

Figure 3.9: Collision resolution by chaining

1	2	3	4	5	6	7	8	9	10	11
		X		X	X		X	X		

Figure 3.10: Collision resolution by open addressing

Búsqueda

- Resolución de colisiones por encadenamiento abierto.
 - El esquema de direccionamiento abierto más simple es conocido como "Intento o exploración lineal":

$$h_0 = H(K)$$

 $h_i = (h_0 + i) MOD N, i = 1.. N-1$

 La exploración cuadrática es una variante que disminuye el agrupamiento de las entradas alrededor de las claves primarias.

$$h_0 = H(K)$$

 $hi = (h_0 + i^2) MOD N, i > 0$

 Otra opción para la anterior es sumar un valor c primo con N.

$$h_i = (h_0 + c) MOD N$$

$$\alpha = \frac{n}{m}$$

donde:

- lpha es el factor de carga.
- n es el número de elementos almacenados en la tabla hash.
- m es el tamaño (o capacidad) de la tabla hash (el número de "cubetas" o slots disponibles).

a	E				
0.1	1.06				
0.25	1.17				
0.5	1.50				
0.75	2.50				
0.9	5.50				
0.95	10.50				

Table 4.7 Expected number of probes for linear probing.