Índice

1. Filtros

1. Filtros

Sea I un conjunto no vacío.

Definición 1.1: Un filtro \mathcal{F} sobre I es un conjunto no vacío de subconjuntos de I, con las siguiente propiedades:

- (i) $\varnothing \not\in \mathcal{F}$
- (ii) $A \in \mathcal{F} \land B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- (iii) $A \in \mathcal{F} \land A \subseteq B \Rightarrow B \in \mathcal{F}$

La letra $\mathcal F$ denotará un filtro sobre I, a menos que se especifique otra cosa.

Definición 1.2 (Relación de orden): Se dice que un filtro \mathcal{F}_1 es más fino que un filtro \mathcal{F}_2 cuando $\mathcal{F}_2 \subseteq \mathcal{F}_1$.

Definición 1.3: Sea \mathcal{F} el conjunto de filtros sobre I. Un ultrafiltro, es un elemento maximal de \mathcal{F} . Por definición de la relación de orden, esto es, no está contenido propiamente en algún otro filtro de \mathcal{F} .

La letra ${\mathcal U}$ denotará un ultrafiltro sobre I, a menos que se especifique otra cosa.

Teorema 1.1 (caracterizaciones de los ultrafiltros): Un filtro ℋ es un ultrafiltro sii

- (i) $(\forall A \mid A \in I : A \in \mathcal{U} \not\equiv I A \in \mathcal{U})$
- (ii) Si una unión finita está en \mathcal{U} , entonces al menos uno de los conjuntos que compone dicha unión, también está en \mathcal{U} . Esto es, si para un $n \in \mathbb{N}$ hay una colección $\{A_0, \ldots, A_n\}$ tal que $\bigcup_{k=0}^n A_k \in \mathcal{U}$, entonces, $(\exists k \mid k \leq n : A_k \in \mathcal{U})$

Demostraci'on

(i) Sea $\mathcal U$ un filtro que cumple la propiedad a demostrar. Se va a suponer que $\mathcal U$ no es un ultrafiltro. Así, por definición, existe un filtro $\mathcal U_2$ más fino que $\mathcal U$.

$$\mathcal{U}_2 - \mathcal{U} \neq \varnothing$$

$$\equiv$$

$$(\exists A \mid: A \in \mathcal{U}_2 - \mathcal{U})$$

$$\equiv \langle A \text{ no est\'a en } \mathcal{U}, \text{ y } \mathcal{U} \text{ cumple la propiedad mencionada } \rangle$$

$$(\exists A \mid A \in \mathcal{U}_2 - \mathcal{U} : I - A \in \mathcal{U})$$

$$\Rightarrow \quad \langle \ \mathcal{U} \subseteq \mathcal{U}_2 \ \rangle$$

$$(\exists A \mid A \in \mathcal{U}_2 - \mathcal{U} : I - A \in \mathcal{U}_2)$$

$$\equiv$$

$$(\exists A \mid A \notin \mathcal{U} : I - A \in \mathcal{U}_2 \land A \in \mathcal{U}_2)$$

$$\Rightarrow \quad \langle \text{ Definición de filtro, intersección finita} \ \rangle$$

$$(\exists A \mid A \notin \mathcal{U} : \varnothing \in \mathcal{U}_2)$$

Esto último es una contradicción con otra de las propiedades en la definición de un filtro. En consecuencia, la suposición de que $\mathcal U$ no es ultrafiltro es incorrecta.

(ii) Esta caracterización se va a demostrar usando la anterior. Para mostrar su definición de caracterización, se mostrará la equivalencia que tiene con (i).

Para toda la demostación, se considerará un $n \in \mathbb{N}$ y una colección con el mismo nombre que la mencionada en la enunciación de la caracterización.

Por una parte, suponiendo que $\bigcup_{k=0}^n A_k \in \mathscr{U} \wedge (\forall k \mid k \leq n : A_k \notin \mathscr{U})$. Entonces

$$\bigcap_{k=1}^{n} (I - A_k) \notin \mathcal{U} \wedge (\forall k \mid k \le n : A_k \notin \mathcal{U})$$

Se puede ver que hay una contradicción, pues la intersección de todos los A_k debe pertenecer a \mathcal{U} , pues esta es una intersección finita. Así, (i) \Rightarrow (ii).

Por otro lado. Sean $F \notin \mathcal{U}$, $A_1 = F$ y $A_2 = I - F$. Como $\bigcup_{k=1}^2 A_i = I$, $I \in \mathcal{U}$, entonces al menos uno de los A_k debe estar en \mathcal{U} . por definición de filtro, se tiene que no pueden ser ambos al tiempo, y por (ii), tampoco puede ser que ninguno esté. Así, (ii) \Rightarrow (i)