| Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments  • conv C is the smallest convex set that contains C.  • conv C is a finite set as long as C is also finite.  • aff C is the smallest affine set that contains C.  • aff C is always an infinite set. If aff C contains the origin, it is also a subspace.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conic hull: $ \bullet \ A = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i \geq 0 \text{ for } i = 1, \cdots, k \right\} $ Ray:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>aff C is always an infinite set. If aff C contains the origin, it is also a subspace.</li> <li>Different from the convex set, θ<sub>i</sub> is not restricted between 0 and 1</li> <li>A is the smallest convex conic that contains C.</li> <li>Different from the convex and affine sets, θ<sub>i</sub> does not need to sum up 1.</li> <li>The ray is an infinite set that begins in x<sub>0</sub> and extends infinitely in direction of v. In other words, it has a beginning, but it has no end.</li> </ul>                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$ Hyperplane: • $\mathcal{H} = \{\mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T}(\mathbf{x} - \mathbf{x}_0) = 0 \}$<br>• $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$<br>Halfspaces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>The inner product between a and any vector in \$\mathcal{H}\$ yields the constant value \$b\$.</li> <li>\$a^{\perp} = \{ \mathbf{v} \   \mathbf{a}^{\textsup} \mathbf{v} = 0 \}\$ is the infinite set of vectors perpendicular to a. It passes through the origin.</li> <li>\$a^{\perp}\$ is offset from the origin by \$\mathbf{x}_0\$, which is any vector in \$\mathcal{H}\$.</li> <li>They are infinite sets of the parts divided by \$\mathcal{H}\$.</li> </ul>                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $\mathcal{H}_{-} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\}$ • $\mathcal{H}_{+} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \geq b\}$ Euclidean ball: • $B(\mathbf{x}_{c}, r) = \{\mathbf{x} \mid   \mathbf{x} - \mathbf{x}_{c}   \leq r\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • $B(\mathbf{x}_c, r)$ is a finite set a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as long as $r < \infty$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r^2 \}$<br>• $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\  \mid \ \mathbf{u}\  \le 1 \}$<br>Ellipsoid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>x<sub>c</sub> is the center of the ball.</li> <li>r is its radius.</li> <li>E is a finite set as long as P is a finite matrix.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $\mathcal{E} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \right\}$<br>• $\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{P}^{1/2} \mathbf{u} \mid   \mathbf{u}   \le 1 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>P is symmetric and positive definite, that is, P = P<sup>T</sup> &gt; 0. It determines how far the ellipsoid extends in every direction from x<sub>c</sub>.</li> <li>x<sub>c</sub> is the center of the ellipsoid.</li> <li>The lengths of the semi-axes are given by √λ<sub>i</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Norm cone:<br>• $C = \{(x_1, x_2, \dots, x_n, t) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n,   \mathbf{x}  _p \le t\} \subseteq \mathbb{R}^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>When P<sup>1/2</sup> ≥ 0 but singular, we say that \$\mathcal{E}\$ is a degenerated ellipsoid (degenerated ellipsoids are also convex).</li> <li>Although it is named "Norm cone", it is a set, not a scalar.</li> <li>The cone norm increases the dimension of x in 1.</li> <li>For n = 2, it is called the second-order cone, quadratic cone. Lorentz cone or ice-cream cone.</li> </ul>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties  • $K$ is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$ .  • $K$ is closed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>The proper cone K is viset S. For the generalize</li> <li>x ≤ y ← y − x ∈ K f</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he second-order cone, quadratic cone, Lorentz cone or ice-cream cone. It is define the <i>generalized inequality</i> (or <i>partial ordering</i> ) in some red inequality, one must define both the proper cone $K$ and the set $S$ . For $\mathbf{x}, \mathbf{y} \in S$ (generalized inequality)                                                                                                                                                                                                                                                                                                             |
| <ul> <li>K is solid.</li> <li>K is pointed, i.e., -K ∩ K = {0}.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • There are two cases w dropped out:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $K$ for $\mathbf{x}, \mathbf{y} \in S$ (strict generalized inequality).<br>There $K$ and $S$ are understood from context and the subscript $K$ is $K = \mathbb{R}^n_+$ (the nonnegative orthant). In this case, $\mathbf{x} \leq \mathbf{y}$ means that                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | matrices, $S_+^n$ is the positive definite m inequality $Y \geq X$ positive semidefin denote $X > 0$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | If $K = \mathcal{S}^n_+$ or $K = \mathcal{S}^n_{++}$ , where $\mathcal{S}^n$ denotes the set of symmetric $n \times n$ espace of the positive semidefinite matrices, and $\mathcal{S}^n_{++}$ is the space of the natrices. $\mathcal{S}^n_+$ is a proper cone in $\mathcal{S}^n$ (??). In this case, the generalized means that $\mathbf{Y} - \mathbf{X}$ is a positive semidefinite matrix belonging to the ite cone $\mathcal{S}^n_+$ in the subspace of symmetric matrices $\mathcal{S}^n$ . It is usual to $\mathbf{X} \geq 0$ to mean than $\mathbf{X}$ is a positive definite and semidefinite matrix, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • Another common $ \{ \mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2 t + \dots + c_n t^{n-1} \le 1 \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | usage is when $S = \mathbb{R}^n$ and $K = tc_n t^{n-1} \ge 0$ , for $0 \le t \le 1$ . In this case, $\mathbf{x} \le_K \mathbf{y}$ means that $y_1 + y_2 t + \dots + y_n t^{n-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq$ ▶ If $\mathbf{x} \leq_K \mathbf{y}$ , then $\alpha \mathbf{x}$ ▶ $\mathbf{x} \leq_K \mathbf{x}$ (reflexivity                                                                                                                                                                                                                                                                                                                                                                                                                                          | $_{K}$ $\mathbf{v}$ , then $\mathbf{x} + \mathbf{u} \leq_{k} \mathbf{y} + \mathbf{v}$ (preserve under addition).<br>$_{K}$ $\mathbf{z}$ , then $\mathbf{x} \leq_{K} \mathbf{z}$ (transitivity).<br>$\mathbf{x} \leq_{K} \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling).<br>$_{V}$ ).<br>$_{K}$ $\mathbf{x}$ , then $\mathbf{x} = \mathbf{y}$ (antisymmetric).                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>If x<sub>i</sub> ≤<sub>K</sub> y<sub>i</sub>, for i = 1, 2,, and x<sub>i</sub> → x and y<sub>i</sub> → y as i → ∞, then x ≤<sub>K</sub> y.</li> <li>It is called partial ordering because x ≠<sub>K</sub> y and y ≠<sub>K</sub> x for many x, y ∈ S. When it happens, we say that x and y are not comparable (this case does not happen in ordinary inequality, &lt; and &gt;).</li> <li>x ∈ S is the minimum element of S with respect to the proper cone K if x ≤<sub>K</sub> y, ∀ y ∈ S (for maximum, x ≥<sub>K</sub> y, ∀ y ∈ S). It means that S ⊆ x + K (for the maximum, S ⊆ x - K),</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | where $\mathbf{x} + K$ denotes the set $K$ shifted from the origin by $\mathbf{x}$ . Note that any point in $K + \mathbf{x}$ is comparable with $\mathbf{x}$ and is greater or equal to $\mathbf{x}$ in the generalized inequality mean. The set $S$ does not necessarily have a minimum (maximum), but the minimum (maximum) is unique if it does.  • $\mathbf{x} \in S$ is the <i>minimal</i> element of $S$ with respect to the proper cone $K$ if $\mathbf{y} \leq_K \mathbf{x}$ only when                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{y} = \mathbf{x}$ (for the maximal, $\mathbf{y} \succeq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$ ). It means that $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$ for minimal (for the maximal $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$ ), where $\mathbf{x} - K$ denotes the reflected set $K$ shift by $\mathbf{x}$ . Note that any point in $\mathbf{x} - K$ is comparable with $\mathbf{x}$ and is less than or equal to $\mathbf{x}$ in the generalized inequality mean. The set $S$ can have many different minimal (maximal) elements.                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Subspace (cone set?) of the symmetric matrices:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>the maximal is equal to the maximum.</li> <li>When we say that a scalar-valued function f: R<sup>n</sup> → R is nondecreasing, it means that whenever u ≤ v, we have h(u) ≤ h(v). Similar results hold for decreasing, increasing, and nonincreasing scalar functions.</li> <li>The positive semidefinite cone is given by S<sup>n</sup><sub>+</sub> = {X ∈ R<sup>n×n</sup>   X ≥ 0} ⊂ S<sup>n</sup>. This is the proper cone used to define the generalized inequalities between matrices, e.g., A ≤ B.</li> </ul>                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $S^n = \{ \mathbf{X} \in \mathbb{R}^{n \times n} \mid \mathbf{X} = \mathbf{X}^T \}$ Dual cone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>cone used to define the generalized inequalities between matrices, e.g., A ≤ B.</li> <li>The positive definite cone is given by S<sup>n</sup><sub>++</sub> = {X ∈ ℝ<sup>n×n</sup>   X &gt; 0} ⊆ S<sup>n</sup><sub>+</sub>. This is the proper cone used to define the generalized inequalities between matrices, e.g., A &lt; B.</li> <li>K* is a cone, and it is convex even when the original cone K is nonconvex.</li> </ul>                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>K* is a cone, and it is convex even when the original cone K is nonconvex.</li> <li>K* has the following properties:</li> <li>K* is closed and convex.</li> <li>K<sub>1</sub> ⊆ K<sub>2</sub> implies K<sub>1</sub>* ⊆ K<sub>2</sub>*.</li> <li>If K has a nonempty interior, then K* is pointed.</li> <li>If the closure of K is pointed then K* has a nonempty interior.</li> </ul>                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Polyhedra:  • $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>K** is the closure</li> <li>The polyhedron may o</li> <li>Polyhedron is the result</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of the convex hull of $K$ . Hence, if $K$ is convex and closed, $K^{**} = K$ .  It of the intersection of $m$ halfspaces and $p$ hyperplanes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^T \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$ Simplex:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | polyhedra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s, lines, rays line segments, and halfspaces are all special cases of $nt$ , $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq 0\}$ , is a spenily of the polyhedra set.                                                                                                                                                                                                                                                                                                                        |
| Simplex:  • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \leq 0 \leq 1, 1^T 0 = 1\}$ • $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} 0\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$ • $S = \{\mathbf{x} \mid \underbrace{\mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0}_{\text{Linear inequalities in } x}, \underbrace{\mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0}_{\text{Linear equalities}} \}$ (Polyhedra form), where $\mathbf{A} = \mathbf{A}_1 \mathbf{v}_0 \mathbf{v}_0 \mathbf{v}_0$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Also called k-dimension</li> <li>The set {v<sub>m</sub>}<sup>k</sup><sub>m=0</sub> is a a independent.</li> <li>V ∈ ℝ<sup>n×k</sup> is a full-rank</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Simplex in $\mathbb{R}^n$ .  affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly tall matrix, i.e., rank $(\mathbf{V}) = k$ . All its column vectors are independent.                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{A} \mathbf{V} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$ $\alpha\text{-sublevel set:}$ $\bullet \ C_\alpha = \{ \mathbf{x} \in \text{dom} (f) \mid f(\mathbf{x}) \leq \alpha \} \text{ (regarding convexity), where } f: \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\alpha \in \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve) function, then sublevel sets of $f$ are convexes (concaves) for any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $C_{\alpha} = \{\mathbf{x} \in \text{dom}(f) \mid f(\mathbf{x}) \geq \alpha\}$ (regarding concavity), where<br>Function  Union: $C = A \cup B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $f: \mathbb{R}^n \to \mathbb{R}$ Functions (or operators) and their Convex.  Not in most of the cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | function.  • $C_{\alpha} \subseteq \text{dom}(f)$ ir implications regarding co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e: a function can have all its sublevel set convex and not be a convex nvexity  Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Union: $C = A \cup B$ Intersection: $C = A \cap B$ Convex function: $f : \text{dom}(f) \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ , where $0 \le \theta \le 1$ .  • dom $(f)$ shall be a convex set to $f$ be considered a convex function.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not in most of the cases.  Yes, if A and B are convex set  Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Graphically, the line segment between (x, f(x)) and (y, f(y)) lies always above the graph f.</li> <li>In terms of sets, a function is convex iff a line segment within dom (f), which is a convex set, gives an image set that is also convex.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>convex.</li> <li>dom f is convex iff all points for any line segment within dom (f) belong to it.</li> <li>First-order condition: f is convex iff dom (f) is convex and f(y) ≥ f(x) + ∇f(x)<sup>T</sup>(y - x), ∀ x, y ∈ dom (f), x ≠ y, being ∇f(x) the gradient vector. This inequation says that the first-order Taylor</li> </ul>                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>approximation is a underestimator for convex functions. The first-order condition requires that f is differentiable.</li> <li>If ∇f(x) = 0, then f(y) ≥ f(x), ∀ y ∈ dom(f) and x is a global minimum.</li> <li>Second-order condition: f is convex iff dom(f) is convex and</li> </ul>                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{H} \succeq 0$ , that is, the Hessian matrix $\mathbf{H}$ is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at $\mathbf{x}$ . It is important to note that, if $\mathbf{H} \succ 0, \forall \mathbf{x} \in \mathrm{dom}(f)$ , then $f$ is strictly convex. But is $f$ is strictly convex, not necessarily that $\mathbf{H} \succ 0, \forall \mathbf{x} \in \mathrm{dom}(f)$ . Therefore, strict convexity can only be partially characterized.                                                                                          |
| Convex function: $f : \text{dom}(f) \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \ge \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ , where $0 \le \theta \le 1$ .  • dom $(f)$ shall be a concave set to $f$ be considered a concave function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ , where $\mathbf{A} \in \mathbb{R}^{m \times n}$ , $\mathbf{b} \in \mathbb{R}^m$ , $\mathbf{x} \in \mathbb{R}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes, if the domain $S \subseteq \mathbb{R}^n$ is a convex set, then if $f(S) = \{f(\mathbf{x})   \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is also convex.                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>f is an affine function iff f(θx + (1 - θ)y) = θf(x) + (1 - θ)f(y), where θ∈ ℝ.</li> <li>The affine function, f(x) = Ax + b, is a broader category that encompasses the linear function, f(x) = Ax. The linear function has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes</li> </ul>                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b.</li> <li>◆ A special case of the linear function is when A = c<sup>T</sup>. In this case, we have f(x) = c<sup>T</sup>x, which is the inner product between the vector c and x.</li> </ul>                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>c and x.</li> <li>The inverse image of C, f<sup>-1</sup>(C) = {x   f(x) ∈ C}, is also convex.</li> <li>The linear matrix inequality (LMI), A(x) = x<sub>1</sub>A<sub>1</sub> + ··· + x<sub>n</sub>A<sub>n</sub> ≤ B, is a special case of affine function. In other words, f(S) = {x   A(x) ≤ B} is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-</li> </ul>                                                                                                                                                                            |
| Constant function $f : \mathbb{R} \to \mathbb{R}$ • $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) = f(\mathbf{x})$ , where $\theta \in \mathbb{R}$ .  Exponential function $f : \mathbb{R} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Convex and concave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | problems can be formulated as LMI problems and solved optimally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Exponential function $f : \mathbb{R} \to \mathbb{R}$<br>• $f(x) = e^{ax} \in \mathbb{R}$ , where $a \in \mathbb{R}$<br>Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$<br>• $f(\mathbf{x}) = a\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{p}^T\mathbf{x} + r \in \mathbb{R}$ , where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$ , and $a, b \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                         | It depends on the matrix $\mathbf{P}$ :  • $f$ is convex iff $\mathbf{P} \succeq 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $a,b \in \mathbb{R}$ $Power function f: \mathbb{R}_{++} \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>f is strictly convex iff P &gt; 0.</li> <li>f is concave iff P ≤ 0.</li> <li>f is strictly concave iff P &lt; 0.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $f(x) = x^a$ Power of absolute value: $f: \mathbb{R} \to \mathbb{R}$ • $f(x) =  x ^p$ , where $p \le 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>f is convex iff a ≥ 1 or a ≤ 0.</li> <li>f is concave iff 0 ≤ a ≤ 1.</li> </ul> Convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Logarithm function: $f: \mathbb{R}_{++} \to \mathbb{R}$<br>• $f(x) = \log x$<br>Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concave.  Convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • When it is defined $f(r) = 0$ dom (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>f(x) = x log x</li> <li>Minkowski distance, p-norm function, or l<sub>p</sub> norm function:</li> <li>f: ℝ<sup>n</sup> → ℝ</li> <li>f(x) =   x  <sub>p</sub>, where p ∈ ℕ<sub>++</sub>.</li> </ul> Maximum element: f: ℝ <sup>n</sup> → ℝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • When it is defined $f(x) _{x=0} = 0$ , dom $(f) = \mathbb{R}$ .<br>• It can be proved by triangular inequality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Maximum element: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$ .  Pointwise maximum (maximum function): $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Convex. $f$ is convex if $f_1, \ldots, f_n$ are co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onvex functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • Its domain dom $(f) = \bigcap_{i=1}^{n} \text{dom}(f_i)$ is also convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pointwise infimum:  • $f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f$ is concave if $g$ is concave for each $\mathbf{y} \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>For each value of x, we have an infinite set of points g(x, y) <sub>y∈A</sub>. The value f(x) will be the greatest value in the codomain of f that is less than or equal this set.</li> <li>dom (f) = {x   (x, y) ∈ dom (g) ∀ y ∈ A, inf y∈A g(x, y) &gt; -∞}.</li> </ul>                                                                                                                                                                                                                                                                                                                            |
| Pointwise supremum:  • $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f is convex if $g$ is convex for $e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | each $y \in \mathcal{A}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • For each value of $x$ , we have an infinite set of points $g(x,y) _{y\in\mathcal{A}}$ .<br>The value $f(x)$ will be the least value in the codomain of $f$ that is greater than or equal this set.<br>• $\operatorname{dom}(f) = \left\{ x \mid (x,y) \in \operatorname{dom}(g) \ \forall \ y \in \mathcal{A}, \ \sup_{y \in \mathcal{A}} g(x,y) < \infty \right\}$ .                                                                                                                                                                                                                                       |
| Minimum function: $f: \mathbb{R}^n \to \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nonconvex and nonconcave in most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • In terms of epigraphs, the pointwise supremum of the infinite set of functions $g(x,y) _{y\in\mathcal{A}}$ corresponds to the intersection of the following epigraphs: epi $f=\bigcap_{y\in\mathcal{A}}$ epi $g(\cdot,y)$                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>f(x) = min {f<sub>1</sub>(x),, f<sub>n</sub>(x)}.</li> <li>Log-sum-exp function: f: ℝ<sup>n</sup> → ℝ</li> <li>f(x) = log (e<sup>x<sub>1</sub></sup> + ··· + e<sup>x<sub>n</sub></sup>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • This function is interpreted as the approximation of the maximum element function, since $\max\{x_1,\ldots,x_n\} \le f(\mathbf{x}) \le \max\{x_1,\ldots,x_n\} + \log n$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = (\Pi_{i=1}^n x_i)^{1/n}$ Log-determinant function $f: \mathcal{S}_{++}^n \to \mathbb{R}$ • $f(\mathbf{X}) = \log  \mathbf{X} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Convex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Composite function $f = h \circ g : \mathbb{R}^n \to \mathbb{R}$ • $f = g \circ h$ , i.e., $f(\mathbf{x}) = (h \circ g)(\mathbf{x}) = h(g(\mathbf{x}))$ , where:  • $g : \mathbb{R}^n \to \mathbb{R}^k$ .  • $h : \mathbb{R}^k \to \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Scalar composition: the following statements hold for k = 1 and n ≥ 1, i.e., h: R → R and g: R<sup>n</sup> → R:</li> <li>f is convex if h is convex, h is nondecreasing, and g is convex. In this case, dom (h) is either (-∞, a] or (-∞, a).</li> <li>f is convex if h is convex, h is nonincreasing, and g is concave. In this case, dom (h) is either [a, ∞) or (a, ∞).</li> <li>f is concave if h is concave, h is nondecreasing, and g is concave.</li> <li>f is concave if h is concave, h is nonincreasing, and g is concave.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The composition function allows us to see a large class of functions as convex (or concave).</li> <li>For scale composition, the remarkable ones are:</li> <li>If g is convex then f(x) = h(g(x)) = exp g(x) is convex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>If g is concave and dom (g) ⊆ R<sub>++</sub>, then f(x) = h(g(x)) = log g(x) is concave.</li> <li>If g is concave and dom (g) ⊆ R<sub>++</sub>, then f(x) = h(g(x)) = 1/g(x) is convex.</li> <li>If g is convex and dom (g) ⊆ R<sub>+</sub>, then f(x) = h(g(x)) = g<sup>p</sup>(x) is convex, where p ≥ 1.</li> </ul>                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and $g$ is convex.<br>• Vector composition: the followable $k \ge 1$ and $n \ge 1$ , i.e., $h : \mathbb{R}^n$ . Hence, $g(\mathbf{x}) = (g_1(\mathbf{x}), g_2(\mathbf{x}))$ walued function (or simply,                                                                                                                                                                                                                                                                                                                                                  | owing statements hold for $k \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^k$ . $(x), \dots, g_k(\mathbf{x})$ is a vector-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>is convex, where p ≥ 1.</li> <li>If g is convex then f(x) = h(g(x)) = -log (-g(x)) is convex, where dom (f) = {x   g(x) &lt; 0}.</li> <li>For vector composition, we have the following examples:</li> <li>If g(x) = Ax + b is an affine function, then f = h ∘ g is convex (concave) if h is convex (concave).</li> </ul>                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>g<sub>i</sub>: ℝ<sup>k</sup> → ℝ for 1 ≤ i ≤ k.</li> <li>f is convex if h is is coneach argument of x, and functions.</li> <li>f is convex if h is is cone</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | evex, $\tilde{h}$ is nondecreasing in d $\{g_i\}_{i=1}^k$ is a set of convex onvex, $\tilde{h}$ is nonincreasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Let h(x) = x<sub>[1]</sub> + ··· + x<sub>[r]</sub> be the sum of the r largest components of x ∈ R<sup>k</sup>. If g<sub>1</sub>, g<sub>2</sub>,, g<sub>k</sub> are convex, where dom (g<sub>i</sub>) = R<sup>n</sup>, then f = h ∘ g, which is the pointwise sum of the largest g<sub>i</sub>'s, is convex.</li> <li>f = h ∘ g is a convex function when h(x) = log (∑<sub>i=1</sub><sup>k</sup> e<sup>x<sub>i</sub></sup>) and</li> </ul>                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | concave functions.  • $f$ is concave if $h$ is is concave in each argument of $\mathbf{x}$ concave functions.  Where $\tilde{h}$ is the extended-value                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $g_1, g_2, \ldots, g_k$ are convex function when $h(\mathbf{x}) = \log \left( \sum_{i=1}^k \mathbf{x}_i^p \right)^{1/p}$ , where dom $(h) = \mathbb{R}_+^n$ , is concave. If $g_1, g_2, \ldots, g_k$ are concaves (convexes) and nonnegatives, then $f = h \circ g$ is concave (convex).                                                                                                                                                                                                                                                                                                                      |
| Nonnegative weighted sum: $f : \text{dom}(f) \to \mathbb{R}$ $\bullet \ f(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x}), \text{ where } w \ge 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>h, which assigns the value ∞ (-∞) to the point not in dom (h) for h convex (concave).</li> <li>If f<sub>1</sub>, f<sub>2</sub>,, f<sub>m</sub> are convex or concave functions, then f is a convex or concave function, respectively.</li> <li>If f<sub>1</sub>, f<sub>2</sub>,, f<sub>m</sub> are strictly convex or concave functions, then f is a strictly convex or concave function,</li> </ul>                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • Special cases is when $f = wf$ (a nonnegative scaling) and $f = f_1 + f_2$ (sum).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Integral function $f : \mathbb{R}^n \to \mathbb{R}$ :  • $f(\mathbf{x}) = \int_{\mathcal{A}} w(\mathbf{y}) g(\mathbf{x}, \mathbf{y})  d\mathbf{y}$ , where $\mathbf{y} \in \mathcal{A} \subseteq \mathbb{R}^m$ , and $w : \mathbb{R}^m \to \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nvex or concave function, $\mathcal{A} \text{ and if } w(\mathbf{y}) \geq 0, \ \forall \ \mathbf{y} \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Perspective function $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ • $f(\mathbf{x}, t) = \mathbf{x}/t$ , where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes, if $S \subseteq \text{dom}(f)$ is a con $f(S) = \{f(\mathbf{x})   \mathbf{x} \in S\} \subseteq \mathbb{R}^n$ , is all                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The perspective function decreases the dimension of the function domain since dim(dom(f)) = n + 1.</li> <li>Its effect is similar to the camera zoom.</li> <li>The inverse image is also convex, that is, if C ⊆ ℝ<sup>n</sup> is convex, then</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes, if $S \subseteq \text{dom}(f)$ is a con $f(S) = \{f(\mathbf{x})   \mathbf{x} \in S\} \subseteq \mathbb{R}^n$ , is all                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The inverse image is also convex, that is, if C ⊆ ℝ is convex, then f<sup>-1</sup>(C) = {(x,t) ∈ ℝ<sup>n+1</sup>   x/t ∈ C, t &gt; 0} is also convex.</li> <li>A special case is when n = 1, which is called quadratic-over-linear function.</li> <li>The linear and affine functions are special cases of the linear-fractional function.</li> </ul>                                                                                                                                                                                                                                                |
| • $f = p \circ g$ , i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$ , where  • $g : \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^T \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}$ , being $\mathbf{A} \in \mathbb{R}^{m \times n}$ , $\mathbf{b} \in \mathbb{R}^m$ , $\mathbf{c} \in \mathbb{R}^n$ , and $d \in \mathbb{R}$ .  • $p : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the perspective function.                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>fractional function.</li> <li>dom (f) = {x ∈ ℝ<sup>n</sup>   c<sup>T</sup>x + d &gt; 0}</li> <li>𝒫(x) ⊂ ℝ<sup>n+1</sup> is a ray set that begins at the origin and its last component takes only positive values. For each x ∈ dom (f), it is associated a ray set in ℝ<sup>n+1</sup> in this form. This (projective) correspondence between all points in dom (f) and their respective</li> </ul>                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>correspondence between all points in dom (f) and their respective sets P is a biunivocal mapping.</li> <li>The linear transformation Q acts on these rays, forming another set of rays.</li> <li>Finally we take the inverse projective transformation to recover f(x).</li> </ul>                                                                                                                                                                                                                                                                                                                   |
| Epigraph:  • epi $f = \{(\mathbf{x}, t) \mid \mathbf{x} \in \text{dom}(f), t \geq f(\mathbf{x})\}$ Hypograph:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>The function f is convex iff its epigraph is convex.</li> <li>The function f is concave iff its hypograph is convex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f(\mathbf{x})$ .  • Visually, it is the graph above the $(\mathbf{x}, f(\mathbf{x}))$ curve.  • Visually, it is the graph below the $(\mathbf{x}, f(\mathbf{x}))$ curve.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • hypo $f = \{(\mathbf{x}, t) \mid \mathbf{x} \in \text{dom}(f), t \ge f(\mathbf{x})\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J J J J J J J J J J J J J J J J J J J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( ) y ( <del></del> ) / Cut (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

