# Что такое confusion matrix и зачем она нужна?

Ну, это измерение производительности для задачи классификации машинного обучения, где вывод может быть двумя или более классами. Это таблица с 4 различными комбинациями прогнозируемых и фактических значений.

#### Actual Values

Positive (1) Negative (0)

TP FP

Negative (0) FN TN

Это чрезвычайно полезно для измерения полноты, точности, специфичности, точности и, что наиболее важно, кривых AUC-ROC.

Давайте поймем TP, FP, FN, TN с точки зрения аналогии с беременностью.



#### **True Positive:**

Интерпретация: Вы предсказали положительный результат, и это правда.

Вы предсказали, что женщина беременна, и она действительно беременна.

#### **False Positive:**

Интерпретация: вы предсказали отрицательный результат, и это правда.

Вы предсказали, что мужчина не беременен, и на самом деле его нет.

## Ложный положительный результат: (ошибка типа 1)

Интерпретация: вы предсказали положительный результат, но он неверен.

Вы предсказали, что мужчина беременен, но на самом деле это не так.

## False Negative: (ошибка типа 2)

Интерпретация: вы предсказали отрицательный результат, и он оказался ложным.

Вы предсказали, что женщина не беременна, но она на самом деле беременна.

Мы описываем прогнозируемые значения как положительные и отрицательные, а фактические значения — как истинные и ложные.



## Как рассчитать confusion matrix для задачи классификации 2 классов?

Давайте разберемся с confusion matrix с помощью математики.

| у | y pred | output for threshold 0.6 | Recall | Precision | Accuracy |
|---|--------|--------------------------|--------|-----------|----------|
| 0 | 0.5    | 0                        |        |           |          |
| 1 | 0.9    | 1                        |        |           |          |
| 0 | 0.7    | 1                        |        |           |          |
| 1 | 0.7    | 1                        | 1/2    | 2/3       | 4/7      |
| 1 | 0.3    | 0                        |        |           |          |
| 0 | 0.4    | 0                        |        |           |          |
| 1 | 0.5    | 0                        |        |           |          |



### Recall

Recall = 
$$\frac{TP}{TP + FN}$$

Приведенное выше уравнение можно объяснить, сказав, сколько из всех положительных классов мы предсказали правильно.

Recall должен быть как можно выше.

### **Precision**

$$Precision = \frac{TP}{TP + FP}$$

Приведенное выше уравнение можно объяснить, сказав, что из всех классов, которые мы предсказали как положительные, сколько на самом деле положительных.

Precision должна быть максимально высокой.

# Accuracy

Из всех классов (положительных и отрицательных) сколько из них мы предсказали правильно. В данном случае это будет 4/7.

Accuracy должна быть максимально возможной.

#### F-measure

$$F - measure = \frac{2*Recall*Precision}{Recall + Precision}$$

Трудно сравнивать две модели с низкой точностью и высокой полнотой или наоборот. Поэтому, чтобы сделать их сопоставимыми, мы используем F-Score. F-оценка помогает одновременно измерять полноту и точность. Он использует среднее гармоническое вместо среднего арифметического, сильнее наказывая экстремальные значения.