

Abel-konkurransen 1999–2000 Andre runde

Oppgave 1

Hva er $\frac{777^2 - 66^2}{777 + 66}$?

Oppgave 2

I en bridgeklubb er det 8 medlemmer. Det skal velges et styre bestående av 3 medlemmer, og i styret skal det velges en formann. På hvor mange måter kan dette gjøres?

Oppgave 3

Anta x og y er reelle tall slik at xy=6 og $x^2y+xy^2+x+y=63$. Hva er x^2+y^2 ?

Oppgave 4

To halvsirkler og en sirkel ligger som på figuren, der halvsirklenes diametre ligger på l og sirkelen tangerer l og begge halvsirklene. Hvis PQ=QR=RS=24, hva er da sirkelens radius r?

Oppgave 5

Hva er det største positive heltall u slik at det finnes nøyaktig ett heltall a slik at 20u < 19a < 21u?

Oppgave 6

Det er gitt en mengde S bestående av n forskjellige tall fra $\{1, 2, 3, \ldots, 1000\}$. For hvert utvalg av 4 tall fra S vil det alltid finnes to som har differanse delelig med 10. Hva er største mulige verdi for n?

Oppgave 7

Anta at polynomet p(x) har nullpunktene x_1 og x_2 , og at $p(2x+1) = 4x^2 - 30x + 12$. Hva er da $x_1 + x_2$?

Oppgave 8

La ABC være en trekant der D er midtpunktet på AB og E er midtpunktet på BC slik at CD og AE står vinkelrett på hverandre. Hvis AB = 6 og BC = 8, hva er kvadratet av sidelengden AC?

Oppgave 9

Hvis
$$(3x^2 - x - 2)^6 = a_{12}x^{12} + a_{11}x^{11} + \ldots + a_{11}x + a_0$$
, hva er $a_0 + a_2 + a_4 + \ldots + a_{12}$?

Oppgave 10

La $n \geq 0$ være et heltall. Fra hvert av hjørnene i en trekant er det trukket n linjestykker til motstående side slik at tre linjer aldri har et felles skjæringspunkt. La S_n være antall områder trekanten blir inndelt i av disse linjestykkene. For eksempel er $S_0 = 1$ og $S_1 = 7$. Hva er S_{10} ?