

Task History

Initiating Search

February 24, 2025, 11:14 AM

Substances:

Filtered By:

Structure Match: As Drawn

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (1,728) Exported: Retrieved Related Reaction Results + Filters (457)		Substances Reactions	View Results View Results
Substance Role:	Reagent, Solvent		
Catalyst:	Benzoic acid, cobalt(2+) salt (2:1), Borate(1-), tetrafluoro-, cobalt(2+) (2:1), Carbonyl(η ⁵ -2,4-cyclopentadien-1-yl)diiodocobalt, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt, Cobalt, Cobalt, [1,1'-bis(diphenylphosphino)ferrocene- <i>P,P</i>]diiodo-, (<i>T</i> -4)-, Cobalt, [1,1'-bis(diphenylphosphino)ferrocene- <i>P,P</i>]diiodo-, (<i>T</i> -4)-, Cobalt, [1,1'-bis(diphenylphosphino-κ <i>P</i>)ferrocene]dichloro-, (<i>T</i> -4)-, Cobalt, [1,4,8,11,15,18,22,25-octakis(pentyloxy)-29 <i>H</i> ,31 <i>H</i> -phthalocyaninato(2-)- <i>N</i> ²⁹ , <i>N</i> ³⁰ , <i>N</i> ³¹ , <i>N</i> ³²]-, (<i>SP</i> -4-1)-, Cobalt(16+), dodecakis[μ-[2,2'-[1,5-naphthalenediylbis(methylene-1 <i>H</i> -pyrazole-1,3-diyl-κ <i>N</i> ²)]bis[pyridine-κ <i>N</i>]]]octa-, chloride (1:16), stereoisomer, Cobalt(1+), (acetonitrile) [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl][2-(2-pyridinyl-κ <i>N</i>)phenyl-κ <i>C</i>]-, tetrafluoroborate(1-) (1:1), Cobalt(1+), [octahydro-1-[(4-methylphenyl)sulfonyl]-4,7-bis[(2-pyridinyl-κ <i>N</i>)methyl]-1 <i>H</i> -1,4,7-triazonine-κ <i>N</i> ¹ ,κ <i>N</i> ⁴ ,κ <i>N</i> ⁷](1,1,1-trifluoromethanesulfonato-κ <i>O</i>)-, (<i>OC</i> -6-43)-, 1,1,1-trifluoromethanesulfonate (1:1), Cobalt(2+),		

tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoroantimonate(1-) (1:2), Cobalt acetate tetrahydrate, Cobaltate(1-), dibromobis[(2,3-butanedione dioximato)(1-)-*N*,*N*]-, Cobaltate(2-), bis[[2,3-butanedione 2,3di(oximato-κΛ)](1-)]chloro[P-(4-pyridinylκ/N)phosphonato(2-)]-, hydrogen (1:2), (OC-6-42)-, Cobaltate(8-), [[5,5',5",5"'-(21 H,23Hporphine-5,10,15,20-tetrayl- κN^{21} , κN^{22} , κN^{23} , κN^{24}) tetrakis [2,4,6-trimethyl-1,3-benzenedisulfonato]](10-)]-, sodium (1:8), (SP-4-1)-, Cobalt, bis(1,1,1,5,5,5-hexafluoro-2,4pentanedionato-κO,κO)-, hydrate, (T-4)-, Cobalt, bis[[2,3-butanedione di(oximato-κ/\)](1-)]chloro(pyridine)-, (OC-6-42)-, Cobalt bis(tetrafluoroborate) hexahydrate, Cobalt bromide (CoBr₂), hexahydrate, Cobalt chloride (CoCl2), Cobalt, compd. with rhodium (2:2), Cobalt diacetate, Cobalt dibromide, Cobalt dichloride hexahydrate, Cobalt, di-µchlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]di-, stereoisomer, Cobalt(II) acetylacetonate, Cobalt(II) perchlorate, Cobalt iodide (Col₂), Cobalt nitrate hexahydrate, Cobalt perchlorate hexahydrate, Cobalt phthalocyanine, Cobalt stearate, Cobalt tetraphenylporphine, Cobalt tetra(p-methoxyphenyl)porphyrin, Dibromo[N-[1-[6-[(4*S*)-4,5-dihydro-4-(1-methylethyl)-1phenyl-1*H*-imidazol-2-yl-κ*N*³]-2-pyridinylκN]ethylidene]-2,6-dimethylbenzenamineκN]cobalt, Dicarbonyl(η⁵cyclopentadienyl)cobalt, Dicobalt octacarbonyl, Di-μ-iododiiodobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]dicobalt, Methanesulfonic acid, 1,1,1-trifluoro-, cobalt(2+) salt (2:1), (OC-6-12)-Dibromobis[[2,3butanedione 2,3-di(oximato-κ/)](1-)]cobaltate(2-), (OC-6-13)-[2,6-Bis[[bis(1methylethyl)phosphino-κP]methyl]-4methylpyridine-κ/V]dihydro(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cobalt, (OC-6-42)-Bis[[2,3-butanedione 2,3-di(oximato-κ//)](1-)]chloro(N,N-dimethyl-4-pyridinamine $κN^1$)cobalt, (*OC*-6-42)-Chlorobis[[1,2cyclohexanedione 1,2-di(oximato-κ/\)](1-)](N,Ndimethyl-4-pyridinamine- κN^1)cobalt, (SP-4-2)-[[2,2'-[(1,1,2,2-Tetramethyl-1,2ethanediyl)bis[(nitrilo-ĸ/\)methylidyne]]bis[4,6bis(1,1-dimethylethyl)phenolato-κO]](2-)]cobalt, (SP-4-2)-[[2,2'-[1,2-Ethanediylbis[(nitriloк**//**)methylidyne]]bis[6-chlorophenolato-к*O*]](2-)]cobalt, (SP-4-2)-[[2,2'-[1,2-Phenylenebis[(nitrilo-ĸ/\)methylidyne]]bis[4,6bis(1,1-dimethylethyl)phenolato-κO]](2-)]cobalt, (SP-4-2-)-[[rel-(1R,2R)-2,2'-[1,2-Cyclohexanediylbis[(nitriloκ//)methylidyne]]bis[phenolato-κ//]](2-)]cobalt, (*T*-4)-[1,1'-(1,2-Ethanediyl)bis[1,1diphenylphosphine-κP]]diiodocobalt, (7-4)-Dichloro[1,1'-(1,2-ethanediyl)bis[1,1diphenylphosphine-κ*P*]]cobalt, (*T*-4)-

CAS SciFinder® Page 3

Dichloro[1,1'-(9,9-dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine-κ*P*]]cobalt, (*T*-4)-Diiodobis(triphenylphosphine)cobalt, (*TB*-5-22)-Dichloro[*N*,*N*'-[(2,6-pyridinediyl-

κ//)diethylidyne]bis[2,4,6-

Document

ស្រីក្រាត្តអ្នាylbenzenamine-κ/V]]cobalt

Type:

Language: English

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (134)

View in CAS SciFinder

Steps: 1 Yield: 100%

Steps: 1 Yield: 99%

31-614-CAS-36795072

1.1 **Reagents:** Dimethylformamide, Water-*d*₂

Catalysts: Cobalt stearate Solvents: Water; 24 h, 150 °C

Suppliers (81)

Experimental Protocols

Cobalt-Catalyzed Chemoselective Reduction of N-Heteroaryl Ketones with N,N-Dimethylformamide as a Hydride Source

By: Yu, Rurong; et al

Journal of Organic Chemistry (2023), 88(13), 8279-8285.

Scheme 2 (1 Reaction)

31-614-CAS-37018528

Steps: 1 Yield: 99%

Steps: 1 Yield: 100%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 3 (1 Reaction)

Steps: **1** Yield: **99%**

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

31-614-CAS-37018394

Steps: 1 Yield: 99%

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/\)](1-)]

(N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 4 (1 Reaction)

31-614-CAS-37018415

Steps: 1 Yield: 99%

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)] (N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (63)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 5 (2 Reactions)

Double bond geometry shown

Double bond geometry shown

Suppliers (21)

31-116-CAS-17255586

Steps: 1 Yield: 99%

Reagents: Sodium acetate, Water-d2

Catalysts: Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 1 - 2 h, 120 °C

Cobalt(III)-Catalyzed C-H Activation: Azo Directed Selective 1,4-Addition of Ortho C-H Bond to Maleimides

By: Muniraj, Nachimuthu; et al

Journal of Organic Chemistry (2017), 82(13), 6913-6921.

Experimental Protocols

31-116-CAS-18009148

Steps: 1 Yield: 99%

Reagents: Water-d2 1.1

Catalysts: Sodium acetate, Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 2 h, 100 °C

Cobalt(III)-Catalyzed C-H Amidation of Azobenzene Deriva tives Using Dioxazolone as an Amidating Reagent

By: Hande, Akshay Ekanath; et al

ChemistrySelect (2017), 2(21), 5965-5969.

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Steps: 1 Yield: 98%

Scheme 6 (1 Reaction)

31-614-CAS-37018410

Steps: 1 Yield: 99%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 7 (1 Reaction)

Suppliers (33)

31-614-CAS-37018422

Steps: **1** Yield: **99%**

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 8 (1 Reaction)

□ Suppliers (8)

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

31-614-CAS-37018529

Steps: 1 Yield: 98%

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

 $(N,N-dimethyl-4-pyridinamine-к<math>N^1$)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 9 (1 Reaction)

N B B

Steps: 1 Yield: 98%

► Suppliers (8)

31-116-CAS-15641639

1.1 Reagents: Pivalic acid, Oxygen Catalysts: Cobalt diacetate

Solvents: 2,2,2-Trifluoroethanol, Water-d₂; 16 h, 60 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Cobalt-Catalyzed Oxidase C-H/N-H Alkyne Annulation: Mechanistic Insights and Access to Anticancer Agents

By: Mei, Ruhuai; et al

Chemistry - A European Journal (2016), 22(20), 6759-6763.

Scheme 10 (1 Reaction)

31-614-CAS-37018444

Steps: 1 Yield: 98%

1.1 **Reagents:** Water- d_2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (\mathcal{OC} -6-33)-, hexafluorophosphate(1-) (1:1), (\mathcal{OC} -6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (\mathcal{N} , \mathcal{N} -dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 11 (1 Reaction)

Steps: **1** Yield: **98%**

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

31-614-CAS-37018499

Steps: 1 Yield: 98%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 12 (1 Reaction)

31-614-CAS-37018531

Steps: **1** Yield: **96%**

1.1 **Reagents:** Water- d_2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 13 (1 Reaction)

31-614-CAS-37018503

Steps: 1 Yield: 96%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ *N*¹)cobalt

Solvents: Acetonitrile; 36 h, rt

➤ Suppliers (29)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 14 (1 Reaction)

Suppliers (6)

31-116-CAS-19137684

Steps: 1 Yield: 96%

1.1 Catalysts: [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*] methanesulfonamidato-κ*O*]silver, Cobalt, di-μ-chlorodic hlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]di-, stereoisomer; 3 h, 100 °C

1.2 **Reagents:** Water-*d*₂; 2 h, 100 °C

Experimental Protocols

Cobalt(III)-Catalyzed C-H Amidation of 7-Azaindoles with Dioxazolones: Synthesis of 7-Azaindole Amidated Derivatives

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

By: Sun, Jun-Shu; et al

Journal of Organic Chemistry (2018), 83(17), 10555-10563.

Scheme 15 (1 Reaction)

31-614-CAS-41215476

Steps: 1 Yield: 96%

1.1 Reagents: Silver carbonate, Water- d₂ Catalysts: Cupric acetate, Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 2,2,2-Trifluoroethanol; 12 h, 110 °C

Experimental Protocols

Co(III)-catalyzed regioselective benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation

By: Yadav, Suresh Kumar; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(63), 8296-8299.

Scheme 16 (1 Reaction)

31-614-CAS-37018514

Steps: 1 Yield: 96%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

Scheme 17 (1 Reaction)

31-614-CAS-37018524

Steps: 1 Yield: 96%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (4)

Experimental Protocols

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 18 (1 Reaction)

31-614-CAS-37018484

Steps: 1 Yield: 96%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

Steps: 1 Yield: 95%

31-614-CAS-37018501

Steps: 1 Yield: 96%

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/λ)](1-)]

(N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 20 (1 Reaction)

📜 Suppliers (9)

31-614-CAS-37018526

Steps: 1 Yield: 96%

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)] (N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 21 (1 Reaction)

31-614-CAS-37018398

Steps: 1 Yield: 95%

Reagents: Water-d2 1.1

> Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , $\kappa N^{1'}$]bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)] (N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Scheme 22 (1 Reaction)

Suppliers (14)

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

31-614-CAS-37018476

1.1 **Reagents:** Water- d_2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ *N*¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Scheme 23 (1 Reaction)

 $F \longrightarrow F \longrightarrow D$

31-116-CAS-22543033

Steps: **1** Yield: **95%**

Steps: 1 Yield: 95%

1.1 **Reagents:** Sodium acetate, Water- d_2

 $\label{eq:catalysts:Bis[dichloro[η^5-(pentamethylcyclopentadienyl)]} $$rhodium], $$Carbonyldiiodo[(1,2,3,4,5-$\eta)-1,2,3,4,5-$pentamethyl-$$]$$

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 24 (1 Reaction)

31-614-CAS-37018569

Steps: 1 Yield: 95%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ *N*¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Scheme 25 (1 Reaction)

Suppliers (55)

31-614-CAS-37018472 Steps: **1** Yield: **95%**

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 26 (1 Reaction)

$$\xrightarrow{\mathsf{D}} \overset{\mathsf{D}}{\longrightarrow} \overset$$

Steps: 1 Yield: 95%

Suppliers (12)

31-614-CAS-37018430

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, ($\mathcal{O}C$ -6-33)-, hexafluorophosphate(1-) (1:1), ($\mathcal{O}C$ -6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (\mathcal{N} , \mathcal{N} -dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 27 (1 Reaction)

> Suppliers (2)

Steps: 1 Yield: 94%

Steps: 1 Yield: 94%

Steps: 1 Yield: 94%

31-116-CAS-10755748

Steps: 1 Yield: 95%

Steps. I field

1.1 Reagents: Oxygen, Water- d₂

Catalysts: Sodium acetate, Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 15 min, 120 °C

Experimental Protocols

Cobalt(III)-Catalyzed C-H/N-O Functionalizations: Isohypsic Access to Isoquinolines

By: Wang, Hui; et al

Chemistry - A European Journal (2015), 21(44), 15525-15528.

Scheme 28 (1 Reaction)

31-614-CAS-37018518

Steps: **1** Yield: **94%**

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ /Λ¹, κ /Λ^{1'}]bis[2-(2-pyridinyl- κ /Λ) phenyl- κ /C]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ /Λ)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κ /Λ¹)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 29 (1 Reaction)

$$N = \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N}$$

31-116-CAS-22543037

Steps: 1 Yield: 94%

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: Acetonitrile, 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 30 (1 Reaction)

Suppliers (59)

Steps: 1 Yield: 93%

Steps: 1 Yield: 93%

Steps: 1 Yield: 93%

31-614-CAS-43156932

Steps: 1 Yield: 94%

1.1 **Reagents:** Sodium acetate, Water-*d*₂

Catalysts: Carbonyldiiodol(1 2 3 4 5-n)-1 2

Catalysts: Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl- κ *O*]methanesulfonamidato- κ *O*]silver

Solvents: 1,2-Dichloroethane; 24 h, 40 °C

Experimental Protocols

Harnessing Dual Reactivity of N-Chloroamides for Cascade C-H Amidation/Chlorination of Indoles under Cobalt-Catalysis: Overriding Hofmann Rearrangement Pathway Leading to Aminocarbonylation

By: Nagesh, Vinod V.; et al

Organic Letters (2024), 26(49), 10523-10528.

Scheme 31 (1 Reaction)

31-614-CAS-42872600

Steps: 1 Yield: 93%

Cobalt's Dual Role in Promoting C3-Glycosylation of Indoles: Unraveling Mechanistic Insights

By: Mu, Qiu-Qi; et al

Organic Letters (2023), 25(38), 7040-7045.

1.1 Reagents: Manganese, Water-d₂

Catalysts: Cobalt dibromide, Sodium tetrakis [3,5-bis(trifluor

omethyl)phenyl]borate

Solvents: 1,2-Dichloroethane; 24 h, rt \rightarrow 40 °C

Experimental Protocols

Scheme 32 (1 Reaction)

31-116-CAS-22543034

Steps: 1 Yield: 93%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

enyl)] By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

1.1 **Reagents:** Sodium acetate, Water- d_2

 $\label{eq:catalysts:Bis[dichloro[η^5-(pentamethylcyclopentadienyl)]} $$rhodium], $$Carbonyldiiodo[(1,2,3,4,5-$\eta)-1,2,3,4,5-$pentamethyl-$$]$$

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Scheme 33 (1 Reaction)

31-116-CAS-22543022

Steps: 1 Yield: 93%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d₂

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt Solvents: Acetonitrile, 1,2-Dichloroethane; 36 h, 25 °C By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Page 16

Steps: 1 Yield: 93%

Steps: 1 Yield: 92%

Steps: 1 Yield: 82-92%

Scheme 34 (1 Reaction)

$$\longrightarrow \bigvee_{N} \bigvee_$$

Suppliers (83)

31-614-CAS-35317601

Steps: 1 Yield: 93%

Catalysts: Cobalt(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Reagents: Water-d2

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 12 h, 100 °C

Experimental Protocols

Cobalt-Catalyzed Double C-H Activation of Imidazopyridines with Vinylene Carbonate for the Synthesis of Pyrido[1,2-a] benzimidazoles

By: Liu, Min; et al

European Journal of Organic Chemistry (2022), 2022(47), e202201349.

Scheme 35 (1 Reaction)

31-116-CAS-15593213

Steps: 1 Yield: 92%

Reagents: Pivalic acid, Oxygen Catalysts: Cobalt diacetate

Solvents: 2,2,2-Trifluoroethanol, Water-d₂; 16 h, 60 °C

Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Cobalt-Catalyzed Oxidase C-H/N-H Alkyne Annulation: Mechanistic Insights and Access to Anticancer Agents

By: Mei, Ruhuai; et al

Chemistry - A European Journal (2016), 22(20), 6759-6763.

Scheme 36 (2 Reactions)

31-614-CAS-37741572

Steps: 1 Yield: 92%

Reagents: Sodium acetate

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: Acetonitrile, Water-d₂; 12 h, 90 °C

Experimental Protocols

Rhodium(III)-Catalyzed C-H/N-H Activation for Direct Synthesis of Pyrimidoindolones under Mild Conditions

By: Kumar, Vikash; et al

Chemistry - An Asian Journal (2023), 18(19), e202300675.

Steps: 1 Yield: 92%

Steps: 1 Yield: 92%

31-116-CAS-22543011

Steps: 1 Yield: 82%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water-*d*₂

Catalysts: Carbonyldiiodo[(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 37 (1 Reaction)

31-116-CAS-15972060

Steps: 1 Yield: 92%

1.1 Reagents: Pivalic acid, Silver carbonate, Water- d₂

Catalysts: Cobalt diacetate Solvents: Toluene; 2 h, 120 °C

Experimental Protocols

Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes

By: Tan, Guangying; et al

Angewandte Chemie, International Edition (2016), 55(35), 10414-10418.

Scheme 38 (1 Reaction)

31-116-CAS-17804796

Steps: 1 Yield: 92%

1.1 Reagents: Triethylamine, Water- d₂
Catalysts: Copper(1+), (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline-κN¹,κN¹⁰)[1,1'-(9,9-dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine-κ*P*]]-, (*T*-4)-, hexafluoro phosphate(1-) (1:1), Cobalt(1+), [octahydro-1-[(4-methyl phenyl)sulfonyl]-4,7-bis[(2-pyridinyl-κN)methyl]-1*H*-1,4,7-triazonine-κN¹,κN⁴,κN⁷](1,1,1-trifluoromethanesulfonato-κ*O*)-, (*OC*-6-43)-, 1,1,1-trifluoromethanesulfonate (1:1)
Solvents: Acetonitrile; 5 h, 30 °C

1.2 Solvents: Dichloromethane

Dual cobalt-copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media

By: Call, Arnau; et al

Chemical Science (2017), 8(7), 4739-4749.

Scheme 39 (1 Reaction)

> Supplier (1)

Steps: 1 Yield: 91%

Steps: 1 Yield: 91%

Steps: 1 Yield: 91%

31-116-CAS-22543035

Steps: 1 Yield: 91%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 Reagents: Sodium acetate, Water- d_2

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 40 (1 Reaction)

31-116-CAS-22543030

Steps: 1 Yield: 91%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 41 (1 Reaction)

31-116-CAS-15268333

Steps: 1 Yield: 91%

1.1 **Reagents:** Water- d_2

Catalysts: Cobalt chloride (CoCl₂); 24 h, 120 °C

Experimental Protocols

Functionalization of the Benzylic C-H Bonds in Azaarenes by Cobalt-Catalyzed 1,4-Addition to Enones

By: Jamal, Zaini; et al

European Journal of Organic Chemistry (2014), 2014(33),

7343-7346.

Scheme 42 (1 Reaction)

Steps: **1** Yield: **91%**

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

31-116-CAS-17804797

Steps: 1 Yield: 91%

1.1 **Reagents:** Triethylamine, Water- d_2

Catalysts: Copper(1+), (2,9-dimethyl-4,7-diphenyl-1,10phenanthroline- κN^1 , κN^{10})[1,1'-(9,9-dimethyl-9*H*-xanthene-4,5diyl)bis[1,1-diphenylphosphine-κ*P*]]-, (*T*-4)-, hexafluoro phosphate(1-) (1:1), Cobalt(1+), [octahydro-1-[(4-methyl phenyl)sulfonyl]-4,7-bis[(2-pyridinyl-κ/λ)methyl]-1*H*-1,4,7triazonine-κ N^1 ,κ N^4 ,κ N^7](1,1,1-trifluoromethanesulfonato-κO)-, (OC-6-43)-, 1,1,1-trifluoromethanesulfonate (1:1)

Solvents: Acetonitrile; 5 h, 30 °C

By: Call, Arnau; et al

Chemical Science (2017), 8(7), 4739-4749.

Dual cobalt-copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media

Solvents: Dichloromethane

Scheme 43 (2 Reactions)

Suppliers (4)

31-614-CAS-41879506

Reagents: Propanoic acid, 2,2-dimethyl-, sodium salt (1:1),

Oxygen, Water-d2

Catalysts: Cobalt(II) acetylacetonate, Eosin Solvents: 2,2,2-Trifluoroethanol; 2 h, 25 °C

Experimental Protocols

Room temperature C-O bond cleavage of vinyl cyclic synthons via a metallaphotoredox approach

By: Keshri, Santosh Kumar; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(79), 11164-11167.

31-116-CAS-19262336

Steps: 1

Steps: 1 Yield: 90%

Reagents: Oxygen, Water-d₂, Propanoic acid, 2,2-dimethyl-, sodium salt, hydrate (1:1:?)

Catalysts: Cobalt acetate tetrahydrate, Tris(acetylacetonato)

manganese

Solvents: 2-Methyl-2-butanol; 18 h, 65 °C

Experimental Protocols

Cobalt-Catalyzed Aerobic Oxidative C-H/C-H Cross-Coupling of Unactivated Arenes for the Synthesis of Biaryls

By: Lv, Ningning; et al

Organic Letters (2018), 20(18), 5845-5848.

Scheme 44 (1 Reaction)

Supplier (1)

31-614-CAS-31492417

Steps: 1 Yield: 90%

Reagents: Manganese triacetate, Propanoic acid, 2,2-

dimethyl-, sodium salt (1:1), Water- d_2 Catalysts: Cobalt(II) acetylacetonate Solvents: 2,2,2-Trifluoroethanol; 1 h, rt

Experimental Protocols

Co(II)-Catalyzed C-H/N-H Annulation of Cyclic Alkenes with Indole-2-carboxamides at Room Temperature: One-Step Access to β-Carboline-1-one Derivatives

By: Das Adhikari, Gopal Krushna; et al

Journal of Organic Chemistry (2022), 87(6), 4438-4448.

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Scheme 45 (1 Reaction)

31-116-CAS-22543038

Steps: 1 Yield: 90%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

Reagents: Sodium acetate, Water-d2

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 46 (1 Reaction)

31-614-CAS-41879503

Steps: 1 Yield: 90%

Reagents: Propanoic acid, 2,2-dimethyl-, sodium salt (1:1),

Oxygen, Water-d₂

Catalysts: Cobalt(II) acetylacetonate, Eosin Solvents: 2,2,2-Trifluoroethanol; 2 h, 25 °C

Experimental Protocols

Room temperature C-O bond cleavage of vinyl cyclic synthons via a metallaphotoredox approach

By: Keshri, Santosh Kumar; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(79), 11164-11167.

Scheme 47 (1 Reaction)

42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/\)](1-)]

31-614-CAS-37018421

Reagents: Water-d2

Steps: 1 Yield: 90%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-By: Jia, Zongbin; et al

dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) CCS Chemistry (2023), 5(5), 1069-1076. phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-

Solvents: Acetonitrile; 36 h, rt

(N,N-dimethyl-4-pyridinamine-κN¹)cobalt

Experimental Protocols

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Steps: 1 Yield: 90%

Scheme 48 (1 Reaction)

$$\rightarrow \bigvee_{N=0}^{N} \bigvee_$$

Suppliers (3)

31-108-CAS-21805688

Steps: 1 Yield: 90%

Reagents: Silver carbonate, Water- d₂

Catalysts: Tris(2-methoxyphenyl)phosphine, Cobalt iodide (Co

Solvents: 1,2-Dichlorobenzene; 24 h, 130 °C

Cobalt-Catalyzed Regioselective Carboamidation of Alkynes with Imides Enabled by Cleavage of C-N and C-C Bonds

By: Min, Xiang-Ting; et al

Organic Letters (2020), 22(9), 3386-3391.

Scheme 49 (1 Reaction)

> Suppliers (59)

31-116-CAS-20922363

Steps: 1 Yield: 90%

Reagents: Hydrogen peroxide

Catalysts: Cobalt (intercalated molybdenum disulfde)

Solvents: Acetonitrile; 20 min, 40 °C

Reagents: Sodium hydroxide, Water-d₂; 12 h, 90 °C

Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity

By: Chen, Zhongxin; et al

Advanced Materials (Weinheim, Germany) (2020), 32(4), 1906437.

Scheme 50 (1 Reaction)

Suppliers (23)

31-614-CAS-37018510

Steps: 1 Yield: 90%

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/\)](1-)] $(N, N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

Steps: 1 Yield: 89%

Scheme 51 (1 Reaction)

31-116-CAS-22543027

Steps: 1 Yield: 89%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water-*d*₂

📜 Supplier (1)

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 52 (1 Reaction)

31-116-CAS-20922360

Steps: 1 Yield: 89%

1.1 Reagents: Hydrogen peroxide

Catalysts: Cobalt (intercalated molybdenum disulfde)

Solvents: Acetonitrile; 20 min, 40 °C

1.2 Reagents: Sodium hydroxide, Water- d₂; 12 h, 90 °C

Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity

By: Chen, Zhongxin; et al

Advanced Materials (Weinheim, Germany) (2020), 32(4), 1906437.

Scheme 53 (1 Reaction)

31-116-CAS-17804798

Steps: 1 Yield: 89%

Dual cobalt-copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media

By: Call, Arnau; et al

Chemical Science (2017), 8(7), 4739-4749.

1.1 **Reagents:** Triethylamine, Water-*d*₂

Catalysts: Copper(1+), (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline- κN^1 , κN^{10})[1,1'-(9,9-dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine- κP]]-, (*T*-4)-, hexafluoro phosphate(1-) (1:1), Cobalt(1+), [octahydro-1-[(4-methyl phenyl)sulfonyl]-4,7-bis[(2-pyridinyl- κN)methyl]-1*H*-1,4,7-triazonine- κN^1 , κN^4 , κN^7](1,1,1-trifluoromethanesulfonate (1:1) Solvents: Acetonitrile; 5 h, 30 °C

1.2 Solvents: Dichloromethane

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Scheme 54 (1 Reaction)

$$\rightarrow \qquad \stackrel{D}{\longrightarrow} \qquad$$

31-614-CAS-37018449

Steps: 1 Yield: 88%

Reagents: Water-d₂

Suppliers (61)

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/λ)](1-)] $(N,N-dimethyl-4-pyridinamine-κ<math>N^1$)cobalt

Experimental Protocols

Solvents: Acetonitrile; 36 h, rt

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 55 (1 Reaction)

31-116-CAS-22543031

Steps: 1 Yield: 88%

Reagents: Sodium acetate, Water-d2 **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

 $rhodium], Carbonyldiiodo \hbox{$(1,2,3,4,5-\eta)$-1,2,3,4,5-pentamethyl-1,2,5-pentamethyl-1,2,5-pentamethyl-1,2,5-p$

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 56 (1 Reaction)

31-116-CAS-22543017

Steps: 1 Yield: 88%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

Catalysts: Carbonyldiiodo[(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Reagents: Sodium acetate, Water-d2

2,4-cyclopentadien-1-yl]cobalt Solvents: Acetonitrile; 12 h, 90 °C

Scheme 57 (1 Reaction)

Steps: 1 Yield: 88%

31-116-CAS-22543036

Steps: 1 Yield: 88%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 58 (1 Reaction)

Steps: **1** Yield: **88%**

Steps: 1 Yield: 88%

31-116-CAS-22543021

Steps: 1 Yield: 88%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

.1 Reagents: Sodium acetate, Water-d2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 59 (1 Reaction)

_

□ Suppliers (73)

31-116-CAS-6696616

Steps: 1 Yield: 88%

Functionalization of the Benzylic C-H Bonds in Azaarenes by Cobalt-Catalyzed 1,4-Addition to Enones

.1 Reagents: Water- d_2

Catalysts: Cobalt chloride (CoCl₂); 24 h, 140 °C

By: Jamal, Zaini; et al

Experimental Protocols

European Journal of Organic Chemistry (2014), 2014(33), 7343-7346.

Steps: 1 Yield: 88%

Scheme 60 (1 Reaction)

31-614-CAS-37018397

Steps: 1 Yield: 88%

Supplier (1)

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (70)

Solvenes: Accessmente, Se

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Experimental Protocols

Scheme 61 (1 Reaction)

31-116-CAS-22543028

Steps: 1 Yield: 87%

1.1 Reagents: Sodium acetate, Water- d_2 Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 62 (1 Reaction)

Steps: 1 Yield: 86%

Steps: 1 Yield: 87%

Steps: 1 Yield: 86%

Steps: 1 Yield: 86%

Steps: 1 Yield: 85%

31-614-CAS-37018403

Steps: 1 Yield: 86%

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)]

 $(N, N-\text{dimethyl-}4-\text{pyridinamine-}\kappa N^1)$ cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 63 (1 Reaction)

 $CI \longrightarrow CI \longrightarrow D$

31-116-CAS-22543018

Steps: 1 Yield: 86%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

Reagents: Sodium acetate, Water- d_2

 $\textbf{Catalysts:} \ \, \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-1,2,5-pentamethyl-1,2,5-pentamethyl-$

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 64 (1 Reaction)

31-116-CAS-22543014

Steps: 1 Yield: 86%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

.1 Reagents: Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 65 (1 Reaction)

31-116-CAS-22543019

Steps: 1 Yield: 85%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Steps: 1 Yield: 85%

Steps: 1 Yield: 85%

Steps: 1 Yield: 85%

Scheme 66 (1 Reaction)

31-614-CAS-37018457

Steps: 1 Yield: 85%

Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (*N*,*N*-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (13)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 67 (1 Reaction)

31-116-CAS-22543029

Steps: **1** Yield: **85%**

1.1 **Reagents:** Sodium acetate, Water- d_2

 $\label{eq:catalysts:Bis[dichloro[η^5-(pentamethylcyclopentadienyl)]} $$rhodium], $$Carbonyldiiodo[(1,2,3,4,5-$\eta)-1,2,3,4,5-$pentamethyl-$$]$$

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 68 (1 Reaction)

> Suppliers (23)

31-614-CAS-37018412

Steps: 1 Yield: 85%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Steps: 1 Yield: 85%

Scheme 69 (1 Reaction)

31-614-CAS-37018474

Steps: 1 Yield: 85%

Reagents: Water-d₂ Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κΛ)](1-)]

 $(N,N-dimethyl-4-pyridinamine-κ<math>N^1$)cobalt

Solvents: Acetonitrile; 36 h, rt

> Suppliers (12)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 70 (1 Reaction)

31-113-CAS-19002722

Steps: 1 Yield: 85%

Reagents: Potassium tert-butoxide, Tetrabutylammonium bromide, Silicon, Water-d₂

Catalysts: Cobalt diacetate, Triphenylphosphine; 24 h, rt → 100 °C

Experimental Protocols

Application of Silicon-Initiated Water Splitting for the **Reduction of Organic Substrates**

By: Gevorgyan, Ashot; et al

ChemPlusChem (2018), 83(5), 375-382.

Scheme 71 (1 Reaction)

Steps: 1 Yield: 85%

Steps: 1 Yield: 85%

Steps: 1 Yield: 84%

31-614-CAS-37018467

Steps: 1 Yield: 85%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)]

 $(N,N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 72 (1 Reaction)

31-614-CAS-37018438

Steps: 1 Yield: 84%

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (33)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 73 (1 Reaction)

31-116-CAS-22543032

Steps: 1 Yield: 82%

5teps. 1 Held. 0.

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Reagents: Sodium acetate, Water-d2

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 74 (1 Reaction)

Steps: 1 Yield: 82%

Steps: 1 Yield: 82%

Steps: 1 Yield: 82%

Steps: 1 Yield: 81%

31-116-CAS-22543024

Steps: 1 Yield: 82%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 Reagents: Sodium acetate, Water-d2

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 75 (1 Reaction)

31-116-CAS-22543039

Steps: 1 Yield: 82%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 76 (1 Reaction)

—

Suppliers (60)

31-116-CAS-19940441 Steps: **1** Yield: **81%**

1.1 **Reagents:** Water-*d*₂

 $\label{lem:catalysts:} Catalysts: Sodium acetate, Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-$

cyclopentadien-1-yl]cobalt

Supplier (1)

Solvents: 1,2-Dichloroethane; 24 h, 100 °C

Experimental Protocols

Cobalt(III)-Catalyzed Direct ortho-Alkenylation of Arylpyr azoles: A Comparative Study on Decarboxylation and Desily lation

By: Kumar, Anil; et al

European Journal of Organic Chemistry (2019), 2019(16), 2735-2739.

Scheme 77 (1 Reaction)

Steps: 1 Yield: 80%

31-116-CAS-22543012

Steps: 1 Yield: 80%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 Reagents: Sodium acetate, Water-d2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 78 (1 Reaction)

Steps: 1 Yield: 79%

Steps: 1 Yield: 78%

31-116-CAS-22543015

Steps: 1 Yield: 79%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

📜 Supplier (1)

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 79 (1 Reaction)

31-116-CAS-22543026

Steps: 1 Yield: 79%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-ŋ)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 80 (1 Reaction)

31-116-CAS-22543025

Steps: 1 Yield: 78%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 Reagents: Sodium acetate, Water-d2

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 36 h, 25 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Steps: 1 Yield: 77%

Steps: 1 Yield: 77%

Steps: 1 Yield: 77%

Steps: 1 Yield: 77%

Scheme 81 (1 Reaction)

31-116-CAS-22543013

Steps: **1** Yield: **77%**

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 82 (1 Reaction)

31-116-CAS-22543020

Steps: 1 Yield: 77%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 83 (1 Reaction)

31-116-CAS-22543085

Steps: 1 Yield: 77%

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

1.1 **Reagents:** Sodium acetate, Water- d_2

 $\textbf{Catalysts:} \ \, \textbf{Carbonyldiiodo} [(1,2,3,4,5-\eta) - 1,2,3,4,5-pentamethyl-1,2,5-pentamethyl-1,2,5-pentame$

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 84 (1 Reaction)

📜 Suppliers (8)

31-614-CAS-37018418

Steps: 1 Yield: 77%

1.1 **Reagents:** Water-*d*₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)]

 $(N,N-dimethyl-4-pyridinamine-к<math>N^1$)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 85 (1 Reaction) Steps: 1 Yield: 75%

☐ Supplier (1)

31-116-CAS-22543016

Steps: **1** Yield: **75%**

1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Acetonitrile; 12 h, 90 °C

Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

Steps: 1 Yield: 75%

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 86 (1 Reaction)

Suppliers (53)

Double bond geometry shown

31-614-CAS-37018571

Steps: 1 Yield: 75%

1.1 **Reagents:** Water- d_2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 87 (1 Reaction) Steps: 1 Yield: 75%

Steps: 1 Yield: 71%

Steps: 1 Yield: 67%

31-116-CAS-22543023

Steps: 1 Yield: 75%

Reagents: Sodium acetate, Water-d2

Catalysts: Carbonyldiiodo[(1,2,3,4,5-n)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt Solvents: Acetonitrile; 12 h, 90 °C Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange

By: Zhang, Jinquan; et al

ACS Catalysis (2020), 10(14), 7486-7494.

Scheme 88 (1 Reaction)

Absolute stereochemistry shown

31-614-CAS-37018493

Steps: 1 Yield: 71%

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Reagents: Water-d2

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ*N*)](1-)]

 $(N, N-dimethyl-4-pyridinamine-\kappa N^1)$ cobalt

Solvents: Acetonitrile; 36 h, rt

Absolute stereochemistry shown

Experimental Protocols

Scheme 89 (1 Reaction)

31-614-CAS-37018482

Steps: 1 Yield: 67%

Reagents: Water-d₂ 1.1

> Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl-κ*C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato-κ/λ)](1-)] $(N,N-dimethyl-4-pyridinamine-κ<math>N^1$)cobalt

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 90 (1 Reaction)

Steps: 1 Yield: 66%

Steps: 1 Yield: 62%

Steps: 1 Yield: 50%

31-614-CAS-37018574

Steps: 1 Yield: 66%

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κ *N*¹, κ *N*¹']bis[2-(2-pyridinyl- κ *N*) phenyl- κ *C*]-, (*OC*-6-33)-, hexafluorophosphate(1-) (1:1), (*OC*-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κ *N*)](1-)]

 $(\textit{N},\textit{N}\text{-}dimethyl\text{-}4\text{-}pyridinamine\text{-}}\kappa\textit{N}^{1}) cobalt$

Solvents: Acetonitrile; 36 h, rt

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 91 (1 Reaction)

31-614-CAS-37018456

Steps: 1 Yield: 62%

1.1 Reagents: Water-d₂

Catalysts: Diisopropylethylamine, Iridium(1+), [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine- κN^1 , κN^1 ']bis[2-(2-pyridinyl- κN) phenyl- κC]-, (OC-6-33)-, hexafluorophosphate(1-) (1:1), (OC-6-42)-Chlorobis[[1,2-cyclohexanedione 1,2-di(oximato- κN)](1-)] (N,N-dimethyl-4-pyridinamine- κN^1)cobalt

Solvents: Acetonitrile; 36 h, rt

Suppliers (4)

Experimental Protocols

Visible light promoted direct deuteration of alkenes via Co(III)-H mediated H/D exchange

By: Jia, Zongbin; et al

CCS Chemistry (2023), 5(5), 1069-1076.

Scheme 92 (3 Reactions)

31-614-CAS-34408705

Steps: 1 Yield: 50%

Steps: 1

.1 **Reagents:** Acetic acid, Water- d_2 , Silver hexafluoroantimonate **Catalysts:** Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 2 h, 100 °C

Redox-Neutral Synthesis of Polycyclic Azaheter ocycles via Cobalt-Catalyzed Hydroarylation/Annulation of Maleimides

By: He, Yequan; et al

Advanced Synthesis & Catalysis (2022), 364(21), 3730-3735.

Experimental Protocols

31-614-CAS-40246895

1.1 Reagents: Acetic acid, Water- d_2 , Silver hexafluoroantimonate Catalysts: Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 4 h, 100 °C

Experimental Protocols

Cobalt-Catalyzed Annulation of Benzimidates or NH-Benzald imines with Ynamides: Synthesis of 1- Alkoxy- and 1-Alkyl-3-Aminoisoquinolines

By: Sanaa, Hamdi; et al

Advanced Synthesis & Catalysis (2024), 366(11), 2495-2500.

31-614-CAS-41361342

Steps: 1

1.1 Reagents: Water-d₂

Catalysts: Silver triflate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]cobalt Solvents: 1,2-Dichloroethane; 40 min, 110 °C

Experimental Protocols

Redox-neutral access to isoquinolines via cobalt(III)-catalyzed C-H acylmethylation/cyclization of benzimidates with sulfox onium ylides

By: Li, Min; et al

Tetrahedron Letters (2024), 146, 155185.

Scheme 93 (4 Reactions)

> Suppliers (5)

Steps: **1** Yield: **48%**

31-116-CAS-23501735

Steps: **1** Yield: **48%**

1.1 Reagents: Sodium acetate, Water-d2

Catalysts: Silver acetate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]cobalt **Solvents:** 1,2-Dichloroethane; 24 h, rt

Experimental Protocols

Cobalt(III)-catalyzed redox-neutral [4+2]-annulation of N-chlorobenzamides/acrylamides with alkylidenecyclopropanes at room temperature

By: Ramesh, Balu; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(30), 3692-3695.

31-614-CAS-39111138

Steps: 1

-014-CA3-33111136 Steps.

Reagents: Sodium carbonate, Water- d_2 Catalysts: Cobalt(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (\mathcal{OC} -6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 3 h, 40 °C

Experimental Protocols

Co(III)-Catalyzed Regioselective [4+2]-Annulation of N-Chlorobenzamides with Allenes and Vinyl Acetate

By: Chandra, Devesh; et al

Asian Journal of Organic Chemistry (2024), 13(1), e202300536.

31-614-CAS-34278529

Steps: 1

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Silver acetate, Carbonyldiiodo[(1,2,3,4,5-ŋ)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]cobalt **Solvents:** 2,2,2-Trifluoroethanol; 24 h, rt

Chlorobenzamides with Substituted Alkenes

Cobalt(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-

By: Yadav, Suresh Kumar; et al

Journal of Organic Chemistry (2022), 87(19), 13073-13088.

31-116-CAS-19754456

Steps: 1

1.1 **Reagents:** Sodium acetate, Water- d_2

Catalysts: Silver acetate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]cobalt **Solvents:** 1,2-Dichloroethane; 24 h, rt

Experimental Protocols

Cobalt(III)-Catalyzed [4 + 2] Annulation of N- Chlorobe nzamides with Maleimides

By: Muniraj, Nachimuthu; et al

Organic Letters (2019), 21(4), 1068-1072.

Scheme 94 (1 Reaction)

Steps: 1 Yield: 15%

Steps: 1 Yield: 5%

Steps: 1 Yield: 5%

Steps: 1

31-116-CAS-19350187 Steps: **1** Yield: **15%**

1.1 Reagents: tert-Butyl peroxide, Sodium acetate, Water- d₂

Catalysts: Cobalt dibromide Solvents: Toluene; 3 h, 130 °C

Experimental Protocols

Cobalt-Catalyzed Direct C-H Thiolation of Aromatic Amides with Disulfides: Application to the Synthesis of Quetiapine

By: Li, Mingliang; et al

Organic Letters (2018), 20(20), 6490-6493.

Scheme 95 (1 Reaction)

31-614-CAS-37644015

.1 **Reagents:** Oxygen, Water- d_2

Catalysts: Cobalt acetate tetrahydrate, 2-[(4*S*)-4,5-Dihydro-4-

phenyl-2-oxazolyl]-4,6-bis(1,1-dimethylethyl)phenol

Solvents: 1,4-Dioxane; 6 h, 80 °C

Experimental Protocols

Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks

By: Li, Tong; et al

Nature Communications (2023), 14(1), 5271.

Scheme 96 (2 Reactions)

31-614-CAS-35333340

Steps: 1 Yield: 5%

Steps: 1 Yield: 5%

1.1 **Reagents:** Cupric acetate, Water- d_2

Catalysts: Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3, 4,5-n)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 2,2,2-Trifluoroethanol; 5 h, 100 °C

Weakly Coordinating, Ketone-Directed Cp*Co(III)-Catalyzed C-H Allylation on Arenes and Indoles

By: Sk, Raja Md; et al

Organic Letters (2018), 20(1), 134-137.

Experimental Protocols

31-116-CAS-19821655 Steps: 1

1.1 **Reagents:** Water- d_2

Catalysts: Cupric acetate, Silver hexafluoroantimonate, Carbonyldiiodo[$(1,2,3,4,5-\eta)-1,2,3,4,5$ -pentamethyl-2,4-

cyclopentadien-1-yl]cobalt

Solvents: 2,2,2-Trifluoroethanol; 24 h, 90 °C

Experimental Protocols

Cp*Co(III)-Catalyzed C-H Alkenylation of Aromatic Ketones with Alkenes

By: Sk, Raja Md; et al

Advanced Synthesis & Catalysis (2019), 361(3), 585-590.

Double bond geometry shown

Double bond geometry shown

31-116-CAS-23305670

Steps: 1

Reagents: Potassium acetate, Water- d₂ Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]methanesulfonamidato-κ*O*]silver Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 30 min, 120 °C Redox-Neutral Cobalt(III)-Catalyzed C-H Activation/Annulation of α,β -Unsaturated Oxime Ether with Alkyne: One- Step Access to Multisubstituted Pyridine

By: Mohanty, Smruti Ranjan; et al

Journal of Organic Chemistry (2021), 86(1), 1074-1083.

Scheme 98 (1 Reaction)

Steps: 1

➤ Suppliers (93)

31-614-CAS-29790606

Steps: 1

1.1 Reagents: Cupric acetate

Catalysts: Cobalt(1+), (acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl][2-(2-pyridinyl-κN)

phenyl-κ*C*]-, tetrafluoroborate(1-) (1:1) **Solvents:** Dichloromethane-*d*₂, Water-*d*₂; 6 h, rt

Experimental Protocols

Capturing Elusive Cobaltacycle Intermediates: A Real-Time Snapshot of the Cp*Co^{III}-Catalyzed Oxidative Alkyne Annulation

By: Sanjose-Orduna, Jesus; et al

Angewandte Chemie, International Edition (2017), 56(40), 12137-12141.

Scheme 99 (1 Reaction)

Steps: 1

📜 Suppliers (93)

Supplier (1)

31-116-CAS-23707005

Steps: 1

Cobalt-Catalyzed C-H Allylation of Arenes with Allylic Amines

1.1 Reagents: Silver acetate, Silver trifluoroacetate, Water-*d*₂ Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt

Solvents: 1,1,2,2,2-Pentafluoroethanol; 2 h, 75 °C

By: Yan, Rui; et al

Chinese Journal of Chemistry (2021), 39(5), 1205-1210.

Experimental Protocols

Scheme 100 (1 Reaction)

Steps: **1**

> Suppliers (2)

31-614-CAS-36994796

Steps: 1

1.1 **Reagents:** Pivalic acid, Oxygen, Water- d₂

Catalysts: Cobalt diacetate, 2-[(4*S*)-4,5-Dihydro-4-phenyl-2-

oxazolyl]-4,6-bis(1,1-dimethylethyl)phenol

Solvents: 1,1,2,2-Tetrachloroethane; 5 h, 100 °C; 100 °C → rt

1.2 Reagents: Sodium bicarbonate

Solvents: Water; rt

Experimental Protocols

Cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes or alkynes: facile access to C-N axially chiral sultams

By: Si, Xiao-Ju; et al

Chemical Science (2023), 14(26), 7291-7303.

Scheme 101 (1 Reaction)

Steps: 1

31-116-CAS-18664237

Steps: 1

1.1 Reagents: Zinc acetate, Water- d₂

Catalysts: Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt, [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl- κ *O*]methanesulfonamidato- κ *O*]silver

Solvents: 1,2-Dichloroethane; 12 h, 40 °C

Experimental Protocols

Cp*Co(III)-catalyzed amidation of olefinic and aryl C-H bonds: highly selective synthesis of enamides and pyrimidones

By: Liu, Yuan; et al

Chemical Communications (Cambridge, United Kingdom) (2018), 54(34), 4345-4348.

Scheme 102 (2 Reactions)

Steps: 1

31-116-CAS-20816928

Steps: 1

Steps: 1

Cp*Co(III)-Catalyzed Regioselective C2-Amidation of Indoles Using Acyl Azides

By: Shah, Tariq A.; et al

Journal of Organic Chemistry (2019), 84(24), 16278-16285.

1.1 **Reagents:** Benzoyl azide, Cesium acetate, Water- *d*₂

Catalysts: Dicarbonyl(η⁵-cyclopentadienyl)cobalt, Silver

hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 12 h, 70 °C

Experimental Protocols

31-116-CAS-682187

.1 Reagents: Potassium carbonate, Water- d₂
Catalysts: Silver hexafluoroantimonate, Di-μ-iododiiodobis[(1, 2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]

dicobalt

Solvents: 2,2,2-Trifluoroethanol; 18 h, 80 °C

Experimental Protocols

Cobalt(III)-Catalyzed C-H Alkynylation with Bromoalkynes under Mild Conditions

By: Sauermann, Nicolas; et al

Organic Letters (2015), 17(21), 5316-5319.

Steps: 1

Steps: 1

Scheme 103 (1 Reaction)

➤ Suppliers (59)

31-614-CAS-26744478

1.1 **Reagents:** Water-*d*₂

 $\label{lem:catalysts:} Catalysts: Silver\ hexafluoroantimonate,\ Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl] cobalt$

Solvents: 2,2,2-Trifluoroethanol; 12 h, 25 °C

Experimental Protocols

Steps: 1

Co(III)-Catalyzed stereospecific synthesis of (E)-homoallylic alcohols with 4-vinyl-1,3-dioxan-2-ones: late-stage C-H homoallylation of indole derivatives

By: Hu, Hong; et al

Organic Chemistry Frontiers (2021), 8(16), 4459-4465.

Scheme 104 (1 Reaction)

31-116-CAS-21776560

1.1 Reagents: Pivalic acid, Silver acetate, Water- d₂

Catalysts: Cobalt diacetate

Solvents: 2,2,2-Trifluoroethanol; 6 h, 110 °C

Experimental Protocols

Steps: 1

Development of a Traceless Directing Group: Cp*- Free Cobalt-Catalyzed C-H Activation/Annulations to Access Isoquino linones

By: Liu, Minghui; et al

Journal of Organic Chemistry (2020), 85(6), 4067-4078.

Scheme 105 (1 Reaction)

Double bond geometry shown

31-116-CAS-23232454

Steps: 1

1.1 Reagents: Acetic acid, Oxygen, Water- d₂ Catalysts: Cobalt(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,4-Dioxane; 12 h, rt

Experimental Protocols

Thiocarbamate-directed Cp*Co(III)-Catalyzed Olefinic C-H Amidation: Facile Access to Enamines with High (Z)-Selectivity

By: Liang, Ya-Ru; et al

European Journal of Organic Chemistry (2021), 2021(4), 694-700.

Steps: 1

Steps: 1

Scheme 106 (1 Reaction)

31-614-CAS-37555458

Reagents: Silver acetate, Water-d2 Catalysts: Cobalt diacetate

Solvents: Dimethyl sulfoxide; 1 h, 40 °C; 40 °C → rt

Reagents: Water; rt

Experimental Protocols

Steps: 1

Silver-Mediated [2+2+1] Cyclization of ortho-Propioloylbenzon itriles with Elemental Selenium: Synthesis of 4 H-indeno[1,2-c] [1,2]selenazol-4-ones

By: Fei, Nana; et al

Journal of Organic Chemistry (2023), 88(18), 13042-13048.

Scheme 107 (1 Reaction)

31-614-CAS-39300315

Steps: 1

Reagents: Silver carbonate, Methanol- d_4 , Water- d_2 Catalysts: Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt Solvents: Dichloromethane; 12 h, 80 °C

Experimental Protocols

Weak-Chelation Assisted Regioselective Indole C(4)-Alkyny lation via Six-Membered Cobaltacycle Intermediate

By: Joshi, Sofaya; et al

Advanced Synthesis & Catalysis (2024), 366(6), 1341-1347.

Scheme 108 (1 Reaction)

Suppliers (25)

31-116-CAS-23193141

Steps: 1

Reagents: tert-Butyl hydroperoxide, Water-d2

Catalysts: Cobalt(II) acetylacetonate

Solvents: 1,2-Dichloroethane, Water; 10 h, rt

Experimental Protocols

Directed Cobalt-Catalyzed C-H Activation to Form C-C and C-O Bonds in One Pot via Three-Component Coupling

By: Li, Meng-Hui; et al

Organic Letters (2021), 23(3), 914-919.

Scheme 109 (1 Reaction)

Steps: 1

$$\xrightarrow{N}$$

📜 Suppliers (25)

31-614-CAS-35963628

Steps: 1

1.1 **Reagents:** Manganese triacetate, Propanoic acid, 2,2-dimethyl-, sodium salt (1:1), Water-*d*₂

Catalysts: Cobalt diacetate, 1-Naphthalenol, 2-[(4*S*)-4,5-

dihydro-4-phenyl-2-oxazolyl]-

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 10 min, 60 °C; 60 $\,$

 $^{\circ}C \to rt$

Experimental Protocols

Cobalt-Catalyzed Enantioselective C-H Annulation with Alkenes

By: Yang, Dandan; et al

ACS Catalysis (2023), 13(7), 4250-4260.

Scheme 110 (1 Reaction)

➤ Suppliers (83)

31-614-CAS-43338286

Steps: 1

1.1 Reagents: Cupric acetate, Water- d_2 , [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl- κO] methanesulfonamidato- κO] silver

Catalysts: Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]cobalt **Solvents:** Toluene; 20 h, 130 °C

Experimental Protocols

Deciphering Co(III)-Catalyzed Oxidative C-H/C-H Annulation Towards Maleimide-Fused Imidazopyridine AEEgens

By: Ghosh, Subhendu; et al

Chemistry - A European Journal (2025), 31(5), e202403576.

Scheme 111 (1 Reaction)

Steps: 1

Steps: 1

31-614-CAS-36924168

Steps: 1

1.1 **Reagents:** Cupric acetate, Water- d_2

 $\label{lem:catalysts:} Catalysts: Silver\ hexafluoroantimonate,\ Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl] cobalt$

Solvents: 1,2-Dichlorobenzene; 30 h, 80 °C

Experimental Protocols

Uncovering the Reactivity of Cobalt-Catalyst Towards Regiose lective Hydroarylation of 1,6-Diyne via Weak-Chelation Assisted C-H Bond Activation

By: Kumar Banjare, Shyam; et al

Advanced Synthesis & Catalysis (2023), 365(12), 1977-1982.

Steps: 1

Steps: 1

Scheme 112 (1 Reaction)

31-614-CAS-24449373

Steps: 1

Cobalt-Catalyzed Vinylic C-H Addition to Formaldehyde: Synthesis of Butenolides from Acrylic Acids and HCHO

1.1 **Reagents:** Sodium acetate, Water- d_2

📜 Suppliers (95)

Catalysts: Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 1 h, 110 °C

By: Yu, Shuling; et al

Organic Letters (2021), 23(21), 8359-8364.

Experimental Protocols

Scheme 113 (1 Reaction)

□ Suppliers (4)

31-614-CAS-38608633

1.1 **Reagents:** Water-*d*₂

Catalysts: Sodium acetate, Silver hexafluoroantimonate, Carbonyldiiodo[$(1,2,3,4,5-\eta)$ -1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 20 min, 130 °C; 24 h, 130 °C

Experimental Protocols

Steps: 1 Annu

Annulative π -Extension by Cp*Co(III)-Catalyzed Ketone-Directed peri-Annulation: An Approach to Access Fused Arenes

By: Bhattacharyya, Arya; et al

Organic Letters (2023), 25(48), 8622-8627.

Scheme 114 (1 Reaction)

31-614-CAS-37136105

Steps: 1

1.1 **Reagents:** Oxygen, Water- d₂

Catalysts: Benzoic acid, cobalt(2+) salt (2:1), Phenol, 2-[(4S)-4,

5-dihydro-4-phenyl-2-oxazolyl]-4-methoxy-Solvents: Cyclopentyl methyl ether; 7 h, 100 °C C-N Axially Chiral Hetero biaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation

By: Li, Tong; et al

Organic Letters (2023), 25(28), 5191-5196.

Steps: 1 Yield: 55%

Steps: 1 Yield: 53%

Scheme 115 (1 Reaction)

📜 Suppliers (8)

📜 Suppliers (96)

Steps: 1 Yield: 55%

31-116-CAS-18747685

Reagents: Potassium acetate, Tetrabutylammonium

hexafluorophosphate Catalysts: Cobalt diacetate

Solvents: y-Valerolactone, Water- d₂; 15 h, 40 °C

Experimental Protocols

Electrochemical C-H Amination by Cobalt Catalysis in a Renewable Solvent

By: Sauermann, Nicolas; et al

Angewandte Chemie, International Edition (2018), 57(18), 5090-5094.

Scheme 116 (1 Reaction)

Suppliers (59)

📜 Suppliers (50)

31-085-CAS-10592122

Steps: 1 Yield: 53%

Reagents: Water-d₂

Catalysts: Potassium acetate, Silver hexafluoroantimonate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-

cyclopentadien-1-yl]cobalt

Suppliers (3)

Solvents: 1,2-Dichloroethane; 16 h, 80 °C

Reagents: Ammonium chloride

Solvents: Water; rt

Cobalt(III)-Catalyzed Allylation with Allyl Acetates by C- H/C-O Cleavage

By: Moselage, Marc; et al

Synlett (2015), 26(11), 1596-1600.

Steps: 1 Yield: 51%

Steps: 1 Yield: 49%

Scheme 117 (1 Reaction)

Double bond geometry shown

> Supplier (1)

Suppliers (88)

Steps: 1 Yield: 51%

Double bond geometry shown

31-116-CAS-11331530

1.1 **Reagents:** Oxygen, Water- d₂

 $\label{lem:catalysts:} \textbf{Catalysts:} \ \ \textbf{Sodium acetate, Silver hexafluoroantimonate, } \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-} \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-]} \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-]} \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-]} \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-]} \\ \textbf{Carbonyldiiodo[(1,2,3,4,5-\eta)-1,2,3,4,5-pentamethyl-2,4-pentame$

cyclopentadien-1-yl]cobalt

Solvents: 1,2-Dichloroethane; 15 min, 120 °C

Experimental Protocols

Cobalt(III)-Catalyzed C-H/N-O Functionalizations: Isohypsic Access to Isoquinolines

By: Wang, Hui; et al

Chemistry - A European Journal (2015), 21(44), 15525-15528.

Scheme 118 (1 Reaction)

➤ Suppliers (81)

Suppliers (410)

Steps: 1 Yield: 49%

☐ Suppliers (7)

31-116-CAS-18958403

.1 Reagents: tert-Butyl hydroperoxide, Water-d₂

Catalysts: Cobalt (mesoporous zeolite ETS-10 supported)

Solvents: Decane; 2 h, 100 °C

Experimental Protocols

Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers

By: Yang, Ke; et al

RSC Advances (2018), 8(25), 13671-13674.

Steps: 1 Yield: 38%

Scheme 119 (1 Reaction)

CI + CI + CI +

> Suppliers (5)

D H CI

Suppliers (5)

31-116-CAS-23496288

Reagents: Sodium acetate, Water- d₂
 Catalysts: Silver acetate, Carbonyldiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt
 Solvents: 1,2-Dichloroethane; 24 h, rt

Experimental Protocols

Steps: 1 Yield: 38%

Cobalt(III)-catalyzed redox-neutral [4+2]-annulation of N-chlorobenzamides/acrylamides with alkylidenecyclopropanes at room temperature

By: Ramesh, Balu; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(30), 3692-3695.

Scheme 120 (1 Reaction)

31-116-CAS-18983599

Steps: 1

1.1 **Reagents:** Water-*d*₂

Catalysts: Trifluoroacetic acid, Cobalt(II) acetylacetonate,

Silver oxide (Ag₂O)

Solvents: 1,2-Dichloroethane; 16 h, 60 °C

Experimental Protocols

Cobalt(II)-catalyzed regioselective C-H halogenation of anilides

By: Li, Ze-lin; et al

Organic & Biomolecular Chemistry (2018), 16(30), 5433-5440.

Steps: 1

Scheme 121 (1 Reaction)

+

➤ Suppliers (36)

☐ Suppliers (116)

Steps: 1

31-614-CAS-27891237

Reagents: Sodium acetate, Water- d₂, Silver oxide (Ag₂O)
 Catalysts: Pivalic acid, Silver hexafluoroantimonate, Carbony Idiiodo[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt
 Solvents: 1,2-Dichloroethane; 2 h, 110 °C

Experimental Protocols

Cobalt-catalyzed cross-dehydrogenative coupling between N-(2-pyridyl) and free indoles for the synthesis of unsymme trical 2,2'-biindoles

By: Li, Ting; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(3), 353-356.

Scheme 122 (1 Reaction)

> Suppliers (3)

N

Suppliers (4)

Suppliers (2)

+

31-614-CAS-25366567

1.1 **Reagents:** Zinc acetate, Water- d_2

Catalysts: Carbonyldiiodo[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]cobalt, [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl- κ O]methanesulfonamidato- κ O]silver Solvents: 1,2-Dichloroethane; 12 h, 110 °C

Experimental Protocols

Steps: 1

Cp*Co(III)-catalyzed amidation of olefinic and aryl C-H bonds: highly selective synthesis of enamides and pyrimidones

By: Liu, Yuan; et al

Chemical Communications (Cambridge, United Kingdom) (2018), 54(34), 4345-4348.

Steps: 1 Yield: 40%

Scheme 123 (1 Reaction)

→ ()

☐ Suppliers (13)

Double bond geometry shown

Double bond geometry shown

31-116-CAS-16109878

Steps: 1 Yield: 40%

1.1 **Reagents:** Oxygen, Water- d₂

 $\textbf{Catalysts:} \ \, \textbf{Cupric acetate, Carbonyl} \\ (\eta^5\text{-2,4-cyclopentadien-1-yl})$

diiodocobalt

Solvents: Toluene; 5 h, 100 °C

Experimental Protocols

Cobalt(III) Catalyzed Intramolecular Cross-Dehydrogenative C-H/X-H Coupling: Efficient Synthesis of Indoles and Benzof urans

By: Ghorai, Jayanta; et al

Chemistry - A European Journal (2016), 22(45), 16042-16046.

Scheme 124 (1 Reaction)

➤ Suppliers (85)

> Suppliers (70)

31-084-CAS-18983600

Steps: 1

Cobalt(II)-catalyzed regioselective C-H halogenation of anilides

1.1 **Reagents:** *N*-Bromosuccinimide, Water-*d*₂

Catalysts: Trifluoroacetic acid, Cobalt(II) acetylacetonate,

Silver oxide (Ag₂O)

Solvents: 1,2-Dichloroethane; 16 h, 60 °C

Experimental Protocols

By: Li, Ze-lin; et al

Organic & Biomolecular Chemistry (2018), 16(30), 5433-5440.