Assignment 3

Task 2.1 Adjacency Matrix

Main principles:

- 1. Node list as rows and columns of table
- 2. Cell shows presence/absence of edge
- 3. Edge between nodes can be weighted or have attributes
- 4. If the edges are directed one side represents the outcome and the other one the income
- 5. Takes network nodes as keys and link status between nodes as values
- 6. Scale: Nodes: 1000. Links: one million

Graph:

Matrix:

Visibility:

Graph	Matrix
Cycles and Subgraphs or Connections (not the	If the Edges are not directed, we can see
directed ones) are easy to find	subgraphs and the way how nodes are connected
Example: E is not connected to any other node	
	If there is one big line in one row or column one node is connected to many other ones
Hierarchical structures can be easier analysed if the graph is structured like the given one	Out- and Income can be compared fast (in our case income columns and outcome rows)
	, ,
Example: A is the root node because every subgraph can be reached from this node, but not every node can reach A	
 topology understanding, path tracing 	 predictability, scalability, supports
 intuitive, no training needed 	reordering
	 some topology tasks trainable
 node-link best for small networks 	 matrix best for large networks