Requested Patent

EP1108790A2

Title:

NOVEL POLYNUCLEOTIDES;

Abstracted Patent

EP1108790;

Publication Date:

2001-06-20;

Inventor(s):

MIZOGUCHI HIROSHI (JP); SENOH AKIHIRO (JP); ANDO SEIKO (JP); HAYASHI MIKIRO (JP); IKEDA MASATO (JP); OCHIAI KEIKO (JP); OZAKI AKIO (JP); TATEISHI NAOKO (JP); YOKOI HARUHIKO (JP); NAKAGAWA SATOCHI (JP);

Applicant(s):

KYOWA HAKKO KOGYO KK (JP);

Application Number.

EP20000127688 20001218;

Priority Number(s):

JP19990377484 19991216; JP20000159162 20000407; JP20000280988 20000803;

IPC Classification:

C12Q1/68; C07H21/04; C12N15/63; C07K14/34; C12R1/15; G06F17/00;

C12R1/13; G01N33/50;

Equivalents:

ABSTRACT:

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

(11) EP 1 108 790 A2

(12)

# **EUROPEAN PATENT APPLICATION**

- (43) Date of publication: 20.06.2001 Bulletin 2001/25
- (21) Application number: 00127688.0
- (22) Date of filing: 18.12.2000

- (51) Int Cl.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50
- (84) Designated Contracting States:
  AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
  MC NL PT SE TR
  Designated Extension States:
  AL LT LV MK RO SI
- (30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chlyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
  - Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd.
     Machida-shi, Tokyo 194-8533 (JP)
  - Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
   c/o Kyowa Hakko Kogyo Co.,Ltd.
   Machida-shi, Tokyo 194-8533 (JP)
- Ochial, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tatelshi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

## (54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

# Description

10

50

## BACKGROUND OF THE INVENTION

## Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

## 2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-hysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli*, *Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

# SUMMARY OF THE INVENTION

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

## 15 BRIEF DESCRIPTION OF THE DRAWING

10

25

35

40

50

55

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

# DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
  - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
  - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
  - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
  - (D) analyzing expression patterns of genes demandment a conjuntorm bastement, a
  - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
    - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
    - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a corynetorm bacterium, a labeled polynucleotide derived from a mutant of the corynetorm bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
    - (c) detecting any hybridization, and
    - (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
  - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoscidophilum, Corynebacterium acetoscidophilum, Corynebacterium acetoscidophilum, Corynebacterium acetoscidophilum, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
  - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
  - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
  - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and

- recovering the polypeptide from the medium.
- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
- culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
  - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
  - (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

(22) A polypeptide array, comprising:

10

15

20

25

30

35

40

50

55

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
  - (ii) a data storage device for at least temporarily storing the input information;
  - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
  - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

(24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:

- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NGO 3502 to 7001, and target sequence or target structure motif information;
  - (ii) a data storage device for at least temporarily storing the input information;
  - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
  - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
  - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

(ii) at least temporarily storing said information;

10

15

25

30

35

40

50

55

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
  - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
  - (ii) a data storage device for at least temporarily storing the input information;
  - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
  - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
  - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
  - (ii) at least temporarily storing said information;
  - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
  - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
  - (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
    - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
    - (ii) a data storing device for at least temporarily storing the input information;
    - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
    - (iv) an output device that shows a function obtained by the comparator.
  - (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
    - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
    - (ii) at least temporarily storing said information;
    - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
    - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
  - (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevilbacterium, or the genus Microbacterium.
- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
  - (37) The recording medium or storage device according to

10

15

20

25

30

35

40

50

55

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala
- residue.

  (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Proresidue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro-residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:

authoring the transformant of any one of (47) to (50) in a medium to produce and accumulate Limedium, and recovering the L-lysine from the culture.

- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
  - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
  - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
  - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
  - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

bacterium obtained in (iii).

10

15

20

25

30

35

40

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
  - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
  - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
  - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
  - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
  - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
  - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
  - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
  - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
  - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
  - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
  - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
  - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
  - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target assful product in (iv) weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
  - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

(64) The method according to (63), wherein the compound is L-lysine.

(65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

# (i) preparing

5

10

15

20

25

30

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
  - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
  - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium cultum corynebacterium herculis. Corynebacterium lilium, Corynebacterium melas-
- secola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
  - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium
- flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis
- 55 ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

## (1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmoV Tris hydrochloride, 25 mmoV tethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000  $\times$  g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer. [0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner,

3 moVI sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmo/l Tris hydrochloride, 1 mo/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

## (2) Production of shotgun library

10

15

20

25

30

35

40

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo)

or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20  $\mu$ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

## 15 (3) Production of cosmid library

10

30

50

55

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

35 [0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

# (4) Determination of nucleotide sequence

## (4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

# 15 (4-2) Sequencing reaction

10

20

25

30

35

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

## (5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross\_Match (The University of Washington) or SPS Cross\_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

#### (6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the

following method.

10

25

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and 20 NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Co-

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter

sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

10

15

20

35

[0995] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.

[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:

3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym.*, 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

10

25

30

35

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotice comprising a sequence which is the same as a sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T<sub>m</sub>) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

## 3. Determination of isozymes

15

20

25

30

35

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Note, the arranged ORF sequence information is compared with any method by the pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwl of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by hom of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

10

20

40

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating metagenesis and broading based on random metagenesis using metagene, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus Corynebacterium which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include Corynebacterium thermoaminogenes, such as Corynebacterium thermoaminogenes FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a conyneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

- [0152] The breeding method as described above is applicable to microorganisms, other man coryneron bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).
  - 7. Production and utilization of polynucleotide array

(1) Production of polynucleotide array

30

50

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

- [0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.
  - [0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.
- [0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polytysine or the like has been adhered (*Nat. Genet., 21*: 15–19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.
- 15 [0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.
  - [0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.
  - [0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.
  - [0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21: 20-24* (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.
- 30 (2) Use of polynucleotide array

20

40

- [0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).
- (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome
  - [0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:
    - (i) producing a polynucleotide array by the method of the above (1);
    - (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization
- conditions;
  - (iii) detecting the hybridization; and
  - (iv) analyzing the hybridization data.
- [0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.
  - [0165] The method will be described in detail.
  - [0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science*, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

10

25

30

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like, mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[U180] Inis detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term \*recording medium or storage device which is readable by a computer\* means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.
  - [0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.
- 25 [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
  - [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
  - [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
    - [0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
    - cording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.
    - [0192] Namely, the system based on a computer according to the present invention comprises the following:
      - (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
      - (ii) a data storage device for at least temporarily storing the input information;

30

35

50

55

- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

10

55

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in *Corynebacterium glutamicum*, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (*Mol. Gen. Genet.*, 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in *Escherichia coli*, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (*Agric. Biol. Chem.*, 48: 669 (1984)), pLSA1 (*Agric. Biol. Chem.*, 53: 277 (1989)), pGEL1 (*Proc. Natl. Acad. Sci. USA, 82*: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from *Escherichia coli* JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from *Escherichia coli* IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No.

Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (*J. Bacteriol., 172*: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter ( $P_{trp}$ ), *lac* promoter,  $P_L$  promoter,  $P_R$  promoter,  $P_R$  promoter,  $P_R$  promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two  $P_{trp}$  are linked in series ( $P_{trp} \times 2$ ), *tac* promoter, *lac*T7 promoter *left* promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural oene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and environmental conditions utilized.

10

15

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli G1698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA*, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics*, 168: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol.*, 194: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA*, 75: 1929 (1978)), a lithium acetate method (*J. Bacteriol.*, 153: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA*, 75: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: B40 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate carly) gene of sytomogalavirus (SMV), an early promoter of SV19, a promoter of the IE gene of human lothionein promoter, a heat shock promoter, SR $\alpha$  promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, *A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.
  - [0222] Examples of the insect cells include Spodoptera frugiperda oocytes St9 and St21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
  - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
  - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
  - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, affalfa, rice, wheat, barley, and the like.
- The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

30

- [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
- [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
- [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
- [0232] When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
- [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
- [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, com steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
- [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
  - [0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
  - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing,
  - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

an inducer can be added to the medium, if necessary.

10

20

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199.* 519 (1967)), Eagle's MEM medium (*Science, 122.* 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO<sub>2</sub> for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

15 [0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

35 [0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α-casein promoter, a (β-casein promoter, a β-lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitra.

10

25

30

[0262] The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*JV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose, phenyl sepharotropic p

rose or the like, ger flittation using a molecular sleve, affinity chromatography, chromatofocusing, or electrophoresis such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10. 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79. 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

20

25

30

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

400701 profine: 0 fivelexyprofine: 4 hydroxyprofine

Group F:

[0277] serine, threonine, homoserine;

Group G:

50

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Frnoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (Molecular Cloning, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

10

20

25

30

35

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial tragment polypeptide of the polypeptide, or a peptide having a partial artino acid ocquer of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- 10 [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.

[0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

[0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

[0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmo/l glutamine, 5×10<sup>-5</sup> mo/l 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10<sup>7</sup> or more of the cells are used for the fusion.

(c) Production of hybridoma

30

35

40

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5: 1 to 10: 1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10<sup>8</sup> antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10-4)

mol/I hypoxanthine, 1.5×10<sup>-5</sup> mol/I thymidine and 4×10<sup>-7</sup> mol/I aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO<sub>2</sub> incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

10

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at  $5 \times 10^6$  to  $20 \times 10^6$  cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
- [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
  - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
- [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
  - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),
- Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
  - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
  - [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.
    - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.
    - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
    - 12. Production and use of polypeptide array
    - (1) Production of polypeptide array
    - item 10 or the antibody of the present invention obtained in the above item 11.
    - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
    - [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
    - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth. Enzym.*, 34 (1974); *Advances in Experimental Medicine and Biology*, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
    - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

# (2) Use of polypeptide array

10

15

20

35

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1):
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of convenient of polypeptide array (the first antibody) together with a polypeptide derived from a mutant of convenient of the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of convenient of the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of convenient of the polypeptide derived from a mutant of convenient of the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of convenient of the polypeptide derived from a mutant of the polypeptide derived from the polypeptide deriv
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having

substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a poptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- 55 [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
  - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention

and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

10

15

20

30

40

55

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrytamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH108 (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyt-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

20

40

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the *Bami*-II site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into *Escherichia coli* XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The *Escherichia coli* was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

- (4) Determination of nucleotide sequence
- (4-1) Preparation of template

the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

## (4-2) Sequencing reaction

15 [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, *5*: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

# (5) Assembly

20

30

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross\_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

# (6) Determination of nucleotide sequence in gap part

- 15 [U362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.
- [0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

10

35

40

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

|    | _       |                             |                                     |      |                               |                                           |                              |                                          | _    | - 1  |       |      |                                     | $\overline{}$ |       |                                                 |                                            | $\overline{}$             |                                             |       | <del></del>                     |                        | $\overline{}$                               |   |
|----|---------|-----------------------------|-------------------------------------|------|-------------------------------|-------------------------------------------|------------------------------|------------------------------------------|------|------|-------|------|-------------------------------------|---------------|-------|-------------------------------------------------|--------------------------------------------|---------------------------|---------------------------------------------|-------|---------------------------------|------------------------|---------------------------------------------|---|
| 5  |         | uo                          | protein DneA                        |      | beta chain                    | ein (recF                                 |                              | (ATP-                                    |      |      |       |      | <b>3</b> 0/                         |               |       | ¥                                               | ane protein                                |                           | protein, LysR                               |       | nesis protein                   |                        |                                             |   |
| 10 |         | Function                    | replication initiation protein OneA |      | DNA polymerase III beta chain | DNA replication protein (recF<br>protein) | hypothetical protein         | DNA topoisomerase (ATP-<br>hydrolyzing)  |      |      |       |      | NAGC/XYLR repressor                 |               |       | DNA gyrase subunit                              | hypothetical membrane protein              | hypothetical protein      | bacterial regulatory protein, LysR<br>type  |       | cytochrome c biogenesis protein | hypothetical protein   | repressor                                   |   |
| 15 |         | Matched<br>length<br>(a.e.) | 524                                 |      | 390                           | 392                                       | 174                          | 704                                      |      |      |       |      | 422                                 |               |       | 854                                             | 112                                        | 329                       | 268                                         |       | 265                             | 155                    | 117                                         |   |
| 20 |         | Similarity<br>(%)           | 96.8                                |      | 81.8                          | 79.9                                      | 58.1                         | 88.9                                     |      |      |       |      | 20.7                                |               |       | 1 88.1                                          | 89.6                                       | 63.5                      | 62.3                                        |       | 57.4                            | 84.5                   | 70.1                                        |   |
|    |         | Identity<br>(%)             | 99.8                                |      | 50.5                          | 53.3                                      | 35.1                         | 71.9                                     |      |      |       |      | 29 4                                |               |       | 70.4                                            | 29.5                                       | 33.7                      | 27.8                                        |       | 29.1                            | 31.6                   | 38.8                                        |   |
| 25 | Table 1 | Hamologous gene             | Brevibacterium flavum dnaA          |      | Mycobacterium smegmatis dnaN  | Mycobacterium smegmatis recF              | Streptomyces coelicolor yreG | Mycobacterium tuberculosis<br>H37Rv gyrB |      |      |       |      | Mycobacterium tuberculosis<br>H37Rv |               |       | Mycobacterium tuberculosis<br>H37Rv Rv0006 gyrA | Mycobacterium tuberculosis<br>H37Rv Rv0007 | Escherichia coli K12 yeiH | Hydrogenophilus thermoluteolus<br>TH-1 cbbR |       | Rhodobacter capsulatus ccdA     | netli com1             | Mycobacterium tuberculosis<br>H37Rv Rv1848c |   |
|    |         | Hom                         | Brevibacteri                        |      | Mycobacteri                   | Mycobacteri                               | Streptomyce                  | Mycobacterii<br>H37Rv gyrB               |      |      |       |      | Mycobacter<br>H37Rv                 |               |       | Mycobacterium tuber<br>H37Rv Rv0006 gyrA        | Mycobacterium<br>H37Rv Rv0007              | Escherichia               | Hydrogenop<br>TH-1 cbbR                     |       | Rhodobad                        | Coxiella burnetii com1 | Mycobacterium t<br>H37Rv Rv1848c            |   |
| 40 |         | db Match                    | gsp:R98523                          |      | Sp:DP3B_MYCSM                 | Sp.RECF_MYCSM                             | sp:YREG_STRCO                | pir.S44198                               |      |      |       |      | sp:YV11_MYCTU                       |               |       | sp GYRA_MYCTU                                   | pir E70698                                 | SP. YEIM_ECOLI            | gp.A8042619_1                               |       | gp.AF156103_2                   | pir.A49232             | pir.F70664                                  |   |
|    |         | ORF<br>(bp)                 | 1572                                | 324  | 1182                          | 1182                                      | 534                          | 2133                                     | 996  | 699  | 510   | 441  | 1071                                | 281           | 248   | 2568                                            | 342                                        | 1035                      | 894                                         | 420   | 870                             | 762                    | 369                                         |   |
| 49 |         | Termina<br>(nt)             | 1572                                | 1597 | 3473                          | 4766                                      | 5299                         | 7488                                     | 8795 | 8798 | 10071 | 9474 | 10107                               | 11263         | 11523 | 14398                                           | 14746                                      | 15209                     | 17207                                       | 17670 | 17860                           | 18736                  | 20073                                       |   |
| 50 |         | Initial<br>(nt)             | -                                   | 1920 | 2532                          | 3585                                      | 4766                         | 5354                                     | 7830 | 9466 | 9562  | 9914 | 11177                               | 11523         | 11768 | 11831                                           | 14405                                      | 16243                     | 16314                                       | 17251 | 18729                           | 19497                  | 19705                                       | 1 |
|    |         | SEO<br>NO<br>1              |                                     | 3503 | 3504                          | 3505                                      | 3506                         | 3507                                     | 3508 | 3509 | 3510  | 3511 | 3512                                | 3513          | 3514  | 3515                                            | 3516                                       | 3517                      | 3518                                        | 3519  | 3520                            | 3521                   | 3522                                        |   |
| 55 |         | SEQ<br>NO<br>DNA)           | 7                                   | 3    | 4                             | 2                                         | 8                            | 7                                        | 60   | a    | 9     | =    | 12                                  | 13            | 4     | 15                                              | 5                                          | 17                        | 180                                         | 10    | 50                              | 21                     | 22                                          |   |

EP 1 108 790 A2

| 5                     | Function          | hypothetical membrane protein       | 2,5-diketo-D-gluconic acid raductase | 5'-nucleotidase precursor    | 5'-nucleotidase family protein    | transposase                   | organic hydroperoxide detoxication<br>enzyme     | ATP-dependent DNA helicase     |       | glucan 1,4-alpha-glucosidase                   | lipoprotein                          | ABC 3 transport family or integral membrane protein | iron(III) dicitrate transport ATP.<br>biding protein | suger ABC transporter, periplesmic<br>sugar-binding protein | high affinity ribose transport protein | ribose transport ATP-binding protein | neurofilament subunit NF-180 | peptidyl-protyl cis-frans isomerase A            | hypothetical membrane protein |
|-----------------------|-------------------|-------------------------------------|--------------------------------------|------------------------------|-----------------------------------|-------------------------------|--------------------------------------------------|--------------------------------|-------|------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------|--------------------------------------------------|-------------------------------|
| 15                    | Matched<br>length | 321                                 | 56                                   | 198                          | 270                               | 51                            | 139                                              | 217                            |       | 449                                            | 311                                  | 266                                                 | 222                                                  | 283                                                         | 312                                    | 238                                  | 347                          | 169                                              | 228                           |
| 20                    | Similanty<br>(%)  | 8.03                                | 88.5                                 | 56.1                         | 58.7                              | 72.6                          | 79.9                                             | 80.8                           |       | 54.1                                           | 63 7                                 | 74.1                                                | 70.3                                                 | 56.5                                                        | 68.3                                   | 78.7                                 | 44.4                         | 88.8                                             | 53.1                          |
|                       | identity<br>(%)   | 24.9                                | 65.4                                 | 27.0                         | 27.0                              | 52.9                          | 51.8                                             | 32.7                           |       | 26.7                                           | 28.9                                 | 34.6                                                | 39.2                                                 | 25.8                                                        | 30.5                                   | 32.2                                 | 23.6                         | 79.9                                             | 29.2                          |
| 25 (penditud) ) elder | Homologous gene   | ) leprae                            | um sp. ATCC                          | Vibrio parahaemolyticus nutA | adiodurans                        | Corynebacterium striatum ORF1 | campestns                                        | Thiobacilius ferrooxidans recG |       | es cerevisiae<br>9C sta1                       | Erysipelothrix rhusiopathlae<br>ewlA | Streptococcus pyogenes SF370 misC                   | oi K12 fecE                                          | Thermotoga maritima MSB8<br>TM0114                          | oli K12 rbsC                           | is 168 rbsA                          | narinus                      | Mycobacterium leprae H37RV<br>RV0009 ppiA        | lis 168 yagP                  |
| 35                    | Нотою             | Mycobacterium leprae<br>MLCB1788.18 | Corynebacterium sp. ATCC 31090       | Vibrio parahae               | Deinococcus radiodurans<br>DR0505 | Corynebacteri                 | Xanthomonas campestns phaseoil ohr               | Thiobacillus fe                |       | Saccharomyces cerevisiae<br>S288C YIR019C sta1 | Erysipelothrix<br>ewiA               | Streptococcus<br>mtsC                               | Escherichia coii K12 (acE                            | Thermotoga n<br>TM0114                                      | Escherichia coli K12 rbsC              | Bacillus subtilis 168 rbsA           | Petromyzon marinus           | Mycobacteriu<br>RV0009 ppiA                      | Bacillus subtilis 168 yqgP    |
| 40                    | db Match          | gp.MLCB1788_6                       | pir.140838                           | SP. SNTO_VIBPA               | gp.AE001809_7                     | prt 2513302C                  | prf.2413353A                                     | SP RECG THIFE                  |       | SP.AMYH_YEAST                                  | gp_ERU52850_1                        | gp AF180520_3                                       | sp FECE_ECOLI                                        | plr.A72417                                                  | prf 1207243B                           | _                                    | pir 151116                   | sp CYPA_MYCTU                                    | sp YQGP_BACSU                 |
|                       | ORF<br>(bp)       | 993                                 | 8                                    | 528                          | 1236                              | 165                           | 435                                              | 1413                           | 438   | 1278                                           | 954                                  | 849                                                 | 657                                                  | 981                                                         | 1023                                   | 759                                  | 816                          | 561                                              | 687                           |
| 45                    | ermin 1           | 21069                               | 21074                                | 22125                        | 23399                             | 23819                         | 24729                                            | 488                            | 2677: | 2682                                           | 2818                                 | 2911                                                | 3065                                                 | 3167                                                        | 3269                                   | 3345                                 | 3346                         | 3489                                             | 3586                          |
| 50                    | Initial Termi     |                                     | 21253 2                              | 21597 2                      | 22164 2:                          | 23779 2                       | <del>                                     </del> | 26297 2                        | +     |                                                | 29117 2                              | 29965                                               | 29995                                                | 30697                                                       | 31677                                  | +                                    | $\vdash$                     | !                                                | 34982                         |
|                       |                   |                                     | 3524 21                              | 3525 21                      | ↓                                 | 3527 2:                       | <u> </u>                                         | 3529 20                        | 4_    | 1                                              | 3532 2                               | 3533 2                                              | 3534 2                                               | 3535 3                                                      | 15.16                                  | <del></del> -                        |                              |                                                  | 3540 3                        |
| 56                    |                   | 23 3523                             | 24 35                                | 25 35                        | <del>! -</del>                    | 27 35                         | i                                                | 29 35                          | 1     |                                                | 32 39                                | 33                                                  | 34                                                   | 35 3                                                        | 1                                      | 3 2                                  | ī                            | <del>                                     </del> | 40                            |
|                       | , J.              | =                                   | 1                                    | _i                           | 1                                 | _L_                           |                                                  |                                |       |                                                |                                      |                                                     |                                                      |                                                             |                                        |                                      | _                            |                                                  |                               |

|           | _                   |                            |                                                       |       |                      |                                 |                                             |                                 |                                 | $-\tau$                    |                               |                                         |                                             |                                             |       |       |       |       |                                     |                                                |                        |                                    | ı |
|-----------|---------------------|----------------------------|-------------------------------------------------------|-------|----------------------|---------------------------------|---------------------------------------------|---------------------------------|---------------------------------|----------------------------|-------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|-------|-------|-------|-------|-------------------------------------|------------------------------------------------|------------------------|------------------------------------|---|
| 5         |                     | Function                   | ferric enterobactin transport system permease protein |       | ATPase               | vulnibactin utilization protein | hypothetical membrane protein               | serine/threonine protein kinase | serine/threonine protein kinase | penicillin-binding protein | stage V sporulation protein E | phosphoprotein phosphatase              | hypothetical protein                        | hypothetical protein                        |       |       |       |       | phenol 2-monooxygenese              | succinate-semialdehyde dehydrogenase (NAD(P)+) | hypothetical protein   | hypothetical membrane protein      |   |
| 15        |                     | Matched<br>length<br>(a a) | 332                                                   |       | 253                  | 260                             | 92                                          | 648                             | 486                             | 482                        | 375                           | 469                                     | 155                                         | 526                                         |       |       |       |       | 117                                 | 480                                            | 242                    | 282                                |   |
| 20        |                     | Similarity (%)             | 70.5                                                  |       | 81.8                 | 52.7                            | 726                                         | 68.7                            | 59 1                            | 7.99                       | 65.6                          | 708                                     | 68.5                                        | 388                                         |       |       |       |       | 63.3                                | 78.2                                           | 57.0                   | 64.1                               |   |
|           |                     | identity<br>(%)            | 40.4                                                  |       | 51.8                 | 28.2                            | 40.0                                        | 40.6                            | 31.7                            | 33.5                       | 31.2                          | 44.1                                    | 38.7                                        | 23 6                                        |       |       | _     |       | 29.9                                | 46.7                                           | 27.3                   | 29.0                               |   |
| 25        | Table 1 (continued) | eueß sn                    | 12 fepG                                               |       | Or.                  | 106-24 viuB                     | berculosis                                  | prae pknB                       | elicolor pksC                   | seus pbpA                  | 88 spoVE                      | ıberculosis                             | berculosis                                  | uberculosis                                 |       |       |       |       | aneum ATCC                          | C12 gabD                                       | rkH                    | annaschii                          |   |
| 30        | Table 1 (           | Homologous gene            | Escherichia coli K12 fepG                             |       | Vibria cholerae vluC | Vibrio vulnificus MO6-24 viuB   | Mycobacterium tuberculosis<br>H37Rv Rv0011c | Mycobacterium leprae pknB       | Streptomyces coelicolor pksC    | Streptomyces griseus pbpA  | Bacillus subtilis 168 spoVE   | Mycobacterium tuberculosis<br>H37Rv ppp | Mycobacterium tuberculosis<br>H37Rv Rv0019c | Mycobacterium tuberculosis<br>H37Rv Rv0020c |       |       |       |       | Trichosporon cutaneum ATCC<br>46490 | Escherichia coli K12 gabD                      | Bacillus subtilis yrkH | Methanococcus jannaschii<br>MJ0441 |   |
| <b>35</b> |                     | db Match                   | sp FEPG_ECOLI                                         |       | gp VCU52150_9        | Sp:VIUB_VIBVU                   | sp.YO11_MYCTU                               | SP PKNB_MYCLE                   | gp.AF094711_1                   | gp AF241575_1              | Sp.SPSE_BACSU                 | pir H70699                              | pir A70700                                  | pir.B70700                                  |       |       |       |       | sp PH2M_TRICU                       | sp.GABD_ECOU                                   | SP.YRKH_BACSU          | sp.Y441_METJA                      |   |
|           |                     | ORF<br>(bp)                | 978 \$                                                | 986   | 777 g                | 822 \$                          | 270 \$                                      | 1938                            | 1407                            | 1422 g                     | 1143                          | 1353 p                                  | 462                                         | 864                                         | 147   | 720   | 219   | 471   | 954                                 | 1470                                           | 1467                   | 789                                | - |
| 45        |                     | Termin (nt)                | 38198                                                 | 36247 | 38978                | 39796                           | 40189                                       | 40576                           | 42513                           | 43926                      | 45347                         | 46669                                   | 48024                                       | 48505                                       | 49455 | 49897 | 50754 | 50966 | 54008                               | 51626                                          | 55546                  | 55629                              |   |
| 50        |                     | Initial<br>(nt)            | 37221                                                 | 37242 | 38202                | 38978                           | 40458                                       | 42513                           | 43919                           | 45347                      | 46489                         | 48021                                   | 48485                                       | 49368                                       | 49601 | 50616 | 50972 | 51436 | 53055                               | 53095                                          | 54080                  | 56417                              |   |
|           |                     | SEQ<br>NO.                 |                                                       | 3542  | 3543                 | 3544                            | 3545                                        | 3546                            | 3547                            | 3548                       | 3549                          | 3550                                    | 3551                                        | 3552                                        | 3553  | 3554  | 3555  | 3556  | 3557                                | 3558                                           | 3559                   | 3560                               | - |
| 55        |                     | NO SEQ                     | =                                                     | 42    | 43                   | 44                              | 45                                          | 46                              | 47                              | 48                         | 64                            | 50                                      | 51                                          | 52                                          | 53    | 54    | 55    | 58    | 57                                  | 58                                             | 59                     | 99                                 | ì |

|                             |                           |                        |                                  |                                            |       |                           | -     |       | —т                                               |       |                            | - 1                         |                                                      | $\overline{}$ | $\overline{}$ |       |                                              |                                                 |       |                           | $\overline{}$                                 |   |
|-----------------------------|---------------------------|------------------------|----------------------------------|--------------------------------------------|-------|---------------------------|-------|-------|--------------------------------------------------|-------|----------------------------|-----------------------------|------------------------------------------------------|---------------|---------------|-------|----------------------------------------------|-------------------------------------------------|-------|---------------------------|-----------------------------------------------|---|
| 5                           | Function                  | hypothetical protein   | hypothetical protein             | hypothetical protein                       |       | hypothetical protein      |       |       | magnesium and cobait fransport<br>protein        |       | chloride channel protein   | required for NMN transport  | phosphate starvation-Induced<br>protein-like protein |               |               |       | Mg(2+)/citrate complex secondary transporter | two-component system sensor<br>histidine kinase |       | transcriptional regulator | D-isomer specific 2-hydroxyacid dehydrogenase |   |
| 15                          | Matched<br>length<br>(aa) | 74 hy                  | 179 hy                           | 62 h                                       |       | 310                       |       |       | 390 Pr                                           |       | 400                        | 241 16                      | 340                                                  |               |               |       | 497 tr                                       | 583 h                                           |       | 229                       | 293                                           |   |
| 20                          | Similarity (%)            | 74.3                   | 70.4                             | 83.9                                       |       | 50.7                      |       |       | 59.5                                             |       | 64.8                       | 53.1                        | 0.09                                                 |               |               |       | 68.8                                         | 80.8                                            |       | 63.3                      | 73.7                                          |   |
|                             | Identity (%)              | 40.5                   | 36.3                             | 53.2                                       |       | 26.8                      |       |       | 29.5                                             |       | 30.0                       | 24.1                        | 29.1                                                 |               |               |       | 42.3                                         | 27.2                                            |       | 33.2                      | 43.3                                          |   |
| 30 (panulinos) 1 electricas | us gene                   | ΥF                     | PCC6803                          | berculosis                                 |       | r L 4768.11               |       |       | uberculosis<br>corA ·                            |       | oills ZM4 clcb             | murium priuC                | uberculosis                                          |               |               |       | ortM                                         | K12 dpiB                                        |       | K12 criR                  | n glutamicum                                  |   |
|                             | Homologous gene           | Bacillus subtills yrkF | Synechocystis sp PCC6803 str1261 | Mycobacterium tuberculosis<br>H37Rv Rv1766 |       | Leishmania major L4768.11 |       |       | Mycobacterium tuberculosis<br>H37Rv Rv1239c corA |       | Zymomonas mobilis ZM4 clcb | Salmonella typhimurium pnuC | Mycobacterium tuberculosis<br>H37Rv RV2368C          |               |               |       | Bacıllus subtilis cıtM                       | Escherichia coli K12 dpiB                       |       | Escherichia coli K12 criR | Corynebacterium glutamicum<br>unkdh           |   |
| 40                          | db Match                  | SP YRKE BACSU E        | SP.YC61_SYNY3                    | pir.G70988                                 |       | 9P.LMFL4768_11            |       |       | pir F70952                                       |       | gp AF179611_12             | SP. PNUC_SALTY              | SP PHOL_MYCTU                                        |               |               |       | sp CITM_BACSU                                | P. DPIB_ECOLI                                   |       | SP. DPIA ECOLI            | gp AF134895_1                                 |   |
|                             | ORF<br>(bp)               | 291 s                  | 591 \$                           | 174 p                                      | 855   | 840                       | E     | 1653  | 1119                                             | 447   | 1269                       | 069                         | 1122                                                 | 132           | 384           | 592   | 1467                                         | 1653                                            | 570   | 654                       | +                                             |   |
|                             | Termina<br>(nt)           | 56386                  | 56680                            | 57651                                      | 58941 | 59930                     | 60662 | 62321 | 62390                                            | 63594 | 65458                      | 65508                       | 67972                                                | 68301         | 68251         | 69824 | 68720                                        | 72158                                           | 71474 | 72814                     | 72817                                         |   |
| 50                          | Indial (nt)               | 56676                  | 57270                            | 57478                                      | 58087 | 59091                     | 59952 | 69909 | 63508                                            | 64040 | 64190                      | 66197                       | 66851                                                | 68170         | 68634         | 09069 | 70186                                        | 70506                                           | 72043 | 72161                     | 73728                                         |   |
|                             | SEO                       | 3561                   | 3562                             | 3563                                       | 3564  | 3565                      | 3566  | 3567  | 3568                                             | 3569  | 3570                       | 3571                        | 3572                                                 | 3573          | 3574          | 3575  | 3576                                         | 3577                                            | 3578  | 3579                      | 3580                                          | 1 |
| 55                          | SEO                       | ( S                    | 92                               | 63                                         | 64    | 65                        | 99    | 67    | 68                                               | 69    | 20                         | 12                          | 72                                                   | 73            | 74            | 75    | 9/                                           | 11                                              | 78    | 79                        | 8 2                                           | - |

|                     |                             |                                          |                                    |                                            |                                     |       |                                    |                      | cie                              |                      |       |       | nation                                          |                         |                         |       |                                    | 0.00                                                  |                                               |                                               |
|---------------------|-----------------------------|------------------------------------------|------------------------------------|--------------------------------------------|-------------------------------------|-------|------------------------------------|----------------------|----------------------------------|----------------------|-------|-------|-------------------------------------------------|-------------------------|-------------------------|-------|------------------------------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|                     | Function                    | hypothetical protein                     | biotin synthase                    | hypothetical protein                       | hypothetical protein                |       | hypothetical protein               | hypothetical protein | integral membrane afflux protein | creatinine deaminase |       |       | SIR2 gene family (silent information regulator) | triacylglycerol lipase  | triacyigiycerol lipase  |       | transcriptional regulator          | urease gammma subunit or urease<br>structural protein | urease beta subunit                           | urease alpha subunit                          |
|                     | Matched<br>length<br>(a.a.) | 127                                      | 334                                | 43                                         | 85                                  |       | 42                                 | 84                   | 507                              | 394                  |       |       | 279                                             | 251                     | 262                     |       | 171                                | 100                                                   | 162                                           | 570                                           |
|                     | Similarity<br>(%)           | 76.4                                     | 7.66                               | 79.1                                       | 63.5                                |       | 75.0                               | 0.99                 | 29.0                             | 93.8                 |       |       | 50 2                                            | 29.0                    | 56.1                    |       | 94.7                               | 100 0                                                 | 100.0                                         | 100.0                                         |
| ·                   | Identity<br>(%)             | 38.6                                     | 99.4                               | 72.1                                       | 34.1                                |       | 71.0                               | 61.0                 | 25.6                             | 97.2                 |       |       | 26.2                                            | 30.7                    | 29.4                    |       | 90.6                               | 100.0                                                 | 100.0                                         | 100.0                                         |
| Table 1 (continued) | Homologous gene             | Streptomyces coelicolor A3(2)<br>SCM2 03 | Corynebacterium glutamicum<br>bloB | Mycobacterium tuberculosis<br>H37Rv Rv1590 | Saccharomyces cerevisiae<br>YKL084w |       | Chlamydla muridarum Nigg<br>TC0129 | Chlamydia pneumoniae | Streptomyces virginiae varS      | Bacillus sp.         |       |       | Saccharomyces cerevisiae hst2                   | Propionibacterium acnes | Propionibacterium acnes |       | Corynebacterium glutamicum<br>ureR | Corynebacterium glutamicum<br>ureA                    | Corynebacterium glutamicum<br>ATCC 13032 ureB | Corynebacterium glutemicum<br>ATCC 13032 ureC |
|                     | db Match                    | gp.SCM2_3                                | sp:BIOB_CORGL                      | pir:H70542                                 | sp:YKI4_YEAST                       |       | PIR:F81737                         | GSP Y35814           | prf 2512333A                     | gp D38505_1          |       |       | sp.HST2_YEAST                                   | prf 2316378A            | prf 2316378A            |       | gp:AB029154_1                      | gp AB029154_2                                         | gp CGL251883_2                                | gp CGL251883_3                                |
|                     | ORF<br>(bp)                 | 429                                      | 1002                               | 237                                        | 339                                 | 117   | 141                                | 273                  | 1449                             | 1245                 | 306   | 615   | 924                                             | 972                     | 900                     | 888   | 513                                | 300                                                   | 486                                           | 1710                                          |
|                     | Termina<br>(nt)             | 74272                                    | 75491                              | 75742                                      | 76035                               | 76469 | 80613                              | 81002                | 82120                            | 8369                 | 85098 | 85883 | 87241                                           | 87561                   | 88549                   | 90449 | 9046                               | 9147.                                                 | 91986                                         | 9370                                          |
|                     | Initial<br>(nt)             | 73844                                    | 74490                              | 75508                                      | 75697                               | 76353 | 80753                              | 81274                | 83568                            | 84935                | 85403 | 86277 | 86318                                           | 88532                   | 89444                   | 89558 | 90973                              | 91174                                                 | 91503                                         | 91992                                         |
|                     | SEQ<br>NO                   | 3581                                     | 3582                               | 3583                                       | 3584                                | 3585  | 3586                               | 3587                 | 3588                             | 3589                 | 3590  | 3591  | 3592                                            | 3593                    | 3594                    | 3595  | 3596                               | 3597                                                  | 3598                                          | 3599                                          |
|                     | SEQ<br>NO<br>DNA)           |                                          | 82                                 | 83                                         | 84                                  | 95    | 98                                 | 87                   | 88                               | 88                   | 06    | 91    | 92                                              | 93                      | 94                      | 95    | 96                                 | 97                                                    | 86                                            | 66                                            |

|                     |                            |                                               |                                               |                                               |                                               |                                |       |                                 |        |        |                                   |                          | _      | _                                   | _      |                                            | _       |                                       | ~                         | ~                             | _      | _                             | $\overline{}$ |
|---------------------|----------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------|-------|---------------------------------|--------|--------|-----------------------------------|--------------------------|--------|-------------------------------------|--------|--------------------------------------------|---------|---------------------------------------|---------------------------|-------------------------------|--------|-------------------------------|---------------|
|                     | Function                   | urease accessory protein                      | urease accessory protein                      | urease accessory protein                      | urense accessory protein                      | epoxide hydrolese              |       | valanimycin resistant protain   |        |        | heat shock protein (hsp90-family) | AMP nucleosidase         |        | acetolactate synthase large subunit |        | proline dehydrogenase/PSC<br>dehydrogenase |         | aryl-alcohol dehydrogenese<br>(NADP+) | pump protein (transport)  | Indole-3-acetyl-Asp hydrolase |        | hypothetical membrane protein |               |
|                     | Matched<br>length<br>(a a) | 157                                           | 226                                           | 205                                           | 283                                           | 279                            |       | 347                             |        |        | 899                               | 181                      |        | 186                                 |        | 1297                                       |         | 338                                   | 513                       | 352                           |        | £<br>80+                      |               |
|                     | Similarity<br>(%)          | 100 0                                         | 100.0                                         | 100.0                                         | 100.0                                         | 48.4                           |       | 2.65                            |        |        | 25.7                              | 2.89                     |        | 58.7                                |        | 50.4                                       |         | 2 09                                  | 71.4                      | 49.2                          |        | 70.8                          |               |
|                     | identity<br>(%)            | 100.0                                         | 100.0                                         | 100.0                                         | 100.0                                         | 212                            |       | 26.5                            |        |        | 23.8                              | 41.0                     |        | 29.6                                |        | 25.8                                       |         | 30.2                                  | 38.5                      | 23.0                          |        | 35.9                          |               |
| Table 1 (continued) | Homologous gene            | Corynebacterium glutamicum<br>ATCC 13032 ureE | Corynebacterium glutamicum<br>ATCC 13032 ureF | Corynebacterium glutamicum<br>ATCC 13032 ureG | Corynebacterium glutamicum<br>ATCC 13032 ureD | Agrobacterium radiobacter echA |       | Streptomyces viridifaciens vimF |        |        | Escharichla coli K12 htpG         | Escherichia coli K12 amn |        | Aeropyrum pernix K1 APE2509         |        | Salmonella typhimunum putA                 |         | Phanerochaete chrysosportum aad       | Escherichia coli K12 ydaH | Enterobactor agglomerans      |        | Escherichia coli K12 yidH     |               |
|                     | db Match                   | gp:CGL251883_4                                | gp:CGL251883_5                                | gp.CGL251883_6                                | gp:CGL251883_7                                | prf.2318328B                   |       | gp:AF148322_1                   |        |        | sp:HTPG_ECOLI                     | SP. AMN_ECOLI            |        | plr.E72483                          |        | sp:PUTA_SALTY                              |         | Sp AAD_PHACH                          | Sp. YDAH_ECOL!            | prf.2422424A                  |        | sp. YIDH_ECOLI                |               |
|                     | ORF<br>(bp)                | 471                                           | 678                                           | 615                                           | 849                                           | 777                            | 609   | 1152                            | 675    | 2775   | 1824                              | 1418                     | 579    | 552                                 | 999    | 3458                                       | 114     | 945                                   | 1614                      | 1332                          | 669    | 366                           | 315           |
|                     | Termina<br>(nt)            | 94199                                         | 94879                                         | 95513                                         | 96365                                         | 98368                          | 98189 | 97319                           | 100493 | 98808  | 101812                            | 104909                   | 105173 | 105841                              | 106630 | 110890                                     | 111274  | 112318                                | 114083                    | 115478                        | 114564 | 115943                        | 116263        |
| :                   | Initial<br>(nt)            | 93729                                         | 94202                                         | 94899                                         | 95517                                         | 97144                          | 97521 | 98470                           | 99819  | 101582 | 103435                            | 103494                   | 105751 | 108392                              | 107289 | 107435                                     | 1111161 | 111374                                | 112470                    | 114147                        | 115262 | 115578                        | 115949        |
|                     | SEQ<br>NO                  | 3600                                          | 3601                                          | 3602                                          | 3603                                          | 3604                           | 3605  | 3606                            | 3607   | 3808   | 3609                              | 3610                     | 3811   | 3612                                | 3613   | 3614                                       | 3615    | 3616                                  | 3617                      | 3618                          | 3619   | 3620                          | 3621          |
|                     | SEQ<br>NO<br>(DNA)         | 100                                           | 101                                           | 102                                           | 103                                           | 104                            | 105   | 106                             | 107    | 108    | 109                               | 110                      | 111    | 112                                 | 113    | 114                                        | 115     | 116                                   | 117                       | 118                           | 119    | 120                           | 121           |

|                          |                             |        |                                   |                        |                                             |                              |                            |        | _                                       | _                             |        |                                               | $\overline{}$                                       |        | _                               |        |                                           | _      |                            | _                               |                           |        |        |
|--------------------------|-----------------------------|--------|-----------------------------------|------------------------|---------------------------------------------|------------------------------|----------------------------|--------|-----------------------------------------|-------------------------------|--------|-----------------------------------------------|-----------------------------------------------------|--------|---------------------------------|--------|-------------------------------------------|--------|----------------------------|---------------------------------|---------------------------|--------|--------|
| 5                        | Function                    |        | transcriptional repressor         | methylgiyoxalase       | hypothetical protein                        | mannitol dehydrogenase       | D-arabinitol transporter   |        | galactitol utilization operon repressor | xylulose kinase               |        | pantostebeta-slanine ligase                   | 3-methyl-2-oxobutanoate<br>hydroxymethyltransferase |        | DNA-3-methyladenine glycosylase |        | esterase                                  |        | carbonate dehydratese      | xylose operon repressor protein | macrolide efflux protein  |        |        |
|                          |                             | _      | is.                               | Ě                      | φ                                           | Ē                            | ٥                          |        | Š                                       | 호                             |        | <b>a</b>                                      | E &                                                 | _      | ă                               |        | is e                                      |        | 3                          | ž                               | Ē                         | 4      | _      |
| 15                       | Matched<br>length<br>(a.a.) |        | 258                               | 128                    | 162                                         | 497                          | 435                        |        | 260                                     | 451                           |        | 279                                           | 27.1                                                |        | 188                             |        | 270                                       |        | 201                        | 357                             | 418                       |        |        |
| 20                       | Similarity<br>(%)           |        | 59 7                              | 78.6                   | 64.8                                        | 70.4                         | 68.3                       |        | 64.6                                    | 68.1                          |        | 100 0                                         | 100.0                                               |        | 67.6                            |        | 69.3                                      |        | 63.2                       | 49.3                            | 61.2                      |        |        |
|                          | (%)                         |        | 29.5                              | 57.9                   | 37.0                                        | 43.5                         | 30.3                       |        | 27.3                                    | 45.0                          |        | 100.0                                         | 100.0                                               |        | 42.0                            |        | 39.3                                      |        | 30.0                       | 24.1                            | 21.1                      |        |        |
| 25 (pan                  | •                           |        | ens                               |                        | osis                                        | ns mtID                      | JeiT                       |        | R                                       | us xylB                       |        | icum                                          | nicum                                               |        | 9                               |        | cterium                                   |        | phila                      | α                               | 4                         |        |        |
| 8<br>Table 1 (continued) | Homologous gene             |        | Agrobacterium tumefaciens<br>accR | Bacillus subtills yurT | Mycobacterium tuberculosis<br>H37Rv Rv1278c | Pseudomonas fluorescens mtlD | Klebsiella pneumoniae dalT |        | Escherichia coli K12 gatR               | Streptomyces rubiginosus xylB |        | Corynebacierium glutamicum<br>ATCC 13032 panC | Corynebacterium glutamicum<br>ATCC 13032 panB       |        | Arabidopsis thallana mag        |        | Petroleum-degrading bacterium<br>HD-1 hde |        | Methanosarcina thermophila | Bacillus subtills W23 xylR      | Lactococcus lactis met214 |        |        |
| 35                       |                             |        |                                   | •                      |                                             | _                            | _                          |        |                                         |                               |        |                                               |                                                     |        |                                 |        |                                           |        |                            |                                 |                           |        | i      |
| 40                       | db Match                    |        | sp:ACCR_AGRTU                     | pir C70019             | sp:YC78_MYCTU                               | prf 2309180A                 | prf.2321326A               |        | Sp.GATR_ECOLI                           | Sp:XYLB_STRRU                 |        | gp.CGPAN_2                                    | gp.CGPAN_1                                          |        | SP. 3MG_ARATH                   |        | gp.AB029896_1                             |        | SP.CAH_METTE               | SP.XYLR_BACSU                   | gp.LLLPK214_12            |        |        |
|                          | ORF<br>(bp)                 | 2052   | 780                               | 390                    | 510                                         | 1509                         | 1335                       | 189    | 837                                     | 1419                          | 822    | 837                                           | 813                                                 | 951    | 630                             | 654    | 924                                       | 627    | 558                        | 1143                            | 1272                      | 804    | 444    |
| 46                       | <u>-</u>                    | 60     | 0                                 | 0                      | 6                                           | -                            | 1                          | 0      | 8                                       | 0                             | 2      | 3                                             | 2                                                   | 6      | 6                               | 8      | 2                                         | 4      | -                          | -                               | 7                         | 6      | 2      |
|                          | Termi<br>(nt)               | 1185   | 1188                              | 1204                   | 1204                                        | 1209                         | 1225                       | 1240   | 1249                                    | 1263                          | 1279   | 1263                                          | 1271                                                | 1280   | 1294                            | 1307   | 1308                                      | 1324   | 1329                       | 1329                            | 1342                      | 1355   | 1361   |
| 50                       | Initial<br>(nt)             | 118599 | 119589                            | 120021                 | 120922                                      | 122459                       | 123841                     | 123842 | 124130                                  | 124932                        | 127171 | 127189                                        | 128004                                              | 129049 | 130118                          | 130145 | 131738                                    | 131798 | 132424                     | 134113                          | 135478                    | 136321 | 136565 |
|                          | SEQ<br>NO                   | 3622   | 3623                              | 3624                   | 3625                                        | 3628                         | 3627                       | 3628   | 3629                                    | 3630                          | 3831   | 3632                                          | 3633                                                | 3634   | 3635                            | 3636   | 3837                                      | 3638   | 3639                       | 3640                            | 364;                      | 3642   | 3643   |
| 55                       | SEQ<br>NO<br>(DNA)          | 122    | 123                               | 124                    | 125                                         | 128                          | 127                        | 128    | 129                                     | 130                           | 131    | 132                                           | 133                                                 | 134    | 135                             | 136    | 137                                       | 138    | 139                        | 140                             | 141                       | 142    | 143    |

EP 1 108 790 A2

| 5                        | Function                   |        |        |        | cellulose synthase             | hypothelical membrane protein            |        |        |        | chloramphenicol sensitive protein | hypothetical membrane protain |        |        | transport protein         | hypothetical membrane protein |        |        | ATP-dependent helicase    |        | nodulation protein                                        | DNA repair system specific for alkylated DNA | DNA-3-methyladenine glycosylase | threonine efflux protein  | hypothetical protein   | doxorubicin biosynthesis enzyme |
|--------------------------|----------------------------|--------|--------|--------|--------------------------------|------------------------------------------|--------|--------|--------|-----------------------------------|-------------------------------|--------|--------|---------------------------|-------------------------------|--------|--------|---------------------------|--------|-----------------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------|------------------------|---------------------------------|
| 15                       | Matched<br>length<br>(a a) |        |        |        | 420                            | 593                                      |        |        |        | 303                               | 198                           |        |        | 361                       | 248                           |        |        | 829                       |        | 188                                                       | 218                                          | 168                             | 217                       | 55                     | 284                             |
| 20                       | Similarity (%)             |        |        |        | 51.2                           | 51.8                                     |        |        |        | 60.7                              | 59 1                          |        |        | 62.3                      | 70.2                          |        |        | 64.3                      |        | 0.99                                                      | 60.7                                         | 65.1                            | 61.3                      | 72.7                   | 52 1                            |
|                          | Identity (%)               |        |        |        | 24.3                           | 25 1                                     |        |        |        | 34.7                              | 30.3                          |        |        | 32.4                      | 34.7                          |        |        | 33.8                      |        | 40.4                                                      | 34.7                                         | 39.8                            | 34.1                      | 8.09                   | 31.0                            |
| 8 52 Table 1 (continued) | Hamologous gene            |        |        |        | Agrobacterium tumefactens celA | cerevisiae                               |        |        |        | eruginosa rarD                    | K12 yadS                      |        |        | K12 abrB                  | K12 ytcA                      |        |        | K12 hrpB                  |        | minosarum bv.<br>RL1JI nodL                               | o373#1 alkB                                  | K12 tag                         | K12 rhtC                  | yaaA                   | eucetius dnrV                   |
| 8 Table 1                | Homolog                    |        |        |        | Agrobacterium t                | Saccharomyces cerevisiae<br>YDR420W hkr1 |        |        |        | Pseudomonas aeruginosa rarD       | Escherichia coli K12 yadS     |        |        | Escherichia coli K12 abrB | Escherichia coli K12 yfcA     |        |        | Escherichia coli K12 hrpB |        | Rhizobium leguminosarum bv.<br>viciae plasmid pRL1JI nodL | Escherichla coll 0373#1 alkB                 | Escherichia coli K12 tag        | Escherichia coll K12 rhtC | Bacillus subtilis yaaA | Streptomyces peucetlus dnrV     |
| 40                       | db Match                   |        |        |        | pir 139714                     | sp.HKR1_YEAST                            |        |        |        | SP. RARD_PSEAE                    | sp YADS_ECOLI                 |        |        | SP ABRB_ECOLI             | Sp YFCA_ECOLI                 |        |        | Sp HRPB_ECOL!             |        | SP NODL_RHILV                                             | SP ALKB_ECOLI                                | sp 3MG1_ECOLI                   | SP RHTC_ECOLI             | Sp.YAAA_BACSU          | prl 2510326B                    |
|                          | ORF<br>(bp)                | 1941   | 1539   | 636    | 1461 p                         | 1731 8                                   | 621    | 1065   | 756    | 879                               | 717 8                         | 333    | 1659   | 1137 \$                   | 798                           | 624    | 405    | 2388 s                    | 315    | 675 s                                                     | s 069                                        | 525                             | 678 s                     | 291                    | 852 F                           |
| 46                       | - R                        | 4      | 6      | 6      | 6                              | 90                                       | 'n     | 6      | 0      | 8                                 | 80                            | 0      | 0      | 4                         | 6                             | 9      | 4      | 9                         | 1      | 7                                                         | -                                            | <b>@</b>                        | -                         | 6                      | 3                               |
| 45                       | Termi                      | 1387   | 1403   | 1392   | 1417                           | 1435                                     | 1430   | 1446   | 1454   | 1455                              | 1472                          | 1475   | 1497   | 1497                      | 1523                          | 1509   | 1528   | 1532                      | 1581   | 1561                                                      | 1575                                         | 1581                            | 1588                      | 1591                   | 1600                            |
| 50                       | Initial<br>(nt)            | 136804 | 138791 | 139861 | 140329                         | 141796                                   | 142455 | 143575 | 144725 | 146396                            | 146522                        | 147238 | 148122 | 150930                    | 151572                        | 151589 | 152410 | 155613                    | 155853 | 156821                                                    | 156848                                       | 157614                          | 158154                    | 158869                 | 159162                          |
|                          | SEO<br>NO<br>•             | 3644   | 3645   | 3646   | 3647                           | 3648                                     | 3649   | 3650   | 3651   | 3652                              | 3653                          | 3654   | 3655   | 3656                      | 3857                          | 3658   | 3659   | 3660                      | 3661   | 3662                                                      | 3663                                         | 3664                            | 3665                      | 3666                   | 3667                            |
| 55                       | SEQ<br>NO<br>(DNA)         | 144    | 145    | 146    | 147                            | 48                                       | 149    | 150    | 151    | 152                               | 153                           | 154    | 155    | 156                       | 157                           | 158    | 159    | 160                       | 161    | 162                                                       | 163                                          | 164                             | 165                       | 166                    | 167                             |

0

| Table 1 (continued) | Termin   ORF db Match Homologous gene (%) (%) (%) (%s) (a.s.) | 16037 342 gp:SPAC1250_3 Schizosaccharomyces pombe 35.6 56.7 104 methyltransferase | 16136 930 | 16235 657 | 16136 933 | 16286 405 gp:AE002420_13 Nelsserie meningitidis MC58 41.5 76.3 118 ribonuciesse | 16360 639 | 16645 741 | 16368 2087 gp: AF176569_1 Mus musculus nl1 28.5 57.2 722 neprilysin-like metallopeptidase 1 | 16741 963 | 16783 759 sp.FARR_ECOLI Escherichia coli K12 farR 29.8 65.6 238 transcriptional regulator, GntR family or fatty acyl-responsive regulator | 16999 1017 pir T14544 Beta vulgaris 28 6 83 0 332 fructokinase or carbohydrate kinase | 17091 921 gp. SCBF11_3 Streptomyces coelicolor A3(2) 52.7 80.7 296 hypothetical protein | 17244 1512 prf 2204281A Streptomyces coelicolor msdA 61.0 88 1 498 methylmalonic acid semialdehyde | 17335: 888 sp IOLB BACSU Bacillus subtilis iolB 33.2 58.2 268 myo-inositol catabolism | 17527: 1728 sp.IOLD_BACSU Bacillus subtilis iolD 41.0 69.8 586 myo-inositol catabolism | 176272 954 sp.MOCC_RHIME Rhizobium mellioti macC 28.7 51.0 290 rhizopine catabolism protein | 177316 1011 sp.Mi2D_BACSU Becillus subtilis idh or iolG 39.1 72.2 335 myo-inosital 2-dehydrogenese | 17820: 870 sp.IOLH_BACSU Bacillus subtilis iolH 44.8 72.1 287 myo-inositol catabolism | 179656 1374 sp TCMA_STRGA Streptomyces glaucescens tcmA 30 9 61.5 457 metabolite export pump of tetracenomych C resistance | 178461 621 | 180711 1023 sp.YVAA_BACSU Bacillus subtilis yvaA 31.1 65.5 354 oxidoreductase | L  |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|-----------|-----------|---------------------------------------------------------------------------------|-----------|-----------|---------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------|----|
|                     | ORF<br>(bp)                                                   |                                                                                   | 930       | 657       | 933       |                                                                                 | 639       | 741       | _                                                                                           | 983       |                                                                                                                                           | _                                                                                     |                                                                                         |                                                                                                    | _                                                                                     | _                                                                                      |                                                                                             | _                                                                                                  | -                                                                                     |                                                                                                                            | 621        |                                                                               |    |
|                     | rmln (<br>(nt)                                                | 5037                                                                              | 5136      | 6235      | 6136      | 8286                                                                            | 6360      | 6645      | 6368                                                                                        | 6741      | 6783                                                                                                                                      | 6669                                                                                  | 7091                                                                                    | 7244                                                                                               | 73355                                                                                 | 7527                                                                                   | 7627                                                                                        | 77316                                                                                              | 7820:                                                                                 | 79658                                                                                                                      | 78461      | 80711                                                                         |    |
|                     | _                                                             |                                                                                   | _         | _         | <u> </u>  |                                                                                 | -         | -         |                                                                                             |           |                                                                                                                                           |                                                                                       |                                                                                         |                                                                                                    |                                                                                       |                                                                                        |                                                                                             |                                                                                                    |                                                                                       |                                                                                                                            |            | _                                                                             | 1  |
|                     | Initial<br>(nt)                                               | 160029                                                                            | 160431    | 181696    | 162295    | 162463                                                                          | 162965    | 165717    | 165755                                                                                      | 166457    | 168595                                                                                                                                    | 168975                                                                                | 169996                                                                                  | 170933                                                                                             | 172468                                                                                | 173548                                                                                 | 175319                                                                                      | 176308                                                                                             | 177334                                                                                | 178285                                                                                                                     | 179081     | 179689                                                                        |    |
| - 1                 | 000                                                           | 3668                                                                              | 3669      | 3670      | 3671      | 3672                                                                            | 3673      | 3674      | 3675                                                                                        | 3676      | 3677                                                                                                                                      | 3678                                                                                  | 3679                                                                                    | 3680                                                                                               | 3681                                                                                  | 3682                                                                                   | 3683                                                                                        | 3684                                                                                               | 3685                                                                                  | 3686                                                                                                                       | 3687       | 3688                                                                          |    |
|                     | SEQ<br>NO<br>(a a)                                            | <u> </u>                                                                          | ñ         | 18        | 36        | 3                                                                               | 8         | ñ         | £                                                                                           | က         | 9                                                                                                                                         | 3                                                                                     | . J                                                                                     | <u>_</u>                                                                                           | 0                                                                                     | <u> </u>                                                                               | <u> </u>                                                                                    | 0                                                                                                  | œ i                                                                                   | <u> </u>                                                                                                                   | <u></u>    | ਨ                                                                             | ١. |

0

|                     |                             |        |                            |                           |                        |        |                                   |        |        |                                    |        |                                                   |        |        |                           |        |                                              |                                     |                                                            |                                                            |        |                                            | _      |
|---------------------|-----------------------------|--------|----------------------------|---------------------------|------------------------|--------|-----------------------------------|--------|--------|------------------------------------|--------|---------------------------------------------------|--------|--------|---------------------------|--------|----------------------------------------------|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------|--------------------------------------------|--------|
|                     | Function                    |        | regulatory protein         | oxidoreductase            | hypothetical protein   |        | cold shock protein                |        |        | caffeoyl-CoA 3-O-methyltransferase |        | glucose-resistance amylase<br>regulator regulator |        |        | D-xylose proton symporter |        | transposese (ISCg2)                          | signal-transducing histidine kinase | glutamine 2-oxoglutarate<br>aminotransferase large subunit | glutamine Z-oxoglutarate<br>aminotransferase amail subunit |        | hypothetical protein                       |        |
|                     | Matched<br>length<br>(a.a.) | $\neg$ | 331                        | 442                       | 303                    |        | 40                                |        |        | 134                                |        | 338                                               |        |        | 458                       |        | 401                                          | 145                                 | 1510                                                       | 508                                                        |        | 480                                        |        |
|                     | Similarity (%)              |        | 61.9                       | 52.5                      | 64.7                   |        | 92.2                              |        |        | 58.2                               |        | 62 1                                              |        |        | 70.5                      |        | 100 0                                        | 60.7                                | 100 0                                                      | 8.86                                                       |        | 72.8                                       |        |
|                     | Identity<br>(%)             |        | 32.0                       | 24.4                      | 33.7                   |        | 70.3                              |        |        | 30.6                               |        | 28 7                                              |        |        | 38.0                      |        | 100.0                                        | 27.6                                | 88.0                                                       | ₩ 88                                                       |        | 44.6                                       |        |
| Table 1 (continued) | Homalogous gene             |        | Streptomyces reticuli cebR | Rhizobium sp. NGR234 y4hM | Bacillus subtilis yfiH |        | Streptomyces coelicolor A3(2) csp |        |        | Stellaria longipes                 |        | Bacillus subtilis ccpA                            |        |        | Lactobacilius brevis xyIT |        | Corynebacterium glutamicum<br>ATCC 13032 tnp | Rhizobium meliloti fixL             | Corynebacterium glutamicum<br>git8                         | Corynebacterium glutamicum<br>gltO                         |        | Mycobacterium tuberculosis<br>H37Rv Rv3698 |        |
|                     | db Match                    |        | gp:SRE9798_1               | SP Y4HM_RHISN             | SP YFIH BACSU          |        | sp:CSP_ARTGO                      |        |        | prf 2113413A                       |        | sp.ccPA_BACSU                                     |        |        | SP.XYLT_LACBR             |        | gp AF189147_1                                | SP FIXL_RHIME                       | gp.AB024708_1                                              | gp AB024708_2                                              |        | pir:C70793                                 |        |
|                     | ORF<br>(bp)                 | 384    | 993                        | 1233                      | 1011                   | 429    | 201                               | 534    | 306    | 414                                | 426    | 066                                               | 402    | 240    | 1473                      | 300    | 1203                                         | 435                                 | 4530                                                       | 1518                                                       | 240    | 1485                                       | 369    |
|                     |                             |        |                            |                           |                        |        |                                   | _      |        |                                    |        |                                                   | ٦      | ۵      | 9                         | 6      | 4                                            | v                                   | 6                                                          | 6                                                          | _      | 0                                          | ဖွ     |
|                     | Termin<br>(nt)              | 18164  | 18168                      | 18405                     | 18508                  | 18564  | 18670                             | 18730  | 18760  | 18810                              | 18830  | 18874                                             | 19032  | 19038  | 19070                     | 19294  | 19446                                        | 19460                               | 19976                                                      | 2012                                                       | 2013   | 2017                                       | 2059   |
|                     | Initiat<br>(nt)             | 181264 | 182679                     | 182819                    | 184077                 | 185214 | 186508                            | 186769 | 187302 | 187687                             | 188725 | 189736                                            | 189920 | 190628 | 192175                    | 193248 | 193262                                       | 195038                              | 195240                                                     | 199772                                                     | 201580 | 203244                                     | 205588 |
|                     | SEQ<br>NO<br>(*             | 3690   | 3691                       | 3692                      | 3693                   | 3694   | 3695                              | 3696   | 3697   | 3698                               | 3699   | 3700                                              | 3701   | 3702   | 3703                      | 3704   | 3705                                         | 3706                                | 3707                                                       | 3708                                                       | 3709   | 3710                                       | 3711   |
|                     | SEQ<br>NO<br>(DNA)          | 190    | 191                        | 1                         | +-                     | 194    | 195                               | 196    | 197    | 198                                | 199    | 200                                               | 201    | 202    | 203                       | 204    | 205                                          | 206                                 | 207                                                        | 208                                                        | 209    | 210                                        | 211    |

| 5                      | uo                          |        | 20                       | ane protein                                | fuctase                   |                                            |        |        |        | -                     |                                            |        |                                             | 15.6                                            |        |                                                          | stem ATP.                                   | /stem permesse                                   |                                             | doreductase                  |
|------------------------|-----------------------------|--------|--------------------------|--------------------------------------------|---------------------------|--------------------------------------------|--------|--------|--------|-----------------------|--------------------------------------------|--------|---------------------------------------------|-------------------------------------------------|--------|----------------------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|------------------------------|
| 10                     | Function                    |        | arabinosyl transferase   | hypothetical membrane protein              | acetoacetyl CoA reductase | oxidoreductase                             |        |        |        | proteophosphoglycan   | hypothetical protein                       |        | hypothetical protein                        | rhamnosyl transferase                           |        | hypothetical protein                                     | O-antigen export system ATP-binding protein | O-antigen export system permesse protein         | hypothetical protein                        | NADPH quinone oxidoreductese |
| 15                     | Matched<br>length<br>(a.m.) |        | 1122                     | 651                                        | 223                       | 464                                        |        |        |        | 350                   | 124                                        |        | 206                                         | 302                                             |        | 214                                                      | 236                                         | 262                                              | 416                                         | 302                          |
| 20                     | Similarity<br>(%)           |        | 70.6                     | 66.1                                       | 56.5                      | 85.1                                       |        |        |        | 57.4                  | 83.9                                       |        | 73.8                                        | 79.1                                            |        | 55.1                                                     | 78.4                                        | 75.6                                             | 63.0                                        | 71.5                         |
|                        | Identity<br>(%)             |        | 39.8                     | 35.0                                       | 31.4                      | 0.99                                       |        |        |        | 24.3                  | 60.5                                       |        | 43.2                                        | 63.6                                            |        | 31.3                                                     | 47.0                                        | 31.3                                             | 38.5                                        | 41.1                         |
| So Table 1 (continued) | us gene                     |        | vium embB                | berculosis                                 | phb8                      | berculosis                                 |        | :      |        | r ppg 1               | uberculosis                                |        | uberculosis                                 | ubercutosis<br>IbE                              |        | imefaciens<br>URA tlorf100                               | olitica rfbE                                | olitica r/bD                                     | uberculosis                                 | g3                           |
| Table 1 (              | Homologous gene             |        | Mycobacterium svium embB | Mycobacterium tuberculosis<br>H37Rv Rv3792 | Pseudomonas sp. phbB      | Mycobacterium tuberculosis<br>H37Rv Rv3790 |        |        |        | Leishmania major ppg1 | Mycobacterium tuberculosis<br>H37Rv Rv3789 |        | Mycobacterium tuberculosis<br>H37Rv Rv1864c | Mycobacterium tuberculosis<br>H37Rv Rv3782 rfbE |        | Agrobacterium tumefaciens<br>plasmid pTI-SAKURA tlorf100 | Yersinla enterocolitica rfbE                | Yersinia enterocolitica rfbD                     | Mycobacterium tuberculosis<br>H37Rv Rv3778c | Homo sapiens pig3            |
| 35                     |                             |        |                          | ΣI                                         | ۵                         | ≥I                                         |        |        |        |                       |                                            |        | 21                                          | 21                                              |        |                                                          |                                             | <del>                                     </del> | -                                           | П                            |
| 40                     | db Match                    |        | prl.2224383C             | plr.D70697                                 | prt:2504279B              | pir.B70697                                 |        |        |        | gp.LMA243459_1        | sp:Y0GN_MYCTU                              |        | pir.H70666                                  | pir B70696                                      |        | gp:AB016260_100                                          | SP RFBE_YEREN                               | SP RFBD_YEREN                                    | pir.F70695                                  | gp AF010309_1                |
|                        | ORF<br>(bp)                 | 318    | 3471                     | 1983                                       | 759                       | 1484                                       | 234    | 507    | 453    | 1002                  | 398                                        | 405    | 633                                         | 939                                             | 342    | 597                                                      | 789                                         | 804                                              | 1173                                        | 954                          |
| 46                     | -E0                         | ı,     |                          | 2                                          | 0                         | 7                                          | S      | 6      | 5      | ~                     | _                                          | 7      | 6                                           | ~                                               | S      | ဖ                                                        | -                                           | 6                                                | =                                           | 4                            |
|                        | Termi<br>(nt)               | 2063   | 2035                     | 2070                                       | 2092                      | 2089                                       | 2115   | 2122   | 2127   | 2136                  | 2141                                       | 2145   | 2151                                        | 2151                                            | 2166   | 2161                                                     | 2171                                        | 2179                                             | 2201                                        | 2201                         |
| 50                     | Initial<br>(nt)             | 206068 | 207011                   | 208989                                     | 209968                    | 211455                                     | 211768 | 211777 | 212283 | 212656                | 213712                                     | 214121 | 214527                                      | 216100                                          | 216264 | 216712                                                   | 217929                                      | 218746                                           | 218979                                      | 221107                       |
|                        | SEQ<br>NO                   | 3712   | 3713                     | 3714                                       | 3715                      | 3716                                       | 3717   | 3718   | 3719   | 3720                  | 3721                                       | 37.22  | 3723                                        | 3724                                            | 3725   | 3726                                                     | 3727                                        | 3728                                             | 3729                                        | 3730                         |
| 55                     | SEQ<br>NO.                  | 212    | 213                      | 214                                        | 215                       | 216                                        | 217    | 218    | 219    | 220                   | 221                                        | 222    | 223                                         | 224                                             | 225    | 226                                                      | 727                                         | 228                                              | 229                                         | 230                          |

| ٢                   |                             | Т      |                                            | Т                          | 丁      | _ T                                                      |                                          | _ 1                                            |                                  |                                              |                                  |                                          |                                           |                             |                                       |                                          | Т      | T      | 7      |
|---------------------|-----------------------------|--------|--------------------------------------------|----------------------------|--------|----------------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------|------------------------------------------|--------|--------|--------|
|                     | Function                    |        | probable electron transfer protein         | amino acid carrier protein |        | motybdopterin blosynthesis protein<br>moeB (sulfurylese) | molybdopterin synthase, large<br>subunit | molybdenum cofactor biosynthesis<br>protein CB | co-factor synthesis protein      | molybdopterin co-factor synthesis<br>protein | hypothetical membrane protein    | molybdate-binding periplasmic<br>protein | molybdopterin converting factor subunit 1 | maltose transport protein   | hypothetical membrane protein         | histidinol-phosphate<br>aminofransferase |        |        |        |
|                     | Matched<br>length<br>(a a.) |        | 78                                         | 475                        |        | 368                                                      | 150                                      | 158                                            | 154                              | 377                                          | 227                              | 258                                      | 96                                        | 385                         | 121                                   | 330                                      |        |        |        |
|                     | Similarity<br>(%)           |        | 51.0                                       | 75.8                       |        | 70.1                                                     | 75.3                                     | 63.3                                           | 84.4                             | 58.6                                         | 70.5                             | 0.89                                     | 70.8                                      | 80.8                        | 76.9                                  | 65.8                                     |        |        |        |
|                     | identity<br>(%)             |        | 35.0                                       | 48.7                       |        | 43.8                                                     | 44.7                                     | 33.5                                           | 61.7                             | 34.5                                         | 44.1                             | 34.0                                     | 37.5                                      | 34.3                        | 36.4                                  | 37.3                                     |        |        |        |
| Table 1 (continued) | Homologous gene             |        | Mycobacterium tuberculosis<br>H37Rv Rv3571 | Bacillus subtilis alsT     |        | Synechococcus sp. PCC 7942 moeB                          | Arthrobacter nicotinovorans<br>moaE      | Synechococcus sp PCC 7942 moaCB                | Arthrobacter nicotinovorans moaC | Arthrobacter nicolinovorans moeA             | Arthrobacter nicotinovorans modB | Arthrobacter nicolinovorans modA         | Mycobacterium tuberculosis<br>H37Rv moaD2 | Thermococcus litoralis malk | Streptomyces coelicolor A3(2)<br>ORF3 | Zymomonas mobilis hisC                   |        |        |        |
|                     | db Match                    |        | PIR: A70606                                | SP ALST_BACSU              |        | gp.SYPCCMOEB_                                            | prf 2403296D                             | \$P.MOCB_SYNP7                                 | prt 2403296C                     | gp:ANY10817_2                                | prf 2403296F                     | prf.2403296E                             | pir.D70818                                | prf 2518354A                | sp.YPT3_STRCO                         | Sp.HISB_ZYMMO                            |        |        |        |
|                     | ORF<br>(bp)                 | 582    | 297                                        | 1476                       | 608    | 1083                                                     | 458                                      | 471                                            | 468                              | 1185                                         | 723                              | 804                                      | 321                                       | 912                         | 420                                   | 1023                                     | 906    | 294    | 120    |
|                     | ja j                        | -      | _                                          | 0                          | 4      | 2                                                        | 12                                       | e                                              | 80                               | 6                                            | ā                                | E                                        | 28                                        | ā                           | 89                                    | 00                                       | 80     | 10     | 8      |
|                     | Termi<br>(nt)               | 2211   | 2222                                       | 2222                       | 2252   | 2252                                                     | 2263                                     | 2287                                           | 2272                             | 7722                                         | 2286                             | 2297                                     | 2309                                      | 2309                        | 2318                                  | 2322                                     | 2348   | 2346   | 235/   |
|                     | Initial<br>(nt)             | 221712 | 221911                                     | 223685                     | 224336 | 226324                                                   | 226767                                   | 227230                                         | 227685                           | 228887                                       | 229613                           | 230514                                   | 230608                                    | 231842                      |                                       | 233282                                   | 233913 | 235203 | 235290 |
|                     | SEO<br>NO ®                 | 3731   | 3732                                       | 3733                       | 3734   | 3735                                                     | 3736                                     | 3737                                           | 3738                             | 3739                                         | 3740                             | 3741                                     | 3742                                      | 3743                        | 3744                                  | 3745                                     | 3746   | 3747   | 3748   |
|                     | SEQ<br>NO<br>(DNA)          | 231    | <del></del>                                | 233                        | 234    |                                                          | 236                                      | 237                                            | 238                              | 239                                          | 240                              | 241                                      | 242                                       | 243                         | 244                                   | 245                                      | 246    | 247    | 248    |

EP 1 108 790 A2

|                                       |                             |                       |                                             |                        |                           |        | _                              |                                          |                                             |                           |        | _      |                                                  |                                |                               |        | $\overline{}$ | $\neg$                        | $\overline{}$            | _      |                           |        | - 1    |
|---------------------------------------|-----------------------------|-----------------------|---------------------------------------------|------------------------|---------------------------|--------|--------------------------------|------------------------------------------|---------------------------------------------|---------------------------|--------|--------|--------------------------------------------------|--------------------------------|-------------------------------|--------|---------------|-------------------------------|--------------------------|--------|---------------------------|--------|--------|
| 5                                     | Function                    | Letor                 | rogenase                                    | dase                   | n transporter             |        | Na/dicarboxylate cotransporter | 9                                        | rotein                                      | on protein                |        |        | membrane transport protein                       | queuine tRNA-ribosytransferase | hypothetical membrane protein |        |               | ter                           | A synthetase             |        |                           |        |        |
| 10                                    |                             | transcription factor  | alcohol dehydrogenase                       | putrescine oxidase     | magnesium ion transporter |        | Na/dicarboxyl                  | oxidoreductase                           | hypothetical protein                        | nitrogen fixation protein |        |        | membrane tra                                     | quevine tRNA                   | hypothetical r                |        |               | ABC transporter               | glutamyl-tRNA synthetase |        | transposase               |        |        |
| 15                                    | Matched<br>length<br>(a.a.) | 252                   | 335                                         | 451                    | 444                       |        | 287                            | 317                                      | 160                                         | 144                       |        |        | 100                                              | 400                            | 203                           |        |               | 528                           | 318                      |        | 360                       |        |        |
| 20                                    | Similarity<br>(%)           | 57.1                  | 66.0                                        | 38 1                   | 68.5                      |        | 59.6                           | 69.1                                     | 73.8                                        | 1.07                      |        |        | 45.7                                             | 68.0                           | 62.1                          |        |               | 49.6                          | 63.3                     |        | 550                       |        |        |
|                                       | identity<br>(%)             | 29 4                  | 34 0                                        | 215                    | 30.9                      |        | 33.2                           | 46.1                                     | 48.8                                        | 45.1                      |        |        | 20.7                                             | 41.3                           | 28.1                          |        |               | 24.3                          | 34.8                     |        | 34.2                      |        |        |
| % % % % % % % % % % % % % % % % % % % | ous gene                    | oxyR                  | ermophilus                                  | ens puo                | eri mgtE                  |        |                                | uberculosis                              | uberculosis                                 | aponicum                  |        |        | tuberculosis<br>mmpL2                            | bilis                          | урдР                          |        |               | Streptomyces glaucescens sI/W | gltX                     |        | yringae tnpA              |        |        |
| % Table 1                             | Homologous gene             | Brucella abortus oxyR | Bacillus stearothermophilus<br>DSM 2334 adh | Micrococcus rubens puo | Borrelia burgdorferi mgtE |        | Xenopus laevis                 | Mycobacterium tubercutosis<br>H37Rv tyrA | Mycobacterium tuberculosis<br>H37Rv Rv3753c | Bradyrhizobium japonicum  |        |        | Mycobacterium tuberculosis<br>H37Rv Rv0507 mmpL2 | Zymomonas mobilis              | Bacillus subtills ypdP        |        |               | Streptomyces g                | Bacillus subtilis gltX   |        | Pseudomonas syringae tnpA |        |        |
| <b>40</b>                             | db Match                    | gp.BAU81286_1         | sp.ADH2_BACST                               | sp. PUO_MICRU          | pri:2305239A              |        | prf.2320140A                   | pir.C70800                               | pir:B70800                                  | 9P RHBNFXP_1              |        |        | sp.YV34_MYCTU                                    | Sp TGT_ZYMMO                   | sp YPDP_BACSU                 |        |               | pir.S65588                    | sp.SYE_BACSU             |        | gp PSESTBCBAD_            |        |        |
|                                       | ORF<br>(bp)                 | 782                   | 1017                                        | 90                     | 1350                      | 174    | 1530                           | 1020                                     | 525                                         | 417                       | 201    | 351    | 2403                                             | 1283                           | 738                           | 1080   | 648           | 1437                          | 879                      | 990    | 1110                      | 303    | 138    |
|                                       | <u></u>                     | -                     | ~                                           | 2                      | ις.                       | 'n     | 2                              | 2                                        | =                                           | 0                         | 2      | 90     | 4                                                | 2                              | 2                             | 2      | 22            | 6                             | 2                        | 0      | 0                         | 2      | 4      |
|                                       | Termh<br>(nt                | 2354                  | 2373                                        | 2381                   | 2395                      | 2399   | 2415                           | 2418                                     | 2434                                        | 2439                      | 2442   | 2448   | 2473                                             | 2485                           | 2485                          | 2505   | 2497          | 2519                          | 2528                     | 2528   | 2543                      | 2554   | 2582   |
| 50                                    | Initial<br>(nt)             | 236212                | 236326                                      | 237345                 | 238178                    | 239772 | 239986                         | 242902                                   | 242910                                      | 243494                    | 244015 | 244466 | 244902                                           | 247310                         | 249294                        | 249428 | 250369        | 250503                        | 251952                   | 253819 | 255438                    | 255794 | 256087 |
|                                       | SEO<br>NO                   | 3749                  | 3750                                        | 3751                   | 3752                      | 3753   | 3754                           | 3755                                     | 3756                                        | 3757                      | 3758   | 3759   | 3760                                             | 3761                           | 3762                          | 3763   | 3764          | 3785                          | 3766                     | 3767   | 3768                      | 3769   | 3770   |
| 55                                    | SEQ<br>NO<br>(DNA)          | 249                   | 250                                         | 251                    | 252                       | 253    | 254                            | 255                                      | 256                                         | 257                       | 258    | 259    | 260                                              | 261                            | 262                           | 263    | 264           | 285                           | 266                      | 267    | 268                       | 269    | 270    |

| 5                         | Function                    | sspartate transeminase             |           | ONA polymerase III holoenzyme tau<br>subunit |           | hypothetical protein   | recombination protein  | cobyric acid synthase      | UDP-N-acetylmuramyl tnpeptide<br>synthetase | DNA polymerase III epsilon chain         | hypothelical membrane protein                                            | espartate kinsse alpha chain             |           |             | extracytoplasmic function alternative sigma factor | vegetative catalase    |           |           | leucine-responsive regulatory protein | branched-chain amino add transport |
|---------------------------|-----------------------------|------------------------------------|-----------|----------------------------------------------|-----------|------------------------|------------------------|----------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|-----------|-------------|----------------------------------------------------|------------------------|-----------|-----------|---------------------------------------|------------------------------------|
| 15                        | Matched<br>length<br>(a.a.) | 432                                |           | 642                                          |           | 101                    | 214                    | 248                        | 444                                         | 346                                      | 270                                                                      | 421                                      |           |             | 189                                                | 492                    |           |           | 143                                   | 203                                |
| 20                        | Similarity<br>(%)           | 100.0                              |           | 53.1                                         |           | 74.3                   | 72.4                   | 61.7                       | 80.8                                        | 55.2                                     | 100.0                                                                    | 8.8                                      |           | -<br>-<br>- | 63.5                                               | 76.4                   |           |           | 72.0                                  | 089                                |
|                           | Identity<br>(%)             | 98.8                               |           | 316                                          |           | 41.8                   | 42.5                   | 38.3                       | 31.3                                        | 25.7                                     | 100 0                                                                    | 99.5                                     |           |             | 31.2                                               | 52.9                   |           |           | 37.1                                  | 30.5                               |
| 55 52 Table 1 (continued) | ns gene                     | ctofermentum                       |           | shilus dnaX                                  |           | aaK                    | ecR                    | Dills cobQ                 | oilis murc                                  | uberculosis                              | glutamicum<br>tavum) ATCC                                                | glutamicum                               |           |             | megmatis sigE                                      | catA                   |           |           | dal se irp                            | 1A1 aziC                           |
| Table 1 (                 | Homologous gene             | Brevibacterium lactofermentum aspC |           | Thermus thermophilus dnaX                    |           | Bacillus subtilis yaaK | Bacillus subtilis recR | Hellobacillus mobilis cobo | Heliobacilius mobilis murC                  | Mycobacterium tuberculosis<br>H37Rv dnaQ | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>13032 orfX | Corynebacterium glutamicum<br>lysC-alpha |           |             | Mycobacterium smegmatis sigE                       | Bacillus subtills katA |           |           | Klebsiella pneumonlae Irp             | Bacillus subtilis 1A1 azlC         |
| <b>35</b>                 | db Match                    | gsp:W69554                         |           | gp AF025391_1                                |           | SP YAAK_BACSU          | SP RECR_BACSU          | pri 2503462B               | prf 2503462C                                | plr H70794                               | sp.YLEU_CORGL                                                            | sp AKAB_CORGL                            |           |             | pri 2312309A                                       | sp CATV_BACSU          |           |           | SP LRP_KLEPN                          | sp AZLC_BACSU                      |
|                           | ORF<br>(bp)                 | 1296 9                             | 630       | 2325 8                                       | 717       | 309                    | 654                    | 750                        | 1269                                        | 1080                                     | 867                                                                      | 1263                                     | 1053      | 1434        | 579                                                | 1506                   | 342       | 291       | 462                                   | 753                                |
| 45                        | ralari<br>(nt)              | 789                                | 25852     | 26087                                        | 258598    | 261295                 | 262055                 | 262546                     | 3329                                        | 6459                                     | 68258                                                                    | 70638                                    | 69524     | 73194       | 73542                                              | 7587                   | 76232     | 75957     | 76302                                 | 77581                              |
| 50                        | Initial Ter<br>(nt) (       | 258599 25                          | 257900 25 | <del> </del>                                 | 259312 25 | 260987 26              | <del>:</del> -         | +                          | +                                           | 265678 26                                | 269124 26                                                                | 269371 27                                | 270576 26 | 271781 27   | 274120 27                                          | 274366 27              | 275891 27 | 276247 27 | 276763 2                              | 276829 2                           |
|                           | SEO                         |                                    | 3772      |                                              | 3774      | 3775                   | +                      | -                          | <del></del>                                 | 37.79                                    | 3780                                                                     | 3781                                     | 3782      | 3783        | 3784                                               | 3785                   | 3786      | 3787      | 3788                                  | 3789                               |
| 55                        | SEO                         |                                    | 272       | 1                                            | 274       | 1                      | 1                      |                            | -                                           | 279                                      | 280                                                                      | 281                                      | 282       | 283         | 284                                                | 285                    | 286       | 287       | 288                                   | 289                                |

EP 1 108 790 A2

| 5                         | Function                    |        |        | protein                    | arsenic oxyanion-transiocation pump<br>membrane subunit | •                           |        |        |        | Na+/H+ antiporter or multiple resistance and pH regulation related protein D |                            | Na+/H+ antiporter or multiple resistance and pH regulation related protein A |          |        |        | tivator                            | ystem sensor                                    | 956                           |        |                        | nie –                  |
|---------------------------|-----------------------------|--------|--------|----------------------------|---------------------------------------------------------|-----------------------------|--------|--------|--------|------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|----------|--------|--------|------------------------------------|-------------------------------------------------|-------------------------------|--------|------------------------|------------------------|
| 10                        | Fun                         |        |        | metalloregulatory protein  | arsenic oxyanion-tr<br>membrane subunit                 | arsenate reductase          |        |        |        | Na+/H+ antiporter or multiple resistance and pH regulation protein D         | Na+/H+ antiporter          | Na+/H+ antiporter or multiple resistance and pH regulation protein A         |          |        |        | transcriptional activator          | two-component system sensor<br>histidine kinase | aikaline phosphatase          |        | phosphoesterase        | hypothetical protein   |
| 15                        | Matched<br>length<br>(a.a.) |        |        | 80                         | 341                                                     | 119                         |        |        |        | 503                                                                          | 119                        | 824                                                                          |          |        |        | 223                                | 521                                             | 180                           |        | 307                    | 149                    |
| 20                        | Similarity (%)              |        |        | 689                        | 84.2                                                    | 6.89                        |        |        |        | 70.4                                                                         | 9.07                       | 64.3                                                                         |          |        |        | 70.4                               | 56.8                                            | 90.0                          |        | 54.7                   | 71.8                   |
|                           | Identity<br>(%)             |        |        | 34.4                       | 52.2                                                    | 31.1                        |        |        |        | 32.4                                                                         | 37.0                       | 34.1                                                                         |          |        |        | 38.6                               | 26.7                                            | 28.3                          |        | 28.1                   | 37.6                   |
| S S S Table 1 (continued) | Homologous gene             |        |        | ip. As4 arsR               | sp. As4 arsB                                            | xylosus arsC                |        |        |        | OF4 mrpD                                                                     | s aureus mnhC              | Оғ 4 тірА                                                                    |          |        |        | rophus CH34                        | tuberculosis                                    | Lactococcus lactis MG1363 apl |        | ykuE                   | yqeY                   |
| 38<br>Table 1             | Homolog                     |        |        | Sinorhizobium sp. As4 arsR | Sinorhizobium sp                                        | Staphylococcus xylosus arsC |        |        |        | Bacillus firmus OF4 mrpD                                                     | Staphylococcus aureus mnhC | Bacillus firmus OF4 mrpA                                                     |          |        |        | Alcaligenes eutrophus CH34<br>czcR | Mycobacterlum tuberculosis<br>mtrB              | Lactococcus la                |        | Bacillus subtilis ykuE | Bacillus subtilis yqeY |
| <b>35</b>                 | db Match                    |        |        | gp:AF178758_1              | gp AF178758_2                                           | SP ARSC_STAXY               |        |        |        | gp AF097740_4                                                                | prf.2504285D               | gp AF097740_1                                                                |          |        |        | sp.CZCR_ALCEU                      | prf 2214304B                                    | SP. APL_LACLA                 |        | plr 869865             | sp.YQEY_BACSU          |
|                           | ORF<br>(bp)                 | 324    | 315    | 345 gp.                    | 1080 gp                                                 | 387 sp                      | 318    | 270    | 453    | 1530 gp                                                                      | 381 prf                    | 2886 gp                                                                      | 1485     | 603    | 864    | .ds 999                            | 1467 prf                                        | 603 <b>\$</b> p               | 561    | 915 plr                | 453 sp                 |
|                           |                             |        |        | _                          |                                                         |                             | 6      |        | 6      |                                                                              |                            | -                                                                            | 7        | 6      | 9      | _                                  | ~                                               | 7                             | 9      | 7                      |                        |
| 45                        | Termin<br>(nt)              | 27790  | 27798  | 27838                      | 27989                                                   | 28027                       | 28034  | 28067  | 28094  | 281404                                                                       | 28293                      | 2833                                                                         | 2878     | 2870   | 28796  | 2891:                              | 2897                                            | 2924                          | 2912   | 2925                   | 2939                   |
| 50                        | Initial<br>(nt)             | 277581 | 278301 | 278732                     | 278814                                                  | 279893                      | 280686 | 280939 | 281401 | 282933                                                                       | 283317                     | 286202                                                                       | 286373   | 287661 | 288829 | 289796                             | 291243                                          | 291815                        | 291833 | 293511                 | 293539                 |
|                           | SEQ<br>NO<br>(• •)          | 3790   | 3791   | 3792                       | 3793                                                    | 3794                        | 3795   | 3796   | 3797   | 3798                                                                         | 3799                       | 3800                                                                         | 3801     | 3802   | 3803   | 3804                               | 3805                                            | 3806                          | 3807   | 3808                   | 3809                   |
| 55                        | SEQ<br>NO<br>(DNA)          | 290    | 291    | 292                        | 293                                                     | 294                         | 295    | 1      | 297    | <del> </del>                                                                 | 588                        | 300                                                                          | $\vdash$ | 302    | 303    | 304                                | 305                                             | 306                           | •      | 308                    | 309                    |

| 5                                                                                | Function          | class A penicilin-binding protein(PBP1) | regulatory protein                    |        | hypothetical protein                       | transcriptional regulator                   | shikimate transport protein |        | long-chain-fatty-acid-CoA liguse | transcriptional regulator                 | 3-oxoacyl-(acyl-carrier-protein)<br>reductase | glutamine synthetase     | short-chain acyl CoA oxidase | nodulation protein           | hydrolase                                   |        |        | cAMP receptor protein |        | ultraviolet N-glycosylase/AP lyase | cytochroms c biagenesis protein             |   |
|----------------------------------------------------------------------------------|-------------------|-----------------------------------------|---------------------------------------|--------|--------------------------------------------|---------------------------------------------|-----------------------------|--------|----------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------|------------------------------|------------------------------|---------------------------------------------|--------|--------|-----------------------|--------|------------------------------------|---------------------------------------------|---|
| 15                                                                               | Matched<br>length | 782                                     | 7.1                                   |        | 50                                         | 149                                         | 440                         |        | 534                              | 127                                       | 251                                           | 254                      | 394                          | 153                          | 272                                         |        |        | 207                   |        | 240                                | 211                                         |   |
| 20                                                                               | Similarity (%)    | 77.1                                    | 63.4                                  |        | 96.0                                       | 89.9                                        | 689                         |        | 8.65                             | 65.4                                      | 72.5                                          | 52.0                     | 66.5                         | 72.8                         | 72.4                                        |        |        | 65.7                  |        | 77.1                               | 583                                         |   |
|                                                                                  | Identity<br>(%)   | 48.3                                    | 40.9                                  |        | 84.0                                       | 65.1                                        | 37.3                        |        | 31.1                             | 33.9                                      | 41.0                                          | 27.2                     | 38.8                         | 45.8                         | 41.2                                        |        |        | 30.8                  |        | 57.5                               | 34.6                                        |   |
| 30 September 1 (Confined)                                                        | Homologous gene   | leprae pon1                             | Streptomyces coelicolor A3(2)<br>whiB |        | Streptomyces coelicolor A3(2)<br>SCH17.10c | ı tuberculosis<br>8c                        | ili K12 shiA                |        | s icfA                           | Streptomyces coelicolor A3(2)<br>SCJ4 28c | s fabG                                        | ulans fluG               | aliana atg6                  | Rhizobium leguminosarum nodN | n tuberculosis<br>7c                        |        |        | e crp                 |        | uteus pdg                          | Mycobacterium tuberculosis<br>H37Rv Rv3673c |   |
| 32<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO<br>TO | Homolo            | Mycobacterium leprae pon1               | Streptomyces o                        |        | Streptomyces (SCH17.10c                    | Mycobacterium tuberculosis<br>H37Rv Rv3678c | Escherichia coli K12 shiA   |        | Bacillus subtilis IcfA           | Streptomyces<br>SCJ4 28c                  | Bacillus subtilis fabG                        | Emericella nidulans fluG | Arabidopsis thallana atg6    | Rhizobium leg                | Mycobacterium tuberculosis<br>H37Rv Rv3677c |        |        | Vibno cholerae crp    |        | Micrococcus luteus pdg             | Mycobacterium to<br>H37Rv Rv3673c           |   |
| 40                                                                               | db Match          | prf.2209359A                            | pir.S20912                            |        | gp:SCH17_10                                | pir:G70790                                  | Sp. SHIA_ECOLI              |        | SP.LCFA_BACSU                    | gp.SCJ4_28                                | sp:FABG_BACSU                                 | SP FLUG EMENI            | prf.2512386A                 | SP NODN RHILV                | pir.F70790                                  |        |        | prf.2323349A          |        | SP UVEN MICLU                      | pir.B70790                                  |   |
|                                                                                  | ORF<br>(bo)       | 2385                                    | 339                                   | 192    | 153                                        | 450                                         | 1353                        | 609    | 1538                             | 525                                       | 933                                           | 942                      | 1194                         | 471                          | 843                                         | 1173   | 705    | 681                   | 192    | 780                                | 558                                         |   |
| 45                                                                               | Terminal          | 294004                                  | 297402                                | 297622 | 297783                                     | 298250                                      | 298332                      | 300695 | 299726                           | 301512                                    | 303099                                        | 304074                   | 305283                       | 305758                       | 306700                                      | 305195 | 307504 | 306782                | 307727 | 308734                             | 309302                                      |   |
| 50                                                                               | Intial            | 296388                                  | 297064                                | 297431 | 297631                                     | 297792                                      | 299684                      | 300087 | 301281                           | 302038                                    | 302167                                        | 303133                   |                              |                              | 305858                                      | 306367 | 306800 |                       | 307918 | 307955                             | 1                                           | ! |
|                                                                                  | SEQ               | 3810                                    | 3811                                  | 3812   | 3813                                       | 3814                                        | 3815                        | 3816   | 3817                             | 3818                                      | 3819                                          | 3820                     | 3821                         | 3822                         | 3823                                        | 3824   | 3825   | 3826                  | 3827   | 3828                               | 3829                                        |   |
| 55                                                                               | SEQ               | 310                                     | 311                                   | 312    | 313                                        | 314                                         | 315                         | 316    | 317                              | 318                                       | 319                                           | 320                      | 321                          | 322                          | 323                                         | 324    | 325    | 376                   | 327    | 328                                | 329                                         |   |

2 12.2

|                     |                             |                           |                                             |                             |                                            |                                            |                                             |                                  |        |                                             |                                             |                                             | _      | _      | _      |                            |                                      |        |                                                  |        |   |
|---------------------|-----------------------------|---------------------------|---------------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------|--------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------|--------|--------|----------------------------|--------------------------------------|--------|--------------------------------------------------|--------|---|
| 5                   | Function                    | hypothetical protein      | serine proteinase                           | epoxide hydrolase           | hypothetical membrane protein              | phosphoserine phosphatase                  | hypothetical protein                        | conjugal transfer region protein |        | hypothetical membrane protein               | hypothetical protein                        | hypothetical protein                        |        |        |        | ATP-dependent RNA helicase | cold shock protein                   |        | DNA topoisomerase I                              |        |   |
| 15                  | ped # C                     |                           |                                             |                             |                                            |                                            |                                             |                                  |        |                                             |                                             |                                             |        |        |        |                            |                                      |        |                                                  |        |   |
|                     | Matched<br>length<br>(s.e.) | 192                       | 396                                         | 280                         | 156                                        | 287                                        | 349                                         | 319                              |        | 262                                         | 201                                         | 59                                          |        |        |        | 764                        | 67                                   |        | 877                                              |        |   |
| 20                  | Similarity<br>(%)           | 56.3                      | 71.0                                        | 52.1                        | 17.8                                       | 65.5                                       | 60.2                                        | 66.5                             |        | 63.7                                        | 84.2                                        | 84.8                                        |        |        |        | 66.1                       | 88.1                                 |        | 81.6                                             |        | ! |
|                     | Identity<br>(%)             | 30.7                      | 38.6                                        | 29.6                        | 46.8                                       | 29.8                                       | 35.0                                        | 32.9                             |        | 30.5                                        | 33.8                                        | 47.5                                        |        |        |        | 33.8                       | 68.7                                 |        | 61.7                                             |        |   |
| Table 1 (continued) | us gene                     | 12 yeaB                   | berculosis                                  | 8p. C12 cEH                 | berculosis                                 | prae<br>serB                               | berculosis                                  | pB ,                             |        | iberculosis                                 | iberculosis                                 | iberculosis                                 |        |        |        | prA                        | iformis SI55                         |        | iberculosis<br>IopA                              |        |   |
| Table 1             | Homologous gene             | Escherichia coli K12 yeaB | Mycobacterium tuberculosis<br>H37Rv Rv367:c | Corynebacterium sp. C12 cEH | Mycobacterium tuberculosis<br>H37Rv Rv3689 | Mycobacterium leprae<br>MTCY20G9.32C. serB | Mycobacterium tuberculosis<br>H37Rv Rv3660c | Escherichia coli trbB            |        | Mycobacterium tuberculosis<br>H37Rv Rv3658c | Mycobacterium tuberculosis<br>H37Rv Rv3657c | Mycobacterium tuberculosis<br>H37Rv Rv3656c |        |        |        | Bacillus subtilis yprA     | Arthrobacter globiformls SIS5<br>csp |        | Mycobacterium tuberculosis<br>H37Rv Rv3648c topA |        |   |
| 35                  |                             |                           | ΣI                                          | O                           | ΣI                                         | 22                                         | ≥I                                          | 3                                |        | ΣI                                          | ≥I                                          | ≥ I                                         |        |        |        |                            |                                      |        | ZI                                               |        |   |
| 40                  | db Match                    | SP YEAB_ECOLI             | pir:H70789                                  | prf.2411250A                | pir:F70789                                 | pir.S72914                                 | pir.E70788                                  | pir.C44020                       |        | pir.C70788                                  | pir.870788                                  | pir.A70788                                  |        |        |        | Sp:YPRA_BACSU              | sp.csP_ARTGO                         |        | pir.G70583                                       |        |   |
|                     | ORF<br>(bp)                 | 699                       | 1191                                        | 993                         | 549                                        | 996                                        | 1023                                        | 1023                             | 615    | 818                                         | 546                                         | 198                                         | 318    | 414    | 345    | 2355                       | 201                                  | 225    | 2988                                             | 7      | 1 |
| 45                  | 100                         | æ                         | 2                                           | 6                           | 6                                          | 55                                         | 22                                          | 12                               | 0      | 33                                          | 35                                          | 6                                           | 9      | 2      | 35     | 96                         | 7.0                                  | 26     | 7.6                                              | 4      | _ |
|                     | Termina<br>(nt)             | 310038                    | 311325                                      | 311899                      | 312909                                     | 313625                                     | 316002                                      | 317132                           | 316350 | 317893                                      | 318465                                      | 318689                                      | 319013 | 318545 | 319335 | 319336                     | 322207                               | 321992 | 325897                                           | 326614 |   |
| 50                  | Initial<br>(nt)             | 309370                    | 310135                                      | 312891                      | 313457                                     | 314590                                     | 314980                                      | 316110                           | 316964 | 317078                                      | 317920                                      | 318492                                      | 318696 | 318958 | 318991 | 321690                     | 322007                               | 322216 | 322910                                           | 325904 |   |
|                     | SEQ<br>NO<br>(* *)          | 3830                      | 3831                                        | 3832                        | 3833                                       | 3834                                       | 3835                                        | 3836                             | 3837   | 3638                                        | 3839                                        | 3840                                        | 3841   | 3842   | 3843   | 3844                       | 3845                                 | 3845   | 3847                                             | 3848   |   |
| 55                  | SEQ<br>NO.                  | 330                       | 331                                         | 332                         | 333                                        | 334                                        | 335                                         | 336                              | 337    | 338                                         | 339                                         | 340                                         | 341    | 342    | 343    | 344                        | 345                                  | 346    | 347                                              | 348    |   |

EP 1 108 790 A2

5

|                     |                             |                                    |                                         |        |                              |                                   |                                                     |                              |                            |                                                       | ,      |                                    |                                               |                                 |                              |                                            |                                           | _      |                             |                             | $\overline{}$ |  |
|---------------------|-----------------------------|------------------------------------|-----------------------------------------|--------|------------------------------|-----------------------------------|-----------------------------------------------------|------------------------------|----------------------------|-------------------------------------------------------|--------|------------------------------------|-----------------------------------------------|---------------------------------|------------------------------|--------------------------------------------|-------------------------------------------|--------|-----------------------------|-----------------------------|---------------|--|
|                     | Function                    | adenylate cyclase                  | DNA polymerasa III subunit<br>tau/gamma |        | hypothetical protein         | hypothetical protein              | ribosomal large subunit<br>pseudouridine synthase C | beta-glucosidase/xylosidase  | beta-glucosidase           | NAD/mycothiol-dependent<br>formaldehyde dehydrogenase |        | metallo-beta-lactamase superfamily | 3-oxoacyl-(acyl-carrier-protein)<br>reductase | valanimycin resistant protein   | dTDP-glucose 4,8-dehydratese | hypothetical protein                       | dolichol phosphate mannose<br>synthase    |        | nucleotide sugar synthetase | UDP-sugar hydrolase         |               |  |
|                     | Matched<br>length<br>(a a.) | 263                                | 423                                     |        | 144                          | 172                               | 314                                                 | 558                          | 101                        | 362                                                   |        | 160                                | 251                                           | 415                             | 320                          | 108                                        | 230                                       |        | 260                         | 588                         |               |  |
|                     | Similarity<br>(%)           | 62.4                               | 52.7                                    |        | 29.0                         | 63.4                              | 0.58                                                | 60.2                         | 61.4                       | 86.5                                                  |        | 47.5                               | 55.8                                          | 56.4                            | 66.3                         | 88.9                                       | 68.5                                      |        | 57.3                        | 54.4                        |               |  |
|                     | identity<br>(%)             | 32.7                               | 25.3                                    |        | 326                          | 39.0                              | 43.6                                                | 34.8                         | 38.6                       | 9.99                                                  |        | 32.5                               | 25.9                                          | 26.3                            | 33.8                         | 59.3                                       | 33.9                                      |        | 25.8                        | 26.1                        |               |  |
| Table 1 (continued) | Homologous gene             | Stigmatella aurantiaca B17R20 cyaB | Bacillus subtilis dneX                  |        | Ureaplasma urealyticum uu033 | Delnococcus radiodurans<br>DR0202 | Escherichia coli K12 rluC                           | Erwinia chrysanthemi D1 bgxA | Azospirillum irakense salB | Amycolatopsis methanolica                             |        | Rhodococcus erythropolis orf5      | Escherichia coli K12 fabG                     | Streptomyces viridifaciens vImF | Actinoplanes sp. acbB        | Mycobacterium tuberculosis<br>H37Rv Rv3632 | Methanococcus jannaschii JAL-<br>1 MJ1222 |        | Escherichia coli K12 yelJ   | Salmonella typhimurium us.A |               |  |
|                     | db Match                    | sp.CYAB_STIAU                      | sp.DP3X_BACSU                           |        | gp AE002103_3                | gp.AE001882_8                     | sp:RLUC_ECOLI                                       | SP. BGLX_ERWCH               | gp.AF090429_2              | SP. FADH_AMYME                                        |        | SP.YTHS_RHOSN                      | sp FABG_ECOLI                                 | gp:AF148322_1                   | prt 2512357B                 | pir.A70562                                 | sp YC22_METJA                             |        | sp YEFJ_ECOLI               | SP USHA_SALTY               |               |  |
|                     | ORF<br>(bp)                 | 1041                               | 1257                                    | 162    | 444                          | 561                               | 882                                                 | 1644                         | 1989                       | 1104                                                  | 621    | 537                                | 699                                           | 1230                            | 933                          | 375                                        | 759                                       | 1029   | 1035                        | 2082                        | 162           |  |
|                     | Terminal<br>(nt)            | 326695                             | 329539                                  | 329909 | 330376                       | 331533                            | 332433                                              | 334562                       | 334953                     | 336112                                                | 335185 |                                    | 337449                                        | 338768                          | 339725                       | 340195                                     | 340569                                    | 342375 | 343451                      | 345717                      | 345814        |  |
|                     | Initial<br>(nt)             | 327735                             | 328283                                  | 329748 | 329033                       | 330973                            | 331552                                              | 332919                       | 332965                     | 335009                                                | 335805 | _!                                 | 336781                                        | 337539                          | 338793                       | 340569                                     | 341327                                    | 341347 |                             | 343636                      | 345975        |  |
|                     | SEQ<br>NO                   | 3849                               | 3850                                    | 3851   | 3852                         | 3853                              | 3854                                                | 3855                         | 3856                       | 3857                                                  | 3858   | 3859                               | 3860                                          | 3861                            | 3862                         | 3863                                       | 3864                                      | 3865   | 3866                        | 3867                        | 3868          |  |
|                     | SEQ<br>NO<br>DNA)           | 349                                | 350                                     | 351    | 352                          | 353                               | 354                                                 | 355                          | 356                        | 357                                                   | 358    | 359                                | 360                                           | 361                             | 362                          | 363                                        | 364                                       | 365    | 366                         | 367                         | 368           |  |

|                          |                             |        |                                          |                                              |                                  |                              |                           |                            | _      |                                            |                                       |                        |        |                               |                                           |                                           |                             | $\overline{}$ |                                         | _               |                                                       |
|--------------------------|-----------------------------|--------|------------------------------------------|----------------------------------------------|----------------------------------|------------------------------|---------------------------|----------------------------|--------|--------------------------------------------|---------------------------------------|------------------------|--------|-------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|---------------|-----------------------------------------|-----------------|-------------------------------------------------------|
| 5                        | Function                    |        | NADP-dependent alcohol<br>dehydrogenase  | glucose-1-phosphate<br>thymidylyllransferase | dTDP-4-keto-L-rhamnose reductase | dTDP-glucose 4,6-dehydratase | NADH dehydrogenase        | Fe-regulated protein       |        | hypothetical membrane protein              | metallopeptidase                      | prolyl endopeptidase   |        | hypothetical membrane protein | cell surface layer protein                | autophosphorylating protein Tyr<br>kinase | protein phosphatase         |               | capsular polysaccharide<br>blosynthesis | ORF 3           | lipopolysaccharide biosynthesis /<br>aminotransferase |
| 15                       | Matched<br>length<br>(a.a.) |        | 343                                      | 285                                          | 192                              | 343                          | 206                       | 325                        |        | 423                                        | 461                                   | 708                    |        | 258                           | 363                                       | 453                                       | 102                         |               | 613                                     | 90              | 394                                                   |
| 20                       | Similarity (%)              |        | 74.9                                     | 84.9                                         | 74.0                             | 83.4                         | 61.2                      | 99                         |        | 683                                        | 62 5                                  | 56.4                   |        | 460                           | 76.8                                      | 57.2                                      | 68.6                        |               | 65 7                                    | 51.0            | 68.3                                                  |
|                          | Identity<br>(%)             |        | 52.2                                     | 62.8                                         | 49.5                             | 61.8                         | 35.4                      | 33.2                       |        | 37.4                                       | 34.1                                  | 28.4                   |        | 26 0                          | 50.7                                      | 28.5                                      | 39.2                        |               | 33.0                                    | 41.0            | 37.1                                                  |
| ಶ<br>ontinued)           | s gene                      |        | erculosis                                | M32 rfbA                                     | ans rmiC                         | ans XC rmlB                  | s HB8 nox                 | reus sirA                  |        | serculosis                                 | icolor                                | psulata                |        | icolor A3(2)                  | CC 6872                                   | sonii ptk                                 | sonii ptp                   |               | ureus M capD                            |                 | uni wiaK                                              |
| %<br>Table 1 (continued) | Homologous gene             |        | Mycobacterium tuberculosis<br>H37Rv adhC | Salmonella anatum M32 rfbA                   | Streptococcus mutans rmIC        | Streptococcus mutans XC rmIB | Thermus aquaticus HBB nox | Staphylococcus aureus sirA |        | Mycobacterium tuberculosis<br>H37Rv Rv3630 | Streptomyces coelicolor<br>SC5F2A 19c | Sphingomonas capsulata |        | Streptomyces coelicolor A3(2) | Corynebacterium<br>ammoniagenes ATCC 6872 | Acinetobacter Johnsonil ptk               | Acinetobacter johnsonii ptp |               | Staphylococcus aureus M capD            | Vibrio cholerae | Campylobacter jejuni wlaK                             |
| 35                       | ļ                           |        | £Ξ                                       | S                                            | Š                                | -                            | E                         | S                          |        |                                            | रु छ                                  | S                      |        | š                             | ပိန်                                      | ¥                                         | ¥                           |               |                                         | >               | Ö                                                     |
| 40                       | db Match                    |        | SP. ADH_MYCTU                            | SP RFBA_SALAN                                | gp:D78182_5                      | SP RMLB_STRMU                | SP NOX_THETH              | prf.2510361A               |        | SP Y17M_MYCTU                              | gp:SC5F2A_19                          | prf 2502228A           |        | gp SCF43_2                    | gsp W56155                                | prf 2404346B                              | prf 2404346A                |               | sp.CAPD_STAAU                           | PRF 2109288X    | prf 2423410L                                          |
|                          | ORF<br>(bp)                 | 351    | 1059                                     | 855                                          | 1359                             | 1131                         | 579                       | 945                        | 639    | 1308                                       | 1380                                  | 2118                   | 573    | 1092                          | 1095                                      | 1434                                      | 603                         | 984           | 1812                                    | 942             | 1155                                                  |
| 45                       | Terminal<br>(nt)            | 346110 | 346961                                   | 348098                                       | 348952                           | 350313                       | 351370                    | 353637                     | 353749 | 354599                                     | 355849                                | 357237                 | 359762 | 360814                        | 362057                                    | 365257                                    | 365852                      | 366838        | 368643                                  | 367701          | 369801                                                |
| 50                       | Initial<br>(nt)             | 346460 | 348019                                   | 348952                                       | 350310                           | 351443                       | 351948                    | 352693                     | 354387 | 355908                                     | 357228                                | 359354                 | 380334 | 361905                        | 363151                                    | 363824                                    | 365250                      | 365855        | 366832                                  | 368642          | 368647                                                |
|                          | SEO<br>NO                   | 3869   | 3870                                     | 3871                                         | 3872                             | 3873                         | 3874                      | 3875                       | 3876   | 3877                                       | 3878                                  | 3879                   | 3880   | 3881                          | 3882                                      | 3883                                      | 3884                        | 3885          | 3886                                    | 3887            | 3888                                                  |
| 55                       | SEQ<br>NO<br>(DNA)          | 369    | 370                                      | 37.1                                         | 372                              | <del></del>                  | 374                       | 375                        | 376    | 377                                        | 378                                   | 379                    | 380    | 381                           | 382                                       | 383                                       | 384                         | 1             | 386                                     | 387             | 388                                                   |

EP 1 108 790 A2

|           |                     |                             | _                           |                                         |                                                     |                                                       |                                                      |                         |                            | $\overline{}$ |                                          |        |                                             |                                     |                            |                             |        |        |                       |                            | $\neg$ |
|-----------|---------------------|-----------------------------|-----------------------------|-----------------------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------|----------------------------|---------------|------------------------------------------|--------|---------------------------------------------|-------------------------------------|----------------------------|-----------------------------|--------|--------|-----------------------|----------------------------|--------|
| 5         |                     | Function                    | pilin glycosylation protein | capsular polysaccharide<br>blosynthesis | lipopolysaccharide biosynthesis /<br>export protein | UDP-N-acetylglucosamine 1-<br>carboxyvinyltransferase | UDP-N-<br>acetylenolpyruvoylglucosamine<br>reductase | sugar transferase       | 88.0                       |               | (ransposase (insertion sequence IS31831) |        | hypothetical protein                        | acetyltransferase                   | hypothetical protein B     | UDP-glucose 6-dehydrogenase |        |        | glycosyl transferase  | acetyltransferase          |        |
| 15        |                     | P. C.                       |                             |                                         |                                                     |                                                       |                                                      |                         | transposase                |               | transpose<br>(S31831)                    |        |                                             |                                     |                            |                             |        |        |                       | _                          |        |
| 15        |                     | Matched<br>length<br>(a.a.) | 86                          | 380                                     | 504                                                 | 427                                                   | 273                                                  | 358                     | 53                         |               | 70                                       |        | 404                                         | 354                                 | 65                         | 388                         |        |        | 243                   | 221                        | _      |
| 20        |                     | Similarity<br>(%)           | 75.0                        | 69.2                                    | 8.8                                                 | 646                                                   | 68.5                                                 | 57.3                    | 793                        |               | 94.3                                     |        | 57.4                                        | 60.2                                | 53.0                       | 89.7                        |        |        | 65.0                  | 62.0                       |        |
|           |                     | Identity<br>(%)             | 54.6                        | 33.4                                    | 34.3                                                | 31.4                                                  | 34.8                                                 | 32.0                    | 60.4                       |               | 75.7                                     |        | 28.0                                        | 34.5                                | 44.0                       | 63.7                        |        |        | 32.1                  | 33.0                       |        |
| 25        | Table 1 (continued) | us gene                     | itidis pgiB                 | ureus M capM                            | npestris gumJ                                       | icae murA                                             | urB                                                  | RF39x2                  | glutamicum                 |               | glutamicum                               |        | uberculosis                                 | sruginosa PAO1                      | glutamicum                 | pôr                         |        |        | wbnA                  | 1157 wbhH                  |        |
| 30        | Table 1 (           | Homologous gene             | Neisseria meningitidis pgiB | Staphylococcus aureus M capM            | Xanthomonas campestris gumJ                         | Enterobacter cloacae murA                             | Bacillus subtilis murB                               | Vibrio cholerae ORF39x2 | Corynebacterium glutamicum |               | Corynebacterium glutamicum<br>ATCC 31831 |        | Mycobacterium tuberculosis<br>H37Rv Rv1565c | Pseudomonas aeruginosa PAO1<br>psbC | Corynebacterium glutamicum | Escherichia coli ugd        |        |        | Escherichia coli wbnA | Escherichia coli 0157 wbhH |        |
| <i>35</i> |                     | db Match                    | gp. AF014804_1              | 3                                       | pir.S87859                                          | SP MURA_ENTCL                                         | sp MURB_BACSU                                        | gp VCLPSS_9             | pd 2211295A                |               | pir.S43613                               |        | pir G70539                                  | gsp W37352                          | PIR S60890                 | sp UDG8_ECOLI               |        |        | gp AF172324_3         | gp AB008676_13             |        |
|           |                     | ORF<br>(bp)                 | 612                         | 1161                                    | 1491                                                | 1314                                                  | 1005                                                 | 1035                    | 150                        | 135           | 327                                      | 278    | 1170                                        | 993                                 | 231                        | 1181                        | 273    | 1209   | 823                   | 645                        | 195    |
|           |                     | Termina<br>(nt)             | 370405                      | 371773                                  | 373419                                              | 374813                                                | 375837                                               | 376876                  | 377832                     | 378227        | 37851                                    | 378287 | 378688                                      | 379850                              | 381495                     | 383106                      | 383496 | 383982 | 385374                | 387200                     | 387463 |
| 50        |                     | Initial<br>(nt)             | 369794                      | 370613                                  | 371929                                              | 373500                                                | 374833                                               | 375842                  |                            | 378093        | 378185                                   | 378562 | 379837                                      | 380842                              | 381265                     | 381948                      | 383768 | 385190 | 385195                | 386556                     | 387657 |
|           |                     | SEQ<br>NO                   |                             | 3890                                    | 3891                                                | 3892                                                  | 3893                                                 | 3894                    | 3895                       | 3896          | 3897                                     | 3898   | 3899                                        | 3900                                | 3901                       | 3902                        | 3903   | 3904   | 3905                  |                            | 3907   |
| 55        |                     | SEO<br>NO.                  | 389                         | 390                                     | 391                                                 | 392                                                   | 393                                                  | 394                     | 395                        | 396           | 397                                      | 398    | 399                                         | 400                                 | 401                        | 402                         | 403    | 404    | 405                   | 406                        | 407    |

EP 1 108 790 A2

| Table 1 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                             |                                              |                                             |                                     |                                             |                                            |                                         | 1                                 | 1      |        | T      | 1      | 1      |                                     |                           | $\overline{}$ | _      |                                          | т —    |                                  | ١ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------|--------|--------|--------|--------|--------|-------------------------------------|---------------------------|---------------|--------|------------------------------------------|--------|----------------------------------|---|
| Table 1 (continued)   Termina   ORF   db Match   Homologous gene   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%) |                     | Function                    | dihydrolipoamide dehydrogenase               | UTP-glucose-1-phosphate uridylyltransferase | regulatory protein                  | transcriptional regulator                   | cytochrome b subunit                       | succinate dehydrogenase<br>flavoprotein | succinate dehydrogenase subunit B |        |        |        |        |        | hypothetical protein                | hypothetical protein      |               |        | tetracenomycln C transcription repressor |        | transporter                      |   |
| Table 1 (continued)   Carlona   Ca |                     | Matched<br>length<br>(a.a.) | 469                                          | 295                                         | 153                                 | 477                                         | 230                                        | 608                                     | 258                               |        |        |        |        |        | 259                                 | 431                       |               |        | 197                                      |        | 499                              |   |
| SEQ   Initial   Termina   ORF   db Match   Homologous gene   1407   gp.CGLPD_1   ATCC 13032   pd     3908   387692   389098   1407   gp.CGLPD_1   ATCC 13032   pd     3913   380238   390730   498   gp.PAU49686_2   orfX     3914   392705   393475   771   gp.SCM10_12   Streptomycas coelicolor A3(2)     3915   393639   396513   1875   pir.A27763   Bacillus sublilis ach A     3916   396315   39632   261   Scotta     3917   397040   396411   630   Scotta     3918   397330   39959   400341   530     3919   39959   400341   303     39270   39959   400341   303     3928   400341   303   Scotta     3928   40155   40155   Steptomyces fradiae T&2717     3928   401150   402796   1647   59 AF184961_8   Streptomyces fradiae T&2717     3928   401150   402796   1647   59 AF184961_8   Streptomyces fradiae T&2717     3929   3929   3929     3928   3928   3929   3929     3928   401150   402796   1647   59 AF184961_8   Streptomyces fradiae T&2717     3928   401150   402796   1647   59 AF184961_8   Streptomyces fradiae T&2717     3929   3929   3929     3929   3929   3929   3929     3929   3929   3929   3929     3929   3929   3929   3929     3929   3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   3929     3929   |                     |                             | 100.0                                        | 68.1                                        | 71.9                                | 81.3                                        | 67.4                                       | 61.2                                    | 56.2                              |        |        |        |        |        | 49.8                                | 64.3                      |               |        | 53.8                                     |        | 74.6                             |   |
| SEQ Initial (nt) (nt) (pp) db Match (ba) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Identity<br>(%)             | 9.66                                         | 41.7                                        | 43.8                                | 57.0                                        | 34.8                                       | 32.4                                    | 27.5                              |        |        |        |        |        | 26.3                                | 32.7                      |               |        | 28.4                                     |        | 36.1                             |   |
| SEQ Initial Termina ORF NO (nt) (nt) (nt) (ht) (bb) 3908 387692 389098 1407 3908 38910 38910 389248 390168 921 3911 392208 390730 498 3912 392705 393475 771 3913 393639 395513 1875 3915 396672 396893 261 3917 397040 396411 630 3918 39723 9753 3922 399598 400017 420 3922 399598 400341 303 3925 401050 401253 204 3925 401150 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 1 (continued) | Homologous gene             | Corynebacterium glutamicum<br>ATCC 13032 lpd | Xanthomonas campestris                      | Pseudomonas aeruginosa PAO1<br>orfX | Mycobacterium tuberculosis<br>H37Rv Rv0465c | Streptomyces coelicolor A3(2)<br>SCM10.12c | Bacillus subtilis adhA                  | Paenibacillus macerans sdhB       |        |        |        |        |        | Streptomyces coelicolor<br>SCC78.05 | Escherichia coli K12 yjiN |               |        | Streptomyces glaucescens<br>GLA 0 tcmR   |        | Streptomyces fradiae T#2717 urdJ |   |
| SEQ Initial Termina NO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                             |                                              |                                             | -                                   | pir:E70828                                  |                                            |                                         | gp BMSDHCAB_4                     |        |        |        |        |        |                                     |                           |               |        |                                          |        | gp AF184961_8                    |   |
| SEQ   Initial   Termi (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ORF<br>(bp)                 |                                              | 921                                         |                                     | 1422                                        | 771                                        | 1875                                    | 837                               |        | 261    | 630    | 96     | 339    | 975                                 | 1251                      | 420           | 303    | 678                                      | 204    | 1647                             |   |
| SEQ NO 3908 3908 3908 3913 3915 3915 3915 3922 3923 3926 3928 3928 3928 3928 3928 3928 3928 3928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Termina<br>(nt)             | 389098                                       | 390168                                      | 390730                              | 390787                                      | 393475                                     | 395513                                  | 396262                            | 396650 | 396932 | 396411 | 397825 | 398222 | 397232                              | 399579                    | 400017        | 400341 | 401150                                   | 401253 | 402798                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Initial<br>(nt)             | <u> </u>                                     |                                             |                                     |                                             |                                            |                                         |                                   |        |        |        |        |        |                                     | 398329                    |               | 1      |                                          |        |                                  |   |
| SEQ NO (DNA) 408 408 409 411 411 411 411 411 411 411 422 423 424 425 425 426 426 426 426 426 426 426 426 426 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                             | 3908                                         | 3909                                        | 3910                                | 3911                                        | 3912                                       | 3913                                    | 3914                              | 3915   | 3916   | 3917   | 3918   | 3919   | 3920                                | 3921                      | 3922          | 3923   | 3924                                     | 3925   | 3926                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | SEQ<br>NO<br>(DNA)          | <b>4</b> 08                                  | 409                                         | 410                                 | 411                                         | 412                                        | 413                                     | 414                               | 415    | 416    | 417    | 418    | 419    | 420                                 | 421                       | 422           | 423    | 424                                      | 425    | 426                              |   |

5

| 5                       | Function                    |                                     | late deformylase                   | phate aldolase                 |        |        | <u>c</u>                            | <b>E</b>                                   |        | cation-transporting P-type ATPase B |        | glucosidase                                    | iplasmic protein                    |                                     | ABC transporter ATP-binding protein | C.                                          | ני                                         |        |        |          |
|-------------------------|-----------------------------|-------------------------------------|------------------------------------|--------------------------------|--------|--------|-------------------------------------|--------------------------------------------|--------|-------------------------------------|--------|------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|--------------------------------------------|--------|--------|----------|
| 10                      | Func                        | transporter                         | formylletrahydrofolate deformylase | deoxyribose-phosphata aldolasa |        |        | hypothetical protein                | hypothetical protein                       |        | cation-transporting                 |        | glucan 1,4-alpha-glucosidase                   | hemin-binding penplasmic protein    | ABC transporter                     | ABC transporter A                   | hypothelical protein                        | hypothetical protein                       |        |        |          |
| 15                      | Matched<br>fength<br>(a.a.) | 508                                 | 286                                | 208                            |        |        | 280                                 | 92                                         |        | 748                                 |        | 626                                            | 348                                 | 330                                 | 254                                 | 268                                         | 258                                        |        |        |          |
| 20                      | Similarity<br>(%)           | 74.6                                | 72.7                               | 74.0                           |        |        | 53.6                                | 85.9                                       |        | 75.3                                |        | 56.1                                           | 83.6                                | 90.3                                | 85.0                                | 56.4                                        | 61.6                                       |        |        |          |
|                         | identity<br>(%)             | 39.6                                | 40.9                               | 38.5                           |        |        | 26.8                                | 58.7                                       |        | 45.7                                |        | 27.3                                           | 57.2                                | 65.2                                | 63.8                                | 28.6                                        | 32.6                                       |        |        |          |
| S S Table 1 (continued) | as gene                     | liae T#2717                         | sp P-1 purU                        | ၁၀၃                            |        |        | vlum GIR 10                         | berculosis                                 |        | prae ctpB                           |        | erevisiae<br>sta1                              | diphtherlae                         | diphtheriae                         | diphtherlae                         | elicolor C75A                               | elicolor C75A                              |        |        |          |
| S S Table 1 ((          | Homologous gene             | Streptomyces fradiae T#2717<br>urdJ | Corynebacterium sp                 | Bacillus subtilis deoC         |        |        | Mycobacterium avium GIR10<br>mav346 | Mycobacterium tuberculosis<br>H37Rv Rv0190 |        | Mycobacterium leprae ctp8           |        | Saccharomyces cerevisiae<br>S288C YIR019C sta1 | Corynebacterium diphtherlae<br>hmuT | Corynebacterium diphtheriae<br>hmuU | Corynebacterium diphtherlae<br>hmuV | Streptomyces coelicolor C75A<br>SCC75A, 17c | Streptomyces coelicolor C75A<br>SCC75A 17c |        |        |          |
| 35                      |                             | ភ ភ                                 |                                    |                                |        |        | ΣE                                  | Σï                                         | _      |                                     | _      |                                                | υĒ                                  | υĒ                                  | υĒ                                  | တ တ                                         | တ တ                                        |        |        | $\dashv$ |
| 40                      | db Match                    | gp AF164961_8                       | sp PURU_CORSP                      | sp DEOC_BACSU                  |        |        | prf.2413441K                        | pir.A70907                                 |        | SP.CTPB_MYCLE                       |        | *p:AMYH_YEAST                                  | gp. AF109162_1                      | gp AF109162_2                       | gp AF109162_3                       | gp.SCC75A_17                                | gp SCC75A_17                               |        |        |          |
|                         | ORF<br>(bp)                 | 1632                                | 912                                | 999                            | 150    | 997    | 867                                 | 30                                         | 909    | 2285                                | 450    | 1863                                           | 1077                                | 1068                                | 813                                 | 957                                         | 837                                        | 810    | 813    | 501      |
| 45                      | Terminal<br>(nt)            | 404430                              | 404508                             | 408145                         | 406161 | 405521 | 407416                              | 407409                                     | 409145 | 407711                              | 410027 | 412545                                         | 413633                              | 414710                              | 415526                              | 416599                                      | 417439                                     | 417545 | 418441 | 419257   |
| 50                      | Initial<br>(nt)             | 402799                              | 405419                             | 405480                         | 406310 | 406417 | 406550                              | 407708                                     | 408548 | 409975                              | 410476 | 410683                                         | 412557                              | 413643                              | 414714                              | 415643                                      | 416603                                     | 418354 | 419253 | 419757   |
|                         | SEQ<br>NO                   | 3927                                | 3928                               | 3929                           | 3930   | 3931   | 3932                                | 3933                                       | 3934   | 3935                                | 3936   | 3937                                           | 3938                                | 3939                                | 3940                                | 3941                                        | 3942                                       | 3943   | 3944   | 3945     |
| 55                      | SEQ<br>NO<br>(DNA)          | 427                                 | 428                                | 429                            | _      | 431    | 432                                 | 433                                        | 434    | 435                                 | 436    | 437                                            | 438                                 | 439                                 | 440                                 | 441                                         | 442                                        | 443    | 444    | 445      |

|                     | Function                   | UDP-N-acetylpyruvoylglucosamine reductase |        |        |        | long-chain-fatty-acidCoA ligase | transferase                         | phosphoglycerate mutase              | two-component system sensor<br>histidine kinase | two-component response regulator |        | ABC transporter ATP-binding protein       | cytochrome P450                            | exopolyphosphatase         | hypothetical membrane protein              | pyrroline-5-carboxylate reductase             | membrana glycoprotein      | hypothetical protein                 |        |
|---------------------|----------------------------|-------------------------------------------|--------|--------|--------|---------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------|--------|-------------------------------------------|--------------------------------------------|----------------------------|--------------------------------------------|-----------------------------------------------|----------------------------|--------------------------------------|--------|
|                     | Matched<br>length<br>(a a) | 356                                       |        |        |        | 558                             | 418                                 | 248                                  | 417                                             | 231                              |        | 921                                       | 269                                        | 306                        | 302                                        | 289                                           | 394                        | 55                                   |        |
|                     | Similarity<br>(%)          | 58.4                                      |        |        |        | 68.1                            | 58.7                                | 84.2                                 | 74.8                                            | 6 06                             |        | 2.09                                      | 6.99                                       | 87.8                       | 6.73                                       | 100.0                                         | 52.0                       | 94.6                                 |        |
|                     | Identity<br>(%)            | 30.1                                      |        |        |        | 35.5                            | 33.9                                | 707                                  | 49.2                                            | 75.8                             |        | 31.3                                      | 45.0                                       | 28.8                       | 28.8                                       | 100.0                                         | 25 4                       | 76.4                                 |        |
| Table 1 (continued) | Homologous gene            | Escherichia coli RDD012 murB              |        |        |        | Bacillus subtilis IcfA          | Streptomyces coelicolor<br>SC2G5.06 | Streptomyces coelicolor A3(2)<br>gpm | Mycobacterium bovis senX3                       | Mycobacterium bovis BCG regX3    |        | Streptomyces coelicolor A3(2)<br>SCE25 30 | Mycobacterium tuberculosis<br>H37Rv RV3121 | Pseudomonas aeruginosa ppx | Mycobacterium tuberculosis<br>H37Rv Rv0497 | Corynebacterium glutamicum<br>ATCC 17965 proC | Equine herpesvirus 1 ORF71 | Mycobacterium leprae<br>B2168_C1_172 |        |
|                     | db Match                   | gp.ECOMURBA_1                             |        |        |        | sp:LCFA_BACSU                   | gp.SC2G5_6                          | sp.PMGY_STRCO                        | prt 2404434A                                    | pri 2404434B                     |        | gp.SCE25_30                               | sp.YV21_MYCTU                              | prf 2512277A               | sp:YV23_MYCTU                              | sp PROC_CORGL                                 | gp D88733_1                | pir S72921                           |        |
|                     | ORF<br>(bp)                | 1101                                      | 651    | 735    | 174    | 1704                            | 1254                                | 744                                  | 1239                                            | 969                              | 879    | 2586                                      | 903                                        | 927                        | 813                                        | 810                                           | 1122                       | 198                                  | 219    |
|                     | Termina<br>(nt)            | 420885                                    | 421516 | 420309 | 422031 | 422090                          | 425131                              | 425920                               | 427172                                          | 427867                           | 429439 | 429438                                    | 432126                                     | 433986                     | 43482                                      | 435695                                        | 433865                     | 436137                               | 43610. |
|                     | Initial<br>(nt)            | 419785                                    | 420866 | 421043 | 421858 | 423793                          | 423878                              | 425177                               | 425934                                          | 427172                           | 428561 | 432023                                    | 433028                                     | 433062                     | 434010                                     | 434886                                        | 434936                     | 435940                               | 436321 |
|                     | SEQ<br>NO                  | 3946                                      | 3947   | 3948   | 3949   | 3950                            | 3951                                | 3952                                 | 3953                                            | 3954                             | 3955   | 3956                                      | 3957                                       | 3958                       | 3959                                       | 3960                                          | 3961                       | 3962                                 | 3963   |
|                     | SEQ<br>NO<br>(DNA)         | 446                                       | 447    | 448    | 449    | 450                             | 451                                 | 452                                  | 453                                             | 454                              | 455    | 456                                       | 457                                        | 458                        | 459                                        | 460                                           | 461                        | 467                                  | 463    |

| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Function                   | hypothetical protein                 |        |        | phosphaserine phosphatase               | hypothetical protein                       |        | glutamyl-tRNA reductase   | hydroxymethylbilane synthase |        | cat operon transcriptional regulator | shikimate transport protein | 3-dehydroshikimate dehydratase | shikimate dehydrogenase                  |        | putrescine transport protein |        | iran(III)-transport system permease<br>protein |        | periplasmic-iron-binding protain | uroporphyrin-ili C-methylfransferase |             |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|--------|--------|-----------------------------------------|--------------------------------------------|--------|---------------------------|------------------------------|--------|--------------------------------------|-----------------------------|--------------------------------|------------------------------------------|--------|------------------------------|--------|------------------------------------------------|--------|----------------------------------|--------------------------------------|-------------|---|
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matched<br>length<br>(a a) | 29                                   |        |        | 296                                     | 74                                         |        | 455                       | 308                          |        | 321                                  | 417                         | 309                            | 282                                      |        | 363                          |        | 578                                            | ٠      | 347                              | 486                                  |             |   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Similarity<br>(%)          | 100 0                                |        |        | 77.4                                    | 66.2                                       |        | 74.3                      | 75.3                         |        | 57.6                                 | 722                         | 57.9                           | 98.6                                     |        | 989                          |        | 55.2                                           |        | 59.9                             | 71.6                                 |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Identity<br>(%)            | 89.7                                 |        |        | 510                                     | 40.5                                       |        | 44.4                      | 50.7                         |        | 27.1                                 | 35 5                        | 282                            | 98.2                                     |        | 34 7                         | !      | 25.1                                           |        | 25.1                             | 46.5                                 |             |   |
| 25 ag 20 ag | us gene                    | licolor                              |        |        | prae<br>serB                            | berculosis                                 |        | prae hemA                 | prae hem3b                   |        | coaceticus                           | 12 shiA                     | 8 qa4                          | glutamicum                               |        | 12 polG                      |        | ens sfuB                                       |        | ysenteriae bitA                  | prae cysG                            |             |   |
| % Table 1 (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Homologous gene            | Streptomyces coelicolor<br>SCE68 25c |        |        | Mycobacterium leprae MTCY20G9.32C. serB | Mycobacterium tuberculosis<br>H37Rv Rv0508 |        | Mycobacterium leprae hemA | Mycobacterium leprae hem3b   |        | Acinetobacter calcoaceticus catM     | Escherichia coli K12 shiA   | Neurospora crassa qa4          | Corynebacterlum glutamicum<br>ASO19 aroE |        | Escherichia coli K12 potG    |        | Serratia marcescens sfuB                       |        | Brachyspira hyodysenteriae bitA  | Mycobacterium leprae cysG            |             |   |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | N N                                  |        | _      | ΣΣ                                      |                                            |        | _                         | 2                            |        |                                      | w                           | 1                              | 0 ∢                                      |        |                              |        |                                                |        | <u> </u>                         | 2                                    |             |   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | db Match                   | gp:SCE68_25                          |        |        | pir.S72914                              | sp.YV35_MYCTU                              |        | SP HEM1_MYCLE             | pir.S72887                   |        | SP CATM_ACICA                        | SP SHIA_ECOLI               | SP 3SHD_NEUCR                  | gp. AF124518_2                           |        | sp POTG_ECOLI                |        | sp:SFUB_SERMA                                  |        | gp SHU75349_1                    | pir:S72909                           |             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ORF<br>(bp)                | 68                                   | 192    | 618    | 1065                                    | 248                                        | 258    | 1389                      | 906                          | 372    | 882                                  | 1401                        | 1854                           | 849                                      | 273    | 1050                         | 615    | 1644                                           | 1113   | 1059                             | 1770                                 | 426         |   |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terminal<br>(nt)           | 436561                               | 436764 | 437850 | 436980                                  | 438424                                     | 438037 | 439904                    | 440814                       | 441591 | 441601                               | 444158                      | 446038                         | 447386                                   | 447398 | 448130                       | 449100 | 449183                                         | 451961 | 450837                           | 454430                               | 454875      |   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initial<br>(nt)            | 436463                               | 436573 | 437233 | 438044                                  | 438179                                     | 438294 | 438516                    | 439909                       | 441220 | 442482                               | 442758                      | 444185                         | 446538                                   | 447670 | 449179                       | 449714 | 450826                                         | 450849 | 451895                           | 452661                               | 3984 454450 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEQ NO                     | 3964                                 | 3965   | 3966   | 3967                                    | 3968                                       | 3969   | 3970                      | 3971                         | 3972   | 3973                                 | 3974                        | 3975                           | 3976                                     | 3977   | 3978                         | 3979   | 3980                                           | 3981   | 3982                             | 3983                                 | 3984        | į |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQ<br>NO<br>(DNA)         | 464                                  | 465    | 466    | 467                                     | 468                                        | 469    | i                         | 471                          | 472    | 473                                  | 474                         | 475                            | 478                                      | 477    | 478                          | 479    | 480                                            | 481    | 482                              | 483                                  | 484         | - |

| Γ                   |                             |                                          | 7      | _            | 0                                   |          |                                    |                               |                                              |                           |                                            |                                         |                                            |                                          |        |                                                 |                            |        |                                            |                                                     |
|---------------------|-----------------------------|------------------------------------------|--------|--------------|-------------------------------------|----------|------------------------------------|-------------------------------|----------------------------------------------|---------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------|--------|-------------------------------------------------|----------------------------|--------|--------------------------------------------|-----------------------------------------------------|
|                     | Function                    | delta-aminolevulinic acid<br>dehydratase |        |              | cation-transporting P-type ATPase B |          | uroporphyrinogen decarboxylase     | protoporphyrinogen IX oxidase | glutamate-1-semialdehyde 2,1-<br>aminomutase | phosphoglycerate mutase   | hypothetical protein                       | cytochrome c-type biagenesis<br>protein | hypothetical membrane protein              | cytochrome c biogenesis protein          |        | transcriptional regulator                       | Zn/Co transport repressor  |        | hypothetical membrane protein              | 1,4-dihydroxy-2-naphthoate<br>octaprenyltransferase |
|                     | Matched<br>length<br>(a.a.) | 337                                      |        |              | 828                                 |          | 364                                | 464                           | 425                                          | 161                       | 208                                        | 245                                     | 533                                        | 338                                      |        | 144                                             | 06                         |        | 82                                         | 301                                                 |
|                     | Similarity<br>(%)           | 83.1                                     |        |              | 56.5                                |          | 7.97                               | 59.9                          | 835                                          | 82.7                      | 71.2                                       | 853                                     | 76.0                                       | 77.8                                     |        | 69.4                                            | 72.2                       |        | 78.1                                       | 61.5                                                |
|                     | Identity<br>(%)             | 80.8                                     |        |              | 27.4                                |          | 55.0                               | 28.0                          | 617                                          | 28.0                      | 44.7                                       | 53.5                                    | 50 7                                       | 44 1                                     |        | 38.9                                            | 31.1                       |        | 39.0                                       | 33.6                                                |
| Table 1 (continued) | Homologous gene             | Streptomyces coelicolor A3(2)<br>hemB    |        |              | Mycobacterium leprae ctpB           |          | Streptomyces coelicolor A3(2) hemE | Bacillus subtills hemY        | Mycobacterium leprae heml                    | Escherichia coli K12 gpmB | Mycobacterium tuberculosis<br>H37Rv Rv0528 | Mycobaderium tuberculosis<br>H37Rv ccsA | Mycobacterium tuberculosis<br>H37Rv Rv0528 | Mycobacterium tuberculosis<br>H37Rv ccsB |        | Mycobacterium tuberculosis<br>H37Rv Rv3678c pb5 | Staphylococcus aureus zntR |        | Mycobacterium tuberculosis<br>H37Rv Rv0531 | Escherichia coii K12 menA                           |
|                     | db Match                    | sp:HEM2_STRCO                            |        |              | sp:CTPB_MYCLE                       |          | sp.DCUP_STRCO                      | sp. PPOX_BACSU                | sp.GSA_MYCLE                                 | SP PMG2_ECOLI             | pir.A70545                                 | pir:B70545                              | plr:C70545                                 | pir D70545                               |        | pir.G70790                                      | prt 2420312A               |        | pir F70545                                 | sp MENA_ECOLI                                       |
|                     | ORF<br>(bp)                 | 1017                                     | 582    | 510          | 2544                                | 843      | 1074                               | 1344                          | 1311                                         | 909                       | 621                                        | 792                                     | 1623                                       | 1011                                     | 801    | 471                                             | 357                        | 300    | 333                                        | 894                                                 |
| $\dashv$            | Terminal<br>(nt)            | 455983                                   | 456597 | 457150       | 459900                              | 458583   | 461093                             | 46245                         | 463867                                       | 464472                    | 465102                                     | 465909                                  | 46757                                      | 468698                                   | 470170 | 470654                                          | 7085                       | 47112  | 47184                                      | 471915                                              |
|                     |                             | <u> </u>                                 |        | <del> </del> | -                                   | $\vdash$ |                                    | <u> </u>                      |                                              | ╀                         | -                                          | <u> </u>                                |                                            | !                                        | _      |                                                 | -                          |        |                                            |                                                     |
|                     | Intia<br>(nt)               | 454967                                   | 456016 | 456841       | 457357                              | 459425   | 460020                             | 461112                        | 462557                                       | 463867                    | 464482                                     | 465118                                  | 465949                                     | 467648                                   | 469370 | 470184                                          | 471013                     | 471420 | 471515                                     | 472808                                              |
|                     | SEQ<br>NO.                  | 3985                                     | 3986   | 3987         | 3968                                | 3989     | 3990                               | 3991                          | 3992                                         | 3993                      | 3994                                       | 3995                                    | 3996                                       | 3997                                     | 3998   | 3999                                            | 4000                       | 4001   | 4002                                       | 4003                                                |
|                     | SEQ<br>NO<br>(DNA)          | 485                                      | 486    | 487          | 488                                 | 489      | 490                                | 491                           | 492                                          | 493                       | 494                                        | 495                                     | 496                                        | 497                                      | 498    | 499                                             | 500                        | 50.    | 502                                        | 503                                                 |

| 5                       | Function                    | glycosyl transferase      | malonyl-CoA-decerboxylase | hypothetical membrane protein | ketoglutarate semialdehyde<br>dehydrogenase | 5-dehydro-4-deoxyglucarate<br>dehydratase | als operon regulatory protein | hypothetical protein                        |        | 2-pyrone-4,8-dicarboxylic acid |        |        |        | low-affinity inorganic phosphate transporter |        |        | naphthoate synthase    | peplidase E                       | pterin-4a-carbinolamine dehydratase | muconate cyclolsomerase                         |
|-------------------------|-----------------------------|---------------------------|---------------------------|-------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------|--------|--------------------------------|--------|--------|--------|----------------------------------------------|--------|--------|------------------------|-----------------------------------|-------------------------------------|-------------------------------------------------|
| 15                      | Matched<br>length<br>(a.e.) | 238                       | 421                       | 139                           | 520                                         | 303                                       | 293                           | 94                                          |        | 267                            |        |        |        | 410                                          |        |        | 293                    | 202                               | 11                                  | 335                                             |
| 20                      | Similarity<br>(%)           | 62.6                      | 51.5                      | 65.5                          | 76.0                                        | 75.6                                      | 66.2                          | 64.9                                        |        | 54.7                           |        |        |        | 83.2                                         |        | _      | 703                    | 82.7                              | 68.8                                | 76.7                                            |
|                         | identity (%)                | 32.4                      | 25.4                      | 35.3                          | 50.4                                        | 48.5                                      | 36.9                          | 33.0                                        |        | 28.1                           |        |        |        | 0.08                                         |        |        | 48.5                   | 57.8                              | 37.7                                | 54.0                                            |
| S S Table 1 (continued) | Homologous gene             | Bacteroides fragilis wcgB | Rhizoblum trifolii matB   | Escherichia coli K12 yqiF     | Pseudomonas pulida                          | Pseudomonas putida KDGDH                  | Bacillus subtilis 168 alsR    | Mycobacterium tuberculosis<br>H37Rv Rv0543c |        | Sphingomonas sp LB128 fldB     |        |        |        | Mycobacterium tuberculosis<br>H37Rv pitA     |        |        | Bacillus subtilis men8 | Deinococcus radiodurans<br>DR1070 | Aquifex aeolicus VF5 phhB           | Mycobacterium tuberculosis<br>H37Rv Rv0553 menC |
| 35                      |                             | Bactero                   | Rhizobl                   | Escheri                       | Pseudo                                      | Pseudo                                    | Bacillus                      | Mycoba<br>H37Rv                             |        | Sphingo                        |        |        |        | Mycobacter<br>H37Rv pitA                     |        |        | Bacillus               | Deinoco<br>DR 1070                | Aquifex                             | Mycoba<br>H37Rv                                 |
| 40                      | db Match                    | 9P.AF125164_6             | prf:2423270B              | sp:YQJF_ECOLI                 | plr:S27612                                  | sp:KDGD_PSEPU                             | sp.ALSR_BACSU                 | pir:B70547                                  |        | gp:SSP277295_9                 |        |        |        | pir.D70547                                   |        |        | FP:MENB_BACSU          | gp: AE001957_12                   | pir.C70304                          | pir.D70548                                      |
|                         | ORF<br>(bp)                 | 864                       | 1323                      | =                             | 1580                                        | 948                                       | 879                           | 315                                         | 444    | 750                            | 417    | 378    | 561    | 1275                                         | 222    | 308    | 957                    | 603                               | 309                                 | 1014                                            |
| 45                      | Termina<br>(nt)             | 47381                     | 47381                     | 47499                         | 475489                                      | 47704                                     | 47809.                        | 47898                                       | 48059  | 47945.                         | 48020  | 48062  | 48113  | 48139                                        | 483366 | 48363  | 484106                 | 48598                             | 48507                               | 48701                                           |
| 50                      | Initial<br>(nt)             | 472948                    | 475136                    | 475407                        | 477048                                      | 477995                                    | 478970                        | 479303                                      | 480154 | 480201                         | 480624 | 481001 | 481391 | 482668                                       | 483587 | 483942 | 485062                 | 485384                            | 485385                              | 486001                                          |
|                         | SEQ<br>NO.                  | 4004                      | 4005                      | 4006                          | 4007                                        | 4008                                      | 4009                          | 4010                                        | 4011   | 4012                           | 4013   | 4014   | 4015   | 4018                                         | 4017   | 4018   | 4019                   | 4020                              | 4021                                | 4022                                            |
| 55                      | SEQ<br>NO<br>(DNA)          | 504                       | 505                       | 206                           | 507                                         | 508                                       | 509                           | 510                                         | 511    | 512                            | 513    | 514    | 515    | 516                                          | 517    | 518    | 519                    | 520                               | 521                                 | 522                                             |

| 5                      | Function                    | 2-oxoglutarate decarboxylase and 2-<br>succinyl-6-hydroxy-2,4-<br>cyclohexadiene-1-carboxylate<br>synthese | hypothetical membrane protein              | alpha-D-mennose-sipha(1-<br>6)phosphatidyi myo-inositoi<br>monomannoside transferese | D-serine/D-elenine/glycine<br>transporter | ubiquinona/menaquinone<br>biosynthesis methyltransferase |        | oxidoreductese                              | heptaprenyl diphosphate synthase component II  | preprotein translocase SecE subunit           | transcriptional antiterminator protein        | 50S ribosomal protein L11                     | 50S ribosomal protein L1                       | regulatory protein                  | 4-aminobutyrate aminotransferase                |
|------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|--------|---------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------|-------------------------------------------------|
| 15                     | Matched<br>length<br>(a.a.) | 909                                                                                                        | 148                                        | 408                                                                                  | 447                                       | 237                                                      |        | 412                                         | 316                                            | ==                                            | 318                                           | 145                                           | 236                                            | 584                                 | 443                                             |
| 20                     | Similarity (%)              | 54.0                                                                                                       | 64.0                                       | 54.2                                                                                 | 89.9                                      | 66.7                                                     |        | 7.97                                        | 67.1                                           | 100.0                                         | 100.0                                         | 100 0                                         | 100 0                                          | 50.2                                | 82.4                                            |
|                        | Identity<br>(%)             | 29.4                                                                                                       | 37.2                                       | 22.8                                                                                 | 66.2                                      | 37.1                                                     |        | 48.0                                        | 39.2                                           | 100.0                                         | 100 0                                         | 100.0                                         | 100.0                                          | 23.1                                | 60.5                                            |
| 72 Table 1 (continued) | Homologous gene             | Bacillus subtilis menD                                                                                     | Mycobacterium tuberculosis<br>H37Rv Rv0558 | Mycobacterium tuberculosis<br>H37Rv pimB                                             | Escherichia coli K12 cycA                 | Escherichia coli K12 ubiE                                |        | Mycobacterium tuberculosis<br>H37Rv Rv0581c | Bacillus stearothermophilus<br>ATCC 10149 hepT | Corynebacterium glutamicum<br>ATCC 13032 secE | Corynebacterium giutamicum<br>ATCC 13032 nusG | Corynebacterium glutamicum<br>ATCC 13032 rplK | Corynebacterium gluternicum<br>ATCC 13032 rpIA | Streptomyces coelicalor<br>SC5H4.02 | Mycobacterium tuberculosis<br>H37Rv RV2589 gabT |
| 40                     | F db Match                  | 9 sp.MEND_BACSU                                                                                            | 1 pir:G70548                               | 9 pir.H70548                                                                         | 9 sp.CYCA_ECOLI                           | sp.UBIE_ECOLI                                            |        | 2 plr:D70549                                | 0 sp HEP2_BACST                                | gp:AF130482_2                                 | gp.AF130462_3                                 | gp.AF130462_4                                 | gp:AF130462_5                                  | 2 gp SC5H4_2                        | sp GABT_MYCTU                                   |
|                        | ORF<br>(bp)                 | 1629                                                                                                       | =                                          | 1239                                                                                 | 1359                                      | 689                                                      | 699    | 1272                                        | 1050                                           | 333                                           | 954                                           | 435                                           | 708                                            | 1512                                | 1344                                            |
| 49                     | Termin<br>(nt)              | 4865                                                                                                       | 489100                                     | 490447                                                                               | 491936                                    | 492655                                                   | 493583 | 492645                                      | 495110                                         | 497142                                        | 498327                                        | 499032                                        | 499869                                         | 499925                              | 502920                                          |
| 50                     | Initial<br>(nt)             | 487028                                                                                                     | 488660                                     | 489209                                                                               | 490580                                    | 491968                                                   | 492915 | 493916                                      | 494061                                         | 496810                                        | 497374                                        | 498598                                        | 499162                                         | 501435                              | 501577                                          |
|                        | SEQ<br>NO<br>(* • )         | 4023                                                                                                       | 4024                                       | 4025                                                                                 | 4026                                      | 4027                                                     | 4028   | 4020                                        | 4030                                           | 4031                                          | 4032                                          | 4033                                          | 4034                                           | 4035                                | 4036                                            |
| 55                     | SEQ<br>NO<br>(DNA)          | 523                                                                                                        | 524                                        | 525                                                                                  | 526                                       | 527                                                      | 528    | 529                                         | 530                                            | 531                                           | 532                                           | 533                                           | 534                                            | 535                                 | 538                                             |

|                     | Function                    | succinate-semialdehyde<br>dehydrogenase (NAD(P)+) | novel two-component regulatory system | tyrosine-specific transport protein | cation-transporting ATPase G                     | hypothetical protein or dehydrogenase |        | 50S ribosomal protein L10    | 50S ribosomel protein L7/L12                    |        | hypothetical membrane protein               | DNA-directed RNA polymerase beta chain          | DNA-directed RNA polymerase beta chain          | hypothetical protein                        |        | DNA-binding protein                        | hypothetical protein                        |
|---------------------|-----------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------------------|---------------------------------------|--------|------------------------------|-------------------------------------------------|--------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------|--------|--------------------------------------------|---------------------------------------------|
|                     | Matched<br>length<br>(a.a.) | 461                                               | 150                                   | 447                                 | 615                                              | 468                                   |        | 170                          | 130                                             |        | 283                                         | 1180                                            | 1332                                            | 169                                         |        | 232                                        | 215                                         |
|                     | Similarity (%)              | 71.8                                              | 38.0                                  | 49.9                                | 64.4                                             | 66.2                                  |        | 84.7                         | 89.2                                            |        | 55 5                                        | 90 4                                            | 88 7                                            | 52 0                                        |        | 63.8                                       | 57.7                                        |
|                     | Identity<br>(%)             | 40.8                                              | 32 0                                  | 25.5                                | 33.2                                             | 40.2                                  |        | 52 9                         | 72.3                                            |        | 25.8                                        | 75.4                                            | 72.9                                            | 39.0                                        |        | 39.2                                       | 29.3                                        |
| Table 1 (continued) | Homologous gene             | Escherichia coll K12 gabD                         | Azospirillum brasilense carR          | Escherichia coli K12 o341#7<br>tyrP | Mycobacterium tuberculosis<br>H37Rv RV1992C ctpG | Streptomyces lividans P49             |        | Streptomyces griseus N2-3-11 | Mycobacterium tuberculosis<br>H37Rv RV0652 rplL |        | Mycobacterium tuberculosis<br>H37Rv Rv0227c | Mycobacterium tuberculosis<br>H37Rv RV0667 rpoB | Mycobacterium tuberculosis<br>H37Rv RV0668 rpoC | Mycobacterium tuberculosis<br>H37Rv Jv0186c |        | Streptomyces coelicolor A3(2)<br>SCJ9A 15c | Mycobacterium tuberculosis<br>H37Rv RV2908C |
|                     | db Match                    | sp GABD_ECOLI                                     | GP.ABCARRA_2                          | sp:TYRP_ECOLI                       | sp.CTPG_MYCTU                                    | sp P49_STRLI                          |        | SP RL10_STRGR                | sp RL7_MYCTU                                    |        | pır.A70962                                  | Sp.RPOB_MYCTU                                   | SP RPOC_MYCTU                                   | GP.AF121004_1                               |        | gp:SCJ9A_15                                | sp YT08_MYCTU                               |
|                     | ORF<br>(bp)                 | 1359                                              | 468                                   | 1191                                | 1950                                             | 1413                                  | 603    | 513                          | 384                                             | 138    | 972                                         | 3495                                            | 3999                                            | 582                                         | 180    | 780                                        | 798                                         |
|                     | Termin (nt)                 | 50428                                             | 50327                                 | 50556                               | 50764                                            | 50908                                 | 50969  | 51051                        | 51097                                           | 51098  | 51250                                       | 516407                                          | 520492                                          | 518696                                      | 520850 | 521644                                     | 521679                                      |
|                     | Inital<br>(nt)              | 502925                                            | 503739                                | 504379                              | 505698                                           | 507669                                | 509094 | 509998                       | 510591                                          | 511126 | 511536                                      | 512913                                          | 516494                                          | 519277                                      | 520671 | 520865                                     | 522476                                      |
|                     | SEQ<br>NO<br>(a.e.)         | 4037                                              | 4038                                  | 4039                                | 4040                                             | 4041                                  | 4042   | 4043                         | 4044                                            | 4045   | 4046                                        | 4047                                            | 4048                                            | 4049                                        | 4050   | 4051                                       | 4052                                        |
|                     | SEQ<br>NO.<br>(DNA)         | 537                                               | 538                                   | 539                                 | 540                                              | 541                                   | 542    | 543                          | 544                                             | 545    | 546                                         | 547                                             | 548                                             | 549                                         | 550    | 551                                        | 552                                         |

EP 1 108 790 A2

| _                   |                             |                                    |                                       |                         |        |        |                       |        |        |                                                   |                                       |                                       |                                                  |                                       |                              |        |                             |                              |        |                              |                                                 |        |
|---------------------|-----------------------------|------------------------------------|---------------------------------------|-------------------------|--------|--------|-----------------------|--------|--------|---------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------|--------|-----------------------------|------------------------------|--------|------------------------------|-------------------------------------------------|--------|
|                     | Function                    | 30S ribosomal protein S12          | 30S ribosomal protein S7              | elongstion factor G     |        |        | lipoprotein           |        |        | ferric enterobactin transport ATP-binding protein | ferric enterobactin transport protein | ferric enterobactin transport protein | butyryl-CoA:acetate coenzyme A transferase       | 30S ribosomal protein S10             | 50S ribosoms! protein L3     |        | 50S ribosomal protein L4    | 50S ribosomal protein L23    |        | 50S ribosomal protein L2     | 30S ribosomal protein 819                       |        |
|                     | Matched<br>length<br>(a.a.) | 121                                | 154                                   | 709                     |        |        | 44                    |        |        | 258                                               | 329                                   | 335                                   | 145                                              | 101                                   | 212                          |        | 212                         | 86                           |        | 280                          | 82                                              |        |
|                     | Similarity (%)              | 87.5                               | 94.8                                  | 88.9                    |        |        | 78.0                  |        |        | 83.7                                              | 17.8                                  | 9'08                                  | 79.3                                             | 0.66                                  | 9'68                         |        | 90.1                        | 9 06                         |        | 92.9                         | 98.9                                            |        |
|                     | Identity<br>(%)             | 8.08                               | 81.8                                  | 7.17                    |        |        | 58.0                  |        |        | 58.2                                              | 45.8                                  | 48.1                                  | 58.8                                             | 84.2                                  | 66.5                         |        | 71.2                        | 74.0                         |        | 80.7                         | 87.0                                            |        |
| Table 1 (continued) | Homologous gene             | Mycobacterium intracellulare rps.L | Mycobacterium smegmatis<br>LR222 rpsG | Micrococcus luteus fusA |        |        | Chiamydia trachomatis |        |        | Escherichie coll K12 fepC                         | Escherichle coli K12 fepG             | Escherichia coli K12 fepD             | Thermoanaerobacterium thermosaccharolylicum actA | Pignobispora rosea ATCC<br>53733 rpsJ | Mycobacterium bovis BCG rplC |        | Mycobacterium bows BCG rpID | Mycobacterium bovis BCG rplW |        | Mycobacterium bovis BCG rplB | Mycobacterium tuberculosis<br>H37Rv Rv0705 rpsS |        |
|                     | db Malch                    | sp.RS12_MYCIT                      | SP_RS7_MYCSM                          | sp.EFG_MICLU            |        |        | GSP:Y37841            |        |        | Sp. FEPC_ECOLI                                    | Sp: FEPG_ECOLI                        | Sp FEPD_ECOLI                         | gp CTACTAGEN_1                                   | sp.RS10_PLARO                         | SP RL3_MYCBO                 |        | SP RL4_MYCBO                | SP RL23_MYCBO                |        | SP.RL2_MYCLE                 | sp.RS19_MYCTU                                   |        |
|                     | ORF<br>(bp)                 | 366                                | 465                                   | 2115                    | 2160   | 144    | 228                   | 153    | 729    | 792                                               | 1035                                  | 1035                                  | 516                                              | 303                                   | 654                          | 687    | 854                         | 303                          | 327    | 840                          | 278                                             | 285    |
|                     | Termina<br>(nt)             | 523059                             | 523533                                | 526010                  | 523911 | 526013 | 526894                | 527607 | 528768 | 528779                                            | 529592                                | 530748                                | 532523                                           | 533401                                | 534090                       | 533401 | 534743                      | 535048                       | 534746 | 535915                       | 536210                                          | 535899 |
|                     | Initial<br>(nt)             | 522694                             | 523069                                | 523896                  | 526070 | 526156 | 527121                | 527759 | 528040 | 529570                                            | 530628                                | 531782                                | 532008                                           | 533099                                | 533437                       | 534087 | 534090                      | 534746                       | 535072 | 535076                       | 535935                                          | 536183 |
|                     | SEQ<br>NO<br>NO             | 4053                               | 4054                                  | 4055                    | 4056   | 4057   | 4058                  | 4059   | 4060   | 4061                                              | 4082                                  | 4063                                  | 4064                                             | 4065                                  | 4066                         | 4067   | 4068                        | 4069                         | 4070   | 4071                         | 4072                                            | 4073   |
|                     | SEQ<br>NO.                  | 553                                | 554                                   | 555                     | 556    | 557    | 558                   | 559    | 560    | 561                                               | 562                                   | 563                                   | 564                                              | 565                                   | 566                          | 567    | 568                         | 569                          | 570    | 571                          | 572                                             | 573    |

| 5                         | Function                    | 50S ribosomel protein L22                       | 30S ribosomet protein S3     | 50S ribosomal protein L16    | 50S ribosomei protein L29    | 30S ribosomal protein S17    |        |        |        | 50S ribosomal protein L14                       | 50S ribosomal protein L24                      | 50S ribosomal protein L5 |        | 2,5-diketo-D-gluconic acid reductase |        | formate dehydrogenese chain D | molybdopterin-guanine dinucleotide<br>biosynthesis protein | formste dehydrogenase H or alpha<br>chain |        |        | ABC transporter ATP-binding protein              |        |        |
|---------------------------|-----------------------------|-------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------|--------|--------|-------------------------------------------------|------------------------------------------------|--------------------------|--------|--------------------------------------|--------|-------------------------------|------------------------------------------------------------|-------------------------------------------|--------|--------|--------------------------------------------------|--------|--------|
| 15                        | Matched<br>length<br>(a.g.) | 109 508                                         | 239 30\$                     | 137 508                      | 67 50S                       | 82 30S                       |        |        |        | 122 508                                         | 105 508                                        | 183 508                  |        | 260 2,5-                             |        | 298 form                      | 94 mol                                                     | 758 forms                                 |        |        | 824 ABC                                          |        | _      |
| 20                        | Similarity (%)              | 91.7                                            | 91.2                         | 88.3                         | 88.1                         | 99.0                         |        |        |        | 95.1                                            | 4.10                                           | 92.3                     |        | 74.2                                 |        | 28.7                          | 68.1                                                       | 53.4                                      |        |        | 52.8                                             |        |        |
|                           | identity<br>(%)             | 74.3                                            | 77.4                         | 69.3                         | 65.7                         | 69.5                         |        |        |        | 83.6                                            | 78.2                                           | 73.6                     |        | 52.3                                 |        | 28.9                          | 37.2                                                       | 243                                       |        |        | 26.9                                             |        |        |
| 30 30 Table 1 (continued) | Homologous gene             | Mycobacterium tuberculosis<br>H37Rv Rv0708 rplV | Mycobacterium bovis BCG rpsC | Mycobacterium bovis BCG rpIP | Mycobacterium bovis BCG rpmC | Mycobacterium bovis BCG rpsQ |        |        |        | Mycobacterium tuberculosis<br>H37Rv Rv0714 rpiN | Mycobaderium tuberculosis<br>H37Rv Rv0715 rpiX | Micrococcus luteus rpIE  |        | Corynebacterium sp.                  |        | Wolinella succinogenes fdhD   | Streptomyces coelicolor A3(2)<br>SCGD3.28c                 | Escherichia coll fdfF                     |        |        | Mycobacterium tuberculosis<br>H37Rv Rv1281c oppD |        |        |
| 35                        | Ĭ                           | Mycobad<br>H37Rv R                              | Mycobac                      | Mycobac                      | Mycobac                      | Mycobac                      |        |        |        | Mycobac<br>H37Rv R                              | Mycobac<br>H37Rv R                             | Micrococ                 |        | Coryneb                              |        | Wolinella                     | Streptom<br>SCGD3.2                                        | Escheric                                  |        |        | Mycobac<br>H37Rv R                               |        |        |
| 40                        | db Match                    | sp.RL22_MYCTU                                   | SP RS3_MYCBO                 | Sp.RL16_MYCBO                | SP. RL 29 MYCBO              | \$P.RS17_MYCBO               |        |        |        | Sp.RL14_MYCTU                                   | Sp:RL24_MYCTU                                  | Sp.RL5_MICLU             |        | sp.2DKG_CORSP                        |        | Sp. FDHD_WOLSU                | gp SCGD3_29                                                | SP. FDHF_ECOLI                            |        |        | sp:YC81_MYCTU                                    |        |        |
|                           | ORF<br>(bp)                 | 380                                             | 744                          | 414                          | 228                          | 278                          | 294    | 318    | 969    | 366                                             | 312                                            | 573                      | 1032   | 807                                  | 492    | 915                           | 338                                                        | 2133                                      | 756    | 804    | 1662                                             | 1148   | 1074   |
| *                         | Termin (nt)                 | 53657                                           | 53732                        | 53774                        | 53797                        | 53825                        | 53797  | 53838  | 53871  | 54010                                           | 54042                                          | 54099                    | 54207  | 54209                                | 54292  | 54341                         | 54433                                                      | 54475                                     | 54808  | 54818  | 54899                                            | 55089  | 55185  |
| 50                        | Initial<br>(nt)             | 536217                                          | 536579                       | 537328                       | 537744                       | 537977                       | 538267 | 538698 | 539413 | 539741                                          | 540112                                         | 540428                   | 541048 | 542896                               | 543412 | 544329                        | 544670                                                     | 546889                                    | 547329 | 548990 | 550651                                           | 551844 | 552927 |
|                           | SEQ<br>NO                   | <del></del>                                     | 4075                         | 4076                         | 4077                         | 4078                         | 4079   | 4080   | 4081   | 4082                                            | 4083                                           | 4084                     | 4085   | 4088                                 | 4087   | 4088                          | 4089                                                       | 4090                                      | 4091   | 4092   | 4093                                             | 4094   | 4095   |
| 55                        | SEO<br>NO<br>(DNA)          | 574                                             | 575                          | 576                          | 577                          | 578                          | 579    | 280    | 581    | 582                                             | 583                                            | 584                      | 585    | 586                                  | 587    | 588                           | 589                                                        | 290                                       | 591    | 592    | 593                                              | 594    | 282    |

|                     | Function                   | hypothetical protein          | hypothetical protein              | 30S ribosomal protein S8 | 50S ribosomal protein L6 | 50S ribosomal protein L18 | 30S ribosomal protein S5 | 50S ribosomal protein L30 | 50S ribosomal protein L15 |        | methylmalonic acid semialdehyde<br>dehydrogenase |        | novel two-component regulatory<br>system | aldehyde dehydrogenase or betaine<br>aldehyde dehydrogenase |        |        | reductase              | 2Fe2S ferredoxin            | p-cumic alcohol dehydrogenase | hypothetical protein        | phosphoenolpyruvate synthetase           | phosphoenolpyruvate synthetase           | cytochrome P450               |
|---------------------|----------------------------|-------------------------------|-----------------------------------|--------------------------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------|--------------------------------------------------|--------|------------------------------------------|-------------------------------------------------------------|--------|--------|------------------------|-----------------------------|-------------------------------|-----------------------------|------------------------------------------|------------------------------------------|-------------------------------|
|                     | Matched<br>length<br>(a a) | 405                           | 150                               | 132                      | 179                      | 110                       | 171                      | 55                        | 143                       |        | 128                                              |        | 125                                      | 487                                                         |        |        | 409                    | 107                         | 257                           | 20                          | 629                                      | 378                                      | 422                           |
|                     | Similarity<br>(%)          | 50.4                          | 66.7                              | 7.78                     | 87 7                     | 6.06                      | 88.3                     | 76 4                      | 87.4                      |        | 889                                              |        | 52.0                                     | 71.5                                                        |        |        | 718                    | 66.4                        | 70.8                          | 28 0                        | 45.0                                     | 1 99                                     | 65.2                          |
|                     | Identity<br>(%)            | 24.7                          | 42.7                              | 75.8                     | 59 2                     | 87.3                      | 8 29                     | 546                       | 68.4                      |        | 46.9                                             |        | 47.0                                     | 41.7                                                        |        |        | 411                    | 47.7                        | 35.8                          | 20.0                        | 22.9                                     | 38.6                                     | 34.8                          |
| Table 1 (conlinued) | Homologous gene            | Archaeoglobus fulgidus AF1398 | Deinococcus radiodurans<br>DR0763 | Micrococcus luteus       | Micrococcus luteus       | Micrococcus luteus rpIR   | Micrococcus futeus rpsE  | Escherichla coli K12 rpmJ | Micrococcus luteus rpIO   |        | Streptomyces coelicolor msdA                     |        | Azospirillum brasilense carR             | Rhadacaccus rhadachrous<br>plasmid pRTL1 orf5               |        |        | Sphingomonas sp. redA2 | Rhodobacter capsulatus fdxE | Pseudomonas putida cymB       | Aeropyrum pernix K1 APE0029 | Pyrococcus furiosus Vc1 DSM<br>3838 ppsA | Pyrococcus furtosus Vc1 DSM<br>3638 ppsA | Rhodococcus erythropolis thcB |
|                     | db Match                   | pir.E69424                    | gp:AE001931_13                    | pir:S29885               | plr:S29886               | Sp:RL18_MICLU             | Sp.RSS_MICLU             | SP. RL30_ECOLI            | SP RL15_MICLU             |        | prf.2204281A                                     |        | GP_ABCARRA_2                             | prf.2518398E                                                |        |        | prf 2411257B           | prf 2313248B                | gp:PPU24215_2                 | PIR: H72754                 | pir JC4176                               | pir.JC4176                               | 1290 prf 2104333G             |
|                     | ORF<br>(bp)                | 1182                          | 468                               | 398                      | 534                      | 402                       | 633                      | 183                       | 444                       | 729    | 321                                              | 363    | 456                                      | 1491                                                        | 735    | 306    | 1266                   | 318                         | 744                           | 213                         | 1740                                     | 1080                                     | <del>-</del>                  |
|                     | <u> </u>                   | 80                            | 62                                | 8                        | 282                      | 8                         | 99                       | 55                        | ä                         | 8      | 6                                                | 6      | 8                                        | 4                                                           | 34     | 937    | 99                     | 9,0                         | 693                           | 8                           | 22                                       | 8                                        | 66 .<br>K                     |
|                     | Term<br>(nt                | 5529                          | 5544                              | 555                      | 556                      | 556                       | 557                      | 557                       | 558                       | 556    | 558                                              | 558(   | 2003                                     | 559                                                         | 999    | 262    | 561                    | 562                         | 562                           | 564                         | 563                                      | 565                                      | 268                           |
|                     | Initial<br>(nt)            | 554129                        | 554919                            | 555331                   | 555749                   | 556289                    | 556734                   | 557373                    | 557565                    | 557588 | 558517                                           | 558969 | 559805                                   | 560834                                                      | 561368 | 562632 | 562633                 | 562963                      | 563736                        | 563871                      | 565471                                   | 566759                                   | 568088                        |
|                     | SEQ<br>NO                  | 4096                          | 4097                              | 4098                     | 4099                     | 4100                      | 4101                     | 4102                      | 4103                      | 4104   | 4105                                             | 4106   | 4107                                     | 4108                                                        | 4109   | 4110   | 4111                   | 4112                        | 4113                          | 4114                        | 4115                                     | 4116                                     | 4117                          |
| •                   | SEQ<br>NO<br>(DNA)         | 969                           | 597                               | 598                      | 599                      | 909                       | 601                      | 209                       | 603                       | 604    | 605                                              | 909    | 607                                      | 809                                                         | 609    | 610    | 611                    | 612                         | 613                           | 614                         | 615                                      | 616                                      | 617                           |

|                     | Function                    | transcriptional repressor             | adenylate kinase       |        | methionine aminopeptidase |        | translation initiation factor IF-1 | 30S ribosomal protein S13      | 30S ribosomal protein S11                       | 30S ribosomal protein S4                         | RNA polymerase alpha subunit |        | 50S ribosomal protein L17 | pseudouridylate synthase A | hypothetical membrane protein              |        |        | hypothetical protein                       | cell elongation protein     | cyclopropane-fatty-acyt-phospholipid synthase | hypothetical membrane protein             |
|---------------------|-----------------------------|---------------------------------------|------------------------|--------|---------------------------|--------|------------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------|--------|---------------------------|----------------------------|--------------------------------------------|--------|--------|--------------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------------|
|                     | Matched<br>length<br>(a.a.) | 256                                   | 184                    |        | 253                       |        | 2                                  | 122                            | 134                                             | 132                                              | 311                          |        | 122                       | 265                        | 786                                        |        |        | 485                                        | 505                         | 423                                           | 90                                        |
|                     | Similarity<br>(%)           | 0.99                                  | 81.0                   |        | 74.7                      |        | 98.0                               | 01.0                           | 93.3                                            | 838                                              | 77.8                         |        | 77.1                      | 61.1                       | 51.2                                       |        |        | 53.8                                       | 50.9                        | 56.0                                          | 29.0                                      |
|                     | identity<br>(%)             | 28.5                                  | 48.9                   |        | 43.1                      |        | 77.0                               | 66.4                           | 81.3                                            | 82.6                                             | 511                          |        | 51.6                      | 37.0                       | 24.8                                       |        |        | 27.4                                       | 22.8                        | 30.7                                          | 28.0                                      |
| Table 1 (continued) | Hamologous gene             | Erwinia carotovora carotovora<br>kdgR | Micrococcus luteus adk |        | Bacillus subtilis 168 map |        | Bacillus subtilis infA             | Thermus thermophilus HB8 rps13 | Streptomyces coelicolor A3(2)<br>SC6G4.08. rpsK | Mycobacterium tubercutosis<br>H37Rv RV3458C rpsD | Bacillus subtilis 188 rpoA   |        | Escherichia coli K12 rpIQ | Escherichia coli K12 truA  | Mycobacterium tuberculosis<br>H37Rv Rv3779 |        |        | Mycobacterium tuberculosis<br>H37Rv Rv0283 | Arabidopsis thaliana CV DIM | Escherichia coli K12 da                       | Streptomyces coelicolor A3(2)<br>SCL2.30c |
|                     | db Malch                    | pri.2512309A                          | Sp.KAD_MICLU           |        | SP. AMPM_BACSU            |        | pir.F69644                         | prf.2505353B                   | sp.RS11_STRCO                                   | pri 2211287F                                     | SP. RPOA_BACSU               |        | sp RL17_ECOLI             | Sp. TRUA_ECOLI             | pir.G70695                                 |        |        | pir:A70836                                 | Sp.DIM_ARATH                | sp.CFA_ECOU                                   | gp:SCL2_30                                |
|                     | ORF<br>(bp)                 | 804                                   | 543                    | 612    | 792                       | 828    | 216                                | 366                            | 402                                             | 603                                              | 1014                         | 156    | 489                       | 867                        | 2397                                       | 458    | 303    | 1257                                       | 1545                        | 1353                                          | 426                                       |
| :                   | Termina<br>(nt)             | 568272                                | 571316                 | 570756 | 572267                    | 573176 | 573822                             | 57418                          | 574586                                          | 575217                                           | 57635                        | 57521  | 576890                    | 57792:                     | 580429                                     | 580436 | 580919 | 58266:                                     | 584220                      | 585620                                        | 58624                                     |
|                     | Initial<br>(nt)             | 569075                                | 570774                 | 571387 | 571476                    | 572349 | 573407                             | 573816                         | 574187                                          | 574615                                           | 575338                       | 575366 | 578410                    | 577057                     | 578033                                     | 580891 | 581221 | 581406                                     | 582684                      | 584268                                        | 585823                                    |
|                     | SEQ<br>NO                   | 4<br>118                              | 4119                   | 4120   | 4121                      | 4122   | 4123                               | 4124                           | 4125                                            | 4126                                             | 4127                         | 4128   | 4129                      | 4130                       | 4131                                       | 4132   | 4133   | 4134                                       | 4135                        | 4136                                          | 4137                                      |
|                     | SEQ<br>NO<br>(DNA)          | 818                                   | 619                    | 620    | 621                       | 622    | 623                                | 624                            | 625                                             | 929                                              | 627                          | 628    | 629                       | 630                        | 631                                        | 632    | 633    | 634                                        | 635                         | 636                                           | 637                                       |

|                     | Function                    | high-alkaline serine proteinase | hypothetical membrane protein             | hypothetical membrane protein               |        |        |        | hypothetical protein                        | early secretory antigen target ESAT.<br>8 protein | 50S ribosomal protein L13                       | 30S ribosomal protein S9                        | phosphoglucosamine mutase        |        | hypothetical protein              |        |        | hypothetical protein               | alanine racemase                                | hypothetical protein                        |  |
|---------------------|-----------------------------|---------------------------------|-------------------------------------------|---------------------------------------------|--------|--------|--------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------|--------|-----------------------------------|--------|--------|------------------------------------|-------------------------------------------------|---------------------------------------------|--|
|                     | Matched<br>length<br>(a.a.) | 273                             | 516                                       | 1260                                        |        |        |        | 103                                         | 90                                                | 145                                             | 181                                             | 450                              |        | 318                               |        |        | 259                                | 368                                             | 154                                         |  |
|                     | Similarity<br>(%)           | 58.0                            | 50.6                                      | 38.4                                        |        |        |        | 69.9                                        | 81.3                                              | 82.1                                            | 72.4                                            | 78.4                             |        | 458                               |        |        | 72.2                               | 68 5                                            | 78.6                                        |  |
|                     | identity<br>(%)             | 31.3                            | 24.0                                      | 65.0                                        |        |        |        | 31.1                                        | 36.3                                              | 58.6                                            | 49.2                                            | 48.9                             |        | 29.3                              |        |        | 44.0                               | 41.6                                            | 48.7                                        |  |
| Table 1 (continued) | Homologous gene             | Bacillus steslophilus           | Streptomyces coelicolor A3(2)<br>SC3C3.21 | Mycobacterium tuberculosis<br>H37Rv Rv3447c |        |        |        | Mycobacterium tuberculosis<br>H37Rv Rv3445c | Mycobacterium tuberculosis                        | Streptomyces coelicolor A3(2)<br>SC6G4.12. rpIM | Streptomyces coelicolor A3(2)<br>SC6G4.13. rpsl | Staphylococcus aureus<br>femR315 |        | Synechocystis sp. PCC6803 str1753 |        |        | Mycobacterium leprae<br>B229_F1_20 | Mycobacterium tuberculosis<br>H37Rv RV3423C 8ir | Mycobacterium tuberculosis<br>H37Rv Rv3422c |  |
|                     | db Match                    | SP ELYA_BACAO                   | pir:T10930                                | pir.E70977                                  |        |        |        | pir.C70977                                  | prf.2111376A                                      | sp RL13_STRCO                                   | sp.RS9_STRCO                                    | prl 2320260A                     |        | pir.S75138                        |        |        | pir.S73000                         | SP ALR_MYCTU                                    | sp.Y097_MYCTU                               |  |
|                     | ORF<br>(bp)                 | 1359                            | 1371                                      | 3567                                        | 822    | 663    | 8      | 324                                         | 288                                               | 441                                             | 546                                             | 1341                             | 303    | 1509                              | 573    | 234    | 855                                | 1083                                            | 495                                         |  |
|                     | Termina<br>(nt)             | 586399                          | 587645                                    | 592862                                      | 589590 | 589898 | 593761 | 594258                                      | 594580                                            | 595379                                          | 595927                                          | 597449                           | 598194 | 599702                            | 598778 | 599932 | 600022                             | 602053                                          | 602574                                      |  |
|                     | Initial<br>(nt)             | 587757                          | 589015                                    | 589296                                      | 590411 | 590560 | 592862 | 593935                                      | 594293                                            | 594939                                          | 595382                                          | 598109                           | 597892 | 598194                            | 599350 | 599699 | 600876                             | 600971                                          | 602080                                      |  |
|                     | SEQ<br>NO                   | 4138                            | 4139                                      | 4140                                        | 4141   | 4142   | 4143   | 4144                                        | 4145                                              | 4146                                            | 4147                                            | 4148                             | 4149   | 4150                              | 4151   | 4152   | 4153                               | 4154                                            | 4155                                        |  |
|                     | SEQ<br>NO<br>(DNA)          |                                 |                                           | 640                                         | 641    | 642    | 643    | 644                                         | 645                                               | 646                                             | 647                                             | 648                              | 649    | 650                               | 651    | 652    | 653                                | 654                                             | 655                                         |  |

|                       |                            |                               |                                 |                                             |                                                   |                                            |                                             |        | -т     |                                                  |                                           |                            |                            |                                  |                                                  |        |                                      |                                                   |                              |
|-----------------------|----------------------------|-------------------------------|---------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------|--------|--------|--------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------------------|--------|--------------------------------------|---------------------------------------------------|------------------------------|
| 5                     | Function                   | hypothetical membrane protein | proline iminopeptidase          | hypothetical protein                        | ribosomal-protein-alanine N-<br>acetyltransferase | O-sisiogiycaprotein endopeptidase          | hypothetical protein                        |        |        | heat shock protein groES                         | heat shock protein groEL                  | hypothetical protein       | hypothetical protein       | regulatory protein               | RNA polymerase sigma factor                      |        | hypothetical protein                 | IMP dehydrogenase                                 | hypothetical protein         |
| 15                    | Matched<br>fength<br>(a a) | 550                           | 411                             | 207                                         | 132                                               | 318                                        | 571                                         |        |        | 100                                              | 537                                       | 78                         | 138                        | 96                               | 174                                              |        | 118                                  | 504                                               | 148                          |
| 20                    | Similarity (%)             | 66.2                          | 77.6                            | 75.4                                        | 59.9                                              | 75.2                                       | 59.4                                        |        |        | 94.0                                             | 85.1                                      | 58.0                       | 45.0                       | 88 3                             | 816                                              |        | 69.6                                 | 93.9                                              | 53.0                         |
|                       | Identity<br>(%)            | 28.0                          | 51.3                            | 52.2                                        | 30.3                                              | 46.1                                       | 38.4                                        |        |        | 78.0                                             | 63.3                                      | 20.0                       | 34.0                       | 64.9                             | 55.2                                             |        | 41.4                                 | 80.8                                              | 39.0                         |
| 25 (penu)             | 909                        | yldE                          | nermanii pip                    | rculosis                                    | rimi                                              | rtica                                      | rculosis                                    | -      |        | rculosis<br>opB                                  | ae<br>1                                   | rculosis                   | rculosis                   | gmatis                           | rculosis<br>D                                    |        | 90                                   | C 6872                                            | hii PH0308                   |
| Se Table 1 (confined) | Homologous gene            | Escherichia coli K12 yldE     | Proplonibacterium shermanii pip | Mycobacterium tuberculosis<br>H37Rv Rv3421c | Escherichia coli K12 rimi                         | Pasteurella haemolytica<br>SEROTYPE A1 gcp | Mycobacterium tuberculosis<br>H37Rv Rv3433c |        |        | Mycobacterium tuberculosis<br>H37Rv RV3418C mopB | Mycobacterium leprae<br>B229_C3_248 groE1 | Mycobacterium tuberculosis | Mycobacterium tuberculosis | Mycobacterium smegmatis<br>whi83 | Mycobacterium tuberculosis<br>H37Rv Rv3414c sigD |        | Mycobacterium leprae<br>B1620_F3_131 | Corynebacterium<br>ammoniagenes ATCC 6872<br>guaB | Pyrococcus horikoshii PH0308 |
| 40                    | db Match                   | Sp. YIDE_ECOLI                | gp PSJ00161_1                   | sp:Y098_MYCTU                               | sp.RIMI_ECOLI                                     | sp.GCP_PASHA                               | sp Y115_MYCTU                               |        |        | sp CH10_MYCTU                                    | sp CH61_MYCLE                             | GP_MSGTCWPA_1              | GP.MSGTCWPA_3              | gp AF073300_1                    | sp Y09F_MYCTU                                    |        | SP YOSH_MYCLE                        | gp.AB003154_1                                     | PIR.F71456                   |
|                       | ORF<br>(bp)                | 1599                          | 1239                            | 675                                         | 507                                               | 1032                                       | 1722                                        | 429    | 453    | 297                                              | 1614                                      | 255                        | 1158                       | 297                              | 564                                              | 1026   | 378                                  | 1518                                              | 627                          |
| 45                    | Termina<br>(nt)            | 604409                        | 605708                          | 806392                                      | 606898                                            | 607936                                     | 609879                                      | 810175 | 609816 | 610644                                           | 612272                                    | 610946                     | 611109                     | 612418                           | 613719                                           | 614747 | 614803                               | 616853                                            | 615605                       |
| 50                    | initial<br>(nt)            | 602811                        | 604470                          | 605718                                      | 806392                                            | 806905                                     | 607958                                      | 609747 | 610268 | 610348                                           | 610659                                    | 611200                     | 612266                     | 612714                           | 613156                                           | 613722 | 615180                               | 615336                                            | 616231                       |
|                       | SEQ<br>NO                  | •                             | 4157                            | 4158                                        | 4159                                              | 4160                                       | 4161                                        | 4162   | 4163   | 4164                                             | 4165                                      | 4166                       | 4167                       | 4168                             | 4169                                             | 4170   | 4171                                 | 4172                                              | 4173                         |
| 55                    | SEQ<br>NO<br>DNA)          | 656                           | 657                             | 658                                         | 659                                               | 099                                        | 661                                         | 662    | 663    | 664                                              | 999                                       | 999                        | 299                        | 899                              | 699                                              | 929    | 671                                  | 672                                               | 673                          |

0

5

|                     | Function                    | MP dehydrogenase                       | hypothetical membrane protein | glutemate synthetase positive regulator | GMP synthetase                       |        |        |        | hypothetical membrane protein | two-component system sansor<br>histidine kinase | transcriptional regulator or<br>extracellular proteinase response<br>regulator |          |        |        | hypothetical protein                        | hypothetical protain                        |        | hypothetical protein                       | hypothetical membrane protein     |              |
|---------------------|-----------------------------|----------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------|--------|--------|--------|-------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|----------|--------|--------|---------------------------------------------|---------------------------------------------|--------|--------------------------------------------|-----------------------------------|--------------|
|                     | 9 <sub>5</sub> 0            |                                        |                               |                                         |                                      |        |        |        |                               |                                                 |                                                                                |          |        |        |                                             |                                             |        |                                            |                                   | $\dashv$     |
|                     | Matched<br>length<br>(a.a.) | 381                                    | 274                           | 262                                     | 517                                  |        |        |        | 513                           | 411                                             | 218                                                                            |          |        |        | 201                                         | 583                                         |        | 275                                        | 288                               |              |
|                     | Similarity<br>(%)           | 86.1                                   | 87.5                          | 58.4                                    | 92.8                                 |        |        |        | 39.6                          | 48.7                                            | 65.1                                                                           |          |        | 1      | 64.2                                        | 64.1                                        |        | 62.9                                       | 58.3                              |              |
|                     | Identity<br>(%)             | 70.9                                   | 38.0                          | 29.0                                    | 81.6                                 |        |        |        | 20.5                          | 26.8                                            | 33.5                                                                           |          |        |        | 30.9                                        | 37.5                                        |        | 33.8                                       | 27.8                              |              |
| Table 1 (conlinued) | Homalagous gene             | Corynebacterium ammoniagenes ATCC 6872 | Escherichia coli K12 ybiF     | Bacillus subtills gitC                  | Corynebacterium<br>ammoniagenes guaA |        |        |        | Streptomyces coelicolor A3(2) | Streptomyces coelicolor A3(2)<br>SCBE10 15c     | Bacillus subtilis 168 degU                                                     |          |        |        | Mycobacterium tuberculosis<br>H37Rv Rv339Sc | Mycobacterium tuberculosis<br>H37Rv Rv3394c |        | Streptomyces coelicolor A3(2)<br>SC588 20c | Deinococcus radiodurans<br>DR0809 |              |
|                     | db Match                    | gp:AB003154_2                          | Sp. YBIF_ECOLI                | prf. 1518239A                           | sp.GUAA_CORAM                        |        |        |        | gp.SCD83_22                   | gp SC6E10_15                                    | sp DEGU_BACSU                                                                  |          |        |        | pir B70975                                  | pir.A70975                                  |        | gp:SC5B8_20                                | gp.AE001935_7                     |              |
|                     | ORF<br>(bp)                 | 1122                                   | 921                           | 606                                     | 1589                                 | 683    | 441    | 189    | 1178                          | 1140                                            | 069                                                                            | 324      | 489    | 963    | 825                                         | 1590                                        | 980    | 198                                        | 861                               | 390          |
|                     | ermin II<br>(nt)            | 61809                                  | 61809                         | 61999                                   | 62157                                | 62028  | 215    | 82245  | 62246                         | 62493                                           | 82587                                                                          | 62600    | 62607  | 62657  | 62855                                       | 63014)                                      | 83015  | 63180                                      | 63182                             | 632690       |
|                     | Termin<br>(nt)              |                                        | <del>!</del>                  | <del> </del>                            | <u> </u>                             | ├      | 6221   | -      | ├─                            |                                                 |                                                                                | $\vdash$ | ┢      |        |                                             |                                             | -      |                                            |                                   | <del> </del> |
|                     | Initial<br>(nt)             | 616973                                 | 619013                        | 619086                                  | 820004                               | 620926 | 621717 | 622269 | 623635                        | 623800                                          | 624985                                                                         | 625877   | 626558 | 627539 | 627727                                      | 628551                                      | 630810 | 632949                                     | 632684                            | 633079       |
|                     | SEQ<br>NO<br>(**)           | 4174                                   | 4175                          | 4176                                    | 4177                                 | 4178   | 4179   | 4180   | 4181                          | 4182                                            | 4183                                                                           | 4184     | 4185   | 4186   | 4187                                        | 4188                                        | 4189   | 4190                                       | 4191                              | 4192         |
|                     | SEQ<br>NO<br>(DNA)          | 674                                    | 675                           | 678                                     | 577                                  | 678    | 679    | 680    | 681                           | 682                                             | 683                                                                            | 684      | 685    | 989    | 687                                         | 688                                         | 689    | 069                                        | 691                               | 692          |

5

|                     | Function                    | hypothetical membrans protein | phytoene desaturase                     | phytoene synthase                    | transmembrane transport protein             | geranyigeranyi pyrophosphate<br>(GGPP) synthase | transcriptional regulator (MarR<br>family) | outer membrane lipoprotein        | hypothetical protein  | DNA photolyase                       | glycosyl transferase     | ABC transporter                           | ABC transporter           |        | ABC transporter          |        | ABC transporter            | Iıpopratein                               | DNA polymerase III     | hypothetical prolein                       |
|---------------------|-----------------------------|-------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------|--------------------------------------|--------------------------|-------------------------------------------|---------------------------|--------|--------------------------|--------|----------------------------|-------------------------------------------|------------------------|--------------------------------------------|
|                     | Matched<br>length<br>(a.a.) | 95                            | 524                                     | 288                                  | 722                                         | 367                                             | 188                                        | 145                               | 462                   | 497                                  | 205                      | 897                                       | 223                       |        | 206                      |        | 346                        | 268                                       | 1101                   | 159                                        |
|                     | Similarity (%)              | 67.4                          | 76.2                                    | 71.2                                 | 75.8                                        | 63.8                                            | 68.1                                       | 62.1                              | 74.2                  | 63.2                                 | 53.7                     | 54.9                                      | 72.2                      |        | 75.2                     |        | 75.4                       | 67.2                                      | 57.5                   | 62.3                                       |
|                     | Identity<br>(%)             | 36.8                          | 50.4                                    | 42.0                                 | 48.6                                        | 32.7                                            | 38.3                                       | 33.1                              | 48.7                  | 40.0                                 | 25.9                     | 24.3                                      | 35.4                      |        | 35.9                     |        | 43.8                       | 28.7                                      | 30.2                   | 41.5                                       |
| Table 1 (continued) | Homologous gene             | Mycobacterium marinum         | Brevibacterium linens ATCC<br>9175 crtl | Brevibacterium linens ATCC 9175 crtB | Streptomyces coelicolor A3(2)<br>SCF43A.29c | Brevibacterium linens cdE                       | Brevibacterium Ilnens                      | Citrobacter freundli bic OS60 bic | Brevibacterlum finens | Brevibacterium linens ATCC 9175 cpd1 | Streptococcus suis cps1K | Streptomyces coelicolor A3(2)<br>SCE25.30 | Bacilus subtilis 168 yvrO |        | Hellcobacter pylori abcD |        | Escherichia coli TAP90 abc | Haemophilus Influenzae<br>SEROTYPE B hlpA | Thermus aquaticus dnaE | Streptomyces coelicolor A3(2)<br>SCE126.11 |
|                     | db Match                    | gp:MMU92075_3                 | gp:AF139916_3                           | gp:AF139916_2                        | gp:SCF43A_29                                | gp:AF138916_11                                  | gp:AF139918_14                             | Sp.BLC_CITFR                      | gp.AF139916_1         | gp.AF139916_5                        | gp AF155804_7            | gp.SCE25_30                               | pri 2420410P              |        | pri 2320284D             |        | Sp. ABC_ECOLI              | SP HLPA_HAEIN                             | pri.2517386A           | gp SCE126_11                               |
|                     | ORF<br>(bp)                 | 396                           | 1644                                    | 912                                  | 2190                                        | 1146                                            | 585                                        | 648                               | 1425                  | 104                                  | 753                      | 2415                                      | 717                       | 153    | 999                      | 846    | 1080                       | 897                                       | 3012                   | 447                                        |
|                     | Termina<br>(nt)             | 633079                        | 633532                                  | 635178                               | 636089                                      | 638317                                          | 64020                                      | 640233                            | 64255                 | 64255                                | 84477                    | 64517                                     | 64759                     | 64831  | 84844                    | 65018  | 64911                      | 62039                                     | 65461                  | 65512                                      |
|                     | Initial<br>(nt)             | 633474                        | 635175                                  | 636089                               | 638278                                      | 639462                                          | 639624                                     | 640879                            | 641133                | 643959                               | 644028                   | 647590                                    | 648309                    | 648467 | 649105                   | 649342 | 650193                     | 651288                                    | 651601                 | 654676                                     |
|                     | SEQ<br>NO                   | +_                            | 4184                                    | 4195                                 | 4196                                        | 4197                                            | 4198                                       | 4199                              | 4200                  | 4201                                 | 4202                     | 4203                                      | 4204                      | 4205   | 4206                     | 4207   | 4208                       | 4209                                      | 4210                   | 4211                                       |
|                     | SEQ<br>NO<br>ONA)           | 693                           | 694                                     | 695                                  | 969                                         | 697                                             | 869                                        | 669                               | 200                   | 701                                  | 702                      | 703                                       | 704                       | 705    | 706                      | 707    | 708                        | 709                                       | 710                    | =                                          |

EP 1 108 790 A2

| 5                       | Function                    | hypothetical membrane protein            |        | transcriptional repressor                       | hypothetical protein                       |        | transcriptional regulator (Sir2 family) | hypothetical protein                      | iron-regulated lipoprotein precursor | rRNA methylase                                  | methylenetetrahydrofolate<br>dehydrogenase       | hypothetical membrane protein        | hypothetical protein                        |        | homoserine O-acetyltransferase     | O-acetylhomoserine suifhydrylase | carbon starvation protein |        | hypothetical protein      |                |
|-------------------------|-----------------------------|------------------------------------------|--------|-------------------------------------------------|--------------------------------------------|--------|-----------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------|--------|------------------------------------|----------------------------------|---------------------------|--------|---------------------------|----------------|
| 15                      | Matched<br>length<br>(s.s.) | 468                                      |        | 203                                             | 264                                        |        | 245                                     | 157                                       | 357                                  | 151                                             | 278                                              | 080                                  | 489                                         |        | 379                                | 429                              | 069                       |        | S                         |                |
| 20                      | Similarity<br>(%)           | 56.0                                     |        | 76.4                                            | 61.7                                       |        | 71.8                                    | 78.3                                      | 62.2                                 | 1 98                                            | 87.4                                             | 76.3                                 | 63.2                                        |        | 99.5                               | 76.2                             | 78.4                      |        | 0.99                      |                |
|                         | identity<br>(%)             | 28.1                                     |        | 503                                             | 34 9                                       |        | 42.5                                    | 45.2                                      | 31.1                                 | 62.9                                            | 70.9                                             | 31.3                                 | 34.0                                        |        | 99.5                               | 49.7                             | 53.9                      |        | 40.0                      |                |
| S S Table 1 (continued) | Homologous gene             | Streptomyces coelicolor A3(2)<br>SCE9 01 |        | Mycobacterium tuberculosis<br>H37Rv RV2788 sirR | Streptomyces coelicolor A3(2)<br>SCG8A 05c |        | Archaeoglobus fulgidus AF1878           | Streptomyces coelicolor A3(2)<br>SC5H1.34 | Corynebacterium diphtheriae irp1     | Mycobacterium tuberculosis<br>H37Rv Rv3366 spoU | Mycobacterium tuberculosis<br>H37Rv Rv3358c folD | Mycobacterium leprae<br>MLCB1779.16c | Streptomyces caelicolor A3(2)<br>SC66T3.18c |        | Corynebacterium glutamicum<br>metA | Leptospira meyeri metY           | Escherichia coli K12 cstA |        | Escherichia coli K12 yjiX |                |
| 35                      |                             | Streptc<br>SCE9                          |        | Mycob<br>H37Rv                                  | Streptomyce<br>SCG8A 05c                   |        | Archa                                   | Streptomy<br>SC5H1.34                     | Coryn<br>Irp1                        | Mycot<br>H37R                                   | Mycot<br>H37R                                    | Mycot                                | Strept<br>SC66                              |        | Cory                               | Lepto                            | Esche                     |        | Esche                     | $\blacksquare$ |
| 40                      | db Match                    | gp:SCE9_1                                |        | pir.C70884                                      | gp:SCGBA_5                                 |        | pir.C69459                              | gp:SC5H1_34                               | gp.CDU02617_1                        | pir.E70971                                      | plr.C70970                                       | gp:MLCB1779_8                        | gp SC6813_18                                |        | gp:AF052652_1                      | pri 2317335A                     | SP.CSTA_ECOLI             |        | Sp:YJIX_ECOLI             |                |
|                         | ORF<br>(bp)                 | 1413                                     | 738    | 699                                             | 798                                        | 138    | 774                                     | 492                                       | 966                                  | 471                                             | 852                                              | 255                                  | 1380                                        | 963    | 1131                               | 1311                             | 2202                      | 609    | 201                       | 609            |
| 45                      | Terminal<br>(nt)            | 656534                                   | 655097 | 657215                                          | 657205                                     | 658142 | 658928                                  | 659424                                    | 680538                               | 660650                                          | 662017                                           | 86237                                | 662382                                      | 68412  | 665181                             | 66646                            | 67046                     | 66944  | 67067                     | 67104          |
| 50                      | Initial<br>(nt)             | 655122                                   | 655834 | 656547                                          | 658002                                     | 658005 | 658155                                  | 658933                                    | 659543                               | 661120                                          | 661166                                           | 662120                               | 683761                                      | 665088 | 666313                             | 667770                           | 668264                    | 870053 |                           | 671653         |
|                         | SEQ<br>NO                   | 4212                                     | 4213   | 4214                                            | 4215                                       | 4218   | 4217                                    | 4218                                      | 4219                                 | 4220                                            | 4221                                             | 4222                                 | 4223                                        | 4224   | 4225                               | 4226                             | 4227                      | 4228   | 4229                      |                |
| 55                      | SEQ                         |                                          | 713    | 714                                             | 715                                        | 716    | 717                                     | 718                                       | 719                                  | 720                                             | 721                                              | 722                                  | 723                                         | 724    | 725                                | 726                              | 727                       | 728    | 729                       | 730            |

0

|                    | j                 |                 |                 |             |               | Table 1 (conlinued)                        |                 |                   |                            |                                       |
|--------------------|-------------------|-----------------|-----------------|-------------|---------------|--------------------------------------------|-----------------|-------------------|----------------------------|---------------------------------------|
| SEQ<br>NO<br>(DNA) | SEQ<br>NO<br>(••) | Initial<br>(nt) | Termina<br>(nt) | ORF<br>(bp) | db Match      | Homologous gene                            | Identify<br>(%) | Similarity<br>(%) | Matched<br>length<br>(a a) | Function                              |
| 731                | 4231              | 671700          | 672653          | 954         | pir C70539    | Mycobacterium tuberculosis<br>H37Rv Rv1130 | 71.0            | 86.4              | 317                        | hypothetical protein                  |
| 732                | 4232              | 672665          | 673576          | 912         | prf. 1902224A | Streptomyces hygroscopicus                 | 41.6            | 78.2              | 281                        | carboxy phosphoenolpyruvate<br>mutase |
| 733                | 4233              | 673608          | 674758          | 1149        | sp.CISY_MYCSM | Mycobacterium smegmatis<br>ATCC 807 gitA   | 56.1            | 81.3              | 380                        | citrate synthase                      |
| 734                | 4234              | 673639          | 872710          | 930         |               |                                            |                 |                   |                            |                                       |
| 735                | 4235              | 674990          | 674799          | 192         | Sp:YNEC_ECOLI | Escherichia coli K12 yneC                  | 34.0            | 623               | 53                         | hypothetical protein                  |
| 736                | 4238              | 875175          | 675846          | 672         |               |                                            |                 |                   |                            |                                       |
| 737                | 4237              | 676122          | 675082          | 1041        | sp MDH_METFE  | Methanothermus fervidus V24S mdh           | 37.6            | 67.5              | 338                        | L-maiste dehydrogenese                |
| 738                | 4238              | 676937          | 676218          | 720         | prf.2514353L  | Bacillus stearothermophilus T-6<br>uxuR    | 26.1            | 62.8              | 226                        | regulatory protein                    |
| 739                | 4239              | 677748          | 877047          | 702         |               |                                            |                 |                   |                            |                                       |
| 740                | 4240              | 681027          | 680131          | 897         | sp.ViUB_VIBCH | Vibrio cholerae OGAWA 395 viuB             | 25.4            | 542               | 284                        | vibriobactin utilization protein      |
| 741                | 4241              | 681846          | 681040          | 807         | gp AF176902_3 | Corynebacterium diphtheriae<br>Irp1D       | 55.4            | 85.1              | 289                        | ABC transporter ATP-binding protein   |
| 742                | 4242              | 682904          | 681846          | 1059        | gp.AF176902_2 | Corynebacterium diphiheriae<br>Irp1C       | 583             | 86.4              | 339                        | ABC transporter                       |
| 743                | 4243              | 683866          | 682871          | 966         | gp:AF176902_1 | Corynebacterium diphtheriae<br>Irp18       | 63 0            | 88.2              | 330                        | ABC transporter                       |
| 744                | 4244              | 684925          | 683876          | 1050        | gp:CDU02617_1 | Corynebacterium diphtheriae<br>Irp1        | 53.1            | 82.3              | 356                        | iron-ragulated lipoprotein precursor  |
| 745                | 4245              | 685109          | 686380          | 1272        | prf 2202262A  | Streptomyces venezuelae cmlv               | 32.2            | 9.69              | 395                        | chloramphenicol resistance protein    |
| 746                | 4246              | 686435          | 687346          | 912         | pri 22222208  | Pseudomonas aeruginosa crc                 | 30.4            | 58.1              | 303                        | catabolite repression control protein |
| 747                | 4247              | 687351          | 688007          | 657         | sp:YICG_HAEIN | Haemophilus influenzae Rd<br>H1240         | 56.2            | 85.8              | 219                        | hypothetical protein                  |
| 748                | 4248              | 688141          | 688335          | 195         |               |                                            |                 |                   |                            |                                       |

| 5                   | Function                   |        | ferrichrome ABC transporter         | hemin permease               | tryptophanyl-IRNA synthetase | hypothetical protein      |        | penicillin-binding protein 68<br>precursor | hypothetical protein                       | hypothetical protein                        |        |        | uracii phosphoribosyltransferase | bacterial regulatory protein, lact<br>family | N-acyi-L-amino acid amidohydrolase<br>or peptidese | phosphomannomutase        | dihydroliposmide dehydrogensse           | pyruvate carboxylase                          | hypothetical protein                       | hypothetical protein                      |
|---------------------|----------------------------|--------|-------------------------------------|------------------------------|------------------------------|---------------------------|--------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------|--------|----------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|
| 15                  | Matched<br>length<br>(a a) |        | 244                                 | 346                          | 331                          | 278                       |        | 301                                        | 417                                        | 323                                         |        |        | 509                              | 77                                           | 385                                                | 581                       | 468                                      | 1140                                          | 283                                        | 127                                       |
| 20                  | Similarity<br>(%)          |        | 738                                 | 69.1                         | 79.8                         | 72.3                      |        | 57.5                                       | 70.7                                       | 52.6                                        |        |        | 72.3                             | 66.2                                         | 80.5                                               | 53.8                      | 65.0                                     | 100.0                                         | 1.09                                       | 6.99                                      |
|                     | identity<br>(%)            |        | 45.1                                | 38.7                         | 54.4                         | 37.1                      |        | 30.9                                       | 34.1                                       | 29.4                                        |        |        | 46.4                             | 41.8                                         | 51.4                                               | 22.1                      | 31.6                                     | 100.0                                         | 28.2                                       | 30.7                                      |
| Table 1 (continued) | Homalogous gene            |        | Corynebacterium diphtheriae<br>hmuV | Yersinia enterocolitica hemU | Escherichia coli K12 trpS    | Escherichia coli K12 yhjD |        | Salmonella typhimurium LT2<br>dacD         | Mycobacterium tuberculosis<br>H37Rv Rv3311 | Streptomyces coelicolar A3(2)<br>SC6G10.08c |        |        | Lactococcus lactis upp           | Streptomyces coelicolor A3(2)<br>SC1A2.11    | Mycobaclerium tuberculosis<br>H37Rv Rv3305c amiA   | Mycoplasma pirum BER manB | Halobacterium volcanii ATCC<br>29605 lpd | Corynebacterium glutamicum<br>strain21253 pyc | Mycobacterium tuberculosis<br>H37Rv Rv1324 | Streptomyces coelicolor A3(2)<br>SCF11.30 |
| 35                  |                            |        | Caryn                               | Yersin                       | Esche                        | Esche                     |        | Salmo                                      | Mycot<br>H37R                              | Strept<br>SC6G                              | _      |        | Lactor                           | Streptomy<br>SC1A2.11                        | Mycol<br>H37R                                      |                           |                                          | Coryn                                         |                                            | Strep<br>SCF1                             |
| 40                  | db Match                   |        | gp AF109162_3                       | pir.S54438                   | SP. SYW_ECOLI                | sp YHJD_ECOU              |        | SP DACD_SALTY                              | plr.F70842                                 | gp.SC6G10_8                                 |        |        | SP UPP_LACLA                     | gp SC1A2_11                                  | pir H70841                                         | SP. MANB_MYCPI            | Sp. DLDH_HALVO                           | prf.2415454A                                  | sp.YD24_MYCTU                              | gp.SCF11_30                               |
|                     | ORF<br>(bp)                | 975    | 780                                 | 1017                         | 1035                         | 1083                      | 903    | 1137                                       | 1227                                       | 858                                         | 195    | 351    | 633                              | 384                                          | 1182                                               | 1725                      | 1407                                     | 3420                                          | 870                                        | 488                                       |
| 45                  | Termina<br>(nt)            | 688916 | 689917                              | 690706                       | 692916                       | 694110                    | 695074 | 695077                                     | 696769                                     | 698065                                      | 699266 | 698922 | 699913                           | 700381                                       | 703262                                             | 700384                    | 704811                                   | 708630                                        | 709708                                     | 710278                                    |
| 50                  | Initial<br>(nt)            | 689890 | 969069                              | 691722                       | 691882                       | 83028                     | 694172 | 696213                                     | 697995                                     | 698922                                      | 699072 | 699272 | 699281                           | 886869                                       | 702081                                             | 702108                    | 703405                                   | 705211                                        | 708839                                     | 709793                                    |
|                     | SEO<br>NO ®                | 4249   | 4250                                | 4251                         | 4252                         | 4253                      | 4254   | 4255                                       | 4256                                       | 4257                                        | 4258   | 4259   | 4260                             | 4261                                         | 4262                                               | 4263                      | 4284                                     | 4265                                          | 4266                                       | 4267                                      |
| 55                  | SEQ<br>NO<br>ONA)          | 749    | 750                                 | 751                          | 752                          | 753                       | 754    | 755                                        | 756                                        | 757                                         | 758    | 759    | 760                              | 761                                          | 762                                                | 763                       | 764                                      | 765                                           | 766                                        | 767                                       |

|                     | Function                   | hypothetical protein       | thloredoxin reductase       | PrpD protein for propionate catabolism | carboxy phosphoenolpyruvate<br>mutase | hypothetical protein        | citrate synthase                         |        | hypothetical protein                        |        |        | thiosulfate sulfurtransferase                 | hypothetical protein        | hypothetical protein              | hypothetical membrane protein               | hypothetical protein      | hypothetical protein                  | detergent sensitivity rescuer or carboxyl transferase | detergent sensitivity rescuer or carboxyl transferase |
|---------------------|----------------------------|----------------------------|-----------------------------|----------------------------------------|---------------------------------------|-----------------------------|------------------------------------------|--------|---------------------------------------------|--------|--------|-----------------------------------------------|-----------------------------|-----------------------------------|---------------------------------------------|---------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                     | Matched<br>length<br>(8.8) | 381                        | 305                         | 521                                    | 278                                   | 98                          | 383                                      |        | 458                                         |        |        | 225                                           | 352                         | 133                               | 718                                         | 192                       | 63                                    | 537                                                   | 543                                                   |
|                     | Similarity<br>(%)          | 69.0                       | 59.3                        | 49.5                                   | 74.5                                  | 47.0                        | 78.9                                     |        | 72.6                                        |        |        | 100.0                                         | 79.8                        | 7.97                              | 63.4                                        | 66.2                      | 83.8                                  | 100.0                                                 | 100.0                                                 |
|                     | Identity<br>(%)            | 44.6                       | 24.8                        | 24 0                                   | 42.5                                  | 39.0                        | 54.6                                     |        | 40.8                                        |        |        | 100.0                                         | 61.1                        | 51.1                              | 35.1                                        | 31.8                      | 33.3                                  | 8 66                                                  | 93.6                                                  |
| Table 1 (continued) | Homologous gene            | Bacillus subtills 168 yciC | Bacillus subtilis 1858 trxB | Salmonella typhimurium LT2<br>prpD     | Streptomyces hygroscopicus            | Aeropyrum pernix K1 APE0223 | Mycobacterium smegmatis<br>ATCC 607 gitA |        | Mycobacterium tuberculosis<br>H37Rv Rv1129c |        |        | Corynebacterium glutamicum<br>ATCC 13032 thtR | Campylobacter jejuni Cj0069 | Mycobacterium leprae<br>MLC84.27c | Mycobacterium tuberculosis<br>H37Rv Rv158Sc | Escherichia coli K12 yceF | Mycobacterium leprae B1308-<br>C3-211 | Corynebacterium glutamicum<br>AJ11060 dtsR2           | Corynebacterium glutamicum<br>AJ11060 dtsR1           |
|                     | db Malch                   | pir:869760                 | \$p.TRXB_BACSU              | sp:PRPD_SALTY                          | prf. 1902224A                         | PIR E72779                  | SP.CISY_MYCSM                            |        | pir 870539                                  |        |        | sp.THTR_CORGL                                 | gp:CJ11168X1_62             | gp MLCB4_16                       | pir.G70539                                  | Sp YCEF_ECOLI             | prf 2323363CF                         | gp.AB018531_2                                         | pir.JC4991                                            |
|                     | ORF<br>(bp)                | 1086                       | 924                         | 1494                                   | 888                                   | 378                         | 1182                                     | 375    | 1323                                        | 246    | 1359   | 903                                           | 1065                        | 414                               | 2148                                        | 591                       | 248                                   | 1611                                                  | 1629                                                  |
|                     | Terminal<br>(nt)           | 710520                     | 71264                       | 71423                                  | 715145                                | 714380                      | 716288                                   | 716285 | 716687                                      | 718350 | 720018 | 720547                                        | 72284                       | 72292                             | 72559                                       | 725872                    | 726470                                | 726742                                                | 728695                                                |
|                     | Initial<br>(nt)            | 711605                     | 711724                      | 712738                                 | 714258                                | 714757                      | 715102                                   | 716660 | 718009                                      | 718105 | 718658 | 721449                                        | 721777                      | 723338                            | 723412                                      | 726462                    | 726715                                | 728352                                                | 730324                                                |
|                     | SEQ<br>NO<br>0             | 4268                       | 4289                        | 4270                                   | 4271                                  | 4272                        | 4273                                     | 4274   | 4275                                        | 4276   | 4277   | 4278                                          | 4279                        | 4280                              | 4281                                        | 4282                      | 4283                                  | 4284                                                  | 4285                                                  |
|                     | SEQ<br>NO<br>(DNA)         | 768                        | 769                         | 770                                    | 171                                   | 772                         | 773                                      | 774    | 775                                         | 776    | 111    | 778                                           | 179                         | 780                               | 781                                         | 782                       | 783                                   | 784                                                   | 785                                                   |

| ,                             |                             |                                                                                                 |                                             | т                                                   | _                        |        | $\neg$ | <del></del>                                         | Т                       |                                            | T                                      |                         |                                       |                                    | Т      |                            |                                           | $\neg$ |
|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------|--------|--------|-----------------------------------------------------|-------------------------|--------------------------------------------|----------------------------------------|-------------------------|---------------------------------------|------------------------------------|--------|----------------------------|-------------------------------------------|--------|
| 5                             | Function                    | bifunctional protein (biotin synthesis<br>repressor and biotin acetyl-CoA<br>carboxylase (gase) | hypothetical membrane protein               | 5-phosphoribosyl-5-amino-4-<br>Imidasol carboxylase | K+-uptake protein        |        |        | 5-phosphorlbosyl-5-amino-4-<br>imidasol carboxylase | hypothetical protein    | hypothetical protein                       | nitrilotriacetate monooxygenase        | transposase (ISA0963-5) | glucose 1-dehydrogenase               | hypothetical membrane protein      |        | hypothetical protein       | hypothetical protein                      |        |
| 15                            | Matched<br>length<br>(m.m.) | 203                                                                                             | 165                                         | 394                                                 | 628                      |        |        | 147                                                 | 152                     | 255                                        | 426                                    | 303                     | 258                                   | 96                                 |        | 175                        | 142                                       |        |
| 20                            | Similarity<br>(%)           | 61.8                                                                                            | 58.8                                        | 83.8                                                | 73.6                     |        |        | 93.2                                                | 60.5                    | 9.07                                       | 730                                    | 52.5                    | 64.8                                  | 88.8                               |        | 66.3                       | 76.8                                      |        |
|                               | Identity<br>(%)             | 28.7                                                                                            | 23.0                                        | 69.0                                                | 41.1                     |        |        | 85.7                                                | 36.2                    | 42.8                                       | 43.2                                   | 23.4                    | 31.3                                  | 29.2                               |        | 28.6                       | 35.9                                      |        |
| 25 (penu                      | ene                         | lir.A                                                                                           | ulosis                                      | : 6872                                              | dn                       |        |        | 5 6872                                              | mns.                    | lor A3(2)                                  | ATCC                                   | ns.                     | IAM 1030                              | MSB8                               |        | wJB                        | olor A3(2)                                |        |
| 8<br>S<br>Table 1 (continued) | Homologous gene             | Escherichia coli K12 birA                                                                       | Mycobacterium tuberculosis<br>H37Rv Rv3278c | Corynebacterlum<br>ammoniagenes ATCC 6872<br>purk   | Escherichis coli K12 kup |        |        | Corynebacterium<br>ammoniagenes ATCC 6872<br>purE   | Actinosynnema pretiosum | Streptomyces coelicolor A3(2)<br>SCF43A.36 | Chelatobacter heintzil ATCC 29800 ntaA | Archaeoglobus fulgidus  | Bacillus megaterium IAM 1030<br>gdhli | Thermotoga maritima MSB8<br>TM1408 |        | Bacillus subtills 168 ywjB | Streptomyces coelicolor A3(2)<br>SCJ9A 21 |        |
| 35                            | db Match                    | sp.BIRA_ECOLI                                                                                   | pir.G70979                                  | Sp.PURK_CORAM                                       | SP KUP_ECOLI             |        |        | sp.PUR6_CORAM                                       | gp.APU33059_5           | gp SCF43A_38                               | sp.NTAA_CHEHE                          | pir.A69428              | \$p.DHG2_BACME                        | pir A72258                         |        | sp. YWJB_BACSU             | gp:SCJ9A_21                               |        |
|                               | ORF<br>(bp)                 | 408                                                                                             | 486                                         | 1181                                                | 1872                     | 615    | 357    | 495                                                 | 453                     | 792                                        | 1314                                   | 1500                    | 789                                   | 369                                | 342    | 567                        | 420                                       | 222    |
| 45                            | Termina<br>(nt)             | 731299                                                                                          | 731797                                      | 733017                                              | 73494                    | 733183 | 73534  | 73589                                               | 73635                   | 73720                                      | 73721                                  | 73867                   | 74022                                 | 74178                              | 742196 | 74181                      | 74282                                     | 74283  |
| 50                            | Initial (nt)                | 730436                                                                                          | 731312                                      | 731857                                              | 733072                   | 733797 | 734984 | 735402                                              | 735899                  | 736413                                     | 738529                                 | 740172                  | 741016                                | 741397                             | 741854 | 742384                     | 742409                                    | 743052 |
|                               | SEO                         | <u> </u>                                                                                        | 4287                                        | 4288                                                | 4289                     | 4290   | 4291   | 4292                                                | 4293                    | 4294                                       | 4295                                   | 4298                    | 4297                                  | 4298                               | 4299   | 1300                       | 4301                                      | 4302   |
| 55                            | SEO                         | <del></del>                                                                                     | 787                                         | 788                                                 | 789                      | 790    | 791    | 792                                                 | 793                     | 794                                        | 795                                    | 796                     | 797                                   | 798                                | 799    | 800                        | 801                                       | 802    |

| 5  |              | Function                    | trehalose/maltose-binding protein | trehalose/makose-binding protein |        | trehalose/mattose-binding protein |        | ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein |        | RNA helicase                          |        |        | hypothetical protein                       | hypothetical protein            | DNA helicase II           |        |        |        |        | RNA helicase                       | hypothetical protein                              | RNA polymerase associated protein<br>(ATP-dependent helicase) |
|----|--------------|-----------------------------|-----------------------------------|----------------------------------|--------|-----------------------------------|--------|----------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|--------|--------|--------------------------------------------|---------------------------------|---------------------------|--------|--------|--------|--------|------------------------------------|---------------------------------------------------|---------------------------------------------------------------|
| 15 |              | Matched<br>length<br>(a.e.) | 271                               | 306                              |        | 417                               |        | 332                                                                                                            |        | 1783                                  |        |        | 240                                        | 720                             | 701                       |        |        |        |        | 2033                               | 989                                               | 873                                                           |
| 20 |              | Similarity<br>(%)           | 75.3                              | 70.3                             |        | 62.4                              |        | 73.0                                                                                                           |        | 49.9                                  |        |        | 59.2                                       | 62.5                            | 41.1                      |        |        |        |        | 45.8                               | 53.2                                              | 48.6                                                          |
|    |              | Identity<br>(%)             | 42.4                              | 37.3                             |        | 30.9                              |        | 57.2                                                                                                           |        | 25.1                                  |        |        | 31.7                                       | 30.0                            | 20.7                      |        |        |        |        | 22.4                               | 24.4                                              | 23 1                                                          |
| 25 | (south feet) | as gene                     | rails malG                        | ralis malF                       |        | ralis malE                        |        | culi mslK                                                                                                      |        | odurans R1                            |        |        | berculosis                                 | ri J99 jhp0462                  | (12 uvrD                  |        |        |        |        | elicolor                           | ), NRC-1<br>0 H1130                               | (12 hepA                                                      |
| 30 | ) a aige i   | Homologous gene             | Thermococcus litoralis malG       | Thermococcus litoralis malf      |        | Thermococcus litoralis malE       |        | Streptomyces reliculi msIK                                                                                     |        | Deinococcus radiodurans R1<br>DRB0135 |        |        | Mycobacterium tuberculosis<br>H37Rv Rv3268 | Hellcobacter pylori J99 jhp0462 | Escherichia coli K12 uvrD |        |        |        |        | Streptomyces coelicolor<br>SCH5.13 | Halobacterium sp. NRC-1<br>plasmid pNRC 100 H1130 | Escherichia coli K12 hepA                                     |
| 35 |              |                             | F                                 | F                                |        | F                                 |        | <u> </u>                                                                                                       |        | ٥٥                                    |        |        | ≥I                                         | I                               |                           |        | _      |        |        | o o                                | T P                                               |                                                               |
| 40 |              | db Match                    | prt 2406355C                      | prf 2406355B                     |        | prf 2406355A                      |        | prf.2308356A                                                                                                   |        | plr 875633                            |        |        | pir.E70978                                 | pir C71929                      | sp UVRD_ECOLI             |        |        |        |        | pir T36671                         | pir T08313                                        | sp HEPA_ECOLI                                                 |
|    |              | ORF<br>(bp)                 | 834                               | 1032                             | 468    | 1272                              | 423    | 966                                                                                                            | 369    | 4800                                  | 372    | 3699   | 633                                        | 2433                            | 1563                      | 357    | 393    | 396    | 825    | 6207                               | 4596                                              | 2886                                                          |
| 45 |              | Termina<br>(nt)             | 743087                            | 743900                           | 745048 | 745622                            | 748442 | 747031                                                                                                         | 748814 | 748886                                | 757434 | 753697 | 757830                                     | 758364                          | 760906                    | 762853 | 763122 | 762582 | 76736  | 76323                              | 76954                                             | 77415                                                         |
| 50 |              | Initial<br>(nt)             | 743900                            | 744931                           | 745513 | 746893                            | 748020 | 748028                                                                                                         | 748446 | 753685                                | 757063 | 757395 | 758262                                     | 760798                          | 762468                    | 782497 | 762730 | 762977 | 768191 | 769443                             | 774142                                            | 777035                                                        |
|    |              | SEO                         | 4303                              | 4304                             | 4305   | 4306                              | 4307   | 4308                                                                                                           | 4309   | 4310                                  | 4311   | 4312   | 4313                                       | 4314                            | 4315                      | 4316   | 4317   | 4318   | 4319   | 4320                               | 4321                                              | 4322                                                          |
| 55 |              | SEQ<br>NO<br>DNA)           | +                                 | <del>-</del>                     | +      | 908                               | 807    | 808                                                                                                            | 809    | 810                                   | 118    | 812    | 813                                        | 814                             | 815                       | 818    | 817    | 818    | 819    | 820                                | 821                                               | 822                                                           |

5

|                     | Function                    | hypothetical protein                       | dTDP-Rha a-D-GlcNAc-<br>diphosphoryl polyprenol, a-3-L-<br>rhamnosyl transferase | mannose-1-phosphate<br>guanylyltransferase | regulatory protein              | hypothetical protein                       | hypothetical protein                       | phosphomannomutase                | hypothetical protein                        | mannose-6-phosphate isomerase |        |        | pheromone-responsive protein             |        | S-adenosyl-L-homocysteine<br>hydrolase |        |        | thymidylate kinasa                     |
|---------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------------|-------------------------------|--------|--------|------------------------------------------|--------|----------------------------------------|--------|--------|----------------------------------------|
|                     | Matched<br>length<br>(a.e.) | 527                                        | 289                                                                              | 353                                        | 94                              | 139                                        | 136                                        | 460                               | 327                                         | 420                           |        |        | 180                                      |        | 478                                    |        |        | 209                                    |
|                     | Similarity (%)              | 71.4                                       | 77.9                                                                             | 6.99                                       | 81.9                            | 74.8                                       | 71.3                                       | 66.3                              | 58.3                                        | 68.2                          |        |        | 57.8                                     |        | 83.0                                   |        |        | 58.0                                   |
|                     | Identity<br>(%)             | 45.5                                       | 56.4                                                                             | 29.8                                       | 73.4                            | 48.9                                       | 51.5                                       | 38.0                              | 31.2                                        | 38.9                          |        |        | 35.6                                     |        | 28.0                                   |        |        | 25.8                                   |
| Table 1 (continued) | Homologous gene             | Mycobacterium tuberculosis<br>H37Rv Rv3287 | Mycobacterium smegmatis<br>mc2155 wbbL                                           | Saccharomyces cerevisiae<br>YDL055C MPG1   | Mycobacterium smegmatis<br>whmD | Mycobacterium tuberculosis<br>H37Rv Rv3259 | Streptomyces coelicplor A3(2)<br>SCE34.11c | Salmonella montevideo M40<br>manB | Mycobacterium tuberculosis<br>H37Rv Rv3258c | Escherichia coli K12 manA     |        |        | Enterococcus faecalis plasmid pCF10 prgC |        | Trichomonas vaginalis WAA38            |        |        | Archaeoglobus fulgidus VC-16<br>AF0081 |
|                     | db Match                    | pir.D70978                                 | gp:AF187550_1                                                                    | sp:MPG1_YEAST                              | gp:AF164439_1                   | pir.B70847                                 | gp SCE34_11                                | SP.MANB_SALMO                     | pir: B70594                                 | Sp.MANA_ECOLI                 |        |        | prl. 1804279K                            |        | SP. SAHH_TRIVA                         |        |        | sp.KTHY_ARCFU                          |
|                     | ORF<br>(bp)                 | 1554                                       | 168                                                                              | 1044                                       | 408                             | 458                                        | 390                                        | 1374                              | 1005                                        | 1182                          | 150    | 360    | 564                                      | 351    | 1422                                   | 708    | 720    | 609                                    |
|                     | =                           |                                            |                                                                                  |                                            |                                 |                                            |                                            | -                                 |                                             | _                             | مِا    | -      | _                                        | 0      | <u></u>                                | _      | Q.     | <b>F</b>                               |
|                     | Termin<br>(nt)              | 77715                                      | 77991                                                                            | 78117                                      | 78187                           | 78216                                      | 78310                                      | 78455                             | 78563                                       | 78682                         | 78704  | 78798  | 78717                                    | 78854  | 79009                                  | 78871  | 78900  | 79070                                  |
|                     | Initial<br>(nt)             | 778711                                     | 779014                                                                           | 780128                                     | 781468                          | 782617                                     | 782712                                     | 783184                            | 784635                                      | 785643                        | 788896 | 787624 | 787733                                   | 788196 | 788672                                 | 789426 | 789721 | 790096                                 |
|                     | SEQ<br>NO                   | 4323                                       | 4324                                                                             | 4325                                       | 4326                            | 4327                                       | 4328                                       | 4328                              | 4330                                        | 4331                          | 4332   | 4333   | 4334                                     | 4335   | 4336                                   | 4337   | 4338   | 4339                                   |
|                     | SEQ<br>NO<br>(DNA)          | 823                                        | 824                                                                              | 825                                        | 826                             | 827                                        | 828                                        | 828                               | 830                                         | 831                           | 832    | 833    | 834                                      | 835    | 836                                    | 837    | 838    | 839                                    |

| 5                                     | Function                    | two-component system response regulator          |        | two-component system sensor<br>histidine kinase  | lipoprotein                                      | hypothetical protein                        |        | 30S ribosomal protein or chloroplast precursor | preprotein translocase SecA subunit                                  |        | hypothetical protein                        | hypothetical protein                       | 5-enolpyruvyishikimate 3-phosphate synthase | hypothetical protein                        | 5-enolpyruvylshikimate 3-phosphate synthase | hypothetical protein                       | RNA polymerase sigma factor        |   |
|---------------------------------------|-----------------------------|--------------------------------------------------|--------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------|------------------------------------------------|----------------------------------------------------------------------|--------|---------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|---|
| 15                                    | Matched<br>length<br>(a.a.) | 224                                              |        | 484                                              | 595                                              | 213                                         |        | 203                                            | 845                                                                  |        | 170                                         | 322                                        | 461                                         | 180                                         | 23                                          | 380                                        | 188                                |   |
| 20                                    | Similarity<br>(%)           | 9 06                                             |        | 78.9                                             | 65.6                                             | 72.8                                        |        | 9.19                                           | 9.66                                                                 |        | 78.8                                        | 82.9                                       | 0.88                                        | 63.9                                        | 100.0                                       | 42.4                                       | 87.2                               |   |
|                                       | Identity<br>(%)             | 73.7                                             |        | 53.1                                             | 29.6                                             | 38.0                                        |        | 34.5                                           | 99.1                                                                 |        | 47.1                                        | 64.6                                       | 0.88                                        | 38.3                                        | 100.0                                       | 21.6                                       | 61.2                               |   |
| 25 (panuljuned) 1 apple 1 (continued) | Hamologaus gene             | tuberculosis<br>ic mtrA                          |        | tuberculosis<br>ic mtrB                          | tuberculosis<br>Ic IpqB                          | n tuberculosis<br>?c                        |        | cea CV rps22                                   | Brevlbacterium flavum<br>(Corynebacterium glutamicum)<br>MJ-233 secA |        | tuberculosis<br>1c                          | n tuberculosis<br>8                        | Corynebacterium glutamicum<br>ASO19 aroA    | n tuberculosis<br>3c                        | Corynebacterium glutamicum                  | n tuberculosis<br>5                        | n tuberculosis                     |   |
| ·                                     | Натово                      | Mycobacterium tuberculosis<br>H37Rv Rv3246c mtrA |        | Mycobaclerium tuberculosis<br>H37Rv Rv3245c mtrB | Mycobacterium tuberculosis<br>H37Rv Rv3244c lpqB | Mycobacterium tuberculosis<br>H37Rv Rv3242c |        | Spinacia oleracea CV rps22                     | Brevibacterium flavum<br>(Corynebacterium glut<br>MJ-233 secA        |        | Mycobacterium tuberculosis<br>H37Rv Rv3231c | Mycobacterium tuberculosis<br>H37Rv Rv3228 | Corynebacteric<br>ASO19 aroA                | Mycobacterium tuberculosis<br>H37Rv Rv3228c | Corynebacteric                              | Mycobacterium tuberculosis<br>H37Rv Rv0336 | Mycobacterium tuberculosis<br>sigH |   |
| 40                                    | db Malch                    | prf 2214304A                                     |        | prf.2214304B                                     | pir F70592                                       | pir.D70592                                  |        | sp RR30_SPIOL                                  | gsp.R74093                                                           |        | plr.A70591                                  | plr.F70590                                 | gp.AF114233_1                               | pir D70590                                  | GP-AF114233_1                               | pir.G70506                                 | pri 2515333D                       |   |
|                                       | ORF<br>(bp)                 | 678                                              | 684    | 1497                                             | 1704                                             | 588                                         | 158    | 663                                            | 2535                                                                 | 672    | 504                                         | 987                                        | 1413                                        | 480                                         | 123                                         | 1110                                       | 618                                |   |
| 45                                    | Termina<br>(nt)             | 791409                                           | 790738 | 793008                                           | 794711                                           | 795301                                      | 795292 | 796110                                         | 798784                                                               | 799691 | 800200                                      | 800208                                     | 801190                                      | 803128                                      | 802565                                      | 803131                                     | 805028                             |   |
| 50                                    | Initial<br>(nt)             | 790732                                           | 791421 | 791512                                           | 793008                                           | 794714                                      | 795447 | 795448                                         | 796250                                                               | 799020 | 799697                                      | 801194                                     | 802802                                      | 802649                                      | 802687                                      | 804240                                     | 804408                             |   |
|                                       | SEO                         | 4340                                             | 4341   | 4342                                             | 4343                                             | 4344                                        | 4345   | 4348                                           | 4347                                                                 | 4348   | 4349                                        | 4350                                       | 4351                                        | 4352                                        | 4353                                        | 4354                                       | 4355                               |   |
| 55                                    | SEQ                         | 840                                              | 841    | 842                                              | 843                                              | 844                                         | 845    | 846                                            | 847                                                                  | 848    | 849                                         | 850                                        | 851                                         | 852                                         | 853                                         | 854                                        | 855                                | ; |

| _                   |                             |                                                  | —т                                          |                                            | <del></del>                         | -т     |                                             | т                                           | —-Т                                         | 1      |                                             | _      |                                              |                                             | $\neg$                    | 1            |                                            | $\neg$   |
|---------------------|-----------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------|--------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------|---------------------------------------------|--------|----------------------------------------------|---------------------------------------------|---------------------------|--------------|--------------------------------------------|----------|
|                     | Function                    | regulatory protein                               | hypothetical protein                        | hypothetical protein                       | DEAD box ATP-dependent RNA helicase |        | hypothetical protein                        | hypothetical protein                        | ATP-dependent DNA helicase                  |        | ATP-dependent DNA helicase                  |        | potassium channel                            | hypothetical protein                        | DNA helicaso II           |              | hypothetical protein                       |          |
|                     | Matched<br>length<br>(s.s.) | 84                                               | 129                                         | 415                                        | 458                                 |        | 291                                         | 249                                         | 1155                                        |        | 1128                                        |        | 302                                          | 230                                         | 089                       |              | 280                                        |          |
|                     | Similarity<br>(%)           | 96.4                                             | 65.1                                        | 62 2                                       | 84.0                                |        | 69 8                                        | 6 5 9                                       | 46.9                                        |        | 65.7                                        |        | 64 2                                         | 58.3                                        | 58.8                      |              | 49.3                                       |          |
|                     | Identity<br>(%)             | 78.6                                             | 33.3                                        | 29.6                                       | 37.3                                |        | 48.4                                        | 37.0                                        | 23.9                                        |        | 41.4                                        |        | 26.2                                         | 30.4                                        | 32 6                      |              | 26.8                                       |          |
| Table 1 (continued) | Homologous gene             | Mycobacterium tuberculosis<br>H37Rv Rv3219 whiB1 | Mycobacterium tuberculosis<br>H37Rv Rv3217c | Mycobacterium tuberculosis<br>H37Rv Rv3212 | Klebsiella pneumoniae CG43          |        | Mycobacterium tuberculosis<br>H37Rv Rv3207c | Mycobacterium tuberculosis<br>H37Rv Rv3205c | Mycobacterium tuberculosis<br>H37Rv Rv3201c |        | Mycobacterium tuberculosis<br>H37Rv Rv3201c |        | Methanococcus Jannaschil JAL-<br>1 MJ0138-1. | Mycobacterium tuberculosis<br>H37Rv Rv3199c | Escherichia coil K12 uvrD |              | Mycobacterium tuberculosis<br>H37Rv Rv3196 |          |
|                     | db Match                    | pir.D70596                                       | pir.B70596                                  | pir.E70595                                 | *P:DEAD_KLEPN                       |        | plr:H70594                                  | pir.F70594                                  | pir.G70951                                  |        | pir:G70951                                  |        | sp:Y13B_METJA                                | pir.E70951                                  | sp:UVRD_ECOLI             |              | pir:B70951                                 |          |
|                     | ORF<br>(bp)                 | 258                                              | 420                                         | 1200                                       | 1272                                | 225    | 846                                         | 759                                         | 3048                                        | 780    | 3219                                        | 1332   | 1005                                         | 714                                         | 2034                      | 591          | 816                                        | 603      |
|                     | 들                           | 535                                              | 73                                          | 6                                          | 66                                  | 50     | 3384                                        | 811163                                      | 12.1                                        | 811385 | 817422                                      | 42.0   | 81853                                        | 9238                                        | 821217                    | 82269        | 82120                                      | 8233.1   |
|                     | Termin<br>(nt)              | 80553                                            | 80673                                       | 80674                                      | 8079                                | 8095   | 81039                                       | <b>8</b>                                    | 8142                                        | ╄      | 6                                           | 8142   | 8                                            | 8192:                                       | 82                        | <del> </del> |                                            | $\vdash$ |
|                     | Initial<br>(nt)             | 805792                                           | 806318                                      | 807939                                     | 809217                              | 809288 | 809549                                      | 810405                                      | 811170                                      | 812165 | 814204                                      | 815541 | 817519                                       | 818523                                      | 819254                    | 822079       | 822105                                     | 822789   |
|                     | SEQ<br>NO<br>8              | 4356                                             | 4357                                        | 4358                                       | 4359                                | 4360   | 4361                                        | 4362                                        | 4363                                        | 4384   | 4365                                        | 4366   | 4367                                         | 4368                                        | 4369                      | 4370         | 4371                                       | 4372     |
|                     | SEQ<br>NO<br>(DNA)          |                                                  | 857                                         | 858                                        | 858                                 | 860    | 961                                         | 862                                         | 863                                         | 864    | 965                                         | 998    | 867                                          | 868                                         | 869                       | 370          | 871                                        | 872      |

| 5                        | Function                    | hypothetical protein                       | hypotheticsi protein                       |          |        | hypothetical protein                        | regulatory protein                | ethylene-inducible protein                    | hypothetical protein        | hypothetical protein       |        | alpha-lytic proteinase precursor  |        | DNA-directed DNA polymerase                                | major secreted protein PS1 protein precursor                             |        |        |        |        | monophosphatase             |
|--------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|----------|--------|---------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------|----------------------------|--------|-----------------------------------|--------|------------------------------------------------------------|--------------------------------------------------------------------------|--------|--------|--------|--------|-----------------------------|
| 15                       | Matched<br>length<br>(a.a.) | 474 hyp                                    | 350 hyp                                    |          |        | 1023 hyp                                    | 463 reg                           | 301 eth                                       | 91<br>hys                   | 201 hys                    | -      | 408 alp                           |        | 208 DN                                                     | 363 ms                                                                   |        |        |        |        | 255 mc                      |
| 20                       | Similarity le<br>(%)        | 78.4                                       | 74.9                                       |          |        | 73.5                                        | 57.7                              | 0.68                                          | 53.0                        | 73.6                       |        | 4.4                               |        | 51.4                                                       | 51.5                                                                     |        |        |        |        | 74.9                        |
|                          | Identity S                  | 42.8                                       | 43.4                                       |          |        | 47.2                                        | 34.3                              | 67.4                                          | 49.0                        | 40.8                       |        | 28.7                              |        | 25.0                                                       | 27.0                                                                     |        |        |        |        | 51.8                        |
| 25 (panulluo             | s gene                      | erculosis                                  | erculosis                                  |          |        | erculosis                                   | durans                            | laticifer er 1                                | K1 APE0247                  | 8 уааЕ                     |        | ogenes ATCC                       |        | nedia LaBelle-<br>plasmid                                  | glutamicum<br>avum) ATCC                                                 |        |        |        |        | oniger para                 |
| &<br>Table 1 (continued) | Homolagous gene             | Mycobacterium tuberculosis<br>H37Rv Rv3195 | Mycobacterium tuberculosis<br>H37Rv Rv3194 |          |        | Mycobacterium tuberculosis<br>H37Rv Rv3193c | Deinococcus radiodurans<br>DR0840 | Hevea brasiliensis laticifer erf              | Aeropyrum pernix K1 APE0247 | Bacillus subtilis 168 yaaE |        | Lysobacter enzymogenes ATCC 29487 |        | Neurospora intermedia LaBelle-<br>1b mitochondrion plasmid | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17965 csp1 |        |        |        |        | Streptomyces alboniger pur3 |
| 35                       |                             | ΣI                                         | ≥I.                                        |          |        | ΣI                                          |                                   |                                               | <b>*</b>                    |                            |        | ر<br>1                            |        | 2 -                                                        |                                                                          |        |        |        |        |                             |
| 40                       | db Match                    | plr.A70951                                 | pir:H70950                                 |          |        | pir:G70950                                  | gp:AE001938_5                     | SP.ER1_HEVBR                                  | PIR:F72782                  | Sp:YAAE_BACSU              |        | pir.TRYX84                        |        | pir S03722                                                 | sp CSP1_CORGL                                                            |        |        |        |        | рл 2207273Н                 |
|                          | ORF<br>(bp)                 | 1446                                       | 1050                                       | 675      | 522    | 2955                                        | 1359                              | 951                                           | 345                         | 900                        | 363    | 1062                              | 501    | 585                                                        | 1581                                                                     | 429    | 510    | 222    | 309    | 780                         |
| 45                       | Termina<br>(nt)             | 822680                                     | 825239                                     | 825242   | 825996 | 82957                                       | 82962                             | 83197                                         | 83157                       | 83257                      | 83279  | 83463                             | 83538  | 83583                                                      | 838892                                                                   | 839353 | 840139 | 840210 | 840437 | 841517                      |
| 50                       | Initial T                   | 824125 B                                   | 824190 B                                   | 825916 8 | 828517 | 828616                                      | 830985                            | <u>!                                     </u> | 831922                      | 831971                     | 833157 | 833572                            | 834888 | 835253                                                     | 837312                                                                   | 838925 | 839630 | 840431 | 840745 | 842296                      |
|                          | SEQ<br>NO                   | 4373                                       | 4374                                       | 4375     | 4376   | 4377                                        | 4378                              | 4379                                          | 4380                        | 4381                       | 4382   | 4383                              | 4384   | 4385                                                       | 4386                                                                     | 4387   | 4388   | 4389   | 4390   | 4391                        |
| 55                       | SEQ<br>NO<br>(DNA)          | 873                                        | 874                                        | 875      | 876    | 877                                         | 878                               | 879                                           | 980                         | 881                        | 882    | 883                               | 884    | 985                                                        | 886                                                                      | 887    | 988    | 889    | 890    | 1891                        |

| 5                          | uo                          | osphalasa                       | • factor 2                            | ding protein                                     |                             |                                                  | RA-binding                             |                           |        |        |        | in protein                        |                            | ane protein                         | nding protein                                   | ABC transporter                   | nsporter                              | insporter (ATP.                                   |
|----------------------------|-----------------------------|---------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|----------------------------------------|---------------------------|--------|--------|--------|-----------------------------------|----------------------------|-------------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------------------|
| 10                         | Function                    | myo-inositol monophosphatase    | peptide chain release factor          | cell division ATP-binding protein                | hypothetical protein        | cell division protein                            | small protein B (SSRA-binding protein) | hypothetical protein      |        |        |        | vibriobactin utilization protein  | Fe-regulated protein       | hypothetical membrane protein       | ferric anguibactin-binding protein<br>precursor | ferrichrome ABC tra<br>(permease) | ferichrome ABC transporter (permease) | ferrichrame ABC transporter (ATP-binding protein) |
| 15                         | Matched<br>length<br>(a.e.) | 243                             | 359                                   | 226                                              | 72                          | 301                                              | 145                                    | 116                       |        |        |        | 272                               | 319                        | 181                                 | 325                                             | 313                               | 312                                   | 250                                               |
| 20                         | Similarity (%)              | 59 3                            | 88 6                                  | 91.2                                             | 54.0                        | 74.8                                             | 75.9                                   | 73.3                      |        |        |        | 52.9                              | 58.3                       | 71.2                                | 61.5                                            | 808                               | 76.0                                  | 82.0                                              |
|                            | Identity<br>(%)             | 33.7                            | 0.88                                  | 70.4                                             | 43.0                        | 40.5                                             | 43.5                                   | 44.0                      |        |        |        | 26.8                              | 29.5                       | 36.1                                | 27.7                                            | 38.3                              | 35.6                                  | 48.4                                              |
| 8 %<br>Table 1 (continued) | us gene                     | opersicus                       | ilcolor A3(2)                         | iberculosis<br>1sE                               | K1 APE2061                  | iberculosis<br>RsX                               | (12 smpB                               | (12 yeaO                  |        |        |        | GAWA 395                          | sureus sirA                | prae                                | n 775 fatB                                      | 68 yetN                           | 68 yclO                               | 68 yclP                                           |
| Table 1                    | Homologous gene             | Streptomyces flavopersicus spcA | Streptomyces coelicolor A3(2)<br>pr18 | Mycobacterium tuberculosis<br>H37Rv Rv3102c ftsE | Aeropyrum pernix K1 APE2061 | Mycobacterium tuberculosis<br>H37Rv Rv3101c ftsX | Escherichia coli K12 smpB              | Escherichia coli K12 yeaO |        |        |        | Vibrio cholerae OGAWA 395<br>viuB | Staphylococcus aureus sirA | Mycobacterlum leprae<br>MLCB1243.07 | Vibrio anguillarum 775 fatB                     | Bacilius subtilis 168 yelN        | Bacillus subtills 168 yclO            | Bacillus subtilis 168 yclP                        |
| 35                         |                             | 55 S                            |                                       | ≥±                                               | ¥                           | ΣI                                               |                                        |                           |        |        |        |                                   |                            |                                     |                                                 |                                   | ш.                                    | 8                                                 |
| 40                         | db Match                    | 9p.U70376_9                     | sp.RF2_STRCO                          | pir.E70919                                       | PIR G72510                  | pir.D70919                                       | sp SMPB_ECOL!                          | sp YEAO_ECOL              |        |        |        | sp.VIUB_VIBCH                     | prf 2510361A               | gp MLCB1243_5                       | SP FATB_VIBAN                                   | pir 869763                        | pir C69763                            | pir D69763                                        |
|                            | ORF<br>(bp)                 | 819                             | 1104                                  | 687                                              | 264                         | 006                                              | 492                                    | 351                       | 537    | 300    | 405    | 825                               | 918                        | 588                                 | 1014                                            | 666                               | 942                                   | 753                                               |
| 45                         | Termina<br>(nt)             | 842306                          | 844360                                | 845181                                           | 844842                      | 846097                                           | 846626                                 | 846982                    | 846289 | 848026 | 847718 | 848499                            | 84932                      | 850412                              | 85236                                           | 85361                             | 85472                                 | 85547                                             |
| 50                         | Initial (nt)                | 843124                          | 843257                                | 844495                                           | 845105                      | 845198                                           | 846137                                 | 846632                    | 846805 | 847727 | 848122 | 849323                            | 850243                     | 850399                              | 851351                                          | 852618                            | 853783                                | 854724                                            |
|                            | SEQ<br>NO<br>•              | 4392                            | 4393                                  | 4394                                             | 4395                        | 4396                                             | 4397                                   | 4398                      | 4399   | 4400   | 4401   | 4402                              | 4403                       | 4404                                | 4405                                            | 4406                              | 4407                                  | 4408                                              |
| 55                         | SEQ<br>NO<br>(ONA)          | 892                             | 893                                   | 894                                              | 895                         | 896                                              | 168                                    | 868                       | 999    | 8      | 106    | 905                               | 903                        | 904                                 | 905                                             | 906                               | 907                                   | 908                                               |

EP 1 108 790 A2

|                     |                             |                                    | - 1                  |                                                           |        |                                                 | - 1                                         |                                            |        | T                              |                         |                                    |                                   | $\neg \tau$ | $\neg \tau$ | T                                         | T      |                                             |        |
|---------------------|-----------------------------|------------------------------------|----------------------|-----------------------------------------------------------|--------|-------------------------------------------------|---------------------------------------------|--------------------------------------------|--------|--------------------------------|-------------------------|------------------------------------|-----------------------------------|-------------|-------------|-------------------------------------------|--------|---------------------------------------------|--------|
|                     | Function                    | hypothelical protein               | hypothetical protein | kynurenine<br>amhotransterase/glutamine<br>transaminase K |        | DNA repair helicase                             | hypothetical protein                        | hypothetical protein                       |        | resuscitation-promoting factor | cold shock protein      | hypothetical protein               | glutamine cyclotransferase        |             |             | permease                                  |        | rRNA(adenosine-2'-0-)-<br>methyltransferase |        |
|                     | Matched<br>length<br>(a.a.) | 48                                 | 84                   | 442                                                       |        | 613                                             | 764                                         | 57                                         |        | 198                            | 19                      | 159                                | 273                               |             |             | 477                                       |        | 319                                         |        |
|                     | Similarity (%)              | 720                                | 680                  | 64.9                                                      |        | 62.3                                            | 65.2                                        | 62.0                                       |        | 64.7                           | 75.4                    | 58.5                               | 878                               |             |             | 79.3                                      |        | 51.7                                        |        |
|                     | Identity<br>(%)             | 98.0                               | 61.0                 | 33.5                                                      |        | 30.7                                            | 36.1                                        | 44.0                                       |        | 39.4                           | 42.6                    | 28.3                               | 41.8                              |             |             | 43.8                                      |        | 27.9                                        |        |
| Table 1 (continued) | Homologous gene             | Chlamydia muridarum Nigg<br>TC0129 | Chlamydia pneumoniae | Rattus norvegicus (Rat)                                   |        | Saccharomyces cerevisiae<br>S288C YIL143C RAD25 | Mycobacterium tuberculosis<br>H37Rv Rv0862c | Mycobacterium tuberculosis<br>H37Rv Rv0863 |        | Micrococcus luteus rpf         | Lactococcus factis csp8 | Mycobacterium leprae<br>MLCB57 27c | Deinococcus radiodurans<br>DR0112 |             |             | Streptomyces coelicolor A3(2)<br>SC6C5 09 |        | Streptomyces azureus tsnR                   |        |
|                     | db Match                    | PIR F81737                         | GSP Y35814           | pir.S66270                                                |        | sp.RA25_YEAST                                   | pir F70815                                  | pir G70815                                 |        | prf.2420502A                   | prf.2320271A            | gp MLCB57_11                       | gp AE001874_1                     |             |             | 6_30908'qg                                |        | sp TSNR_STRAZ                               |        |
|                     | ORF<br>(bp)                 | 147                                | 273                  | 1209                                                      | 639    | 1671                                            | 2199                                        | 219                                        | 843    | 597                            | 381                     | 525                                | 774                               | 669         | 138         | 1473                                      | 912    | 828                                         | 876    |
|                     | Termina<br>(nt)             | 860078                             | 86047                | 882752                                                    | 86275  | 86339                                           | 86511                                       | 86757                                      | 86883  | 86780                          | 86931                   | 86937                              | 86991                             | 87072       | 87166       | 873210                                    | 87201  | 87404                                       | 87406  |
|                     | Initial T                   | 860224 8                           | 860745               | <del>!</del>                                              | 863391 | 865068                                          | 867317                                      | 867353                                     | 867788 | 868399                         | <del>!</del>            | 869903                             | 870691                            | 871419      | 871523      | 871738                                    | 872927 | 873213                                      | 874944 |
|                     | SEQ<br>NO                   | <del> </del>                       | 4410                 | ·                                                         | 4412   |                                                 | 4414                                        | 4415                                       | 4416   | 4417                           |                         | 4419                               | 4420                              | 4421        | 4422        | 4423                                      | 4424   | 4425                                        | 4426   |
|                     | SEQ<br>NO<br>DNA)           | + -                                | 910                  | •                                                         | 912    |                                                 | 914                                         | 915                                        | 916    | -                              | 1                       | 919                                | 920                               | 921         | 922         | 923                                       | 924    | 925                                         | 926    |

| 5                         | Function                    | hypothetical protein                        | phosphoserine transaminase    | acetyl-coenzyme A carboxylase carboxy transferase subunit beta | hypothetical protein                      | sodium/proline symporter | •      | hypothelical protein                        | fatty-add synthase                  |        |        | homoserine O-acetyltransferase |        |        | gluteredoxin                      | dihydrofolate reductase  | thymidylate synthase      | emmonium trensporter      | ATP dependent DNA helicese                 | formamidopyrimidine-DNA<br>glycosidase  |  |
|---------------------------|-----------------------------|---------------------------------------------|-------------------------------|----------------------------------------------------------------|-------------------------------------------|--------------------------|--------|---------------------------------------------|-------------------------------------|--------|--------|--------------------------------|--------|--------|-----------------------------------|--------------------------|---------------------------|---------------------------|--------------------------------------------|-----------------------------------------|--|
| 15                        | Matched<br>length<br>(a.a.) | 316                                         | 374                           | 238                                                            | 103                                       | 549                      |        | 243                                         | 3026                                |        |        | 335                            |        |        | 62                                | 171                      | 281                       | 202                       | 1715                                       | 298                                     |  |
| 20                        | Similarity (%)              | 55 1                                        | 52.9                          | 69 5                                                           | 808                                       | 58 1                     |        | 77.4                                        | 83.4                                |        |        | 59 7                           |        |        | 726                               | 62.0                     | 688                       | 58.4                      | 1 89 1                                     | 51.0                                    |  |
|                           | Identity<br>(%)             | 32.6                                        | 21.9                          | 36.0                                                           | 51.5                                      | 26.4                     |        | 49.0                                        | 63.1                                |        |        | 29.0                           |        |        | 43.6                              | 38.0                     | 64.8                      | 32.2                      | 47.4                                       | 28.2                                    |  |
| 20 20 Table 1 (continued) | ous gene                    | uberculosis                                 | 1 ATCC 21783                  | K12 accD                                                       | elicolor A3(2)                            | uorescens                |        | uberculosis                                 | las                                 |        |        | ri metX                        |        |        | diodurans                         | avium folA               | K12thyA                   | K12 cysQ                  | selicolor A3(2)                            | elongatus                               |  |
|                           | Homologous gene             | Mycobacterium tuberculosis<br>H37Rv Rv0883c | Bacillus circulans ATCC 21783 | Escherichia coli K12 accD                                      | Streptomyces coelicolor A3(2)<br>SCIB.08c | Pseudomonas fluorescens  |        | Mycobacterium tuberculosis<br>H37Rv Rv2525c | Corynebacterium<br>ammoniagenes fas |        |        | Leptospira meyeri metX         |        |        | Deinococcus radiodurans<br>DR2085 | Mycobacterium avium folA | Escherichla coli K12 thyA | Escherichia coli K12 cysQ | Streptomyces coelicolor A3(2)<br>SC7C7.18c | Synechococcus elongatus<br>naegeli mutM |  |
| 35                        |                             |                                             |                               |                                                                | 0, 0,                                     |                          | `      |                                             |                                     |        |        |                                |        |        |                                   |                          |                           |                           |                                            | ËN                                      |  |
| 40                        | db Match                    | sp:YZ11_MYCTU                               | pir.S71439                    | sp.ACCD_ECOLI                                                  | gp:SCI8_8                                 | pir.JC2382               |        | pir.A70657                                  | pir S55505                          |        |        | prf.2317335B                   |        |        | gp:AE002044_8                     | prf.2408256A             | SP.TYSY_ECOLI             | SP.CYSQ_ECOL!             | gp.SC7C7_16                                | sp.FPG_SYNEN                            |  |
|                           | ORF<br>(bp)                 | 933                                         | 1128                          | 1473                                                           | 339                                       | 1853                     | 816    | 840                                         | 8907                                | 489    | 186    | 1047                           | 428    | 267    | 237                               | 456                      | 798                       | 758                       | 4560                                       | 768                                     |  |
| 45                        | Termina<br>(nt)             | 874951                                      | 875985                        | 879642                                                         | 881985                                    | 883647                   | 884541 | 884549                                      | 894578                              | 895191 | 895593 | 895598                         | 896719 | 89768  | 897727                            | 897979                   | 898434                    | 899253                    | 904602                                     | 905382                                  |  |
| 50                        | Initial (nt)                | 875883                                      | 877112                        | 881114                                                         | 881647                                    | 881995                   | 883728 | 885388                                      | 885672                              | 894703 | 895408 | 896642                         | 897144 | 897423 | 897963                            | 898434                   | 899231                    | 900006                    | 900043                                     | 904615                                  |  |
|                           | SEQ<br>NO<br>NO             | 4427                                        | 4428                          | 4429                                                           | 4430                                      | 4431                     | 4432   | 4433                                        | 4434                                | 4435   | 4438   | 4437                           | 4438   | 4439   | 4440                              | 4441                     | 4442                      | 4443                      | 4444                                       | 4445                                    |  |
| 55                        | SEQ<br>NO<br>(DNA)          | 927                                         | 928                           | 929                                                            | 930                                       | 931                      | 932    | 933                                         | 934                                 | 935    | 936    | 937                            | 938    | 939    | 940                               | 941                      | 942                       | 943                       | 944                                        | 945                                     |  |

|                     | Function                    | hypothetical protein                        | alkaline phosphatase          | integral membrane transporter              |        | glucose-8-phosphate isomease | hypothetical protein                       |        | hypothetical protein                        | ATP-dependent helicase                       | ABC transporter                           | ABC transporter            |        | peptidase                                   | hypothetical protein                       |        | 5-phosphoribosylglycinamide formyttransferase | 5-phosphoribosyl-5-aminoimidezole-<br>4-carboxamide formyltransferase | citrate lyase (subunit)                       |
|---------------------|-----------------------------|---------------------------------------------|-------------------------------|--------------------------------------------|--------|------------------------------|--------------------------------------------|--------|---------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------|--------|---------------------------------------------|--------------------------------------------|--------|-----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
|                     | Matched<br>length<br>(e.a.) | 128                                         | 196                           | 403                                        |        | 557                          | 195                                        |        | 78                                          | 763                                          | 885                                       | 217                        |        | 236                                         | 434                                        |        | 189                                           | 525                                                                   | 217                                           |
|                     | Similarity (%)              | 86.7                                        | 71.9                          | 67.0                                       |        | 77.0                         | 52.3                                       |        | 85.9                                        | 73.1                                         | 48.6                                      | 71.4                       |        | 73.3                                        | 60.8                                       |        | 86.2                                          | 87.8                                                                  | 100.0                                         |
|                     | Identity<br>(%)             | 55.5                                        | 38.8                          | 33.8                                       |        | 52.4                         | 24.6                                       |        | 59.0                                        | 48.1                                         | 21.8                                      | 43.8                       |        | 43.6                                        | 31.1                                       |        | 64.8                                          | 74.5                                                                  | 100.0                                         |
| Table 1 (continued) | Homologous gene             | Mycobacterium tuberculosis<br>H37Rv Rv0870c | Lactococcus lactis MG1363 apl | Streptomyces coelicolor A3(2)<br>SCI28.08c |        | Escherichia coli JM101 pgi   | Mycobacterium tuberculosis<br>H37Rv Rv0336 |        | Mycobacterium tuberculosis<br>H37Rv Rv0948c | Bacillus stearothermophilus<br>NCA 1503 pcrA | Streptomyces coelicolor A3(2)<br>SCE25.30 | Bacillus subtilis 168 yvrO |        | Mycobacterium tuberculosis<br>H37Rv Rv0950c | Mycobacterium tuberculosis<br>H37Rv Rv0955 |        | Corynebacterium<br>ammoniagenes purN          | Corynebacterium<br>ammonlagenes purH                                  | Corynabacterium glutamicum<br>ATCC 13032 citE |
|                     | db Match                    | pir.F70816                                  | SP. APL_LACLA                 | pir.T36776                                 |        | pir.NUEC                     | pir.G70506                                 |        | sp:YT26_MYCTU                               | sp.PCRA_BACST                                | gp SCE25_30                               | prf 2420410P               |        | pir 070716                                  | Sp:YT19_MYCTU                              |        | gp AB003159_2                                 | gp AB003159_3                                                         | gp CGL133719_3                                |
|                     | ORF<br>(bp)                 | 408                                         | 8                             | 1173                                       | 717    | 1620                         | 1176                                       | 381    | 309                                         | 2289                                         | 2223                                      | 898                        | 507    | 71.                                         | 1425                                       | 228    | 627                                           | 1560                                                                  | 819                                           |
|                     | Termina<br>(nt)             | 905796                                      | 905792                        | 906559                                     | 909326 | 907759                       | 90952                                      | 911223 | 91085                                       | 91351                                        | 91347                                     | 91589                      | 91636  | 91697                                       | 91935.                                     | 91782  | 91995                                         | 92152                                                                 | 92241                                         |
|                     | initial<br>(nt)             | 905389                                      | 906391                        | 907731                                     | 908612 | 909378                       | 910696                                     | 910843 | 911163                                      | 911226                                       | 915699                                    | 916364                     | 916874 | 917680                                      | 917928                                     | 918054 | 919330                                        | 919967                                                                | 921594                                        |
|                     | SEO<br>NO<br>(••)           | 4446                                        | 4447                          | 4448                                       | 4449   | 4450                         | 4451                                       | 4452   | 4453                                        | 4454                                         | 4455                                      | 4456                       | 4457   | 4458                                        | 4459                                       | 4460   | 4461                                          | 4462                                                                  | 4463                                          |
|                     | SEO<br>NO<br>(DNA)          |                                             | 947                           | 948                                        | 949    | 950                          | 951                                        | 952    | 953                                         | 954                                          | 955                                       | 928                        | 957    | 958                                         | 959                                        | 960    | - 261                                         | 962                                                                   | 963                                           |

| ſ                   | <del>-                                    </del> | <u> </u>                                                          |                                               | _      | $\neg$                    | 1                         | $\neg$                    |                           |                                   |                            |                           |                                             | $\neg$ |                                          |                             | i                         |                                                                                              |        |                                                  |                                            | =                                     |
|---------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|--------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------------|----------------------------|---------------------------|---------------------------------------------|--------|------------------------------------------|-----------------------------|---------------------------|----------------------------------------------------------------------------------------------|--------|--------------------------------------------------|--------------------------------------------|---------------------------------------|
|                     | Function                                         | repressor of the high-affinity (methyl)<br>ammonium uptake system | hypothetical protein                          |        | 30S ribosomal protein S18 | 30S ribosomal protein S14 | 50S ribosomal protein L33 | 50S ribosamal protein L28 | transporter (sulfate transporter) | Zn/Co transport repressor  | 50S ribosomal protein L31 | 50S ribosomal protein L32                   |        | copper-inducible two-component regulator | two-component system sensor | proteinase DO precursor   | molybdopterin blosynthesis cnx1<br>protein (molybdenum cofactor<br>biosynthesis enzyma cnx1) |        | large-conductance<br>mechanosensitive channel    | hypothetical protein                       | 5-formyltetrahydrofolate cyclo-ligasa |
|                     | Matched<br>length<br>(a.a.)                      | 222                                                               | 109                                           |        | 67                        | 100                       | 48                        | 77                        | 529                               | 80                         | 78                        | 55                                          |        | 227                                      | 484                         | 406                       | 188                                                                                          |        | 131                                              | 210                                        | 191                                   |
|                     | Similarity (%)                                   | 100.0                                                             | 100.0                                         |        | 76.1                      | 0.08                      | 83.7                      | 81.8                      | 71.1                              | 77.5                       | 65 4                      | 78.2                                        |        | 73.6                                     | 60.1                        | 59.9                      | 54.3                                                                                         |        | 77.1                                             | 60.0                                       | 59.7                                  |
|                     | identity<br>(%)                                  | 100.0                                                             | 100.0                                         |        | 52.2                      | 540                       | 55.1                      | 52.0                      | 34.4                              | 37.5                       | 37.2                      | 0:09                                        |        | 48.0                                     | 24.4                        | 33.3                      | 27.7                                                                                         |        | 50.4                                             | 28.6                                       | 25.1                                  |
| Table 1 (continued) | Homologous gene                                  | Corynebacterium glutamicum<br>ATCC 13032 amtR                     | Corynebacterium glutamicum<br>ATCC 13032 yjcC |        | Cyanophora paradoxa rps18 | Escherichia coli K12 rpsN | Escherichia coli K12 rpmG | Escherichia coli K12 rpmB | Bacillus subtilis 168 yvdB        | Staphylococcus aureus zntR | Haemophilus ducreyi rpmE  | Streptomyces coelicolor A3(2)<br>SCF51A, 14 |        | Pseudomonas syringae copR                | Escherichia coli K12 baeS   | Escherichia coli K12 htrA | Arabidopsis thallana CV cnx1                                                                 |        | Mycobacterium tuberculosis<br>H37Rv Rv0985c mscL | Mycobacterium tuberculosis<br>H37Rv Rv0990 | Homo sapiens MTHFS                    |
|                     | db Match                                         | gp:CGL133719_2                                                    | gp:CGL133719_1                                |        | Sp.RR18_CYAPA             | sp.RS14_ECOLI             | sp:RL33_ECOLI             | pir.RSEC28                | pir.B70033                        | pri 2420312A               | SP.RL31_HAEDU             | gp.SC51A_14                                 |        | sp.COPR_PSESM                            | Sp. BAES_ECOLI              | pir S45229                | sp.CNX1_ARATH                                                                                |        | SP:MSCL_MYCTU                                    | pir.A70601                                 | pir.JC4389                            |
|                     | ORF<br>(bp)                                      | 999                                                               | 327                                           | 321    | 249                       | 303                       | 162                       | 234                       | 1611                              | 312                        | 264                       | 171                                         | 447    | 698                                      | 1365                        | 1239                      | 585                                                                                          | 198    | 405                                              | 651                                        | 570                                   |
|                     | _                                                | -                                                                 | -                                             | _      |                           | 10                        |                           | _                         | 9                                 | _                          | _                         |                                             | 6      | 8                                        | 8                           | 8                         | 8                                                                                            | -      | 9                                                | ۰                                          | 9                                     |
|                     | Termin<br>(nt)                                   | 92239                                                             | 92313                                         | 92398  | 92415                     | 92442                     | 92473                     | 92490                     | 92532                             | 9269                       | 9277                      | 92792                                       | 92733  | 9288                                     | 9305                        | 9316                      | 93228                                                                                        | 9324   | 93257                                            | 93306                                      | 93373                                 |
|                     | Initial<br>(nt)                                  | 923081                                                            | 923464                                        | 923661 | 924407                    | 924727                    | 924895                    | 925134                    | 926935                            | 927242                     | 927474                    | 927752                                      | 927785 | 928117                                   | 928884                      | 930410                    | 931706                                                                                       | 932290 | 932974                                           | 933710                                     | 934302                                |
|                     | SEQ<br>NO.                                       | 4464                                                              | 4465                                          | 4466   | 4487                      | 4468                      | 4469                      | 4470                      | 4471                              | 4472                       | 4473                      | 4474                                        | 4475   | 4478                                     | 4477                        | 4478                      | 4479                                                                                         | 4480   | 4481                                             | 4482                                       | 4483                                  |
|                     | SEQ<br>NO<br>(DNA)                               | 964                                                               | 965                                           | 966    | 196                       | 968                       | 969                       | 970                       | 971                               | 972                        | 973                       | 974                                         | 975    | 976                                      | 977                         | 978                       | 979                                                                                          | 980    | 981                                              | 982                                        | 983                                   |

|                           |                 |                       | —т                     |                                    | $\neg \tau$                                      |                                            | Т                         | T             | $\neg \neg$                         |                                             | $\neg \tau$                        |                                     | $\overline{}$                              |                                                                | Т                          |                                                           | $\Box$                     | $\neg$ | 1                    |
|---------------------------|-----------------|-----------------------|------------------------|------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------|---------------|-------------------------------------|---------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------|----------------------------------------------------------------|----------------------------|-----------------------------------------------------------|----------------------------|--------|----------------------|
| 5                         | Function        | Atadasa               |                        | synthesis protein                  | stanine N-                                       | brane protein                              | protein                   |               | brane protein                       | brane protein                               | 936                                | brane protein                       | ein                                        | synthetase                                                     | DNA helicase               | ein                                                       | •In                        |        |                      |
| 10                        | Fun             | dedande t esconte CTI | uridylyttransferase    | molybdopterin blosynthesis protein | ribosomal-protein-alanine N-<br>acetytransferase | hypothetical membrane protein              | cyanate transport protein |               | hypothetical membrane protein       | hypothetical membrane protein               | cyclomaltodextrinase               | hypathetical membrane protein       | hypothetical protein                       | methionyl-tRNA synthetase                                      | ATP-dependent DNA helicase | hypothetical protein                                      | hypothetical protein       |        | transposase          |
| 15                        | Matched         | (0 B)                 | 296                    | 390                                | 193                                              | 367                                        | 380                       |               | 137                                 | 225                                         | 444                                | 488                                 | 272                                        | 615                                                            | 741                        | 210                                                       | 363                        |        | 96                   |
| 20                        | Similarity      | R                     | 689                    | 62.6                               | 54.9                                             | 54.8                                       | 62.4                      |               | 9.09                                | 59 6                                        | 536                                | 75.2                                | 78.3                                       | 68.7                                                           | 49.0                       | 53.3                                                      | 29.0                       |        | 59.6                 |
|                           |                 | (R)                   | 42.2                   | 31.8                               | 29 0                                             | 30.3                                       | 26.6                      |               | 32 1                                | 25.3                                        | 26.8                               | 43.0                                | 54 0                                       | 33.8                                                           | 28.2                       | 27.6                                                      | 30.0                       |        | 330                  |
| 25<br>G                   | <b>e</b>        |                       | ris                    | irans                              | 7                                                | sisolo                                     | Xu/                       |               | e Rd                                | ulosis                                      | 244                                | ulosis                              | ulosis                                     | Delta H                                                        |                            | Delta H                                                   | XBG                        |        | _                    |
| 30<br>Sprinificol Federal | Homologous gene |                       | Xanthomonas campestris | Arthrobacter nicotinovorans moeA   | Escherichia coli K12 rimJ                        | Mycobacterium tuberculosis<br>H37Rv Rv0998 | Escherichia coli K12 cynX |               | Haemophilus influenzae Rd<br>H11602 | Mycobacterium tuberculosis<br>H37Rv Rv0093c | Bacilius sphaericus E-244<br>CDase | Mycobacterium tuberculosis<br>H37Rv | Mycobacterium tuberculosis<br>H37Rv Rv1003 | Methanobacterium<br>thermoautotrophicum Delta H<br>MTHS87 metG | Escherichia coli recQ      | Methanobacterium<br>thermoautotrophicum Delta H<br>MTH796 | Bacillus subtilis 168 yxaG |        | Enterococcus faecium |
| 35                        | db Maich        |                       | pir.JC4985 X           | pri.2403296B                       | SP:RIMJ_ECOLI E                                  | pir:G70601                                 | SP CYNX_ECOLI             |               | Sp YG02_HAEIN                       | SP:Y05C_MYCTU                               | SP CDAS_BACSH                      | pir E70602                          | SP Y19J_MYCTU                              | sp SYM_METTH                                                   | prf. 1306383A              | pir. B69206                                               | Sp. YXAG_BACSU             |        | gp.AF029727_1        |
|                           | ORF             | (dq)                  | 1 268                  | 1257                               | 099                                              | 1020                                       | 1200                      | 1419          | 405                                 | 714                                         | 1187                               | 1560                                | 825                                        | 1830                                                           | 2049                       | 8 633                                                     | 1158                       | 3 531  | 5 294                |
| 45                        | Termina         | (ut)                  | 935319                 | 936607                             | 937274                                           | 93840                                      | 939626                    | 93779         | 94009                               | 94075                                       | 94192                              | 94238                               | 94483                                      | 94866                                                          | 95083                      | 95082                                                     | 95183                      | 953(   | 95426                |
| 50                        | Initial         | (jc)                  | 934423                 | 935351                             | 936615                                           | 937382                                     | 938427                    | $\overline{}$ | 939686                              | 940041                                      | 940759                             | 943940                              | 944009                                     | 945840                                                         | 948791                     | <del></del>                                               | 952991                     |        | _                    |
|                           | SEO             | 2 •                   | 4484                   | 4485                               | 4486                                             | 4487                                       | 4488                      | 4489          | 4490                                | 4491                                        | 4492                               | 4493                                | 4494                                       | 4495                                                           | 4496                       |                                                           | 4498                       |        | 0 4500               |
| 55                        | SEG             | ON (S)                | 984                    | 985                                | 986                                              | 987                                        | 988                       | 686           | 066                                 | 991                                         | 992                                | 993                                 | 994                                        | 995                                                            | 966                        | 766                                                       | 966                        | 666    | 1000                 |

|                           |                             |                      |                            |              |                         |                                     |        |                      |                      |                                             | _                          | $\overline{}$ |                                            | 7                                              |                               | $\overline{}$                              |        |                                     |                           |                                            | - 1                                      |           |
|---------------------------|-----------------------------|----------------------|----------------------------|--------------|-------------------------|-------------------------------------|--------|----------------------|----------------------|---------------------------------------------|----------------------------|---------------|--------------------------------------------|------------------------------------------------|-------------------------------|--------------------------------------------|--------|-------------------------------------|---------------------------|--------------------------------------------|------------------------------------------|-----------|
| 5                         | Function                    | transposase          | fransposase subunit        |              | D-lactate dehydrogenase | site-specific DNA-methyltransferase |        | transposase          | transposase          | transcriptional regulator                   | cadmium resistance protein |               | hypothetical protein                       | hypothetical protein                           | dimethyladenosine transferase | Isopentenyl monophosphate kinase           |        | ABC transporter                     | pyridoxine kınase         | hypothetical protein                       | hypothetical protein                     |           |
| 15                        | Matched<br>length<br>(a.a.) | 139 tr               | 112 17                     | $\neg$       | 585 C                   | 231                                 |        | 94                   | 139                  | 16                                          | 205                        |               | 263                                        | 362                                            | 265                           | 315                                        |        | 478                                 | 242                       | 159                                        | 108                                      |           |
| 20                        | Similarity<br>(%)           | 9.79                 | 88.4                       |              | 75.6                    | 62.8                                |        | 59.6                 | 67.6                 | 84.6                                        | 8.89                       |               | 707                                        | 63.5                                           | 65.3                          | 67.0                                       |        | 858                                 | 67.4                      | 58.5                                       | 78.7                                     |           |
|                           | Identity<br>(%)             | 41.7                 | 73.2                       |              | 46.4                    | 30.8                                |        | 33.0                 | 41.7                 | 62.6                                        | 31.7                       |               | 46.4                                       | 34.8                                           | 34.3                          | 42.5                                       |        | 85.5                                | 40.1                      | 27.0                                       | 45.4                                     |           |
| <i>25</i> (penu           | •                           |                      | InpA                       |              |                         | OK8                                 |        |                      |                      | ulosis                                      | s cadD                     |               | ulosis                                     | sulosis                                        | SgA                           | ulosis                                     |        | ythraea                             | JaxK                      | cutosis                                    | lor A3(2)                                |           |
| 86<br>Table 1 (continued) | Homologous gene             | Escherichia coli K12 | Brevibacterium linens tnpA |              | Escherichia coll did    | Kiebsiella pneumoniae OK8<br>kpn!M  |        | Enterococcus faecium | Escherichia coli K12 | Mycobacterium tuberculosis<br>H37Rv Rv1994c | Staphylococcus aureus cadD |               | Mycobacterium tuberculosis<br>H37Rv Rv1008 | Mycobacterium tuberculosis<br>H37Rv Rv1009 rpf | Escherichia coli K12 ksgA     | Mycobacterium tuberculosis<br>H37Rv Rv1011 |        | Saccharopolyspora erythraea<br>ertX | Escherichia coli K12 pdxK | Mycobacterium tuberculosis<br>H37Rv Rv2874 | Streptomyces coelicolor A3(2)<br>SCF1.02 |           |
| 35                        |                             | ŭi                   | ā                          |              | i iii                   |                                     |        |                      | ш                    |                                             | S                          |               | ΣI                                         | 21                                             |                               | 21                                         | -      | 0, 0                                |                           |                                            | 0, 0,                                    |           |
| 40                        | db Match                    | pir.TQEC13           | gp. AF052055_1             |              | prf 2014253AE           | SP MTK1_KLEPN                       |        | gp AF029727_1        | pir TOECI3           | sp:YJ94_MYCTU                               | prf 2514367A               |               | plr C70603                                 | pir 070603                                     | Sp. KSGA_ECOLI                | pır F70603                                 |        | pir S47441                          | SP PDXK_ECOLI             | sp YX05_MYCTU                              | gp:SCF1_2                                |           |
|                           | ORF<br>(bp)                 | 477                  | 414                        | 864          | 1713                    | 840                                 | 219    | 294                  | 477                  | 357                                         | 621                        | 342           | 831                                        | 1071                                           | 879                           | 933                                        | 642    | 1833                                | 792                       | 480                                        | 321                                      |           |
|                           | Ę 0                         | 35                   | 32                         | 12           | 8                       | 84                                  | 90     | 37                   | 86                   | 92                                          | 24                         | 32            | 63                                         | 66                                             | 98                            |                                            | 88     | 3860                                | 94.5                      | 946                                        | 349                                      | $\dagger$ |
|                           | Term!                       | 9547                 | <del>!</del> -             | 9567         | 9556                    | 95784                               | ├      | 96037                | ╀╌                   | <del>!</del> -                              | 962                        | 9613          | 96363                                      | 1 9649                                         | 1 965                         | 7 9667                                     | 965    | 9686                                | 2 989                     | 696 0                                      | 9 970                                    | -         |
| 50                        | Initial<br>(nt)             | 954277               | 954941                     |              | 957398                  | 958683                              | 959403 | 960081               | <del></del>          |                                             | 961629                     | 961662        | <del></del>                                | 963864                                         | 964974                        | 965852                                     | 966591 | -                                   | 968667                    |                                            | 970029                                   |           |
|                           | SEQ                         | 4501                 | 4502                       | 4503         | 4504                    | 4505                                | 4508   | 4507                 | 4508                 | 4509                                        | 4510                       | 4511          | 4512                                       | 4513                                           | 4514                          | 4515                                       | 4516   | 4517                                | 4518                      | 4519                                       | 4520                                     |           |
| 55                        | SEO                         | <u> </u>             |                            | <del>-</del> | 1004                    |                                     | 1006   |                      | <del></del>          |                                             | 1010                       | 1011          | 1012                                       | 1013                                           | 1014                          | 1015                                       | 1016   | 1017                                | 1018                      | 1019                                       | 1020                                     |           |

| 5                 | Function          | hypothetical protein                     |                                          | hypothetical protein       | enoyl-CoA hydratase                       |        |        |        | major secreted protein PS1 protein precursor                             | transcriptional regulator (tetR<br>family ) | membrane transport protein                  | S-adenosylmethionine;2-<br>demethylmenaquinone<br>methyltransferase |        | hypothetical protein           | hypothetical protein                        |        | peptide-chain-release factor 3 | amide-ures transport protein         |  |
|-------------------|-------------------|------------------------------------------|------------------------------------------|----------------------------|-------------------------------------------|--------|--------|--------|--------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|--------|--------------------------------|---------------------------------------------|--------|--------------------------------|--------------------------------------|--|
| 15                | pa q              | 1                                        | 1 regulator                              |                            |                                           |        |        |        |                                                                          |                                             |                                             |                                                                     |        |                                |                                             |        |                                |                                      |  |
|                   | Matched           | 107                                      | 28                                       | 276                        | 337                                       |        |        |        | 440                                                                      | 100                                         | 802                                         | 157                                                                 |        | 121                            | 482                                         |        | 548                            | 404                                  |  |
| 20                | Similarity<br>(%) | 69.2                                     | 98.1                                     | 59.1                       | 70.9                                      |        |        |        | 56.8                                                                     | 70.0                                        | 70 0                                        | 75.8                                                                |        | 63.8                           | 48.3                                        |        | 68.0                           | 72.8                                 |  |
|                   | Identity<br>(%)   | 35.5                                     | 84.8                                     | 27.2                       | 35.6                                      |        |        |        | 27.7                                                                     | 44.0                                        | 426                                         | 38.2                                                                |        | 29.8                           | 24 9                                        |        | 39.2                           | 42.8                                 |  |
| 25<br>5<br>5<br>7 | gene              | olor A3(2)                               | olor A3(2)                               | ухеН                       | erculosis                                 |        |        |        | utamicum<br>rum) ATCC                                                    | color A3(2)                                 | color A3(2)                                 | nzae Rd                                                             |        | dis NMA1953                    | erculosis                                   |        | 2 prfC                         | ylotrophus                           |  |
| 30                | Homologous gene   | Streptomyces coelicolor A3(2)<br>SCF1 02 | Streptomyces coelicolor A3(2)<br>SCJ1.15 | Bacillus subtilis 168 yxeH | Mycobacterium tuberculosis<br>H37Rv echA9 |        |        |        | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17965 csp1 | Streptomyces coelicolor A3(2)<br>SCF56.08   | Streptomyces coelicolor A3(2)<br>SCE87, 17c | Haemophilus influenzae Rd<br>H10508 menG                            |        | Neisseria meningitidis NMA1953 | Mycobacterium tuberculosis<br>H37Rv Rv1128c |        | Escherichia coli K12 prfC      | Methylophilus methylotrophus<br>fmdD |  |
| 35                |                   | 100                                      | ဖ်ာတ                                     | t                          | ≥I                                        |        |        |        |                                                                          | o o                                         | os os                                       |                                                                     |        | 12,                            | 21                                          |        | ш                              | 2 &                                  |  |
| 40                | db Match          | gp.SCF1_2                                | gp:SCJ1_15                               | SP.YXEH_BACSU              | pir.E70893                                |        |        |        | sp.CSP1_CORGL                                                            | gp.SCF56_6                                  | 9P.SCE87_17                                 | sp.MENG_HAEIN                                                       |        | gp:NMA622491_21                | pir.A70539                                  |        | pir.159305                     | pd.2406311A                          |  |
|                   | ORF<br>(bp)       | 321                                      | 096                                      | 792                        | 1017                                      | 654    | 777    | 1212   | 1386                                                                     | 579                                         | 2373                                        | 498                                                                 | 999    | 381                            | 1551                                        | 938    | 1647                           | 1269                                 |  |
| 45                | Terminal<br>(nt)  | 970738                                   | 971823                                   | 972244                     | 974155                                    | 973304 | 974962 | 974965 | 977734                                                                   | 977800                                      | 978368                                      | 981490                                                              | 982287 | 982294                         | 984650                                      | 985845 | 984864                         | 988007                               |  |
| 50                | Initial<br>(nt)   | 970418                                   | 970864                                   | 973035                     | 973139                                    | 973957 | 974186 | 976176 | 976349                                                                   | 978378                                      | 980740                                      | 980993                                                              | 981622 | 982674                         | 983100                                      | 984910 | 986510                         | 986739                               |  |
|                   |                   | 4521                                     | 4522                                     | 4523                       | 4524                                      | 4525   | 4526   | 4527   | 4528                                                                     | 4529                                        | 4530                                        | 4531                                                                | 4532   | 4533                           | 4534                                        | 4535   | 4536                           | 4537                                 |  |
| 55                | SEQ               | 1021                                     | 1022                                     | 1023                       | 1024                                      | 1025   | 1026   | 1027   | 1028                                                                     | 1029                                        | 1030                                        | 1031                                                                | 1032   | 1033                           | 1034                                        | 1035   | 1036                           | 1037                                 |  |

|                              |                             |                                      |                                      |                                                                          |                                                                          |                          |                            |                                             |                                                                                 | $\neg$                   |                                          |                                    |                                    |                                       |                                              | $\overline{}$ |                           |                                  |
|------------------------------|-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|----------------------------|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------|------------------------------------------|------------------------------------|------------------------------------|---------------------------------------|----------------------------------------------|---------------|---------------------------|----------------------------------|
| 5                            | Function                    | amide-urea transport protein         | amide-ures transport protein         | high-affinity branched-chain amino<br>acid transport ATP-binding protein | high-affinity branched-chain amino<br>acid transport ATP-binding protein | peptidyl-tRNA hydrolase  | 2-nitropropane dioxygenase | giyceraldehyde-3-phosphate<br>dehydrogenase | polypeptides predicted to be useful<br>antigens for vaccines and<br>diagnostics | peptidyi-tRNA hydrolase  | 50S ribosomal protein L25                | lactoylglutathione lyase           | DNA alkylation repair enzyme       | ribose-phosphate<br>pyrophosphokinase | UDP-N-acetylglucosamina<br>pyrophosphorylase |               | sufi protein precursor    | nodulation ATP-binding protein I |
|                              |                             | E                                    | Ē                                    | hig<br>BCi                                                               | Dig<br>Scl                                                               | <u>a</u>                 | 2.                         | d gly                                       | 0 6 5                                                                           | De                       | သ                                        | -                                  | ă                                  | 년 Y                                   | 2 9                                          |               | 3                         | ٤                                |
| 15                           | Matched<br>length<br>(a.a.) | 77                                   | 234                                  | 253                                                                      | 238                                                                      | 187                      | 361                        | 342                                         | 51                                                                              | 174                      | 194                                      | 143                                | 208                                | 316                                   | 452                                          |               | 208                       | 310                              |
| 20                           | Similarity (%)              | 61.0                                 | 680                                  | 700                                                                      | 69 1                                                                     | 706                      | 540                        | 728                                         | 610                                                                             | 632                      | 65 0                                     | 548                                | 62.5                               | 1.67                                  | 71.9                                         |               | 61.7                      | 64.8                             |
|                              | Identity<br>(%)             | 40.8                                 | 34.6                                 | 37.9                                                                     | 35.2                                                                     | 39.0                     | 25.2                       | 39.5                                        | 54.0                                                                            | 38.5                     | 47.0                                     | 28.7                               | 38.0                               | 44.0                                  | 42.0                                         |               | 30.8                      | 35.8                             |
| so 52<br>Table 1 (continued) | Hamologous gene             | ethylotrophus                        | ethylotrophus                        | eruginosa PAO                                                            | eruginosa PAO                                                            | K12 pth                  | IFO 0895                   | seofulvus gap                               | gitidis                                                                         | K12 pth                  | tuberculosis                             | imurium D21                        | ATCC 10987                         | prs                                   | Qeob                                         |               | K12 suff                  | 133 nodl                         |
|                              | Homolog                     | Mathylophilus methylotrophus<br>fmdE | Mathylophilus methylotrophus<br>fmdF | Pseudomonas aeruginosa PAO braF                                          | Pseudomonas aeruginosa PAO<br>braG                                       | Escherichia coli K12 pth | Williopsis mrakii IFO 0895 | Streptomyces roseofulvus gap                | Neisseria meningitidis                                                          | Escherichia coli K12 pth | Mycobacterium tuborculosis<br>H37Rv rplY | Salmonella typhimurium D21<br>gloA | Bacillus cereus ATCC 10987<br>alkD | Bacillus subtilis prs                 | Bacillus subtilis gcaD                       |               | Escherichia coli K12 sufi | Rhizobium sp. N33 nodl           |
| <b>35</b>                    | db Match                    | prt:2406311B                         | prt:2406311C                         | sp.BRAF_PSEAE                                                            | SP.BRAG_PSEAE                                                            | SP.PTH_ECOLI             | SP. ZNPD_WILMR             | sp G3P_ZYMMO                                | GSP Y75094                                                                      | SP PTH_ECOLI             | pir.B70622                               | sp LGUL_SALTY                      | prt 2516401BW                      | sp KPRS_BACCL                         | pir S66080                                   |               | SUFI_ECOLI                | sp NODI_RHIS3                    |
|                              | ORF<br>(bp)                 | 882                                  | 1077                                 | 726                                                                      | 669                                                                      | 812                      | 1023                       | 1065                                        | 369                                                                             | 531                      | 900                                      | 429                                | 624                                | 975                                   | 1455                                         | 1221          | 1533                      | 918                              |
| 45                           | Termina<br>(nt)             | 988904                               | 989980                               | 990705                                                                   | 991414                                                                   | 991417                   | 993080                     | 994613                                      | 994106                                                                          | 99484                    | 99552                                    | 996830                             | 996833                             | 99746                                 | 99845                                        | 100001        | 1002864                   | 1003930                          |
| 50                           | Initial<br>(nt)             | 988023                               | 988904                               | 989980                                                                   | 91 2066                                                                  | 992026                   | 992058                     | 993549                                      | 994474                                                                          | 995375                   | 996126                                   | 996402                             | 997456                             | 998440                                | 606666                                       | 1001242       | 1001332                   | _                                |
|                              | SEO<br>NO                   | 4538                                 | 4539                                 | 4540                                                                     | 4541                                                                     | 4542                     | 4543                       | 4544                                        | 4545                                                                            | 4546                     | 4547                                     | 4548                               | 4549                               | 4550                                  | 4551                                         | 4552          | 4553                      | 4554                             |
| 55                           | SEQ (SON)                   |                                      | 1039                                 | 1040                                                                     | 1041                                                                     | 1042                     | 1043                       | 1044                                        | 1045                                                                            | 1046                     | 1047                                     | 1048                               | 1049                               | 1050                                  | 1551                                         | 1052          | 1053                      | 1054                             |

|                            |                             |                               | $\overline{}$                                   |                                                       | $\overline{}$ |                                           | $\neg \tau$                   | $\neg$  |                              |                                          | $\neg \neg$ |         | $\neg$  |         |                                     |                                                         | - 1     | - 1     | I       |                                             | - 1                                   | - 1     |   |
|----------------------------|-----------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------------|---------------|-------------------------------------------|-------------------------------|---------|------------------------------|------------------------------------------|-------------|---------|---------|---------|-------------------------------------|---------------------------------------------------------|---------|---------|---------|---------------------------------------------|---------------------------------------|---------|---|
| 5                          | Function                    | hypothetical membrane protein | two-component system sensor<br>histidine kinase | two component transcriptional regulator (fuxR family) |               | hypothetical membrane protein             | ABC transporter               |         | ABC transporter              | gamma-glutemytranspeptidase<br>precursor |             |         |         |         | transposase protein fragment        | transposase (IS1628 TnpB)                               |         |         |         | transcriptional regulator (TetR-<br>family) | transcription/repair-coupling protein |         |   |
|                            |                             | hypoth                        | two-cor<br>histidin                             | two cor<br>regulat                                    |               | hypoth                                    | ABC                           |         | ABC tr                       | gamma-g<br>precursor                     |             |         |         |         | transp                              | transpo                                                 |         |         | -       | family)                                     | $\Box$                                | _       |   |
| 15                         | Matched<br>length<br>(a.a.) | 272                           | 459                                             | 202                                                   |               | 349                                       | 535                           |         | 573                          | 888                                      |             |         |         |         | 37                                  | 236                                                     |         |         | j       | 183                                         | 1217                                  |         |   |
| 20                         | Similarity<br>(%)           | 63.2                          | 48.4                                            | 67.3                                                  |               | 64.5                                      | 57.0                          |         | 74.0                         | 58.6                                     |             |         |         |         | 72.0                                | 100.0                                                   |         |         |         | 59.6                                        | 65.1                                  |         |   |
|                            | identity<br>(%)             | 30.2                          | 24.6                                            | 36.6                                                  |               | 31.5                                      | 28.6                          |         | 44.0                         | 32.4                                     |             |         |         |         | 64.0                                | 9.66                                                    |         |         |         | 23.0                                        | 38.2                                  | _       |   |
| 55 September 1 (Continued) | us gene                     | Jans ORF2                     | .12 uhpB                                        | setius darN                                           |               | elicolor A3(2)                            | ucescens strV                 |         | megmatis exiT                | (12 ggt                                  |             |         |         |         | glutamicum                          | glutamicum<br>pAG1 tnpB                                 |         |         |         | etR                                         | пfd                                   |         |   |
| Table 1                    | Homologous gene             | Streptomyces lividans ORF2    | Escherichia coli K12 uhpB                       | Streptomyces peucetius dnrN                           |               | Streptomyces coelicolor A3(2)<br>SCF15.07 | Streptomyces glaucescens strV |         | Mycobacterium smegmatis exiT | Escherichia coli K12 ggl                 |             |         |         |         | Corynebacterium glutamicum<br>TnpNC | Corynebacterium glutamlcum<br>22243 R-plasmid pAG1 tnpB |         |         |         | Escherichia coll tetR                       | Escherichia coli mfd                  |         |   |
| 35                         |                             | S                             |                                                 | 0,                                                    |               | 0,0                                       | 0)                            |         | _                            |                                          | $\vdash$    |         |         |         |                                     |                                                         |         |         |         |                                             | П                                     |         |   |
| 40                         | db Match                    | pir JN0850                    | Sp:UHPB_ECOLI                                   | prf.2107255A                                          |               | gp:SCF15_7                                | pir.S65587                    |         | pir. T14180                  | sp GGT_ECOLI                             |             |         |         |         | GPU AF184956_23                     | gp.AF121000_8                                           |         |         |         | sp:TETC_ECOLI                               | SP.MFD_ECOLI                          |         |   |
|                            | ORF<br>(bp)                 | 831                           | +-: -                                           | 609                                                   | 204           | 1155                                      | 1440                          | 153     | 1734                         | 1985                                     | 249         | 519     | 192     | 606     | 243                                 | 708                                                     | 462     | 265     | 312     | 651                                         | 3627                                  | 1224    |   |
| <b>4</b> 0                 |                             | 1                             | -                                               | -                                                     | -             | <u>1</u>                                  | L_                            | 픙       | 18                           | <del>  6</del> -                         | 3           | 8       | 8       | 8       | 8                                   | 5                                                       | 8       | 4       | ~       | ဖ                                           | ဖ                                     | 9       | _ |
|                            | Termina<br>(nt)             | 100478                        |                                                 | 100689                                                | 100673        | 10081                                     | 101006                        | 100853  | 101179                       | 1011797                                  | 101426      | 101434  | 10151   | 101656  |                                     | 10151                                                   | 10170   | 10172   | 10183   | 10190                                       | 10227                                 | 5       |   |
| 50                         | Initial<br>(nt)             | 1003953                       | 1004829                                         | 1006089                                               | 1006937       | 1006998                                   | 1008622                       | 1008686 |                              | 1013761                                  | 1014016     | 1014861 | 1014925 | 1015652 | 1015692                             | 1015852                                                 | 1016557 | 1017870 | 1018082 | 1018416                                     | 1019090                               | 1020613 | ı |
|                            | SEO                         | 4555                          | 4556                                            | 4557                                                  | 4558          | 4559                                      | 4560                          | 4561    | +-                           | 4563                                     | 4584        | 4565    | 4568    | 4567    | 4568                                | 4569                                                    | 4570    | 4571    | 4572    | 4573                                        | 4574                                  | 4575    |   |
| 55                         | SEO                         | 1055                          | 1056                                            | 1057                                                  | 1058          | 1059                                      | 1060                          | 1061    | 1062                         | 1063                                     | 1064        | 1065    | 1066    | 1067    | 1068                                | 1069                                                    | 1070    | 1071    | 1072    | 1073                                        | 1074                                  | 1075    |   |

| 5                   | Function                    | Neisserial polypeptides predicted to<br>be useful antigens for vaccines and<br>diagnostics | mutidrug resistance-like ATP-<br>binding protein, ABC-type transport<br>protein | ABC transporter                             | hypothetical membrane protein                 |         | hypothetical protein   |         |         | ipq∪ protein                                    | enolase (2-phosphoglycerate<br>dehydratase)(2-phospho-D-<br>glycerate hydro-lyase) | hypothetical protein        | hypothelical protein                       | hypothetical protein                       | guanosine pentaphosphatase or exopolyphosphatase |         | threonine dehydratase |         |
|---------------------|-----------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------|------------------------|---------|---------|-------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|---------|-----------------------|---------|
| 15                  | Matched<br>length<br>(s.a.) | 76                                                                                         | 632                                                                             | 574                                         | 368                                           |         | 183                    |         |         | 241                                             | 422                                                                                | 41                          | 191                                        | 153                                        | 329                                              |         | 314                   |         |
| 20                  | Similarity<br>(%)           | 0.69                                                                                       | 62.7                                                                            | 81.9                                        | 100.0                                         |         | 57.4                   | j       |         | 689                                             | 86 0                                                                               | 280                         | 550                                        | 77 8                                       | 55 0                                             |         | 64 7                  |         |
|                     | identity<br>(%)             | 48.0                                                                                       | 31.3                                                                            | 50.2                                        | 100.0                                         |         | 33.4                   |         |         | 46.5                                            | 64.5                                                                               | 68.0                        | 31.9                                       | 59.5                                       | 25.2                                             |         | 303                   |         |
| Table 1 (continued) | Homologous gene             | Neisserla gonomhoeae                                                                       | Escherichia coli mdiB                                                           | Mycobacterium tuberculosis<br>H37Rv Rv1273c | Corynebacterium glutamicum<br>ATCC 13032 orf3 |         | Bacillus subtilis yabN |         |         | Mycobacterium tuberculosis<br>H37Rv Rv1022 IpqU | Bacillus subtills eno                                                              | Aeropyrum pernix K1 APE2459 | Mycobacterium tuberculosis<br>H37Rv Rv1024 | Mycobacterium tuberculosis<br>H37Rv Rv1025 | Escherichia coli gppA                            |         | Escherichia coli tdcB |         |
| 40                  | db Match                    | GSP:Y75301                                                                                 | sp:MDLB_ECOLI                                                                   | sp:YC73_MYCTU                               | sp YLI3_CORGL                                 |         | SP YABN_BACSU          |         |         | pir.A70623                                      | 1275 sp ENO_BACSU                                                                  | PIR 872477                  | pir C70623                                 | pir D70623                                 | sp GPPA_ECOLI                                    |         | sp THD2_ECOLI         |         |
|                     | ORF<br>(bp)                 | 228                                                                                        | 1968                                                                            | 1521                                        | 2382                                          | 297     | 585                    | 426     | 378     | 786                                             | <del></del>                                                                        | 144                         | 540                                        | 546                                        | 963                                              | 984     | 930                   | 195     |
| 45                  | Termina<br>(nt)             | 1021078                                                                                    | 102269                                                                          | 102466                                      | 102650                                        | 103218  | 103278                 | 103278  | 103326  | 103473                                          | 1036228                                                                            | 103601                      | 1036855                                    | 103744                                     | 10384                                            | 103649  | 103872                | 103997  |
| 50                  | Initial<br>(nt)             | 1021305                                                                                    | 1024666                                                                         | 1026396                                     | 1028886                                       | 1031885 | 1032196                | 1033185 | 1033646 | 1033954                                         | 1034949                                                                            | 1036159                     | 1036316                                    | 1036900                                    | 1037448                                          | 1037481 | 1039650               | 1039783 |
|                     | SEO                         | <del></del>                                                                                | 4577                                                                            | 4578                                        | 4579                                          | 4580    | 4581                   | 4582    | 4583    | 4584                                            | 4585                                                                               | 4586                        |                                            | 4588                                       | 4589                                             | 4590    | 4591                  | 4592    |
| 55                  | SEQ                         | 1076                                                                                       | 1077                                                                            | 1078                                        | 1079                                          | 1080    | 1081                   | 1082    | 1083    | 1084                                            | 1085                                                                               | 1086                        | 1087                                       | 1088                                       | 1089                                             | 1090    | 1091                  | 1092    |

| 5                                  | Function                    |         | hypothetical protein     | transcription activator of L-rhamnose operon | hypothetical protein                       |         | hypothelical protein                      | franscription elongation factor | hypothetical protein                        | lincomych-production           |         | 3-deoxy-D-arabino-heptulosonate-7-<br>phosphate synthase |         | hypothetical protein or undecaprenyl pyrophosphate synthetase | hypothetical protein                                  |         |         | pantothenate kinase   | serine hydroxymethyl transferase     | p-aminobenzoic acid synthase |         |  |
|------------------------------------|-----------------------------|---------|--------------------------|----------------------------------------------|--------------------------------------------|---------|-------------------------------------------|---------------------------------|---------------------------------------------|--------------------------------|---------|----------------------------------------------------------|---------|---------------------------------------------------------------|-------------------------------------------------------|---------|---------|-----------------------|--------------------------------------|------------------------------|---------|--|
| 15                                 | Matched<br>length<br>(a.a.) |         | 56 h                     | 242 ti                                       | 282 h                                      |         | 140 h                                     | 143 tı                          | 140 h                                       | 300                            |         | 367                                                      |         | 97                                                            | 28 h                                                  |         |         | 308 p                 | 434 8                                | 698 p                        |         |  |
| 20                                 | Similarity<br>(%)           |         | 74.1                     | 55.8                                         | 1 08                                       |         | 57.1                                      | 60.1                            | 72.1                                        | 56.3                           |         | 99.5                                                     |         | 97.3                                                          | 100.0                                                 |         |         | 79.9                  | 100.0                                | 70.1                         |         |  |
|                                    | Identity<br>(%)             |         | 46.3                     | 24.8                                         | 87.8                                       |         | 30.0                                      | 35.0                            | 34.3                                        | 31.7                           |         | 99.2                                                     |         | 96.0                                                          | 100.0                                                 |         |         | 53.9                  | 99.5                                 | 47.8                         |         |  |
| % September 25 Table 1 (continued) | s gene                      |         | ma MSB8                  | аК                                           | berculosis                                 |         | licolor A3(2)                             | ·eA                             | beraulosis                                  | olnensis ImbE                  |         | glutamicum                                               |         | glutamicum                                                    | glutamicum<br>avum)                                   |         |         | 28.A                  | vum MJ-233                           | eus pabS                     |         |  |
| 30 Table 1 ((                      | Homologous gene             |         | Thermotoga maritima MSB8 | Escherichla coli rhaR                        | Mycobacterium tuberculosis<br>H37Rv Rv1072 |         | Streptomyces coelicolor A3(2)<br>SCF55.39 | Escherichia coli greA           | Mycobacterium tuberaulosis<br>H37Rv Rv1081c | Streptomyces lincolnensis ImbE |         | Corynebacterium glutamicum<br>aroG                       |         | Corynebacterium glutamicum<br>CCRC18310                       | Corynebacterium glutamicum<br>(Brevibacterlum flavum) |         |         | Escherichia coli coaA | Brevibacterium flavum MJ-233<br>glyA | Streptomyces griseus pabS    |         |  |
| 35                                 |                             |         | F                        |                                              | ΣI                                         |         |                                           |                                 | ≥ I                                         | S                              |         |                                                          |         |                                                               |                                                       |         |         |                       | <b>8</b> 5                           |                              |         |  |
| 40                                 | db Match                    |         | pir.872287               | SP RHAR_ECOLI                                | pir.F70893                                 |         | gp:SCF55_39                               | SP GREA_ECOLI                   | pir.G70894                                  | pir.S44952                     |         | sp AROG_CORGL                                            |         | SP YARF_CORGL                                                 | SP.YARF_CORGL                                         |         |         | sp COAA_ECOLI         | gsp R97745                           | sp PABS_STRGR                |         |  |
|                                    | ORF<br>(bp)                 | 330     | 189                      | 993                                          | 816                                        | 387     | 450                                       | 522                             | 483                                         | 873                            | 318     | 1098                                                     | 633     | 675                                                           | 174                                                   | 519     | 318     | 936                   | 1302                                 | 1860                         | 723     |  |
| -                                  | Termina<br>(nt)             | 104032  | 1040682                  | 104191                                       | 104284                                     | 104285  | 104329                                    | 104377                          | 104447                                      | 104603                         | 104639  | 104770                                                   | 104682  | 104850                                                        | 104852                                                | 104904  | 104906  | 104942                | 105192                               | 105388                       | 105460  |  |
| 50                                 | Initial<br>(nt)             | 1039996 | 1040494                  | 1040925                                      | 1042027                                    | 1043236 | 1043747                                   | 1044295                         | 1044959                                     | 1045158                        | 1046073 | 1046610                                                  | 1047452 | 1047827                                                       | 1048356                                               | 1048525 | 1049385 | 1050362               | 1050624                              | 1052021                      | 1053880 |  |
|                                    | SEQ<br>NO<br>NO             | 4593    | 4594                     | 4595                                         | 4596                                       | 4597    | 4598                                      | 4599                            | 4600                                        | 4601                           | 4602    | 4603                                                     | 1604    | 4605                                                          | 4606                                                  | 4607    | 4608    | 4609                  | 4610                                 | 4611                         | 4612    |  |
| 55                                 | SEQ<br>NO<br>(DNA)          | 1093    | 1094                     | 1095                                         | 1096                                       | 1097    | 1098                                      | 1099                            | 1100                                        | 1101                           | 1102    | 1103                                                     | 1104    | 1105                                                          | 106                                                   | 1107    | 1108    | 1109                  | 1110                                 | 111                          | 1112    |  |

| 5                        | Function                    |         |         | phosphinothricin resistence protin | hypothetical protein  |         | hypothetical protein  | lactem utilization protein | hypothetical membrane protein |              |         | transcriptional regulator |         | fumarate hydratase precursor | NADH-dependent FMN oxydoreductase      |         |         | reductase                                  | dibenzothlophene desulfurization<br>enzyme A | dibenzothiophene desulfurtzation enzyme C (DBT sulfur dioxygenase) | dibenzothiophene desulfurzation enzyme C (DBT sulfur dioxygenase) |         |         |
|--------------------------|-----------------------------|---------|---------|------------------------------------|-----------------------|---------|-----------------------|----------------------------|-------------------------------|--------------|---------|---------------------------|---------|------------------------------|----------------------------------------|---------|---------|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|---------|---------|
| 15                       | Matched<br>length<br>(a.m.) |         |         | 165                                | 38                    |         | 225                   | 276                        | 165                           |              |         | 204                       |         | 456                          | 159                                    |         |         | 184                                        | 443                                          | 372                                                                | 391                                                               |         |         |
| 20                       | Similarity<br>(%)           |         |         | 58.8                               | 59.0                  |         | 57.8                  | 52.2                       | 81.2                          |              |         | 63.2                      |         | 79.4                         | 65 4                                   |         |         | 81.0                                       | 67.7                                         | 51.3                                                               | 61.6                                                              |         |         |
|                          | Identity<br>(%)             |         |         | 30.3                               | 30.3                  |         | 37.8                  | 30.8                       | 40.6                          |              |         | 26.0                      |         | 52.0                         | 32.7                                   |         |         | 55.4                                       | 39.1                                         | 25.8                                                               | 28.9                                                              |         |         |
| ontinued)                | s gene                      |         |         | s ptcR                             | βĶ                    |         | ₽.                    | s lamB                     | Ŧ.                            |              |         | ابر<br>-                  |         | (Rat) fumH                   | hropolis                               |         |         | licolor A3(2)                              | IGTS8 soxA                                   | IGTS8 soxC                                                         | IGTS8 soxC                                                        |         |         |
| &<br>Table 1 (continued) | Homologaus gene             |         |         | Alcaligenes faecalis ptcR          | Escherichia coli ybgK |         | Escherichia coli ybgJ | Emericella nidulans lamB   | Bacillus subtilis yesH        |              |         | Bacillus subtilis ydhC    |         | Rattus norvegicus (Rat) fumH | Rhodococcus erythropolis<br>IGTS8 dszD |         |         | Streptomyces coelicolor A3(2)<br>StAH10 16 | Rhodococcus sp IGTS8 soxA                    | Rhodococcus sp. IGTS8 soxC                                         | Rhodococcus sp IGTS8 soxC                                         |         |         |
| 40                       | db Match                    |         |         | gp.A01504_1                        | Sp:YBGK_ECOLI E       |         | sp.YBGJ_ECOU          | SP.LAMB_EMENI              | Sp.YCSH_BACSU E               |              |         | SP.YDHC_BACSU             |         | SP FUMH_RAT                  | gp AF048979_1                          |         |         | gp SCAH10_16                               | sp SOXA_RHOSO                                | SP. SOXC_RHOSO                                                     | sp.SOXC_RHOSO                                                     |         |         |
|                          | ORF<br>(bp)                 | 984     | 393     | 537                                | 879                   | 1056    | 688                   | 756                        | 591                           | 672          | 603     | 98                        | 1278    | 1419                         | 489                                    | 281     | 447     | 564                                        | 1488                                         | 1080                                                               | 1197                                                              | 780     | 069     |
| 45                       | Terminal<br>(nt)            | 1055722 | 1054640 | 1056319                            | 1058322               | 1058628 | 1057200               | 1057843                    | 1058624                       | 1059889      | 1059962 | 1060792                   | 1062146 | 1062211                      | 1064424                                | 1064478 | 1064754 | 1065304                                    | 1067570                                      | 1068649                                                            | 1069845                                                           | 1068913 | 1069119 |
| 50                       | Initial<br>(n1)             | 1054859 | 1055032 | 1055783                            | 1057200               | 1057573 | 1057868               | 1058598                    | 1059214                       | 4621 1059218 | 1059360 | 1060112                   | 1060869 | 1063629                      |                                        | 1064738 | 1065200 | 1065867                                    | 1066083                                      | 1067570                                                            | 1068649                                                           | 1069692 | 1069808 |
|                          | SEQ<br>NO                   | 4613    | 4614    | 4615                               | 4616                  | 4617    |                       | 1619                       | 4620                          | +-           | 4622    | 4623                      | 4824    | 4625                         | 4626                                   | 4627    | 4628    | 4629                                       | 4630                                         | 4631                                                               | 4632                                                              | 4633    | 4634    |
| 55                       | SEQ<br>NO<br>NO             | 1113    | 1114    | 1115                               | 1116                  | 1117    | 1118                  | 1119                       | 1120                          | 1121         | 1122    | 1123                      | 1124    | 1125                         | 1126                                   | 1127    | 1128    | 1129                                       | 1130                                         | 1131                                                               | 1132                                                              | 1133    | 1134    |

|                     | Function                   | FMNH2-dependent aliphatic sulfonate monooxygenese | glycerol metabolism       | hypothetical protein                       | hypothetical protein   |         | transmembrane efflux protein              | exodeoxyribonuclesse small subunit  | exodeoxyribonuclease large subunit  | penicillin tolerance      | polypeptides predicted to be useful antigens for vaccines and disgnostics |         | permesse                  |         | sodium-dependent proline<br>transporter | major secreted protein PS1 protein precursor                             | GTP-binding protein    | virulence-associated protein | ornithine carbamoyitransferase | hypothetical protein       |
|---------------------|----------------------------|---------------------------------------------------|---------------------------|--------------------------------------------|------------------------|---------|-------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|---------------------------------------------------------------------------|---------|---------------------------|---------|-----------------------------------------|--------------------------------------------------------------------------|------------------------|------------------------------|--------------------------------|----------------------------|
|                     | Matched<br>length<br>(a a) | 397                                               | 325                       | 211                                        | 227                    |         | 82                                        | 62                                  | 466                                 | 311                       | 131                                                                       |         | 938                       |         | 252                                     | 412                                                                      | 381                    | 75                           | 301                            | 143                        |
|                     | Similarity (%)             | 73.1                                              | 75.7                      | 56.4                                       | 66.1                   |         | 78.1                                      | 2.78                                | 9 55                                | 78.8                      | 47.0                                                                      |         | 63.9                      |         | 61.4                                    | 60.0                                                                     | 88.6                   | 0.08                         | 58.8                           | 6.69                       |
|                     | Identity<br>(%)            | 45.3                                              | 44.3                      | 27.5                                       | 31.3                   |         | 36.6                                      | 40.3                                | 30.0                                | 50.2                      | 33.0                                                                      |         | 26.3                      |         | 30.3                                    | 29 9                                                                     | 70.1                   | 57.3                         | 29.6                           | 39.2                       |
| Table 1 (continued) | Homologous gene            | Escherichia coli K12 ssuD                         | Escherichia coli K12 glpX | Mycobacterium tuberculosis<br>H37Rv Rv1100 | Bacillus subtilis ywmD |         | Streptomyces coelicolor A3(2)<br>SCH24.37 | Escherichia coli K12 MG1855<br>xseB | Escherichla coli K12 MG1655<br>xseA | Escherichia coli K12 lytB | Neisseria gonorrhoeae                                                     |         | Escherichia coli K12 perM |         | Rattus norvegicus (Rat) SLC6A7<br>ntpR  | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17965 csp1 | Bacillus subtilis yyaF | Dichelobacter nodosus intA   | Pseudomonas aeruginosa argF    | Bacillus subtilis 168 ykkB |
|                     | db Match                   | gp:ECO237695_3                                    | sp.GLPX_ECOLI             | pir.B70897                                 | pir H70062             |         | gp:SCH24_37                               | sp.EX7S_ECOU                        | sp:EX7L_ECOU                        | sp:LYTB_ECOLI             | GSP:Y75421                                                                |         | SP:PERM_ECOLI             |         | Sp.NTPR_RAT                             | sp CSP1_CORGL                                                            | sp:YYAF_BACSU          | SP. VAPI_BACNO               | sp.OTCA_PSEAE                  | SP YKKB BACSU              |
|                     | ORF<br>(bp)                | 1178                                              | 963                       | 570                                        | 1902                   | 285     | 225                                       | 243                                 | 1251                                | 975                       | 429                                                                       | 828     | 1320                      | 180     | 1737                                    | 1233                                                                     | 1083                   | 297                          | 822                            | 501                        |
|                     | Termina<br>(nt)            | 1071134                                           | 1071479                   | 1073245                                    | 1073340                | 1075641 | 1075329                                   | 1075667                             | 1075933                             | 107827                    | 1077306                                                                   | 1078319 | 107922                    | 1080786 | 1080972                                 | 108295                                                                   | 1085462                | 1086087                      | 108691                         | 108704                     |
| ;                   | Initial<br>(nt)            | 1069959                                           | 1072441                   | 1072676                                    | 1075241                | 1075357 | 1075553                                   | 1075909                             | 1077183                             | 1077297                   | 1077734                                                                   | 1079146 | 1080540                   | 1080965 | 1082708                                 | 1084183                                                                  | 1084380                | 1085791                      | 1086096                        | 4653 1087544               |
|                     | SEQ<br>NO<br>(* *)         | 4635                                              | 4636                      | 4637                                       | 1638                   | 4639    | 4640                                      | 4641                                | 4642                                | 4643                      | 4644                                                                      | 4645    | 4645                      | 4647    | 4648                                    | 4649                                                                     | 4650                   | 4651                         | 4652                           |                            |
|                     | SEQ<br>NO<br>(DNA)         | 1135                                              | 1136                      | 1137                                       | 1138                   | 1139    | 1140                                      | 1141                                | 1142                                | 1143                      | 1144                                                                      | 1145    | 1146                      | 1147    | 1148                                    | 1149                                                                     | 1150                   | 1151                         | 1152                           | 1153                       |

|                     | Function                    | 9-cis retinol dehydrogenase or oxidoreductase | transposase/integrase (IS110)       | hypothetical membrane protein | N-acetylglucosaminyltransferase |         |          | transposase (insertion sequence<br>IS31831) | transposase                                                                 | transposese                                                                 |                |         |           | oxidoreductase or morpyine-6-<br>dehydrogenase (naloxone<br>reductase) | 4-carboxymuconolacione<br>decarboxiyase |            |          | frenolicin gene cluster protein<br>Involved in frenolicin blosynihetic |
|---------------------|-----------------------------|-----------------------------------------------|-------------------------------------|-------------------------------|---------------------------------|---------|----------|---------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|---------|-----------|------------------------------------------------------------------------|-----------------------------------------|------------|----------|------------------------------------------------------------------------|
|                     | Matched<br>length<br>(a.e.) | 198                                           | 396                                 | 1153                          | 259                             |         |          | 97                                          | 125                                                                         | 48                                                                          |                |         |           | 264                                                                    | 108                                     |            |          | 148                                                                    |
|                     | Similarity<br>(%)           | 9.09                                          | 73.0                                | 52.2                          | 47.1                            |         |          | 93.8                                        | 94.4                                                                        | 95 8                                                                        |                |         |           | 66.3                                                                   | 63.9                                    |            |          | 66.4                                                                   |
|                     | Identify<br>(%)             | 33.8                                          | 42.2                                | 23.0                          | 22.8                            |         |          | 82.5                                        | 79.2                                                                        | 87.5                                                                        |                |         |           | 37.5                                                                   | 33.3                                    |            |          | 34.9                                                                   |
| Table 1 (continued) | Homologous gene             | Mus musculus RDH4                             | Streptomyces coelicolor<br>SC3C8.10 | Escherichia coli K12 yegE     | Rhizobium meliloti nodC         |         |          | Corynebacterium glutamicum<br>ATCC 31831    | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>ATCC 13869 | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>ATCC 13869 |                |         |           | Pseudomonas putida M10 norA                                            | Acinetobacter calcoaceticus<br>dc4c     |            |          | Streptomyces roseofulvus frnS                                          |
|                     | db Match                    | gp.AF013288_1                                 | sp. YIS1_STRCO                      | sp. YEGE_ECOLI                | SP.NODC_RHIME                   |         |          | pir.S43613                                  | pir JC4742                                                                  | pir JC4742                                                                  |                |         |           | sp.MORA_PSEPU                                                          | sp.DC4C_ACICA                           |            |          | gp.AF058302_19                                                         |
|                     | ORF<br>(bp)                 | 630                                           | 1208                                | 3042                          | 785                             | 219     | 333      | 291                                         | 375                                                                         | 144                                                                         | 141            | 366     | 498       | 843                                                                    | 321                                     | 603        | 195      | 654                                                                    |
|                     | (nt)                        | 108766                                        | 1088535                             | 1093218                       | 1094698                         | 109491  | 1095384  | 1095387                                     | 1095719                                                                     | 1096188                                                                     | 1098331        | 1096748 | 1097728   | 1098592                                                                | 1098929                                 | 1099750    | 1099015  | 10991                                                                  |
|                     | ļ                           | <u> </u>                                      | <b>↓</b>                            | ــــ                          | <del></del>                     |         | <u> </u> |                                             | !                                                                           | <del></del>                                                                 | <del>!</del> — |         | -         | 1                                                                      |                                         | <b>!</b> — | <u> </u> |                                                                        |
|                     | tnitial<br>(nt)             | 1088293                                       | 1089740                             | 1090175                       | 1093929                         | 1094693 | 1095052  | 1095877                                     | 1096093                                                                     | 1096331                                                                     | 1096471        | 1097111 | 5 1097229 | 1097750                                                                | 1098609                                 | 1099089    | 1099209  | 0 1099768                                                              |
|                     | SEO<br>NO                   | +                                             | 4655                                | 4656                          | 4657                            | 4658    | 4659     | 4660                                        | 4661                                                                        | 4662                                                                        | 4883           | 4684    | 4665      | 4686                                                                   | 4667                                    | 4688       | 4689     | 4670                                                                   |
|                     | SEQ<br>NO<br>(DNA)          | 1154                                          | 1155                                | 1156                          | 1157                            | 1158    | 1159     | 1160                                        | 1181                                                                        | 1162                                                                        | 1163           | 1164    | 1165      | 1166                                                                   | 1167                                    | 1168       | 1169     | 1170                                                                   |

| 5        | Function                    | biotin carboxylase             |         |         |         |         |         | hypothetical protein                       | magnesium chelatase subunit             | 2,3.PDG dependent<br>phosphoglycerate mutase | hypothelical protein                        | cerboxyphosphonoenolpyrwate<br>phosphonomutase | tyrosin resistance ATP-binding protein | hypothetical protein                        | alkyiphosphonate uptake protein     | transcriptional regulator  | multi-drug resistance efflux pump | transposase (Insertion sequence<br>IS31831)                                 |
|----------|-----------------------------|--------------------------------|---------|---------|---------|---------|---------|--------------------------------------------|-----------------------------------------|----------------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------|----------------------------|-----------------------------------|-----------------------------------------------------------------------------|
| 15       | Matched<br>length<br>(a.a.) | 563                            |         |         |         |         |         | 655                                        | 329                                     | 160                                          | 262                                         | 248                                            | 593                                    | 136                                         | =                                   | 134                        | 367                               | 438                                                                         |
| 20       | Similarity (%)              | 78.5                           |         |         |         |         |         | 80.3                                       | 526                                     | 62 5                                         | 60.7                                        | 59.3                                           | 54.1                                   | 6 99                                        | 82 0                                | 62.7                       | 59.4                              | 8.99.8                                                                      |
|          | Identity<br>(%)             | 48 1                           |         |         |         |         |         | 57.9                                       | 27.7                                    | 33.8                                         | 38.2                                        | 29.4                                           | 31.7                                   | 29 4                                        | 55.0                                | 32.1                       | 22.8                              | 99.5                                                                        |
| 25<br>30 | Homologous gene             | Synechacoccus sp PCC 7942 accC |         |         |         |         |         | Mycobacterium tuberculosis<br>H37Rv Rv0959 | Rhodobacter sphaeroides ATCC 17023 bch! | Amycolatopsis methanolica pgm                | Mycobacterium tuberculosis<br>H37Rv Rv2133c | Streplamyces hygroscapicus<br>SF 1293 BcpA     | Streptomyces fradiae tIrC              | Mycobacterium tuberculosis<br>H37Rv Rv2923c | Escherichia coli K12 MG1855<br>phnA | Bacillus subtills 168 yxaD | Streptococcus pneumoniae<br>pmrA  | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>ATCC 31831 |
| £`<br>35 |                             | Synechoc<br>accC               |         |         |         |         |         | Mycobacterium<br>H37Rv Rv0959              | Rhodobact<br>17023 bchl                 | Amycolat                                     | Mycobacterium 1<br>H37Rv Rv2133c            | Streptom<br>SF1293 (                           | Streptom                               | Mycobacterium t<br>H37Rv Rv2923c            | Escherich<br>phnA                   | Bacillus                   | Streptoco<br>pmrA                 | Corynebacter<br>(Brevibacteric<br>ATCC 31831                                |
| 40       | db Match                    | gp SPU59234_3                  |         |         |         |         |         | sp.YT15_MYCTU                              | Sp BCHI_RHOSH                           | gp_AMU73808_1                                | plr. A70577                                 | gp STMBCPA_1                                   | SP TLRC_STRFR                          | Sp YOGC_MYCTU                               | Sp PHNA_ECOLI                       | sp YXAD_BACSU              | gp SPN7367_1                      | pir S43613                                                                  |
|          | ORF<br>(bp)                 | 1737                           | 597     | 498     | 345     | 153     | 639     | 1956                                       | 1296                                    | 642                                          | 705                                         | 762                                            | 1641                                   | 396                                         | 342                                 | 474                        | 1218                              | 1308                                                                        |
| 45       | Termina<br>(nt)             | 110165.                        | 110263  | 1103192 | 110352  | 110410  | 110556  | 110410                                     | 110608                                  | 110820                                       | 110890:                                     | 110975-                                        | 111143                                 | 111142                                      | 111223                              | 111248                     | 111431                            | 111579.                                                                     |
| 50       | initial<br>(nt)             | 1099917                        | 1102043 | 1102695 | 1103180 | 1103951 | 1104923 | 1106058                                    | 1107381                                 | 1107560                                      | 1108201                                     | 1108993                                        | 1109792                                | 1111820                                     | 1111889                             | 1112957                    | 1113102                           | 1114486                                                                     |
|          | SEQ<br>NO                   | 4671                           | 4672    | 4673    | 4674    | 4675    | 4676    | 4677                                       | 4678                                    | 4679                                         | 4680                                        | 4681                                           | 4682                                   | 4683                                        | 4684                                | 4685                       | 4686                              | 4687                                                                        |
| 55       | SEQ<br>NO<br>DNIA)          |                                | 1172    | 1173    | 1174    | 1175    | 1176    | 1177                                       | 1178                                    | 1179                                         | 1180                                        | 1181                                           | 1182                                   | 1183                                        | 1184                                | 1185                       | 1186                              | 1187                                                                        |

| Function                    | cysteine desulphurase                                                              | nicolinate-nucleotide<br>pyrophosphorylase                                                      | quinolinate synthetase A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DNA hydrolase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hypothetical membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lipoate-protein ligase A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alkylphosphonate uptake protein and C-P lyase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | transmembrane transport protein or<br>4-hydroxybenzoale transporter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p-hydroxybenzoate hydroxylase (4-<br>hydroxybenzoate 3-<br>monooxygenase)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hypothetical membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABC transporter ATP-binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hypothetical membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ca2+/H+ antiporter ChaA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hypothetical membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Matched<br>length<br>(a a.) | 376                                                                                | 283                                                                                             | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Similarity<br>(%)           | 73.4                                                                               | 68.9                                                                                            | 77.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Identity<br>(%)             | 43.9                                                                               | 42.1                                                                                            | 49 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Homologous gene             | Ruminococcus flavefaciens cysteine desulphurase gene                               | Mycobacterium tuberculosis                                                                      | Bacillus subtilis nadA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Streptomyces coelicolor<br>SC588.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Demococcus radiodurans R1<br>DR1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Streptomyces coelicolor<br>SC3A7 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Escherichia coli K12 MG1655<br>ybdF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Escherichia coll K12 IpIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Escherichia coli K12 phnB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pseudomonas putida pcaK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pseudomonas aeruginosa phhy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bacillus subtilis 168 ykoE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Escherichia coli yijK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bacillus subtilis 168 ykoC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Escherichia coli chaA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrococcus abyssi Orsay<br>PAB1341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bacillus subtilis ywaF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| db Match                    | gp RFAJ3152_2                                                                      | SP NADC_MYCTU                                                                                   | pir E69683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gp.SC5B8_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gp AE001961_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gp SC3A7_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sp YBDF_ECOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gp: AAA21740_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sp PHNB_ECOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SP PCAK_PSEPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sp PIHY_PSEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pir. A69859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP.YJJK_ECOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pir.G69858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sp:CHAA_ECOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pir.C75001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sp YWAF_BACSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ORF<br>(bp)                 | 1074                                                                               | 837                                                                                             | 1182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Terminal<br>(nt)            | 1115832                                                                            | 1116908                                                                                         | 111775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1119085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Initial<br>(nt)             |                                                                                    | 1117744                                                                                         | 1118932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1119727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1120205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1121432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1121809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1122606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1123051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1124826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1126020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1126422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1127013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1128350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1129102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1129655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1132123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SEQ<br>NO.                  |                                                                                    | 4689                                                                                            | 4690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SEQ<br>NO<br>(DNA)          | 1188                                                                               | 1189                                                                                            | 1190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             | SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (ht) (bp) db Match | SEQ Initial Terminul ORF db Match NO. (nt) (nt) (bp) (bp) RFAJ3152_2 Cysteine desulphurase gene | SEQ Initial NO. (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity length (%)         Matched (%)         Matched (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%) | SEQ Initial NO.         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity length (aa)         Matched (aa)         Function           NO.         (nt)         (nt)         (nt)         (pp)         Ruminococcus flavefaciens         43.9         73.4         376         cysteine desulphurase           4689         1117744         111690B         837         sp NADC_MYCTU         Mycobacterium tuberculosis         42.1         68.9         283         pyrophosphorylase           4690         1118932         111775         pir E69663         Bacillus subtilis nadA         48.3         77.6         36.1         quinolinate synthetase | SEQ Initial NO.         Terminal (nt)         (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity (%)         Matched (%)         Function           NO.         (nt)         (nt)         (pp)         (pp)         Ruminococcus flavefaciens         43.9         73.4         376         cysteine desulphurase           4689         1117744         1116908         837         sp NADC_MYCTU         Mycobacterium tuberculosis         42.1         68.9         283         pyrophosphorylase           4690         1116932         1117751         1182         pir E69663         Bacillus subtilis nadA         48.3         77.6         36.1         quinolinate synthetase           4691         1119727         1119085         642         gp.SC588.7         Streptomyces coelicolor         37.0         60.9         235         DNA hydrolase | SEQ<br>NO.         Initial<br>(nt)         Terminal<br>(nt)         Terminal<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)         Similarity<br>(%)         Matched<br>(%)         Matched<br>(%)< | SEQ Initial NO.         Terminal (nt)         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity (%)         Matched (%)           NO.         (nt)         (nt)         (nt)         (bp)         Mb Matched (mb)         (mb | SEQ Initial NO.         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity (%)         Matched (% | SEQ         Initial         Terminul         ORF         db Match         Homologous gene         Identity         Similarity         Matched (%)         Matched (%) | SEQ<br>NO.         Initial<br>(11)         Terminal<br>(11)         ORF<br>(bp)         db Match<br>(bp)         Homologous gene<br>(%)         Identity<br>(%)         Similarity<br>(%)         Matched<br>(%)         Matched<br>(%)         Homologous gene<br>(%)         13.9         73.4         376         (aa.)           4689         1117744         1115902         111775         1182         pir E69663         Becillus subtlis nad A         49.3         77.6         36.9         283           4689         111775         1180         pir E69663         Becillus subtlis nad A         49.3         77.6         36.9         283           4690         111902         642         pir E69663         Becillus subtlis nad A         49.3         77.6         36.1           4691         111902         642         pir E69663         Becillus subtlis nad A         49.3         77.6         36.3           4691         111902         642         pr SC5BB_7         SC5BB_07         SC5BB_07         37.0         60.9         235           4693         112143         1120804         600         pp SC3A7_8         SC6A7 08         SC6A7 08         41.7         74.1         108           4694         1121809         112186         789         789         Fsche | SEC<br>NO.         Initial<br>(iii)         Terminal<br>(iv)         ORF<br>(bp)         deb Match         Homologous gene<br>(%)         Homologous gene<br>(%) | SEG   Initial   Termini   ORF   db Match   Homologous gane   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%) | National   Common   Common | SEC         Initial         Terminal         ORF         db Match         Homologous gene         (%)         STAIN         Inggth         Matched           NO         (ml)         ( | SEC         Initial         Terminal         ORF         db Match         Homologous gene         (%)         Smillantly (%)         Matched (%) | SEC         Initial         Termind         ORF         db Match         Homologous gene         Identity         Similaring (%s)         Matched (%s)< | SEC         Initial         Termind         ORF         db Match         Homologous gene         Identity         Similarity         Matched (%)         Matched (%) | SEC         Initial         Terminal         ORF         de Match         Homologous gane         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (% |

EP 1 108 790 A2

|                     |                             |                            |                                         |           |           |                               |                                                   | _         |           | _         | _       | _                |                                              | _                             |                                              |                                             |                                                        |                                            |                                            | _       | _                        |
|---------------------|-----------------------------|----------------------------|-----------------------------------------|-----------|-----------|-------------------------------|---------------------------------------------------|-----------|-----------|-----------|---------|------------------|----------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------|---------|--------------------------|
|                     | Function                    | excinuclease ABC subunit A | thioredoxin peroxidase                  |           |           | hypothetical membrane protein | oxidoreductase or thiamin<br>biosynthesis protein |           |           |           |         | chymotrypsin Bil | arsenate reductase (arsenical pump modifier) | hypothetical membrana protein | hypothetical protein                         | hypothetical protein                        | GTP-binding protein (tyrosine phsphorylated protein A) | hypothetical protein                       | hypothetical protein                       |         | ferredoxin [4Fe-4S]      |
|                     | Matched<br>length<br>(e.a.) | 946                        | 164                                     |           |           | 318                           | 282                                               |           |           |           |         | 271              | 111                                          | 340                           | 147                                          | 221                                         | 614                                                    | 905                                        | 315                                        |         | 103                      |
|                     | Similarity<br>(%)           | 28.7                       | 81.7                                    |           |           | 72.0                          | 49.0                                              |           |           |           |         | 51.3             | 72.1                                         | 62 4                          | 71.4                                         | 62.9                                        | 76.7                                                   | 54.9                                       | 91.9                                       |         | 91.3                     |
|                     | Identity<br>(%)             | 35.5                       | 57.3                                    |           |           | 39.9                          | 34.0                                              |           |           |           |         | 28.8             | 43.2                                         | 23 5                          | 43.5                                         | 35.8                                        | 46.3                                                   | 27.9                                       | 38.7                                       |         | 78.8                     |
| Table 1 (continued) | Homologaus gene             | Thermus thermophilus unrA  | Mycobacterium tuberculosis<br>H37Rv tpx |           |           | Escherichia coli yedl         | Streptomyces coelicalar A3(2)                     |           |           | 7         |         | Penaeus vannamei | Escherichia coli                             | Bacillus subtilis yyaD        | Mycobacterium tuberculosis<br>H37Rv Rv 1632c | Mycobacterium tuberculosis<br>H37Rv Rv1157c | Escherichia coli K12 typA                              | Mycobacterium tuberculosis<br>H37Rv Rv1168 | Mycobacterium tuberculosis<br>H37Rv Rv1170 |         | Streptomyces griseus fer |
|                     | db Match                    | Sp. UVRA_THETH             | sp.TPX_MYCTU                            |           |           | sp:YEDI_ECOLI                 | gp.SCF76_2                                        |           |           |           |         | SP. CTR2_PENVA   | sp:ARC2_ECOLI                                | sp.YYAD_BACSU                 | plr:F70559                                   | pir F70555                                  | sp:TYPA_ECOLI                                          | pir.F70874                                 | pir:B70875                                 |         | sp:FER_STRGR             |
|                     | ORF<br>(bp)                 | 2340                       | 495                                     | 218       | 1778      | 954                           | 900                                               | 368       | 297       | 261       | 387     | 834              | 345                                          | 1200                          | 537                                          | 714                                         | 1911                                                   | 1506                                       | 870                                        | 438     | 315                      |
|                     | Terminal<br>(nt)            | 113213                     | 1135055                                 | 113569    | 113505    | 113693                        | 113885                                            | 1139245   | 113949    | 1139611   | 113963  | 114002           | 114090                                       | 114247                        | 114247                                       | 114302                                      | 114602                                                 | 114760                                     | 114846                                     | 114888  | 114928                   |
|                     | Initial T                   | 1134472 1                  | 1134581 1                               | 1135476 1 | 1136833 1 | 1137891 1                     | 1137960 1                                         | 1138880 1 | 1139196 1 | 1139357 1 | 1140021 | 1140861 1        | 1141245 1                                    | 1141273 1                     | 1143015 1                                    | 1143739 1                                   | 1144118 1                                              | 1146097 1                                  | 1147592 1                                  | 1148445 | 4725 1148953 1           |
|                     | SEQ<br>NO<br>(• •)          | 4706 1                     | 4707                                    | 4708      | 4709      | 4710 1                        | 4711                                              | 4712      | 4713      | 4714      | 4715    | 4718             | 4717                                         | 4718                          | 4719                                         | 4720                                        | 4721                                                   | 4722                                       | 4723                                       | 4724    | 4725                     |
|                     | SEQ<br>NO<br>(DNA)          | 1206                       | 1207                                    | 1208      | 1209      | 1210                          | 1211                                              | 1212      | 1213      | 1214      | 1215    | 1218             | 1217                                         | 1218                          | 1219                                         | 1220                                        | 1221                                                   | 1222                                       | 1223                                       | 1224    | 1225                     |

0

| 5        |                     | Function                    | aspartate aminotransferase   |         |         | tetrahydrodipicolinate succinylase or<br>succinylation of piperidine-2,6-<br>dicarboxylate |         | hypothetical protein                          | dihydropteroste synthase              | hypothetical protein        | hypothetical protein                       | antigen TbAAMK, useful in vaccines<br>for prevention or treatment of<br>tuberculosis | mychamich-resistence gene           | sucrose-6-phosphate hydrolase | ADPglucosestarch(bacterial<br>glycogen) glucosyttransferase | glucose-1-phosphate<br>adenylyltransferase | methyltransferase                  | RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress |         |         |
|----------|---------------------|-----------------------------|------------------------------|---------|---------|--------------------------------------------------------------------------------------------|---------|-----------------------------------------------|---------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------|---------|---------|
| 15       |                     | Matched<br>length<br>(a.e.) | 397                          |         |         | 220                                                                                        |         | 211                                           | 273                                   | 245                         | 66                                         | 47                                                                                   | 286                                 | 524                           | 433                                                         | 400                                        | 83                                 | 194                                                                     |         |         |
| 20       |                     | Similarity<br>(%)           | 52.9                         |         |         | 100.0                                                                                      |         | 100.0                                         | 0.69                                  | 73.1                        | 67.7                                       | 81.5                                                                                 | 67.8                                | 51.0                          | 513                                                         | 818                                        | 62.4                               | 57.2                                                                    |         |         |
|          |                     | Identity<br>(%)             | 25.9                         |         |         | 100.0                                                                                      |         | 100.0                                         | 29.0                                  | 45.7                        | 31.3                                       | 72.3                                                                                 | 39.2                                | 23.5                          | 24.7                                                        | 61.0                                       | 25.8                               | 27.3                                                                    |         |         |
| 25<br>30 | latie i (continued) | Homologous gena             | Bacillus sp. strain YM-2 aat |         |         | Corynebacterium glutamicum<br>ATCC 13032 dapD                                              |         | Corynebacterium glutamicum<br>ATCC 13032 orf2 | Streptomyces coelicalor A3(2)<br>dhpS | Mycobacterium leprae u17561 | Mycobacterium tuberculosis<br>H37Rv Rv1209 | Mycobacterium tuberculosis                                                           | Micromonospora griseorubida<br>myrA | Pediococcus pentosaceus scrB  | Escherichia coll K12 MG1655<br>glgA                         | Streptomyces coelicator A3(2)<br>gigC      | Streptomyces mycarofaciens<br>MdmC | Escherichia coli rpoE                                                   |         | •       |
| 35       |                     |                             | Bac                          |         |         | Cor                                                                                        |         | A                                             | Strept                                | 1                           | H W                                        | M.                                                                                   |                                     |                               |                                                             |                                            | <del></del>                        |                                                                         |         |         |
| 40       |                     | db Match                    | sp:AAT_BACSP                 |         |         | gp:CGAJ4934_1                                                                              |         | pir:S60064                                    | gp:SCP8_4                             | gp.MLU15180_14              | pir.G70609                                 | gsp.W32443                                                                           | sp.MYRA_MICGR                       | SP. SCRB_PEDPE                | SP.GLGA_ECOLI                                               | sp.GLGC_STRCO                              | Sp.MDMC_STRMY                      | sp RPOE_ECOLI                                                           |         |         |
|          |                     | ORF<br>(bp)                 | 1101                         | 621     | 1185    | 188                                                                                        | 683     | 768                                           | 831                                   | 729                         | 308                                        | 165                                                                                  | 864                                 | 1494                          | 1227                                                        | 1215                                       | 639                                | 839                                                                     | 492     |         |
|          | _                   | =                           | 9                            | 8       | 8       | <u> </u>                                                                                   | 52      | 6                                             | 5.4                                   | 2 2                         | 5 2                                        | 2                                                                                    | 8                                   | 7                             | 9                                                           | 8                                          | 9                                  | 13                                                                      | 40.     | ╁       |
|          |                     | Termin<br>(nt)              | 11503                        | 115102  | 115237  | 11523                                                                                      | 11558   | 11576                                         | 11585;                                | 11592                       | 11595                                      | 11597                                                                                | 11607                               | 11607                         | 11623                                                       | 11648                                      | 11649                              | 11663                                                                   | 11670   | _       |
| 50       |                     | Initial<br>(nt)             | 1149279                      | 1150408 | 1151186 | 1153263                                                                                    | 1158537 | 1156902                                       | 1157894                               | 1158524                     | ·                                          | 1159635                                                                              | 1159865                             | 1162231                       | 1163605                                                     | 1163702                                    | 1165612                            | 1165746                                                                 | 1166576 |         |
|          |                     | SEQ<br>NO                   | 4726                         | 4727    | 4728    | 4729                                                                                       | 4730    | 4731                                          | 4732                                  | 4733                        | 4734                                       | 4735                                                                                 | 4738                                | 4737                          | 4738                                                        | 4739                                       | 4740                               | 4741                                                                    | 4742    |         |
| 55       |                     | SEQ<br>NO<br>(DNA)          | -                            | 1227    | 1228    | 1229                                                                                       | 1230    | 1231                                          | 1232                                  | 1233                        | 1234                                       | 1235                                                                                 | 1236                                | 1237                          | 1238                                                        | 1239                                       | 1240                               | 1241                                                                    | 1242    | !<br>'j |

| 10                                          | Function                    | hypothetical protein                       | ATPase               | hypothetical protein                        | hypothetical protein                        | hypothelical protein                       |         |         | 2-oxoglutarate dehydrogenase               | ABC transporter or mutildrug<br>resistance protein 2 (P-glycoprotein<br>2) | hypothetical protein                        | shikimate dehydrogenase | para-nitrobenzyl esterase |         |         |         | tetracycline resistance protein            | metabolite export pump of tetracenomycin C resistance |         |        |
|---------------------------------------------|-----------------------------|--------------------------------------------|----------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|---------|---------|--------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|-------------------------|---------------------------|---------|---------|---------|--------------------------------------------|-------------------------------------------------------|---------|--------|
| 15                                          | Matched<br>length<br>(a.a.) | 112                                        | 257                  | 154                                         | 434                                         | 140                                        |         |         | 1257                                       | 1288                                                                       | 240                                         | 255                     | 501                       |         |         |         | 409                                        | 444                                                   |         |        |
| 20                                          | Similarity<br>(%)           | 73.2                                       | 72.0                 | 838                                         | 77.0                                        | 87.1                                       |         |         | 93.8                                       | 60 4                                                                       | 72.1                                        | 61.2                    | 64.7                      |         | _       |         | 61.4                                       | 64.2                                                  |         |        |
|                                             | Identity<br>(%)             | 45.5                                       | 43.6                 | <b>6</b> 0.4                                | 49.8                                        | 57.9                                       |         |         | ₽:66                                       | 28.8                                                                       | 31.7                                        | 25.5                    | 35.7                      |         |         |         | 27.1                                       | 32.4                                                  |         |        |
| % 52 72 72 72 72 72 72 72 72 72 72 72 72 72 | Homologous gene             | tuberculosis                               | mrp                  | tuberculosis<br>c                           | tuberculosis<br>c                           | tuberculosis                               |         |         | ım glutamicum                              | sus (Chinese<br>2                                                          | tuberculosis<br>Ic                          | Il aroE                 | s pnbA                    |         |         |         | li transposon                              | Streptomyces glaucescens tcmA                         |         |        |
| Table 1                                     | Homolog                     | Mycobacterium tuberculosis<br>H37Rv Rv1224 | Escherichla coli mrp | Mycobacterium tuberculosis<br>H37Rv Rv1231c | Mycobacterium tuberculosis<br>H37Rv Rv1232c | Mycobacterium tuberculosis<br>H37Rv Rv1234 |         |         | Corynebacterium glutamicum<br>AJ12036 odhA | Cricetulus griseus (Chinese<br>hamster) MDR2                               | Mycobacterium tuberculosis<br>H37Rv Rv1249c | Escherichia coll aroE   | Bacillus subtilis pubA    |         |         |         | Escherichia coli transposon<br>Tn1721 tetA | Streptomyces                                          |         |        |
| 35<br>40                                    | db Match                    | pir.C70508                                 | Sp:MRP_ECOLI         | pir 870509                                  | pir.C70509                                  | pir A70952                                 |         |         | prt 2308387A                               | 3741 sp MDR2_CRIGR                                                         | pir H70953                                  | Sp. AROE_ECOLI          | sp PNBA_BACSU             |         |         |         | sp_TCR1_ECOLI                              | sp.TCMA_STRGA                                         |         |        |
|                                             | ORF<br>(bp)                 | 468                                        | 1125                 | 579                                         | 1290                                        | 518                                        | 999     | 594     | 3771                                       |                                                                            | 717                                         | 804                     | 1811                      | 651     | 876     | 525     | 1215                                       | 1347                                                  | 705     |        |
| 45                                          | =                           | 1                                          | ĕ                    | 1 6                                         | -                                           | -                                          | -       | 9       | 2                                          | 8                                                                          | =                                           | 8                       | 6                         | 2 7     | 5       | 2       | 60                                         | 3                                                     | 9       | _      |
|                                             | Termin<br>(nt)              | 116757                                     | 11675                | 11687                                       | 11693                                       | 11711                                      | 11718   | 11718   | 11725                                      | 11763                                                                      | 11801                                       | 11808                   | 11836                     | 11842   | 1185    | 11852   | 11870                                      | 11883                                                 | 11905   | j<br>I |
| 50                                          | Initial<br>(nt)             | 1167110                                    | 1168711              | 1169325                                     | 1170610                                     | 1170672                                    | 1171206 | 1172462 | 1176271                                    | 1180048                                                                    | 1180837                                     | 1181675                 | 1181993                   | 1183807 | 1184280 | 1185742 | 1185825                                    | 1187043                                               | 1189822 |        |
|                                             | SEO<br>NO                   | 4743                                       | 4744                 | 4745                                        | 4746                                        | 4747                                       | 4748    | 4749    | 4750                                       | 4751                                                                       | 4752                                        | 4753                    | 4754                      | 4755    | 4756    | 4757    | 4758                                       | 4759                                                  | 4760    |        |
| 55                                          | SEQ                         | 1243                                       | 1244                 | 1245                                        | 1246                                        | 1247                                       | 1248    | 1249    | 1250                                       | 1251                                                                       | 1252                                        | 1253                    | 1254                      | 1255    | 1256    | 1257    | 1258                                       | 1259                                                  | 1260    |        |

|                     | Function                   | 5-<br>methylletrahydropleroyltriglutamate-<br>homocysteine S-methyltransferase |         | thiophene biotransformation protein |         |         |         |         |         | ABC transporter                     | ABC transporter                     | cytochrome bd.type menaquinol<br>oxidase subunil II                   | cytochrome bd-type menaquinol oxidase subunit i                       | helicase                            |         | mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP<br>pyrophosphoydrolase) |         | profine-specific permease   |
|---------------------|----------------------------|--------------------------------------------------------------------------------|---------|-------------------------------------|---------|---------|---------|---------|---------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|---------|-------------------------------------------------------------------------------------------------------------|---------|-----------------------------|
|                     | Matched<br>length<br>(a a) | 774                                                                            |         | 444                                 |         |         |         |         |         | 526                                 | 551                                 | 333                                                                   | 512                                                                   | 402                                 |         | 86                                                                                                          |         | 433                         |
|                     | Similarity (%)             | 72.2                                                                           |         | 79.5                                |         |         |         |         |         | 63 5                                | 58.4                                | 93 0                                                                  | 0 68                                                                  | 55 0                                |         | 9 59                                                                                                        |         | 85 0                        |
|                     | Identity<br>(%)            | 45.2                                                                           |         | 55.2                                |         |         |         |         |         | 28 7                                | 29.4                                | 92.0                                                                  | 99.6                                                                  | 28.4                                |         | 36.9                                                                                                        |         | 513                         |
| Table 1 (continued) | Homologous gene            | Catharanthus roseus metE                                                       |         | Nocardia asteroides strain KGB1     |         |         |         |         |         | Escherichia coli K12 MG1655<br>cydC | Escherichia coli K12 MG1655<br>cydD | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>cydB | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>cydA | Escherichla coll K12 MG1655<br>yejH |         | sp MUTT_PROVU Proteus vulgaris mutT                                                                         |         | Salmonella typhimurium proY |
|                     | db Match                   | pir S57636                                                                     |         | gsp:Y29930                          |         |         |         |         |         | sp.CYDC_ECOL!                       | sp.CYDD_ECOL!                       | gp A8035086_2                                                         | gp AB035086_1                                                         | sp YEJH_ECOLI                       |         | sp MUTT_PROVU                                                                                               |         | 1404 SP PROY SALTY          |
|                     | ORF<br>(bp)                | 2235                                                                           | 458     | 1398                                | 324     | 945     | 792     | 1647    | 192     | 1554                                | 1533                                | 666                                                                   | 1539                                                                  | 2265                                | 342     | 393                                                                                                         | 765     | 1404                        |
|                     | Termin.!<br>(nt)           | 1188383                                                                        | 1191542 | 1193807                             | 119419  | 119510  | 1195125 | 1197620 | 1197815 | 1197990                             | 1199543                             | 1201090                                                               | 1202084                                                               | 1203918                             | 1206657 | 120683                                                                                                      | 1208138 | 1208212                     |
|                     | Initial<br>(nt)            | 1190622                                                                        | 1191087 | 1192410                             | 1193867 | 1194165 | 1195916 | 1195974 | 1197624 | 1199543                             | 1201075                             | 1202088                                                               | 1203632                                                               | 1206180                             | 1206316 | 120/223                                                                                                     | 1207374 | 1277 4777 1209615           |
|                     | SEQ<br>NO<br>(•            | 4761                                                                           | 4762    | 4763                                | 4764    | 4765    | 4766    | 4767    | 4768    | 4769                                | 4770                                | 4771                                                                  | 4772                                                                  | 4773                                | 4774    | 4775                                                                                                        | 4776    | 4777                        |
|                     | SEQ<br>NO<br>NO            | 1261                                                                           | 1262    | 1263                                | 1264    | 1265    | 1266    | 1287    | 1268    | 1269                                | 1270                                | 1271                                                                  | 1272                                                                  | 1273                                | 1274    | 1275                                                                                                        | 1276    | 1277                        |

EP 1 108 790 A2

|                   |                             |                                           |                           | T         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 본                                                         |                                                                 | <u>a</u> <u>a</u>                                                             |                            |         |         | T                          |              | T       |                               |                               | 1                            |                             |                             |                               |                           |   |
|-------------------|-----------------------------|-------------------------------------------|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------|---------|----------------------------|--------------|---------|-------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|-------------------------------|---------------------------|---|
| 5                 | Function                    | short-chain fatty acids transporter       | regulatory protein        |           | The state of the s | regulatory protein              | mercuric transort protein periplesmic component precursor | zinc-transporting ATPase Zn(II)-<br>translocating P-type ATPase | GTP pyrophosphokinase (ATP GTP 3-pyrophosphotransferase) (ppGpp synthetase I) | tripeptidyl aminopeptidase |         |         | homoserine dehydrogenase   |              |         | nitrate reductase gamma chain | nitrate reductase delta chain | nitrate reductase beta chain | hypothetical protein        | hypothetical protein        | nitrate reductase alpha chain | nitrate extrusion protein |   |
| •                 |                             | short                                     | Je ge                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | בַּ בַּ                         | COM                                                       | zinc-<br>trans                                                  | GTP<br>3'-py<br>synti                                                         | in p                       | $\perp$ |         | Ę                          | $\downarrow$ | 1       | 를                             | ng g                          | zi c                         | hyp                         | hyp                         | nitra                         |                           |   |
| 15                | Matched<br>length<br>(e.e.) | 122                                       | 166                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 228                             | 81                                                        | 605                                                             | 137                                                                           | 109                        |         |         | 24                         |              |         | 220                           | 175                           | 505                          | 137                         | 83                          | 1271                          | 461                       |   |
| 20                | Similarity (%)              | 69.7                                      | 58.6                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.9                            | 66.7                                                      | 70.6                                                            | 58.4                                                                          | 49.3                       |         |         | 98.0                       |              |         | 88 8                          | 63.4                          | 83.4                         | 48.0                        | 92.0                        | 8.67                          | 67.9                      |   |
|                   | Identity 8                  | 37.7                                      | 24.7                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0                            | 33.3                                                      | 38.0                                                            | 32.9                                                                          | 9.92                       |         |         | 95.0                       |              |         | 45.0                          | 30.3                          | 56.6                         | 36.0                        | 36.0                        | 46.9                          | 328                       |   |
| <i>2</i> 5 (penuj | gene                        | olor                                      | i recS                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MG1655 fnr                      | iens merP                                                 | MG1655                                                          |                                                                               | ns tap                     |         |         | utamicum                   |              |         |                               | _                             | I                            | (1 APE1291                  | (1 APE1289                  | g                             | 2 narK                    |   |
| 30 September 1    | Homologous gene             | Streptomyces coelicolor<br>SC1C2.14c atoE | Erwinia chrysanthemi recS |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Escherichia coli K12 MG1655 fnr | Shewanella putrefaciens merP                              | Escherichia coli K12 MG1655<br>atzn                             | Vibno sp. S14 relA                                                            | Streptomyces lividans tap  |         |         | Corynebacterium glutamicum |              |         | Bacillus subtilis nari        | Bacillus subtilis narJ        | Bacillus subtilis narH       | Aeropyrum pernix K1 APE1291 | Aeropyrum pernix K1 APE1289 | Bacillus sublilis narG        | Escherichia coli K12 narK |   |
| 35                |                             |                                           | _                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1                                                         | 1_                                                              | <u> </u>                                                                      |                            |         |         |                            |              |         | SU                            | SU                            | SS                           |                             |                             | nso                           | ٦                         |   |
| 40                | db Match                    | Sp:ATOE_ECOL!                             | SP. PECS_ERWCH            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sp:FNR_ECOLI                    | SP.MERP_SHEPU                                             | sp ATZN_ECOL                                                    | sp.RELA_VIBSS                                                                 | gsp R80504                 |         |         | GSP P61449                 |              |         | SP NARI_BACSU                 | Sp.NARJ_BACSU                 | SP. NARH_BACSU               | PIR D72803                  | PIR B72603                  | Sp. NARG BACSU                |                           |   |
|                   | ORF<br>(bp)                 | 537                                       | 486                       | 222       | 519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 750                             | 234                                                       | 1875                                                            | 630                                                                           | 1581                       | 603     | 120     | 108                        | 1260         | 690     | 777                           | 732                           | 1593                         | 594                         | 273                         | +                             | 1350                      |   |
| 45                | Termina<br>(nt)             | 122918                                    | 123048                    | 123083    | 123081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123247                          | 123283                                                    | 123488                                                          | 123561                                                                        | 123854                     | 124155  | 124215  | 124372                     | 124394       | 1244848 | 124572                        | 1248508                       | 124718                       | 125044                      | 125181                      | 1248791                       | 1252557                   |   |
| 50                | Initial T                   | 1229716 1                                 | 1229995 1                 | 1230610 1 | 1231432 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1231730 1                       | 1232603 1                                                 | 1233007                                                         | 1234983 1                                                                     | 1238125                    | 1242156 | 1242275 | 1243821                    | 1245201      | 1245532 | 1248498                       | 1247239                       | 1248791                      | +-                          | +                           | 1252537                       | 1253906                   |   |
|                   | SEO                         | <del></del>                               | 4796                      | 4797 1    | 4798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4789 1                          | 4800                                                      | 4801                                                            | 4802                                                                          | 4803                       |         | 4805    | 4808                       | 4807         | 4808    | 4809                          | 4810                          |                              |                             |                             |                               | 4815                      |   |
| 55                | SEQ S                       |                                           | 1298                      | 1297 4    | 1298 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1299                            | 1300                                                      | 1301                                                            | 1302                                                                          | 1303                       | -       | 1305    | 1306                       | 1307         | 1308    | 1309                          |                               | 1311                         |                             |                             |                               |                           | - |

| 5   | Function                    | molybdopterin biosynthesis cnx1<br>protein (molybdenum cofactor<br>biosynthesis enzyme cnx1) | extracellular serine protease<br>precurosor  |         | hypothetical membrane protein               | hypothetical membrana protein               | molybdopterin guanine dinucleotide<br>synthese | molybdoptein biosynthesis protein                | molybdopterin biosynthsisi protein<br>Moybdenume (mosybdenum<br>cofastor biosythesis enzyme) | edium-chain fatty acidCoA ligase | Rho factor             |         |         |         | peptide chain release factor 1 | protoporphyrinogen oxidase |         | hypothetical protein                       | undeceprenyl-phosphate siphe-N-<br>acetylglucosaminyltransferase |
|-----|-----------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|---------|---------------------------------------------|---------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|------------------------|---------|---------|---------|--------------------------------|----------------------------|---------|--------------------------------------------|------------------------------------------------------------------|
| 15  | Matched<br>length<br>(a.a.) | 157                                                                                          | 738                                          |         | 334                                         | 472                                         | 178                                            | 366                                              | 354                                                                                          | 572                              | 753                    |         |         |         | 363                            | 280                        |         | 215                                        | 322                                                              |
| 20  | Similarity<br>(%)           | 65.0                                                                                         | 45.9                                         |         | 62.6                                        | 60.2                                        | 52.3                                           | 58.2                                             | 7.67                                                                                         | 65.7                             | 73.8                   |         |         |         | 71.9                           | 57.9                       |         | 0.98                                       | 58.4                                                             |
|     | Identity<br>(%)             | 32.5                                                                                         | 21.1                                         |         | 30.8                                        | 31.6                                        | 27.5                                           | 32.8                                             | 51.4                                                                                         | 36.7                             | 20.7                   |         |         |         | 41.9                           | 31.1                       |         | 62.3                                       | 31.1                                                             |
| 8 % | Homologous gene             | Arabidopsis thallana CV cnx1                                                                 | Serratia marcescens strain IFO-<br>3046 prtS |         | Mycobacterium tuberculosis<br>H37Rv Rv1841c | Mycobacterium tuberculosis<br>H37Rv Rv1842c | Pseudomonas putida mobA                        | Mycobacterium tuberculosis<br>H37Rv Rv0438c moeA | Arabidopsis thalians cnx2                                                                    | Pseudomonas oleovorans           | Micrococcus luteus rho |         |         |         | Escherichia coli K12 RF-1      | Escherichia coli K12       |         | Mycobacterium tuberculosis<br>H37Rv Rv1301 | Escherichia coli K12 rle                                         |
| 25  |                             | Arabido                                                                                      | Serratia m<br>3046 prtS                      |         | Mycoba<br>H37Rv                             | Mycoba<br>H37Rv                             | Pseudo                                         | Mycoba<br>H37Rv                                  | Arabido                                                                                      | Pseudo                           | Microco                |         |         |         | Escher                         | Escher                     |         | Mycobi<br>H37Rv                            | Escher                                                           |
| 40  | db Match                    | SP.CNX1_ARATH                                                                                | SP.PRTS_SERMA                                |         | sp:Y0D3_MYCTU                               | sp.YOD2_MYCTU                               | gp:PPU242952_2                                 | Sp MOEA_ECOLI                                    | 1131 SP.CNX2_ARATH                                                                           | SP ALKK_PSEOL                    | SP RHO_MICLU           |         |         |         | Sp.RF1_ECOLI                   | SP HEMK_ECOLI              |         | SP YD01_MYCTU                              | sp RFE_ECOLI                                                     |
|     | ORF<br>(bp)                 | 489                                                                                          | 1866                                         | 684     | 1008                                        | 1401                                        | 581                                            | 1209                                             | 1131                                                                                         | 1725                             | 2288                   | 603     | 969     | 1023    | 1074                           | 937                        | 774     | 948                                        | 1146                                                             |
| 46  | n i i                       | 34                                                                                           | 31                                           | ß       | 999                                         | 378                                         | â                                              | 8                                                | 88                                                                                           | 窝                                | 2                      | 22      | -       | 2       | ន                              | 2                          | 'n      | 50                                         | 71.82                                                            |
|     | Termi<br>(nt)               | 1254634                                                                                      | 12547                                        | 1257    | 12568                                       | 12578                                       | 12594                                          | 12599                                            | 1261688                                                                                      | 12628                            | 12674                  | 12682   | 12656   | 12654   | 12689                          | 12893                      | 12682   | 127                                        | 12                                                               |
| 50  | Initial<br>(nt)             | 1254146                                                                                      | 1256602                                      | 1257067 | 1257858                                     | 1259265                                     | 1259989                                        | 1261201                                          | 1262818                                                                                      | 1284610                          | 1285142                | 1265665 | 1266306 | 1266449 | 1267430                        | 1268507                    | 1269040 | 1269396                                    | 1270047                                                          |
|     | SEO<br>NO                   | 4816                                                                                         | 4817                                         | 4818    | 4819                                        | 4820                                        | 4821                                           | 4822                                             | 4823                                                                                         | 4824                             | 4825                   | 4826    | 4827    | 4828    | 4829                           | 4830                       | 4831    | 4832                                       | 4833                                                             |
| 55  | SEQ<br>NO<br>(DNA)          |                                                                                              | 1317                                         | 1318    | 1319                                        | 1320                                        | 1321                                           | 1322                                             | 1323                                                                                         | 1324                             | 1325                   | 1326    | 1327    | 1328    | 1329                           | 1330                       | 1331    | 1332                                       | 1333                                                             |

|                     |                             |         |                                 |                                  |                                                                                 |                                         |                                         |                                          |                                             |                                          |                                            |                                            |                                            | _                                | _                      |                                            |                                            |   |
|---------------------|-----------------------------|---------|---------------------------------|----------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------|--------------------------------------------|--------------------------------------------|---|
|                     | Function                    |         | hypothetical protein            | ATP synthase chain a (protein 6) | H+-transporting ATP synthase lipid-<br>binding protein. ATP synthase C<br>chane | H+-transporting ATP synthase chain<br>b | H-transporting ATP synthase delta chain | H+-transporting ATP synthase alpha chain | H+-transporting ATP synthase<br>gamma chain | H+-Iransporting ATP synthase beta chain  | H+-transporting ATP synthase epsilon chain | hypothetical protein                       | hypothetical protein                       | putative ATP/GTP-blnding protein | hypothetical protein   | hypothetical protein                       | thioredoxin                                |   |
|                     | Matched<br>length<br>(a.a.) |         | 80                              | 245                              | 1.7                                                                             | 151                                     | 274                                     | 516                                      | 320                                         | 483                                      | 122                                        | 132                                        | 230                                        | 95                               | 134                    | 101                                        | 301                                        |   |
|                     | Similarity<br>(%)           |         | 0 66                            | 2.95                             | 6.28                                                                            | 6.99                                    | 67.2                                    | 88.4                                     | 992                                         | 100 0                                    | 73.0                                       | 67.4                                       | 85.7                                       | 58.0                             | 68.7                   | 79.2                                       | 71.4                                       |   |
|                     | Identity<br>(%)             |         | 98.0                            | 24.1                             | 54.9                                                                            | 27.8                                    | 34.3                                    | 6.89                                     | 46.3                                        | 8.86                                     | 41.0                                       | 38.6                                       | 70.0                                       | 45.0                             | 35.8                   | 54.5                                       | 37.9                                       |   |
| Table 1 (continued) | Homologous gene             |         | Corynebacterium glutamicum atpl | Escherichia coli K12 atpB        | Streptomyces lividans atpL                                                      | Streptomyces lividans atpF              | Streptomyces lividans atpD              | Streptomyces lividans atpA               | Streptomyces lividans atpG                  | Corynebacterium glutamicum<br>ASO19 atpB | Streptomyces lividans atpE                 | Mycobacterium tuberculosis<br>H37Rv Rv1312 | Mycobacterium tuberculosis<br>H37Rv Rv1321 | Streptomyces coelicolor A3(2)    | Bacıllus subtilis yajC | Mycobacterium tuberculosis<br>H37Rv Rv1898 | Mycobacterium tuberculosis<br>H37Rv Rv1324 |   |
|                     | db Match                    |         | GPU:A8046112_1                  | SP:ATP8_ECOLI                    | sp.ATPL_STRLI                                                                   | SP ATPF_STRLI                           | sp.ATPD_STRU                            | SP ATPA_STRU                             | SP ATPG_STRU                                | sp ATPB_CORGL                            | SP:ATPE_STRLI                              | SP YOZW_MYCTU                              | \$P.Y036_MYCTU                             | GP SC26G5_35                     | sp:YQJC_BACSU          | SP YC20_MYCTU                              | sp:YD24_MYCTU                              |   |
|                     | ORF<br>(bp)                 | 486     | 249                             | 810                              | 240                                                                             | 584                                     | 813                                     | 1674                                     | 975                                         | 1449                                     | 372                                        | 471                                        | 069                                        | 285                              | 453                    | 312                                        | 921                                        |   |
|                     |                             | 98      | 9                               | 6                                | 25                                                                              | 22                                      | 43                                      | 48                                       | 82                                          | 36                                       | 22                                         | <del>0</del>                               | 65                                         | 51                               | 29                     | 05                                         | 4                                          |   |
|                     | Term<br>(nt                 | 1271    | 1272                            | 1273                             | 1273:                                                                           | 1274                                    | 1274                                    | 1276                                     | 1277                                        | 1279                                     | 1279                                       | 1280                                       | 12809                                      | 12812                            | 12812                  | 1282                                       | 1283                                       | _ |
|                     | Initial<br>(nt)             | 1271213 | 1271871                         | 1272340                          | 1273286                                                                         | 1273559                                 | 1274131                                 | 1274975                                  | 1276708                                     | 1277688                                  | 1279151                                    | 1279770                                    | 1280270                                    | 1280957                          | 1281714                | 1281794                                    | 1282194                                    |   |
|                     | SEO<br>NO<br>•              | 4834    | 4835                            | 4836                             | 4837                                                                            | 4838                                    | 4839                                    | 4840                                     | 4841                                        | 4842                                     | 1843                                       | 4844                                       | 4845                                       | 4846                             | 4847                   | 4848                                       | 4849                                       |   |
|                     | SEQ<br>NO<br>(DNA)          | 1334    | 1335                            | 1336                             | 1337                                                                            | 1338                                    | 1339                                    | 1340                                     | 1341                                        | 1342                                     | 1343                                       | 1344                                       | 1345                                       | 1346                             | 1347                   | 1348                                       | 1349                                       |   |

|                    |                    |                 |                |             |                   | Table 1 (continued)                              |                 |                   |                             |                                                                                               |
|--------------------|--------------------|-----------------|----------------|-------------|-------------------|--------------------------------------------------|-----------------|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------|
| SEQ<br>NO<br>(DNA) | SEQ<br>NO<br>(a.a) | Initial<br>(nt) | Termin<br>(nt) | ORF<br>(bp) | F db Match        | Homologous gene                                  | Identity<br>(%) | Similarity<br>(%) | Matched<br>length<br>(s.a.) | Function                                                                                      |
| 1350               | 4850               | 1283324         | 128446         | 1143        | 3 gp ECO237695_3  | Escherichla coli K12 ssuD                        | 50.3            | 74.3              | 366                         | FMNH2-dependent aliphatic sulfonate monooxygenase                                             |
| 1351               | 4851               | 1284517         | 128528         | 768         | sp.SSUC_ECOLI     | Escherichia coli K12 ssuC                        | 408             | 75.8              | 240                         | alphatic sulfonates transport<br>permease protein                                             |
| 1352               | 4852               | 1285302         | 128600         | 0 729       | sp.SSUB_ECOLI     | Escherichia coli K12 ssuB                        | 50.4            | 72.8              | 228                         | alphatic sulfonates transport permease protein                                                |
| 1353               | 4853               | 1286043         | 128699         | 9 957       | 7 sp.SSUA_ECOLI   | Escherichia coli K12 ssuA                        | 35.1            | 62.1              | 311                         | sulfonate binding protein precursor                                                           |
| 1354               |                    | 4854 1289473    | 128726         | 1 2193      | 13 sp. GLGB_ECOLI | Mycobacterium tuberculosis<br>H37Rv Rv1326c glgB | 46 1            | 727               | 710                         | 1,4-alpha-glucan branching enzyme (glycogen branching enzyme)                                 |
| 1355               | 4855               | 1291007         | 12895          | 1494        | 14 Sp AMY3_DICTH  | Dictyoglomus thermophilum amyC                   | 22.9            | 505               | 467                         | alpha-amylase                                                                                 |
| 1356               | 4856               | 1291026         | 129137         | 3 348       | 60                |                                                  |                 |                   |                             |                                                                                               |
| 1357               | 4857               | 1291699         | 12925          | 628 2       | 9 sp FEPC_ECOLI   | Escherichia coli K12 lapC                        | 31.8            | 87.6              | 211                         | ferric enterobactin transport ATP-<br>binding protein or ABC transport<br>ATP-binding protein |
| 1358               | 4858               | 1293222         | 129402         | 5 804       | 4 pir C70860      | Mycobacter:um tuberculosis<br>H37Rv Rv3040c      | 39.6            | 68.5              | 260                         | hypothetical protein                                                                          |
| 1359               |                    | 4859 1294151    | 129520         | 5 1056      | i8 pir H70859     | Mycobacterium tuberculosis<br>H37Rv Rv3037c      | 43.1            | 70.0              | 367                         | hypothetical protein                                                                          |
| 1360               | 4860               | 1295047         | 129440         | 6 612       | 2                 |                                                  |                 |                   |                             |                                                                                               |
| 1361               | 4861               | 1295435         | 129622         | D 786       | 6 Sp FIXA_RHIME   | Rhizobium melifoti fixA                          | 31.2            | 64.8              | 244                         | electron transfer flavoprotein beta-<br>subunit                                               |
| 1362               | 4862               | 1296253         | 129720         | 3 951       | 1 SP.FIXB_RHIME   | Rhizobium meliloli fixB                          | 33.1            | 61.8              | 335                         | electron transfer flavoprotein alpha<br>subunit for various dehydrogenases                    |
| 1363               | 4863               | 1296479         | 129709         | 9 615       | 2                 |                                                  |                 |                   |                             |                                                                                               |
| 1364               |                    | 4864 1297212    | 129833         | 9 1128      | 8 sp NIFS_AZOVI   | Azotobacter vinelandii nifS                      | 35.2            | 67.7              | 375                         | nitrogenase cofactor sythesis protein                                                         |
| 1365               | 4865               | 1298653         | 129834         | 2 312       | 2                 |                                                  |                 |                   |                             |                                                                                               |
| 1366               | 4966               | 4966 1303145    | 129900         | 0 1146      | 16 SP YAME_RHISN  | Rhizobium sp NGR234 plasmid<br>pNGR2348 y4mE     | 29 5            | 55.7              | 397                         | hypothetical protein                                                                          |
|                    |                    |                 |                |             |                   |                                                  |                 |                   |                             |                                                                                               |

| 5             | Function                    | transcriptional regulator                     | scetyltransferase                   |         |         |         | IRNA (5-methylaminomethyl-2-<br>thiouridylate)-methyltransferase |              | hypothetical protein                        | tetracenomycln C resistance and export protin |         | DNA ligase<br>(polydeoxyribonucleotide synthase<br> NAD+ | hypothetical protein                       | glutamyl-tRNA(GIn)<br>amidotransferase subunit C | glutamyl-tRNA(Gln)<br>amidotransferase subunit A | vibriobactin utilization protein / iron-<br>chelator utilization protein | hypothetical membrane protein            | pyrophosphate-fructose 8-<br>phosphate 1-phosphotransrefase |  |
|---------------|-----------------------------|-----------------------------------------------|-------------------------------------|---------|---------|---------|------------------------------------------------------------------|--------------|---------------------------------------------|-----------------------------------------------|---------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|--|
| 15            | Matched<br>length<br>(a.a.) | 59                                            | 181                                 |         | ļ       |         | 381                                                              |              | 332                                         | 200                                           |         | 677                                                      | 220                                        | 97                                               | 484                                              | 283                                                                      | 96                                       | 358                                                         |  |
| 20            | Similanty<br>(%)            | 76 3                                          | 55.3                                |         |         |         | 80.9                                                             |              | 0.99                                        | 658                                           |         | 9 0 /                                                    | 6 02                                       | 64.0                                             | 830                                              | 54.0                                                                     | 79.2                                     | 77.9                                                        |  |
|               | Identity<br>(%)             | 47.5                                          | 348                                 |         |         |         | 61.8                                                             |              | 33.7                                        | 30.2                                          |         | 428                                                      | 40 0                                       | 53 0                                             | 74.0                                             | 28.1                                                                     | 46.9                                     | 54.8                                                        |  |
| S 52          | us gene                     | R234 plasmid                                  | 12 MG1655                           |         |         |         | berculosis                                                       |              | berculosis                                  | ucescens tcmA                                 |         | arinus dniJ                                              | uberculosis                                | elicolor A3(2)                                   | sperculosis                                      | 1u8                                                                      | elicolor A3(2)                           | ethanolica pfp                                              |  |
| 38 Table 1 () | Homologous gene             | Rhizobium sp. NGR234 plasmld<br>pNGR234a Y4mF | Escherichla coli K12 MG1655<br>yhbS |         |         |         | Mycobacterium tuberculosis<br>H37Rv Rv3024c                      |              | Mycobacterium tuberculosis<br>H37Rv Rv3015c | Streptomyces glaucescens tcmA                 |         | Rhodothermus marinus dniJ                                | Mycobacterium tuberculosis<br>H37Rv Rv3013 | Streptomyces coelicolor A3(2) gatC               | Mycobacterium tuberculosis<br>H37Rv gatA         | Vibrio vulnificus viu                                                    | Streptomyces coelicolor A3(2)<br>SCE6 24 | Amycolatopsis methanolica pfp                               |  |
| 35            |                             |                                               |                                     |         |         |         | Z 1                                                              |              |                                             |                                               |         | <del></del>                                              |                                            | · · · ·                                          | <del></del>                                      |                                                                          |                                          |                                                             |  |
| 40            | db Match                    | Sp.Y4MF_RHISN                                 | Sp YHBS_ECOLI                       |         |         |         | pir C70858                                                       |              | pir 870857                                  | sp TCMA_STRGA                                 |         | sp DNLJ_RHOMR                                            | pir H70856                                 | sp GATC_STRCO                                    | sp GATA_MYCTU                                    | UNBL VIBVU                                                               | gp SCE6_24                               | 1071 SP PFP_AMYME                                           |  |
|               | ORF<br>(bp)                 | 225                                           | 504                                 | 942     | 1149    | 966     | 1095                                                             | 3 654        | 066                                         | 1461                                          | 2 735   | 9 2040                                                   | 663                                        | 5 297                                            | 5 1491                                           | 8 849                                                                    | 306                                      | -                                                           |  |
|               | Termin (nt)                 | 130014                                        | 130105                              | 130098  | 130197  | 130369  | 130492                                                           | 130388       | 130592                                      | 130592                                        | 130746  | 131036                                                   | 131043                                     | 131161                                           | 131311                                           | 131411                                                                   | 131447                                   | 131608                                                      |  |
| 50            | Initial<br>(nt)             | 1300369                                       | 1300552                             | 1301929 | 1303123 | 1303299 | 4872 1303829                                                     | 4873 1304536 | 1304932                                     | 1307384                                       | 1308196 | 1308330                                                  | 1311097                                    | 1311320                                          | 4880 1311625                                     | 4881 1313270                                                             | 1314775                                  | 1315013                                                     |  |
|               | SEQ<br>NO                   |                                               | 4868                                | 4869    | 4870    | 4871    | 4872                                                             | 4873         | 4874                                        | 4875                                          | 4876    | 4877                                                     | 4878                                       | 4879                                             |                                                  |                                                                          | 4882                                     | 4883                                                        |  |
| 55            | SEQ<br>NO<br>(DNA)          |                                               | 1368                                | 1369    | 1370    | 1371    | 1372                                                             | 1373         | 1374                                        | 1375                                          | 1376    | 1377                                                     | 1378                                       | 1375                                             | 1380                                             | 1381                                                                     | 1382                                     | 1383                                                        |  |

| 5                         | Function                    | glucose-resistance emylese<br>regulator (catabolite control protein) | ripose transport ATP-binding protein | high affinity ribose transport protein | periplasmic ribose-binding protein  | high affinity ribose transport protein | hypothetical protein                | iron-siderophore binding lipoprotein | Na-dependent bile acid transporter | RNA-dependent amidotransferase B | putative F420-dependent NADH reductase  | hypothetical protein      | hypothetical protein                        | hypothetical membrane protein               |         | dihydroxy-acid dehydratase                    | hypothetical protein                       |
|---------------------------|-----------------------------|----------------------------------------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|----------------------------------|-----------------------------------------|---------------------------|---------------------------------------------|---------------------------------------------|---------|-----------------------------------------------|--------------------------------------------|
| 15                        | Matched<br>length<br>(aa)   | 328 gl                                                               | 499 rip                              | 329 hi                                 | 305 pe                              | 139 hi                                 | 200 h)                              | 354 lin                              | 268 N                              | 485 R                            | 172 Pt                                  | 317 hy                    | 234 hy                                      | 325 h                                       |         | 613 di                                        | 105 hy                                     |
| 20                        | Similarity (%)              | 31.4                                                                 | 78.2                                 | 76.9                                   | 17.71                               | 68.4                                   | 58.0                                | 60.2                                 | 81.9                               | 71.8                             | 61.1                                    | 66.9                      | 62.4                                        | 52.0                                        |         | 99.4                                          | 68.6                                       |
|                           | Identity (%)                | 31.4                                                                 | 44.7                                 | 45.8                                   | 45.9                                | 41.7                                   | 31.0                                | 31.4                                 | 35.8                               | 43.1                             | 32.6                                    | 39.8                      | 39.3                                        | 27.4                                        |         | 69.2                                          | 33.3                                       |
| 52<br>Table 1 (continued) | Homologous gene             | erium ccpA                                                           | ii K12 rbsA                          | Escherichia coli K12 MG1655<br>rbsC    | Escherichia coli K12 MG1655<br>rbsB | Escherichla coli K12 MG1655<br>rbsD    | s cerevisiae                        | coelicolor                           | Rattus norvegicus (Rat) NTC!       | Staphylococcus aureus WHU 29     | ıs jannaschii                           | NI K12 yajG               | n tuberculosis<br>2c                        | n tuberculosis<br>Sc                        |         | Corynebacterium glutamicum<br>ATCC 13032 ilvD | n tuberculosis<br>4                        |
| 32<br>Table               | Homolo                      | Bacillus megaterium ccpA                                             | Escherichia coli K12 rbsA            | Escherichia co<br>rbsC                 | Escherichia co<br>rbsB              | Escherichla co<br>rbsD                 | Saccharomyces cerevisiae<br>YIR042c | Streptomyces coelicolor<br>SCF34 13c | Rattus norvegi                     | Staphylococcu<br>ratB            | Methanococcus jannaschii<br>MJ1501 (4re | Escherichia coli K12 yajG | Mycobacterium tuberculosis<br>H37Rv Rv2972c | Mycobacterium tuberculosis<br>H37Rv Rv3005c |         | Corynebacterium<br>ATCC 13032 ilvD            | Mycobacterium tuberculosis<br>H37Rv Rv3004 |
|                           | db Match                    | SP CCPA_BACME                                                        | sp.RBSA_ECOLI                        | sp.RBSC_ECOLI                          | sp.RBSB_ECOLI                       | sp RBSD_ECOLI                          | sp.YIW2_YEAST                       | 34_13                                | _RAT                               | 1467                             | SP.F4RE_METJA                           | sp.YaJG_ECOLI             | 27.                                         | 155                                         |         | gp.AJ012283_1                                 | 355                                        |
| 40                        | <b>ਚ</b>                    | sp CCP,                                                              | sp.RBS                               | sp.RBS                                 | sp.RBSI                             | sp RBS                                 | sp.YIW.                             | gp.SCF34_13                          | SP NTCI_RAT                        | gsp.W61467                       | sp.F4R8                                 | sp.YQJ(                   | pir:A70672                                  | pir H70855                                  |         |                                               | pir G70855                                 |
|                           | ORF<br>(bp)<br>630          | 1107                                                                 | 1572                                 | 972                                    | 942                                 | 369                                    | 636                                 | 1014                                 | 1005                               | 1479                             | 672                                     | 1077                      | 174                                         | 1056                                        | 237     | 1839                                          | 564                                        |
| 45                        | Terminal<br>(nt)<br>1315325 | 1317444                                                              | 1319005                              | 1319976                                | 1320942                             | 1321320                                | 1322111                             | 1323406                              | 1324537                            | 1326256                          | 1327049                                 | 1329891                   | 1331875                                     | 1333008                                     | 1333188 | 1333442                                       | 1335412                                    |
| 50                        | Initial<br>(nt)<br>1315954  | 1316338                                                              | 1317434                              | 1319005                                | 1320001                             | 1320952                                | 1321476                             | 1322393                              | 1323533                            | 1324778                          | 1326378                                 | 1330987                   | 1331102                                     | 1331953                                     | 1333424 | 1335280                                       | 1335975                                    |
|                           | SEQ<br>NO<br>(a a )         | 4885                                                                 | 4886                                 | 4887                                   | 4888                                | 4889                                   | 4890                                | 4891                                 | 4892                               | 4893                             | 4894                                    | 4895                      | 4896                                        | 4897                                        | 4898    | 4899                                          | 4900                                       |
| 55                        | SEQ<br>NO<br>(DNA)          | 1385                                                                 | 1386                                 | 1387                                   | 1388                                | 1389                                   | 1390                                | 1391                                 | 1392                               |                                  | 1394                                    | 1395                      | 1396                                        | 1397                                        | 1398    | 1399                                          | 1400                                       |

| 10                      | Function                    | hypothetical membrane protein                 | hypothetical protein    |              | nitrate transport ATP-binding potein | mallose/maltodextrin transport ATP-<br>binding protein | nitrate transporter protein          |         |         | actinorhodin polyketide dimerase | cobalt-zinc-cadimium resistance<br>protein |         |              | hypothetical protein     |         | D-3-phosphoglycerate dehydrogenase | hypothetical serine-rich protein         |         |         | hypothetical protein                    |         |
|-------------------------|-----------------------------|-----------------------------------------------|-------------------------|--------------|--------------------------------------|--------------------------------------------------------|--------------------------------------|---------|---------|----------------------------------|--------------------------------------------|---------|--------------|--------------------------|---------|------------------------------------|------------------------------------------|---------|---------|-----------------------------------------|---------|
| 15                      | Matched<br>length<br>(e.e.) | 62                                            | 99                      |              | 167                                  | 87                                                     | 324                                  |         |         | 142                              | 304                                        |         |              | 642                      |         | 530                                | 105                                      |         |         | 620                                     |         |
| 20                      | Similarity (%)              | 100 0                                         | 55.0                    |              | 80.8                                 | 782                                                    | 56.8                                 |         |         | 73.2                             | 727                                        |         |              | 53.7                     |         | 100.0                              | 52 0                                     |         |         | 63.1                                    |         |
|                         | Identity<br>(%)             | 100.0                                         | 45 0                    |              | 50.9                                 | 46.0                                                   | 28.1                                 |         |         | 39.4                             | 39 1                                       |         |              | 22 9                     |         | 98.8                               | 29 0                                     |         |         | 32.9                                    |         |
| S S Lable 1 (continued) | Hamologous gene             | Corynebacterium glutamicum<br>ATCC 13032 yilV | fataricus               |              | us sp. nrtD                          | Enterobacter aerogenes<br>(Aerobacter aerogenes) malK  | Anabaena sp. strain PCC 7120<br>nrtA | -       |         | coelicolor                       | opha czcD                                  |         |              | us Jannaschil            |         | Brevibacterium flavum serA         | Schizosaccharomyces pombe<br>SPAC11G7 01 |         |         | Rhodobacter capsulatus strain<br>SB1003 |         |
| Table                   | Ното                        | Corynebacterium<br>ATCC 13032 yilv            | Sulfolobus solfataricus |              | Synechococcus sp. ndD                | Enterobacter aerogenes<br>(Aerobacter aerogenes)       | Anabaena sp.<br>nrtA                 |         |         | Streptomyces coelicolor          | Raistonia eutropha czcD                    |         |              | Methanococcus Jannaschil |         | Brevibacteriur                     | Schizosacchar<br>SPAC11G7 01             |         |         | Rhodobacter<br>SB1003                   |         |
| 40                      | db Match                    |                                               | GP:SSU18930_26          |              | SP NRTD_SYNP7                        | SP MALK_ENTAE                                          | SP NRTA_ANASP                        |         |         | SP DIME_STRCO                    | sp CZCD_ALCEU                              |         |              | sp.Y686_METJA            |         | gsp:Y22646                         | SP:YEN1_SCHPO                            |         |         | pir T03476                              |         |
|                         | ORF<br>(bp)                 | 1473                                          | 231                     | 606          | 498                                  | 267                                                    | 882                                  | 447     | 369     | 486                              | 954                                        | 153     | 069          | 1815                     | 1743    | 1590                               | 327                                      | 867     | 1062    | 1866                                    | 405     |
|                         | 70                          | 2                                             | 0                       | 2            | 0                                    | =                                                      | 4                                    | 4       | 8       | 0                                | 6                                          | 50      | 7            | 2                        | 9       | 4                                  | ^-                                       | -       | 0       | 4                                       | က       |
|                         | Termir<br>(nt)              | 13360                                         | 13383                   | 13428        | 13419                                | 13424                                                  | 13427                                | 13444   | 13448   | 13454                            | 13464                                      | 13453   | 13456        | 13482                    | 13500   | 13524                              | 13517                                    | 13534   | 13545   | 13575                                   | 13568   |
| 50                      | Initial<br>(nl)             | 1337567                                       | 1338609                 | 4903 1342072 | 1342457                              | 1342727                                                | 1343675                              | 1344018 | 1344440 | 4909 1344935                     | 1345486                                    | 1345487 | 4912 1346331 | 1346458                  | 1348334 | 1350855                            | 1352053                                  | 1352585 | 1355601 | 1355689                                 | 1356452 |
|                         | SEQ<br>NO<br>1              | 4901                                          | 4902                    | 4903         | 4904                                 | 4905                                                   | 4906                                 | 4907    | 4908    |                                  | 4910                                       | 4911    | 4912         | 4913                     | 4914    | 4915                               | 4916                                     | 4917    | 4918    | 4919                                    | 4920    |
| 55                      | SEQ<br>NO<br>(DNA)          | 1401                                          | 1402                    | 1403         | 1404                                 | 1405                                                   | 1408                                 | 1407    | 1408    | 1409                             | 1410                                       | 1411    | 1412         | 1413                     | 1414    | 1415                               | 1416                                     | 1417    | 1418    | 1419                                    | 1420    |

| 10                  | Function                    |         | homoprotocatechtuate catabolism<br>bifunctional<br>isomerase/decarboxylase [Includes:<br>2-hydroxyhepta-2,4-diene-1,7-dieate<br>Isomerase(hhdd Isomerase); 5-<br>carboxymethyl:2-oxo-hex-3-ane-1,7-<br>dieate decarboxylase(opet | methyltransferase or 3-<br>demethylublquinone-9 3-O-<br>methyltransferase | isochorismate synthase | glutamy-IRNA synthetase | transcriptional regulator     |         |         |         |         |         |         |         |         |         |         |         |                 | thiamin blosynthesis protein   |
|---------------------|-----------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------|-------------------------|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------|--------------------------------|
| 15                  | Matched<br>length<br>(e.a.) |         | 228<br>228<br>228<br>228<br>229<br>239<br>240<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25                                                                                                               | 192<br>P P                                                                | 371 is                 | 485 9                   | 67 tr                         |         |         |         |         |         |         |         |         |         |         |         | $\neg \uparrow$ | 599                            |
| 20                  | Similarity<br>(%)           |         | 59.2                                                                                                                                                                                                                             | 55.7                                                                      | 70.4                   | 69.7                    | 0 06                          |         |         |         |         |         |         |         |         |         |         |         |                 | 81.0                           |
|                     | Identity<br>(%)             |         | 33.3                                                                                                                                                                                                                             | 23.4                                                                      | 38.0                   | 37.3                    | 77.0                          |         |         |         |         |         |         |         |         |         |         |         |                 | 85.1                           |
| Table 1 (continued) | Homologous gene             |         | Escherichia coll C hpcE                                                                                                                                                                                                          | Escherichia coli K12                                                      | Bacillus subtilis dhbC | Bacillus subtilis gitX  | Streptomyces coelicolor A3(2) |         |         |         |         |         |         |         |         |         |         |         |                 | Bacillus subtilis thiA or thiC |
| 40                  | db Match                    |         | sp:HPCE_ECOLI                                                                                                                                                                                                                    | sp UBIG_ECOLI                                                             | SP DHBC_BACSU          | SP SYE_BACSU            | 3 gp SCJ33_10                 |         | 2       | 2       |         |         |         | 0       |         | 3       | 6       | 2       |                 | 1761 sp THIC_BACSU             |
|                     | OR<br>P (gd)                | 654     | 804                                                                                                                                                                                                                              | 618                                                                       | 1128                   | 1488                    | 213                           | 516     | 525     | 342     | 621     | 303     | 180     | 330     | 213     | 183     | 318     | 1152    | 324             |                                |
|                     | Termina<br>(nt)             | 1358210 | 1359062                                                                                                                                                                                                                          | 1359669                                                                   | 1360156                | 1362848                 | 1362926                       | 1363142 | 1363732 | 1365256 | 1364340 | 1364878 | 1365217 | 1366137 | 1367505 | 1367888 | 1368395 | 1369551 | 1369874         | 1369877                        |
| 50                  | initial<br>(nt)             | 1357557 | 1358259                                                                                                                                                                                                                          | 1359052                                                                   | 1361295                | 1361381                 | 1363138                       | 1363657 | 1364253 | 1364915 | 1364960 | 1365180 | 1365396 | 1365808 | 1367293 | 1368070 | 1368078 | 1368400 | 1369551         | 4939 1371637                   |
|                     | SEO<br>NO SEO               | 4921    | 4922                                                                                                                                                                                                                             | 4923                                                                      | 4924                   | 4925                    | 4926                          | 4927    | 4928    | 4929    | 4930    | 4931    | 4932    | 4933    | 4934    | 4935    | 1936    | 4937    | 4938            | 4939                           |
| 55                  | SEO<br>NO<br>(DNA)          | 1421    | 1422                                                                                                                                                                                                                             | 1423                                                                      | 1424                   | 1425                    | 1428                          | 1427    | 1428    | 1429    | 1430    | 1431    | 1432    | 1433    | 1434    | 1435    | 1436    | 1437    | 1438            | 1439                           |

| 5              | Function                    |         |         | lipoprotein           |         | glycogen phosphorylase  |         |         | hypothetical protein   | hypothetical membrane protein |         | guanosine 3,5-bis(diphosphate) 3'-<br>pyrophosphatase | acetate repressor protein | 3-Isopropyimalate dehydratase large subunit | 3-isopropyimalate dehydratase small subunit |         | mutator mutT protein ((7,8-dihydro-8-oxoguenine-triphosphatase)(8-oxo-dGTPese)(dGTP<br>pyrophosphohydrolese) |         | NAD(P)H-dependent<br>dihydroxyscetone phosphste<br>reductese | D-alenine-D-alanine ligase          |
|----------------|-----------------------------|---------|---------|-----------------------|---------|-------------------------|---------|---------|------------------------|-------------------------------|---------|-------------------------------------------------------|---------------------------|---------------------------------------------|---------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------|-------------------------------------|
| 15             | Matched<br>length<br>(a.a.) |         |         | 44                    |         | 797                     |         |         | 299                    | 256                           |         | 178                                                   | 257                       | 473                                         | 195                                         |         | 294                                                                                                          |         | 331                                                          | 374                                 |
| 20             | Similarity (%)              |         |         | 74.0                  |         | 74.0                    |         |         | 52.8                   | 64.8                          |         | 1.09                                                  | 60.7                      | 87.5                                        | 89.2                                        |         | 71.4                                                                                                         |         | 72.2                                                         | 67.4                                |
|                | Identity<br>(%)             |         |         | 61.0                  |         | 44.2                    |         |         | 25.4                   | 25.4                          |         | 29.8                                                  | 28.1                      | 68.1                                        | 67.7                                        |         | 45.9                                                                                                         |         | 45.0                                                         | 40.4                                |
| 75 (continued) | Homologous gene             |         |         | Chlamydia trachomatis |         | Rattus norvegicus (Rat) |         |         | Bacillus subtilis yrkH | Methanococcus Jannaschil Y441 |         | Escherichia coli K12 spot                             | Escherichia coli K12 iciR | Actinoplanes telchomyceticus<br>lau2        | Salmonella typhimurium                      |         | Mycobacterium tuberculosis<br>H37Rv MLCB637.35c                                                              |         | Bacillus subtilis gpdA                                       | Escherichia coli K12 MG1655<br>ddlA |
| 35             |                             |         |         | Chia                  |         | Ratt                    |         |         | $\overline{}$          | Met                           |         | Esc                                                   | ESC                       | Actin<br>Ieu2                               |                                             |         | Myo<br>H37                                                                                                   |         |                                                              | Esc<br>dd/                          |
| 40             | db Match                    |         |         | GSP:Y37857            |         | sp.PHS1_RAT             |         |         | SP. YRKH_BACSU         | Sp.Y441_METJA                 |         | sp.SPOT_ECOLI                                         | SpiceR_ECOU               | sp.LEU2_ACTTI                               | sp.LEUD_SALTY                               |         | gp.MLCB637_35                                                                                                |         | sp:GPDA_BACSU                                                | 1080 SP.DDLA_ECOLI                  |
|                | ORF<br>(bp)                 | 348     | 531     | 132                   | 936     | 2427                    | 183     | 158     | 1407                   | 750                           | 477     | 564                                                   | 705                       | 1443                                        | 591                                         | 318     | 954                                                                                                          | 156     | 966                                                          |                                     |
|                | Termina<br>(nt)             | 1371979 | 137313  | 1373929               | 137549  | 1373350                 | 137580  | 137593. | 137814                 | 137766                        | 137846  | 137956                                                | 137955:                   | 1381887                                     | 1382492                                     | 1382502 | 138284                                                                                                       | 138408  | 138512                                                       | 138623                              |
| 50             | Initial<br>(nt)             | 1372326 | 1372601 | 1373798               | 1374558 | 1375776                 | 1375987 | 1376088 | 1377555                | 1378415                       | 1378942 | 1379003                                               | 1380259                   | 1380440                                     | 1381902                                     | 1382819 | 1383798                                                                                                      | 1383930 | 1384130                                                      | 1385153                             |
|                | SEQ<br>NO                   |         | 4941    | 4942                  | 4943    | 4944                    | 4945    | 4946    | 4947                   | 4948                          | 4949    | 4950                                                  | 4951                      | 4952                                        | 4953                                        | 4954    | 4955                                                                                                         | 4956    | 4957                                                         | 4958                                |
| 55             | SEQ<br>NO<br>DNA)           | 1440    | 1441    | 1442                  | _       | 1444                    | 1445    | 1448    | 1447                   | 1448                          | 1449    | 1450                                                  | 1451                      | 1452                                        | 1453                                        | 1454    | 1455                                                                                                         | 1456    | 1457                                                         | 1458                                |

| 5                      | Function                    |         | thismin-phosphate kinase  | uracil-DNA glycosylase precursor | hypothetical protein                  | ATP-dependent DNA heticase | polypeptides predicted to be useful<br>antigens for vaccines and<br>diagnostics | biotin carboxyl carrier protein                   | methylase                 | lipopolysaccharide core biosynthesis<br>protein |         | Neisserial polypeptides pradicted to<br>be useful antigens for vaccines and<br>diagnostics | ABC transporter or glutamine ABC transporter, ATP-binding protein | nopaline transport protein     | glutamine-binding protein precursor |         | hypothetical membrane protein                  |         | phage integrase         |
|------------------------|-----------------------------|---------|---------------------------|----------------------------------|---------------------------------------|----------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|-------------------------------------------------|---------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|-------------------------------------|---------|------------------------------------------------|---------|-------------------------|
| 15                     | Matched<br>length<br>(a.e.) |         | 335                       | 245                              | 568                                   | 693                        | 108                                                                             | 67                                                | 167                       | 155                                             |         | 65                                                                                         | 252                                                               | 220                            | 234                                 |         | 322                                            |         | 223                     |
| 20                     | Similarity<br>(%)           |         | 57.6                      | 59.6                             | 56.3                                  | 60.0                       | 48.0                                                                            | 87.2                                              | 63.5                      | 78.7                                            |         | 74.0                                                                                       | 78.6                                                              | 75.0                           | 59.0                                |         | 60.3                                           |         | 52.5                    |
|                        | Identity<br>(%)             |         | 32.2                      | 38.8                             | 23 1                                  | 35.4                       | 31.0                                                                            | 38.8                                              | 1 28                      | 42.6                                            |         | 67.0                                                                                       | 56.4                                                              | 32.7                           | 27.4                                |         | 28.6                                           |         | 28.9                    |
| 35 Table 1 (continued) | Homologous gene             |         | Escherichla coli K12 thiL | Mus musculus ung                 | Mycopiasma genitalium (SGC3)<br>MG389 | Escherichia coli K12 recG  | Neisseria meningitidis                                                          | Propionibacterium fraudenraichli subsp. Shermanii | Escherichia coli K12 yhhF | Escherichia coli K12 MG1655<br>kdtB             |         | Neisseria gonorrhoeae                                                                      | Bacillus stearothermophilus<br>glnQ                               | Agrobacterium tumefaciens nocM | Escherichia coli K12 MG1655<br>ginH |         | Methanobacterium<br>thermoautotrophicum MTH485 |         | Bacteriophage L54a vinT |
| 40                     | db Match                    |         | Sp. THIL_ECOL!            | SP UNG MOUSE                     | sp. Y389_MYCGE                        | SP RECG_ECOLI              | GSP.Y75303                                                                      | sp.BCCP_PROFR                                     | Sp.YHHF_ECOLI             | \$p.KDTB_ECOLI                                  |         | GSP.Y75358                                                                                 | Sp. GLNO_BACST                                                    | SP.NOCM_AGRTS                  | Sp. GLNH_ECOL!                      |         | pir H69160                                     |         | sp VINT_BPL54           |
|                        | ORF<br>(bp)                 | 978     | 993                       | 762                              | 1581                                  | 2121                       | 324                                                                             | 213                                               | 582                       | 490                                             | 1080    | 204                                                                                        | 750                                                               | 843                            | 861                                 | 807     | 978                                            | 408     | 756                     |
|                        | Termina<br>(nt)             | 1386293 | 1388324                   | 1389073                          | 1390788                               | 1392916                    | 1391636                                                                         | 1393151                                           | 1393735                   | 1394221                                         | 1395933 | 1395097                                                                                    | 1394800                                                           | 1395568                        | 1396561                             | 1398468 | 1398557                                        | 1401333 | 1400185                 |
| 50                     | initial<br>(nt)             | 1387270 | 1387332                   | 1388312                          | 1389208                               | 1390796                    | 1391961                                                                         | 1392939                                           | 1393154                   | 1393742                                         | 1394854 | 1394894                                                                                    | 1395549                                                           | 1396410                        | 1397421                             | 1397662 | 1399534                                        | 1400926 | 1400940                 |
|                        | SEQ<br>NO<br>•              | 4959    | 4960                      | 1961                             | 4962                                  | 4983                       |                                                                                 | 4965                                              | 4968                      | 4967                                            | 4968    | 4969                                                                                       | 4970                                                              | 4971                           | 4972                                | 4973    | 4974                                           | 4975    | 4976                    |
| 55                     | SEQ<br>NO<br>DNA)           | 1459    | 1460                      | 1461                             | 1462                                  | 1463                       | <del></del>                                                                     | 1465                                              | 1466                      | 1467                                            | 1468    | 1469                                                                                       | 1470                                                              | 1471                           | 1472                                | 1473    | 1474                                           | 1475    | 1478                    |

| 5                            | Function                    |         |         |         |         |         | Insertion element (IS3 related) |         | hypothetical protein       |         |         |         |         |         |         |         |         |         | DNA polymerase I                   | cephamycin export protein      | DNA-binding protein                        | morphine-6-dehydrogensse |         |
|------------------------------|-----------------------------|---------|---------|---------|---------|---------|---------------------------------|---------|----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------------------------|--------------------------------|--------------------------------------------|--------------------------|---------|
| 15                           | Matched<br>length<br>(a.a.) |         |         |         |         |         | 28                              |         | 37                         |         |         |         |         |         |         |         |         |         | 968                                | 456                            | 283                                        | 284                      |         |
| 20                           | Similarity (%)              |         |         |         |         |         | 96.2                            |         | 0.78                       |         |         |         |         |         |         |         |         |         | 80.8                               | 87.8                           | 65.4                                       | 76 1                     |         |
|                              | Identity<br>(%)             |         |         |         |         |         | 88 5                            |         | 0.68                       |         |         |         |         |         |         |         |         |         | 56.3                               | 33.8                           | 41.3                                       | 46.5                     |         |
| 25 (Dantinued) 1 (Continued) | us gene                     |         |         |         |         |         | glutamicum                      |         | glutamicum                 | -       |         |         |         |         |         |         |         |         | berculosis                         | tamdurans                      | elicolor A3(2)                             | tida morA                |         |
| Table 1                      | Homologous gene             |         |         |         |         |         | Corynebacterium glutamicum orf2 |         | Corynebacterium glutamicum |         |         |         |         |         |         |         |         |         | Mycobacterium tuberculosis<br>polA | Streptomyces lactamdurans cmcT | Streptomyces coelicolor A3(2)<br>SCJ9A 15c | Pseudomonas putida morA  |         |
| 35                           |                             |         |         |         |         |         | 0.8                             |         | )                          |         |         |         |         |         |         |         |         |         |                                    |                                |                                            | $\vdash$                 | ;       |
| 40                           | db Match                    |         |         |         |         |         | pir.S60890                      |         | PIR S60890                 |         |         |         |         |         |         |         |         |         | sp DPO1_MYCTU                      | SP.CMCT_NOCLA                  | gp SCJ9A_15                                | SP MORA PSEPU            |         |
|                              | ORF<br>(bp)                 | 744     | 432     | 507     | 864     | 219     | 192                             | 855     | 111                        | 389     | 315     | 321     | 375     | 948     | 306     | 564     | 222     | 291     | 2715                               | 1422                           | 606                                        | 873                      | 159     |
| 45                           | Termina<br>(nt)             | 140207  | 140270  | 140236  | 140399  | 140421  | 1404694                         | 140532  | 140699                     | 140716  | 140755  | 140870; | 140942  | 1410064 | 141111  | 1411437 | 1412572 | 1412626 | 1416459                            | 1416462                        | 1418870                                    | 1419748                  | 1419878 |
| 50                           | Initial<br>(nt)             | 1401333 | 1402272 | 1402874 | 1403128 | 1403997 | 1404885                         | 1406174 | 1407109                    | 1407535 | 1407873 | 1409023 | 1409802 | 1411011 | 1411424 | 1412000 | 1412351 | 1412916 | 1413745                            | 1417883                        | 1417962                                    | 1418876                  | 1420036 |
|                              | S S S                       | 4977    | 4978    | 4979    | 4980    | 4981    | 4982                            | 4983    | 4984                       | 4985    | 4986    | 4987    | 4988    | 4989    | 4990    | 4991    | 4992    | 4993    | 4994                               | 1995                           | 1496 4996                                  | 4997                     | 4998    |
| 55                           | SEQ<br>NO<br>(DNA)          | 1477    | 1478    | 1479    | 1480    | 1481    | 1482                            | 1483    | 1484                       | 1485    | 1486    | 1487    | 1488    | 1489    | 1490    | 1491    | 1492    | 1493    | 1494                               | 1495                           | 1496                                       | 1497                     | 1498    |

| <b>5</b>                                     | Function                    | hypothetical protein                    | 30S ribosomal protein S1  |         | hypothetical protein                             |         |         |         |         | inosine-undine preferring nucleoside hypolase (purine nucleosidase) | aniseptic resistance protein | ribose kinase             | criptic asc operon repressor,<br>ranscription regulator |         | excinuclease ABC subunit B                   | hypothetical protein               | hypothetical protein      | hypothetical protein      |         | hypothetical protein   | hypothetical protein                        | hydrolase                 |
|----------------------------------------------|-----------------------------|-----------------------------------------|---------------------------|---------|--------------------------------------------------|---------|---------|---------|---------|---------------------------------------------------------------------|------------------------------|---------------------------|---------------------------------------------------------|---------|----------------------------------------------|------------------------------------|---------------------------|---------------------------|---------|------------------------|---------------------------------------------|---------------------------|
| 15                                           | Matched<br>length<br>(a.a.) | 163                                     | 451                       |         | 195                                              |         |         |         |         | 310                                                                 | 517                          | 293                       | 337                                                     |         | 671                                          | 152                                | 121                       | 279                       |         | 839                    | 150                                         | 214                       |
| 20                                           | Similarity (%)              | 583                                     | 71.4                      |         | 93.9                                             |         |         |         |         | 810                                                                 | 53.8                         | 87.8                      | 65.8                                                    |         | 83.3                                         | 59.2                               | 80.2                      | 77.1                      |         | 47.2                   | 0.88                                        | 58 4                      |
|                                              | Identity<br>(%)             | 31.9                                    | 39.5                      |         | 80.5                                             |         |         |         |         | 61.9                                                                | 23.6                         | 35.5                      | 30.0                                                    |         | 57.4                                         | 33.6                               | 38.8                      | 53.8                      |         | 232                    | 32.7                                        | 30.4                      |
| se se sa | us gene                     | licolor                                 | 12 rpsA                   |         | ctofermentum<br>E                                |         |         |         |         | Ita iunH                                                            | ureus                        | C12 rbsK                  | (12 ascG                                                |         | leumoniae<br>uvrB                            | annaschii                          | C12 yttH                  | c12 ytG                   |         | VgS                    | elicolor A3(2)                              | <12 ycbL                  |
| Table 1                                      | Homologous gene             | Streptomyces coelicolor<br>SCH5 13 yafE | Escherichla coli K12 rpsA |         | Brevibacterium lactofermentum<br>ATCC 13869 yacE |         |         |         |         | Crithidia fasciculata iunH                                          | Staphylococcus aureus        | Escherichia coli K12 rbsK | Escherichia coil K12 ascG                               |         | Streptococcus pneumoniae plasmid pS8470 uvrB | Methanococcus jannaschii<br>MJ0531 | Escherichia coli K12 yttH | Escherichia coll K12 ytlG |         | Bacillus subtilis yvgS | Straptomyces coelicolor A3(2)<br>SC9H11.26c | Escherichia coli K12 ycbL |
| 35                                           |                             | Ī                                       |                           |         | BRELA                                            |         |         |         |         |                                                                     | 1                            | 1                         |                                                         |         |                                              |                                    |                           |                           |         |                        |                                             |                           |
| 40                                           | db Match                    | Sp.YAFE_ECOLI                           | Sp.RS1_ECOLI              |         | Sp:YACE_BR                                       |         |         |         |         | SP IUNH_CRIFA                                                       | sp QACA_STAAU                | SP RBSK_ECOLI             | sp. ASCG_ECOLI                                          |         | sp UVRB_STRPN                                | sp.Y531_METJA                      | SP YTFH_ECOLI             | SP.YTFG_ECOU              |         | pir H70040             | gp SC9H11_26                                | sp YCBL_ECOLI             |
|                                              | ORF<br>(bp)                 | 654                                     | 1458                      | 1476    | 900                                              | 1098    | 582     | 246     | 957     | 936                                                                 | 1449                         | 921                       | 1038                                                    | 798     | 2097                                         | 441                                | 381                       | 946                       | 684     | 2349                   | 912                                         | 900                       |
| 15                                           | <u></u>                     | 1                                       | ø                         | g       | 60                                               | *       | 0       | ă       | 8       | 8284                                                                | 4                            | 5                         | 5                                                       | 12      | 16291                                        | . 2                                | 8                         | 8                         | 8       | 22                     | 6.5                                         | 4173                      |
|                                              | Termin<br>(nt)              | 14200                                   | 14225                     | 14210   | 14258                                            | 14273   | 14273   | 14278   | 14292   | 1.5                                                                 | 14291                        | 14308                     | 14315                                                   | 14335   | 4.                                           | 14367                              | 14368                     | •                         | 14400   | 14382                  | 14406                                       | =                         |
| 50                                           | Initial<br>(nt)             | 1420724                                 | 1421099                   | 1422571 | 1425279                                          | 1428257 | 1427957 | 1428049 | 1428290 | 1429159                                                             | 1430642                      |                           | 1432612                                                 | 1432750 | 1434105                                      | 1436335                            | 1437249                   |                           | 1439343 | 1440560                | 1441586                                     | 5019 1442392              |
|                                              | SEQ<br>NO                   |                                         | 2000                      | 5001    | 2005                                             | 5003    | 5004    | 5005    | 5006    |                                                                     | 5008                         | +                         | 5010                                                    | 5011    | 5012                                         | 5013                               | 5014                      | 5015                      | 5018    | 5017                   | 5018                                        |                           |
| 55                                           | SEO<br>NO<br>IDNA)          | 1499                                    | 1500                      | 1501    | 1502                                             | 1503    | 1504    | 1505    | 1506    | 1507                                                                | 1508                         | 1509                      | 1510                                                    | 1511    | 1512                                         | 1513                               | 1514                      | 1515                      | 1516    | 1517                   | 1518                                        | 1519                      |

| 10                  | Function                    | excinucionse ABC subunit A | hypothetical protein 1248 (uvrA region) | hypothetical protein 1246 (uvrA region) |           |         | translation initiation factor IF-3 | 50S ribosomal protein L35 | 50S ribosomal protein L20            |         |           | sn-glycerol-3-phosphate transport<br>system permesse protein | sn-glycerol-3-phosphate transport system protein | sn-glycerol-3-phosphate transport system permease proein | sn-glycerol-3-phosphate transport<br>ATP-binding protein | hypothetical protein        | glycerophosphoryl diester<br>phosphodiesterase | tRNA(gusnosine-2'-0-)-<br>methlytransferase | phenylelenyl-tRNA synthetese elpha<br>chain |
|---------------------|-----------------------------|----------------------------|-----------------------------------------|-----------------------------------------|-----------|---------|------------------------------------|---------------------------|--------------------------------------|---------|-----------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------|------------------------------------------------|---------------------------------------------|---------------------------------------------|
| 15                  | Matched<br>length<br>(a a.) | 952                        | 100                                     | 142                                     |           |         | 179                                | 90                        | 117                                  |         |           | 292                                                          | 270                                              | 436                                                      | 393                                                      | 74                          | 244                                            | 153                                         |                                             |
| 20                  | Similarity<br>(%)           | 90.6                       | 0.78                                    | 47.0                                    |           |         | 78.2                               | 78.7                      | 02.7                                 |         |           | 71.6                                                         | 70.4                                             | 57.8                                                     | 71.3                                                     | 26.0                        | 50.0                                           | 71.2                                        |                                             |
|                     | Identity<br>(%)             | 56.2                       | 40.0                                    | 31.0                                    |           |         | 52.5                               | 41.7                      | 750                                  |         |           | 33.2                                                         | 33.3                                             | 26.6                                                     | 44.0                                                     | 47.0                        | 28.2                                           | 34.0                                        |                                             |
| 7able 1 (Continued) | Homologous gene             | Escherichia coli K12 uvrA  | us luteus                               | ous luteus                              |           |         | Rhodobacter sphaeroldes InfC       | Mycopiasma fermentans     | Pseudomonas syringae pv.<br>syringae |         |           | Escherichia coll K12 MG1655<br>ugpA                          | Escherichia coli K12 MG1655<br>upgE              | Escherichia coli K12 MG1855<br>ugpB                      | Escherichia coll K12 MG1655<br>ugpC                      | Aeropyrum pernix K1 APE0042 | Bacillus subtilis gipQ                         | Escherichia coll K12 MG1855<br>trmH         | Bacillus subtilis 168 syfA                  |
| <u></u><br>35       | ᅄ                           | Escherich                  | Micrococcus luteus                      | Micrococcus luteus                      |           |         | Rhodobac                           | Mycoplasi                 | Pseudom<br>syringse                  |         |           | Escherich<br>ugpA                                            | Escherich<br>upgE                                | Escherich<br>ugpB                                        | Escherich<br>ugpC                                        | Aeropyru                    | Bacillus s                                     | Escherich<br>trmH                           | Bacillus s                                  |
| 40                  | db Match                    | Sp.UVRA_ECOLI              | PIR-JQ0406                              | PIR.JQ0408                              |           |         | SP IF3_RHOSH                       | SP RL35 MYCFE             | sp RL20_PSESY                        |         |           | *p:UGPA_ECOU                                                 | sp UGPE_ECOLI                                    | sp UGPB_ECOLI                                            | sp.UGPC_ECOL!                                            | PIR E72756                  | sp GLPQ_BACSU                                  | SP.TRMH_ECOLI                               | sp SYFA_BACSU                               |
|                     | ORF<br>(bp)                 | 2847                       | 306                                     | 450                                     | 717       | 2124    | 267                                | 192                       | 381                                  | 822     | 567       | 903                                                          | 934                                              | 1314                                                     | 1224                                                     | 249                         | 717                                            | 594                                         | 1020                                        |
| - 40                | Termin (nt)                 | 144533                     | 144381                                  | 144494                                  | 144687    | 144532  | 1448358                            | 144858                    | 1449025                              | 1449119 | 1450692   | 1451820                                                      | 1452693                                          | 1454071                                                  | 145533                                                   | 1454102                     | 1455350                                        | 1456948                                     | 1458065                                     |
| 50                  | Initial T                   | 1442487 1                  | 1444115 1                               | 5022 1445393 1                          | 1446158 1 | 1447446 | 1447792 1                          | 1448390 1                 | 1448645 1                            | 1449940 | 1450126 1 | 1450918 1                                                    | 1451820 1                                        | 1452758                                                  | 1454115 1                                                | 1454350 1                   | 1456088                                        | 1456355                                     | 1457047                                     |
|                     | SEO<br>NO                   | 5020                       |                                         | 5052                                    | 5023      | 5024    | 5025                               | 5026                      | 5027                                 | 5028    | 5029      | 5030                                                         | 5031                                             | 5032                                                     | 5033                                                     | 5034                        | 5035                                           | 5036                                        | 5037                                        |
| 55                  | SEQ<br>NO<br>(DNA)          | 1520                       |                                         | 1522                                    | 1523      | 1524    | 1525                               | 1526                      | 1527                                 | 1528    | 1529      | 1530                                                         | 1531                                             | 1532                                                     | 1533                                                     | 1534                        | 1535                                           | 1536                                        | 1537                                        |

| _                   |                             |                                            |         |                           |                                    | $\overline{}$ |                                                   |                                               |                                               |                                          | - 1      | - 1                                      | ì       |         | - 1     |                           | 1                                            | ì                                  |         |                                   |   |
|---------------------|-----------------------------|--------------------------------------------|---------|---------------------------|------------------------------------|---------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------|----------|------------------------------------------|---------|---------|---------|---------------------------|----------------------------------------------|------------------------------------|---------|-----------------------------------|---|
|                     | Function                    | phenylalanyi-tRNA synthetase beta<br>chain |         | esterase                  | macrolide 3-O-acytransferase       |               | N-acetyiglutamate-5-semialdehyde<br>dehydrogenase | glutamate N-acetyltransferase                 | acetylornithine aminotransferase              | argininosuccinate synthetase             |          | argininosuccinate lyase                  |         |         |         | hypothetical protein      | tyrosyl-tRNA synthase (tyrosine-tRNA ligase) | hypothetical protein               |         | hypothetical protein              |   |
|                     | Matched<br>length<br>(a.a.) | 343                                        |         | 363                       | 423                                |               | 347                                               | 388                                           | 391                                           | 401                                      |          | 478                                      |         |         |         | 20                        | 417                                          | 149                                |         | 42                                |   |
|                     | Similarity (%)              | 71.7                                       |         | 55.1                      | 56.3                               |               | 1.66                                              | 7.68                                          | 89.2                                          | 8.68                                     |          | 0 06                                     |         |         |         | 72.0                      | 79.8                                         | 64.4                               |         | 75.0                              |   |
|                     | identity<br>(%)             | 42.6                                       |         | 28.5                      | 30.0                               |               | 98.3                                              | 89.5                                          | 0.66                                          | 99.5                                     |          | 83.3                                     |         |         |         | 48.0                      | 48.4                                         | 26.9                               |         | 71.0                              |   |
| Table 1 (continued) | Homologous gene             | Escherichia coll K12 MG1855<br>syfB        |         | Streptomyces scabies estA | Streptomyces mycarofaciens<br>mdmB |               | Corynebacterium glutamicum<br>ASO19 argC          | Corynebacterium glutamicum<br>ATCC 13032 argJ | Corynabacterium glutamicum<br>ATCC 13032 argD | Corynebacterium glutamicum<br>ASO19 argG |          | Corynebacterium glutamicum<br>ASO19 argH |         |         |         | Escherichia coli K12 ycaR | Bacillus subtilis syy1                       | Methanococcus jannaschil<br>MJ0531 |         | Chlamydia muridarum Ngg<br>TC0129 |   |
|                     | db Maich                    | sp.SYFB_ECOLI                              |         | Sp ESTA_STRSC             | SP MOMB_STRMY                      |               | gp.AF005242_1                                     | sp ARGJ_CORGL                                 | sp:ARGD_CORGL                                 | sp.ASSY_CORGL                            |          | gp AF048764_1                            |         |         |         | Sp:YCAR_ECOLI             | sp:SYY1_BACSU                                | sp.Y531_METJA                      |         | PIR F81737                        |   |
|                     | ORF<br>(bp)                 | 2484                                       | 17.1    | 972                       | 1383                               | 402           | 1041                                              | 1164                                          | 1173                                          | 1203                                     | 1209     | 1431                                     | 1143    | 1575    | 612     | 177                       | 1260                                         | 465                                | 390     | 141                               |   |
|                     | <b></b>                     | -                                          | 6       | 2                         | =                                  | 8             | 5128                                              | 6378                                          | <u> </u>                                      | <u> </u>                                 | <u> </u> | <u> </u>                                 | 9       | 5       | ¥       | 0                         | <u> </u>                                     | (3)                                | 8503    | 3335                              | + |
|                     | Termin<br>(nt)              | 146081                                     | 145819  | 146212                    | 146351                             | 146393        | 14851                                             | 14663                                         | 146854                                        | 147141                                   | 147015   | 147290                                   | 14741   | 147569  | 147628  | 147651                    | 147780                                       | 147792                             | 147     | <del>1</del>                      |   |
|                     | Initial<br>(nt)             | 1458133                                    | 1458968 | 5040 1461157              | 1462134                            | 5042 1463533  | 1464083                                           | 1465210                                       | 1467376                                       | 1470211                                  | 1471362  | 5048 1471477                             | 1472977 | 1474119 | 1475683 | 1476343                   | 1476550                                      | 1478393                            | 1478892 | 1483475                           |   |
|                     | SEQ<br>NO<br>(e e)          | 5038                                       | 5039    | 5040                      | 5041                               | 5042          | 5043                                              | 5044                                          | 5045                                          | 5046                                     | 5047     | <del></del>                              | 5049    | 5050    | 5051    |                           |                                              | 5054                               | 5055    | 5058                              |   |
|                     | SEO NO DNA)                 | 1538                                       | 1539    | 1540                      | 1541                               | 1542          | 1543                                              | 1544                                          | 1545                                          | 1546                                     | 1547     | 1548                                     | 1549    | 1550    | 1551    | 1552                      | 1553                                         | 1554                               | 1555    | 1556                              | 1 |

| 10             | Function                    | cytidylate kinase     | GTP binding protein    |         |         | methyltransforase                    | ABC transporter                    | ABC transporter                    |         | hypothetical membrane protein |         | Na+/H+ antiporter                   |         |         | hypothetical protein                | 2-hydroxy-6-oxohepta-2,4-dienoste<br>hydrolase | preprotein translocase SecA subunit | signal transduction protein  | hypothetical protein                       | hypothetical protein                       |
|----------------|-----------------------------|-----------------------|------------------------|---------|---------|--------------------------------------|------------------------------------|------------------------------------|---------|-------------------------------|---------|-------------------------------------|---------|---------|-------------------------------------|------------------------------------------------|-------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------|
| 15             | Matched<br>length<br>(a a.) | 220                   | 435                    |         |         | 232                                  | 499                                | 602                                |         | 257                           |         | 499                                 |         |         | 130                                 | 210                                            | 805                                 | 132                          | 234                                        | 133                                        |
| 20             | Similarity (%)              | 73.6                  | 740                    |         |         | 67.2                                 | 60 1                               | 563                                |         | 73.2                          |         | 61.5                                |         |         | 57.7                                | 63.8                                           | 61.7                                | 93.2                         | 74.4                                       | 63.2                                       |
|                | identity<br>(%)             | 38.6                  | 42.8                   |         |         | 36.2                                 | 29.7                               | 31.2                               |         | 39.7                          |         | 25.7                                |         |         | 38.9                                | 25.2                                           | 35.2                                | 75.8                         | 41.9                                       | 30.8                                       |
| 72 (continued) | Homologous gene             | Bacillus subtilis cmk | Bacillus subtilis yphC |         |         | Mycobacterium tuberculosis<br>Rv3342 | Corynebacterlum striatum M82B tetA | Corynebacterium striatum M82B tetB | -       | Escherichia coli K12 ygiE     |         | Bacillus subtilis ATCC 9372<br>nhaG |         |         | Escherichia coli K12 o249#9<br>ychJ | Archaeoglobus fulgidus AF0675                  | Bacillus subtilis secA              | Mycobacterium smegmatis garA | Mycobacterium tuberculosis<br>H37Rv Rv1828 | Mycobacterium tuberculosis<br>H37Rv Rv1828 |
| 35             | <u>.</u>                    | Bacillus              | Bacillus               |         |         | Mycoba<br>Rv3342                     | Conynet<br>tetA                    | Conynet<br>tetB                    |         | Escher                        |         | Bacillus                            |         |         | Escheri<br>ychJ                     | Archae                                         | Bacillus                            | Mycoba                       | Mycoba<br>H37Rv                            | Mycoba<br>H37Rv                            |
| 40             | db Match                    | sp KCY_BACSU          | SP.YPHC_BACSU          |         |         | sp YX42_MYCTU                        | pri 2513302B                       | pri 2513302A                       |         | Sp YGIE_ECOLI                 |         | gp.AB029555_1                       |         |         | sp YCHJ_ECOLI                       | pir C69334                                     | sp SECA_BACSU                       | gp AF173844_2                | Sp:YODF_MYCTU                              | SP YODE_MYCTU                              |
|                | ORF<br>(bp)                 | 9                     | 1557                   | 999     | 498     | 813                                  | 1554                               | 1767                               | 825     | 789                           | 189     | 1548                                | 186     | 420     | 375                                 | 1164                                           | 2289                                | 429                          | 756                                        | 633                                        |
| 45             | Termina<br>(nt)             | 1504949               | 1508573                | 1506662 | 1507405 | 1507917                              | 1510366                            | 1512132                            | 1510843 | 151297                        | 1514693 | 1512980                             | 1514974 | 151581  | 151540                              | 1515798                                        | 1519456                             | 1520029                      | 152094.                                    | 152158                                     |
| 50             | Initial<br>(nt)             | 1504256               | 1505017                | 1507327 | 1507902 | 1508729                              | 1508813                            | 1510366                            | 1511667 | 1512189                       | 1514505 | 1514527                             | 1515159 | 1515396 | 1515782                             | 1516962                                        | 1517170                             | 1519601                      | 1520190                                    | 1520957                                    |
|                | SEQ<br>NO<br>(*             | 5076                  | 5077                   | 5078    | 5079    | 5080                                 | 5081                               | 5082                               | 5083    | 5084                          | 5085    | 9809                                | 5087    | 5088    | 5089                                | 2090                                           | 5091                                | 5092                         | 5093                                       | 5094                                       |
|                |                             |                       |                        | _       |         | 1580                                 | 1581                               | 1582                               | 1583    | -                             | 1585    | 1586                                | 1587    | 1589    | 1589                                | 1590                                           | 1591                                | 1592                         | 1593                                       | 1594                                       |

| 10                     | Function                   | hypothetical protein                       |         |         |         |         | hemolysin              | hemolysin              |         | DEAD box RNA helicase     | ABC transporter ATP-binding protein        | 8-phosphogluconate dehydrogenase | thioesterase                               |         | nodulation ATP-binding protein I | hypothetical membrane protein               | transcriptional regulator | phosphonates transport system permease protein | phosphonates transport system permease protein | phosphonates transport ATP-binding protein |         |         |   |
|------------------------|----------------------------|--------------------------------------------|---------|---------|---------|---------|------------------------|------------------------|---------|---------------------------|--------------------------------------------|----------------------------------|--------------------------------------------|---------|----------------------------------|---------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|---------|---------|---|
| 15                     | Matched<br>length<br>(a a) | 178                                        |         |         |         |         | 342                    | 65                     |         | 374                       | 245                                        | 492                              | 121                                        |         | 235                              | 232                                         | 277                       | 281                                            | 268                                            | 250                                        |         |         |   |
| 20                     | Similarity<br>(%)          | 84.3                                       |         |         |         |         | 0.69                   | 65.5                   |         | 69.5                      | 1 99                                       | 99.2                             | 678                                        |         | 68.1                             | 763                                         | 63.9                      | 63.4                                           | 62.3                                           | 72.0                                       |         |         |   |
|                        | identity<br>(%)            | 714                                        |         |         |         |         | 33.9                   | 31.4                   |         | 412                       | 34 3                                       | 0 66                             | 39.7                                       |         | 386                              | 43 1                                        | 26 7                      | 29.9                                           | 27.2                                           | 44.8                                       |         |         |   |
| 75 Table 1 (continued) | Homologous gene            | Mycobacterium tuberculosis<br>H37Rv Rv1828 |         |         |         |         | Bacillus subtilis yhdP | Bacillus subtilis yhdT |         | Thermus thermophilus herA | Mycobacterium tuberculosis<br>H37Rv Rv1348 | Brevibacterium flavum            | Mycobacterium tuberculosis<br>H37Rv Rv1847 |         | Rhizobium sp. N33 nodl           | Mycobacterium tuberculosis<br>H37Rv Rv1686c | Escherichia coli K12 yfhH | Escherichia coli K12 phnE                      | Escherichia coli K12 phnE                      | Escherichie coli K12 phnC                  |         |         |   |
| 35                     |                            | -                                          |         |         |         |         |                        |                        |         |                           |                                            | ã                                | ΣÏ                                         |         |                                  | Σï                                          |                           |                                                |                                                |                                            |         |         |   |
| 40                     | db Match                   | SP YODE_MYCTU                              |         |         |         |         | SP.YHDP_BACSU          | SP YHDT_BACSU          |         | gp TTHERAGEN_1            | sp YD48_MYCTU                              | gsp.W27613                       | pir G70664                                 |         | sp NODI_RHIS3                    | pir E70501                                  | SP YFHH_ECOLI             | SP PHNE_ECOL!                                  | SP PHNE_ECOL!                                  | sp PHNC_ECOLI                              |         |         |   |
|                        | ORF<br>(bp)                | 573                                        | 510     | 1449    | 909     | 930     | 1062                   | 1380                   | 219     | 1344                      | 735                                        | 1478                             | 462                                        | 675     | 741                              | 741                                         | 873                       | 846                                            | 804                                            | 804                                        | 210     | 1050    | - |
| <del></del>            | 1-                         | m                                          | 17      | 5       | 2       | æ       | 0                      | 4                      | ဖ       | 2                         | 0                                          | -                                | 4                                          | 9       | =                                | <u>-</u>                                    | 6                         | 3 2                                            | -2                                             | 0                                          | 89      | 0       | 1 |
|                        | Terminal<br>(nt)           | 15223                                      | 15224:  | 15230   | 15259   | 15245   | 15254                  | 15265                  | 15281   | 15279                     | 15302                                      | 15303                            | 15323                                      | 15329   | 15337                            | 15345                                       | 15345                     | 15353                                          | 15362                                          | 15370                                      | 15389   | 15378   | ĺ |
| 50                     | Initial (nt)               | 1521771                                    | 1522941 | 1524500 | 1525374 | 1525497 | 1526534                | 1527913                | 1527968 | 1529330                   | 1529486                                    | 1531816                          | 1531933                                    | 1532322 | 1533041                          | 1533781                                     | 1535401                   | 1536227                                        | 1537030                                        | 1537833                                    | 1538759 | 1538919 |   |
|                        | SEO<br>NO                  | 5005                                       | 9609    | 5097    | 5098    | 5099    | 5100                   | 5101                   | 5102    | 5103                      | 5104                                       | 5105                             | 5106                                       | 5107    | 5108                             | 5109                                        | 5110                      | 5111                                           | 5112                                           | 5113                                       | 5114    | 5115    |   |
| 55                     | SEQ<br>NO<br>(DNA)         | 1595                                       | 1596    | 1597    | 1598    | 1599    | 1600                   | 1601                   | 1602    | 1603                      | 1604                                       | 1605                             | 1606                                       | 1607    | 1608                             | 1609                                        | 1610                      | 1611                                           | 1612                                           | 1613                                       | 1614    | 1615    | : |

| 10                       | Function                    |         | phosphomethylpyrimidins kinsse | hydoxyethythiazole kinase          | cyclopropane-fatty-acyl-phospholipid<br>synthase | sugar transporter or 4-methyl-o-<br>phthalate/phthalate permease | purine phosphoribosytransferase | hypothetical protein      | ersenic oxyenion-fransiocation pump<br>membrane subunit |         | hypothetical protein                     | sulfate permesse | hypothetical protein    |         |         |         |         | hypothetical protein                       | dolichol phosphate mannose<br>synthase | apolipoprotein N-acyltransferase |         | secretory lipase      |
|--------------------------|-----------------------------|---------|--------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------|---------------------------------|---------------------------|---------------------------------------------------------|---------|------------------------------------------|------------------|-------------------------|---------|---------|---------|---------|--------------------------------------------|----------------------------------------|----------------------------------|---------|-----------------------|
| 15                       | Matched<br>length<br>(e.e.) | 1       | 262 ph(                        | 249 hy                             | 451 cy                                           | 468 su                                                           | 156 pu                          | 206 hy                    | 361 er                                                  |         | 222 hy                                   | 469 su           | 97<br>D                 |         |         |         |         | 110 h                                      | 217 dc                                 | 527                              |         | 382                   |
| 20                       | Similarity (%)              |         | 70.2                           | 77.5                               | 55.0                                             | 86.9                                                             | 29.0                            | 68.5                      | 54.6                                                    |         | 83.8                                     | 83.6             | 20 0                    |         |         |         |         | 87.3                                       | 71.0                                   | 55.6                             |         | 55.6                  |
|                          | identiky<br>(%)             |         | 47.3                           | 46.6                               | 286                                              | 32.5                                                             | 36.5                            | 39.8                      | 23.3                                                    |         | 62.2                                     | 51.8             | 39.0                    |         |         |         |         | 71.8                                       | 39.2                                   | 25.1                             |         | 23.7                  |
| 25 Onlined)              | is gene                     |         | urlum thiD                     | urium LT2                          | berculosis                                       | cia Pc701                                                        | T-62 gpt                        | 12 yebN                   | As4,arsB                                                |         | licolor A3(2)                            | R9 ORFA          | . R9 ORFG               |         |         |         |         | berculosis                                 | yces pombe                             | (12 Int                          |         | lip1                  |
| &<br>Table 1 (continued) | Homologous gene             |         | Salmonella typhimurium thiD    | Salmonella typhimurium LT2<br>thiM | Mycobacterium tuberculosis<br>H37Rv ufaA1        | Burkholderia cepacia Pc701<br>mop8                               | Thermus flavus AT-62 gpt        | Escherichia coli K12 yebN | Sinorhizobium sp. As4, ars8                             |         | Streptomyces coelicolor A3(2)<br>SCI7.33 | Pseudomonas sp.  | Pseudomonas sp. R9 ORFG |         |         |         |         | Mycobacterium tuberculosis<br>H37Rv Rv2050 | Schizosaccharomyces pombe dpm1         | Escherichia coli K12 Int         |         | Candida albicans lip1 |
| 35                       |                             |         |                                |                                    | ΣÏ                                               | <u> </u>                                                         | F                               | i                         |                                                         |         | SS                                       | В,               |                         |         |         |         |         | 21                                         | 0.4                                    |                                  |         |                       |
| 40                       | db Match                    |         | Sp.THID_SALTY                  | SP THIM_SALTY                      | pir.H70830                                       | pri 2223339B                                                     | prf 2120352B                    | SP YEBN ECOLI             | gp AF178758_2                                           |         | gp.SC17_33                               | gp.PSTRTETC1     | GP PSTRTETC1_7          |         |         |         |         | pir A70945                                 | prf.2317488A                           | SP LNT_ECOL                      |         | gp.AF188894_1         |
|                          | ORF<br>(bp)                 | 702     | 1584                           | 804                                | 1314                                             | 1386                                                             | 474                             | 669                       | 966                                                     | 483     | 693                                      | 1455             | 428                     | 615     | 207     | 189     | 750     | 396                                        | 910                                    | 1635                             | 741     | 1224                  |
|                          | Ē                           | g       | Q                              | 2119                               | 6269                                             | 5                                                                | 100                             | 6                         | 1 6                                                     | -       | <u>~</u>                                 | 9 2              | 2 7                     | 0       | 0       | 8       | 0 8     | =                                          | 0                                      | 80                               | 4 7     | 2                     |
|                          | Termin<br>(nt)              | 153890  | 153982                         | 15421                              | 15462                                            | 15463                                                            | 15479                           | 15493                     | 1 25                                                    | 15509   | <del></del>                              | 15539            | 15532                   | 15540   | 15550   | 15548   | 15550   | 15567                                      | 15570                                  | 15578                            | 15594   | 15604                 |
| 50                       | initial<br>(nt)             | 1539664 | 1541403                        |                                    | 1544978                                          | 1547692                                                          | 1548440                         | _                         |                                                         | 1550469 | ·                                        | 1552518          | 1553722                 | 1554684 | 1554861 | 1555079 | 1555835 | 1558376                                    | 1557823                                | 1559483                          | 1560237 | 1561660               |
|                          | SEQ<br>NO                   | 5116    | 5117                           | 5118                               | 5119                                             | 5120                                                             | 5121                            | 5122                      | 5123                                                    | 5124    |                                          | 5126             |                         | 5128    | 5129    | 5130    | 5131    | 5132                                       | 5133                                   | 5134                             | 5135    | 5136                  |
| 55                       | SEQ<br>NO.                  |         |                                | +                                  | 1619                                             | 1620                                                             | 1621                            | 1622                      | 1623                                                    | 1624    | 1625                                     | 1626             | 1627                    | 1628    | 1629    | 1630    | 1631    | 1632                                       | 1633                                   | 1634                             | 1835    | 1636                  |

| Function                   | precorrin 2 melhyltransferase                                                          | precorrin-8Y C5, 15-<br>methyltransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | oxidoreductase                                                    | dipeptidase or X-Pro dipeptidase                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATP-dependent RNA helicase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sec-independent protein translocese<br>protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hypothetical protein                                                                                                                                                                                                         | hypothetical protain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hypothetical protein                | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hypothetical protein        |
|----------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Matched<br>length<br>(a a) | 291                                                                                    | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | 244                                                               | 382                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                                                                                                                                           | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 324                                 | 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 159                         |
| Similarity<br>(%)          | 2.95                                                                                   | 8.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | 75.4                                                              | 61.3                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.4                                                                                                                                                                                                                         | 61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64.8                                | 77.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                         |
| Identity<br>(%)            | 31.3                                                                                   | 32.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | 54.1                                                              | 36.1                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.7                                                                                                                                                                                                                         | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.4                                | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.0                        |
| Homologous gene            | Mycobacterium tuberculosis<br>H37Rv cobG                                               | Pseudomonas denitrificans<br>SC510 cobL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | Mycobacterium tuberculosis<br>H37Rv RV3412                        | Streptococcus mutans LT11<br>pepQ                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Saccharomyces cerevislae<br>YJL050W dob1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Escherichia coli K12 tatC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mycobacterium teprae<br>MLCB2533.27                                                                                                                                                                                          | Mycobacterium tuberculosis<br>H37Rv Rv2095c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mycobacterium leprae<br>MLCB2533.25 | Mycobacterium tuberculosis<br>H37Rv Rv2097c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Mycobacterium tuberculosis<br>H37Rv Rv2111c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mycobacterium tuberculosis<br>H37Rv Rv2112c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aeropyrum pernix K1 APE2014 |
| db Match                   | pir:C70764                                                                             | sp COBL_PSEDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   | sp:YY12_MYCTU                                                     | gp AF014460_1                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sp.MTR4_YEAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sp TATC_ECOLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sp YY34_MYCLE                                                                                                                                                                                                                | sp.YY35_MYCTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sp YY38_MYCLE                       | sp:YY37_MYCTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | pir.B70512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pir.C70512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PIR.H72504                  |
| ORF<br>(bp)                | 774                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 386                                                                                                                           | 246                                                                                                                                                                                                                                                                                                                                                                                               | 738                                                               | 1137                                                                                                   | 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 315                                                                                                                                                                                                                          | 981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 972                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 249     | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480                         |
| Termina<br>(nt)            | 156255:                                                                                | 156252:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 156423                                                                                                                        | 1564482                                                                                                                                                                                                                                                                                                                                                                                           | 156456                                                            | 1565302                                                                                                | 1567106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 156711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1569932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1571068                                                                                                                                                                                                                      | 1571506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1572492                             | 1573491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1575209 | 1574945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1575406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1577806                     |
| totial<br>(nt)             | 1561780                                                                                | 1563802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1563872                                                                                                                       | 1584237                                                                                                                                                                                                                                                                                                                                                                                           | 1585302                                                           | 1566438                                                                                                | 1566468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1569903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1570933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1571382                                                                                                                                                                                                                      | 1572486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1573463                             | 1574915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1574957 | 1575136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1576947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1577327                     |
| SEQ<br>NO                  | 5137                                                                                   | 5138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5139                                                                                                                          | 5140                                                                                                                                                                                                                                                                                                                                                                                              | 5141                                                              | 5142                                                                                                   | 5143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5146                                                                                                                                                                                                                         | 5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5148                                | 5149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5150    | 5151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5153                        |
| SEQ<br>NO<br>(DNA)         | 1637                                                                                   | 1638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1639                                                                                                                          | 1640                                                                                                                                                                                                                                                                                                                                                                                              | 1641                                                              | 1642                                                                                                   | 1643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1646                                                                                                                                                                                                                         | 1647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1648                                | 1649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1650    | 1651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1653                        |
|                            | SEQ Initial Termina ORF db Match Homologous gene (%) (%) (ht) (nt) (bp) (bp) (bp) (as) | SEQ Initial And Initial (nt)         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Matched (%)           (a a )         (nt)         (nt)         (nt)         (pp)         (pp) | SEQ Initial (nt) (nt) (nt) (nt) (nt)         Description (pp) (pp)         Description (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp | SEQ Initial (a) (nt) (nt) (nt) (nt) (bp)         CORF (b) (bp)         db Match         Homologous gene (%) (%) (%) (%) (%) (%) (%) (%)         Matched (%) (%) (%) (%) (%) (%)           5137 1561780 156255: 1278 sp COBL_PSEDE 5139 1563872 156423: 366         1278 sp COBL_PSEDE SC510 cobL         Pseudomonas denitificans (%) (%) (%) (%) (%) (%) (%) (%)         291 (%) (%) (%) (%) (%) | SEQ Initial (nt) (nt) (nt) (bp) (bp) (bp) (bp) (bp) (bp) (bp) (bp | SEQ (nt) (nt) (nt) (nt) (nt) (bb) (bb) (bb) (bb) (bb) (bb) (cm) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt | SEQ Initial (nt)         Termina (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Matched (%) </td <td>SEQ Initial (nt)         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Matched (%)&lt;</td> <td>SEQ Initial (at )         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity (%)         Matched (%)         Matched</td> <td>SEO (nti al (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</td> <td>SEQ<br/>NO<br/>(nt)         Initial<br/>(nt)         Termina<br/>(nt)         ORF<br/>(bp)         db Match         Homologous gene<br/>(%)         Identity<br/>(%)         Similarity<br/>(%)         Matched<br/>(%)         Matched<br/>(%)<td>  SEO</td><td>  SED   Initial   Termina   CRF   db Match   Homologous gene   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)</td><td>  SEC</td><td>SEG         Initial         Termina         ORP         db Match         Homologous gene         Identity         Similarity (%)         Matched (%)</td><td>SEC         Initial         Tarmina (bb)         ORF         db Match         Homologous gene         Identity (%)         Similarity (%)         Match (%)</td><td>  SEG</td></td> | SEQ Initial (nt)         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Matched (%)< | SEQ Initial (at )         Terminal (nt)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)         Similarity (%)         Matched | SEO (nti al (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt) (nt)         (Nb) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt | SEQ<br>NO<br>(nt)         Initial<br>(nt)         Termina<br>(nt)         ORF<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)         Similarity<br>(%)         Matched<br>(%)         Matched<br>(%) <td>  SEO</td> <td>  SED   Initial   Termina   CRF   db Match   Homologous gene   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)</td> <td>  SEC</td> <td>SEG         Initial         Termina         ORP         db Match         Homologous gene         Identity         Similarity (%)         Matched (%)</td> <td>SEC         Initial         Tarmina (bb)         ORF         db Match         Homologous gene         Identity (%)         Similarity (%)         Match (%)</td> <td>  SEG</td> | SEO                                 | SED   Initial   Termina   CRF   db Match   Homologous gene   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%) | SEC     | SEG         Initial         Termina         ORP         db Match         Homologous gene         Identity         Similarity (%)         Matched (%) | SEC         Initial         Tarmina (bb)         ORF         db Match         Homologous gene         Identity (%)         Similarity (%)         Match (%) | SEG                         |

|                     | Function                    | AAA family ATPase (chaperone-like function) | protein-beta-aspartate<br>methyltransferase | sspartyl aminopeptidase | hypothetical protein                       | virulence-associated protein    | quinolon resistance protein  | espariate ammonia-iyase                                             | ATP phospharlbosyltransferase            | beta-phosphoglucomutase            | 5-methyltetrahydrofolate-<br>homocysteine methyltransferase |         | alkyi hydroperoxide reduciase<br>subunit F | arsenical-resistance protein                   | arsenate reductase                       | arsenale reductase                       |        | cysteinyl-tRNA synthetase |
|---------------------|-----------------------------|---------------------------------------------|---------------------------------------------|-------------------------|--------------------------------------------|---------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------------------------|---------|--------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|--------|---------------------------|
|                     | Matched<br>length<br>(a.a.) | 545                                         | 281                                         | 436                     | 269                                        | 69                              | 385                          | 528                                                                 | 281                                      | 195                                | 1254                                                        |         | 366                                        | 388                                            | 129                                      | 123                                      |        | 387                       |
|                     | Similarity<br>(%)           | 78.5                                        | 0.07                                        | 67.2                    | 71.4                                       | 72.5                            | 61.0                         | 8 66                                                                | 97.5                                     | 63.1                               | 62.4                                                        |         | 49.5                                       | 63.9                                           | 64.3                                     | 75.6                                     |        | 64.3                      |
|                     | identity<br>(%)             | 51.8                                        | 57.3                                        | 38.1                    | 45.4                                       | 40.6                            | 21.8                         | 8 86                                                                | 96.8                                     | 30.8                               | 31.6                                                        |         | 22 4                                       | 33 0                                           | 32.6                                     | 47.2                                     |        | 35.9                      |
| Table 1 (continued) | Homologous gene             | Rhodococcus erythropolis arc                | Mycobacterium leprae pim T                  | Homo sapiens            | Mycobacterium tuberculosis<br>H37Rv Rv2119 | Dichelobacter nodosus A198 vapl | Staphylococcus aureus norA23 | Corynebacterium glutamicum<br>(Brevibacterium flavum) MJ233<br>aspA | Corynebacterium glutamicum<br>ASO19 hisG | Thermotoga maritima MSB8<br>TM1254 | Escherichia coll K12 metH                                   |         | Xanthomonas campestris ahpF                | Saccharomyces cerevisiae<br>S288C YPR201W acr3 | Staphylococcus aureus plasmid pl258 arsC | Mycobacterium tuberculosis<br>H37Rv arsC |        | Escherichia coli K12 cysS |
|                     | db Match                    | prf 24223820                                | pir.S72844                                  | gp AF005050_1           | pir.B70513                                 | Sp.VAPI_BACNO                   | pri 2513299A                 | sp ASPA_CORGL                                                       | gp.AF050168_1                            | plr.H72277                         | sp METH_ECOU                                                |         | SP AHPF_XANCH                              | sp ACR3_YEAST                                  | sp ARSC_STAAU                            | pir G70964                               |        | 1212 sp SYC_ECOLI         |
|                     | ORF<br>(bp)                 | 1581                                        | 834                                         | 1323                    | 834                                        | 264                             | 1209                         | 1578                                                                | 843                                      | 693                                | 3663                                                        | 570     | 1026                                       | 1176                                           | 420                                      | 9 639                                    | 4 378  | 9 1212                    |
|                     | Termina<br>(nt)             | 157695                                      | 157856                                      | 157944                  | 158164                                     | 158211                          | 158227                       | 1583918                                                             | 1585603                                  | 1586812                            | 1587578                                                     | 1591912 | 1591941                                    | 159451                                         | 1594951                                  | 159566                                   | 15958  | 15962                     |
|                     | Initial T                   | 1578531                                     | 1579400                                     | 1580771                 | <del></del>                                | 1581851                         | 1583481                      | 1 -                                                                 | 1586445                                  | 1587504                            | 1591235                                                     | 1591343 | <u> </u>                                   | 1593337                                        | 1594532                                  | 1595030                                  | 159621 | 1597460                   |
|                     | SEO                         | 5154 1                                      | 5155                                        | 5156 1                  |                                            | 5158                            | 5159                         |                                                                     | 5161                                     | 5162                               | 5163                                                        | 5184    | 5165                                       | 5166                                           | 5167                                     | 5168                                     | 5169   | 1                         |
|                     |                             | 1654                                        | 1655                                        | 1656                    |                                            | 1658                            | 1659                         |                                                                     | 1661                                     | 1662                               | 1663                                                        | 1664    | 1665                                       | 1666                                           | 1667                                     | 1668                                     | 1669   | 1670                      |

| 10                     | Function                   | bacitracin resistance protein | oxidoreductase                    | lipoprotein                              | dihydroorotate dehydrogenase |         |         | transposase               |         | bio operon ORF I (biotin biosynthetic enzyme) | Neisserial polypeptides predicted to<br>be useful antigens for vaccines and<br>diagnostics |         | ABC transporter                    |         | ABC transporter                       |         | puromycin N-acetyffransfarase | LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase | methylmalony-CoA mutase alpha<br>subunit   |          |
|------------------------|----------------------------|-------------------------------|-----------------------------------|------------------------------------------|------------------------------|---------|---------|---------------------------|---------|-----------------------------------------------|--------------------------------------------------------------------------------------------|---------|------------------------------------|---------|---------------------------------------|---------|-------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|----------|
| 15                     | Matched<br>length<br>(8.8) | 255                           | 326                               | 359                                      | 334                          |         |         | 380                       |         | 152                                           | 198                                                                                        |         | 287                                |         | 535                                   |         | 56                            | 338                                                                                     | 741                                        |          |
| 20                     | Similarity<br>(%)          | 69.4                          | 62.6                              | 53.5                                     | 67.1                         |         |         | 55.3                      |         | 75.0                                          | 33 0                                                                                       |         | 68.7                               |         | 67.1                                  |         | 56 4                          | 72.3                                                                                    | 87.5                                       |          |
|                        | identity<br>(%)            | 37.3                          | 33.4                              | 27.0                                     | 44.0                         |         |         | 34.7                      |         | 44.1                                          | 26.0                                                                                       |         | 43.6                               |         | 36.8                                  |         | 32.4                          | 43.1                                                                                    | 72.2                                       |          |
| 30 Table 1 (continued) | is gene                    | 12 bacA                       | nefactens                         | berculosis                               | ura1                         |         |         | ingae tnpA                |         | 12 ybhB                                       | tidis                                                                                      |         | striatum M82B                      |         | striatum M828                         |         | Jatus pac                     | 12 argK                                                                                 | namonensis                                 |          |
| Ţ                      | Homologous gene            | Escherichia coli K12 bacA     | Agrobacterium tumefactens<br>mocA | Mycobacterium tubercutosis<br>H37Rv tppL | Agrocybe aegerita ural       |         |         | Pseudomonas syringae tnpA |         | Escherichia coll K12 ybhB                     | Neissena meningitidis                                                                      |         | Corynebacterium striatum M82B tetB |         | Corynebacterium striatum M82B<br>tetA |         | Streptomyces anulatus pac     | Escherichia coli K12 argK                                                               | Streptomyces clinamonensis<br>A3823.5 mut8 |          |
| 35                     |                            |                               | ∢ E                               | ΣI                                       |                              |         |         |                           |         |                                               |                                                                                            |         |                                    |         |                                       |         | 0,                            |                                                                                         |                                            |          |
| 40                     | db Match                   | SP.BACA_ECOL                  | prf 2214302F                      | pir.F70577                               | Sp.PYRD_AGRAE                |         |         | gp PSESTBCBAD_            |         | SP YBHB_ECOLI                                 | GSP.Y74829                                                                                 |         | prf 2513302A                       |         | prf 2513302B                          |         | pir JU0052                    | \$P.ARGK_ECOLI                                                                          | 2211 sp.MUTB_STRCM                         |          |
|                        | ORF<br>(bp)                | 879                           | 948                               | 666                                      | 1113                         | 351     | 807     | 1110                      | 486     | 531                                           | 729                                                                                        | 69      | 1797                               | 249     | 1587                                  | 351     | 609                           | 1089                                                                                    | <del></del>                                | l        |
| 45                     | Terminal<br>(nt)           | 1597745                       | 1599614                           | 1800877                                  | 1601804                      | 1601931 | 1603466 | 1604629                   | 1604830 | 1605281                                       | 1606689                                                                                    | 1608248 | 1605861                            | 1609335 | 1507661                               | 1609842 | 1510844                       | 1611150                                                                                 | 1812234                                    |          |
| 50                     | initlal<br>(nt)            | 1598623                       | 1598667                           | 1599679                                  | 1600692                      | 1602281 | 1602660 | 1603520                   | 1605315 | 1605811                                       | 1605961                                                                                    | 1607648 | 1607657                            | 1609087 | 1609247                               | 1610192 | 1610236                       | 1612238                                                                                 | 1614444                                    | <u> </u> |
|                        | SEQ<br>NO<br>NO            | +                             | 5172                              | 5173                                     | 5174                         | 5175    | 5176    | 5177                      | 5178    | 1                                             | 5180                                                                                       | 5181    | 5182                               | 5183    | 5184                                  | 5185    |                               |                                                                                         | 5188                                       |          |
| 55                     | SEQ<br>NO.                 | 1871                          | 1872                              | 1673                                     | 1874                         | 1675    | 1676    | 1677                      | 1678    | 1679                                          | 1680                                                                                       | 1681    | 1682                               | 1683    | 1684                                  | 1685    | 1686                          | 1687                                                                                    | 1688                                       |          |

|                |                             |                                            |                                             |         |                                            |                                            |                                           | Т       | -T                                                        | $\top$                | 7    |                                         |                                             |                                          |                                            | $\neg \tau$                        | T       |                                        |
|----------------|-----------------------------|--------------------------------------------|---------------------------------------------|---------|--------------------------------------------|--------------------------------------------|-------------------------------------------|---------|-----------------------------------------------------------|-----------------------|------|-----------------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------|---------|----------------------------------------|
| 5              | e                           | nutase beta                                | ne protein                                  |         | ne protein                                 | ne protein                                 |                                           |         |                                                           |                       |      |                                         | ator                                        |                                          |                                            |                                    |         |                                        |
| 10             | Function                    | methylmalonyi-CoA mutase beta<br>subunit   | hypothetical membrane protein               |         | hypothetical mambrane protein              | hypothetical membrane protein              | hypothetical protein                      |         | ferrochelatase                                            | invasin               |      | aconitate hydratase                     | transcriptional regulator                   | GMP synthetase                           | hypothetical prolein                       | hypothetical protein               |         | hypothetical protein                   |
| 15             | Matched<br>length<br>(a.a.) | 810                                        | 224                                         |         | 370                                        | 141                                        | 261                                       |         | 364                                                       | 611                   |      | 959                                     | 174                                         | 235                                      | 221                                        | 98                                 |         | 446                                    |
| 20             | Similarity (%)              | 68.2                                       | 70.1                                        |         | 87.0                                       | 78.7                                       | 72.8                                      |         | 65.7                                                      | 58.5                  |      | 85.9                                    | 818                                         | 51.9                                     | 62.0                                       | 80.2                               |         | 96.1                                   |
|                | identity<br>(%)             | 41.6                                       | 39.7                                        |         | 1.10                                       | 44.7                                       | 51.0                                      |         | 36.8                                                      | 25.5                  |      | 6.69                                    | 54.6                                        | 21.3                                     | 32.6                                       | 37.2                               |         | 61.2                                   |
| <i>25</i>      | 90.00                       | nonensis                                   | rculosis                                    |         | rculosis                                   | erculosis                                  | color A3(2)                               | <br> -  | reudenreichii<br>emH                                      | En.                   |      | erculosis                               | erculosis                                   | lldschil                                 | icolor A3(2)                               | nnaschil                           |         | idls MC58                              |
| 30 Mary Length | Homologous gene             | Streptomyces cinnamonensis<br>A3823 5 mutA | Mycobacterium tuberculosis<br>H37Rv Rv1491c |         | Mycobacterium tuberculosis<br>H37Rv Rv1488 | Mycobacterium tuberculosis<br>H37Rv Rv1487 | Streptomyces coelicolor A3(2)<br>SCC77.24 |         | Propionibacterium freudenreichli<br>subsp. Shermanii hemH | Streptococcus fasclum |      | Mycobacterium tuberculosis<br>H37Rv acn | Mycobacterium tuberculosis<br>H37Rv Rv1474c | Methanococcus Jannaschill<br>MJ1575 guaA | Streptomyces coelicolor A3(2)<br>SCD82.04c | Methanococcus Jannaschii<br>MJ1558 |         | Neisseria meningitidis MCSB<br>NMB1652 |
| 35             |                             |                                            | 1                                           |         |                                            |                                            |                                           |         | <del></del>                                               |                       |      |                                         |                                             |                                          |                                            |                                    |         | 5_0                                    |
| 40             | db Match                    | sp MUTA_STRCM                              | sp:YS13_MYCTU                               |         | SP:YS09_MYCTU                              | pir B70711                                 | gp SCC77_24                               |         | SP HEMZ_PROFR                                             | SP PS4_ENTFC          |      | pir.F70873                              | pir.E70873                                  | pir F64496                               | gp.SCD82_4                                 | pir.E64494                         |         | gp:AE002515_0                          |
|                | ORF<br>(bb)                 | +-                                         | 723                                         | 597     | 1296                                       | 435                                        | 843                                       | 783     | 1110                                                      | 1800                  | 498  | 2829                                    | 564                                         | 756                                      | 663                                        | 267                                | 383     | 1392                                   |
| 45             | 8                           | 5                                          | 1 0                                         | 6       | 32                                         | 128                                        | 10                                        | 100     | 2                                                         | 8                     | 17   | 5                                       | 98                                          | 8                                        | 790                                        | 19.6                               | 13      | 33 4                                   |
|                | Termin                      | 16144                                      | 16173                                       | 16179   | 1618                                       | 1819                                       | 1620                                      | 1621    | 1621                                                      | 1623                  | 1625 |                                         | 1629(                                       | 1630                                     | 163(                                       | 163                                | 163     | 163                                    |
| 50             | Initial                     | 1616298                                    | 1616578                                     | 1617398 | 1619616                                    | 1620108                                    | 1621009                                   | 1621056 |                                                           | 1624828               |      |                                         | 1629298                                     | 1629913                                  | 1631329                                    | 1531660                            | 1631745 |                                        |
|                | SEO                         | 5189                                       | 5190                                        | 5191    | <u> </u>                                   | 5193                                       | 5194                                      | 5105    | 5196                                                      | 5197                  | _    | <del></del>                             | 5200                                        | 5201                                     | 5202                                       | 5203                               | 5204    |                                        |
| 55             | SEO                         | (DNA)                                      |                                             | 1691    |                                            | 1693                                       | 1694                                      | 1606    | 1696                                                      | 1697                  | 1608 | 1699                                    | 1700                                        | 1701                                     | 1702                                       | 1703                               | 1704    | 1705                                   |

|              | —т                  | -1                                                             | $\neg$                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\top$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Т                                                         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Τ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                  | l                                         | 1                                                           | 1                    | 1                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|-------------------------------------------------------------|----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Function            | tigenic protein                                                | tigenic protein                                                                                                   | ition-transporting ATPase P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lost cell surface-exposed lipoprote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntegrate            | Section of the sectio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | islidase           | Iransposase (IS1628)                      | Iransposase protein fragment                                | hypothetical protein |                     | dTDP-4-keto-L-rhamnose reducts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nitragen fixation protein              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| latched      |                     | ī                                                              | i                                                                                                                 | 883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\top$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 236                                       | 37                                                          | 88                   |                     | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                     | 0.09                                                           | 0.69                                                                                                              | 73.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 4                | 64.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.4               | 100 0                                     | 72.0                                                        | 43.0                 |                     | 70.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Identity S          | 54.0                                                           | 59.0                                                                                                              | 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.4                | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.9               | 93.6                                      | 04.0                                                        | 32.0                 |                     | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63.8                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lunea)       |                     | ORF24                                                          |                                                                                                                   | C6803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lor A3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ophilus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ŧ                   | Yijk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | difectens          | otamicum<br>(G1 tnpB                      | utamicum                                                    |                      |                     | Orsay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 1 (con | Homologous g        | sisseria gonorrhoea                                            | isseria gonorrhoea                                                                                                | inechocystis sp. PC<br>1814 pma1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reptomyces coelico<br>C3D11.02c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | treptococcus therm<br>hage TP-J34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | corynephage 304L    | scherichia coli K12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aicromonospore vln | Corynebacterium glu<br>22243 R-plasmid pA | Corynebacterium gl                                          | Plasmid NTP16        |                     | Pyrococcus abyssi PAB1087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mycobacterlum lepi<br>MLCL538.24c nifU |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ì            |                     | Ž                                                              | Ž                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ഗമ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                           |                                                             | 2                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | db Match            | SCB-V-3RB38                                                    | SED V38838                                                                                                        | p.ATA1_SYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pp.SC3D11_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | prf 2408488H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | prt 2510491A        | SP YJJK ECC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SP NANH_MIG        | gp.AF121000                               | GPU:AF1649                                                  | GP.NT1TNIS           |                     | pir B75015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pir S72754                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | ORF<br>(bp)         | $\overline{}$                                                  |                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 783                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 357                                                       | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 458                 | 1629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  | 708                                       | 3 243                                                       | 1 261                | -                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | rainal<br>(nt)      | 00,00                                                          | 22.103                                                                                                            | 36241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133781                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 338443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53877                                                     | 63952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 641001              | 641043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 642743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43                 | 163                                       | 90                                                          | 18458                | _                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 164765                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | -                   | 1                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +-                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1840546             | 1642674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1644218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1645499            | 1645661                                   | 1645821                                                     | 1845881              | 1646549             | -647634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1648097                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | SEO                 |                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5212                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | _                                         |                                                             |                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ +                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                     | _                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                         | 1,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.6                | 1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1719               | 1720                                      | 1721                                                        | 15                   | 15                  | 1724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1725                                   | !<br>ا_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Table 1 (continued) | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (ax) | SEQ initial Terminal ORF db Match NO (nt) (nt) (bp) (bp) Neisseria gonorrhoeae ORF24 54.0 60.0 113 antigenic prot | SEQ   Initial   Terminal   ORF   db Match   Homologous gene   (%)   (%)   (as)   (as | SEQ   Initial   Terminal ORF   db Match   Homologous gene   14   Similarity   Matched   Function   Function   14   Matched   Function   14   Matched   Function   15   Matched   Function   15   Matched   Function   16   16   16   17   Matched   Function   16   17   Matched   Function   16   16   16   17   Function   16   17   Matched   Function   16   16   16   17   Function   16   17   Function   17   Function   18   18   18   18   18   18   18   1 | SEQ   Initial   Terminal ORF   db Match   Homologous gene   (%) (%) (mt) (nt) (nt) (hp)   ( | SEQ (nt) (nt)         (nt)         (DF)         db Match         Homologous gene (%)         Identity (%)         Similarity length (%)         Function           NO (nt)         (nt)         (nt)         (bp)         ABO GSP:Y38838         Neisserla gonorrhoeae ORF24 54.0 69.0 113 antigenic protein         Function           5206 1633137 1632682 1532109 1634563 1633137 1632682 1633266 1636241 2678 sp.ATA1_SYNY3 all1614 pma1         Synechocystis sp. PCC8803 42.6 73.2 883 cation-transporting ATPase         883 cation-transporting ATPase           5209 1634563 1633781 783         783         Streptomyces coelicolor A3(2) 35.8 58.3 120 hypothetical protein | SEG   Initial   Terminal ORF   db Match   Homologous gene | SEQ   Initial   Terminal ORF   db Match   Homologous gene   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%)   (%) | SEG   Initial   Terminal ORF   db Match   Homologous gene   (%) (%) (%) (a.a.)   Homologous gene   (%) (%) (a.a.)   Antigenic protein   S206   1632109   480   GSP:Y38838   Neisseria gonorrhoeae ORF24   59.0   69.0   152   antigenic protein   S208   1633561   1636241   2878   sp.ATA1_SYNY3   sil1614 pma1   S108   S108   S208   S | Table 1 (Confinued)   Table 1 (Confinued) | Table 1 (conflined) | Table 1 (continued)    | Table 1 (Contlinued)   Table 1 (Contlinued)   Hatched   Homologous gene   Homologo | SEQ                | Table 1 (continued)                       | Table 1 (continued)   Table 2 (continued)   Homologous gene | Table 1 (continued)  | Table 1 (confinued) | Table 1 (confinued)   Identity   Strillerity   Matched   Identity   Strillerity   Matched   Identity   Ident | Table 1 (confinued)                    | Table 1 (continued)   Table 1 (continued) |

0⊊

**S**\*

Æ

**0**€

52

so

٤١

|                                                                  |                       |                  |              |                                             |               | 9           | 1666601          | 1667764         | 5242 | 1742          |
|------------------------------------------------------------------|-----------------------|------------------|--------------|---------------------------------------------|---------------|-------------|------------------|-----------------|------|---------------|
| transaldolase                                                    | 358                   | 86.3             | 62.0         | MLCL536.39 tal                              | SP.TAL_MYCLE  |             | 1667752          | 1666673         | 5241 | 1741          |
| transketolase                                                    | 075                   | 100.             | 100.0        | ATCC 31833 tkt                              | gp:AB023377_1 | 2100        | 1666502          | 1664403         | 5240 | 1740          |
| cytochrome o ubiquinol oxidase assembly factor / hame O synthase | 295                   | 66.6             | 37.6         | Nitrobacter winogradskyi coxC               | gp:NWCOXABC_3 | 989         | 1662630          | 1663598         | 5239 | 1739          |
| quinone oxidoreductase                                           | 323                   | 70.9             | 37.5         | Escherichia coli K12 qor                    | sp:QOR_ECOLI  | 975         | 1662552          | 1661578         | 5238 | 1738          |
| helicase                                                         | 418                   | 51.0             | 23.4         | Pyrococcus horikoshii PH0450                | pir.C71158    | 1629        | 1661136          | 9056591         | 5237 | 1737          |
|                                                                  |                       |                  |              |                                             |               | 357         | 1659140          | 1658496         | 5236 | 1736          |
| hypothetical protein                                             | 291                   | 740              | 43.0         | Mycobacterium tuberculosis<br>H37Rv Rv1456c | pir:C70871    | 999         | 1658675          | 1657677         | 5235 | 1735          |
| hypothetical protein                                             | 266                   | 74.8             | 41.0         | Mycobacterium leprae<br>MLCL536 32          | pir:S72778    | 804         | 1657515          | 1656712         | 5234 | 1734          |
| ABC transporter                                                  | 317                   | 77.3             | 50.2         | Mycobacterium leprae<br>MLCL536 31 abc2     | pir:S72783    | 1020        | 1656700          | 1655681         | 5233 | 1733          |
| hypothetical membrane protein                                    | 518                   | 67.8             | 36.3         | Mycobacterium tuberculosis<br>H37Rv Rv1459c | pir F70871    | 1629        | 1655871          | 1654043         | 5232 | 1732          |
| DNA-binding protein                                              | 217                   | 71.4             | 48 1         | Streptomyces coelicolor A3(2)<br>SCC22.08c  | gp:SCC22_8    | 693         | 1652894          | 1653586         | 5231 | 1731          |
| ABC transporter                                                  | 493                   | 73.0             | 41.0         | Synechocystis sp. PCC6803 sir0074           | sp:Y074_SYNY3 | 1443        | 1651433          | 1652875         | 5230 | 1730          |
| hypothetical protain                                             | 377                   | <b>8</b> 3.0     | 55.2         | Mycobacterium tuberculosis<br>H37Rv Rv1462  | pir.A70872    | 1178        | 1650249          | 1651424         | 5229 | 1729          |
| ABC transporter ATP-binding protein                              | 252                   | 89.3             | 70.2         | Streptomyces coelicolor A3(2)<br>SCC22.04c  | gp SCC22_4    | 756         | 1649367          | 1650122         | 5228 | 1728          |
| nitrogen fixation protein                                        | 411                   | 8A.              | 64.7         | Mycobacterium leprae nifS                   | pir:S72761    | 1263        | 1648100          | 1649362         | 5227 | 1727          |
| hypothetical protein                                             | 52                    | 57.0             | 48.0         | Aeropyrum pernix K1 APE2025                 | PIR:C72506    | 162         | 1648709          | 1648548         | 5226 | $\rightarrow$ |
| Function                                                         | Matched length (s.a.) | Similarly<br>(%) | Identity (%) | Homologous gene                             | db Malch      | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEO  | SEQ<br>NO     |
|                                                                  |                       |                  |              | Table 1 (continued)                         |               |             |                  |                 |      |               |

05

**5**†

0+

Æ

Œ

52

50

SI

10

s

| 98.2 99.6 259 triose-<br>37.0 51.0 128 probe<br>38.0 98.5 405 phosp<br>98.1 99.7 333 glycer<br>63.9 87.4 324 hypot<br>56.3 82.5 309 hypot<br>52.0 78.2 281 hypot | Mycobaderium tuberculosis 52 0 H37Rv Rv1421 Synechocyslis sp. PCC6803 34 4 uvrC | 38 SP.UVRC_PSEFL  | 103 2088    | 190 1687103                                  | 5259 1689190 | 1759 5      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|-------------|----------------------------------------------|--------------|-------------|
| 98.2 99.6 259 triose-<br>37.0 51.0 128 probal<br>38.0 98.5 405 phosp<br>99.1 99.7 333 glycer<br>63.9 87.4 324 hypot<br>56.3 82.5 309 hypot                       | Mycobsderium tuberculosis 52 0 H37Rv Rv1421                                     |                   |             | <u>                                     </u> | 1            | <u> </u>    |
| 99.2 99.6 259 triose-<br>37.0 51.0 128 probal<br>38.0 98.5 405 phosp<br>99.1 99.7 333 glycer<br>63.9 87.4 324 hypotl                                             |                                                                                 | 7 sp:YR39_MYCTU   | 152 927     | 078 1686152                                  | 5258 1687078 | 1758 53     |
| 99.2 99.6 259 triose-<br>37.0 51.0 128 probal<br>38.0 98.5 405 phosp<br>99.1 99.7 333 glycer<br>63.9 87.4 324 hypoti                                             | Mycobacterium tuberculosis 58 3 H37Rv Rv1422                                    | 3 SP YR40_MYCTU   | 110 1023    | 132 1685110                                  | 5257 1686:32 | 1757 53     |
| 99.2 99.6 259 triose-<br>37.0 51.0 128 probal<br>38.0 98.5 405 phosp<br>99.1 99.7 333 dehyd                                                                      | 63.9                                                                            | 1 pir D70903      | 117 981     | 097 1684117                                  | 5256 1685097 | 1756 52     |
| 99.2 99.6 259 triose-<br>37.0 51.0 128 probel                                                                                                                    | Corynebacterium glutamicum 99 1<br>AS019 ATCC 13059 gap                         | 1002 sp.G3P_CORGL |             | 625 1682624                                  | 5255 1683625 | 1755 52     |
| 99.2 99.6 259 triose-                                                                                                                                            | Corynebacterium glutamicum 98.0 ASO19 ATCC 13059 pgk                            | 5 sp.PGK_CORGL    | 90 1215     | 1681190                                      | 5254 1682404 | 1754 52     |
| 99.2 99.6 259                                                                                                                                                    | Saccharomyces cerevisiae 37.0 YCR013c                                           | SP.YCQ3_YEAST     | 70 408      | 263 1681670                                  | 53 1681263   | 1753 5253   |
|                                                                                                                                                                  | AS019 ATCC 13059 tpiA                                                           | sp TPIS_CORGL     | 32 777      | 108 1680332                                  |              | <del></del> |
|                                                                                                                                                                  |                                                                                 |                   | 28 981      | 148 1680128                                  | 51 1679148   | 1751 5251   |
| 1000                                                                                                                                                             |                                                                                 |                   | 70 687      | 1678070                                      | 50 1678756   | 1750 5250   |
|                                                                                                                                                                  |                                                                                 |                   | 84 174      | 11 1677384                                   | 49 1677211   | 1749 5249   |
| _                                                                                                                                                                | ATCC 13032 soxA                                                                 | gp:CGL007732_5    | 66 840      | 05 1673266                                   | 48 1674105   | 1748 5248   |
| 24.0 40.0 500 (1919)                                                                                                                                             | 24.0                                                                            | gp AF 126281_1    | 23 1401     | 23 1673123                                   | 17 1671723   | 1747 5247   |
| 35.2 57.8 128                                                                                                                                                    | Bacillus sp. NS-129 35.2                                                        | SP. SAOX_BACSN    | 3 405       | 77 1671273                                   | 16 1671677   | 1746 5246   |
| 28.7 58.1 258 6-phos                                                                                                                                             | Saccharomyces cerevisiae 28.7<br>S288C YHR163W sol3                             | sp SOL3_YEAST     | 705         | 95 1671099                                   | 15 1670395   | 1745 5245   |
| 40.6 71.7 318 phosph                                                                                                                                             | <del> </del>                                                                    | pir:A70917        | 5 957       | 19 1670375                                   | 1669419      | 1744 5244   |
| 99.8 100.0 484 guccase prosperse                                                                                                                                 | +-                                                                              | gsp.W27812        | 1 1452      | 50 1669401                                   | 3 1667950    |             |
| (%) (%) (a.e.)                                                                                                                                                   | Homologous gene (%) (9                                                          | db Match          | ORF<br>(bp) | Terminal (nt)                                | Initial (nt) | SEQ SEQ     |
|                                                                                                                                                                  | Table 1 (conlinued)                                                             |                   |             |                                              |              |             |

>

Œ

SI

ç

|                                                                  |                   |                |            |                                                 |               | ļ    |           |               | -           |      |
|------------------------------------------------------------------|-------------------|----------------|------------|-------------------------------------------------|---------------|------|-----------|---------------|-------------|------|
| integration host factor                                          | 103               | 80 G           | 80.6       | Mycobacterium tuberculosis<br>H37Rv Rv1388 mIHF | pir:870899    | 318  | 1702991   |               |             | 1777 |
| Quenylate xinase                                                 | 186               | 74.7           | 39.8       | Saccharomyces cerevisiae guk1                   | pir.KIBYGU    | 627  | 1702411   | 1703037       | 5276        | 1776 |
|                                                                  | 81                | 87.7           | 70.4       | Mycobacterium tuberculosis<br>H37Rv Rv1390      | SP YD90_MYCTU | 291  | 2 1702032 | 1702322       | 5275        | 1775 |
| flavoprotein                                                     | 409               | 80.9           | 58.0       | Mycobacterium tuberculosis<br>H37Rv RV1391 dfp  | SP OFP_MYCTU  | 1260 |           | 1701767       | <del></del> | 1774 |
| Ovidonate melabolism                                             | 10,               | C. A.R.        | 5.88       | Bravibacterium flavum MJ-233                    | gsp R80060    | 1221 | 1699177   | 1700397       | 5273        | 1773 |
| Contraction of the second                                        | 123               | 3 6            | 22.9       | Escherichia coli priA                           | sp:PRIA_ECOLI | 2064 | 1697084   | _             | _           | 1772 |
| polypapina describing                                            | 7 50              | 12.7           | 1.7        | Bacillus subtills 168 def                       | sp.DEF_BACSU  | 507  | 1696466   | $\rightarrow$ | <u> </u>    | 1771 |
| memony and office of the second                                  | 308               | 67.9           | 41.6       | Pseudomonas aeruginosa imit                     | SP FMT_PSEAE  | 945  | 1695499   | 1696443       | 5270        | 1770 |
| (eukaryoles) family                                              | 448               | 60.7           | 30.B       | Escherichia coli K12 sun                        | sp:SUN_ECOLI  | 1332 | 1693967   | 1695298       | 5269        | 1769 |
| ribulose-phosphate J-epimerase                                   | 234               | 73.1           | 43.6       | Saccharomyces cerevisiae S288C YJL121C rpe1     | SP.RPE_YEAST  | 657  | 1693262   | 1693918       | 5268        | 1768 |
|                                                                  | 303               | 7.70           | 37.3       | Escherichia coll K12 ribD                       | sp.RIBD_ECOLI | 984  | 1692275   | 1693258       | 5287        | 1767 |
|                                                                  | 211               | 79.2           | 47.4       | pleuropneumoniae ISU-178 ribE                   | SP RISA_ACTPL | 633  | 1691639   | 1692271       | 5266        | 1766 |
|                                                                  |                   |                |            |                                                 |               |      |           |               |             |      |
| dihydroxy-2-butanone 4-phosphate synthase (ribofiavin synthasis) | 2                 | 84.7           | 65.6       | Mycobacterium tuberculosis ribA                 | gp:AF001929_1 | 1266 | 1690360   | 1691625       | 5265        | 1765 |
| GTP cyclohydrolase II and 3, 4-                                  |                   | 3              | 1          | Bacillus subtilis                               | GSP:Y83273    | 336  | 1691347   | 1691012       | 5264        | 1764 |
| polypeptide encoded by rib operon                                | 3                 | 530            |            | Cacillos sopriis                                | GSP Y83272    | 714  | 1691421   | 1690708       | 5263        | 1763 |
| riboflavin biosynthetic protein                                  | 217               | 480            | 2 3        | Bacillus subtilis                               | GSP. Y83273   | 228  | 1690921   | 1690694       | 5262        | 1762 |
| polypeptide encoded by rib operon                                | 72                | 680            | 20         |                                                 | ap.n.co_coc.  |      | 8008001   | 1690345       | 5261        | 1761 |
| synthase                                                         | 154               | 72.1           | 43.5       | Escherichia coli K12                            | en RISB ECOLI | 777  | 1090960   | 200345        |             |      |
| hypothetical protein                                             | 150               | 68.7           | 32.7       | Mycobacterium tuberculosis H37Rv Rv1417         | sp:YR35_MYCTU | 579  | 1689201   | 1689779       | <del></del> |      |
|                                                                  |                   |                |            |                                                 |               | 9    | (nt)      | (n.)          | •           | 0 Z  |
| Function                                                         | Matched<br>length | Similarity (%) | identity : | Homologous gene                                 | db Match      | OR F | <u>ē</u>  | Initial       | SEO         |      |
|                                                                  |                   |                |            | Table 1 (continued)                             |               |      |           |               |             |      |

54

æ

Œ

52

50

SI

|                                                                                                        |                       |                   |                 |                                                 |               |        |                  |         |        | ļ    |
|--------------------------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------|-------------------------------------------------|---------------|--------|------------------|---------|--------|------|
| type IV prepilin-like protein specific leader peptidase                                                | 142                   | 54.9              | 35.2            | Aeromonas hydrophila tapD                       | SP.LEP3_AERHY | 411    | 1720971          | 1721381 | 5293   | 1793 |
| shikimate kinese                                                                                       | 166                   | 100.0             | 100.0           | Corynebacterium glutamicum<br>AS019 aroK        | gp AF124600_2 | 492    | 1719107          | 1719598 | 5292   | 1792 |
| 3-dehydroquinate synthase                                                                              | 361                   | 99.7              | 98.6            | Corynebacterium glutamicum<br>AS019 aroB        | gp:AF124600_3 | 1095   | 1717938          | 1719032 | 5291   | 1791 |
| cytoplasmic peptidase                                                                                  | 217                   | 100 0             | 89.5            | Corynebacterium glutamicum<br>AS019 pepQ        | gp AF124600_4 | 1089   | 1716780          | 1717868 | 5290   | 1790 |
| elongation factor P                                                                                    | 187                   | 98.4              | 97.9            | Brevibacterium lactofermentum<br>ATCC 13869 efp | sp.EFP_BRELA  | 561    | 1716132          | 1716692 | 5289   | 1789 |
| N utilization substance protein B (regulation of rRNA blosynthesis by transcriptional antitermination) | 137                   | 60.3              | 33.6            | Bacillus subtihs nusB                           | sp.NUSB_BACSU | 581    | 1715382          | 1716062 | 5288   | 1788 |
|                                                                                                        |                       |                   |                 |                                                 |               | 210    | 1714950          | 1714741 | 5287   | 1787 |
|                                                                                                        |                       |                   |                 |                                                 |               | 462    | 1714780          | 1714289 | 5286   | 1786 |
|                                                                                                        |                       |                   |                 |                                                 |               | 477    | 1714306          | 1713830 | 5285   | 1785 |
| cell division inhibitor                                                                                | 297                   | 73.4              | 39.7            | Mycobacterium tuberculosis<br>H37Rv Rv2216      | SP YOOR_MYCTU | 1164   | 1713759          | 1712596 | 5284   | 1784 |
| phosphoribosyl transferase or pyrimidine operon regulatory protein                                     | 176                   | 80.1              | 54.0            | Bacillus caidolylicus DSM 405<br>pyrR           | sp.PYRR_BACCL | 576    | 1711352          | 1711927 | 5283   | 1783 |
| aspartate carbamoykransferase                                                                          | 311                   | 78.7              | 48.6            | Pseudomonas aeruginosa<br>ATCC 15692            | sp.PYRB_PSEAE | 936    | 1710413          | 1711348 | 5282   | 1782 |
| dihydroorotasa                                                                                         | 402                   | 67.7              | 42.8            | Bacillus caldolyticus DSM 405<br>pyrC           | sp:PYRC_BACCL | 1341   | 1709017          | 1710357 | 5281   | 1781 |
| carbamoyl-phosphate synthase small chain                                                               | 381                   | 70.1              | 45.4            | Pseudomonas seruginoss ATCC 15692 carA          | sp.CARA_PSEAE | 1179   | 1707706          | 1708884 | 5280   | 1780 |
| carbamoyi-phosphate synthese large chain                                                               | 1122                  | 77.5              | 53.1            | Escherichia coli carB                           | pir:SYECCP    | 3339   | 1704359          | 1707697 | 5279   | 1779 |
| orotidine-5'-phosphate<br>decarboxylase                                                                | 276                   | 73.6              | 51.8            | Mycobacterium tuberculosis H37Rv uraA           | sp.DCOP_MYCTU | 834    | 1703517          | 1704350 | 5278   |      |
| Function                                                                                               | Matched length (a.s.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                 | db Match      | (b ORF | Terminal<br>(nt) | initie) | NO SEO | SEQ  |
|                                                                                                        |                       |                   |                 | Table 1 (continued)                             |               |        |                  |         |        |      |

**5**\*

æ

Œ

**52** 

so

SI

|                                    |                             |                  |                 |                                                |               |             |               |                 |      | 1    |
|------------------------------------|-----------------------------|------------------|-----------------|------------------------------------------------|---------------|-------------|---------------|-----------------|------|------|
| trenscriptional regulator          | 182                         | 620              | 29.2            | Streptomyces coelicolor A3(2)<br>SCE68.13      | gp:SCE68_13   | 594         | 1741906       | 1741313         | 5310 | 1810 |
|                                    |                             |                  |                 |                                                |               | 648         | 1740572       | 1741219         | 5309 | 1809 |
| phage infection protein            | 742                         | 540              | 23.1            | Bacilius subtilis yhgE                         | sp:YHGE_BACSU | 1857        | 1738713       | 1740569         | 5308 | 1808 |
| glucan 1,4-alpha-glucosidasa       | 839                         | 53 8             | 26.1            | Saccharomyces cerevisiae<br>S288C YIR019C sta1 | SP AMYH_YEAST | 2678        | 1736004       | 1738679         | 5307 | 1807 |
| hypothelical protein               | 297                         | 2                | 46.1            | Mycobacterium tuberculosis<br>H37Rv Rv2575     | SP YOBQ_MYCTU | 891         | 1735946       | 1735056         | 5306 | 1806 |
| aspanyi-IRNA synthetase            | 591                         | 80               | 71.1            | Mycobacterium leprae aspS                      | SP.SYD_MYCLE  | 1824        | 1732988       | 1734811         | 5305 | 1805 |
|                                    |                             |                  |                 |                                                |               | 1224        | 1731599       | 1732822         | 5304 | 1804 |
| hypothetical protein               | 454                         | 84               | 85.4            | Mycobacterium tuberculosis<br>H37Rv Rv2559c    | sp:Y0A9_MYCTU | 1377        | 1730166       | 1731542         | 5303 | 1803 |
| alanyl-IRNA synthetase             | 894                         | 71               | 43.3            | Thiobacillus ferrooxidans ATCC 33020 alaS      | sp:SYA_THIFE  | 2664        | 1727385       | 1730048         | 5302 | 1802 |
| hypothetical protein               | 10.1                        | 69.              | 52.8            | Mycobacterium tuberculosis<br>H37Rv Rv2554c    | pir F70660    | 546         | 1726625       | 1727170         | 5301 | 1801 |
| hypothetical protein               | 395                         | 70.              | 41.8            | Mycobacterium tuberculosis<br>H37Rv Rv2553c    | pir.E70860    | 1167        | 1725459       | 1728625         | 5300 | 1800 |
| shikimate 5-dehydrogenase          | 259                         | 80.0             | 50.0            | Mycobacterium tuberculosis H37Rv aroE          | pir:D70660    | 828         | 1724612       | 1725439         | 5299 | 1799 |
| protein a transport ATP-binding    | 230                         | 71.7             | 38.3            | Bacilius subtilis 168 fhuC                     | sp.FHUC_BACSU | 753         | 1724578       | 1723826         | 5298 | 1798 |
| periplasmic-binding protein        | 373                         | 50.7             | 23.6            | Pyrococcus abyssi Oraay<br>PAB0349             | pir A75169    | 957         | 1723826       | 1722870         | 5297 |      |
|                                    |                             |                  |                 |                                                |               | 606         | 1722202       | 1722807         | 5296 | 1798 |
| ABC transporter                    | 340                         | 73.2             | 35.9            | Corynebacterium diphtheriae<br>hrnuU           | gp:AF109162_2 | 1074        | 1722653       | 1721780         | 5295 | 1795 |
| bacterial regulatory protein, areR | 83                          | 68.7             | 45.8            | Streptomyces coelicolor A3(2)<br>SC1A2 22      | gp:SC1A2_22   | 303         | 1721423       | 1721725         |      |      |
| Function                           | Matched<br>length<br>(a.a.) | Similarly<br>(%) | identity<br>(%) | Homologous gene                                | db Match      | ORF<br>(bp) | Terminal (nt) | initial<br>(nt) | NO   | SEQ  |
|                                    |                             |                  |                 | Table 1 (continued)                            |               |             |               |                 |      |      |

05

54

**0**\*

æ

Œ

52

so

sı

|                                   |                       | +-       |     |                 |                                              |                 | 630         | 1760336       | 1759707         | 5329              | 1829      |
|-----------------------------------|-----------------------|----------|-----|-----------------|----------------------------------------------|-----------------|-------------|---------------|-----------------|-------------------|-----------|
| protein-export membrane protein   | 332                   | 7.]      | 57. | 25.9            | Escherichia coll K12 secF                    | sp SECF_ECOLI   | 1209        | 1757589       | 1758797         | 5328              | 1828      |
| hypothetical protein              | 558                   | 0        | 80  | 30 7            | Mycobacterium tuberculosis H37Rv Rv2585c     | 3P YOBG_MYCTU   | 1743        | 1755486       | 1757228         | 5327              | 1827      |
| dipeptide transport system        | 49                    | 9        | 98  | 98.0            | Corynebacterium glutamicum ATCC 13032 ddAE   | gp:AF038651_1   | 150         | 1755599       | 1755748         | 5326              | 1826      |
| adenine phosphoribosyltransferase | 185                   | 100      | =   | 99.5            | Corynebacterium glutamicum<br>ATCC 13032 apt | gp:AF038651_2   | 555         | 1754925       | 1755479         | 5325              | 1825      |
| GTP pyrophosphokinase             | 760                   | 9        | 99  | 99.9            | Corynebacterium glutamicum ATCC 13032 rei    | gp.AF038651_3   | 2280        | 1752615       | 1754894         | 5324              | 1824      |
|                                   |                       |          |     |                 |                                              |                 | 342         | 1752527       | 1752186         | 5323              | 1823      |
| hypothetical protein              | 128                   | 1000     | =   | 98.4            | Corynebacterium giutamicum ATCC 13032 or14   | gp AF038651_4   | 555         | 1752051       | 1751497         | 5322              | 1822      |
|                                   |                       |          |     |                 |                                              |                 | 237         | 1751200       | 1750864         | 5321              | 1821      |
| cyclophilin                       | 175                   |          | 63  | 35.4            | Streptomyces chrysomalius sccyp8             | prf 2313309A    | 507         | 1750933       | 1750427         | 5320              | 1820      |
| hydrolase                         | 211                   | 2        | 62  | 40.3            | Campylobacter jejuni<br>NCTC11188 Cj0809c    | gp CJ11168X3_12 | 639         | 1749325       | 1749863         | 5319              | 1819      |
| hisiidyHRNA synthelase            | 421                   | 72.9     | 7   | 43.2            | Staphylococcus aureus<br>SR17238 hisS        | SP. SYH_STAAU   | 1287        | 1747990       | 1749276         | 5318              | 1818      |
| elpha-glycerolphosphate oxidase   | 598                   | 3.0      | 53  | 28.4            | Enterococcus casseliflavus glpO              | pri 2423362A    | 1686        | 1746233       | 1747918         | 5317              | 1817      |
|                                   |                       |          |     |                 |                                              |                 | 861         | 1747588       | 1746728         | 5316              | 1816      |
| L-serine dehydratase              | 462                   | =        | 71  | 46.8            | Escherichia coll K12 sdaA                    | sp:SDHL_ECOLI   | 1347        | 1746230       | 1744884         | 5315              | 1815      |
| NADH-dependent FMN reductese      | 116                   | 7.6      | 77  | 37.1            | Pseudomonas aeruginosa PAO1 sifA             | sp:SLFA_PSEAE   | 495         | 1744519       | 1744025         | 5314              | 1814      |
|                                   |                       |          |     |                 |                                              | ÷               | 126         | 1743968       | 1743843         | 5313              | 1813      |
| oxidoreductase                    | 371                   | 8        | 88  | 72.8            | Streptomyces coelicolor A3(2)<br>SCE15.13c   | gp:SCE15_13     | 1113        | 1743813       | 1742701         | 5312              | 1812      |
|                                   |                       |          |     |                 |                                              |                 | 714         | 1742606       | 1741893         | 5311              | 1811      |
| Function                          | Matched length (s.a.) | nil rity | Sin | Identity<br>(%) | Homologous gene                              | db Maich        | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | (a o<br>No<br>SEO | SEQ<br>NO |
|                                   |                       |          |     |                 | Table 1 (continued)                          |                 |             | li:           |                 |                   |           |

|                                                                                                 |                      | ╀                |            |                                                  |                    | 735         | 1774457          | 1775191         | 5347      | 1847      |
|-------------------------------------------------------------------------------------------------|----------------------|------------------|------------|--------------------------------------------------|--------------------|-------------|------------------|-----------------|-----------|-----------|
|                                                                                                 |                      | _                | _          |                                                  |                    | 546         | 1773893          | 1774438         | 5348      | 1846      |
|                                                                                                 |                      |                  |            |                                                  |                    | 564         | 1774444          | 1773881         | 5345      | 1845      |
| hypothetical protein                                                                            | 400                  | 8                | 34.3       | Bacillus subtills ywbN                           | SP: YWBN_BACSU     | 1206        | 1772658          | 1773863         | 5344      | 1844      |
| threonyl-IRNA synthetase                                                                        | 647                  | 689              | 42.0       | Bacillys subtills thrZ                           | SP SYTZ_BACSU      | 2058        | 1770327          | 1772384         | 5343      | 1843      |
| histidine triad (HIT) family protein                                                            | 194                  | 784              | 54.6       | Mycobacterium tuberculosis H37Rv Rv2613c         | pir.D70571         | 660         | 1769681          | 1770340         | 5342      | 1842      |
| CDP-diacyiglycerol-glycerol-3-phosphate phosphatidytransferase                                  | 78                   | 780              | 48.2       | Mycobacterium tuberculosis<br>H37Rv Rv2612c pgsA | pir:C70571         | 657         | 1769022          | 1769678         | 5341      | 1841      |
| acytransferase                                                                                  | 295                  | 678              | 46.4       | Streptomyces coelicolor A3(2)<br>SCL2.16c        | gp:SCL2_16         | 963         | 1768034          | 1768996         | 5340      | 1840      |
| hexosyltransferase or N-<br>acetylglucosaminyl-<br>phosphatidylinositol biosynthetic<br>protein | 414                  | 49<br>3          | 21.7       | Saccharomyces cerevisiae<br>S288C spt14          | sp GPI3_YEAST      | 1083        | 1788948          | 1768030         | 5339      | 1839      |
| hypothetical protein                                                                            | 170                  | 612              | 38.2       | Mycobacterium tuberculosis<br>H37Rv Rv2609c      | pir.H70570         | 462         | 1766487          | 1768948         | 5338      | 1838      |
| hypothetical protein                                                                            | 11                   | 6 <u>1</u> 3     | 31.5       | Streptomyces coelicolor A3(2)<br>SC10A5.09c      | gp SC10A5_9        | 474         | 1766442          | 1765969         | 5337      | 1837      |
| acyl-CoA thiolesterase                                                                          | 283                  | 68<br>5          | 38.5       | Escherichia coll K12 tesB                        | sp:TESB_ECOLI      | 846         | 1765015          | 1765860         | 5336      | 1836      |
| hypothetical protein                                                                            | 250                  | 78.4             | 49.2       | Escherichia coli K12 ORF248 yebC                 | sp:YEBC_ECOLI      | 753         | 1763990          | 1784742         | 5335      | 1835      |
| endodeoxyribonuclease                                                                           | 180                  | 63.8             | 35.6       | Escherichia coli K12 ruvC                        | sp.RUVC_ECOLI      | 663         | 1763177          | 1763839         | 5334      | 1834      |
| holliday junction DNA helicase                                                                  | 210                  | 74.8             | 45.2       | Mycobacterium leprae ruvA                        | SP RUVA_MYCLE      | 618         | 1782517          | 1763134         | 5333      | 1833      |
| hotliday junction DNA helicase                                                                  | 331                  | 81,0             | 55.3       | Escherichia coli K12 ruvB                        | 1080 sp:RUVB_ECOLI | 1080        | 1761419          | 1762498         | 5332      | 1832      |
| hypothetical protein                                                                            | 108                  | &                | 39.6       | Mycobacterium leprae<br>MLCB1259.04              | sp:Y08D_MYCLE      | 363         | 1761005          | 1761367         | 5331      | 1831      |
| protein-export membrane protein                                                                 | 616                  | 52.0             | 24.4       | Rhodobacter capsulatus secD                      | prf.2313285A       | 1932        | 1758803          | 1760734         | 5330      | 1830      |
| Function                                                                                        | Metched length (9 a) | Similarity<br>(% | Identity S | Homologaus gene                                  | db Match           | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nl) | SEQ<br>NO | SEQ<br>NO |
|                                                                                                 |                      | _                |            | rapie i (commined)                               |                    |             |                  |                 | \<br>     |           |

Table 1 (continued)

æ

Œ

so

|                                         |                       |                 |                 |                     |                                      |                | 420         | 1797789       | 1797350        | 5371 | 1871      |
|-----------------------------------------|-----------------------|-----------------|-----------------|---------------------|--------------------------------------|----------------|-------------|---------------|----------------|------|-----------|
|                                         |                       |                 |                 |                     |                                      |                | 864         | 1797049       | 1796186        | 5370 | 1870      |
| panlothenate metabolism<br>flavoprotein | 129                   | 98.7            | 27.1            | s díp               | Zymomonas mobilis díp                | gp AF088896_20 | 591         | 1796181       | 1795591        | 5369 | 1869      |
|                                         |                       |                 |                 |                     |                                      |                | 420         | 1795621       | 1795202        | 5368 | 1868      |
|                                         |                       |                 |                 |                     |                                      |                | 1107        | 1794820       | 1793714        | 5367 | 1867      |
|                                         |                       |                 |                 |                     |                                      |                | 159         | 1783486       | 1793654        | 5366 | 1866      |
|                                         |                       |                 |                 |                     |                                      |                | 999         | 1793426       | 1792428        | 5365 | 1865      |
| ferric transport ATP-binding protein    | 202                   | 28.7            | 28.7            | afuC                | Actinobacillus pleuropneumoniae afuC | SP AFUC_ACTPL  | 597         | 1792438       | 5364 1791842   | 5384 | 1864      |
|                                         |                       |                 |                 |                     |                                      |                | 429         | 1790461       | 1790889        | 5363 | 1863      |
|                                         |                       |                 |                 |                     |                                      |                | 312         | 1790057       | 1789746        | 5362 | 1862      |
|                                         |                       |                 |                 |                     |                                      |                | 189         | 1789768       | 1789580        | 5361 | 1861      |
|                                         |                       |                 |                 |                     |                                      |                | 483         | 1789562       | 1789080        | 5360 | 1860      |
|                                         |                       |                 |                 |                     |                                      |                | 1923        | 1786907       | 1788829        | 5359 | 1859      |
|                                         |                       |                 |                 |                     |                                      |                | 1113        | 1785732       | 1786844        | 5358 | 1858      |
|                                         |                       |                 |                 |                     |                                      |                | 2580        | 1782894       | 1785473        | 5357 | 1857      |
|                                         |                       |                 |                 |                     |                                      |                | 699         | 1783382       | 1784080        | 5358 | 1856      |
|                                         |                       |                 |                 |                     |                                      |                | 1101        | 1784381       | 1783281        | 5355 | 1855      |
|                                         |                       |                 |                 |                     |                                      |                | 1086        | 1782790       | 1781705        | 5354 | 1854      |
| puromycin N-acetyltransferase           | 190                   | 84.2            | 36.3            | atus pac            | Streptomyces anulatus pac            | sp.PUAC_STRLP  | 587         | 1781019       | 1781585        | 5353 | 1853      |
|                                         |                       |                 |                 |                     |                                      |                | 399         | 1780507       | 1780905        | 5352 | 1852      |
|                                         |                       |                 |                 |                     |                                      |                | 615         | 1779554       | 1780168        | 5351 | 1851      |
|                                         |                       |                 |                 |                     |                                      |                | 1407        | 1778102       | 1779508        | 5350 | 1850      |
|                                         |                       |                 |                 |                     |                                      |                | 594         | 1778037       | 1777444        | 5349 | 1849      |
|                                         |                       |                 |                 |                     |                                      |                | 378         | 1777646       | 1777269        | 5348 | 1848      |
| Function                                | Matched length (a.a.) | Simitary<br>(%) | Identity<br>(%) | us gene             | Homologous gene                      | db Match       | ORF<br>(bp) | Terminal (nt) | inklai<br>(nt) | SEQ  | SEQ<br>NO |
|                                         |                       |                 |                 | Table 1 (continued) | Table 1 (c                           |                |             |               |                |      |           |
| e oi                                    | £1                    | æ               |                 | sz.                 | oε                                   | or<br>se       |             | <b>5</b> >    | 05             |      | 55        |
|                                         |                       |                 |                 |                     |                                      |                |             |               |                |      |           |

| SEQ         SEQ (NO) (nt)         Indital (nt)         Terminal (bp)         ORF (nt)         Identity Similarly (%)         Identity Similarly (%)         Simila |                             |          |    |                 |                                            |   |             | 423         | 1812460       | 1812882         | 5395          | 1895      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|----|-----------------|--------------------------------------------|---|-------------|-------------|---------------|-----------------|---------------|-----------|
| SEQ (Jam)         Initial (Am)         Terminal (bp)         ORF (M)         Identity         Identity           5772         1797969         1797850         120         (%)           5373         1798757         1798023         735              5374         1799182         1799406         225               5376         1799473         1800368         894               5377         1800864         1800449         156               5378         1800864         1801307         474              5379         1802577         1802155         423              5381         1803465         1803893         429              5381         1803465         1803865         237              5381         1804919         1805599         681               5381         1806137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |          |    |                 |                                            |   |             | 726         | 1813606       | 1812881         |               | 1894      |
| SEQ<br>(a n)         Initial<br>(nt)         Terminal<br>(nt)         ORF<br>(nt)         db Match         Homologous gene         Identity<br>(%)           5372         1797969         1797850         120 <td></td> <td><u> </u></td> <td>51</td> <td>29.3</td> <td>scharomyces cerevisiae<br/>BBC YIR026C yvh1</td> <td></td> <td>SP PVH1_YEA</td> <td>477</td> <td>1812691</td> <td>18:2215</td> <td></td> <td>1893</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | <u> </u> | 51 | 29.3            | scharomyces cerevisiae<br>BBC YIR026C yvh1 |   | SP PVH1_YEA | 477         | 1812691       | 18:2215         |               | 1893      |
| SEQ<br>(a n)         Initial<br>(nt)         Terminal<br>(nt)         ORF<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)           5372         1797969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)                                                                                                                                                                                                                                                   |                             | <b>—</b> |    |                 |                                            |   |             | 375         | 1811938       | 1811564         |               | 1892      |
| SEQ<br>(a n)         Initial<br>(nt)         Terminal<br>(hp)         ORF<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)           5372         1797969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)                                                                                                                                                                                                                                                   | i                           | _        |    |                 |                                            |   |             | 1005        | 1811545       | 1810541         |               | 1891      |
| SEQ<br>NO<br>(a n)         Initial<br>(nt)         Terminal<br>(hp)         ORF<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)           5372         179969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (                                                                                                                                                                                                                                                | -                           | حَا      | 78 | 51.1            | cherichia coll tnpR                        | _ |             | 612         | 1810372       | 1809761         |               | 1890      |
| SEQ<br>NO<br>(a)         Initial<br>(nt)         Terminal<br>(bp)         ORF<br>(bp)         db Match         Homologous gene<br>(%)         Identity<br>(%)           5372         179769         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)                                                                                                                                                                                                                                                | <u>!</u>                    | _        | -  | Ì               |                                            |   |             | 375         | 1808832       | 1808458         |               | 1889      |
| SEQ (n) (n) (n)         Initial (n)         Terminal (bp)         ORF (bp)         db Match         Homologous gene         Identity (9%)           5372 1797969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         <                                                                                                                                                                                                                                                                 | -                           | -        |    |                 |                                            |   |             | 285         | 1808421       | 1808137         |               | 1888      |
| SEQ (nt)         Initial NO (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene         Identity (%)           5372 1797969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (                                                                                                                                                                                                                                                                     |                             | <u> </u> |    |                 |                                            |   |             | 681         | 1808113       | 1807433         |               | 1887      |
| SEQ (n)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)           5372 1797969         1797850         120         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (%)         (                                                                                                                                                                                                                                                                     |                             | _        |    |                 |                                            | _ |             | 480         | 1807396       | 1806917         |               | 1886      |
| SEQ (n) (n)         Initial (n)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)           5372 1797969         1797850         120         (%)           5372 1798757         1798023         735         (%)           5373 1799757         1798023         735         (%)           5374 1799182         1799406         225         (%)           5375 1799473         1800368         894         (%)           5376 1800604         1800449         156         (%)           5377 1800834         1801307         474         (%)           5378 1801341         1802096         753         (%)           5379 180257         1802155         423         (%)           5380 180257         1803459         687         (%)           5381 1803465         1803893         429         (%)           5382 1804629         1804598         465         (%)           5384 1804919         1805599         681         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                           |          |    | -               |                                            |   |             | 960         | 1806686       | 1805727         |               | 1885      |
| SEQ (n) (nt)         Initial (nt)         Terminal (bp)         db Match         Homologous gene (%)         Identity (%)           5372 1797969 (nt)         (nt)         (bp)         db Match         Homologous gene (%)         (%)           5372 1797969 1797850 120         120              5373 1798757 1798023 735               5374 1799182 1799406 225               5375 1799473 1800368 894               5376 1800604 1800349 156               5377 1800834 1801307 474               5379 180257 1802155 423               5381 1803465 1803893 429               5382 1804134 1804598 465               5383 1804629 180485 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | _        |    |                 |                                            |   |             | 681         | 1805599       | 1804919         |               | 1884      |
| SEQ (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)           5372         1797969         1797850         120                                                                                         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                           | _        |    |                 |                                            |   |             | 237         | 1804865       | 1804629         |               | 1883      |
| SEQ NO (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity (%)           5372 1797969         1797850         120                                                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                           | <u> </u> |    |                 |                                            |   |             | 465         | 1804598       | 1804134         |               | 1882      |
| SEQ (a n)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969 (nt)         1797850 120         1797850 120         1798757 1798023 735         1798757 1798023 735         17998757 1799406 225         1799406 225         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1799406 120         1                                             | -                           |          |    |                 | -                                          |   |             | 429         | 1803893       | 1803465         | _             | 1881      |
| SEQ (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         Homologous gene (%)         Identity           5372         1797969         1797850         120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                           | -        |    |                 |                                            | _ |             | 687         | 1803419       | 1802733         | _             | 1880      |
| SEQ NO (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969         1797850         120         (%)         (%)           5373 1798757         1798023         735         (%)         (%)           5374 1799182         1799406         225         (%)         (%)           5375 1799473         1800366         894         (%)         (%)           5376 1800804         1800449         156         (%)         (%)           5377 1800834         1801307         474         (%)         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |          |    |                 |                                            |   |             | 423         | 1802155       | 1802577         |               | 1879      |
| SEQ (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969 1797950 120         1797969 1798023 735         1798757 1798023 735         1798757 1798023 735         1799182 1799406 225         1799406 225         1799406 225         1799406 225         1799473 1800366 894         1800360 1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1800449 156         1                                    |                             |          |    |                 |                                            |   |             | 753         | 1802096       | 1801344         |               | 1878      |
| SEQ NO (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969         1797850         120                                                                                           .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                           | Ь.       |    |                 |                                            |   |             | 474         | 1801307       | 1800834         |               | 1877      |
| SEQ NO (nt)         Initial (nt)         Terminal (bp)         ORF db Match         Homologous gene (%)         Identity           5372 1797969         1797850         120         (%)           5373 1798757         1798023         735         (%)           5374 1799182         1799406         225         (%)           5375 1799473         1800366         894         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                           | -        |    |                 |                                            |   |             | 156         | 1800449       | 1800604         |               | 1876      |
| SEQ (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969 1797850 120         1797850 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | -        |    |                 |                                            |   |             | 894         | 1800366       | 1799473         |               | 1875      |
| SEQ NO (nt)         Initial (nt)         Terminal (bp)         ORF (bp)         db Match         Homologous gene (%)         Identity           5372 1797969         1797850         120         (%)           5373 1798757         1798023         735         (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | <b>-</b> |    |                 |                                            |   |             | 225         | 1799406       | 1799182         | _             | 1874      |
| SEQ   Initial   Terminal   ORF   db Match   Homologous gene   Identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | -        |    |                 |                                            |   |             | 735         | 1798023       | 1798757         | _             | 1873      |
| SEQ Initial Terminal ORF db Match Homologous gene (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                           | -        |    |                 |                                            |   |             | 120         | 1797850       | 1797969         | $\overline{}$ | 1872      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matched<br>length<br>(8.8.) | <u> </u> |    | Identity<br>(%) | Homologous gene                            |   | db Match    | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) |               | SEQ<br>NO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |    |                 |                                            |   |             |             |               |                 |               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | •  |                 |                                            | : | •           |             | !             | ú               |               | \$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          | 30 |                 | 90<br>SZ                                   | æ | <b>0</b> *  |             | S <b>*</b>    | 05              |               | 55        |

|                                          |                       |                   |                 |                                        |                 |             |                  |                 |      | į           |
|------------------------------------------|-----------------------|-------------------|-----------------|----------------------------------------|-----------------|-------------|------------------|-----------------|------|-------------|
| primase                                  | 381                   | 64.3              | 31.8            | Streptococcus phage phi-O1205<br>ORF13 | pir.T13302      | 1650        | 1838324          | 1836675         | 5417 | 1917        |
|                                          |                       |                   |                 |                                        |                 | 780         | 1834149          | 1834928         | 5416 | 1916        |
| single-stranded-DNA-specific exonuclease | 622                   | 50 e              | 24.0            | Erwinia chrysanthemi recJ              | sp RECJ_ERWCH E | 1878        | 1834044          | 1832167         | 5415 | 1915        |
|                                          |                       | _                 |                 |                                        |                 | 1299        | 1832063          | 1830765         | 5414 | 1914        |
|                                          |                       |                   |                 |                                        |                 | 213         | 1829688          | 1829900         | 5413 | 1913        |
| insertion element (IS3 related)          | 101                   | 84.2              | 72.3            | Corynebacterium giutamicum onti        | pir S60889 C    | 294         | 1826644          | 1826937         | 5412 | 1912        |
| insertion element (IS3 related)          | 298                   | 95.6              | 87.9            | Corynebacterium glutamicum or/2        | pir.S60890 C    | 894         | 1825751          | 1826644         | 5411 | 1911        |
| hypothetical protein                     | 166                   | 75.0              | 63.0            | Corynebacterium glutamicum             | PIR S60891 C    | 534         | 1826557          | 1826024         | 5410 | .910        |
|                                          |                       |                   |                 |                                        |                 | 429         | 1825178          | 1825606         | 5409 | 1909        |
|                                          |                       |                   |                 |                                        |                 | 144         | 1824927          | 1824784         | 5408 | 1908        |
|                                          |                       |                   |                 |                                        |                 | 219         | 1824589          | 1824371         | 5407 | 1907        |
|                                          |                       |                   |                 |                                        |                 | 1746        | 1824322          | 1822577         | 5406 | 1906        |
| hypothetical protein                     | 545                   | 55.2              | 22.0            | Thermotoga maritima MSB8<br>TM1189     | 72285           | 2202        | 1820181          | 1822382         | 5405 | 1905        |
|                                          |                       |                   |                 |                                        |                 | 207         | 1819748          | 1819954         | 5404 | 1904        |
|                                          |                       |                   |                 |                                        |                 | 369         | 1819166          | 1818798         | 5403 | 1903        |
|                                          |                       |                   |                 |                                        |                 | 315         | 1818774          | 1818460         | 5402 | 1902        |
|                                          |                       |                   |                 |                                        |                 | 417         | 1818219          | 1817803         | 5401 | 1901        |
|                                          |                       |                   |                 |                                        |                 | 672         | 1817803          | 1817132         | 5400 | 1900        |
|                                          |                       |                   |                 |                                        |                 | 186         | 1816636          | 1816451         | 5399 | 1899        |
|                                          |                       |                   |                 |                                        |                 | 456         | 1816128          | 1815673         | 5398 | 1898        |
|                                          |                       |                   |                 |                                        |                 | 789         | 1815651          | 1814863         | 5397 | 1897        |
| sporulation transcription factor         | 218                   | 65 7              | 34.3            | Streptomyces coelicolor A3(2) whiH     | gp:SCA32WHIH_6  | 738         | 1814517          | 1813780         | 5396 | 1896        |
| Function                                 | Matched length (a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                        | db Match        | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ  | SEQ<br>ONA) |
|                                          |                       |                   |                 | Table 1 (continued)                    |                 |             |                  |                 |      |             |
| e<br>oı                                  | Et                    | 50                |                 | <i>06</i>                              | 0 <b>7</b>      |             | 57               | 05              |      | 55          |
|                                          |                       |                   |                 |                                        |                 |             |                  |                 |      |             |

| 1940                                             | 1939    | 1938                                | 1937    | 1936    | 1935    | 1934    | 1933                                   | 1932    | 1931    | 1930    | 1929    | 1928    | 1927    | 1926    | 1925    | 1924    | 1923                     | 1922    | 1921                                  | 1920    | 1919    | 1918    | SEQ<br>NO                   |                     | ક્ક            |
|--------------------------------------------------|---------|-------------------------------------|---------|---------|---------|---------|----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------------------|---------|---------------------------------------|---------|---------|---------|-----------------------------|---------------------|----------------|
| 5440                                             | 5439    | 5438                                | 5437    | 5438    | 5435    | 5434    | 5433                                   | 5432    | 5431    | 5430    | 5429    | 5428    | 5427    | 5426    | 5425    | 5424    | 5423                     | 5422    | 5421                                  | 5420    | 5419    | 5418    | SEQ<br>NO                   |                     |                |
| 1858763                                          | 1856885 | 1855532                             | 1855058 | 1854261 | 1852479 | 1851473 | 1851220                                | 1851049 | 1850415 | 1850035 | 1849781 | 1848988 | 1848509 | 1847938 | 1847315 | 1846698 | 1845872                  | 1845483 | 1843518                               | 1842804 | 1842235 | 1838349 | Initial<br>(nt)             |                     | os             |
| 1860727                                          | 1858738 | 1856788                             | 1855237 | 1854854 | 1853873 | 1852324 | 1852440                                | 1850474 | 1849978 | 1850406 | 1849966 | 1849785 | 1849036 | 1848474 | 1847932 | 1846333 | 1846207                  | 1845857 | 1845356                               | 1843337 | 1842681 | 1842137 | Terminal<br>(nt)            |                     | SP             |
| 1965                                             | 1854    | 1257                                | 180     | 594     | 1395    | 852     | 1221                                   | 576     | 438     | 372     | 186     | 798     | 528     | 537     | 618     | 366     | 336                      | 375     | 1839                                  | 534     | 447     | 3789    | ORF<br>(bp)                 |                     |                |
| sp CLPA_ECOLI                                    |         | gp SC5C7_14                         |         |         |         |         | gp SPAPJ760_2                          |         |         |         |         |         |         |         |         |         | pir T13144               |         | SP Y018_MYCPN                         |         |         |         | db Match                    |                     | O <del>P</del> |
| Escherichi                                       |         | Streptomy<br>SC5C7 14               |         |         |         |         | Schizosac<br>SPAPJ760                  |         |         |         |         |         |         |         |         |         | Bacterioph               |         | Mycoplasr<br>29342 yb9                |         |         |         | Ho                          | Ta                  | SE             |
| Escherichia coli K12 clpA                        |         | Streptomyces coelicolor<br>SC5C7 14 |         |         |         |         | Schizosaccharomyces pombe SPAPJ760.02c |         |         |         |         |         |         |         |         |         | Bacteriophage N15 gene57 |         | Mycoplasma pneumoniae ATCC 29342 yb95 |         |         |         | Homologous gene             | Table 1 (continued) | Œ              |
| 30 2                                             |         | 23 6                                |         |         |         |         | 26.7                                   |         |         |         |         |         |         |         |         |         | 36.7                     |         | CC 22.1                               |         | <br>    |         | Identity<br>(%)             |                     | 52             |
| 61.0                                             |         | 52.5                                |         |         |         |         | 49.8                                   |         |         |         |         |         |         |         |         |         | 64.2                     |         | 44.7                                  |         |         |         | y Similarit<br>(%)          |                     | 50             |
| 630                                              |         | 347                                 |         |         |         |         | 422                                    |         |         |         |         |         |         |         |         |         | 109                      |         | 620                                   |         |         |         | Metched<br>length<br>(a.a.) |                     | ٤١             |
| ATP-dependent Clp proteinase ATP-binding subunit |         | ATP/GTP binding protein             |         |         |         |         | actin binding protein with SH3 domains |         |         |         |         |         |         |         |         |         | phage N15 protein gp57   |         | helicase                              |         |         |         | Function                    |                     | e<br>or        |

53

0+

32

oε

SZ

so

SI

01

ç

|                                  |                  |                  | Ì            |                                                |               | 100         | 1007.000      | 1887405      | 0461   | 1961       |
|----------------------------------|------------------|------------------|--------------|------------------------------------------------|---------------|-------------|---------------|--------------|--------|------------|
|                                  |                  |                  |              |                                                |               | 9           | -             |              |        |            |
| hypathetical protein             | 504              | 45.8             | 24.8         | Streptomyces coelicolor A3(2)<br>SC1A2 16c     | gp SC1A2_16   | 1818        | 1887047       | 1885230      | 5460   | 1960       |
|                                  |                  |                  | -            |                                                |               | 717         | 1884220       | 1884936      | 5459   | 1959       |
|                                  |                  |                  |              |                                                |               | 1521        | 1882470       | 1883990      | 5458   | 1958       |
| type II restriction endonuclease | 358              | 99.7             | 99.7         | Corynebacterium glutamicum<br>ATCC 13032 cgllR | pir A55225    | 1074        | 1880485       | 1879412      | 5457   | 1957       |
| methyltransferase                | 363              | 99 7             | 99.2         | ATCC 13032 cgilM                               | prf 2403350A  | 1089        | 1879400       | 1878312      | 5456   | 1956       |
|                                  | +                |                  |              |                                                |               | 6507        | 1871380       | 1877886      | 5455   | 1955       |
|                                  |                  |                  |              |                                                |               | 273         | 1871101       | 1871373      | 5454   | 1954       |
|                                  |                  |                  | Ì            |                                                |               | 2166        | 1868927       | 1871092      | 5453   | 1953       |
|                                  |                  |                  |              |                                                |               | 225         | 1868671       | 1868895      | 5452   | 1952       |
| Kinase                           | 208              | 61.5             | 31.7         | Bacteriophage phi-C31 gp52                     | prf:2514444Y  | 702         | 1868587       | 1867886      | 5451   | 1951       |
| hypothetical protein             | 224              | 47.8             | 25.9         | Streptomyces coelicolor A3(2)<br>SCH17 07c     | gp.SCH17_7    | 777         | 1867874       | 1867098      | 5450   | 1950       |
|                                  |                  |                  |              |                                                |               | 264         | 1867095       | 1866832      | 5449   | 1949       |
|                                  |                  |                  |              |                                                |               | 465         | 1866792       | 1886328      | 5448   | 1948       |
|                                  |                  |                  |              |                                                |               | 378         | 1866219       | 1865842      | 5447   | 1947       |
|                                  |                  |                  |              |                                                |               | 558         | 1865822       | 1865265      | 5446   | 1946       |
| ATP-dependent helicase           | 693              | 45.9             | 21.4         | pcrA Staphylococcus aureus SA20                | SP PCRA_STAAU | 2355        | 1865299       | 1862945      | 5445   | 1945       |
|                                  |                  |                  |              |                                                |               | 312         | 1862399       | 1862088      | 5444   |            |
|                                  |                  |                  |              |                                                |               | 324         | 1861519       | 1861842      | 5443   |            |
|                                  |                  |                  |              |                                                |               | 158         | 1861475       | 1861320      | 5442   | 1942       |
|                                  |                  |                  |              |                                                |               | 474         | 1861225       | 1860752      | 5441   |            |
| Function                         | iength<br>(a.a.) | Sımilarit<br>(%) | Identity (%) | Homologous gene                                | db Match      | ORF<br>(bp) | Terminal (nt) | Initial (nt) | NO SEO | SEQ<br>ONA |
|                                  | T Water          |                  |              | Table 1 (continued)                            |               |             |               |              |        |            |

0+

Œ

SI

|          |      |                 |               |             |                | iable 1 (continued)                    |                 |                   |                       |                                       |
|----------|------|-----------------|---------------|-------------|----------------|----------------------------------------|-----------------|-------------------|-----------------------|---------------------------------------|
| NO<br>NO | OBS  | Initial<br>(nt) | Terminal (nt) | ORF<br>(bp) | db Match       | Homologous gene                        | identity<br>(%) | Similarity<br>(%) | Matched length (a.a.) | Function                              |
| 1962     | 5462 | 1888038         | 1887688       | 351         | gp.AE001973_4  | Delnococcus radiodurans<br>OR 1258     | 46.7            | 70.0              | 90                    | SNF2/Rad54 helicase-related protein   |
| 1963     | 5463 | 1889094         | 1888231       | 864         | pir:T13226     | Lactobacillus phage phi-gle<br>Rorf232 | 33.1            | 56 4              | 163                   | hypathetical protein                  |
| 1964     | 5464 | 1889530         | 1689859       | 330         |                |                                        |                 |                   |                       |                                       |
| 1965     | 5465 | 1891707         | 1890028       | 1680        | 9p.AF188935_18 | Bacillus anthracis pXO2-16             | 20.7            | 47.8              | 537                   | hypothetical protein                  |
| 1966     | 5466 | 1893037         | 1891832       | 1206        |                |                                        |                 |                   |                       |                                       |
| 1967     | 5467 | 1894680         | 1893388       | 1293        |                |                                        |                 |                   |                       |                                       |
| 1968     | 5468 | 1897231         | 1894739       | 2493        |                |                                        |                 |                   |                       |                                       |
| 1969     | 5469 | 1899158         | 1897374       | 1785        | sp CLPB_ECOLI  | Escherichia coli cip8                  | 25.3            | 52.5              | 724                   | endopeptidase Clp ATP-binding chain B |
| 1970     | 5470 | 1899853         | 1899233       | 621         |                |                                        |                 |                   |                       |                                       |
| 1971     | 5471 | 1900916         | 1899804       | 1113        |                |                                        |                 |                   |                       |                                       |
| 1972     | 5472 | 1901911         | 1901066       | 846         |                |                                        |                 |                   |                       |                                       |
|          | 5473 | 1901975         | 1902855       | 981         |                |                                        |                 |                   |                       |                                       |
| 1974     | 5474 | 1902883         | 1902005       | 879         |                |                                        |                 |                   |                       |                                       |
|          | 5475 | 1903028         | 1903225       | 198         |                |                                        |                 |                   |                       |                                       |
| 1976     | 5476 | 1905878         | 1903113       | 2766        | plr. S23647    | Homo sapiens numA                      | 20.1            | 49.1              | 1004                  | nuclear mitotic apparatus protein     |
| 1977     | 5477 | 1906572         | 1905973       | 600         |                |                                        |                 |                   |                       |                                       |
| 1978     | 5478 | 1907914         | 1906664       | 1251        | :              |                                        |                 |                   |                       |                                       |
| 1979     | 5479 | 1908660         | 1907965       | 696         |                |                                        |                 |                   |                       |                                       |
|          | 5480 | 1909498         | 1908785       | 714         |                |                                        |                 |                   |                       |                                       |
| 1981     | 5481 | 1910508         | 1909501       | 1008        |                |                                        |                 |                   |                       |                                       |
|          | 5482 | 1912300         | 1910642       | 1659        |                |                                        |                 |                   |                       |                                       |
| 1983     | 5483 | 1913820         | 1912333       | 1488        |                |                                        |                 |                   |                       |                                       |
| 1984     | 5484 | 1914371         | 1913973       | 399         |                |                                        |                 |                   |                       |                                       |
| 1985     | 5485 | 1016277         |               |             |                |                                        | •               |                   | _                     |                                       |

\*\*

|                        |                       | +         | 7        |                 |         |                                            |                 | 534         | 1937486 5       | 1938019 1 | 5509      | 2009         |
|------------------------|-----------------------|-----------|----------|-----------------|---------|--------------------------------------------|-----------------|-------------|-----------------|-----------|-----------|--------------|
|                        |                       |           |          | Ì               |         |                                            |                 | 210         | 1937411 2       | 1937202 1 | 5508      | 2008         |
|                        |                       |           |          |                 |         |                                            |                 | 624         | 1936849 6       | 1936226 1 | 5507      | 2007         |
| hypothetical protein   | 328                   | Ġ.        | 54.6     | 27.1            | schii   | Methanococcus jannaschii<br>MJ0137         | SP Y137_METJA   | 942 sp Y    | 1934971 9       | 1935912 1 | 5500      | 2006         |
|                        |                       | 1         |          |                 |         |                                            |                 | 837         | 1933522 8       | 1934358 1 | 5505      | 2005         |
|                        |                       |           |          |                 |         |                                            |                 | 507         | 1932373 5       | 1932879 1 | 5504      | 2004         |
| hypothetical protein   | 114                   |           | 58       | 38.6            | culosis | Mycobacterium tuberculosis<br>H37Rv Rv1956 | pir:H70638      | 381 pir.t   | 1931935 3       | 1932315 1 | 5503      | 2003         |
|                        |                       |           |          |                 |         |                                            |                 | 468         | 1931421 4       | 1931888 1 | 5502      | 2002         |
|                        |                       |           |          |                 |         |                                            |                 | 201         | 1930990 2       | 1931190 1 | 5501      | 2001         |
|                        |                       | $\exists$ |          |                 |         |                                            |                 | 1821        | 1929059 18      | 1930879 1 | 5500      | 2000         |
|                        |                       |           | 1        |                 |         |                                            |                 | 375         | 1928908 3       | 1928534 1 | 5499      | 1999         |
| modification methylese | 61                    |           | 85       | 12.6            | -       | Escherichie coll ecoR1                     | sp:MTE1_ECOLI E | 171 sp:A    | 1928381 1       | 1928211 1 | 5498      | 1998         |
|                        |                       | +         | 1        |                 |         |                                            |                 | 945         | 1927245 9       | 1928189 1 | 5497      | 1997         |
|                        |                       |           |          |                 |         |                                            |                 | 579         | 1926259 5       | 1926837 1 | 5496      | 1996         |
| submaxillary apomucin  | 1408                  |           | 40       | 23.2            |         | Sus scrofa domestica                       | pir T03099 S    | 4464 pir    | 1921547 4       | 1926010 1 | 5495      | 1995         |
|                        |                       |           | 1        |                 |         |                                            |                 | 357         | 1926038 3       | 1925682 1 | 5494      | 1994         |
|                        |                       | +         |          |                 |         |                                            |                 | 306         | 1925695 3       | 1925390 1 | 5493      | 1993         |
|                        |                       | 寸         |          |                 |         |                                            |                 | 930         | 1920347 9       | 1921276 1 | 5492      | 1992         |
|                        |                       | $\dashv$  | $\dashv$ |                 |         |                                            |                 | 549         | 1919646 5       | 1920194 1 | 5491      | 1991         |
|                        |                       | +         | +        |                 |         |                                            |                 | 759         | 1918703 7       | 1919461 1 | 5490      | 1990         |
|                        |                       | 1         |          |                 |         |                                            |                 | 645         | 1917564 6       | 1918208 1 | 5489      | 1989         |
|                        |                       | ┪         |          |                 |         |                                            |                 | 312         | 1917329 3       | 1917640 1 | 5488      | 1988         |
|                        |                       | +         |          |                 |         |                                            |                 | 222         | 1917165 2       | 1916944   | 5487      | 1987         |
|                        |                       |           | _        |                 |         |                                            |                 | 360         | 1916733 3       | 1916374   | 5486      | 1986         |
| Function               | Matched length (a.a.) | λ<br>Litγ | Simil.   | Identity<br>(%) | ene     | Homologous gene                            | db Match        | ORF<br>(bp) | Terminal C (nt) | (nt)      | SEQ<br>NO | SEQ<br>(DNA) |
|                        |                       |           |          |                 | tinued) | Table 1 (continued)                        |                 |             |                 |           |           |              |
|                        |                       |           |          |                 |         |                                            |                 |             |                 |           |           |              |
| o i                    | si                    | . –       | æ        |                 | sa      | æ                                          | se              | 01          | ទា              | 01        |           | 23           |
|                        | ı                     |           | •        |                 | ;       | 7                                          |                 |             | •               | ;         |           | ,            |

0⊊

51

01

**3**E

Œ

SZ

50

s١

01

|                                              |                             |                |                 |                                                                          |               | 291         | 1963139       | 1963429         | 5532      | 2032      |
|----------------------------------------------|-----------------------------|----------------|-----------------|--------------------------------------------------------------------------|---------------|-------------|---------------|-----------------|-----------|-----------|
| major secreted protein PS1 protein precursor | 344                         | 54.7           | 29.7            | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17985 csp1 | sp CSP1_CORGL | 1887        | 1981114       | 1963000         | 5531      | 2031      |
|                                              |                             |                |                 |                                                                          |               | 744         | 1960371       | 1981114         | 5530      | 2030      |
|                                              |                             |                |                 |                                                                          |               | 432         | 1959765       | 1960196         | 5529      | 2029      |
|                                              |                             |                |                 |                                                                          |               | 891         | 1958450       | 1959340         | 5528      | 2028      |
|                                              |                             |                |                 |                                                                          |               | 2085        | 1956203       | 1958287         | 5527      | 2027      |
| DNA topolsomerase III                        | 597                         | 50.9           | 23.8            | Escherichia coli top8                                                    | sp:TOP3_ECOLI | 2277        | 1952546       | 1954822         | 5526      | 2026      |
|                                              |                             |                |                 |                                                                          |               | 867         | 1951619       | 1952485         | 5525      | 2025      |
|                                              |                             |                |                 |                                                                          |               | 2430        | 1949021       | 1951450         | 5524      | 2024      |
| major secreted protein PS1 protein precursor | 270                         | 54.4           | 30.7            | Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1       | sp CSP1_CORGL | 1581        | 1947070       | 5523 1948650    | 5523      | 2023      |
|                                              |                             |                |                 |                                                                          |               | 429         | 1946609       | 1947037         | 5522      | 2022      |
|                                              |                             |                |                 |                                                                          |               | 381         | 1945952       | 1946332         | 5521      | 2021      |
|                                              |                             |                |                 |                                                                          |               | 297         | 1945595       | 1945891         | 5520      | 2020      |
| surface protein                              | 304                         | 4              | 23.0            | Enterococcus faecalis esp                                                | pri 2509434A  | 828         | 1944608       | 1945435         | 5519      | 2019      |
|                                              |                             |                |                 |                                                                          |               | 885         | 1944564       | 1943680         | 5518      | 2018      |
|                                              |                             |                |                 |                                                                          |               | 309         | 1943653       | 1943345         | 5517      | 2017      |
|                                              |                             | _              |                 |                                                                          |               | 216         | 1943310       | 1943095         | 5516      | 2016      |
|                                              |                             |                |                 |                                                                          |               | 303         | 1942812       | 1942510         | 5515      | 2015      |
|                                              |                             |                |                 |                                                                          |               | 753         | 1941732       | 1942484         | 5514      | 2014      |
|                                              |                             |                |                 |                                                                          |               | 444         | 1941550       | 1941107         | 5513      | 2013      |
|                                              |                             |                |                 |                                                                          |               | 885         | 1940844       | 1940257         | 5512      | 2012      |
|                                              |                             |                |                 |                                                                          |               | 534         | 1938531       | 1939064         | 5511      | 2011      |
|                                              |                             |                |                 |                                                                          |               | 1191        | 1940135       | 1938945         | 5510      | 2010      |
| Function                                     | Matched<br>length<br>(a.a.) | Similality (%) | Identity<br>(%) | Homologous gene                                                          | db Maich      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO | SEQ<br>NO |
|                                              |                             |                |                 | Table 1 (continued)                                                      |               |             |               |                 |           |           |

05

50

32

Œ

SZ

so

SI

|                                     |                       |              | L        | -              |                           |               | 180          | 1981912       | 1982091         | 5558   | 2058      |
|-------------------------------------|-----------------------|--------------|----------|----------------|---------------------------|---------------|--------------|---------------|-----------------|--------|-----------|
|                                     |                       | 1            | 1        | +              |                           |               | <del>i</del> | 1982817       | 1982071         | 5557   | 2057      |
|                                     |                       | 1            | 1        | +              |                           |               | 366          | 1982028       | 1981663         | 5556   | 2056      |
|                                     |                       |              | 1        | +              |                           |               | 693          | 1981657       | 1980965         | 5555   | 2055      |
| serine prolesse                     | 248                   | 52 6         | 17       | 25.7           | Anopheles gambiae AgSP24D | sp S24D_ANOGA | 912          | -             | 1979974         |        | 2054      |
|                                     |                       |              | +        | +              |                           |               | 570          | 1979808       | 1979239         | 5553   | 2053      |
|                                     |                       | _            | $\perp$  |                |                           |               | 558          | 1979217       | 1978660         | 5552   | 2052      |
|                                     |                       | _            | -        | +              |                           |               | 333          | 1978721       | 1978389         | 5551   | 2051      |
|                                     |                       |              | +        | $\dagger$      |                           |               | 588          | 1978329       | 1977742         | 5550   | 2050      |
|                                     |                       |              | _        | $\vdash$       |                           |               | 507          | 1977549       | 1977043         | 5549   | 2049      |
|                                     |                       |              | 1        | +              |                           |               | 462          | 1976983       | 1976522         | 5548   | 2048      |
|                                     |                       |              | $\perp$  | $\dagger$      |                           |               | 579          | 1976494       | 1975916         | 5547   | 2047      |
| single strended UNA-binding protein | 225                   | 59           | 60       | 24.9           | Shewanella sp ssb         | prt 2313347B  | 624          | 1975794       | 1975171         | 5546   | 2046      |
|                                     | <u>-</u> -            |              | $\vdash$ | -              |                           |               | 237          | 1974503       | 1974267         | 5545   | 2045      |
|                                     |                       | _            | -        | -              |                           |               | 396          | 1974204       | 1973809         | 5544   | 2044      |
|                                     |                       | +            | +        | $\dagger$      |                           |               | 591          | 1973737       | 1973147         | 5543   | 2043      |
|                                     |                       |              | +        |                | -                         |               | 1419         | 1973090       | 1971672         | 5542   | 2042      |
|                                     |                       | _            | -        | 1              |                           |               | 1221         | 1971474       | 1970254         | 5541   | 2041      |
|                                     |                       | L            | $\vdash$ | -              |                           |               | 459          | 1970203       | 1969745         | 5540   | 2040      |
|                                     |                       | 1            | -        |                |                           |               | 1452         | 1969715       | 1968264         | 5539   | 2039      |
|                                     |                       | -            | +-       | -              |                           |               | 564          | 1968167       | 1967604         | 5536   | 2038      |
|                                     |                       | $\downarrow$ | +        |                |                           |               | 147          | 1967289       | 1967435         | 5537   | 2037      |
| thermonucleus                       | 22/                   | 57.7         | ╁        | 30.4           | Staphylococcus aureus nuc | SP NUC STAAU  | 684          | 1966984       | 1966301         | 5536   | 2036      |
|                                     |                       |              | +        |                |                           |               | 357          | 1965911       | 1966267         | 5535   |           |
|                                     |                       | $\perp$      | +        |                |                           | :             | 1176         | 1964727       | 1965902         |        |           |
|                                     |                       | _            | -        |                |                           |               | 1230         | 1963514       | 1964743         |        |           |
| Function                            | Matched length (a.a.) | Similariy    | Sir      | Identky<br>(%) | Homologous gane           | db Match      | ORF<br>(bp)  | Terminal (nt) | Initial<br>(nt) | NO SEQ | SEQ<br>NO |
|                                     |                       |              |          |                | Table 1 (continued)       |               |              |               |                 |        |           |
|                                     |                       |              |          |                |                           |               |              |               |                 |        |           |

05

æ

Œ

so

SI

10

|                                              | -     |           |              |                                                                    | שם. אוואי ביי יייבי | 90   | 0000000  | 1995294    | 55/8 | 2078 |
|----------------------------------------------|-------|-----------|--------------|--------------------------------------------------------------------|---------------------|------|----------|------------|------|------|
| integrase                                    | 223   | -<br>     | 28.7         | Mycobacterium phage L5 int                                         | S IMOD TIMIN        | 507  | +        |            | _    | T    |
| major secreted protein PS1 protein precursor | 153   | 37,0      | 25.0         | Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1 | 1584 sp.CSP1_CORGL  | 1584 | 1892538  | 1994121    | 5577 | 2077 |
|                                              |       |           |              |                                                                    |                     | 744  | 1991795  | 1992538    | 5576 | 2076 |
|                                              |       |           |              |                                                                    |                     | 432  | 1991189  | 1991620    | 5575 | 2075 |
|                                              |       |           |              |                                                                    |                     | 891  | 1989874  | 1990764    | 5574 | 2074 |
|                                              | -     |           |              |                                                                    |                     | 354  | 1991020  | 1990667    | 5573 | 2073 |
| transposase                                  | 270   | 53        | 31.1         | Streptomyces coelicolor A3(2)<br>SCJ11.12                          | gp SCJ11_12         | 828  | 1988778  | 1989605    | 5572 | 2072 |
| insertion element (IS3 related)              | 43    | 8.8       | 74.4         | Corynebacterium glutamicum orf1                                    | pir.S60889          | 135  | 1988530  | 1988684    | 5571 | 2071 |
| transposition repressor                      | 31    | 8         | 80.7         | Brevibaderium lactofermentum<br>CGL2005 ISaB1                      | gsp:R21601          | 114  | 1988370  | 1988483    | 5570 |      |
|                                              |       |           |              |                                                                    |                     | 207  | 1988589  | 1988383    | 5569 | 2069 |
| transposase (divided)                        | 117   | 84.       | 70.9         | Brevibacterium lactofermentum<br>CGL2005 ISaB1                     | gsp:R23011          | 417  | 1987887  | 1988303    | 5588 | 2068 |
| transposase (divided)                        | 124   | 94        | 83.9         | Brevibacterium lactofermentum<br>CGL2005 ISaB1                     | gsp:R23011          | 390  | 1987507  | 1987896    | 5567 |      |
|                                              | 400   | 35        | 29.6         | Mycobacterium phage L5 int                                         | SP VINT_BPML5       | 1149 | 1985442  | 1986590    | 5568 |      |
|                                              |       | 1         |              |                                                                    |                     | 303  | 1985071  | 1985373    | 5565 | 2065 |
|                                              |       | 1         |              |                                                                    |                     | 273  | 1985364  | 1985092    | 5564 | 2064 |
|                                              |       | -         |              |                                                                    |                     | 342  | 1984728  | 1984387    | 5563 |      |
|                                              |       |           |              |                                                                    |                     | 234  | 1984450  | 1984217    | 5562 | 2062 |
|                                              |       | _         |              |                                                                    |                     | 264  | 1984181  | 1983918    | 5561 | 2061 |
|                                              |       |           |              |                                                                    |                     | 273  | 1983883  | 1983611    | 5580 | 2060 |
|                                              |       |           |              |                                                                    |                     | 363  | 1983548  | 1983186    | 5559 |      |
|                                              | (0.0) |           |              |                                                                    |                     | 9    | (a)      | ( <u>2</u> | •    | ≤_   |
| Function                                     |       | Similarky | Identity (%) | Homologous gene                                                    | db Match            | 유    | <u>=</u> | Initial    | SEO  | SEQ  |
|                                              |       |           |              | Table 1 (continued)                                                |                     |      |          |            |      |      |

**5** 

æ

Œ

SI

|                                |                  |                |                 | :                                             |               | 207  | 2008876       | 2009082      | 5596        | 2096 |
|--------------------------------|------------------|----------------|-----------------|-----------------------------------------------|---------------|------|---------------|--------------|-------------|------|
| hypothetical protein           | 150              | 70 7           | 46.0            | Mycobacterium tuberculosis<br>H37Rv Rv2698    | pır.E70530    | 549  | 2008798       | 2008250      | 5595        | 2095 |
| nucleotidohydrolase            | 140              | 82.1           | 55.0            | Streptomyces coelicator A3(2)<br>SC2E9 09 dut | SP DUT_STRCO  | 447  | 2007738       | 2008184      | 5594        | 2094 |
| hypothetical protein           | 268              | 02 7           | 38.1            | Mycobacterium tuberculosis<br>H37Rv Rv2698c   | pir C70530    | 861  | 2008777       | 2007637      | 5593        | 2093 |
|                                |                  |                |                 |                                               |               | 282  | 2008979       | 2006698      | 5592        | 2092 |
| RNA methyttransferase          | 472              | 52.3           | 25 4            | Thermotoga maritima MSB8<br>TM1094            | pir E72298    | 1236 | 2005462       | 2006697      | 5591        | 2091 |
| synthase                       | 618              | 78.5           | 55.3            | Streptomyces sp. CL190 dxs                    | gp-AB0266311  | 1908 | 2003402       | 2005309      | 5590        | 2090 |
| ribonuclesse D                 | 37.1             | 52.8           | 25.9            | Haemophilus influenzae Rd<br>KW20 HI0390 rnd  | SP RND_HAEIN  | 1263 | 2003334       | 2002072      | 5589        | 2089 |
| hypothetical protein           | 201              | 78 6           | 55.7            | Mycobacterium tuberculosis<br>H37Rv Rv2680    | pir:C70528    | 624  | 2002112       | 2001489      | 5588        | 2088 |
| hypothetical protein           | 232              | 77.2           | 55.2            | Mycobacterium tuberculosis H37Rv Rv2678c      | pir.H70968    | 969  | 2000521       | 2001216      |             |      |
|                                |                  |                |                 |                                               |               | 426  | 1999707       | 2000132      | 5586        | _    |
|                                | 1                | 07.0           | 31.6            | Streptococcus gordonii msrA                   | gp AF128264_2 | 8    | 1999949       | 1999542      | 5585        | 2085 |
| potential membrane protein     | 384              | 71.9           | 42.5            | Mycobacterium tuberculosis<br>H37Rv Rv2673    | pir.E70968    | 1254 | 1999542       | 1998289      | 5584        | 2084 |
| ribonavin biosynthesis protein | 233              | 64.4           | 33.5            | H37Rv Rv2871 ribD                             | pir C70968    | 596  | 1998240       | 1997545      |             |      |
|                                |                  |                |                 |                                               |               | 336  | 1997503       | 1997168      |             |      |
|                                |                  |                |                 |                                               |               | 345  | 1997112       | 1996768      | 5581        |      |
| il politica p                  | 26               | 9              | 48.9            | Bacillus subtilis yxaA                        | SP:YXAA_BACSU | 432  | 1996537       | 1996106      | 5580        | 2080 |
| sodium-dependent transporter   |                  | 76.1           | 39.8            | Helicobacter pylon 26695<br>HP0214            | pir.F64546    | 308  | 1995783       | 1996088      | <del></del> | 2079 |
| Function                       | length<br>(a.a.) | Similarity (%) | Identity<br>(%) | Homologous gene                               | db Match      | (bp) | Terminal (nt) | Initial (nt) | NO SEO      | SEO  |
|                                |                  |                |                 | Table 1 (continued)                           |               |      |               |              |             |      |

\*

|                                                        |                       |                  |                 |                                                                                  |               |      |               | -               | 1    | Ī          |
|--------------------------------------------------------|-----------------------|------------------|-----------------|----------------------------------------------------------------------------------|---------------|------|---------------|-----------------|------|------------|
| ATP-dependent RNA helicese                             | 661                   | 50.7             | 24.4            | YJL050W dob1                                                                     | SP MTR4_YEAST | 2550 | 2029043       | 2026494         | 5613 | 2113       |
| hypothetical protein                                   | 305                   | 79.0             | 45.3            | Mycobacterium tuberculosis H37Rv Rv2714                                          | pir.E70532    | 957  | 2026379       | 2025423         | 5612 | 2112       |
|                                                        |                       |                  | <del> </del>    |                                                                                  |               | 1323 | 2023948       | 2025270         | 5611 | 2111       |
| UDP-glucose 4-epimerase                                | 329                   | 99.1             | 99.1            | Corynebacterium glutamicum<br>ATCC 13869 (Brevibacterium<br>lactofermenium) galE | sp GALE_BRELA | 987  | 2023945       | 2022959         | 5610 | 2110       |
| putative sportiation protein                           | 77                    | 04.0             | 62.0            | Streptomyces aureofaciens                                                        | GP AF010134_1 | 234  | 2022313       | 2022546         | 5609 | 7109       |
|                                                        | 228                   | 80               | 98.7            | Corynebacterium glutamicum<br>ATCC 13869 db:R                                    | pir 140339    | 684  | 2022949       | 2022268         | 5608 | 2108       |
| hypothetical protein                                   | 144                   | 100.C            | 97.2            | Corynebacterium glutamicum<br>ATCC 13869 ORF1                                    | pri 2204286C  | 432  | 2020724       | 2020293         | 5607 | 2107       |
| transferase                                            | 523                   | 61.2             | 33.5            | Streptomyces coelicolor A3(2)<br>SCH5.08c                                        | gp SCH5_8     | 1533 | 2020276       | 2018744         | 5606 | 2106       |
| hypothetical protein                                   | 76                    | 85.5             | 65.8            | Mycobacterium tuberculosis<br>H37Rv Rv2708c                                      | plr:G70531    | 237  | 2017966       | 2018202         | 5605 | 2105       |
| hypothetical membrane prolein                          | 127                   | 59.1             | 32.3            | Mycobacterium tuberculosis H37Rv Rv2709                                          | pir H70531    | 636  | 2018754       | 2018119         | 5604 | 2104       |
| hypothetical protein                                   | 578                   | 80.8             | 61.3            | Mycobacterium tuberculosis H37Rv Rv2917                                          | sp.Y065_MYCTU | 1710 | 2016257       | 2017966         | 5603 | 2103       |
|                                                        |                       |                  |                 |                                                                                  |               | 537  | 2015585       | 2016121 2015585 | 5602 | 2102       |
| hypothetical membrane protein                          | 422                   | 51.4             | 23.9            | Bacillus subtills yrkO                                                           | SP YRKO_BACSU | 1335 | 2014162       | 2015496         | 5601 | 2101       |
| sigma factor or RNA polymerase<br>transcription factor | 500                   | 98.6             | 98.0            | Corynebacterium glutamicum sigA                                                  | prt.2204286A  | 1494 | 2013356       | 2011863         | 5600 | 2100       |
| polyphosphate glucokinase                              | 248                   | 80.2             | 54.4            | Mycobacterium tuberculosis H37Rv RV2702 ppgK                                     | SP PPGK_MYCTU | 828  | 2011382       | 2010555         | 5599 | <u>-</u> - |
| extragenic suppressor protein                          | 198                   | 68.2             | 38.4            | Escherichia coli K12 suhB                                                        | sp.SUHB_ECOLI | 8    | 2009724       | 2010539         | 5598 | 2098       |
| hypothetical protein                                   | 100                   | 81.0             | 58.0            | Mycobacterium tuberculosis<br>H37Rv Rv2699c                                      | pir F70530    | 291  | 2009280       | 2009570         |      |            |
| Function                                               | Matched length (a.e.) | Simllarit<br>(%) | identity<br>(%) | Homologous gene                                                                  | db Match      | (bp) | Terminal (nl) | (nt)            | OBS  | NO         |
|                                                        |                       |                  |                 | Table 1 (continued)                                                              |               |      |               |                 |      |            |

52

so

٤١

01

oε

0⊊

55

0⊊

**5**\*

Œ

52

го

SI

01

s

|                                                    |              |                   |                 |                                               |               |      |                  |              |        | -         |
|----------------------------------------------------|--------------|-------------------|-----------------|-----------------------------------------------|---------------|------|------------------|--------------|--------|-----------|
| diaminopimelate epimerase                          | 269          | 64.7              | 33.5            | Haemophilus influenzae Rd<br>KW20 HI0750 dapF | sp.DAPF_HAEIN | 831  | 2051845          | 2052675      | 5632   | 2132      |
|                                                    |              |                   |                 |                                               |               | 537  | 2051842          | 2051306      | 5631   | 2131      |
|                                                    |              |                   |                 |                                               |               | 786  | 2051106          | 2050321      | 5630   | 2130      |
| AIP/GIP-binding protein                            | 419          | 80.0              | 2               | Streptomyces fradiae orf11*                   | gp.AF145049_8 | 1458 | 2048650          | 2056107      | 5629   | 2129      |
| credi permesse                                     | 407          | 70.5              | 39 1            | Bacillus caldolyticus pyrP                    | SP:PYRP_BACCL | 1287 | 2047320          | 2048606      | 5628   | 2128      |
|                                                    |              |                   |                 |                                               |               | 582  | 2048714          | 2047295      | 5627   | 2127      |
| phosphocarrier protein                             | 92           | 71 0              | 37.0            | Bacillus stearothermophitus XL-<br>65-6 ptsH  | SP.PTHP_BACST | 267  | 2046028          | 2045762      | 5626   | 2126      |
| PTS system, fructose-specific IIBC component       | 549          | 89.6              | 43.0            | Escherichia coll K12 fruA                     | sp PTFB_ECOLI | 1836 | 2045571          | 2043736      | 5625   | 2125      |
| 1-phosphofructokinase or 6-<br>phosphofructokinase | 345          | 55.7              | 33.0            | Rhodobacter capsulatus fruK                   | sp K1PF_RHOCA | 990  | 2043508          | 2042519      | 5624   | 2124      |
| glycerol-3-phosphate regulon repressor             | 262          | 62.6              | 26.7            | Escherichia coli K12 glpR                     | sp:GLPR_ECOLI | 792  | 2042519          | 2041728      | 5823   | 2123      |
| phosphotransferase                                 | 592          | 64.0              | 34.3            | Bacillus stearothermophilus ptsl              | sp PT1_BACST  | 1704 | 2039618          | 2041321      | 5622   | 2122      |
| phosphate kinase)                                  | 320          | 55.6              | 27.2            | Streptomyces coelicolor A3(2)<br>SCE22.14c    | gp SCE22_14   | 960  | 2039550          | 2038591      |        |           |
| galactitol utilization operon repressor            | 245          | 67.6              | 33 9            | Escherichia coli K12 gatR                     | sp:GATR_ECOLI | 777  | 2038591          | 2037815      | 5620   | _         |
| SOS regulatory protein                             | L            | 71.6              | 46.9            | Bacillus subtilis dinR                        | SP.LEXA_BACSU | 696  | 2037507          | 2036812      | 5619   | 2119      |
|                                                    |              |                   |                 |                                               |               | 420  | 2035990          | 2036409      | 5618   | 2118      |
| regulatory protein                                 | 145          | 86.2              | 61.4            | Streptomyces clavuligerus nrdR                | gp SCAJ4870_3 | 450  | 2035431          | 2035880      | 5617   | _         |
| AIP-dependent nelicese                             | $\perp$      | 76.2              | 49.2            | Escherichia coli hrpA                         | SP HRPA_ECOLI | 3906 | 2035383          | 2031478      | 5616   |           |
|                                                    | $\downarrow$ |                   |                 |                                               |               | 1089 | 2030277          | 2031365      | 5615   | 2115      |
| activator                                          | 299          | 65.6              | 35.8            | Escherichia coli oxyR                         | SP OXYR_ECOLI | 981  | 2030157          | 2029177      | 5814   |           |
| Function                                           | length (aa)  | Similarity<br>(%) | Identity<br>(%) | Homologous gene                               | db Match      | ORF  | Terminal<br>(nt) | Initial (nt) | NO SEO | SEQ<br>NO |
|                                                    |              |                   |                 | Table 1 (continued)                           |               |      |                  |              |        |           |

**5**\*

0**>** 

æ

Œ

SZ

50

51

01

S

| hypothetical membrane protein                                                        | 228                         | 58.8             | 24.6            | Bacillus subtilis ybaF                                             | pir F69742    | 609         | 2068474       | 2067866         | 5649 | 2149      |
|--------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------|--------------------------------------------------------------------|---------------|-------------|---------------|-----------------|------|-----------|
| putrescine transport ATP-binding protein                                             | 223                         | 69.5             | 33.2            | Escherichia coll K12 potG                                          | sp POTG_ECOLI | 699         | 2067866       | 2067168         | 5648 | 2148      |
| biotin synthese                                                                      | 197                         | 61.4             | 33.0            | Bacillus sphaericus bioY                                           | sp BIOY_BACSH | 576         | 2067141       | 2066566         | 5647 | 2147      |
|                                                                                      |                             |                  |                 |                                                                    |               | 738         | 2065667       | 2066404         | 5646 | 2146      |
| hypothetical protein                                                                 | 67                          | 71.8             | 40.3            | Mycobacterium tuberculosis<br>H37Rv Rv2738c                        | pir A70878    | 234         | 2065394       | 2065627         | 5645 | 2145      |
| regulatory protein                                                                   | 142                         | 66.9             | 34 5            | Mycobacterium leprae recX                                          | sp RECX_MYCLE | 597         | 2063298       | 2063894         | 5644 | 2144      |
| giutemate transport system<br>permease protein                                       | 273                         | 99.6             | 99.3            | Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD | sp:GLUD_CORGL | 819         | 2083259       | 2062441         | 5643 | 2143      |
| glutamate transport system permease protein                                          | 225                         | 100              | 100.0           | Corynebacterium glutamicum ATCC 13032 gluC                         | sp GLUC_CORGL | 584         | 2062312       | 2081629         | 5642 | 2142      |
| Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics | 71                          | 73.0             | 86.0            | Neisseria gonorrhoeae                                              | GSP:Y75358    | 219         | 2060196       | 2060414         | 5641 | 2141      |
| glutamate transport ATP-binding protein                                              | 242                         | 99.6             | 99.6            | Corynebacterium glutamicum<br>ATCC 13032 gluA                      | sp:GLUA_CORGL | 726         | 2060499       | 2059774         | 5640 | 2140      |
| hypothetical protein                                                                 | 494                         | 86.4             | 68.4            | Mycobacterium leprae<br>B2235_C2_195 .                             | sp.Y195_MYCLE | 1566        | 2057855       | 2059420         | 5639 | 2139      |
| hypothetical membrane protein                                                        | 190                         | 63.7             | 29.0            | Mycobacterium tuberculosis<br>H37Rv Rv2732c                        | pir:C70506    | 669         | 2057120       | 2057788         | 5638 | 2138      |
|                                                                                      |                             |                  |                 |                                                                    |               | 1023        | 2056787       | 2055765         | 5637 | 2137      |
|                                                                                      |                             |                  |                 |                                                                    |               | 1020        | 2054724       | 2055743         | 5636 | 2136      |
| hypothetical protein                                                                 | 445                         | 75.7             | 48.5            | Mycobacterium tuberculosis<br>H37Rv Rv2731                         | pir.870506    | 1359        | 2055761       | 2054403         | 5635 | 2135      |
|                                                                                      |                             |                  |                 |                                                                    |               | 675         | 2053609       | 2054283         | 5634 | 2134      |
| RNA delta-2-<br>isopentenylpyrophosphate<br>transferase                              | 300                         | 68.7             | 40.0            | Escherichia coll K12 mlaA                                          | sp MIAA_ECOLI | 903         | 2052684       | 2053586         | 5633 | 2133      |
| Function                                                                             | Matched<br>length<br>(a.a.) | Similarly<br>(%) | Identity<br>(%) | Homologous gene                                                    | db Malch      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | 0 3S | SEQ<br>NO |
|                                                                                      |                             |                  |                 | Table 1 (continued)                                                |               |             |               |                 |      |           |

0⊊

57

**0**\*

æ

Œ

52

so

SI

01

s

|                                     |         |            |          |                                                 |                  |        | -                                                |          | _      |        |
|-------------------------------------|---------|------------|----------|-------------------------------------------------|------------------|--------|--------------------------------------------------|----------|--------|--------|
|                                     |         | +          |          | Leisnmania major                                | B prf 2518365A   | 9 948  | 6 2085879                                        | 2086826  | 5667   | 2167   |
| nucleoside hydrolase                | 319     | 63.3       | 35.1     |                                                 | ↓_               | 6 26/  | 2 2085436                                        | 2085702  | 5666   | 2166   |
| 30S ribosomal protein S15           | 89      | 88.8       | 64.0     | Racilius sublilis rpsO                          |                  |        | +                                                | 2000 190 | 5005   | 2165   |
| synthetase                          | /42     | 85.3       | 65 4     | Streptomyces antibioticus gpsi                  | 9 pr. 2217311A   | 2 2259 | <del>-                                    </del> | _        |        |        |
| guanosine pentaphosphate            | 3       | +          | 1        |                                                 |                  | 5 264  | -+                                               | _        |        | 2164   |
|                                     | +       |            | +        |                                                 |                  | 3 699  | 2082813                                          | 2082115  | 5663   | 2163   |
| hypomence protein                   | 250     | 99.6       | 99.2     | (Brevibacterium lactofermentum) ATCC 13869 orf2 | SP YDAP_BRELA    | 750    | 2080387                                          | 2081136  | 5662   | 2162   |
|                                     |         |            |          | ATCC 13032 ort4                                 | sp.YOR4_CORGL    | 2154   | 2077122                                          | 2079275  | 5661   | 2161   |
| hypothetical protein                | 645     | 99.4       | 99.1     | Corynebacterium glutamicum                      |                  |        |                                                  |          |        |        |
|                                     | V. 0    | ٥          | 33.3     | SC4G6.14                                        | gp SC4G6_14      | 633    | 2076392                                          | 2077024  | 5660   | 3160   |
| hypothetical protein                | 218     | 2          |          | Bacillus suotins non sporme                     | SP SP3E_BACSU    | 2763   | 2073294                                          | 2076056  | 5659   | 2159   |
| stage III sporulation protein E     | 845     | 04.0       | 38.0     | Escherichia coli terc                           | 핔                | 1107   | 2071799                                          | 2072905  |        | 2158   |
| tellurite resistance protein        | 358     | 59.8       | 2        |                                                 |                  | 813    | 2072878                                          | 2072066  | 5657   | 2157   |
|                                     |         |            | 1        | DRC2 bsby                                       | db >1 01 10 10 1 | Ę      | 20/1/40                                          | 2071624  | 5656   | 2156   |
| surface protein A)                  | 30      | 70.0       | 60.0     | Streptococcus pneumoniae                        | D AE071810 1     | ;      |                                                  |          |        |        |
| surface protein (Peumococcal        |         | 1          | 1 2      | ATSP: T16118 20                                 | pir:T10688       | 285    | 2071599                                          | 2071315  | 5655   | 2155   |
| hypothetical protein                | 117     | 52.1       | 24.8     | Arabidopsis theliane                            |                  | 1_     | A1 C0 / 02                                       | 2071121  | 5654   | 2154   |
| synthase                            | 180     | 72.5       | 38.8     | Streptococcus pyogenes pgsA                     | nd 2421334D      | 3      |                                                  |          |        |        |
| phospholidyiglycerophosphete        | $\perp$ |            |          | cinA                                            | SP.CINA_STRPN    | 516    | 2069997                                          | 2070512  | 5853   | 2153   |
| competence damage induced           | 185     | 68.5       | 41.8     | Strantococcus pneumoniae R6X                    |                  | +-     | 20000                                            | OCERON?  | 2652   | 2152   |
|                                     | 5       | 78.3       | 54.2     | Mycobacterium tuberculosis H37Rv Rv2745c        | pir H70878       | 321    | 200010                                           | -        |        |        |
| Position (DNA-bloding protein)      | $\perp$ |            | ;        | H37Rv RV2744C                                   | sp 35KD_MYCTU    | 828    | 2068556                                          | 2069383  | 5651 2 | 2151 5 |
| hypothetical protein (35kD protein) | 269     | 89.6       | 725      | Mycobacterium tuberculosis                      |                  | 990    | 2069392                                          | 2068703  | 5650 2 | 2150 5 |
| hypothetical protein                | 228     | 78.5       | 41.7     | Mycobacterium tuberculosis                      |                  |        |                                                  | 1        | •      | _      |
|                                     |         | 8          | 3        | Homologous gene                                 | db Match         | (E) R  | rerminel<br>(nt)                                 |          | NO     | SEQ S  |
| Function                            | Matched | Similarity | Identity |                                                 |                  |        |                                                  |          | -      |        |
|                                     |         |            |          | Table 1 (continued)                             |                  |        |                                                  |          |        |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | -          | -       | -     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|---------|-------|---------------------------------------|
| transporter ATP-binding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200     | 81             | 57.6           | H37Ry Ry3663c dppD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 pir H70788  | 1731       | 2105703    | 7107077 | 5694  | ,                                     |
| peptidetransport system ABC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3       |                | +              | Dacing sooms spoored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pri 1709239C  | 998        | 5 2103973  | 2102975 | 5683  | 2183                                  |
| oligopeptide permease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 292     | 69             | 38 4           | The state of the s | +-            | 924        | 2102946    | 2102073 | 5682  | 2182                                  |
| peptidetransport system permesse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 337     | 69.4           | 37.7           | Eacherichia coli K12 dopB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 100        | ÷          | 2100240 | 5681  | 2181                                  |
| peptide ainding protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 534     | 60.9           | 25.3           | Bacillus subtilis 188 dppE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EN DODE BACSU |            | +          |         | ÷     |                                       |
| nypomonce Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | igo     | 65             | 34.6           | H37Rv Rv2842c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pir E70588    | 534        | 2098412    | 2098945 | 5680  | 2180                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105     |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1254       | 2099815    | 2098562 | 5679  | 2179                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            | 200000  | 0070  | 21/0                                  |
| (transcriptional termination factor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 352     | 71.0           | 42.3           | Bacillus subtils 168 nusA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SP:NUSA_BACSU | 996        | 2097380    | 2008175 | 5679  | 3478                                  |
| n-utilization substance protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | +-         |         |       | 2 1 7                                 |
| Dybonie de la communicación de la communicació | 85      | 66.3           | 44.6           | Streptomyces coelicolor AS(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gp:SC5H4_29   | 336        | 2096844    | 2097179 | 5677  | 7477                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3       |                |                | Stigmatella scialinaca Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sp IF2_STIAU  | 3012       | 2093712    | 2096723 | 5676  | 2176                                  |
| translation initiation factor IF-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1103    | 62.9           | 37.7           | Dacing accent to the DW4 infB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP.RBFA_BACSU | 447        | 2093055    | 2093501 | 5675  | 2175                                  |
| ribosome-binding factor A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108     | 70.4           | 32.4           | Decilius subtilis 168 rbfA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000          | 1          |            | 20000   | 20/4  | 21/4                                  |
| hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 308     | 70 B           | 36.7           | Mycobacterium tuberculosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pir H70693    | 99         | 2092051    | 30000   |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400     | /0.0           | 51.0           | H37Rv Rv2838c dinf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | plr:G70693    | 1305       | 2090751    | 2092055 | 5673  | 2173                                  |
| DNA demand inducible protein f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3       |                |                | H37Rv Rv2/95c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pii brusas    | 2          | 2089861    | 2090664 | 5672  | 2172                                  |
| phosphoesterase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 273     | 68.9           | 46.9           | Mycobacterium tuberculosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E 70885       |            |            |         |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 6.70           | 42.2           | SC5A7.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gp:SC5A7_23   | 651        | 2089218    | 2089868 | 5671  | 2171                                  |
| hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 727     | 23.5           |                | all morning control A3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1_         | 2007       | 7000101 | 26/0  | 2170                                  |
| hypothence: protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47      | 73.0           | 65.0           | Corynebacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PIR PC4007    | 228        | 2087954    |         |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 01.            | 32.1           | Bacillus subtills 168 truB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SP.TRUB_BACSU | <u>8</u> 1 | 2088863    | 2087973 | 5669  | 2160                                  |
| IRNA pseudouridine synthese B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ror     | 2              |                | ammoniagenes ATCC 6872 ribr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SP.RIBE_COKAM | 1023       | 2086919    | 2087941 | 5668  | 2168                                  |
| bifunctional protein (ribonavin kinasa )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 329     | 79.0           | 56.2           | Corynebacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | -⊹-        |         | 3     | 1=                                    |
| Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b></b> | Similarity (%) | dentity<br>(%) | Homologous gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | db Match      | ORF<br>DRF | Terminal ( |         | N SEO | SEO                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matched |                |                | Table 1 (conlinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |            |            |         |       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            |         |       |                                       |

EP 1 106 790 A2

=-

55

0⊊

38

Œ

SZ

so

SI

10

S

|                                   |                 |                |              |                                            |                    | -    |           |         | -      | _    |
|-----------------------------------|-----------------|----------------|--------------|--------------------------------------------|--------------------|------|-----------|---------|--------|------|
|                                   | 300             | 36             | 24.4         | DRA0279                                    | 7 gp AE001863_70   | 957  | 9 2126045 | 2125089 | 5702   | 2202 |
| histidine kinese                  | 385             |                | 28.5         | chrS                                       | 9 prf 2518330A     | 1149 | 6 2123848 | 2124996 | 5701   | 2201 |
| two-component system sensor       | 3               | +              |              | chrA                                       | prf:2518330B       | 630  | 8 2123219 | 2123848 | 5700   | 2200 |
| response regulator (two-component | 216             | 72.2           | 44 0         | Corynebacterium diphtheriae                |                    | 1800 | 2121296   | 2123161 | 5699   | 2199 |
| penicilin sinding proxein         | 630             | 56.5           | 27.3         | Streptomyces clavullgerus pcbR             |                    |      | +         | 212114/ | 5698   | 2198 |
|                                   | 757             | /3.0           | 47.2         | Escherichia coll K12 map                   | SO AMPM ECOLI      | 2    | -+        |         | 3      | 7181 |
| mathionine aminopeptidase         | 25              | 76 0           | ;            |                                            |                    | 729  | 2120356   | 2119628 | 5507   | 3107 |
|                                   |                 |                |              |                                            |                    | 357  | 2119495   | 2119139 | 5696   | 2196 |
|                                   |                 |                |              |                                            |                    | 474  | 2119080   | 2118607 | 5695   | 2195 |
|                                   |                 |                |              |                                            |                    | 942  | 2117015   | 2117956 | 5694   | 2194 |
|                                   |                 |                |              | gor                                        | sp Gany_power      | CAF  | 2118310   | 2116916 | 5693   | 2193 |
| glutathione reductase             | 466             | 76.6           | 53.0         | Burkholderia cepacia AC1100                |                    | 32   |           |         |        |      |
| hypothetical protein              | 338             | 05 7           | 37.6         | Mycobacterium tuberculosis H37Rv Rv2854    | pir A70590         | 1014 | 2116774   | 2115761 | 5692   | 2192 |
| hypothetical protein              | 151             | 62.3           | 35,1         | Streptomyces coelicolor A3(2)<br>SC5H1.10c | gp SC5H1_10        | 900  | 2112717   | 2113616 | 5691   | 2191 |
|                                   |                 | 9              | 41.6         | 10662 ORF2                                 | 1422 sp:YPLC_CLOPE | 1422 | 2112659   | 2111238 | 5690   | 2190 |
| hypothetical protein              | 488             | 89.7           | 3            | Clastidium perfringens NCIB                |                    |      | 2110101   | 711103  | 2000   | 2189 |
| methyltransferase                 | 237             | 73.8           | 49.0         | Propionibacterium freudenreichii           |                    | 750  | 2110414   | B3      |        |      |
| uroporphyrinogen III              | 1               | 09.0           | 40.0         | Heliobacillus mobilis bchi                 | prf.2503462AA      | 9    | 2109155   | 2110255 | SAA    |      |
| magnesium-chelatese subunit       | 747             |                |              | 17023 bchD                                 | sp BCHD_RHOSH      | 759  | 2108389   | 2109147 | 5687 2 | 2187 |
| magnesium-chelatase subunit       | 37              | 60.7           | 32. <b>4</b> | Rhodobacter sphaeroides ATCC               | -                  |      |           |         |        | 1    |
| hypothetical protein              | 243             | 65.0           | 39.5         | Streptomyces coelicolor A3(2)<br>SCC30.05  | gp:SCC30_5         | 735  | 2108388   | 2107652 | 5686 2 | S A  |
|                                   | $\bot$          | 91.0           | 3            | H37Rv Rv2845c proS                         | SP:SYP_MYCTU       | 1764 | 2105801   | 2107564 | 5685 2 | 2185 |
| prolyl-IRNA synthetase            |                 | RA A           | 3            | Acceptation tuberculosis                   |                    | ' (g | 3         | 3       | 2      |      |
| Function                          | length<br>(a a) | Similarity (%) | identity (%) | Homologous gene                            | db Match           | 유    | <u>ě</u>  | Initial | SEQ    | SEQ  |
|                                   |                 |                |              | Table 1 (continued)                        |                    |      |           |         |        |      |

EP 1 108 790 A2

99

0+

SE

oε

52

so

SI

01

\_\_

**5**\*

0>

æ

oε

52

50

51

|                                        |         |         |      |                                               | pii Adadaa    | 0 0  | 21400/1       | 2140886         | 5721        | 2221         |
|----------------------------------------|---------|---------|------|-----------------------------------------------|---------------|------|---------------|-----------------|-------------|--------------|
| 30S ribosomal protein S2               | 254     | 83.5    | 54.7 | Bacillus subtilis rosB                        | _+-           | 2    | ÷             | _               |             |              |
| elongation factor Ts                   | 280     | 76.8    | 49.6 | Streptomyces coelicolor A3(2)<br>SC2E1 42 tsf | sp EFTS_STRCO | 825  | 2139003       | 2139827         | 5720        | 2220         |
|                                        |         |         |      |                                               |               | 861  | 2139854       |                 | 5719        | 2219         |
|                                        | į       | 30.     | 28.4 | Pseudomonas aeruginosa pyrH                   | prf 2510355C  | 729  | 2137936       | 2138664         | 5718        | 2218         |
| ribosome recycling ractor              | 185     | 84<br>3 | 47.0 | Bacillus subtilis 168 frr                     | sp RRF_BACSU  | 555  | 2137286       | 2137840         | 5717        | 2217         |
| phosphatidate cytidylyltransferase     | 294     | 56.5    | 33.3 | Pseudomonas aeruginosa<br>ATCC 15892 cdsA     | sp:CDSA_PSEAE | 855  | 2136235       | 2137089         | 5718        | 2216         |
| hypothetical membrane protein          | 94      | 74.5    | 41.5 | Mycobacterium tuberculosis H37Rv Rv3760       | pir A70801    | 258  | 2136141       | 2135884         | 5715        | 2215         |
| enzyme                                 | 356     | 78 0    | 00.0 | Mycobacterium tuberculosis<br>H37Rv           | SP YS80_MYCTU | 1098 | 2134454       | 2135551         | 5714        | 2214         |
| ABC transporter ATP-binding protein    | 245     | 75.1    | 37.1 | Thermotoga maritima MSB8 TM0793               | pir 872334    | 855  | 2133406       | 2134260         | 5713        | 2213         |
|                                        |         |         |      |                                               |               | 1578 | 2131825       | 2133402         | 5712        | 2212         |
|                                        |         |         |      |                                               |               | 480  | 2131247       | 2131726         | 5711        | 2211         |
|                                        |         |         |      |                                               |               | 441  | 2131762       | 2131322         | 5710        | 2210         |
| reductoisomerase                       | 312     | 42.0    | 22.8 | Escherichia coli K12 dxr                      | sp:DXR_ECOLI  | 1176 | 2129903       | 2131078         | 5709        | 2209         |
| vaccines against Chlamydia trachomatis | 147     | 43.0    | 36.0 | Chlemydia trachomatis                         | GSP:Y37145    | 645  | 2130950       | 2130306         | 5708        | 2208         |
| hypothetical membrane protein          | 405     | 73.6    | 43.0 | Mycobacterium tubercutosis H37Rv Rv2869c      | pir:G70886    | 1212 | 2128669       | 2129880         | 5707        |              |
|                                        |         |         |      |                                               |               | 612  | 2129461       | 2128850         | 5706        |              |
|                                        | $\perp$ | 73.0    | 44.0 | Escherichia coli K12 gcpt                     | SP:GCPE_ECOLI | 1134 | 2127350       | 2128483         | <del></del> | <del>-</del> |
| hynothetical protein (gcpE protein)    | 350     | 77 0    |      |                                               |               | 162  | 2126926       | 2127087         | 5704        |              |
| ADC senaposes                          | 677     | 2       | 37.3 | Bacillus subtilis 168 yvrO                    | pif 2420410P  | 690  | 2126753       | 2126064         |             |              |
|                                        |         | (%)     |      |                                               | db Match      | (bg) | Terminal (nt) | initial<br>(nt) | NO          | SEO          |
|                                        | Matched |         |      | Table 1 (continued)                           |               |      |               |                 |             |              |
|                                        |         |         |      |                                               |               |      |               |                 |             |              |

05

**S**\*

Œ

52

so

SI

|                                           | -             | 00.0             | 00.1            | Emericella niquians char                    | 4 prf 2417383A | 1134         | 2154191          | 2153058         | 5738 | 2238 |
|-------------------------------------------|---------------|------------------|-----------------|---------------------------------------------|----------------|--------------|------------------|-----------------|------|------|
| molybdopterin blosynthesis protein        | 437           | 58.8             | 3               |                                             | 4-             | <del>-</del> | +                |                 | 0,0  | 2231 |
| thismine biosynthetic enzyme thiG protein | 251           | 76.9             | 48.2            | Escherichla coll K12 thiG                   |                | 780          |                  | . <del> </del>  |      | 77.7 |
| (thiG1) protein                           | 62            | 742              | 37.1            | Escherichia coli K12 thiS                   | sp:THIS_ECOLI  | 195          | 2152329          | 2152135         | 5736 | 2236 |
| oxidoreductase                            | 378           | 64.1             | 34.0            | Streptomyces coelicolor A3(2) SC6E 10.01    | gp:SC6E10_1    | 1080         | 2152118          | 2151039         | 5735 | 2235 |
| pyrophosphorylase                         | 225           | 8.08             | 28.4            | Bacillus subtilis 168 thiE                  | SP THIE_BACSU  | 663          | 2150997          | 2150335         | 5734 | 2234 |
| this man phosphate                        | 133           | 88 3             | 70.3            | Bacilius stearothermophilus rplS            | sp.RL19_BACST  | 339          | 2149634          |                 | 5733 | 2233 |
|                                           |               |                  |                 |                                             |                | 213          | 2149359          | 2149571         | 5732 | 2232 |
| TO-TOGULATED DIOCOTT                      | 323           | 59 1             | 25.4            | Staphylococcus aureus sirA                  | prf 2510361A   | 936          | 2149166          | 2148231         | 5731 | 2231 |
| signal peptidase                          | 285           |                  | 32.3            | Streptomyces lividans TK21                  | pri 2514288H   | 786          | 2147261          | 2148046         | 5730 | 2230 |
|                                           |               |                  |                 |                                             |                | 792          | 2148022          | 2147231         | 5729 | 2229 |
| ribonuclease HII                          | 190           | 69 5             | 42.6            | Haemophilus influenzae Rd<br>HI1059 rnhB    | sp.RNH2_HAEIN  | 627          | 2146566          | 2147192         | 5728 | 2228 |
| hypothetical protein                      | 101           | 98.0             | 68.3            | Mycobacterium tuberculosis H37Rv Rv2901c    | SP YTO1_MYCTU  | 303          | 2146264          | 2146566         | 5727 | 2227 |
| hypothetical protein                      | 119           | 72.3             | 40.3            | Mycobacterium tuberculosis<br>H37Rv Rv2898c | sp.YX29_MYCTU  | 366          | 2145576          | 2145941         | 5726 | 2226 |
| Mg(2+) chelatese family protein           | 504           | 75.8             | 40.6            | Mycobacterium tuberculosis H37Rv Rv2897c    | sp.YX28_MYCTU  | 1521         | 2144068          | 2145586         | 5725 | 2225 |
| hypothetical protein                      | 395           | 66 8             | 39.8            | Mycobacterium tuberculosis<br>H37Rv Rv2896c | sp:YX27_MYCTU  | 1182         | 2142885          | 2144066         | 5724 |      |
| site-specific recombinase                 | 207           | 68.7             | 40.1            | Proteus mirabilis xerD                      | prf 2417318A   | 924          | 2141783          | 2142686         | 5723 | 2223 |
| hypothetical protein                      | L             | 58.0             | 46.0            | Mycobacterium tuberculosis H37Rv Rv2891     | SP YS91_MYCTU  | 504          | 2141760          | 2141257         | ~ !` |      |
| Function                                  | tength (a.a.) | Similarit<br>(%) | identity<br>(%) | Homologous gene                             | db Match       | ORF<br>(bp)  | Terminal<br>(nl) | Initial<br>(nt) | ON   | NO   |
|                                           |               |                  |                 | Table 1 (continued)                         |                |              |                  |                 |      |      |

|                                                    |                       | _                 |             |               |                                           |               |         |               |                 |           |              |
|----------------------------------------------------|-----------------------|-------------------|-------------|---------------|-------------------------------------------|---------------|---------|---------------|-----------------|-----------|--------------|
| cell division protein                              | 505                   | 8                 | 37.0        | 37            | Escherichia coli K12 ftsY                 | SP FTSY_ECOLI | 1530    | 2173759       | 2175288         | 5759      | 2259         |
|                                                    | i                     | -                 |             |               |                                           |               | 669     | 2172877       | 2172209         | 5758      | 2258         |
|                                                    |                       | -                 |             | -             |                                           |               | 417     | 2172131       | 2171715         | 5757      | 2257         |
|                                                    |                       |                   |             |               |                                           |               | 633     | 2171058       | 2170426         | 5756      | 2256         |
| signal recognition particle protein                | 559                   | 78                | 58.7        | 5             | Bacillus subtilis 168 ffh                 | sp SR54_BACSU | 1641    | 2167944       | 2169584         | 5755      | 2255         |
| ABC transporter                                    | 318                   | 63.5              | 35.5        |               | Pyrococcus horlkoshil OT3 mtrA            | pri.2220349C  | 876     | 2166990       | 2167865         | 5754      | 2254         |
| ABC transporter                                    | 258                   | 69.               | 26.6        | 26            | Streptococcus agaiactiae cyiB             | prf.2512328G  | 867     | 2166124       | 2166990         | 5753      | 2253         |
| inversin                                           | 196                   | 61.               | 32.1        | ω <sub></sub> | Mus musculus inv                          | pir.T14151    | 576     | 2166098       | 2165523         | 5752      | 2252         |
| 30S ribosomai protein S16                          | 83                    | 79 5              | 47.0        | <u>.</u>      | Bacillus subtilis 168 rpsP                | pir:C47154    | 495     | 2164815       | 2165309         | 5751      | 2251         |
| hypothetical protein                               | 69                    | 66 7              | 29.0        | -             | Helicobacter pylori J99 jhp0839           | pir 871881    | 348     | 2164737       | 2164390         | 5750      | 2250         |
| 16S rRNA processing protein                        | 172                   | 72                | 52.3        | 5,            | Mycobacterium leprae<br>MLCB250.34. rimM  | SP RIMM_MYCLE | 513     | 2163748       | 2164260         | 5749      | 2249         |
| hypothetical protein                               | 210                   | 57 B              | 30.5        | 3(            | Streptomyces coelicolor A3(2)<br>SCF81.27 | gp:SCF81_27   | 648     | 2163745       | 2163098         | 5748      | 2248         |
| IRNA (guanine-N1)-<br>methyltransferase            | 273                   | 04 8              | 34 8        | ω             | Escherichia coll K12 trmD                 | SP TRMD_ECOLI | 819     | 2162196       | 2163014         | 5747      | 2247         |
|                                                    |                       |                   |             |               | -                                         |               | 690     | 2161507       | 2162196         | 5746      | 2246         |
|                                                    |                       |                   |             |               |                                           |               | 393     | 2181111       | 2161503         | 5745      | 2245         |
|                                                    |                       |                   |             |               |                                           |               | 2       | 2160768       | 2160670         | 5744      | 2244         |
| 3-cerboxy-cls, cls-muconate cyclolsomerase         | 350                   | 66 3              | 39.1        | یو            | Pseudomonas putida pcaB                   | sp:PCAB_PSEPU | 1251    | 2159287       | 2160537         | 5743      | 2243         |
| 2-oxogiutarate/malate translocator                 | 65                    | 80<br>0           | 0           | 40            | Spinacia oleracea chloroplast             | prf 2108268A  | 219     | 2159019       | 2159237         | 5742      | 2242         |
| dicarboxylase translocator                         | 456                   | 783               | 5.8         | 45            | Chlamydophila pneumoniae CWL029 ybhl      | pir:H72105    | 1428    | 2157754       | 2159181         | 5741      | 2241         |
| sporulation-specific degradation regulator protein | 334                   | 653               | 27.0        | N.            | Bacilius subtilis 168 degA                | pir.A36940    | 975     | 2156747       | 2157721         | 5740      | 2240         |
| transcriptional accessory protein                  | 778                   | 787               | 56.6        |               | Bordetella pertussis TOHAMA l             | sp TEX_BORPE  | 2274    | 2154460       | 2156733         | 5739      | 2239         |
| Function                                           | Matched length (a.a.) | Similarity<br>(%) | Identity Si | ide           | Homologous gene                           | db Match      | (P) ORF | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO | SEQ<br>(DNA) |
|                                                    |                       |                   |             |               | Table 1 (continued)                       |               |         |               |                 |           | ]            |

SA 067 801 1 93

:=:

55

05

**S**\*

æ

Œ

SZ

so

SI

01

£

0⊊

**SE** 

oε

52

so

s١

10

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               |        | $\vdash$      | 9 213044        | 10119        | 6/77       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------|------------------------------------------------|---------------|--------|---------------|-----------------|--------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 441    | 7109007       | _               | <del>-</del> |            |
| hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 388              | 62.6              | 35.3            | Streptomyces coelicolor A3(2)<br>SC9C7.02      | gp SC9C7_2    | 1122   | 3 2198004     | <u> </u>        |              | 2278       |
| ABC transponer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 541              | 58.8              | 28.8            | Escherichia coli K12 cydC                      | SP:CYDC_ECOLI | 1530   | 2194694       |                 | 5777         | 2277       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 559              | 55.6              | 28 3            | Streptomyces verticillus                       | prf 2104260G  | 1644   | 2193165       | 6 2191522       | 5776         | 2276       |
| hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238              | 76.9              | 50.0            | Mycobacterium tuberculosis<br>H37Rv Rv2927c    | SP:Y08G_MYCTU | 789    | 2190540       | 5 2191328       | 5775         | 2275       |
| hypothatical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 176              | 62.5              | 35.8            | Mycobacterium tuberculosis<br>H37Rv Rv2926c    | SP YORF_MYCTU | 534    | <del></del>   |                 | 5774         | 2274       |
| ribonuclease III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 221              | 76.5              | 403             | Bacillus subtilis 168 rncS                     | pir:869693    | 741    | 2189166       | 3 2189906       | 5773         | 2273       |
| glycosylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 285              | 66.7              | 36 1            | Escherichia coli K12 mutM or fpg               | sp FPG_ECOLI  | 858    | +             |                 | 5772         | 2272       |
| cation amux system protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 188              | 76.8              | 46.6            | Dichelobacter nodosus gep                      | gp DNINTREG_3 | 615    | $\rightarrow$ |                 | 5771         | 2271       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 447    | 2187233       | $\rightarrow$   | 5770         | 2270       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 183    | 2187342       | 2187160         | 5769         | 2269       |
| hypothetical membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 257              | 73.5              | 39 3            | Mycobacterium leprae<br>MLCL581.28c            | pir S72748    | 831    | 2187129       |                 | 5768         | 2208       |
| transcriptional regulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 305              | 60.0              | 23.9            | Escherichia coli K12 yfeR                      | SP:YFER_ECOLI | 858    | 2185351       | $\overline{}$   | 5767         | 2267       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 1854   | 2183405       | 2185258         | 5766         | 2266       |
| acylphosphalase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92               | 73.9              | 51.1            | Mycobacterium tuberculosis<br>H37Rv RV2922.1C  | SP:ACYP_MYCTU | 282    | 2183110       | 2183391         | 5765         | 2265       |
| chromosome segregation protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1206             | 72.6              | 48.3            | Mycobacterium tuberculosis H37Rv Rv2822c smc   | SP:Y08B_MYCTU | 3485   | 2179628       | 2183092         | 5764         | 2284       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 963    | 2161880       | 2180918         | 5763         | 2263       |
| glucosmylase S1/S2 precursor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1144             | 46.2              | 22.4            | Saccharomyces cerevisiae<br>S288C YIR019C sta1 | sp:AMYH_YEAST | 3393   | 2176110       | 2179502         | 5762         | 2262       |
| a internal incoming of the property of the pro |                  |                   |                 |                                                |               | 702    | 2177103       | 2176402         | 5761         | 2261       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                |               | 159    | 2175888       | 2176046         | 5760         | 2260       |
| Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | length<br>(a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                | db Match      | (P) OR | Terminal (nt) | Initial<br>(nt) | NO SEO       | SEO<br>SEO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200              |                   |                 | Table 1 (continued)                            |               |        |               |                 |              |            |

09

**SP** 

æ

Œ

52

so

10

|                                               |                  |                |                 |                                            |                 | 1          | i.            |              | :-   | ;-<br>:  |
|-----------------------------------------------|------------------|----------------|-----------------|--------------------------------------------|-----------------|------------|---------------|--------------|------|----------|
| or transmembrane transport protein            | 402              | 54.0           | 25 6            | Streptomyces lividans 66 cmIR              | 6 sp.CMLR_STRLI | 1266       | 6 2214321     | 5 2215586    | 5795 | 2295     |
| chloramphenicol resistance protein            | 210              | 92.4           | 86.7            | AS019 hisH                                 | gp AF060558_1   | 633        | 3 2212641     | 4 2213273    | 5794 | 2294     |
| aminoimidazoie carboxamide ribolide isomerase | 245              | 97.6           | 95.9            | Corynebacterium glutamicum<br>AS019 hisA   | gp AF051846_1   | 738        | 9 2211882     | 3 2212619    | 5793 | 2293     |
| phosphatase<br>phosphoribosylformimino-5-     | 241              | 94.0           | 94.0            | AS019 impA                                 | prt 2419176B    | 825        | 5 2211051     | 2211875      | 5792 | 2292     |
| cyclase cyclase                               | 258              | 97.7           | 97.3            | Corynebacterium glutamicum<br>AS019 hisF   | sp HIS8_CORG    | 774        | 2210273       | 2211046      | 5791 | 2291     |
| phosphoribosyl-AMP cyclohydrolase             | 89               | 79.8           | 52 8            | Rhodobacter sphaeroldes ATCC 17023 hisi    | sp HIS3_RHOSH   | 354        | 2209920       | 2210273      | 5790 | 2290     |
| hypothetical membrane protein                 | 228              | 58.8           | 29 4            | Mycobacterium tuberculosis<br>H37Rv Rv1610 | pir H70556      | 657        | 2209232       | 2209888      | 5789 | 2289     |
| synthase anthranilate synthase component ii   | 169              | 62.1           | 29.0            | Emericella nidulans trpC                   | sp TRPG_EMENI   | 801        | 2208367       | 2209167      | 5788 | 2288     |
| transferase                                   | 204              | 65.5           | 31.4            | igt                                        | SP.LGT_STAAU    | 948        | 2207302       | 2208249      | 5787 | 2287     |
| prolipoprotein diacylglyceryl                 | 200              |                | 33.             | Bacillus subtills 168 yfiE                 | SP YFIE_BACSU   | 8          | 2204591       | 2205490      | 5786 | 2286     |
| glycogen phosphorylase                        | 205              | 67.4           | 36.1            | Thermococcus litoralis maiP                | prf 2513410A    | 2550       | 2201992       | 2204541      | 5785 | 2285     |
| mallodextrin phosphorylase /                  |                  |                |                 |                                            |                 | 276        | 2201594       | 2201869      | 5784 | 2284     |
|                                               |                  |                |                 |                                            |                 | 135        | 2201450       | 2201584      | 5783 | <u> </u> |
|                                               | 33               | 51.6           | 27.1            | Arabidopsis thaliana SUC1                  | pir:S38197      | 336        | 2201073       | 2201408      | 5782 | 2282     |
| peptidese                                     |                  | 64.3           | 32.9            | Campylobacter Jejuni ATCC<br>43431 hipO    | \$P:HIPO_CAMJE  | 1263       | 2201070       | 2199808      | 5781 | 2281     |
| hypothetical protein                          | 405              | 43.7           | 21.0            | Thermotogs maritima MSB8<br>TM0896         | pir A72322      | 1284       | 2199758       | 2188475      | 5780 | 2280     |
| Function                                      | length<br>(a.a.) | Similarity (%) | ldentity<br>(%) | Homologous gene                            | db Match        | ORF<br>ORF | Terminal (nl) | Initial (nt) | NO   | NO       |
|                                               | Matchael         |                |                 | Table 1 (continued)                        |                 |            |               |              |      |          |

EP 1 108 790 A2

0⊊

**5**\*

æ

Œ

SZ

50

SI

01

|                                                                          |                       |                   |                 |                                                |               | ŀ    | Ė             |                 |            |            |
|--------------------------------------------------------------------------|-----------------------|-------------------|-----------------|------------------------------------------------|---------------|------|---------------|-----------------|------------|------------|
| hypothetical protein                                                     | 113                   | 73.5              | 38.1            | Escherichia coll K12 ytfH                      | SP YTEH ECOLI | 441  | 2232016       | 2232456         | 5814       | 2314       |
| iron-binding protein                                                     | 182                   | 67.6              | 34.6            | Bacillus subtills 168 yvrC                     | pir G70046    | 594  | 2231339       | 2231932         | 5813       | 2313       |
| Iron-binding protein                                                     | 103                   | 68.0              | 30.1            | Bacillus subtills 168 yvrC                     | pir.G70048    | 348  | 2230947       | 2231294         | 5812       | 2312       |
| hemin permesse                                                           | 332                   | 71.1              | 36.8            | Vibrio cholerae hutC                           | prf 2423441E  | 1038 | 2229900       | 2230937         | 5811       | 2311       |
| ferrichrome transport ATP-binding protein or ferrichrome ABC transporter | 246                   | 68.3              | 32 9            | Bacitius subtilis 188 fhuC                     | sp:FHUC_BACSU | 798  | 2229099       | 2229896         | 5810       | 2310       |
| galactitol utilization operon repressor                                  | 329                   | 64.4              | 30.4            | Escherichia coll K12 galR                      | sp.GALR_ECOLI | 996  | 2228901       | 2227906         | 5809       | 2309       |
| myo-inositol 2-dehydrogenase                                             | 343                   | 60.9              | 35.0            | Sinorhizoblum meliloti idhA                    | prf.2503399A  | 1011 | 2226769       | 2227779         | 5808       | 2308       |
| oxidoreductase                                                           | 268                   | 55 2              | 29.9            | Streptomyces coelicolor A3(2)<br>SC2G5 27c gip | gp:SC2G5_27   | 774  | 2225990       | 2226763         | 5807       | 2307       |
| hypothelical protein                                                     | 258                   | 76.0              | 50.0            | Mycobacterium tuberculosis<br>H37Rv Rv2822     | pir E70572    | 801  | 2225949       | 2225149         | 5806       | 2306       |
| glycogen debranching enzyme                                              | 722                   | 75.5              | 47.4            | Sulfolobus acidocaldarius treX                 | prl 2307203B  | 2508 | 2225035       | 2222528         | 5805       | 2305       |
| tet repressor protein                                                    | 204                   | 60.8              | 28.9            | Escherichia coli piasmid RP1 tetR              | pir RPECR1    | 561  | 2222518       | 2221958         | 5804       | 2304       |
| histidine secretory acid phosphatase                                     | 211                   | 59.7              | 29.4            | Leishmania donovani SAcP-1                     | prf 2321269A  | 642  | 2221187       | 2221828         | 5803       | 2303       |
|                                                                          |                       |                   |                 |                                                |               | 309  | 2221919       | 2221611         | 5802       | 2302       |
|                                                                          |                       |                   |                 |                                                |               | 851  | 2220459       | 2221109         | 5801       | 2301       |
| serine-rich secreted protein                                             | 342                   | 54.4              | 27.2            | Schizosaccharomyces pombe SPBC215.13           | gp:SPBC215_13 | 1200 | 2220358       | 2219159         | 5800       | 2300       |
| histidinol dehydrogenase                                                 | 439                   | 85.7              | 63.8            | Mycobacterium smegmatis ATCC 607 hisD          | sp:HISX_MYCSM | 1326 | 2217600       | 2218925         | 5799       | 2299       |
| histidinol-phosphate<br>aminotransferase                                 | 362                   | 79.3              | 57.2            | Streptomyces coelicolor A3(2) hisC             | sp:HIS8_STRCO | 1098 | 2216494       | 2217591         | 5798       | 2298       |
| imidazoleglycerol-phosphate dehydratase                                  | 198                   | 81.8              | 52.5            | Streptomyces coelicolor A3(2) hisB             | sp:HIS7_STRCO | 606  | 2215869       | 2216474         | 5797       | 2297       |
|                                                                          |                       |                   |                 |                                                |               | 225  | 2215639       | 2215863         | 5796       | 2296       |
| Function                                                                 | Matched length (a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                | db Malch      | ORF  | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO. | SEO<br>OBS |
|                                                                          |                       |                   |                 | Table 1 (continued)                            |               |      |               |                 |            |            |

09

5>

Œ

SZ

50

۶ı

| hypothetical membrane protein              | 198                   | 64.7            | 22 7            | Archaeoglobus fulgidus AF2388                 | pir.D69548    | 918         | 2254642       | 2253725         | 5835       | 2335      |
|--------------------------------------------|-----------------------|-----------------|-----------------|-----------------------------------------------|---------------|-------------|---------------|-----------------|------------|-----------|
| histidine-binding protein precursor        | 149                   | 55.7            | 21.5            | Campylobacter Jejuni DZ72 hisJ                | sp:HISJ_CAMJE | 468         | 2253659       | 2253192         | 5834       | 2334      |
| chloramphenicol sensitive protein          | 279                   | 73.8            | 37.6            | Escherichia coli K12 rarD                     | sp.RARD_ECOLI | 840         | 2252856       | 2252017         | 5833       | 2333      |
| DNA polymerase III                         | 1183                  | 80.5            | 53.3            | Streptomyces coelicolor A3(2)                 | prf 2508371A  | 3582        | 2248358       | 2251939         | 5832       | 2332      |
| Corynebacterium glutamicum AS019           | 415                   | 49.6            | 22.7            | Catharanthus roseus metE                      | pir:S57636    | 1203        | 2247006       | 2248208         | 5831       | 2331      |
|                                            |                       |                 |                 |                                               |               | 156         | 2246295       | 2246450         | 5830       | 2330      |
|                                            |                       |                 |                 |                                               |               | 507         | 2246892       | 2246386         | 5829       | 2329      |
| threonine dehydratase                      | 436                   | 99.3            | 99.3            | Corynebacterium glutamicum<br>ATCC 13032 ilvA | sp THD1_CORGL | 1308        | 2244864       | 2246171         | 5828       | 2328      |
| hypothetical protein                       | 214                   | 72.4            | 36.5            | Bacillus subtilis 168                         | SP:YVYE_BACSU | 651         | 2242393       | 2243043         | 5827       | 232/      |
| maitooligosyttrehalose<br>trehalohydrolase | 568                   | 72 4            | 46.3            | Arthrobacter sp. Q36 treZ                     | pir S65770    | 1785        | 2244819       | 2243035         | 5826       | 2326      |
|                                            |                       |                 |                 |                                               |               | 231         | 2242129       | 2242359         | 5825       | 2325      |
| hypothetical protein                       | 120                   | 792             | 58.3            | Streptomyces coelicolor A3(2)<br>SC7H2.05     | gp:SC7H2_5    | 378         | 2241738       | 2242115         | 5824       | 2324      |
| alkanal monooxygenase alpha chain          | 375                   | 54.4            | 20.5            | Photorhabdus luminescens<br>ATCC 29999 luxA   | sp:LXA1_PHOLU | 1044        | 2241724       | 2240681         | 5823       | 2323      |
|                                            |                       |                 |                 |                                               |               | 1056        | 2239508       | 2240563         | 5822       | 2322      |
|                                            |                       |                 |                 |                                               |               | 189         | 2240058       | 2240246         | 5821       | 2321      |
|                                            |                       |                 |                 |                                               |               | 198         | 2239845       | 2240042         | 5820       | 2320      |
|                                            |                       |                 |                 |                                               |               | 399         | 2238694       | 2239092         | 5819       | 2319      |
| hypothetical protein                       | 322                   | 52 B            | 27.6            | Deinococcus radiodurans DR 1631               | gp:AE002006_4 | 1023        | 2238353       | 2237331         | 5818       | 2318      |
| maitooligosyl trehalose synthese           | 814                   | 68.6            | 42.0            | Arthrobacter sp. Q36 treY                     | pir S65769    | 2433        | 2237284       | 2234852         | 5817       | 2317      |
|                                            |                       |                 |                 |                                               |               | 606         | 2234763       | 2234158         | 5816       | 2316      |
| DNA polymerase III epsilon chain           | 355                   | 50 1            | 23.4            | Streptomyces coelicolor A3(2)<br>SCIB 12      | gp:SCI8_12    | 1143        | 2234070       | 2232928         | 5815       | 2315      |
| Function                                   | Matched length (a.a.) | Similari<br>(%) | identity<br>(%) | Homologous gene                               | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ<br>OBS | SEQ<br>NO |
|                                            |                       |                 |                 | Table 1 (continued)                           |               |             |               |                 |            |           |

05

57

38

Œ

SZ

oz

SI

10

|                                 |               |                  |                 |                                             |               | 1095   | 2274767          | 2275861         | 5854   | 2354 |
|---------------------------------|---------------|------------------|-----------------|---------------------------------------------|---------------|--------|------------------|-----------------|--------|------|
|                                 |               |                  |                 |                                             |               | 216    | 2274473          | 2274688         | 5853   | 2353 |
| isoleucy-IRNA synthetase        | 1086          | 85.4             | 38.5            | Saccharomyces cerevisiae A364A YBL076C ILS1 | sp.SYIC_YEAST | 3162   | 2270988          | 2274149         | 5852   | 2352 |
| hypothetical protein            | 212           | 07.0             | 42.0            | Streptomyces coelicolor A3(2)<br>SCF51.05   | gp SCF51_5    | 627    | 2270258          | 2270884         | 5851   | 2351 |
|                                 | -             |                  |                 |                                             |               | 132    | 2270435          | 2270304         | 5850   | 2350 |
| transcriptional regulator       | 334           | 73.1             | 44.3            | Streptomyces coelicolor A3(2)<br>SCF51 06   | gp SCF51_6    | 1002   | 2269260          |                 | 5849   | 2349 |
| hypothetical memorane protein   | 286           | 61.5             | 31.5            | Escherichia coli K12 ybiF                   | sp:YBIF_ECOLI | 858    | 2268388          | 2269245         | 5848   | 2348 |
| DNA-demage-inducible protein T  | 371           | 60.7             | 31.8            | Escherichia coli K12 dinP                   | SP.DINP_ECOLI | 1401   | 2266897          | 2268297         | 5847   | 2347 |
| L-asparaginase                  | 321           | 62.0             | 31.2            | Bacillus licheniformis                      | sp:ASPG_BACLI | 975    | 2266394          | 2265420         | 5846   | 2346 |
| hypothetical protein            | 158           | 57.0             | 36.7            | Rhodococcus erythropolis orf17              | prt.2422382P  | 8      | 2264509          | 2265108         | 5845   | 2345 |
|                                 |               |                  |                 |                                             |               | 303    | 2265298          | 2264996         | 5844   | 2344 |
| oleandomycin resistance protein | 550           | 64.0             | 38.4            | Streptomyces antibioticus ole8              | pir S67863    | 1650   | 2264499          | 2262850         | 5843   | 2343 |
|                                 |               |                  |                 |                                             |               | 1002   | 2262689          | 2261688         | 5842   | 2342 |
| lipoprotein signal peptidase    | 154           | 61.7             | 33.8            | Pseudomonas fluorescens NCIB<br>10586 lspA  | sp.LSPA_PSEFL | 534    | 2260934          | 2261467         | 5841   | 2341 |
| pseudouridine synthese D        | 326           | 61.0             | 36.5            | Escherichia coli K12 rluD                   | sp:RLUD_ECOLI | 930    | 2260002          | 2260931         | 5840   | 2340 |
|                                 |               |                  |                 |                                             |               | 579    | 2259421          | 2259999         | 5839   | 2339 |
| cysteine synthase               | 314           | 64.3             | 32.8            | Alcaligenes eutrophus CH34 cysM             | sp:CYSM_ALCEU | 951    | 2258362          | 2259312         | 5838   | 2338 |
| decarboxylase                   | 445           | 47.6             | 22.9            | Pseudomonas aeruginosa lysA                 | sp.DCDA_PSEAE | 1287   | 2255738          | 2257024         | 5837   | 2337 |
| general stress protein          | 280           | 80.0             | 48.2            | Bacillus subtilis 168 ydaD                  | sp:GS39_BACSU | 876    | 2254683          | 2255558         | 5836   | 2336 |
|                                 | length (a.a.) | Similarit<br>(%) | Identity<br>(%) | Homologous gene                             | db Maich      | ଟି ନ୍ନ | Terminal<br>(nt) | Initial<br>(nt) | NO SEO | SEQ  |
|                                 |               |                  |                 | Table 1 (continued)                         |               |        |                  |                 |        |      |

Œ

SI

|                                                                                                                                                                       |                             |                   |                 | 1                                                |                     |             |               |         |            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-----------------|--------------------------------------------------|---------------------|-------------|---------------|---------|------------|------|
| glutamyl-2,8-diaminopimelate-D-<br>atanyl-D-slanyl ligase                                                                                                             | 494                         | 04.2              | 35.0            | Escherichia coli K12 murF                        | sp MURF_ECOLI       | 1542        | 2287969       | 2289510 | 5869       | 2369 |
| pentapaptide                                                                                                                                                          | 365                         | 63.B              | 38.6            | Escherichia coli K12 mraY                        | SP MRAY_ECOLI       | 1098        | 2286862       | 2287959 | 5868       | 2368 |
|                                                                                                                                                                       |                             |                   |                 |                                                  |                     | 333         | 2286831       | 2286499 | 5867       | 2367 |
|                                                                                                                                                                       |                             |                   |                 |                                                  |                     | 384         | 2286655       | 2286272 | 5866       | 2366 |
| glutamate ligase                                                                                                                                                      | 110                         | 96.1              | 99.1            | Brevibacterium lactofermentum<br>ATCC 13869 murD | gp.BL\\\\242646_1   | 468         | 2285437       | 2285904 | 5865       | 2365 |
| cell division protein                                                                                                                                                 | 48                          | 99.6              | 99.4            | Brevibacterium lactolermentum<br>ATCC 13869 ftsW | gp.BLA242646_2      | 1650        | 2283782       | 2285431 | 5864       | 2364 |
| UDP-N-acetylglucosamine-N-<br>acetylmuramyi-(pentapeptide)<br>pyrophosphoryi-undecaprenol N-<br>acetylglucosamine pyrophosphoryi-<br>undecaprenol N-acetylglucosamine | 372                         | 99.5              | 98 9            | Brevibacterium lactofermentum<br>ATCC 13869 murG | 1116 gp BLA242646_3 | 1116        | 2282861       | 2283776 | 5863       | 2363 |
| ligase ligase                                                                                                                                                         | 486                         | 99.8              | 99.4            | Corynebacterium glutamicum murC                  | gp AB015023_1       | 1458        | 2281168       | 2282623 | 5862       | 2362 |
| division initiation protein or cell                                                                                                                                   | 222                         | 100 0             | 99.6            | Corynebacterium glutamicum                       | gsp W70502          | 8           | 2280470       | 2281135 | 5861       | 2361 |
| cell division protein                                                                                                                                                 | 442                         | 98.6              | 98.6            | Brevibacterium lactofermentum ttsZ               | sp:FTSZ_BRELA       | 1326        | 2278890       | 2280215 | 5860       |      |
| hypothetical protein                                                                                                                                                  | 117                         | 51.0              | 39.0            | Mus musculus P4(21)n                             | GP A8028888_1       | 486         | 2279640       | 2279155 | 5859       | 2359 |
| hypothetical protein                                                                                                                                                  | 246                         | 100 0             | 99.2            | Brevibacterium lactofermentum yfih               | pri:2420425C        | 738         | 2278122       | 2278859 | 5858       |      |
| hypothetical protein                                                                                                                                                  | 221                         | 99 6              | 97.7            | Corynebacterium glutamicum                       | sp:YFZ1_CORGL       | දු          | 2277416       | 2278078 | 5857       | 2357 |
| hypothetical protein (putative TAX )                                                                                                                                  | 152                         | 99.3              | 99.3            | Brevibacterium lactofermentum orf6               | gp BLFTSZ_6         | 458         | 2276881       | 2277336 | 5858       | 2356 |
| hypothetical membrane protein                                                                                                                                         | 82                          | 73.2              | 46 3            | Mycobacterium tuberculosis<br>H37Rv Rv2148c      | plr:F70578          | 285         | 2278353       | 2276637 | <u>-</u> - |      |
| Function                                                                                                                                                              | Matched<br>length<br>(a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                  | db Match            | ORF<br>(bp) | Terminal (nl) | (nt)    | NO SEO     | NO   |
|                                                                                                                                                                       |                             |                   |                 | Table 1 (continued)                              |                     |             |               |         |            |      |

09

**5**\*

æ

oε

SZ

so

SI

|                                                           |                  |                   |                 |                                             |                     | ļ           |               |              |      | [    |
|-----------------------------------------------------------|------------------|-------------------|-----------------|---------------------------------------------|---------------------|-------------|---------------|--------------|------|------|
| nypoinetical memorane protein                             | ***              | 58.4              | 30.7            | MLCB268 23                                  | 6 gp:MLCB268_21     | 1236        | 3 2306218     | 3 2304983    | 5886 | 2386 |
|                                                           |                  |                   |                 |                                             |                     | 651         | 2303040       | 2303690      | 5885 | 2385 |
| eukaryotic-type protain kinase                            | 684              | 62.4              | 34.2            | Straptomyces coelicolor A3(2)               | 8 gp AB019394_1     | 2148        | 2304980       | 2302833      | 5884 | 2384 |
| hypothetical protein                                      | 125              | 58.8              | 43.2            | Mycobacterium tuberculosis<br>H37Rv Rv2175c | pir A70936          | 369         | 2302251       | 2302619      | 5883 | 2383 |
|                                                           |                  |                   |                 |                                             |                     | 507         | 2302685       | 2302179      | 5882 | 2382 |
| hypothetical membrane protein                             | 484              | 69.6              | 35.7            | Mycobacterium leprae<br>MLCB268.17          | gp.MLCB268_16       | 1470        | 2302175       | 2300706      | 5881 | 2381 |
| dimethylallyltranstranslerase                             | 329              | 62 0              | 30.1            | Myxococcus xanthus DK1050 ORF1              | pir:S32168          | 1113        | 2300636       | 2299524      | 5880 | 2380 |
| reductase                                                 | 303              | 70.6              | 42.6            | Streptomyces lividans 1326                  | SP.METF_STRLI       | 978         | 2298451       | 2299428      | 5879 | 2379 |
| hypothetical protein                                      | 190              | 65.3              | 36.3            | Mycobacterium leprae<br>MLCB268 13          | gp MLCB268_13       | 573         | 2298438       | 2297866      | 5878 | 2378 |
|                                                           |                  |                   |                 |                                             |                     | 423         | 2297231       | 2297653      | 5877 | 2377 |
| hypothetical protein                                      | 137              | 69 3              | 39.4            | Mycobacterium tuberculosis H37Rv Rv2169c    | pir:C70935          | 387         | 2296512       | 2296898      | 5876 | 2378 |
| hypothetical membrane protein                             | 143              | 88.8              | 72.0            | MLCB268 11c                                 | gp:MLCB268_11       | 429         | 2205376       | 2295804      | 5875 | 2375 |
| hypothetical protein                                      | 323              | 79 3              | 55.1            | H37Rv Rv2165c                               | pir.A70581          | 1011        | 2294117       | 2295127      | 5874 | 2374 |
|                                                           |                  |                   |                 |                                             |                     | 795         | 2293323       | 2294117      | 5873 | 2373 |
| Del Il Challe Challenge Processing                        | 020              | 28.8              | 28.2            | Pseudomonas aeruginosa pbpB                 | pir:S54872          | 1953        | 2291212       | 2293164      | 5872 | 2372 |
| penicilia binding protein                                 |                  | 100.0             | 100.0           | Brevibacterium lactofermentum ORF2 pbp      | GSP:Y33117          | 225         | 2290973       | 2291197      | 5871 | 2371 |
| glutamyl-2,8-dlaminopimelate-D-<br>alanyl-D-alanyl ligase | 491              | 67.6              | 37.7            | Bacillus subtills 168 murE                  | 1551 sp. MURE_BACSU | 1551        | 2289523       | 2291073      |      |      |
| Function  Function                                        | length<br>(a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gens                             | db Match            | ORF<br>(bp) | Terminal (nt) | Initial (nt) | NO   | SEO  |
|                                                           |                  |                   |                 | Table 1 (conlinued)                         |                     |             |               |              |      |      |

0⊊

**5**\*

32

οε

52

so

SI

|                                                             |         |                   |                 |                                                                          |               | }        |               |                 |        |           |
|-------------------------------------------------------------|---------|-------------------|-----------------|--------------------------------------------------------------------------|---------------|----------|---------------|-----------------|--------|-----------|
| cytochrome c                                                | 278     | 83.1              | 58.6            | Mycobacterium tuberculosis H37Rv Rv2194 qcrC                             | sp Y005_MYCTU | 885      | 5 2324311     | 1 2325195       | 5901   | 2401      |
| ron-sulfur subunit (Rieske [eFe-26] ron-sulfur protein cyoB | 203     | 57.1              | 37.9            | Streptomyces lividans qcrA                                               | gp AF107888_1 | 672      | 2323088       | 0 2323759       | 5900   | 2400      |
| cytochrome b subunit ublquinol-cytochrome c reductase       | 201     | 04.               | 34 3            | Heliobacilius mobilis pelB                                               | prf 2503462K  | 1602     | 2321472       | 9 2323073       | 5899   | 2399      |
| ubiquinol-cytochrome c reductase                            |         |                   | 2               | Listeria grayi iap                                                       | sp P60_LISGR  | 627      | 2319968       | 2320594         | 5898   | 2398      |
| protein P60 precursor (Invasion-                            | 191     | R1 3              | 3               |                                                                          |               | _        | +             |                 |        | 239,      |
| associated-protein)                                         | 296     | 60.8              | 26.4            | Listeria ivanovii iap                                                    | sp:P60_LISIV  | 1047     | 2318804       | 2319850         | 5897   | 7797      |
| glycosyl transferase                                        | 383     | 75.7              | 50.1            | Streptomyces coelicolor A3(2)<br>SC6G10.05c                              | gp_SC6G10_5   | 1143     | 2317633       | 2318775         | 5886   | 2396      |
| acytransferase                                              | 245     | 100.0             | 100.0           | Corynebacterium glutamicum<br>ATCC 13032                                 | gp:AF098280_2 | 735      | 2315678       | 2316412         | 5895   | 2395      |
| hypothetical memorane protein                               | 249     | 100.0             | 100.0           | ATCC 13032                                                               | gp.AF096280_3 | 1188     | 2314236       | 2315423         | 5894   | 2394      |
|                                                             |         |                   |                 |                                                                          |               | 177      | 2313916       | 2314092         | 5893   | 2393      |
|                                                             |         |                   |                 |                                                                          |               | 204      | 2314036       | 2313833         | 5892   | 2392      |
| mejor secreted protein PS1 protein precursor                | 440     | 57.1              | 28.2            | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17965 csp1 | sp.CSP1_CORGL | 1449     | 2313808       | 2312360         | 5891   | 2391      |
| hypothetical membrane protein                               | 428     | 04.5              | 35.1            | Mycobacterium tuberculosis<br>H37Rv Rv2181                               | pir:G70936    | 2418     | 2312252       | 2309835         | 5890   | 2390      |
| hypothetical protein                                        | 166     | 77.7              | 58.4            | Mycobacterium leprae<br>MLCB268.21c                                      | gp:MLCB268_20 | 504      | 2309173       | 2309676         | 5889   | 2389      |
| phosphate synthase                                          | 462     | 87.9              | 66.9            | Amycolatopsis mediterranel                                               | gp:AF260581_2 | 1386     | 2307697       | 2309082         | 5888   | 2388      |
| hypothetical memorane protein                               | 434     | 62.0              | 30.4            | Mycobacterium tuberculosis<br>H37Rv Rv2181                               | pir:G70936    | 1308     | 2307621       | 2306314         | 5887   |           |
| Function                                                    |         | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                                          | db Match      | ନ୍ତି କ୍ଲ | Terminal (nt) | Initial<br>(nt) | NO SED | SEO<br>NO |
|                                                             | Matched |                   |                 | Table 1 (conlinued)                                                      |               |          |               |                 |        |           |

|                                                                                                         |                   | _                |                 |                                             |                |             |               |                 |            |            |
|---------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------|---------------------------------------------|----------------|-------------|---------------|-----------------|------------|------------|
| lipoyitransferase                                                                                       | 210               | 85.7             | 36.7            | Arabidopsis thallana                        | gp:AB020975_1  | 753         | 2342164       | 2341412         | 5919       | 2419       |
|                                                                                                         |                   |                  |                 |                                             |                | 1365        | 2339440       | 2340804         | 5918       | 2418       |
| dihydrolipoamide acety@ransferase                                                                       | 691               | 68.5             | 48.9            | Streptomyces seoulensis pdhB                | gp AF047034_2  | 2025        | 2341293       | 2339269         | 5917       | 2417       |
| hypothetical protein                                                                                    | 97                | 67.0             | 40.2            | Saccharopolyspora erythraea ORF1            | pri:2110282A   | 393         | 2338748       | 2339140         | 5916       | 2416       |
| leucyl aminopeptidase                                                                                   | 493               | 65.9             | 36.3            | Pseudomonas putida ATCC<br>12633 pepA       | gp PPU010261_1 | 1500        | 2338734       | 2337235         | 5915       | 2415       |
| branched-chain amino acid aminotransferase                                                              | 364               | 70.3             | 40.1            | Mus musculus BCAT1                          | SP.ILVE_MYCTU  | 1137        | 2335915       | 2337051         | 5914       | 2414       |
| clavulanate-9-aidehyde reductase                                                                        | 241               | 68.5             | 38.6            | Streptomyces clavuligerus car               | prf 2414335A   | 714         | 2335028       | 2335741         | 5913       | 2413       |
|                                                                                                         |                   |                  |                 |                                             |                | 237         | 2334481       | 2334717         | 5912       | 2412       |
| cobalamin (5'-phosphate) synthase                                                                       | 305               | 49.6             | 25.3            | Pseudomonas denitrificans cobV              | sp COBV_PSEDE  | 921         | 2334535       | 2333615         | 5911       | 2411       |
| nicotinata-nucleotide— dimethylbenzimidazote phosphoribosyltransferase                                  | 341               | 66.9             | 37.8            | Pseudomonas denitrificans cobU              | sp:COBU_PSEDE  | 1089        | 2333600       | 2332512         | 5910       | 2410       |
| cobinamide kinese                                                                                       | 172               | 64.0             | 43.0            | Rhodobacter capsulatus cobP                 | pir:S52220     | 522         | 2332495       | 2331974         | 5909       | 2409       |
| hypothetical membrane protein                                                                           | 246               | 60.2             | 35.0            | Mycobacterium leprae, 4<br>MLCB22 07        | gp:MLCB22_2    | 768         | 2331987       | 2331200         | 5908       | 2408       |
| hypothetical protein                                                                                    | 114               | 100.0            | 100 0           | Corynebacterium glutamicum<br>KY9611 orf1   | gp:AB029550_2  | 342         | 2330586       | 2330927         | 5907       | 2407       |
| glutamine-dependent<br>amidotransferase or asparagine<br>synthetase (lysozyme insensitivity<br>protein) | 640               | 99.8             | 99.7            | Corynebacterium glutamicum<br>KY9611 ItsA   | gp:AB029550_1  | 1920        | 2330435       | 2328516         | 5906       | 2406       |
| cytochrome c oxidase subunit II                                                                         | 317               | 53.0             | 28.7            | Rhodobacter sphaeroides ctaC                | sp.COX2_RHOSH  | 1077        | 2326921       | 2327997         | 5905       | 2405       |
| hypothetical membrane protein                                                                           | 145               | 71.0             | 38.6            | Mycobacterium tuberculosis<br>H37Rv Rv2199c | sp:Y00A_MYCTU  | 429         | 2326472       | 2326900         | 5904       | 2404       |
|                                                                                                         |                   |                  |                 |                                             |                | 153         | 2326121       | 2326273         | 5903       | 2403       |
| cytochrome c oxidase subunit III                                                                        | 188               | 70.7             | 36.7            | Synechococcus vulcanus                      | SP:COX3_SYNVU  | 615         | 2325273       | 2325887         | 5902       | 2402       |
| Function                                                                                                | Matched<br>length | Similalty<br>(%) | Identity<br>(%) | Homologous gene                             | db Match       | ORF<br>(bp) | Terminal (nt) | initial<br>(nt) | SEO<br>NO. | SEQ<br>NO. |
|                                                                                                         |                   |                  |                 | iable i (continued)                         |                |             |               |                 |            |            |

**EP 1 108 790 A2** 

Table 1 (continued)

55

05

5>

0>

æ

Œ

SZ

50

٤١

10

\*

æ

Œ

|                                                                      |                |           |                 |                                              |               | 405  | 2358130          | 2357726         | 5938   | 2438 |
|----------------------------------------------------------------------|----------------|-----------|-----------------|----------------------------------------------|---------------|------|------------------|-----------------|--------|------|
|                                                                      |                |           |                 |                                              |               | 195  | 2357290          | 2357484         | 5937   | 2437 |
| transmembrane transport protein                                      | 118            | 68.1      | 31.4            | Streptomyces coelicolor A3(2)<br>SCGD3 10c   | gp.SCGD3_10   | 444  | 2357707          | 2357264         | 5936   | 2436 |
| transmembrane transport protein                                      | 158            | 72.8      | 42.4            | Streptomyces coelicolor A3(2)<br>SCGD3.10c   | gp SCGD3_10   | 561  | 2357354          | 2356794         | 5935   | 2435 |
| 4-hydroxyphenylacetate permesse                                      | 433            | 53.4      | 21.9            | Escherichia coli hpaX                        | prt 2203345H  | 1323 | 2356843          | 2355521         | 5934   | 2434 |
|                                                                      |                |           |                 |                                              |               | 261  | 2355180          | 2355440         | 5933   | 2433 |
|                                                                      |                |           |                 |                                              |               | 243  | 2355388          | 2355156         | 5932   | 2432 |
| protein synthesis inhibitor (translation initiation inhibitor)       | 111            | 73.0      | 40.5            | Thermotoga maritima MSB8<br>TM0215           | pir A72404    | 393  | 2353225          | 2352833         | 5931   | 2431 |
| alkanal monooxygenase alpha chain (bacterial luciferase alpha chain) | 220            | 60.9      | 25.0            | Vibrio harveyi luxA                          | sp:LUXA_VIBHA | 849  | 2352828          | 2351980         | 5930   | 2430 |
|                                                                      |                |           |                 |                                              |               | 600  | 2351310          | 2351909         | 5929   | 2429 |
| hypothetical protein                                                 | 128            | 65.6      | 36.7            | Thermotoge meritime MSB8 TM1010              | pir 872308    | 399  | 2350912          | 2351310         | 5928   | 2428 |
| mutator mutT domain protein                                          | 145            | 44.0      | 31.0            |                                              |               | 975  | 2351996          | 2351022         | 5927   | 2427 |
|                                                                      |                |           |                 |                                              |               | 213  | 2350408          | 2350620         | 5926   | 2426 |
| hypothetical membrane protein                                        | 157            | 63.7      | 41.4            | Streptomyces coelicolor A3(2)<br>SC5F7 04c   | gp SC5F7_34   | 471  | 2348078          | 2348548         | 5925   | 2425 |
|                                                                      |                |           |                 |                                              |               | 300  | 2347804          | 2347505         | 5924   | 2424 |
| transposase (ISCg2)                                                  | 401            | 100.0     | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 tnp | gp AF189147_1 | 1203 | 2346289          | 2347491         | 5923   | 2423 |
| hypothetical membrane protein                                        | 559            | 67.8      | 32.9            | Escherichia coli K12 yldE                    | sp YIDE_ECOLI | 1617 | 2346047          | 2344431         | 5922   | 2422 |
| hypothetical membrana protein                                        | 257            | 76.7      | 45.5            | Mycobacterium tuberculosis H37Rv Rv2219      | NIDAM TOOO 48 | 780  | 2344258          | 2343479         | 5921   | 2421 |
| lipoic acid synthetase                                               | 285            | 70.9      | 44.6            | Pelobacter carbinolicus GRA BD 1 llpA        | SP LIPA_PELCA | 1044 | 2343347          | 2342304         | 5920   | 2420 |
| Function                                                             | Matched length | Similarit | Identity<br>(%) | Homologous gene                              | db Match      | (bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ NO | SEO  |
|                                                                      |                |           |                 | Table 1 (conlinued)                          |               |      |                  |                 |        |      |

*0*5

**S**\*

**0**\*

32

Œ

52

50

SI

s

. ) . idi + .

Ċ

|                                      |                  |                   |                 |                                                 |                |             | _             | 1               |        | - 6400    |
|--------------------------------------|------------------|-------------------|-----------------|-------------------------------------------------|----------------|-------------|---------------|-----------------|--------|-----------|
| Insertion element (IS402)            | 129              | 56.6              | 32.6            | Burkholderia cepacia                            | SD:YI21 BURCE  | 393         | 2376998       | 0017770         | _      | 2         |
| hypothetical protein                 | 281              | 65.5              | 40.9            | Mycobacterium tuberculosis H37Rv Rv2235         | SP YOIG_MYCTU  | 954         | 2376720       | 2375767         | 5955   | 2455      |
| tyrosine-phosphatase                 | 158              | 83.5              | 46.2            | Streptomyces coelicolor A3(2)<br>SCQ11.04c ptpA | sp.PTPA_STRCO  | 471         | 2375684       | 2375214         | 5954   | 2454      |
| phosphogrycolere phosphieses         | 204              | 54.4              | 26.0            | Escherichia coli K12 gph                        | sp:GPH_ECOLI   | 654         | 2375197       | 2374544         | 5953   | 2453      |
| hypothetical protein                 | 378              | 76.2              | 49.2            | Mycobacterium tuberculosis H37Rv Rv2230c        | SP.YO1B_MYCTU  | 1140        | 2373323       | 2374462         | 5952   | 2452      |
| hypothetical protein                 | 249              | 58.6              | 26 5            | H37Rv Rv2229c                                   | *P:Y01A_MYCTU  | 717         | 2372573       | 2373289         | 5951   | 2451      |
|                                      |                  |                   |                 |                                                 |                | 729         | 2373289       | 2372561         | 5950   | 2450      |
| and phosphoglycerate mutase)         | 382              | 75.1              | 54.7            | H37Rv Rv2228c                                   | SP:Y019_MYCTU  | 1146        | 2371412       | 2372557         | 5949   | 2449      |
| bifunctional protein (ribonuclease H |                  |                   |                 |                                                 |                | 486         | 2370908       | 2370423         | 5948   | 2448      |
|                                      | 18               | 4                 | 100             | Brucella abortus vaco                           | gp AF 174645_1 | 1266        | 2369116       | 2370381         | 5947   | 2447      |
| Vindence-associated protein          | 350              | 200.              | 27.             | Homo sapiens galK1                              | SP GAL 1_HUMAN | 1293        | 2369083       | 2367781         | 5946   | 2446      |
| hypothetical protein                 | 54               | 55.6              | 38.9            | Streptomyces coellcolor A3(2)<br>SCC75A 11c     | gp SCC75A_11   | 180         | 2367473       | 2367652         | 5945   | 2445      |
| hypothetical protein                 | 601              | 58.2              | 33.4            | Mycobacterium tuberculosis H37Rv Rv2226         | SP:Y017_MYCTU  | 1827        | 2367413       | 2365587         | 5944   | 2444      |
| hypothetical protein                 | 392              | 54.1              | 26.8            | Streptomyces coelicolor A3(2)<br>SCE9 39c       | gp:SCE9_39     | 1104        | 2385455       | 2364352         | 5943   | 2443      |
| glutamine synthetase                 | 441              | 73.0              | 43.5            | Thermotoge maritima MSB8                        | SP GLNA_THEMA  | 1338        | 2362818       | 2364155         | 5942   | 2442      |
| adenylytransferase                   | 809              | 67.0              | 43.4            | Streptomyces coelicolor A3(2) ginE              | gp:SCY17736_4  | 3135        | 2359614       | 2362748         | 5941   | 2441      |
| heme oxygenase                       | 214              | 78.0              | 57.9            | hmuO                                            | sp HMUO_CORDI  | 845         | 2358772       | 2359416         | 5940   | 2440      |
|                                      |                  |                   |                 |                                                 |                | 543         | 2358153       | 2358695         | 5939   |           |
| Function                             | length<br>(a.a.) | Similarity<br>(%) | identity<br>(%) | Homologous gene                                 | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO SEQ | SEQ<br>NO |
|                                      | Matched          |                   |                 | Table 1 (continued)                             |                |             |               | ı               |        |           |

09

SÞ

SE

Œ

52

50

|                                             |                             |                   |              |                                             |               |      | 1000          | -       | 100  | 1      |
|---------------------------------------------|-----------------------------|-------------------|--------------|---------------------------------------------|---------------|------|---------------|---------|------|--------|
|                                             |                             |                   |              |                                             |               | 471  | 2790474       | Anonore | _    |        |
| hypothetical protein                        | 289                         | 65.7              | 33.6         | Deinococcus radiodurans DR1192              | gp:AE001968_4 | 1032 | 2389869       | 2386838 | 5973 | 2473   |
| N-acetylglucosamine-6-phosphate deacetylase | 253                         | 75.5              | 43.9         | Escherichia coli K12 nagD                   | sp:NAGD_ECOLI | 825  | 2388821       | 2387997 | 5972 | 2472   |
| acyl carier protein                         | 75                          | 80.0              | 42.7         | Myxococcus xanthus ATCC 25232 acpP          | sp ACP_MYXXA  | 291  | 2387957       | 2387667 | 5971 | 2471   |
| lipase or hydrolase                         | 352                         | 55.7              | 29.6         | Streptomyces coelicolor A3(2)<br>SC8G4 24   | gp:SC6G4_24   | 1014 | 2386614       | 2387627 | 5970 | 2470   |
|                                             |                             |                   |              |                                             |               | 372  | 2385913       | 2386284 | 5969 | 2469   |
| calcium binding protein                     | 125                         | 55.2              | 41.6         | Dictyostelium discoldeum AX2 cbpA           | sp CBPA_DICDI | 810  | 2386580       | 2385771 | 5968 | 2468   |
| hypothetical protein                        | 286                         | 62.9              | 26.2         | Rickensia prowazekii Madrid E<br>RP367      | pir:H71693    | 939  | 2384509       | 2385447 | 5907 | 2467   |
| protein                                     | 283                         | 58.7              | 25.4         | Bacilius subtilis 168 rbsC                  | sp RBSC_BACSU | 888  | 2383622       | 2384509 | 5966 | 2466   |
|                                             |                             |                   |              |                                             |               | 963  | 2385426       | 2384464 | 5965 | 2465   |
| transport ATP-binding protein               | 28.                         | 62.8              | 33.7         | Escherichia coli K12 glnQ                   | sp.GLNQ_ECOLI | 789  | 2382827       | 2383615 | 5964 | 2464   |
|                                             |                             |                   |              |                                             |               | 1476 | 2380765       | 2382240 | 5963 | 2463   |
| pyruvate denydrogenase component            | 910                         | 78.9              | 55.8         | Streptomyces seculensis pdhA                | gp.AF047034_4 | 2712 | 2382744       | 2380033 | 5962 | 2462   |
|                                             | L                           |                   |              |                                             |               | 345  | 2379770       | 2379428 | 5961 | 2461   |
| hypothetical protein                        | 134                         | 77.6              | 55.2         | Mycobacterium tuberculosis<br>H37Rv Rv2239c | SP:YOIK_MYCTU | 429  | 2378884       | 2379312 | 5960 | 2460   |
|                                             |                             |                   |              |                                             |               | 198  | 2378489       | 2378282 | 5959 | 2459   |
| transcriptional regulator                   | 135                         | 57.8              | 30.4         | Streptomyces coelicolor A3(2)<br>SC8F4.22c  | gp:SC8F4_22   | 378  | 2378276       | 2377899 | 5958 | 2458   |
|                                             |                             |                   |              |                                             |               | 243  | 2377484       | 2377726 | 5957 | 2457   |
| Function                                    | Matched<br>length<br>(a.a.) | Similarity<br>(%) | Identity (%) | Homologous gene                             | db Malch      | (bp) | Terminal (nt) | (nitial | SEQ  | NO SEO |
|                                             |                             |                   |              | Table 1 (continued)                         |               |      |               |         |      |        |

*09* 

54

0+

32

Œ

52

so

SI

10

s

| hypothetical protein                                | 171                   | 59.7              | 30.4            | Nelsseria meningitidis NMA0251            | gp:NMA1Z2491_23 | 675         | 2408262          | 2406936         | 5994   | 2494  |
|-----------------------------------------------------|-----------------------|-------------------|-----------------|-------------------------------------------|-----------------|-------------|------------------|-----------------|--------|-------|
| deoxyguanosinetriphosphate triphosphohydrolase      | 414                   | 76.3              | 54.6            | Mycobacterium smegmatis dgt               | prf 2413330A    | 1272        | 2404987          | 2406258         | 5993   | 2493  |
|                                                     |                       |                   |                 |                                           |                 | 1152        | 2406822          | 2405671         | 5992   | 2482  |
|                                                     |                       |                   |                 |                                           |                 | 324         | 2404846          | 2404523         | 5991   | 2491  |
| L-glutamine D-fructose-8-phosphate amidotransferase | 636                   | 82.2              | 59.1            | Mycobacterium smegmatis mc2155 glmS       | gp:AF058788_1   | 1869        | 2402144          | 2404012         | 5990   | 2490  |
|                                                     |                       |                   |                 |                                           |                 | 636         | 2402530          | 2403165         | 5989   | 2489  |
|                                                     |                       |                   |                 |                                           |                 | 243         | 2402080          | 2401838         | 5988   | 2488  |
| ribonuciesse Sa                                     | 98                    | 67.4              | 49.0            | Streptomyces aureofaciens BMK             | gp.XXU39467_1   | 162         | 2401834          | 2401373         | 5987   | 2487  |
| DNA primase                                         | 633                   | 82.9              | 59.1            | Mycobacterium smegmalis dnaG              | рл 24133308     | 1899        | 2399405          | 2401303         | 5986   | 2486  |
|                                                     |                       |                   |                 |                                           |                 | 675         | 2399668          | 2400342         | 5985   | 2485  |
| hypothetical prolein                                | 68                    | 72.1              | 41.2            | Mycobacterium tuberculosis H37Rv Rv2342   | pir G70661      | 240         | 2399397          | 2399158         | 5984   | 2484  |
| hypothetical protein                                | 594                   | 73.1              | 44.4            | Streptomyces coelicolor A3(2)<br>SCI51.17 | gp SCI51_17     | 1836        | 2399099          | 2397264         | 5983   | 2483  |
|                                                     |                       |                   |                 |                                           |                 | 714         | 2395273          | 2395986         | 5982   | 2482  |
| alkaline phosphatasa D precursor                    | 530                   | 64.7              | 34.2            | Bacillus subtilis 168 phoD                | sp PPBD_BACSU   | 1560        | 2396763          | 2395204         | 5981   | 2481  |
|                                                     |                       |                   |                 |                                           |                 | 342         | 2394935          | 2394594         | 5980   | 2480  |
|                                                     |                       |                   |                 |                                           |                 | 465         | 2393973          | 2394437         | 5979   | 2479  |
|                                                     |                       |                   |                 |                                           |                 | 546         | 2393970          | 2393425         | 5978   | 2478  |
|                                                     |                       |                   |                 |                                           |                 | 771         | 2392579          | 2393349         | 5977   | 2477  |
|                                                     |                       |                   |                 |                                           |                 | 492         | 2392075          | 2392566         | 5976   | 2476  |
| hypothetical protein                                | 271                   | 75.1              | 52.4            | Streptomyces coelicolor A3(2) SC4A7.08    | gp:SC4A7_8      | 825         | 2391184          | 2392008         | 5975   | 2475  |
| Function                                            | Matched length (e.g.) | Similality<br>(%) | Identity<br>(%) | Homologous gene                           | db Match        | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | NO SEQ | (DNA) |
|                                                     |                       |                   |                 | Table 1 (continued)                       |                 |             |                  |                 |        |       |

\*

oε

|                                                                                      |                             |                  |                 |                                                  |                | 942    | 2423791          | 2422850 | 6011  | 2511 |
|--------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------|--------------------------------------------------|----------------|--------|------------------|---------|-------|------|
| hypothetical protein                                                                 | 248                         | 75.4             | 44.0            | Streptomyces coellcolor A3(2)<br>SCC77.19c       | gp.SCC77_19    | 723    | 2421975          | 2422897 | 6010  | 2510 |
| phosphate starvation inducible protein                                               | 344                         | 84.6             | 61.1            | Mycobacterium tuberculosis<br>H37Rv Rv2368c phoH | sp PHOL_MYCTU  | 1050   | 2420900          | 2421949 | 6009  | 2509 |
| Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics | 85                          | 50.0             | 45.0            | Neisseria meningitidis                           | GSP:Y75650     | 264    | 2421236          | 2420973 | 6008  | 2508 |
| hypothetical protein                                                                 | 157                         | 86.0             | 65.0            | Mycobacterium tuberculosis<br>H37Rv Rv2367c      | SP YN67_MYCTU  | 588    | 2420313          | 2420900 | 6007  | 2507 |
| hypothetical membrane protein                                                        | 432                         | 82.4             | 52.8            | Mycobacterium tuberculosis<br>H37Rv Rv2368       | SP YIDE_MYCTU  | 1320   | 2418990          | 2420309 | 6006  | 2506 |
| Era-like GTP-binding protein                                                         | 296                         | 70.3             | 39.5            | Streptococcus pneumoniae era                     | gp:AF072811_1  | 915    | 2417969          | 2418883 | 6005  | 2505 |
| hypothelical protein                                                                 | 245                         | 74.3             | 45.7            | Mycobacterium tuberculosis H37Rv Rv2382c         | pir.A70586     | 726    | 2417222          | 2417947 | 6004  | 2504 |
| undecaprenyl diphosphate synthase                                                    | 233                         | 71.2             | 43.4            | Micrococcus luteus B-P 28 uppS                   | SP UPPS_MICLU  | 729    | 2416371          | 2417099 | 0003  | 2503 |
| hypothetical membrane protein                                                        | 224                         | 67.0             | 40.8            | Streptomyces coellcolor A3(2)<br>h3u             | gp:AF162938_1  | 792    | 2415298          | 2416089 | 6002  | 2502 |
| hypothetical protein (conserved in C. glutamicum?)                                   | 529                         | 46.7             | 24.8            | Mycobacterium tuberculosis H37Rv Rv1128c         | pir.A70539     | 1551   | 2415118          | 2413568 | 6001  | 2501 |
| ferric uptake regulation protein                                                     | 132                         | 70.5             | 34 8            | Escherichla coll K12 fur                         | sp FUR_ECOLI   | 432    | 2413423          | 2412992 | 6000  | 2500 |
| bacterial regulatory protein, ersk family                                            | 89                          | 73.0             | 49.4            | Mycobacterium tuberculosis H37Rv Rv2358 furB     | pir E70585     | 369    | 2412948          | 2412580 | 5999  | 2499 |
| glycyl-tRNA synthetase                                                               | 508                         | 69.9             | 46.1            | Thermus aquaticus HB8                            | pir S58522     | 1383   | 2410956          | 2412338 | 5998  | 2498 |
|                                                                                      |                             |                  |                 |                                                  |                | 582    | 2410280          | 2410861 | 5997  | 2497 |
| hypothetical protein                                                                 | 138                         | 54.4             | 24.6            | Drosophila melanogaster<br>CG10592               | gp AE003565_26 | 486    | 2409779          | 2410264 | 5996  | 2496 |
| hypothetical protein                                                                 | 692                         | 63.6             | 31.1            | Mycobacterium tuberculosis H37Rv Rv2345          | pir B70682     | 2037   | 2409029          | 2406993 | 5995  | 2495 |
| Function                                                                             | Matched<br>length<br>(a.a.) | Similarly<br>(%) | Identity<br>(%) | Homologous gene                                  | db Match       | (B) 유무 | Terminal<br>(nt) | (ta)    | O SEO | SEQ  |
|                                                                                      |                             |                  |                 | Table 1 (continued)                              |                |        |                  |         |       |      |

0⊊

00

SE

Œ

52

so

SI

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      | !             | <u>-</u> | Ī     | Ī           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|---------------|----------|-------|-------------|
| hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449              | 58.               | 32.1            | Mycobacterium tuberculosis H37Rv Rv0127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pir.H70983     | 1089 | 2440994       | 2439906  | 6028  | 2528        |
| synthase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 294              | 9                 | 85 2            | H37Rv Rv0126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pir.G70983     | 1794 | 2439906       | 2438113  | 6027  | 2527        |
| glycosyl hydrolase or trehalose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gp:Ar064323_1  | 11/9 | 2438049       | 2436871  | 5026  | 2526        |
| carboxylesterase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 453              | 45.7              | 24.1            | Animotoromakie calandrae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AFOC 4500 4    |      | +-            | 2430030  | 2700  | 2575        |
| peptidyt-dipaptidese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 698              | 68.3              | 403             | Salmonella typhimurium dcp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD DCP SALTY   | 2034 | +             | 2426920  | 200   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 204  | 2434573       | 2434776  | 6024  | 2524        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 180  | 2434440       | 2434619  | 6023  | 2523        |
| antigens for vaccines and diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107              | 53.0              | 47.0            | Neisseria meningitidis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GSP:Y74829     | 333  | 2433875       | 2434207  | 6022  | 2522        |
| polypeptides predicted to be useful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |               |          |       | 27.7        |
| be useful antigens for vaccines and diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68               | 51.0              | 44.0            | Neisseria gonorrhoese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GSP-Y74827     | 255  | 2433614       | 2433868  | 6021  | 2521        |
| Neisserial polypeptides predicted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                   |                 | hora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gp 70000101    |      | 24343/0       | 2432508  | 6020  | 2520        |
| protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 604              | 64.4              | 29.5            | Lactobacillus brevis plasmid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nn AB005752 1  | 200  | 7474770       | 20250    |       | <del></del> |
| The Property of the Property o | 130              | 00.4              | 28.3            | Escherichia coll K12 malQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SP.MALQ_ECOLI  | 2118 | 2432413       | 2430296  | 6019  | 2519        |
| Congress of the congress of th | 3 =              | i i               | 48.0            | SCBG10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gp:SC8G10_4    | 1845 | 2428184       | 2430028  | 6018  | 2518        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 | 2015 A 2015 C 20 | -              | 378  | 2427807       | 2428184  | 6017  | 2517        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1 00 | 2426776       | 2427468  | 6016  | 2516        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |               | -        | -     | -           |
| precursor anachment account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134              | 64.9              | 36.6            | Saccharomyces cerevisiae YNR044W AGA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sp.AGA1_YEAST  | 519  | 2426699       | 2426181  | 8015  | 2515        |
| coproporphyrinogen III oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 320              | 84.1              | 33.1            | Bacillus stearothermophilus hemN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pri 2318256A   | 990  | 2424965       | 2425954  | 6014  | 2514        |
| repressor (grobb repressor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                | 9.0               | 48.4            | Streptomyces albus hrcA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | prf.2421342A   | 1023 | 2423915       | 2424937  | 6013  | 2513        |
| heat-inducible transcriptional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                | 70.8              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pri. 242 13420 | 1 40 | 2422/00       | 2423845  | 6012  | 2512        |
| heat shock protein dnaJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 380              | 77.4              | 47.1            | Streptomyces albus dnaJ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40404040       |      |               | 1        | +     | 15          |
| Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | length<br>(a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | db Malch       | g SR | Terminal (nt) | Initial  | N SEO | NO          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                 | Table 1 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |      |               |          |       |             |

|                                                                                |                       |               |                 |                                               |                |             |               |                 |        | į          |
|--------------------------------------------------------------------------------|-----------------------|---------------|-----------------|-----------------------------------------------|----------------|-------------|---------------|-----------------|--------|------------|
| oligopeptide transport ATP-binding protein                                     | 372                   | 66.4          | 37.4            | Escherichia coli K12 oppD                     | pri 2308258MR  | 1437        | 2482599       | 2461163         | 6048   | 2548       |
| dipeptide transport system permesse protein                                    | 271                   | 74.5          | 43.2            | Escherichia coll K12 dppC                     | sp.DPPC_ECOLI  | 828         | 2461107       | 2460340         | 6047   | 2547       |
| oligopeptide ABC transporter (permease)                                        | 315                   | 73.3          | 40.0            | Bacillus subtilis 168 appB                    | sp: APPB_BACSU | 968         | 2460336       | 2459371         | 6046   | 2546       |
| heme-binding protein A precursor (hemin-binding lipoprotein)                   | 540                   | 55.5          | 27.5            | Haemophilus influenzae Rd<br>HI0853 hbpA      | sp.HBPA_HAEIN  | 1509        | 2459371       | 2457863         | 6045   | 2545       |
|                                                                                |                       |               |                 |                                               |                | 423         | 2457337       | 2457759         | 6044   | 2544       |
| hypothetical protein                                                           | 467                   | 57.6          | 22.5            | Salmonella typhlmurium ygiK                   | SP YGIK_SALTY  | 1347        | 2455720       | 2457066         | 6043   | 2543       |
|                                                                                |                       |               |                 |                                               |                | 282         | 2455452       | 2455733         | 6042   | 2542       |
| transcriptional regulator                                                      | 203                   | 65.0          | 25.6            | Escherichia coli K12 ydfH                     | sp:YDFH_ECOLI  | 711         | 2455435       | 2454725         | 6041   | 2541       |
| glycolate oxidase subunit                                                      | 483                   | 55.1          | 27.7            | Escherichia coli K12 glcD                     | sp GLCD_ECOLI  | 2844        | 2451794       | 2454837         | 6040   | 2540       |
| maionate transporter                                                           | 324                   | 60.5          | 25.9            | Sinorhizobium meliloti mdcF                   | gp.AF155772_2  | 927         | 2450859       | 2451785         | 6039   | 2539       |
|                                                                                |                       |               |                 |                                               |                | 522         | 2450323       | 2450844         | 6038   | 2538       |
| sikansi monooxygenase sipha chain                                              | 343                   | 49.0          | 21.6            | Vibrio harveyi luxA                           | SP LUXA_VIBHA  | 978         | 2447988       | 2447021         | 6037   | 2537       |
| branched-chain amino acid transport system carrier protein (isoleucine uptake) | 426                   | 100 0         | 99.8            | Corynebacterium glutamicum<br>ATCC 13032 brnQ | sp BRNQ_CORGL  | 1278        | 2446993       | 2445716         | 6036   | 2536       |
| beta C-S lyase (degradation of aminoethylcysteine)                             | 325                   | 100.0         | 99.4            | Corynebacterium glutamicum ATCC 13032 aecD    | gp CORCSLYS_1  | 975         | 2445709       | 2444735         | 6035   | 2535       |
|                                                                                |                       |               |                 |                                               |                | 518         | 2444033       | 2444551         | 6034   | 2534       |
|                                                                                |                       |               |                 |                                               |                | 660         | 2443356       | 2444015         | 6033   | 2533       |
|                                                                                |                       |               |                 |                                               |                | 1755        | 2441602       | 2443356         | 6032   | 2532       |
|                                                                                |                       |               |                 |                                               |                | 438         | 2442792       | 2442355         | 6031   | 2531       |
|                                                                                |                       |               |                 |                                               |                | 222         | 2441890       | 2441669         | 6030   | 2530       |
| isopenienyi-diphosphate Delta-<br>isomerase                                    | 189                   | 57 7          | 318             | Chlamydomonas reinhardtii ipi 1               | pir. T07979    | 585         | 2441005       | 2441589         | 6029   | 2529       |
| Function                                                                       | Matched length (a.a.) | Similarly (%) | Identity<br>(%) | Homologous gene                               | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | ( NO O | SEQ<br>SEQ |
|                                                                                |                       |               |                 | Table 1 (continued)                           |                |             |               |                 |        |            |

**EP 1 108 790 A2** 

ç

SI

Œ

æ

05

**S**\*

**0**>

Æ

Œ

52

50

SI

01

£

|                                                                  |                       |           |                 |                                               |                    |             |               |                 |                 | ļ         |
|------------------------------------------------------------------|-----------------------|-----------|-----------------|-----------------------------------------------|--------------------|-------------|---------------|-----------------|-----------------|-----------|
| GTP-binding protein                                              | 603                   | 83.6      | 58.7            | Bacillus subtilis 168 lepA                    | 1845 sp LEPA_BACSU | 1845        | 2482548       | 2484392         | 6067            | 2567      |
| extensin I                                                       | 46                    | 73.0      | 63.0            | Lycopersicon esculentum (tomato)              | PRF:1806416A       | 243         | 2484087       | 2483845         | 6066            | 2566      |
| C4-dicarboxylate-binding periplasmic protein precursor           | 227                   | 59 0      | 28 2            | Rhodobacler capsulatus B10 dctP               | SP DCTP_RHOCA      | 747         | 2481734       | 2482480         | 6065            | 2565      |
| small integral C4-dicarboxylate membrane transport protein       | 118                   | 73.7      | 33.9            | Klebsielle pneumoniae dctQ                    | gp:AF186091_1      | 480         | 2481213       | 2481692         | 6064            | 2564      |
| membrane transport protein                                       | 448                   | 71.9      | 34 8            | Rhodobacter capsulatus dctM                   | prf 2320266C       | 1311        | 2479898       | 2481208         | 6063            | 2563      |
|                                                                  |                       |           |                 |                                               |                    | 384         | 2479762       | 2479379         | 6062            | 2562      |
|                                                                  |                       |           |                 |                                               |                    | 1608        | 2479251       | 2477844         | 6061            | 2561      |
|                                                                  |                       |           |                 |                                               |                    | 998         | 2477482       | 2476497         | 6060            | 2560      |
| glycine betains transporter                                      | 601                   | 71.7      | 39.8            | Corynebacterium glutamicum<br>ATCC 13032 betP | sp BETP_CORGL      | 1890        | 2475542       | 2473653         | 6059            | 2559      |
| hypothetical protein                                             | 197                   | 65.5      | 42.6            | Mycobacteriophage D29 66                      | sp:VG66_BPMD       | 588         | 2472893       | 2473480         | 6058            | 2558      |
| thismine biosynthesis protein x                                  | 133                   | 100.0     | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 thiX | sp:THIX_CORGL      | 570         | 2472819       | 2472250         | 8057            | 2557      |
|                                                                  |                       |           |                 |                                               |                    | 366         | 2470678       | 2470313         | 6056            | 2556      |
| apospory-associated protein C                                    | 295                   | 51.2      | 28.5            | Chlamydomonas reinhardtii                     | gp:AF195243_1      | 846         | 2467922       | 2467077         | 6055            | 2555      |
| sodium-dependent transporter or odium Bite acid symporter family | 284                   | 61.6      | 31.3            | Homo sapiens                                  | sp:NTCI_HUMAN      | 972         | 2466038       | 2467009         | 6054            | 2554      |
|                                                                  |                       |           |                 |                                               |                    | 303         | 2465465       | 2465767         | 6053            | 2553      |
| hypothetical membrane protein                                    | 466                   | 84.6      | 39.9            | Streptomyces coelicolor A3(2)<br>SCM2.16c     | gp:SCM2_16         | 1425        | 2465768       | 2464344         | 6052            | 2552      |
| ribose kinase                                                    | 300                   | 65 0      | 410             | Rhizoblum etil rbsK                           | prt:2514301A       | 903         | 2464143       | 2463241         | 6051            | 2551      |
| hypothetical protein                                             | 157                   | 58.0      | 29 3            | Aquifex seolicus VF5 sq_768                   | plr:D70367         | 549         | 2462602       | 2463150         | 8050            | 2550      |
| hypothetical protein                                             | 106                   | 44.0      | 35.0            | Aeropyrum pernix K1 APE1580                   | PIR: G72536        | 507         | 2461543       | 2462049         | 6049            | 2549      |
| Function                                                         | Matched length (a.a.) | Similarit | identity<br>(%) | Homologous gene                               | db Maich           | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO<br>NO<br>SEQ | SEQ<br>NO |
|                                                                  |                       |           |                 | Table 1 (continued)                           |                    |             |               |                 |                 |           |

| _                          | 2582                            | :                         | 2581                      |                            | 2580    | 2579                                        | 2578                                        | 2577                                     | 2576                                         | 2575    | 2574                                                          | 2573 (                                                        | 2572 6                                      | 75/1                                       | _       |                           |                                                     | <del>_                                    </del>                                            |
|----------------------------|---------------------------------|---------------------------|---------------------------|----------------------------|---------|---------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------------------|---------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|--------------------------------------------|---------|---------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| _                          | 6082                            | 1                         | 6081 2                    |                            | 6080 2  | 6079 2                                      | 6078 2                                      | 6077 2                                   | 6076 2                                       | 6075 2  | 6074 2                                                        | 6073 2                                                        | 6072 2                                      |                                            | 6071 2  |                           | <del></del>                                         | <del></del>                                                                                 |
|                            | 2496607                         |                           | 2495634                   |                            | 2494237 | 2493178                                     | 2492343                                     | 2491858                                  | 2491111                                      | 2490911 | 2490154                                                       | 2489450                                                       | 2487884                                     |                                            | 2486881 | 2486469                   | 2485473<br>2486469<br>2486881                       | 2484661<br>2485473<br>2486469<br>2486881                                                    |
|                            | 2495698                         |                           | 2494339                   |                            | 2493215 | 2492501                                     | 2491873                                     | 2491151                                  | 2490290                                      | 2491732 | 2489573                                                       | 2487912                                                       | 2486910                                     | 24864//                                    |         | 2485801                   | 2485733<br>2485801                                  | 2485269<br>2485733<br>2485801                                                               |
|                            | 912                             |                           | 1296                      |                            | 1023    | 678                                         | 471                                         | 708                                      | 822                                          | 822     | 582                                                           | 1539                                                          | 975                                         | 405                                        |         | 669                       | 281                                                 | 609<br>261<br>669                                                                           |
|                            | SP YPRA CORGL                   |                           | sp.PROA_CORGL             |                            |         | 9p SCC123_17                                | pir.G70685                                  | pir:F70685                               | gp:SCC123_7                                  |         | sp.CME1_BACSU                                                 | sp.CME3_BACSU                                                 | pir.H70684                                  | gp:SC6D7_25                                |         | SP.RHTC_ECOLI             | SP.RSZO_ECOLI                                       | pir.H70683 sp.RSZ0_ECOLI sp.RHTC_ECOLI                                                      |
|                            | Corynebacterium glutamicum      |                           | ATCC 17965 proA           | Cownebacterium oli damicum |         | Streptomyces coelicolor A3(2)<br>SCC123.17c | Mycobacterium tuberculosis<br>H37Rv Rv2420c | Mycobacterium tuberculosis H37Rv Rv2419c | Streptomyces coelicolor A3(2)<br>SCC 123.07c |         | Bacillus subtilis 168 comEA                                   | Bacillus subtilis 168 comEC                                   | Mycobacterium tuberculosis<br>H37Rv Rv2413c | Streptomyces coelicolor A3(2)<br>SC6D7.25. |         | Escherichia coli K12 rhtC | Escherichia coli K12 rpsT Escherichia coli K12 rhtC | Mycobacterium tuberculosis H37Rv Rv2405 Escherichia coli K12 rpsT Escherichia coli K12 rhtC |
|                            | 99.3                            | +                         | 99.1                      |                            |         | 68.0                                        | 55 6                                        | 46.8                                     | 34.8                                         |         | 30.8                                                          | 21.4                                                          | 46.0                                        | 61.2                                       |         | 30.0                      | 30.0                                                | 41.6<br>48.2<br>30.0                                                                        |
|                            | 100                             |                           | 99.8                      |                            |         | 85.3                                        | 86.3                                        | 66.4                                     | 66.3                                         |         | 63.6                                                          | 49.7                                                          | 74.                                         | 80.6                                       |         | 67.1                      | 72.8<br>67.1                                        | 69.7<br>72.8<br>67.1                                                                        |
|                            | 304                             |                           | 432                       |                            |         | 197                                         | 117                                         | 235                                      | 273                                          |         | 195                                                           | 527                                                           | 313                                         | 129                                        |         | 210                       | 85<br>210                                           | 185<br>85<br>210                                                                            |
| semisidehyde dehydrogenase | D-Isomer specific 2-hydroxyacid | serileidenyde denydrogene | reductase or glutamate-5- | gamma-glutamyl phosphate   |         | hypothetical protein                        | hypothetical protein                        | phosphoglycerate mutase                  | hypothetical protein                         |         | late competence operon required for<br>DNA binding and uptake | late competence operon required for<br>DNA binding and uptake | hypothetical protein                        | ankyrin-like protein                       |         | thrreonine efflux protein | 303 ribasomal protein S20 threonine efflux protein  | hypothetical protein 30S ribasomal protein S20 thrreonine efflux protein                    |

09

**S**\*

æ

Œ

SZ

50

SI

10

s

|                                          |                |                  |                 |                                             |                |      |                  |                 | !    |            |
|------------------------------------------|----------------|------------------|-----------------|---------------------------------------------|----------------|------|------------------|-----------------|------|------------|
| hypothetical protein                     | 118            | 68.6             | 33.9            | Mycobacterium tuberculosis H37Rv Rv2448c    | pir.E70863     | 423  | 2513692          | 2514114         | 6103 | 2603       |
| hypothetical protein                     | 112            | 64.3             | 36.6            | Mycobacterium tuberculosis<br>H37Rv Rv1883c | pir:H70515     | 465  | 2513154          | 2513618         | 6102 | 2602       |
| hypothetical protein                     | 92             | 67.4             | 34.8            | Deinococcus radiodurans R1 DR1844           | gp:AE002024_10 | 342  | 2513144          | 2512803         | 6101 | 2601       |
|                                          |                |                  |                 |                                             |                | 360  | 2512409          | 2512768         | 6100 | 2600       |
| nucleoside diphosphate knase             | 134            | 89.6             | 70.9            | Mycobacterium smegmatts ndk                 | gp:AF069544_1  | 408  | 2511949          | 2512356         | 6099 | 2599       |
| hypothetical protein                     | 143            | 67.8             | 37.8            | Streptomyces coelicolor A3(2)<br>SCF76 09   | gp:SCF76_9     | 450  | 2511876          | 2511427         | 6098 | 2598       |
| hypothetical protein                     | 117            | 76.9             | 51.3            | Streptomyces coelicolor A3(2)<br>SCF76.08c  | gp:SCF76_8     | 378  | 2511423          | 2511046         | 6097 | 2597       |
| transposase (insertion sequence IS31831) | 436            | 100              | 99.1            | Corynebacterium glutamicum<br>ATCC 31831    | pir:S43613     | 1308 | 2509523          | 2510830         | 6096 | 2596       |
| hypothetical protein                     | 185            | 82 6             | 61.0            | Streptomyces coelicolor A3(2)<br>SCF76.08c  | gp:SCF76_6     | 809  | 2509530          | 2508922         | 6095 | 2595       |
|                                          |                |                  |                 |                                             |                | 747  | 2508840          | 2508094         | 8094 | 2594       |
|                                          |                |                  |                 |                                             |                | 573  | 2507710          | 2507138         | 6093 | 2593       |
|                                          |                |                  |                 |                                             |                | 549  | 2507663          | 2507115         | 6092 | 2592       |
| ribonuclease E                           | 886            | 9.85             | 30.1            | Escherichia coli K12 rne                    | sp RNE_ECOLI   | 2268 | 2504831          | 2507098         | 6091 | 2591       |
| 50S ribosomel protein L21                | 101            | 82.2             | <b>56.</b>      | Streptomycas griseus IFO13189 obg           | рп:2304263А    | 303  | 2504300          | 2504602         | 6090 | 2590       |
| 50S ribosomal protein L27                | 81             | 92.6             | 80 3            | Streptomyces griseus IFO13189 rpmA          | sp:RL27_STRGR  | 264  | 2503984          | 2504247         | 8089 | 2589       |
|                                          |                |                  |                 |                                             |                | 396  | 2504265          | 2503870         | 6088 | 2588       |
|                                          |                |                  |                 |                                             |                | 621  | 2503355          | 2502735         | 6087 | 2587       |
| 2,5-diketo-D-gluconic acid reductase     | 276            | 81.9             | 61.2            | Corynebacterium sp. ATCC 31090              | pir 140838     | 843  | 2501735          | 2502577         | 6086 | 2586       |
| xanthine permesse                        | 422            | 77.3             | 39.1            | Bacillus subtills 168 pbuX                  | sp.PBUX_BACSU  | 1887 | 2501669          | 2499783         | 6085 | 2585       |
| Function                                 | Matched length | Similarly<br>(%) | Identity<br>(%) | Homologous gene                             | db Match       | () 유 | Terminal<br>(nt) | Initial<br>(nt) | SEQ  | SEQ<br>SEQ |
|                                          |                |                  |                 | Table 1 (continued)                         |                |      |                  |                 |      |            |

*09* 

**S**\*

32

Œ

52

50

SI

| transferase alpha subunit                                  | 251                   | 84             | 60.2       | Streptomyces sp. 2065 pcal                 | gp:AF109386_1  | 750  | 2532604       | 2533353 | 6122        | 2622       |
|------------------------------------------------------------|-----------------------|----------------|------------|--------------------------------------------|----------------|------|---------------|---------|-------------|------------|
| transferase beta subunit                                   | 210                   | 85             | 63.3       | Streptomyces sp. 2065 pceJ                 | gp:AF109386_2  | 633  | 2531969       | 2532601 | 6121        | 2621       |
| hypothetical protein                                       | 366                   | 73.            | 45.8       | Streptomyces coelicolor A3(2)<br>SCF55.28c | gp SCF55_28    | 1086 | 2531976       | 2530891 | 6120        | 2620       |
| class-III heat-shock protein or ATP-<br>dependent protease | 430                   | 85             | 59.0       | Bacillus subtilis clpX                     |                | 1278 | 2529484       |         | 6119        | 2619       |
| maionate transporter                                       | 286                   | 58.            | 28.0       | Klebsiella pneumoniae mdcF                 | gp:KPU95087_7  | 930  | 2528551       | 2529480 | 6118        | 2618       |
| transport protein                                          | 444                   | 76.            | 40.8       | Acinetobacter sp. vanK                     | prf.2513418G   | 1425 | 2528559       | 2527135 | 6117        | 2617       |
| monooxygenase reductase                                    | 338                   | 5 <u>0</u>     | 32.8       | Sphingomonas flava ATCC<br>39723 pcpD      | gp:FSU12290_2  | 975  | 2527207       | 2526233 | 6116        | 2616       |
| vanillate demethylase (oxygenase)                          | 357                   | 68.            | 39.5       | Acinetobacter sp. vanA                     | prf.2513416F   | 1128 | 2526226       | 2525099 | 6115        | 2615       |
| hypothetical protein                                       | 208                   | 51.            | 26.0       | Vibrio cholerae aphA                       | gp AF065442_1  | 578  | 2524340       | 2524915 | 8114        | 2614       |
| transcriptional regulator                                  | 207                   | 56             | 24.6       | Streptomyces coelicolor A3(2)<br>SC4A10.33 | gp:SC4A10_33   | 777  | 2524337       | 2523561 | 6113        | 2613       |
| malate dehydrogenase                                       | 319                   | 76             | 56 4       | Thermus aquaticus ATCC 33923 mdh           | sp MDH_THEFL   | 984  | 2522265       | 2523248 | 8112        | 2612       |
| lysine decarboxylase                                       | 170                   | 71.            | 42.9       | Eikenella corrodens ATCC<br>23824          | gp:ECU89166_1  | 585  | 2521667       | 2522251 | 6111        | 2611       |
| heat shock protein dnaK                                    | 508                   | 54             | 26.2       | Bacillus subtills 168 dnaK                 | SP: DNAK_BACSU | 1452 | 2521660       | 2520209 | 6110        | 2610       |
| substrate-binding protein                                  | 521                   | 58.5           | 24.2       | Bacilius subtilis 168 oppA                 | pir:A38447     | 1575 | 2518398       | 2519972 | 6109        | 2609       |
| Valyi-IRNA synthetase                                      | 915                   | 72             | 45.5       | Bacillus subtills 168 baiS                 | sp:SYV_BACSU   | 2700 | 2515637       | 2518336 | 6108        | 2608       |
|                                                            |                       | _              |            |                                            |                | 663  | 2517751       | 2517089 | 6107        | 2607       |
|                                                            |                       | -              |            |                                            |                | 714  | 2516956       | 2516243 | 6106        | 2606       |
|                                                            |                       | 1              |            |                                            |                | 612  | 2516273       | 2515662 | 6105        | 2605       |
| folyl-polyglutamate synthetase                             | 451                   | 79.6           | 55.4       | Streptomyces caelicolor A3(2) folC         | рп 2410252В    | 1374 | 2514114       | 2515487 | <del></del> |            |
| Function                                                   | Matched length (a.a.) | Similality (%) | Identity S | Homologous gene                            | db Match       | (bp) | Terminal (nt) | (nt)    | NO SEO      | SEO<br>NO. |
|                                                            |                       | ļ              |            | Table 1 (continued)                        |                |      |               |         |             |            |

*0*9

97

0>

æ

SZ

so

٤ı

10

ç

Ź.

|                                                                               |                       |           |                 |                                            | !             |             | :             | 1               | :      | :    |
|-------------------------------------------------------------------------------|-----------------------|-----------|-----------------|--------------------------------------------|---------------|-------------|---------------|-----------------|--------|------|
| toluate 1,2 dloxygenase subunit                                               | 437                   | 85.6      | 62.2            | Pseudomonas putida plasmid pDK1 xylX       | gp:AF134348_1 | 1470        | 2546784       | 2545315         | 6140   | 2640 |
|                                                                               |                       |           |                 |                                            |               | 14.1        | 2544928       | 2545068         | 6139   | 2639 |
| catechol 1,2-dioxygenase                                                      | 285                   | 88.4      | 72.3            | Rhodococcus rhodochrous catA               | prf.2503218A  | 855         | 2544022       | 2544876         | 6138   | 2638 |
|                                                                               |                       |           |                 |                                            |               | 506         | 2544867       | 2544262         | 6137   | 2637 |
| muconate cyclolsomerase                                                       | 372                   | 84.7      | 8 00            | Rhodococcus opacus 1CP catB                | SP CATB_RHOOP | 1119        | 2542818       | 2543936         | 6136   | 2636 |
|                                                                               |                       |           |                 |                                            |               | 771         | 2543813       | 2543043         | 6135   | 2635 |
| muconolactona isomerase                                                       | 92                    | 81.5      | 2.              | Mycobacterium tuberculosis catC            | prf 2515333B  | 291         | 2542512       | 2542802         | 6134   | 2634 |
| hypothetical protein                                                          | 273                   | 48 7      | 26.4            | Mycobacterium tuberculosis<br>H37Rv Rv0336 | pir:G70506    | 1164        | 2541187       | 2542350         | 6133   | 2633 |
| protocatechuate dioxygenase beta subunit                                      | 217                   | 91.2      | 74.7            | Rhodococcus opacus pcaH                    | prf 2408324B  | 690         | 2540335       | 2541024         | 6132   | 2632 |
| protocetechuste dioxygenase alpha subunit                                     | 214                   | 70 6      | 49.5            | Rhodococcus opacus pcaG                    | prf.2408324C  | 612         | 2539709       | 2540320         | 6131   | 2631 |
| 3-carboxy-cis, cis-muconate cycloisomerase                                    | 437                   | 63.4      | 39.8            | Rhodococcus opacus pcaB                    | prf.2408324D  | 1116        | 2538616       |                 | 6130   | 2630 |
|                                                                               |                       |           |                 |                                            |               | 676         | 2540230       | 2539553         | 6129   | 2629 |
| 3-oxoadipate enol-lactone hydrolase and 4-cerboxymuconolactone decarboxylase  | 115                   | 89.6      | 78.3            | Rhodococcus opacus pcal                    | prf.2408324E  | 366         | 2538248       | 2538613         | 6128   | 2628 |
| transcriptional regulator                                                     | 825                   | 43.0      | 23.6            | Streptomyces coelicolor A3(2)<br>SCM1.10   | gp:SCM1_10    | 2061        | 2538258       | 2536196         | 6127   | 2627 |
| 3-oxoadipate enoi-sectione nydrossee and 4-carboxymuconolactone decarboxylase | 256                   | 76.6      | 50.8            | Rhodococcus opacus pcal                    | prf:2408324E  | 753         | 2536182       | 2535430         | 6126   | 2626 |
|                                                                               |                       |           |                 |                                            |               | 912         | 2534257       | 2535168         | 6125   | 2625 |
| beta-ketothiolase                                                             | 406                   | 71.8      | 44.8            | Ralstonia eutropha bktB                    | prf 2411305D  | 1224        | 2535424       | 2534201         | 6124   |      |
| protocatechuate catabolic protein                                             | 251                   | 82.5      | 58.2            | Rhodococcus opacus 1CP pcaR                | prf:2408324F  | 792         | 2534182       | 2533391         | 6123   |      |
| Function                                                                      | Matched length (a.a.) | Similarit | Identity<br>(%) | Homologous gene                            | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO SEO | SEO  |
|                                                                               |                       |           |                 | Table 1 (continued)                        |               |             |               |                 |        |      |

57

0+

Æ

Œ

52

50

SI

01

| transposase                                                      | 75                         | 78.7          | 50.7            | Corynebacterium striatum ORF1             | prf.2513302C   | 264     | 2562078       | 2562341      | 6158 | 2658         |
|------------------------------------------------------------------|----------------------------|---------------|-----------------|-------------------------------------------|----------------|---------|---------------|--------------|------|--------------|
| hypothetical protein                                             | 35                         | 82.9          | 57.1            | Corynebacterium striatum ORF 1            | prf 2513302C   | 126     | 2581990       | 2562115      | 6157 | 2657         |
|                                                                  |                            |               |                 |                                           |                | 150     | 2562242       | 2562093      | 6156 | 2656         |
| transposase                                                      | 142                        | 73.2          | 54.2            | Corynebacterium striatum ORF 1            | prf.2513302C   | 438     | 2561483       | 2561920      | 6155 | 2655         |
|                                                                  |                            |               |                 |                                           |                | 249     | 2561363       | 2551115      | 6154 | 2654         |
| hypothetical protein                                             | 115                        | 58.3          | 27.8            | Mus musculus Moa1                         | prf 2301342A   | 456     | 2560586       | 2560131      | 6153 | 2653         |
| penicillin-binding protein                                       | 336                        | 50.9          | 25.3            | Nocardia lactamdurans LC411 pbp           | sp:PBP4_NOCLA  | 975     | 2560131       | 2559157      | 6152 | 2652         |
| hypothetical protein                                             | 160                        | 63            | 32.5            | Streptomyces coelicolor A3(2)<br>SCD25 17 | gp SCD25_17    | 495     | 2559103       | 2558609      | 6151 | 2651         |
| (chaperone protein)                                              | 417                        | 8             | 32.1            | Bacillus subtills 168 tig                 | sp:TIG_BACSU   | 1347    | 2556760       | 2558106      | 6150 | 2650         |
| hypothetical protein                                             | 42                         | 71.           | 42.9            | Sulfolobus islandicus ORF154              | gp.SIS243537_4 | 150     | 2556748       | 2556599      | 6149 | 2649         |
| ATP-dependent Clp protease proteolytic subunit 1                 | 198                        | 85.           | 62.1            | Streptomyces coelicolor M145 ctpP1        | gp:AF071885_1  | 603     | 2555978       | 2556580      | 6148 | 2648         |
| ATP-dependent Clp protesse proteolytic subunit 2                 | 197                        | 88.           | 69.5            | Streptomyces coelicolor M145 clpP2        | gp AF071885_2  | 624     | 2555317       | 2555940      | 6147 | 2647         |
| benzoate membrane transport protein                              | 388                        | 8             | 29.9            | Acinetobacter calcoaceticus benE          | sp.BENE_ACICA  | 1242    | 2555267       | 2554026      | 6146 | 2646         |
| transmembrane transport protein or 4-hydroxybenzoate transporter | 435                        | 84            | 31.3            | Acinetobacter calcoaceticus pcaK          | sp:PCAK_ACICA  | 1380    | 2553942       | 2552563      | 6145 | 2645         |
| regulator of LuxR family with ATP-<br>binding site               | 979                        | 48.0          | 23.3            | Rhodococcus erythropolis thcG             | gp REU95170_1  | 2685    | 2552455       | 2549771      | 8144 | 2644         |
| 1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase       | 277                        | 61            | 30.7            | Pseudomonas putida plasmid<br>pDK1 xyIL   | gp:AF134348_4  | 828     | 2549695       | 2548868      | 6143 | 2643         |
| toluate 1,2 dioxygenase subunit                                  | 342                        | 81.           | 51.5            | Pseudomonas putida plasmid pDK1 xylZ      | gp:AF134348_3  | 1536    | 2548868       | 2547333      | 6142 | 2642         |
| toluste 1,2 dioxygenase subunit                                  | 161                        | 83.           | 60.3            | Pseudomonas pulida plasmid pDK1 xylY      | gp:AF134348_2  | 492     | 2547318       | 2546827      | 6141 |              |
| Function                                                         | Matched<br>length<br>(8 &) | Similalty (%) | Identity<br>(%) | Homologous gene                           | db Match       | (b) ORF | Terminal (nt) | Initial (nt) | SEQ  | SEQ<br>(DNA) |
|                                                                  |                            |               |                 | Table 1 (continued)                       |                |         |               |              |      |              |
|                                                                  |                            |               |                 |                                           |                |         |               |              |      |              |

0⊊

**5**\*

0+

æ

Œ

52

oz

51

10

|                                          |                       |                  |                 |                                             |                | 3           | - :-          | 23024       |        | 20/3      |
|------------------------------------------|-----------------------|------------------|-----------------|---------------------------------------------|----------------|-------------|---------------|-------------|--------|-----------|
|                                          | -                     |                  |                 |                                             |                | 173         | 2580711       | -+          | _      | 7670      |
| nickel transport system permesse protein | 316                   | 62.0             | 33 2            | Escherichia coli K12 nikB                   | pir S47696     | 939         | 2579769       | 2580707     | 6178   | 2678      |
| permesse protein                         | 286                   | 73.8             | 38.8            | Bacillus firmus OF4 dppC                    | sp.DPPC_BACFI  | 882         | 2578879       | 2579760     | 6177   | 2677      |
| ABC transporter ATP-binding protein      | 538                   | 71.6             | 41.3            | Synechococcus elongatus                     | gp.SYOATPBP_2  | 1841        | 2517232       | 2578872     | 6176   | 2676      |
|                                          |                       |                  |                 |                                             |                | 1233        | 2575981       | 2577213     | 6175   | 2675      |
| multidrug resistance transporter         | 392                   | 47.7             | 25 8            | Listerla monocytogenes litB                 | gp LMAJ9627_3  | 1119        | 2574780       | 2575898     | 6174   | 2674      |
| phytoene synthase                        | 290                   | 58.6             | 31.4            | Streptomyces griseus JA3933 crtB            | sp:CRTB_STRGR  | 876         | 2573843       | 2574718     | 6173   | 2673      |
| phytoene dehydrogenase                   | 381                   | 63.8             | 31 2            | Myxococcus xanthus DK1050 carA2             | SP CRTJ_MYXXA  | 1206        | 2572659       | 2573864     | 6172   | 2672      |
|                                          |                       |                  |                 |                                             |                | 378         | 2573393       | 2573770     | 6171   | 2671      |
|                                          |                       |                  |                 |                                             |                | 171         | 2572807       | 2572977     | 6170   | 2670      |
| phytoene desaturase                      | 104                   | 817              | 61 5            | Brevibaderium linens ATCC<br>9175 crti      | gp AF139918_3  | 327         | 2572351       | 2572677     | 6169   | 2669      |
|                                          |                       |                  |                 |                                             |                | 156         | 2572348       | 2572193     | 6168   | 2668      |
|                                          |                       |                  |                 |                                             |                | 666         | 2572175       | 2571510     | 6167   | 2667      |
|                                          |                       |                  |                 |                                             |                | 1152        | 2570309       | 2571460     | 6166   | 2866      |
| hypothetical protein                     | 358                   | 58.1             | 25 1            | Borrella burgdorferi BB0852                 | pir:B70206     | 1083        | 2570283       | 2569211     | 6165   | 2665      |
| aminopeptidase N                         | 890                   | 70.5             | 47.5            | Streptomyces lividans pepN                  | SP: AMPN_STRLI | 2601        | 2568945       | 2566345     | 6164   | 2684      |
| hypothetical protein                     | 199                   | 80.9             | 56 B            | Mycobacterium tuberculosis<br>H37Rv Rv2466c | pir:A70866     | 609         | 2565623       | 2566231     | 6163   | 2663      |
| hypothetical protein                     | 248                   | 58.1             | 26 2            | Bacilius acidopullulyticus ORF2             | sp:YAMY_BACAD  | 696         | 2584550       | 2565245     | 6162   | 2862      |
| galactose-6-phosphate isomerase          | 140                   | 71.4             | 40.0            | Staphylococcus aureus NCTC<br>8325-4 fac8   | sp:LACB_STAAU  | 471         | 2563932       | 2564402     | 6161   | 2661      |
|                                          |                       |                  |                 |                                             |                | 885         | 2563847       | 2562963     | 8160   | 2660      |
|                                          | :<br>                 |                  |                 |                                             |                | 390         | 2562387       | 2562776     | 6159   |           |
| Function                                 | Matched length (a.a.) | Similar y<br>(%) | Identity<br>(%) | Homologous gene                             | db Match       | ORF<br>(bp) | Terminal (nt) | Indial (nt) | SEQ NO | SEQ<br>NO |
|                                          |                       |                  |                 | Table 1 (continued)                         |                |             |               |             |        |           |

05

æ

Œ

52

50

SI

|                                                                           |                       |                  |                 |                                               |               |             |               | -               | 3    |                  |
|---------------------------------------------------------------------------|-----------------------|------------------|-----------------|-----------------------------------------------|---------------|-------------|---------------|-----------------|------|------------------|
| alkaline phosphatase                                                      | 536                   | 52.6             | 28.0            | Bacillus subtilis phoB                        | pir.C69676    | 1419        | 2602879       | 2601461         | 6197 | 7697             |
| hypothetical membrane protein                                             | 700                   | 56.7             | 28.0            | Mycobacterium leprae o659                     | SP YOSL_MYCLE | 2103        | 2598662       | 2600764         | 6196 | 2696             |
| hypothetical protein                                                      | 172                   | 62.2             | 31.4            | Mycobacterium tuberculosis H37Rv Rv2478c      | pir E70867    | 615         | 2597869       | 2598483         | 6195 | 2695             |
| ABC transporter ATP-binding protein                                       | 563                   | 79.6             | 52.8            | Escherichia coli K12 yjiK                     | sp YJJK_ECOLI | 1668        | 2596048       | 2597715         | 6194 | 2694             |
|                                                                           | 55                    | 60.0             | 36.4            | Aeropyrum pernix K1 APE1182                   | pir.B72589    | 162         | 2595822       | 2595983         | 6193 | 2693             |
|                                                                           |                       |                  |                 |                                               |               | 621         | 2595188       | 2595808         | 6192 | 2692             |
| hypothetical protein                                                      | 127                   | 61.4             | 36.2            | Streptomyces coelicolor A3(2)<br>SC6D10.19c   | gp SC6D10_19  | 465         | 2594597       | 2595061         | 6191 | 2691             |
| hypothetical protein                                                      | 196                   | 68.9             | 37.8            | Mycobacterium tuberculosis<br>H37Rv Rv2474c   | pir.A70867    | 627         | 2593968       | 2594594         | 6190 | 2690             |
| chromate transport protein                                                | 396                   | 60.4             | 27.3            | Pseudomonas aeruginosa<br>Plasmid pUM505 chrA | sp CHRA_PSEAE | 1128        | 2593965       | 2592838         | 6189 | 2689             |
| globin                                                                    | 126                   | 77.0             | 53.2            | Mycobacterium leprae<br>MLCB1610 14c          | gp MLCB1610_9 | 393         | 2592794       | 2592402         | 6188 | 2688             |
| ABC transporter ATP-binding protein                                       | 238                   | 65.1             | 31.1            | Pseudomonas putida GM73<br>ttg2A              | gp_AF106002_1 | 792         | 2591574       | 2592365         | 6187 | 2687             |
| polypeptides predicted to be useful antigens for vaccines and diagnostics | 92                    | 47.0             | 38.0            | Neisseria meningitidis                        | GSP Y74375    | 441         | 2591137       | 2590697         | 6186 | 2686             |
| transcriptional regulator, TetR family                                    | 240                   | 55.0             | 26.7            | Streptomyces coelicolor actil                 | pir A40046    | 738         | 2590302       | 288988          | 6185 | 2685             |
| acetoacelyi CoA reductase                                                 | 235                   | 60.0             | 28.1            | Chromatium vinosum D phbB                     | sp.PHBB_CHRVI | 708         | 2588725       | 2589432         | 6184 | 2684             |
| hypothetical membrane protein                                             | 218                   | 79.4             | 49.1            | Mycobacterium tuberculosis<br>H37Rv Rv0364    | sp:YA26_MYCTU | 747         | 2588722       | 2587976         | 6183 | 2683             |
| hypothetical protein                                                      | 482                   | 47.9             | 25.1            | Mycobacterium tuberculosis H37Rv Rv1128c      | pir A70539    | 1584        | 2587763       | 2586180         | 6182 | 2682             |
| acetylornithine aminotransferase                                          | 43                    | 63.5             | 31 4            | Carynebacterium glutamicum<br>ATCC 13032 argD | sp:ARGD_CORGL | 1314        | 2585928       | 2584613         | 6181 | 2681             |
|                                                                           |                       |                  |                 |                                               |               | 1941        | 2584504       | 2582564         | 6180 | _                |
| Function                                                                  | Matched length (a.a.) | Similarly<br>(%) | identity<br>(%) | Homologous gene                               | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ  | SEQ<br>ON<br>OES |
|                                                                           |                       |                  |                 | Table 1 (continued)                           |               |             |               |                 |      |                  |

**5**\*

0+

æ

oε

52

so

SI

|                                                                                                                |                       |                  |            |                                            | 1             |         |                  | -               |       |            |
|----------------------------------------------------------------------------------------------------------------|-----------------------|------------------|------------|--------------------------------------------|---------------|---------|------------------|-----------------|-------|------------|
| oligoribonuclesse                                                                                              | 179                   | 78.8             | 48.0       | Escherichia coli K12 orn                   | sp:ORN ECOLI  | 657     | 2619538          | 2618882         | 6215  | 2715       |
| ketoacyl reductase                                                                                             | 258                   | 57.0             | 400        | Mycobacterium tuberculosis H37Rv Rv1544    | pir E70781    | 798     | 2618869          | 2618072         | 6214  | 2714       |
| glyoxylate-induced protein                                                                                     | 255                   | 60.4             | 11.2       | Escherichia noli K12 gip                   | sp:GIP_ECOLI  | 750     | 2617995          | 2617246         | 6213  | 2713       |
| hypothetical membrane protein                                                                                  | 412                   | 64.6             | 35.0       | Thermotoga maritima MSB8<br>TM0964         | pir A72312    | 1182    | 2615939          | 2617120         | 6212  | 2712       |
|                                                                                                                |                       |                  |            |                                            |               | 345     | 2615795          | 2615451         | 6211  | 2711       |
| circadian phase modifier                                                                                       | 183                   | 73.8             | 48.6       | Synechococcus sp PCC7942 cpmA              | prf 2513418A  | 762     | 2615410          | 2614649         | 6210  | 2710       |
| aldehyde dehydrogenase                                                                                         | 207                   | 89.4             | 67.2       | Rhodococcus rhodochrous plasmid pRTL1 orf5 | prf 2516398E  | 789     | 2614500          | 2613712         | 6209  | 2709       |
|                                                                                                                |                       |                  |            |                                            |               | 690     | 2613151          | 2612462         | 6208  | 2708       |
| dolichol phosphate mannose<br>synthese                                                                         | 154                   | 72.7             | 37.7       | Schizosaccharomyces pombe dpm1             | prf.2317468A  | 684     | 2610848          | 2611531         | 6207  | 2707       |
|                                                                                                                |                       |                  |            |                                            |               | 750     | 2612272          | 2611523         | 6206  | 2708       |
| ABC transporter ATP-binding protein (ABC-type sugar transport protein) or celloblose/maltose transport protein | 386                   | 79.8             | 59.1       | Streptomyces reticuli msiK                 | prt 2308358A  | 1128    | 2609512          | 2610839         | 6205  | 2705       |
|                                                                                                                |                       | _                |            |                                            |               | 1242    | 2608185          | 2609426         | 6204  | 2704       |
| mailose-binding protein                                                                                        | 462                   | 63.2             | 28.8       | Thermoznaerobacterium thermosul amyE       | prt 2206392C  | 1329    | 2606561          | 2607889         | 6203  | 2703       |
|                                                                                                                |                       |                  |            |                                            |               | 1674    | 2608117          | 2606444         | 6202  | 2702       |
| multiple sugar-binding transport system permesse protein                                                       | 292                   | 67.5             | 27.4       | Streptococcus mutans INGBRITT msmF         | SP MSMF_STRMU | 843     | 2605527          | 2606369         | 6201  | 2701       |
| multiple sugar-binding transport system permease protein                                                       | 279                   | 76.3             | 39.1       | Streptococcus mutans INGBRITT msmG         | sp:MSMG_STRMU | 912     | 2604609          | 2605520         | 6200  | 2700       |
|                                                                                                                |                       | _                |            |                                            |               | 639     | 2603945          | 2604583         | 6199  | 2699       |
|                                                                                                                |                       |                  | _          |                                            |               | 930     | 2605502          | 2604573         | 6198  |            |
| Function                                                                                                       | Matched length (a.a.) | Similarly<br>(%) | identity S | Homologous gene                            | db Match      | (b) ORF | Terminal<br>(nt) | Initial<br>(nt) | N SEO | SEQ<br>ONS |
|                                                                                                                |                       |                  |            | Table 1 (continued)                        |               |         |                  |                 |       |            |

09

0+

æ

Œ

52

50

£1

10

|                                                    |                       |                  |                 |                                                  |                |             |               |                 |            | ۱<br>: |
|----------------------------------------------------|-----------------------|------------------|-----------------|--------------------------------------------------|----------------|-------------|---------------|-----------------|------------|--------|
| family                                             | 114                   | 61.4             | 32.5            | Streptomyces coelicolor A3(2) SCI11.01c          | gp SCI11_1     | 636         | 2634751       | 2634116         | 6234       | 2734   |
| bacteriolerritin comigratory protein               | 141                   | 73.8             | 46.8            | Escherichia coll K12 bcp                         | sp:BCP_ECOLI   | 465         | 2634064       | 2633600         | 6233       | 2733   |
| hypothetical protein                               | 75                    | 80.0             | 42.7            | Mycobacterium tuberculosis<br>H37Rv Rv2520c      | pir E70870     | 273         | 2633146       | 2633418         | 6232       | 2732   |
| pyrazinamidase/nicotinamidase                      | 185                   | 746              | 48.1            | Mycobacterium avium pncA                         | prf.2324444A   | 558         | 2633100       | 2632543         | 6231       | 2731   |
| hypothetical protein                               | 291                   | 45.0             | 32.0            | Zea diploperennis perennial teosinte             | prf.1814452C   | 1197        | 2632466       | 2631270         | 6230       | 2730   |
|                                                    |                       |                  |                 |                                                  |                | 501         | 2631136       | 2630636         | 6229       | 2729   |
| uronate isomerase                                  | 335                   | 80.9             | 29.0            | Escherichia coli K12 uxaC                        | \$P.UXAC_ECOLI | 1554        | 2630479       | 2628926         | 6228       | 2728   |
|                                                    |                       |                  |                 |                                                  |                | 555         | 2628324       | 2628878         | 6227       | 2727   |
| sporulation-specific degradation regulator protein | 97                    | 72.2             | 42.3            | Becillus subtilis 168 degA                       | pir.A36940     | 477         | 2628852       | 2628376         | 6226       | 2726   |
| glutominase                                        | 358                   | 69.3             | 35.2            | Rattus norvegicus SPRAGUE-<br>DAWLEY KIDNEY      | sp.GLSK_RAT    | 1629        | 2626493       | 2628121         | 6225       | 2725   |
| transcriptional regulator                          | 131                   | 63.4             | 32.8            | Salmonella typhimurium KP1001 cytR               | gp:AF085239_1  | 453         | 2628376       | 2627824         | 6224       | 2724   |
|                                                    |                       |                  |                 |                                                  |                | 639         | 2625809       | 2626447         | 6223       | 2723   |
|                                                    |                       |                  |                 |                                                  |                | 207         | 2625806       | 2625600         | 6222       | 2722   |
| transposase (IS1207)                               | 436                   | 99.8             | 99.5            | Corynebacterium glutamicum<br>ATCC 21086         | gp.SCU53587_1  | 1308        | 2624051       | 2625358         | 6221       | 2721   |
|                                                    |                       |                  |                 |                                                  |                | 246         | 2624048       | 2623803         | 6220       | 2720   |
|                                                    |                       |                  |                 |                                                  |                | 150         | 2623621       | 2623770         | 6219       | 2719   |
|                                                    |                       |                  |                 |                                                  |                | 645         | 2623605       | 2622961         | 6218       | 2718   |
| lipoprotein                                        | 398                   | 71 9             | 48.5            | Mycobacterium tuberculosis<br>H37Rv Rv2518c lppS | pir:C70870     | 1209        | 2620973       | 2622181         | 6217       | 2717   |
| ferric enterochelin esterase                       | 454                   | 50.9             | 26.0            | Salmonella enterica iroD                         | prf 2409378A   | 1188        | 2619541       | 2820728         | 6216       | 2716   |
| Function                                           | Matched length (a.a.) | Similarit<br>(%) | Identity<br>(%) | Homologous gene                                  | db Malch       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO. | SEQ    |
|                                                    |                       |                  |                 | Table 1 (continued)                              |                |             |               |                 |            |        |

†

SI

ç

.

| aryisulfatase                          | 250                   | 74.4             | 46.0         | Mycobacterium leprae ats                                | SP Y030_MYCLE  | 765         | 2657736          | 2658500         | 6252       | 2752      |
|----------------------------------------|-----------------------|------------------|--------------|---------------------------------------------------------|----------------|-------------|------------------|-----------------|------------|-----------|
|                                        |                       |                  |              |                                                         |                | 660         | 2656974          | 2657633         | 6251       | 2751      |
| transposase (IS1628)                   | 175                   | 97.2             | 92.1         | Corynebacterium glutamicum<br>22243 R-plasmid pAG1 tnpB | gp.AF121000_8  | 534         | 2656985          | 2656452         | 6250       | 2750      |
| hypothetical membrane protein          | 428                   | 58.2             | 29.0         | Mycobacterium tubercutosis H37Rv SC8A6.09c              | SP. Y029_MYCTU | 1362        | 2654875          | 2658236         | 6249       | 2749      |
|                                        |                       |                  |              |                                                         |                | 582         | 2654079          | 2654660         | 6248       | 2748      |
|                                        |                       |                  |              |                                                         |                | 693         | 2653326          | 2654018         | 6247       | 2747      |
|                                        |                       |                  |              |                                                         |                | 246         | 2653009          | 2653254         | 6246       | 2746      |
| ribonuclease PH                        | 238                   | 81.4             | 60.2         | Pseudomonas aeruginosa<br>ATCC 15692 rph                | SP.RNPH_PSEAE  | 735         | 2652067          | 2652801         | 6245       | 2745      |
| hypothetical protein                   | 202                   | 76.7             | 55.0         | Mycobacterium tuberculosis H37Rv Rv1341                 | SP Y03Q_MYCTU  | 618         | 2651420          | 2652037         | 6244       | 2744      |
| hypothetical membrane protein          | 113                   | 69.0             | 37.2         | Mycobacterium leprae<br>B1549_F2_59                     | sp:Y076_MYCLE  | 354         | 2651339          | 2650986         | 6243       | 2743      |
| hypothetical membrane protein          | 112                   | 67.9             | 40.2         | Mycobacterium tuberculosis H37Rv Rv1343c                | SP Y077_MYCT   | 482         | 2650902          | 2650441         | 6242       | 2742      |
| peptidase                              | 230                   | 60.9             | 40.4         | Mycobacterium tuberculosis<br>H37Rv Rv0950c             | pir.D70716     | 815         | 2650164          | 2649550         | 6241       | 2741      |
| hypothetical protein                   | 404                   | 55.2             | 25.3         | Streptomyces coelicolor A3(2)<br>SC4A7.14               | gp:SC4A7_14    | 1182        | 2648235          | 2649416         | 62/10      | 2740      |
| fatty-acid synthase                    | 3029                  | 83.6             | 62.3         | Corynebacterium ammoniagenes fas                        | pir:S2047      | 8979        | 2638649          | 2647627         | 6239       | 2739      |
|                                        |                       |                  |              |                                                         |                | 414         | 2637240          | 2637653         | 6238       | 2738      |
| hypothetical membrane protein          | 113                   | 54.0             | 30.1         | Synechocystis sp. PCC6803                               | pir:S76537     | 324         | 2637168          | 2636845         | 6237       | 2737      |
| lincomycin resistance protein          | 473                   | 85 B             | 52.4         | Corynebacterium glutamicum<br>lmrB                      | gp:AF237667_1  | 1425        | 2635165          | 2636589         | 6236       | 2736      |
| phosphopantethiana protein transferase | 145                   | 75.9             | 56.6         | Corynebacterium ammoniagenes ATCC 6871 ppt1             | gp:BAY15081_1  | 405         | 2634747          | 2635151         | 6235       | 2735      |
| Function                               | Matched length (a.a.) | Similarty<br>(%) | identity (%) | Homologous gene                                         | db Match       | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ<br>OAS | SEQ<br>NO |
|                                        |                       |                  |              | Table 1 (continued)                                     |                |             |                  |                 |            |           |

05

**SÞ** 

01

38

Œ

SZ

30

eı

|                                                  |                       |           |                 | H3/RV RV3043C                                 |               |             |                  |                 |        |           |
|--------------------------------------------------|-----------------------|-----------|-----------------|-----------------------------------------------|---------------|-------------|------------------|-----------------|--------|-----------|
| cytochrome c oxidase chain i                     | 575                   | 74.4      | 46.8            | Mycobacterium tuberculosis                    | pir.D45335    | 1743        | 2671063          | 2672805         | 6269   | 2769      |
|                                                  |                       |           |                 |                                               |               | 1596        | 28/2/21          | 2671126         | 6268   | 2768      |
| phosphoserine phosphatase                        | 310                   | 61.0      | 38.7            | Escherichia coli K12 serB                     | sp SERB_ECOLI | 1017        | 2669557          | 2670573         | 6267   | 2767      |
| hypothetical protein                             | 222                   | 52.0      | 39.0            | Streptomyces coelicolor A3(2)<br>SC1B5.06c    | pir:T34684    | 723         | 2668839          | 2669561         | 6266   | 2766      |
| hypothetical membrane protein                    | 313                   | 60.1      | 29.7            | Mycobacterium tuberculosis<br>H37Rv Rv2560    | SP.YOAB_MYCTU | 891         | 2667870          | 2668760         | 6265   | 2765      |
| ATP-dependent helicase                           | 647                   | 53.3      | 25.2            | Escherichia coli dinG                         | prf. 1816252A | 1740        | 2667854          | 2666115         | 6264   | 2764      |
|                                                  |                       |           |                 |                                               |               | 306         | 2665992          | 2665687         | 6263   | 2763      |
| hypothetical protein                             | 428                   | 80.8      | 61.2            | Mycobacterium tuberculosis<br>H37Rv Rv1330c   | SP.Y03F_MYCTU | 1338        | 2665397          | 2664060         | 6262   | 2762      |
|                                                  | <del>!</del>          |           |                 |                                               |               | 624         | 2664060          | 2663437         | 6261   | 2761      |
| hypothetical protein                             | 105                   | 77.1      | 57.1            | Mycobacterium tuberculosis<br>H37Rv Rv1331    | SP YO3G_MYCTU | 300         | 2662883          | 2663182         | 6260   | 2760      |
| hypothetical protein                             | 200                   | 58.5      | 35.0            | Mycobacterium tuberculosis<br>H37Rv Rv1332    | SP YO3H_MYCTU | 537         | 2662331          | 2662867         | 6259   | 2759      |
| endo-type 6-aminohexanoste<br>oligomer hydrolase | 321                   | 58.3      | 30.2            | Flavobacterium sp. nylC                       | pir.A47039    | 960         | 2661417          | 2662376         | 6258   | 2758      |
|                                                  |                       |           |                 |                                               |               | 891         | 2662455          | 2661565         | 6257   | 2757      |
| hypothetical membrane protein                    | 25                    | 69.3      | 38.2            | Mycobacterium tuberculosis H37Rv Rv1337       | SP YO3M_MYCTU | 747         | 2660671          | 2661417         | 6256   | 2756      |
| bacterial regulatory protein, marR family        | 147                   | 70.8      | 44.2            | Streptomyces coelicolor A3(2)<br>SCE22.22     | gp SCE22_22   | 492         | 2660147          | 2660638         | 6255   | 2755      |
|                                                  |                       |           |                 |                                               |               | 636         | 2660131          | 2659498         | 6254   | 2754      |
| D-glutamate racemase                             | 284                   | 99.3      | 99.3            | Corynebacterium glutamicum<br>ATCC 13869 murt | pri:2516259A  | 852         | 2658608          | 2659457         | 6253   |           |
| Function                                         | Matched length (a.a.) | Similar y | Identity<br>(%) | Homologous gene                               | db Maich      | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | NO SEQ | SEO<br>NO |
|                                                  |                       |           |                 | Table 1 (continued)                           |               |             |                  |                 |        |           |

†

\*

Œ

so

SI

|                                                         |                 |                   |                 |                                               |                |             | -                |           | -         |      |
|---------------------------------------------------------|-----------------|-------------------|-----------------|-----------------------------------------------|----------------|-------------|------------------|-----------|-----------|------|
| phosphoglacomulase                                      | 280             | 80.6              | 61.7            | Escherichia coll K12 pgm                      | SP PGMU_ECOLI  | 1662        | 2688389          | 9 2690050 | 6289      | 2789 |
|                                                         | -               |                   |                 |                                               |                | 792         | 2687449          | 8 2688240 | 6288      | 2788 |
| nyponiance: process                                     | - 203           | 00.4              | 33.0            | Arabidopsis thaliana T6K22.50                 | plr.T05174     | 834         | 2687148          | 7 2686315 | 6287      | 2787 |
| hundrhating protein                                     | 38.             | 200               | 3               |                                               |                |             |                  |           |           | 2700 |
| Bacillus subtills mmg (for mother cell metabolic genes) | 459             | 56.0              | 27.0            | Bacillus subtilis 168 mmgE                    | SP MMGE BACSU  | 1371        | 2686289          | 2684919   | SOP I     | 2786 |
| alcohol dehydrogenase                                   | 337             | 52.8              | 26.1            | Bacilius stearothermophilus DSM 2334 adh      | sp.ADH2_BACST  | 1020        | 2883627          | 5 2684646 | 6285      | 2785 |
| hypothetical protein                                    | 9.6             | 68.8              | 41.7            | Mycobacterium tubercutosis<br>H37Rv Rv3129    | pir G70922     | 288         | 2683131          | 2683418   | 6284      | 2784 |
| hypothetical protein                                    | 257             | 56.4              | 30.7            | Synechocystis sp. PCC6803<br>sir1563          | pir S76790     | 747         | 2682379          | 2683125   | 6283      | 2783 |
|                                                         |                 |                   |                 |                                               |                | 498         | 2683616          | 2683119   | 6282      | 2782 |
|                                                         |                 |                   |                 |                                               |                | 93          | 2681464          | 2681556   | 6281      | 2781 |
| NH3-dependent NAU(*) symmeters                          | 8/2             | 78.1              | 55.6            | Bacillus subtills 168 nadE                    | sp NADE_BACSU  | 831         | 2682376          | 2681546   | 6280      | 2780 |
| SOO HOOSONIE PROCESS FOR                                | -               | 20                | 58.0            | Rickettsia prowazekii                         | SP.RL36_RICPR  | 141         | 2681223          | 2681363   | 6279      | 2779 |
|                                                         |                 | 5                 |                 |                                               |                | 315         | 2680784          | 2680470   | 6278      | 2778 |
| Chain                                                   | 707             | 100.0             | 9.99            | Corynebacterium girtamicum<br>ATCC 13032 nrdE | gp.AF112535_3  | 2121        | 2677478          | 2679598   | 6277      | 2777 |
| hypothetical memorana protein                           | 50              | 86.0              | 50.0            | Archaeoglobus fulgidus AF0251                 | pir:C69281     | 276         | 2676918          | 2677193   | 6276      | 2776 |
| cold shock protein TIR2 precursor                       | 124             | 62.1              | 24 2            | Saccharomyces cerevisiae YPH148 YOR010C TIR2  | sp:TIR2_YEAST  | 438         | 2677377          | 2676940   | 6275      | 2775 |
| diplheria toxin repressor                               | 225             | 60.4              | 27.6            | Corynebacterium glutamicum<br>ATCC 13869 dbcR | pir:140339     | 660         | 2676243          | 2676902   | 6274      | 2774 |
| sporulation transcription factor                        | 256             | 60.2              | 32.8            | Streptomyces coelicolor A3(2) whiH            | gp:SCA32WHIH_4 | 750         | 2676240          | 2675491   | 6273      | 2773 |
| ferritin                                                | 159             | 64.2              | 31.5            | Escherichia coli K12 finA                     | SP:FTNA_ECOLI  | 486         | 2675289          | 2674804   | 6272      | 2772 |
| ribonucieotide reductase bata-chain                     | 334             | 99.7              | 89.7            | Corynebacterium giutamicum<br>ATCC 13032 nrdF | gp:AF112536_1  | 1002        | 2673338          | 2674339   | 6271      |      |
| Function                                                | length<br>(a a) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                               | db Match       | ORF<br>(bp) | Terminal<br>(nt) | (nt)      | NO<br>SEQ | SEO  |
|                                                         |                 |                   |                 | Table 1 (continued)                           |                |             |                  |           |           |      |

| axidoreductase or dehydrogenase              | 196                         | 54.1          | 26.1            | Streptomyces callinus Tu 1892 ansG                                       | prf 2509388L Strept | 672 prf     | 2711308       | 2710637         | 6308 | 2808       |
|----------------------------------------------|-----------------------------|---------------|-----------------|--------------------------------------------------------------------------|---------------------|-------------|---------------|-----------------|------|------------|
|                                              |                             |               |                 |                                                                          |                     | 678         | 2710555       | 2709878         | 6307 | 2807       |
| hypothetical protein                         | 42                          | 75 0          | 71.0            | Chlamydia muridarum Nigg<br>TC0129                                       | PIR F81737 Ch       | 141 PIE     | 2704975       | 2704835         | 6306 | 2806       |
| hypothetical protein                         | 0.4                         | 67.0          | 60.0            | Chlamydophila pneumonlae<br>AR39 CP0987                                  | PIR.F81516 Ch       | 273 PIF     | 2704586       | 2704314         | 6305 | 2805       |
| ABC transporter ATP-binding protein          | 218                         | 79.8          | 45.4            | Staphylococcus aureus                                                    | SAU18641_2 Sta      | 708 gp      | 2702487       | 2703194         | 6304 | 2804       |
|                                              |                             |               |                 |                                                                          |                     | 891         | 2703356       | 2702466         | 6303 | 2803       |
| ABC transporter                              | 873                         | 0.69          | 33.0            | Streptomyces coelicolor A3(2)<br>SCE25.30                                | SCE25_30 Str        | 2541 gp     | 2699926 2     | 2702466         | 6302 | 2802       |
|                                              |                             |               |                 |                                                                          |                     | 693         | 2701612       | 2700920         | 6301 | 2801       |
| protein                                      | 438                         | 66.2          | 30.8            | Bacillus subtills 168                                                    | SP GLTT_BACCA Ba    | 1338 sp     | 2698194 1     | 2899531         | 6300 | 2800       |
|                                              |                             |               |                 |                                                                          |                     | 768         | 2697383       | 2698150         | 6299 | 2799       |
| transposase (IS1676)                         | 500                         | 46.6          | 24 6            | Rhodococcus erythropolis                                                 | gp.AF126281_1 Rh    | 1401 gp     | 2697212 1     | 2695812         | 6298 | 2798       |
|                                              |                             |               |                 | -                                                                        |                     | 447         | 2695320       | 2695766         | 6297 | 2797       |
|                                              |                             |               |                 |                                                                          |                     | 165         | 2695718       | 2695554         | 6296 | 2796       |
|                                              |                             |               |                 |                                                                          |                     | 354         | 2695279       | 2694926         | 6295 | 2795       |
| major secreted protein PS1 protein precursor | 355                         | 49.6          | 24 8            | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>17965 csp1 | ٣                   | 1620 sp     | 2694918 1     | 2693299         | 6294 | 2794       |
| transposase (IS1676)                         | 496                         | 48.0          | 24.2            | Rhodococcus erythropolis                                                 | gp:AF126281_1 Rhi   | 1365 gp     | 2693053 1     | 2691689         | 6293 | 2793       |
| hypothetical protein                         | 254                         | 79.1          | 51.2            | Bacillus subtilis 168 yest                                               | sp:YCSI_BACSU Bac   | 792 sp:     | 2691564       | 2690773         | 6292 | 2792       |
| hypothetical membrane protein                | 122                         | 61.5          | 25.4            | Helicobacter pylon J99 jhp1148                                           | pir:D71843 Hel      | 324 pir     | 2690760       | 2690437         | 6291 | 2791       |
| hypothetical membrane protein                | 84                          | 64.3          | 41.7            | Mycobacterium tuberculosis<br>H37Rv Rv3069                               | pir:F70650 Myi      | 288 pir     | 2690437       | 2690150         | 6290 | 2790       |
| Function                                     | Matched<br>length<br>(a.a.) | Similarly (%) | Identity<br>(%) | Homologous gene                                                          | db Malch            | ORF<br>(bp) | Terminal C    | Initial<br>(nt) | SEQ  | SEQ<br>NO  |
|                                              |                             |               |                 | Table 1 (continued)                                                      |                     |             |               |                 |      |            |
|                                              |                             |               |                 |                                                                          |                     |             |               | ,               |      | Ų.         |
| e<br>oi                                      | ei                          | 50            |                 | 90<br>92                                                                 | 9E                  |             | S <b>&gt;</b> | 0S              |      | <b>5</b> 5 |

05

**5**†

0+

æ

Œ

50

S1

|                            |                  |                   |                 |                                            |                |             | -                |                 | İ    |        |
|----------------------------|------------------|-------------------|-----------------|--------------------------------------------|----------------|-------------|------------------|-----------------|------|--------|
| transcriptional regulator  | 321              | 68.5              | 38.6            | Azospirillum brasilense ATCC 29145 ntrC    | sp:NIR3_AZOBR  | 1143        | 8 2732518        | 2731376         | 6327 | 2827   |
| transferase                | 501              | 77 8              | 47.9            | Clostridium kluyveri cat1 cat1             | sp.CAT1_CLOKL  | 1539        | 5 2729378        | 2730916         | 6326 | 2826   |
| auccinul CoA coenzyme A    |                  |                   |                 |                                            |                | 819         | 5 2728207        | 2729025         | 6325 | 2825   |
| Tallondin Yelle in Process | 210              | /1.0              | 28.0            | Streptomyces roseafulvus fine              | gp AF058302_5  | 735         | 3 2727399        | 2728133         | 6324 | 2824   |
|                            | 3                | 3                 | ;               |                                            |                | 360         | 2726786          | 2727145         | 6323 | 2823   |
| Successive Co.             | 400              | /30               | 39.8            | Bacillus subtilis 168 sucC                 | sp.SUCC_BACSU  | 1194        | 2725384          | 2726577         | 6322 | 2822   |
| hypothetical protein       | 75               | 330               | 120             | Aeropyrum pernix K1 APE1089                | PIR:F72706     | 225         | 2725843          | 2725619         | 6321 | 2821   |
| chain                      | 291              | 79 4              | 52 9            | SucD                                       | sp SUCD_COXBU  | 882         | 2724478          | 2725359         | 6320 | 2820   |
| hypothetical protein       | 83               | 65.1              | 36.1            | Deinococcus radiodurans R1                 | gp AE002024_10 | 286         | 2723770          | 2724057         | 6319 | 2819   |
| O-acetyiseine symmese      | 1/2              | 78.7              | 01.1            | Azotobacter vinelandii cysE2               | prf 2417357C   | 546         | 2723609          | 2723064         | 6318 | 2818   |
| Cysteria syllains          | 303              | 0.4               | 5/.1            | Bacillus subtills 168 cysK                 | SP CYSK_BACSU  | 924         | 2722857          | 2721934         | 6317 | 2817   |
|                            |                  |                   |                 |                                            |                | 408         | 2721295          | 2721702         | 6316 | 2816   |
| transcriptional regulator  | 281              | 69.0              | 45.9            | Streptomyces coelicolar A3(2)<br>SC2G5:15c | gp.SC2G5_15    | 843         | 2720385          | 2721227         | 6315 | 2815   |
| hypothetical protein       | 190              | 84.2              | 68.3            | Mycobacterium tuberculosis H37Rv Rv1314c   | SP Y02Y_MYCTU  | 570         | 2720319          | 2719750         | 6314 | 2814   |
| carboxyvinyltransferase    | 417              | 75.3              | 44.<br>8        | Acinetobacter calcoaceticus NCIB 8250 murA | sp MURA_ACICA  | 1254        | 2718436          | 2719689         | 6313 | 2813   |
|                            |                  |                   |                 |                                            |                | 195         | 2717893          | 2718187         | 6312 | 2812   |
| hypothetical protein       | \$               | 75.0              | 71.0            | Chlemydia muridarum Nigg<br>TC0129         | PIR-F81737     | 141         | 2713842          | 2713702         |      |        |
| hypothetical protein       | 84               | 86.0              | 61.0            | Chiamydia pneumoniae                       | GSP:Y35814     | 273         | 2713453          | 2713181         | 6310 | 2010   |
| methyltransferase          | <u> </u>         | 51.2              | 25.9            | Mycobacterium tuberculosis H37Rv Rv0089    | 1P. Y089_MYCTU | 525         | 2712374          | 2711850         |      |        |
| Function                   | length<br>(a.a.) | Similarit)<br>(%) | identity<br>(%) | Homologous gene                            | db Match       | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEO  | NO SEO |
|                            |                  |                   |                 | Table 1 (conlinued)                        |                |             |                  |                 |      |        |

| amidophosphoribosyl transferase                  | 482                         | 89.0             | 70.3            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purF | gp AB003158_4  | 1482        | 2746083       | 2747584         | 6342 | 2842      |
|--------------------------------------------------|-----------------------------|------------------|-----------------|---------------------------------------------------|----------------|-------------|---------------|-----------------|------|-----------|
| 5'-phosphoribosyl-5-aminolmidazole<br>synthetase | 347                         | 94.2             | 81.0            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purM | gp:AB003158_5  | 1074        | 2744881       | 2745954         | 6341 | 2841      |
| hypothetical protein                             | 58                          | 81.0             | 58.6            | Mycobacterium tuberculosis<br>H37Rv Rv0810c       | pir 870809     | 213         | 2744222       | 2744010         | 6340 | 2840      |
| hypothetical protein                             | 352                         | 79.0             | 58.5            | Corynebacterium<br>ammoniagenes ATCC 6872<br>ORF4 | gp:AB003158_6  | 1101        | 2743785       | 2742085         | 6339 | 2839      |
| branched-chain amino acid aminotransferasa       | 259                         | 56.0             | 28 6            | Salanum tuberosum BCAT2                           | gp AF193846_1  | 942         | 2741636       | 2742577         | 6338 | 2838      |
| hypothetical protein                             | 225                         | 74.2             | 44 9            | Mycobacterium tuberculosis<br>H37Rv Rv0813c       | pir E70809     | 687         | 2741358       | 2740870         | 6337 | 2837      |
| hypothetical protein                             | 344                         | 55.2             | 24.7            | Bacillus subtills 168 bmrU                        | SP: BMRU_BACSU | 1095        | 2739556       | 2740650         | 6336 | 2836      |
|                                                  |                             |                  |                 |                                                   |                | 783         | 2739553       | 2738771         | 6335 | 2835      |
| acetykransferase                                 | 315                         | 60.0             | 34.3            | Streptomyces coelicolor A3(2) SCD84.18c           | gp SCD84_18    | 876         | 2737836       | 2738711         | 6334 | 2834      |
| phosphale-binding protein S-3 precursor          | 369                         | 56.0             | 40.0            | Mycobacterium tuberculosis H37Rv phoS2            | pir H70583     | 1125        | 2736414       | 2737538         | 6333 | 2833      |
| phosphate ABC transport system permease protein  | 325                         | 78.5             | 50.2            | Mycobacterium tuberculosis H37Rv Rv0829 pstC2     | pir A70584     | 1014        | 2735202       | 2736215         | 6332 | 2832      |
| phosphale ABC transport system permease protein  | 292                         | 82.2             | 51.4            | Mycobacterium tuberculosis<br>H37Rv Rv0830 pstA1  | gp:MTPSTA1_1   | 921         | 2734264       | 2735184         | 6331 | 2831      |
| phosphate-specific transport component           | 255                         | 82.8             | 58.8            | Pseudomonas aeruginosa pstB                       | pir.S68595     | 897         | 2733455       | 2734351         | 6330 | 2830      |
| phosphate transport system regulatory protein    | 213                         | 81.7             | 46.5            | Mycobacterium tuberculosis H37Rv Rv0821c phoY-2   | pir:E70810     | 732         | 2733367       | 2732636         | 6229 | 2829      |
|                                                  |                             |                  |                 |                                                   |                | 807         | 2731424       | 2732230         | 6328 | 2828      |
| Function                                         | Matched<br>length<br>(a.a.) | Similarit<br>(%) | Identity<br>(%) | Homologous gene                                   | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ  | SEQ<br>NO |
|                                                  |                             |                  |                 | Table 1 (continued)                               |                |             |               |                 |      |           |

**55** 

38

Œ

52

so

SI

†

æ

Œ

SI

|                                                        |                       |                   |                 |                                                   | !              |      |               |                 |        |           |
|--------------------------------------------------------|-----------------------|-------------------|-----------------|---------------------------------------------------|----------------|------|---------------|-----------------|--------|-----------|
| dipeptidyl aminopeptidase                              | 697                   | 70.8              | 41.8            | Pseudomonas sp WO24 dapb1                         | prf:2408266A   | 2118 | 2759532       | 2761649         | 6357   | 2857      |
| C4-dicarboxylate transporter                           | 414                   | 81.6              | 49.0            | Salmonella typhimurium LT2 dctA                   | SP DCTA_SALTY  | 1338 | 2757863       | 2759200         | 6356   | 2856      |
| hypothetical protein                                   | 211                   | 68.7              | 37.4            | Mycobacterium tuberculosis<br>H37Rv Rv0784        | pir C70709     | 687  | 2757129       | 2757815         | 6355   | 2855      |
|                                                        |                       |                   |                 |                                                   |                | 278  | 2757126       | 2756851         | 6354   | 2854      |
| extracellular nuclease                                 | 965                   | 51.5              | 28.0            | Aeromonas hydrophila JMP636 nucH                  | prf 2216389A   | 2748 | 2756739       | 2753992         | 6353   | 2853      |
| gluthatione peroxidase                                 | 158                   | 77.9              | 46.2            | Lactococcus lactis gpo                            | pri 2420329A   | 477  | 2753328       | 2753804         | 6352   | 2852      |
|                                                        |                       |                   |                 |                                                   |                | 522  | 2753819       | 2753298         | 6351   | 2851      |
| hypothetical protein                                   | 79                    | 93.7              | 81.0            | Corynebacterium ammoniagenes ATCC 6872 purort     | gp AB003162_1  | 243  | 2752995       | 6350 2753237    | 6350   | 2850      |
| 5'-phosphoribosyl-N-<br>formylglycinamidine synthetase | 223                   | 93.3              | 80.3            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purQ | gp AB003162_2  | 669  | 2752327       | 2752995         | 6349   | 2849      |
|                                                        |                       |                   |                 |                                                   |                | 720  | 2753121       | 2752402         | 6348   | 2648      |
| 5'-phosphoribosyl-N-<br>formylglycinamidine synthetase | 763                   | 89 5              | 77.6            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purL | gp AB003162_3  | 2286 | 2750027       | 2752312         | 6347   | 2847      |
| hypothetical protein                                   | 42                    | 71 0              | 64.0            | Sulfolobus solfataricus                           | GP:SSU18930_21 | 186  | 2752103       | 2751918         | 6346   | 2846      |
| hypothetical membrane protein                          | 217                   | 87.1              | 67.7            | Corynebacterium ammonlagenes ATCC 6872 ORF1       | gp:AB003158_1  | 741  | 2749162       | 2749802         | 6345   | 2845      |
| hypothetical protein                                   | 315                   | 94.0              | 75.9            | Corynebacterium ammonlagenes ATCC 6872 ORF2       | gp:A8003158_2  | 1017 | 2749111       | 2748095         | 6344   | 2844      |
| hypothelical protein                                   | 124                   | 75.8              | 57.3            | Mycobacterium tuberculosis H37Rv Rv0807           | pir:H70536     | 375  | 2747683       | 2748057         | 6343   | 2843      |
| Function                                               | Matched length (a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                   | db Match       | (bp) | Terminal (nt) | Initial<br>(nt) | NO SEQ | SEQ<br>NO |
|                                                        |                       |                   |                 | Table 1 (continued)                               |                |      |               |                 |        |           |

54

Œ

Œ

52

so

SI

| metal-activated pyridoxal enzyme or low specificity D-Thr aldolase                                                  | 382                   | 53.8             | 30.9            | Arthrobacter sp. DK-38                                        | pri:2419350A       | 1140                                                                            | 2775740       | 2776879 | 6372  | 2872      |
|---------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------|---------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|---------------|---------|-------|-----------|
| transcriptional activator                                                                                           | 249                   | 69.5             | 37.4            | Streptomyces lividans tipA                                    | SP TIPA_STRLI      | 753                                                                             | 2774937       | 2/75689 | 6371  | 2871      |
| two-component system regulatory protein                                                                             | 231                   | 72.7             | 42.0            | Thermologa maritima drrA                                      | рл.2222216А        | 705                                                                             | 2774110       | 2774814 | 6370  | 2870      |
| two-component system sensor histidine kinase                                                                        | 335                   | 70.5             | 31.3            | Lactococcus lactis M71plasmid pND306                          | gp.AF049873_3      | 1455                                                                            | 2772644       | 2774098 | 6369  | 2869      |
| dethiobiotin synthelase                                                                                             | 224                   | 99.6             | 98.7            | Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD | sp.BIOD_CORGL      | 672                                                                             | 2772660       | 2771989 | 6368  | 2868      |
| adenosylmethionine-8-amino-7-<br>oxononanoate aminotransferase or<br>7,8-diaminopelargonic acid<br>aminotransferase | 423                   | 98.8             | 95.7            | Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bloA | 1269 sp BIOA_CORGL | 1269                                                                            | 2771982       | 2770714 | 6367  | 2867      |
| di-/tripeptide transpoter                                                                                           | 469                   | 67.6             | 30.1            | Lactococcus lactis subsp. lactis                              | SP.DTPT_LACLA      | 1356                                                                            | 2769156       | 2770511 | 6366  | 2866      |
| hypothetical protein                                                                                                | 243                   | 56.4             | 26.8            | Methanosarcina barkeri orf3                                   | pir:S62195         | 753                                                                             | 2768343       | 2769095 | 6365  | 2865      |
|                                                                                                                     |                       |                  |                 |                                                               |                    | 435                                                                             | 2767703       | 2768137 | 6364  | 2864      |
| histidine triad (HIT) family protein                                                                                | 136                   | 80.2             | 53.7            | Mycobacterium leprae ú296a                                    | SP. YHIT_MYCLE     | 414                                                                             | 2767993       | 2767580 | 6363  | 2863      |
| 5'-phosphoribosylglycinsmide<br>synthetase                                                                          | 425                   | 86.4             | 71.1            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purD             | gp:A8003161_1      | 1283                                                                            | 2766158       | 2767420 | 6362  | 2862      |
| aspartate aminotransferase                                                                                          | 395                   | 62.3             | 28.1            | Sulfolobus solfataricus ATCC 49255                            | SP:AAT_SULSO       | 1158                                                                            | 2764978       | 2766135 | 6361  | 2861      |
| adenylosuccino lyase                                                                                                | 477                   | 95.0             | 85 3            | Corynebacterium ammoniagenes ATCC 6872 purB                   | gp AB003161_2      | 1428                                                                            | 2763504       | 2764931 | 6360  | 2860      |
| 5'-phosphoribosyl-4-N-<br>succinocarboxemide-5-emino<br>imidazole synthetase                                        | 294                   | 89.1             | 70.1            | Corynebacterium<br>ammoniagenes ATCC 6872<br>purC             | 6_191E008∀.d6      | 891                                                                             | 2761785       | 2762675 | 6359  | 2859      |
|                                                                                                                     |                       |                  |                 |                                                               |                    | 624                                                                             | 2761829       | 2762452 | 6358  | 2858      |
| Function                                                                                                            | Matched length (s.a.) | Similarly<br>(%) | Identity<br>(%) | Homologous gene                                               | db Maich           | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | Terminal (nt) | (nt)    | N SEQ | SEQ<br>NO |
|                                                                                                                     |                       |                  |                 | Table 1 (continued)                                           |                    |                                                                                 |               |         |       |           |

97

32

Œ

52

50

SI

10

|                                          |                       |                  |                 |                                               |                |      |                  |                 |        | í    |
|------------------------------------------|-----------------------|------------------|-----------------|-----------------------------------------------|----------------|------|------------------|-----------------|--------|------|
| high-effinity zinc uptake system protein | 353                   | 46.7             | 22.4            | Haemophilus influenzae Rd<br>HI0119 znuA      | sp:ZNUA_HAEIN  | 942  | 2797806          | 2796865         | 6390   | 2890 |
| glucose-resistance amylase regulator     | 344                   | 60.2             | 24.7            | Bacillus megaterium ccpA                      | sp:CCPA_BACME  | 1074 | 2795676          | 2796749         | 6389   | 2889 |
| trehaiose-phosphatase                    | 245                   | 57.6             | 27.4            | Escherichia coll K12 otsB                     | SP.OTSB_ECOLI  | 768  | 2795637          | 2794870         | 6388   | 2866 |
|                                          |                       |                  |                 |                                               |                | 513  | 2794812          | 2794300         | 6387   | 2887 |
| trehalose-6-phosphate synthase           | 487                   | 66 7             | 38.8            | Schizosaccharomyces pombe tps1                | sp TPS1_SCHPO  | 1455 | 2794327          | 2792873         | 6386   | 2886 |
| transcription initiation factor sigma    | 155                   | 50.3             | 32.3            | Streptomyces griseus hrdB                     | pir.S41307     | 327  | 2792857          | 2792531         | 6385   | 2885 |
| hypothetical membrane protein            | 464                   | 64.0             | 36.0            | Mycobacterium tuberculosis<br>H37Rv Rv3737    | pir 870796     | 1503 | 2792448          | 2790946         | 6384   | 2884 |
| hypothetical protein                     | 140                   | 50.7             | 28.6            | Oryctolagus cuniculus kidney cortex rBAT      | pir A45264     | 399  | 2790550          | 2790152         | 6383   | 2883 |
|                                          |                       |                  |                 |                                               |                | 459  | 2789477          | 2789935         | 6382   | 2882 |
| hypothetical protein                     | 288                   | 55.0             | 26.7            | Bacillus subtilis 188 ykrA                    | pir C69862     | 813  | 2788587          | 2789399         | 6381   | 2881 |
| hypothetical protein                     | 278                   | 52.9             | 28.4            | Mycobacterium tuberculosis H37Rv Rv3298c ipqC | pir C70982     | 813  | 2788594          | 2787782         | 6380   | 2880 |
| transcriptional regulator, LysR family   | 232                   | 69.0             | 37.1            | Bacillus subtills 168 alsR                    | sp ALSR_BACSU  | 705  | 2785651          | 2786355         | 6379   | 2879 |
| 3-ketosteroid dehydrogenase              | 303                   | 62.1             | 34.3            | Rhadacaccus erythropolis SQ1 kstD1            | gp: AF096929_2 | 960  | 2784656          | 2785615         | 6378   | 2878 |
|                                          |                       |                  |                 |                                               |                | 2142 | 2782340          | 2784481         | 6377   | 2877 |
| hypothetical membrane protein            | 421                   | 78.4             | 45 0            | Mycobacterium tuberculosis H37Rv Rv2508c      | pir.D70551     | 1320 | 2782315          | 2780996         | 6376   | 2876 |
| transcriptional regulator                | 92                    | 68.5             | 30.4            | Escherichia coli K12 ycdC                     | SP YCDC_ECOLI  | 531  | 2780969          | 2780439         | 8375   | 2875 |
| multidrug efflux protein                 | 504                   | 68.9             | 33.3            | Staphylococcus aureus plasmid pSK23 qacB      | pri 2212334B   | 1482 | 2780448          | 2778965         | 6374   | 2874 |
| pyruvate oxidase                         | 574                   | 75 8             | 46 3            | Escherichia coli K12 poxB                     | gp ECOPOXB8G_  | 1737 | 2776768          | 2778504         | 6373   | 2873 |
| Function                                 | Matched length (a.m.) | Similariy<br>(%) | Identity<br>(%) | Homologous gene                               | db Match       | (bp) | Terminat<br>(nt) | Initial<br>(nt) | NO SEO | SEO  |
|                                          | 1                     |                  |                 | Table 1 (continued)                           |                |      |                  |                 |        |      |

\*

Œ

sz

SI

| N-acetyiglucosamine-6-phosphate deacetylase                                | 368                   | 60 3              | 30.2            | Vibrio furnissii SR1514 manD               | sp:NAGA_VIBFU | 1152        | 2814081          | 2815232         | 6407       | 2907      |
|----------------------------------------------------------------------------|-----------------------|-------------------|-----------------|--------------------------------------------|---------------|-------------|------------------|-----------------|------------|-----------|
| glucosamine-8-phosphate isomerase                                          | 248                   | 69 4              | 38.3            | Escherichia coli K12 nagB                  | sp.NAGB_ECOLI | 759         | 2813279          | 2814037         | 6406       | 2906      |
| sucrose 6-phosphate hydrolase or sucrase                                   | 473                   | 56 9              | 35.3            | Clostridium acetobutylicum ATCC 824 scrB   | gp AF205034_4 | 1299        | 2811980          | 2813258         | 6405       | 2905      |
| PTS system, enzyme il sucrose protein (sucrose-specific IIABC component)   | 668                   | 77.0              | 47.0            | Lactococcus lactis sacB                    | prt 2511335C  | 1983        | 2809824          | 2811806         | 6404       | 2904      |
| cysteinyl-tRNA synthetase                                                  | 464                   | 68 8              | 42.2            | Escherichia coll K12 cysS                  | sp:SYC_ECOLI  | 1380        | 2808399          | 2809778         | 6403       | 2903      |
| ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase              | 334                   | 47.3              | 22.8            | Saccharomyces cerevisiae YOR201C PET56     | sp:PT58_YEAST | 939         | 2807426          | 2808364         | 6402       | 2902      |
| transcriptional regulator                                                  | 212                   | 55.7              | 32.6            | Streptomyces coelicolor A3(2)<br>SC5A7 19c | gp.SC5A7_19   | 654         | 2806599          | 2807252         | 6401       | 2901      |
| shikimate transport protein                                                | 130                   | 80 8              | 43.1            | Escherichia coli K12 shiA                  | sp SHIA_ECOLI | 426         | 2806016          | 2806441         | 6400       | 2900      |
| shikimate transport protein                                                | 292                   | 67.5              | 30.5            | Escherichia coli K12 shIA                  | sp SHIA_ECOLI | 855         | 2805113          | 2805967         | 6399       | 2899      |
| dehydrogenase or myo-inositol 2-<br>dehydrogenase                          | 128                   | 69.5              | 35.2            | Bacilius subtilis 168 ldh or lolG          | sp MIZD_BACSU | 435         | 2804676          | 2805110         | 6398       | 2898      |
| lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase | 204                   | 56.4              | 34.3            | Thermotoga maritima MSB8<br>bpIA           | pir 872359    | 618         | 2804074          | 2804691         | 6397       | 2897      |
|                                                                            |                       |                   |                 |                                            |               | 747         | 2803250          | 2803996         | 6396       | 2896      |
| 3-ketosteroid dehydrogenase                                                | 561                   | 62 0              | 32.1            | Rhodococcus erythropolis SQ1 kstD1         | gp:AF096929_2 | 1689        | 2801558          | 2803246         | 6395       | 2895      |
|                                                                            |                       |                   |                 |                                            |               | 201         | 2801313          | 2801113         | 6394       | 2894      |
| transposase (ISA0963-5)                                                    | 303                   | 52 5              | 23.4            | Archaeoglobus fulgidus                     | pir A69426    | 1500        | 2801034          | 2799535         | 6393       | 2893      |
| hypothetical membrane protein                                              | 135                   | 87 4              | 60.0            | Mycobacterium tuberculosis H37Rv Rv2060    | pir E70507    | 555         | 2799391          | 2798837         | 6392       | 2892      |
| ABC transporter                                                            | 223                   | 63 2              | 31.4            | Staphylococcus aureus 8325-4 mreA          | gp:AF121672_2 | 690         | 2798509          | 2797820         | 6391       | 2891      |
| Function                                                                   | Matched length (a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                            | db Match      | ORF<br>(bp) | Terminal<br>(nt) | initial<br>(nt) | NEO<br>SEO | SEQ<br>NO |
|                                                                            |                       |                   |                 | Table 1 (continued)                        |               |             |                  |                 |            |           |

09

**5**\*

Œ

Œ

52

50

SI

01

2.**8**€0

|                                                                             |                            |                  |                 |                                                 |               |             |                  |                 |             | [           |
|-----------------------------------------------------------------------------|----------------------------|------------------|-----------------|-------------------------------------------------|---------------|-------------|------------------|-----------------|-------------|-------------|
| transcription factor                                                        | 157                        | 91.1             | 73.3            | Mycobacterium tuberculosis<br>H37Rv Rv3583c     | pir H70803    | 594         | 2829156          | 2829749         | 6423        | 2923        |
| hypothetical protein                                                        | 235                        | 71.5             | 48.4            | Mycobacterium tuberculosis<br>H37Rv Rv3582c     | SP Y18T_MYCTU | 768         | 2828379          | 2829146         | 6422        | 2922        |
| hypothetical protein                                                        | 152                        | 86.2             | 55.9            | Mycobacterium tuberculosis H37Rv Rv3581c        | pir C70607    | 480         | 2827904          | 2828383         | 6421        | 2921        |
|                                                                             |                            |                  |                 |                                                 |               | 360         | 2827458          | 2827817         | 6420        | 2920        |
| leucine-responsive regulatory protein                                       | 142                        | 06.2             | 31.0            | Bradyrhlzobium japonicum Irp                    | рп 2309303А   | 483         | 2827404          | 2826922         | 6419        | 2919        |
| homoserine/homoserin lactone<br>efflux protein or tysE type<br>translocator | 193                        | 62.7             | 28.5            | Escherichia coli K12 rhtB                       | SP RHTB_ECOLI | 621         | 2826215          | 2826835         | 6418        | 2918        |
| oligopeptide transport ATP-binding protein                                  | 258                        | 78.7             | 43.4            | Lactococcus lactis oppF                         | sp OPPF_LACLA | 816         | 2826156          | 2825341         | 6417        | 2917        |
| oilgopeptide transport ATP-binding protein                                  | 314                        | 78.3             | 46.5            | Bacillus subtilis 168 oppD                      | SP OPPD_BACSU | 1068        | 2825341          | 2824274         | 6416        | 2916        |
| dipeptide transport system permease protein                                 | 342                        | 64.3             | 31.9            | Bacillus firmus OF4 dappB                       | sp DPPB_BACFI | 951         | 2823337          | 2822387         | 0415        | 2915        |
| dipeptide transporter protein or<br>heme-binding protein                    | 560                        | 51.4             | 22.5            | Bacillus firmus OF4 dppA                        | gp:BFU64514_1 | 1608        | 2822191          | 2820584         | 6414        | 2914        |
| L-esparagine permease operon repressor                                      | 222                        | 57.2             | 26.6            | Rhizobium etil ansR                             | gp:AF181498_1 | 729         | 2819557          | 2820285         | 6413        | 2913        |
| sialidase precursor                                                         | 439                        | 50.3             | 24.8            | Micromonospora viridifaciens<br>ATCC 31146 nadA | sp:NANH_MICVI | 1215        | 2818350          | 2819564         | 6412        | 2912        |
|                                                                             |                            |                  |                 |                                                 |               | 111         | 2818137          | 2818313         | 8411        | 2911        |
| N-acetylmannosamine-6-phosphate epimerase                                   | 220                        | 0.8<br>0.        | 36.4            | Clostridium perfringens NCTC<br>8798 nanE       | pri 2518292A  | 969         | 2818058          | 2817363         | 6410        | 2910        |
| glucoxinase                                                                 | 321                        | 57.6             | 28.7            | Streptomyces coelicolor A3(2)<br>SC6E10 20c glk | sp:GLK_STRCO  | 606         | 2817317          | 2816409         | 6409        | 2909        |
| dihydrodipicolinate synthase                                                | 298                        | 62 1             | 28.2            | Escherichla coli K12 dapA                       | sp.DAPA_ECOLI | 936         | 2816393          | 2815458         | 6408        | 2908        |
| Function                                                                    | Matched<br>length<br>(a a) | Similarit<br>(%) | Identity<br>(%) | Homologous gene                                 | db Malch      | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ<br>OSEQ | SEQ<br>ONA) |
|                                                                             |                            |                  |                 | Table 1 (continued)                             |               |             |                  |                 |             |             |

EP 1 108 790 A2

\*

0+

SE

£

| virulence factor                             | 72                    | 55 0              | 54.0            | Pseudomonas aeruginosa<br>ORF25110               | GSP Y29193    | 213         | 2846101       | 2845889         | 6442      | 2942       |
|----------------------------------------------|-----------------------|-------------------|-----------------|--------------------------------------------------|---------------|-------------|---------------|-----------------|-----------|------------|
| virulence factor                             | 99                    | 63.0              | 57.0            | Pseudomonas aeruginosa<br>ORF24222               | GSP.Y29188    | 420         | 2845558       | 2845139         | 6441      | 2941       |
| hypothetical protein                         | 97                    | 69.1              | 48.5            | Mycobacterium tuberculosis<br>H37Rv Rv3592       | plr:E70552    | 291         | 2843432       | 2843722         | 6140      | 2940       |
|                                              |                       |                   |                 |                                                  |               | 312         | 2843716       | 2843405         | 6439      | 2939       |
|                                              |                       |                   | 1               |                                                  |               | 741         | 2843233       | 2842493         | 6438      | 2938       |
|                                              |                       |                   |                 |                                                  |               | 324         | 2842453       | 2842130         | 6437      | 2937       |
| L-2.3-butanediol dehydrogenase               | 258                   | 99.6              | 99.2            | Brevibacterium saccharolyticum                   | gp A8009078_1 | 774         | 2841848       | 2841075         | 6436      | 2936       |
|                                              |                       |                   |                 |                                                  |               | 306         | 2840758       | 2841063         | 6435      | 2935       |
|                                              |                       |                   |                 |                                                  |               | 1155        | 2840716       | 2839562         | 6434      | 2934       |
| A/G-specific adenine glycosylase             | 283                   | 70.7              | 48.4            | Streptomyces antibioticus IMRU 3720 mutY         | gp.AF121797_1 | 879         | 2839521       | 2838643         | 6433      | 2933       |
| mitochondrial carbonate dehydratase beta     | 210                   | 66.2              | 36.7            | Chlamydomonas reinhardlii ca 1                   | pir. T08204   | 621         | 2837956       | 2838576         | 6432      | 2932       |
|                                              |                       |                   |                 |                                                  |               | 147         | 2837591       | 2837737         | 6431      | 2931       |
| p-hydroxybenzaldehyde<br>dehydrogenase       | 471                   | 85.1              | 59.5            | Pseudomonas putida NCIMB<br>9866 plasmid pRA4000 | gp-PPU96338_1 | 1452        | 2836048       | 2837499         | 6430      | 2930       |
| hypothetical protein                         | 231                   | 53.3              | 29.4            | Mycobacterium tuberculosis<br>H37Rv Rv3587c      | pir D70804    | 687         | 2835283       | 2835969         | 6429      | 2929       |
| hypothetical protein                         | 345                   | 73.3              | 40.3            | Bacillus subtilis 168 yack                       | SP YACK_BACSU | 1098        | 2835285       | 2834188         | 6428      | 2928       |
| DNA repair protein RadA                      | 483                   | 74.3              | 41.5            | Escherichia coli K12 radA                        | sp:RADA_ECOLI | 1392        | 2834181       | 2832790         | 6427      | 2927       |
|                                              |                       |                   |                 |                                                  |               | 582         | 2832666       | 2832085         | 6426      | 2926       |
| two-component system sensor histidine kinase | 341                   | 67.7              | 29.3            | Escherichia coli K12 baeS                        | sp:BAES_ECOLI | 1116        | 2831894       | 2830779         | 6425      | 2925       |
| two-component system response regulator      | 223                   | 70 0              | 43 5            | Mycobacterium tuberculosis<br>H37Rv Rv3246c mtrA | pri.2214304A  | 723         | 2830779       | 2830057         | 6424      | 2924       |
| Function                                     | Matched length (a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                  | db Match      | ORF<br>(bp) | Terminal (nt) | initial<br>(nt) | SEQ<br>NO | SEQ<br>OAS |
|                                              |                       |                   |                 | Table 1 (continued)                              |               |             |               |                 |           |            |

şç

**5**\*

32

Œ

SZ

so

SI

10

|                                                                            | -                           |                  |                 |                                               | 80 COCCO      | 5           | 2003/31          | 1000007         | 040   | 06.7       |
|----------------------------------------------------------------------------|-----------------------------|------------------|-----------------|-----------------------------------------------|---------------|-------------|------------------|-----------------|-------|------------|
| dihydropteroate synthase                                                   | 268                         | 75.d             | 51.5            | Mycobacterium lenga folP                      | an ABDORAGE 1 | 837         | 7066711          |                 | 0 10  | 305        |
| dihydroneopterin aldolase                                                  | 118                         | 69.5             | 38.1            | Bacillus subtilis 168 folB                    | sp:FOLB_BACSU | 390         | 2865346          | 2865735         | 6460  | 2960       |
| 2-amino-4-hydroxy-8-<br>hydroxymethyldihydropteridine<br>pyrophosphokinase | 158                         | 69.0             | 42.4            | Methylobacterium extorquens<br>AM1 folk       | sp HPPK_METEX | 477         | 2864867          | 2865343         | 6459  | 2959       |
| hypothetical membrane protein                                              | 138                         | 69.0             | 29 0            | Mycobacterium leprae<br>MLCB2548 04c          | gp MLCB254B_4 | 465         | 2864384          | 2864848         | 6458  | 2958       |
|                                                                            |                             |                  |                 |                                               |               | 798         | 2863624          | 2864421         | 6457  | 2957       |
|                                                                            |                             |                  |                 |                                               |               | 693         | 2862929          | 2863621         | 6456  | 2956       |
| pentostebets-sisnine ligase                                                | 268                         | 52.6             | 29.9            | Corynebacterium glutamicum<br>ATCC 13032 panC | gp.CGPAN_2    | 798         | 2862132          | 2862929         | 6455  | 2955       |
| lysyl-tRNA synhetase                                                       | 511                         | 71.2             | 41.7            | Bacillus stearothermophilus lysS              | gp_AB012100_1 | 1578        | 2860505          | 2862082         | 6454  | 2954       |
| hypothetical protein                                                       | 240                         | 55.8             | 28.7            | Mycobacterium tuberculosis<br>H37Rv Rv3517    | pir G70807    | 951         | 2859195          | 2860145         | 6453  | 2953       |
| lincomycin resistance protein                                              | 48.1                        | 100 0            | 100.0           | Corynebacterium glutamicum<br>ImrB            | gp AF237867_1 | 1443        | 2857613          | 2659055         | 6452  | 2952       |
|                                                                            |                             |                  |                 |                                               |               | 162         | 2859205          | 2859044         | 6451  | 2951       |
|                                                                            |                             |                  |                 |                                               |               | 1722        | 2857516          | 2855795         | 6450  | 2950       |
|                                                                            |                             |                  |                 |                                               |               | 1941        | 2855709          | 2853769         | 6449  | 2949       |
|                                                                            |                             |                  |                 |                                               |               | 1716        | 2853732          | 2852017         | 6448  | 2948       |
| phenol 2-monooxygenase                                                     | 080                         | 60 9             | 33.5            | Trichosporon cutaneum ATCC 46490              | sp:PH2M_TRICU | 1785        | 2851815          | 2850031         | 6447  | 2947       |
| transcription factor                                                       | 310                         | 82.7             | 24.7            | Rhodococcus rhodochrous nitR                  | pir:JC8117    | 1011        | 2849779          | 2848769         | 6446  | 2946       |
| inosine monophosphate dehydrogenase                                        | 469                         | 70.2             | 37.1            | Bacillus cereus ts-4 Impdh                    | gp:AB035643_1 | 1431        | 2848659          | 2847229         | 6445  | 2945       |
| CIpC adenosine triphosphatase / ATP-binding proteinase                     | 832                         | 86 2             | 58.5            | Bacillus subtills 168 mec8                    | SP MECB_BACSU | 2775        | 2844168          | 2848940         | 6444  | 2944       |
| virulence factor                                                           | 55                          | 75.0             | 74.0            | Pseudomonas aeruginosa ORF25110               | GSP: Y29193   | 321         | 2846506          | 2846186         | 6443  |            |
| Function                                                                   | Matched<br>length<br>(a.a.) | Similariy<br>(%) | Identity<br>(%) | Homologous gene                               | db Match      | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | N SEO | SEQ<br>SEQ |
|                                                                            |                             |                  |                 | Table 1 (continued)                           |               |             |                  |                 |       |            |

SP

ç

|                                                           |                             |                  |                 |                                             |               |             |               |                 | Ī      | 1    |
|-----------------------------------------------------------|-----------------------------|------------------|-----------------|---------------------------------------------|---------------|-------------|---------------|-----------------|--------|------|
| bacterial regulatory protein, marR family                 | 135                         | 59.3             | 26.7            | Burkholderia pseudomailei ORF<br>E          | prf 2516298U  | 444         | 2880987       | 2880544         | 6479   | 2979 |
| hypothetical protein                                      | 97                          | 73.2             | 48.4            | Streptomyces coelicolor A3(2)<br>SCH69,09c  | gp.SCH69_9    | 288         | 2880252       | 2879965         | 6478   | 2978 |
| ferredoxin reductase                                      | 4:1                         | 69.0             | 38.0            | Nocardicides sp. KP7 phdD                   | gp:AB017795_2 | 1233        | 2878478       | 2879710         | 6477   | 2977 |
|                                                           |                             |                  |                 |                                             |               | 264         | 2877595       | 2877858         | 6476   | 2976 |
| PTS system, beta-glucosides-<br>permease II ABC component | 89                          | 59.6             | 30.3            | Bacilus subtils 168 bg/P                    | SP.PTBA_BACSU | 249         | 2877455       | 2877703         | 6475   | 2975 |
| hypothetical protein                                      | 202                         | 72.3             | 44.6            | Mycobacterium tuberculosis H37Rv Rv2597     | SP YOB4_MYCTU | 609         | 2876777       | 2877385         | 6474   | 2974 |
| hypothetical protein                                      | 173                         | 60.1             | 36.4            | Mycobacterium tuberculosis<br>H37Rv Rv2598  | SP YOB3_MYCTU | 498         | 2876280       | 2876777         | 6473   | 2973 |
| hypothetical protein                                      | 144                         | 63.2             | 38.8            | Mycobacterium tuberculosis<br>H37Rv Rv2589  | sp:Y082_MYCTU | 411         | 2875870       | 2876280         | 6472   | 2972 |
| hypothetical membrane protein                             | 132                         | 86.4             | 38.6            | Mycobacterium tuberculosis<br>H37Rv Rv2600  | sp:Y0B1_MYCTU | 399         | 2875434       | 2875832         | 6471   | 2971 |
| spermidine synthase                                       | 507                         | 80.7             | 56.0            | Mycobacterium tuberculosis<br>H37Rv speE    | pir.H70886    | 1539        | 2873905       | 2875443         | 6470   | 2970 |
|                                                           |                             |                  |                 |                                             |               | 219         | 2873393       | 2873611         | 6469   | 2969 |
| Inorganic pyrophosphatase                                 | 159                         | 73.6             | 49.7            | Escherichia coll K12 ppa                    | sp:IPYR_ECOLI | 474         | 2873399       | 2872926         | 6468   | 2968 |
| D-sianyl-D-stanine carboxypeptidase                       | 459                         | 51.4             | 27.2            | Actinomadura sp. R39 dac                    | sp.DAC_ACTSP  | 1233        | 2871445       | 2872677         | 6467   | 2967 |
| desminese-related protein                                 | 310                         | 66.6             | 41.0            | Mycobacterium tuberculosis<br>H37Rv Rv3625c | sp YZC5_MYCTU | 891         | 2870499       | 2871389         | 6466   | 2966 |
| hypoxanthine<br>phosphoribosytransferase                  | 185                         | 83.0             | 51.5            | Salmonella typhimurium GP660 hprt           | gp.AF008931_1 | 582         | 2869863       | 2870444         | 6465   | 1    |
| cell division protein FtsH                                | 782                         | 69.0             | 56.0            |                                             |               | 2580        | 2867169       | 2869748         | 6464   | 2964 |
|                                                           |                             |                  |                 |                                             |               | 915         | 2868385       | 2867471         | 6463   | 2963 |
| GTP cyclohydrolase I                                      | 188                         | 86.2             | 60.6            | Bacillus subtilis 188 mtrA                  | sp:GCH1_BACSU | 588         | 2866586       | 2867173         | 6462   |      |
| Function                                                  | Matched<br>length<br>(a.e.) | Similarly<br>(%) | Identity<br>(%) | Hamologous gene                             | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO SEO | SEQ  |
|                                                           |                             |                  |                 | Table 1 (continued)                         |               |             |               |                 |        |      |

|                                                                                                   |                       |                  |                 |                                          |               |                 |      |               |                 |        | :         |
|---------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------|------------------------------------------|---------------|-----------------|------|---------------|-----------------|--------|-----------|
| Na+/H+ antiporter or multiple resistance and pH regulation relate protein A or NADH dehydrogenase | 797                   | 68 3             | 35.6            | Staphylococcus aureus mnhA               | Staph         | pri 2504285B    | 3057 | 2913228       | 2910172         | 6499   | 2999      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 600  | 2909231       | 2909830         | 6498   | 2998      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 579  | 2909788       | 2809210         | 6497   | 2997      |
| peptidase                                                                                         | 447                   | 68.0             | 37.1            | Mycobacterium tuberculosis H37Rv Rv2522c | Mycot<br>H37R | pir G70870      | 1371 | 2908885       | 2907515         | 6496   | 2996      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 612  | 2906639       | 2907250         | 6495   | 2995      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 2775 | 2903964       | 2906738         | 6494   | 2994      |
| hypothetical protein                                                                              | 1236                  | 42.3             | 21.7            | Homo sapiens MUC5B                       | Homo          | prf 2309326A    | 3591 | 2900330       | 2903920         | 6493   | 2993      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 2799 | 2897528       | 2900326         | 6492   | 2992      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 2454 | 2895072       | 2897525         | 6491   | 2991      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 1986 | 2893100       | 2895085         | 6490   | 2990      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 963  | 2892138       | 2693100         | 6489   | 2989      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 1209 | 2890930       | 2892138         | 6488   | 2988      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 180  | 2890751       | 2890930         | 6487   | 2987      |
| groEL protein or chaperon or                                                                      | 548                   | 100.0            | 99.5            | Brevibacterium flavum MJ-233             | Brevib        | gsp R94368      | 1644 | 2888897       | 2890540         | 6486   | 2986      |
| hypothetical protein                                                                              | 31                    | 80.0             | 74.0            | GP:MSGTCWPA_1 Mycobacterium tuberculosis | Mycob         | GP:MSGTCWPA_    | 177  | 2890553       | 2890377         | 6485   | 2985      |
| hypothetical protein                                                                              | 54                    | 63.0             | 62.0            | Mycobacterium tuberculosis               |               | GP MSGTCWPA_1   | 162  | 2890346       | 2890185         | 6484   | 2984      |
| hypothetical protein                                                                              | 241                   | 79.7             | 57.3            | Campylobacter jejuni Cj0604              | Campy         | gp:CJ11168X2_25 | 918  | 2886916       | 2887833         | 6483   | 2983      |
| phenylacetaldehyde dehydrogenas                                                                   | 488                   | 63 7             | 35.0            | Escherichia coli K12 padA                | Esche         | prt.2310295A    | 1563 | 2884935       | 2886497         | 6482   | 2982      |
|                                                                                                   |                       |                  |                 |                                          |               |                 | 1461 | 2881844       | 2883304         | 6481   | 2981      |
| peptide synthase                                                                                  | 1241                  | 51.6             | 28.4            | Streptomyces roseosporus cpsB            | Strepto       | prf 2413335A    | 3885 | 2884882       | 2880998         | 6480   | 2980      |
| Function                                                                                          | Matched length (a.a.) | Similarit<br>(%) | identity<br>(%) | Homologous gene                          |               | db Match        | (bp) | Terminal (nt) | Initial<br>(nt) | NO SEQ | SEQ<br>NO |
|                                                                                                   |                       |                  |                 | Table 1 (continued)                      |               |                 |      |               |                 |        |           |
|                                                                                                   |                       |                  |                 |                                          |               |                 |      |               |                 |        |           |
| e<br>01                                                                                           | EI                    | 50               |                 | 0E<br>SZ                                 | SE            | OP              |      | S <b>&gt;</b> | 05              |        | 55        |
|                                                                                                   |                       |                  |                 |                                          |               |                 |      |               |                 |        |           |

05

**5**\*

**0**\*

32

Œ

50

SI

10

|                                                                                                                 |                       |           |                 |                                            |               |             | 2020011       | 2322            | 20         | 5         |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------------|--------------------------------------------|---------------|-------------|---------------|-----------------|------------|-----------|
| cardiolipin synthase                                                                                            | 513                   | 62.0      | 27.9            | Bacillus firmus OF4 cis                    | ap BFU88888 2 | 1500        | 2923617       | 2922118         | 6514       | 101       |
| exodeoxyribonuclesse III or exonuclesse                                                                         | 31                    | 59.9      | 30.8            | Salmonella typhlmurlum LT2 xthA            | gp:AF108767_1 | 789         | 2922108       | 2921320         | 6513       | 3013      |
|                                                                                                                 |                       |           |                 |                                            |               | 630         | 2920220       | 2920849         | 6512       | 3012      |
|                                                                                                                 |                       |           |                 |                                            |               | 669         | 2919808       | 2920476         | 6511       | 3011      |
| acetyltransferase (GNAT) family or<br>N terminal acetylating enzyme                                             | 339                   | 54.2      | 31.3            | Mycobacterium tuberculosis H37Rv Rv0428c   | pir 870631    | 1005        | 2921290       | 2920286         | 6510       | 3010      |
| hypothetical protein                                                                                            | 71                    | 70.4      | 47.9            | Mycobacterium tuberculosis<br>H37Rv Rv0430 | pir D70631    | 252         | 2919490       | 2919741         | 6509       | 3009      |
| polypeptide deformylase                                                                                         | 184                   | 60.9      | 37.5            | Bacillus subtilis 188 def                  | SP DEF_BACSU  | 579         | 2920293       | 2819715         | 6508       | 3008      |
|                                                                                                                 |                       |           |                 |                                            |               | 663         | 2918819       | 2919481         | 8507       | 3007      |
| hypothetical protein                                                                                            | 334                   | 61.7      | 27.0            | Escherichia coli K12 ybdK                  | SP YBDK_ECOLI | 1128        | 2917630       | 2918757         | 6506       | 3006      |
| hypothetical protein                                                                                            | 178                   | 54.5      | 24.7            | Mycobacterium tuberculosis<br>H37Rv llpV   | pir:D70594    | 594         | 2917024       | 2917617         | 6505       | 3005      |
| Na+/H+ entiporter or multiple resistance and pH regulation related protein G                                    | 121                   | 63.6      | 25 6            | Staphylococcus aureus mnhG                 | prf 2504285H  | 378         | 2916582       | 2916205         | 6504       | 3004      |
| K+ efflux system or multiple resistance and pH regulation related protein F                                     | 77                    | 66.2      | 32.5            | Rhizobium meliloti phaF                    | prf.2416478G  | 273         | 2916201       | 2915929         | 6503       | 3003      |
| Na+/H+ antiporter or multiple resistance and pH regulation related protein E                                    | 161                   | 609       | 26 7            | Bacillus firmus OF4 mrpE                   | gp AF097740_5 | 4.          | 2915922       | 2915482         | 6502       | 3002      |
| Na+/H+ antiponer or multiple resistance and pH regulation related protein D                                     | 523                   | 72.1      | 35.2            | Becillus firmus OF4 mrpD                   | gp AF097740_4 | 1668        | 2915416       | 2913749         | 6501       | 3001      |
| Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein | 104                   | 81.7      | 44 2            | Bacilius firmus OF4 mrpC                   | gp AF097740_3 | 489         | 2913723       | 2913235         | 6500       |           |
| Function                                                                                                        | Matched length (a.s.) | Similarit | Identity<br>(%) | Homologous gene                            | db Maich      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | Neg<br>SEQ | SEQ<br>NO |
|                                                                                                                 |                       |           |                 | Table 1 (continued)                        | i<br>i        |             |               |                 |            |           |

|                                                               |                             |                  |                 |              |                                                  |                |        |               | -       |              | -           |  |
|---------------------------------------------------------------|-----------------------------|------------------|-----------------|--------------|--------------------------------------------------|----------------|--------|---------------|---------|--------------|-------------|--|
|                                                               |                             |                  |                 |              |                                                  |                | 888    | 7945639       | 2946526 | 6677         | ייי         |  |
| phosphoribosylgiycinamida<br>formyltransferase                | 379                         | 82.6             | 59.1            | 8 purT       | Bacillus subtilis 168 purT                       | SP PURT_BACSU  | 1194   | 2943012       | 2944205 | 6537         | 3032        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 399    | 2942609       | 2943007 | 6531         | 3031        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 1029   | 2941472       | 2942500 | 6530         | 3030        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 1062   | 2940447       | 2941508 | 6529         | 3029        |  |
| acelyltransferase (GNAT) family                               | 156                         | 60.3             | 34.0            | 2 elaA       | Escherichia coli K12 elaA                        | sp ELAA_ECOLI  | 546    | 2940452       | 2939907 | 652 <b>8</b> | 3028        |  |
| reductese                                                     | 457                         | 67.8             | 37.2            |              | Bos taurus                                       | sp ADRO_BOVIN  | 1365   | 2939767       | 2938403 | 6527         | 3027        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 747    | 2932652       | 2933398 | 6526         | 3026        |  |
| serine/threonine kinase                                       | 805                         | 63.5             | 41.2            | erculosis    | Mycobacterium tuberculosis<br>H37Rv Rv0410c pknG | pir H70628     | 2253   | 2934829       | 2932577 | 6525         | 3025        |  |
| glutamine-binding protein precursor                           | 270                         | 64.8             | 31.5            | nophilus     | Bacillus stearothermophilus<br>NUB36 glnH        | sp.GLNH_BACST  | 1032   | 2932371       | 2931340 | 6524         | 3024        |  |
| hypothetical membrane protein                                 | 423                         | 70.2             | 35.0            | erculosis    | Mycobacterium tuberculosis<br>H37Rv Rv0412c      | pir B70629     | 1386   | 2931336       | 2929951 | 6523         | 3023        |  |
| mutator mutT protein                                          | 168                         | 68.5             | 47.6            | erculosis    | Mycobacterium tuberculosis<br>H37Rv Rv0413       | pir C70629     | 501    | 2929258       | 2929756 | 6522         | 3022        |  |
| ABC transporter ATP-binding protein                           | 309                         | 66.3             | 36.9            | is ATCC      | Bacillus licheniformis ATCC 9945A bcrA           | sp:BCRA_BACI.I | 936    | 2928302       | 2929237 | 6521         | 3021        |  |
| ABC transporter                                               | 255                         | 60.8             | 24.3            | color A3(2)  | Streptomyces coelicolor A3(2)<br>SCE8.18c        | gp.SCE8_16     | 768    | 2927551       | 2928318 | 6520         | 3020        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 633    | 2927651       | 2928283 | 6519         | 3019        |  |
| phenezine blosynthesis protein                                | 289                         | 56.4             | 38.8            | ofaciens 30- | Pseudomonas aureofaciens 30-<br>84 phzC          | sp PHZC_PSEAR  | 840    | 2926707       | 2927546 | 6518         | 3018        |  |
| sodium dependent phosphate pump                               | 382                         | 68.9             | 28.5            | 569 nptA     | Vibrio cholerae JS1569 nptA                      | gp:VCAJ10968_1 | 1164   | 2926704       | 2925541 | 6517         | 3017        |  |
| membrane transport protein or bicyclomycin resistance protein | 393                         | 67.2             | 31.6            | 2 bar        | Escherichia coli K12 bo                          | sp:BCR_ECOLI   | 1194   | 2923954       | 2925147 | 6516         | 3016        |  |
|                                                               |                             |                  |                 |              |                                                  |                | 654    | 2924844       | 2924191 | 6515         | 3015        |  |
| Function                                                      | Matched<br>length<br>(a a.) | Similariy<br>(%) | Identity<br>(%) | 9000         | Homologous gene                                  | db Match       | (P) OR | Terminal (nt) | (nt)    | NO SEQ       | SEQ<br>ONA) |  |
|                                                               |                             |                  |                 | ntinued)     | Table 1 (continued)                              |                |        |               |         |              |             |  |
| e<br>ot                                                       | ٤١                          | 50               |                 | sz           | œ                                                | 01*            |        | <b>s</b> >    | os      |              | 55          |  |
|                                                               |                             |                  |                 |              |                                                  |                |        |               |         |              |             |  |

|                                              |                             |                |                 |                                                     |                                      |                | 399         | 2963198          | 2963596      | 6551        | 3051            |
|----------------------------------------------|-----------------------------|----------------|-----------------|-----------------------------------------------------|--------------------------------------|----------------|-------------|------------------|--------------|-------------|-----------------|
|                                              |                             |                |                 |                                                     |                                      |                | ┼           | ÷                | 2963008      | 6550        | 3050            |
|                                              |                             |                |                 |                                                     |                                      |                | 720         | 2960468          | 2961187      | 6549        | 3049            |
| 3-mercaptopyruvate<br>sulfuntransferase      | 294                         | 56.1           | 29.6            | ens mpsT                                            | Homo sapiens mpsT                    | SP THTM_HUMAN  | 852         | 2959520          | 2960371      | 6548        | 3048            |
| hypothetical protein                         | 250                         | 60.0           | 27.6            | Mycobacterium tuberculosis H37Rv Rv0383c            | Mycobacterium t<br>H37Rv Rv0383c     | plr 870834     | 972         | 2958139          | 2959110      | 6547        | 3047            |
| orotate phosphoribosyltransferase            | 174                         | 65.5           | 39.1            | Pyrococcus abyssi pyrE                              | Pyrococcus                           | gp.AF058713_1  | 552         | 2957485          | 2958036      | 6546        | 3046            |
|                                              |                             | 91.2           | 76.9            | Mycobacterium tuberculosis<br>H37Rv Rv0380c         | Mycobacterium t<br>H37Rv Rv0380c     | pir:G70833     | 618         | 2956830          | 2957447      | 6545        | 3045            |
| hypothetical protein                         | 304                         | 100.C          | 100.0           | Corynebacterium glutamicum<br>AS019 ATCC 13059 ORF1 | Corynebact<br>AS019 ATC              | gp:cGFDA_1     | 951         | 2955523          | 2856473      | 6544        | 3044            |
| fructose-bisphosphale aldolase               | 344                         | 100.C          | 99.7            | Corynebacterium glutamicum<br>AS019 ATCC 13059 fda  | Corynebact<br>AS019 ATC              | pir S09283     | 1032        | 2954241          | 2955272      | 6543        | 3043            |
| hypothetical membrane protein                | 359                         | 100.0          | 100.0           | Corynebacterium glutamicum<br>AS019 ATCC 13059 ORF3 | Corynebact<br>AS019 ATC              | sp:YFDA_CORGL  | 1167        | 2952975          | 2954141      | 8542        | 3042            |
|                                              |                             |                |                 |                                                     |                                      |                | 264         | 2952972          | 2952709      | 6541        | 3041            |
| hypothetical protein                         | 204                         | 59.3           | 34.3            | Mycobacterium tuberculosis H37Rv Rv0358             | Mycobacterium<br>H37Rv Rv0358        | pir.G70575     | 759         | 2952691          | 2951933      | 6540        | 3040            |
| adenylosuccinale synthelase                  | 427                         | 95.3           | 89 7            | nes purA                                            | Corynebacterium<br>ammoniagenes purA | gp: AB003160_1 | 1290        | 2950434          | 2951723      | 6539        | 3039            |
|                                              |                             |                |                 |                                                     |                                      |                | 225         | 2950431          | 2950207      | 6538        |                 |
| transcriptional regulator                    | 218                         | 65.6           | 31.7            | Bacillus bravis ALK36 degU                          | Bacillus brev                        | sp DEGU_BACBR  | 618         | 2949265          | 2949882      | 6537        | 3037            |
| two-component system sensor histidine kinsse | 349                         | 51.3           | 22.4            | Streptomyces thermodolaceus opc-520 chiS            | Streptomyce opc-520 chil             | gp:AB016841_1  | 1140        | 2948049          | 2949188      | 6536        | 3036            |
| insertion element (IS3 related)              | 89                          | 84.3           | 67.4            | Corynebacterium glutamicum<br>ord1                  | Corynebacte                          | pir S60889     | 267         | 2947620          | 2947886      | 6535        | 3035            |
| Insertion element (IS3 related)              | 295                         | 90.9           | 77 6            | Corynebacterium glutamicum ort2                     | Corynebacte                          | pir.S60890     | 694         | 2946698          | 2947591      | <del></del> |                 |
| Function                                     | Matched<br>length<br>(a.a.) | Similarity (%) | Identity<br>(%) | Homologous gene                                     | Home                                 | db Malch       | ORF<br>(bp) | Terminat<br>(nt) | Initial (nt) | SEQ OA      | SEQ<br>NO<br>NO |
|                                              |                             |                |                 | Table 1 (continued)                                 | Tabl                                 |                |             |                  |              |             |                 |
| oi<br>s                                      | 21                          | 50             |                 | <i>⊙</i> €                                          | SE                                   | 07             |             | sr               | os           |             | 55              |

**0⊊** 

97

0>

SE

Œ

52

30

SI

|                                            |                       |               |                 |                                                |               |      |               |                 | i     | :<br>:    |
|--------------------------------------------|-----------------------|---------------|-----------------|------------------------------------------------|---------------|------|---------------|-----------------|-------|-----------|
| oxidoreductase                             | 386                   | 60.6          | 31.9            | Mycobacterium tuberculosis<br>H37Rv Rv0385     | pir D70834    | 1179 | 2977774       | 2976596         | 6567  | 3067      |
| hypothetical protein                       | 204                   | 84.7          | 33.8            | Mycobacterium tuberculosis<br>H37Rv Rv0836c    | pir:D70812    | 732  | 2976360       | 2975629         | 6565  | 3066      |
| hypothetical protein                       | 361                   | 56.2          | 30.5            | Mycobacterium tuberculosis<br>H37Rv Rv0837c    | pir:E70812    | 1125 | 2975591       | 2974467         | 6565  | 3065      |
| rifampin ADP-ribosyl transferase           | 56                    | 87.5          | 73.2            | Streptomyces coelicolor A3(2)<br>SCE20 34c err | gp:SCE20_34   | 183  | 2974382       | 2974200         | 6564  | 3064      |
| rifampin ADP-ribosyl transferase           | 80                    | 65.2          | 49.4            | Streptomyces coelicolor A3(2)<br>SCE20.34c arr | gp SCE20_34   | 240  | 2974200       | 2973961         | 6563  | 3063      |
| bacterial regulatory protein, facilifemily | 184                   | 67.9          | 40.2            | Streptomyces coelicolor A3(2)<br>SC1A2 11      | gp:SC1A2_11   | 567  | 2973230       | 2973796         | 6562  | 3062      |
| cystathionine gamma-lyase                  | 375                   | 62.4          | 36.5            | Escherichia coli K12 metB                      | SP METB_ECOLI | 1146 | 2972060       | 2973205         | 6561  | 3061      |
|                                            |                       |               |                 |                                                |               | 762  | 2971338       | 2972099         | 6560  | 3060      |
| alkanal monooxygenase alpha chain          | 399                   | 47.4          | 21.1            | Kryptophanaron alfredl symbiont luxA           | sp LUXA_KRYAS | 1041 | 2972057       | 2971017         | 6559  | 3059      |
| or steroid monooxygenase                   | 478                   | 45.4          | 22.5            | Rhodococcus rhodochrous                        | gp.AB010439_1 | 1170 | 2971003       | 2969834         | 6558  | 3058      |
| (zinc/cadmium)                             | 283                   | 63.3          | 23.7            | Pyrococcus abyssi Orsay<br>PAB0462             | pir.H75109    | 858  | 2969808       | 2968951         | 6557  | 3057      |
| cadmium resistance protein                 | 108                   | 71.3          | 37.0            | Staphylococcus aureus cadC                     | SP:CADF_STAAU | 387  | 2968789       | 2968403         | 6556  | 3056      |
| sodium/glutamate symport carrier protein   | 489                   | 54.8          | 24.7            | Synechocystis sp. PCC6803 sir0625              | pir:S76683    | 1347 | 2966458       | 2967804         | 6555  | 3055      |
| virulence factor                           | 132                   | 63.0          | 62.0            | Pseudomonas aeruginosa ORF25110                | GSP.Y29193    | 396  | 2965583       | 2965188         | 6554  | 3054      |
| virulence factor                           | 200                   | 55.0          | 38.0            | Pseudomonas aeruginosa ORF23228                | GSP Y29182    | 762  | 2965837       | 2965076         | 6553  | 3053      |
| virulence factor                           | 59                    | 82.0          | 76 0            | Pseudomonas aeruginosa ORF24222                | GSP Y29188    | 177  | 2964434       | 2964258         | 6552  |           |
| Function                                   | Matched length (a.a.) | Similarly (%) | Identity<br>(%) | Homologous gene                                | db Match      | (bp) | Terminal (nt) | Initial<br>(nt) | N SEQ | SEQ<br>NO |
|                                            |                       |               |                 | Table 1 (continued)                            |               |      |               |                 |       |           |

0⊊

Œ

SI

|                                                                                                    |                             |                   |                 |                                                      |               |      |               |                 | 1      | Ī         |
|----------------------------------------------------------------------------------------------------|-----------------------------|-------------------|-----------------|------------------------------------------------------|---------------|------|---------------|-----------------|--------|-----------|
| alcohol dehydrogenase                                                                              | 334                         | 81.7              | 50.0            | Bacillus stearothermophilus DSM 2334 adh             | sp ADH2_BACST | 1035 | 2995747       | 2996781         | 6584   | 3084      |
|                                                                                                    |                             |                   |                 |                                                      |               | 1485 | 2993921       | 2995405         | 6583   | 3083      |
|                                                                                                    |                             |                   |                 |                                                      |               | 636  | 2993286       | 2993921         | 6582   | 3082      |
| chromosome segregation protein                                                                     | 1311                        | 48.4              | 18 9            | Schizosaccharomyces pombe cut3                       | sp CUT3_SCHPO | 3333 | 2989954       | 2993286         | 6581   | 3081      |
|                                                                                                    |                             |                   |                 |                                                      |               | 885  | 2992602       | 2991718         | 6580   | 3080      |
|                                                                                                    |                             |                   | 1               |                                                      |               | 1200 | 2988846       | 2990045         | 6579   | 3079      |
| 5'-methylthioadenosine nucleosidase and S-adenosylhomocysteine nucleosidase                        | 195                         | 60 0              | 27 2            | Helicobacter pylori HP0089 min                       | sp PFS_HELPY  | 633  | 2988214       | 2988846         | 6578   | 3078      |
| hypothetical membrane protein                                                                      | 338                         | 790               | 42 6            | Streptomyces coellcolor A3(2)<br>SCF6.09             | gp SCF6_8     | 1332 | 2988164       | 2986833         | 8577   | 3077      |
| heat shock protein dnaX                                                                            | 618                         | 99 6              | 99.8            | Brevibacterium flavum MJ-233<br>dnaK                 | gsp R94587    | 1854 | 2984544       | 2986397         | 6576   | 30/6      |
| nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaX | 212                         | 68 5              | 38 7            | Streptomyces caelicolor grpE                         | sp GRPE_STRCO | 636  | 2983887       | 2984522         | 6575   | 3075      |
| heat shock protein dnaJ                                                                            | 397                         | 80.1              | 56 7            | Mycobacterium tuberculosis H37Rv RV0352 dnaJ         | SP DNAJ_MYCTU | 1185 | 2982495       | 2983679         | 6574   | 3074      |
| heat shock transcription regulator                                                                 | 135                         | 70.4              | 47.4            | Streptomyces albus G hspR                            | gp.SAU43299_2 | 438  | 2982023       | 2982460         | 6573   | 3073      |
| aldehyde dehydrogenase                                                                             | 507                         | 90.3              | 69.6            | Rhodococcus erythropolis thcA                        | prf 2104333D  | 1518 | 2980181       | 2981698         | 6572   | 3072      |
| novel two-component regulatory system                                                              | 108                         | 44.0              | 38.0            | Azospirilium brasilense carR                         | GP:ABCARRA_2  | 330  | 2981216       | 2980887         | 6571   | 3071      |
| hypothetical protein                                                                               | 289                         | 55.4              | 28 0            | Streptomyces coelicolar A3(2)<br>SC4A7.03            | gp SC4A7_3    | 1134 | 2980115       | 2978982         | 6570   | 3070      |
|                                                                                                    |                             |                   |                 |                                                      |               | 243  | 2978979       | 2978737         | 6569   | 3069      |
| N-carbamoyl-D-amino acid<br>amidohydrolase                                                         | 275                         | 67.3              | 32.0            | Methanobacterium thermoautotrophicum Delta H MTH1811 | pir.869109    | 798  | 2977847       | 2978644         | 6568   |           |
| Function                                                                                           | Matched<br>length<br>(a.a.) | Similarity<br>(%) | Identity<br>(%) | Homologous gene                                      | db Malch      | (bp) | Terminal (nt) | Initial<br>(nt) | NO SEO | SEO<br>NO |
|                                                                                                    |                             |                   |                 | Table 1 (continued)                                  |               |      |               |                 |        |           |

*09* 

SÞ

æ

SZ

so

21

01

|                                                        |                             | -                |                 |                                            |                | 486         | 3010441       | 3010926         | 6604   | 3104      |
|--------------------------------------------------------|-----------------------------|------------------|-----------------|--------------------------------------------|----------------|-------------|---------------|-----------------|--------|-----------|
|                                                        |                             |                  |                 |                                            |                | 321         | 3010978       | 3010659         | 6603   | 3103      |
| emmonis monooxygenese                                  | 161                         | 76.4             | 39.1            | Pseudomonas pulida DSMZ ID<br>88-260 amoA  | gp:PPAMOA_1    | 522         | 3009710       | 3010231         | 6602   | 3102      |
| hypothetical protein                                   | 80                          | 66.3             | 50.0            | Streptomyces coelicolor A3(2)<br>SCE68.10  | gp:SCE68_10    | 386         | 3009607       | 3009242         | 6601   | 3101      |
| alkylphosphonate uptake protein and C-P lyase activity | 142                         | 59.9             | 26.8            | Escherichia coll K12 phnB                  | sp.PHNB_ECOLI  | 414         | 3008749       | 3009162         | 6600   | 3100      |
|                                                        |                             |                  |                 |                                            |                | 534         | 3009303       | 3008770         | 6599   | 3099      |
|                                                        |                             |                  |                 |                                            |                | 237         | 3008453       | 3008689         | 6598   | 3098      |
| huntingtin Interactor                                  | 144                         | 59.7             | 32.6            | Homo saplens hypE                          | pri:2420294J   | 1083        | 3008376       | 3007294         | 6597   | 3097      |
| ferredoxin/ferredoxin-NADP reductase                   | 487                         | 61.4             | 30.8            | Saccharomyces cerevisiae FL200 arh1        | sp:ADRO_YEAST  | 1371        | 3006915       | 3005545         | 6596   | 3096      |
| terredoxin-nkrate reductase                            | 502                         | 65.5             | 34.5            | Synechococcus sp PCC 7942                  | SP.NIR_SYNP7   | 1683        | 3003480       | 3005162         | 6595   | 3095      |
| phosphoadenosine phosphosulfete reductase              | 212                         | 64.2             | 39.2            | Bacillus subtilis cysH                     | sp:CYH1_BACSU  | 693         | 3002453       | 3003145         | 6594   | 3094      |
| sulfate adenylyltransferase small chain                | 308                         | 70.1             | 46.1            | Escherichia coli K12 cysD                  | sp CYSD_ECOLI  | 912         | 3001542       | 3002453         | 6593   | 3093      |
| sulfate adenylyltransferase, subunit                   | 414                         | 78.3             | 47.3            | Escherichia coll K12 cysN                  | sp. CYSN_ECOLI | 1299        | 3000241       | 3001538         | 6592   | 3092      |
|                                                        |                             |                  |                 |                                            |                | 915         | 3002426       | 3001512         | 6591   | 3091      |
| hypothetical protein                                   | 252                         | 53.2             | 32.5            | Streptomyces coelicolor A3(2)<br>SC7A8 10c | gp:SC7A8_10    | 723         | 2999478       | 3000200         | 6590   | 3090      |
| hypothetical membrane protein                          | 301                         | 70.1             | 43.5            | Bacillus subtilis yanM                     | pir:F89997     | 927         | 2998528       | 2999454         | 6589   | 3089      |
|                                                        |                             |                  |                 |                                            |                | 261         | 2997963       | 2998223         | 6588   | 3088      |
|                                                        |                             |                  |                 |                                            |                | 189         | 2997876       | 2997688         | 6587   | 3087      |
|                                                        |                             |                  |                 |                                            |                | 207         | 2997481       | 2997687         | 6586   | 3086      |
|                                                        |                             |                  |                 |                                            |                | 216         | 2997366       | 2997151         | 6585   |           |
| Function                                               | Matched<br>length<br>(s.e.) | Similarly<br>(%) | identity<br>(%) | Homologous gene                            | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO SEQ | SEQ<br>NO |
|                                                        |                             |                  |                 | Table 1 (continued)                        |                |             |               |                 |        |           |

0⊊

**5**\*

**0**+

SE

Œ

SZ

50

SI

01

ç

| Havonemoprotein                                        | •00                   | 8                | 33.3            | Acailgenes eutrophus A to inp                   | SP HMPA_ALCED       | 1100        | 3020142          | 3027299         | 27.99     | 2125      |
|--------------------------------------------------------|-----------------------|------------------|-----------------|-------------------------------------------------|---------------------|-------------|------------------|-----------------|-----------|-----------|
|                                                        | $\perp$               |                  | 3               | Alaska autombia U.A. (h.                        | - LIDA AI OF I      |             | 2026142          | 307700          | 3         | , '       |
| DNA-3-methyladenine glycosylase                        | 179                   | 78.8             | 50.3            | Escherichla coli K12 tag                        | sp 3MG1_ECOLI       | 588         | 3026139          | 3025552         | 6624      | 3124      |
| hypothetical membrane protein                          | 276                   | 59.4             | 31.2            | Streptomyces coelicolor A3(2) SCE20.08c         | 9_0232S d6          | 975         | 3025353          | 3024379         | 6623      | 3123      |
| Inosine-uridine preferring nucleoside hydrolase        | 317                   | 59.3             | 28 4            | Crithidia fasciculata lunH                      | SP IUNH_CRIFA       | 903         | 3022998          | 3023900         | 6622      | 3122      |
| NADPH-flavin oxidoreductase                            | 231                   | 71.4             | 37.2            | Vibrio harveyi MAV frp                          | sp FRP_VIBHA        | 816         | 3022113          | 3022928         | 6621      | 3121      |
| cobalt transport protein                               | 179                   | 67.6             | 30.2            | Lactococcus lactis Plasmid pNZ4000 Ort-200 cbiM | gp AF036485_6       | 618         | 3021208          | 3021825         | 6620      | 3120      |
|                                                        |                       |                  |                 |                                                 |                     | 642         | 3020561          | 3021202         | 6619      | 3119      |
| maitose/maitodextrin transport ATP-<br>binding protein | 373                   | 50 1             | 24.9            | Escherichia coli K12 malK                       | SP MALK_ECOLI       |             | 3019542          | 3020609         | 6618      | 3118      |
| dehydrin-like protein                                  | 114                   | 48 0             | 33.0            | Daucus carota                                   | GPU DCA297422_<br>1 | 954         | 3018123          | 3019076         | 6617      | 3117      |
|                                                        |                       |                  |                 |                                                 |                     | 762         | 3017420          | 3018181         | 6616      | 3116      |
|                                                        |                       |                  |                 |                                                 |                     | 774         | 3018312          | 3017539         | 6615      | 3115      |
|                                                        |                       | L                |                 |                                                 |                     | 1905        | 3019220          | 3017316         | 6614      | 3114      |
| succinyl-disminopimelate desuccinylase                 | 486                   | 48 5             | 21.5            | Escherichia coli K12 msgB                       | sp DAPE_ECOLI       | 1323        | 3015827          | 3017149         | 6613      | 3113      |
|                                                        |                       |                  |                 |                                                 |                     | 687         | 3016924          | 3016238         | 6612      | 3112      |
|                                                        |                       |                  |                 |                                                 |                     | 822         | 3014648          | 3015469         | 6611      | 3111      |
| metabolite transport protein homolog                   | 418                   | 67.8             | 30 8            | Becillus sublilis ydeG                          | pir:A69778          | 1209        | 3015824          | 3014616         | 6610      | 3110      |
| ABC transporter                                        | 211                   | 73 0             | 39.3            | Haemophilus influenzae hmcB                     | gp.HIU68399_3       | 714         | 3013837          | 3014550         | 6609      | 3109      |
| ABC transporter                                        | 199                   | 64 8             | 35.7            | Haemophilus influenzae hmc8                     | gp:HIU68399_3       | 693         | 3013108          | 3013798         | 6608      | 3108      |
| hypothetical protein                                   | 337                   | 57 9             | 26 1            | Alcaligenes eutrophus H16 ORF 7                 | sp:YGB7_ALCEU       | 1002        | 3011808          | 3012809         | 6607      | 3107      |
|                                                        |                       |                  |                 |                                                 |                     | 564         | 3011242          | 3011805         | 6606      | 3106      |
| hypothetical protein                                   | <b>3</b> 8            | 58 0             | 410             | Agrobacterium vitis ORFZ3                       | SP YTZ3_AGRVI       | 285         | 3011273          | 3010989         | 6605      | 3105      |
| Function                                               | Matched length (8 a.) | Similarly<br>(%) | Identity<br>(%) | Homologous gene                                 | db Match            | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ<br>NO | SEQ<br>NO |
|                                                        |                       |                  |                 | Table 1 (continued)                             |                     |             |                  |                 |           |           |

05

94

æ

Œ

52

50

SI

10

S

|                                       |                             |                  |                 |                                              |                 |             |                  | -<br> <br>      | -    | -         |
|---------------------------------------|-----------------------------|------------------|-----------------|----------------------------------------------|-----------------|-------------|------------------|-----------------|------|-----------|
| beta-N-Acetylgiucosaminidase          | 410                         | 58.1             | 28.5            | Streptomyces thermoviolaceus nagA            | gp:AB008771_1   | 1185        | 3040748          | 3041932         | 6644 | 3144      |
|                                       |                             |                  |                 |                                              |                 | 1689        | 3038993          | 3040681         | 6643 | 3143      |
| hypothetical protein                  | 229                         | 59.4             | 30.6            | Streptomyces coelicolor A3(2)<br>SCC75A, 16c | gp SCC75A_16    | 771         | 3038942          | 3038172         | 6642 | 3142      |
|                                       |                             |                  |                 |                                              |                 | 237         | 3037911          | 3037675         | 6641 | 3141      |
| deaxycytidine triphosphate            | 188                         | 72 3             | 43.6            | Escherichia call K12 dcd                     | sp.DCD_ECOL!    | 567         | 3036845          | 3037411         | 6640 | 3140      |
| UDP-glucose dehydrogenase             | 442                         | 72.2             | 40.5            | Sinorhizobium mellloti rkpK                  | prf 2422381B    | 1317        | 3035440          | 3036756         | 6639 | 3139      |
|                                       |                             |                  |                 |                                              |                 | 183         | 3034105          | 3034287         | 6638 | 3138      |
| hypothetical membrane protein         | 399                         | 70.2             | 33.6            | Straptomyces coelicotor A3(2)<br>SCQ11.10c   | gp_SCQ11_10     | 1257        | 3035437          | 3034181         | 6637 | 3137      |
| transposase (ISCg2)                   | 401                         | 100.0            | 100 0           | Corynebacterium glutamicum<br>ATCC 13032 tnp | gp:AF189147_1   | 1203        | 3033863          | 3032661         | 6636 | 3136      |
|                                       |                             |                  | <del>.</del>    |                                              |                 | 300         | 3032348          | 3032647         | 6635 | 3135      |
| aspertate aminotransferase            | 402                         | 80.9             | 53.7            | Methylobacillus flagellatus aat              | gp.L78865_2     | 1257        | 3031979          | 3030723         | 6634 | 3134      |
| 6-phospho-beta-glucosidase            | 66                          | 78.8             | 43.9            | Clostridium longisporum 86405                | sp.ABGA_CLOLO   | 240         | 3030101          | 3030340         | 6633 | 3133      |
|                                       |                             |                  |                 |                                              |                 | 381         | 3030535          | 3030155         | 6632 | 3132      |
| 6-phospho-bets-glucosidase            | 167                         | 59.9             | 43.7            | Clostridium longIsporum B6405                | sp ABGA_CLOLO   | 360         | 3029702          | 3030061         | 6631 | 3131      |
|                                       |                             |                  |                 |                                              |                 | 279         | 3029782          | 3029504         | 6630 | 3130      |
| glucoside positive regulatory protein | 192                         | 89.3             | 28.1            | Escherichla coll K12 bglC                    | sp:BGLG_ECOLI   | 591         | 3028884          | 3029474         | 6629 | 3129      |
|                                       |                             |                  |                 |                                              |                 | 156         | 3029033          | 3028878         | 6628 | 3126      |
| oxidoreductase                        | 210                         | 63.8             | 34.8            | Streptomyces coellcolor A3(2)                | gp:SCO276673_18 | 624         | 3028891          | 3028268         | 6627 | 3127      |
|                                       |                             |                  |                 |                                              |                 | 603         | 3028163          | 3027561         | 6626 | 3126      |
| Function                              | Matched<br>length<br>(a.a.) | Similarly<br>(%) | Identity<br>(%) | Homologous gene                              | db Malch        | ORF<br>(bp) | Terminal<br>(nt) | initial<br>(nt) | SEQ  | SEQ<br>NO |
|                                       |                             |                  |                 | Table 1 (conlinued)                          |                 |             |                  |                 |      |           |

|                                                     |                       |                  |                   |                                                |                    |             |                  | -               |          | -         |
|-----------------------------------------------------|-----------------------|------------------|-------------------|------------------------------------------------|--------------------|-------------|------------------|-----------------|----------|-----------|
|                                                     |                       |                  |                   |                                                |                    | 1422        | 3058096          | 3059517         | 6662     | 3162      |
| mebrane transport protein                           | 768                   | 72.3             | 42.3              | Mycobacterium tuberculosis H37Rv Rv0208c mmpL3 | pir:C70839         | 2316        | 3059643          | 3057328         | 6661     | 3161      |
| hypothetical protein                                | 207                   | 85.0             | 69.1              | Mycobacterium tuberculosis H37Rv Rv0207c       | pir:E70 <b>959</b> | 705         | 3057317          | 3056613         | 6660     | 3160      |
| hypothetical protein                                | 241                   | 07.2             | 35.7              | Escherichla coli K12 yggH                      | SP YGGH_ECOLI      | 765         | 1 089500         | 3055867         | 6859     | 3159      |
| C4-dicarboxylate transporter                        | 332                   | 52.7             | 24.4              | Pyrococcus abyssi Orsay<br>PAB2393             | plr:E75125         | 1011        | 3055769          | 3054759         | 6658     | 3158      |
| phosphoenolpyruvate carboxyklnase (GTP)             | 601                   | 78.5             | 54.7              | Neocallimastix frontalls pepck                 | sp.PPCK_NEOFR      | 1830        | 3052062          | 3053891         | 6657     | 3157      |
| methyl transferase                                  | 251                   | 73.3             | 58.6              | Mycobacterium tuberculosis<br>H37Rv Rv0224c    | pir F70961         | 771         | 3051964          | 3051194         | 6656     | 3156      |
| hexosyllransferase                                  | 369                   | 79.1             | 53.4              | Mycobacterium tuberculosis<br>H37Rv Rv0225     | pir G70961         | 1137        | 3049456          | 3050592         | 6655     | 3155      |
|                                                     |                       |                  |                   |                                                |                    | 669         | 3051190          | 3050522         | 6654     | 3154      |
| hypothetical membrane protein                       | 529                   | 54.8             | 31.2              | Mycobacterium leprae<br>MLCB1883.040           | gp:MLCB1883_3      | 1422        | 3049479          | 3048058         | 6653     | 3153      |
|                                                     |                       |                  |                   |                                                |                    | 708         | 3047197          | 3047904         | 6652     | 3152      |
| acyltransferase or macrohde 3-O-<br>acyltransferase | 408                   | 51.0             | 27.7              | Streptomyces sp. acyA                          | pir JC4001         | 1068        | 3046122          | 3047189         | 6651     | 3151      |
| hypothetical membrane protein                       | 363                   | 47.1             | 24.8              | Mycobacterium leprae<br>MLCB1883.05c           | gp MLCB1883_4      | 903         | 3048048          | 3047146         | 6650     | 3150      |
|                                                     |                       |                  |                   |                                                |                    | 195         | 3045990          | 3045796         | 6649     | 3149      |
|                                                     |                       |                  |                   |                                                |                    | 621         | 3043022          | 3043642         | 6648     | 3148      |
| hypothelical protein                                | 1416                  | 49.4             | 29.6              | Mycobacterium leprae<br>MLCB1883.13c           | gp.MLCB1883_7      | 3129        | 3045788          | 3042660         | 6647     | 3147      |
|                                                     |                       |                  | <u> </u>          |                                                |                    | 201         | 3042703          | 3042503         | 6646     | 3146      |
|                                                     |                       |                  |                   |                                                |                    | 444         | 3042437          | 3041994         | 6645     | 3145      |
| Function                                            | Matched length (a.a.) | Similarty<br>(%) | Identity 5<br>(%) | Homologous gene                                | db Match           | ORF<br>(bp) | Terminal<br>(nt) | initial<br>(nt) | ( NO SEQ | SEQ<br>NO |
|                                                     |                       |                  |                   | Table 1 (continued)                            |                    |             |                  |                 |          |           |
|                                                     |                       |                  |                   |                                                |                    |             |                  |                 |          |           |
| e<br>oı                                             | ei                    | 50               |                   | 90<br>90                                       | 01°                |             | 57               | 09              |          | 55        |

0S

57

Æ

Œ

52

30

sı

| phosphatidic acid phosphatase                | 170                         | 58.5           | 28.2            | 9945A bcrC                                                               | sp:BCRC_BACLI | 477         | 3083935          | 3084411      | 6679   | 3179                                     |
|----------------------------------------------|-----------------------------|----------------|-----------------|--------------------------------------------------------------------------|---------------|-------------|------------------|--------------|--------|------------------------------------------|
|                                              |                             |                |                 |                                                                          |               | 1494        | 3083960          | 3082467      | 8678   | 3178                                     |
| hypothetical protein                         | 656                         | 74.7           | 55.6            | Mycobacterium tuberculosis<br>H37Rv Rv3808c                              | pir D70888    | 1968        | 3080344          | 3082311      | 6577   | 3177                                     |
| hypothetical protein                         | 168                         | 75.0           | 51.2            | Mycobacterium tuberculosis<br>H37Rv Rv3807c                              | pir:C70888    | 504         | 3079848          | 3080351      | 6676   | 3176                                     |
| nodulation protein                           | 295                         | 51.5           | 27.1            | Azorhizablum caulinodans ORS571 noeC                                     | sp NOEC_AZOCA | 996         | 3078853          | 3079848      | 6675   | 3175                                     |
| hypothetical membrane protein                | 667                         | 61.2           | 37.5            | Mycobacterium tuberculosis<br>H37Rv Rv3805c                              | pir.A70888    | 2058        | 3076715          | 3078772      | 6674   | 3174                                     |
| antigen 85-C                                 | 331                         | 62.5           | 36.3            | Mycobacterium tuberculosis<br>ERDMANN RV0129C fbpC                       | sp:A85C_MYCTU | 1023        | 3075540          | 3076562      | 6673   | 3173                                     |
|                                              |                             |                |                 |                                                                          |               | 219         | 3073857          | 3074075      | 6672   | 3172                                     |
|                                              |                             |                |                 |                                                                          |               | 1401        | 3075447          | 3074047      | 6671   | 3171                                     |
| major secreted protein PS1 protein precursor | 657                         | 99.5           | 98.6            | Corynebacterium glutamitum<br>(Brevibacterium flavum) ATCC<br>17965 cop1 | sp.CSP1_CORGL | 1971        | 3071650          | 3073620      | 6670   | 3170                                     |
|                                              |                             |                |                 |                                                                          |               | 498         | 3071147          | 3071644      | 6669   | 3169                                     |
| hypothetical protein                         | 319                         | 67.4           | 39.8            | Mycobacterium tuberculosis<br>H37Rv Rv3802c                              | pir:F70887    | 927         | 3070214          | 3071140      | 6688   | 3168                                     |
| acyl-CoA synthase                            | 592                         | 62.3           | 33.5            | Mycobacterium bovis BCG                                                  | pri 2310345A  | 1788        | 3068143          | 3069930      | 6667   | 3167                                     |
| polyketide synthase                          | 1747                        | 54 2           | 30.2            | Streptomyces erythraeus eryA                                             | sp.ERY1_SACER | 4830        | 3052951          | 3067780      | 6666   | 3166                                     |
| propionyl-CoA carboxylase complex B subunit  | 523                         | 76 9           | 49.7            | Streptomyces coelicolor A3(2) pcc8                                       | gp:AF113605_1 | 1548        | 3061380          | 3062927      | 6665   | 3165                                     |
| hypothetical membrane protein                | 108                         | 69.4           | 34 3            | Mycobacterium tuberculosis H37Rv Rv0401                                  | pir:H70833    | 363         | 3061095          | 3060733      | 6664   | 3164                                     |
| hypothetical membrane protein                | 364                         | 62 9           | 29.1            | Mycobacterium tuberculosis<br>H37Rv Rv0204c                              | pir:A70839    | 1083        | 3060733          | 3059651      | 6663   |                                          |
| Function                                     | Matched<br>length<br>(a.a.) | Similarity (%) | Identity<br>(%) | Homologous gene                                                          | db Match      | ORF<br>(bp) | Terminal<br>(nt) | Initial (nl) | NO SEQ | ON O |
|                                              |                             |                |                 | Table 1 (continued)                                                      |               |             |                  |              |        |                                          |

|                                                                           |                             |                 |                 |              |                                                |                  |            |                  |                 |              | -         |
|---------------------------------------------------------------------------|-----------------------------|-----------------|-----------------|--------------|------------------------------------------------|------------------|------------|------------------|-----------------|--------------|-----------|
|                                                                           |                             |                 |                 |              |                                                |                  | 729        | 3101426          | 3100698         | 6697         | 3197      |
| nicotinamidase or pyrazinemidase                                          | 480                         | 50.9            | 27.4            | egmatis pzaA | Mycobacterium smegmatis pzeA                   | prf 2501285A     | 1143       | 3100698          | 3099556         | 6696         | 3196      |
|                                                                           |                             |                 |                 |              |                                                |                  | 630        | 3099454          | 3098825         | 6695         | 3195      |
| 2,3-PDG dependent phosphoglycerate mulase                                 | 218                         | 62.8            | 37.2            | anolica pgm  | Amycoistopsis methanolica                      | gp.AMU73808_1    | 669        | 3097804          | 3098572         | 6694         | 3194      |
|                                                                           |                             | <u> </u>        |                 | i:           |                                                |                  | 99         | 3097780          | 3097878         | 6693         | 3193      |
| hypothetical protein                                                      | 113                         | 79.7            | 46.0            | tuberculosis | Mycobacterium tube<br>H37Rv Rv3836             | pir:A70653       | 342        | 3097764          | 3097423         | 6692         | 3192      |
| hypothelical protein                                                      | 356                         | 61.2            | 32.6            | erculosis    | Mycobacterium tuberculosis<br>H37Rv Rv3835     | pir.H70652       | 1113       | 3097423          | 3096311         | 6691         | 3191      |
| transcriptional regulator, GntR family or fatty acyl-responsive regulator | 235                         | 61.7            | 27.7            | 2 farR       | Escherichia coli K12 farR                      | sp.FARR_ECOLI    | 714        | 3096287          | 3095574         | 6690         | 3190      |
| seryl-IRNA synthetase                                                     | 419                         | 87.6            | 70.2            | erculosis    | Mycobacterium tuberculosis<br>H37Rv            | gsp:W28465       | 1266       | 3094078          | 3095343         | 6689         | 3189      |
| acyltransferase                                                           | 261                         | 72.0            | 48.7            | rculosis     | Mycobacterium tuberculosis<br>H37Rv Rv3816c    | pir:D70521       | 876        | 3093175          | 3094050         | 0088         | 3188      |
| hypothetical protein                                                      | 279                         | 70.3            | 41.6            | rculosis     | Mycobacterium tuberculosis<br>H37Rv Rv3813c    | pir.A70521       | 834        | 3092342          | 3093175         | 6687         | 3187      |
| glycerol kinase                                                           | 499                         | 78.8            | 51.7            | ginosa       | Pseudomonas aeruginosa<br>ATCC 15692 glpK      | sp:GLPK_PSEAE    | 1527       | 3090760          | 3092286         | 6686         | 3186      |
| hypothetical protein                                                      | 659                         | 47.8            | 29.6            | rculosis     | Mycobacterium tuberculosis<br>H37Rv Rv3811 csp | pir:G70520       | 2049       | 3090664          | 3088616         | 6685         | 3185      |
| UDP-gatactopyranose mutase                                                | 377                         | 72.9            | 43.2            | gir          | Escherichia coli K12 gli                       | sp:GLF_ECOLI     | 1203       | 3087101          | 3088303         | 6684         | 3184      |
|                                                                           |                             |                 |                 |              |                                                |                  | 612        | 3088276          | 3087665         | 6683         | 3183      |
| oxide-forming)                                                            | 377                         | 50 4            | 24.4            |              | Sus scrota imot                                | sp:FMO1_PIG      | 1302       | 3087048          | 3085747         | 6682         | 3182      |
|                                                                           |                             |                 |                 |              |                                                |                  | 510        | 3085218          | 3085727         | 6681         | 3181      |
|                                                                           |                             |                 |                 |              |                                                |                  | 777        | 3084424          | 3085200         | 6680         | 3180      |
| Function                                                                  | Matched<br>length<br>(a.a.) | Similari<br>(%) | identity<br>(%) | gene         | Homologous gene                                | db Match         | ORF<br>ORF | Terminal<br>(nt) | Initial<br>(nt) | SEO<br>O SEO | SEO<br>NO |
|                                                                           |                             |                 |                 | ntinued)     | Table 1 (continued)                            |                  |            |                  |                 |              |           |
| <b>2</b><br>01                                                            | ei                          | 50              |                 | SZ           | oε                                             | 0 <b>†</b><br>SE |            | ទា               | os              |              | 55        |

9

**S**Þ

SI

|                                                      |                       |                  |                 |                                                | •             |             |               |                 |          |      |
|------------------------------------------------------|-----------------------|------------------|-----------------|------------------------------------------------|---------------|-------------|---------------|-----------------|----------|------|
| shikimate transport protein                          | 422                   | 74.4             | 37.9            | Escherichia coli K12 shiA                      | SP SHIA ECOLI | 1299        | 3119582       | 3118284         | 6716     | 3216 |
| phosphoesterase                                      | 255                   | 68.6             | 47.8            | Mycobacterium tuberculosis<br>H37Rv Rv2785c    | pir 870885    | 786         | 3118121       | 3117336         | 6715     | 3215 |
| transcriptional regulator GntR family                | 221                   | 57.0             | 27.6            | Escherichia coli K12 MG1655<br>glcC            | sp.GLCC_ECOLI | 693         | 3117332       | 3116640         | 6714     | 3214 |
| efflux protein                                       | 188                   | 67.6             | 39.9            | Brevibacterium linens ORF1 tmpA                | gp.AF030288_1 | 543         | 3116621       | 3116079         | 6713     | 3213 |
| hydrolase or haloacid<br>dehalogenase-like hydrolase | 224                   | 58.5             | 32.1            | Streptomyces coelicolor A3(2)<br>SC1C2.30      | gp:SC1C2_30   | 636         | 3116042       | 3115407         | 6712     | 3212 |
| hypothetical protein                                 | 528                   | 64.8             | 33.5            | Mycobacterium tuberculosis<br>H37Rv Rv1089c    | pir:C70893    | 1776        | 3115394       | 3113619         | 6711     | 3211 |
| L-lactate dehydrogenase                              | 314                   | 99.7             | 99.7            | Brevibacterium flavum ictA                     | gsp:Y25997    | 942         | 3112449       | 3113390         | 6710     | 3210 |
| pyruvate kinase                                      | 491                   | 47.7             | 25.5            | Corynebacterium glutamicum<br>AS019 pyk        | sp.KPYK_CORGL | 1617        | 3110464       | 3112080         | 6709     | 3209 |
|                                                      |                       |                  |                 |                                                |               | 159         | 3110003       | 3109845         | 670B     | 3208 |
|                                                      |                       |                  |                 |                                                |               | 642         | 3108823       | 3109464         | 6707     | 3207 |
| gluconate permease                                   | 456                   | 71.9             | 37.3            | Bacillus subtills gntP                         | SP GNTP_BACSU | 1389        | 3109519       | 3108131         | 6706     | 3206 |
| glycerophosphoryl diester phosphodiesterase          | 259                   | 54.1             | 29.0            | Bacillus subtilis glpQ                         | sp GLPQ_BACSU | 819         | 3106951       | 3107769         | 6705     | 3205 |
|                                                      |                       |                  |                 |                                                |               | 918         | 3106053       | 3106970         | 6704     | 3204 |
| giucan 1,4-aipha-giucosidase                         | 432                   | 55.3             | 28.7            | Saccharomyces cerevisiae<br>S288C YIR019C sta1 | sp.AMYH_YEAST | 1314        | 3105719       | 3104406         | 6703     | 3203 |
| hypothetical protein                                 | 107                   | B1.3             | 43.9            | Streptomyces lavendulae ORF372                 | pir B26872    | 327         | 3104252       | 3103926         | 6702     | 3202 |
|                                                      |                       |                  |                 |                                                |               | 870         | 3103763       | 3102894         | 6701     | 3201 |
|                                                      |                       |                  |                 |                                                |               | 552         | 3102079       | 3102630         | 6700     | 3200 |
|                                                      |                       |                  |                 |                                                |               | 120         | 3101744       | 3101863         | 6699     | 3199 |
| transcriptional regulator                            | 380                   | 57.1             | 31.6            | Streptomyces coelicolor A3(2)<br>SC6G4.33      | gp:SC6G4_33   | 1035        | 3102768       | 3101734         | 6698     | 3198 |
| Function                                             | Matched length (a.a.) | Similariy<br>(%) | Identity<br>(%) | Homologous gane                                | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ<br>O | SEO  |
|                                                      |                       |                  |                 | Table 1 (continued)                            |               |             |               |                 |          |      |

0⊊

57

32

Œ

SZ

so

SI

| regulator                                                  |                       | 1                | -        | 000             | chrA                                       | pri Zonasava    | 030                                     | 3133830       | 3136491        | 6/36   | 3236      |
|------------------------------------------------------------|-----------------------|------------------|----------|-----------------|--------------------------------------------|-----------------|-----------------------------------------|---------------|----------------|--------|-----------|
| two-component system response                              | 3                     | -                | $\dashv$ | 3               | Corynebacterium diphtheriae                |                 |                                         |               |                |        |           |
| transcriptional regulator                                  | 137                   | 650              |          | 37.2            | Bacillus subtilis 168 yxaD                 | Sp.YXAD_BACSU   | 456                                     | 3135752       | 3135297        | 6735   | 3235      |
| membrane transport protein                                 | 447                   | 5 <del>9</del> 3 | -        | 27.3            | Streptomyces cyanogenus land               | prf 2508244AB   | 1491                                    | 3133778       | 3135268        | 6734   | 3234      |
| hypothetical protein                                       | 216                   | 64               |          | 33.8            | Mycobacterium tuberculosis<br>H37Rv Rv3850 | pir G70654      | 633                                     | 3133747       | 3133115        | 6733   | 3233      |
|                                                            |                       |                  | _        |                 |                                            |                 | 1521                                    | 3131508       | 3133028        | 6732   | 3232      |
|                                                            |                       |                  | _        |                 |                                            |                 | ======================================= | 3133030       | 3132920        | 6731   | 3231      |
|                                                            |                       |                  |          |                 |                                            |                 | 1611                                    | 3131395       | 3129785        | 6730   | 3230      |
| multidrug resistance transporter                           | 384                   | 9                |          | 23 4            | Corynebacterium glutamicum tetA            | gp AF121000_10  | 1134                                    | 3129739       | 3128606        | 6729   | 3229      |
| transcriptional regulator                                  | 292                   | 65 B             | $\vdash$ | 32.5            | Bacillus subliks gltC                      | sp:GLTC_BACSU   | 924                                     | 3127494       | 3128417        | 6728   | 3228      |
| superoxide dismutese (Fe/Mn)                               | 164                   | 927              | -        | 82.3            | Corynebacterium pseudodiphtheriticum sod   | pir:140858      | 600                                     | 3126991       | 3126392        | 6727   | 3227      |
| peptide methionine sulfoxide reductase                     | 210                   | 69               |          | 47.6            | Escherichia coli B msrA                    | sp.PMSR_ECOLI   | 651                                     | 3125495       | 3126145        | 6726   | 3226      |
|                                                            |                       | _                |          | -               |                                            |                 | 150                                     | 3125492       | 3125343        | 6725   | 3225      |
| peptidase or IAA-amino acid<br>hydrolase                   | 122                   | 63               | 8        | 38 1            | Arabidopsis thaliana ill 1                 | sp.ILL1_ARATH   | 402                                     | 3124897       | 3125298        | 6724   | 3224      |
|                                                            |                       | _                | _        |                 |                                            |                 | 546                                     | 3124341       | 3124886        | 6723   | 3223      |
| phosphatase or reverse transcriptase (RNA-dependent)       | 569                   | 51               |          | 29 5            | Caenorhabditis elegans<br>Y51811A.1        | gp CELY51811A_1 | 1617                                    | 3122556       | 3124172        | 6722   | 3222      |
|                                                            |                       |                  | _        |                 |                                            |                 | 711                                     | 3123932       | 3123222        | 6721   | 3221      |
|                                                            |                       | _                |          |                 |                                            |                 | 138                                     | 3121992       | 3122129        | 6720   | 3220      |
| Immunity repressor protein                                 | 55                    | 8                | $\vdash$ | 45 5            | Bacillus phage phi-105 ORF1                | sp:RPC_BPPH1    | 312                                     | 3121909       | 3121598        | 6719   | 3219      |
|                                                            |                       |                  |          |                 |                                            |                 | 405                                     | 3121313       | 3120909        | 6718   | 3218      |
| L-lactate dehydrogenase or FMN-<br>dependent dehydrogenase | 376                   | 8.0              |          | 40.4            | Neisseria meningitidis IIdA                | рп 2219306А     | 1215                                    | 3120879       | 3119685        | 6717   | 3217      |
| Function                                                   | Matched length (a.a.) | nile<br>%        | Sir      | Identity<br>(%) | Homologous gene                            | db Match        | ORF                                     | Terminal (nt) | Indial<br>(nt) | NO SEO | SEQ<br>NO |
|                                                            |                       |                  |          |                 | Table 1 (continued)                        |                 |                                         |               |                |        |           |

0⊊

57

Æ

οε

52

50

SI

01

£

| hypothetical protein                           | 267                         | 78.           | 48.3            | Mycobacterium tuberculosis H37Rv Rv2744c    | sp 35KD_MYCTU | 873  | 3153894       | 3154766         | 6753 | 3253 |
|------------------------------------------------|-----------------------------|---------------|-----------------|---------------------------------------------|---------------|------|---------------|-----------------|------|------|
| hypothetical protein                           | 488                         | 48.7          | 26.0            | Streptomyces coelicolor<br>SC4G6 31c        | gp SC4G6_31   | 1416 | 3153828       | 3152413         | 6752 | 3252 |
| family or gic operon transcriptional activator | 109                         | 56.0          | 30.3            | Escherichla coll K12 MG1855<br>glcC         | sp GLCC_ECOLI | 363  | 3151842       | 3152204         | 6751 | 3251 |
|                                                |                             |               |                 |                                             |               | 207  | 3151369       | 3151575         | 6750 | 3250 |
| hypothetical protein                           | \$                          | 75.0          | 71.0            | Chlamydia muridarum Nigg<br>TC0129          | PIR F81737    | 141  | 3147230       | 3147090         | 6749 | 3249 |
| hypothetical protein                           | 84                          | 66 0          | 81.0            | Chlamydia pneumoniae                        | GSP:Y35814    | 273  | 3146841       | 3146569         | 6748 | 3248 |
| RNA pseudouridylate synthese                   | 334                         | 51.3          | 28.4            | Chloroblum vibrioforme ybc5                 | SP YBC5_CHLVI | 966  | 3145626       | 3144661         | 6747 | 3247 |
| hypothetical protein                           | 314                         | 73.9          | 38.5            | Escherichia coll K12 MG1655<br>yhbW         | SP YHBW_ECOLI | 987  | 3143496       | 3144482         | 6746 | 3246 |
| hypothetical protein                           | 296                         | 69 6          | 41.2            | Mycobacterium tuberculosis H37Rv Rv2005c    | SP.YW12_MYCTU | 903  | 3142454       | 3143356         | 6745 | 3245 |
| transglycosylase-associated protein            | 87                          | 71.3          | 34.5            | Escherichia coli K12 MG1655<br>tag1         | sp:TAG1_ECOLI | 261  | 3141709       | 3141969         | 6744 | 3244 |
| transcriptional repressor                      | 192                         | 60.9          | 32.3            | Mycobacterium tuberculosis<br>H37Rv Rv3173c | pir:C70948    | 639  | 3140885       | 3141523         | 6743 | 3243 |
| stage III sporulation protein                  | 265                         | 53.6          | 26.0            | Bacillus subtilis spoll()                   | sp:SP3J_BACSU | 1302 | 3140952       | 3139651         | 6742 | 3242 |
| hypothetical protein                           | 277                         | 59.2          | 30.0            | Streptomyces coelicolor A3(2)<br>SCH69,20c  | gp:SCH69_20   | 822  | 3138634       | 3139455         | 6741 | 3241 |
| hypothetical protein                           | 48                          | 78.2          | 45.8            | Streptomyces coelicolor A3(2)<br>SCH89.22c  | gp.SCH69_22   | 150  | 3138481       | 3138630         | 6740 | 3240 |
| histidine kinase                               | 408                         | 64.5          | 30.2            | Corynebacterium diphtheriae                 | prf:2518330A  | 1311 | 3136593       | 3137903         | 6739 |      |
|                                                |                             |               |                 |                                             |               | 588  | 3138471       | 3137884         | 6738 | 3238 |
|                                                |                             |               |                 |                                             |               | 639  | 3137558       | 3136920         | 6737 |      |
| Function                                       | Matched<br>length<br>(a.a.) | Similarly (%) | Identity<br>(%) | Homologous gene                             | db Match      | (bp) | Terminal (nt) | Initial<br>(nt) | SEO  | SEQ  |
|                                                |                             |               |                 | Table 1 (continued)                         |               |      |               |                 |      |      |

|                                                                                           |                |               |              |                                            |                  | 171          | 3166267       | 3166437         | 6774  | 3274          |
|-------------------------------------------------------------------------------------------|----------------|---------------|--------------|--------------------------------------------|------------------|--------------|---------------|-----------------|-------|---------------|
| copper/potassium-transporting<br>ATPase B or cation transporting<br>ATPase (E1-E2 family) | 717            | 73,4          | 45.8         | Archaeoglobus fulgidus AF0152              | pir H69268       | 2217         | 3163789       | 3166005         | 6773  | 3273          |
| lipoprotein                                                                               | 180            | 59.4          | 32.2         | Synechocystis sp. PCC6803<br>sil0788       | pir \$77018      | 660          | 3163074       | 3163733         | 6772  | 3272          |
| glyceraldehyde-3-phosphale dehydrogenase (pseudogena)                                     | 38             | 84.2          | 63.2         | Pyrococcus woesel gap                      | sp G3P_PYRWO     | 126          | 3162858       | 3182983         | 6771  | 3271          |
|                                                                                           |                |               |              |                                            |                  | 1038         | 3163889       | 3162852         | 6770  | 3270          |
| transposase protein fragment                                                              | 46             | 90.0          | 84 0         | Corynebacterium glutamicum                 | GPU AF164956_23  | 162          | 3162871       | 3162710         | 6769  | 3269          |
| fransposase                                                                               | 27             | 84.0          | 81.0         | Corynebacterium glutamicum<br>Tnp1673      | GPU AF164956_8   | 111          | 3162804       | 3162694         | 6768  | 3268          |
| hypothetical protein                                                                      | 55             | 85.5          | 47.3         | Streptomyces coelicolor A3(2)              | gp SCD31_14      | 333          | 3161682       | 3162014         | 6767  | 3267          |
| ferredoxin precursor                                                                      | 62             | 98.4          | 90.3         | Saccharopolyspora erythraea fer            | SP.FER_SACER     | 321          | 3161087       | 3161407         | 6766  | 3266          |
|                                                                                           |                |               |              |                                            |                  | 483          | 3161701       | 3161219         | 6765  | 3265          |
| transposon tn501 resolvase                                                                | 56             | 92.9          | 48.2         | Pseudomonas aeruginosa TNP5                | SP TNP5_PSEAE    | 216          | 3160723       | 3160938         | 6764  | 3264          |
|                                                                                           |                |               |              |                                            |                  | 1 <b>8</b> 8 | 3161001       | 3160816         | 6763  | 3263          |
|                                                                                           |                |               |              |                                            |                  | 378          | 3161065       | 3160688         | 8762  | 3262          |
|                                                                                           |                |               |              |                                            |                  | 204          | 3160419       | 3160216         | 6761  | 3261          |
| nodulin 21-related protein                                                                | 241            | 55.2          | 26.1         | soybean NO21                               | SP NO21_SOYBN    | 720          | 3159081       | 3159800         | 6760  | 3260          |
| methyltransferase                                                                         | 217            | 58.1          | 32.3         | Streptomyces coelicolor A3(2)<br>SCD35 11c | gp:SCD35_11      | 711          | 3158834       | 3158124         | 6759  | 3259          |
|                                                                                           |                |               |              |                                            |                  | 309          | 3157479       | 3157787         | 6758  | 3258          |
|                                                                                           |                | _             |              |                                            |                  | 249          | 3157223       | 3157471         | 6757  | 3257          |
|                                                                                           |                |               |              |                                            |                  | 1068         | 3156306       | 3157373         | 6758  | 3256          |
|                                                                                           |                |               |              |                                            |                  | 1452         | 3155248       | 3156697         | 6755  | 3255          |
|                                                                                           |                |               |              |                                            |                  | 153          | 3154969       | 3154817         | 6754  | 3254          |
| Function                                                                                  | Matched length | Similalty (%) | Identity (%) | Homologous gene                            | db Match         | ORF<br>(bp)  | Terminal (nt) | Initial<br>(nt) | 0 0 N | SEQ<br>NO     |
|                                                                                           |                |               |              | Table 1 (continued)                        |                  |              |               |                 |       | !<br><b>i</b> |
|                                                                                           |                |               |              |                                            |                  |              |               |                 |       |               |
| o:                                                                                        | ٤١             | SO            |              | <i>90</i>                                  | 0 <b>+</b><br>5E |              | SÞ            | 0⊊              |       | 55            |
|                                                                                           |                | •             |              |                                            |                  |              |               |                 |       |               |

0⊊

5>

æ

Œ

**52** 

so

SI

|                                                                                                       |                             |               |                 |                                       |                |             |                  | 1               | ĺ          |             |
|-------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------|---------------------------------------|----------------|-------------|------------------|-----------------|------------|-------------|
| transposase                                                                                           | 70                          | 77.0          | 75.0            | Corynebacterium glutamicum<br>Tnp1673 | GPU AF164956_8 | 258         | 3177308          | 3177565         | 6791       | 3291        |
| transposase                                                                                           | 73                          | 730           | 58.0            | Corynebacterium glutamicum<br>Tnp1673 | GPU AF164956_8 | 216         | 3177089          | 3177304         | 6790       | 3290        |
|                                                                                                       |                             |               |                 |                                       |                | 309         | 3177482          | 3177174         | 6789       | 3289        |
| hypothetical protein                                                                                  | 72                          | 54.0          | 45.0            | Aeropyrum pernix K1 APE2572           | PIR:E72491     | 390         | 3175254          | 3175643         | 6788       | 3288        |
| zinc-transporting ATPase (Zn(II)-<br>translocating p-type ATPase                                      | 606                         | 68.5          | 39.8            | Escherichia coli K12 MG1655<br>atzN   | sp:ATZN_ECOLI  | 1875        | 3176901          | 3175027         | 6787       | 3287        |
|                                                                                                       |                             |               |                 |                                       |                | 207         | 3174784          | 3174990         | 6786       | 3286        |
|                                                                                                       |                             |               |                 |                                       |                | 315         | 3174380          | 3174086         | 6785       | 3285        |
| zinc-transporting ATPase (Zn(II)-<br>translocating p-type ATPase                                      | 78                          | 86.7          | 37.2            | Synechocystis sp PCC6803              | SP ATZN_SYNY3  | 234         | 3173857          | 3173624         | 6784       | 3284        |
|                                                                                                       |                             |               |                 |                                       |                | 471         | 3173465          | 3172995         | 6783       | 3283        |
| quinone oxidoreductase (NADPH quinone reductase)(setacrystalin)                                       | 322                         | 80.9          | 31.4            | Mus musculus qor                      | sp.QOR_MOUSE   | 918         | 3171819          | 3172536         | 6782       | 3282        |
| (cytochrome c biogenesis protein                                                                      | 101                         | 63.4          | 31.7            | Bradyrhizobium Japonicum IIpA         | sp.TLPA_BRAJA  | 363         | 3171816          | 3171254         | 6781       | 3281        |
| faccase or copper resistance protein precursor A                                                      | 630                         | 47.9          | 26.7            | Pseudomonas syringae pv. tomato copA  | sp.COPA_PSESM  | 1479        | 2170892          | 3169414         | 6780       | 3280        |
|                                                                                                       |                             | <u> </u>      |                 |                                       |                | 672         | 3169340          | 3168669         | 6779       | 3279        |
| two-component response regulator or sikaline phosphatase synthesis transcriptional regulatory protein | 233                         | 72.1          | 43.4            | Bacillus subtilis phoP                | sp:PHOP_BACSU  | 756         | 3167648          | 3168401         | 6778       | 3276        |
|                                                                                                       |                             |               |                 |                                       |                | 828         | 3168566          | 3167739         | 6777       | 3277        |
| two-component system sensor histidine kinase                                                          | 301                         | 71.4          | 37.5            | Escherichia coli K12 baeS             | sp:BAES_ECOL!  | 1197        | 3166450          | 3167646         | 6776       | 3276        |
|                                                                                                       |                             |               |                 |                                       |                | 192         | 3167169          | 3166978         | 6775       | 3275        |
| Function                                                                                              | Metched<br>length<br>(a.a.) | Similalty (%) | Identity<br>(%) | Homologous gene                       | db Maich       | ORF<br>(bp) | Terminal<br>(nt) | Initial<br>(nt) | SEQ<br>OBS | SEO<br>ONA) |
|                                                                                                       |                             |               |                 | Table 1 (continued)                   |                |             |                  |                 |            |             |

**5**\*

**0**\*

32

Œ

52

so

s١

01

£

| - 1                                                                 |                       | $\dashv$          |              |                                                      |                |             |               |                 |      |            |
|---------------------------------------------------------------------|-----------------------|-------------------|--------------|------------------------------------------------------|----------------|-------------|---------------|-----------------|------|------------|
| ABC transporter ATP-binding protein                                 | 433                   | 64                | 31.2         | Escherichia coli K12 ybjZ                            | sp.YBJZ_ECOLI  | 1263        | 3193252       | 3194514         | 6813 | 3313       |
| hypothetical protein                                                | 298                   | 63,8              | 30.2         | Escherichia coli K12 yceA                            | SP YCEA_ECOLI  | 936         | 3192266       | 3193201         | 6812 | 3312       |
| hypothetical protein                                                | 71                    | 70. <b>4</b>      | 32.4         | Bacillus subtills yhgC                               | sp:YHGC_BACSU  | 321         | 3181922       | 3192242         | 6811 | 3311       |
|                                                                     |                       |                   |              |                                                      |                | 495         | 3191848       | 3191354         | 6810 | 3310       |
| hypothetical protein                                                | 296                   | 61<br>8           | 29.7         | Mycobacterium tuberculosis H37Rv Rv2319c yofF        | SP. YOFF_MYCTU | 942         | 3191319       | 3190378         | 6809 | 3309       |
| bacterial regulatory protein, marR family                           | 137                   | <b>65</b> D       | 35.1         | Mycobacterium tuberculosis<br>H37Rv Rv0042c          | pir:870912     | 471         | 3180347       | 3189877         | 6808 | 3308       |
| hypothetical protein                                                | 107                   | 720               | 41.1         | Mycobacterium tuberculosis<br>H37Rv Rv0049           | SP YOHC_MYCTU  | 357         | 3189296       | 3189652         | 6807 | 3307       |
| penicitin-binding protein                                           | 647                   | 60<br>1           | 29.1         | Bacilius subtills ponA                               | SP:PBPA_BACSU  | 2160        | 3187042       | 3189201         | 6806 | 3306       |
|                                                                     |                       |                   |              |                                                      |                | 882         | 3188793       | 3187912         | 6805 | 3305       |
| hypothetical protein                                                | 480                   | 683               | 41.5         | Mycobacterium smegmatis mc(2)155                     | gp AF187306_1  | 1458        | 3185536       | 3186993         | 6804 | 3304       |
|                                                                     |                       |                   |              |                                                      |                | 189         | 3185348       | 3185536         | 6803 | 3303       |
| 30S ribosomal protein S6                                            | 92                    | 783               | 28.3         | Escherichla coll K12 RS6                             | sp.RS6_ECOLI   | 285         | 3184701       | 3184985         | 6802 | 3302       |
| single-strand DNA binding protein                                   | 229                   | 515               | 30.6         | Escherichia coll K12 ssb                             | sp:SSB_ECOLI   | 675         | 3183987       | 3184661         | 6801 | 3301       |
| 50S ribosomal protein L9                                            | 154                   | 714               | 42.2         | Escherichia coll K12 RL9                             | sp:RL9_ECOLI   | 450         | 3183478       | 3183927         | 6800 | 3300       |
|                                                                     |                       |                   |              |                                                      |                | 516         | 3183984       | 3183469         | 6799 | 3299       |
| replicative DNA helicase                                            | 461                   | 73 1              | 37.7         | Escherichia coli K12 dnaB                            | sp:DNAB_ECOLI  | 1530        | 3181337       | 3182866         | 6798 | 3298       |
| hypothetical protein                                                | 208                   | 625               | 35.1         | Escherichia coli K12 yqji                            | sp:YQJI_ECOLI  | 576         | 3180551       | 3181126         | 6797 | 3297       |
|                                                                     |                       |                   |              |                                                      |                | 159         | 3180946       | 3181104         | 6796 | 3296       |
| transmembrane transport protein or<br>4-hydroxybenzoate transporter | 421                   | 60                | 27.1         | Pseudomonas putide pcaK                              | sp:PCAK_PSEPU  | 1344        | 3180392       | 3179049         | 6795 | 3295       |
|                                                                     |                       |                   |              |                                                      |                | 264         | 3178872       | 3178609         | 6794 | 3294       |
| thioredoxin                                                         | 100                   | 740               | 39.0         | Escherichia coli K12 thi2                            | sp:THI2_ECOLI  | 447         | 3178112       | 3178558         | 6793 | 3293       |
| transposase (IS 1628)                                               | 53                    | 96 2              | 92.5         | Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB | gp:AF121000_8  | 159         | 3177525       | 3177683         | 6792 | 3292       |
| Function                                                            | Matched length (a.a.) | Similarity<br>(%) | Identity (%) | Homologous gene                                      | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ  | SEQ<br>NO. |
|                                                                     |                       |                   |              | Table 1 (continued)                                  |                |             |               |                 |      |            |

**EP 1 108 790 A2** 

05

**S**\*

æ

Œ

52

50

SI

10

|                                                                                                           | -             | _                |             | Enter ococcos i agentini vant                                            | SP VANZ_ENITC     | 525  | 3211904       | 3212428      | 6831 | 3331      |
|-----------------------------------------------------------------------------------------------------------|---------------|------------------|-------------|--------------------------------------------------------------------------|-------------------|------|---------------|--------------|------|-----------|
| telcoplanin resistance protein                                                                            | 159           | 150 0            | 370         | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                  |                   |      | 100           | +-           | -    | 100       |
| telcoplanin resistance protein                                                                            | 169           | 60 4             | 27.8        | Enterococcus faeclum vanZ                                                | SD VANZ ENTEC     | 591  | 7011246       | <del>-</del> | _    | ווני      |
| gluconokinase or gluconate kinase                                                                         | 488           | 53               | 24.5        | Bacillus subtilis gntK                                                   | SP.GNTK_BACSU     | 1482 | 3209705       | 3211186      | 6829 | 3329      |
| malate oxidoreductase [NAD] (malic enzyme)                                                                | 392           | 88               | 99.7        | Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 maiE | gp.AF234535_1     | 1176 | 3209454       | 3208279      | 6828 | 3328      |
| membrane transport protein                                                                                | 398           | 66               | 26.4        | Mycobacterium tuberculosis H37Rv Rv0191 ydeA                             | sp:YDEA_ECOLI     | 1176 | 3208024       | 3206849      | 6827 | 3327      |
|                                                                                                           |               | -                |             |                                                                          |                   | =    | 3206756       | 3206646      | 6826 | 3326      |
| zinc-binding dehydrogenase or<br>quinone exidoreductase<br>(NADPH:quinone reductase) or<br>atginate lyase | 231           | <u>ය</u>         | 33.3        | Cavia porcellus (Guinea pig) qor                                         | 1011 sp GOR_CAVPO | 1011 | 3205222       | 3206232      | 6825 | 3325      |
| S-methyltransferase                                                                                       | 166           | 2                | 38 0        | Homo sapiens mgmT                                                        | 3P.MGMT_HUMAN     | 474  | 3204731       | 3205204      | 6824 | 3324      |
|                                                                                                           |               | ļ_               |             |                                                                          |                   | 573  | 3204728       | 3204156      | 6823 | 3323      |
|                                                                                                           |               | _                |             |                                                                          |                   | 1089 | 3202979       | 3204067      | 6822 | 3322      |
| hypothetical protein                                                                                      | 404           | 88               | 47.5        | Escherichia coli K12 rtcB                                                | sp.RTCB_ECOLI     | 1149 | 3204100       | 3202952      | 6821 | 3321      |
| formamidopyrimidine-DNA<br>glycosylase                                                                    | 268           | 55               | 28.4        | Escherichia coll K12 mutM or 199                                         | sp:FPG_ECOLI      | 813  | 3202712       | 3201900      | 6820 | 3320      |
| protein                                                                                                   | 154           | 04               | 37.7        | Escherichla coll K12 dps                                                 | sp:DPS_ECOLI      | 495  | 3201260       | 3201754      | 6819 | 3319      |
|                                                                                                           |               | Ļ                | -           |                                                                          |                   | 1485 | 3199202       | 3200686      | 818  | 3318      |
|                                                                                                           |               | _                | -           |                                                                          |                   | 606  | 3198582       | 3199187      | 8817 | 3317      |
| hypothelical protein                                                                                      | 360           | 90.0             | 77.8        | Mycobacterium tuberculosis H37Rv Rv0046c                                 | pir:F70912        | 1089 | 3198500       | 3197412      | 6816 | 3316      |
| hypothetical protein                                                                                      | 237           | 42.0             | 18.0        | Campylobacter jejuni Cj0608                                              | pir.E81408        | 1977 | 3185210       | 3197186      | 6815 | 3315      |
| ABC transporter ATP-binding protein                                                                       | 221           | 80.1             | 80 90       | Escherichia coll K12 MG1655<br>ybjZ                                      | sp YBJZ_ECOLI     | 690  | 3194514       | 3195203      |      |           |
| Function                                                                                                  | length (s.a.) | Similarty<br>(%) | Identity Si | Homologous gene                                                          | db Match          | ORF  | Terminal (nt) | Indial (nt)  | SEQ. | SEQ<br>NO |
|                                                                                                           |               | -                |             | Table 1 (continued)                                                      |                   |      |               |              |      |           |

05

54

**SE** 

oε

52

50

SI

|                                                                                                                                                                                                         |                           |               |      |                                      |               |                  |               |                 | !         | 1         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|------|--------------------------------------|---------------|------------------|---------------|-----------------|-----------|-----------|
| transmembrans transport protein or 4-hydroxybenzoale transporter                                                                                                                                        | 454                       | 808           | 27.5 | Pseudomonas putida pcaK              | sp:PCAK_PSEPU | 1356             | 3229079       | 3227724         | 6848      | 3348      |
| bacterial regulatory protein, lact family or pectin degradation repressor protein                                                                                                                       | 229                       | 80            | 25.3 | Pectobacterium chrysanthemi<br>kdgR  | sp.KDGR_ERWCH | 780              | 3226910       | 3227689         | 6847      | 3347      |
| gentisate 1,2-dioxygenase or 1-<br>hydroxy-2-naphthoate dioxygenase                                                                                                                                     | 339                       | 04            | 34.2 | Pseudomonas alcaligenes xinE         | gp AF173167_1 | 1125             | 3225563       | 3226687         | 5846      | 334C      |
| bifunctional protein (homoprotocatechuate catabolism bifunctional Isomerase/decarboxylase) (2-hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase) | 298                       | 50 8          | 28.5 | Escherichia coli K12 hpcE            | sp.HPCE_ECOLI | 837              | 3224718       | 3225554         | 6845      | 3345      |
| hypothetical protein                                                                                                                                                                                    | 247                       | 53            | 31.6 | Streptomyces coelicolor<br>SCC54, 19 | gp SCC54_19   | 723              | 3223992       | 3224714         | 6844      | 3344      |
|                                                                                                                                                                                                         |                           | -             |      |                                      |               | 774              | 3225374       | 3224601         | 6843      | 3343      |
| virulence-associated protein                                                                                                                                                                            | 88                        | 9.            | 55.8 | Dichelobacter nodosus vapi           | SP VAPI_BACNO | 357              | 3223089       | 3223445         | 6842      | 3342      |
| hypothetical membrane protein                                                                                                                                                                           | 104                       | 8             | 40.4 | Escherichia coli K12                 | SP YBAN_ECOLI | 429              | 3223150       | 3222722         | 6841      | 3341      |
| leucyl-tRNA synthetase                                                                                                                                                                                  | 943                       | 8             | 47.7 | Bacillus subtilis syl                | sp.SYL_BACSU  | 2856             | 3219778       | 3222633         | 6840      | 3340      |
|                                                                                                                                                                                                         |                           | -             |      |                                      |               | 1452             | 3222495       | 3221044         | 6839      | 3339      |
|                                                                                                                                                                                                         |                           | -             |      |                                      |               | 924              | 3219700       | 3218777         | 6838      | 3338      |
| NAD(P)H nitroreductase                                                                                                                                                                                  | 194                       | 55.           | 25.8 | Thermus thermophilus nox             | Sp:NOX_THETH  | 609              | 3218601       | 3217993         | 6837      | 3337      |
|                                                                                                                                                                                                         |                           |               |      |                                      |               | 321              | 3217457       | 3217777 3217457 | 6836      | 3336      |
|                                                                                                                                                                                                         |                           | -             |      |                                      |               | 330              | 3216886       | 3217215         | 6835      | 3335      |
|                                                                                                                                                                                                         |                           |               |      |                                      |               | 1503             | 3215257       | 3216759         | 6834      | 3334      |
| D-amino acid dehydrogenase small subunit                                                                                                                                                                | 444                       | 54.5          | 27.3 | Escherichia coli K12 dadA            | sp.DADA_ECOLI | 1230             | 3213834       | 3215163         | 6833      | 3333      |
| mercury(ii) reductasa                                                                                                                                                                                   | 448                       | 65.6          | 29.9 | Staphylococcus aureus merA           | sp.MERA_STAAU | 1344             | 3213931       | 3212588         | 6832      |           |
| Function                                                                                                                                                                                                | Matched<br>length<br>(aa) | Similarty (%) | (%)  | Homologous gene                      | db Match      | () OR<br>무<br>() | Terminal (nt) | foltial<br>(nt) | NO<br>SEO | SEQ<br>NO |
|                                                                                                                                                                                                         |                           |               |      | Table 1 (continued)                  |               |                  |               |                 |           |           |

09

æ

Œ

SZ

so

SI

| ABC transporter                                                                                              | 547                   | 57.2             | 25.2            | Streptomyces coelicolor A3(2)<br>SCH10 12     | gp SCH10_12        | 1584    | 3245342       | 3243759 | 6863   | 3363      |
|--------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------|-----------------------------------------------|--------------------|---------|---------------|---------|--------|-----------|
| ABC transporter ATP-binding protein                                                                          | 305                   | 03.0             | 32.5            | Pseudomonas stutzeri                          | sp:NOSF_PSEST      | 906     | 3243759       | 3242854 | 6862   | 3362      |
| PTS system, IIA component or unknown pentitol phosphotrensferase enzyme II, A component                      | 152                   | 71.7             | 30.3            | Escherichla coli K12 ptxA                     | SP PTXA_ECOLI      | 810     | 3241879       | 3242688 | 6861   | 3361      |
| hypothetical membrane protein                                                                                | 521                   | 86.8             | 88.6            | Streptomyces coelicolor A3(2)<br>8CJ21.17c    | gp.SCJ21_17        | 1539    | 3240313       | 3241851 | 6800   | 3360      |
| tryptophen synthase sipha chain                                                                              | 283                   | 96.5             | 95.4            | Brevibacterium lactofermentum trpA            | sp TRPA_BRELA      | 840     | 3240171       | 3239332 | 6859   | 3359      |
| tryptophan synthase beta chain                                                                               | 417                   | 97.9             | 97.6            | Brevibacterium lactofermentum trpB            | SP TRPB_BRELA      | 1251    | 3239332       | 3238082 | 6858   | 3358      |
|                                                                                                              |                       |                  |                 |                                               |                    | 696     | 3236518       | 3237213 | 6857   | 3357      |
| indole-3-glycerol phosphate<br>synthese (IGPS) and N (5'-<br>phosphoribosyl) anthranilate<br>isomerase(PRAI) | 474                   | 98 3             | 97.3            | Brevibacterium lactofermentum trpC            | 1422 Sp TRPC_BRELA | 1422    | 3238062       | 3236641 | 6856   | 3356      |
| anthranilate<br>phosphoribosyltransferase                                                                    | 348                   | 99.4             | 99.4            | Corynebacterium glutamicum<br>ATCC 21850 trpD | sp TRPD_CORGL      | 1044    | 3236645       | 3235602 | 6855   | 3355      |
| anthrenilate synthese component II                                                                           | 208                   | 100.Q            | 99.0            | Brevibacterium lactofermentum trpG            | TRPG_BRELA         | 624     | 3235579       | 3234956 | 6854   | 3354      |
|                                                                                                              |                       |                  |                 |                                               |                    | 171     | 3233250       | 3233420 | 6853   | 3353      |
| anthranilate synthase component i                                                                            | 515                   | 99.8             | 99.2            | Brevibacterium lactofermentum trpE            | sp TRPE_BRELA      | 1554    | 3234958       | 3233403 | 6852   | 3352      |
| tryptophan-specific permesse                                                                                 | 170                   | 99.4             | 99.4            | Corynebacterium glutamicum<br>AS019 ORF1      | pir.JC2326         | 510     | 3233105       | 3232596 | 6851   | 3351      |
| proton/glutamate symporter or excitatory amino acid transporter?                                             | 507                   | 54.4             | 25.4            | Homo sapiens eat2                             | sp:EAT2_HUMAN      | 1251    | 3231054       | 3232304 | 6850   | 3350      |
| salicylate hydroxylase                                                                                       | 478                   | 49.4             | 28.2            | Pseudomonas putida                            | prf.1706191A       | 1326    | 3230444       | 3229119 | 6849   | 3349      |
| Function                                                                                                     | Matched length (3.8.) | Similari∀<br>(%) | Identity<br>(%) | Hamalogous gene                               | db Match           | (b) ORF | Terminal (nt) | (nitial | NO SEQ | SEO<br>NO |
|                                                                                                              |                       |                  |                 | Table 1 (continued)                           |                    |         |               |         |        |           |

54

æ

Œ

52

so

SI

|                                                                                  |                       |                  |                 |                                             |                |             |               | i               |        | į         |
|----------------------------------------------------------------------------------|-----------------------|------------------|-----------------|---------------------------------------------|----------------|-------------|---------------|-----------------|--------|-----------|
| hydroxyquinol 1,2-dioxygenase                                                    | 246                   | 62.2             | 31.7            | Acinetobacter calcoaceticus catA            | sp:CATA_ACICA  | 903         | 3256471       | 3257373         | 6880   | 3380      |
| bacterial regulatory protein, tetR family                                        | 188                   | 50.5             | 28.1            | Escherichia coll K12 acrR                   | SP ACRR_ECOLI  | 555         | 3255744       | 3256298         | 6879   | 3379      |
|                                                                                  |                       |                  |                 |                                             |                | 171         | 3255719       | 3255549         | 5878   | 3378      |
| di-tripeptide transpoter                                                         | 469                   | 71.6             | 34.5            | Lactococcus lactis subsp. lactis dtpT       | \$P DTPT_LACLA | 1359        | 3253824       | 3255182         | 6877   | 3377      |
| hypothetical protein                                                             | 58                    | 84.5             | 53.5            | Mycobacterium tuberculosis<br>H37Rv Rv2094c | SP YY34_MYCTU  | 180         | 3253739       | 3253560         | 6876   | 3376      |
| acetoin(diacetyl) reductase (acetoin dehydrogenase)                              | 238                   | 52.9             | 26 9            | Klebsiella terrigena budC                   | SP BUDC_KLETE  | 753         | 3253480       | 3252728         | 6875   | 3375      |
|                                                                                  |                       |                  |                 |                                             |                | 321         | 3252316       | 3252636         | 6874   | 3374      |
|                                                                                  |                       |                  |                 |                                             |                | 168         | 3252133       | 3252300         | 6873   | 3373      |
|                                                                                  |                       |                  |                 |                                             |                | 192         | 3251743       | 3251934         | 6872   | 3372      |
|                                                                                  |                       |                  |                 |                                             |                | 153         | 3251468       | 3251618         | 6871   | 3371      |
| hypothetical protein                                                             | 228                   | 69.5             | 31.4            | Saccharomyces cerevisiae ymyO               | SP YMYO_YEAST  | 648         | 3251405       | 3250758         | 6870   | 3370      |
| NADH oxidase or NADH-dependent flavin oxidoreductase                             | 347                   | 64.3             | 33.4            | Thermoanaerobacter brockii nadO             | sp.NADO_THEBR  | 1092        | 3250742       | 3249651         | 6869   | 3369      |
| bacterial regulatory protein, arsR family or methylenomycin A resistance protein | 102                   | 79.4             | 45.1            | Streptomyces coelicolor Plasmid<br>SCP1 mmr | pir.A29606     | 348         | 3249187       | 3249534         | 6868   | 3368      |
| hypothetical protein                                                             | 282                   | 54.8             | 34.0            | Streptomyces coelicolor A3(2)<br>SCI11.35c  | gp:SCI11_36    | 774         | 3249165       | 3248392         | 6867   | 3367      |
| hypothetical membrane protein                                                    | 328                   | 74.7             | 43.6            | Escherichia coli K12 yfeH                   | SP:YFEH_ECOLI  | 972         | 3248205       | 3247234         | 6866   | 3366      |
| NADH oxidase or NADH-dependent flavin oxidoreductase                             | 336                   | 64.3             | 33.3            | Thermosnaerobacter brockii nadO             | sp.NADO_THEBR  | 1110        | 3245822       | 3246931         | 6865   | 3365      |
| cytchrome b6-F complex tron-sulfur subunit (Rieske iron-sulfur protein)          | 305                   | 63.6             | 32.5            | Chtorobium limicola petC                    | sp.UCRI_CHLLT  | 450         | 3245766       | 3245317         | 6864   | 3364      |
| Function                                                                         | Matched length (8.8.) | Similarty<br>(%) | Identity<br>(%) | Homologous gene                             | db Match       | ORF<br>(bp) | Terminal (nt) | Initial<br>(rt) | NO SEO | SEQ<br>NO |
|                                                                                  |                       |                  |                 | Table 1 (continued)                         |                |             |               |                 |        |           |

05

**5**\*

0+

æ

Œ

52

so

SI

10

ç

| ectoine/proline uptake protein                                                            | 297                   | 62.               | 29.9         | Corynebacterium glutamicum proP         | prf 2501295A       | 837         | 3283473          | 3284309         | 6899 | 3399         |
|-------------------------------------------------------------------------------------------|-----------------------|-------------------|--------------|-----------------------------------------|--------------------|-------------|------------------|-----------------|------|--------------|
| mercuric ion-binding protein or heavy-metal-associated domain containing protein          | 67                    | 70.               | 46.3         | Bacillus subtills yvgY                  | pir.F70041         | 243         | 3283383          | 3283141         | 6898 | 3398         |
| phosphomethylpyrimidine kinase                                                            | 125                   | 76                | 50.4         | Bacillus subtilis thiD                  | SP THID_BACSU      | 600         | 3282347          | 3282946         | 6897 | 3397         |
|                                                                                           |                       | _                 |              |                                         |                    | 360         | 3283101          | 3282742         | 6896 | 3396         |
| hypothetical membrane protein                                                             | 141                   | 61                | 34.8         | Mycobacterium leprae u2286k             | prt:2323363AAM     | 507         | 3281868          | 3282172         | 6895 | 3395         |
| DEAD box RNA helicase family                                                              | 1660                  | 80                | 58.4         | Mycobacterium bovis BCG<br>RvD1-Rv2024c | gp MBO18605_3      | 4929        | 3276671          | 3281599         | 6894 | 3394         |
|                                                                                           |                       |                   |              |                                         |                    | 969         | 3275602          | 3276570         | 6893 | 3393         |
| stomatin                                                                                  | 206                   | 57.               | 28.6         | Caenorhabditis elegans unc1             | SP.UNC1_CAEEL      | 744         | 3274488          | 3275231         | 6892 | 3392         |
|                                                                                           |                       |                   |              |                                         |                    | 1086        | 3272477          | 3271392         | 6891 | 3391         |
|                                                                                           |                       |                   |              |                                         |                    | 618         | 3268618          | 3269235         | 6890 | 3390         |
|                                                                                           |                       |                   |              |                                         |                    | 645         | 3267913          | 3268557         | 6889 | 3389         |
| phosphoesterase                                                                           | 1242                  | 82                | 33.3         | Bacillus subtilis yvnB                  | pir.C70044         | 4032        | 3271093          | 3287082         | 6888 | 3388         |
| dehydrogenase or myo-inositol 2-<br>dehydrogenase or streptomycin<br>biosynthesis protein | 343                   | 62                | 34.1         | Streptomyces griseus stri               | 1083 sp.STRI_STRGR | 1083        | 3268266          | 3265184         | 6887 | 3387         |
| myo-inositol 2-dehydrogenase                                                              | 332                   | 59.0              | 26.5         | Sinorhizoblum meliloti idhA             | sp:MI2D_BACSU      | 1005        | 3285146          | 3264142         | 6886 | 3386         |
| diagnostic fragment protein sequence                                                      | 270                   | 58.3              | 25.9         | Listeria innocue strain 4450            | gsp.W61761         | 879         | 3264115          | 3263237         | 6885 | 3385         |
| oxidareductase                                                                            | 357                   | 55.               | 27.2         | Escherichia coli K12 ydgJ               | sp:YDGJ_ECOLI      | 1077        | 3263221          | 3262145         | 6884 | 3384         |
| bacterial transcriptional regulator or acetate operon repressor                           | 280                   | <b>6</b> 0. 7     | 25.7         | Salmonella typhlmurium IcIR             | SP:ICLR_SALTY      | 861         | 3261989          | 3261129         | 6883 | 3383         |
| sugar transporter or D-xylose-proton symporter (D-xylose transporter)                     | 513                   | 58.3              | 31.4         | Escherichia coll K12 xylE               | sb:XXLE_ECOLI      | 1524        | 3258561          | 3260084         | 6882 | 3382         |
| maleylacetate reductase                                                                   | 351                   | 75.5              | 43.0         | Pseudomonas sp. P51                     | sp:TCBF_PSESQ      | 1089        | 3257403          | 3258491         | 6881 | _            |
| Function                                                                                  | Matched length (a.a.) | Similarity<br>(%) | identity (%) | Hamologous gene                         | db Maich           | ORF<br>(bp) | Terminal<br>(nt) | initial<br>(nt) | SEQ  | NO NO ON SEQ |
|                                                                                           |                       |                   |              | Table 1 (continued)                     |                    |             |                  |                 |      |              |

†

Œ

SI

ç

|                                                                                                                    |                       |          |                          |      |                                            | 1             | -           |                  |         | - '   |      |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------------------------|------|--------------------------------------------|---------------|-------------|------------------|---------|-------|------|
| thioredoxin reductese                                                                                              | 308                   | B2<br>5  | 60.4                     | -    | Streptomyces clavuligerus tnxB             | SO TRXB STRCL | 951         | 7300771 7301321  |         | 6017  | 7417 |
| RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)                                                   | 169                   | 60 9     | 30.2                     |      | Pseudomonas aeruginosa algü                | sp RPSH_PSEAE | 603         | 3300263          | 3299661 | 6916  | 3416 |
|                                                                                                                    |                       |          |                          |      |                                            |               | 723         | 3298428          | 3297706 | 6915  | 3415 |
| hypothetical membrane protein                                                                                      | 1201                  | 8        | 35.7                     |      | Mycobacterium tuberculosis<br>H37Rv Rv3910 | pir G70600    | 3249        | 3299404          | 3296156 | 6914  | 3414 |
| hypothetical membrane protein                                                                                      | 858                   | 2        | 25.8                     |      | Mycobacterium tuberculosis<br>H37Rv Rv3909 | pir F70800    | 2511        | 3296007          | 3293497 | 6913  | 3413 |
|                                                                                                                    |                       | ╀        |                          | -    |                                            |               | 273         | 3292610          | 3292882 | 6912  | 3412 |
| mutator mutT protein                                                                                               | 234                   | 69 2     | 43 6                     | -    | Mycobacterium tuberculosis<br>H37Rv Rv3908 | pir E70500    | 966         | 3293497          | 3292532 | 6911  | 3411 |
| (RNA nucleotidyttransferase                                                                                        | 471                   | 518      | 26.8                     | 2    | Escherichia coli K12 cca                   | sp CCA_ECOLI  | 1320        | 3290623          | 3291942 | 6910  | 3410 |
| hypothetical protein                                                                                               | 169                   | 56       | 23.7                     | 2    | Escherichia coli K12 yqgE                  | sp YOGE_ECOLI | 567         | 3290025          | 3290591 | 6909  | 3409 |
| branched-chain amino acid transport                                                                                | 212                   | 67       | 32.1                     | u    | Bacillus subtilis aziD                     | sp:AZLC_BACSU | 711         | 3289311          | 3290021 | 6908  | 3408 |
| branched-chain amino acid transport                                                                                | 102                   | 65.7     | 36.3                     | u    | Bacillus sublilis azID                     | sp AZLD_BACSU | 345         | 3288971          | 3289315 | 6907  | 3407 |
| mercuric ion-binding protein or heavy-metal-associated domain containing protein                                   | 67                    | 70.1     | 41.8                     | 4    | Bacillus subtills yvgY                     | pir. F70041   | 201         | 3288885          | 3288685 | 6906  | 3406 |
|                                                                                                                    |                       | 1        | <u> </u>                 | -    |                                            |               | 345         | 3288809          | 3288265 | 6905  | 3405 |
| phosphomethylpyrimidine kinase                                                                                     | 249                   | 75.5     | 46.2                     | 4    | Bacillus subtilis thiD                     | SP THID_BACSU | 798         | 3287393          | 3288190 | 6904  | 3404 |
|                                                                                                                    |                       | -        | ╁                        |      |                                            |               | 219         | 3287079          | 3287297 | 6903  | 3403 |
|                                                                                                                    |                       | ┝        | -                        |      |                                            |               | 384         | 3287005          | 3286622 | 6902  | 3402 |
| mitochondrial respiratory function protein or zinc-binding dehydrogenese or NADPH quinone oxidoreductase           | 324                   | 58       | 27.2                     |      | Schizosaccharomyces pombe<br>mrf1          | sp MRF1_SCHPO | 1122        | 3286576          | 3285455 | 6901  | 3401 |
| iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permasse protein | 279                   | 60       | 29.4                     | 22   | Escherichia coli K12 fecB                  | 3p:FECB_ECOLI | 957         | 3284399          | 3285355 |       |      |
| Function                                                                                                           | Matched length (a.a.) | ?ge tity | dentity Simila<br>(%) (% | ide. | Homologous gene                            | db Match      | ORF<br>(bp) | Terminal<br>(nt) | (nt)    | N SEO | SEO  |
|                                                                                                                    |                       |          |                          |      | Table 1 (continued)                        |               |             |                  |         |       |      |

æ

Œ

ç

|                                           |                      |                   |                   |                                                                         |               |             |               |                 |                 | į         |
|-------------------------------------------|----------------------|-------------------|-------------------|-------------------------------------------------------------------------|---------------|-------------|---------------|-----------------|-----------------|-----------|
| 3-dehydroquinase                          | 149                  | 100 0             | 100.0             | Corynebacterium glutamicum<br>ASO19 aroD                                | gp AF124518_1 | 447         | 446521        | 446075          | 6936            | 3436      |
| aspartate-semialdehyde<br>dehydrogenase   | 344                  | 1000              | 100.0             | Corynebacterium glutamicum asd                                          | sp:DHAS_CORGL | 1032        | 271691        | 270660          | 6935            | 3435      |
| hypothetical protein                      | 85                   | 100 0             | 100.0             | Corynebacterium glutamicum<br>(Brevibacterium flavum) ATCC<br>13032 omX | sp YLEU_CORGL | 255         | 268814        | 269068          | 6934            | 3434      |
| 2-isopropylmalate synthase                | 616                  | 100               | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 leuA                           | sp LEU1_CORGL | 1848        | 266154        | 268001          | 6933            | 3433      |
| L-aspertate-alpha-decarboxylase precursor | 136                  | 10<br>0           | 100.0             | Corynebacterium glutamicum panD                                         | gp AF116184_1 | 408         | 147573        | 147980          | 6932            | 3432      |
|                                           |                      |                   |                   |                                                                         |               | 222         | 3308822       | 3309043         | 6931            | 3431      |
|                                           |                      |                   |                   |                                                                         |               | 294         | 3309321       | 3309028         | 6930            | 3430      |
| 50S ribosomal protein L34                 | 47                   | 93<br>6           | 83.0              | Mycobacterium avium rpmH                                                | gp MAU19185_1 | 336         | 3308412       | 3308747         | 6929            | 3429      |
| ribonuclease P protein component          | 123                  | 58 4              | 26.8              | Bacillus subtilis ropA                                                  | sp:RNPA_BACSU | 390         | 3307971       | 3308369         | 6928            | 3428      |
| hypothetical membrane protein             | 313                  | 75.4              | 44.7              | Mycobacterium tuberculosis<br>H37Rv Rv3921c                             | pir:A70852    | 951         | 3306682       | 3307632         | 6927            | 3427      |
| glucose inhibited division protein B      | 153                  | 647               | 36.0              | Escherichia coll K12 gidB                                               | sp.GID8_ECOLI | 689         | 3305864       | 3306532         | 6926            | 3426      |
| partitioning or sporulation protein       | 272                  | 780               | 65.0              | Mycobacterium tuberculosis<br>H37Rv parB                                | sp YGI1_PSEPU | 837         | 3304835       | 3305671         | 6925            | 3425      |
| hypothetical protein                      | 367                  | <b>6</b> 0 5      | 37.6              | Pseudomonas putida ygi2                                                 | sp YGI2_PSEPU | 1152        | 3303636       | 3304787         | 6924            | 3424      |
| hypothetical protein                      | 212                  | 5 <b>8</b>        | 34.4              | Mycobacterium tuberculosis H37Rv Rv3916c                                | pir:D70851    | 618         | 3302999       | 3303616         | 6923            | 3423      |
|                                           |                      |                   |                   |                                                                         |               | 1041        | 3304475       | 3303435         | 6922            | 3422      |
|                                           |                      |                   |                   |                                                                         |               | 777         | 3301989       | 3302765         | 6921            | 3421      |
| N-acetylmuramoyl-L-alanine amidase        | 196                  | 754               | 51.0              | Bacillus subtilis cwlB                                                  | sp:CWLB_BACSU | 1242        | 3302996       | 3301755         | 6920            | 3420      |
| thioredoxin ch2, M-type                   | 119                  | 705               | 42.0              | Chlamydomonas reinhardtii thi2                                          | sp:THI2_CHLRE | 372         | 3301729       | 3301358         | 6919            | 3419      |
|                                           |                      |                   |                   |                                                                         |               | 1185        | 3300119       | 3301303         | 6918            | 3418      |
| Function                                  | Matched length (8 a) | Similarity<br>(%) | Identity S<br>(%) | Homologous gene                                                         | db Match      | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO<br>NO<br>SEQ | SEQ<br>NO |
|                                           |                      |                   |                   | Table 1 (continued)                                                     |               |             |               |                 |                 |           |

05

**5**†

0>

æ

oε

SZ

so

s١

01

s

| arginyi-tRNA synthetase                                             | 550                   | 100.0      | 100.0      | Corynebacterium glutamicum<br>AS019 ATCC 13059 argS           | sp:SYR_CORGL       | 1650        | 1239923       | 1238274         | 6950      | 3450      |
|---------------------------------------------------------------------|-----------------------|------------|------------|---------------------------------------------------------------|--------------------|-------------|---------------|-----------------|-----------|-----------|
| proline transport system                                            | 524                   | 100.0      | 100.0      | Corpnebacterium glutamicum ATCC 13032 putP                    | gp CGPUTP_1        | 1572        | 1218031       | 1219602         | 6949      | 3449      |
| succinyl diaminopimelate desuccinylase                              | 369                   | 100.       | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 dapE                 | prf 2106301A       | 1107        | 1156837       | 1155731         | 6948      | 3448      |
| hypothetical protein                                                | 310                   | 100.       | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 orf3                 | pir S52753         | 948         | 1154729       | 1155676         | 6947      | 3447      |
| aromatic amino acid permease                                        | 463                   | 100        | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 aroP                 | sp AROP_CORGL      | 1389        | 1153295       | 1154683         | 6946      | 3446      |
| L-hsine permease                                                    | 501                   | 100        | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 lysi                 | sp.LYSI_CORGL      | 1503        | 1030369       | 1031871         | 6945      | 3445      |
| hypothetical membrane protein                                       | 428                   | 100        | 100.0      | Corynebacterium glutamicum ATCC 13032 or 2                    | sp YLIZ_CORGL      | 1278        | 1029006       | 1030283         | 6944      | 3444      |
| glycine betaine transporter                                         | 595                   | 100        | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 betP                 | SP BETP_CORGL      | 1785        | 946780        | 944996          | 6943      | 3443      |
| putative binding protein or paptidyl-<br>prolyl cis-trans isomerase | 118                   | 100        | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 NbA                  | sp FKBP_CORGL      | 354         | 879629        | 879276          | 6942      | 3442      |
| citrate synthase                                                    | 437                   | 100        | 100.0      | Corynebacterium glutamicum ATCC 13032 gitA                    | sp CISY_CORGL      | 1311        | 879148        | 877838          | 6941      | 3441      |
| acyl-CoA carboxylase or blotin-<br>binding protein                  | 591                   | 100.       | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 accBC                | 1773 prt.2223173A  | 1773        | 718580        | 720352          | 6940      | 3440      |
| (oxalosuccinatedecarboxylase)                                       | 738                   | 100        | 100.0      | Corynebacterium glutamicum<br>ATCC 13032 icd                  | sp:IDH_CORGL       | 2214        | 677831        | 680044          | 6939      | 3439      |
| preprotein translocase secY subult                                  | 440                   | 100        | 100.0      | Corynebacterium glutemicum (Brevibacterium flavum) MJ233 secY | 1320 sp SECY_CORGL | 1320        | 570771        | 569452          | 6938      | 3438      |
| elongation factor Tu                                                | 396                   | 100.0      | 100.0      | Corynebacterium glutamicum<br>ATCC 13059 tuf                  | sp:EFTU_CORGL      | 1188        | 527563        | 526376          | 6937      | 3437      |
| Function                                                            | Matched length (a.a.) | Similality | ldentity S | Homologous gene                                               | db Maich           | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO | SEQ<br>NO |
|                                                                     |                       |            |            | Table 1 (continued)                                           |                    |             |               |                 |           |           |

05

**5**>

0+

38

Œ

SZ

50

SI

10

s

| arginine repressor                                                                       | 171                   | Ö       | 100   | 100.0           | Corynebacterium glutamicum<br>ASO19 argR            | gp AF041436_1      | 513         | 1470040       | 1469528         | 6964            | 3464      |
|------------------------------------------------------------------------------------------|-----------------------|---------|-------|-----------------|-----------------------------------------------------|--------------------|-------------|---------------|-----------------|-----------------|-----------|
| ornithine carbamoyitransferase                                                           | 319                   | Ö       | 100   | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 argF       | sp.OTCA_CORGL      | 957         | 1469521       | 1468565         | 6963            | 3463      |
| scetylglutamate kinase                                                                   | 294                   | 100     | 5     | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 arg8       | sp ARGB_CORGL      | 882         | 1467372       | 1466491         | 6962            | 3462      |
| PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport) | 683                   | 8       | 100   | 100.0           | Corynebacterium glutamicum<br>KCTC1445 ptsM         | prf 2014259A       | 2049        | 1425265       | 1423217         | 6961            | 3461      |
| 3-isopropylmalate dehydrogenase                                                          | 340                   | 1000    | 5     | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 leuB       | sp LEU3_CORGL      | 1020        | 1354508       | 1353489         | 6960            | 3460      |
| acetohydroxy acid Isomeroreductase                                                       | 338                   | 1000    | 15    | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 livC       | pir.C48648         | 1014        | 1341737       | 1340724         | 6959            | 3459      |
| acetohydroxy acid synthase, small subunit                                                | 172                   | 00<br>0 | 5     | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 ilvN       | pir 848648         | 518         | 1340540       | 1340025         | 6958            | 3458      |
| acetohydroxy acid synthese, large subunit                                                | 626                   | 100 0   | 10    | 100.0           | Corynebacterium glutamicum ATCC 13032 iivB          | sp ILVB_CORGL      | 1878        | 1340008       | 1338131         | 6957            | 3457      |
| lysine export regulator protein                                                          | 290                   | 100 o   | 5     | 100.0           | Corynebacterium giutamicum<br>R127 lysG             | sp:LYSG_CORGL      | 870         | 1329884       | 1329015         | 6956            | 3456      |
| lysine exporter protein                                                                  | 236                   | 1000    | 5     | 100.0           | Corynebacterium glutamicum<br>R127 lysE             | sp LYSE_CORGL      | 708         | 1328246       | 1328953         | 6955            | 3455      |
| ion channel subunit                                                                      | 216                   | Ö       | 10d   | 100.0           | Corynebacterium glutamicum<br>R127 orf3             | gsp.W37716         | 627         | 1328243       | 1327617         | 6954            | 3454      |
| homoserine kinase                                                                        | 309                   | Ö       | 100   | 100.0           | Corynebacterium glutamicum<br>AS019 ATCC 13059 thrB | sp.KHSE_CORGL      | 927         | 1244781       | 1243855         | 6953            | 3453      |
| homoserine dehydrogenase                                                                 | 445                   | Ö       | 100   | 100.0           | Corynebacterium glutamicum<br>AS019 ATCC 13059 hom  | sp:DHOM_CORGL      | 1335        | 1243841       | 1242507         | 6952            | 3452      |
| diaminopimeiate (DAP) decarboxylase (meso- diaminopimeiate decarboxylase)                | 445                   | 8       | 100   | 100 0           | Corynebacterium glutamicum<br>AS019 ATCC 13059 lysA | 1335 sp.DCDA_CORGL | 1335        | 1241263       | 1239929         | 6951            | 3451      |
| Function                                                                                 | Metched length (e.a.) | y rity  | Sing. | Identity<br>(%) | Homologous gene                                     | db Match           | ORF<br>(bp) | Terminal (nt) | Initial<br>(nt) | NO<br>NO<br>SEQ | SEO<br>NO |
|                                                                                          |                       |         |       |                 | Table 1 (continued)                                 |                    |             |               |                 |                 |           |

SI

|                                                                              |                 | _             |                   |                                                                                  |                |         |               |                 |           |           |
|------------------------------------------------------------------------------|-----------------|---------------|-------------------|----------------------------------------------------------------------------------|----------------|---------|---------------|-----------------|-----------|-----------|
| L-malate dehydrogenase (acceptor)                                            | 500             | 1000          | 100 0             | Corynebacterium glutamicum<br>R127 mgo                                           | gp:CGA224946_1 | 1500    | 2113864       | 2115363         | 6978      | 3478      |
| dihydrodipicolinate reductase                                                | 248             | 8             | 100.0             | Corynebacterium glufamicum (Brevibacterium lactofermentum) ATCC 13869 dapB       | sp.DAPB_CORGL  | 744     | 2081191       | 2081934         | 6977      | 3477      |
| dihydrodipicolinate synthese                                                 | 301             | 100           | 100.0             | Corynebacterium glutamicum<br>(Brevibacterium lactofermentum)<br>ATCC 13869 dapA | sp:DAPA_BRELA  | 903     | 1826202       | 2080183         | 6976      | 3476      |
| recA protein                                                                 | 376             | 100<br>80     | 100.0             | Corynebacterium glutamicum<br>AS019 recA                                         | sp RECA_CORGL  | 1128    | 2063989       | 2065116         | 6975      | 3475      |
| glutemete-binding protein                                                    | 295             | 100           | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 gluB                                    | sp GLUB_CORGL  | 885     | 2061504       | 2060620         | 6974      | 3474      |
| sigma factor or RNA polymerase transcription factor                          | 331             | 8             | 100 0             | Corynebacterium glutamicum<br>ATCC 13869 sigB                                    | pri 2204286D   | 993     | 2021846       | 2020854         | 6973      | 3473      |
| restriction endonuclesse                                                     | 832             | 1<br>0<br>0   | 100.0             | Corynebacterium glutemicum<br>ATCC 13032 cglifR                                  | pir.855225     | 1896    | 1882385       | 1880490         | 6972      | 3472      |
| chorismate synthase (5-<br>enolpyruvyishikimate-3-phosphate<br>phospholysse) | 410             | 9<br>0        | 100.0             | Corynebacterium glutamicum<br>AS019 aroC                                         | gp:AF124600_1  | 1230    | 1719669       | 1720898         | 6971      | 3471      |
| phosphoenolpyruvate carboxylase                                              | 919             | 8             | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 ppc                                     | prf:1509267A   | 2757    | 1677387       | 1680143         | 6970      | 3470      |
| protein-export membrane protein secG                                         | 77              | ĝ             | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 secG                                    | gp:CGL007732_2 | 231     | 1677049       | 1677279         | 6969      | 3469      |
| ammonium uptake protein, high affinity                                       | 452             | 8             | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 amt                                     | gp:CGL007732_3 | 1356    | 1675288       | 1676623         | 6968      | 3468      |
| ornithine-cyclodecarboxylese                                                 | 362             | 8             | 100 0             | Corynebacterium glutamicum<br>ATCC 13032 ocd                                     | gp CGL007732_4 | 1086    | 1674123       | 1875208         | 6967      | 3467      |
| phosphoribosyl-ATP-<br>pyrophosphohydrolase                                  | 87              | 8             | 100 0             | Corynebacterium glutamicum<br>ASO19 hisE                                         | gp:AF086704_1  | 261     | 1586465       | 1588725         | 6966      | 3466      |
| NADH dehydrogenase                                                           | 467             | 8             | 100.0             | Corynebacterium glutamicum<br>ATCC 13032 ndh                                     | gp:CGL238250_1 | 1401    | 1543154       | 1544554         | 6965      | 3465      |
| Function                                                                     | y length (a.a.) | Similalty (%) | Identity S<br>(%) | Homologous gene                                                                  | db Match       | (P) ORF | Terminal (nt) | Initial<br>(nt) | SEQ<br>NO | SEQ<br>NO |
|                                                                              |                 |               |                   | Table 1 (continued)                                                              |                |         |               |                 |           |           |

**5**\*

æ

Œ

52

so

s١

10

ç

|                                                   |                             | _          |             |   |                                               |               |      |                  |                 | İ      |      |
|---------------------------------------------------|-----------------------------|------------|-------------|---|-----------------------------------------------|---------------|------|------------------|-----------------|--------|------|
| glutaredoxin                                      | 77                          | <u></u>    | 100.0       |   | Corynebacterium glutamicum<br>ATCC 13032 nrdH | gp:AF112535_1 | 231  | 2680419          | 2680649         | 6993   | 3493 |
| ribonucleotide reductase                          | 148                         | 0.0        | 100.0       |   | Corynebacterium glutamicum ATCC 13032 nrdl    | gp:AF112535_2 | 444  | 2679684          | 2680127         | 6992   | 3492 |
| cystathionine gamma-synthase                      | 386                         | 0.0        | 100.0       |   | Corynebacterium glutamicum<br>ASO19 metB      | gp:AF126953_1 | 1158 | 2590312          | 2591469         | 6991   | 3491 |
| glutamate 5-kinase                                | 369                         | 8          | 00.0        |   | Corynebacterium glutamicum<br>ATCC 17965 proB | sp PROB_CORGL | 1107 | 2496670          | 2497776         | 6990   | 3490 |
| isocitrate lyase                                  | 432                         | 8          | 100.0       |   | Corynebacterium glutamicum ATCC 13032 aceA    | pir.140713    | 1296 | 2472035          | 2470740         | 6989   | 3489 |
| malate synthase                                   | 739                         | 100.0      | 100.0       |   | Corynebacterium glutamicum<br>ATCC 13032 aceB | pir:140715    | 2217 | 2467925          | 2470141         | 6988   | 3488 |
| ectoine/proline/glycine betaine carder            | 615                         | 8          | 00.0        |   | Corynebacterium glutamicum<br>ATCC 13032 ectP | рп:25012958   | 1845 | 2448328          | 2450172         | 6987   | 3487 |
| threonine synthase                                | 481                         | 000        | 100.0       |   | Corynebacterium glutamicum thrC               | sp:THRC_CORGL | 1443 | 2353600          | 2355042         | 6986   | 3486 |
| glutamine synthetase                              | 477                         | 0          | 100.0       |   | Corynebacterium glutamicum<br>ATCC 13032 glnA | prf.2322244A  | 1431 | 2350259          | 2348829         | 6985   | 3485 |
| glucokinase                                       | 323                         | 10         | 100.0       |   | Corynebacterium glutamicum<br>ATCC 13032 glk  | gp:AF096280_1 | 969  | 2316582          | 2317550         | 6984   | 3484 |
| pyruvate kinase                                   | 475                         | 0          | 100.0       |   | Corynebacterium glutamicum<br>ASO19 pyk       | sp:KPYK_CORGL | 1425 | 2205668          | 2207092         | 6983   | 3483 |
| giutamate dehydrogenase (NADP+)                   | 447                         | <u>5</u>   | 100.0       |   | Corynebacterium glutamicum<br>ATCC 17965 gdhA | pir:S32227    | 1341 | 2194742          | 2196082         | 6982   | 3482 |
| ammonium transporter                              | 438                         | ğ<br>0     | 100.0       |   | Corynebacterium glutamicum<br>ATCC 13032 amtP | gp.CAJ10319_2 | 1314 | 2172154          | 2173467         | 6981   | 3481 |
| nitrogen regulatory protein P-II                  | 112                         | 00<br>0    | 1000        |   | Corynebacterium glutamicum<br>ATCC 13032 glnB | gp:CAJ10319_3 | 336  | 2171751          | 2172086         | 6980   | 3480 |
| uridilylytransferase, uridilylyl- ramoving enzyme | 692                         | 8          | 100 0       |   | Corynebacterium glutamicum<br>ATCC 13032 glnD | gp:CAJ10319_4 | 2076 | 2169666          | 2171741         | 6979   | 3479 |
| Function                                          | Matched<br>length<br>(a.a.) | Simil rity | Identity Si | ā | Homologaus gene                               | db Match      | ORF  | Terminal<br>(nt) | Initial<br>(nt) | NO SEO | SEQ  |
|                                                   |                             |            |             |   | Table 1 (continued)                           |               |      |                  |                 |        |      |

09

32

oε

SZ

50

SI

|                                                                                       |                       |          |                |                 |                                               |                    |             |               |                 |      | !         |
|---------------------------------------------------------------------------------------|-----------------------|----------|----------------|-----------------|-----------------------------------------------|--------------------|-------------|---------------|-----------------|------|-----------|
| ectoine/proline uptake protein                                                        | 504                   | 100 0    |                | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 proP | 1512 prf 2501295A  | 1512        | 3272563       | 7001 3274074    | 7001 | 3501      |
| prephenate dehydretase                                                                | 315                   | 1000     |                | 100.0           | Corynebacterium glutamicum pheA               | prf.1210266A       | 945         | 3098578       | 7000 3099522    | 7000 | 3500      |
| ATP-dependent protesse regulatory subunit                                             | 852                   | 1000     |                | 100 0           | Corynebacterlum glutamicum<br>ATCC 13032 clpB | 2556 sp.CLPB_CORGL | 2556        | 2963606       | 2966161         | 6999 | 3499      |
| multidrug resistance protein or<br>macrolide-efflux pump or<br>drug proton antiporter | 459                   | 10.0     |                | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 cmr  | 1377 pri 2309322A  | 1377        | 2962718       | 6998 2961342    | 6998 | 3498      |
| phosphate acetyliransferase                                                           | 329                   | 10<br>.0 | ā              | 100.0           | Corynebacterium glutamicum<br>ATCC 13032 pta  | prf 2516394A       | 987         | 2936508       | 2937494         | 6997 | 3497      |
| acetate kinase                                                                        | 397                   | 10.0     | 5              | 100.0           | Corynebacterium glutamicum ATCC 13032 ackA    | sp: ACKA_CORGL     | 1191        | 2935315       | 2936505         | 6996 | 3496      |
| porin or cell wall channel forming protein                                            | 45                    | 10.0     |                | 100 0           | Corynebacterium glutamicum MH20-228 porA      | gp:CGL238703_1     | 135         | 2887944       | 2888078         | 5995 | 3495      |
| meso-diaminopimelate D-<br>dehydrogenase                                              | 320                   | 100      | 5              | 100.0           | Corynebacterium glutamicum<br>KY10755 ddh     | sp. DDH_CORGL      | 960         | 2786756       | 8994 2787715    | 8994 | 3494      |
| Function                                                                              | Matched length (a.a.) | e inity  | Similarity (%) | Identity<br>(%) | Homologous gene                               | do Match           | ORF<br>(bp) | Terminal (nt) | initial<br>(nt) | SEQ  | SEQ<br>NO |
| *                                                                                     |                       |          |                |                 | Table 1 (continued)                           |                    |             |               |                 |      |           |

### Example 2

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method. or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, points, those which are considered to contribute to the production were extracted on the basis of known biochemical whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, athe ATCC 13032 strain general represented by SEO ID MOS: of 1:20 House means a result among the strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and strain and st quences of the genes derived from the production strain were compared with the corresponding nucleotide sequences and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide seaspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and fysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. and screening (Appl. Microbiol. Biotechnol., 32. 269-273 (1989)). First, the nucleotide sequences of genes derived 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) mycin and 6-azauracii, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC [0374] Corynebacterium glutamicum 8-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), ritampicin, strepto-

ess (2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Set, in pyc

productivity to a wild type strain (Amino Acid Fermentation, ed. by Hinshi Aids et al., Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in hom and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in hom is an effective mutation by introducting the mutation to the mutation to the resulting strain. On the other hand, it can be examined whether or not the mutation, Prod58Ser, in pyc is effective by introducing this mutation, in the examined whether as deregulated hysine-producting the productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Prod58Ser, in pyc is effective by introducing this mutation into a hysine-productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "hysine-producting to the "No. 58 strain"). Based on the above, it was strain of Corynebacterium glutamicum ATCC 13032 (hereinafter referred to the "hysine-producting the mutation,") and the hysine-producing No. 58 strain, prowers introduced into the wild type attain of Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or "ATCC 13032 strain") and the hysine-producing No. 58 strain, respectively, using the gene replacement method. ATCC 13032 strain or Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or "ATCC 13032 strain").

plasmid vector PCES30 for the gene replacement for the introduction was constructed by the following mention.

[G376] A plasmid vector PCES3 having a kanamycin-resistant gene and being capable of autonomously replicating in Conynetorm bacteria (Mol. Gen. Genet., 196. 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (sac8) of Bacalus subtilis (Molecular Microbiology, 6: 1195-1204 (1992)) were each digested with PS41. Then, after agarose gel electrophoresis, a PCE53 fragment and a 2.6 kb DNA tragment containing sac8 were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The PCE53 fragment and the 2.6 kb DNA tragment containing sac8 were strain by the electrophoresion method (FEMS Microbiology Letters, 65: 299 (1989)), and cultured on BYC agair medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of glacose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of glacose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of glacose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Bloco), and 16 g of Bactosgar (manufactured by Bloco) to 1 liter of water, and adjusting its extract (manufactured by Bloco), and 16 g of Bactosgar (manufactured by Bloco) to 1 liter of water, and adjusting its bactorian analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkaii SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the the time of into the time of into the time of into the time of into the time of into the time of into the time of into the time of into the time of into the time of into the time.

Parl site of pCE53. This pleamid was named pCE530.

[0377] Next, two genes having a mutation point, how and pyc, were amplified by PCR, and inserted into pCE530 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCE530 was digested with Banth (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purfied using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCE530 tragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended plunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended plunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended plunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended plunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended plunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended blunted with plunted with ether according to the attached protocol. The blunt-ended blunted by the concentrated by extraction with phenological plunted by the concentrated by according to the attached by the plunted by the concentrated by the concentrated by the concentrated by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concentration by the concen

that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30. to read in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70\*C for 2 hours so

(manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEgene, the DMAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated pyc out with Plu turbo DNA polymelase (manufactured by Stratagene). In the mutated hom gene, the DNAs having the of Salto et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method

-00030q on i banacin nase ban mangain AMO de o.c. to de t. Fant nation in anuscus a ban ouneast an tant barrin solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing kanemycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the which the nucleotide A had been added of the PCR product were concentrated by extraction with phenolychloroform of (dd 8.8) arector tragment and the musted hom gene (1.1) or mutated pyc gene (8.8) or mutated pyc gene (3.6) to the 3'-end.

which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the according to the gene replacement method was carried out according to the following method. Specifically, pChom59 [0360] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain The plasmids thus constructed were named respectively pChom59 and pCpyc458.

50

and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been strain of the method the method in Southern blotting hybridization according to the method reported at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction ined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid selected strain was cultured in ВҮС medium containing 20 µg/ml капатусіп, and pCG11 (Japanese Published Ехат-[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

gene is deleted together with the sace gene. When the wild type is deleted together with the sace gene, the gene and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate (1992)). On the other hand, a strain in which the sac8 gene was deleted due to the second homologous recombination sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174; 5462 and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract [C362] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium is liable to arise therebetween.

the mutated hom gene and pyc gene, respectively. type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were Salto et al. PCR was carried out using Ptu turbo DNA polymerase (manufactured by Stratagene) and the attached [5363] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of replacement into the mutated type arises.

(3) Lysine production test of HD-1 and No. 58pyc strains

tahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of phalanine, 5 mg of nicotinic urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate hepmedium (medium prepared by adding 50 g of sucrose, 40 g of com steep liquor, 8.3 g of ammonium sulfate, 1 g of [2865] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined. the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into The HD-1 strain (strain obtained by incorporating the mutation, ValSAIa, in the hom gene into the ATCC

feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar termenter and cultured inerein at 32°C, 1 wm and 800 rps monium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobatt chloride hexahydrate, 1.3 mg of amng of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of £f ,estandentate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 51 medium (medium prepared by adding 60 g of glucose, 20 g of com steep liquor, 25 g of ammonium chloride, 2.5 g of enulture in to 16 hours. A total amount of the seed culturing medium was inoculated into 1.400 ml of a main culture 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Enermeyer flask and cultured therein acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which

was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below. The cells were separated from the culture medium by centrifugation and then L-hysine hydrochloride in the supernatant solved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dis-

| ıg                                | Ио. 58рус  |
|-----------------------------------|------------|
| 5 <del>7</del>                    | 88 .oN     |
| 8                                 | HD-1       |
| 0                                 | SEOE 1303A |
| Γ-Γλείυε μλαιοchlonde γield (g/l) | Ctrain     |

Table 2

Teukuba-shi, Ibaraki, Japan) as FERM BP-7382. National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, 13032 strain together with the mutation, Thr331lle in the NSC gene has been deposited on December 5, 2000, in ValS9Ala, in the hom gene and the mutation, Pro458Ser, in the pyc gene have been introduced into the wild type ATCC mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, mutation, Val59Ala, in the hom gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the [3860] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the

E sigmax3

50

Reconstruction of lysine-producing strain based on genome information

the B-6 strain in the wild type ATCC 13032 strain was performed. only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into source. However, since the fermentation period is long, the production rate is less than 2.1 g/Vh. Breeding to reconstitute produces a remarkably large amount of hysine hydrochloride when cultured in a jet at 32°C using glucose as a carbon constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, [7367] The lysine-producing mutant B-6 strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been

with that of the ATCC 13032 strain (1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain

[886] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, ValS91Ala, in pyc and a mutation, Thr3131le, in jyc, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwi were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

- (S) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement having the mutated hys gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated hys and zw/ were produced as described below.
- replacement, PCES30, according to the TA doning method described by PCR, and inserted into a placemid for gene replacement, PCES30, according to the TA doning method described in Example S(2) (Bio Experiment Illustrated, Vol. 3). placement, PCES30, according to the TA doning method described in Example S(2) (Bio Experiment Illustrated, Vol. 3). method of Saito et al. Using the chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carried out with Plu tuho DNA polymerase (manufactured by Stratagene). In the mutated lysC gene, the DNAs having the nucleotide sequences represented by Stratagene). In the mutated lysC gene, the DNAs having the nucleotide sequences represented by Stratagene). In the mutated lysC gene, the DNAs having the nucleotide sequences represented by Stratagene.
- to egarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

  [0392] The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated xwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenolychloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was
- Kansamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was continmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwt213.
- (3) Introduction of mutation, Thr311lle, in lysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in how was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311IIe, in  $\S$ 3C was introduced into the HD-1 strain using pCly3C311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a tresult of the fact that the nucleotide sequences of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated how gene.
- (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

- [0394] The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated how gene and lysC gene.
- (5) Introduction of mutation, Ala213Thr, in zw/ into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwl458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyr gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0395] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

E eldeT

| Productivity (g/Vh) | L-Lysine hydrochloride (g/l) | nistC |
|---------------------|------------------------------|-------|
| £.0                 | 8                            | HD-1  |
| 2.5                 | ετ                           | S-GHA |
| 8.2                 | 08                           | E-9HA |
| 3.0                 | 98                           | t-Zd∀ |

[398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/Nh, the APZ-4 strain showing a high productivity of 3.0 g/Nh is useful in industry.

enutenequet Apid te nisrts A-ZAA vd notistnemet enizyJ (V)

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 light fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

**≯** aldaT

| ĺ | Productivity (g/Vn) | L-Lysine hydrochloride (g/l) | (a ) ambiaduai |
|---|---------------------|------------------------------|----------------|
| Į | 3.0                 | 98                           | 32             |
|   | €.€                 | 96                           | 0₽             |

As is apparent from the results shown in Table 4, the lysine hydrochlonde titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and be carried out using the APZ-4 strain at a high temperatures can be achieved by reflecting the high temperature this industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature.

adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the

present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of Corynebacterium glutamicum ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during were searched.

(1) Production of DNA microarray

[6404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. ( Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by

```
plification of the DAA having the nucleotide sequence represented by SEQ ID NO:3497, and
 [0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,
 [0458] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the am-
                           plification of the DAA having the nucleotide sequence represented by SEQ ID NO:3494,
 [0427] DNAs having the nucleotide sequence represented by SEQ ID NOS: 7052 and 7053 were used for the am-
                           pitication of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,
 [0426] DMAs having the nucleotide sequence represented by SEQ ID MOS:7050 and 7051 were used for the am-
                           plification of the DAA having the nucleotide sequence represented by SEQ ID NO:3488,
 [0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the am-
                           piffication of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,
 [0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,
 [0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,
 [0422] DAAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the am-
                           pirication of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,
[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the arm-
                           pilfication of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,
[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,
[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,
[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the am-
                           plification of the DAA having the nucleotide sequence represented by SEQ ID NO:3453,
[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,
[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the am-
                           piffication of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,
[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the am-
                           piffication of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,
[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,
[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,
[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the am-
                            plification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,
DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,
[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,
[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the am-
                           plification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,
[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the am-
                           plification of the DAA having the nucleotide sequence represented by SEQ ID NO:3433,
[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the am-
                              fication of the DNA having the nucleotide sequence represented by SEQ ID NO:207,
DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the ampli-
                                                           As the oligo DAA primers used for the PCR,
represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a
globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification
otide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit
3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucle-
SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476,
```

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS: 7058 and 7059 were used for the am-

plification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set. [0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TakaRa EX-Taq (manufactured by TakaRa Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TakaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by TakaRa Shuzo). The PCR product of each gene thus amplified was subjected to agarose get electrophoresis and extracted and purified using QIAquick Get Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was concentrated by a side glass plate (manufactured by Mateunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(S) Synthesis of fluorescence labeled cDNA

utactured by Ditco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured by Ditco), and 16 g of Bactoagat (manufactured by Ditco), and 16 g of Bactoagat (manufactured by Ditco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain uses, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of cascium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of fenous sulfate heptahydrate, 10 mg of sinc sulfate heptahydrate, 0.2 mg of manganese sulfate monohydrate, 10 mg of fenous sulfate heptahydrate, 10 mg of sinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmoN glucose or 200 mmoN ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the mmoN ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 7.0 of absorbance at 660 nm. After the monohydrate, and cultured in an Erlenmyer flask at 30° to give 7.0 of absorbance at 660 nm. Resulting the geulting at 600 nm. After the monohydrate, and cultured in an Erlenmyer flask at 30° to give 7.0 of absorbance at 660 nm. Resulting and 0.5 mg flash was presered from the resulting at 600 nm. After the copper sulfate, and cultured in an Erlenmyer flask at 30° to give 7.0 of absorbance at 660 nm. Resulting and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm. After the copper sulfate and 600 nm.

urea, 0.5 g of monopotassulm dihydrogenphosphate, 0.5 g of appotassulm mononydrogenphotephate; 20.3 g of magnesium dihydrogenphosphate; 20.9 g of appotassulm mononydrogenphotephate; 20.9 g of magnesium sulfate heptahydrate; 10 mg of sacium chloride dihydrate; 10.0 mg of magnese sulfate monohydrate; 10 mg of magnese sulfate monohydrate; 10 mg of faceuum chloride dihydrate; 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmoN glucose or 200 copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmoN glucose or 200 copper sulfate, and 0.2 mg biotin to 1 liter of manufactured in an Erlenmyer flast at 30° to give 1.0 of absorbance at 660 mm. After the cells were prepared by centrifuging at 4°C and 5,000 mm for 10 minutes, total RNA was prepared from the resulting cells were prepared by centrifuging at 4°C and 5,000 mm for 10 minutes, total RNA was prepared from the resulting purfled with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purfled using Giagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 mmoN dDA, the resulting solution, 6 µ of a buffer attached by Life Technologies) and 1 µ lo 1 to 1 monoh dDA, 0.6 µ of the resulting solution, 6 µ of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µ of 0.3 mon DAT, 1.5 µ of dNAPes (25 mmoN dATP, 25 mmoN dCTP, 25 mmoN dGTP, 10 mmoN dDA, -dUTP or Cy5-dUTP or Cy5-dUTP or Cy5-dUTP or Cy5-dUTP (manufactured by NEN) and 2 µ of Superscript II were added, and allowed to standard at 25°C for 10 minutes. The RNA was digested by adding 1.5 µ of 1 moN dDA, -dUTP and to stand at the RNA extracted from the cells using grandard at 25°C for 10 minutes. The RNA was digested by adding 1.5 µ of 1 moN dDA, -dUTP and solutions and the RNA extracted from the cale minutes. The RNA was digested by adding 1.5 µ of 1 moN dDA, -dUTP and minutes. The RNA was digested

(3) Hybridization

[0433] UltraHyb (110 µl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 µl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

टे अंdsT

| ١ | S9. r   | 3540          | 5248          | 207       |
|---|---------|---------------|---------------|-----------|
|   | charche | Cy5 intensity | Cy3 intensity | SEG ID NO |

**EP 1 108 790 A2** 

Table 5 (continued)

| Jr | OI OES JOI   | , more coarribed | esempos paism w | d botomitae ata    | b agits and 200 ad 100 ag | O  |
|----|--------------|------------------|-----------------|--------------------|---------------------------|----|
|    | 1.15         | 3358             | 31-85           | 26≯€               |                           |    |
|    | 34.1         | S364             | 3428            | 96≯€               |                           |    |
|    | 8S.1         | S203             | 3199            | <b>⊅6⊅€</b>        |                           |    |
|    | 91.62        | <b>2671</b>      | 97967           | 68 <b>⊁</b> €      |                           | \$ |
|    | 24.52        | 1398             | 34289           | 88 <del>1</del> .E |                           |    |
|    | 78.0         | <b>P108</b>      | 6634            | 3485               |                           |    |
|    | 01.1         | 1164             | 1284            | TTAE               |                           |    |
|    | 0£.1         | 1450             | 7481            | 9 <b>₹</b> ₽€      |                           | d  |
|    | 80. r        | 1085             | ETH             | 5135               |                           |    |
|    | 1.26         | ₱9\E             | 4752            | 074£               |                           |    |
|    | 70.1         | 1841             | 27et            | 1743               |                           |    |
|    | 08.1         | 1144             | 1641            | 3455               |                           |    |
|    | S0.S         | 5071             | 86 <b>7</b> E   | 5453               |                           | \$ |
|    | 47.0         | 658E             | <b>5845</b>     | 3421               |                           |    |
|    | <b>4</b> 7.0 | <b>₽691</b>      | <b>7811</b>     | 811E               |                           |    |
|    | £0.1         | 1511             | 8911            | 1529               |                           |    |
|    | <b>₹8.0</b>  | 1483             | 1301            | 1526               |                           | o  |
|    | 16.0         | 1284             | 6911            | 3455               |                           |    |
|    | 1.24         | £767             | <b>₽£1</b> 9    | <b>397</b>         | •                         |    |
|    | 18.0         | 1169             | <b>2699</b>     | 66 <b>)</b> -6     |                           |    |
|    | S0.1         | S212             | S266            | 361-6              |                           |    |
|    | 16.0         | S295             | 07£S            | 281                |                           | 1  |
|    | £8.0         | <b>5694</b>      | 5239            | 3433               |                           |    |
|    | charche      | Cy5 intensity    | Cy3 intensity   | SEG ID NO          |                           |    |
|    |              | •                |                 |                    |                           |    |

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)). gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase [3626] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing

producing and using a DNA microanay. es of the gene using the genome DNA of Corynebacterium glutamicum as a template in the PCR reaction, and thus sequence information of Corynebacterium glutamicum ATCC 13032 using software, amplifying the nucleotide sequencoligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide

1303S determined by the present invention, and analyze the expression profile at the total gene level of Corynebacof the ORF gene probes deduced from the full genomic nucleotide sequence of Corynebacterium glutamicum ATCC several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon [0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes.

terium glutamicum using these arrays.

Example 5

Homology search using Corynebacterium glutamicum genome sequence

essnimseb enizoneba to donse? (1)

St44-St48 (1988)). A case where E-value was let 10 or less was judged as being significantly homologous. As a result, acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase [0439] The amino acid sequence (ADD\_ECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-

no sequence significantly homologous with the Escherichia coli adenosine dearninase was found in the nucleotide sequence database of the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum contains no ORF having adenosine dearninase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

[0440] The sequences (GCSP\_ECOLI, GCST\_ECOLI and GCSH\_ECOLI) of glycine decarboxylase, aminomethyl group carrier each of which function had been confirmed as glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme

[D441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequences database of the genome sequences of Corynebacterium glutamicum or a database of the ORF amino acid sequences using FASTA program. A case where E-value was let 0 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferage or the aminomethyl group carrier each of which is a component of Eschenchia coli glycine cleavage enzyme, was found in the nucleotide sequence adiabase of the genome sequence. Based by glycine cleavage enzyme, was found in the nucleotide sequences database of the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum or necessary and the cleavage of Corynebacterium glutamicum or these results, it is assumed that Corynebacterium glutamicum contains no ORF having the scrivity of glycine deconthese results, it is assumed that Corynebacterium glutamicum contains no ORF having the activity of glycine decontribution of the glycine cleavage or the aminomethyl group carrier and thus has no activity of the glycine cleavage carboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage

(3) Search of IMP dehydrogenase

.emyzne.

results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these rogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyucts, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation prod-IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with homologous with the ORFs of Escherichia coil IMP dehydrogenase. By using the above-described predicted amino No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly otide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleor less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le<sup>-10</sup> a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF prot Database. By using the tull length of this amino acid sequence as a query, a homology search was carried out on of the protein, of which function had been confirmed as IMP dehydrogenase (EO1.1.10.3), was obtained from Swiss-[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence

a sigmex∃

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-7134). The results are shown in Table 6. strain) were carried out in a 5 light fermenter according to the method in Example 2(3). The results are shown in Table 6.

3 sldsT

| 09                   | FERM BP-158  |
|----------------------|--------------|
| 97                   | FERM BP-7134 |
| 0                    | ATCC 13032   |
| L-Lysine yield (9/l) | nistC        |

three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed buffer (10 mmoN Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) 01 [D444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCI

nheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, I magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Man-[2445] The washed cells described above were suspended in a disruption buffer (10 mmo Tris-HCl, pH 7.4, 5 mmoV before use, and used as washed cells.

LO THE SUPERMERARY, LITER WAS BOOCD to GIVE & CONCENTRATION OF 9 MOVI, AND AN EQUIVARENT AMOUNT OF A 17515 centrifuged (5,000 imes g, 15 minutes, 4 $^{\circ}$ C) to remove the undisrupted cells as the precipitate, and the supermatant was DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was

manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for buffer (9.5 mol/ urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE;

recovered. After being dissolved, the solution was centrifuged at 12,000 imes g for 15 minutes, and the supermatant was .pniMossib

.gnivioasib not gnimita To the supermatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly ςz

sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford. recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein [0449] After being dissolved, the solution was centrifuged (16,000 × g, 20 minutes, 4°C), and the precipitate was

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis

method.

Biotech) and a swelling solution (8 mol/ urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia [1240] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia

othreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and [CAS2] The protein sample prepared above was dissolved in a sample solution (9 mol urea, 2% CHAPS, 1% dithipacked therein, and the gel was allowed to stand for swelling 12 to 16 hours.

The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C: added to the swollen IPG strip gel.

tep 1: 1 hour under a gradient mode of 0 to 500V;

(2) Separation of protein by two dimensional electrophoresis

short a specific to about an area a specific to about a specific delta. ;V 000, f of 003 to eborn trieibsig a nebru nuori f :S qeta

step 4: 1 hour at a constant voltage of 8,000 V.

bration buffer B (50 mmoN Tris-HCl, pH 6.8, 6 moN ures, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes buffer A (50 mmoN Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equili-[0454] After the isoelectric electrophorasis, the IPG strip gel was put off from the holder and soaked in an equilibration

SDS, 0.3% Tris-HCI, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% to sufficiently equilibrate the gel.

0.37% bisacrylamide, 37.5 mmoN Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, out as described below to separate the proteins.

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

oz

- Coomassie staining was performed by the method of Gorg et al. (Electrophoresis, 9: 531-546 (1988)) for the stub gel atter the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed
- with distilled water.

  [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-758 strain (Fig. 2B) and FERM BP-7
- (4) In-gel digestion of detected protein spot
- Interse-dried as such. To the dried gel, 10 µ or 11, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 µ or a hysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/summonium bicarbonate to give a concentration of 100 ng/µ) was added and the centration of 100 ng/µ) was a concentrate of 50% acetonitrie and 5% formic acid) was added, followed by uttrasonication at room temperature for 5 minutes, room temperature). This operation was repeated twice to recovered by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 µ of 0.1% trifluoroacetic acid was added, followed by thoroughly stimng, and the mixture was subjected to desatting using ZipTip (manufactured by Millipore). The protein absorbed on the camers of ZipTip was eluted with 5 µ of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
- (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser description ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmoN Angiotensin II, 300 nmoN Neurotensin, 150 nmoN ACTHclip 18-39, 2.3 µmoN bovine insulin B chain), and 1 µl of the obtained solution was sported on a stainless probe and crystallized by spontaneously
- drying.

  [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
- [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
- [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively attening the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
- were thus detertion voltage and the detector voltage at an accelerated voltage of 27.5 kV.

  [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
- (6) Identification of protein spot
- [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

  The integration of the protein was certified on the protein mass certified on the protein.
- brospector.

  Construction of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein.
- (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

  As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino secid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

5 corresponded to trices phosphate isomerase which was a protein having the animo acid sequence represented by phosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spota protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bis-

pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 sponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic [0469] These genes, represented by SEQ ID NOS:1085, 1775, 3043 and 1752 encoding the proteins corre-**ZEO ID NO: 2525.** 

and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence repre-[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, 3803-7303 :NTI, ,136 Eacteriol, of Eacteriol, 174: 6067-6386

the genome sequence database of Connebacterium glutamicum constructed in Example 1. Thus, the nucleotide se-[ITA0] Based on these results, the proteins having high expression level were identified by proteome analysis using DY SEQ ID No:3437. sented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented

efficiently selected. taneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be quenæs of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simul-

(d) Search and identification of modified protein

7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a [0472] Among the proteins derived from Corynebacterium glutamicum FERM BP-7134 shown in Fig. 2B, Spots-6,

from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that [C473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived protein having the amino acid sequence represented by SEQ ID NO:3785.

analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1. [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.

(c) Search and identification of expressed protein effective in lysine production

gation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elon-[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing

in breeding airning at strengthening the productivity of a target product by the proteome analysis using the genome [376] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified the lysine productivity.

[1777] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sesequence database of Conmebacterium glutamicum constructed in Example 1.

specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can base and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are quences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above data-

from the spirit and scope thereof. All references cited herein are incorporated in their entirety. be apparent to one of skill in the art that various changes and modifications can be made therein without departing While the invention has been described in detail and with reference to specific embodiments thereof, it will be easily bred.

A method for at least one of the following:

55

09

SE

SMIRIO

- (B) measuring an expression amount of a gene derived from a conynetorm bacterium, (A) identifying a mutation point of a gene derived from a mutant of a corynetorm bacterium,
- (C) analyzing an expression profile of a gene derived from a corynetorm bacterium,
- (D) analyzing expression patterns of genes derived from a conynetorm bacterium, or
- (E) identifying a gene homologous to a gene derived from a corynetorm bacterium,

### :gniahqmoo bortam bisa

14. A method for producing a polypeptide, comprising:

12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| comprising 10 to 200 continuous based.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |
| A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11. | os |
| und to objitual surand and the sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense and sense |     |    |
| represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |
| sedneuce of suy one of SEQ ID NOS2 to 3431 in a whole polynucleotide compraing the nucleotide sednence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |
| A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0r |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 54 |
| NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |
| A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .6  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| polynocleotide which hybridizes with the polynucleotide under stringent conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | •  |
| A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .8  | 01 |
| homology of at least 80% with the polynucleotide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |
| A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٦.  |    |
| 8 private expressions and betreatment expressions and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and private and  | _   |    |
| a solid support adhered thereto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 32 |
| tinuous bases of the first or second polynucleotides, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |
| with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |
| otide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |
| at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucle-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Œ  |
| A polynucleotide array, comprising:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .8  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3  |    |
| an organic acid, and analogues thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | SZ |
| to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | -  |
| lotide derived from a mutant of the corynetorm bacterium or the polynucleotide to be examined is a gene relating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |
| The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynuce-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.  |    |
| -eount/or adt minabed molentron a most berings obitagious and a cat size of the besine and a size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of t | -   |    |
| um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | so |
| acetogiutamicum, coryneuacienum caliunae, coryneuaciónum horoclia, Corynebacionum lilium, Corynebacion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |
| from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophium, Corynebacterium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |
| The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| Corynebacterium, the genus Bravibacterium, or the genus Microbacterium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 21 |
| The method according to claim 1, wherein the corynetorm bacterium is a microorganism belonging to the genus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2   |    |
| Warmanuafu ain ia uncai ain fuitafirii (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |
| (c) detecting any hybridization, and (d) analyzing the result of the hybridization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |
| labeled polynucleotide to be examined, under hybridization conditions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | 01 |
| ignosioni pareminini, se avanina independa populationa compania de especial de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania de la compania de la compania de la compania de la compania del compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del la compania de la compania de la compania del la compania de la compania del la compania del l |     | •  |
| (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a conynetorm bacterium, a labeled polynucleotide derived from a mutant of the conynetorm bacterium or a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |
| the first or second polynucleotides,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |
| stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |
| one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | ç  |
| from the group consisting of first polynucleotides comprising the nucleotide sequence represented by sary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | -  |
| (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |
| hotelas sabiteciminades and tonal to become biles a as painades and assessment at the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second  |     |    |
| :gniahdmoo bontam bisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |

13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.

| The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or      | .81  |    |
|---------------------------------------------------------------------------------------------------------------------|------|----|
| . A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.                           | .71  | ei |
| 3431.                                                                                                               |      |    |
| A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to          | .9 L |    |
| and analogues thereof from the medium.                                                                              |      |    |
| recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid,     |      | 10 |
| a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and                  |      |    |
| culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid,         |      |    |
| analogues thereof, comprising:                                                                                      |      |    |
| A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and | .21  | s  |
| recovering the polypeptide from the medium.                                                                         |      |    |
| polynucleotide of claim 8 or 9 in the medium, and                                                                   |      |    |
| culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the           |      |    |
| Eb 1 108 790 AZ                                                                                                     |      |    |

20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.

at least one amino acid deletion, replacement, insertion or addition.

BOOGN'S SELD POLYPRINGS THE BRING SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECT

\$1. A polypeptide array, comprising:

torm bacterium, comprising the following:

form bacterium, comprising the following:

09

oz

a solid support adhered thereto. partial tragment polypeptides of the polypeptides, and at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and

of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide. 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence

- 22. A polypeptide array, comprising:
- a solid support adhered thereto. tides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypep-32

23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryne-

- 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: (ii) a data storage device for at least temporarily storing the input information; to 3501, and target sequence or target structure moth information; (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1
- (iv) an output device that shows a screening or analyzing result obtained by the comparator. target sequence or target structure most information; and for screening and analyzing nucleotide sequence information which is coincident with or analogous to the

24. A method based on a computer for identifying a target sequence or a target structure motifi derived from a coryne-

- quence information or target structure motif information into a user input device; 55 (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target se-
- the target sequence or target structure motif information; and (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with (ii) at least temporarily storing said information;

- target sequence or target structure motif information. (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the
- form bacterium, comprising the following: 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a conyne-
- 3502 to 7001, and target sequence or target structure motif information; (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:
- (ii) a data storage device for at least temporarily storing the input information;
- device for screening and analyzing amino acid sequence information which is coincident with or analogous to 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:
- (iv) an output device that shows a screening or analyzing result obtained by the comparator. the target sequence or target atructure motif information; and
- form bacterium, comprising the following: 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryne-
- (ii) at least temporarily storing said information; sequence information or target structure motif information into a user input device;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001
- with the target sequence or target structure motif information; and
- target sequence or target structure mouli information. (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the
- target nucleotide sequence derived from a corynetorm bacterium, comprising the following: 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a
- to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2
- (ii) a data storage device for at least temporarily storing the input information; sequence information;

Œ

50

- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:
- by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the poly-2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded
- (vi) an output devices that shows a function obtained by the comparator. nucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
- a polynucleotide having a target nucleotide sequence derived from a corynetorm bacterium, comprising the fol-28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by
- tormation of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function in-
- (ii) at least temporarily storing said information;
- the target nucleotide sequence information; and (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with
- from SEQ ID NOS:2 to 3501. which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence
- derived from a corynetorm bacterium, comprising the following: 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence
- 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence infor-(i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:

| information selected from SEQ ID MOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35           | æ         |
| The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium, Corynebacterium ammoniagenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . <b>Þ</b> E |           |
| um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium атmoniagenes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | <b>0€</b> |
| The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetogradophilum, Corynebacterium acetogramilisum, Corynebacterium acetogram  .EE          | 52        |
| The method according to any one of claims 24, 26, 28 and 30, wherein a corynetorm bacterium is a microorganism of the genus Microbacterium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.          |           |
| The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Microbacterium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .15          | zo        |
| 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |
| (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |
| with the target amino acid sequence information; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | S!        |
| (ii) at least temporarily storing said information; (iii) at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |           |
| (i) inputring at least on the amino acid sequence, and target amino acid sequence information;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |
| (f) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 10        |
| A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a corynetorm bacterium, comprising the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .06          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |
| one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and (N) an output device that shows a function obtained by the comparator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | £         |
| having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |
| 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |           |
| (ii) a data storing device for at least temporarily storing the input information; (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |           |
| SA 067 801 1 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |

recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.

36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence

information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.

37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording

and DVD-RW.

(RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM

and DVD-RW.

38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val sesidue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a conynetorm bacterium is replaced with an amino acid residue other than a Val residue.

39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid residue other than a Val residue.

55

40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

| replaced with an amino acid residue other than a Pro residue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a conynetorm bacterium is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. A polypeptice maying pyruvalie carboxyviase activity comprising an activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the results and activity of the |

- s 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
- 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
- 45. A DMA encoding the polypeptide of any one of claims 38 to 44.
- s 46. A recombinant DNA comprising the DNA of claim 45.
- 47. A transformant comprising the recombinant DNA of claim 46.

# 48. A transformant comprising in its enformedome trie Drive or craim 45.

- 49. The transformant according to claim 47 or 48, which is derived from a corynetorm bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- se 21. A method for producing L-lysine, comprising:

55

5>

SE

oz

01

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-fysine in the medium, and

recovering the L-lysine from the culture.

- 52. A method for breeding a corynetorm bacterium using the nucleotide sequence information represented by SEQ
- ID NOS: It is aday, comprising the following:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a corynetorm bacenum which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation
- method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431; (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
- (iii) introducing the mutation point into a corynetorm bacterium which is free of the mutation point, or deleting the mutation point; and
- (iv) examining productivity by the fermentation method of the compound selected in (i) of the conynetorm bacterium obtained in (ii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a conynetorm bacterium using the nucleotide sequence information represented by SEQ.

  ID NOS:1 to 3431, comprising:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a corynetorm bactenum which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharde, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
- (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
- (iii) deleting a mutation point from a corynetorm bacterium having the mutation point; and

| A method for breeding a corynetorm bacterium using the nucleotide sequence information represented by SEQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·6 <b>9</b> |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 50 |
| (iii) iii paurino aua6 au unin paurinu uaac aariu usiu wunin iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |    |
| (iv) examining productivity by a fermentation method of the compound selected in (i) of the corynetorm bac-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |    |
| (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |    |
| (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |    |
| quence information represented by SEQ ID NOS:2 to 3431;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | SI |
| nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide se-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |    |
| (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |    |
| ID NOS2 to 3431, comprising the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |    |
| A method for breeding a corynetorm bacterium using the nucleotide sequence information represented by SEQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .83         | 10 |
| the productivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |    |
| and method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .72         |    |
| 8 signal transisming notations of the signal transisming of the signal transisming of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of the signal of |             | s  |
| The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .95         |    |
| bacterium obtained in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |    |
| (vi) examining productivity by the fermentation method of the compound selected in (i) of the conynetorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |    |
| 27V 067 901 1 d3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |    |

strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and ryneform bactenum; in combination with information relating known biosynthesis pathway or signal transmission pathway of a co-

(iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a corynetorm bactenum

(ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission

(i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;

- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59. weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- rium, the genus Brevibacterium, or the genus Microbacterium. 61. The corynetorm bacterium according to daim 60, which is a microorganism belonging to the genus Corynebacte-
- ium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium liltenium is selected from the group consisting of Corynebactenium glutamicum, Corynebactenium acetoacidophilum, 62. The corynetorm bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebac-
- an organic acid and an analogue thereof, comprising: 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide,
- and analogues thereof; least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, culturing a corynetorm bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at
- 64. The method according to claim 63, wherein the compound is L-lysine.

recovering the compound from the culture.

ID NOS:2 to 3431, comprising the following:

- 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
- (i) busberuud

55

SZ

a protein derived from a bacterium of a parent strain of the production strain; from an amino acid, a nucleic acid, a vitamin, a secchande, an organic acid, and analogues thereof, and jected to mutation breeding by a fermentation process so as to produce at least one compound selected a protein derived from a bacterium of a production strain of a corynetorm bacterium which has been sub-

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the (ii) separating the proteins prepared in (I) by two dimensional electrophoresis;
- (v) treating the protein showing different expression amounts as a result of the comparison with a peptidase ; nisrta thereq ent mort bevireb tant thiw nisrts nothored
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and to extract peptide fragments;
- (v) scimparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3202 to 7001 to identifying the protein having the amino acid sequences.
- corynebacterium, the genus Brevibacterium, or the genus Microbacterium. 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus
- ит теlassecola, Согуперассейит thermoaminogenes, алд Согуперассепит аттольаделея. асеtoglutатісит, Согуперастепит саllunae, Согуперастепит herculis, Согуперастепит lilium, Согуперастелmedicipations maintenanced, maximismigrations are group sort more 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected
- 68. A biologically pure culture of Conynebacterium glutamicum AHP-3 (FERM BP-7382).

55

52





**EP 1 108 790 A2** 



**EP 1 108 790 A2** 

FIG. 4

