	Exponential Smoothing Methods Chapter 4
	Supothers: techniques to separate the signal and the noise as much as possible.
	A smoother acts as a filter to obtain an 'estimate' for the signal. See figure 4.1
	We have seen some smoothers: - Moring Average
	- Centered M.A.s - Hanning filter - Morring medians
1.	Consider the constant process: y= \mu + \mathcal{E}_{\mathcal{E}}; \mathcal{E}_{\mathcal{E}} \simples (0, \sigma_{\mathcal{E}}^2) was (paragraphia)
	We can 'smooth' this by replacing the current observation with the best estimate for $\mu = \mu$
	We know the LS estimate of μ is: $\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t \qquad \left(\begin{array}{c} \text{Min SSE} = \tilde{\Sigma} (y_t - \mu)^2 \\ \mu \end{array} \right)$
	See figure 4.2. and figure 4.3 Why does 4.3 not work? The smoother does not want quickly enough to changes in the process.
	meet quickly enough to changes in the process

We could use a simple moving average breause it allows us to attach less weight to earlier observations, making the smoother "faster-to-reart" to clarges.

 $M_{T} = \frac{1}{N} \left[y_{T} + y_{T-1} + \dots + y_{T+N-1} \right] = \frac{1}{N} \sum_{t=T-N+1}^{N} y_{t}$

If span N is small, the smoother reacts faster. However, recall that

Vur (M_T) = σ^2 .

So, as span t, proces smoother reacts faster, but is more "jittery" (variance is larger).

Are observations in My correlated? Yes! Successive MAs contain the same N-1 observation

. ACF of M.A that are R-lags apart is:

$$S_R = \begin{cases} 1 - |R| ; R < N \\ N \end{cases}$$

$$0 , R \ge N$$

1. First-Order Exponential Sussthing

Let 101 < 1 be a discount factor. Then, to discount past observations in a geometrically decreasing fashion, we can create an exponentially neighted smoother as follows:

yT + 0 yT-1 + 02 yT-2 + ... + 0 T-1 y1 = \(\sum_{t=0}^{T-1} \text{ O}^t y_{T-t} \)

Note that weights do not add up to 1.

$$\sum_{t=0}^{T-1} \theta^t = 1 - \theta^t$$

So, to adjust the smoother, multiply by 1-0

Y
$$T \rightarrow \infty$$
, $\sum_{t=0}^{T-1} \theta^t = \frac{1-\theta^t}{1-\theta} \rightarrow \frac{1}{1-\theta}$.
So, multiply smoother by $1-\theta$.

· First order exponential smoother is:

$$\widetilde{y}_{T} = (1-\theta) \sum_{t=0}^{T-1} \theta^{t} y_{T-t}$$

This is a linear combination of the current observation (47) and the smoothed observation at the previous

=) Linear combination of the current observation (y_T) and the discounted sum of all previous observations.

Setting $\lambda = 1-0$, can rewrite the first-order exponential smoother as:

$$\widetilde{y}_{T} = \lambda y_{T} + (1-\lambda)\widetilde{y}_{T-1}$$
, where

λ = discount factor = weight put on the last

observation, and

(1-λ) = weight put on the smoothed value of the

previous observations.

Questions: How to choose ??
What about yo?

He initial value of, you

Recall
$$\tilde{y}_{7} = \lambda y_{7} + (1-\lambda) \tilde{y}_{7}$$
,

So,
$$\widetilde{Y}_1 = \lambda Y_1 + (1-\lambda) \widetilde{Y}_0$$

 $\widetilde{Y}_2 = \lambda Y_2 + (1-\lambda) \widetilde{Y}_0$

=
$$\lambda y_1 + (1-\lambda)[\lambda y_1 + (1-\lambda)\hat{y}_0]$$

= $\lambda(y_1 + (1-\lambda)y_1) + (1-\lambda)\hat{y}_0$

$$\tilde{y}_{3}$$
 - λy_{3} + $(1-\lambda)\tilde{y}_{2}$
= $\lambda(y_{3} + (1-\lambda)y_{3} + (1-\lambda)^{2}y_{4}) + (1-\lambda)^{3}\tilde{y}_{6}$

Note: If T is large, $(1-2)^T \rightarrow 0$.: Yo contributes little to \tilde{y}_T .

- a) if process is locally constant in the beginning, Jake average of a subset of available data, and y, and set y = y.
- b) If process begins to charge early, set yo= y1.

B. The value of
$$\lambda$$
: If $\lambda = 1$: I thomsethed version of series truice series, because $\tilde{y}_T = \tilde{y}_T$

· Varience of the simple exponential smoother varies between zero (when 2=0) and the variance of the original time series (when 2=1)

of yzis are independent and have constant variance,

=
$$\operatorname{var}\left(\lambda \sum_{t=0}^{\infty} (1-\lambda)^{t} y_{T-t} + (1-\lambda)^{T} \widehat{y_{0}}\right)$$

=
$$\lambda^2$$
 var $\sum_{t=0}^{\infty} (1-\lambda)^t y_{1-t} + 0$

=
$$\eta^2 \sum_{t=0}^{\infty} wax (1-\eta)^{2t} var(47-t)$$

$$= \lambda^2 \cdot var(y_T) \sum_{t=0}^{\infty} (1-\lambda)^{2t}$$

=
$$\lambda^2$$
. vas (y_7) . $\frac{1}{1-(1-\lambda)^2}$ [Sum of infinite grown series is:

usually, values of a between 0.1 and 0.4 are recommended.

Measures of accuracy:

$$MSD = \frac{1}{T} \sum_{t=1}^{T} (y_t - \tilde{y}_{t-1})^2$$

III. Modelling Time Series Dates

Let yt = f(t; B) + Et, where

β = vector of unknown parameters, and Et ~ (0, σ²) = uncorrelated errors.

For example, the constant-only model is:

4+ = Bo + Et

To see how the simple exponential smoother can be used for model estimation,

consider $SSE = \sum_{t=1}^{T} (y_t - \beta_0)^2$.
We can consider a modified version of the SSE whiele assigns geometrically decreasing weights:
$SSE^* = \sum_{t=0}^{T-1} \theta^t (y_T + \beta_0)^2 ; \theta \leq 1.$
Minimizing SSE* w.r.t. β_0 , $\frac{d}{d\beta_0}$ SSE* = $-2\sum_{t>0}^{t}\theta^t(y_{7-t}-\hat{\beta}_0)=0$
$=) \qquad \hat{\beta}_0 \sum_{t=0}^{T-1} \theta^t = \sum_{t=0}^{T} \theta^t y_{T-t}$
Ricall $\sum_{t=0}^{\infty} 0^{t} = 1 - 0^{t}$, and for large T
Recall $\sum_{t=0}^{t} 0^{t} = 1 - 0^{t}$, and for large T $\sum_{t=0}^{\infty} 0^{t} = 1$ $t=0$ $1-0$
$\beta_0 = \frac{1-0}{1-0^{\pm}} \sum_{t=0}^{t=1} 0^t y_{7-t}, \text{ and for large } T$
$\hat{\beta}_0 = 1 - 0 \sum_{t=0}^{\infty} \theta^t y_{t-t}.$
Notice Here Hat
$\hat{y}_{\tau} = \hat{y}_{\tau}$
: Exponential Smoother (for constant-only model) is like

IV. Second - Order Exponential Sunsothing

Cothsicher the lunion topend model:

Ricall:

$$\widetilde{y}_{T} = \lambda y_{T} + (1 - \lambda) \widetilde{y}_{T-1}
= \lambda (y_{T} + (1 - \lambda) y_{T-1} + ... + (1 - \lambda)^{T-1} y_{1}) + (1 - \lambda)^{T} \widetilde{y}_{0}
= \lambda \sum_{t=0}^{\infty} (1 - \lambda)^{t} y_{T-t}$$

Her bister torend woodeby

=
$$\lambda \sum_{t=0}^{\infty} (1-\lambda)^{t} E(y_{7-t})$$

For medel with linear trend:

$$y_t = \beta_0 + \beta_1 t + \epsilon_t$$
; $\epsilon_t \sim (0, \sigma_{\epsilon}^2)$

$$E(\widetilde{y_7}) = \lambda \sum_{t=0}^{\infty} (1-\lambda)^t E(y_{7-t})$$

=
$$\lambda \sum_{t=0}^{\infty} (1-\lambda)^{t} (\beta_{0} + \beta_{1}T) - \lambda \sum_{t=0}^{\infty} (1-\lambda)^{t} (\beta_{1}t)$$

Now,
$$\sum_{t=0}^{\infty} (1-\lambda)^t = 1 = 1$$

$$1-(1-\lambda) \qquad \lambda$$

and $\sum_{t=0}^{\infty} (1-\lambda)^t \cdot t = 1-\lambda$

 $E(\tilde{y}_{T}) = (\beta_{0} + \beta_{1}T) \cdot \lambda \cdot 1 - \lambda \beta_{1} \cdot (1-\lambda)$

 $= (\beta_0 + \beta_1 T) - (1-\lambda) \cdot \beta_1$

 $E(\widehat{y_1}) = E(\widehat{y_1}) - (1-\lambda) \cdot \beta_1$

⇒ Simple exponential smoother is a biased estimate for the linear trend model.

Amount of bias = $E(\tilde{y}_1) - E(\tilde{y}_2) = -(\frac{1-\lambda}{3})\beta$,

i) If n→1, Bias → 0

ii) But, large value of n fails to smeath out the constant pattern in the data!

So, what do we do?

Apply simple experiential smoothing to the smoothed series! That is, use second-water

Let $\tilde{y}^{(1)}_{i}$ = first-seder smoothed exponentials, and $\tilde{y}^{(2)}_{i}$ = second-seder smoothed exponential.

Then, $\tilde{y}_{T}^{(2)} = \lambda \tilde{y}_{T}^{(1)} + (1-\lambda) \tilde{y}_{T-1}^{(2)}$.

If the 1st-seder exprenutrial is brased, so is the sucond perder! In fact

 $E(\tilde{y}_{T}^{(2)}) = E(\tilde{y}_{T}^{(2)}) - \frac{1-\lambda}{\lambda}\beta_{1}$

And, with several substitutions, we can show that

a) The $\hat{\beta}_{1,T} = \frac{\lambda}{1-\lambda} \left(\tilde{y}_{1}^{(1)} - \tilde{y}_{1}^{(2)} \right)$, and

(b.0) $\hat{\beta}_{0,7} = \hat{y}_{7}^{(1)} - T\hat{\beta}_{1,7} + \frac{1-\lambda}{\lambda}\hat{\beta}_{1,7}$

b) =) $\hat{\beta}_{0,T} = \left(2 - T \cdot \lambda\right) \tilde{y}_{T}^{(1)} - \left(1 - T \lambda\right) \tilde{y}_{T}^{(2)}$

.. We have a predicter for y7 as

ŷτ = βο, τ + β, τ· T

=> $\hat{y}_T = 2\tilde{y}_T^{(1)} - \tilde{y}_T^{(2)}$

Exercise: Show that \hat{y}_7 is an unbrissed predictor

See R-Cade par Examples 4.1 and 4.2.

V. Higher-Order Exponential Smoothing

For yt= Bo + Et, Et~(0,02) → 1st-Boder Exp.
Smoother.

For yt= Bot Bit + Et, Et~(0,000) → 2nd-leder Exp. Smooth

For n'th degree polynomial model of the form

yt= 30 + B, t + B2 +2+ ... Bn t" + Et,

ε ~ (0, σε)

we can use the (n+1) th- order exponential smoother:

 $\widetilde{y}_{T}^{(1)} = \lambda y_{T} + (1-\lambda) \widetilde{y}_{T-1}^{(2)}$ $\widetilde{y}_{T}^{(2)} = \lambda \widetilde{y}_{T}^{(2)} + (1-\lambda) \widetilde{y}_{T-1}^{(2)}$

However, even with a quadratic trend unadel (2nd-degree polynomial), calculations are difficult analytically. So, we would prefer to use an ARIMA model, which is the subject of the next chapter.

VI. Forecasting Let the 2-step-ahead forecast made at time T be

\$\hat{y}_{T+2}(T)\$ Constant Braces: y= (30 + Et, Et~(0,0=2). In this case, ferecast for future observation is simply the current value of the exponential smoother: JT+2(T) = JT = Ny7 + (1-N) JT-1 when you becomes available, we can update our forcest: you = 2 you + (1-2) you Therefore, ŷ_{T+1+2} (T+1) = λy_{T+1} + (1-λ) ŷ_T = λy_{T+1} + (1-λ) ŷ_{T+2}(T) E.g: When 2=1 ŷ₁₊₂ (T+1) = λ y₁₊₁ + (1-λ)ŷ₁₊₁(T) = $\hat{y}_{T+1} + \hat{y}_{T+1}(T) - \lambda \hat{y}_{T+1}(T)$ Recurrenging, we have

= $\hat{y}_{T+1}(T) + \lambda (y_{T+1} - \hat{y}_{T+1}(T))$ - Previous forecat

for current + 1x made in wakin

observation

observation

observation : YTHE (TH) = GIH (T) + 2 + 2 HOM CT+1 (1) One- step ahead -

	forecast for next observation =
2	Previous forecast for current observation + Fraction of forecast error in forecasting current observation!
	+ Fraction of forecast error in perecasting current
	observation!
	So 2 (discount factor) determines HOW FAST our forecast exacts to the forecast error.
	Large > => fast heaction to FE BUT Large > also => forecast reacts fast to random fluctuations !
	large 7 also => perecast reacts fast to raidous
	fluctuations !
	So how to choose 2?
	as the autom
	Minimises sum of agraved forecast errors!!
	D T
	SSE (2) = \(\in e^2(1) \). (Calculate for vacion
	SSE $(\lambda) = \sum_{t=1}^{\infty} e_t^2(1)$. (Calculate for various values of λ
	D
	We ned to always supply intervals for our forecasts
	A (100-d) 1. P.I. for any lead trine 2 is:
South and the second	A (100-d) 1. P.I. for any lead time 2 is:
	72
	Y= = 1st-pader Exponential suporther;
	Fa = 1880 The relevant value from Std. Normal Dist
	Fig = 1st-pader Exponential smoother; Fig = 1st-pader Exponential smoother; and Fe = standard errors of the forecast crears.
8	Question: This gives constant P.I's. NOT GOOD!

Example 4.4: Note the york (78) and P.I's for the forecasts: All Constant! B. Example 4.5: First-Order Exponential Smoother for a model with LINEAR TREND. Problem: SSE & ao. 2 1 => Data are autouserelated! See ACF. ... ARIMA may be better. Chapter 6! OR, try 2nd-Order Exponential Smoothing.

And try (D 1-step-, 2-step-, ..., 12-step-ahead (2) 1-step-ahead perecasts The latter performs better. Standard Error of forecasts, de Assuming the model is correct (and constant in twice) define 1-step-ahead PE as: g er(1) = y7 - ŷ1 (7-1). ρε = 1 Σ ε (1) = 1 Σ [yt - ŷt(t-0)]2. And if $\sigma_c^2(z) = z$ -step-ahod forecast variance = $\frac{1}{T-z+1} = \frac{z}{z} = \frac{1}{z} = \frac{1}{z}$ Not same as ex(1)

D. Adaptive Updating of 2, the discount factor Irigg and Leach Method: $\hat{y_T} = \lambda_T \cdot y_T + (1 - \lambda_T) \tilde{y}_{T-1}.$ Let Mean Absolute Deviation, A, be defined as: $\Delta = E(1e - E(e))$. Then, the estimate of MAD is: $\hat{\Delta}_{T} = \delta(e_{T}(1)) + (1-8) \hat{\Delta}_{T-1}$ Also define the Smoothed Error as: Q7 = Se,(1) + (1-8) Q7-1. Finally, let the "tracking signal" be defined as: Then, setting $\lambda_T = \frac{Q_T}{\Delta_T}$ will allow for antonatic redating of the discount factor. Example 4.6 : See R Code. E' Model Assessment: Plat ACF of forecast errors. If sample ACF exceeds t 2 s.c., violates assumption of uncertainty VII. Exponential Smoothing for Seasonal Data A. Additively seasonal model Let \[\(y_t = L_t + S_t + \varepsilon_t \), where Lt = Bo + B, t = Level + Trend Component = Permanent Component St = Seasonal Component, with

St = Strs = Strs = ... for t=1,2,...,s-1, where

8 = length of season, or period of rycles; $\mathcal{E}_{t} = \text{Random component},$ $\sim (0, \sigma_{c}^{2}).$ Also, $\sum_{t=1}^{8} S_{t} = 0 \implies$ Seasonal Adjustments add to zero during one season. To the part in ferecasting future observations; we use first - seder exponential smoothing: Assuming that the current observation, you is obtained, we would like to make 2-step-ahead forecasts was. The principal idea is to update estimates of: 4

La, $\hat{\beta}_{1,7}$, and \hat{S}_{7} , so that z-step-ahud forecast of

y is: $\left[\hat{y}_{7+2}(7) = \hat{L}_{7} + \hat{\beta}_{1,7} \cdot 2 + \hat{S}_{7}(2-8)\right]$

Here, $\hat{L}_{7} = \lambda_{1} \left(y_{7} - \hat{S}_{7} \right) + (1 - \lambda_{1}) \left(\hat{L}_{7} + \hat{\beta}_{1}, \tau_{1} \right)$. $\lambda_{1} \times \text{Convert value}$ Forward of L_{7} on estimates at I+1. $\hat{\beta}_{1,T} = \lambda_2 (\hat{L}_T - \hat{L}_{T-1}) + (1 - \lambda_2) \hat{\beta}_{1,T-1}$ Current value Forcest of β_1 ,

of β_1 at true T-1 $\hat{S}_{T} = \lambda_{3}(y_{T} - \hat{L}_{T}) + (1 - \lambda_{3}) \hat{S}_{T-8}$ Note that $0 < \lambda_1, \lambda_2, \lambda_3 < 1$. Once again, we need initial values of the exponential sunsothers: $\hat{\beta}_0, \hat{\alpha}_1 = \hat{L}_0 = \hat{\beta}_0$ β1, 0, = β1 Sj-8 = jj for 1 ≤ j<8 8-1 +=0 $\hat{S}_{o} = -\sum_{j=1}^{N} \hat{y}_{j}$ Example 4.7: See R-Code.

B. Multiplicative Seasonal Model What if the seasonality is proportional to the average level of the seasonal time series. yt: Lt. St + Et, where Lt. St, and Et are as before. Once again, we can use three exponential smoother to obtain parameter estimates in the egn. Example 4.8 See R-Code. Biscurveillance Data: Please read pp 286-299
DIY
Carefully! VIR Exponential Smoothing and ARIMA models

Picall: $\tilde{y}_{7} = \lambda y_{7} + (1-\lambda) \tilde{y}_{7-1}$ forecast error: $e_{T} = y_{T} - \hat{y}_{T-1}$, and

i. $e_{T-1} = y_{T-1} - \hat{y}_{T-2}$ $(1-\lambda) + e_{T-1} = (1-\lambda) + y_{T-1} - \hat{y}_{T} (1-\lambda) + \hat{y}_{T-2}$ Substitution (1) =) $(1-\lambda) e_{T-1} = y_{T-1} - \lambda y_{T-1} - (1-\lambda) y_{T-2}$ =) e/- (1-1)e/- = 9;-9 Subtract (1-2) et - from et:

$$= \frac{1}{2} \frac{1}{2} = \frac{1}{2}$$

:.
$$y_7 - y_{7-1} = e_7 - (1-\lambda)e_{7-1}$$

= $e_7 - 0e_{7-1}$, where $0=1-\lambda$.

This is an Integrated Moving Average model of order (1, 1)

We will do ARIMA models in detail next.