1. (10 MARKS) Consider a binary classification problem where the data points are two dimensional, i.e., $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ and the labels $y \in \{-1, 1\}$. Throughout this problem consider the following three points:

$$\mathbf{x}_1 = (1,0)^T$$
, $\mathbf{x}_2 = (0,1)^T$, $\mathbf{x}_3 = (2,2)^T$.

4 marks

(a) Suppose that the hypothesis set \mathcal{H} consists of all linear classifiers whose decision boundary is a horizontal line in the (x_1, x_2) plane. As one example, the classifier $h(\mathbf{x}) = \text{sign}(-x_2 - 1)$ belongs to the set \mathcal{H} . The decision boundary of $h(\mathbf{x})$ is the dashed horizontal line shown in the figure below. Note that in this classifier all points below this line are classified as $\hat{y} = +1$ while all points above the horizontal line are classified as $\hat{y} = -1$ by the hypothesis $h(\mathbf{x})$

List all dichotomies in $\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)$ that can be achieved. (Recall that a dichotomy in this problem will be a vector of length three whose elements are either +1 or -1, and is achieved by applying some hypothesis in \mathcal{H} to the points \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 in that order.)

What is the VC dimension of \mathcal{H} ? (No justification is needed for this)

4 marks

(b) Suppose that the hypothesis set \mathcal{G} consists of all linear classifiers passing through the origin. As one example the classifier $g(\mathbf{x}) = \text{sign}(-x_1 - x_2)$ belongs to the set \mathcal{G} . Its decision boundary is shown by the solid line passing through the origin in the figure below. Note that all points below the decision boundary are classified as $\hat{y} = +1$ and all points above this line are classified as $\hat{y} = -1$.

List all dichotomies in $\mathcal{G}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ that can be achieved.

State without justification the VC dimension of \mathcal{G} .

2 marks

(c) Suppose $\mathcal{M} = \mathcal{H} \cup \mathcal{G}$ is the union of the hypothesis classes in parts (a) and (b). What is the number of dichotomies in $\mathcal{M}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$? Provide a **brief** justification for your answer.

IM(x1, x2, x3) 1 = 8 -0 the two dichotomy vector missing) (1) in G, are found in H.

Water bill Fig.

10 marks

3. Suppose we are given a sequence of real numbers: $x_1, x_2, x_3, x_4, \ldots$ where $x_i \in \mathbb{R}$. We observe the following values: $x_1 = -1$, $x_2 = 0$, $x_3 = +1$, $x_4 = +1$.

We wish to select a prediction function of the form $\hat{x_i} = w_0 + w_1 \cdot x_{i-1}$, for $i \ge 2$ that makes a prediction of x_i from the value of x_{i-1} . Our task is to minimize the following in sample training error:

$$E_{\rm in}(\mathbf{w}) = \frac{1}{3} \sum_{i=2}^{4} (\hat{x}_i - x_i)^2.$$

3 marks

(a) Rewrite the above problem specifications to get the problem into the standard form of a least squares problem: $\mathbf{w}^{\star} = \arg\min_{\mathbf{w} \in \mathbb{R}^2} \frac{1}{3} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$. Specifically specify the data matrix \mathbf{X} and the target vector \mathbf{y} , where $\mathbf{w} = (w_{\bullet}, w_1)^T$.

$$\begin{array}{c}
y = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \longrightarrow & Pt \\
\hline
x_1 & x_2 \\ 1 & x_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} & \longrightarrow & 2Pt \\
\hline
x_3 & 1 & 1 & 1 \\
\hline
x_4 & 2 & 1 & 1 \\
\hline
x_5 & 2 & 1 & 1
\end{bmatrix}$$

3 marks

(b) Find the least squares solution $\mathbf{w}^* = (w_0^*, w_1^*)$ in part (a).

$$W' = (X X) X Y$$

$$(X X)' = \begin{cases} 1/3 & 0 \\ 0 & 1/2 \end{cases}$$

$$X^{T}Y = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - 1P^{1}$$

$$W' = \begin{bmatrix} 2/3 \\ 1/2 \end{bmatrix} - 1P^{1}$$
(alternature solution accepted)

- 4 marks
- (c) Redo parts (a) and (b) if the prediction function is of the form $\hat{x_i} = w_1 \cdot x_{i-1}$ i.e., we set $w_0 = 0$.

20 = [0]	χΞ	-17			
1 Pt (XTX) = XTY =	1 3 [-1 0	1 Pt 3 [0]	= 1		1 Pt
W1 = (alternative	1/2.		l pt	cept	