

Q1.
$$h\nu - W = 1 m\nu_{max}^2$$

$$\frac{2}{m} = \frac{2}{m} \ln \frac{2}{m$$

2018 and make 100les

Q2.	Side length = 20 A = 20 x 10 - 00 m
	Side length = $20 \text{ A}^3 = 20 \times 10^{-10} \text{ m}$: Volume of cube = $a^3 = (20 \times 10^{-10})^3 \text{ m}^3$
	= 8000 x 10 ⁻³⁰ m ³
	$= 8000 \times 10^{-30} \text{ sm}^{3}$ $= 8 \times 10^{-21} \text{ cm}^{3}$
1025	Density of water = 1 gec ⁻¹
	, O S O O C O O O O O O O O O O O O O O O
	mass of water molecules in the cube = 8x10-2,
	Mass of water molocules in the cube = 8 x 10 2, 9.
	= 18 x 1.66 x 10 - 24 g.
	$= 18 \times 1.66 \times 10^{-24} q$
	xem (ab) =1620-2-101+3+145-11, 2x353-3 <- 1
	No. of water molecules = 8 x 10 -21
	18 x 1.66 × 10 - 24
	= 0.2477 x103
	= 0.2677 x103
	~ 218 mdecelles.
	0.006626x10-16 eV - 3.28e1/ =0es)
. 3	FI-01 X C 3 3 · L
	= 0.00414×10 eV - 3.28 eV = (KE)

U908-0 =

23. Li has 3 electrone at r, r, and r, respectively trous in the Harall Forming Love to the what at l'eral tage le? in interior mart mans 12 - 23 - 123 - 21 - 123 - 21 - 1 - 1 - 20 - 3 Thus, potential energy is $\frac{-2e^{2}-2e^{2}-2e^{2}}{|r_{1}|} \frac{-2e^{2}}{|r_{3}|} \frac{-2e^{2}}{|r_{1}-r_{2}|} \frac{e^{2}}{|r_{2}-r_{3}|} \frac{e^{2}}{|r_{3}-r_{1}|}$

- Q4. a). In Boum-Ofpenheimer approximation, the nuclear mation is assumed to be fixed wet the electronic mation.
- b) for multicloctron systems, there is a PE term in the Hamiltonian due to the interaction blu the clockrous themselves. Paking into account this repulsive potential, it is not possible to solve exactly a multi-clockron quantum system.
 - e) (i) Mean-field Approximation or Hartree-fock Method (ii) Born-Offenheimer Approximation