

Srs.

Estamos desenvolvendo um dispositivo capaz de realizar somas e subtrações automaticamente, usando para isso um sistema de válvulas. A base numérica do nosso sistema é binária, onde visualizamos diversas vantagens em relação ao que usamos naturalmente, que é a base decimal. Abaixo (Table I) está uma descrição da lógica que imaginamos para fazer soma*. Acreditamos que seja possível implementar tal lógica com válvulas, estas sendo usadas como chaveadores. Vocês poderiam nos ajudar a implementar tal lógica usando portas lógicas, como AND, OR, NOT, NAND, NOR, XOR, XNOR por exemplo?

Professor Dr. John Vincent Atanasoff e Clifford Berry.

			Possible Combinations						
Number Number added or subtracted			0	0 0 1	0	1 0	1.	1 0	1.
			1						
Carryover from previous place		0	0	1	1	0	0	1	1
1111	(Result in this place	0	1	1	0	1	0	0	1
Add	(Result in this place (Carryover to next place	0	0	0	1	0	1	1.	1
	(Result in this place	0	1	1	0	1	0	0	1
Subt.	(Carryover to next place	0	1	1	1	0	0	0	1

^{*} Esta imagem foi extraída do manual do ABC Computer : http://jva.cs.iastate.edu/img/ABC%20%20manual.pdf

EXERCÍCIO 1 - PRATICANDO

Assuma vetores de 8 bits, e codificação em complemento de dois.									
a) Esci	a) Escreva o valor em binário que representa -5								
				l					
b) Esc	reva o	valor e	em bin	ário qu	ıe repr	esenta	-230		
c) Qual valor está representando em binário? É positivo ou negativo?									
1	0	0	0	0	0	1	1		
d) Esc	reva o	valor (em bin	ário da	ı letra	`G` cod	dificada	em ASCII	
e) Faça	e) Faça a operação de soma binária a seguir: Qual valor resulta? (Decimal)								
1	0	0	1	0	1	1	1].	
0	1	1	0	0	0	1	0	+	
f) Faça	a ope	ração (de som	a biná	ria a s	eguir: (Qual val	or resulta? (Decimal)	
	1	1	1	1	1	1	1		
0	1	1	0	0	0	1	0	+	
	1	1	U	U	U	L	U		

EXERCÍCIO 2 - IMPLEMENTE UM HALF-ADDER COM PORTAS LÓGICAS

a	b	soma	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$ \begin{array}{c cccc} A & Q & A \\ \hline B & OR & Q & B \end{array} $ $ \begin{array}{c cccc} A & Q & A \\ \hline B & XOR & Q \end{array} $
$\frac{A}{B}$ NOR $\frac{Q}{B}$ NAND $\frac{A}{B}$ NOT $\frac{\overline{A}}{A}$

EXERCÍCIO 3 - IMPLEMENTE UM FULL-ADDER COM PORTAS LÓGICAS

a	b	С	soma	carr y
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

EXERCÍCIO 4 - SOMADOR 2 BITS:

Usando dois full-adder, implemente um circuito capaz de somar dois vetores de 2 bits cada:

