Sprawozdanie z laboratorium: Eksploracji Masywnych Danych

Python projekt

15 lutego 2021

Prowadzący: Anna Labijak-Kowalska

Autorzy: Jarosław Warmbier inf132148 ISWD jaroslaw.warmbier@student.put.poznan.pl

1 Opis problemu

Zadaniem jest napiesanie klasyfikatora przewidującego ogólną ocenę na podstawie tekstowej opinii. Naszym zbiorem uczącym jest plik reviews_train.csv, który składa się zna następujących atrybutów: reviewerID, asin, reviewerName, helpful, reviewText, summary, unixReviewTime, reviewTime.

2 Wstępna analiza danych i preprocessing

Zbiór danych zawiera około 556 tysięcy opinii, którego rozkład opinii jest przedstawiony na Rys. 1. Klasa większościowa to ocena 5.0, która stanowi około 51 % ocen, kolejną najczęstszą oceną jest 4.0 (około 21 %).

Rysunek 1: Liczność poszczególnych ocen

Do dalszej analizy zostanie wykorzystany tylko atrybut reivewText oraz klasa decyzyjna score. Usuwamy wiersze, w których nie została podana opinia słownie w komórce reviewText. Wszystkie znaki w opiniach zostały zamienione na małe litery oraz nazwy ewentualnych znaków specjalnych na odpowiednie symbole. Przy użyciu klasy ReviewTokenizer zostały w słowach odizolowane wszystkie hastami, linki oraz emotikony. Na koniec każde słowo zostało przetworzone przez PorterStem, a następnie usunięto stopwords.

Wykorzystano BoW (ang. Bag of Words) do reprezentacji wszystkich dokumentów. W celu predykcji klasy obiektu wykorzystano słowa, które najczęściej pojawiały się w zbiorze danych uczących z licznością co najmniej 1000 razy, po filtracji liczba tych słów wynosiła około 1300.

3 Wyniki działania

3.1 Dummy

Klasyfikator z danych uczący wybiera najczęściej występującą klasę i taką klasę przypisuje do wszystkich dokumentów. Dostrzegamy, że najczęściej występującą klasą jest wynik 5.0.

Tabela 1: Wyniki działania algorytmu Dummy

Score	1.0	2.0	3.0	4.0	5.0
F1	0.00	0.00	0.00	0.00	0.6733
Precision	0.00	0.00	0.00	0.00	0.5075
Recall	0.00	0.00	0.00	0.00	1.00

3.2 NBC

Klasyfikator NBC uzyskuje znacznie lepsze rezultaty od klasyfikator Dummy. Z największą dokładnością klasyfikuje dokumenty z oceną 5.0 i 1.0.

Tabela 2: Wyniki działania algorytmu NBC

Score	1.0	2.0	3.0	4.0	5.0
F1	0.5649	0.1823	0.3216	0.3478	0.7532
Precision	0.5000	0.2870	0.3940	0.4196	0.6929
Recall	0.6492	0.1336	0.2716	0.2969	0.8250

3.3 SVM

Tabela 3: Wyniki działania algorytmu SVM

Score	1.0	2.0	3.0	4.0	5.0
F1	0.5830	0.2595	0.3582	0.3695	0.7677
Precision	0.4863	0.2592	0.3941	0.4504	0.7478
Recall	0.7275	0.2597	0.3283	0.3133	0.7887

3.4 RandomForest

Klasyfikator Random Forest był uczony na losowej 20 % próbce danych wejściowych z parametrami:

- $n_{\text{estimators}} = 300$,
- $n_{-jobs}=-1$,
- random_state=23.

Tabela 4: Wyniki działania algorytmu RandomForest

Score	1.0	2.0	3.0	4.0	5.0
F1	0.6434	0.3326	0.4544	0.4391	0.7847
Precision	0.6499	0.9201	0.7042	0.6763	0.6666
Recall	0.6370	0.2030	0.3354	0.3250	0.9536

4 Uruchomienie

W przypadku uruchomienia zbioru na innych danych testowych trzeba podmienić plik reviews_test.csv i uruchomić skrypt main.py.

5 Podsumowanie

Najlepsze rezultaty na danych treningowych uzyskał algorytm Random
Forest. Dalszym kierunkiem rozwoju klasyfikowania dokumentów jest próba wykorzystania miary TF.
IDF oraz spróbować wydobyć wiedzę z innych atrybutów.