ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΟ ΜΑΘΗΜΑ ΤΩΝ ΔΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ - ΕΠΑΛ 2023 (Τετάρτη 7-6-2023) επιμέλεια: ΝΙΚΟΣ ΚΑΛΥΒΑΣ (ΠΕ86)

ΘΕΜΑ Α.

A1.

- α. ΣΩΣΤΟ
- β. ΣΩΣΤΟ
- γ. ΛΑΘΟΣ
- δ. ΛΑΘΟΣ
- ε. ΣΩΣΤΟ

A2.

- **1.** γ
- **2.** α
- **3.** ε
- **4.** ß
- **5.** στ

OEMA B.

Β1. Βιβλίο σελίδα 195.

- **α.** Όλες οι υπηρεσίες στο Διαδίκτυο, όπως και πολλές εφαρμογές λογισμικού, στηρίζονται στο μοντέλο Πελάτη Εξυπηρετητή.
- β. Το μοντέλο αυτό υλοποιείται με δύο ανεξάρτητα κομμάτια λογισμικού:
 - Το πρόγραμμα του Εξυπηρετητή (Server) που εγκαθίσταται σε έναν (ή περισσότερους) υπολογιστή.
 - Το πρόγραμμα του Πελάτη (Client) που εγκαθίσταται σε πολλούς υπολογιστές

Ο Server διαχειρίζεται τα δεδομένα, λαμβάνει ερωτήσεις από τους Clients και απαντά στα ερωτήματά τους. Ο Client κάνει ερωτήσεις στον Server και εμφανίζει τις απαντήσεις των ερωτημάτων

B2. Βιβλίο σελίδα 33.

- α. Η χρήση οπτική ίνας χρησιμοποιείται όταν θέλουμε να συνδέσουμε σημεία, που απέχουν αρκετά μεταξύ τους (μέχρι 2Km), και όταν υπάρχει αυξημένος ηλεκτρομαγνητικός θόρυβος (π.χ. βιομηχανίες).
- **β.** Το μειονέκτημα, όμως, της οπτικής ίνας είναι το αυξημένο κόστος και η δυσκολία, που παρουσιάζει στην εγκατάσταση και το χειρισμό της (π.χ. δεν μπορούμε να την τσακίσουμε για το σχηματισμό γωνίας).

Β3. Βιβλίο σελίδα 27.

- **α.** Το σύνολο των κανόνων που καθορίζουν τον τρόπο με τον οποίο τα δεδομένα εισάγονται στο καλώδιο, ονομάζεται μέθοδος προσπέλασης (access method).
- **β.** Υπάρχουν τρείς τρόποι για την αποφυγή ταυτόχρονης χρήσης του μέσου μεταφοράς:
 - Μέθοδοι Carrier-sense multiple access (ακρόαση φέροντος πολλαπλής πρόσβασης
 - Μέθοδος token passing (πέρασμα κουπονιού) που δίνει δυνατότητα για μεμονωμένη αποστολή δεδομένων
 - Μέθοδος απαίτησης προτεραιότητας

Β4. Βιβλίο σελίδα 112.

Το πρωτόκολλο ΙΡ δεν εγγυάται ότι μπορεί να αντιμετωπίσει τα παρακάτω προβλήματα:

- Επανάληψη αυτοδύναμου πακέτου
- Επίδοση με καθυστέρηση ή εκτός σειράς
- Αλλοίωση δεδομένων
- Απώλεια αυτοδύναμου πακέτου

ΘΕΜΑ Γ.

Г1.

α. Η ταυτότητα του οργανισμού (OUI) : 51-3e-aa

β. Από το 1° byte (MSB) έχουμε:

 $(51)_{16} = (0101\ 0001)_2$

Μετά τη μέθοδο little endian έχουμε: 1000 1010

Άρα Mbit=1: πολυδιανομής Xbit=0: καθολικά μοναδική

Γ2. α)

ΤΙΤΛΟΣ ΠΕΔΙΟΥ	1ο τμήμα	2ο τμήμα	3ο τμήμα
Μήκος επικεφαλίδας (λέξεις των 32 bit)	10	10	10
Συνολικό μήκος (bytes)	840	840	100
Μήκος δεδομένων (bytes)	800	800	60
Αναγνώριση	0x1b20	0x1b20	0x1b20
DF (σημαία)	0	0	0
ΜF (σημαία)	1	1	0
Σχετική θέση τμήματος (οκτάδες bytes)	0	100	200

β)

Το συνολικό μήκος του αρχικού πακέτου ήταν: 800+800+60+40=1700 bytes (1660 δεδομένα + 40 επικεφ)

γ)

Η σχετική θέση του 2^{ου} τμήματος προκύπτει από τα προηγούμενα συνολικά δεδομένα δηλ. του τμήματος 1 (800 bytes) / 8 αφού είναι σε οκτάδες. Άρα 100.

ΘΕΜΑ Δ.

Δ1. 2 bit

Δ2.

255.255.255.192

Δ3.

Διεύθυνση 1ου υποδικτύου: 200.170.20.0

Διεύθυνση εκπομπής 1ου υποδικτύου: 200.170.20.63

Διεύθυνση 3ου υποδικτύου: 200.170.20.128

Διεύθυνση εκπομπής 3ου υποδικτύου: 200.170.20.191

Δ4.

Διεύθυνση 1ου Η/Υ στο 2° υποδίκτυο: 200.170.20.65

Δ5.

Επειδή έχουμε στο hostID 6 bit θα έχω 2^6 -2=62 διευθύνσεις IP για χρήση H/Y.