Цель работы: Углубление фундаментальных знаний в области оптимального кодирования данных в информационных системах, исследование способов построения таблиц кодирования первичных кодов и простейших методов сжатия символьных последовательностей, приобретение практических навыков исследования процессов кодирования информационных сообщений.

Задание №4.2. Набрать в текстовом редакторе (Блокноте) строку произвольного сообщения размером 10-15 символов и сохранить ее в файле.

Исходный текст: «Я учусь в МИРЭА»

Задание №4.3. Открыть сохраненный файл в режиме просмотра и найти кодировки, в которых происходит правильное отображение текста.

Текст отображается правильно в следующих кодировках:

- UTF-8
- UTF-16
- Windows-1251
- KOI8-R

Задание №4.4. Записать закодированную строку в 16-ричном коде. «Я учусь в МИРЭА» - DF 20 F3 F7 F3 F1 FC 20 E2 20 CC C8 CF DD C0

Задание №4.5. Найти символы кодируемой строки в таблице CP-1251, выписать их десятичные коды и представить их в двоичном виде. Сравнить эти коды с представлением символов в 16-ричном коде.

Символ	16-ричный код	Десятичный код	Двоичный код
R	DF	223	11011111
	20	32	100000
y	F3	243	11110011
Ч	F7	247	11110111
y	F3	243	11110011
c	F1	241	11110001
Ь	FC	252	11111100
	20	32	100000
В	E2	226	11100010
	20	32	100000
M	CC	204	11001100
И	C8	200	11001000
P	CF	207	11001111
Э	DD	221	11011101
A	C0	192	11000000

Задание №4.6. Посмотреть кодируемую строку при кодировке ASCII/DOS, выписать 16-коды символов и сравнить их с кодами соответствующих символов при использовании кодовой страницы CP-1251.

- **ASCII/DOS:** 9F FF E3 E7 E3 E1 EC FF A2 FF 8C 88 90 9D 80
- **CP-1251:** DF 20 F3 F7 F3 F1 FC 20 E2 20 CC C8 CF DD C0

Задание №4.7. Выполнить пункт 4.6 при кодовой странице KOI8-R и пояснить причину неверного отображения закодированной строки.

Ответ: «При открытии строки в кодировке *КОІ8-R* наблюдаются искажения, так как символы кириллицы в этой кодировке находятся на других позициях.»

Задание №4.8. Вычислить объем изображения, содержащего данные для отображения на экране дисплея с разрешающей способностью 800×600 изображения, в котором на синем фоне в центре экрана располагается красный прямоугольник размером 20×20 пикселей.

Всего пикселей: 800 * 600 = 1 440 000 (px).

При использовании 24-битной цветовой палитры объем равен $3 * 480\ 000 = 1\ 440\ 000\ (байт)$.

Вывод: Объем такого изображения равен 1 440 000 байт, что приблизительно равно 1.3 Мб. Наличие красного прямоугольника никак не влияет на объём файла, т.к. он складывается только из глубины цвета и разрешения.

Задание №4.9. Закодировать содержимое изображения методом RLE и определить объем сжатого файла и рассчитать коэффициент компрессии.

Чтобы определить объем, разберём изображение по строкам и столбцам:

Синие пиксели в каждой строке (800 * (0, 0, 255));

Строки, содержащие красный прямоугольник:

- 290 синих пикселей (390 * (0, 0, 255))
- 20 красных пикселей (20 * (255, 0, 0))
- 290 синих пикселей (390 * (0, 0, 255))

Всего: 290 + 290 = 580 строк с синим фоном.

Общий объем **несжатого** изображения: 800*600*3 = 1.44 Мб (1 440 000 байт)

Объем сжатого изображения:

580 строк, содержащих синий фон: (10 * (1 + 3)) * 580 = 23,200 байт

Строки с прямоугольником: 11 * (1 + 3) * 20 = 880 байт

Общий объем сжатого файла: 23,200 + 880 = 24,080 байт ~ 24 Кб

Коэффициент сжатия = 1440,000 / 24,080 = 59,8

Вывод: в результате работы были изучены оптимальные методы кодировки данных в информационных системах, исследованы основные способы построения таблиц кодирования первичных кодов, приобретены навыки исследования процессов кодирования.