COMPLETE LISTING OF THE CLAIMS

The following lists all of the claims that are or were in the above-identified patent application.

1. (Previously Presented) An apparatus containing a data structure representing a presentation, the data structure comprising:

a first audio channel representing an audio portion of the presentation after time scaling by a first time scale factor, wherein the first audio channel comprises a plurality of frames; and

a second audio channel representing the audio portion after time scaling by a second time scale factor that differs from the first time scale factor, wherein the second audio channel comprises a plurality of frames that are in one-to-one correspondence with the plurality of frames in the first audio channel, and corresponding frames in the first and second audio channels represent the same time interval of the presentation.

- 2. (Canceled)
- 3. (Previously Presented) The apparatus of claim 1, wherein each frame in the first audio channel is separately compressed using a first compression method.
- 4. (Previously Presented) The apparatus of claim 3, wherein the data structure further comprises a third audio channel representing the audio portion of the presentation after time scaling by the first time scale factor, wherein each frame in the third audio channel is separately compressed using a second compression method.
- 5. (Previously Presented) The apparatus of claim 1, wherein the data structure further comprises a data channel identifying graphics associated with the audio portion of the presentation.
 - 6. (Previously Presented) The apparatus of claim 1, wherein: each frame in the first audio channel has an index value that identifies a time interval

THE PATENT LAW OFFICES OF DAVID MILLERS 6560 ASHFIELD COURT SAN JOSE, CA 95120 PHONE(408) 927-6700 FAX (408) 927-6701 of the audio portion that the frame represents; and

each frame in the second audio channel has an index value that identifies a time interval of the audio portion that the frame represents.

- 7. (Original) The apparatus of claim 6, wherein each frame in the first and second data channels is separately compressed.
- 8. (Previously Presented) The apparatus of claim 6, wherein the data structure further comprises a data channel corresponding to a plurality of bookmarks, wherein each bookmark has an index value and identifies graphics, the index value indicating a display time for the graphics relative to playing of the frames of the first or second audio channel.
- 9. (Original) The apparatus of claim 1, wherein the apparatus comprises a server connected to a network.
 - 10. (Original) The apparatus of claim 1, wherein the apparatus comprises: data storage in which the data structure is stored;

a decoder connected to receive a data stream from the data storage, the decoder converting the data stream for perceivable presentation; and

selection logic coupled to the data storage and capable of selecting a source channel for the data stream from among a set of channels including the first audio channel and the second audio channel.

- 11. (Original) The apparatus of claim 10, wherein the apparatus is a standalone device that operates on battery power.
- 12. (Previously Presented) An apparatus containing a data structure representing an audio presentation, the data structure comprising a plurality of audio channels representing the audio presentation after time scaling, wherein:

each audio channel includes a plurality of audio frames and has a corresponding time scale factor that differs from the time scale factor corresponding to another of the audio channels; and

each audio frame has a frame index that uniquely distinguishes the audio frame from

THE PATENT LAW OFFICES
OF DAVID MILLERS
6560 ASHFIELD COURT
SAN JOSE, CA 95120
PHONE(408) 927-6700
FAX (408) 927-6701

other audio frames in the same audio channel and identifies the audio frame as corresponding to specific audio frames in other audio channels.

13. (Previously Presented) The apparatus of claim 12, wherein audio frames that are in different audio channels and have the same frame index represent the same portion of the audio presentation.

14. (Previously Presented) A method for encoding audio data, comprising: performing a plurality of time scaling processes on the audio data to generate a plurality of time-scaled audio data sets, each time-scaled audio data set having a different time scale factor;

partitioning each time-scaled audio data set into a plurality of frames, wherein all frames resulting from the partitioning correspond to the same amount of time in the audio data;

separately compressing each frame to produce compressed frames; and collecting the compressed frames into a plurality of audio channels that form a data structure, each audio channel having a corresponding one of the different time scale factors.

- 15. (Canceled)
- 16. (Canceled)
- 17. (Previously Presented) The method of claim 14, wherein separately compressing each frame comprises applying a plurality of different compression processes to generate a plurality of compressed frames from each frame.
- 18. (Original) The method of claim 17, wherein collecting the compressed frames produces audio channels such that in each audio channel, all compressed frames in the audio channel have the same time scale and compression process.

Claims 19-36 (Canceled)

THE PATENT LAW OFFICES OF DAVID MILLERS 6560 ASHFIELD COURT SAN JOSE, CA 95120 PHONE(408) 927-6700