ICS663: Pattern Recognition

Department of Information and Computer Sciences
University of Hawai`i at Manoa

Kyungim Baek

ICS663 (Fall 2015)

1

Previously...

- Parametric density estimation
 - Estimating $P(\omega_i)$ is not very difficult in the context of supervised learning
 - Estimating $p(\mathbf{x} \mid \omega_i)$ is hard, especially in high-dimensional feature spaces and when the number of training samples available seems to be too small
 - Assumption: p(x | ω_i) = p(x | ω_i, θ) known parametric form, ∃ a 'true' θ₀
 - Two approaches
 - Maximum-Likelihood estimation
 - Bayesian estimation

ICS663 (Fall 2015)

2

Announcement

- Homework assignment #1
 - Due: Monday September 21, by 5:00 PM
- Project proposal
 - Due: Wednesday Septmber 23, by 5:00 PM
 - − Presentation (~ 10 minutes)
 - Monday (9/28)
 - BJ, Thomas, Tyson, Sharif, Danny, Jeremy
 - Wednesday (9/30)
 - Tetsuya, Kelly, Nurit
- Exam I: Wednesday, October 7

ICS663 (Fall 2015

Lecture 6

- Parametric Density Estimation
 - Maximum-Likelihood Estimation

ICS663 (Fall 2015)

±3)

Previously...

- Maximum-Likelihood (ML) estimation: parameters of probabilistic distributions are fixed but unknown values
 - Parameters are unknown constants to be identified through training
 - Best estimate of parameter values is achieved by maximizing the probability of obtaining the samples observed

ICS663 (Fall 2015)

5

ML Problem Statement

- Let $D = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ and divided into c data sets according to the class as $D_1, D_2, ..., D_c$
- Our goal is to determine θ_{ML} (value of θ that is most likely to give rise to the observed data)

• Find $\mathbf{\theta}_{i}^{ML}$ such that $\mathbf{\theta}_{i}^{ML} = \max_{\mathbf{\theta}_{i}} p(D_{i} \mid \mathbf{\theta}_{i}) = \max_{\mathbf{\theta}_{i}} \prod_{\mathbf{x}_{k} \in D_{i}} p(\mathbf{x}_{k} \mid \mathbf{\theta}_{i})$

Maximum-Likelihood Estimation

- General principle
 - Assume we have c classes and $p(\mathbf{x} \mid \omega_i) \equiv p(\mathbf{x} \mid \omega_i, \theta_i)$
 - For example, if $p(\mathbf{x} \mid \omega_i, \theta_i) \sim N(\mu_i, \Sigma_i)$ then

$$\mathbf{\theta}_i = (\mathbf{\mu}_i, \mathbf{\Sigma}_i) = (\mu_i^1, \mu_i^2, ..., \sigma_i^{11}, \sigma_i^{22}, ..., \text{cov}(x_i^m, x_i^n), ...)$$

- Use the information provided by the training samples to estimate $\theta = (\theta_1, \theta_2, ..., \theta_c)$, each θ_i (i = 1, 2, ..., c) is associated with each category
- Assumption: independent and identically distributed (i.i.d.) samples

ICS663 (Fall 2015)

ML Estimation (cont'd)

• Suppose that *D* contains *n* samples, \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_n . The likelihood of $\boldsymbol{\theta}$ with respect to *D* is:

$$p(D \mid \mathbf{\theta}) = \prod_{k=1}^{n} p(\mathbf{x}_{k} \mid \mathbf{\theta}) = L(\mathbf{\theta})$$

• ML estimate of θ is, by definition the value θ_{ML} that maximizes $p(D|\theta)$

"It is the value of θ that best agrees with the actually observed training sample"

ICS663 (Fall 2015)

0

Log-Likelihood

- The value θ of maximizing the likelihood function also maximizes its logarithm, known as the log-likelihood function
- ML estimate
- $l(\mathbf{\theta}) = \ln[p(D \mid \mathbf{\theta})] = \sum_{k=1}^{n} \ln[p(\mathbf{x}_k \mid \mathbf{\theta})]$
 - Let $\theta = (\theta_1, \theta_2, ..., \theta_p)^t$ and let ∇_{θ} be the gradient operator $\nabla_{\boldsymbol{\theta}} = \left[\frac{\partial}{\partial \theta_1}, \frac{\partial}{\partial \theta_2}, \dots, \frac{\partial}{\partial \theta_n} \right]^{T}$
 - New problem statement: determine $oldsymbol{ heta}$ that maximizes the loglikelihood $\theta_{\text{ML}} = \arg \max l(\theta)$
 - ML condition:

ICS663 (Fall 2015)

$$\nabla_{\mathbf{\theta}}[l(\mathbf{\theta})] = \sum_{k=1}^{n} \nabla_{\mathbf{\theta}} \left[\ln p(\mathbf{x}_{k} \mid \mathbf{\theta}) \right] = 0$$

Graphical View of ML Estimation

- Top graph shows several training points in one dimension, known or assumed to be drawn from a Gaussian of a particular variance, but unknown mean. Four of the infinite number of candidate source distributions are shown in dashed lines.
- The middle figure shows the likelihood $p(D \mid \theta)$ as a function of the mean. If we had a very large number of training points, this likelihood would be very narrow. The value that maximizes the likelihood is marked by θ_{MI} ; it also maximizes the logarithm of the likelihood shown at the bottom.
- · Note: even though they look similar, the likelihood $p(D \mid \theta)$ is shown as a function of θ whereas the conditional density $p(x | \theta)$ is shown as a function of x.

ML Estimation Summary

$$P(\omega_{i} \mid \mathbf{x}) = P(\omega_{i} \mid \mathbf{x}, \mathbf{\theta}_{i}) = \underbrace{\frac{p(\mathbf{x} \mid \omega_{i}, \mathbf{\theta}_{i})}{p(\mathbf{x} \mid \mathbf{\theta}_{i})}}_{p(\mathbf{x} \mid \mathbf{\theta}_{i})}$$

$$p(\mathbf{x} \mid \hat{\mathbf{\theta}})$$
maximize the likelihood:
$$\underbrace{\arg \max_{\mathbf{\theta}} p(D \mid \mathbf{\theta})}_{\sum_{k=1}^{n} \ln p(\mathbf{x}_{k} \mid \mathbf{\theta})} \Rightarrow \underbrace{\sum_{k=1}^{n} \ln p(\mathbf{x}_{k} \mid \mathbf{\theta})}_{\text{log-likelihood}}$$

The Gaussian Case: Unknown µ

• Samples are drawn from a multivariate normal population: $p(\mathbf{x}_i | \mathbf{\mu}) \sim N(\mathbf{\mu}, \mathbf{\Sigma})$

In
$$p(\mathbf{x}_k \mid \boldsymbol{\mu}) = -\frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x}_k - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

$$\nabla_{\boldsymbol{\mu}} \ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

$$\stackrel{\partial}{\partial \mathbf{x}} [\mathbf{y}' \mathbf{x}] = \mathbf{y}$$

$$\stackrel{\partial}{\partial \mathbf{x}} [\mathbf{x}' \mathbf{M} \mathbf{x}] = (\mathbf{M} + \mathbf{M}') \mathbf{x}$$

$$\stackrel{\partial}{\partial \mathbf{x}} [\mathbf{x}' \mathbf{M} \mathbf{x}] = (\mathbf{M} + \mathbf{M}') \mathbf{x}$$

• The ML estimate for μ must satisfy:

$$\sum_{k=1}^{n} \mathbf{\Sigma}^{-1} (\mathbf{x}_k - \mathbf{\mu}_{\mathrm{ML}}) = \mathbf{0}$$

• Multiplying by Σ and rearranging, we obtain: $\mu_{\text{ML}} = \frac{1}{2} \sum_{i=1}^{n} x_{i}$

Just the arithmetic average of the training samples!

ICS663 (Fall 2015)

ICS663 (Fall 2015)

12

Unknown μ and σ

• Univariate case: $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$

$$\ln p(x_k \mid \mathbf{\theta}) = -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} (x_k - \mu)^2$$

$$\nabla_{\boldsymbol{\theta}} \ln p(x_k \mid \boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \mu} \ln p(x_k \mid \boldsymbol{\theta}) \\ \frac{\partial}{\partial \sigma^2} \ln p(x_k \mid \boldsymbol{\theta}) \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sigma^2} (x_k - \mu) \\ -\frac{1}{2\sigma^2} + \frac{(x_k - \mu)^2}{2(\sigma^2)^2} \end{pmatrix}$$

ICS663 (Fall 2015)

Unknown μ and σ (cont'd)

• The ML estimate for μ and σ^2 must satisfy:

$$\left(\sum_{k=1}^{n} \frac{1}{\sigma_{\text{ML}}^{2}} (x_{k} - \mu_{\text{ML}}) = 0\right) \tag{1}$$

$$\left[-\sum_{k=1}^{n} \frac{1}{\sigma_{\text{ML}}^{2}} + \sum_{k=1}^{n} \frac{(x_{k} - \mu_{\text{ML}})^{2}}{(\sigma_{\text{ML}}^{2})^{2}} = 0 \right]$$
 (2)

• Combining (1) and (2), one obtains:

$$\mu_{\text{ML}} = \frac{1}{n} \sum_{k=1}^{n} x_k$$
 ; $\sigma_{\text{ML}}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \mu_{\text{ML}})^2$

ICS663 (Fall 2015)

. .

MLE: Multivariate Gaussians

$$\ln p(\mathbf{x}_k \mid \boldsymbol{\mu}) = -\frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x}_k - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x}_k - \boldsymbol{\mu})$$

The log-likelihood function of μ and Σ is:

$$l(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{k=1}^{n} \ln p(\mathbf{x}_{k} | \boldsymbol{\mu})$$

$$= -\frac{nd}{2} \ln 2\pi - \frac{n}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})$$

$$= -\frac{nd}{2} \ln 2\pi - \frac{n}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k}^{t} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{k} - 2\boldsymbol{\mu}^{t} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{k}) + n\boldsymbol{\mu}^{t} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$$

ICS663 (Fall 2015)

MLE: Multivariate Gaussians (cont'd)

$$\frac{\partial l(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}} = \frac{\partial}{\partial \boldsymbol{\mu}} \left(-\frac{nd}{2} \ln 2\pi - \frac{n}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k}^{t} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{k} - 2\boldsymbol{\mu}^{t} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{k}) + n\boldsymbol{\mu}^{t} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right) \\
= -\frac{1}{2} \left(-2\boldsymbol{\Sigma}^{-1} \sum_{k=1}^{n} \mathbf{x}_{k} + 2n\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right) \\
= \mathbf{0} \\
\frac{\partial}{\partial \mathbf{x}} [\mathbf{y}^{t} \mathbf{x}] = \frac{\partial}{\partial \mathbf{x}} [\mathbf{x}^{t} \mathbf{y}] = \mathbf{y} \\
\frac{\partial}{\partial \mathbf{x}} [\mathbf{x}^{t} \mathbf{M} \mathbf{x}] = (\mathbf{M} + \mathbf{M}^{t}) \mathbf{x}$$

Therefore, $\Sigma^{-1}\sum_{k=1}^{n}\mathbf{x}_{k}=n\Sigma^{-1}\boldsymbol{\mu}$

This gives the ML solution,

$$\mu_{\mathrm{ML}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$$

ICS663 (Fall 2015)

,

MLE: Multivariate Gaussians (cont'd)

- For Σ , we need *trace* operator: $tr(\mathbf{A}) = \Sigma_{i=1...n} a_{ii}$
- Trace is invariant under cyclical permutations of matrix product: tr(ABC) = tr(CAB) = tr(BCA)
- Derivatives of quadratic forms:
 - $\mathbf{x}^{t} \mathbf{A} \mathbf{x} = tr(\mathbf{x}^{t} \mathbf{A} \mathbf{x}) = tr(\mathbf{x} \mathbf{x}^{t} \mathbf{A})$

 $\mathbf{x}^{t} \mathbf{A} \mathbf{x}$ is a scalar

- Derivative of $tr(BA) = B^t$

$$\frac{\partial}{\partial a_{ii}} tr(\mathbf{B}\mathbf{A}) = \frac{\partial}{\partial a_{ii}} \sum_{k} \sum_{l} b_{kl} a_{lk} = b_{ji}$$

- Therefore

$$\frac{\partial}{\partial \mathbf{A}} \mathbf{x}^t \mathbf{A} \mathbf{x} = \frac{\partial}{\partial \mathbf{A}} tr(\mathbf{x} \mathbf{x}^t \mathbf{A}) = (\mathbf{x} \mathbf{x}^t)^t = \mathbf{x} \mathbf{x}^t$$

ICS663 (Fall 2015)

17

ML Analysis

- **Geometrical view**: samples are a cloud of points whose center is the sample mean (employed as ML estimator)
- **ML Bias**: ML estimator σ^2_{ML} for σ^2 is **biased** over a small population of samples, but it is **asymptotically unbiased** as the number of training samples becomes very large

$$E\left[\sigma_{\text{ML}}^2\right] = E\left[\frac{1}{n}\sum_{k=1}^n(x_k - \mu_{\text{ML}})^2\right] = \frac{n-1}{n}\sigma^2 \neq \sigma^2 \qquad \boxed{\text{See the notes.}}$$

• The variance over a population of *n* training samples is:

$$\tilde{\sigma}^2 = \frac{n}{n-1} \sigma_{\rm ML}^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \mu_{\rm ML})^2$$
 unbiased estimator for σ^2

 An elementary unbiased estimator for Σ is the sample covariance matrix:

 $\mathbf{C} = \frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{x}_k - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_k - \boldsymbol{\mu}_{\mathrm{ML}})^t$

ICS663 (Fall 2015)

19

MLE: Multivariate Gaussians (cont'd)

$$\begin{split} l(\boldsymbol{\mu}, \boldsymbol{\Sigma}) &= -\frac{nd}{2} \ln 2\pi - \frac{n}{2} \ln |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu}) \\ &= -\frac{nd}{2} \ln 2\pi + \frac{n}{2} \ln |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{k=1}^{n} tr[(\mathbf{x}_{k} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu})] \\ &= -\frac{nd}{2} \ln 2\pi + \frac{n}{2} \ln |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{k=1}^{n} tr[(\mathbf{x}_{k} - \boldsymbol{\mu})(\mathbf{x}_{k} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1}] \end{split}$$

$$\frac{\partial l(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}^{-1}} = \frac{n}{2} \boldsymbol{\Sigma} - \frac{1}{2} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}) (\mathbf{x}_{k} - \boldsymbol{\mu})^{t} = \mathbf{0}$$

$$\frac{\partial}{\partial \mathbf{A}} \ln |\mathbf{A}| = \mathbf{A}^{-t}$$

This give the ML solution,

$$\Sigma_{\mathrm{ML}} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_{k} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{k} - \boldsymbol{\mu}_{\mathrm{ML}})^{t}$$

ICS663 (Fall 2015)

1.9

MLE Example Problem

• Suppose we toss a coin n times and observe the outcomes. We model the coin by a single parameter θ that represents the probability of tossing heads. Given n independent observed tosses $D = \{x_1, x_2, ..., x_n\}$, where $x_i = 0$ if tail and $x_i = 1$ if head, let n_H be the number of times the coin turned up heads. Then, the likelihood function is:

$$P(D|\theta) = \prod_{k=1}^{n} P(x_k|\theta) = \theta^{n_H} (1-\theta)^{n-n_H}$$

Show that the maximum likelihood estimate of θ is $\hat{\theta}_{ML} = \frac{n_H}{n}$.

ICS663 (Fall 2015)

20