Special Topics in Biostatistics and Bioinformatics Week V

Ege Ülgen, M.D.

31 March 2022

What is confounding?

What is confounding?

What is confounding?

The Most Common Confounder

Batch Effects

Common genetic variants account for differences in gene expression among ethnic groups

Richard S Spielman¹, Laurel A Bastone², Joshua T Burdick³, Michael Morley³, Warren J Ewens⁴ & Vivian G Cheung^{1,3,5}

- Compared gene expression levels between 60 CEU and 82 ASN HapMap individuals
- Tests of differential expression performed by parametric t-tests and adjustment for multiple testing through Sidak corrections
- Estimate ~26% of genes to be differentially expressed

78% of Genes Are Estimated To Be Differentially Expressed

Population and Time of Processing Are Confounded

Batch Effects Can Completely Account For Differential Expression

Between Population

78% of genes estimated to be differentially

Between Years

96% of genes estimated to be differentially

Between Populations, Adjusting For Years

0% of genes estimated to be differentially

Without randomization, the confounding variable differs among treatments

https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdfcc

With randomization, the confounding variable does not differ among treatments

More good study design characteristics

- Balanced
- Replicated
- Has controls

Batch Effects

• Batch effects are **unwanted sources of variation** caused by different processing date, handling personnel, reagent lots, equipment/machines, etc.

- A common method for visualizing the existence of batch effects is PCA
- The first two principal components are plotted with each sample colored by the suspected batch, and separation of colors is taken as evidence of a batch effect

Green and orange represent two different processing dates

- a. Box plot of raw gene expression data (log base 2)
- b. Box plot of data processed with quantile normalization
- Example of ten genes that are susceptible to batch effects even after normalization (Hundreds of genes show similar behavior but, for clarity, are not shown)
- d. Clustering of samples after normalization. Note that the samples perfectly cluster by processing date

Batch Effect Example

Sources of "Batch" Effects

- External Factors (e.g., environment)
- Genetics/Epigenetics
- Technical Factors

When can you remove batch effects?

The Problem of Confounding Biological Variation and Batch Effects

 When they don't perfectly overlap with what you care about

When batch is known

$$Y = \beta_0 + \beta_1 P + \beta_2 B + \varepsilon$$

P: phenotype you're investigating

B: Batch

When batch is unknown

Surrogate Variable Analysis

- https://www.pnas.org/content/105/48/18718.full
- https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pge n.0030161