Einführung in die Analysis 2. Folgen

Joana Portmann — Fachhochschule Nordwestschweiz

Frühlingssemester 2021

Einstieg: IQ-Test

In diesem Test sollen Sie kennenlernen, welche Fragen Sie bei einem IQ Test erwarten können. Nehmen Sie sich ruhig Zeit. Es ist wichtiger die Fragen zu verstehen, als schnell die Antworten zu finden. Also viel Spaßl

Bitte beachten Sie, dass es bei vielen Aufgaben mehrere Lösungen geben kann. Wir geben immer nur die 'logischste' Lösung.

Bei den folgenden Aufgaben müssen Zahlen- oder Buchstabenmuster, die nach bestimmten Gesetzmäßigkeiten aufgebaut sind, analysiert werden.

Frage 1 des IQ Tests: Führen sie die Zahlenfolge fort: 3, 5, 8, 13, 21,

Frage 2 des IQ Tests: Führen sie die Zahlenfolge fort: 4, 5, 8, 17,

Frage 3 des IQ Tests: Führen sie die Zahlenfolge fort: 3, 4, 8, 17, 33,

Frage 4 des IQ Tests: Führen sie die Zahlenfolge fort: 11, 9, 7, 5, 3,

Frage 5 des IQ Tests: Führen sie die Zahlenfolge fort: 3, 6, 18, 72, 360,

Frage 6 des IQ Tests: Führen sie die Zahlenfolge fort: 30, 29, 27, 26, 24, 23, 21, 20,

(Vollständiger IQ-Test (inklusive Auswertung))

2. Folgen

Inhaltsverzeichnis

- Zahlenfolgen
- Darstellung
 - Aufzählende Darstellung
 - Explizite Darstellung
 - Rekursive Darstellung
- Eigenschaften
 - Monotonie
 - Beschränktheit
 - Konvergenz
 - Grenzwerte

Folgen

Definition (reelle Zahlenfolgen)

Eine reelle **Folge** ist eine Funktion

$$a: \mathbb{N} \to \mathbb{R}$$
 $n \mapsto a_n$

auch geschrieben als a_1, a_2, a_3, \ldots

Die reellen Zahlen a_n nennt man die **Glieder** der Folge und n heißt **Index** der Folge.

Bemerkungen:

- Jeder Zahl n wird eine reelle Zahl a_n (ein **Folgenglied**) zugeordnet;
- Die Folgenglieder werden der Reihe nach aufgelistet, wobei der Index die Rolle der Platznummer hat;
- Für den Folgenindex kann jeder beliebige Buchstabe verwendet werden (meist i, j, k, oder n). Der Folgenindex muss auch nicht bei 1 beginnen, sondern beginnt oft auch bei 0.

Darstellungsarten: Aufzählende Darstellung

Für Folgen gibt es verschiedene Darstellungen, die kurz präsentiert werden:

Definition (Aufzählende Darstellung)

In der **aufzählenden Darstellung** einer Zahlenfolge werden alle Folgenglieder der Reihe nach - jeweils durch ein Komma getrennt - aufgelistet:

$$a_1, a_2, a_3, a_4, a_5, \dots$$

Beispiel:

 $1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, \dots$

Welche Zahl a_{13} würde folgen?

Definition (Explizite Darstellung)

Bei einer **expliziten Darstellung** wird eine Vorschrift abhängig vom Index n der Folge angegeben, mit der man das n—te Folgenglied a_n ausrechnen kann. Ein solches **Bildungsgesetz** wird meist folgendermaßen aufgeschrieben:

 $a_n = \text{irgendein Term mit } n$

Beispiel:

Für die Folge mit dem Bildungsgesetz: $a_n = \frac{n-1}{n}$ lauten die ersten Folgenglieder:

$$a_1 = 0$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{2}{3}$, $a_4 = \frac{3}{4}$, $a_5 = \frac{4}{5}$

Beispiel:

Bestimmen Sie für die gegebenen Bildungsgesetze die ersten Folgenglieder:

- $a_n = n^2$:
- $a_n = n!$:
- $a_n = \frac{2n^2 1}{n^2 + 1} :$

Bestimmen Sie für die gegebenen Folgen das passende Bildungsgesetz:

- **2** Folge der geraden Zahlen: $2, 4, 6, 8, \ldots$
- $3 -1, +1, -1, +1, -1, +1, \dots$
- **4** 15, 12, 9, 6, 3, 0, . . .

Beispiel (Lösungen Teil 1):

Bestimmen Sie für die gegebenen Bildungsgesetze die ersten Folgenglieder:

$$1 a_n = n^2 : 1, 4, 9, 16, 25, 36, \dots$$

2
$$a_n = n!$$
: $1, 2, 6, 24, 120, 720, \dots$

$$\mathbf{3} \ a_n = \frac{2n^2 - 1}{n^2 + 1} : \qquad \frac{1}{2}, \frac{7}{5}, \frac{17}{10}, \frac{31}{17}, \frac{49}{26}, \dots$$

Bestimmen Sie für die gegebenen Folgen das passende Bildungsgesetz:

- 1 Folge der ungerade Zahlen: $1, 3, 5, 7, \ldots$
- **2** Folge der geraden Zahlen: $2, 4, 6, 8, \ldots$
- $3 -1, +1, -1, +1, -1, +1, \dots$
- **4** 15, 12, 9, 6, 3, 0, . . .

Beispiel (Lösungen Teil 2):

Bestimmen Sie für die gegebenen Bildungsgesetze die ersten Folgenglieder:

$$1 a_n = n^2 : 1, 4, 9, 16, 25, 36, \dots$$

$$a_n = n!$$
: $1, 2, 6, 24, 120, 720, \dots$

$$\mathbf{3} \ a_n = \frac{2n^2 - 1}{n^2 + 1} : \qquad \frac{1}{2}, \frac{7}{5}, \frac{17}{10}, \frac{31}{17}, \frac{49}{26}, \dots$$

Bestimmen Sie für die gegebenen Folgen das passende Bildungsgesetz:

- **1** Folge der ungerade Zahlen: $1, 3, 5, 7, \ldots$: $a_n = 2n 1$
- 2 Folge der geraden Zahlen: $2, 4, 6, 8, \ldots$: $a_n = 2n$

$$a_n = (-1)^n$$

4 15, 12, 9, 6, 3, 0, ...:
$$a_n = 18 - 3n$$

Definition (Rekursive Darstellung)

Bei der rekursiven Darstellung einer Zahlenfolge werden

- lacktriangledown das erste Folgenglied a_1 (bzw. die ersten Folgenglieder) angegeben und
- lacktriangle eine Rechenvorschrift, wie aus den vorangegangenen Folgegliedern das $n-{
 m te}$ Folgeglied berechnet werden kann

Anmerkung: Von einer **rekursiven Darstellung** k—**ter Ordnung** wird gesprochen, wenn zur Berechnung des Folgegliedes a_n weiter vorangehende Glieder bis zum Glied a_{n-k} benötigt werden.

Beispiel:

Das Heronverfahren

$$a_1 = \text{N\"{a}} \text{herungswert f\"{u}r } \sqrt{b}, \quad a_n = \frac{1}{2} \left(a_{n-1} + \frac{b}{a_{n-1}} \right)$$

ist durch eine rekursive Darstellung 1. Ordnung beschrieben;

■ Die Fibonacci-Folge

$$a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2}$$

ist durch eine rekursive Darstellung 2. Ordnung beschrieben.

Beispiel:

Wie lauten die ersten 6 Glieder der Folge, die durch

$$a_1 = 1$$
 und $a_n = n \cdot a_{n-1}, \quad n \ge 2$

beschrieben wird?

$$a_1 = 1,$$
 $a_2 =$
 $a_3 =$
 $a_4 =$

$$a_5 =$$

$$a_6 =$$

Beispiel:

Wie lauten die ersten 6 Glieder der Folge, die durch

$$a_1 = 1 \text{ und } a_n = n \cdot a_{n-1}, \quad n \ge 2$$

beschrieben wird?

$$a_{1} = 1,$$

$$a_{2} = 2 \cdot a_{1} = 2$$

$$a_{3} = 3 \cdot a_{2} = 6$$

$$a_{4} = 4 \cdot a_{3} = 24$$

$$a_{5} = 5 \cdot a_{4} = 120$$

$$a_{6} = 6 \cdot a_{5} = 720$$

Es handelt sich um die Fakultät der natürlichen Zahl n: n! Die Folge besitzt die explizite Darstellung: $a_n = n$!

Beispiel:

Die **Fibonacci-Folge** ist eine in der Mathematik besonders bekannte Folge, die 1202 der Mathematiker Leonardo Fibonacci bei der Untersuchung des Verhaltens einer Kaninchenpopulation entdeckte.

Folgende Regeln liegen der Folge zugrunde:

- 1 Zu Beginn gibt es ein Paar neugeborene Kaninchen
- 2 Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif
- 3 Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar (\circ und \circ)
- 4 Kein Tier stirbt und von außen können keine Tiere hinzukommen

Die Folgenglieder a_n geben die Anzahl der Paare im n-ten Monat an. Wie lauten die ersten Glieder der Folge und wie lautet das rekursive Bildungsgesetz der Fibonacci-Folge?

Beispiel (Fibonacci-Folge-Lösung)

		Jungpaar Geschlechts- 2. Monat reifes Paar		Anzahl Paare gesamt a_n	
1	1	0	0	1	
2	0	1	0	1	
3	1	0	1	2	
4	1	1	1	3	
5	2	1	2	5	
6	3	2	3	8	
7	5	3	5	13	

Das rekursive Bildungsgesetz lautet:

$$a_1=1,\ a_2=1,$$
 $a_n=\underbrace{a_{n-1}}_{\text{alle}}+\underbrace{a_{n-2}}_{\text{in }a_n \text{ zum 1. Mal}}$

Zusätzliche Übungen

Aufgabe 1 (Folgen bestimmen)

Berechnen Sie für die Folgen jeweils die ersten 5 Glieder:

(a)
$$a_n = 1 + \frac{(-1)^n}{n^2}$$

(b)
$$a_n = \frac{3^{n+2}}{2^n - 10}$$

(c)
$$a_n = \frac{2n}{n!}$$

(d)
$$a_n = \left(a_{n-1} + \frac{1}{(a_{n-1})^2}\right)$$
 mit $a_0 = 1$.

Aufgabe 2 (Bildungsgesetze für Folgen)

Bestimmen Sie für die gegebenen Folgen jeweils eine explizite Darstellung:

(a) 2, 5, 8, 11, . . .

(b) 2, 0.2, 0.02, 0.002, . . .

(c) $0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$

(d) $a_1 = -1$, $a_n = (a_{n-1})^3$

Lösungen Zusätzliche Übungen

Aufgabe 1:

(a)
$$0, \frac{5}{4}, \frac{8}{9}, \frac{17}{16}, \frac{24}{25}, \dots$$

(b)
$$-\frac{27}{8}$$
, $-\frac{27}{2}$, $-\frac{243}{2}$, $\frac{243}{2}$, $\frac{2187}{22}$,...

(c)
$$2, 2, 1, \frac{1}{3}, \frac{1}{12}, \dots$$

(d) 1, 2,
$$\frac{9}{4}$$
, $\frac{793}{324}$, $\frac{532689481}{203747076}$,...

Aufgabe 2:

- (a) $a_n = 3n 1$, $n \ge 1$: Diese Folge heißt arithmetisch, weil jedes Glied das arithmetische Mittel seiner beiden Nachbarglieder ist
- (b) $a_n = 2 \cdot (0.1)^{n-1}$ Geometrische Folge: Der Quotient zweier aufeinanderfolgender Glieder ist eine Konstante (hier $\frac{a_{n+1}}{n} = 0.1 = q$)
- $(\text{hier} \frac{a_n}{a_n} = 0.1 = 0.1$
- (c) $a_n = \frac{n-1}{n}$
- (d) $a_n = -1$

Darstellungsarten von Folgen: Kahoot

kahoot.it Quiz

Eigenschaften von Folgen: Einstieg

Diese wahre Geschichte stammt aus einem Blogeintrag vom Biologen Michael Eisen (http://www.michaeleisen.org/blog/?p=358):

- Im März 2011 möchte ein Biologe das Buch *The Making of a Fly* von Peter Lawrence, ein Klassiker über Entwicklungsbiologie, kaufen.
- Dieses ist leider vergriffen, aber Amazon schlägt ihm 17 Exemplare von privaten Händlern vor, zwei davon sind ungebraucht. Die Preise dafür:

1730 045.91 Dollar und 2198 177.95 Dollar !?!?! (plus zusätzlich noch jeweils 3.99 Dollar Liefergebühren)

The Making of a Fly: The Genetics of Animal Design (Paperback) by Peter A. Lawrence

Return to product information

Always pay through Amazon.com's Shopping Cart or 1-Click. Learn more about Safe Online Shopping and our safe buying guarantee. Price at a Glance List \$70.00

Used: from \$35.54 New: from \$1,730,045,91

Have one to sell? Sell yours here

Ist das ein Scherz???

- Eher nicht, denn es sind zwei verschiedene Verkäufer mit einem so hohen Preis.
- Beide Verkäufer haben schon ziemlich viele gute Bewertungen.

Am nächsten Tag:

- Der günstigere Preis (von profnath) ist wieder angestiegen.
- Dies motiviert den Blogger, die Preise weiterhin zu beobachten.
- Etwas später am Tag wir das teurere Angebot (von bordeebook) noch teurer...

Vermutung:

- profnath aktualisiert seinen Preis jeweils am Morgen.
- bordeebook aktualisiert ihn am Abend.
- Es sieht so aus, wie wenn ein Programm die Preise automatisch anpassen würde... → Algorithmic Pricing

Der Blogger beobachtet die Preisentwicklung über mehrere Tage:

profnath	bordeebook	<u>profnath</u> bordeebook	bordeebook profnath
2 194 443.04	2198177.95	0.99830	1.27059
2783493.00	2788 233.00	0.99830	1.27039
2783493.00	3 536 675.57		1.27059
3 530 663.65 3 530 663 65	3 536 675.57 4 486 021 69	0.99830	1.27059
4 478 395.76	4 486 021.69	0.99830	1.27003
4 478 395.76	5 690 199.43		1.27059
5 680 526.66 5 680 526 66	5 690 199.43 7 217 612 38	0.99830	1.27059
	2 194 443.04 2 194 443.04 2 783 493.00 2 783 493.00 3 530 663.65 3 530 663.65 4 478 395.76 4 478 395.76	2 194 443.04 2 198 177.95 2 194 443.04 2 788 233.00 2 783 493.00 2 788 233.00 2 783 493.00 3 536 675.57 3 530 663.65 3 536 675.57 3 530 663.65 4486 021.69 4 478 395.76 4486 021.69 4 478 395.76 5 690 199.43 5 680 526.66 5 690 199.43	promath bordeebook bordeebook 2 194 443.04 2 198 177.95 0.99830 2 194 443.04 2 788 233.00 0.99830 2 783 493.00 2 788 233.00 0.99830 2 783 493.00 3 536 675.57 0.99830 3 530 663.65 3 536 675.57 0.99830 4 478 395.76 4 486 021.69 0.99830 4 478 395.76 5 690 199.43 0.99830 5 680 526.66 5 690 199.43 0.99830

Wir möchten nun die Preisentwicklung von profnath (p_n) und bordeebook (b_n) zu den verschiedenen Zeitpunkten als Folgen formulieren. Dabei seien die ungeraden Zeitpunkte $1,3,5,7,\ldots$ die Zeiten am Morgen und die geraden Zeitpunkte $2,4,6,8,\ldots$ jene am Abend.

Es gelten also

$$p_n = \begin{cases} 0.9 \cdot b_{n-1} \,, & \text{für } n \text{ ungerade (also am Morgen)} \\ p_{n-1} \,, & \text{für } n \text{ gerade (also am Abend)} \end{cases}$$

und

$$b_n = \begin{cases} b_{n-1} \,, & \text{für } n \text{ ungerade (also am Morgen)} \\ 1.2 \cdot p_{n-1} \,, & \text{für } n \text{ gerade (also am Abend)} \end{cases}$$

Diese rekursive Darstellung von zwei Zahlenfolgen nennt man wechselseitig rekursiv, weil für die Berechnung der Folgen jeweils die andere Folge auch verwendet wird.

Mögliche Motivationen für diese beiden Strategien:

profnath: Er möchte das Buch loswerden und bietet deshalb immer einen leicht tieferen Preis als sein Konkurrent an.

bordeebook:

- Wieso möchte aber bordeebook einen höheren Preis haben als sein Konkurrent?
- Er hat eine sehr gute Bewertung und viele Kunden achten auf diese Tatsache mehr als auf den Preis.
- Oder er besitzt das Buch gar nicht, sondern wartet, bis jemand sein Buch kauft und dann kauft er das günstigere Exemplar bei profnath, um es teurer weiterzuverkaufen... Im Algorithmic Trading sind solche Strategien gebräuchlich (u. a. Verkauf von Wertschriften, die man selbst nicht besitzt).

Das Ende der Geschichte...

- ca. 10 Tage später: profnath bemerkt den zu hohen Preis und setzt ihn herunter auf 106.23 Dollar.
- bordeebook erhöht seinen Preis am Abend auf 1.27059 · 106.23 = 134.97 Dollar

Immerhin darf sich der Autor Peter Lawrence darüber freuen, dass sein Buch einmal für 23 698 655.93 Dollar auf Amazon angeboten wurde:

Eigenschaften

Die Preisentwicklung von z. B. profnath ist eine Zahlenfolge:

Beobachtung: Die Zahlenfolge wächst immer weiter nach oben.

Eigenschaften

Bei der Untersuchung von Zahlenfolgen sind vier Eigenschaften besonders wichtig:

- Die Folgenglieder von Zahlenfolgen k\u00f6nnen mit wachsendem n entweder immer gr\u00f6sser oder immer kleiner werden (Monotonie).
- 2 Die Folgenglieder können möglicherweise nur in einem endlichen Intervall [s,S] liegen (**Beschränktheit**).
- Oas Vorzeichen der Folgenglieder kann von Glied zu Glied wechseln (alternierend), siehe Übungen.
- Zahlenfolgen können sich einem sogenannten Grenzwert beliebig annähern.

Wir werden diese Eigenschaften im Folgenden untersuchen.

Eigenschaften von Folgen: Monotonie

Beispiele

- In der Zahlenfolge $a_n = 0.8^n$ werden die Folgenglieder laufend kleiner, d.h. es ist $a_{n+1} < a_n$ für alle $n \in \mathbb{N}$.
- Für die Zahlenfolge $b_n = (-1)^n$ gilt dies nicht.

Definition ((streng) monoton wachsend / fallend)

Eine Zahlenfolge a_n heisst

- monoton wachsend, falls für alle Folgenglieder $a_n \leq a_{n+1}$ gilt,
- streng monoton wachsend, falls für alle Folgenglieder $a_n < a_{n+1}$ gilt,
- monoton fallend, falls für alle Folgenglieder $a_n \geq a_{n+1}$ gilt,
- streng monoton fallend, falls für alle Folgenglieder $a_n > a_{n+1}$ gilt.

Eigenschaften von Folgen: Monotonie

Beispiele (Aufgabe)

Charakterisieren Sie die folgenden Zahlenfolgen bezüglich der Monotonie.

- $a_n = n^2$ ist streng monoton wachsend.
- **b** $b_n = \frac{1}{n}$ ist streng monoton fallend.
- $\mathbf{0}$ $d_n = n$ ist streng monoton wachsend.
- \bullet $e_n=1$ ist monoton wachsend und monoton fallend, aber weder streng monoton wachsend noch streng monoton fallend.

Anmerkung: Für die Untersuchung der Monotonie einer Folge ist es oft vorteilhaft, Ausdrücke der Form $a_{n+1}-a_n$ oder $\frac{a_{n+1}}{a_n}$ zu betrachten.

Wenn z. B. $a_{n+1} - a_n < 0$ (d. h. $a_{n+1} < a_n$) gilt, haben wir es mit einer streng monoton fallenden Folge zu tun.

Eigenschaften von Folgen: Monotonie

Beispiel:

Beide Beziehungen werden benutzt, um zu zeigen, dass die Folge $a_n = \frac{2^{n+1}}{3^n}$ streng monoton fallend ist:

 $\textbf{1} \ \, \mathsf{Es} \ \, \mathsf{muss} \ \, \mathsf{gelten:} \ \, a_n > a_{n+1} \Leftrightarrow a_n - a_{n+1} > 0, \, \mathsf{d.h.}$

$$\begin{array}{lll} \frac{2^{n+1}}{3^n} - \frac{2^{n+2}}{3^{n+1}} & = & \frac{3 \cdot 2^{n+1}}{3 \cdot 3^n} - \frac{2 \cdot 2^{n+1}}{3^{n+1}} \\ & = & \frac{(3-2) \cdot 2^{n+1}}{3^{n+1}} \\ & = & \left(\frac{2}{3}\right)^{n+1} > 0 \ \ \text{für alle} \ \ n \in \mathbb{N} \end{array}$$

$$\frac{a_n}{a_{n+1}} = \frac{\frac{2^{n+1}}{3^n}}{\frac{2^{n+2}}{2^{n+1}}} = \frac{2^{n+1}}{3^n} \cdot \frac{3^{n+1}}{2^{n+2}} = \frac{2^{n+1}}{3^n} \cdot \frac{3^n \cdot 3}{2^{n+1} \cdot 2} = \frac{3}{2} > 1$$

Beispiel

Die Folge $a_n = 0.8^n$ hat noch eine weitere Eigenschaft:

Alle ihre Glieder sind grösser als s=0 und kleiner als S=1. Es gilt also

$$0 \le a_n \le 1$$

für alle $n \in \mathbb{N}$.

Anmerkung:Die Ungleichung gilt auch für andere Werte von s und S:

z. B. gilt $-0.4 \le a_n \le 1.4$ für alle $n \in \mathbb{N}$.

Definition (nach oben oder nach unten beschränkt)

Eine Folge a_n heisst

- nach oben beschränkt, wenn es eine Zahl S gibt, so dass $a_n \leq S$ für alle $n \in \mathbb{N}$ gilt. S heisst eine obere Schranke der Folge.
- nach unten beschränkt, wenn es eine Zahl s gibt, so dass $a_n \geq s$ für alle $n \in \mathbb{N}$ gilt. s heisst eine untere Schranke der Folge.
- Hat eine Folge sowohl eine obere als auch eine untere Schranke, so nennt man sie eine beschränkte Folge.

Die Werte der Folgeglieder einer beschränkten Folge liegen alle zwischen einer unteren Schranke k und einer oberen Schranke K.

Die Werte der Folgeglieder einer nach unten beschränkten Folge sind alle größer als eine untere Schranke k;

Die Werte der Folgeglieder einer nach oben beschränkten Folge sind alle kleiner als eine obere Schranke K.

Beispiel:

- 1 Die Folge $a_n=-2n^2+4=+2,-4,-14,-28,\ldots$ ist nach oben beschränkt mit oberer Schranke K=+2. Bemerkung: Natürlich wäre auch jede Zahl $K\geq +2$ eine obere Schranke für die Folge, man wählt meist den kleinsten möglichen Wert als obere Schranke.
- 2 Die Folge $a_n=n-5=-4,-3,-2,-1,\ldots$ ist nach unten beschränkt mit unterer Schranke k=-4. Bemerkung: Natürlich wäre auch jede Zahl $k\leq -4$ eine untere Schranke für die Folge, man wählt meist den größten möglichen Wert als untere Schranke.
- 3 Die Folge $a_n=(-1)^n=-1,+1,-1,+1,\ldots$ ist beschränkt mit oberer Schranke K=+1 und unterer Schranke k=-1.
- 4 Die Folge $a_n = (-1)^n \cdot n^2 = -1, +4, -9, +16, \dots$ ist weder nach oben noch nach unten beschränkt.

Übungsblatt 2

Aufgabe 8.

Untersuchen Sie die folgenden Folgen auf Monotonie und Beschränktheit.

(a)
$$a_n = \frac{2}{n}$$

(c)
$$c_n = \frac{1-2n}{n}$$

(e)
$$e_n = \frac{n+1}{n}$$

(b)
$$b_n = \frac{2 \cdot (-1)^n}{n}$$

(d)
$$d_n = \left(\frac{1}{2}\right)^n$$

(f)
$$f_n = \left(-\frac{2}{3}\right)^n$$

Eigenschaften von Folgen: Der Grenzwertbegriff

Beispiel

Die formale Definition des Grenzwertes ist etwas abstrakt und nicht unbedingt auf Anhieb verständlich. Es dauerte in der Geschichte der Mathematik auch fast zwei Jahrtausende, bis es gelang, diesen Begriff präzise zu fassen.

Beispiel

Wir betrachten zunächst einige Glieder der Folge $a_n = \frac{2n+3}{n}$:

Ī	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_{10}	a_{50}	a_{200}	a_{1000}	a_{100000}
I	5	3.5	3	2.75	2.6	2.5	2.43	2.3	2.06	2.015	2.003	2.00003

Beobachtung:

Die Folgenglieder a_n nähern sich mit wachsender Indexzahl n "beliebig dicht" der Zahl 2 an. Der Abstand von a_{50} zu 2 ist 0.06, der von a_{1000} sogar nur noch 0.003 usw.

Sprechweise:

"Die Folge a_n strebt mit wachsendem n gegen den Grenzwert 2."

Beispiel

Symbolische Kurzschreibweise:

$$\lim_{n\to\infty}\left(\frac{2n+3}{n}\right)=2$$

(wird gelesen als: "Limes von $\frac{2n+3}{n}$ für n gegen unendlich ist gleich 2.")

Beispiel

Berechnen Sie den Limes der folgenden Folgen für n gegen unendlich.

- $a_n = 1 + \frac{1}{n}$
- $b_n = (-0.8)^n$
- $c_n = 3 \cdot \frac{1 \left(\frac{1}{5}\right)^n}{1 \frac{1}{5}}$

Lösung: Tafel

Grenzwert

Zur Erinnerung:Für eine Zahl $a \in \mathbb{R}$ heisst

$$|a| = \max\{a, -a\} = \begin{cases} a \,, & \text{falls } a \ge 0 \\ -a \,, & \text{falls } a < 0 \end{cases}$$

der Betrag (Absolutwert) von a.

Beispiele

$$|5| = 5$$
, $|-8| = 8$ und $|0| = 0$.

Satz (Dreiecksungleichung)

Für alle $a,b \in \mathbb{R}$ gilt

$$|a+b| \le |a| + |b|.$$

Betrag

Beispiel:

Die folgenden Intervalle der reellen x-Achse können durch entsprechende Betragsungleichungen dargestellt werden:

Die Intervalle liegen symmetrisch zum Nullpunkt.

Intervalle, welche symmetrisch um einen Punkt $x_0 \in \mathbb{R}$ liegen, können für ein $\varepsilon \in \mathbb{R}, \ \varepsilon > 0$ folgendermaßen beschrieben werden:

ε -Umgebung

ε -Umgebung

Definition (ε -Umgebung, Eintauchzahl)

Legt man einen Streifen mit einem Radius ε um einen vermuteten Grenzwert und liegen alle Folgenglieder innerhalb dieses Streifens ab einem bestimmten Folgenglied, nennt man diesen Streifen eine ε -Umgebung (einen ε -Streifen).

Der Index jenes Folgenglieds, welches als erstes ganz im Streifen liegt, nennt man die **Eintauchzahl** und bezeichnet sie mit N_{ε} .

Beispiel

Im Beispiel vorher haben wir für die Folge $a_n=\frac{2n+3}{n}$ den Streifen mit $\varepsilon=\frac{1}{2}$ gewählt und somit ist die Eintauchzahl $N_{\frac{1}{2}}=7$, weil a_6 auf dem Streifenrand liegt, aber a_7 schon im ε -Streifen drin liegt.

Ab dem 7. Folgenglied liegen auch alle weiteren Glieder im ε -Streifen ("sie fallen also nicht mehr heraus"), weil sie wegen $a_n = \frac{2n+3}{n} = 2 + \frac{3}{n}$ immer grösser als 2 bleiben, egal wie gross n ist.

ε -Umgebung

Um eine noch bessere Annäherung der Folge $a_n=\frac{2n+3}{n}$ an 2 nachzuweisen, wird der ε -Streifen etwas schmaler gemacht:

Beispiel (Aufgabe)

Berechnen Sie für die Folge $a_n=\frac{2n+3}{n}$ die Eintauchzahlen

- lacksquare $N_{rac{1}{10}}$,
- $lackbox{0} N_{rac{1}{100}}$,
- lacksquare $N_{rac{1}{500}}$,

Lösung: Tafel

Grenzwert

Mit Hilfe dieser ε -Streifen lässt sich nun die Konvergenz einer Folge formulieren:

Definition (Grenzwert)

Eine Zahlenfolge a_1, a_2, a_3, \ldots konvergiert gegen einen **Grenzwert** $g \in \mathbb{R}$, wenn sich für jeden ε -Streifen, und sei sein Radius ε auch noch so klein, eine entsprechende Eintauchzahl N_{ε} finden lässt.

Man schreiht:

$$\lim_{n \to \infty} a_n = g$$

Alternative Formulierung:

Definition (Grenzwert)

Eine Zahlenfolge a_n konvergiert gegen einen **Grenzwert** $g \in \mathbb{R}$, wenn es zu jeder noch so kleinen Zahl $\varepsilon > 0$ eine Zahl N_{ε} gibt, so dass

$$|a_n - g| < \varepsilon$$
 für alle $n \ge N_{\varepsilon}$.

Definition (Konvergent, divergenz)

- Eine Folge, die einen Grenzwert $g \in \mathbb{R}$ besitzt, heisst **konvergent**. Die Folge konvergiert gegen g.
- Eine Folge, die keinen Grenzwert besitzt, heisst divergent.

Anmerkung:Folgen sind divergent, wenn für immer grösser werdende n kein Grenzwert angestrebt wird. Dies ist auch der Fall, wenn die Folge nach unendlich oder minus unendlich strebt: Weil $\infty \notin \mathbb{R}$ sind solche Folgen auch divergent.

Eigenschaften von Folgen: Konvergenz

Beispiel:

Die Folge $a_n=\frac{n-1}{n+2}$ soll auf Konvergenz untersucht werden. Die graphische Darstellung der ersten 30 Folgenglieder legt die Vermutung nahe, dass die Folge gegen den Wert a=1 konvergiert, dass also gilt: $\lim_{n\to\infty}a_n=1$.

Zum Nachweis der Konvergenz müssen wir für jede noch so kleine Zahl $\varepsilon>0$ einen Folgenindex n_0 bestimmen können, ab dem die folgenden Glieder der Folge alle im Intervall $(a-\varepsilon,a+\varepsilon)$ liegen. Man spricht auch von der ε -Umgebung um den Grenzwert a=1.

Eigenschaften von Folgen: Konvergenz

Beispiel (Fortsetzung)

$$|a_n - a| = \left| \frac{n-1}{n+2} - 1 \right| < \varepsilon$$

$$\Rightarrow \left| \frac{n-1}{n+2} - \frac{n+2}{n+2} \right| < \varepsilon$$

$$\Rightarrow \left| \frac{-3}{n+2} \right| = \frac{|-3|}{|n+2|} < \varepsilon$$

$$\Rightarrow \frac{3}{\varepsilon} - 2 < n$$

Für die in der vorigen Abbildung gewählten Werte für ε erhält man:

$$\varepsilon=0.2$$
: $n>\frac{3}{0.2}-2=13$, d.h. ab $n_0=14$ beträgt die Differenz zwischen Folgeglied und Grenzwert weniger als ε ;

$$arepsilon=0.1$$
: $n>rac{3}{0.1}-2=28$, d.h. ab $n_0=29$ beträgt die Differenz zwischen

Folgeglied und Grenzwert weniger als arepsilon

Blitzdenkaufgaben: Kahoot

kahoot.it Quiz

Eigenschaften von Folgen: Konvergenz

Beispiele:

Betrachten wir die Folge $a_n = \frac{1}{n} = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

Die Folgenglieder kommen der Zahl 0 immer näher. Das deutet auf den Grenzwert a=0 hin. Bestimmen wir ein n_0 , ab dem alle nachfolgenden Glieder der Folge im Intervall $(0-\varepsilon,0+\varepsilon)=(-\varepsilon,+\varepsilon)$ liegen:

$$|a_n - 0| < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon \Rightarrow \frac{1}{\epsilon} < n$$

Wir müssen für n_0 die erste natürliche Zahl wählen, die größer als $\frac{1}{\varepsilon}$ ist. Aus der Existenz eines n_0 für jedes $\varepsilon>0$ folgt, dass die Folge gegen den Grenzwert 0 konvergiert, man schreibt:

$$\lim_{n \to \infty} a_n = 0$$

Beispiel:

$$a_n = \left(\frac{1}{2}\right)^n = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

Wieder deutet alles auf den Grenzwert 0 hin. Bestimmen wir also wieder ein n_0 , ab dem alle nachfolgenden Glieder der Folge im Intervall $(-\varepsilon, +\varepsilon)$ liegen:

$$\left|\frac{1}{2}\right|^n < \varepsilon \Rightarrow \frac{1}{2^n} < \varepsilon \Rightarrow \frac{1}{\varepsilon} < 2^n \Rightarrow \log_2\left(\frac{1}{\varepsilon}\right) < n$$

Somit gilt auch hier:

$$\lim_{n\to\infty} a_n = 0$$

Bemerkung:

■ Ein Grenzwert einer Folge ist immer **eindeutig**. Die Folgenglieder verdichten sich um den Grenzwert mehr und mehr.

Satz (Nullfolgen)

- Besitzt eine Folge den Grenzwert 0, so heißt sie Nullfolge
- Es gilt

Die harmonische Folge $a_n = \frac{1}{n}$ ist eine Nullfolge:

$$\lim_{n\to\infty}\frac{1}{n}=0\qquad \text{und}\qquad$$

Die **geometrische Folge** $a_n = a_1 \cdot q^{n-1}$ ist für |q| < 1 eine Nullfolge:

$$\lim_{n \to \infty} a_n = 0 \quad \text{für } |q| < 1$$

Die folgenden Rechenregeln erleichtern uns die Grenzwertbestimmung:

Satz (Rechenregeln für konvergente Folgen)

Sind a_n und b_n konvergente Folgen mit den Grenzwerten a bzw. b, so ist auch die Folge

- $\ \, \hbox{$\displaystyle =$} \, c \cdot a_n \text{ konvergent, mit } \lim_{n \to \infty} \left(c \cdot a_n \right) = c \cdot \lim_{n \to \infty} a_n = c \cdot a \, \, (c \in \mathbb{R});$
- $lacksquare a_n \pm b_n$ konvergent, mit $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = a \pm b$;
- $\blacksquare a_n \cdot b_n$ konvergent, mit $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = a \cdot b;$

Bemerkung:

Man kann eine Folge mit unbekanntem Konvergenzverhalten in ein Produkt, einen Quotient oder eine Summe von Folgen mit bekanntem Grenzwert zu zerlegen und so den unbekannten Grenzwert bestimmen.

Beispiele (Grenzwerte von Folgen)

1
$$a_n = \frac{4}{n^2} - \frac{2}{n}$$
:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4}{n^2} - \frac{2}{n} = 4 \cdot \left(\lim_{n \to \infty} \frac{1}{n}\right) \cdot \left(\lim_{n \to \infty} \frac{1}{n}\right) - 2 \cdot \left(\lim_{n \to \infty} \frac{1}{n}\right)$$
$$= 4 \cdot 0 \cdot 0 - 2 \cdot 0 = 0$$

$$b_n = \frac{1}{3^{n+1}} \cdot (3+10^{-n}) :$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{3^{n+1}} \cdot \left(3 + 10^{-n}\right) = \lim_{n \to \infty} \frac{1}{3} \cdot \left(\frac{1}{3}\right)^n \cdot \left(3 + \left(\frac{1}{10}\right)^n\right)$$
$$= \frac{1}{3} \cdot 0 \cdot (3 + 0) = 0$$

V02: Kahoot

kahoot.it Quiz

Beispiele (Grenzwerte von Folgen) — Fortsetzung

$$a_n = \frac{4n^3 + 2n - 1}{n^3 + 1} :$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4n^3 + 2n - 1}{n^3 + 1} = \lim_{n \to \infty} \frac{n^3 \cdot (4 + \frac{2}{n^2} - \frac{1}{n^3})}{n^3 \cdot (1 + \frac{1}{n^3})}$$

$$= \left(\frac{4 + 0 - 0}{1 + 0}\right) = 4.$$

Beispiele (Grenzwerte von Folgen) — Fortsetzung

$$a_n = \frac{3n + (0.8)^n}{5n + (-1)^n}:$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n + (0.8)^n}{5n + (-1)^n} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{3 + \frac{0.8^n}{n}}{5 + \frac{(-1)^n}{n}} = \frac{3}{5}$$

$$\begin{array}{rcl}
\mathbf{5} & a_n = \sqrt{n^2 - 1} - \sqrt{n^2 + 1}: \\
& \lim_{n \to \infty} a_n &= \lim_{n \to \infty} \sqrt{n^2 - 1} - \sqrt{n^2 + 1} \\
&= \lim_{n \to \infty} \frac{\sqrt{n^2 - 1} - \sqrt{n^2 + 1}}{1} \cdot \frac{\sqrt{n^2 - 1} + \sqrt{n^2 + 1}}{\sqrt{n^2 - 1} + \sqrt{n^2 + 1}} \\
&= \lim_{n \to \infty} \frac{(n^2 - 1) - (n^2 + 1)}{\sqrt{n^2 - 1} + \sqrt{n^2 + 1}} = \frac{-2}{\infty + \infty} = 0
\end{array}$$

Folgen

Die Rechenregeln zur Bestimmung der Grenzwerte von Folgen können auch für unbeschränkte Folgen a_n , b_n verwendet werden, wenn man folgende Beziehungen verwendet: aus G. Teschl, S. Teschl, Mathematik für Informatiker, S.185, Springer Verlag

$$\begin{array}{rclcrcl} c\pm\infty \text{ bzw. } c\cdot\infty &=& \pm\infty & \text{f\"ur } c\in\mathbb{R} \\ & \frac{c}{\pm\infty} &=& 0 & \text{f\"ur } c\neq0 \\ & \infty+\infty &=& \infty \\ & -\infty-\infty &=& -\infty \\ & \infty\cdot\infty \text{ bzw. } +\infty\cdot+\infty &=& +\infty \\ & c\pm\infty \text{ bzw. } c\cdot\infty &=& \pm\infty & \text{f\"ur } c\in\mathbb{R} \end{array}$$

Bemerkung:

Wenn man auf Ausdrücke der Form: $0\cdot\infty,\,\infty-\infty,\,\frac{0}{0}$ oder $\frac{\infty}{\infty}$ stößt, so muss man die Folge so lange umformen, bis man herausfinden kann, ob die Folge konvergent oder divergent ist.

Beispiel:

 $a_n = n^3 - n^2$:

$$\lim_{n o \infty} a_n = \infty - \infty$$
 d.h. wir können so noch keine Aussage treffen
$$= \lim_{n o \infty} n^3 \cdot \left(1 - \frac{1}{n}\right) = \infty \cdot (1 - 0) = \infty$$

$$a_n = -4n^3 + 100n^2$$
:

$$\lim_{n\to\infty}a_n = -\infty + \infty \qquad \text{weitere Umformungen sind n\"otig}$$

$$= \lim_{n\to\infty}n^3\cdot\left(-4+\frac{100}{n}\right) = \infty\cdot(-4+0) = -\infty$$

Übungsblatt 2

Bestimmen Sie, ob die folgenden Folgen konvergent sind und berechnen Sie allenfalls deren Grenzwert.

(a)
$$a_n = \frac{2}{n+2}$$

(e)
$$e_n = \frac{1-n+n^2}{n(n+1)}$$

(h)
$$h_n = \sqrt{n^2 + n} - n$$

(b)
$$b_n = \frac{n}{n+3}$$

(f)
$$f_n = \frac{1-n+n^3}{n(n+1)}$$

(c)
$$c_n = \frac{n+3}{n}$$

(d) $d_n = \frac{n-1-\frac{1}{n}}{n^2+n+1}$

(1)
$$f_n = \frac{1-n+n}{n(n+1)}$$

(g)
$$g_n = \frac{1-n+n^3}{n(n+1)} - n$$

Hinweis: Versuchen Sie mit Hilfe der 3. Binomischen Formel die Wurzel zu eliminieren.

$\mathsf{Satz}\;(\mathsf{Rationale}\;\mathsf{Folgen})\to\mathsf{siehe}\;\mathsf{\ddot{U}}\mathsf{bungen}$

Für eine rationale Folge, die im Zähler aus einem Polynom k—ten Grades und im Nenner aus einem Polynom l—ten Grades besteht, gilt:

$$\lim_{n\to\infty}\frac{a_kn^k+a_{k-1}n^{k-1}+\ldots+a_0}{b_ln^l+b_{l-1}n^{l-1}+\ldots+b_0}=\begin{cases} \frac{a_k}{b_l}\cdot\infty &\text{, falls }k>l\\ \frac{a_k}{b_l} &\text{, falls }k=l\\ 0 &\text{, falls }k< l \end{cases}$$

Bemerkung:

Zum Bestimmen der Grenzwerte rationaler Folgen geht man schrittweise vor:

- f I Der Zähler und der Nenner werden durch die höchste Potenz von n gekürzt
- 2 Die einzelnen Summanden werden auf ihre Grenzwerte für $n \to \infty$ untersucht
- 3 Bestimmen des Grenzwertes der gesamten Folge

Beispiel:

Bestimme den Grenzwert der Folge

$$a_n = \frac{3n^4 + 2n^2 - 6n - 1}{6n^4 + 3n^3 + 2}$$

Wir gehen schrittweise vor:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n^4 + 2n^2 - 6n - 1}{6n^4 + 3n^3 + 2} \quad | \text{ k\"{u}rzen mit } n^4$$

$$= \lim_{n \to \infty} \frac{3 + \overbrace{\frac{2}{n^2} - \overbrace{\frac{6}{n^3} - \frac{1}{n^4}}}^{\to 0}}{6 + \underbrace{\frac{3}{n^4} + \frac{2}{n^4}}_{0}} = \frac{3 + 0 - 0 - 0}{6 + 0 + 0} = \frac{1}{2}$$

Satz (Konvergenzkriterien für Folgen)

- Jede monoton wachsende (bzw. fallende) Folge, die beschränkt ist, ist immer konvergent.
- Das Produkt einer beschränkten Folge und einer Nullfolge ist immer eine Nullfolge.

Beispiel:

$$\lim_{n \to \infty} \cos(n) \cdot \left(\frac{3}{5}\right)^n = \lim_{n \to \infty} \underbrace{\cos(n)}_{\text{beschränkt}} \cdot \underbrace{\left(\frac{3}{5}\right)^n}_{\text{Nullfolge}} = 0$$

$$K = 1, k = -1$$

Es handelt sich um das Produkt einer beschränkten Folge und einer Nullfolge, d.h. der Grenzwert ist 0.

Zusammenfassung:

■ Eine Folge a_n , die einen Grenzwert a besitzt, heißt **konvergent**.

$$\lim_{n\to\infty}a_n=a\quad {\rm oder}\quad a_n\to a\ \ {\rm f\"{u}r}\ \ n\to\infty$$

- Eine Folge, die keinen Grenzwert besitzt, heißt **divergent**, d.h. auch für immer größer werdende Folgenindizes streben die Folgenglieder nicht gegen einen gemeinsamen Wert.
- Insbesondere Folgen, die nach oben oder unten unbeschränkt sind, d.h. deren Glieder gegen $+\infty$ bzw. gegen $-\infty$ streben, sind **divergent**:

$$\lim_{n\to\infty}a_n=+\infty \quad \text{bzw.} \quad \lim_{n\to\infty}a_n=-\infty$$

- Die harmonische Folge $a_n = \frac{1}{n}$ ist eine Nullfolge, d.h. auch die Folgen $b_n = \left(\frac{1}{n}\right)^k$, k > 0 sind Nullfolgen, insbesondere $\frac{1}{n^2}$, $\frac{1}{n^3}$, etc.
- Die Folge $a_n = n$ ist divergent und somit auch die Folgen $b_n = n^k$, k > 0, insbesondere n^2 , n^3 , etc.

Die Zahl e als Grenzwert \rightarrow siehe unendliche_Verzinsung-pdf:

Von der Folge

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

kann man allgemein zeigen, dass sie konvergiert. Den Grenzwert bezeichnet man einheitlich als Eulersche Zahl und kürzt ihn mit e ab:

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$

Die Eulersche Zahl ist nach dem Basler Mathematiker Leonard Euler (1707-1783) benannt und bildet die Basis des natürlichen Logarithmensystems, d.h. es gilt $\ln(e)=1$. Es ist eine irrationale Zahl, die auf 20 Dezimalen

$$e = 2.7182818284590452354...$$

lautet.