Nume și prenume	Nr. matricol	S = suma cifrelor numărului matricol	a = Smod7	Data completării formularului
Popescu-Barbu Floricel	123456	21	0	20.11.2021

TEMĂ DE CASĂ NR. 2

(Tema de casă se depune pe CV în săptămâna consecutivă celei în care s-a efectuat lucrarea de laborator. Formularul completat se depune în format pdf.)

1.1. Enunțați legea lui Ohm și teoremele lui Kirchhoff. Indicați în fiecare caz bibliografia folosită.

Legea lui Ohm	Legea lui Ohm se referă la un conductor electric de rezistență R la capetele căruia se aplică o tensiune electrică U, conductorul fiind străbătut, ca efect, de un curent electric de intensitate I. Enunțul legii este:
	Intensitatea I este direct proporțională cu tensiunea aplicată U și invers
	proporțională cu rezistența R conform formulei I = U/R.
Prima teoremă a	Suma algebrică a intensităților curenților electrici care se întâlnesc într-un nod de
lui Kirchhoff (K-I)	rețea este egală cu zero: Σi _k =0.
	(Nodul de circuit reprezintă locul unde se întâlnesc cel puțin 3 ramuri (laturi) conductoare.)
A doua teoremă a lui Kirchhoff (K II)	De-a lungul conturului unui ochi de rețea, suma algebrica a tensiunilor electromotoare (E_n) ale surselor este egală cu suma algebrică a produselor dintre intensitatea curentului (I_n) și rezistența totală de pe fiecare latură (R_n): $\Sigma E_n = \Sigma R_n \ I_n$.
Bibliografie	Universitatea ``Politehnica`` din Timișoara, Catedra de Electrotehnica,
	Bazele electrotehnicii. Teorie si aplicații, Editura: Politehnica, Timișoara, Seria:
	Electrotehnica, ISBN: 978-973-625-587-8, 2014

1.2. Reproduceți simularea de la exemplul A) de la pag. 6-7 din lucrare pentru valoare "a" calculată pe baza numărului matricol pentru un interval de timp de 8 secunde.

1.3. Reproduceți simularea de la exemplul B) de la pag. 7-8 din lucrare pentru valoare "a" calculată pe baza numărului matricol pentru un interval de timp de 8 secunde.

1.4. Configurați un bloc State-Space astfel încât să implementeze MM-ISI (17).

Fișierul script "Dublu_cuadripol.m"			
Interfața blocului State-Spa	1 - a=0; 2 - R1=120+10*(a+1); 3 - R2=430-15*(a+2); 4 - C1=220*10^(-6); 5 - C2=C1+(a+5)*10^(-6); 6 - R=R1; 7 - C=C2; 8 - L=0.4+0.1*(a+0.5)		
interraça biocului State-Spa	ace		
	Function Block Parameters: Circuit dublu cuadripol State Space State-space model:		
	State Name: (e.g., 'position') OK Cancel Help Apply		