Calculus 2 - Assignment 2

Due 17^{th} January 2017

ANSWER ALL QUESTIONS

1. Let P be the polygon in the (x, y)-plane with vertices (0, 0), (1, 2), (3, 3) & (2, 1). We wish to evaluate the double integral:

$$\iint_{P} e^{x} dy dx,$$

over P and its interior. Suppose we make the change of variables: $x = \frac{2u+v}{3}$ and $y = \frac{u+2v}{3}$.

- (a) Describe geometrically the region P' in the (u, v)-plane to which P is mapped by this change of variables and find the limits of the double integral in terms of u and v. [2]
- (b) Compute the Jacobian for this change of variables [1]
- (c) Make the substitution and evaluate the integral. [2]
- 2. Recall that for real numbers a > b > 0, the equation of an ellipse, E, with semi-major axis a and semi-minor axis b is given by:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. ag{1}$$

Consider now a rectangle, R, with sides aligned with the x- and y-axes and which is inscribed in the ellipse. Let x > 0 and y > 0 be the co-ordinates of the top, right-hand vertex of R.

- (a) Write down the co-ordinates of the other vertices of R and hence define the function f(x,y) which gives the area of R in terms of x and y.
- (b) Using the method of Lagrange multipliers, find the values of x and y that define the rectangle subscribed in E of greatest area. That is, maximise your function f subject to the constraint given in (1).
- (c) Recall from lectures that we can find the area of E by evaluating the double integral $\iint_E 1 \, dx dy$, where the double integral is evaluated over E and its interior. We will use this method to find the area of the ellipse.
 - i. Show that the change of variables $u = \frac{x}{a}$, $v = \frac{y}{b}$ transforms E into the unit disc.
 - ii. By changing to polar coordinates $u = r \cos \theta$ and $v = r \sin \theta$ show that the area of $E = ab\pi$.
 - iii. Hence verify that the fraction of E occupied by the area of any inscribed rectangle is at most $\frac{2}{\pi}$.

- 3. Let f(x,y) and g(x,y) be functions of two variables and suppose they both have stationary points at x = a and y = b.
 - (a) Show that the function h(x,y) = f(x,y) + g(x,y) also has a stationary point at x = a and y = b.
 - (b) Decide if the statements below are true or false. If true then give a brief argument to support your answer. If false then give a counterexample.
 - i. If f(a, b) and g(a, b) are both local minima, then h(a, b) is also a local minimum. [1]
 - ii. If f(a, b) is a minimum but g(a, b) is a saddle point then h(a, b) is a saddle point. [1]
- 4. Recall that a function of x can be defined explicitly via a formula y = f(x) or implicitly via a relation F(x, y) = 0. For example the ellipse from question (2) could be defined using either of these forms:

$$y = b\sqrt{1 - \left(\frac{x}{a}\right)^2}. (2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. ag{3}$$

Let w = F(x, y) = 0 and (remembering that y is a function of x), follow these steps to develop a new technique for implicit differentiation:

- (a) Use the chain rule for partial derivatives to find an expression for $\frac{dw}{dx}$. [1]
- (b) Explain why $\frac{dw}{dx}$ must always equal zero and use this fact to rearrange your answer to part (a) to find $\frac{dy}{dx}$ in terms of F_x and F_y .
- (c) Use your answer to part (b) to find $\frac{dy}{dx}$ for the ellipse defined implicitly in (3).
- (d) Finally, differentiate equation (2) directly and verify that you get the same answer as you did in part (c). [1]