

REACCIONS QUINIQUES

2n ESO - 3r ESO

Rodrigo Alcaraz de la Osa. Traducció: María Tirado Alba (🗡 @tecqmarta)

Canvis físics i canvis químics

Canvis físics

Qualsevol canvi en el qual la naturalesa de la substància no es modifica.

Exemples Canvis de posició (moviments), deformacions, variacions de temperatura, canvis d'estat.

Canvis químics

Qualsevol canvi en el qual la naturalesa de la substància sí es modifica.

Exemples Digestió, combustió, fotosíntesi, cocció d'aliments, putrefacció.

La reacció quimica

Una **reacció química** és un procés en el qual unes substàncies (**reactius**) desapareixen, transformant-se en altres substàncies (**productes**), de naturalesa diferent.

Una molècula de metà (CH_4) reacciona amb dues molècules d'oxigen (O_2) per a produir una molècula de diòxid de carboni (CO_2) i dues molècules d'aigua (H_2O) .

Teoria de col·lisions

La teoria de col·lisions ens ajuda a explicar el mecanisme d'una reacció química:

- 1. Es trenquen els enllaços dels reactius.
- 2. Es reordenen els àtoms.
- 3. Es creen nous enllaços per a formar els productes.

Perquè es trenquin els enllaços dels reactius s'han de produir **xocs eficaços**, és a dir, xocs amb **l'energia** i **orientació adequades**.

Tipus de reaccions químiques

Adaptada de https://commons.wikimedia.org/wiki/File:Chemical_reactions.svg.

Estequiometria

Llei de conservació de la massa

En un sistema aïllat, durant tota reacció química ordinària, la massa total en el sistema roman constant, és a dir, la massa consumida dels reactius és igual a la massa dels productes obtinguts.

La llei de conservació de la massa implica dos principis:

- 1. El nombre total d'àtoms abans i després d'una reacció no canvia.
- 2. El nombre d'àtoms de cada tipus és igual abans i després.

En una equació química general:

$$a A + b B \longrightarrow c C + d D$$

- A, B, C i D representen els **símbols químics** dels àtoms o la **fórmula molecular** dels compostos que reaccionen (costat esquerre) i els que es produeixen (costat dret).
- a, b, c i d representen els coeficients estequiomètrics, que han de ser ajustats segons la **llei de conservació de la massa** (comparant d'esquerra a dreta àtom per àtom el nombre que hi ha d'aquests a cada costat de la fletxa).

Els **coeficients estequiomètrics** indiquen el nombre d'àtoms/molècules/**mols** que reaccionen/es produeixen de cada element/compost.

Exemple

Es desitja ajustar la següent equació química, que descriu la combustió del metà:

$$CH_4 + O_2 \longrightarrow CO_2 + H_2O$$

Solució

Comencem pel C: veiem que a l'esquerra hi ha 1 àtom de C i a la dreta hi ha també 1 àtom de C, està **ajustat**.

Després mirem l'H: veiem que a l'esquerra hi ha 4 àtoms d'H i a la dreta només hi ha 2. Per tant hem de posar un 2 en la molècula d'aigua:

$$CH_4 + O_2 \longrightarrow CO_2 + 2 H_2O$$

Seguim amb l'O: a l'esquerra hi ha 2 àtoms mentre que a la dreta hi ha $2+2\times 1=4$ àtoms. Per tant hem de col·locar un 2 en l'O₂:

$$CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O$$

i la **reacció** queda **ajustada**.

Velocitat d'una reacció química

Els factors que influeixen en la velocitat d'una reacció són:

Naturalesa dels reactius

La **naturalesa** i la **força** dels **enllaços** en les molècules **reactives** influeixen en gran manera en la velocitat de la seva transformació en productes.

Estat d'agregació dels reactius

Quan els reactius estan en estats diferents, la reacció només pot ocórrer en la seva àrea de contacte. Això significa que **com més finament dividit** estigui un **reactiu** sòlid o líquid, **major** serà la seva àrea de superfície per unitat de volum i **major** serà el **contacte** amb l'altre reactiu, per la qual cosa la **reacció** serà **més ràpida**.

Concentració dels reactius

La freqüència amb la qual les molècules col·lideixen depén de les seves concentracions. **Com més prop** estiguin les molècules, més probable és que col·lisionin i reaccionin entre si, donant lloc a un **augment** de la **velocitat** de **reacció**.

Temperatura

A major temperatura, les molècules tenen més energia tèrmica i són més susceptibles de xocar eficaçment, augmentant la velocitat de reacció.

Catalitzadors

Un catalitzador és una substància que altera la velocitat d'una reacció química sense consumir-se durant aquesta. Les proteïnes que actuen com a catalitzadors en les reaccions bioquímiques es diuen enzims. Distingim entre catalitzadors:

Positius Augmenten la velocitat de reacció en permetre nous mecanismes de reacció.

Negatius Disminueixen la velocitat de reacció o directament eviten que es produeixi (inhibidors).

La Quimica en la societat i el medi ambient

Els gasos d'efecte hivernacle, com el CO₂, el CH₄, el N₂O (gas del riure) o els òxids de sofre, són gasos que absorbeixen i emeten radiació infraroja, provocant un calfament de la superfície de la Terra. L'activitat humana industrial ha provocat sobretot un augment de les emissions de CO₂, desestabilitzant l'atmosfera.

Traduïda de https://commons.wikimedia.org/wiki/File:The_Greenhouse_Effect.svg.