Math 415 - Lecture 39 Review

Wednesday December 6th 2015

• Thursday December 17th, 8:00-11:00AM.

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR
 - 103 Mumford: AD9,ADE,ADF,ADN,ADO

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR
 - 103 Mumford: AD9,ADE,ADF,ADN,ADO
 - 100 MSEB: AD1,AD2,ADS,ADT,ADZ

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR
 - 103 Mumford: AD9,ADE,ADF,ADN,ADO
 - 100 MSEB: AD1,AD2,ADS,ADT,ADZ
 - 135 THBH: ADC,ADD,ADL,ADM (THBH is Temple Hoyne Buell Hall)

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH,ADP,ADQ,ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR
 - 103 Mumford: AD9,ADE,ADF,ADN,ADO
 - 100 MSEB: AD1,AD2,ADS,ADT,ADZ
 - 135 THBH: ADC,ADD,ADL,ADM (THBH is Temple Hoyne Buell Hall)
- Conflict Tuesday, December 15th, 8:00-11:00AM.

Diagonalization,

- Diagonalization,
- Discrete Dynamical Systems.

- Diagonalization,
- Discrete Dynamical Systems.
- Spectral Theorem and Quadratic forms: each symmetric matrix A gives a quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, and conversely. The eigenvalues of A (real!) determine if the quadratic form is always positive.

- Diagonalization,
- Discrete Dynamical Systems.
- Spectral Theorem and Quadratic forms: each symmetric matrix A gives a quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, and conversely. The eigenvalues of A (real!) determine if the quadratic form is always positive.
- Critical points of functions $f: \mathbb{R}^n \to \mathbb{R}$ are described by a quadratic form (Hessian) containing the second derivatives of f. Minima, maxima, saddle points. Constrained optimization.

- Diagonalization,
- Discrete Dynamical Systems.
- Spectral Theorem and Quadratic forms: each symmetric matrix A gives a quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, and conversely. The eigenvalues of A (real!) determine if the quadratic form is always positive.
- Critical points of functions $f: \mathbb{R}^n \to \mathbb{R}$ are described by a quadratic form (Hessian) containing the second derivatives of f. Minima, maxima, saddle points. Constrained optimization.
- Singular Value Decomposition of A from spectral theorem for A^TA , and AA^T .

- Diagonalization,
- Discrete Dynamical Systems.
- Spectral Theorem and Quadratic forms: each symmetric matrix A gives a quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, and conversely. The eigenvalues of A (real!) determine if the quadratic form is always positive.
- Critical points of functions $f: \mathbb{R}^n \to \mathbb{R}$ are described by a quadratic form (Hessian) containing the second derivatives of f. Minima, maxima, saddle points. Constrained optimization.
- Singular Value Decomposition of A from spectral theorem for A^TA , and AA^T .
- Approximation of a matrix A according to the singular values: image compression.

Big Topics

• Solving Systems $A\mathbf{x} = \mathbf{b}$

- Solving Systems $A\mathbf{x} = \mathbf{b}$
 - Augmented matrix.

- Solving Systems $A\mathbf{x} = \mathbf{b}$
 - Augmented matrix.
 - Row Operations, Reduced Row echelon form.

- Solving Systems $A\mathbf{x} = \mathbf{b}$
 - Augmented matrix.
 - Row Operations, Reduced Row echelon form.
 - Pivots, free variables, parametric form of general solution.

- Solving Systems $A\mathbf{x} = \mathbf{b}$
 - Augmented matrix.
 - Row Operations, Reduced Row echelon form.
 - Pivots, free variables, parametric form of general solution.
 - Inconsistent system, unique solution or infinitely many solutions.

Vectors and Matrices

- Vectors and Matrices
 - Linear Combinations

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination
 - Row/column calculation of matrix multiplication

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination
 - Row/column calculation of matrix multiplication
 - Transpose, symmetric matrices.

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination
 - Row/column calculation of matrix multiplication
 - Transpose, symmetric matrices.
 - Elementary row operations and elementary matrices.

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination
 - Row/column calculation of matrix multiplication
 - Transpose, symmetric matrices.
 - Elementary row operations and elementary matrices.
 - LU factorization, solving Ax = b by Lc = b, Ux = c.

- Vectors and Matrices
 - Linear Combinations
 - Matrix multiplication is linear combination
 - Row/column calculation of matrix multiplication
 - Transpose, symmetric matrices.
 - Elementary row operations and elementary matrices.
 - LU factorization, solving Ax = b by Lc = b, Ux = c.
 - Inverse of a square matrix, Gauss-Jordan calculation of A^{-1} (Big Augmented Matrix).

Vector Spaces.

- Vector Spaces.
 - Linear combinations.

- Vector Spaces.
 - Linear combinations.
 - Subspace.

- Vector Spaces.
 - Linear combinations.
 - Subspace.
 - Spanning set, independence.

- Vector Spaces.
 - Linear combinations.
 - Subspace.
 - Spanning set, independence.
 - Basis and dimension.

- Vector Spaces.
 - Linear combinations.
 - Subspace.
 - Spanning set, independence.
 - Basis and dimension.
 - Coordinates with respect to a basis.

Linear Transformations

- Linear Transformations
 - Linear transformation determined by basis.

- Linear Transformations
 - Linear transformation determined by basis.
 - Coordinate matrix with respect to input/output bases.

Orthogonality

- Orthogonality
 - Dot product=inner product.

- Orthogonality
 - Dot product=inner product.
 - Length of vector.

- Orthogonality
 - Dot product=inner product.
 - Length of vector.
 - angle between vectors.

- Orthogonality
 - Dot product=inner product.
 - Length of vector.
 - angle between vectors.
 - Orthogonal complement W^{\perp} , dimensions add: $\dim(W) + \dim(W^{\perp}) = \dim(\mathbb{R}^n)$.

- Orthogonality
 - Dot product=inner product.
 - Length of vector.
 - angle between vectors.
 - Orthogonal complement W^{\perp} , dimensions add: $\dim(W) + \dim(W^{\perp}) = \dim(\mathbb{R}^n)$.
 - Orthogonal and orthonormal basis.

• Fundamental thm of Linear Algebra.

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), Col(A^T), Nul(A), Nul(A^T).

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), Col(A^T), Nul(A), Nul(A^T).
 - Nul(A) and uniquess of solutions of Ax = b.

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), Col(A^T), Nul(A), Nul(A^T).
 - Nul(A) and uniquess of solutions of Ax = b.
 - Col(A) and existence of solutions of $A\mathbf{x} = \mathbf{b}$.

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), Col(A^T), Nul(A), Nul(A^T).
 - Nul(A) and uniquess of solutions of Ax = b.
 - Col(A) and existence of solutions of Ax = b.
 - 4 subspaces pairwise orthogonal.

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), $Col(A^T)$, Nul(A), $Nul(A^T)$.
 - Nul(A) and uniquess of solutions of Ax = b.
 - Col(A) and existence of solutions of Ax = b.
 - 4 subspaces pairwise orthogonal.
 - Dimensions of the subspaces and bases, from echelon form.

- Fundamental thm of Linear Algebra.
 - Four fundamental subspaces of A: Col(A), Col(A^T), Nul(A), Nul(A^T).
 - Nul(A) and uniquess of solutions of Ax = b.
 - Col(A) and existence of solutions of Ax = b.
 - 4 subspaces pairwise orthogonal.
 - Dimensions of the subspaces and bases, from echelon form.
 - Networks and fundamental subspaces.

Projections

- Projections
 - Projection on a line.

- Projections
 - Projection on a line.
 - Orthogonal basis makes projection easy.

- Projections
 - Projection on a line.
 - Orthogonal basis makes projection easy.
 - Projection matrix.

- Projections
 - Projection on a line.
 - Orthogonal basis makes projection easy.
 - Projection matrix.
 - Orthogonal decomposition: x can be written as $x = x_W + x_{W^{\perp}}$ for $x_W \in W$, $x_{W^{\perp}} \in W^{\perp}$.

Least Squares

- Least Squares
 - Approximate solutions of $A\mathbf{x} = \mathbf{b}$: make $\|\mathbf{A}\hat{\mathbf{x}} \mathbf{b}\|$ as small as possible.

- Least Squares
 - Approximate solutions of $A\mathbf{x} = \mathbf{b}$: make $\|\mathbf{A}\hat{\mathbf{x}} \mathbf{b}\|$ as small as possible.
 - Least square solution is $\hat{\mathbf{x}}$ satisfying the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

- Least Squares
 - Approximate solutions of $A\mathbf{x} = \mathbf{b}$: make $\|\mathbf{A}\hat{\mathbf{x}} \mathbf{b}\|$ as small as possible.
 - Least square solution is $\hat{\mathbf{x}}$ satisfying the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
 - The projection of **b** on the subspace Col(A) is $A\hat{\mathbf{x}}$.

- Least Squares
 - Approximate solutions of $A\mathbf{x} = \mathbf{b}$: make $\|\mathbf{A}\hat{\mathbf{x}} \mathbf{b}\|$ as small as possible.
 - Least square solution is $\hat{\mathbf{x}}$ satisfying the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
 - The projection of **b** on the subspace Col(A) is $A\hat{\mathbf{x}}$.
 - Data Fitting

Gram-Schmidt

- Gram-Schmidt
 - From arbitrary basis get orthonormal basis.

- Gram-Schmidt
 - From arbitrary basis get orthonormal basis.
 - \bullet A = QR factorization.

- Gram-Schmidt
 - From arbitrary basis get orthonormal basis.
 - A = QR factorization.
 - Orthogonal matrix $Q: Q^TQ = I$.

Determinants

- Determinants
 - Definition through elementary row operations.

- Determinants
 - Definition through elementary row operations.
 - $det(AB) = det(A) det(B), det(A^T) = det(A).$

- Determinants
 - Definition through elementary row operations.
 - $\det(AB) = \det(A) \det(B)$, $\det(A^T) = \det(A)$.
 - Cofactor expansion.

• Eigenvalues and eigenvectors: $Ax = \lambda x$

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.
 - Eigenspace.

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.
 - Eigenspace.
 - Eigenbasis and diagonalization.

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.
 - Eigenspace.
 - Eigenbasis and diagonalization.
 - Sum and product of eigenvectors and trace and det of A.

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.
 - Eigenspace.
 - Eigenbasis and diagonalization.
 - Sum and product of eigenvectors and trace and det of A.
 - Powers of A.

- Eigenvalues and eigenvectors: $Ax = \lambda x$
 - Characteristic polynomial.
 - Eigenspace.
 - Eigenbasis and diagonalization.
 - Sum and product of eigenvectors and trace and det of A.
 - Powers of A.
 - Discrete Dynamical systems: state vector \mathbf{x}_t evolves in time by $\mathbf{x}_{t+1} = A\mathbf{x}_t$.

• Symmetric matrices and spectral theorem.

- Symmetric matrices and spectral theorem.
 - if $A = A^T$ then eigenvalues of A are real

- Symmetric matrices and spectral theorem.
 - if $A = A^T$ then eigenvalues of A are real
 - A has an orthonormal basis of eigenvectors.

Random Examples

Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Solution

We need to solve a system Ax = b, with augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 1 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \simeq \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Solution

We need to solve a system Ax = b, with augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 1 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \simeq \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Solution

We need to solve a system Ax = b, with augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 1 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \simeq \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 So b is/is not a linear

combination?

Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix}$$
.

Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix}$$
.

• Find the LU factorization.

Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix}$$
.

- Find the LU factorization.
- Find two descriptions of the column space: Col(A) is the span of which vectors, and if $b \in Col(A)$ give equations for b.

Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix}$$
.

- Find the LU factorization.
- Find two descriptions of the column space: Col(A) is the span of which vectors, and if $b \in Col(A)$ give equations for b.
- If $b \in Col(A)$ is the general set of solutions $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ of Ax = b a

point, a line, a plane or all of \mathbb{R}^3 ?

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span($$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}).$$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space?

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$?

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$? So we need to find a single equation for b, for instance

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$? So we need to find a single equation for b, for instance $5b_1 - b_2 - b_3 = 0$.

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$? So we need to find a single equation for b, for instance $5b_1 - b_2 - b_3 = 0$. (If you don't

see this immediately, do row operations on $\begin{bmatrix} 2 & 1 & 1 & b_1 \\ 4 & 2 & 3 & b_2 \\ 6 & 3 & 2 & b_3 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. So$$

$$Col(A) = Span(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$$
. This is the description by directions.

We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$? So we need to find a single equation for b, for instance $5b_1 - b_2 - b_3 = 0$. (If you don't

see this immediately, do row operations on $\begin{bmatrix} 2 & 1 & 1 & b_1 \\ 4 & 2 & 3 & b_2 \\ 6 & 3 & 2 & b_3 \end{bmatrix}$)

If $b \in Col(A)$ how many solutions of Ax = b, how many free variables? Get point, line, plane....?

Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and let $V = \operatorname{Span}(v_1, v_2)$. If $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ we can write $x = x_V + x_{V^{\perp}}$.

Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and let $V = \operatorname{Span}(v_1, v_2)$. If $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ we can write $x = x_V + x_{V^{\perp}}$.

• Explain why $x_V = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$ is not correct.

Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and let $V = \operatorname{Span}(v_1, v_2)$. If $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ we can write $x = x_V + x_{V^{\perp}}$.

- Explain why $x_V = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$ is not correct.
- ullet Find an orthonormal basis for V.

Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and let $V = \operatorname{Span}(v_1, v_2)$. If $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ we can write $x = x_V + x_{V^{\perp}}$.

- Explain why $x_V = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$ is not correct.
- ullet Find an orthonormal basis for V.
- Calculate $x_{V^{\perp}}$.

• Take
$$q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$$
.

• Take
$$q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$$
.

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 =$

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)

• Now write $x_V =$

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)

• Now write $x_V =$

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)

• Now write
$$x_{V} = \frac{\langle \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rangle} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{\langle \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

Hence
$$x_{V^{\perp}} =$$

- The basis is not orthogonal, so we can not use the formula!
- ullet Take $q_1=rac{1}{\sqrt{5}}egin{bmatrix}1\\2\\0\end{bmatrix}$. Now q_2 must be perpendicular to q_1 and

belong to
$$V$$
. So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)

• Now write
$$x_V = \frac{\langle \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rangle} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{\langle \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rangle} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

Hence
$$x_{V^{\perp}} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Example	

• Give an example of a 2×2 matrix A that is not invertible.

• Give an example of a 2×2 matrix A that is not invertible.

- ullet Give an example of a 2 \times 2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.

- ullet Give an example of a 2 \times 2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.
- Is the equation Ax = 0 always solvable?

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.
- Is the equation Ax = 0 always solvable?

- Give an example of a 2×2 matrix A that is not invertible.
- Give an example of a 2 × 3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.
- Is the equation Ax = 0 always solvable?
- If A is the 2 × 3 zero matrix, then $Nul(A) = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \}$. True or false?

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

• Find 3 dependent vectors in W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

• Find 3 dependent vectors in W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in *W*.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in *W*.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in *W*.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in *W*.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- Find a spanning set of W containing 1 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- Find a spanning set of W containing 1 vectors.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in *W*.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- ullet Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.
- Find 2 independent vectors in W^{\perp} .

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- ullet Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.
- Find 2 independent vectors in W^{\perp} .

Let
$$W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$$
, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.
- ullet Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.
- Find 2 independent vectors in W^{\perp} .