EfficientZero

1. 概述

样本效率(sample efficiency)是强化学习的一个关键挑战,一般来说需要高达数百万或者数十亿的环境步数(env steps)才能够取得相对来说理想的训练效果。 尤其是在 Atari 等基准游戏测试中,如何在有限的交互中达到人类的表现水平依旧是一个困难的目标。 在 MuZero 的基础上,作者们提出了一种高效的视觉 RL 算法 —— EfficientZero。 这个方法在 Atari 100k 的 benchmark 上,只需要大约 2个小时的训练数据就能达到超越人类的水平。具体来说,如图 1 所示,EfficientZero 在 Atari 游戏上能达到人类平均水平的 194.3%和人类中位数水平的 109%。 与此同时,在 DMControl 100k benchmark 上的效果也超过了将 state(非图像)作为 observation 的 SAC 算法(state SAC)。这也是第一次在训练数量样本有限的情况下,达到超越人类的水平。相比于 DQN 需要 200 million frames的交互样本数量, EfficientZero 只需要它的五百分之一。(code:

https://github.com/YeWR/EfficientZero)

(图 1: EfficientZero 在 Atari 100k benchmark 上与其他方法和人类水平的比较。EfficientZero 在人类平均得分和中位数得分上达到了基线模型的 176%和 163%,是第一个在该环境上能够超越平均人类水平的算法。EfficientZero 的高采样效率和性能让 RL 更贴近真实应用。)

2. 研究背景与相关工作

2.1 样本效率高的强化学习(Sample Efficient Reinforcement Learning)

样本效率(sample efficiency)这一话题在过去有很多相关工作。无模型 RL 在有限数据量场景中的性能远优于基于模型的 RL,例如,时序一致性损失与数据增强的结合能够达到较高性能 [1]。而基于模型的 RL 同时用确定性模型(如 RNN)和随机性模型(如 SSM)建模 dynamics model,在图像输入的模拟机器人控制中取得了很好效果 [2],但其中基于模型的方法被证明是不必要的 [3]。 EfficientZero 提出了一种基于模型的 RL 方法,在数据量有限的 Atari 上能够超越人类水平。

2.2 使用 MCTS 的强化学习(Reinforcement Learning with MCTS)

区别于 temporal difference learning 和 policy gradient based 等方法,MuZero 方法使用 MCTS 作为 policy improvement operator 并且在棋盘类游戏之中取得巨大的成功,例如在围棋 [4] ,国际象棋和将棋之中 [5]。在此之后,它又被拓展到了连续动作空间 [6] 和离线数据 [7] 中。 然而,这类基于MCTS 的方法需要大量的数据,因此样本效率很低。

2.3 多步值估计方法(Multi-Step Value Estimation)

在 Q-learning 的时候,target Q value 往往通过 one step backup 来获得。 在实践中,人们发现把多个 step 的奖励纳入 value 的估计之中,可以得到更快的收敛 [8] [9]。但是多步价值会有 off-policy 的常规问题,即自举(bootstrap) 过程中的 value 并不是最新的 policy 得到的。为了解决这个问题,EfficientZero 提出了一个 model-based policy correction 方法,它根据当前策略,重新收集真实经验以获得最新奖励,并使用基于模型的估计方法来进行自举,在解决 off-policy 问题和模型的经验利用上达到了平衡。

3. EfficientZero 算法

3.1 概览图

NOTE: g^{rnn} (abbreviated as g in the figure) is the recurrent dynamics network, recurrent dynamics network, recurrent is reward hidden state.

(图 2: EfficientZero 算法概览图。**A**: EfficientZero agent 利用 MCTS 进行规划,其中 representation network h 将连续 t 帧观测编码为 latent state s^0 ; prediction network f 在 s^k 下 预测 policy p^k 和 value prefix vp^k ; dynamics network g 预测在 s^{k-1} 下执行动作会转移到的 s^k 和奖励 r^k 。**B**: EfficientZero 和环境的交互过程中,从某个观测 o_t 开始,根据 MCTS 中根节点下各个动作的 visit count 的分布 π_t 选择动作 a_{t+1} 与环境交互得到新的观察 o_{t+1} 和回报 u_{t+1} 。这样不断互动后得到整轨迹,保存到 replay buffer 中。**C**: EfficientZero 在训练时根据 dynamics network g 展开 k 步,通过预测每一步的 reward,value prefix 和 policy 来学习模型。**D**: EfficientZero 的损失函数定义包含五个部分,第一个部分为 dynamics network 预测的 value prefix 和真实 value prefix 之间的距离,第二个部分和第三个部分为 prediction network 预测的 value 和 policy 与真实值之间的距离,第四个部分是自监督一致性损失,第五个部分为正则化项。符号的含义参考【算法概览图符号表.

pdf】。)

当直接把 MuZero 直接应用到少样本的 benchmark 上面时, 它的表现并不好,通过消融实验,作者 验证了它存在的三个问题:

- (1)在学习环境模型时缺少监督信号。在 MuZero 里损失函数项分别优化的是 reward,value 和 policy。reward 只是标量信号,且在很多环境中,reward 都是稀疏的。value 是通过自举训练得 到的,因此较为 noisy。策略是随着搜索过程训练得到的,因此波动也很大。可以看到,reward, value 和 policy 三者都无法提供足够训练环境模型的监督信号。
- (2)难以处理随机不确定性。由于环境的随机不确定性,当环境较难建模时,随着 MCTS 深度加大,对奖励的预测误差也会随之变大。例如在卡牌游戏环境中,对手卡牌的不可观测性导致环境本身具有随机不确定性,因此对当前状态的奖励预测误差较大。
- (3)multi-step value 更新导致的 off-policy 问题。虽然 multi-step value 让奖励能够更快传播到 value function。但在数据有限的情况下,使用 off-policy 的旧策略收集的数据中,奖励是由旧策 略得到的,这导致对 target-value 的更新不准确,导致 value function 不容易收敛。

针对以上问题,EfficientZero 做了如下的三点改进,即:

- (1) 设计自监督(时序)一致性损失。
- (2)使用端到端的学习 value prefix,预测时间段内奖励值之和,降低预测 reward 不准导致的误差。
- (3) 改变 Multi-step reward 的算法,使用一个自适应的展开长度来纠正 off-policy target。

下面将依次详细介绍以上三点改进:

3.2 自监督(时序)一致性损失

在以前 MCTS 工作中,环境模型有些是直接已知的,有些则通过训练 rewards, values 和 policies 来得到。然而,这些变量往往只是标量,无法提供足够的训练信息。当环境的奖励是稀疏的,或者自举更新的 value 不准确时,这一问题尤为严重。 为了得到足够的模型训练信号,作者提出了**自监督一致性损失,即 dynamic model 预测得到的** \hat{s}_{t+1} **应该和实际的** s_{t+1} **一致**。 这一方法可以让实际的 s_{t+1} 作为监督信号,对 dynamic model 的预测与训练进行监督,而 s_{t+1} 往往是几百维的张量,相对于标

量有更多的训练信号。值得注意的是,隐藏状态 s_{t+1} 和预测状态 \hat{s}_{t+1} 的一致性可以直接通过 dynamics function 来构造,而不需要提供额外的模型。

(图 3: 自监督一致性损失 (self-supervised consistency loss)。)

具体的说,是使用 Sim-Siam 自监督框架,它可以获取同一张图片的两个增强视图,并将第二个增强视图分支的输出向第一个视图的输出拉近。其中第一个分支是不反传梯度的编码器网络,第二个分支由相同但反传梯度编码器网络和 prediction head 组成,其中 prediction head 可以是简单的 MLP 网络。

原始的 Sim-Siam 自监督模型 [10] 仅能学习到单个图像的表征,但无法得知不同图像之间的关联,因此 Sim-Siam 对 transition 前后两帧的表征可能完全不同,不适用于学习 transition function。为了解决这一问题,作者改进了这个自监督模型,实现了端到端的训练,具体的逻辑可以参考图 3。由于训练的目标是找到相邻帧的转移关系,因此要将 \hat{s}_{t+1} 拉近 s_{t+1} 。该模型首先从 o_t 中得到 s_t 的表征,再经过 transition function 转变为 \hat{s}_{t+1} 。而另一个分支从 o_{t+1} 中得到 s_{t+1} 的表征,此时两个分支预测的为同一个实体。另外,两个分支预测的 s_{t+1} 都要经过一个共同的 projector 网络。由于 s_{t+1} 是从 s_{t+1} 中表示得到的,相对于 transition function 预测的 \hat{s}_{t+1} 更为准确,因此以 s_{t+1} 的分支作为目标分支,该分支不回传梯度。

此外,作者也发现在 observation 上添加**数据增强**有助于提高学习到的表征的质量。除了让 \hat{s}_{t+1} 和 s_{t+1} 靠近,作者也将 dynamic function 展开 5 步,让 \hat{s}_{t+k} 和 s_{t+k} 接近 $(k=1,\ldots,5)$ 。

在实际实现中, \hat{s}_{t+1} 和 s_{t+1} 之间的一致性损失定义为:左边分支 predictor 预测得到的 \hat{z}_{t+1} 和右侧分支 stop-grad 的 projector 输出的 z_{t+1} 之间余弦相似度的负数。此时最小化一致性损失,即最大化两者的余弦相似度,其范围为[-1,1]:

$$cos_similarity(z_{t+1},\hat{z}_{t+1}) \ = \ rac{z_{t+1}\cdot\hat{z}_{t+1}}{\|z_{t+1}\|\|\hat{z}_{t+1}\|}$$

3.3 端到端的 Value Prefix 预测

在基于模型的学习中,agent 只需要根据当前的状态,和想象执行的动作序列,就可以预测未来的状态。 这期间会遇到 state aliasing problem,即由于循环预测导致的累计误差,预测的时间越长,预测

的准确性就越低。这个问题可能导致次优的探索和次优动作选择 (sub-optimal exploration as well as sub-optimal action search)。

(图 4: Pong 中的轨迹样例。)

作者给出了一个例子: 如图 4 所示,右侧玩家未能接到这个球。但如果只看到 t 时刻的状态和未来的动作序列,我们很难预测出,是中间具体哪个时刻决策失误而导致了丢球这个结果。但是我们很容易发现,如果 t 时刻之后一段时间右边玩家都不动的话,就一定会丢球。因此,预测单一状态下的奖励是很困难的,但预测长期的奖励往往比较容易。根据这一发现,作者提出了一种端到端的方式来预测value prefix,即用 unrolled states 预测 value prefix。

计算 UCT 中的 Q 值的时候,预测的 reward 总是通过如下方式被用到:

$$Q(s_t,a) \; = \; \sum_{i=0}^{k-1} \gamma^i r_{t+i} + \gamma^k \; v_{t+k}$$

因此我们可以把前面的 $\sum_{i=0}^{k-1} \gamma^i r_{t+i}$ 命名为 value prefix,由于它是在计算 Q 函数时候的前缀(prefix)。

例如,value prefix= $f(s_t, \hat{s}_{t+1}, ... \hat{s}_{t+k-1})$,其中 f 为神经网络,输入是当前状态和未来各个时刻的 预测状态。在实验中,使用 LSTM 网络来预测时序信息。在实际训练时,因为每个新的状态输入时都 需要重新计算 value prefix,因此 LSTM 网络在每个时间步都进行有监督训练。相比于简单的预测单步分数,这种 per-step rich supervision 预测 value prefix 的方法可以更好的避免 state aliasing problem,让 MCTS 能够更好地探索,最终提高效果。

3.4 基于模型的 Off-Policy 修正

在传统的 MCTS 算法中,值函数估计是当前神经网络对应的 value 值。而在 MuZero Reanalyze 实际实现中,value target 是通过采样 replay buffer 中的轨迹得到的: $z_t = \sum_{i=0}^{k-1} \gamma^i u_{t+i} + \gamma^k \ v_{t+k}$ 。由

于这一轨迹中 rollout 的 reward 是用旧的策略得到的,因此计算出的 value target 并不准确。当数据量有限时,计算 value target 还需要复用更久以前的 policy 采样得到的数据,这更加剧了 value target 不准确的问题。

因此作者提出了**基于模型的 Off-Policy 修正,基于已经学到的环境模型,进行"在线体验"(online experience),即从历史轨迹中使用奖励的视野是动态的(dynamic horizon)**。具体来说,当采用 k-step 的 value target 估计时,历史轨迹中 reward 的时间窗口 l < k,且采样的轨迹越古老,则 l 的长度越短。这通过减少 rollout 的步数减少 off-policy 带来的策略发散问题。

同时,作者还在最后一个状态 s_{t+l} 上用当前的策略重新进行一次 MCTS 搜索,并计算根节点的真实平均 value。这有效地修正了 off-policy 问题,也减少了设置 l < k 带来的偏差。

value target 由历史轨迹的真实奖励和在状态上 s_{t+l} 的 MCTS 估计值组成。其中历史轨迹是根据过去的策略得到的,导致了 off-policy 问题;而 MCTS 估计值和真实的奖励期望之间存在偏差过大的问题。因此用最新策略重新进行 MCTS 搜索能够减小偏差,而设置 l < k 能够减少历史轨迹的影响,从而修正 off-policy 的问题。

最终,目标的 value 可以表征为:

$$z_t \; = \; \sum_{i=0}^{l-1} \gamma^i u_{t+i} + \gamma^l \; v_{t+l}^{MCTS}$$

其中 v_{t+l}^{MCTS} 是用当前策略在 s_{t+l} 上扩展的 MCTS 树的 root value。事实上,这一修正的计算成本是 reanalyze 计算侧的两倍,但由于训练是并行的,因此并不会受到影响。

4. 实验

4.1 网络结构及具体实现

- representation network 使用和 MuZero 相同的架构。
- dynamics network 相对于 MuZero, 其输出 reward 的 head 变为输出 value prefix。且网络中加入了 LSTM , 其隐藏状态作为 hidden state 输出。
- prediction network 使用和 MuZero 相同的架构。

(图 5: EfficientZero 的动力学网络结构图。)

EfficientZero 的具体实现采用了并行的方式,其具体 pipeline 如图 6 和图 7 所示。首先,最左侧的 worker 会通过 600 步的 self-play 收集数据,并放到 replay buffer 中。中间的 rollout worker 从 replay buffer 中采集轨迹并拆分为 batch transition,将其中的 context 交给最右侧的 batch worker,这一步只需要 CPU 参与。而 batch worker 用 GPU 对 batch transition 进行 reanalyze 后,将数据交由 learner 学习。由于这三个工作流程分别使用到 self-play,CPU 和 GPU,因此完全可以并行进行。

(图 6: EfficientZero 具体实现的 pipeline。)

(图 7: EfficientZero 具体实现的概览图。)

4.2 Atari 100k Benchmark 上的基线比较结果

此处 human normalized score 定义为:

$$\frac{score_{agent} - score_{random}}{score_{human} - score_{random}}$$

EfficientZero 与 基线算法比较结果如下:

Game	Random	Human	SimPLe	OTRainbow	CURL	DrQ	SPR	MuZero	Ours
Alien	227.8	7127.7	616.9	824.7	558.2	771.2	801.5	530.0	808.5
Amidar	5.8	1719.5	88.0	82.8	142.1	102.8	176.3	38.8	148.6
Assault	222.4	742.0	527.2	351.9	600.6	452.4	571.0	500.1	1263.1
Asterix	210.0	8503.3	1128.3	628.5	734.5	603.5	977.8	1734.0	25557.8
Bank Heist	14.2	753.1	34.2	182.1	131.6	168.9	380.9	192.5	351.0
BattleZone	2360.0	37187.5	5184.4	4060.6	14870.0	12954.0	16651.0	7687.5	13871.2
Boxing	0.1	12.1	9.1	2.5	1.2	6.0	35.8	15.1	52.7
Breakout	1.7	30.5	16.4	9.8	4.9	16.1	17.1	48.0	414.1
ChopperCmd	811.0	7387.8	1246.9	1033.3	1058.5	780.3	974.8	1350.0	1117.3
Crazy Climber	10780.5	35829.4	62583.6	21327.8	12146.5	20516.5	42923.6	56937.0	83940.2
Demon Attack	152.1	1971.0	208.1	711.8	817.6	1113.4	545.2	3527.0	13003.9
Freeway	0.0	29.6	20.3	25.0	26.7	9.8	24.4	21.8	21.8
Frostbite	65.2	4334.7	254.7	231.6	1181.3	331.1	1821.5	255.0	296.3
Gopher	257.6	2412.5	771.0	778.0	669.3	636.3	715.2	1256.0	3260.3
Hero	1027.0	30826.4	2656.6	6458.8	6279.3	3736.3	7019.2	3095.0	9315.9
Jamesbond	29.0	302.8	125.3	112.3	471.0	236.0	365.4	87.5	517.0
Kangaroo	52.0	3035.0	323.1	605.4	872.5	940.6	3276.4	62.5	724.1
Krull	1598.0	2665.5	4539.9	3277.9	4229.6	4018.1	3688.9	4890.8	5663.3
Kung Fu Master	258.5	22736.3	17257.2	5722.2	14307.8	9111.0	13192.7	18813.0	30944.8
Ms Pacman	307.3	6951.6	1480.0	941.9	1465.5	960.5	1313.2	1265.6	1281.2
Pong	-20.7	14.6	12.8	1.3	-16.5	-8.5	-5.9	-6.7	20.1
Private Eye	24.9	69571.3	58.3	100.0	218.4	-13.6	124.0	56.3	96.7
Qbert	163.9	13455.0	1288.8	509.3	1042.4	854.4	669.1	3952.0	13781.9
Road Runner	11.5	7845.0	5640.6	2696.7	5661.0	8895.1	14220.5	2500.0	17751.3
Seaquest	68.4	42054.7	683.3	286.9	384.5	301.2	583.1	208.0	1100.2
Up N Down	533.4	11693.2	3350.3	2847.6	2955.2	3180.8	28138.5	2896.9	17264.2
Normed Mean	0.000	1.000	0.443	0.264	0.381	0.357	0.704	0.562	1.943
Normed Median	0.000	1.000	0.144	0.204	0.175	0.268	0.415	0.227	1.090

(表 1: EfficientZero 在 Atari 100k benchmark 上与基线算法的比较。)

在根据人类水平分数进行标准化后,EfficientZero 的平均得分达到了 1.943,中位数得分达到了 1.090。作为比较,DQN 达到了 2.20 的平均得分和 0.959 的中位数得分,然而需要 500 倍于 EfficientZero 的数据量(2 亿帧)。这是第一个只需要 2 小时游戏数据就能超过人类水平的模型,在 26 个游戏上有 14 个游戏优于人类。先对于当前最优算法 SPR,EfficientZero 的平均得分和中位数得分分别提高了 170%和 180%。

4.3 DMControl 100k Benchmark 上的基线比较结果

EfficientZero 在模拟任务中也取得了显著的效果。如表 2 所示,EfficientZero 相对于当前最优算法 CURL 有明显的性能提升。此外,EfficientZero 也达到了和 state SAC 相当的水平,而 state SAC 由于使用的是真实 state,因此被视作 oracles。

Task	CURL	Dreamer	MuZero	SAC-AE	Pixel SAC	State SAC	EfficientZero
Cartpole, Swingup	582 ± 146	326 ± 27	218.5 ± 122	311 ± 11	419 ± 40 145 ± 30 312 ± 63	835±22	813±19
Reacher, Easy	538 ± 233	314 ± 155	493 ± 145	274 ± 14		746±25	952±34
Ball in cup, Catch	769 ± 43	246 ± 174	542 ± 270	391 ± 82		746±91	942±17

(表 2: EfficientZero 在 DMControl 100k benchmark 上和基线模型的比较结果。)

4.4 三个改进的 Ablation Study

首先,作者从模型中分别去掉这三种改进,并在 Atari 上实验效果如下:

Game	Full	w.o. consistency	w.o. value prefix	w.o. off-policy correction
Normed Mean	1.943	0.881	1.482	1.475
Normed Median	1.090	0.340	0.552	0.836

(表 3: EfficientZero 中去除三种模块后在 Atari 上的性能效果。)

自监督一致性损失对图像重建的影响

为了探究自监督一致性损失这一模块带来的影响,作者设计了解码器,从 latent state 中重建 observation。从结果中观察到,当没有一致性损失时,representation network 分支的 latent states 和 dynamics function 分支的 state 中存在一些分布的偏移,而一致性损失的加入可以减少偏移,提供更多监督信号。

(图 8: 自监督一致性损失对图像重建的影响。)

Value Prefix 在 Training 和 Validation 过程中对 Loss 的影响

作者在同一个训练集和验证集上进行实验,发现不使用 value prefix 在 training 时能达到更低的 loss,但在 validation 时,使用 value prefix 的 loss 明显更低。这说明 value prefix 可以避免奖励预测 的过拟合,从而避免 state aliasing problem。

(图 9: 使用 value prefix 和不使用 value prefix 在训练和验证时的损失变化趋势。)

Off-Policy 修正对未来状态预测 L1 Error 的影响

为了验证 off-policy 修正的效果,作者比较了 target value 和 ground truth value 之间的误差。以游戏 UpNDown 为例,玩家需要操控一辆车在两条交错的车道上行驶和跳跃,当跳跃到其他车上或吃到旗帜时可以得分,当被其他车撞到时失去一条生命。在该环境中,无论是在当前状态还是 unrolled 状态下,有 off-policy 修正都会降低 error。

States	Current state	Unrolled next 5 states (Avg.)	All states (Avg.)
Value error without correction	0.765	0.636	0.657
Value error with correction	0.533	0.576	0.569

(表 4: UpNDown 上 target value 和 ground truth value 之间的 L1 误差。)

作者还比较了在不同的游戏阶段上(20k, ..., 100k)的 value error。发现当轨迹越新时,value error 也越小,这说明 off-policy 问题是因为数据的滞后性导致的。

Stages of trajectories	20k	40k	60k	80k	100k
Value error without correction	0.657	0.07	0.628	0.574	0.441
Value error with correction	0.569		0.537	0.488	0.397

(表 5: UpNDown 上不同阶段的平均 L1 误差。)

4.5 EfficientZero 在 Atari 上的超参数与性能

在 Atari 的 26 个游戏上,EfficientZero 以如下超参数进行训练:

Parameter	Setting
Observation down-sampling	96 × 96
Frames stacked	4
Frames skip	4
Reward clipping	True
Terminal on loss of life	True
Max frames per episode	108K
Discount factor	0.997^{4}
Minibatch size	256
Optimizer	SGD
Optimizer: learning rate	0.2
Optimizer: momentum	0.9
Optimizer: weight decay (c)	0.0001
Learning rate schedule	$0.2 \rightarrow 0.02$
Max gradient norm	5
Priority exponent (α)	0.6
Priority correction (β)	$0.4 \rightarrow 1$
Training steps	120K
Evaluation episodes	32
Min replay size for sampling	2000
Self-play network updating inerval	100
Target network updating interval	200
Unroll steps (l_{unroll})	5
TD steps (k)	5
Policy loss coefficient (λ_1)	1
Value loss coefficient (λ_2)	0.25
Self-supervised consistency loss coefficient (λ_3)	2
LSTM horizontal length (ζ)	5
Dirichlet noise ratio (ξ)	0.3
Number of simulations in MCTS (N_{sim})	50
Reanalyzed policy ratio	0.99

(表 6: EfficientZero 在 Atari 游戏上训练的参数设定。)

得到的验证曲线如下:

(图 10: EfficientZero 在 Atari 上验证时的奖励曲线。)

此外,由于使用统计工具能够得到更鲁棒和有效的指标,作者在图 11 中展示了基于 Agarwal 的开源代码得到的置信区间结果。可以看到,无论用哪种指标进行比较,EfiicientZero 都明显优于其他方法。

(图 11: EfficientZero 及基线模型在 Atari 上的 95%置信区间。)

5. 总结与展望

总的来说,EfficientZero 是将 MuZero 扩展到了复杂感知输入领域,在 MuZero 的基础上提出了三种改进:自监督一致性损失、端到端的 value prefix 和 off-policy 修正,并分别设计 ablation 实验说明了这三种改进的有效性:

- 样本利用效率较高,在少量样本下就能达到与先前算法相当甚至更好的效果。
- 用 value prefix 代替 reward,从预测单个时间点的奖励变为预测长期奖励,在数据集规模较小时,减少对奖励预测的过拟合。
- 通过在历史轨迹中使用动态长度的经验,并用当前策略获得最新经验,修正了 off-policy 问题和 MCTS 的估计偏差。

未来的研究方向包括:

- 如何将 EfficientZero 延伸到其他类型场景上,例如连续动作空间。
- 如何进行 MCTS 的加速。
- 如何将这一框架和 life-long study 进行结合。

6. 参考文献

- [1] Schwarzer M, Anand A, Goel R, et al. Data-efficient reinforcement learning with self-predictive representations[J]. arXiv preprint arXiv:2007.05929, 2020.
- [2] Hafner D, Lillicrap T, Fischer I, et al. Learning latent dynamics for planning from pixels[C]//International conference on machine learning. PMLR, 2019: 2555-2565.
- [3] Kielak K P. Do recent advancements in model-based deep reinforcement learning really improve data efficiency?[J]. 2020.
- [4] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. nature, 2016, 529(7587): 484-489.
- [5] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge[J]. nature, 2017, 550(7676): 354-359.
- [6] Hubert T, Schrittwieser J, Antonoglou I, et al. Learning and planning in complex action spaces[C]//International Conference on Machine Learning. PMLR, 2021: 4476-4486.
- [7] Schrittwieser J, Antonoglou I, Hubert T, et al. Mastering atari, go, chess and shogi by planning with a learned model[J]. Nature, 2020, 588(7839): 604-609.
- [8] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. nature, 2015, 518(7540): 529-533.
- [9] Hessel M, Modayil J, Van Hasselt H, et al. Rainbow: Combining improvements in deep reinforcement learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1).
- [10] Chen X, He K. Exploring simple siamese representation learning[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 15750-15758.