Section 9.2 – Monotone Sequences

Use the difference $a_{n+1}-a_n$ to show that the given sequence $\{a_n\}$ is strictly increasing or strictly decreasing.

$$1. \quad \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$$

$$3. \left\{ \frac{n}{2n+1} \right\}_{n=1}^{\infty}$$

3.
$$\left\{\frac{n}{2n+1}\right\}_{n=1}^{\infty}$$
 5. $\{n-2^n\}_{n=1}^{\infty}$

Use the ratio $\frac{a_{n+1}}{a_n}$ to show that the given sequence $\{a_n\}$ is strictly increasing or strictly decreasing.

$$7. \left\{ \frac{n}{2n+1} \right\}_{n=1}^{\infty}$$

9.
$$\{ne^{-n}\}_{n=1}^{\infty}$$

$$11. \left. \left\{ \frac{n^n}{n!} \right\}_{n=1}^{\infty} \right.$$

Use differentiation to show that the given sequence is strictly increasing or strictly decreasing.

$$17. \left\{ \frac{n}{2n+1} \right\}_{n=1}^{\infty}$$

19.
$$\{\tan^{-1} n\}_{n=1}^{\infty}$$

Show that the given sequence is eventually strictly increasing or eventually strictly decreasing.

$$21. \{2n^2 - 7n\}_{n=1}^{\infty}$$

$$23. \left\{ \frac{n!}{3^n} \right\}_{n=1}^{\infty}$$

25. Suppose that $\{a_n\}$ is a monotone sequence such that $1 \le a_n \le 2$ for all n. Must the sequence converge? If so, what can you say about the limit?

28. Let $\{a_n\}$ be the sequence defined by $a_1 = 1$ and $a_{n+1} = \frac{1}{2} \left[a_n + \frac{3}{a_n} \right]$ for $n \ge 1$.

- a. Show that $a_n \ge \sqrt{3}$ for $n \ge 2$. [Hint: What is the minimum value of $\frac{1}{2} \left[x + \frac{3}{x} \right]$ for x > 0?]
- b. Show that $\{a_n\}$ is eventually decreasing. [Hint: Examine $a_{n+1}-a_n$ or $\frac{a_{n+1}}{a_n}$ and use the result in part (a).]
- c. Show that $\{a_n\}$ converges and find its limit L.

The Beverton-Holt model is used to describe changes in a population from one generation to the next under certain assumptions. If the population in generation n is given by x_n , the Beverton-Holt model predicts that the population in the next generation satisfies

$$x_{n+1} = \frac{RKx_n}{K + (R-1)x_n}$$

for some positive constants R and K with R>1. These exercises explore some properties of this population model.

29. Let $\{x_n\}$ be the sequence of population values defined recursively by $x_1 = 60$, and for $n \ge 1$, x_{n+1} is given by the Beverton-Holt model with R = 10 and K = 300.

- a. List the first four terms of the sequence $\{x_n\}$.
- b. If $0 < x_n < 300$, show that $0 < x_{n+1} < 300$. Conclude that $0 < x_n < 300$ for $n \ge 1$.
- c. Show that $\{x_n\}$ is increasing.
- d. Show that $\{x_n\}$ converges and find its limit L.