SHORTEST PATHS: BELLMAN FORD AND DAGS

CS340

Relaxing an edge

 Can we improve the shortest-path estimate for v by going through u and taking (u,v)?

Relaxing an edge

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Properties of shortest paths and relaxation

- Path-relaxation property
 - If $p = \langle v_0, v_1, ..., v_k \rangle$ i is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. then v_k .d = $\delta(s, v_k)$. This property holds **regardless** of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

Bellman-Ford Algorithm

- Allows negative-weight edges.
- Computes v.d and π .d for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

Bellman-Ford Algorithm

- Relies on the Path Relaxation Property
- Relaxes each edge |V|-1 times (why?)
- Relaxes each edge 1 more time to detect negative-weight

cycles. Returns true if none.

Time Complexity:
 nested for loop
 outer loop = |v|-1
 inner loop = E
 Total = Θ(VE)

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

Bellman-Ford

Edges relaxed in this order: (t,x)(t,y)(t,z)(x,t)(y,x)(y,z)(z,x)(z,s)(s,t)(s,y)

Single-source shortest paths in a dag

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 for each vertex v \in G.Adj[u]

5 RELAX (u, v, w)
```

Time complexity $\Theta(V+E)$

Single-source shortest paths in a dag

