SPIRE: Semantic Prompt-Driven Image Restoration

Chenyang Qi^{1,2}*©, Zhengzhong Tu¹©, Keren Ye¹© Mauricio Delbracio¹©, Peyman Milanfar¹, Qifeng Chen²©, and Hossein Talebi¹

Google Research
HKUST

ECCV 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• Introduce the **first** unified text-driven image restoration model that supports both **semantic prompts** and **restoration instructions**.

• Proposed paradigm empowers users to **fully control** the semantic outcome of the restored image using different semantic prompts during test time, providing a mechanism for users to **adjust the category and strength of the restoration effect**.

• Our experiments demonstrate that incorporating semantic prompts and restoration instructions significantly enhances the restoration quality, eliminating the need for task-specific model design.

Introduction

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Decoupling Semantic and Restoration Prompts

$$\min_{m{ heta}} \mathbb{E}_{(m{z}_0,m{y}) \sim p_{ ext{data}},m{\epsilon} \sim \mathcal{N}(0,I),t} \left\|m{\epsilon} - m{\epsilon}_{ heta}\left(m{z}_t,t,m{y}
ight)
ight\|_2^2,$$

$$\nabla_{z_t} \log p(\boldsymbol{z}_t | \boldsymbol{y}, \boldsymbol{c}_s, \boldsymbol{c}_r) \approx \underbrace{\nabla_{z_t} \log p(\boldsymbol{z}_t | \boldsymbol{c}_s)}_{\text{Semantic-aware (frozen)}} + \underbrace{\nabla_{z_t} \log p(\boldsymbol{y} | \boldsymbol{z}_t, \boldsymbol{c}_r)}_{\text{Restoration-aware (learnable)}}$$

$$\hat{f}_{\text{skip}} = (1 + \gamma) f_{\text{skip}} + \beta; \ \gamma, \beta = \mathcal{M}(f_{\text{con}})$$

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Training degradation

· 		Parameterized	Real-ESRGAN				
Degradation Process	$p({ m choose})$	Restoration Prompt	Degradation Process	$p({ m choose})$	Restoration Prompt		
Gaussian Blur	0.5	Deblur with $\{sigma \in [0.2, 3.0]\}$ or Deblur	Blur	1.0			
Downsample	0.5	Upsample to $\{\text{resizing factor} \in [1.0, 7.0]\}\ \text{or Upsample}$	Resize	1.0	Damara all damadation		
Gaussian Noise	0.5	Denoise with $\{\text{sigma} \in [0.0, 0.12]\}\$ or Denoise	Noise	1.0	Remove all degradation		
JPEG	0.5	Dejpeg with quality {quality factor $\in [30, 92]$ } or Dejpeg	JPEG	1.0			

Degradation ambiguities

Input

"Remove all degradation" "Deblur with sigma 3.0"

Ground Truth

Prompts				Parameterized Degradation with synthesized c_r					Real-ESRGAN Degradation without \boldsymbol{c}_r					
Method	Sem	Res	$\overline{\mathrm{FID}}\downarrow$	LPIPS↓	PSNR†	SSIM↑	CLIP-I↑	CLIP-T↑	$\overline{\mathrm{FID}}\downarrow$	LPIPS↓	PSNR†	SSIM†	CLIP-I↑	CLIP-T↑
SwinIR [30]	X	X	43.22	0.423	24.40	0.717	0.856	0.285	48.37	0.449	23.45	0.699	0.842	0.284
StableSR [67]	X	X	20.55	0.313	21.03	0.613	0.886	0.298	25.75	0.364	20.42	0.581	0.864	0.298
DiffBIR [34]	X	X	17.26	0.302	22.16	0.604	0.912	0.297	19.17	0.330	21.48	0.587	0.898	0.298
ControlNet-SR [84]	X	X	13.65	0.222	23.75	0.669	0.938	0.300	16.99	0.269	22.95	0.628	0.924	0.299
Ours w/o text	X	X	12.70	0.221	23.84	0.671	0.939	0.299	16.25	0.262	23.15	0.636	0.929	0.300
DiffBIR [34] + SDEdit [37]	√	X	19.36	0.362	19.39	0.527	0.891	0.305	17.51	0.375	19.15	0.521	0.887	0.308
DiffBIR $[34] + CLIP [46]$	\	X	18.46	0.365	20.50	0.526	0.896	0.308	20.31	0.374	20.45	0.539	0.885	0.307
ControlNet-SR + CLIP [46]	\	X	13.00	0.241	23.18	0.648	0.937	0.307	15.16	0.286	22.45	0.610	0.926	0.308
Ours	√	√	11.34	0.219	23.61	0.665	0.943	0.306	14.42	0.262	23.14	0.633	0.935	0.308

 c_s ="An old boat sitting in the middle of a field."

Method	$FID\downarrow$	LPIPS↓	PSNR↑	SSIM↑	CLIP-I↑
Real-ESRGAN [72]	32.37	0.312	22.52	0.646	0.683
DiffBIR [34] (zero-shot)	30.71	0.354	22.01	0.526	0.921
StableSR	24.44	0.311	21.62	0.533	0.928
Ours w/o text (zero-shot)	28.80	0.352	21.68	0.549	0.927
Ours w/o text (finetuned)	22.45	0.321	21.38	0.532	$\boldsymbol{0.932}$

Table 3: Numerical results on the DIV2K testset without any prompt.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• First framework to support both semantic and parameter-embedded restoration instructions simultaneously.

• Decoupled way to better preserve the semantic text-to-image generative prior while efficiently learning to control both the restoration direction and its strength.

• Extensive experiments have shown that this method significantly outperforms prior works in terms of both quantitative and qualitative results.