Signals and Systems - Spring 2024

Problem Set 1

Issued: Feb. 29, 2024 Due: Mar. 7, 2024

Reading Assignments:

Signals and Systems (OWN), Chapter 1; Supplementary notes, Chapter 1-3

Problem 1 OWN, Problem 1.15

Problem 2 OWN, Problem 1.16

Problem 3 OWN, Problem 1.27

Problem 4 OWN, Problem 1.28(a)(c)(d)(g)

Problem 5 OWN, Problem 1.31

Problem 6 Reconstructing CT Signals from Samples

Let a(t), b(t), and c(t) represent the following functions of time.

Let $x_c(t)$ represent a continuous-time signal derived from the discrete-time signal $x_d[n]$ using a zero-order hold, as illustrated below, where consecutive samples of x_d are separated by T seconds in x_c .

a. Determine an expression for x_c(t) in terms of the samples x_d[n] and the functions a(t), b(t), and c(t).

Let $y_c(t)$ represent a continuous-time signal derived from the discrete-time signal $y_d[n]$ using a piecewise linear interpolator, so that successive samples of y_d are connected by straight line segments.

- b. Determine an expression for y_c(t) in terms of the samples y_d[n] and the functions a(t), b(t), and c(t).
- c. Determine an expression for $\frac{dy_c(t)}{dt}$ in terms of the samples $y_d[n]$ and the functions $a(t),\,b(t),$ and c(t).

Problem 7 Missing Parameters

Consider the following system.

Assume that X is the unit-sample signal, $x[n] = \delta[n]$. Determine the values of α and β for which y[n] is the following sequence (i.e., y[0], y[1], y[2], . . .):

$$0, 1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \dots$$