Model Search Methods

Forward Stepwise Selection

- 1. Let M_0 denote null model which contains no predictors.
- 2. For k = 1, 2, ..., p 1
 - ullet Consider all p-k models that augment the predictors in M_k with one additional predictor
 - ► Choose the best among these p-k models and call it M_{k+1} . Here, best is defined as having the smallest RSS or largest \mathbb{R}^2
- 3. Select a single best model from among M_0, M_1, \ldots, M_p using cross validated prediction error, C_p (AIC), BIC, or Adjusted- \mathbb{R}^2

requires training
$$1 + \frac{p(p+1)}{2}$$
 models

Example

$$p = 3$$

 M_0 : intercept only (null)

$$C_1$$
: (X_1) (X_2) (X_3)

lowest training RSS within C_1

$$C_2: (X_1, X_2) (X_2, X_3)$$

lowest training RSS within C_2 $\Longrightarrow M_2$

 M_3 : full model with

Model Search Methods

Backward Stepwise Selection

- 1. Let M_p denote full model which all predictors.
- 2. For k = p, p 1, p 2,...,1
 - ▶ Consider all k models that contain all but one of the predictors in M_k , for a total of k-1 predictors
 - Choose the best among these k models and call it M_{k-1} . Here, best is defined as having the smallest RSS or largest \mathbb{R}^2
- 3. Select a single best model from among M_0, M_1, \ldots, M_p using cross validated prediction error, C_p (AIC), BIC, or Adjusted- \mathbb{R}^2

requires training
$$1 + \frac{p(p+1)}{2}$$
 models

Example

$$p = 3$$

 M_3 : full mode

$$X_1$$
 X_2 X_3

$$C_2$$
: (X_1, X_2) (X_1, X_3) (X_2, X_3)

lowest training RSS within C_1

$$C_1: (X_1) (X_2)$$

lowest training RSS within C_2 $\Longrightarrow M_1$

 M_0 : intercept only (null)