MS101: Makerspace Laboratory

Topic: Manufacturing Techniques Part 2: Machining and Material removal

Ref.:

[1] Groover, Fundamentals of Manufacturing

[2] Kalpakijan and Schmidt, Manufacturing Technology

Slides adapted from Profs. Rakesh G Mote and K. P. Karunakaran

Instructor: Parag Tandaiya

Associate Professor

Department of Mechanical Engineering

Room S18 (2nd Floor, ME)

Email: parag.ut@iitb.ac.in

Bottom-up vs Top-down Approach

Typical Subtractive Manufacturing Process

Finished product

Common machine tools for subtractive manufacturing

Traditional Machine Tools

- Lathe
- Milling
- Shaper
- Slotting
- Drilling

Modern Machine Tools

CNC Machining Center

Non-Traditional Machine Tools

- Electrical Discharge Machining (EDM)
- Laser Cutting

Geometry Formation/realization

- Cutting Speed
- 2. Feed
- 3. Depth of cut

Traditional Machine Tools: Lathe

Center Lathe

For manufacturing primarily rotational components

Traditional Machine Tools: Lathe

Machining on a Lathe

https://youtu.be/gBqDhkB-X84?si=B69UnRTEFbxdezDz

Single Point Cutting Tool

Traditional Machine Tools: Lathe: Cutting Parameters

Spindle speed : N (rpm)

Cutting velocity : V(m/s)

Feed : f (mm/rev)

Feed rate : f_r (mm/s)

Depth of Cut : d (mm)

$$V = \frac{\pi DN}{60} \text{ and } f_r = fN$$

Material Removal Rate (MRR, mm³/s)

$$MRR = Vfd$$

Traditional Machine Tools: Milling

Horizontal Milling Machine

Vertical Milling Machine

Milling machined parts

Variety of geometries, complex shapes

Traditional Machine Tools: Milling

Milling cutters: Multi-point cutting tools

Traditional Machine Tools: Milling

Machining on a Milling Machine

https://youtu.be/AxHexqN0Hr0?si=0-XNX6s4T4gixrDp

Parag Tandaiya and Rakesh Mote, Mech. Engg., IITB

Traditional Machine Tools: Shaping Machine

Products: Flat surfaces, grooves, slots,

Traditional Machine Tools: Slotting Machine

Products: Flat surfaces, grooves, keyways, Slots, internal splines

Traditional Machine Tools: Shaping and Slotting Machine Operation

https://youtube.com/shorts/pv7aN2v0PWQ?si=dxyzYeVUXxpgxDlg

Traditional Machine Tools: Drilling Machine

> For machining holes, enlarging holes, and threading holes

➤ Cutting tools: **drill bits**

Traditional Machine Tools: Drilling Machine Operation

Drilling, Reaming and Tapping Processes on a Drilling machine

https://youtu.be/f5HfRpeT7Fg?si=sWg1Ji9RaLwQkkKP

Parag Tandaiya and Rakesh Mote, Mech. Engg., IITB

Modern Machine Tools: Manual Control to CNC Control (CAD/CAM): CNC Machining Center

Modern Machine Tools: Manual Control to CNC Control (CAD/CAM):

CNC Machining Center

Manual Control to CNC Control (CAD/CAM)

Part Program

G-Codes

Preparatory codes associated with axes motions etc.

M-Codes

Miscellaneous codes for auxiliary actions like spindle, coolant on/off, tool change, etc.

Manual Control to CNC Control (CAD/CAM)

G00 RAPID TRAVERSE

G01 LINEAR INTERPOLATION (STRAIGHT LINE MOVEMENT)

G02 CIRCULAR INTERPOLATION (CLOCKWISE)

Non-Traditional Manufacturing Processes: EDM Process

Non-Traditional Machining Processes => Material removal by other forms of energy than heat and force such as kinetic energy of beams (laser, electron beam, plasma) and jets (water-jet, abrasive jet etc.), electro-thermal energy, chemical energy, electro-themical energy, ultrasonic vibrations, etc.

https://youtube.com/shorts/LKVBNX1spZU?si=fkfKtJqkpwxN8Odw_electro-themical_energy_electro

Electro-Discharge Machining (EDM)

Wire EDM

Non-Traditional Manufacturing Processes: Laser Cutting

Laser is a versatile tool. It can do cutting, sintering, curing or polymerization etc.

https://youtube.com/shorts/WxJJH84jJtw?si=eHGOBvdUQcPt-zJm https://youtube.com/shorts/a-OOFqn5Rpo?si=dzT3aiKw0-SDA0lo

 CO_2 glass tube Laser (λ =10.6 µm)

Parag Tandaiya and Rakesh Mote, Mech. Engg., IITB

Useful Resources...

- Principles of Modern Manufacturing: Materials, Processes, and Systems, Mikell
 P. Groover, Wiley India Edition, 2018.
- Manufacturing Engineering and Technology (SI Edition), S. Kalpakjian and S. R. Schmid, Pearson Education; Seventh edition, 2018.
- Fusion 360 Tutorials on additive manufacturing
 - https://help.autodesk.com/view/fusion360/ENU/courses/AP-MFG-ADD-FFF
- How to 3D print using Fusion 360
 - https://www.youtube.com/watch?v=wPScDWi-X4s
 (practice upto time 3:05)