Improving Knowledge Graph Embedding Using Simple Constraints

ACL 2018

BoyangDing, QuanWang, BinWang, LiGuo

Outline

- Abstract
- Introduction
- Related Work
- Approach
- Experiments and Results
- Conclusion

Abstract

Embedding KG into continuous vector spaces

Early: KG triples
 Complicated triple scoring
 Recent:
 Incorporating other information beyond triples

- Investigate -- constraints
 - Entity -- non-negative -- compact & interpretable
 - Relation -- approximate entailment -- regularities of logical entailment

Introduction

embed components of a KG into a continuous vector space

-- to simple manipulation while preserving the inherent structure of the KG

Related Work

? : Grounding

- very simple models:
 - TransE
 - RESCAL
- design more complicated triple scoring models:
 - the TransE extensions
 - the RESCAL extensions
 - the(deep)neural network models
 - tried to integrate extra information beyond triples
 - entity types, relation paths, textual descriptions
- Difference
- impose constraints directly on entity and relation representations without grounding.
- Use are quite universal, requiring no manual effort and applicable to almost all KGs.

? : x = Re(x) + In(x)

- A Basic Embedding Model -- ComplEx(Trouillonetal.,2016)
- A KG containing a set of triples $\mathcal{O} = \{(e_i, r_k, e_j)\}$
- Score of the triple $\phi(e_i, r_k, e_j) \triangleq \operatorname{Re}(\langle \mathbf{e}_i, \mathbf{r}_k, \bar{\mathbf{e}}_j \rangle)$ $\triangleq \operatorname{Re}(\sum_{\ell} [\mathbf{e}_i]_{\ell} [\mathbf{r}_k]_{\ell} [\bar{\mathbf{e}}_j]_{\ell}),$
- asymmetry: $\phi(e_i, r_k, e_j) \neq \phi(e_j, r_k, e_i)$

- Non-negativity of Entity Representations
- Background:
 - the distributed representations can be taken as feature vectors for entities
 - it would be uneconomicaltostoreallnegativepropertiesofan entity or a concept
 - As shown by Lee and Seung (1999), non-negativity, in most cases, will further induce sparsity and interpretability.

$$0 \leq \text{Re}(\mathbf{e}), \text{Im}(\mathbf{e}) \leq 1, \quad \forall e \in \mathcal{E}$$

?:极限推导

- Approximate Entailment for Relations
 - Means an ordered pair of relations that the former approximately entails the latter
 - *strict entailment

$$\phi(e_i, r_p, e_j) \leq \phi(e_i, r_q, e_j), \quad \forall e_i, e_j \in \mathcal{E},$$

$$Re(\mathbf{r}_p) \leq Re(\mathbf{r}_q), \quad Im(\mathbf{r}_p) = Im(\mathbf{r}_q),$$

$$\lambda \left(Re(\mathbf{r}_p) - Re(\mathbf{r}_q)\right) \leq \alpha,$$

$$\lambda \left(Im(\mathbf{r}_p) - Im(\mathbf{r}_q)\right)^2 \leq \beta.$$

The Overall Model

? : a negative triple can be generated by randomly corrupting the head or the tail entity of a positive triple,

$$\min_{\Theta, \{\alpha, \beta\}} \left[\sum_{\mathcal{D}^+ \cup \mathcal{D}^-} \log \left(1 + \exp(-y_{ijk}\phi(e_i, r_k, e_j)) \right) + \mu \sum_{\mathcal{T}} \mathbf{1}^\top (\alpha + \beta) + \eta \|\Theta\|_2^2 \right]$$

$$\text{Logistic Loss Enforces triples to have scores close to their labels.}$$

$$\text{Sum of slack hope the variables}$$

$$\text{slackness to be small}$$

s.t.
$$\lambda \left(\operatorname{Re}(\mathbf{r}_p) - \operatorname{Re}(\mathbf{r}_q) \right) \leq \alpha$$
, $\alpha, \beta \geq 0$, $\forall r_p \xrightarrow{\lambda} r_q \in \mathcal{T}$, $\lambda \left(\operatorname{Im}(\mathbf{r}_p) - \operatorname{Im}(\mathbf{r}_q) \right)^2 \leq \beta$, $0 \leq \operatorname{Re}(\mathbf{e}), \operatorname{Im}(\mathbf{e}) \leq 1$, $\forall e \in \mathcal{E}$.

The Overall Model

$$\min_{\Theta, \{\alpha, \beta\}} \sum_{\mathcal{D}^+ \cup \mathcal{D}^-} \log \left(1 + \exp(-y_{ijk}\phi(e_i, r_k, e_j)) \right) + \mu \sum_{\mathcal{T}} \mathbf{1}^\top (\alpha + \beta) + \eta \|\Theta\|_2^2$$
s.t. $\lambda \left(\operatorname{Re}(\mathbf{r}_p) - \operatorname{Re}(\mathbf{r}_q) \right) \leq \alpha, \quad \alpha, \beta \geq \mathbf{0}, \quad \forall r_p \xrightarrow{\lambda} r_q \in \mathcal{T},$

$$\lambda \left(\operatorname{Im}(\mathbf{r}_p) - \operatorname{Im}(\mathbf{r}_q) \right)^2 \leq \beta, \quad \mathbf{0} \leq \operatorname{Re}(\mathbf{e}), \operatorname{Im}(\mathbf{e}) \leq \mathbf{1}, \quad \forall e \in \mathcal{E}.$$

$$\min_{\Theta} \sum_{\mathcal{D}^{+} \cup \mathcal{D}^{-}} \log \left(1 + \exp(-y_{ijk}\phi(e_i, r_k, e_j)) \right) + \mu \sum_{\mathcal{T}} \lambda \mathbf{1}^{\top} \left[\operatorname{Re}(\mathbf{r}_p) - \operatorname{Re}(\mathbf{r}_q) \right]_{+} \\ + \mu \sum_{\mathcal{T}} \lambda \mathbf{1}^{\top} \left(\operatorname{Im}(\mathbf{r}_p) - \operatorname{Im}(\mathbf{r}_q) \right)^{2} + \eta \|\Theta\|_{2}^{2}$$
s.t. $\mathbf{0} \leq \operatorname{Re}(\mathbf{e}), \operatorname{Im}(\mathbf{e}) \leq \mathbf{1}, \quad \forall e \in \mathcal{E}$

- The Overall Model
- optimizer: SGD in mini-batch mode
- to tune the learning rate: AdaGrad (Duchi et al., 2011)
- project (by truncation) Re(x)&Im(x) into the hypercube of [0,1]^d

- Time complexity: $O(sd+td+\bar{n}d)$ Space complexity: O(nd+md)

The same as

ComplEx

Datasets:

- WN18 + FB15K + DB100K -- divided into training, validation, and test
- Use AMIE+ (Gal'arragaetal.,2015) to extract approximate entailments automatically from the training set of each dataset.
- Consider entailments with PCAconfidencehigherthan 0.8

Dataset	# Ent	# Rel	Rel # Train/Valid/Test			
WN18 FB15K DB100K	14,951	1,345	141,442 483,142 597,572	50,000	59,071	17 535 56

Link Prediction

- aims to predict a triple (e_i, r_k, e_j) with e_i or e_j missing, i.e., predict e_i given (r_k, e_i) or predict e_i given (e_i, r_k) .
- Evaluation Protocol: (Bordes et al., 2013)
 - report on the test set the mean reciprocal rank (MRR) and the proportion of correct entities ranked in the top n (HITS@N), with n = 1,3,10.

Comparison Settings:

- Simple embedding models that utilize triples alone without integrating extra information
- Other extensions of ComplEx that integrate logical background knowledge in addition to triples
- Latest developments or implementations that achieve current state-of-the-art performance
- Complex-NNE
- ComplEx-NNE+AER

Implementation Details

WN18	FB15K	DB100K
~		
•	•	•
•	•	X
•	•	•
		•

- Simple embedding models
- Other extensions of ComplEx
- Latest developments or implementations
- Complex-NNE
- Complex-NNE+AER

Experimental Results

- Link prediction: compact and interpretation representation
 - From top to bottom, entities :reptile, wine region, species, and programming language.
 - Values range from 0 (white) via 0.5 (orange) to 1 (black). Best viewed in color.

Experimental Results

- Average entropy: over all dimensions of Re(x)
 - For each dimension, top K percent of entities with the highest activation values are picked. We can calculate the entropy of the type distribution of the entities selected. This entropy reflects **diversity of entity types**, or in other words, **semantic purity**.
 - Complex-NNE and Complex-NNE+AER can learn entity representations with latent dimensions of consistently higher semantic purity.

Experimental Results

 Top 4 relations from the equivalence class, the middle 4 the inversion class, and the bottom 4 others.

Encode logical regularities quite well

- Pairs of relations from the first class (equivalence) tend to have identical representations $r_p \approx r_q$
- those from the second class (inversion) complex conjugate representations $r_p \approx r_q$
- and the others representations that Re(r_p)
 ≤ Re(r_a) and Im(r_p) ≈Im(r_a)

	Real Component				Imaginary Component					
country -	-0.57	-0.08	-0.52	-0.81	-0.05	-0.10	-0.00	0.01	-0.06	-0.00
location_country -	-0.57	-0.08	-0.52	-0.81	-0.05	-0.09	-0.00	0.02	-0.06	-0.00
owning_company -	-0.06	-0.42	0.60	-0.68	0.30	-0.06	-0.05	0.80	0.22	0.56
owner -	-0.06	-0.42	0.60	-0.68	0.30	-0.06	-0.05	0.80	0.22	0.57
spouse ⁻¹ -	0.15	1.39	-0.87	-0.63	-0.10	-0.00	0.00	-0.00	0.00	-0.00
spouse -	0.15	1.39	-0.87	-0.63	-0.10	-0.00	0.00	-0.00	0.00	-0.00
child⁻¹ -	0.33	-0.29	0.47	-0.63	0.45	-0.13	-0.04	0.08	-0.21	-0.02
parent -	0.33	-0.29	0.47	-0.64	0.45	0.13	0.04	-0.08	0.20	0.02
position -	-0.81	-0.11	-0.39	-1.01	-0.09	-0.21	-0.01	0.23	0.16	-0.34
honours -	-0.81	-0.10	0.73	-1.01	0.30	-0.20	-0.01	0.23	0.16	-0.35
offical_language -	-0.84	-0.44	-0.61	-0.86	-0.04	-0.39	-0.32	-0.02	0.09	-0.01
language -	-0.84	-0.41	-0.60	-0.80	-0.04	-0.39	-0.32	-0.03	0.09	-0.01

Conclusion

- Two types of constraints
 - non-negativity constraints -- compact, interpretable entity representations
 - approximate entailment constraints -- encode logical regularities into relation representations
- Experimental results -- simple yet surprisingly effective
- The constraints indeed improve model interpretability, yielding a substantially increased structuring of the embedding space.