Relazione di laboratorio: diodo

Ilaria Brivio (582116) brivio.ilaria@tiscali.it Matteo Abis (584206) webmaster@latinblog.org

Lorenzo Rossato (579393) supergiovane05@hotmail.com

11 giugno 2009

Sia $V_{\rm in}$ un segnale:

 $\begin{array}{ccc} forma: & triangolare \\ frequenza: & 123.1\,\mathrm{kHz} \\ ampiezza & pp: & 10\,\mathrm{V} \\ valor & medio: & 0\,\mathrm{V} \end{array}$

Dimensionare R_1 in modo che la corrente abbia un valore massimo di circa 5 mA. Connettere $V_{\rm in}$ e $V_{\rm out}$ ai canali 1 e 2 dell'oscilloscopio rispettivamente, mediante le sonde. Riportare in grafico l'andamento dell'ingresso e dell'uscita in funzione del tempo per la durata di un quarto di periodo (grafico 1), misurandone i valori allo stesso istante. Eseguire la misura con particolare cura nella zona prossima allo zero. Tracciare il grafico della curva caratteristica (grafico 2).

La frequenza è leggermente maggiore di $100\,\mathrm{kHz}$ per evitare di dover cambiare scala troppo spesso nel prendere le misure. La resistenza R ha valore nominale $1\,\mathrm{k}\Omega$. Ovvero $0.996\pm0.006\,\mathrm{k}\Omega$, misurata con il multimetro T110B, con fondo scala $2\,\mathrm{k}\Omega$.

Le barre di errore sui grafici rappresentano l'accuratezza delle misure, determinate dalle specifiche tecniche dell'oscilloscopio. In particolare: Queste incertezze sono propagate linearmente alla corrente e differenza di potenziale attraverso il diodo:

$$I_d = \frac{V_{\text{out}}}{R}$$

$$\frac{\Delta I_d}{I_d} = \left(\frac{\Delta R}{R}\right) + \left(\frac{\Delta V_{\text{out}}}{V_{\text{out}}}\right) = 3.05\%$$

$$\frac{\Delta V_d}{V_d} = 3\%$$

1 Appendice: tabelle e grafici

Tabella 1: Dati raccolti nel quarto di periodo dell'onda triangolare. Sono riportati anche nel seguente grafico 1

t (ns)	$V_{\rm in}$ (V)	$V_{ m out}$ (V)
scala t	z = 250 ns,	V = 1 V
2080	4.44	3.60
2000	4.32	3.48
1750	3.80	2.96
1500	3.28	2.48
1250	2.72	1.96
1000	2.20	1.48
750	1.68	1.00
500	1.12	0.48
scala $t = 100 \mathrm{ns}, V = 0.2 \mathrm{V}$		
700	1.54	0.872
600	1.35	0.680
500	1.14	0.488
400	0.920	0.304
300	0.696	0.128
200	0.472	0.016
scala $t = 50 \text{ns}, V = 0.05 \text{V}$		
150	0.346	0.004
100	0.234	0.000
50	0.118	0.000

Tabella 2: Dati nel grafico 2. Differenza di potenziale ai capi del diodo e intensità di corrente calcolate, con i rispettivi errori.

V_d (V)	$I_d (\mathrm{mA})$
0.84 ± 0.03	3.60 ± 0.13
0.84 ± 0.03	3.48 ± 0.13
0.84 ± 0.03	2.96 ± 0.11
0.80 ± 0.02	2.48 ± 0.09
0.76 ± 0.02	1.96 ± 0.07
0.72 ± 0.02	1.48 ± 0.05
0.68 ± 0.02	1.00 ± 0.04
0.64 ± 0.02	0.48 ± 0.02
0.67 ± 0.02	0.87 ± 0.03
0.67 ± 0.02	0.68 ± 0.02
0.65 ± 0.02	0.49 ± 0.02
0.62 ± 0.02	0.30 ± 0.01
0.57 ± 0.02	0.131 ± 0.004
0.46 ± 0.01	0.020 ± 0.001
0.34 ± 0.01	0.000 ± 0.000
0.23 ± 0.01	0.000 ± 0.000
0.122 ± 0.003	0.000 ± 0.000

Grafico 1: Andamento di V_{in} (×) e V_{out} (+) per un quarto di periodo, tempo in nanosecondi e potenziale in Volt. I dati fanno riferimento alla tabella 1

Grafico 2: Curva caratteristica del diodo, con V_d in ascissa (V) e I_d in ordinata (mA). I dati fanno riferimento alla tabella 2.

