Outils Math. pour l'info. - Licence 3 - IEM - Année 2007/2008

Outils Mathématiques pour l'informatique

Jean-Luc Baril

Université de Bourgogne Labo. Le2i, UMR-CNRS 5158 http://www.u-bourgogne.fr/jl.baril

September 24, 2007

Théorie de Fourier

Fonction (signal) à une dimension

Définition

Une fonction g est périodique s'il existe T tel que : g(t+T)=g(t) pour tout t.

La plus petite constante non nulle T vérifiant l'égalité ci-dessus s'appelle la période de la fonction.

Exemples: sin, cos, tan, ...

3. Théorie de Fourier

Exemple : Sin et Cos ont une période de 2π

3. Théorie de Fourier

Fonction de Dirac: $\delta(t) = 0 \ \forall t \neq 0 \ \text{and} \ \delta(0) = 1$

Peigne de Dirac: $\delta_T(t) = \sum_{k=-\infty}^{k=+\infty} \delta(t - kT)$

3.1 Séries de Fourier

Soit g une fonction périodique de période \mathcal{T} alors on définit la série de Fourier :

$$S_n(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(\frac{2k\pi t}{T}) + b_k \sin(\frac{2k\pi t}{T}) \right)$$

avec

$$\begin{cases} a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t)dt \\ -\frac{T}{2} & g(t)\cos(\frac{2k\pi t}{T})dt \\ -\frac{T}{2} & g(t)\sin(\frac{2k\pi t}{T})dt \end{cases}$$

$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t)\sin(\frac{2k\pi t}{T})dt$$

Vocabulaire

Fréquence fondamentale : $f_0 = \frac{1}{T}$

Valeur moyenne du signal : a₀

k-ième harmonique : $\frac{2k\pi}{T} = 2k\pi f_0$

Théorème de Dirichlet

Si g est périodique et C^1 par morceaux, Alors $S_n(t)$ tend vers $\frac{1}{2}(g(t^+)+g(t^-))$

avec
$$\begin{cases} t^+ = \lim_{\substack{x \to t \\ t^- = \lim_{\substack{x \to t}} g(t) \text{ avec } x < t} \end{cases}$$

Expression réelle

$$\begin{aligned} a_0 + \sum_{k=1}^{\infty} (a_k cos(\tfrac{2k\pi t}{T}) + b_k sin(\tfrac{2k\pi t}{T}) = \\ &= \tfrac{1}{2} (g(t^+) + g(t^-)) = \lim_{n \to \infty} S_n(t) \end{aligned}$$

Propriétés des coefficients

* g paire : $g(-t) = g(t) \ \forall t$

On a : $b_k = 0$ pour tout k

* g impaire : $g(-t) = -g(t) \ \forall t$

On a : $a_k = 0 \ \forall k$

* g "demi-ondes" : $g(t) = -g(-t + \frac{7}{2}) \ \forall t$

On a : $a_{2k} = b_{2k} = 0 \ \forall k \geq 0$

Exemple

$$\begin{array}{l} g(t) = \frac{10}{2\pi}\omega t \text{ avec } 0 \leq t \leq \frac{2\pi}{\omega} \\ g(t) = 5 - \frac{10}{\pi}\sin(\omega t) - \frac{10}{2\pi}\sin(2\omega t) - \frac{10}{3\pi}\sin(3\omega t) - \frac{10}{4\pi}\sin(4\omega t)... \end{array}$$

Expression complexe

$$\begin{split} \textbf{c}_0 + \sum_{\mathbf{k} = -\infty}^{+\infty} \textbf{c}_{\mathbf{k}}.\text{exp}(\frac{2ik\pi t}{T}) = \\ &= \frac{1}{2}(\textbf{g}(\textbf{t}^+) + \textbf{g}(\textbf{t}^-)) = \lim_{\mathbf{n} \to \infty} \textbf{S}_{\mathbf{n}}(\textbf{t}) \\ \text{avec} \left\{ \begin{array}{l} c_0 &= a_0 \\ c_k &= \frac{1}{2}(a_k - i.b_k) \text{ si } k > 0 \\ c_k &= \frac{1}{2}(a_k + i.b_k) \text{ si } k < 0 \end{array} \right. \end{split}$$

Propriété: $c_{-k} = \bar{c_k}$ et donc $|c_{-k}| = |c_k|$.

Spectre d'amplitude:

Interprétation spectre

Exemple: Spectre d'amplitude de la fonction de 1

Exemple: Spectre d'amplitude de la fonction peigne

Remarque : Le spectre mesure les variations du signal dans le temps

Si le signal n'est pas étendu (irrégulier) dans le domaine temporel, alors le spectre du signal possède des hautes fréquences

Si le signal est étendu (régulier) dans le domaine temporel, alors le spectre du signal a très peu de hautes fréquences

Puissance transporté par une fonction périodique

P est la puissance moyenne délivrée par g(t) à une résistance de 1 Ohm

$$P = \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} g(t)^2 dt$$

Théorème de Parseval

$$P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t)^2 dt$$

$$= a_0^2 + \frac{1}{2} \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \sum_{-\infty}^{+\infty} ||c_k||^2$$

POUR LES SIGNAUX NON PERIODIQUES

Transformée de Fourier

Directe:

$$\hat{g}(f) = F(g(t)) = \int\limits_{-\infty}^{+\infty} g(t) \exp(-2i\pi f t) dt$$

Inverse:

$$F'(g(f)) = g(t) = \int_{-\infty}^{+\infty} \hat{g}(f) \exp(2i\pi f t) df$$

Condition suffisante d'existence

$$\int\limits_{-\infty}^{+\infty}g(t)dt<+\infty$$

Propriétés

Linéarité:

$$F(a.g(t) + b.h(t)) = a.\hat{g}(f) + b.\hat{h}(f)$$

Similarité:

$$F(g(a.t)) = \frac{1}{|a|}\hat{g}(\frac{f}{a})$$

Symétrie:

$$F(\hat{g}(t)) = g(-f)$$

Décalage temporaire :

$$F(g(t-t_0)) = \exp(-2i\pi f t_0)\hat{g}(f)$$

Décalage fréquentiel :

$$F(g(t)\exp(2i\pi f_0t)) = \hat{g}(f - f_0)$$

Exemples

Transformée de l'impulsion de Dirac :

$$F(\delta(t)) = 1$$

Transformée d'une constante :

$$F(Cste) = cste.\delta(f)$$

Transformée de $exp(2i\pi f_0 t)$:

$$F(\exp(2i\pi f_0 t)) = \delta(f - f_0)$$

Transformée de $cos(2\pi f_0 t)$:

$$F(\cos(2i\pi f_0 t)) = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))$$

Transformée bidimensionnelle

Directe:

$$F(g(x,y)) = \hat{g}(u,v)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) exp(-2i\pi(ux+vy)) dxdy$$

Inverse:

$$F'(\hat{g}(u,v)) = g(x,y)$$

= $\int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} \hat{g}(u,v) \exp(2i\pi(ux+vy)) dudv$

Transformée de Fourier discrète

On échantillonne la fonction g en choisissant N points équirépartis $x_0, x_1, \ldots, x_{N-1}$.

$$x_k = x_0 + k\Delta x$$

Transformée Discrète (1D)

Directe:

$$\hat{g}(u) = F(g(x)) = \sum_{x=0}^{N-1} g(x) \exp(-\frac{2i\pi ux}{N})$$
 avec $u = 0..N - 1$

Inverse:

$$F'(\hat{g}(u)) = g(x) = \sum_{u=0}^{N-1} \hat{g}(u) exp(\frac{2i\pi ux}{N})$$
 avec $x = 0..N-1$

On peut toujours calculer la transformée de Fourier discrète

Transformée discrète 2D

Directe:

$$F(g(x,y)) = \hat{g}(u,v)$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} g(x,y) exp(-2i\pi(\frac{ux}{M} + \frac{vy}{N}))$$

Inverse:

$$F'(\hat{g}(u,v)) = g(x,y)$$

$$= \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \hat{g}(u,v) exp(2i\pi(\frac{ux}{M} + \frac{vy}{N}))$$

Transformée en cosinus discrète 2D

Directe:

$$F(g(x,y)) = \hat{g}(u,v)$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} g(x,y) \cos(\frac{(2x+1)u\pi}{2M}) \cos(\frac{(2y+1)v\pi}{2N})$$

Inverse:

$$F'(\hat{g}(u,v)) = g(x,y)$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \hat{g}(u,v) \cos(\frac{(2x+1)u\pi}{2M}) \cos(\frac{(2y+1)v\pi}{2N})$$

Application dans la compression d'image (fichier jpeg par exemple)

Transformée discrète 2D

Exemple:

$$F(g(x,y)) = \hat{g}(u,v)$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} g(x,y) exp(-2i\pi(\frac{ux}{M} + \frac{vy}{N}))$$

avec
$$M = N = 2$$
 et $g(x, y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Image assez régulière donc on a des basses fréquences et pas

Interprétation spectre

Interprétation du spectre 2D

Si le signal n'est pas étendu dans le domaine spatial (fortes variations) alors le spectre de l'image est étendu jusqu'aux hautes fréquences

Si le signal est étendu dans le domaine spatial (faibles variations) alors le spectre de l'image n'est pas étendu jusqu'aux hautes fréquences

Le spectre donne également les directions GLOBALES des

La transformée de Fourier discrète bidimensionnelle est la composée des deux transformées de Fourier unidimensionnelles en abscisse et en ordonnées. La complexité est au plus de l'ordre de $O(M^2N^2)$

On supposera M = N dans toute la suite

Filtrage dans le domaine fréquentiel

$$G(u, v) = H(u, v).F(u, v)$$

$$g(x,y) = F'(G(u,v))$$

Pourquoi utiliser le filtrage dans le domaine fréquentiel?

- * Approche différente de l'image
- Utilisation des fréquences => étude des variations du signal
 - Détection d'une "direction de l'image"
 - Taoutage d'image
 - Compression d'image
- * Les filtrages sont plus rapides en utilisant Fourier

Filtre passe-haut

Un filtre passe-haut est un filtre qui laisse passer les hautes fréquences et bloque les basses

accentue les détails - rehaussement de contours

Si D(u, v) est la distance d'un point (u, v) à l'origine:

$$D(u,v)=\sqrt{u^2+v^2}$$

On pose :
$$H(u, v) = \begin{cases} 0 & \text{si } D(u, v) \leq Cste \\ 1 & \text{sinon} \end{cases}$$

Filtre de Butterworth

Un filtre de Butterworth est un filtre passe haut qui donne des résultats plus harmonieux car on garde un peu de basses fréquences:

$$H(u,v) = \frac{1}{1 + \frac{D(u,v)^{2n}}{Cste}}$$

Filtre passe-bas

Un filtre passe-bas est un filtre qui laisse passer les basses fréquences et bloque les hautes

atténue donc les détails

Si D(u, v) est la distance d'un point (u, v) à l'origine:

$$D(u,v)=\sqrt{u^2+v^2}$$

On pose :
$$H(u, v) = \begin{cases} 1 & \text{si } D(u, v) \leq Cste \\ 0 & \text{sinon} \end{cases}$$

Filtre passe-bande On définit deux fréquences de coupures Cste1 et Cste2 et on coupe tout le reste

Transformée en cosinus discrète 2D

Application à la compression des fichiers jpeg :

On découpe l'image en blocs de 8 × 8

On calcule la transformée en cosinus de chaque bloc

On Quantifie chaque bloc, cad on applique un coefficient de perte

(ex: "annulera" ou diminuera des valeurs de hautes fréquences

- filtre passe-bas)

Compression avec la méthode d'Huffman

Translations

Décalage fréquentiel

$$g(x,y).exp(-rac{2i\pi}{N}(u_0x+v_0y))\longleftrightarrow \hat{g}(u-u_0,v-v_0)$$

Décalage spacial (temporel)fréquentiel

$$g(x-x_0,y-y_0)\longleftrightarrow \hat{g}(u,v).exp(-\frac{2i\pi}{N}(ux_0+vy_0))$$

Conséquences

- * Périodicité de la transformée de Fourier
- * Décalage fréquentiel

$$g(x,y).(-1)^{x+y}\longleftrightarrow \hat{g}(u-\frac{N}{2},v-\frac{N}{2})$$

- * Recentrage de $\hat{g}(u, v)$
- * Valeur moyenne d'une image : $\frac{1}{N^2}\hat{g}(0,0)$

* Facteur d'échelle

$$g(ax, by) \longleftrightarrow \frac{1}{ab}\hat{g}(\frac{u}{a}, \frac{v}{b})$$

* Rotation angle quelconque

Si
$$g(r,\theta) \longleftrightarrow \hat{g}(\omega,\phi)$$
 alors

$$g(r, \theta + \alpha) \longleftrightarrow \hat{g}(\omega, \phi + \alpha)$$

* Laplacien - détecteur de contours sensible au bruit

$$\nabla^2 g(x,y) = \frac{\delta g(x,y)}{\delta x^2} + \frac{\delta g(x,y)}{\delta y^2}$$

alors si $g(x,y) \longleftrightarrow \hat{g}(u,v)$ alors

$$\nabla^2 g(x,y) \longleftrightarrow -(2\pi)^2 (u^2 + v^2) \hat{g}(u,v)$$

Convolution de f par g

$$f(x) \star g(x) = \sum_{n=0}^{N-1} f(n)g(x-n)$$

$$f(x,y) \star g(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)g(x-m,y-n)$$

Propriétés de la convolution

Symétrie: $f \star g = g \star f$

Associativité: $f \star (g \star h) = (f \star g) \star h$

Distributivité : $f \star (g + h) = f \star g + f \star h$

Dirac: $\delta(x) \star f(x) = f(x) \star \delta(x) = f(x)$

Théorème de convolution

$$\begin{cases}
F(f \star g) &= \hat{f}.\hat{g} \\
F(f.g) &= \hat{f} \star \hat{g}
\end{cases}$$

La multiplication dans le domaine fréquentiel correspond au produit de convolution dans le domaine spatial.

Formulation matricielle

Si A et B sont deux matrices de tailles respectives M_1 et M_2 pour le nombres de lignes et N_1 et N_2 pour les colonnes alors

la taille de $A \star B$ est $M_1 + M_2 - 1$ pour les lignes et $N_1 + N_2 - 1$ pour les colonnes

Exemple - Formulation matricielle

$$f'(x,y) = \begin{array}{c|cccc} 1 & 2 & 0 \\ \hline 3 & 4 & 0 \\ \hline 0 & 0 & 0 \end{array} \text{ et } g'(x,y) = \begin{array}{c|cccc} -1 & 1 & 0 \\ \hline -2 & 2 & 0 \\ \hline 0 & 0 & 0 \end{array}$$

Exemple - Formulation matricielle

	-1	0	1	0	0	0	-2	0	2	1		-1	l
h'(x,y)=	1	-1	0	0	0	0	2	-2	0	2	=	-1	
	0	1	-1	0	0	0	0	2	-2	0		2	
	-2	0	2	-1	0	1	0	0	0	3		-5	
	2	-2	0	1	-1	0	0	0	0	4		-3	
	0	2	-2	0	1	-1	0	0	0	0		8	
	0	0	0	-2	0	2	-1	0	1	0		-6	
	0	0	0	2	-2	0	1	-1	0	0		-2	
	0	0	0	0	2	-2	0	1	-1	0		8	

donc

$$f(x,y) \star g(x,y) = \begin{array}{c|ccc} -1 & -1 & 2 \\ \hline -5 & -3 & 8 \\ \hline -6 & -2 & 8 \end{array}$$

La convolution correspond au filtrage classique dans le domaine spatial.

Exemple: ------

Application à l'image - Méthode fréquentielles

$$g(x,y) = h(x,y) \star f(x,y)$$

f(x, y) est l'image d'origine

g(x, y) est l'image transformée

h(x, y) est un opérateur (indépendant de la position x et y)

alors d'après le théorème de convolution

$$\hat{g}(u, v) = \hat{h}(u, v).\hat{f}(u, v)$$

4. Application à l'image

4.1 Transformée de Fourier rapide 1D

Par une décomposition en arbre binaire, on peut ramener le calcul de la transformée de Fourier discrète de N^2 à $N.log_2(N)$.

Cette réduction de complexité suffit pour permettre de résoudre un bon nombres de problèmes.

L'idée est la suivante:

Pour calculer une transformée de Fourier pour N points, on se ramene au calcul de deux transformées de Fourier pour N/2 points.

4. Application à l'image

4.1 Transformée de Fourier rapide 2D

Passage de N^4 à $2 * N^2.log_2N$

Le gain est énorme.

4. Application à l'image

Méthodes fréquentielles

- * Domaine spatial ← → Domaine fréquentiel
- * Fonction porte sur $[0,1] \longleftrightarrow$ Sinus cardinal $\frac{\sin(x)}{x}$
- * Moyenne $\longleftrightarrow h(x,y) = \frac{1}{\lambda^2} \operatorname{si}(x,y) \in [-\lambda/2, +\lambda/2]^2$