El *problema dual* (2) del problema (1) (*primal*):

$$maximizar \sum_{j=1}^{n} c_{j} x_{j}$$

$$sujeto a: \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \qquad (i = 1, ..., m)$$

$$x_{j} \geq 0 \qquad (j = 1, ..., n).$$

$$(1)$$

se define como el problema:

$$minimizar \sum_{i=1}^{m} b_{i} y_{i}$$

$$sujeto \ a: \sum_{i=1}^{m} a_{ij} y_{i} \ge c_{j} \qquad (j = 1, ..., n)$$

$$y_{i} \ge 0 \qquad (i = 1, ..., m).$$

$$(2)$$

Se comprueba fácilmente, a continuación, que el dual del problema dual es el problema primal.

El problema (2) es equivalente al problema

$$maximizar \sum_{i=1}^{m} (-b_i) y_i$$

$$sujeto \ a: \sum_{i=1}^{m} (-a_{ij}) y_i \leq (-c_j) \qquad (j=1,...,n)$$

$$y_i \geq 0 \qquad (i=1,...,m).$$

cuyo dual es el problema

$$minimizar \sum_{j=1}^{n} (-c_j)x_j$$

$$sujeto \ a: \sum_{j=1}^{n} (-a_{ij})x_j \ge (-b_i) \qquad (i=1,...,m)$$

$$x_j \ge 0 \qquad (j=1,...,n).$$

que es equivalente al problema (1).

Por tanto, los problemas (1) y (2) identifican un par de problemas duales en forma canónica.

Proposición (Teorema débil de dualidad):

Dadas \bar{x} e \bar{y} , soluciones factibles de (1) y (2) respectivamente, se verifica que

$$\sum_{j=1}^n c_j \bar{x}_j \le \sum_{i=1}^m b_i \bar{y}_i.$$

Como consecuencia del resultado anterior, si los dos problemas (1) y (2) son factibles; cada solución factible del problema primal (1) proporciona una cota inferior del valor óptimo de la función objetivo del problema dual (2); y cada solución factible del problema dual (2) proporciona una cota superior del valor óptimo de la función objetivo del problema primal (1).

Por tanto, si los dos problemas (1) y (2) son factibles, ambos problemas tienen solución óptima. Si uno de los dos problemas es factible pero con solución no acotada, el otro problema es infactible.

Ambos problemas (1) y (2), pueden ser infactibles. El siguiente ejemplo muestra esta situación.

max
$$2x_1 - x_2$$

s. a.: $x_1 - x_2 \le 1$
 $-x_1 + x_2 \le -2$
 $x_1 \ge 0, x_2 \ge 0$

cuyo problema dual es

min
$$y_1 - 2y_2$$

s. a.: $y_1 - y_2 \ge 2$
 $-y_1 + y_2 \ge -1$
 $y_1 \ge 0, y_2 \ge 0$

siendo ambos problemas infactibles.

Corolario:

Si \bar{x} e \bar{y} , son soluciones factibles de (1) y (2) respectivamente, tales que

$$\sum_{j=1}^{n} c_j \bar{x}_j = \sum_{i=1}^{m} b_i \bar{y}_i$$

entonces, ambas soluciones son óptimas (para los respectivos problemas).

Los diferentes casos que se pueden presentar en los pares de problemas duales, se resumen en la siguiente figura.

Problema Dual

		Infactible	Solución Óptima	Solución No Acotada
Problema	Infactible	Posible		Posible
Primal	Solución Óptima		Posible	
	Solución No Acotada	Posible		

Teorema de dualidad:

Si el problema primal (1) tiene solución óptima $(x_1^*, x_2^*, ..., x_n^*)$, entonces el problema dual (2) tiene solución óptima $(y_1^*, y_2^*, ..., y_m^*)$ tal que

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*.$$

Teorema de holgura complementaria:

Sea $(x_1^*, x_2^*, ..., x_n^*)$ una solución factible de (1) y sea $(y_1^*, y_2^*, ..., y_m^*)$ una solución factible de (2). Son condiciones necesarias y suficientes, para la optimalidad simultánea de $(x_1^*, x_2^*, ..., x_n^*)$ e $(y_1^*, y_2^*, ..., y_m^*)$, las siguientes:

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \quad o \quad x_{j}^{*} = 0 \quad para \ cada \quad j = 1, ..., n \quad y$$

$$\sum_{i=1}^{n} a_{ij} x_{j}^{*} = b_{i} \quad o \quad y_{i}^{*} = 0 \quad para \ cada \quad i = 1, ..., m.$$

Corolario:

Una solución factible $(x_1^*, x_2^*, ..., x_n^*)$ de (1) es óptima, si y sólo si, existen números $y_1^*, y_2^*, ..., y_m^*$ tales que

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \quad cuando \quad x_{j}^{*} > 0$$

$$y_{i}^{*} = 0 \quad cuando \quad \sum_{j=1}^{n} a_{ij} x_{j}^{*} < b_{i}$$

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} \ge c_{j} \qquad para \ todo \quad j = 1,...,n$$
$$y_{i}^{*} \ge 0 \qquad para \ todo \quad i = 1,...,m.$$

Se consideran los problemas, primal y dual, en forma canónica:

maximizar
$$z = \sum_{j=1}^{n} c_j x_j$$

sujeto a: $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $(i = 1, ..., m)$
 $x_j \ge 0$ $(j = 1, ..., n)$.

y

minimizar
$$w = \sum_{i=1}^{m} b_i y_i$$
 (2) sujeto a:
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \qquad (j = 1, ..., n)$$
 $y_i \ge 0 \qquad (i = 1, ..., m).$

Proposición (Teorema débil de dualidad):

Dadas \bar{x} e \bar{y} , soluciones factibles de (1) y (2) respectivamente, se verifica que

$$\sum_{j=1}^{n} c_j \bar{x}_j \le \sum_{i=1}^{m} b_i \bar{y}_i . \tag{3}$$

Demostración:

De la factibilidad de \bar{x} e \bar{y} , se obtiene

$$\sum_{j=1}^{n} c_{j} \, \bar{x}_{j} \, \leq \, \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \, \bar{y}_{i} \right) \bar{x}_{j} \, = \, \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \, \overline{x}_{j} \right) \bar{y}_{i} \, \leq \, \sum_{i=1}^{m} b_{i} \, \bar{y}_{i} \, .$$

Corolario:

Si \bar{x} e \bar{y} , son soluciones factibles de (1) y (2) respectivamente, tales que

$$\sum_{j=1}^{n} c_j \bar{x}_j = \sum_{i=1}^{m} b_i \bar{y}_i$$

entonces, ambas soluciones son óptimas (para los respectivos problemas).

Ш

Demostración:

Por la proposición anterior, toda solución factible primal x, satisface

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} \bar{y}_{i} = \sum_{j=1}^{n} c_{j} \bar{x}_{j}$$

y, toda solución factible dual y, satisface

$$\sum_{i=1}^{m} b_i y_i \geq \sum_{j=1}^{n} c_j \bar{x}_j = \sum_{i=1}^{m} b_i \bar{y}_i.$$

Teorema de dualidad:

Si el problema primal (1) tiene solución óptima $(x_1^*, x_2^*, ..., x_n^*)$, entonces el problema dual (2) tiene solución óptima $(y_1^*, y_2^*, ..., y_m^*)$ tal que

$$\sum_{j=1}^{n} c_j \, x_j^* = \sum_{i=1}^{m} b_i \, y_i^* \,. \tag{4}$$

Demostración:

Por el corolario anterior, se necesita únicamente encontrar una solución factible del problema dual y^* satisfaciendo (4). Para encontrar dicha solución, se resuelve el problema primal (1) mediante el algoritmo del Simplex, después de introducir las variables de holgura

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j$$
 $(i = 1, ..., m)$

obteniéndose la solución óptima de (1) en la tabla final. En la última fila de dicha tabla, se presentan los costes reducidos \bar{c}_j , $j=1,\ldots,n+m$, respecto de la base asociada a la solución óptima del problema (1). Por tanto, la función objetivo del problema (1) se puede expresar en la forma

$$z = \sum_{j=1}^{n} c_j x_j^* + \sum_{j=1}^{n+m} \bar{c}_j x_j$$
 (5)

En (5), todo \bar{c}_j , es un número no positivo ($\bar{c}_j = 0$, si x_j es una variable básica). Se define

$$y_i^* = -\bar{c}_{n+i}$$
 $(i = 1, ..., m)$ (6)

La demostración del teorema consiste en comprobar que $(y_1^*, y_2^*, ..., y_m^*)$ es una solución factible del problema (2) verificando (4).

Puesto que

$$\bar{c}_{n+i} \leq 0 \qquad (i=1,\ldots,m)$$

se tiene

$$y_i^* \ge 0$$
 $(i = 1, ..., m).$ (7)

Denotando por *B* la base asociada a la solución óptima del problema (1), presentada en la última tabla del algoritmo del Símplex, denotándose

$$(y^*)^t = (y_1^*, y_2^*, ..., y_m^*)$$

y, el vector de costes reducidos de las variables de holgura, respecto de la base B,

$$\bar{c}_H^t = (\bar{c}_{n+1}, \bar{c}_{n+2}, ..., \bar{c}_{n+m})$$

se debe observar que, por ser nulos los coeficientes de las variables de holgura en la función objetivo del problema (1) en forma estándar, y las columnas asociadas a las variables de holgura en la matriz de coeficientes de problema (1) en forma estándar, los vectores unitarios, se tiene

$$\bar{c}_H^t = -c_B^t B^{-1}$$

y, por tanto,

$$(y^*)^t = c_B^t B^{-1} (8)$$

Por la optimalidad de la solución asociada a la base B, se verifica

$$\bar{c}_i \leq 0 \qquad (j=1,\ldots,n)$$

es decir,

$$c_j - c_B^t B^{-1} a_j \le 0$$
 $(j = 1, ..., n).$

Por ser

$$c_B^t B^{-1} a_j = \sum_{i=1}^m a_{ij} y_i^*$$
 $(j = 1, ..., n)$

se obtiene

$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j \qquad (j = 1, ..., n)$$
 (9)

La verificación de (7) y (9) significa que $(y^*)^t = (y_1^*, y_2^*, ..., y_m^*)$ es una solución factible del problema dual (2). Por último:

$$\sum_{i=1}^{n} c_{i} x_{j}^{*} = c_{B}^{t} B^{-1} b = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

verificándose (4), lo que completa la demostración.

Teorema de holgura complementaria:

Sea $(x_1^*, x_2^*, ..., x_n^*)$ una solución factible de (1) y sea $(y_1^*, y_2^*, ..., y_m^*)$ una solución factible de (2). Son condiciones necesarias y suficientes, para la optimalidad simultánea de $(x_1^*, x_2^*, ..., x_n^*)$ e $(y_1^*, y_2^*, ..., y_m^*)$, las siguientes:

$$\sum_{i=1}^{m} a_{ij} y_i^* = c_j \quad \text{o} \quad x_j^* = 0 \quad para \ to do \ j = 1, ..., n$$
 (10)

y

$$\sum_{i=1}^{n} a_{ij} x_{j}^{*} = b_{i} \quad \text{o} \quad y_{i}^{*} = 0 \quad para \ todo \ i = 1, ..., n.$$
 (11)

Demostración:

Puesto que $(x_1^*, x_2^*, ..., x_n^*)$ es una solución factible primal e $(y_1^*, y_2^*, ..., y_m^*)$ es una solución factible dual, se tiene

$$c_j x_j^* \le \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^* \qquad (j = 1, ..., n)$$
 (12)

$$\left(\sum_{j=1}^{n} a_{ij} x_{j}^{*}\right) y_{i}^{*} \leq b_{i} y_{i}^{*} \qquad (i = 1, ..., m)$$
 (13)

y se verifica

$$\sum_{j=1}^{n} c_j x_j^* \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^* \right) x_j^* = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j^* \right) y_i^* \le \sum_{i=1}^{m} b_i y_i^*. \tag{14}$$

Las desigualdades en (14), se verifican con igualdad, si y sólo si, las desigualdades en (12) y (13) se verifican todas con igualdad.

Para que se verifique la igualdad

$$c_j x_j^* = \left(\sum_{i=1}^m a_{ij} y_i^*\right) x_j^*$$

debe ser $x_j^* = 0$, o en otro caso, se debe verificar: $c_j = \left(\sum_{i=1}^m a_{ij} y_i^*\right)$.

Por tanto, las igualdades se verifican en (12), si y sólo si, se cumple la condición (10). Análogamente, las igualdades se verifican en (13), si y sólo si, se cumple la condición (11).

Resumiendo, las condiciones (10) y (11) son necesarias y suficientes para que se verifique

$$\sum_{i=1}^{n} c_{i} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*} . \tag{4}$$

El teorema de dualidad demuestra que (4) es condición necesaria y suficiente para la optimalidad simultánea de $(x_1^*, x_2^*, ..., x_n^*)$ e $(y_1^*, y_2^*, ..., y_m^*)$, por tanto se completa la demostración.

Corolario:

Una solución factible $(x_1^*, x_2^*, ..., x_n^*)$ de (1) es óptima, si y sólo si, existen números $y_1^*, y_2^*, ..., y_m^*$ tales que

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \quad cuando \quad x_{j}^{*} > 0$$

$$y_{i}^{*} = 0 \quad cuando \quad \sum_{j=1}^{n} a_{ij} x_{j}^{*} < b_{i}$$
(15)

y

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} \geq c_{j} \qquad para \ todo \quad j = 1,...,n$$

$$y_{i}^{*} \geq 0 \qquad para \ todo \quad i = 1,...,m.$$

$$(16)$$

Demostración:

Si $(x_1^*, x_2^*, ..., x_n^*)$ es solución óptima de (1), entonces, por el teorema de dualidad, existe una solución óptima $(y_1^*, y_2^*, ..., y_m^*)$ de (2). Esta solución, por ser factible verifica (16). Por el teorema de holgura complementaria, las dos soluciones verifican las condiciones de holgura complementaria (15).

Recíprocamente, si $(y_1^*, y_2^*, ..., y_m^*)$ verifica (16), entonces es una solución factible de (2). Si verifica también (15), entonces, por el teorema de holgura complementaria, $(x_1^*, x_2^*, ..., x_n^*)$ es una solución óptima de (1) e $(y_1^*, y_2^*, ..., y_m^*)$ es una solución óptima de (2).

Los dos problemas siguientes forman un par de problemas duales.

min
$$c^t x$$
 max $y^t b$
s.a.: $Ax \ge b$ s.a.: $y^t A \le c^t$
 $x \ge 0$ $y \ge 0$

Se puede determinar el problema dual de cualquier problema de Programación Lineal transformando el problema en una de las formulaciones anteriores. Así, si consideramos el problema de minimización en forma estándar

$$\min c^t x$$
s.a.: $Ax = b$

$$x \ge 0$$

se puede formular como un problema de minimización en forma canónica de la siguiente forma

min
$$c^t x$$
 min $c^t x$ s.a.:
$$Ax \ge b \qquad \qquad {A \choose -A} x \ge {b \choose -b}$$

$$-Ax \ge -b \qquad \qquad x \ge 0$$

El dual de este problema es el siguiente problema de maximización en forma canónica:

max
$$u^t b - v^t b$$
 max $(u - v)^t b$ s.a.:
$$(u^t, v^t) {A \choose -A} \le c^t \qquad (u - v)^t A \le c^t$$

$$u \ge 0, v \ge 0 \qquad u \ge 0, v \ge 0$$

Denotando $\lambda := u - v$, se obtienen los problemas duales

min
$$c^t x$$
 max $\lambda^t b$
s.a.: $Ax = b$ s.a.: $\lambda^t A \le c^t$
 $x \ge 0$

A las restricciones de igualdad del primer problema, corresponden variables de decisión sin restringir en el segundo.

Se considera el problema

$$\max c^t x$$

s.a.: $Ax \le b$

Se puede formular como un problema de maximización en forma canónica de la siguiente forma:

max
$$c^t x^+ - c^t x^-$$

s.a.: $A(x^+ - x^-) \le b$
 $x^+ \ge 0, x^- \ge 0$

Equivalentemente

max
$$c^t x^+ - c^t x^-$$
s.a.:
$$(A, -A) {x^+ \choose x^-} \le b$$

$$x^+ \ge 0, \ x^- \ge 0$$

El dual de este problema es el siguiente problema de minimización en forma canónica:

Equivalentemente

s.a.:
$$\min \quad b^t \lambda$$
$$\lambda^t A = c^t$$
$$\lambda \ge 0$$

Se obtienen los problemas duales

$$\max c^{t} x \qquad \min b^{t} \lambda$$

s.a.: $Ax \le b$
s.a.: $\lambda^{t} A = c^{t}$
 $\lambda \ge 0$

A las variables de decisión sin restringir del primer problema, corresponden restricciones de igualdad en el segundo.

Cada uno de los dos problemas siguientes es dual respecto del otro.

$$maximizar \quad z = \sum_{j=1}^{n} c_{j} x_{j}$$

$$sujeto \ a: \quad \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \qquad i \in E \subset \{1, ..., m\}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \qquad i \in F = \{1, ..., m\}/E$$

$$x_{j} \geq 0 \qquad j \in G \subseteq \{1, ..., n\}$$

$$(1)$$

$$minimizar \quad w = \sum_{i=1}^{m} b_i y_i$$

$$sujeto \ a: \quad \sum_{i=1}^{m} a_{ij} y_i \ge c_j \qquad j \in G$$

$$\sum_{i=1}^{m} a_{ij} y_i = c_j \qquad j \in \{1, ..., n\}/G$$

$$y_i \ge 0 \qquad i \in E \subset \{1, ..., m\}$$

$$(2)$$