Selected Topics

Labix

February 9, 2025

Abstract

Contents

1	Exci	isive Functors between Spaces	3
	1.1	Homotopy Pushouts and Homotopy Pullbacks	3
	1.2	The Failure of the Identity Functor to be Excisive	3
		Excisive Functors Coming From Spectra	
2	Spe	ctra as Reduced and Excisive Functors	4
	2.1	Stable Infinity Categories	4
	2.2		
	2.3	Stable Infinity Categories	
3	Fron	m Functors to Excisive Functors	7
	3.1	Goodwillie Calculus	7
	3.2	Excisive Approximations	7
		Spectra and (Co)Homology Theories	
		A Map From Functors to (Co)Homology Theories	

1 Excisive Functors between Spaces

1.1 Homotopy Pushouts and Homotopy Pullbacks

Why we want this: pushouts dont preserve homotopies, as with any limits / colimts (therefore we have homotopy limits / colimits in model category)

Definition 1.1.1: Standard Model for Homotopy Pushouts

Definition 1.1.2: Standard Model for Homotopy Pullbacks

Definition 1.1.3: Homotopy Pushouts

Definition 1.1.4: Homotopy Pullbacks

Example 1.1.5
Suspension and loopspace.

Proposition 1.1.6

Definition 1.1.7: Excisive Functors

- 1.2 The Failure of the Identity Functor to be Excisive
- 1.3 Excisive Functors Coming From Spectra

2 Spectra as Reduced and Excisive Functors

2.1 Stable Infinity Categories

Definition 2.1.1: Infinity Pushouts

Let $\mathcal C$ be an infinity category. Let $F:\Delta^1\times\Delta^1\to\mathcal C$ be a morphism of simplicial sets. Let $X\in\mathcal C$ be an object. We say that X is a pushout in $\mathcal C$ if there exists a natural transformation $u:\Delta X\Rightarrow F$ such that there is a homotopy equivalence of Kan complexes:

Definition 2.1.2: Infinity Pullbacks

Why are these the correct analogue?

Definition 2.1.3: Stable Infinity Categories

Example in mind: spectra in ordinary categories: pushout=pullback.

Definition 2.1.4: Excisive Functors

2.2 Suspension and Loop Functors

Own notes: Higher algebra 1.4

trivial kan fibration -> section (Kerodon 1.5.5.5)

2.3 Stable Infinity Categories

Recall that $S = N_{\bullet}^{hc}(\mathbf{Top}_{*})$ is the infinity category of spaces.

Proposition 2.3.1

Let \mathcal{C} be a pointed infinity category that admits all finite colimits. Then $\operatorname{Exc}_*(\mathcal{C},\mathcal{S})$ is stable.

Proof. Let $F: \mathcal{C} \to \mathcal{S}$ be excisive and reduced. Then $\Sigma_{\operatorname{Exc}_*(\mathcal{C},\mathcal{S})}(F) = F \circ \Sigma_{\mathcal{C}}$. By definition of the suspension functor,

$$\begin{array}{ccc}
X & \longrightarrow * \\
\downarrow & & \downarrow \\
* & \longrightarrow \Sigma_{\mathcal{C}}(X)
\end{array}$$

is a pushout in C. Since F is excisive,

$$\begin{array}{ccc}
F(X) & \longrightarrow & * \\
\downarrow & & \downarrow \\
* & \longrightarrow & (F \circ \Sigma_{\mathcal{C}})(X)
\end{array}$$

is a pullback in S. On the other hand, $\Omega_{\operatorname{Exc}_*(\mathcal{C},S)}(F) = \Omega_S \circ F$. By definition of the loop functor,

$$(\Omega_{\mathcal{S}} \circ F \circ \Sigma_{\mathcal{C}})(X) \xrightarrow{\qquad \qquad *} \downarrow \qquad \qquad \downarrow \downarrow \\ * \xrightarrow{\qquad \qquad } (F \circ \Sigma_{\mathcal{C}})(X)$$

is a pullback in $\mathcal S$ for any $X\in\mathcal C$. Therefore F(X) and $(\Omega_{\mathcal S}\circ F\circ \Sigma_{\mathcal C})(X)$ are equivalent. Hence F and $\Omega_{\operatorname{Exc}_*(\mathcal C,\mathcal S)}(\Sigma_{\operatorname{Exc}_*(\mathcal C,\mathcal S)}(F))$ are equivalent.

Theorem 2.3.2

There is an equivalence of infinity categories

$$\operatorname{Sp}(\mathcal{S}) \simeq \lim(\cdots \to \mathcal{S} \xrightarrow{\Omega} \mathcal{S} \xrightarrow{\Omega} \mathcal{S}) =: \overline{\mathcal{S}}$$

induced by the evaluation map $ev_{S^0}: \overline{S} \to S$.

Proof.

Since $\mathcal S$ is presentable and the infinity category of presentable infinity categories admit all small limits, $\overline{\mathcal S}$ is also presentable. Every presentable infinity category admits all small limits and colimits. Since $\mathcal S$ is pointed, $\overline{\mathcal S}$ is also pointed. Since all limits are computed term-wise, we have that in particular $\Omega_{\overline{\mathcal S}}$ is computed term wise. given $\{X_n \mid n \in \mathbb N\}$ an object of $\overline{\mathcal S}$, $\{\Omega X_n \mid n \in \mathbb N\}$ is equivalent to $\{X_n \mid n \in \mathbb N\}$ because we have that ΩX_{n+1} is equivalent to X_n for all n. By a prp we conclude that $\overline{\mathcal S}$ is stable.

Consider the canonical functor $G : \overline{S} \to S$ defined by recovering the first factor: $(X_0, X_1, \dots) \mapsto X_0$. It is clear that it commutes with finite limits since limits are computed term-wise.

Let $\mathcal C$ be an arbitrary stable infinity category. Any functor $\mathcal C \to \mathcal S$ is left exact if and only if it is exact so that $\operatorname{Exc}_*(\mathcal C,\mathcal S) = \operatorname{Exc}_*^L(\mathcal C,\mathcal S)$. 1.4.2.16 implies that $\operatorname{Exc}_*^L(\mathcal C,\mathcal S)$ is a stable infinity category. Thus $\Omega_{\mathcal S} \circ -$ is an equivalence.

On the other hand, since Ω are computed term-wise (like all limits) and since $\operatorname{Func}(\mathcal{C},\overline{\mathcal{S}})$ is right adjoint to products we know that Func commutes with finite limits . Thus we have that

$$Exc_*^L(\mathcal{C},\overline{\mathcal{S}}) = \lim(\cdots \to Exc_*^L(\mathcal{C},\mathcal{S}) \overset{\Omega \circ -}{\to} Exc_*^L(\mathcal{C},\mathcal{S}) \overset{\Omega \circ -}{\to} Exc_*^L(\mathcal{C},\mathcal{S}))$$

Since each $\Omega_{\overline{\mathcal{S}}} \circ -$ is an equivalence of infinity categories, we conclude that $\operatorname{Exc}^L_*(\mathcal{C}, \overline{\mathcal{S}}) \simeq \operatorname{Exc}^L_*(\mathcal{C}, \mathcal{S})$. Thus evaluation on the first factor $G \circ - : \operatorname{Exc}^L_*(\mathcal{C}, \overline{\mathcal{S}}) \to \operatorname{Exc}^L_*(\mathcal{C}, \mathcal{S})$ is an equivalence of infinity categories.

By a previous corollary, there is an equivalence of infinity categories given by

$$\Omega^{\infty} \circ - : Exc_{*}^{L}(\overline{\mathcal{S}}, Sp(\mathcal{S})) \to Exc_{*}^{L}(\overline{\mathcal{S}}, \mathcal{S})$$

The fact that G is left exact means that there is a factorization

By functoriality we obtain a similar factorization:

Since $G \circ -$ and $\Omega^{\infty} \circ -$ are both equivalence of infinity categories, we conclude that $G' \circ -$ is an equivalence of infinity categories.

Since this is true for all stable infinity categories, the fact that

$$\operatorname{Exc}_*(\mathcal{C}, \overline{\mathcal{S}}) = \operatorname{Exc}_*^L(\mathcal{C}, \overline{\mathcal{S}}) \simeq \operatorname{Exc}_*^L(\mathcal{C}, \operatorname{Sp}(\mathcal{S})) = \operatorname{Exc}_*(\mathcal{C}, \operatorname{Sp}(\mathcal{S}))$$

is an equivalence for all stable $\mathcal C$ together with the Yoneda embedding implies that $\overline{\mathcal S}$ and $\operatorname{Sp}(\mathcal S)$ is an equivalence of infinity categories.

Beware that in the proof we also showed that $G \circ -$ is an equivalence of infinity categories for any stable infinity category \mathcal{C} . But this does not imply that $\overline{\mathcal{S}}$ and \mathcal{S} are equivalent because we are applying the Yoneda embedding on the category of stable infinity categories, and a priori \mathcal{S} is not stable.

3 From Functors to Excisive Functors

3.1 Goodwillie Calculus

Definition 3.1.1

T1 and P1

Theorem 3.1.2

P1 is excisive.

3.2 Excisive Approximations

Example 3.2.1

Id -> Infinite loop suspension

3.3 Spectra and (Co)Homology Theories

Theorem 3.3.1: Brown's Representability Theorem

Definition 3.3.2: Cohomology Theory Associated to Spectra

Definition 3.3.3: Spectra Associated to Cohomology Theory

Example 3.3.4: Singular Cohomology

Example 3.3.5: K theory

Example 3.3.6: Landweber-exact Spectra

Theorem 3.3.7: Landweber exact functor theorem

3.4 A Map From Functors to (Co)Homology Theories

Example 3.4.1

Identity Functor -> stable homotopy theory (it is a homology theory)

Example 3.4.2

Excisive functor $F \to F(Sn) \to corresponding cohomolog theory$