05: Managing Risks and Uncertainty

Software Project Management
Philippe Kruchten

Jan. 2014

Copyright © 2005-14 by KESL

Module Outline

- Failure & success
- · Uncertainty & risks
- · Risk exposure
- Sources of risk in software projects
- · Basic risk management strategies
- · Iterative lifecycle, as risk mitigation
- · Standards & tools

Inc. 2014

Copyright © 2005-14 by KESL

Risk and uncertainty Product Intent Time Time Value Risk Value Risk People Time Time Quality Quality Risk Risk Cost Cost Copyright © 2005-14 by KES

Success

- Success is meeting the entire set of all requirements and constraints held as project expectations by those in power. (RUP)
- Success vs. failure
 - degrees of success or failure

Jan. 2014

Copyright © 2005-14 by KESL

Uncertainty

- A state of the project that may have many different outcomes, answers, values... currently unknown
- Each outcome may have a probability of occurrence
 - There is a 60% chance that the number of users will be more than 1,000, and a 10% chance that we'll have more than 10,000, and about 0% chance that we'll have more than 1 billion
- Software projects tend to have more more uncertainties than other type of projects.

Jan. 2014

Copyright © 2005-14 by KESL

 Attendre d'en savoir assez pour agir en toute lumière, c'est se condamner à l'inaction.
 Waiting to know enough to act in full light is to condemn oneself to permanent inaction.

Jean Rostand, French biologist, 1967

Jan. 2014

Copyright © 2005-14 by KESL

Risk Defined

- Risk: the possibility of a loss or injury (Webster)
- Risk is the possibility of suffering loss (SEI)
- A risk is an ongoing or impending concern that has a significant probability of adversely affecting the success of major milestones (RUP)

Inc. 2014

Copyright © 2005-14 by KESL

Risk Defined (cont.)

- Risk: The likelihood of an event, hazard, threat, or situation occurring and its undesirable consequences; a potential problem (IEEE Std 1540).
- A risk is whatever may stand in our way to success, and is currently unknown or uncertain.

Jan. 2014

Copyright © 2005-14 by KESL

Success and Failure: Chaos Report 2003

- Success: 34% (was 16% in 1994)
 - On time, on budget, with expected functionality
- Failure: 16% (was 31% in 1994)
 - Cancelled somewhere along the lifecycle, etc...
- "Challenged" projects: 51%
 - cost and schedule overrun, reduced functionality,
 - "restarts" is often the cause

Source: Standish Group

Jan. 201

Copyright © 2005-14 by KESL

Risk Exposure

Risk exposure (R)

= Probability (R) x Impact (R)

Jan. 2014

Copyright © 2005-14 by KESL

Example

Risk	Risk Probability		Exposure	
Late by a week	10%	\$187,000	\$18,700	
Show-stopper bug in User-Interface	30%	\$200,000	\$60,000	
John leaves	2%	\$500,000	\$10,000	
etc.				
		Total exposure:	\$88,700	

Jan. 2014

Copyright © 2005-14 by KESL

Risk Management

"The readiness is all."
- Hamlet V:ii:215

- Risk Assessment
 - Risk identification
 - Risk analysis
 - Risk prioritization
- Risk Control
 - Risk monitoring ("top 10 risks")
 - Risk planning: avoidance, transfer, reduction
 - Risk resolution
 - $\bullet \ \ prototypes, simulations, analyses, expertise, ...$

Jan. 201

Copyright © 2005-14 by KESL

Direct or Indirect Risks

- Direct risk: project has a large degree of control
 - Examples:
 - · Wrong workload estimates
 - · Poor quality
- Indirect risk: project has little or no degree control
 - Examples:
 - · Loss of personnel
 - · New competitor on the market

Jan. 2014

Copyright © 2005-14 by KESL

Risk Identification

- Produce and maintain a list of risks specific to the project
- Start from know lists and taxonomies:
 - SEI, Caper Jones's book
 - Brainstorming sessions:
 - scenarios about what can go wrong
 - no finger pointing, don't shoot the messenger!
 - no attempt to fix anything

Jan. 201

Copyright © 2005-14 by KESL

Examples of "Unsatisfactory Outcome"

- · Budget and cost overrun
- Product with the wrong functionality or incomplete
- User-interface shortfalls
- Performance shortfalls
- · Lack of reliability
- · Software impossible to evolve or maintain
- Shortcomings: Management or Technical?

Jan. 2014

Copyright © 2005-14 by KESL

Risk Analysis

- What is affected, what is the cause?
- · One or many risks?
- Determine Exposure
- Quantitative (\$\$\$) ? or qualitative?
 - make it simple and effective
 - Impact: low, medium, high (or 1 to 5)
 - Probability: a percentage (or 1 to 5)

Jan. 2014

Copyright © 2005-14 by KESL

Prioritize Risks

- You can't tackle everything!
- Put aside the ones you will have to live with
- Bring out a list of the "top ten"
- Make it visible to all involved (external stakeholders and upper management included)

Jan. 2014

Copyright © 2005-14 by KESL

Example of a Starting List

- 1. Goals not defined properly
- 2. Goals defined, but changes out of control
- 3. No proper planning
- 4. No leadership
- 5. OK plan, but lack resources to match
- 6. No contingency in plan
- 7. Expectations not properly managed
- 8. Progress not monitored properly
- 9. No reporting
- 10. Naïve view of fixing problems (e.g.: "add more resources")

Ian 2014

Copyright © 2005-14 by KESL

Example of Actual Risks

Risk	Prob	Imp.	Exp	Actions	Warning signs
Burnout	3	3	9		
Scope creep	1	3	3		
Bad mngmt	2	3	6		
People leave	3	3	9		
Late subcontract	2	2	4		
Charles leaves	1	3	3		
etc.					
	Copyrig	ht © 2005-14 by	KESL SC	aurce: O'Connell 20	01 21

Risk Treatment

What do we do with the risks?

- Risk acceptance: live with it!
- Risk avoidance: reorganize to eliminate the risk
- Risk contingency: Develop a "plan B"
- Risk mitigation: reduce the probability or the impact
- Risk transfer: push the risk onto another stakeholder

Jan. 201

Copyright © 2005-14 by KESL

Example of actual risks (continued)

Risk	Р	I	Е	Actions	Warning signs
Burnout	3	3	9	??	absences
Scope Creep	1	3	3		
Bad mngmt	2	3	6		delays
People leave	3	3	9	incentives	resumes
Late subcontrac	2	2	4	Xfer >John	delays
Charles leaves	1	3	3	incentive	resignation
Infeasibility	1	3	3		
		Copyright	© 2005	-14 by KESL	23

Risk Management: A Continuous Activity

- · New risks pop up
- · Impact & likelihood vary
- Update, then sort the list
 - tip: Use an Excel spreadsheet
- Make risk a global concern
 - Publish weekly "top ten"
 - Do something about them (where possible)
- Encourage risk identification
 - No "instant punishment" on the discoverer

Jan. 201

Copyright © 2005-14 by KESL

Risk Management: State of Practice

- 20% of organization claim doing it
- 10% are really doing more than risk identification and then problem management
- Issue: is the payoff worth the effort?

n. 2014 Copyright © 2005-14 by KESL

Standard on Risk Management

- IEEE standard 1540: 2001
 Leads to a rather heavy processes
- ISO guide 73:2009 Risk Management-Vocabulary
- ISO 31000:2009 Principles and Guidelines for Risk Management

. 2014 Copyright © 2005-14 by KESL

Risk Management Tools

- Spreadsheet (e.g., Excel)
- CS Solutions has a MS Project add-on for schedule-related risks
 - www.cs-solutions.com/riskplus.htm

Jan. 2014 Copyright © 2005-14 by KESL 28

Activity: Evaluate Risk

Steps:

- · Identify Potential Risks
- Analyze and Prioritize Risks
- Identify Risk Avoidance Strategies
- · Identify Risk Mitigation Strategies
- Identify Risk Contingency Strategies
- · Revisit Risks during the Iteration
- Revisit Risks at the End of an Iteration

Ian 2014

Copyright © 2005-14 by KESL

Summary: Risks

- Develop and maintain throughout the project a list of risk
 - Define a simple rule for sorting them
- Re-assess weekly risk exposure
- · Publicize widely top ten direct risks
- Make sure something is being done about the top ten risks (at least)

Quote: If you don't actively attack the risks, they will actively attack you. (Tom Gilb)

Jan. 2014

Copyright © 2005-14 by KESL

More on Risk: Threats & Opportunities

- Risk: uncertain event or situation that affects project *negatively*
- What about opportunities? Uncertain events that affect the project *positively*?
- Risk list = threats + opportunities ?

Jan. 201

Copyright © 2005-14 by KESL

Taking risk?

- Tolerance threshold
- Allow small failures
- "Better safe than sorry" or
- "No pain, no gain"

Jan. 2014

Copyright © 2005-14 by KESL

Module Outline

- Failure, success and risks
- Risk management
- · Waterfall lifecycle
- · Iterative lifecycle

Jan. 2014

Copyright © 2005-14 by KESL

Pros and Cons of the Waterfall:

- Pros
 - Used in other disciplines
 - Well-established
 - Rigorous and rational
 - Minimize waste
- Cons
- Needs very mature organizations and process
- Relies on analysis of intermediate artifacts
- Assumes stable environment and stable requirements
- Leaves little room for learning
- and its "feedback loop" too limited (or too long)

i. 2014 Copyright © 2005-14 by KESL

More Cons

- An initial design will likely be flawed with respect to its key requirements
- 50% of time and effort spent in Final integration and test
- Late discovery of design defects results in costly over-runs and/or project cancellation
- The time and money spent implementing a faulty design are not recoverable

2014 Copyright © 2005-14 by KESL 41

Limits of the Waterfall Lifecycle

Can't do well:

- Projects with short time-frame
- Projects with lots of unknowns
 - requirements
 - technology
- · Projects with lots of "new" stuff
 - People, language, domain, etc..
- · Large project....

Jan. 2014 Copyright © 2005-14 by KESL 43

Iterative Development Quote: "Plan to throw one away; you will anyhow." (Fred Brooks, the Mythical Man Month, 1975) • Design a little, build a little, test a little • Supported by efficient software development environments • "Several waterfall one after another" ???

More Examples

- DSDM
- · All Agile Methods
 - XP
 - Scrum
 - Crystal
 - Lean Development
- Iterative development acknowledged by major standards
 - Upcoming PMBOK extension for softwre

Jan. 2014

Copyright © 2005-14 by KESL

Impact on Software Project Management

- · More work for the manager
 - more planning
- · Best way to do active Risk Management
- · More predictability in outcome
 - Including earlier opportunity for cancellation
- Greater quality (?)
- Tighter feedback loop
 - requirements, design, process, people,

Jan. 2014

Copyright © 2005-14 by KESL

Summary: Iterative Lifecycle

- Traditional Waterfall Lifecycle not too successful with software-intensive projects
- Iterative Development emerged as an alternative in the late 1980's
 - facilitates risk management
 - provides tighter, shorter feedback loop
 - allows for tactical adjustments:
 - requirements
 - engineering (design, technologies, tool support)
 - process, people, budget, etc...

Jan. 2014

Copyright © 2005-14 by KESL

Summary: Risks

- Develop and maintain throughout the project a list of risk
 - Define a simple rule for sorting them
- Re-assess weekly your risk exposure
- · Expose widely the top ten direct risks
- Make sure something is being done about the top ten risks (at least)

Quote: If you don't actively attack the risks, they will actively attack you. (Tom Gilb)

Jan. 2014

Copyright © 2005-14 by KESL