Homework 2

thus,
$$f(x) = (1+x)^{N} = 1 + Nx + O(x)$$

Of
$$x > 0$$
 will $x > 0$ with $x > 0$ with

$$= \lim_{X \to 0} \left| \frac{1}{2} \frac{\cos(\sqrt{X} \cdot x^{-1/2})}{\frac{1}{2} x^{-1/2}} \right| \leftarrow \text{l'hopitals}$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

$$= \lim_{X \to 0} \left| \cos(\sqrt{X} \cdot x^{-1/2}) \right|$$

= 1 > 0Hhus, $x \sin(x) = 0(x^{3/2})$

(c) show
$$e^{-t} = 0\left(\frac{1}{t^2}\right)$$
 as $t \neq \infty$

$$\lim_{t \to \infty} \left| \frac{e^{-t}}{1/t^2} \right| = \lim_{t \to \infty} \left| \frac{t^2}{e^t} \right|$$

$$= \lim_{t \to \infty} \left| \frac{2t}{e^t} \right| \leftarrow \text{l'hopitals}$$

$$= \lim_{t \to \infty} \left| \frac{2}{e^t} \right| \leftarrow \text{l'hopitals}$$

$$= 0$$

$$= 0$$

$$\text{Hhus, } e^{-t} = 0\left(\frac{1}{1^2}\right)$$

(d) show
$$\int_0^{\varepsilon} e^{-x^2} dx = 0$$
 (e) $\int_0^{\varepsilon} e^{-x^2} dx = 0$ (f) $\int_0^{\varepsilon} e^{-x^2} dx = 0$ (e) $\int_0^{\varepsilon} e^{-x^2} dx = 0$ (f) $\int_0^{\varepsilon} e^{-x} dx = 0$ (f) $\int_0^{\varepsilon} e^{-x} dx = 0$ (f)

= 170

HNUS, $S_0^{\varepsilon} e^{-x^2} dx = O(\varepsilon)$

2.
$$Ax = b$$

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1+10^{-10} & 1-10^{-10} \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1-10^{10} & 10^{10} \\ 1+10^{10} & -10^{10} \end{bmatrix}, \text{ perturbation in } b = \begin{bmatrix} \Delta b_1 \\ \Delta b_2 \end{bmatrix}$$

(a) find the exact formula for change in the soln x = [1]

$$\Delta X = A^{-1} \Delta b = \begin{bmatrix} 1 - 10^{10} & 10^{10} \\ 1 + 10^{10} & - |0^{10} | \end{bmatrix} \begin{bmatrix} 1 + \Delta b_1 \\ 1 + \Delta b_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 10^{10} + \Delta b_1 (1 - 10^{10}) + 10^{10} + \Delta b_2 |0^{10} \\ 1 + 10^{10} + \Delta b_1 (1 + 10^{10}) - 10^{10} - \Delta b_2 |0^{10} | \end{bmatrix}$$

$$= \begin{bmatrix} 1 + \Delta b_1 (1 - 10^{10}) + \Delta b_2 |0^{10} \\ 1 + \Delta b_1 (1 + 10^{10}) - \Delta b_2 |0^{10} | \end{bmatrix}$$

$$|\Delta X - X| = \begin{bmatrix} 1 + \Delta b_1 (1 - 10^{10}) + \Delta b_2 |0^{10} \\ 1 + \Delta b_1 (1 + 10^{10}) - \Delta b_2 |0^{10} | \end{bmatrix}$$

$$= \begin{bmatrix} \Delta b_1 (1 - 10^{10}) + \Delta b_2 |0^{10} \\ \Delta b_1 (1 + 10^{10}) - \Delta b_2 |0^{10} | \end{bmatrix}$$

$$= \begin{bmatrix} \Delta b_1 (1 - 10^{10}) + \Delta b_2 |0^{10} \\ \Delta b_1 (1 + 10^{10}) - \Delta b_2 |0^{10} | \end{bmatrix}$$

(b) Whats the condition # of A?

$$K(A) = ||A^{-1}||_{2} ||A||_{2}$$

= $2 \times |D^{10} \cdot |$
= $2 \times |D^{10}|$ [code in vepo]

(c) let Δb_1 and Δb_2 be of magnitude 10^{-5} relative every = $|\Delta x - x|$

$$= \begin{bmatrix} 10^{-5}(1-10^{10}) + 10^{-5}10^{10} \\ 10^{-5}(1+10^{10}) - 10^{-5}10^{10} \end{bmatrix}$$

$$= \begin{bmatrix} 10^{-5} - 10^{5} + 10^{5} \\ 10^{-5} + 10^{5} - 10^{5} \end{bmatrix}$$

$$= \begin{bmatrix} 10^{-5} \end{bmatrix}$$

relative error = perturbation

Same value of perturbation is more vealistic

(a) what is k(f(x))?

$$K = |f'(C)||X|$$
, $C \in (X, \Delta X)$
 $= |e^{C}||X||$
 $= |e^{C}|X||$
 $= |e^{C}|X||$
 $= |e^{C}|X||$

(b) consider computing f(x) using this algo: 1. $y = math \cdot e^{\Lambda}x$

2. return 9-1

this algorithm is not stable because it includes subtraction of values that could be close to equal if x~0

(c) let $x = 9.999999999900000 \times 10^{-10}$, thus f(x) = 10^{-9} algorith veturns 1.000000082740371 $\times 10^{-9}$

returns 8 correct digits
this is expected because the algorithm is
unstable

(d) find a polynomial approx. for f(x)

taylor series $f(x) = e^{x} - 1$, $\alpha = 0$ f(0) = 0 $f'(x) = e^{x} = f''(x) = f'''(x) = ...$ f'(0) = 1 $f(x) = x + x^{2} + x^{3} + x^{4} + ...$ $\frac{1}{2} = \frac{1}{3!} + \frac{1}{4!}$

(e) verify (d) [code in repo]