Лекция 7 Скалярное произведение векторов

7.1 Скалярное произведение

Г7.1.1 Определение: Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$$

Г7.1.2 Свойства скалярного произведения:

Для любых векторов \vec{a} и \vec{b} верно:

1)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$2) \vec{a} \cdot \vec{a} = |\vec{a}|^2$$

Если $\vec{a} \neq \vec{0}$ и $\vec{b} \neq \vec{0}$, то

 $\vec{a}\cdot\vec{b}>0$ тогда и только тогда, когда угол α острый

 $\vec{a}\cdot\vec{b}<0$ тогда и только тогда, когда угол lpha тупой

 $\vec{a}\cdot\vec{b}=0$ тогда и только тогда, когда угол lpha прямой

 Γ 7.1.3 Определение. $\mathit{Opmoгohanbhoŭ}$ проекцией вектора \vec{a} на вектор \vec{b} называется проекция вектора \vec{a} на ось, определяемую вектором \vec{b} вдоль прямой, перпендикулярной к оси..

Г7.1.4 Замечание. Если угол между векторами \vec{a} и \vec{b} равен α , то ортогональная проекция равна

$$Onp_{\vec{b}}\vec{a} = |\vec{a}| \cdot \cos\alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}.$$

Разумеется, для ортогональных проекций сохраняются свойства параллельных проекций.

Г7.1.5 Теорема (скалярное произведение и линейные операции)

1) Для любых векторов \vec{a} и \vec{b} и любого числа λ :

$$(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$$

2) Для любых векторов \vec{a} , \vec{b} , \vec{c} : $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$

$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

Доказательство. 1) Пусть угол между векторами \vec{a} и \vec{b} равен α . Тогда при $\lambda > 0$ угол между векторами $\lambda \vec{a}$ и \vec{b} также будет равен α и $(\lambda \vec{a}) \cdot \vec{b} = |\lambda \vec{a}| \cdot |\vec{b}| \cos \alpha = |\lambda| \cdot |\vec{a}| \cdot |\vec{b}| \cos \alpha = \lambda (\vec{a} \cdot \vec{b})$.

При $\lambda < 0$ угол между векторами $\lambda \vec{a}$ и \vec{b} будет равен $180^{\circ} - \alpha$ и $(\lambda \vec{a}) \cdot \vec{b} = |\lambda \vec{a}| \cdot |\vec{b}| \cos(180^{\circ} - \alpha) = -|\lambda| \cdot |\vec{a}| \cdot |\vec{b}| \cos\alpha = -(-\lambda)(\vec{a} \cdot \vec{b}) = \lambda(\vec{a} \cdot \vec{b})$. Если $\lambda = 0$ то обе части проверяемого равенства обращаются в ноль и равенство очевидно.

2) Пусть угол между векторами \vec{a} и \vec{c} равен β , а угол между векторами \vec{b} и \vec{c} равен γ . Тогда $\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = |\vec{a}| \cdot |\vec{c}| \cos \beta + |\vec{b}| \cdot |\vec{c}| \cos \gamma = |\vec{c}| \cdot \left(Onp_{\vec{c}}\vec{a} + Onp_{\vec{c}}\vec{b}\right) = |\vec{c}| \cdot Onp_{\vec{c}}(\vec{a} + \vec{b}) = (\vec{a} + \vec{b}) \cdot \vec{c}.$

Г7.1.6 Замечание: из теоремы следует, что при раскрытии скобок в выражениях содержащих операции векторного сложения, вычитания, умножения на число и скалярного умножения можно действовать так же, как и при раскрытии скобок, содержащих операции с числами.

7.2 Скалярное произведение в координатах

Г7.2.1 Теорема (скалярное произведение в прямоугольных координатах)

Пусть векторы $\vec{e}_1, \vec{e}_2, \vec{e}_3$ образуют ортонормированный базис, то есть $\vec{e}_i \cdot \vec{e}_j = \begin{cases} 0 & npu \ i \neq j \\ 1 & npu \ i = j \end{cases}$. Если $\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$, $\vec{b} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3$, то $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Доказательство. Перемножая выражения для \vec{a} и \vec{b} , раскрывая скобки и учитывая условие $\vec{e}_i \cdot \vec{e}_j = \begin{cases} 0 & npu \ i \neq j \\ 1 & npu \ i = j \end{cases}$, получим утверждение теоремы.

7.3 Геометрические приложения скалярного произведения векторов

Г7.3.1 Угол между векторами. Если $\vec{a} = (a_1, a_2, a_3)$ и $\vec{b} = (b_1, b_2, b_3)$, то угол между этими векторами можно вычислить по формуле

$$\cos(\vec{a}, \vec{b}) = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}.$$

Г7.3.2 Ортогональная проекция. Учитывая, что $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot Onp_{\vec{a}}\vec{b}$, получим формулу

$$Onp_{\vec{a}}\vec{b} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}};$$

Пример. Найти длины сторон и углы треугольника с вершинами в точках A(-1;-2;4), B(-4;-2;0), C(3;-2;1).

Решение: представляем стороны треугольника в виде векторов и находим координаты этих векторов:

$$\overrightarrow{AB} = \overrightarrow{a} = (-4 - (-1); -2 - (-2); 0 - 4) = (-3; 0; -4);$$

 $\overrightarrow{AC} = \overrightarrow{c} = (3 - (-1); -2 - (-2); 1 - 4) = (4; 0; -3);$
 $\overrightarrow{BC} = \overrightarrow{b} = (7; 0; 1);$

Найдем длины этих векторов: $|\overrightarrow{AB}| = \sqrt{(-3)^2 + 0^2 + (-4)^2} = 5$, $|\overrightarrow{AC}| = 5$; $|\overrightarrow{BC}| = 5\sqrt{2}$.

Определяем углы между сторонами:

$$\cos \alpha = \cos(\vec{a}, \vec{c}) = \frac{\vec{a} \cdot \vec{c}}{|\vec{a}| \cdot |\vec{c}|} = \frac{(-3) \cdot 4 + 0 \cdot 0 + (-4) \cdot (-3)}{5 \cdot 5} = 0;$$

$$\alpha = \frac{\pi}{2}$$
.

$$\cos \beta = \cos(\vec{b}, \vec{c}) = \frac{7 \cdot 4 + 0 \cdot 0 + 1 \cdot (-3)}{5 \cdot 5\sqrt{2}} = \frac{1}{\sqrt{2}} \implies \beta = \frac{\pi}{4}.$$

По теореме о сумме углов треугольника должно быть $\gamma = \frac{\pi}{4}$. Проверим: $(-7)(-3)\cdot 7 + 0\cdot 0 + (-4)\cdot 1$ 1 $(-7)(-3)\cdot 7 \cdot 4 + 0\cdot 0 + 1\cdot (-3)\cdot 1$

. Рис. 38 Пример

$$\cos(\vec{a}, \vec{b}) = \frac{(-3) \cdot 7 + 0 \cdot 0 + (-4) \cdot 1}{5 \cdot 5\sqrt{2}} = -\frac{1}{\sqrt{2}} \cdot \cos \gamma = \cos(\pi - (\vec{a}, \vec{b})) = -\frac{7 \cdot 4 + 0 \cdot 0 + 1 \cdot (-3)}{5 \cdot 5} = \frac{1}{\sqrt{2}}.$$

7.4 Важные примеры

Г7.4.1 Пример 1. Даны векторы \vec{a} и \vec{b} . Представить вектор \vec{b} в виде суммы $\vec{b} = \vec{x} + \vec{y}$, где вектор \vec{x} коллинеарен вектору \vec{a} , а вектор \vec{y} перпендикулярен вектору \vec{a} .

Решение. Векторы \vec{x} и \vec{y} определяют некоторую прямоугольную систему координат. Пусть \vec{e}_1, \vec{e}_2

- база этой системы, тогда $\vec{e}_1 = \frac{\vec{a}}{|\vec{a}|}$. Длина вектора \vec{x} равна

ортогональной проекции вектора \vec{b} на вектор \vec{a} : $|\vec{x}| = \frac{\vec{a} \cdot b}{|\vec{a}|}$.

Значит,

$$\vec{y} = \vec{b} - \vec{x} = \vec{b} - \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \cdot \vec{a}$$
.

$$\vec{b} = \vec{a} - \vec{c} = \vec{a} - \frac{\vec{a} \cdot \vec{n}}{\vec{r} \cdot \vec{n}} \cdot \vec{n}.$$

Г7.4.2 Пример 2. Даны векторы \vec{a} и \vec{n} . Найти вектор $ec{b}$, являющийся ортогональной проекцией вектора $ec{a}$ на плоскость, перпендикулярную вектору \vec{n} .

Pешение. Представим вектор \vec{a} в виде $\vec{a} = \vec{b} + \vec{c}$, где вектор \vec{b} лежит в заданной плоскости, а вектор \vec{c} лежит на перпендикуляре к этой плоскости. Тогда, аналогично

 Γ 4.4.1 получим $\vec{c} = \frac{\vec{a} \cdot \vec{n}}{\vec{r} \cdot \vec{n}} \cdot \vec{n}$. Тогда примеру

Г7.4.3 Пример 3. Вычислить длину диагонали параллелепипеда, зная длины его ребер $|\overrightarrow{OA}| = a$,

$$\left| \overrightarrow{OB} \right| = b \; , \; \left| \overrightarrow{OC} \right| = c \;$$
 и углы между ребрами $\angle BOC = \alpha \; , \; \angle COA = \beta \; , \; \angle AOB = \gamma \; .$

 \overrightarrow{P} ешение. Обозначим $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$, диагональ $\overrightarrow{OD} = \vec{d}$. Тогда, дважды применяя правило параллелограмма сложения векторов, получим $\vec{d} = \vec{a} + \vec{b} + \vec{c}$. Но тогда, согласно Г4.1.2, получим $\left| \vec{d} \right|^2 = \left(\vec{a} + \vec{b} + \vec{c} \right) \cdot \left(\vec{a} + \vec{b} + \vec{c} \right) = a^2 + b^2 + c^2 + 2ab\cos\gamma + 2ac\cos\beta + 2bc\cos\alpha$. Значит, $\left| \vec{d} \right| = \sqrt{a^2 + b^2 + c^2 + 2ab\cos\gamma + 2ac\cos\beta + 2bc\cos\alpha} .$

7.5 Ориентация плоскости

Г7.5.1 Определение. Пусть на плоскости задана прямоугольная система координат O, \vec{e}_1, \vec{e}_2 (то есть векторы отложены от одного начала и указано какой вектор считается первым, какой вторым). Ось первого вектора можно совместить с осью второго двумя разными поворотами - на угол, меньший 180° или на угол, больший 180° . Вращение от первого вектора ко второму по наименьшему из двух возможных углов называется положительным направлением вращения в плоскости.

Г7.5.2 Замечание. Задание системы координат однозначно определяет положительное направление вращения в плоскости. Если векторы базы \vec{e}_1, \vec{e}_2 оставить на месте, но перенумеровать (первый считать вторым, а второй первым), то положительное направление вращения изменится на противоположное.

Г7.5.3 Определение. Пусть на плоскости заданы две аффинные системы координат - O, \vec{e}_1, \vec{e}_2 и $O^{'}, \vec{i}_1, \vec{i}_2$. Совместим параллельным переносом оси абсцисс этих систем так, чтобы точки $O^{'}$ и $O^{'}$ совпали. Оставляя общую ось абсцисс на месте, будем поворачивать ось ординат первой системы пока она не совпадет с осью ординат второй системы. Если в процессе такого поворота оси

абсцисс и ординат нигде не окажутся на одной прямой, то будем говорить, что первая аффинная система переводится во вторую *непрерывной деформацией*.

Г7.5.4 Определение. Пусть на плоскости выбрана система координат O, \vec{e}_1, \vec{e}_2 , которую будем называть *правой координатной системой*. Пара векторов \vec{e}_1, \vec{e}_2 при этом будет называться *правой парой векторов*. Любая другая система координат O', \vec{i}_1, \vec{i}_2 будет правой системой, если ее можно перевести в первую систему непрерывной деформацией. При этом пара векторов \vec{i}_1, \vec{i}_2 также будет правой парой векторов. В противном случае система O', \vec{i}_1, \vec{i}_2 называется *левой системой координат* и пара векторов \vec{i}_1, \vec{i}_2 - *левой парой векторов*.

Г7.5.5 Замечание. Любую систему координат на плоскости можно «назначить» правой системой. Но после такого «назначения» сразу же любая другая система координат на той же плоскости становится либо правой, либо левой и то же происходит со всеми упорядоченными парами векторов на плоскости. Аналогично, если какую-либо упорядоченную пару векторов «назначить» правой (или левой), то любая другая упорядоченная пара векторов в той же плоскости станет либо правой либо левой и то же произойдет со всеми аффинными системами координат. В дальнейшем систему координат на плоскости будем считать правой, если поворот от первого вектора ко второму по наименьшему из двух возможных углов происходящим против часовой стрелки.

7.6 Ориентация пространства

- **Г7.6.1 Определение.** Упорядоченная тройка некомпланарных векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3$ называется *правой тройкой*, если наблюдатель, смотрящий с конца третьего вектора видит поворот от первого вектора ко второму по наименьшему из двух возможных углов происходящим против часовой стрелки. В противном случае тройка некомпланарных векторов называется *левой тройкой*.
- **Г7.6.2** *Замечание* 1. Поскольку любая система координат подразумевает некоторую упорядоченную тройку векторов, то естественным образом определяются *правые и левые системы координат*.
- **Г7.6.3** Замечание 2. Для проверки одноименности двух систем координат $O, \vec{e}_1, \vec{e}_2, \vec{e}_3$ и $O, \vec{i}_1, \vec{i}_2, \vec{i}_3$:
- совмещаем плоскости O, \vec{e}_1, \vec{e}_2 и O, \vec{i}_1, \vec{i}_2 , совмещенную плоскость обозначим π ;
- проверяем одноименность систем координат $\,O, \vec{e}_1, \vec{e}_2\,$ и $\,O, \vec{i}_1, \vec{i}_2\,;$
- если системы координат O, \vec{e}_1, \vec{e}_2 и O, \vec{i}_1, \vec{i}_2 одноименны, то системы координат $O, \vec{e}_1, \vec{e}_2, \vec{e}_3$ и $O, \vec{i}_1, \vec{i}_2, \vec{i}_3$ будут одноименными тогда и только тогда, когда векторы \vec{e}_3 и \vec{i}_3 лежат по одну сторону от плоскости π ; если системы координат O, \vec{e}_1, \vec{e}_2 и O, \vec{i}_1, \vec{i}_2 разноименны, то системы координат $O, \vec{e}_1, \vec{e}_2, \vec{e}_3$ и $O, \vec{i}_1, \vec{i}_2, \vec{i}_3$ будут одноименными тогда и только тогда, когда векторы \vec{e}_3 и \vec{i}_3 лежат по разные стороны от плоскости π ;
- **Г7.6.4** Замечание 3. Если в правой тройке \vec{a} , \vec{b} , \vec{c} поменять местами два вектора, то тройка станет левой. И наоборот: если в левой тройке поменять местами два вектора, то тройка станет правой. Например, если \vec{a} , \vec{b} , \vec{c} правая тройка, то тройки \vec{b} , \vec{a} , \vec{c} и \vec{a} , \vec{c} , \vec{b} левые.
- **Г7.6.5** Замечание 4. Всего из трех векторов $\vec{a}, \vec{b}, \vec{c}$ можно составить шесть различных троек: $\vec{a}\vec{b}\vec{c}$, $\vec{a}\vec{c}\vec{b}$, $\vec{b}\vec{a}\vec{c}$, $\vec{b}\vec{c}\vec{a}$, $\vec{c}\vec{a}\vec{b}$ и $\vec{c}\vec{b}\vec{a}$. При этом если тройка $\vec{a}\vec{b}\vec{c}$ правая, то в связи с замечанием l тройки $\vec{b}\vec{c}\vec{a}$ и $\vec{c}\vec{a}\vec{b}$ также правые, а тройки $\vec{a}\vec{c}\vec{b}$, $\vec{b}\vec{a}\vec{c}$ и $\vec{c}\vec{b}\vec{a}$ левые.

7.7 Векторное и смешанное произведения векторов

Г7.7.1 Определение. *Векторным произведением* вектора \vec{a} на вектор \vec{b} называется вектор $\vec{c} = \vec{a} \times \vec{b}$, удовлетворяющий условиям:

- 1) Длина вектора \vec{c} равна произведению длин векторов \vec{a} и \vec{b} на синус угла между ними: $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \sin \alpha$
- 2) Вектор \vec{c} перпендикулярен каждому из векторов \vec{a} и \vec{b}
- 3) Тройка векторов \vec{a} , \vec{b} , \vec{c} является правой

Г7.7.2 *Замечание*. Длина векторного произведения векторов равна площади параллелограмма, построенного на этих векторах как на сторонах.

Г7.7.3 Теорема (коллинеарность и векторное произведение)

Ненулевые векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда $\vec{a} \times \vec{b} = \vec{0}$ Доказательство: 1) Пусть $\vec{a} \times \vec{b} = \vec{0}$, тогда $\left| \vec{a} \times \vec{b} \right| = \vec{0}$, а поскольку $\left| \vec{a} \times \vec{b} \right| = |\vec{a}| \cdot |\vec{b}| \sin \alpha$ и векторы \vec{a} и \vec{b} - не нулевые, то $\sin \alpha = 0$ и угол между векторами равен 0° или 180° , что и требовалось. 2) Если векторы \vec{a} и \vec{b} коллинеарны, то угол между векторами равен 0° или 180° , $\sin \alpha = 0$ и $\left| \vec{a} \times \vec{b} \right| = \vec{0}$. Теорема доказана.

Г7.7.4 Теорема (свойства векторного произведения)

Для любых векторов $\vec{a}, \vec{b}, \vec{c}$ и любого числа A имеют место тождества:

1) $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ (от перестановки множителей меняется знак произведения)

2) Для любого числа A верно: $(A\vec{a}) \times \vec{b} = A(\vec{a} \times \vec{b})$

Доказательство: 1) Длины векторов $\vec{x} = \vec{a} \times \vec{b}$ и $\vec{y} = \vec{b} \times \vec{a}$ совпадают по определению векторного произведения. По определению каждый из векторов \vec{x} и \vec{y} перпендикулярен векторам \vec{a} и \vec{b} , значит вектор \vec{x} коллинеарен вектору \vec{y} , но если кратчайший поворот от \vec{a} к \vec{b} происходящий против часовой стрелки виден с одной стороны плоскости, определяемой векторами \vec{a} и \vec{b} то, то обратный поворот от \vec{b} к \vec{a} происходящий против часовой стрелки будет виден с обратной стороны той же плоскости. Значит, векторы \vec{x} и \vec{y} противоположно направлены, откуда и следует $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$.

2) Векторы $A\vec{a}$ и \vec{a} коллинеарны, векторы $A(\vec{a} \times \vec{b})$ и $(\vec{a} \times \vec{b})$ также коллинеарны по определению умножения вектора на число, значит, направления векторов $\vec{x} = (A\vec{a}) \times \vec{b}$ и $\vec{y} = A(\vec{a} \times \vec{b})$ совпадают. Длина вектора \vec{x} равна: $|\vec{x}| = |A\vec{a}| \cdot |\vec{b}| \sin \alpha = |A| \cdot |\vec{a}| \cdot |\vec{b}| \sin \alpha$, длина вектора \vec{y} равна $|\vec{y}| = |A| \cdot |\vec{a}| \cdot |\vec{b}| \sin \alpha$. Значит, у векторов $\vec{x} = (A\vec{a}) \times \vec{b}$ и $\vec{y} = A(\vec{a} \times \vec{b})$ совпадают длины и направления и, следовательно, $(A\vec{a}) \times \vec{b} = A(\vec{a} \times \vec{b})$.

Г7.7.5 Определение. Смешанным произведением векторов \vec{a} , \vec{b} , \vec{c} называется число $(\vec{a} \times \vec{b}) \cdot \vec{c}$

Г7.7.6 Определение. *Ортом* произвольного не нулевого вектора \vec{c} называется вектор \vec{c}_0 , сонаправленный с вектором \vec{c} и такой, что $|\vec{c}_0|=1$

Г7.7.7 Теорема (геометрический смысл смешанного произведения)

1) Если векторы \vec{a} , b, \vec{c} образуют правую тройку, то их смешанное произведение равно объему параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} .

- 2) Если векторы \vec{a} , \vec{b} , \vec{c} образуют левую тройку, то их смешанное произведение равно объему параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} , взятому со знаком «минус».
- 3) Если векторы \vec{a} , \vec{b} , \vec{c} компланарны, то их смешанное произведение равно 0.

Доказательство: Пусть векторы \vec{a} , \vec{b} , \vec{c} не компланарны. Площадь параллелограмма, построенного на векторах \vec{a} , \vec{b} как на сторонах обозначим S, а орт векторного произведения $\vec{a} \times \vec{b}$ обозначим \vec{e} .

Тогда:
$$\vec{a} \times \vec{b} = |\vec{a} \times \vec{b}| \vec{e} = |\vec{a}| \cdot |\vec{b}| \sin \alpha \cdot \vec{e} = S\vec{e}$$
, $(\vec{a} \times \vec{b}) \cdot \vec{c} = S\vec{e} \cdot \vec{c} = S(\vec{e} \cdot \vec{c}) = S|\vec{e}| pr_{\vec{e}}\vec{c} = S \cdot pr_{\vec{e}}\vec{c}$.

По определениям векторного произведения и орта вектора, вектор \vec{e} перпендикулярен векторам \vec{a} и \vec{b} , т. е. всей плоскости основания параллелепипеда. Значит, высота параллелепипеда и вектор \vec{e} лежат на одной прямой. Отсюда $|pr_{\vec{e}}\vec{c}|$ равна высоте параллелепипеда. В зависимости от того, правой или левой будет тройка \vec{a} , \vec{b} , \vec{c} эта проекция будет либо положительной, либо отрицательной.

Если векторы \vec{a} , \vec{b} , \vec{c} коллинеарны, то они не составляют ни правую, ни левую тройку и значит, их смешанное произведение не может быть ни положительным, ни отрицательным, т.е. $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$. Теорема доказана.

$$\Gamma$$
7.7.8 Следствие. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$

Доказательство: Поскольку в левой и правой частях равенства перемножаются одни и те же векторы, то объемы параллелепипедов, на них построенных равны. Если тройка \vec{a} , \vec{b} , \vec{c} правая (левая), то тройка \vec{b} , \vec{c} , \vec{a} также правая (левая) По свойству скалярного произведения $(\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{a} \cdot (\vec{b} \times \vec{c})$. Значит, $(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{a} \cdot (\vec{b} \times \vec{c})$

Г7.7.9 Замечание 1. В связи с результатом следствия смешанное произведение можно записывать в виде $\vec{a}\vec{b}\vec{c}$.

Г7.7.10 Замечание 2. В связи с результатом теоремы Г7.7.7 можно говорить об ориентированном объеме параллелепипеда, построенного на тройке векторов $\vec{a}, \vec{b}, \vec{c}$ (если тройка правая – объем положителен, если тройка левая – объем отрицателен).

7.8 Ориентированный объем

Г7.8.1 Теорема (об ориентированном объеме) Ориентированный объем параллелепипеда, построенного на тройке векторов $\vec{a} = (a_1, a_2, a_3), \ \vec{b} = (b_1, b_2, b_3), \ \vec{c} = (c_1, c_2, c_3)$ (координаты

даны в прямоугольной системе), равен $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$

Без доказательства.

Г7.8.2 Следствие 1. Если $\vec{a}=(a_1,a_2,a_3)$ и $\vec{b}=(b_1,b_2,b_3)$ (в ортонормированной базе), то $\vec{a}\times\vec{b}=(a_2b_3-a_3b_2,a_3b_1-a_1b_3,a_1b_2-a_2b_1)$

Доказательство. Пусть $\vec{e}_1, \vec{e}_2, \vec{e}_3$ - ортонормированный базис, в котором заданы координаты перемножаемых векторов: $\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$, $\vec{b} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3$. По определению векторного произведения имеем: $\vec{e}_1 \times \vec{e}_1 = \vec{e}_2 \times \vec{e}_2 = \vec{e}_3 \times \vec{e}_3 = \vec{0}$, $\vec{e}_1 \times \vec{e}_2 = \vec{e}_3$, $\vec{e}_2 \times \vec{e}_3 = \vec{e}_1$, $\vec{e}_3 \times \vec{e}_1 = \vec{e}_2$. Перемножая выражения $\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3$, $\vec{b} = b_1 \vec{e}_1 + b_2 \vec{e}_2 + b_3 \vec{e}_3$, раскрывая скобки и приводя подобные, получим утверждение теоремы.

Г7.8.4 *Замечание*. Для запоминания координат векторного произведения служит символ определителя

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix},$$

при разложении которого по первой строке получим

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} \cdot \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = = \vec{i} \left(a_2 b_3 - a_3 b_2 \right) + \vec{j} \left(a_3 b_1 - a_1 b_3 \right) + \vec{k} \left(a_1 b_2 - a_2 b_1 \right),$$

т.е. коэффициенты при векторах \vec{i} , \vec{j} , \vec{k} будут равны соответствующим координатам вектора $\vec{c} = \vec{a} \times \vec{b}$.

Г7.8.5 Следствие 2. Для любых трех векторов $\vec{a}, \vec{b}, \vec{c}$ верно равенство $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$. Следует из Г5.4.3.

Контрольные вопросы:

- 1. Что называется скалярным произведением векторов? Каковы свойства скалярного произведения? Как связано скалярное произведение с операциями сложения векторов и умножения вектора на число?
- 2. Как вычисляется скалярное произведение по координатам векторов? Как с помощью скалярного произведения найти угол между векторами? Как с помощью скалярного произведения найти ортогональную проекцию одного вектора на другой?
- 3. Какие тройки векторов называются правыми и какие левыми? Какие системы координат называются правыми и какие левыми?
- 4. Что называется векторным произведением векторов? Каковы свойства векторного произведения?
- 5. Как вычисляются координаты векторного произведения по координатам перемножаемых векторов?
- 6. Что называется смешанным произведением векторов? Каков геометрический смысл смешанного произведения? Как вычисляется смешанное произведение по координатам перемножаемых векторов?