We claim:

1. A compound of the following formula I, or a pharmaceutically acceptable salt thereof:

Z _ _ K _ _ X

wherein:

5

10

20

25

30

Z is a monocyclic or bicyclic ring system optionally containing up to 4 heteroatoms selected from N, O, and S, and wherein a CH₂ adjacent to any of the said N, O or S heteroatoms is optionally substituted with oxo (=O), and wherein Z is optionally substituted with 0-5 substituents chosen from R¹, R², R³ or R⁴;

 $R^1 \text{ and } R^2 \text{ are each independently selected from the group consisting of H, F,} \\ 15 \quad Cl, Br, I, NO_2, CF_3, CN, OCF_3, OH, C_1-C_4 alkoxy-, C_1-C_4 alkylcarbonyl-, C_1-C_6 alkyl, hydroxy C_1-C_4 alkyl-, C_3-C_6 alkenyl, C_3-C_6 alkynyl, C_3-C_{10} cycloalkyl(C_0-C_4 alkyl)-, H_2N(C_0-C_4)alkyl-, R^6HN(C_0-C_4)alkyl-, R^6R^7N(C_0-C_4)alkyl-, R^7S(C_0-C_4)alkyl-, R^7S(O) (C_0-C_4)alkyl-, R^7SO_2(C_0-C_4)alkyl-, R^6NSO_2(C_0-C_4)alkyl-, HSO_3, HO_2C(C_0-C_4)alkyl-, R^6O_2C(C_0-C_4)alkyl-, and R^6R^7NCO(C_0-C_4)alkyl-, or$

alternatively, R^1 and R^2 , when on adjacent carbon atoms, may be taken together to be methylenedioxy or ethylenedioxy;

R³ is a 5- or 6-membered heterocyclic ring system containing up to 4 heteroatoms selected from N, O, and S, said heterocyclic ring system being optionally substituted with 0-3 R⁵, wherein when R⁵ is hydroxy the heterocycle may undergo tautomerization to an oxo species or may exist as an equilibrium mixture of both tautomers;

R⁴ is selected from F, Cl, Br, I, NO₂, CF₃, CN, C₁-C₄alkoxy-, OH, oxo, CF₃O, haloalkyloxy, C₀-C₄ alkylhydroxy, C₁-C₄ alkyl-, C₁-C₄ alkylcarbonyl-, C₀-C₄ alkylOCOR⁶, C₀-C₄ alkylOC(=O)OR⁶, C₀-C₄ alkylOC(=O)NR⁶R⁷, NH₂, NHR⁶, C₀-C₄

alkylNR 6 R 7 , C $_0$ -C $_4$ alkylNR 7 C(=O)OR 6 , C $_0$ -C $_4$ alkylNR 6 SO $_2$ NR 6 R 7 , C $_0$ -C $_4$ alkylNR 7 SO $_2$ R 6 , C $_0$ -C $_4$ alkylSR 6 , C $_0$ -C $_4$ alkylS(O)R 6 , C $_0$ -C $_4$ alkylSO $_2$ NR 6 R 7 , C $_0$ -C $_4$ alkylSO $_2$ NR 7 CO(CR 9 R 10) $_{0-3}$ R 6 , C $_0$ -C $_4$ alkylCO $_2$ H, C $_0$ -C $_4$ alkylCO $_2$ R 6 , C $_0$ -C $_4$ alkylCO $_2$ R 6 , and C $_0$ -C $_4$ alkylCONR 7 SO $_2$ (CR 9 R 10) $_{0-3}$ R 6 ;

5

15

20

25

30

 R^5 is selected from the group consisting of H, C_1 - C_4 alkyl, C_3 - C_7 cycloalkyl, F, Cl, Br, I, NO₂, CN, CF₃, OCF₃, OH, oxo, C_1 - C_4 alkoxy-, hydroxy C_1 - C_4 alkyl-, C_1 - C_4 alkylcarbonyl-, CO_2H , CO_2R^6 , $CONR^6R^7$, NHR^6 , and NR^6R^7 ;

10 R^6 is selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic (C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF₃, NO₂, CN, OCF₃, NH₂, NHR⁷, NR⁷R⁸, SR⁷, $S(O)R^7$, SO_2R^7 , $SO_2NR^7R^8$, CO_2H , CO_2R^7 , and $CONR^7R^8$;

 R^7 and R^8 are each independently selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, arylsulfonyl, aryl(C_0 - C_5 alkoxy)carbonyl, arylsulfonyl, aryl(C_0 - C_4 alkyl)-, heterocyclic(C_1 - C_5 alkoxy)carbonyl, heterocyclic sulfonyl and heterocyclic (C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

alternatively, R^6 and R^7 , or R^6 and R^8 , or R^7 and R^8 , when both substituents are on the same nitrogen atom, can be taken together with the nitrogen atom to which they are attached to form a heterocycle selected from the group consisting of 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl, said heterocycle being optionally substituted with 0-3 groups selected from the group consisting of oxo, C_1 - C_6 alkyl,

20

 C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl, arylsulfonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

J is selected from the group consisting of $-NR^7$ - and -C(=O)-;

K is selected from the group consisting of -NR⁷-, -C(=O)-, and -CHR⁹-;

L is selected from the group consisting of a single bond, -C(=O), -CR¹⁰ R¹¹-, -C(=O)CR¹⁰ R¹¹-, -CR¹⁰ R¹¹C(=O)-, -CR¹⁰R¹¹C(=O)-, -HR¹⁵C-CHR¹⁶-, and -R¹⁵C=CR¹⁶;

R⁹ is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, and NO₂;

R¹⁰ is selected from the group consisting of H, F, Cl, Br, C₁-C₆ alkoxy, C₁-C₈
25 alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and
heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted
with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl,
C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

R¹¹ is selected from the group consisting of H, F, Cl, Br, OMe, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted

with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

alternatively, R^{10} and R^{11} , when on the same carbon atom, can be taken together with the carbon atoms to which they are attached to form a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring being optionally substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF₃, and NO₂;

10

15

20

25

5

X is selected from the group consisting of OR^{12} , $NR^{12}R^{13}$, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_6 - C_{10} aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R^{14} , with the proviso that when L is a single bond, X cannot be $NR^{12}R^{13}$;

 R^{12} is selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, monocyclic or bicyclic aryl(C_0 - C_4 alkyl)-, and monocyclic or bicyclic 5-10 membered heterocyclic(C_0 - C_4 alkyl)-, and $-CZ^1Z^2Z^3$,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

 Z^1 is selected from the group consisting of C_1 - C_8 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 hydroxyalkyl, C_1 - C_4 alkoxy C_1 - C_4 alkyl, aryl(C_0 - C_4 alkyl)-, and 4-10 membered heterocyclic (C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

Z² is selected from the group consisting of C₁-C₈ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₄ alkoxy C₁-C₄ alkyl, C₁-C₆ NR¹⁷R¹⁸, aryl(C₀-C₄ alkyl)-, and 4-10 membered heterocyclic (C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

Z³ is selected from the group consisting of C₁-C₈ alkyl, R¹⁴(C₂-C₄ alkyl)-, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₄ alkoxy C₁-C₄ alkyl, aryl(C₀-C₄ alkyl)-, 4-10 membered heterocyclic (C₀-C₄ alkyl)-, R¹⁷O=C(C₀-C₄ alkyl)-, R¹⁷O=C(C₀-C₄ alkyl)-, and R¹⁷R¹⁸ NO=C(C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴;

10

15

20

25

30

alternatively, Z^1 and Z^2 , when on the same carbon atom, can be taken together with the carbon atoms to which they are attached to form a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring being optionally substituted with 0-2 substituents independently selected from R^{14} .

 R^{13} is selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_4 alkyl)-, aryl(C_1 - C_5 alkoxy)carbonyl, arylsulfonyl, heterocyclic(C_0 - C_4 alkyl), heterocyclic(C_1 - C_5 alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

alternatively, R¹² and R¹³, when both are on the same nitrogen atom, can be taken together with the nitrogen atom to which they are attached to form a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl,

said heterocycle being optionally substituted with 0-3 groups independently selected from oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl,

 C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl arylsulfonyl and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of CH₃-, alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

R¹⁴ is selected from the group consisting of H, C₁-C₁₀ alkyl, NO₂, CF₃, CN, F. Cl, Br, C₁-C₁₀ alkylcarbonyl, haloalkyl, haloalkoxy, OH, NR⁶R⁷(C₀-C₄ alkyl)-, R⁶ 10 $C(=O)O(C_0-C_4 \text{ alkyl})-$, $R^6OC(=O)O(C_0-C_4 \text{ alkyl})-$, $R^6O(C_0-C_4 \text{ alkyl})$, $R^6R^7NC(=O)$ $O(C_0-C_4 \text{ alkyl})$ -, $R^6R^7 NC(=O) (C_0-C_4 \text{ alkyl})$ -, $R^6O(CR^{10}R^{11})_{2-6}R^6NC(=O) (C_0-C_4 \text{ alkyl})$ alkyl)-, $R^6R^7N(CR^{10}R^{11})_{2.6}R^6NC(=0)$ (C₀-C₄ alkyl)-, $R^6O_2C(CH_2)_{1.4}O(C_0-C_4$ alkyl)-, $R^6OOC(C_1-C_4 \text{ alkoxy})$, $R^6OOC(C_0-C_4 \text{ alkyl})$, $R^6C(=O)(C_0-C_4 \text{ alkyl})$. $R^{6}C(=O)NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{6}OC(=O)NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{6}OC(=NCN)NR^{7}(C_{0}-C_{4} \text{ alkyl})-$ 15 alkyl)-, $R^6R^7NC(=0)NR^8(C_0-C_4 \text{ alkyl})$ -, $R^6OC(=NC)NR^7(C_0-C_4 \text{ alkyl})$ -, $R^{6}(CR^{10}R^{11})_{1.4}NR^{7}C=O-$, $R^{6}O(CR^{10}R^{11})_{1.4}O=CR^{7}N-$, $NR^{6}R^{7}(CR^{10}R^{11})_{1.4}C=OR^{7}N-$. $R^6O(CR^{10}R^{11})_{2\cdot 4}R^7N-,\,R^6O_2C(CR^{10}R^{11})_{1\cdot 4}R^7N,\,R^6R^7N\,(CR^{10}R^{11})_{2\cdot 4}R^7N-,$ $R^{6}R^{7}NC(=NCN)NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{6}R^{7}NC(=C(H)(NO_{2}))NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{7}R^{8}N^{7}NC(=C(H)(NO_{2}))NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{7}R^{8}N^{7}N^{7}NC(=C(H)(NO_{2}))NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{7}R^{8}N^{7}N^{7}NC(=C(H)(NO_{2}))NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{7}$ $C(=NR^7) NR^7(C_0-C_4 \text{ alkyl})-, R^6R^7N SO_2NR^8(C_0-C_4 \text{ alkyl})-, R^6SO_2NR^7(C_0-C_4 \text{ alkyl})-,$ 20 $R^6R^7N(C_1-C_4)$ CO-, $R^6R^7N(C_2-C_6)$ alkyl)O-, $R^6CO(CR^{10}R^{11})_{0-2}$ $R^7N(O_2)S(C_0-C_4)$ alkyl), $R^6(O_2)S R^7 NC(=0) (C_0-C_4 alkyl)$, $R^6S(C_0-C_4 alkyl)$, $R^6S(=0) (C_0-C_4 alkyl)$. $R^6SO_2(C_0-C_4 \text{ alkyl})$ -, $SO_2NR^6R^7$, $SiMe_3$, $R^6R^7N(C_2-C_4 \text{ alkyl})$ -, $R^6R^7N(C_2-C_4 \text{ alkoxy})$ -, HSO₃, HONH-, R⁶ONH-, R⁸R⁷NNR⁶-, HO(COR⁶)N-, HO(R⁶O₂C)N, C₂-C₆ alkenyl, 25 C_3 - C_{10} cycloalkyl, C_3 - C_{10} cycloalkylmethyl, aryl(C_0 - C_4 alkyl)-, heteroaryl(C_0 - C_4 alkyl)-, $aryl(C_0-C_4alkyl)O$ -, and $heteroaryl(C_0-C_4alkyl)O$ -,

wherein said aryl groups are substituted with 0-2 substituents independently selected from a group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, and NO₂;

10

15

20

30

R¹⁵ is selected from the group consisting of H, halo, cyano, C₁-C₈ alkyl, C₃-C₆ alkenyl, and C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴; and

R¹⁶ is selected from the group consisting of H, halo, cyano, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴:

alternatively, when R¹⁵ and R¹⁶ are on adjacent carbon atoms, or when R¹⁵ and R¹⁶ are oriented on the same side of the double bond, as depicted in the following structure (III)

 R^{15} and R^{16} can be taken together with the carbon atoms to which they are attached to form a 3-7 membered carbocyclic aromatic or nonaromatic ring system, or a 3-7 membered heterocyclic aromatic or nonaromatic ring system, said carbocyclic or heterocyclic ring being optionally substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, NO₂;

R¹⁷ is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl, 25 C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₁-C₆ alkylsulfonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxycarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, hydroxy(C_2 - C_4)alkyl-, C_1 - C_3 alkoxy(C_2 - C_4)alkyl-, (C_0 - C_4 alkyl) (C_0 - C_4 alkyl) amino(C_2 - C_4)alkyl-, aryl(C_0 - C_4 alkyl)-, aryl(C_1 - C_5 alkoxy)carbonyl, arylsulfonyl, heterocyclic(C₀-C₄ alkyl), heterocyclic(C₁-C₅ alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkyl, oxo, F, Cl, Br, CF₃, CN, and NO₂;

5

 $R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ C_3-C_{10} \ cycloalkyl(C_0-C_4 \ alkyl)-, \ aryl(C_0-C_4 \ alkyl)-, \ and \ heterocyclic(C_0-C_4 \ alkyl), \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkenyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ C_3-C_6 \ alkyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ C_1-C_8 \ alkyl, \ R^{18} \ alkyl, \ R^{18} \ alkyl, \\ R^{18} \ is \ selected \ from \ the \ group \ consisting \ of \ H, \ R^{18} \ alkyl, \ R^{18} \ a$

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂; and

10

alternatively, R¹⁷ and R¹⁸, when both are on the same nitrogen atom, can be taken together with the nitrogen atom to which they are attached to form a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl,

15

said heterocycle being optionally substituted with 0-3 groups selected from oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, (C_1 - C_6 alkylcarbonyl)(C_0 - C_4 alkyl)amino-, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl arylsulfonyl and heterocyclicsulfonyl,

20

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of CH₃-, alkoxy, F, Cl, Br, CF₃, CN, and NO₂.

25

2. A compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein:

Z is either a 5, 6 or 7 membered monocyclic ring system substituted with R³ or R⁴ and optionally substituted with 0-4 substituents chosen from R¹ or R², or a 9 or 10 membered bicyclic ring system optionally substituted with 0-5 substituents chosen from R¹, R², R³ or R⁴, said ring systems optionally contain up to 4 heteroatoms

selected from N, O, and S, and wherein a CH₂ adjacent to any of the said N, O or S heteroatoms is optionally substituted with oxo (=O);

R³ is a 5- or 6-membered heterocyclic ring system containing up to 4 heteroatoms selected from N, O, and S, said heterocyclic ring system being optionally substituted with 0-1 R⁵, wherein when R⁵ is hydroxy the heterocycle may undergo tautomerization to an oxo species or may exist as an equilibrium mixture of both tautomers;

J and K are taken together to be selected from: -NHC(=O)-, -NHCHR⁹-, and -C(=O)NH-;

X is selected from the group consisting of OR¹², NR¹²R¹³, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₆-C₁₀ aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-3 substituents

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴, with the proviso that when L is a single bond, X cannot be NR¹²R¹³; and

 R^{12} is selected from the group consisting of ethyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, monocyclic or bicyclic aryl(C_0 - C_4 alkyl)-, and monocyclic or bicyclic 5-10 membered heterocyclic(C_0 - C_4 alkyl)-, and $-CZ^1Z^2Z^3$,

wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R^{14} .

25

30

20

15

3. A compound of claim 1, or a pharmaceutically acceptable salt thereof, said compound selected from the group consisting of:

N-(4-Fluorophenyl)-N2-[3-methoxy-4-(5-oxazolyl)phenyl]glycinamide;

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N2-phenylglycinamide;

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N2-(3-methylphenyl)glycinamide;

[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetic acid ethyl ester;

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-phenylethanediamide;

```
N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(2-methylphenyl)ethanediamide;
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(3-methylphenyl)ethanediamide;
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(4-methylphenyl)ethanediamide;
             (S)-[[3-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]amino]phenyl]
 5
     methyllcarbamic acid tetrahydro-3-furanyl ester;
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(3-methoxyphenyl)ethanediamide;
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(phenylmethyl)ethanediamide;
            N-(4-Cyanophenyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
             3-[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]-3-oxopropanoic acid ethyl ester;
10
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(3-methylphenyl)propanediamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(phenyl)propanediamide;
             (S)-[[3-[[3-[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]-1,3-
     dioxopropyl]amino]phenyl] methyl]carbamic acid tetrahydro-3-furanyl ester;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]benzeneacetamide;
15
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-\alpha-oxobenzeneacetamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-1H-indole-2-carboxamide;
            N-(1,1-Dimethylethyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
            N-[1,1-Bis(hydroxymethyl)propyl]-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]ethanediamide;
20
            N-(2-Hydroxy-1,1-dimethylethyl)-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]ethanediamide;
            N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine 1,1-
     dimethylethyl ester;
            N-(2-Hydroxy-1,1-dimethylpentyl)-N'-[3-methoxy-4-(5-
25
     oxazolyl)phenyl]ethanediamide;
            N-[2-[(2-Hydroxy-1,1-dimethylethyl)amino]-1,1-dimethylethyl]-N'-[3-
     methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
            N-[2-(Dimethylamino)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]ethanediamide;
30
            N-(1,1-Diethyl-2-propynyl)-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]ethanediamide;
```

```
tetramethylbutyl)ethanediamide;
            N-(1,1-Dimethylpropyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
            N-[1-(Hydroxymethyl)cyclopentyl]-N'-[3-methoxy-4-(5-
 5
     oxazolyl)phenyl]ethanediamide;
            N-[2-(4-Fluorophenyl)-1,1-dimethylethyl]-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]ethanediamide;
            N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-\alpha-methyltyrosine
     methyl ester;
10
            N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-\alpha-methyltryptophan
     methyl ester;
            N-[1,1-Bis(hydroxymethyl)ethyl]-N'-[3-methoxy-4-(5-oxazolyl)phenyl]-N-
     methylethanediamide;
            N-(1,1-Dimethyl-3-oxobutyl)-N'-[3-methoxy-4-(5-
15
     oxazolyl)phenyl]ethanediamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(1-methyl-1-
     phenylethyl)ethanediamide;
            N-[[[3-Methoxy-4-(5-oxazolyl)phenyl]amino]oxoacetyl]-2-methylalanine
     methyl ester;
20
            1-[[[3-Methoxy-4-(5-
     oxazolyl)phenyl]amino]oxoacetyl]amino]cyclopropanecarboxylic acid methyl ester;
            N-(1-Ethynylcyclohexyl)-N'-[3-methoxy-4-(5-oxazolyl)phenyl]ethanediamide;
     and (R)-N-[1-(Hydroxymethyl)-1-methylpropyl]-N'-[3-methoxy-4-(5-
     oxazolyl)phenyl]-N-methylethanediamide;
25
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-phenyl-2-propenamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]benzamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-1-methyl-1H-indole-2-carboxamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-2-benzofurancarboxamide;
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]benzo[b]thiophene-2-carboxamide;
30
            N-[3-Methoxy-4-(5-oxazolyl)phenyl]-1,3-benzodioxole-5-carboxamide;
            7-Methoxy-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-benzofurancarboxamide;
            5-Hydroxy-N-[3-methoxy-4-(5-oxazolyl)phenyl]-1H-indole-2-carboxamide;
```

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-N'-(1,1,3,3-

```
N-[3-Methoxy-4-(5-oxazolyl)phenyl]-5-(2-pyridinyl)-2-
      thiophenecarboxamide;
             5-(1,1-Dimethylethyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-
      furancarboxamide;
 5
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-5-methyl-2-thiophenecarboxamide;
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-1-methyl-1H-pyrrole-2-carboxamide:
             N-[3-Methoxy-4-(5-oxazolyl)phenyl]-4,5-dimethyl-2-furancarboxamide;
             (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(4-methylphenyl)-2-propenamide;
             (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(4-methylphenyl)-2-propenamide:
10
             (E)-3-(2-Fluorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
             (E)-3-(3-Fluorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
             (E)-3-(4-Fluorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
             (E)-3-(2-Chlorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
             (E)-3-(3-Chlorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
15
             (E)-3-(3-Chlorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
             (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-[2-(trifluoromethyl)phenyl]-2-
     propenamide;
             (E)-3-(3-Cyanophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
            (E)-3-[4-(Acetylamino)phenyl]-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-
20
     propenamide;
            (E)-3-(2,3-Dimethoxyphenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-
     propenamide;
            (E)-3-(2,6-Difluorophenyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-
     propenamide;
25
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(2,3,4-trimethoxyphenyl)-2-
     propenamide;
            (E)-2-Fluoro-N-[3-methoxy-4-(5-oxazolyl)phenyl]-3-phenyl-2-propenamide;
            (E)-3-(2-Furanyl)-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-propenamide;
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(2-thienyl)-2-propenamide;
30
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(3-pyridinyl)-2-propenamide;
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(4-pyridinyl)-2-propenamide;
            (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-(1-naphthalenyl)-2-propenamide;
```

N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3,4-dimethylbenzamide; N-[3-Methoxy-4-(5-oxazolyl)phenyl]-2-indolizinecarboxamide; (E)-N-[3-Methoxy-4-(5-oxazolyl)phenyl]-3-[3-methoxy-4-(phenylmethoxy)phenyl]-2-propenamide;

5-Hydroxy-N-[3-methoxy-4-(5-oxazolyl)phenyl]-1H-indole-2-carboxamide; N-[3-Methoxy-4-(5-oxazolyl)phenyl]-2,4-dimethyl-5-thiazolecarboxamide; and

8-Hydroxy-N-[3-methoxy-4-(5-oxazolyl)phenyl]-2-quinolinecarboxamide

10

5

4. A pharmaceutical composition for the treatment of an IMPDH-associated disorder, comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 1, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.

15

5. A pharmaceutical composition for the treatment of an IMPDH-associated disorder, comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 2, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.

20

6. A pharmaceutical composition for the treatment of an IMPDH-associated disorder, comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 3, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.

- 7. A method for the treatment of an IMPDH-associated disorder, comprising the step of administering to a subject in need thereof an amount effective therefor of at least one compound of claim 1 or a pharmaceutically acceptable salt thereof.
- 30 8. A method for the treatment of an IMPDH-associated disorder, comprising the step of administering to a subject in need thereof an amount effective therefor of at least one compound of claim 2 or a pharmaceutically acceptable salt thereof.

9. A method for the treatment of an IMPDH-associated disorder, comprising the step of administering to a subject in need thereof an amount effective therefor of at least one compound of claim 3 or a pharmaceutically acceptable salt thereof.

5

10. The method of claim 7, wherein said IMPDH-associated disorder is selected from the group consisting of an autoimmune disorder, an inflamatory disorder, a cancer or tumor disorder, a DNA or RNA viral replication disease, and allograft rejection.

10

11. The method of claim 8, wherein said IMPDH-associated disorder is selected from the group consisting of an autoimmune disorder, an inflamatory disorder, a cancer or tumor disorder, a DNA or RNA viral replication disease, and allograft rejection.

15

12. The method of claim 9, wherein said IMPDH-associated disorder is selected from the group consisting of an autoimmune disorder, an inflamatory disorder, a cancer or tumor disorder, a DNA or RNA viral replication disease, and allograft rejection.

- 13. The method of claim 10, wherein said IMPDH-associated disorder is selected from transplant rejection, rheumatoid arthritis, inflammatory bowel disease, hepatitis B, hepatitis C, herpes simplex type I, and herpes simplex type II.
- 25 14. The method of claim 11, wherein said IMPDH-associated disorder is selected from transplant rejection, rheumatoid arthritis, inflammatory bowel disease, hepatitis B, hepatitis C, herpes simplex type I, and herpes simplex type II.
- 15. The method of claim 12, wherein said IMPDH-associated disorder is selected from transplant rejection, rheumatoid arthritis, inflammatory bowel disease, hepatitis B, hepatitis C, herpes simplex type I, and herpes simplex type II.

- 16. The method of claim 7, wherein said compound of claim 1, or a pharmaceutically acceptable salt thereof, is administered with one or more of: an immunosuppressant, an anti-cancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an anti-biotic, an anti-vascular hyperproliferation compound, or an IMPDH inhibitor other than a compound of claim 1 or a pharmaceutically acceptable salt thereof.
- 17. The method of claim 8, wherein said compound of claim 2, or a pharmaceutically acceptable salt thereof, is administered with one or more of: an immunosuppressant, an anti-cancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an anti-biotic, an anti-vascular hyperproliferation compound, or an IMPDH inhibitor other than a compound of claim 2 or a pharmaceutically acceptable salt thereof.
- 15 18. The method of claim 9, wherein said compound of claim 3, or a pharmaceutically acceptable salt thereof, is administered with one or more of: an immunosuppressant, an anti-cancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an antibiotic, an anti-vascular hyperproliferation compound, or an IMPDH inhibitor other than a compound of claim 3 or a pharmaceutically acceptable salt thereof.
- 19. The method of claim 17, wherein said compound of claim 2, or a pharmaceutically acceptable salt thereof, is administered with one or more of: another IMPDH inhibitor; a cyclosporin; CTLA4-Ig; an antibody selected from anti-ICAM-3,
 25 anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, and monoclonal antibody OKT3; an agent blocking the interaction between CD40 and CD154; a fusion protein constructed from CD40 and/or CD154/gp39; an inhibitor of NF-kappa B function; a non-steroidal antiinflammatory drug (NSAID); a gold compound; an antiviral agent; an antiproliferative; a cytotoxic drug; an TNF-α inhibitor; an anti-TNF antibody; a soluble TNF receptor; and rapamycin (sirolimus or Rapamune); or derivatives thereof.

20. A compound of the following Formula I, or a pharmaceutically acceptable salt thereof:

$$Z \setminus J \setminus K \setminus X$$

5 wherein:

- (1) Z is a saturated, partially saturated or unsaturated monocyclic or bicyclic ring system optionally containing up to 4 heteroatoms selected from N, O, and S, and wherein a CH₂ adjacent to any of the said N, O or S heteroatoms is optionally substituted with oxo (=O), and wherein Z is optionally substituted with 0-3 substituents chosen from R¹, R², R³ or R⁴;
- R¹ and R² are independently selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN, OCF₃, OH, C₁-C₄alkoxy-, C₁-C₄alkylcarbonyl-, C₁-C₆ alkyl, hydroxy C₁-C₄ alkyl-, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄alkyl)-, H₂N(C₀-C₄)alkyl-, R⁶HN(C₀-C₄)alkyl-, R⁶R⁷N(C₀-C₄)alkyl-, R⁷S(C₀-C₄)alkyl-, R⁷S(O) (C₀-C₄)alkyl-, R⁷SO₂(C₀-C₄)alkyl-, R⁶NSO₂(C₀-C₄)alkyl-, HSO₃, HO₂C(C₀-C₄)alkyl-, R⁶O₂C(C₀-C₄)alkyl-, and R⁶R⁷NCO(C₀-C₄)alkyl-;
 alternatively, R¹ and R², when on adjacent carbon atoms, may be taken
- alternatively, R¹ and R², when on adjacent carbon atoms, may be taker together to be methylenedioxy or ethylenedioxy;
- (3) R³ is a 5- or 6-membered heterocyclic ring system containing up to 4
 heteroatoms selected from N, O, and S, said heterocyclic ring system being
 optionally substituted with 0-3 R⁵, when R⁵ is hydroxy the heterocycle may
 undergo tautomerization to an oxo species, or exist as an equilibrium mixture
 of both tautomers;
- (4) R⁴ is selected from the group consisting of H, F, Cl, Br, I, NO₂, CF₃, CN,
 OCF₃, OH, C₁-C₄alkoxy-, hydroxyC₁-C₄ alkyl-, C₁-C₄ alkylcarbonyl-, NH₂,

15

20

25

30

NHR⁶, NR⁶R⁷, SR⁶, S(O)R⁶, SO₂R⁶, SO₂NR⁶R⁷, CO₂H, CO₂R⁶, and CONR⁶R⁷;

- R⁵ is selected from the group consisting of H, F, Cl, Br, I, NO₂, CN, CF₃,
 OCF₃, OH, oxo, C₁-C₄alkoxy-, hydroxyC₁-C₄ alkyl-, C₁-C₄ alkylcarbonyl-,
 CO₂H, CO₂R⁶, CONR⁶R⁷, NHR⁶, and NR⁶R⁷;
 - (6) R⁶ is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic (C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy C_0 - C_4 alkyl, oxo, F, Cl, Br, CF₃, NO₂, CN, OCF₃, NH₂, NHR⁷, NR⁷R⁸, SR⁷, S(O)R⁷, SO₂R⁷, SO₂NR⁷R⁸, CO₂H, CO₂R⁷, and CONR⁷R⁸;

(7) R⁷ and R⁸ are independently selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxycarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₁-C₅ alkoxy)carbonyl, arylsulfonyl, aryl(C₀-C₄ alkyl)-, heterocyclic(C₁-C₅ alkoxy)carbonyl, heterocyclic sulfonyl and heterocyclic (C₀-C₄ alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

alternatively, R⁶ and R⁷, or R⁶ and R⁸, or R⁷ and R⁸, when both substituents are on the same nitrogen atom [as in (-NR⁶R⁷) or (-NR⁷R⁸)], can be taken together with the nitrogen atom to which they are attached to form a heterocycle selected from the group consisting of 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl, said heterocycle being optionally substituted with 0-3 groups

selected from the group consisting of oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl, arylsulfonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

- 10 (9) J is selected from the group consisting of $-NR^7$ -, and -C(=O)-;
 - (10) K is selected from the group consisting of $-NR^7$ -, -C(=O)-, and $-CHR^9$ -;
- (11) L is selected from the group consisting of a single bond (i.e., L is absent),
 C(=O), -CHR⁹-, -C(=O)CHR¹⁰-, -CHR¹⁰C(=O)-, -CR¹⁰R¹¹C(=O)-, -HR¹⁵C
 CHR¹⁶-, and -R¹⁵C=CR¹⁶-;
- (12) R⁹ is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl,
 C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄
 20 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, and NO₂;

- 25 (13) R¹⁰ is selected from the group consisting of H, F, Cl, Br, C₁-C₆ alkoxy, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;
 - (14) R^{11} is selected from the group consisting of H, F, Cl, Br, OMe, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and

heterocyclic(C_0 - C_4 alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

- 5 (15) alternatively, R¹⁰ and R¹¹, when on the same carbon atom [as in (-CR¹⁰R¹¹-)], can be taken together with the carbon atoms to which they are attached to form a 3-7 membered carbocyclic or 3-7 membered heterocyclic non-aromatic ring system, said carbocyclic or heterocyclic ring being optionally substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy C₀-C₄ alkyl, oxo, F, Cl, Br, CF₃, NO₂;
- X is selected from the group consisting of OR¹², NR¹²R¹³, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₆-C₁₀ aryl(C₀-C₄ alkyl)-, CR⁴=CR⁵(heteroaryl), -CR⁴=CR⁵(aryl), and heterocyclic(C₀-C₄ alkyl)-, wherein said aryl or heterocyclic groups are substituted with 0-3 substituents independently selected from R¹⁴, with the proviso that when L is a single bond (i.e., L is absent), X cannot be NR¹²R¹³;
- (17) R¹² is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl,
 C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, aryl(C₀-C₄ alkyl)-, and 4-10 membered heterocyclic(C₀-C₄ alkyl)-,
 wherein said aryl or heterocyclic groups are substituted with 0-3

substituents independently selected from R¹⁴;

25 (18) R¹³ is selected from the group consisting of H, C₁-C₈ alkyl, C₃-C₆ alkenyl, C₃-C₁₀ cycloalkyl(C₀-C₄ alkyl)-, C₁-C₆ alkylcarbonyl, C₁-C₆ alkylsulfonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkyl)carbonyl, C₁-C₆ alkoxycarbonyl, C₃-C₇ cycloalkyl(C₀-C₅ alkoxy)carbonyl, aryl(C₀-C₄ alkyl)-, aryl(C₁-C₅ alkoxy)carbonyl, arylsulfonyl, heterocyclic(C₀-C₄ alkyl), heterocyclic(C₁-C₅ alkoxy)carbonyl, and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

5 (19) alternatively, R¹² and R¹³, when both are on the same nitrogen atom [as in (-NR¹²R¹³)] can be taken together with the nitrogen atom to which they are attached to form a heterocycle selected from 1-aziridinyl, 1-azetidinyl, 1-piperidinyl, 1-morpholinyl, 1-pyrrolidinyl, thiamorpholinyl, thiazolidinyl, and 1-piperazinyl,

10 said h

15

said heterocycle being optionally substituted with 0-3 groups selected from oxo, C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl(C_0 - C_4 alkyl)-, C_1 - C_6 alkylcarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkyl)carbonyl, C_1 - C_6 alkoxycarbonyl, C_3 - C_7 cycloalkyl(C_0 - C_5 alkoxy)carbonyl, aryl(C_0 - C_5 alkyl), heterocyclic(C_0 - C_5 alkyl), aryl(C_1 - C_5 alkoxy)carbonyl, heterocyclic(C_1 - C_5 alkoxy)carbonyl, C_1 - C_6 alkylsulfonyl arylsulfonyl and heterocyclicsulfonyl,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from the group consisting of CH₃-, alkoxy, F, Cl, Br, CF₃, CN, and NO₂;

R¹⁴ is selected from the group consisting of H, C₁-C₁₀ alkyl, NO₂, CF₃, CN, F, (20)20 Cl, Br, C_1 - C_{10} alkylcarbonyl, $NR^6R^7(C_0$ - C_4 alkyl)-, R^6 $C(=O)O(C_0$ - C_4 alkyl)-, $R^6OC(=O)O(C_0-C_4 \text{ alkyl})-$, $R^6O(C_0-C_4 \text{ alkyl})$, $R^6R^7NC(=O)O(C_0-C_4 \text{ alkyl}) R^6O_2CCH_2O(C_0-C_4 \text{ alkyl})$ -, $R^6OOC(C_1-C_4 \text{ alkoxy})$ -, $R^6OOC(C_0-C_4 \text{ alkyl})$ -, $R^6C(=O)(C_0-C_4 \text{ alkyl})-, R^6C(=O)NR^7(C_0-C_4 \text{ alkyl})-, R^6OC(=O)NR^7(C_0-C_4 \text{ alkyl})$ alkyl)-, $R^6OC(=NCN)NR^7(C_0-C_4)$ alkyl)-, $R^6R^7NC(=O)NR^8(C_0-C_4)$ alkyl)-. 25 $R^{6}R^{7}NC(=NCN)NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{6}R^{7}NC(=C(H)(NO_{2}))NR^{7}(C_{0}-C_{4} \text{ alkyl})-,$ $R^{7}R^{8}N C(=NR^{7}) NR^{7}(C_{0}-C_{4} \text{ alkyl})-, R^{6}R^{7}N SO_{2}NR^{8}(C_{0}-C_{4} \text{ alkyl})-,$ $R^6SO_2NR^7(C_0-C_4 \text{ alkyl})$ -, $R^6S(C_0-C_4 \text{ alkyl})$ -, $R^6S(=0)$ ($C_0-C_4 \text{ alkyl}$)-, $R^6SO_2(C_0-C_4 \text{ alkyl})$ -, $SO_2NR^6R^7$, $SiMe_3$, $R^6R^7N(C_2-C_4 \text{ alkyl})$ -, R^6R alkoxy)-, HSO₃, HONH-, R⁶ONH-, R⁸R⁷NNR⁶-, HO(COR⁶)N-, 30 HO(R⁶O₂C)N, C₂-C₆ alkenyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkylmethyl,

aryl, heteroaryl, arylO-, and aryl(C1-C5 alkyl)-,

wherein said aryl groups are substituted with 0-2 substituents independently selected from a group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, and NO₂;

5 (21) R^{15} is selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, and C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴; and

10

15

(22) R^{16} is selected from the group consisting of H, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, C_3 - C_{10} cycloalkyl(C_0 - C_4 alkyl)-, aryl(C_0 - C_4 alkyl)-, and heterocyclic(C_0 - C_4 alkyl)-,

wherein said aryl or heterocyclic groups are substituted with 0-2 substituents independently selected from R¹⁴;

(23) alternatively, when R¹⁵ and R¹⁶ are on adjacent carbon atoms [as in -HR¹⁵C-CHR¹⁶-], or when R¹⁵ and R¹⁶ are oriented on the same side of the double bond [as in structure (III),

20

25

30

R¹⁵ and R¹⁶ can be taken together with the carbon atoms to which they are attached to form a 3-7 membered carbocyclic aromatic or nonaromatic ring system, or a 3-7 membered heterocyclic aromatic or nonaromatic ring system, said carbocyclic or heterocyclic ring being optionally substituted with 0-2 substituents independently selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ alkoxy, F, Cl, Br, CF₃, NO₂.

21. A pharmaceutical composition for the treatment of an IMPDH-associated disorder, comprising a pharmaceutically acceptable carrier, adjuvant or vehicle and at least one compound of claim 20, or a pharmaceutically acceptable salt thereof, in an amount effective therefor.

22. A method for the treatment of an IMPDH-associated disorder, comprising the step of administering to a subject in need thereof an amount effective therefor of at least one compound of claim 20 or a pharmaceutically acceptable salt thereof.