Predicting real exoplanets using machine learning techniques (Evaluator-OMID-BAGHCHEH-SARAEI)

June 27, 2022

The idea is to create a machine learning model that can predict if an observation is a real exoplanet or not. The data was collected by the Kepler mission that revealed thousands of planets out of our Solar System. The purpose of this project is to build an algorithm to find planets out of the solar system in NASA Exoplanet Dataset stored in exoplanets.zip. I use classic machine learning algorithms and TensorFlow to identify real exoplanets.

```
[]: #Import libraries
   import numpy as np
   import scipy.optimize as opt
   import seaborn as sns
   import pandas as pd
   from sklearn.tree import DecisionTreeClassifier
   import matplotlib.pyplot as plt
   from sklearn import preprocessing
   import tensorflow as tf
   import cv2
   from google.colab.patches import cv2_imshow
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn import metrics
   from sklearn.metrics import classification_report
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.ensemble import GradientBoostingClassifier
   from sklearn.ensemble import VotingClassifier
   from sklearn.neural_network import MLPClassifier
   from sklearn.naive_bayes import GaussianNB
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import MinMaxScaler
   %matplotlib inline
```

1 Read data using pandas

```
[]: df = pd.read_csv("exoplanets.zip")
df.sample(5)
```

```
[]:
            kepid kepoi_name
                                kepler_name koi_disposition koi_pdisposition \
          6347299
                   K00661.01
                              Kepler-204 b
   3506
                                                  CONFIRMED
                                                                    CANDIDATE
   3552
          7368664
                   K00614.01
                               Kepler-434 b
                                                  CONFIRMED
                                                                    CANDIDATE
   202
          7135852 K00875.01
                                                  CANDIDATE
                                                                    CANDIDATE
                                        NaN
         10910878 K00757.01
                              Kepler-229 c
                                                  CONFIRMED
                                                                    CANDIDATE
   9285 10535991 K08024.01
                                        NaN FALSE POSITIVE
                                                              FALSE POSITIVE
         koi_score koi_fpflag_nt
                                  koi_fpflag_ss koi_fpflag_co
                                                                  koi_fpflag_ec \
   3506
               1.0
                                 0
                                                0
                                                               0
   3552
               1.0
                                 0
                                                               0
                                                0
                                                                               0
   202
               1.0
                                 0
                                                0
                                                               0
                                                                               0
               1.0
                                 0
                                                0
                                                               0
                                                                               0
   9285
               0.0
                                 0
                                                0
                                                                               1
              koi_steff_err2 koi_slogg_koi_slogg_err1 koi_slogg_err2 \
   3506
                                   4.270
                                                   0.156
                                                                   -0.104
                      -117.0
   3552
                       -80.0
                                   4.218
                                                   0.143
                                                                  -0.117
         . . .
   202
                       -259.0
                                   4.747
                                                   0.105
                                                                  -0.094
   9
                       -83.0
                                   4.485
                                                   0.083
                                                                  -0.028
   9285
                      -179.0
                                   4.554
                                                   0.036
                                                                  -0.192
         koi_srad koi_srad_err1 koi_srad_err2
                                                                    dec
                                                                        koi_kepmag
                                                         ra
   3506
            1.198
                            0.178
                                          -0.198 285.34720 41.761921
                                                                             13.909
   3552
            1.424
                            0.249
                                          -0.249 293.58636 42.928909
                                                                             14.517
   202
            0.517
                            0.114
                                          -0.114 296.69394 42.626110
                                                                             15.692
   9
                            0.033
                                          -0.072 286.99948 48.375790
            0.848
                                                                             15.841
                                          -0.078 292.22760 47.746262
   9285
            0.846
                            0.235
                                                                             15.767
```

[5 rows x 49 columns]

2 Rename columns to make them easier to use

```
[]: df = df.rename(columns={'kepid':'KepID',
    'kepoi_name':'KOIName',
    'kepler_name':'KeplerName',
    'koi_disposition':'ExoplanetArchiveDisposition',
    'koi_pdisposition':'DispositionUsingKeplerData',
    'koi_score':'DispositionScore',
    'koi_fpflag_nt':'NotTransit-LikeFalsePositiveFlag',
    'koi_fpflag_ss':'koi_fpflag_ss',
    'koi_fpflag_co':'CentroidOffsetFalsePositiveFlag',
    'koi_fpflag_ec':'EphemerisMatchIndicatesContaminationFalsePositiveFlag',
    'koi_period':'OrbitalPeriod_days',
    'koi_period_err1':'OrbitalPeriodUpperUnc_days',
    'koi_period_err2':'OrbitalPeriodLowerUnc_days',
    'koi_timeObk':'TransitEpoch_BKJD',
```

```
'koi_timeObk_err1':'TransitEpochUpperUnc_BKJD',
    'koi timeObk err2': 'TransitEpochLowerUnc BKJD',
    'koi_impact':'ImpactParamete',
    'koi_impact_err1':'ImpactParameterUpperUnc',
    'koi_impact_err2':'ImpactParameterLowerUnc',
    'koi_duration':'TransitDuration_hrs',
    'koi duration err1': 'TransitDurationUpperUnc hrs',
    'koi_duration_err2':'TransitDurationLowerUnc_hrs',
    'koi depth': 'TransitDepth ppm',
    'koi depth err1': 'TransitDepthUpperUnc ppm',
    'koi depth err2': 'TransitDepthLowerUnc ppm',
    'koi_prad': 'PlanetaryRadius_Earthradii',
    'koi prad err1': 'PlanetaryRadiusUpperUnc Earthradii',
    'koi_prad_err2':'PlanetaryRadiusLowerUnc_Earthradii',
    'koi teg': 'EquilibriumTemperatureK',
    'koi_teq_err1': 'EquilibriumTemperatureUpperUncK',
    'koi_teq_err2':'EquilibriumTemperatureLowerUncK',
    'koi insol': 'InsolationFlux Earthflux',
    'koi_insol_err1':'InsolationFluxUpperUnc_Earthflux',
    'koi_insol_err2':'InsolationFluxLowerUnc_Earthflux',
    'koi_model_snr':'TransitSignal-to-Nois',
    'koi tce plnt num': 'TCEPlanetNumbe',
    'koi_tce_delivname':'TCEDeliver',
    'koi steff': 'StellarEffectiveTemperatureK',
    'koi steff err1': 'StellarEffectiveTemperatureUpperUncK',
    'koi steff err2': 'StellarEffectiveTemperatureLowerUncK',
    'koi_slogg':'StellarSurfaceGravity_log10(cm/s**2)',
    'koi slogg err1':'StellarSurfaceGravityUpperUnc log10(cm/s**2)',
    'koi_slogg_err2':'StellarSurfaceGravityLowerUnc_log10(cm/s**2)',
    'koi_srad':'StellarRadius_Solarradii',
    'koi_srad_err1':'StellarRadiusUpperUnc_Solarradii',
    'koi_srad_err2':'StellarRadiusLowerUnc_Solarradii',
    'ra':'RA decimaldegrees',
    'dec': 'Dec_decimaldegrees',
   'koi_kepmag':'Kepler-band_mag'
   })
   df.head().T
[]:
   KepID
                                                                10797460
   KOIName
                                                               K00752.01
   KeplerName
                                                            Kepler-227 b
   ExoplanetArchiveDisposition
                                                               CONFIRMED
   DispositionUsingKeplerData
                                                               CANDIDATE
   DispositionScore
                                                                     1.0
   NotTransit-LikeFalsePositiveFlag
                                                                       0
   koi_fpflag_ss
                                                                       0
```

CentroidOffsetFalsePositiveFlag	0	
EphemerisMatchIndicatesContaminationFalsePositi	0	
OrbitalPeriod_days	9.488036	
OrbitalPeriodUpperUnc_days	0.000028	
OrbitalPeriodLowerUnc_days	-0.000028	
TransitEpoch_BKJD	170.53875	
TransitEpochUpperUnc_BKJD	0.00216	
TransitEpochLowerUnc_BKJD	-0.00216	
ImpactParamete	0.146	
ImpactParameterUpperUnc	0.318	
ImpactParameterLowerUnc	-0.146	
TransitDuration_hrs	2.9575	
TransitDurationUpperUnc_hrs	0.0819	
TransitDurationLowerUnc_hrs	-0.0819	
TransitDepth_ppm	616.0	
TransitDepthUpperUnc_ppm	19.5	
TransitDepthLowerUnc_ppm	-19.5	
PlanetaryRadius_Earthradii	2.26	
PlanetaryRadiusUpperUnc_Earthradii	0.26	
PlanetaryRadiusLowerUnc_Earthradii	-0.15	
EquilibriumTemperatureK	793.0	
EquilibriumTemperatureUpperUncK	NaN	
EquilibriumTemperatureLowerUncK	NaN	
InsolationFlux_Earthflux	93.59	
InsolationFluxUpperUnc_Earthflux	29.45	
${\tt InsolationFluxLowerUnc_Earthflux}$	-16.65	
TransitSignal-to-Nois	35.8	
TCEPlanetNumbe	1.0	
TCEDeliver	q1_q17_dr25_tce	
StellarEffectiveTemperatureK	5455.0	
StellarEffectiveTemperatureUpperUncK	81.0	
StellarEffectiveTemperatureLowerUncK	-81.0	
StellarSurfaceGravity_log10(cm/s**2)	4.467	
StellarSurfaceGravityUpperUnc_log10(cm/s**2)	0.064	
StellarSurfaceGravityLowerUnc_log10(cm/s**2)	-0.096	
StellarRadius_Solarradii	0.927	
StellarRadiusUpperUnc_Solarradii	0.105	
StellarRadiusLowerUnc_Solarradii	-0.061	
RA_decimaldegrees	291.93423	
Dec_decimaldegrees	48.141651	
Kepler-band_mag	15.347	
VonTD	10707460	\
KepID	10797460	
KOIName	K00752.02	
KeplerName EvenleretArchiveDignegition	Kepler-227 c	
ExoplanetArchiveDisposition	CONFIRMED	

Diamoniti an Ilain aVan lan Data	CANDIDATE
DispositionUsingKeplerData	CANDIDATE
DispositionScore	0.969
NotTransit-LikeFalsePositiveFlag	0
koi_fpflag_ss	0
CentroidOffsetFalsePositiveFlag	0
EphemerisMatchIndicatesContaminationFalsePositi	0
OrbitalPeriod_days	54.418383
OrbitalPeriodUpperUnc_days	0.000248
OrbitalPeriodLowerUnc_days	-0.000248
TransitEpoch_BKJD	162.51384
TransitEpochUpperUnc_BKJD	0.00352
TransitEpochLowerUnc_BKJD	-0.00352
ImpactParamete	0.586
ImpactParameterUpperUnc	0.059
ImpactParameterLowerUnc	-0.443
TransitDuration_hrs	4.507
TransitDurationUpperUnc_hrs	0.116
TransitDurationLowerUnc_hrs	-0.116
TransitDepth_ppm	875.0
TransitDepthUpperUnc_ppm	35.5
TransitDepthLowerUnc_ppm	-35.5
PlanetaryRadius_Earthradii	2.83
PlanetaryRadiusUpperUnc_Earthradii	0.32
PlanetaryRadiusLowerUnc_Earthradii	-0.19
EquilibriumTemperatureK	443.0
EquilibriumTemperatureUpperUncK	NaN
EquilibriumTemperatureLowerUncK	NaN
<pre>InsolationFlux_Earthflux</pre>	9.11
<pre>InsolationFluxUpperUnc_Earthflux</pre>	2.87
InsolationFluxLowerUnc_Earthflux	-1.62
TransitSignal-to-Nois	25.8
TCEPlanetNumbe	2.0
TCEDeliver	q1_q17_dr25_tce
StellarEffectiveTemperatureK	5455.0
StellarEffectiveTemperatureUpperUncK	81.0
StellarEffectiveTemperatureLowerUncK	-81.0
StellarSurfaceGravity_log10(cm/s**2)	4.467
StellarSurfaceGravityUpperUnc_log10(cm/s**2)	0.064
StellarSurfaceGravityLowerUnc_log10(cm/s**2)	-0.096
StellarRadius_Solarradii	0.927
StellarRadiusUpperUnc_Solarradii	0.105
StellarRadiusLowerUnc_Solarradii	-0.061
RA_decimaldegrees	291.93423
Dec_decimaldegrees	48.141651
Kepler-band_mag	15.347
·	

KepID	10811496
KOIName	K00753.01
KeplerName	NaN
ExoplanetArchiveDisposition	CANDIDATE
DispositionUsingKeplerData	CANDIDATE
DispositionScore	0.0
NotTransit-LikeFalsePositiveFlag	0
koi_fpflag_ss	0
CentroidOffsetFalsePositiveFlag	0
${\tt EphemerisMatchIndicatesContaminationFalsePositi}$	0
OrbitalPeriod_days	19.89914
OrbitalPeriodUpperUnc_days	0.000015
OrbitalPeriodLowerUnc_days	-0.000015
TransitEpoch_BKJD	175.850252
TransitEpochUpperUnc_BKJD	0.000581
TransitEpochLowerUnc_BKJD	-0.000581
ImpactParamete	0.969
ImpactParameterUpperUnc	5.126
ImpactParameterLowerUnc	-0.077
TransitDuration_hrs	1.7822
TransitDurationUpperUnc_hrs	0.0341
TransitDurationLowerUnc_hrs	-0.0341
TransitDepth_ppm	10800.0
TransitDepthUpperUnc_ppm	171.0
TransitDepthLowerUnc_ppm	-171.0
PlanetaryRadius_Earthradii	14.6
PlanetaryRadiusUpperUnc_Earthradii	3.92
PlanetaryRadiusLowerUnc_Earthradii	-1.31
EquilibriumTemperatureK	638.0
EquilibriumTemperatureUpperUncK	NaN
EquilibriumTemperatureLowerUncK	NaN
InsolationFlux_Earthflux	39.3
InsolationFluxUpperUnc_Earthflux	31.04
InsolationFluxLowerUnc_Earthflux	-10.49
TransitSignal-to-Nois	76.3
TCEPlanetNumbe	1.0
TCEDeliver	q1_q17_dr25_tce
StellarEffectiveTemperatureK	5853.0
StellarEffectiveTemperatureUpperUncK	158.0
StellarEffectiveTemperatureLowerUncK	-176.0
StellarSurfaceGravity_log10(cm/s**2)	4.544
StellarSurfaceGravityUpperUnc_log10(cm/s**2)	0.044
StellarSurfaceGravityLowerUnc_log10(cm/s**2)	-0.176
StellarRadius_Solarradii	0.868
StellarRadiusUpperUnc_Solarradii	0.233
StellarRadiusLowerUnc_Solarradii	-0.078
RA_decimaldegrees	297.00482

Dec_decimaldegrees	48.134129
Kepler-band_mag	15.436
	3 '
KepID	10848459
KOIName	K00754.01
KeplerName	NaN
ExoplanetArchiveDisposition	FALSE POSITIVE
DispositionUsingKeplerData	FALSE POSITIVE
DispositionScore	0.0
NotTransit-LikeFalsePositiveFlag	0
koi_fpflag_ss	1
${\tt CentroidOffsetFalsePositiveFlag}$	0
${\tt EphemerisMatchIndicatesContaminationFalsePositi}$	0
OrbitalPeriod_days	1.736952
OrbitalPeriodUpperUnc_days	0.0
OrbitalPeriodLowerUnc_days	-0.0
TransitEpoch_BKJD	170.307565
TransitEpochUpperUnc_BKJD	0.000115
TransitEpochLowerUnc_BKJD	-0.000115
ImpactParamete	1.276
ImpactParameterUpperUnc	0.115
ImpactParameterLowerUnc	-0.092
TransitDuration_hrs	2.40641
TransitDurationUpperUnc_hrs	0.00537
TransitDurationLowerUnc_hrs	-0.00537
TransitDepth_ppm	8080.0
TransitDepthUpperUnc_ppm	12.8
TransitDepthLowerUnc_ppm	-12.8
PlanetaryRadius_Earthradii	33.46
PlanetaryRadiusUpperUnc_Earthradii	8.5
PlanetaryRadiusLowerUnc_Earthradii	-2.83
EquilibriumTemperatureK	1395.0
EquilibriumTemperatureUpperUncK	NaN
EquilibriumTemperatureLowerUncK	NaN
InsolationFlux_Earthflux	891.96
InsolationFluxUpperUnc_Earthflux	668.95
InsolationFluxLowerUnc_Earthflux	-230.35
TransitSignal-to-Nois	505.6
TCEPlanetNumbe	1.0
TCEDeliver	q1_q17_dr25_tce
StellarEffectiveTemperatureK	5805.0
StellarEffectiveTemperatureUpperUncK	157.0
StellarEffectiveTemperatureLowerUncK	-174.0
StellarSurfaceGravity_log10(cm/s**2)	4.564
StellarSurfaceGravityUpperUnc_log10(cm/s**2)	0.053
StellarSurfaceGravityLowerUnc_log10(cm/s**2)	-0.168
,	-

StellarRadius_Solarradii	0.791
StellarRadiusUpperUnc_Solarradii	0.201
StellarRadiusLowerUnc_Solarradii	-0.067
RA_decimaldegrees	285.53461
Dec_decimaldegrees	48.28521
Kepler-band_mag	15.597
	4
KepID	10854555
KOIName	K00755.01
KeplerName	Kepler-664 b
ExoplanetArchiveDisposition	CONFIRMED
${\tt Disposition Using Kepler Data}$	CANDIDATE
DispositionScore	1.0
NotTransit-LikeFalsePositiveFlag	0
koi_fpflag_ss	0
CentroidOffsetFalsePositiveFlag	0
EphemerisMatchIndicatesContaminationFalsePositi	0
OrbitalPeriod_days	2.525592
OrbitalPeriodUpperUnc_days	0.000004
OrbitalPeriodLowerUnc_days	-0.000004
TransitEpoch_BKJD	171.59555
TransitEpochUpperUnc_BKJD TransitEpochLowerUnc_BKJD	0.00113 -0.00113
ImpactParamete	0.701
ImpactrarameterUpperUnc	0.235
ImpactParameterLowerUnc	-0.478
TransitDuration_hrs	1.6545
TransitDurationUpperUnc_hrs	0.042
TransitDurationLowerUnc hrs	-0.042
TransitDepth_ppm	603.0
TransitDepthUpperUnc_ppm	16.9
TransitDepthLowerUnc_ppm	-16.9
PlanetaryRadius_Earthradii	2.75
PlanetaryRadiusUpperUnc_Earthradii	0.88
PlanetaryRadiusLowerUnc_Earthradii	-0.35
EquilibriumTemperatureK	1406.0
${\tt Equilibrium Temperature Upper Unc K}$	NaN
EquilibriumTemperatureLowerUncK	NaN
InsolationFlux_Earthflux	926.16
<pre>InsolationFluxUpperUnc_Earthflux</pre>	874.33
InsolationFluxLowerUnc_Earthflux	-314.24
TransitSignal-to-Nois	40.9
TCEPlanetNumbe	1.0
TCEDeliver StellerEffectiveTemperatureV	q1_q17_dr25_tce
StellarEffectiveTemperatureK	6031.0
StellarEffectiveTemperatureUpperUncK	169.0

```
StellarEffectiveTemperatureLowerUncK
                                                               -211.0
StellarSurfaceGravity_log10(cm/s**2)
                                                                4.438
StellarSurfaceGravityUpperUnc_log10(cm/s**2)
                                                                 0.07
StellarSurfaceGravityLowerUnc_log10(cm/s**2)
                                                                -0.21
StellarRadius_Solarradii
                                                                1.046
StellarRadiusUpperUnc_Solarradii
                                                                0.334
StellarRadiusLowerUnc_Solarradii
                                                               -0.133
RA_decimaldegrees
                                                            288.75488
Dec decimaldegrees
                                                              48.2262
Kepler-band_mag
                                                               15.509
```

The dataset contains some columns that are not numeric. To work with these columns, they must be encoded into numeric forms. To do this, I use a map().

```
[]: df.DispositionUsingKeplerData = df.DispositionUsingKeplerData.map({'FALSE_\
→POSITIVE': 0, 'CANDIDATE': 1})

df.ExoplanetArchiveDisposition = df.ExoplanetArchiveDisposition.

→map({'CONFIRMED': 2, 'CANDIDATE': 1, 'FALSE POSITIVE': 0})

df.TCEDeliver = df.TCEDeliver.map({'q1_q17_dr25_tce': 0, 'q1_q16_tce': 1, \
→'q1_q17_dr24_tce': 2})
```

3 Rename targets

```
[]: df = df.rename(columns={'DispositionUsingKeplerData': 'ExoplanetCandidate', UsingKeplerData': 'ExoplanetCandidate', UsingK
```

4 Remove extra columns

```
[]: df = df.drop(columns=['KeplerName', 'KOIName', \

→'EquilibriumTemperatureUpperUncK', 'KepID', \

→'EquilibriumTemperatureLowerUncK'])
```

5 Replace NaN values with a specified value

```
[]: df = df.fillna(method="ffill")
```

6 I need to know what type of data I am working with before I can work with dataframe, so I check it using the dtypes.

```
[]: df.dtypes

[]: ExoplanetConfirmed int64
ExoplanetCandidate int64
```

DispositionScore	float64
NotTransit-LikeFalsePositiveFlag	int64
koi_fpflag_ss	int64
CentroidOffsetFalsePositiveFlag	int64
EphemerisMatchIndicatesContaminationFalsePositiveFlag	int64
OrbitalPeriod_days	float64
OrbitalPeriodUpperUnc_days	float64
OrbitalPeriodLowerUnc_days	float64
TransitEpoch_BKJD	float64
TransitEpochUpperUnc_BKJD	float64
TransitEpochLowerUnc_BKJD	float64
ImpactParamete	float64
ImpactParameterUpperUnc	float64
ImpactParameterLowerUnc	float64
TransitDuration_hrs	float64
TransitDurationUpperUnc_hrs	float64
TransitDurationLowerUnc_hrs	float64
TransitDepth_ppm	float64
TransitDepthUpperUnc_ppm	float64
TransitDepthLowerUnc_ppm	float64
PlanetaryRadius_Earthradii	float64
PlanetaryRadiusUpperUnc_Earthradii	float64
PlanetaryRadiusLowerUnc_Earthradii	float64
EquilibriumTemperatureK	float64
InsolationFlux_Earthflux	float64
<pre>InsolationFluxUpperUnc_Earthflux</pre>	float64
InsolationFluxLowerUnc_Earthflux	float64
TransitSignal-to-Nois	float64
TCEPlanetNumbe	float64
TCEDeliver	float64
StellarEffectiveTemperatureK	float64
StellarEffectiveTemperatureUpperUncK	float64
StellarEffectiveTemperatureLowerUncK	float64
StellarSurfaceGravity_log10(cm/s**2)	float64
StellarSurfaceGravityUpperUnc_log10(cm/s**2)	float64
StellarSurfaceGravityLowerUnc_log10(cm/s**2)	float64
StellarRadius_Solarradii	float64
StellarRadiusUpperUnc_Solarradii	float64
StellarRadiusLowerUnc_Solarradii	float64
RA_decimaldegrees	float64
Dec_decimaldegrees	float64
Kepler-band_mag	float64
dtype: object	

In the dataframe, there are 9564 records with 44 columns.

[]: df.shape

[]: (9564, 44)

I am going to test if there are NaN values in dataframe

```
[]: df.isnull().any().any()
```

: False

There are no NaN values

- 7 The next step is to examine classic machine learning algorithms and TensorFlow.
- 7.1 I first split the DataFrame into X (data) and Y (labels), where:

Target(label): ExoplanetConfirmed, with three class:

- CONFIRMED: 2
- CANDIDATE: 1
- FALSE POSITIVE: 0

```
[]: X = df.drop(['ExoplanetConfirmed'], axis=1)
y = df['ExoplanetConfirmed']
```

- 7.2 Using a train-test split, I split X and Y into train and test data to evaluate the machine learning algorithm's performance.
 - Train Dataset: Used to fit the machine learning model.
 - Test Dataset: Used to evaluate the fit machine learning model.

7.3 1. Classic machine learning algorithms

7.3.1 KNeighborsClassifier

Using X_{train} and y_{train} , train a KNeighborsClassifier with default parameters and $n_{\text{neighbors}=12}$.

```
[]: KNClf = KNeighborsClassifier(n_neighbors = 12) # KNClf = KNeighborsClassifier KNClf.fit(X_train_scaled, y_train)
```

[]: KNeighborsClassifier(n_neighbors=12)

Model prediction

```
[]: Model_Prediction_knn = KNClf.predict(X_test_scaled)
Model_Prediction_knn
```

[]: array([1, 1, 2, ..., 0, 2, 2])

Model Accuracy

Accuracy of KNeighborsClassifier on train set: 0.885 Accuracy of KNeighborsClassifier on test set: 0.860

I predicted the correct class on 86% of the samples in X_{test} . Is $n_{\text{neighbors}} = 12$ the best value? Yes, because:

```
[]: Ks = 15
mean_acc = np.zeros((Ks-1))
std_acc = np.zeros((Ks-1))

for n in range(1,Ks):

#Train Model and Predict
neigh = KNeighborsClassifier(n_neighbors = n).fit(X_train_scaled, y_train)
yhat = neigh.predict(X_test_scaled)
mean_acc[n-1] = metrics.accuracy_score(y_test, yhat)

std_acc[n-1]=np.std(yhat==y_test)/np.sqrt(yhat.shape[0])
mean_acc
```

```
[]: array([0.83437892, 0.82768716, 0.83479716, 0.84023421, 0.84232539, 0.85069009, 0.85152656, 0.85487244, 0.85570891, 0.85863655, 0.85989126, 0.86030949, 0.85780008, 0.8531995])
```

To better understand, I visualize previous cell to see better the relationship between Accuracy and Number of Neighbors(K).

plt.show()


```
[]: print("The best accuracy is {:.3f}" .format(mean_acc.max()), "with k =", □ →mean_acc.argmax()+ 1)
```

The best accuracy is 0.860 with k = 12

[]: print(classification_report(y_test, Model_Prediction_knn))

```
precision recall f1-score support
0 1.00 1.00 1.00 1190
```

1	0.77	0.64	0.70	601
2	0.69	0.80	0.74	600
accuracy			0.86	2391
macro avg	0.82	0.81	0.81	2391
weighted avg	0.86	0.86	0.86	2391

7.3.2 DecisionTreeClassifier

Using X_{train} and y_{train} , train a DecisionTreeClassifier with default parameters and random_state=0.

DecisionTreeClassifier(random_state=0)

```
[]: Model_Prediction = DTClf.predict(X_test)
```

In order to show easily the differences between model-based prediction and real values, I create a dataframe.

```
[]: d = {'real or true values(y_test)': y_test, 'Model_Prediction':⊔

→Model_Prediction}

dfC = pd.DataFrame(data=d)

dfC.head(10)
```

[]:		real	or	true	<pre>values(y_test)</pre>	${\tt Model_Prediction}$	
	9004				1	1	
	5028				1	1	
	1142				2	1	
	1355				0	0	
	8740				0	0	
	1432				2	2	
	1770				2	2	
	3465				0	0	
	3999				0	0	
	5418				0	0	

Model Accuracy

Accuracy of Decision Tree classifier on train set: 1.000 Accuracy of Decision Tree classifier on test set: 0.875

I predicted the correct class on 87.5% of the samples in X_test.

7.3.3 RandomForestClassifier

A random forest is a meta estimator that fits a number of decision tree classifiers on various subsamples of the dataset and uses averaging to improve the predictive accuracy and control overfitting.

```
[]: RandomForestClassifier(criterion='entropy', min_samples_leaf=2, n_estimators=300, random_state=0)
```

Model Accuracy

```
[]: print('Accuracy of RandomForestClassifier on train set: {:.3f}' .format(RFClf.

→score(X_train, y_train)))

print('Accuracy of RandomForestClassifier on test set: {:.3f}' .format(RFClf.

→score(X_test, y_test)))
```

```
Accuracy of RandomForestClassifier on train set: 0.998 Accuracy of RandomForestClassifier on test set: 0.920
```

I predicted the correct class on 92% of the samples in X_test.

7.3.4 GradientBoostingClassifier

```
[]: GBClf = GradientBoostingClassifier(n_estimators=300, learning_rate=1.0, max_depth=1, random_state=0) # ABClf = AdaBoostClassifier

GBClf.fit(X_train, y_train)
```

```
[]: GradientBoostingClassifier(learning_rate=1.0, max_depth=1, n_estimators=300, random_state=0)
```

Model Accuracy

```
Accuracy of GradientBoostingClassifier on train set: 0.944
Accuracy of GradientBoostingClassifier on test set: 0.918
```

I predicted the correct class on 91.8% of the samples in X_test.

7.3.5 Neural Network.MLPClassifier

[]: MLPClassifier(hidden_layer_sizes=(300,), max_iter=300, random_state=0)

Model Accuracy

```
[]: print('Accuracy of MLPClassifier on train set: {:.3f}' .format(NNClf.

→score(X_train_scaled, y_train)))

print('Accuracy of MLPClassifier on test set: {:.3f}' .format(NNClf.

→score(X_test_scaled, y_test)))
```

```
Accuracy of MLPClassifier on train set: 0.909 Accuracy of MLPClassifier on test set: 0.902
```

I predicted the correct class on 90.2% of the samples in X_test.

7.3.6 VotingClassifier

Combining three algorithms, Random Forest Classifier, GradientBoostingClassifier, and MLP-Classifier, I achieve high accuracy. For this, I use VotingClassifier.

VotingClassifier(estimators=[('gb',

Model Accuracy

```
Accuracy of VotingClassifier on train set: 0.957 Accuracy of VotingClassifier on test set: 0.924
```

On 92.4% of the samples in X_test, I correctly predicted the class.

7.3.7 As a data frame, model accuracies are as follows:

```
[]:
                              Model Accuracy
                   VotingClassifier
                                         92.4
   0
            RandomForestClassifier
                                         92.0
   1
   2
        GradientBoostingClassifier
                                         91.8
   3 Neural_Network.MLPClassifier
                                         90.2
            DecisionTreeClassifier
                                         87.5
   5
              KNeighborsClassifier
                                         86.0
```

For the ROC Curve, the ideal curve is close to the top left: I want a classifier that produces a high recall while keeping a low false positive rate. Also, for Precision_Recall, the closer a curve stays to the upper right corner, the better the classifier. A point at the upper right means high precision and high recall for the same threshold. Here I plot ROC Curves that reflect ROC scores in comparison charts. This provides us with a better understanding of which algorithm works best for our dataset.

```
[]: import scikitplot as skplt
   NBC = GaussianNB()
   NNC = MLPClassifier(hidden_layer_sizes=(300,), activation='relu',_
    →random_state=0, max_iter=300)
   GBC = GradientBoostingClassifier(n_estimators=300, learning_rate=1.0,__
    →max_depth=1, random_state=0)
   RFC = RandomForestClassifier(n_estimators=300, criterion='entropy',
    →min_samples_leaf=2, random_state=0)
   KNC = KNeighborsClassifier(n_neighbors = 12)
   DTC = DecisionTreeClassifier()
   classifiers = [NBC, NNC, GBC, RFC, KNC, DTC]
   title =
    →['NaiveBayesClassifier','MLPClassifier','GradientBoostingClassifier','RandomForestClassifie
             'KNeighborsClassifier', 'DecisionTreeClassifier']
   for cls in classifiers:
       cls.fit(X_train, y_train)
   plt.figure(figsize=(25,25))
```

```
grid = plt.GridSpec(2, 3, wspace=0.2, hspace=0.3)

for i in range(6):

    col, row = i%3,i//3
    ax = plt.subplot(grid[row,col])
    ax.title.set_color('blue')

    model = classifiers[i]
    skplt.metrics.plot_roc(y_test, model.predict_proba(X_test), ax=ax,u
    title=title[i])

plt.show()
```


0.4 0.6 False Positive Rate 0.4 0.6 False Positive Rate

0.4 0.6 False Positive Rate

Additionally, I plot the Precision-Recall Curve and Confusion Matrix to determine which algorithms are best for this dataset in general.

```
[]: plt.figure(figsize=(30,30))
    grid = plt.GridSpec(2, 3, wspace=0.2, hspace=0.3)

for i in range(6):
    col, row = i%3,i//3
    ax = plt.subplot(grid[row,col])
    ax.title.set_color('blue')

    model = classifiers[i]
    skplt.metrics.plot_precision_recall(y_test, model.predict_proba(X_test), use ax=ax, title=title[i])

plt.show()
```


Confusion Matrix

2. TensorFlow

June 27, 2022

The first thing I do is train a simple Neural Network using TensorFlow, and then plot accuracy and loss graphs on the training and validation datasets to find a balance between the model that is underfitting and one that is overfitting, resulting in a model with a good fit. I first need to convert the train and test data into a TensorFlow tensor.

0.0.1 To convert DataFrame to a tensor, I use tf.convert to tensor

```
[]: tf.convert_to_tensor(X_train)
[]: <tf.Tensor: shape=(7173, 43), dtype=float64, numpy=
   array([[1.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 3.0041751e+02,
           4.5605518e+01, 1.5017000e+01],
          [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.9441245e+02,
           4.5130852e+01, 1.3794000e+01],
          [1.0000000e+00, 9.8500000e-01, 0.0000000e+00, ..., 2.9024103e+02,
           3.9968010e+01, 1.5614000e+01],
          [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 2.9754337e+02,
           4.1947979e+01, 1.3998000e+01],
          [1.0000000e+00, 1.0000000e+00, 0.0000000e+00, ..., 2.8420966e+02,
           4.5258080e+01, 1.5977000e+01],
          [0.0000000e+00, 2.2800000e-01, 1.0000000e+00, ..., 2.9532828e+02,
           3.8847500e+01, 1.0924000e+01]])>
[]: tf.convert_to_tensor(X_test)
: <tf.Tensor: shape=(2391, 43), dtype=float64, numpy=
   array([[ 1.
                         1.
                                     0.
                                              , ..., 294.6015 ,
                                                                 43.159935,
            13.583
                     ],
          [ 1.
                         1.
                                     0.
                                              , ..., 286.54041 ,
                                                                  38.3326 ,
            14.634
                     ],
          [ 1.
                         1.
                                     0.
                                              , ..., 298.60788 , 46.453678,
            14.548
                     ],
          [ 0.
                         0.
                                     0.
                                              , ..., 289.5249 , 51.172005,
                     ],
            13.181
          [ 1.
                                              , ..., 284.73904 ,
                                                                 49.5984 ,
                         1.
                                     0.
            12.324
                     ],
                                              , ..., 293.08447 , 48.57539 ,
          [ 1.
                         0.996
                                     0.
```

```
15.451 ]])>
```

0.0.2 Normalize X_train

```
[]: X_train_scaled = tf.keras.layers.Normalization(axis=-1)
X_train_scaled.adapt(X_train)
```

0.0.3 Building a simple neural network model

The compile function takes three arguments: optimizer, loss, and metrics.

- **Optimizer**: These are certain algorithms that are used to change the attributes of the neural network to decrease the loss rate.
- **Loss**: This is used to compute the quantity that a model should seek to minimize during training.
- **Metrics**: This is used to judge the performance of the model.

In order to find the best result, I start with simple models and then gradually make them more complex.

Test models with 10, 16, 32, 64 neurons, with 50, 100, and 200 batch sizes

0.1 Model 1: one hidden layer with 10 neurons

0.1.1 Evaluate the model

I create plots from the collected history data.

- A plot of accuracy on the training and validation datasets over training epochs.
- A plot of loss on the training and validation datasets over training epochs.

```
[]: font = {'family' : 'normal',
           'weight' : 'bold',
           'size' : 18}
   plt.rc('font', **font)
   plt.figure(figsize=(15,15))
   ax1 = plt.subplot(121)
   ax2 = plt.subplot(122)
   ax1.plot(history.history['accuracy'], label='Training accuracy')
   ax1.plot(history.history['val_accuracy'], label = 'Validation accuracy')
   ax1.set_title("Training and validation accuracy")
   ax1.set(xlabel='epoch', ylabel='Accuracy')
   ax1.legend(loc='lower right')
   ax2.plot(history.history['loss'], label='Training loss')
   ax2.plot(history.history['val_loss'], label='Validation loss')
   ax2.set_title("Training and validation loss")
   ax2.set(xlabel='epoch', ylabel='loss')
   ax2.legend(loc='upper right')
   #To check the network accuracy on test data
   test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
```

```
75/75 - Os - loss: 0.3175 - accuracy: 0.9076 - 97ms/epoch - 1ms/step findfont: Font family ['normal'] not found. Falling back to DejaVu Sans. findfont: Font family ['normal'] not found. Falling back to DejaVu Sans. findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.
```


According to the plot of loss, validation loss is decreasing before the 50th epoch, so the model is underfitting. However, after the 50th epoch, validation loss is increasing, meaning the model is overfitting. Around the 50th epoch, when the model is either perfectly fitted or in a local minimum, the neural network model achieved an accuracy of 91%. The goal of Deep Learning training is to find a balance between a model that is underfitting and one that is overfitting, resulting in a model with a good fit. I found an optimum where the change in the slope of loss is around the 50th epoch, as shown above. At that point, the training process can be stopped. Since the codes for other models are the same, I just show the results.

0.2 Model 2: one hidden layer with 10 neurons and batch_size=50

```
[]: image = cv2.imread('1.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


0.3 Model 3: one hidden layer with 10 neurons and batch_size=100

```
[]: image = cv2.imread('2.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


0.4 Model 4: one hidden layer with 10 neurons and batch_size=200

```
[]: image = cv2.imread('3.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


0.5 Model 5: one hidden layer with 16 neurons

```
[]: image = cv2.imread('4.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


50th epoch —> 92%

0.6 Model 6: one hidden layer with 16 neurons and batch_size=50

```
[]: image = cv2.imread('6.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


85th epoch —> 92.1%

0.7 Model 7: one hidden layer with 16 neurons and batch_size=100

```
[]: image = cv2.imread('7.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


95th epoch —> 91.7%

0.8 Model 8: one hidden layer with 16 neurons and batch_size=200

```
[]: image = cv2.imread('8.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


100th epoch —> 91.8%

0.9 Model 9: one hidden layer with 32 neurons

```
[]: image = cv2.imread('9.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


61th epoch —> 92.3%

0.10 Model 10: one hidden layer with 32 neurons and batch_size=50

```
[]: image = cv2.imread('10.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


69th epoch —> 92.2%

0.11 Model 11: one hidden layer with 32 neurons and batch_size=100

```
[]: image = cv2.imread('11.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


80th epoch —> 91.8%

0.12 Model 12: one hidden layer with 32 neurons and batch_size=200

```
[]: image = cv2.imread('12.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


95th epoch —> 91.6%

0.13 Model 13: one hidden layer with 64 neurons

```
[]: image = cv2.imread('13.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


48th epoch —> 92%

0.14 Model 14: one hidden layer with 64 neurons and batch_size=50

```
[]: image = cv2.imread('14.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


46th epoch —> 92.2%

0.15 Model 15: one hidden layer with 64 neurons and batch_size=100

```
[]: image = cv2.imread('15.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


39th epoch —> 91.9%

0.16 Model 16: one hidden layer with 64 neurons and batch_size=200

```
[]: image = cv2.imread('16.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


88th epoch —> 92.3%

0.17 Model 17: There are two hidden layers, each with 10 neurons

```
[]: image = cv2.imread('17.png', cv2.IMREAD_UNCHANGED)
    cv2_imshow(image)
```


38th epoch —> 91.3%

0.18 Model 18: There are two hidden layers, each with 16 neurons

```
[]: image = cv2.imread('18.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


30th epoch —> 92.1%

0.19 Model 19: There are two hidden layers, each with 32 neurons

```
[]: image = cv2.imread('19.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


29th epoch —> 91.7%

0.20 Model 20: There are two hidden layers, each with 64 neurons

```
[]: image = cv2.imread('20.png', cv2.IMREAD_UNCHANGED)
cv2_imshow(image)
```


14th epoch —> 92%

1 Final words

Comparing 20 neural network models, I found that there is only a very slight difference in accuracy, which is 92%, but they have their own characteristics in terms of loss graphs. The validation loss graph for model 4 shows a slight reduction in the 200th epoch, sometimes it is better to check higher epochs to see if there is another local minimum. In model 17, for example, there are two local minimums. The first one is around the 38th epoch, while the second is around the 350th epoch, although the first one has higher accuracy. As layers and neurons are raised after local minima, the shapes of validation loss are extremely ascending and jagged, which is a sign of overfitting.