56/1/2 - Set - I

MARKING SCHEME

SR. SECONDARY SCHOOL EXAMINATION, 2020 Subject: CHEMISTRY

Q.No.	Expected Answer / Value Points	Distribut ion of Marks
	SECTION - A	
1.	Inversion	1
2.	$CH_3I + C_6H_5OH$	1
3.	But-2-ene / CH ₃ CH=CHCH ₃	1
4.	Polarimeter	1
5.	Antiseptic	1
6.	Branched hydrocarbon part	1
7.	CH ₃ CH=CH ₂	1
8.	A	1
9.	No	1
10.	Zn	1
11.	A	1
12.	C	1
13.	C	1
14.	В	1
15.	В	1
16.	i	1
17.	i	1
18.	iii	1
19.	ii	1
20.		1
	SECTION – B	
21.	(a) 1 st order	1
	(b) No, due to exponential relation / the curve never touches the x-axis.	1
22.	a.	1
	b. H	1
23.	(a) The drugs which are used to control stress / anxiety / tension / mild or severe mental diseases	1
	(b) The drugs which are used to kill or to prevent the growth of micro-organism, applied externally on living tissues.	1

	OR Soap molecules form micelle around the oil droplet or dirt in such a way that hydrophobic part interacts with the oil droplet and hydrophilic part projects out. Micelles can be washed away on rinsing with water. Thus soap helps in emulsification and washing away of oil and fats.	2
24.	(a) K ₃ [Al(C ₂ O ₄) ₃]	1
	(b) [Co(NH ₃) ₄ (H ₂ O)Cl]Cl ₂	1
25.	CDT (V-l	1/2
25.	$\pi = \text{CRT}$ (Volume of solution = 100 mL) $\pi = \frac{n}{V} \text{RT}$	7/2
		1/2
	$\pi = \frac{5}{60} \times \frac{0.0821 \times 300}{0.1}$	
	$\pi = 20.5$ atm. (½ mark may be deducted for no or incorrect unit)	1
	OR	
	$\Delta T_{\rm f}({\rm urea}) = \Delta T_{\rm f}(Z)$	1/2
		/2
	$kf \times \frac{w \ urea}{Murea} \times \frac{1000}{w \ solvent} = kf \times \frac{wz}{Mz} \times \frac{1000}{W \ solvent}$	1/2
	$\left \frac{7.5}{60} \times \frac{1000}{100} = \frac{42.75}{Mz} \times \frac{1000}{100} \right $	
	$Mz = \frac{42.75 \times 60}{7.50} = 342 \ g/mol$ (or by any other correct method)	
	$\frac{1}{7.50} = \frac{342 \text{ g/mot}}{1/2 \text{ mark may be deducted for no or incorrect unit)}}$	1
	(/2 mark may be deducted for no of incorrect unit)	
26.	a. NH ₂ (CH ₂) ₆ NH ₂ – Hexamethylenediamine, HOOC(CH ₂) ₄ COOH – Adipic acid	1/2+1/2
	b. CH ₂ =CH-CH=CH ₂ – Butadiene, C ₆ H ₅ CH=CH ₂ – Styrene	$\frac{1}{2} + \frac{1}{2}$
27.	a. 2-Methylbutan-2-ol / (CH ₃) ₂ C(OH)CH ₂ CH ₃ is formed /	1
	$CH_3COCH_2CH_3$ i) CH_3MgBr ii) CH_3MgBr ii) $CH_3COCH_2CH_3$	
	b. Benzene / C ₆ H ₆ is formed	1
		1
	$C_6H_5COONa \xrightarrow{NaOH + CaO, \Delta} C_6H_6$	
	SECTION - C	
28.	$\Delta T_f = K_f m$	1
	$1.5 = \frac{3.9 \times w_B}{176} \times \frac{1000}{75}$	1
	Mass of ascorbic acid = 5.08 g.	1
29.	(a) Because sulphur readily gets oxidized itself to more stable +6 state.	1
	(b) Because of absence of d-orbital in Fluorine.	1
	(c) Because size increases from Helium to Radon. / dispersion or van der Waal	1
	forces increase from Helium to Radon.	1
l	1	

	(a) $MnO + 4HC1 \rightarrow MnC1 + C1$	OR - + 2H.O	
29	(a) $MnO_2 + 4HC1 \rightarrow MnCl_2 + Cl_2 + 2H_2O$		1
	(b) $XeF_6 + KF \rightarrow K^+[XeF_7]^-$		
	(c) $4I_{(aq.)}^{+} + 4H_{(aq.)}^{+} + O_{2(g)} \rightarrow 2I_{2(s)} + 2H_{2}O_{(l)}$		1
30.	(a) (A) \rightarrow CH ₃ CONH ₂ (B) -	\rightarrow CH ₃ NH ₂	$\frac{1}{2} + \frac{1}{2}$
	(b) (A) $\to C_6H_5NH_2$ (B) -	\rightarrow C ₆ H ₅ N ₂ Cl	$\frac{1}{2} + \frac{1}{2}$
	(b) (A) $\to C_6H_5NH_2$ (B) - (c) (A) $\to C_6H_5CN$ (B) -	\rightarrow C ₆ H ₅ COOH	$\frac{1}{2} + \frac{1}{2}$
30	OR a) (i) Add Ice cold (NaNO ₂ + HCl) followed by phenol or β-Naphthol to both th compounds. Aniline forms orange red dye while ethylamine doesn't. ii) Add CHCl ₃ and KOH (alc.) to both the compounds.		
		eyanides while N-Methylaniline doesn't.	1
		(or any other suitable chemical tes	t)
	b) Butanol > Butanmine > Butane		1
31.	(a) Because the – CHO group in glucose is involved in hemiacetal formation and thus is not free / due to cyclic structure of glucose -CHO group is not free.		
	(b) Because the hydrogen bonds are formed between specific pairs of bases.		
	(c) Starch is a polymer of α - glucose while cellulose is a polymer of β - glucose.		
32.	(a) Increases		1
	(b) Decreases(c) Increases		1
	(c) increases		1
33. a.	Physiorption	Chemisorption	1
	(i) Not specific	Highly specific	1
	(ii) Low ΔH _{adsorption}	High $\Delta H_{adsorption}$	1
b.	In adsorption, the substance is concentrated only at the surface while in absorption, the substance is uniformly distributed throughout the bulk of the solid / adsorption is a surface phenomenon while absorption is a bulk phenomenon		1 k
34.	(a) It converts Ni into its volatile co	ompound, Ni(CO) ₄ .	1
	(b) It provides flux to remove impurities.		1
	(c) It selectively prevents one of the sulphide ore from coming to the froth.		
	1	SECTION – D	
35. (a) Tert-butyl alcohol, because it forms more stable 3° carbocation than 1° carbocation. (b) i)			1 1

		1
	OH OH OH CHO	1
	CHCl ₃ + aq NaOH	
	Salicylaldehyde	
	ii) $(CH_3)_3CCI + NaOH_{(aq.)} \longrightarrow (CH_3)_3COH \xrightarrow{Na} (CH_3)_3CONa$	1
		-
	C ₂ H ₅ Cl	
	★	
	(CH3)3COC2H5, CYL	1
	iii) CH ₃ CH=CH ₂ $\xrightarrow{\text{iii}}$ $\xrightarrow{\text{B}_2\text{H}_6}$ CH ₃ CH ₂ CH ₂ OH	
	(or by any other suitable method)	
	OR	
	Step 1: Protonation of alkene to form carbocation by electrophilic	
	attack of H_3O^+ .	
	$H_2O + H^+ \rightarrow H_3O^+$	
	Н	
	$>C = C < + H - \ddot{O} + H \Longrightarrow -\ddot{C} - \ddot{C} < + H^{2}\ddot{O}$	1
	Step 2: Nucleophilic attack of water on carbocation.	
	$-\overset{H}{_{-}}{}{$	1/2
	$-\dot{C} - \dot{C} + H^{3}\ddot{O} \iff -\dot{C} - \dot{C} - \dot{C} - \dot{H}$	/2
	Step 3: Deprotonation to form an alcohol.	
35. a)	н н он	
	$-\overset{H}{_{{}{}{}}}\overset{H}{}\overset{OH}{}\overset{OH}{{}}$	1/2
		1
	b) i) K ₂ Cr ₂ O ₇ + H ₂ SO ₄ / Na ₂ Cr ₂ O ₇ + H ₂ SO ₄ ii) Br ₂ in CH ₃ COOH	1
	iii) Br ₂ aq. / Bromine water	1
36.	(a) E^0 cell = $E^0_C - E^0_A$	1/2
	= 0.34 - (-0.76) $= 1.10V$	1/2
		/2
	$\Delta G^{\circ} = -nFE^{\circ}$ $= -2 \times 1.10 \times 96500$	1/2
	= -212300 J/mol Or -212.3 kJ/mol	1/ ₂ 1
		1
	(b) (i) Pollution free (ii) High efficiency.	1
	OR	1

36.	(a)(i) Silver wire at 30°C because as temperature decreases, resistance		1
	decreases so conduction increases. (ii) 0.1 M CH ₃ COOH, because on dilution degree of ionization increases		1
	hence conduction increases. (iii) KCl solution at 50°C, because at high temperature mobility of ions increases and hence conductance increases		1
	(b)		
	Electrochemical	Electrolytic	
	(1) Anode -ve Cathode +ve	Anode +ve Cathode -ve	1
	(2) Convert chemical energy to electrical energy	Convert electrical energy to chemical energy	1
		(or any other correct differences)	
37.	(a) (i) Cu ⁺¹ (3d ¹⁰) compounds are white because of absence of unpaired electrons while Cu ⁺² (3d ⁹) compounds are coloured due to unpaired e ⁻ / shows d-d transition.		1
	(ii) Chromate (CrO ₄ ²⁻)changes to dichromate (Cr ₂ O ₇ ²⁻) ion in acidic medium.		1
	(iii)due to completely filled d-orbitals in their ground state or in oxidized state.		1
	(b) $Co = [Ar]4s^23d^7$, $Co^{+2} = [Ar]3d^7$ $\mu = \sqrt{n(n+2)}$		$\frac{1}{2} + \frac{1}{2}$
	$= \sqrt{3(3+2)} = \sqrt{15} = 3.92 B.M.$	OR	1/2
37.	(a)	OK	
	Lanthanoids	Actinoids	
	(1) most of them are not radioactive	All are radioactive	1x3
	(2) don't show a wide range of	Show a wide range of oxidation	
	oxidation state	states	
	(3) Most of their ions are colourless	Most of their ions are coloured	
		(or any other correct differences)	
	(b) (i) Sc ⁺³ is diamagnetic because of (ii) Cr has high M.P. & B.P. bed bonding than Cu.	absence of unpaired electron. cause of presence of strong intermetallic	1 1