TRIGONOMETRY Chapter 10

CIRCUNFERENCIA TRIGONOMÉTRICA

HELICO | MOTIVATION

CIRCUNFERENCIA TRIGONOMÉTRICA

Es aquella circunferencia inscrita en el plano cartesiano con centro en el origen de coordenadas y radio igual a la unidad del sistema.

ELEMENTOS DE LA CT:

- \rightarrow A(1;0): origen de arcos.
- > B(0;1): origen de complementos.
- > A'(-1;0): origen de suplementos.
- ➢ B'(0; -1): sin nombre especial.

Ecuación de la CT:
$$x^2 + y^2 = 1$$

REPRESENTACIONES TRIGONOMÉTRICAS EN LA CT

1) El seno de un arco es la ordenada de su punto extremo.

Se muestra la variación del seno en cada cuadrante.

En general :
$$\forall \theta \in \mathbb{R} \Rightarrow -1 \leq \operatorname{sen}\theta \leq 1$$

REPRESENTACIONES TRIGONOMÉTRICAS EN LA CT

2) El coseno de un arco es la abscisa de su punto extremo. Av

Se muestra la variación del coseno en cada cuadrante.

En general:
$$\forall \theta \in \mathbb{R} \Rightarrow -1 \leq \cos \theta \leq 1$$

OBSERVACIÓN:

En la CT, las coordenadas del punto P extremo del arco α son :

Ejemplo 1 : Las coordenadas del punto extremo del arco $\frac{\pi}{4}$, son :

•
$$P\left(\cos\frac{\pi}{4}; \operatorname{sen}\frac{\pi}{4}\right)$$
 • $P\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$

Ejemplo 2 : Las coordenadas del punto extremo del arco $\frac{2\pi}{3}$, son :

•
$$Q\left(\cos\frac{2\pi}{3}; \sin\frac{2\pi}{3}\right) \qquad Q\left(-\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$$

Del gráfico, calcule el valor de

$$M = 5x + 2.$$

RESOLUCIÓN

Q(x;
$$\frac{3}{5}$$
) \in CT; Q \in IIC:

$$x^2 + \left(\frac{3}{5}\right)^2 = 1$$
 $x^2 = \frac{16}{25}$

$$x^2 + \frac{9}{25} = \frac{25}{25}$$
 $x = -\frac{4}{5}$

Luego calculamos M:

$$M = 5\left(-\frac{4}{5}\right) + 2$$

$$\mathbf{M} = -\mathbf{4} + \mathbf{2}$$

∴ M = - 2

Escriba verdadero (V) o falso (F) según corresponda.

- a) $sen80^{\circ} > sen130^{\circ}$ (V)
- b) $sen210^{\circ} > sen240^{\circ} (\lor)$
- c) $\cos 50^{\circ} > \cos 20^{\circ}$ (F)
- d) $\cos 160^{\circ} > \cos 240^{\circ}$ (F)

RESOLUCIÓN

largo(+) > corto(+) > corto(-) > largo(-)

Siendo $\pi < \alpha < \beta < \frac{3\pi}{2}$; escriba verdadero (V) o falso (F) según corresponda.

a) $sen \alpha < sen \beta$

(**F**)

b) $\cos \alpha < \cos \beta$

(V)

c) | senα | < | senβ |

RESOLUCIÓN

largo(+) > corto(+) > corto(-) > largo(-)

De la circunferencia trigonométrica mostrada, determine el área de la región triangular sombreada AOP.

RESOLUCIÓN

Como
$$\theta \in IIC$$

 $sen \theta > 0$

Calculamos el área S:

$$S = \frac{1 | sen \theta |}{2} = \frac{1 (sen \theta)}{2}$$

$$S = \frac{\operatorname{sen}\theta}{2} u^2$$

En un taller de metal mecánica se tiene una placa circular metálica con radio de 1 m y con centro ubicado en el origen de coordenadas .- Se le realizan cortes respectivos para extraer una placa triangular APQ, tal como muestra la figura .- ¿ Puedes calcular el área de la placa triangular ?

RESOLUCIÓN

Como
$$\theta \in IIC$$

Calculamos el área S:

$$S = \frac{(1 + |\cos\alpha|)(1)}{2} = \frac{(1 + (-\cos\alpha))}{2}$$

$$S = \frac{(1 - \cos \alpha)}{2} u^2$$

La figura muestra un triángulo APD inscrito en una CT; dicho triángulo es generado por el movimiento de una partícula, la cual partió del punto A y llegó al punto P.- Si $\widehat{mAP} = \theta$, exprese el área sombreada en función de θ .

Efraín tiene un jardín en forma de rectángulo donde las longitudes de sus lados son A m y B m. - Para obtener los valores de A y B, resuelva lo

siguiente :
$$\cos \alpha = \frac{2a-4}{3}$$
; $\sec \beta = \frac{3-2b}{5}$; $\alpha \in \mathbb{R}$ y $\beta \in \mathbb{R}$

Donde: A = máximo valor que toma a; B = máximo valor que toma b.

Determine el área de dicho jardín.

RESOLUCIÓN

$$\begin{array}{c}
\alpha \in \mathbb{R} : -1 \leq \cos \alpha \leq 1 \\
-1 \leq \frac{2a-4}{3} \leq 1 \\
-3 \leq 2a-4 \leq 3 \\
(+4) & 1 \leq 2a \leq 7
\end{array}$$

$$1 \le 2a \le 7$$

$$(\div 2)$$

$$\frac{1}{2} \le a \le \frac{7}{2}$$

$$A = a_{\text{máximo}}$$

RESOLUCIÓN

$$\beta \in \mathbb{R}: -1 \leq \operatorname{sen}\beta \leq 1$$

$$(.5)$$
 $-1 \le \frac{3-2b}{5} \le 1$

$$-5 \le 3 - 2b \le 5$$

$$(-3)$$

$$-8 \le -2b \le 2$$

$$-2 \le 2b \le 8$$

$$(\div 2)$$

$$-1 \le b \le 4$$

$$B = b_{m\acute{a}ximo}$$

$$B = 4$$

$$S_{\square} = (A m)(B m)$$

$$S_{\Box} = (\frac{7}{2} \, \text{m}) (4 \, \text{m})$$

$$\therefore$$
 S_{\top} = 14 m²

