SST1 Übungsstunde 2

Matteo Dietz

September 2024

Organisatorisches

- Study-Center dienstags 18:15-19:00 im ETZ E7
 Kommt in den ersten 15 Minuten des Study-Centers!
- Vorlesungsskript und Übungsskript auf der Vorlesungswebsite Username: sigsys2024, Passwort: Fourier2024

Link zu meinen Handouts ebenfalls auf der Vorlesungswebsite

Themenüberblick

Kurze Repetition:

Unterräume, Normierte Lineare Räume

• Hilberträume:

Inneres Produkt, Orthogonalität, Orthonormalsysteme, L^2 als unendlich dimensionaler normierter Raum, Gram-Schmidt

Systeme und Systemeigenschaften:

Linearität, Nullraum, Bildraum, Stetigkeit

Aufgaben für diese Woche

16, 17, **18**, **19**, 20, **21**, 22, **23**, **24**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Repetition: Lineare Unterräume

• **Definition:** Ein linearer Unterraum ist eine **nichtleere Teilmenge** (\tilde{X}) eines linearen Raumes X, wenn gilt:

(i)
$$x_1 + x_2 \in \tilde{X}$$
, für alle $x_1, x_2 \in \tilde{X}$.

(ii)
$$\alpha x \in \tilde{X}$$
, für alle $\alpha \in \mathbb{C}$ und alle $x \in \tilde{X}$.

Repetition: Funktionsräume

• Für eine nichtleere Menge S definiert man den linearen Raum X als Menge aller Funktionen von S nach \mathbb{C} , wobei die Addition und die skalare Multiplikation wie folgt definiert sind:

$$(+) \ \forall x_1, x_2 \in X + : X \times X \to X$$

 $(x_1 + x_2)(s) = x_1(s) + x_2(s) \ \forall s \in S$

(·)
$$\forall \alpha \in \mathbb{C}, x \in X \cdot : \mathbb{C} \times X \to X$$

 $(\alpha \cdot x)(s) = \alpha x(s)$

Repetition: Normierte Lineare Räume

• **Definition:** Ein normierter linearer Raum ist ein Paar $(X, ||\cdot||)$ bestehend aus einem linearen Raum X und einer Norm auf X.

Hilberträume

- Ein Hilbertraum ist ein linearer Raum. Dieser Raum ist
 - (i) ausgestattet mit einem inneren Produkt.
 - (ii) vollständig bezüglich der induzierten Norm dieses inneren Produktes.

Vollständigkeit

Cauchy-Folge

Inneres Produkt: Definition

- Die Abbildung $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ in einem linearen Raum X heisst **inneres Produkt**, wenn folgende Eigenschaften gelten:
 - (i) Additivität im 1. Argument: $\langle x+y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - (ii) Homogenität im 1. Argument: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
 - (iii) Konjugierte Symmetrie: $\langle x, y \rangle = \langle y, x \rangle^*$
 - (iv) Positive Definitheit: $\langle x, x \rangle \geq 0$ und $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Inneres Produkt: Bemerkungen

• Additiv im 2. Argument:

$$\langle x, y+z \rangle = \langle y+z, x \rangle^* = \langle y, x \rangle^* + \langle z, x \rangle^* = \langle x, y \rangle + \langle x, z \rangle$$

• komplexe Konjugation:

$$\langle x, \alpha y \rangle = \langle \alpha y, x \rangle^* = \alpha^* \langle y, x \rangle^* = \alpha^* \langle x, y \rangle$$

Inneres Produkt: Induzierte Norm

- Sei X ein linearer Raum mit innerem Produkt $\langle \cdot, \cdot \rangle$
- $||x|| := \sqrt{\langle x, x \rangle}$ ist die von diesem $\langle \cdot, \cdot \rangle$ induzierte Norm.

Orthogonalität

• Sei X ein linearer Raum mit innerem Produkt $\langle \cdot, \cdot \rangle$. $x_1, x_2 \in X$ sind **orthogonal**, falls $\langle x_1, x_2 \rangle = 0$.

• Bemerkungen:

- (i) Orthogonalität ⇒ Lineare Unabhägnigkeit
- (ii) n paarweise orthogonale Einheitsvektoren in einem linearen Raum der Dimension n bilden eine orthonormale Basis in diesem Raum.

Satz des Pythagoras

Wenn
$$\langle x,\; y
angle = 0$$
, dann $||x+y||^2 = ||x||^2 + ||y||^2$

Beweis:

Cauchy-Schwarz Ungleichung

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Intuition für
$$\mathbb{R}^2$$
: $|\langle u, v \rangle| = ||u|| \cdot ||v|| \cdot \underbrace{|\cos \angle (u, v)|}_{\in [0,1]}$

Aufgabe 16

Vollständiges Orthonormalsystem

• $\{e_l\}_{l=-\infty}^{\infty}$ in X ist ein vollständiges Orthonormalsystem für den Hilbertraum X, wenn folgende Eigenschaften erfüllt sind:

Für jedes
$$x \in X$$
 gilt $||x||^2 = \sum_{l=-\infty}^{\infty} |\langle x, e_l \rangle|^2$

L^2 als unendlich dimensionaler normierter Raum

• $L^2([0,1])$ ist der lineare Raum der auf [0,1] quadratisch integrierbaren Signale. Formal:

$$L^{2}([0,1]) = \left\{ x : [0,1] \to \mathbb{C} \left| \int_{0}^{1} |x(t)|^{2} < \infty \right. \right\}$$

- $L^2([0,1])$ ist unendlich dimensional.
- $\{e^{2\pi int}\}_{n=-\infty}^{\infty}$ ist eine **ONB** in diesem Raum

Gram-Schmidt Orthogonalisierungsverfahren

• Sei $\{w_i\}_{i=1}^n$ eine Basis von V mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

Dann existiert eine **ONB** $\{v_i\}_{i=1}^n = \{v_1, \dots, v_n\}$ mit:

$$\mathsf{Span}\{v_1,\ldots,v_j\}=\mathsf{Span}\{w_1,\ldots,w_j\}$$
 für alle $j=1,\ldots,n$.

Gram-Schmidt Orthonormalisierungsverfahren

Algorithmus

Für
$$j = 1, 2, ..., n$$
:
$$v'_j = w_j - \sum_{i=1}^{j-1} \frac{\langle v_i, w_j \rangle}{\langle v_i, v_i \rangle} v_i$$

$$v_j = \frac{v'_j}{||v'_j||}$$
 $i \to i+1$

Aufgabe 18

Systeme & Beispiele

Ein System hat folgendes Blockschaltbild:

Dabei ist $x \in X$ und $y \in Y$, wobei X und Y lineare Räume sind.

Linearität

- Ein System $H: X \to Y$ ist **linear**, wenn:
 - (i) Additivität: $H(x_1 + x_2) = Hx_1 + Hx_2$, für alle $x_1, x_2 \in X$
 - (ii) **Homogenität**: $H(\alpha x) = \alpha H x$, für alle $x \in X$ und alle $\alpha \in \mathbb{C}$
- Falls das System $(i) \lor (ii)$ nicht erfüllt, heisst H nichtlinear.

Linearität: Bemerkungen

• Wenn H ein lineares System ist, dann muss H0 = 0 immer gelten.

• Wenn dies also nicht erfüllt ist, dann muss *H* nichtlinear sein.

Aufgabe 23

Aufgabe 24

Nullraum

• Sei $H: X \rightarrow Y$ ein lineares System

Der Nullraum von H ist die Teilmenge von X definiert durch $\mathcal{N}(H) = \{x \in X : Hx = 0\}.$

 $\mathcal{N}(H)$ ist ein linearer Unterraum von X.

Bildraum

• Sei $H: X \rightarrow Y$ ein lineares System

Der Bildraum von H ist die Teilmenge von Y definiert durch $\mathcal{R}(H) = \{y = Hx : x \in X\}.$

 $\mathcal{R}(H)$ ist ein linearer Unterraum von Y.

Nullraum und Bildraum

Stetige Systeme

• Theorem: Das System H ist linear und stetig \Leftrightarrow Für jede konvergente Reihe $\sum_{i=1}^{\infty} \alpha_i x_i$ gilt:

$$H\left(\sum_{i=1}^{\infty}\alpha_{i}x_{i}\right)=\sum_{i=1}^{\infty}\alpha_{i}Hx_{i}$$

$\varepsilon - \delta$ Stetigkeit

• Seien $(X, ||\cdot||)$ und $(Y, ||\cdot||)$ normierte lineare Räume.

Das System $H: X \to Y$ ist **stetig** in $x_0 \in X$, falls es zu jedem $\varepsilon > 0$ ein nur von ε abhängiges $\delta > 0$ gibt, so dass:

$$\forall x \in X \text{ mit } ||x - x_0|| < \delta \text{ folgt, dass } ||Hx - Hx_0|| \le \varepsilon.$$