1 Første Frivillige opgave

1.1

Hvilke tal forekommer som ordener af elementer i gruppen $\mathbb{Z}_{12} = \mathbb{Z}/12\mathbb{Z}$? Samme spørgsmål for den symmetriske grupper S_3 .

Da det er en gruppe under addition skal vi finde det (først) heltal multiplikation af elementet der mod 12 giver 0. Vi opstiller følgende tabel

Altså indgår tallene $\{1,2,3,4,6,12\}$ som orderner af element i gruppen $\mathbb{Z}_{12}=\mathbb{Z}/12\mathbb{Z}$

For den symmetriske gruppe S_3 er ordenen for et element lig det mindste fælles multiplum af længderne af cyklerne der fås ved cykle dekomposition. Altså beregner vi først cykle dekompositionerne af elementerne i S_3 ved brug af algoritmen s. 30 i Dummit and Foote.

Værdier af σ_i	Cykel dekomposition af σ_i
$\sigma_1(1) = 1, \sigma_1(2) = 2, \sigma_1(3) = 3$	(1)(2)(3)=1
$\sigma_2(1) = 1, \sigma_2(2) = 3, \sigma_2(3) = 2$	$(1)(2\ 3)=(2\ 3)$
$\sigma_3(1) = 2, \sigma_3(2) = 1, \sigma_3(3) = 3$	$(1\ 2)(3)=(1\ 2)$
$\sigma_4(1) = 2, \sigma_4(2) = 3, \sigma_4(3) = 1$	$(1\ 2\ 3)$
$\sigma_5(1) = 3, \sigma_5(2) = 1, \sigma_5(3) = 2$	$(1\ 3\ 2)$
$\sigma_6(1) = 3, \sigma_6(2) = 2, \sigma_6(3) = 1$	$(1\ 3)(2)=(1\ 3)$

Hvor længderne og LCM(ordenerne) er henholdsvis

$$\sigma_1 = \{1, 1, 1\},$$
 $LCM = 1$
 $\sigma_2 = \{2\},$ $LCM = 2$
 $\sigma_3 = \{2, 1\},$ $LCM = 2$
 $\sigma_4 = \{3, 1\},$ $LCM = 3$
 $\sigma_5 = \{3, 1\},$ $LCM = 3$
 $\sigma_6 = \{2, 1\},$ $LCM = 2$

Altså indgår tallene $\{1, 2, 3\}$ som orderner i gruppen S_3 .

1.2

Opg 18, [DF], side 40:

Let G be any group. Prove that the map from G to itself defined by $\psi: g \to g^2$ is a homomorphism if and only if G is abelian.

Hvis det er en homomorfi, betyder det at for alle $a,b \in G$ gælder $\psi(ab) = \psi(a)\psi(b)$. Vi vil vise det begge veje, at hvis det er en homomorfi er den abelsk og hvis den er abelsk er det en homomorfi. Vi starter med at antage ψ er en homomorfi. Derved får vi

$$\psi(ab) = \psi(a)\psi(b)$$

$$(ab)^2 = a^2b^2$$

$$(ab)(ab) = aabb$$

$$ababb^{-1} = aabbb^{-1} \qquad b \text{ har et invers element vi kan gange på på begge sider}$$

$$aba = aab \qquad \text{der gælder at } b*b^{-1} = 1$$

$$a^{-1}aba = a^{-1}aab \qquad a \text{ har et invers element vi kan gange på på begge sider}$$

$$ba = ab \qquad \text{der gælder at } a*a^{-1} = 1$$

Hvilket viser G er en abelsk gruppe. Nu antages at G er abelsk og vi vil vise ψ er en homomorfi. Vi har, at

$$\psi(ab) = (ab)(ab)$$

= a^2b^2 Da G er abelsk
= $\psi(a)\psi(b)$

Altså må ψ være en homomorfi.