

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

SVM ... PRELIMINARIES

- \square Given: m examples $(x_1, c_1), \dots, (x_m, c_m)$
- □ Goal: Learn classification!
- Most simple case: binary classification, where each example shows
 - lacksquare n-dimensional input data vector $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,n})$ and
 - \square its binary classification $c_i \in \{+1, -1\}$
- e.g., classification of all web pages into "related to computer science" and "not related to computer science":
 - □ Given: data vectors x_i with binary elements x_{ij} for appearance or missing appearance of a relevant keyword.
 - Goal: classification of new web pages with small prediction error

 \square Classification of n-dimensional input data

$$\mathbf{x} = (x_1, \dots, x_n)$$

is possible using a linear separation function

$$f \colon \mathbb{R}^n \to \mathbb{R}$$

- \square x is classified as positive (c = +1), if $f(x) \ge 0$.
- \square x is classified as negative (c = -1), is f(x) < 0.

$$y = \theta_0 + \theta_1 x$$

$$\theta = \frac{change\ in\ Y}{change\ in\ X}$$

$$y = \theta_1 x + \theta_0$$

$$\theta_1 = 2$$
, $\theta_0 = 1$

$$\theta = \frac{change\ in\ Y}{change\ in\ X}$$

$$\theta_1 = 1, \theta_0 = 0$$

The data can be separated in the n-dimensional data space by a planar hyper plane $\langle \mathbf{w}, \mathbf{x} \rangle - b = 0$.

Parameter **w** defines the normal vector of the hyper plane, parameter b stands for the bias of the hyper plane.

Planer hyper plane $\langle w, x \rangle - b = 0$

Hyperplane

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

SUPPORT VECTOR MACHINE

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

- □ Derives a linear separator
- informally chooses that separating hyper plane that maximizes the so-called margin, i.e., the space between positive and negative examples
- □ → Maximum Margin Classifier

That points closest to the separator are called
 Support Vectors, since they "support" the separator.

- To get an equation for the width of the margin,
 - subtract the first support vector from the second support vector and
 - multiply the result by the unit vector of $w = \frac{\vec{w}}{\|w\|}$ which is always perpendicular to the decision boundary.

$$width = (\vec{x_+} - \vec{x_-}) \cdot \frac{\vec{w}}{\|\vec{w}\|}$$

- First, we scale f(x) = w·x b
 that way, that the values of the
 support vectors are +1 and -1,
 respectively.
- Thus, the width M of the margin can be expressed as a function of w.

•
$$\langle \mathbf{w}, \mathbf{x}^+ \rangle - \mathbf{b} = +1$$
 $\langle \mathbf{w}, \mathbf{x}^- \rangle - \mathbf{b} = -1$
 $\sim \langle \mathbf{w}, (\mathbf{x}^+ - \mathbf{x}^-) \rangle = 2$
 $\sim M = \langle (\mathbf{w}/||\mathbf{w}||), (\mathbf{x}^+ - \mathbf{x}^-) \rangle$
 $= 2/||\mathbf{w}||$

Applied Machine Learning (CS4104)

• $\langle \mathbf{w}, \mathbf{x}^+ \rangle - \mathbf{b} = +1$ $\langle \mathbf{w}, \mathbf{x}^- \rangle - \mathbf{b} = -1$ $\sim \langle \mathbf{w}, (\mathbf{x}^+ - \mathbf{x}^-) \rangle = 2$ $\sim M = \langle (\mathbf{w}/||\mathbf{w}||), (\mathbf{x}^+ - \mathbf{x}^-) \rangle$ $= 2/||\mathbf{w}||$

- Maximizing M=2/|w|| is equal to minimize ||w||/2.
- With subject to the constraint, that all examples of the training data are correctly classified.

Applied Machine Learning (CS4104)

 The problem of maximizing the margin therefore reduces to

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1$ for all i ,

 The problem of maximizing the margin therefore reduces to

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1$ for all i ,

□ Which is equivalently to

$$\min \, \frac{1}{2} \|w\|^2 \quad \text{since} \qquad \frac{\mathrm{d}}{\mathrm{d}x} \, \frac{1}{2} \, x^2 = x$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y_i(\langle w, x_i \rangle + b) \ge 1$ for all i .

The picture depicts

 the well classified points in black,

$$\mathbf{y_i}(\langle \mathbf{w}, \mathbf{x_i} \rangle + \mathbf{b}) > \mathbf{1}$$

 the support vectors in blue,

$$\mathbf{y}_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + \mathbf{b}) = 1$$

margin errors in red.

$$\mathbf{y_i}(\langle \mathbf{w}, \mathbf{x_i} \rangle + \mathbf{b}) < 1$$

- This is a constrained convex optimization problem with a quadratic objective function and linear constraints.
- In deriving this equation, we implicitly assume that the data is linearly separable, that is, there is a hyperplane that correctly classifies the training data.
- Such a classifier is called a hard margin classifier.
- If the data is not linearly separable, then does not have a solution.

SVM ... KERNEL TRICK

- Kernel Trick is widely used in the Support Vector Machines (SVM) model to bridge linearity and nonlinearity.
- It converts non-linear lower-dimension space to a higher dimension space thereby we can get a linear classification.
 - So, we are projecting the data with some extra features so that it can convert to a higher dimension space.

Kernel Function:

- A function that takes as its inputs vectors in the original space and returns the dot product of the vectors in the feature space is called a kernel function
- More formally, if we have data $\mathbf{X}, \mathbf{Z} \in X$ and a map $\phi: X \to \Re^N$ then

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

is a kernel function

□ Let us consider a simple kernel which is:

$$K(x, y) = \langle f(x), f(y) \rangle$$

where,

- K is the kernel function,
- X and Y are the dimensional inputs,
- f is the map from n-dimensional to m-dimensional space and,
- \Box < x, y > is the dot product.

- □ Let us say that we have two points,
 - $\mathbf{x} = (5, 6, 7)$ and $\mathbf{y} = (8, 9, 10)$
- \Box As we have seen, $K(x, y) = \langle f(x), f(y) \rangle$, let us first calculate $\langle f(x), f(y) \rangle$

```
f(x) = (x1x1, x1x2, x1x3, x2x1, x2x2, x2x3, x3x1, x3x2, x3x3)

f(y) = (y1y1, y1y2, y1y3, y2y1, y2y2, y2y3, y3y1, y3y2, y3y3)

So,

f(5,6,7) = (25,30,35,30,36,42,35,42,49) and

f(8,9,10) = (64,72,80,72,81,90,80,90,100)

So the dot product is,

f (x) . f (y) = f(5,6,7) . f(8,9,10) =

(1600 + 2160 + 2800 + 2160 + 2916 + 3780 + 2800 + 3780 + 4900) = 26,896
```

Using Kernel,

$$K(x, y) = (5*8 + 6*9 + 7*10) ^ 2 = (40 + 54 + 70) ^ 2 = 164*164 = 26,896$$

This data becomes linearly separable after a quadratic transformation to 2-dimensions.

In 1-dimension, this data is not linearly separable, but after applying the transformation $\phi(x) = x^2$ and adding this second dimension to our feature space, the classes become linearly separable.

This transformation allows us to linearly separate the even and odd X1 values in 2 dimensions.

In 1-dimension, this data is not linearly separable, but after applying the transformation $\phi(x) = x \mod 2$ to our feature space, the classes become linearly separable.

Linearly separable data in 3-d after applying the 2nd-degree polynomial transformation

In 2-dimension, this data is not linearly separable, but after applying the second-degree polynomial transformation, the classes become linearly separable.

$$\phi(\mathbf{x}) = \phi\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} x_1 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

Example:

- Given: 2-dimensional input space defined by attributes x = (x₁,x₂).
- All positive examples (y=+1) are inside a circular region.
- All negative examples (y=-1) are outside that circular region.
- The separator is: $x_1^2 + x_2^2 \le 1$.
- ⇒ There is no linear separator!

• Suppose we re-express the input data using some computed features – i.e. we map each input vector $\mathbf{x} = (x_1, x_2)$ to a new vector of feature values, $F(\mathbf{x})$.

- In particular, we use the three features $f_1 = x_1^2$, $f_2 = x_2^2$, $f_3 = \sqrt{2} x_1 x_2$.
- ⇒ the new vectors in the three-dimensional socalled feature space are linearly separable!

Steps involved in SVM:

- Collects the Data and plot it accordingly
- □ Apply the Kernel Trick
- Learns Linear Line that classifies the data
- □ Projects back the data

Linear Kernel:

Let us say that we have two vectors, x and y, then the linear kernel is defined by the dot product of these two vectors:

$$K(x,y) = (x \cdot y)$$

Polynomial Kernel:

Let us say that we have two vectors, x and y, then the polynomial kernel is defined by the dot product of these two vectors:

$$K(x,y) = (x \cdot y + 1)^d$$

where d is the degree of the polynomial

Gaussian RBF Kernel:

 Let us say that we have two vectors, x and y, then the Gaussian Radial Basis Function kernel is defined by the dot product of these two vectors:

$$K(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

The given sigma plays a very important role in the performance of the Gaussian kernel and should neither be overestimated nor underestimated, it should be carefully tuned according to the problem.

Laplacian Kernel:

Let us say that we have two vectors with names x and y, then the Laplacian kernel is defined by the dot product of these two vectors:

$$K(x,y) = e^{-\frac{\|x-y\|}{\sigma}}$$

This type of kernel is less prone to changes and is totally equal exponential function kernel

Sigmoid Kernel:

Let us say that we have two vectors, x and y, then the bipolar sigmoid function. The equation for the hyperbolic kernel function is:

$$K(x,y) = \tanh(ax^Ty + c)$$

- Generally, we have the danger of overfitting!
- Therefore, we use the SVM as a maximum margin classifier.

Applied Machine Learning (CS4104)