4주차 결과보고서

전공: 신문방송학과 학년: 4학년 학번: 20191150 이름: 전현길

1. 실험 목적

- NAND, NOR, XOR, AOI gate의 동작을 이해하고 확인한다.
- Verilog를 사용해 다중 입력 NAND/NOR/XOR/AOI gate를 구현한다.
- 입력 신호를 생성한 뒤 simulation으로 구현된 gate의 동작을 확인한다.
- FPGA를 통해서 Verilog로 구현된 회로의 동작을 확인한다.

2. 4-input NAND gate의 simulation 결과 및 과정에 대해서 설명하시오. (3 input-3 output, 진리표 작성)

source code	testbench code	4-3 NAND truth table								
			input				output			
	a	b	С	d	е	f	g			
	`timescale 1ns / 1ps module NAND_tb; reg aa, bb, cc, dd; wire ee, ff, gg; NAND u_test(.a (aa), .b (bb), .c (cc), .d (dd), .e (ee), .f (ff), .g (gg)); initial begin	0	0	0	0	1	1	1		
		0	0	0	1	1	1	0		
		0	0	1	0	1	0	1		
		0	0	1	1	1	0	1		
`timescale 1ns / 1ps		0	1	0	0	1	1	1		
module NAND(input a, b, c, d,		0	1	0	1	1	1	0		
assign e = ~(a&b); assign f = ~(e&c); assign g = ~(f&d); endmodule		0	1	1	0	1	0	1		
		0	1	1	1	1	0	1		
		1	0	0	0	1	1	1		
		1	0	0	1	1	1	0		
		1	0	1	0	1	0	1		
		1	0	1	1	1	0	1		
		1	1	0	0	0	1	1		
		1	1	0	1	0	1	0		
		1	1	1	0	0	1	1		
		1	1	1	1	0	1	0		

시뮬레이션의 편의성을 위해, 진리표와 동일한 형식대로 값이 변화하도록 테스트벤치 코드를 작성했다. $e = \sim(a\&b)$ 로 할당했기 때문에 a와 b가 모두 1일 때만 0이 되며, 그 외에는 모두 1이 된다. $f = \sim(e\&c)$ 로 할당했기 때문에, e와 c가 모두 1일 때에만 0이 되며, 그 외에는 모두 1이 된다. $g = \sim(f\&d)$ 로 f와 d가 모두 1일 때에만 0이 되며, 그 외에는 모두 1이 된다.

흥미로운 점은 3-input NAND gate의 output은, input 3개(a, b, c)가 모두 1일 때 0이 되어야 하는데, 우리가 만든 회로에서는 a, b, c가 모두 1일 때 f가 1이 된다는 점이다. 하지만 이는 꼼꼼하게 따지면 당연한 일이다.

a, b =
$$1 \rightarrow e = 0 \rightarrow e\&c = 0 \rightarrow \sim(e\&c) = 1$$

따라서 3-input NAND gate의 output과 output f의 결과값은 동일하지 않다. 이는 output g도 마찬가지이다. 원래 4-input NAND gate의 output은 input 4개가 모두 1일 때에만 0이 되고 나머지 경우엔 1이 되어야 한다. 하지만 output g는 그 외에도 0이 되는 모습을 볼 수 있다.

3. 4-input NOR gate의 simulation 결과 및 과정에 대해서 설명하시오. (3 i nput-3 output, 진리표 작성)

source code	testbench code	4-3 NOR truth table							
		input				output			
		a	b	С	d	е	f	g	
	`timescale 1ns / 1ps module NOR_tb; reg aa, bb, cc, dd; wire ee, ff, gg; NOR u_test(.a (aa), .b (bb), .c (cc), .d (dd), .e (ee), .f (ff), .g (gg)); initial begin	0	0	0	0	1	0	1	
		0	0	0	1	1	0	0	
		0	0	1	0	1	0	1	
		0	0	1	1	1	0	0	
'timescale 1ns / 1ps module NOR(input a, b, c, d, output e, f, g); assign e = ~(a b); assign f = ~(e c); assign g = ~(f d); endmodule		0	1	0	0	0	1	0	
		0	1	0	1	0	1	0	
		0	1	1	0	0	0	1	
		0	1	1	1	0	0	0	
		1	0	0	0	0	1	0	
		1	0	0	1	0	1	0	
		1	0	1	0	0	0	1	
		1	0	1	1	0	0	0	
		1	1	0	0	0	1	0	
		1	1	0	1	0	1	0	
		1	1	1	0	0	0	1	
		1	1	1	1	0	0	0	

시뮬레이션의 편의성을 위해, 진리표와 동일한 형식대로 값이 변화하도록 테스트벤치 코드를 작성했다. $e = \sim(a|b)$ 로 할당했기 때문에 a와 b가 모두 0일 때만 1이 되며, 그 외에는 모두 0이 된다. $f = \sim(e|c)$ 이므로 e와 c가 모두 0일 때에만 1이 되며, 그 외에는 모두 0이 된다. $g = \sim(f|d)$ 이므로 f와 d가 모두 0일 때에만 1이 되며, 그 외에는 모두 0이 된다.

NOR 게이트에서 역시 앞서 살펴본 문제가 동일하게 나타난다. 3-input, 4-input NOR gate와 우리가 만든 회로가 정확히 동일하게 동작하지 않는다.

4. 4-input XOR gate의 simulation 결과 및 과정에 대해서 설명하시오. (3 i nput-3 output, 진리표 작성)

source code	testbench code	4-3 XOR truth table							
		input				output			
	a	b	С	d	е	f	g		
		0	0	0	0	0	0	0	
	'timescale 1ns / 1ps module XOR_tb; reg aa, bb, cc, dd; wire ee, ff, gg; XOR u_test(.a (aa), .b (bb), .c (cc), .d (dd), .e (ee), .f (ff), .g (gg)); initial begin	0	0	0	1	0	0	1	
		0	0	1	0	0	1	1	
		0	0	1	1	0	1	0	
'timescale 1ns / 1ps module XOR(input a, b, c, d, output e, f, g); assign e = a^b; assign f = e^c; assign g = f^d; endmodule		0	1	0	0	1	1	1	
		0	1	0	1	1	1	0	
		0	1	1	0	1	0	0	
		0	1	1	1	1	0	1	
		1	0	0	0	1	1	1	
		1	0	0	1	1	1	0	
		1	0	1	0	1	0	0	
		1	0	1	1	1	0	1	
		1	1	0	0	0	0	0	
		1	1	0	1	0	0	1	
		1	1	1	0	0	1	1	
		1	1	1	1	0	1	0	

시뮬레이션의 편의성을 위해, 진리표와 동일한 형식대로 값이 변화하도록 테스트벤치 코드를 작성했다. $e = a^b z$ 할당했기 때문에 $a^b y$ 하가 다를 때만 1이 되며, 같을 때는 0이 된다. $f = e^c y$ 이 모두 y 이 되다. y 등 때는 1이 되다. y 등 대한 1이 되다.

XOR 게이트에서는 앞서 확인한 NAND, NOR 게이트와 달리, f = a^b^c와 f = (a^b)^c의 결과가 동일하고, g = a^b^c^d의 결과와 g = ((a^b)^c)^d의 결과가 동일하다. 다중 입력 XOR 게이트는 1을 홀수 개 입력하면 1을 출력하고, 짝수 개 입력하면 0을 출력하는 방식으로 작동되는데, AND, OR 연산처럼 XOR 연산 간에 결합법칙이 성립하므로 NAND, NOR 연산처럼 결과값이 달라지지 않는다.

단 XNOR(부정 배타적 논리합) 연산 등은 NAND, NOR 연산과 동일하게 결과값이 달라진다.

5. 4-input AOI gate의 simulation 결과 및 과정에 대해서 설명하시오. (3 i nput-3 output, 진리표 작성)

source code	testbench code	4-3 AOI truth table							
		input				output			
	a	b	С	d	е	f	g		
	0	0	0	0	0	0	1		
	'timescale 1ns / 1ps module AOI_tb; reg aa, bb, cc, dd; wire ee, ff, gg; AOI u_test(.a (aa), .b (bb), .c (cc), .d (dd), .e (ee), .f (ff), .g (gg)); initial begin	0	0	0	1	0	0	1	
		0	0	1	0	0	0	1	
		0	0	1	1	0	1	0	
'timescale 1ns / 1ps module AOI(input a, b, c, d, output e, f, g); assign e = a&b assign f = c&d assign g = ~(e f); endmodule		0	1	0	0	0	0	1	
		0	1	0	1	0	0	1	
		0	1	1	0	0	0	1	
		0	1	1	1	0	1	0	
		1	0	0	0	0	0	1	
		1	0	0	1	0	0	1	
		1	0	1	0	0	0	1	
		1	0	1	1	0	1	0	
		1	1	0	0	1	0	0	
		1	1	0	1	1	0	0	
		1	1	1	0	1	0	0	
		1	1	1	1	1	1	0	

시뮬레이션의 편의성을 위해, 진리표와 동일한 형식대로 값이 변화하도록 테스트벤치 코드를 작성했다. e = a&b, f = c&d, $g = \sim (elf)$ 로 각각 할당하였으므로, e와 f는 일반적인 AND 연산처럼 동작한다. g는 e, f가 모두 0일 때에만 e1이며, 그 외에는 모두 1이 된다.

6. 결과 검토 및 논의 사항

이번 실험에서는 4-input NAND/NOR/XOR/AOI gate를 4-input AND/OR gate를 구현했던 방식으로 구현해 보았고, FPGA를 활용해서 직접 결과값 출력을 실험해 보았다.

실험 결과, 구현한 NAND gate, NOR gate의 output들은 4-input NAND, NOR gate처럼 동작하지 않았다. 이는 NAND, NOR, XNOR 게이트와 같은 부정 연산들은 AND, OR, XOR 연산들처럼 결합법칙이 성립하지 않기 때문이다. 따라서 다중 입력 NAND, NOR, XNOR 게이트에서 원하는 결과값을 얻기 위해서는 AND, OR, XOR 연산을 결합한 뒤 마지막에 부정 연산을 덧붙여야 한다.

7. 추가 이론 조사 및 작성

1) XOR, XNOR gate의 transitor-level 구현

