Percentages

QUANTITATIVE APTITUDE

Percentages

The Percentage is a fraction whose denominator is always 100. The sign of percentage is %.

Example: 9% can be converted to a fraction as 9/100 = 0.09

If, we want to calculate y% of x, then

Percentage Formula:
$$y\% \text{ of } x = x \times \frac{y}{100}$$

Q. If 40% of P = 80, then find the value of P.

A. P \times 40/100 = 80

 \Rightarrow P = 80 × 100/40

 \Rightarrow P = 200.

Fractions and Percentages

To express x% as a fraction

We have,

$$x\% = \frac{x}{100}$$

Thus,
$$20\% = \frac{20}{100} = \frac{1}{5};48\% = \frac{48}{100} = \frac{12}{25}$$
, etc.

To express $\frac{a}{b}$ as a percent

We have,

$$\frac{a}{b} = \left(\frac{a}{b} \times 100\right)\%$$

Thus,
$$\frac{1}{4} = \left(\frac{1}{4} \times 100\right)\% = 25\%; 0.6 = \frac{6}{10} = \frac{3}{5} = \left(\frac{3}{5} \times 100\right)\% = 60\%$$

Fig: Representation and interpretation of % in the form of fraction

Fractions	Percentage
$\frac{1}{2}$	50%
1/3	33 1/3 %
1/4	25%
<u>1</u> 5	20%
<u>1</u> 6	16 2/3 %
<u>1</u> 7	$16\frac{2}{3}\%$ $14\frac{2}{7}\%$
<u>1</u> 8	12 1/2 %
<u>1</u> 9	11 1 9 %
1 10	10%

Fractions	Percentage
111	9 1 1 %
1/12	8 1/3 %
1/20	5%
1 25	4%
$\frac{2}{3}$	66 2/3 %
$\frac{3}{4}$	75%
3 8	37 1/2 %
1	100%
2	200%

Tables: Important Fraction to percentage conversions

Testbook Trick

Using the most frequent fraction values in the table above, we can quickly evaluate maximum of the fractions quickly:

$$\rightarrow \frac{31}{6} = \underbrace{5}_{500\%} + \underbrace{\frac{1}{6}}_{16\frac{2}{3}\%} \Rightarrow 516\frac{2}{3}\%$$

Express one quantity as percentage with respect to other quantity

If we want to express quantity 1 as a percentage of quantity 2, then formula will be

Quantity1 to be expressed in percentage

Quantity2 in respect of which percentage is to be calculated ×100

Q. 20 gram is what percentage of 1 kg?

A. Here, quantity 1 = 20 grams and quantity 2 = 1kg = 1000 grams Hence, required percentage = $20/1000 \times 100 = 2\%$

Price Change: Consumption and Expenditure

Testbook Trick

If the price of a commodity increases by R%, then the reduction in consumption so that the expenditure remains constant can be find by formula:

$$\left[\frac{R}{(100\pm R)} \times 100\right]\%$$

Note: +ve sign for increase in price and –ve sign for decrease in price.

Q. If the price of sugar is increased by 10%, then by how much percent consumption should be reduced so that the expenditure remains the same?

A. Solution:

Let the price be Rs. x /kg

Consumption be y kg

Hence, expenditure = price × consumption

Price of sugar is increased by 10%

Hence, new price of sugar = 1.1x per kg

Let new consumption be z kg

Hence, new expenditure = $(1.1x) \times z$

Now, new expenditure = old expenditure

$$\Rightarrow$$
 (1.1x) \times z = x \times y

$$\Rightarrow$$
 z = y/1.1

Reduction in consumption = (y - z) = y - (y/1.1) = y/11

 \therefore Percentage reduction in consumption = $[(y/11)/y] \times 100 = 100/11 = 9.09\%$

Alternate solution:

By using formula:

$$\left[\frac{\mathsf{R}}{(100 \ \mathsf{+R})} \times 100\right] \%$$

Given,
$$R = 10\%$$

$$\left[\frac{10}{(100+10)} \times 100\right]\% = 9.09\%$$

Q. The price of sugar has decreased by 15%. By what percentage can a person increase the consumption so the there is no change in expenditure?

$$\mathbf{A.} \quad \left[\frac{R}{(100-R)} \times 100 \right] \%$$

Given,
$$R = 15\%$$

$$\left[\frac{15}{(100-15)} \times 100\right]\% = 17.65\%$$

Results on Population

Let the population of a town be P now, then

Population after n years

Population after n years if rate of increment R is same = $P\left(1 + \frac{R}{100}\right)^n$

Population after n years if rate of increment R is different = $P\left(1 + \frac{R_1}{100}\right)\left(1 + \frac{R_2}{100}\right)...$

- Q. The population of a town 2 years ago was 245000. It increased by 15% in the first year and then increased by 20% in the second year. What is the current population of the town?
- A. The population of a town 2 years ago was 245000
 It increased by 15% in the first year
 - ∴ The population after first year will be $=\frac{115}{100} \times 245000 = 281750$

The population then increased by 20% in the second year.

∴ The population after second year will be $=\frac{120}{100} \times 281750 = 338100$

Population after n years

Population n years ago
$$= \frac{P}{\left(1 + \frac{R}{100}\right)^n}$$

- Q. The current population of a town is 25710. If the current population of the town increases by 8% every year, what is the approximate population of the town 7 years ago?
- **A.** Current population = 25710
 - ∴ Population of town 7 years ago = $\frac{25710}{\left(1 + \frac{8}{100}\right)^7}$ = 25710/1.7138 = 15001.75 \cong 15000

Results on Depreciation

Let the present value of a machine be P. Suppose it depreciates at the rate of R% per annum. Then:

Value of the machine after n years

Value of the machine after n years = $P\left(1 - \frac{R}{100}\right)^n$

Q. An electric bully was bought at Rs. 4100. Its value depreciates at the rate of 7% per annum. Its value after one year will be:

A. Solution:

Actual price of the electric bully = Rs. 4100

- ⇒ Depreciation rate = 7%
- : Value after 1 year = 4100 7% of $4100 = 4100 4100 \times (7/100) = Rs. 3813$

Alternate method:

$$P\left(1 - \frac{R}{100}\right)^n \Rightarrow 4100\left(1 - \frac{7}{100}\right)^n \Rightarrow 4100\left(\frac{93}{100}\right) = Rs. 3813$$

Value of the machine after n years

Value of the machine n years ago = $\frac{P}{\left(1 - \frac{R}{100}\right)^n}$

- Q. The value of a machine depreciates 10% annually which was purchased 3 years ago. If its present value is Rs. 6,000, approximately what was its purchase price?
- **A.** We know that, if x_0 is the value at a certain time and r% per annum is the rate of depreciation per year, then the value x_1 at the end of t years is

$$x_1 = x_0 \left[1 - \frac{r}{100} \right]^t$$

Given, the value of machine depreciates 10% annually. It was purchased 3 years ago and its present value is Rs. 6,000

 \Rightarrow x₁ = Rs. 6000, r = 10% and t = 3 years, then value of the machine after 3 years of depreciation =

$$6000 = x_0 \left[1 - \frac{10}{100} \right]^3$$

$$\Rightarrow x_0 = \frac{6000}{\left[\frac{9}{10} \right]^3} = \text{Rs.}8,230.45$$

Comparison of Percentages

A is R% more than B

Testbook Trick

If A is R% more than B, then B is less than A by $\left[\frac{R}{(100+R)} \times 100\right]$ %

Q. If A's income is 40% more than the income of B, then what percentage of B's income is less than income of A?

A. Solution:

Let the income of B be 100

∴ Income of A = 140

B's income is less than income of A by (140 - 100) = 40

Required percentage =
$$\frac{40}{140} \times 100 = \frac{200}{7} = 28 \frac{4}{7} \%$$

Alternate method:

By using the formula $\left[\frac{R}{(100+R)} \times 100\right]\%$

$$\Rightarrow \left[\frac{40}{(100+40)} \times 100\right] \% = 28\frac{4}{7}\%$$

A is R% less than B

Testbook Trick

If A is R% less than B, then B is more than A by $\left[\frac{R}{(100-R)} \times 100\right]$ %

Q. If A is 40% less than B, then B is how much percentage more than A?

A. Solution:

Given, A is 40% less than B

Let B be 100

$$A = B - 40\%$$
 of $B = 100 - 40\%$ of $100 = 100 - 40 = 60$

$$\therefore$$
 Required % = {(100 - 60)/60} × 100 = (40/60) × 100 = 66.66%

Alternate method:

By using the formula
$$\left[\frac{R}{(100-R)} \times 100\right]\%$$

$$\Rightarrow$$
 [40/(100 - 40)] × 100 = 66.66%

Successive Increase / Decrease

Successive Increase

If some value is increasing at X% and then Y%, then combined increment can be given by

$$\left[X + Y + \frac{X \times Y}{100}\right]\%$$

Q. The population of a town is 18000. It increases by 10% during first year and by 20% during the second year. The population after 2 years will be

A. Here we can use the concept of successive percentage change.

If in the 1st year increase in population is A% and in the 2nd year it is B%, then net increase in population can be given by

$$\left[A + B + \frac{A \times B}{100}\right]\%$$

The question now can be summarized as:

Initial population (18000) $\xrightarrow{+10\%}$ population after 1st year $\xrightarrow{+20\%}$ population after 2nd year

[+ 10% means increased by 10%]

Using above formula:

$$A = +10$$
 and $B = +20$

∴ Net increase in population =
$$\left[10 + 20 + \frac{10 \times 20}{100}\right]\% = 32\%$$

- ∴ Initial population (18000) → Population after 2nd year
- : Population after 2nd year

$$= 18000 + \left[18000 \times \frac{32}{100}\right]$$

The population after 2 years will be 23760

Successive Decrease

If some value is decreasing at X% and then Y%, then combined decrement can be given by

$$\left[X + Y - \frac{X \times Y}{100}\right]\%$$

- Q. A merchant gives 2 successive discounts of 10% and 14%. What is the overall discount given?
- A. Let us assume that the price of an article is `x'

The price of the article after a discount of 10% = x - (10x/100) = 0.9x

Now again a discount of 14% is given.

: The price of the article after a discount of 14%

$$= \{0.9x - [(0.9x) \times (14/100)]\} = 0.774x$$

We know that percentage increase or decrease =
$$\frac{\text{Increase or decrease}}{\text{Base value}} \times 100$$

∴The net discount offered =
$$\frac{x - 0.774x}{x} \times 100$$

Alternate solution:

If two successive discounts of a% and b% are offered then the net discount offered =

$$\left[a+b-\frac{\left(a\times b\right)}{100}\right]$$

: Overall net discount offered for two successive discounts of 10% and 14%

$$= [10 + 14 - (10 \times 14) / 100]$$

$$= 24 - 1.4$$