Pumping-Lemma

1

$$L_1 = \{wcw^R | w \in \{a, b\}^*\}$$

Erläuterung: w^R ist die Spiegelung von w, d. h. es enthält die Zeichen von w in umgekehrter Reihenfolge. Worte von L_1 sind also z. B. c, abcba, bbbaabacabaabbb

 L_1 ist kontexfrei.

Beweis, dass L_1 nicht regulär ist, durch das Pumping Lemma:

Wir nehmen an L_1 wäre regulär. Dann gibt es einen endlichen Automaten, der L_1 erkennt. Die Anzahl der Zustände dieses Automaten sei j. Wir wählen jetzt das Wort $\omega = a^j c a^j$. ω liegt in L_1 , und ist offensichtlich länger als j. Dieses Wort muss irgendwo eine Schleife, also einen aufpumpbaren Teil enthalten, d. h. man kann es so in uvw zerlegen, dass für jede natürliche Zahl i auch uv^iw zu L_1 gehört. Wo könnte dieser aufpumpbare Teil liegen?

- **Fall 1:** Der aufpumbare Teil v liegt komplett im Bereich des ersten a^j -Blocks. Dann würde aber $uv^2w=a^{j+|v|}ca^j$ mehr a's im ersten Teil als im zweiten Teil enthalten und läge nicht mehr in L_1 .
- **Fall 2:** v enthält das c. Dann würde aber uv^2w zwei c's enthalten und läge damit nicht mehr in L_1 .
- Fall 3: Der aufpumpbare Teil liegt komplett im Bereich des zweiten a^j -Blocks. Dann liegt analog zu Fall 1 uv^2w nicht mehr in L_1 . Unser Wort lässt sich also nicht so zerlegen, dass man den Mittelteil aufpumpen kann, also ist die Annahme, dass L_1 regulär ist, falsch.

Beweis, dass L_1 kontextfrei ist, durch Angabe einer kontexfreien Grammatik:

 $P = \{$

 $S \rightarrow aSa$

 $S \rightarrow bSb$

 $S \rightarrow c$

}

 $^{^{1}} http://www.coli.uni-saarland.de/courses/I2CL-10/material/Uebungsblaetter/Musterloesung4.4.pdf$