Corrigé détaillé et barème

Terminale EDS Mathématiques — Suites et récurrence Mardi 23 septembre 2025

Exercice 1 (5 points) – Monotonie par récurrence

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{2} + 3$.

1) Calcul de u_1 et u_2 : (1 pt)

$$u_1 = \frac{u_0}{2} + 3 = \frac{1}{2} + 3 = \frac{7}{2}$$
 $u_2 = \frac{u_1}{2} + 3 = \frac{7/2}{2} + 3 = \frac{19}{4}$

- 2) Démontrer par récurrence que la suite (u_n) est croissante. Soit P(n) la propriété : $u_{n+1} \ge u_n$.
 - Initialisation (pour n = 0) : (0.5 pt) On a $u_1 = \frac{7}{2}$ et $u_0 = 1$. Comme $u_1 > u_0$, la propriété P(0) est vraie.
 - **Hérédité** : (2.5 pts) Supposons que P(k) est vraie pour un certain entier $k \geq 0$, c'est-à-dire $u_{k+1} \geq u_k$. On veut montrer que $u_{k+2} \geq u_{k+1}$.

$$u_{k+2} - u_{k+1} = \left(\frac{u_{k+1}}{2} + 3\right) - \left(\frac{u_k}{2} + 3\right) = \frac{1}{2}(u_{k+1} - u_k)$$

Par hypothèse de récurrence, $u_{k+1} - u_k \ge 0$, donc $\frac{1}{2}(u_{k+1} - u_k) \ge 0$. Ainsi, $u_{k+2} - u_{k+1} \ge 0$, ce qui signifie que P(k+1) est vraie.

• Conclusion : (1 pt) La propriété est vraie pour n = 0 et est héréditaire, donc par le principe de récurrence, la suite (u_n) est croissante.

Exercice 2 (5 points) – Conjecture et démonstration

Soit la suite (v_n) définie par $v_0 = 0$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + \frac{1}{2^n}$.

- 1) Calcul des premiers termes : $(1.5 \text{ pt}) v_1 = 1, v_2 = \frac{3}{2}, v_3 = \frac{7}{4}$.
- 2) Démontrer par récurrence que $v_n = 2 \frac{2}{2^n}$.
 - **Initialisation** (pour n = 0): (0.5 pt) $v_0 = 0$. La formule donne $2 \frac{2}{2^0} = 2 2 = 0$. Vrai.

• Hérédité : (2.5 pts) Supposons $v_k = 2 - \frac{2}{2^k}$ pour un $k \ge 0$.

$$v_{k+1} = v_k + \frac{1}{2^k} = \left(2 - \frac{2}{2^k}\right) + \frac{1}{2^k} = 2 - \frac{1}{2^k} = 2 - \frac{2}{2^{k+1}}$$

La propriété est donc vraie au rang k + 1.

• Conclusion : (0.5 pt) La formule est vraie pour tout $n \in \mathbb{N}$.

Exercice 3 (5 points) – Suite arithmético-géométrique

Soit la suite (w_n) définie par $w_0 = 2$ et pour tout $n \in \mathbb{N}$, $w_{n+1} = 3w_n - 2$.

- 1) Calcul des premiers termes : (1 pt) $w_1 = 4$, $w_2 = 10$.
- 2) Démontrer par récurrence que $w_n = 3^n + 1$.
 - Initialisation (pour n=0) : (0.5 pt) $w_0=2$. La formule donne $3^0+1=2$. Vrai.
 - Hérédité : (3 pts) Supposons $w_k = 3^k + 1$ pour un $k \ge 0$.

$$w_{k+1} = 3w_k - 2 = 3(3^k + 1) - 2 = 3^{k+1} + 3 - 2 = 3^{k+1} + 1$$

La propriété est donc vraie au rang k + 1.

• Conclusion : (0.5 pt) La formule est vraie pour tout $n \in \mathbb{N}$.

Exercice 4 (5 points) – Suite et carrés

Soit la suite (p_n) définie par $p_0=1$ et pour tout $n\in\mathbb{N},$ $p_{n+1}=p_n+2n+1.$

- 1) Calcul des premiers termes : $(1.5 \text{ pt}) p_1 = 2, p_2 = 5, p_3 = 10.$
- 2) Démontrer par récurrence que $p_n = n^2 + 1$.
 - Initialisation (pour n=0) : (0.5 pt) $p_0=1$. La formule donne $0^2+1=1$. Vrai.
 - Hérédité : (2.5 pts) Supposons $p_k = k^2 + 1$ pour un $k \ge 0$.

$$p_{k+1} = p_k + 2k + 1 = (k^2 + 1) + (2k + 1) = k^2 + 2k + 2$$

Or, la formule au rang k+1 donne $(k+1)^2+1=(k^2+2k+1)+1=k^2+2k+2$. L'égalité est vérifiée, donc la propriété est vraie au rang k+1.

• Conclusion : (0.5 pt) La formule est vraie pour tout $n \in \mathbb{N}$.

Exercice 1 (5 points)

- u_1, u_2 corrects: 1 pt.
- Initialisation: 0.5 pt.
- Hérédité : 2.5 pts.
- Conclusion: 1 pt.
- **Pénalités** : absence de conclusion (-0.5), absence d'hérédité (-2.5), erreurs mineures (-0.25).

Exercice 2 (5 points)

- v_1, v_2, v_3 corrects: 1.5 pt.
- Initialisation: 0.5 pt.
- Hérédité : 2.5 pts.
- Conclusion: 0.5 pt.
- **Pénalités**: un terme faux (-0.5), conclusion manquante (-0.5), erreur algébrique (-0.5).

Exercice 3 (5 points)

- w_1, w_2 corrects: 1 pt.
- Initialisation : 0.5 pt.
- Hérédité : 3 pts.
- Conclusion: 0.5 pt.
- **Pénalités** : absence d'initialisation (-0.5), erreur de calcul (-0.25), conclusion manquante (-0.5).

Exercice 4 (5 points)

- p_1, p_2, p_3 corrects: 1.5 pt.
- Initialisation : 0.5 pt.
- Hérédité : 2.5 pts.
- Conclusion: 0.5 pt.
- **Pénalités**: un terme faux (-0.5), absence d'initialisation (-0.5), pas de conclusion (-0.5).