

Week 3

السنة الخامسة - هندسة المعلوماتية / الذكاء الصنعي

مقرر التعلم التلقائي

Estimation Strategy and Evaluation Metrics

د. ریاض سنبل

Traditional ML Pipeline

"All models are wrong; some are useful."

—George E. P. Box

New input

Traditional ML Pipeline

New input

- Parameters (Hyperparameters)?
- Handle unseen cases

Estimation Strategy

Hyperparameters

- Hyperparameters are the explicitly specified parameters that control the training process.
- What are the hyperparameters for decision trees?

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0)

[source]

The holdout method

- Split dataset into two groups
 - Training set: used to train the classifier
 - <u>Test set</u>: used to estimate the error rate of the trained classifier.
- Ratio of training and testing sets is at the discretion of analyst;
 - Typically 1:1 or 2:1, and there is a trade-off between these sizes of these two sets.
 - If the training set is too large, then model may be good enough, but estimation may be less reliable due to small testing set and vice-versa.

Holdout method

But how can we tune hyper-parameters?

Holdout method - Drawbacks

- The holdout method has two basic drawbacks
 - In problems where we have a sparse dataset we may not be able to afford the "luxury" of setting aside a portion of the dataset for testing
 - Since it is a single train-and-test experiment, the holdout estimate of error rate will be misleading if we happen to get an "unfortunate" split
- The limitations of the holdout can be overcome with a family of re-sampling methods at the expense of higher computational cost
 - K-Fold Cross-Validation
 - Leave-one-out Cross-Validation

K-Fold Cross-validation

- Create a K-fold partition of the dataset
- For each of K experiments, use K-1 folds for training and a different fold for testing
- The advantage of K-Fold Cross validation is that all the examples in the dataset are eventually <u>used for both</u> <u>training and testing</u>
- The true error is estimated as the average error rate on test examples

Leave-one-out Cross-Validation

- Leave-one-out is the degenerate case of K-Fold Cross Validation, where K is chosen as the total number of examples
 - For a dataset with N examples, perform N experiments
 - For each experiment use N-1 examples for training and the remaining example for testing

Evaluation Metrics

Traditional ML Pipeline

New input

- Parameters (Hyperparameters)?
- Handle unseen cases

Two types of models

- Models that output a categorical class directly (K Nearest neighbor, Decision tree)
- Models that output a real valued score (SVM, Logistic Regression)
 - Score could be margin (SVM), probability (LR, NN)
 - Need to pick a threshold

Example

Example

Th	TP	TN	FP	FN
0.5	9	8	2	1

		Positive	Negative
cted	Positive	True Positive	False Positive
Predicted	Negative	False Negative	True Negative

Actual

Evaluation Metrics

TP	TN	FP	FN	Acc
9	8	2	1	0.85

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example

AD SONBOL - ML COURSE

17

Evaluation Metrics

TP	TN	FP	FN	Acc	Р	R	F1
9	8	2	1	0.85	0.81	0.90	0.857

F1-score

- It is usually better to compare models by means of one number only.
- The F1–score can be used to combine precision and recall

	Precision(P)	Recall (R)	Average	F ₁ Score	
Algorithm 1	0.5	0.4	0.45	0.444	The best is Algorithm 1
Algorithm 2	0.7	0.1	0.4	0.175	
Algorithm 3	0.02	1.0	0.51	0.0392	
└── Algori	thm 3 predict alw	ays 1	Average sa	ys not corre thm 3 is the be	ctly est

Average =
$$\frac{P+R}{2}$$
 F_1 score = $2\frac{PR}{P+R}$

•
$$P = 0$$
 or $R = 0 \Rightarrow F_1$ score = 0

•
$$P = 1$$
 and $R = 1 \Rightarrow F_1$ score = 1

RIAD SONBOL - ML COURSE

19

Multiclass Classifier

 Having m classes, confusion matrix is a table of size m×m, where, element at (i, j) indicates the number of instances of class i but classified as class j.

Class	C1	C ₂	C ₃	C ₄	C ₅	C ₆
C ₁	52	10	7	0	0	1
C2	15	50	6	2	1	2
C ₃	5	6	6	0	0	0
C4	0	2	0	10	0	1
C ₅	0	1	0	0	7	1
C ₆	1	3	0	1	0	24

What is the accuracy?

Multiclass Classifier

- Precision, Recall, and F1-score are calculated for each class.
 - A large confusion matrix of m*m can be considered into 2*2 matrix.

Class	C1	C ₂	C ₃	C 4	C ₅	C_6			
C ₁	52	10	7	0	0	1			
C ₂	15	50	6	2	1	2	C1	+	-
C ₃	5	6	6	0	0	0	+	52	18
C4	0	2	0	10	0	1	-	21	123
C ₅	0	1	0	0	7	1			
C_6	1	3	0	1	0	24			

- Finally, we can merge overall scores (ex: using weighted average)
 - What is the overall F1-score in the previous example?

Precision vs Sensitivity

{Precision, Specificity} vs Recall/Sensitivity

RIAD SONBO

Threshold	TP	TN	FP	FN	Accuracy	Precision	Recall	F1
1.00	0	10	0	10	0.50	1	0	0
0.95	1	10	0	9	0.55	1	0.1	0.182
0.90	2	10	0	8	0.60	1	0.2	0.333
0.85	2	9	1	8	0.55	0.667	0.2	0.308
0.80	3	9	1	7	0.60	0.750	0.3	0.429
0.75	4	9	1	6	0.65	0.800	0.4	0.533
0.70	5	9	1	5	0.70	0.833	0.5	0.625
0.65	5	8	2	5	0.65	0.714	0.5	0.588
0.60	6	8	2	4	0.70	0.750	0.6	0.667
0.55	7	8	2	3	0.75	0.778	0.7	0.737
0.50	8	8	2	2	0.80	0.800	0.8	0.800
0.45	9	8	2	1	0.85	0.818	0.9	0.857
0.40	9	7	3	1	0.80	0.750	0.9	0.818
0.35	9	6	4	1	0.75	0.692	0.9	0.783
0.30	9	5	5	1	0.70	0.643	0.9	0.750
0.25	9	4	6	1	0.65	0.600	0.9	0.720
0.20	9	3	7	1	0.60	0.562	0.9	0.692
0.15	9	2	8	1	0.55	0.529	0.9	0.667
0.10	9	1	9	1	0.50	0.500	0.9	0.643
0.05	10	1	9	0	0.55	0.526	1	0.690
0.00	10	0	10	0	0.50	0.500	1	0.667

Sensitivity vs Specificity

Sensitivity vs Specificity

Represents the **negative** Represents the **positive** class (true positives). class (true negatives). TΝ TP FN; FP 75 25 50 100 **Decision Cutoff** increases **specificity** increases sensitivity but may increase **FPs** but may increase **FNs** (reduces specificity). (reduces sensitivity).

The Area Under the Curve (AUC)

What Does AUC Represent?

- AUC = 1.0 → Perfect classifier
- AUC = $0.5 \rightarrow$ Random classifier
- AUC $< 0.5 \rightarrow$ Worse than random

what AUC tells us about the model:

- ✓ Class Separation Power
- ✓ Stability Across Thresholds
- ✓ It doesn't tell you how good a specific threshold is.

RIAD SONBOL - ML COURSE

25

Precision-Recall curve (PRC)

- Precision Recall curve represents a different tradeoff.
- End of curve at right cannot be lower than prevalence.

 Better for Imbalanced datasets (Focuses on positive class only)