Equações Diferenciais e Equações de Diferenças

Jaime E. Villate Faculdade de Engenharia da Universidade do Porto

Dezembro de 2001

Última revisão: 26 de Abril de 2011

Equações Diferenciais e Equações de Diferenças

Copyright © 2001, 2003, 2008 Jaime E. Villate

E-mail: villate@fe.up.pt

Versão: 26 de Abril de 2011

Este trabalho está licenciado sob uma Licença Creative Commons Atribuição-Partilha nos termos da mesma Licença 2.5 Portugal. Para ver uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/2.5/pt/ ou envie uma carta para Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Este livro é atualizado frequentemente. A versão mais recente e os ficheiros fonte encontram-se em:

http://villate.org/doc/eqdiferenciais/

Conteúdo

Li	sta de	Figuras	vii
Li	sta de	Tabelas	ix
Pı	efácio		ix xi xi 1
1	Intro	odução	1
	1.1	Definições	. 1
	1.2	Equações de primeira ordem	2
	1.3	Existência e unicidade da solução	
	1.4	Problemas	3
2	Equa	ações diferenciais de primeira ordem	
	2.1	Equações de variáveis separáveis	
	2.2	Equações lineares	
	2.3	Equações exatas	9
	2.4	Equações homogéneas	10
	2.5	Equação de Bernoulli	13
	2.6	Equação de Riccati	13
	2.7	Problemas	14
3	Apli	cações das equações diferenciais de primeira ordem	
	3.1	Crescimento demográfico	
		3.1.1 Modelo de Malthus	
		3.1.2 Modelo logístico	
	3.2	Decaimento radioativo	
	3.3	Trajetórias ortogonais	
	3.4	Problemas de aquecimento e arrefecimento	
	3.5	Cinética química	
	3.6	Problemas	22
4	_	ações lineares de ordem 2 e superior	
	4.1	Existência e unicidade da solução	
	4.2	Solução geral das equações lineares	
	4.3	Equações lineares homogéneas	26
	1.1	Independência linear entre funções	26

iv ______ CONTEÚDO

	4.5	Solução geral das equações lineares homogéneas	27
	4.6	Método de d'Alembert	27
	4.7	Equações lineares homogéneas de coeficientes constantes	28
			28
			29
		· · · · · · · · · · · · · · · · · · ·	29
	4.8	1	30
			30
			30
		$oldsymbol{c}$	31
	4.9	•	31
_	_		
5	_	•	33
	5.1		33
		3 1	33
			34
		•	34
		, , , ,	35
		1 7 1	35
	5.2	1 1 3	36
	5.3	3	37
	5.4	1 3	39
	5.5	Problemas	40
6	Equ		43
	6.1	Equações de diferenças	43
	6.2	3 1 3 3	43
	6.3	Equações de diferenças lineares	44
		6.3.1 Independência linear entre sucessões	45
	6.4	Equações de diferenças lineares com coeficientes constantes	45
		6.4.1 Raízes reais diferentes	45
		6.4.2 Raízes reais repetidas	46
		6.4.3 Raízes complexas	46
	6.5	Equações de diferenças incompletas	47
	6.6	Equações redutíveis a equações de coeficientes constantes	47
	6.7	Resolução de equações não lineares usando a função Gama	48
	6.8	Problemas	50
7	Méte	odo das séries	53
	7.1		53
			53
			54
	7.2		54
			55
	7.3	* *	57
	-		57

CONTEÚDO		
CONTEU/DO		V
CONTIDUDO		•

	7.4	Solução em séries em pontos singulares	60
	7.5	Problemas	62
8	Tran	sformadas de Laplace	65
	8.1	Definição da transformada de Laplace	65
		8.1.1 Condições de existência da transformada de Laplace	65
	8.2	Propriedades da transformada de Laplace	66
		8.2.1 Linearidade	66
		8.2.2 Derivada da Transformada	66
		8.2.3 Transformada da Derivada	66
		8.2.4 Deslocamento em s	66
	0.2		67
	8.3	Transformadas de Funções Elementares	
	8.4	Cálculo de transformadas inversas	68
	8.5	Resolução de equações diferenciais por meio da transformada de Laplace	68
	8.6	Equações diferenciais lineares com coeficientes variáveis	69
	8.7	Equações diferenciais lineares com entrada descontínua	69
	8.8	Deslocamento no domínio do tempo	70
	8.9	Impulso unitário	71
	8.10	Convolução	75
	8.11	Resolução de equações integro-diferenciais	77
	8.12	Problemas	77
9	Equa	ações de diferenças lineares não homogéneas	81
	9.1	Transformada Z	81
	9.2	Propriedades da transformada Z	82
		9.2.1 Linearidade da transformada Z	82
		9.2.2 Derivada da transformada Z	82
		9.2.3 Transformada da sucessão deslocada	83
		9.2.4 Transformadas das sucessões de senos e co-senos	83
	9.3	Resolução de equações de diferenças lineares não homogéneas	85
	9.4	Problemas	87
	7.1	Trotomus	07
10	Siste	mas de equações diferenciais	89
		Definição	89
		Sistemas de equações lineares	90
		Método de eliminação	91
		Método matricial	92
	10.4	10.4.1 Vetores e valores próprios	93
		10.4.2 Soluções fundamentais	94
	10.5	10.4.3 Valores próprios complexos	96
		Vetores próprios generalizados	97
		Sistemas lineares não homogéneos com coeficientes constantes	98
	10.7	Problemas	100

vi	CONTEÚDO

11 Equações de derivadas parciais	103
11.1 Introdução	 103
11.1.1 Equação de transferência de calor	 103
11.1.2 Equação de onda	 103
11.1.3 Equação de Laplace	 103
11.2 Resolução de equações simples	 104
11.3 Método da transformada de Laplace	 104
11.4 Transformadas de Fourier	 105
11.4.1 Produto escalar entre funções	 105
11.4.2 Série seno de Fourier	 105
11.4.3 Série co-seno de Fourier	 106
11.5 Resolução de EDPs usando transformadas de Fourier	 106
11.5.1 Propriedade operacional	 107
11.6 Problemas	 110
Respostas aos problemas	111
Bibliografia	121
Índice	122

Lista de Figuras

3.1	Decaimento exponencial de uma substância radioativa	19
3.2	Família de círculos com centro na origem e trajetórias ortogonais	20
8.1	Fluxo de medicamento, f , para dentro do sangue do paciente	74
8.2	Decaimento do medicamento no sangue do paciente	75

viii LISTA DE FIGURAS

Lista de Tabelas

8.1	Propriedades da transformada de Laplace.	•	•	•	•	•			 •		•	•		73
9.1	Transformadas Z													84

LISTA DE TABELAS

Prefácio

Estes apontamentos foram escritos como texto de apoio à disciplina de *Análise Matemática III* do Departamento de Engenharia Química da Faculdade de Engenharia da Universidade do Porto, nos anos académicos 1997/1998 e 1998/1999. São fruto da experiência docente adquirida entre 1993 e até 1997, quando leccionei as aulas teórico-práticas da disciplina regida pelo Prof. Mário Rui Costa a quem agradeço muito o apoio que me deu durante esse período. Muitos dos problemas incluidos no fim de cada capítulo faziam parte das folhas de problemas propostos pelo Prof. Mário Rui Costa; outros foram adaptados do livro *An Introduction to Differential Equations and Their Applications*, S.J. Farlow, McGraw-Hill, 1994

A maior parte do conteúdo destes apontamentos encontra-se em qualquer livro de introdução às equações diferenciais. No entanto, a apresentação das equações de diferenças como ferramenta para resolver as fórmulas de recorrência que aparecem no método das séries, não costuma ser usada nos livros de equações diferenciais. Assim, o capítulo sobre equações de diferenças lineares inclui algumas seções para as quais é difícil encontrar bibliografia.

A versão deste livro aparece referida, na capa, na data da última revisão. A versão mais recente poderá ser obtida no sítio: http://villate.org/pt/books.html.

xii Prefácio

Capítulo 1

Introdução

1.1 Definições

Uma equação diferencial é qualquer relação entre uma função e as suas derivadas. Existem dois tipos de equações diferenciais.

- 1. **Equações diferenciais ordinárias (EDO)**: A função y que aparece na equação é uma função de uma variável x. A forma geral da equação é $F(x,y,y',y'',\ldots)=0$. A ordem da equação é a ordem da derivada de ordem superior que apareça na equação.
- 2. **Equações de derivadas parciais**: A função u é uma função de várias variáveis, u(x, z, t, ...) e a equação é uma relação entre u, as variáveis independentes x, z, t, ... e as derivadas parciais de u.

Uma solução explícita da equação diferencial ordinária é qualquer função y(x) que verifique a equação num intervalo a < x < b. Uma solução implícita é uma relação G(x,y) = 0 que verifique a equação. As soluções implícitas podem dar origem a várias soluções implícitas.

Exemplo 1.1

Mostre que as funções

$$y_1(x) = e^{5x}$$
 e $y_2(x) = e^{-3x}$ (1.1)

são soluções da equação diferencial

$$y'' - 2y' - 15y = 0 ag{1.2}$$

Resolução: por simples substituição da função e as suas derivadas vê-se facilmente que cada uma das funções dada é solução:

$$25e^{5x} - 10e^{5x} - 15e^{5x} = 0$$
$$9e^{-3x} + 6e^{-3x} - 15e^{-3x} = 0$$

Exemplo 1.2

Demonstre que a relação

$$x + y + e^{xy} = 0 (1.3)$$

2 Introdução

é solução implícita de

$$\left(1 + xe^{xy}\right)\frac{dy}{dx} + 1 + ye^{xy} = 0$$
(1.4)

Resolução:

$$\frac{d}{dx}(x+y+e^{xy}) = 0$$

$$1+y'+e^{xy}\frac{d(xy)}{dx} = 0$$

$$1+y'+(y+xy')e^{xy} = 0$$

$$(1.5)$$

1.2 Equações de primeira ordem

As equações diferenciais ordinárias de primeira ordem são da forma F(x,y,y')=0, mas geralmente por meio de simples manipulação algébrica conseguem-se re-escrever na forma de uma ou mais equações

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \tag{1.6}$$

A chamada forma inversa da equação anterior é

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{f(x,y)} \tag{1.7}$$

Qualquer solução implícita de uma das duas equações é solução da outra, e se a inversa de uma solução explícita y(x) da primeira equação existir, será solução (x(y)) da equação inversa. A equação pode ser também escrita na chamada **forma diferencial**

$$f(x,y) dx - dy = 0 ag{1.8}$$

Existem em geral muitas soluções de uma equação diferencial de primeira ordem. Dado um valor inicial $y(x_0) = y_0$, é possível calcular a derivada y' no ponto x_0 (igual a $f(x_0, y_0)$ segundo a equação diferencial), e geralmente é possível encontrar uma curva (curva integral) que passe pelo ponto (x_0, y_0) e com derivada igual a f(x, y) em cada ponto. O problema de valores iniciais:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \qquad y(x_0) = y_0 \tag{1.9}$$

consiste em encontrar a curva integral (ou curvas integrais) que passa pelo ponto (x_0, y_0) .

1.3 Existência e unicidade da solução

As condições suficientes para a existência de uma solução única de uma equação diferencial de primeira ordem são definidas pelo teorema de Picard:

1.4 Problemas 3

Teorema 1 (Picard)

Considere o problema de valor inicial

$$\frac{dy}{dx} = f(x,y)$$
 $y(x_0) = y_0$ (1.10)

se a função f e a derivada parcial de f em função de y são contínuas numa vizinhança do ponto (x_0, y_0) , existe uma solução única y = g(x) em certa vizinhança do ponto (x_0, y_0) que verifica a condição inicial $g(x_0) = y_0$.

O intervalo onde existe a solução única pode ser maior ou menor que o intervalo onde a função f e a sua derivada parcial $\partial f/\partial y$ são contínuas (o teorema não permite determinar o tamanho do intervalo).

As condições do teorema de Picard são condições suficientes, mas não necessárias para a existência de solução única. Quando f ou a sua derivada parcial $\partial f/\partial y$ não sejam contínuas, o teorema não nos permite concluir nada: provavelmente existe solução única a pesar das duas condições não se verificarem.

Exemplo 1.3

Demonstre que a relação

$$x^2 + y^2 - c^2 = 0 ag{1.11}$$

onde c é uma constante positiva, é solução implícita da equação

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y} \tag{1.12}$$

que pode concluir a partir do teorema de Picard?

Resolução:

$$2x + 2yy' = 0$$

$$y' = -\frac{x}{y}$$
(1.13)

a função f=-x/y e a sua derivada parcial $\partial f/\partial y=x/y^2$ são contínuas em quaisquer pontos fora do eixo dos x. A solução implícita dada conduz às soluções únicas:

$$y_1 = \sqrt{c^2 - x^2}$$
 $y_2 = -\sqrt{c^2 - x^2}$ (1.14)

no intervalo -c < x < c. O teorema de Picard nada permite concluir nos pontos y = 0, mas segundo o resultado obtido acima vemos que em cada ponto y = 0 existem duas soluções, y_1 e y_2 .

1.4 Problemas

Em cada equação diferencial identifique as variáveis independentes e dependentes. Demonstre em cada caso que a função y ou u na coluna da direita é solução da equação, onde a e c são constantes.

1.
$$\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + a^2}}$$
 $(a \neq 0)$ $y(x) = \sqrt{x^2 + a^2}$

4 Introdução

2.
$$\frac{1}{4} \left(\frac{d^2 y}{dx^2} \right)^2 - x \frac{dy}{dx} + y = 1 - x^2$$
 $y(x) = x^2$

3.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 $u(x, y) = \arctan\left(\frac{y}{x}\right)$

4.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

$$u(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

Demonstre que a relação dada define uma solução implícita da equação diferencial.

5.
$$yy' = e^{2x}$$
 $y^2 = e^{2x}$

6.
$$y' = \frac{y^2}{xy - x^2}$$
 $y = c e^{y/x}$

Os problemas 7 ao 11 são um teste à sua intuição (a ¡¡intuição¿¿ só se adquire com alguma experiência e, por isso, é importante analisar estes problemas e as suas soluções). Em cada caso tente adivinhar uma solução; faça alguma tentativa e verifique se é ou não solução. Diga se a solução que descobriu é geral ou particular.

7.
$$\frac{dy}{dx} = y$$
 (a função cuja derivada é igual a si própria)

8.
$$\frac{dy}{dx} = y^2$$
 (derivada igual ao quadrado da função)

$$9. \ \frac{\mathrm{d}y}{\mathrm{d}x} + y = 1$$

$$\mathbf{10.} \ \frac{\mathrm{d}y}{\mathrm{d}x} + y = \mathrm{e}^x$$

11.
$$\frac{d^2y}{dx^2} = 1$$
 (função cuja segunda derivada é igual a 1)

Verifique que a função dada é solução do problema de valor inicial

12.
$$y'' + 3y' + 2y' = 0$$
, $y(0) = 0$ $y'(0) = 1$ $y(x) = e^{-x} - e^{-2x}$

13.
$$y'' + 4y = 0$$
, $y(0) = 1$ $y'(0) = 0$ $y(x) = \cos 2x$

Determine se o teorema de Picard implica a existência de uma solução única dos seguintes problemas de valor inicial, numa vizinhança do valor inicial *x* dado.

14.
$$y' - y = 1$$
 $y(0) = 3$

15.
$$y' = x^3 - y^3$$
 $y(0) = 0$

16.
$$y' = -\frac{x}{y}$$
 $y(1) = 0$

- 17. O problema de valor inicial $y' = 2\sqrt{y}$, y(0) = 0, tem um número infinito de soluções no intervalo $[0, \infty)$.
 - (a) Demonstre que $y(x) = x^2$ é uma solução.
 - (b) Demonstre que se (c for um parâmetro positivo, a seguinte familia de funções (ver figura) serão também soluções

$$y = \begin{cases} 0 & 0 \le x < c \\ (x - c)^2 & c \le x \end{cases}$$

Porque não pode ser c negativo?

(c) Interprete estes resultados em relação ao teorema de Picard.

<u>6</u> Introdução

Capítulo 2

Equações diferenciais de primeira ordem

Existem alguns tipos de equações ordinárias de primeira ordem que podem ser resolvidas analiticamente. Comecemos por estudar o caso mais simples das equações diferenciais de **primeira ordem**, que são as equações da forma

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \tag{2.1}$$

Esse tipo de equações resolvem-se facilmente, usando o teorema fundamental do cálculo integral

$$y(x) = \int f(x) \, \mathrm{d}x + c \tag{2.2}$$

em que c é uma constante arbitrária que será determinada pela condição inicial do problema.

2.1 Equações de variáveis separáveis

Uma equação é designada de variáveis separáveis, se poder ser escrita na forma

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f(x)}{g(y)} \tag{2.3}$$

Para resolver este tipo de equação primeiro observemos que a primitiva da função g(y) pode ser calculada da seguinte forma

$$\int g(y) \, \mathrm{d}y = \int g(y(x)) \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x \tag{2.4}$$

A equação diferencial pode ser escrita como

$$g(y)\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \tag{2.5}$$

e a primitiva em ordem a x do lado esquerdo é igual à primitiva em ordem a y de g(y) como acabamos de ver

$$\int g(y) \, \mathrm{d}y = \int f(x) \, \mathrm{d}x + c \tag{2.6}$$

As equações do tipo

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(ax + by + c) \tag{2.7}$$

onde a e b são constantes, não são equações de variáveis separáveis, mas podem ser reduzidas a elas por meio da seguinte substituição

$$v = ax + by + c \implies \frac{dv}{dx} = a + b\frac{dy}{dx}$$
 (2.8)

2.2 Equações lineares

As equações lineares são as que podem ser escritas na forma

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = f(x) \tag{2.9}$$

Para resolver este tipo de equação podemos tentar transforma-la na forma simples estudada na seção 2. No caso particular em que a função p for uma constante a, o lado esquerdo será semelhante à seguinte derivada

$$\frac{\mathrm{d}y}{\mathrm{d}x}(ye^{ax}) = e^{ax}(y'+ay) \tag{2.10}$$

consequentemente, podemos multiplicar os dois lados da equação diferencial por $\exp(ax)$ e obtermos

$$\frac{dy}{dx}(ye^{ax}) = e^{ax}f(x)$$

$$ye^{ax} = \int e^{ax}f(x)dx + c$$
(2.11)

No caso geral em que p depende de x, usamos a primitiva de p(x) em vez de ax e o **fator integrante** pelo qual deveremos multiplicar a equação será

$$\mu(x) = \exp\left[\int p(x) \, \mathrm{d}x\right] \tag{2.12}$$

multiplicando os dois lados da equação diferencial por μ obtém-se

$$\frac{\mathrm{d}}{\mathrm{d}x}(y\mu(x)) = \mu(x)f(x)$$

$$y\mu = \int \mu(x)f(x)\,\mathrm{d}x + c$$
(2.13)

Exemplo 2.1

Encontre a solução da equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{y^3 - 2x} \qquad y(2) = 1$$

A equação não é de variáveis separáveis, nem linear, mas se invertermos a equação obteremos

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{y^3 - 2x}{y} \tag{2.14}$$

a qual é uma equação linear. Escrita na forma padrão

$$\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{2}{y}x = y^2 \tag{2.15}$$

vemos que o fator integrante é

$$\mu = \exp\left(\int \frac{2}{y} dy\right) = y^2 \tag{2.16}$$

multiplicando os dois lados da equação por μ obtemos

$$\frac{\mathrm{d}}{\mathrm{d}y}(y^2x) = y^4 \tag{2.17}$$

$$\Longrightarrow y^2 x = \frac{y^5}{5} + C \tag{2.18}$$

Para calcular o valor da constante de integração, substituímos a condição inicial

$$2 = \frac{1}{5} + C \implies C = \frac{9}{5} \tag{2.19}$$

e a solução (de forma implícita) é

$$5y^2x = y^5 + 9 \qquad \blacksquare \tag{2.20}$$

2.3 Equações exatas

Qualquer equação de primeira ordem pode ser escrita em forma diferencial:

$$M(x, y) dx + N(x, y) dy = 0$$
 (2.21)

esta forma é semelhante à expressão da diferencial de uma função de duas variáveis

$$dF(x,y) = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$$
 (2.22)

Esta equação sugere-nos admitir que existe uma função F(x,y) cujas derivadas parciais são iguais a M(x,y) e N(x,y). No entanto, a segunda derivada parcial de F seria

$$\frac{\partial^2 F}{\partial x^2} y = \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \tag{2.23}$$

Assim, para que a conjetura da existência da função F(x,y) seja consistente, é necessário que as funções M e N verifiquem a seguinte condição

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \tag{2.24}$$

nesse caso diz-se que a equação é uma equação exata e pode ser escrita como

$$dF(x,y) = 0 (2.25)$$

sendo a sua solução geral

$$F(x,y) = c (2.26)$$

A função F calcula-se encontrando a função cujas derivadas parciais sejam iguais a M(x,y) e N(x,y).

Exemplo 2.2

Resolva a seguinte equação

$$\frac{dy}{dx} = \frac{9x^2 + y - 1}{4y - x} \tag{2.27}$$

A equação pode ser escrita da seguinte forma diferencial

$$(4y-x) dy - (9x^2 + y - 1) dx = 0 (2.28)$$

e verifica-se que é uma equação exata:

$$\frac{\partial}{\partial x}(4y - x) = -1 = \frac{\partial}{\partial y}(-9x^2 - y + 1) \tag{2.29}$$

existe uma função F(x, y) tal que

$$\frac{\mathrm{d}F}{\mathrm{d}y} = 4y - x \implies F = 2y^2 - xy + f(x) \tag{2.30}$$

$$\frac{dF}{dx} = -9x^2 - y + 1 \implies F = -3x^3 - xy + x + g(y)$$
 (2.31)

comparando os dois resultados para F vemos que

$$f(x) = x - 3x^3$$
 (2.32)

$$g(y) = 2y^2$$
 (2.33)

$$g(y) = 2y^2 (2.33)$$

e a função F(x,y) é (para além de uma constante que não é importante aqui)

$$F(x,y) = 2y^2 - 3x^3 - xy + x (2.34)$$

a solução geral da equação diferencial é F igual a uma constante

$$2y^2 - 3x^3 - xy + x = c \tag{2.35}$$

Equações homogéneas

Uma equação de primeira ordem diz-se homogénea se tiver a seguinte forma geral

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right) \tag{2.36}$$

para resolver este tipo de equação usa-se a substituição

$$v = \frac{y}{x} \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$
 (2.37)

a qual transforma a equação numa equação de variáveis separáveis. Para reconhecer facilmente se uma função racional é da forma f(y/x) observam-se os expoentes de cada termo no numerador e denominador (soma do expoente de x mais o expoente de y) os quais deverão ser iguais. Por exemplo das duas funções seguintes a primeira tem a forma f(y/x) mas a segunda não

$$\frac{xy^2 - x^3}{yx^2} \qquad \frac{xy + y}{2 + x} \tag{2.38}$$

Existem outras equações que podem ser reduzidas a equações homogéneas. Um exemplo típico é a equação

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{ax + by + c}{px + qy + r}\right) \tag{2.39}$$

onde a,bc,p,q e r são constantes dadas. Se as constantes c e r fossem nulas, a equação seria homogénea; definimos um novo sistema de coordenadas (u,v) para substituir (x,y), de forma a obter

$$ax + by + c = au + bv (2.40)$$

$$px + qy + r = pu + qv (2.41)$$

ou de forma equivalente

$$a(x-u) + b(y-v) = -c$$
 (2.42)

$$p(x-u) + q(y-v) = -r (2.43)$$

a solução deste sistema de equações lineares pode ser obtido por meio da regra de Cramer

$$x - u = \frac{\begin{vmatrix} -c & b \\ -r & q \end{vmatrix}}{\begin{vmatrix} a & b \\ p & q \end{vmatrix}} \qquad y - v = \frac{\begin{vmatrix} a & -c \\ p & -r \end{vmatrix}}{\begin{vmatrix} a & b \\ p & q \end{vmatrix}}$$
(2.44)

como os lados direitos das equações 2.42 e 2.43 são constantes, também temos que dx = du, dy = dv e a equação diferencial transforma-se numa equação homogénea

$$\frac{\mathrm{d}v}{\mathrm{d}u} = f\left(\frac{au + bv}{pu + qv}\right) \tag{2.45}$$

Exemplo 2.3

Resolva o problema de valor inicial

$$\frac{dy}{dx} = \frac{x+y-3}{x-y-1} \qquad y(3) = 1 \tag{2.46}$$

Esta equação pode ser reduzida a uma equação homogénea, mudando as variáveis (x,y) para (u,v) definidas por

$$\begin{array}{rcl} x + y - 3 & = & u + v \\ x - y - 1 & = & u - v \end{array} \implies \begin{array}{rcl} (x - u) + (y - v) & = & 3 \\ (x - u) - (y - v) & = & 1 \end{array}$$
 (2.47)

usando a regra de Cramer temos

$$x - u = \frac{\begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}} = 2 \tag{2.48}$$

$$y-v = \frac{\begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}} = 1 \tag{2.49}$$

$$x = u + 2 \implies dx = du$$
 (2.50)

$$y = v + 1 \implies dy = dv \tag{2.51}$$

com estas substituições, a equação diferencial torna-se uma equação homogénea

$$\frac{\mathrm{d}v}{\mathrm{d}u} = \frac{u+v}{u-v} \tag{2.52}$$

e para transformá-la numa equação de variáveis separáveis, definimos uma nova variável dependente z

$$z = \frac{v}{u} \qquad \Longrightarrow \qquad \frac{\mathrm{d}v}{\mathrm{d}u} = z + \frac{\mathrm{d}z}{\mathrm{d}u} \tag{2.53}$$

Substituindo na equação diferencial temos

$$z + u \frac{dz}{du} = \frac{1+z}{1-z}$$

$$\frac{dz}{du} = \frac{1}{u} \left(\frac{1+z}{1-z} - z \right) = \frac{z^2 + 1}{u(1-z)}$$
(2.54)

Esta é uma equação de variáveis separáveis que pode ser integrada

$$\int \frac{1-z}{z^2+1} dz = \int \frac{du}{u} + c$$

$$\operatorname{arctg}(z) - \frac{1}{2} \ln \left(1+z^2\right) = \ln u + c$$
(2.55)

Para calcular o valor da constante c, vemos que a condição inicial y(3)=1 implica u=2, v=0 e z=0

$$\operatorname{arctg} 0 - \frac{\ln 1}{2} = \ln 2 + c \qquad \Longrightarrow \qquad \operatorname{arctg} z - \frac{1}{2} \ln(1 + z^2) = \ln u \tag{2.56}$$

e, assim, a solução em função de x e y é

$$\arctan\left(\frac{y-1}{x-2}\right) - \frac{1}{2}\ln\left[1 + \left(\frac{y-1}{x-2}\right)^2\right] = \ln(x-2) \quad \blacksquare \tag{2.57}$$

2.5 Equação de Bernoulli

Um tipo de equação diferencial que pode ser reduzida a equação linear, é a chamada **equação de Bernoulli**, definida como

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y^n = f(x)y\tag{2.58}$$

onde n é um número racional, diferente de 0 e de 1. A substituição

$$v = y^{1-n} \implies v' = (1-n)y^{-n}y'$$
 (2.59)

transforma a equação de Bernoulli numa equação linear.

2.6 Equação de Riccati

Outra equação redutível a equação linear é a equação de Riccati:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(x) + b(x)y + c(x)y\tag{2.60}$$

onde a(x), b(x) e c(x) são três funções que dependem de x. Se conhecermos uma solução particular da equação, por exemplo y_1 , a seguinte mudança de variável transformará a equação em equação linear

$$y = y_1 + \frac{1}{v} \qquad \Longrightarrow \qquad \frac{dy}{dx} = \frac{dy_1}{dx} - \frac{1}{v^2} \frac{dv}{dx} \tag{2.61}$$

Exemplo 2.4

Encontre a solução geral da seguinte equação sabendo que $y_1(x)$ é solução particular

$$y' = e^{x}y^{2} - y + e^{-x}$$
 $y_{1}(x) = -e^{-x}\cot x$ (2.62)

Trata-se de uma equação de Riccati e para a resolver usamos a seguinte substituição

$$y = y_1 + \frac{1}{v}$$
 \Longrightarrow $y' = y'_1 - \frac{v'}{v^2}$ (2.63)

é conveniente não substituir y_1 pela função dada, já que o fato desta ser solução da equação simplificará os resultados. Substituindo na equação de Riccati obtemos

$$y_1' - \frac{v'}{v^2} = e^x \left(y_1^2 + 2\frac{y_1}{v} + \frac{1}{v^2} \right) - y_1 - \frac{1}{v} + e^{-x}$$

$$v^2 \left(y_1' - e^x y_1^2 + y_1 - e^{-x} \right) = v' + (2y_1 e^x - 1)v + e^x$$
(2.64)

como y_1 é solução, o termo nos parêntesis no lado esquerdo é zero e obtém-se a seguinte equação linear para v(x)

$$v' - (2\cot x + 1)v = -e^x \tag{2.65}$$

o fator integrante desta equação linear é

$$\mu(x) = \exp \int (-1 - 2\cot x) \, dx = \exp \left[-x - 2\ln(\sin x) \right] = \frac{e^{-x}}{\sin^2 x}$$
 (2.66)

multiplicando os dois lados da equação linear por μ e seguindo os passos explicados na seção sobre equações lineares

$$\mu v' - (2\cot x + 1)\mu v = -\csc^2 x$$

$$\frac{d}{dx}(uv) = -\csc^2 x$$

$$uv = \cot x + c$$

$$v = e^x \sin^2 x(\cot x + c) = e^x \sin x(\cos x + c \sin x)$$

$$y = y_1 + \frac{1}{v} = \frac{e^{-x}}{\sin x} \left(-\cos x \frac{1}{\cos x + c \sin x} \right)$$

$$y = e^{-x} \frac{\sin x - c \cos x}{\cos x + c \sin x}$$
(2.67)

a solução geral está constituída por esta última família de funções, junto com a solução particular y_1 .

2.7 Problemas

Resolva as seguintes equações diferenciais ordinárias (todas são de variáveis separáveis, exatas, lineares ou redutíveis a elas)

1.
$$\frac{dy}{dt}\cos y = -\frac{t\sin y}{1+t^2}$$
 $y(1) = \frac{\pi}{2}$

2.
$$\frac{dy}{dt} + y = 1 + t^2$$
 $y(1) = 2$

$$3. \frac{\mathrm{d}x}{\mathrm{d}y} = \cos(x+2y) \qquad x(0) = 0$$

$$4. \ \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{y^2 - 2ty}{v^2}$$

5.
$$\frac{dy}{dx} = -\frac{x+y}{x+2y}$$
 $y(2) = 3$

6.
$$(2y + e^x \cos y)y' = -e^x \sin y$$

7.
$$1+3t-2y-(4t-3y-6)\frac{dy}{dt}=0$$

8.
$$\frac{dy}{dx} = \frac{x+4y+5}{x-2y-1}$$
 $y|_{x=2} = 1$

9.
$$\frac{dy}{dx} = \frac{x^2 - 1}{y^2 + 1}$$
 $y(-1) = 1$

10.
$$\frac{dy}{dt} + 2ty = 2t^3\sqrt{y}$$
 $y(0) = 25$

$$11. \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 - 2y}{x}$$

2.7 Problemas 15

$$12. \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{x^2 y + y^3}$$

13.
$$\frac{dy}{dx} = \frac{x(2y+1)}{y-x^2}$$

14.
$$\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$$

Resolva as seguintes equações de Riccatti, sabendo que $y=y_1(x)$ é uma solução particular:

15.
$$\frac{dy}{dx} + \frac{y}{x} - y^2 = -\frac{1}{x^2}$$

$$y_1(x) = \frac{1}{x}$$

16.
$$\frac{dy}{dx} = \frac{2\cos^2 x - \sin^2 x + y^2}{2\cos x}$$

$$y_1(x) = \sin x$$

Capítulo 3

Aplicações das equações diferenciais de primeira ordem

3.1 Crescimento demográfico

A taxa de aumento de uma população é a soma das taxas de natalidade (n) e migração (g), menos a taxa de mortalidade (m)

$$a = n + g - m \tag{3.1}$$

O aumento da população num instante dado é igual ao produto da população nesse instante vezes a taxa de aumento da população; se a população no instante t for representada pela função P(t), o aumento da população será também igual à derivada de P

$$\frac{\mathrm{d}P}{\mathrm{d}t} = aP\tag{3.2}$$

Para poder resolver esta equação é preciso conhecer a dependência de *a* com o tempo. Veremos dois casos simples

3.1.1 Modelo de Malthus

Se a taxa de aumento da população (a) for constante a equação diferencial anterior será uma equação de variáveis separáveis

$$\int \frac{dP}{P} = \int a dt + C$$

$$P = P_0 e^{at}$$
(3.3)

Onde P_0 é a população em t=0. Este modelo pode ser uma boa aproximação em certo intervalo, mas tem o inconveniente que a população cresce sim limite.

3.1.2 Modelo logístico

Considera-se uma taxa de mortalidade que aumenta diretamente proporcional à população, com taxas de natalidade e migração constantes. A taxa de aumento da população é assim

$$b - kP \tag{3.4}$$

com b e k constantes. A equação diferencial obtida é uma equação de Bernoulli

$$\frac{\mathrm{d}P}{\mathrm{d}t} = bP - kP^2 \tag{3.5}$$

Neste modelo a população não cresce indiscriminadamente, pois a medida que P aumenta, a taxa de aumento diminui chegando eventualmente a ser nula e nesse momento P permanece constante. Por meio da substituição u=1/P obtém-se uma equação linear

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -bu + k \tag{3.6}$$

Que pode ser resolvida multiplicando os dois lados pelo fator integrante $\exp(bt)$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(u e^{bt} \right) = k \int e^{bt} \, \mathrm{d}t + C$$

$$\frac{1}{P} = \frac{k}{b} + C e^{-bt}$$
(3.7)

A população aproxima-se assimptoticamente do valor limite b/k.

3.2 Decaimento radioativo

Numa substância radioativa, cada átomo tem uma certa probabilidade, por unidade de tempo de se transformar num átomo mais leve emitindo radiação nuclear no processo. Se p representa essa probabilidade, o número médio de átomos que se transmutam, por unidade de tempo, é pN, em que N é o número de átomos existentes em cada instante. O número de átomos transmutados por unidade de tempo é também igual a menos a derivada temporal da função N

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -pN\tag{3.8}$$

A massa dos correspondentes átomos, x, é diretamente proporcional a N e assim obtemos a seguinte equação diferencial

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -px\tag{3.9}$$

onde p é uma constante, designada de **constante de decaimento**. A solução geral desta equação é uma função que diminui exponencialmente até zero

$$x = Ce^{-pt} (3.10)$$

e a solução única para a condição inicial $x = x_0$ no instante inicial é (figura 3.1)

$$x = x_0 e^{-pt} (3.11)$$

A **meia-vida** da substância define-se como o tempo necessário para a massa diminuir até 50% do valor inicial; a partir da solução obtida temos

$$0.5 = e^{-pt} t = \frac{\ln 2}{p} (3.12)$$

Figura 3.1: Decaimento exponencial de uma substância radioativa.

Quanto maior for a constante de decaimento p, mais rápido diminuirá a massa da substância (ver figura 3.1).

Uma substância radioativa presente em todos os organismos vivos é o carbono 14 que decai transformando-se em azoto, com uma meia-vida de aproximadamente 5580 anos. O conteúdo de C_{14} em relação ao C_{12} de qualquer organismo vivo é o mesmo. A razão é a seguinte: no fim da cadeia alimentar dos seres vivos estão os organismos que absorvem o carbono diretamente da atmosfera e portanto a relação C_{14}/C_{12} nos seres vivos é a mesma que na atmosfera. Na atmosfera esta relação é estável há muitos anos; os organismos mortos, em processo de decomposição perdem C_{14} como resultado do decaimento radioativo e não o regeneram através da dieta. O azoto que a atmosfera ganha dos organismos em decomposição é transformado novamente em C_{14} pelos raios cósmicos, nas camadas superiores. Uma comparação do conteúdo de carbono 14 de um organismo morto, por exemplo madeira obtida de uma árvore, com o conteúdo existente num organismo vivo da mesma espécie, permite determinar a data da *morte* do organismo, com uma boa precisão quando o tempo envolvido for da ordem de grandeza da meia-vida do carbono 14.

3.3 Trajetórias ortogonais

Uma equação da forma

$$f(x,y) = c (3.13)$$

onde c é uma constante, define uma família de curvas. As trajetórias ortogonais são outra família de curvas que intersetam a primeira família em forma ortogonal: em cada ponto de uma das curvas da primeira família passa uma curva da segunda família, formando um ângulo de 90° .

Para encontrar a família de trajetórias ortogonais às curvas f(x,y)=c, começamos por encontrar uma equação diferencial cuja solução geral seja f(x,y)=c; essa equação encontra-se derivando implicitamente a equação anterior

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \qquad \Longrightarrow \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \tag{3.14}$$

A derivada dy/dx representa em cada ponto o declive da curva que passa por esse ponto. O declive da curva ortogonal será o inverso, com sinal trocado

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \tag{3.15}$$

a solução geral desta equação é a família de trajetórias ortogonais.

Exemplo 3.1

Encontre as trajetórias ortogonais da família de círculos com centro na origem.

A equação dos círculos com centro na origem é

$$x^2 + y^2 = c^2 (3.16)$$

onde o parâmetro c pode ter qualquer valor positivo a equação diferencial cuja solução geral é essa família de círculos obtém-se por derivação implícita

$$2x + 2yy' = 0 \qquad \Longrightarrow \qquad \frac{dy}{dx} = -\frac{dx}{dy} \tag{3.17}$$

e a equação diferencial das trajetórias ortogonais é

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} \tag{3.18}$$

A solução desta equação de variáveis separáveis é

$$y = ax (3.19)$$

que corresponde a uma família de retas que passam pela origem; a constante de integração é declive das retas. A figura 3.2 mostra a família de curvas e as trajetórias ortogonais ■.

Figura 3.2: Família de círculos com centro na origem e trajetórias ortogonais.

3.4 Problemas de aquecimento e arrefecimento

Outra aplicação das equações diferenciais de primeira ordem são os problemas de aquecimento e arrefecimento. Entre dois corpos em contato existe transferência de calor por condução, do corpo mais quente para o mais frio. Se a temperatura do objeto em qualquer instante é T(t) e a temperatura do meio ambiente é M(t), o aumento da temperatura do objeto em qualquer instante será diretamente proporcional à diferença de temperatura com o meio ambiente

$$\frac{\mathrm{d}T}{\mathrm{d}t} = k(M - T) \tag{3.20}$$

onde k é uma constante de condução térmica. Esta equação é uma equação linear que pode ser facilmente resolvida uma vez conhecida a temperatura do meio M(t). O caso mais simples é quando a temperatura do meio ambiente é constante; nesse caso a equação é de variáveis separáveis

$$\int \frac{\mathrm{d}T}{M-T} = \int k \, \mathrm{d}t + C \qquad \Longrightarrow \qquad T = M + (T_0 - M) \, \mathrm{e}^{-kt} \tag{3.21}$$

onde T_0 é a temperatura inicial. A temperatura do objeto aproxima-se assimptoticamente à temperatura do meio.

3.5 Cinética química

Consideremos uma reação química de primeira ordem na qual um composto A reage dando origem a outros dois compostos B e C

$$A \longrightarrow B + C$$
 (3.22)

Cada molécula do composto A tem uma determinada probabilidade de reagir por unidade de tempo. Assim, o número de moléculas que reagem por unidade de tempo é diretamente proporcional ao número de moléculas existentes, e a velocidade da reação é diretamente proporcional à concentração [A] do composto A (admitindo um volume constante). A medida que o composto reage, a sua concentração diminui e a velocidade de reação também; em qualquer instante a taxa de diminuição de [A] é diretamente proporcional a [A]

$$\frac{\mathrm{d}[A]}{\mathrm{d}t} = -k[A] \tag{3.23}$$

Este tipo de reação designa-se de reação de **primeira ordem**. A equação anterior é a mesma equação obtida para o decaimento radioativo, já que o mecanismo das reações de primeira ordem e do decaimento radioativo são análogos, a nível atómico e nuclear.

Consideremos agora uma reação na qual dois reagentes A e B combinam-se formando um composto C

$$A + B \longrightarrow C$$
 (3.24)

Cada molécula de A tem uma determinada probabilidade c de reagir com uma molécula de B (por unidade de tempo); na presença $N_{\rm B}$ moléculas do composto B, a probabilidade de reagir que tem cada molécula de A é $cN_{\rm B}$. Assim o número médio de reações por unidade de tempo é $cN_{\rm A}N_{\rm B}$,

 $^{^{1}}$ É claro que uma molécula terá maior probabilidade de reagir com as moléculas vizinhas do que com outras moléculas afastadas, mas vamos admitir que c é a probabilidade média e permanece constante

sendo N_A e N_B o número de moléculas de A e B existentes nesse instante; este será também o aumento do numero de moléculas do composto C, N_C , por unidade de tempo:

$$\frac{\mathrm{d}N_{\mathrm{C}}}{\mathrm{d}t} = cN_{\mathrm{A}}N_{\mathrm{B}} \tag{3.25}$$

Em função das concentrações dos compostos A, B e C, a equação diferencial obtida é

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(a-x)(b-x) \tag{3.26}$$

onde x é a concentração do composto C e a e b as concentrações iniciais de A e de B. Este tipo de reações são de **segunda ordem**.

Exemplo 3.2 (Problema de evaporação)

Uma esfera de naftaleno tem um raio inicial de 1 cm e depois de três meses observa-se que o raio diminuiu até 0,5 cm. Calcule quanto tempo tardará a esfera em evaporar-se completamente.

O volume da esfera sólida que se evapora em cada instante é diretamente proporcional à área da superfície

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -kA\tag{3.27}$$

onde $V = 4\pi r^3/3$ é o volume da esfera, e $A = 4\pi r^2$ a área da sua superfície. Substituindo na equação diferencial, obtemos uma equação simples para o raio da esfera

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -k\tag{3.28}$$

a sua solução mostra que o raio diminui linearmente e função do tempo:

$$r = r_0 - kt \tag{3.29}$$

consequentemente, se o raio diminuiu a metade em três meses, tardará outros três meses a em chegar a ser zero. ■

3.6 Problemas

- 1. A análise química de uma viga de pinho retirada da tumba dum faraó Egipcio mostrou que o conteúdo de carbono 14 é 55% do existente num pinheiro vivo. Sabendo que a meia-vida do carbono 14 é 5580 ± 45 anos, calcule a idade da tumba.
- 2. Segundo o *Factbook* da C.I.A., os dados demográficos para Portugal em Julho de 1993 foram os seguintes: população = 10 486 140 habitantes, taxa anual de natalidade = 11,59 por mil, taxa anual de mortalidade = 9,77 por mil e taxa anual de migração = 1,8 por mil. Admitindo que as três taxas permanecem constantes entre 1993 e 1997, faça uma estimativa da população de Portugal em Julho de 1997.
- 3. No problema anterior admita que as taxas de natalidade e migração sejam constantes até ao ano 2000, enquanto a taxa de mortalidade é diretamente proporcional à população (modelo logístico). Calcule qual seria neste modelo a população em Julho do ano 2000 (a constante de proporcionalidade da taxa de mortalidade calcula-se fácilmente a partir dos dados iniciais).

3.6 Problemas 23

4. A intensidade luminosa num lago ou no mar diminui exponencialmente em função da profundidade, como resultado da absorção da luz por parte da água. Se 7,6 metros de água absorvem 15% da intensidade da luz incidente na superfície, a que profundidade seria a luz do meio dia tão intensa como a luz da lua cheia sobre a Terra? (a luz da lua cheia sobre a Terra é 300 000 vezes mais fraca que a luz do sol a meio dia).

- 5. Numa reação química de segunda ordem dois reagentes A e B combinam-se formando um composto C (A + B → C). Cada molécula de A tem uma probabilidade de reagir com B (por unidade de tempo) diretamente proporcional ao número de moléculas de B existentes: probabilidade = cN_B, em que c é uma constante e N_B o número de moléculas de B. Assim o número médio de reações por unidade de tempo é cN_AN_B, sendo N_A e N_B o número de moléculas de A e B existentes nesse instante.
 - (a) Demonstre que em qualquer instante a concentração *x* do composto C (em moles por unidade de volume) verifica a seguinte equação

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(a-x)(b-x)$$

onde a e b são as concentrações iniciais de A e B, no instante t = 0 quando a concentração de C é zero, e k é uma constante (admita o volume constante).

- (b) Encontre a solução da equação anterior para a constante k e a concentração x.
- (c) Quando a concentração de um dos reagentes é muito maior, por exemplo $a \gg b$, o termo a-x permanece práticamente constante e muito perto do valor inicial a. Resolva a equação diferencial com a dita aproximação.
- (d) Resolva a equação diferencial da alínea a no caso particular de concentrações iguais para os dois reagentes (a = b).
- **6.** Encontre as trajetórias ortogonais da familia de elipses $4x^2 + y^2 = c$.
- 7. A constante de tempo (inversa da constante de transferência térmica k) de um prédio é 1/k = 1 dia. Não existem sistemas de aquecimento ou ar condicionado dentro do prédio. A temperatura exterior oscila em forma senoidal entre o mínimo de 5 °C às 2 horas e o máximo de 25 °C às 14 horas.
 - (a) Encontre a equação diferencial para a temperatura dentro do prédio. (sugestão: use o tempo *t* em dias, com origem num dia qualquer às 8 horas quando a temperatura externa tem o valor médio)
 - (b) Encontre a solução de **estado estacionário** (valores elevados de *t*).
 - (c) Quais serão as temperaturas máxima e mínima dentro do prédio?

Capítulo 4

Equações lineares de ordem 2 e superior

Uma equação diferencial linear de ordem n tem a forma geral

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = g(x)$$

$$(4.1)$$

onde a_0 é diferente de zero (se não fosse, teríamos uma equação de ordem n-1). Por simplicidade estudaremos a equação de ordem 2, mais os resultados obtidos serão facilmente generalizados ao caso de ordem n. Dividindo os dois lados da equação linear de segunda ordem por a_0 , obtém-se a forma padrão

$$y'' + p(x)y' + q(x)y = f(x)$$
(4.2)

4.1 Existência e unicidade da solução

Teorema 2

Se as funções p(x), q(x) e f(x) são contínuas num intervalo (a,b), existe uma única solução da equação linear

$$y'' + p(x)y' + q(x)y = f(x)$$
(4.3)

no intervalo (a,b), que verifica as condições iniciais

$$y(c) = A \qquad y'(c) = B \tag{4.4}$$

para quaisquer números A, B e c (c dentro do intervalo (a,b)).

Em contraste com o teorema de Picard para equações de primeira ordem, o intervalo onde se verificam as condições de existência e unicidade é exatamente o mesmo intervalo onde a solução é válida; portanto, neste caso as condições do teorema de existência e unicidade são condições suficientes e necessárias.

No caso geral de ordem n, as condições iniciais serão o valor da função e das primeiras n-1 derivadas num ponto c, e as condições de existência e unicidade serão a continuidade das n+1 funções que aparecem na forma padrão da equação.

4.2 Solução geral das equações lineares

Dadas duas soluções particulares da equação linear, a diferença entre elas é solução da equação homogénea associada

$$y'' + p(x)y' + q(x)y = 0$$
(4.5)

De maneira recíproca, qualquer soma de uma solução da equação linear mais uma solução da equação homogénea associada, é também solução da equação linear. Assim a solução geral pode ser obtida a partir de uma única solução particular, y_p , da equação mais a solução geral da equação homogénea associada, y_h

$$y_{g} = y_{p} + y_{h} \tag{4.6}$$

Para resolver uma equação linear começamos por resolver a equação linear homogénea associada e depois encontramos uma solução particular y_p .

4.3 Equações lineares homogéneas

A forma geral da equação linear homogénea de segunda ordem é

$$y'' + p(x)y' + q(x)y = 0 (4.7)$$

dadas duas soluções particulares y₁ e y₂, qualquer combinação linear das duas soluções

$$c_1 y + c_2 y \tag{4.8}$$

é também solução. Consequentemente as soluções da equação formam um espaço vetorial. Para determinar a solução geral bastará com determinar uma **base** do espaço vetorial, ou seja um conjunto com o número máximo possível de soluções particulares linearmente independentes. A continuação veremos como determinar se duas soluções são linearmente independentes.

4.4 Independência linear entre funções

Diz-se que duas funções f(x) e g(x) são linearmente dependentes se existem duas constantes C_1 e C_2 (pelo menos uma de elas diferente de zero) tal que

$$C_1 f + C_2 g = 0 (4.9)$$

para qualquer valor de x. A derivada da expressão anterior é

$$C_1 f' + C_2 g' = 0 (4.10)$$

Para cada valor de x, as duas últimas equações são um sistema linear. O determinante do sistema é

$$W[f,g] = \left| \begin{array}{cc} f & g \\ f' & g' \end{array} \right| \tag{4.11}$$

e designa-se **Wronskiano** das funções f e g. Se o Wronskiano for diferente de zero num intervalo, as duas constantes serão nulas e as funções linearmente independentes no intervalo. Realmente também existem casos em que as funções são linearmente independentes e o Wronskiano é nulo em alguns pontos isolados, mas esses casos não aparecem no estudo das soluções das equações lineares, como veremos na seguinte seção.

4.5 Solução geral das equações lineares homogéneas

Teorema 3

Se y₁ e y₂ são duas soluções particulares da equação linear homogénea

$$y'' + p(x)y' + q(x)y = 0 (4.12)$$

num intervalo (a,b), e se num ponto x_0 dentro do intervalo o Wronskiano das duas soluções é diferente de zero, então o Wronskiano será diferente de zero em qualquer outro ponto no intervalo (a,b) e as soluções serão linearmente independentes no intervalo.

Uma combinação linear das duas soluções é também solução; as condições iniciais para essa solução serão

$$C_1 y_1(c) + C_2 y_2(c) = A (4.13)$$

$$C_1 y_1'(c) + C_2 y_2'(c) = B (4.14)$$

para quaisquer valores iniciais A e B existe sempre solução única C_1 e C_2 , já que o determinante deste sistema linear é exatamente o Wronskiano das duas soluções, o qual é diferente de zero. Qualquer solução particular pode ser obtida a partir de uma combinação linear das duas soluções

$$y_{g} = C_{1}y_{1} + C_{2}y_{2} \tag{4.15}$$

sendo esta a solução geral.

4.6 Método de d'Alembert

O método de d'Alembert permite transformar uma equação diferencial linear de ordem n numa outra equação linear de ordem n-1, a partir de uma solução particular conhecida. No caso das equações lineares homogéneas de segunda ordem, este método permite calcular a solução geral a partir de uma solução particular. Se y_1 é solução particular da equação linear homogénea

$$y'' + p(x)y' + q(x)y = 0 (4.16)$$

a substituição

$$y = vy_1 \tag{4.17}$$

conduz a uma equação de primeira ordem para a função v'

$$\frac{dv'}{dx} = \frac{2y_1'}{y_1}v' + pv' \tag{4.18}$$

considerando como variável independente a função v', esta é uma equação linear de primeira ordem, que pode ser resolvida usando o método introduzido no Capítulo 2 para obter v'. A primitiva de v' dá a função v, que multiplicada por y_1 conduz à solução geral da equação 4.16.

Exemplo 4.1

Sabendo que y₁ é solução da equação diferencial dada, encontre a solução geral

$$(x^{2}+1)y''-2xy'+2y=0 y_{1}(x)=x (4.19)$$

A solução geral encontra-se usando o método de D'Alembert

$$y = vy_1 \tag{4.20}$$

$$(x^{2}+1)(vy_{1}''+2v'y_{1}'+v''y_{1})-2x(vy_{1}'+v'y_{1})+2vy_{1} = 0$$

$$(x^{2}+1)(2v'y_{1}'+v''y_{1})-2xv'y_{1} = 0$$

$$x(x^{2}+1)v''+2v' = 0$$

Esta última equação pode ser considerada uma equação de primeira ordem em que a variável dependente é v'. Separando as variáveis e integrando obtém-se

$$\int \frac{\mathrm{d}v'}{v'} = -2 \int \frac{\mathrm{d}x}{x(x^2 + 1)} + C$$

$$v' = C_1 \frac{x^2 - 1}{+} C_2 x$$

$$v = C_1 \left(x - \frac{1}{x}\right) + C_2$$

$$y = C_1(x - 1) + C_2 x$$

4.7 Equações lineares homogéneas de coeficientes constantes

A equação

$$y'' + by' + cy = 0 (4.21)$$

onde *b* e *c* são duas constantes, é uma equação linear homogénea de coeficientes constantes. A solução deste tipo de equação será uma função que seja linearmente dependente das sua primeira e segunda derivadas, já que a equação 4.21 com *b* e *c* não nulos indica que as três funções são linearmente dependentes. Uma função cuja derivada não é linearmente independente de si é a função exponencial; consequentemente esperamos que exista alguma solução particular da forma

$$y = e^{rx} (4.22)$$

onde r é uma constante. Para que essa função seja solução será preciso que

$$y'' + by' + cy = r^2 e^{rx} + br e^{rx} + c e^{rx} = 0$$
 (4.23)

como a exponencial nunca é igual a zero

$$r^2 + br + c = 0 (4.24)$$

Este polinómio designa-se **polinómio caraterístico**. As duas raízes podem ser reais ou complexas e teremos 3 casos:

4.7.1 Raízes reais diferentes

Por cada uma das duas raízes obtemos uma solução particular. É fácil demonstrar que o Wronskiano das duas soluções correspondentes é não nulo e portanto a solução geral será

$$y_{g} = C_{1} e^{r_{1}x} + C_{2} e^{r_{2}x} (4.25)$$

4.7.2 Raízes reais iguais

Se os coeficientes do polinómio caraterístico verificarem a relação

$$b^2 - 4c = 0 (4.26)$$

existe uma única raiz real r = -b/2. A única solução exponencial é

$$y_1 = e^{rx} \tag{4.27}$$

multiplicada por qualquer constante arbitrária. Para encontrar a solução geral usa-se o método de d'Alembert

$$y = vy_1$$
 $v'' = (-2r - b)v'$ (4.28)

como a raiz da equação caraterística é r=-b/2, obtemos uma equação simples que permite calcular v^\prime

$$v'' = 0 \qquad \Longrightarrow \qquad v = C_1 + C_2 x \tag{4.29}$$

A solução geral é

$$y_{g} = (C_{1} + C_{2}x)e^{rx} (4.30)$$

4.7.3 Raízes complexas

Neste caso uma das raízes é r=a+ib (a e b reais) e a outra é o complexo conjugado. A solução obtida é uma função complexa

$$z = e^{(\alpha + i\beta)x} = e^{\alpha x} e^{i\beta x} e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)]$$
(4.31)

É fácil mostrar que se y é solução, as suas partes real e imaginária também o são. Temos assim duas soluções reais (parte real e imaginária de z) que são linearmente independentes e a solução geral será

$$y_{g} = C_{1} e^{\alpha x} \cos(\beta x) + C_{2} e^{\alpha x} \sin(\beta x)$$
(4.32)

Exemplo 4.2

Encontre a solução geral de

$$y'' + 2y' + 8y = 0 (4.33)$$

O polinómio caraterístico é

$$r^2 + 2r + 8 = 0 (4.34)$$

Com duas raízes complexas

$$r_1 = -1 + i\sqrt{7}$$
 $r_2 = -1 - i\sqrt{7}$ (4.35)

A solução geral é

$$y = e^{-x} [C_1 \sin(\sqrt{7}x) + C_2 \cos(\sqrt{7}x)]$$
 (4.36)

4.8 Equação de Euler

Uma outra equação linear homogénea que pode ser facilmente resolvida é a chamada equação de Euler

$$ax^2y'' + bxy' + cy = 0 (4.37)$$

Neste caso a solução será alguma função cuja primeira derivada multiplicada por x e segunda derivada multiplicada por x ao quadrado sejam linearmente dependentes da função original. Uma função que tem esta propriedade é a função

$$y = x^r \tag{4.38}$$

em que r é qualquer constante real.

Por substituição na equação diferencial obtemos

$$ar(r-1)x^{r} + brx^{r} + cx^{r} = 0 (4.39)$$

esta relação deverá ser válida em todos os pontos onde y é solução e portanto

$$ar(r-1) + br + c = 0 (4.40)$$

Este é o polinómio caraterístico e cada raiz dela conduz a uma solução particular. Consideremos os 3 casos:

4.8.1 Raízes reais diferentes

Obtém-se duas soluções particulares. Pode-se mostrar que o Wronskiano das duas soluções correspondentes é não nulo e portanto a solução geral é;

$$y_{g} = C_{1}x^{r_{1}} + C_{2}x^{r_{2}} \tag{4.41}$$

4.8.2 Raízes reais iguais

A única raiz do polinómio caraterístico é

$$r = \frac{a - b}{2a} \tag{4.42}$$

e a única solução particular obtida é

$$y_1 = x^r \tag{4.43}$$

A solução geral obtém-se por meio do método de d'Alembert

$$y = vy_1 \implies v'' = \left(-\frac{2r}{x} - \frac{b}{ax}\right)v'$$
 (4.44)

substituindo o valor da raiz r equação 4.42) obtemos a seguinte equação de variáveis separáveis

$$\frac{\mathrm{d}v'}{\mathrm{d}x} = -\frac{v'}{x} \tag{4.45}$$

separando variáveis e integrando encontramos a função v'

$$v' = \frac{C_1}{x} \qquad v = C_1 \ln|x| + C_2 \tag{4.46}$$

A solução geral da equação de Euler é

$$y_{g} = (C_{1} \ln|x| + C_{2})x^{r} \tag{4.47}$$

4.9 Problemas 31

4.8.3 Raízes complexas

Uma das raízes é $r = \alpha + i\beta$ e a correspondente solução é complexa. As partes real e imaginária dessa solução serão soluções reais. Para separar a parte real e imaginária usamos o seguinte método

$$x^{(\alpha+\mathrm{i}\beta)} = = x^{\alpha} \mathrm{e}^{\ln|x^{\mathrm{i}\beta}|} = x^{\alpha} \mathrm{e}^{\mathrm{i}\beta \ln|x|} = x^{\alpha} \left[\cos(\beta \ln|x| + \mathrm{i}\sin(\beta \ln|x|)) \right] \tag{4.48}$$

A solução geral é a uma combinação linear das partes real e imaginárias (as quais são linearmente independentes)

$$y_{g} = x^{\alpha} \left[C_{1} \cos(\beta \ln|x| + C_{2} \sin(\beta \ln|x|)) \right]$$

$$(4.49)$$

4.9 Problemas

1. Forma normal. Demonstre que a substituição y(x) = u(x)F(x), onde

$$F(x) \equiv \exp\left(-\frac{1}{2} \int p(x) \, dx\right)$$

transforma qualquer equação linear homogénea de segunda ordem

$$y'' + p(x)y' + q(x)y = 0$$

na chamada forma normal:

$$u'' + g(x)u = 0$$

Redução da ordem. Mostre que a função $y_1(x)$ é solução da equação diferencial e determine a solução geral

2.
$$y'' + \frac{2y'}{x} + y = 0$$
 $y_1 = \frac{\sin x}{x}$

3.
$$xy'' - 2(x+1)y' + 4y = 0$$
 $y_1 = e^{2x}$

4.
$$(x^2+1)y''-2xy'+2y=0$$
 $y_1=x$

Resolva os seguintes problemas de valores iniciais

5.
$$y'' + 3y' + 2y = 0$$
 $y(0) = 1$, $y'(0) = 0$

6.
$$y'' - a^2y = 0$$
 $y(0) = 1$, $y'(0) = 0$

7.
$$y'' - 4y' + 13y = 0$$
 $y(0) = 0$, $y'(0) = 1$

8.
$$16y'' - 8y' + y = 0$$
 $y(1) = 0, y'(1) = \sqrt[4]{e}$

9.
$$x^2y'' - 2xy' + 2y = 0$$
 $y(2) = 1, y'(2) = 2$

10.
$$x^2y'' + 3xy' + 5y = 0$$
 $y(1) = 0, y'(1) = 2$

11.
$$(x-1)^2y'' - 4(x-1)y' + 4y = 0$$
 $y(0) = 0, y'(0) = -3$

Resolva os seguintes problemas de condições fronteira

12.
$$y'' - 16y = 0$$

$$y(0) = 3$$
, $y(1/4) = 3e$

13.
$$y'' + y = 0$$

$$y(0) = 1, \quad y(\pi) = 0$$

Encontre a solução geral das seguintes equações

14.
$$y''' - 3y'' + 2y' = 0$$

15.
$$x^3y''' - 2x^2y'' - xy' + 9y = 0$$

Capítulo 5

Equações lineares não homogéneas

No capítulo anterior vimos que a solução geral (equação 4.6) de uma equação linear pode ser obtida como a soma da solução geral da equação homogénea correspondente, mais uma solução particular da equação não homogénea. Vimos também como calcular a solução de equações lineares homogéneas de coeficientes constantes e de Euler. Neste capítulo veremos sois métodos para calcular uma solução particular da equação não homogénea.

5.1 Método dos coeficientes indeterminados

Consideremos as equações diferenciais lineares de coeficientes constantes

$$y'' + by' + cy = f(x) (5.1)$$

Para algumas funções f(x) é fácil descobrir uma solução particular da equação; vamos considerar alguns casos e depois generalizaremos o método.

5.1.1 Funções exponenciais

Por exemplo a equação

$$y'' + 3y' + 2y = 2e^{3x} (5.2)$$

Como as derivadas da função exponencial são múltiplos da própria função, esperamos que existam soluções particulares da forma

$$y = A e^{3x} \tag{5.3}$$

onde A é um coeficiente a ser determinado. As derivadas da função são

$$y' = 3A e^{3x}$$
 $y'' = 9A e^{3x}$ (5.4)

e substituindo na equação diferencial

$$y'' + 3y' + 2y = 20A e^{3x}$$
 (5.5)

e para que a função seja solução da equação, A deverá ser igual a 0,1.

5.1.2 Polinómios

Consideremos agora uma equação em que o lado direito é um polinómio

$$y'' - 4y' + 2y = 2x^2 (5.6)$$

O lado direito é um polinómio de segundo grau. Se y fosse igual a x^2 , obtínhamos o lado direito a partir do termo 2y no lado esquerdo; mas as derivadas de x^2 darão um termo dependente de x e uma constante; para anular esses termos que não aparecem no lado direito, incluímos os mesmos na função y, multiplicados por coeficientes que serão logo determinados

$$y = A + Bx + Cx^2 \tag{5.7}$$

e substituindo na equação diferencial

$$y'' - 4y' + 2y = 2C - 4B + 2A + (2B - 8C)x + 2Cx$$
(5.8)

para que este último polinómio seja igual a $2x^2$ (para qualquer valor de x) é necessário que os coeficientes A, B e C verifiquem as seguintes equações

$$2C = 2 (5.9)$$

$$2B - 8C = 0 (5.10)$$

$$2A - 4B + 2C = 0 ag{5.11}$$

e a solução deste sistema dá os coeficientes que definem a solução particular

$$y_{p} = 7 + 4x + x^{2} \tag{5.12}$$

5.1.3 Funções seno ou co-seno

Por exemplo a equação

$$y'' - 3y' + 2y = 10\sin(2x)$$
 (5.13)

O termo 2y conduziria ao lado direito, se $y = 5\cos(2x)$; mas como as derivadas do co-seno são o seno e o co-seno, admitimos a seguinte forma para a solução

$$y = A\cos(2x) + B\sin(2x) \tag{5.14}$$

substituindo na equação diferencial obtemos

$$y'' - 3y' + 2y = (-4A - 6B + 2A)\cos(2x) + (-4B + 6A + 2B)\sin(2x)$$
 (5.15)

como o seno e o co-seno são funções linearmente independentes, esta última combinação linear delas só poderá ser igual a 10sen(2x) se

$$-4A - 6B + 2A = 0 (5.16)$$

$$-4B + 6A + 2B = 10 (5.17)$$

A solução deste sistema é A = -0.5, B = 1.5 e a solução particular é

$$y = -0.5\cos(2x) + 1.5\sin(2x) \tag{5.18}$$

5.1.4 Exclusão de soluções da equação homogénea

Nos três exemplos anteriores, a solução procurada foi uma combinação linear de algumas funções linearmente independentes com tantos coeficientes indeterminados quantas funções houver. Comparando os coeficientes de cada função encontra-se uma equação linear por cada coeficiente. No entanto, se alguma das funções independentes fosse também solução da equação homogénea correspondente, a equação obtida não terá solução, como podemos ver no seguinte exemplo

$$y'' - 3y' - 4y = e^{-x} (5.19)$$

usando o método do primeiro exemplo

$$y = A e^{-x} \implies y'' - 3y' - 4y = (A + 3A - 4A) e^{-x} = 0$$
 (5.20)

a solução particular neste caso tem a forma

$$y = Axe^{-x} \tag{5.21}$$

onde A pode ser determinado por substituição na equação, já que neste caso a função anterior não é solução da equação homogénea (se fosse, teríamos multiplicado mais uma vez por x).

5.1.5 Produtos de polinómios, exponenciais e seno ou co-seno

O método de coeficientes indeterminados pode ser usado também quando o lado direito for um produto dos três primeiros casos; por exemplo a equação

$$y'' - 6y' + 9y = (2+x)e^{3x}\cos(2x)$$
(5.22)

A solução particular tem a forma

$$y = (A + Bx)e^{3x}\cos(2x) + (C + Dx)e^{3x}\sin(2x)$$
 (5.23)

mas se o lado direito fosse, por exemplo

$$y'' - 6y' + 9y = (2+x)e 3x$$
 (5.24)

nesse caso a solução teria a forma

$$y = (Ax^{2} + Bx^{3})e^{3x} + (Cx^{2} + Dx^{3})e^{3x}$$
(5.25)

Foi preciso multiplicar os dois polinómios duas vezes por x já que as funções

$$e^{3x} xe^{3x} (5.26)$$

são soluções da equação homogénea correspondente.

O método dos coeficientes indeterminados é útil no caso de equações de coeficientes constantes ou equações de Euler e quando o lado direito tenha a forma geral de alguma das funções consideradas acima. Para outros tipos de equações lineares será preciso usar outros métodos como, por exemplo, o método de variação de parâmetros que veremos numa seção posterior.

Exemplo 5.1

Encontre a solução do seguinte problema de valores iniciais

$$y'' + 4y' + 4y = \cos(2x) \qquad y(\pi) = 0 \qquad y'(\pi) = 1$$
 (5.27)

O polinómio caraterístico é

$$r^2 + 4r + 4 = (r+2)^2 = 0 (5.28)$$

existe uma única raiz, repetida, de maneira que a solução geral da equação homogénea é

$$y_{h} = C_{1} e^{-2x} + C_{2} x e^{-2x}$$
 (5.29)

uma solução particular da equação não homogénea terá a forma

$$y_{p} = A\cos(2x) + B\sin(2x) \tag{5.30}$$

derivando e substituindo na equação diferencial, é possível calcular os coeficientes indeterminados A e B

$$-8A\sin(2x) + 8B\cos(2x) = \cos(2x) \tag{5.31}$$

O que implica A = 0 e B = 1/8. A solução geral é

$$y = (C_1 + C_2 x) e^{-2x} + \frac{1}{8} \sin(2x)$$
 (5.32)

a sua derivada é

$$y' = (-2C_1 + C_2 - 2C_2x)e^{-2x} + \frac{1}{4}\cos(2x)$$
 (5.33)

As condições iniciais dadas são

$$y(\pi) = (C_1 + \pi C_2) e^{-2\pi} = 0$$
 (5.34)

$$y'(\pi) = (-2C_1 + C_2 - 2\pi C_2)e^{-2\pi} + \frac{1}{4} = 1$$
 (5.35)

multiplicando as duas equações por $\exp(2\pi)$, obtém-se o seguinte sistema de equações lineares

$$\begin{bmatrix} 1 & \pi \\ -2 & 1 - 2\pi \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{3}{4}e^{2\pi} \end{bmatrix}$$
 (5.36)

e a solução do problema de valor inicial é

$$y = \frac{3}{4}(x - \pi)e^{2(\pi - x)} + \frac{1}{8}\sin(2x)$$

5.2 Principio de sobreposição

As soluções de uma equação diferencial não homogénea não constituem um sub-espaço vetorial, pois uma combinação linear de duas soluções não é necessariamente solução da equação. No entanto existe uma propriedade de linearidade importante, chamada principio de sobreposição. Consideremos, por exemplo, a equação de segunda ordem

$$y'' + p(x)y' + q(x)y = f(x)$$
(5.38)

com uma solução y₁, e a equação

$$y'' + p(x)y' + q(x)y = g(x)$$
(5.39)

com outra solução y_2 . É fácil conferir que para quaisquer constantes A e B

$$Ay_1 + By_2 \tag{5.40}$$

É solução da equação

$$y'' + p(x)y' + q(x)y = Af(x) + Bg(x)$$
(5.41)

Para apreciar a utilidade deste principio na resolução de equações diferenciais consideremos o seguinte exemplo

$$y'' + y' + 2y = 5x + 3e^x (5.42)$$

a função y = x + A é solução de:

$$y'' + y' + 2y = 1 + 2(x+A) = 2x + A + 1$$
 (5.43)

portanto, y = x - 1 é solução da equação com lado direito igual a 2x. Para a exponencial temos

$$y = e^x \implies y'' + y' + 2y = 4e^x$$
 (5.44)

o lado direito da equação inicial é

$$\frac{5(2x)}{2} + \frac{3(4e^x)}{4} \tag{5.45}$$

e aplicando o princípio de sobreposição uma solução será

$$\frac{5}{2}(x-1) + \frac{3}{4}e^x \tag{5.46}$$

5.3 Método de variação de parâmetros

Este método é válido para qualquer equação linear, e não apenas para equações com coeficientes constantes. No entanto é preciso primeiro conhecer a solução geral da equação homogénea correspondente. Consideremos uma equação linear geral de segunda ordem

$$y'' + p(x)y' + q(x)y = f(x)$$
(5.47)

Se a solução da equação homogénea for

$$y = C_1 y_1 + C_2 y_2 \tag{5.48}$$

admitimos que a solução geral da equação é

$$y = u_1 y_1 + u_2 y_2 \tag{5.49}$$

onde u_1 e u_2 são duas funções. É de salientar que qualquer função pode ser escrita na forma anterior e incluso as funções u não são únicas embora sejam difíceis de calcular; no entanto o método de variação de parâmetros conduz a um sistema linear que pode ser resolvido facilmente. Como temos

alguma liberdade na definição das funções *u*, procuramos duas funções que verifiquem a seguinte equação

$$u_1'y_1 + u_2'y_2 = 0 (5.50)$$

a segunda condição para determinar as duas funções desconhecidas obtêm-se por substituição na equação diferencial

$$y' = u_1 y_1' + u_2 y_2' (5.51)$$

$$y'' = u_1'y_1' + u_2'y_2' + u_1y_1'' + u_2y_2''$$
 (5.52)

$$y'' + py' + qy = u_1'y_1' + u_2'y_2' + u_1(y_1'' + py_1' + qy_1) + u_2(y_2'' + py_2' + qy_2)$$
 (5.53)

os termos dentro dos parêntesis são nulos, já que tanto y_1 como y_2 são soluções da equação homogénea. Obtemos assim

$$u_1'y_1' + u_2'y_2' = f (5.54)$$

esta equação junto com a equação 5.50, constitui um sistema linear de duas equações que permitem calcular as funções u'_1 e u'_2

$$\begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ f \end{bmatrix}$$
 (5.55)

O determinante do sistema é o Wronskiano das duas soluções da equação homogénea, o qual é diferente de zero e portanto existe solução única para as derivadas das funções *u*. Por primitivação obtêm-se logo as funções *u* e a solução da equação não homogénea.

Exemplo 5.2

Determine a solução geral da equação

$$x^2y'' - 2xy' + 2y = x^3 \sin x \tag{5.56}$$

A equação dada é uma equação de Cauchy-Euler; a equação caraterística é

$$r(r-1) - 2r + 2 = (r-1)(r-2) = 0 (5.57)$$

e consequentemente a solução geral da equação homogénea associada é

$$y_{\rm h} = C_1 x + C_2 x^2 \tag{5.58}$$

admitimos que a solução geral da equação não homogénea é

$$y = u_1 x + u_2 x^2 (5.59)$$

e seguindo o método de variação de parâmetros obtemos

$$xu_1' + x^2u_2' = 0 (5.60)$$

$$u_1' + 2xu_2' = x \sin x ag{5.61}$$

o determinante do sistema de equações é

$$2x^2 - x^2 = x^2 (5.62)$$

e a solução é

$$u_1' = \frac{1}{x^2} \begin{vmatrix} 0 & x^2 \\ x \sin x & 2x \end{vmatrix} = -x \sin x$$
 (5.63)

$$u_2' = \frac{1}{x^2} \begin{vmatrix} x & 0 \\ 1 & x \sin x \end{vmatrix} = \sin x$$
 (5.64)

e as primitivas são

$$u_1 = x\cos x - \sin x + C_1 \tag{5.65}$$

$$u_2 = -\cos x + C_2 (5.66)$$

A solução geral da equação é

$$y = C_1 x + C_2 x^2 - x \sin x \tag{5.67}$$

5.4 Equações lineares de ordem superior

Os métodos que temos visto generalizam-se facilmente a qualquer equação linear de ordem n:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = f(x)$$
(5.68)

A solução geral da equação homogénea correspondente é

$$y_h = C_1 y_1 + C_2 y_2 + \dots + C_n y_n \tag{5.69}$$

onde as funções yi são soluções linearmente independentes. Se yp for uma solução particular da equação não homogénea, a solução geral da equação não homogénea será

$$y = y_p + y_h \tag{5.70}$$

Para encontrar uma solução particular em alguns casos pode-se usar o método de coeficientes indeterminados, igual que no caso n = 2. O método de variação de parâmetros consiste em admitir uma forma especial para a solução geral:

$$y = u_1 y_1 + u_2 y_2 + \ldots + u_n y_n \tag{5.71}$$

o qual conduz a um sistema linear de equações com determinante igual ao Wronskiano das n funções y_i e lado direito igual a n-1 zeros e f/a_0 . A solução do sistema são as derivadas das funções u e por primitivação de cada uma delas chega-se à solução geral.

Dadas n condições iniciais

$$y(x_0) = y_0 y'(x_0) = y'_0 \dots y^{(n-1)}(x_0) = y_0^{(n-1)}$$
 (5.72)

Existe um único conjunto de constantes C que determinam a solução única do problema.

Exemplo 5.3

Encontre a solução geral de

$$x^{3}y''' - 3x^{2}y'' + 6xy' - 6y = 5x (5.73)$$

É uma equação de Euler e, portanto, tem soluções particulares da forma

$$y = x^r \tag{5.74}$$

por substituição na equação diferencial homogénea obtém-se o polinómio caraterístico

$$r(r-1)(r-2) - 3r(r-1) + 6r - 6 = 0 (5.75)$$

$$(r-1)[r(r-2)-3r+6] = 0 (5.76)$$

$$(r-1)(r-2)(r-3) = 0 (5.77)$$

existem três raízes reais diferentes,r = 1, r = 2 e r = 3, a solução geral da equação homogénea será

$$y_{\rm h} = C_1 x + C_2 x^2 + C_3 x^3 (5.78)$$

usando o método de variação de parâmetros, admitimos que a solução da equação não homogénea é

$$y = u_1 x + u_2 x^2 + u_3 x^3 (5.79)$$

Para determinar as três funções *u*, serão precisas além da equação diferencial, mais duas condições arbitrárias:

$$xu_1' + x^2u_2' + x^3u_3' = 0 (5.80)$$

$$u_1' + 2xu_2' + 3x^2u_3' = 0 (5.81)$$

com estas condições as derivadas de y são

$$y' = u_1 + 2xu_2 + 3x^2u_3 (5.82)$$

$$y'' = 2u_2 + 6xu_3 (5.83)$$

$$y''' = 2u_2' + 6xu_3' + 6u_3 (5.84)$$

e depois de substituir na equação diferencial e simplificar, chegamos à equação

$$2u_2' + 6xu_3' = \frac{5}{x^2} \tag{5.85}$$

as três condições para determinar as funções u podem ser escritas na forma matricial

$$\begin{bmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{bmatrix} \begin{bmatrix} v_1' \\ v_2' \\ v_3' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 5/x^2 \end{bmatrix}$$
 (5.86)

As derivadas das três funções u_i obtêm-se através da regra de Cramer e as suas primitivas permitem encontrar a solução geral. \blacksquare

5.5 Problemas

Encontre a solução geral das seguintes equações pelo método de coeficientes indeterminados

1.
$$y'' + y' - 2y = 3 - 6x$$

5.5 Problemas 41

2.
$$y'' - y = x \sin x$$

3.
$$y'' - 4y' + 4y = xe^{2x}$$

Encontre a solução geral das seguintes equações pelo método de variação de parâmetros

4.
$$y'' + y' = e^{-x}$$

5.
$$y'' + 4y = tg(2x)$$

6.
$$x^2y'' + xy' - 4y = x^2 + x^4$$

Sabendo que $y_1(x)$ e $y_2(x)$ são soluções linearmente independentes da equação homogénea correspondente, encontre uma solução particular da equação não homogénea

7.
$$(1-x)y'' + xy' - y = 2(x-1)^2 e^{-x}$$

$$y_1 = x$$
, $y_2 = e^x$

8.
$$y'' + \frac{y'}{x} + \left(1 - \frac{1}{4x^2}\right)y = \frac{1}{\sqrt{x}}$$

$$y_1 = \frac{\sin x}{\sqrt{x}}, \quad y_2 = \frac{\cos x}{\sqrt{x}}$$

Capítulo 6

Equações de diferenças lineares homogéneas

6.1 Equações de diferenças

Uma equação de diferenças, ou fórmula de recorrência, é uma relação entre os termos de uma sucessão. Usaremos a seguinte notação para sucessões:

$$\{y_n\} = \{y_0, y_1, y_2, y_3, \dots\}$$
 (6.1)

Um exemplo de equação de diferenças é a seguinte

$$(n+2)y_{n+1} - 3y_n = n^2 + 2 (6.2)$$

a equação anterior implica que para cada valor de n entre zero e infinito o termo de ordem n+1 na sucessão, multiplicado por n+2 e menos 3 vezes o termo de ordem n, é igual a n^2+2 . Podemos também considerar a y(n+1) como a sucessão obtida eliminando y_0 na sucessão inicial:

$$\{y_{n+1}\} = \{y_1, y_2, y_3, y_4, \dots\}$$
(6.3)

e assim, a equação de diferenças é uma relação entre os termos de duas sucessões. A operação de eliminação do termo inicial na sucessão joga um papel semelhante ao da derivada no caso de equações diferenciais e, por isso, a equação anterior é chamada uma **equação linear de primeira ordem, não homogénea** em analogia com as equações diferenciais.

A forma geral das equações de diferenças, lineares de segunda ordem é

$$a_n y_{n+2} + b_n y_{n+1} + c_n y_n = f_n (6.4)$$

em que a_n , b_n , c_n e f_n são sucessões conhecidas.

6.2 Soluções das equações de diferenças

Regressemos ao exemplo dado na seção anterior:

$$(n+2)y_{n+1} - 3y_n = n^2 + 2 (6.5)$$

Dado o valor inicial da sucessão, por exemplo $y_0 = 0$, é fácil completar a sequência a partir da equação de diferenças:

$$2y_1 - 3y_0 = 2 \implies y_1 = 1 \tag{6.6}$$

$$3y_2 - 3y_1 = 3 \implies y_2 = 2$$
 (6.7)

$$4y_3 - 3y_2 = 6 \implies y_3 = 3$$
 (6.8)

Como veremos mais à frente, existem também algumas técnicas que permitem determinar a forma do termo geral de ordem n sem ter que calcular todos os n termos anteriores. No exemplo anterior a solução obtida a partir de $y_0 = 0$ foi

$$y_n = n \tag{6.9}$$

mas a solução geral é

$$y_n = n + y_0 \frac{3^n}{(n+1)!} \tag{6.10}$$

como podemos conferir por substituição na equação de diferenças:

$$(n+2)y_{n+1} - 3y_n = (n+2)(n+1) - y_0 \frac{3^{n+1}}{(n+1)!} - 3n - y_0 \frac{3^{n+1}}{(n+1)!} = n^2 + 2$$
 (6.11)

A equação de diferenças pode ser escrita em várias formas equivalentes, por exemplo, se substituirmos n por n-1 obtemos

$$(n+1)y_n - 3y_{n-1} = (n-1)^2 + 2 (6.12)$$

Normalmente escreveremos as equações de forma a que o termo de ordem mais baixa na equação seja y_n .

6.3 Equações de diferenças lineares

Já introduzimos numa seção anterior a forma geral das equações lineares de segunda ordem. A equação linear de terceira ordem é

$$a_n y_{n+3} + b_n y_{n+2} + c_n y_{n+1} + d_n y_n = f_n$$
(6.13)

e assim sucessivamente, para qualquer ordem superior. É claro que para poder obter a solução única de uma equação de terceira ordem será necessário conhecer três constantes, por exemplo y_0 , y_1 e y_2 .

Dadas duas soluções quaisquer de uma equação linear, a diferença entre elas é também solução da equação homogénea correspondente. Por isso convém começarmos por estudar as equações lineares homogéneas. A forma general, no caso da segunda ordem é

$$a_n y_{n+2} + b_n y_{n+1} + c_n y_n = 0 (6.14)$$

Se duas sucessões $\{x_n\}$ e $\{z_n\}$ são soluções da equação anterior, qualquer combinação linear delas também será solução. Assim, as soluções de uma equação linear homogénea definem um sub-espaço vetorial. Como em qualquer espaço vetorial, é possível definir a independência linear entre vetores. Para poder verificar quaisquer n condições iniciais associadas a uma equação de ordem n, serão necessárias n soluções linearmente independentes.

6.3.1 Independência linear entre sucessões

Diz-se que duas sucessões $\{x_n\}$ e $\{z_n\}$ são linearmente independentes se a condição

$$Ax_n + Bz_n = 0$$
 para qualquer n (6.15)

implica que as constantes A e B sejam ambas nulas. O determinante (Casoratiano)

$$C_n = \begin{vmatrix} x_n & z_n \\ x_{n+1} & z_{n+1} \end{vmatrix}$$
 (6.16)

será nulo para qualquer n se as duas sucessões forem linearmente dependentes.

Pode-se mostrar também (não o vamos fazer cá) que o Casoratiano de duas soluções de uma equação de diferenças linear homogénea não é nulo para nenhum valor de n, se as soluções são linearmente independentes. Assim, basta mostrar que o Casoratiano não é nulo para algum valor de n, para mostrar que duas soluções são linearmente independentes.

Com n soluções particulares linearmente independentes, pode-se obter a solução única de uma equação de ordem n com quaisquer condições iniciais. A solução geral é uma combinação linear das n soluções particulares.

6.4 Equações de diferenças lineares com coeficientes constantes

As equações de diferenças lineares, homogéneas e com coeficientes constantes, resolvem-se em forma análoga às equações diferenciais da mesma denominação. Consideremos o caso de segunda ordem

$$ay_{n+2} + by_{n+1} + cy_n = 0 (6.17)$$

onde a, b e c são constantes. Existem soluções particulares da forma

$$y_n = r^n \tag{6.18}$$

como podemos conferir por substituição na equação de diferenças

$$ar^{n+2} + br^{n+1} + cr^n = 0 (6.19)$$

no caso r=0 obviamente temos a solução trivial $\{0,0,0,\ldots\}$. Se r não for nula, dividimos a equação anterior por r^n e obtemos o **polinómio caraterístico**:

$$ar^2 + br + c = 0 ag{6.20}$$

cada raiz desse polinómio conduz a uma solução particular. As duas raízes da equação quadrática são

$$p = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad q = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 (6.21)

Existem três casos conforme a natureza das raízes:

6.4.1 Raízes reais diferentes

. A solução geral é a combinação linear das duas soluções obtidas a partir das duas raízes

$$y_n = Ap^n + Bq^n \tag{6.22}$$

6.4.2 Raízes reais repetidas

$$p = q = -\frac{b}{2a} \tag{6.23}$$

a única solução obtida a partir do polinómio caraterístico é

$$y_n = p^n \tag{6.24}$$

Para construir a solução geral precisamos de uma segunda solução linearmente independente da primeira, obtida a partir do seguinte teorema.

Teorema 4

Se o polinómio caraterístico da equação de diferenças

$$ay_{n+2} + by_{n+1} + cy_n = 0 (6.25)$$

tem uma única raiz real p, a sucessão

$$y_n = np^n \tag{6.26}$$

é solução da equação.

Demonstração: Substituindo a sucessão 6.26 no lado esquerdo da equação de diferenças e reagrupando termos, obtemos

$$a(n+2)p^{n+2} + b(n+1)p^{n+1} + cnp^n = (ap^2 + bp + c)np^n + (2ap+b)p^{n+1}$$
(6.27)

o termo dentro dos primeiros parêntesis é zero, já que p é raiz do polinómio caraterístico; o termo nos segundos parêntesis é também zero já que, a raiz p é igual a -b/(2a). O resultado é zero, como pretendíamos demonstrar.

A solução geral é uma combinação linear das duas soluções particulares

$$y_n = (A + Bn)p^n \tag{6.28}$$

6.4.3 Raízes complexas

$$p = a + ib \qquad q = a - ib \tag{6.29}$$

onde a e b são números reais. A sucessão

$$y_n = (a + ib)^n \tag{6.30}$$

é uma solução complexa da equação de diferenças. As partes real e imaginária de qualquer solução são também soluções da equação. Teremos então que calcular a parte real e imaginária da sucessão anterior; para isso escrevemos o número complexo p na forma polar

$$p = re^{i\theta}$$
 $r = \sqrt{a^2 + b^2}$ $tg\theta = \frac{b}{a}$ (6.31)

o termo geral da sucessão complexa pode agora ser calculado facilmente e a formula de Euler é usada para separar a parte real da imaginária

$$y_n = (a+ib)^n = r^n e^{in\theta} = r^n \left[\cos(n\theta) + i\sin(n\theta)\right]$$
(6.32)

A parte real e imaginária são duas soluções linearmente independentes da equação de diferenças e a solução geral será

$$y_n = r^n [A\cos(n\theta) + B\sin(n\theta)]$$
 (6.33)

6.5 Equações de diferenças incompletas

Uma equação da forma

$$ay_{n+2} + by_n = 0 (6.34)$$

é designada **incompleta** já que não aparece o termo de ordem n+1. Com n igual a zero pode-se obter y_2 em função de y_0 ; com n=2 calcula-se y_4 a partir de y_2 e assim sucessivamente para qualquer ordem par. Os termos de ordem ímpar podem ser obtidos a partir de y_1 . A solução da equação são assim duas sucessões independentes com termos de ordem par e ímpar. Isto sugere que em vez de procurarmos soluções da forma

$$y_n = r^n \tag{6.35}$$

procuremos soluções

$$y_n = r^m \tag{6.36}$$

em que m é a parte inteira de n/2. Substituindo na equação de diferenças, e para r diferente de zero, obtemos

$$ar^{m+1} + br^m = 0 \qquad \Longrightarrow \qquad r = -\frac{b}{a} \tag{6.37}$$

A solução serão as duas sequências

$$y_{2m} = y_0 r^m y_{2m+1} = y_1 r^m (6.38)$$

onde m = 0, 1, 2, ...

Consideremos uma equação incompleta de terceira ordem

$$ay_{n+3} + by_n = 0 (6.39)$$

onde não aparecem os termos de ordem (n+1) e (n+2)- Começando com y_0 calculam-se todos os termos de ordem múltiplo de 3; a partir de y_1 calculam-se os termos de ordem (1 módulo 3) e os termos de ordem (2 módulo 3) dependem de y_2 . A forma geral de cada uma dessas 3 sequências é

$$y_n = r^m \tag{6.40}$$

onde m é a parte inteira de n/3. A raiz r calcula-se igual que no caso da equação incompleta de segunda ordem:

$$r = -\frac{b}{a} \tag{6.41}$$

A solução geral é constituída pelas três sucessões

$$y_{3m} = y_0 r^m$$
 $y_{3m+1} = y_1 r^m$ $y_{3m+2} = y_2 r^m$ (6.42)

6.6 Equações redutíveis a equações de coeficientes constantes

Alguns tipos de equações de diferenças, lineares, de coeficientes variáveis podem ser reduzidas a equações com coeficientes constantes. Consideremos um exemplo:

$$af_{n+1}y_{n+1} + bf_ny_n = 0 (6.43)$$

em que a e b são constantes, e f_n é uma sequência dada. A substituição

$$u_n = f_n y_n \tag{6.44}$$

transforma a equação numa equação de coeficientes constantes

$$au_{n+1} + bu_n = 0 (6.45)$$

Em geral, o método usado na equação anterior é útil sempre que os termos da equação de diferenças sejam o produto entre os termos da mesma ordem das sucessões f_n e y_n

$$f_{n+2}y_{n+2}, \quad f_{n+3}y_{n+3}, \quad \dots$$
 (6.46)

Outro tipo de equações não lineares que podem ser resolvidas facilmente, são as equações em que a soma dos coeficientes é nula para qualquer ordem n. Por exemplo, a equação de segunda ordem

$$f_n y_{n+2} + g_{n+1} y_{n+1} + h_n y_n = 0 (6.47)$$

em que

$$f_n + g_n + h_n = 0$$
 para qualquer n (6.48)

Neste caso uma solução é dada pela equação

$$y_{n+1} = y_n (6.49)$$

nomeadamente, qualquer sucessão constante é solução da equação.

6.7 Resolução de equações não lineares usando a função Gama

Para resolver equações com coeficientes variáveis, será útil a função gama. A função gama é uma função especial definida por meio do integral

$$\Gamma(x) = \int_{0}^{\infty} s^{x-1} e^{-s} ds$$
 (6.50)

O integral impróprio converge para qualquer valor de *x* diferente de zero ou de inteiros negativos. A função gama é uma generalização do fatorial, já que verifica a seguinte propriedade

$$\Gamma(x+1) = x\Gamma(x) \tag{6.51}$$

para a demonstrar o resultado anterior, podemos simplificar $\Gamma(x+1)$ por meio de integração por partes

$$\Gamma(x+1) = \int_{0}^{\infty} s^{x} e^{-s} ds = -s^{x} e^{-s} \Big|_{0}^{\infty} + x \int_{0}^{\infty} s^{x-1} e^{-s} ds = x \Gamma(x)$$
 (6.52)

O valor de $\Gamma(1)$ pode ser calculado facilmente

$$\Gamma(1) = \int_{0}^{\infty} e^{-s} ds = 1$$
 (6.53)

e usando a propriedade $\Gamma(x+1) = x\Gamma(x)$ vemos que para números inteiros n

$$\Gamma(n+1) = n! \tag{6.54}$$

outro resultado importante é o valor da função gama no ponto x=1/2, que é igual a $\sqrt{\pi}$.

Vamos usar a propriedade 6.51 para resolver equações com coeficientes lineares em n. Por exemplo, a equação

$$a(n+b)y_{n+1} + c(n+d)y_n = 0 (6.55)$$

em que a, b, c e d são constantes, e b e d são positivas. Neste caso usamos a equação 6.51 para escrever os coeficientes da seguinte forma

$$n+b = \frac{\Gamma(n+b+1)}{\Gamma(n+b)} = \frac{f_{n+1}}{f_n}$$
 (6.56)

$$n+d = \frac{\Gamma(n+d+1)}{\Gamma(n+d)} = \frac{g_{n+1}}{g_n}$$
 (6.57)

substituindo na equação de diferenças e agrupando termos com o mesmo índice, obtemos

$$a\frac{f_{n+1}}{g_{n+1}}y_{n+1} + c\frac{f_n}{g_n}y_n = 0 (6.58)$$

está equação resolve-se usando o método introduzido na Seção 6.6.

Se os coeficientes da equação não linear incluem produtos e quocientes de fatores lineares, por exemplo, (n+a)(n+b)/(n+c), cada fator pode ser escrito em forma análoga à equação 6.57, e agrupando termos com a mesma ordem obtém-se uma equação redutível a equação de coeficientes constantes.

Quando a constante d na equação 6.55 for um inteiro negativo (d = -m, onde m é um inteiro positivo), a solução será uma sequência finita já que para n = m obtém-se

$$y_{m+1} = 0 (6.59)$$

e qualquer termo de ordem superior a m será nulo. Se o valor de m for baixo, existirão só uns poucos termos na sequência, e será preferível calculá-los diretamente a partir da equação de diferenças. Se m for elevado, para reduzir a equação a uma equação de coeficientes constantes escrevemos o fator (n-m) da seguinte forma

$$n - m = -(m - n) = -\frac{\Gamma(m - n + 1)}{\Gamma(m - n)} = -\frac{f_n}{f_{n+1}}$$
(6.60)

A mudança do sinal é necessária devido a que a função $\Gamma(m-n)$ existe para n igual a $0,1,2,\ldots,m-1$, enquanto que $\Gamma(n-m)$ é indefinida.

Exemplo 6.1

Sabendo que $y_0 = 2$, encontre a solução da seguinte equação de diferenças:

$$(1+n)y_{n+1} + (2n+8)y_n = 0 (6.61)$$

Os dois fatores lineares que aparecem na equação, podem ser escritos na forma f_{n+1}/f_n usando fatoriais

$$n+1 = \frac{(n+1)!}{n!} \qquad n+4 = \frac{(n+4)!}{(n+3)!}$$
 (6.62)

Substituindo na equação de diferenças e re-agrupando termos obtemos

$$\frac{(n+1)!}{(n+4)!}y_{n+1} + 2\frac{n!}{(n+3)!}y_n = 0$$
(6.63)

usando a substituição

$$a_n = \frac{n!}{(n+3)!} y_n \tag{6.64}$$

obtemos uma equação de coeficientes constantes para a sucessão a_n :

$$a_{n+1} + 2a_n = 0 (6.65)$$

A equação caraterística tem uma única raiz $\lambda = -2$ e, assim, a solução geral é

$$a_n = a_0(-2)^n \implies y_n = a_0 \frac{(n+3)!(-2)^n}{n!}$$
 (6.66)

Para n = 0 obtém-se $(y_0 = 6a_0 = 2)$ e, portanto, $a_0 = 1/3$

$$y_n = \frac{(n+3)!(-2)^n}{3n!} \tag{6.67}$$

6.8 Problemas

Resolva as seguintes equações de diferenças

1.
$$y_{n+2} + 3y_{n+1} + 2y_n = 0$$
 $y_0 = 1, y_1 = 0$

2.
$$y_{n+2} + 6y_{n+1} + 9y_n = 0$$
 $y_0 = 1, y_1 = 1$

3.
$$y_{n+2} - 4y_{n+1} + 13y_n = 0$$
 $y_0 = 0, y_1 = 1$

4.
$$y_{n+2} - 2y_{n+1} + 4y_n = 0$$
 $y_0 = 0, y_1 = 1$

5.
$$e^{n+2}y_{n+2} - 5e^{n+1}y_{n+1} + 6e^ny_n = 0$$

6.
$$(n+1)v_{n+1} - (n-3)v_n = 0$$
 $v_0 = 1$

7.
$$(n+1)(n+2)y_{n+2} - (n+3)y_n = 0$$
 $y_0 = 2, y_1 = 1$

8.
$$y_{n+3} + 8y_n = 0$$
 $y_0 = 1, y_1 = 1, y_2 = 0$

9.
$$y_{n+3} - (n+1)y_n = 0$$

- **10.** A sucessão $\{F_n\} = \{1, 1, 2, 3, 5, 8, \ldots\}$, em que cada termo é igual à soma dos dois anteriores, é chamada *sucessão de Fibonacci*.
 - (a) Escreva a equação de diferenças e os valores iniciais que definem a sucessão de Fibonacci.

6.8 Problemas 51

(b) Demonstre que $\phi \equiv (1+\sqrt{5})/2 \approx 1,618$ e $-1/\phi$ são raízes do polinómio caraterístico da equação encontrada na alínea anterior.

(c) Calcule o termo geral F_n da sucessão de Fibonacci e demonstre que F_{n+1}/F_n é igual a ϕ no limite $n \longrightarrow \infty$. O número ϕ representava na tradição grega a relação perfeita que deveria existir entre os lados de um retângulo para se obter o melhor efeito estético (**relação áurea**).

Capítulo 7

Método das séries

7.1 Séries de Potências

Uma série de potências é uma série que depende de um parâmetro x, da seguinte forma:

$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (7.1)

o número x_0 , a sequência a_n e o parâmetro x podem ser em geral números complexos. A convergência da série de potências depende da distância entre x e x_0 no plano complexo:

$$|x - x_0| \tag{7.2}$$

Se a distância for suficientemente aproximada a zero, a série converge (a_0 é o valor da série quando $x = x_0$); quanto maior for a distância mais lenta será a convergência, até que a partir de uma certa distância a série diverge. O valor máximo da distância para o qual a série converge, é o chamado **raio de convergência** (R) e calcula-se a partir de:

$$\lim_{n \to \infty} \frac{a_{n+1}R^{n+1}}{a_nR^n} = 1 \quad \Rightarrow \quad R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} \tag{7.3}$$

7.1.1 Série de Taylor

Uma função analítica num ponto x_0 é uma função cujas derivadas de qualquer ordem existem nesse ponto. Nesse caso a função pode ser representada por uma série de potências convergente em x_0 :

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$
 (7.4)

as derivadas de f calculam-se derivando o termo dentro da série, por exemplo, as duas primeiras derivadas são:

$$f'(x) = \sum_{n=0}^{\infty} na_n(x-x_0)^{n-1} = a_1 + 2a_2(x-x_0) + 3a_3(x-x_0)^2 + \cdots$$
 (7.5)

$$f''(x) = \sum_{n=0}^{\infty} n(n-1)a_n(x-x_0)^{n-2} = 2a_2 + 6a_3(x-x_0) + 12a_4(x-x_0)^2 + \dots$$
 (7.6)

54 Método das séries

Se substituirmos $x = x_0$ nas séries para f, f' e f'' vemos que:

$$a_0 = f(x_0)$$
 $a_1 = f'(x_0)$ $2a_2 = f''(x_0)$ (7.7)

em geral,

$$n!a_n = f^{(n)}(x_0) (7.8)$$

e a **série de Taylor** de f escreve-se:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 (7.9)

No caso particular $x_0 = 0$ obtém-se a chamada **série de McClaurin**. O raio de convergência da série é igual à distância entre x_0 e o ponto singular de f mais próximo.

7.1.2 Algumas séries de McClaurin importantes

1. Série geométrica

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
 (7.10)

2. Função exponencial

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{7.11}$$

3. Funções trigonométricas

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
 (7.12)

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
 (7.13)

7.2 Método das séries

Consideremos a equação diferencial linear, homogénea de segunda ordem

$$P(x)y'' + Q(x)y' + R(x)y = 0 (7.14)$$

em que P, Q e R são polinómios. Muitos problemas de engenharia conduzem a equações dessa forma. A partir do teorema de existência e unicidade para equações lineares, vemos que os pontos singulares são as raízes do polinómio P(x). Se o ponto x=0 não for raiz de P(x), a solução da equação diferencial será uma função analítica em x=0 e, portanto, existirá a série de McClaurin para a solução y(x):

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \tag{7.15}$$

A obtenção da solução é equivalente à obtenção da sequência a_n . A equação de diferenças que define a sequência a_n é obtida por substituição da série de McClaurin (e das suas derivadas) na equação diferencial.

Na seguinte seção veremos um exemplo de aplicação deste método.

7.2 Método das séries 55

7.2.1 Equação de Airy

Um exemplo de uma equação linear muito simples que não pode ser resolvida pelos métodos dos capítulos anteriores e que pode ser resolvida pelo método das séries, é a equação de Airy:

$$y'' = xy \tag{7.16}$$

O polinómio P é neste caso igual a 1, de maneira que a solução será analítica em x = 0 e poderá ser escrita como uma série de McClaurin:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \tag{7.17}$$

A segunda derivada é:

$$y''(x) = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2}$$
(7.18)

e substituindo na equação diferencial

$$\sum_{n=0}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$
 (7.19)

para agrupar as duas séries numa única série de potências, escrevemos a primeira série numa forma equivalente: podemos incrementar em 3 unidades o índice n, dentro da série, se subtrairmos 3 aos limites do somatório; a série resultante será idêntica à série inicial

$$\sum_{n=-3}^{\infty} (n+3)(n+2)a_{n+3}x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$
 (7.20)

Na primeira série os dois primeiros termos (n = -3 e n = -2) são nulos e o terceiro termo (n = -1) pode ser escrito explicitamente; a série resultante começa desde n = 0, podendo ser agrupada à segunda série:

$$2a_2 + \sum_{n=-3}^{\infty} [(n+3)(n+2)a_{n+3} - a_n]x^{n+1} = 0$$
 (7.21)

no lado esquerdo da equação temos uma série de potências em que o coeficiente de ordem zero é $2a_2$ e os coeficientes de ordem superior a zero são o termo dentro dos parêntesis quadrados, com $n = 0, 1, 2, \ldots$ Para que a série de potências seja nula em qualquer ponto x, é necessário que todos os coeficientes sejam nulos:

$$2a_2 = 0 (7.22)$$

$$(n+3)(n+2)a_{n+3} - a_n = 0 (n = 0, 1, 2, ...) (7.23)$$

Temos transformado o problema num problema de equações de diferenças. A equação de diferenças obtida é uma equação incompleta, de terceira ordem e a sua solução consiste em três sucessões independentes para os coeficientes de ordem múltiplo de 3, múltiplo de 3 mais 1, e múltiplo de 3 mais 2. Como $a_2 = 0$, os coeficientes de ordem múltiplo de 3 mais 2 são todos nulos. Para obter as outras duas sequências podemos usar o método estudado no capítulo anterior: para n = 3m, definindo $u_m = a_{3m}$ obtemos:

$$9(m+1)(m+2/3)u_{m+1} - u_m = 0 (7.24)$$

56 Método das séries

em termos de fatoriais e funções gama temos:

$$(m+1)(m+2/3) = \frac{(m+1)!\Gamma(m+5/3)}{m!\Gamma(m+2/3)}$$
(7.25)

Usando a substituição:

$$x_m = m! \, \Gamma(m+2/3) u_m \tag{7.26}$$

a Equação 7.24 transforma-se numa equação de coeficientes constantes:

$$9x_{m+1} - x_m = 0 (7.27)$$

A solução pode agora ser obtida facilmente:

$$x_m = \frac{x_0}{(-9)^m} (7.28)$$

$$a_{3m} = u_m = \frac{(-1)^m \Gamma(2/3)}{m! \Gamma(m+2/3)9^m} a_0$$
 (7.29)

Para calcular a sequência correspondente a n = 3m + 1, procedemos em forma semelhante. Em função de $v_m = a_{3m+1}$, a fórmula de recorrência (Equação 7.23) é uma equação de primeira ordem:

$$9(m+1)(m+4/3)v_{m+1} - v_m = 0 (7.30)$$

e com a substituição

$$z_m = m! \Gamma(m+4/3) v_m \tag{7.31}$$

a equação transforma-se numa equação de coeficientes constantes:

$$9z_{m+1} - z_m = 0 (7.32)$$

com solução:

$$z_m = \frac{z_0}{(-9)^m} (7.33)$$

$$a_{3m+1} = v_m = \frac{(-1)^m \Gamma(4/3)a_1}{m! \Gamma(m+4/3)9^m}$$
 (7.34)

Finalmente, substituiamos a_n na série de McClaurin para obter a solução da equação diferencial:

$$y(x) = a_0 \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(2/3)}{m! \Gamma(m+2/3)9^m} x^{3m} + a_1 x \sum_{m=0}^{\infty} \frac{(-1)^m \Gamma(4/3)}{m! \Gamma(m+4/3)9^m} x^{3m}$$
(7.35)

onde a_0 e a_1 são duas constantes arbitrárias (condições iniciais para y e y' em x=0). Em alguns casos as séries obtidas podem ser identificadas como a série de McClaurin de alguma função conhecida. Neste exemplo as séries não correspondem a nenhuma função conhecida, e constituem duas funções especiais designadas **funções de Airy**.

7.3 Método de Frobenius 57

7.3 Método de Frobenius

Quando o ponto x = 0 é um ponto singular da equação diferencial, a solução y não é analítica em x = 0 e não pode ser escrita na forma de uma série de McClaurin. No entanto, em alguns casos existe uma constante r tal que y/x^r é uma função analítica:

$$y(x) = x^r f(x)$$
 (fanalítica em $x = 0$) (7.36)

e a série de McClaurin de f sim existe. Para saber em que casos isso acontece é preciso identificar a que tipo de singularidade corresponde x = 0.

7.3.1 Pontos singulares regulares

Os pontos singulares da equação diferencial

$$P(x)y'' + Q(x)y' + R(x)y = 0 (7.37)$$

são os pontos x_0 onde

$$P(x_0) = 0 (7.38)$$

Se os seguintes limites existem:

$$A = \lim_{x \to x_0} \frac{xQ(x)}{P(x)} \qquad B = \lim_{x \to x_0} \frac{x^2 R(x)}{P(x)}$$
 (7.39)

diz-se que o ponto x_0 é um ponto **singular regular**.

Se x = 0 for um ponto singular regular, existirá pelo menos uma solução da forma

$$y(x) = x^{r} f(x) = \sum_{n=0}^{\infty} a_n x^{n+r}$$
 (7.40)

A função f(x) é analítica em x=0 e podemos admitir, sem perder nenhuma generalidade, que f(0) é diferente de zero (se f(0) for nula, fatoriza-se x, e redefinem-se r e f ficando f(0) diferente de zero). Isso implica que a constante a_0 seja também diferente zero:

$$a_0 = \lim_{x \to 0} \frac{y}{x^r} = f(0) \neq 0 \tag{7.41}$$

As derivadas y' e y'' são

$$y' = \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1}$$
 (7.42)

$$y'' = \sum_{n=0}^{\infty} (n+r-1)a_n x^{n+r-2}$$
 (7.43)

Para calcular o valor do índice r primeiro observamos que

$$\lim_{x \to 0} x^{1-r} y' = ra_0 \tag{7.44}$$

$$\lim_{r \to 0} x^{2-r} y'' = r(r-1)a_0 \tag{7.45}$$

58 *Método das séries*

a seguir multiplicamos a equação diferencial por x^{2-r} e dividimos por P

$$x^{2-r}y'' + \frac{xQ}{P}x^{1-r}y' + \frac{x^2R}{P}x^{-r}y = 0$$
 (7.46)

No limite x = 0 e usando as constantes A e B definidas acima (Equação 7.39) obtemos:

$$[r(r-1) + Ar + B]a_0 = 0 (7.47)$$

Como a_0 é diferente de zero, r deverá ser solução da chamada **equação indicial**:

$$r(r-1) + Ar + B = 0 (7.48)$$

Para cada raiz real r da equação indicial substituimos as séries para y, y' e y'' na equação diferencial e procedemos da mesma forma que no método das séries, para calcular os coeficientes a_n . Cada raiz conduz a uma solução; se as duas soluções forem diferentes, a solução geral será a combinação linear das duas.

Exemplo 7.1

Encontre a solução da equação:

$$4xy'' + 2y' + y = 0 (7.49)$$

O ponto x = 0 é um ponto singular e, portanto, não pode ser usado o método das séries. Para determinar se x = 0 é ponto singular regular, calculámos:

$$A = \lim_{x \to 0} \frac{2x}{4x} = \frac{1}{2} \qquad B = \lim_{x \to 0} \frac{x^2}{4x} = 0 \tag{7.50}$$

Podemos assim usar o método de Frobenius e a equação indicial é:

$$2r(r-1) + r = 0 (7.51)$$

com raízes $r_1 = 0$ e $r_2 = 1/2$. Com a primeira raiz ($r_1 = 0$) temos que:

$$y = \sum_{n=0}^{\infty} a_n x^n \tag{7.52}$$

$$y' = \sum_{n=0}^{\infty} n a_n x^{n-1} \tag{7.53}$$

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2}$$
 (7.54)

Substituindo na equação diferencial obtemos:

$$\sum_{n=0}^{\infty} \left[4n(n-1)a_n x^{n-1} + 2na_n x^{n-1} + a_n x^n \right] = 0$$
 (7.55)

os dois primeiros somatórios podem ser escritos em função de x^n :

$$\sum_{n=0}^{\infty} \left[4n(n+1)a_{n+1} + 2(n+1)a_{n+1} + a_n \right] x^n = 0$$
 (7.56)

7.3 Método de Frobenius 59

a fórmula de recorrência para $n = 0, 1, 2, 3, \dots$ é:

$$(n+1)(4n+2)a_{n+1} + a_n = 0 (7.57)$$

A sequência obtida é (arbitrando $a_0 = 1$)

$$a_n = 1, -1/2, 1/24, -1/720, \dots$$
 (7.58)

A solução geral parece ser os inversos dos fatoriais dos números pares, com sinais alternados. A solução geral pode ser obtida transformando a fórmula de recorrência numa equação com coeficientes constantes:

$$(2n+2)(2n+1) = \frac{(2n+2)!}{(2n)!} \tag{7.59}$$

$$u_n = (2n)!a_n \quad \Rightarrow \quad u_{n+1} + u_n = 0$$
 (7.60)

$$u_n = (-1)^n u_0 \quad \Rightarrow \quad a_n = \frac{(-1)^n}{(2n)!} a_0$$
 (7.61)

com esta sequência, a série de potências da primeira solução particular é (com $a_0 = 1$)

$$y_1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^n = \cos(x^{1/2})$$
 (7.62)

Usando a segunda raiz $r_2 = 1/2$, a série de potências da segunda solução é:

$$y = \sum_{n=0}^{\infty} a_n x^{n+1/2} \tag{7.63}$$

$$y' = \sum_{n=0}^{\infty} (n+1/2)a_n x^{n-1/2}$$
 (7.64)

$$y'' = \sum_{n=0}^{\infty} (n^2 - 1/4) a_n x^{n-3/2}$$
 (7.65)

Substituindo na equação diferencial obtemos:

$$\sum_{n=0}^{\infty} \left[(4n^2 - 1)a_n x^{n-1/2} + (2n+1)a_n x^{n-1/2} + a_n x^{n+1/2} \right] = 0$$
 (7.66)

a soma dos termos n = 0 das duas primeiras séries é igual a 0 e as três séries podem ser agrupadas:

$$\sum_{n=0}^{\infty} \left[(4n^2 + 8n + 3)a_{n+1} + (2n+3)a_{n+1} + a_n \right] x^{n+1/2} = 0$$
 (7.67)

a fórmula de recorrência é:

$$(2n+2)(2n+3)a_{n+1} + a_n = 0 (7.68)$$

A solução geral obtém-se em forma semelhante ao caso anterior:

$$(2n+2)(2n+3) = \frac{(2n+3)!}{(2n+1)!} \tag{7.69}$$

$$u_n = (2n+1)!a_n \Rightarrow u_{n+1} + u_n = 0$$
 (7.70)

60 Método das séries

$$u_n = (-1)^n u_0 \quad \Rightarrow \quad a_n = \frac{(-1)^n}{(2n+1)!} a_0$$
 (7.71)

a série de potências correspondente é (com $a_0 = 1$)

$$y_2 = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{n+1/2} = \sin(x^{1/2})$$
 (7.72)

A solução geral é uma combinação linear das duas soluções particulares y_1 e y_2 .

7.4 Solução em séries em pontos singulares

Em geral, cada raiz da equação indicial pode conduzir a uma solução em séries de potências. No entanto, em alguns casos é possível encontrar apenas uma solução. O teorema que se segue indica como determinar a solução geral por meio de séries de potências.

Teorema 5 (Frobenius)

Se r_1 e r_2 são duas raízes da equação indicial (em x = 0) de uma equação diferencial linear de segunda ordem com ponto singular em x = 0, existem três casos, a depender dos valores de r_1 e r_2 :

- 1. Se $r_1 r_2$ for diferente de zero e diferente de um número inteiro, cada raiz conduz a uma solução diferente.
- 2. Se $r_1 = r_2$, é possível obter uma única solução y_1 a partir do método de Frobenius. A segunda solução terá a forma:

$$y_2(x) = \sum_{n=0}^{\infty} b_n x^{n+r_1} + y_1 \ln x$$
 (7.73)

onde a sucessão b_n deverá ser obtida por substituição de y_2 na equação diferencial.

3. Se $r_1 - r_2$ for um número inteiro, existirá uma solução y_1 com a forma usada no método de Frobenius. A segunda solução será:

$$y_2(x) = \sum_{n=0}^{\infty} b_n x^{n+r_1} + cy_1 \ln x$$
 (7.74)

onde c é uma constante. Nos casos em que c=0, a segunda solução tem também a forma do método de Frobenius, o qual implica que aplicando o método de Frobenius é possível encontrar as duas soluções y_1 e y_2 linearmente independentes. Quando c não é nula, o método de Frobenius permite encontrar apenas uma solução e a segunda solução deverá ser encontrada por substituição da forma geral de y_2 na equação diferencial.

Com as duas soluções encontradas seguindo o método indicado pelo teorema de Frobenius, a solução geral será:

$$y(x) = C_1 y_1(x) + C_2 y_2(x) \tag{7.75}$$

Em alguns casos as condições fronteira exigem que y seja finita na origem o qual implica $C_2 = 0$, se $r_2 < 0$ ou $r_2 = r_1$, já que nos dois casos a segunda solução é divergente na origem. Se $r_1 - r_2$ é um inteiro e o método de Frobenius conduz a uma única solução y_1 , C_2 será também nula e não será preciso calcular y_2 .

Exemplo 7.2

Encontre a solução geral da equação:

$$xy'' + 3y' - x^2y = 0 (7.76)$$

O ponto x = 0 é ponto singular. Os dois limites:

$$A = \lim_{x \to 0} \frac{3x}{x} = 3 \qquad B = \lim_{x \to 0} \frac{-x^4}{x} = 0 \tag{7.77}$$

existem e, portanto, x = 0 é ponto singular regular. A equação indicial é:

$$r(r-1) + 3r = r(r+2) = 0 (7.78)$$

com raízes $r_1 = 0$ e $r_2 = -2$. Como a diferença entre as raízes é um número inteiro, provavelmente o método de Frobenius dará apenas uma das duas soluções linearmente independentes. Se existirem duas soluções com a forma usada no método de Frobenius, estas aparecerão na solução correspondente à raiz menor r = -2. Assim, começamos por considerar o caso r = -2:

$$y = \sum_{n=0}^{\infty} a_n x^{n-2}$$
 (7.79)

$$y' = \sum_{n=0}^{\infty} (n-2)a_n x^{n-3}$$
 (7.80)

$$y'' = \sum_{n=0}^{\infty} (n-2)(n-3)a_n x^{n-4}$$
 (7.81)

Substituindo na equação diferencial obtemos:

$$\sum_{n=0}^{\infty} \left[(n-2)(n-3)a_n x^{n-3} + 3(n-2)a_n x^{n-3} - a_n x^n \right] = 0$$
 (7.82)

$$-a_1 x^{-2} + \sum_{n=0}^{\infty} [(n+3)(n+1)a_{n+3} - a_n] x^n = 0$$
 (7.83)

consequentemente, $a_1 = 0$ e:

$$(n+3)(n+1)a_{n+3} - a_n = 0 \quad (n=0,1,2,\ldots)$$
(7.84)

A solução da fórmula de recorrência são três sucessões independentes. A sucessão correspondente a n = 3m + 1 é nula, já que $a_1 = 0$. Com n = 3m e $u_m = a_{3m}$ obtemos a equação:

$$9(m+1)(m+1/3)u_{m+1} - u_m = 0 (7.85)$$

usando fatoriais e funções gama temos:

$$9(m+1)!\Gamma(m+1+1/3)u_{m+1} - m!\Gamma(m+1/3)u_m = 0$$
(7.86)

se definirmos:

$$v_m = m! \Gamma(m+1/3) u_m \tag{7.87}$$

62 Método das séries

obtemos:

$$9v_{m+1} - v_m = 0 \qquad \Rightarrow \qquad v_m = \frac{v_0}{9^m} \tag{7.88}$$

$$a_{3m} = u_m = \frac{\Gamma(1/3)a_0}{9^m m! \Gamma(m+1/3)}$$
(7.89)

Substituindo n = 3m + 2 e $a_{3m+2} = x_m$ na Equação 7.84 obtemos:

$$9(m+1)(m+5/3)x_{m+1} - x_m = 0 (7.90)$$

usando fatoriais e funções gama temos:

$$9(m+1)!\Gamma(m+1+5/3)x_{m+1} - m!\Gamma(m+5/3)x_m = 0$$
(7.91)

se definirmos:

$$z_m = m! \Gamma(m+5/3) x_m \tag{7.92}$$

obtemos:

$$9z_{m+1} - z_m = 0 \qquad \Rightarrow \qquad z_m = \frac{z_0}{9^m} \tag{7.93}$$

$$a_{3m+2} = x_m = \frac{\Gamma(5/3)a_2}{9^m m! \Gamma(m+5/3)}$$
(7.94)

As duas sucessões encontradas correspondem às duas soluções linearmente independentes. Assim, o método de Frobenius conduz à solução geral:

$$y = \sum_{m=0}^{\infty} a_{3m} x^{3m-2} + \sum_{m=0}^{\infty} a_{3m+2} x^{3m}$$
 (7.95)

$$= a_0 \sum_{m=0}^{\infty} \frac{\Gamma(1/3)x^{3m-2}}{9^m m! \Gamma(m+1/3)} + a_2 \sum_{m=0}^{\infty} \frac{\Gamma(5/3)x^{3m}}{9^m m! \Gamma(m+5/3)}$$
 (7.96)

7.5 Problemas

Resolva, usando o método das séries, as seguintes equações diferenciais. Compare os resultados com as respetivas soluções analíticas

1.
$$(1-x^2)y'-2xy=0$$

2.
$$y' - y = 1 + x^2$$

3.
$$y'' - 3y' + 2y = 0$$

4.
$$y'' - y = x$$

Determine a solução das seguintes equações diferenciais lineares de segunda ordem

5.
$$y'' - xy' + y = 0$$

6.
$$y'' + xy = 0$$

7.
$$x(1-x)y'' + \frac{1+x}{2}y' - \frac{1}{2}y = 0$$

7.5 Problemas 63

8.
$$xy'' + (1-2x)y' + (x-1)y = 0$$

9.
$$(1+x)x^2y'' - (1+2x)xy' + (1+2x)y = 0$$

10.
$$x(x-1)y'' + (4x-2)y' + 2y = 0$$

11.
$$y'' + x^2y = 0$$
 $y(0) = 1$, $y'(0) = 0$

Nos problemas 12 e 13, n é um parâmetro inteiro positivo. Demostre que para cada valor de n existe um polinómio de grau n que é solução particular da equação e determine a forma geral do polinómio de grau n com as condições fronteira dadas

12. Equação de Laguerre

$$xy'' + (1-x)y' + ny = 0$$

Polinómios de Laguerre $L_n(x), L_n(0) \equiv 1$

13. Equação de Hermite

$$y'' - 2xy' + 2ny = 0$$

Polinómios de Hermite $H_n(x)$

(a) Para
$$n$$
 par use a condição $H_{2m}(0) = (-1)^m \frac{(2m)!}{m!}$

(b) Para
$$n$$
 impar use a condição $H'_{2m+1}(0) = (-1)^m \frac{2(2m+1)!}{m!}$

64 Método das séries

Capítulo 8

Transformadas de Laplace

8.1 Definição da transformada de Laplace

A transformada de Laplace de uma função f(t) é uma outra função F(s) num domínio de valores reais s, definida pelo integral:

$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$
 (8.1)

Igual que no caso da derivação, uma forma rápida de calcular a transformada de uma função é por meio de algumas regras simples. A transformada inversa de uma função F(s) é a função f(t) cuja transformada de Laplace seja igual a F(s).

8.1.1 Condições de existência da transformada de Laplace

Para que a transformada de Laplace de f(t) exista, é preciso que f(t) verifique as seguintes duas propriedades:

- 1. A função deverá ser **parcelarmente contínua**, isto é, f(t) poderá ter alguns pontos isolados onde é descontínua, mas será contínua em cada intervalo entre dois pontos de descontinuidade.
- 2. A função f(t) deve ser uma função de **ordem exponencial**: existe um número real a tal que o limite

$$\lim_{t \to \infty} = |f(t)| e^{-at} \tag{8.2}$$

existe. O domínio da transformada de Laplace de f(t) será s > a.

Usaremos a seguinte notação para indicar a transformada de Laplace da função f(t)

$$\mathcal{L}\{f(t)\}\tag{8.3}$$

e a função obtida depois de transformar, será representada pela mesma letra usada para a função, mas em maiúsculas

$$\mathcal{L}\{g(t)\} = G(s) \tag{8.4}$$

8.2 Propriedades da transformada de Laplace

8.2.1 Linearidade

Para quaisquer duas funções f(t) e g(t), e duas constantes a e b, verifica-se

$$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\} = aF(s) + bG(s)$$
(8.5)

consequentemente, a transformada inversa também é um operador linear:

$$\mathcal{L}^{-1}\{aF(s) + bG(s)\} = af(t) + bg(t) = a\mathcal{L}^{-1}\{F(s)\} + b\mathcal{L}^{-1}\{G(s)\}$$
(8.6)

8.2.2 Derivada da Transformada

$$\frac{\mathrm{d}F}{\mathrm{d}s} = \frac{\mathrm{d}}{\mathrm{d}s} \int_{0}^{\infty} f(t) \,\mathrm{e}^{-st} \,\mathrm{d}t = -\int_{0}^{\infty} t f(t) \,\mathrm{e}^{-st} \,\mathrm{d}t = \mathcal{L}\{tf(t)\} \tag{8.7}$$

derivando n vezes obtemos

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{\mathrm{d}^n F}{\mathrm{d} s^n}$$
(8.8)

8.2.3 Transformada da Derivada

Integrando por partes:

$$\mathcal{L}\{f'\} = \int_{0}^{\infty} f' e^{-st} dt = f e^{-st} \Big|_{0}^{\infty} + s \int_{0}^{\infty} f e^{-st} dt$$
 (8.9)

o último integral é a transformada de f, definida em s > a. Para s > a o limite do primeiro termo, quando t for infinito, é zero já que f é de ordem exponencial a

$$\mathcal{L}\lbrace f'\rbrace = s\,\mathcal{L}\lbrace f\rbrace - f(0) \tag{8.10}$$

A transformada de derivadas de ordem superior calcula-se aplicando a mesma propriedade várias vezes, por exemplo, a transformada da segunda derivada é igual a:

$$\mathcal{L}\{y''\} = s\mathcal{L}\{y'\} - y'(0) = s[s\mathcal{L}\{y\} - y(0)] - y'(0) = s^2Y(s) - sy(0) - y'(0)$$
(8.11)

8.2.4 Deslocamento em s

$$\mathcal{L}\{e^{at}f(t)\} = \int_{0}^{\infty} f e^{(a-s)t} dt = F(s-a)$$
 (8.12)

8.3 Transformadas de Funções Elementares

A transformada de t^p , onde p é qualquer número real, é:

$$\mathcal{L}\lbrace t^p\rbrace = \int_{0}^{\infty} t^p e^{-st} dt \tag{8.13}$$

usando a mudança de variável u = st, o integral transforma-se numa função gama:

$$\mathcal{L}\{t^p\} = \int_{0}^{\infty} (u/s)^p e^{-u} \frac{du}{s} = s^{-(p+1)} \int_{0}^{\infty} u^p e^{-u} du = \frac{\Gamma(p+1)}{s^{p+1}}$$
(8.14)

em particular, quando p for um número inteiro positivo n,

$$\mathcal{L}\lbrace t^n\rbrace = \frac{n!}{s^{n+1}} \tag{8.15}$$

e para n = 0

$$\mathcal{L}\{1\} = \frac{1}{s} \tag{8.16}$$

Aplicando a propriedade de deslocamento em s, podemos calcular a transformada da função exponencial

$$\mathcal{L}\{e^{at}\} = \mathcal{L}\{1\}(s-a) = \frac{1}{s-a}$$
 (8.17)

e usando a propriedade da derivada da transformada

$$\mathcal{L}\{t e^{at}\} = -\frac{d}{ds} \left(\frac{1}{s-a}\right) = \frac{1}{(s-a)^2}$$
 (8.18)

O mesmo resultado podia ter sido obtido a partir da transformada de t, usando a propriedade de deslocamento em s.

As transformadas do seno e do co-seno podem ser calculadas substituindo a = ib na Equação 8.17 e usando a fórmula de Euler

$$\mathcal{L}\{e^{ibt}\} = \mathcal{L}\{\cos(bt) + i\sin(bt)\} = \frac{1}{s - ib} = \frac{s + ib}{s^2 + b^2}$$
 (8.19)

comparando as partes reais e imaginárias, concluímos:

$$\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2} \tag{8.20}$$

$$\mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2} \tag{8.21}$$

8.4 Cálculo de transformadas inversas

Os resultados da seção anterior podem também ser usados para calcular transformadas inversas. Por exemplo, calculemos a transformada inversa de:

$$G(s) = \frac{2s^3 + 4s^2 + 10s + 74}{(s^2 + 2)(s^2 - 2s + 10)}$$
(8.22)

usando expansão em frações parciais, obtemos:

$$G(s) = \frac{2}{s+2} + \frac{3}{(s+2)^2} + \frac{1}{(s-1)^2 + 9}$$
 (8.23)

para calcular a transformada inversa de cada termo, começamos por calcular as transformadas inversas das três funções:

$$\frac{1}{s}$$
 $\frac{1}{s^2}$ $\frac{3}{s^2+9}$ (8.24)

que são 1, t e $\sin(3t)$, respetivamente. A seguir usamos a propriedade de deslocamento em s para calcular a transformada inversa da função G

$$g(t) = 2e^{-2t} + 3te^{-2t} + \frac{e^t}{3}\sin(3t)$$
(8.25)

8.5 Resolução de equações diferenciais por meio da transformada de Laplace

Como vimos numa seção anterior, as transformadas de Laplace das derivadas de uma função são todas proporcionais à transformada da função original, multiplicada por s^n , onde n é a ordem da derivada. Esta propriedade permite transformar uma equação diferencial linear, com coeficientes constantes numa equação algébrica. Por exemplo, consideremos a equação:

$$3y'' - 12y' + 12y = 4e^{2x}\sin(2x)$$
(8.26)

Transformando os dois lados da equação e usando a propriedade de linearidade, obtemos:

$$3 \mathcal{L}\{y''\} - 12 \mathcal{L}\{y'\} + 12 \mathcal{L}\{y\} = 4 \mathcal{L}\{e^{2x}\sin(2x)\}$$
 (8.27)

cada um dos termos pode ser calculado usando as propriedades da transformada de Laplace:

$$\mathcal{L}\{y\} = Y(s) \tag{8.28}$$

$$\mathcal{L}\{y'\} = sY(s) - y(0) \tag{8.29}$$

$$\mathcal{L}\{y''\} = s^2 Y(s) - sy(0) - y'(0) \tag{8.30}$$

$$\mathcal{L}\left\{e^{2x}\sin(2x)\right\} = \frac{2}{(s-2)^2 + 4} \tag{8.31}$$

a transformada da equação diferencial é

$$3s^{2}Y - 3C_{1}s - 3C_{2} - 12sY + 12C_{1} + 12Y = \frac{8}{(s-2)^{2} + 4}$$
(8.32)

onde A e B são duas constantes, iguais aos valores iniciais de y e y' em x = 0. Esta equação é uma equação algébrica que pode ser facilmente simplificada, conduzindo à função Y:

$$Y = \frac{3C_1s + 3C_2 - 3C_1}{3s^2 - 12s + 12} + \frac{8}{[(s-2)^2 + 4](3s^2 - 12s + 12)}$$
(8.33)

A solução da EDO é a transformada inversa desta função. Usando a expansão em frações parciais:

$$Y = \frac{A}{s-2} + \frac{B}{(s-2)^2} + \frac{2C}{(s-2)^2 + 4} + \frac{D(s-2)}{(s-2)^2 + 4}$$
(8.34)

onde A, B, C e D são constantes que podem ser calculadas comparando as duas últimas equações:

$$A = C_1$$
 $B = C_2 - 2C_1 + \frac{2}{3}$ $C = -\frac{1}{3}$ $D = 0$ (8.35)

A transformada inversa de cada uma das frações parciais é facilmente identificada, usando as transformadas calculadas em seções anteriores. A resposta final é:

$$y(x) = \left[(1 - 2x)y(0) + xy'(0) + \frac{2x}{3} - \frac{1}{3}\sin(2x) \right] e^{2x}$$
 (8.36)

8.6 Equações diferenciais lineares com coeficientes variáveis

Quando os coeficientes de uma equação diferencial linear são polinómios, a transformada de Laplace pode ser calculada usando os seguintes resultados:

$$\mathcal{L}\lbrace t^n y\rbrace = (-1)^n \frac{\mathrm{d}^n Y}{\mathrm{d} s^n} \tag{8.37}$$

$$\mathcal{L}\{t^n y'\} = (-1)^n \frac{d^n}{ds^n} [sY - y(0)] = (-1)^n \frac{d^n(sY)}{ds^n}$$
(8.38)

$$\mathcal{L}\{t^n y''\} = (-1)^n \frac{d^n}{ds^n} [s^2 Y - sy(0)]$$
 (8.39)

A transformada da equação diferencial será outra equação diferencial para a função Y, de ordem igual ao maior grau dos coeficientes da equação original. Em alguns casos a equação diferencial obtida resulta ser mais fácil de resolver do que a equação original.

A transformada de Laplace Y e as suas derivadas deverão ser funções assimptoticamente decrescentes; esta propriedade das transformadas de Laplace impõe condições fronteira para a equação diferencial obtida.

8.7 Equações diferenciais lineares com entrada descontínua

O lado direito de uma equação linear não homogénea pode ser considerado como a entrada num sistema linear que verifica o princípio de sobreposição. Quando a entrada é descontínua, a saída é contínua pois a solução de uma equação diferencial é uma função derivável.

O método da transformada de Laplace é principalmente útil para resolver equações diferenciais com entrada descontínua, já que a transformada de uma função parcelarmente contínua é uma função contínua.

Para representar funções descontínuas é conveniente definir a função **degrau unitário** (também conhecida por função de Heaviside):

$$u(t-a) = \begin{cases} 0 & t < a \\ 1 & t \ge a \end{cases}$$
 (8.40)

Se a < b, a função:

$$u(t-a) - u(t-b) \tag{8.41}$$

é igual a 1 no intervalo a < t < b e zero fora do intervalo. Assim, uma função definida em forma diferente em diferentes intervalos, por exemplo,

$$f(t) = \begin{cases} f_1(t) & a \le t < b \\ f_2(t) & c \le t < d \end{cases}$$
 (8.42)

pode ser escrita na forma compata:

$$f(t) = [u(t-a) - u(t-b)]f_1(t) + [u(t-c) - u(t-d)]f_2(t)$$
(8.43)

facilitando o cálculo da sua transformada de Laplace, por meio da propriedade que veremos na seção que se segue.

8.8 Deslocamento no domínio do tempo

A função:

$$u(t-a)f(t-a) \tag{8.44}$$

onde u(t-a) é a função degrau unitário, representa à função f(t) deslocada uma distância a no eixo do tempo t, sendo nula para t < a. A sua transformada de Laplace calcula-se facilmente, em função da transformada de f:

$$\mathcal{L}\{u(t-a)f(t-a)\} = \int_{a}^{\infty} f(t-a)e^{-st} dt$$
$$= \int_{0}^{\infty} f(r)e^{-s(r+a)} dr$$
$$= e^{-as} \int_{0}^{\infty} f(r)e^{-sr} dr$$

E obtemos a propriedade de **deslocamento em** *t*:

$$\mathcal{L}\{u(t-a)f(t-a)\} = e^{-as}F(s)$$
(8.45)

Esta propriedade é útil para calcular transformadas de funções com descontinuidades. Uma outra forma equivalente é a seguinte:

$$\mathcal{L}\{u(t-a)f(t)\} = e^{-as}\mathcal{L}\{f(t+a)\}\tag{8.46}$$

8.9 Impulso unitário 71

Exemplo 8.1

Resolva o problema de valores iniciais:

$$y'' + 3y' + 2y = \begin{cases} t & t < 1 \\ -t & 1 \le t \end{cases}$$
 (8.47)

$$y(0) = y'(0) = 0$$

Começamos por escrever o lado direito da equação na forma compata:

$$y'' + 3y' + 2y = [1 - u(t-1)]t - tu(t-1) = t - 2tu(t-1)$$
(8.48)

A transformada de Laplace do lado esquerdo é:

$$\mathcal{L}\{y'' + 3y' + 2y\} = (s^2 + 3s + 2)Y(s) \tag{8.49}$$

Usando a propriedade de deslocamento em t, a transformada do lado direito é:

$$\mathcal{L}\left\{t - 2tu(t-1)\right\} = \frac{1}{s^2} - 2e^{-s}\mathcal{L}\left\{t + 1\right\} = \frac{1}{s^2} - 2\frac{e^{-s}}{s} - 2\frac{e^{-s}}{s^2}$$
(8.50)

Igualando as transformadas dos dois lados da equação diferencial, podemos obter facilmente Y:

$$Y = \frac{1 - 2e^{-s}}{s^2(s+1)(s+2)} - 2\frac{e^{-s}}{s(s+1)(s+2)}$$
(8.51)

Usando decomposição em frações parciais:

$$\frac{1}{s(s+1)(s+2)} = \frac{1}{2s} - \frac{1}{s+1} + \frac{1}{2(s+2)}$$
 (8.52)

$$\frac{1}{s^2(s+1)(s+2)} = \frac{1}{2s^2} - \frac{3}{4s} + \frac{1}{s+1} - \frac{1}{4(s+2)}$$
 (8.53)

obtemos:

$$Y = \frac{1}{2s^2} - \frac{3}{4s} + \frac{1}{s+1} - \frac{1}{4(s+2)} + e^{-s} \left(\frac{1}{2s} - \frac{1}{s^2} - \frac{1}{2(s+2)} \right)$$
(8.54)

e a transformada inversa é:

$$y(t) = \frac{t}{2} - \frac{3}{4} + e^{-t} - \frac{1}{4}e^{-2t} + u(t-1)\left(\frac{1}{2} - (t-1) - \frac{1}{2}e^{-2(t-1)}\right)$$
(8.55)

8.9 Impulso unitário

Em física uma **força impulsiva** é uma força f(t) que atua durante um pequeno intervalo de tempo Δt . O aumento total da quantidade de movimento, devido à força f(t), é igual ao **impulso**:

$$I = \int_{t_0}^{t_0 + \Delta t} f(t) dt$$
 (8.56)

Uma função de impulso unitário é uma função f(t) que produz um impulso igual a 1:

$$\int_{t_0}^{t_0 + \Delta t} f(t) \, \mathrm{d}t = 1 \tag{8.57}$$

Um exemplo é a função:

$$\frac{u(t-t_0) - u(t-t_0 - \Delta t)}{\Delta t} \tag{8.58}$$

constante no intervalo $t_0 \le x < t_0 + \Delta t$.

Consideremos uma sucessão de impulsos unitários f_n com intervalos Δt_n decrescentes. Por exemplo, as funções

$$f_n = n[u(t - t_0) - u(t - t_0 - 1/n)]$$
(8.59)

onde u é a função degrau unitário. Neste exemplo cada função f_n é igual a n no intervalo de t entre a e a+1/n, e zero fora dele. O intervalo de duração do impulso é $\Delta t_n=1/n$ e a função f_n é um impulso unitário. A medida que n aumenta, o gráfico da função f_n é cada vez mais alto, e dentro de um intervalo mais pequeno.

O limite de uma sucessão de impulsos unitários com intervalos decrescentes, aproximando-se para zero, é designado **função delta de Dirac**

$$\delta(t - t_0) = \lim_{n \to \infty} f_n(t) \tag{8.60}$$

a função δ é nula em qualquer ponto diferente de t_0 , infinita em t_0 mas o seu impulso é igual a 1.

A função delta de Dirac não é realmente uma função mas sim um **funcional** (limite de funções), e daí que o seu integral possa ser diferente de zero enquanto que a função é nula em qualquer ponto diferente de t_0 . Uma propriedade importante da função delta de Dirac é o teorema que se segue.

Teorema 6

Se f(t) é uma função contínua em t_0 ,

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0) dt = f(t_0)$$
(8.61)

Para resolver equações diferenciais onde apareçam termos impulsivos, será útil conhecer a transformada de Laplace; para a calcular substituiremos a função delta pelo limite da sucessão de impulsos unitários (8.59)

$$\mathcal{L}\{\delta(t-t_0)\} = \lim_{n \to \infty} \mathcal{L}\{n[u(t-t_0) - u(t-t_0 - 1/n)]\} = \lim_{n \to \infty} \frac{n}{s} \left[e^{-t_0 s} - e^{-(t_0 + 1/n)s}\right]$$
(8.62)

e, portanto,

$$\mathcal{L}\{\delta(t-t_0)\} = e^{-t_0 s} \tag{8.63}$$

As propriedades da transformada de Laplace e as transformadas das funções que temos calculado neste capítulo encontram-se resumidas na tabela 8.1.

8.9 Impulso unitário 73

Função	T. de Laplace
f(t)	F(s)
t^p	$\frac{\Gamma(p+1)}{s^{p+1}}$
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s) - f(0)
$\int_{0}^{t} f(u) \mathrm{d}u$	$\frac{1}{s}F(s)$
tf(t)	$-\frac{\mathrm{d}F}{\mathrm{d}s}$
$\frac{f(t)}{t}$	$\int\limits_{s}^{\infty}F(r)\mathrm{d}r$
u(t-a)f(t-a)	$e^{-as}F(s)$
$\delta(t-a)$	e^{-as}
$f\left(\frac{t}{a}\right)$	aF(as)
$\cos(bt)$	$\frac{s}{s^2 + b^2}$
$\sin(bt)$	$\frac{b}{s^2 + b^2}$

 Tabela 8.1: Propriedades da transformada de Laplace.

Exemplo 8.2

A quantidade dum medicamento no sangue de um paciente, decresce exponencialmente:

$$y = y_0 e^{-t/a} (8.64)$$

onde y é a quantidade, em gramas, do medicamento no instante t, y_0 é a quantidade inicial, e a é a constante de decaimento do medicamento no sangue. O paciente recebe duas injeções do medicamento, com doses de y_1 e y_2 gramas, nos instantes t_1 e t_2 (com $t_2 > t_1 > 0$). Calcule a quantidade de medicamento no sangue do paciente, em função do tempo, admitindo que em t=0 não existia nenhum medicamento no sangue do paciente.

A massa do medicamento introduzido em cada injeção é $\Delta y = f\Delta t$, onde f é uma função que depende do tempo (fluxo de medicamento que entra no sangue do paciente, em gramas por unidade de tempo):

$$\frac{\Delta y}{\Delta t} = f(t) \tag{8.65}$$

Figura 8.1: Fluxo de medicamento, f, para dentro do sangue do paciente.

Como o intervalo de tempo que dura uma injeção é muito pequeno comparado com o tempo entre injeções (figura 8.1) e com o tempo de meia-vida do medicamento, podemos admitir que o fluxo f(t) é uma função impulsiva de duração quase nula, nomeadamente uma soma de duas funções delta nos instantes t_1 e t_2 :

$$f(t) = y_1 \delta(t - t_1) + y_2 \delta(t - t_2)$$
(8.66)

Enquanto o medicamento no sangue aumenta devido às injeções, também diminui continuamente, devido à constante de decaimento do medicamento. A diminuição do medicamento no instante t é

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -ay\tag{8.67}$$

já que esta é a equação que define o decaimento exponencial com constante de decaimento a. A taxa de aumento do medicamento no sangue será igual ao aumento devido às injeções, menos a diminuição devida ao decaimento do medicamento no sangue

$$\frac{dy}{dt} = y_1 \delta(t - t_1) + y_2 \delta(t - t_2) - ay$$
 (8.68)

8.10 Convolução

Esta é uma equação diferencial linear, de coeficientes constantes, não homogénea. Calculando a transformada de Laplace nos dois lados da equação, obtemos:

$$(s+a)Y = y_0 + y_1 e^{-t_1 s} + y_2 e^{-t_2 s}$$
(8.69)

onde Y é a transformada de y.

$$Y = \frac{y_0 + y_1 e^{-t_1 s} + y_2 e^{-t_2 s}}{s + a}$$
 (8.70)

e calculando a transformada inversa encontramos a solução do problema

$$y(t) = y_0 e^{-at} + y_1 u(t - t_1) e^{-a(t - t_1)} + y_2 u(t - t_2) e^{-a(t - t_2)}$$
(8.71)

A figura 8.2 mostra o gráfico da função y(t).

Figura 8.2: Decaimento do medicamento no sangue do paciente.

8.10 Convolução

A transformada de Laplace de um produto de duas funções não é igual ao produto das transformadas de Laplace das duas funções. No entanto, existe uma operação entre funções que, quando transformada, dá o produto das transformadas das duas funções. Essa operação entre funções é designada **convolução**, e joga um papel importante no cálculo de transformadas inversas, como veremos.

O produto de convolução entre duas funções f(t) e g(t) define-se da seguinte forma

$$f * g = \int_{0}^{t} f(r)g(t-r) dr$$
 (8.72)

Teorema 7

A transformada de Laplace do produto de convolução entre duas funções f e g, \acute{e} igual ao produto das transformadas de Laplace das duas funções.

Demonstração: A partir das definições da transformada de Laplace e do produto de convolução, obtemos

$$\mathcal{L}\{f * g\} = \int_{0}^{\infty} \int_{0}^{t} f(r)g(t-r) e^{-st} dr dt$$
 (8.73)

o integral em r pode ser estendido até infinito, se multiplicarmos por uma função degrau unitário que anule a parte desde t até infinito

$$\mathcal{L}\lbrace f * g \rbrace = \int_{0}^{\infty} \int_{0}^{\infty} f(r)g(t-r)u(t-r) e^{-st} dr dt$$
 (8.74)

trocando a ordem dos dois integrais, obtemos

$$\mathcal{L}\lbrace f * g \rbrace = \int_{0}^{\infty} f(r) \left[\int_{0}^{\infty} g(t - r) u(t - r) e^{-st} dt \right] dr$$
 (8.75)

O termo entre parêntesis quadrados é a transformada de Laplace da função g, deslocada em t:

$$g(t-r)u(t-r) \tag{8.76}$$

que é igual à transformada de Laplace de g, multiplicada pela exponencial de -sr. Assim, obtemos o resultado

$$\mathcal{L}\lbrace f * g \rbrace = G(s) \int_{0}^{\infty} f(r) e^{-sr} dr$$
 (8.77)

que é igual ao produto das transformadas de Laplace das duas funções, como pretendíamos demonstrar:

$$\mathcal{L}\{f * g\} = F(s)G(s) \qquad \blacksquare \tag{8.78}$$

O teorema anterior também implica, em forma inversa, que a transformada inversa de Laplace de um produto de funções é igual ao produto de convolução entre as transformadas inversas das duas funções. O teorema de convolução é útil no cálculo de transformadas inversas de funções complicadas que possam ser escritas como o produto entre funções simples. O produto de convolução entre funções verifica as propriedades comutativa, associativa e distributiva em relação à soma de funções.

Exemplo 8.3

Calcule a transformada inversa da função

$$F(s) = \frac{a}{s(s^2 + a^2)}$$

Podemos escrever a função F como o produto entre duas funções

$$G(s) = \frac{1}{s}$$
 $H(s) = \frac{a}{s^2 + a^2}$ (8.79)

as transformadas inversas de G e H obtêm-se a partir da tabela 8.1

$$g(t) = 1 \qquad h(t) = \sin(at) \tag{8.80}$$

e a transformada inversa de F é igual ao produto de convolução de g e h

$$f(t) = 1 * \sin(at) = \int_{0}^{t} \sin(ar) dr = \frac{1 - \cos(at)}{a}$$
 (8.81)

No cálculo do produto de convolução entre g e h, o termo dentro do integral pode ser escrito como g(r)h(t-r) ou g(t-r)h(r), usando a propriedade comutativa; convém sempre examinar as duas possibilidades para seleccionar a que seja mais fácil de primitivar.

8.11 Resolução de equações integro-diferenciais

Algumas equações que combinem derivadas com integrais podem ser resolvidas por meio da transformada de Laplace, quando o integral possa ser escrito como um integral de convolução entre funções.

Exemplo 8.4

Encontre a solução da equação integro-diferencial

$$\frac{dy}{dt} = 1 - \int_{0}^{t} y(t - v) e^{-2v} dv$$
 (8.82)

 $com\ condição\ inicial\ y(0) = 1.$

O integral no lado direito da equação é um produto de convolução:

$$\frac{dy}{dt} = 1 - y * e^{-2t}$$
 (8.83)

Transformando os dois lados da equação obtemos

$$sY - 1 = \frac{1}{s} - \frac{Y}{s+2} \tag{8.84}$$

donde se obtem a função *Y* :

$$Y = \frac{s+2}{s(s+1)} = \frac{2}{s} - \frac{1}{s+1}$$
 (8.85)

e a solução da equação é a transformada inversa

$$y(t) = 2 - e^{-t}$$
 (8.86)

8.12 Problemas

Aplicando transformadas de Laplace, resolva as seguintes equações

1.
$$y'' + y' - 2y = 3$$
 $y(0) = 0, y'(0) = 1$

2.
$$y'' + 4y' + 4y = e^{-2t}$$
 $y(0) = 0, y'(0) = 0$

3.
$$y''' - 4y'' - y' + 4y = e^t$$
 $y(0) = y'(0) = y''(0) = 1$

4.
$$y'' + y = e^{2t} \cos t$$
 $y(0) = 1, y'(0) = 0$

5.
$$y'' + 4y = t \sin(2t)$$
 $y(0) = y(\pi/4) = 0$

6.
$$t^2y'' - 2y = 2t$$
 $y(0)$ finita, $y(2) = 2$

Nas perguntas 7 a 10 resolva o problema de condições fronteira

$$y'' + 4y = f(t)$$
 $y(0) = y\left(\frac{5\pi}{4}\right) = 0$

usando a definição da função f(t) dada em cada caso

8.
$$f(t) = \delta(t - \pi)$$

$$\mathbf{9.} \ f(t) = \begin{cases} 1 & 0 \le t < \pi \\ 0 & \pi \le t < 2\pi \\ \sin t & 2\pi \le t \end{cases}$$

Calcule os seguintes produtos de convolução

11.
$$e^{at} * e^{at}$$

12.
$$t * t * t$$

13.
$$t * \sin t$$

Usando a propriedade da transformada de Laplace do produto de convolução, calcule as transformadas inversas das seguintes funções

14.
$$\frac{4}{s^2(s-2)}$$

8.12 *Problemas* **79**

15.
$$\frac{1}{(s^2+\omega^2)^2}$$

Resolva as sequintes equações em forma geral, para qualquer função f(t) parcelarmente contínua e parâmetro k diferente de zero

16.
$$y'' - k^2 y = f(t)$$

$$y(0) = y'(0) = 0$$

17.
$$y'' - 2ky' + k^2y = f(t)$$

$$y(0) = y'(0) = 1$$

Equações integrodiferenciais. Resolva as seguintes equações

18.
$$y(t) = a \sin t - 2 \int_0^t y(s) \cos(t-s) ds$$

19.
$$y(x) = x + \int_0^x y(t) \cos(x - t) dt$$

20.
$$\int_0^t y(s) ds - y'(t) = t$$

$$y(0) = 2$$

21.
$$y'(t) + 2y + \int_0^t y(s) ds = \sin t$$

$$y(0) = 1$$

Capítulo 9

Equações de diferenças lineares não homogéneas

No capítulo 6 estudamos métodos para a resolução de equações de diferenças lineares homogéneas, e vimos que existe uma grande semelhança entre a resolução de equações de diferenças lineares e a resolução de equações diferenciais lineares. Seguindo a analogia, veremos neste capítulo que no caso das equações de diferenças existe um método análogo ao método da transformada de Laplace na resolução de equações diferenciais.

9.1 Transformada Z

A transformada \mathbb{Z} define como construir uma função a partir de uma sucessão. Assim, cada sucessão é transformada numa função; isso permitirá transformar equações de diferenças em equações algébricas que em alguns casos podem ser resolvidas facilmente, como veremos. A transformada \mathbb{Z} de uma sucessão $\{y_0, y_1, y_2, \ldots\}$ é uma função definida por meio da série:

$$y_0 + \frac{y_1}{z} + \frac{y_2}{z^2} + \frac{y_3}{z \cdot 3} + \dots$$
 (9.1)

onde z é uma variável real¹. O domínio da variável z onde a série é convergente dependerá da sucessão. Usando uma notação mais compata, escrevemos a transformada da sucessão $\{y_n\}$ da seguinte forma

$$\mathbb{Z}\{y_n\} = \sum_{n=0}^{\infty} \frac{y_n}{z^n} \tag{9.2}$$

e ainda usaremos uma outra notação: \overline{y} , que representa a função obtida após transformar a sucessão $\{y_n\}$.

Consideremos um exemplo: a sucessão $\{1,1,1,\ldots\}$ com todos os termos iguais a 1, isto é, $y_n=1$. Usando a definição da transformada $\mathbb Z$ obtemos

$$\overline{y}(z) = 1 + \frac{1}{z} + \frac{1}{z^2} + \dots = \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n$$
 (9.3)

¹O domínio da variável z pode ser estendido aos números complexos, mas para os objetivos deste capítulo não será preciso.

que é uma série geométrica; se |1/z| < 1, a série converge para

$$\overline{y}(z) = \frac{1}{1 - \frac{1}{z}} = \frac{z}{z - 1}$$
 (9.4)

Outra transformada \mathbb{Z} que pode ser calculada usando a série geométrica é a transformada da sucessão com termo geral $y_n = a^n$, onde a é uma constante. Usando a definição da transformada obtemos uma série geométrica

$$\bar{y}(z) = 1 + \frac{a}{z} + \frac{a^2}{z^2} + \dots = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n$$
 (9.5)

Assim, para |z| > |a|

$$\mathbb{Z}\{a^n\} = \frac{z}{z - a} \tag{9.6}$$

9.2 Propriedades da transformada Z

Usando os dois exemplos da seção anterior e algumas propriedades da transformada \mathbb{Z} , podemos calcular as transformadas de outras sucessões mais complicadas.

9.2.1 Linearidade da transformada Z

A primeira propriedade da transformada \mathbb{Z} que estudaremos é a sua linearidade, isto é, dadas duas sucessões quaisquer $\{x_n\}$ e $\{y_n\}$, e duas constantes a e b, verifica-se que

$$\mathbb{Z}\{ax_n + by_n\} = a\mathbb{Z}\{x_n\} + b\mathbb{Z}\{y_n\} = a\overline{x} + b\overline{y}$$

$$\tag{9.7}$$

Esta propriedade pode ser demonstrada facilmente a partir da definição da transformada \mathbb{Z} , já que as séries convergentes também verificam a propriedade de linearidade.

9.2.2 Derivada da transformada Z

No domínio onde a transformada \mathbb{Z} está definida, a série que a representa (equação (9.2) converge uniformemente, e pode ser derivada termo por termo

$$\frac{d\bar{y}}{dz} = -\sum_{n=0}^{\infty} \frac{n y_n}{z^{n+1}} = -\frac{1}{z} \sum_{n=0}^{\infty} \frac{n y_n}{z^n}$$
 (9.8)

esta última série é a transformada \mathbb{Z} da sucessão ny_n ; assim, temos obtido o seguinte resultado

$$\mathbb{Z}\{ny_n\} = -z\frac{\mathrm{d}\overline{y}}{\mathrm{d}z} \tag{9.9}$$

Se conhecermos a transformada de y_n , poderemos calcular a transformada de ny_n a partir da derivada da transformada conhecida.

9.2.3 Transformada da sucessão deslocada

A sucessão $\{y_{n+1}\}$ é a sucessão obtida a partir de $\{y_n\}$, eliminando o primeiro termo e deslocando todos os outros termos um lugar para a esquerda: $\{y_1, y_2, y_3, \ldots\}$. A transformada \mathbb{Z} desta nova sucessão será

$$\mathbb{Z}\{y_{n+1}\} = y_1 + \frac{y_2}{z} + \frac{y_3}{z^2} + \dots = \sum_{n=1}^{\infty} \frac{y_n}{z^{n-1}} = z \sum_{n=0}^{\infty} \frac{y_n}{z^n} - zy_0$$
 (9.10)

A última série é a transformada \mathbb{Z} da sucessão $\{y_n\}$

$$\mathbb{Z}\{y_{n+1}\} = z\overline{y} - y_0 z \tag{9.11}$$

9.2.4 Transformadas das sucessões de senos e co-senos

Consideremos uma sucessão com termos complexos

$$y_n = (a + ib)^n \tag{9.12}$$

onde a e b são constantes reais. Usando o resultado (9.6), o qual é também válido para números reais já que a série geométrica também converge no plano complexo, obtemos

$$\mathbb{Z}\left\{(a+\mathrm{i}b)^n\right\} = \frac{z}{z-a-\mathrm{i}b} \tag{9.13}$$

multiplicando o numerador e o denominador pelo complexo conjugado do denominador, podemos separar as partes real e imaginária

$$\mathbb{Z}\left\{(a+ib)^n\right\} = \frac{z(z-a)}{(z-a)^2 + b^2} + i\frac{bz}{(z-a)^2 + b^2}$$
(9.14)

Por outro lado, se usarmos a representação polar do número complexo $a+{\rm i}b$ e a linearidade da transformada $\mathbb Z$, podemos escrever

$$\mathbb{Z}\left\{(a+\mathrm{i}b)^n\right\} = \mathbb{Z}\left\{r^n\,\mathrm{e}^{\mathrm{i}n\theta}\right\} = \mathbb{Z}\left\{r^n\cos(n\theta)\right\} + \mathrm{i}\mathbb{Z}\left\{r^n\sin(n\theta)\right\} \tag{9.15}$$

onde r e θ são o módulo e ângulo polar do número complexo. Comparando as partes reais e imaginárias das equações (9.14) e (9.15), obtemos as transformadas de duas sucessões com senos e co-senos

$$\mathbb{Z}\left\{r^n \sin(n\theta)\right\} = \frac{bz}{(z-a)^2 + b^2} \tag{9.16}$$

$$\mathbb{Z}\{r^{n}\cos(n\theta)\} = \frac{z(z-a)}{(z-a)^{2} + b^{2}}$$
(9.17)

onde as constantes a e b são definidas por

$$a \equiv r\cos\theta \tag{9.18}$$

$$b \equiv r \sin \theta \tag{9.19}$$

Na tabela 9.1 aparece um sumário das transformadas \mathbb{Z} que temos calculado, e de outras que podem ser obtidas a partir das propriedades que temos estudado, e que serão úteis no cálculo de transformadas inversas.

Sucessão	Transformada $\mathbb Z$
- Yn	$\bar{y}(z)$
y_{n+1}	$z\bar{y}-zy_0$
y_{n+2}	$z^2\bar{y} - z^2y_0 - zy_1$
ny_n	$-z\frac{\mathrm{d}\bar{y}}{\mathrm{d}z}$
a^n	$\frac{z}{z-a}$
na^n	$\frac{az}{(z-a)^2}$
n^2a^n	$\frac{az^2 + a^2z}{(z-a)^3}$
$\frac{n(n-1)}{2}a^n$	$\frac{a^2z}{(z-a)^3}$
$\frac{n(n-1)(n-2)}{3!}a^n$	$\frac{a^3z}{(z-a)^4}$
$r^n\cos(n\theta)$	$\frac{z(z-a)}{(z-a)^2+b^2}$
	$(a \equiv r\cos\theta, b \equiv r\sin\theta)$
$r^n \sin(n\theta)$	$\frac{bz}{(z-a)^2 + b^2}$
	$(a \equiv r\cos\theta, b \equiv r\sin\theta)$

Tabela 9.1: Transformadas Z.

9.3 Resolução de equações de diferenças lineares não homogéneas

A transformada \mathbb{Z} é útil para resolver equações de diferenças lineares, de coeficientes constantes, não homogéneas. Consideremos um exemplo com valores iniciais:

$$y_{n+2} + 3y_{n+1} + 2y_n = 3^n$$
 $y_0 = 1$ $y_1 = 0$ (9.20)

Usando a expressão que obtivemos para a transformada de $\{y_{n+1}\}$, podemos escrever

$$\mathbb{Z}\{y_{n+1}\} = z\overline{y} - z \tag{9.21}$$

$$\mathbb{Z}\{y_{n+2}\} = z\mathbb{Z}\{y_{n+1}\} - zy_1 = z^2\overline{y} - z^2$$
(9.22)

e consultando a tabela 9.1 vemos que

$$\mathbb{Z}\{3^n\} = \frac{z}{z-3} \tag{9.23}$$

Assim, a transformada da equação de diferenças será

$$(z^2 + 3z + 2)\overline{y} - z^2 - 3z = \frac{z}{z - 3}$$
(9.24)

e daí obtemos

$$\overline{y} = \frac{z^2 + 3z}{(z+1)(z+2)} + \frac{z}{(z+1)(z+2)(z-3)}$$
(9.25)

O cálculo da transformada inversa é feito em forma análoga as transformadas inversas de Laplace, usando expansão em frações parciais, mas deixando de fora um fator *z* no numerador, que será necessário manter em todas as frações parciais para poder usar a tabela 9.1. Consequentemente, as frações que deverão ser expandidas são:

$$\frac{z+3}{(z+1)(z+2)} = \frac{2}{z+1} - \frac{1}{z+2}$$
 (9.26)

$$\frac{1}{(z+1)(z+2)} = \frac{1}{5(z+2)} - \frac{1}{4(z+1)} + \frac{1}{20(z-3)}$$
 (9.27)

multiplicando cada fração parcial pelo fator z que deixamos de fora, obtemos o lado direito da equação (9.25)

$$\overline{y} = \frac{7z}{4(z+1)} - \frac{4z}{5(z+2)} + \frac{z}{20(z-3)}$$
 (9.28)

e usando a tabela 9.1, encontramos a solução do problema de valores iniciais

$$y_n = \frac{7}{4}(-1)^n - \frac{4}{5}(-2)^n + \frac{3^n}{20}$$
 (9.29)

Exemplo 9.1 (População mundial de baleias)

Admita que a população atual de baleias no mundo é 1000 e que cada ano o aumento natural (nascimentos e mortes naturais) da população é de 25%. Admita também que o número de baleias abatidas pelos pescadores cada ano é de 300 e que está tendência vai se manter nos próximos anos. Calcule a população, P_n (onde n é o número de anos a partir do ano atual) durante os próximos anos

Se no ano n a população de baleias fosse P_n , o aumento da população durante esse ano, devido a nascimentos e mortes naturais, seria $0,25P_n$. O aumento (ou diminuição) da população durante esse ano seria

$$0.25P_n - 300 \tag{9.30}$$

mas por outro lado o aumento da população durante o período n também deverá ser igual a

$$P_{n+1} - P_n (9.31)$$

combinando estas duas expressões obtemos uma equação de diferenças

$$P_{n+1} - P_n = 0.25P_n - 300 (9.32)$$

se n=0 representa o ano atual, a condição inicial necessária para resolver a equação de diferenças \acute{e}

$$P_0 = 1000 \tag{9.33}$$

Para resolver a equação podemos usar a transformada $\mathbb Z$

$$zp - 1000z - p = 0.25p - \frac{300z}{z - 1}$$
(9.34)

onde p(z) é a transformada da sucessão P_n . A equação anterior é uma equação algébrica que se resolve facilmente para p

$$p = \frac{1000z}{z - 1,25} - \frac{300z}{(z - 1)(z - 1,25)}$$

$$= \frac{1000z}{z - 1,25} - 1200z \frac{(z - 1) - (z - 1,25)}{(z - 1)(z - 1,25)}$$

$$= -\frac{200z}{z - 1,25} + \frac{1200}{z - 1}$$

a transformada inversa é

$$P_n = 1200 - 200 \left(\frac{5}{4}\right)^n \tag{9.35}$$

obviamente a população não pode ser negativa e portanto a expressão anterior só poderá ser válida para alguns valores de *n* tais que

$$1200 - 200 \left(\frac{5}{4}\right)^n \ge 0 \tag{9.36}$$

$$\left(\frac{5}{4}\right)^n \le 6\tag{9.37}$$

$$n\ln\frac{5}{4} \le \ln 6 \quad \Longrightarrow \quad n \le 8,03 \tag{9.38}$$

logo a solução do problema é

$$P_n = \begin{cases} 1200 - 200(1,25)^n & 0 \le n \le 8\\ 0 & n > 8 \end{cases}$$
 (9.39)

87

 $y_0 = 0, y_1 = 1$

Problemas 9.4

Resolva as seguintes equações de diferenças

1.
$$y_{n+2} - 3y_{n+1} + 2y_n = 1$$

2.
$$y_{n+2} + y_{n+1} - 2y_n = 3$$

3.
$$y_{n+2} + 4y_{n+1} + 4y_n = (-2)^n$$
 $y_0 = 0, y_1 = 0$

4.
$$y_{n+1} - 2y_n = \exp(-bn)$$

5.
$$y_{n+2} - 2y_{n+1} + 4y_n = 2^n$$
 $y_0 = 0, y_1 = 0$

6.
$$y_{n+2} + 4y_n = \frac{1}{3^n}$$
 $y_0 = 1, y_1 = 0$

7.
$$y_{n+2} - y_n = n$$

Encontre as transformadas \mathbb{Z} das seguintes sucessões

$$y_n = \delta_{n,0}$$

$$y_n = 1 - \delta_{n,0} - \delta_{n,1}$$

10.
$$y_n = n \sin(\omega n)$$

11. Os números $\{T_n\} = \{1, 3, 6, 10, 15, \ldots\}$ são chamados *números triangulares*, pois podem ser obtidos geométricamente contando o número de pontos nos triângulos da sequência na figura seguinte

- 1. Determine o problema de valor inicial que define os números triangulares.
- **2.** Encontre a forma geral T_n de qualquer número triangular.

Nos problemas 12 e 13 encontre uma equação de diferenças para as seguintes somas S_n (compare S_{n+1} com S_n). Resolva a equação de diferenças usando a condição inicial S_1 para obter uma fórmula geral para S_n

12.
$$S_n = 1 + 2^3 + 3^3 + \dots + n^3$$

13.
$$S_n = 2 + 4 + 6 + \cdots + 2n$$

14. O sistema iterativo

$$x_{n+1} = x_n^2 + c$$
 $x_0 = 0$

é um sistema caótico. Usando valores de c igual a -1.3, -1.75 e -2 calcule alguns termos da sequência $\{x_n\}$ até obter um valor repetido; qual é o período da sequência em cada caso? que pode concluir a partir destes resultados? Se quiser escrever um programa de computador para encontrar o diagrama de bifurcação, use valores de c entre -2 e 0.25, e tenha em conta que os valores resultantes de x_n estão comprendidos entre -2 e 2.

Capítulo 10

Sistemas de equações diferenciais

10.1 Definição

Um sistema de n equações diferenciais de primeira ordem é um conjunto de n equações diferenciais, com uma variável independente t e n variáveis dependentes x_1, x_2, \ldots, x_n , que podem ser escritas da seguinte forma

$$\frac{dx_1}{dt} = F_1(x_1, ..., x_n, x'_1, ..., x'_n, t)$$

$$\frac{dx_2}{dt} = F_2(x_1, ..., x_n, x'_1, ..., x'_n, t)$$

$$...$$

$$\frac{dx_n}{dt} = F_n(x_1, ..., x_n, x'_1, ..., x'_n, t)$$
(10.1)

onde F_1, F_2, \ldots, F_n são quaisquer funções de (2n+1) variáveis reais, que definem o sistema. Não será necessário considerar sistemas de equações de ordem superior a 1, devido a que se alguma das equações diferencias for de ordem superior, poderá ser escrita como um sistema de equações de primeira ordem como veremos no exemplo que se segue.

Exemplo 10.1

Escreva a equação diferencial de segunda ordem

$$\cos x \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{x}{t} \frac{\mathrm{d}x}{\mathrm{d}t} + \sin t = 0 \tag{10.3}$$

como um sistema de equações de primeira ordem.

Podemos definir duas variáveis x_1 e x_2 , dependentes de t, a partir da função x(t) e da sua derivada

$$x_1 \equiv x \qquad x_2 \equiv \frac{\mathrm{d}x}{\mathrm{d}t} \tag{10.4}$$

a primeira definição é uma simples mudança do nome da variável, mas a segunda definição é uma equação diferencial de primeira ordem. Temos também uma segunda equação diferencial — a equação dada — que em termos das variáveis definidas é

$$\cos x_1 \frac{dx_2}{dt} + \frac{x_1 x_2}{t} + \sin t = 0 \tag{10.5}$$

O sistema de equações, escrito na forma padrão é

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2 \tag{10.6}$$

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = x_2 \tag{10.6}$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t} = -\frac{x_1 x_2}{t \cos x_1} - \frac{\sin t}{\cos x_1} \tag{10.7}$$

Como podemos ver, os sistemas de equações diferenciais de primeira ordem são muito importantes por incluir como casos particulares as equações diferencias de ordem superior e os sistemas delas. De fato, os métodos numéricos para resolver equações diferenciais de ordem superior baseiam-se, geralmente, na resolução de sistemas de equações de primeira ordem.

O sistema de equações (10.2) pode ser escrito numa forma mais compata, usando a notação vetorial:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{F}\left(t, \mathbf{x}, \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}\right) \tag{10.8}$$

onde \mathbf{x} é um vetor com n componentes, cada uma delas função de t, e \mathbf{F} é um vetor com ncomponentes, funções de t, \mathbf{x} e \mathbf{x}' .

10.2 Sistemas de equações lineares

Um caso especial e importante na teoria das equações diferenciais é quando o vetor de funções F, no sistema de equações (10.8), tem a forma

$$\mathbf{F} = \mathbf{A}\mathbf{x} + \mathbf{f} \tag{10.9}$$

onde A é uma matriz quadrada $n \times n$ de funções que dependem unicamente de t, f é um vetor com n componentes dependentes de t, e optámos por trabalhar a representação dos vetores com matrizes com uma única coluna, ficando assim bem definido o produto entre uma matriz $n \times n$ e um vetor (à direita da matriz) de dimensão n, dando como resultado outro vetor da mesma dimensão.

O sistema de equações diferenciais lineares é o sistema:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{f} \tag{10.10}$$

Quando os coeficientes da matriz A sejam todos constantes, o sistema diz-se de coeficientes constantes; e quando o vetor f seja nulo, o sistema será homogéneo.

Exemplo 10.2

Escreva o sistema de equações lineares, de coeficientes constantes,

$$\begin{aligned}
 x_1' &= x_1 + x_2 \\
 x_2' &= 4x_1 + x_2
 \end{aligned}$$

na forma vetorial.

 $^{^{1}}$ Quando escrever a mão o símbolo de um vetor, convem usar a notação \vec{x} que será equivalente ao uso de carateres negros na versão impressa.

O sistema pode ser escrito assim:

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (10.11)$$

Que tem a forma da equação (10.10), com vetor **f** nulo e matriz A igual a:

$$\mathbb{A} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \qquad \blacksquare \tag{10.12}$$

10.3 Método de eliminação

Um método para resolver sistemas de equações diferenciais consiste em usar n-1 das equações para eliminar n-1 das variáveis x_i , na outra equação, ficando com uma equação diferencial ordinária para a função x_i que não foi eliminada. A melhor forma de explicar o método é através de um exemplo. Consideremos o sistema do exemplo 10.2 e usemos uma notação um pouco diferente para as derivadas x_1' e x_2' :

$$x_1' \equiv Dx_1 \qquad x_2' \equiv Dx_2 \tag{10.13}$$

onde D é o operador que deriva em função do tempo a função que estiver à sua direita. O sistema de equações é

$$Dx_1 = x_1 + x_2 (10.14)$$

$$Dx_2 = 4x_1 + x_2 (10.15)$$

podemos considerar a D como um coeficiente que multiplica às funções, tendo o cuidado de não inverter a ordem do produto. Assim, o sistema anterior pode ser visto como um sistema de duas equações, com duas incógnitas x_1 e x_2 e com coeficientes que dependem de D

$$(D-1)x_1 - x_2 = 0 (10.16)$$

$$4x_1 + (1-D)x_2 = 0 (10.17)$$

o sistema é, neste caso, homogéneo, mas para sistemas não homogéneos segue-se o mesmo procedimento, mantendo as funções de t nos lados direitos, sendo consideradas como coeficientes que dependem de t. Para eliminar x_2 no sistema anterior, multiplicamos a primeira equação por (1-D), e somamos-la à primeira equação:

$$(1-D)(D-1)x_1 + 4x_1 = 0 (10.18)$$

o produto (1-D)(D-1) pode ser calculado como um simples produto entre variáveis, já que quando não há funções envolvidas não há perigo de trocar a ordem das funções e dos operadores

$$(1-D)(D-1) = -(D-1)^2 = -D^2 + 2D - 1$$
(10.19)

onde D^2 é a segunda derivada em ordem ao tempo. Substituindo na equação (10.18), obtemos uma equação diferencial de segunda ordem

$$-x_1'' + 2x_1 + 3x_1 = 0 (10.20)$$

que pode ser resolvida para encontrar x_1 ; para calcular x_2 , substitui-se x_1 na primeira equação do sistema.

O método de eliminação consiste realmente no processo inverso ao seguido na resolução do exemplo 10.1, quando transformamos uma equação de ordem superior num sistema de equações de primeira ordem. Existem sistemas de equações mais complicados, nos quais o método de eliminação não é útil; realmente o processo de eliminação de variáveis é igual do que num sistema de equações algébricas, e como o leitor deverá saber existem métodos simples para resolver sistemas de equações algébricas lineares, mas não existem métodos gerais para as equações não lineares. Inclusivamente no caso de sistemas lineares, quando o número de variáveis for elevado, a eliminação das variáveis pode tornar-se complicada; alguns dos métodos usados no caso de equações algébricas lineares, por exemplo a regra de Cramer, introduzem divisão por operadores que implicam ter que calcular o inverso de um operador diferencial, que não é uma tarefa fácil.

10.4 Método matricial

O método matricial é útil para resolver sistemas de equações lineares, de coeficientes constantes, homogéneos e com valores iniciais. A forma geral desses sistemas é

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbb{A}\mathbf{x} \qquad \mathbf{x}(0) = \mathbf{x}_0 \tag{10.21}$$

onde o vetor constante \mathbf{x}_0 dá o valor inicial do vetor \mathbf{x} , em t=0. Vamos encontrar a solução do sistema começando pelo caso mais simples n=1, e generalizando o resultado para qualquer n. No caso n=1, a matriz \mathbb{A} e o vetor \mathbf{x} têm uma única componente, e o sistema é uma única equação diferencial:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax \qquad x(0) = x_0 \tag{10.22}$$

onde a é uma constante real. Já vimos vários métodos para resolver essa equação nos capítulos anteriores. A solução é

$$x = x_0 e^{at} \tag{10.23}$$

A generalização para n > 1 é fácil: substituimos x pelo vetor \mathbf{x} , e a pela matriz \mathbb{A} , mas para ser consistentes com a representação de vetores como matrizes de uma coluna, a constante x_0 deverá vir depois e não antes da função exponencial

$$\mathbf{x} = \mathbf{e}^{\mathbb{A}t} \mathbf{x}_0 \tag{10.24}$$

Mas o que quer dizer a exponencial de uma matriz? perguntará o leitor. Para o nosso objetivo $\exp(\mathbb{A}t)$ deverá ser uma matriz que quando derivada em ordem a t dá a mesma matriz multiplicada (à esquerda) por \mathbb{A} . Partindo da definição do produto entre matrizes e de matrizes por números, podemos definir qualquer função analítica de uma matriz, generalizando a partir da série de McClaurin da função; nomeadamente,

$$e^{\mathbb{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbb{A}t)^n}{n!} = \mathbb{I} + \mathbb{A} + \frac{t}{2}\mathbb{A}^2 + \dots$$
 (10.25)

onde \mathbb{I} é a matriz identidade, com 1 na diagonal e zero fora dela; a partir desta definição podemos demonstrar, derivando cada membro na série, que

$$\frac{\mathrm{d}\,\mathrm{e}^{\mathbb{A}t}}{\mathrm{d}t} = \mathbb{A}\,\mathrm{e}^{\mathbb{A}t} \tag{10.26}$$

10.4 Método matricial 93

Do ponto de vista prático, a série de McClaurin não é útil para calcular a matriz $\exp(\mathbb{A}t)$, pois inclusivamente o cálculo dos primeiros termos na série torna-se tedioso. Para calcular a solução do sistema, $\exp(\mathbb{A}t)\mathbf{x}_0$, calcularemos primeiro um sistema de n soluções particulares simples que formam uma base para o espaço vetorial das soluções \mathbf{x} e encontraremos as coordenadas da solução particular nessa base. Antes de abordar o problema são precisas algumas definições.

10.4.1 Vetores e valores próprios

Dada uma matriz \mathbb{A} de dimensões $n \times n$, Qualquer vetor \mathbf{v} de dimensão n que verifique a propriedade

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \tag{10.27}$$

é designado **vetor próprio**, onde λ é um número designado **valor próprio**. A condição anterior não é trivial; implica que a multiplicação da matriz pelo vetor próprio dá um vetor que é paralelo ao próprio vetor.

Se v for um vetor próprio, qualquer vetor na mesma direção (cv) também será um vetor próprio, correspondente ao mesmo valor próprio; portanto, os vetores próprios correspondentes ao mesmo valor próprio formam um subespaço do espaço dos vetores de dimensão n. O vetor nulo, 0, obviamente verifica a condição de vetor próprio para qualquer matriz e qualquer valor λ , mas não o consideraremos entre os vetores próprios.

Também pode-se mostrar que dois vetores próprios correspondentes a valores próprios diferentes são linearmente independentes. Como o número máximo de vetores linearmente independentes é n, o número máximo de valores próprios diferentes também será n.

Para encontrar os vetores e valores próprios da matriz A, re-escrevemos a equação (10.27) numa outra forma

$$(\mathbb{A} - \lambda \mathbb{I})\mathbf{v} = \mathbf{0} \tag{10.28}$$

Este é um sistema de equações lineares, homogéneo. Para que existam soluções diferentes da solução trivial, é necessário que o determinante do sistema homogéneo seja igual a zero

$$|\mathbb{A} - \lambda \mathbb{I}| = 0 \tag{10.29}$$

esta condição é um polinómio de grau n (**polinómio caraterístico** da matriz) e poderá ter, no máximo, n raízes (valores próprios) diferentes.

No caso de existirem *n* raízes do polinómio caraterístico, reais e diferentes, os vetores próprios correspondentes a cada valor próprio formam subespaços de dimensão 1 (não podem ter dimensão maior), e escolhendo um vetor próprio por cada valor próprio obtemos uma base do espaço de dimensão *n*. Quando existe uma raiz repetida *m* vezes, os vetores próprios correspondentes a esse valor próprio formam um subespaço com dimensão compreendida entre 1 e *m*; se a dimensão for *m*, será ainda possível seleccionar *m* vetores próprios linearmente independentes e completar a base de vetores próprios para o espaço todo. Para o nosso objetivo, no caso de valores próprios complexos será ainda possível seleccionar um vetor por cada valor próprio, só que os vetores seleccionados já não serão vetores próprios.

Exemplo 10.3

Encontre os vetores próprios da matriz:

$$\left[\begin{array}{rrr}
-1 & 0 & 3 \\
1 & 1 & 1 \\
-4 & 0 & 6
\end{array} \right]$$

O polinómio caraterístico é:

$$\begin{vmatrix} -(1+\lambda) & 0 & 3\\ 1 & (1-\lambda) & 1\\ -4 & 0 & (6-\lambda) \end{vmatrix} = -(\lambda-1)(\lambda^2 - 5\lambda + 6) = 0$$
 (10.30)

e, portanto, os valores próprios são

$$\lambda_1 = 1 \qquad \lambda_2 = 2 \qquad \lambda_3 = 3 \tag{10.31}$$

os vetores próprios correspondentes a $\lambda_1 = 1$ são as soluções do sistema

$$\begin{bmatrix} -2 & 0 & 3 & 0 \\ 1 & 0 & 1 & 0 \\ -4 & 0 & 5 & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (10.32)

para $\lambda_2 = 2$ temos:

$$\begin{bmatrix} -3 & 0 & 3 & 0 \\ 1 & -1 & 1 & 0 \\ -4 & 0 & 4 & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 (10.33)

e para $\lambda_3 = 3$:

$$\begin{bmatrix} -4 & 0 & 3 & 0 \\ 1 & -2 & 1 & 0 \\ -4 & 0 & 3 & 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$$
 (10.34)

Os vetores próprios são

$$c_1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad c_2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad c_3 \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix} \qquad \blacksquare \tag{10.35}$$

onde c_1 , c_2 e c_3 são três constantes arbitrárias.

10.4.2 Soluções fundamentais

Dado um vetor qualquer \mathbf{x}_0 , o produto $\exp(\mathbb{A}t)\mathbf{x}_0$ é uma solução particular do sistema

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} \tag{10.36}$$

Se \mathbf{x}_0 for um vetor próprio \mathbf{v} da matriz \mathbb{A} , a solução particular

$$\mathbf{e}^{\mathbb{A}t}\mathbf{v} \tag{10.37}$$

designa-se solução fundamental. Dois vetores próprios linearmente independentes dão origem a duas soluções particulares linearmente independentes. Assim, quando existirem n vetores próprios linearmente independentes, $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, as respetivas soluções, $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$, constituirão um **conjunto fundamental** de soluções, e qualquer outra solução pode ser escrita como combinação linear das soluções fundamentais

$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n \tag{10.38}$$

10.4 Método matricial 95

Ou, em forma mais compata

$$\mathbf{x} = \mathbb{X}\mathbf{c} \tag{10.39}$$

onde a matriz \mathbb{X} define-se como a matriz em que cada coluna é uma das soluções fundamentais \mathbf{x}_i , e as componentes do vetor \mathbf{c} são as constantes c_i . As soluções fundamentais \mathbf{x}_i calculam-se facilmente a partir do seguinte teorema.

Teorema 8

Se \mathbf{v} é um vetor próprio da matriz \mathbb{A} , correspondente ao valor próprio λ , então

$$\mathbf{e}^{\mathbb{A}t}\mathbf{v} = \mathbf{e}^{\lambda t}\mathbf{v} \tag{10.40}$$

Demonstração: usando a série de McClaurin [equação (10.25] da função $\exp(\mathbb{A}t)$, obtemos

$$\mathbf{e}^{\mathbb{A}t}\mathbf{v} = \sum_{m=0}^{\infty} \frac{t^m}{m!} \mathbb{A}^m \mathbf{v}$$
 (10.41)

aplicando m vezes a relação (10.27) que define o vetor próprio,

$$\mathbb{A}^m \mathbf{v} = \lambda^m \mathbf{v} \tag{10.42}$$

e substituindo na série anterior, chegamos ao resultado

$$e^{\mathbb{A}t}\mathbf{v} = \sum_{m=0}^{\infty} \frac{(\lambda t)^m}{m!} \mathbf{v} = e^{\lambda t}\mathbf{v} \qquad \blacksquare$$
 (10.43)

O resultado do teorema 8 é importante porque permite substituir uma função matricial $\exp(\mathbb{A}t)$, por uma função ordinária $\exp(\lambda t)$; é preciso ter em conta que a dita substituição é apenas possível quando a função estiver a multiplicar a um vetor próprio da matriz \mathbb{A} .

As componentes da **matriz fundamental** do sistema, \mathbb{X} , são funções do tempo. No instante t = 0, a solução deverá ser igual ao vetor de condições iniciais, $\mathbf{x}(0) = \mathbf{x}_0$, e cada solução fundamental é igual ao correspondente vetor próprio

$$\mathbf{x}_i(0) = \mathbf{e}^0 \mathbf{v}_i = \mathbf{v}_i \tag{10.44}$$

Substituindo na equação (10.39), obtemos um sistema linear de equações algébricas

$$V\mathbf{c} = \mathbf{x}_0 \tag{10.45}$$

onde a matriz \mathbb{V} é a matriz em que cada coluna é um dos vetores próprios \mathbf{v}_i . A resolução desse sistema permite encontrar as constantes c_i

$$\mathbf{c} = \mathbb{V}^{-1} \mathbf{x}_0 \tag{10.46}$$

e a solução (10.39) é igual a

$$\mathbf{x} = \mathbb{X} \, \mathbb{V}^{-1} \mathbf{x}_0 \tag{10.47}$$

Comparando as equações (10.24) e (10.47), que são duas formas diferentes de escrever a solução particular, válidas para qualquer vetor \mathbf{x}_0 , obtemos um resultado importante

$$\mathbf{e}^{\mathbb{A}t} = \mathbb{X}\mathbb{V}^{-1} \tag{10.48}$$

Esta equação permite calcular a exponencial de qualquer matriz \mathbb{A} , a partir dos seus vetores e valores próprios.

10.4.3 Valores próprios complexos

Quando existem valores próprios complexos, procuramos um vetor próprio complexo, $\mathbf{w} = \mathbf{a} + i\mathbf{b}$, e as partes real (a) e imaginária (b) desse vetor serão usados como vetores da base. As correspondentes soluções fundamentais já não serão dadas pelo teorema 8, pois os dois vetores não são vetores próprios, mas como ($\mathbf{a} + i\mathbf{b}$) sim é vetor próprio, usamos a equação

$$e^{At}(\mathbf{a} + i\mathbf{b}) = e^{\lambda t}(\mathbf{a} + i\mathbf{b}) \tag{10.49}$$

Comparando as partes reais e imaginárias nos dois lados da equação, é possível calcular as duas soluções fundamentais $\exp(\mathbb{A}t)\mathbf{a}$ e $\exp(\mathbb{A}t)\mathbf{b}$.

Exemplo 10.4

Encontre a solução geral do sistema de equações diferenciais $\mathbf{x}' = \mathbb{A}\mathbf{x}$, onde \mathbb{A} é a seguinte matriz:

$$\mathbb{A} = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right]$$

O polinómio caraterístico é:

$$\begin{vmatrix} (1-\lambda) & 0 & -1 \\ 0 & (2-\lambda) & 0 \\ 1 & 0 & (1-\lambda) \end{vmatrix} = (2-\lambda)[(\lambda-1)^2 + 1] = 0$$
 (10.50)

e, portanto, os valores próprios são

$$\lambda_1 = 2$$
 $\lambda_2 = 1 + i$ $\lambda_3 = 1 - i$ (10.51)

um vetor próprio (\mathbf{v}_1) correspondente a $\lambda_1=2$ obtém-se a partir da solução do sistema

$$\begin{bmatrix} -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{bmatrix} \implies \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (10.52)

e a solução particular correspondente a \mathbf{v}_1 é

$$\mathbf{e}^{\mathbb{A}t}\mathbf{v}_1 = \begin{bmatrix} 0 \\ \mathbf{e}^{2t} \\ 0 \end{bmatrix} \tag{10.53}$$

Outras duas soluções linearmente independentes podem ser obtidas a partir de λ_2 ou λ_3 . Para $\lambda_3 = 1 - i$ obtemos:

$$\begin{bmatrix} \mathbf{i} & 0 & -1 & 0 \\ 0 & (1+\mathbf{i}) & 0 & 0 \\ 1 & 0 & \mathbf{i} & 0 \end{bmatrix} \implies \mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ \mathbf{i} \end{bmatrix}$$
 (10.54)

A partir de w pode obter-se uma solução particular complexa:

$$e^{\mathbb{A}t}\mathbf{w} = e^{(1-i)t} \begin{bmatrix} 1\\0\\i \end{bmatrix} = e^t \begin{bmatrix} \cos t - i\sin t\\0\\\sin t + i\cos t \end{bmatrix}$$
(10.55)

As partes real e imaginária desta solução são também soluções, e junto com a solução obtida a partir de λ_1 , constituem um conjunto fundamental de soluções do sistema:

$$\begin{bmatrix} 0 \\ e^{2t} \\ 0 \end{bmatrix}, \quad e^{t} \begin{bmatrix} \cos t \\ 0 \\ \sin t \end{bmatrix}, \quad e^{t} \begin{bmatrix} -\sin t \\ 0 \\ \cos t \end{bmatrix}$$
 (10.56)

A solução geral do sistema é qualquer combinação linear do conjunto fundamental de soluções:

$$\mathbf{x}(t) = \begin{bmatrix} 0 & e^t \cos t & -e^t \sin t \\ e^{2t} & 0 & 0 \\ 0 & e^t \sin t & e^t \cos t \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\blacksquare$$
 (10.57)

10.5 Vetores próprios generalizados

Falta-nos considerar o caso em que aparecem raízes do polinómio caraterístico com multiplicidade m > 1. No caso das raízes não repetidas, o sistema de equações lineares que permitem calcular o vetor próprio correspondente é sempre um sistema com uma variável livre (subespaço de dimensão igual a um) que pode ser arbitrada. No caso da raiz de multiplicidade m, o sistema de equações lineares que definem os vetores próprios poderá ter entre uma e m variáveis livres. Se existirem m variáveis livres, obtêm-se m vetores próprios arbitrando valores linearmente independentes para elas (o mais fácil será usar conjuntos de variáveis onde unicamente uma delas é diferente de zero). Se o sistema tiver menos do que m variáveis livres, para completar m vetores fundamentais usaremos vetores própios generalizados.

Um vetor próprio generalizado da matriz \mathbb{A} , correspondente ao valor próprio λ e ao vetor próprio \mathbf{v} , é um vetor \mathbf{u} que verifica a seguinte condição

$$(\mathbb{A} - \lambda \mathbb{I})\mathbf{u} = \mathbf{v} \tag{10.58}$$

Para construir a solução fundamental correspondente a um vetor próprio generalizado, usa-se o seguinte teorema.

Teorema 9

Se \mathbf{u} é um vetor próprio generalizado da matriz \mathbb{A} , correspondente ao valor próprio \mathbf{v} , então

$$e^{\mathbb{A}t}\mathbf{u} = e^{\lambda t}(\mathbf{u} + t\mathbf{v}) \tag{10.59}$$

Demonstração: usando a série de McClaurin de $\exp(\mathbb{A}t)$,

$$\mathbf{e}^{\mathbb{A}t}\mathbf{u} = \sum_{m=0}^{\infty} \frac{t^m}{m!} \mathbb{A}^m \mathbf{u}$$
 (10.60)

a partir da definição do vetor próprio generalizado, obtemos

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u} + \mathbf{v} \tag{10.61}$$

e multiplicando repetidas vezes pela matriz A vemos que

$$\mathbb{A}^m \mathbf{u} = \lambda^m \mathbf{u} + m\lambda^{m-1} \mathbf{v} \tag{10.62}$$

substituindo na série de McClaurin,

$$e^{\mathbb{A}t}\mathbf{u} = \sum_{m=0}^{\infty} \frac{(\lambda t)^m}{m!} \mathbf{u} + \sum_{m=1}^{\infty} \frac{t(\lambda t)^{m-1}}{(m-1)!} \mathbf{v}$$
 (10.63)

As duas séries dão o resultado que pretendiamos encontrar.

O sistema que define os vetores generalizados poderá ter variáveis livres, dando origem a vários vetores próprios generalizados linearmente independentes, ou poderá não ter solução quando não existirem vetores próprios generalizados correspondentes a um determinado vetor próprio. Se depois de procurar vetores próprios generalizados não existirem suficientes vetores para completar uma base, será preciso procurar vetores próprios generalizados, de segunda ordem, que são vetores próprios generalizados, associados a um outro vetor próprio generalizado.

No fim da próxima seção veremos um exemplo no qual é necessário encontrar um vetor próprio generalizado.

10.6 Sistemas lineares não homogéneos com coeficientes constantes

Vamos estudar nesta seção um método para calcular a solução de um sistema linear não homogéneo, de coeficientes constates [equação (10.10)]

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{f} \tag{10.64}$$

No caso mais simples n = 1, o sistema é uma única equação linear de primeira ordem

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax + f \tag{10.65}$$

onde a é uma constante real e f é uma função de t. Resolvendo o sistema por meio da transformada de Laplace, optemos a solução

$$x(t) = x(0)e^{at} + e^{at} * f (10.66)$$

a generalização deste resultado para qualquer n, é

$$\mathbf{x} = \mathbf{e}^{\mathbb{A}t}\mathbf{x}(0) + \mathbf{e}^{\mathbb{A}t} * \mathbf{f}(t) \tag{10.67}$$

Para calcular o produto de convolução entre matrizes, seguem-se as regras habituais do produto entre matrizes, mas cada produto entre dois termos da matriz será um produto de convolução entre as respetivas funções.

O primeiro termo na solução (10.67) é a solução do sistema homogéneo correspondente, com as mesmas condições iniciais do sistema não homogéneo. E o segundo termo é uma solução particular do sistema não homogéneo, já que no caso particular $\mathbf{x}(0) = \mathbf{0}$ obtém-se essa solução.

Usando a expressão (10.48) obtida para a exponencial da matriz $\mathbb{A}t$, podemos escrever a solução particular da seguinte forma

$$\mathbf{x}_n = \mathbb{X} \mathbb{V}^{-1} * \mathbf{f} \tag{10.68}$$

A inversa da matriz de vetores próprios, V^{-1} , é uma matriz constante, independente de t, de maneira que pode passar a multiplicar no segundo membro do produto de convolução:

$$\mathbf{x}_p = \mathbb{X} * (\mathbb{V}^{-1}\mathbf{f}) \tag{10.69}$$

Não será preciso calcular a inversa de \mathbb{V} , já que o vetor entre parêntesis é simplesmente a solução do sistema de equações lineares

$$V\mathbf{u} = \mathbf{f} \tag{10.70}$$

Com os vetores próprios da matriz \mathbb{A} e o vetor \mathbf{f} calcula-se o vetor \mathbf{u} , e a solução particular é

$$y_p = \mathbb{X} * \mathbf{u} \tag{10.71}$$

Exemplo 10.5

Resolva o problema de valor inicial

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{f} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

onde a matriz \mathbb{A} e os vetores \mathbf{f} e \mathbf{x}_0 são os seguintes:

$$\mathbb{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{f} = \mathbf{e}^t \begin{bmatrix} 0 \\ 1 \\ t \end{bmatrix} \qquad \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Com uma matriz tão simples, o mais fácil seria escrever as três equações diferenciais explicitamente e resolve-las diretamente. No entanto, vamos usar este exemplo simples para ilustar o método proposto nesta seção. O polinómio caraterístico da matriz \mathbb{A} é

$$(\lambda - 1)^3 = 0 \tag{10.72}$$

Existe um único valor próprio, $\lambda = 1$, com multiplicidade 3. O Sistema que define os vetores próprios será

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (10.73)

que tem duas variáveis livres (a e c); assim, obtemos dois vetores próprios linearmente independentes:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{10.74}$$

a razão para os designar por \mathbf{v}_1 e \mathbf{v}_3 será discutida mais logo. O vetor fundamental \mathbf{v}_2 deverá ser um vetor próprio generalizado de \mathbf{v}_1 ou de \mathbf{v}_3 ; começemos por procurar vetores próprios generalizados de \mathbf{v}_3 ; o sistema que os define é o mesmo sistema (10.73), mas com o lado direito igual a \mathbf{v}_3

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (10.75)

Este sistema não tem solução e, portanto, \mathbf{v}_3 não tem vetores próprios generalizados. Com \mathbf{v}_1 obtemos o seguinte sistema

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 (10.76)

com duas variáveis livres e b = 1. A escolha mais simples será:

$$\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \tag{10.77}$$

a matriz \mathbb{V} de vetores fundamentais será a matriz identidade (o qual explica porque os dois vetores próprios foram definidos como \mathbf{v}_1 e \mathbf{v}_3). E a matriz fundamental \mathbb{X} obtem-se usando os teoremas 8 e 9

$$X = e^{t} \begin{bmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (10.78)

o vetor \mathbf{u} definido na equação (10.70) será igual ao vetor \mathbf{f} , já que a matriz \mathbb{V} é a identidade; pela mesma razão, o vetor \mathbf{c} definido na equação (10.45) será igual ao vetor \mathbf{x}_0 . A solução do problema calcula-se a partir de:

$$\mathbf{x} = \mathbb{X}\mathbf{c} + \mathbb{X} * \mathbf{u} = \begin{bmatrix} t e^t \\ e^t \\ 0 \end{bmatrix} + \begin{bmatrix} e^t * (t e^t) \\ e^t * e^t \\ e^t * (t e^t) \end{bmatrix}$$
(10.79)

Os dois produtos de convolução podem ser calculados usando a transformada de Laplace:

$$e^{t} * e^{t} = \mathcal{L}^{-1} \left\{ \frac{1}{(s-1)^{2}} \right\} = t e^{t}$$
 (10.80)

$$(te^t) * e^t = \mathcal{L}^{-1} \left\{ \frac{1}{(s-1)^3} \right\} = \frac{t^2}{2} e^t$$
 (10.81)

a soulção do problema é

$$\mathbf{x} = \mathbf{e}^t \begin{bmatrix} t + \frac{t^2}{2} \\ 1 + t \\ \frac{t^2}{2} \end{bmatrix}$$
 (10.82)

10.7 Problemas

Resolva os seguintes problemas de valores iniciais pelo método da eliminação

1.
$$\begin{cases} x' = y - x \\ y' = y - 2\sin t \end{cases}$$

$$\begin{cases} x(0) = 0 \\ y(0) = 1 \end{cases}$$
2.
$$\begin{cases} x' = y - x \\ y' = y - 2x + \sin t \end{cases}$$

$$\begin{cases} x(0) = 0 \\ y(0) = 0 \end{cases}$$
3.
$$\begin{cases} x' = z \\ y' = x \\ z' = y \end{cases}$$

$$\begin{cases} x(0) = 0 \\ y(0) = -1 \\ z(0) = 1 \end{cases}$$

Nos problemas seguintes calcule a matriz e^{At} e use o resultado para encontrar a solução do problema de valor inicial

101

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

4.
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

5.
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

6.
$$\mathbf{A} = \begin{bmatrix} 4 & 5 \\ -4 & -4 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

7.
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

8.
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\mathbf{9. \ A} = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \qquad \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

10.
$$\mathbf{A} = \begin{bmatrix} -7 & 0 & 6 \\ 0 & 5 & 0 \\ 6 & 0 & 2 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

11.
$$\mathbf{A} = \begin{bmatrix} 1 & -4 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

Com as matrizes dadas em cada caso resolva o problema de valor inicial

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}\mathbf{x} + \mathbf{f} \qquad \mathbf{x}(0) = \mathbf{x}_0$$

12.
$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$
 $\mathbf{f} = \begin{bmatrix} t \\ t \end{bmatrix}$ $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\mathbf{13. \ A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{f} = \mathbf{e}^t \begin{bmatrix} 0 \\ 1 \\ t \end{bmatrix} \qquad \qquad \mathbf{x}_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

14.
$$\mathbf{A} = \begin{bmatrix} 2 & -2 \\ 4 & -2 \end{bmatrix}$$
 $\mathbf{f} = \begin{bmatrix} 0 \\ \delta(t-\pi) \end{bmatrix}$ $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

15.
$$\mathbf{A} = \begin{bmatrix} -1 & -1 & -2 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

$$\mathbf{f} = \mathbf{e}^t \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right]$$

$$\mathbf{x}_0 = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$$

16.
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$

$$\mathbf{f} = \begin{bmatrix} 1 - u(t-1) \\ 0 \end{bmatrix} \qquad \mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_0 = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

Equações de derivadas parciais

11.1 Introdução

Uma equação de derivadas parciais é uma relação entre as derivadas de uma função de várias variáveis. Alguns exemplos, que aparecem em diversos problemas, são as seguintes equações:

11.1.1 Equação de transferência de calor

. Se T(t,x) representa a temperatura num instante t, na posição x sobre uma barra, a equação de transferência de calor em uma dimensão é:

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2} \tag{11.1}$$

onde a é uma constante. A função T é a variável dependente, e t e x são as variáveis independentes.

11.1.2 Equação de onda

. Uma função de onda, em duas dimensões, é uma função f(x,y,t) solução da equação

$$\frac{\partial^2 f}{\partial t^2} = v^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) \tag{11.2}$$

onde v é uma constante (velocidade de propagação). Neste caso, existem 3 variáveis independentes, nomeadamente, as duas coordenadas espaciais x e y, e o tempo t.

11.1.3 Equação de Laplace

. O potencial eletrostático V(x,y,z), numa região onde não existam cargas, verifica a equação:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0 \tag{11.3}$$

Os exemplos anteriores correspondem todos a equações lineares, nas quais uma combinação linear de soluções é também solução.

11.2 Resolução de equações simples

As equações de derivadas parciais em que aparece uma única derivada, podem ser integradas facilmente. Consideremos por exemplo a equação

$$\frac{\partial^2 v}{\partial x^2} = 3y \tag{11.4}$$

como a segunda derivada em ordem a x é igual à derivada da primeira derivada parcial em ordem a x, portanto, a derivada parcial $\partial v/\partial x$ será igual à primitiva de 3y, ao longo de um percurso com y constante

$$\frac{\partial v}{\partial x} = \int 3y \, dx$$
 (y constante) (11.5)

$$= 3xy + f(y) \tag{11.6}$$

onde f(y) pode ser qualquer função arbitrária que não dependa de x. Integrando uma segunda vez, com y constante, obtemos a função v(x,y)

$$v = \frac{3}{2}yx^2 + xf(y) + g(y)$$
 (11.7)

Esta solução é bastante geral, pois depende de duas funções arbitrárias f e g. Para obter uma solução única, será necessário saber algumas condições fronteira. As condições fronteira são tão importantes quanto a equação diferencial para determinar a forma da solução, já que com diferentes condições fronteira é possível obter soluções muito diversas.

11.3 Método da transformada de Laplace

As equações de derivadas parciais lineares com condições iniciais, podem ser resolvidas por meio da transformada de Laplace. As condições iniciais (na variável t) para uma equação de ordem nem t, consistem nos valores da função e das suas primeiras n-1 derivadas no instante t=0. Se, por exemplo, a solução da equação for uma função de duas variáveis, v(x,t), e a equação for de segunda ordem em t, as condições iniciais serão

$$v(x,0) = f(x) \tag{11.8}$$

$$v(x,0) = f(x)$$

$$\frac{\partial v}{\partial t}(x,0) = g(x)$$
(11.8)
(11.9)

onde f e g são duas funções de x dadas. A transformada de Laplace de v(x,t) será uma função $\overline{v}(x,s)$, definida por meio do seguinte integral

$$\overline{v}(x,s) = \int_{0}^{\infty} e^{-st} v(x,t) dx$$
 (11.10)

As duas condições fronteira permitem calcular as transformadas das duas primeiras derivadas, usando a propriedade da transformada da derivada; o resultado obtido é

$$\mathcal{L}\left\{\frac{\partial v}{\partial t}\right\} = s\overline{v}(x,s) - f(x) \tag{11.11}$$

$$\mathcal{L}\left\{\frac{\partial^2 v}{\partial t^2}\right\} = s^2 \overline{v}(x,s) - sf(x) - g(x)$$
 (11.12)

Como *x* e *t* são variáveis independentes, e como a transformada de Laplace foi definida em ordem a *t*, as ordem entre as derivadas em *x* e a transformada de Laplace são independentes; por exemplo,

$$\mathcal{L}\left\{\frac{\partial v}{\partial x}\right\} = \frac{\partial}{\partial x}\mathcal{L}\left\{v(x,t)\right\} = \frac{\mathrm{d}\overline{v}}{\mathrm{d}x}$$
 (11.13)

$$\mathcal{L}\left\{\frac{\partial^2 v}{\partial x^2}\right\} = \frac{\partial^2}{\partial x^2} \mathcal{L}\left\{v(x,t)\right\} = \frac{\mathrm{d}^2 \overline{v}}{\mathrm{d}x^2}$$
 (11.14)

11.4 Transformadas de Fourier

11.4.1 Produto escalar entre funções

 \mathbf{Um} produto escalar entre duas funções f e g pode ser definido da seguinte forma:

$$\langle f(x), g(x) \rangle = \int_{0}^{L} f(x)g(x) dx$$
 (11.15)

propriedades:

- 1. $\langle f, g \rangle$ é um número real.
- 2. $\langle f, g \rangle = \langle g, f \rangle$
- 3. $\langle cf, g \rangle = c \langle f, g \rangle$, para qualquer constante c
- 4. $\langle f, g+h \rangle = \langle f, g \rangle + \langle f, h \rangle$
- 5. se $f \neq 0 \Rightarrow \langle f, f \rangle > 0$

estas propriedades são idênticas às correspondentes propriedades do produto escalar entre vetores, e permitem definir o módulo de uma função e ângulos entre funções. O módulo da função é

$$|f| = \left(\langle f, f \rangle\right)^{1/2} \tag{11.16}$$

e duas funções f e g são ortogonais se:

$$\langle f, g \rangle = 0 \tag{11.17}$$

11.4.2 Série seno de Fourier

A seguinte sucessão de funções seno:

$$\left\{ S_n(x) = \sin\left(\frac{n\pi}{L}x\right) \right\} \tag{11.18}$$

são todas ortogonais; nomeadamente:

$$\langle S_n, S_m \rangle = \begin{cases} 0, & n \neq m \\ \frac{L}{2}, & n = m \end{cases}$$
 (11.19)

em relação ao produto escalar definido acima. Qualquer outra função definida no intervalo 0 < x < L é linearmente dependente do conjunto de funções S_n (com algumas excepções que discutiremos mais logo); assim, qualquer função f(x) definida no dito intervalo pode ser escrita como combinação linear da sucessão $\{S_n\}$:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right)$$
 (11.20)

a série anterior é designada por **série seno de Fourier**. É fácil demonstrar (usando a ortogonalidade entre as funções S_n) que os coeficientes b_n na série são iguais a:

$$a_n = \frac{2}{L} \langle f, S_n \rangle = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$
 (11.21)

o integral anterior chama-se **transformada seno de Fourier** da função f(x).

11.4.3 Série co-seno de Fourier

Outra sucessão de funções ortogonais é a sucessão de funções co-seno, definida por:

$$\left\{ C_n(x) = \cos\left(\frac{n\pi}{L}x\right) \right\} \tag{11.22}$$

A propriedade de ortogonalidade é:

$$\langle C_n, C_m \rangle = \begin{cases} 0, & n \neq m \\ \frac{L}{2}, & n = m \neq 0 \end{cases} \text{ (ou } L \text{ se } n = m = 0)$$
 (11.23)

Qualquer função definida no intervalo 0 < x < L é linearmente dependente do conjunto de funções C_n (com algumas excepções que discutiremos mais logo); assim, uma função f(x) pode também ser escrita como uma **série co-seno de Fourier**:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{L}x\right)$$
 (11.24)

onde os coeficientes a_n são iguais a:

$$a_n = \frac{2}{L} \langle f, C_n \rangle = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi}{L}x\right) dx$$
 (11.25)

e o integral anterior designa-se **transformada co-seno de Fourier** da função f(x).

11.5 Resolução de EDPs usando transformadas de Fourier

A transformada de Fourier é útil para resolver equações de derivadas parciais, de segunda ordem, com condições fronteira. Se v(x,y) for a variável dependente, e tivermos condições fronteira para x = 0 e x = L, começamos por definir a transformada de Fourier da seguinte forma

$$\overline{\nu}_n(y) = \frac{2}{L} \langle \nu(x, y), \phi_n(x) \rangle \tag{11.26}$$

onde ϕ_n será uma das seguintes **funções próprias**:

$$\phi_n(x) = \begin{cases} \sin(\lambda_n x) \\ \cos(\lambda_n x) \end{cases}$$
 (11.27)

e λ_n são certos **valores próprios** escolhidos em forma adequada (já veremos a seguir qual será a escolha apropriada em cada caso).

11.5.1 Propriedade operacional

A transformada da segunda derivada tem a propriedade importante (propriedade operacional) de depender da transformada da função. Por definição, a transformada da segunda derivada parcial é

$$\left(\frac{\overline{\partial^2 v}}{\overline{\partial x^2}}\right)_n = \frac{2}{L} \langle \phi_n, \frac{\partial^2 v}{\partial x^2} \rangle \tag{11.28}$$

integrando por partes duas vezes obtemos:

$$\left(\frac{\overline{\partial^2 v}}{\partial x^2}\right)_n = \frac{2}{L} \int_0^L \phi_n \frac{\partial^2 v}{\partial x^2} dx$$
 (11.29)

$$= \frac{2}{L} \left(\frac{\partial v}{\partial x} \phi_n \Big|_{0}^{L} - \int_{0}^{L} \phi_n' \frac{\partial v}{\partial x} dx \right)$$
 (11.30)

$$= \frac{2}{L} \left(\frac{\partial v}{\partial x} \phi_n - v \phi_n' \right)_0^L + \frac{2}{L} \int_0^L \phi_n' v \, dx$$
 (11.31)

a segunda derivada das funções próprias é sempre (tanto no caso do seno como no caso do co-seno) proporcional a si própria

$$\phi_n'' = -\lambda_n^2 \phi_n \tag{11.32}$$

Assim, a propriedade operacional é

$$\left(\frac{\overline{\partial^2 v}}{\partial x^2}\right)_n = \frac{2}{L} \left(\frac{\partial v}{\partial x}(L)\phi_n(L) - v(L)\phi_n'(L) - \frac{\partial v}{\partial x}(0)\phi_n(0) + v(0)\phi_n'(0)\right) - \lambda_n^2 \overline{v}_n \tag{11.33}$$

Como vamos resolver uma equação de segunda ordem, são dadas apenas duas condições fronteira que permitem calcular dois dos termos dentro dos parêntesis. Podemos usar a liberdade que temos na escolha das funções e valores próprios, para eliminar os outros dois termos dentro dos parêntesis. Estudaremos as quatro possibilidades:

1. Os valores de v(0,y) e v(L,y) são dados. Neste caso será necessário arbitrar

$$\phi_n(0) = \phi_n(L) = 0 \tag{11.34}$$

O qual determina as seguintes funções e valores próprios

$$\phi_n(x) = \sin(\lambda_n x) \qquad \lambda_n = \frac{n\pi}{L} \tag{11.35}$$

A transformada correspondente é a transformada seno de Fourier.

2. Os valores de $\partial v(0,y)/\partial x$ e $\partial v(L,y)/\partial x$ são dados. Neste caso será necessário arbitrar

$$\phi_n'(0) = \phi_n'(L) = 0 \tag{11.36}$$

E, portanto, as funções e valores próprios são

$$\phi_n(x) = \cos(\lambda_n x)$$
 $\lambda_n = \frac{n\pi}{L}$ (11.37)

A transformada transformada é a transformada co-seno de Fourier.

3. Os valores de v(0,y) e $\partial v(L,y)/\partial x$ são dados. Neste caso será necessário arbitrar

$$\phi_n(0) = \phi_n'(L) = 0 \tag{11.38}$$

E, portanto, as funções e valores próprios são

$$\phi_n(x) = \sin(\lambda_n x)$$
 $\lambda_n = \left(n + \frac{1}{2}\right) \frac{\pi}{L}$ (11.39)

A transformada correspondente é a transformada seno modificada.

4. Os valores de $\partial v(0,y)/\partial x$ e v(L,y) são dados. Neste caso será necessário arbitrar

$$\phi_n'(0) = \phi_n(L) = 0 \tag{11.40}$$

E, portanto, as funções e valores próprios são

$$\phi_n(x) = \cos(\lambda_n x)$$
 $\lambda_n = \left(n + \frac{1}{2}\right) \frac{\pi}{L}$ (11.41)

A transformada correspondente é a transformada co-seno modificada.

Exemplo 11.1

Resolva a equação de Laplace:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{11.42}$$

para as seguintes condições fronteira:

$$\frac{\partial T}{\partial x}(0,y) = u(1-y) \qquad \frac{\partial T}{\partial y}(x,0) = 0 \qquad T(2,y) = 0 \qquad T(x,2) = 0$$
 (11.43)

A equação pode ser resolvida usando a transformada de Fourier de T(x,y). em ordem a y

$$t_n = \langle T(x, y), \phi_n(y) \rangle = \int_0^2 T(x, y) \phi_n(y) \, \mathrm{d}y$$
 (11.44)

Atendendo às condições fronteira do problema, arbitramos as seguintes condições para as funções próprias

$$\phi_n'(0) = 0 \qquad \phi_n(2) = 0 \tag{11.45}$$

que conduzem às seguintes funções próprias e valores próprios

$$\phi_n(y) = \cos(\lambda_n y) \qquad \lambda_n = (2n+1)\frac{\pi}{4}$$
 (11.46)

as transformadas das derivadas parciais de T são:

$$\left(\frac{\partial^2 T}{\partial x^2}\right)_n = \frac{\mathrm{d}^2 t_n}{\mathrm{d}x^2} \tag{11.47}$$

$$\left(\frac{\partial^2 T}{\partial y^2}\right)_n = \int_0^2 \frac{\partial^2 T}{\partial y^2} \cos(\lambda_n y) \, dy = \frac{\partial T}{\partial y} \cos(\lambda_n y) \Big|_0^2 + \lambda_n \int_0^2 \frac{\partial T}{\partial y} \sin(\lambda_n y) \, dy$$
$$= \lambda_n T \sin(\lambda_n y) \Big|_0^2 - \lambda_n^2 \int_0^2 T \cos(\lambda_n y) \, dy = -\lambda_n^2 t_n$$

A transformada de Fourier da equação de Laplace é

$$\frac{\mathrm{d}^2 t_n}{\mathrm{d}x^2} - \lambda_n^2 t_n = 0 \tag{11.48}$$

esta é uma equação diferencial ordinária, linear, de coeficientes constantes. As duas raízes do polinómio caraterístico são λ_n e $-\lambda_n$, e a solução geral é

$$t_n = A_n e^{\lambda_n x} + B_n e^{-\lambda_n x} \tag{11.49}$$

As condições fronteira para t_n obtêm-se a partir das transformadas de Fourier das condições fronteira do problema:

$$t_n(2) = \langle T(2, \mathbf{y}), \phi_n(\mathbf{y}) \rangle = 0 \tag{11.50}$$

$$\frac{\mathrm{d}t_n(0)}{\mathrm{d}x} = \langle u(1-y), \phi_n(y) \rangle = \int_0^1 \cos(\lambda_n y) \, \mathrm{d}y = \frac{\sin \lambda_n}{\lambda_n}$$
 (11.51)

substituindo estas condições na solução geral $t_n(x)$, obtemos

$$A_n - B_n = \frac{\sin \lambda_n}{\lambda_n^2}$$
$$A_n e^{2\lambda_n} + B_n e^{-2\lambda_n} = 0$$

Resolvendo este sistema, obtemos as constantes A_n , B_n e a solução particular

$$t_n = \frac{\sin \lambda_n e^{-2\lambda_n}}{2\lambda_n^2 \cosh(2\lambda_n)} e^{\lambda_n x} - \frac{\sin \lambda_n e^{2\lambda_n}}{2\lambda_n^2 \cosh(2\lambda_n)} e^{-\lambda_n x}$$
(11.52)

A função T(x,y) é dada pela série de Fourier

$$T(x,y) = \sum_{n=0}^{\infty} \frac{\sin \lambda_n}{\lambda_n^2 \cosh(2\lambda_n)} \sinh[\lambda_n(x-2)] \cos(\lambda_n y)$$
 (11.53)

11.6 Problemas

Encontre a solução geral u(x,y) das seguintes equações

$$1. \ \frac{\partial u}{\partial x} = y$$

$$2. \ \frac{\partial^2 u}{\partial x \partial y} = 0$$

$$3. \ \frac{\partial^2 u}{\partial x \partial y} = x^2 + y^2$$

Utilizando transformadas de Laplace, resolva as seguintes equações de derivadas parciais

4.
$$\frac{\partial v}{\partial t} + 2\frac{\partial v}{\partial x} = -v \qquad (t > 0) \qquad (x > 0)$$
$$v(x,0) = 0 \qquad v(0,t) = \begin{cases} 2t & t < 1\\ 0 & t > 1 \end{cases}$$

5.
$$\frac{\partial^{2} v}{\partial t^{2}} - c^{2} \frac{\partial^{2} v}{\partial x^{2}} = 0 \qquad (t > 0) \qquad (x > 0)$$
$$v(0,t) = \sin t \qquad \lim_{x \to \infty} v(x,t) = 0 \qquad v(x,0) = \frac{\partial v}{\partial t} \Big|_{t=0} = 0$$

6.
$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = xt$$
 $(t > 0)$ $(x > 0)$ $u(x,0) = 0$

Encontre as séries de Fourier seno e co-seno das seguintes funções

7.
$$f(x) = 1$$
 $0 < x < \pi$
8. $f(x) = 1 - x$ $0 < x < 1$

Resolva as seguintes equações

9.
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
 (0 < x < 1) (t > 0)

$$u(0,t) = u(1,t) = 0$$

$$u(x,0) = 5\sin(3\pi x)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0$$

10.
$$\frac{\partial u}{\partial t} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = 0 \qquad (0 < x < 1) \qquad (t > 0)$$
$$u(x,0) = x^2 \qquad u(1,t) = 1 \qquad \frac{\partial u}{\partial x}\Big|_{x=0} = 1$$

11.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-x}$$
 (0 < y < 1) (x > 0)
$$u(x,0) = u(0,y) = 1$$

$$u(x,1) = 0$$

$$\lim_{x \to \infty} u(x,y)$$
 finito

Respostas aos problemas

Capítulo 1

Nos problemas 7 ao 10 existem mais soluções além das apresentadas a continuação, mas estas são as únicas que se espera que um aluno sem conhecimento previo de equações diferenciais descubra

7.
$$y = e^{y}$$

8.
$$y = -\frac{1}{x}$$

9.
$$y = 1$$

7.
$$y = e^x$$
 8. $y = -\frac{1}{x}$ **9.** $y = 1$ **10.** $y = \frac{e^x}{2}$

11.
$$y = c_1 + c_2 x + \frac{x^2}{2}$$

onde c_1 e c_2 são constantes arbitrárias.

- **14.** Sim
- **15.** Sim
- **16.** Não
- **17.** (a) Demonstra-se por substituição direta e conferindo a condição inicial.
 - (b) Demonstra-se em forma semelhante à alinha anterior, mas é preciso ter em conta que $\sqrt{a^2} = |a|$.
 - (c) Em y = 0 verificam-se as condições do teorema de Picard, e como podemos ver no gráfico existe solução única em cada caso. Nos pontos y = 0 não se verifica a condição de continuidade de $\partial f/\partial y$ e existe um número infinito de soluções. Finalmente, em y < 0 não se verifica nenhuma das duas condições e não existem soluções.

$$1. y = \arcsin\sqrt{\frac{2}{1+t^2}}$$

2.
$$y = t^2 - 2t + 3$$

3.
$$x = 2 \left\{ \arctan \left[\sqrt{3} \operatorname{tg} \left(\frac{y\sqrt{3}}{2} \right) \right] - y \right\}$$

4.
$$\ln |y^2 - ty + 2t^2| = c - \frac{2}{\sqrt{7}} \arctan \left(\frac{2y - t}{t\sqrt{7}} \right)$$

$$5. \ x^2 + 2xy + 2y^2 = 34$$

$$6. y^2 + e^x \sin y = c$$

7.
$$t+15 = (t-y-7)(c+3\ln|t-y-7|)$$

8.
$$\frac{(y+x/2+3/2)^2}{(y+x+2)^3} = 0.098$$

9.
$$y^3 + 3y - x^3 + 3x = 2$$

10.
$$y = (t^2 - 2 + 7e^{-t^2/2})^2$$

11.
$$y = \frac{c}{x^2} + \frac{x^3}{5}$$

12.
$$(x^2 + y^2 + 1)e^{-y^2} = c$$

13.
$$x^2 + 2x^2y - y^2 = c$$

14.
$$x^3 + y^3 - 3xy = c$$

$$15. \ y_1 = \frac{1}{x} - \frac{2x}{x^2 + 2c}$$

16.
$$y_2 = \sin x + \frac{2}{c \cos x - \sin x}$$
 $y_2 = \sin x$

 $y_2 = \frac{1}{r}$

1.
$$(4813 \pm 39)$$
 anos

- 2. 10639084 habitantes
- 3. 10746263 habitantes
- **4.** 590 m

5. (b)
$$k = \frac{1}{t(a-b)} \ln \left| \frac{b(a-x)}{a(b-x)} \right|$$
; $x = a \frac{1 - \exp[kt(a-b)]}{1 - (a/b) \exp[kt(a-b)]}$

(c)
$$k = \frac{1}{at} \ln \left| \frac{b}{b-x} \right|$$

(d)
$$k = \frac{x}{at(a-x)}$$

6.
$$y^4 = cx$$

7. (a)
$$T' + T = 15 + 10\sin(2\pi t)$$

(b)
$$T_{ee} = 15 + \frac{10}{1 + 4\pi^2} \left[\sin(2\pi t) - 2\pi \cos(2\pi t) \right]$$

(c)
$$T_{\text{min}} = 15 - \frac{10}{\sqrt{1 + 4\pi^2}} = 13.4 \,^{\circ}\text{C}; \quad T_{\text{max}} = 15 + \frac{10}{\sqrt{1 + 4\pi^2}} = 16.6 \,^{\circ}\text{C}$$

2.
$$y = \frac{1}{x}(c_1 \sin x + c_2 \cos x)$$

3.
$$y = c_1 e^{2x} + c_2(2x^2 + 2x + 1)$$

4.
$$y = c_1 x + c_2 (x^2 - 1)$$

5.
$$y = 2e^{-x} - e^{-2x}$$

6.
$$y = \cosh(ax)$$

7.
$$y = \frac{1}{3}e^{2x}\sin(3x)$$

8.
$$y = (x-1)e^{x/4}$$

9.
$$y = \frac{3}{4}x^2 - x$$

10.
$$y = \frac{\sin(2\ln|x|)}{x}$$

11.
$$y = x - 1 + (x - 1)^4$$

12.
$$y = 3e^{4x}$$

13. Não existe solução

14.
$$y = c_1 + c_2 e^x + c_3 e^{2x}$$

15.
$$y = \frac{c_1}{x} + x^3(c_2 + c_3 \ln|x|)$$

$$1. \ y = c_1 e^x + c_2 e^{-2x} + 3x$$

2.
$$y = c_1 e^x + c_2 e^{-x} - \frac{1}{2} (x \sin x + \cos x)$$

3.
$$y = \left(c_1 + c_2 x + \frac{x^3}{6}\right) e^{2x}$$

4.
$$y = c_1 + (c_2 - x)e^{-x}$$

5.
$$y = c_1 \sin(2x) + c_2 \cos(2x) - \frac{1}{4} \cos(2x) \ln \left| \frac{\lg x + 1}{\lg x - 1} \right|$$

6.
$$y = c_1 x^2 + \frac{c_2}{x^2} + \frac{x^2}{4} \ln|x| + \frac{x^4}{12}$$

7.
$$y_p = \left(\frac{1}{2} - x\right) e^{-x}$$

8.
$$y_p = \frac{1}{\sqrt{x}}$$

1.
$$\{y_n\} = \{1, 0, -2, 6, \ldots\}$$
 $y_n = (-1)^n (2 - 2^n)$

2.
$$\{y_n\} = \{1, 1, -15, 81, \dots\}$$
 $y_n = (-3)^n \left(1 - \frac{4}{3}n\right)$

3.
$$\{y_n\} = \{0, 1, 4, 3, ...\}$$
 $y_n = \frac{(\sqrt{13})^n}{3} \sin \left[n \arctan\left(\frac{3}{2}\right) \right]$

4.
$$\{y_n\} = \{0, 1, 2, 0, \ldots\}$$
 $y_n = \frac{2^n}{\sqrt{3}} \sin\left(\frac{n\pi}{3}\right)$

5.
$$y_n = e^{-n}(c_1 2^n + c_2 3^n)$$

6.
$$\{y_n\} = \{1, -3, 3, -1, 0, 0, \ldots\}$$
 $y_n = \begin{cases} \frac{6(-1)^n}{n!(3-n)!} & 0 \le n \le 3\\ 0 & 3 < n \end{cases}$

7.
$$\{y_n\} = \{2, 1, 3, 2/3, 5/4, \ldots\}$$
 $y_{2m} = \frac{4m+2}{2^m m!}$ $y_{2m+1} = \frac{2^m (m+1)!}{(2m+1)!}$

8.
$$\{y_n\} = \{1, 1, 0, -8, -8, 0, \ldots\}$$
 $y_{3m} = (-8)^m$ $y_{3m+1} = (-8)^m$ $y_{3m+2} = 0$

9.
$$y_{3m} = c_1 3^m \Gamma\left(m + \frac{1}{3}\right)$$
 $y_{3m+1} = c_2 3^m \Gamma\left(m + \frac{2}{3}\right)$ $y_{3m+2} = c_3 3^m m!$

10. (a)
$$F_{n+2} - F_{n+1} - F_n = 0$$
 $F_0 = F_1 = 1$ (c) $F_n = \frac{1}{\phi + 2} \left[\phi^{n+2} + (-1)^n \phi^{-n} \right]$

1.
$$y = c \sum_{n=0}^{\infty} x^{2n} = \frac{c}{1 - x^2}$$

2.
$$y = c \sum_{n=0}^{\infty} \frac{x^n}{n!} - x^2 - 2x - 3 = ce^x - x^2 - 2x - 3$$

3.
$$y = c_1 \sum_{n=0}^{\infty} \frac{x^n}{n!} + c_2 \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = c_1 e^x + c_2 e^{2x}$$

4.
$$y = c_1 \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} + c_2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} - x = c_1 \cosh x + c_2 \sinh x - x$$

5.
$$y = c_1 x + c_2 \left[1 - \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n! (2n-1)} \right]$$

6.
$$y = c_1 \sum_{n=0}^{\infty} \frac{(-1)^n 3^n \Gamma\left(n + \frac{1}{3}\right)}{(3n)!} x^{3n} + c_2 \sum_{n=0}^{\infty} \frac{(-1)^n 3^n \Gamma\left(n + \frac{2}{3}\right)}{(3n+1)!} x^{3n+1}$$

11.6 Problemas 115

7.
$$y = c_1(1+x) + c_2\sqrt{x}$$

8.
$$y = e^x(c_1 + c_2 \ln x)$$

9.
$$y = c_1 x + c_2 (x^2 + x \ln x)$$

10.
$$y = \frac{c_1}{x} + \frac{c_2}{1-x}$$

11.
$$y = \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma\left(\frac{3}{4}\right)}{16^n n! \Gamma\left(n + \frac{3}{4}\right)} x^{4n}$$

12.
$$L_n(x) = \sum_{m=0}^n \frac{(-1)^m n!}{(n-m)! \, m! \, m!} x^m$$

13. (a)
$$H_{2m}(x) = \sum_{k=0}^{m} \frac{(-1)^{m+k}(2m)!}{(m-k)!(2k)!} (2x)^{2k}$$

(b)
$$H_{2m+1}(x) = \sum_{k=0}^{m} \frac{(-1)^{m+k}(2m+1)!}{(m-k)!(2k+1)!} (2x)^{2k+1}$$

1.
$$y = \frac{1}{6}e^{-2t} + \frac{4}{3}e^t - \frac{3}{2}$$

2.
$$y = \frac{1}{2}t^2e^{-2t}$$

3.
$$y = \frac{1}{45}e^{4t} - \frac{1}{20}e^{-t} + \frac{1}{36}(37 - 6t)e^{t}$$

4.
$$8y = 7\cos t - 3\sin t + e^{2t}(\cos t + \sin t)$$

5.
$$y = \frac{t}{16}(\sin(2t) - 2t\cos(2t)) - \frac{\pi}{64}\sin(2t)$$

6.
$$y = t^2 - t$$

7.
$$y = \frac{1}{4}(1 - \cos(2t))[u(t) - u(t - \pi) + u(t - 2\pi) - u(t - 3\pi)]$$

8.
$$y = \frac{1}{2}\sin[2(t-\pi)]u(t-\pi) - \frac{1}{2}\sin(2t)$$

9.
$$y = \frac{1}{4}(1 - \cos(2t))[u(t) - u(t - \pi)] + \frac{1}{6}(2\sin t - \sin(2t))u(t - 2\pi)$$

10.
$$2\pi y = -[2t - 2\pi - \sin(2t)] u(t - \pi) + [4t - 3\pi - 2\cos(2t)] u\left(t - \frac{3\pi}{4}\right)$$

 $-2[2t - \pi + \sin(2t)] u\left(t - \frac{\pi}{2}\right) + [2t - \pi/2 + \cos(2t)] u\left(t - \frac{\pi}{4}\right)$
 $+\left(1 - \frac{\pi}{2}\right)\sin(2t)u(t)$

- **11.** *te*^{*at*}
- 12. $\frac{t^5}{5!}$
- **13.** $t \sin t$
- **14.** $e^{2t} 2t 1$
- 15. $\frac{1}{2\omega^3}[\sin(\omega t) \omega t \cos(\omega t)]$
- **16.** $y = \frac{1}{k} \int_0^t \cosh[k(t-s)] f(s) ds$
- **17.** $y = e^{kt} \left[1 + (1-k)t + \int_0^t (t-s)e^{-ks} f(s) ds \right]$
- **18.** $y = ate^{-t}$
- **19.** $y = 1 + t + e^{t/2} \left[\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3}t}{2} \right) \cos \left(\frac{\sqrt{3}t}{2} \right) \right]$
- **20.** $y = 1 + \cosh t$
- **21.** $y = \frac{1}{2}\sin t + e^{-t}\left(1 \frac{3}{2}t\right)$

- **1.** $y_n = y_0(2-2^n) + y_1(2^n-1) + 2^n n 1$
- **2.** $y_n = n$
- 3. $y_n = \frac{(-1)^n}{8}n(n-1)2^n$
- **4.** $y_n = 2^n \left(y_0 + \frac{1}{2 e^{-b}} \right) \frac{e^{-bn}}{2 e^{-b}}$
- **5.** $y_n = \frac{2^n}{4} \left[1 \cos\left(\frac{n\pi}{3}\right) \frac{1}{\sqrt{3}} \sin\left(\frac{n\pi}{3}\right) \right]$
- **6.** $y_{2m} = \frac{1}{37} \left[28(-4)^m + \frac{9}{9^m} \right]$ $y_{2m+1} = -\frac{3}{37} \left[(-4)^m + \frac{1}{9^m} \right]$
- 7. $y_{2m} = y_0 + m(m-1)$ $y_{2m+1} = y_1 + m^2$
- **8.** $\bar{y}(z) = 1$
- **9.** $\overline{y}(z) = \frac{1}{z(z-1)}$
- **10.** $\overline{y}(z) = \frac{z(z^2 1)\sin\omega}{(z^2 2z\cos\omega + 1)^2}$

11.6 Problemas 117

11. 1.
$$T_{n+1} - T_n = n+1$$
 $T_1 = 1$ **2.** $T_n = \frac{n(n+1)}{2}$

12.
$$S_n = T_n^2 = \frac{n^2(n+1)^2}{4}$$

13.
$$S_n = n(n+1)$$

14. O período é 4, 3 e 1 respetivamente. Existem pontos de bifurcação entre -2 e -1.75, e entre -1.75 e -1.3

1.
$$x = \sin t$$
 $y = \cos t + \sin t$

2.
$$x = \frac{1}{2}(\sin t - t \cos t)$$
 $y = \frac{1}{2}(\sin t - t \cos t + t \sin t)$

3.
$$\begin{cases} x = \frac{2e^{-t/2}}{\sqrt{3}} \sin\left(\frac{\sqrt{3}t}{2}\right) \\ y = -e^{-t/2} \left[\cos\left(\frac{\sqrt{3}t}{2}\right) + \frac{1}{\sqrt{3}} \sin\left(\frac{\sqrt{3}t}{2}\right)\right] \\ z = e^{-t/2} \left[\cos\left(\frac{\sqrt{3}t}{2}\right) - \frac{1}{\sqrt{3}} \sin\left(\frac{\sqrt{3}t}{2}\right)\right] \end{cases}$$

$$\mathbf{4.} \ \mathbf{x} = \begin{bmatrix} 2e^{2t} - e^t \\ e^t \end{bmatrix}$$

5.
$$\mathbf{x} = \begin{bmatrix} e^{2t} - e^{3t} \\ e^{3t} \\ -e^{2t} + e^{3t} \end{bmatrix}$$

6.
$$\mathbf{x} = \begin{bmatrix} \cos(2t) + 7\sin(2t) \\ 2\cos(2t) - 6\sin(2t) \end{bmatrix}$$

7.
$$\mathbf{x} = e^{t} \begin{bmatrix} 1 \\ -1 + 2\cos(2t) + \frac{1}{2}\sin(2t) \\ \frac{3}{2} - \frac{1}{2}\cos(2t) + 2\sin(2t) \end{bmatrix}$$

8.
$$\mathbf{x} = \mathrm{e}^{2t} \left[\begin{array}{c} 1+t \\ 1 \end{array} \right]$$

$$\mathbf{9.} \ \mathbf{x} = \mathbf{e}^{-t} \left[\begin{array}{c} -t \\ 1 \\ \mathbf{e}^{-t} \end{array} \right]$$

10.
$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 2e^{-10t} + 3e^{5t} \\ 5e^{5t} \\ -e^{-10t} + 6e^{5t} \end{bmatrix}$$

11.
$$\mathbf{x} = e^t \begin{bmatrix} \cos(4t) - \sin(4t) \\ \sin(4t) + \cos(4t) \\ 2e^t - 1 \\ 1 \end{bmatrix}$$

12.
$$\mathbf{x} = \frac{1}{48} \begin{bmatrix} -3 - 12t + 16e^t + 35e^{4t} \\ -3 - 12t - 32e^t + 35e^{4t} \end{bmatrix}$$

13.
$$\mathbf{x} = \mathbf{e}^t \begin{bmatrix} t + \frac{t^2}{2} \\ 1 + t \\ \frac{t^2}{2} \end{bmatrix}$$

14.
$$\mathbf{x} = \begin{bmatrix} \sin(2t) + \cos(2t) - u(t - \pi)\sin(2t) \\ 2\sin(2t) + u(t - \pi)[\cos(2t) - \sin(2t)] \end{bmatrix}$$

15.
$$\mathbf{x} = \frac{te^t}{6} \begin{bmatrix} 6t - t^2 \\ 3t \\ 6 + 6t + t^2 \end{bmatrix}$$

16.
$$\mathbf{x} = \frac{1}{2} \begin{bmatrix} 3 - 4e^{-t} + e^{-2t} - u(t-1)(3 - 4e^{1-t} + e^{2-2t}) \\ 2 - 4e^{-t} + 2e^{-2t} - u(t-1)(2 - 4e^{1-t} + 2e^{2-2t}) \end{bmatrix}$$

- **1.** u(x,y) = xy + f(y), onde f é qualquer função de y derivável
- **2.** u(x,y) = f(x) + g(y), onde f e g são funções de x e y, ambas deriváveis nas respetivas variáveis
- 3. $u(x,y) = \frac{1}{3}x^3y + \frac{1}{3}xy^3 + f(x) + g(y)$, onde f e g são funções de x e y, ambas deriváveis nas respetivas variáveis

4.
$$v(x,t) = 2e^{-x/2} \left(t - \frac{x}{2} \right) \left[u \left(t - \frac{x}{2} \right) - u \left(t - 1 - \frac{x}{2} \right) \right]$$

5.
$$v(x,t) = \sin\left(t - \frac{x}{c}\right)u\left(t - \frac{x}{c}\right)$$

6.
$$u(x,t) = x(t-1+e^{-t})$$

7.
$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$
 Série co-seno: $f(x) = 1$

8.
$$f(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin(n\pi x) = \frac{1}{2} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos[(2n-1)\pi x]$$

11.6 Problemas 119

9.
$$u(x,t) = 5\sin(3\pi x)\cos(3\pi t)$$

10.
$$u(x,t) = 2\sum_{n=0}^{\infty} \left[\frac{(-1)^n}{\lambda_n} - \frac{1}{\lambda_n^2} - e^{-\alpha^2 \lambda_n^2 t} \left(\frac{1}{\lambda_n^2} - \frac{2(-1)^n}{\lambda_n^3} \right) \right] \cos(\lambda_n x)$$
 em que $\lambda_n = (n+1/2)\pi$

11.
$$u(x,t) = \sum_{n=0}^{\infty} \frac{2}{n\pi} \left[1 + \frac{1 - (-1)^n n^2 \pi^2}{n^2 \pi^2 - 1} e^{-n\pi x} - \frac{1 - (-1)^n}{n^2 \pi^2 - 1} e^{-x} \right] \sin(n\pi y)$$

Bibliografia

- 1. Churchill R. V. Operational Mathematics, 3a. Edic., McGraw-Hill, 1972.
- 2. Costa M. R. N. Equações de Diferenças Finitas. FEUP, 1995.
- 3. Farlow, S. J. An Introduction to Differential Equations and Their Applications. McGraw-Hill, Singapore, 1994.
- 4. James. G. *Advanced Modern Engineering Mathematics*, Second Edition, Addison-Wesley, Harlow, England, 1999.
- 5. Kovach, L. D. *Advanced Engineering Mathematics*, Addison-Wesley Pub. Co., Massachusetts, 1982.
- 6. Kreyszig, I. E. Advanced Engineering Mathematics, 7^a edição, J. Wiley, 1992.

Índice

conjunto fundamental, 94 constante de decaimento, 18 convolução, 75
\mathbf{D} degrau unitário, 70 deslocamento em t , 70
E equação homogénea, 10 equação de Bernoulli, 13 equação exata, 10 equação indicial, 58 equação linear de primeira ordem, não homogénea, 43 equações lineares, 8
F fator integrante, 8 força impulsiva, 71 forma diferencial, 2 forma inversa, 2 função delta de Dirac, 72 funções próprias, 107 funcional, 72
I impulso, 71
M matriz fundamental, 95 meia-vida, 18
P polinómio caraterístico, 28, 45, 93 primeira ordem, 7
S série co-seno de Fourier, 106

```
série seno de Fourier, 106 solução fundamental, 94
```

T

transformada co-seno de Fourier, 106 transformada co-seno modificada, 108 transformada seno de Fourier, 106 transformada seno modificada, 108

V

valor próprio, 93 valores próprios, 107 variáveis separáveis, 7 vetor próprio, 93