Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 4 - 18 Ottobre 2010 Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 2.

Sia
$$G := \left\{ \begin{pmatrix} a & 0 \\ c & b \end{pmatrix} \mid a, b, c \in \mathbb{Z}_3, a \neq 0, b \neq 0 \right\}$$

Provare che:

- G con l'usuale moltiplicazione fra matrici è un gruppo e dire se G è abeliano.
- $H := \{M \in G \mid det(M) = 1\}$ è un sottogruppo di G.
- \bullet H è un sottogruppo normale.
- \bullet *H* è ciclico e trovare un suo generatore.
- Ogni elemento di G che non sta in H ha ordine 2.
- Determinare il centro di G.

Esercizio 3.

Sia $f_n: (\mathbb{Z}, +) \longrightarrow (\mathbb{Z}, +)$ definita da $f_n(x) = nx$. Verificare che f_n é un omomorfismo, trovare il nucleo e l'immagine di f_n .

Esercizio 4.

Mostra che l'applicazione $Re: (\mathbb{C}, +) \longrightarrow (\mathbb{R}, +)$ definita da Re(a+ib) = a è un omomorfismo di gruppi. Determinarne il nucleo N e l'immagine H. Applicando il teorema di omomorfismo, definire l'isomorfismo canonico.

Esercizio 5.

Sia G un gruppo e sia H un suo sottogruppo. Definiamo $N(H) = \{x \in G \mid xHx^{-1} = H\}$. Dimostrare che N(H) è un sottogruppo di G e che H è normale in N(H). N(H) si dice normalizzante di H in G ed è il più grande sottogruppo di G in cui H è normale (verificare che se H normale in G allora N(H) = G).

Esercizio 6.

Sia $\varphi: G \longrightarrow G'$ omomorfismo. Dimostrare che:

•
$$\forall q \in G, \ o(q) \mid |G|$$

- $\bullet \ \forall g' \in G', \ o(g') \mid |G'|$
- $\forall g \in G, \ o(\varphi(g)) \mid o(g)$
- se G=< g> allora $\varphi(G)=<\varphi(g)>$

Determinare gli elementi di $Hom(\mathbb{Z}_n, \mathbb{Z}_m) = \{ \text{omomorfismi da } \mathbb{Z}_n \text{ in } \mathbb{Z}_m \}.$ Dimostrare che il gruppo $Aut(Z_n)$ è isomorfo a $(\mathcal{U}(\mathbb{Z}_n), \cdot)$