CS2002D Program Design: Monsoon 2021

Asymptotic Notations

September 10, 2021

Acknowledgements: Dr. Saleena N, CSED

Rate of Growth or Order of Growth

- Rate/Order of growth Considering the leading term of a formula
- Ignoring the lower order terms insignificant for large values of n
- Ignoring leading term's constant coefficient constant factors are less significant

Rate of Growth or Order of Growth

- $T(n) = an^2 + bn + c$
- we say T(n) is $\Theta(n^2)$ ("theta of *n*-squared")
 - simplifying abstraction
 - consider only the leading term of a formula
 - lower order terms- relatively insignificant for large values of n
 - ignore the leading term's constant coefficients

Asymptotic Efficiency

input size is large enough, only the order of growth is relevant

asymptotic efficiency - how the running time increases with the size of the input in the limit

asymptotically more efficient - best choice for all but very small inputs

Asymptotic Notations

- Domain of functions Set of Natural Numbers N = 0, 1, 2... (as given by CLRS [1])
 - T (n) usually defined only on integer input sizes
- T(n) = $an^2 + bn + c$ T(n) is $\Theta(n^2)$ ("theta of *n*-squared")
 - T(n) is $O(n^2)$ ("Big Oh of *n*-squared")
 - T (n) is $\Omega(n^2)$ ("Omega of n-squared")

O notation (big-Oh)

- $T(n) = n^2 + 2n + 1$ for n > 1, T(1) = 4
- $T(n) \le 4n^2$, for $n \ge 1$
- ► $T(n) \le cn^2$, for $n \ge n_0$ (c=4 and n_0 =1)
- we say T(n) is $O(n^2)$

O notation (big-Oh)

- $T(n) = n^2 + 2n + 1$ for n > 1, T(1) = 4
- ▶ How to get c and n_0 such that $T(n) \le cn^2$, for $n \ge n_0$
 - c should be such that $n^2 + 2n + 1 \le cn^2$
 - divide by n^2 , $1 + \frac{2}{n} + \frac{1}{n^2} \le c$
 - for $n \ge 1$, we can choose $c \ge 4$
- ▶ $T(n) \le cn^2$, for $n \ge n_0$ (c=4 and $n_0=1$)
- we say T(n) is $O(n^2)$
- $n^2 + 2n + 1$ is $O(n^2)$

O notation

- ightharpoonup T(n) is $O(n^2)$
 - There are positive constants c and n_0 such that $T(n) \le cn^2$ for $n \ge n_0$

Some functions:

$$T_1(n) = 5n^2$$
 $T_2(n) = n^2 + 2n$ $T_3(n) = n + 5$

•
$$T_1(n) \leq 5n^2$$
 for $n \geq 1$

•
$$T_2(n) \leq 2n^2$$
 for $n \geq 2$

•
$$T_3(n) \le n^2$$
 for $n \ge 3$

Generalizing.....

- There exists positive constants c=5 and $n_0=1$ such that $\vec{T}_{1}(n) \leq cn^{2}$ for $n \geq n_{0}$
- There exists positive constants c=2 and $n_0=2$ such that $\bar{T}_{2}(n) \leq cn^{2}$ for $n \geq n_{0}$
- There exists positive constants c=1 and $n_0=3$

such that $T_3(n) \le cn^2$ for $n \ge n_0$ There exists positive constants c and n_0 such that $f(n) \le cn^2$ for $n \ge n_0$

The set $O(n^2)$ (read "big oh of n^2 " or "oh of n^2 ")

- Set of all f (n) such that there exists positive constants c and n_0 such that $f(n) \le cn^2$ for all $n \ge n_0$
 - \Box Set is denoted by $O(n^2)$
 - $T_1(n) \in O(n^2)$ $T_2(n) \in O(n^2)$

 $T_{\mathfrak{z}}(n) \in O(n^2)$

- $O(n^2)$ is a set of functions.
- $O(n^2) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \}$ $\text{such that } 0 \le f(n) \le cn^2 \text{ for all } n \ge n_0 \}$

The set $O(n^2)$ – contd.

Give some more functions that belong to the set $O(n^2)$.

$$\Box f_{1}(n) = 100n^{2} + n + 5$$

$$\Box f_{2}(n) = 6n + 3$$

$$\Box f_{3}(n) = 10000n^{2}$$

The set $O(n^3)$

- $O(n^3) = \{f(n): \text{ there exists positive constants} \\ c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cn^3 \text{ for all} \\ n \ge n_0 \}$
- Some of the elements of $O(n^3)$
 - $\Box f_{\Delta}(n) = 100n^3 + 3n^2 + 2$
 - $\Box \quad f_5(n) = 6n + 3$
 - $\Box f_6(n) = 10000n^2$

Generalizing....

- $O(n) = \{ f(n) : \text{ there exists positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le c \text{ in for all } n \ge n_0 \}$
- $O(n \ lg \ n) = \{ f(n) : \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \text{ n } lg \text{ n for all } n \ge n_0 \}$
- $O(g(n)) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c. \ g(n) \text{ for all } n \ge n_0 \}$

O-notation gives an **upper bound for a function** to within a constant factor.

f(n)=O(g(n)), if there are positive constants c and n_0 such that to the right of n_0 , the value of f(n) always lies on or below cg(n).

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

Going back

- Insertion Sort
 - \Box Worst Case Running time is $O(n^2)$

■ Worst Case Running time, $T_1(n) \le cn^2$ for all values of $n \ge n_0$ where c and n_0 are positive constants.

Normally we write f(n) is O(g(n)) or f(n)=O(g(n)) to mean "f(n) is a member of O(g(n))"

Prove $T(n) = n^3 + 20n + 1$ is $O(n^3)$

- by the Big-Oh definition, T(n) is $O(n^3)$ if $T(n) \le c \cdot n^3$ for some $n \ge n_0$
- Find out c and n_0

Exercises

- 1. Is $2n + 10 \in O(n^2)$?
- 2. Is $n^3 \in O(n^2)$?

The set $\Omega(n)$ (Read big-omega of n)

An example[1]

```
T(n) = 2n + 3

2n \le T(n) \text{ for } n \ge 1

cn \le T(n) \text{ for } n \ge 1 \text{ and } c = 2

T(n) \text{ belongs to } \Omega(n)
```

 $\Omega(n) = \{f(n): \text{ there exists positive constants } c \text{ and } n_0 \}$ $\text{such that } 0 \le c \text{ } n \le f(n) \text{ for all } n \ge n_0 \}$

Exercises

- 1. Is $2n + 1 \subseteq \Omega(n)$?
- 2. Is $2n^2 + 10 \subseteq \Omega(n^2)$?
- 3. Is $n^3 \subseteq \Omega(n^2)$?

The set $\Omega(g(n))$

```
\Omega(g(n))
= \{f(n): \text{ there exists positive constants } c
and n_0 such that 0 \le c g(n) \le f(n) for all n \ge n_0\}
```

 Ω -notation gives **a lower bound** for a function to within a constant factor

 $f(n) = \Omega(g(n))$, if there are positive constants c and n_0 such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

The set $\Theta(n)$

An example[1] - T(n) = 2n + 3 $T(n) \le 6 n$ for $n \ge 1$ T(n) is O(n) $2n \le T(n)$ for $n \ge 1$ T(n) is $\Omega(n)$ T(n) belongs to $\Theta(n)$

 $\Theta(n) = \{ f(n): \text{ there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 n \le f(n) \le c_2 n \text{ for all } n \ge n_0 \}$

The set $\Theta(g(n))$

 $\Theta(g(n)) = \{ f(n): there \ exists \ positive \\ constants \ c_1, \ c_2 \ and \ n_0 \ such \ that \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ for \ all \\ n \ge n_0 \}$

O-notation gives **tight bound** for a function to within constant factors

 $f(n) = \Theta(g(n))$, if there exists positive constants c_1 , c_2 and n_0 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive.

Source: http://www.cs.unc.edu/~plaisted/comp122/02-asymp.ppt

Asymptotic notations – Formal definitions [1] $O(g(n)) = \{ f(n) : \text{ there exists positive constants } c$

and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$

 $\Omega(g(n)) = \{ f(n) : \text{ there exists positive constants } c \}$ and n_0 such that $0 \le c \ g(n) \le f(n)$ all $n \ge n_0$ }

 $\Theta(g(n)) = \{f(n): \text{ there exists positive constants } c_1, c_2\}$ and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all

To make it more clear [2]

- $f(n) = \Theta(g(n))$
 - $\Box g(n)$ is an asymptotically tight bound for f(n)
- f(n) = O(g(n))
 - \Box g(n) is an asymptotic upper bound for f(n)
- $f(n) = \Omega(g(n))$
 - $\Box g(n)$ is an asymptotic lower bound for f(n)

Theorem [1]

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)).$$

Examples[1]

- $f(n) = an^2 + bn + c$, where a, b, and c are constants and a > 0
- $f(n) = \Theta(n^2) \longrightarrow f(n) = \Omega(n^2) \text{ and } f(n) = O(n^2)$

- For any polynomial, p(n) of degree k we have $p(n) = \Theta(n^k)$
- •Any constant function is $\Theta(n^0)$, or $\Theta(1)$.

Insertion Sort – Running Time

- Best Case running Time is $\Omega(n)$.
 - \Box Implies Running time on any input is $\Omega(n)$.
- Running time is not $\Omega(n^2)$.
- Worst Case running time is $\Omega(n^2)$.
- Is it correct to say best case running Time is Θ (n)?

Is $O(n \lg n)$ algorithm preferred over $O(n^2)$?

- Suppose $T_1(n) \le 50 n \lg n$ and $T_2(n) \le 2n^2$
- Check the values of $T_1(n)$ and $T_2(n)$ when n=2 and n=1024
- For small input sizes, the $O(n^2)$ algorithm may run faster.
- Once the input size becomes large enough, *O* (*n* lgn) runs faster
 - □ irrespective of the constant factors
 - □ irrespective of the implementation.
- Read the corresponding Sections in CLRS.

References

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein *Introduction to Algorithms*, PHI, 2001.
- Sara Baase and Allen Van Gelder *Computer Algorithms: Introduction to Design & Analysis*, Pearson Education, third edition, 2000.
- Donald E Knuth. Big omicron and big omega and big theta. *ACM SIGACT News*, 1976.
- Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, PHI, 1997.