Project RL

Energy storage optimization

Final Presentation

Emile Dhifallah, Wenhua Hu, Felix Nastar

Content for today

Data

Problem & environment setup

Method

Experimental results

Visualization on test

Perspectives

Data

26k hourly price samples

Seasonality

Slight fluctuations

Big Outliers (1%) > 150

Problem & environment setup

Actions: Discrete action space, ranging from -1 (sell) to +1 (3-5)

State: 1) electricity price (3-5 bins)

- 2) hour of the day (3-24)
- 3) battery level (6-11)

One episode of the whole trajectory, no termination for different days

Reward: positive reward for selling electricity, Negative reward for buying

Methods

Tabular methods: Random & Q Learning

Discrete action space: [-1,0,1] or [-1, -0.5, 0, 0.5, 1]

State discretized for Battery Levels, Electricity Price and Hours

- Battery Levels (0-50 kwh): 6 or 11 bins
 - E.g. [0,10) [10,20) [20,30) [30,40) [40,50) [50, +inf)
- Electricity Price (0-2500 €): 3 or 5 bins

Use quartiles

E.g. [0.01, 29.9, 43, 65, 150] => [0.01, 29.9), [29.9, 43), [43, 65), [65, 150), [150, +inf)

Hours (24 hs): 3 or 24 bins

Methods

Reward shaping

Penalty to reward for illegal/unfavourable actions

Experimental Result

Model	Discount	Shaping	Penalty	Battery	Price	Hours	Actions	Reward
Qlearning	0.95	Yes	No	6	3	3	3	-659.31*
Discount	0.5	Yes	No	6	3	3	3	-586.17
	0.1	Yes	No	6	3	3	3	-607.84
	0.0	Yes	No	6	3	3	3	-1534.80
Shaping	0.95	No	No	6	3	3	-3	-876.49
Penalty	0.95	Yes	Yes	6	3	3	3	-688.34
Battery	0.95	Yes	No	11	3	3	-3	-578.41
Price	0.95	Yes	No	6	5	3	-3	-566.298
Hours	0.95	Yes	No	6	3	24	-3	-1253.62
Actions	0.95	Yes	No	6	3	3	5	-1018.91
Misc.	0.5	Yes	No	6	5	24	5	-485.10
	0.5	No	No	6	3	3	3	-923.74
	0.0	No	Yes	6	3	3	3	-837.86
Q-basel.	0.0	No	No	6	3	3	3	-949.46
Random	0.0	No	No	6	3	3	3	-5226.48

Table 1. Test Rewards for every combinations of experiment setting on the Q-learning agent. Discount indicates the discount rate of future reward; Shaping indicates whether reward shaping is used or not; Penalty indicates the use of reward penalties; Battery/Price/Hours/Actions indicate the number of bins used to discretize space of the respective state/action variable; Rewards gives the total reward over the test set (i.e. sum of all rewards).

Visualization on Test

```
"bin_size": {
    "battery": 6,
   "price": 5,
   "hour": 24,
    "action": 5
"properties": {
    "reward_shaping": 1,
   "penalties": 0,
    "nr_simulations": 400,
   "discount_rate": 0.5
"learning_rate": 0.10,
"adaptive epsilon": 1
```


Perspectives

Implement double DQN, policy gradient, potentially more methods

Extend research question, add extra factors

Test with different features