

Invertibility Preserving Linear Maps On Semi-Simple Banach Algebras

Mohamad Reza Farmani and Hadi Haghshenas

Faculty of Mathematical Sciences

Birjand University

Student ave., Birjand, Iran

mr.farmanis@gmail.com, h_haghshenas60@yahoo.com

Abstract

In this paper, we show that the essentiality of the scle of an ideal \mathcal{B} of the semi-simple Banach algebra \mathcal{A} implies that any invertibility preserving isomorphism $\phi : \mathcal{A} \rightarrow \mathcal{A}$ is a Jordan homomorphism. Specially if, the unitary semi-simple Banach algebra \mathcal{A} has an essential minimal ideal then $\phi|_{soc(\mathcal{A})}$ is a Jordan homomorphism.

AMS Subject Classification(2000): 46J10, 46J15, 46J20

Key Words: Banach algebra, Jordan algebra, invertibility preserving, socle.

1 Introduction

Linear invertibility preserving maps of algebras, were noteworthy from years ago. For example, the famous theorem of Kahan-Zelasco which asserts that any invertibility preserving isomorphism into the scalar field is homomorphism. This problem discussed on different algebras previously. Let \mathcal{A} be an unitary Banach algebra and $a \in \mathcal{A}$ is invertible. Then the inverse of a is denoted by a^{-1} and the set of all invertible elements of \mathcal{A} is denoted by $Inv(\mathcal{A})$. Also, let \mathcal{A}, \mathcal{B} are tow algebras and $\phi : \mathcal{A} \rightarrow \mathcal{B}$ is a linear map. The ϕ is called an invertibility preserving map if,

$$a \in Inv(\mathcal{A}) \Rightarrow \phi(a) \in Inv(\mathcal{B}) \text{ for all } a \in \mathcal{A}$$

The reader is referred to [1] for undefined terms and notations.

2 Main Results

The following lemma, is useful for the proof of our next theorem.

Lemma 2.1 [1] Let \mathcal{A}, \mathcal{B} are unitary semi-simple Banach algebras and $\phi : \mathcal{A} \rightarrow \mathcal{B}$ is an invertibility preserving isomorphism. Then,

$$\phi^{-1}(\phi(a^2) - \phi^2(a)).soc(\mathcal{A}) = 0 \quad \text{for all } a \in \mathcal{A}$$

Moreover, if the $soc(\mathcal{A})$ is an essential ideal of \mathcal{A} , then ϕ is a Jordan homomorphism.(i.e. $\phi(a^2) = \phi^2(a)$ for all $a \in \mathcal{A}$)

Now, let us to state of our main theorem:

Theorem 2.2 Let \mathcal{A} is a semi-simple Banach algebra and $\phi : \mathcal{A} \rightarrow \mathcal{A}$ is an invertibility preserving isomorphism. Then ϕ is a Jordan homomorphism, whenever \mathcal{A} has an ideal \mathcal{B} that $soc(\mathcal{B})$ is an essential ideal.

proof. At first, we suppose that \mathcal{A} is unitary. Since $soc(\mathcal{B})$ is an essential ideal of \mathcal{A} , $soc(\mathcal{A})$ is an essential ideal, too [1] and so ϕ is a Jordan homomorphism, by lemma 2.1. If now, \mathcal{A} is not unitary $\tilde{\mathcal{A}} = \mathcal{A} \oplus \mathbb{C}$ is an unitary semi-simple Banach algebra with $(a_1, \lambda_1).(a_2, \lambda_2) = (a_1 a_2 + \lambda_2 a_1 + \lambda_1 a_2, \lambda_1 \lambda_2)$. Let $\tilde{\phi}(a, \lambda) = (\phi(a), \lambda)$ for $(a, \lambda) \in \tilde{\mathcal{A}}$. The $\tilde{\phi} : \tilde{\mathcal{A}} \rightarrow \tilde{\mathcal{A}}$ is a well defined invertibility preserving isomorphism. If $soc(\mathcal{A}) = K$ and $(a, \lambda).soc(\tilde{\mathcal{A}}) = 0$, then $(a, \lambda).(k, 0) = 0$, for all $k \in K$ since $(soc(\mathcal{A}), 0) \subseteq soc(\mathcal{A}, 0) \subseteq soc(\tilde{\mathcal{A}})$. So for all $k \in K$, $ak = -\lambda k$ and therefore $\lambda = 0$. Because $\lambda \neq 0$ implies that $-\frac{a}{\lambda}k = k$, for all $k \in K$. So $-\frac{a}{\lambda}$ is a left unit of \mathcal{A} . Let d is an other left unit of \mathcal{A} . Then

$$(-\frac{a}{\lambda} - d)\mathcal{A} = 0 \Rightarrow (-\frac{a}{\lambda} - d)k = 0 \text{ for all } k \in K \Rightarrow -\frac{a}{\lambda} = d$$

Note that K is an essential ideal. So \mathcal{A} is unitary which contradicts our hypothesis. Therefore $a = 0$ and $soc(\tilde{\mathcal{A}})$ is an essential ideal. Now lemma 2.1 implies that,

$$\tilde{\phi}(a, \lambda)^2 = \tilde{\phi}^2(a, \lambda) \text{ for all } (a, \lambda) \in \tilde{\mathcal{A}}$$

But, for all $(a, \lambda) \in \tilde{\mathcal{A}}$ we have,

$$\tilde{\phi}(a, \lambda)^2 = (\phi(a^2) + 2\lambda\phi(a), \lambda^2) \text{ and } \tilde{\phi}^2(a, \lambda) = (\phi^2(a), \lambda)$$

Hence, for all $a \in \mathcal{A}$, $\phi^2(a) = \phi(a^2)$ and ϕ is a Jordan homomorphism.

Lemma 2.3 [4] Let \mathcal{A} is an unitary semi-simple Banach algebra and $a \in \mathcal{A}$. Then

- (i) $a \in \text{soc}(\mathcal{A})$ if and only if $|\sigma(xa)| < \infty$ for all $x \in \mathcal{A}$
- (ii) $a \in \text{soc}(\mathcal{A})$ if and only if there exists $n \in \mathbb{N}$ such that $\bigcap_{t \in F} \sigma(x + ta) \subseteq \sigma(x)$ for all $x \in \mathcal{A}$ for which F is the set of n -tuples of $\mathbb{C} \setminus \{0\}$.

Lemma 2.4 Let $\phi : \mathcal{A} \rightarrow \mathcal{A}$ is a spectrum preserving isomorphism on the unitary semi-simple Banach algebra \mathcal{A} . Then $\phi(\text{soc}(\mathcal{A})) = \text{soc}(\mathcal{A})$.

proof. Let $a \in \text{soc}(\mathcal{A})$. Since ϕ is spectrum preserving, we have,

$$\sigma(\phi(y + ta)) = \sigma(y + ta) \text{ for all } t \in \mathbb{C} \text{ and } y \in \mathcal{A}$$

If now, $x = \phi(y)$ by the lemma 2.3, there exists $n \in \mathbb{N}$ such that,

$$\bigcap_{t \in F} \sigma(x + t\phi(a)) = \bigcap_{t \in F} \sigma(y + ta) \subseteq \sigma(x) \text{ for all } x \in \mathcal{A}$$

where F is n -tuples of $\mathbb{C} \setminus \{0\}$. Hence $\phi(a) \in \text{soc}(\mathcal{A})$ and so $\phi(\text{soc}(\mathcal{A})) \subseteq \text{soc}(\mathcal{A})$.

Now, we show that $\text{soc}(\mathcal{A}) \subseteq \phi(\text{soc}(\mathcal{A}))$. Let $a \in \text{soc}(\mathcal{A})$. Then there exists $b \in \mathcal{A}$ such that $\phi(b) = a$ and there exists $n \in \mathbb{N}$ such that,

$$\bigcap_{t \in F} \sigma(x + tb) = \bigcap_{t \in F} \sigma(\phi(x) + t\phi(b)) \subseteq \sigma(\phi(x)) = \sigma(x) \text{ for all } x \in \mathcal{A}$$

where F is n -tuples of $\mathbb{C} \setminus \{0\}$. This implies that $b \in \text{soc}(\mathcal{A})$.

Let us mention that if the Banach algebra \mathcal{A} has an essential minimal ideal, then $\text{soc}(\mathcal{A})$ is essential. Thus we obtained the following consequence:

Corollary 2.5 If $\phi : \mathcal{A} \rightarrow \mathcal{A}$ is an invertibility preserving isomorphism on the unitary semi-simple Banach algebra \mathcal{A} with an essential minimal ideal, then $\phi|_{\text{soc}(\mathcal{A})}$ is a Jordan homomorphism.

3 Acknowledgments

We wish to express our appreciation to our supervisor Dr. A. Assadi for his advice and encouragement in the preparation of this dissertation.

References

- [1] B. Aupetit, *A primer on spectral theory*, Springer-Verlag, New York, 1991.
- [2] M. Bresar, A. Fosner and P. Semrl, *A note on invertibility preserving Banach algebra*, American Math. Soc., **131**(2003), 3833-3837.
- [3] A. Harris, *Invertibility preserving linear maps on Banach algebras*, Israel Mathematical Conference Proceedings, **15** (2005), 156-171
- [4] M. Marthieu and C. Ruddy, *Spectral isometries*, Contemporary Mathematics, 2006.