RDE. IES Haría UT3. Prueba práctica. Parte 1

1. Clasifica los siguientes números de dirección IP según su clase (1p)

Dirección	Clase
172.30.245.2	В
191.23.21.51	В
3.11.35.232	Α
195.1.234.1	С
230.33.12.3	D
10000100001000010010110011111111	В
11011111100111000001110000101100	С
11100101000010000111110100100010	D

2. Dadas las siguientes direcciones IP indicar cuáles son privadas y cuáles públicas (1p)

Dirección	Privada	Pública
24.35.4.1		Х
195.240.13.11		Х
11010100001000010010110010000001 212.33.44.129		X
10101100000100000000101100001100 172.16.11.12	x	
10.145.11.12	х	
172.30.133.245	x	
169.254.34.56	x	
192.168.150.1	x	

3. Dadas las siguientes direcciones IP con clase indicar si son válidas o no para ser asignadas en la configuración de red de un equipo. En caso de no ser válida indicar el motivo (1p).

Dirección	Valida para asignar a host	Motivo	
24.35.0.0	si		
127.240.13.11	no	loopback	
11101010000100001001011000000001 234.16.150.1	no	Clase D	
12.45.255.255	si		
134.245.256.11	no	256 + de 8 bits	
0000000000100001001011000000001 0.16.150.1	no	A la espera de recibir IP	

225.0.0.1	No	Clase D
191.13.45.0	si	

4. Indicar si las direcciones IP 211.31.144.23/20 y 211.31.160.45/20 pertenecen a la misma subred o no. Incluye los cálculos utilizados para obtener el resultado.(1p)

```
211.31.144.23 → 11010011.00011111.10010000.00010111 →
11010011.00011111.10010000.000000000 ← red
211.31.160.45 → 11010011.00011111.10100000.00101101 →
11010011.00011111.10100000.000000000 ← red

Las direciones de subred son diferentes y por tanto los hosts pertenecen a diferentes redes
```

- **5.** Imaginemos que en una red con dirección 194.3.22.0/24 queremos montar 3 subredes. Contestar a las siguientes cuestiones indicando cómo obtienes el resultado.
- a) ¿Cuantos bits le tenemos que quitar a la parte de host para crearlas?(0,5p)

2 bits
$$\rightarrow$$
 2² = 4 > 3

b) ¿De cuantos bits será nuestra máscara de red?¿Cuál sería el valor de la máscara en formato decimal punteado? (0,5p)

c) ¿Cuantos hosts como máximo podremos conectar a cada una de las subredes? (0,5p)

6 bits para los hosts ightarrow 2⁶ – 2 = 62 equipos en cada red

d) Calcula y rellena la siguiente tabla con la información que se solicita (2,5p):

Subred	Dirección de subred	Dirección de difusión	Rango de la subred
0	194.3.22.0 11000010.00000011.00010110.00 000000	194.3.22.63 11000010.00000011.00010110.001 11111	194.3.22.1 - 194.3.22.62
1	194.3.22.64 11000010.00000011.00010110.01 000000	194.3.22.127 11000010.00000011.00010110.011 11111	194.3.22.65 - 194.3.22.126
2	194.3.22.128 11000010.000000011.00010110.10 000000	194.3.22.191 11000010.00000011.00010110.101 11111	194.3.22.129 - 194.3.22.190

e) Tomando como referencia las subredes obtenidas, edita el siguiente esquema

Inserta en el mismo (1p):

- · La dirección de cada una de las subredes.
- · La dirección IP de las tarjetas de red de todos los nodos.

Se tendrán en cuenta:

- Utilizar las primeras direcciones IP de la subred para los dispositivos finales.
- Utilizar la última dirección IP de la subred para las interfaces de red del router.

6. ¿Cuál sería la máscara de red si necesitamos conectar 32767 equipos a una red? Inserta los cálculos utilizados para obtener el resultado. (1p)

$$2^n-2>=32767$$
 $n=15\to 2^{15}-2=32766$
 $n=16\to 2^{16}-2=65534$
N bits red = $32-n\to 32$ -16 = $16\to m$ áscara de red: 255.255.0.0