實驗單元(九):自動增益控制電路

一、實驗目的

- 1.本實驗在於了解自動增益控制電路的原理與應用。
- 2.了解使用 JFET 作為 VCR 之應用。
- 3.使用 ORCAD LAYOUT 軟體及雕刻機製作電路板。

二、實驗儀器設備

表(一):實驗儀器設備

儀器名稱	數量
萬用電錶或三用電錶	1 部
示波器	1台
雙電源供應器	1台
訊號產生器	1台
雕刻機	1台

表(二): 自動增益控制(Auto Gain Control, AGC)電路實驗料表

項次	元件名稱	元 件 說 明	用量
1	電容	0.01uF PE 電容	3個
2	電容	0.1uF PE 電容(電源去耦合電容)	4個
3	電解質電容	1uF 50V	1個
4	電解質電容	120uF 50V	1個
5	場效電晶體	JFET, J2SK30A	1個
6	二極體	Diode 1N4148	3個
7	運算放大器	OP AMP uA741CP	2個
8	可變電阻	VR1~VR3(依設計值)	3個
9	碳膜電阻	依設計值,選用適當電阻值	若干個

三、實驗預習

- 1.請閱讀電路說明中 "文士電橋 AGC 電路模擬 "之內容, 簡略說明一下 AGC 電路的操作方法。
- 2.參考圖(九)實驗模擬電路圖、實驗單元(五)實作電路元件值及 RC 時間常數值,選擇適當的電阻及電容值,完成電路模擬,模擬結果須是各組頻率值且波形不可以失真。
- 3.依據上題目內容,完成圖(9-1)實驗實作電路圖(一)中元件的選擇與元件數值的設定。

四、電路說明

1.使用 JFET 於振幅穩定化的 AGC 電路

在實驗單元(四)所介紹的正弦波產生器電路—文士電橋振盪器電路,只能 使用在振幅穩定度與波形失真並不要求很好的場合。

雖然頻率的穩定度與所使用的電容器的溫度係數也有關係,現在要介紹的 是可以改善振幅穩定度與波形失真的實用性文士電橋振盪器電路。

The amplitude control circuit

圖(一):含 JFET 振幅穩定的文士電橋振盪電路[1]

圖(一)為含 JFET 振幅穩定的文士電橋振盪電路,此一電路主要是由振盪電路與振幅穩定電路所組成,其中也使用了很多穩定化的元件,其振盪頻率範圍為數十 Hz 至 100KHz。

文士電橋振盪電路,該電路使用運算放大器,最困難的部分是振幅控制電路,實驗單元(五)是使用 Zener Diode 來產生振幅限制,而圖(一) 的 OP AMP 放大率設定在 A□3 動作,而在電阻 R3 側採用自動放大率調整,以 JFET 元件可作為電壓控制電阻值(Voltage Control Resistor, VCR),作為可變電阻元件。

2.FET 的可變電阻特性

圖(二)為 JFET 電壓-電流特性曲線,詳細說明,可以參閱實驗參考資料 "EFT As Voltage-Controlled Resistors"[2][3]。圖(三)為 JFET 的電路操作情形,圖(三)左圖(a).為 N-Channel JFET,控制電路電流 (I_D) 方向由吸極(Drain,D 極)流向源極(Source, S 極),閘極(Gate,G 極)為 P-type,當負電壓連接至 G 極,將在 PN 接面形成空乏區(depletion region)。當反偏電壓不高時,空乏區小,對 I_D 電流沒有太大的影響。圖(三)右圖(b).當反偏電壓升高時,則會擴大空乏區, I_D 電流路徑變窄且電流減少。即對 G 極改變電壓,以控制 I_D 電流大小。

V_{DS} - Drain-Source Voltage (V)

圖(二):JFET 電壓-電流特性曲線

圖(三):JFET 電路操作

(a).電壓-電流特性

(b). 可變電阻特性

圖(四): FET 之可變電阻特性[2]

FET 如圖(四)所示,在吸極-源極間所加入的電壓為數十 mV 的小信號位準情況下,由於閘極-源極間電壓 V_{GS} ,會改變吸極-源極間電阻 r_{ds} 。此一 r_{ds} 可以利用作為可變電阻。例如,N 通道 FET,在 $V_{GS}=0$ V 時,吸極-源極間成為完全的 ON 狀態,此時 FET 的 ON 電阻 r_{ds} 為 $200\Omega\sim300\Omega$ 之低電阻值。又,在 $V_{GS}=-2V$ 程度,成為很高的電阻狀態。因此, V_{GS} 在 0V~-2V 間變化時,FET 成為可變電阻動作。

可是,直接如此使用,即使 FET 當作可變電阻使用,也無法得到低失真 特性,因此,實際上,由吸極端對於閘極端加上局部的回授使用。

所以,要測出的可變電阻電路特性時,可以如圖 (Δ) 所示分為直接由 V_{GS} 測出 r_{a} 之特性情形與加上局部回授時的特性情形。

圖(五): JFET 當作可變電阻使用[4]

FET 的電阻測試可以如圖(六)所示,具有 1KHz 的定電流源電路,一方面改變直流的 V_{cs} ,一方面測量吸極-源極間的電壓。

如此,在定電流i=100uA(設定很大的電流時,在高阻抗值時會飽和)時

$$r_{ds} = \frac{v_o}{i}$$

因此,可以由測得的電壓火。而求出電阻值。

圖(六): 測量 JFET 的 r_{a} 所使用的電路[4]

圖(七)所示為 V_{GS} 在 $0V\sim -3V$ 間變化時,在i=100uA 狀態下的吸極-源極間

電阻 r_{a} 的變化情形。同時觀看電壓 v_{o} 的波形時,可以看出,在沒有回授 r_{d} 。為 $1 \mathrm{K}\Omega$ 以上時,會產生波形失真。

圖(七): 2SK30A 的詳細 VCR 特性[4]

- VGS (V)

(a).無回授,失真大

(b). 回授,失真小

圖(八):有無回授時的波形圖[4]

在 r_a 為低電阻的領域,即使由吸極加回授至閘極,其特性幾乎相同,但是,加上此一回授可以改善波形失真, r_a 至約3K Ω 為止,仍然可以維持低失真率。

從波形失真面來看, r 宜儘量在低電阻值動作(但是,要注意太低時,無

法自動控制),也即是,所加入的電壓 V_{GS} 要小。換句話說, V_{GS} 可變範圍不宜設計太寬。

為了比較波形,在 $V_{GS}=-1.5V(r_{dS})$ 的 $1.2K\Omega$ 的

上述電路為利用電壓控制電阻值的電路,由上述數據,可以發現其變化特性並非為直線性關係。

但是,在AGC 電路中使用 VCR,其絕對輸出振幅並非單由此電阻值所決定,因此,VCR 不一定需要直線性關係。

3.自動電壓放大率控制(AGC)的構成

以這種方式,得到負的電壓,此電壓由 IC2 的輸出端輸出此電壓。因為 IC2 電路的輸出端是經由通過 D1 整流、C4 電容濾波及電阻 R7 作用,產生平 滑漣波電流,此為直流電流。IC1 的輸出電壓經由全波整流電路,而產生直流輸出電壓,即時變的 IC1 輸出電壓變化值,經由全波整流、濾波電路,產生時變的直流電壓輸出。

直流輸出電壓經 R6 加到 JFET 的 G極,當 IC1 輸出訊號大時,相對的加到 JFET 的 G極電壓也高,則 JFET 的 D極與 S 極間的電阻也大,此通道電阻與 R3 串聯,導致 IC1 增益降低,最後達到電路平衡,得到穩定的振幅輸出。R5 和 C3 改善 JFET 的頻率特性,它降低了 JFET 的振盪信號的失真。

4. 選用元件(AGC 電路)

計算振盪元件的時間常數 $R1 \times C1 = \tau_1$ 。選用 C1 = C2 = C4,計算全波整流時間

常數
$$R7 \times C4 = \tau_2 = 5\tau_1 \sim 30\tau_1$$
, $R7 : 5 \times \frac{R1 \times C1}{C4} = 5R1 \sim 30 \times \frac{R1 \times C1}{C4} = 30R1$ 。

R5 及 R6 是為減少失真用的回授電阻。 R5 = R6 為最佳,一般取通道電阻 (r_{ds}) 大很多,取用 R5 = R6 = 100 K Ω 。使用電容 C3 阻隔直流電壓,在最低頻率的 0.1 倍時,其容抗值應該為 R5 = 100 K Ω 以下。

$$\text{Rp } X_{c} = \frac{1}{2\pi f C3} \le 100 K\Omega, \ C3 \ge \frac{1}{2\pi \times 0.1 \times f_{\min}(100 Hz) \times 100 \times 10^{3}} \approx 0.159 uF \quad \circ$$

 $C3 \ge 0.159uF$,**R3** 選用 **R3**=1uF。

運算放大器的電壓增益
$$A = \left(1 + \frac{R4}{R3 + r_{ds}}\right) \approx 3$$
。

若 R4=10K
$$\Omega$$
,,則R3+ $r_{ds} \leq \frac{R4}{A-1} = \frac{10K\Omega}{3-1} = 5K\Omega$,即R3+ $r_{ds} \leq 5K\Omega$ 。

 $ilde{ ilde{R}} pprox (0 \sim 1) ext{K}\Omega$,R $3 < 5 ext{K}\Omega$,在開始振盪時,需要增益3 倍以上增益,選用 $ext{R}3 = 4.7 ext{K}\Omega$ 。

5.電路模擬(使用 JFET 於振幅穩定化的 AGC 電路)

圖(九): Wien-bridge 振盪器模擬電路圖(使用 AGC 電路)

6.Wien-bridge 振盪器電路模擬結果(使用 AGC 電路)

可得穩定的輸出振幅 $(V_{\scriptscriptstyle p-p})$ = 4.85V,振盪頻率值 = 1.1KHz。

圖(十): Wien-bridge 振盪器模擬結果(Time-Domain) (使用 AGC 電路)

圖(十一): Wien-bridge 振盪器模擬結果(JFFT) (使用 AGC 電路)

五、實驗注意事項

- 1.使用萬用電錶之注意事項:測量<u>電壓</u>時,請設定為 <u>4 位半</u>顯示測量值。測量 電阻時,請設定為 <u>4 位半</u>顯示測量值。
- 2.示波器設定: CH1 及 CH2 直流耦合,適當選擇垂直刻度,水平軸間距。
- 3.依據表(二)實驗組別與振盪頻率對照表及實驗單元(四)的實驗數據,完成組裝 麵包板電路。

表(二):	實驗組別與振盪頻率對照表
-------	--------------

組別	輸入頻率	組別	輸入頻率	組別	輸入頻率
No.1-1	1.1KHz	No.11-1	1.1KHz	No.21-1	1.1KHz
No.1-2	1.2KHz	No.11-2	1.2KHz	No.21-2	1.2KHz
No.2-1	1.3KHz	No.12-1	1.3KHz	No.22-1	1.3KHz
No.2-2	1.4KHz	No.12-2	1.4KHz	No.22-2	1.4KHz
No.3-1	1.5KHz	No.13-1	1.5KHz	No.23-1	1.5KHz
No.3-2	1.6KHz	No.13-2	1.6KHz	No.23-2	1.6KHz
No.4-1	1.7KHz	No.14-1	1.7KHz	No.24-1	1.7KHz
No.4-2	1.8KHz	No.14-2	1.8KHz	No.24-2	1.8KHz
No.5-1	1.9KHz	No.15-1	1.9KHz	No.25-1	1.9KHz
No.5-2	2.0KHz	No.15-2	2.0KHz	No.25-2	2.0KHz
No.6-1	2.1KHz	No.16-1	2.1KHz	No.26-1	2.1KHz
No.6-2	2.2KHz	No.16-2	2.2KHz	No.26-2	2.2KHz
No.7-1	2.3KHz	No.17-1	2.3KHz	No.27-1	2.3KHz

組別	輸入頻率	組別	輸入頻率	組別	輸入頻率
No.7-2	2.4KHz	No.17-2	2.4KHz	No.27-2	2.4KHz
No.8-1	2.5KHz	No.18-1	2.5KHz	No.28-1	2.5KHz
No.8-2	2.6KHz	No.18-2	2.6KHz	No.28-2	2.6KHz
No.9-1	2.7KHz	No.19-1	2.7KHz	No.29-1	2.7KHz
No.9-2	2.8KHz	No.19-2	2.8KHz	No.29-2	2.8KHz
No.9-1	2.9KHz	No.20-1	2.9KHz	No.30-1	2.9KHz
No.9-2	3.0 KHz	No.20-2	3.0 KHz	No.30-2	3.0 KHz

六、實驗項目與實驗步驟

■實驗項目(一)、AGC 電路

1. 依據實驗預習的元件數值設定,接好圖(9-1):實驗電路圖(一)。接上雙電源 $\pm 15V$ 。使用示波器觀測節點[VO1]訊號,適當調整可變電阻,請調整出所需的頻率值,然後記錄其頻率值及電壓(V_{P-P}),完成表格(9-1)內容,也需擷取下列各節點波形。

圖(9-1):實驗電路圖(一)

- ◎擷取下列各節點波形圖:
- a. 節點[VO1] 波形。
- b. 節點[VO1、VD1] 波形。
- c. 節點[VO1、VD2] 波形。
- d.節點[VA, VB] 波形。
- e.節點[VO1、VA] 波形。

表(9-1): 測量數據與測量波形(實驗步驟 2.)

各相對節點	觀測結果
節點[VO1]	①.輸出振盪頻率=Hz。 ②.節點[VO1]波形振幅的大小(V _{P-P})=。
節點[VO1, VD1]	◎波形說明:
節點[VO1, VD2]	◎波形說明:
節點[VA, VB]	①.節點[VA]波形振幅的大小 $(V_{P-P})=$ 。 ②.節點[VB]波形振幅的大小 $(V_{P-P})=$ 。 ③.電壓比率 $=\frac{VA}{VB}=$ 。 ④.測量相對延遲時間差 $=$ 。 ⑤. 計算相角差 $\Delta \theta =$ 。
節點[VO1,VA]	①.電壓比率= $\frac{VA}{VO1}$ =。 ②.測量相對延遲時間差=。 ③. 計算相角差 $\Delta \theta$ =。

- 2.室溫下穩定度測試,了解溫度對振盪電路影響。測試節點[VO1],將電路置於實驗桌面,記錄振盪頻率值且擷取實驗波形,記錄測試時間,經30分鐘後,再次記錄振盪頻率值且擷取實驗波形,完成表格(9-2)內容。
 - a. 擷取節點[VO1] 波形(測試前頻率值)。
 - b. 擷取節點[VO1] 波形(30 分鐘後)。

表(9-2): 溫度測試(實驗步驟 4.)

	頻率值	測試時間
測試前頻率值		年 月 日 時 分
溫度測試(30 分鐘)		年 月 日
測試後頻率值		時 分

- 3.實驗電路檢查(麵包板): CH1 接節點[VO1], CH2 接節點[VA],調整好頻率值,輸出波形不可失真,測量頻率值及振幅大小。擷取節點[VO1, VA]的波形與測量數據。
- ◎擷取節點[VO1, VA]波形圖:
- a.記錄頻率值=____。
- b.測量節點[VO1]峰-峰值(Vp-p)=____。
- c.測量節點[VA]峰-峰值(Vp-p)=____。
- ※繳交實驗報告(麵包板版本)。

七、電路圖轉檔、畫圖框進入 Layout 程序

- 1.下列為 Layout 程序,請完成 Layout 檔案,使用雕刻機完成 PCB 製作。
- 2.完成 OrCAD Layout 電路轉檔程序,進入 OrCAD Layout 佈線,完成 Layout 程序。線寬至少 30mil、元件間距至少 200mil。焊點與焊點、焊點與導線間距至少 20mil。使用手動佈線方式佈線,不要使用自動佈線,完成 Layout 後,使用小畫家擷取 Layout 圖檔。
- 3.在使用雕刻機完成電路板製作之後,使用小畫家擷取雕刻機螢幕中 Layout 圖 檔及雕刻機完成後的電路板(照片檔)及其他圖檔,並加註電路板長及寬大小(單位使用公分標示)。
- 4. 電路元件組裝、焊接、測試電路與實驗記錄。
- 5. 擷取下列各節點波形圖:
 - a. 節點[VO1] 波形。
 - b. 節點 [VO1、VD1] 波形。

- c. 節點[VO1、VD2] 波形。
- d. 節點[VA, VB] 波形。
- e. 節點[VO1、VA] 波形。

表(9-3): 測量數據與測量波形

各相對節點	觀 測 結 果
節點[VO1]	①.輸出振盪頻率=Hz。
	②.節點[VO1]波形振幅的大小(V _{P-P})=。 ①.節點[VA]波形振幅的大小(V _{P-P})=。
	②.節點[VB]波形振幅的大小(V_{P-P})=。
節點[VA, VB]	③.電壓比率 $=\frac{\mathrm{VA}}{\mathrm{VB}}=$ 。
	④.测量相對延遲時間差=。
	⑤. 計算相角差 $\Delta \theta =$ 。
	①.電壓比率= VA VO1 =。
節點[VO1, VA]	②.測量相對延遲時間差=。
	③. 計算相角差 $\Delta \theta =$ 。

6.相關 Layout 程序注意事項:元件庫的建立:個別元件應注意實際元件的大小 與腳位,電路圖上的接腳名稱及相對位置,需要鑽孔實的孔徑大小,Pad(焊點) 尺寸,元件焊點間距...等,這些都是要注意的。

八、撰寫實驗心得與結論

九、撰寫實驗綜合評論

- 1.實驗測試說明、實驗補充資料及老師上課原理說明,是否有需要改善之處。
- 2.實驗模擬項目內容,是否有助於個人對實驗電路測試內容的了解。
- 3.實驗測量結果,是否合乎實驗目標及個人的是否清楚瞭解其電路特性。
- 4.就實驗內容的安排,是否合乎相關課程進度。
- 5.就個人實驗進度安排及最後結果,自己的評等是幾分。

- 6.在實驗項目中,最容易的項目有那些,最艱難的項目包含那些項目,並回憶 一下,您在此實驗中學到了那些知識與常識。
- 十、附上實驗進度紀錄單(照片檔)、麵包板電路組裝圖檔(照片檔)

十一、其他 Layout 圖檔

- ◎附上電路圖檔(Netlist 轉檔前)
- ◎附上 LAYOUT 圖檔(LAYOUT 佈局完成之後)
- ◎附上雕刻機 LAYOUT 圖檔(Gerber File 雕刻機螢幕)
- ◎附上雕刻完成之電路板(尚未焊接元件)
- ◎附上 PCB 焊接、測試、檢查完成圖檔
- ◎附上 LAYOUT 實作時程表(見附錄)

十二、參考資料來源

- [1].Operation explanation of the sine wave oscillator
 http://www.massmind.org/images/www/hobby-elec/e-ckt18-2.htm
- [2]. FETs As Voltage-Controlled Resistors
 http://www.datasheetcatalog.org/datasheet/vishay/70598.pdf
- [3]. Sedra & Smith, Microelectronic Circuits, Copyright by Oxford University Press, THIRD Edition, P.322~P.327, P.659~P.670, 1991.
- [4].陳連春編譯, "振盪電路設計應用鐵則",建興出版社,84 年 8 月出版,P89~P.99.
- [5].王舒萱、申明智、普羅編著, "ALLEGRO PCB LAYOUT 16.X 實務",全華圖書股份有限公司,2015年1月出版。

◎附件:電工實驗→		(PCB)製作時程	記錄單
實驗名稱:	、班級	:、組別:_	、姓名:
■實驗時程進度紀錄:請	確實記錄下列各項工	作時程日期,完成各	分項時程時,需由助教檢查。
一、完成麵包板組裝、測	試及麵包板實驗電路	檢查時程。	
※工作日期:年月	年	_月日、工期:	日。
二、完成實驗單元各項 La	ayout 元件庫製作、C	PrCAD 電路圖 Netli	st 轉檔時程、元件擺放、線路
佈局,轉出 Gerber File,	完成使用雕刻機軟體	及計算 Gerber File,	都沒錯誤之後,才可以在雕刻
機使用登記簿上登記、來	預約使用雕機時間。		
※工作日期:年月	年	_月日、工期:	日。
□使用他人電路 LAYOUT	「版本,需寫上原著化	作人資料,班別:	_、姓名
三、使用雕刻機製作電路	板時程記錄(請勾選)	先行在雕刻機使用	登記記錄簿上登記、預約使用
日期&時間,完成登錄等時	持程。		
※□已完成教育訓練、□	自己完成雕刻機使用	、□同學協助完成雕	刻機使用、□操作雕刻機時當
機、			
※操作雕刻機刀具斷裂種:	類:□0.2mm 雕刻刀	、□0.5mm 雕刻刀、	□1.5mm 雕刻刀、□鑽頭:
mm、□成型刀。			
※由其他同學協助完成儀	器操作者,需寫上協	助者資料,班別:	、姓名
※登記日期:年月	日,預約使用日	期&時間:年_	月日時分。
※完成製作 PCB 日期&時	-間:年月	日	
四、完成電路板組裝、焊	接、測試及記錄數據	及實驗電路板檢查等	時程。
※工作日期:年月	年	_月日、工期:	且。
五、檢覈實驗時程紀錄			
1.麵包板組裝測試電路結果	果:檢查日期:	_年月日、	核章:。
2.檢視轉出 Gerber File、)			
章:。			
3.檢視 Layout 電路板焊接	· 測試成品:檢查日	期:年月	日、核

*.

章:_____。

※備註說明:完成各項程序後,請掃描記錄單或照相存檔,以備後續文件使用。

- ①. 使用小畫家擷取 Layout 完成電路圖檔。
- ②.使用小畫家擷取雕刻機螢幕上製作 PCB 電路圖檔。
- ③.完成雕刻後 PCB,照片檔及最後成品照片檔。