多元函数

2024 | 06 | 25

	•	A SIDE PER AND AND THE PROPERTY OF A SINGLE PER AND A SIDE PER	_
ŞΙ	多兀	函数的定义,极限和连续性	2
	1.1	多元函数的定义	2
	1.2	多元函数的极限	3
	1.3	多元函数的连续性	8
	1.4	偏导数	9
	1.5	微分中值定理与 Taylor 公式	15
	1.6	反函数定理,隐函数定理以及 Lagrange 乘数法	16
§Ι	[数]	页级数	18
	2.1	正项级数	18
	2.2	复项级数	22
	2.3	函数项级数	26
	2.4	幂级数	30
	2.5	Taylor 级数与实解析函数	33
ŞΙ	§III 重积分		36
	3.1	二重积分与三重积分	40
ŞΓ	§IV 曲线和曲面积分		42
	4.1	线积分	42
	4.2	面积分	47
ŞV	后右	艺园	56
	5.1	实数系的构造	56
		常微分方程(补遗)	59
		中值定理	61
ŞV	§VI 原题		

§I 多元函数的定义,极限和连续性

1.1 多元函数的定义

定义 $^{(1.1.a)}$ 多元函数, \mathbb{R}^n 上的拓扑

多元函数f的定义可以表征如下:

$$f: \mathbb{R}^n \to \mathbb{R}, \quad (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n) = f(\boldsymbol{x}).$$

定义以 x_0 为圆心,r为半径的球为 $\mathbb{B}_r(x_0)$:

$$\mathbb{B}_r(x_0) = \{ y \in \mathbb{R}^n ; |y - x| < r \}.$$

倘若 D 是 \mathbb{R}^n 中的一个子集, 那么:

- 1. 如果存在r > 0满足 $\mathbb{B}_r(x_0) \subset D$, 那么称 x_0 是 D 的内点;
- **3.** 其余的点称为边界点, 记为 ∂D :
- **4.** $D \cup \partial D$ 称为 D 的闭包, 记为 \overline{D} ;
- 5. 如果 D 中的点均是 D 的内点, 那么称 D 是开集;
- **6.** 如果 D 的补集是开集, 那么称 D 是闭集.

上面这些是 \mathbb{R}^n 中拓扑的基础定义, 基本不会考, 但是要清楚上述定义的 直观.

定义^(1.1.b) 连通

给定 \mathbb{R}^n 中任意集合 D, 如果存在非空开集 A, B 满足

$$A \cap B = \emptyset$$
, $A \cup B = D$.

那么称 D 不连通, 否则连通.

如果D恰好是开集,上述定义等价于任意D中两点x, y,存在D中的将

x, y 连接的曲线.

现考虑 \mathbb{R}^n 中向量的运算:

$$xy = \sum_{j=1}^{n} x_j y_j.$$

给定 $x,y\in\mathbb{R}^n$, 记 $xy=\sum_{j=1}^nx_jy_j.$ 若 xy=0, 则称两者正交, 记为 $x\perp y$. 因此: $xx=\sum_{j=1}^nx_j^2=|x|$.

1.2 多元函数的极限

多元函数和一元函数最大的区别是,点列可以以很随意的路径趋向于某 一点, 我们先考虑一族在 \mathbb{R}^n 的点是如何收敛的.

$$\lim_{n\to\infty} \boldsymbol{x}_n = \boldsymbol{x}_0 \iff \lim_{n\to\infty} |\boldsymbol{x}_n - \boldsymbol{x}_0| = 0.$$

有了这个例子,我们可以给出多元函数收敛的一个判据,以及Heine-Borel 原理:

 $\varepsilon > 0$, 都存在 δ 满足

$$|\boldsymbol{x} - \boldsymbol{x}_0| < \delta \implies |f(\boldsymbol{x}) - A| < \varepsilon.$$

事实上,"空心邻域有定义"可以被忽略,考虑以下情形同样也可以达到

$$|oldsymbol{x} - oldsymbol{x}_0| < \delta, \ oldsymbol{x} \in D \implies |f(oldsymbol{x}) - A| < arepsilon$$

为安全起见,我们采用这一种定义.

接下来, 我们便可以陈述 Heine-Borel 原理:

定理^(1.2.c) Heine-Borel 原理

倘若 $f: D \to \mathbb{R}, x_0 \in \overline{D},$ 那么以下两者等价:

- 1. $\lim_{x\to x_0} f(x) = A;$ 2. <u>任意</u>序列 $\{x_n\}$, (当然要 $\{x_n\}\subset D$) 满足 $\lim_{n\to\infty} x_n = x_0$, 都要有 $\lim_{n\to\infty} f(\boldsymbol{x}_n) = A.$

1. \Longrightarrow 2. 直接按定义来: 倘若 1. 成立, 那么给定容差 ε , 存在 δ_{ε} 满 足

$$|\boldsymbol{x} - \boldsymbol{x}_0| < \delta_{\varepsilon} \implies |f(\boldsymbol{x}) - A| < \varepsilon.$$

同时, 由 $\lim_{n\to\infty} x_n = x_0$ 可以得到对于上面的 δ_{ε} , 存在 N 满足

$$n\geqslant N \implies |\boldsymbol{x}_n-\boldsymbol{x}_0|<\delta_{arepsilon}.$$

综合一下: $n \geqslant N \implies |f(\boldsymbol{x}_n) - A| < \varepsilon$, 因此 $\lim_{n \to \infty} f(\boldsymbol{x}_n) = A$.

2. ⇒ 1. 用反证法,倘若 2. 成立而 1. 不成立,那么 1. 不成立等价于(只 需将命题全部取否即可)

 $\forall A \in \mathbb{R}, \exists \varepsilon > 0, \forall \delta > 0, \exists x_{\delta} \in D, |x_{\delta} - x_{0}| < \delta, |f(x_{\delta}) - A| > \varepsilon.$

由于假设 2. 成立, 令 $x_{1/n}$ 定义如上, 那么 $|x_{1/n} - x_0| < 1/n$, 所以 $\lim_{n\to\infty} f(\boldsymbol{x}_{1/n}) = A$. 这和 $|f(\boldsymbol{x}_{\delta}) - A| > \varepsilon$ 矛盾!

证明多元函数极限存在性的方法 最主要的方法是夹逼和换元:

$$\# \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

例子(1.2.d) 換元
求
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$
.
考虑 $t=x^2+y^2$, 那么 $\lim_{(x,y)\to(0,0)} t=0$. 因此
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{t\to 0} \frac{\sin t}{t} = 1.$$

注

上述例子其实利用到了复合函数求极限的法则,该法则可以如下阐述:

倘若 $\lim_{\boldsymbol{x}\to\boldsymbol{x}_0} f(\boldsymbol{x}) = A$, $\lim_{\boldsymbol{y}\to\boldsymbol{y}_0} g(\boldsymbol{y}) = \boldsymbol{x}_0$, 则以下三种至少存在一个:

1. $\lim_{\boldsymbol{y}\to\boldsymbol{y}_0} f(g(\boldsymbol{y})) = A$;

2. $\lim_{\boldsymbol{y}\to\boldsymbol{y}_0} f(g(\boldsymbol{y})) = f(\boldsymbol{x}_0)$;

3. $\lim_{\boldsymbol{y}\to\boldsymbol{y}_0} f(g(\boldsymbol{y}))$ 不存在.

可以证明, 如果 $\mathbf{y} \neq \mathbf{y}_0 \implies g(\mathbf{y}) \neq \mathbf{x}_0$, 那么 1. 成立.

以下是一个简单利用夹逼定理的例子.

因此
$$\overline{\lim}_{(x,y)\to(0,0)} \left| rac{x^3}{x^2+y^2}
ight| \leqslant \overline{\lim}_{(x,y)\to(0,0)} |x| = 0.$$
 故极限为 0 .

证明多元函数极限不存在的方法 前一小段是比较容易的,这一段稍微难些, 主要方法是利用 Heine-Borel 原理. 为了方便, 先给出(严格) 正定的定义:

如果函数 f 在 0 处附近满足 $f(0) \ge 0$, $(x,y) \ne 0 \implies f(x,y) > 0$, 就称 为严格正定, 若仅仅满足 $(x,y) \ne 0 \implies f(x,y) \ge 0$ 称为正定.

定理^(1.2.g) 有理函数的极限,先验估计版本

令 Q(x,y) 是多项式, f 是连续函数. f(0,0) = Q(0,0) = 0. 如果 Q 正定, 但不是严格正定的,也就是说,存在过零点的曲线 ℓ 满足 Q 在 ℓ 上恒为 0, 如果 f 在 ℓ \{0} 上不为 0,那么

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{Q(x,y)}$$

下面几个极限均不存在:
$$\lim_{(x,y)\to(0,0)}\frac{xy}{x+y},\quad \lim_{(x,y)\to(0,0)}\frac{x^3-y^3}{x^3+y^3},\quad \lim_{(x,y)\to(0,0)}\frac{x^4y^4}{(x^3+y^6)^2}.$$

定理 1.2.g 的证明 考虑一族点 $\{x_n\} \subset \ell, x_n \to 0$. 当然 $f(x_n)/Q(x_n)$ 没 有定义, 但是不打紧, 由于 f 连续, $f(x_n) \neq 0$, 那么当 y_n 和 x_n 差距很小的 时候,有:

$$Q(\boldsymbol{y}_n) < rac{|f(\boldsymbol{x}_n)|}{n}, \quad |f(\boldsymbol{y}_n) - f(\boldsymbol{x}_n)| < rac{|f(\boldsymbol{x}_n)|}{2}.$$

那么, 此时有 $|Q(y_n)/P(y_n)| \ge n/2$, 但是 y_n 随着 x_n 趋向于 0, 因此由 Heine-Borel 原理, 极限不存在或为 $\pm \infty$.

假设 $P(x,y) = \sum_{nm} p_{nm} x^n y^m$, $Q(x,y) = \sum_{jk} q_{jk} x^j y^k$ 均是系数非零多项式, 欲讨论 $\lim_{(x,y)\to(0,0)} P(x,y)/Q(x,y)$ 的极限, 且 Q(x,y) 严格正定, 自然需要考虑 (x,y) 沿着某条代数曲线逼近 (0,0) 的结果, 故不妨令

$$(x,y) = (t^{\alpha}, t^{\beta}), \quad t > 0, \quad \alpha, \beta > 0$$

 $(x,y)=(t^\alpha,t^\beta),\quad t>0,\quad \alpha,\;\beta>0.$ 从而考虑 $\lim_{t\to 0^+}P(t^\alpha,t^\beta)/Q(t^\alpha,t^\beta)$ 的一元极限的情形, 倘若存在 $\alpha,$ $\beta>0$ 满足 $\min_{n,m}(\alpha n+\beta m)>\min_{j,k}(\alpha j+\beta k),$ 那么极限不存在 (或 出 $+\infty$)

累次极限 首先说明, 如果按照定义 1.2.b 中的定义, 累次极限与一般的多元 函数极限没有关联. 原因很简单, 累次极限仅仅考虑了直角路径趋向于极限点, 但一般的极限是要考虑所有路径,同时,累次极限会要求函数必须在极限点对 应的十字上存在定义,并且有极限,实际上是依赖于极限点外的更多信息,所以 两个极限是不能互推的. 但是如果两者均存在, 则两者必然相等. 兹举二例:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}, \quad \lim_{(x,y)\to(0,0)} (x+y) \sin\left(\frac{1}{x}\right).$$

考虑如下两个极限: $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2},\quad \lim_{(x,y)\to(0,0)}(x+y)\sin\left(\frac{1}{x}\right).$ 对第一个,令(x,y)沿着y=mx的路径趋向于(0,0),则路径上的点均满 足 $\frac{xy}{x^2+y^2}=\frac{m}{1+m^2}$,因此和路径有关,极限不存在. 但累次极限显然存在并都为0. 对第二个,累次极限会撞定义域,因此不存在,用夹逼可以证明一般的极 照 5 5

1.3 多元函数的连续性

定义(1.3.a) 多元函数的连续性

和一元的情形一样, 如果 $\lim_{x\to x_0} f(x) = f(x_0)$, 那么就说 f 在 x_0 处连续. 正如我们之前所说的, f 在去心邻域上没定义不打紧, 因此边界点上的连续性也是可以被这样定义的.

类似一元情形,连续的函数有如下定理:

定理^(1.3.b) 1. 设函数 f 在有界闭区域 \overline{D} 上连续,则 f 在 \overline{D} 上有界,即存在常数 M>0,使

 $|f(\boldsymbol{x})| \leqslant M, \quad \forall \boldsymbol{x} \in \overline{D}.$

- 2. 若函数 f 在有界闭区域 \overline{D} 上连续, 则 f 在 \overline{D} 上达到最大值与最小值.
- 3. 设函数 f 在闭区域 \overline{D} 上连续, 并假定 M 与 m 分别是 f 在 \overline{D} 上的最大值与最小值. 则对于任意的 η : $m \leq \eta \leq M$, 一定有一点 $\mathbf{x}_0 \in \overline{D}$ 使得 $f(\mathbf{x}_0) = \eta$.
- 4. 倘若 f 在集合 \overline{D} 上连续,那么给定连接集合 D 中两点 x, y 的路径,即 $\gamma: [0,1] \to D$, $\gamma(0) = x$, $\gamma(1) = y$, 且 γ 连续.则 $f \circ \gamma$ 连续.此即是 f 的切片.

例子(1.3.c)

设 $A \neq n \times n$ 矩阵, 它的行列式 $\det A \neq 0$. 证明: 存在 $\alpha > 0$, 使对任意 点 $x \in \mathbb{R}^n$ 都有 $|Ax| \geqslant \alpha |x|$.

容易证明 f(y) = |Ay| 是定义在有界闭集 $\mathbb{S}^1 = \{ y \in \mathbb{R}^n ; |y| = 1 \}$ 上的连续函数. 因为 $\det A \neq 0$, 故 $\forall y \in \mathbb{S}^1$, 有 |Ay| > 0. 由定理 1.3.b 的 2., $\min_{y \in \mathbb{S}^1} |Ay| = \alpha > 0$. 从而当点 $x \neq 0$ 时, $|A(x/|x|)| \geqslant \alpha$, 即 $|Ax| \geqslant \alpha |x|$. 当 x = 0 时, 不等式显然成立.

1.4 偏导数

$$\lim_{h\to 0}\frac{f(\boldsymbol{x}+h\boldsymbol{e}_j)-f(\boldsymbol{x})}{h}$$

存在,则称f在x处对第j个分量可偏导,上述极限记为 $\partial_j f(x)$. 若存在 线性映射 $A: \mathbb{R}^n \to \mathbb{R}$ 满足

$$f(\boldsymbol{x} + \boldsymbol{h}) - f(\boldsymbol{x}) - \boldsymbol{A}\boldsymbol{h} = o(|\boldsymbol{h}|).$$

则称f在 x_0 处可微.可微当然是比偏导数更稳定的量.倘若f可微,那么 对应的线性映射记为 ∇f .

例子(1.4.b)

$$f(x,y) = \begin{cases} y \log(x^2 + y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

在点 (0,0) 的偏导数.

$$\frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = \frac{0 - 0}{\Delta x} = 0,$$

$$\frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = \frac{\Delta y \log(\Delta y)^2}{\Delta y} = \log(\Delta y)^2,$$

从而

$$\partial_x f(0,0) = 0, \quad \partial_y f(0,0) \text{ π a.}$$

定义 $^{(1.4.c)}$ 高阶偏导数, 全微分 倘若 $\partial_j f\colon \mathbb{R}^n \to \mathbb{R}$ 仍可偏导, 那么用 $\partial_{ij} f$ 表示 $\partial_i \partial_j f$.

令 f 可微, 那 么定义 $f(x + \Delta x) - f(x) = \Delta f(x) \approx \sum_{j=1}^{n} \partial_{j} f(x) \Delta x_{j}$, 此 称为 f 的全微分.

定理^(1.4.d)

倘若 $\forall j, \partial_j f$ 连续,那么f可微,反之亦然.倘若 $\partial_{ij} f, \partial_{ji} f$ 连续,那么两 者相等,同时:

以及

$$\nabla f(\boldsymbol{x}) = (\partial_1 f(\boldsymbol{x}), \dots, \partial_n f(\boldsymbol{x})).$$

此处不证.

由定理 1.4.d, 存在可偏导的连续函数, 但不是可微的:

例子(1.4.e)

设 $f(x,y) = \sqrt{|xy|}$, 证明:

- f(x,y) 在 (0,0) 点连续;
 ∂_xf(0,0), ∂_yf(0,0) 都存在;
 f(x,y) 在 (0,0) 点不可微.
- 1. 由于 $|\Delta f| \approx |\Delta x|^{1/2} |\Delta y|^{1/2}$, 于是

$$\lim_{(\Delta x, \Delta y) \to (0,0)} f(x,y) = \lim_{(\Delta x, \Delta y) \to (0,0)} [f(0,0) + \Delta f] = 0 = f(0,0).$$

2. 直接按定义计算得

$$\partial_x f(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = 0$$
$$\partial_y f(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = 0$$

$$\Delta f - \partial_x f(0,0) \Delta x - \partial_y f(0,0) \Delta y = |\Delta x|^{1/2} |\Delta y|^{1/2},$$

$$\frac{\Delta f - \partial_x f(0,0)\Delta x - \partial_y f(0,0)\Delta y}{r} = \frac{|\Delta x|^{1/2} |\Delta y|^{1/2}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \longrightarrow \frac{1}{\sqrt{2}} \neq 0$$

链式法则 链式法则是在多元情形中, 求复合函数偏导的一个重要结果, 事实 上, 其可以推广到无穷维的空间.

定理^(1.4.f) 链式法则 倘若 $f = (f_1, \ldots, f_m) \colon \mathbb{R}^n \to \mathbb{R}^m, g \colon \mathbb{R}^m \to \mathbb{R}$ 满足: 1. f 在开集 $U \subset \mathbb{R}^n$ 上定义,且在 x 处可微; 2. g 在 f(x) 附近有定义,且在 f(x) 处可微. 那么 $g \circ f$ 在 x 处可微,且 $\nabla (g \circ f) = \nabla g \cdot \nabla f$:

$$\left(\partial_1(g\circ \boldsymbol{f}),\ldots,\partial_n(g\circ \boldsymbol{f})\right) = \left(\partial_1g,\ldots,\partial_mg\right) \left(\begin{array}{ccc} \partial_1f_1 & \cdots & \partial_nf_1 \\ \vdots & & \vdots \\ \partial_1f_m & \cdots & \partial_nf_m \end{array} \right).$$

$$\partial_{x_j}(g\circ oldsymbol{f})(oldsymbol{x})\sum_{k=1}^m\partial_{f_k}g(f(oldsymbol{x}))\cdot\partial_{x_j}f_k(oldsymbol{x}).$$

或者用 Leibniz 记法:

$$\frac{\partial (g \circ f)}{\partial x_j}(\boldsymbol{x}) = \sum_{k=1}^m \frac{\partial g}{\partial f_k}(f(\boldsymbol{x})) \frac{\partial f_k}{\partial x_j}(\boldsymbol{x}).$$

利用链式法则可以得到乘积法则:

令 $f,g\colon\mathbb{R}^n o\mathbb{R}$,且均在 $oldsymbol{x}$ 处可微. 那么 $\nabla(fg)(oldsymbol{x})=g(oldsymbol{x})\nabla f+f(oldsymbol{x})\nabla g.$ 也即 $\partial_j(fg)=g\,\partial_j f+f\,\partial_j g.$

$$\nabla (fg)(\mathbf{x}) = g(\mathbf{x})\nabla f + f(\mathbf{x})\nabla g.$$

证明 证明的关键是构造 $G: \mathbb{R}^2 \to \mathbb{R}, G(x,y) = xy,$ 那么 fg = G(f,g),然后利用链式法则:

$$\partial_j G(f,g)(\mathbf{x}) = \partial_1 G(f(\mathbf{x}), g(\mathbf{x})) \, \partial_j f(\mathbf{x}) + \partial_2 G(f(\mathbf{x}), g(\mathbf{x})) \, \partial_j G(\mathbf{x})$$
$$= g(\mathbf{x}) \, \partial_j f(\mathbf{x}) + f(\mathbf{x}) \, \partial_j G(\mathbf{x}). \qquad \Box$$

方向导数 本节中,始终令 $\ell \in \mathbb{S}^{n-1}$,其中 $\mathbb{S}^{n-1} = \{ y \in \mathbb{R}^n ; |y| = 1 \}$.

阿导数 本节中,始终令
$$\ell \in \mathbb{S}^{n-1}$$
,其中 $\mathbb{S}^{n-1} = \{y\}$ 定义 $(1.4.h)$ 方向导数 定义 $f: \mathbb{R}^n \to \mathbb{R}$ 对方向 ℓ 的导数为 $\partial_{\ell} f(x) \coloneqq \frac{\mathrm{d}}{\mathrm{d}t} \big[f(x+t\ell) \big]_{t=0}.$

命题(1.4.9)

$$\partial_{m{\ell}} f(m{x}) = m{\ell} \cdot
abla f(m{x}) = \sum_{j=1}^n \ell_j \, \partial_j f(m{x}) = \sum_{j=1}^n \cos \langle m{\ell}, m{e}_j
angle \, \partial_j f(m{x}).$$

证明 由于可微:

$$f(\boldsymbol{x} + t\boldsymbol{\ell}) - f(\boldsymbol{x}) - t \nabla f(\boldsymbol{x}) \cdot \boldsymbol{\ell} = o(|t|).$$

因此
$$\frac{\mathrm{d}}{\mathrm{d}t} \big[f(\boldsymbol{x} + t\boldsymbol{\ell}) \big]_{t=0} = \nabla f(\boldsymbol{x}) \cdot \boldsymbol{\ell}.$$

$$x \partial_x f(x,y) + y \partial_y f(x,y) = 0.$$

倘若 $X(x)\partial_x f(x,y) + Y(y)\partial_y f(x,y) = 0, \, X, \, Y \neq 0$ 且连续可微. 那么存在函数 g 满足

$$f(x,y) = \phi \left(\int_{x_0}^x \frac{1}{X(t)} dt + \int_{y_0}^y \frac{1}{Y(s)} ds \right).$$

函数 g, 都有

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x,g(x)) = \partial_x f(x,g(x)) + \frac{Y(g(x))}{X(x)}\partial_y f(x,y) = 0.$$

同理证得 $\frac{\mathrm{d}}{\mathrm{d}x}K(x,g(x))=0$,由于 $K(x_0,y_0)=0$,因此 $K(x,g(x))\equiv0$. 由后面的隐函数定理:

$$\partial_y K(x,y) = \frac{1}{Y(y)} \neq 0.$$

因此存在局部的 \mathscr{C}^1 函数 h 满足 h(x,K(x,y))=y,也就是

$$K(x, h(x, z)) = z.$$

令 $\phi(x,z)=f(x,h(x,z))$, 现在来证明 $\partial_x\phi=0$, 为了方便, 用 Leibniz

$$\frac{\partial \phi}{\partial x}(x,z) = \frac{\partial f}{\partial x}(x,h(x,z)) + \frac{\partial f}{\partial y}(x,h(x,z))\frac{\partial h}{\partial x}(x,z). \tag{1}$$

对 K(x,h(x,z)) = z 求导:

$$\frac{\partial K}{\partial x}(x, h(x, z)) + \frac{\partial K}{\partial y}(x, h(x, z)) \frac{\partial h}{\partial x}(x, z) = 0.$$

也即是 $\partial_x h(x,z) = Y(h(x,z))/X(x)$, 代入 (1) 可以得到 (用 h 简写

$$\frac{\partial \phi}{\partial x}(x,z) = \frac{1}{X(x)} \left(X(x) \frac{\partial f}{\partial x}(x,h) + \frac{\partial f}{\partial y}(x,h) Y(h) \right)
= -\frac{1}{X(x)} \det \begin{pmatrix} \partial_x f & \partial_y f \\ Y & -X \end{pmatrix} (x,h)
= -\frac{1}{X(x)} \det \begin{pmatrix} \partial_x f & \partial_y f \\ \partial_y K & \partial_x K \end{pmatrix} (x,h).$$
(2)

对任意
$$z$$
, 有 $\partial_x h(x,z) = Y(h(x,z))/X(x)$, 因此
$$\frac{\partial f}{\partial x}(x,h) + \frac{Y(h)}{X(x)}\frac{\partial f}{\partial y}(x,h) = \frac{\partial K}{\partial x}(x,h) + \frac{Y(h)}{X(x)}\frac{\partial K}{\partial y}(x,h) = 0$$

则任给 (x,z), (2) 有非零解 $(1,\frac{Y(h(x,z))}{X(x)})$, 因此恒为 0, 故 $\partial_x\phi\equiv 0$, 因此 $\phi(x,K(x,y))=f(x,h(x,K(x,y)))=f(x,y)$, 由于 ϕ 第一个分量偏导为 0, 因此

$$f(x,y) = \phi(K) = \phi\left(\int_{x_0}^x \frac{1}{X(t)} dt + \int_{y_0}^y \frac{1}{Y(s)} ds\right).$$

1.5 微分中值定理与 Taylor 公式

本节中均假设函数在区域 D 上是可微的.

$$f(x + h) - f(x) = \nabla f(x + \theta h)h$$

定理
$$^{(1.5.a)}$$
 微分中值定理
$$\ddot{x}[x,x+h] \subset D, 则存在和 x, h 有关的 \theta \in (0,1) 满足$$
 $f(x+h)-f(x)=\nabla f(x+\theta h)h.$ 也即是
$$f(x+h)-f(x)=\sum_{j=1}^n \partial_j f(x+\theta h)h_j.$$

$$F(1) - F(0) = F'(\theta)$$

由链式法则, $F'(\theta) = \sum_{j=1}^{n} \partial_j f(\boldsymbol{x} + \theta \boldsymbol{h}) h_j = \nabla f(\boldsymbol{x} + \theta \boldsymbol{h}) \boldsymbol{h}$.

定理
$$^{(1.5.b)}$$
 Taylor 公式
$$m{\mathcal{E}}[m{x}, m{x} + m{h}] \subset D, \, m{f} \in \mathscr{C}^k(\mathbb{R}^n; \mathbb{R}^m), \, 那 \, m{\mathcal{E}}$$
 $m{f}(m{x} + m{h}) = m{f}(m{x}) + \sum_{j=1}^k rac{
abla^j m{f}(m{x}) m{h}^j}{j!} + o(|m{h}|^k).$

其中 $\nabla^j \mathbf{f}(x) \mathbf{h}^j$ 是简写:

$$abla^j oldsymbol{f}(oldsymbol{x}) oldsymbol{h}^j = \Big[\underbrace{
abla(\cdots
abla(
abla) oldsymbol{f} \cdot oldsymbol{h}) \cdot oldsymbol{h} \cdot oldsymbol{h}) \cdot oldsymbol{h} \cdot oldsymbol{h} \Big] (oldsymbol{x}).$$

特别地, 当m=1的时候, 我们有

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \sum_{1 \leq |\boldsymbol{\alpha}| \leq k} \frac{\partial^{\boldsymbol{\alpha}} f(\boldsymbol{x}) \boldsymbol{h}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} + o(|\boldsymbol{h}|^{k}).$$

$$= f(\boldsymbol{x}) + \sum_{1 \leq |\boldsymbol{\alpha}| \leq k} \left(\prod_{j=1}^{n} \frac{h_{j}^{\alpha_{j}} \partial_{j}^{\alpha_{j}}}{\alpha_{j}!} \right) f(\boldsymbol{x}) + o(|\boldsymbol{h}|^{k}).$$

$$= f(\boldsymbol{x}) + \sum_{j=1}^{k} \left(\sum_{i=1}^{n} h_{i} \partial_{i} \right)^{j} f(\boldsymbol{x}) + o(|\boldsymbol{h}|^{k}).$$

其中
$$\alpha = (\alpha_1, \dots, \alpha_n)$$
是多重指标, $|\alpha| = \sum_{j=1}^n \alpha_j$, $\alpha! = \prod_{j=1}^n \alpha_j!$, 其中各 $\alpha_j \ge 0$. 若 $f \in \mathcal{C}^{k+1}$, 则按上式展开有 Lagrange 余项:
$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \sum_{j=1}^k \left(\sum_{i=1}^n h_i \, \partial_i\right)^j f(\mathbf{x}) + \frac{\left(\sum_{i=1}^n h_i \, \partial_i\right)^{k+1} f(\mathbf{x} + \theta \mathbf{h})}{(k+1)!}.$$

反函数定理, 隐函数定理以及 Lagrange 乘数法

定义 $^{(1.6.a)}$ 临时定义 给定 $x \in \mathbb{R}^n$, 记 U_x 为其某一个邻域.

定理^(1.6.b) 反函数定理 假设 $f: \mathbb{R}^n \to \mathbb{R}^n$, 且 $\det(\nabla f(x)) \neq 0$, 那么 f 在 U_x 上可逆, 也即是, 存在 $g: U_{f(x)} \to U_x$, 且 $g \circ f = \mathrm{id}$.

为了描述我们的g,我们有:

$$1 = \nabla(\boldsymbol{g} \circ \boldsymbol{f}) = (\nabla \boldsymbol{g} \circ \boldsymbol{f}) \cdot \nabla \boldsymbol{f}.$$

$$\mathbf{1} =
abla (oldsymbol{g} \circ oldsymbol{f}) = (
abla oldsymbol{g} \circ oldsymbol{f}) \cdot
abla oldsymbol{f}.$$
 If $abla oldsymbol{g}(oldsymbol{f}(oldsymbol{x})) = ig(
abla oldsymbol{f}(oldsymbol{x}))^{-1}$, for $abla oldsymbol{g}(oldsymbol{y}) = ig(
abla oldsymbol{f}(oldsymbol{g}(oldsymbol{g}))^{-1}$.

反函数定理的一个推论是隐函数定理:

定理^(1.6.c) 隐函数定理

令 $f \in \mathscr{C}^k(\mathbb{R}^n \times \mathbb{R}^m; \mathbb{R}^m)$, 其中 $\mathbb{R}^n \times \mathbb{R}^m$ 中向量记为 (x,y), 若 $\det(\nabla_{m{y}} m{f}(m{x}_0, m{y}_0)) \neq 0$, 则存在函数 $m{g} \colon U_{m{x}_0} o U_{m{y}_0}$ 满足

- 1. $g \in \mathcal{C}^k$; 2. f(x,g(x)) = 0 对所有 $x \in U_{x_0}$ 成立; 3. $g(x_0) = y_0$.

固定两个邻域后,满足以上条件的 g 是唯一的.

同理:

$$\mathbf{0} =
abla f(-, g(-)) =
abla_{m{x}} f +
abla_{m{y}} f
abla g.$$

因此

$$abla oldsymbol{g}(oldsymbol{x}) = -ig(
abla_{oldsymbol{y}}oldsymbol{f}(oldsymbol{x},oldsymbol{g}(oldsymbol{x}))^{-1}
abla_{oldsymbol{x}}oldsymbol{f}(oldsymbol{x}).$$

定理^(1.6.d) Lagrange 乘数法

令 $\{\phi_i\}_{i=1}^m$, (m < n) 是一族 $D \to \mathbb{R}$ 的 \mathcal{C}^1 约束, 假定 $F \colon D \to \mathbb{R}$ 也是 \mathcal{C}^1

$$L(oldsymbol{x}) = f(oldsymbol{x}) + \sum_{i=1}^m \lambda_i \phi(oldsymbol{x}).$$

假设若 x 满足 $\phi_1(x)=\cdots=\phi_m(x)=0$,那么 $\nabla_x(\phi_1,\ldots,\phi_m)$ 的秩为 m,且满足 $\phi_1(x)=\cdots=\phi_m(x)=0$ 的解确实存在,那么

- 1. 若y是在 $\phi_i(y)$ 约束下的F极值点,则存在 $\lambda_1,\ldots,\lambda_m$ 满足 $\nabla h(y)=$
- 0. 2. 如果计算 $\left[\partial_{ij}L(\mathbf{y})\right]_{i,j=1}^n$,若该矩阵所有特征值恒正,那么 \mathbf{y} 是极小值

§II 数项级数

2.1 正项级数

定义^(2.1.a) 收敛,可和 若 $\lim_{N\to\infty}\sum_{n=1}^{N}a_n$ 存在 (不是 $\pm\infty$),则称无穷级数 $\sum_{n\geqslant 1}a_n$ 收敛. 若 $\sum_{n\geqslant 1}a_n$ 的收敛结果是与求和顺序无关的,亦即,任给 $\mathbb N$ 到自身的双射 σ ,均有 $\sum_{n\geqslant 1}a_{\sigma(n)}=\sum_{n\geqslant 1}a_n$,则称 $\sum_{n\geqslant 1}a_n$ 可和.

"可和"自然是比收敛更稳健的一个概念,在实数列情景下,我们们称"可 和"将等价于绝对收敛,但无穷求和的概念亦可推广到其他拓扑线性空 间,甚至是拓扑群,因此此时不应该限制到仅仅是绝对收敛上来.

定理(2.1.b)

正项级数要么可和的,要么是不收敛的.

证明 若正项级数收敛, 也即 $\sum_{n\geqslant}a_n=A<\infty$, 不妨固定 σ , 择 N 满足

$$n > N \implies \left| \sum_{n=1}^{n} a_n - A \right| < \varepsilon.$$

$$\{1,\ldots,n\}\subset \{\sigma(1),\ldots,\sigma(M_n)\}.$$

因此 $A - \varepsilon < \sum_{k=1}^n a_n \leqslant \sum_{k=1}^{M_n} a_{\sigma(n)} \leqslant \sum_{k=1}^n a_n = A$, 取极限夹逼即可.

正项级数的判别法 此处假设对所有 n, 均有 $a_n > 0$.

定理^(2.1.c) 正项级数的判别法 1. 比较判别法. 若存在正项级数

$$\frac{b_n}{c} < a_n < cb_n, \quad c > 0.$$

则 $\sum_{n\geqslant 1} a_n$ 和 $\sum_{n\geqslant 1} b_n$ 同收敛.

- 2. Cauchy 根值判別法. $\overline{\lim}_{n\to\infty} a_n^{1/n}=c, \ c<1$ 时级数收敛, c>1 时 级数发散;
- 3. d'Alembert 判別法. $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = d, d < 1$ 时级数收敛,
- **4.** Raabe 判别法. $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=r,\, r>1$ 时级数收敛, r<1时级数发散;
- **5.** Bertrand 判别法. $\lim_{n\to\infty} \log n \left[n \left(\frac{a_n}{a_{n+1}} 1 \right) 1 \right] = b, b > 1$ 时级数 收敛, b < 1 时级数发散;
- **6.** Gauss 判别法. $\frac{a_n}{a_{n+1}}=1+\frac{\mu}{n}+\mathcal{O}\left(\frac{1}{n^{1+\varepsilon}}\right),\ \varepsilon>0,\ \mu>1$ 时级数收敛, μ ≤ 1 时级数发散.
- 7. Cauchy 积分判别法. 设 f 在 $[1,\infty)$ 上单调减少,则级数 $\sum_{n\geq 1} f(n)$ 与 无穷限广义积分 $\int_1^\infty f(x) dx$ 同敛散.
- 8. Cauchy 凝聚判別法. 设 $\{a_n\}$ 是单调减少的正数数列,则正项级数
- $\sum_{n\geqslant 1} a_n$ 收敛的充分必要条件是 $\sum_{n\geqslant 1} 2^n a_{2^n}$ 收敛. **9.** p 级数法. 令 $\log^{\circ k}(n) = \overbrace{\log \cdots \log(n)}^k$, 令

$$a_n = \frac{1}{n^{p_0} \lceil \log(n) \rceil^{p_1} \cdots \lceil \log^{\circ k}(n) \rceil^{p_k}}. \quad \log^{\circ k}(n) > 0, \quad p_i \in \mathbb{R}.$$

则 $\sum_{n\geqslant 1} a_n$ 收敛当且仅当存在 $j\in\{0,\ldots,k\}$, 满足 $p_j>1$, 且若 i< j,

- 判别下列例子的敛散性:

 1. $\sum_{n\geqslant 1} \frac{1}{3^{\log n}}$;

 2. $\sum_{n\geqslant 2} \frac{1}{(\log n)^{\log n}}$;

 3. $\sum_{n\geqslant 3} \frac{1}{(\log n)^{\log \log n}}$.

只要知道对于任何两个正数 a, b > 0 均成立

$$a^{\log b} = (e^{\log a})^{\log b} = e^{\log a \log b} = (e^{\log b})^{\log a} = b^{\log a},$$

就不难解决前两题. 在 1. 中, 利用 $3^{\log n} = n^{\log 3}$ 和 $\log 3 > 1$, 可见这个级 数本身就是p > 1的p级数,因此收敛.对于**2.**,利用 $(\log n)^{\log n} = n^{\log \log n}$ 和当n充分大时有 $n^{\log \log n} > n^2$,就可用 $\sum_{n \geq 1} \frac{1}{n^2}$ 为比较级数而知其收敛. 类似地在**3.** 中有 $(\log n)^{\log \log n} = e^{(\log \log n)^2} < e^{\log n} = n$,因此可从 $\sum_{n \geq 1} \frac{1}{n}$ 的发散性知其发散.

利用看似平平无奇的定理 2.1.c 第一款,可以得到一些看似非常复杂的正 项级数的审敛.

讨论下列级数的敛散性:

- 讨论下列级数的敛散性:

 1. $\sum_{n\geqslant 1} \left[\frac{(2n-1)!!}{(2n)!!}\right]^k$;

 2. $\sum_{n\geqslant 1} n! \left(\frac{a}{n}\right)^n$, (a>0);

 3. $\sum_{n\geqslant 1} \left[e-\left(1+\frac{1}{n}\right)^n\right]$.

 1. 利用关于阶乘的 Wallis 公式知道有 $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\pi n}$, 因此该级数的通 项 a_n 与级数 $\sum_{n\geqslant 1}rac{1}{(\pi n)^{k/2}}$ 的通项为等价无穷小量. 从而知道级数当 $k \leq 2$ 时发散, 而当 k > 2 时收敛.

2. 根据 Stirling 公式, 可见成立

$$a_n = n! \left(\frac{a}{n}\right)^n \sim \left(\frac{a}{e}\right)^n \sqrt{2\pi n} = b_n.$$

若 $a \ge e$, 则可看出数列 $\{b_n\}$ 不是无穷小量, 因此级数 $\sum_{n \ge 1} b_n$ 以及 $\sum_{n \ge 1} a_n$ 均发散. 否则, 可以取 $r \in \left(\frac{a}{e}, 1\right)$, 并看出

$$\lim_{n \to \infty} \frac{a_n}{r^n} = 0,$$

 $n \to \infty$ r^n 因此从几何级数 $\sum_{n \geqslant 1} r^n$,(0 < r < 1) 收敛知 $\sum_{n \geqslant 1} a_n$ 收敛. **3.** 利用 Taylor 公式即可得到

$$e - \left(1 + \frac{1}{n}\right)^n = \frac{e}{2n} + \mathcal{O}\left(\frac{1}{n^2}\right).$$

1.
$$\sum_{n>1} 3^{-n^p}$$
;

2.
$$\sum_{n\geqslant 1} \frac{1}{n^{1+1/n}}$$
;

3.
$$\sum_{n\geqslant 1} \left[\frac{1}{n} - \log(1+\frac{1}{n})\right];$$

4.
$$\sum_{n\geqslant 1} \left(\frac{n}{(2n^2+n+1)^{1/2}}\right)^{n-1}$$

5.
$$\sum_{n\geqslant 2} \frac{n^{\log n}}{(\log n)^n};$$

6.
$$\sum_{n \geq 1} \frac{e^{-(1+1/2+\cdots+1/n)}}{n^p}$$

7.
$$\sum_{n\geqslant 1} \left(a^{1/n} - \frac{b^{1/n} + c^{1/n}}{2}\right), (a, b, c > 0)$$

8.
$$\sum_{n \ge 1} \left(1 - \frac{\log n}{n}\right)^n$$

例子(2.1.f)

讨论下列各级数的敛散性:

1. $\sum_{n\geqslant 1} 3^{-n^p}$;

2. $\sum_{n\geqslant 1} \frac{1}{n^{1+1/n}}$;

3. $\sum_{n\geqslant 1} \left[\frac{1}{n} - \log(1 + \frac{1}{n})\right]$;

4. $\sum_{n\geqslant 1} \left(\frac{n}{(2n^2+n+1)^{1/2}}\right)^{n-1}$;

5. $\sum_{n\geqslant 2} \frac{n^{\log n}}{(\log n)^n}$;

6. $\sum_{n\geqslant 1} \frac{e^{-(1+1/2+\cdots+1/n)}}{n^p}$;

7. $\sum_{n\geqslant 1} \left(a^{1/n} - \frac{b^{1/n} + c^{1/n}}{2}\right)$, (a,b,c>0);

8. $\sum_{n\geqslant 1} \left(1 - \frac{\log n}{n}\right)^n$.

1. 考虑 $3^{-n^p}n^2$, p > 0, 则 $3^{-n^p}n^2 \to 0$, 因此有界, 由比较判别法得收敛;

2. $n^{-1-1/n} = n^{-1} \exp(-\frac{\log n}{n}) = \frac{1-\frac{\log n}{n}}{n} + O(n^{-2})$, 因此发散;

2.
$$n^{-1-1/n} = n^{-1} \exp(-\frac{\log n}{n}) = \frac{1 - \frac{\log n}{n}}{n} + \mathcal{O}(n^{-2})$$
, 因此发散;

3.
$$\frac{1}{n} - \log(1 + \frac{1}{n}) \approx -\frac{1}{2n^2}$$
, 因此收敛;

3.
$$\frac{1}{n} - \log\left(1 + \frac{1}{n}\right) \approx -\frac{1}{2n^2}$$
, 因此收敛;
4.
$$\log\left[\left(\frac{n}{(2n^2 + n + 1)^{1/2}}\right)^{n-1}\right] = \frac{n-1}{2}\log\left(\frac{n^2}{2n^2 + n + 1}\right)$$
因此 $\left(\frac{n}{(2n^2 + n + 1)^{1/2}}\right)^{n-1} \approx \sqrt{2^{-n}}$, 故求和收敛;
5. 考虑 $\frac{n^{\log n}}{(\log n)^n} / \frac{1}{n^2} = \frac{n^{\log n} n^2}{(\log n)^n}$, 取对数得到
$$(2 + \log n) \log n - n \log \log n \to -\infty.$$
因此 $\frac{n^{\log n}}{(\log n)^n} / \frac{1}{n^2}$ 有界, 故原求和收敛;
6. 由于 $\exp\left[-\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)\right] \approx e^{-\log n - \gamma} \approx 1/n$, 因此 $p > 0$ 收敛;
7. 考虑 $a^{1/n}$, 我们有

5. 考虑
$$\frac{n^{\log n}}{(\log n)^n} / \frac{1}{n^2} = \frac{n^{\log n} n^2}{(\log n)^n}$$
, 取对数得到

$$(2 + \log n) \log n - n \log \log n \to -\infty.$$

6. 由于
$$\exp\left[-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right] \approx e^{-\log n - \gamma} \approx 1/n$$
, 因此 $p > 0$ 收敛;

$$a^{1/n} = \exp\left(\frac{\log a}{n}\right) = 1 + \frac{\log a}{n} + \mathcal{O}\left(\frac{1}{n^2}\right).$$

$$a^{1/n} = \exp\left(\frac{\log a}{n}\right) = 1 + \frac{\log a}{n} + O\left(\frac{1}{n^2}\right).$$
因此 $a^{1/n} - \frac{b^{1/n} + c^{1/n}}{2} \approx \frac{\log(a^2/bc)}{2n}$, 因此收敛当且仅当 $a^2 = bc$;
8. 取对数, $\left(1 - \frac{\log n}{n}\right)^n = \exp\left[n\log\left(1 - \frac{\log n}{n}\right)\right] \approx \frac{1}{n}$, 因此发散.

2.2 复项级数

考虑复项级数仅仅需要考虑其对应的实部和虚部,因此不妨设级数项均 为实的.

定理^(2.2.a) <mark>绝对可和定理 给定数列 $\{a_n\}_{n\geqslant 1}$, 若 $\sum_{n\geqslant 1}|a_n|<\infty$, 则 $\sum_{n\geqslant 1}a_n$ 可和. 令 $a_n^+=\max(a_n,0)$, $a_n^-=-\max(-a_n,0)$, 则 $a_n^+-a_n^-=a_n$, 由于绝对收敛, 因此</mark>

$$\sum_{n\geqslant 1}a_n^+<\infty,\quad \sum_{n\geqslant 1}a_n^-<\infty.$$

因此得到

$$\sum_{n \geqslant 1} a_{\sigma(n)} = \sum_{n \geqslant 1} a_{\sigma(n)}^+ - \sum_{n \geqslant 1} a_{\sigma(n)}^- = \sum_{n \geqslant 1} a_n^+ - \sum_{n \geqslant 1} a_n^- = \sum_{n \geqslant 1} a_n.$$

注

当实级数仅仅是条件收敛的时候,我们有 Riemann 重排定理: 可以收敛 到任何值,包括 $\pm\infty$.

以下均令 $\{b_n\}_{n\geqslant 1}$ 单调, 令 $A_N = \sum_{n=1}^N a_n$.

- 1. Leibniz 判別法. 令 $b_n \to 0$, 则 $\sum_{n\geqslant 1} (-1)^n b_n$ 收敛; 2. Dichilet 判別法. 令 $\sup_{N\geqslant 1} |A_N| < \infty$, 且 $b_n \to 0$, 则 $\sum_{n\geqslant 1} a_n b_n$ 收敛;
- 3. Abel 判別法. 令 $\sup_{n\geqslant 1}|b_n|<\infty,\ A_n\to A\in\mathbb{R},\ \mathbb{N},\ \sum_{n\geqslant 1}a_nb_n$ 收敛.

例子^(2.2.c) Leibniz 判别法的反例

下面第一个级数收敛,第二个级数不收敛.

$$\sum_{n \ge 1} \frac{(-1)^n}{\sqrt{n}}, \quad \sum_{n \ge 2} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$$

第一个依 Leibniz 判别法收敛, 第二个, 考虑相邻两项之和:

$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} + \frac{(-1)^{n+1}}{\sqrt{n+1} + (-1)^{n+1}} = \frac{1}{\sqrt{n}[\sqrt{n} + (-1)^n]} \approx \frac{1}{n}.$$

因此不收敛.

例子^(2.2.d) Dichilet 判别法的一个应用

 $\{a_n\}$ 单调趋向于 0,则考虑下面的级数 $(x \notin \mathbb{Z}/2)$

$$\sum_{n\geq 1} a_n e^{2\pi i nx}.$$

则该级数绝对收敛与 $\sum_{n\geqslant 1} a_n$ 收敛等价, 若 $\sum_{n\geqslant 1} a_n$ 仅仅是条件收敛, 那么 $\Re\left(\sum_{n\geqslant 1} a_n \mathrm{e}^{2\pi\mathrm{i} nx}\right)$ 和 $\Im\left(\sum_{n\geqslant 1} a_n \mathrm{e}^{2\pi\mathrm{i} nx}\right)$ 都是条件收敛.

由 Dichilet 判别法, 若 $\sum_{n\geqslant 1} a_n$ 收敛, 只需证明 $\sup_{N\geqslant 1} \left| \sum_{n=1}^N e^{2\pi i nx} \right| <$ ∞ , 即可证明 $\sum_{n\geqslant 1} a_n \mathrm{e}^{2\pi\mathrm{i} nx}$ 收敛, 依赖等比数列求和:

$$\left| \sum_{n=1}^{N} e^{2\pi i nx} \right| = \left| \frac{e^{2i\pi x} (e^{2i\pi Nx} - 1)}{e^{2i\pi x} - 1} \right| \leqslant \left| \frac{2}{e^{2i\pi Nx} - 1} \right|.$$

因此也 Dichilet 判别法, 可以得到上式收敛. 因此 $\Re(\sum_{n\geqslant 1}a_n\mathrm{e}^{2\pi\mathrm{i}nx})$ 和 $\Im\left(\sum_{n\geqslant 1}a_n\mathrm{e}^{2\pi\mathrm{i}nx}\right)$ 均收敛.

现在假设 $\sum_{n\geqslant 1} a_n$ 条件收敛, 那么考虑

$$\Re\left(\sum_{n\geq 1} a_n e^{2\pi i nx}\right) = \sum_{n\geq 1} a_n \sin(2\pi nx).$$

$$\sum_{n\geqslant 1} |a_n \sin(2\pi nx)| \geqslant \sum_{n\geqslant 1} |a_n \sin(2\pi nx)^2| = \sum_{n\geqslant 1} \frac{|a_n|(1-\cos(4\pi nx))}{2}.$$

依赖前面的讨论 $\sum_{n\geqslant 1}|a_n|\cos(4\pi nx)$ 收敛, 但是 $\sum_{n\geqslant 1}|a_n|$ 发散, 因此 $\sum_{n\geq 1} |a_n \sin(2\pi nx)|$ 发散, 所以所述的两个级数均只有条件收敛.

- 例子^(2.2.e) Leibniz 判别法与三角函数 判断下面级数的敛散性: 1. $\sum_{n\geqslant 1}\sin(\pi\sqrt{n^2+a^2})$, 其中 $a\in\mathbb{R}$; 2. $\sum_{n\geqslant 1}\frac{(-1)^n\sin n}{n}$;

3.
$$\sum_{n \ge 2} \sin(n\pi + \frac{1}{\log n});$$

4.
$$\sum_{n \ge 1} \frac{\sin nx}{n} \left(1 + \frac{1}{n}\right)^n$$
;

3.
$$\sum_{n\geqslant 2} \sin(n\pi + \frac{1}{\log n});$$

4. $\sum_{n\geqslant 1} \frac{\sin nx}{n} (1 + \frac{1}{n})^n;$
5. $\sum_{n\geqslant 1} (1 + \frac{1}{2} + \dots + \frac{1}{n}) \frac{\sin nx}{n};$

定理^(2.2.f) Cauthy 卷积
令 $\sum_{n\geqslant 0} a_n$, $\sum_{n\geqslant 0} b_n$ 绝对收敛, 那么 $\sum_{n\geqslant 0} \sum_{k=0}^n a_k b_{n-k}$ 亦然, 且 $\sum_{n\geqslant 0} \sum_{k=0}^n a_k b_{n-k} = (\sum_{n\geqslant 0} a_n) (\sum_{n\geqslant 0} b_n).$

$$\sum_{n\geqslant 0} \sum_{k=0}^{n} a_k b_{n-k} = \left(\sum_{n\geqslant 0} a_n\right) \left(\sum_{n\geqslant 0} b_n\right).$$

该定理可以作如下阐释: 令 $\{a_n\}_{n\in\mathbb{Z}}$ 在 $n\geqslant 0$ 时与上述等同, n<0 时为 0, 定义卷积为 $(a*b)_n=\sum_{k\in\mathbb{Z}}a_kb_{n-k}$, 那么若 $\sum_{n\in\mathbb{Z}}a_n$, $\sum_{n\in\mathbb{Z}}b_n$ 绝对收敛,则

$$\sum_{n\in\mathbb{Z}} (a*b)_n = \sum_{n\in\mathbb{Z}} \sum_{k\in\mathbb{Z}} a_k b_{n-k} = \sum_{k\in\mathbb{Z}} \sum_{n\in\mathbb{Z}} a_k b_{n-k} = \left(\sum_{n\in\mathbb{Z}} a_n\right) \left(\sum_{n\in\mathbb{Z}} b_n\right).$$

定理^(2.2.g)

令
$$\sum_{n\geqslant 0}a_n$$
, $\sum_{n\geqslant 0}b_n$ 绝对收敛, 那么 $\sum_{n\geqslant 0}a_nb_n$ 亦然.
只需注意到
$$\sum_{n\geqslant 0}|a_nb_n|\leqslant \sum_{n\geqslant 0}a_n^2+b_n^2\leqslant \sup_{n\geqslant 0}|a_n|\sum_{n\geqslant 0}|a_n|+\sup_{n\geqslant 0}|b_n|\sum_{n\geqslant 0}|b_n|<\infty.$$

定理^(2.2.h) Toneni–Fubini 定理

若
$$\{a_{nm}\}_{n,m\geqslant 1}$$
 是二重复项级数,那么
$$\sum_{n\geqslant 0}\sum_{m\geqslant 0}|a_{nm}|=\sum_{m\geqslant 0}\sum_{n\geqslant 0}|a_{nm}|.$$
 若上式 $<\infty$,那么
$$\sum_{n\geqslant 0}\sum_{m\geqslant 0}a_{nm}=\sum_{m\geqslant 0}\sum_{n\geqslant 0}a_{nm}.$$

$$\sum_{n\geqslant 0} \sum_{m\geqslant 0} a_{nm} = \sum_{m\geqslant 0} \sum_{n\geqslant 0} a_{nm}$$

$$a_n = \sqrt{n} \left(2 - 2\sqrt{1 - \frac{1}{n}} - \frac{1}{n} \right) \approx -\frac{1}{4n^{3/2}}.$$

例子 $^{(2.2,j)}$ 证明 $\sum_{n\geqslant 1}\sin n$ 发散. 只需证明通项不趋向于 0 即可,若 n 极大时, $|\sin n|<\varepsilon$,那么 $\inf_{k\in\mathbb{Z}}|n-k\pi|<2\varepsilon$,若 ε 极小,则 $\inf_{k\in\mathbb{Z}}|n+1-k\pi|>2\varepsilon$,矛盾!

2.3

一致收敛

定义^(2.3.a) 逐点收敛, (绝对) 一致收敛, 内闭一致收敛 (紧收敛)

令 $\{f_n\colon D\to\mathbb{C}\}_{n\geqslant 1}$ 是一族函数, 若 $\forall x\in D$, 均有 $\sum_{n\geqslant 1}f_n(x)=f(x)$ 收敛, 则称 $\sum_{n\geqslant 1}f_n$ 逐点收敛; 若 $\lim_{n\to\infty}\sup_{x\in D}|f_n(x)-f(x)|=0$, 则称 $\sum_{n\geqslant 1} f_n$ 一致收敛; 若 $\sum_{n\geqslant 1} |f_n|$ 一致收敛, 则称其绝对一致收敛; 若对 D 内任意紧集 K 均有 $\lim_{n\to\infty}\sup_{x\in K}|f_n(x)-f(x)|=0$, 则称 $\sum_{n\geqslant 1}f_n$ 内闭一致收敛或紧收敛.

定理^(2.3.b) 一致收敛的判别法

以下均令 $\{b_n(x)\}_{n\geqslant 1}$ 对任意 x 单调, 令 $A_N(x)=\sum_{n=1}^N a_n(x)$.

- 1. Weierstrass M 判別法. 令 $M_n \geqslant \sup |f_n|$, 若 $\sum_{n>1} M_n < \infty$, 则 $\sum_{n\geq 1} f_n$ 绝对一致收敛;
- 2. Dini 判別法. 令 $\{f_n\}_{n\geq 1}$ 和 f 均是紧集 K 上的非负连续函数,那么若 $\sum_{n\geq 1} f_n(x) = f$ 逐点成立,则一致收敛;
- 3. Dichilet 判別法. $\diamondsuit \sup_x \sup_{N\geqslant 1} |A_N(x)| < \infty$, 且 $b_n(x) \Rightarrow 0$, 则 $\sum_{n\geqslant 1} a_n(x)b_n(x)$ 一致收敛;
- **4. Abel 判別法**. 令 $\sup_x \sup_{n\geqslant 1} |b_n(x)| < \infty$, $A_n(x) \Rightarrow A(x)$, 则 $\sum_{n\geqslant 1} a_n(x)b_n(x)$ 一致收敛;
- 5. Cauthy 收敛原理. 主要用于可以把余项直接写出来的情形. $f_n \Rightarrow$ $f \iff \lim_{n,m\to\infty} \sup_x |f_n(x) - f_m(x)| = 0.$

定理(2.3.c) —致收敛的判否法 1. 倘若 $f_n \to f$ 逐点成立,那么以下两

- (a). f_n ⇒ f;
 (b). 存在 {x_n}_{n≥1} 满足

$$\overline{\lim}_{n \to \infty} |f_n(x_n) - f(x_n)| > 0.$$

(c). 存在 $\{x_n\}_{n\geq 1}$, $\exists m_n > n$ 满足

$$\overline{\lim_{n\to\infty}} |f_n(x_n) - f_{m_n}(x_n)| > 0.$$

- **2.** 令 $\{f_n: D \to \mathbb{R}\}_{n \geq 1}$ 是一族函数, 且 $x_0 \in D$, 若 f_n 在 x_0 处连续, 同时 $\sum_{n\geqslant 1}f_n(x_0)$ 发散,那么 $\sum_{n\geqslant 1}f_n$ 在任何 x_0 的去心领域内均不一致收
- 3. 利用 2.3.d, 2.3.e, 2.3.f 来判断.

一致收敛的性质

定理^(2.3.d) 一致收敛与极限交换

令定义在D上的函数 $f_n \Rightarrow f$, 且 $x_0 \in D$ 且 $y_n = \lim_{x \to x_0} f_n(x)$ 对所有n均存在,则下述两个极限均存在且相等:

$$\lim_{x \to x_0} f(x), \quad \lim_{n \to \infty} y_n.$$

特别地,连续函数的一致收敛极限仍连续.

定理^(2.3.e) 一致收敛与积分号中取极限

令 $\{f_n\}_{n\geqslant 1}$ 是 Riemann 可积函数族, 且在 [a,b] 上一致收敛到 f, 则 fRiemann 可积且

$$\lim_{n \to \infty} \int f_n = \int f.$$

令 $\{f_n\}_{n\geq 1}$ 是 (a,b) 上的 \mathcal{C}^1 函数族, 若满足 **1.** f'_n 内闭一致收敛; **2.** f_n 逐点收敛到 f;

1. f_n 内闭一致收敛; 2. $f' = \lim_{n \to \infty} f'_n$ 一致收敛, 因此 $f \in \mathcal{C}^1$.

例子^(2.3.g) 逐点收敛但不一致收敛的例子

考虑 $\{f_n(x) = n^{\alpha} x e^{-nx}\}_{n \ge 1}$, 则 $\forall x \ge 0$, 均有 $\lim_{n \to \infty} f_n(x) = f(x) \equiv 0$,

$$\sup_{x \ge 0} |f_n(x) - f(x)| = \sup_{x \ge 0} |f_n(x)| = \sup_{x \ge 0} \left| f\left(\frac{1}{n}\right) \right| = \frac{n^{\alpha - 1}}{e}.$$

因此一致收敛当且仅当 $\alpha<1$. 同时 $\int_0^1 f_n=n^{a-2} \left(1-(n+1)\mathrm{e}^{-n}\right) \to 0$

绝对收敛,一致收敛但不绝对一致收敛的例子

考虑在 [0,1] 上的函数族 $\{f_n(x) = \sum_{j=1}^n (-x)^j (1-x)\}_{n\geqslant 1}$.

先证明绝对收敛,直接取绝对值:

$$\sum_{j=1}^{n} |(-x)^{j} (1-x)| = \sum_{j=1}^{n} x^{j} (1-x) = x - x^{n+1}.$$

在[0,1)上处处收敛到x,在1处收敛到0;不绝对一致收敛显然,如果绝

最后证明不取绝对值时一致收敛: 任给 $x \in [0,1]$, 可以证明其收敛到 $f(x) = \frac{(x-1)x}{1+x}$. 为了证明一致收敛, 估算余项:

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \left| \sum_{j \geqslant n+1} (-x)^j (1-x) \right| = \sup_{x \in [0,1]} \frac{(1-x)x^{n+1}}{x+1}$$
后者 $\leq \sup_{x \in [0,1]} (1-x)x^{n+1}$,其在 $x = \frac{n+1}{n+2}$ 时取到最大值,代入得到

$$\frac{\left(\frac{n+1}{n+2}\right)^{n+1}}{n+2} \approx \frac{1}{\mathrm{e}n} \to 0.$$

不定平点果,那么
$$\sum_{n\geqslant 1}\frac{\sin(2\pi nx)}{n}~\dot{\mathbf{E}}\left[a,b\right]\mathbf{L}\mathbf{-}\mathbf{\mathbf{Y}}\mathbf{\mathbf{V}}\mathbf{\mathbf{\mathbf{Y}}}\iff \mathbb{Z}\cap\left[a,b\right]=\varnothing.$$

一致有界, 因此由 Dirchilet 判别法就可以得到一致收敛. 反之, 若 $0 \in [a,b]$, 不妨设 a=0, 考虑

$$\sum_{n=N}^{2N} \frac{\sin(2\pi n x_N)}{n}, \quad x_N = \frac{\pi}{8N}$$

$$\sum_{n=N}^{2N} \frac{\sin(2\pi n x_N)}{n}, \quad x_N = \frac{\pi}{8N}$$
那么 $2\pi n x_N \in (\pi/4, \pi/2)$,因此,此时总有
$$\sum_{n=N}^{2N} \frac{\sin(2\pi n x_N)}{n} \geqslant \sin\left(\frac{\pi}{4}\right) \sum_{n=N}^{2N} \frac{1}{n} \approx \frac{\sqrt{2} \log 2}{2}.$$

2.4幂级数

定义 $^{(2.4.a)}$ 幂级数 令 $\{a_n\}_{n\geqslant 0}$ 是序列,则称 $\sum_{n\geqslant 0} a_n (x-x_0)^n$ 是幂级数.

定理 $^{(2.4.b)}$ Cauthy-Hadamard 定理 令 $\frac{1}{R}=\overline{\lim}_{n\to\infty}|a_n|^{1/n},$ 则 $\sum_{n\geqslant 0}a_n(x-x_0)^n$ 在 $B_R(x_0)$ 上内闭一致收

敛, 且若 $|x-x_0| > R$, 则 $\sum_{n \geqslant 0} a_n (x-x_0)^n$ 发散.

命题^(2.4.3) 幂级数的基本性质 令幂级数 $f(x) = \sum_{n \geq 0} a_n (x - x_0)^n$ 的收敛半径为 $R_0 > 0$,则: 1. 任给 $[\alpha, \beta] \subset B_{R_0}(x_0)$,均有

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x = \sum_{n \geqslant 0} \frac{a_n}{n+1} \left((b-x_0)^{n+1} - (a-x_0)^{n+1} \right).$$

2.
$$f \in \mathcal{C}^{\infty}(B_{R_0}(x_0))$$
, 且
$$f^{(k)}(x) = \sum_{n \geq k} \frac{n! \, a_n}{(n-k+1)!} (x-x_0)^{n-k}$$
 收敛半径为 R_0 , 特别地, $f^{(k)}(x_0) = k! \, a_k$;
3. 令 $x_1 \in B_{R_0}(x_0)$, 则存在 $\{b_n\}_{n \geq 1}$ 满足

$$f(x) = \sum_{n \ge 0} a_n (x - x_1)^n.$$

在 $B_{R_1}(x_1) \cap B_{R_0}(x_0)$ 上成立, 且 $|R_0 - R_1| \leq |x_0 - x_1|$.

定理 $^{(2.4.d)}$ Abel 定理 令幂级数 $\sum_{n\geqslant 0}a_nx^n$ 在 (-R,R) 上收敛,若 $\sum_{n\geqslant 0}a_nR^n$ 收敛,那么 $\lim_{n\geqslant 0}\left(\sum_{n\geqslant 0}a_nx^n\right)-\sum_{n\geqslant 0}a_nR^n$

$$\lim_{x\to R^-}\Bigl(\sum_{n\geqslant 0}a_nx^n\Bigr)=\sum_{n\geqslant 0}a_nR^n.$$

幂级数的计算 加减法则是显然的,主要注意下乘积法则:

令 $f_a(x)=\sum_{n\geqslant 0}a_n(x-x_0)^n$ 和 $f_b(x)=\sum_{n\geqslant 0}b_n(x-x_0)^n$ 均是幂级数,且收敛半径为 R_a 和 R_b ,那么

$$f_a(x)f_b(x) = \sum_{n \ge 0} \left[\sum_{k=0}^n a_k b_{n-k} \right] (x - x_0)^n = \sum_{n \ge 0} (a * b)_n (x - x_0)^n.$$

且收敛十径为 R_a 和 R_b , 那么 $f_a(x)f_b(x) = \sum_{n\geqslant 0} \left[\sum_{k=0}^n a_k b_{n-k}\right] (x-x_0)^n = \sum_{n\geqslant 0} (a*b)_n (x-x_0)^n.$ 在 $|x-x_0| < \min(R_a,R_b)$ 上成立. 由此可以得到除法法则,倘若 $\sum_{n\geqslant 0} a_n (x-x_0)^n$ 在 x_0 邻域内收敛,且 $a_0 \neq 0$,那么

$$\frac{1}{\sum_{n\geq 0} a_n (x-x_0)^n} = \sum_{n\geq 0} b_n (x-x_0)^n.$$

$$\frac{1}{\sum_{n\geqslant 0}a_n(x-x_0)^n} = \sum_{n\geqslant 0}b_n(x-x_0)^n.$$
 在 x_0 邻域内存在,且
$$b_0 = \frac{1}{a_0}, \quad b_1 = \frac{-a_1b_0}{a_0}, \quad b_n = -\frac{1}{a_0}\sum_{k=0}^{n-1}b_ka_{n-k}.$$

由于 2.4.b, 其在收敛半径内绝对收敛, 因此利用 2.2.f 即可.

$$\sum_{n\geq 0} \frac{2n+1}{2^{n+1}} x^{2n} = \sum_{n\geq 0} \left(n + \frac{1}{2}\right) y^n$$

例子(241) $\bar{x} \sum_{n \geqslant 0} \frac{2n+1}{2^{n+1}} x^{2n} \text{ 的和函数和收敛域.}$ 令 $y = x^2/2$,则 $\sum_{n \geqslant 0} \frac{2n+1}{2^{n+1}} x^{2n} = \sum_{n \geqslant 0} \left(n + \frac{1}{2}\right) y^n$ 依 2.4.b, 收敛半径是 1, 故在 |y| < 1 时自然收敛,同时 $y = \pm 1$ 时易见不收敛,又 $|y| < 1 \iff x \in (-\sqrt{2},\sqrt{2})$, 故收敛域为 $(-\sqrt{2},\sqrt{2})$.接下来计算和函数,考虑 $\sum_{n \geqslant 0} (n + \frac{1}{2}) y^n = \sum_{n \geqslant 1} n y^n + \frac{1}{2} \sum_{n \geqslant 0} y^n$. 后

者为
$$\frac{1}{2(1-y)}$$
, 考虑前者:
$$\sum_{n\geqslant 1} ny^n = y \sum_{n\geqslant 1} (y^n)' = y \left(\sum_{n\geqslant 1} y^n\right)' = y \left(\frac{y}{1-y}\right)' = \frac{y}{(y-1)^2}.$$
 因此结果为 $\frac{1}{2(1-y)} + \frac{y}{(y-1)^2} = \frac{y+1}{2(y-1)^2}$, 代入 $y = x^2/2$ 得到
$$\sum_{n\geqslant 1} \frac{2n+1}{2n+1} x^{2n} = \frac{x^2+2}{(x^2-2)^2}.$$

因此结果为
$$\frac{1}{2(1-y)} + \frac{y}{(y-1)^2} = \frac{y+1}{2(y-1)^2}$$
, 代入 $y = x^2/2$ 得到

$$\sum_{n\geqslant 0} \frac{2n+1}{2^{n+1}} x^{2n} = \frac{x^2+2}{(x^2-2)^2}.$$

Taylor 级数与实解析函数 2.5

定义 $^{(2.5.a)}$ Taylor 级数 $\Leftrightarrow f \in \mathscr{C}^{\infty}(\mathbb{I}), \, x_0 \in \mathbb{I}, \, 则称 \, \tau_{x_0} f(x) = \sum_{n\geqslant 0} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \, 是 \, f \, \text{在} \, x_0$ 处的 Taylor 级数, 记为

$$f(x) \sim \sum_{n \geqslant 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

-个 Taylor 级数与自身不相等的<u>函数</u>

令 $f(x) = \exp(-\frac{1}{x^2}), x = 0$ 时令 f = 0, 则 $f^{(k)}(x)$ 均为 $P(\frac{1}{x}) \exp(-\frac{1}{x^2})$ 之形, 归纳可证得 $f^{(k)}(0) \equiv 0$ 对所有 k 成立. 因此除去 0 以外, $\tau_0 f$ 和 f 恒不相等.

令
$$f \in \mathscr{C}^{\infty}(\mathbb{I})$$
, 称其在 x_0 处 (\mathfrak{F}) 解析, 若在 x_0 某邻域内下式成立:
$$f(x) = \sum_{n \geqslant 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$
 己为 $f \in \mathscr{C}^{\omega}(x_0)$. 任给 $E \subset \mathbb{I}$, 定义 $\mathscr{C}^{\omega}(E) = \bigcap_{x \in E} \mathscr{C}^{\omega}(x)$.

$$\forall n \geqslant 0, \quad \sup_{x \in J} |f^{(n)}(x)| \leqslant AC^n n!.$$
 (3)

$$\sup_{n\geqslant 1, x\in J} \left| \frac{f^{(n)}(x)}{n!} \right|^{1/n} < \infty.$$

假设 $f \in \mathcal{C}^{\omega}(x_0)$, 也即

$$f(x) = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

在 $B_{\delta}(x_0)$ 内成立,那么依赖 Cauthy-Hadamard 公式: 2.4.b, 可以得到

$$\overline{\lim_{n \to \infty}} \left| \frac{f^{(n)}(x_0)}{n!} \right|^{1/n} \leqslant \frac{1}{\delta}.$$

也即是 $\left|\frac{f^{(n)}(x_0)}{n!}\right| \leq C_{\varepsilon}\left(\frac{\delta}{1+\varepsilon}\right)^{-n}$, 现在利用 2.4.3, 我们可以得到若 $x \in B_{\delta}(x_0)$, 则

$$f^{(k)}(x) = \sum_{n \ge k} \frac{f^{(n)}(x_0)}{(n-k+1)!} (x-x_0)^{n-k}$$

因此若 $x \in B_{\delta}(x_0)$, 存在 $\varepsilon > 0$ 满足下式:

$$|f^{(k)}(x)| \leq \sum_{n \geq k} \left| \frac{f^{(n)}(x_0)}{(n-k+1)!} \right| \cdot |x-x_0|^{n-k}$$

$$\leq C_{\varepsilon} \sum_{n \geq k} \frac{n!(\delta/(1+\varepsilon))^{-n}}{(n-k+1)!} \cdot |x-x_0|^{n-k}$$

$$\leq C_{\varepsilon} \left(\frac{1+\varepsilon}{\delta}\right)^k \sum_{n \geq k} \frac{n!}{(n-k+1)!} \cdot \left(\frac{(1+\varepsilon)|x-x_0|}{\delta}\right)^{n-k}$$

$$= C_{\varepsilon} \left(\frac{1+\varepsilon}{\delta}\right)^k \frac{k!}{\left(1-\frac{(1+\varepsilon)|x-x_0|}{\delta}\right)^{k+1}}$$

$$= C_{\varepsilon} \left(\frac{1+\varepsilon}{\delta}\right)^k \frac{k!}{\left(\delta-(1+\varepsilon)|x-x_0|\right)^{k+1}}$$

$$= \frac{C_{\varepsilon}}{\delta-(1+\varepsilon)|x-x_0|} \cdot k! \left(\frac{1+\varepsilon}{\delta-(1+\varepsilon)|x-x_0|}\right)^k$$

倘若 J 是 $B_{\delta}(x_0)$ 的闭子区间, 那么 $\sup_{x \in J} |x - x_0| < \delta$, 因此

$$\frac{|f^{(k)}(x)|}{k!} \leqslant C_{\varepsilon,J} \left(\frac{1+\varepsilon}{\delta - (1+\varepsilon) \sup_{x \in J} |x - x_0|} \right)^k \leqslant C_J \delta_J^{-k}.$$

因此对任意 $B_{\delta}(x_0)$ 内的闭区间均有 (3) 成立.

现在假设(3)成立,依赖 Taylor 定理:

$$f(x) = f(x_0) + \sum_{n=1}^{k} \frac{f^{(n)}(x_0)}{n!} + \frac{f^{(k+1)}(\xi)}{(k+1)!} (x - x_0)^{k+1}.$$

$$\left| \frac{f^{(k+1)}(\xi)}{(k+1)!} (x - x_0)^{k+1} \right| \leqslant AC^{k+1} |x - x_0|^{k+1} \xrightarrow{k \to \infty} 0.$$

因此证得 f 在 x_0 邻域内解析.

定理^(2.5.e) 初等函数的 Taylor 展开 初等函数在 Taylor 级数的收敛域内部均是解析的.

1.
$$\frac{1}{1-x} = \sum_{n \geqslant 0} x^n, |x| < 1;$$

2.
$$e^x = \sum_{n \ge 0} \frac{x^n}{n!}, x \in \mathbb{R};$$

3.
$$\sin x = \sum_{n\geqslant 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}$$

4.
$$\cos x = \sum_{n \geqslant 0} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbb{R};$$

1.
$$\frac{1}{1-x} = \sum_{n \geqslant 0} x^n, |x| < 1;$$

2. $e^x = \sum_{n \geqslant 0} \frac{x^n}{n!}, x \in \mathbb{R};$
3. $\sin x = \sum_{n \geqslant 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R};$
4. $\cos x = \sum_{n \geqslant 0} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbb{R};$
5. $\ln(1+x) = \sum_{n \geqslant 1} \frac{(-1)^{n-1}x^n}{n}, x \in (-1,1];$
6. $(1+x)^{\alpha} = \sum_{n \geqslant 0} {\alpha \choose n} x^n, |x| < 1.$

6.
$$(1+x)^{\alpha} = \sum_{n>0} {\binom{\alpha}{n}} x^n, |x| < 1.$$

§III 重积分

我们不处理任何关于 Riemann 可积性的命题.

$$\mathbb{1}_E(x) = \begin{cases} 1, & x \in E; \\ 0, & x \notin E. \end{cases}$$

定义(3.0.b) 上(下) Riemann 积分 令 $I = \prod_{j=1}^n [a_j, b_j]$ 是矩形, 定义其体积 $\mathfrak{m}(I) = \prod_{j=1}^n (b_j - a_j)$, 给定 $f \colon D \to \mathbb{R}$, 其中 f, D 有界, 定义上 (Γ) Riemann 积分为

同理, 定义
$$\int_D f = \sup \Big\{ \sum_{j=1}^N a_j \mathfrak{m}(I_j) \, ; \, I_j \, 均为矩形, \, \forall x \in D, \, \sum_{j=1}^N a_j \mathbb{1}_{I_j}(x) \leqslant f(x) \, \Big\}.$$

若两者相等,则定义 $\int_D f = \bar{\int}_D f = \underline{\int}_D f$, 且称 f Riemann 可积.

关于 Riemann 可积性, 有以下著名的定理:

定理 $^{(3.0.c)}$ Lebesgue 定理 $\diamondsuit \mathcal{D}_f \not = f \text{ fon T. in } f: D \to \mathbb{R} \text{ Riemann of } f \text{ and } f \text{ Lebesgue } \mathbb{Z}_f$ Lebesgue 零测,也即任给 $\varepsilon > 0$,存在矩形 $\{I_j\}_{j \geqslant 1}$,满足

$$\mathfrak{D}_f \subset \bigcup_{j\geqslant 1} I_j, \quad \sum_{j\geqslant 1} I_j < \varepsilon.$$

最后, 我们来讨论高维情形的广义 Riemann 积分, 为了方便, 我们仅仅讨 论 D 是一个开集上的情形.

定义 $^{(3.0.d)}$ 广义 Riemann 积分 给定函数 $f\colon D\to\mathbb{R}$, 满足任给闭矩形 $I\subset D$, $f\mathbb{1}_I$ 均是 Riemann 可积的, 那么令 $f_+=\max(f,0)$, $f_-=-\max(-f,0)$, 定义

$$\int_D f_+ = \sup \Big\{ \int_K f_+ \, ; \, K \subset D, \, \text{且是由有限多个矩形拼凑出的集合} \Big\}.$$

$$f_- \, \, \text{亦然}, \, \text{称} \, f \, \, \text{广义 Riemann 可积}, \, \text{当且仅当} \, \int_D f_+ \, , \, \int_D f_- \, \, \text{均有限}, \, \text{此时}$$

$$\int_{D} |f| < \infty.$$

定理 $^{(3.0.e)}$ 有界收敛定理 当 D 有界, $f\colon D\to\mathbb{R}$ 是 Riemann 可积的,那么 3.0.b 和 3.0.d 得到的结果相等

同时, 我们有如下所述的 Fubini 定理:

定理 $^{(3.0.f)}$ Fubini 定理 > X, Y 分别是 \mathbb{R}^n 和 \mathbb{R}^m 中开矩形, 且函数 $f \colon X \times Y$ 是广义 Riemann

可积的, 那么若广义积分任意 $y \in Y$, $\int_X f(x,y) \, \mathrm{d}x$, $\int_Y \int_X f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ 存在, 则

 $\int_{Y} \int_{X} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_{X \times Y} f.$

上式均指广义 Riemann 积分.

以下变量替换定理是高数重积分计算中最需要掌握的定理.

定理^(3.0.g) 变量替换定理

令X,Y均是开集,且 $f\colon X\to\mathbb{R}$ 是广义Riemann可积函数,令 $\phi\colon Y\to X$ 是 \mathscr{C}^1 的单射,其逆也是 \mathscr{C}^1 的,那么

$$\int_X f(x) dx = \int_Y f(\phi(y)) \times \left| \det(\nabla \phi(y)) \right| dy.$$

亦或是, $\mathrm{d}x = \left| \frac{\partial x}{\partial y} \right| \mathrm{d}y$.

定理^(3.0.h) Catalan 定理

令 $f: \mathbb{R}^n \to \mathbb{R}$ 是连续函数, 且满足

- 1. $\forall y \in \mathbb{R}, f^{-1}(y)$ 是 n-1 维曲面或空集;
- **2.** 定义 $S(y) = f^{-1}(y)$ 的 n-1 维体积,则 S(y) 可微,且导函数 Riemann 可积;

那么

$$\int_{f^{-1}((a,b))} f = \int_a^b y S'(y) \, \mathrm{d}y.$$

命题^(3.0.9) Fubini 定理的推论: 水平集上的积分

假设 $X \subset \mathbb{R}^n$, 令 $f: \mathbb{R}^m \to \mathbb{R}$, m < n, 那么

$$\int_X f(x)\,\mathrm{d}(x,y)=\int_{\mathbb{R}^m} S(f(x))f(x)\,\mathrm{d}x$$
 其中 $\forall t,$ 有 $S(t)$ 是以下集合的 $n-m$ 维体积:
$$\{\,(x,y)\in X\,;\,f(x)=t\,\}.$$

$$\{(x,y) \in X ; f(x) = t \}.$$

上面几个定理的证明是不需要关注的.事实上,在某种意义上,上面的这些 定理属于几何测度论的范畴.

$$\int_{\Omega} z^2 d(x, y, z),$$

$$\int_{\Omega} z^2 d(x, y, z) = \int_{-\infty}^{\infty} z^2 |S_{z^2} \cap \Omega| dz$$

水积分
$$\int_{\Omega} z^2 \, \mathrm{d}(x,y,z),$$
 其中 Ω 为两个球 $x^2 + y^2 + z^2 \leqslant R^2, \, x^2 + y^2 + z^2 \leqslant 2Rz$ 的公共部分.
 依赖 Fubini 定理, 或者 $3.0.9$, 我们有
$$\int_{\Omega} z^2 \, \mathrm{d}(x,y,z) = \int_{-\infty}^{\infty} z^2 |S_{z^2} \cap \Omega| \, \mathrm{d}z$$
 当 $z^2 = t$ 时, 我们有
$$S(t) = \begin{cases} (2R\sqrt{t} - t)\pi, & 0 \leqslant t < R^2/4; \\ (R^2 - t)\pi, & R^2/4 \leqslant t < R^2; \\ 0, & \text{其余情形.} \end{cases}$$

因此
$$\int_{\mathbb{R}} z^2 S(z^2) \, \mathrm{d}z = \pi \left[\int_0^{R/2} z^2 (2Rz - z^2) + \int_{R/2}^R z^2 (R^2 - z^2) \right] \, \mathrm{d}z = \frac{59\pi R^5}{480}.$$

3.1 二重积分与三重积分

定义(3.1.a) 极坐标, 球坐标, 柱坐标变换 1. 二重积分的极坐标变换.

 $x = ar\cos\theta, \ y = br\sin\theta, \ \mathbb{M} \ \left| rac{\partial(x,y)}{\partial(r,\theta)} \right| \ = \ abr, \ 其中 \ r \ \in \ (0,\infty),$ $\theta \in [0, 2\pi);$

- 2. 三重积分的柱坐标变换. $x = ar \cos \theta, y = br \sin \theta, z$ 不变,则 $\big|\tfrac{\partial(x,y,z)}{\partial(r,\theta,z)}\big|=abr, \, \sharp \ \forall \ r\in(0,\infty), \, \theta\in[0,2\pi);$
- 3. 三重积分的球坐标变换.

$$\begin{cases} x = r \sin(\psi) \cos(\theta); \\ y = r \sin(\psi) \sin(\theta); \\ z = r \cos(\psi); \end{cases} \left| \frac{\partial(x, y, z)}{\partial(r, \theta, \psi)} \right| = r^2 \sin(\psi).$$

其中 $r \in (0, \infty)$, $\theta \in [0, 2\pi)$, $\psi \in [0, \pi)$.

例子 $^{(3.1.b)}$ 一个依赖对称性的例子 求球体 $x^2+y^2+z^2\leqslant a^2$ 和圆柱体 $x^2+y^2\leqslant ax\;(a>0)$ 的公共部分所成的空间区域的体积 V.

区域 Ω 关于y, z对称,因此不妨假设 $y, z \ge 0$:

$$V = 4 \iint_{x^2 + y^2 \leqslant ax, y \geqslant 0} \sqrt{a^2 - x^2 - y^2} \, dx \, dy$$

$$= 4 \int_0^{\pi/2} d\theta \int_0^{a \cos \theta} r \sqrt{a^2 - r^2} \, dr$$

$$= -\int_0^{\pi/2} \frac{4}{3} (a^2 - r^2)^{3/2} \Big|_0^{a \cos \theta} \, d\theta$$

$$= -\frac{4}{3} \int_0^{\pi/2} \left[(a^2 \sin^2 \theta)^{3/2} - a^3 \right] d\theta$$

$$= \frac{4a^3}{3} \int_0^{\pi/2} (1 - \sin^3 \theta) \, d\theta = \frac{(3\pi - 4)a^3}{9}.$$

计算
$$I = \iint_{y \geqslant 0, y \leqslant x, x+y \leqslant 1} \frac{(x+y)\log\left(1+\frac{y}{x}\right)}{\sqrt{2-x-y}} \, \mathrm{d}x \, \mathrm{d}y.$$
 令 $u = y/x, \ v = x+y,$ 那 么
$$\left|\frac{\partial(x,y)}{\partial(u,v)}\right| = \frac{v}{(1+u)^2}.$$
 其中 $u, v \in [0,1].$ 那么

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{v}{(1+u)^2}.$$

$$I = \iint_{[0,1]^2} \frac{uv \log(1+u)}{(1+u)^2 \sqrt{2-v}} du dv.$$

$$= \int_0^1 \frac{u \log(1+u)}{(1+u)^2} du \times \int_0^1 \frac{v}{\sqrt{2-v}} dv.$$

$$= I_1 \times I_2.$$

$$I_1 = \int_0^1 \frac{u \log(1+u)}{(1+u)^2} du$$

$$= -\int_0^1 u \log(1+u) d\left(\frac{1}{1+u}\right)$$

$$= -\frac{u \log(1+u)}{1+u} \Big|_0^1 + \int_0^1 \frac{u}{(1+u)^2} + \frac{\log(1+u)}{1+u} du$$

$$= -\frac{\log 2}{2} + \int_0^1 \frac{1}{1+u} - \frac{1}{(1+u)^2} + \frac{\log(1+u)}{1+u} du$$

$$= \frac{\log 2}{2} - \frac{1}{2} + \frac{\log^2 2}{2}.$$

$$I_2 = \int_0^1 \frac{v}{\sqrt{2-v}} dv = \int_1^2 \frac{2-y}{\sqrt{y}} dy = \frac{8\sqrt{2}-10}{3}.$$

故结果是
$$\frac{4\sqrt{2}-5}{3}(\log^2 2 + \log 2 - 1).$$

计算:
$$\iiint_V \exp\left(\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^{1/2}\right) \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z,$$

$$V 由 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 围成.$$

$$V$$
 由 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 围成.

利用广义极坐标变换, $x=ar\cos(\theta)\cos(\psi)$, $y=br\sin(\theta)\cos(\psi)$, $z=cr\sin(\psi)$, 那么 $J=abcr^2\sin\psi$, 那么换元后的区域就是 $\Delta=[0,1]_r\times[0,\pi]_\psi\times[0,2\pi]_\theta$:

$$\iiint_{V} \exp\left(\left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}}\right)^{1/2}\right) dx dy dz$$

$$= \iiint_{\Delta} e^{r} \left(abcr^{2} \sin \varphi\right) dr d\theta d\varphi$$

$$= abc \int_{0}^{2\pi} d\theta \times \int_{0}^{\pi} \sin \varphi d\varphi \times \int_{0}^{1} r^{2} e^{r} dr$$

$$= 4\pi (e - 2)abc.$$

曲线和曲面积分 **§IV**

本节中, 我们不讨论函数的 Riemann 可积性问题, 因此相应的描述会被省 略.

4.1 线积分

第一型线积分 我们总是假设曲线的参数化是逐段连续可微的,曲线定义如下:

定义 $^{(4.1.a)}$ <mark>曲线,第一型线积分</mark> \mathbb{R}^n 中的一条曲线 γ 定义为连续函数 $f\colon D\to\mathbb{R}^n$ 的像,其中D是某个区

间,此时f称为 γ 的参数化.倘若f连续可微,那么定义

$$\int_{\gamma} g \, \mathrm{d}s = \int_{D} g \, \mathrm{d}f \coloneqq \int_{D} g(x) |\nabla f(x)| \, \mathrm{d}x.$$

如果不讨论可求长曲线上的积分的话,基本方法就是将参数化写出来,然 后积分. 亦或是利用对称性:

$$\int_{\Gamma} x^{4/3} + y^{4/3} \, \mathrm{d}s$$

$$4\int_{\Gamma} \int_{x} \int_{x>0} (x^{4/3} + y^{4/3}) \, \mathrm{d}s$$

计算 $\int_{\Gamma} x^{4/3} + y^{4/3} \, \mathrm{d}s$ 其中 Γ 为星形线 $x^{2/3} + y^{2/3} = a^{2/3}$. 由对称性, 上式即为 $4 \int_{\Gamma, x, y > 0} (x^{4/3} + y^{4/3}) \, \mathrm{d}s$ 令 $x = a \cos^3 t, \ y = a \sin^3 t, \ \sharp \, \forall \ t \in (0, \pi/2). \ \# \ \Delta$ $\nabla(x, y)(t) = \left(-3a \sin t \cos^2 t, 3a \sin^2 t \cos t\right)$

$$\nabla(x,y)(t) = \left(-3a\sin t \cos^2 t, 3a\sin^2 t \cos t\right)$$

因此

$$|\nabla(x,y)(t)| = 3a(\sin^2 t \cos^4 t + \sin^4 t \cos^2 t)^{1/2} = 3a\sin t \cos t.$$

$$4 \int_{\Gamma,x,y>0} x^{4/3} + y^{4/3} ds = 12a^{7/3} \int_0^{\pi/2} (\cos^4 t + \sin^4 t) \sin t \cos t dt$$
$$= 4a^{7/3}.$$

可以利用极坐标等方式来寻求参数化:

例子(4.1.c)

$$\int_{\Gamma} |y| \, \mathrm{d}s$$

$$r^2 = a^2(\cos^2\theta - \sin^2\theta) = a^2\cos 2\theta.$$

因此须有 $|\theta| < \pi/4$ 亦或是 $|\theta - \pi| < \pi/4$. 由于对称性, 只需计算 $0 < \pi/4$. $\theta < \pi/4$ 的情形. 此时有 $x = r\cos\theta = a\sqrt{\cos 2\theta}\cos\theta$, $y = r\sin\theta =$

$$\nabla(x,y)(\theta) = \left(-\frac{a\sin 3\theta}{\sqrt{\cos 2\theta}}, \frac{a\cos 3\theta}{\sqrt{\cos 2\theta}}\right), \quad |\nabla(x,y)(\theta)| = \frac{a}{\sqrt{\cos 2\theta}}.$$

$$\int_{\Gamma} |y| \, \mathrm{d}s = 4 \int_{\Gamma, x, y > 0} |y| \, \mathrm{d}s = 4 \int_{0}^{\pi/4} a^{2} \sin \theta \, \mathrm{d}\theta = (4 - 2\sqrt{2})a^{2}.$$

第二型线积分 曲线有两个方向, 假设紧曲线 γ 的端点是 x, y, 若 $f: [0,1] \rightarrow$ \mathbb{R}^n 是 γ 的参数化, 那么 f(0) = x, f(0) = y 代表两种参数化, 这被称为曲线的 定向, 当曲线无端点时, 亦可以定义其定向.

令 $g: \Gamma \to \mathbb{R}^n$ 是一个 Riemann 可积函数, 对第二型线积分定义为: $\int \mathbf{a} \vec{d}_{o} = \int_{-a}^{b} \mathbf{a} \cdot \mathbf{b} d\mathbf{a} \cdot \mathbf{b}$

$$\int_{\Gamma} \boldsymbol{g} \, \mathrm{d}s \coloneqq \int_{a}^{b} \langle \boldsymbol{g}(x), \nabla \boldsymbol{f}(x) \rangle \, \mathrm{d}x$$

我们暂时用 ds 来强调这是第二型线积分,即使一般情况下需要根据实

际情形判断. 若 $\mathbf{g} = (g_1, \ldots, g_n)$, 则将上式记为

$$\int_{\Gamma} g_1 \, \mathrm{d} x_1 + \dots + g_n \, \mathrm{d} x_n.$$

同时,定义 $\angle(e_j, f) = \alpha_j, \cos \alpha_j$ 称为方向余弦.则有

$$\frac{f_j}{|\nabla \mathbf{f}|} = \cos \alpha_j, \quad \cos \alpha_j \, \mathrm{d}s = \mathrm{d}x_j.$$

令
$$D$$
 是 \mathbb{R}^2 中的二维区域, 其 Γ 是光滑的, 那么假设定向均正:
$$\oint_{\Gamma} F_1 \,\mathrm{d}x + F_2 \,\mathrm{d}y = \int_{D} \partial_x F_2 - \partial_y F_1$$

其中 F_1 , F_2 在D 内连续可微. 我们会在面积分处详细介绍此定理.

倘若 $F \colon \mathbb{R}^2 \to \mathbb{R}$, Γ 具有光滑性, 且是 D 的边界. 求

$$\oint_{\Gamma} \frac{\partial F}{\partial \boldsymbol{n}_{\mathbf{v}}} \, \mathrm{d}s$$

$$\begin{pmatrix} \cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\ \sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right) \end{pmatrix} \cdot \frac{\nabla \boldsymbol{f}}{|\nabla \boldsymbol{f}|} = \begin{pmatrix} f_2'/|\nabla \boldsymbol{f}| \\ -f_1'/|\nabla \boldsymbol{f}| \end{pmatrix} = \begin{pmatrix} \cos\alpha_2 \\ -\cos\alpha_1 \end{pmatrix}$$

然后依 Green 定理:

$$\oint_{\Gamma} \frac{\partial F}{\partial \mathbf{n}_{v}} ds = \oint_{\Gamma} \left(\frac{\partial F}{\partial x} \cos \alpha_{2} - \frac{\partial F}{\partial y} \cos \alpha_{1} \right) ds$$

$$= \oint_{\Gamma} -\frac{\partial F}{\partial y} dx + \frac{\partial F}{\partial x} dy$$

$$= \iint_{D} \Delta F dx dy.$$

例子(4.1.g)

计算积分

$$\oint_{\Gamma} \frac{\cos \angle(\boldsymbol{r}, \boldsymbol{n}_{\mathrm{v}})}{r} \, \mathrm{d}s,$$

其中 Γ 为 \mathbb{R}^2 中光滑的简单闭曲线, $r=(x,y), r=|r|=\sqrt{x^2+y^2}, n_v$ 是 Γ 上的单位外法向量. 假设 $(0,0)\in\Gamma$.

$$\cos \angle (\boldsymbol{r}, \boldsymbol{n}_{\mathrm{v}}) = \frac{\boldsymbol{r} \cdot \boldsymbol{n}_{\mathrm{v}}}{r} = \frac{1}{r} (x \cos \alpha_2 - y \cos \alpha_1).$$

因此

$$\oint_{\Gamma} \frac{\cos \angle (\boldsymbol{r}, \boldsymbol{n}_{\mathrm{v}})}{r} \, \mathrm{d}s = \oint_{\Gamma} \frac{1}{r^2} (x \cos \alpha_2 - y \cos \alpha_1) \, \mathrm{d}s = \oint_{\Gamma} \frac{x}{r^2} \, \mathrm{d}y - \frac{y}{r^2} \, \mathrm{d}x.$$

 T_{Γ} T^{2} T^{2} 1. 令 D 是 Γ 内部, 倘若 $\frac{x}{r^{2}}$, $\frac{y}{r^{2}}$ 在 D 内连续可微, 即 $(0,0) \notin D$, 则依赖 Green 公式:

$$\oint_{\Gamma} \frac{x}{r^2} dy - \frac{y}{r^2} dx = \iint_{D} \partial_y \left(\frac{y}{r^2} \right) + \partial_x \left(\frac{x}{r^2} \right) = 0.$$

2. 倘若 $(0,0) \in D$,考虑令分母的等高线 r = ε,记该等高线为 $\Gamma_ε$,那么

$$\oint_{\Gamma} = \oint_{\Gamma - \Gamma_{\varepsilon}} + \int_{\Gamma_{\varepsilon}}$$

前者由 Green 定理得到 0, 只需计算后者:

$$\int_{\Gamma_{\varepsilon}} \frac{x}{r^2} \, \mathrm{d}y - \frac{y}{r^2} \, \mathrm{d}x = 2\pi.$$

定理(4.1.h)

由逐段光滑的简单曲线 Γ 所界的面积S可用曲线积分表示为

$$S = \oint_{\Gamma} x \, \mathrm{d}y = -\oint_{C} y \, \mathrm{d}x = \frac{1}{2} \oint_{C} x \, \mathrm{d}y - y \, \mathrm{d}x,$$

其中曲线的正向为逆时针方向.

定理(4.1.i) 单连通区域的刻画

对单连通区域 D, 以下条件等价:

- ∂_xF₂ ∂_yF₁ ≡ 0;
 ∮_ΓF₁ dx + F₂ dy 对所有闭合 Γ ⊂ D 成立;
 ∫_ΓF₁ dx + F₂ dy 的值仅与 Γ 端点有关;
 存在 ψ: D → ℝ 满足 dψ = F₁ dx + F₂ dy.

4.2 面积分

我们不打算给出曲面的定义.

第一型面积分 第一型面积分的难点主要在于曲面难以描述. 我们在此引入 两个关于余面积公式的推论,至于完整的余面积公式我们不做详述.

定理^(4,2,a) 水平集上的积分, 余面积公式的推论 令 $H: \mathbb{R}^3 \to \mathbb{R}$ 连续可微, 且导数恒不为 0, 那么由于隐函数定理, $S=\{(x,y,z); H(x,y,z)=0\}$ 是一个曲面, 则

$$\int_S f \,\mathrm{d}S = \frac{\mathrm{d}}{\mathrm{d}t} \Bigl(\int_{H>t} f |\nabla H| \,\mathrm{d}S \Bigr)_{t=0}.$$

定理^(4.2.b) 参数化曲面上的积分, 余面积公式的推论

 $\diamondsuit S = \{ f(u,v); (u,v) \in D \subset \mathbb{R}^2 \},$ 那么

$$\int_{S} g \, \mathrm{d}S = \int_{D} (g \circ \mathbf{f}) J_{\mathbf{f}} \, \mathrm{d}(u, v).$$

其中 $J_{\boldsymbol{f}} = \det \left((\nabla \boldsymbol{f})^{\top} (\nabla \boldsymbol{f}) \right)^{1/2}$. 计算可以得到:

$$J_{m{f}} = \left(|
abla_u m{f}|^2 |
abla_v m{f}|^2 - |\langle
abla_u m{f},
abla_v m{f}
angle|^2 \right)^{1/2}$$

例子(4.2.c)

倘若 $S=\left\{\left(x,y,\phi(x,y)\right);\,(x,y)\in D\right\},\,\phi$ 是某个可微函数,那么 $\mathrm{d}S=(1+|\nabla\phi|^2)^{1/2}\,\mathrm{d}(x,y).$

例子(4.2.d)

设 $S \ni z = \sqrt{x^2 + y^2}$ 被 $x^2 + y^2 = 2ax$ 割下的部分, 求

$$I = \iint_{S} (x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2}) dS.$$

在直角坐标系中计算

$$\frac{\partial z}{\partial x} = \frac{x}{z}, \quad \frac{\partial z}{\partial y} = \frac{y}{z},$$

$$\left[1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2\right] (x, y, \sqrt{x^2 + y^2})^{1/2} = \sqrt{2},$$

$$I = \iint_{x^2 + y^2 \le 2ax} \left[x^2 y^2 + \left(x^2 + y^2\right)^2\right] \sqrt{2} \, \mathrm{d}x \, \mathrm{d}y.$$

利用极坐标变换,可以得到

$$I = \sqrt{2} \int_{-\pi/2}^{\pi/2} d\theta \int_{0}^{2a \cos \theta} \left(r^{4} \cos^{2} \theta \sin^{2} \theta + r^{4} \right) r dr$$

$$= \sqrt{2} \int_{-\pi/2}^{\pi/2} \left(\cos^{2} \theta \sin^{2} \theta + 1 \right) \cdot \left(\frac{r^{6} |_{0}^{2a \cos \theta}}{6} \right) d\theta$$

$$= \frac{\sqrt{2}}{6} (2a)^{6} \int_{-\pi/2}^{\pi/2} \cos^{6} \theta \left(\cos^{2} \theta \sin^{2} \theta + 1 \right) d\theta = \frac{29}{8} \sqrt{2\pi} a^{6}.$$

求
$$\iint_S (x+y+z)^2 \, \mathrm{d}S$$
, 其中 S 为单位球面 $S: x^2+y^2+z^2=1$. 利用 $4.2.\mathbf{a}$, 可以得到, 令 $r(x,y,z)=x^2+y^2+z^2$:
$$\int_{r=1} (x+y+z)^2 \, \mathrm{d}S = 2 \times \frac{\mathrm{d}}{\mathrm{d}t} \Big[\int_{r< t} (x+y+z)^2 (x^2+y^2+z^2)^{1/2} \, \mathrm{d}V \Big]_{t=1}.$$

$$\int_{r < t} (x + y + z)^2 (x^2 + y^2 + z^2)^{1/2} dV$$

$$= \int_0^t \int_0^{2\pi} \int_0^{\pi} (r \sin \varphi \cos \theta + r \sin \varphi \sin \theta + r \cos \varphi)^2 r^3 \sin \varphi d\varphi d\theta dr$$

$$= \frac{2\pi t^6}{3}.$$

$$\nabla = \begin{pmatrix} -\sin\varphi\sin\theta & \sin\varphi\cos\theta & 0\\ \cos\varphi\cos\theta & \cos\varphi\sin\theta & -\sin\varphi \end{pmatrix}, \quad J = \sin\varphi.$$

因此只需计算

$$\int_0^{2\pi} \int_0^{\pi} (\sin \varphi (\sin \theta + \cos \theta) + \cos \varphi)^2 \sin \varphi \, d\varphi \, d\theta = 4\pi.$$

第二类面积分 假定 $S \subset \mathbb{R}^3$ 是定向曲面, 今 $n_v(x)$ 是 S 在 x 处的单位法向量, 并且随x变化连续, 令 $f: S \to \mathbb{R}^3$ 是一个 Riemann 可积函数, 定义

定义
$$^{(4.2.f)}$$
 第二类面积分 为方便, 令 $f = (f_x, f_y, f_z)$,则 $\int_S f \, \mathrm{d}S = \int_S \langle f, n_\mathrm{v} \rangle \, \mathrm{d}S$ 在定向确定后,可记为

$$\iint_{S} f_x \, \mathrm{d}y \, \mathrm{d}z + f_y \, \mathrm{d}z \, \mathrm{d}x + f_z \, \mathrm{d}x \, \mathrm{d}y.$$

定理^(4.2.g) 参数化曲面定向的确定
$$\diamondsuit S = \{ \boldsymbol{g}(u,v); (u,v) \in D \subset \mathbb{R}^2 \}, \diamondsuit \boldsymbol{g} = (x,y,z), 则$$

$$J_{yz} = \frac{\partial(y,z)}{\partial(u,v)}, \quad J_{zx} = \frac{\partial(z,x)}{\partial(u,v)}, \quad J_{xy} = \frac{\partial(x,y)}{\partial(u,v)}$$
那么

$$\iint_{S} f_{x} \, \mathrm{d}y \, \mathrm{d}z + f_{y} \, \mathrm{d}z \, \mathrm{d}x + f_{z} \, \mathrm{d}x \, \mathrm{d}y = \iint_{D} f_{x} J_{yz} + f_{y} J_{zx} + f_{z} J_{xy} \, \mathrm{d}u \, \mathrm{d}v.$$

倘若 $\langle (J_{yz}, J_{zx}, J_{xy}), \mathbf{n}_{\mathrm{v}} \rangle \geqslant 0$,则取正,否则取负.

用法向量来处理曲面的定向,切向量来处理并不是完善的,实际上能用

一个向量确定定向的只有1维,n-1维的东西(我们称为"流形").

微分形式与 Stokes 定理 考虑

$$\mathrm{d}f = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} \, \mathrm{d}x_j$$

其中 $f \in \mathcal{C}^1$, 此称为 1-形式, 在此, 我们只将其视为形式上的记号, 而不细究其 定义, 定义双线性结合楔积算子 \land , 满足

$$dx_i \wedge dx_j = -dx_j \wedge dx_i, \quad dx_i \wedge dx_i = 0.$$

称任意一个 $dx_i \wedge dx_j$ 为一个 2-形式, 以此类推

$$\mathrm{d}x_{\sigma(1)} \wedge \cdots \wedge \mathrm{d}x_{\sigma(k)}$$

称为 k-形式, 其中 σ : $[1,n] \to [1,n]$ 是任意 (整数) 双射. 在曲线曲面积分理 论中, 我们只会考虑 1-形式和 2-形式. 给定两个形式 $\omega_1 = \bigwedge_{j=1}^J \mathrm{d} x_{\sigma(j)}, \; \omega_2 = \bigwedge_{k=1}^K \mathrm{d} x_{\varsigma(k)}, 我们考虑如下的楔积:$

$$\omega_1 \wedge \omega_2 := \bigwedge_{j=1}^J \mathrm{d} x_{\sigma(j)} \wedge \bigwedge_{k=1}^K \mathrm{d} x_{\varsigma(k)},$$

利用结合律和反交换律,可以将k-形式化为下标单增的形式,同时若上述d $x_{\sigma(j)}$,d $x_{\varsigma(k)}$ 有下标相同者,则 $\omega_1 \wedge \omega_2 = 0$.

下面, 我们只讨论 1, 2-形式. 给定一个形式, 可以赋予函数系数:

$$\omega_2 = f_x \, dy \wedge dz + f_y \, dx \wedge dz + f_z \, dx \wedge dy, \quad \omega_1 = g_x \, dx + g_y \, dy + g_z \, dz.$$

定义d算子,可以将一个k-形式变为k+1形式:

$$d\left(f(\boldsymbol{x})\bigwedge_{j=1}^{k}dx_{\sigma(j)}\right) = df \wedge \bigwedge_{j=1}^{k}dx_{\sigma(j)} = \sum_{m=1}^{n}\frac{\partial f}{\partial x_{m}}dx_{m} \wedge \bigwedge_{j=1}^{k}dx_{\sigma(j)}$$

定理(4.2.h)

考虑 IR3 中的第二型面积分, 我们有

$$\iint_{S} f_{x} \, dy \, dz + f_{y} \, dz \, dx + f_{z} \, dx \, dy$$

$$(a) = \iint_{S} f_{x} \, dy \, dz + f_{y} \, dx \, dy + f_{z} \, dx \, dy$$

$$(b) = \pm \iint_{S} f_{x} \, dy \wedge dz + f_{y} \, dz \wedge dx + f_{z} \, dx \wedge dy$$

$$(c) = \pm \iint_{S} f_{x} \, dy \wedge dz - f_{y} \, dx \wedge dz + f_{z} \, dx \wedge dy.$$

其中 (a) 是由于此时 dy 事实上并非形式, (b) 中的 $dz \wedge dx$ 实际上来自于(左) 右手系的定向, (c) 中负号来自于楔积反交换律.

例子(4.2.i)

设 $\omega = X \, \mathrm{d}x + Y \, \mathrm{d}y + Z \, \mathrm{d}z$ 为 \mathbb{R}^3 上的 1-形式, 计算 $\mathrm{d}\omega$.

$$\begin{split} \mathrm{d}\omega &= (\mathrm{d}X) \wedge \mathrm{d}x + (\mathrm{d}Y) \wedge \mathrm{d}y + (\mathrm{d}Z) \wedge \mathrm{d}z \\ &= (\partial_x X \, \mathrm{d}x + \partial_y X \, \mathrm{d}y + \partial_z X \, \mathrm{d}z) \wedge \mathrm{d}x \\ &+ (\partial_x Y \, \mathrm{d}x + \partial_y Y \, \mathrm{d}y + \partial_z Y \, \mathrm{d}z) \wedge \mathrm{d}y \\ &+ (\partial_x Z \, \mathrm{d}x + \partial_y Z \, \mathrm{d}y + \partial_z Z \, \mathrm{d}z) \wedge \mathrm{d}z \\ &= (\partial_y Z - \partial_z Y) \, \mathrm{d}y \, \mathrm{d}z + (\partial_z X - \partial_x Z) \, \mathrm{d}z \, \mathrm{d}x + (\partial_x Y - \partial_y X) \, \mathrm{d}x \, \mathrm{d}y \end{split}$$

我们在此叙述 Stokes 定理, 事实上, 我们并不需要知晓 "定向的 k 维紧流形" 是什么, 考试中总是会给出合理的曲面/曲线的.

定理^(4.2.j) Stokes 定理

设 k>1. 令 M 是 \mathbb{R}^n 中的一个定向的 k 维紧流形. 若 ∂M 的定向和 M

相匹配,则

$$\int_{M} d\omega = \int_{\partial M} d\omega$$

对所有 Riemann 可积 k-1 形式成立.

以下是 Stokes 定理的几个著名推论.

例子
$$^{(4.2.k)}$$
 散度定理
$$\Diamond M \not\in \mathbb{R}^3 \text{ 中一个开集}, \ \partial M \not\in - \Lambda \to \mathbb{R}$$
 中一个开集, $\partial M \not\in - \Lambda \to \mathbb{R}$ 由面,那么
$$\int_{\partial M} \mathbf{f} \, \mathrm{d}S = \int_{M} \sum_{j \in \{x,y,z\}} \partial_j f_j \, \mathrm{d}V.$$

$$\mathbf{f} \, \mathbf{d}S = f_x \, \mathrm{d}y \wedge \mathrm{d}z + f_y \, \mathrm{d}z \wedge \mathrm{d}x + f_z \, \mathrm{d}x \wedge \mathrm{d}y.$$

 $m{f}\, ec{\mathrm{d}} S = f_x \, \mathrm{d} y \wedge \mathrm{d} z + f_y \, \mathrm{d} z \wedge \mathrm{d} x + f_z \, \mathrm{d} x \wedge \mathrm{d} y.$ 所以 $\mathrm{d}(m{f}\, ec{\mathrm{d}} S) = \sum_{j \in \{x,y,z\}} \partial_x f_x \, \mathrm{d} x \wedge \mathrm{d} y \wedge \mathrm{d} z$, 故得.

例子
$$^{(4.2.l)}$$
 Gauss 散度定理
$$\diamondsuit M \not\in \mathbb{R}^3 \ \text{中一个开集}, \ \partial M \not\in \text{一个封闭曲面}, \ m \, \Delta$$

$$\int_{\partial M} \boldsymbol{f} \, \mathrm{d}S = \int_{M} \sum_{j \in \{x,y,z\}} \partial_x f_x \, \mathrm{d}V.$$

$$\mathbf{f} \, \mathbf{d}S = f_x \, \mathrm{d}y \wedge \mathrm{d}z + f_y \, \mathrm{d}z \wedge \mathrm{d}x + f_z \, \mathrm{d}x \wedge \mathrm{d}y.$$

 $m{f}\, ext{d}S = f_x\, ext{d}y \wedge ext{d}z + f_y\, ext{d}z \wedge ext{d}x + f_z\, ext{d}x \wedge ext{d}y.$ 所以 $ext{d}(m{f}\, ext{d}S) = \sum_{j \in \{x,y,z\}} \partial_x f_x\, ext{d}x \wedge ext{d}y \wedge ext{d}z$, 故得.

例子
$$^{(4.2.n)}$$
 Green 公式 令 D 是 \mathbb{R}^2 中的二维区域,其 Γ 是光滑的,那么假设定向均正:
$$\oint_{\Gamma} F_1 \, \mathrm{d}x + F_2 \, \mathrm{d}y = \int_{D} \partial_x F_2 - \partial_y F_1 \, \mathrm{d}x \, \mathrm{d}y.$$
 其中 F_1 , F_2 在 D 内连续可微.

$$d(F_1 dx + F_2 dy) = (\partial_x F_2 - \partial_y F_1) dx \wedge dy.$$

$$I = \iint_{\Sigma} dy dz + dz dx + dx dy.$$

设 Σ 为上半单位球面 $z=\sqrt{1-(x^2+y^2)}$, 取内侧, 求 $I=\iint_{\Sigma}\mathrm{d}y\,\mathrm{d}z+\mathrm{d}z\,\mathrm{d}x+\mathrm{d}x\,\mathrm{d}y.$ 令 $S=\{(x,y,0);x^2+y^2\leqslant 1\}$, 方向为上侧, 那么依赖 Gauss 散度定理, $\int_{I+S}\mathrm{d}y\,\mathrm{d}z+\mathrm{d}z\,\mathrm{d}x+\mathrm{d}x\,\mathrm{d}y=0.$ 因此 $I=-\int_{S}\mathrm{d}y\,\mathrm{d}z+\mathrm{d}z\,\mathrm{d}x+\mathrm{d}x\,\mathrm{d}y=-\pi.$

$$\int_{I+S} dy dz + dz dx + dx dy = 0.$$

$$I = \iint_S \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{(ax^2 + by^2 + cz^2)^{3/2}}$$

计算曲面积分 $I=\iint_S \frac{x\,\mathrm{d}y\,\mathrm{d}z+y\,\mathrm{d}z\,\mathrm{d}x+z\,\mathrm{d}x\,\mathrm{d}y}{(ax^2+by^2+cz^2)^{3/2}},$ 其中 S 是球面 $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$, 取外侧 (a>0,b>0)

证明 令 $X = x/(ax^2 + by^2 + cz^2)^{3/2}$, 以此类推, 利用散度定理, 可以得到

$$\partial_x X + \partial_y Y + \partial_z Z = 0.$$

因此若S内不含(0,0,0),则积分为0.此时 $x_0^2+y_0^2+z_0^2>r$.倘若 $x_0^2+y_0^2+z_0^2<$ r,那么作

$$S_{\varepsilon}$$
: $ax^2 + by^2 + cz^2 = \varepsilon^2$.

则(右边积分为正定向)

$$I = \frac{1}{\varepsilon} \iint_{S_{-}} x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y.$$

利用散度定理,其为

$$I = \frac{3}{\varepsilon^3} \iiint_{ax^2 + by^2 + cz^2 \le \varepsilon^2} dx dy dz = \frac{3}{\varepsilon^3} \cdot \frac{4\pi}{3} \cdot \frac{\varepsilon^3}{\sqrt{abc}} = \frac{4\pi}{\sqrt{abc}}. \quad \Box$$

$$I = \oint_C (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz,$$

 $I=\oint_C (y^2-z^2)\,\mathrm{d}x+(z^2-x^2)\,\mathrm{d}y+(x^2-y^2)\,\mathrm{d}z,$ 其中 C 是立方体 $[0,a]^3$ 的表面与平面 $x+y+z=\frac{3a}{2}$ 的交线, 取向从 z 轴正向看去是逆时针方向.

由轮换对称性,首先考虑利用 Stokes 定理, 也即 4.2.m, 计算得到

$$(\partial_y f_z - \partial_z f_y) = -(y+z),$$

$$(\partial_y f_z - \partial_z f_y) = -(y+z),$$
 同理可得其余系数,即
$$I = -2 \iint (y+z, x+z, x+y) \, \mathrm{d}S = -\frac{4}{\sqrt{3}} \iint (x+y+z) \, \mathrm{d}S = -\frac{9a^3}{2}.$$

$$I = \iint_{\Sigma} 4xz \,dy \,dz - 2yz \,dz \,dx + (1 - z^2) \,dx \,dy,$$

令
$$S = \{(x, y, e^a); x^2 + y^2 \leq a^2\}$$
, 方向向上, 那么由于

$$\partial_x(4xz) + \partial_y(-2yz) + \partial_z(1-z^2) = 0$$

故
$$\iint_{S+\Sigma} = 0$$
, 因此

$\S{ m V}$ 后花园

实数系的构造 5.1

实数系完备性定理 我们先给出实数系的完备性刻画, 再处理实数是如何构 造的.

定理^(5.1.a) 实数系完备性定理 1. 确界原理. 非空数集有上界时必有上确界.

- 3. 紧致性原理. 有界无穷数列必有收敛子列.
- 4. Cauchy 收敛原理. 一个数列收敛的充分必要条件是其为基本列.
- 5. 单调有界定理. 单增有上界数列必定收敛.
- 6. 闭区间套定理. 设 $I_n = [a_n, b_n]$, 且 $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$, 若 $\lim_{n \to \infty} |b_n a_n| = 0$,那么 $\bigcap_{n \ge 1} I_n$ 含有唯一的一点.

我们将会给出一部分互证的证明(但不是全部).

证明 1. 有限覆盖原理 \to 紧致性原理. 若 $\{x_n\}_{n\geqslant} \subset [a,b]$, 但是没有收敛子列, 也就是说任给 $x \in [a,b]$, 则

(a). 要么 $x \notin \{x_n\}_{n \ge 1}$,存在 $\varepsilon_x > 0$ 满足

$$|x_n - x| > \varepsilon_x$$
.

对所有 n 成立;

(b). 要么 $x \in \{x_n\}_{n \ge 1}$, 则令 $x_n = x$ 的 n 仅有有限多个, 且存在 $\varepsilon_x > 0$ 满足

$$|x_n - x| > \varepsilon_x$$

对所有 $x_n \neq x$ 的 n 成立.

那么 $[a,b] \subset \bigcup_{y \in [a,b]} \mathbb{B}_{\varepsilon_y}(y)$, 利用有限覆盖:

$$[a,b] \subset \bigcup_{j=1}^{N} \mathbb{B}_{\varepsilon_j}(y_j).$$

那么要么 $\mathbb{B}_{\varepsilon_j}(y_j)$ 包含 $\{x_n\}_{n\geq 1}$ 中为 y_j 的所有点, 要么与 $\{x_n\}_{n\geq 1}$ 无交, 换算下来, $\{x_n\}_{n\geq 1}$ 只有有限多个, 矛盾!

- **2. 紧致原理** → **单调有界定理**. 设单增数列 $\{x_n\}_{n\geq 1}$ 有上界,则自然 $\{x_n\}_{n\geq 1}$ 有界,由紧致性原理得某单增子列 $\{x_{n_k}\}_{k\geq 1}$ 有极限 η , 对 $\forall \varepsilon > 0$, $\exists N$ 使得 $n_i > N$, $|x_{n_i} \eta| < \varepsilon$, 故对 $n > n_i$, $|x_n \eta| < \varepsilon$, 得证.
- 3. 单调有界定理 → 闭区间套定理. 由单调有界定理, 令 $a = \lim_{n\to\infty} a_n$, $b = \lim_{n\to\infty} b_n$, 而 $\lim_{n\to\infty} |a_n b_n| = |a b| = 0$, 故 a = b. 从而 $\bigcap_{n=1}^{\infty} I_n = a$;
- **4. 闭区间套** \rightarrow **Cauthy 收敛**. 设 $\{x_n\}$ 为基本列, 即对任意 $\varepsilon > 0$, 存在 N_{ε} 使得 $n > N \implies |x_n x_N| < \varepsilon$. 构建 $I_n = [x_{N_{2-n}} 2^{-n}, x_{N_{2-n}} + 2^{-n}]$, 即为所欲闭区间套, 其交出的点就是收敛点.
- 5. Cauthy 收敛 \rightarrow 确界原理. 设 $S \subset \mathbb{R}$ 有上界, 但没有上确界. 令

up
$$S = S$$
 的所有上界, $D_n = \left\{ \frac{k}{2^n}; k \in \mathbb{Z} \right\}$.

其中 $n \ge 1$,那么由于 D_n 良序,任给固定的n,存在 $k_n \in \mathbb{Z}$,满足

$$\frac{k_n}{2^n} \in \operatorname{up} S, \quad \frac{k_n - 1}{2^n} \notin \operatorname{up} S.$$

那么 $\{k_n/2^n\}_{n\geqslant 1}$ 单减,且

$$\left|\frac{k_m}{2^m} - \frac{k_n}{2^n}\right| \leqslant \frac{1}{2^{\min(n,m)}}.$$

因此是Cauthy列,其极限就是上确界.

6. 确界原理 \rightarrow 有限覆盖原理. 先固定开覆盖 $\{I_{\lambda}\}_{\lambda\in\Lambda}$, 定义

$$S = \{x \in [a,b]; [a,x]$$
 能被有限多个 I_{λ} 覆盖}.

则 $a \in S$, $b \in \text{up } S$, 按确界原理, 令 sup S = c, 若 c < b, 那么令 $\lambda_c \in \Lambda$, 满足 $c \in I_{\lambda_c}$, 则:

1. 选取 d < c 且 $d \in I_{\lambda_c}$,则 [a,d] 可被有限多个 I_{λ} 覆盖,记为

$$[a,d]\subset \bigcup_{j=1}^N I_{\lambda_j}.$$

2. 任意 $e \ge c$ 且 $e \in I_{\lambda_c}$ 均有 $[a,c] \subset \bigcup_{j=1}^N I_{\lambda_j} \cup I_{\lambda_c}$, 因此也能被有限多个 I_{λ} 覆盖.

因此只能是
$$c = b$$
.

Dedekind 分割 实数可以定义为有理数的分划:

定义^(5.1.b) Dedekind 分割

给定非空子集 $A \subset \mathbb{Q}$,若满足以下条件,则称为 Dedekind 分割,其中p, q 均为有理数.

- 1. $A \neq \mathbb{Q}$;
- **2.** 若 $p \in A$, q < p, 则 $q \in A$;
- **3.** 若 $p \in A$,则存在q > p,满足 $q \in A$.

若 $A \subset B$, 则称 $A \leq B$, 若 $A \subseteq B$, 则称 A < B.

定理^(5.1.c)

如上定义的实数具有确界原理.

证明 今 S 是实数集, 那么令

$$\Gamma = \bigcup_{A \in S} A.$$

则任给 $A \in S$, 均有 $A \leq \Gamma$, 若存在更小的上界 Π , 则

$$\Pi \subsetneq \Gamma$$

- **1.** $r \in \Gamma$, 因此存在 $s \in \Gamma$, s > r;
- **2.** 由于 $\Gamma = \bigcup_{A \in S} A$, 因此存在 $B \in S$, $s \in B$;
- 3. 此时有 $\Pi \leq r < s \leq B$, 与 Π 是上界矛盾!

5.2 常微分方程(补遗)

比较定理 比较定理可以给出一些特殊的估计,除去判断常微分方程解的存在区间外,还可以给一些中值不等式得到估计.

令
$$f_1, f_2 \colon [0, T] \to \mathbb{R}$$
 满足 (其中 F_1, F_2 在 $[0, T] \times \mathbb{R}$ 上连续)
$$f_2(0) > f_1(0), \quad \begin{cases} f_2'(x) = F_2(x, f_2(x)); \\ f_1'(x) = F_1(x, f_1(x)), \end{cases} \qquad F_2 > F_1.$$

那么, 在 $x \in (0,T]$ 上, 我们有

$$f_2(x) > f_1(x).$$

证明 倘若存在 $x_0 \in (0,T]$ 满足 $f_1(x_0) > f_2(x_0)$, 由于 $f_1(0) < f_2(0)$, 由介 值定理, 存在 $y \in (0, x_0)$ 满足 $f_1(y) = f_2(y)$, 令 y_0 是所有这样的 y 的上确界, 那么由于连续性:

$$f_1(y_0) = f_2(y_0) = M,$$

且 $y \in (y_0, x) \implies f_1(y) > f_2(y)$,那么在 y_0 处求导,得到

$$f_1'(y_0) \geqslant f_2'(y_0) \iff F_1(y_0, M) \geqslant F_2(y_0, M)$$

矛盾!

令 f 是 $\mathbb{R}_{\geqslant 0}$ 上的 \mathcal{C}^1 函数,且 $|f'(x)|\leqslant |f(x)|.$ 其中 f(0)=0, 证明 $f\equiv 0.$

$$|f'(x)| \leq |f(x)|$$

证明 只需证明 f 在 $[0,\delta]$ 上面是 0 即可, 令

$$|g'_{\varepsilon}(x)| \leq |g_{\varepsilon}(x)| + \varepsilon, \quad g_{\varepsilon}(0) = \varepsilon.$$

则 g_{ε} 有解 $g_{\varepsilon}(x) = \varepsilon(2e^x - 1)$, 由比较定理 5.2.a, 可以得到

$$f(x) \leqslant \inf_{\varepsilon \in (0,1)} g_{\varepsilon}(x) = 0, \quad x \in \mathbb{R}_{\geqslant 0}.$$

同理证明 $-f(x) \leq 0$, 因此 $f \equiv 0$.

5.3中值定理

证明:
$$\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
.

记
$$f(x) = \frac{x}{1+x}$$
, 则 $f'(x) = \frac{1}{(1+x)^2} > 0$, $f(x) = \frac{x}{1+x}$. 于是, 由 $|a+b| \leqslant \leqslant |a| + |b|$ 知

证明:
$$\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
.

i $f(x) = \frac{x}{1+x}$,则 $f'(x) = \frac{1}{(1+x)^2} > 0$, $f(x) = \frac{x}{1+x}$.于是,由 $|a+b| \leqslant \leqslant$ $|a| + |b|$ 条 $\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|+|b|}{1+|a|+|b|} = \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|}$ $\leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$.

设 f(x) 在 [0,1] 上有二阶导数, $x \in [0,1]$ 时, $|f(x)| \leq A$, $|f''(x)| \leq B$. 试证: 当 $x \in [0,1]$ 时, $|f'(x)| \leq 2A + B/2$.

$$f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\xi_1)(1-x)^2,$$

$$f(0) = f(x) + f'(x)(-x) + \frac{1}{2}f''(\xi_2)(-x)^2,$$

$$\text{Find } f(1) - f(0) = f'(x) + \frac{1}{2}f''(\xi_1)(1-x)^2 - \frac{1}{2}f''(\xi_2)x^2,$$

$$|f'(x)| \leqslant |f(1)| + |f(0)| + \frac{1}{2}|f''(\xi_1)|(1-x)^2 + \frac{1}{2}|f''(\xi_2)|x^2$$

$$\leqslant 2A + \frac{B((1-x)^2 + x^2)}{2} \leqslant 2A + \frac{B}{2}.$$

$$\leq 2A + \frac{B((1-x)^2 + x^2)}{2} \leq 2A + \frac{B}{2}.$$

$$\int_{a}^{b} f(x) dx = (b-a)f\left(\frac{a+b}{2}\right) + \frac{1}{24}f''(c)(b-a)^{3}.$$

设 f(x) 在 [a,b] 上有二阶导数. 试证: $\exists c \in (a,b)$, 使得 $\int_a^b f(x) \, \mathrm{d}x = (b-a)f\left(\frac{a+b}{2}\right) + \frac{1}{24}f''(c)(b-a)^3.$ 将函数 $F(x) = \int_a^x f(t) \, \mathrm{d}t$ 在点 $x_0 = \frac{a+b}{2}$ 处按 Taylor 公式展开, 记 h = b-a

$$F(x_0 + h) = F(x_0) + f(x_0)h + \frac{1}{2}f'(x_0)h^2 + \frac{1}{6}f''(\xi)h^3,$$

$$F(x_0 - h) = F(x_0) - f(x_0)h + \frac{1}{2}f'(x_0)h^2 - \frac{1}{6}f''(\eta)h^3,$$

由导函数的介值性, 存在 $c\in(a,b)$, 使得 $f''(c)=\frac{f''(\xi)+f''(\eta)}{2}$. 代入上式 即可.

设 f(x) 二次可微, 且 f(0) = f(1) = 0, $\max_{x \in [0,1]} f(x) = A > 0$, 试证 $\min_{x \in [0,1]} f''(x) \le -8A$.

因 f(x) 在 [0,1] 上连续, 有最大、最小值. 又因 $\max_{x \in [0,1]} f(x) = A > 0$, f(0) = f(1) = 0,故最大值在 (0,1) 内部达到. 所以, $\exists x_0 \in (0,1)$ 使得 $f(x_0) = \max_{x \in [0,1]} f(x)$,于是 $f(x_0)$ 为极大值. 由 Fermat 定理,有

$$f'(x_0) = 0$$
. 在 $x = x_0$ 处按 Taylor 公式展开, $\exists \xi, \eta \in (0,1)$ 使得

$$f(x_0) + \frac{1}{2}f''(\xi)(0 - x_0)^2 = A + \frac{1}{2}f''(\xi)x_0^2 = f(0) = 0;$$

$$f(x_0) + \frac{1}{2}f''(\eta)(1 - x_0)^2 = A + \frac{1}{2}f''(\eta)(1 - x_0)^2 = f(1) = 0.$$

因此,
$$\min_{x \in [0,1]} f''(x) \leqslant \min \left(f''(\xi), f''(\eta) \right) = \min \left(-\frac{2A}{x_0^2}, -\frac{2A}{(1-x_0)^2} \right)$$
. 柄

$$\min_{x \in [0,1]} f''(x) \leqslant -8A.$$

§VI 原题

- 1. $\vec{x} \lim_{x \to 0} \int_0^x \frac{\cos(1/t)}{x} dt;$
- 1. 求 $\lim_{x\to 0} \int_0^{\infty} \frac{dt}{x}$ 2. 若函数 f(x) 在 [0,1] 有连续的二阶导数,且 $\lim_{x\to 0} f(x)/x = 0$,求证

$$\sum_{n>1} f\left(\frac{1}{n}\right).$$

绝对收敛;

- 3. $\diamondsuit A_n = \sum_{k=1}^n \frac{1}{n+k}, \ \ \ \ \ \lim_{n\to\infty} n(A_n \log 2);$
- 4. 函数 f 在 [2,4] 上有二阶导数, f(3)=0, 证存在 $\xi\in(2,4)$, $f''(\xi)=3\int_{[2,4]}f$.
- **5.** 函数 $f \in \mathbb{R} \to \mathbb{R}$ 满足 $\forall x, y \neq 0$. 都有 f(x+y) = f(x) + f(y), 且 f'(1) = 1, 求 f:
- **6.** 对 x, c > 0, 证明

$$\left| \int_x^{x+c} \sin(y^2) \, \mathrm{d}y \right| \leqslant \frac{1}{x}.$$

证明 1. 换元:

$$\int_0^x \frac{\cos(1/t)}{x} dt = \int_{x^2}^x \frac{\cos(1/t)}{x} dt = \int_{1/x}^\infty \frac{\cos y}{y^2 x} dy.$$

利用分部积分:

$$\int_{1/x}^{\infty} \frac{\cos y}{y^2 x} \, \mathrm{d}y = -\frac{\sin y}{xy^2} \Big|_{1/x}^{\infty} + 2 \int_{1/x}^{\infty} \frac{\sin y}{y^3 x} \, \mathrm{d}y.$$

右端第一项极限是 0, 第二项不超过 $\int_{1/x}^{\infty} y^{-3} x^{-1} \, \mathrm{d}y = x/2 \to 0$. 因此结果是 0.

2. 用 Taylor 公式, 注意到 f(0) = 0, 因此 f'(0) = 0,

$$|f(x)| = \frac{|f''(\theta x)x^2|}{2} \leqslant Mx^2.$$

因此 $\sum_{n\geq 1} f(1/n)$ 绝对收敛.

3. 先证明 $\lim_{n\to\infty} A_n = \log 2$. 由于

$$\sum_{k=1}^{n} \frac{1}{k+n} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{1}{1+t} \, \mathrm{d}t = \log 2.$$

接下来估计 $n(A_n - \log 2)$. 此时有

$$A_{n} - \log 2 = \sum_{k=1}^{n} \left[\frac{1}{n+k} - \int_{(k-1)/n}^{k/n} \frac{1}{1+t} dt \right]$$

$$= \sum_{k=1}^{n} \int_{(k-1)/n}^{k/n} \left(\frac{1}{1+k/n} - \frac{1}{1+t} \right) dt$$

$$= \sum_{k=1}^{n} \int_{(k-1)/n}^{k/n} f'(\xi_{k,n}(t)) \left(\frac{k}{n} - t \right) dt.$$

$$= \sum_{k=1}^{n} \eta_{k,n} \int_{(k-1)/n}^{k/n} \left(\frac{k}{n} - t \right) dt \quad \eta_{k,n} \in f'\left(\left[\frac{k-1}{n}, \frac{k}{n} \right] \right).$$

$$= \sum_{k=1}^{n} \frac{\eta_{k,n}}{2n^{2}}$$

故
$$n(A_n - \log 2) = \sum_{k=1}^n \frac{\eta_{k,n}}{2n} \to (1/2) \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{1+t}\right) \mathrm{d}t = -1/4.$$

4. $\Rightarrow F(x) = \int_2^x f$, $y \in F'(3) = f(3) = 0$, $y \in F(3) = 0$

$$F(x) = F(3) + \frac{f'(3)(x-3)^2}{2} + \frac{f''(\eta_x)(x-3)^3}{6}.$$

得到

$$\int_{2}^{4} f = F(4) - F(2) = \frac{f''(\eta_4) + f''(\eta_2)}{6}.$$

由导数介值性可以得到存在 $\xi \in (\eta_2, \eta_4)$,满足 $\xi = \frac{f''(\eta_4) + f''(\eta_2)}{2}$,即

$$3\int_{2}^{4}f=f''(\xi).$$

5. 注意到任意 $x \neq 0$, 均有

$$\lim_{y \to 0} \frac{f(x+y) - f(x)}{y} = \lim_{y \to 0} \frac{f(1+y) - f(1)}{y} = 1.$$

因此 f 在 $\mathbb{R} \setminus \{0\}$ 上连续可微, 且导数恒为 1. 这意味着

$$f(x) - x = \begin{cases} c_1, & x > 0; \\ c_2, & x < 0. \end{cases}$$

但是易见 $f(1) = f(x+1) + f(-x) = 1 + c_1 + c_2 \implies c_2 = 0$, 同理 $c_1 = 0$, 因此 f(x) = x, $x \neq 0$, 因此 f(0) = f(1) + f(-1) = 0.

$$\int_{x^2}^{(x+c)^2} \frac{\sin y}{2\sqrt{y}} \, \mathrm{d}y = -\frac{\cos y}{2\sqrt{y}} \Big|_{x^2}^{(x+c)^2} + \int_{x^2}^{(x+c)^2} \frac{\cos y}{4y\sqrt{y}} \, \mathrm{d}y$$

$$= -\frac{\cos(x^2)}{2x} + \frac{1}{2x} + \frac{\cos((x+c)^2)}{2(x+c)} - \frac{1}{2(x+c)}$$

$$\in \left[-\frac{1}{x+c}, \frac{1}{x} \right].$$

参考文献

- [AEB05] HERBERT AMANN, JOACHIM ESCHER, and GARY BROOKFIELD. Analysis. Springer, 2005.
 - [KP02] STEVEN G KRANTZ and HAROLD R PARKS. A primer of real analytic functions. Springer Science & Business Media, 2002.
- [Mun18] James R Munkres. Analysis on manifolds. CRC Press, 2018.
 - [柳 21] 柳彬. 常微分方程. 北京大学出版社, 2021.
 - [谢 18] 谢惠民, 恽自求, 易法槐, 和钱定边. 数学分析习题课讲义(第 2版)(上册). 高等教育出版社, 2018.
 - [谢19] 谢惠民,恽自求,易法槐,和钱定边. 数学分析习题课讲义(第2版)(下册). 高等教育出版社, 2019.