Задачи к лекции 1

- 1. Найдите число бинарных операций на множестве из n элементов.
- **2.** Пусть $n \ge 2$ и $N_n(\mathbb{R})$ множество всех действительных квадратных матриц порядка n с нулевой суммой столбцов.
 - (a) Докажите, что $N_n(\mathbb{R})$ является полугруппой относительно операции умножения матриц.
 - (б) Является ли $N_n(\mathbb{R})$ моноидом?
- 3. Приведите пример счётной коммутативной нециклической группы.
- **4.** Докажите, что во всякой группе элементы *ab* и *ba* имеют одинаковый порядок.
- **5.** Пусть G группа, $g \in G$ и $\operatorname{ord}(g) = m$. Найдите порядок элемента g^k .
- 6. Приведите пример бесконечной группы, в которой все элементы имеют конечный порядок.
- 7. Пусть G группа и $H \subseteq G$ непустое конечное множество, замкнутое относительно групповой операции (то есть $ab \in H$ для всех $a, b \in H$). Докажите, что H является подгруппой в G.
- 8. Найдите все левые и все правые смежные классы группы ($\mathbb{C} \setminus \{0\}, \times$) по подгруппе
 - (а) всех ненулевых действительных чисел;
 - (б) всех положительных действительных чисел.
- **9.** Найдите все левые и все правые смежные классы группы S_3 по подгруппе $\langle \sigma \rangle$, где $\sigma = (12)$.
- **10.** Пусть $G = S_n$ и $H \subseteq G$ подмножество всех подстановок, которые оставляют элемент n на месте. Докажите, что H подгруппа в G, и опишите все левые и правые смежные классы G по H.
- 11. Докажите, что во всякой конечной группе чётного порядка найдётся элемент порядка 2.
- **12.** Докажите, что если в группе G выполняется тождество $x^2 = e$, то G коммутативна.
- 13. Докажите, что всякая бесконечная группа содержит бесконечное число подгрупп.

Домашнее задание

- **1.** Докажите, что формула $m \circ n = 2mn 2m 2n + 3$ задаёт бинарную операцию на множестве $\mathbb{R} \setminus \{1\}$ и что $(\mathbb{R} \setminus \{1\}, \circ)$ является группой.
- **2.** Найдите порядки всех элементов группы $(\mathbb{Z}_{12}, +)$.
- **3.** Найдите все левые и все правые смежные классы группы A_4 по подгруппе $\langle \sigma \rangle$, где $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$.
- 4. Докажите, что всякая подгруппа циклической группы является циклической.