强化学习

Reinforcement learning

第5节 无模型控制(model-free control)

张世周

Outlines

- 5.1 简介
- 5.2 同策(On-Policy)蒙特卡洛控制
- 5.3 同策(On-Policy)时序差分学习
- 5.4 异策(Off-Policy)学习
- 5.5 总结

无模型的强化学习

上一节课我们讲了无模型的预测和估计未知MDP的价值函数

这节课我们讲无模型的控制和优化未知MDP的价值函数

使用无模型的控制

这些例子可以被建模为MDPs,比如:

电梯、平行泊车、船舶操纵、生物反应器、直升机、飞机后勤、机器人足球、雷神之锤、投资组合管理、蛋白质折叠、机器人行走、围棋等。

对于大多数的这些例子:

- 1、要不MDPs模型是未知的,但是我们可以从已有的经验中获取样本
- 2、要不MDPs模型是已知的,但是太大了无法使用,还是需要从已有的经验中获取样本

同策/异策学习

同策学习:是指智能体已经有了一个策略π,并且遵循这个策略进行采样,对这个策略迭代评估进行优化。待优化的策略(目标策略)就是采样遵循的策略(采样策略),称为同策学习。

Learn about policy Π from experience sampled from Π

异策学习:是指智能体已经有了一个策略π,但是通过采样策略u进行交互产生经验。这种学习方式类似于"站在别人的肩膀上可以看得更远"。目标策略与采样策略不同,称为异策学习。

Learn about policy Π from experience sampled from μ

广义策略迭代(回顾)

策略评估: 即估计 v_{π} 。比如迭代策略评估

策略改进: 产生 $\pi' > \pi$ 。比如贪婪策略改进

基于蒙特卡洛评估的广义策略迭代

策略评估: 基于蒙特卡洛的策略评估: $V = v_{\pi}$?

策略改进: 依然是使用贪婪策略改进?

无模型的策略迭代使用动作价值函数

 \blacksquare 基于价值函数 V(s) 的贪婪策略提升需要MDP的模型

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ \mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s')$$

■ 基于动作价值函数 Q(a,s) 的贪婪策略提升是不需要MDP的模型的

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

基于动作价值函数的广义策略迭代

策略评估: 基于蒙特卡洛的策略评估是使 $Q = q_{\pi}$

策略改进: 依然是使用贪婪策略改进吗?

贪婪动作选择的例子

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

在你面前有两扇门:

- ■当你打开左边那扇们的时候获得reward=0 即V(left)=0
- ■当你打开右边那扇们的时候获得reward=+1 即V(right)=+1
- ■当你打开右边那扇们的时候获得reward=+3 即V(right)=+2
- ■当你打开右边那扇们的时候获得reward=+2 即V(right)=+2

你确定你选择的是最优的那扇门?

ε-贪婪试探(Exploration)

- **ε**-贪婪试探: 确保持续试探的最简单想法
- 所有的m个动作都以非零概率被选择
- ■以1-ε的概率去选择贪婪动作
- ■以ε的概率去选择一个随机动作

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

ε-贪婪策略改进

策略改进定理

对于任意的ε-贪婪策略 π ,这个ε-贪婪策略 π' 对应的 q_{π} 是提升的,即 $v_{\pi'}(s) \ge v_{\pi}(s)$

$$q_{\pi}(s, \pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a|s)q_{\pi}(s, a)$$
 $= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$
 $= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \epsilon/m}{1 - \epsilon} q_{\pi}(s, a)$
 $= \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s, a) = v_{\pi}(s)$

因此根据策略提升定理, $V_{\pi'}(s) \ge V_{\pi}(s)$

蒙特卡洛策略迭代

策略评估: 基于蒙特卡洛的策略评估是使 $Q=q_{\pi}$

策略改进: 使用ε-贪婪策略改进

蒙特卡洛控制

对于每一个episode

策略评估: 基于蒙特卡洛的策略评估是使 $Q \approx q_{\pi}$

策略改进: 使用ε-贪婪策略改进

GLIE

定义

Greedy in the Limit with Infinite Exploration (GLIE)

■ 所有状态-动作对都被无限次地探索

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

■ 这样的策略趋同于贪婪的策略

$$\lim_{k\to\infty}\pi_k(a\mid s)=1(a=\arg\max_{a'\in A}Q_k(s,a'))$$

举个例子: 如果
$$\epsilon$$
满足 $\varepsilon_k = \frac{1}{k} \epsilon$ -贪婪策略就是满足GLIE的

GLIE蒙特卡洛控制

基于GLIE的蒙特卡洛控制流程如下:

- 1、对于给定策略π,采样第k个Episode: $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- 2、对于该Episode里出现的每一个状态行为对 S_t 和 A_t ,更其计数和Q函数

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

3、基于新的 Q 函数改善以如右方式改善策略: $\epsilon \leftarrow 1/k$ $\pi \leftarrow \epsilon$ -greedy(Q)

定理: GLIE蒙特卡洛控制收敛于最优动作价值函数,即 $Q(s,a) \rightarrow q_*(s,a)$

回到Blackjack例子

在blackjack问题中使用蒙特卡洛控制

Usable

ace

No

usable

ace

- 当你手上有可用A时,大多数情况下当你的牌面和达到17或18时停止要牌,如果庄家可见的牌面在2-9之间,你选择17,其它条件选择18;
- 当你手上没有 A 时,最优策略提示大多数情况下牌面和达到16就要停止叫牌,当庄家可见的牌面在2-7时,这一数字更小至13甚至12。这种极端情况下,宁愿停止叫牌等待让庄家的牌爆掉。

MC控制 vs. TD 控制

时序差分学习与蒙特卡洛学习相比有如下几个优势:

- 1、低方差
- 2、在线学习
- 3、可以从不完整的episode中学习

自然的想法:使用TD替代MC来进行控制,即:

- 1、应用TD来更新Q(s,a)
- 2、使用ε-贪婪策略进行改进
- 3、每个时间步都进行更新

使用SARSA算法更新动作价值函数

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

基于SARSA算法的同策控制

对于每一个时间步(time-step) 策略评估: SARSA, $Q \approx q_{\pi}$

策略改进: 使用ε-贪婪策略改进

基于SARSA算法的在线控制

```
Initialize Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), \text{ arbitrarily, and } Q(terminal\text{-state}, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
       S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

SARSA算法的收敛

定理

SARSA在满足以下条件时收敛到最优动作价值函数 $Q(s,a) \rightarrow q_*(s,a)$

条件一: 任何时候的策略 $\pi_t(a|s)$ 符合GLIE特性;

条件二: 步长系数 α_t 满足: $\sum_{t=1}^{\infty} \alpha_t = \infty$ 且 $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$

示例——有风格子世界

在到达终点之前每走一步reward=-1 无折扣率

SARSA算法在有风格子世界中的应用

n-Step Sarsa

■下面是当n=0,1,2...∞时的n步回报

$$n = 1$$
 (Sarsa) $q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1})$
 $n = 2$ $q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2})$
 \vdots \vdots \vdots $n = \infty$ (MC) $q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$

■定义n步Q回报为:

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

■使用n步Q回报来更新Q(s,a)

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

前向视角SARSA(λ)

- \mathbf{q}^{λ} 回报包含了所有的n步Q回报 $q_t^{(n)}$
- 使用权重(1-λ)λⁿ⁻¹ 使

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

前向视角SARSA(λ)更新函数为:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{\lambda} - Q(S_t, A_t)\right)$$

后向视角SARSA(λ)

- ■就像TD(λ)算法一样,为在线更新算法引入资格迹
- ■SARSA算法对于每个状态-动作对来说有一个资格迹

$$E_0(s, a) = 0$$

 $E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + \mathbf{1}(S_t = s, A_t = a)$

- ■Q(s,a)更新于每个状态s和动作a之后
- 更新量与TD误差 δ_t 与资格迹 $E_t(s,a)$ 成正比

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

SARSR(λ)算法流程

```
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A(s)
Repeat (for each episode):
   E(s, a) = 0, for all s \in S, a \in A(s)
   Initialize S, A
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
       E(S,A) \leftarrow E(S,A) + 1
       For all s \in \mathcal{S}, a \in \mathcal{A}(s):
           Q(s, a) \leftarrow Q(s, a) + \alpha \delta E(s, a)
           E(s,a) \leftarrow \gamma \lambda E(s,a)
       S \leftarrow S'; A \leftarrow A'
   until S is terminal
```

SARSA算法在有风格子世界中的应用

Action values increased by one-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

异策学习

评估目标策略 $\pi(a|s)$ 以计算 $v_{\pi}(s)$ 或 $q_{\pi}(s,a)$ 时遵循策略 $\mu(a|s)$ $\{S_1,A_1,R_2,...,S_T\} \sim \mu$

为什么异策学习方法很重要?

- 可以从人类或其他的智能体经验中学习
- 重用旧策略的经验
- 在使用一个探索性策略的同时学习一个确定性策略
- 使用一个策略采样,同时学习多个策略

重要性抽样

估计不同分布的期望值:

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

异策蒙特卡洛方法的重要性抽样

- 使用由µ产生的回报值来评估π
- ■根据策略之间的相似性对Gt进行加权
- ■沿着整个episode对重要性抽样的权重进行连乘

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

■根据修正过的返回值来更新价值函数

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{G_t^{\pi/\mu}}{V(S_t)} - V(S_t) \right)$$

- 当π为非零时,且μ为零,则无法使用
- ■重要性抽样会显著增加方差

异策TD方法的重要性抽样

- 使用由μ产生的TD目标值来评估π
- 通过重要性抽样对TD目标R+γV(S`)进行加权
- 只需要一次重要抽样校正

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

- ■方差比蒙特卡罗重要性抽样低得多
- 策略只需要在一个时间步上相似

智能体处在状态St中,基于策略µ产生了一个行 为 A_t ,执行该行为后进入新的状态 S_{t+1} ,那么在 当前策略下如何根据新状态的价值调整原来状 态的价值呢? 异策学习的方法就是: 在状态St时 比较目标策略π和采样策略μ产生行为At的概率 大小,如果策略π得到的概率值与当前策略μ得 到的概率值接近,说明根据状态S_{t+1}价值来更新 S,的价值同时得到两个策略的支持,这一更新 操作比较有说服力。同时也说明在状态St时, 两个策略有接近的概率选择行为At。假如这一 概率比值很小,则表明如果依照评估策略,选 择A_t的机会很小,这时候我们在更新S_t价值的 时候就不能过多的考虑基于采样策略得到的状 态S_{t+1}的价值。同样概率比值大于1时的道理也 类似。这就相当于借鉴被评估策略的经验来更 新我们自己的策略。

Q学习(Q-Learning)

- ■现在我们考虑动作价值函数Q(S,A)的异策学习。
- ■Q学习不需要重要性抽样(why?)
- 根据采样策略µ选择的下一个动作 $A_{t+1} \sim \mu(\cdot | S_t)$
- 但是我们考虑替代后继动作 $A' \sim \pi(\cdot | S_t)$
- 并根据替代动作的价值更新 $Q(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t))$$

Q学习的异策控制

- ■我们现在允许同时改善采样策略μ和目标策略π
- ■目标策略π设为对应于Q(s,a)的贪婪策略

$$\pi(S_{t+1}) = \operatorname{argmax} Q(S_{t+1}, a')$$

- ■采样策略μ设为对应于Q(s,a)的ε-贪婪策略
- Q-learning目标简化为:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

= $R_{t+1} + \gamma Q(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a'))$
= $R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$

重要性采样的因子 π/μ 分两种情况。对于某个状态s, π 策略选择动作a的概率要么是1, 要么是0。当为1时, μ 选择该动作的概率也较大(因为 ε—般比较小),所以 $\pi/\mu \approx 1$;当为0时 $\pi/\mu = 0$ 。

Q学习控制算法

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

定理

Q学习控制算法收敛到最优动作价值函数 $Q(s,a) \rightarrow q_*(s,a)$

异策控制的Q学习算法

```
Initialize Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
      Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
      S \leftarrow S':
                                         此时选择的动作只会参与价值函数
   until S is terminal
                                          的更新,不会真正的执行。价值函
```

数更新后,新的执行动作需要基于

状态S`,用ε-贪婪法重新选择得到。

悬崖行走示例

右图显示的是在使用 ϵ -贪心方法(ϵ =0.1) 来选择动作时,Sarsa和Q学习方法的表 现。训练一小段时间后,Q学习学到了 最优策略,即沿着悬崖边上走的策略。 不幸的是,由于动作是通过ε-贪心的方 式来选择的, 因此在执行这个策略时, 智能体会偶尔掉入悬崖。与之对比, Sarsa则考虑了动作被选取的方式,学到 了一条通过网格的上半部分的路径,这 条路径虽然更长但更安全。虽然Q学习 实际上学到了最优策略的价值,其在线 性能却比学到迂回策略的Sarsa更差。当 然如果ε逐步减小,那么两种方法都会渐 进地收敛到最优策略。

SARSA v.s. Q-Learning

Q-learning 直接学习的是最优策略,而 SARSA 在学习最优策略的同时还在做探索。这导致 我们在学习最优策略的时候,如果用 SARSA ,为了保证收敛,需要制定一个策略,使 ϵ — greedy 法的超参数 ϵ 在迭代的过程中逐渐变小。 Q-learning 没有这个烦恼。 另外一 个就是 Q-learning 直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以 受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响 $oldsymbol{Q}$ 函数的收敛。 Q-learning 的深度强化学习版 Deep Q-Learning 也有这个问题。 在学习过程中, SARSA 在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像 Q-learning 可能遇到一些特殊的最优"陷阱"。在实际应用中,如果我们是在模拟环境中训练 强化学习模型,推荐使用 Q-learning ,如果是在线生产环境中训练模型,则推荐使用 SARSA.

DP与TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation Equation for $q_{\pi}(s, a)$	$q_{\pi}(s,a) \leftrightarrow s,a$ $q_{\pi}(s',a') \leftrightarrow a'$ Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s,a)$	$q_{\bullet}(s,a) \leftrightarrow s,a$ $q_{\bullet}(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

DP与TD(2)

Full Backup (DP)	Sample Backup (TD)	
Iterative Policy Evaluation	TD Learning	
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$	
Q-Policy Iteration	Sarsa	
$Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma Q(S',A') \mid s,a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$	
Q-Value Iteration	Q-Learning	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in A} Q(S',a')$	

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$

The End