

SEQUENCE LISTING

<110> ARAI, Kenichi
MASAI, Hisao

<120> Human H37 Protein and cDNA Encoding The Protein

<130> 2001-0531A/WMC/00653

<140> 09/830,647
<141> 2001-04-30

<150> JP No. 10-311408
<151> 1998-10-30

<160> 4

<210> 1
<211> 674
<212> PRT
<213> Homo sapiens

<400> 1
Met Asn Ser Gly Ala Met Arg Ile His Ser Lys Gly His Phe Gln Gly
1 5 10 15
Gly Ile Gln Val Lys Asn Glu Lys Asn Arg Pro Ser Leu Lys Ser Leu
20 25 30
Lys Thr Asp Asn Arg Pro Glu Lys Ser Lys Cys Lys Pro Leu Trp Gly
35 40 45
Lys Val Phe Tyr Leu Asp Leu Pro Ser Val Thr Ile Ser Glu Lys Leu
50 55 60
Gln Lys Asp Ile Lys Asp Leu Gly Gly Arg Val Glu Glu Phe Leu Ser
65 70 75 80
Lys Asp Ile Ser Tyr Leu Ile Ser Asn Lys Lys Glu Ala Lys Phe Ala
85 90 95
Gln Thr Leu Gly Arg Ile Ser Pro Val Pro Ser Pro Glu Ser Ala Tyr
100 105 110
Thr Ala Glu Thr Thr Ser Pro His Pro Ser His Asp Gly Ser Ser Phe
115 120 125
Lys Ser Pro Asp Thr Val Cys Leu Ser Arg Gly Lys Leu Leu Val Glu
130 135 140
Lys Ala Ile Lys Asp His Asp Phe Ile Pro Ser Asn Ser Ile Leu Ser
145 150 155 160
Asn Ala Leu Ser Trp Gly Val Lys Ile Leu His Ile Asp Asp Ile Arg
165 170 175
Tyr Tyr Ile Glu Gln Lys Lys Glu Leu Tyr Leu Leu Lys Lys Ser
180 185 190
Ser Thr Ser Val Arg Asp Gly Gly Lys Arg Val Gly Ser Gly Ala Gln
195 200 205
Lys Thr Arg Thr Gly Arg Leu Lys Lys Pro Phe Val Lys Val Glu Asp
210 215 220
Met Ser Gln Leu Tyr Arg Pro Phe Tyr Leu Gln Leu Thr Asn Met Pro

225	230	235	240
Phe Ile Asn Tyr Ser Ile Gln Lys Pro Cys Ser Pro Phe Asp Val Asp			
245	250	255	
Lys Pro Ser Ser Met Gln Lys Gln Thr Gln Val Lys Leu Arg Ile Gln			
260	265	270	
Thr Asp Gly Asp Lys Tyr Gly Gly Thr Ser Ile Gln Leu Gln Leu Lys			
275	280	285	
Glu Lys Lys Lys Lys Gly Tyr Cys Glu Cys Cys Leu Gln Lys Tyr Glu			
290	295	300	
Asp Leu Glu Thr His Leu Leu Ser Glu Gln His Arg Asn Phe Ala Gln			
305	310	315	320
Ser Asn Gln Tyr Gln Val Val Asp Asp Ile Val Ser Lys Leu Val Phe			
325	330	335	
Asp Phe Val Glu Tyr Glu Lys Asp Thr Pro Lys Lys Lys Arg Ile Lys			
340	345	350	
Tyr Ser Val Gly Ser Leu Ser Pro Val Ser Ala Ser Val Leu Lys Lys			
355	360	365	
Thr Glu Gln Lys Glu Lys Val Glu Leu Gln His Ile Ser Gln Lys Asp			
370	375	380	
Cys Gln Glu Asp Asp Thr Thr Val Lys Glu Gln Asn Phe Leu Tyr Lys			
385	390	395	400
Glu Thr Gln Glu Thr Glu Lys Lys Leu Leu Phe Ile Ser Glu Pro Ile			
405	410	415	
Pro His Pro Ser Asn Glu Leu Arg Gly Leu Asn Glu Lys Met Ser Asn			
420	425	430	
Lys Cys Ser Met Leu Ser Thr Ala Glu Asp Asp Ile Arg Gln Asn Phe			
435	440	445	
Thr Gln Leu Pro Leu His Lys Asn Lys Gln Glu Cys Ile Leu Asp Ile			
450	455	460	
Ser Glu His Thr Leu Ser Glu Asn Asp Leu Glu Glu Leu Arg Val Asp			
465	470	475	480
His Tyr Lys Cys Asn Ile Gln Ala Ser Val His Val Ser Asp Phe Ser			
485	490	495	
Thr Asp Asn Ser Gly Ser Gln Pro Lys Gln Lys Ser Asp Thr Val Leu			
500	505	510	
Phe Pro Ala Lys Asp Leu Lys Glu Lys Asp Leu His Ser Ile Phe Thr			
515	520	525	
His Asp Ser Gly Leu Ile Thr Ile Asn Ser Ser Gln Glu His Leu Thr			
530	535	540	
Val Gln Ala Lys Ala Pro Phe His Thr Pro Pro Glu Glu Pro Asn Glu			
545	550	555	560
Cys Asp Phe Lys Asn Met Asp Ser Leu Pro Ser Gly Lys Ile His Arg			
565	570	575	
Lys Val Lys Ile Ile Leu Gly Arg Asn Arg Lys Glu Asn Leu Glu Pro			
580	585	590	
Asn Ala Glu Phe Asp Lys Arg Thr Glu Phe Ile Thr Gln Glu Glu Asn			
595	600	605	
Arg Ile Cys Ser Ser Pro Val Gln Ser Leu Leu Asp Leu Phe Gln Thr			
610	615	620	
Ser Glu Glu Lys Ser Glu Phe Leu Gly Phe Thr Ser Tyr Thr Glu Lys			
625	630	635	640
Ser Gly Ile Cys Asn Val Leu Asp Ile Trp Glu Glu Glu Asn Ser Asp			

	645		650		655
Asn Leu Leu Thr Ala Phe Phe Ser Ser Pro Ser Thr Ser Thr Phe Thr					
	660		665		670
Gly Phe					
	674				

<210> 2
<211> 234
<212> PRT
<213> Homo sapiens

<400> 2

Met Asn Ser Gly Ala Met Arg Ile His Ser Lys Gly His Phe Gln Gly					
1	5	10	15		
Gly Ile Gln Val Lys Asn Glu Lys Asn Arg Pro Ser Leu Lys Ser Leu					
20	25	30			
Lys Thr Asp Asn Arg Pro Glu Lys Ser Lys Cys Lys Pro Leu Trp Gly					
35	40	45			
Lys Val Phe Tyr Leu Asp Leu Pro Ser Val Thr Ile Ser Glu Lys Leu					
50	55	60			
Gln Lys Asp Ile Lys Asp Leu Gly Gly Arg Val Glu Glu Phe Leu Ser					
65	70	75	80		
Lys Asp Ile Ser Tyr Leu Ile Ser Asn Lys Lys Glu Ala Lys Phe Ala					
85	90	95			
Gln Thr Leu Gly Arg Ile Ser Pro Val Pro Ser Pro Glu Ser Ala Tyr					
100	105	110			
Thr Ala Glu Thr Thr Ser Pro His Pro Ser His Asp Gly Ser Ser Phe					
115	120	125			
Lys Ser Pro Asp Thr Val Cys Leu Ser Arg Gly Lys Leu Leu Val Glu					
130	135	140			
Lys Ala Ile Lys Asp His Asp Phe Ile Pro Ser Asn Ser Ile Leu Ser					
145	150	155	160		
Asn Ala Leu Ser Trp Gly Val Lys Ile Leu His Ile Asp Asp Ile Arg					
165	170	175			
Tyr Tyr Ile Glu Gln Lys Lys Glu Leu Tyr Leu Leu Lys Lys Ser					
180	185	190			
Ser Thr Ser Val Arg Asp Gly Gly Lys Arg Val Gly Ser Gly Ala Gln					
195	200	205			
Lys Thr Arg Thr Gly Arg Leu Lys Lys Pro Phe Val Lys Val Glu Asp					
210	215	220			
Met Ser Gln Ser Pro Ala Val His Leu Met					
225	230	234			

<210> 3
<211> 2780
<212> DNA
<213> Homo sapiens

<400> 3

AATTCGGCAC GAGCTCTCTG AGGCTGCGCC AAGACCTGAA GCGGCCGACC GAGAGCCCGG	60
GTCTGAGACT GAGAGAGCAA CGGAATGGAG GCGGGTAGA GGCGGAAACA CAACCTGCAG	120
GGCCAGAGCG AGGCGCGAGA AGGACGGCGG CGTGAGGGGG CGGGGCGCGC AGCGCGAGAA	180

GGCAGGCACG AGGGCGAGC GCGAGGCAGG GCACGGCGCG TGGCGTGAGA CGGGCGGGG 240
 CGCGCTATC GGCGCCGCGG CCGCGTACG CGTTTCAAA TCTTCACCG CCCGAGCCCCA 300
 CTCGTTGTG CTTTGCCTCCT CGCCCTGGAG CGGGATCCGG CCCCGGAAAC 360
 CCACACTGCA GACGCGGTAC CTCTACTGCG TAGAGGCCGT AGCTGGCGGA AGGAGAGAGG 420
 CGGCCGTCT GTCAACAGGC CGGGGGAAGC CGTGCCTTCG CGGCTGCCG GTGCGACACT 480
 TTCTCCGGAC CCAGCATGTA GGTGCCGGGC GACTGCCATG AACTCCGGAG CCATGAGGAT 540
 CCACAGTAAA GGACATTTC AGGGTGGAAAT CCAAGTCAAA AATGAAAAAA ACAGACCATC 600
 TCTGAAATCT CTGAAAATCT ATAACAGGCC AGAAAAATCC AAATGTAAGC CACCTTGGGG 660
 AAAAGTATTCT TACCTTGACT TACCTCTGT CACCATATCT GAAAAACTTC AAAAGGACAT 720
 TAAGGATCTG GGAGGGCGAG TTGAAGAATT TCTCAGCAAA GATATCAGTT ATCTTATTTC 780
 AAATAAGAAG GAAGCTAAAT TTGCACAAAC CTTGGTCGA ATTCTCCTG TACCAAGTCC 840
 AGAATCTGCA TATACTGCAG AAACCACTTC ACCTCATCCC AGCCATGATG GAAGTTCAATT 900
 TAAGTCACCA GACACAGTGT GTTTAACAGAG AGGAAAATTA TTAGTTGAAA AAGCTATCAA 960
 GGACCATGAT TTTATCCTT CAAATAGTAT ATTATCAAAT GCCTGTCT GGGGAGTAAA 1020
 AATTCTTCAT ATTGATGACA TTAGATACTA CATTGAACAA AAGAAAAAAG AGTTGTATT 1080
 ACTCAAGAAA TCAAGTACTT CAGTAAGAGA TGGGGCAAA AGAGTTGTA GTGGTGCACA 1140
 AAAAACAAAGA ACAGGAAGAC TCAAAAGGCC TTTTGTAAAG GTGGAAGATA TGAGCCAATC 1200
 TTATAGGCCA TTTTATCTTC AGCTGACCAA TATGCCCTTT ATAATTATT CTATTCAGAA 1260
 GCCCTGCAGT CCATTGATG TAGACAAGCC ATCTAGTATG CAAAAGCAAA CTCAGGTTAA 1320
 ACTAAGAACATC CAAACAGATG GCGATAAGTA TGGTGAACCC TCAATTCAAC TCCAGTTGAA 1380
 AGAGAAGAAG AAAAAAGGAT ATTGTGAATG TTGCTTGCAG AAATATGAAG ATCTAGAAAC 1440
 TCACCTTCTA AGTGAGCAAC ACAGAAACTT TGCACAGAGT AACCACTATC AAGTTGTTGA 1500
 TGATATTGTA TCTAAGTTAG TTTTGACTT TGTGAATAT GAAAAGGACA CACCTAAAAA 1560
 GAAAAGAATA AAATACAGTG TTGGATCCCT TTCTCCTGTT TCTGCAAGTG TCCTGAAAAA 1620
 GACTGAACAA AAGGAAAAG TGGATTGCA ACATATTCT CAGAAAGATT GCCAGGAAGA 1680
 TGATACAACA GTGAAGGAGC AGAATTTCCT GTATAAGAG ACCCAGGAAA CTGAAAAAAA 1740
 GCTCCTGTTT ATTCAGAGC CCATCCCCCA CCCTCAAAT GAATTGAGAG GGCTTAATGA 1800
 GAAAATGAGT AATAAATGTT CCATGTTAAG TACAGCTGAA GATGACATAA GACAGAATT 1860
 TACACAGCTA CCTCTACATA AAAACAAACA GGAATGCATT CTTGACATT CCCAACACAC 1920
 ATTAAGTGA AATGACTTAG AAGAACTAAG GGTAGATCAC TATAATGTA ACATACAGGC 1980
 ATCTGTACAT GTTCTGATT TCAGTACAGA TAATAGTGGT TCTCAACCAA AACAGAAGTC 2040
 AGATACTGTG CTTTTCCAG CAAAGGATCT CAAGGAAAAG GACCTTCATT CAATATTAC 2100
 TCATGATTCT GGTCTGATAA CAATAAACAG TTCACAAGAG CACCTAACTG TTCAAGGAAA 2160
 GGCTCCATTC CATACTCCTC CTGAGGAACC CAATGAATGT GACTTCAGA ATATGGATAG 2220
 TTTACCTTCT GGTAAAATAC ATCGAAAAGT GAAAATAATA TTAGGACGAA ATAGAAAAGA 2280
 AAATCTGGAA CCAAATGCTG AATTGATAA AAGAACTGAA TTTATTACAC AAGAAGAAAA 2340
 CAGAATTGTT AGTCACCGG TACAGTCTT ACTAGACTTG TTTCAGACTA GTGAAGAGAA 2400
 ATCAGAATTG TTGGTTTCA CAAGCTACAC AGAAAAGAGT GGTATATGCA ATGTTTTAGA 2460
 TATTTGGAA GAGGAAAATT CAGATAATCT GTTAACAGCG TTTTCTCGT CCCCTCAAC 2520
 TTCTACATT ACTGGCTTTT AGAATTAAA AAATGCATAC TTTTCAGAAG TGATAAGGAT 2580
 CATATTCTTG AAATTTTAT AAATATGTAT GGAAATTCTT AGGATTTTT TACCAAGCTTT 2640
 GTTACAGAC CCAAATGTA AATTAAGGAA TAAATATTG CAATTTCTA CAGAATTGAA 2700
 TACCTGTTAA AGAAAAATTA CAGAATAAAC TTGTGACTGG TCTTGTGTTA CATTAAAAAA 2760
 AAAAAAAAGA AAAACTCGAG 2780

<210> 4
 <211> 2719
 <212> DNA
 <213> Homo sapiens

<400> 4
 AATTGGCAC GAGCTCTCTG AGGCTGCAGC AAGACCTGAA GCGGGCGGACC GAGAGCCCGG 60

GTCTGAGACT	GAGAGAGCAA	CGGAATGGAG	GCGGGGTAGA	GGCGGAACAA	CAACCTGCAG	120
GGCCAGAGCG	AGGCCGAGA	AGGACGGCGG	CGTGAGGGGG	CGGGGCGCGC	AGCGCGAGAA	180
GGCAGGCACG	AGGGGCGAGC	GCGAGGCAGG	GCACGGCGCG	TGGCGTGAGA	CGGGGCGGGG	240
CGCGCGTATC	GGCGCGCGG	CCCGCGTACG	CGTTTCAAA	TCTTCAACCG	CCGCAGCCCCA	300
CTCGTTTGTG	CTTGCGCCT	TCCTCCTCCG	CGCCTTGGAG	CCGGATCCGG	CCCCGGAAAC	360
CCGACCTGCA	GACGCGGTAC	CTCTACTGCG	TAGAGGCCGT	AGCTGGCGGA	AGGAGAGAGG	420
CGGCCGTCCCT	GTCAACAGGC	CGGGGGAAGC	CGTGCTTCG	CGGCTGCCCG	GTGCGACACT	480
TTCTCCGGAC	CCAGCATGTA	GGTGCAGGGC	GACTGCCATG	AACTCCGGAG	CCATGAGGAT	540
CCACAGTAAA	GGACATTTC	AGGGTGAAT	CCAAGTCAAA	AATGAAAAAA	ACAGACCATC	600
TCTGAAATCT	CTGAAAATG	ATAACAGGCC	AGAAAAAATCC	AAATGTAAGC	CACTTTGGGG	660
AAAAGTATT	TACCTTGACT	TACCTTCTGT	CACCATATCT	AAAAAACTTC	AAAAGGACAT	720
TAAGGATCTG	GGAGGGCGAG	TTGAAGAATT	TCTCAGCAAA	GATATCAGTT	ATCTTATTTC	780
AAATAAGAAG	GAAGCTAAAT	TTGCACAAAC	CTTGGGTCGA	ATTTCCTCCTG	TACCAAGTCC	840
AGAATCTGCA	TATACTGCAG	AAACCACTTC	ACCTCATCCC	AGCCATGATG	GAAGTTCAATT	900
TAAGTCACCA	GACACAGTGT	TTTAAGCAG	AGGAAAATTA	TTAGTTGAAA	AAGCTATCAA	960
GGACCATGAT	TTTATTCCCT	CAAATAGTAT	ATTATCAAAT	GCCTTGTCA	GGGGAGTAAA	1020
AATTCTTCAT	ATTGATGACA	TTAGATACTA	CATTGAACAA	AAGAAAAAAAG	AGTTGTATTT	1080
ACTCAAGAAA	TCAAGTACTT	CAGTAAGAGA	TGGGGCAGAA	AGAGTTGGTA	GTGGTGCACA	1140
AAAAACAAGA	ACAGGAAGAC	TCAAAAGCC	TTTTGTAAG	GTGGAAGATA	TGAGCCAAAG	1200
CCCTGCAGTC	CATTTGATGT	AGACAAGCCA	TCTAGTATGC	AAAAGCAAC	TCAGGTTAAA	1260
CTAAGAACATCC	AAACAGATGG	CGATAAGTAT	GGTGGAACCT	CAATTCAACT	CCAGTTGAAA	1320
GAGAAGAAGA	AAAAAGGATA	TTGTGAATGT	TGCTGCAGA	AATATGAAGA	TCTAGAAACT	1380
CACCTTCTAA	GTGAGCAACA	CAGAAACTTT	GCACAGAGTA	ACCACTATCA	AGTTGTTGAT	1440
GATATTGTAT	CTAAGTTAGT	TTTGACTTT	GTGGAATATG	AAAAGGACAC	ACCTAAAAAG	1500
AAAAGAATAA	AATACAGTGT	TGGATCCCTT	TCTCCTGTTT	CTGCAAGTGT	CCTGAAAAAG	1560
ACTGAACAAA	AGGAAAAGT	GGATTGCAA	CATATTCTC	AGAAAGATTG	CCAGGAAGAT	1620
GATACAACAG	TGAAGGAGCA	GAATTCCCTG	TATAAAGAGA	CCCAGGAAAC	TGAAAAAAAG	1680
CTCCCTGTTA	TTTCAGAGCC	CATCCCCCAC	CCTTCAAATG	AATTGAGAGG	GCTTAATGAG	1740
AAAATGAGTA	ATAAAATGTT	CATGTTAAGT	ACAGCTGAAG	ATGACATAAG	ACAGAATTTT	1800
ACACAGCTAC	CTCTACATAA	AAACAAACAG	GAATGCATTC	TTGACATTT	CGAACACACA	1860
TTAAGTGAAA	ATGACTTAGA	AGAACTAAGG	GTAGATCACT	ATAAAATGTAA	CATACAGGCA	1920
TCTGTACATG	TTTCTGATTT	CAGTACAGAT	AATAGTGGAT	CTCAACCAAA	ACAGAAGTCA	1980
GATACTGTGC	TTTTCCAGC	AAAGGATCTC	AAGGAAAAGG	ACCTTCATTC	AATATTTACT	2040
CATGATTCTG	GTCTGATAAC	ATAAAACAGT	TCACAAGAGC	ACCTAACTGT	TCAGGCAAAG	2100
GCTCCATTCC	ATACTCCTCC	TGAGGAACCC	AATGAATGTG	ACTTCAAGAA	TATGGATAGT	2160
TTACCTTCTG	GTAAAATACA	TCGAAAAGTG	AAAATAATAT	TAGGACGAAA	TAGAAAAGAA	2220
AATCTGGAAC	CAAATGCTGA	ATTGATAAAA	AGAACTGAAT	TTATTACACA	AGAAGAAAAC	2280
AGAATTGTA	GTTCACCGGT	ACAGTCTTTA	CTAGACTTGT	TTCAGACTAG	TGAAGAGAAA	2340
TCAGAATT	TGGGTTTCAC	AAGCTACACA	GAAAAGAGTG	GTATATGCAA	TGTTTTAGAT	2400
ATTGGGAAG	AGGAAAATTC	AGATAATCTG	TTAACAGCGT	TTTTCTCGTC	CCCTTCAACT	2460
TCTACATT	CTGGCTTTA	GAATTAAAAA	AATGCATACT	TTTCAGAAGT	GATAAGGATC	2520
ATATTCTTGA	AATTTTATA	AATATGTATG	GAAATTCTTA	GGATTTTTT	ACCAAGCTTTG	2580
TTTACAGACC	CAAATGTA	TATTA	AAATATTGC	AATTTCTAC	AGAATTGAAT	2640
ACCTGTTAAA	AAAAAATTAC	AGAATAAAACT	TGTGACTGGT	CTTGT	TTAC	2700
AAAAAAAAAA	AAACTCGAG					2719