

Name:	
Matrikelnummer:	
Studiengang, Abschluss:	
9	inen beidseitig beschriebenen Bogen DIN A4, der mit dem eindeutig zu kennzeichnen ist. Keine elektronischen Hilfser).

Bearbeitungszeit: 120 Minuten

Hinweise:

- Bearbeiten Sie von den folgenden Aufgaben so viele wie möglich. Dabei können Sie insgesamt 108 Punkte erreichen, jedoch zählen bereits 100 Punkte als volle Punktzahl. Bei 50 oder mehr Punkten ist die Prüfung bestanden.
- Beschriften Sie alle abzugebenden Blätter mit Ihrem Namen und Ihrer Matrikelnummer. Bei fest zusammengehefteten Blättern genügt es das oberste zu beschriften. Tragen Sie Ihre Antwort in die jeweils dafür vorgesehenen Felder ein. Als Konzeptpapier sollen die Klausurrückseiten verwendet werden.
- Alle in der Vorlesung oder Übung bewiesenen Aussagen dürfen verwendet werden, außer dies ist bei einer Aufgabe ausdrücklich ausgeschlossen.
- Die Menge der natürlichen Zahlen enthält die Null.

Nur vom Korrektor auszufüllen:

Aufgabe	Punkte	erreicht
1	10	
2	12	
3	10	
4	6	
5	5	
6	12	
7	6	
8	14	
9	15	
10	8	
11	10	
Summe	108	

Note:	
-------	--

Bemerkungen:

Beachten Sie folgende Definitionen:

- Für ein Alphabet Σ , einen Buchstaben $x \in \Sigma$ und ein Wort $w \in \Sigma^*$ sei $|w|_x$ die Anzahl der Vorkommen von x in w (z. B. $|aabcab|_a = 3$).
- Ein Wort $u \in \Sigma^*$ heißt Suffix eines Wortes $w \in \Sigma^*$, falls ein Wort $x \in \Sigma^*$ existiert mit w = xu.

Beispiel: Die Suffixe von abac sind genau ε , c, ac, bac und abac.

Aufgabe 1 (10 Punkte)

Sei $\Sigma = \{a, b, c\}$. Geben Sie graphisch einen minimalen deterministischen endlichen Automaten für

 $L = \{w \in \Sigma^* \mid w \text{ enthält mindestens ein } b \text{ und } aaca \text{ ist ein Suffix von } w\}$

an.

Hinweis: Der gesuchte Automat hat genau 6 Zustände.				

gabe 2				(12 Punk
Sei L die Sprache	L =	$= \left\{ a^{4^n} \mid n \in \mathbb{N} \right\}$	}	
iber dem Alphabet Σ =				
-				

(12 Punkte)

Aufgabe 3	[10 Punkte]

Sei M' der folgende nichtdeterministische endliche Automat über dem Alphabet $\Sigma = \{a, b\}$:

M bezeichne den deterministischen endlichen Automaten, der aus M' mittels Potenzmengenkonstruktion hervorgeht. Ferner bezeichne δ die Überführungsfunktion von M.

ر ه	Geben Sie den Startzustand von M an.	(1 P)
a)	Ist dieser ein Endzustand von M ? Begründen Sie kurz.	(11)
L)	Donachnen Cio S((a, a) a)	(2 D)
D)	Berechnen Sie $\delta(\{q_0, q_1\}, a)$. Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	(3 P)
c)	Berechnen Sie $\hat{\delta}(\{q_0, q_2, q_4\}, bb)$. Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	(3 P)
	ist das Ergebins em Endzustand von M.: Degrunden ble kurz.	
d)	Berechnen Sie $\hat{\delta}(\{q_3, q_4, q_5\}, bb)$.	(3 P)
	Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	

a) Ge	ben Sie e	ein Wort w_1 an mit	$w_1 \neq aba$ aber w_1	$R_L \ aba$:	(1 I
b) Ge	ben Sie e	ein Wort w_2 an mit	$w_2 \neq aab \text{ aber } w_2$	$R_L \ aab$:	(1 I
c) Ge	ben Sie o	lie Myhill-Nerode-	Äquivalenzklasse vo	on <i>aaa</i> in Mengens	schreibweise an: (3 l
	$[aaa]_{R_I}$	$= \{ w \in \Sigma^* \mid w R_I \}$	$\{aaa\} = $		
d) Die	e Äquival	lenzrelation R_L bes	sitzt		(1 I
	□	. endlich viele Äq	uivalenzklassen und	d zwar	
		. unendlich viele	Äquivalenzklassen.		
gabe 5 Sei G d		$\text{matik } G = (\{S, A, A\})$	$B,C\},\{a,b\},P,S)$	mit	(5 Punkte
			$P = \{S \to BB \mid B \\ A \to a, \\ B \to AC \mid B \\ C \to a \mid b \mid C$	BB,	
L(0)	G) entha	lten ist. Benutzen s wie in der Vorles	,	hende Tabelle, um en.	in der Sprache (4 I die Ausführung de Felder durch.
	Länge	a	b	b	a
_	1				
_	2				
_					_
	3				

b) Gilt $abba \in L(G)$? \square Ja \square Nein Gilt $ba \in L(G)$? \square Ja \square Nein

(6 Punkte)

(1 P)

Aufgabe 4

Aufgabe 6	(12 Punkte)
-----------	-------------

Kreuzen Sie jeweils die (bezüglich Inklusion) **kleinste** Sprachklasse an, in der die jeweilige Sprache enthalten ist. Nicht angekreuzt oder mehr als ein Kreuz zählt als falsches Kreuz.

Falsche Kreuze führen **nicht** zu Punktabzügen!

		regulär (Typ 3)	deterministisch kontextfrei	kontextfrei (Typ 2)	kontextsensitiv (Typ 1)	rekursiv aufzählbar (Typ 0)
1.	$(\{a\}^* \cup \{b\}^*) \setminus \{a^{n^2}b^n \mid n \in \mathbb{N}\}$					
2.	$\{bc\}^* \cap \{c\}^*$					
3.	$\{w \in \{a, b, c\}^* \mid w _a = w _b\}$					
4.	$\{w \in \{a, b, c\}^* \mid w _a = w _b = w _c\}$					
5.	$\{w \in \{a, b, c\}^* \mid w _a \neq w _b \text{ oder } w _a \neq w _c\}$					
6.	$\{www \mid w \in \{a,b,c\}^*\}$					
7.	$\{a^{3m}b^{2n}\mid m,n\in\mathbb{N}\}$					
8.	$\{a^nb^{m+n}a^m\mid n,m\in\mathbb{N}\}$					
9.	$\{a^{2p} \mid p \text{ prim}\}$					
10.	$\{a^{2n}a^{2m} \in \{a\}^* \mid n, m \in \mathbb{N}\}$					

ufgabe 7	(6 Punkte)
Sei $\Sigma = \{a, b\}$ und sei	
$L = \{w \in \Sigma^* \mid \left. w\right _a = \left w\right _b \text{ und } abba \text{ ist ein Suffix } $	$\{von w\}$
Geben Sie eine kontextfreie Grammatik für L an.	
Hinweis: Um Punkte zu bekommen darf ihre Grammatik höchstenden, sie braucht aber nicht in Chomsky Normalform zu sein. Au der Form $A \to \varepsilon$ verwenden auch wenn A nicht das Startsymbol is	ßerdem dürfen Sie Regeln
ufgabe 8	(14 Punkte)
ufgabe 8 Für ein Wort $w = a_1 \dots a_n \in \Sigma^*$ mit $a_1, \dots, a_n \in \Sigma$ sei	(14 Punkte)
	,
Für ein Wort $w = a_1 \dots a_n \in \Sigma^*$ mit $a_1, \dots, a_n \in \Sigma$ sei	,
Für ein Wort $w=a_1\dots a_n\in \Sigma^*$ mit $a_1,\dots,a_n\in \Sigma$ sei $\operatorname{stott}(w)=\left\{a_1^{k_1}\dots a_n^{k_n}\mid k_1,\dots,k_n\in \mathbb{N}\setminus \{0\}\right\}$,
Für ein Wort $w = a_1 \dots a_n \in \Sigma^*$ mit $a_1, \dots, a_n \in \Sigma$ sei $\operatorname{stott}(w) = \left\{a_1^{k_1} \dots a_n^{k_n} \mid k_1, \dots, k_n \in \mathbb{N} \setminus \{0\}\right\}$ (insbesondere $\operatorname{stott}(\varepsilon) = \{\varepsilon\}$) und für eine Sprache $L \subseteq \Sigma^*$ sei $\operatorname{stott}(L) = \bigcup_{w \in L} \operatorname{stott}(w)$ der $\operatorname{Stotter}$ -Abschluss von L . Das heißt: In $\operatorname{stott}(L)$ sind genau die $\operatorname{W}(E)$ where $\operatorname{Stotter}(E)$ hervorgehen, indem beliebige Buchstaben aus $\operatorname{W}(E)$ mehrmals	örter, die aus den Wörtern
Für ein Wort $w = a_1 \dots a_n \in \Sigma^*$ mit $a_1, \dots, a_n \in \Sigma$ sei $\operatorname{stott}(w) = \left\{a_1^{k_1} \dots a_n^{k_n} \mid k_1, \dots, k_n \in \mathbb{N} \setminus \{0\}\right\}$ (insbesondere $\operatorname{stott}(\varepsilon) = \{\varepsilon\}$) und für eine Sprache $L \subseteq \Sigma^*$ sei $\operatorname{stott}(L) = \bigcup_{w \in L} \operatorname{stott}(w)$ der $\operatorname{Stotter}$ -Abschluss von L . Das heißt: In $\operatorname{stott}(L)$ sind genau die $\operatorname{W}(E)$ where $\operatorname{Stotter}(E)$ hervorgehen, indem beliebige Buchstaben aus $\operatorname{W}(E)$ mehrmals $\operatorname{Beispiele}(E)$	}} Törter, die aus den Wörtern wiederholt werden.
Für ein Wort $w = a_1 \dots a_n \in \Sigma^*$ mit $a_1, \dots, a_n \in \Sigma$ sei $\operatorname{stott}(w) = \left\{a_1^{k_1} \dots a_n^{k_n} \mid k_1, \dots, k_n \in \mathbb{N} \setminus \{0\}\right\}$ (insbesondere $\operatorname{stott}(\varepsilon) = \{\varepsilon\}$) und für eine Sprache $L \subseteq \Sigma^*$ sei $\operatorname{stott}(L) = \bigcup_{w \in L} \operatorname{stott}(w)$ der $\operatorname{Stotter}$ -Abschluss von L . Das heißt: In $\operatorname{stott}(L)$ sind genau die $\operatorname{W}(E)$ where $\operatorname{Stotter}(E)$ hervorgehen, indem beliebige Buchstaben aus $\operatorname{W}(E)$ mehrmals	\mathbb{R} orter, die aus den Wörtern wiederholt werden.

 $\operatorname{stott}(L_3) =$

Geben Sie eine Konstruktion an, um aus einer gegebenen kontextfre Grammatik G mit $L(G)=L$ eine Grammatik G' für stott (L) zu ber	eien (10 P) stimmen.

Beantworten Sie die folgenden Fragen eindeutig. Falsche Antworten führen nicht zu negativen Punkten.

- a) Sei $L = (\{c\}^* \cup \{ba\}^*) \setminus L((a|b)(a|b)^*).$ (3 P)
 - Gilt $\varepsilon \in L$? \Box Ja □ Nein
 - Gilt $baba \in L$? □ Ja □ Nein
 - Gilt $b \in L$? □ Ja □ Nein
- Gilt $L \subseteq \{a, c\}^*$? \Box Ja □ Nein
- b) Der zu (2 P)

äquivalente deterministische Minimalautomat hat Zustände.

c) Gegeben sei folgender NEA M:

- Akzeptiert M das Wort bbb? \Box Ja □ Nein
- Akzeptiert M das Wort ε ? \square Ja □ Nein
- Akzeptiert M das Wort ab? \square Ja □ Nein
- Akzeptiert M das Wort bba? \square Ja □ Nein
- d) Gegeben sei eine Grammatik G mit Startsymbol S und folgenden Regeln: (2 P)

$$S \to aAB$$

$$A \to aBB \mid bA$$

$$B \to b$$

Geben Sie die Anzahl der Elemente in der Menge $\{w \in L(G) \mid |w| \leq 10\}$ an:

(3 P)

- e) Welche der folgenden Aussagen gelten?
 - \square Ja □ Nein
 - Gilt $L((a|a)^*) = L((aa)^*)$? Gilt $L((a|b)^*) = L((a)^*|(b)^*)$? \Box Ja □ Nein
 - Gilt $L((a|b)^*) = L(((a)^*b)^*(a)^*)$? \Box Ja □ Nein
 - Gilt $L(b(a|b)^* | b(a|b)^*) = \{a, b\}^*$? \Box Ja □ Nein

f)	Gegeben Alphabete Σ und Γ sowie reguläre Sprachen $L_a \subseteq \Gamma^*$ für jeden (2 P) Buchstaben $a \in \Sigma$. Die Operation Substitution $\langle \! \langle \cdot \rangle \! \rangle$ einer Sprache L ergibt die Sprache
	$\langle\!\langle L \rangle\!\rangle = \{ x \in \Gamma^* \mid \exists w \in L \text{ mit } w = a_1 a_2 \cdots a_n, \ a_i \in \Sigma, \ x \in L_{a_1} L_{a_2} \dots L_{a_n} \}.$
	Insbesondere ist $\varepsilon \in \langle\langle L \rangle\rangle$, falls $\varepsilon \in L$ ist. Gegeben ist folgende Sprache
	$L = \{a^n b^n \mid n \in \mathbb{N}\}.$
	Man kann mit dem Pumping-Lemma zeigen, dass L nicht regulär ist. Folgende Argumentation versucht schrittweise zu zeigen, dass sie trotzdem regulär ist: 1. Die regulären Sprachen sind abgeschlossen unter Substitution. 2. Die Sprachen $L_a = \{ab\}$ und $L_b = \{\varepsilon\}$ sind regulär. 3. Es gilt $\langle\!\langle L \rangle\!\rangle = L((ab)^*)$. 4. $L((ab)^*)$ ist regulär und deswegen auch L .
	In welchem Schritt liegt der Fehler?
Aufgab	e 10 (8 Punkte)
a)	Ist die Sprache $L_1 = \{w \in \{a,b\}^* \mid w _a \ge 2\}$ regulär? \square Ja \square Nein Begründen Sie Ihre Antwort:
b)	Ist die Sprache $L_2=\{a^nb^{2n}\in\{a,b\}^*\mid n\in\mathbb{N}\}$ kontextfrei? \square Ja \square Nein (4 P) Begründen Sie Ihre Antwort:

Aufgab	De 11 (10 Pur	akte)
_	eichne M folgenden deterministischen endlichen Automaten:	•
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$L = T(M)$ und bezeichne außerdem $\mathrm{Synt}(L)$ das syntaktische Monoid von L , \equiv_L taktische Kongruenz von L , R_L die Myhill-Nerode-Relation und $Index(R_L)$ den Index	
a)		(1 P)
b)	Geben Sie für jede Klasse der Relation \equiv_L den längen-lexikographisch kleinsten Vertreter an (z.B. steht bb vor aaa aber hinter ba in so einer Auflistung).	(3 P)
c)	Geben Sie genau einen Repräsentanten jeder Klasse von \equiv_L an, die die Klasse $[a]_{R_L}$ verfeinert.	(2 P)
d)	Geben Sie die Verknüpfungstafel von $\operatorname{Synt}(L)$ an. Ordnen Sie die Vertreter der Zeilen- und Spaltenbeschriftungen längen-lexikographisch aufsteigend an, wobei Spaüberschriften den rechten Operanden bezeichnen.	(4 P)

Ist die Verknüpfung dieses Monoids kommutativ? $\ \square$ Ja $\ \square$ Nein