SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.

9. The heights (in cm) of 100 recruits who reported for a recruitment exercise were recorded as follows:

Height (cm)	Number of recruits			
150 - 155	5			
155 - 160	13			
160 - 165	24 22 19 11 1			
165 - 170				
170 - 175				
175 - 180				
180 - 185				
185 – 195	5			

- (a) Calculate the;
 - (i) Mean height
 - (ii) Standard deviation of the height

(07 marks)

(b) Draw a histogram and use it to determine the modal height of the distribution

(05 marks)

- 10. (a) By plotting the graphs of $y = x^3$ and y = 2x + 1, show that the equation $x^3 2x 1 = 0$ has a root between 1 and 2. Estimate the first approximation;
 - x_r from your graph, correct to **two** decimal places. (05 marks)
 - (b) Show that the two general iterative formulae for solving the above equation can be expressed as;

$$x_{n+1} = \frac{1}{2}(x_n^3 - 1); n = 0, 1, 2, \dots I$$

$$x_{n+1} = \sqrt{\left(2 + \frac{1}{x_n}\right)}; n = 0, 1, 2, \dots II$$
(04 marks)

(c) Using x_r obtained in (a) above and each formula **twice**, decide on the best formula, giving a reason for your decision and the root, correct to **two** decimal places.

(03 marks)

- 11. (a) A body is projected vertically upwards with velocity of 21 ms⁻¹. Determine the time it takes to reach a point 280 m below the point of projection
 - (b) A particle projected with a speed of 12 ms⁻¹ to move in a straight line on a rough horizontal surface comes to rest in 5 seconds. Calculate the distance it covers in its last second of motion.

 (12 marks)
- 12. An industry manufactures iron sheets of mean length 3.0 m and standard deviation of 0.05 m. Given that the lengths are normally distributed, find;
 - (a) Probability that the length of any iron sheet picked at random will be between
 - 2.95 m and 3.15 m

 ρ ($-\langle \chi \rangle$ — (05 marks)

(b) Middle 70% range of the length of the iron sheets

(05 marks)

13. (a) The table below shows corresponding values of x and y for $y = x \ln x$.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	0.000	0.608			3.296	4.385	5.545

(i) Copy and complete the table with the values of y corresponding to x = 2.0 and x = 2.5, giving your answer to three decimal places.

(02 marks)

- (ii) Use the trapezium rule with all the values of y in the completed table, to obtain an estimate for $\int_{1.0}^{4.0} (x \ln x) dx$, giving your answer correct to two decimal places.

 (04 marks)
- (b) (i) Tabulate the values of the function $y = 3\cos\left(\frac{x}{3}\right)$ for the interval $0\left[\frac{3\pi}{8}\right]\frac{3\pi}{2}$, correct to four significant figures.
- (ii) Using the above table and of scales of 2 cm: 0.5 units on y axis and 4 cm: $\frac{3\pi}{8}$ units on x axis, draw a graph of $y = 3\cos\left(\frac{x}{3}\right)$.
- (iii) By dividing the area under the graph between the lines x = 0 and $x = \frac{3\pi}{2}$ into trapezia of equal strip width of $\frac{3\pi}{8}$, estimate the total area under the graph, correct to three significant figures.

$$A = \frac{1}{2}h(a1b) \qquad (06 \text{ marks})$$