

The Unreasonable Effectiveness of Noisy Data

for Fine-Grained Recognition

Jonathan Krause¹, Benjamin Sapp², Andrew Howard², Howard Zhou², Alexander Toshev², Tom Duerig², James Philbin², Li Fei-Fei¹

1Stanford University, ²Google

Problem

- -Fine-grained recognition works well with labels
- -But fine-grained labels are **expensive**
- -There are too many fine-grained categories in the world to annotate by hand: 14k birds, 278k butterflies and moths, 941k insects
- -How can we scale up fine-grained recognition?

4,224 (+1) categories recognized in this work

Contributions

- -Demonstrate feasibility of training models of fine-grained with noisy data from the web and simple, generic, models of recognition.
- -Greatly improved recognition performance on four fine-grained datasets without using ground truth training data.
- -Scale fine-grained recognition to over 10,000 species of birds and 14,000 species of butterflies and moths.

Data

Categories

Birds: 10,982 species

Butterflies: 14,553 species (+moths)

Aircraft: 409 varieties Dogs: 515 breeds

-Images from Google Image Search

| Letral | L

Noise

Cross-domain noise: portion of images that are not of any fine-grained category in a given domain. Measure by hand.

Cross-category noise: portion of images that have the wrong fine-grained label. Hard to estimate.

Filtering: Proposed technique to reduce noise. Simply remove images with multiple web labels!

Active Learning

Alternative approach for collecting large quantities of fine-grained data.

We use confidence-based sampling: Label the most confident images. Can still fix false positives, and uncertain images are hard to label!

uncertain images are hard to label! most conf dent: unconf dent: unconf dent: as a second dent: as a se

Experiments

- -Use Inception-v3 CNN classifier
- -Extensive dedup with ground truth test datasets via [2]
- -YFCC100M data for active learning

Training Data	Acc.	Dataset	Training Data	Acc.	Dataset
CUB-GT	84.4		FGVC-GT	88.1	
Web (raw)	87.7		Web (raw)	90.7	1
Web (filtered)	89.0	1	Web (filtered)	91.1	
L-Bird	91.9	CUB	L-Aircraft	90.9	FGVC
L-Bird(MC)	92.3		L-Aircraft(MC)	93.4	1
L-Bird+CUB-GT	92.2		L-Aircraft+FGVC-GT	94.5	1
L-Bird+CUB-GT(MC)	92.8		L-Aircraft+FGVC-GT(MC)	95.9	
Birdsnap-GT	78.2		Stanford-GT	80.6	
Web (raw)	76.1	1	Web (raw)	78.5	1
Web (filtered)	78.2	1	Web (filtered)	78.4	1 1
L-Bird	82.8	Birdsnap	L-Dog	78.4	Stanford Dogs
L-Bird(MC)	85.4	1	L-Dog(MC)	80.8	
L-Bird+Birdsnap-GT	83.9	1	L-Dog+Stanford-GT	84.0	1
L-Bird+Birdsnap-GT(MC)	85.4	1	L-Dog+Stanford-GT(MC)	85.9	1

Prior work on GT datasets:

CUB: 84.6% (Xu et al. ICCV'15) Birdsnap: 66.6% (Berg et al. CVPR'14) FGVC: 84.1% (Lin et al. ICCV'15) Stanford Dogs: 76.8% (Sermanet et al. ICLR'2015)

Training Procedure	Acc.
Stanford-GT (scratch)	58.4
A.L., one round (scratch)	65.8
A.L., two rounds (scratch)	74.0
Stanford-GT (fine-tune)	80.6
A.L., one round (ft)	81.6
A.L., one round (ft, subsample)	78.8
A.L., two rounds (ft)	82.1
Web (filtered)	78.4
Web (filtered) + Stanford-GT	82.6

Very Large-Scale Fine-Grained Recognition

- -Test on Flickr images w/exact category name matches, deduped with other web images.
- -Accuracy: Birds (73.1%), Butterflies (65.9%), Aircraft (72.7%)

References

- 1] Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016
- [2] Wang et al. Learning Fine-Grained Image Similarity with Deep Ranking. CVPR 2014 [3] Wah et al. The Caltech-UCSD Birds-200-2011 Dataset. Tech. Report 2011
- [3] Wan et al. The Caltech-OCSD Birds-200-2011 Dataset. Tech. Report 2011[4] Berg et al. Birdsnap: Large-Scale Fine-Grained Visual Classification of Birds. CVPR 2014
- [4] Berg et al. Birdshap: Large-Scale Fine-Grained Visual Classification of Birds. CVPR 20.
 [5] Maii et al. Fine-Grained Visual Classification of Aircraft. Tech. Report 2013
- [6] Khosla et al. Novel Dataset for Fine-Grained Classification. FGVC 2011