تمرين اول الگوريتم

- 1. Answer to the five mentioned questions for the following problems:
 - a. Bubble Sort
 - b. Sequential Search
 - c. Binary Search
- 2. Let $p_{i=0}(n) = \sum_{d = 0} a_i n_i$, where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties:

```
a. If k \ge d, then p(n) = O(n^k).
```

b. If
$$k \le d$$
, then $p(n) = \Omega(n^k)$.

c. If
$$k = d$$
, then $p(n) = \Theta(n^k)$.

3. Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures:

a.
$$f(n) + g(n) = \Theta(\min(f(n),g(n)))$$
.

b.
$$f(n) = O(g(n))$$
 implies $2^{h} f(n) = O(2^{h} g(n))$.

c.
$$max(f(n),g(n)) = \Theta(f(n) + g(n))$$
.

d. Either
$$f(n) = O(g(n))$$
 or $f(n) = \Omega(g(n))$ holds.

4. Solve the following recurrence equations:

a.
$$T(n) = T(n/2) + 1$$
.

b.
$$T(n) = 4T(n/2) + n^3$$
.

c.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

d.
$$T(n) = 3T(n/2) + nlog(n)$$
.

e.
$$T(n) = 2T(n/2) + n/\log(n)$$
.

f.
$$T(n) = 4T(n/2) + n^3$$
.

g.
$$T(n) = T(\sqrt{n}) + 1$$
.

h.
$$T(n) = T(n-1) + 1/n$$

- 5. Suppose that S_n = {1,2,3,···,n}. An involution over the set S_n is a permutation π: S_n '→S_n of order at most 2 (i.e. 1 ≤ ⋈≤n, π^2(i) = i). Derive a recurrence equation to count the number of involution for a set of size n and then try to solve it using Generating Functions.
- 6. Try to obtain a closed form for the following recurrence equation:

1 if
$$n \le 2$$

 $p_n = 2$ if $n = 3$
 $p_{n-1} + (n-1)p_{n-2} - p_{n-3} + p_{n-4}$ if $n \ge 4$.

7. Try to solve the Fast Multiplication by dividing each number into three parts and analyze it.

	the details of Ma			matrix is		
9. Draw most eleme	a comparison tre six comparisons ents	e for five elemen are enough to fin	its and then sho id the median c	ow that at of five		
10. Try to inste	o solve the select p ad of 5. The analyz	roblem where each e you algorithm.	າ group contains	j elements,		