ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа № 5.5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и опредление их энерегии.

Мельникова Юлия Калинин Даниил Группа Б01-108а

Аннотация:

- 1. С помощью сцинтилляционного счётчика измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе, алюминии.
- 2. По линейным коэффициентам ослабления потока γ -лучей определить энергию γ -квантов.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке ??:

Рис. 1: Схема экспериментальной установки.

Источник γ -лучей И окружён свинцовой оболочкой. Коллиматор выделяет узкий параллельный пучок γ -квантов, который проходит через набор поглотителей Π , и регистрируется сцинтилляционным счётчиком C (кристалл NaI(Tl)). Сигнал со счётчика усиливается каскадом фотоэлектронного умножителя и формирователявыпрямителя Φ , и регистрируется пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика.

Оборудование

Экспериментальная установка №5.1б.

- 1. Набор поглотителей из алюминия, свинца и железа. Инвентарный номер №420139237208.
- 2. Блок детектирования сцинтилляционный РАДЭК БДЕГ-40. Заводской номер №2811. Инвентарный номер №4024.
- 3. Высоковольтный источник питания Scaler 1403. Инвентарный номер №410134125708.
- 4. Источник гамма-излучения в свинцовой оболочке.
- 5. Штангенциркуль. Погрешность измерения равна половине цены деления $\sigma_{\text{mr}} = 0.05 \text{ мм}$.

Экспериментальные данные

t, c	n	σ_n
120	3480	59
120	3444	59
120	3435	59
120	3481	59

Таблица 1: Радиационный фон

t, c	n_0	σ_n
60	520119	721
60	516950	719
60	516531	712
60	515567	718
60	516086	718

Таблица 2: Открытый источник

t, c	L, mm	σ_L , MM	n	σ_n
60	20.2	0.1	338859	582
60	40.4	0.1	173829	417
60	60.4	0.1	145886	382
60	80.2	0.1	97746	313
60	100.4	0.1	65171	255

Таблица 3: Поглотитель из алюминия

t, c	L, mm	σ_L , MM	n	σ_n
60	10.6	0.1	292907	541
60	20.8	0.1	160565	400
60	31.0	0.1	90941	302
60	41.2	0.1	50856	226
60	51.6	0.1	28198	168

Таблица 4: Поглотитель из железа

t, c	L, mm	σ_L , mm	n	σ_n
60	4.5	0.1	295683	544
60	9.2	0.1	167728	410
60	14.1	0.1	96834	311
60	19.0	0.1	54374	233
60	23.9	0.1	31137	176

Таблица 5: Поглотитель из свинца

Обработка результатов

В условиях нашего эксперимента необходимо учитывать фон, поэтому

$$N_0 = n_0 - n_{\text{фон}}, \ N = n - n_{\text{фон}}.$$

Относительная пограшность измерения фона $\varepsilon_{\mathrm{фон}}=1.107\%$, была определена через коэффициент Стьюдента при доверительном интервале 0.95, умноженный на среднеквадратичную ошибку: $\varepsilon_{\rm фон}=t_{0.95}*\sqrt{\frac{\sum_{i=1}^{N}(x_i-\bar{x})^2}{N(N-1)}}$ Из проведённой серии измерений взято $N_0=517050,\ N_{\rm фон}=3460$

Для определения коэффициента ослабления μ в различных веществах небходимо построить графики зависимостей $\ln N_0/N$ от l. Погрешности определялись следующим образом:

$$\sigma_N = \sqrt{\sigma_n^2 + \sigma_{n_{\text{mym}}}^2}$$

$$\sigma_{N/t} = \frac{N}{t} \cdot \varepsilon_N = \frac{N}{t} \cdot \frac{\sigma_N}{N}$$

$$\sigma_{\ln n} = \frac{1}{n} \cdot \sigma_n$$

Построим график зависимости количества зарегистрированных в секунду γ -квантов n от толщины поглощающего слоя l в обычном и логарифмическом масштабе (рис. 2, 3). Кресты погрешности малы и на первом графике не видны.

Рис. 2: График зависимости n(l).

Рис. 3: График зависимости $\ln n(l)$.

С помощью метода наименьших квадратов проведём на графике в логарифмическом масштабе прямые. Коэффициенты наклона прямых:

$$\mu_P b = 1.16 \pm 0.01 \text{ cm}^{-1}$$

 $\mu_F e = 0.57 \pm 0.01 \text{ cm}^{-1}$
 $\mu_A l = 0.19 \pm 0.02 \text{ cm}^{-1}$

Определим линейные коэффициенты поглощения, приведённые к плотности вещества:

$$\mu' = \frac{\mu}{\rho}$$

$$\begin{array}{l} \mu_P'b = 0.086 \pm 0.004 \; \mathrm{cm^2/r} \\ \mu_F'e = 0.072 \pm 0.001 \; \mathrm{cm^2/r} \\ \mu_A'l = 0.071 \pm 0.001 \; \mathrm{cm^2/r} \end{array}$$

Были взяты следующие значения плотности:

$$ho_{Pb} = 13.35 \text{ r/cm}^3 \\
ho_{Fe} = 7.87 \text{ r/cm}^3 \\
ho_{Al} = 2.70 \text{ r/cm}^3$$

Обсуждение результатов и выводы

В настоящей лабораторной работе с помощью сцинтилляционного счетчика были измерены линейные коэффициенты ослабления μ потока γ -лучей в свинце, железе и алюминии.

Табличные значения линейных коэффициентов поглощения:

E_{γ} , MəB	Pb	Fe	Al
0,6	1,349	0,605	0,210
0,8	0,982	0,526	0,184

Таблица 6: Коэффициенты поглощения γ -лучей в различных веществах (в см⁻¹).

Видно, что полученные нами значения коэффициента ослабления потока μ для каждого вещества лежат в диапазоне энергий от 0,6 MэB до 0,8 МэВ, поэтому средняя энергия излучения есть $E_{\gamma}=0$,7 МэВ.

Заметим, что наклоны прямых на рис. З по мере роста заряда ядра увеличиваются. Это связано с природой ослабления γ -лучей при их прохождении в веществе: фотоэлектрическое поглощение, комптоновское рассеяние, генерация электрон-позитронных пар. Так как $E_{\gamma}=0,7~{\rm M}{\rm s}B<2mc^2=1,02~{\rm M}{\rm s}B$, то в нашем случае фотон не может превратиться в электрон-позитронную пару. Комптоновское рассеяние происходит на свободных или слабосвязанных электронах, поэтому, очевидно, сечение не зависит от заряда ядра, откуда $\mu_k \propto Z$. Фотоэффект же в отличии от Комптоновского рассеяния происходит на атоме, и, естественно, что в этом случае сечение уже будет зависеть от заряда ядра. Вообще говоря, строгий квантово-механический рассчет приводит к результату $\sigma_{\Phi} \propto Z^5$. Таким образом, коэффициент ослабления γ -лучей должен расти при увеличении заряда ядра.