Scrawlings of the MagiKarp

Definition. A <u>map</u> $f : A \to B$ is a subset $f \subset A \times B$ such that for all $a \in A$, there exists a $b \in B$ such that b is unique with $(a, b) \in f$.

Definition. We write f(a) = b if $(a, b) \in f$. A is the **domain** of f and B is the **codomain**.

Definition. A **binary operation** on *A* is a map $\star : A \times A \to A$ such that $\star(a_1, a_2) = a_1 \star a_2$ for $a_1, a_2 \in A$.

Definition. A binary operation \star is **associative** on A if for all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.

Definition. An element $e \in A$ is an **identity** element of \star if for each $a \in A$, $e \star a = a \star e = a$.

Definition. An element $a \in A$ has an <u>inverse</u> under \star if there exists a $b \in A$ such that $a \star b = b \star a = e$.

Definition. A set A with an associative binary operation \star is a **group** if A has an identity element under \star and every $a \in A$ has an inverse.

Definition

A group is a pair (G, \star) where G is a set and \star is a binary operation on G such that

- 1. For all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.
- 2. There exists an $e \in G$ such that $a \star e = e \star a = a$ for all $a \in G$.
- 3. For all $a \in G$, there exists a $b \in G$ such that $a \star b = b \star a = e$.

Definition. A group (G, \star) is **abelian** or commutative if for all $g, h \in G$, $g \star h = h \star g$.

Theorem

Let (G, \star) be a group.

- 1. *e* is unique.
- 2. g^{-1} is unique.
- 3. $\forall g \in G, (g^{-1})^{-1} = g$.
- 4. $\forall g, h \in G, (g \star h)^{-1} = h^{-1} \star g^{-1}$.

Proof

We may prove each part separately.

1. Suppose e, e' are identity elements. Then for all $a \in G$,

$$a \star e = e \star a = a \tag{i}$$

$$a \star e' = e' \star a = a \tag{ii}$$

By (i), $e' = e \star e'$ and by (ii), $e = e \star e'$. Therefore, e = e'.

2. Supposed $a \star b = b \star a = e$, then

$$b = b \star e$$

$$= b \star (a \star a^{-1})$$

$$= (b \star a) \star a^{-1}$$

$$= e \star a^{-1}$$

$$= a^{-1}$$

Thus, $b = a^{-1}$.

3.
$$g^{-1} \star (g^{-1})^{-1} = e = g^{-1} \star g$$
. By (ii), $g = (g^{-1})^{-1}$.

4. Consider $(a \star b) \star (b^{-1} \star a^{-1})$.

$$(a \star b) \star (b^{-1} \star a^{-1}) = a \star (b \star b^{-1}) \star a^{-1}$$
$$= a \star e \star a^{-1}$$
$$= a \star a^{-1}$$
$$= e$$

Thus, $(b^{-1} \star a^{-1}) = (a \star b)^{-1}$.

Definition. Let $[n] = \{1, 2, ..., n\}$. The **symmetric group** denoted S_n of degree n is the set of all bijections on [n] under the operation of composition.

$$S_n = {\sigma : [n] \rightarrow [n] \mid \sigma \text{ is a bijection}}$$

Definition. The <u>order</u> of (G, \star) is the number of elements in G denoted |G|.

Definition. Let $n \ge 2$. The **dihedral group** of index n is the group of all symmetries of a regular polygon P_n with n vertices in the Euclidean plane.

Symmetries of P_n consist of rotations and reflections.

Choose a vertex v. Let L_0 be the line from the center of P_n through v. Let L_k be L_0 rotated by $\frac{\pi k}{n}$ for $1 \le k \le n$. Let σ_k be a reflection about L_k . Let ρ_k be a rotation about $\frac{2\pi k}{n}$, $1 \le k \le n$.

Definition. A subset $S \subseteq G$ of a group (G, \star) is a set of **generators**, denoted $\langle S \rangle = G$, if and only if every element of G can be written as a product of elements of S and their inverses.

Definition. Any equation satisfied by generators is called a <u>relation</u>.

Definition. A **presentation** of G, denoted $\langle S \mid R \rangle$, is a set of generators of G and relations such that any other relation can be derived by those given.

Example.

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$$

Definition. The cycles $\sigma = (\sigma_1 \, \sigma_2 \, \dots \, \sigma_n)$ and $\tau = (\tau_1 \, \tau_2 \, \dots \, \tau_n)$ are **disjoint** if $\sigma_i \neq \tau_j$ for $1 \leq i \leq n$ and $1 \leq j \leq m$.

Definition. A cycle of length 2 is called a **transposition**.

Definition. An expression of the form $(a_1 \ a_2 \ \dots \ a_m)$ is called a **cycle of length m** or an **m-cycle**.

Proposition. Let $\alpha = (a_1 \ a_2 \ \dots \ a_m)$ and $\beta = (b_1 \ b_2 \ \dots \ b_n)$. If $a_i \neq b_j$ for any i, j, then $\alpha\beta = \beta\alpha$.

Proposition. Every permutation can be written as a product of disjoint cycles.

Proposition. A cycle of length n has order n.

Proposition. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be disjoint cycles. Then,

$$|\alpha_1\alpha_2...\alpha_n| = \operatorname{lcm}(|\alpha_1|, |\alpha_2|, ..., |\alpha_n|)$$

Proposition. Every permutation is S_n is a product of 2-cycles (which are not necessarily disjoint).

Proposition. If $\alpha = \beta_1 \beta_2 \dots \beta_r = \gamma_1 \gamma_2 \dots \gamma_s$ where β_i, γ_j are transpositions, then r and s have the same parity.

Definition. If r and s are both odd, α is called an **odd permutation**. If r and s are both even, α is called an **even permutation**.

Definition. The set of even permutations in S_n form a group called the <u>alternating group</u>, denoted A_n .

Note. $|A_n| = \frac{n!}{2}$ for n > 1.

Definition

Let (G, \star) and (G', *) be groups. A map of sets $\varphi : G \to G'$ is a **group homomorphism** if for all $a, b \in G$,

$$\varphi(a \star b) = \varphi(a) * \varphi(b)$$

Example. The following are two very simple examples of homomorphisms.

Trivial Homomorphism

$$\varphi: G \to G', \varphi(g) = e, \forall g \in G$$

Identity Homomorphism

$$\varphi: G \to G', \varphi(g) = g, \forall g \in G$$

Definition. If $\varphi : G \to G'$ is a homomorphism, the **domain** of φ is $Dom(\varphi) = G$, the **codomain** of φ is $Codom(\varphi) = G'$, the **range** or **image** of φ is $\varphi(G) = \{\varphi(g) : g \in G\} \subseteq G'$ denoted $Range(\varphi)$ or $Im(\varphi)$.

Definition

A homomorphism which is bijective is called an **isomorphism**.

 $\varphi: G \to G'$ is an isomorphism if and only if there exists $\psi: G' \to G$ such that ψ is a homomorphism and $\varphi \circ \psi = 1_{G'}$, $\psi \circ \varphi = 1_G$, i.e. ψ is an inverse homomorphism to φ . We say G is isomorphic to G' by $G \cong G'$ or $\varphi: G \xrightarrow{\sim} G'$.

Definition

Let (G, \star) be a group. A subset $H \subseteq G$ is a **subgroup** if (H, \star) is also a group.

If $H \neq \emptyset$ and $H \subseteq G$, $H \leq G$ or H is a subgroup of G if and only if

- 1. *H* is closed under \star ($\forall h_1, h_2 \in H, h_1 \star h_2 \in H$).
- 2. *H* is closed under inverses $(h \in H \Rightarrow h^{-1} \in H)$.

Note. The following is notation for arbitrary and abelian groups.

 $x \star y \rightarrow xy$ for arbitrary G, x + y for abelian G $e \rightarrow 1$ for arbitrary G, 0 for abelian G

For an arbitrary subset $A \subseteq G$, and $g \in G$,

$$gA = \{ga : a \in A\}$$
 $Ag = \{ag : a \in A\}$ $gAg^{-1} = \{gag^{-1} : a \in A\}$

Theorem (Subgroup Criterion)

Let $\emptyset \neq H \subseteq G$, $H \leq G$ if and only if $\forall x, y \in H$, $xy^{-1} \in H$.

Definition. Let $A \subseteq G$ be any subset. The <u>centralizer</u> of A in G is $C_G(A) = \{g \in G : gag^{-1} = a\}$ and it is the set of elements in G which commute with all elements of A.

Proposition. $C_G(A) \leq G$

Proof. First we show that the centralizer is not empty. 1a = a1 = a, $\forall a \in A \Rightarrow 1 \in C_G(A) \Rightarrow C_G(A) \neq 0$ so the centralizer of A is not empty. Let $x, y \in C_G(A)$. We want to show that $xy^{-1} \in C_G(A)$ or that $xy^{-1} \in C_G(A)$. We do this by showing that $(xy^{-1}) a (xy^{-1})^{-1} = a$.

$$(xy^{-1}) a (xy^{-1})^{-1} = xy^{-1}ayx^{-1}$$

$$= x (y^{-1}ay) x^{-1}$$

$$= xax^{-1} \qquad (y \in C_G(A))$$

$$= a \qquad (x \in C_G(A))$$

Since this subset satisfies the Subgroup Criterion, the centralizer $C_G(A)$ is a subgroup of G.

Definition. The <u>center</u> of a group G is denoted $Z(G) = \{g \in G : gx = xg, \forall x \in G\}$. $Z(G) = C_G(G) \leq G$. Z(G) is the set of elements of G which commute with all elements in G. If G is abelian, Z(G) = G.

Definition. The <u>normalizer</u> of A in G is $N_G(A) = \{g \in G : gAg^{-1} = A\}$ or $\{g \in G : gag^{-1} = a' \in A\}$.

Proposition. $C_G(A) \leq N_G(A) \leq G$

Definition. A **group action** of a group *G* on a set *A* is a map $G \times A \to A$ such that $(g_1g_2) \cdot a = g_1 \cdot (g_2 \cdot a)$, $\forall g_1, g_2 \in G$, $\forall a \in A$ and $1 \cdot a = a$, $\forall a \in A$. It is denoted $G \circlearrowleft A$.

Definition. Suppose $G \circlearrowleft A$, the stabilizer of $a \in A$ in G is $G_a = \{g \in G : g \cdot a = a\}$. $G_a \leq G$.

Definition

An **equivalence relation** \mathcal{E} on a set S is a subset $\mathcal{E} \subseteq S \times S$ which is reflexive, symmetric, and transitive. We write $(a,b) \in \mathcal{E} \Leftrightarrow a \mathcal{E} b$ or $a \sim b$.

- 1. $a \sim a$
- 2. $a \sim b \Leftrightarrow b \sim a$
- 3. $a \sim b$, $b \sim c \Rightarrow a \sim c$

Definition. The **equivalence class** of $a \in S$ is $[a] = \{b \in S : a \sim b\}$

Definition. The **quotient set** of *S* under \sim is $S/\sim=\{[a]: a \in S\}$.

Example. $\mathbb{Q} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : b \neq 0\} / \sim, (a,b) \sim (c,d) \Rightarrow ad = bc.$

Definition. The quotient set comes equipped with the <u>projection map</u> $\pi: S \to S/\sim$ where $a \mapsto [a] = \pi(a)$. This map is surjective by definition.

Definition

A group G' is a **quotient group** of a group G if

- 1. $G' = G/\sim$, G' is the quotient set of G under an equivalence relation \sim .
- 2. The projection map $\pi: G \to G' = G/\sim$ is a group homomorphism.

Definition. Let $\varphi : G \to G'$ be a homomorphism and let $g' \in G'$. The <u>fiber</u> over g' is $\varphi^{-1}(g') = \{g \in G : \varphi(g) = g'\}$.

Proposition

All quotient groups come from subgroups.

Proof

Let $\varphi: G \to G'$ be a homomorphism, then φ induces an equivalence relation on G. Let $x \sim y \Leftrightarrow \varphi(x) = \varphi(y)$. But φ is a group homomorphism, so $\varphi(x) = \varphi(y) \Leftrightarrow \varphi(x) \varphi(y)^{-1} = 1_{G'} \Leftrightarrow \varphi(x) \varphi(y^{-1}) = 1 \Leftrightarrow \varphi(xy^{-1}) = 1$. So $x \sim y \Leftrightarrow \varphi(xy^{-1}) = 1$. Let $K = \{g \in G : \varphi(g) = 1\}$. Then $x \sim y \Leftrightarrow xy^{-1} \in K$. Recall $K = \operatorname{Ker}(\varphi) \leq G$.

Let G' be a quotient group of G. Then $x \sim y \Leftrightarrow [x] = [y] \Leftrightarrow \pi(x) = \pi(y)$ where $\pi: G \to G'$ is the projection. But $\pi(x) = \pi(y) \Leftrightarrow xy^{-1} \in \text{Ker}(\varphi)$.

Definition. The **right coset** of a subgroup H of a group G by the element $x \in G$ is $Hx = \{hx : h \in H\}$. The **left coset**, denoted xH is denoted similarly.

Proposition. Let $\varphi : G \to G'$ be a homomorphism and $K = \text{Ker}(\varphi)$. Then $xKx^{-1} \subseteq K$, $\forall x \in G$.

Proof. We must show $\varphi(xkx^{-1}) = 1_{G'}$ for $x \in G$, $k \in K$. Then, $\varphi(xkx^{-1}) = \varphi(x)\varphi(k)\varphi(x^{-1}) = \varphi(x)\varphi(x)^{-1} = 1_{G'}$.

Definition

The subgroup $N \le G$ is <u>normal</u> if $xNx^{-1} \subseteq N$ for all $x \in G$. It is denoted $N \le G$.

Proposition. Ker(φ) \subseteq G for any homomorphism φ : $G \to G'$.

Theorem

Let $N \leq G$. Then the following are equivalent.

- 1. $N \subseteq G$ ($xNx^{-1} \subseteq N$, $\forall x \in G$)
- 2. $xNx^{-1} = N$
- 3. xN = Nx
- 4. $\forall x, y \in G, xy^{-1} \in N \Leftrightarrow y^{-1}x \in N$

Proof

- (1) \Rightarrow (2) Assume $\forall x \in G$, $xNx^{-1} \subseteq N$. We want to show $xNx^{-1} = N$. We do this by showing $N \subseteq xNx^{-1}$. Let $x \in G$, $n_0 \in N$. We show $n_0 \in xNx^{-1}$. Note that $x \in G \Rightarrow x^{-1} \in G$. Thus, $x^{-1}N\left(x^{-1}\right)^{-1} \subseteq N$ since $N \subseteq G$. Thus there exists n such that $x^{-1}nx = n_1 \in N$. $n_0 = x\left(x^{-1}n_0x\right)x^{-1} = xn_1x^{-1} \in xNx^{-1}$.
- $(3)\Rightarrow (4)$ Assume $\forall x\in G, xN=Nx$. Let $x,y\in G$. We want to show $xy^{-1}\in N\Leftrightarrow y^{-1}x\in N$. So we must show this is true in both directions. Suppose $xy^{-1}\in N$. Then there exists an $n_1\in N$ such that $xy^{-1}=n_1$. Thus, $x=n_1y\in Ny=yN$ by assumption. So $x\in yN$. Thus there exists $n_2\in N$ such that $x=yn_2\Rightarrow y^{-1}x=n_2\in N$. Thus, $xy^{-1}\in N\Rightarrow y^{-1}x\in N$. Similarly, $y^{-1}x\in N\Rightarrow xy^{-1}\in N$.