Exercise 1. Find an example of a sequence being monotonic but not convergent.

Exercise 2. Suppose $\{a_n\}$ is unbounded. Prove there exists a subsequence $\{a_{n_k}\}$ such that

$$\lim_{k \to \infty} a_{n_k} = \infty$$

Exercise 3. Prove that

(1) $\bigcap_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$

(2)
$$\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$$

Exercise 4. Prove that 2 < e < 3.

Exercise 5. (1) Let $\{x_n\}$ be a sequence such that $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + x_n}$. (2) Let $\{y_n\}$ be a sequence such that $0 < x_1 < 1, x_{n+1} = x_n (2 - x_n)$. Prove that $\{x_n\}$ and $\{y_n\}$ are convergent and evaluate their limits.

Exercise 6. Prove that

 $\lim_{n \to \infty} \frac{a^n}{n!} = 0$

where a > 1.

 $\lim_{n \to \infty} \frac{n!}{n^n} = 0$