

Recette - Projet Abysse Tuteur : François Le Pennec

Relecteurs: Emilien Wolff, Antonin Polette Destinataires: François Le Pennec, Bernard Abiven, Magalie Le Gal, Jérémie Hemery Version: 1.0 Groupe 83 PRONTO

IMT Atlantique 23/05/25

SOMMAIRE

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication : site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure – Projet Kosmos : caméra sous-marine

Figure – CAO paramétrique du sous-marin sur Fusion 360

Objectifs

- 1. **Piloter** le sous-marin à distance et le contrôler (profondeur et déplacement) de manière précise et sans fils
- 2. Transmettre une vidéo en direct à l'utilisateur. Nous prévoyons donc une bascule entre deux flux vidéo : l'un vers l'avant pour le pilotage et l'autre vers le fond pour l'observation

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

7

- Structure modulaire pour développement en parallèle
- ▶ Identification des **fonctions** internes

Figure – Schéma bloc de l'asservissement du sous-marin

La masse envisageable pour être transportable serait donc d'environ 15 kg.

Limite de la flottabilité \Rightarrow poids équivalent à son rapport en eau, donc de volume

$$V_{SM} = 15 \cdot 10^{-3} \text{ m}^3$$

Notre idée initiale était de partir sur un tube de $\varnothing 128$ mm, ce qui nous conduit à une longueur de

$$\ell_{SM} = \frac{V_{SM}}{S_{tube}} = \frac{V_{SM}}{\pi D^2 / 4} = \frac{15 \cdot 10^{-3}}{\pi (128 \cdot 10^{-3})^2 / 4} = \boxed{1,15 \text{ m}}$$
(1)

C'est utilisable

Structure interne qui doit être solide et compartimentée \Rightarrow disques imprimés en 3D

- Perçages pour les batteries
- Inserts filetés pour fixer les composants
- Trous pour tiges filetées

Figure – Exemple de disque

Hélice :
$$v = p \times \omega$$
 (2)

Or choix du moteur selon le paramètre KV, avec p = 1.4 cm.

La vitesse d'avance étant de $v=5~{\rm km/h}$, soit 1,4 m/s, nous en déduisons que le taux de rotation doit être de

$$\omega = \frac{1,4}{0,014} = 100 \text{ tr/s} = 6000 \text{ tr/min}$$
 (3)

 $+25\% \Rightarrow 7500 \text{ tr/min sous } 12 \text{ V donc}$ 7500/12 = 625 KV. On choisit un $\boxed{750 \text{ KV}}$.

Figure – Moteur brushless choisi de 750KV

Figure – Capture du modèle 3D du sous-marin fait sous *Fusion 360* (Autodesk)

Pourquoi avoir modélisé en 3D?

- Placement précis et simulation des liaisons
- Paramétrage \rightarrow modèle qui se reconstruit
- Exportation pour Blender
- Production de plans 2D et modèles 3D pour tranchage et impression

Pour diriger le sous-marin, 2 solutions :

- 1. Implanter 4 pompes directrices
- 2. Utiliser des gouvernails comme dans les vrais sous-marins

Figure – Débattement mesurable sur CAO et permi par les servomoteurs

Par une **étude statique**, on récupère le nombre de barres N de lest nécessaires au sous-marin :

$$N = \frac{(\rho_{fluide} \cdot V_{SM} - m_{sans}) \cdot 4}{\rho_{fer} \pi D^2 L}$$
 (4)

Figure – Positions des centres de masse

Deux solutions d'étanchéité envisagées dans le projet :

- Des gorges dans l'impression 3D en (A) dans lesquelles se glissent des joints toriques
- Des plus petits joints toriques en (B) dans lesquels coulissent les axes

Figure – Solutions de jointage dans la CAO

Figure – Coupe de la partie seringue

Conception 17

Figure – Choix des cellules li-ion INR18650 3500 mAh

Dimensionnement de la batterie

- Évaluation du besoin
 - tension nominale $U \approx 12 \text{ V}$
 - intensité maximale $I_{max} \approx 16 \text{ A}$
- Réponse au besoin
 - tension nominale $U_{\text{cellule}} = 3,7 \text{ V}$
 - intensité maximale $I_{\rm max,cellule} \approx 10 \text{ A}$

 \Rightarrow batterie 3S2P

Schéma électrique et choix des bandes conductrices

- Nécessité d'un **BMS**
 - équilibrage des charges des cellules
 - protection de la batterie
- Choix du matériau et de la **géométrie**
 - bandes de nickel
 - 8 mm en largeur / 0.4 mm en épaisseur

Figure – Schéma électrique du lien batterie / BMS

Figure – Récepteur

Figure – Émetteur

Figure – Circuit du moteur brushless

Figure – Circuit des motoréducteurs

Recette - Projet Abysse Groude 83 Pronto

23/05/25

Figure – Circuit électrique complet du sous-marin

Figure – Structure du code

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

L'avancée du projet a été permise par la **parallélisation des tâches**, grâce aux modules du projet :

7

Transmission vidéo et RC		
Programmation de l'Arduino et adaptations		P2
Montage du sous-marin avec composants	Usinage des pièces mécaniques	P2
CAO complète	Création des circuits électroniques	P2
Phase de cadrage	Commande des pièces	P1

Figure – Étagement du projet

Disques imprimés et leur montage :

Figure – Exemple de certains disques (à gauche, celui supportant le contrôleur moteur, éloigné de la surface par des entretoises elles aussi imprimées et à droite, celui tenant l'Arduino)

Structure:

- Esthétique : corps transparent
- Limiter les problèmes d'étanchéité : augmentation les risques avec le nombre de jonctions

Figure – Ogive arrière, sortie – – – d'imprimante

Figure – Deux techniques de soudage : soudage par point à gauche, soudage classique à droite

Après avoir changé de BMS en cours de réalisation, nous obtenons :

Figure – Avant et arrière de la batterie assemblée

R<mark>ecette - Projet Abysse</mark> Groupe 83 Pronto

23/05/25

Figure – Usinage sur fraiseuse des axes et montage sur les gouvernails

Sont présents:

- les supports des servomoteurs, intégrés dans la coque intérieur de l'impression 3D et qui reçoivent des inserts filetés pour y visser une plaque pour empêcher leur mouvement lorsque l'index tourne
- un des **axes** qui apparaît horizontalement
- la **biellette** excentrée qui est actionnée par les servomoteurs démontés pour la photo.

Figure – Tringlerie de l'ogive arrière

RECETTE - PROJET ABYSSE Groupe 83 Pronto

23/05/25

Figure – Paramètre s12 du câble

Recherche de la meilleure transmission de puissance possible

- ► Très bonne pour les fonctions de commande
- Moins pour la vidéo

Figure – Paramètre s11 de l'antenne

Adaptée au 2.4GHz

R<mark>ecette - Projet Abysse</mark> Groupe 83 Pronto

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure – Table de montage dans l'atelier mécanique de IMT Atlantique et machine d'usinage

Les étapes de montage du sous-marin ont été les suivantes :

- Essai dimensionnel de la solution à joints toriques
- Montage unitaire des composants sur les disques
- Coulissage des disques sur les tiges filetées en respectant les espacements
- Insertion dans le tube et fermeture de l'ensemble

Figure – Rangement des composants

Figure – Test en piscine

Figure – Avant du sous-marin submergé

- ▶ Beaucoup de fuites, certaines à des endroits inattendus
- On réfléchit rapidement à des corrections

Figure – Test en bac n°2

- Moins de fuites, certaines modifications ont fonctionné
- Des fuites demeurent au niveau des gouvernails notamment

Figure – Module électronique

- Les deux pistons ne progressent pas à la même vitesse
- Difficulté du côté du piston avant

Intégration et tests

- Implémentation de zones mortes
- Implémentation de butées
- Adaptation de la puissance fournie aux motoréducteurs

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure – Capture d'écran du site web

Figure – Un site pensé comme une expérience

- Site one-page dynamique avec scroll fluide
- Nombreuses animations visuelles au fil du scroll
- Ambiance sonore: bruit marin et sonar discret

- Options envisagées :
 - HTML/CSS
 - CMS comme WordPress

Figure - React

- React choisi : composants réutilisables, animations faciles à intégrer, grande liberté de création
- Stack : React + Tailwind CSS + GSAP

Figure – Importation de Fusion 360 dans la modélisation Blender

- Présentation de l'équipe et du sous-marin
- Modèle 3D interactif du prototype
- Galerie photo
- Lien vers notre GitHub
- Illustrations réalistes avec scènes animées via Blender

Figure – Déploiement sur Netlify grâce à Github

- Hébergement via Netlify avec déploiement automatique depuis GitHub
- Site toujours à jour, accessible à tous
- Outil de communication moderne qui valorise à la fois le fond technique et la forme immersive

Perspectives d'amélioration

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

- ► Implémentation des caméras
- Étanchéification des ogives
- Choix de métaux inoxydables
- Mise en place de la bouée

Figure – Kit caméra

- ► Rendre le comportement des servomoteurs plus fluide
- Moduler les deux pistons en même temps au lieu d'un pour l'équilibrage
- Améliorer la précision des différents paramètres de manière empirique

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site interne
- 6. Perspectives d'amélioration
- 7. Travail de groupe

- Planification à l'aide de Ganttproject
- Réduction des problèmes de conception en amont avec la CAO 3D
- Organisation pour la gestion des problèmes : solutions alternatives, tests, etc.

Figure – L'équipe qui travaille à l'atelier

- Parallélisation des tache
- Organisation des séances
- Outils collaboratifs
- Collaboration avec des personnes extérieures à l'équipe PRONTO

- ✓ Construire de A à Z un sous-marin
- ✓ Chaîne de puissance sur mesure
- ✓ Asservissement de ballast fonctionnel
- ✓ Communication tout au long du projet

RECETTE - PROJET ABYSS
Groupe 83 PRONTO

- [1] Brick experiment Channel, Building a Lego-powered Submarine 4.0 automatic depth control, Youtube, 16 juil. 2022. https://www.youtube.com/watch?v=KLEH8RJsYgI
- [2] Antoine Géju, *Projet Kosmos*, 2025. https://kosmos.fish/index.php/faq/
- [3] Saad-Eddine Khazari, Site Web du projet Abysse, 2025. https://abysse.netlify.app/
- [4] Diy Perks, Building a DIY submarine DIY Perk, 2025. https://www.youtube.com/watch?v=pUba126uzvU
- [5] Norelem, Informations techniques pour le joint torique, 2025. https://urlr.me/eW8s36

Pour assurer le bon maintien des composants, on a utilisé des inserts filetés

Figure – Préconisation de modélisation

Utilisation du PLA (polylactic acid) :

- Facilité d'impression : faible retrait thermique, bonne adhérence au plateau
- Écologique et biodégradable : fabriqué à partir d'amidon de maïs ou de canne à sucre
- Étanche (testé en conditions extrêmes)

Travail de groupe

Width of step	Thickness of stop	Cross- sectional area of step	Approximate Vice Gauge Equivalent (AVII)		Ampacits* (A) / Resistance (mit/meter) of retainty size male of														
				Copper		Aluminium		Zinc		Nickel		kon		Tin		Carbon Steel (1010)		Stainless Steel	
	01mm	0.5 mm²	20 AVG	0,2	22,6	5,0	50,4	2,5	112	2,1	140	1,5	104	1,6	210	1,0	200	8,22	1200
	0.15 mm	0.75 mm ²	BAVB	125	22,4	7,4	37,6	3,7	78,7	3,1	53,2	2,3	129	2,0	165	1,9	191	0,32	520
	0.2 mm	'imm'	BAVB	15	16,8	8,6	28,2	4,8	59,8	4,1	69,9	3,0	97,1	2,7	109	2,1	142	0,43	690
Smm	0.25 mm	125 mm*	If AVB	18	13,4	12	22,6	6,6	47,2	5,1	55,8	3,7	77,7	3,3	87,2	2,8	114	8,54	562
	0.3 mm	15mm*	BAVB	21	11,2	16	18,8	7,1	33,3	6,8	48,8	4,4	84,7	4,0	72.7	3,0	35,3	0,85	460
	0.4 mm	2 mm²	15AVB	27	8,40	.10	14,1	9,3	28.5	7.8	35.0	5.8	48,6	5.2	54.5	4,8	71,5	0.38	345
	0.5 mm	25mm/	HAVE	35	6,72	21	11,3	11	23,6	9,7	28,0	7.2	38,8	6,4	43,8	5,0	57,2	1,1	278
	Imm	5 mm ²	MAWB	49	3,36	35	5,64	28	11.8	- 11	14.0	13	18,4	12	21.8	18	29,6	2.1	138
	0.1 mm	0.6mm*	20 AVG	9,7	28,0	6,8	47,9	2,6	98,3	2,5	187	1,9	1112	1,6	192	1,2	238	0,26	1850
	9.55 mm	0.8mm²	BAVE	14	18,7	8,8	31,3	4.4	65.6	3.7	77.7	2.7	102	2.4	121	1,8	153	0,39	767
	0.2 mm	1.2 mm²	TAVE	18	14,0	- 81	23,5	5.9	49.2	6,9	59,2	2,6	80,9	3,2	99,8	2,5	119	8,52	575
	6,25 mm	15mm ²	WAVS	25	11,2	34	10,0	7,5	33.2	6,9	46.6	4.4	64.7	4.0	72.7	3,8	35,2	8.65	460
&men	0.2 mm	L8 mm²	SAUG	25	9.22	11	15.7	0.4	32.2	7,2	20,0	5.3	52.0	4.7	00.0	2,6	79.4	8.77	202
	0.4 mm	24mm²	BAVS	20	7.80	15	11,0	11	24,6	3,4	20,1	6,3	40,5	5.8	45.4	4.8	30.6	1,0	208
	0.5 mm	3mm ²	DAVE	26	5.60	24	2.40	13	15,7	11	23,3	8.5	32,4	7,6	35.3	5,2	47.7	1,1	220
	Timop	6 mm ¹	DAVE	53	2.00	40	4.70	24	9.63	21	11.7	16	16,2	14	10.2	11	23,8	2.5	105
	0.1 mm	0.2 mm ²	BAVB	11	24.8	6.2	40.3	2.4	84.3	2,3	53.3	2,1	135	1.3	156	1,4	204	0.30	365
Ymen	9.ISmm	105 mm ³	TAVE	16	16.0	111	26.5	5.1	96.2	4.3	00.0	3.1	92.5	2.0	104	2.7	126	8,45	657
	02 mm	L4 mm*	BAVB	209	12.0	13	20.1	6.6	42.1	5,7	43.3	4,1	63.4	3.7	77.9	2,8	102	8.00	433
	0.25 mm	178 mm²	BAVE	26	9.80	16	10.1	8.2	33.7	7.0	39.9	5,1	55.5	4.0	62.3	3,5	81.7	0.75	394
	0.3 mm	2.1mm	MAVE	28	8.00	- 11	13,6	9.7	28,1	8,3	33,3	6,1	46,2	5.5	51,3	1.2	68.1	0,50	329
	0.4 mm	2.5 mm/	BAVS	24	6,00	23	10.1	13	21.1	11	25.0	8.6	34.7	7.2	38.9	5.5	51.1	1.2	246
	0.9 mm	3.5 mm/	NAV8	23	4,80	27	8.06	16	16,8	11	29.0	9.6	27.7	8,8	31.1	8,8	40,8	1.5	197
	1000	7 mm	9849	57	2.40	44	4.03	27	8.43	23	18.0	18	13.9	16	15.6	13	20.4	2.9	98.6
_	01mm		BAUS	13	21.0						87.4		821	2.1	136		178	6.35	863
	0.5mm	0.8 mm ²	TAVE	18		7.9	35,3	3,8	73.8	3.3		2.4	88.9		39.8	1,6	113	0.52	575
					14.0	H	23.5	5.8	19,2	1,3	58,3	3,6		3,2		2,5			
8 m/m	0.2 mm	LS mm ²	BAVS	22	10,8	- 15	17_6	7,6	36.9	11,4	43.7	4,7	60,7	4.2	1.83	2,2	99,4	0,69	431
	0,25 mm	2-mm*	BAVE	27	9,40		14,5	9,3	29,5	7,9	25,0	5,8	40,6	2,2	54,3	1,0	71,5	8,36	345
	0.3 mm	2.4 mm ²	MAUS	33	7,50	21	11,8	- 11	24.6	9,4	29,1	6,9	40,8	6.2	45.4	4.0	89,6	1,0	588
	0,4 mm	22mm²	DAVE	27	5,25	26	10,01	14	10,4	u	21,9	9,6	20,2	0,1	34,1	6,9	44,7	1,4	Sie
	0.5 mm	4 mm	DAVIS	43	4,70	30	7,05	17	14.8	n	17,5	- 11	24,3	11,9	27,3	7,8	35,8	1.7	173
	Irron	@mm ²	SAVO	dt.	2,10	47	2,53	29	7,38	26	8.7	2.0	12,1	10	12,6	14	17,9	3,4	00.3
9mm	01mm	0.0 mm²	BAVO	14	10,7	0,0	31.3	5.5	65,6	3,7	77,7	2.7	100	2.4	121	1.0	15/3	0,39	767
	t.tSmm	125 mm ²	MAUE	20	12,4	11	20,9	6,4	42,7	5,5	51,0	4,0	71,9	3,0	00,7	2,7	100	8,50	Stt
	0.2 mm	1.8 mm²	BAVE	29	9,33	10	15,7	8,4	32,8	7,2	38,8	5,3	53,9	4,7	80,6	3,6	73,4	8,77	383
	0.25 mm	2.25 mm ²	HAVE	29	7,47	19	12,5	10	26,2	8,8	31,1	6,5	43,2	5,0	48,4	4,5	€3,€	1,0	307
	0.3 mm	22 mm²	11AVS	33	6,22	23	10,4	12	21,8	11	25,8	7,7	36,8	6,9	40,4	5,4	53,0	1,2	256
	D.4 mm	3.6 mm*	12 AVB	69	6,67	28	7,83	16	16,4	13	19,4	10	27,8	3,0	38,3	7,8	33,7	1,5	132
	0.5 mm	4.5 mm?	TAVS:	45	3,73	33	6.27	.19	13,1	- 11	15.5	122	21,6	11	24,2	8,8	31,8	1.9	153
	lmm	3mm'	9AV9	64	1,87	50	3,13	32	6,56	28	7,9	22	10,0	29	1,31	16	15,3	3,8	76.7
	Q1mm	1mm	BAUS	15	16,8	9,6	29,2	4.8	59.8	4,1	69.9	3.6	97.1	2.7	109	2.1	143	0.43	690
10 mm	9.15 mm	1,5 mm*	BAVE	29	11,2	11	18,8	7,1	39,3	0,0	49,6	4.4	84.7	4,0	72,7	3,0	35,2	0,05	160
	0.2 mm	2 mm²	MAVE	27.	8,40	11	14,3	9,7	28,5	7.9	35,0	5.4	48,6	5.2	54.5	4.0	71.5	0,86	345
	0.25 mm	2.5mm²	HAVE	31	8,72	- 21	11,3	- 11	23,4	9,7	28,0	7.2	38,8	0,6	43,6	5,8	57,2	LI	274
	0.3 mm	3 mm²	DAVG	39	5,60	24	3,40	13	19,7	11	23,3	8.5	1.56	7.6	36,3	5,0	47.7	1.3	239
	0.4 mm	4mm ¹	RAUG	43	4,20	30	7,05	17	14,0	11	17,5	11	24,2	2,9	27,3	7,8	35,8	1.7	173
- 1	0.5 mm	5 mm ¹	MAKG	19	3,36	35	0.64	20	11.8	18	14.0	13	10.4	12:	21,0	3,5	28,€	1.5	138
	1mm	18 mm ¹	RAME	23	1.68	53	2.82	34	5.30	20	7.0	24	9.7	22	10.3	17	14.7	4.2	69.0


```
1616258 No.:
```



```
MITTE MEGING);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
Minimagic();

Mi
                          pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
                                            guaradelerschieften, Ochrothy
```


Heregalla da 27 ani il 300 hana 3	
Meanwards over a law has nature	
//fire money and military200) of (plongs <-m)(plongs200) of (plongs /00)(plongs * 251)	
statek - *plonge; statek - plonge;	
territi-printle(ployes);	
(Vertical property (states);	


```
harre hart a may (militally (gir harre hart, HIOH), res min, res man, 8 , 180);
berg set - applicable (the here set, 1800), on all, research (180);
phage a sutpaired (the phage, 1800), on all, research (180);
phage a sutpaired (the phage, 1800), on all, research (1804);
if(herro hors s255)(herre hors = 255;)
17(0114gs 1055)(plongs - 155;)
Tiphonge (-200) (alleage - -1251)
tension_AL + AUD.residE((1); // House
tension_solts_AL + AUD.toWalfage(tension_AU);
```



```
Serial prior (termine, wolfs, AU);
Serial prior(",");
Serial prior("is termine on Al con ");
 Secial print in tension volts 41):
 makeg = mm(ACX, minusi, manual, -WO, 90);
  im theg + min(Act, winval, wasval, -00, 90);
* ** ##D_TO_DED * (stant(-ying, -zing) + PI);
y = ##D_TO_DED * (stant(-ying, -zing) + PI);
z = ##D_TO_DED * (stant(-ying, -xing) + PI);
```



```
moteurn (int states)
     digitally frequency State, siled a
     digitalis ita@meterPin42, 1040;
    digitalwille(esterPisk), the); cligitalwille(esterPisk), klony;
    digitalifiti(esterfick), 8280);
digitalifiti(esterfick), 8280;
If (states o to 48 tender velts AL va.) I make
  digitals in (meta-riett, miss):
digitals it (meta-riett, 100);
  digitalistic(materists, 100;
  digitalerité(metropies, elle);
```



```
Comment to second
```

