MA-331: Midterm - Apangilla Roma

	()		same siz	mean	stal dev
((\mathcal{L})	Organic	20	5.58	0.59
		control	20	5.08	0.62
		comfort	22	4.89	0.57
		€0 verall = 5.183			

$$\frac{2}{\sqrt{\frac{51}{n_1} + \frac{52}{n_2}}} = \frac{5.58 - 4.89}{\sqrt{\frac{6.51}{20} + \frac{0.52}{22}}} = \boxed{3.847}$$

2)
$$F = \frac{51}{53^2} = \frac{0.59^2}{0.54^2} = 1.07$$
 (Testing Stats)

Degrees of Freedom = 20-1, 22-1, = 19, 21

$$\left(\frac{5_{1}^{2}}{n_{1}} + \frac{5_{1}^{2}}{n_{2}} \right) / \frac{1}{n_{1}-1} \left(\frac{1}{n_{1}} \right) + \frac{1}{n_{2}-1} \left(\frac{5_{2}^{2}}{n_{2}} \right) = \frac{10011}{0016} + 0.616$$

p(F71.07)=1-pf(1.07,19,21) < d

0.447 d = 0.05, because p=0.44 which is greater than x = 0.05, we fail to reject the null hypothesis.

P-val = P(1T1713.851) = 2.pt(-3.847,40) = 0.0004240.05, Since

| mean | Stal stal | organic | 5.58 | 0.59 | 0.35 | | ii) | SSB =
$$\frac{1}{2}$$
 | $n_i (\bar{x}_i - \bar{x}_j)^2 = 20(5.17 - 5.58)^2 + 22(5.17 - 4.89)^2 = 5.2488$ | Control | 5.08 | 0.62 | 0.38 | SSE = $\frac{1}{2}$ | $(n_i - 1)s_i^2 = 19 (0.57)^2 + 19 (0.62)^2 + 21 (0.57)^2 = 20.74 | 0.62 | 0.37 | 0.57 | 0.32 | 0.57 | 0.32 | 0.57 | 0.32 | 0.57 | 0.32 | 0.57 | 0.$

(ii) source of 55 MS F prod iv) Since
$$p = 0.0013 = 25.9888$$
 [25.248 2.224 7.47 0.6013 iv) Since $p = 0.0013 = 25.9888$ [2101 Number of 20.34 0.3515 | null hypothesis because mean of organd total 61 25.98 | 25.98

[P-value] - 2(1-p + (3,89,59)) +0,0005

ii) 0.000\$ < 0.05 -> 50 we reject null hypothesis since organic and comfort are distinct different.

=0.0004