- 1. Sean A, B, C subconjuntos de un conjunto X. Demostrar las siguientes afirmaciones.
 - (a) $A \subseteq B \iff A \subseteq A \cap B$.
 - (b) $A \subseteq B \iff A \cup B \subseteq B$.
 - (c) $A \subseteq B \Longrightarrow B = A \cup (B \setminus A)$ y $A \cap (B \setminus A) = \emptyset$.
 - (d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - (e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - (f) $A \subseteq B \cap C \Longrightarrow A \subseteq B \land A \subseteq C$.
 - (g) $A \cup B \subseteq C \Longrightarrow A \subseteq C \land B \subseteq C$.
 - (h) $A \subseteq B \iff B^c \subseteq A^c$.
 - (i) $A \setminus B = A \cap B^c$.
 - $(j) (A \cup B)^c = A^c \cap B^c.$
 - $(k) (A \cap B)^c = A^c \cup B^c.$
- 2. Decidir si las siguientes afirmaciones son verdaderas o falsas, y justificar.
 - (a) $A \subseteq B \cup C \Longrightarrow A \subseteq B \land A \subseteq C$.
 - (b) $A \subseteq B \cup C \Longrightarrow A \subseteq B \lor A \subseteq C$.
 - (c) $A \subseteq B \cap C \Longrightarrow A \subseteq B \land A \subseteq C$.
 - (d) $A \cap B \subseteq C \Longrightarrow C^c \subseteq A^c \vee C^c \subseteq B^c$.
- **3.** Sea $f: X \to Y, A, B \subseteq X$ y $C, D \subseteq Y$. Probar:
 - (a) $f(A \cup B) = f(A) \cup f(B)$.
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$. Además, f inyectiva $\Rightarrow f(A \cap B) = f(A) \cap f(B)$.
 - (c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
 - (d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- ${\bf 4.}$ Bajo las mismas hipótesis del ejercicio anterior, demostrar también:
 - (a) $f^{-1}(f(A)) \supseteq A$ (y se cumple la igualdad si f es inyectiva).
 - (b) $f(f^{-1}(C)) \subseteq C$ (y se cumple la igualdad si f es survectiva).
 - (c) $f^{-1}(D^C) = [f^{-1}(D)]^C$.
 - (d) Si f es inyectiva entonces $f(A^C) \subseteq [f(A)]^C$.
 - (e) Si f es survectiva entonces $[f(A)]^C \subseteq f(A^C)$.