9 Hour

RNING Course Category C PROFESSIONAL CORE L T P C	Nii Progressive Nii Courses
MACHINE LEARNING	Co- requisite
Course Name	Nil
Sourse 21CSC305P	Pre-requisite Courses

Data Book / Codes / Standards

School of Computing

Course Offering Department

⋛

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:				Pro	aram C	utcor	nes (F	6				P	ogram
						3		-	5				ù	٥٠١٠١
CLR-1:	CLR-1: explore the fundamental mathematical concepts of machine learning algorithms	-	2	3	4	5 6	7	∞	6	10		12	ōō	comes
CLR-2:	apply linear machine learning model to perform regression and classification	ə6p	30				4		,ork		—— ——			
CLR-3:	utilize mixture models to group simil <mark>ar data item</mark> s	oəlw		nent Iatioi	swə				W m		ueui			
CLR-4:	CLR-4: develop machine learning models for time –series data prediction	N	alysi	7	orob	I Osi		λ:	Tea			imse		
CLR-5:	design ensemble learning mode <mark>ls using va</mark> rious machine learning algorithms	6uju		S	xəl		uəw	abilit	al &					
		ÐΟ	_	uo	dw	∂u∈		S					Į-	2 - 3

		The second secon	uļ	7	ij	IC	Ť	θ.		ļ/	JL	Э	7	_	_	-(
Course Ou	Course Outcomes (CO):	At the end of this course, learners will be able to:	6u∃	Prok	səQ solu no	of co	DoM The	soci Envi	Susi	vibn	noO	Proj	əJi⊿	DSd	DSd	DSd
CO-1:	understand the basics of machine learning using probability theory	arning using probability theory		2					-	-	-	-	-	1	-	
CO-2 :	implement machine learning <mark>models</mark> using supervised learning algoritl	using supervised learning algorithms		2		2				-	-	-	-	•	-	2
co- 3:	implement machine learning <mark>models</mark> using unsupervised learning algo	using unsupervised learning algorithms		3	2-	3	4			-	-	-				2
CO-4:	implement machine learning <mark>models</mark> for sequential data analysis and p	for sequential data analysis and prediction	1	3		3	-		-	-	-	-	-	•	-	3
CO-5:	develop ensemble learning <mark>models f</mark> or supervised and unsupervised l	or supervised and unsupervised learning		3		3	4			-	-	-	-	-		$^{\circ}$

Unit-1 - Introduction

machine learning what and why?, supervised and unsupervised learning, polynomial curve fitting, probability theory- discrete random variables, fundamental rules, Bayes rule, Independence and conditional independence, continuous random variables, Quantiles, Mean and variance, probability densities, Expectation and covariance. Practice:

- Devise a program to import, load and view dataset
- Create a program to display the summary and statistics of the dataset

Unit-2 - Linear models for Regression

9 Hour Maximum likelihood estimation – least squares, robust linear expression, ridge regression, Bayesian linear regression. Linear models for classification: Discriminant function – Probabilistic generative models, Probabilistic discriminative models, Laplacian approx<mark>imation, Ba</mark>yesian logistic regression, Kernels functions, using kernels in GLMs, Kernel trick, SV<mark>Ms.</mark>

Practice:

- Implement linear regression to perform prediction
- Implement Bayesian logistic regression and SVM for classification

Unit-3 - Mixture Models and EM

K-means clustering, mixtures of Gaussians, An alternative view of EM, Factor analysis, PCA, choosing the number of latent dimensions. Clustering – measuring dissimilarity, evaluating the output of clustering methods, Hierarchical clustering.

Practice:

- Implement K-means clustering, mixtures of Gaussians and Hierarchical clustering <mark>algorithm to categorize data</mark>.
 - Create a program to perform PCA

-	_
3	
우	
=	
Ο,	
	١.
	١.
	١.
	:
	:
	:
	1
	ľ
	ľ
	ľ
	١,
	ľ
	١
	l
	1
	١
	ŀ
	:
	:
	١.
	٠
	ı
	:
	:
	ľ
Ì	:
	١.
Ì	
	1
	:
Ì	
Ì	
	:
4-	
Sie	١.
ğ	١.
ĭ	
>	
ź	١.
1ai	:
~	ľ
e	١.
90	
- Hidden I	:
7	ľ
if.	
5	١,
_	Ľ

Sequential data – Markov models, HMM – maximum likelihood for the HMM, The forward and Backward algorithm, the sum-product algorithm, scaling factors, Viterbi algorithm, linear dynamical systems.

Practice:

9 Hour

Implement HMM to predict the sequential data

Unit-5 - Combining Models

Bayesian model averaging, Boosting, Adaptive basis function models, CART, generalized additive models, Ensemble learning. Practice:

Implement CART learning algorithms to perform categorization
 Implement Ensemble learning models to perform classification

earning	1 Pattern Recognition and Machine Learning Christopher M.F.	Bishon Springer 2006	Machine Learning A mobalifistic perspective Keyin D Murahy The M	MT Press 2012
sources	i. I aucht Necognition and Machine Ecanimig, Offisiopher M.	District, optimizer, 2000.	2. Machinic Ecaninig- A probabilistic perspective, revinit intalpity, the mi	

Learning Assessment	nt			56	** ** ** ** ** **		1				
			7	S	ntinuous Learnin	Continuous Learning Assessment (CLA)	(A)				
	o, wood a	1	Formative	ative	Project Bas	sed Learning	Report and	Report and Viva Voce	Final Exa	Final Examination	
	Level of Thinking	G	CLA-1 Average of unit t (20%)	ie of unit test %)	79)	CLA-2 (60%)	(20% WE	(20% weightage)	(0% weightage)	ghtage)	
			Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember		15%	1 1 1 1 1	1 O-11 C	15%		15%		•	
Level 2	Understand		72%	1000	26.32	70%	100	70%			
Level 3	Apply		30%			72%		72%			
Level 4	Analyze	I	30%			72%	***	75%			
Level 5	Evaluate		545		, ,	10%		%01			
Level 6	Create	1				%9		%9			
	Tot <mark>al</mark>	1	100 %	%	10	100 %	100	100 %			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Vaisakh. P.S, Assistant executive manager, Samsung	1. Dr.C.Oswald, Assistant professor, NIT,	1. A.Jackulin <mark>Maharib</mark> a, SRMIST
Electronics, Bangalore vaishakhps@samsung.com	Trichy, Oswald.mecse@gmail.com	