1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

нальный исследовательский университе (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По лабораторной работе №5

По курсу: «Моделирование»

Тема: «Моделирование работы информационного центра»

Студент: Ле Ни Куанг

Группа: ИУ7И-76Б

Преподаватель: Рудаков И. В.

Москва

Содержание

1	Задание	3
2	Теоритическая часть	3
3	Результаты	4
4	Листинг кода	5

1 Задание

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй — запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

2 Теоритическая часть

Необходимо создать концептуальную модель в терминах СМО, определить эндогенные и экзогенные переменные и уравнения модели. За единицу системного времени выбрать 0,01 минуты.

В процессе взаимодействия клиентов с информационным центром возможно:

- Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
- Режим отказа в обслуживании клиента, когда все операторы заняты

Переменные и уравнения имитационной модели.

- Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером.
- Экзогенные переменные: число обслуженных клиентов и число клиентов получивших отказ.

Вероятность отказа:

$$P_{\text{отк}} = \frac{C_{\text{отк}}}{C_{\text{отк}} + C_{\text{обсл}}}$$

3 Результаты

Task 100:	t=984.30	Генератор, generated						
	t=984.30	Операт	гор 1, геј	ected				
	t=984.30	Операт	гор 2, геје	ected				
	t=984.30	Операт	гор 3, геје	ected				
	t=984.30		Failed,					
Task 200:	t=1996.90	Генератор, generated						
	t=1996.90	Операт	гор 1, ассе	epted				
	t=2023.90	Компьютер 1, accepted						
	t=2038.90	Succes	Succeed,					
Task 300:	t=3003.20	Генератор, generated						
	t=3003.20	Оператор 1, rejected						
	t=3003.20	Оператор 2, accepted						
	t=3039.30	Компья	Компьютер 1, accepted					
	t=3054.30	Succeed,						
Генератор	: обработ	ал 300	запросов					
Оператор 1	: обработ	ал 120	запросов,	отклонил	180	запросов		
Оператор 2	: обработ	ал 61	запросов,	отклонил	119	запросов		
Оператор 3	: обработ	ал 55	запросов,	отклонил	64	запросов		
Компьютер 1	l: обработ	ал 181	запросов					
Компьютер 2	2: обработ	ал 55	запросов					
Число обслуженных клиентов: 236								
Число клиентов получивших отказ: 64								
Вероятность отказа: 0.2133								

4 Листинг кода

Листинг 1 – Программная реализация информационного центра

```
if __name__ == '__main__':
   from system.generator import *
   from system.model import Endpoint, simulate
   from system.service import Service, QueueService
    success = Endpoint('Succeed')
   fail = Endpoint('Failed')
    comp1 = QueueService(Const(15), success, name='Компьютер 1')
    comp2 = QueueService(Const(30), success, name='Компьютер 2')
    op3 = Service(Uniform(20, 60), comp2, fail, 'Οπερατορ 3')
    op2 = Service(Uniform(30, 50), comp1, op3, 'Oπeparop 2')
    op1 = Service(Uniform(15, 25), comp1, op2, 'Οπερατορ 1')
   n_{tasks} = 300
   requests = RequestGenerator(Uniform(8, 12), n_tasks, op1,
       name='Генератор')
   nodes = [requests, op1, op2, op3, comp1, comp2]
    end_condition = lambda: success.count + fail.count == n_tasks
    simulate(nodes, end_condition)
   for node in nodes:
        print(node)
   print('\nЧисло обслуженных клиентов:', success.count)
   print('Число клиентов получивших отказ:', fail.count)
   print(f'Вероятность отказа: {fail.count / n_tasks:.4f}')
```

Листинг 2 – Программный интерфейс

```
from __future__ import annotations
from numpy.random import default_rng
class IGenerator:
    generator = default_rng()
    def generate(self) -> float:
        raise NotImplementedError
class Task:
    def __init__(self, task_id):
        self.task_id = task_id
        self.log = []
    def add_log(self, node_name, time, event):
        self.log.append([node_name, time, event])
    def __str__(self):
        res = f'Task {self.task_id}:\t'
        for e in self.log:
            res += f't={e[1]:.2f}\t{e[0]}, {e[2]}\n\t\t'
        return res
class Node:
    timer = 0
    def __init__(self, next_node: Node = None, fail_node: Node = None,
       name: str = ""):
        self.next_node = next_node
        self.fail_node = fail_node
        self.n_succeed = 0
        self.n_failed = 0
        self.name = name
    def handle(self, task: Task):
        raise NotImplementedError
    def elapse(self, time):
        pass
    def next(self, task: Task):
        if self.next_node: self.next_node.handle(task)
        self.n_succeed += 1
    def fail(self, task: Task):
        task.add_log(self.name, self.timer, 'rejected')
        if self.fail_node: self.fail_node.handle(task)
```

```
self.n_failed += 1
    def __str__(self):
        res = f'{self.name:11}:\tобработал {self.n_succeed:3d} запросов'
        if self.n_failed:
            res += f',\toтклонил {self.n_failed:3d} запросов'
        return res
class Endpoint(Node):
    def __init__(self, name=''):
        super().__init__()
        self.name = name
        self.count = 0
    def handle(self, task):
        if task.task_id % 100 == 0:
            task.add_log(self.name, Node.timer, '')
            print(task)
        self.count += 1
class GNode(Node):
    Node whose processing time depends on generator
   EPS = 10e-4
    def __init__(self, generator: IGenerator, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._generator = generator
        self._remaining_time = 0
        self._is_ready = True
    def start_process(self):
        r = -1
        while r <= 0:
            r = self._generator.generate()
        self._remaining_time = r
        self._is_ready = False
    def is_ready(self) -> bool:
        return self._is_ready
def simulate(nodes: [Node], func_end_condition, dt=10e-2):
    Node.timer = 0
    while not func_end_condition():
        for node in nodes:
            node.elapse(dt)
        Node.timer += dt
```