Краткие теоретические сведения

Wireshark - это программный анализатор трафика, который позволяет перехватывать информационные потоки, передаваемые по сети. Программа в первую очередь предназначена для сбора информации о сетевых взаимодействиях и для обнаружения и устранения неполадок в сети. Анализаторы трафика (сниферы) так же часто применяются при разработке новых протоколов и программного обеспечения и в образовательных целях.

Установленная и запущенная на компьютере программа Wireshark позволяет обнаружить и изучить любой протокольный блок данный (Protocol Data Unit, PDU), который был отправлен или получен с помощью любого из установленных на компьютере сетевых адаптеров (Network Interface Card, NIC).

Начальная настройка программы и запуск захвата трафика.

На рисунке Х изображено окно, которое появляется при запуске программы.

Рисунок 1. Стартовый интерфейс программы.

Выделенная область	Описание и функции
1	Кнопка, при нажатии на которую программа выведет список активных сетевых адаптеров (рисунок X), с которых возможен захват трафика. Список имеет вид интерактивной таблицы.
2	Список активных сетевых интерфейсов. Нажатие на любой интерфейс из списка немедленно запустит процесс захвата трафика.
3	Кнопка, при нажатии на которую программа выведет окно настроек процесса захвата трафика (рисунок X).
4	Кнопка, позволяющая загружать в программу захваченный ранее и сохраненный файл и отчётом о захваченном сетевом трафике.

Рисунок 2. Список активных сетевых адаптеров.

Список активных адаптеров имеет вид интерактивной таблицы со следующими полями:

Поле таблицы	Описание
Description	Описание адаптера
IP	Сетевой адрес (Если есть)
Packets	Количество захваченных блоков данных (PDU) с момента вызова таблицы.
Packets/s	Скорость обработки (приёма и отправки пакетов).

Также напротив каждого интерфейса расположены 3 кнопки:

Кнопка	Функция			
Start	Начать захват трафика.			
Options	Вызов окна настроек захвата трафика.			
Details	Подробная информация о сетевом адаптере.			

Рисунок 3. Окно настроек захвата сетевого трафика.

Выделенная область	Описание и функции						
	Выбор интерфейса для захвата трафика.						
1	В этой области расположены два выпадающих меню. Первое (левое) определяет тип используемого интерфейса: локальный (Local) или удалённый (Remote). Второе (правое) выпадающее меню определяет сам интерфейс.						
	Capture packets in promiscuous mode — Захват пакетов в режиме приёма всех сетевых пакетов.						
2	Если эта опция включена, программа будет захватывать все PDU, которые принимает сетевой адаптер. Если опция отключена – программа будет захватывать только PDU, предназначенные компьютеру, на котором она установлена.						
	Опции отображения захвата пакетов:						
	Update list in real time – обновление списка в реальном времени.						
	Если эта опция включена, то программа отображает захваченный трафик в реальном времени.						
3	Automatic scrolling in live capture – Автоматическая прокрутка при захвате.						
	Если эта опция включена, программа будет автоматически удерживать в окне вывода захваченной информации последние захваченные PDU.						
	Hide capture info dialog – Скрыть информационно-диалоговое окно захвата.						
	Если эта опция включена, то информационно-диалоговое окно захвата (Рисунок X) не выводится.						
	Опции преобразования имен.						
	Enable MAC name resolution – Включить преобразование МАС-адресов.						
	Эта опция включает автоматическое преобразование физических адресов устройств в более понятный для человека формат.						
	Пример: 00:09:5b: 01:02:03 -> Netgear_ 01:02:03. Выделенная часть сетевого адреса закреплена за производителем Netgear , поэтому программа преобразовала эту часть в название производителя.						
4	Примечание: если включена опция преобразования сетевых имён, то в некоторых случаях программа выводит DNS имя вместо MAC-адреса.						
4	Enable network name resolution – Включить преобразование сетевых имён.						
	Эта опция включает автоматическое преобразование сетевых адресов устройств в DNS имена устройств.						
	Пример: 216.239.37.99 -> www.google.com .						
	Enable transport name resolution – Включить преобразование TCP/UDP портов.						
	Эта опция включает автоматическое преобразование TCP/UDP закреплённых за определёнными протоколами портов в названия этих протоколов.						
	Пример: 80 -> http						

Рисунок 4. Информационно-диалоговое окно захвата.

Список активных адаптеров имеет вид интерактивной таблицы со следующими столбцами:

№ столбца (слева - направо)	Описание
1	Имя протокола. В таблице представлены наиболее распространенные протоколы.
2	Количество захваченных PDU определённого протокола.
3, 4	Графическое и числовое отображение процентного отношения захваченных PDU конкретного протокола к общему числу захваченных PDU.

Также в окне отображаются следующие параметры:

Параметр	Описание
Total	Общее количество захваченных пакетов.
Running	Время, на протяжении которого ведётся захват пакетов.

Главное рабочее окно программы.

После выбора интерфейса и запуска захвата PDU программа вызовет окно, показанное на рисунке X.

Рисунок 5. Окно отображения захваченного трафика.

Выделенная область	Описание и функции					
1	Меню программы, и панель инструментов, предоставляющая доступ к наиболее часто используемым функциям программы.					
2	Фильтр, позволяющий производить выборочный захват PDU.					
3	Поле списка PDU, в котором отображается краткая информация по всем захваченным PDU.					
4	Информационное поле, в котором отображается подробная информация по выбранному PDU.					
5	Поле, в котором отображаются данные выделенные в информационном поле в шестнадцатеричной и текстовой форме.					

Панель инструментов.

Панель инструментов представлена на рисунке Х.

Рисунок 6. Панель инструментов.

Nº	Кнопка	Название кнопки	Соответствующая опция в меню	Функции кнопки
1		Interfaces	Capture / Interfaces	Вызов списка активных сетевых адаптеров (Рисунок X).
2		Options	Capture / Options	Вызов окна настроек захвата сетевого трафика (Рисунок X).
3		Start	Capture / Start	Старт захвата трафика с текущими параметрами захвата.
4		Stop	Capture / Stop	Остановить захват трафика.
5		Restart	Capture / Restart	Перезапустить захват трафика с текущими параметрами.
6	1	Open	File / Open	Открыть файл с отчётом о захваченном трафике.
7	NG	Save As	File / Save As	Сохранить текущий отчёт о захваченном трафике в файл.
8	X	Close	File / Close	Закрыть текущий отчёт о захваченном трафике.
9	3	Reload	View / Reload	Закрыть и открыть заново текущий отчёт о захваченном трафике.
10		Print	File / Print	Распечатать текущий отчёт о захваченном трафике.
11	\oplus	Zoom In	View / Zoom In	Увеличить размер шрифта.
12	O	Zoom Out	View / Zoom Out	Уменьшить размер шрифта.
13	111	Normal Size	View / Normal Size	Установить размер шрифта, используемый по умолчанию.
14	×	Preferences	Edit / Preferences	Вызов меню настроек.
15		Help	Help / Contents	Вызов справки.

Фильтр

Фильтр позволяет настроить программу Wireshark на отображение только определённого, удовлетворяющего условиям текущего примененного фильтра сетевого трафика.

Фильтр может применяться как при захвате трафика в реальном времени, так и при анализе захвата, сохранённого в файле.

Панель фильтра представлена на рисунке Х.

Nº	Кнопка / Поле	Название Кнопки / поля	Функции кнопки / поля
1	Filter:	Filter:	Вызов диалогового окна для создания и сохранения пользовательских фильтров (Рисунок X).
2		Filter Input	Поле ввода фильтра.
3	•		Вызов списка применённых ранее фильтров.
4	Expression	Expression	Вызов диалогового окна, позволяющего выбирать фильтры из базы данных программы.
5	Clea <u>r</u>	Clear	Очистить поле ввода фильтра.
6	Apply	Apply	Применить фильтр.

Для применения фильтра необходимо:

- 1. Ввести фильтр в поле ввода.
- 2. Нажать кнопку "**Apply**".

Если фильтр введён в соответствии с правилами построения фильтров, то цвет поля ввода будет зелёным (Рисунок X), если фильтр введён с ошибкой – красным (Рисунок X).

Рисунок 9. Фильтр введён неправильно.

Построение фильтров.

Фильтрацию, применяемую в программе Wireshark можно условно разделить на две категории:

- Фильтрация по определённым протоколам.
- Фильтрация по определённым значениям полей в заголовках протоколов.

Для применения фильтрации по определённому протоколу необходимо ввести имя протокола в поле ввода фильтра.

Пример выполнения фильтрации по протоколу НТТР показан на рисунках Х-У.

Filter:				▼ Exp	ression Clear Apply
No	Time	Source	Destination	Protocol	Info
1302	53.554904	114.128.24.115	95.25.203.168	UDP	Source port: 11191 Destination port: 30840
1303	53.554984	95.25.203.168	114.128.24.115	ICMP	Destination unreachable (Port unreachable)
1304	53.676367	10.144.34.166	Broadcast	ARP	Who has 10.144.32.1? Tell 10.144.34.166
1305	53.692329	10.144.34.166	Broadcast	ARP	who has 10.144.32.1? Tell 10.144.34.166
1306	53.719283	10.144.34.166	Broadcast	ARP	who has 10.144.32.1? Tell 10.144.34.166
1307	53.765255	95.25.203.168	213.234.192.7	DNS	Standard query A sitecheck2.opera.com
1308	53.769416	213.234.192.7	95.25.203.168	DNS	Standard query response A 91.203.99.45
1309	53.778079	95.25.203.168	91.203.99.45	TCP	2319 > 80 [SYN] Seq=0 win=65535 Len=0 MSS=1360
1310	53.783166	95.25.203.168	213.234.192.7	DNS	Standard query A ya.ru
1311	53.786208	213.234.192.7	95.25.203.168	DNS	Standard query response A 213.180.204.8 A 93.158.134.8 A 77.88.21.8
1312	53.786671	95.25.203.168	213.180.204.8	TCP	2320 > 80 [SYN] Seq=0 win=65535 Len=0 MSS=1360
1313	53.788356	213.180.204.8	95.25.203.168	TCP	80 > 2320 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1360
1314	53.788429	95.25.203.168	213.180.204.8	TCP	2320 > 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
1315	53.789346	95.25.203.168	213.180.204.8	HTTP	GET / HTTP/1.1
1316	53.791668	213.180.204.8	95.25.203.168	TCP	[TCP segment of a reassembled PDU]
1317	53.791869	213.180.204.8	95.25.203.168	HTTP	HTTP/1.1 200 OK (text/html)

Рисунок 10. Вывод программы до применения фильтра.

Filter: ht	tp			▼ Expre	ssion Clear_ Apply
No	Time	Source	Destination	Protocol	Info
393	L 14.908475	95.25.203.168	80.190.130.226	HTTP	GET /update/idx/master.idx HTTP/1.1
39	5 14.966242	80.190.130.226	95.25.203.168	HTTP	HTTP/1.1 200 OK (text/plain)
		95.25.203.168	213.180.204.8	HTTP	GET / HTTP/1.1
		213.180.204.8	95.25.203.168	HTTP	HTTP/1.1 200 OK (text/html)
1329	9 54.046936	95.25.203.168	213.180.204.8	HTTP	GET /logo.png HTTP/1.1
1333	L 54.048771	213.180.204.8	95.25.203.168	HTTP	HTTP/1.1 304 Not Modified
1337	2 54.050235	95.25.203.168	91.203.99.45	HTTP	GET /?host=ya.ru&hdn=xBVRlPGV51toStUgxXX0HQ== HTTP/1.1
1336	5 54.077067	95.25.203.168	217.73.200.221		GET /V13a****yandex_ru/ru/CP1251/tmsec=yandex_ya/0 HTTP/1.1
		217.73.200.221	95.25.203.168		[TCP out-of-order] HTTP/1.1 200 OK (GIF89a)
1347	2 54.082356	91.203.99.45	95.25.203.168	HTTP/XML	HTTP/1.1 200 OK
		95.25.203.168	77.88.21.14	HTTP	GET /redir/dtype=stred/pid=17/cid=1729/*http://export.yandex.ru/mor
1349	9 54.134522	77.88.21.14	95.25.203.168	HTTP	HTTP/1.1 302 Redirect
		95.25.203.168	87.250.251.69	HTTP	GET /morda/mail.xml?host=yandex.ru HTTP/1.1
		87.250.251.69	95.25.203.168	HTTP	HTTP/1.1 200 OK (text/javascript)
1368	3 54.249088	95.25.203.168	213.180.204.8	HTTP	GET /b-suggest.css HTTP/1.1
1369	9 54.251113	213.180.204.8	95.25.203.168	HTTP	HTTP/1.1 200 OK (text/css)

Рисунок 11. Вывод программы после применения фильтра.

Фильтрация по определённому значению поля в заголовках протоколов строится по следующему синтаксису:

Поле Оператор сравнения Значение

Операторы сравнения и некоторые обозначения полей, которые могут использоваться при построении фильтров, представлены в таблицах X и У.

Поле	Описание
eth.addr	Физический адрес источника или получателя в кадре протокола Ethernet.
eth.dst	Физический адрес получателя в кадре протокола Ethernet.
eth.src	Физический адрес источника в кадре протокола Ethernet.
eth.len	Длина кадра протокола Ethernet.
ip.addr	Сетевой адрес источника или получателя в пакете протокола IP.
ip.dst	Сетевой адрес получателя в пакете протокола IP.
ip.src	Сетевой адрес источника в пакете протокола IP.
ip.proto	Обозначения протокола, который был инкапсулирован в пакет IP.
tcp.ack	Подтверждения (АСК) протокола ТСР
tcp.port	Порт источника или получателя в сегменте протокола ТСР.
tcp.dstport	Порт получателя в сегменте протокола ТСР.
tcp.srcport	Порт источника в сегменте протокола ТСР.
udp.port	Порт источника или получателя в сегменте протокола UCP.
udp.dstport	Порт получателя в сегменте протокола UCP.
udp.srcport	Порт источника в сегменте протокола UCP.
dns.qry.name	Имя сетевого ресурса в DNS запросе.
dns.resp.name	Имя сетевого ресурса в DNS ответе.

Таблица 1. Обозначения полей при построении фильтров.

Оператор		Значение	Примеры		
==	eq	Равно	ip.addr==192.168.1.1		
			Отображать только те пакеты протокола IP, в которых сетевой адрес отправителя или получателя равен 192.168.1.1		
			eth.dst==ff:ff:ff:ff		
			Отображать только широковещательные (broadcast) кадры протокола Ethernet.		

!=	ne	Не равно	ip.dst==255.255.255.255		
			He отображать широковещательные (broadcast) пакеты протокола IP.		
>	gt	Больше	tcp.dstport>10000		
			Отображать только те сегменты протокола ТСР, в которых порт получателя больше 10000.		
<	lt	Меньше	tcp.dstport<1024		
			Отображать только те датаграммы протокола UDP, в которых порт получателя меньше 1024.		

Таблица 2. Операторы сравнения.

При построении фильтра можно комбинировать два и более условия, используя логические операторы.

Комбинирование условий при построении операторов производится по следующему принципу:

Условие 1 Логический оператор Условие 2 Логический оператор

В качестве условия может использоваться как фильтрация по протоколам, так и фильтрация по значениям определённых полей в протоколах.

В таблице X представлены некоторые логические операторы.

Оператор		Значение	Примеры					
&&	and	И	ip.src==192.168.1.1 && ip.dst==192.168.1.10					
			Отображать только сообщения отправленные устройством с сетевым адресом 192.168.1.1 для устройства с сетевым адресом 192.168.1.10					
	or	или	eth.dst==ff:ff:ff:ff:ff ip.dst==255.255.255.255					
			Отображать только широковещательные кадры протокола Ethernet или пакеты протокола IP.					
!	not	НЕ (Отрицание)	!arp					
			He отображать PDU протокола ARP.					

Поле списка захваченных PDU.

В поле списка захваченных PDU (Рисунок X) выводится сводная информация по всему трафику, захваченному с помощью программы Wireshark.

No.	.	Time	Source	Destination	Protocol	Info
	1343	54.126714	95.25.203.168	213.234.192.7	DNS	Standard query A clck.yandex.ru
	1344	54.129754	213.234.192.7	95.25.203.168	DNS	Standard query response A 77.88.21.14 A 213.180.204.14 A 87.250.25
	1345	54.130456	95.25.203.168	77.88.21.14	TCP	2322 > 80 [SYN] Seq=0 win=65535 Len=0 MSS=1360
	1346	54.132141	77.88.21.14	95.25.203.168	TCP	80 > 2322 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1360
			95.25.203.168	77.88.21.14	TCP	2322 > 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
	1348	54.132425	95.25.203.168	77.88.21.14	HTTP	GET /redir/dtype=stred/pid=17/cid=1729/*http://export.yandex.ru/mc
	1349	54.134522	77.88.21.14	95.25.203.168	HTTP	HTTP/1.1 302 Redirect
			77.88.21.14	95.25.203.168	TCP	80 > 2322 [FIN, ACK] Seq=135 Ack=805 Win=9520 Len=0
	1351	54.134598	95.25.203.168	77.88.21.14	TCP	2322 > 80 [ACK] Seq=805 Ack=136 Win=65401 Len=0
			95.25.203.168	213.234.192.7	DNS	Standard query A export.yandex.ru
	1353	54.140117	213.234.192.7	95.25.203.168	DNS	Standard query response CNAME corba-http-export.yandex.ru A 87.250
4						>

Рисунок 12. После списка захваченных PDU.

Сводная информация выводится в виде таблицы со следующими полями:

Поле таблицы	Описание					
No.	Порядковый номер захваченного PDU. При использовании фильтра порядковый номер не изменяется.					
Time	Временная отметка, обозначающая время (в секундах) прошедшее с момента начала захвата PDU.					
Source	Сетевой адрес отправителя.					
Destination	Сетевой адрес получателя.					
Protocol	Протокол.					
Info	Дополнительная информация о захваченном PDU.					

На рисунке X представлен пример сводной информации о захваченной PDU.

No	Time	Source	Destination	Protocol	Info	
		95.25.203.168			Standard query A clck.yandex.ru	
	Рисунок 13. Пример записи в списке захваченных PDU.					

Запись можно интерпретировать следующим образом:

1343 – Этот PDU является 1343-им по счету захваченным PDU.

54.126714 – PDU захвачен через 54 секунды после начала захвата.

95.25.203.168 – Устройство, которое его отправило, имеет сетевой адрес 95.25.203.168.

213.234.192.7 – Устройство, которому оно предназначалось, имеет адрес 213.234.192.7.

DNS – Взаимодействие между устройствами происходит по протоколу DNS.

Standard query A click.yandex.ru – устройство с адресом 95.25.203.168 обращается к устройству с адресом 213.234.192.7 чтобы узнать сетевой адрес информационного ресурса click.yandex.ru

Информационное поле.

В информационном поле (Рисунок X) отображается подробная информация о захваченном PDU, выделенном в поле списка захваченных PDU.

Рисунок 14. Информационное поле программы.

Выделенная область	Описание и функции			
1	Выделенная запись в листе списка захваченных PDU. Запись выделятся нажатием левой кнопки мыши. Программа помечает текущую выделенную запись серым цветом.			
2	Подробная информация о выделенном PDU.			

Информация о выделенном PDU выводится в виде иерархического списка. Иерархия списка соответствует порядку инкапсуляции данных, применяемой при использовании протоколов стека TCP/IP для передачи информации между устройствами.

На рисунке X показан пример вывода информации о захваченном PDU протокола HTTP.

Рисунок 15. Информация о захваченном PDU протокола HTTP.

Выделенная область	Описание и функции
1	Выделенное PDU в поле списка захваченных PDU. В соответствии с установками по умолчанию, программа отмечает выделенное PDU серым цветом.
	⊞ Frame 1417
2	В этом вложенном списке содержится справочная информация о захваченном PDU, такая как: время захвата, длинна PDU и т.д.
	⊞ Ethernet II,
3	В этом вложенном списке расположена информация о заголовке протокола канального (Data Link) уровня. В данном случае это протокол Ethernet.
	Internet Protocol,
4	В этом вложенном списке расположена информация о заголовке протокола сетевого (Network) уровня. В данном случае это протокол IP.
_	■ Transmission Control Protocol,
5	В этом вложенном списке расположена информация о заголовке протокола транспортного (Transport) уровня. В данном случае это протокол TCP.
	■ Hypertext Transfer Protocol
6	В этом вложенном списке расположена информация о заголовке протокола транспортного (Application) уровня. В данном случае это протокол HTTP.

Интерпретация вложенных списков.

Каждый вложенный список представляет собой последовательность полей (всех, или основных), содержащихся в заголовке протокола, используемого при инкапсуляции данных.

Порядок полей в списке соответствует порядку полей в заголовке протокола.

Протокол Ethernet

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI.

Схематичное изображение кадра протокола Ethernet и соответствующий вывод программы Wireshark показаны на рисунке X.

Зелёным цветом выделены поля, выводимые программой.

Рисунок 16. Поля заголовка кадра протокола Ethernet.

Информацию в заголовке списка можно интерпретировать следующим образом:

Ethernet II, - Это кадр протокола Ethernet.

Src: Foxconn_be:5a:27 (00:01:6c:be:5a:27), - Физический адрес устройства отправителя, 00:01:6c:be:5a:27, производитель сетевой карты – компания Foxconn.

Dst: it-server.class.mitht.ru (00:04:23:bf:bc:19) — Физический адрес устройства получателя 00:04:23:bf:bc:19, DNS имя устройства - it-server.class.mitht.ru.

Поле	Описание			
Destination	Destination: it-server.class.mitht.ru (00:04:23:bf:bc:19)			
	Интерпретация аналогична интерпретации информации из заголовка списка.			
Source	Source: Foxconn_be:5a:27 (00:01:6c:be:5a:27)			
	Интерпретация аналогична интерпретации информации из заголовка списка.			
Туре	Туре: IP (0x0800) – На сетевом уровне используется протокол IPv4.			
	Значение, этого поля позволяет устройству определить, какому протоколу сетевого уровня следует дальше передать полученное PDU. В данном случае – это протокол IP.			
	Другие наиболее часто встречающиеся значения поля Туре: 0x0806 – ARP, 0x86DD – IPv6.			

Протокол ІР.

Протокол IP — протокол сетевого уровня, обеспечивающий систему глобальной логической адресации для устройств в сети.

Схематичное изображение заголовка пакета протокола IP и соответствующий вывод программы Wireshark показаны на рисунке X.

Зелёным цветом выделены поля, выводимые программой.

Byte 1		Byte 2	Byte 3		Byte 4
Version Header Differentiated Services Field		Total Length			
Identification			Flag	Fi	ragment Offset
Time t	Time to Live		Header Checksum		Checksum
		Sou	ırce		
		Desti	nation		
		Options			Padding

```
■ Frame 1417 (385 bytes on wire, 385 bytes captured)

⊕ Ethernet II, Src: Foxconn_be:5a:27 (00:01:6c:be:5a:27), Dest: it-server.class.mitht.ru (00:04:23:bf:bc:19)
■ Internet Protocol, Src: 172.16.1.50 (172.16.1.50), Dst: tessie.mitht.ru (193.232.216.7)
   Version: 4
   Header length: 20 bytes
 ■ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
   Total Length: 371
   Identification: 0xd63d (54845)
 ⊞ Flags: 0x04 (Don't Fragment)
   Fragment offset: 0
   Time to live: 128
   Protocol: TCP (0x06)
 Source: 172.16.1.50 (172.16.1.50)
   Destination: tessie.mitht.ru (193.232.216.7)
⊞ Transmission Control Protocol, Src Port: 1365 (1365), Dst Port: 3128 (3128), Seq: 1, Ack: 1, Len: 331

■ Hypertext Transfer Protocol
```

Рисунок 17. Поля заголовка пакета протокола IP.

Информацию в заголовке списка можно интерпретировать следующим образом:

Internet Protocol, - Это пакет протокола IP.

src: 172.16.1.50 (172.16.1.50), - Сетевой адрес устройства отправителя 172.16.1.50.

Dst: tessie.mitht.ru (193.232.216.7) – Сетевой адрес устройства получателя 193.232.216.7, DNS имя устройства получателя tessie.mitht.ru.

Интерпретация значений наиболее важных полей приведена в таблице ниже.

Поле	Описание
Time to Live	Time to live: 128 — Максимально возможное количество сетевых устройств, которые могут обработать и передать пакет дальше по сети равняется 128.
Protocol	Protocol: TCP (0x06) – На транспортном уровне используется протокол TCP.
	Значение, этого поля позволяет устройству определить, какому протоколу транспортного уровня следует дальше передать полученное PDU. В данном случае – это протокол TCP.
	Другие наиболее часто встречающиеся значения поля Protocol: 0x01 – ICMP, 0x11 - UDP
Source	Source: 172.16.1.50 (172.16.1.50),
	Интерпретация аналогична интерпретации информации из заголовка списка.
Destination	Destination: tessie.mitht.ru (193.232.216.7)
	Интерпретация аналогична интерпретации информации из заголовка списка.

Протокол ТСР

Протокол ТСР – протокол транспортного уровня, обеспечивающий надёжную передачу информации между приложениями взаимодействующих устройств.

Схематичное изображение заголовка пакета протокола IP и соответствующий вывод программы Wireshark показаны на рисунке X.

Зелёным цветом выделены поля, выводимые программой.

 2 Bytes

 Source port
 Destination Port

 Sequence number

 Acknowledgement number

 Header Length
 (Reserved)
 Flags
 Window Size

 TCP Checksum
 Urgent Pointer

 Options (if any)

```
■ Frame 1417 (385 bytes on wire, 385 bytes captured)
⊕ Ethernet II, Src: Foxconn_be:5a:27 (00:01:6c:be:5a:27), Dst: it-server.class.mitht.ru (00:04:23:bf:bc:19)
⊞ Internet Protocol, Src: 172.16.1.50 (172.16.1.50), Dst: tessie.mitht.ru (193.232.216.7)
■ Transmission Control Protocol, Src Port: 1365 (1365), Dst Port: 3128 (3128), Seq: 1, Ack: 1, Len: 331
    Source port: 1365 (1365)
    Destination port: 3128 (3128)
    [Stream index: 30]
    Sequence number: 1
                         (relative sequence number)
    [Next sequence number: 332 (relative sequence number)]
    Acknowledgement number: 1
                                 (relative ack number)
    Header length: 20 bytes
  ■ Flags: 0x18 (PSH. ACK)
   Window size: 17520

■ Checksum: 0xd8b0 [validation disabled]

  ■ [SEQ/ACK analysis]

■ Hypertext Transfer Protocol
```

Рисунок 18. Поля заголовка сегмента ТСР.

Информацию в заголовке списка можно интерпретировать следующим образом:

Transmission control Protocol, - Это сегмент протокола ТСР.

Src Port: 1365 (1365), - Приложение устройства отправителя использует порт 1365.

Dst Port: 3128 (3128), - Приложение устройства получателя использует порт 3128

Len: 331 – Сегмент содержит 331 байт информации.

Интерпретация значений наиболее важных полей приведена в таблице ниже.

Поле	Описание				
Source port	Source Port: 1365 (1365)				
	Интерпретация аналогична интерпретации информации из заголовка списка.				
Destination port	Destination Port: 3128 (3128)				
	Интерпретация аналогична интерпретации информации из заголовка списка.				
Sequence number N Acknowledgement number	Sequence number: 1 (.relative sequence number) [Next sequence number: 332 (relative sequence number)] Acknowledgement number: 1 (relative ack number) Поля, использующиеся для организации надёжной доставки информации				
Window size	между приложениями. Количество байт, которые могут быть переданы без подтверждения.				

Протокол UDP.

Протокол ТСР – протокол транспортного уровня, обеспечивающий передачу информации между приложениями взаимодействующих устройств с минимальным задержками.

Схематичное изображение заголовка пакета протокола IP и соответствующий вывод программы Wireshark показаны на рисунке X.

Зелёным цветом выделены поля, выводимые программой.

001

2 Bytes	2 Bytes
Source Port	Destination Port
Length	Checksum CRC

0 0 1

Рисунок 19. Поля заголовка датаграммы UDP.

Информацию в заголовке списка можно интерпретировать следующим образом:

User Datagram Protocol, - Это датаграмма протокола TCP

Src Port: 1364 (1364), - Приложение устройства отправителя использует порт 1364.

Dst Port: 88 (88) - Приложение устройства получателя использует порт 88

Поле	Описание	
Source port	Source Port: 1364 (1364)	
	Интерпретация аналогична интерпретации информации из заголовка списка.	
Destination port	Destination Port: 88 (88)	
	Интерпретация аналогична интерпретации информации из заголовка списка.	
Length	Длина датаграммы.	

Этапы старта программы

1. Запустить программу Wireshark.

Для запуска программы необходимо нажать: **Пуск > Программы > Wireshark**, либо два раза щёлкнуть левой кнопкой мыши по ярлыку программы на рабочем столе.

2. Настроить параметры захвата сетевого трафика.

Для настройки параметров захвата сетевого трафика необходимо:

2.1 Щелчком левой кнопки мыши по кнопке Capture Options вызвать меню настроек.

2.2 Установить параметры в соответствии с рисунком 2.

Следующие опции должны быть активированы:

- Capture packets in promiscuous mode.
- Update list of packets in real time
- Automatic scrolling in live capture
- Enable MAC name resolution
- Enable network name resolution

В качестве интерфейса, используемого для захвата трафика выбрать физический (не виртуальный) адаптер и установить тип адаптера **Local**.

3. Запустить процесс захвата трафика.

Для запуска процесса необходимо нажать кнопку **Start** в меню настроек.