# FCC REPORT(WIFI)

Applicant: Verykool USA Inc

Address of Applicant: 3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: RS75

FCC ID: WA6RS75

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2011

Date of sample receipt: 14 Dec., 2012

Date of Test: 19 Dec., 2012 to 05 Jan., 2013

Date of report issued: 06 Jan.,2013

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



### 2 Version

| Version No. | Date         | Description |
|-------------|--------------|-------------|
| 00          | 06 Jan.,2013 | Original    |
|             |              |             |
|             |              |             |
|             |              |             |
|             |              |             |

| Prepared by: | Lisa chon    | Date: | 06 Jan.,2013 |  |
|--------------|--------------|-------|--------------|--|
|              | Report Clerk |       |              |  |
| Reviewed by: | Someent chen | Date: | 06 Jan.,2013 |  |

Project Engineer

China Certification & Inspection Services Co., Ltd.
1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,
Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### 3 Contents

|   |            |                                             | Page |
|---|------------|---------------------------------------------|------|
| 1 | COV        | /ER PAGE                                    | 1    |
| 2 | VER        | SION                                        | 2    |
| 3 | CON        | ITENTS                                      | 3    |
| 4 | TES        | T SUMMARY                                   | 4    |
| 5 | GEN        | IERAL INFORMATION                           | 5    |
|   | 5.1        | CLIENT INFORMATION                          | 5    |
|   | 5.2        | GENERAL DESCRIPTION OF E.U.T.               |      |
|   | 5.3        | TEST ENVIRONMENT AND MODE                   |      |
|   | 5.4        | TEST FACILITY                               | 7    |
|   | 5.5        | TEST LOCATION                               |      |
|   | 5.6        | OTHER INFORMATION REQUESTED BY THE CUSTOMER |      |
|   | 5.7        | TEST INSTRUMENTS LIST                       | 8    |
| 6 | TES        | T RESULTS AND MEASUREMENT DATA              | 9    |
|   | 6.1        | ANTENNA REQUIREMENT:                        |      |
|   | 6.2        | CONDUCTED EMISSIONS                         |      |
|   | 6.3        | CONDUCTED OUTPUT POWER                      |      |
|   | 6.4        | OCCUPY BANDWIDTH                            |      |
|   | 6.5<br>6.6 | POWER SPECTRAL DENSITY                      |      |
|   | 6.6.1      |                                             |      |
|   | 6.6.2      |                                             |      |
|   | 6.7        | Spurious Emission                           |      |
|   | 6.7.1      |                                             |      |
|   | 6.7.2      |                                             |      |
| 7 | TES        | T SETUP PHOTO                               | 62   |
| 8 | EUT        | CONSTRUCTIONAL DETAILS                      | 63   |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 3 of 63



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 26/6dB Occupied Bandwidth        | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 4 of 63



## 5 General Information

### 5.1 Client Information

| Applicant:               | Verykool USA Inc                                                   |  |
|--------------------------|--------------------------------------------------------------------|--|
| Address of Applicant:    | 4350 Executive Dr. #100, San Diego                                 |  |
| Manufacturer:            | Verykool Wireless Technology Ltd.                                  |  |
| Address of Manufacturer: | Room 1701, Reward Building C, No.203, 2nd Section of WangJing,     |  |
|                          | Li Ze Zhong Yuan, ChaoYang District, Beijing, P.R. of China 100102 |  |

## 5.2 General Description of E.U.T.

| Product Name:                                 | Mobile Phone                                                |
|-----------------------------------------------|-------------------------------------------------------------|
| Model No.:                                    | RS75                                                        |
| Operation Fraguesia                           | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))              |
| Operation Frequency:                          | 2422MHz~2452MHz (802.11n(H40))                              |
| Channel numbers:                              | 11 for 802.11b/802.11g/802.11(H20)                          |
| Channel numbers:                              | 7 for 802.11n(H40)                                          |
| Channel separation:                           | 5MHz                                                        |
| Modulation technology:                        | Direct Sequence Spread Spectrum (DSSS)                      |
| (IEEE 802.11b)                                |                                                             |
| Modulation technology: (IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)            |
| Data speed (IEEE 802.11b):                    | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                               |
| Data speed (IEEE 802.11g):                    | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps |
| Data speed (IEEE 802.11n):                    | Up to 150Mbps                                               |
| Antenna Type:                                 | Internal Antenna                                            |
| Antenna gain:                                 | -0.6 dBi                                                    |
|                                               | Model:CYSK05-050050                                         |
| AC adapter :                                  | Input:100-240V AC,50/60Hz 0.15A                             |
|                                               | Output:5V DC MAX500mA                                       |
| Power supply:                                 | Rechargeable Li-ion Battery DC3.7V/1350mAh                  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 63



| Operation | Operation Frequency each of channel For 802.11b/g/n(H20) |         |           |         |           |         |           |
|-----------|----------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel   | Frequency                                                | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1         | 2412MHz                                                  | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2         | 2417MHz                                                  | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3         | 2422MHz                                                  | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

| Operation | Operation Frequency each of channel For 802.11n(H40) |         |           |         |           |         |           |
|-----------|------------------------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel   | Frequency                                            | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|           |                                                      | 4       | 2427MHz   | 7       | 2442MHz   |         |           |
|           |                                                      | 5       | 2432MHz   | 8       | 2447MHz   |         |           |
| 3         | 2422MHz                                              | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

### 802.11b/802.11g/802.11n (H20)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2412MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |

### 802.11n (H40)

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2422MHz   |
| The middle channel  | 2437MHz   |
| The Highest channel | 2452MHz   |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

### Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode         | Data rate |
|--------------|-----------|
| 802.11b      | 1Mbps     |
| 802.11g      | 6Mbps     |
| 802.11n(H20) | 6.5Mbps   |
| 802.11n(H40) | 13.5Mbps  |

### **Final Test Mode:**

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11n, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### ■ FCC —Registration No.: 817957

China Certification & Inspection Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012

### Industry Canada (IC)

The 3m Semi-anechoic chamber of China Certification & Inspection Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### 5.5 Test Location

All tests were performed at:

China Certification & Inspection Services Co., Ltd.

Address: 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-23118282 Fax: 0755-23116366

China Certification & Inspection Services Co., Ltd.
1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



# 5.6 Other Information Requested by the Customer

None.

### 5.7 Test Instruments list

| Radi | ated Emission:                   |                                   |                             |                  |                        |                            |
|------|----------------------------------|-----------------------------------|-----------------------------|------------------|------------------------|----------------------------|
| Item | Test Equipment                   | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal.Date<br>(dd-mm-yy) | Cal.Due date<br>(dd-mm-yy) |
| 1    | 3m Semi- Anechoic<br>Chamber     | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | June 09 2012           | June 08 2013               |
| 2    | Control Room                     | ZhongYu Electron                  | 6.2(L)*2.5(W)* 2.4(H)       | CCIS0002         | N/A                    | N/A                        |
| 3    | BiConiLog Antenna                | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | June 04 2012           | June 03 2013               |
| 4    | Double -ridged<br>waveguide horn | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | May 30 2012            | May 29 2013                |
| 5    | EMI Test Software                | AUDIX                             | E3                          | N/A              | N/A                    | N/A                        |
| 6    | Coaxial Cable                    | CCIS                              | N/A                         | CCIS0016         | Apr. 01 2012           | Mar. 31 2013               |
| 7    | Coaxial Cable                    | CCIS                              | N/A                         | CCIS0017         | Apr. 01 2012           | Mar. 31 2013               |
| 8    | Coaxial cable                    | CCIS                              | N/A                         | CCIS0018         | Apr. 01 2012           | Mar. 31 2013               |
| 9    | Coaxial Cable                    | CCIS                              | N/A                         | CCIS0019         | Apr. 01 2012           | Mar. 31 2013               |
| 10   | Coaxial Cable                    | CCIS                              | N/A                         | CCIS0087         | Apr. 01 2012           | Mar. 31 2013               |
| 11   | Amplifier(10kHz-1.3GHz)          | HP                                | 8447D                       | CCIS0003         | Apr. 01 2012           | Mar. 31 2013               |
| 12   | Amplifier(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | June 09 2012           | June 08 2013               |
| 13   | Pre-amplifier<br>(18-26GHz)      | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | Apr. 01 2012           | Mar. 31 2013               |
| 14   | Horn Antenna                     | ETS-LINDGREN                      | 3160                        | GTS217           | Mar. 30 2012           | Mar. 29 2013               |
| 15   | Printer                          | HP                                | HP LaserJet P1007           | N/A              | N/A                    | N/A                        |
| 16   | Positioning Controller           | UC                                | UC3000                      | CCIS0015         | N/A                    | N/A                        |
| 17   | Spectrum analyzer<br>9k-30GHz    | Rohde & Schwarz                   | FSP                         | CCIS0023         | May. 29 2012           | May. 28 2013               |
| 18   | Loop antenna                     | Laplace instrument                | RF300                       | EMC0701          | Aug. 12 2012           | Aug. 11 2013               |
| 19   | EMI Test Receiver                | Rohde & Schwarz                   | ESCI                        | CCIS0002         | May 25 2012            | May 24 2013                |

| Cond | Conducted Emission: |                    |                       |                  |                        |                            |  |
|------|---------------------|--------------------|-----------------------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal.Date<br>(dd-mm-yy) | Cal.Due date<br>(dd-mm-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | June 09 2012           | June 08 2013               |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | May 25 2012            | May. 24 2013               |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | Apr. 01 2012           | Mar. 31 2013               |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | Apr. 01 2012           | Mar. 31 2013               |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### 6 Test results and Measurement Data

### 6.1 Antenna requirement:

### Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### **E.U.T Antenna:**

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.6 dBi.



WIFI Antenna

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 63



Project No.: CCIS121200299RF

### 6.2 Conducted Emissions

| Test Requirement:              | FCC Part15 C Section 15.207                                                                                                                                               |                                                                                                                                                                                           |                                     |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Test Method:                   | ANSI C63.4: 2003                                                                                                                                                          | ANSI C63.4: 2003                                                                                                                                                                          |                                     |  |  |  |
| Test Frequency Range:          | 150kHz to 30MHz                                                                                                                                                           | 150kHz to 30MHz                                                                                                                                                                           |                                     |  |  |  |
| Class / Severity:              | Class B                                                                                                                                                                   |                                                                                                                                                                                           |                                     |  |  |  |
| Receiver setup:                | RBW=9kHz, VBW=30kHz                                                                                                                                                       |                                                                                                                                                                                           |                                     |  |  |  |
| Limit:                         | - 441.                                                                                                                                                                    | Limit (c                                                                                                                                                                                  | dBuV)                               |  |  |  |
|                                | Frequency range (MHz)                                                                                                                                                     | Quasi-peak                                                                                                                                                                                | Average                             |  |  |  |
|                                | 0.15-0.5                                                                                                                                                                  | 66 to 56*                                                                                                                                                                                 | 56 to 46*                           |  |  |  |
|                                | 0.5-5                                                                                                                                                                     | 56                                                                                                                                                                                        | 46                                  |  |  |  |
|                                | 5-30                                                                                                                                                                      | 60                                                                                                                                                                                        | 50                                  |  |  |  |
|                                | * Decreases with the logarithr                                                                                                                                            |                                                                                                                                                                                           |                                     |  |  |  |
| Test procedure                 | a line impedance stabiliz<br>50ohm/50uH coupling im                                                                                                                       | The E.U.T and simulators are connected to the main power thro a line impedance stabilization network (L.I.S.N.). The provide a 500hm/50uH coupling impedance for the measuring equipment. |                                     |  |  |  |
|                                | The peripheral devices a through a LISN that prov with 50ohm termination. test setup and photograp                                                                        | ides a 50ohm/50uH co<br>(Please refers to the bl                                                                                                                                          | upling impedance                    |  |  |  |
|                                | <ol> <li>Both sides of A.C. line ar<br/>interference. In order to f<br/>positions of equipment a<br/>changed according to AN<br/>measurement.</li> </ol>                  | ind the maximum emis<br>nd all of the interface c                                                                                                                                         | sion, the relative<br>ables must be |  |  |  |
|                                |                                                                                                                                                                           |                                                                                                                                                                                           |                                     |  |  |  |
| Test setup:                    | Refere                                                                                                                                                                    | ence Plane                                                                                                                                                                                |                                     |  |  |  |
| Test setup:                    | AUX Equipment  Test table/Insulation pla  Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization                                                           | U.T EMI Receiver                                                                                                                                                                          | er — AC power                       |  |  |  |
|                                | AUX Equipment  Test table/Insulation pla  Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m                                   | U.T EMI Receiver                                                                                                                                                                          | er — AC power                       |  |  |  |
| Test setup:  Test Instruments: | AUX Equipment  Test table/Insulation pla  Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization                                                           | U.T EMI Receiver                                                                                                                                                                          | er — AC power                       |  |  |  |
|                                | AUX Equipment  Test table/Insulation pla  Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m                                   | U.T EMI Receiver                                                                                                                                                                          | er — AC power                       |  |  |  |
| Test Instruments:              | AUX Equipment  Test table/Insulation pla  Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m  Refer to section 5.7 for details | U.T EMI Receiver                                                                                                                                                                          | er — AC power                       |  |  |  |

### **Measurement Data**

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 10 of 63



### Neutral:



Trace: 13

: CCIS Conducted Test Site : FCC PART15 B QP LISN LINE Site Condition

299RF Job. no EUT : Mobile phone Model : RS75

Test Mode : Wifi mode

Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa

|       | LISN                                                                                                    | Read<br>Level                                                                                                                                            | Cable<br>Loss                                                                                                                                                                                                      | Level                       | Limit<br>Line                              | Over<br>Limit                      | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz   | <u>dB</u>                                                                                               | dBu∀                                                                                                                                                     |                                                                                                                                                                                                                    | dBu∀                        | dBu∜                                       | <u>dB</u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.170 | 10.23                                                                                                   | 35.28                                                                                                                                                    | 0.78                                                                                                                                                                                                               | 46.29                       | 64.94                                      | -18.65                             | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.343 | 10.27                                                                                                   | 21.36                                                                                                                                                    | 0.73                                                                                                                                                                                                               | 32.36                       | 49.13                                      | -16.77                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.914 | 10.20                                                                                                   | 19.74                                                                                                                                                    | 0.85                                                                                                                                                                                                               | 30.79                       | 46.00                                      | -15.21                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.933 | 10.20                                                                                                   | 31.51                                                                                                                                                    | 0.86                                                                                                                                                                                                               | 42.57                       | 56.00                                      | -13.43                             | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.968 | 10.21                                                                                                   | 19.72                                                                                                                                                    | 0.86                                                                                                                                                                                                               | 30.79                       | 46.00                                      | -15.21                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.237 | 10.28                                                                                                   | 32.47                                                                                                                                                    | 0.95                                                                                                                                                                                                               | 43.70                       | 56.00                                      | -12.30                             | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.567 | 10.28                                                                                                   | 37.62                                                                                                                                                    | 0.94                                                                                                                                                                                                               | 48.84                       |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.567 | 10.28                                                                                                   | 22.05                                                                                                                                                    | 0.94                                                                                                                                                                                                               | 33.27                       | 46.00                                      | -12.73                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.140 | 10.29                                                                                                   | 35.67                                                                                                                                                    | 0.91                                                                                                                                                                                                               | 46.87                       | 56.00                                      | -9.13                              | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.364 | 10.29                                                                                                   | 21.05                                                                                                                                                    | 0.90                                                                                                                                                                                                               | 32.24                       | 46.00                                      | -13.76                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.049 | 10.29                                                                                                   | 23.10                                                                                                                                                    | 0.89                                                                                                                                                                                                               | 34.28                       | 46.00                                      | -11.72                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.114 | 10.29                                                                                                   | 33.23                                                                                                                                                    | 0.89                                                                                                                                                                                                               | 44.41                       | 56.00                                      | -11.59                             | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Freq<br>0.170<br>0.343<br>0.914<br>0.933<br>0.968<br>2.237<br>2.567<br>2.567<br>3.140<br>3.364<br>4.049 | Freq Factor  MHz dB  0.170 10.23 0.343 10.27 0.914 10.20 0.933 10.20 0.968 10.21 2.237 10.28 2.567 10.28 2.567 10.28 3.140 10.29 3.364 10.29 4.049 10.29 | HHz dB dBuV  0.170 10.23 35.28 0.343 10.27 21.36 0.914 10.20 19.74 0.933 10.20 31.51 0.968 10.21 19.72 2.237 10.28 32.47 2.567 10.28 37.62 2.567 10.28 22.05 3.140 10.29 35.67 3.364 10.29 21.05 4.049 10.29 23.10 | LISN Read Cable Loss    MHz | LISN   Read   Cable   Level   Loss   Level | LISN   Read   Cable   Limit   Line | LISN   Read   Cable   Limit   Over   Line   Limit   Cover   Line   Limit   L |

Project No.: CCIS121200299RF

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### Line:



Trace: 15

Site : CCIS Conducted Test Site : FCC PART15 B QP LISN NEUTRAL Condition

: 299RF Job. no : Mobile phone EUT Model : RS75 Test Mode : Wifi mode

Power Rating: AC 120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa Environment :

| est                   | Engineer:<br>Freq | Winner<br>LISN<br>Factor | Read<br>Level | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-----------------------|-------------------|--------------------------|---------------|---------------|-------|---------------|---------------|---------|
|                       | MHz               | <u>dB</u>                | dBu⊽          | dB            | dBu⊽  | dBu₹          | <u>dB</u>     |         |
| 1                     | 0.914             | 10.19                    | 36.24         | 0.85          | 47.28 | 56.00         | -8.72         | QP      |
| 2                     | 0.914             | 10.19                    | 21.53         | 0.85          | 32.57 | 46.00         | -13.43        | Average |
| 3                     | 0.968             | 10.20                    | 37.29         | 0.86          | 48.35 | 56.00         | -7.65         | QP      |
| 4                     | 0.974             | 10.20                    | 23.56         | 0.86          | 34.62 | 46.00         | -11.38        | Average |
| 5<br>6<br>7<br>8<br>9 | 1.367             | 10.23                    | 21.57         | 0.54          | 32.34 | 46.00         | -13.66        | Average |
| 6                     | 1.949             | 10.27                    | 23.65         | 0.02          | 33.94 | 46.00         | -12.06        | Average |
| 7                     | 2.110             | 10.27                    | 36.35         | 0.96          | 47.58 | 56.00         | -8.42         | QP      |
| 8                     | 2.513             | 10.27                    | 24.74         | 0.94          | 35.95 | 46.00         | -10.05        | Average |
| 9                     | 2.567             | 10.27                    | 39.30         | 0.94          | 50.51 | 56.00         | -5.49         | QP      |
| 10                    | 3.310             | 10.28                    | 35.52         | 0.90          | 46.70 | 56.00         | -9.30         | QP      |
| 11                    | 4.049             | 10.28                    | 24.65         | 0.89          | 35.82 | 46.00         | -10.18        | Average |
| 12                    | 4.114             | 10.28                    | 35.64         | 0.89          | 46.81 | 56.00         | -9.19         | QP      |

### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102



Project No.: CCIS121200299RF

### **6.3 Conducted Output Power**



### Measurement Data

|         | Max     | kimum Conduct |              | 5 "          |            |        |
|---------|---------|---------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g       | 802.11n(H20) | 802.11n(H40) | Limit(dBm) | Result |
| Lowest  | 10.17   | 11.93         | 12.01        | 11.62        |            |        |
| Middle  | 10.24   | 11.57         | 11.61        | 11.75        | 30.00      | Pass   |
| Highest | 10.56   | 11.29         | 11.30        | 11.97        |            |        |

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 13 of 63





# CCIS

### Report No: CCIS12120029903







Page 16 of 63





Page 17 of 63



## 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                         |
| Limit:            | >500kHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

### Measurement Data

| T       |         | 6dB Occupy |              |              |            |        |
|---------|---------|------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g    | 802.11n(H20) | 802.11n(H40) | Limit(kHz) | Result |
| Lowest  | 9.60    | 16.56      | 17.76        | 35.64        |            |        |
| Middle  | 9.12    | 16.56      | 17.76        | 35.88        | >500       | Pass   |
| Highest | 9.12    | 16.56      | 17.76        | 35.88        |            |        |

| T       |         | 26dB Emission |              |              |            |        |
|---------|---------|---------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g       | 802.11n(H20) | 802.11n(H40) | Limit(kHz) | Result |
| Lowest  | 14.70   | 19.68         | 19.98        | 38.88        |            |        |
| Middle  | 14.37   | 19.50         | 19.86        | 38.76        | N/A        | N/A    |
| Highest | 14.34   | 19.65         | 19.89        | 38.70        |            |        |

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 18 of 63







### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366











Highest channel







# #REW 100 kHz Delta 2 [71 ] \*\*YEW 300 kHz Del



Highest channel









Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 22 of 63







### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366









Highest channel









Highest channel







-----

# 



Highest channel



Project No.: CCIS121200299RF

# 6.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                         |  |  |
| Limit:            | 8dBm                                                                  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

### Measurement Data

|         |         | Power Spec |              |              |            |        |
|---------|---------|------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g    | 802.11n(H20) | 802.11n(H40) | Limit(dBm) | Result |
| Lowest  | 2.45    | -1.80      | -2.11        | -3.77        |            |        |
| Middle  | 2.41    | -1.94      | -1.95        | -3.99        | 8.00       | Pass   |
| Highest | 1.67    | -2.42      | -2.07        | -3.89        |            |        |

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 63







n - 00 nnd 0010 00 01 0

# 



### Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366







.. - .... .. .. ..

### Lowest channel



### Middle channel



Highest channel







### Lowest channel



# ### 100 kHz Marker 1 [71] \*\*New 300 kHz Marker 1 [71] \*\*ON 300 kHz 2-0.07 dim 2-0.07 dim \*\*New 300 kHz 2-0.07 dim 2-0.07 dim \*\*New 300 kHz 2-0.07 dim 2-0.07 dim \*\*New 300 kHz 2-0.07 dim \*\*New

Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366







### Lowest channel



### Middle channel



Highest channel

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 32 of 63







Lowest channel Highest channel





Lowest channel

Highest channel



Lowest channel

Highest channel



### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                |               |                          |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|---------------|--------------------------|--|--|--|--|--|
| Test Method:          | ANSI C63.4: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                |               |                          |  |  |  |  |  |
| Test Frequency Range: | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                |               |                          |  |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | istance: 3m     |                |               |                          |  |  |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector        | RBW            | VBW           | Remark                   |  |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak            | 1MHz           | 3MHz<br>10Hz  | Peak Value               |  |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak            | 1MHz           | Average Value |                          |  |  |  |  |  |
|                       | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncy             | <u>/m @3m)</u> | Remark        |                          |  |  |  |  |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GHz —           | 54.0<br>74.0   |               | Average Value Peak Value |  |  |  |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using</li> </ol> |                 |                |               |                          |  |  |  |  |  |
| Test setup:           | in a data sheet.  Antenna Tower  Horn Antenna  Spectrum  Analyzer  Amplifier  Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                |               |                          |  |  |  |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7 for details |                |               |                          |  |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                |               |                          |  |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                |               |                          |  |  |  |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



802.11b

| Te                 | st channel:             |                             | Lowest Level:         |                          |   |                   | Peak                   |          |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------------------|----------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |
| 2390.00            | 50.56                   | 27.58                       | 3.81                  | 36.8                     | 1 | 45.14             | 74.00                  | -28.86   | Horizontal   |
| 2400.00            | 48.65                   | 27.58                       | 3.83                  | 34.8                     | 3 | 45.23             | 74.00                  | -28.77   | Horizontal   |
| 2390.00            | 49.58                   | 27.58                       | 3.81                  | 34.8                     | 3 | 46.14             | 74.00                  | -27.86   | Vertical     |
| 2400.00            | 46.75                   | 27.58                       | 3.83                  | 34.8                     | 3 | 43.33             | 74.00                  | -30.67   | Vertical     |

| Test               | channel:                |                             | Lowest                |                          |   | Level:                               |       | Average  |                  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|--------------------------------------|-------|----------|------------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level Limit Line<br>(dBuV/m) (dBuV/m |       | I I Imit | Polarizatio<br>n |  |
| 2390.00            | 40.12                   | 27.58                       | 3.81                  | 34.83                    |   | 36.68                                | 54.00 | -17.32   | Horizontal       |  |
| 2400.00            | 39.68                   | 27.58                       | 3.83                  | 34.8                     | 3 | 36.26                                | 54.00 | -17.74   | Horizontal       |  |
| 2390.00            | 30.25                   | 27.58                       | 3.81                  | 34.8                     | 3 | 26.81                                | 54.00 | -27.19   | Vertical         |  |
| 2400.00            | 32.13                   | 27.58                       | 3.83                  | 34.8                     | 3 | 28.71                                | 54.00 | -25.29   | Vertical         |  |

| Test               | channel:                | Highest                     |                       |                          |   | Level:            |            | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line | I I imit | Polarization |  |
| 2483.50            | 51.46                   | 27.52                       | 3.89                  | 34.86                    |   | 48.01             | 74.00      | -25.99   | Horizontal   |  |
| 2500.00            | 50.86                   | 27.55                       | 3.90                  | 34.8                     | 7 | 47.44             | 74.00      | -26.56   | Horizontal   |  |
| 2483.50            | 51.39                   | 27.52                       | 3.89                  | 34.8                     | 6 | 47.94             | 74.00      | -26.06   | Vertical     |  |
| 2500.00            | 50.84                   | 27.55                       | 3.90                  | 34.8                     | 7 | 47.42             | 74.00      | -26.58   | Vertical     |  |

| Test               | est channel: Highest    |                             |                       |                          | Level: |                                      | Average |          |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|--------|--------------------------------------|---------|----------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |        | Level Limit Line<br>(dBuV/m) (dBuV/m |         | I I imit | Polarization |
| 2483.50            | 40.58                   | 27.52                       | 3.89                  | 34.86                    |        | 37.13                                | 54.00   | -16.87   | Horizontal   |
| 2500.00            | 40.15                   | 27.55                       | 3.90                  | 34.87                    |        | 36.73                                | 54.00   | -17.27   | Horizontal   |
| 2483.50            | 38.46                   | 27.52                       | 3.89                  | 34.8                     | 6      | 35.01                                | 54.00   | -18.99   | Vertical     |
| 2500.00            | 39.29                   | 27.55                       | 3.90                  | 34.8                     | 7      | 35.87                                | 54.00   | -18.13   | Vertical     |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

# CCIS

Report No: CCIS12120029903

802.11g

| Te                 | st channel:             |                             | Lowest                |                          |   | Level:            |                        | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |  |
| 2390.00            | 49.58                   | 27.58                       | 3.81                  | 34.83                    |   | 46.14             | 74.00                  | -27.86   | Horizontal   |  |
| 2400.00            | 48.87                   | 27.58                       | 3.83                  | 34.8                     | 3 | 45.45             | 74.00                  | -28.55   | Horizontal   |  |
| 2390.00            | 47.39                   | 27.58                       | 3.81                  | 34.8                     | 3 | 43.95             | 74.00                  | -30.05   | Vertical     |  |
| 2400.00            | 48.84                   | 27.58                       | 3.83                  | 34.8                     | 3 | 45.42             | 74.00                  | -28.58   | Vertical     |  |

| Tes                | st channel:             |                             | Lowest                |                          | Level:            |            | Average  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line | I I imit | Polarization |  |
| 2390.00            | 40.32                   | 27.58                       | 3.81                  | 34.83                    | 36.88             | 54.00      | -17.12   | Horizontal   |  |
| 2400.00            | 36.69                   | 27.58                       | 3.83                  | 34.83                    | 33.27             | 54.00      | -20.73   | Horizontal   |  |
| 2390.00            | 35.57                   | 27.58                       | 3.81                  | 34.83                    | 32.13             | 54.00      | -21.87   | Vertical     |  |
| 2400.00            | 40.57                   | 27.58                       | 3.83                  | 34.83                    | 37.15             | 54.00      | -16.85   | Vertical     |  |

| Test               | channel:                |                             | Highest               |                          |   | Level:            |                        | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |  |
| 2483.50            | 52.64                   | 27.52                       | 3.89                  | 34.86                    | 6 | 49.19             | 74.00                  | -24.81   | Horizontal   |  |
| 2500.00            | 48.27                   | 27.55                       | 3.90                  | 34.87                    | 7 | 44.85             | 74.00                  | -29.15   | Horizontal   |  |
| 2483.50            | 47.66                   | 27.52                       | 3.89                  | 34.86                    | 3 | 44.21             | 74.00                  | -29.79   | Vertical     |  |
| 2500.00            | 48.36                   | 27.55                       | 3.90                  | 34.87                    | 7 | 44.94             | 74.00                  | -29.06   | Vertical     |  |

| Test               | channel:                |                             | Highest               |                          |   | Level:            |                       | Average  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|-----------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m | I I imit | Polarization |  |
| 2483.50            | 40.62                   | 27.52                       | 3.89                  | 34.86                    |   | 37.17             | 54.00                 | -16.83   | Horizontal   |  |
| 2500.00            | 39.29                   | 27.55                       | 3.90                  | 34.8                     | 7 | 35.87             | 54.00                 | -18.13   | Horizontal   |  |
| 2483.50            | 39.56                   | 27.52                       | 3.89                  | 34.8                     | 6 | 36.11             | 54.00                 | -17.89   | Vertical     |  |
| 2500.00            | 38.65                   | 27.55                       | 3.90                  | 34.8                     | 7 | 35.23             | 54.00                 | -18.77   | Vertical     |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

# CCIS

Report No: CCIS12120029903

802.11n (H20)

| Te                 | st channel:             |                             | Lowest                                 |       |    | Level:            |                        | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|----------------------------------------|-------|----|-------------------|------------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Pream<br>Loss Facto<br>(dB) (dB) |       | or | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I Imit | Polarization |  |
| 2390.00            | 51.65                   | 27.58                       | 3.81                                   | 34.83 |    | 48.21             | 74.00                  | -25.79   | Horizontal   |  |
| 2400.00            | 48.36                   | 27.58                       | 3.83                                   | 34.8  | 3  | 44.94             | 74.00                  | -29.06   | Horizontal   |  |
| 2390.00            | 52.28                   | 27.58                       | 3.81                                   | 34.8  | 3  | 48.84             | 74.00                  | -25.16   | Vertical     |  |
| 2400.00            | 49.37                   | 27.58                       | 3.83                                   | 34.8  | 3  | 45.95             | 74.00                  | -28.05   | Vertical     |  |

| Test               | channel:                |                             | Lowest                |                          | Level:            |            | Average  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line | I I imit | Polarization |  |
| 2390.00            | 40.35                   | 27.58                       | 3.81                  | 34.83                    | 36.91             | 54.00      | -17.09   | Horizontal   |  |
| 2400.00            | 38.05                   | 27.58                       | 3.83                  | 34.83                    | 34.63             | 54.00      | -19.37   | Horizontal   |  |
| 2390.00            | 41.38                   | 27.58                       | 3.81                  | 34.83                    | 37.94             | 54.00      | -16.06   | Vertical     |  |
| 2400.00            | 37.29                   | 27.58                       | 3.83                  | 34.83                    | 33.87             | 54.00      | -20.13   | Vertical     |  |

| Test               | channel:                |                             | Highest               |                          |   | Level:            |                        | Peak                  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------------------|-----------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 2483.50            | 53.64                   | 27.52                       | 3.89                  | 34.8                     | 6 | 50.19             | 74.00                  | -23.81                | Horizontal   |  |
| 2500.00            | 49.54                   | 27.55                       | 3.90                  | 34.8                     | 7 | 46.12             | 74.00                  | -27.88                | Horizontal   |  |
| 2483.50            | 52.32                   | 27.52                       | 3.89                  | 34.86                    |   | 48.87             | 74.00                  | -25.13                | Vertical     |  |
| 2500.00            | 48.69                   | 27.55                       | 3.90                  | 34.8                     | 7 | 45.27             | 74.00                  | -28.73                | Vertical     |  |

| Test               | channel:                |                             | Highest               |                          |   | Level:            |                       | Average  |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|-----------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m | I I imit | Polarization |  |
| 2483.50            | 42.50                   | 27.52                       | 3.89                  | 34.8                     | 6 | 39.05             | 54.00                 | -14.95   | Horizontal   |  |
| 2500.00            | 39.09                   | 27.55                       | 3.90                  | 34.8                     | 7 | 35.67             | 54.00                 | -18.33   | Horizontal   |  |
| 2483.50            | 42.15                   | 27.52                       | 3.89                  | 34.8                     | 6 | 38.70             | 54.00                 | -15.30   | Vertical     |  |
| 2500.00            | 38.22                   | 27.55                       | 3.90                  | 34.8                     | 7 | 34.80             | 54.00                 | -19.20   | Vertical     |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



802.11n (H40)

| Te                 | st channel:             |                             | Lowest                |                        |    | Level:            |            | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|------------------------|----|-------------------|------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pream<br>Facto<br>(dB) | or | Level<br>(dBuV/m) | Limit Line | I I Imit | Polarization |  |
| 2390.00            | 53.65                   | 27.58                       | 3.81                  | 34.8                   | 3  | 50.21             | 74.00      | -23.79   | Horizontal   |  |
| 2400.00            | 50.23                   | 27.58                       | 3.83                  | 34.8                   | 3  | 46.81             | 74.00      | -27.19   | Horizontal   |  |
| 2390.00            | 54.26                   | 27.58                       | 3.81                  | 34.8                   | 3  | 50.82             | 74.00      | -23.18   | Vertical     |  |
| 2400.00            | 50.66                   | 27.58                       | 3.83                  | 34.8                   | 3  | 47.24             | 74.00      | -26.76   | Vertical     |  |

| Test               | channel:                |                             | Lowest                |                          | Level:            |                        | Average               |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 2390.00            | 41.25                   | 27.58                       | 3.81                  | 34.83                    | 37.81             | 54.00                  | -16.19                | Horizontal   |  |
| 2400.00            | 39.22                   | 27.58                       | 3.83                  | 34.83                    | 35.80             | 54.00                  | -18.20                | Horizontal   |  |
| 2390.00            | 43.24                   | 27.58                       | 3.81                  | 34.83                    | 39.80             | 54.00                  | -14.20                | Vertical     |  |
| 2400.00            | 38.33                   | 27.58                       | 3.83                  | 34.83                    | 34.91             | 54.00                  | -19.09                | Vertical     |  |

| Test               | channel:                |                             | Highest               |                          |   | Level:            |                        | Peak     |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|---|-------------------|------------------------|----------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I Imit | Polarization |  |
| 2483.50            | 56.35                   | 27.52                       | 3.89                  | 34.86                    |   | 52.90             | 74.00                  | -21.10   | Horizontal   |  |
| 2500.00            | 51.36                   | 27.55                       | 3.90                  | 34.8                     | 7 | 47.94             | 74.00                  | -26.06   | Horizontal   |  |
| 2483.50            | 57.55                   | 27.52                       | 3.89                  | 34.8                     | 6 | 54.10             | 74.00                  | -19.90   | Vertical     |  |
| 2500.00            | 48.94                   | 27.55                       | 3.90                  | 34.8                     | 7 | 45.52             | 74.00                  | -28.48   | Vertical     |  |

| Test               | channel:                |                             | Highest               |                       |    | Level:            |            | Average |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|-----------------------|----|-------------------|------------|---------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Prear<br>Facto<br>(dB | or | Level<br>(dBuV/m) | Limit Line | Limit   | Polarization |  |
| 2483.50            | 45.65                   | 27.52                       | 3.89                  | 34.86                 |    | 42.20             | 54.00      | -11.80  | Horizontal   |  |
| 2500.00            | 38.56                   | 27.55                       | 3.90                  | 34.8                  | 7  | 35.14             | 54.00      | -18.86  | Horizontal   |  |
| 2483.50            | 44.65                   | 27.52                       | 3.89                  | 34.8                  | 6  | 41.20             | 54.00      | -12.80  | Vertical     |  |
| 2500.00            | 39.25                   | 27.55                       | 3.90                  | 34.8                  | 7  | 35.83             | 54.00      | -18.17  | Vertical     |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 39 of 63



Project No.: CCIS121200299RF

# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2003 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 40 of 63



Test mode: 802.11b



## 30MHz~25GHz



30MHz~25GHz





30MHz~25GHz





30MHz~25GHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## 30MHz~25GHz



30MHz~25GHz



Test mode: 802.11n(H20)



## 30MHz~25GHz



30MHz~25GHz





30MHz~25GHz

Test mode: 802.11n(H40)



30MHz~25GHz

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 45 of 63





## 30MHz~25GHz



30MHz~25GHz



# 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                       | Section 15.209                                                                                                  | and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.4:200                                                                                                                                                                                       | )3                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                        |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Test site:            | Measurement Distance: 3m                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | Frequency Detector RBW VBW Remark                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | 30MHz-1GHz                                                                                                                                                                                           | Quasi-peak                                                                                                      | 100KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                           | Peak                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                       | Above Toriz                                                                                                                                                                                          | Peak                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Limit:                |                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                       | Freque                                                                                                                                                                                               |                                                                                                                 | Limit (dBuV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                       | 30MHz-8                                                                                                                                                                                              |                                                                                                                 | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | 88MHz-21                                                                                                                                                                                             |                                                                                                                 | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | 216MHz-9                                                                                                                                                                                             |                                                                                                                 | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | 960MHz-                                                                                                                                                                                              | 1GHz                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                       | Above 1                                                                                                                                                                                              | GHz                                                                                                             | 54.0<br>74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Tool Day and an       | 1 The FUT w                                                                                                                                                                                          | as placed on the                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Test Procedure:       | the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the make the make sand the find the solution of the limit specified E did not have | at a 3 meter can be the position of the position of the the position of the | amber. The took the highest away from the on the took the decision of the EU awas turned from the EUT in peak as the EUT in peak as the pe | table was rost radiation. The interfer op of a variation of the analysis of th | rence-receiving able-height antenna our meters above the field strength. Intenna are set to a |  |  |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 47 of 63





Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Project No.: CCIS121200299RF

## **Below 1GHz**

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 30.00              | 48.50                   | 12.33                       | 0.72                  | 26.27                    | 35.28             | 40.00                  | -4.72                 | Vertical     |
| 39.85              | 37.84                   | 13.53                       | 1.21                  | 27.24                    | 25.34             | 40.00                  | -14.66                | Vertical     |
| 54.64              | 37.78                   | 13.06                       | 1.32                  | 28.74                    | 23.42             | 40.00                  | -16.58                | Vertical     |
| 96.10              | 42.62                   | 12.90                       | 1.59                  | 30.08                    | 27.03             | 40.00                  | -12.97                | Vertical     |
| 163.18             | 47.40                   | 8.77                        | 2.13                  | 29.56                    | 28.74             | 43.50                  | -14.76                | Vertical     |
| 385.28             | 39.72                   | 14.73                       | 3.09                  | 29.84                    | 27.70             | 46.00                  | -18.30                | Vertical     |
| 30.21              | 40.76                   | 12.33                       | 0.72                  | 26.28                    | 27.53             | 40.00                  | -12.47                | Horizontal   |
| 39.58              | 36.41                   | 13.49                       | 1.21                  | 27.21                    | 23.90             | 40.00                  | -16.10                | Horizontal   |
| 95.76              | 32.31                   | 12.90                       | 2.01                  | 30.08                    | 17.14             | 43.50                  | -26.36                | Horizontal   |
| 166.07             | 39.88                   | 8.85                        | 2.63                  | 29.25                    | 22.11             | 43.50                  | -21.39                | Horizontal   |
| 303.54             | 39.21                   | 13.31                       | 2.95                  | 29.45                    | 26.02             | 46.00                  | -19.98                | Horizontal   |
| 385.28             | 40.87                   | 14.73                       | 3.09                  | 29.84                    | 28.85             | 46.00                  | -17.15                | Horizontal   |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 49 of 63



Project No.: CCIS121200299RF

## **Above 1GHz**

| Test mode:         | 802.11b                 |                             | Test channel:   | Lowest                   |                   | Remark:                | Peak               |              |
|--------------------|-------------------------|-----------------------------|-----------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4824.00            | 39.65                   | 31.79                       | 5.34            | 24.07                    | 52.71             | 74.00                  | -21.29             | Vertical     |
| 7236.00            | 30.54                   | 36.19                       | 6.88            | 26.44                    | 47.17             | 74.00                  | -26.83             | Vertical     |
| 9648.00            | 28.33                   | 38.07                       | 8.96            | 25.36                    | 50.00             | 74.00                  | -24.00             | Vertical     |
| 12060.00           | 27.44                   | 39.05                       | 10.35           | 25.15                    | 51.69             | 74.00                  | -22.31             | Vertical     |
| 14472.00           | *                       |                             |                 |                          |                   | 74.00                  |                    | Vertical     |
| 16884.00           | *                       |                             |                 |                          |                   | 74.00                  |                    | Vertical     |
| 4824.00            | 40.36                   | 31.79                       | 5.34            | 24.07                    | 53.42             | 74.00                  | -20.58             | Horizontal   |
| 7236.00            | 29.65                   | 36.19                       | 6.88            | 26.44                    | 46.28             | 74.00                  | -27.72             | Horizontal   |
| 9648.00            | 29.22                   | 38.07                       | 8.96            | 25.36                    | 50.89             | 74.00                  | -23.11             | Horizontal   |
| 12060.00           | 28.96                   | 39.05                       | 10.35           | 25.15                    | 53.21             | 74.00                  | -20.79             | Horizontal   |
| 14472.00           | *                       |                             |                 |                          |                   | 74.00                  |                    | Horizontal   |
| 16884.00           | *                       |                             |                 |                          |                   | 74.00                  |                    | Horizontal   |

| Test mode:         | 802.11b                 |                             | Test channel:   | Lowest                   |                   | Remark:                | Average            |              |
|--------------------|-------------------------|-----------------------------|-----------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4824.00            | 23.65                   | 31.79                       | 5.34            | 24.07                    | 36.71             | 54.00                  | -17.29             | Vertical     |
| 7236.00            | 19.56                   | 36.19                       | 6.88            | 26.44                    | 36.19             | 54.00                  | -17.81             | Vertical     |
| 9648.00            | 19.25                   | 38.07                       | 8.96            | 25.36                    | 40.92             | 54.00                  | -13.08             | Vertical     |
| 12060.00           | 16.36                   | 39.05                       | 10.35           | 25.15                    | 40.61             | 54.00                  | -13.39             | Vertical     |
| 14472.00           | *                       |                             |                 |                          |                   | 54.00                  |                    | Vertical     |
| 16884.00           | *                       |                             |                 |                          |                   | 54.00                  |                    | Vertical     |
| 4824.00            | 25.64                   | 31.79                       | 5.34            | 24.07                    | 38.70             | 54.00                  | -15.30             | Horizontal   |
| 7236.00            | 19.54                   | 36.19                       | 6.88            | 26.44                    | 36.17             | 54.00                  | -17.83             | Horizontal   |
| 9648.00            | 18.22                   | 38.07                       | 8.96            | 25.36                    | 39.89             | 54.00                  | -14.11             | Horizontal   |
| 12060.00           | 16.09                   | 39.05                       | 10.35           | 25.15                    | 40.34             | 54.00                  | -13.66             | Horizontal   |
| 14472.00           | *                       |                             |                 |                          |                   | 54.00                  |                    | Horizontal   |
| 16884.00           | *                       |                             |                 |                          |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 50 of 63



Project No.: CCIS121200299RF

| Test mode:         | 802.11b                 |                             | Test channel:      | Middle                   |                   | Remark:                | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4874.00            | 41.55                   | 31.85                       | 5.40               | 24.01                    | 54.79             | 74.00                  | -19.21             | Vertical     |
| 7311.00            | 30.66                   | 36.37                       | 6.90               | 26.58                    | 47.35             | 74.00                  | -26.65             | Vertical     |
| 9748.00            | 31.25                   | 38.13                       | 8.98               | 25.34                    | 53.02             | 74.00                  | -20.98             | Vertical     |
| 12185.00           | 28.08                   | 38.92                       | 10.38              | 25.04                    | 52.34             | 74.00                  | -21.66             | Vertical     |
| 14622.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 17059.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 4874.00            | 43.56                   | 31.85                       | 5.40               | 24.01                    | 56.80             | 74.00                  | -17.20             | Horizontal   |
| 7311.00            | 33.29                   | 36.37                       | 6.90               | 26.58                    | 49.98             | 74.00                  | -24.02             | Horizontal   |
| 9748.00            | 32.30                   | 38.13                       | 8.98               | 25.34                    | 54.07             | 74.00                  | -19.93             | Horizontal   |
| 12185.00           | 28.97                   | 38.92                       | 10.38              | 25.04                    | 53.23             | 74.00                  | -20.77             | Horizontal   |
| 14622.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Horizontal   |
| 17059.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Horizontal   |

| Test mode:         | 802.11b                 |                             | Test               | Middle                   |                   | Remark:                | Average            |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
|                    |                         |                             | channel:           |                          |                   |                        |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4874.00            | 23.22                   | 31.85                       | 5.40               | 24.01                    | 36.46             | 54.00                  | -17.54             | Vertical     |
| 7311.00            | 20.65                   | 36.37                       | 6.90               | 26.58                    | 37.34             | 54.00                  | -16.66             | Vertical     |
| 9748.00            | 18.66                   | 38.13                       | 8.98               | 25.34                    | 40.43             | 54.00                  | -13.57             | Vertical     |
| 12185.00           | 19.25                   | 38.92                       | 10.38              | 25.04                    | 43.51             | 54.00                  | -10.49             | Vertical     |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 4874.00            | 26.35                   | 31.85                       | 5.40               | 24.01                    | 39.59             | 54.00                  | -14.41             | Horizontal   |
| 7311.00            | 21.64                   | 36.37                       | 6.90               | 26.58                    | 38.33             | 54.00                  | -15.67             | Horizontal   |
| 9748.00            | 18.24                   | 38.13                       | 8.98               | 25.34                    | 40.01             | 54.00                  | -13.99             | Horizontal   |
| 12185.00           | 18.38                   | 38.92                       | 10.38              | 25.04                    | 42.64             | 54.00                  | -11.36             | Horizontal   |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 51 of 63



Project No.: CCIS121200299RF

| Test mode:      | 802.11                  | 0                           | Test channel:   | Highest                  |                   | Remark:                | Peak               |              |
|-----------------|-------------------------|-----------------------------|-----------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency (MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4924.00         | 41.22                   | 31.89                       | 5.46            | 23.96                    | 54.61             | 74.00                  | -19.39             | Vertical     |
| 7386.00         | 36.69                   | 36.49                       | 6.93            | 26.79                    | 53.32             | 74.00                  | -20.68             | Vertical     |
| 9848.00         | 30.08                   | 38.24                       | 9.05            | 25.30                    | 52.07             | 74.00                  | -21.93             | Vertical     |
| 12310.00        | 31.24                   | 38.83                       | 10.41           | 24.90                    | 55.58             | 74.00                  | -18.42             | Vertical     |
| 14772.00        | *                       |                             |                 |                          |                   | 74.00                  |                    | Vertical     |
| 17234.00        | *                       |                             |                 |                          |                   | 74.00                  |                    | Vertical     |
| 4924.00         | 43.68                   | 31.89                       | 5.46            | 23.96                    | 57.07             | 74.00                  | -16.93             | Horizontal   |
| 7386.00         | 38.89                   | 36.49                       | 6.93            | 26.79                    | 55.52             | 74.00                  | -18.48             | Horizontal   |
| 9848.00         | 33.64                   | 38.24                       | 9.05            | 25.30                    | 55.63             | 74.00                  | -18.37             | Horizontal   |
| 12310.00        | 32.97                   | 38.83                       | 10.41           | 24.90                    | 57.31             | 74.00                  | -16.69             | Horizontal   |
| 14772.00        | *                       |                             |                 |                          |                   | 74.00                  |                    | Horizontal   |
| 17234.00        | *                       |                             |                 |                          |                   | 74.00                  |                    | Horizontal   |

| Test mode:         | 802.11b                 |                             | Test channel:      | Highest                  |                   | Remark:                | Average               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 26.56                   | 31.89                       | 5.46               | 23.96                    | 39.95             | 54.00                  | -14.05                | Vertical     |
| 7386.00            | 21.54                   | 36.49                       | 6.93               | 26.79                    | 38.17             | 54.00                  | -15.83                | Vertical     |
| 9848.00            | 19.65                   | 38.24                       | 9.05               | 25.30                    | 41.64             | 54.00                  | -12.36                | Vertical     |
| 12310.00           | 18.97                   | 38.83                       | 10.41              | 24.90                    | 43.31             | 54.00                  | -10.69                | Vertical     |
| 14772.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 27.95                   | 31.89                       | 5.46               | 23.96                    | 41.34             | 54.00                  | -12.66                | Horizontal   |
| 7386.00            | 22.69                   | 36.49                       | 6.93               | 26.79                    | 39.32             | 54.00                  | -14.68                | Horizontal   |
| 9848.00            | 20.31                   | 38.24                       | 9.05               | 25.30                    | 42.30             | 54.00                  | -11.70                | Horizontal   |
| 12310.00           | 19.54                   | 38.83                       | 10.41              | 24.90                    | 43.88             | 54.00                  | -10.12                | Horizontal   |
| 14772.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 52 of 63



Project No.: CCIS121200299RF

| Test mode:         | 802.11                  | g                           | Test channel:      | Lowest                   |                   | Remark:                |                    | Peak         |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
| 4824.00            | 39.05                   | 31.79                       | 5.34               | 24.07                    | 52.11             | 74.00                  | -21.89             | Vertical     |
| 7236.00            | 36.97                   | 36.19                       | 6.88               | 26.44                    | 53.60             | 74.00                  | -20.40             | Vertical     |
| 9648.00            | 32.68                   | 38.07                       | 8.96               | 25.36                    | 54.35             | 74.00                  | -19.65             | Vertical     |
| 12060.00           | 31.08                   | 39.05                       | 10.35              | 25.15                    | 55.33             | 74.00                  | -18.67             | Vertical     |
| 14472.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 16884.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 4824.00            | 40.61                   | 31.79                       | 5.34               | 24.07                    | 53.67             | 74.00                  | -20.33             | Horizontal   |
| 7236.00            | 35.09                   | 36.19                       | 6.88               | 26.44                    | 51.72             | 74.00                  | -22.28             | Horizontal   |
| 9648.00            | 34.21                   | 38.07                       | 8.96               | 25.36                    | 55.88             | 74.00                  | -18.12             | Horizontal   |
| 12060.00           | 32.91                   | 39.05                       | 10.35              | 25.15                    | 57.16             | 74.00                  | -16.84             | Horizontal   |
| 14472.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Horizontal   |
| 16884.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Horizontal   |

| Test mode:         | 802.11                  | g                           | Test               | Lowest                   |                   | Remark:                   |                    | Average      |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|---------------------------|--------------------|--------------|
|                    |                         |                             | channel:           |                          |                   |                           |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
| 4824.00            | 25.34                   | 31.79                       | 5.34               | 24.07                    | 38.40             | 54.00                     | -15.60             | Vertical     |
| 7236.00            | 24.07                   | 36.19                       | 6.88               | 26.44                    | 40.70             | 54.00                     | -13.30             | Vertical     |
| 9648.00            | 19.64                   | 38.07                       | 8.96               | 25.36                    | 41.31             | 54.00                     | -12.69             | Vertical     |
| 12060.00           | 18.94                   | 39.05                       | 10.35              | 25.15                    | 43.19             | 54.00                     | -10.81             | Vertical     |
| 14472.00           | *                       |                             |                    |                          |                   | 54.00                     |                    | Vertical     |
| 16884.00           | *                       |                             |                    |                          |                   | 54.00                     |                    | Vertical     |
| 4824.00            | 28.90                   | 31.79                       | 5.34               | 24.07                    | 41.96             | 54.00                     | -12.04             | Horizontal   |
| 7236.00            | 25.64                   | 36.19                       | 6.88               | 26.44                    | 42.27             | 54.00                     | -11.73             | Horizontal   |
| 9648.00            | 20.97                   | 38.07                       | 8.96               | 25.36                    | 42.64             | 54.00                     | -11.36             | Horizontal   |
| 12060.00           | 19.05                   | 39.05                       | 10.35              | 25.15                    | 43.30             | 54.00                     | -10.70             | Horizontal   |
| 14472.00           | *                       |                             |                    |                          |                   | 54.00                     |                    | Horizontal   |
| 16884.00           | *                       |                             |                    |                          |                   | 54.00                     |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 53 of 63



| Test mode:      | 802.110                 | g                           | Test channel:      | Middle                   |                   | Remark:                   |                       | Peak         |
|-----------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|---------------------------|-----------------------|--------------|
| Frequency (MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit<br>Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00         | 35.34                   | 31.85                       | 5.40               | 24.01                    | 48.58             | 74.00                     | -25.42                | Vertical     |
| 7311.00         | 31.25                   | 36.37                       | 6.90               | 26.58                    | 47.94             | 74.00                     | -26.06                | Vertical     |
| 9748.00         | 33.30                   | 38.13                       | 8.98               | 25.34                    | 55.07             | 74.00                     | -18.93                | Vertical     |
| 12185.00        | 34.64                   | 38.92                       | 10.38              | 25.04                    | 58.90             | 74.00                     | -15.10                | Vertical     |
| 14622.00        | *                       |                             |                    |                          |                   | 74.00                     |                       | Vertical     |
| 17059.00        | *                       |                             |                    |                          |                   | 74.00                     |                       | Vertical     |
| 4874.00         | 38.31                   | 31.85                       | 5.40               | 24.01                    | 51.55             | 74.00                     | -22.45                | Horizontal   |
| 7311.00         | 33.15                   | 36.37                       | 6.90               | 26.58                    | 49.84             | 74.00                     | -24.16                | Horizontal   |
| 9748.00         | 28.51                   | 38.13                       | 8.98               | 25.34                    | 50.28             | 74.00                     | -23.72                | Horizontal   |
| 12185.00        | 25.94                   | 38.92                       | 10.38              | 25.04                    | 50.20             | 74.00                     | -23.80                | Horizontal   |
| 14622.00        | *                       |                             |                    |                          |                   | 74.00                     |                       | Horizontal   |
| 17059.00        | *                       |                             |                    |                          |                   | 74.00                     |                       | Horizontal   |

| Test mode:         | 802.110                 | 9                           | Test channel:      | Middle                   |                   | Remark:                |                       | Average      |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 23.56                   | 31.85                       | 5.40               | 24.01                    | 36.80             | 54.00                  | -17.20                | Vertical     |
| 7311.00            | 24.15                   | 36.37                       | 6.90               | 26.58                    | 40.84             | 54.00                  | -13.16                | Vertical     |
| 9748.00            | 17.94                   | 38.13                       | 8.98               | 25.34                    | 39.71             | 54.00                  | -14.29                | Vertical     |
| 12185.00           | 13.65                   | 38.92                       | 10.38              | 25.04                    | 37.91             | 54.00                  | -16.09                | Vertical     |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 24.56                   | 31.85                       | 5.40               | 24.01                    | 37.80             | 54.00                  | -16.20                | Horizontal   |
| 7311.00            | 22.36                   | 36.37                       | 6.90               | 26.58                    | 39.05             | 54.00                  | -14.95                | Horizontal   |
| 9748.00            | 17.98                   | 38.13                       | 8.98               | 25.34                    | 39.75             | 54.00                  | -14.25                | Horizontal   |
| 12185.00           | 15.64                   | 38.92                       | 10.38              | 25.04                    | 39.90             | 54.00                  | -14.10                | Horizontal   |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 54 of 63



| Test mode:         | 802.11                  | g                           | Test channel:      | Highest                  |                   | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 38.42                   | 31.89                       | 5.46               | 23.96                    | 51.81             | 74.00                  | -22.19                | Vertical     |
| 7386.00            | 35.19                   | 36.49                       | 6.93               | 26.79                    | 51.82             | 74.00                  | -22.18                | Vertical     |
| 9848.00            | 32.94                   | 38.24                       | 9.05               | 25.30                    | 54.93             | 74.00                  | -19.07                | Vertical     |
| 12310.00           | 30.17                   | 38.83                       | 10.41              | 24.90                    | 54.51             | 74.00                  | -19.49                | Vertical     |
| 14772.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 41.14                   | 31.89                       | 5.46               | 23.96                    | 54.53             | 74.00                  | -19.47                | Horizontal   |
| 7386.00            | 35.37                   | 36.49                       | 6.93               | 26.79                    | 52.00             | 74.00                  | -22.00                | Horizontal   |
| 9848.00            | 32.84                   | 38.24                       | 9.05               | 25.30                    | 54.83             | 74.00                  | -19.17                | Horizontal   |
| 12310.00           | 29.81                   | 38.83                       | 10.41              | 24.90                    | 54.15             | 74.00                  | -19.85                | Horizontal   |
| 14772.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |

| Test mode:      | 802.11                  | g                           | Test               | Highest                  |                   | Remark:                | Average               | 9            |
|-----------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
|                 |                         |                             | channel:           |                          |                   |                        |                       |              |
| Frequency (MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00         | 25.54                   | 31.89                       | 5.46               | 23.96                    | 38.93             | 54.00                  | -15.07                | Vertical     |
| 7386.00         | 23.85                   | 36.49                       | 6.93               | 26.79                    | 40.48             | 54.00                  | -13.52                | Vertical     |
| 9848.00         | 18.64                   | 38.24                       | 9.05               | 25.30                    | 40.63             | 54.00                  | -13.37                | Vertical     |
| 12310.00        | 17.58                   | 38.83                       | 10.41              | 24.90                    | 41.92             | 54.00                  | -12.08                | Vertical     |
| 14772.00        | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00        | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00         | 26.28                   | 31.89                       | 5.46               | 23.96                    | 39.67             | 54.00                  | -14.33                | Horizontal   |
| 7386.00         | 24.52                   | 36.49                       | 6.93               | 26.79                    | 41.15             | 54.00                  | -12.85                | Horizontal   |
| 9848.00         | 20.85                   | 38.24                       | 9.05               | 25.30                    | 42.84             | 54.00                  | -11.16                | Horizontal   |
| 12310.00        | 18.76                   | 38.83                       | 10.41              | 24.90                    | 43.10             | 54.00                  | -10.90                | Horizontal   |
| 14772.00        | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00        | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 55 of 63



| Test mode:         | 802.11                  | n(H20)                      | Test channel:   | Lowest                   |                       | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------|--------------------------|-----------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/<br>m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 37.50                   | 31.79                       | 5.34            | 24.07                    | 50.56                 | 74.00                  | -23.44                | Vertical     |
| 7236.00            | 33.61                   | 36.19                       | 6.88            | 26.44                    | 50.24                 | 74.00                  | -23.76                | Vertical     |
| 9648.00            | 32.64                   | 38.07                       | 8.96            | 25.36                    | 54.31                 | 74.00                  | -19.69                | Vertical     |
| 12060.00           | 30.25                   | 39.05                       | 10.35           | 25.15                    | 54.50                 | 74.00                  | -19.50                | Vertical     |
| 14472.00           | *                       |                             |                 |                          |                       | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                 |                          |                       | 74.00                  |                       | Vertical     |
| 4824.00            | 39.50                   | 31.79                       | 5.34            | 24.07                    | 52.56                 | 74.00                  | -21.44                | Horizontal   |
| 7236.00            | 35.20                   | 36.19                       | 6.88            | 26.44                    | 51.83                 | 74.00                  | -22.17                | Horizontal   |
| 9648.00            | 34.06                   | 38.07                       | 8.96            | 25.36                    | 55.73                 | 74.00                  | -18.27                | Horizontal   |
| 12060.00           | 32.52                   | 39.05                       | 10.35           | 25.15                    | 56.77                 | 74.00                  | -17.23                | Horizontal   |
| 14472.00           | *                       |                             |                 |                          |                       | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                 |                          |                       | 74.00                  |                       | Horizontal   |

| Test mode:         | 802.11                  | n(H20)                      | Test channel:      | Lowest                   |                   | Remark:                | Average               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 24.58                   | 31.79                       | 5.34               | 24.07                    | 37.64             | 54.00                  | -16.36                | Vertical     |
| 7236.00            | 23.25                   | 36.19                       | 6.88               | 26.44                    | 39.88             | 54.00                  | -14.12                | Vertical     |
| 9648.00            | 19.57                   | 38.07                       | 8.96               | 25.36                    | 41.24             | 54.00                  | -12.76                | Vertical     |
| 12060.00           | 17.74                   | 39.05                       | 10.35              | 25.15                    | 41.99             | 54.00                  | -12.01                | Vertical     |
| 14472.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 26.97                   | 31.79                       | 5.34               | 24.07                    | 40.03             | 54.00                  | -13.97                | Horizontal   |
| 7236.00            | 25.58                   | 36.19                       | 6.88               | 26.44                    | 42.21             | 54.00                  | -11.79                | Horizontal   |
| 9648.00            | 21.26                   | 38.07                       | 8.96               | 25.36                    | 42.93             | 54.00                  | -11.07                | Horizontal   |
| 12060.00           | 17.94                   | 39.05                       | 10.35              | 25.15                    | 42.19             | 54.00                  | -11.81                | Horizontal   |
| 14472.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

## Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



Project No.: CCIS121200299RF

| Test mode:         | 802.11                  | n(H20)                      | Test channel:   | Middle                   |                   | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 35.65                   | 31.85                       | 5.40            | 24.01                    | 48.89             | 74.00                  | -25.11                | Vertical     |
| 7311.00            | 30.28                   | 36.37                       | 6.90            | 26.58                    | 46.97             | 74.00                  | -27.03                | Vertical     |
| 9748.00            | 26.98                   | 38.13                       | 8.98            | 25.34                    | 48.75             | 74.00                  | -25.25                | Vertical     |
| 12185.00           | 25.46                   | 38.92                       | 10.38           | 25.04                    | 49.72             | 74.00                  | -24.28                | Vertical     |
| 14622.00           | *                       |                             |                 |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                 |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 37.98                   | 31.85                       | 5.40            | 24.01                    | 51.22             | 74.00                  | -22.78                | Horizontal   |
| 7311.00            | 35.98                   | 36.37                       | 6.90            | 26.58                    | 52.67             | 74.00                  | -21.33                | Horizontal   |
| 9748.00            | 28.97                   | 38.13                       | 8.98            | 25.34                    | 50.74             | 74.00                  | -23.26                | Horizontal   |
| 12185.00           | 26.34                   | 38.92                       | 10.38           | 25.04                    | 50.60             | 74.00                  | -23.40                | Horizontal   |
| 14622.00           | *                       |                             |                 |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                 |                          |                   | 74.00                  |                       | Horizontal   |

| Test mode:         | 802.11                  | n(H20)                      | Test channel:      | Middle                |                   | Remark:                | Average               | )            |
|--------------------|-------------------------|-----------------------------|--------------------|-----------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor (dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 22.58                   | 31.85                       | 5.40               | 24.01                 | 35.82             | 54.00                  | -18.18                | Vertical     |
| 7311.00            | 22.65                   | 36.37                       | 6.90               | 26.58                 | 39.34             | 54.00                  | -14.66                | Vertical     |
| 9748.00            | 19.20                   | 38.13                       | 8.98               | 25.34                 | 40.97             | 54.00                  | -13.03                | Vertical     |
| 12185.00           | 18.25                   | 38.92                       | 10.38              | 25.04                 | 42.51             | 54.00                  | -11.49                | Vertical     |
| 14622.00           | *                       |                             |                    |                       |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                    |                       |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 24.64                   | 31.85                       | 5.40               | 24.01                 | 37.88             | 54.00                  | -16.12                | Horizontal   |
| 7311.00            | 24.82                   | 36.37                       | 6.90               | 26.58                 | 41.51             | 54.00                  | -12.49                | Horizontal   |
| 9748.00            | 20.68                   | 38.13                       | 8.98               | 25.34                 | 42.45             | 54.00                  | -11.55                | Horizontal   |
| 12185.00           | 16.97                   | 38.92                       | 10.38              | 25.04                 | 41.23             | 54.00                  | -12.77                | Horizontal   |
| 14622.00           | *                       |                             |                    |                       |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                    |                       |                   | 54.00                  |                       | Horizontal   |

## Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 57 of 63



| Test mode:         | 802.11n(H20)            |                             | Test channel:      | Highest                  |                   | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 37.48                   | 31.89                       | 5.46               | 23.96                    | 50.87             | 74.00                  | -23.13                | Vertical     |
| 7386.00            | 34.74                   | 36.49                       | 6.93               | 26.79                    | 51.37             | 74.00                  | -22.63                | Vertical     |
| 9848.00            | 32.26                   | 38.24                       | 9.05               | 25.30                    | 54.25             | 74.00                  | -19.75                | Vertical     |
| 12310.00           | 29.35                   | 38.83                       | 10.41              | 24.90                    | 53.69             | 74.00                  | -20.31                | Vertical     |
| 14772.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 37.54                   | 31.89                       | 5.46               | 23.96                    | 50.93             | 74.00                  | -23.07                | Horizontal   |
| 7386.00            | 36.97                   | 36.49                       | 6.93               | 26.79                    | 53.60             | 74.00                  | -20.40                | Horizontal   |
| 9848.00            | 33.02                   | 38.24                       | 9.05               | 25.30                    | 55.01             | 74.00                  | -18.99                | Horizontal   |
| 12310.00           | 30.41                   | 38.83                       | 10.41              | 24.90                    | 54.75             | 74.00                  | -19.25                | Horizontal   |
| 14772.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |

| Test mode:         | 802.11n(H2           | 20)                         | Test channel:      | channel:                 |                   | Remark:                | Average               |              |
|--------------------|----------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 24.60                | 31.89                       | 5.46               | 23.96                    | 37.99             | 54.00                  | -16.01                | Vertical     |
| 7386.00            | 22.36                | 36.49                       | 6.93               | 26.79                    | 38.99             | 54.00                  | -15.01                | Vertical     |
| 9848.00            | 18.54                | 38.24                       | 9.05               | 25.30                    | 40.53             | 54.00                  | -13.47                | Vertical     |
| 12310.00           | 17.51                | 38.83                       | 10.41              | 24.90                    | 41.85             | 54.00                  | -12.15                | Vertical     |
| 14772.00           | *                    |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                    |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 25.64                | 31.89                       | 5.46               | 23.96                    | 39.03             | 54.00                  | -14.97                | Horizontal   |
| 7386.00            | 23.65                | 36.49                       | 6.93               | 26.79                    | 40.28             | 54.00                  | -13.72                | Horizontal   |
| 9848.00            | 18.60                | 38.24                       | 9.05               | 25.30                    | 40.59             | 54.00                  | -13.41                | Horizontal   |
| 12310.00           | 17.05                | 38.83                       | 10.41              | 24.90                    | 41.39             | 54.00                  | -12.61                | Horizontal   |
| 14772.00           | *                    |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                    |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         | 802.11                  | n(H40)                      | Test channel:      | Lowest                   |                   | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4844.00            | 41.40                   | 31.79                       | 5.34               | 24.07                    | 54.46             | 74.00                  | -19.54                | Vertical     |
| 7266.00            | 40.26                   | 36.19                       | 6.88               | 26.44                    | 56.89             | 74.00                  | -17.11                | Vertical     |
| 9688.00            | 35.88                   | 38.07                       | 8.96               | 25.36                    | 57.55             | 74.00                  | -16.45                | Vertical     |
| 12110.00           | 34.84                   | 39.05                       | 10.35              | 25.15                    | 59.09             | 74.00                  | -14.91                | Vertical     |
| 14532.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 16954.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 4844.00            | 42.80                   | 31.79                       | 5.34               | 24.07                    | 55.86             | 74.00                  | -18.14                | Horizontal   |
| 7266.00            | 42.53                   | 36.19                       | 6.88               | 26.44                    | 59.16             | 74.00                  | -14.84                | Horizontal   |
| 9688.00            | 36.85                   | 38.07                       | 8.96               | 25.36                    | 58.52             | 74.00                  | -15.48                | Horizontal   |
| 12110.00           | 35.26                   | 39.05                       | 10.35              | 25.15                    | 59.51             | 74.00                  | -14.49                | Horizontal   |
| 14532.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |
| 16954.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |

| Test mode:         | 802.11                  | n(H40)                      | Test channel:      | Lowest                   |                   | Remark:                | Average            |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | polarization |
| 4844.00            | 24.98                   | 31.79                       | 5.34               | 24.07                    | 38.04             | 54.00                  | -15.96             | Vertical     |
| 7266.00            | 22.70                   | 36.19                       | 6.88               | 26.44                    | 39.33             | 54.00                  | -14.67             | Vertical     |
| 9688.00            | 18.40                   | 38.07                       | 8.96               | 25.36                    | 40.07             | 54.00                  | -13.93             | Vertical     |
| 12110.00           | 18.58                   | 39.05                       | 10.35              | 25.15                    | 42.83             | 54.00                  | -11.17             | Vertical     |
| 14532.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 16954.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 4844.00            | 26.69                   | 31.79                       | 5.34               | 24.07                    | 39.75             | 54.00                  | -14.25             | Horizontal   |
| 7266.00            | 23.65                   | 36.19                       | 6.88               | 26.44                    | 40.28             | 54.00                  | -13.72             | Horizontal   |
| 9688.00            | 20.15                   | 38.07                       | 8.96               | 25.36                    | 41.82             | 54.00                  | -12.18             | Horizontal   |
| 12110.00           | 18.06                   | 39.05                       | 10.35              | 25.15                    | 42.31             | 54.00                  | -11.69             | Horizontal   |
| 14532.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |
| 16954.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         | 802.11                  | n(H40)                      | Test channel:      | Middle                   |                   | Remark:                |                    | Peak         |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
| 4874.00            | 41.26                   | 31.85                       | 5.40               | 24.01                    | 54.50             | 74.00                  | -19.50             | Vertical     |
| 7311.00            | 39.02                   | 36.37                       | 6.90               | 26.58                    | 55.71             | 74.00                  | -18.29             | Vertical     |
| 9748.00            | 33.84                   | 38.13                       | 8.98               | 25.34                    | 55.61             | 74.00                  | -18.39             | Vertical     |
| 12185.00           | 32.58                   | 38.92                       | 10.38              | 25.04                    | 56.84             | 74.00                  | -17.16             | Vertical     |
| 14622.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 17059.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Vertical     |
| 4874.00            | 41.78                   | 31.85                       | 5.40               | 24.01                    | 55.02             | 74.00                  | -18.98             | Horizontal   |
| 7311.00            | 38.60                   | 36.37                       | 6.90               | 26.58                    | 55.29             | 74.00                  | -18.71             | Horizontal   |
| 9748.00            | 34.75                   | 38.13                       | 8.98               | 25.34                    | 56.52             | 74.00                  | -17.48             | Horizontal   |
| 12185.00           | 32.65                   | 38.92                       | 10.38              | 25.04                    | 56.91             | 74.00                  | -17.09             | Horizontal   |
| 14622.00           | *                       |                             |                    |                          |                   | 74.00                  |                    | Horizontal   |
| 17059.00           | *                       |                             | _                  |                          |                   | 74.00                  |                    | Horizontal   |

| Test mode:         | 802.11                  | n(H40)                      | Test channel:      | Middle                   |                   | Remark:                | Average            |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | polarization |
| 4874.00            | 22.58                   | 31.85                       | 5.40               | 24.01                    | 35.82             | 54.00                  | -18.18             | Vertical     |
| 7311.00            | 19.88                   | 36.37                       | 6.90               | 26.58                    | 36.57             | 54.00                  | -17.43             | Vertical     |
| 9748.00            | 16.68                   | 38.13                       | 8.98               | 25.34                    | 38.45             | 54.00                  | -15.55             | Vertical     |
| 12185.00           | 14.28                   | 38.92                       | 10.38              | 25.04                    | 38.54             | 54.00                  | -15.46             | Vertical     |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Vertical     |
| 4874.00            | 24.69                   | 31.85                       | 5.40               | 24.01                    | 37.93             | 54.00                  | -16.07             | Horizontal   |
| 7311.00            | 21.08                   | 36.37                       | 6.90               | 26.58                    | 37.77             | 54.00                  | -16.23             | Horizontal   |
| 9748.00            | 17.59                   | 38.13                       | 8.98               | 25.34                    | 39.36             | 54.00                  | -14.64             | Horizontal   |
| 12185.00           | 16.33                   | 38.92                       | 10.38              | 25.04                    | 40.59             | 54.00                  | -13.41             | Horizontal   |
| 14622.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |
| 17059.00           | *                       |                             |                    |                          |                   | 54.00                  |                    | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Test mode:         | 802.11n(H40)            |                             | Test channel:      | Highest                  |                   | Remark:                | Peak                  |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4904.00            | 35.69                   | 31.89                       | 5.46               | 23.96                    | 49.08             | 74.00                  | -24.92                | Vertical     |
| 7356.00            | 31.58                   | 36.49                       | 6.93               | 26.79                    | 48.21             | 74.00                  | -25.79                | Vertical     |
| 9808.00            | 29.87                   | 38.24                       | 9.05               | 25.30                    | 51.86             | 74.00                  | -22.14                | Vertical     |
| 12260.00           | 27.99                   | 38.83                       | 10.41              | 24.90                    | 52.33             | 74.00                  | -21.67                | Vertical     |
| 14712.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 17164.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Vertical     |
| 4904.00            | 38.05                   | 31.89                       | 5.46               | 23.96                    | 51.44             | 74.00                  | -22.56                | Horizontal   |
| 7356.00            | 33.60                   | 36.49                       | 6.93               | 26.79                    | 50.23             | 74.00                  | -23.77                | Horizontal   |
| 9808.00            | 31.28                   | 38.24                       | 9.05               | 25.30                    | 53.27             | 74.00                  | -20.73                | Horizontal   |
| 12260.00           | 28.46                   | 38.83                       | 10.41              | 24.90                    | 52.80             | 74.00                  | -21.20                | Horizontal   |
| 14712.00           | *                       |                             | -                  |                          |                   | 74.00                  |                       | Horizontal   |
| 17164.00           | *                       |                             |                    |                          |                   | 74.00                  |                       | Horizontal   |

| Test mode:         | 802.11n(H40)            |                             | Test               | Highest                  |                   | Remark:                | Average               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
|                    |                         |                             | channel:           |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4904.00            | 23.22                   | 31.89                       | 5.46               | 23.96                    | 36.61             | 54.00                  | -17.39                | Vertical     |
| 7356.00            | 20.45                   | 36.49                       | 6.93               | 26.79                    | 37.08             | 54.00                  | -16.92                | Vertical     |
| 9808.00            | 18.65                   | 38.24                       | 9.05               | 25.30                    | 40.64             | 54.00                  | -13.36                | Vertical     |
| 12260.00           | 16.93                   | 38.83                       | 10.41              | 24.90                    | 41.27             | 54.00                  | -12.73                | Vertical     |
| 14712.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 17164.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Vertical     |
| 4904.00            | 25.64                   | 31.89                       | 5.46               | 23.96                    | 39.03             | 54.00                  | -14.97                | Horizontal   |
| 7356.00            | 22.01                   | 36.49                       | 6.93               | 26.79                    | 38.64             | 54.00                  | -15.36                | Horizontal   |
| 9808.00            | 19.80                   | 38.24                       | 9.05               | 25.30                    | 41.79             | 54.00                  | -12.21                | Horizontal   |
| 12260.00           | 18.68                   | 38.83                       | 10.41              | 24.90                    | 43.02             | 54.00                  | -10.98                | Horizontal   |
| 14712.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |
| 17164.00           | *                       |                             |                    |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.