

PHYLOGENETIC AND PHYLOGEOGRAPHIC META-ANALYSIS OF COI SEQUENCES OF EAST AFRICAN ARTHROPODS IN THE BOLD DATABASE

Objective:

- Improve phylogenetic and phylogeographic descriptions of arthropod diversity in East Africa
 - Identify the diversity of species that may not yet be recognized as potential crop pests or vectors of human and animal diseases
- Allow for better assessments of emerging threat to human, animal and crop health

Kibet Gilbert (DRIP fellow)

Supervisors:

Dr Scott Miller, Dr Jandouwe Villinger, Dr Steven Ger

• Collaborators:

Dr Caleb Kipkurui, Dr Jean-Baka, Dr Dan Masiga

workflow

DATA ACCESS

BOLD-Systems via API Over 36,000 sequences

+

10,000 records (5000 sequences) Expected to grow

+

Seqs from select African countries

Data Clean-up and sorting

R scripts and tools

Bioinformatics tools Trials

Alignment
(PASTA,T-coffee,MUSCLE,
MAFFT,SATe)
Phylogenetics

(RaxML, FastTree)
Phylogeography

(BASTA/BEAST)

Tools of Trade

Git & GitHub Linux System R & Python

Progress Reports
Thesis
Publications

DATA ANALYSIS hpc

Data Mining and Clean up

Sequence retrival:

BOLD-Systems via API; using specific syntax:

"arthropoda Kenya Uganda Tanzania Rwanda Burundi"

Data clean up:

R, Awk and Bash

Metadata (80 columns)							
'COI-5P' = 35990 out of 37257 (1 sample)							
#nucleotides / unaligned seqs / #ns							
Over 700 (592)	Under 500 (705)	500 - 700 (34693)	650 - 660 (21886)	Over 500 (35285)			
1 smpl	1 smpl	3 smpls	2 smpls				
Build.fasta: ProcessID order seq_len seq							

Large dataset:

- Accuracy
- Speed

Algorithmn:

- Progressive (mafft/muscle)
- Progressive & transivity (pasta)
- Regressive (T_coffee)

	Muscle: default	Mafft: G_lins1	t_coffee : -reg	Pasta: default	sate
	Speed	Speed	speed	speed	***
	Low accurac y	Accurat e	Accurat e	Accurat e	***
)	(refine, align and merge)	(align, add, addfrag ments, and merge)	(align, evaluat e: core_in dex, Tcs,	(align and addfrag ments)	***

MSA evaluation

Evaluation for Accuracy:

 T_coffee: consistency based scoring.

Scores:

- Core index (html)
- TCS (html/ascii)

- Used to select the most suitable alignments.
- TCS ascii can be used to apply different weights to columns in phylogenetic analysis

MSA eval...

Mafft

T-COFFEE, Version_12.00.7fb00 Cedric Notredame CPU TIME:0 sec. SCORE=961

BAD AVG GOOD

GWOSM440-11|Lep : 96 AFPHY090-14|Lep : 96 GMKMD598-15|Lep : 95 GMKKC063-15|Lep : 96

GMKK1431-15|DIP KHYME3315-13|Hy KHYME3482-13|He GMKMG498-15|Hem KHYME4146-13|Hy ASQSQ798-10|Hym OBAL070-18|Orth GMKMF456-15|Hem KHYME5387-13|He RWTW01347-10|Hy aatagtgggaacttcttaagaa attaattggatcatcaataagaa agtggtggggacctcattatctt ----ggtataatattaagaa ----taggatcagctttaagaa tatagttggtttatcaataagtt -----ggaataatactaagaa tatagtaggaataatactaagaa tatagtaggaataatactaagaa

Muscle

T-COFFEE, Version_12.00.7f
Cedric Notredame
CPU TIME:0 sec.
SCORE=958
*
BAD AVG GOOD
**

KHYME4676-13|Hy : 92 GMKKA202-15|Hem : 94 KHYME5358-13|He : 94 GRMHT509-15|Thy : 88

KHYME4676-13|Hy GMKKA202-15|Hem KHYME5358-13|He GBMHT509-15|Thy GMKMB150-15|Hym KHYME3315-13|Hy GMKMF456-15|Hem KHYME5387-13|He KHYME3482-13|He ASQSQ798-10|Hym KHYME2616-13|Hy KHYME4026-13|Hy TCTAATAGGGTCCTCAATAAGAATAATT
ATAAGAAGAATTTTA
ACTTATTGGTACTATAAGAAGAATTTTA
CATAATTGGACCTCCTTCAGAATAATT
ATTAATTGGACCTCCTTCAGAATAATT
ATTAATTGGATCATCAATAAGAATAATT
TATAGTAGGAATAATATT
AGTGGTGGGACCTCATTATCTTGAATG
TATAGTTGGTTTATCATAAGATTAATT
AATAATTGGATCATCAATAAGATTTAATT
AATAATTGGATCATCAATAAGTTTAATT
AATAATTGGATCATCAATAAGTTTAATT
AATAATTGGAACATCAATAAGATTAATT

T coffee

T-COFFEE, Version_12.00. Cedric Notredame CPU TIME:0 sec. SCORE=960 *

BAD AVG GOOD

*

GWOSM440-11|Lep : 96

KENM01124-13|Di : 96

AFPHY090-14|Lep : 96

SAARA227-11|Lep : 96

pasta

T-COFFEE, Version_12.00. Cedric Notredame CPU TIME:0 sec. SCORE=961

BAD AVG GOOD

GWOSB896-10 Lep		96
GWORR141-10 Lep	:	97
GWORR149-10 Lep		96
PMANL2056-12 Le	:	96
HCBK055-05 Lepi		96

Current progress...

Build my Data set

Setting up a RAxML8 and FastTree pipelines

Improve on alignments: translation-alignment-threading of DNA

HPC analysis

ACKNOWLEDGEMENT:

Thank you for enabling a bioinformatics dream

