

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
4 August 2005 (04.08.2005)

PCT

(10) International Publication Number  
**WO 2005/070446 A1**

- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>7</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>A61K 38/00</b>            | (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. |
| (21) International Application Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCT/US2005/001480            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (22) International Filing Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 January 2005 (18.01.2005) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (25) Filing Language:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | English                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (26) Publication Language:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | English                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (30) Priority Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60/537,221                   | 15 January 2004 (15.01.2004) US                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <p>(71) Applicant (for all designated States except US): <b>SCIOS INC.</b> [US/US]; 6500 Paseo Padre Parkway, Fremont, CA 94555 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): <b>KAPOUN, Ann, M.</b> [US/US]; 686 Ehrhorn Avenue, Mountain View, CA 94041 (US). <b>SCHREINER, George, F.</b> [US/US]; 12774 Leander Drive, Los Altos, CA 94033 (US). <b>LIANG, Faquan</b> [CN/US]; 1531 Santiago Street, San Francisco, CA 94116 (US). <b>LI, Zhihe</b> [CA/US]; 751 Crane Avenue, Foster City, CA 94404 (US).</p> |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <p>(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).</p>                                                                                                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**Published:**

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/070446 A1

(54) Title: METHOD FOR TREATING CARDIAC REMODELING FOLLOWING MYOCARDIAL INJURY

(57) **Abstract:** The invention concerns methods for treating cardiac remodeling in a subject who has undergone myocardial injury, said method comprising the administration of natriuretic peptide to said subject. Preferably the natriuretic peptide is brain natriuretic peptide. The invention also concerns methods for treating structural heart disorders arising from myocardial injury, said method comprising the administration of a natriuretic peptide to a patient in need thereof.

**METHOD FOR TREATING CARDIAC REMODELING FOLLOWING  
MYOCARDIAL INJURY**

This application claims priority to U.S. provisional application Serial No.  
10 60/537,221. The 60/537,221 provisional application is herein incorporated by reference in its entirety.

**Field of the Invention**

The present invention concerns methods of treatment using one or more  
15 natriuretic peptides or derivatives thereof. More specifically, the invention concerns methods of treating or preventing cardiac dysfunction in a subject after said subject has undergone myocardial injury.

**BACKGROUND**

20 Myocardial infarction is a major cause of significant disability and death in the United States and in many other countries around the world, and accounts for approximately 2/3 of all heart failure. Hunt et al, AMERICAN COLLEGE OF CARDIOLOGY/AMERICAN Heart Association. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary.  
25 A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). Journal of the American College of Cardiology 2001; 38: 2101-2113. Several disease-initiating events (e. g. myocardial infarction, untreated hypertension, congenital mutations of contractile proteins) can

5 result in a common heart disease phenotype that consists of dilation of the cardiac chambers, resulting in reduction in contractile function (i.e., a decrease in the fraction of total blood ejected from each chamber during systole) that leads to the clinical syndrome of heart failure. This phenotype generally involves a compensatory aspect that results from myocardial infarction when the normal compensatory hypertrophy of  
10 surviving, non-infarcted myocardium is insufficient. Often this compensatory mechanism is a result of the profibrotic response associated with cardiac injury.

Available therapies for heart dysfunction are insufficient, and new methods of treatment are needed. The heart responds to infarction by hypertrophy of surviving cardiac muscle in an attempt to maintain normal contraction. However, when the  
15 hypertrophy is insufficient to compensate, cardiac remodeling and reduced cardiac function result, leading to heart failure and death. Despite important advances in medical therapies for preventing cardiac dysfunction and heart failure after myocardial infarction, these problems remain a significant unsolved public health problem.

20 No pharmacological therapy for post MI cardiac remodeling is curative or satisfactory, and many patients die or, in selected cases, undergo heart transplantation. Presently available pharmacological therapies for reducing cardiac dysfunction and reducing mortality in patients with heart failure fall into three main categories: angiotensin-converting enzyme (ACE) inhibitors, beta adrenergic receptor ( $\beta$ AR) antagonists, and aldosterone antagonists. Despite reducing mortality, patients treated with these medicines remain at significantly increased risk for death compared to age- matched control patients without heart failure. ACE inhibitors,  $\beta$ AR antagonists and (at least one type of) aldosterone receptor antagonist can significantly reduce the  
25

5 incidence and extent of cardiac dysfunction and heart failure after myocardial infarction.

ACE inhibitors are associated with cough in 10% of patients and can result in renal failure in the setting of bilateral renal artery stenosis or other severe kidney disease.  $\beta$ AR antagonists are associated with impotence and depression, and are 10 contraindicated in patients with asthma; furthermore, patients may develop worsened heart failure, hypotension, bradycardia, heart block, and fatigue with initiation of  $\beta$ AR antagonists. Aldosterone receptor antagonism causes significant hyperkalemia and painful gynecomastia in 10% of male patients. Agents without a demonstrated mortality benefit are also associated with problems; most notable is the consistent 15 finding that many cardiac stimulants improve symptoms, but actually increase mortality, likely by triggering lethal cardiac arrhythmias. In summary, presently available pharmacological therapies are ineffective and are limited by significant unwanted side effects, and so development of new therapies with improved efficacy and less severe side effects is an important public health goal.

20

#### SUMMARY OF THE INVENTION

The present invention is directed to the use of natriuretic peptides for the prevention and/or treatment of cardiac remodeling in a subject that has undergone 25 myocardial injury. In a preferred embodiment, the natriuretic peptide(s) comprise brain natriuretic peptide (BNP), also known as nesiritide. In another embodiment, the invention is directed to the treatment of cardiac dysfunction, said treatment comprising the administration of a therapeutically effective amount of natriuretic peptide to a subject that has undergone myocardial injury.

5        In another related embodiment, the invention is directed to a method of alleviating or reversing the effect of TGF $\beta$  mediated cell activation in cardiac tissue on the expression of one or more genes associated with fibrosis, comprising contacting one or more cells or tissues in which the expression of said genes is altered as a result of TGF $\beta$  mediated activation, with BNP. In another related embodiment, 10 the targeted gene(s) associated with fibrosis are selected from the group consisting essentially of Collagen1, Collagen 3, Fibronectin, CTGF, PAI-1, and TIMP3.

In another embodiment, the invention is directed to a method of inhibiting the production of Collagen 1, Collagen 3 or Fibronectin proteins by the administration of a therapeutically effective amount of BNP to a subject in need thereof.

15        In another related embodiment, the invention is directed to a method of inhibiting TGF $\beta$  mediated myofibroblast conversion by administration of a therapeutically effective amount of BNP to a mammalian subject in need thereof.

In another related embodiment, the invention is directed to a method of alleviating or reversing the effect of TGF $\beta$  mediated cell activation in cardiac tissue 20 on the expression of one or more genes associated with cell proliferation, comprising contacting one or more cells or tissues in which the expression of said genes is altered as a result of TGF $\beta$  mediated activation, with BNP. In another related embodiment, the targeted gene(s) associated with cell proliferation are selected from the group consisting essentially of PDGFA, IGF1, FGF18, and IGFBP 10.

25        In another related embodiment, the invention is directed to a method of alleviating or reversing the effect of TGF $\beta$  mediated cell activation in cardiac tissue on the expression of one or more genes associated with inflammation, comprising contacting one or more cells or tissues in which the expression of said genes is altered as a result of TGF $\beta$  mediated activation, with BNP. In another related embodiment,

5 the targeted gene(s) associated with inflammation are selected from the group  
comprise COX1, IL6, TNF $\alpha$ -induced protein 6, TNF superfamily, member 4.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Gene expression changes induced by TGF $\beta$  and BNP in human  
10 cardiac fibroblasts at 24 and 48 h. Histograms show the number of gene expression  
changes that were up-regulated and down-regulated by TGF $\beta$  and BNP treatment.  
Hybridizations using fluorescently-labeled cDNA probes compare untreated (control)  
to TGF $\beta$ -treated cells and control to BNP-treated cells. See Experimental for details  
related to the gene expression values. Histogram bars: 24 h (white) and 48 h (black).

15 Figure 2. Effects of BNP on TGF $\beta$ -induced gene expression in human cardiac  
fibroblasts. Hybridizations using fluorescently-labeled cDNA probes compare TGF $\beta$ -  
treated to TGF $\beta$  BNP-treated cells at 24 and 48 h. Strong and weak effects represent  
1.8- and 1.5- fold gene expression levels, respectively. See Experimental for details  
related to statistical significance. Histogram bars: no effect (white), weak effect  
20 (grey), and strong effect (black).

Figure 3. Gene expression patterns in TGF $\beta$ -treated human cardiac  
fibroblasts. Data was generated using the hierarchical clustering algorithm contained  
in Spotfire<sup>TM</sup> software. Each row represents one of 524 genes, and each column  
represents the results from duplicate hybridizations: (A) control vs. TGF $\beta$ , 24 h; (B)  
25 control vs. TGF $\beta$ , 48 h; (C) TGF $\beta$  vs. TGF $\beta$  + BNP 24 h; (D) TGF $\beta$  vs. TGF $\beta$  + BNP  
48 h; (E) control vs. BNP 24 h; and (F) control vs. BNP 48 h. Normalized data values  
depicted in shades of red and green represent elevated and repressed expression,  
respectively. See Table 2 in Experimental section for gene identities and expression  
values.

5           Figure 4. Gene expression clusters in human cardiac fibroblasts: (A) fibrosis  
and ECM, (B) cell proliferation, and (C) inflammation. See Fig. 4 legend for  
descriptions of the hybridizations and gene expression color codes.

10          Figure 5. Effects of BNP on TGF $\beta$ -induced Collagen 1 (A and B) and  
Fibronectin (C and D) mRNA and protein levels in cultured human cardiac  
fibroblasts. Histograms show control cells (white), cells treated with BNP (gray),  
cells treated with TGF $\beta$  (black), and cells co-treated with BNP and TGF $\beta$  (hatched). (A  
and C) Real-time RT-PCR expression levels were normalized to 18S rRNA and  
plotted relative to the level in the 6 h control cells. Error bars reflect duplicate  
biological replicates; real-time RT-PCR reactions were performed in triplicate. (B  
15         and D) Western blot analyses are presented as mean  $\pm$  SD from three separate  
experiments; \*p<0.01 vs. control; \*\*p<0.01 vs. TGF $\beta$ .

20          Figure 6. Effects of BNP on TGF $\beta$ -induced fibrotic and inflammatory genes.  
Real-time RT-PCR expression levels were normalized to 18S rRNA and plotted  
relative to the level in the 6 h control cells. See Fig. 5 for key to histogram bar labels  
and error bars.

Fig 7. Effect of PKG and MEK inhibitors on BNP-dependent inhibition of  
TGF $\beta$  signaling in human cardiac fibroblasts. (A) Western analysis of ERK  
phosphorylation. Cells were treated with BNP (0.5  $\mu$ mol/L) in the presence or  
absence of KT5823 (1  $\mu$ mol/L) or U0126 (10  $\mu$ mol/L) for 15 min. (B) Western blot  
25         and (C) real-time RT-PCR analysis to detect Collagen 1 expression. Cells were  
treated with 5 ng/ml TGF $\beta$  and/or BNP (100 nmol/L, three times daily) in the  
presence or absence of KT5823 (1  $\mu$ mol/L), U0126 (0.1-10  $\mu$ mol/L) or PD98059 (10  
 $\mu$ mol/L) for 48 h. Control (C); KT5823 (KT); U0126 (U); TGF $\beta$  (TGF).

5       Figure 8. Summary of BNP effects on gene expression in TGF $\beta$ -stimulated  
human cardiac fibroblasts.

Figure 9. Effects of BNP on TGF $\beta$ -stimulated fibroblast proliferation.  
Histograms show fold induction of BrdU labeled cells treated with TGF $\beta$  alone, BNP  
alone or co-treated with BNP and TGF $\beta$ . Cells were co-treated with BNP and TGF $\beta$   
10 for 24 h, then labeled with BrdU and cultured for an additional 24 h. Pooled data  
represent the mean  $\pm$  SD from three individual experiments: \*p < 0.01 vs. the control;  
\*\*p < 0.05 vs. TGF $\beta$ .

Figure 10. Changes in plasma aldosterone level. The increased plasma  
aldosterone level by L-NAME/AngII was reduced by BNP (p < 0.05, n=7)

15       Figure 11. Changes in heart/body weight ratio. BNP abolished L-  
NAME/AngII-induced increase in heart/body weight ratio (p < 0.01, n=12)

Figure 12. Real time RT-PCR results. Expression of mRNA of collagen I  
(A), collagen III (B) and fibronectin (C) in the heart. BNP abolished the fibrotic  
genes that enhanced by L-NAME plus Angiotensin II (p < 0.01 in all cases).

20       Figure 13. Cardiac function parameters including heart rate (A), stroke  
volume (B), ejection fraction (C), cardiac output (D), stroke work (E), maximum  
dP/dt (F), minimum dP/fy (G), and arterial elastance (H). L-NAME/AngII induced  
deterioration of cardiac function. Administration of BNP significantly improved  
cardiac function as judged by increases in stroke volume, ejection fraction, cardiac  
25 output, stroke work and decrease in arterial elastance (p < 0.001, n=8). BNP also  
increased maximum dP/dt (p < 0.05) and minimum dP/dt. BNP had no effect on heart  
rate.

**DETAILED DESCRIPTION****A. Definitions**

As used herein, any reference to "reversing the effect of TGF- $\beta$ -mediated cell activation on the expression of a gene associated with fibrosis" means partial or complete reversal the effect of TGF- $\beta$ -mediated cell activation of that gene, relative to 10 a normal sample of the same cell or tissue type. It is emphasized that total reversal (i.e. total return to the normal expression level) is not required, although is advantageous, under this definition.

The term "cardiac remodeling" generally refers to the compensatory or pathological response following myocardial injury. Cardiac remodeling is viewed as 15 a key determinant of the clinical outcome in heart disorders. It is characterized by a structural rearrangement of the cardiac chamber wall that involves cardiomyocyte hypertrophy, fibroblast proliferation, and increased deposition of extracellular matrix (ECM) proteins. Cardiac fibrosis is a major aspect of the pathology typically seen in the failing heart. The proliferation of interstitial fibroblasts and increased deposition 20 of extracellular matrix components results in myocardial stiffness and diastolic dysfunction, which ultimately leads to heart failure. A number of neurohumoral or growth factors have been implicated in the development of cardiac fibrosis. These include angiotensin II (AII), endothelin-1 (ET-1), cardiotrophin-1 (CT-1), norepinephrine (NE), aldosterone, FGF2, PDGF, and transforming growth factor- $\beta$  25 (TGF $\beta$ ). TGF $\beta$  expression is also stimulated by AII and ET-1 in cardiac myocytes and fibroblasts, further supporting its involvement in cardiac fibrosis.

The term "cardiac dysfunction" refers to the pathological decline in cardiac performance following myocardial injury. Cardiac dysfunction may be manifested through one or more parameters or indicia including changes to stroke volume, 30 ejection fraction,

5 end diastolic fraction, stroke work, arterial elastance, or an increase in heart weight to body weight ratio.

The terms “differentially expressed gene,” “differential gene expression” and their synonyms, which are used interchangeably, refer to a gene whose expression is activated to a higher or lower level in a test sample relative to its expression in a  
10 normal or control sample. For the purpose of this invention, “differential gene expression” is considered to be present when there is at least an about 2.5-fold, preferably at least about 4-fold, more preferably at least about 6-fold, most preferably at least about 10-fold difference between the expression of a given gene in normal and test samples.

15 “Myocardial injury” means injury to the heart. It may arise from myocardial infarction, cardiac ischemia, cardiotoxic compounds and the like. Myocardial injury may be either an acute or nonacute injury in terms of clinical pathology. In any case it involves damage to cardiac tissue and typically results in a structural or compensatory response.

20 As used herein, “natriuretic peptides” means a composition that includes one or more of an Atrial natriuretic peptide (ANP), a Brain natriuretic peptide (BNP), or a C-type natriuretic peptide (CNP). It is contemplated that analogues and variants of these peptides be included in the definition. Examples of such include anaritide (ANP analogue of different length) or combinations of natriuretic peptide including but not limited to ANP/BNP, ANP/CNP, and BNP/CNP variants. Preferably, natriuretic peptide means BNP (nesiritide).

25 The terms “treating” or “alleviating” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment

5 include those already with the disorder as well as those prone to have the disorder or  
those in whom the disorder is to be prevented. In the treatment of a fibroproliferative  
disease, a therapeutic agent may directly decrease the pathology of the disease, or  
render the disease more susceptible to treatment by other therapeutic agents.

The term "subject" for purposes of treatment refers to any animal classified as  
10 a mammal, including humans, domestic and farm animals, and zoo, sports, or pet  
animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably,  
the subject is human.

Administration "in combination with" one or more further therapeutic agents  
includes simultaneous (concurrent) and consecutive administration in any order.

15 A "therapeutically effective amount", in reference to the treatment of cardiac  
or renal fibrosis, e.g. when inhibitors of the present invention are used, refers to an  
amount capable of invoking one or more of the following effects: (1) inhibition (i.e.,  
reduction, slowing down or complete stopping) of the development or progression of  
fibrosis and/or sclerosis; (2) inhibition (i.e., reduction, slowing down or complete  
20 stopping) of consequences of or complications resulting from such fibrosis and/or  
sclerosis; and (3) relief, to some extent, of one or more symptoms associated with the  
fibrosis and/or sclerosis, or symptoms of consequences of or complications resulting  
from such fibrosis and/or sclerosis.

25 B. Modes of Carrying out the Invention

Natriuretic peptides comprise a family of vasoactive hormones that play  
important roles in the regulation of cardiovascular and renal homeostasis. Atrial  
natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are predominantly  
produced in the heart and exert vasorelaxant, natriuretic, and anti-growth activities.

5 Binding of ANP and BNP to type-A natriuretic peptide receptor (NPRA) leads to the generation of cyclic guanosine monophosphate (cGMP), which mediates most biological effects of the peptides. Mice lacking NPRA exhibit cardiac hypertrophy, fibrosis, hypertension and increased expression of fibrotic genes including *TGF $\beta$ 1*, *TGF $\beta$ 3* and *Collagen 1*. Furthermore, targeted disruption of the BNP gene in mice  
10 results in cardiac fibrosis and enhanced fibrotic response to ventricular pressure overload, suggesting that BNP is involved in cardiac remodeling.

TGF $\beta$  mediates fibrosis by modulating fibroblast proliferation and ECM production, particularly of collagen and fibronectin. TGF $\beta$  also promotes the phenotypic transformation of fibroblasts into myofibroblasts characterized by  
15 expression of  *$\alpha$ -smooth muscle actin*. Studies have demonstrated that increased myocardial TGF $\beta$  expression is associated with cardiac hypertrophy and fibrosis. Moreover, functional blockade of TGF $\beta$  prevents myocardial fibrosis and diastolic dysfunction in pressure overloaded rats, indicating that TGF $\beta$  has a crucial role in the process of myocardial remodeling, particularly in cardiac fibrosis. However, the  
20 implication of natriuretic peptide(s) in this process has not been previously explored.

The present invention is directed to the treatment or prevention of cardiac remodeling following myocardial injury. In a preferred embodiment, the myocardial injury comprises an acute myocardial infarction. Preferably the administration of natriuretic peptide occurs as soon as possible after the injury event.

25 In another embodiment, the invention involves the treatment of cardiac dysfunction in a subject in need thereof comprising the administration of a natriuretic peptide to a subject in need thereof wherein said administration occurs after said subject has undergone myocardial injury.

5        The manner of administration and formulation of the natriuretic peptide(s) useful in the invention will depend on the nature of the condition, the severity of the condition, the particular subject to be treated, and the judgment of the practitioner; formulation will depend on mode of administration. The peptides of the invention are conveniently administered by oral administration by compounding them with suitable 10 pharmaceutical excipients so as to provide tablets, capsules, syrups, and the like. Suitable formulations for oral administration may also include minor components such as buffers, flavoring agents and the like. Typically, the amount of active ingredient in the formulations will be in the range of about 5%-95% of the total formulation, but wide variation is permitted depending on the carrier. Suitable 15 carriers include sucrose, pectin, magnesium stearate, lactose, peanut oil, olive oil, water, and the like.

The peptides useful in the invention may also be administered through suppositories or other transmucosal vehicles. Typically, such formulations will include excipients that facilitate the passage of the compound through the mucosa 20 such as pharmaceutically acceptable detergents.

The peptides may also be administered by injection, including intravenous, intramuscular, subcutaneous, intrarticular or intraperitoneal injection. Preferably the natriuretic peptide(s) are administered intravenously. Typical formulations for such use are liquid formulations in isotonic vehicles such as Hank's solution or Ringer's 25 solution.

Alternative formulations include aerosol inhalants, nasal sprays, liposomal formulations, slow-release formulations, and the like, as are known in the art.

5 Any suitable formulation may be used. A compendium of art-known formulations is found in Remington's Pharmaceutical Sciences, latest edition, Mack Publishing Company, Easton, PA. Reference to this manual is routine in the art.

The dosages of the peptide(s) of the invention will depend on a number of factors which will vary from patient to patient. The dose regimen will vary,  
10 depending on the conditions being treated and the judgment of the practitioner.

Further information regarding related formulations and dosages for brain natriuretic peptide can be found in the package insert or the latest version of Physicians Desk Reference (PDR) for nesiritide or the Natrecor® product.

It should be noted that the peptides useful for the invention can be  
15 administered as individual active ingredients, or as mixtures of several different compounds. In addition, the peptide(s) can be used as single therapeutic agents or in combination with other therapeutic agents. Drugs that could be usefully combined with these compounds include natural or synthetic corticosteroids, particularly prednisone and its derivatives, monoclonal antibodies targeting cells of the immune system or genes associated with the development or progression of fibrotic diseases,  
20 and small molecule inhibitors of cell division, protein synthesis, or mRNA transcription or translation, or inhibitors of immune cell differentiation or activation.

As implicated above, although the peptide(s) of the invention may be used in humans, they are also available for veterinary use in treating non-human mammalian  
25 subjects.

Further details of the invention will be apparent from the Experimental section as provided below.

**EXPERIMENTAL****In vitro****Cell Culture**

Two lots of primary human cardiac fibroblasts, derived from an 18-year old

Caucasian male (lot 1) and a 56-year old Caucasian male (lot 2), were provided by

- 10 Cambrex Bio Science (Walkersville, MD). Cells stained positive for  $\alpha$ -smooth muscle actin and vimentin antibodies corroborating their identity as cardiac fibroblasts and myofibroblasts. Both lots were used for the real-time RT-PCR studies; lot 1 was used for the microarray analysis. Cells at passage 3-5 were cultured in FGM containing 15% FBS. At confluence, cells were split and cultured in 6-well plates for  
15 24 h. Cells were changed to serum-free medium and treated with human BNP (American Peptide Company, Sunnyvale, CA) in the presence or absence of 5 ng/ml of TGF $\beta$  (R&D systems, Minneapolis, MN) for 6, 24 and 48 h. BNP and/or TGF $\beta$ -treated cells were also incubated in the presence of cGMP-dependent protein kinase (PKG ) inhibitor KT5823 (1  $\mu$ mol/L, Calbiochem, San Diego, CA), MAP  
20 kinase kinase (MEK) inhibitor U0126 (0.1-10  $\mu$ mol/L, Sigma, St. Louis, MO) or PD98059 (10  $\mu$ mol/L, Sigma) for 48 h. BNP (100 nmol/L) was added into the medium three times a day, such that the total calculated concentrations of exogenous BNP were 200 nmol/L, 600 nmol/L, and 900 nmol/L at 6, 24, and 48 h, respectively. This dosing protocol was necessary to maintain the levels of BNP in culture, since  
25 two distinct clearance pathways are responsible for the rapid degradation of natriuretic peptides. Without this treatment regime, it was found that BNP was significantly degraded in the cardiac fibroblasts; 50% of added BNP was metabolized within 24 h as measured by immunoreactive assays and cGMP stimulation cell bioassays.

5    **Intracellular cGMP assay**

Cells were cultured in 6-well plates for 24 h, then changed to serum-free medium, and pre-incubated with 0.1 mmol/L of 3-isobutyl-1-methylxanthine (IBMX) for 1 h before treating with  $10^{-9}$  -  $10^{-6}$  mol/L of BNP for 10 min. The medium was aspirated and 0.5 ml of cold PBS was added into each well. Cells were scraped and mixed with 2 volumes of cold ethanol by vortex. After a 5 min room temperature incubation, the precipitate was removed by centrifugation at 1500 x g for 10 min. The supernatant was dried by vacuum centrifugation, and levels of cGMP were measured using the cyclic GMP EIA kit (Cayman Chemical, Ann Arbor, MI).

15    **BrdU incorporation**

Cells were placed in 96-well plates and cultured for 24 h before changing to serum-free medium. Cells were treated with BNP (100 nmol/L, three times a day) in the presence or absence of 5 ng/ml of TGF- $\beta$  for 24 h. Subsequently, 10  $\mu$ mol/L of 5-bromo-2'-deoxyuridine (BrdU) was added to the cells, and they were cultured for an additional 24 h. BrdU incorporation was detected using the Cell Proliferation ELISA kit (Roche, Indianapolis, IN). Data was analyzed by ANOVA using the Newman-Keuls test to assess significance.

**cDNA Microarray**

25    Gene expression profiles were determined from cDNA microarrays containing 8,600 elements derived from clones isolated from normalized cDNA libraries or purchased from ResGen (Invitrogen Life Technologies, Carlsbad, CA). DNA for spotting was generated by PCR amplification using 5' amino-modified primers (BD Biosciences Clontech, Palo Alto, CA) derived from flanking vector sequences. Amplified DNA

5 was purified in a 96-well format using Qiagen's Qiaquick columns (Valencia, CA) according to the manufacturer's recommendations. Samples were eluted in Milli-Q purified water, dried to completion and resuspended in 7 µl of 3X SSC. A fluorescent assay using PicoGreen (Molecular Probes, Eugene, OR) was randomly performed on 12% of the PCR products to determine the average yield after purification; yields  
10 were ~1.5 µg of DNA which corresponds to a concentration of 214 µg/ml. Purified DNA was arrayed from 384-well microtiter plates onto lysine-coated glass slides using an OmniGrid II microarrayer (GeneMachines, San Carlos, CA). After printing, DNA was cross-linked to the glass with 65 mJoules UV irradiation and reactive amines were blocked by treatment with succinic anhydride.

15

### **mRNA Isolation, Labeling, and Hybridizations**

Total RNA was extracted from cells using Qiagen's RNeasy kit; two wells from a 6 well plate were pooled to yield a total of  $4 \times 10^5$  cells per treatment. RNA was amplified using a modified Eberwine protocol<sup>51</sup> that incorporated a polyA tail into the  
20 amplified RNA. Fluorescently-labeled cDNA probes were generated by reverse transcription of 4 µg of RNA with SuperScript II (Invitrogen Life Technologies, Carlsbad, CA) using anchored dT primers in the presence of Cy3 or Cy5 dUTP (Amersham, Piscataway, NJ). Labeled cDNA probe pairs were precipitated with ethanol and purified using Qiaquick columns. Twenty µg each of poly(A) DNA, yeast  
25 tRNA, and human Cot1 DNA (Applied Genetics, Melbourne, FL) was added to the eluant. The samples were dried to completion and resuspended in 12.5 µl 3XSSC, 0.1%SDS. Probes were heated to 95°C for 5 minutes, applied to the arrays under a 22 mm<sup>2</sup> cover slip and allowed to hybridize for at least 16 h at 65°C. The arrays were

5        washed at 55°C for 10 minutes in 2XSSC, 0.1% SDS, followed by two washes at room temperature in 1XSSC (10 min) and 0.2XSSC (15 min). Hybridization of each fluorophore was quantified using an Axon GenePix 4000A scanner.

### Microarray Data Analysis

10      Differential expression values were expressed as the ratio of the median of background-subtracted fluorescent intensity of the experimental RNA to the median of background-subtracted fluorescent intensity of the control RNA. For ratios greater than or equal to 1.0, the ratio was expressed as a positive value. For ratios less than 1.0, the ratio was expressed as the negative reciprocal (i.e., a ratio of 0.5 = -2.0).

15      Median ratios were normalized to 1.0 using two pools of 3000 randomly chosen cDNAs in each pool. Six replicates of each of the two pools were printed in 4 evenly distributed blocks of the array. Expression data was rejected if neither channel produced a signal of at least 2.0-fold over background. Differential expression ratios were determined as the mean of the two values from dye-swapped duplicates.

20      A statistically significant differential expression threshold value was empirically determined according to the method of Yang *et al.*<sup>53</sup> Seven independent self-self- hybridizations were performed in which the same RNA sample was labeled with Cy3 dUTP and Cy5 dUTP and hybridized to arrays containing 8,448 elements.

Only elements that gave a signal greater than 2.0-fold over background in at least one

25      of the dyes were considered in the analysis. Expression ratios were converted to  $\log_{(2)}$  and normalized to a mean = 0. Combining data from all hybridizations, the 3 standard deviation limit was equivalent to a 1.48 fold change (+/- 0.563  $\log_{(2)}$ ). Of the 45,633 elements analyzed, 0.85% fell outside this threshold. Therefore, at this standard deviation limit, genes with fold changes greater than 1.48 can be considered

5 differentially expressed at a 99% confidence level for any given hybridization. The percentage of elements that reproducibly fell outside the 3 standard deviation limit between any two duplicates of the seven self-self hybridizations was determined by comparing all 21 pair-wise combinations. An average of 18.9 elements +/- 15.6 per hybridization duplicated at a fold change of 1.5, corresponding to a false positive rate  
10 of 0.29%. At a fold change of 1.8, an average of 0.71 elements +/- 0.97 duplicated, corresponding to a false positive rate of 0.01%. A 1.8-fold threshold value was used to identify differentially expressed genes, except in Fig. 3, a 1.5-fold threshold value was used to designate "weak effects".

15 **Real-time RT-PCR**

Real-time RT-PCR<sup>18</sup> was performed in a two-step manner. cDNA synthesis and real-time detection were carried out in a PTC-100™ Thermal Cycler (MJ Research Inc, Waltham, MA) and an ABI Prism™ 7700 Sequence Detection System (Applied Biosystems, Foster City, CA), respectively. Random hexamers (Qiagen, Valencia, CA) were used to generate cDNA from 200ng RNA as described in Applied Biosystems User Bulletin #2. TaqMan™ PCR Core Reagent Kit or TaqMan™ Universal PCR Master Mix (Applied Biosystems) were used in subsequent PCR reactions according to the manufacturer's protocols. Relative quantitation of gene expression was performed using the relative standard curve method. All real-time  
20 RT-PCR reactions were performed in triplicate.

Sequence specific primers and probes were designed using Primer Express Version 2 software (Applied Biosystems). Sequences of primers and probes can be found in Table 1 below. Expression levels were normalized to 18S rRNA. The

5 selection of 18S rRNA as an endogenous control was based on an evaluation of the  $\Delta C_T$  levels (Applied Biosystems document # 4308134C) of 6 “housekeeping” genes: *Cyclophilin A*, *18S*, *GAPDH*,  *$\beta$ -actin*,  *$\beta$ -Glucuronidase*, and *Hypoxanthine Guanine Phosphoribosyl Transferase*. The  $\Delta C_T$  levels of *18S* did not differ significantly between treatment conditions; thus, they were expressed at constant levels between  
10 samples.

**Table 1.** Real-time PCR primers and probes.

### 15 Western blot analysis

| Gene                                           | Forward                           | Probe                                    | Reverse                           |
|------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|
| 18S                                            | 5'-CCCTTAGAGGTGAAATTCITG3'        | 5'-6FAM-ACCGGGCAAGACGGACCA-TAMRA-3'      | 5'-CATCTTGGCAAATGCITCG3'          |
| <i>Collagen</i>                                | 5'-CGAATTCGGCTTGAGCT-3'           | 5'-6FAM-TCGCCCTCTGTAACCTCCATCCC-TAMRA-3' | 5'-TCAGTTGGTTCCTGCTGCTG-3'        |
| <i>Fibronectin</i>                             | 5'-AGACTTACCTGTACACCCTGAATGACA-3' | 5'-6FAM-TGCGTCATGACGCCCTCA-TAMRA-3'      | 5'-CATGATACCAACCGAAC-3'           |
| <i>TIMP3</i>                                   | 5'-TGIGTCAIGIGTACCGCIGTAATAIGIG3' | 5'-6FAM-CACATCCCCATTTCGATCAA-TAMRA-3'    | 5'-CCCTAGAAGTAACTTCCCTCCTCATG-3'  |
| <i>PAI-1</i>                                   | 5'-CCCTGACTTACCGAGTCITCA-3        | 5'-6FAM-ACCAAGGCTCTCAAGGCTCCG-TAMRA-3'   | 5'-GTCACCCGATCTCACTTCTG-3'        |
| <i>TGF</i>                                     | 5'-TGIGTGAAGGACCCAAGGA-3'         | 5'-6FAM-CICCCCICCCCCCITACCGA-TAMRA-3'    | 5'-TAGTCCGCTGGCCAAAG-3'           |
| <i>IL11</i>                                    | 5'-AGAACACCGAATTAAATGIGTCATACA-3' | 5'-6FAM-AGACAAACCCCTCAAGGGA-TAMRA-3'     | 5'-CCCACTTACCAACCATCCA-3'         |
| <i>COX2</i>                                    | 5'-CCCTAAACATGATGTTCCATG-3'       | 5'-6FAM-TTCCCCACCTCTACCCATCAG-TAMRA-3'   | 5'-CCCCCCCCATAGATCTGCT-3'         |
| <i>IL6</i>                                     | 5'-ATGTTACCATGCCACCTCAGAT-3'      | 5'-6FAM-TGTCAGAACCTGTCCTACCCCA-TAMRA-3'  | 5'-TAACCTCATACTTITAGTCCTCATAGA-3' |
| <i><math>\alpha</math>-smooth muscle actin</i> | 5'-CCCAAGACACCTGTCACA-3'          | 5'-6FAM-CCACCAAGACCTCATCCGA-TAMRA-3'     | 5'-TGATCCGTTGACGGGTTCA-3'         |

Cells were cultured in 6-well plates and treated with BNP (100 nM, three times daily) in the presence or absence of 5 ng/ml TGF $\beta$  for 48 h. Lysis was induced with 0.2 ml of buffer containing 20 mM Tris-HCL, pH 7.9, 137 mM NaCl, 1% Triton X-100, 5 mM EDTA, 10 mM NaF, 1mM  $\beta$ -glycerophosphate, and protease inhibitor cocktail.

20 The protein concentration of each lysate was measured using coomassie protein reagent from PIERCE. Twenty  $\mu$ g of protein from each sample was loaded and electrophoresed on 4-12% gradient polyacrylamide gels and electrophoretically transferred to nitrocellulose membranes (Invitrogen, San Diego, CA). The membranes were incubated with rabbit anti-human Collagen 1 antibody (Cortex Biochem, San

5 Leandro, CA), HRP-conjugated anti-human Fibronectin antibody, or goat anti-Actin antibody (Santa Cruz Biotechnology, Santa Cruz, CA) in TBST buffer containing 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20, and 5% nonfat dried milk at 4°C for ~16 h. For ERK phosphorylation, cells were treated with 0.5 µmol/L BNP in the presence of 1 µmol/L KT5823 or 10 µmol/L U0126 for 15 min; the membranes  
10 were incubated with rabbit anti-human phospho-ERK 1/2 antibody or rabbit anti-human ERK 1/2 antibody (Cell Signaling, Beverly, MA). For secondary antibody detection, membranes were incubated with HRP-conjugated anti-rabbit antibody or anti-goat antibody at room temperature for 1 h and washed 3 times with TBST buffer. The blots were soaked in ECL Plus reagent for 5 min and exposed to KODAK x-ray  
15 film. Signals were identified and quantified using a Typhoon Scanner and Densitometer from Amersham Biosciences (Piscataway, NJ). Data was analyzed by ANOVA using the Newman-Keuls test to assess significance.

## Results

### 20 cGMP Production in Cardiac Fibroblasts

To determine if NPRA was expressed in the cultured fibroblast cells, cGMP accumulation assays were utilized. BNP dose-dependently induced intracellular cyclic GMP production in cardiac fibroblasts with an EC<sub>50</sub> of 50 nmol/L. These results are consistent with the report of Cao and Gardner showing NPRA expression  
25 in cardiac fibroblasts.

### **Effects of BNP on TGFβ-Induced Fibroblast Proliferation**

To examine the effects of TGFβ and BNP on cell proliferation, BrdU incorporation was measured in cardiac fibroblasts treated with TGFβ in the presence or absence of

5 BNP. TGF $\beta$  modestly increased (~50%) cardiac fibroblast proliferation, and BNP inhibited TGF $\beta$ -induced proliferation by ~65% (Figure 9).

### **Effects of BNP on TGF $\beta$ -Induced Gene Expression**

In order to determine the effects of BNP on gene expression profiles induced by  
10 TGF $\beta$  in cardiac fibroblasts, a microarray analysis was performed. Fluorescently-  
labeled cDNA probes were prepared from pooled mRNAs generated from duplicate  
wells of cells from four groups: unstimulated (control), TGF $\beta$ -treated, BNP-treated,  
and co-treated with TGF $\beta$  and BNP for 24 and 48 h (as described above). Arrays  
were probed in duplicate for a total of 12 hybridizations (6 at each time point): control  
15 compared to TGF $\beta$ -treated, TGF $\beta$ -treated compared to TGF $\beta$  + BNP-treated, and  
control compared to BNP-treated.

It was observed that BNP had no significant effects on gene expression in  
unstimulated human cardiac fibroblasts (Fig 1). In contrast, TGF $\beta$  induced 394 and  
501 gene expression changes at 24 and 48 h, respectively. These differentially  
20 expressed genes represent ~7-8% of the target genes on the array. Interestingly, BNP  
had dramatic effects on the gene expression changes induced by TGF $\beta$  (Fig 2).  
Approximately, 88% and 85% of TGF $\beta$ -regulated gene expression events were  
opposed by BNP at 24 and 48 h, respectively. These results demonstrate that BNP  
has strikingly different effects on gene expression in TGF $\beta$  stimulated fibroblasts  
25 compared to unstimulated cells.

### **Gene Expression Clustering**

To identify different gene expression patterns following TGF $\beta$  stimulation, we  
performed a hierarchical cluster analysis. A visualization of this analysis is shown in

5 Fig. 3. A complete listing of differentially expressed genes is provided in Table 2. The clustered expression patterns showed temporal effects of TGF $\beta$  responsive genes (compare A to B). In addition, the dramatic effects of BNP in opposing TGF $\beta$  induced up- and down-regulated gene changes were revealed in the clusters (compare A and B to C and D). The insignificant effects of BNP on gene expression  
10 in unstimulated cardiac fibroblast cells were evident in groups E and F.

Genes were grouped according to functional categories by using a combination of gene expression clustering and functional annotations. A cluster of genes involved in fibrosis and ECM production was up-regulated in cells stimulated with TGF $\beta$ ; these genes were down-regulated when treated with BNP (Fig. 4a). This  
15 cluster includes extracellular matrix components: *Collagen 1a2 (COL1A2)*, *Collagen 15A (COL15A)*, *Collagen 7A1 (COL7A1)*, *Microfibril-associated glycoprotein-2 (MAGP2)*, *Matrilin 3 (MATN3)*, *Fibrillin 1 (FBN1)*, and *Cartilage oligomeric matrix protein (COMP)*. Also included in the cluster are known markers of fibrosis such as *TIMP3*, *CTGF*, *IL11*, and *SERPINE1 (PAI-1)*. Furthermore, the cluster revealed that  
20 BNP opposed TGF $\beta$ -induction of myofibroblast markers including  *$\alpha$ -smooth muscle actin 2 (ACTA2)* and *non-muscle myosin heavy chain (MYH9)*.

Many genes involved in cell proliferation were also regulated by TGF $\beta$  and were opposed by BNP (Fig. 4B). For example, TGF $\beta$  induced the expression of positive regulators of cell proliferation, including *PDGFA*, *IGFBP10*, *IGF1*, and  
25 *Parathyroid hormone-like hormone (PTHLH)*. It was also found that TGF $\beta$  down-regulated both positive and negative regulators of proliferation, such as, *CDC25B* and *Cullin 5 (CUL5)*, respectively. All of these TGF $\beta$ -regulated gene events were opposed by BNP.

5 BNP affected TGF $\beta$ -induced genes involved in inflammation (Fig. 4C). For example, BNP reversed TGF $\beta$ -induction of *PTGS2 (COX2)*, *TNF  $\alpha$ -induced protein 6 (TNFAIP6)*, and *TNF superfamily, member 4 (TNFSF4)* (Fig 4C and data not shown). *TNFAIP6* and *TNFSF4* were not included in Fig 4C, since some of the data points at 48 h did not meet acceptable criteria (see Experimental); at 24 h both genes were  
10 elevated ~3-fold by TGF $\beta$  and opposed by BNP. TGF $\beta$  also down-regulated many pro-inflammatory genes including *IL1B*, *CCR2 (MCP1-R)*, *CXCL1 (GRO1)*, *CXCL3 (GRO3)*, and *CCL13 (MCP4)*, which were reversed by BNP. The significance of these inflammatory changes is discussed below.

15 **Table 2.** Expression data for differentially expressed genes in TGF $\beta$ -treated human cardiac fibroblasts. Median differential expression values are shown for each hybridization: control vs. TGF $\beta$  24 h (column 2); control vs. TGF $\beta$  48 h (column 3); TGF $\beta$  vs. TGF $\beta$  + BNP 24 h (column 4); TGF $\beta$  vs. TGF $\beta$  + BNP 48 h (column 5); control vs. BNP 24 h (column 6); and control vs. BNP 48 h (column 7).

| Clone ID   | TGF<br>24 h | TGF<br>BNP<br>24 h | BNP<br>24 h | TGF<br>48 h | TGF<br>BNP<br>48 h | BNP<br>48 h | Symbol | Name        | Accession |
|------------|-------------|--------------------|-------------|-------------|--------------------|-------------|--------|-------------|-----------|
| P00777_A03 | 2.5         | -2.8               | 1.1         | 1.5         | -1.6               | 1.1         |        | EST         |           |
| P00777_A04 | 8.9         | -5.7               | 1.2         | 3.3         | -2.4               | 1           |        | EST         |           |
| P00777_A12 | 2.1         | -2.4               | -1          | 1.8         | -1.9               | -1.1        |        | EST         |           |
| P01061_E01 | 2.7         | -3                 | 1           | 2.6         | -2.8               | -1          |        | EST         |           |
| P01061_B10 | -2.7        | 2.3                | 1.1         | -4          | 2.4                | -1.2        |        | EST         |           |
| P01077_A08 | -1.8        | 3.1                | 1.3         | -2.2        | 1.9                | 1.2         |        | No Sequence |           |
| P01111_A08 | -1.3        | 1.4                | 1.3         | -1.8        | 1.7                | 1.1         |        | EST         |           |
| P01113_E11 | -1.7        | 1.8                | 1.1         | -1.8        | 1.6                | -1          |        | EST         |           |
| P01111_F07 | -4.5        | 5.5                | 1.3         | -5.3        | 4.2                | 1.1         |        | EST         |           |
| P01111_A07 | 2           | -2.7               | 1.3         | 1.4         | -1.5               | -1.1        |        | EST         |           |
| P01110_G03 | -1.2        | 1.5                | 1.3         | -3.9        | 2.1                | 1.1         |        | No Sequence |           |
| P01108_G07 | 4.2         | -4.4               | -1.1        | 3.9         | -4.5               | -1          |        | EST         |           |
| P01099_G03 | -1.9        | 1.9                | 1.1         | -2.2        | 1.9                | 1.2         |        | EST         |           |
| P01113_B03 | 6.4         | -5.1               | 1           | 4.3         | -3.7               | -1          |        | EST         |           |
| P01080_A11 | 4           | -3                 | 1           | 4.2         | -4.1               | -1          |        | EST         |           |
| P01076_E01 | -1.7        | 1.8                | 1.1         | -1.8        | 1.8                | -1.1        |        | EST         |           |
| P01075_H09 | -3.1        | 3.6                | 1.4         | -2.9        | 3.2                | 1.4         |        | No Sequence |           |
| P01139_D10 | 3           | -2.6               | 1.1         | 2.1         | -2.1               | 1           |        | EST         |           |
| P01132_B01 | -2.1        | 2                  | 1           | -1.4        | 1.3                | 1           |        | EST         |           |
| P01123_H03 | 2.2         | -2.2               | 1.2         | 1.9         | -1.9               | 1.1         |        | EST         |           |
| P01117_D08 | -1.7        | 1.5                | 1.1         | -4.9        | 2.4                | -1          |        | EST         |           |
| P01115_F08 | -2.2        | 1.6                | -1          | -2.3        | 1.7                | -1          |        | EST         |           |
| P01081_F02 | 2.4         | -1.8               | 1.2         | 2.4         | -2.1               | 1.1         |        | No Sequence |           |
| P01087_A12 | 2.4         | -2                 | 1           | 2.6         | -2.6               | -1          |        | EST         |           |
| P01077_A02 | 2.2         | -2                 | 1           | 1.4         | -1.3               | -1          |        | No Sequence |           |

|            |      |      |      |      |      |      |             |                                                                                                        |
|------------|------|------|------|------|------|------|-------------|--------------------------------------------------------------------------------------------------------|
| P01136_G11 | -2   | 2.5  | 1.3  | -3   | 2.5  | 1    |             | EST                                                                                                    |
| P01130_B03 | -3.3 | 3.5  | 1.1  | -4.2 | 5.3  | 1.1  |             | EST                                                                                                    |
| P01124_A05 | -1.2 | -1   | 1.1  | -1.8 | 1.5  | 1    |             | EST                                                                                                    |
| P01124_A10 | 2.1  | -2   | -1   | 2.7  | -2.5 | -1.1 |             | EST                                                                                                    |
| P01124_B04 | -1.9 | 2    | 1.3  | -1.6 | 1.7  | 1.1  |             | EST                                                                                                    |
| P01120_G06 | -2.3 | 2.2  | -1.1 | -2.4 | 2.2  | -1.1 |             | EST                                                                                                    |
| P01117_B11 | 1.8  | -2.4 | 1    | 2.4  | -2   | 1    |             | EST                                                                                                    |
| P01116_A02 | -3.1 | 2.7  | 1.1  | -3.7 | 2.2  | -1.4 |             | EST                                                                                                    |
| P01088_C10 | 2.1  | -2   | -1   | 1.6  | -2.1 | -1.1 |             | EST                                                                                                    |
| P01093_C04 | 2.6  | -2.3 | 1    | 1.8  | -1.9 | -1   |             | EST                                                                                                    |
| P01095_H01 | -1.8 | 1.8  | 1    | -1.4 | 1.2  | 1    |             | EST                                                                                                    |
| P01099_D03 | 1.9  | -1.8 | 1.1  | 1.1  | -1.2 | 1.1  |             | EST                                                                                                    |
| P01100_A07 | 1    | -1   | 1.1  | -3   | 1.7  | -1.1 |             | EST                                                                                                    |
| P01100_D09 | -1.6 | 1.6  | -1   | -2.1 | 1.8  | -1.1 |             | EST                                                                                                    |
| P01101_C11 | -2.4 | 1.7  | -1   | -1.4 | 1.6  | 1    | No Sequence |                                                                                                        |
| P01101_E11 | -1.4 | 1.5  | 1.1  | -2   | 1.8  | -1   |             | EST                                                                                                    |
| P01103_H04 | -3.2 | 2.9  | 1.1  | -5.6 | 4.3  | -1   |             | EST                                                                                                    |
| P01104_A09 | -1.9 | 1.6  | 1.1  | -1.8 | 1.5  | 1    | No Sequence |                                                                                                        |
| P01104_E03 | -2.5 | 2.3  | -1   | -2.8 | 2    | -1.1 |             | EST                                                                                                    |
| P01104_G04 | 2.5  | -2   | -1   | 1.1  | -1.3 | -1.1 |             | EST                                                                                                    |
| P01104_G12 | -3.7 | 2.7  | -1.1 | -4.9 | 3.2  | -1   |             | EST                                                                                                    |
| P01105_A05 | 2.3  | -2.3 | 1.3  | 1.3  | -1.3 | 1    |             | EST                                                                                                    |
| P01105_D09 | 1.8  | -1.1 | 1.1  | 1.8  | -2.1 | -1   |             | EST                                                                                                    |
| P01109_A01 | -1.4 | 1.4  | 1.2  | -2.2 | 1.7  | 1.1  | A2M         | alpha-2-macroglobulin NM_000014                                                                        |
| P01109_G11 | 1.4  | -1   | 1.1  | 2    | -1.6 | 1    | ABCG1       | ATP-binding cassette, sub-family G (WHITE), member 1 NM_004915                                         |
| P01092_E08 | 2.3  | -2   | 1.2  | 1.5  | -1.3 | 1.1  | ACLY        | ATP citrate lyase NM_001096                                                                            |
| P01088_C02 | -1.9 | 1.8  | 1.2  | -2.1 | 2    | 1    | ACO1        | aconitase 1, soluble NM_002197                                                                         |
| P00777_G09 | 2.6  | -2.2 | -1.5 | 1    | 1    | -1.3 | ACTA1       | actin, alpha 1, skeletal muscle NM_001100                                                              |
| P01094_F04 | 2.6  | -2.5 | -1.4 | -1   | -1   | -1.4 | ACTA2       | actin, alpha 2, smooth muscle, aorta NM_001613                                                         |
| P01091_G04 | 1.9  | -1.6 | 1.1  | 1.2  | -1.3 | -1   | ACTR3       | ARP3 actin-related protein 3 homolog (yeast) NM_005721                                                 |
| P01096_D02 | -1.3 | 1.5  | 1.1  | -2.3 | 2.2  | 1    | ADAMTS1     | a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1 NM_006988 |
| P01097_D04 | 1.7  | -1.9 | -1   | 2.1  | -1.8 | -1.1 | ADAMTS6     | a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 6 NM_014273 |
| P01092_D03 | -6.5 | 6    | -1.1 | -6.3 | 6.5  | -1   | ADFP        | adipose differentiation-related protein NM_001122                                                      |
| P01070_D09 | -5   | 4.1  | 1.3  | -9.7 | 3.8  | 1.3  | ADH1B       | alcohol dehydrogenase IB (class I), beta polypeptide NM_000668                                         |
| P01134_D11 | -1.7 | 2    | 1.3  | -3.6 | 1.6  | 1.2  | ADH1C       | alcohol dehydrogenase 1C (class I), gamma polypeptide NM_000669                                        |
| P01070_D05 | -1.3 | -1.4 | 1.2  | -2.2 | 1.7  | 1.1  | ADH5        | alcohol dehydrogenase 5 (class III), chi polypeptide NM_000671                                         |
| P01094_D10 | -2.3 | 2.5  | 1.1  | -2.2 | 1.8  | -1   | ADORA2B     | adenosine A2b receptor NM_000676                                                                       |
| P01124_F09 | -1.5 | 1.6  | 1.1  | -1.8 | 1.9  | 1    | AHR         | aryl hydrocarbon receptor NM_001621                                                                    |
| P01101_B03 | -2.4 | 1    | 1    | -3   | 2.8  | 1.1  | AKAP2       | A kinase (PRKA) anchor protein 2 NM_007203                                                             |
| P01120_C03 | -1.9 | 2    | 1.2  | -1.2 | 1.5  | 1.2  | AKR1B1      | aldo-keto reductase family 1, member B1 (aldose reductase) NM_001628                                   |
| P01134_B08 | -2.7 | 2.6  | 1.1  | -1.4 | 1.9  | 1.2  | AKR1B10     | aldo-keto reductase family 1, member B10 (aldose reductase) NM_020299                                  |

|            |      |      |      |      |      |      |          |                                                                                                                                                  |           |
|------------|------|------|------|------|------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| P01069_C01 | -2.8 | 3.1  | 1.2  | -2.2 | 2.6  | 1.1  | AKR1C1   | aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)                           | NM_001353 |
| P01081_A11 | -2.3 | 3.3  | 1.6  | -2.2 | 1.9  | 1.3  | AKR1C2   | aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III) | NM_001354 |
| P01143_D10 | -2.8 | 3.2  | 1.3  | -2.1 | 2.7  | 1.1  | AKR1C2   | aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III) | NM_001354 |
| P01106_C11 | -2.3 | 2.8  | 1.2  | -2   | 2.5  | 1.1  | AKR1C3   | aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II)                                                          | NM_003739 |
| P01094_D12 | -2.8 | 3.6  | 1.2  | -2.5 | 1.7  | 1.2  | ALDH1A3  | aldehyde dehydrogenase 1 family, member A3                                                                                                       | NM_000693 |
| P01094_E01 | -1.4 | 1.8  | 1.1  | -2.1 | 1.6  | 1.1  | ALDH3A2  | aldehyde dehydrogenase 3 family, member A2                                                                                                       | NM_000382 |
| P01140_G11 | -1.9 | 2.7  | 1.4  | -2.5 | 1.8  | 1.1  | ALDH3A2  | aldehyde dehydrogenase 3 family, member A2                                                                                                       | NM_000382 |
| P01118_A12 | -1.9 | 1.6  | 1.1  | -2.6 | 2.2  | 1    | ALEX1    | ALEX1 protein                                                                                                                                    | NM_016608 |
| P01096_E12 | -2.4 | 2    | 1    | -2.1 | 2.2  | 1    | ANG      | angiogenin, ribonuclease, RNase A family, 5                                                                                                      | NM_001145 |
| P01145_E08 | -2   | 2.3  | 1.2  | -2.9 | 2.6  | -1   | ANGPT1   | angiopoietin 1                                                                                                                                   | NM_001146 |
| P01091_G02 | -1.2 | 1.5  | 1.2  | -2.7 | 2    | 1.1  | ANGPT2   | angiopoietin 2                                                                                                                                   | NM_001147 |
| P01094_D06 | -2.1 | 1.9  | -1   | -1.9 | 1.3  | -1.1 | ANK3     | ankyrin 3, node of Ranvier (ankyrin G)                                                                                                           | NM_001149 |
| P01128_A07 | -1.5 | 1.8  | 1.2  | -2.2 | 2.3  | 1.2  | AOX1     | aldehyde oxidase 1                                                                                                                               | NM_001159 |
| P01116_H05 | -1.1 | 1.4  | 1.2  | -2   | 1.8  | 1    | APELIN   | apelin; peptide ligand for APJ receptor                                                                                                          | NM_017413 |
| P01103_F06 | 2.4  | -2.4 | -1.1 | 1.4  | -1.5 | -1.1 | APG3     | autophagy Apg3p/Aut1p-like                                                                                                                       | NM_022488 |
| P01123_A07 | 3.2  | -3   | -1   | 1.5  | -1.8 | -1   | APOA1    | apolipoprotein A-I                                                                                                                               | NM_000039 |
| P01105_G06 | -2.2 | 1.8  | -1.1 | -4.5 | 5.7  | 1.1  | APOC1    | apolipoprotein C-I                                                                                                                               | NM_001645 |
| P01124_G03 | -1.3 | 1.4  | 1    | -2.4 | 2    | 1.1  | APOE     | apolipoprotein E                                                                                                                                 | NM_000041 |
| P01105_B02 | -1.6 | 1.8  | -1   | -2.9 | 1.9  | 1.2  | ARHGAP6  | Rho GTPase activating protein 6                                                                                                                  | NM_001174 |
| P01064_G03 | -1.1 | 1.3  | 1.1  | -2   | 1.6  | 1.2  | ARHGEF16 | Rho guanine exchange factor (GEF) 16                                                                                                             | NM_014448 |
| P01110_E10 | -2   | 2.1  | 1.2  | -2.3 | 1.9  | 1    | ARHGEF3  | Rho guanine nucleotide exchange factor (GEF) 3                                                                                                   | NM_019555 |
| P01142_C03 | -1.6 | 1.8  | 1.5  | -1.9 | 1.7  | 1.2  | ARHI     | ras homolog gene family, member I                                                                                                                | NM_004675 |
| P01138_A09 | 1.9  | -2.2 | -1.1 | 1.8  | -1.9 | -1.1 | ARL4     | ADP-ribosylation factor-like 4                                                                                                                   | NM_005738 |
| P01064_G12 | -1.7 | 1.8  | 1.1  | -1.8 | 1.6  | -1   | ARNT2    | aryl-hydrocarbon receptor nuclear translocator 2                                                                                                 | NM_014862 |
| P01088_H09 | -1.5 | 1.7  | 1.2  | -1.8 | 1.6  | 1.1  | ASAHI    | N-acylsphingosine amidohydrolase (acid ceramidase) 1                                                                                             | NM_004315 |
| P01105_F06 | 2.9  | -2.8 | 1.1  | 2.1  | -2.4 | -1.2 | ASNS     | asparagine synthetase                                                                                                                            | NM_001673 |
| P01070_E06 | 1.8  | -1.5 | -1.3 | 1.6  | -1.4 | 1    | ATF3     | activating transcription factor 3                                                                                                                | NM_001674 |
| P01122_G07 | -1.2 | 1.7  | 1.2  | -1.8 | 1.5  | 1.3  | AXIN2    | axin 2 (conductin, axil)                                                                                                                         | NM_004655 |
| P01115_D06 | -1.4 | 1.6  | 1    | -2   | 1.5  | -1.1 | B3GALT2  | UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 2                                                                                 | NM_003783 |
| P01128_A08 | -1.6 | 1.7  | 1    | -2.4 | 1.7  | -1   | B3GALT3  | UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase,                                                                                               | NM_003781 |

|            |      |      |      |      |      |      |          | polypeptide 3                                                                              |
|------------|------|------|------|------|------|------|----------|--------------------------------------------------------------------------------------------|
| P01095_F06 | 2.4  | -2.2 | 1.1  | 1.3  | -1.5 | -1   | BAI3     | brain-specific angiogenesis inhibitor 3 NM_001704                                          |
| P01094_C02 | -1.8 | 2    | 1.2  | -2.4 | 2.7  | -1   | BF       | B-factor, properdin NM_001710                                                              |
| P01134_E02 | -1.7 | 1.8  | 1    | -2.2 | 1.6  | -1   | BFSP1    | beaded filament structural protein 1, filensin NM_001195                                   |
| P01081_D08 | -1.2 | 1.7  | 1.2  | -3.5 | 1.8  | 1.2  | BIRC1    | baculoviral IAP repeat-containing 1 NM_004536                                              |
| P01094_B06 | -2.6 | 2.9  | 1.1  | -4   | 2.5  | -1   | BMP4     | bone morphogenetic protein 4 NM_001202                                                     |
| P01145_A02 | -3.2 | 2.3  | 1    | -3.6 | 3.2  | -1.1 | BNIP2    | BCL2/adenovirus E1B 19kDa interacting protein 2 NM_004330                                  |
| P01075_F05 | -1.5 | 1.5  | 1.2  | -1.8 | 2    | 1.2  | BRE      | brain and reproductive organ-expressed (TNFRSF1A modulator) NM_004899                      |
| P01124_B10 | -1.3 | 1.5  | 1.3  | -2.2 | 1.6  | 1.2  | BST1     | bone marrow stromal cell antigen 1 NM_004334                                               |
| P01094_B08 | -1.8 | 1.6  | -1.1 | -1.2 | 1.3  | -1.1 | BTD      | biotinidase NM_000060                                                                      |
| P01093_E08 | -2   | 1.5  | -1.1 | -1.9 | 2.7  | 1.1  | C1R      | complement component 1, r subcomponent NM_001733                                           |
| P01077_E12 | -1.4 | 1.6  | 1.1  | -1.8 | 1.9  | -1.1 | C1S      | complement component 1, s subcomponent NM_001734                                           |
| P01097_G03 | 1.9  | -1.7 | -1   | 1    | -1.5 | -1.1 | C20orf14 | chromosome 20 open reading frame 14 NM_012469                                              |
| P01140_A07 | 2.3  | -3.2 | -1   | 3    | -2.6 | -1   | C20orf97 | chromosome 20 open reading frame 97 NM_021158                                              |
| P01069_E02 | -1.7 | 1.6  | 1.1  | -3.3 | 3.2  | 1.1  | C6       | complement component 6 NM_000065                                                           |
| P01077_E10 | -3.1 | 2.9  | 1.1  | -8.2 | 4.7  | -1   | C7       | complement component 7 NM_000587                                                           |
| P01099_C10 | -1.8 | 2.1  | 1.2  | -2.7 | 3.5  | 1.1  | CA12     | carbonic anhydrase XII NM_001218                                                           |
| P01117_G05 | -3   | 2.4  | -1.1 | -2.2 | 2.3  | 1.1  | CAMK2B   | calcium/calmodulin-dependent protein kinase (CaM kinase) II beta NM_001220                 |
| P01114_A05 | -2.7 | 3.9  | 1.2  | -3.5 | 2.7  | 1    | CAMK2D   | calcium/calmodulin-dependent protein kinase (CaM kinase) II delta NM_001221                |
| P01080_B05 | -2.3 | 3    | 1.1  | -2.3 | 2.1  | 1.1  | CAMK2D   | calcium/calmodulin-dependent protein kinase (CaM kinase) II delta NM_001221                |
| P01063_E07 | -1.6 | 2    | 1.2  | -1.8 | 1.6  | 1.1  | CASP1    | caspase 1, apoptosis-related cysteine protease (interleukin 1, beta, convertase) NM_001223 |
| P01093_G08 | -2.4 | 2.3  | -1.2 | -2.1 | 2.4  | 1    | CAV1     | caveolin 1, caveolae protein, 22kDa NM_001753                                              |
| P01093_E04 | 1.8  | -1.7 | -1.1 | 1.6  | -1.9 | -1.1 | CBS      | cystathionine-beta-synthase NM_000071                                                      |
| P01064_D02 | -1.5 | 1.6  | -1.3 | -2.2 | 2.8  | -1.1 | CCL13    | chemokine (C-C motif) ligand 13 NM_005408                                                  |
| P01072_E08 | -1.3 | 1.4  | -1.2 | -2.2 | 3.2  | -1.1 | CCL7     | chemokine (C-C motif) ligand 7 NM_006273                                                   |
| P01127_H03 | 1.1  | 1.2  | -1.3 | -2   | 2.9  | -1   | CCL8     | chemokine (C-C motif) ligand 8 NM_005623                                                   |
| P01070_A04 | -1.4 | 1.9  | 1.2  | -3.2 | 2.4  | 1.1  | CCR2     | chemokine (C-C motif) receptor 2 NM_000647                                                 |
| P01138_B02 | -1.2 | 1.3  | 1.3  | -3.6 | 1.5  | 1    | CCRL1    | chemokine (C-C motif) receptor-like 1 NM_016557                                            |
| P01069_H09 | -1.9 | 1.9  | 1.3  | -3.6 | 1.8  | 1.2  | CD36     | CD36 antigen (collagen type I receptor, thrombospondin receptor) NM_000072                 |
| P01072_E03 | -2.8 | 2.7  | 1.2  | -2.9 | 2.8  | 1.2  | CDC25B   | cell division cycle 25B NM_004358                                                          |
| P01093_H07 | 2    | -4.3 | 1.2  | 2.1  | -2   | -1   | CDH2     | cadherin 2, type 1, N-cadherin (neuronal) NM_001792                                        |
| P01129_E07 | 1.7  | -1.4 | 1.1  | 2    | -1.9 | -1.1 | CDH4     | cadherin 4, type 1, R-cadherin (retinal) NM_001794                                         |

|            |      |      |      |      |      |      |          |                                                                                                               |           |
|------------|------|------|------|------|------|------|----------|---------------------------------------------------------------------------------------------------------------|-----------|
| P01130_H07 | 2.1  | -2.4 | -1.1 | 1.9  | -1.8 | -1   | CDH5     | cadherin 5, type 2, VE-cadherin (vascular epithelium)                                                         | NM_001795 |
| P01116_H02 | -3.3 | 2.1  | 1.1  | -2   | 2.4  | 1.1  | CDK5RAP2 | CDK5 regulatory subunit associated protein 2                                                                  | NM_018249 |
| P01102_B02 | -2.1 | 2.5  | 1    | -3.4 | 3.2  | -1.1 | CDSN     | corneodesmosin                                                                                                | NM_001264 |
| P01140_G02 | -1.4 | 1.3  | 1.1  | -2.9 | 2.4  | 1    | CEACAM5  | carcinoembryonic antigen-related cell adhesion molecule 5                                                     | NM_004363 |
| P01094_A06 | -1.6 | 1.3  | 1.3  | -4.2 | 2.9  | 1    | CEACAM5  | carcinoembryonic antigen-related cell adhesion molecule 5                                                     | NM_004363 |
| P01062_G02 | -1.3 | 1.5  | 1.3  | -2.9 | 2.1  | 1.1  | CEACAM6  | carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen)               | NM_002483 |
| P01099_B05 | -1.8 | 1.8  | 1.1  | -2.9 | 3    | -1.1 | CEACAM7  | carcinoembryonic antigen-related cell adhesion molecule 7                                                     | NM_006890 |
| P01090_E04 | -1.3 | 1.6  | 1.3  | -1.9 | 1.8  | -1   | CEBPD    | CCAAT/enhancer binding protein (C/EBP), delta                                                                 | NM_005195 |
| P01070_A01 | -2.6 | 3.1  | -1   | -9.2 | 9.2  | 1.1  | CHI3L1   | chitinase 3-like 1 (cartilage glycoprotein-39)                                                                | NM_001276 |
| P01125_G02 | -2.9 | 2    | 1    | -5   | 6.2  | 1    | CHI3L2   | chitinase 3-like 2                                                                                            | NM_004000 |
| P01134_F10 | 8    | -6.3 | 1.2  | 19.5 | -8   | 1.1  | CILP     | cartilage intermediate layer protein, nucleotide pyrophosphohydrolase                                         | NM_003613 |
| P01089_A12 | -1.9 | 2.1  | 1    | -2.1 | 2.1  | -1   | CITED2   | Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2                             | NM_006079 |
| P01076_A07 | 2.1  | -1.8 | -1   | 1.4  | -1.2 | 1.1  | CKAP4    | cytoskeleton-associated protein 4                                                                             | NM_006825 |
| P01104_C09 | 2.2  | -2.4 | 1.1  | 4.3  | -2.8 | 1    | CKLF     | chemokine-like factor                                                                                         | NM_016326 |
| P01103_G05 | -1.4 | 1.6  | 1.3  | -2.5 | 1.5  | 1.3  | CLDN1    | claudin 1                                                                                                     | NM_021101 |
| P01105_D03 | -3   | 2.7  | 1.3  | -2.6 | 2    | -1   | CLECSF2  | C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 2 (activation-induced) | NM_005127 |
| P01064_F09 | 2.2  | -1.5 | 1.2  | 1.2  | -1.2 | 1.1  | CNN1     | calponin 1, basic, smooth muscle                                                                              | NM_001299 |
| P01090_A03 | -1.1 | 1.3  | 1.2  | -2.2 | 1.6  | 1.1  | CNTNAP1  | contactin associated protein 1                                                                                | NM_003632 |
| P01069_F02 | 1.2  | 1.2  | 1.2  | 3.2  | -3   | 1    | COL15A1  | collagen, type XV, alpha 1                                                                                    | NM_001855 |
| P01077_E08 | 1.8  | -1.5 | 1    | 1.9  | -1.9 | -1   | COL1A2   | collagen, type I, alpha 2                                                                                     | NM_000089 |
| P01093_F03 | 1.7  | -2.3 | 1    | 1.9  | -2.1 | -1   | COL4A2   | collagen, type IV, alpha 2                                                                                    | NM_001846 |
| P01105_C12 | 1.8  | -1.5 | 1.4  | 3.1  | -2.3 | 1.1  | COL7A1   | collagen, type VII, alpha 1 (epidermolysis bullosa, dystrophic, dominant and recessive)                       | NM_000094 |
| P01120_G04 | 2.7  | -2.1 | 1.2  | 3.8  | -3.6 | 1.1  | COL8A2   | collagen, type VIII, alpha 2                                                                                  | M60832    |
| P01084_A12 | -4.9 | 4.7  | 1.1  | -9.9 | 6    | 1    | COLEC12  | collectin sub-family member 12                                                                                | NM_030781 |
| P01082_H06 | 1.3  | -1.3 | 1.2  | 3.3  | -2.4 | 1.2  | COMP     | cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)                  | NM_000095 |
| P01129_C12 | 1.4  | -1.5 | 1.3  | 2.6  | -1.6 | 1.3  | COMP     | cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)                  | NM_000095 |
| P01076_C09 | -2.2 | 2.7  | 1.2  | -2.1 | 1.6  | 1.1  | COPB     | coatomer protein complex, subunit beta                                                                        | NM_016451 |

|            |      |      |      |      |      |      |         |                                                                                |           |
|------------|------|------|------|------|------|------|---------|--------------------------------------------------------------------------------|-----------|
| P01085_D11 | -4   | 4.2  | 1.1  | -7.7 | 4.1  | 1.1  | CPA4    | carboxypeptidase A4                                                            | NM_016352 |
| P01104_A07 | -1.9 | 2    | 1.2  | -2.5 | 2.2  | 1    | CPD     | carboxypeptidase D                                                             | NM_001304 |
| P01077_G01 | 1.9  | -1.8 | 1.1  | 1.7  | -1.9 | 1.1  | CRABP2  | cellular retinoic acid binding protein 2                                       | NM_001878 |
| P01095_E03 | -1.8 | 1.8  | 1.2  | -2.1 | 2    | -1.1 | CREG    | cellular repressor of E1A-stimulated genes                                     | NM_003851 |
| P01124_E01 | -2.2 | 2.1  | 1    | -2.5 | 2.2  | -1   | CREM    | cAMP responsive element modulator                                              | NM_001881 |
| P01120_B01 | 1.8  | -1.6 | 1.2  | 3.9  | -3.4 | 1.1  | CRLF1   | cytokine receptor-like factor 1                                                | NM_004750 |
| P01120_D10 | -1.5 | 1.9  | 1.3  | -3.5 | 2.4  | 1.1  | CROT    | carnitine O-octanoyltransferase                                                | NM_021151 |
| P01124_F10 | -1.2 | 1.3  | 1.2  | -1.8 | 1.7  | 1.1  | CRYAA   | crystallin, alpha A                                                            | NM_000394 |
| P00777_A08 | -2   | 1.6  | 1.1  | -2.6 | 2.5  | -1.1 | CRYAB   | crystallin, alpha B                                                            | NM_001885 |
| P01077_E04 | -2.1 | 1.8  | 1.1  | -2.5 | 2.6  | -1.1 | CRYAB   | crystallin, alpha B                                                            | NM_001885 |
| P01125_B11 | -1.8 | 1.2  | 1.1  | -1.8 | 1.8  | 1    | CSF1    | colony stimulating factor 1 (macrophage)                                       | NM_000757 |
| P01108_G05 | 3.8  | -3   | 1.1  | 2.3  | -2.4 | 1    | CSPG2   | chondroitin sulfate proteoglycan 2 (versican)                                  | NM_004385 |
| P01075_F12 | -1.5 | 1.6  | 1.1  | -2   | 2    | 1.1  | CSRP2   | cysteine and glycine-rich protein 2                                            | NM_001321 |
| P01145_A03 | -2.1 | 2.4  | 1    | -3.7 | 3.4  | -1.1 | CST4    | cystatin S                                                                     | NM_001899 |
| P00777_D03 | 2.5  | -2   | 1.1  | 1.1  | -1.4 | -1.2 | CTGF    | connective tissue growth factor                                                | NM_001901 |
| P01077_D08 | 2.6  | -3.5 | -1.2 | 1.8  | -2.7 | -1.2 | CTGF    | connective tissue growth factor                                                | NM_001901 |
| P01069_D11 | 2    | -2.1 | 1.2  | 1.9  | -1.4 | 1.2  | CTH     | cystathionase (cystathione gamma-lyase)                                        | NM_001902 |
| P01099_B01 | -1.7 | 2    | 1.1  | -2   | 1.6  | -1   | CTNNAL1 | catenin (cadherin-associated protein), alpha-like 1                            | NM_003798 |
| P01093_G10 | -1.4 | 1.4  | 1.1  | -1.8 | 2    | 1    | CTSC    | cathepsin C                                                                    | NM_001814 |
| P01077_G03 | -1   | 1.3  | 1.2  | -1.8 | 1.7  | 1.2  | CTSH    | cathepsin H                                                                    | NM_004390 |
| P01069_H12 | -1.5 | 1.5  | 1.1  | -2.3 | 2.6  | -1   | CTSK    | cathepsin K (pycnodysostosis)                                                  | NM_000396 |
| P01093_G09 | -2.5 | 2.1  | 1.1  | -2   | 2.3  | -1   | CTSL    | cathepsin L                                                                    | NM_001912 |
| P01112_D02 | -1.6 | 1.8  | 1.2  | -2.9 | 2.1  | -1   | CUGBP2  | CUG triplet repeat, RNA binding protein 2                                      | NM_006561 |
| P01131_G04 | -1.3 | 1.6  | 1.3  | -2.2 | 1.7  | 1.3  | CUGBP2  | CUG triplet repeat, RNA binding protein 2                                      | NM_006561 |
| P01090_H01 | -2   | 1.8  | 1.3  | -1.5 | 1.9  | 1.3  | CUL5    | cullin 5                                                                       | NM_003478 |
| P01085_C05 | -3.8 | 3.4  | 1.1  | -5.5 | 5    | -1   | CXCL1   | chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) | NM_001511 |
| P01093_A02 | -3.7 | 3.1  | 1    | -5.8 | 5.4  | -1   | CXCL1   | chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) | NM_001511 |
| P01125_H11 | -2.4 | 2    | 1.1  | -2.3 | 2.1  | 1    | CXCL3   | chemokine (C-X-C motif) ligand 3                                               | NM_002090 |
| P01136_B01 | -4.5 | 4.4  | 1.1  | -8.4 | 10   | 1.1  | CXCL6   | chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)           | NM_002993 |
| P01069_D07 | -2.4 | 2.3  | 1.3  | -2   | 1.7  | 1    | CYB5    | cytochrome b-5                                                                 | NM_001914 |
| P00777_A11 | 2    | -2.5 | -1   | 1.8  | -2   | -1   | CYR61   | cysteine-rich, angiogenic inducer, 61                                          | NM_001554 |
| P00777_C11 | 1.8  | -2.5 | -1   | 1.8  | -1.9 | -1.1 | CYR61   | cysteine-rich, angiogenic inducer, 61                                          | NM_001554 |
| P00777_C12 | 2    | -2.6 | -1.1 | 1.9  | -1.9 | -1.1 | CYR61   | cysteine-rich, angiogenic inducer, 61                                          | NM_001554 |
| P01108_B04 | 2.3  | -2.4 | 1.1  | 1.9  | -1.9 | -1.1 | CYR61   | cysteine-rich, angiogenic inducer, 61                                          | NM_001554 |
| P01130_H03 | 2    | -2.4 | -1.1 | 1.9  | -1.8 | -1.1 | CYR61   | cysteine-rich, angiogenic inducer, 61                                          | NM_001554 |
| P01100_C06 | 2.2  | -2.4 | -1.1 | 1.8  | -1.9 | -1   | DACT1   | dapper homolog 1, antagonist of beta-catenin (xenopus)                         | NM_016651 |

|            |      |      |      |       |      |      |         |                                                                                                                          |           |
|------------|------|------|------|-------|------|------|---------|--------------------------------------------------------------------------------------------------------------------------|-----------|
| P01069_C07 | 1.7  | -1.4 | 1.1  | 2.3   | -2.1 | 1.1  | DAF     | decay accelerating factor for complement (CD55, Cromer blood group system)                                               | NM_000574 |
| P01129_B04 | -2.8 | 2.5  | 1.2  | -4.3  | 3.5  | 1    | DAPK1   | death-associated protein kinase 1                                                                                        | NM_004938 |
| P01092_G02 | -2.7 | 2.6  | 1.1  | -3.8  | 2.8  | 1.2  | DAPK1   | death-associated protein kinase 1                                                                                        | NM_004938 |
| P01065_A02 | -1.8 | 1.9  | -1   | -1.8  | 1.7  | -1.1 | DDX38   | DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 38                                                                          | NM_014003 |
| P01105_A10 | -3.7 | 2.9  | -1   | -7    | 5.4  | -1   | DKK1    | dickkopf homolog 1 ( <i>Xenopus laevis</i> )                                                                             | NM_012242 |
| P01113_E05 | 2.8  | -2.4 | -1.1 | 1.8   | -2.1 | -1.1 | DLC1    | deleted in liver cancer 1                                                                                                | NM_006094 |
| P01093_C11 | -1.8 | 1.9  | -1   | -4.5  | 3.3  | -1   | DPP4    | dipeptidylpeptidase 4 (CD26, adenosine deaminase complexing protein 2)                                                   | NM_001935 |
| P01073_G11 | -1.8 | 1.7  | 1    | -1.6  | 1.5  | 1    | DPYSL2  | dihydropyrimidinase-like 2                                                                                               | NM_001386 |
| P01090_F08 | 1.4  | -1.5 | -1.1 | 2     | -1.9 | -1.1 | DSCR1   | Down syndrome critical region gene 1                                                                                     | NM_004414 |
| P01122_D11 | 1.7  | -1.2 | 1.3  | 1.9   | -2.1 | 1.3  | EBAF    | endometrial bleeding associated factor (left-right determination, factor A; transforming growth factor beta superfamily) | NM_003240 |
| P01123_B11 | -1.8 | 1.7  | 1    | -2.3  | 1.9  | 1    | ECM2    | extracellular matrix protein 2, female organ and adipocyte specific                                                      | NM_001393 |
| P01124_E11 | -1.6 | 1.9  | 1.2  | -2.1  | 1.9  | 1.2  | EDG1    | endothelial differentiation, sphingolipid G-protein-coupled receptor, 1                                                  | NM_001400 |
| P01103_G08 | -1.8 | 1.8  | 1.1  | -2.4  | 2.4  | 1    | EDG2    | endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 2                                         | NM_001401 |
| P01093_C01 | -2.1 | 1.5  | -1.1 | -2.9  | 1.9  | -1.3 | EDN1    | endothelin 1                                                                                                             | NM_001955 |
| P01105_H10 | -1.9 | 1.9  | 1    | -2.2  | 2.3  | -1   | EFEMP1  | EGF-containing fibulin-like extracellular matrix protein 1                                                               | NM_004105 |
| P01064_A03 | -1.4 | 1.9  | 1.2  | -2    | 2    | 1.1  | EFNB3   | ephrin-B3                                                                                                                | NM_001406 |
| P01093_B07 | -1.8 | 1.7  | 1.3  | -1.5  | 1.3  | 1.1  | EGR2    | early growth response 2 (Krox-20 homolog, <i>Drosophila</i> )                                                            | NM_000399 |
| P01121_C03 | -2   | 2    | 1.2  | -1.2  | 1.5  | 1.2  | EHD3    | EH-domain containing 3                                                                                                   | NM_014600 |
| P01065_E02 | 1.9  | -1.6 | 1.2  | 3.4   | -3.3 | 1.1  | ELN     | elastin (supravalvular aortic stenosis, Williams-Beuren syndrome)                                                        | NM_000501 |
| P01096_H11 | -3.4 | 3.7  | 1.1  | -3.5  | 3.2  | -1   | EPAS1   | endothelial PAS domain protein 1                                                                                         | NM_001430 |
| P01102_E11 | -2   | 2.1  | 1.2  | -2.5  | 2.1  | -1   | EPB41L2 | erythrocyte membrane protein band 4.1-like 2                                                                             | NM_001431 |
| P01104_A05 | -2.3 | 3.3  | 1.1  | -2.2  | 2.3  | 1.1  | EPI64   | EBP50-PDZ interactor of 64 kD                                                                                            | NM_031937 |
| P01130_H01 | -2   | 2    | 1.1  | -2.5  | 3.9  | -1   | EPOR    | erythropoietin receptor                                                                                                  | NM_000121 |
| P01077_A07 | -1.6 | 2.7  | 1.4  | -2.3  | 2.1  | 1.2  | ETV5    | ets variant gene 5 (ets-related molecule)                                                                                | NM_004454 |
| P01097_C06 | -5.9 | 4.9  | -1   | -15.8 | 14   | -1.1 | EVI2B   | ecotropic viral integration site 2B                                                                                      | NM_006495 |
| P01077_A01 | 1.8  | -1.8 | 1.1  | 1.3   | -1.4 | 1    | EXT1    | exostoses (multiple) 1                                                                                                   | NM_000127 |
| P01069_F04 | -1.7 | 1.6  | 1.2  | -2.1  | 1.7  | 1.1  | F2R     | coagulation factor II (thrombin) receptor                                                                                | NM_001992 |
| P01128_B02 | 1.8  | -1.9 | 1.1  | -1    | -1.1 | -1   | F3      | coagulation factor III (thromboplastin, tissue factor)                                                                   | NM_001993 |
| P01132_G03 | 1.9  | -1.7 | 1.2  | 1.8   | -1.6 | 1.1  | FACL3   | fatty-acid-Coenzyme A ligase, long-chain 3                                                                               | NM_004457 |
| P01096_A03 | 1.8  | -2   | 1    | 1.8   | -2   | 1    | FACL3   | fatty-acid-Coenzyme A ligase, long-chain 3                                                                               | NM_004457 |

|            |      |      |      |      |      |      |           |                                                                                   |           |
|------------|------|------|------|------|------|------|-----------|-----------------------------------------------------------------------------------|-----------|
| P01083_D07 | 2.2  | -1.6 | 1.2  | 1.4  | -1.3 | 1    | FADS1     | fatty acid desaturase 1                                                           | NM_013402 |
| P01093_B02 | -2   | 1.6  | 1.1  | -3.4 | 3.4  | 1    | FBLN1     | fibulin 1                                                                         | NM_001996 |
| P01123_A08 | 3.4  | -3   | 1.2  | 1.6  | -1.9 | -1   | FBLN5     | fibulin 5                                                                         | NM_006329 |
| P01068_H09 | 1.4  | -1.4 | 1    | 2.2  | -2   | -1   | FBN1      | fibrillin 1 (Marfan syndrome)                                                     | NM_000138 |
| P01084_E10 | 1.9  | -1.7 | 1.3  | -1.1 | -1.1 | 1.1  | FGF18     | fibroblast growth factor 18                                                       | NM_003862 |
| P01093_B03 | -4.2 | 4.9  | 1.2  | -5.9 | 5.6  | 1    | FGF7      | fibroblast growth factor 7<br>(keratinocyte growth factor)                        | NM_002009 |
| P01092_C04 | -3.2 | 2.9  | 1.1  | -3.1 | 2.3  | -1   | FGL2      | fibrinogen-like 2                                                                 | NM_006682 |
| P01126_F06 | -5   | 5.2  | -1.1 | -6.5 | 4.9  | -1.1 | FMO2      | flavin containing<br>monooxygenase 2                                              | NM_001460 |
| P01078_G11 | -1.9 | 2.1  | 1.2  | -3.1 | 2.2  | 1.1  | FMO3      | flavin containing<br>monooxygenase 3                                              | NM_006894 |
| P01088_F09 | 2    | -1.8 | 1.2  | 1.4  | -1.5 | 1.1  | FOXD1     | forkhead box D1                                                                   | NM_004472 |
| P01120_B03 | -1.8 | 1.9  | 1.3  | -1.2 | 1.5  | 1.2  | FRA       | Fos-related antigen                                                               | NM_024816 |
| P01138_B06 | -1.8 | 1.5  | 1    | -1.4 | 1.8  | -1   | FTHL17    | ferritin, heavy polypeptide-like 17                                               | NM_031894 |
| P01068_G11 | 2.7  | -2.1 | 1.3  | 2.4  | -2.5 | 1.1  | FUT4      | fucosyltransferase 4 (alpha<br>(1,3) fucosyltransferase,<br>myeloid-specific)     | NM_002033 |
| P01077_A05 | 1.8  | -1.5 | 1    | 1.5  | -1.2 | 1    | FYN       | FYN oncogene related to<br>SRC, FGR, YES                                          | NM_002037 |
| P01124_G01 | -1.9 | 1.9  | 1.1  | -1.4 | 1.2  | 1    | FZD7      | frizzled homolog 7<br>(Drosophila)                                                | NM_003507 |
| P01083_B09 | 3.2  | -4   | -1   | 4.2  | -3.5 | -1   | GABARAPL2 | GABA(A) receptor-associated<br>protein-like 2                                     | NM_007285 |
| P01106_B05 | -1.8 | 1.5  | 1    | -1.1 | 2.4  | 1.2  | GALT      | galactose-1-phosphate<br>uridylyltransferase                                      | NM_000155 |
| P01092_G07 | 2.5  | -2.3 | -1.2 | 1.8  | -2.2 | -1.1 | GARS      | glycyl-tRNA synthetase                                                            | NM_002047 |
| P01085_D09 | -2.9 | 4.1  | 1.4  | -5.3 | 2.6  | 1.3  | GAS1      | growth arrest-specific 1                                                          | NM_002048 |
| P01063_E09 | -2   | 1.7  | 1.1  | -2   | 1.8  | 1.2  | GBP2      | guanylate binding protein 2,<br>interferon-inducible                              | NM_004120 |
| P01123_D12 | -1.9 | 1.4  | -1.2 | -2.7 | 2.7  | -1.1 | GBP2      | guanylate binding protein 2,<br>interferon-inducible                              | NM_004120 |
| P01135_C03 | -1.8 | 1.9  | 1.2  | -2.7 | 2.4  | 1.1  | GCNT1     | glucosaminyl (N-acetyl)<br>transferase 1, core 2 (beta-<br>1,6-N-                 | NM_001490 |
|            |      |      |      |      |      |      |           | acetylglucosaminyltransferase)                                                    |           |
| P01127_B01 | -2.8 | 2.2  | -1.1 | -2.9 | 3.7  | -1   | GDF5      | growth differentiation factor 5<br>(cartilage-derived<br>morphogenetic protein-1) | NM_000557 |
| P01065_A06 | -1.7 | 1.7  | 1.1  | -1.8 | 1.6  | 1    | GGA3      | golgi associated, gamma<br>adaptin ear containing, ARF<br>binding protein 3       | NM_014001 |
| P01076_H05 | -2   | 2.4  | 1.2  | -2.7 | 1.9  | 1.1  | GM2A      | GM2 ganglioside activator<br>protein                                              | NM_000405 |
| P01062_E04 | -2.3 | 1.9  | -1   | -2.1 | 1.9  | -1   | GNPI      | glucosamine-6-phosphate<br>isomerase                                              | NM_005471 |
| P01138_C10 | -2.1 | 2.2  | -1.1 | -2   | 1.9  | -1.1 | GNPI      | glucosamine-6-phosphate<br>isomerase                                              | NM_005471 |
| P01074_D06 | 3.5  | -4   | -1   | 5.7  | -3.6 | 1.1  | GOLGA4    | golgi autoantigen, golgin<br>subfamily a, 4                                       | NM_002078 |
| P01083_C04 | -1.1 | 1.2  | 1.2  | -1.8 | 1.5  | 1.1  | GOLPH2    | golgi phosphoprotein 2                                                            | NM_016548 |
| P01125_G10 | 1.8  | -1.9 | -1   | 1.6  | -1.9 | -1.1 | GOLPH4    | golgi phosphoprotein 4                                                            | NM_014498 |
| P01131_F08 | 1.7  | -2.3 | -1.2 | 1.8  | -1.6 | -1.2 | GOT1      | glutamic-oxaloacetic<br>transaminase 1, soluble<br>(aspartate aminotransferase 1) | NM_002079 |
| P01080_A01 | -1.2 | 1.9  | 1.3  | -3.6 | 1.8  | 1.2  | GPM6B     | glycoprotein M6B                                                                  | NM_005278 |
| P01082_E09 | -2.2 | 2.3  | 1.2  | -2.9 | 2.3  | 1    | GPNMB     | glycoprotein (transmembrane)<br>nmb                                               | NM_002510 |
| P01087_G08 | -3   | 2.3  | 1    | -4.9 | 4    | -1   | GPNMB     | glycoprotein (transmembrane)<br>nmb                                               | NM_002510 |
| P01140_E04 | -1.8 | 1.6  | 1.3  | -2.5 | 1.8  | 1.1  | GPRK5     | G protein-coupled receptor                                                        | NM_005308 |

|            |      |       |      |      |      |      |         |                                                                                                          |
|------------|------|-------|------|------|------|------|---------|----------------------------------------------------------------------------------------------------------|
|            |      |       |      |      |      |      |         | kinase 5                                                                                                 |
| P01068_E08 | -3.2 | 1.8   | -1.1 | -1.9 | 2.9  | 1.1  | GSTM1   | glutathione S-transferase M1 NM_000561                                                                   |
| P01068_E09 | -1.8 | 1.5   | 1.1  | -1.7 | 2.3  | 1.1  | GSTM3   | glutathione S-transferase M3 NM_000849                                                                   |
| P01086_A10 | -2.4 | 1.5   | 1.1  | -1.9 | 2.7  | 1.1  | GSTM5   | glutathione S-transferase M5 NM_000851                                                                   |
| P01080_C03 | 1.7  | -1.8  | 1.1  | 2.1  | -1.9 | -1   | GTPBP2  | GTP binding protein 2 NM_019096                                                                          |
| P01108_A05 | -1.2 | 1.5   | 1.2  | -1.9 | 1.7  | 1.1  | GYPC    | glycophorin C (Gerbich blood group) NM_002101                                                            |
| P01121_B02 | -1.6 | 1.2   | -1   | -1.9 | 1.9  | 1.1  | HAGE    | DEAD-box protein NM_018665                                                                               |
| P01133_H11 | -1.2 | 1.8   | 1.4  | -2.1 | 1.7  | 1.2  | HAS2    | hyaluronan synthase 2 NM_005328                                                                          |
| P01101_C10 | -1.8 | 1.6   | -1   | -1.4 | 1.5  | -1   | HEBP1   | heme binding protein 1 NM_015987                                                                         |
| P01137_B02 | 1.8  | -1.5  | 1    | 1.6  | -1.3 | 1    | HERPUD1 | homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 NM_014685 |
| P01136_A05 | 2    | -2.1  | 1.1  | 2    | -1.8 | -1   | HERPUD1 | homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 NM_014685 |
| P01083_G12 | 1.6  | -1.1  | 1.1  | 2.2  | -1.5 | 1.2  | HEYL    | hairy/enhancer-of-split related with YRPW motif-like NM_014571                                           |
| P01126_B01 | -1.3 | 1.4   | 1.1  | -1.8 | 1.8  | -1   | HFL1    | H factor (complement)-like 1 NM_002113                                                                   |
| P01075_H10 | -3.6 | 6.2   | 1.3  | -5.3 | 3.8  | 1.3  | HGF     | hepatocyte growth factor (hepatopoietin A; scatter factor) NM_000601                                     |
| P01110_C10 | 1.9  | -1.6  | 1.3  | 1.3  | -1.2 | 1.1  | HMGCR   | 3-hydroxy-3-methylglutaryl-Coenzyme A reductase NM_000859                                                |
| P01112_G07 | 2    | -1.7  | 1.3  | -1   | -1.1 | -1   | HMGCS1  | 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) NM_002130                                     |
| P01064_F02 | -2   | 2.6   | 1.1  | -3.1 | 3    | 1    | HNMT    | histamine N-methyltransferase NM_006895                                                                  |
| P01078_F05 | -2.1 | 2.4   | 1.2  | -2.1 | 2.6  | 1.1  | HPN     | hepsin (transmembrane protease, serine 1) NM_002151                                                      |
| P01107_H06 | 1.8  | -1.9  | -1.2 | 1.4  | -1.7 | -1.3 | IARS    | isoleucine-tRNA synthetase NM_002161                                                                     |
| P01100_C10 | -1.2 | 1.5   | 1.3  | -1.8 | 1.7  | 1.1  | ICOS    | inducible T-cell co-stimulator NM_012092                                                                 |
| P01124_A06 | -1.7 | 2     | 1.3  | -1.8 | 1.7  | -1   | ID2     | inhibitor of DNA binding 2, dominant negative helix-loop-helix protein NM_002166                         |
| P01072_H03 | 1.8  | -1.6  | 1.1  | 1.6  | -1.6 | 1.2  | ID4     | inhibitor of DNA binding 4, dominant negative helix-loop-helix protein NM_001546                         |
| P01088_C01 | -2.4 | 2.2   | 1    | -2.5 | 2.2  | -1   | IDH2    | isocitrate dehydrogenase 2 (NADP+), mitochondrial NM_002168                                              |
| P01130_F01 | 4.5  | -2.9  | 1.3  | 1.8  | -1.7 | 1    | IGF1    | insulin-like growth factor 1 (somatomedin C) NM_000618                                                   |
| P01063_D10 | 2.1  | 1     | 1.2  | 3.8  | -1.9 | 1.3  | IGF1    | insulin-like growth factor 1 (somatomedin C) NM_000618                                                   |
| P00777_D09 | -2.6 | 2.2   | 1.1  | -2.9 | 3.2  | 1.2  | IGFBP4  | insulin-like growth factor binding protein 4 NM_001552                                                   |
| P01130_B02 | 12.3 | -11.1 | 1.2  | 6.1  | -5.4 | 1.1  | IL11    | interleukin 11 NM_000641                                                                                 |
| P01088_D05 | -2   | 2     | 1.2  | -1.8 | 1.4  | 1.1  | IL1B    | interleukin 1, beta NM_000576                                                                            |
| P01063_E06 | -3   | 3.3   | 1.1  | -6.7 | 6.1  | 1.1  | IL1R1   | interleukin 1 receptor, type I NM_000877                                                                 |
| P01110_E12 | -1.4 | 2.3   | 1.3  | -2.5 | 1.5  | 1.1  | IL1R1   | interleukin 1 receptor, type I NM_000877                                                                 |
| P01145_A04 | -3   | 2.4   | -1   | -4.2 | 2.7  | -1   | IL6ST   | interleukin 6 signal transducer (gp130, oncostatin M receptor) NM_002184                                 |
| P01091_B03 | -1.9 | 1.9   | -1   | -1.3 | 1.3  | 1    | IMPA2   | inositol(myo)-1(or 4)-monophosphatase 2 NM_014214                                                        |
| P01063_E03 | 1.7  | -1.7  | -1.2 | 2.4  | -1.7 | 1.1  | INDO    | indoleamine-pyrole 2,3 dioxygenase NM_002164                                                             |
| P01082_F07 | 2.1  | -2.6  | -1.1 | 2.2  | -1.5 | 1.2  | INHBA   | inhibin, beta A (activin A, activin AB alpha polypeptide) NM_002192                                      |

|            |      |      |      |      |      |      |          |                                                                                                                              |           |
|------------|------|------|------|------|------|------|----------|------------------------------------------------------------------------------------------------------------------------------|-----------|
| P01130_D09 | 2.1  | -1.7 | -1   | 1.7  | -1.7 | -1.1 | INPP4B   | inositol polyphosphate-4-phosphatase, type II, 105kDa                                                                        | NM_003866 |
| P01067_B04 | 2    | -1.7 | 1.2  | 1.6  | -1.3 | 1.1  | INSIG1   | insulin induced gene 1                                                                                                       | NM_005542 |
| P01074_G10 | -1.7 | 1.7  | -1   | -4.7 | 3.1  | -1.1 | IQGAP2   | IQ motif containing GTPase activating protein 2                                                                              | NM_006633 |
| P01061_E02 | 2.6  | -2.6 | 1    | 2.4  | -2.5 | -1   | ISGF3G   | interferon-stimulated transcription factor 3, gamma 48kDa                                                                    | NM_006084 |
| P01140_B08 | 1.8  | -1.7 | 1.2  | 3    | -1.8 | 1    | ITGA11   | integrin, alpha 11                                                                                                           | NM_012211 |
| P01088_C11 | -1.5 | 1.8  | 1.2  | -1.8 | 1.9  | 1.1  | ITGAM    | integrin, alpha M (complement component receptor 3, alpha; also known as CD11b (p170), macrophage antigen alpha polypeptide) | NM_000632 |
| P01081_E02 | 2.3  | -1.8 | 1.2  | 2.2  | -2.2 | 1    | JUNB     | jun B proto-oncogene                                                                                                         | NM_002229 |
| P01072_G01 | 1.6  | -1.5 | 1.2  | 1.9  | -1.6 | 1.1  | JUP      | junction plakoglobin                                                                                                         | NM_002230 |
| P01079_A01 | -1.9 | 2.1  | -1.1 | -1.5 | 1.5  | -1   | JWA      | vitamin A responsive; cytoskeleton related                                                                                   | NM_006407 |
| P01122_A09 | 1.1  | 1.3  | 1.2  | -1.9 | 1.6  | 1.1  | KCNE3    | potassium voltage-gated channel, Isk-related family, member 3                                                                | NM_005472 |
| P01113_F02 | -1.8 | 1.9  | 1.2  | -2.4 | 2.3  | 1.1  | KHDRBS3  | KH domain containing, RNA binding, signal transduction associated 3                                                          | NM_006558 |
| P01074_B01 | -1.6 | 1.2  | 1.1  | -1.9 | 1.7  | 1    | KIAA0102 | KIAA0102 gene product                                                                                                        | NM_014752 |
| P01104_A04 | -3.2 | 3.8  | -1   | -3   | 3.4  | -1   | KIAA1049 | KIAA1049 protein                                                                                                             | NM_014972 |
| P01120_B02 | -1.6 | 1.5  | 1.1  | -1.8 | 1.7  | 1    | KIF1B    | kinesin family member 1B                                                                                                     | NM_015074 |
| P01088_C06 | -1.6 | 1.6  | 1.2  | -1.9 | 1.8  | 1    | KRT4     | keratin 4                                                                                                                    | NM_002272 |
| P01085_D06 | -1.8 | 1.7  | 1.2  | -3.8 | 4.1  | 1    | LAMA4    | laminin, alpha 4                                                                                                             | NM_002290 |
| P01131_H02 | -1.4 | 1.4  | 1.1  | -2   | 1.9  | -1.1 | LAMC1    | laminin, gamma 1 (formerly LAMB2)                                                                                            | NM_002293 |
| P01131_H10 | -2.4 | 1.8  | -1.1 | -2.1 | 1.5  | 1    | LCN2     | lipocalin 2 (oncogene 24p3)                                                                                                  | NM_005564 |
| P01100_H05 | -2.8 | 2.7  | 1.2  | -5   | 2.7  | 1    | LEPR     | leptin receptor                                                                                                              | NM_002303 |
| P01088_B02 | -2.3 | 2.4  | 1.1  | -2.6 | 2.1  | -1   | LGALS3   | lectin, galactoside-binding, soluble, 3 (galectin 3)                                                                         | NM_002306 |
| P01081_B11 | -3.5 | 1.3  | 1.1  | -4.6 | 4.4  | 1    | LHFP     | lipoma HMGIC fusion partner                                                                                                  | NM_005780 |
| P01107_D06 | 2.2  | -2   | -1   | 1.7  | -1.8 | -1.1 | LIMK2    | LIM domain kinase 2                                                                                                          | NM_005569 |
| P01085_G06 | 1.2  | -1.4 | -1.1 | 1.9  | -2.1 | -1   | LMO7     | LIM domain only 7                                                                                                            | NM_005358 |
| P01085_D05 | -2.1 | 2.2  | 1.2  | -3.9 | 3.7  | 1.1  | LOC56270 | hypothetical protein 628                                                                                                     | NM_019613 |
| P01082_E01 | 2.1  | -1.5 | 1.2  | 1.8  | -1.6 | 1.2  | LOX      | lysyl oxidase                                                                                                                | NM_002317 |
| P01083_H02 | -1.4 | 1.5  | 1.1  | -2   | 2    | 1    | LPHN2    | latrophilin 2                                                                                                                | NM_012302 |
| P01131_D06 | -1.6 | 1.7  | 1.2  | -2.4 | 1.8  | 1.2  | LRP4     | low density lipoprotein receptor-related protein 4                                                                           | AB011540  |
| P01072_F03 | 1.8  | -1.2 | -1   | 2.2  | -1.6 | -1   | LTBP2    | latent transforming growth factor beta binding protein 2                                                                     | NM_000428 |
| P01088_C04 | -2.3 | 2.3  | 1.1  | -4.4 | 4.7  | 1.1  | LTF      | lactotransferrin                                                                                                             | NM_002343 |
| P01063_A11 | -2.3 | 2.4  | -1   | -4.8 | 3.9  | -1   | LUM      | lumican                                                                                                                      | NM_002345 |
| P01135_G05 | -2.4 | 2.4  | 1.2  | -1.7 | 1.6  | -1   | LY96     | lymphocyte antigen 96                                                                                                        | NM_015364 |
| P01085_C04 | -2   | 1.8  | 1.2  | -2   | 1.5  | 1    | MADH3    | MAD, mothers against decapentaplegic homolog 3 (Drosophila)                                                                  | NM_005902 |
| P01091_G10 | 1.8  | -1.4 | 1.2  | 2.2  | -2.1 | 1.2  | MADH7    | MAD, mothers against decapentaplegic homolog 7 (Drosophila)                                                                  | NM_005904 |
| P01089_C01 | 1.2  | -1.2 | -1   | 1.8  | -1.6 | -1.2 | MAGP2    | Microfibril-associated glycoprotein-2                                                                                        | NM_003480 |
| P01084_A09 | 1.8  | -1.6 | 1.2  | 1.4  | -1.6 | -1   | MAP3K2   | mitogen-activated protein kinase kinase kinase 2                                                                             | NM_006609 |
| P01073_E08 | -2   | 2.4  | -1   | -2.3 | 1.8  | -1   | MAP3K5   | mitogen-activated protein kinase kinase kinase 5                                                                             | NM_005923 |

|            |      |      |      |      |      |      |         |                                                                                                    |           |
|------------|------|------|------|------|------|------|---------|----------------------------------------------------------------------------------------------------|-----------|
| P01066_F10 | 2    | -2   | 1.1  | 1.9  | -1.7 | 1.1  | MAPK7   | mitogen-activated protein kinase 7                                                                 | NM_002749 |
| P01076_B12 | 1.9  | -2.1 | -1.1 | 1.7  | -1.7 | -1.1 | MAPRE2  | microtubule-associated protein, RP/EB family, member 2                                             | NM_014268 |
| P01134_C04 | 3.1  | -2.1 | 1.1  | 2.8  | -3.3 | -1   | MATN3   | matrilin 3                                                                                         | NM_002381 |
| P01145_A05 | -1.7 | 1.9  | -1   | -2.6 | 2.1  | -1   | ME1     | malic enzyme 1, NADP(+) -dependent, cytosolic                                                      | NM_002395 |
| P01072_D11 | -3.3 | 3.7  | -1   | -3.5 | 3.1  | 1    | MEST    | mesoderm specific transcript homolog (mouse)                                                       | NM_002402 |
| P01121_F04 | -1.9 | 2.1  | 1.3  | -2.1 | 1.8  | 1    | MGC1203 | hypothetical protein MGC1203                                                                       | NM_024296 |
| P01068_F12 | -2.9 | 2.8  | 1.1  | -2.6 | 2.4  | -1   | MGST1   | microsomal glutathione S-transferase 1                                                             | NM_020300 |
| P01091_B06 | -1.8 | 1.6  | -1   | -1.5 | 1.6  | -1.1 | MGST2   | microsomal glutathione S-transferase 2                                                             | NM_002413 |
| P01099_H09 | -2.4 | 2.3  | 1.1  | -2.4 | 2    | 1.2  | MID1    | midline 1 (Opitz/BBB syndrome)                                                                     | NM_000381 |
| P01062_H05 | -1.4 | 2.2  | 1.3  | -2.4 | 2.4  | 1.3  | MME     | membrane metallo-endopeptidase (neutral endopeptidase,                                             | NM_000902 |
| P01125_H08 | 1    | 1    | 1.1  | 2.6  | -2.1 | -1   | MMP11   | enkephalinase, CALLA, CD10) matrix metalloproteinase 11 (stromelysin 3)                            | NM_005940 |
| P01072_D02 | 2.8  | -2.6 | -1.3 | 1.7  | -2   | -1.2 | MTHFD2  | methylene tetrahydrofolate dehydrogenase (NAD+ dependent), methenyltetrahydrofolate cyclohydrolase | NM_006636 |
| P01125_A10 | -1.6 | 1.6  | 1.2  | -1.8 | 1.5  | 1.1  | MTMR4   | myotubularin related protein 4                                                                     | NM_004687 |
| P01130_C09 | 1.9  | -1.7 | 1.3  | 1.1  | -1.1 | 1.1  | MUCDHL  | mucin and cadherin-like                                                                            | NM_017717 |
| P01102_A12 | 1.4  | -1.3 | 1.2  | 2.5  | -1.6 | 1.1  | MVK     | mevalonate kinase (mevalonic aciduria)                                                             | NM_000431 |
| P01133_F05 | 1.9  | -1.8 | 1    | 1.4  | -1.4 | -1.1 | MYH9    | myosin, heavy polypeptide 9, non-muscle                                                            | NM_002473 |
| P01100_B07 | -2   | 2.4  | 1.1  | -5.5 | 2.6  | -1.1 | MYOZ2   | myozenin 2                                                                                         | NM_016599 |
| P01072_C06 | -1.6 | 1.6  | 1    | -2.6 | 2.6  | 1.1  | NCK1    | NCK adaptor protein 1                                                                              | NM_006153 |
| P01086_B12 | -1.2 | 1.4  | -1   | -1.8 | 1.6  | -1.1 | NCOA3   | nuclear receptor coactivator 3                                                                     | NM_006534 |
| P01135_C12 | 3.3  | -3   | 1.3  | 3.1  | -2.1 | 1.2  | NEDD9   | neural precursor cell expressed, developmentally down-regulated 9                                  | NM_006403 |
| P01112_A08 | 2.5  | -2.1 | 1.2  | 1.7  | -1.8 | 1.1  | NET-6   | transmembrane 4 superfamily member tetraspan NET-6                                                 | NM_014399 |
| P01103_E02 | -1.7 | 2.1  | 1.2  | -2.5 | 2.1  | -1   | NFIA    | nuclear factor I/A                                                                                 | AL096888  |
| P01073_E06 | -1.9 | 1.9  | 1    | -2.1 | 1.8  | -1.1 | NFIB    | nuclear factor I/B                                                                                 | NM_005596 |
| P01064_C02 | -1.9 | 2    | 1.2  | -3.3 | 2.5  | 1    | NID2    | nidogen 2 (osteonidogen)                                                                           | NM_007361 |
| P01131_E08 | 2.3  | -1.6 | 1.3  | 5.1  | -3   | 1.3  | NINJ2   | ninjurin 2                                                                                         | NM_016533 |
| P01072_D01 | 2.2  | -2.2 | 1.1  | 2.2  | -2.1 | -1   | NK4     | natural killer cell transcript 4                                                                   | NM_004221 |
| P01121_G06 | -2.2 | 2.1  | -1.1 | -2.5 | 2.2  | -1.1 | NOL3    | nucleolar protein 3 (apoptosis repressor with CARD domain)                                         | NM_003946 |
| P01104_C08 | 6.9  | -6.1 | 1.1  | 5.8  | -5.8 | 1.1  | NOX4    | NADPH oxidase 4                                                                                    | NM_016931 |
| P01107_D11 | -1.7 | 1.6  | -1   | -1.8 | 1.8  | 1    | NPC2    | Niemann-Pick disease, type C2                                                                      | NM_006432 |
| P01132_G06 | 2.4  | -2   | 1.3  | 1.5  | -1.6 | 1.1  | NPR3    | natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)           | NM_000908 |
| P01096_F08 | -1.5 | 1.6  | 1.2  | -2.1 | 2    | 1.1  | NPTX2   | neuronal pentraxin II                                                                              | NM_002523 |
| P01126_E07 | -1.5 | 2    | 1.2  | -2   | 1.7  | 1.1  | NR2F2   | nuclear receptor subfamily 2, group F, member 2                                                    | NM_021005 |
| P01064_G11 | -1.5 | 1.6  | 1    | -2.1 | 1.5  | -1   | NRCAM   | neuronal cell adhesion molecule                                                                    | NM_005010 |

|            |      |      |      |      |      |      |         |                                                                          |           |
|------------|------|------|------|------|------|------|---------|--------------------------------------------------------------------------|-----------|
| P01097_E11 | 1.9  | -1.8 | 1.1  | 1.6  | -1.8 | -1   | NS1-BP  | NS1-binding protein                                                      | NM_006469 |
| P01103_C04 | 2.4  | -2.2 | -1   | 1.3  | -1.5 | -1   | NUDT3   | nudix (nucleoside diphosphate linked moiety X)-type motif 3              | NM_006703 |
| P01072_B11 | 2.6  | -2.6 | -1.1 | 2.3  | -2.3 | -1.2 | ODC1    | ornithine decarboxylase 1                                                | NM_002539 |
| P01082_E10 | -1.4 | 2    | 1.3  | -5.7 | 1.9  | 1.2  | OGN     | osteoglycin (osteoinductive factor, mimecan)                             | NM_014057 |
| P01119_G07 | -2.1 | 2.2  | 1.1  | -2.2 | 1.6  | -1   | OSBPL1A | oxysterol binding protein-like 1A                                        | NM_018030 |
| P01075_F01 | 2.3  | -1.6 | -1   | 3.9  | -3.7 | -1   | OSF-2   | osteoblast specific factor 2 (fasciclin I-like)                          | NM_006475 |
| P01129_A10 | 2.2  | -1.6 | -1   | 4.1  | -3.6 | -1   | OSF-2   | osteoblast specific factor 2 (fasciclin I-like)                          | NM_006475 |
| P01126_B11 | -2   | 1.5  | -1.2 | 1.1  | 1.7  | 1.2  | OXA1L   | oxidase (cytochrome c) assembly 1-like                                   | NM_005015 |
| P01071_D09 | -1.9 | 1.6  | -1.1 | 1.1  | 1.7  | 1.3  | OXA1L   | oxidase (cytochrome c) assembly 1-like                                   | NM_005015 |
| P01085_C08 | -1.3 | 1.3  | 1.1  | -2.2 | 1.6  | -1   | OXTR    | oxytocin receptor                                                        | NM_000916 |
| P01125_D04 | 2.1  | -1.7 | 1.2  | 4.2  | -2.3 | 1.3  | PACE4   | paired basic amino acid cleaving system 4                                | NM_002570 |
| P01090_D03 | -1.4 | 1.2  | -1   | -2.4 | 1.8  | -1.2 | PARG1   | PTPL1-associated RhoGAP 1                                                | NM_004815 |
| P01122_G06 | 2.6  | -2.4 | 1.1  | 1.9  | -2   | -1   | PAWR    | PRKC, apoptosis, WT1, regulator                                          | NM_002583 |
| P01120_F04 | -1.8 | 2.3  | 1.3  | -2   | 1.7  | 1.1  | PBF     | papillomavirus regulatory factor PRF-1                                   | NM_018660 |
| P01071_G08 | -2   | 1.5  | -1   | -1.4 | 1.7  | 1    | PBP     | prostatic binding protein                                                | NM_002567 |
| P01064_A09 | 1.1  | -1.2 | 1.2  | 1.9  | -1.5 | 1.2  | PCDH1   | protocadherin 1 (cadherin-like 1)                                        | NM_002587 |
| P01066_G05 | -1.4 | 1.6  | 1.3  | -3.2 | 2.4  | 1.2  | PDE1A   | phosphodiesterase 1A, calmodulin-dependent                               | NM_005019 |
| P01128_B03 | 1.8  | -1.7 | 1.1  | -1.1 | -1   | -1   | PDE5A   | phosphodiesterase 5A, cGMP-specific                                      | NM_001083 |
| P01087_E02 | 3.4  | -2.4 | 1.1  | 3    | -3.7 | -1   | PDGFA   | platelet-derived growth factor alpha polypeptide                         | NM_002607 |
| P01081_F07 | -2.3 | 2.1  | 1.1  | -2.2 | 2.1  | 1.1  | PDGFRA  | platelet-derived growth factor receptor, alpha polypeptide               | NM_006206 |
| P01142_D01 | -1.1 | -1.8 | 1.2  | -2.2 | 1.9  | 1.2  | PDGFRL  | platelet-derived growth factor receptor-like                             | NM_006207 |
| P01064_G02 | 1.3  | -1.1 | 1.3  | 2.3  | -2   | 1.2  | PDGFRL  | platelet-derived growth factor receptor-like                             | NM_006207 |
| P01137_F04 | -1.8 | 2    | 1.1  | -2   | 1.4  | 1.1  | PDP     | pyruvate dehydrogenase phosphatase                                       | NM_018444 |
| P01071_H07 | 1.8  | -1.9 | 1    | 1.3  | -1   | 1.1  | PFKP    | phosphofructokinase, platelet                                            | NM_002627 |
| P01064_H07 | -1.8 | 1.7  | 1    | -1.6 | 1.5  | 1    | PHF3    | PHD finger protein 3                                                     | NM_015153 |
| P01131_G12 | 1.2  | -1   | 1.2  | 1.8  | -1.7 | 1.2  | PIGB    | phosphatidylinositol glycan, class B                                     | NM_004855 |
| P01074_H07 | -1.8 | 1.9  | 1.2  | -1.9 | 1.6  | 1    | PIK3R1  | phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha) | AF279367  |
| P01068_A02 | -2.4 | 1.7  | -1.1 | -1.4 | 2.1  | 1    | PIR     | Pirin                                                                    | NM_003662 |
| P01112_H01 | 1.8  | -1.6 | 1.4  | 1.3  | -1.4 | -1   | PIST    | PDZ/coiled-coil domain binding partner for the rho-family GTPase TC10    | NM_020399 |
| P01118_H09 | -2.4 | 2.1  | -1   | -1.8 | 1.9  | 1    | PITPNM  | phosphatidylinositol transfer protein, membrane-associated               | NM_004910 |
| P01110_G02 | -1.3 | 1.6  | 1.3  | -4   | 2    | 1    | PKIB    | protein kinase (cAMP-dependent, catalytic) inhibitor beta                | NM_032471 |
| P01146_A11 | 1.4  | -1.5 | -1   | 1.8  | -1.9 | -1   | PLA2G4C | phospholipase A2, group IVC (cytosolic, calcium-independent)             | NM_003706 |
| P01124_G10 | 3    | -2.5 | 1    | 2.5  | -3.2 | -1.2 | PLA2R1  | phospholipase A2 receptor 1, 180kDa                                      | NM_007366 |

|            |      |      |      |      |      |      |        |                                                                                             |           |
|------------|------|------|------|------|------|------|--------|---------------------------------------------------------------------------------------------|-----------|
| P01070_G08 | 1.8  | -1.7 | -1   | 1.9  | -2.3 | -1.1 | PLAU   | plasminogen activator,<br>urokinase                                                         | NM_002658 |
| P01064_F01 | -1.8 | 2.3  | 1.2  | -1.7 | 1.9  | 1.2  | PLCL1  | phospholipase C-like 1                                                                      | NM_006226 |
| P01118_E04 | 2.4  | -1.8 | 1.3  | 2.3  | -1.9 | 1.1  | PLEK2  | pleckstrin 2                                                                                | NM_016445 |
| P01072_A03 | 5.2  | -5.1 | 1.3  | 2.1  | -1.6 | 1.2  | PLN    | phospholamban                                                                               | NM_002667 |
| P01084_A08 | 2.8  | -2.2 | 1.1  | 1.9  | -1.8 | 1.1  | PLOD2  | procollagen-lysine, 2-<br>oxoglutarate 5-dioxygenase<br>(lysine hydroxylase) 2              | NM_000935 |
| P01063_E04 | 1.6  | -1.7 | -1.2 | 2.4  | -1.6 | 1.1  | PLP2   | proteolipid protein 2 (colonic<br>epithelium-enriched)                                      | NM_002668 |
| P01130_B04 | -3.6 | 4.3  | 1    | -5.6 | 5.1  | 1.1  | PMP2   | peripheral myelin protein 2                                                                 | NM_002677 |
| P01131_C08 | -2.2 | 1.6  | 1.1  | -3.4 | 2.3  | 1.1  | PNUTL2 | peanut-like 2 ( <i>Drosophila</i> )                                                         | NM_004574 |
| P01106_F02 | 1.5  | -1.3 | 1.2  | 1.8  | -1.7 | 1.1  | PODXL  | podocalyxin-like                                                                            | NM_005397 |
| P01074_B08 | 2.8  | -1.8 | 1.2  | 2.2  | -2.8 | 1.1  | POLD3  | polymerase (DNA directed),<br>delta 3                                                       | BC020587  |
| P01080_A04 | -1.3 | 1.4  | 1    | -1.8 | 1.5  | 1.1  | PP     | pyrophosphatase (inorganic)                                                                 | NM_021129 |
| P01123_E01 | -2.9 | 3.2  | 1.3  | -3.1 | 2.8  | 1.3  | PPAP2B | phosphatidic acid phosphatase<br>type 2B                                                    | NM_003713 |
| P01064_B12 | -1.5 | 1.7  | 1.2  | -2.2 | 1.5  | -1   | PPARG  | peroxisome proliferative<br>activated receptor, gamma                                       | NM_005037 |
| P01136_D03 | -5.4 | 3.3  | 1.1  | -5.3 | 4.2  | -1   | PPL    | periplakin                                                                                  | NM_002705 |
| P01131_H04 | 1.2  | -1.4 | -1.2 | 2    | -1.6 | -1.2 | PPP2R4 | protein phosphatase 2A,<br>regulatory subunit B' (PR 53)                                    | NM_021131 |
| P01087_D04 | -1.2 | 1.3  | -1.1 | -1.9 | 1.5  | -1.1 | PRKCM  | protein kinase C, mu                                                                        | NM_002742 |
| P01128_H07 | 2.3  | -2.2 | 1.3  | 1.4  | -1.4 | 1.1  | PRPS1  | phosphoribosyl pyrophosphate<br>synthetase 1                                                | NM_002764 |
| P01062_F06 | -1.6 | 1.5  | 1.1  | -4.4 | 3.6  | 1    | PSG1   | pregnancy specific beta-1-<br>glycoprotein 1                                                | NM_006905 |
| P01133_G04 | -2   | 1.9  | 1.2  | -5.5 | 4.8  | -1   | PSG1   | pregnancy specific beta-1-<br>glycoprotein 1                                                | NM_006905 |
| P01131_G08 | -1.4 | 1.4  | 1.2  | -2.6 | 2.6  | 1.1  | PSG11  | pregnancy specific beta-1-<br>glycoprotein 11                                               | NM_002785 |
| P01141_B07 | -1.4 | 1.8  | 1.3  | -4.1 | 4    | 1.1  | PSG4   | pregnancy specific beta-1-<br>glycoprotein 4                                                | NM_002780 |
| P01079_F07 | -1.5 | 1.5  | 1.1  | -2   | 1.5  | -1   | PTGER4 | prostaglandin E receptor 4<br>(subtype EP4)                                                 | NM_000958 |
| P01131_C07 | -2.8 | 1.7  | -1.1 | -2.2 | 1.8  | -1.1 | PTGIS  | prostaglandin I2 (prostacyclin)<br>synthase                                                 | NM_000961 |
| P01102_D10 | 2.3  | -2.8 | -1.1 | 1.1  | -1.2 | -1.1 | PTGS1  | prostaglandin-endoperoxide<br>synthase 1 (prostaglandin G/H<br>synthase and cyclooxygenase) | NM_000962 |
| P01087_D05 | 3    | -2.6 | 1.1  | 1.3  | -1.2 | -1.1 | PTGS2  | prostaglandin-endoperoxide<br>synthase 2 (prostaglandin G/H<br>synthase and cyclooxygenase) | NM_000963 |
| P01106_G06 | 1.8  | -1.5 | 1.2  | 3.1  | -1.5 | 1.1  | PTHLH  | parathyroid hormone-like<br>hormone                                                         | NM_002820 |
| P01071_G12 | -1.9 | 1.4  | -1   | -3.7 | 3.6  | -1.1 | PTN    | pleiotrophin (heparin binding<br>growth factor 8, neurite<br>growth-promoting factor 1)     | NM_002825 |
| P01128_H08 | -2.3 | 2.4  | 1.1  | -1.5 | 1.3  | -1   | PTTG1  | pituitary tumor-transforming 1                                                              | NM_004219 |
| P01095_A03 | -2.4 | 2.4  | 1.2  | -1.4 | 1.2  | 1    | PTTG1  | pituitary tumor-transforming 1                                                              | NM_004219 |
| P01097_G06 | -1.7 | 1.7  | -1   | -2.2 | 1.6  | -1   | PUS1   | pseudouridylate synthase 1                                                                  | NM_025215 |
| P01076_C04 | 2.5  | -1.7 | 1.2  | 3.1  | -2.6 | 1.2  | QPCT   | glutaminyl-peptide<br>cyclotransferase (glutaminyl<br>cyclase)                              | NM_012413 |
| P01129_C05 | -2.1 | 1.8  | -1   | -1.5 | 2.1  | 1.2  | RAB13  | RAB13, member RAS<br>oncogene family                                                        | NM_002870 |
| P01115_G01 | -1.8 | 1.5  | 1.1  | -1.6 | 2.2  | 1.2  | RAB13  | RAB13, member RAS<br>oncogene family                                                        | NM_002870 |
| P01110_E09 | 1.4  | -1.2 | 1.2  | 1.8  | -1.6 | 1    | RAI    | RelA-associated inhibitor                                                                   | NM_006663 |
| P01100_E02 | -1.5 | 1.5  | 1.1  | -3.3 | 2.7  | 1    | RAI3   | retinoic acid induced 3                                                                     | NM_003979 |

|            |      |      |      |      |      |      |         |                                                                                                      |           |
|------------|------|------|------|------|------|------|---------|------------------------------------------------------------------------------------------------------|-----------|
| P01082_A01 | -2.4 | 1.8  | 1.1  | -2.6 | 2.3  | 1.1  | RARRES3 | retinoic acid receptor responder (tazarotene induced) 3                                              | NM_004585 |
| P01117_H10 | -1.8 | 1.6  | 1.1  | -2.5 | 2    | 1    | RASSF5  | Ras association (RalGDS/AF-6) domain family 5                                                        | NM_031437 |
| P01108_C07 | 1.4  | -1.4 | 1.1  | 2.5  | -1.9 | 1.2  | RBP1    | retinol binding protein 1, cellular                                                                  | NM_002899 |
| P01136_C04 | 2.6  | -1.8 | 1.1  | 2.3  | -1.6 | 1.2  | RGS2    | regulator of G-protein signalling 2, 24kDa                                                           | NM_002923 |
| P01145_A10 | -1.2 | 1.2  | -1.1 | -2   | 1.6  | -1.1 | RGS4    | regulator of G-protein signalling 4                                                                  | NM_005613 |
| P01090_D02 | -1.3 | 1.2  | -1.1 | -3   | 1.9  | -1.3 | RGS4    | regulator of G-protein signalling 4                                                                  | NM_005613 |
| P01081_H10 | -2.2 | 1.6  | 1    | -6.7 | 4.7  | -1   | RGS5    | regulator of G-protein signalling 5                                                                  | NM_003617 |
| P01071_E04 | -1.9 | 1.4  | -1.1 | -3.8 | 3.2  | -1.1 | RNASE1  | ribonuclease, RNase A family, 1 (pancreatic)                                                         | NM_002933 |
| P01088_G09 | -1   | 1    | 1    | -1.8 | 1.8  | -1.1 | RPL5    | ribosomal protein L5                                                                                 | NM_000969 |
| P01127_E10 | 1.8  | -1.6 | 1.1  | 1.7  | -1.5 | -1   | RRAS    | related RAS viral (r-ras) oncogene homolog                                                           | NM_006270 |
| P01122_B03 | -2   | 2    | 1.1  | -2.4 | 3.1  | 1.2  | RRP4    | homolog of Yeast RRP4 (ribosomal RNA processing 4), 3'-5'-exoribonuclease                            | NM_014285 |
| P01104_D09 | 2.1  | -1.7 | 1.1  | 2    | -1.8 | 1    | RTP801  | HIF-1 responsive RTP801                                                                              | NM_019058 |
| P01121_G04 | 2.1  | -1.8 | 1.1  | 4.1  | -3.2 | 1.1  | RUVBL2  | RuvB-like 2 (E. coli)                                                                                | NM_006666 |
| P01087_B06 | -1.4 | 1    | -1.2 | -1.9 | 2.4  | -1.2 | S100A10 | S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11))           | NM_002966 |
| P01064_F10 | 1.5  | -1.5 | -1.3 | 1.8  | -1.5 | -1.2 | S100A11 | S100 calcium binding protein A11 (calgizzarin)                                                       | NM_005620 |
| P00777_A05 | -1.9 | 1.7  | 1.1  | -2.3 | 2.4  | 1.1  | S100A4  | S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog) | NM_002961 |
| P00777_A06 | -1.9 | 1.8  | 1.1  | -2.6 | 2.7  | 1.1  | S100A4  | S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog) | NM_002961 |
| P01143_A11 | -1.7 | 1.7  | 1.1  | -2.4 | 2.4  | 1.1  | S100A4  | S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog) | NM_002961 |
| P01141_F03 | 1.5  | -1.2 | 1.3  | 3.9  | -1.7 | 1.3  | SAA2    | serum amyloid A2                                                                                     | NM_030754 |
| P01061_F04 | -3.1 | 4    | 1.3  | -2.2 | 2.8  | 1.3  | SAT     | spermidine/spermine N1-acetyltransferase                                                             | NM_002970 |
| P01124_B03 | -2.9 | 3.7  | 1.4  | -2.1 | 2.5  | 1.4  | SAT     | spermidine/spermine N1-acetyltransferase                                                             | NM_002970 |
| P01140_G05 | 2    | -2.1 | 1.1  | 1.3  | -1.3 | -1   | SC5DL   | sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, fungal)-like                                  | NM_006918 |
| P01066_H04 | 4.1  | -2.7 | 1.2  | 3    | -2   | 1.2  | SCD     | stearoyl-CoA desaturase (delta-9-desaturase)                                                         | NM_005063 |
| P01140_D11 | 4.7  | -3.8 | 1.2  | 3.5  | -2.4 | 1    | SCD     | stearoyl-CoA desaturase (delta-9-desaturase)                                                         | NM_005063 |
| P01119_B12 | -1.6 | 1.9  | 1.2  | -3.9 | 2.3  | 1.1  | SCDGF-B | spinal cord-derived growth factor-B                                                                  | NM_025208 |
| P01087_A04 | -1.1 | 1.3  | 1.2  | -4   | 2    | 1.2  | SCG2    | secretogranin II (chromogranin C)                                                                    | NM_003469 |
| P01096_B12 | 2.6  | -1.9 | 1.2  | 2.8  | -2.5 | -1   | SCRG1   | scrapie responsive protein 1                                                                         | NM_007281 |
| P01071_B04 | -1.7 | 1.7  | -1.1 | -2.6 | 2.3  | 1    | SDC4    | syndecan 4 (amphiglycan, ryudocan)                                                                   | NM_002999 |
| P01063_H09 | -1.8 | 1.7  | 1    | -1.8 | 1.6  | -1   | SDCBP   | syndecan binding protein (syntenin)                                                                  | NM_005625 |

|            |      |      |      |      |      |      |          |                                                                                                              |           |
|------------|------|------|------|------|------|------|----------|--------------------------------------------------------------------------------------------------------------|-----------|
| P01076_C05 | 1.8  | -1.5 | 1.2  | 1    | -1.2 | -1   | SEC23A   | Sec23 homolog A (S. cerevisiae)                                                                              | NM_006364 |
| P01096_G04 | -3.6 | 2.5  | -1   | -3   | 6    | 1.3  | SELENBP1 | selenium binding protein 1                                                                                   | NM_003944 |
| P01119_G09 | -3.2 | 2.4  | 1.1  | -2.5 | 5.8  | 1.4  | SELENBP1 | selenium binding protein 1                                                                                   | NM_003944 |
| P01076_B03 | -1.6 | 1.4  | -1   | -2   | 1.5  | -1.1 | SEPP1    | selenoprotein P, plasma, 1                                                                                   | NM_005410 |
| P01062_D11 | 3    | -2.9 | -1   | 4.3  | -3.3 | -1   | SERPINE1 | serine (or cysteine) proteinase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1 | NM_000602 |
| P01090_H11 | -1.3 | 1.2  | 1.2  | -1.9 | 2.1  | 1.3  | SFRP1    | secreted frizzled-related protein 1                                                                          | NM_003012 |
| P01078_F01 | -1.8 | 2.4  | -1.1 | -1.6 | 1.6  | 1.1  | SFRP4    | secreted frizzled-related protein 4                                                                          | NM_003014 |
| P01087_A06 | -2.9 | 1.9  | -1.2 | -3   | 2.2  | -1.3 | SGNE1    | secretory granule, neuroendocrine protein 1 (7B2 protein)                                                    | NM_003020 |
| P01106_G05 | 1.8  | -1.7 | 1.3  | 2.9  | -2.2 | 1.2  | SKIL     | SKI-like                                                                                                     | NM_005414 |
| P01102_A06 | -1.8 | 2    | 1.3  | -3.2 | 2.8  | 1.3  | SLC11A3  | solute carrier family 11 (proton-coupled divalent metal ion transporters), member 3                          | NM_014585 |
| P01105_A03 | 1.9  | -1.7 | 1.1  | 1.5  | -1.4 | -1   | SLC1A4   | solute carrier family 1 (glutamate/neutral amino acid transporter), member 4                                 | NM_003038 |
| P01143_D11 | -2.7 | 2.5  | 1.3  | -2.1 | 2.8  | 1.1  | SLC25A11 | solute carrier family 25 (mitochondrial carrier; oxoglutarate carrier), member 11                            | NM_003562 |
| P01111_H03 | 1.8  | -1.7 | 1    | 1.9  | -2   | -1   | SLC7A11  | solute carrier family 7, (cationic amino acid transporter, y+ system) member 11                              | NM_014331 |
| P01138_A08 | 3    | -2.9 | -1   | 2.3  | -2.4 | -1.1 | SLC7A5   | solute carrier family 7 (cationic amino acid transporter, y+ system), member 5                               | NM_003486 |
| P01088_E10 | 3.1  | -2.7 | 1.1  | 2.6  | -2.3 | 1    | SLC7A5   | solute carrier family 7 (cationic amino acid transporter, y+ system), member 5                               | NM_003486 |
| P01112_E05 | -1.6 | 1.3  | 1    | -3   | 2.2  | -1   | SLIT3    | slit homolog 3 (Drosophila)                                                                                  | NM_003062 |
| P01136_F07 | -1.1 | 1.4  | 1.2  | -2.1 | 1.9  | 1.1  | SLIT3    | slit homolog 3 (Drosophila)                                                                                  | NM_003062 |
| P01079_G03 | -3.1 | 3.4  | -1   | -3.9 | 3.5  | -1   | SNAI2    | snail homolog 2 (Drosophila)                                                                                 | NM_003068 |
| P01140_F07 | 2.9  | -2.6 | 1.1  | 2.2  | -2.5 | 1.1  | SNF1LK   | SNF1-like kinase                                                                                             |           |
| P01083_A04 | -3.2 | 3.2  | 1    | -9.3 | 7    | -1.1 | SNK      | serum-inducible kinase                                                                                       | NM_006622 |
| P01085_F06 | -1.2 | 1.2  | 1.1  | -2.6 | 1.7  | 1.1  | SOD3     | superoxide dismutase 3, extracellular                                                                        | NM_003102 |
| P01074_H12 | 1    | 1.1  | 1.1  | -2.6 | 1.5  | 1.1  | SPINT2   | serine protease inhibitor, Kunitz type, 2                                                                    | NM_021102 |
| P01108_B02 | -2.5 | 2.6  | 1.2  | -4.2 | 2.2  | -1   | SPRY1    | sprouty homolog 1, antagonist of FGF signaling (Drosophila)                                                  | AF041037  |
| P01095_F04 | -2.6 | 2    | -1.1 | -1.8 | 1.8  | -1.1 | SQRDL    | sulfide quinone reductase-like (yeast)                                                                       | NM_021199 |
| P01128_E07 | 1.9  | -2   | 1    | 2.6  | -2.7 | -1   | SRPUL    | sushi-repeat protein                                                                                         | NM_014467 |
| P01073_B02 | -1.7 | 1.7  | 1.2  | -2.5 | 1.9  | -1   | SRPX     | sushi-repeat-containing protein, X chromosome                                                                | NM_006307 |
| P01104_F12 | -2.1 | 2.5  | 1.2  | -2.2 | 2.3  | -1.1 | SSBP2    | single-stranded DNA binding protein 2                                                                        | NM_012446 |
| P01069_C06 | 1.9  | -1.3 | -1   | 2.7  | -2.6 | -1   | SSR1     | signal sequence receptor, alpha (translocon-associated protein alpha)                                        | NM_003144 |
| P01130_F10 | -1.3 | 1.6  | 1.1  | -2.3 | 2.3  | -1.1 | STC1     | stanniocalcin 1                                                                                              | NM_003155 |
| P01130_B11 | 2.1  | -2   | -1   | 1.7  | -1.8 | -1.1 | STCH     | stress 70 protein chaperone, microsome-associated, 60kDa                                                     | NM_006948 |
| P01074_E03 | 1.7  | -1.3 | -1   | -1.9 | 1.5  | -1.1 | STE      | sulfotransferase, estrogen-                                                                                  | NM_005420 |

|            |      |      |      |      |      |      |           |                                                                                                |           |
|------------|------|------|------|------|------|------|-----------|------------------------------------------------------------------------------------------------|-----------|
| P01127_G01 | -1.4 | 1.5  | 1.2  | -1.9 | 1.5  | 1.2  | STK17B    | preferring<br>serine/threonine kinase 17b<br>(apoptosis-inducing)                              | NM_004226 |
| P01125_C11 | -2   | 1.6  | -1   | -2.2 | 2.1  | -1   | STK25     | serine/threonine kinase 25<br>(STE20 homolog, yeast)                                           | NM_006374 |
| P01076_D03 | -2.7 | 2.9  | 1.1  | -2.1 | 1.8  | 1    | STK38     | serine/threonine kinase 38                                                                     | NM_007271 |
| P01105_E03 | -2.8 | 2.7  | -1.1 | -2.7 | 2.5  | -1.1 | STMN1     | stathmin 1/oncoprotein 18                                                                      | NM_005563 |
| P01069_A08 | -1.5 | 1.5  | 1.1  | -1.8 | 1.5  | 1    | STOM      | stomatin                                                                                       | NM_004099 |
| P01102_E10 | -1.5 | 1.6  | 1.1  | -2.3 | 1.5  | 1    | SVIL      | supervillin                                                                                    | NM_003174 |
| P01062_H06 | -1.5 | 2.1  | 1.2  | -2.9 | 2.7  | 1.2  | TACSTD2   | tumor-associated calcium<br>signal transducer 2                                                | NM_002353 |
| P01098_E05 | 1.9  | -1.8 | 1.2  | 1.2  | -1.3 | 1.1  | TAF13     | TAF13 RNA polymerase II,<br>TATA box binding protein<br>(TBP)-associated factor,<br>18kDa      | NM_005645 |
| P01101_B02 | -1.9 | 1.4  | 1.1  | -2   | 1.8  | 1    | TCF7L1    | transcription factor 7-like 1 (T-<br>cell specific, HMG-box)                                   | NM_031283 |
| P01061_C01 | -1.7 | 1.6  | 1.3  | -2   | 2.4  | 1.1  | TF        | transferrin                                                                                    | NM_001063 |
| P01144_C03 | -3.4 | 3.6  | 1.2  | -4   | 2.9  | 1.1  | TFPI      | tissue factor pathway inhibitor<br>(lipoprotein-associated<br>coagulation inhibitor)           | NM_006287 |
| P01071_A04 | -1.4 | 1.6  | 1.4  | -2.3 | 2.3  | 1.1  | TFPI2     | tissue factor pathway inhibitor<br>2                                                           | NM_006528 |
| P01085_B12 | -1.4 | 1.4  | 1.2  | -2.1 | 1.7  | 1.1  | TGFB2     | transforming growth factor,<br>beta 2                                                          | NM_003238 |
| P01061_C08 | -3.5 | 3.8  | 1.2  | -4.7 | 4    | 1.2  | TGFBR3    | transforming growth factor,<br>beta receptor III (betaglycan,<br>300kDa)                       | NM_003243 |
| P01078_B04 | 1.8  | -1.7 | -1   | 1.8  | -1.9 | -1.2 | THBS2     | thrombospondin 2                                                                               | NM_003247 |
| P01124_G04 | 2.8  | -2.5 | -1   | 2.4  | -3.1 | -1.3 | TIMP3     | tissue inhibitor of<br>metalloproteinase 3 (Sorsby<br>fundus dystrophy,<br>pseudoinflammatory) | NM_000362 |
| P01086_F06 | 2.1  | -2.4 | -1   | 2.6  | -3.1 | -1.2 | TIMP3     | tissue inhibitor of<br>metalloproteinase 3 (Sorsby<br>fundus dystrophy,<br>pseudoinflammatory) | NM_000362 |
| P01071_A06 | -3   | 3    | -1   | -2.5 | 2.6  | -1   | TM4SF1    | transmembrane 4 superfamily<br>member 1                                                        | NM_014220 |
| P01099_E08 | -1.6 | 1.8  | 1    | -1.8 | 1.5  | -1.1 | TncRNA    | trophoblast-derived noncoding<br>RNA                                                           |           |
| P01126_E09 | -1.7 | 2    | 1    | -3.7 | 4.2  | 1.1  | TNFAIP2   | tumor necrosis factor, alpha-<br>induced protein 2                                             | NM_006291 |
| P01085_A06 | -1.5 | 1.6  | -1   | -2.4 | 1.9  | 1.1  | TNFAIP3   | tumor necrosis factor, alpha-<br>induced protein 3                                             | NM_006290 |
| P01138_G10 | 1.8  | -1.7 | 1.2  | 2.1  | -2   | 1    | TNFRSF12A | tumor necrosis factor receptor<br>superfamily, member 12A                                      | NM_016639 |
| P01078_E05 | -2.1 | 3    | 1.4  | -2.6 | 2.5  | 1.2  | TNFSF10   | tumor necrosis factor (ligand)<br>superfamily, member 10                                       | NM_003810 |
| P01144_C11 | -2   | 2    | 1    | -1.9 | 1.4  | 1.2  | TOP2A     | topoisomerase (DNA) II alpha<br>170kDa                                                         | NM_001067 |
| P01140_D03 | 2.1  | -1.7 | -1   | 1.2  | -1.6 | -1   | TTID      | titin immunoglobulin domain<br>protein (myotilin)                                              | NM_006790 |
| P01070_H07 | -2.9 | 2.3  | 1.1  | -3   | 2.6  | -1.1 | TXNRD1    | thioredoxin reductase 1                                                                        | NM_003330 |
| P01089_D01 | 1.7  | -3   | 1.1  | 2.5  | -2.3 | -1   | UCHL1     | ubiquitin carboxyl-terminal<br>esterase L1 (ubiquitin<br>thiolesterase)                        | NM_004181 |
| P01123_D07 | -1.9 | 2.4  | 1.1  | -2   | 1.8  | 1.1  | UGCG      | UDP-glucose ceramide<br>glucosyltransferase                                                    | NM_003358 |
| P01089_F07 | 1.5  | -2.6 | 1.2  | 2.4  | -1.7 | 1.2  | UMPK      | uridine monophosphate kinase                                                                   | NM_012474 |

|            |      |      |     |      |      |      |        |                                                                                                      |           |
|------------|------|------|-----|------|------|------|--------|------------------------------------------------------------------------------------------------------|-----------|
| P01070_F11 | 2.1  | -3.1 | 1.1 | 2.4  | -1.9 | 1    | UMPS   | uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'-decarboxylase) | NM_000373 |
| P01061_B02 | -2.7 | 2.4  | 1   | -4.2 | 2.3  | -1.3 | VCAM1  | vascular cell adhesion molecule 1                                                                    | NM_001078 |
| P01141_C06 | 2.7  | -1.8 | 1.3 | 1.4  | -1.2 | 1.2  | WISP1  | WNT1 inducible signaling pathway protein 1                                                           | NM_003882 |
| P00777_C09 | -1.6 | 1.8  | 1.1 | -5   | 4    | -1   | WISP2  | WNT1 inducible signaling pathway protein 2                                                           | NM_003881 |
| P00777_C10 | -2.2 | 2.1  | 1.1 | -5.6 | 4.4  | -1   | WISP2  | WNT1 inducible signalling pathway protein 2                                                          | NM_003881 |
| P01126_H07 | -1.8 | 1.6  | 1.1 | -3   | 3.9  | -1   | WISP2  | WNT1 inducible signaling pathway protein 2                                                           | NM_003881 |
| P01142_D08 | 3.7  | -3   | 1.3 | 3.6  | -2.8 | 1.1  | XRCC4  | X-ray repair complementing defective repair in Chinese hamster cells 4                               | NM_003401 |
| P01104_H07 | -1.7 | 1.7  | 1.2 | -1.9 | 1.5  | 1.1  | ZFPM2  | zinc finger protein, multifunctional 2                                                               | NM_012082 |
| P01064_H12 | -1.4 | 1.5  | 1.1 | -1.8 | 1.5  | -1   | ZNF142 | zinc finger protein 142 (clone pHZ-49)                                                               | NM_005081 |
| P01075_E02 | 1.5  | -1.2 | 1.1 | 1.9  | -1.9 | 1    | ZNF193 | zinc finger protein 193                                                                              | NM_006299 |

5

### Validation of Microarray by Real-time RT-PCR and Western Blot Analyses

Representative microarray data was validated using real-time RT-PCR and Western

10 analyses. TGF $\beta$  induced *Collagen 1* mRNA levels in human cardiac fibroblasts at 6, 24, and 48 h; this induction was blocked by BNP at all 3 time points (Fig. 5A).

Collagen 1 protein synthesis was also induced (~3-fold) at 48 h, and BNP inhibited this stimulation by ~75% (Fig. 5B). BNP also inhibited TGF $\beta$ -induced *Fibronectin* mRNA and protein expression at 48 h (Fig. 5C,D). These data corroborate the

15 microarray results, with the exception of *Fibronectin*, which did not exceed the array differential expression threshold value, most likely due to the lower sensitivity of the microarray compared to real-time RT-PCR. The effects of BNP on TGF $\beta$  stimulation of pro-fibrotic genes *CTGF*, *PAI-1*, *TIMP3*, *IL11*, and *ACTA2* were also confirmed by real-time RT-PCR (Fig. 6). Additional verification was obtained for the pro-

20 inflammatory genes *COX2* and *IL6* at 6, 24, and 48 h (Fig. 6). Again, most likely due

5 to sensitivity issues, *IL6* was not included in Fig. 4C, since it did not exceed the array differential expression threshold value.

In addition, real-time RT-PCR assays were performed for 9 genes on primary cultures of human cardiac fibroblasts from a second independent donor lot of fibroblasts (see Table 3). The effects of BNP on TGF $\beta$ -induced gene expression in 10 both donors were similar, although donor lot 2 was slightly less responsive to TGF $\beta$ . Taken together, these results confirm the microarray data using independent assay methods, as well as, multiple human cardiac fibroblast donors.

15 **Table 3.** Real-time RT-PCR validation of microarray data using human cardiac fibroblasts from two separate donors (lot 1 and lot 2). Expression levels are normalized to 18s RNA and are shown relative to the control samples. Standard deviations reflect duplicate biological replicates; real-time RT-PCR reactions were performed in triplicate.

| Gene           | Control  | BNP      | TGF $\beta$ | TGF $\beta$ +BNP | Time (h) | Lot |
|----------------|----------|----------|-------------|------------------|----------|-----|
| Collagen 1     | 1.0±0.05 | 1.0±0.05 | 1.9±0.04    | 1.2±0.01         | 6        | 1   |
|                | 1.0±0.06 | 1.1±0.13 | 3.3±0.05    | 1.3±0.26         | 24       | 1   |
|                | 1.0±0.11 | 1.0±0.26 | 1.5±0.09    | 1.2±0.01         | 24       | 2   |
|                | 1.0±0.13 | 1.2±0.03 | 3.8±0.38    | 1.3±0.03         | 48       | 1   |
|                | 1.0±0.20 | 1.0±0.01 | 2.5±0.32    | 1.3±0.18         | 48       | 2   |
| Fibronectin    | 1.0±0.04 | 0.9±0.19 | 1.1±0.17    | 1.0±0.29         | 6        | 1   |
|                | 1.0±0.21 | 1.0±0.10 | 1.0±0.05    | 1.0±0.18         | 24       | 1   |
|                | 1.0±0.19 | 0.9±0.24 | 1.0±0.02    | 1.0±0.12         | 24       | 2   |
|                | 1.0±0.04 | 1.1±0.04 | 2.2±0.38    | 1.3±0.35         | 48       | 1   |
|                | 1.0±0.01 | 1.0±0.11 | 2.0±0.39    | 1.5±0.02         | 48       | 2   |
| SERPINE1/PAI-1 | 1.0±0.07 | 0.7±0.08 | 7.3±0.44    | 1.7±0.37         | 6        | 1   |
|                | 1.0±0.01 | 0.7±0.01 | 8.5±0.08    | 0.7±0.10         | 24       | 1   |
|                | 1.0±0.10 | 0.7±0.11 | 2.4±0.06    | 1.1±0.10         | 24       | 2   |
|                | 1.0±0.22 | 0.9±0.00 | 8.4±1.33    | 0.9±0.13         | 48       | 1   |
|                | 1.0±0.17 | 0.8±0.03 | 2.6±0.03    | 0.9±0.06         | 48       | 2   |
| CTGF           | 1.0±0.15 | 0.9±0.24 | 3.5±0.08    | 0.9±0.03         | 6        | 1   |
|                | 1.0±0.28 | 1.0±0.29 | 3.3±0.25    | 0.7±0.25         | 24       | 1   |
|                | 1.0±0.09 | 1.5±0.44 | 2.2±0.16    | 1.5±0.04         | 24       | 2   |
|                | 1.0±0.45 | 1.4±0.13 | 3.1±0.01    | 1.1±0.01         | 48       | 1   |
|                | 1.0±0.32 | 1.3±0.12 | 2.1±0.14    | 1.0±0.24         | 48       | 2   |
| IL11           | 1.0±0.20 | 1.1±0.04 | 13.3±0.89   | 2.1±0.06         | 6        | 1   |

|             |          |          |           |          |    |   |
|-------------|----------|----------|-----------|----------|----|---|
|             | 1.0±0.13 | 1.2±0.07 | 32.3±0.82 | 1.1±0.14 | 24 | 1 |
|             | 1.0±0.06 | 1.0±0.05 | 7.7±0.81  | 2.1±0.18 | 24 | 2 |
|             | 1.0±0.23 | 0.7±0.10 | 17.6±0.22 | 1.0±0.08 | 48 | 1 |
|             | 1.0±0.09 | 0.8±0.09 | 5.9±0.18  | 1.2±0.10 | 48 | 2 |
| TIMP3       | 1.0±0.01 | 0.9±0.11 | 1.4±0.03  | 1.0±0.12 | 6  | 1 |
|             | 1.0±0.31 | 1.0±0.12 | 2.6±0.26  | 1.0±0.23 | 24 | 1 |
|             | 1.0±0.13 | 0.7±0.09 | 1.5±0.12  | 1.3±0.14 | 24 | 2 |
|             | 1.0±0.26 | 0.9±0.00 | 3.0±0.34  | 1.0±0.09 | 48 | 1 |
|             | 1.0±0.08 | 0.6±0.00 | 1.7±0.13  | 0.8±0.01 | 48 | 2 |
| IL6         | 1.0±0.06 | 0.9±0.02 | 3.6±0.27  | 1.3±0.14 | 6  | 1 |
|             | 1.0±0.13 | 0.9±0.21 | 1.7±0.14  | 0.8±0.03 | 24 | 1 |
|             | 1.0±0.09 | 0.9±0.07 | 1.4±0.05  | 1.0±0.11 | 24 | 2 |
|             | 1.0±0.13 | 0.9±0.03 | 1.6±0.12  | 0.9±0.05 | 48 | 1 |
|             | 1.0±0.17 | 0.9±0.06 | 1.4±0.17  | 0.9±0.17 | 48 | 2 |
| PTGS2/COX-2 | 1.0±0.01 | 1.2±0.22 | 9.0±1.49  | 1.8±0.05 | 6  | 1 |
|             | 1.0±0.08 | 1.2±0.38 | 3.5±0.67  | 1.2±0.19 | 24 | 1 |
|             | 1.0±0.07 | 1.1±0.05 | 4.9±0.36  | 1.4±0.18 | 24 | 2 |
|             | 1.0±0.10 | 1.0±0.12 | 2.2±0.12  | 1.3±0.03 | 48 | 1 |
|             | 1.0±0.19 | 1.0±0.06 | 5.4±0.92  | 1.2±0.01 | 48 | 2 |
| ACTA2       | 1.0±0.03 | 0.8±0.12 | 1.1±0.11  | 0.9±0.20 | 6  | 1 |
|             | 1.0±0.14 | 0.9±0.11 | 2.2±0.00  | 0.9±0.07 | 24 | 1 |
|             | 1.0±0.04 | 0.9±0.25 | 2.3±0.12  | 1.6±0.41 | 24 | 2 |
|             | 1.0±0.17 | 1.0±0.03 | 1.0±0.19  | 1.0±0.21 | 48 | 1 |
|             | 1.0±0.05 | 0.7±0.11 | 2.5±0.13  | 1.0±0.12 | 48 | 2 |

5

In a related study, a gene microassay profile of rat heart tissue was conducted.

The results of this study are shown in Figure 12. Fibrotic and extracellular matrix associated genes were stimulated in vivo by L-NAME plus angiotensin II. mRNA expression for collagen I, collagen III, and fibronectin was markedly reduced by the 10 administration of BNP.

### MEK/ERK pathway involved in BNP's Anti-Fibrotic Role

Natriuretic peptides were previously shown to stimulate ERK activity in cardiac myocytes and vascular endothelial cells. The MEK/ERK pathway has been linked to 15 the repression of TGF $\beta$ /Smad signaling. To determine whether PKG or ERK

5 signaling is involved in BNP-dependent attenuation of TGF $\beta$  signaling, cultured cells were treated with BNP and/or TGF $\beta$  in the presence of a PKG inhibitor (KT5823) or two different MEK inhibitors (U0126, PD98059). BNP induced ERK phosphorylation was completely blocked by KT5823 and U0126, indicating that BNP activates ERK via PKG and MEK signaling cascades (Fig. 7a). Both MEK inhibitors 10 (U0126, PD98059) reversed BNP inhibition of TGF $\beta$ -induced Collagen-1 expression analyzed by Western blot (Fig. 7b) and real-time RT-PCR (Fig. 7c). A similar result was demonstrated for *PAI-1* using real-time RT-PCR. These findings suggest that the ERK pathway plays an important role in BNP-dependent inhibition of the fibrotic response induced by TGF $\beta$  in human cardiac fibroblasts.

15

### Fibrosis and ECM

One of the key features of cardiac fibrosis is the increased deposition of the ECM. The dynamic turnover of ECM proteins is controlled by several regulatory mechanisms: *de novo* biosynthesis of ECM components, proteolytic degradation of 20 ECMs by matrix metalloproteinases (MMPs), and inhibition of MMP activities by endogenous inhibitors, TIMPs. All of these processes have been shown to be profoundly affected by TGF $\beta$ . The results provided herein suggest that TGF $\beta$ -induced ECM deposition in human cardiac fibroblasts occurs largely by increasing ECM gene expression, including *Fibronectin*, *COL1A2*, *COL15A*, *COL7A1*, *MAGP2*, *MATN3*, 25 *FBN1*, and *COMP*. Fibronectin and collagen expression in cardiac fibroblasts has been well-established in the fibrotic response, however, this is the first report of TGF $\beta$  induction of other ECM genes including *MAGP2*, *MATN3*, *FBN1* and *COMP*, further corroborating TGF $\beta$ 's role in ECM induction. Interestingly, *COMP*, which is a member of the thrombospondin family, has been shown to have a direct interaction

5 with Fibronectin,<sup>25</sup> supporting its role in fibrotic processes. We also found  
*Thombospondin 2*, which is involved in the activation of latent TGF $\beta$ <sup>26</sup> regulated by  
TGF $\beta$  in our studies and opposed by BNP (Table 2). Also sharing close identity with  
the latent TGF $\beta$  family of binding proteins is *FBN1*, a component of extracellular  
microfibrils. The opposing effects of BNP on these gene regulatory events, suggests  
10 that BNP modulates cardiac fibrosis.

In addition to the suppression of TGF $\beta$ -induced ECM biosynthesis, BNP may  
also modulate the degradation of ECM proteins by opposing elevated *TIMP3* levels in  
TGF $\beta$ -stimulated cells. The TIMP family of proteins is believed to play significant  
roles in controlling extracellular matrix remodeling. Elevation of *TIMP3* expression  
15 has been observed in animal models of myocardial infarction, suggesting that it may  
be a contributor to matrix remodeling in the failing heart.

Another hallmark of the fibrotic process is the transformation of cardiac  
fibroblasts to myofibroblasts and the induction of pro-fibrotic mediators.  
Myofibroblasts acquire contractile properties similar to smooth muscle cells. The  
20 results provided above demonstrate that BNP inhibited TGF $\beta$ -induction of several  
myofibroblast markers including *ACTA2* and *MYH9*. BNP also inhibited TGF $\beta$  pro-  
fibrotic mediators, such as, *CTGF*, *PAI-1*, and *IL11*. *CTGF* and *PAI-1* are well-  
established downstream signaling genes of the TGF $\beta$  pathway, and *IL11* has been  
associated with tissue remodeling and fibrosis. *IL11* expression in cardiac fibroblasts  
25 also seems to contribute to TGF $\beta$ -mediated fibrosis. The use of BNP to suppress this  
response should result in a protective effect.

Collectively, these effects of BNP on gene expression in TGF $\beta$ -stimulated  
cells demonstrate a role for BNP in anti-fibrotic processes in cardiac fibroblasts. In  
striking contrast to TGF $\beta$ -treated cells, BNP had no significant effects in unstimulated

5 fibroblasts. This is consistent with the physiological actions of BNP, working only in opposition to other hormonal systems such as the renin-angiotensin-aldosterone system.

### Changes in Cell Proliferation

10 The effects of TGF $\beta$  on cell growth is cell-type dependent. As provided above, TGF $\beta$  stimulated cardiac fibroblast proliferation. Whether TGF $\beta$  has a direct effect on cell cycle or an indirect effect through other mechanisms is unclear. However, cDNA microarray analysis revealed that BNP markedly inhibits the expression of a number of TGF $\beta$ -induced growth factors or growth factor-like genes  
15 including *PDGFA*, *IGF1*, *FGF18*, and *IGFBP10 (CYR61)*. The up-regulation of these genes by TGF $\beta$  could partially explain the induction of cell proliferation, suggesting that it may be mediated indirectly through the stimulation of growth factor productions. TGF $\beta$  also induced the expression of *PTHLH (PTHrP)*, which has known chronotropic and vasodilatory effects. In osteoblast-like cells PTHrP can  
20 induce cell proliferation. Interestingly, in the myocardium, PTHrP levels are increased in congestive heart failure (CHF).

The growth inhibitory effects of natriuretic peptides have previously been reported. Cao and Gardner first demonstrated that natriuretic peptides inhibit PDGF, FGF2, and mechanical stretch-induced DNA synthesis in neonatal rat cardiac  
25 fibroblasts. Consistent with these findings, natriuretic peptides and cyclic GMP have been reported to inhibit cell proliferation induced by angiotensin II, endothelin-1, and norepinephrine in many cell types including cardiac fibroblasts, vascular smooth muscle cells, endothelial cells, and mesangial cells. The results provided herein

- 5 suggest an important role for BNP in regulating fibroblast growth during cardiac remodeling.

### **Changes in Inflammatory Genes**

Cardiac expression of cytokines is thought to contribute to a decrease in left ventricle  
10 contractile performance and deleterious remodeling. Although similar effects have been observed with ANP, reported herein for the first time is that *brain natriuretic peptide* blocks TGF $\beta$  stimulation of several pro-inflammatory genes including *COX2*, *IL6*, *TNFAIP6*, and *TNFSF4*.

TGF $\beta$  has a dual effect in the regulation of inflammatory processes. For  
15 example, it increases COX2 expression and prostaglandin E2 release in pulmonary artery smooth muscle cells, airway smooth muscle cells, and intestinal epithelial cells. On the other hand, TGF $\beta$  down-regulates the production of MCP-1 and complement components (C3 and C4) in human proximal tubular epithelial cells and macrophages. The results provided herein corroborates the dual effect of TGF $\beta$  in the modulation of  
20 inflammatory gene expression in cardiac fibroblasts. From these results, it was found that while TGF $\beta$  induced some inflammatory genes, it down-regulated others, such as, *IL1b*, *MCP1-R*, *GRO1*, *GRO3*, and *MCP4*. Both effects are reversed by BNP. However, in the absence of TGF $\beta$  stimulation, BNP had no significant effect on the expression of inflammatory genes. It is likely that a balance of pro- and anti-  
25 inflammatory stimuli is important in the process of cardiac remodeling.

### **Signaling Mechanism Underlying BNP's Anti-Fibrotic Role**

Studies aimed at elucidating the mechanism of BNP's inhibition of a fibrotic response indicate that the ERK signaling pathway plays an important role. The results

5 provided herein demonstrate that BNP phosphorylates ERK via PKG-dependent  
signaling in primary human cardiac fibroblasts. Moreover, this activation attenuates  
the TGF $\beta$ -induced fibrotic response as measured by Collagen 1 expression. This is  
consistent with previous studies showing that ERK activation is required for both the  
anti-hypertrophic effect of ANP in cardiac myocytes, and the inhibition of TGF $\beta$   
10 signaling in mammary and lung epithelial cells.

In vivo studies

In a related study, an *in vivo* model for acute myocardial injury was used to explore the effects of BNP. Male Sprague Dawley rats ranging in weight from 225 to 15 250 gm were utilized. Acute myocardial injury was induced by administration of  $N\omega$ -nitro-L-arginine methyl ester (L-NAME, 40 mg/kg/day)salt (1%NaCl) plus angiotensin II (AngII, 0.5 mg/kg/day) in the rats. The L-NAME was administered in drinking water from day 1 to day 14. Angiotensin II was continuously infused subcutaneously with an osmotic pump from day 11 to day 14. Rat BNP (400 20 mg/kg/min) was intravenously infused through an external infusion pump from day 10 to day 14.

Systolic blood pressure, plasma level of aldosterone, cardiac function heart/body weight ration and gene expression in the heart were analyzed. Systolic blood pressure was monitored via tail cuff technique with an IITC blood pressure 25 recording system. Cardiac function was monitored via a Millar ARIA Pressure Volume Conductance System with an 1.4 F catheter. Gene expression as referenced above with results provided in Figure 12 were monitored by RT-PCR with an ABI Prism TM 7700 sequence detection system.

It was observed that BNP had no effect on systolic blood pressure raised by L-  
30 NAME+AngII but significantly attenuated aldosterone(1.25.2 $\pm$ 0.2 vs. 6.6 $\pm$ 0.16 ng/ml,

5 p<0.05). See Figure 10. As shown in Figure 13, BNP improved cardiac function by significantly increase in stroke volume ( $2.68\pm0.23$  vs.  $4.74\pm0.73$  ul, p<0.05), ejection fraction ( $13.6\pm1.1$  vs.  $20.4\pm2.4\%$  p<0.05), and diastolic volume ( $19.0\pm0.9$  vs  $22.4\pm1.1$ ul, p<0.05) and stroke work ( $223.0\pm29.4$  vs  $531.5\pm99.1$ mmH\*ul,p<0.05), and decrease in arterial elastance ( $6.50\pm5.7$  vs  $42.6\pm5.1$  mmHg/ul, p<0.01). As  
10 shown in Figure 11, BNP significantly reduced the heart/body weigh ratio ( $0.0039\pm0.002$  vs.  $0.0029\pm0.001$ , p<0.05) and as referenced above, abolished the profibrotic phenotype indicated by decreasing expression of collagen I (p<0.01), collagen III (p<0.05) and fibronectin (p<0.05).

15 Summary

Along with the endothelin pathway, the renin-angiotensin and aldosterone system, the fibrosis-promoting TGF $\beta$  pathwayis important in the pathophysiology of heart failure. BNP appears to oppose TGF $\beta$ -regulated gene expression related to  
20 fibrosis and myofibroblast conversion. Furthermore, BNP's opposition to the TGF $\beta$ -stimulated fibrotic response is dependent on the PKG and the MEK/ERK pathways. This finding is consistent with the observation that BNP deficient mice show increased fibrosis and *Collagen 1* expression. In addition to BNP's global effects on fibrosis, it may also have effects on other processes, such as inflammation and  
25 proliferation (Fig. 8). These findings support a beneficial role for BNP in the prevention of cardiac fibrosis and the treatment of cardiac diseases. They also provide the first demonstration that BNP has a direct effect on cardiac fibroblasts to oppose a TGF $\beta$ -induced fibrotic response, suggesting that BNP functions as an anti-fibrotic factor in the heart to prevent cardiac remodeling in pathological conditions.

5           Independent from the antifibrotic effect, the in vivo studies as provided herein indicate that BNP may be used to reduce cardiac remodeling and prevent subsequent heart failure. BNP may also be useful as a cardioprotective agent to improve cardiac function post acute myocardial injury such as myocardial infarction.

10          All references cited throughout the specification are expressly incorporated herein by reference. While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many  
15         modifications may be made to adapt a particular situation, material, composition of matter, process, and the like. All such modifications are within the scope of the claims appended hereto.

5     **What is claimed is:**

1.     A method for treating cardiac remodeling in a subject that has undergone myocardial injury, said method comprising administering a therapeutically effective amount of natriuretic peptide to said subject.

10    2.     A method for treating cardiac dysfunction in a subject that has undergone myocardial injury, said method comprising administering a therapeutically effective amount of natriuretic peptide to said subject.

15    3.     A method for treating cardiac fibrosis in a subject who has undergone myocardial injury, said method comprising administering a therapeutically effective amount of natriuretic peptide to said subject.

20    4.     The method of claims 1 or 2 wherein said natriuretic peptide is brain natriuretic peptide.

25    5.     A method of inhibiting the production of Collagen 1, Collagen 3 or Fibronectin protein in a subject who has undergone myocardial injury, said method comprising administering a therapeutically effective amount of brain natriuretic peptide to said subject.

30    6.     A method of alleviating or reversing the effect of TGF $\beta$  mediated cell activation in cardiac tissue on the expression of one or more genes associated with fibrosis, comprising contacting one or more cells or tissues in which the expression of said genes is altered as a result of TGF $\beta$  mediated activation, with brain natriuretic peptide.

35    7.     The method of claim 5 wherein said genes are selected from the group consisting essentially of Collagen1, Collagen 3, Fibronectin, CTGF, PAI-1, and TIMP3.

5        8.        A method of inhibiting the transformation of cardiac fibroblast cells into  
myofibroblast cells in a subject that has undergone myocardial injury, said method  
comprising administering a therapeutically effective amount of brain natriuretic  
peptide to said subject.

Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7

**A**

|    |     |     |     |
|----|-----|-----|-----|
| C  | BNP | BNP | BNP |
| KT | U   |     |     |

Phospho-ERK

Total ERK

**B**

|             |   |   |   |    |   |     |                   |
|-------------|---|---|---|----|---|-----|-------------------|
| TGF $\beta$ | + | + | + | +  | + | +   | +                 |
| BNP         | + |   | + | +  | + | +   | +                 |
| KT          |   |   | 1 |    |   |     |                   |
| U           |   |   |   | 10 | 1 | 0.1 |                   |
| PD          |   |   |   |    |   | 10  | $\mu\text{mol/L}$ |

**C**

Figure 8



**Figure 9**

**Figure 10**

**Figure 11**

**Figure 12**

**Figure 13**

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/01480

**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(7) : A61K 38/00  
US CL : 514/12

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
U.S. : 514/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  
STN EAST

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                   | Relevant to claim No. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | Hayashi et al. Intravenous Atrial Natriuretic Peptide Prevents Left Ventricular Remodeling in Patients With Anterior Acute Myocardial Infarction. Journal of the American College of Cardiology, Feb. 2000. Vol. 35, No. 2 suppl. A, page 345A. See entire document. | 1-2                   |
| ---        |                                                                                                                                                                                                                                                                      | -----                 |
| Y          |                                                                                                                                                                                                                                                                      | 4                     |
| X          | Fernandes et al. Cardiac remodeling in patients with systemic sclerosis with no signs or symptoms of heart failure: An endomyocardial biopsy study. J. Cardiac Failure, August 2003, Vol.9, No.4, abstract only, page 1. See last paragraph.                         | 3                     |
| Y          | Diez et al. Losartan-Dependent Regression of Myocardial Fibrosis Is Associated With Reduction of Left Ventricular Chamber Stiffness in Hypertensive Patients. Circulation, 2002. Vol. 105: pages 2512-2517.                                                          | 5-8                   |
| X,P        | Tsuneyoshi et al. Atrial Natriuretic Peptide Helps Prevent Late Remodeling After Left Ventricular Aneurysm Repair. Circulation. 2004: 110:II-174-II179 (abstract attached, pages 1-2). See entire document, e.g., page 2, last paragraph.                            | 1-4                   |
| ---        |                                                                                                                                                                                                                                                                      |                       |
| Y,P        |                                                                                                                                                                                                                                                                      |                       |



Further documents are listed in the continuation of Box C.



See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                                | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier application or patent published on or after the international filing date                                                                                   | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

16 March 2005 (16.03.2005)

Date of mailing of the international search report

07 JUN 2005

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US  
Commissioner for Patents  
P.O. Box 1450  
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer

Marcela M Cordero Garcia

Telephone No. (571) 272-1600

**INTERNATIONAL SEARCH REPORT**International application No.  
PCT/US05/01480**C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                | Relevant to claim No. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X,P        | Kapoun et al. B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor-B in Primary Human Cardiac Fibroblasts. Fibroses, Myofibroblast Conversion, Proliferation, and Inflammation. Circulation Research, March 5, 2004. Vol. 94. No. 4, pages 453-461. See entire document, e.g., abstract and pages 459-460. | 1-8                   |