

$^{+1}$ Notas de Análise no \mathbb{R}^n

September 11, 2025

"Tudo posso naquele que me fortalece"

Nestor Heli Aponte Avila¹

n267452@dac.unicamp.br

Elon 4:13

** Conteúdo basado na disciplina MM720 (Análise no R(n)) ministrada pelo professor Tiago Jardím Fonseca no período 2025-I. **

Notação	♦ Definição	(−) [♦] Aberto	(−) ⁺ Fechado
□ Lema	☐ Proposição	Teorema	Corolário

§ 1 Derivadas Direcionais

 \diamondsuit Seja $f:U^{\diamondsuit}\subseteq\mathbb{R}^n o\mathbb{R}$ uma função escalar. Para $\vec{v}\in\mathbb{R}^n$ e $p\in U$, a v-directional derivada de f em p, se existir, é dada por

$$\frac{\partial f}{\partial v}(p) := \lim_{h \to 0} \frac{f(p+hv) - f(p)}{h} \sim f(p+hv) = f(p) + \frac{\partial f}{\partial v}(p) \cdot h + \sigma(h).$$

Nota. Se $v = e_i$ então $\frac{\partial f}{\partial x_i}(p)$ é a *i*-ésima derivada parcial de f em p.

$$\exists \alpha \in \mathbb{R} : f(p+hv) = f(p) + \alpha h + \sigma(h) \Rightarrow \frac{\partial f}{\partial v}(p) = \alpha$$

Exemplo $f: \mathbb{R}^2 \ni \mathbf{x} \mapsto ||\mathbf{x}||^2 \in \mathbb{R}$. \to Use produto interno e encontre α

$$\forall j \leq n, \; \exists \frac{\partial f}{\partial x_j}(p) \Rightarrow \forall \vec{v} \in \mathbb{R}^n, \; \exists \frac{\partial f}{\partial v}(p) \Rightarrow f \; \text{continua em} \; p$$

Exemplo $(x,y) \mapsto x+y$, se x=0 or y=0, nula no caso contrario. \rightarrow Prove diferentes direções em 0

Exemplo $0 \neq (x,y) \mapsto \frac{xy^2}{\|x\|^2}$, nula em $0. \to \text{Estude a continuidade no } 0$

 \bigcirc (Conexidade) $X^{\diamondsuit} \subseteq \mathbb{R}^n$ é conexo sse $\nexists U^{\diamondsuit}, V^{\diamondsuit} \subseteq \mathbb{R}^n$ não vazios tais que $U \cap V \neq \emptyset$ e $X \subseteq U \cup V$.

 \Box Se $U^{\diamondsuit} \subseteq \mathbb{R}^n$ é conexo, então $\forall p, q \in U, \exists \Gamma$ caminho poligonal em U com vértices $p = p_0, p_1, \ldots, p_k = q$, tais que $p_{i+1} - p_i$ é colinear com algum e_j . \to É por construção, só lembre que U é aberto.

 \square Seja $U^{\diamondsuit}\subseteq\mathbb{R}^n$ conexo e $f:U\to\mathbb{R}$ função tal que $\forall p\in U,\ \forall i\leq n$ as derivadas $\frac{\partial f}{\partial x_i}(p)=0$ em U, então f é constante.

Use o lemma, aplique TVM para $\varphi(t) = f(p_i + te_j)$, quem é $\varphi'(\theta)$?

§ 2 Funções de Classe C^k

 \bigcirc Seja $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$ tal que $\forall p \in U, \exists \frac{\partial f}{\partial x_i}(p): U \to \mathbb{R}$, definimos a derivada de segundo ordem de f como

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(p) := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)(p).$$

Nota. O ordem é importante, em geral. De forma análoga, definimos as k-ésimas derivadas de f.

 \bigcirc Seja $k \in \{0\} \cup \mathbb{N}$. Uma função $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$ é de classe $C^k(U)$ se $\forall p \in U, \forall m \leq k, \exists \partial^m f(p)$ continua em p.

Nota. $f \in C^0 \Leftrightarrow f$ continua; $f \in C^\infty \Leftrightarrow f$ é suave.

Exemplo O anel de polinômios $\mathbb{R}[x_1,\ldots,x_n]\subseteq C^{\infty}(\mathbb{R}^n)$.

Exemplo $\det(T): M_n(\mathbb{R}) \cong \mathbb{R}^{n^2} \to \mathbb{R}$ é de classe $C^{\infty}. \to \text{\'E}$ polinomial

Exemplo Seja $f: x \mapsto x^{1/3}$, então $f \in C^0(\mathbb{R})$ mais não é de classe C^1 em $0. \to \text{Veja}$ o que acontece com o límite nesse punto

 \blacksquare (Schwarz) Se $f \in C^2(U)$, então $\forall i, j \leq n$ temos

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Basta ver n=2. Defina S=f(x+h,y+k)-f(x+h,y)-f(x,y+k)+f(x,y) e $\varphi(t)=f(t,y+k)-f(t,y)$, aplique TVM $\times 2$ e manobre até obter uma igualdade a S. O resultado segue de fazer o mesmo a $\psi(t)$, fixando a outra coordenada.

■ Se $f \in C^k(U)$ então não importa o ordem em que são tomadas as derivadas de ordem $m \le k$. \to É uma questão de trabalhá-las 2 a 2

§ 3 O Diferencial

 \diamondsuit Seja $U^{\diamondsuit}\subseteq\mathbb{R}^n$. Uma função $f:U\to\mathbb{R}$ é diff em $p\in U$ sse $\exists \ell:\mathbb{R}^n\to\mathbb{R}$ lineal, tal que

$$f(p+v) = f(p) + \ell \cdot v + \sigma(\|v\|), \text{ quando } v \to 0.$$

 \Box Se f é diff em p, então $\forall \vec{v} \in \mathbb{R}^n$, temos $\ell \cdot v = \frac{\partial f}{\partial v}(p)$. \to Vá de uma definição a outra

 \bigcirc Se f é diff em p então o diferencial de f em p é a função lineal $df(p): \mathcal{U}_p \to \mathbb{R}$ dada por

$$df(p) \cdot v := \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) \cdot v_i.$$

$$\exists \tfrac{\partial f}{\partial x_i}(p) \not \Rightarrow df(p) \text{ lineal } \not \Rightarrow f \text{ diff en } p$$

Exemplo $f: \mathbb{R}^n \ni \mathbf{x} \mapsto \|\mathbf{x}\|^2 \in \mathbb{R}$. \to Como em nosso primeiro exemplo

 \square Se f é diff em p, então f é continua em p. \rightarrow Faz $v \rightarrow 0$ na definição

$$\nexists df(p) \Leftarrow \mathcal{L}(\mathbb{R}^n; \mathbb{R}) \not\ni \exists \frac{\partial f}{\partial v}(p) \mid \forall \vec{v} \in \mathbb{R}^n, \ \exists \frac{\partial f}{\partial v}(p) \not\Rightarrow \exists df(p).$$

Exemplo $0 \neq (x,y) \mapsto \frac{xy^2}{\|\mathbf{x}\|^2}$, nula em $0. \to f(v) = \sigma(\|v\|)$? Estude a linearidade das direcionais no 0

Exemplo $0 \neq (x,y) \mapsto \frac{xy^3}{x^2+y^4}$, nula em $0. \to \text{Proceda como no anterior}$

Nota. A mecânica para **descartar** diff consiste em (i) continuidade no p; (ii) $\exists \frac{\partial f}{\partial x_i}(p)$ lineares e (iii) $\exists \frac{\partial f}{\partial v}(p)$ lineares.

 \blacksquare Se $f \in C^1(U)$ então f é diff em U.

Tome un caminho poligonal Γ de p até p+v para escrever $f(p+v)-f(p)=\sum f(p_i)-f(p_{i-1})$. Aplique TVM a cada termo da soma e faça aparecer as derivadas parciais. Separe a soma e verifique por definição.

Exemplo $\mathbb{R}[\mathbf{x}] \ni p(\mathbf{x})$ é diff.

Exemplo $\pi_i : \mathbb{R}^n \ni \mathbf{x} \mapsto x_i \in \mathbb{R}$ é diff.

Nota. Além de ser linear, $dx_i(p) = x_i$. Portanto, o espaço dual $(\mathbb{R}^n)^* = [dx_i]$, de modo que o diferencial da f se escreve de forma única como

$$df(p) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) dx_i.$$

 \bigcirc Se f é diff em p, então chamamos de gradiente de f em p o vector

$$\nabla f(p) := \left(\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p)\right).$$

Nota. Para $\vec{v} \in \mathbb{R}^n$ temos $\langle \nabla f(p), v \rangle = \frac{\partial f}{\partial v}(p)$, supoendo ||v|| = 1, então

$$\left| \frac{\partial f}{\partial v}(p) \right| = \left| \langle \nabla f(p), v \rangle \right| \le \| \nabla f(p) \| \| v \|,$$

ou seja, o gradiente aponta na direção de maior crescimento de f em p.

 \bigcirc Seja $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$. Dizemos que $p \in U$ é extremo local da f se $\exists \delta > 0$ tal que $\|\mathbf{x} - p\| < \delta$ implica $f(p) \leq f(\mathbf{x})$ ou $f(\mathbf{x}) \leq f(p)$.

Exercise Se f é diff em p extremo local da f, então $\nabla f(p) = 0$. \to Trabalhe o limite em direções opostas

§ 4 Desigualdade do Valor Medio

□ Sejam $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$, $p \in U$ e $\vec{v} \in \mathbb{R}^n$ tais que $[p, p + v] \subseteq U$. Se $\forall t \in (0, 1)$ a função $\varphi: t \mapsto f(p + tv)$ é diff em p + tv, então φ é diff em t e $\varphi'(t) = df(p + tv) \cdot v = \frac{\partial f}{\partial v}(p + tv)$. $\to \text{Faz } h \to 0$ de $\varphi(t + h)$

■ (TVM - \mathbb{R}^n) Seja $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$ continua em [p, p+v] e diff em (p, p+tv), então $\exists \theta \in (0,1)$ tal que $f(p+v)-f(p)=df(p+\theta v)\cdot v$.

Tome $\varphi(t) = f(p + tv)$, aplique o lema acima e TVM.

- (*DVM* \mathbb{R}^n) Sejam $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$ diff, $K \subset U$ convexo e $c \geq 0$ tal que $\forall \mathbf{x} \in K, \ \|df(\mathbf{x})\| \leq c$. Então, $\forall p, q \in K$ temos $\|f(p) f(q)\| \leq c\|p q\|$. \to Tome q = p + v no Teorema anterior
- \diamondsuit Seja $\ell \in \mathcal{L}(\mathbb{R}^n; \mathbb{R})$. Definimos $\|\ell\| := \sup_{\|v\|=1} |\ell v|$.

Exercise Se $\exists \vec{w} \in \mathbb{R}^n$ tal que $\ell v = \langle w, v \rangle$, então $\|\ell\| = \|w\|$. Em particular, se f é diff em p, então $\|df(p)\| = \|\nabla f(p)\|$. \to Use Cauchy-Schwarz para provar as duas desigualdades

- \bigcirc Uma função $f:X\subset\mathbb{R}^n\to\mathbb{R}$ é *Lipschitz continua* se $\exists c\geq 0$ tal que $\forall p,q\in X,\ \|f(p)-f(q)\|\leq c\|p-q\|.$
- TVM \mathbb{R}^n implies f Lipschitz em K.

§ 5 Formula de Taylor

A ideia é aproximar funções por polinômios, visando uma forma $f(p+v)=P_k[v]+\Gamma_k[v]$, onde P_k é um polinômio na variável v de ordem k e Γ_k é um erro de ordem $\sigma(\|v\|^k)$.

Exemplo Se $f \in C^2(U)$ e $p \in U$, então

$$f(p+v) = \underbrace{f(p) + \sum \frac{\partial f}{\partial x_i}(p)v_i + \frac{1}{2} \sum \frac{\partial f}{\partial x_i \partial x_j}(p)v_i v_j}_{P_2[v]} + \underbrace{\sigma(\|v\|^2)}_{\Gamma_2[v]}.$$

❖ Seja $k \ge 2$. Dizemos que $f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$ é k-diff em $p \in U$ se f é diff em $p \in \mathcal{V}_p$ tal que $\forall i \le n, \ \frac{\partial f}{\partial x_i}(p): \mathcal{V}_p \to \mathbb{R}$ são (k-1)-diff em p.

Exemplo $f \in C^k(U)$ é k-diff em $p \in U$.

 \bigcirc Seja f função k-diff em p, o $diferencial\ k$ -ésimo de f em p é dado por

$$v \mapsto d^k f(p) v^{\otimes k} = \sum \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} (p) v_{i_1} \cdots v_{i_k}.$$

Nota. $d^k f(p) v^{\otimes k}$ é um polinômio homogêneo de grau k

$$d^2f(p)v=vA(p)v^T$$
 é uma forma bilinear quadrâtica de grau 2.

Exemplo Para $f: \mathbb{R}^2 \to \mathbb{R}$, sendo v = (h, k) temos

$$d^2f(p)v^{\otimes 2} = \frac{\partial^2 f}{\partial x^2}(p)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(p)hk + \frac{\partial^2 f}{\partial y^2}(p)k^2.$$

 \diamondsuit Seja f função 2-diff em p, a *Hessiana* da f em p, é a matriz

$$Hf(p) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(p)\right)_{i,j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(p) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(p) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(p) \end{pmatrix}.$$

Nota. Pelo \blacksquare (Schwarz), $\exists ! Hf(p) \in \operatorname{Sym}_n(\mathbb{R})$ tal que

$$d^2 f(p) v^{\otimes 2} = \langle H f(p) \cdot v, v \rangle.$$

 $\diamondsuit f \in C^k(\mathcal{U}_p)$ se anula à ordem k+1 em p se $\forall \alpha : |\alpha| \leq k, d^{\alpha}f(p) = 0.$

Exercise Se $f(\mathbf{x}) = \sum_{|\alpha| \leq k} c_{\alpha} \mathbf{x}^{\alpha}$ se anula identicamente numa vizinhaza do origem então $\forall \alpha, \ c_{\alpha} = 0. \to \mathrm{Hmmm}$

■ Sejam $k \ge 1$ e f uma função k-diff em $0 \in \mathbb{R}^n$. Se f se anula à ordem k+1 então $f(v) = \sigma(\|v\|^k)$.

Faz por indução, no paso indutivo use o TVM - \mathbb{R}^n para representar f(v) e calcule $\lim_{v\to 0} \frac{f(v)}{\|v\|^k}$. Considere a função $\Gamma_k(v)$ dada por

$$v \mapsto f(p+v) - \sum_{j=1}^{k} \frac{1}{j!} d^{j} f(p) v^{\otimes j},$$

observe que ela é k-diff no 0 e se anula à ordem k+1.

 \blacksquare (Fórmula de Taylor Infinitesimal) Se $f \notin k$ -diff em p então

$$f(p+v) = \sum_{i=1}^{k} \frac{1}{j!} d^{j} f(p) v^{\otimes j} + \sigma(\|v\|^{k}).$$

Nota. Fazendo $\mathbf{x} = p + v$, obtemos sua versão mais familiar

$$f(\mathbf{x}) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(p)}{\alpha!} (\mathbf{x} - p)^{\alpha} + \sigma(\|\mathbf{x} - p\|^{k}).$$

Exercise Seja f função k-diff. Usando Taylor prove a volta do último Teorema, conclua a unicidade. \rightarrow Suponga que $\exists P_i(v)$ homógeneo...

- \square (Fórmula de Taylor com Restos) Sejam $a \in I^{\diamondsuit} \subset \mathbb{R}$ e $\varphi \in C^{k+1}(I)$, então $\varphi(x) = P_k[x] + \Gamma_k[x]$, onde $\Gamma_k(x)$ pode ser,
 - i. $\frac{\varphi^{(i+1)}(c)}{(i+1)!} (x-a)^{(i+1)}$ para algum $c \in I \to \textit{Resto de Lagrange}$.

ii.
$$\int_a^x \frac{\varphi^{(k+1)}(t)}{k!} (x-t)^k dt \rightarrow Resto Integral.$$

- (Fórmula de Taylor con Restos \mathbb{R}^n) Seja $f \in C^{k+1}(U)$. Então $\forall p \in U$ e $\vec{v} \in \mathbb{R}^n$ tais que $[p, p + tv] \subseteq U$ temos $f(p + v) = P_k[v] + \Gamma_k[v]$, onde $\Gamma_k[v]$ pode ser,
 - i. $\frac{d^{k+1}f(p+\theta v)}{(k+1)!}v^{\otimes (k+1)}$ para algún $\theta\in(0,1)$ \longrightarrow Resto de Lagrange.

ii.
$$\int_0^1 \frac{(1-t)^k}{k!} d^{k+1} f(p+tv) v^{\otimes (k+1)} dt \rightarrow \textit{Resto Integral}.$$

Aplique o sabido numa variável à função $\varphi(t) = f(p+tv)$. Expresse o diferencial como soma, e desenvolva até chegar à forma descrita.

§ 6 Pontos Críticos

 \bigcirc Seja f diff em p. O ponto p é ponto crítico de f sse $df(p) = \nabla f(p) = 0$.

Exemplo
$$f(x,y) = x^2 + 3y^4 + 4y^3 - 12y^2$$
. \to Faz a conta

 \square Se f tem um extremo local em p então p é ponto crítico. $\rightarrow 0$ es extremo local de $\varphi_i(t) = f(p+te_i)$

O comportamento de f em \mathcal{U}_p é determinado pelo primeiro termo não nulo de sua expansão de Taylor, ou seja, $d^2f(p)v^{\otimes 2}=\langle Hf(p)\cdot v,v\rangle$.

Exemplo Se Hf(p) é diagonal tal que $Hf(p)=(\lambda_1,\ldots,\lambda_n)$, então

$$f(p+v) = f(p) + df(p) + \frac{1}{2} \sum_{i} \lambda_i v_i^2 + \sigma(\|v\|^2);$$

Se $\forall i \leq n, \ \lambda_i > 0 \Rightarrow p$ é mínimo local de f. Analogamente, se $\forall i \leq n, \ \lambda_i < 0 \Rightarrow p$ é máximo local de f.

 \diamondsuit A forma quadrâtica de $A \in \operatorname{Sym}_n(\mathbb{R})$ é positiva se $\forall v \in \mathbb{R}^n \setminus \{0\}$, $\langle Av, v \rangle > 0$, negativa se $\langle Av, v \rangle < 0$ ou indefinida se for outro o caso.

Exemplo $v\mapsto \|v\|^2$, é positiva. \to É representada pela matriz $\mathbb{1}_n$

Exemplo $(t,x,y,z)\mapsto t^2-x^2-y^2-z^2$ é indefinida. \to É representada pela matriz diagonal A=(1,-1,-1,-1)

- \square Sejam $A \in \operatorname{Sym}_n(\mathbb{R})$ e $\lambda_1, \ldots, \lambda_n$ seus autovalores. Então A é positiva (ou negativa) sse $\forall i \leq n, \ \lambda_i > 0$ (ou $\lambda_i < 0$). \rightarrow Teorema Espectral
- Eseja f função 2-diff em $p \in U$ ponto crítico. Se Hf(p) é positiva (ou negativa) então f(p) é um mínimo (ou máximo) local.

Use $\mathbb{S}^{n-1} \ni \vec{u} \mapsto \langle Hf(p)u, u \rangle$ para argumentar a existência de uma cota. Interprete essa cota no desenvolvimiento de Taylor de ordem 2.

 \bigcirc Seja f função 2-diff, p ponto crítico de f e $\lambda_1, \ldots, \lambda_n$ os autovalores de Hf(p). O ponto p é ponto de sela sse $\exists i, j \leq n$ tais que $\lambda_i \lambda_j < 0$.

Nota. Se $\lambda_i > 0$ então f tem mínimo local na direção de $\vec{v_i}$ (seu autovetor),

$$\langle Hf(p)\cdot v_i, v_i\rangle = \lambda_i \langle v_i, v_i\rangle > 0$$

Exemplo $f(x,y) = x^2 + 3y^4 + 4y^3 - 12y^2$. \rightarrow Estude os pontos p tais que $\sqrt[3]{f(p)} = 0$ e sua clasificação segum Hf(p)

 \bigcirc Um ponto crítico p de f é degenerado se $\det(Hf(p))=0$.

6.1 Otimização

 \blacksquare (Bolzano-Weierstrass) Sejam $K \subseteq \mathbb{R}^n$ compacto. Se $f: K \to \mathbb{R}$ é continua, então tem máximo e mínimo global em K.

¿+ condições para que funcione mesmo em não compactos?

Exemplo Seja $(x,y)\mapsto \frac{x}{x^2+(y-1)^2+4}$ en $Q=\{(x,y):x\geq 0\ y\ y\geq 0\}.$ Estude os pontos críticos ¿O que acontece quando $||\mathbf{x}||\to\infty$?

- \square Sejam $F^{lack}\subseteq\mathbb{R}^n$ não limitado e $f:X\to\mathbb{R}$ continua, então
 - i. Se $f(\mathbf{x}) \to \infty$ quando $\|\mathbf{x}\| \to \infty$, então f tem mínimo global em F.

- ii. Se $f(\mathbf{x}) \to 0$ quando $\|\mathbf{x}\| \to \infty$, então f tem máximo global em F.
- i. $\exists R > 0$ tal que se $\|\mathbf{x}\| > R$, então $f(\mathbf{x}) > f(p)$, onde $\|p\| \le R$.
- ii. Mesmo negócio.

6.2 Problemas com Condições

 \bigcirc Seja $g \in C^k(U)$ tal que $\forall p \in \ker(g), \ dg(p) \neq 0$. O conjunto $^kH := \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) = 0\}$ é hipersuperficie de classe C^k definida por $g(\mathbf{x}) = 0$.

Exemplo $\mathbb{S}^{n-1} = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| = 1\}$ definida pelos ceros da função $g(\mathbf{x}) = \|\mathbf{x}\|^2 - 1$ é ${}^{\infty}H \subseteq \mathbb{R}^n$. \to Verifique a condição $g(p) = 0 \Rightarrow dg(p) \neq 0$

$$\mathbb{S}^1\subseteq\mathbb{R}^2$$
 é fechado e limitado

 $\frac{\mathbf{Exemplo}}{p:\nabla f(p)} f(x,y) = \|\mathbf{x}\|^2 + y \text{ en } \mathbb{D} = \{\mathbf{x} \in \mathbb{R}^2: \|\mathbf{x}\| \leq 1\}. \to \text{Halle}$ $p:\nabla f(p) = 0 \text{ if Que hay de los puntos en } f|_{\mathbb{S}^1}?$

- (Multiplicadores de Lagrange) Sejam $U^{\diamondsuit} \subseteq \mathbb{R}^n$, $f \in C^1(U)$ e ${}^1H \subseteq U$ hipersuperficie. Então $p \in U$ é extremo local de $f\Big|_H$ sse $\exists \lambda \in \mathbb{R}$ tal que $df(p) = \lambda dg(p)$.
- (*Teorema Espectral*) Toda matriz símetrica admite uma base ortonormal de autovetores (é diagonalizável).

Tome $\mathbb{S}^1 \ni u \mapsto \langle Au, u \rangle$, e um vetor u_1 que a máximiza. Do sistema observa-se que u_1 é autovetor com autovalor λ_1 . Tome o complemento ortogonal de $[u_1]$ e formule o argumento indutivo.

§ 7 Aplicações Diferenciais

 \bigcirc Uma aplicação é uma função vetorial $F:U^{\diamondsuit}\subseteq\mathbb{R}^n\to\mathbb{R}^m$ cujas componentes são funções escalares $F_i:U\to\mathbb{R}$.

Exemplo Um *caminho* em \mathbb{R}^m é uma aplicação $c:I\subset\mathbb{R}\to\mathbb{R}^m$.

 \bigcirc Uma aplicação $F:U^{\diamondsuit}\subseteq\mathbb{R}^n\to\mathbb{R}^m$ é diff em $p\in U$ sse $\exists L\in\mathcal{L}(\mathbb{R}^n;\mathbb{R}^m)$ tal que $F(p+v)=F(p)+Lv+\sigma(\|v\|)$.

Nota. $\sigma(v): \mathbb{R}^n \to \mathbb{R}^m$, logo, $r(v) = \sigma(\|v\|)$ sse $\forall i \leq m, \ r_i(v) = \sigma(\|v\|)$.

- \square Uma aplicação $F=(F_1,\ldots,F_m):U\to\mathbb{R}^m$ é diff em p sse $\forall i\leq m,\ F_i$ é diff em p e $L_i=dF_i(p)$.
 - (\Rightarrow) É direto da definição tomando a L_i de L existente. (\Leftarrow) Lembre-se que se $\exists dF_i$, é único, use isso para armar L e exponer a aproximação de F(p+v) com erro de ordem $\sigma(\|v\|)$.
- Se F é uma aplicação diff em p então é continua em p.
- \bigcirc Se F é diff em p, definimos a derivada de F em p como

$$L = DF(p) = (dF_1(p), dF_2(p), \dots, dF_m(p)).$$

Nota. A notação NUNCA é um detalhe menor.

Exemplo $f:U^{\diamondsuit}\subseteq\mathbb{R}^n\to\mathbb{R}$ diff é uma aplicação diff e Df(p)=df(p).

 \bigcirc Seja F aplicação diff em p. A *Jacobiana* da F é a matriz $JF(p) \in M_{m \times n}(\mathbb{R})$ que representa a derivada DF(p) na base canônica,

$$M_{m \times n}(\mathbb{R}) \ni JF(p) = \left(\frac{\partial F_i}{\partial x_i}(p)\right) \quad i \le m, \ j \le n.$$

Nota. Outra notação comum é $JF(p) = \frac{\partial (F_1, F_2, \dots, F_m)}{\partial (x_1, x_2, \dots, x_n)}(p)$.

Exemplo Para $f \in C^k(U)$ temos $Jf(p) = \nabla f(p) \in M_{1 \times n}(\mathbb{R}) \cong (\mathbb{R}^n)^*$.

Exemplo Seja $c(t) = (c_1, \ldots, c_m) : I \subset \mathbb{R} \to \mathbb{R}^m$ caminho diff. Para ele temos $Jc(t) = (c'_1(t), \ldots, c'_m(t))^T \in M_{m \times 1}(\mathbb{R}) \cong \mathbb{R}^m$, o vetor tangente.

 \bigcirc Uma aplicação $F:U^{\diamondsuit}\subseteq\mathbb{R}^n\to\mathbb{R}^m$ vai ser de classe $C^k(U;\mathbb{R}^m)$ sse $\forall i\leq m,\, F_i\in C^k(U).$

■ Se $F \in C^1(U; \mathbb{R}^m)$ então F é diff em U. \to Imediato de seu semelhante para funções escalares

7.1 Derivadas de Ordem Superior

Nota. Uma aplicação $F: U^{\diamond} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ diff induce uma outra aplicação $DF: U \to \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m) \cong M_{m \times n}(\mathbb{R}) \cong \mathbb{R}^{mn}$ tal que $p \mapsto DF(p)$ y cujas componentes são (sob identificação) as funções $\frac{\partial F_i}{\partial x_i}$. Nesse sentido,

- $F \in C^1(U; \mathbb{R}^m)$ sse F é diff e $DF \in C^0(U; \mathbb{R}^{mn})$.
- $F\in C^2(U;\mathbb{R}^m)$ sse $F\in C^1(U;\mathbb{R}^m)$ e $D^2F\in C^1(U,\mathcal{L}(\mathbb{R}^n;\mathbb{R}^m))$, onde $D^2F:p\mapsto D(DF)(p).$
- \square Sejam V_1, V_2, W espaços vetoriais sobre \mathbb{K} , então $\mathcal{L}(V_1; \mathcal{L}(V_2; W)) \cong \mathcal{L}(V_1 \otimes V_2; W)$, o espaço de aplicações bilineares.
- \diamondsuit A derivada k-ésima de uma aplicação $F:U^{\diamondsuit}\subseteq\mathbb{R}^n\to\mathbb{R}^m$, se existir, é uma aplicação multilinear $D^kF(p): \underbrace{\mathbb{R}^n\otimes\cdots\otimes\mathbb{R}^n}_{k \text{ veces}}\to\mathbb{R}^m$ tal que

$$v^{(1)} \otimes \cdots \otimes v^{(k)} \mapsto \frac{\partial^k F}{\partial v^{(1)} \cdots \partial v^{(k)}}(p) = \sum \frac{\partial^k F}{\partial x_{i_1} x_{i_k}}(p) \ v_{i_1}^{(1)} \cdots v_{i_k}^{(k)}.$$

7.2 Regla da Cadeia

■ Sejam $U^{\diamondsuit} \subseteq \mathbb{R}^n$, $V^{\diamondsuit} \subseteq \mathbb{R}^r$, $F: U \to \mathbb{R}^r$ diff en $p \in G: V \to \mathbb{R}^m$ diff em F(p). Então $G \circ F$ é diff em $p \in D(G \circ F)(p) = DG(F(p)) \cdot DF(p)$.

Faz
$$q=F(p),\ L=DF(p),\ M=DG(q)$$
 e $H=G\circ F$. Expanda os restos e escreva $\Gamma_H(v)$ em termos de $\Gamma_F(v)$ e $\Gamma_G(w)$. Desmonte as expressões e faza análise do erro. \mathbb{R}^n $D(G\circ F)(p)$ $DG(F(p))$

■ Se $F \in C^k(U; \mathbb{R}^r)$ e $G \in C^k(V; \mathbb{R}^m)$ então $G \circ F \in C^k(U; \mathbb{R}^m)$.

Um velho conhecido

Exemplo Sejam $c:I\subset\mathbb{R}\to\mathbb{R}^n$ e $f:\mathbb{R}^n\to\mathbb{R}$. Se c(t)=p+tv e $\varphi(t)=(f\circ c)(t)$ então temos $\varphi'(t)=df(p+tv)\cdot v$.

§ 8 Diffeomorfismos

 \diamondsuit Sejam $U^{\diamondsuit}, V^{\diamondsuit} \subseteq \mathbb{R}^n$. Uma aplicação $F: U \to V$ é diffeomorfismo de classe C^k , se $F \in C^k(U; \mathbb{R}^n)$ é bijeção com $F^{-1} \in C^k(V; \mathbb{R}^n)$.

Nota. Por praticidade na notação escrevemos ${}^kF:U\simeq V.$

Exemplo $F:(t,x)\mapsto (x-ct,x+ct)$ é ${}^{\infty}F:U\simeq V$, onde $U=V=\mathbb{R}^2$. \to Faza as contas e observe como é a inversa

Diffeomorfismo ⇒ Homeomorfismo

Exemplo Sea $I \subset \mathbb{R}$. $\exists \ ^kF : I \simeq \mathbb{S}^1? \to \text{N\~ao}$, tire um ponto da esfera

Exemplo $\exists {}^{\infty}F : \mathbb{R}^n \simeq \mathbb{B}^n . \to \text{Tome } F : \mathbb{B}^n \ni \mathbf{x} \mapsto \frac{\mathbf{x}}{\sqrt{1-\|\mathbf{x}\|^2}} \in \mathbb{R}^n$

$$F \in C^k(U; \mathbb{R}^n)$$
 bijetiva $\Rightarrow F^{-1} \in C^k(F(U); \mathbb{R}^n)$

Exemplo $F: \mathbb{R} \ni t \mapsto t^3$ não é ${}^kF: \mathbb{R} \not\simeq \mathbb{R}. \to F^{-1}$ não é diff em 0

■ Da regla da cadeia, se F é diffeomorfismo, então $\forall p \in U, DF(p) \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^n)$ é invertível, mais ainda, sendo F(p) = q temos

$$D[F^{-1}](q) = [DF(p)]^{-1}.$$

Em termos de matrices, $det(JF(p)) \neq 0$ e $[JF^{-1}](q) = [JF(p)]^{-1}$.

Nota. ¿Vale a volta do corolário em alguma vizinhaza V_p ? Sim!

8.1 Teorema da Função Inversa

 \diamondsuit $F: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}^n$ é diffeomorfismo local de classe C^k em $p \in U$ se $\exists \mathcal{V}_p \subseteq U$ tal que ${}^kF: \mathcal{V}_p \simeq F(\mathcal{V}_p)^{\diamondsuit} \subseteq \mathbb{R}^n$. Denotamos ${}^kF: \mathcal{V}_p$.

■ (Função Inversa) Sejam $F \in C^k(U; \mathbb{R}^n)$ e $p \in U$. A aplicação F é ${}^kF : \mathcal{V}_p$ sse DF(p) é isomorfismo.

Nota. Basta ver a volta. Sem perda de generalidade, podemos supor que p=0, F(p)=0 e $DF=\mathbbm{1}_n$. Remeta-se ao gráfico, nele, (*) = $[DF(p)]^{-1}(\mathbf{x}-F(p))$ e (**) = $[DF(p)]^{-1}(F(\mathbf{x}+p)-F(p))$. Nestes novos termos $F(\mathbf{x})=\mathbf{x}+R(\mathbf{x})$, onde $R(\mathbf{x})=\sigma(\|\mathbf{x}\|)$.

$$\mathbf{x} + p \quad U \xrightarrow{F} \mathbb{R}^{n} \quad \mathbf{x}$$

$$\uparrow \quad \stackrel{\text{fig}}{=} \uparrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

 \square Seja $F: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ aplicação diff em $p \in U$, então $\forall \epsilon > 0$, $\exists \mathcal{V}_p$ tal que $\forall \mathbf{x} \in \mathcal{V}_p$, $\|F(\mathbf{x}) - F(p)\| \le (\|DF(p)\| + \epsilon)\|\mathbf{x} - p\|$. \to Use a definição de diff com $v = \mathbf{x} - p$

$\exists \mathcal{V}_0 \text{ tal que } F: \mathcal{V}_0 \hookrightarrow F(\mathcal{V}_0)$

DR(0) = 0, logo para $\epsilon = \frac{1}{2}$, $\exists \mathcal{V}_0$ tal que $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{V}_0$, $||R(\mathbf{x}_1) - R(\mathbf{x}_2)|| \leq \frac{1}{2} ||\mathbf{x}_1 - \mathbf{x}_2||$. Reinterprete em termos da F e concluia.

- \bigcirc Sejam $M,\ N$ espaços métricos. Uma aplicação $T:M\to N$ é uma contração se $\exists c<1$ tal que $\|T(x)-T(y)\|\leq c\|x-y\|$.
- (Ponto Fixo Banach) Se $X^{\spadesuit} \subseteq \mathbb{R}^n$ e $T: X \to X$ é uma contração, então $\exists ! \ x^* \in X \ \text{tal que} \ T(x^*) = x^* \ \text{e} \ \forall x_0 \in X, \ \lim_{n \to \infty} T^n(x_0) = x^*.$

$$F(\mathcal{V}_0)^{\diamondsuit} \subseteq \mathbb{R}^n$$

Tome $p \in \mathcal{V}_0$, $q = F(p) \in F(\mathcal{V}_0)$. Defina $\forall \mathbf{y} \in \mathcal{V}_0$, $T_{\mathbf{y}} : \mathbf{x} \mapsto \mathbf{y} - R(\mathbf{x})$. Tome r > 0 tal que $B[p, r] \subset \mathcal{V}_0$. Suponha $\|\mathbf{y} - q\| < \frac{r}{2} = \epsilon$ e $\mathbf{x} \in B[p, r]$. Desenvolva $\|T_{\mathbf{y}}(\mathbf{x}) - p\|$ e aplique \blacksquare (Punto Fixo).

 \square Seja $L \in GL_n(\mathbb{R})$. A aplicação inv : $L \mapsto L^{-1}$ é diff. \rightarrow Faz direito $\operatorname{inv}(L+H)$ e use a serie geométrica de Neumann

$$F^{-1} \in C^k(F(\mathcal{V}_0; \mathbb{R}^n))$$

• $||DF(p) - \mathbb{1}_n|| = ||DR(p)|| < \frac{1}{2}$ implica DF(p) invertível. Sendo q = F(p), para 0 < $w \ll \epsilon, \exists v \in \mathbb{R}^n \text{ tal que } F(p+v) = q+w.$ F

Desenvolva a expressão $F^{-1}(q+w)$ apon-Desenvolva a expressão $F^{-1}(q+w)$, apontando para a definição de diff.

$$F(\mathcal{V}_0) \xrightarrow{D[F^{-1}]} GL(\mathbb{R}^n) \ L^{-1}$$
 $F \mid \bigcap \inf \mathcal{V}_0 \xrightarrow{DF} GL(\mathbb{R}^n) \ L$

- Para verificar a classe basta usar o lemma no diagrama acima.
- \blacksquare Seja $F\in C^k(U;\mathbb{R}^n)$ tal que $\forall p\in U,\,\det(JF(p))\neq 0,$ então F é uma aplicação aberta. Mais ainda, se F injeta então ${}^kF:U\simeq F(U)$.

Teorema da Função Implícita 8.2

 \blacksquare (Função Implícita) Sejam $U^{\diamondsuit} \subseteq \mathbb{R}^n \times \mathbb{R}^m$, $G \in C^k(U; \mathbb{R}^m)$ e $(p, q) \in U$. Se G(p,q)=0 e det $JG_q(p,q)\neq 0$, então $\exists \mathcal{W}_q$ e $\exists F\in C^k(\mathcal{V}_p;\mathbb{R}^m)$ tais que

$$\mathcal{V}_p \times \mathcal{W}_q \ni (\mathbf{x}, \mathbf{y}) \Rightarrow G(\mathbf{x}, \mathbf{y}) = G(\mathbf{x}, F(\mathbf{x})) = 0.$$

Tome
$$\Phi: (\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}, G(\mathbf{x}, \mathbf{y}))$$
, veja que é $C^k(U; \mathbb{R}^n \times \mathbb{R}^m)$ e $\det(J\Phi) \neq 0$. Pelo \blacksquare (TFI) $^k\Phi: \mathcal{V}_p \times \mathcal{W}_q$ e $\exists \Phi^{-1}: \begin{pmatrix} \mathbf{1}_n & \mathbf{0} \\ \frac{\partial G_i}{\partial x_j} & \frac{\partial G_i}{\partial y_j} \end{pmatrix}$ (\mathbf{x}, \mathbf{y}) $\mapsto (\mathbf{x}, \Psi(\mathbf{x}, \mathbf{y}))$ diffeomorfismo, o resultado segue tomando $F(\mathbf{x}) := \Psi(\mathbf{x}, 0)$.

- Pelo (Regla da Cadeia) temos $JG_q(p,q) \cdot JF_p = -JG_p(p,q)$.
 - O (Função Implícita) garante que podemos despejar algumas variáveis em termos das outras.

Exemplo $g:(x,y)\mapsto x^2+y^2-1$, encontre y=f(x) em $A=\{(x,y):$ $\overline{x > 0}$. \rightarrow Clássico de cálculo, relacione com as hipóteses do Teorema

- \blacksquare $^kH\subseteq\mathbb{R}^n$ hipersuperficie é localmente o gráfico de uma função.
- \square Se $^kH\subseteq\mathbb{R}^n$ é hipersuperficie definida por $g(\mathbf{x})=0,\ p\in H$ e $c\in C^k(\mathcal{V}_\epsilon;H)$ é um caminho em H, então $\ker dg(p):=\{c'(0):c(0)=p\}.$
 - (\supseteq) Aplique \blacksquare (Regla da Cadeia) na função $(g \circ c)(t)$. (\subseteq) $\exists i \leq n$ tal que $\frac{\partial g}{\partial x_i}(p) \neq 0$, suponha que é a última i = n. Tome $\vec{v} \in \mathbb{R}^n$ tal que $dg(p) \cdot v = 0$, aplique \blacksquare (Função Implícita) conseguindo $c(t) = (p_j + tv_j, f(p_j + tv_j))$. Use nela o primero corolário do mesmo Teorema.
- \diamondsuit Seja $p \in {}^k H \subseteq \mathbb{R}^n$. O espaço tangente a H em p, $\acute{\mathbf{e}}$ o dado por $T_p H := \ker dg(p) = \{ \vec{v} \in \mathbb{R}^n : \langle \nabla g(p), v \rangle = 0 \}.$

Nota. $T_pH \leq \mathbb{R}^n$ não necessariamente passa por p.

Exemplo Para $H = \mathbb{S}^{n-1}$ temos $T_pH := \{\vec{v} \in \mathbb{R}^n : \langle p, v \rangle = 0\}$. \to Faça o exercício gráfico, note também que $\forall c > 0, \ \nabla g(p) \perp H = \{g(\mathbf{x}) - c = 0\}$

- \square Sejam V espaço vetorial sobre \mathbb{R} e $\ell_1, \ell_2 \in V^*$. Se $\ker \ell_1 \subseteq \ker \ell_2$ então $\exists \lambda \in \mathbb{R}$ tal que $\ell_2 = \lambda \ell_1$.
- (Multiplicadores de Lagrange). \rightarrow Use a definição por caminhos de $\ker dg(p)$ e aplique o lemma acima

8.3 Imersões, Submersões e Posto Constante

 \bigcirc Uma aplicação F diff em p é imersão em p se $DF(p): \mathbb{R}^n \to \mathbb{R}^m$ inyecta. Em particular, $n \leq m$.

Exemplo (Imersão Canônica) $\iota : \mathbb{R}^n \ni \mathbf{x} \mapsto (\mathbf{x}, 0) \in \mathbb{R}^m$.

$$c:I\subset\mathbb{R}\to\mathbb{R}^m$$
 caminho diff é imersão $\Leftrightarrow c'(t)\neq 0$

Exemplo $t \mapsto (t^2, t^3)$ e $s \mapsto (s^2 - 1, s^3 - s)$. \rightarrow Faça as contas

 \blacksquare (Forma Local das Imersões) Seja $F \in C^k(U; \mathbb{R}^m)$ imersão em $p \in U$. Então, $\exists \mathcal{V}_p \subseteq U$ e $\exists {}^kG : \mathcal{W}_{F(p)} \simeq W^{\diamondsuit}$ tais que

$$G \circ F : \mathcal{V}_p \ni \mathbf{x} \mapsto (\mathbf{x}, 0) \in \mathbb{R}^m.$$

Considere a base $[DF(p) \cdot e_i, v_j] = \mathbb{R}^m$. Tome $H: U \times \mathbb{R}^{m-n} \to \mathbb{R}^m$ tal que,

$$(\mathbf{x}, x_j) \mapsto F(\mathbf{x}) + \sum x_j v_j.$$

Use \blacksquare (Função Inversa) a H em (p,0). Finalmente, faça $G = H^{-1}$ e estableça as vizinhanzas.

■ Se $F \in C^1(U; \mathbb{R}^m)$ é imersão, então F é localmente injetiva.

 \bigcirc Uma aplicação F diff em p é submersão se $DF(p): \mathbb{R}^n \to \mathbb{R}^m$ é sobrejetiva. Em particular, $n \geq m$.

Exemplo (Submersão Canônica) $\pi : \mathbb{R}^n \ni (\mathbf{x}, x_{m+1}, \dots, x_n) \mapsto \mathbf{x} \in \mathbb{R}^m$.

$$f: U^{\diamondsuit} \subseteq \mathbb{R}^n \to \mathbb{R}$$
 diff em p é submersão $\Leftrightarrow df(p) \neq 0$.

Exemplo $(x, y) \mapsto xy$ é submersão em $\mathbb{R}^2 \setminus \{0\}$.

 \blacksquare (Forma Local das Submersões) Seja $F \in C^k(U; \mathbb{R}^m)$ submersão em $p \in \mathbb{R}^m$ U. Então, $\exists \mathcal{V}_p \subseteq U$ e $\exists {}^kG : V^{\diamondsuit} \simeq \mathcal{V}_p$ tais que

$$F \circ G : V \ni (\mathbf{x}, x_{m+1}, \dots, x_n) \mapsto \mathbf{x} \in \mathbb{R}^m$$
.

$$\begin{array}{cccc}
\mathbb{R}^n & & \mathbb{R}^n \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & & \downarrow & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & & & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & & & & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & & & & \downarrow & \downarrow \\
\downarrow & & & & & & & & & & & & & & \downarrow \\
\downarrow & & & & & & & & & & & & & \downarrow \\
\downarrow & & & & & & & & & & & & & & \downarrow \\
\downarrow & & & & & & & & & & & & & & & \downarrow \\
\downarrow & & & & & & & & & & & & & & & & \downarrow \\
\downarrow & & & & & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & & & \\
\downarrow & & & & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & &$$

Tire uma base l.i. $[DF(p) \cdot e_j] = \mathbb{R}^m$. Tome $H: U \to \mathbb{R}^m \times \mathbb{R}^{n-m}$ tal que $\mathbf{x} \mapsto (F(\mathbf{x}), x_j)$. Estude $[DH(p) \cdot v]$, pelo \blacksquare (Função Inversa) H é diffeomorfismo. Faça $G = H^{-1}$ e estableça as vizinhanzas

■ Se $F \in C^1(U; \mathbb{R}^m)$ é submersão, então F é aberta. \to Composição de abertas é aberta, projeções também

Nota. Imersões e submersões são **localmente** canônicas, salvo mudanças de coordenadas via diffeomorfismo.

 \diamondsuit (Posto) Se $L \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m)$, então $\operatorname{rank}(L) := \dim[Le_i] \leq \min\{n, m\}$. $\operatorname{rank}(L) = \max\{r : \exists M_r(L) \text{ com } \det(M_r) \neq 0\}.$

$$\operatorname{rank}(L) = \min\{n, m\} \Leftrightarrow \begin{cases} L \text{ \'e isomorfismo }, \ n = m \\ L \text{ \'e injetiva }, \ n < m \\ L \text{ \'e sobrejetiva }, \ n > m \end{cases}$$

■ (Posto Constante) Seja $F \in C^k(\mathcal{U}_p; \mathbb{R}^m)$ tal que $\forall \mathbf{x} \in \mathcal{U}_p$, $\operatorname{rank}(DF(\mathbf{x})) = r$. Então, $\exists^k G : V^{\diamondsuit} \to \mathcal{V}_p$ e $\exists^k H : \mathcal{W}_{F(p)} \to W^{\diamondsuit}$ tais que

$$H \circ F \circ G : \mathcal{V}_p \ni \mathbf{x} \mapsto (x_1, \dots, x_r, 0) \in \mathbb{R}^m.$$

$$\exists^k G: V^{\diamondsuit} \to \mathcal{V}_p$$

 $[DF(p)] \cong \mathbb{R}^r \leq \mathbb{R}^m$. Aplique \blacksquare (FLS) a $\pi: (\mathbf{x}^{(r)}, \mathbf{x}^{(m-r)}) \mapsto \mathbf{x}^{(r)}$. Logo, $\exists {}^kG: V^{\diamondsuit} \simeq \mathcal{V}_p$ tal que $\pi \circ F \circ G: (\mathbf{x}^{(r)}, \mathbf{x}^{(n-r)}) \mapsto \mathbf{x}^{(r)}$.

$$F \circ G : \mathbf{x}^{(n)} \mapsto (\mathbf{x}^{(r)}, y_i(\mathbf{x})^{(n-r)})$$

Note que, sendo $q=G^{-1}(p), \exists \mathcal{V}_q=V$ onde $\mathrm{rank}(J(F\circ G)(\mathbf{x}))=r,$ ou seja que $D\equiv 0.$ Logo, $y_i(\mathbf{x})=\left(\begin{array}{c} \mathbb{1}_{r\downarrow 0}\\ C\downarrow D \end{array}\right)$ $y_i(\mathbf{x}^{(r)},q^{(n-r)}).$

$$\exists^k H: \mathcal{W}_{F(p)} \to W^{\diamondsuit}$$

Seja $\iota: \mathbf{x}^{(r)} \mapsto (\mathbf{x}^{(r)}, q^{(n-r)})$. Use \blacksquare (FLI) na função $F \circ G \circ \iota: \mathbf{x}^{(r)} \mapsto (\mathbf{x}^{(r)}, y_i(\mathbf{x}^{(r)}, q))$. Termine de establecer as vizinhanzas e concluia.

Nota. A função rank : $U \to \mathbb{N}$ é semi-continua inferiormente.

Figure 1: ■ (Posto Constante)

- Os Teoremas de Função Inversa e Formas Locais (Imersões e Submersões) são diretos. Sejam $F \in C^1(U; \mathbb{R}^m)$ e $p \in U$. Então
 - i. Se $\operatorname{rank}(JF(p)) = r = \min\{n, m\}$ então $\exists \mathcal{V}_p$ onde $JF_r(\mathbf{x}) \in GL_r(\mathbb{R})$.
 - ii. Se F é localmente injetiva então é imersão em $V^{\diamondsuit} \subset U$ denso em U. \to Aplique \blacksquare (Posto Constante), a segunda afirmação segue da semicontinuidade inferior
 - iii. Se F é aberta então é submersão em $V^{\diamondsuit} \subset U$ denso em U.

É preciso que o posto seja consta em TODA uma vizinhanza

Exemplo $F:\mathbb{R}^2\ni (t,s)\mapsto (t^2,t^3,s)\in\mathbb{R}^3$ ¿Existem coordenadas como no Teorema em alguma vizinhanza de origem? \to Não

§ 9 Variedades Differenciáveis

 $\bigcirc F: X \to Y$ é diffeomorfismo de classe C^k se $F \in C^k(X;Y)$ é homeomorfimso e $F^{-1} \in C^k(Y;X)$. Denotamos $^kF: X \simeq Y$.

Exemplo Sejam $X=\{(x,y)\in\mathbb{S}^1:y>0\}$ e Y=(-1,1). A aplicação

 $\pi: X \ni (x,y) \mapsto x \in Y \text{ \'e}^{\infty}F: X \simeq Y. \to \text{Verifique as condições}$

 \bigcirc Um subconjunto ${}^k_dM \subseteq \mathbb{R}^n$ é uma *subvariedade* de classe C^k e dimensão d, se $\forall p \in M, \exists {}^k\varphi : \mathcal{U}_p \cap M \simeq V^{\diamondsuit} \subseteq \mathbb{R}^d$ carta local, cujas componentes $\varphi = (\mathbf{x}_1, \dots, \mathbf{x}_d)$ são *coordenadas locais* de M em p. A inversa $\varphi^{-1} = \psi : V \to \mathcal{U}_p \cap M$ é uma *parametrização local* da variedade.

Nota. Por simplicidade na notação usaremos \mathcal{U}_p para indicar vizinhanza de p em M como subespaço de \mathbb{R}^n .

Exemplo ${}_n^{\infty}U^{\diamondsuit}\subseteq\mathbb{R}^n$. \to Tome $\varphi=\mathbb{1}_n$

Exemplo $_{n-1}^{\infty}\mathbb{S}^{n-1}\subseteq\mathbb{R}^n$. \to Construa a projeção estereográfica

 \square Sejam ${}^k_dM\subseteq \mathbb{R}^n$, $V^{\diamondsuit}\subseteq \mathbb{R}^d$ e $\psi:V\to \mathbb{R}^n$ tal que $\psi(V)\subseteq M$. Então, ψ é uma paremetrização local de M sse ψ é imersão e homeomorfismo (τ_M) .

(⇐) A bijeção é imediata de $\psi(V)^{\diamondsuit} \subseteq M$. Aplique \blacksquare (FLI) e faça a composição com a projeção.

Exemplo Parametrização local da esfera (coordenadas esféricas). Seja $\psi: \overline{[0,\pi]^{n-2}} \times [0,2\pi) \to \mathbb{R}^n$ tal que

$$(\theta_i) \mapsto \left(\cos \theta_1, \dots, \prod_{j < i} \sin \theta_j \cdot \cos \theta_i, \dots, \prod_{j < i} \sin \theta_j\right).$$

Exemplo Se $F \in C^k(U; \mathbb{R}^m)$ então $\operatorname{graf}(F) := \{(\mathbf{x}, F(\mathbf{x})) \in U \times \mathbb{R}^m\} = \frac{k}{n}M \subseteq \mathbb{R}^{n+m}$, com $\psi : \mathbf{x} \mapsto (\mathbf{x}, F(\mathbf{x}))$ e $\varphi = \pi : (\mathbf{x}, F(\mathbf{x})) \mapsto \mathbf{x}$.

Exemplo Seja ${}^kH\subseteq\mathbb{R}^n$ hipersuperficie, então ${}^k_{n-1}H\subseteq\mathbb{R}^n$. $\to H$ é localmente o gráfico de uma função

 \square Seja $G \in C^k(U; \mathbb{R}^m)$. Se $\forall p \in U, G$ é submersão em p, então

$${p \in U : G(p) = 0} =: {k \choose n-m} M \subseteq \mathbb{R}^n.$$

 \diamondsuit Sejam ${}^k_dM\subseteq\mathbb{R}^n$ e ${}^k\psi_a:V^{\diamondsuit}\simeq\mathcal{U}_p$ uma parametrização local tal que $\psi_a(a)=p$. O espaço tangente a $p\in M$ é o dado por

$$T_pM := \operatorname{Im}(D\psi_a(a)) = \bigoplus \mathbb{R} \frac{\partial \psi_a}{\partial x_i}(a) \leq \mathbb{R}^n.$$

Nota. O espaço afim $p + T_pM$ é o "intuitivamente" tangente a M en p.

 \square Sejam $^k_dM\subseteq \mathbb{R}^n$ e $c\in C^k(\mathcal{V}_\epsilon;M)$ caminho em M, então

$$T_pM = \{c'(0) : c(0) = p\}.$$

Nota. O espaço tangente não depende da parametrização.

Exemplo Se $U^{\diamondsuit} \subseteq \mathbb{R}^n$ então $T_pU = \mathbb{R}^n$.

Nota. Em diante, para refererinos a ${}^k_{d_1}M\subseteq \mathbb{R}^n$ e ${}^k_{d_2}N\subseteq \mathbb{R}^m$ escrevemos simplesmente M e N.

 $\square F \in C^k(M;N)$ sse $\forall \psi: V^{\diamondsuit} \to \mathcal{U}_p$ parametrização local de M em p, tem-se que $F \circ \psi \in C^k(V;N)$. \to Basta ver só um atlas

 \bigcirc Seja $F \in C^k(M; N)$. A derivada de F em $p \in M$ é a aplicação linear $DF(p): T_pM \to T_{F(p)}N$ tal que $v \mapsto D\widetilde{F}(p) \cdot v$.

 \square Se $F \in C^k(M; N)$ então derivada DF(p) não depende da \widetilde{F} .

Tome ψ_a e $\psi_{b'}$ parametrizações locais de $p \in M$ e $F(p) \in N$. Faça $\varphi' \circ F \circ \psi : V \to V'$, pelo \blacksquare (Regla da Cadeia) temos o diagrama a dereita. Note que $D\widetilde{F} : \operatorname{Im}(D\psi_a(a)) \mapsto \operatorname{Im}(D\psi_{a'}(a'))$.

<u>Exemplo</u> $F: \mathbb{S}^1 \to \mathbb{S}^1$ tal que $(\cos \theta, \sin \theta) \equiv (x, y) \mapsto (x^2 - y^2, 2xy) \equiv (\cos 2\theta, \sin 2\theta)$. \to Faça as contas

Nota. Em geral, tudo o que foi visto para aplicações, vale em variedades:

Regla da Cadeia Se $F \in C^k(M;N)$ e $G \in C^k(N;P)$ então $G \circ F \in C^k(M;P)$ e $D(G \circ F)(p) = DG(F(p)) \cdot DF(p)$.

Derivada da Identidade $D1_M = 1_{T_pM} : T_pM \to T_pM$.

Teorema da Função Inversa Seja $F \in C^k(M; N)$ tal que $D\widetilde{F}(p)$ é isomorfismo, então $\exists \ ^kF : \mathcal{U}_p \cap M \simeq \mathcal{V}_{F(p)} \cap N$.

9.1 Valores Regulares

 \bigcirc Seja $F \in C^k(M; N)$. Um ponto $p \in M$ é regular se F é submersão em p, se não fora regular então é ponto crítico de F.

Nota. Se $\exists p \in M$ ponto regular de F então $\dim M \ge \dim N$.

■ (Multiplicadores de Lagrange)

Exemplo Seja $M={}^kH\subseteq\mathbb{R}^n$ hipersuperficie definida por $g(\mathbf{x})=0$ e $\overline{f:\mathbb{R}^n}\to\mathbb{R}$ função escalar, então

 $p \in M$ ponto crítico de $f(M) \Leftrightarrow df(p) : T_pM \not\rightarrow \mathbb{R}$.

 \bigcirc Seja $F \in C^k(M; N)$. Um valor $q \in N$ é valor crítico se $\exists p \in M$ tal que p é ponto crítico de F e F(p) = q, de outra forma é um valor regular de F.

$$p \in M$$
 regular $\Rightarrow q = F(p)$ regular

Nota. Um conjunto da forma $F^{-1}(q)$ é chamado *fibra*.

■ (Fibras Regulares) Sean ${}^k_{d_1}M\subseteq \mathbb{R}^n$, ${}^k_{d_2}N$, $F\in C^k(M;N)$. Si $q\in N$ es un valor regular de F, entonces $P=F^{-1}(q)$ es ${}^k_{d_1-d_2}P\subseteq M\subseteq \mathbb{R}^n$.

Sejam $p = F^{-1}(q)$ e $d_1 - d_2 = c$. Note que $\mathbb{R}^c \cong \ker DF(p) \leq \mathbb{R}^n$, defina $L : \mathbb{R}^n \to \mathbb{R}^c$ tal que $L \cdot \ker DF(p)$ é isomorfirsmo. Faça $G : M \to N \times \mathbb{R}^c$ tal que $\mathbf{x} \mapsto (F(\mathbf{x}), L(\mathbf{x}))$. Aplique \blacksquare (TFI) e conclua.

Exemplo 1 é valor regular de $g: \mathbb{R}^n \ni \mathbf{x} \mapsto \sum x_i^2 \in \mathbb{R}$ e $g^{-1}(1) = \mathbb{S}^{n-1}$.

Variedades de dimensão ()

Exemplo Sejam $F \in C^k(M; N)$ com $\dim M = \dim N$ e $q \in N$ valor regular de F. Então, $P = F^{-1}(q)$ é um conjunto discreto. Ainda mais, se M fora compacto $\Rightarrow |P| < \infty$. $\to \mathbb{R}^0 = \{0\}$

 \blacksquare (Brown-Sard) Seja $F \in C^k(M; N)$. Se $k \gg 0$ então o subconjunto de valores regulares de F é denso em N.

Nota. A medida de $B = (a_i, b_i)^n \subseteq \mathbb{R}^n$ bloque aberto é $\mu(B) := \prod (b_i - a_i)$.

 \bigcirc Um subconjunto $S \subseteq \mathbb{R}^n$ tém *medida nula* se $\forall \epsilon > 0$, $\exists B_i$ bloques abertos tais que $S \subseteq \bigcup B_i$ e $\sum \mu(B_i) < \epsilon$.

Exemplo Se n < m então $\mathbb{R}^n \times \{0\} \subseteq \mathbb{R}^m$ tém medida nula.

Exemplo $S \subseteq \mathbb{R}^n$ enumerável tém medida nula. \to Pontos isolados

 \blacksquare (Sard) Sejam $U^{\diamondsuit} \subseteq \mathbb{R}^n$ e $F \in C^k(U; \mathbb{R}^m)$ tal que $k \geq \{n-m+1, 1\}$. Então, o conjuntos de valores críticos de F tém medida nula em \mathbb{R}^n .

Exemplo Pelo (Sard) ${}^k_d M \subseteq \mathbb{R}^n \text{ com } d < n \text{ tém medida nula.} \to \text{Todos}$ os valores da inclusão $\iota: M \hookrightarrow \mathbb{R}^n$ são críticos

Exercise Se $S \subseteq \mathbb{R}^n$ tém medida nula então $\mathbb{R}^n \setminus S$ é denso.

§ 10 Formas Differenciais

Nosso objetivo é uma noção geral de integral em variedades que não dependa da escolha da parametrização local.

$$\int_{a}^{b} \overbrace{f(t) \ dt}^{\text{Forma Diff}} \int_{\frac{a}{2}}^{b} f(2u) \ 2du.$$

10.1 Formas Alternadas

 \bigcirc Seja V espaço vectorial. Uma k-forma alternada é uma função k-linear, $\alpha:V^k\to\mathbb{R}$ tal que, se $v_i=v_j$ para algum $i\neq j$ então $\alpha(v_1,\ldots,v_k)=0$.

Exemplo $\alpha: V \to \mathbb{R}$ linear é 1-forma alternada. \to A antissimetria é trivial *Nota*. $V^0 = \{\emptyset\}$, logo, uma 0-forma é simplesmente um $\alpha(o) \in \mathbb{R}$.

Exemplo A função $\det: (\mathbb{R}^2)^2 \to \mathbb{R}$ é 2-forma alternada em $V = \mathbb{R}^2$, onde

$$\begin{pmatrix} a \\ b \end{pmatrix} \times \begin{pmatrix} c \\ d \end{pmatrix} \mapsto \det \begin{pmatrix} a & c \\ b & d \end{pmatrix}.$$

Nota. A função α é tipo um "volume" k-dimensional com sinal, dada pela "orientação" ou ordem de os v_i .

$$\diamondsuit A^k(V) := \{ \alpha \mid \alpha \text{ \'e } k\text{-forma alternada} \}$$

- \Box Seja $\alpha \in A^k(V)$ e i < j. Então,
 - i. $\alpha(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k)=-\alpha(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$. \to Denote $\alpha(v_i,v_j)$ e faça a conta $0=\alpha(v_i+v_j,v_i+v_j)$
 - ii. Se v_1,\ldots,v_k são l.d. então $\alpha(v_1,\ldots,v_k)=0$. \to Expresse $v_1=\sum \lambda_j v_j$ e faça a conta
- As formas alternadas são antisimetricas. Se S_k é o grupo de permutações de ordem k e sgn : $S_k \ni \sigma \mapsto \operatorname{sgn}(\sigma) \in \{-1, 1\}$ então,

$$\alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)}) = \operatorname{sgn}(\sigma) \cdot \alpha(v_1,\ldots,v_k).$$

Nota. $S_k \ni \sigma = \prod \tau_j : \tau_j \text{ \'e transposição, assim, } \operatorname{sgn}(\sigma) = (-1)^{|J|}.$

Espaços não triviais
$$\sim \dim V = n$$

Exemplo $A^0(V) = \mathbb{R}$, $A^1(V) = V^*$ e $A^k(V) = \{0\}$ se k > n. \to Segue de o lemma sobre dependencia linear

Exercise (Projetor Alternado) Seja $f: V^k \to \mathbb{R}$ função k-linear, então

$$Af: (v_1, \ldots, v_k) \mapsto \frac{1}{k!} \sum_{\sigma} \operatorname{sgn}(\sigma) f(v_{\sigma(1)}, \ldots, v_{\sigma(k)}),$$

é uma k-forma alternada. Em particular, se f é alternada, então Af=f.

 \bigcirc Sejam $T \in \mathcal{L}(V; W)$ e $\alpha \in A^k(W)$. O pullback de α por T é a função $T^*\alpha: V^k \to \mathbb{R}$ tal que $(v_1, \ldots, v_k) \mapsto \alpha(Tv_1, \ldots, Tv_k)$.

$$T^*: A^k(W) \to A^k(V)$$

Exemplo $\pi:\mathbb{R}^3\ni (x,y,z)\mapsto (x,y)\in\mathbb{R}^2$ e $\det\in A^2(\mathbb{R}^2)$ então,

$$\pi^* \alpha((x, y, z), (x', y', z')) = \alpha((x, y), (x', y')) = \det \begin{pmatrix} x & x' \\ y & y' \end{pmatrix}.$$

 \bigcirc Sejam $\alpha \in A^p(V)$ e $\beta \in A^q(V)$. O produto exterior de α e β é a função $\alpha \land \beta : V^{p+q} \to \mathbb{R}$ dada por,

$$(v_1,\ldots,v_{p+q})\mapsto \frac{1}{p!q!}\sum_{\sigma}\operatorname{sgn}(\sigma)\alpha(v_{\sigma(1)},\ldots,v_{\sigma(p)})\beta(v_{\sigma(p+1)},\ldots,v_{\sigma(p+q)}).$$

Exemplo Sejam $\alpha, \beta \in A^1(V)$. Então, $\alpha \wedge \beta \in A^2(V)$ é a dada por

$$(v_1, v_2) \mapsto \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1) = \det \begin{pmatrix} \alpha(v_1) & \beta(v_1) \\ \alpha(v_2) & \beta(v_2) \end{pmatrix}.$$

- \square Sejam $\alpha \in A^p(V), \ \beta \in A^q(V)$ e $\gamma \in A^r(V)$. Então, o produto \wedge é:
 - i. $A^p(V) \times A^q(V) \ni (\alpha, \beta) \to \alpha \land \beta \in A^{p+q}(V)$, bém definido.
 - ii. Bilinear, se $p=r\Rightarrow (\alpha+\lambda\gamma)\land\beta=\alpha\land\beta+\lambda(\gamma\land\beta)$, na outra coordenada, se $q=r\Rightarrow\alpha\land(\beta+\lambda\gamma)=\alpha\land\beta+\lambda(\alpha\land\gamma)$.
 - iii. Anticonmutativo, $\alpha \wedge \beta = (-1)^{pq}\beta \wedge \alpha$. \rightarrow Tome a permutação

$$\begin{pmatrix} 1 & \cdots & p & p+1\cdots p+q \\ q+1\cdots q+p & 1 & \cdots & q \end{pmatrix}$$

- iv. Associativo, $(\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma)$. \rightarrow Use o projetor alternado em $f(v_i), i \in \{n \in \mathbb{N} : n \leq p + q + r\}$ e faça as contas chatas
- v. Compativél com pullback, $T^*(\alpha \wedge \beta) = T^*\alpha \wedge T^*\beta$.
- Sejam V espaço vectorial e $[l_1, \ldots, l_n]$ uma base l.i. Então, $\forall k \leq n$, temos que $A^k(V) = [l_{i_1} \wedge \cdots \wedge l_{i_k}]$. Em particular, dim $A^k(V) = \binom{n}{k}$.

Exemplo Se $V=[\omega_1,\ldots,\omega_n]$ (l.i.) e $\alpha\in A^n(V)$ então, $\alpha(v_1,\ldots,v_n)=$ $\overline{\det(a_{ij})\alpha}(\omega_1,\ldots,\omega_n)$, onde $v_j=\sum a_{ij}\omega_i$. $\to T^*\alpha=\det(T)\alpha$

$$\frac{\mathbf{Exemplo}}{(\mathbb{R}^{3})^{*} = [e_{1}^{*}, e_{2}^{*}, e_{3}^{*}]} \leadsto \begin{cases}
A^{0}(\mathbb{R}^{3}) = \mathbb{R} \\
A^{1}(\mathbb{R}^{3}) = \mathbb{R}e_{1}^{*} \oplus \mathbb{R}e_{2}^{*} \oplus \mathbb{R}e_{3}^{*} \\
A^{2}(\mathbb{R}^{3}) = \mathbb{R}(e_{1}^{*} \wedge e_{2}^{*}) \oplus \mathbb{R}(e_{1}^{*} \wedge e_{3}^{*}) \oplus \mathbb{R}(e_{2}^{*} \wedge e_{3}^{*}) \\
A^{3}(\mathbb{R}^{3}) = \mathbb{R}(e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}) \sim \det(\mathbb{R}^{3})
\end{cases}$$

10.2 **Formas Differenciais**

Se $\varphi=(\mathbf{x}_1,\ldots,\mathbf{x}_d):\mathcal{U}_p\to\mathbb{R}^d$ é uma carta local de ${}^r_dM\subseteq\mathbb{R}^n$, lembre-se que $[d\mathbf{x}_1, ..., d\mathbf{x}_d] = (T_p M)^* = A^1(T_p M)$.

 \bigcirc Uma k-forma diff de classe C^r em ${}^r_dM\subseteq \mathbb{R}^n$, é uma associação

$$_{k}^{r}\omega:M\ni p\mapsto\omega(p)=\sum f_{i_{1},...,i_{k}}\,d\mathbf{x}_{i_{1}}\wedge\cdots\wedge d\mathbf{x}_{i_{k}}\in A^{k}(T_{p}M),$$

tal que, $\forall \varphi = (\mathbf{x}_1, \dots, \mathbf{x}_d)$, as funções $f_{i_1, \dots, i_k} \in C^r(\mathcal{U}_p; \mathbb{R})$.

Nota. Em deante tudo será C^{∞} , variedades, aplicações, formas, etc.

$$\bigcirc \Omega^k(M) := \{ \omega \mid \omega \in k \text{-forma diff} \}$$

$$\sum f_{i_1,\dots,i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} = \omega \in \Omega^k(U^{\diamondsuit}) \Leftrightarrow f_{i_1,\dots,i_k} \in C^{\infty}(U)$$

- Se $U\subseteq\mathbb{R}^2$ e $f,g\in C^\infty(U)$ então $f\in C^\infty(I)$.
 Se $U\subseteq\mathbb{R}^2$ e $f,g\in C^\infty(U)$ então $f\in \Omega^0(U),\ fdx+gdy\in\Omega^1(U)$ e $f(dx\wedge du)\in\Omega^2(U)$ $\Omega^1(U)$ e $f(dx \wedge dy) \in \Omega^2(U)$.

Nota. Em geral, $\Omega^0(M)=C^\infty(M;\mathbb{R})$ e se $f\in C^\infty(M;\mathbb{R})$ então $df\in \Omega^1(M)$, pois, $df(p)\in (T_pM)^*=A^1(T_pM)$.

Exercise Seja $\varphi = (\mathbf{x}_1, \dots, \mathbf{x}_d) : \mathcal{U}_p \to \mathbb{R}^d$ carta local de $_dM$, então

$$df\Big|_{\mathcal{U}_p} = \sum \frac{\partial f}{\partial \mathbf{x}_i} \ d\mathbf{x}_i, \ \ \text{sendo} \ \frac{\partial f}{\partial \mathbf{x}_i}(p) := \frac{\partial}{\partial t_i} (f \circ \varphi^{-1})(\varphi(p)).$$

Onde, (t_1, \ldots, t_d) são as coordenadas canônicas de \mathbb{R}^d .

$$(\omega \wedge \eta)(p) = \omega(p) \wedge \eta(p)$$

Exemplo Em $M=\mathbb{R}^2$, tém-se $(e^{x+y}dx+xdy) \wedge (ydx)=-xy\ (dx\wedge dy)$.

 \square Uma aplicação $F\in C^\infty(M;N)$ induce, $\forall p\in M$, uma outra aplicação via pullback $F^*:\Omega^k(N)\to\Omega^k(M)$ tal que,

$$\omega(p) \mapsto F^*\omega(p) = DF(p)^*\omega(F(p)).$$

Exemplo Se $g\in\Omega^0(N)$ então $F^*g=g\circ F$ e $F^*(dg)=d(F^*g)=d(g\circ F)$.

Nota. Na hora das contas, se $\varphi = (\mathbf{x}_1, \dots, \mathbf{x}_{d_1})$ e $\varphi'(\mathbf{y}_1, \dots, \mathbf{y}_{d_2})$ são cartas locais de p e F(p) respetivamente, tais que $F(\mathcal{U}_p) \subseteq \mathcal{V}_{F(p)}$, então

$$\omega \Big|_{\mathcal{V}_{F(p)}} = \sum_{g_{i_1,\dots,i_k}} d\mathbf{y}_{i_1} \wedge \dots \wedge d\mathbf{y}_{i_k}$$

$$\downarrow \qquad \qquad F^* \mathbf{y}_{i_1} = \sum_{g_{i_1,\dots,i_k}} d\mathbf{x}_{j_1}$$

$$(F^* \omega) \Big|_{\mathcal{U}_p} = \sum_{g_{i_1,\dots,i_k}} F^* \mathbf{y}_{i_1} \wedge \dots \wedge d(F^* \mathbf{y}_{i_k})$$

Em particular, se $F = \iota : M \to N$ então $\iota^*\omega = \omega|_M$.

Exemplo (Forma de angulo) $d\theta = \frac{ydx - xdy}{x^2 + y^2} \in \Omega^1(\mathbb{R}^2 \setminus \{0\}).$

 \bigcirc Uma variedade $_dM$ é orientavél se $\exists \omega \in \Omega^d(M)$, chamada forma de orientação, tal que $\forall p \in M, \ \omega(p) \neq 0$.

Exemplo \mathbb{R}^n é orientavél com $\omega = dx_1 \wedge \cdots \wedge dx_n$ e \mathbb{S}^1 com $\omega = d\theta \Big|_{\mathbb{S}^1}$.

Exemplo A faixa de Möbius não é orientavél.

 \bigcirc Sejam M orientavél e $\omega, \omega' \in \Omega^d(M)$ formas de orientação. Então, $\omega \sim \omega'$ se $\exists f>0$ tal que $\omega=f\omega'$. Uma orientação de M é $[\omega]/\sim$.

Exercise Se M é conexa e orientavél então tém só dois orientações.

 \bigcirc Seja M orientavél. A forma de volume de M é a única representante ω_{vol} de $[\omega] \in \Omega^d(M)/\sim$, tal que, $\forall [w_1, \dots, w_d]$ base ortonormal de T_pM ,

$$\omega_{\text{vol}}(w_1, \dots, w_d) = 1 \text{ e } \omega(w_1, \dots, w_d) > 0.$$

Exemplo $\omega_{\text{vol}} = dx_1 \wedge \cdots \wedge dx_n$ é a forma de volume de \mathbb{R}^n .

$$\omega_{\mathrm{vol}}$$
 em $_{n-1}H\subseteq\mathbb{R}^n$ hipersuperficie

Exemplo $H:=\{\mathbf{x}\in\mathbb{R}^n:g(\mathbf{x})=0\}$ é orientavél. Sendo $\vec{n}(p)=\frac{\nabla g(p)}{\|\nabla g(p)\|}\perp T_pH$, sua forma de volume é

$$\omega_{\text{vol}} = \sum_{i} (-1^{i+1}) \vec{n_i} \, d\mathbf{x}_1 \wedge \cdots \wedge \widehat{d\mathbf{x}_i} \wedge \cdots \wedge d\mathbf{x}_n \Big|_{H}. \quad \det \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix}$$

Exemplo Em $H=\mathbb{S}^{n-1}\subseteq\mathbb{R}^n$ temos $\vec{n}(x)=\frac{\mathbf{x}}{\|\mathbf{x}\|}$, logo,

$$\omega_{\text{vol}} = \sum_{i=1}^{n-1} (-1)^{i+1} x_i \, d\mathbf{x}_1 \wedge \cdots \wedge \widehat{d\mathbf{x}_i} \wedge \cdots \wedge d\mathbf{x}_n \Big|_{\mathbb{S}^{n-1}}.$$

10.3 Derivada Exterior

Nota. A idea agora é entender como se derivam as formas diferenciais.

- $\blacksquare \ \forall M, \ \forall k \in \mathbb{N}, \ \exists ! d_i \in \mathcal{L}(\Omega^k(M); \Omega^{k+1}(M)), \ \text{onde} \ d_i : \omega \mapsto d\omega \ \text{verifica},$
 - i. Derivada de uma função, $\Omega^0(M)=C^\infty(M)\ni f\mapsto df\in\Omega^1(M).$
 - ii. Regla de Leibniz com sinal, se $\omega \in \Omega^p(M)$ e $\eta \in \Omega^q(M)$ então,

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta.$$

iii. $d^2=0$, se $\omega\in\Omega^k(M)$ então $d(d\omega)=0$. \to Motivada pelo \blacksquare (Schwarz)

iv. Compativél com pullback, se $F \in C^{\infty}(M;N)$ e $\omega \in \Omega^k(N)$ então,

$$d(F^*\omega) = F^*(d\omega).$$

Exemplo Sendo $I=(i_1,\ldots,i_k)$ e $\sum f_I d\mathbf{x}_I=\omega\in\Omega^k(M)$, temos,

$$d\omega = \sum df_I d\mathbf{x}_I.$$

 $\diamondsuit \omega \in \Omega^k(M)$ é exata se $\exists \eta \in \Omega^{k-1}(M)$ tal que $\omega = d\eta$. Por outro lado, se $d\omega = 0$ dezimos então que é fechada.

Nota. Ver que ω é exata é "resolver" EDPs, ou seja integrar.

§ 11 Integração em Variedades

Nota. Nesta seção $I = [0, 1] \subset \mathbb{R}$.

11.1 Integração em Cadeias

 \bigcirc Um k-bloco singular em M é uma aplicação $\sigma \in C^{\infty}(I^k; M)$.

Exemplo (*n*-bloco padrão em \mathbb{R}^n) $\mathbb{1}_{I^n}:I^n\to I^n\subset\mathbb{R}^n$.

Exemplo Uma curva suave $c: I \to M$ é um 1-bloco singular.

$$\sigma$$
 k-bloco singular \neq Im(σ) \subseteq M

Exemplo $\sigma: I^n \ni \mathbf{x} \mapsto p \in M$ é um n-bloco singular.

 \bigcirc Sejam $\omega \in \Omega^k(M)$ e σ um k-bloco singular. Então,

$$\int_{\sigma} \omega = \int_{I^k} \sigma^* \omega = \int_{I^k} f(\mathbf{x}) \ dx_1 \wedge \cdots \wedge dx_k = \int_{I^k} f(\mathbf{x}) \ d\mathbf{x}.$$

Integral de linha

Exemplo Sejam $c(t):[a,b]\to U^{\diamondsuit}\subseteq\mathbb{R}^n$ curva suave e $\sum_{i=0}^n f_i\ dx_i=\omega\in\Omega^k(U)$, então temos

$$\oint_c \omega = \int_a^b c^* \omega \ dt = \int_a^b \sum_i^n (f_i \circ c)(t) c_i'(t) \ dt$$

 \bigcirc Uma k-cadeia de blocos singulares em M é uma expresão da forma

$$c = \sum_{i=1}^{k} n_i \sigma_i, \ n_i \in \mathbb{Z} \ \mathbf{e} \ \sigma_i : I^k \to M.$$

Exemplo
$$c = 2c_1 + c_2 - c_3$$
.

Nota. Mais formalmente, as k-cadeias são elementos do grupo abeliano livre gerado pelos k-blocos singulares.

$$\diamondsuit$$
 Se $\omega \in \Omega^k(M)$ e c é uma k -cadeia singular, então $\int_c \omega = \sum^k n_i \int_{\sigma_i} \omega$.

 \bigcirc Seja σ um k-bloco singular. O borde de σ é a (k-1)-cadeia dada por

Exercise Se c é uma k-cadeia, então $\partial(\partial c)=0$. $\to \partial^2=0$, olha no Spivak

 \blacksquare (Stokes) Seja $\omega \in \Omega^{k-1}(M)$ e c k-cadeia em M, então

$$\int_{c} d\omega = \int_{\partial c} \omega.$$

References

[1] Lima, Elon Lages (2004). Análise real Vol. 2. IMPA, Rio de Janeiro.