Probabilités I

STEP, MINES ParisTech

23 juillet 2021 (#0495d87)

Question 1 (réponse multiple) Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité Soient $A, B \in \mathcal{A}$ tels que $A \subset B$. On a :
$\Box \ \ A \colon \mathbb{P}(A) \le \mathbb{P}(B)$ $\Box \ \ B \colon \mathbb{P}(A^c) \ge \mathbb{P}(B^c)$
\square C: Si $\mathbb{P}(A) > 0$, alors $\mathbb{P}(B A) = \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$
Question 2 Soit $(\Omega, (A), \mathbb{P}) = (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \mathbb{P})$ où \mathbb{P} est la loi exponentielle de paramètre θ . Soit la variable aléatoire
$X: \omega \in \Omega \mapsto \left\{ \begin{array}{ll} 0 & \mathrm{si} \ \omega \in [0,1], \\ 1 & \mathrm{si} \ \omega \in]1, +\infty[\end{array} \right.$
$\square A: \mathbb{P}(X = 0) = \frac{1}{2}$ $\square B: \mathbb{P}(X = 1) = e^{-\theta}$ $\square C: \mathbb{P}(X \in \{0, 1\}) = 1$
Question 3 (réponse multiple) Soit X une variable aléatoire telle que $\mathbb{P}(X \in [0,1]) = 0$. Alors
$\begin{tabular}{l} \square A: $X(\omega)=0$ quand $\omega\in[0,1]$ \\ \square B: La fonction de répartition F associée est nulle sur $[0,1]$ \\ \square C: Si X est de densité f, alors f est nulle sur $[0,1]$.$
Question 4 Soit X une variable aléatoire réelle suivant une loi normale de paramètres μ et σ^2 , quelle est la loi de $2X$?
$\Box \text{ A: } \mathcal{N}(\mu, \sigma^2)$ $\Box \text{ B: } \mathcal{N}(2\mu, (2\sigma)^2)$ $\Box \text{ C: } \mathcal{N}(\frac{1}{2}\mu, \sigma^2)$ $\Box \text{ D: } \mathcal{N}(\mu, (2\sigma)^2)$

Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [0,1]. U^2

admet-elle une densité?

 $\begin{array}{l} \square \ \text{A: Non} \\ \square \ \text{B: Oui} : \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \\ \square \ \text{C: Oui} : 2x 1_{[0,1]}(x) \end{array}$