Image-to-Image Translation with Conditional Adversarial Networks

Pengkai Zhu, Weiwei Tao, Hari Saran

Task

https://www.researchgate.net/figure

http://theusbport.com/google-creatives-explain-style-transfer-turn-photos-art/20027

Isola et al., 2016

Related work

- CNN is used to generate colorful images (Zhang et al., 2016).
- GAN (Goodfellow et al., 2014) works well for generating small images.
- Conditional GAN is developed to generate high quality natural images (Denton et al., 2015).
- Deep convolutional GANs (DCGANs) are more stable to be trained (Radford et al., 2016).
- The cGAN objective function is mixed with the traditional L2 loss to generate images, which is proved to give better performance (Pathak et al., 2016).

cGAN framework

Skip Encoder-decoder with skips Conv + Batch Normalization + ReLU DeConv + Batch Normalization + ReLU Input Output

Implementation details

Objective function:

$$G^* = \operatorname*{argmin}_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{1}(G)$$

Generator Encoders	conv1	conv2	conv3	conv4	conv5	conv6	conv7	conv8
Input size	256×256	128×128	64×64	32×32	16×16	8×8	4×4	2×2
Input channel	3	64	128	256	512	512	512	512
Generator Decoders	unconv1	unconv2	unconv3	unconv4	unconv5	unconv6	unconv7	unconv8
Input size	1 × 1	2×2	4×4	8 × 8	16×16	32×32	64×64	128×128
Input channel	512	512	512	512	512	256	128	64

Discriminator	conv1	conv2	conv3	conv4	conv5
Input size	256×256	128×128	64×64	32×32	31×31
Input channel	6	64	128	256	512

Datasets

Dataset	Training Samples	Validation Samples	Туре
Facades	400	100	Structural label ↔ Photo
Google Maps	1096	1098	Map ↔ Aerial Photo
Edge to Shoes	16K	200	Edges → Shoes Photo
ImageNet	10K	2500	Photo → Probability Map

Evaluation metric

It is still an open problem

Plausibility to people:

Examples illustration

Quantitative metric:

Pixel by pixel mean absolute error (MAE) between synthetic image and ground truth

Results

Label to Architecture

Input

Output

Ground Truth

Architecture to Label

Results

_ _ _

Aerial Photo to Map

Map to Aerial Photo

Results

_ _ _

Edge to Shoes

Photo to Probability Map

Loss function analysis

$$G^* = \underset{G}{\operatorname{argmin}} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_1(G)$$

Ground Truth GAN + L1 GAN GAN + L2

Mean absolute error

Task	MAE
Label to Architecture (cGAN+L1)	0.1757 ± 0.0420
Label to Architecture (cGAN+L2)	0.1778 ± 0.0405
Label to Architecture (cGAN only)	0.1930 ± 0.0525
Architecture to Label	0.1006 ± 0.0278
Aerial Photo to Map	0.0262 ± 0.0086
Map to Aerial Photo	0.1306 ± 0.0250
Edge to Shoes	0.0765 ± 0.0250
Photo to Probability Map	0.2229 ± 0.0831

Conclusion

- cGAN is a promising approach for image translation
- General framework for multiple tasks
- Blurry, artifacts issue
- Pretrained model for generator