2023 - 2024 学年第一学期期中考试模拟试题

《高等数学》

仲英学业辅导中心、南洋学辅·联合出品

班级: _	学号:		ナル
姓名: _	座号:		成绩
	预祝考生	_们取得理想成绩!	%
命题:自动化 220 4	4 徐彬宵 (1~10) 计试 2101 肖追l	E (11 ∼ 14)	
	3 陈洋 (15 ~ 18) 自动化 2202 任黎	1	X,
	4 徐彬宵 应数 2101 杨嘉昱	7/3/	
		-41	
		- /	
一、选择题(キ 	共5题,每题3分)	***	
 	正确的是	XX *	()
A 对数万	月 $\{x_n\}$ 与 $\{y_n\}$,若数列 $\{x_ny_n\}$	↓	"
,	> 0 ,有无穷多个 $x_n \in (a - \eta, a)$		Į.
C. 当 x -	$\rightarrow 0$ 时,变量 $\frac{1}{x^2} \sin \frac{1}{x}$ 是无穷大	量	
D. 若数列	$J\{x_n\}$ 的奇偶子列 $\{a_n\}$, $\{b_n\}$ 均	的收敛,则 $\{x_n\}$ 的极限存在	
$2. \stackrel{\text{def}}{=} x \rightarrow 0^{-1}$	$^+$ 时,与 \sqrt{x} 等价的无穷小量是	_	()
		C. $\sqrt{1+\sqrt{x}}-1$	$D_{1} = \cos \sqrt{x}$
A. $1 - e^{}$	B. $\ln \frac{1+x}{1-\sqrt{x}}$	$C. \sqrt{1+\sqrt{x}-1}$	D. $1 - \cos \sqrt{x}$
	$=\lim_{n\to\infty} \frac{2e^{(n+1)x}+1}{e^{nx}+x^n+1}, \ \ \mathbb{M} \ f(x)$		()
	$= \lim_{n\to\infty} \frac{1}{e^{nx} + x^n + 1}, \text{ if } f(x)$		()
A. 0	B. 1	C. 2	D. 3
4. 下列命题	正确的是		()
A. 若 lim	$\lim_{x \to 0} \varphi(x) = 0, \text{II} \lim_{x \to 0} \frac{f[\varphi(x)] - f}{\varphi(x)}$	f(0) 存在,则 $f(x)$ 在 $x = 0$ 久	上可导
	$f(x)$ 在 $x = 0$ 处可导,且 $\lim_{x \to 0} \varphi(x)$	4 5 6 6 1 1 1 1 1 1 1 1 1 1	
C. 若 lim	$\frac{f(\sin x) - f(0)}{\sqrt{x^2}}$ 存在,则 $f(x)$) 在 $x = 0$ 处可导	

D. 若 $\lim_{x\to 0} \frac{f(\sqrt[3]{x}) - f(0)}{\sqrt{x^2}}$ 存在,则 f(x) 在 x = 0 处可导

5. 设
$$\alpha > 0, \beta \neq 0$$
, 且 $\lim_{x \to +\infty} [(x^{2\alpha} + x^{\alpha})^{\frac{1}{\alpha}} - x^2] = \beta$, 则 $\alpha + \beta =$ ()

A.
$$\frac{3}{2}$$

C.
$$\frac{5}{2}$$

二、填空题(共5题,每题3分)

6. 设
$$f(x)$$
 可导, $F(x) = f(x)(1 + |\sin x|)$,若 $F(x)$ 在 $x = 0$ 也可导,则 $f(0)$ 的值是 ______.

7. 设
$$f(x)$$
 在原点与 $y = \sin x$ 相切,则极限 $\lim_{n \to \infty} n^{1/2} \sqrt{f\left(\frac{2}{n}\right)} = \underline{\qquad}$

8. 若曲线
$$y = x^2 \ln(ax)(a > 0)$$
,则当 a 变动时,拐点的轨迹方程是_____

9. 设
$$x = x(y)$$
 是函数 $y = \ln x + e^x$ 的反函数,则 $\frac{d^2x}{dy^2} =$ ______

10. 极限
$$\lim_{x \to +\infty} (\sqrt[4]{x^4 + x^3 + x^2 + x + 1} - \sqrt[3]{x^3 + x^2 + x + 1}) = \underline{\hspace{1cm}}$$

三、计算与证明:本题共9小题,共70分。其中11,12题每题8分, $13 \sim 18$ 题每题9分。解答应写出文字说明、证明过程或演算步骤。

11. 计算极限:

$$\lim_{n \to \infty} \frac{1^2 + 3^2 + \dots + (2n - 1)^2}{n^3}.$$

12. 设函数 f(x) 在 x = 0 的某邻域内有二阶连续导数,且 f(0), f'(0), f''(0) 均不为 0。试求所有满足使得

$$\lim_{h \to 0} \frac{k_1 f(h) + k_2 f(2h) + k_3 f(3h) - f(0)}{h^2} = 0$$

实数对 (k_1, k_2, k_3) 。

13. 设函数 f(x) 在区间 (0,1) 内有定义,满足

$$\lim_{x \to 0^{+}} f(x) = 0, \qquad \lim_{x \to 0^{+}} \frac{f(x) - f(\frac{x}{3})}{x} = 0.$$

$$\lim_{x \to 0^{+}} \frac{f(x)}{x} = 0.$$

试证明:

$$\lim_{x \to 0^+} \frac{f(x)}{x} = 0.$$

14. 设函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 上可导,且 f(0)=0, f(1)=2.

试证明:存在两两相异的点 $\eta_1,\eta_2,\eta_3\in(0,1)$, 使得

$$f'(\eta_1)f'(\eta_2)\sqrt{1-\eta_3} \ge 2.$$

15. 设函数 y = y(x) 由参数方程

$$\begin{cases} x = \frac{1}{3}t^3 + t + \frac{1}{3} \\ y = \frac{1}{3}t^3 - t + \frac{1}{3} \end{cases}$$

确定,求y = y(x)的极值和曲线y = y(x)的凹凸区间及拐点.

16. 设数列
$$\{a_n\}$$
 满足 $x_0=2, x_n=2+\frac{1}{x_{n-1}}, n=1,2,\cdots$ 求 $\lim_{n\to+\infty}x_n$

17. 设在 $(-\infty, +\infty)$ 上 $f^{''}(x) > 0$, 而 f(0) < 0. 试证: $\frac{f(x)}{x}$ 在 $(0, +\infty)$ 上单调递增

18. f(x) 在 [0,1] 上三阶可导,且 f(0)=0, f(1)=1, $f^{'}\left(\frac{1}{2}\right)=0$. 证明:存在 $\xi\in(0,1)$, 使得 $|f^{'''}(\xi)|\geq 24$.

四、附加题:本题共3小题,共20分。其中19题6分,20、21题7分。解答应写出文字说明、证明过程或演算步骤。

19. 设 $F(x,y) = \frac{f(y-x)}{2x}$, $F(1,y) = \frac{y^2}{2} - y + 5$, $x_0 > 0$, $x_1 = F(x_0, 2x_0)$, \dots , $x_{n+1} = F(x_n, 2x_n)$. 证 明 x_n 极限存在并求该极限。

20. 设 f(x) 在闭区间 [a,b] 上连续,开区间 (a,b) 可导, $0 \le a \le b \le \frac{\pi}{2}$ 。证明在区间 (a,b) 中存在 两点 ξ_1, ξ_2 使得

$$f'(\xi_1) \tan \frac{a+b}{2} = f'(\xi_2) \frac{\sin \xi_1}{\cos \xi_2}.$$

21. (1) 证明 Young 不等式: 设 a,b > 0, p > 1 且 $\frac{1}{p} + \frac{1}{q} = 1$, 那么有

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

(提示:利用函数的凹凸性)

(2) 证明 Holder 不等式: 设 $x_j,y_j\geqslant 0$ $(1\leq j\leq n)$,并且 p>1,q>1 满足

$$\frac{1}{p} + \frac{1}{q} = 1$$

则成立不等式

$$\sum_{j=1}^{n} x_{j} y_{j} \leq \left(\sum_{j=1}^{n} x_{j}^{p}\right)^{1/p} \left(\sum_{j=1}^{n} y_{j}^{q}\right)^{1/q}.$$