Asymmetric Ciphers

RSA public key encryption scheme

- Public key encryption scheme proposed by R.L. Rivest, A. Shamir, L.M.
 Adleman in A Method for Obtaining Digital Signatures and Public-Key
 Cryptosystems (1978)
- Depends on the mathematical (computational) problem of factorizing integers.

Fermat's Lemma

If p is a prime number and z any number coprime to p,

i.e.
$$gcd(p,z) = 1$$
, then

$$Z^{p-1} \equiv 1 \pmod{p} \iff \lfloor (2^{p-1}-1)$$

m2: Zp -, Zp

Proof:

- Multiplication with z defines a bijective mapping:

$$m: \mathbb{Z}_p \to \mathbb{Z}_p, m(x) = (x \cdot z) \mod p$$

It follows that:

$$t \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \equiv (1 \cdot z) \cdot (2 \cdot z) \cdot (3 \cdot z) \cdot \dots \cdot ((p-1) \cdot z) \equiv t \cdot z^{p-1} \pmod{p}$$

• Division in \mathbb{Z}_p by $t \neq 0$ gives the claimed identity.

$$Z_{p} = \{0, 1, \dots, p-1\}$$

$$Z \in Z_{p}^{*}$$

$$O(2) \mid (p-1)$$

$$S_{2} = S(1)$$

$$P-1 = O(2) \cdot S$$

 $2^{3} = (2^{o(2)})^{3} = 1^{3} = 1$

A consequence of Fermat's Lemma

Let p,q be prime numbers $(p \neq q)$ and $r \in \mathbb{Z}$ with:

$$r \equiv 1 \pmod{\text{lcm}(p-1, q-1)}$$

Then:

$$z^r \equiv z \pmod{(p \cdot q)}$$
 for all $z \in \mathbb{Z}$

Proof:

- If $z \equiv 0 \pmod{p}$, then $z^r \equiv 0 \pmod{p}$.
- If p does not divide z and r = 1 + n(p-1), then:

$$Z^r = Z \cdot (Z^{(p-1)})^n \equiv Z \pmod p$$

Similarly:

$$z^r \equiv z \pmod{q}$$

(=) $lem(p-1,q-1) \mid (r-1)$ (=) $(p-1,q-1) \mid (r-1) (*)$ (a) $(q-1) \mid (r-1) (*)$

Generation of an RSA key pair

Chose two random primes p and q (> 2^{1000})

- Put n = pq, v = lcm(p 1, q 1)
- Define a <u>public exponent</u> *e* with:

$$gcd(e, v) = 1$$

gcd(e, v) = 1typically $e = 2^{16} + 1 = 10 - 101$ $2^{2^{n}} + 1$ (3,5,17,655)2, ---)

Determine the <u>private exponent</u> d with:

$$ed \equiv 1 \pmod{v}$$
 $\left[\lambda = e^{-1} \ln \mathbb{Z}_v \right]$

• Key pair $(k_{pub.}, k_{priv})$:

$$k_{pub} = (n,e)$$
 $k_{priv} = (n,d)$

problec exponent

Encryption of a message m (< n):</p>

$$c = E(m) = m^e \mod n$$

Decryption of *c*:

$$D(c) = c^d \mod n$$

coneq. of

■ D(c) = m follows from $e \cdot d = 1 \pmod{v}$ and Fermat's lemma:

$$D(c) = c^d \mod n = (m^e)^d \mod n = m^{ed} \mod n = m \mod n = m$$

Digital Signatures

- FIPS PUB 186-4: Digital Signature Standard (DSS)
 - Chapter 4: The Digital Signature Algorithm (DSA)
 - Chapter 5: The RSA Digital Signature Algorithm
 - Chapter 6: The Elliptic Curve Digital Signature Algorithm (ECDSA)

Signing a message

Verifying a signature

RSA signature algorithm

DSA Domain Parameters

- p: prime number of bit length L
- q: a prime divisor of p-1 of bit length N
- g: element of $GF(p)^*$ with o(g) = q

Selection of Parameter Sizes and Hash Functions for DSA:

•
$$L = 1024$$
, $N = 160$

•
$$L = 2048$$
, $N = 224$

•
$$L = 2048$$
, $N = 256$

•
$$L = 3072$$
, $N = 256$

Digital Signature Algorithm (DSA) - FIPS PUB 186-4, Chapter 4

DSA Domain Parameters

- p: prime number of bit length L
- q: a prime divisor of p-1 of bit length N
- g: element of $GF(p)^*$ with o(g) = q

$$GF(p)^{*} \geq \langle g \rangle = \{ g, g^{2}, g^{3}, ---, g^{9} = 1 \}$$

DSA Key Pairs

- x: private key with 0 < x < q
- y: public key $y = g^x \mod p$

Digital Signature Algorithm (DSA) – FIPS PUB 186-4, Chapter 4

- Domain Parameters: p, q, g
- Key Pair: x, y
- Signature Generation for message M
 - k: per message newly generated secret random number, 0 < k < q
 - $r := (g^k \mod p) \mod q$
 - z: Hash(M) (leftmost N bits)
 - $s := (k^{-1}(z + xr)) \mod q$

• $\operatorname{Sig}_{x}(M) := (r, s)$

Digital Signature Algorithm (DSA) - FIPS PUB 186-4, Chapter 4

- Domain Parameters: p, q, g
- Key Pair: x, y = g* mod P
- Signature for M: Sig_x(M)=(r, s), $r = (g^k \mod p) \mod q$, $s = (k^1(z + xr)) \mod q$
- Signature Verification (given M, $\operatorname{Sig}_{x}(M) = (r, s), y$)
 - $W := s^{-1} \mod q$ $\frac{1}{2}$: $w = s^{-1} = k \cdot (z + xr)^{-1}$ mod q
 - z: Hash(M) (leftmost N bits)
 - $u_1 := (zw) \mod q$
 - $u_2 := (rw) \mod q$
 - $v := ((g^{u_1} y^{u_2}) \mod p) \mod q$
 - $\operatorname{Sig}_{x}(M)$ ok iff v = r

$$\left(g^{t\cdot N}\cdot g^{\chi\cdot \Gamma V}\right) \text{ mod } \rho = g^{\chi}\left(\xi + \chi \Gamma\right)^{-1}\left(\xi + \chi \Gamma\right)$$

$$= g^{\chi}\left(\xi + \chi \Gamma\right)^{-1}\left(\xi + \chi \Gamma\right)$$

$$= g^{\chi}\left(\xi + \chi \Gamma\right)^{-1}\left(\xi + \chi \Gamma\right)$$

$$= g^{\chi}\left(\xi + \chi \Gamma\right)$$

FIPS PUB 186-4, Ch. 6

- relates strongly to ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Standard (ECDSA)
- FIPS PUB 186-4, Appendix D: Recommended Elliptic Curves for Federal Government Use
- Certicom Research: Standards for Efficient Cryptography
 - SEC 1: Elliptic Curve Cryptography
 - SEC 2: Recommended Elliptic Curve Domain Parameters

ECDSA Domain Parameters

$$o(s) = q : q \cdot G = 0$$

$$x \cdot G \qquad g^{x} \qquad o(s) = q$$

$$(\vec{E}_{1} +) < - (\vec{Z}_{p}^{+}, \cdot)$$

- E: elliptic curve over F = GF(p) or $F = GF(2^m)$
- q: a large prime divisor of |E| = qh (with cofactor h)
- G: point of E with o(G) = q

ECDSA Domain Parameters

- **E**: elliptic curve over F = GF(p) or F = GF(2^m)
- q: a large prime divisor of |E| = qh (with cofactor h)
- **G**: point of **E** with **o(G)** = **q**

ECDSA Key Pair

- x: private key with 0 < x < q
- Y: public key $Y = x \cdot G$

- Domain Parameters: E, q, G
- Key Pair: x, Y
- Signature Generation for message M
 - k: per message newly generated secret random number, 0 < k < q
 - $R := k \cdot G = (R_x, R_y)$, $r := R_x \mod q$
 - z: Hash(M) (leftmost N bits)
 - $s := (k^{-1}(z + xr)) \mod q$

• $\operatorname{Sig}_{x}(M) := (r, s)$

- Domain Parameters: E, q, G
- Key Pair: x, Y = x⋅ 6
- Signature for M: Sig_x(M)=(r, s), $r = (k \cdot G)_x \mod q$, $s = (k^{-1}(z + xr)) \mod q$
- Signature Verification (given M, Sig_x(M) = (r, s), Y)
 - $w := s^{-1} \mod q$
 - z: Hash(M) (leftmost N bits)
 - $u_1 := (zw) \mod q$
 - $u_2 := (rw) \mod q$
 - $V := u_1 \cdot G + u_2 \cdot Y$, $v := V_x \mod q$
 - $\operatorname{Sig}_{x}(M)$ ok iff v = r

$$V = 2 \cdot u \cdot G + \Gamma \cdot u \cdot x \cdot G = (2 \cdot u + \Gamma \cdot ux) \cdot G$$

$$= (u \cdot (2 + \Gamma x)) \cdot G = 6 \cdot G$$

Extended Euclidean Algorithm (EEA)

initial a initial b		
A=132 3-156	q	gcd(132,156) = 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 ← 2 6 2 6	$a \cdot b$ $a \cdot b = ged(b, a mod b), a mod b$ with
		= 12 = gcd[122, 15c)

Extended Euclidean Algorithm (EEA)

107	५ 2		q
Λ	Ø	107	
8	1	42	2
1	- 2	23	1
-1	3	13	1
2_	-5	4	4
- 3	23	3	1
11	- 28	1	3
	?	0	