Name	ID No	пипти Вест No
	- مدخم	วลัยทุดในโลยีพระจอมเกล้ามนา

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2553

วิชา MEE 223 Thermodynamics วันจันทร์ที่ 2 ธันวาคม พ.ศ.2556 นศ.ภาควิชาไฟฟ้าปีที่ 4 เวลา 13.00 - 16.00 น.

คำเตือน

- ข้อสอบทั้งหมดมี 4 จำนวน/2หน้า (รวมใบปะหน้าด้วย)
- 2. อนุญาตให้นำเครื่องคำนวณตามที่มหาวิทยาลัยฯ กำหนค เข้าห้องสอบได้
- 3. ไม่อนุญาตให้นำตำราเข้าห้องสอบ
- 4. ให้เขียนชื่อและรหัสประจำตัว ทุกแผ่น
- 5. ทำข้อสอบในกระคาษข้อสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบออกนอกห้องสอบ

นักศึกษาซึ่งทุงริศในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

รศ.สุรชัย บวรเศรษฐนันท์ (ผู้ออกข้อสอบ) โทร 0-2470-9123-4

	ID No triumos eat No
	.หาวทยาลัยเทคในใลยีพระจอมเกล้าะน
Answer the following question	
What are the assumptions in analysis the	Thermodynamics Power Cycle?
	llowing cycle and also specify the process
Cycle	
•	

Otto Cycle

Name	ID No.
Diesel Cycle	
Providen Civele	
Brayton Cycle	
1.3 Draw the schematic diagram and P-h diagr	am for a vapor compression refrigeration cycle.
1.4 Explain the meaning of "TON refrigeration	n "

Nam	Explain the difference of C.O.P. and E.E.R.	ID No. ถานกาชกลุ่น Seat No แหาวิทยาลัยเทคในใลยีพระจอบเกล้านะ
1.0	Explain the difference of C.C.F. and E.E.N.	
1.6	What is the meaning of saturated air in Psy	chrometry?
1.7	What is the difference of wet bulb temperat	ure and dew point temperature?
1.8	What is the difference of humidity ratio and	I relative humidity?

1.9 Fill the data of humid air from Psychometrics Chart into the blank:-

	Dry bulb	Wet bulb	%RH	Dew pt.	Sp. Humidity	Enthalpy
	°C	°C		°C		
Α	35	30				
В	26		50			
С	35		-	26		
D		30		26		
E			60	26		

Name		II	D Norinseat No
2 A refriger:	ator usos rofrigoront 134a on t	ha waski	ั้า เกราวทยาลัยเทคในใสยีพระจอบเกลาน ing fluid and operates on ideal vapor
			ing hala and operates on ideal vapor
compression	refrigeration cycle as following):	
Cond	ensing pressure	1.5	MPa(abs.)
Evap	orating pressure	0.4	MPa(abs.)
Degre	ee of superheated	0	degree
Degre	ee of sub-cooled	0	degree
Determine;			
Temperature	@inlet of the compressor		℃
	@inlet of the condenser		°C
	@inlet of the expansion		°C
	@inlet of the evaporator		°C
Enthalpy	@inlet of the compressor		kJ/kg
	@inlet of the condenser	•••••	kJ/kg
	@inlet of the expansion		kJ/kg
	@inlet of the evaporator		kJ/kg
	Refrigerating Effect	*******	kJ/kg
	Condensing Effect		kJ/kg
	Compression Work		kJ/kg
	C.O.P. of Refrigeration		

Show the state and processes of the refrigeration cycle on the given P-h Chart of R-134a If the cooling capacity is 2 tons (1 ton of refrigeration=3.516 kW) .What is the mass flow rate of the refrigerant in the system?

Name....... ID No. เป็นท่างชนุน Seat No.......

Name	ID No.	ด/ผลังอากันเล
		งหาวิทยาลัยเทคในใลยีพระจอมเกต

3 Given:- Atmospheric Pressure as 101.325 kPa.

Atmospheric Temperature as 36°C dry bulb and 28°C wet bulb

Air flow rate through A/C = 1 m³/sec @ state 4

Return air / Fresh air = 4/1

Determine:-

- -Condition of air at state 3
- -Condensate at A/C
- -Heat load (heat input into the room)
- -Heat load at A/C
- -Show the states and the processes on the Psychrometric Chart.

นทาวิทยาลัยเท ก ในโลยีพระจอบเกล้าม	
	1 1. % ;

Name	ID No.	Seat No
		ช เป้าหาะรณ

- 4 A steam power plant operates on a simple ideal Ranking cycle was with a steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 10 kg/s. Show the cycle on a T-s diagram with respect to saturation lines and determine:-
 - (a) The thermal efficiency of the cycle
 - (b) The net power output of the power plant.

Name...... ID No. สามที่หยุลบูเร Seat No...... มหาวิทยาลัยเทคใน โลยีพระจะบุเกล้าะบุ

TABLE A-5 Saturated water: pressure table

Press. <i>P</i> kPa	Sat.	Specific m³/kg	Specific volume m³/kg		internal energy kJ/kg			Enthalpy kJ/kg			Entropy kJ/(kg·K)		
		Sat. Ilquid V/	Sat. Vapor V _E	Sat. liquid	Evap.	Sat. Vapor	Sat. liquid	Evap.	Sat. Vapor	Set. liquid	Evap.	Set. Vapor	
0.6113	0.01	0.001000	206.14	0.00	2375.3				h _e	3,	3 _{fg}	38 ,	
1.0	6.98	0.001000	129.21	29.30	2375.3 23 5 5.7	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	9.1562	
1.5	13.03	0.001001	87.98	54.71	2338.6	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756	
2.0	17.50	0.001001	67.00	73.48	2326.0	2393.3 2399.5	54.71 73.48	2470.6	2525.3	0.1957	8.6322	8.8279	
2.5	21.08	0.001002	54.25	88.48	2315.9			2460.0	2533.5	0.2607	8.4629	8.7237	
3.0	24.08	0.001003	45.67	101.04	2307.5	2404.4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432	
4.0	28.96	0.001004	34.80	121.45		2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776	
5.0	32.88	0.001005	28.19	137.81	2293.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	8.4746	
7.5	40.29				2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.3951	
10		0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515	
	45.81	0.001010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502	
15 ~	53.97	0.001014	10.02	225.92	2222.8	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	8.0085	
20	60.06	0.001017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.9085	
25	64.97	0.001020	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9383	7.8314	
30	69.10	0.001022	5.229	2 89.2 0	2179.2	2468.4	289.23	2336.1	2625.3	0.9439	6.8247	7.7686	
40	75.87	0.001027	3.993	317.53	2159.5	2477.0	317.58	2319.2	2636.8	1.0259	6.6441	7.6700	
50	81.33	0.001030	3.240	340.44	2143.4	2483.9	340.49	2305.4	2645.9	1.0910	6.5029	7.5939	
75	91.78	0.001037	2.217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130	6.2434	7.4564	
Pross. MPs					-								
0.100	99.63	0.001043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1 2000	0.0500	7.050	
0.125	105.99	0.001048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3026	6.0568	7.3594	
0.150	111.37	0.001053	1.1593	466.94	2052.7	2519.7	467.11	2226.5		1.3740	5.9104	7.2844	
0.175	116.06	0,001057	1.0036	486.80	2038.1	2524.9			2693.6	1.4336	5.7897	7.2233	
0.200	120.23	9001061	0.8857	504,49	2025.0	2529.5	486.99	2213.6	2700.6	1.4849	5.6868	7.1717	
0.225	124.00	0.001064	0.7933	520.47			504.70	2201.9	2706.7	1.5301	5.5970	7.1271	
0.250	127.44	0.001067	0.7333	535.10	2013.1 · 2002.1	2533.6 2537.2	520.72	2191.3	2712.1	1.5706	5.5173	7.0878	
0.275	130.60	0.001070	0.6573	548.59			535.37	2181.5	2716.9	1.6072	5.4455	7.0527	
0.300	133.55	0.001073	0.6058	561.15	1991.9	2540.5	548.69	2172.4	2721.3	1.6408	5.3801	7.0209	
0.325	136.30	0.001076	0.5620	572.90	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919	
0.350	138.88	0.001079	0.5243		1973.5	2546.4	573.25	2155.8	2729.0	1.7006	5.2646	6.9652	
0.375	141.32	0.001079	0.3243	583.95	1965.0	2548.9	584.33	2148.1	2732.4	1.7275	5.2130	6.9405	
0.40	143.63	0.001081	0.4625	594.40	1956,9	2551.3	594.81	2140.8	2735.6	1.7528	5.1647	6.9175	
0.45	147.93	0.001084		604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.8959	
0.50	151.86	0.001098	0.4140 0:3749	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.78565	
0.55	155.48	0.001093	_	639.68	1921.6	2561.2	640.23	2108.5	2748.7	1.8607	4.9606	6.8213	
0.60	158.85	0.001097	0.3427	655.32	1909.2	2564.5	665.93	2097.0	2753.0	1.8973	4.8920	6.7893	
0.85	162.01	0.001101	0.3157		1897.5	2567.4	670.56	2086.3	2756.8	1.9312	4.8288	6.7600	
0.70	164.97	0.001104	0.2927	683.56	1886.5	2570.1	684.28	2076.0	2760.3	1.9627	4.7703	6.7331	
0.75			0.2729	696.44	1876.1	25 72.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080	
	167.78	0.001112	0.2556	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.6847	
0.80	170.43	0.001115	0.2404	720.22	1856.6	2576.8	721.11	2048.0	2769.1	2.0462	4.6166	6.6628	
0.85	172.96	0.001118	0.2270	731.27	1847.4	2578.7		2039.4	2771.6	2.0710	4.5711	6.6421	
0.90	175.38	0.001121	0.2150	741.83	1838.6	2580.5	742.83	2031.1	2773.9	2.0946	4.5280	6.6226	
0.95	177.69	0.001124	0.2042	751.95	1830.2	2582.1	753.02	2023.1	2776.1	2.1172	4.4869	6,6041	
1,00	179.91	0.001127	0.19444	761.68	1822.0	2583.6	762.81	2015.3	2778.1	2.1387	4.4478	6.5865	
1.10	184.09	0.001133	0.17753	780.09	1806.3	2586.4	781.34	2000.4	2781.7	2.1792	4,3744	6.5536	
1.20	187.99	0.001139	0.16333	797.29	1791.5	2588.8	798.65	1986.2	2784.6	2.2166	4.3067	6.5233	
1.30	191.64	0.001144	0.15125	813.44	1777.5	2591.0	814.93	1972.7	2787.6	2.2515	4.2438	6.4953	

ชานักหอกมูน

งหาวิทยาลัยเทคในไลยีพระลอมเกล้าชา

TABLE A.
Superheated water (Continues

7	ν	и	h	5 -	ν	u	<u> </u>				.,	Continued
<u>-c</u>	m³/kg	kJ/kg	kJ/kg	kJ/(kg·K)	m³/kg	kJ/kg	h kJ/kg	, kJ/(kg·K)	m³/kg	kJ/kg	h kJ/kg	; kJ/(kg·K
	P	91°C)	P	- 1.20 M	IPa (187.	99°C)	Р =	1.40 MP	(195.0			
Sal.	0.19444	2583.6	2778.1	6.5865	0.16333	2588.8	2784.8	6.5233	0.14084	2592.8	2790,0	6.4693
200	0.2060	2621.9	2827.9	6.6940	0.16930	2612.8	2815.9	6.5898	0.14302	2603.1	2803.3	6.4975
250	0.2327	2709.9	2942.6	6.9247	0.19234	2704.2	2935.0	6.8294	0.16350	2698.3	2927.2	6.7467
300	0.2579	2793.2	3051.2	7.1229	0.2138	2789.2	3045.6	7.0317	0.18228	2785.2	3040.4	6.9534
350	0.2825	2875.2	3157,7	7.3011	0.2345	2872.2	3153.6	7.2121	0.2003	2869.2	3149.5	7.1360
400	0.3066	2957.3	3263.9	7.4651	0.2548	2954.9	3260.7	7.3774	0.2178	2952.5	3257.5	7.3026
500	0.3541	3124.4	3478.5	7.7622	0.2946	3122.8	3476.3	7.6759	0.2521	3121.1	3474.1	7.6027
600	≥ 0.4011	3296.8	3697.9	8.0290	0.3339	3295.6	3696.3	7.9435	0.2860	3294.4	3694.8	7.8710
700	0.4478	3475.3	3923.1	8.2731	0.3729	3474.4	3922.0	8.1881	0.3195	3473.8	3920.8	8.1160
800	0.4943	3660.4	4154.7	8.4996	0.4116	3659.7	4153.8	8.4148	0.3528	3659.0	4153.0	8.3431
900	⁵ 0.5407	3852.2	4392.9	8.7118	0.4505	3851.6	4392.2	8.6272	0.3861	3851.1	4391.5	8.5556
1000	0.5871	4050.5	4637.6	8.9119	0.4892	4050.0	4637.0	8.8274	0.4192	4049.5	4636.4	8.7559
1100	0.6335	4255.1	4888.6	9 1017	0.5278	4254.6	4888.0	9.0172	0.4524	4254.1	4887.5	8.9457
1200	0.6798	4465.6	5145.4	9.2822	0.5665	4465.1	5144.9	9.1977	0.4855	4464.7	5144.4	9.1262
300	0.7261	4681.3	5407.4	9.4543	0.6051	4680.9	5407.0	9.3698	0.5186	4680.4	5406.5	9.2984
	F	° = 1.60 M	Pa (201,	41°C)	1	P = 1.80 I	4Pa (207	.15°C)	P	= 2.00 MP	a (212.4	2°C)
Sat.	0,12380	2596.0	2794.0	6.4218	0.11042	2598.4	2797.1	6.3794	0.09963	2600.3	2799.5	6.3409
225	0.13287	2644.7	2857.3	6,5518	0.11673	2636.6	2848.7	8.4808	0.10377	2628.3	2835.8	6.4147
250	0.14184	2692.3	2919.2	6.6732	0.12497	2686.0	2911.0	6.6066	0.10377	2679.6	2902.5	6.5453
300	- 0.15862	2781.1	3034.8	6.8844	0.14021	2776 9	3029.2	6.8226	0.12547	2772.6	3023.5	6.7664
350	0.17456	2866.1	3145.4	7.0694	0.15457	2863.0	3141.2	7.0100	0.12347	2659.8	3137.0	6.9563
400	0.19005	2950.1	3254.2	7.2374	0.16847	2947.7	3250.9	7.1794	0.15120	2945.2	3247.6	7.1271
500	0.2203	3119.5	3472.0	7.5390	0.19550	3117.9	3469.8	7.4825	0.17568	3116.2	3467.6	7.4317
600	0.2500	3293.3	3693.2	7.8980	0.2220	3292.1	3691.7	7.7523	0.19960	3290.9	3690.1	7.7024
700	0.2794	3472.7	3919.7	8.0535	0.2482	3471.8	3918.5	7.9983	0.2232	3470.9	3917.4	7.9487
800	0.3086	3658.3	4152.1	8.2008	0.2742	3657.6	4151.2	8.2258	0.2467	3657,0	4150.3	8.1765
900	0.3377	3850.5	4390,8	8.4935	0.3001	3849.9	4390.1	8.4386	0.2700	3849.3	4389.4	8.3895
1000	0.3668	4049.0	4635.8	8.6938	0.3260	4048.5	4635.2	8.6391	0.2933	4048.0	4634.6	8.5901
1100	0.3958	4253.7	4887.0	8.8837	0.3518	4253 2	4886.4	8.8290	0.3166	4252.7	4885.9	8.7800
1200	0.4248	4484.2	5143.9	9.0643	0.3776	4463.7	5143.4	9.0096	0.3398	4463.3	5142.9	8.9607
1300	0.4538	4679.9	5406.0	9.2364	0.4034	4879.5	5405.6	9.1818	0.3631	4679.0	5405.1	9.1329
		P = 2.50 h						_ .		= 3.50 MF		
Cal			2803.1	6.2575	0.06668	2604.1						
Set. 225	0.07998 0.0 802 7	2603.1 2605.6	2806.3	6.2639	0.00000	2004.1	2804.2	8.1869	0.05707	2603.7	2803.4	6.1253
250	0.08700	2662.6	2880.1	6.4085	0.07058	2644.0	2655.8	6 2072	0.05070	2022.7	2020.0	0 1710
								6.2872	0.05872	2623.7	2829.2	8.1749
300	0.09890	2761.6	3008.8	6.8438	0.08114	2750.1	2993.5	6.5390	0.06842	2738.0	2977.5	6.4461
350	0.10976	2851.9	3126.3	6.8403		2843 7	3115.3	6.7428	0.07678	2835.3	3104.0	6.6579
400	0.12010	2939.1	3239.3	7.0148	0.09936	2932.8	3230.9	6 9212	0.08453	2926.4	3222.3	6.8405
450	0.13014	3025.5	3350.8	7.1746	0.10787	3020.4	3344.0	7.0834	0.09196	3015.3	3337.2	7.0062
500	0.13993	3112.1	3462.1	7.3234	0.11619	3106.0	3456.5	7.2338	0.09918	3103.0	3450.9	7.1572
600	0.15930	3288.0	3686.3	7.5960	0.13243	3285.0	3682.3	7.5085	0.11324	3282.1	3678.4	7.4339
700	0.17832	3468.7	3914.5	7.8435	0.14836	3466 5	3911.7	7.7571	0.12699	3464.3	3908 8	7 6837
800		3655.3	4148.2	8.0720	0.16414	3653.5 3846.5	4145.9	7.9862	0.14056	3651.8	4143.7	7 9134
900	0.21590	3847.9	4387.6	8.2853	0.17980	3846.5	4385.9	8.1999 8.4009	0.15402	3845.0	4384.1	8.1276
1000	0.2346	4046.7	4633.1	8,4861	0.19541	4045.4	4631.6		0.16743	4044.1	4630.1	6.3288 8.5193
1100	0.2532	4251.5	4884.6	8.6762	0.21098	4250.3	4883.3	8.5912	0.18080	4249.2	4881.9	8.5192
1200		4462.1	5141.7	8.8569	0.22652	4460.9	5140.5	8.7720	0.19415	4459.8	5139.3	6.7000
1300	0.2905	4677.8	5404.0	9.0291	0.24206	4676.8	5402.8	8.9442	0.20749	4675.5	5401.7	8.8723