Artificial Intelligence (CS303)

Lecture 10: Perceptron & Neural Networks

Classification

Given: Training data: $(x_1, y_1), ..., (x_n, y_n), x_i \in \mathbb{R}^d$ and y_i is discrete (categorical/qualitative), $y_i \in Y$.

Example $Y = \{-1, +1\}, Y = \{0, 1\}$

Task: Learn a classification function, $f: \mathbb{R}^d \to Y$

Linear Classification: A classification model is said to be linear if it is represented by a linear function f (linear hyperplane)

- Belongs to Neural Networks class of algorithms (algorithms that try to mimic how the brain functions).
- The first algorithm used was the Perceptron (Resemblatt 1959).
- Worked extremely well to recognize:
 - 1. handwritten characters (LeCun et a. 1989),
 - 2. spoken words (Lang et al. 1990),
 - 3. faces (Cottrel 1990)
- NN were popular in the 90's but then lost some of its popularity.
- Now NN back with deep learning.

Perfectly separable data

- Linear classification method.
- Simplest classification method.
- Simplest neural network.
- For perfectly separated data.

Given *n* examples and *d* features.

$$f(x_i) = sign(\sum_{j=0}^d w_j x_{ij})$$
 红对一个样本

- Works perfectly if data is linearly separable. If not, it will not converge.
- Idea: Start with a random hyperplane and adjust it using your training data.
- Iterative method.

Perceptron Algorithm

Input: A set of examples, $(x_1, y_1), \dots, (x_n, y_n)$

Output: A perceptron defined by (w_0, w_1, \dots, w_d)

Begin

- 2. Initialize the weights w_j to 0 $\forall j \in \{0, \dots, d\}$
- 3. Repeat until convergence
 - 4. For each example $x_i \ \forall i \in \{1, \dots, n\}$
 - 5. if $y_i f(x_i) \le 0$ #an error?
 - 6. Update all w_j with $w_j := (w_j + y_i x_{ij})$ adjust the weights

End

Some observations:

- The weights w_1 , ..., w_d determine the slope of the decision boundary.
- w_0 determines the offset of the decision boundary (sometimes noted b).
- Line 6 corresponds to:
 - Mistake on positive: add x to weight vector.
 - Mistake on negative: subtract x from weight vector.
 - Some other variants of the algorithm add or subtract 1.
- Convergence happen when the weights do not change anymore (difference between the last two weight vectors is 0).

(with coverdinaite as X, color as lable)

Finally converged!

With some test data:

• The w_i determine the contribution of x_i to the label.

 $-w_0$ is a quantity that $\sum_{j=1}^d w_j x_j$ needs to exceed for the perceptron to output 1.

Can be used to represent many Boolean functions: AND, OR, NAND, NOR, NOT but not all $\bf q$ f them (e.g., XOR).

Choice of the hyperplane

城序有关)

Lots of possible solutions! (与初始状态.节剂该

: Idea of SVM is to find the optimal solution.

Neural Networks

From perceptron to NN

- Neural networks use the ability of the Perceptrons to <u>represent</u> <u>elementary functions</u> and combine them in a network of layers.
- However, a cascade of linear functions is still linear!
- And we want networks that represent highly non-linear functions.

From perceptron to NN

- Also, perceptron used a step function, which is non-differentiable and not suitable for gradient descent in case data is not linearly separable.
- We want a function whose output is a differentiable function of the inputs. One possibility is to use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$g(z) \rightarrow 1$$
 when $z \rightarrow +\infty$

$$g(z) \rightarrow 0$$
 when $z \rightarrow -\infty$

Perceptron with Sigmoid

Given *n* examples and *d* features.

For an example x_i (the i^{th} line in the matrix of examples)

$$\underbrace{f(x_i)}_{1 + e^{-\sum_{j=0}^{d} w_j x_{ij}}} = \frac{1}{1 + e^{-\sum_{j=0}^{d} w_j x_{ij}}}$$

Let's try to create a MLP/NN for the XOR function using elementary perceptrons.

First observe:

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(10) = 0.99995$$

$$g(-10) = 0.00004$$

Let's consider that: For $z \ge 10$, $g(z) \to 1$. For $z \le -10$, $g(z) \to 0$.

First what is the perceptron of the OR?

x_1	x_2	x_1 OR x_2	g(z)
0	0	0	$g(w_0 + w_1x_1 + w_2x_2) = g(-10)$
0	1	1	g(10)
1	0	1	g(10)
1	1	1	g(30)

Similarly, we obtain the perceptrons for the AND and NAND:

Note: how the weights in the NAND are the inverse weights of the AND.

Let's try to create a NN for the XOR function using elementary perceptrons.

x_1	x_2	x_1 XOR x_2	$(x_1 ext{ OR } x_2) ext{ AND } (x_1 ext{ NAND } x_2)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Let's put them together...

XOR as a combination of 3 basic perceptrons.

Backpropagation algorithm 反向传播

- Note: Feedforward (IN) (as opposed to recurrent networks) have no connections that loop.
- Learn the weights for a multilayer network.
- Backpropagation stands for "backward propagation of errors".
- Given a network with a fixed architecture (neurons and interconnections).
- Use Gradient descent to minimize the squared error between the network output value o and the ground truth v.
- We suppose multiple output k.
- Challenge: Search in all possible weight values for all neurons in the network.

Feedforward-Backpropagation前馈,

- We consider *k* outputs
- For an example *e* defined by (*x*, *y*), the error on training example *e*, summed over all output neurons in the network is:

$$E_e(w) = \left(\frac{1}{2}\sum_k (y_k - \widehat{o_k})^2\right)$$

• Remember, gradient descent iterates through all the training examples one at a time, descending the gradient of the error w.r.t. this example.

$$\Delta w_{ij} = -\alpha \; \frac{\partial E_e(w)}{\partial w_{ij}}$$

Backpropagation notations

Notations:

- x_{ij} : the i^{th} input to neuron j.
- w_{ij} : the weight associated with the i^{th} input to neuron j.
- $z_j = \sum w_{ij} x_{ij}$, weighted sum of inputs for neuron j. 求和政和编出
- o; output computed by neuron j. 9(2)
- g is the sigmoid function.
- outputs: the set of neurons in the output layer.
- *Succ*(*j*): the set of neurons whose immediate inputs include the output of neuron *j*.

Backpropagation notations

$$\frac{\partial E_e}{\partial w_{ij}} = \frac{\partial E_e}{\partial z_j} \frac{\partial z_j}{\partial w_{ij}} = \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} x_{ij} \quad \mathbf{Z}_{\hat{\mathbf{J}}} = \mathbf{Z} \mathbf{W} \hat{\mathbf{v}} \mathbf{X} \hat{\mathbf{v}}$$

$$\Delta w_{ij} = -\alpha \frac{\partial \mathbf{E_e}}{\partial \mathbf{z_j}} \left(x_{ij} \right)$$

We consider two cases in calculating $\frac{\partial E_e}{\partial z_i}$ (let's abandon the index *e*):

- Case 1: Neuron j is an output neuron
- Case 2: Neuron j is a hidden neuron

Case 1: Neuron j is an output neuron

$$\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial z_j}$$

$$\frac{\partial E}{\partial o_{j}} = \frac{\partial}{\partial o_{j}} \frac{1}{2} \sum_{k} (y_{k} - o_{k})^{2}$$

$$\frac{\partial E}{\partial o_{j}} = \frac{\partial}{\partial o_{j}} \frac{1}{2} (y_{j} - o_{j})^{2}$$
We have: $o_{j} = g(z_{j})$

$$\frac{\partial E}{\partial o_{j}} = \frac{1}{2} 2 (y_{j} - o_{j}) \frac{\partial(y_{j} - o_{j})}{\partial o_{j}}$$

$$\frac{\partial E}{\partial o_{j}} = (-(y_{j} - o_{j}))$$

$$\frac{\partial E}{\partial o_{j}} = (-(y_{j} - o_{j}))$$

$$\frac{\partial O_{j}}{\partial z_{j}} = o_{j}(1 - o_{j})$$

$$\frac{\partial o_{j}}{\partial z_{j}} = \frac{\partial g(z_{j})}{\partial z_{j}}$$

$$\frac{\partial o_{j}}{\partial z_{j}} = o_{j}(1 - o_{j})$$
Sigmod is the sign of the

$$\frac{\partial E}{\partial z_j} = -(y_j - o_j)o_j(1 - o_j)$$

$$\Delta w_{ij} = \alpha (y_j - o_j) o_j (1 - o_j) x_{ij}$$

We will note

$$\delta_j = -\frac{\partial E}{\partial z_j}$$

$$\Delta w_{ij} = \alpha \ \delta_j \ x_{ij}$$

• Case 2: Neuron j is a hidden neuron

$$\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} \frac{\partial E}{\partial z_k} \frac{\partial z_k}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \frac{\partial z_k}{\partial z_j}$$

$$\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k \frac{\partial z_k}{\partial o_j} \frac{\partial o_j}{\partial z_j}$$

$$\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k w_{jk} \frac{\partial o_j}{\partial z_j}$$

$$\frac{\partial E}{\partial z_j} = \sum_{k \in succ\{j\}} -\delta_k w_{jk} o_j (1 - o_j)$$

$$\delta_j = -\frac{\partial E}{\partial z_j} = o_j (1 - o_j) \sum_{k \in succ\{j\}} \delta_k w_{jk}$$

Backpropagation algorithm (BP)

- **Input:** training examples (x, y), learning rate α (e.g., $\alpha = 0.1$), n_i , n_h and n_Q .
- Output: a neural network with one input layer, one hidden layer and one output layer with n_i , n_h and n_o number of neurons respectively and all its weights.

 - 2. Initialize all weights to a small random number (e.g., in [-0.2, 0.2]) 比 3. Repeat until convergence

For each training example (x, y)

- Feed forward: Propagate example x through the network and compute the output o_i from every neuron.
- II. Propagate backward: Propagate the errors backward.

$$\delta_k = o_k(1 - o_k)(y_k - o_k)$$

 $\delta_k = o_k (1 - o_k)(y_k - o_k)$ Case 2 For each hidden neuron *h*, calculate its error

$$\delta_h = o_h (1 - o_h) \sum_{k \in Succ(h)} w_{hk} \delta_k$$

III. Update each weight: $w_{ij} \leftarrow w_{ij} + \alpha \delta j x_{ij}$

Observations

- Convergence: small changes in the weights
- There are other activation functions. Hyperbolic tangent function, is practically better for NN as its outputs range from -1 to 1.

Multi-class case etc. Vs the others I Vs Object 1 Object 2 Object 3

- Nowadays, networks with more than two layers, a.k.a. deep networks, have proven to be very effective in many domains.
- Examples of deep networks: restricted Boltzman machines, convolutional NN, auto encoders, etc.

MNIST database

- The MNIST database of handwritten digits
- Training set of 60,000 examples, test set of 10,000 examples
- Vectors in \mathbb{R}^{784} (28x28 images)
- Labels are the digits they represent
- Various methods have been tested with this training set and test set
- Linear models: 7% 12% error
- KNN: 0.5% 5% error
- Neural networks: 0.35% 4.7% error
- Convolutional NN: 0.23% 1.7% error

To be continued