An ODE Model of CLASP Mutants in A. Thaliana

Riley Wheadon

University of British Columbia

Cytrynbaum Lab Meeting, October 2024

Root Zonation

Figure: Zonation in the *A. Thaliana* root. Cells growth is driven by BR. Growth is proportional to length due to the stretching of cellulose fibres.

CLASP and Microtubules

Figure: Halat et al. (2022). The key takeaway from this slide is that *CLASP inhibits growth, especially in shorter cells*.

Brassinosteroid

Figure: A simplified sketch of the brassinosteroid signalling network.

Mutant Roots

Figure: Signalling networks in the wild type and mutants.

Mutant Roots

Figure: Experimental data from the wild type and mutants.

Hypothesis[®]

Figure: A length-driven division mechanism (might) produce the different phenotypes in the wild type, BRIN-CLASP, and CLASP-1 roots!

Growth Model

- We model a single column of cells over time.
- Our data has no time dependence so Δt is arbitrary.
- Cells grow at a basal rate g_0L .
- This basal rate is inhibited by CLASP due to TFB formation.
- Cell growth is increased by BES1 at a rate g_1PL . We assume that BES1 signalling is linear with cell position (it is, usually).
- The parameter g_1 is proportional the number of receptors R.

Division Model

- Cells complete a cell cycle and divide when D=1.
- Cells also must be at least 9μm long to divide.
- Cell division creates two cells with length L/2 and D=0.
- Progress in the cell cyle proceeds at a basal rate d_0 .
- Progress in the cell cyle is inhibited by *length*.

Model Equations

In the equations below, C1, BC, and WT stand in for the CLASP-1, BRIN-CLASP, and wild type roots respectively.

C1:
$$\frac{dL}{dt} = ((g_0 - 0) + R_{C1}P)L, \qquad \qquad \frac{dD}{dt} = d_0\left(1 - \frac{L^n}{d_L^n + L^n}\right)$$

BC:
$$\frac{dL}{dt} = ((g_0 - C_{BC}) + R_{BC}P)L$$
, $\frac{dD}{dt} = d_0 \left(1 - \frac{L^n}{d_L^n + L^n}\right)$

WT:
$$\frac{dL}{dt} = ((g_0 - C_{WT}) + R_{WT}P)L, \qquad \frac{dD}{dt} = d_0 \left(1 - \frac{L^n}{d_L^n + L^n}\right)$$

Recall that $0 < C_{WT} < C_{BC}$ and $R_{C1} < R_{WT} < R_{BC}$.

Results (1)

Figure: Fitted cell column model compared to data.

Results (2)

Parameter	Units	Value	
g 0	1/t	0.02500	
c_{WT}	1/t	0.01400	
c _{BC}	1/t	0.02200	
R_{C1}	$1/(\mu m \cdot t)$	0.00028	
R_{WT}	$1/(\mu m \cdot t)$	0.00029	
R_{BC}	$1/(\mu m \cdot t)$	0.00030	
d_0	D/t	0.05000	
d_L	μm	20.0000	
n	1	20.0000	

Table: Parameter values for cell column model.

Results (3)

Figure: Division zone behaviour in t = [300, 400].

Results (4)

Figure: Division positions by mutant for the entire simulation.

Results (5)

Model	Mean Div.	Median Div.	Max Div.	# Divs.
Wild Type	158.51	151.41	344.34	537
BRIN-CLASP	138.26	131.49	307.45	523
CLASP-1	96.28	83.80	241.98	396

Table: Overview of division behaviour in cell column models.

Results (6)

Figure: Comparison of wild type model to observations.

Results (7)

Figure: Comparison of BRIN-CLASP model to observations.

Results (8)

Figure: Comparison of CLASP-1 model to observations.

