Sistemas Inteligentes – Examen Bloque 1, 24 enero 2025 (Tipo A) Test A (1,75 puntos) <u>puntuación</u>: max (0, (aciertos – errores/3)*1,75/6)

Apellidos:								Nombre:
Grupo:	Α	В	С	D	Ε	F	G	4IA

 El árbol de la figura muestra el resultado de una <u>exploración parcial</u> de un algoritmo RBFS cuando se está procesando el nodo D y donde solo se indica el valor-f de los nodos. Indica la respuesta <u>CORRECTA</u>:

- A. En el siguiente paso del algoritmo RBFS se actualizaría el valor-f de D a 17.
- B. En el siguiente paso del algoritmo RBFS se expandiría el nodo E y su valor b sería b(E) =15.
- C. El valor b del nodo D es b(D) = 18
- D. El valor b del nodo C es b(C) = 15
- 2) El siguiente hecho representa dos zonas de un edificio, zona este y zona oeste, y para cada zona se indica el número de la planta y el número de oficinas que hay en cada planta; por ejemplo, en la zona este tiene la planta 1 tiene 4 oficinas, la planta 2 tiene 6 oficinas y la planta 3 tiene 5 oficinas.

(edificio zona este planta 1 4 planta 2 6 planta 3 5 zona oeste planta 1 7 planta 2 10)

Indica cuál de los siguientes patrones es válido para almacenar el número de la planta en la variable ?p y el número de oficinas de dicha planta en la variable ?num de cualquier planta de la zona este.

- A. (edificio \$?x planta ?p ?num zona oeste \$?y)
- B. (edificio \$?x planta ?p ?num \$?y zona oeste \$?z)
- C. (edificio zona este \$?x planta ?p ?num \$?y))
- D. (edificio \$?x zona este \$?y planta ?p ?num \$?z)
- 3) Dada la Base de Hechos BH={(lista 17 8 43 26 2 9)¿cuántas instanciaciones de esta regla se producen tras el proceso de pattern-matching)

```
(defrule R1
(lista $?x ?e1 $?y ?e2 $?z)
(test (<= ?e1 ?e2))
```

- A. 3
- B. 4
- C. 5
- D. 6
- 4) Dado el árbol de juego de la figura y aplicando un procedimiento alfa-beta (expansión por la izquierda), ¿qué valor debería tener el nodo terminal sombreado para que se produzca el corte indicado en la figura?

- A. Con cualquier valor del nodo sombreado produciría un corte
- B. Menor que 2
- C. Mayor o igual que 4
- D. Nunca se podría producir el corte indicado (o ninguna de las anteriores respuestas es correcta)
- 5) ¿Cuántos nodos terminales se dejan de generar usando el algoritmo alfa-beta frente al Minimax en el siguiente árbol (expansión por la izquierda)?

- A. 6
- B. 7
- C. 8
- D. 9

- 6) Dado un problema de búsqueda en el que todos sus operadores tienen el mismo coste, indica cuál de las siguientes afirmaciones es **INCORRECTA**:
 - A. Un algoritmo de búsqueda TREE-SEARCH con una heurística admisible devolverá la solución más corta
 - B. Un algoritmo de búsqueda GRAPH-SEARCH con una heurística admisible devolverá la solución de menor coste
 - C. La estrategia de coste uniforme devolverá la solución de menor coste pero no la solución más corta
 - D. Un algoritmo de búsqueda por Profundización Iterativa (Iterative Deepening ID) encontraría la misma solución que un algoritmo en anchura

Sistemas Inteligentes – Examen Bloque 1, 24 enero 2024 Problema: 2 puntos

El siguiente grafo representa el espacio de estados de un problema. Los nodos del grafo son los estados del problema, las aristas conectan cada estado con sus sucesores, y el valor numérico de cada arista representa el coste de pasar de un estado al sucesor correspondiente. El valor junto a cada nodo representa el valor de la función heurística h(n) para dicho nodo. El estado inicial del problema es el nodo A y los estados finales son J y K.

- 1) (1 punto) Dibuja el ÁRBOL que se genera al realizar una búsqueda con un algoritmo A con control de nodos repetidos en OPEN y CLOSED con re-expansión, indicando junto a cada nodo el orden de expansión de éste (si se expande). Marca con una X los nodos eliminados. Indica el estado de la lista de nodos OPEN y CLOSED en cada momento, el camino solución obtenido y su coste. Ante igualdad de criterio de expansión, escoger el nodo alfabéticamente anterior.
- 2) (0.3 puntos) La respuesta encontrada en el apartado 1), ¿es la solución óptima? ¿La heurística es admisible? ¿Y consistente? Justifica tus respuestas.
- 3) (0.7 puntos) Dibuja los árboles generados por la aplicación de un algoritmo de profundización iterativa con backtracking (con control de nodos repetidos con re-expansión y escogiendo el nodo alfabéticamente anterior en caso de igualdad en el criterio de expansión). Indica junto a cada nodo su orden de expansión y marca con una **X** los nodos eliminados. ¿Qué solución encontraría? ¿Cuántas iteraciones realizaría? ¿Cuál es el máximo número de nodos almacenados en memoria (incluyendo también los de PATH) y cuáles son? Justifica tus respuestas.

SOLUCIÓN:

1)

OPEN	CLOSED				
A(15)					
B(20) D(22) C(23)	A(15)				
F(21) D(22) C(23) E(40)	A(15) B(20)				
D(22) C(23) J(29) E(40)	A(15) B(20) F(21)				
C(23) J(29) H(37) E(40) K(38)	A(15) B(20) F(21) D(22)				
F(20) G(26) J(29) H(37) E(40) K(38)	A(15) B(20) D(22) C(23)				
G(26) J(28) H(37) E(40) K(38)	A(15) B(20) D(22) C(23) F(20)				
K(21) J(28) H(37) E(40)	A(15) B(20) D(22) C(23) F(20) G(26)				
J(28) H(37) E(40)	A(15) B(20) D(22) C(23) F(20) G(26) K(21)				

Solución: A-C-G-K coste 21

2) La solución encontrada es la óptima. No es admisible porque h(C)=13 y $h^*(C)=11$, y h(G)=6, $h^*(G)=1$. Por tanto, no es consistente, que se puede observar en que no se cumple h(G)<=h(K)+c(G,K) (no se cumple h(G)<=h(F)+c(C,F)) (no se cumple h(G)<=h(F)+c(C,F)) (no se cumple h(G)<=h(F)+c(C,F)) (no se cumple h(G)<=h(F)+c(C,F)) (no se cumple h(G)<=h(F)+c(G,F)) (no se cumple h(G)<=h(F)+c(G)) (no se cumple h(G)<=h(F)+c(G)) (no se cumple h(G)<=h(F)+c(G)) (no se cumple h(G)<=h(G)) (no se

Solución: A-D-K. 3 iteraciones. Máximo número de nodos en memoria: 6 (ABCDEF).