UNIVERSIDADE SÃO JUDAS TADEU ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

CAIO DE SOUSA PASSIANO

SISTEMA DE RESFRIAMENTO COM SENSOR DE TEMPERATURA

CAIO DE SOUSA PASSIANO RA: 824136218

caiopass04@gmail.com ADS1AN-BUC-6272430

SISTEMA DE RESFRIAMENTO COM SENSOR DE TEMPERATURA

Trabalho de conclusão semestral apresentado a Universidade São Judas Tadeu como requisito a ingressão ao próximo período.

Orientador: Prof. Calvetti

SÃO PAULO - SP 2024

SUMÁRIO

Planejamento de Testes de Software 3
1.1 Cronograma de Atividades4,5
1.2 Alocação de Recursos 4
1.3 Marcos do Projeto 4
Documentos de Desenvolvimento de Software 5

2.1 Plano de Projeto 5
2.1.1 Escopo 5,6
2.2 Documento de Requisitos 6,7,8
2.3 Planejamento de Testes9
2.3.1 Plano de Testes 9
2.3.1.1 Introdução 9
2.3.1.2 Escopo 9
2.3.1.3 Objetivos 9,10
2.3.1.4 Requisitos a serem testados 10
2.3.1.5 Estratégias, tipos de testes e ferramentas 10,11
2.3.1.6 Recursos a serem empregados 11
2.3.1.7 Cronograma das Atividades 11,12
2.3.1.8 Definição dos Marcos do Projeto 12,13
2.3.2 Casos de Testes 13,14,15
Gestão de Configuração de Software 15,16
Repositório de Gestão de Configuração de Software 16
Conclusão

1. PLANEJAMENTO DE TESTES DE SOFTWARE

1.1 Cronograma de Atividades

Atividade	Responsável	Data de Início	Data de Término
Definição dos requisitos de testes	Equipe de desenvolvimento	01/01/2024	05/01/2024

Atividade	Responsável	Data de Início	Data de Término
Planejamento de testes	Líder de QA	06/01/2024	10/01/2024
Implementação dos casos de teste	Testadores	11/01/2024	20/01/2024
Execução de testes iniciais	Testadores	21/01/2024	25/01/2024
Revisão e análise dos resultados	Líder de QA	26/01/2024	30/01/2024
Teste de aceitação pelo cliente	Cliente	31/01/2024	03/02/2024

1.2 Alocação de Recursos

Recurso	Quantidade	e Responsável	Descrição
Testadores	3	Líder de QA	Responsáveis pela execução dos casos de teste.
Microcontroladores	2	Equipe técnica	Arduino ou ESP32 para testes de hardware.
Sensores	2	Equipe técnica	Sensores DHT11 e LM35 para validação funcional.
Software de testes	1	Líder de QA	Ferramenta Selenium para simulação e análise.

1.3. Marcos do Projeto

- Planejamento Completo de Testes 10/01/2024
- Execução Inicial de Testes 25/01/2024
- Validação e Aceitação Final 03/02/2024

2. Documentos de desenvolvimento de software

2.1. Plano de Projeto

Planejamento do Projeto: O desenvolvimento segue metodologia ágil com sprints semanais, permitindo ajustes rápidos.

Escopo: Implementar um sistema de resfriamento automatizado com sensores de temperatura, ajustável para diversos ambientes e climas.

Recursos:

- Microcontroladores (Arduino Uno/ESP32).
- Sensores de temperatura (DHT11/LM35).
- Equipe multidisciplinar.

•

Estimativas de Projeto:

- Custo estimado: R\$ 5.000,00.
- Prazo: 3 meses.

2.1.1. Escopo

- I. Seleção do Sensor de Temperatura: Utilização de sensores como o DHT11, DHT22 ou LM35, reconhecidos por sua precisão e confiabilidade na medição de temperatura, garantindo resultados adequados ao controle térmico.
- II. Aquisição Contínua de Dados: Configuração do microcontrolador Arduino para realizar leituras periódicas das condições térmicas em intervalos regulares, assegurando o monitoramento contínuo e em tempo real do ambiente.
- III. Processamento e Estabilização dos Dados: Conversão dos valores brutos coletados pelo sensor para unidades de medida em graus Celsius, com aplicação de filtros digitais para suavização de flutuações e garantia de estabilidade nos dados processados.
- IV. Definição de Parâmetros e Controle Ativo de Ventilação: Estabelecimento de limites de temperatura predefinidos para acionamento automático de dispositivos de ventilação. O sistema ativa ou desativa a ventoinha

conforme as condições detectadas, mantendo os níveis térmicos dentro de valores seguros e otimizados.

V. Interface Visual para Feedback do Usuário: Integração de dispositivos de saída visual, como displays LCD ou LEDs indicadores, para apresentar informações em tempo real, como a temperatura atual e o estado operacional do sistema, permitindo maior transparência e supervisão do funcionamento.

Essa abordagem técnica oferece um sistema robusto de monitoramento contínuo e controle automático de temperatura, assegurando que o ambiente ou equipamento monitorado permaneça dentro de parâmetros seguros e estáveis.

2.2. Documento de Requisitos

Requisitos Funcionais:

- I. Monitoramento contínuo de temperatura: O sistema deve realizar medições constantes da temperatura de um ambiente ou dispositivo, garantindo a captura em tempo real de quaisquer variações térmicas.
- II. Controle automático do mecanismo de resfriamento: Deve ser implementado um sistema de acionamento automatizado, que ativa o mecanismo de resfriamento sempre que a temperatura ultrapassar um limite predefinido, promovendo o ajuste térmico de forma autônoma e eficiente.
- III. Configuração personalizada da temperatura-alvo: O sistema deve permitir que o usuário defina um intervalo de temperatura aceitável, especificando os valores mínimos e máximos desejados, para atender às necessidades específicas do ambiente ou equipamento monitorado.
- IV. Interface de exibição de informações: Uma interface visual, digital ou física, deve ser desenvolvida para apresentar informações essenciais, como a temperatura atual, os limites de temperatura configurados e o status operacional do sistema de resfriamento (ativo/inativo).
- V. Sistema de alerta para condições críticas: Em situações de superaquecimento, quando a temperatura exceder um limite crítico, o sistema deve

emitir um alarme sonoro ou visual, permitindo a rápida intervenção do usuário ou de sistemas de suporte.

VI. Registro histórico de temperatura: O sistema deve incluir uma funcionalidade de armazenamento das medições de temperatura ao longo do tempo, permitindo a análise de dados históricos para identificar padrões e tendências térmicas.

VII. Modo de operação manual: Deve ser disponibilizada uma opção para o usuário alternar o sistema de resfriamento entre os modos automático e manual, possibilitando o controle direto do funcionamento conforme as necessidades ou preferências operacionais.

VIII. Notificação remota de falhas ou condições críticas: O sistema deve ser projetado para enviar notificações em tempo real ao usuário, por meio de canais como aplicativos móveis, SMS ou e-mail, caso ocorra uma falha no mecanismo de resfriamento, superaquecimento ou qualquer outra condição crítica que exija atenção imediata.

IX. Gestão de múltiplos sensores de temperatura: O sistema deve ser capaz de integrar e gerenciar múltiplos sensores de temperatura, permitindo o monitoramento simultâneo de diferentes áreas de um ambiente ou de diversas seções de um dispositivo, assegurando uma cobertura abrangente e a coleta de dados precisos de várias fontes.

X. Calibração e manutenção de sensores de temperatura: O sistema deve incluir uma funcionalidade para a calibração manual ou automática dos sensores de temperatura, garantindo a manutenção da precisão das medições ao longo do tempo e permitindo a adaptação a possíveis desvios ou falhas nos sensores.

Requisitos não funcionais:

- I. Precisão do sensor de temperatura: O sensor de temperatura deve apresentar uma precisão mínima, como ±0,5°C, garantindo medições precisas e permitindo um controle térmico eficaz e confiável.
- II. Tempo de resposta do sistema: O sistema deve ser projetado para reagir de forma imediata às variações de temperatura, com um tempo de resposta mínimo, assegurando que as ações corretivas, como o acionamento do resfriamento, sejam tomadas sem atrasos significativos.
- III. Confiabilidade operacional: O sistema deve ser capaz de operar de forma contínua e sem falhas por longos períodos, assegurando a estabilidade e a consistência nas condições térmicas monitoradas e controladas ao longo do tempo.
- IV. Durabilidade e resistência ambiental: Tanto o sistema de resfriamento quanto os sensores de temperatura devem ser projetados para resistir a condições ambientais adversas, como variações extremas de temperatura, umidade elevada e presença de poeira, garantindo seu funcionamento eficaz em diversos contextos operacionais.
- V. Escalabilidade do sistema: O sistema deve ser projetado para suportar diferentes dimensões de ambientes ou dispositivos, permitindo sua adaptação a cenários variados, desde pequenos espaços até grandes instalações, com a possibilidade de adicionar sensores e mecanismos de controle adicionais conforme necessário.
- VI. Eficiência energética: O sistema deve operar de maneira inteligente e eficiente, otimizando o consumo de energia durante o processo de resfriamento, para minimizar custos operacionais e reduzir o impacto ambiental, ao mesmo tempo em que mantém as condições térmicas desejadas.
- VII. Facilidade de manutenção e substituição de componentes: O sistema deve ser projetado de forma modular, permitindo a fácil substituição de componentes críticos, como sensores ou ventiladores, em caso de falhas, sem a necessidade de grandes intervenções ou tempo de inatividade prolongado.
- VIII. Segurança operacional: O sistema deve ser seguro, com medidas de proteção adequadas para prevenir riscos elétricos, como curto-circuitos ou incêndios.

2.3 Planejamento de testes

2.3.1 Plano de Testes

2.3.1.1 Introdução

O plano de testes serve para garantir que o sistema funcione de maneira correta e eficiente, atendendo aos requisitos funcionais e não funcionais, com alta confiabilidade em condições reais de uso

2.3.1.2 Escopo

A verificação das funcionalidades centrais, a integração entre componentes e o desempenho do sistema em cenários variados. Estão incluídas as seguintes áreas:

Hardware:

- Leitura precisa da temperatura pelos sensores.
- Funcionamento correto do acionamento dos ventiladores ou sistema de resfriamento.

Software:

- Processamento de dados no microcontrolador (Arduino ou ESP32).
- Resposta do sistema a eventos, como aumento de temperatura ou falhas nos sensores.

Interface de Usuário:

- Exibição de informações no display LCD ou na interface digital (se houver).
- Configuração de limites de temperatura pelo usuário.

Cenários Operacionais:

- Testes em diferentes condições ambientais, como variações de temperatura e umidade.
- Testes de uso contínuo por períodos prolongados para avaliar estabilidade.

2.3.1.3 Objetivos

Identificar falhas nos módulos e na integração do sistema.

Garantir a estabilidade do sistema em condições de uso contínuo e em cenários reais.

Assegurar que o sistema atenda aos requisitos definidos e ofereça uma experiência positiva ao usuário.

2.3.1.4 Requisitos a serem testados:

- Acionamento automático do resfriamento ao detectar temperaturas acima dos limites configurados.
- II. Configuração de limites de temperatura pelo usuário através da interface.
- III. Exibição correta das informações no display LCD.
- IV. Resposta do sistema em diferentes cenários de carga e condições ambientais adversas.

2.3.1.5. Estratégias, tipos de testes e ferramentas a serem utilizadas

Teste de Software:

 Avalia o comportamento geral do sistema, considerando funcionalidades principais e secundárias.

Teste Unitário:

 Verifica componentes individuais para garantir que funcionem como esperado.

Teste de Integração:

 Examina a interação entre diferentes componentes do sistema, como sensores, microcontroladores e atuadores.

Teste de Sistema:

 Avalia o sistema completo, incluindo hardware, software e interface, para garantir que todos os requisitos sejam atendidos.

2.3.1.6 Recursos a serem empregados

Hardware real:

- Microcontroladores (Arduino ou ESP32).
- Sensores de temperatura (DHT11 ou LM35).
- Atuadores (ventiladores ou dispositivos de resfriamento líquido).

Equipe de QA:

- Testadores com experiência em hardware e software embarcado.
- Desenvolvedores para suporte técnico e análise de problemas.

2.3.1.7 Cronograma de atividades

Planejamento (01/01/2024 – 05/01/2024):

- Definição de objetivos, escopo e recursos.
- Seleção de ferramentas.

Preparação do Ambiente (06/01/2024 – 12/01/2024):

- Configuração de hardware e software.
- Desenvolvimento de scripts básicos.

Execução de Testes (13/01/2024 – 30/01/2024):

- Testes Unitários: Validar componentes isolados.
- Testes de Integração: Verificar interação entre módulos.
- Testes de Sistema: Avaliar o sistema completo.

Teste de Aceitação e Revisão Final (31/01/2024 – 12/02/2024):

- Simular uso real com o cliente.
- Revisar resultados e aplicar correções.

2.3.1.8 Definição de Marcos do Projeto

Definição do Escopo e Planejamento:

 Conclui a fase inicial de entendimento do projeto, estabelecendo objetivos, requisitos e estratégias de testes.

Configuração do Ambiente de Testes:

 Toda a infraestrutura necessária (hardware e software) está configurada, pronta para a execução dos testes.

Conclusão dos Testes Unitários:

 Cada componente do sistema foi testado isoladamente, garantindo seu funcionamento básico.

Finalização dos Testes de Integração:

 Confirma que todos os componentes estão se comunicando corretamente e que o sistema funciona em conjunto.

Execução dos Testes de Sistema:

 Testa o sistema completo em cenários reais, verificando se atende aos requisitos funcionais e não funcionais.

Teste de Aceitação:

 O cliente realiza uma avaliação final do sistema para validar sua funcionalidade e usabilidade.

Entrega do Projeto:

• O sistema é entregue ao cliente, pronto para uso em operação.

2.3.2 Casos de Testes

- I. Leitura do Sensor de Temperatura
 - Objetivo: Verificar se o sensor de temperatura lê corretamente os valores do ambiente.
 - Requisitos Testados:

Precisão do sensor (±0,5°C).

Comunicação entre o sensor e o microcontrolador.

Procedimento:

Configurar o ambiente com diferentes condições de temperatura.

Registrar os valores lidos pelo sensor.

Comparar os valores com medições feitas por um termômetro de referência.

• Resultado Esperado:

Os valores do sensor devem estar dentro da margem de erro aceitável.

- II. Caso de Teste: Acionamento Automático do Resfriamento
 - Objetivo: Validar o acionamento do sistema de resfriamento quando a temperatura ultrapassa o limite configurado.
 - Requisitos Testados:

Acionamento correto do ventilador ou sistema de resfriamento.

Configuração do limite de temperatura.

Procedimento:

Configurar um limite de temperatura no sistema.

Aumentar a temperatura ambiente além do limite configurado.

Verificar se o sistema aciona o resfriamento automaticamente.

Resultado Esperado:

O resfriamento deve ser ativado imediatamente quando o limite for excedido.

- III. Caso de Teste: Configuração do Limite de Temperatura
 - Objetivo: Testar se o sistema permite ao usuário configurar limites de temperatura.
 - Requisitos Testados:

Interface de configuração do sistema.

Persistência das configurações realizadas pelo usuário.

Procedimento:

Abrir a interface do sistema.

Configurar limites superiores e inferiores de temperatura.

Reiniciar o sistema e verificar se as configurações foram mantidas.

Resultado Esperado:

O sistema deve aceitar e aplicar os limites configurados pelo usuário.

- IV. Caso de Teste: Exibição de Dados no Display LCD
 - Objetivo: Garantir que os dados de temperatura sejam exibidos corretamente no display LCD.

Requisitos Testados:

Funcionamento da interface de usuário.

Comunicação entre o microcontrolador e o display.

Procedimento:

Operar o sistema em diferentes condições de temperatura.

Observar os valores exibidos no display LCD.

Comparar os valores com leituras reais de temperatura.

Resultado Esperado:

Os dados exibidos devem ser precisos e atualizados em tempo real.

- V. Caso de Teste: Estabilidade e Desempenho
 - Objetivo: Avaliar a estabilidade do sistema sob condições de uso contínuo.
 - Requisitos Testados:

Operação ininterrupta por longos períodos.

Manutenção da resposta rápida do sistema (tempo de resposta < 5 segundos).

Procedimento:

Operar o sistema continuamente por 24 horas em condições variadas de temperatura.

Monitorar a estabilidade e desempenho do sistema durante o teste.

Resultado Esperado:

O sistema deve permanecer estável, sem falhas ou atrasos na resposta.

3. Gestão de configuração de software

- Controle de versão: GitHub utilizado para gerenciar versões de código.
- Backup: Armazenamento regular em nuvem.

Documentação: Manter logs de alterações no código.

4. Repositório de gestão de configuração de software

Local: GitHub Repository.

Conteúdo: Código fonte, documentação de projeto, e logs de alterações.

5. Conclusão

O desenvolvimento do sistema de resfriamento automatizado com sensores de temperatura tem como principal objetivo proporcionar um controle térmico eficiente e seguro, aplicável a diversas áreas como eletrônica, data centers e ambientes industriais. Através do planejamento de testes bem estruturado e da definição clara dos requisitos, conseguimos garantir que o sistema atenda às expectativas do cliente e aos critérios de qualidade preestabelecidos.

Ao longo do processo de testes, destacaram-se fases essenciais, como a validação da leitura precisa dos sensores de temperatura, o acionamento automático do sistema de resfriamento conforme os limites predefinidos, e a integração entre os diferentes componentes, como o microcontrolador e o display LCD. A execução de testes unitários, de integração e de sistema fizeram possível uma avaliação abrangente do desempenho do sistema em diversas situações de funcionamento.

Os recursos alocados para o projeto, como microcontroladores, sensores de temperatura e ferramentas de simulação, foram fundamentais para a validação funcional e de desempenho. Além disso, o uso de uma plataforma como o GitHub para controle de versão e backup garantiu a organização e segurança das versões do código durante o processo de desenvolvimento.

Em conclusão, o sistema desenvolvido atende aos requisitos de automação e eficiência energética, proporcionando uma solução escalável, confiável e segura. A contínua avaliação durante a fase de testes e os ajustes feitos com base nos resultados obtidos asseguraram que o sistema estivesse pronto para ser aceito pelo cliente. Com isso, o projeto cumpre seu objetivo de fornecer uma solução de controle térmico inteligente e de alta performance.