100000e+06
max	4269.000000	5.000000	9.900000e+06	3.950000e+07	20.000000	900.000000	2.910000e+07	1.940000e+07	3.920000e+07	1.470000e+07

Correlation Matrix

Loan Distribution

Education & Self-Employment

Number of Dependants by Loan Status ×

Additional Analysis by Loan Status x

Boxplot Analysis by Loan Status

Credit Score by Loan Status

Credit Score by Loan Amount- Approved or Rejected 900 800 -700 Credit Score 600 -500 400 loan_status Approved 300 Rejected 0.5 1.0 4.0 1e7 1.5 3.0 0.0 2.0 2.5 3.5 Loan Amount

Supervised Learning Model

Models Attempted

- Random Forest (x7)
- KN Neighbors (x4)
- Decision Tree (x1)
- Logistic Regression (x4)

Best Model - Logistic Regression

0

- Stripped leading/trailing whitespaces in column names
- Dropped 'loan_id' column as it is not beneficial
- Target (y) = 'loan_status' (Approved or Rejected)
- Features (X) = remaining columns
- Used pd.get_dummies to encode categorical variables ('education' and 'self_employed')
- Split data into training and testing sets
- Scaled the data using StandardScaler
- Created & trained the model and made predictions
- Optimization attempts were made by adjusting the features included, but the highest score was with keeping all of the features

Features Snapshots

1 # Preview the features data
2 X.head()

	no_of_dependents	education	self_employed	income_annum	loan_amount	loan_term	cibil_score	residential_assets_value	commercial_assets_value	luxury_assets_value	bank_asset_value
0	2	Graduate	No	9600000	29900000	12	778	2400000	17600000	22700000	8000000
1	0	Not Graduate	Yes	4100000	12200000	8	417	2700000	2200000	8800000	3300000
2	3	Graduate	No	9100000	29700000	20	506	7100000	4500000	33300000	12800000
3	3	Graduate	No	8200000	30700000	8	467	18200000	3300000	23300000	7900000
4	5	Not Graduate	Yes	9800000	24200000	20	382	12400000	8200000	29400000	5000000

	1 # Review the features data 2 X.head() Pyth												
	no_of_dependents	income_annum	loan_amount	loan_term	cibil_score	residential_assets_value	commercial_assets_value	luxury_assets_value	bank_asset_value	education_ Graduate	education_ Not Graduate	self_employed_ No	self_employed_ Yes
0		9600000	29900000	12	778	2400000	17600000	22700000	8000000				0
1		4100000	12200000		417	2700000	2200000	8800000	3300000				1
2		9100000	29700000	20	506	7100000	4500000	33300000	12800000				0
3		8200000	30700000		467	18200000	3300000	23300000	7900000				0
4		9800000	24200000	20	382	12400000	8200000	29400000	5000000				1

Model Results

Final accuracy score: 90%

Classification	Report:			
	precision	recall	f1-score	support
Approved	0.93	0.92	0.92	810
Rejected	0.87	0.87	0.87	471
accuracy			0.90	1281
macro avg	0.90	0.90	0.90	1281
weighted avg	0.90	0.90	0.90	1281

Takeaway & Next Steps

Takeaways:

Key feature: credit score

Data Limitations:

- Loan types are not specified
 - Additional factors, such as foreclosures or bankruptcies, that were not included
 - Debt-to-income ratio
 - Interest rates

Other considerations:

Demographics

X

With more time, we would...

 Further identify factors to make model more efficient with fewer dependent features

 Test product for users to be able to quickly know how likely their loan request is to be approved

X

7

600

1484 ALC 70

W.

Thank You!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

