

ΗΥ360 :: Αρχεία & Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2021-2022

Ομαδική Εργασία – Ομάδα 35

Γιάννης Τζωρτζάκης csd4448 Γιώργος Παναγιώτης Αλιβέρτης csd4411 Παναγιώτης Μιχαήλ Αλεξίου csd3665

Σχεδιασμός & υλοποίηση SQL βάσης δεδομένων ενός εικονικού παρόχου πιστωτικών καρτών, συνοδευόμενης απο λογισμικό διαχείρισής της με γραφικό περιβάλλον.

CCC: A Credit Card Company

Διάγραμμα Οντοτήτων - Σχέσεων (ΕR)

Οντότητες – Γνωρίσματα - Σχέσεις

users

accountID, INT(30), PRIMARY KEY username, VARCHAR, (30), NOT NULL

consumers

accountID, INT(30), NOT NULL, PRIMARY KEY

consumer_name, VARCHAR(30), NOT NULL

debt, FLOAT(10) credit_limit, FLOAT(10)

exp_date, VARCHAR(20)

balance, FLOAT(10)

merchants

accountID, INT(30), NOT NULL, PRIMARY KEY

merchant_name, VARCHAR(30), NOT NULL

commission, FLOAT(10) debt, FLOAT(10) profit, FLOAT(10)

corporates

accountID, INT, (30), NOT NULL, PRIMARY KEY

employees

accountID, INT(30), NOT NULL

emp_id, INT(30), NOT NULL, PRIMARY KEY

emp_name, VARCHAR(30), NOT NULL

emp_transactions

transID, INT(30), NOT NULL, PRIMARY KEY emp_id, INT(30), NOT NULL, PRIMARY KEY

transactions

transID,	INT(30),	PRIMARY KEY
consumer_acc_id,	INT(30)	
consumer_name,	VARCHAR(30),	NOT NULL
merchant_acc_id,	INT(30),	NOT NULL
merchant_name,	VARCHAR(30),	NOT NULL
amount,	FLOAT(10)	
date,	VARCHAR(20)	
transType,	INT(10)	

Περιορισμοί πληθικότητας

Πρωτεύοντα κλειδιά

• USERS	=> <u>acc_id</u>
 MERCHANTS 	=> <u>acc_id</u>
 CONSUMERS 	=> <u>acc_id</u>
 CORPORATE 	=> <u>acc_id</u>
 TRANSACTIONS 	=> <u>trans_id</u>
• EMP_TRANSACTIONS	_=> <u>trans_id</u>
• EMPLOYEES	=> emp <u>id</u>

(Στην περίπτωση των emp_transactions, κανονικά θα είχαμε σαν πρωτεύον κλειδί τον συνδυασμό {emp_id,trans_id}, εαν μπορούσαν πολλοι employees να συμμετεχουν σε μια συναλλαγή, αλλα λόγω του οτι το trans_id είναι τελικά μοναδικό για καθε employee, μπορεί να χρησιμοποιηθεί ως το πρωτεύον κλειδί.

Σχεσιακό μοντέλο

USERS acc_id name TRANSACTIONS trans_id|consumer.acc_id|cons_name|merchant.acc_id|merc_name|amount|date|type MERCHANTS (user) acc_id|name comission debt profit CONSUMERS (user) acc_id name | debt credit_limit exp_date balance CORPORATE (consumers) acc_id **EMPLOYEES** acc_id emp id emp_name **EMP_TRANSACTIONS** trans id emp id

Επεξήγηση

- Για τις οντότητες merchant, consumer επιλέχθηκε μία μητρική οντότητα user{acc_id,name} με τα κοινά τους γνωρίσματα, καθώς αποτελούν και οι 2 ένα είδος χρήστη της CCC με εξειδικευμένα χαρακτηριστικά.
- Ως αποκλειστικές εξειδικεύσεις της user, οι οντότητες merchant, consumer δεν βασίζονται στην μητρική σχέση user, την οποια κληρονομούν και τυπικά δεν θα υπήρχε, παρα μόνο για προγραμματιστική διευκόλυνση.
- Η εξειδίκευση της consumer (corporate) συμβολίζει τους καταναλωτικούς εκείνους λογαριασμούς με εταιρικό χαρακτήρα.
- Οι **corporate** λογαριασμοί είναι πανομοιότυποι με τους **consumer**, εκτός του οτι λαμβάνουν **employees**, οπότε τους

- εισάγουμε στην σχέση **consumers**, και εισάγουμε το πρωτεύον κλειδί τους (**acc_id**) στη σχέση corporate, για να τους διαχωρίζουμε.
- Οι corporate λογαριασμοί λαμβάνουν ως πλειότιμο γνώρισμα έναν employee{emp_id,name}, ο οποίος σύμφωνα με τους κανόνες της μετατροπής στο σχεσιακό μοντέλο, γίνεται μία ξεχωριστή σχέση την οποία συσχετίζουμε με το πρωτεύον κλειδί (acc_id) της corporate.

Τρίτη Κανονική Μορφή – 3NF

Μια σχέση R βρίσκεται σε τρίτη κανονική μορφή αν:

- Είναι σε 1-ΝΕ δηλαδή δεν έχει σύνθετα και πλειότιμα γνωρίσματα.
- Αν είναι σε 2-NF δηλαδή αν κάθε συναρτησιακή εξάρτηση X -> Y που υπάρχει στην R είναι full functional dependency.
- Μία συναρτησιακή εξάρτηση $X \to Y$ είναι full functional dependency αν η συναρτησιακή εξάρτηση παύει να ισχύει αν αφαιρέσουμε οποιοδήποτε πεδίο από το X .
- Αν δεν υπάρχουν transitive dependencies (μεταβατικές εξαρτήσεις). Μία συναρτησιακή εξάρτηση X -> Y είναι transitive dependencies αν ισχύει X -> Z και Z -> Y για κάποιο σύνολο από πεδία που δεν ανήκουν σε κανένα κλειδί.

Σύμφωνα με τα παραπάνω η βάση είναι σε 3η Κανονική Μορφή

SCREENSHOTS ΛΕΙΤΟΥΡΓΙΑΣ

• ::: Main View :::

• ::: START DB :::

::: Register User **:::**

::: Purchase & Return :::

::: Payment :::

::: Delete account **:::**

::: Questions :::

::: Response **:::**

::: GOOD CLIENTS :::

::: BAD CLIENTS :::

:::TOP# DEALER:::

Περιορισμοί υλοποίησης

- Παρόλο που η λειτουργικότητα του συστήματος είναι πλήρης, η ασφάλεια είναι υποτυπώδης, και θα μπορούσε να βελτιωθεί αρκετά. Για παράδειγμα, τα αναγνωριστικά των χρηστών, που αποτελούν και εικονικούς αριθμούς λογαριασμού, είναι ευάλωτα σε enumeration attacks.
- Θα μπορούσε να υλοποιηθεί λειτουργικότητα πολλαπλών συμμετεχόντων employees σε ενα transaction. Κάτι τέτοιο δεν ζητείται, αλλα θα ηταν ενδιαφερον προγραμματιστικα. Στην περίπτωση αυτη, η σχέση που διατηρεί τις συναλλαγές τους θα είχε πρωτεύον κλειδί αποτελούμενο απο 2 γνωρίσματα.