

深度Boosting决策树算法在欺诈检测中的应用

答辩人: 周梦豪 指导老师: 王尧

研究背景

研究背景

算法介绍

实验结果

打开黑箱

论文总结

研究问题

欺诈检测会出现在很多管理学场景中,在不同场景中均会出现欺诈行为

a. 信用卡欺诈

b. 理赔欺诈

c. 在线广告点击流量欺诈

- ▶ 欺诈呈现出新的特点:专业化、产业化、隐蔽化、场景化
- ▶ 传统方法面临挑战: 维度单一、时效性差、范围受限
- ▶ 机器学习方法显示出巨大应用潜力,成为新的研究思路

研究背景

研究背景

算法介绍

实验结果

打开黑箱

论文总结

研究目的与思路

从非均衡分类角度探究深度Boosting决策树算法在欺诈检测中的应用

研究背景

算法介绍

实验结果

打开黑箱

论文总结

Soft Decision Tree

a. Deep Neural Network(泛化性能好,可解释性差)

b. Decision Tree (可解释性好,泛化性能差)

Input: x

研究背景

算法介绍

实验结果

打开黑箱

论文总结

Boosting框架

输入: 训练集 $\mathcal{T} = \{(\boldsymbol{x}_1, y_1), \cdots, (\boldsymbol{x}_N, y_N)\}, \boldsymbol{x}_i \in \mathcal{X} = \mathbb{R}^p, y_i \in \mathcal{Y} = \{-1, +1\};$ 模型超参数: 软决策树数量T、树的深度d、树节点内网络层数c、正则项系数 λ_1, λ_2 和迭代次数nEpochs

1. 初始化数据权重
$$D_i(\boldsymbol{x}) \leftarrow \frac{1}{N}$$
 for $i = 1, \dots, N$

2. **for**
$$t=1 \rightarrow T$$
 do

4. **for**
$$i = 1 \rightarrow \text{nEpochs do}$$

6. **for all** minibatch from
$$T$$
 do

11.
$$\epsilon_t \leftarrow \mathbb{E}_{x \sim \mathcal{D}_t}[h_t(x) \neq y]$$

12.
$$\alpha_t \leftarrow \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

13.
$$\mathcal{D}_{t+1}(x) \leftarrow \mathcal{D}_t(x) \exp(-\alpha_t h_t(x)y)$$

14.
$$\mathcal{D}_{t+1}(\boldsymbol{x}) \leftarrow \frac{\mathcal{D}_{t+1}(\boldsymbol{x})}{\sum_{\boldsymbol{x}} \mathcal{D}_{t+1}(\boldsymbol{x})}$$

15. end for

输出: 预测模型
$$H(x) = \underset{y \in \langle -1, +1 \rangle}{\operatorname{arg max}} P(f(x) = y|x)$$

b. 深度Boosting决策树算法学习过程伪代码

- 数据重构: 加大错分样本权重,减小分对样本权重
- 结合策略: 准确的分类器权重高,不准确的分类器权重低

算法数学描述

研究背景

Inner Nodes

$$d_i(oldsymbol{x};\Theta) = \sigma(oldsymbol{w}_i^Toldsymbol{x} + b_i)$$

算法介绍

Leaf Nodes

$$Q_k^{\ell} = rac{\exp\left(\phi_k^{\,\ell}\,
ight)}{\sum_{k^{'}} \exp\left(\phi_{k^{'}}^{\,\ell}
ight)}$$

实验结果

打开黑箱

路径概率

$$\pi_i(oldsymbol{x}|\,\Theta) = \sum_{1\leqslant j < i} d_j(oldsymbol{x};\,\Theta)^{\,\mathbb{I}_j^r} ig(1 - d_j(oldsymbol{x};\,\Theta)ig)^{\,\mathbb{I}_j^\ell}$$

c. Soft Decision Tree

论文总结

预测结果

$$\mathbb{P}[y\!=\!k|oldsymbol{x},\,\Theta] = \sum_{\ell} Q_k^{\,\ell} \pi_\ell(oldsymbol{x}\!\mid\!\Theta)$$

研究背景

算法介绍

实验结果

打开黑箱

论文总结

算法数学描述

训练数据:
$$\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\} (|\mathcal{D}| = N, \boldsymbol{x}_i \in \mathbb{R}^p, y_i \in \{-1, +1\})$$

目标函数:
$$(\phi_t,h_t)=rg\min_{\phi,h}\sum_i^NL\left(y_i,f_{t-1}(x_i)+\phi_th_t(x_i)
ight)+C_t+\Omega_t(w)$$

正则化项1:
$$C_t = -\lambda_1 imes 2^{-d} \sum_{i \in \mathit{Inner Nodes}} 0.5 \log(lpha_i) + 0.5 \log(1-lpha_i)$$

正则化项2:
$$\Omega_t = \lambda_2 \sum_{i \in Inner\ Nodes} \|w\|_2$$

损失函数:
$$L(f(x_i), y_i) = y_i \exp(-y_i f(x_i))$$

优化算法: Adam

超参数: λ_1 、 λ_2 、软决策树数量T、树的深度d、神经网络层数c

数据集介绍

研究背景

算法介绍

实验结果

打开黑箱

论文总结

a. 数据集基本统计情况

数据集	样本数	特征数	类别数	少数类占比(%)
Credit Card	26107	17	2	5.3
Loan Data	95791	13	2	1.6
Bank Market	41189	17	2	11.2

➤ 数据集1: Credit Card Fraud

包含由欧洲持卡人于2013年9月使用信用卡在两天内发生的交易

- ➤ 数据集2: Loan Data
 - 一家美国互联网金融公司Lending Club在2007年到2015年的一些业务数据
- ➤ 数据集3: Bank Marketing
 - 一家银行从2008年5月到2010年10月的交易数据

数据来源:

- 1 https://mlg.ulb.ac.be/wordpress/projects/
- 2https://www.kaggle.com/swetashetye/lending-club-loan-data-imbalance-dataset
- 3https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

在数据集上结果

研究背景

算法介绍

实验结果

打开黑箱

论文总结

a1. 在Credit Card数据集上结果比较

4世 Til	指标 1	指标 2		指标 3	
模型	Accuracy	AUC	Precision	Recall	F1
1) AdaBoost	98.1%	0.54	100%	5%	0.09
2) XGBoost	98.4%	0.54	100%	5%	0.09
3) SMOTEBoost	93.5%	0.62	4%	13%	0.06
4) RUSBoost	89.1%	0.61	3%	54%	0.05
5)深度 Boosting 决策树	98.3%	0.68	67%	5%	0.09

b1. 在Loan Data数据集上结果比较

₩ #il	指标 1	指标 2		指标 3	
模型	Accuracy	AUC	Precision	Recall	F1
1) AdaBoost	83.5%	0.51	43%	8%	0.14
2) XGBoost	83.8%	0.53	58%	2%	0.03
3) SMOTEBoost	81.0%	0.54	30%	14%	0.19
4) RUSBoost	79.0%	0.56	21%	46%	0.29
5)深度 Boosting 决策树	83.9%	0.66	69%	4%	0.08

a2.在Credit Card数据集上得到的ROC曲线

b2.在Loan Data数据集上得到的ROC曲线

在数据集上结果

研究背景

算法介绍

实验结果

打开黑箱

论文总结

c1. 在Bank Marketing数据集上结果比较

	· -	9.4	(3H)		
144 Tu	指标 1	指标 2		指标3	_
模型	Accuracy	AUC	Precision	Recall	F1
1) AdaBoost	90.8%	0.68	66%	38%	0.49
2) XGBoost	91.9%	0.75	68%	53%	0.60
3) SMOTEBoost	89.7%	0.82	53%	73%	0.53
4) RUSBoost	86.1%	0.87	44%	90%	0.59
5)深度 Boosting 决策树	90.9%	0.88	88%	77%	0.82

c2.在Bank Marketing数据集上得到的ROC曲线

1) Friedman检验结果

原假设 H_0 : 所有算法性能相同

检验统计量
$$au_F = rac{(N-1) au_{\mathcal{X}^2}}{N(k-1)- au_{\mathcal{X}^2}} \sim \mathcal{X}^2(k-1)$$

在显著性水平 α 分别为0.05和0.1条件下拒绝原假设 H_0

2) Nemenyi检验结果

平均序值差别的临界值域
$$CD=q_{\alpha}\sqrt{rac{k(k+1)}{6N}}$$

在显著性水平 α 分别为0.05和0.1条件下算法分两类:

- ① 深度Boosting决策树、RUSBoost和SMOTEBoost
- ② AdaBoost、XGBoost

研究背景

算法介绍

实验结果

打开黑箱

论文总结

超参数调整-树的深度depth与树的数量T

a. 树的数量对模型性能的影响

89. 6 89. 5 89. 4 89. 3 (%) 89. 2 (%) 89. 2 (%) 89. 0 89. 0 88. 9 88. 9 88. 8

ь. 树的深度对模型性能的影响

accuracy

-▲— auc

0.870

● 增加树的数量与深度均能提升模型性能

88.7

88.6

● 深度越大,达到模型上限所需要的软决策 树数量越少

研究背景

算法介绍

实验结果

打开黑箱

论文总结

超参数调整-神经网络的层数c

- 针对该任务,增加层数无法显著提升模型性能(非表格数据:图像?文本?音频?视频?)
- 增加层数容易导致模型过拟合

打开黑箱

特征重要性排序

研究背景

算法介绍

实验结果

打开黑箱

论文总结

特征名称	特征含义
inq.last.6mths	借款人在过去6个月征信被查询的次数
purpose	贷款目的:信用卡、债务合并、教育、家庭装修、小生意、其他
fico	借款人的 FICO 信用评分
installment	借款人分期付款金额
log.annual.inc	借款人年收入的自然对数
revol.util	借款人的循环余额利用率(使用的信贷额度相对于可用信贷总额)
int.rate	贷款利率
credit.policy	1-满足公司担保标准;0-否
delinq.2yrs	借款人在过去2年内逾期还款30天以上的次数
dti	借款人的债务-收入比率
days.with.cr.line	借款人获得信用额度的天数
pub.rec	借款人的负面公共记录数量(破产申请、税收留置权或判决)
revol.bal	借款人的循环余额(信用卡账单周期结束时未付的金额)

b. 特征含义

a. 在Loan Data数据集上获得的特征重要性排序结果

特征重要性排序前5名分别为

inq.last.6mths(22.8%)>purpose(18.9%)>fico(16.1%)>installment(10.9%)>log.annual.inc(10.7%)

打开黑箱

研究背景

算法介绍

实验结果

打开黑箱

论文总结

特征排序结果分析

a. 征信查询次数与违约比例线性拟合结果 inq.last.6mths(22.8%)

借款人一段时期以内借款活动越频繁借款人违约风险越大

b. 是否达到公司借款标准中的真实还款情况

credit.policy(3.2%)

- 未达到标准(19%), 14%的借款人会完全还款
- 该群体被忽略,现有标准无法有效分类

论文总结

结论与展望

研究背景

算法介绍

实验结果

打开黑箱

论文总结

●结论

- 1. 深度Boosting决策树算法在欺诈检测中效果优于现有的Boosting算法
- 2. 深度Boosting决策树算法兼具泛化性能好和可解释性好的优点,二者不矛盾
- 3. 构建具有可解释性的机器学习模型的一条可行路径: 复杂模型与简单模型融合

●未来研究方向

- 1. 探究不同优化算法对模型性能的影响
- 2. 结合非均衡问题处理技术,对现有算法进行改进
- 3. 从模型偏见、错分统计等角度对模型可解释性进行探索

请各位老师批评指正

答辩人: 周梦豪 指导老师: 王尧

