1 Початкові поняття

1. За означенням x < y означає, що $x \le y$ та $x \ne y$. Довести, що у частково впорядкованій множині не існує елементу x такого, що x < x та що з x < y та y < z слідує x < z.

Доведення. Нехай існує такий елемент, що x < x. За означенням, має виконуватись $x \neq x$. Це є якраз таки протиріччям у найївній теорії множин, такого не може бути в ZFC. Протиріччя.

Друга частина.

З постановки задачі слідує, що $x \neq y$ та $y \neq z$ та $x \leq y$ та $y \leq z$. Хотілось би скористатися транзитивністю, але поки що з тих нерівностей не слідує, що $x \neq z$. Нехай x = z, тоді x < y < x. З цього слідує, що x < x. Вже було доведено, що це неможливо. Протиріччя.

2. Нехай бінарне відношення < визначене як у вправі 1 та за визначенням $x \leq y$ означає, що x < y або x = y. Показати, що відношення $\leq \varepsilon$ частковим порядком.

Доведення. Оскільки $x \equiv x$, то з цього слідує рефлексивність.

З того, що x < y та y < x слідує антисиметричність за означенням цього відношення та протиріччям, що $x \neq x$ неможливе. Нехай x < y та y < z. Нехай y = z. Тоді маємо x < y = z, тобто x < z. Якщо x = y, то знову ж слідує, що x < z.

3. Довести наступну розширену властивість антисиметричності: якщо $x_0 \le x_1 \le ... \le x_{n-1} \le x_0$, то $x_0 = x_1 = ... = x_{n-1}$.

Доведення. Індукція. n=1. Рефлексивніть. Доведно. Нехай це доведено для n-1. Тоді маємо з транзитивності $x_0 \le x_1 \le ... \le x_{n-2} \le x_0$, отже, $x_0 = x_1 = ... = x_{n-2}$. $x_0 \le x_{n-1} \le x_0$. Отже, $x_0 \le x_{n-1}$ та $x_{n-1} \le x_0$. Отже, $x_0 = x_n$. Транзитивність рівності. Доведено.

5. Нехай \leq - частковий порядок на A та B - підмножина множини A. Для $a,b\in B$ покладемо $a\leq_B b$, якщо $a\leq b$. Довести, що відношення \leq_B буде частковим порядком на B.