

IVEN!	des design co se
-1-2118	Date
07/08/18	my contrainor
	2001 hander stages it
<u>Q:</u>	No such program exists.
7	No such program exists.
To PYX	(countable 0) (mon-countable 0).
	(countable 0) (mon-countable 0).
*	A is countable if a bijection emister $f: N \to A$.
	a bijetions emistre F: N - N
*	C programs are finite length binary strings. (stoud as. A = {0,1}
	A = 30,13.
	A = { E, 0, 1, 00, 01, 10, 11, 000, } lingth lingth
	Lingth Wife.
*	Diagonalization technique:
	gridering for is a same is the cost that the
Theorem:	(0,1) is mountable.
Proof =	suppose the contrary.
	that f be a bijection.
	$f: N \rightarrow (0,1)$.
	f(1) = 0-d 11 de ch3
	F(2) = 0. dz1 dz2 dz3
	$f(3) = 0 \cdot d_{31} d_{32} d_{33}$
70	nove.
	F X C(0,1) S.t + (eN {fci) + x}
	2=0.21×2×2-(x1 + d11) Cx1 + 0 or 9)
	(2 = 0, 2/1/2/13 (x! + all) (x = 1 = 0 0 1 / 1)
	(x3 + d29) (-x3-11-
	(xj + dj) (-xj -11 -)
	=> x = 0 · x, x2 x3 ··· 2j ···
	Hunce, we have a contradiction.
	So, (0,1) is uncountable.

	natural numbers. So, we prove there are so such sets then, the wo. of problems brome uncountable.
->	Input: natural no:s
	Output: boolean.
	We show no of problems of this kind are itself
	uncountable.
Theren	PCN) is innountable
PANOT =	huf f: N→PCN) be a bijection
	$f(1) = b_1b_{12}b_{13} - \cdots$
1,00	$f(2) = b_{21}b_{22}b_{22} \cdots$
3.1	$f(2) = b_{21} b_{22} b_{23} - f(3) = b_{31} b_{32} b_{33}$
	het S is a subset of N.
	5-t S = P, P2 P3 P, t b11
	het S is a subset of N. S-t $S = P_1 P_2 P_3 - P_1 \neq b_{11}$ $P_2 \neq b_{22}$
	3 ion sit te mainter declaridad of
	80, + ien fis +S, have f is not bijective
3	No program exists:
	No program exists:
0	dicida late
	- solve in finite steps
(2)	
	- 00 steps/usomers
(3)	
	mricognisable
	(Pas o pas) (Na + da) (Na + da)

Scanned by CamScanner

 $A = \phi$. Choose the next S; (in that order) if A U {s; } = F.

A = A U {s; } Contput A. 7 A s. t xcA. het & be an optimal sol", xeB (BeF). s = { y | y u | x } e = } F' = {AFF | ANSX3 (DO)