Small-signal Analysis

Objectives

- 1. To emphasize the importance of the *best DC bias-point* and *dynamic range* in high voltage-gain circuit.
- 2. To have the greatest performance in frequency response by employing feedback network and compensation capacitor to the circuit.

Overview

Fig. 1 DC-Sweep Diagram of (V_E, V_F) vs V_A

Refer to the diagram shown in Fig. 2,

- 1. The curve slope in the transition region is high, which means the voltage gain will be high as well.
- 2. The voltage gain at the two different DC-bias point is shown as follow:

$$\left. \frac{v_{o1}}{v_i} \right|_{Q_1} < \frac{v_{o2}}{v_i} \right|_{Q_2},$$

where: $V_A|_{Q_1} \leq V_A|_{Q_2}$

3. We can conclude that the slightly change with V_A will result the huge voltage gain variation. In the best DC-bias point, $V_F \neq 0$. Therefore, in order to have maximum voltage gain, we are not necessarily to insist on adjusting $V_F = 0$.

Fig. 2 Selection of the best DC-bias point

Components and Instrumentation

Instrument	Quantity	Components	Quantity
Oscilloscope	1	CD 4007	3
Multi-meter	1	VR (可變電阻) (1 kΩ)	1
Power supplier	1	10 kΩ	1
Function Gen.	1	1 kΩ	1
0.47 μF	1	18 kΩ	2
12. 12 July			4/2

Instrument confirmation

Before you proceed to any part of the experiment, please remember to do the **Instrument Examinations** to the instruments before performing any experiment. The examining procedures are shown in experiment 1.

Lab Work

1. CD4007-PINOUT

Note: Always supply voltage $-V_{SS} = -8V$ in pin7 and $V_{DD} = +8V$ in pin 14 for every chip of CD4007. The experimental results will be unreasonable if the above notice has not been followed.

- 2. Tuning the best DC-bias point
 - (1) Adjust VR (R_3) in Fig. 3 (shown in the next page) to have $V_F = 0$.
- 3. Set up the dynamic range, and voltage gain
 - (2) In Fig. 4, apply the input small signal V_i to the breadboard by using function generator to generate $v_i = v_{ac} \times \sin(2\pi f t)$, $2v_{ac} = 20 \text{mV}_{(p-p)}$, f = 1 kHz.

Fig. 3 Selection of DC-bias point in Two-stage OP-Amp circuit

Fig. 4 Small signal applied in Two-stage OP-Amp circuit

- (3) Make sure that the v_i is measured from the breadboard by using the probe from **CH1** in oscilloscope.
- (4) Oscilloscope ► YT mode.
- (5) Adjust VR (R_3) 1 $k\Omega$ in Fig. 2-2 to have maximum small-signal voltage gain V_F/V_i .
- (6) Keep the previous adjustment of R_3 constantly.
- (7) Record the voltage gain $A_{M,1} = V/V$ (Reference value $|A_{M,1}| \ge 200V/V$.) by observing the differentiation of input and output voltage value shown in the oscilloscope.
- (8) Record the V_F (DC) = _____V, R_3 = _____ $k\Omega$, ____ $k\Omega$.
- (9) Confirm whether the voltage gain is the same as the slope of the curve at transition region measured in step 6 at Exp 3. (Y/N) ______.
- (10) Increase/Decrease V_i until the waveform of V_F just distort.
- (11) Record the peak-to-peak value of $V_i = V$. (Dynamic range).
- (Hint: Dynamic range is the largest possible input value that doesn't make output waveform distort.)

4. Frequency response

- (12) Set $v_i = v_{ac} \times \sin(2\pi f t)$, $2v_{ac} = 20 \text{mV}_{(p-p)}$, f = 1 kHz.
- (13) Function generator \blacktriangleright Adjust Frequency and observe the voltage gain A_V in oscilloscope until A_V =0.707× A_M .
- (14) Record the frequency $f_{3dB.1} = \underline{\text{Hz}}$. (Reference: $f_{3dB.1} \ge 30 \text{kHz}$.)
- (15) Change the frequency of input voltage source, and record the input and output voltage shown in oscilloscope to the following table.

f(Hz)	$V_{i(p-p)}$	$V_{O(p-p)}$	A_V	f(Hz)	$V_{i(p-p)}$	$V_{O(ext{p-p})}$	A_V
10				5K			
20				10K			
50				20K			
100			100	50K			
200		11-1		100K			
500				200K			
1K			-7	500K			
2K	×			1M		- 30	

- ****** *Homework* #1: Apply the measured data from the above table to the editing software such as EXCEL and MATLAB, and illustrate the frequency-response diagram with marking f_{3dB} and the corresponding voltage.
 - 5. Internal frequency compensation (內部補償)

Fig. 5 Internal frequency compensation

- (1) Use $R_2 = 100 k\Omega$, $C_2 = 10 \text{ pF}$ in to implement the compensation circuit in Fig. 5.
- (2) Repeat step (8) \sim (11) shown in step 3.
- (3) Record the voltage gain $A_{M.2} = V/V$. (Reference vlaue, $|A_{M.2}| \approx |A_{M.1}|$.)
- (4) Record the dynamic range $V_i =$ _____V.
- (5) Record the frequency $f_{3dB.2} = \underline{\text{Hz}}$. (Reference, $f_{3dB.2} \approx f_{3dB.1}/2$)

(6) Change the frequency of input voltage source, and record the input and output voltage shown in oscilloscope to the following table.

f(Hz)	$V_{i(p-p)}$	$V_{O(p-p)}$	A_V	f(Hz)	$V_{i(p-p)}$	$V_{O(p-p)}$	A_V
10				5K			
20				10K			
50				20K			
100				50K			
200		- 44		100K			
500				200K			
1K	34			500K		200	
2K				1M		13	

- \divideontimes Homework #2: Apply the measured data from the above table to the editing software such as EXCEL and MATLAB, and illustrate the frequency-response diagram with marking f_{3dB} and the corresponding voltage.
 - 6. Feedback network compensation (內部補償+回授電路)

Fig. 6 Feedback network compensation

Fig. 7 Schematic circuit of Fig. 6

- (1) Use $R_2 = 100 \ k\Omega$, $C_2 = 10 \ pF$ in to implement the compensation circuit in Fig. 3.
- (2) In Fig. 6, apply the input small signal V_i to the breadboard by using function generator to generate $v_i = v_{ac} \times \sin(2\pi f t)$, $2v_{ac} = 100 \text{mV}_{(p-p)}$, f = 1 kHz.
- (3) Repeat step $(8) \sim (11)$ shown in step 3.
- (4) Record the voltage gain $A_{M,3} = V/V$.
- (5) Record the dynamic range $V_i = ___V$.
- (6) Record the frequency $f_{3dB.3} = \underline{Hz}$.
- (7) Change the frequency of input voltage source, and record the input and output voltage shown in oscilloscope to the following table.

				1 · · · · ·		8	
f(Hz)	$V_{i(p-p)}$	$V_{O(p-p)}$	A_V	f(Hz)	$V_{i(p-p)}$	$V_{O(exttt{p-p})}$	A_V
10				100K			1074
20				300K			
50				500K		107/7	3.00
100	7.7			600K		777	1557
200	100			700K	1.57	Ca	4 100
500	60%			800K		15.30	1000
1K	4007			900K			
2K		200		1M	624		
500				1.1 M	7		
5K				1.2 M			
10K				1.3 M			
20K				1.4 M			
50K				1.5 M			

****** *Homework* #3: Apply the measured data from the above table to the editing software such as EXCEL and MATLAB, and illustrate the frequency-response diagram with marking f_{3dB} and the corresponding voltage.

Reference

- 1. A.S. Sedra and K.C. Smith, *Microelectronic Circuits*, 6th ed., Oxford University Press publishing, New York, 2011.
- 2. A.S. Sedra and K.C. Smith, *Laboratory Manual for Microelectronic Circuits*, 3rd ed., Oxford University Press publishing, New York, 1997.

