Q:
$$||v||_p^2 = v^T P v$$
 $P \in S^m$ symmetric when $||v||_p$ valid

whenever P is positive definite
$$v^TPv > 0 \quad \forall \quad v \neq 0$$

EVD?

$$= \sum z_i^2 \lambda_i^2$$

 $\sqrt{v^T P v}$ valid norm when $\lambda_i > 0 + i = 1., 2...n$ valid norm wit Z.

but also $Z=Q^Tv & v=Q2$ one-to-one mapping z & v

Recap (1)
$$v^T P v > D + v \neq D$$
 equivalent (2) $\lambda_i(P) > 0 + i$ $P \times D$ $P \times D$

P>0 = entries of P are positive notation

= e.v. of Pare positive

(3) $P = LL^T$ where L lower triangular L full rank Cholesky decomposition

so
$$||\text{I}v||_2^2 > 0 \quad \forall \quad v \neq 0$$

$$\text{L}^{\text{T}}v \neq 0 \quad \text{when} \quad v \neq 0 \quad \rightarrow \text{holds} \quad \text{when} \quad L$$
is full rank

faster way to check if P>0

Positive Semidefinite matrix $P \in S^n$

(a) P>0 (not antriwise)

(b) \(\gamma_i(P) > 0\) i=1,2...n

(c) Proso toex"

(d) P = AAT for any AER MXM MIN

Suppose $P = AA^T$ $VTPv = VTAA^Tv = ||A^Tv||_2^2 > 0 + v$ $(d) \Rightarrow (c) \Rightarrow P > 0$

Note: only for symmetric matrices

(nom-symmetric case: Ni(P) may be complex)

notion of PSD would be different

Note: $\|V\|_p$ for P > 0 not a norm (not definite)