

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t),t>0
1	1	$\delta(t)$
2	$\frac{1}{s}$	1 ou u(t)
3	$\frac{1}{s^2}$	t
4	$\frac{1}{s^n}, n=1,2,\dots$	$\frac{t^{n-1}}{(n-1)!}$
5	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi t}}$
6	$\frac{1}{s^{3/2}}$	$2\sqrt{\frac{t}{\pi}}$
		$\frac{t^{k-1}}{\Gamma(k)}$
8	$\frac{1}{s-a}$	e^{at}
9	$\frac{1}{(s-a)^2}$	te ^{at}
10	$\frac{1}{(s-a)^n}, n=1,2,\dots$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
11	$\frac{1}{(s-a)^k}, k>0$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$ $\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
	$\frac{1}{(s-a)(s-b)}, a \neq b$	$\frac{1}{(a-b)}(e^{at}-e^{bt})$
13	$\frac{s}{(s-a)(s-b)}, a \neq b$	$\frac{1}{(a-b)}(ae^{at}-be^{bt})$
14	$\frac{1}{s^2+\omega^2}$	$\frac{1}{\omega}\sin\omega t$
15	$\frac{s}{s^2 + \omega^2}$	cos ωt
16	$\frac{1}{s^2-a^2}$	$\frac{1}{a}\sinh at$
17	$\frac{s}{s^2 - a^2}$	cosh at
18	$\frac{1}{(s-a)^2+\omega^2}$	$\frac{1}{\omega}e^{at}\sin\omega t$
19	$\frac{s-a}{(s-a)^2+\omega^2}$	$e^{at}\cos\omega t$

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t),t>0
20	$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$
21	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^3}(\omega t - \sin \omega t)$
22	$\frac{1}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega^3}(\sin\omega t - \omega t \cos\omega t)$
23	$\frac{s}{(s^2+\omega^2)^2}$	$\frac{t}{2\omega}\sin\omega t$
24	$\frac{s^2}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega}(\sin\omega t + \omega t \cos\omega t)$
25	$\frac{s}{(s^2+a^2)(s^2+b^2)}, a^2 \neq b^2$	$\frac{1}{b^2 - a^2} (\cos at - \cos bt)$
26	$\frac{1}{s^4 + 4a^4}$	$\frac{1}{4 a^3} (\sin at \cosh at - \cos at \sinh at)$
27	$\frac{s}{s^4 + 4a^4}$	$\frac{1}{2a^2}(\sin at \sinh at)$
28	$\frac{1}{s^4 - a^4}$	$\frac{1}{2a^3}(\sinh at - \sin at)$
29	$\frac{s}{s^4 - a^4}$	$\frac{1}{2a^2}(\cosh at - \cos at)$
30	$\sqrt{s-a}-\sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt}-e^{at})$
31	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{-\frac{(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
32	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
33	$\frac{s}{(s-a)^{3/2}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
34	$\frac{1}{(s^2-a^2)^k}, k>0$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
35	$\frac{1}{s}e^{-\frac{k}{s}}$	$J_0(2\sqrt{kt})$
36	$\frac{1}{\sqrt{s}}e^{-\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2kt)$
37	$\frac{1}{s^{3/2}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\sinh(2\sqrt{kt})$

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t),t>0
38	$e^{-k\sqrt{s}}, k>0$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
39	$\frac{1}{s} \ln s$	$-\ln t - \gamma$, $\gamma \approx 0.5772$
40	$ \ln \frac{s-a}{s-b} $	$\frac{1}{t}(e^{bt}-e^{at})$
41	$ \ln \frac{s^2 + \omega^2}{s^2} $	$\frac{2}{t}(1-\cos\omega t)$
42	$ \ln \frac{s^2 - a^2}{s^2} $	$\frac{2}{t}(1-\cosh at)$
43	$\arctan\left(\frac{\omega}{s}\right)$	$\frac{1}{t}\sin\omega t$
44	$\frac{1}{s}$ arccot s	Si(t)

Funções especiais

[a] Delta de Dirac / Função impulso: $\delta(t) = \begin{bmatrix} \infty, & t=0 \\ 0, & t\neq 0 \end{bmatrix}$

$$\delta(t-a) = \begin{cases} \infty, \ t=a \\ 0, \ t \neq a \end{cases}, \ \delta(t) = \frac{d}{dt}u(t) \ , \ \int\limits_{-\infty}^{\infty} \delta(t)dt = 1 \ , \ \int\limits_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a) \end{cases}$$

[b] Função de Heaviside / Função degrau unitário: $u(t) = \begin{bmatrix} 1, & t > 0 \\ 0, & t < 0 \end{bmatrix}$

$$Ku(t-a) = \begin{cases} K, & t>a \\ 0, & t>a \end{cases}, u(t) = \int_{-\infty}^{t} \delta(t) dt$$

[c] Função Gama: $\Gamma(k) = \int_{0}^{\infty} e^{-x} x^{k-1} dx$, k > 0

[d] Função de Bessel modificada de ordem v: $I_v(x) = \sum_{m=0}^{\infty} \frac{x^{2m+v}}{2^{2m+v}m! \Gamma(m+v+1)}$

[e] Função de Bessel de ordem zero: $J_0(x)=1-\frac{x^2}{2^2(1!)^2} \frac{1}{2^4} \frac{x^4}{2^4(2!)^4} \frac{x^6}{2^6(3!)^6} + ...$

[f] Integral Seno: $Si(t) = \int_{0}^{t} \frac{\sin x}{x} dx$

Propriedades da Transformada de Laplace

1	Linearidade	$\mathscr{L}\{af(t)+bf(t)\}=a\mathscr{L}\{f(t)\}+b\mathscr{L}\{f(t)\}$
2	Transformada da derivada	$\mathcal{L}\{f'(t)\} = s \mathcal{L}\{f(t)\} - f(0)$ $\mathcal{L}\{f''(t)\} = s^2 \mathcal{L}\{f(t)\} - s f(0) - f'(0)$ $\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$
3	Transformada da Integral	$\mathscr{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\} = \frac{F(s)}{s}$
4	Deslocamento no eixo s	$\mathscr{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$
5	Deslocamento no eixo t	$\mathscr{L}\lbrace f(t-a)u(t-a)\rbrace = e^{-as}F(s)$
6	Mudança de escala	$\mathscr{L}{f(at)} = \frac{1}{a}F\left(\frac{s}{a}\right), a > 0$
7	Derivada da Transformada	$\mathcal{L}\lbrace tf(t)\rbrace = -\frac{d}{ds}F(s)$ $\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n}F(s), n=1,2,$
8	Integral da Transformada	$\mathscr{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s) ds$
9	Transformada de Funções Periódicas	$\mathscr{L}\{f(t)\} = \frac{1}{1 - e^{sT}} \int_{0}^{\tau} e^{-s\tau} f(\tau) d\tau$
10	Teorema da Convolução	$\mathcal{L}\lbrace f(t)*g(t)\rbrace = F(s)G(s) \text{ onde}$ $f(t)*g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau = g(t)*f(t)$

Teorema do Valor Inicial

$$\lim_{t\to 0^+} f(t) = \lim_{s\to \infty} sF(s)$$

Teorema do Valor Final

$$\lim_{t\to\infty}f(t) = \lim_{s\to 0^+} sF(s)$$

Transformadas Inversas de Funções Racionais Próprias

Seja
$$F(s) = \frac{a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0}{b_m s^m + b_{m-1} s^{m-1} + ... + b_1 s + b_0}, \ a, b \in \mathbb{R}$$
, $m, n \in \mathbb{Z}$ e $n > m$

Então F(s) pode ser expandida em uma soma de frações parciais, cujas transformadas inversas, segundo o tipo das raízes, é:

	Natureza das raízes	$F(s)=\mathscr{L}\{f(t)\}$	f(t),t>0
1	Reais e distintas	$\frac{K}{s+a}$	Ke ^{-at}
2	Reais e repetidas	$\frac{K}{(s+a)^2}$	Kte ^{-at}
3	Complexas e distintas	$\frac{K}{s+\alpha-j\beta} + \frac{K^*}{s+\alpha+j\beta}$	$2 K e^{-at}\cos(\beta t+\theta)$
4	Complexas e repetidas	$\frac{K}{(s+\alpha-j\beta)^2} + \frac{K^*}{(s+\alpha+j\beta)^2}$	$2 K te^{-at}\cos(\beta t+\theta)$

Nota: nos pares 1 e 2, K é uma quantidade real, ao passo que, nos pares 3 e 4, K é uma quantidade complexa $|K|e^{J}\theta$