ELEC2146

Electrical Engineering Modelling and Simulation

Nonlinear Dynamic Systems

Dr Ray Eaton

S2, 2016

Overview

Nonlinear systems in state space

- Equilibrium points
- Linearization
- Phase portraits

Motivation

- Many practical systems are nonlinear
- Need to model/simulate them is even greater:
 - Because they do not neatly fall within linear theory
 - In order to find suitable techniques for analysis

Equilibrium

- Point or points at which no change occurs
- For a dynamic system:
 - All derivatives are zero
 - Linear systems:
 - System stable ⇒ single equilibrium point
 - Nonlinear systems:
 - May have multiple equilibrium points

Equilibrium

Nonlinear system example (Klee, 2007):

$$\frac{dx_1}{dt} = x_1(a - bx_1 - cx_2)$$

$$\frac{dx_2}{dt} = x_2 \left(d - \lambda \frac{x_2}{x_1} \right)$$

$$x_2 \left(d - \lambda \frac{x_2}{x_1} \right) = 0 \quad \Rightarrow \quad x_2 = \frac{dx_1}{\lambda}, 0$$

$$x_1(a - bx_1 - cx_2) = 0 \quad \Rightarrow \quad x_1 = \frac{a\lambda}{b\lambda + cd}, 0$$

Equilibrium: (0,0) and $\left(\frac{a\lambda}{b\lambda + cd}, \frac{ad}{b\lambda + cd}\right)$

Points of equilibrium

- System will revert to equilibrium if perturbed
 - By 'small' amount
- Helpful practically as 'operating points'
- Choose them as operating points for linearisation

Recall:

- Taylor series approximation to a function f(x)

$$f(x) = f(x_0) + \frac{df}{dx} \bigg|_{x=x_0} \frac{x - x_0}{1!} + \frac{d^2 f}{dx^2} \bigg|_{x=x_0} \frac{(x - x_0)^2}{2!} + \dots$$

- Locally about an operating point $x = x_0$

Taylor series example

- Approximate $f(x) = \tan^{-1} x$ about x = 0
- Find derivatives:

$$\frac{df}{dx} = \frac{1}{1+x^2} \qquad \frac{d^2f}{dx^2} = \frac{-2x}{(1+x^2)^2} \qquad \frac{d^3f}{dx^3} = \frac{6x^4 + 4x^2 - 2}{(1+x^2)^4}$$

– Evaluate at x = 0

$$\left. \frac{df}{dx} \right|_{x=0} = 1 \qquad \left. \frac{d^2 f}{dx^2} \right|_{x=0} = 0 \qquad \left. \frac{d^3 f}{dx^3} = -2 \right.$$

Substitute into series (to accuracy required)

$$f(x) = 0 + 1\frac{x - 0}{1!} + 0\frac{(x - 0)^2}{2!} - 2\frac{(x - 0)^3}{3!} \dots \approx x - \frac{1}{3}x^3$$

Taylor series example

- This was for a function
- We are interested in linearising systems
- Principle is same

Linearising DEs

$$\frac{dx}{dt} = f(x, t)$$

– Define variable Δx , representing variation about the operating point x_0 :

$$x = x_0 + \Delta x$$

- Apply 1st order Taylor expansion to nonlinear terms in f(x,t)
- DE is now linear in Δx (and hence x also)

Linearisation Example

- Single-input, single-output example
 - Linearise the following equation about the operating point x = 1:

$$\frac{dx}{dt} = f(x, u, t) = -3 + 3x - 2\ln x - u(t)$$

- Define $x = 1 + \Delta x$, $\Delta x = x - 1$

$$\frac{d\Delta x}{dt} = -3 + 3(1 + \Delta x) - 2\ln(1 + \Delta x) - u(t)$$

A Represent nonlinear terms by their Taylor expansion

$$\ln x = \ln x \Big|_{x=1} + \frac{1}{x} \Big|_{x=1} \frac{(x-1)}{1!} - \frac{1}{x^2} \Big|_{x=1} \frac{(x-1)^2}{2!} + \dots$$

Note: Need to use numerical techniques to estimate equilibrium points (come out as x = 0.417, x = 1)

Linearisation Example

- Single-input, single-output example
 - Choose first-order approximation

$$\ln x \approx 0 + \frac{1}{x} \Big|_{x=1} \frac{(x-1)}{1!} = x - 1 = \Delta x$$

– Replace in DE:

$$\frac{d\Delta x}{dt} = -3 + 3(1 + \Delta x) - 2(\Delta x) - u(t)$$

- Equation is now linear in Δx
- Once we have solution, substitute $\Delta x = x 1$ to get it back in terms of x

Typically

- There is more than one input or output or
- There is more than one state variable

In that case

- Equilibrium point is multi-dimensional
- Nonlinearities may exist in more than one state variable
- Procedure must be generalised using partial derivatives

Also

May need more than one linearisation point

- What about more than one state eqn?
 - Equations may be nonlinear in more than one (state) variable
 - Linearise entire system of equations:

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{u}$$

$$\Delta \mathbf{y} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{u}$$

 Rewrite original state-space equations in form: (note: can now be nonlinear)

$$\frac{dx_1}{dt} = f_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$

$$\frac{dx_2}{dt} = f_2(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$
state equations
$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$

$$y_1 = g_1(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$

$$\vdots$$

$$y_p = g_p(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$
output equations
$$y_p = g_p(x_1, x_2, ..., x_n, u_1, u_2, ..., u_m)$$

Requires:

$$\mathbf{A} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \Big|_{\mathbf{x} = \mathbf{x}_0, \mathbf{u} = \mathbf{u}_0} \mathbf{B} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \cdots & \frac{\partial f_1}{\partial u_m} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \cdots & \frac{\partial f_2}{\partial u_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \cdots & \frac{\partial f_n}{\partial u_m} \end{bmatrix} \Big|_{\mathbf{x} = \mathbf{x}_0, \mathbf{u} = \mathbf{u}_0} \mathbf{B}$$

$$\mathbf{B} = \begin{bmatrix} \frac{\partial u_1}{\partial f_2} & \frac{\partial u_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \frac{\partial f_n}{\partial u_2} & \cdots & \frac{\partial f_n}{\partial u_m} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix} \Big|_{\mathbf{x}=\mathbf{x}_0, \mathbf{u}=\mathbf{u}_0} \mathbf{D} = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \frac{\partial g_1}{\partial u_2} & \cdots & \frac{\partial g_1}{\partial u_n} \\ \frac{\partial g_2}{\partial u_1} & \frac{\partial g_2}{\partial u_2} & \cdots & \frac{\partial g_n}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial u_1} & \frac{\partial g_n}{\partial u_2} & \cdots & \frac{\partial g_n}{\partial u_m} \end{bmatrix} \Big|_{\mathbf{x}=\mathbf{x}_0, \mathbf{u}=\mathbf{u}_0} \mathbf{D}$$

$$\mathbf{D} = \begin{bmatrix} \frac{\partial u_1}{\partial u_2} & \frac{\partial u_2}{\partial u_2} & \frac{\partial g_2}{\partial u_m} \\ \frac{\partial g_2}{\partial u_1} & \frac{\partial g_2}{\partial u_2} & \frac{\partial g_2}{\partial u_m} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_n}{\partial u_1} & \frac{\partial g_n}{\partial u_2} & \frac{\partial g_n}{\partial u_m} \end{bmatrix}$$

- More complex example (Klee, p613)
 - Inverted pendulum
 - Express DE in state-space form
 - Find equilibrium point(s)
 - Linearise system

- How do state variables co-vary?
- Phase portrait
 - Plot of one state variable vs. another
 - Produces a contour when plotted at many points in time
 - Could plot three, beyond this hard to visualise
- Features of interest
 - Extreme points ⇒ maximum overshoot
 - Circular-style trajectories (orbits)
 - Periodicity
 - Oscillation
 - Points of convergence (equilibrium points)

- Sinusoidal periodicity
 - Elliptical
 - Axes of ellipse depend on amplitudes of state variables

- Nonlinear periodicity
 - Other shapes
 - Trajectory writes over itself
 - Note: definition of periodicity is x(t) = x(t+T)
 - Not necessarily sinusoidal

Sustained oscillations on closed path: limit cycles

- Decaying periodicity
 - Spiral
 - Converges towards steady-state equilibrium point

