SED-Annale 2021

6

Exercice 1 : système combinatoire

а	b	С	d	S	Q1
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	1	$\overline{a}.\overline{b}.c.\overline{d}$
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	\overline{a} . b . \overline{c} . d
0	1	1	0	1	\overline{a} . b . c . \overline{d}
0	1	1	1	0	
1	0	0	0	1	$a.\overline{b}.\overline{c}.\overline{d}$
1	0	0	1	1	$a.\overline{b}.\overline{c}.d$
1	0	1	0	1	$a.\overline{b}.c.\overline{d}$
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	1	$a.b.c.\overline{d}$
1	1	1	1	0	

1. Donner une expression booléenne de la variable de sortie *S* en fonction des variables d'entrées *a*, *b*, *c* et d du système. Utilisez l'algèbre de Boole pour obtenir l'expression booléenne qui vous semblera la plus simplifiée possible.

$$S = \overline{a}.\overline{b}.c.\overline{d} + \overline{a}.b.\overline{c}.d + \overline{a}.b.c.\overline{d} + a.\overline{b}.\overline{c}.\overline{d} + a.\overline{b}.\overline{c}.d + a.\overline{b}.\overline{c}.d + a.\overline{b}.c.\overline{d} + a.b.c.\overline{d}$$

$$= \overline{a}(\overline{b}.c.\overline{d} + b.\overline{c}.d + b.c.\overline{d}) + a.\overline{b}(\overline{c}.\overline{d} + \overline{c}.d + c.\overline{d}) + a.b.c.\overline{d}$$

$$= \overline{a}(c.\overline{d}(\overline{b} + b) + b.\overline{c}.d) + a.\overline{b}(\overline{c}(\overline{d} + d) + c.\overline{d}) + a.b.c.\overline{d}$$

$$= \overline{a}(c.\overline{d}.1 + b.\overline{c}.d) + a.\overline{b}(\overline{c}.1 + c.\overline{d}) + a.b.c.\overline{d}$$

$$= \overline{a}(c.\overline{d} + b.\overline{c}.d) + a.\overline{b}(\overline{c} + c.\overline{d}) + a.b.c.\overline{d}$$

2. Utilisez une représentation en table de Karnaugh pour déduire une expression booléenne simplifiée de la sortie. Montrez que vous retrouvez le résultat de la question précédente.

	c, d	00	01	11	10
a, b					
00		0	0	0	1
01		0	1	0	1
11		0	0	0	1
10		1	1	0	1

$$S = c \overline{d} + a \overline{h} \overline{c} + \overline{a} h \overline{c} d$$

3. Donnez à l'aide de portes logiques ET et OU dont le nombre d'entrée peut etre quelconque, le logigramme correspondant à l'expression obtenue à la question 2.

/

02

Exercice 2 : Passage à une représentation algébrique

On considère le modèle graphique d'un système à évènement discret suivant :

1. Quel nombre minimum k de variables interne nécessaires pour coder un système séquentiel logique dont l'état peut prendre n valeurs différentes ?

Comme il y a 5 états il faudra au minimum 3 variables : Y_1 , Y_2 , Y_3

2. La représentation graphique précédente correspond-elle à une machine de Moore ou de Mealy ? Justifiez votre réponse.

Machine de Mealy.

- · L'état futur est calculé à partir des entrées et de l'état présent.
- · Les sorties d'une machine de Mealy dépendent de l'état présent et des entrées.
- · Mémorisation synchrone des états (càd sur un front d'horloge).
- · La sortie dépend directement de l'entrée et ceci indépendamment de l'horloge (clk).
 - ⇒ Sortie asynchrone.
- Nombre d'états plus réduit que pour une machine de Moore.
- Il est possible de resynchroniser la sortie au besoin en ajoutant des bascules D.

Exemple: Machine de Mealy reconnaissant la séquence 10

Machine de Moore.

- ${}^{\textstyle \star}$ Les sorties d'une machine de Moore dépendent de l'état présent (synchrones, elles changent sur un front d'horloge).
- · L'état futur est calculé à partir des entrées et de l'état présent.

Exemple: Machine de Moore reconnaissant la séquence 10

La représentation graphique précédente correspond à un modèle de Moore

3. On considère le codage suivant : $Q = \{Q_1, Q_2, Q_3, Q_4, Q_5\} = \{000,001,010,011,100\}$. Décrire les tableaux de Karnaugh à variable interne et sortie du système.

Y_2, Y_3	00	01	11		10		
Y_1		,					
0	0	b	_	$\frac{\overline{a}}{\overline{a}}$.	$\frac{\overline{b}}{b} =$	<i>a</i> +	b
1	b	0	Œ		E		
Y ₂ , Y ₃	00	01	-	11	10)	
Y_1							
0	0	$\overline{\overline{h}}$		\Box	0		
1	\overline{a} . \overline{b}	$\overline{\overline{a}} =$	a a	_	Œ		
$Y_2, \frac{Y_3}{2}$	00			01		11	10
Y_1							
0	$\overline{a}, \overline{b}$			$a \overline{h}$		_	0
1	$1 \qquad \overline{\overline{a}.\overline{b}} =$		$b \overline{\overline{a}} = a$		а	=	

(Exemple pour Y_1)

4. En déduire une représentation algébrique de ce système.

$$\begin{split} y_1 &= b.\overline{Y_2}.Y_3 + b.Y_2.\overline{Y_3} + (a+b)Y_1 \\ y_2 &= \overline{a}.\overline{b}.\overline{Y_2}.Y_3 + \overline{b}.Y_2.\overline{Y_3} + a.Y_2.Y_3 \\ y_3 &= \overline{a}.\overline{b}.\overline{Y_1}.\overline{Y_3} + (a+b)Y_2.Y_3 + a.Y_2.Y_3 \\ S &= \overline{y_1}.y_2.y_3 \end{split}$$

Exercice 3 : Passage à une représentation graphique

Un système séquentiel fonctionnant en mode asynchrone est décrit de façon algébrique par les équations suivantes :

$$\begin{cases} y_1 = \overline{a}b + bY_1 + Y_2 \\ y_2 = ab \\ s_1 = \overline{Y_1}Y_2 \\ s_2 = Y_1Y_2 \end{cases}$$

1. Proposez une représentation schéma-bloc FMG de ce système. Vous y spécifierez les variables d'entrées, de sorties et d'état du système.

(Représentation de Moore)

- 2. Donnez soit la table des états codés, soit celle des états nommés (dans ce cas vous spécifierez votre codage). Y a-t-il des états stables ? Si oui, mettez-les en évidence.
- 3. Y a-t-il des changements d'états entrainant des phénomènes de course. Si oui, précisez-les. Le système est-il stable?
- 4. Proposez un graphe d'états décrivant le fonctionnement de ce système. Que pouvez-vous conclure sur la nature des sorties du système ?