

• 目录

- •1、本章概述
- 2、孔轴的术语和定义
- 3、有关尺寸的术语和定义
- 4、有关偏差和公差的术语和定义
- 5、有关配合的术语和定义

1、本章概述

- "孔轴极限与配合"标准是一项应用广泛、涉及面大的<u>重要基</u>础标准。
- 为使零件在几何尺寸方面具有<u>互换性</u>,要进行<u>几何尺寸允许范围</u>的设计,也就是根据机器的使用性能的要求,考虑制造成本及工艺性等进行尺寸精度的设计。
- "极限"与"公差"都用于协调机器零件使用要求与制造要求的矛盾 ,"配合"反映组成机器零件间的关系。
- "极限与配合"的<u>标准化</u>,有利于机器的设计、制造、使用、 维修,直接影响产品的精度、性能和使用寿命,是评定产品质 量的重要技术指标。

1、本章概述

极限制

公差带有两个基本参数:

大小(T_h、T_s) 位置ES(es)或EI(ei)

用标准化的公差与极限偏差组成标准化的孔、轴公

差带的制度称为极限制。

临时跳转

后面再仔细学习

本章学习关键切入点

重要的基础标准,是一部法律。 公差是尺寸标准。配合是使用标准。 规范尺寸、规范用语。

三个概念:尺寸、偏差、公差(公差带宽度、位置)

两种配合制度: 基孔制、基轴制

三种配合性质: 间隙、过盈、过渡

1.孔、轴概述

- 通常情况下, 孔、轴结合的使用要求有以下三种情况:
 - 1.用作相对运动副 这类结合必须保证有一定的间隙。
 - 2.用作固定连接 这类结合必须保证有一定的<mark>过盈</mark>。
 - 3. 用作定位可拆连接 这类结合必须保证间隙不大,过盈也不能大。

孔、轴的术语和定义

2.孔、轴定义

1. 孔

孔通常是指圆柱形内表面;也包括非圆柱形内表面(由两平行平面或切面形成的包容面)。

2. 轴

轴通常是指圆柱形外表面;也包括非圆柱形外表面(由两平行平面或切面形成的被包容面。

3、有关尺寸的术语和定义

3、有关尺寸的术语和定义

- 1. 尺寸: 尺寸通常分为线性尺寸和角度尺寸两类。 线性尺寸是指两点之间的 距离。本章主要讨论线性尺寸。
- 2. 基本尺寸: 基本尺寸也称公称尺寸, 是指设计确定的尺寸, 用符号 D或d表示。
- 3. 极限尺寸: 指一个孔或轴允许的尺寸的两个极端值(上、下极限尺寸)。

孔大写字母,轴小 写字母

3、有关尺寸的术语和定义

4. 实际尺寸: 通过测量获得的某一孔和轴的尺寸。

分别用 D_a 和 d_a 表示。包含测量误差,且同一表面不同部位的实际尺寸往往也不相同。

实际尺寸与极限尺寸关系

3、有关尺寸的术语和定义

尺寸

基本尺寸---公称尺寸(由图样规范确定的,设计时综合考虑使用要求,通过刚度、强度计算和工艺结构分析,并按标准直径或标准长度圆整后所给定的尺寸)

实际尺寸-----零件加工成品后,通过测量获得的尺寸

极限尺寸-----允许尺寸变化的两个极限值,合格零件的尺寸应该在上下极限尺寸之间。

4、有关偏差和公差的术语和定义

1. 尺寸偏差:

某一尺寸减去基本尺寸所得的代数差。包括实际偏差和极限偏差。极限偏差 又分上极限偏差,简称上偏差(孔ES、轴es)和下极限偏差,简称下偏差(孔 EI、轴ei)。

$$ES = D_{max} - D$$
 $es = d_{max} - d$

$$EI = D_{min} - D$$
 $ei = d_{min} - d$

极限偏差

上偏差

下偏差

偏差: 允许偏离基本尺寸的多少

偏差=(某一尺寸)-(基本尺寸)

实际偏差 $\left\{ \begin{array}{l} E_{\mathbf{a}} = D_{\mathbf{a}} - D \\ e_{\mathbf{a}} = d_{\mathbf{a}} - d \end{array} \right.$

例题 有轴类零 件数量: 30个

例题分析

实际尺寸	15.980	15.985	15.990	15.995	16.000	16.005	实际 尺寸 数量	
数量	1	5	11	9	3	1	30	
实际偏差	-0.020	-0.015	-0.010	-0.005	0	+0.005	2	个不合格

• 2. 尺寸公差(简称公差):允许尺寸的变动量。等于上极限尺寸减去下极限尺寸所得的差值。

$$T_D = |D_{\text{max}} - D_{\text{min}}| = |ES - EI| > 0$$

$$T_d = |d_{\text{max}} - d_{\text{min}}| = |es - ei| > 0$$

极限偏差的标注:

$$\Phi 25^{+0.021}_{0}$$

$$\Phi 25^{-0.020}_{-0.033}$$

$$\Phi 25 \pm 0.021$$

3. 极限制

公差带有两个基本参数:

用标准化的公差与极限偏差组成标准化的孔、轴公

差带的制度称为极限制。

4. 公差带图

- •由于基本尺寸与公差、偏差的数值相差颇大,不便用同一比例表示, 故采用公差带图。
- •零线:表示基本尺寸的一条直线,以它作为基准线确定偏差和公差,零线以上为正偏差,以下为负偏差。
- •尺寸公差带: 由代表上、下偏差的两条直线所限定的一个区域。

公差带示意图及公差带

尺寸公差带图举例:

画出公称尺寸为 ϕ 50mm,上极限尺寸为 ϕ 50.025mm、下极限尺寸为 ϕ 50.mm的孔与上极限尺寸为 ϕ 49.975mm、下极限尺寸为 ϕ 49.959mm的轴的公差带图。

例1: 公称尺寸为50mm的相互结合的孔和轴的极限尺寸分别为:

$$\begin{split} D_{\text{max}} &= \phi 50.025 \text{mm} \qquad D_{\text{min}} = \phi 50 \text{mm} \\ d_{\text{max}} &= \phi 49.950 \text{mm} \qquad d_{\text{min}} = 49.934 \text{mm} \end{split}$$

它们加工后测得一孔和一轴的实际尺寸分别为:

$$D_a = \phi 50.01$$
mm $d_a = \phi 49.946$ mm

求: 孔和轴的极限偏差、公差和实际偏差,并画出该孔、轴的公差带示意图。

配合是指基本尺寸相同的,相互结合的孔和轴公差带之间的关系。

2. 间隙或过盈

间隙或过盈是指孔的尺寸减去相配合的轴的尺寸所得的代数差。该代数差为正值时叫做间隙,用符号*I*表示;该代数差为负值时叫做过盈,用符号*I*表示。

$$D_a - d_a = \begin{cases} + (X) \\ - (Y) \end{cases}$$

(孔的尺寸)-(轴的尺寸)
$$\}_{\leq 0}^{\geq 0} \longrightarrow illiping X \\ \longrightarrow illiping Y$$

通过公差带图,我们能清楚地看到孔、轴公差带之间的关系。根据其公带位置不同,可分为三种类型:

3. 配合的分类

(1)间隙配合

特点: 孔总在轴之上

(2) 过盈配合

特点: 孔总在轴之下

$$ES \leq ei$$
 $D_{\max} \leq d_{\min}$ $Y_{\max} = D_{\min} - d_{\max} = EI - es$ $Y_{\max} = D_{\max} - d_{\min} = ES - ei$ $Y_{av} = D_{av} - d_{av} = \frac{Y_{\max} + Y_{\min}}{2}$

特点: 孔和轴交叠

$$ES > ei$$
 $EI < es$ $D_{\min} < d_{\max}$ EI $D_{\max} > d_{\min}$

$$Y_{\text{max}} = D_{\text{min}} - d_{\text{max}} = EI - es$$
 $X_{\text{max}} = D_{\text{max}} - d_{\text{min}} = ES - ei$
 $Y_{av}(X_{av}) = D_{av} - d_{av} = \frac{X_{\text{max}} + Y_{\text{max}}}{2}$

4. 配合公差 组成配合的孔、轴公差之和。它是允许间隙或过盈的变动量。

对于间隙配合
$$T_f = \left| X_{\max} - X_{\min} \right|$$
 对于过盈配合 $T_f = \left| Y_{\max} - Y_{\min} \right|$ $= T_h + T_s$ 对于过渡配合 $T_f = \left| X_{\max} - Y_{\max} \right|$

$$T_f = T_h + T_s$$

$$T_f = |X_{\text{max}}(Y_{\text{min}}) - X_{\text{min}}(Y_{\text{max}})| = T_D + T_d$$

它反映配合性质,即配合松紧变化程度。

从配合精度角度讨论配合公差

1) 配合公差是一个没有符号的绝对值。配合公差越大,则配合后的松紧差别程度越大,即配合的一致性差,配合的精度低。

反之,配合公差越小,配合的松紧差别越小,即配合的一致性好,配合精度高。

2) 配合公差不反映配合的松紧程度,它反应的是配合的松紧变化程度,也就是说反应了孔轴的配合精度。

从加工成本角度讨论配合公差

配合公差等于组成配合的孔和轴的公差之和。配合精度的 高低是由相配合的孔和轴的精度决定的。配合精度要求越高(例如,对于间隙配合,配合公差15微米和60微米代表不同的间 隙配合精度),加工成本越高。反之,配合精度要求越低,孔, 和轴的加工成本越低。

从装配难度角度讨论孔轴的配合公差

- 1) 配合公差在设计时既要体现机器配合部位使用功能的要求, 也要考虑装配难度问题。
- 2)配合公差越大,配合的精度越低,配合时形成的间隙或过盈可能差别也越大,配合后产生的松紧差别程度越大,孔和轴 在公差制造时允许的尺寸变化的范围越大,加工越容易,制造成本较低。
- 反之,配合公差越小,配合的精度越高,加工装配越难, 成本也较高。

从使用要求角度讨论孔轴的配合公差

1)若要提高配合精度(使用要求),则必须减少相配合的孔和轴的尺寸公差,这将使得制造难度增加,成本提高,所以设计的时候要综合考虑使用要求和制造难易这两个方面,合理选取,从而提高综合技术经济效益。

配合公差 小结

- ✓ 配合公差表示配合的精确程度,是使用要求,即设计要求;而孔公差与轴公 差分别表示孔、轴加工的精确程度,是制造要求,即工艺要求:
- \checkmark 使用要求或设计要求提高,即 T_f 减小,则($T_H + T_S$)也要减小,即制造要求或工艺 要求提高,加工将更困难,制造成本也将提高。
- ✓ 在满足设计要求的前提下,尽量选择较大的孔轴公差,以降低加工装配难度和制造成 本。

T_h+T_S≤ T_f

已知某孔、轴的公称尺寸为 \$40 mm,要式配合间隙在 0.022~0.066 mm 围内。试确定孔、轴的公差等级和配合种类。

类型	间隙配合(Clearance Fit)	过渡配合(Transition Fit)	过盈配合(Interference Fit)
定义	具有间隙(包括最小间隙等于 零)的配合	可能具有间隙或过盈的配合	具有过盈(包括最小过盈等于零)的 配合
	孔在轴之上	孔与轴相互交叠	孔在轴之下
公差带位置 关系	和 和 X max	和 和 Xmax Xmax Xmax Xmax Xmax Xmax Xmax Xmax	轴 和 和 Xmax
参数	$X_{\text{max}} = D_{\text{max}} - d_{\text{min}} = \text{ES-ei}$	$X_{\text{max}} = D_{\text{max}} - d_{\text{min}} = \text{ES-ei}$	$Y_{\text{max}} = D_{\text{min}} - d_{\text{max}} = \text{EI-es}$
	$X_{\min} = D_{\min} - d_{\max} = \text{EI-es}$	$Y_{\text{max}} = D_{\text{min}} - d_{\text{max}} = \text{EI} - \text{es}$	$Y_{\min} = D_{\max} - d_{\min} = \text{ES-ei}$
$T_{\rm f}$	$X_{\text{max}} - X_{\text{min}}$	$X_{\text{max}} - Y_{\text{max}}$	$ Y_{\max} - Y_{\min} $
应用	孔与轴间允许发生相对运动	要求对中性和同轴度且易拆卸的连接	工件间传递载荷或固定位置

尺寸公差带图

类型 间隙配合(Clearance Fit)	间隙配合(Clearance Fit)					
定义 具有间隙(包括最小间隙 零)的配合	具有间隙(包括最小间隙等于 零)的配合					
孔在轴之上	<u> </u>					
公差带 孔 孔						
位置	max					
位直 关系 × ★ 轴	$\frac{\Lambda_{\rm m}}{}$					
轴	<u> </u>					
$X_{\text{max}} = D_{\text{max}} - d_{\text{min}} = \text{ES-ei}$	$X_{\max} = D_{\max} - d_{\min} = ES - ei$					
$X_{\min} = D_{\min} - d_{\max} = \text{EI-es}$	$X_{\min} = D_{\min} - d_{\max} = \text{EI-es}$					
$T_{\rm f} \qquad \mid X_{\rm max} - X_{\rm min} \mid$						
应用 孔与轴间允许发生相对运	动					

过渡配合(Transition Fit)

可能具有间隙或过盈的配合

孔与轴相互交叠

$$X_{\text{max}} = D_{\text{max}} - d_{\text{min}} = \text{ES} - \text{ei}$$

$$Y_{\text{max}} = D_{\text{min}} - d_{\text{max}} = \text{EI} - \text{es}$$

$$X_{\max} - Y_{\max}$$

要求对中性和同轴度且易拆卸的连接

过渡配合

具有过盈(包括最小过盈等于零)的 配合

孔在轴之下

$$Y_{\text{max}} = D_{\text{min}} - d_{\text{max}} = \text{EI-es}$$

$$Y_{\min} = D_{\max} - d_{\min} = \text{ES-ei}$$

$$|Y_{\text{max}} - Y_{\text{min}}|$$

工件间传递载荷或固定位置

例2

组成配合的孔和轴在零件图上标注的基本尺寸和极限偏差分别为:

引: $\phi 50^+$ 0.025 mm

#由: $\phi 50^{-0.025}_{-0.041}$ mm

试计算该配合的最大间隙、最大过盈、平均间隙或 平均过盈及配合公差,并画出孔、轴公差带示意图。

解:

最大间隙
$$X_{\text{max}}$$
=ES-ei=+0.025-(-0.041)= +0.066 mm 最小间隙 X_{min} =EI-es=0-(-0.025)= +0.025 mm

$$X_{av} = \frac{X_{\text{max}} + X_{\text{min}}}{2} = 0.0455 \text{mm}$$

配合公差
$$T_f = |X_{max} - X_{min}|$$

= $|+0.066 - (+0.025)| = 0.041 \text{ mm}$

例3

组成配合的孔和轴在零件图上标注的基本尺寸和极限偏差分别为:

孔 轴

 $\phi 50^{+0.025} \, \mathrm{mm}$

 $\phi 50^{+0.059}_{+0.043}$ mm

试计算该配合的最大间隙、最大过盈、平均间隙或 平均过盈及配合公差,并画出孔、轴公差带示意图。

解:

轴:

最大过盈
$$Y_{\text{max}}$$
=EI-es==0-(+0.059)= -0.059mm

最小过盈

$$Y_{\min} = ES - ei = +0.025 - (+0.043) = -0.018 \text{mm}$$

$$Y_{av} = \frac{Y_{\text{max}} + Y_{\text{min}}}{2} = -0.0385 \text{mm}$$

配合公差
$$T_f = |Y_{min} - Y_{max}|$$

= |-0.018-(-0.059)| = 0.041 mm

例4

组成配合的孔和轴在零件图上标注的基本尺寸和极限偏差分别为:

试计算该配合的最大间隙、最大过盈、平均间隙或 平均过盈及配合公差,并画出孔、轴公差带示意图。

解:

$$\cancel{fL}$$
: $\phi 50^{+0.025}$ mm

轴: $\phi 50^{+0.018}_{+0.002}$ mm

最大间隙
$$X_{\text{max}}$$
=ES-ei=+0.025-(+0.002)= +0.023 mm
最大过盈 Y_{max} =EI-es=0-(+0.018)= -0.018 mm

$$X_{\text{max}} + Y_{\text{max}}$$

$$X_{av} = \frac{X_{\text{max}} + Y_{\text{max}}}{2} = +0.0025 \text{mm}$$

配合公差
$$T_f = |X_{max} - Y_{max}|$$

= $|+0.023 - (-0.018)| = 0.041 \text{ mm}$

5. 配合制

用标准化的孔、轴公差带(即同一极限制的孔和轴)组成各种配合的制度称为配合制。

回顾:用<mark>标准化的公差与极限偏差</mark>组成<mark>标准化的孔、轴公差带</mark>的制度称为极限制。

度称为配合制。

GB/T 1800.1规定了两种基准制(基孔制和基轴制)来获得各种配合。

(1) 基孔制

基孔制是指<mark>基本偏差</mark>为一定的孔的公差带,与不同<mark>基本偏差</mark>的轴的公差带形成各种配合的一种制度。基孔制的孔为基准孔,公差带位于零线上

方,且基准孔下偏差等于零。

基孔制配合 中的孔称为 基准孔,

(2) 基轴制

基轴制是指<mark>基本偏差为一定的轴的公差带</mark>,与不同基本偏差的孔的公差带形成各种配合的一种制度。基轴制的轴为基准轴,它的公差带位于零线的下方,基准轴上偏差等于零。

基轴制配合中 的轴称为基准 轴,

基准轴的上极限尺寸与公称尺寸相等,即轴的上偏差为0,

其基本偏差代 号为h, 基本偏差为: es = 0。