Relações e Funções

Lista

1.

a)

$$\langle 0, 0 \rangle$$
, $\langle 1, 1 \rangle$, $\langle 2, 2 \rangle$, $\langle 3, 3 \rangle$.

b)

$$\langle 1, 3 \rangle$$
, $\langle 2, 2 \rangle$, $\langle 3, 1 \rangle$, $\langle 4, 0 \rangle$.

c)

$$\langle 1, 0 \rangle$$
, $\langle 2, 0 \rangle$, $\langle 2, 1 \rangle$, $\langle 3, 0 \rangle$, $\langle 3, 1 \rangle$, $\langle 3, 2 \rangle$, $\langle 4, 0 \rangle$, $\langle 4, 1 \rangle$, $\langle 4, 2 \rangle$, $\langle 4, 3 \rangle$.

d)

$$\langle 0, 1 \rangle$$
, $\langle 0, 2 \rangle$, $\langle 0, 3 \rangle$, $\langle 0, 4 \rangle$, $\langle 1, 1 \rangle$, $\langle 2, 1 \rangle$, $\langle 2, 2 \rangle$, $\langle 3, 1 \rangle$, $\langle 3, 3 \rangle$, $\langle 4, 1 \rangle$, $\langle 4, 2 \rangle$, $\langle 4, 4 \rangle$.

2.

a)

- Reflexiva: para qualquer $x \neq 0$, $x + x \neq 0$. Logo, não é reflexiva.
- Transitiva: se x+y=0, ou seja, y=-x, e y+z=0, ou seja, y=-z, então x=z. Se $x=z\neq 0$, então $x+z\neq 0$. Logo, não é transitiva.
- Simétrica: se x + y = 0, y + x = 0. Logo, é simétrica.
- \bullet Anti-simétrica: temos, por exemplo, -1 + 1 = 0 e 1 1 = 0, mas 1 \neq -1, Logo, não é anti-simétrica.

b)

- Reflexiva: se $x < 0, |x| \neq x$. Logo, não é simétrica.
- Transitiva: se x = |y| e y = |z|, então x e y têm o mesmo módulo e são ambos positivos, portanto, x = y. Assim, x = |z|. Logo, é transitiva.
- Simétrica: temos, por exemplo, 1 = |-1|, mas $-1 \neq |1|$. Logo, não é simétrica.
- Anti-simétrica: se a = |b| e b = |a|, a e b têm o mesmo módulo e são ambos positivos, portanto, a = b. Logo, é anti-simétrica.

c)

- Reflexiva: $x^2 \ge 0$, sempre. Logo, é reflexiva.
- Transitiva: se $xy \ge 0$, x e y têm o mesmo sinal. Se $yz \ge 0$, y e z têm o mesmo sinal. Portanto, x e z têm o mesmo sinal, então $xz \ge 0$. Logo, é transitiva.
- Simétrica: se $xy \ge 0, yx \ge 0$. Logo, é simétrica.
- Anti-simétrica: se $x \neq y$ e $xy \geq 0, yx \geq 0$. Logo, não é anti-simétrica.

d)

- \bullet Reflexiva: se $x \neq 1$, não podemos ter xHx. Logo, não é simétrica.
- Transitiva: podemos ter xHy e yHz, com $y=1, x\neq 1$ e $z\neq 1$. Nesse caso, não teremos xHz. Logo, não é transitiva.
- Simétrica: se xHy, ou seja, $x=1 \lor y=1$, então também podemos escrever $y=1 \lor x=1$, ou seja, yHx. Logo, é simétrica.
- Anti-simétrica: se x=1 e $y\neq 1$, temos xHy e yHx, com $x\neq y$. Logo, não é anti-simétrica.

Lembrar que, em lógica matemática, em uma implicação $(p \Rightarrow q)$, se p (antecedente da implicação) tiver valor F, $p \Rightarrow q$ tem valor V.

Condição para ser simétrica: $\forall a, b \in A \ (aRb \Rightarrow bRa)$.

Com $R=\varnothing$, nunca teremos aRb, assim, o antecedente da implicação (aRb) é falso, portanto, a implicação $(aRb\Rightarrow bRa)$ é verdadeira. Logo, a relação é simétrica.

Condição para ser transitiva: $\forall a, b, c \in A \ (aRb \land bRc \Rightarrow aRc)$.

Com $R=\varnothing$, nunca teremos $aRb \wedge bRc$, assim, o antecedente da implicação $(aRb \wedge bRc)$ é falso, portanto, a implicação $(aRb \wedge bRc)$ é verdadeira. Logo, a relação é transitiva.

Condição para ser reflexiva: $\forall a \in A \ (aRa)$.

Se $R=\varnothing$, não temos nenhum par na relação, ou seja, não há nenhum par $\langle a,a\rangle$. Como A é não vazio, existe ao menos um $a\in A$, mas não temos aRa. Logo, a relação não é reflexiva.

4.

a)

$$R_1 \cup R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_1 \lor \langle a, b \rangle \in R_3 \}.$$

Como
$$R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$$
 e $R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a < b\}$, então:

$$R_1 \cup R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a > b \lor a < b \}.$$

Portanto, a e b podem ser quaisquer, desde que não sejam iguais. Então:

$$R_1 \cup R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \neq b \}.$$

Já temos que $R_6 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \neq b \}$. Então:

$$R_1 \cup R_3 = R_6.$$

b)

$$R_3 \cap R_5 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_3 \land \langle a, b \rangle \in R_5 \}.$$

Como $R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a < b\}$ e $R_5 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a = b\}$, então:

$$R_3 \cap R_5 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a < b \land a = b \}.$$

É impossível ter a < b e a = b ao mesmo tempo. Logo, a interseção entre R_3 e R_5 é vazia.

$$R_3 \cap R_5 = \varnothing$$
.

$\mathbf{c})$

Pela definição de diferença: $R_1 - R_2 = R_1 \cap \overline{R_2}$.

Como
$$R_2 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \ge b \}$$
, então, $\overline{R_2} = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a < b \}$.

Já temos que $R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a < b \}$, logo, $\overline{R_2} = R_3$.

$$R_1 \cap \overline{R_2} = R_1 \cap R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_1 \land \langle a, b \rangle \in R_3\}.$$

Como $R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$ e $R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a < b\}$, então:

$$R_1 \cap R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a > b \land a < b \}.$$

É impossível ter a > b e a < b ao mesmo tempo. Logo, a interseção entre R_1 e R_3 é vazia.

$$R_1 \cap R_3 = R_1 - R_2 = \varnothing.$$

d)

$$R_2 \cup R_4 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_2 \lor \langle a, b \rangle \in R_4 \}.$$

Como
$$R_2 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \geq b\}$$
 e $R_4 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \leq b\}$, então:

$$R_2 \cup R_4 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \ge b \lor a \le b \}.$$

Portanto, a e b podem ser quaisquer, todo par $\langle a, b \rangle \in \mathbb{R}^2$ satisfaz a condição.

$$R_2 \cup R_4 = \mathbb{R}^2$$
.

 $\mathbf{e})$

Pela definição de diferença, $R_6 - R_3 = R_6 \cap \overline{R_3}$.

Como
$$R_3 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a < b \}$$
, então $\overline{R_3} = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \ge b \}$.

Já temos que $R_2 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \geq b\}$, logo, $\overline{R_3} = R_2$.

$$R_6 \cap \overline{R_3} = R_6 \cap R_2 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_6 \land \langle a, b \rangle \in R_2 \}.$$

Como
$$R_6 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \neq b\}$$
 e $R_2 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \geq b\}$, então:

$$R_6 \cap R_2 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a \neq b \land a \geq b \}.$$

Portanto, para que se satisfaçam ambas as condições, a deve ser exclusivamente maior que b, excluindo-se a possibilidade de serem iguais. Então:

$$R_6 \cap R_2 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a > b \}.$$

Já temos que $R_1 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a > b \}$. Então:

$$R_6 \cap R_2 = R_6 - R_3 = R_1.$$

5.

a)

$$R_1 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_1 \land \langle b, c \rangle \in R_1 \}.$$

Como $R_1 = \{ \langle a, b \rangle \in \mathbb{R}^2 \mid a > b \}$, então:

$$R_1 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a > b \land b > c \}.$$

Se a > b e b > c, então a > c. Logo:

$$R_1 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a > c \}.$$

Já temos que $R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$, também podendo ser escrito como $\{\langle a, c \rangle \in \mathbb{R}^2 \mid a > c\}$. Então:

$$R_1 \circ R_1 = R_1.$$

b)

$$R_1 \circ R_6 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_6 \land \langle b, c \rangle \in R_1 \}.$$

Como $R_6 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \neq b\}$ e $R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$, então:

$$R_1 \circ R_6 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a \neq b \land b > c \}.$$

Essas condições não impõem nenhuma restrição para a relação entre a e c, logo, o par $\langle a,c\rangle$ pode ser qualquer em \mathbb{R}^2 . Então:

$$R_1 \circ R_6 = \mathbb{R}^2$$
.

c)

$$R_2 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_1 \land \langle b, c \rangle \in R_2 \}.$$

Como $R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$ e $R_2 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a \geq b\}$, então:

$$R_2 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a > b \land b \ge c \}.$$

Se a > b e $b \ge c$, então a > c. Logo:

$$R_2 \circ R_1 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a > c \}.$$

Já temos que $R_1 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a > b\}$, também podendo ser escrito como $\{\langle a, c \rangle \in \mathbb{R}^2 \mid a > c\}$. Então:

$$R_2 \circ R_1 = R_1.$$

d)

$$R_5 \circ R_3 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid \langle a, b \rangle \in R_3 \land \langle b, c \rangle \in R_5 \}.$$

Como $R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a < b\}$ e $R_5 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a = b\}$, então:

$$R_5 \circ R_3 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a < b \wedge b = c \}.$$

Se a < b e b = c, então a < c. Logo:

$$R_5 \circ R_3 = \{ \langle a, c \rangle \in \mathbb{R}^2 \mid a < c \}.$$

Já temos que $R_3 = \{\langle a, b \rangle \in \mathbb{R}^2 \mid a < b\}$ também podendo ser escrito como $\{\langle a, c \rangle \in \mathbb{R}^2 \mid a < c\}$. Então:

$$R_5 \circ R_3 = R_3.$$

- $R_1 = \emptyset$
- $\bullet \ R_2 = \{\langle 0, 0 \rangle\}$
- $R_3 = \{\langle 0, 1 \rangle\}$
- $\bullet \ R_4 = \{\langle 1, 0 \rangle\}$
- $R_5 = \{\langle 1, 1 \rangle\}$
- $R_6 = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle\}$
- $R_7 = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle\}$
- $R_8 = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle\}$
- $R_9 = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle\}$
- $R_{10} = \{\langle 0, 1 \rangle, \langle 1, 1 \rangle\}$
- $R_{11} = \{\langle 1, 0 \rangle, \langle 1, 1 \rangle\}$
- $R_{12} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle\}$
- $R_{13} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 1 \rangle\}$
- $R_{14} = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\}$
- $R_{15} = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\}$
- $R_{16} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\}$

7.

Se R é simétrica, então $\forall a,b \in A \ (aRb \Rightarrow bRa)$. Logo, sempre teremos em R pares $\langle a,b \rangle$ e $\langle b,a \rangle$.

Temos que $R^{-1} = \{\langle b, a \rangle \mid \langle a, b \rangle \in R\}$. Ou seja, se aRb, então $bR^{-1}a$. Mas, como R é simétrica, se aRb, também temos bRa, logo, $aR^{-1}b$.

Dessa forma, $\forall \langle x,y\rangle\in R\ (\langle x,y\rangle\in R^{-1}),$ ou seja, todos os elementos de R também estão em R^{-1} . Portanto, $R=R^{-1}$.

As respostas serão baseadas nas seguintes condições:

- Condição para ser função: $\forall a \in A \ \forall b_1, b_2 \in B \ (aRb_1 \land aRb_2 \Rightarrow b_1 = b_2)$
- Condição para ser injetora: $\forall b \in B \ \forall a_1, a_2 \in A \ (a_1Rb \land a_2Rb \Rightarrow a_1 = a_2)$
- Condição para ser sobrejetora: $\forall b \in B \ \exists a \in A \ (aRb)$
- Condição para ser total: $\forall a \in A \ \exists b \in B \ (aRb)$
- Condição para ser bijetora: função total injetora e sobrejetora

Lembrar que, em lógica matemática, em uma implicação $(p \Rightarrow q)$, se p (antecedente da implicação) tiver valor F, $p \Rightarrow q$ tem valor V.

a)

- Função: com $R = \emptyset$, nunca teremos $aRb_1 \wedge aRb_2$, então, o antecendente da implicação $(aRb_1 \wedge aRb_2)$ é falso, portanto, a implicação $(aRb_1 \wedge aRb_2 \Rightarrow b_1 = b_2)$ é verdadeira. Logo, a relação é uma função.
- Injetora: com $R = \emptyset$, nunca teremos $a_1Rb \wedge a_2Rb$, então, o antecedente da implicação $(a_1Rb \wedge a_2Rb)$ é falso, portanto, a implicação $(a_1Rb \wedge a_2Rb) \Rightarrow a_1 = a_2$) é verdadeira. Logo, a relação é injetora.
- \bullet Sobrejetora: com $R=\varnothing$, nunca teremos aRb. Logo, não é sobrejetora.
- \bullet Total: com $R=\varnothing,$ nunca teremos aRb.Logo, não é total.
- Bijetora: não é total e sobrejetora. Logo, não é bijetora.

b)

- \bullet Função: temos 0R1e0R2,mas $1\neq 2.$ Logo, não é função.
- \bullet Injetora: temos 0R2e 1
 1R2,mas $0\neq 1.$ Logo, não é injetora.
- Sobrejetora: não existe $c \in C$ tal que cR0. Logo, não é sobrejetora.
- Total: não existe $c \in C$ tal que 2Rc. Logo, não é total.
- Bijetora: não é função total injetora e sobrejetora. Logo, não é bijetora.

$\mathbf{c})$

- Função: nenhum elemento de C está relacionado com mais de um elemento de B. Logo, é função.
- Injetora: nenhum elemento de B está relacionado com mais de um elemento de C. Logo, é injetora.
- ullet Sobrejetora: todos os elementos de B estão relacionados com algum de C. Logo, é sobrejetora.
- Total: não existe $x \in B$ tal que 2Rx. Logo, não é total.
- Bijetora: não é total. Logo, não é bijetora.

d)

- Função: nenhum elemento de A está relacionado com mais de um elemento de B. Logo, é função.
- ullet Injetora: nenhum elemento de B está relacionado com mais de um elemento de A. Logo, é injetora.
- Sobrejetora: não existe $x \in A$ tal que xRb. Logo, não é sobrejetora.
- ullet Total: todos os elementos de A estão relacionados com algum de B. Logo, é total.
- Bijetora: não é sobrejetora. Logo, não é bijetora.

$\mathbf{e})$

- Função: temos aRa e aRb, mas $a \neq b$. Logo, não é função.
- \bullet Injetora: nenhum elemento de B está relacionado com mais de um elemento de A. Logo, é injetora.
- ullet Sobrejetora: todos os elementos de B estão relacionados com algum de A. Logo, é sobrejetora.
- Total: todos os elementos de A estão relacionados com algum de B. Logo, é total.
- Bijetora: não é função. Logo, não é bijetora.

f)

- Função: nenhum $x \in \mathbb{Z}$ tem mais de um quadrado. Logo, é função.
- Injetora: temos, por exemplo, $2^2 = 4$ e $(-2)^2 = 4$, mas $2 \neq -2$. Logo, não é injetora.
- \bullet Sobrejetora: não existe, por exemplo, $x\in\mathbb{Z}$ tal que $x^2=3$. Logo, não é sobrejetora.
- Total: todo $x \in \mathbb{Z}$ tem um quadrado. Logo, é total.
- Bijetora: não é injetora e sobrejetora. Logo, não é bijetora.

\mathbf{g}

- \bullet Função: todo par $\langle a,b\rangle\in\mathbb{N}^2$ tem uma única soma. Logo, é função.
- Injetora: temos, por exemplo, 1+3=4 e 2+2=4, mas $\langle 1,3\rangle \neq \langle 2,2\rangle$. Logo, não é injetora.
- Sobrejetora: para cada $n \in \mathbb{N}$, é possível ao menos uma soma (n+0), por exemplo) cujo resultado seja n. Logo, é sobrejetora.
- \bullet Total: todo par $\langle a,b\rangle\in\mathbb{N}^2$ tem uma soma. Logo, é total.
- Bijetora: não é injetora. Logo, não é bijetora.

h)

- Função: todo par $\langle x,y\rangle\in\mathbb{R}^2$ tem um único quociente. Logo, é função.
- Injetora: temos, por exemplo, $2 \div 1 = 2$ e $4 \div 2 = 2$, mas $\langle 2, 1 \rangle \neq \langle 4, 2 \rangle$. Logo, não é injetora.
- Sobrejetora: para cada $z \in \mathbb{Z}$, é possível ao menos uma divisão ($z \div 1$, por exemplo) cujo resultado seja z. Logo, é sobrejetora.
- \bullet Total: os pares do tipo $\langle n,0\rangle$ não têm quociente. Logo, não é total.
- Bijetora: não é injetora e total. Logo, não é bijetora.

Representação das relações em diagramas de Venn:

A relação $\{\langle 0,a\rangle,\langle 1,b\rangle\}:C\to B$ foi representada como R. A relação $\varnothing:A\to C$ não foi representada, pois não possui pares.

Analisar o diagrama de Venn nos ajuda a encontrar as possíveis composições entre as relações.

Analisando a partir de $\varnothing:A\to C$. Como ela vai para C, precisa ser composta com uma relação que sai de C, no caso, $R:C\to B$.

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in \varnothing \land \langle b,c\rangle \in R\}$. Mas não existe $\langle a,b\rangle \in \varnothing$, logo, não existem pares $\langle a,c\rangle$ que satisfaçam a condição. Portanto, a composição é uma relação vazia definida de A para B, pois \varnothing sai de A e R vai para B.

A composição, então, é: $R \circ \emptyset : A \to B = \emptyset$.

Como $R \circ \emptyset$ vai para B, pode ainda ser composta com uma relação que sai de B, $=: B \to A$.

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in R \circ \varnothing \land \langle b,c\rangle \in =\}$. Mas não existe $\langle a,b\rangle \in R \circ \varnothing$, logo, não existem pares $\langle a,c\rangle$ que satisfaçam a condição. Portanto, a composição é uma relação vazia definida de A para A, pois $R \circ \varnothing$ sai de A e = vai para A.

A composição, então, é: $= \circ R \circ \varnothing : A \to A = \varnothing$.

Analisando a partir de $R: C \to B$. Como ela vai para B, precisa ser composta com uma relação que sai de B, no caso, $=: B \to A$.

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in R \land \langle b,c\rangle \in =\}$. Podemos ver pelo diagrama de Venn que o único par que satisfaz essa condição é $\langle 0,a\rangle$. Portanto, a composição é uma relação igual a $\{\langle 0,a\rangle\}$ definida de C para A, pois R sai de C e = vai para A.

A composição, então, é: $= \circ R : C \to A = \{\langle 0, a \rangle\}.$

Como = $\circ R$ vai para A, pode ainda ser composta com uma relação que sai de $A, \varnothing : A \to C$.

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in = \circ R \land \langle b,c\rangle \in \varnothing\}$. Mas não existe $\langle b,c\rangle \in \varnothing$, logo, não existem pares $\langle a,c\rangle$ que satisfaçam a condição. Portanto, a composição é uma relação vazia definida de C para C, pois $= \circ R$ sai de C e \varnothing vai para C.

A composição, então, é $\emptyset \circ = \circ R : C \to C = \emptyset$.

Analisando a partir de $=: B \to A$. Como ela vai para A, precisa ser composta com uma relação que sai de A, no caso, $\varnothing : A \to C$.

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in = \land \langle b,c\rangle \in \varnothing\}$. Mas não existe $\langle b,c\rangle \in \varnothing$, logo, não existem pares $\langle a,c\rangle$ que satisfaçam a condição. Portanto, a composição é uma relação vazia definida de B para C, pois = sai de B e \varnothing vai para C.

A composição, então, é: $\varnothing \circ =: B \to C = \varnothing$.

Como $\varnothing \circ =$ vai para C, pode ainda ser composta com uma relação que sai de $C,\,R:C\to B.$

Os pares da relação composta são dados por $\{\langle a,c\rangle \mid \langle a,b\rangle \in \varnothing \circ = \land \langle b,c\rangle \in R\}$. Mas não existe $\langle b,c\rangle \in \varnothing \circ =$, logo, não existem pares $\langle a,c\rangle$ que satisfaçam a condição. Portanto, a composição é uma relação vazia definida de B para B, pois $\varnothing \circ =$ sai de B e R vai para B.

A composição, então, é: $R \circ \emptyset \circ =: B \to B = \emptyset$.

10.

 \mathbf{a}

Condição para ser função: $\forall a \in A \ \forall b_1, b_2 \in B \ (aRb_1 \land aRb_2 \Rightarrow b_1 = b_2).$

Em uma relação vazia, nunca existirão aRb_1 ou aRb_2 , assim, o antecedente da implicação é falso, portanto, a implicação é verdadeira. Logo, o conjunto vazio é sempre função parcial.

b)

Condição para ser total: $\forall a \in A \ \exists b \in B \ (aRb)$.

Se A for um conjunto não vazio, tem ao menos um a, mas, como a relação é vazia, nunca haverá $b \in B$ tal que aRb. Logo, o conjunto vazio só é função total quando A for conjunto vazio.

11.

As respostas serão baseadas nas mesmas condições da questão 8.

a)

- Função total: nenhum elemento de A está relacionado com mais de um elemento de B. Logo, é função. E todos os elementos de A estão relacionados com algum de B. Logo, é total.
- ullet Injetora: nenhum elemento de B está relacionado com mais de um elemento de A. Logo, é injetora.
- Sobrejetora: não existe $x \in A$ tal que xRb. Logo, não é sobrejetora.
- Bijetora: não é sobrejetora. Logo, não é bijetora.

b)

- Função total: não existe $x \in B$ tal que $xRy \wedge xRz \wedge y \neq z$. Logo, é função. E para todo $x \in B$, temos $y \in B$ tal que xRy. Logo, é total.
- Injetora: não existe $x \in B$ tal que $yRx \wedge zRx \wedge y \neq z$. Logo, é injetora.
- Sobrejetora: para todo $x \in B$, temos $y \in B$ tal que yRx. Logo, é sobrejetora.
- Bijetora: é função total injetora e sobrejetora. Logo, é bijetora.

$\mathbf{c})$

- Função total: com $R = \emptyset$, nunca teremos $aRb_1 \wedge aRb_2$, então, o antecendente da implicação é falso, portanto, a implicação é verdadeira. Logo, é função. E com $R = \emptyset$, nunca teremos aRb. Logo, não é total.
- Injetora: com $R = \emptyset$, nunca teremos $a_1Rb \wedge a_2Rb$, então, o antecedente da implicação é falso, portanto, a implicação é verdadeira. Logo, é injetora.
- Sobrejetora: com $R = \emptyset$, nunca teremos aRb. Logo, não é sobrejetora.
- Bijetora: não é total e sobrejetora. Logo, não é bijetora.

d)

- Função total: com $R = \emptyset$, nunca teremos $aRb_1 \wedge aRb_2$, então, o antecendente da implicação é falso, portanto, a implicação é verdadeira. Logo, é função. E não existem elementos no conjunto vazio, então, mesmo não havendo nenhum aRb, ainda segue a condição. Logo, é total.
- Injetora: com $R = \emptyset$, nunca teremos $a_1Rb \wedge a_2Rb$, então, o antecedente da implicação é falso, portanto, a implicação é verdadeira. Logo, é injetora.
- Sobrejetora: não existem elementos no conjunto vazio, então, mesmo não havendo nenhum aRb, ainda segue a condição. Logo, é sobrejetora.
- Bijetora: é função total injetora e sobrejetora. Logo, é bijetora.

e)

- Função total: temos aRa e aRb, mas $a \neq b$. Logo, não é função. E todos os elementos de A estão relacionados com algum de B. Logo, é total.
- ullet Injetora: nenhum elemento de B está relacionado com mais de um elemento de A. Logo, é injetora.
- ullet Sobrejetora: todos os elementos de B estão relacionados com algum de A. Logo, é sobrejetora.
- Bijetora: não é função. Logo, não é bijetora.

12.

a)

$$sucessor: \mathbb{N} \to \mathbb{N} = \left\{ \langle x, y \rangle \in \mathbb{N}^2 \mid y = x + 1 \right\}$$

É injetora, pois para cada y só existe um x tal que y=x+1, mas não é sobrejetora porque não existe $x\in\mathbb{N}$ tal que 0=x+1.

b)

$$R: \mathbb{N} \to \mathbb{N} = \left\{ \langle x, y \rangle \in \mathbb{N}^2 \mid y = x - 1 \text{ se } x \neq 0; y = 0 \text{ se } x = 0 \right\}$$

É sobrejetora, pois todo $n \in \mathbb{N}$ é antecessor de algum natural, mas não é injetora, pois temos $\langle 0,0 \rangle$ e $\langle 1,0 \rangle$.

 $\mathbf{c})$

$$troca: \mathbb{N} \to \mathbb{N} = \{\langle x, y \rangle \in \mathbb{N}^2 \mid y = x + 1 \text{ se } x \text{ \'e par}; y = x - 1 \text{ se } x \text{ \'e impar} \}$$

É injetora, pois cada y se relaciona com apenas um x, e é sobrejetora, pois y pode assumir todos os valores de $n \in \mathbb{N}$.

d)

$$dez: \mathbb{N} \to \mathbb{N} = \left\{ \langle x, y \rangle \in \mathbb{N}^2 \mid y = 10 \right\}$$

Não é injetora, pois y=10 está relacionado com mais de um valor de x, e não é sobrejetora, pois y assume apenas um valor de $n \in \mathbb{N}$.

13.

a)

Se $f \circ g$ for injetora, teremos $f \circ g(a_1) = f \circ g(a_2) \Rightarrow a_1 = a_2$.

Supondo, então, que temos $f \circ g(a_1) = f \circ g(a_2)$, ou, pela definição de composição, $f(g(a_1)) = f(g(a_2))$. Se temos essa igualdade, como f é injetora, concluímos que $g(a_1) = g(a_2)$. Mas g também é injetora, logo, concluímos que $a_1 = a_2$.

Temos, então, $f \circ g(a_1) = f \circ g(a_2) \Rightarrow a_1 = a_2$. Logo, $f \circ g$ é injetora.

b)

Se $f \circ g$ for sobrejetora, teremos $\forall c \in C \ \exists a \in A \ (fog(a) = c)$.

Seja $c \in C$. Sendo f sobrejetora, $\exists b \in B$ tal f(b) = c. Sendo g sobrejetora, $\exists a \in A$ tal que g(a) = b. Pela definição de composição, havendo g(a) = b e f(b) = c, temos $f \circ g(a) = f(g(a)) = f(b) = c$.

Logo, sempre existe $a \in A$ tal que $f \circ g(a) = c$. Portanto, $f \circ g$ é sobrejetora.

14.

$$f(S) = \{b \mid f(s) = b, s \in S\}$$

a)

Para mostrar que $f(S \cup T) = f(S) \cup f(T)$, devemos mostrar separadamente que $f(S \cup T) \subseteq f(S) \cup f(T)$ e $f(S) \cup f(T) \subseteq f(S \cup T)$.

(1)
$$f(S \cup T) \subseteq f(S) \cup f(T)$$

Seja $x \in f(S \cup T)$, ou seja, x = f(y), onde $y \in (S \cup T)$. Como $y \in (S \cup T)$, temos, pela definição de união, que $y \in S \lor y \in T$. Ou seja, $f(y) \in f(S) \lor f(y) \in f(T)$.

Como x = f(y), então, $x \in f(S) \lor x \in f(T)$. Logo, pela definição de união, $x \in f(S) \cup f(T)$.

Temos, assim, $x \in f(S \cup T) \Rightarrow x \in f(S) \cup f(T)$, ou seja, $f(S \cup T) \subseteq f(S) \cup f(T)$.

(2) $f(S) \cup f(T) \subseteq f(S \cup T)$

Seja $x \in f(S) \cup f(T)$. Ou, pela definição de união, $x \in f(S) \lor x \in f(T)$.

Caso $x \in f(S)$, temos que existe $s \in S$ tal que f(s) = x.

Se $s \in S$, temos, por adição lógica (se p = V, $p \lor q = V$), $s \in S \lor s \in T$, ou, por definição de união, $s \in (S \cup T)$.

Portanto, como x = f(s) e $s \in (S \cup T)$, temos que $x \in f(S \cup T)$.

Caso $x \in f(T)$, teremos, por demonstração análoga à de $x \in f(S)$, que $x \in f(S \cup T)$.

Temos, assim, $x \in f(S) \cup f(T) \Rightarrow x \in f(S \cup T)$, ou seja, $f(S) \cup f(T) \subseteq f(S \cup T)$.

b)

Supondo $x \in f(S \cap T)$, ou seja, $\exists y \in (S \cap T)$ tal que f(y) = x.

Como $y \in (S \cap T)$, temos que $y \in S \land y \in T$. Então, $f(y) \in f(S) \land f(y) \in f(T)$. Como f(y) = x, temos $x \in f(S) \land x \in f(T)$, ou, pela definição de interseção, $x \in f(S) \cap f(T)$.

Temos, assim, $x \in f(S \cap T) \Rightarrow x \in f(S) \cap f(T)$, ou seja, $f(S \cap T) \subseteq f(S) \cap f(T)$.

15.

$$f^{-1}(S) = \{ a \mid f(a) = s, s \in S \}$$

a)

Para mostrar que $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$, devemos mostrar separadamente que $f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$ e $f^{-1}(S) \cup f^{-1}(T) \subseteq f^{-1}(S \cup T)$.

(1)
$$f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$$

Seja $x \in f^{-1}(S \cup T)$, ou seja, $f(x) = y, y \in (S \cup T)$. Como $y \in (S \cup T)$, temos, pela definição de união, que $y \in S \lor y \in T$.

Pela definição de $f^{-1}(S)$ e, analogamente, de $f^{-1}(T)$, se f(x)=y e $y\in S\vee y\in T$, então $x\in f^{-1}(S)\vee x\in f^{-1}(T)$.

Logo, pela definição de união, $x \in f^{-1}(S) \cup f^{-1}(T)$.

Temos, assim, $x \in f^{-1}(S \cup T) \Rightarrow x \in f^{-1}(S) \cup f^{-1}(T)$, ou seja, $f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)$.

(2)
$$f^{-1}(S) \cup f^{-1}(T) \subseteq f^{-1}(S \cup T)$$

Seja $x \in f^{-1}(S) \cup f^{-1}(T)$. Ou, pela definição de união, $x \in f^{-1}(S) \lor x \in f^{-1}(T)$.

Caso $x \in f^{-1}(S)$, temos $f(x) = y, y \in S$.

Se $y \in S$, temos, por adição lógica (se p = V, $p \lor q = V$), $y \in S \lor y \in T$, ou, por definição de união, $y \in (S \cup T)$.

Portanto, como f(x) = y e $y \in (S \cup T)$, temos que $x \in f^{-1}(S \cup T)$.

Caso $x \in f^{-1}(T)$, teremos, por demonstração análoga à de $x \in f^{-1}(S)$, que $x \in f^{-1}(S \cup T)$.

Temos, assim, $x \in f^{-1}(S) \cup f^{-1}(T) \Rightarrow x \in f^{-1}(S \cup T)$, ou seja, $f^{-1}(S) \cup f^{-1}(T) \subseteq f^{-1}(S \cup T)$.

b)

Para mostrar que $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$, devemos mostrar separadamente que $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$ e $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$.

(1)
$$f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$$

Seja $x \in f^{-1}(S \cap T)$, ou seja, $f(x) = y, y \in (S \cap T)$.

Pela definição de interseção, $y \in S \land y \in T$.

Como $f(x) = y, x \in f^{-1}(S) \land x \in f^{-1}(T)$.

E, pela definição de interseção, $x \in f^{-1}(S) \cap f^{-1}(T)$.

Temos, assim, $x \in f^{-1}(S \cap T) \Rightarrow x \in f^{-1}(S) \cap f^{-1}(T)$.

(2)
$$f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$$

Seja $x \in f^{-1}(S) \cap f^{-1}(T)$. Ou, pela definição de intereseção, $x \in f^{-1}(S) \wedge x \in f^{-1}(T)$.

Ou seja, $f(x) = y, y \in S \land y \in T$. Pela definição de interseção, $y \in (S \cap T)$. Então, como f(x) = y, temos $x \in f^{-1}(S \cap T)$.

Temos, assim, $x \in f^{-1}(S) \cap f^{-1}(T) \Rightarrow x \in f^{-1}(S \cap T)$, ou seja, $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$.

16.

 $f \notin injetora \Leftrightarrow f \notin sobrejetora$

(1) $f \notin injetora \Rightarrow f \notin sobrejetora$

Supondo f injetora.

Pela definição de injeção, $\forall b \in B \ \forall a_1, a_2 \in A \ (f(a_1) = b \land f(a_2) = b \Rightarrow a_1 = a_2)$. Ou seja, nenhum valor de $b \in B$ é alcançado por mais de um $a \in A$.

Como a função é total, $\forall a \in A \ \exists b \in B \ (f(a) = b)$. Supondo n a cardinalidade de A, todos os n elementos de A alcançam um valor em B. Como f é injetora, cada $a \in A$ alcança um valor diferente de $b \in B$, ou seja, n valores de $b \in B$ são alcançados pela função.

A e B têm a mesma cardinalidade, então, B tem n elementos e todos são alcançados pela função, logo, f é sobrejetora.

(2) $f \notin sobrejetora \Rightarrow f \notin injetora$

Supondo f sobrejetora.

Pela definição de sobrejeção, $\forall b \in B \ \exists a \in A \ (f(a) = b)$. Ou seja, supondo n a cardinalidade de B, todos os n elementos de B são alcançados pela função.

Como a função é total, $\forall a \in A \ \exists b \in B \ (f(a) = b)$. A e B têm a mesma cardinalidade, então, todos os n elementos de A alcançam um valor em B. Como f é sobrejetora, temos n elementos de A relacionados com n elementos de B.

Em uma função, cada $a \in A$ alcança no máximo um $b \in B$. Então, para que todos os n elementos de B sejam alcançados, é necessário que cada valor de $b \in B$ esteja relacionado com um valor diferente de $a \in A$, ou seja, nenhum valor de $b \in B$ é alcançado por mais de um $a \in A$. Logo, f é sobrejetora.

17.

a)

Está correta pela definição de sobrejeção.

b)

A proposição apresenta a definição de relação total, e não de sobrejeção. É possível haver uma função sobrejetora que não seja total.

Um exemplo é:

$$A = \{a, b\}; B = \{0\}; f : A \to B = \{\langle a, 0 \rangle\}$$

Todos os elementos de B estão relacionados com algum de A (sobrejetora), mas nem todos os elementos de A estão relacionados com algum de B (não é total).

Logo, a proposição é falsa.

 $\mathbf{c})$

Está correta pela definição de sobrejeção.

d)

A proposição apresenta a definição de relação total, e não de sobrejeção. Como mostrado no item b, é possível haver uma função sobrejetora que não seja total.

Logo, a proposição é falsa.

e)

Se f é sobrejetora, a imagem de f é composta por todos os elementos do codomínio de f, ou seja, imagem e co-domínio são iguais. Logo, está correta.