Building a Patient Experience Model

Improve patient experience and satisfaction

Data from CMS.gov

Targeting Patient Experience

The Benefits

- Increase patient engagement
- Better patient outcomes
- Continuity of care
- Increase employee moral
- Improve hospital reputation
- Reduce risks of malpractice
- Increase hospital financial success

Improve Patient Experience

Ways to Improve Patient Experience

- Communication
 - Courtesy and Respect
 - Listen to Concerns
 - Provide Explanations

HCAHPS Survey Analysis

What is HCAHPS?

- First national, standardized, publicly-reported survey of patients' perspectives of hospital care
- Captures the patients' experience of communication with doctors and nurses, responsiveness of hospital staff, communication about medicines, cleanliness and quietness of the hospital, discharge information, transition to post-hospital care and overall rating of the hospital
- Administered between 2 and 42 days after discharge to a random sample of patients, by mail, telephone and interactive voice response, in a variety of languages

Deep Dive into Nurse Communication

Nurses are on the front lines of health care

- A healthy nurse-patient relationship built on trust and respect goes a long way
- It's important to understand the uniqueness of this relationship and how it contributes to the overall patient experience

76% of patients said nurses were always courteous and respectful

24% of patients said nurses were not always courteous and respectful

Dealing with unbalanced data

Missing Values in Survey

Handling Missing Values

- Surveys contain missing responses if questions do not apply to the respondent
- If missing values are removed, this may cause a significant amount of data loss
- Missing values were replaced with a category to capture the missing data

Q01_06	0.89
Q02_06	1.06
Q03_06	1.42
Q04_06	3.18
Q05_06	1.51
Q06_06	1.83
Q07_06	1.87
Q08_06	2.29
Q09_06	2.01
Q10 06	4.72
Q11_06	51.35
Q12_06	3.65
Q13_06	30.67
Q14_06	30.58
Q15 06	6.76
Q16_06	45.49
Q17_06	46.42
Q18_06	1.91
Q19_06	13.66
Q20_06	15.62
Q21_06	2.10
Q22_06	2.27
Q23_06	2.71
Q24_06	4.60
Q25_06	9.91
Q26A_06	8.75
Q26B_06	9.25
Q26C_06	9.59
Q26D_06	10.10
Q26E_06	10.18
Q27_06	4.15

Model Building

Target	Predictors
Nurse Courtesy and Respect	Nurses Listen, Nurses Explain, Spring, Summer, Gender, Critical Patient, Admission Source

Model Type	Accuracy	ROC AUC	Misclassified
Logistic Regression w/ Train, Test, Split	84.70	79.9	False Positives: 4056 False Negatives: 4691
Logistic Regression w/ Kfolds = 10		87.36	
Logistic Regression w/ Cross Validation = 10		87.03	False Positives: 13410 False Negatives: 15254
Decision Tree – using undersampling	82.57	87.1	False Positives: 1976 False Negatives: 2814
Random Forest – using undersampling ** All variables were thrown into the model, so that a feature selection could be ran	82.62	88.8	False Positives: 1953 False Negatives: 2825
Random Forest w/ Feature Variables – using undersampling	82.62	88.2	False Positives: 1958 False Negatives: 2818
Decision Tree w/ Feature Variables – using undersampling	82.62	88.2	False Positives: 1958 False Negatives: 2818

Final Model – Decision Tree (using features of importance)

Overview of Model Accuracy

Model Type	Accuracy	ROC AUC	False Positives	Sensitivity	Specificity	
How often is the classification correct?	88.62	88.2				(True Positives + True Negatives)/Total True Positives & Predicted probabilities
How often is the model incorrect?						(False Positives + False Negatives)/Total
When the actual is yes, how often does it predict yes?				79.6		True Positives/Actual Yes
When the actual is no, how often does it predict yes?			14.3			False Positives/Actual No
When the actual is no, how often does it predict no?					85.6	True Negatives/Actual No

n = 27,493	Predicted: NO	Predicted: YES	Total
Actual: NO	TN = 11,699	FP = 1958	13,657
Actual: YES	FN = 2,818	TP = 11,018	13,836
Total	14,517	12,976	

Final Model – Decision Tree (using features of importance)

Conclusion

Recommendations

Add in new features to the dataset

- Complaints from patients
- Length of waiting times
- Patient diagnoses
- Hospital names
- Readmissions

Cluster the data

Detect if there are similarities in different features, using the new inputs.

Check data quality

Are there any issues with the dataset? Noticeable issues were discrepancies between the data dictionary and the actual dataset.

