Tobias Riedel, 379133 Phil Pützstück, 377247 Kevin Holzmann, 371116 Gurvinderjit Singh, 369227

Hausaufgabe 9

Aufgabe 1

a)

Die Exponentialfunktion $\exp(x)$ ist grundsätzlich für ganz \mathbb{R} definiert. Wir können in der gegebenen Funktion nie durch 0 teilen noch die Wurzel einer negativen Zahl ziehen. Es folgt, dass der maximale Definitionsbereich der reellen Funktion $\exp(1-4x^2)$ durch \mathbb{R} gegeben ist.

b) (i)

Das größte offene Intervall in dem die Funktion streng monoton steigend ist, ist $(-\infty, 0)$. Das größte offene Intervall in dem die Funktion streng monoton fallend ist, ist $(0, \infty)$.

(ii) Seien $x, y \in \mathbb{R}$ mit x < y gegeben.

Falls $x, y \in (-\infty, 0)$, dann gilt $1-4x^2 < 1-4y^2$ und da die Exponentialfunktion streng monoton wachsend ist (III 3.21 c) auch $\exp(1-4x^2) < \exp(1-4y^2)$. Also ist $\exp(1-4x^2)$ streng monoton wachsend im Intervall $(-\infty, 0)$ (V 1.7a).

Falls $x, y \in (0, \infty)$, dann gilt $1 - 4x^2 > 1 - 4y^2$ und da die Exponentialfunktion streng monoton wachsend ist (III 3.21 c) auch $\exp(1 - 4x^2) > \exp(1 - 4y^2)$. Also ist $\exp(1 - 4x^2)$ streng monoton fallend im Intervall $(-\infty, 0)$ (V 1.7b).

(iii)

Wenn man nun die Intervalle $(-\infty, 0]$ und $[0, \infty)$ betrachtet, ändert sich nichts daran, dass f in diesen streng monoton wächst bzw. fällt, denn für |x| > 0 folgt $x^2 > 0^2 = 0$ und damit $1 - 4 \cdot 0^2 > 1 - 4x^2$, d.h. f(0) > f(x) für $x \in (-\infty, 0)$ oder $x \in (0, \infty)$. Also bleibt f in beiden halboffenen Intervallen streng monoton steigend bzw. fallend. **EVTL. VERBESSERUNG**

c)

Für $x \in \mathbb{R}$ gilt grundsätzlich $\exp(x) > 0$ (III 3.21 b), also kann die Exponentialfunktion keine Nullstellen besitzen. Damit kann die gegebene Funktion ebenfalls keine Nullstellen besitzen.

Da wir in Aufgabenteil b) festgestellt haben, dass f im Intervall $(-\infty, 0]$ streng monoton wächst und im Intervall $[0, \infty)$ streng monoton fällt, folgt, dass $\forall x \in \mathbb{R} \colon f(0) \geq f(x)$ gilt. Damit ist 0 eine Extremal- und insbesondere auch Maximalstelle von f. Hinzukommend kann es keine weiteren (lokalen) Maximal- bzw. Minimalstellen geben. Denn es folgt aus der strengen Monotonie:

Es gilt für jedes $x \in (-\infty, 0)$, dass $y, z \in (-\infty, 0)$ mit y < x < z existieren. Analog gilt für jedes $x \in (0, \infty)$, dass $y, z \in (0, \infty)$ mit y < x < z existieren.

Insgesamt gilt aber $\{0\} \cup (-\infty,0) \cup (0,\infty) = \mathbb{R}$. Somit kann es abgesehen von 0 keine weiteren Extremalwerte für f geben.

Aufgabe 2

a)

Zuerst sollten wir die Gleichung so umformen, dass nur noch ein x vorkommt:

$$ax^{2} + bx + c = 0 \qquad | \div a$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0 \qquad | -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a} \qquad | +\left(\frac{b}{2a}\right)^{2}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a} \quad | \text{ quad. Ergänzung}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$$

Nun lässt sich die Gleichung nach x lösen:

$$\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \quad |\sqrt{x} + \frac{b}{2a} = \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} \quad |-\frac{b}{2a}|$$
$$x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}$$

Dies lässt sich weiter vereinfachen:

$$x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a} \cdot \frac{2a}{2a}} = \frac{-b \pm \sqrt{\left(\frac{b}{2a}\right)^2 \cdot (2a)^2 - \frac{c}{a} \cdot (2a)^2}}{2a}$$
$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Damit wären wir bei der allbekannten Mitternachtsformel. Die sogenannte Diskriminante, b^2-4ac , welche unter der Wurzel steht, bestimmt die Anzahl der Lösungen (Nullstellen). Gilt $b^2-4ac<0$, so gibt es keine Lösungen (Nullstellen) in \mathbb{R} , gilt $b^2-4ac=0$ so gibt es genau eine Lösung (Nullstelle) in \mathbb{R} , da stets $\pm\sqrt{0}=0$ gilt. Ist $b^2-4ac>0$ so gibt es genau 2 Lösungen (Nullstellen) in \mathbb{R} .

b)

Hier lässt sich einfach $z=x^2$ substituieren. Dann lassen sich die Nullstellen dieses Polynoms in z wie in a) beschrieben finden:

$$ax^{4} + bx^{2} + c = 0 \implies az^{2} + bz + c = 0 \implies z = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Dann kann man wieder resubstituieren um die Nullstellen in des ursprünglichen Polynoms in z zu erhalten. Es gilt $x=\pm\sqrt{z}$. Seien z_1,z_2 die möglichen Nullstellen des Polynoms in z. Es gilt nun

$$x_{1,2} = \pm \sqrt{z_1}$$
 und $x_{3,4} = \pm \sqrt{z_2}$

Insofern das Polynom in x genau 4 Nullstellen in $\mathbb R$ besitzt. Insgesamt lässt sich dies auch alles in einem schreiben:

$$x = \pm \sqrt{\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}$$

c)

Wählt man nun $a,b,c\in\mathbb{C}$ und sucht nach komplexen Nullstellen, so wird man nach dem Fundamentalsatz der Algebra (IV 1.7) auch stets mindestens eine finden. Dies liegt grundlegend daran, dass die Gleichung $x=\sqrt{z}$ für $x,z\in\mathbb{C}$ stets in \mathbb{C} lösbar ist, auch wenn $z\in\mathbb{R}$ mit z<0, da $\sqrt{-1}=i$ gilt, wo i die imaginäre Einheit von \mathbb{C} ist.

Aufgabe 3

a)

Zu gegebenem $\varepsilon > 0$ wählen wir $0 < \delta < \varepsilon$. Da stets $x^2 > 0$ sowie |x| > 0 für $x \in \mathbb{R} \setminus \{0\}$ (II 2.8 a4 und II 2.12) gilt, folgt:

$$\forall x \in \mathbb{R} \setminus \{0\}, \ |x - 0| < \delta \Longrightarrow |f(x) - 0| = \left| \frac{x^2}{|x|} \right| = \frac{x^2}{|x|} < \frac{\delta^2}{\delta} = \delta < \varepsilon$$

Somit gilt $\lim_{x \to 0} f(x) = 0$.

b) Wegen $1 \notin [0,1) \cup (1,2]$ gilt

$$g(x) = \frac{x^3 + x^2 - x - 1}{x - 1} = \frac{(x - 1)(x + 1)^2}{x - 1} = (x + 1)^2$$

Seien $x \in [0,1) \cup (1,2]$ und $\epsilon > 0.$ δ sei so gewählt, dass $\delta < \frac{\varepsilon}{5}$. Außerdem gelte

$$|x-1|<\delta$$

Nun ist

$$|(x+1)^2 - 4| < (x+1)^2 + 4 < 5(x+1) = 5|x+1| = 5\delta < \varepsilon$$

Folglich gilt die Definition des Grenzwerts

$$\forall x \in [0,1) \cup (1,2]: |x-1| < \delta \Rightarrow |g(x)-g(1)| < \varepsilon$$

Also $\lim_{x \to 1} g(x) = 4$.

Aufgabe 4

Wir benutzen im folgenden, dass $\lim_{x\to x_0} f(x) = f(x_0)$ gilt, insofern f an der Stelle x_0 definiert ist. Dies ist zu interpretieren als eine unendlich nahe Annäherung von x an x_0 , was in diesen Fällen eben äquivalent zum Einsetzen von x_0 in f ist.

a)

Da f im Punkt -1 definiert ist, lässt sich $x \to -1$ durch Einsetzen von -1 unendlich nahe approximieren:

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{3x - 1}{2x - 2} = \frac{3(-1) - 1}{2(-1) - 2} = \frac{-4}{-4} = 1$$

b)

Die gegebene Funktion lässt sich wie folgt umformen:

$$g(x) = \frac{1}{2-x} - \frac{12}{8-x^3} = \frac{1}{2-x} - \frac{12}{(2-x)(x^2+2x+4)} = \frac{x^2+2x+4-12}{(2-x)(x^2+2x+4)}$$
$$= \frac{(x-2)(x+4)}{-(x-2)(x^2+2x+4)} = -\frac{x+4}{x^2+2x+4}$$

Nun lässt sich 2 einsetzen, um 2 mit x unendlich nahe zu approximieren:

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} \frac{1}{2 - x} - \frac{12}{8 - x^3} = \lim_{x \to 2} - \frac{x + 4}{x^2 + 2x + 4} = -\frac{2 + 4}{2^2 + 2 \cdot 2 + 4} = -\frac{1}{2}$$

c)

Die gegebene Funktion lässt sich wieder umformen, sodass der Grenzwert wie in den vorherigen Aufgabenteilen durch Einsetzen bestimmt werden kann. Mit Polynomdivision folgt:

$$h(x) = \frac{2x^4 - 6x^3 + x^2 + 3}{x - 1} = 2x^3 - 4x^2 - 3x - 3$$

Dieses Polynom ist für x = 1 definiert. Somit gilt:

$$\lim_{x \to 1} h(x) = \lim_{x \to 1} \frac{2x^4 - 6x^3 + x^2 + 3}{x - 1} = \lim_{x \to 1} 2x^3 - 4x^2 - 3x - 3$$
$$= 2(1)^3 - 4(1)^2 - 3(1) - 3 = -8$$

Aufgabe 5

(i)

Die gegebene Funktion lässt sich wie folgt umschreiben:

$$f(x) = \frac{x^4 - 2x}{2x^4 + 1} = \frac{1 - \frac{2}{x^3}}{2 + \frac{1}{x^4}}$$

Wir wissen mittlerweile, dass $\lim_{x\to\infty}\frac{c}{x^n}$ für $n\in\mathbb{N}$ und eine Konstante $c\in\mathbb{R}$ gegen 0 konvergiert. Dies ist nicht nur bei Folgen so. Grundsätzlich folgt dies aus dem Satz von Archimedes (II 4.10), also daraus dass \mathbb{N} in \mathbb{R} nicht nach oben beschränkt ist, da dann zu jedem $x\in\mathbb{R}$ ein $x'\in\mathbb{N}$ mit x'>x existiert, wobei dann die Folge $\left(\frac{c}{x'^n}\right)_{x\in\mathbb{N}}$ eine Nullfolge ist.

Weiterhin konvergieren auch konstante Funktionen gegen ihre Konstante. Insgesamt sind Nenner und Zähler konvergent, sodass folgt:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1 - \frac{2}{x^3}}{2 + \frac{1}{x^4}} = \frac{\lim_{x \to \infty} 1 - \frac{2}{x^3}}{\lim_{x \to \infty} 2 + \frac{1}{x^4}} = \frac{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{2}{x^3}}{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \frac{1}{x^4}} = \frac{1 - 0}{2 + 0} = \frac{1}{2}$$

(ii)

Dies lässt sich analog zu den Teilaufgaben aus Nr. 4 umformen, um dann durch Einsetzen, unendlich nahe zu approximieren. Die gegebene Funktion lässt sich wie folgt umformen:

$$g(x) = \frac{1}{2-x} - \frac{4}{4-x^2} = \frac{1}{2-x} - \frac{4}{(2-x)(2+x)} = \frac{2+x-4}{(2-x)(2+x)} = -\frac{1}{2+x}$$

Die umgeformte Funktion ist für x=2 definiert. Es folgt:

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} \frac{1}{2 - x} - \frac{4}{4 - x^2} = \lim_{x \to 2} - \frac{1}{2 + x} = -\frac{1}{2 + 2} = -\frac{1}{4}$$