Represent Knowled ing usin Rate

(Reference Artificial Intelligence – Rich & Knight)

Predicate Logic (Limitations)

- "It is very hot today."
- How can relative degrees of heat be represented?
- "Blonde-haired people often have blue eyes."
- How can the aactualt of certainty be represented? YOU
- How can **We thanks introat winterace shouth** the inferred from the abouther? meet knows how to read."

 "I know John thinks Bill will win but I think he is

KR using Rules

- Provides the flexibility of combining procedu declarative and ral
- . representation for using them in a
 - unified form.

 —I condition THEN action

 Examples of production rules:

 premise THEN conclusion
- proposition p1 and proposition THE propo**siționa pe**strue is truq

Advantage of Production

- -they are modular,
- -each rule define a small and
- _independent piece
- -new rules may be added and old ones deleted. rules are usually independent of other rules.

Rule s

of knowledg e.

Procedu v Declarative ral s Knowledge

- man(Marcus)
- man(Ceaser)
- person(Cleopatra)
- ∀x: man(x) → person(x)
- ∃y: person
- (y) Find y.

```
Answers supportedKnawledge
```

- Y=Ceaser
- Y=Cleopatra
- Order of the examining eassertions?

Role Control Knowledge

- man(Marcus)
- man(Ceaser)
- ∀x: man(x) →
- person(x) person(Cleopatra)
- ∃y: person
- (y) Find y.

- Factors to be considered:

 - seamistinateg e ns y?
 - BFS
 - DFS

- Order of the assertion

Control

- Knowledge
 Which states are more preferable
- to others?
- Which rule to apply in a given
- situation?

Order of pursuing sub-goals? Useful sequences of rules to apply

Logic

- Programming
 A programming language paradigm logic assertio ar in which viewed as programs. Ex. PROLOG
- A Representation in Logic:

```
    ∀x: { pet(x) ^ small(x) →

apartmentpet(
```

- A Representation in PROLOG:
 - apartmentpet(x):-pet(x), small(x)

Forward vs Backward Reasoning Q. Find a value of X that satisfies the predicate

- Q. Find a value of X that satisfies the predicate apartmentpet(X).
- Two directions in which a search could proceed:
- Forward, from the start states
- Backward, from the goal states

Factors to be considered

- •Are there more possible start states or goal states? (Move from smaller to larger)
- •In which direction is the branching factor greater?
- (Proceed in direction of lower branching factor) to a
- •Will the program be asked to justify its
- reasoning process What kind of event is going to trigger a problem-strongeoisodiesction which correspond to
- Masievatihoifnak integry) fact? (forward)
- A query to which a response is desired? (backward)

Comparison Chart

BASIS FOR COMPARISON	FORWARD REASONING	BACKWARD REASONING
Basic	Data-driven	Goal driven
Begins with	New Data	Uncertain conclusion
Objective is to find the	Conclusion that must follow	Facts to support the conclusions
Type of approach	Opportunistic	Conservative
Flow	Incipient to consequence	Consequence to incipient

Combining Forward &

Backwa reasoni rd ng

- Medical Diagnosis Program
- 9 out of 10 pre-conditions
- satisfied.

Conclusion?

From home to unfamiliar place (backward)

Matchi ng

- Indexing
- Matching with Variables
- Complex and Approximate Matching
 - Conflict resolution