STANDARD REDUCTION POTENTIALS IN AQUEOUS SOLUTION AT $25^{\circ}\mathrm{C}$

Half-re	action		$E^{\circ}(V)$
$F_2(g) + 2 e^-$	\rightarrow	2 F ⁻	2.87
$\text{Co}^{3+} + e^{-}$	\rightarrow	Co ²⁺	1.82
$Au^{3+} + 3e^{-}$	\rightarrow	Au(s)	1.50
$\text{Cl}_2(g) + 2 e^-$	\rightarrow	2 Cl ⁻	1.36
$O_2(g) + 4 H^+ + 4 e^{-g}$	$^ \rightarrow$	$2~\mathrm{H_2O}(l)$	1.23
$\mathrm{Br}_2(l) + 2e^-$	\rightarrow	2 Br ⁻	1.07
$2 \text{ Hg}^{2+} + 2 e^{-}$	\rightarrow	Hg_2^{2+}	0.92
$Hg^{2+} + 2e^{-}$	\rightarrow	Hg(l)	0.85
$Ag^+ + e^-$	\rightarrow	Ag(s)	0.80
$Hg_2^{2+} + 2e^-$	\rightarrow	2 Hg(l)	0.79
$Fe^{3+} + e^{-}$	\rightarrow	Fe ²⁺	0.77
$\mathrm{I}_2(s) + 2e^-$	\rightarrow	2 I ⁻	0.53
$Cu^+ + e^-$	\rightarrow	Cu(s)	0.52
$Cu^{2+} + 2e^{-}$	\rightarrow	Cu(s)	0.34
$Cu^{2+} + e^{-}$	\rightarrow	Cu ⁺	0.15
$\operatorname{Sn}^{4+} + 2 e^{-}$	\rightarrow	Sn ²⁺	0.15
$S(s) + 2 H^+ + 2 e^-$	\rightarrow	$H_2S(g)$	0.14
$2 \text{ H}^+ + 2 e^-$	\rightarrow	$H_2(g)$	0.00
$Pb^{2+} + 2e^{-}$		Pb(s)	-0.13
$\mathrm{Sn}^{2+} + 2 e^{-}$	\rightarrow	Sn(s)	-0.14
$Ni^{2+} + 2e^{-}$	\rightarrow	Ni(s)	-0.25
$\text{Co}^{2+} + 2 e^{-}$	\rightarrow	Co(s)	-0.28
$Tl^+ + e^-$	\rightarrow	Tl(s)	-0.34
$Cd^{2+} + 2e^{-}$		Cd(s)	-0.40
$\operatorname{Cr}^{3+} + e^{-}$	\rightarrow	Cr ²⁺	-0.41
$Fe^{2+} + 2e^{-}$	\rightarrow	Fe(s)	-0.44
$Cr^{3+} + 3e^{-}$		Cr(s)	-0.74
$Zn^{2+} + 2e^{-}$	\rightarrow	Zn(s)	-0.76
$Mn^{2+} + 2e^{-}$	\rightarrow	Mn(s)	-1.18
$A1^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.66
$Be^{2+} + 2e^{-}$	\rightarrow	Be(s)	-1.70
$Mg^{2+} + 2e^{-}$		•	-2.37
$Na^{+} + e^{-}$	\rightarrow	Na(s)	-2.71
$Ca^{2+} + 2e^{-}$		Ca(s)	-2.87
$Sr^{2+} + 2e^{-}$	\rightarrow	Sr(s)	-2.89
$Ba^{2+} + 2e^{-}$	\rightarrow	Ba(s)	-2.90
$Rb^+ + e^-$	\rightarrow	Rb(s)	-2.92
$K^+ + e^-$		K(s)	-2.92
$Cs^+ + e^-$	\rightarrow	Cs(s)	-2.92 3.05
$Li^+ + e^-$	\rightarrow	Li(s)	-3.05