Assignment04.md 2024-04-05

파라미터의 초기값을 $w = [1, 1, 1]^T$ 으로 하였을 때, 로지스틱 회귀의 hypothesis 함수를 수식으로 표현하고, 다음 표의 빈칸을 채워 완성하시오

로지스틱 회귀의 hypothesis 함수의 수식은 오른쪽과 같다

 $h(x) = \frac{1}{(1 + e^{-w^Tx})}$

No.	(x1, x2)	w^Tx	h(x)	Predicted y
1	(0, 1)	2	0.8807	1
2	(0, 2)	3	0.9525	1
3	(1, 1)	3	0.9525	1
4	(-3, 0)	-2	0.1192	0
5	(-1, 1)	1	0.7310	1
6	(-2, 0)	-1	0.2689	0

다음 표의 빈칸을 채워 완성시키고, 비용 함수 J(w) 의 값을 계산 하시오

No.	(x1, x2)	у	h(x)	ylog(h(x)) + (1 - y)log(1 - h(x))
1	(0, 1)	1	0.8807	log(0.8807) = -0.1269
2	(0, 2)	1	0.9525	log(0.9525) = -0.0485
3	(1, 1)	1	0.9525	log(0.9525) = -0.0485
4	(-3, 0)	0	0.1192	log(1 - 0.1192) = log(0.8808) = -0.1269
5	(-1, 1)	0	0.7310	log(1 - 0.7310) = -1.3132
6	(-2, 0)	0	0.2689	$\log(1 - 0.2689) = \log(0.7311) = -0.3132$

비용함수 J(w) = -1/6 * ((-0.1269) + (-0.0485) + (-0.0485) + (-0.1269) + (-1.3132) + (-0.3132)) = 0.3295

학습 상수를 a = 0.1 로 하고, 경사하강법을 이용하여 파라미터를 한 사이클 업데이트 시키고, 업데이트 된 파라미터 벡터 값을 구하시오

답: (0.98491, 1.02789, 0.99217)