EE2800 - Digital Signal Processing

GROUP 7

EE23BTECH11024 : GOLLA KARTHIK YADAV

EE23BTECH11025: H.ANANTHA KRISHNAN

EE23BTECH11026: HIBA MUHAMMED

EE23BTECH11027: K RAHUL

BLOCK DIAGRAMS

s(n) - digital clean speech

s(t) - analog clean speech

ŝ(t) - acoustic clean speech

v(n) - digital leaky noise

 $\hat{\boldsymbol{v}}(\boldsymbol{n})$ - digital estimated leaky noise

 $\tilde{v}(t)$ - acoustic leaky noise

 $ilde{\hat{\mathbf{v}}}$ (n) - analog estimated leaky noise

 $\tilde{\boldsymbol{w}}(t)$ - acoustic external noise

w(t) - analog external noise

w(n) - digital external noise

P(n) - inverse correleation matrix

w(n) - external noise

Wz(n) - filter weights

Design choice and justification

2nd order IIR 3-Notch Filte**r**

RLS-Full_Supp best params

Performance

Trade-offs

r=0.95 - large phase, mag away from notch

M=15 λ =0.99 δ =0.01 Bad SNR

Hyperparameters vs Performance

М	δ	λ	Notch freq (Hz)	r		SNR (dB)		Proposal (dB)	
						Full	Partial	P1	P2
5	0.001	0.9(6)	999.9	0.999	9	33.21	-16.38	8.605	0.0388
5	0.001	0.9(6)	2728.16	0.999	9	33.21	3.02	15.234	-0.0148
5	0.001	0.9(6)	2728.16	0.95		33.21	-0.51	5.28	-0.001
5	0.001	0.9(6)	999.96 ,2728.16, 5453.46	0.99	9	33.21	-16.43	10.545	0.025, -0,014,-0. 004
10	0.001	0.99	-	-		8.57	-	-	-
5	0.01	0.9(6)	-	-		22.22	-	-	-

RLS DESIGN

alpha = d(n) - (Wz(n)' * xvec)

RLS Update equations (4)

```
g = (P(n-1) * xvec(n))/ (lambda + xvec(n)' * P(n-1)* xvec(n))
P(n) = (1/lambda) (P(n-1) - g * xvec' * P(n-1) );
alpha = d(n) - Wz'(n-1) * xvec
Wz(n) = Wz(n-1) + alpha*g;
```

PARTIAL SUPPRESSION METRICS

PROPOSAL 1 - Quantifies "SNR" of all frequencies other than notch frequencies of Partial suppression with respect to notch filtered clean speech

PROPOSAL 2 - Quantifies by how much the notch frequency in partial supression drops / gains with respect to noisy speech

Pros of RLS design, Notch filter (3):

- 1) RLS filters show an improvement in convergence over the LMS algorithm (that had been chosen earlier) (2)
- 2) Low bandwidth, and performs well on the proposed metric Proposal_1, Proposal_2, with scalability to more notch frequencies.

Cons of the RLS design:

- 1) RLS can be numerically unstable, which can occur when the matrix P(n) loses its property of positive definiteness (1)
- 2) Although RLS filters show an improvement in convergence over the LMS algorithm, RLS filters are very computationally intensive as well (1)

REFERENCES

- (1) From, S. Haykins, pp 751-752, Prentice Hall, Third Edition)
- (2) From Ying He, Hong He, Li Li, Yi Wu, Hongyan Pan, "The Applications and simulation of Adaptive Filter in Noise Canceling,".DOI 10.1109/CSSE.2008.370
- (3) From Proakis pp 339, Pearson Education, Fourth Edition
- (4) From, S. Haykins, pp 569, Prentice Hall, Third Edition)