(NATURAL SCIENCE)

Vol. 63 No. 9 JUCHE106 (2017).

미크로파시료분해 - 분자형광광도법에 의한 어린이식료품속의 비라민 B,정량

최선애, 김동일, 림복남

비타민 B₅은 인체의 정상대사와 건강을 유지하기 위한 필수물질로서 어린이들의 성장 에서 매우 중요한 작용을 한다. 몸안에서 비타민 B₂이 결핍되면 성장발육이 멎으며 점막에 염증이 생길수 있다. 그러므로 식료품에서 비타민 B₂의 량을 정확히 분석하는것은 어린이 들의 건강을 보호증진시키는데서 매우 중요하다.

비타민 B₂의 분석방법에는 분광광도법, 형광광도법, 액체크로마토그라프법 등[1-4]이 있 는데 농마, 단백질을 비롯하여 여러가지 영양성분들과 생리활성물질이 많은 애기젖가루와 같 은 어린이식료품속의 비타민 B›을 분석하려면 조작이 복잡하고 분석시간이 길며 방해성분 의 영향을 세게 받는 결함이 있다.

미크로파시료분해는 시료분해과정에 오염이 적고 분석성분의 손실이 없으며 가열속도 가 빠르므로 시료분해시간이 수~수십min정도이며 용매량도 적고 공백감도도 낮은것으로 하 여 시료전처리에 광범히 리용되고있다.

우리는 미크로파시료분해 — 분자형광광도법으로 애기젖가루를 비롯한 어린이식료품속 의 비타민 B₂을 정량하기 위한 연구를 하였다.

실 험 방 법

장치로는 분자형광광도계(《RF-5000》), 미크로파시료분해장치(《MD6C-6H》), 원심분 리기(《Allgra X-12 Centrifuge》)를, 시약으로는 100µg/mL 비타민 B2표준용액, 0.1mol/L HCl 용액, 1mol/L NaOH용액, 4% KMnO₄용액, 빙초산, 3% H₂O₂용액을 리용하였다.

시료 1g을 미크로파시료분해장치에서 0.1mol/L HCl용액으로 분해한 다음 원심분리 및 려과하여 단백질 등 부유물을 제거하여 시료용액을 제조하였다. 다음 10mL들이 눈금플라 스크에 일정한 량의 비타민 B2표준용액 또는 시료용액을 넣고 여기에 빙초산 1mL, KMnO4 용액 0.5mL를 넣고 흔들어주었다. 2min후 H₂O₂용액 0.5mL를 넣고 흔들어 용액의 색이 탈 색되게 한 다음 눈금까지 증류수를 채우고 려기파장 440nm, 형광파장 540nm에서 형광세기 를 측정하여 비타민 B₂을 정량하였다.

실험결과 및 해석

비라민 B₂의 려기 및 형광스펙트르 비타민 B₂의 려기 및 형광스펙트르는 그림 1과 같다. 그림 1에서 보는바와 같이 비타민 B₂의 려기파장은 440nm이며 형광극대파장은 540nm 이다.

pHO 영향 비타민 B₂의 형광세기에 미치는 pH의 영향은 그림 2와 같다.

그림 1. 비타민 B₂의 려기(1) 및 형광(2)스펙트르 비타민 B₂의 농도 2 μ g/mL

그림 2. 비타민 B₂의 형광세기에 미치는 pH의 영향 비타민 B₂의 농도 2μg/mL

그림 2에서 보는바와 같이 비타민 B_2 의 형광세기는 pH가 $1\sim6$ 일 때에는 거의 변하지 않지만 8이상에서 감소하기 시작하여 12에서는 완전히 약해진다. 이것은 비타민 B_2 이 pH 8이상에서는 파괴되기때문이다. 따라서 pH를 8이하로 설정하였다.

초산과 과망간산칼리뭄의 영향 방해성분들을 산화제거하기 위하여 리용한 빙초산과 과망 간산칼리움의 영향은 그림 3과 같다.

그림 3. 빙초산(1)과 과망간산칼리움(2)의 영향 비타민 B₂의 농도 2 μ g/mL

그림 3에서 보는바와 같이 빙초산과 4% 과 망간산칼리움용액을 3mL 넣어도 비타민 B_2 의 형 광세기는 거의 변하지 않는다.

안정성검토 산성매질에서 비타민 B_2 의 안정성을 검토한데 의하면 직사광선이 없는 조건에서 24h동안 방치하여도 비타민 B_2 의 형광세기는 거의 일정하였다.

방해성분의 영향 $2\mu g/mL$ 의 비타민 B_2 을 정량할 때 $\pm 5\%$ 의 상대오차를 주는 방해성분들의 최대허용량은 표 1과 같다.

표 1. 방해성분들의 최대허용량

방해성분	비타민 B ₁	비타민 B3	비타민 B ₆	비타민 B ₁₂	비타민 C	Na ⁺	Ca ²⁺	Mg^{2+}	Zn ²⁺
최대허용량 /(mg·mL ⁻¹)	50	3 000	40	2 000	30	50	70	60	80

표 1에서 보는바와 같이 론문에서 제기한 방법으로 비타민 B_2 을 정량할 때 방해성분들이 영향을 거의 미치지 않는다는것을 알수 있다.

검량선작성 비타민 B_2 의 농도 $0\sim10\mu g$ 에서 검량 선을 작성하였다.(그림 4)

2μg/mL의 비타민 B₂을 5번 정량할 때 변동결 수는 3.8%이며 검출아래한계는 0.001μg/mL이다.

대상물분석 합리적인 미크로파시료분해조건(표 2)에서 어린이식료품속의 비타민 B₂을 분자형광광

도법과 고속액체크로마토그라프법으로 정량한 결과는 표 3과 같다.

표 2. 미크로파시료분해조건

시료량/g	산의 량/mL	단계	온도/℃	유지시간/min	회수률/%
		1	80	3	
1.0	5	2	120	5	99.99
		3	180	4	

표 3. 어린이식료품속의 비라민 B_2 의 정량결과 $(\cdot 10^{-2} \text{ mg/g})$

시료구분	분자형광광도법				고속액체크로마토그라프법			
	회수	비타민 B2량	표준편차	변동곁수/%	회수	비타민 B ₂ 량	표준편차	변동곁수/%
애기젖가루	5	0.542	0.013	2.41	5	0.502	0.020	4.02
흰쌀암가루	5	0.435	0.019	2.73	5	0.446	0.016	3.61
영양암가루	5	0.481	0.013	2.67	5	0.476	0.019	4.07
콩우유가루	5	0.480	0.012	2.52	5	0.478	0.017	3.50

표 3에서 보는바와 같이 분자형광광도법으로 어린이식료품속의 비타민 B_2 을 변동곁수 3%이하로 정량할수 있으며 고속액체크로마토그라프법보다 변동곁수가 작다는것을 알수 있다.

맺 는 말

미크로파시료분해 - 분자형광광도법으로 어린이식료품속의 비타민 B_2 을 정량하였다. 염산으로 분해한 시료를 과망간산칼리움과 초산으로 방해성분들을 제거한 다음 려기파장 440nm, 형광파장 540nm에서 형광세기를 측정하면 비타민 B_2 을 3%이하의 정밀도로 정량할수 있다.

참 고 문 헌

- [1] C. Zhi et al.; Anal. Chim. Acta, 569, 169, 2006.
- [2] 王学艳 等; 中国医药工业杂志, 38, 5, 378, 2007.
- [3] 张志清 等; 食品科学, 31, 14, 212, 2010.
- [4] 蒋梭树 等; 食品科学, 29, 12, 635, 2008.

주체106(2017)년 5월 5일 원고접수

Determination of Vitamin B₂ in Infant Food by the Microwave Digestion-Molecular Fluorometry

Choe Son Ae, Kim Tong Il and Rim Pok Nam

We determined the vitamin B_2 in infant food below 3% of coefficient of variation by the microwave digestion-molecular fluorometry.

Key words: vitamin B₂, molecular fluorometry