

RESEARCH PAPER RP1229

Part of *Journal of Research of the National Bureau of Standards*, Volume 23,
August 1939

THERMAL PROPERTIES OF SATURATED WATER AND STEAM

By Nathan S. Osborne, Harold F. Stimson, and Defoe C. Ginnings

ABSTRACT

The completion of new measurements of heat capacity and heat of vaporization of water in the range 0° to 100° C has contributed new data which affect the accepted values of the saturation properties of water and steam in the whole range up to the critical region. With these new data, it is now possible to compile the results of the entire series of measurements which have been carried out in this laboratory into a single table of smoothed values of the properties of saturated water and steam. The compilation presented supersedes the previous tabulations which have accompanied reports of the experimental measurements in this laboratory.

The properties of saturated steam and water included in the tables presented in this compilation are vapor pressure, specific volume, enthalpy, and entropy.

In the previous reports [1, 2, 3, 4]¹, data obtained by calorimetric measurements have been given in several partial contributions, none of which has covered the entire range 0° to 374° C. It is the purpose of the present compilation to assemble these data into a thermodynamically consistent group, with the experimental irregularities smoothed out by the use of formulations. As far as possible, the formulas used, both empirical and theoretical, are indicated, and the experimental bases of the empirical formulas are also given. The units used are the same as those in the International Steam Tables [9].

It will be convenient to give the descriptions in two main parts, the first being for the range 0° to 100° C and the second from 100° to 374.15° C, since most of the reductions in the range 0° to 100° C have already been made in the report [4] on the experimental work, which is being published at this time. In that report an account is given of the measurements of the heat capacity and heat of vaporization of water, including the reduction of the data to give values of specific heat, enthalpy of both liquid and vapor, and specific volume of the vapor. The values in this range are taken directly from the report, making conversions to the units used in this tabulation.

¹ Figures in brackets indicate the literature references at the end of this paper.

From the theory [5] of calorimetry of a saturated fluid, the following relations are obtained, by which enthalpy, entropy, and specific volume are obtained from the calorimetric data.

$$H]_0^t = \alpha]_0^t + \beta]_0^t$$

$$H']_0^t = H]_0^t + L_t$$

$$\Phi]_0^t = \int_0^t \frac{1}{T} \frac{d\alpha dt}{dt} + \left[\frac{\beta}{T} \right]_0^t$$

$$\Phi']_0^t = \Phi]_0^t + \frac{L}{T}$$

$$\beta = u T dP/dt$$

$$\gamma = u' T dP/dt$$

In the above equations H and H' denote enthalpy; Φ and Φ' denote entropy; u and u' denote specific volume, in each case, respectively, of liquid and vapor; L denotes heat of vaporization ($H' - H$); t is expressed in degrees centigrade, and T in degrees Kelvin ($t + 273.16^\circ C$).

In order to calculate the values for entropy, $\Phi']_0^t$, from the relation given above, the empirical equation for $d\alpha/dt$ from the previous report [4] is used. This equation is

$$\frac{d\alpha}{dt} = 4.1699 + 15.27t (10)^{-6} + 0.0467 (10)^{-0.036t},$$

where $d\alpha/dt$ is given in int.j/g-°C. After dividing the right member of this equation by T , the first two terms may be integrated directly in the evaluation of entropy. The third term could then have been integrated by numerical summation, but it was preferred to substitute for it a new empirical function which could be integrated directly. The integral $\{ -1964.6 (10)^{-(6+0.03755t)} \}$ of this new function was substituted for the term $\{ 0.0467 \int_0^t \frac{1}{T} (10)^{-0.036t} dt \}$, and this was found to be equivalent to it well within the present requirements. By combining the calculated integrals of the three terms with the corresponding values of β/T , the values of $\Phi']_0^t$ were found for each of the 5° points from 0° to 100° C. By adding the corresponding values of L/T , the values of $\Phi']_0^t$ were found for the entropy of saturated vapor. These were converted to International Steam Table Calories per gram-degree centigrade for inclusion in table 2.

The values for specific volume of saturated liquid (0° to 100° C), given in table 2, were derived from the data of Chappuis [6], Thiessen [7], and Smith and Keyes [8], and are in agreement with the values adopted by the 1934 International Conference on Steam Tables [9].

The values of vapor pressure from 0° to 90° C, inclusive, given in table 2 were obtained by use of an unpublished formulation of the vapor-pressure data of the Reichsanstalt as reformulated by Harold T. Gerry and used by the International Steam Table Conference [9].

as a basis for definitive values. Dr. Gerry has very kindly given permission to quote the empirical equation

$$\log_{10} P = -3.142305 \left\{ \frac{10^3}{T} - \frac{10^3}{373.16} \right\} + 8.2 \log_{10} \left(\frac{373.16}{T} \right) \\ - 0.0024804 (373.16 - T)$$

in which P is in standard atmospheres and T is in degrees Kelvin. These values of P were converted into kilograms per square centimeter by using the factor 1.033228.

For the remaining portion of the table, 100° to 374.15° C, part of the calorimetric data from previous reports has been reformulated in order to make allowance for the small changes in values below 100° C shown by the latest results.

The enthalpy of saturated liquid was calculated, using the new formula for the α function in the range 100° to 374.15° C, as follows:

$$\alpha]_0^t = 0.48558 + 4.17144t - \{0.6058(t-130)^{3.1} - 0.01812(t-200)^{3.64}\} 10^{-6}$$

This equation gives values of α in international joules per gram. The values merge smoothly with the later more accurate experimental values, immediately below 100° C and are considered to be a good representation of the calorimetric data.

The values of the specific volume of saturated liquid, u , given in table 2, and used for computation of β from 100° to 325 °C, were obtained from the results of Smith and Keyes [8]. From 330 to 374.15° C, the values of β and corresponding values of u were obtained from the calorimetric data of the previous report [3]. The values of P and dP/dt in the range 95° to 374.15° C are from the formula of Osborne and Meyers [10], based on recent measurements.

The values of γ in the range 100° to 190° C were obtained by computation, using the formula given in a recent report [2]

$$\gamma = 2500.5 - 2.3233 t - 10^x,$$

where $x = 5.1463 - 1540/T$, t is in degrees centigrade, T in degrees Kelvin, and γ in international joules per gram. This formula represents an adjusted appraisal of all the measurements of heat of vaporization made in this laboratory in the range 0° to 220° C and merges smoothly with the values of γ above 170° C, as deduced from formulations in a previous report [3]. From 195° to 374.15° C, inclusive, the values of L are directly obtained from the formulation of L in the previous report [3]. Corresponding values of γ in this range are in accord with the preferred values of β , as specified above.

The values of specific volume of saturated liquid, u , and of saturated vapor, u' , are consistent with values of β and γ through the thermodynamic relation, using the Clapeyron factor, TdP/dt .

For obtaining entropy in the range 100° to 374.15° C, use was made of the empirical formula for α given above and expressed in the differential form

$$\frac{d\alpha}{dt} = 4.1744 - \{1.878(t-130)^{2.1} - 0.066(t-200)^{2.64}\} 10^{-6}.$$

For convenience in integrating the function $\frac{d\alpha}{Tdt}$, this function was

formulated, using values from the $d\alpha/dt$ equation to obtain a new explicit function of temperature of the form

$$\frac{d\alpha}{Tdt} = \frac{4.1744}{T} + 10^{-7} \{-0.0607(t-130)^2 + 0.0105(t-200)^{2.29}\},$$

which, by integration, becomes

$$\int_{t_1}^t \frac{d\alpha}{Tdt} dt = 9.605095 \log_{10} \frac{T}{T_1} + 10^{-7} \left[-0.020233(t-130)^3 + 0.003192(t-200)^{3.29} \right]_1^t$$

In this equation, however, values of $(t-130)^3$ are to be used only above 130° C. By using the calculated values of this integral, the value of entropy at 100° C as the constant of integration, and values of β/T , the values of Φ'_1 , entropy of saturated liquid at the temperature t , are determined. Values of Φ'_1 , entropy of saturated vapor, are determined by the addition of L/T .

Tables 1 and 2 contain the numerical values obtained as described in the foregoing text. For conversion from international joules per gram to International Steam Table Calories per gram, the factor 1 int. j/g = 0.238891 IT Cal/g has been used.

It may appear that the compilation of these properties of saturated water and steam as described here is quite a patchwork. Simplicity, rationality, or orderliness of formulas have as yet eluded the inspiration of this group and its colleagues. However much care has been taken to insure that the tabulated values are smooth functions of temperature and that the different groups of NBS calorimetric data have been fairly interpreted to give a consistent and congruent compilation, which now supersedes earlier ones issued from this laboratory.

- [1.] N. S. Osborne, H. F. Stimson, and E. F. Flock, *A calorimetric determination of thermal properties of saturated water and steam from 0° to 270° C.* BS J. Research **5**, 411 (1930) RP209.
- [2.] E. F. Flock and D. C. Ginnings, *Heat of vaporization of water at 50° , 70° , and 90° C.* BS J. Research **8**, 321 (1932) RP416.
- [3.] N. S. Osborne, H. F. Stimson, and D. C. Ginnings, *Calorimetric determination of the thermodynamic properties of saturated water in both the liquid and gaseous states from 100° to 374° C.* J. Research NBS **18**, 389 (1937) RP983.
- [4.] N. S. Osborne, H. F. Stimson, and D. C. Ginnings, *Measurements of heat capacity and heat of vaporization of water in the range 0° to 100° C.* J. Research NBS **23**, 197 (1939) RP1228.
- [5.] Nathan S. Osborne. *Calorimetry of a fluid.* BS J. Research **4**, 609 (1930) RP168.
- [6.] M. P. Chappuis, *Dilatation de l'eau. Travaux et Mémoires du Bureau International des Poids et Mesures* **13**, (1907).
- [7.] M. Thiesen, *Bestimmung der Ausdehnung des Wassers für Temperaturen zwischen 50° und 100° .* Wiss. Abhandl. physik.-tech. Reichsanstalt **4**, 1 (1904).
- [8.] Leighton B. Smith and Frederick G. Keyes, *The volumes of unit mass of liquid water and their correlation as a function of pressure and temperature.* Proc. Am. Acad. Arts Sci. **69**, 285 (1934).
- [9.] *The Third International Conference on Steam Tables.* Mech. Eng. **57**, 710 (1935).
- [10.] Nathan S. Osborne and Cyril H. Meyers, *A formula and tables for the pressure of saturated water vapor in the range 0° to 374° C.* J. Research NBS **13**, 1 (1934) RP691.

TABLE 1.—Formulated data on saturated steam

Temperature °C	$\alpha]_0^t$	β	γ	$H]_0^t$	$H']_0^t$	L	$T \frac{dP}{dT}$
100	417. 63	1. 41	2257. 71	419. 03	2675. 33	2256. 30	1. 3495
105	438. 49	1. 66	2244. 70	440. 13	2683. 17	2243. 04	1. 5815
110	459. 34	1. 94	2231. 54	461. 27	2690. 87	2229. 60	1. 8441
115	480. 20	2. 26	2218. 22	482. 45	2698. 41	2215. 96	2. 1402
120	501. 06	2. 62	2204. 75	503. 67	2705. 80	2202. 13	2. 4725
125	521. 92	3. 03	2191. 10	524. 93	2713. 00	2188. 07	2. 8440
130	542. 77	3. 48	2177. 26	546. 25	2720. 02	2173. 78	3. 2578
135	563. 63	3. 99	2163. 24	567. 61	2726. 86	2159. 25	3. 7170
140	584. 49	4. 56	2149. 00	589. 04	2733. 47	2144. 44	4. 2248
145	605. 34	5. 19	2134. 55	610. 52	2739. 88	2129. 36	4. 7847
150	626. 20	5. 89	2119. 87	632. 07	2746. 05	2113. 98	5. 3999
155	647. 05	6. 66	2104. 95	653. 69	2751. 98	2098. 29	6. 0740
160	667. 89	7. 51	2089. 78	675. 39	2757. 66	2082. 27	6. 8105
165	688. 74	8. 44	2074. 34	697. 16	2763. 06	2065. 90	7. 6129
170	709. 57	9. 46	2058. 63	719. 02	2768. 19	2049. 17	8. 4850
175	730. 41	10. 57	2042. 63	740. 96	2773. 02	2032. 06	9. 4305
180	751. 23	11. 79	2026. 34	763. 01	2777. 55	2014. 55	10. 453
185	772. 05	13. 11	2009. 73	785. 15	2781. 77	1996. 63	11. 557
190	792. 86	14. 55	1992. 80	807. 40	2785. 65	1978. 25	12. 745
195	813. 66	16. 11	1975. 53	829. 76	2789. 21	1959. 42	14. 023
200	834. 46	17. 80	1957. 88	852. 25	2792. 32	1940. 08	15. 393
205	855. 24	19. 63	1939. 85	874. 86	2795. 08	1920. 22	16. 860
210	876. 01	21. 61	1921. 45	897. 60	2797. 45	1899. 84	18. 429
215	896. 77	23. 74	1902. 65	920. 50	2799. 40	1878. 91	20. 102
220	917. 51	26. 04	1883. 45	943. 54	2800. 95	1857. 41	21. 885

TABLE 1.—*Formulated data on saturated steam—Continued*

Temperature °C	$a]_0^t$	β	γ	$H]_0^t$	$H']_0^t$	L	$T \frac{dP}{dT}$
225	938. 24	28. 52	1863. 82	966. 75	2802. 05	1835. 30	23. 782
230	958. 96	31. 18	1843. 76	990. 13	2802. 71	1812. 58	25. 797
235	979. 66	34. 04	1823. 24	1013. 70	2802. 89	1789. 20	27. 935
240	1000. 35	37. 12	1802. 24	1037. 46	2802. 58	1765. 12	30. 201
245	1021. 03	40. 42	1780. 75	1061. 43	2801. 76	1740. 33	32. 599
250	1041. 68	43. 96	1758. 73	1085. 63	2800. 40	1714. 77	35. 136
255	1062. 32	47. 76	1736. 16	1110. 08	2798. 47	1688. 40	37. 815
260	1082. 95	51. 84	1713. 01	1134. 78	2795. 95	1661. 17	40. 642
265	1103. 55	56. 21	1689. 24	1159. 76	2792. 78	1633. 03	43. 624
270	1124. 14	60. 90	1664. 81	1185. 04	2788. 94	1603. 91	46. 765
275	1144. 72	65. 94	1639. 68	1210. 64	2784. 38	1573. 75	50. 074
280	1165. 27	71. 34	1613. 81	1236. 60	2779. 07	1542. 47	53. 556
285	1185. 80	77. 15	1587. 12	1262. 94	2772. 91	1509. 97	57. 219
290	1206. 32	83. 39	1559. 55	1289. 70	2765. 85	1476. 16	61. 071
295	1226. 81	90. 12	1531. 03	1316. 92	2757. 83	1440. 91	65. 120
300	1247. 29	97. 37	1501. 45	1344. 65	2748. 73	1404. 08	69. 375
305	1267. 75	105. 21	1470. 70	1372. 94	2738. 43	1365. 49	73. 846
310	1288. 18	113. 69	1438. 60	1401. 86	2726. 77	1324. 91	78. 545
315	1308. 60	122. 91	1405. 08	1431. 49	2713. 67	1282. 18	83. 484
320	1329. 00	132. 94	1370. 18	1461. 93	2699. 16	1237. 24	88. 677
325	1349. 37	143. 93	1333. 67	1493. 29	2683. 03	1189. 74	94. 14
330	1369. 73	156. 00	1295. 29	1525. 71	2665. 00	1139. 29	99. 89
335	1390. 06	169. 39	1254. 67	1559. 44	2644. 72	1085. 28	105. 96
340	1410. 37	184. 22	1211. 22	1594. 58	2621. 58	1027. 00	112. 37
345	1430. 67	200. 89	1164. 27	1631. 54	2594. 92	963. 38	119. 16

350-----	1450. 94	219. 99	1112. 84	1670. 92	2563. 77	892. 85	126. 38
355-----	1471. 19	242. 41	1055. 39	1713. 59	2526. 57	812. 98	134. 12
360-----	1491. 42	269. 81	989. 23	1761. 22	2480. 64	719. 42	142. 47
365-----	1511. 63	305. 62	908. 87	1817. 24	2420. 49	603. 25	151. 62
366-----	1515. 67	314. 42	890. 12	1830. 08	2405. 78	575. 70	153. 57
367-----	1519. 70	324. 04	870. 08	1843. 73	2389. 77	546. 04	155. 56
368-----	1523. 74	334. 66	848. 46	1858. 39	2372. 19	513. 80	157. 61
369-----	1527. 78	346. 58	824. 82	1874. 35	2352. 59	478. 24	159. 73
370-----	1531. 81	360. 24	798. 54	1892. 04	2330. 34	438. 30	161. 91
371-----	1535. 85	376. 40	768. 50	1912. 24	2304. 34	392. 10	164. 18
372-----	1539. 88	396. 59	732. 63	1936. 46	2272. 50	336. 04	166. 57
373-----	1543. 92	424. 66	685. 64	1968. 57	2229. 55	260. 98	169. 16
374-----	1547. 95	483. 49	598. 10	2031. 43	2146. 04	114. 61	172. 5
374.15-----	1548. 55	535. 1	535. 1	2083. 6	2083. 6	0. 00	173. 1

TABLE 2.—Properties of saturated steam

Temperature (° C)	Vapor pressure	Enthalpy			Specific volume		Entropy		Temperature ° C
		Liquid	Vaporization	Vapor	Liquid	Vapor	Liquid	Vapor	
0	kg/cm ²	IT Cal/g	IT Cal/g	IT Cal/g	cm ³ /g	cm ³ /g	IT Cal/g·°C	IT Cal/g·°C	0
0	0. 006228	0. 000	597. 3	597. 3	1. 00021	206288	0. 0000	2. 1865	5
5	. 008891	5. 028	594. 5	599. 5	1. 00008	147150	. 0182	2. 1554	
10	. 012513	10. 040	591. 7	601. 7	1. 00035	106422	. 0361	2. 1256	10
15	. 017377	15. 043	588. 9	603. 9	1. 00095	77973	. 0536	2. 0972	15
20	. 023829	20. 040	586. 0	606. 1	1. 00184	57836	. 0708	2. 0699	20
25	. 032287	25. 033	583. 2	608. 3	1. 00301	43401	. 0877	2. 0438	25
30	. 043254	30. 024	580. 4	610. 4	1. 00442	32929	. 1043	2. 0188	30
35	. 057326	35. 015	577. 6	612. 6	1. 00605	25245	. 1206	1. 9948	35
40	. 075204	40. 006	574. 7	614. 7	1. 00789	19546	. 1367	1. 9719	40
45	. 097707	44. 997	571. 8	616. 8	1. 00993	15275	. 1525	1. 9499	45
50	. 12578	49. 990	569. 0	619. 0	1. 0121	12045	. 1681	1. 9287	50
55	. 16050	54. 984	566. 1	621. 1	1. 0145	9578	. 1834	1. 9084	55
60	. 20312	59. 981	563. 2	623. 2	1. 0171	7677. 6	. 1985	1. 8889	60
65	. 25501	64. 981	560. 2	625. 2	1. 0199	6201. 4	. 2134	1. 8701	65
70	. 31775	69. 984	557. 3	627. 3	1. 0228	5045. 3	. 2281	1. 8521	70
75	. 39307	74. 991	554. 3	629. 3	1. 0258	4133. 2	. 2426	1. 8347	75
80	. 48292	80. 002	551. 3	631. 3	1. 0290	3408. 3	. 2568	1. 8180	80
85	. 58943	85. 018	548. 3	633. 3	1. 0324	2828. 2	. 2709	1. 8018	85
90	. 71491	90. 039	545. 2	635. 3	1. 0359	2360. 9	. 2848	1. 7862	90
95	. 86192	95. 067	542. 1	637. 2	1. 0396	1982. 1	. 2986	1. 7712	95
100	1. 03323	100. 102	539. 0	639. 1	1. 0435	1673. 0	. 3122	1. 7566	100
105	1. 2318	105. 14	535. 8	641. 0	1. 0474	1419. 4	. 3256	1. 7426	105
110	1. 4609	110. 19	532. 6	642. 8	1. 0515	1210. 1	. 3388	1. 7289	110
115	1. 7239	115. 25	529. 4	644. 6	1. 0558	1036. 5	. 3519	1. 7157	115
120	2. 0245	120. 32	526. 1	646. 4	1. 0603	891. 71	. 3649	1. 7029	120

125-----	2. 3666	125. 40	522. 7	648. 1	1. 0649	770. 43	. 3777	1. 6905	125
130-----	2. 7544	130. 49	519. 3	649. 8	1. 0697	668. 32	. 3904	1. 6784	130
135-----	3. 1923	135. 60	515. 8	651. 4	1. 0747	582. 00	. 4029	1. 6667	135
140-----	3. 6848	140. 72	512. 3	653. 0	1. 0798	508. 66	. 4154	1. 6553	140
145-----	4. 2369	145. 85	508. 7	654. 5	1. 0851	446. 12	. 4277	1. 6442	145
150-----	4. 8535	151. 00	505. 0	656. 0	1. 0906	392. 57	. 4399	1. 6333	150
155-----	5. 5402	156. 16	501. 3	657. 4	1. 0962	346. 55	. 4520	1. 6227	155
160-----	6. 3023	161. 34	497. 4	658. 8	1. 1021	306. 85	. 4640	1. 6124	160
165-----	7. 1457	166. 55	493. 5	660. 1	1. 1081	272. 48	. 4759	1. 6022	165
170-----	8. 0764	171. 77	489. 5	661. 3	1. 1144	242. 62	. 4877	1. 5923	170
175-----	9. 1006	177. 01	485. 4	662. 4	1. 1208	216. 60	. 4994	1. 5825	175
180-----	10. 2225	182. 28	481. 3	663. 5	1. 1275	193. 85	. 5110	1. 5730	180
185-----	11. 456	187. 57	477. 0	664. 5	1. 1344	173. 90	. 5225	1. 5636	185
190-----	12. 800	192. 88	472. 6	665. 5	1. 1415	156. 35	. 5340	1. 5543	190
195-----	14. 265	198. 23	468. 1	666. 3	1. 1489	140. 88	. 5454	1. 5452	195
200-----	15. 857	203. 59	463. 5	667. 1	1. 1565	127. 19	. 5567	1. 5362	200
205-----	17. 585	209. 00	458. 7	667. 7	1. 1644	115. 05	. 5679	1. 5273	205
210-----	19. 456	214. 43	453. 9	668. 3	1. 1726	104. 265	. 5791	1. 5185	210
215-----	21. 478	219. 90	448. 9	668. 8	1. 1812	94. 650	. 5903	1. 5098	215
220-----	23. 659	225. 40	443. 7	669. 1	1. 1900	86. 062	. 6014	1. 5011	220
225-----	26. 007	230. 95	438. 4	669. 4	1. 1992	78. 372	. 6124	1. 4925	225
230-----	28. 531	236. 53	433. 0	669. 5	1. 2087	71. 472	. 6234	1. 4840	230
235-----	31. 239	242. 16	427. 4	669. 6	1. 2187	65. 267	. 6344	1. 4756	235
240-----	34. 140	247. 84	421. 7	669. 5	1. 2291	59. 674	. 6454	1. 4671	240
245-----	37. 244	253. 57	415. 8	669. 3	1. 2399	54. 625	. 6563	1. 4587	245
250-----	40. 560	259. 35	409. 6	669. 0	1. 2512	50. 056	. 6672	1. 4503	250
255-----	44. 097	265. 19	403. 3	668. 5	1. 2631	45. 912	. 6782	1. 4418	255
260-----	47. 866	271. 09	396. 8	667. 9	1. 2755	42. 149	. 6891	1. 4334	260
265-----	51. 875	277. 06	390. 1	667. 2	1. 2886	38. 723	. 7000	1. 4249	265
270-----	56. 137	283. 09	383. 2	666. 3	1. 3023	35. 599	. 7109	1. 4163	270
275-----	60. 660	289. 21	376. 0	665. 2	1. 3168	32. 745	. 7219	1. 4077	275
280-----	65. 457	295. 41	368. 5	663. 9	1. 3321	30. 133	. 7328	1. 3990	280
285-----	70. 539	301. 70	360. 7	662. 4	1. 3483	27. 738	. 7439	1. 3902	285
290-----	75. 917	308. 10	352. 6	660. 7	1. 3655	25. 537	. 7550	1. 3812	290
295-----	81. 603	314. 60	344. 2	658. 8	1. 3839	23. 511	. 7662	1. 3720	295

TABLE 2.—*Properties of saturated steam—Continued*

Temperature °C	Vapor pressure <i>kg/cm</i> ²	Enthalpy			Specific volume		Entropy		Temperature °C
		Liquid <i>ITCal/g</i>	Vaporization <i>ITCal/g</i>	Vapor <i>ITCal/g</i>	Liquid <i>cm</i> ³ / <i>g</i>	Vapor <i>cm</i> ³ / <i>g</i>	Liquid <i>ITCal/g·°C</i>	Vapor <i>ITCal/g·°C</i>	
300	87. 611	321. 22	335. 4	656. 6	1. 4036	21. 643	0. 7774	1. 3626	300
305	93. 952	327. 98	326. 2	654. 2	1. 4247	19. 916	. 7888	1. 3530	305
310	100. 64	334. 89	316. 5	651. 4	1. 4475	18. 316	. 8003	1. 3431	310
315	107. 69	341. 97	306. 3	648. 3	1. 4722	16. 831	. 8120	1. 3328	315
320	115. 12	349. 24	295. 6	644. 8	1. 4992	15. 451	. 8239	1. 3221	320
325	122. 95	356. 73	284. 2	641. 0	1. 5289	14. 167	. 8360	1. 3111	325
330	131. 18	364. 48	272. 2	636. 6	1. 562	12. 967	. 8484	1. 2996	330
335	139. 85	372. 54	259. 3	631. 8	1. 599	11. 841	. 8612	1. 2875	335
340	148. 96	380. 93	245. 3	626. 3	1. 639	10. 779	. 8743	1. 2745	340
345	158. 54	389. 76	230. 1	619. 9	1. 686	9. 771	. 8881	1. 2604	345
350	168. 63	399. 17	213. 3	612. 5	1. 741	8. 805	. 9025	1. 2448	350
355	179. 24	409. 36	194. 2	603. 6	1. 807	7. 869	. 9181	1. 2273	355
360	190. 42	420. 74	171. 9	592. 6	1. 894	6. 943	. 9354	1. 2069	360
365	202. 21	434. 12	144. 1	578. 2	2. 016	5. 995	. 9556	1. 1814	365
366	204. 64	437. 19	137. 5	574. 7	2. 048	5. 796	. 9602	1. 1754	366
367	207. 11	440. 45	130. 4	570. 9	2. 083	5. 593	. 9652	1. 1689	367
368	209. 60	443. 95	122. 7	566. 7	2. 123	5. 383	. 9704	1. 1619	368
369	212. 12	447. 77	114. 2	562. 0	2. 170	5. 164	. 9762	1. 1541	369
370	214. 68	452. 0	104. 7	556. 7	2. 225	4. 932	. 9825	1. 1453	370
371	217. 26	456. 8	93. 7	550. 5	2. 293	4. 681	. 9898	1. 1352	371
372	219. 88	462. 6	80. 3	542. 9	2. 38	4. 40	. 9986	1. 1230	372
373	222. 53	470. 3	62. 4	532. 6	2. 51	4. 05	1. 0102	1. 1067	373
374	225. 22	485. 3	27. 4	512. 7	2. 80	3. 47	1. 0332	1. 0755	374
374.15	225. 65	498.	0. 0	498.	3. 1	3. 1	1. 0524	1. 0524	374. 15

WASHINGTON, April 28, 1939.