Zachary Durso

C170 - Data Management Applications

4-22-2022

VHT2

A.1 Second Normal Form (2NF)

BAGEL ORDER			BAGEL ORDER LINE ITEM			BAGEL	
PK	Bagel Order ID		PK / FK	Bagel Order ID	<u></u>	PK	Bagel ID
	Order Date	1:M	PK / FK	Bagel ID	M:1		Bagel Name
	First Name			Bagel Quantity			Bagel Description
	Last Name				_		Bagel Price
	Address 1						
	Address 2						
	City						
	State						
	Zip						
	Mobile Phone						
	Delivery Fee						
	Special Notes						

A.1.c – 2NF Explanation

I placed Bagel Name, Description, and Price into the Bagel table because they're all unique and dependent on the individual bagel, described by the Bagel ID, which is the primary key for the table as it's simple, stable, and relatively meaningless if it's not corresponding to these other data points.

The Bagel Order Line Item table has a M:1 relationship with the Bagel table because while there may be many line items, each bagel order line item can only correspond to one particular bagel. This table includes two keys, and one other data item that doesn't really fit anywhere else, Bagel Quantity. This is the best place for Bagel Quantity because it is unique, not necessarily to the bagel, but to the Bagel Order Line Item which denotes, the intended bagel.

In the Bagel Order table, we have everything else, the information is all specific to the order and this is the only logical place to put the remaining data from the order form. This table has a 1:M relationship with Bagel Order Line Item, this is because one order may have many line items.

Third Normal Form (3NF)

Bagel Order			BAGEL ORDER LINE ITEM			BAGEL		
PK	Bagel Order ID		PK / FK	Bagel Order ID	L	PK	Bagel Order ID	
FK	Customer ID	1:M	PK / FK	Bagel ID	M:1		Bagel Name	
	Order Date			Bagel Quantity			Bagel Description	
	Delivery Fee				•		Bagel Price	
	Special Notes							
	M:1							
Custo	Customer							
PK	Customer ID							
	First Name							
	Last Name							
	Address 1							
	Address 2							
	City							
	State							
	Zip							
	Mobile Phone							

A.2.e – 3NF Explanation

Here we have split the Bagel Order table into two parts, one still named Bagel Order, and one named Customer. This makes sense because usually, you'll have an account with your personal information already saved to a profile. This way when you place an order, you don't need to fill out all your personal details each time. A new key needed to be created though, to link the customer table with the order table. This new key is named Customer ID. This is the best option because it's relatively useless otherwise and should never change.

Bagel Order is now a concise table with only information relevant to the bagel order within it. It also includes, as a foreign key, the Customer ID key. This way, we can link the two tables together. The Bagel Order table has a many-to-one relationship with the Customer table because many orders may be placed by one customer. The bagel Order table also has a 1:M relationship with the Bagel Order Line Item table because one order may contain many line items.

The Bagel Order Line Item table has a M:1 relationship with the Bagel table because while there may be many line items, each bagel order line item can only correspond to one particular bagel. This table includes two keys, and one other data item that doesn't really fit anywhere else, Bagel Quantity. This is the best place for Bagel Quantity because it is unique, not necessarily to the bagel, but to the Bagel Order Line Item which denotes, the intended bagel. The data within each cell of the other two tables, Bagel Order Line Item and Bagel, are all exactly the same as they were in the 2NF diagram. These two tables remain unchanged.

Final Physical Database Model

Bagel	Order			BAGEL OR	DER LINE ITEM			BAGEL		
PK	bagel_order_id	INT		PK / FK	bagel_order_id	INT		PK	bagel_id	CHAR(2)
FK	customer_id	INT	1:M	PK / FK	bagel_id	CHAR(2)	M:1		bagel_name	VARCHAR(45)
	order_date	TIMESTAMP	1		quantity	INT	† -		bagel_description	VARCHAR(80)
	delivery_fee	NUMERIC(5,2)							bagel_price	NUMERIC(5,2)
	special_notes	VARCHAR(2500)								
	M:1	i								
Custo	mer									
PK	customer_id	INT								
	first_name	VARCHAR(20)								
	last_name	VARCHAR(20)								
	address_1	VARCHAR(65)								
	address_2	VARCHAR(65)								
	city	VARCHAR(20)								
	state	VARCHAR(20)								
	zip	NUMERIC(5,0)								
	mobile_phone	NUMERIC(10,0)								

B.1 - Create Tables

DB Fiddle - Crafted with ♥ by Status200 in the United Kingdom.

Terms of Use • Privacy / Cookie Policy • Status200 Ltd @ 2018

B.2.a - SQL Code

DB Fiddle - Crafted with ♥ by Status200 in the United Kingdom.

Terms of Use • Privacy / Cookie Policy • Status200 Ltd @ 2018

B.2.b - Results

B.3 - Create A View

B.4 – Create An Index On Coffee Table

B.5 – Select From Where Query

B.6 - 3 Table Join

