2007-ME-35-51

AI24BTECH11002 - K. Akshay Teja

1) A building has to be maintained at $21^{\circ}C$ (dry bulb) and $14^{\circ}C$ (wet bulb). The dew point temperature under these condition is $10.17^{\circ}C$. The outside temperature is $-23^{\circ}C$ (dry bulb) and the internal and external surface heat transfer coefficients are $8 \frac{WK}{m2}$ and $23 \frac{WK}{m2}$ respectively, If the building wall has a thermal conductivity of $1.2 \frac{W}{m}$ K, the minimum thickness (in m) of the wall required

c) 0.321

d) 0.125

to prevent condensation id

b) 0.407

a) 0.471

an enthalpy of 8 with an enthalp	$35 \frac{kJ}{kg}$ of dry air and a humby of $43 \frac{kJ}{kg}$ of dry air and a	idity ratio of 19 $\frac{grams}{kg}$ of α humidity ratio of 8 $\frac{gram.}{kg}$	g and dehumidifying coil with dry air. The air leaves the coil of dry air. If the condensate ng capacity of the coil in kW
a) 75.0	b) 123.8	c) 128.2	d) 159.0
temperature, to a	a high temperature reservoi ch a heat transformer, 100	r while rejecting the remains the remains while rejecting the remains the remains while remains the re	oplied to it at an intermediate ining part to a low temperature 350 K. The maximum amount cted to a heat sink at 300 K is
a) 12.50	b) 14.29	c) 33.33	d) 57.14
The incorporation P: always incress Q: always incress R: Always R: A	tion of the following state on of reheater in a steam p ases the thermal efficiency ases the dryness fraction of ases the mean temperature ases the specific work outp	oower plant of the plant. of steam at condenser inle of heat addition.	et.
a) P and S	b) Q and S	c) P,R and S	d) P,Q,R and s
P: A gas cools temperature ran Q: For a syster reversible. R: The work do	ge of expansion. In undergoing a process, i one by a closed system in ands upon freezing when	ts entropy remains constantial adiabatic process is a poi	coefficient is positive in the ant only when the process is nt function. urve on Pressure-Temperature

- a) R and S
- b) P and Q
- c) Q,R and S
- d) P,Q and R
- 6) Which combination of the following statements about steady incompressible forced vortex flow
 - P: Shear stress is zero at all points in the flow.
 - Q: Velocity is zero at all points in the flow.
 - R: Velocity is proportional to the radius from the centre of the vortex.
 - S: Total mechanical energy per unit mass is constant in the entire flow field
 - a) P and Q
- b) R and S
- c) P and R
- d) P and S

7) Match the items in columns I and II.

Column I	Column II
P: Centrifugal compressor	1: Axial flow
Q: Centrifugal pump	2: Surging
R: Pelton wheel	3: Priming

S: Kaplan turbine

4: Pure impulse

- a) P-2, Q-3, R-1, S-2 b) P-2, Q-3, R-3, S-4 c) P-3, Q-4, R-1, S-1 d) P-1, Q-2, R-3, S-4
- 8) A uniformly loaded propped cantilever beam and its free body diagram are shown below. The reactions are

- a) $R_1 = \frac{3}{8}ql, R_2 = \frac{5}{8}ql, M = \frac{1}{8}ql^2$ b) $R_1 = \frac{5}{8}ql, R_2 = \frac{3}{8}ql, M = \frac{1}{8}ql^2$
- c) $R_1 = \frac{3}{8}ql, R_2 = \frac{5}{8}ql, M = 0$ d) $R_1 = \frac{5}{8}ql, R_2 = \frac{3}{8}ql, M = 0$
- 9) A block of mass M is released from point P on a rough inclined plane with inclination angle θ , shown in the figure below. The coefficient of friction is μ . If $\mu = \tan \theta$, then the time taken by the block to reach another point Q on the inclined plane, where PQ = s, is:

- 10) A $200 \times 100 \times 50$ mm steel block is subjected to a hydrostatic pressure of 15 MPa. The Young's modulus and Poisson's ratio of the material is 200 GPa is 0.3 respectively. The change in volume of the block is in mm3 is:

a) 85

b) 90

c) 100

d) 110

11) A stepped steel shaft shown below is subjected to 10 Nm torque. If the modulus of rigidity is 80 GPa, the strain energy in the shaft in N mm is:

a) 4.12

b) 3.46

c) 1.73

d) 0.86

12) A thin spherical pressure vessel of 200 mm diameter and 1 mm thickness is subjected to an internal pressure varying from 4 to 8 MPa. Assume that the yield, ultimate, and endurance strength of material are 600, 800, and 400 MPa respectively. The factor of safety as per Goodman's relation is:

a) 2.0

b) 1.6

c) 1.4

d) 1.2

13) A natural feed journal bearing of diameter 50 mm and length 30 mm operating at 20 revolution supports a load of 2.0 kN. The lubricant used has a viscosity of 20 mPa s. The radial clearance is 0.02 pm. The Sommerfeld number for the bearing is:

a) 0.062

b) 0.125

c) 0.250

d) 0.785

14) A bolted joint is shown below. The maximum shear stress, in MPa, in the bolts at A and B, respectively are:

- a) 242.6, 42.5
- b) 42.5, 242.6
- c) 42.5, 42.5
- d) 242.6, 242.6
- 15) A block-brake shown below has a face width of 300 mm and a mean coefficient of friction of 0.25. For an actuating force of 400 N, the braking torque in Nm is:

a) 30

b) 40

c) 45

- d) 60
- 16) The input link O_2P of a four bar linkage is rotated at $2 \frac{rad}{s}$ in a counterclockwise direction as shown below. The angular velocity of the coupler PQ in $\frac{rad}{s}$, at an instant when $\angle O_4O_2P = 180^\circ$, is:

a) 4

b) $2\sqrt{2}$

c) 1

- d) $\frac{1}{\sqrt{2}}$
- 17) The speed of an engine varies from 210 $\frac{rad}{s}$ to 190 $\frac{rad}{s}$. During a cycle, the change in kinetic energy is found to be 400 Nm. The inertia of the flywheel in kgm² is:
 - a) 0.10

b) 0.20

c) 0.30

d) 0.40