НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Конспект Лекций

«Дифференциальные уравнения. Первый семестр»

Содержание

1.		
	1.1.	Обыкновенные Дифференциальные Уравнения
	1.2.	Сведение к системе 1-го порядка
	1.3.	Задача Коши для уранения первого и высших порядков
	1.4.	Существование и единственность решения задачи Коши
	1.5.	Локальная теорема существования и единственности задачи Коши
	1.6.	Глобальная теорема единственности
2 .		
	2.1.	Локальная теорема существования и единственности задачи Коши
		2.1.1. Сведение к эквивалентному интегральному уравнению
		2.1.2. Теорема сжимающих отображений
	2.2.	Доказательство нашей теоремы
		2.2.1. Часть 1:
		2.2.2. Часть 2:
	2.3.	Задача Коши с параметром
		2.3.1. Теорема локальной непрерывной зависимости от параметра
		2.3.2. Доказательство теоремы:
		2.3.3. Принцип сжимающих отображений с параметром
3.	Про	одолжение второй лекции
	3.1.	Глобальная теорема непрерывной зависимости от параметра
	3.2.	Доказательство:
4 .		
	4.1.	Операторы Коши
	4.2.	Автономные ДУ
	4.3.	Теорема о продолжении решения до границы (или за границу) компакта
		4.3.1. Доказательство:
	4.4.	Линейное ДУ
5 .		
	5.1.	
	5.2.	Уравнения с разделяющимися переменными
		$5.2.1.$ Обобщенное решение $*_1, *_2 \ldots \ldots \ldots \ldots \ldots$
	5.3.	АДУ на прямой
6.		
		ДУ на многообразиях
	6.2.	Автономные ДУ на многообразии
_		
7.	— -	т. 1.1
	7.1.	Дифференцирование решений по параметру
	7.2.	Сведение к параметру только в начальном условии
0		
8.	0 1	Teamore a narrow result of the second of the
	8.1.	Теорема о выпрямлении в.п.
	8.2.	Дифференциальные 1-формы
	8.3.	Дифференциал функции
	8.4.	Дифференциальные уравнения на \mathbb{R}^2
	8.5.	Уравнения в полных дифференциалах

	8.6.	Метод интегрирующего множителя	30
9.			32
	9.1.	Симметрии ДУ	32

1.

1.1. Обыкновенные Дифференциальные Уравнения

$$y: I \to \mathbb{R}^d, I \in \mathbb{R}$$

Обыкновенное дифференциальное уравнение – $F(x,y(x),y'(x),\ldots,y^{(n)}(x))=0(*),\,n$ – порядок ур-я $F:\Omega\to\mathbb{R}^d,\Omega\in\mathbb{R}^{1+d(n+1)}$

F – непрпрерывная функция

Определение. Решение ОДУ это $y:I\to\mathbb{R}^d:\exists\;y^{'},\ldots,y^{(n)}:I\to\mathbb{R}^d,(*)$ обращается в тождество при подстановке.

 $y^{(n)}(x) = \varphi(x, y(x, \dots, y^{(n-1)}(x))$ (**) – ОДУ разрешенное относительно старшей производной. Мы будем заниматься только ими.

Если
$$\left| \frac{\delta F_i}{\delta y_j^{(n)}} \right| \neq 0$$
, то локально (*) эквивалентно (**)

1.2. Сведение к системе 1-го порядка.

$$(\#) \begin{cases} z_0(x) = y(x) \\ z_1(x) = y'(x) \\ \dots \\ z_{n-1}(x) = y^{(n-1)}(x) \end{cases}$$

Или же (* * *)

$$\begin{cases} z'_{n-1} = \varphi(x, z_1, \dots, z_{n-1}) \\ z'_{n-2} = z_{n-1} \\ \dots \\ z'_0 = z_1 \end{cases}$$

Лемма 1.1. 1) Если $y:I\to\mathbb{R}^d$ – решение (**), то набор $(z_0=y,z_1=y',\ldots,z_{n-1}=y^{(n-1)})$ – решение (***)

2) Пусть $(z_0, z_1, \dots, z_{n-1})$ – решение (***). Тогда $y = z_0$ – решением (**) и верны формулы (#)

1.3. Задача Коши для уранения первого и высших порядков

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \\ t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^d \end{cases}$$

Пример
$$\begin{cases} \dot{x} = x \\ x(1) = 2 \end{cases}$$
 Решением будет $x = \frac{2}{e}e^t$
$$\begin{cases} y^{(n)}(x) = \varphi(x, y(x), \dots, y^{(n-1)}(x)) \\ z_0(x_0) = \hat{z}_0 \\ z_1(x_0) = \hat{z}_1 \end{cases}$$
 $y_i \in \mathbb{R}^d \iff (**) \begin{cases} y(x_0) = \hat{z}_0 \\ \dots \\ y^{(n-1)} = \hat{z}_{n-1} \end{cases}$

1.4. Существование и единственность решения задачи Коши

Пример неединственности

$$x(t) = t^3$$

$$\dot{x}(t) = 3t^2 = 3x^{2/3}$$

$$\int \dot{x} = 3x^{2/3}$$

$$x(0) = 0$$

 $\begin{cases} \dot{x}=3x^{2/3}\\ x(0)=0\\ x_1(t)=t^3, x_2(t)=0 \ -\ \text{решения системы.}\ x(t)=(t-a)^3 \ -\ \text{решение первого уравнения.} \end{cases}$

Другой пример:

Пусть $x:J \to \mathbb{R}^d$ – решение задачи Коши $I\subset J, x|_I:I \to \mathbb{R}^d$ – тоже решение

Ограниченный интервал существования

$$\dot{x}(t) = x^2 + 1$$

 $x(t) = \tan(t-c), t \in [c-\frac{\pi}{2}; c+\frac{\pi}{2}]$ (можно с константой написать, потому что можно сдвигать)

1.5. Локальная теорема существования и единственности задачи Коши

$$\begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

$$f: \Omega \to \mathbb{R}^d, \Omega \in \mathbb{R}^{d+1}, (t_0, x_0) \in \Omega$$

Выполнено условие гладкости для функции: $f,f_x'\in C(\Omega)$ – непрерывные Тогда

- 1) $\exists x: I \to \mathbb{R}^d, t_0 \in I$ решение з. Коши
- 2) Если $\tilde{x}: J \to \mathbb{R}^d$ решение з. Коши, то $x|_{I \cap J} = \tilde{x}|_{I \cap J}$

Более подробно:

т.к.
$$\Omega$$
 – открытое $(t_0, x_0) \in \Omega \Longrightarrow \exists \ \delta, \epsilon : K = \overline{B_\delta}(t_0) \times \overline{B_\epsilon}(x_0) \subset \Omega$

$$f, f'_x \in C(K) \Longrightarrow \sup_K |f| \le M, \sup_K ||f'_x|| \le L$$
 (норма, потому что вектор)

Что за I? это значит $\exists \ I = [x_0 - \tau, x_0 + \tau], \tau = \tau(\epsilon, \delta, M, L)$

1.6. Глобальная теорема единственности

Рассмотрим з. Коши и $(t_0, x_0) \in \Omega$, $f, f'_x \in C(\Omega)$ Тогда если $x^{(1)}: I^{(1)} \to \mathbb{R}^d$, $x^{(2)}: I^{(2)} \to \mathbb{R}^d$ – решения з. Коши, то $x^{(1)}|_{I^{(1)} \cap I^{(2)}} = x^{(2)}|_{I^{(1)} \cap I^{(2)}}$ (причем тождественно) (!)

Доказательство:

Рассмотрим $\{t \geq t_0: x^{(1)}|_{[t_0,t]} = x^{(2)}|_{[t_0,t]}\} = A$, тогда

- 1) $t_0 \in A$
- 2) Если $t \in A$, то $\forall t' \in [t_0, t], t' \in A$
- ullet Может быть $A=[t_0,+\infty)$ Тогда $I^{(1)}=(\dots,+\infty), I^{(2)}=(\dots,+\infty), x^{(1)}(t)=x^{(2)}(t)$ при 3) $t \in [t_0, +\infty)$
 - Может быть $A = [t_0, \tau)$
 - Может быть $A = [t_0, \tau]$

Если $\sup I^{(1)}=\tau$ или $\sup I^{(2)}=\tau$, то (!)– $x^{(1)}|_{I^{(1)}\cap I^{(2)}}=x^{(2)}|_{I^{(1)}\cap I^{(2)}}$ (причем тождественно) верно при $t\geq t_0$. При $t\leq t_0$ разбираемся аналогично.

- 1) Доказано
- 2) Пусть $A = [t_0, \tau)$. Пусть $\tau \in I^{(1)} \cap I^{(2)}$. Раз это не макисмум этих интервалов, то это внутренняя точка. $x^{(1)}(\tau) = \lim_{t \to \tau 0} x^{(1)}(t) = \lim_{t \to \tau 0} x^{(2)}(t) = x^{(2)}(\tau) \text{ (пользуясь тем, что наши решения слева совпадают, а значит и в момент времени <math>\tau$). Значит $\tau \in A$. А мы договорились, что такого не бывает.
- 3) Пусть $A = [t_0, \tau], x^{(1)}.x^{(2)}$ реш. з. К.(1-1) $\begin{cases} \dot{x} = f(t, x) \\ x(\tau) = x^{(1)}(\tau) = x^{(2)}(\tau) \end{cases}$

Значит эти два решения совпадают в маленькой окрестности. Т.е. $x^{(1)}(t) = x^{(2)}(t)$ при $t \in \overline{B_\delta}(\tau)$. Множество A таково что на $[t_0, \tau]$ совпадают B силу теоремы сущ. и единственности, примененной к (1-1) з. К. на отрезке с центром в τ . Значит они совпадают на $[t_0, \tau + \delta) \subset A$. Противоречие.

Ослабление условия $f, f_x' \in C(K) \to f_x' \in C(K)$

Определение. Функция $g:K=\overline{B_\delta}(t_0) imes\overline{B_\epsilon}(x_0) o\mathbb{R}^m$ – липшицева по x, если $\exists~L:\forall~(t,x),(t,y)\in K$ $||g(t,x)-g(t,y)||\leq L\cdot||x-y||$

Лемма 1.2. Если $g'_x \in C(K), ||g'_x||_{C(K)} \leq L, \ mo \ g$ липшицева по x (c этой константой L)

Доказательство: Рассмотрим путь $\psi(\theta) = (1-\theta)x + \theta y$ $|g(t,y) - g(t,x)| = |g(t,\psi(1)) - g(t,\psi(0))| = \left| \int\limits_0^1 \frac{\partial g(t,\psi(\theta))}{\partial \theta} d\theta \right| \leq \int\limits_0^1 \left| \frac{\partial g(t,\psi(\theta))}{\partial \theta} \right| d\theta$ $= \int\limits_0^1 |dg_x|_{\psi(\theta)} (\frac{\partial \psi}{\partial \theta}) d\theta = \int\limits_0^1 |dg_x|_{\psi(\theta)} (y-x) d\theta \leq \int\limits_0^1 ||dg_x|_{\psi(\theta)}|| \cdot |(y-x)| d\theta \leq ||g_x||_{C(K)} |y-x|.$

2.

2.1. Локальная теорема существования и единственности задачи Коши.

$$\begin{cases} \dot{x}=F(t,x)\\ x(t_0)=x_0\\ F:\Omega\to\mathbb{R}^n,\Omega\in\mathbb{R}^{n+1},(t_0,x_0)\in\Omega$$
 и выполнены условия:

- 1) $D = \overline{B_{\delta}}(t_0) \times \overline{B_{\epsilon}}(x_0) \subset \Omega$
- 2) $F \in C(D), (||F||_{C(D)} \leq M)$
- 3) F липшицева по x на D, т.е. для $\forall (t,x), (t,y) \in D |F(t,x) F(t,y)| \le L|x-y|$

Тогда существует $\tau= au(\delta,\epsilon,L,M)$: з.К. имеет единственное решение на $[t_0- au,t_0+ au]$ (в конце отрезках односторонние производные)

И Если $\tilde{x}: J \to \mathbb{R}^d$ – решение з. Коши, то $x|_{I \cap J} = \tilde{x}|_{I \cap J}$

2.1.1. Сведение к эквивалентному интегральному уравнению

Лемма 2.1. x – непрерывн, решение задачи Коши \iff x решение: $x(t) = x_0 + \int F(s, x(s)) ds(**)$

Доказательство: (\Longrightarrow) Если x решение задачи Коши, то x дифференцируема, т.е. непрерывна. Тогда F(s,x(s)) непрерывна (как композиция непрерывных), т.е. $x \in C^1$ (один раз диффер.)

$$x_0 + \int\limits_{t_0}^t F(s,x(s))ds = x_0 + \int\limits_{t_0}^t \dot{x}(s)ds = x_0 + x(t) - x(t_0) = x(t)$$
 (\Longleftarrow) x — решение интегрального уравнения. Тогда x — непрерывн, тогда $F(s,x(s))$ непрерывно.

Тогда $\frac{dx}{dt} = F(t, x(t))$. При этом начальное условие выполняется $x(t_0) = x_0 + \int_0^\infty dt$

2.1.2. Теорема сжимающих отображений

Пусть (X, ρ) полное метрическое пространтсво и $f: X \to X$ и существует $q < 1: \forall x, y \in X$ $X \rho(f(x), f(y)) \le q\rho(x, y)$. Тогда $\exists ! z \in X : f(z) = z$

Доказательство Взять точку x и начать ее итерировать $x, f(x), f^2(x), \ldots$ тогда $\rho(f^n(x), f^m(x)) \le$ $\sum_{k=n}^{m-1}q^kd\leq\sum_{k=n}^{\infty}q^kd=q^n\cdot C,\ C=rac{d}{1-q}.$ Тогда эта последовательность фундаментальна. то есть она сходится.

 $f^n(x) \to z, f^{n+1}(x) \to z.$ С другой стороны $f^{n+1}(x) = f(f^n(x)) \to f(z) \Longrightarrow f(z) = z.$

Единственность. Пусть их две. Тогда при операции их образы приблизятся, а значит и они сами должны стать ближе (т.к. неподвижные). Противоречие.

6

2.2. Доказательство нашей теоремы

2.2.1. Часть 1:

Потребуем $\tau \leq \delta$ (У1)

 $E_I = \{x : I \to \overline{B_{\epsilon}}(x_0) - \text{непр.}\}\ I \subset [t_0 - \tau, t_0 + \tau]$ – отрезок $E \subset C^0(I \to \mathbb{R}^n)$ – полное метрическое пространство, E замкнутое подмножество, тогда E полное.

Пусть
$$\Phi: E \to E: (\Phi(x))(t) = x_0 + \int\limits_{t_0}^t F(s,x(s))ds$$
. Тогда

- 1) Φ определена(У1), поскольку $F \in C(D)$, а там Φ -я определена и непрерывна и можно взять интеграл
- 2) $\Phi(x) \to C^1([t_0 \tau, t_0 + \tau] \to \mathbb{R}^n)$
- 3) $\forall t \in \overline{B_{\tau}}(t_0) \ (\Phi(x))(t) \in \overline{B_{\epsilon}}(x_0).$

Действительно
$$|(\Phi(x))(t)-x_0|=|\int\limits_{t_0}^tF(s,x(s))ds|\leq M|t_0-t|\leq M\tau\leq\epsilon$$

Потребуем второе условие $\tau \leq \frac{\epsilon}{M}$ (У2)

Значит Φ действительно из E в E

4) Φ сжимающее с q = 0, 5

$$|x_1,x_2 \in E, |\Phi(x_1)(t) - \Phi(x_2)(t)| = \left| \int_{t_0}^t F(s,x_1(s))ds - F(s,x_2(s))ds \right|$$
 в силу липшивости \leq

в силу липшивости
$$\left|\int\limits_{t_0}^t L|x_1(s)-x_2(s)|ds\right| \leq L|t-t_0|\cdot||x_1-x_2|| \leq L\tau||x_1-x_2||$$

Положим $L\tau \leq 0, 5$. Тогда все ок. $\Rightarrow \tau \leq \frac{1}{2L}$

Получили, что при трех условиях $\tau \leq \delta, \tau \leq \frac{\epsilon}{M}, \tau \leq \frac{1}{2L} \; \exists \; ! \; x \in E_I : x$ – решение $x(t) = x_0 + \int_{t_0}^t F(s,x(s))ds$ (**) по принципу сжимающего отображения. Решения зазадчи Коши на отрезке (и даже любом подотрезке) единственны.

2.2.2. Часть 2:

Если $\tilde{x}: J \to \mathbb{R}^n$ – решение (*) или мы уже знаем что или (**), то $x|_{I \cap J} = \tilde{x}|_{I \cap J}$

Пусть K – любой отрезок в $I \cap J$. Тогда если x неподвижная точка $\Phi_{[t_0-\tau,t_0+\tau]}$, то $x|_K, \tilde{x}|_K$ – решения задачи Коши (*) на K.

По части 1 для $\Phi_K x|_K = \tilde{x}|_K$. Следовательно $x|_{I\cap J} = \tilde{x}|_{I\cap J}$

2.3. Задача Коши с параметром

$$\lambda \in \Lambda \subset \mathbb{R}^m$$

Назовем эту задачу $*_{\lambda}$
 $\begin{cases} \dot{x} = F(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$

Тогда $x(t,\lambda)$ – решение $*_{\lambda}$

2.3.1. Теорема локальной непрерывной зависимости от параметра

$$*_{\lambda} \begin{cases} \dot{x} = F(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$$

- $*_{\lambda}$ $\begin{cases} \dot{x} = F(t,x,\lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$ \mathbb{R}^n . $\Omega \in \mathbb{R}^{n+1+m}, x_0 : \Psi \to \mathbb{R}^n$ и выполнены условия: 1) $D = \overline{B_{\delta}}(t_0) \times \overline{B_{\epsilon}}(x_0(\lambda)) \times \overline{B_{\epsilon}}(\lambda_0) \subset \Omega$ $\forall \lambda \in \overline{B_{\epsilon}}(\lambda_0)$ верно, что $x_0(\lambda) \in \overline{B_{\epsilon/2}}(x_0(\lambda_0))$
- 2) $F \in C(D), x_0 \in C(\overline{B_{\varepsilon}}(\lambda_0)(||F||_{C(D)} \leq M)$
- 3) F линейно по x на D, т.е. для \forall $(t,x,\lambda),(t,y,\lambda)\in D$ верно $|F(t,x,\lambda F(t,y,\lambda)|\leq L|x-y|$

Тогда

- 0) $(*_{\lambda})$ имеет решение x_{λ} на $\overline{B_{\tau}}(t_0)$, $\tau = \tau(\delta, \epsilon/2, L, M)$ (из теоремы \exists !) (почему $\epsilon/2$ см. лекция 49.50и рисунок)
- 1) $x_{\lambda} \in C^0(\overline{B_{\tau}}(t_0)) \to \mathbb{R}^n : \lambda \to x_{\lambda}$ непрерывно на $\overline{B_{\xi}}(\lambda_0)$. (Утверждается непрерывность из диска в множество непрерывных функций)

1')
$$x(\lambda, t) = x_{\lambda}(t), x \in C(\overline{B_{\xi}}(\lambda_0) \times \overline{B_{\tau}}(t_0))$$

Доказательство экивалентности 1 и 1':

 $1 \to 1'$. (t, λ) . Хотим построить окрестность, в которой мало будут отличатся функции.

- 1) $\forall \zeta > 0 \; \exists \alpha > 0 : \forall \lambda' \in B_{\alpha}(\lambda)$ верно, что $||x_{\lambda} x_{\lambda'}|| < \frac{\zeta}{2}$
- 2) Сама функция x_{λ} непрерывна. Поэтому $\forall \zeta \; \exists \; \beta > 0 : \forall \; t' \in B_{\beta}(t)$ верно, что $|x_{\lambda}(t) x_{\lambda'}(t')| < \frac{\zeta}{2}$

Тогда
$$\forall \lambda' \in B_{\alpha}(\lambda), t' \in B_{\beta}(\lambda)(t) |x_{\lambda}(t) - x_{\lambda'}(t')| \leq |x_{\lambda}(t) - x_{\lambda}(t')| + |x_{\lambda}(t') - x_{\lambda'}(t')| \leq \zeta$$

 $1' \to 1$. Если x непрерывна на $\overline{B_{\xi}}(\lambda_0) \times \overline{B_{\tau}}(t_0)$. Поскольку компакт, x равномерно непрерывно.

$$\forall \zeta \exists \ \gamma > 0 : \forall \ \lambda, \lambda' : |\lambda - \lambda'| < \gamma \Longrightarrow \forall \ t$$
 верно, что $|x(t,\lambda) - x(t,\lambda')| < \zeta$

 $\forall \lambda, \lambda' : |\lambda - \lambda'| < \gamma(\zeta) \Rightarrow ||x_{\lambda} - x_{\lambda}'||_{C^0(B_{\tau}(t_0))} < \zeta$ – получается непрерывность.

2.3.2. Доказательство теоремы:

Будем считать, что решения заданы на множестве $E = \{x : \overline{B_{\tau}}(t_0) \to \overline{B_{\epsilon}}(x_0) - \text{непрерывно}\}$

$$\Phi_{\lambda}: E \to E: (\Phi_{\lambda}(x))(t) = x_0(\lambda) + \int_{t}^{t} F(s, x(s), \lambda) ds.$$

Тогда неподвижная точка Φ_{λ} – решение задачи Коши, то есть x_{λ} . Хотим понять, как эта точка будет меняться с изменением λ .

2.3.3. Принцип сжимающих отображений с параметром

$\Phi: \Lambda \times X \to X$

X – полное метрическое, Λ – метрическое.

- 1) Ф непрерывна
- 2) $\exists q_0 < 1 : \forall \lambda \in \Lambda$ Φ_{λ} сжимающее с коэффициентом q_0 то есть $\forall x, y \in X$ верно, что $\rho(\Phi_{\lambda}(x), \Phi_{\lambda}(y)) \le$

Тогда если $z(\lambda)$ неподвижная точка Φ_{λ} , то $z:\Lambda\to X$ – непрерывно.

Доказательство:

Докажем, что z непрерывна в λ_0 . $z_0 = z(\lambda_0)$

Рассмотрим последовательность $z_0, \Phi_{\lambda}(z_0), \Phi_{\lambda}^2(z_0), \dots$

Тогда $\rho(z_0, \Phi_{\lambda}(z_0)) = \rho(\Phi_{\lambda_0}(z_0), \Phi_{\lambda}(z_0)).$

Из непрерывности Φ_λ следует, что $\exists~U\ni\lambda_0: \forall \lambda\in U: \rho(\Phi_{\lambda_0}(z_0),\Phi_{\lambda}(z_0))\leq \epsilon$

 $\rho(\Phi^n_\lambda(z_0),\Phi^m_\lambda(z_0)) \leq \epsilon \sum_{k=n}^{m-1} q_0^k \leq \frac{\epsilon q^n}{1-q}. \text{ Опять пользуемся фундаментальностью последовательности,}$ поэтому последовательность имеет предел. $\Phi^m_\lambda(z_0) \to z(\lambda), m \to +\infty.$ Перейдем к пределу. $\rho(\Phi^n_\lambda(z_0),z(\lambda)) \leq \frac{\epsilon q^n}{1-q}.$ При n=0 $\rho(z(\lambda_0),z(\lambda)) \leq \frac{\epsilon}{1-q}$

3. Продолжение второй лекции

Решили, для каких отображений стоит применять принцип сжимающих отображений. Осталось проверить, что Φ непрерывно по λ

- 1) $\Phi_{\lambda}: E \to E$ непрерывно и сжимает с коэффициентом 0, 5. Дословно переносится из доказательства Теоремы существования и единственности. Только в нужные места встаить "непрерывно по λ "
- 2) Ф непрерывн.

$$\begin{split} \left| \Phi(\lambda, x)(t) - \Phi(\tilde{\lambda}, \tilde{x})(t) \right| &= \left| x_0(\lambda) + \int_{t_0}^t F(s, x(s), \lambda) ds - x_0(\tilde{\lambda}) - \int_{t_0}^t F(s, \tilde{x}(s), \tilde{\lambda}) ds \right| \le \\ &\leq \left| x_0(\lambda) - x_0(\tilde{\lambda}) \right| + \int_{t_0}^t \left| F(s, x(s), \lambda) - F(s, \tilde{x}(s), \tilde{\lambda}) ds \right| \le \\ &\leq \left| x_0(\lambda) - x_0(\tilde{\lambda}) \right| + \int_{t_0}^t \left| F(s, x(s), \lambda) - F(s, \tilde{x}(s), \lambda) ds \right| + \int_{t_0}^t \left| F(s, \tilde{x}(s), \lambda) - F(s, \tilde{x}(s), \tilde{\lambda}) ds \right| \end{aligned}$$

- 1) Здесь пользуемся равномерной непрерывностью $x_0(\lambda)$: Для любого $\xi \exists \alpha: |\lambda \tilde{\lambda}| < \alpha \Longrightarrow |x_0(\lambda) x_0(\tilde{\lambda})| \leq \frac{\xi}{3}$
- 2) Пользуемся липшиевостью
- 3) Здесь пользуемся равномерной непрерывностью: Для любого $\xi \exists \beta: |\lambda \tilde{\lambda}| < \beta \Longrightarrow |F(t,x,\lambda) F(t,x,\tilde{\lambda})| < \xi \ \forall t,x$

Выражение оценивается $\leq \frac{\xi}{3} + L||x - \tilde{x}|| \cdot |t - t_0| + \xi |t - t_0| \leq \xi (\frac{1}{3} + \tau) + L\tau ||x - \tilde{x}||$, где $|t - t_0|$ оценивается τ .

Теперь если потребуем еще одно доп. условие $||x-\tilde{x}||<\xi$, то все выражение оценивается $|\Phi(\lambda,x)(t)-\Phi(\tilde{\lambda},\tilde{x})(t)|\leq \xi(\frac{1}{3}+\tau+L\tau) \ \, \forall t.$ То есть норма меньше либо равно то выражение. Значит непрерывно.

3.1. Глобальная теорема непрерывной зависимости от параметра

Рассмотрим задачу Коши

$$(*_{\lambda})\begin{cases} \dot{x} = F(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}, F, F' \in C(\Omega)$$

при $\lambda = \lambda_0, \ x_{\lambda_0}$ – решение $(*_{\lambda_0})$. Решение определено на некотором интервале, но мы выделим отрезок $I.\ x_{\lambda_0}: I \to \mathbb{R}^n$

Тогда $\exists U \ni \lambda_0$:

- 1) $\forall \lambda \in U$ решение $(*_{\lambda})$ существует на I (по глобальной теореме единственности, раз существует, то и единственно)
- 2) $x(\lambda, t) = x_{\lambda}(t), x$ непрерывно на $U \times I$.

3.2. Доказательство:

Основа: решаем задачу Коши на маленьких отрезках и собираем все глобальное решение из множества локальных.

Посмотрим множество точек $K = \{(t, x_{\lambda_0}(t), \lambda_0), t \in I\}$ – график непрерывной функции на компакте. Значит это тоже компакт.

Тогда расстояние от компакта до границы $dist(K, \partial \Omega) = \alpha > 0$.

Действительно, $dist(x,\partial\Omega)$ непрерывная функция, поскольку она даже 1-липшицева (если сдвинули точку x, то расстояние до любого множества не может измениться больше чем на то, что мы сдвинули). Непрерывная функция на компакте достигает своего минимума, а ноль быть не может, поскольку тогда точка x лежит на границе.

Фиксируем
$$\epsilon = \delta = \zeta = \frac{\alpha}{4}$$

To есть
$$\forall (\hat{t}, \hat{x}, \hat{\lambda}) \in K \overline{B_{\delta}}(\hat{t}) \times \overline{B_{\epsilon}}(\hat{x}) \times \overline{B_{\zeta}}(\hat{\lambda}) \subset \hat{K} \subset \Omega$$

Рассмотрим $\{(t,x,\lambda): dist((t,x,\lambda),K) \leq \frac{3\alpha}{4}\} = \hat{K}$ – компакт (замкнуто и ограничено). $\hat{K} \subset \Omega$.

 $||F||_{C^0(\hat{K})} \leq M, ||F_x'||_{C^0(\hat{K})} \leq L$, потому что непрерывная функция на компакте. Все 4 константы, участвующие в локальных теоремах, одинаковы для всех точек компакта K.

Вывод: $\tau = \tau(\delta, \epsilon, L, M)$ можно выбрать одним и тем же для всех точек компакта K.

Рассмотрим
$$\{\min I = t_{-l} < t_{-l+1} < \ldots < t_0 < t_1 < \ldots < t_k = \max I : |t_i - t_{i-1}| < \tau\}$$

Рассматриваем такую последовательность задач Коши:

$$\begin{pmatrix}
\dot{x}_i = F(t, x_i, \lambda) \\
x_i(t_{i-1}, \lambda) = \begin{cases}
x_{i-1}(t_{i-1}, \lambda), i \ge 2 \\
x_0(\lambda), i = 1
\end{cases}$$

 $(*_1)$ – задача Коши с начальным условием $x_1(t_0) = x_0(\lambda)$. При $\lambda \in U_1 \ni \lambda_0 \ x_{1\lambda}$ опеределен на $[t_0, t_1]$ (и даже немного шире, потому что расстояние между сосеlними точками строго меньше τ).

В частности, $x_1(t_1, \lambda)$ непрерывно по $\lambda, x_1(t_1, \lambda_0) = x_{\lambda_0}(t_1)$.

 $(*_2)$ – задача Коши с начальным условием $x_2(t_1)=x_1(t_1,\lambda)$. Правая часть непрерывная функция, которая при $\lambda=\lambda_0$ попадает на наш компакт. То есть решения этой задачи при $\lambda\in U_2\ni\lambda_0$ определен на $[t_1,t_2]$ (и даже немного шире, потому что расстояние между соседними точками строго меньше τ). $x_2(t_2,\lambda)$ непрерывно по $\lambda,x_2(t_2,\lambda_0)=x_{\lambda_0}(t_2)$.

Замечание: $x_{1,\lambda}, x_{2,\lambda}$ – решения $*_2$. По локальной или глобальной теореме единственности $x_{1,\lambda} = x_{2,\lambda}$ на пересечении областей определения.

Весь процесс продолжается и продолжается. И в итоге...

$$\hat{x}(t)=x_i(t,\lambda),$$
если $x_i(t,\lambda)$ определено и $t\in\left(rac{t_{i-1}+t_{i-2}}{2},rac{t_i+t_{i+1}}{2}
ight),\lambda\in\cap U_i$

 $\hat{x}(t)$ определено на $[t_0, max(I)]$. Аналогично для $t \in [min(I), t_0]$. Осталось проверить, что $\hat{x}(t, \lambda)$ – решение Коши (*)

Дейстивтельно:

Уравнение: $\forall t \; \exists \; (t-\beta,t+\beta) : \hat{x}|_{(t-\beta,t+\beta)} = x_i|_{(t-\beta,t+\beta)}.x_i$ удовлетворяет уравнению в $t \Longrightarrow \hat{x}$ тоже, но с начальным условием $\hat{x}(t_0) = x_1(t_0) = x_0(\lambda)$.

Итак. доказали, что при $\lambda \in \cap U_i$ (конечное пересение) все решение $x(t,\lambda)$ существуют. Покажем, что $\hat{x}(t,\lambda)$ непрерывна.

Возьмем $\tilde{t} \in [t_i, t_{i+1}], i \geq 0$. Локально $\hat{x} = x_i$, тогда проверим, что x_i непрерывна по λ . Заметим. что зависимость от λ передается в каждую следующую задачу Коши и входит в уравнение. Но каждая функция непрерывна по (t, λ) .

4.

4.1. Операторы Коши

 $\dot{x}=F(t,x),F,F_x'\in C(\Omega)$. Рассмотрим отображение $X_{t_0t_1}(\xi)=\nu,$ если решение з.Коши: $\begin{cases} \dot{x} = F(t, x) \\ x(t_0) = y \end{cases}$ \hat{x} равно ν в точке t_1

Свойства:

- 1) $X_{tt} = id$
- 2) $X_{t_2t_3}X_{t_1t_2}=X_{t_1t_3}$. Если t_2 между t_1,t_3 область определения совпадает. Иначе на пересечении областей определения.
- 3) $X_{st} = X_{ts}^{-1}$
- 4) $X_{ts}(y)$ непрерывно по (t, s, y)
- 5) X_{ts} определено на $A_{ts}\subset \mathbb{R}^n$ открытое множество из глобальной теоремы непрерывной зависимости. $B_{ts} = X_{ts}(A_{ts}) = A_{st}$

 $X_{ts}:A_{ts} \to A_{st}X_{st}:A_{st} \to A_{ts}$ непрерывные.

Вывод: X_{ts} гомеоморфзим.

Лемма 4.1. $(\lambda - napamemp) \dot{x} = f(t, x, \lambda), f \in C.$ $X_{t_0t_1}^{\lambda}$ – его оператор Коши. Тогда $X_{t_0t_1}^{\lambda}(y)$ непрерывно no $(y, t_0, t_1.\lambda)$

Доказательство:

доказательство. Мы решим задачу Коши: (*) $\begin{cases} \dot{x} = f(t,x,\lambda) \\ x(t_0) = y \end{cases}$. Проблема возникает в зависимости от t_0 (В доказательстве непрерывности раннее предполагали t_0 постоянным, а тут надо непрерывность по t_0 еще)

Пусть $z(s) = x(t_0 + s)$, тогда:

$$\begin{cases} \frac{dz}{ds}(s) = \dot{x}(t_0 + s) = f(t_0 + s, x(t_0, s), \lambda) = f(t_0 + s, z(s), \lambda) \\ z(0) = y \end{cases}$$

 $\begin{cases} \frac{dz}{ds}(s) = \dot{x}(t_0+s) = f(t_0+s,x(t_0,s),\lambda) = f(t_0+s,z(s),\lambda) \\ z(0) = y \end{cases}$ (*) \iff (**) $\begin{cases} \frac{dz}{ds}f(t_0+s,z,\lambda) \\ z(0) = y \end{cases}$. Посмотрим на эту систему, как на задачу коши с параметром-

тройкой (λ, t_0, y)

 $z_{\lambda,t_0,y}(s)$ непрерывно по (λ,t_0,y,s) . Тогда $X_{t_0t_1}^{\lambda}(y)=z_{\lambda,t_0,y}(t_1-t_0)$ непрерывна.

4.2. Автономные ДУ

 $\dot{x} = f(x)$ – нет зависимости от времени

Лемма 4.2. Если x – решение автономного ДУ, то $\hat{x}(t) = x(t+a)$ тоже решение $\forall a \in \mathbb{R}$.

Доказательство:

$$\dot{\hat{x}}(t) = \dot{x}(t+a) = f(x(t+a)) = f(\hat{x}(t))$$

Следствие:

Для автономного ДУ $X_{t_0t_1} = X_{t_0+a,t_1+a}$ операторы Коши зависят не от t_0,t_1 , а от их разности

Определение. Преобразования потока автономного ДУ – это $g^t = X_{o,t}$.

Свойства:

- 1) $g^0 = id$
- 2) $g^{t+s} = g^t g^s$ так как $(g^t g^s = X_{0,t} X_{0,s} = X_{s,t+s} X_{0,s} = X_{0,t+s} = g^{t+s})$
- 3) $g^{-t} = (g^t)^{-1}$
- 4) $g^t(x)$ непрерывно по (t,x)
- 5) g^t гомеоморфизм

Определение. Решение задачи Коши $x:I\to\mathbb{R}^n$ (I интервал) непродолжимо, если не существует $\hat{x}:\overline{J\to\mathbb{R},I\subset J:\hat{x}|_I=x}$

Теорема 4.1. Всякое решение продолжается до непродолжимого. (Если верна теореме существования и единственности, то есть $f, f'_x \in C$)

Доказательство:

Пусть Ξ — множество всех решений задачи Коши. Рассмотрим $J=\bigcup_{(x:I\to\mathbb{R}^n)\in\Xi}I$. Тогда J — открытое множество.

1) J – интервал.

Если $t \in J$, то $t \in I$ для некоторого $(x: I \to \mathbb{R}^n) \in \Xi$. Тогда $[t_0, t] \subset I \subset J \Longrightarrow J = (\inf(J), \sup(J))$.

2) Определим $\overline{x}: J \to \mathbb{R}^n, \overline{x}(t) = x(t),$ если $(x: I \to \mathbb{R}^n) \in \Xi, t \in I.$

Корректность:

$$x_1:I_1\to\mathbb{R}^n, x_2:I_2\to\mathbb{R}^n\in\Xi, t\in I_1\cap I_2.$$

Тогда $x_1(t)=x_2(t)$ из глобальной теоремы единстевнности $(x_1|_{I_1\cap I_2}=x_2|_{I_1\cap I_2})$

3) $\overline{x} \in \Xi$

Если $t \in J$, то $\exists (x : I \to \mathbb{R}^n) \in \Xi, t \in I$.

Тогда некоторая $B_{\delta}(t) \subset I \Longrightarrow x|_{B_{\delta}(t)} = \overline{x}|_{B_{\delta}(t)}$

$$\Longrightarrow \frac{d\overline{x}}{dt}(t) = \frac{dx}{dt}(t) = f(t, x(t)) = f(t, \overline{x}(t))$$

 $\overline{x}(t_0) = x_0$

 $4) \overline{x}$ непродолжимо.

Если нет, то существует $\tilde{x}: \tilde{I} \to \mathbb{R}^n) \in \Xi, J \subset \tilde{I}$. НО это противоречит $J = \bigcup_{(x:I \to \mathbb{R}^n) \in \Xi} I$

4.3. Теорема о продолжении решения до границы (или за границу) компакта

 $f:\Omega \to \mathbb{R}^n, \ f,f_x' \in C(\Omega). \ K \subset \Omega, \ (t_0,x_0) \in \Omega, \ x:J \to \mathbb{R}^n$ непродолжимое решение задачи Коши. Тогда $\exists \ T:t_0 < T < \sup(J): x(t) \notin K$ при $t \in (T,\sup(J))$

Замечание, если $\sup(J) = +\infty$, то $T \in \mathbb{R}$

4.3.1. Доказательство:

Если $\sup(J) = +\infty$, то очевидно. Действительно, $T = \max(t|(t,x) \in K)$ $\sup(J) = t_+ \in \mathbb{R}.$

Напоминание (если помним формулировку теоремы существования и единстевнности):

Если $(\tilde{t}, \tilde{x}) \in \Omega$, то решение задачи Коши определено на $B_{\tau}(\tilde{t})$, причем $\tau = \tau(\epsilon, \delta, M, L)$, где эти параметры определяются так: $B = \overline{B_\delta}(\tilde{t}) \times \overline{B_\epsilon}(\tilde{x}) \subset \Omega$, $\sup_B |f| \leq M$, $\sup_B |f'| \leq L$

Идея: если точка $(\tilde{t}, \tilde{x}) \in K$, то можем гарантировать фиксированные значения для (ϵ, δ, M, L)

Рассмотрим $\rho = \min_K (dist(t,x), \mathbb{R}^n \backslash \Omega) > 0$. Тогда $\tilde{K} = \{(t,x) \in \mathbb{R}^{n+1} : dist((t,x),K) \leq \frac{\rho}{2}\}$ непрерывная функция принимает значения из данного замкнутого множетсва, поэтому тоже замкнуто и $K \subset \Omega$.

 \tilde{K} ограничено $(K \subset B_R(0,0) \Longrightarrow \tilde{K} \subset B_{R+\rho/2}(0,0))$. Тогда \tilde{K} компакт.

Положим $\epsilon = \delta = \frac{\rho}{4}$. Тогда \forall $(\tilde{t}, \tilde{x}) \in K$ верно что $B = \overline{B_{\delta}}(\tilde{t}) \times \overline{B_{\epsilon}}(\tilde{x} \subset \tilde{K})$ $\sup_{B} |f| \leq \sup_{\tilde{K}} |f| := M, \sup_{B} |f'_{x}| \leq \sup_{\tilde{K}} |f'_{x}| := L.$ Итак $\tau = \tau_{K}$ можно считать одинаковым для всех $(\tilde{t}, \tilde{x}) \in K$.

Положим $T=t_+-\tau_K$. Если $\exists\ t\in(\tau,t_+): (\hat{t},x|_{\hat{t}})\in K$, то задача Коши $(*_y)$ $\begin{cases} \dot{y}=f(t,y)\\ y(\hat{t})=x(\hat{t}) \end{cases}$

решение $y: B_{\tau}(\hat{t}) \to \mathbb{R}^n$ (теорема существования и единственности с нашей количественной оценкой).

С другой стороны, x – тоже решение задачи коши $(*_u)$

Тогда $\exists \overline{y}$ непродолжимое решение $(*_y)$

 $\overline{y}(t_0) = x(t_0) = x_0 \Longrightarrow \overline{y}$ решение (*). НО \overline{y} определено при $t = t_+$ (и равно $y(t_+)$), а \overline{x} непродолжимое решение (*) – не определено при $t=t_+$. Противоречие с тем, что \overline{x} продолжение \overline{y}

4.4. Линейное ДУ

 $\dot{x}=A(t)x+b(t), A(t)\in Mat_{n imes n}(\mathbb{R}), x\in \mathbb{R}^n, A,b\in C(I), I$ – интервал. Тогда выполнено условие теоремы сущ. и един. $f'_x = A$

Теорема 4.2. Пусть $A,b \in C(I)$. Тогда все решения $\dot{x} = A(t)x + b(t), A(t) \in Mat_{n \times n}(\mathbb{R})$ продолжаются на весь І

Доказательство:

Пусть $[\alpha, \beta] \subset I$ Рассмотрим x(t) – решение $x(\alpha)$ определено. Докажем, что x определено на $[\alpha, \beta]$. Устремляя $\beta \to \sup I$ получим требуемое.

 $||A(t)|| \le M, |b(t)| \le B \ \forall t$ (Норма здесь значит, что применяя A к вектору, он удлинится не более чем в M раз) $\forall u |Au| \leq M|u|$. $M = n \cdot \max_{[t \in [\alpha,\beta]]} |a_{ij}(t)|, ||Au||_{\infty} = \max |(Au)_j| \leq \max_{[t \in [\alpha,\beta]]} \cdot (\sum |u_i|) \leq \max_{[t \in [\alpha,\alpha]]} \cdot (\sum |u_i|$ $M \max |u_i| = M \cdot ||u||_{\infty}$

У нас будет евклидова норма $||Au||_2 \leq \tilde{M}||u||_2$

$$\frac{d}{dt}(||x||^2) = \frac{d}{dt}(\langle x, x \rangle) = 2 \langle x, \dot{x} \rangle \le 2||x||(||Ax + b||) \le 2||x||(\tilde{M}||x|| + B)$$

$$\frac{d}{dt}(||x||) = \frac{1}{2||x||} \frac{d}{dt}(||x||^2) \le \tilde{M}||x|| + B$$

 Π усть R(t) = ||x(t)|| (по дороге доказали, что она дифференцируема. если норма не равняется нулю) И пусть $S(t) = e^{-(\tilde{M}+1)t}R(t)$

$$\begin{split} &\frac{dS}{dt} = -(\tilde{M}+1)S(t) + e^{-(\tilde{M}+1)t}\dot{R}(t) \leq e^{-(\tilde{M}+1)t}(-R(t)(\tilde{M}+1) + R(t)\tilde{M} + B) \leq \\ &\leq e^{-(\tilde{M}+1)t}(B-R(t)) \leq e^{-(\tilde{M}+1)t}(B-e^{(\tilde{M}+1)t}S(t)) \leq e^{-(\tilde{M}+1)t}(B-e^{(\tilde{M}+1)\alpha}S(t)). \end{split}$$

Пусть $S(\alpha)=S_0,\,S_1=2Be^{-(\tilde{M}+1)\alpha},\,$ то S(t) не может превзойти $\max(S_0,S_1)=\overline{S}$ (S убывает). Тогда $R(t)=e^{(\tilde{M}+1)t}S(t)\leq e^{(\tilde{M}+1)t}\overline{S}(t).$ То есть R не может неограничено возрастать, что значит, что R определено вплоть до β

16

5.

5.1. Фазовые пространства

Тогда про область Ω говорят, что она расширенное фазовое пространство. В каждой точке (t_0,x_0) верно $x-x_0=f(x_0,t_0)(t-t_0)$ (**)

Рассмотрим АДУ: $\dot{x} = f(x), f: \tilde{\Omega} \to \mathbb{R}^n$, тогда $\tilde{\Omega}$ – фазовое пространство.

Следиствие: $\Omega = \mathbb{R} \times \tilde{\Omega}$

Пусть x(t) – решение з. Коши, тогда Кривая $\{t, x(t)\}$ – **интегральная кривая**.

Если спроецировать интегральную кривую на фазовое пространство, то получится траектория.

Предположение: Интегральные кривые это кривые, касающиеся прямых (**) в каждой своей точке.

Доказательство:

Касательный вектор к интегральной кривой это $(1, \dot{x}_1(t_0), \dots, \dot{x}_n(t_0))$

Лемма 5.1. Пусть $f \in C^1(\tilde{\Omega})$. Тогда траектория $\dot{x} = f(x)$ не пересекаются (1) и заполняют (2) все пространство $\tilde{\Omega}$

Доказательство:

(1) Пусть есть две траектории: x, \tilde{x} – решения $\dot{x} = f(x)$ и пусть $x(t_0) = \tilde{x}(\tilde{t}_0) = x_0$

Тогда пусть $\overline{x}(t) = \tilde{x}(t - t_0 + \tilde{t}_0) \Rightarrow \overline{x}$ – тоже решение

Пусть $\overline{x}(t_0) = \tilde{x}(t_0) = x_0$

Т.е. x, \overline{x} – решение одной з. Коши $\Rightarrow x \equiv \overline{x} \Rightarrow$ траектории x, \overline{x} совпадают

HO траектории \tilde{x}, \overline{x} сопадают по строению, так как сдвиг по времени не влияет на траекторию.

(2) Возьмем точку x_0 в фазовом пространстве, берем время t_0 и находим интегральную кривую для этой точки, ее проекция будет траекторией.

Поле направлений – это множество всех прямых проведенных к каждой точке **интегральной** кривой. (В фазовом пространстве мы получаем векторное поле)

Векторном поле: в каждой точке задан касательный вектор

5.2. Уравнения с разделяющимися переменными

$$\frac{dy}{dx}=f(x)g(y)$$

$$\int \frac{dy}{g(y)}=\int f(x)dx.$$
 Пусть $G(y),F(x)$ – первообразные $\frac{1}{g(y)}$ и $f(x)$ соответственно, тогда $G(y)=F(x)+C$, где C – константа.
$$*_1 \frac{dy}{dx}=F(x,y)$$

Можно совершить замену на уравнение $(*_2)\frac{dx}{dy} = G(x,y)$, где $G = \frac{1}{F}$, если $\begin{cases} F$ – Определена $F \neq 0 \end{cases}$

Теорема 5.1. Интегральная кривая $\frac{dy}{dx} = F(x,y)$ проходящ, через (x_0,y_0) совпадает с инт. кривой $\frac{dx}{dy} = G(x,y)$ проход. через ту же точку (x_0,y_0) , если $F,G \neq 0$ (жвив. "Определены")

Доказательство:

Т.к. $F(x_0, y_0) > 0$, то $\exists \ U : F(U) > 0 \Rightarrow \frac{dy}{dx} > 0 \ \forall x \in B_{\delta}(x_0)$, т.е. y(x) монот. возраст в $B_{\delta}(x_0) \Rightarrow$ там есть обратная функция x(y)

$$\frac{dx(y)}{dy} = \frac{1}{dy/dx(x(y))} = \frac{1}{F(x(y), y)} = G(x(y), y)$$

5.2.1. Обобщенное решение $*_1, *_2$

Это такая кривая на плоскости (x,y), в \forall окрестности $(x_0,y_0): F(x_0,y_0) \neq 0$ – график решения y=y(x) (тоже самое для $G(x_0,y_0)$)

Теорема 5.2. (1)
$$\frac{dy}{dx} = \frac{\Phi(x,y)}{\Psi(x,y)}; \Phi, \Psi \in C$$

Рассмотрим систему: (2) $\begin{cases} \dot{x} = \Psi(x,y) \\ \dot{y} = \Phi(x,y) \end{cases}$, тогда в области $\{(\Phi,\Psi) \neq (0,0)\}$ обобщ. решение (1) = 0 $mpae\kappa mopuu$ (2)

Доказательство:

 (\longleftarrow) Пусть $\Psi(x_0, y_0) \neq 0$ и (x(t), y(t)) – решение $(2), x(t_0) = x_0, y(t_0) = y_0$

Тогда $\dot{x}(t_0) = \Psi(x_0, y_0) \neq 0$, а по Т. о неявной ф-ции локально t = t(x) – обратная функция. $\frac{dt}{dx}(\hat{x}) = \frac{1}{\dot{x}(t(\hat{x}))} = \frac{1}{\Psi(\hat{x}, y(t((\hat{x})))}$

$$\frac{dt}{dx}(\hat{x}) = \frac{1}{\dot{x}(t(\hat{x}))} = \frac{1}{\Psi(\hat{x}, y(t((\hat{x}))))}$$

 $\begin{array}{ll} dx & x(t(x)) & \Psi(x,y(t((x))) \\ \text{Рассмотрим функцию } y(t(x)): \frac{dy}{dx}\hat{x} = \frac{dy}{dt}(t(\hat{x}))\cdot\frac{dt}{dx}(\hat{x}) = \varPhi(x(t(\hat{x})),y(t(\hat{x})))\cdot\frac{1}{\varPsi(\hat{x},y(t(\hat{x})))} = \frac{\varPhi(\hat{x},y(t(\hat{x})))}{\varPsi(\hat{x},y(t(\hat{x})))}, \end{array}$ а y(x) = y(t(x)) локально удоавлетворяет (1)

 (\Longrightarrow) Пусть y(x) – решение (1)

Тогда $\dot{x}(t) = \Psi(x(t), y(x(t)))$ (3) это Автономное уравнение на прямой.

Оно имеет решение (см. ниже) x = x(t), где $x(t_0) = x_0$

Положим y(t) = y(x(t)), тогда (x(t), y(t)) удовл. (2):

1е уравнению (2) — по постронию x(t) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \dot{x} = \frac{\varPhi\left(x(t), y(x(t))\right)}{\varPsi\left(x(t), y(x(t))\right)} \cdot \varPsi\left(x(t), y(x(t))\right) = \varPhi\left(x(t), y(x(t))\right)$ таким образом мы установили соответствие.

$$\frac{dy}{dx} = f(x)g(y) = \frac{g(y)}{1/f(x)} \Rightarrow \begin{cases} \dot{y} = g(y) \\ \dot{x} = \frac{1}{f(x)} \end{cases}$$

5.3. АДУ на прямой

$$\dot{x} = f(x), f \in C(I), I \subset \mathbb{R}$$

Предложение:

Если $f(x_0) = 0$, то $x \equiv x_0$ – решение нашего АДУ.

Пусть $f(x_0) \neq 0$, тогда $\frac{dt}{dx} = \frac{1}{f(x)}$ (локально эквивалентно)

$$t(x) = t_0 + \int_{x_0}^x \frac{d\xi}{f(\xi)}$$

Это были локальные решения.

Теперь пусть x(t) – решение

Пусть F(x(t)) > 0 при $t \in (t_0, t_1)$, то $\dot{x}(t) > 0, x : (t_0, t_1) \to \mathbb{R}, x$ – обратима и обратная функция локально равна t(x) = F(x) + C

Т.е. функция t(x) - F(x) локально постоянная \Rightarrow глобально постоянная.

Предложение:

Если $F|_{J} > 0, x(t_0) \in J$, то либо $\exists T : x(T) = \sup J$, либо x(t) определена на $(t_0, +\infty)$ и $x(t) \stackrel{t \to +\infty}{\to}$ $\sup J$

Доказательство:

(Теорема о продолжении до границы компакта) + надо исключить $x(t) \stackrel{t \to +\infty}{\to} a < \sup J$

F(a) > 0 тогда $F(x) \ge \epsilon > 0$ при $x \in B_{\delta}(a)$

Если $x(\hat{t}) \in B_{\delta}(a)$, то $x(\hat{t} + \frac{2\delta}{\epsilon})$

$$x\left(\hat{t} + \frac{2\delta}{\epsilon}\right) = x(\hat{t}) + \frac{2\delta}{\epsilon}\dot{x}(\tilde{t}) \ge (a - \delta) + 2\delta > a.$$

Теорема 5.3. Пусть $f(x_0) = 0$ — дискретный ноль функции f, тогда решение $\begin{cases} \dot{x} = f(x) \\ x(t_0) = x_0 \end{cases}$ справа от t_0 ведет себя одним из следующих способов:

1)
$$x \equiv x_0$$

2)
$$x = x_0$$
 на $[t_0, T]$, $x(t) > x_0$ при $t \in (T, T + \epsilon)$

3)
$$x = x_0, t \in [t_0, T], x(t) < x_0, t \in (T, T + \epsilon)$$

причем 2), 3) возможно только если

a)
$$f(x) > 0$$
 $npu \ x \in (x_0, x_0 + \delta)$

б)
$$\int_{x_0}^{x} \frac{d\xi}{f(\xi)} < \infty$$
 (сходится)

Предложение:

Если $f\in C^1$, то возможен только вариант A, т.е. $\int\limits_{x_0}^{x_0+\epsilon} \frac{d\xi}{|f(\xi)|}$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \overline{\overline{o}}(x - x_0) \Rightarrow |f(x)| \le C|x - x_0| \Rightarrow \int_{x_0}^{x_0 + \epsilon} \frac{d\xi}{|f(\xi)|} \ge \int_{x_0}^{x_0 + \epsilon} \frac{d\xi}{C|\xi - x_0|} = +\infty$$

6.

6.1. ДУ на многообразиях

 $\dot{x} = f(x, t), x \in M$

 $x: I \to M$, тогда \dot{x} – касательный вектор.

Определение. $\{\gamma: (-\epsilon, \epsilon) \to M\}$ – гладкие кривые, где $\gamma(0) = p$

 $\gamma \sim \hat{\gamma}$ если $dist(\gamma(t), \hat{\gamma}(t)) = \overline{\overline{o}}(t)$

Лемма 6.1. Если $(U, \varphi), (V, \psi)$ две карты содержащие p, то условие выше для них эквивалентно.

Пусть (y_1, \ldots, y_n) – локальная система координат в окрестности $p \in \mathbf{R}^n$

- y = y(x) определена в окрестности p
- \bullet y гладко зависит от x
- $\det\left(\frac{\partial y_i}{\partial x_i}\right)\Big|_{x=x} \neq 0$

Тогда если $\gamma, \hat{\gamma}: (-\epsilon, \epsilon) \to \mathbb{R}^n$, то $dist(\gamma(t), \hat{\gamma}(t)) \to 0 \iff dist(y(\gamma(t)), y(\hat{\gamma}(t))) \to 0$ (!)

По теореме о неявной функции x = x(y) (локально в окрестности $\tilde{p} = y(p)$) можно написать $\delta(t) =$ $y(\gamma(t)), \delta(t) = y(\hat{\gamma}(t)),$ тогда (!) имеет вид $dist(x(\delta(t)), x(\hat{\delta}(t))) \to 0 \Longleftrightarrow dist(\delta(t), \hat{\delta}(t)) \to 0$ Итак достаточно доказать (\Rightarrow) в (!)

Доказательство:

$$y = y(x) \in C^1$$
, тогда $\exists \overline{B}_{\epsilon}(p), \exists M : \forall x \in \overline{B}_{\epsilon}(p) : \left| \frac{\partial y_i}{\partial x_j}(x) \right| \leq M$
 $\nu(\theta) = y_i(\theta x + (1 - \theta)\hat{x})$
 $y_i(x) - y_i(\hat{x}) = \sum_j (x_j - \hat{x}_j) \left| \frac{\partial y_i}{\partial x_j} \right|_{\theta_i x + (1 - \theta_i)\hat{x}}$

Теперь мы можем оценить $|y_i(x)-y_i(\hat{x})| \leq M \cdot \sum |x_j-\hat{x}_j|$, тогда $||y_i(x)-y_i(\hat{x})|| \leq \sqrt{n} \cdot M \cdot \sum |x_j-\hat{x}_j|$ (т.к. берем <math>n элементов)

 $\sum |x_j - \hat{x}_j| \cdot 1 \le \sqrt{n} \cdot \sqrt{\sum |x_j - \hat{x}_j|^2}$ (первая норма l_1 , а вторая евклидовская l_2) $\Rightarrow ||y_i(x) - y_i(\hat{x})|| \le ||y_i(x) - y_i(\hat{x})||$ $n \cdot M \cdot ||x - \hat{x}||$

Получаем: $dist(y(\gamma(t)), y(\hat{\gamma}(t))) \leq L \cdot dist(\gamma(t), \hat{\gamma}(t)) = \overline{\overline{o}}(t)$

Продолжаем определение

 $\{\gamma: (-\epsilon,\epsilon) \to M$ – гладкие кривые, где $\gamma(0)=p \}_{/\sim}=T_p$ – касательное пространсто.

Лемма 6.2. Пусть x_1, \ldots, x_n – лок. система координат в окрестности p

Тогда
$$\varphi: T_p \to \mathbb{R}^n$$

$$[\gamma] \mapsto \left(\frac{dx_1(\gamma(t))}{dt} \bigg|_{t=0}, \ldots, \frac{dx_n(\gamma(t))}{dt} \bigg|_{t=0} \right) \text{ - это биекция, причем если } (y_1, \ldots, y_n) \text{ - другая система координат, } \psi \text{ - соответствующее отображение, то } \psi \circ \varphi^{-1}: \mathbb{R}^n \to \mathbb{R}^n \text{ - изоморфизм векторных пространств}$$

Доказательство:

1)
$$\varphi$$
 корректно определено. (далее вместо $x_i(\gamma(t))$ будем писать $x_i(t)$)

$$|\gamma(t) - \hat{\gamma}(t)|^2 = \sum_{i} |x_i(t) - \hat{x}_i(t)|^2 = \sum_{i} |p_i + v_i t + \overline{\overline{o}}(t) - p_i - \hat{v}_i t + \overline{\overline{o}}(t)|^2 = \sum_{i} |(v_i - \hat{v}_i)t + \overline{\overline{o}}(t)|^2$$

$$(*) \ ||x(t) - \hat{x}(t)|| = \sqrt{||v - \hat{v}||^2 t^2 + \overline{\overline{o}}(t^2)} = ||v - \hat{x}|| \cdot |t| \sqrt{1 + \overline{\overline{o}}(1)} = ||v - \hat{v}|| \cdot |t| + \overline{\overline{o}}(t)$$

Если $||x(t) - \hat{x}(t)|| = \overline{\overline{0}}(t)$, то из (*) $v - \hat{v}|| = 0$, (т.е. $v = \hat{v}$) (корректность)

2) Проверим инъективность φ

Если
$$\varphi(\gamma) = v \neq \hat{v} = \varphi(\gamma)$$
, то из (*):
$$||x(\gamma(t)) - x(\hat{\gamma}(t)) \neq \overline{\bar{o}}(t) \Longrightarrow \gamma \sim \hat{\gamma} \text{ (инъективность)}$$

3) Проверим сюръективность φ

Рассмотрим γ , задаваемую $x_i(\gamma(t)) = p_i + v_i t$

Тогда $\varphi(\gamma) = (v_1, \dots, v_n)$ Проверяем ручками, о да, все супер

4) Проверим линейность:
$$\psi \circ \varphi^{-1} : v \mapsto Jv$$
, где $J = \left(\frac{\partial y_i}{\partial x_j}\Big|_p\right)_{i,j=1,\dots,n}$

$$\left. \frac{dy_i(\gamma(t))}{dt} \right|_{t=0} = \left. \frac{dy_i(x(\gamma(t)))}{dt} \right|_{t=0} = \sum_j \left. \frac{\partial y_i}{\partial x_j} \right|_{x=x(p)} \cdot \frac{dx_j(\gamma(t))}{dt}$$

 $\dot{x}(t)=f(x(t),t),\,f:M imes\mathbb{R} o \displaystyle \bigsqcup_{p}T_{p}M=TM$ – касательное расслоение. Условие $f(p,t)\in T_{p}M\Longleftrightarrow$

$$f(\cdot,t)$$
 – сечение TM $x:I \to M, \dot{x}(t) \in T_{x(t)}M, \dot{x}(t) = [\gamma(s) = x(t+s), s \in (-\epsilon,\epsilon)]$

6.2. Автономные ДУ на многообразии

$$\dot{x}(t) = f(x(t))$$

Определение. Векторное поле на многообразии – это отображение $v:M\to \bigsqcup_{p}T_{p}M:v(p)\in T_{p}M\ \forall p$

Векторное поле называется гладким если в \forall локальной системе координат мы можем рассмотреть такие функции $\varphi.(v(\cdot)):U\to\mathbb{R}^n$ и они будут гладкими

Лемма 6.3. $\xi:U \Longrightarrow \mathbb{R}^n$

$$\eta: V \Longrightarrow \mathbb{R}^n$$

Если есть 2 лок. с. коорд. в окрестности p, то непрерывность $\varphi.(v(\cdot))$ в p, где v – векторное поле, эквивалентно таковой для $\psi.(v(\cdot))$

Доказательство:

$$\varphi_{\xi^{-1}(x)}(v(\xi^{-1}(x))) = (v_1(x), \dots, v_n(x))$$

$$\psi_{\eta^{-1}(y)}(u(\eta^{-1}(y))) = (u_1(y), \dots, u_n(y))$$

$$u(y(x)) = J(x) \cdot v(x), \ J(x) \text{ - гладкая}, \ y(x) \text{ - бесконечно гладкая}$$

$$J(x) = \left(\frac{\partial y_i}{\partial x_j}\right)_x$$

Если J(x) - гладкая(ее гладкость не хуже, чем у v) и если v(x) - функция непрерывная, то J(x)v(x) - непрерывная, а если J(x) - гладкая, то слева тоже гладкая.

Если мы берем какой-то непрерывную вектор-функцию v и умножаем его на бесконечно гладкую функцию, то мы снова получаем непрерывную вектор-функцию. Если вектор-функция была трижды гладкая, то произведение тоже будет трижды гладкой.

Если мы берем композицию трижды гладкой функции и бесконечно гладкой функции, то мы снова получаем трижды гладкую функцию Нам нужно перейти от сложной функции и к функции от аргумента у. Взять ее композицию с функцией $\mathbf{x} = \mathbf{x}(\mathbf{y})$, которая у нас, убдем счиатть, бесконечно гладкая. Поэтому наша непрерывность и гладкость не меняется => и будет непрерывной и гладкой, чтд

Нотация Эйнштейна:

нотация Эйнштейна: $(x^1,...,x^n)^T$ - локальная система координат $(x^{1'},...,x^{n'})^T$ - другая локальная система координат $\gamma:x^i=x^i(t)$ - кривая $[\gamma]:v^i=\frac{dx^i}{dt}\bigg|_{t=0}$ $v^{i'}=\sum\frac{\partial x^{i'}}{\partial x^i}v^i$

$$[\gamma]: v^i = \frac{dx^i}{dt} \bigg|_{t=0}$$

$$v^{i'} = \sum \frac{\partial x^{i'}}{\partial x^i} v^i$$

7.1. Дифференцирование решений по параметру

$$(*)\begin{cases} \dot{x} = f(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$$
 Продифференцируем по
$$\frac{\partial}{\partial \lambda_j}$$

$$\begin{cases} \frac{\partial \dot{x}_i}{\partial \lambda_j} = \sum_k \frac{\partial f_i}{\partial x_k} \bigg|_{(t, x(t, \lambda), \lambda)} \frac{\partial x_k}{\partial \lambda_j} + \frac{\partial f}{\partial \lambda_j} \\ \frac{\partial x_i}{\partial \lambda_j}(t_0) = \frac{\partial x_0}{\partial \lambda_j} \end{cases}$$

Тогда обозначим $z_i(t) = \frac{\partial x_i}{\partial \lambda_i}(t,\lambda^0)$ (фиксированное j) и получим систему:

$$\begin{cases} \dot{z}_i = \sum_k \frac{\partial f_i}{\partial x_k} \bigg|_{(t, x(t, \lambda^0), \lambda^0)} z_k + \frac{\partial f}{\partial \lambda_j} \\ z_i(t_0) = \frac{\partial (x_0)_i}{\partial \lambda_j} (\lambda^0) \end{cases}$$

Лемма 7.1. Адамара

Если $f = f(x,y), f, f_x' \in C, (x,y) \subset \Omega \subset \mathbb{R}^n \times \mathbb{R}^m$, тогда $\exists F_i(x_0,x,y)$ – непрерывная, такая что $f(x,y) - f(x_0,y) = \sum_{i=1}^n F_i(x_0,x,y)(x_i - x_i^0)$

Причем
$$F_i(x_0,x_0,y)=rac{\partial f}{\partial x_i}(x_0,y)$$

Доказательство:

$$f(x,y) - f(x_0,y) = \int_0^1 \frac{d}{dt} \left(f(tx + (1-t)x_0, y) \right) dt = \int_0^1 \sum_{i=1}^n (x_i - x_i^0) \cdot \left. \frac{\partial f}{\partial x_i} \right|_{tx + (1-t)x_0, y} dt =$$

$$= \sum_{i=1}^n (x_i - x_i^0) \int_0^1 \frac{\partial f}{\partial x_i} \bigg|_{tx + (1-t)x_0, y} dt, \text{ получаем что } \int_0^1 \frac{\partial f}{\partial x_i} \bigg|_{tx + (1-t)x_0, y} dt \text{ это } F_i(x_0, x, y)$$

7.2. Сведение к параметру только в начальном условии

$$(**) \begin{cases} \dot{x} = f(t, x, y) \\ \dot{y} = 0 \\ x(t_0) = x_0(\lambda) \\ y(t_0) = \lambda \end{cases}$$

Предложение x – решение (*) при данных $\lambda \Longleftrightarrow (x, \equiv \lambda)$ – решение (**)

Доказательство:

$$(\#) \begin{cases} \dot{x} = f(t, x) \\ x(t_0) = x_0(\lambda_0) \end{cases}$$

Теорема 7.1. Пусть $f, x_0 \in C^1, x(t, \lambda)$ – решение $(\#), \lambda = (\lambda_1, \dots, \lambda_d)$ фиксируем $j \in \{1, \dots, d\}$

Тогда
$$\forall \lambda^0 \; \exists \; z_i(t) = \frac{\partial x_i}{\partial \lambda_j}(t,\lambda^0) \; z \; y$$
довлетворяет з. Коши: $\bigstar \begin{cases} \dot{z}_i = \sum_k \frac{\partial f_i}{\partial x_k} \Big|_{(t,x(t,\lambda^0))} \; z_k \\ z_i(t_0) = \frac{\partial (x_0)_i}{\partial \lambda_j} \end{cases}$

Доказательство:

$$\frac{\lambda = \lambda^0 + \delta e_j}{\frac{x(t,\lambda) - x(t,\lambda^0)}{\delta}} = z_{\delta}(t)$$

$$(\#_{\delta}) \dot{z}_{\delta,i}(t) = \frac{1}{\delta} \left(f_i(t,x(t,\lambda)) - f_i(t,x(t,\lambda_0)) \right) = \frac{1}{\delta} \sum_k F_{ik}(t,x(t,\lambda),x(t,\lambda^0)) \cdot (x_k(t,\lambda) - x_k(t,\lambda^0)) = \sum_k F_{ik}(t,x(t,\lambda),x(t,\lambda^0)) \cdot z_{\delta,k}$$

Начальное условие:
$$z_{\delta,i}(t_0) = \frac{x_{0,i}(\lambda) - x_{0,i}(\lambda^0)}{\delta}(\#*_{\delta})$$
 Рассмотрим задачу:
$$\begin{cases} \dot{z}_{0,i} = \sum_k \frac{\partial f_i}{\partial x_k} \bigg|_{(t,x(t,\lambda^0))} \cdot z_{0,k} \ (\#_0) \end{cases}$$
 Рассмотрим задачу:
$$\begin{cases} \dot{z}_{0,i}(t_0) = \frac{\partial x_{0,i}}{\partial \lambda_j} (\lambda^0) \ (\#*_0) \end{cases}$$
 Вывод: если $(z_{0,i})$ — решение $(\#_0, \#*_0)$ то это предед и

Вывод: если $(z_{0,i})$ – решение $(\#_0, \#_{*_0})$, то это предел при $\delta \to 0$ решений $(\#_\delta, \#_{*_\delta})$, т.е. $z_{\delta,i} \to z_{0,i}$

- 1) $\frac{\partial x(t,\lambda)}{\partial \lambda_{\cdot}}$ непрерывна по (t,λ) (теорема о непрерывной зависимости для (\bigstar))
- 2) $x(t,\lambda) \in C^1$

3) Для системы
$$\begin{cases} \dot{x} = f(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$$
 $f, x_0 \in C^1$ $\begin{cases} \dot{x} = \sum \frac{\partial f_i}{\partial x_0} \end{cases}$

3) Для системы
$$\begin{cases} \dot{x} = f(t,x,\lambda) \\ x(t_0) = x_0(\lambda) \end{cases} f, x_0 \in C^1$$

$$\exists \left. \frac{\partial x(t,\lambda)}{\partial \lambda_j} \right|_{\lambda = \lambda_0} = z_j, \text{ удовлетворяющее} \begin{cases} \dot{z}_i = \sum_k \frac{\partial f_i}{\partial x_k} \Big|_{(t,x(t,\lambda^0),\lambda^0)} \cdot z_{0,k} + \frac{\partial f_i}{\partial \lambda_j} \Big|_{\dots} \\ z_{0,i}(t_0) = \frac{\partial x_{0,i}}{\partial \lambda_j} (\lambda^0) \end{cases}$$
 Перейдем к (**) $w_i = \frac{\partial y_i}{\partial \lambda_j}$

Перейдем к (**)
$$w_i = \frac{\partial y_i}{\partial \lambda_j}$$

$$\begin{cases} \dot{z}_i = \sum_k \frac{\partial f_i}{\partial x_k} \cdot z_k + \sum_l \frac{\partial f_i}{\partial \lambda_l} \cdot w_l \\ \dot{w}_i = 0 \\ z_i(t_0) = \frac{\partial x_{0,i}(\lambda^0)}{\partial \lambda_j} \\ w_i = \delta_{ij}(0, if \ i \neq j \ and \ 1, if \ i = j) \end{cases}$$

- 4) Если $f \in C^2$, то можно найти $\frac{\partial^2 x(t,\lambda)}{\partial \lambda \cdot \partial \lambda}$
- 5) Можно разлагать решения в ассимптотические ряды:

$$\begin{cases} \dot{x} = f(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases} \quad f, x_0 \in C^1$$

Если
$$x(t,\lambda) = x(t,\lambda^0) + \sum_j \frac{\partial x}{\partial \lambda_j} \Big|_{\lambda^0} (\lambda_j - \lambda_j^0) + \frac{1}{2} \cdot \sum_j \frac{\partial^2 x}{\partial \lambda_j \partial \lambda_k} (\dots) + \dots + o(|\lambda - \lambda^0|^n)$$

 $x(t,\lambda^0) + a_j(t) \sum_i (\lambda_j - \lambda_j^0) + \frac{1}{2} \sum_i b_{ij} (\lambda_j - \lambda_j^0) (\lambda_i - \lambda_i^0) + \dots + o(|\lambda - \lambda^0|^n)$ подставим в уравнения системы начальной и получим уравнения на a_i, b_{ij} и так далее.

6)
$$X_{t_0,t_1}(x)$$
 для $\dot{x} = f(t,x)$ $f(t,x) \in C^1$ по совокупности аргументов, при этом $f \in C^1$

 $g^t(x)$ – гладкая, т.к. производная по t – это f в соответстующей точке, а производная по x непрерывна по доказанной теореме. Таким образом обе частные производные непрерывны, значит вся эта функция дифференцируема.

Для $X_{t_0,t_1}(x)$ работало бы такое же рассуждение, если бы не было t_0 . Поэтому докажем, что и по t_0 у нас также все хорошо.

$$\begin{cases} \dot{y} = f(s+t_0,y(s)) \\ y(0) = x \end{cases}$$
 решение такой системы будет гладко зависить и от t_0 тоже

 $X_{t_0,t_1}(x)=y(t_1-t_0)$, а это выражение непрерывно по всем 3 аргументам: t_0 и x участвуют в предыдущей системе, t_1 – точка, в которой мы его берем $\Rightarrow X_{t_0,t_1}(x) \in C^1$.

8.

8.1. Теорема о выпрямлении в.п.

(*) $\begin{cases} \dot{x} = v(x) \\ v(x_0) \neq 0 \end{cases}$ \exists локальная система координат $(y_1, ..., y_n)$ в окрестности x_0 такая, что (*) прини-

$$\dot{y}_1 = 1, \ \dot{y}_2 = \dot{y}_3 = \dots = \dot{y}_n = 0$$

 $y(x_0) = (0, 0, \dots, 0)$

$$\begin{cases} z_1 = y_1 + \varphi(y_2, ..., y_n) \\ z_2 = \psi_2(y_2, ..., y_n) \\ ... \\ z_n = \psi_n(y_2, ..., y_n) \end{cases}$$

Усиление:

$$\dot{x} = v(x), \ v(x^0) \neq 0$$

 $\dot{x}=v(x),\,v(x^0)\neq 0$ Пусть M – поверхность $\dim=n-1$

- $\bullet \ x^0 \in M$
- $T_{x^0}M \oplus \langle v(x^0) \rangle = T_{x^0}\mathbb{R}^n$

M трансверсальна v в x_0

Тогда существует локальная система координат такая, что:

- $(*) \Leftrightarrow \dot{y}_1 = 1; \ \dot{y}_2 = \dots = \dot{y}_n = 0$
- M имеет вид $\{y_1 = 0\}$

Доказательство: Часть 1. Выберем такое параметрическое задание M

M:
$$\begin{cases} x_1 = \varphi_1(u_1, ..., u_{n-1}) \\ ... \\ x_n = \varphi_n(u_1, ..., u_{n-1}) \end{cases}$$
$$x^0 = \varphi(0, 0, ..., 0)$$

$$rk\left(rac{\partial arphi_i}{\partial x_j}
ight) = n-1$$
 (максимально)

Рассмотрим
$$\Phi(u_1,...,u_{n-1},u_n) := g^{u_n}(\varphi(u_1,...,u_{n-1}))$$

$$\left. \frac{\partial \Phi}{\partial u_j} \right|_{(0,...,0)} \stackrel{j \neq n}{=} \frac{\partial}{\partial u_j} (g^0(\varphi(u_1,...,u_{n-1})) = \left. \frac{\partial \varphi}{\partial u_j} \right|_{(0,...,0)}$$

$$\begin{split} \frac{\partial \Phi}{\partial u_n}\bigg|_{(0,...,0)} &= v(\varphi(0,...,0)) = v(x_0) \\ T_{x^0}M &= <\frac{\partial \varphi}{\partial u_j}, j=1,...,n-1> \\ 1) \ \frac{\partial \varphi}{u_j} \in T_{x^0}M \end{split}$$

2) В определении через $[\gamma]$. $\varphi(u_1,...,u_{n-1})$. Фиксируем все u, кроме u_j , а этот u_j меняется с течением времени.

$$=> \operatorname{rk}\left(\frac{\partial \varphi_{i}}{\partial u_{j}}\right)_{j=1,...,n} = n$$
 Т.е. локально Ф обратимо, $u_{j}=u_{j}(x)$ $x=\Phi(u_{1},...,u_{n})=g^{u_{n}}(\varphi(u_{1},...,u_{n-1}))$ $g^{\tau}x=g^{u_{n}+\tau}(\varphi(u_{1},...,u_{n-1}))=\Phi(u_{1},...,u_{n-1},u_{n}+\tau)$ $\dot{u}_{i}=?$

 $\dot{x} = \sum \frac{\partial \Phi_i}{\partial u_j} \dot{u}_j = v(\Phi(u))$ (**). $\frac{\partial \Phi_i}{\partial u_j}$ – линейно независимы в т. (0,...,0) \Rightarrow линейно независимы в

Т.к.
$$\frac{\partial \Phi_i}{\partial u_n}\Big|_{(u_1,...,u_n)} = \frac{d}{ds}\Big|_{s=0} (g^{u_n+s}(\varphi(u_1,...,u_{n-1})) = \frac{d}{ds}\Big|_{s=0} (g^s(\Phi(u))) = v(\Phi(u))$$

Система (**) имеет решение: $\dot{u}_1 = ...\dot{u}_{n-1} = 0$, $\dot{u}_n = 1$

1. Такие u_n подходят

2. Т.к. векторы $\frac{\partial \Phi_i}{\partial u_i}$ линейно независимы => единственный набор

3. u=u(x) гладкие => такие производные существуют Часть 2. $M-\{\Phi(u_1,...,u_{n-1},0)\}=\{u_n=0\}$. При этом $v(x^0)\neq 0$ – важное условие!

8.2. Дифференциальные 1-формы

 $T_p\mathbb{R}^n$ – касательное пространство

 $(T_p\mathbb{R}^n)^* := T_p^*\mathbb{R}^n$ — двойственное пространство = $\{l: T_p\mathbb{R}^n \longrightarrow \mathbb{R}$ — линейный функционал $\}$ = кокасательное пространство = пространство линейных 1-форм на $T_p\mathbb{R}^n$

Определение. Дифференциальная 1-форма – это отображение $\omega:\Omega\subset\mathbb{R}^n\longrightarrow \bigsqcup_p T_p^*\mathbb{R}^n:\omega(p)\in T_p^*\mathbb{R}^n.$

Пусть $(x^1,...,x^n)$ – локальная система координат

Базис в
$$T_p^*\mathbb{R}^n$$
: $\frac{\partial}{\partial x^i} = [x^j = x^j(p) + t\delta_i^j]$

 dx^i – двойственный базис в $T_p^*\mathbb{R}^n$

$$dx^i \left(\frac{\partial}{\partial x^j} \right) = \delta^i_j$$

Координаты в $T_p^*\mathbb{R}^n$

$$v = \sum_{i} v^{i} \frac{\partial}{\partial x^{i}}$$
$$\omega = \sum_{j} \omega_{j} dx^{j}$$

Лемма 8.1. Два определения гладкости эквивалентны:

1)
$$\omega \in C^r$$

2)
$$\forall v \in C^r \ \omega(v) \in C^2$$

$$(1 \Rightarrow 2): \omega(v) = \sum_{i,j} v^i \omega_j dx^j \left(\frac{\partial}{\partial x^i}\right) = v^i \omega_j \delta_i^j = v^i \omega_i$$

$$(2\Rightarrow 1)$$
: $\omega\left(rac{\partial}{\partial x^i}
ight)=\omega_i\;\;\left(rac{\partial}{\partial x^i}$ – гладкая сколько угодно раз

8.3. Дифференциал функции

$$f \in C^{r}$$

$$df|_{p} \in T_{p}^{*}\mathbb{R}^{n}; v = [\gamma], v \in T_{p}M$$

$$df(v) \stackrel{det}{=} \frac{d}{ds}\Big|_{s=0} f(\gamma(s))$$

Лемма 8.2. $df|_p$ – корректно определено в $(x_1,...,x_n)$ – локальная система координат

1. Не зависит от представителя γ

2. Линейность по
$$\mathbf{v}$$
 $\frac{d}{ds}\bigg|_{s=0} f(\gamma(s)) = \frac{\partial f}{\partial x^j}\bigg|_p \cdot \dot{\gamma}^j(0) = \dot{\tilde{\gamma}}^j(0)$ $\gamma \sim \overset{\sim}{\gamma} \Leftrightarrow \dot{\gamma}^j(0) = \dot{\tilde{\gamma}}^j(0)$

 $\omega(p)=df|_p;\,\omega=df$ – дифференциал функции

 Π редложение: dx^i – двойственные базис в $T_p^*\mathbb{R}^n=dx^i$ – df для $f=x^i$

Доказательство:
$$\gamma^k(s) = x^k(p) + s\delta^k_j$$

$$d(x^j) \left(\frac{\partial}{\partial x_j}\right) = \left.\frac{d}{ds}\right|_{s=0} (x^i(\gamma(s))) = \left.\frac{d}{ds}\right|_{s=0} (\gamma^i(s)) = \delta^i_j \text{ чтд}$$
 Из $\left.\frac{d}{ds}\right|_{s=0} f(\gamma(s)) - \left.\frac{\partial f}{\partial x^j}\right|_p \cdot \dot{\gamma}^j(0) = \dot{\delta}^j(0)$: $df = \frac{\partial f}{\partial x^j} dx^j$

8.4. Дифференциальные уравнения на \mathbb{R}^2

$$\frac{dy}{dx} = f(x, y)$$
 ω — 1-форма

Задача: найти все такие кривые $\gamma:\omega(T_p\gamma)=0;\,T_p\gamma\subset\ker\omega(p)$ (!)

Если ω в точке $p \neq 0$, то $\dim(\ker \omega(p)) = 1$

$$\omega = A(x, y)dx + B(x, y)dy$$

Все касательные векторы пропорциональны

Если локально γ задается y=y(x); $T_{x,y(x)}\gamma=<\frac{\partial}{\partial x}+\frac{dy}{dx}\frac{\partial}{\partial y}>$

Применим
$$\omega$$
 к $\left(\frac{\partial}{\partial x} + \frac{dy}{dx}\frac{\partial}{\partial y}\right)$

(!) даёт
$$A(x,y)dx\left(\frac{\partial}{\partial x} + \frac{dy}{dx}\frac{\partial}{\partial y}\right) + B(x,y)(...) = A(x,y) + B(x,y)\frac{dy}{dx} = 0$$

Если локально $x = x(y) A(x,y) \frac{dx}{dy} + B(x,y) = 0$

Adx + Bdy = 0 – пфаффово уравнение

$$T_p\mathbb{R}^2$$
 – пространство

 $T_p\gamma$ – подпространство; $\omega|_{\gamma}$, то в $Adx+Bdy=0\ dx$ и dy линейно зависимы

$$(\omega(T_p\gamma)=0:T_p\gamma\subset Ker\omega(p))$$
 связано с $(Adx+Bdy=0)$

Замечание: Пусть $\omega(p) \neq 0$. Тогда локально существует единственная кривая $\gamma, p \in \gamma$, является решением пфаффова уравнения (= удовлетворяет Задаче)

Доказательство:

$$A(x,y) + B(x,y)\frac{dy}{dx} = 0$$
| : $B(x,y)$, если $B(p) \neq 0$,

$$\frac{dy}{dx} = -\frac{A(x,y)}{B(x,y)}$$
 – оно удовлетворяет теореме о существовании и единственности

8.5. Уравнения в полных дифференциалах

Пусть $\omega = df$, $A = \frac{\partial f}{\partial x}$, $B = \frac{\partial f}{\partial y}$ (A или B не равно 0). Тогда пфаффовое уравнение легко решается: Рассмотрим $\gamma = \{f = C\}$

1 способ.

Локально
$$\gamma$$
 – это $y=y(x);$ $f(x,y(x))=C;$ $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\cdot\frac{dy}{dx}=0$

$$\begin{split} T_{x,y(x)}\gamma = <\left(1,\frac{dy}{dx}\right)> &= <\frac{\partial}{\partial x}+\frac{\partial}{\partial x}\cdot\frac{dy}{dx}>\\ \omega\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\cdot\frac{dy}{dx}\right) &=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\cdot\frac{dy}{dx}=0 \end{split}$$

2 способ.

$$\omega = df; d(f|_{\gamma}) = (df)|_{T\gamma}$$

$$df(v) = \frac{d}{ds}(f(\delta(s))) = f(f_{\gamma})([\delta]) = d(f_{\gamma})(v) \ (v \in T_p \gamma => v = [\delta], \delta \subset \gamma) \ (f \text{ можно заменить на } f_{\gamma})$$

аs Если есть уравнение $\frac{dy}{dx} = \frac{f(x)}{g(y)}$, то решить его это тоже самое, что решить пфаффовое уравнение g(y)dy - f(x)dx = 0

$$d(G(y) - F(x)) = 0 \Leftrightarrow G(y) - F(x) = C$$

Почему не всегда $\omega = df$?

$$\omega = df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

Замечание: Если
$$\omega = Adx + Bdy = df$$
, то $\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x} \left(= \frac{\partial^2 f}{\partial x \partial y} \right)$

8.6. Метод интегрирующего множителя

Идея: Уравнение Adx + Bdy = 0 меняется на равносильное, если ω заменить на $\omega \cdot g(x,y)$ (g не обращается в 0)

Если $\omega g = df$, то Adx + Bdy = 0 эквивалентно $\{f = const\}$

Определение. 1-форма ω называется точной, если существует $f:\omega=df$.

Определение. Пусть дана такая 1-форма $\omega = \sum \omega_i dx^i$. ω называется замкнутой, если $\forall i,j \; \frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$

 $\dot{}$ Мы видели, что ω – точная $=>\omega$ - замкнутая

Верно ли обратное? Зависит от топологии области определения

Пример 1: \mathbb{R}^2

$$\omega = Adx + Bdy; \ \frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}; \ \frac{\partial f}{\partial x} = A; \ \frac{\partial f}{\partial y} = B$$

Неизвестная функция f имеет такой вид: $f(x,y) = \int\limits_{x_0}^x A(\xi,y) d\xi + g(y)$

$$f(x_0, y) = g(y); \frac{dg}{dy} = B(x_0, y)$$

$$f(x,y) = \int_{x_0}^{x} A(\xi,y)d\xi + \int_{x_0}^{y} B(x_0,\eta)d\eta + f(x_0,y_0)$$

$$\frac{\partial f}{\partial y}(x,y) = \int_{x_0}^{x} \frac{\partial A}{\partial y}(\xi,y)d\xi + B(x_0,y) = B(x_0,y) + \int_{x_0}^{x} \frac{\partial B}{\partial x}(\xi,y)d\xi = B(x,y)$$

⇒ Да, на плоскости обратное верно

Пример 2: $\mathbb{R}^2 \setminus 0$

$$u=darphi$$
, где $arphi$ – полярный угол (не функция на $\mathbb{R}^2ackslash 0$) $u=df$

Почему ω – замкнута? Это следует из того, что ω точна в окрестности (локально)

С другой стороны, почему ω не точна? Потому что локально наше решение должно быть ветвью полярного угла + константа. Тогда начнем с какой-нибудь окрестности, в нем мы зафиксируем решение. Возьмем соседнюю окрестность, тогда на пересечении у нас возникает разность этих констант. Мы получаем, что мы туда должны продолжить тем же полярным углом, это же одна и та же функция. И так мы продолжаем. Когда мы проделаем полный круг, то к нашему полярному углу добавится угол 2π , т.е.в какой-то точке равна, скажем, 0. Дальше $\pi/4,\pi/2$ и т.д. Пройдя полный круг мы скажем, что наша функция в изначальной точке равна 2π , приходим к противоречию.

іпа функция в изначальной точке равна
$$2\pi$$
, приходим
$$\varphi = arctg\frac{y}{x} + const = arcctg\frac{x}{y} + const$$

$$d\varphi = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(d\frac{y}{x}\right) = \frac{xdy - ydx}{(1 + \frac{y^2}{x^2})x^2} = \frac{xdy - ydx}{x^2 + y^2} = \omega$$

$$\frac{\partial \left(\frac{-y}{x^2 + y^2}\right)}{\partial y} = \frac{\partial \left(\frac{x}{x^2 + y^2}\right)}{\partial x}$$

$$x + iy = z$$

$$\omega = Im\left(\frac{dz}{z}\right) = Im(dLnz)$$

$$Lnz = Ln|z| + iArg\varphi$$

23.10.2020

9.

На семинарах нам вводили однородные уравнения: $\frac{dy}{dx} = f\left(\frac{x}{y}\right)$ Если $\exists \ H_{\lambda}: (x,y) \mapsto (\lambda x, \lambda y)$, то это диффеоморфизм переводящий решение в решение.

9.1. Симметрии ДУ

 $\dot{x} = f(x,t)(*), \ \Omega$ — расширенное фазовое пространство, тогда $H: \Omega \to \Omega$ — диффеоморфизм. H является симметрией (*): если H переводит поле направлений (*) в себя.

Пусть $\exists \; h: X \to Y$ – диффеом

Пусть h(p)=q, тогда можно определить $h_*:T_pX\to T_qY$

Возьмем $v\in T_pX,\ h_*(v)=[h\circ\gamma],\, [h\circ\gamma]\in T_qY,$ действительно $h(\gamma(0))=h(p)=q$

 x^i – лок. система координат в окр $p \in X$

 y^{α} – лок. система координат в окр $q \in Y$