

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (W), Mumbai : 400058, India

(Autonomous College of Affiliated to University of Mumbai)

Special Re Examination

August 2023

Max Marks: 100

Duration: 3 hours

Class: SE

Semester: III

Course code:CS201/DS201/AI201

Branch: SE Comp/CSE-AIML, DS

Name of the course: Discrete Structure and Graph Theory

Q No		Max Marks	СО	BL
Q1	Show that the set of all divisions of 70 form a lattice. Find LUB and GLB of every pair. OR Let L={1,2,3,5,30} and R be the relation 'is divisible by'. Prove that L is a lattice.	10M 10M	CO2	3
Q2A	Let every pair of vertices of a hexagon be joined by a line which is either red or yellow. Prove that at least one of the triangles so formed has sides having the same color.	5M	CO2	3
Q2B	A box contains 5 red, 7 blue, and 10 black balls. Find the minimum number of balls that must be drawn blind folded to get 4 balls of the same color.	5M	CO2	3
Q3A	Using a warshall algorithm, find transitive closure of the following graph.	10M	CO2	3
Q3B	Give an example of a relation which is (i) Reflexive, Symmetric but not transitive (ii) Symmetric, transitive but not reflexive	10M	CO2	3
Q3C	Find the solution of recurrence relation $a_n=6a_{n-1}-11a_{n-2}+6a_{n-3}$ with the conditions $a_0=2$, $a_1=5$ and $a_2=15$	10M	CO2	3
	Solve the Fibonacci sequence relation $a_n=a_{n-1}+a_{n-2}$ for $n>=2$, $a_0=0$, $a_2=1$			
Q4	 a. Prove that this statement is true for all integers n: n is odd if and only if 5n + 3 is even. b. Write the following statement in English, using the predicates F(x): "x is a Freshman" M(y): "y is a math course" 	4	COI	3

					•
	courses: $\neg \exists x [F(x) \land \forall$	here x represents students and y represents $y(M(y) \rightarrow T(x, y))$			3
	behind it. and solve the fol Alice and Bob decide to for Alice decides prime no n =		8	CO4	4
	y=6.	ree upon using Diffie-hellman algorithm			
	n	ent for all non-negative integers n: $= 2^{n+1} - 1$	4	COI	4
	using it. A total of 1232 students have taken a course in French, as Further, 103 have taken coutaken courses in both Spanicourses in both French and	and exclusion. and Solve the problem we taken a course in Spanish, 879 have and 114 have taken a course in Russian. urses in both Spanish and French, 23 have ash and Russian, and 14 have taken Russian. If 2092 students have taken a anish, French and Russian, how many e in all 3 languages.	5	CO1	4
	ii ii	OR			
	problem.	on and exclusion, and solve the following s not exceeding 1000 are divisible by 7	5	CO1	4
Q5A	Define following terms with neat dia I-Adjacent vertices, II-Incident edgivertex, V-Pendant edge VI-Loop State the hand shaking lemma and v	e III- Degree of a vertex IV -Pendant	10		

For official use only (not for students)

CO Number	CO statement	
COI	Solve problems using set theory, logic and its various proof techniques.	20

CO2	Apply the concepts of relations, functions, lattices and recurrence relations to solve problems	55
CO3	Apply the concepts of graph, trees and their various types with their traversing techniques to solve problems.	20
CO4	Apply the basics of coding theory and cryptography to solve real world problems.	05

PI chart for percentage CO marks