Lista de exercícios

Fábio Braga, João Lucas Lima, Luca Argolo, Thiago Vieira September 25, 2021

Questão 1.

a)

$$\varphi \lor (\psi \land \chi) \equiv (\varphi \lor \psi) \land (\varphi \lor \chi)$$

Seja $v \in 2^v$ tal que $v \models \varphi \lor (\psi \land \chi)$, então ou $v \models \varphi$ ou $v \models (\psi \land \chi)$.

Se $v \vDash \varphi$, então $v \vDash \varphi \lor \psi$ e $v \vDash \varphi \lor \chi$. Logo, $v \vDash (\varphi \lor \psi) \land (\varphi \lor \chi)$.

Se $v \nvDash \varphi$ mas $v \vDash (\psi \land \chi)$, então $v \vDash \psi$ e $v \vDash \chi$. Logo, $v \vDash \varphi \lor \psi$ e $v \vDash \varphi \lor \chi$. Portanto, $v \vDash (\varphi \lor \psi) \land (\varphi \lor \chi)$.

b) $\varphi \to \psi \to \chi \equiv \varphi \land \psi \to \chi$

Seja $v \in 2^v$ tal que $v \models \varphi \rightarrow (\psi \rightarrow \chi)$. Então, ou $v \not\models \varphi$ ou $v \models \varphi$ e $v \models (\psi \rightarrow \chi)$.

Se $v \nvDash \varphi$, então $v \nvDash (\varphi \land \psi)$. Logo, $v \vDash (\varphi \land \psi) \rightarrow \chi$.

Se $v \vDash \varphi$ e $v \vDash (\psi \to \chi)$ ou $v \nvDash \psi$, nesse caso, $v \nvDash \varphi \land \psi$ e $v \vDash (\varphi \land \psi) \to \chi$. O outro caso seria para $v \vDash \psi$ e $v \vDash \chi$, então $v \vDash (\varphi \land \psi) \to \chi$.

c) Seja $v \in 2^v$ tal que $v \models (\varphi \land \psi) \lor \psi$). Então, ou $v \models (\varphi \land \psi)$ ou $v \models \psi$ Se $v \models \psi$ o resultado é demonstrado.

Se $v \models (\varphi \land \psi), v \models \varphi \in v \models \psi$. Logo, o resultado é demonstrado.

d) Seja $v \in 2^v$ tal que $v \models (\varphi \lor \psi) \land \psi$). Então, $v \models (\varphi \lor \psi)$ e $v \models \land \psi$). Logo, segue o resultado.

Questão 2. Seja A um conjunto, r uma relação de equivalência em A e Pa o conjunto de todas as partições de A.

Definimos a função g
: $\mathbb{R}\to Pa,\,g:r\to A_{/r},$ sendo $A_{/r}$ o conjunto quociente de r
 em A.

Provando a injetividade:

Seja
$$r_1=r_2$$
. Temos $A_{/r_1}=\{[x]_{r_1}|x\in A\},\ [x]_{r_1}=\{z\in A|x\ r_1\ z\}.$ Como $r_1=r_2$, temos que $[x]_{r_1}=\{z\in A|x\ r_2\ z\}=[x]_{r_2}.$ Então $A_{r_1}=[x]_{r_1}|x\in A=[x]_{r_2}|x\in A=A_{r_2}.$

Provando a sobrejetividade:

Qualquer partição induz, por definição, uma relação de equivalência. \forall x, y no mesmo subconjunto, x r y.

Sejam φ_1, φ_2 tais que $\varphi_1 \equiv \varphi_2$. Isso significa que $v \vDash \varphi_1 \Leftrightarrow \varphi_2 \forall v \in 2^v$.

Definimos $\neg v$ como o inverso de v. Logo, $\neg v \vDash \neg \varphi_1 \Leftrightarrow \neg v \vDash \neg \varphi_1$.

Dessa forma, a definição de equivalência é satisfeita.

Questão 3.

a) Seja $\varphi \in F_m$, uma fórmula nessa base $\{\neg, \lor, \land\}$, então podemos substituir todas subfórmulas de φ por fórmulas equivalentes: $\chi \land \varphi \equiv \neg(\neg \chi \lor \neg \varphi\}$). Para provar a equivalência segue que:

Se $v \vDash (\chi \land \varphi)$, então $v \vDash \chi$ e $v \vDash \varphi$, ou seja $v \nvDash \neg \chi$ e $v \nvDash \neg \varphi$. Logo $v \nvDash (\neg \chi \lor \neg \varphi)$, por fim $v \vDash \neg (\neg \chi \lor \neg \varphi)$.

b) Seja $\varphi \in F_m$, uma fórmula na base $\{\neg, \land\}$, então podemos substituir todas subfórmulas de φ conforme a equivalência a seguir.

Seja $v \in 2^v$ tal que $v \models (\chi \land \varphi)$, logo, $v \models \chi$ e $v \models \varphi$, ou seja $v \nvDash \neg \varphi$. Logo, $v \nvDash \chi \to \neg \varphi$, então $v \models \neg (\chi \to \neg \varphi)$.

c) Seja $\varphi \in F_m$, uma fórmula na base $\{\neg, \rightarrow\}$, então podemos substituir todas as subformulas de φ com a seguinte equivalência lógica: $\neg \varphi \equiv \bot \varphi \rightarrow \bot$.

Provamos a equivalência da seguinte maneira:

Seja $v \in 2^v$ tal que $v \models \neg \varphi$, então $v \not\models \varphi$, logo, $v \models \varphi \rightarrow \bot$

Questão 4. Seja φ e $\psi \in F_m \wedge$. Fazendo o primeiro passo indutivo, considere φ atômicos. Como nem \bot ou \top existem na base $\{\wedge\}$, precisamos provar somente o caso de serem variável. Se for variável, φ não podem ser válidas, pois pode existir uma valoração $v \in 2^v$ tal que φ seja igual a zero.

Passo indutivo:

Seja φ , temos que provar que φ não pode ser válida. Segue a hipótese de indução, como χ e ψ não podem ser válidas, logo, existe uma valoração $v \in 2^v$ que não satisfaça χ ou ψ , logo $\{\wedge\}$ não pode ser base porque não existe \top .

Questão 5.

$$\begin{split} \varphi &= p \to \neg (q \to r) \\ \varphi &\equiv p \to \neg (\neg q \vee \neg r) \\ \varphi &\equiv p \to (q \wedge \neg r) \\ \varphi &\equiv \neg p \vee (q \wedge \neg r), FND \\ \varphi &\equiv (\neg p \vee \neg q) \wedge (\neg p \vee \neg r), FNC \end{split}$$

$$\psi = x \lor y \to \neg x$$

$$\psi \equiv \neg (x \lor y) \lor \neg x$$

$$\psi \equiv (\neg x \land \neg y) \lor \neg x, FND$$

$$\psi \equiv (\neg x \lor \neg x) \land (\neg y \lor \neg x), FNC$$

$$\begin{split} \epsilon &= x \wedge y \to \neg x \\ \epsilon &\equiv \neg (x \wedge y) \vee \neg x \\ \epsilon &\equiv (\neg x \vee \neg y) \vee \neg x \\ \epsilon &\equiv \neg x \vee \neg x \vee \neg x, FNCeFND \end{split}$$

- Questão 6.
- Questão 7.