Topologie et Calcul différentiel – TD 5: Topologie : ouvert, intérieur, frontière, voisinages, points isolés

Le but de ce TD est d'apprendre à manier les outils de topologie qui nous serviront plus tard.

Exercice 1:

Soit E un espace-vectoriel normé. Soit F un sous-espace vectoriel de E tel que l'intérieur de F est non-vide.

1. Montrer que F = E.

Exercice 2:

Soit $(E, \|.\|)$ un espace vectoriel normé. Soit A une partie non vide de E.

1. Montrer que A est bornée si et seulement s'il existe M > 0 tel que : $\forall x \in A, ||x|| \leq M$.

Dans la suite, on suppose que A est bornée.

- 2. Montrer que \overline{A} et ∂A sont bornées.
- 3. Lorsque $\overset{\circ}{A} \neq \emptyset$, montrer que diam $\overset{\circ}{A} \leq \text{diam}(A)$. Donner un exemple où il n'y a pas égalité.
- 4. Montrer que $diam(A) = diam(\overline{A})$.
- 5. (a) Montrer que diam $(\partial A) \leq \operatorname{diam}(A)$.
 - (b) Soit $x \in A$ et $u \in E \setminus \{0\}$. On considère l'ensemble $X = \{t \ge 0, x + t . u \in A\}$. Montrer que $t_{x,u} = \sup X \in \mathbb{R}$ est bien défini.
 - (c) Montrer que $x + t_{x,u}u \in \partial A$.
 - (d) Soit $(x,y) \in A^2$. Montrer qu'il existe x' et y' alignés avec x et y tels que $x' \in \partial A$, $y' \in \partial A$ et $||x' y'|| \geqslant ||x y||$.
 - (e) Montrer que $diam(\partial A) = diam(A)$.

Exercice 3:

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ muni de la norme infinie et $F = \{f \in E, f \text{ croissante}\}.$

- 1. Soit $(f_n) \in E^{\mathbb{N}}$ et $f \in E$ tels que $f_n \xrightarrow[n \to +\infty]{\|\cdot\|_{\infty}} f$. Montrer que pour tout $x \in [0,1]$, on a $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$.
- 2. Montrer que F est fermé dans E.
- 3. Montrer que $\overset{\circ}{F} = \emptyset$.

Exercice 4

Soit $E = \mathcal{C}([0,1], \mathbb{R}), C_1 = \{ f \in E, f([0,1]) \subset \mathbb{R}_+ \}, C_2 = \{ f \in E, f(0) = f(1) \}.$

- 1. On munit E de la norme infinie, préciser alors $\overline{C_k}$ et \mathring{C}_k pour $k \in \{1,2\}$.
- 2. On munit E de la norme 1, déterminer $\overline{C_2}$ et $\overset{\circ}{C_2}$.

Exercice 5

Soit $E = l^{\infty}(\mathbb{R})$ l'ensemble des suites à valeurs réelles bornées. On munit E de la norme $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$. Déterminer l'adhérence et l'intérieur des ensembles suivants

- 1. Les suites presque nulles $\{u \in l^{\infty}(\mathbb{R}), \exists N \geq 0, \forall n \geq N, u_n = 0\}.$
- 2. Les suites convergentes.

Exercice 6:

Soit A un sous-ensemble de $(\mathbb{R}, | |)$ tel que tous les points de A sont isolés. Montrer que A est au plus dénombrable.