Лабараторна робота №1 З дисципліни «Чисельні методи» За темою «Розв'язування лінійних рівнянь»

Виконав студент 3 курсу Групи ТТП-32 Пелих Олександр

1) Постановка задачі

Варіант №7:

Знайти розв'язок $x^3+x^2-4x-4=0$ методом Ньютона Знайти розв'язок $x^3-4x^2-4x+16=0$ методом простої ітерації

Графік рівняння(1)

Графік рівняння(2)

2) Розв'язання

2.1) Метод Ньютона:

- а) Гладкість функції: Функція f(x)f(x)f(x) є неперервною на всьому визначеному проміжку, тому $f(x) \in C2f(x) \setminus In C^2f(x) \in C2$.
- b) Знаки функції на кінцях проміжку: Визначимо значення функції на кінцях проміжку:

```
 f(34) = (34)3 + (34)2 - 4 \cdot 34 - 4 = -21764 \cdot 0f \setminus \frac{3}{4} \right) = \left( \frac{3}{4} \right)^3 + \left( \frac{3}{4} \right)^2 - 4 \cdot 34 - 4 = -\frac{3}{4} \cdot 0f \cdot 34 + (43)3 + (43)3 + (43)3 - 4 \cdot 34 - 4 = -64217 \cdot 0f \cdot 34 + (43)3 + (43)2 - 4 \cdot 43 - 4 = 19027 \cdot 0f \cdot 16f \cdot
```

Тобто, на кінцях проміжку функція має різні знаки, тому відповідно до теореми про проміжні значення, на цьому проміжку є хоча б один корінь.

- а) Перша похідна:
 - $f'(x)=3x^2+2x^4$ $f'(x)=3x^2+2x-4$
- b) Друга похідна:
 - I. f''(x)=6x+2f''(x)=6x+2f''(x)=6x+2

3. Початкові умови

- а) Вибираємо початкове наближення $x0=34x_0 = \frac{3}{4}x0=43$.
- b) Умова збіжності для методу Ньютона: f(x)·f"(x)>0f(x) \cdot f"(x) > 0f(x)·f"(x)>0 Для перевірки умови збіжності на проміжку [34;43][\frac{3}{4}; \frac{4}{3}][43;34], обчислюємо f(x)f(x)f(x) та f"(x)f"(x)f"(x) на кінцях: f'(x0)=f'(34)=3(34)2+2·34-4=2.0625f'(x_0) = f'\left(\frac{3}{4}\right) = 3 \left(\frac{3}{4}\right)^2 + 2 \cdot \frac{3}{4}\right) = 6 \cdot \frac{3}{4} + 2 = 6.5f"(43)=3(43)2+2·43-4=2.0625 f"(34)=6·34+2=6.5f"\left(\frac{3}{4}\right) = 6 \cdot \frac{3}{4}; \frac{4}{3}[4] + 2 = 6.5f"(43)=6·43+2=6.5 Таким чином, на проміжку [34;43][\frac{3}{4}; \frac{4}{3}[4]; \frac{4}{3}[4](33,34] умова збіжності виконана, тому метод Ньютона буде працювати.

4. Додаткові обчислення

- а) Мінімум абсолютного значення першої похідної:
 - a. $m1=min [f'(x)]=|f'(34)|=2.0625m_1 = \min |f'(x)| = \left\{f'\left(\frac{3}{4}\right) \right\} = 2.0625m1=min|f'(x)|=f'(43)=2.0625$
- b) Максимум абсолютного значення другої похідної:
 - a. $M2=max = |f''(x)| = |f''(43)| = 8.5M_2 = \max |f''(x)| = \|f''(x)\| = \|f''(x)\| = 8.5M2=max|f''(x)| = f''(34) = f''(x)| = f''(x$
- с) Оцінка коефіцієнта збіжності:
 - a. $q=|x*-x0|M22m1=8.5\cdot0.52\cdot2.0625=1.035q = \frac{|x^* x_0| M_2}{2 m_1} = \frac{8.5 \cdot 0.5}{2 \cdot 2.0625} = 1.035q=2m1|x*-x0|M2=2\cdot2.06258.5\cdot0.5=1.035$
- d) Оцінка кількості ітерацій для заданої точності $\varepsilon=10-3$ \epsilon = $10^{-3}\varepsilon=10-3$:
 - $n=1+\log 2(\ln (z/\varepsilon) \ln (1/q))=5 n=1+\log_2 \left(\frac{\ln(z/\epsilon) \ln (1/q)}{\ln(1/q)} \right) = 5 n=1+\log_2(\ln (1/q) \ln (z/\varepsilon))=5$

2.2) Метод простих ітерацій:

16{4} = $16 \times 2 = g(x1) = 44(4)2 + 4(4) - 16 = 464 + 16 - 16 = 16$

```
f(x) = x3 - 4x2 - 4x + 16 = 0
x = g(x)x = g(x)x = g(x)
x = 4x2 + 4x - 16xx = \frac{4x^2 + 4x - 16}{x}x + 16}{x}x +
```

3) Результат роботи:

3.1) Для методи Ньютона:

Results for Newton's Method:				
Iteration	х	f(x)		
1	-6.65385	-6.01562		
2	-4.68264	-227.701		
3	-3.42312	-66.0189		
4	-2.65375	-18.7009		
5	-2.22807	-5.03135		
6	-2.04409	-1.18425		
7	-2.00223	-0.186178		
8	-2.00001	-0.008923		
9	-2	-2.5e-05		
+				

3.2) Для методи простих ітерацій:

Results for Iteration Method:				
Iteration	x	f(x)		
1	3.03659 	21.0745		
2	3.75699	48.1169		
3	4.22629	72.4442		
4	4.52009	90.7021		
5	4.69973	103.094		
6	4.80804	111.034		
7	4.87281	115.954		
8	4.91135	118.944		
9	4.93422	120.74		
10	4.94776	121.812		
11	4.95578	122.449		
12	4.96051	122.827		
13	4.96332	123.05		
14	4.96497	123.182		
15	4.96595	123.261		
16	4.96653	123.307		
17	4.96687	123.334		
18	4.96707	123.35		
19	4.96719	123.36		
20	4.96726	123.365		
21	4.9673	123.369		

4) Код проекту:

Код проекту знаходиться у репозиторії гітхаб за даним посиланням: https://github.com/AleksPh/project_Numerical-Methods