

المنطة المغربية والمنطقة المنطقة المنط الدورة العادية 2013

الموضوع NS24

4	مدة الإنجاز	المرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعب(ة) أو المسلك

- مدة إنجاز الموضوع هي أ ربع ساعات.
- يتكون الموضوع من ثلاثة تمارين ومسألة مستقلة فيما بينها .
- يمكن إنجاز التمارين والمسألة حسب الترتيب الذي يرغب فيه المترشح.
- - التمرين الثاني يتعلق بالأعداد العقدية - التمرين الثالث يتعلق بالحسابيات - المسألة تتعلق بالتحليل

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة لا يسمح باستعمال اللون الأحمر بورقة التحرير

NS24

الامتحان الوطني الموحد للبكالوريا -ا**لدورة العادية ١٤٥٥** –الموضوع- مادة: ا**لرياضيات- شعبة العلوم الرياضية** (أ) و

التمرين الأول: (3.5 نقط)

0.5

0.5

0.5

0.25

نذكر أن $(\times,+,\square)$ حلقة واحدية تبادلية و كاملة .

 $(\forall (x,y) \in \square^2)$; x*y=x+y-2 : المعرف بما يلي: $(x,y) \in \square^2$

أ) بين أن القانون * تبادلي و تجميعي .

ب) بين أن (*, [] يقبل عنصرا محايدا يتم تحديده. 0.25

ج) بين أن $(*, \square)$ زمرة تبادلية .

 $(orall (x,y)\in \square^2)$; $x\mathrm{T} y=xy-2x-2y+6$: المعرف بما يلي T المعرف بما يلي T المعرف عرف بما يلي T

ونعتبر التطبيق f من \Box نحو \Box المعرف بما يلي: f(x) = x + 2

 (\Box,T) نحو (\Box,\times) التطبیق (\Box,T) نحو ($\Box,$

 $(\forall (x,y,z) \in \square^3)$; (x*y)Tz = (xTz)*(yTz) (بين أن: (yTz)0.25

> 3- استنتج من كل ما سبق أن $(\Box,*,T)$ حلقة تبادلية و واحدية. 0.75

y = 2 أو x = 2 أو x = 2 أو x = 2 أو x = 20.25

ب) استنتج أن الحلقة $(T,*, \square)$ كاملة .

ج) هل (T,*,T) جسم (علل جو ابك)0.25

التمرين الثاني: (3.5 نقط) التمرين الثاني: (3.5 نقط) الكن a عددا عقديا غير منعدم.

 $(E): \ 2z^2 - \left(3 + i\sqrt{3}\right)az + \left(1 + i\sqrt{3}\right)a^2 = 0: z$ نعتبر في المجموعة $\ \square$ المعادلة ذات المجهول

 $\left(-1+i\sqrt{3}\right)^2a^2$: هو $\left(E\right)$ المعادلة المعادلة المعادلة عند المعادلة ا 0.25

> (E) المعادلة \square على \square 0.5

 $(O, \overset{
ightarrow}{u}, \overset{
ightarrow}{v})$ المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر.

z و $b=ae^{irac{\pi}{3}}$ و a و التي ألحاقها على التوالى a و B و A

 $rac{\pi}{2}$ ليكن r الدوران الذي مركزه M وزاويته

نضع : $A_{\mathrm{l}}=r^{-1}(A)$ و $B_{\mathrm{l}}=r(B)$ و $A_{\mathrm{l}}=r^{-1}(A)$ هو الدوران العكسي للدوران

ليكن a_1 و a_2 لحقي a_1 و a_2 على التوالي .

متساوى الأضلاع OAB متساوى الأضلاع OAB0.5

-			
الصفحة 3 4	NS24	2013 –الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	ا -الدورة العادية

$$b_{1} = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z \quad a_{1} = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \quad : 0.5$$

بين أن الرباعي
$$OA_1MB_1$$
 متوازي الأضلاع.

$$M
eq B$$
 و $M
eq A$ نفترض أن

$$\frac{z-b_1}{z-a_1} = -\frac{z-b}{z-a} \times \frac{a}{b}$$
 ابین أن:

ب) بين أن النقط
$$M$$
 و $A_{
m l}$ مستقيمية إذا و فقط إذا كانت النقط M و O و A متداورة.

الامتحان الوطني الموحد للبكالوريا

0.5

0.5

0.75

0.75

0.5

0.5

0.5

0.75

0.25

التمرين الثالث: (3 نقط) المحدد الصحيحة الطبيعية n الأكبر قطعا من 1 و التي تحقق الخاصية : الهدف من التمرين هو البحث عن الأعداد الصحيحة الطبيعية n

$$(R)$$
: $3^n - 2^n \equiv 0 \lceil n \rceil$

n نفترض أن n يحقق الخاصية (R) و ليكن p أصغر قاسم أولى موجب للعدد n

$$p \ge 5$$
 بين أن $p \ge 3^n - 2^n \equiv 0$ ثم استنتج أن أ

$$3^{p-1} \equiv 1 \lceil p \rceil$$
 بين أن: $2^{p-1} \equiv 1 \lceil p \rceil$ و

$$an-b(p-1)=1$$
 بين أنه يوجد زوج (a,b) من (a,b) من أنه يوجد زوج

$$p-1$$
 على على و خارج القسمة الاقليدية للعدد q على و خارج القسمة الاقليدية q

$$\left(q \in \square \right) \quad 0 \le r < p-1$$
 حيث: $a = q(p-1) + r$

$$rn=1+k\left(p-1
ight)$$
 : بين أنه يوجد عدد صحيح طبيعي k بحيث

$$(R)$$
 عند استنتج من كل ما سبق أنه R يوجد عدد صحيح طبيعي n أكبر قطعا من R يحقق الخاصية R

مسألة: (10 نقط)

 $(\forall x>1)$; $h(x)=\frac{x-1}{v\ln x}$ و h(1)=1 بما يلي: h(1)=1 بما يلي: h(1)=1

الجزء الأول:

ا بين أن الدالة h متصلة على اليمين في 1h

$$]1,+\infty[$$
 بين أن: $\ln x < x-1$; $\ln x < x-1$ ثم استنتج أن الدالة h تناقصية قطعا على المجال $(\forall x>1)$; $\ln x < x-1$

$$h$$
 أحسب $\lim_{x\to +\infty} h(x)$ أم ضع جدول تغيرات الدالة $\lim_{x\to +\infty} h(x)$

$$(\forall x \ge 1); \ 0 < h(x) \le 1$$
 : יי) וענידי ויט: (0.25)

الجزء الثاني:

 $(\forall x > 1)$; $g(x) = \int_{x}^{x^2} \frac{1}{\sqrt{t \ln t}} dt$ و $g(1) = \ln 2$ بما يلي: $g(1) = \ln 2$ بما يلي: $\left(O,ec{i},ec{j}
ight)$ و ليكن و المنحنى الممثل للدالة g في معلم متعامد ممنظم و ليكن

الصفحة 3 4	ن الوطني الموحد للبكالوريا -الدورة العادية كالحك الموضوع- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	الامتحار
	$(\forall x > 1)$; $\int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \ln 2$: أ) تحقق أن $(1 - 1)$	0.25
	$(\forall x > 1)$; $g(x) - \ln 2 = \int_x^{x^2} \frac{\sqrt{t-1}}{t \ln t} dt$: ب) تحقق أن	0.25
	$\left(\forall x > 1\right)$; $g\left(x\right) - \ln 2 = \int_{\sqrt{x}}^{x} \frac{t-1}{t \ln t} dt$: نین أن	0.5
	$(\forall x > 1)$; $(x - \sqrt{x})h(x) \le g(x) - \ln 2 \le (x - \sqrt{x})h(\sqrt{x})$: بین أن -2	0.5
	ب) استنتج أن الدالة g قابلة للاشتقاق على اليمين في 1	0.5
	$\lim_{x \to +\infty} \frac{g(x)}{x} = 0 \text{e.i.} g(x) = +\infty \text{e.i.}$ بين أن: $x \to +\infty$	0.75
	$(\forall x>1)$; $g'(x)=\frac{1}{2}h(\sqrt{x})$ و أن: $g'(x)=\frac{1}{2}h(\sqrt{x})$ و أن: $g'(x)=\frac{1}{2}h(\sqrt{x})$	0.75
	g باستنتج أن: $0 < g'(x) \le \frac{1}{2}$ بم ضع جدول تغیرات الدالمة $(\forall x \ge 1)$ ب	0.5
	(C) انشئ المنحنى (C)	0.5
	<u>الجزء الثالث:</u>	
	$]-\infty,\ln 2]$ نحو المجال $[1,+\infty[$ نقابل من المجال $k:x\mapsto g(x)-x+1$ نحو المجال $[1,+\infty[$ عن المجال $[1,+\infty[$ عن المجال $[1,+\infty[$ عن المجال $[1,+\infty[$	0.5 0.25
	$1+g(\alpha)=\alpha$: بحيث $]1,+\infty[$ بحيد α من المجال $]1,+\infty[$ بحيد α عدد حقيقي وحيد α من المجال α	0.23
	$(\forall n \geq 0)$ $u_{n+1} = 1 + g(u_n)$ و $1 \leq u_0 < \alpha$ المعرفة بما يلي: $u_n \geq 0$ المعرفة بما يلي: $u_n \geq 0$	
	$(\forall n \geq 0)$; $1 \leq u_n < \alpha$: بين أن (1 - 1)	0.5
	بين أن المتتالية $\left(u_{n} ight)_{n\geq0}$ تزايدية قطعا	0.5
	$\lim_{n \to +\infty} u_n = lpha$ ج) استنتج أن المتتالية $\left(u_n\right)_{n \geq 0}$ متقاربة و أن	0.75
	$\left(\forall n \geq 0\right)$; $\left u_{n+1} - \alpha\right \leq \frac{1}{2}\left u_n - \alpha\right $ بين أن: $\left(1 - 2\right)$	0.5

 $\left(\forall n \geq 0\right)$; $\left|u_n - \alpha\right| \leq \left(\frac{1}{2}\right)^n \left|u_0 - \alpha\right|$: (ب بین أن: 0.5

 $\lim_{n\to +\infty} u_n = \alpha$: استنتج مرة ثانية أن

0.25

انتهى

```
ثانوية محمد الخامس التأهيلية
Ammarimaths
                                       تصحيح الامتحان الوطني الموحد(الرياضيات)
                                                                                                 السنة الثانية علوم رياضية أ و ب
 ذ ي المغازلي
                                                      الدورة العادية 2013
                                                                                                     التمرين الاول (البنيات الجبرية)
                                                            (\forall (x, y) \in \mathbb{Z}^2); x * y = x + y - 2 = y + x - 2 = y * x )
                                                                                             (\forall (x, y) \in \mathbb{Z}^2); x * y = y * x إذن
                                                                                                            ومنه القانون * تبادلي.
 (\forall (x, y, z) \in \mathbb{Z}^3); (x*y)*z = (x*y)+z-2 = x+y-2+z-2 = x+(y+z-2)-2 = x+(y*z)-2 = x*(y*z)
                                                                               (\forall (x, y, z) \in \mathbb{Z}^3); (x * y) * z = x * (y * z) إذن
                                                                                                          و منه القانون * تجميعي
                                                                                                                         خلاصة:
                                                                        القانون * تبادلي.و تجميعي
                                                                                                                \mathbb Z من e
                   و بما أن * تبادلي فإن (\forall x \in \mathbb{Z}); x * e = x \Leftrightarrow x + e - 2 = x \Leftrightarrow e = 2
                                                                                          2 هو العنصر المحايد ل *
                                                                                                          \mathbb{Z} و y من x
                                                                                       x * y = 2 \Leftrightarrow x + y - 2 = 2 \Leftrightarrow y = 4 - x
                                                                                  4-x إذن لكل x من \mathbb{Z} مماثل بالنسبة ل* هو
                            4-x القانون * تبادلي.و تجميعي ويقبل عنصرا محايد x هو 2 و لكل x من x مماثل بالنسبة ل
                                                                                                                                إذن
                                                                                                  زمرة تبادلية.(\mathbb{Z},*)
                                  = xy + 2x + 2y + 4 - 2x - 4 - 2y - 4 + 6
                                                                      = xy + 2
                                                                      = f(xy)
                                                                                (\forall (x, y) \in \mathbb{Z}^2); f(x \times y) = f(x) \mathsf{T} f(y) إذن
                                                                                    (\mathbb{Z},\mathrm{T}) نحو نستنتج أن f نحو نستنتج أن أ
                                   zوبما أن لكل x من \Z سابق و حيد ب f في \Z هوx-2 فإن f تقابل من \Z نحو \Z و منه :
                                                                  \overline{\left(\mathbb{Z},\mathrm{T}
ight)} تشاكل تقابلي \overline{\left(\mathbb{Z},\!	imes
ight)} نحو f
                                            (\forall (x, y, z) \in \mathbb{Z}^3); (x * y) \mathsf{T} z = (x + y - 2) \mathsf{T} z
                                                                                                                         ب) لدينا
                                                                             =(x+y-2)z-2(x+y-2)-2z+6
                                                                             =(xz-2x-2z+6)+(yz-2y-2z+6)-2
                                                                             =(xTz)+(yTz)-2
                                                                             =(xTz)*(yTz)
                                                                                                                              و منه
                                                       (\forall (x, y, z) \in \mathbb{Z}^3); (x * y) \mathsf{T}z = (x\mathsf{T}z) * (y\mathsf{T}z)
                                                                  . لدينا T تبادلي (\forall (x,y) \in \mathbb{Z}^2); xTy = yTx لدينا (3
```

y.mghazli

Ammarimaths

 $\mathbb Z$ بما أن f تشاكل تقابلي من $(\mathbb Z, imes)$ نحو $(\mathbb Z,\mathsf T)$ و imesتجميعي في نجميعي في ت و بما أن $(\mathbb{Z},*)$ زمرة تبادلية و T تجميعي و تبادلي و توزيعي على القانون * فإن $(\mathbb{Z},*,\mathsf{T})$ حلقة تبادلية

$$\mathbb{Z}$$
 لنبين أن القانون T يقبل عنصرا محايدا e في T لنبين أن القانون T يقبل عنصرا محايدا $(\forall x \in \mathbb{Z}), x\mathrm{T}e = x \Leftrightarrow xe - 2x - 2e + 6 = x$ $\Leftrightarrow \forall x \in \mathbb{Z}; x(e-3) = 2(e-3)$

$$\Leftrightarrow e = 3$$

نستنتج من كل ما سبق أن

حلقة تبادلية و واحدية $(\mathbb{Z},*,T)$

$$xTy = 2 \Leftrightarrow xy - 2x - 2y + 6 = 2$$

$$\Leftrightarrow xy - 2x - 2y + 4 = 0$$

$$\Leftrightarrow x(y - 2) - 2(y - 2) = 0$$

$$\Leftrightarrow (x - 2)(y - 2) = 0$$

$$\Leftrightarrow x = 2 \text{ if } y = 2$$

إذن

$$x$$
T $y = 2 \iff x = 2$ أو $y = 2$

 $(\mathbb{Z}, *, T)$ أو $x = 2 \Leftrightarrow x = 2$ حيث 2 هو صفر الحلقة y = 2

(**ب** إذن

حلقة كاملة
$$\left(\mathbb{Z},*,T\right)$$

ج)لدينا $(\mathbb{Z},*,T)$ حلقة تبادلية و واحدية

$$(\forall x \in \mathbb{Z}/\{2\}); xTy = 3 \Leftrightarrow xy - 2x - 2y + 6 = 3$$
 و لدينا $\Leftrightarrow y(x-2) = 2x - 3$

$$\Leftrightarrow y = \frac{2x - 3}{}$$

$$\Leftrightarrow y = \frac{2x - 3}{x - 2}$$

 $y = \frac{7}{3} \notin \mathbb{Z}$ من أجل x = 5 نحصل على

إذن 5 ليس له مقلوبا بالنسبة ل T نستنتج أن

لیس جسم $\left(\mathbb{Z},*,T
ight)$

التمرين الثاني

$$(E)$$
: $2z^2 - (3+i\sqrt{3})az + (1+i\sqrt{3})a^2 = 0$: مميز المعادلة (1

$$\Delta = \left(3 + i\sqrt{3}\right)^2 a^2 - 8\left(1 + i\sqrt{3}\right) \ a^2 = \left(9 + 6i\sqrt{3} - 3 - 8\left(1 + i\sqrt{3}\right)\right) a^2 = \left(-2 - 2i\sqrt{3}\right) a^2 = \left(-1 + i\sqrt{3}\right)^2 a^2$$

$$\text{Lexid} \quad \Delta = \left(3 + i\sqrt{3}\right)^2 a^2 - 8\left(1 + i\sqrt{3}\right) a^2 = \left(-1 + i\sqrt{3}\right)^2 a^2$$

$$\Delta = \left(-1 + i\sqrt{3}\right)^2 a^2$$

: ما أن $a \in \mathbb{C}^*$ فإن ل(E) حلين مختلفين هما (2

$$z_{2} = \frac{\left(3+i\sqrt{3}\right)a - \left(-1+i\sqrt{3}\right)a}{4} = a \text{ g } z_{1} = \frac{\left(3+i\sqrt{3}\right)a + \left(-1+i\sqrt{3}\right)a}{4} = \frac{a+ai\sqrt{3}}{2}$$
 ومنه مجموعة حلول (E) هي :

$$S = \left\{ a, \frac{a + ai\sqrt{3}}{2} \right\}$$

II

$$\frac{a}{b} = e^{i\frac{-\pi}{3}} \Rightarrow \begin{cases} \left| \frac{a}{b} \right| = 1 \\ \arg\left(\frac{a}{b}\right) \equiv \frac{-\pi}{3} [2\pi] \end{cases} \Rightarrow \begin{cases} \frac{OA}{OB} = 1 \\ \left(\widehat{OA}, \widehat{OB}\right) \equiv \frac{-\pi}{3} [2\pi] \end{cases}$$
 (1)

إذن

المثلث *OAB* متساوي الأضلاع

$$-rac{\pi}{3}$$
 دوران مرکزه M و زاویته $rac{\pi}{3}$ إذن r^{-1} دوران مرکزه M و زاویته (أ $\left(2\right)$

$$\left\{egin{align*} B_1 &= r\left(B
ight) \ A_1 &= r^{-1}\left(A
ight) \end{array}
ight. \Rightarrow \left\{egin{align*} b_1 - z &= e^{irac{\pi}{3}}\left(b - z
ight) \ a_1 - z &= e^{-irac{\pi}{3}}\left(a - z
ight) \end{array}
ight.$$
 اذن

$$\Rightarrow \begin{cases} a_1 = z + \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)(a - z) \\ b_1 = z + \left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)(b - z) \end{cases}$$

$$\Rightarrow \begin{cases} a_1 = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)a + z\left(1 - \frac{1}{2} + \frac{i\sqrt{3}}{2}\right) \\ b_1 = z\left(1 - \frac{1}{2} - \frac{i\sqrt{3}}{2}\right) + \left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^2 a \end{cases}$$

$$\Rightarrow \begin{cases} a_1 = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)a + z\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) \\ b_1 = z\left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) + \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)a \end{cases}$$

و منه

$$a_1 = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)a + \left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)z$$

$$b_1 = \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)a + \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)z$$

ب
$$\overrightarrow{OA_1} + \overrightarrow{OB_1} = \overrightarrow{OM}$$
 اذن $a_1 + b_1 = z$ و منه (ب

الرباعي
$$\mathit{OA}_{ ext{l}}MB_{ ext{l}}$$
 متوازي أضلاع

$$\begin{cases} a_{1}-z = \left(\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)a + \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)z \\ b_{1}-z = \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)a + \left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)z \end{cases} \Rightarrow \begin{cases} z - a_{1} = e^{i\frac{-\pi}{3}}(z - a) \\ b_{1}-z = ae^{i\frac{2\pi}{3}} - e^{i\frac{\pi}{3}}z \end{cases}$$
 (3)

$$\Rightarrow \begin{cases} a_1 - z = e^{i\frac{2\pi}{3}} (z - a) \\ b_1 - z = -e^{i\frac{\pi}{3}} \left(z - ae^{i\frac{\pi}{3}}\right) \Rightarrow \frac{z - b_1}{z - a_1} = -e^{i\frac{-\pi}{3}} \frac{\left(z - a \times \frac{b}{a}\right)}{z - a} \end{cases}$$

$$\Rightarrow \frac{z - b_1}{z - a_1} = -\frac{a}{b} \times \frac{(z - b)}{z - a}$$

و اخيرا

ومنه النقط

$$\frac{z - b_1}{z - a_1} = -\frac{a}{b} \times \frac{z - b}{z - a}$$

. بOAB متساوي الأضلاع إذن النقط M و O و A و O عير مستقيمية OAB

و
$$A$$
 و B و A و B و A و A

$$\Leftrightarrow \frac{b-z}{a-z} \times \frac{a}{b} \in \mathbb{R}$$

$$\Leftrightarrow -\frac{z-b_1}{z-a_1} \in \mathbb{R}$$

$$\Leftrightarrow aunzalana B_1 g A_1 g M$$

نستنتج أن

النقط M و $A_{\rm l}$ و A مستقیمیة B النقط A النقط B الن

التمرين الثالث (الحسابيات)

n لدينا n>1 لدينا p و يحقق n>1 و يحقق n>1 لدينا n>1 لدينا n>1

$$3^n - 2^n \equiv 0[p]$$
 و منه $p \mid 3^n - 2^n$ و بالتالي $\begin{cases} n \mid 3^n - 2^n \\ p \mid n \end{cases}$

 $p \ge 5$ لنبين أن

$$\left(p=3\Rightarrow\begin{cases}3\mid2^{n}\\3\mid3^{n}-2^{n}\end{cases}\Rightarrow3\mid2^{n}\Rightarrow3\mid2\right) \neq \left(p=2\Rightarrow\begin{cases}2\mid2^{n}\\2\mid3^{n}-2^{n}\end{cases}\Rightarrow2\mid3^{n}\Rightarrow2\mid3\right)$$
 Levil

 $p \ge 5$ و بما أن 2 لايقسم 3 و 3 لايقسم 2 فإن (الإستلزام المضاض للعكس) $p \ne 3$ و $p \ne 3$ نستنتج أن $p \ne 3$ و بما أن 2 لايقسم 3 و أن (الإستلزام المضاض العكس)

$$p \ge 5 \text{ g } 3^n - 2^n \equiv 0[p]$$

بما أن $5 \geq p$ فإن p لايقسم 2 و p لايقسم 3 إذن حسب مبرهنة فرما الصغرى

$$3^{p-1} \equiv 1[p]$$
 $2^{p-1} \equiv 1[p]$

جpبما أن p أصغر قاسم أولي موجب ل p فإن جميع قواسم p-1 لا تقسم p باستتناء 1

$$(p-1) \land n = 1$$
 نستنتج أن

lphaرادن حسب مبرهنة بوزو يوجد (lpha,eta) من (lpha,eta) بحيث ا

و بوضع $\alpha = a$ و $b = -\beta$ و $\alpha = a$

$$\exists (a,b) \in \mathbb{Z}^2; an-b(p-1)=1$$

$$\begin{cases} an-b(p-1)=1 \\ a=q(p-1)+r \end{cases} \Rightarrow 1+b(p-1)=nq(p-1)+nr \Rightarrow nr=1+(b-nq)(p-1)$$
 (2)

 $k \in \mathbb{Z}$ مع nr = 1 + k(p-1) مع k = b - nq

y.mghazli

Ammarimaths

 $k\in\mathbb{N}$ بقي أن نبين أن $k\in\mathbb{N}$ يكفي أن نبين أن $r\geq 1$ يكفي أن نبين أن $r\geq 1$ لايقسم a ومنه $a\geq 1$ حسب السؤال $a\geq 1$ لدينا $a\geq 1$ ومنه أن $a\leq 1$ فإن $a\leq 1$ لايقسم $a\geq 1$ ومنه $a\leq 1$ ومن $a\leq 1$ فأن $a\leq 1$ ومن $a\leq 1$ استنتج أن $a\leq 1$

nr = 1 + k(p-1) يوجد عدد صحيح طبيعي k يحقق

(R) نفترض أنه يوجد n>1 و يحقق الخاصية (2

 $3^{k(p-1)}\equiv 1[\,p\,]$ و $2^{k(p-1)}\equiv 1[\,p\,]$ و إذن $k\in\mathbb{N}$ اذن $2^{p-1}\equiv 1[\,p\,]$ و $2^{p-1}\equiv 1[\,p\,]$ و $2^{p-1}\equiv 1[\,p\,]$ لدينا حسب السؤال ب $2^{nr}\equiv 2[\,p\,]$ و $2^{nr-1}\equiv 1[\,p\,]$ و يما أن $2^{nr}\equiv 2[\,p\,]$ فإن $2^{nr-1}\equiv 1[\,p\,]$ و منه $2^{nr-1}\equiv 1[\,p\,]$ و منه $2^{nr-1}\equiv 1[\,p\,]$

(1) $3^{nr} - 2^{nr} \equiv 1[p]$ نستنتج أن

 $3^n - 2^n \equiv 0[p]$ (أ (1 وحسب السؤال

 $(2) \ 3^{nr} - 2^{nr} \equiv 0[p]$ يعني أن $(2) \ 3^{nr} = 2^{nr}[p]$ أي أن $(2) \ 3^{nr} = 2^{nr}[p]$ ما يعني أن

من (1)و(2) نستنتج أن [p] أي أن [p] يقسم 1 ز هذا تناقظ

إذن الإفتراض الأول خاطئ

خلاصة:

خلاصة

ig(Rig) لا يوجد عدد صحيح طبيعي n أكبر قطعا من 1 و يحقق الخاصية

المسألة

الجزء الأول

$$(\lim_{x \to 1} \frac{\ln x}{x - 1} = 1)$$
 لائن $\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} \frac{x - 1}{x \ln x} = \lim_{x \to 1^+} \frac{1}{x} \frac{1}{\ln x} = 1 = h(1)$ لدينا (1) لدينا (1)

نستنتج أن

متصلة على يمين 1 $\,h\,$

$$(\forall t \ge x > 1); \frac{1}{t} < 1 \Rightarrow \int_{1}^{x} \frac{1}{t} dt < \int_{1}^{x} 1 dt \Rightarrow \ln x < x - 1$$
 ب (ب

إذن

 $(\forall x>1)$; $\ln x < x-1$

$$(\forall x > 1); h'(x) = \frac{x \ln x - (x - 1)(\ln x + 1)}{(x \ln x)^2} = \frac{\ln x - (x - 1)}{(x \ln x)^2}$$
 لدينا

 $(\forall x>1);h'(x)<0$ فإن $(\forall x>1);\ln x< x-1$ و بما أن

ذن___

 $]1,+\infty[$ تناقصية قطعا على h

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \quad \lim_{x \to +\infty} \ln x = +\infty \quad \text{(لأن)} \quad \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{x-1}{x \ln x} = \lim_{x \to +\infty} \frac{1 - \frac{1}{x}}{\ln x} = 0 \quad \text{(f)} \quad (2)$$

$$\lim_{x \to +\infty} h(x) = 0$$

h جدول تغیرات

X	1		+∞
h'(x)		_	
h(x)			
	1	7	
			0

$$h([1,+\infty[)=]\lim_{x\to+\infty}h(x);h(1)]=[0,1]$$
 فإن $[1,+\infty[$ في قطعا على $f(x)=[1,+\infty[$ في الما أن $f(x)=[1,+\infty[$ ومنه $f(x)=[1,+\infty[$

ومنه [0,1] ∈ x ≥1;*n*(x) نستنتج أن

$$\forall x \ge 1; 0 < h(x) \le 1$$

الجزء الثاني

$$(\forall x > 1); \int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \left[\ln \left| \ln t \right| \right]_{x}^{x^{2}} = \ln \left| \ln x^{2} \right| - \ln \left| \ln x \right| = \ln \left| \frac{2 \ln x}{\ln x} \right| = \ln 2$$
 (1) (1)

إذن

$$\forall x > 1; \int_{x}^{x^2} \frac{1}{t \ln t} dt = \ln 2$$

ب) لدينا

$$(\forall x > 1); g(x) - g(2) = \int_{x}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt - \ln 2 = \int_{x}^{x^{2}} \frac{1}{\sqrt{t \ln t}} dt - \int_{x}^{x^{2}} \frac{1}{t \ln t} dt = \int_{x}^{x^{2}} \left(\frac{1}{\sqrt{t \ln t}} - \frac{1}{t \ln t} \right) dt = \int_{x}^{x^{2}} \frac{\sqrt{t - 1}}{t \ln t} dt$$

اذن

$$(\forall x > 1); g(x) - g(2) = \int_{x}^{x^{2}} \frac{\sqrt{t} - 1}{t \ln t} dt$$

$$\begin{cases} t=x\Rightarrow lpha=\sqrt{t}=\sqrt{x} \ t=x^2\Rightarrow lpha=\sqrt{t}=x \end{cases}$$
 باستعمال مکاملة بتغییر المتغیر و بوضع $t=lpha$ نحصل علی $t=lpha=\sqrt{t}=lpha=\sqrt{t}=x$ نحصل علی $t=lpha=\sqrt{t}=\alpha$ نحصل علی $t=lpha=\alpha$ نحص

$$(\forall x > 1); g(x) - g(2) = \int_{x}^{x^{2}} \frac{\sqrt{t} - 1}{t \ln t} dt = \int_{\sqrt{x}}^{x} \frac{\alpha - 1}{\alpha^{2} \ln \alpha^{2}} 2\alpha d\alpha = \int_{\sqrt{x}}^{x} \frac{\alpha - 1}{\alpha \ln \alpha} d\alpha = \int_{\sqrt{x}}^{x} \frac{t - 1}{t \ln t} dt$$
 equiv

نستنتج أن

$$(\forall x > 1); g(x) - g(2) = \int_{\sqrt{x}}^{x} \frac{t - 1}{t \ln t} dt$$

 $\forall x>1; \sqrt{x} \le t \le x$ لدينا (أ (2

 $\left[\sqrt{x},x
ight]$ تناقصية قطعا على $\left[\sqrt{x},x
ight]$ و $\left[\sqrt{x},x
ight]$ رزن h تناقصية قطعا على $\left[\sqrt{x},x
ight]$

 $\forall x > 1; \sqrt{x} \le t \le x \Rightarrow h(x) \le h(t) \le h(\sqrt{x}) \stackrel{(x > \sqrt{x})}{\Rightarrow} \int_{\sqrt{x}}^{x} h(x) dt \le \int_{\sqrt{x}}^{x} h(t) dt \le \int_{\sqrt{x}}^{x} h(\sqrt{x}) dt$

 $\Rightarrow (x - \sqrt{x})h(x) \le g(x) - \ln 2 \le (x - \sqrt{x})h(\sqrt{x})$

و بالتالي

$$(\forall x>1); (x-\sqrt{x})h(x) \le g(x)-\ln 2 \le (x-\sqrt{x})h(\sqrt{x})$$

$$(\forall x>1); \frac{\left(x-\sqrt{x}\right)h(x)}{x-1} \le \frac{g(x)-\ln 2}{x-1} \le \frac{\left(x-\sqrt{x}\right)h\left(\sqrt{x}\right)}{x-1}$$
 من الجزء الثاني ($(\forall x>1); \frac{\sqrt{x}h(x)}{\sqrt{x}+1} \le \frac{g(x)-\ln 2}{x-1} \le \frac{\sqrt{x}h\left(\sqrt{x}\right)}{\sqrt{x}+1}$ و بعد إختزال $(\forall x>1); \frac{\sqrt{x}h(x)}{\sqrt{x}+1} \le \frac{g(x)-\ln 2}{x-1} \le \frac{\sqrt{x}h(\sqrt{x})}{\sqrt{x}+1}$

$$\lim_{x \to 1^{+}} \frac{g(x) - \ln 2}{x - 1} = \frac{1}{2} \quad \text{فإن} \quad \lim_{x \to 1^{+}} \frac{\sqrt{x}h(x)}{\sqrt{x} + 1} = \lim_{x \to 1^{+}} \frac{\sqrt{x}h(\sqrt{x})}{\sqrt{x} + 1} = \frac{1}{2}$$
و بما أن

نستنتج أن

$$g_d^{'}\left(1\right) = \frac{1}{2}$$
 قابلة للإشتقاق غلى يمين 1 و أن g

$$(\forall x>1); (x-\sqrt{x})h(x) \le g(x)-\ln 2$$
 لدينا (ج

$$(\forall x>1)$$
; $(x-\sqrt{x})\frac{x-1}{x \ln x} + \ln 2 \le g(x)$ يستلزم

$$\lim_{x \to +\infty} \left(x - \sqrt{x} \right) \frac{x - 1}{x \ln x} + \ln 2 = \lim_{x \to +\infty} \frac{\sqrt{x}}{\ln x} \left(\sqrt{x} - 1 \right) \frac{x - 1}{x} + \ln 2 = \lim_{x \to +\infty} \frac{\sqrt{x}}{2 \ln \sqrt{x}} \left(\sqrt{x} - 1 \right) \left(1 - \frac{1}{x} \right) + \ln 2 = +\infty$$
و لدينا

إذن حسب خاصيات النهايات و الترتيب نستنتج أن

$$\lim_{x \to +\infty} g\left(x\right) = +\infty$$

$$(\forall x > 1); \frac{\left(x - \sqrt{x}\right)h(x) + \ln 2}{x} \le \frac{g(x)}{x} \le \frac{\left(x - \sqrt{x}\right)h(\sqrt{x}) + \ln 2}{x}$$

$$\lim_{x \to +\infty} \frac{\left(x - \sqrt{x}\right)h(x) + \ln 2}{x} = \lim_{x \to +\infty} \frac{\left(x - \sqrt{x}\right)\frac{x - 1}{x \ln x} + \ln 2}{x} = \lim_{x \to +\infty} \left(\frac{1}{\ln x} - \frac{1}{\sqrt{x \ln x}}\right)\left(1 - \frac{1}{x}\right) + \frac{\ln 2}{x} = 0$$
و بما أن $\frac{1}{x} = \frac{1}{x} = \frac{1}{$

$$\lim_{x \to +\infty} \frac{\left(x - \sqrt{x}\right)h\left(\sqrt{x}\right) + \ln 2}{x} = \lim_{x \to +\infty} \frac{\left(x - \sqrt{x}\right)\frac{\sqrt{x} - 1}{\sqrt{x}\ln\sqrt{x}} + \ln 2}{x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x} - 1\right)^2}{x\ln\sqrt{x}} + \frac{\ln 2}{x} = \lim_{x \to +\infty} \frac{\left(1 - \frac{1}{\sqrt{x}}\right)^2}{\ln\sqrt{x}} + \frac{\ln 2}{x} = 0$$
و 20 خاصیات النهایات و الترتیب نستنتج أن

$$\lim_{x \to +\infty} \frac{g\left(x\right)}{x} = 0$$

الدالة φ على هذا المجال]1,+∞[المجال على المجال $t \to \frac{1}{\sqrt{t} \ln t}$ الدالة أصلية $t \to \frac{1}{\sqrt{t} \ln t}$

 $\forall x > 1; g(x) = \varphi(x^2) - \varphi(x)$ نستنتج أن

بما أن ϕ قابلة للإشتقاق على المجال $[1,+\infty[$ فإن g قابلة للإشتقاق على المجال المجال على المجال قابلة للإشتقاق

$$(\forall x > 1); g'(x) = 2x\varphi'(x^2) - \varphi'(x) = 2x\frac{1}{x \ln x^2} - \frac{1}{\sqrt{x \ln x}} = \frac{\sqrt{x} - 1}{\sqrt{x \ln x}} = \frac{\sqrt{x} - 1}{2\sqrt{x \ln \sqrt{x}}} = \frac{1}{2}h(\sqrt{x})$$
 و لدينا

و منه

$$\forall x > 1; g'(x) = \frac{1}{2}h(\sqrt{x})$$

$$(\forall x \ge 1); 1 \le \sqrt{x} \le x \stackrel{h\searrow}{\Rightarrow} h(x) \le h(\sqrt{x}) \le h(1) \stackrel{(h(x)>0)}{\Rightarrow} \frac{1}{2}h(x) \le \frac{1}{2}h(\sqrt{x}) \le \frac{h(1)}{2} \Rightarrow 0 < g'(x) \le \frac{1}{2}$$
 اذن

$$\forall x \ge 1; 0 < g'(x) \le \frac{1}{2}$$

g منه جدول تغيرات الدالة

\boldsymbol{x}	1			+∞
g'(x)			+	
8 (1)			•	
g(x)				+∞
		_		
	ln 2	7		

g منحنى الدالة

الجزء الثالث

$$(\forall x \in [1,+\infty[);k^{'}(x)=g^{,}(x)-1]$$
 و $[1,+\infty[$ على الدالة قابلة للإشتقاق على $[1,+\infty[$

$$\forall x \in [1, +\infty[; -1 < g'(x) - 1 \le -\frac{1}{2} \Rightarrow \forall x \in [1, +\infty[; -1 < k'(x) \le -\frac{1}{2}]$$
و لدينا

 $[1,+\infty[$ نستنتج أن $\forall x \in [1,+\infty[\,;k\,](x)<0$ ومنه k تناقصية قطعا على

$$k(1) = \ln 2$$
 و $\lim_{x \to +\infty} \frac{g(x)}{x} = 0$ کن $\lim_{x \to +\infty} k(x) = \lim_{x \to +\infty} g(x) - x + 1 = \lim_{x \to +\infty} x \left(\frac{g(x)}{x} - 1\right) = -\infty$

 $k\left([1,+\infty[\right)=]-\infty,\ln 2$ نستنتج أن

منه

$$]-\infty,\ln 2]$$
نحو $[1,+\infty[$ تقابل من k

$$]1,+\infty[$$
 من المجال k من المجال 0 سابق وحيد $lpha$ بالدالة $0\in]-\infty,\ln 2[$ بما أن $0\in]-\infty,\ln 2[$

$$g(\alpha) - \alpha + 1 = 0$$
 إذن $k(\alpha) = 0$ ومنه

ىستنتج أنه

$$\exists ! \alpha \in]1, +\infty[/1+g(\alpha)=\alpha$$

برهان بالترجع
$$(1 \quad II)$$

 $1 \le u_0 < \alpha$ لدينا

 $\mathbb N$ لىكن n من

 $1 \le u_n < \alpha$ نفترض أن

$$1 \leq u_n < \alpha \overset{(g\nearrow)}{\Rightarrow} g(1) \leq g(u_n) < g(\alpha)$$
 لدينا $\Rightarrow \ln 2 \leq u_{n+1} - 1 < \alpha - 1$ $\Rightarrow \ln 2 + 1 \leq u_{n+1} < \alpha$ $\Rightarrow 1 \leq u_{n+1} < \alpha$

إذن حسب مبدأ الترجع

$$\forall n \in \mathbb{N}; 1 \leq u_n < \alpha$$

$$(\forall n \in \mathbb{N}); u_{n+1} - u_n = 1 + g(u_n) - u_n = k(u_n)$$
 ب لدينا $(\forall n \in \mathbb{N}); u_n < \alpha \Longrightarrow k(u_n) > k(\alpha)$ كما لدينا

$$k(\alpha) = g(\alpha) - \alpha + 1 = 0$$
 وبما أن

 $\forall n \in \mathbb{N}; u_{n+1} - u_n > 0$ نستنتج أن

و منه

متتالية تزايدية قطعا
$$\left(u_{n}
ight)$$

متتالية تزايدية قطعا و مكبورة ب lpha إدن فهي متقاربة و لتكن l نهايتها $\left(u_{\scriptscriptstyle n}
ight)$

l لدينا l>0 فإن g متصلة عند g و بما أن g متصلة عند g فإن g متصلة عند الدينا

$$(\forall n \in \mathbb{N}); u_{n+1} = 1 + g(u_n) \Rightarrow l = 1 + g(l) \Rightarrow k(l) = 0 \Rightarrow l = \alpha$$
 إذن

، بالتالي

$$\lim u_n = \alpha$$

$$\forall n \in \mathbb{N}; [u_n, \overline{\alpha}] \subset [1, +\infty[\overline{u}]$$
 اُلدینا (2

إدن g متصلة على $[u_n,lpha]$ و قابلة للإشتقاق على $[u_n,lpha]$ و منه حسب مبرهنة التزايدات المنتهية لدينا

$$\exists c \in \left] u_n, \alpha \right[; \frac{g(u_n) - g(\alpha)}{u_n - \alpha} = g'(c) \right]$$

 $1 \le u_n < c < lpha \Rightarrow c > 1 \Rightarrow 0 < g'(c) \le \frac{1}{2} \Rightarrow \left| g'(c) \right| \le \frac{1}{2}$ و بما أن لكل n من n لدينا:

$$\left|g\left(u_{n}\right)-g\left(\alpha\right)\right|\leq\frac{1}{2}\left|u_{n}-\alpha\right|$$
 فإن $\forall n\in\mathbb{N}; \left|\frac{g\left(u_{n}\right)-g\left(\alpha\right)}{u_{n}-\alpha}\right|=\left|g'\left(c\right)\right|\leq\frac{1}{2}$ فإن

$$(\forall n \in \mathbb{N}); g(u_n) - g(\alpha) = u_{n+1} + 1 - \alpha + 1 = u_{n+1} - \alpha$$
و بما أن

فإن

$$\forall n \in \mathbb{N}; \quad |u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$$

ب برهان بالترجع

من أجل n=0 العلاقة تكتب $\left|u_{0}-lpha\right|\leq\left|u_{0}-lpha\right|$ وهذا صحيح

$$\left|u_{\scriptscriptstyle n+1}-lpha
ight| \leq \left(rac{1}{2}
ight)^{\scriptscriptstyle n+1} \left|u_{\scriptscriptstyle 0}-lpha
ight|$$
 من n نفترض أن $\left|u_{\scriptscriptstyle 0}-lpha
ight| \leq \left(rac{1}{2}
ight)^{\scriptscriptstyle n} \left|u_{\scriptscriptstyle 0}-lpha
ight|$ و نبين أن n من n نفترض أن

$$\left(\forall n\!\in\mathbb{N}\right);\;\left|u_{\scriptscriptstyle n+1}-\alpha\right|\leq\frac{1}{2}\left|u_{\scriptscriptstyle n}-\alpha\right|\;\leq\frac{1}{2}\left(\frac{1}{2}\right)^{\!n}\left|u_{\scriptscriptstyle 0}-\alpha\right|\Rightarrow\left|u_{\scriptscriptstyle n+1}-\alpha\right|\leq\left(\frac{1}{2}\right)^{\!n+1}\left|u_{\scriptscriptstyle 0}-\alpha\right|\;\;\text{ Leading the sum of }\left|u_{\scriptscriptstyle 0}-\alpha\right|$$

وبالتالي و حسب مبدأ الترجع

$$\forall n \ge 0; \left| u_n - \alpha \right| \le \left(\frac{1}{2} \right)^n \left| u_0 - \alpha \right|$$

$$\lim \left|u_n - \alpha\right| = 0$$
 فإن $\lim \left(\frac{1}{2}\right)^n \left|u_0 - \alpha\right| = 0$ و زير (ج

نستنتج أن

$$\lim u_n = \alpha$$

 $y_mghazli$ @ hotmail.com : مرحب بملاحظاتكم عبر العنوان