Internet of Things

Introduction to Arduino

Arduino UNO Board & IDE

Thanks to Dr. Manas Khatua

What is Arduino?

- Arduino is an open-source electronics platform
 - based on easy-to-use hardware and software.
- It was born at *Interaction Design Institute Ivrea, Italy*
 - an easy tool for fast prototyping
 - aimed at students without any background in electronics and programming.
- These boards are incorporated with microcontrollers
 - To execute a small program, to receive input, to apply action on real world
- It has the capability to act as an interface for electrical and electronic systems
- These boards are used extensively because:
 - Inexpensive
 - Cross-platform runs on Windows, Mac OS, and Linux OS.
 - Easy-to-use hardware and software environment
 - Open source hardware and software IDE
 - Capable to interact with other boards and computers
 - Can interact with sensors and actuators
 - Facilitate serial communication

Types of Arduino Boards

- Entry Level easy to use and ready to power your first creative projects.
 - Arduino UNO
 - Arduino Nano
 - Arduino Micro
- Enhanced Features boards with advanced functionalities, or faster performances
 - Arduino Zero
 - Arduino Mega 2560
 - Arduino Motor Shield
- Internet of Things Make connected devices easily with one of these IoT products
 - Arduino Nano 33 IoT
 - Arduino Nano 22 BLE
 - UNO WiFi REV2

Arduino UNO

Arduino Mega 2560

Arduino Nano 33 IoT

Source: https://www.arduino.cc/

Arduino UNO

- Arduino UNO is a <u>Single board Microcontroller</u> based on <u>ATmega328P</u> Processor
 - a product of Atmel (now Microchip)
 - 32 represents it's flash memory capacity that is 32KB
 - 8 represents it's CPU type that is of 8 bit
 - p simply denotes picoPower (i.e. very low power).

AVR CPU at up to 16 MHz, 32KB Flash, 2KB SRAM, 1KB EEPROM

Few competitors: STM32 ARM Cortex, MSP430, and PIC MCU

Pins/Jacks in Arduino UNO R3

- It has the following major pins/jacks:
 - ✓ 14 digital input/output pins (of which 6 can be used as PWM outputs),
 - ✓ 6 analog inputs,
 - √ 6 pins related to energy/power
 - ✓ a reset pin
 - ✓ an analog reference pin
 - ✓ a reset button
 - ✓ a USB connection,
 - ✓ a power jack,
 - √ a 16 MHz ceramic resonator,
 - ✓ two ICSP header
 - ✓ Atmel ATmega328 IC pins

Source: https://docs.arduino.cc/hardware/uno-rev3

Detailed Pin Diagram

Pin Description

Pin category	Pin Name	Details
Power Pins	Vin, 3.3V, 5V, GND, RESET	Vin: Input voltage to Arduino when using an external power source.
		5V : Regulated power supply used to power microcontroller and other components on the board.
		3.3V : 3.3V supply generated by on-board voltage regulator. Maximum current draw is 50mA.
		GND : ground pins.
		Reset: Reset the microcontroller
ICSP: In-Circuit Serial Programming	ICSP pins: MISO, VCC, SCK, MOSI, RESET, GND	Used to code and boot an Arduino from an external source. Allow inter workings of two or more Arduino boards. Allow you to upload your firmware.

Cont...

Pin category	Pin No / name	Details	
Analog pin	A0 - A5	Used to provide analog input in the range 0-5V.	
Digital Input/output pin	Digital Pins 2 - 13	Can be used as input or output pins.	
Serial Communication	0(Rx),1(Tx)	Used to receive and transmit TTL serial data.	
External Interrupts	2, 3	To trigger an interrupt.	
PWM: Pulse Width Modulation	3, 5, 6, 9, 10, 11	Provides 8-bit PWM output.	
SPI: Serial Peripheral Interface	10 (SS), 11 (MOSI), 12 (MISO) and 13 (SCK)	Used for SPI communication.	
Inbuilt LED	13	To turn on the inbuilt LED.	
I2C: Inter-IC, or TWI: Two Wire Interface	A4 (SDA: Serial Data), A5 (SCL: Serial Clock)	Used for TWI / I2C communication.	
AREF	AREF : Analog Reference Voltage	To provide reference voltage from an external power supply for analog-to-digital conversion of inputs to the analog pins. E.g. if AREF is 4V — the analogRead() range of 0~1023 will relate to 0~4V and not 0~5V.	

Arduino in IoT

- Arduinos are used to create IoT projects.
- But, it requires either a specialized Arduino or shields to provide network capabilities
- The network interface could be Ethernet / WiFi / Cellular

EtherTen

Arduino Ethernet Shield

Arduino + Ethernet Shield

Arduino UNO WiFi Rev2

Configure Arduino IDE

- Download and Install Arduino IDE https://www.arduino.cc/en/Main/Software
- The Arduino Software (IDE) allows you to write programs and upload them to your board.
- When the Arduino IDE first opens, this is what you should see:

```
sketch_jul11a | Arduino 1.8.9
  sketch jul11a
 1 void setup() {
     // put your setup code here, to run once:
 6 void loop() {
    // put your main code here, to run repeatedly:
 9 }
80 MHz, Flash, Disabled, All SSL ciphers (most compatible), 4M (no SPIFFS), v2 Lower Memory, Disabled, None, Only Sketch, 115200 on /dev/cu,SLAB_USBtoUART2
```

Built-in Examples

- Launch the Arduino application
- Programs written using Arduino IDE are called sketches.
- There are many built-in examples / sketches.
- To open built-in examples: select File
 -> examples.
- These simple programs demonstrate all the basic Arduino commands.

Set Arduino Board

- Plug in your board through cable
- Select the type of Arduino board you're using:
 - ✓ Tools -> Board -> (your board type)✓ e.g. Arduino UNO

Set Serial Port

- Select the serial/COM port that your Arduino is attached to:
 - √ Tools > Port > COMxx

Note: If you're not sure in which serial port your Arduino is connected, take a look at the available ports, then unplug your Arduino and look again. The one that disappeared is your Arduino.

Code Compilation

 Compilation successful message at the bottom left corner.

Code Uploading

- With your Arduino board connected, and the Blink sketch open, press the 'Upload' button
- After a second, you should see some LEDs flashing on your Arduino, followed by the message 'Done Uploading' in the status bar of the Blink sketch.
- If everything worked, the on-board LED on your Arduino should now be blinking!

Serial Monitor

- The serial monitor is the 'tether' between the computer and your Arduino it lets you send and receive text messages.
- First select the port (go to Tools -> Port:) to which the board is connected then click
 the icon of Serial Monitor on the top right side of the Arduino IDE

Serial Monitor output

```
/dev/cu.SLAB_USBtoUART
                                                                                                                                          Send
14:39:43.602 -> Stations connected = 4
14:39:44.864 -> Vibration Sensor data: 29 Sent to ThingSpeak server..
14:39:59.873 -> Stations connected = 4
14:39:59.873 -> Stations connected = 4
14:39:59.907 -> Stations connected = 4
14:39:59.945 -> Stations connected = 4
14:40:17.586 -> Temperature: 23.30 degree celcius, Humidity: 70.00%. Sent to ThingSpeak Server...
14:40:32.597 -> Stations connected = 4
14:40:32.630 -> Stations connected = 4
14:40:32.630 -> Stations connected = 4
14:40:32.665 -> Stations connected = 4
14:40:32.702 -> Stations connected = 4
14:40:32.702 -> Stations connected = 4
14:40:32.735 -> Stations connected = 4
14:40:32.770 -> Stations connected = 4
14:40:34.148 -> LDR sensor data value: 1024
14:40:34.148 -> Sent to ThingSpeak Server...
                                                                                                             9600 baud
                                                                                      Newline
                                                                                                                                   Clear output
 Autoscroll  Show timestamp
```

Serial Plotter

- Can use Serial Plotter to plot the output signal
- See the below image for example

How to Install Sensor Libraries

- Let we will use DHT11 sensor for which we need DHT.h header file
- So, this header file needs to be installed first.
- Install Using the Library Manager
 - click to Sketch menu -> Include Library -> Manage Libraries
 - Search for "DHT" on the Search box and install the DHT library from Adafruit.

Cont...

After installing the DHT library from Adafruit, install "Adafruit Unified Sensor" libraries.

- There exist other methods for installing libraries
 - Importing a .zip Library
 - Sketch --> Include Library --> Add .Zip Library
 - Manual Installation of Library
 - Download the library as .Zip --> extract it
 - Place the files in File --> Preferences --> Sketchbook location

Restart Arduino IDE

Demo: LED Blink

- See the Demo using Arduino UNO circuit board
- 1) Blink the in-built LED of Arduino Board
- 2) Blink the additionally attached LEDs

Blink In-built LED Continuously

- First upload the bare minimum example:
 - ✓ Files -> Examples -> Basics -> BareMinimum
- Output:
 - ✓ In-built LED will glow continuously

Blink In-built LED Periodically

- First upload the bare minimum example:
 - ✓ Files -> Examples -> Basics -> BareMinimum
- Output:
 - ✓ In-built LED will **glow** continuously
- Then, upload the blink example:
 - ✓ Files -> Examples -> Basics -> Blink
- Output:
 - ✓ In-built LED will glow periodically

22

Blink External LED

Connect the "digital out" **pin 9** with the "**Anode** pin" of LED (i.e. long leg of LED) through **1K Ohm resistor**, and "ground" pin with the **Cathode** pin of LED

OUTPUT:

LED connected with digital pin 9 will blink periodically.

```
BlinkExternalLED | Arduino 1.8.13 (Windows Store 1.8.42.0)
File Edit Sketch Tools Help
  BlinkExternalLED
int animationSpeed = 0;
void setup() {
   // put your setup code here, to run once:
  pinMode (9, OUTPUT);
void loop() {
   // put your main code here, to run repeatedly:
   animationSpeed = 1000;
  digitalWrite(9, HIGH);
  delay(animationSpeed);
  digitalWrite (9, LOW);
  delay (animationSpeed);
```

Upload this sketch in Arduino UNO

Demo on LED Blink

Lessons Learned

- ✓ What is Arduino
- ✓ Types of Arduino Board
- ✓ Arduino UNO pin diagram
- ✓ Arduino in IoT
- ✓ Arduino IDE
- ✓ Built-in Sketch in IDE
- ✓ Compiling and Uploading a sketch using IDE
- ✓ LED blink program and system setup

Thanks!

Which is better? ATmega328P vs STM32 vs MSP430

	ATmega328P	STM32	MSP430
Brand	ATmel (now MicroChip)	Cortex (STMicroelectronics)	Texas Instruments
Cost	Low	High	Low
Architecture	Advanced RISC architecture	Power Architecture technology designed for embedded applications	Older, von-Neumann architecture
Power Consumption	Low	Medium	Low
Performance	Medium, suitable for complex projects	High, fast processing speed, Running 32 bit ARM processor core with sufficient RAM	Low, more suitable for only simple projects
Ease of Usage	Easy to use, 8 bit and high compatibility with Arduino boards	Complicated due to its nature of being a 32 bit microcontroller	Complex relative to Arduino boards