INF1608 – Análise Numérica

Lab 9: Equações Diferenciais Ordinárias (EDO)

Prof. Waldemar Celes Departamento de Informática, PUC-Rio

Considere a solução de equações diferenciais ordinárias expressas por:

$$x'(t) = f(t, x(t))$$

Considere o método iterativo de Euler para resolução de problemas de valor inicial, considerando passos h constantes.

$$x(t+h) = x(t) + hf(t, x(t))$$

Considere ainda o uso de passos adaptativos com o método de Euler. Para tanto, fazem-se um avanço com passo h, obtendo uma aproximação x_1 , e dois avanços com passos h/2, obtendo uma aproximação x_2 . Sabe-se que a diferença $\Delta = x_2 - x_1$ representa uma avaliação do erro de x_2 .

O método adaptativo de Euler faz um avanço computando x_1 e x_2 . O fator de alteração do passo é então dado por $\gamma = \sqrt{\frac{\tau}{|\Delta|}}$, onde τ representa a tolerância numérica adotada. Então, se:

- Se $\gamma >= 1$, valida-se o avanço $(x=x_2+\Delta)$ e atualiza o valor do passo: $h_{novo} = \gamma h$.
- Se $\gamma < 1$, deve-se refazer o avanço com o passo atualizado: $h_{novo} = \gamma h$.

1. Pede-se:

(a) Implemente o método de Euler com passos constantes. Sua função deve receber como parâmetros o tempo inicial t_0 , o tempo final t_1 , o passo de integração h, o valor inicial $x(t_0)$ e a função derivada f(t,x(t)), tendo como retorno o valor no tempo final $x(t_1)$, seguindo o protótipo:

(b) Implemente o método de Euler adaptativo, limitando o fator de correção do passo, γ , a 1.2. Sua função deve receber como parâmetros, o tempo inicial t_0 , o tempo final t_1 , o passo de integração inicial h_0 , o valor inicial $x(t_0)$, a função derivada f(t, x(t)) e a tolerância, tendo como retorno o valor no tempo final $x(t_1)$, seguindo o protótipo:

Na implementação das duas funções, deve-se observar que, somando a t_0 valores de passos h, não necessariamente alcançamos com exatidão o valor t_1 , exigindo que a condição de alcance do tempo t_1 deva considerar imprecisões numéricas.

2. Para testar suas funções, avalie x(2.4) sabendo que $x' = tx + t^3$, com y(0) = -1. Para o método de Euler, avalie usando h = 0.1, h = 0.01 e h = 0.001; para o método de Euler adaptativo, use esses valores como passos iniciais e use-os também como valor de tolerância. Sabe-se que a solução desta EDO para y(0) = -1 é:

$$y(t) = e^{\frac{t^2}{2}} - t^2 - 2$$

Compare os resultados obtidos pelos métodos numéricos calculando o *erro relativo* para cada caso, verificando o número de avaliações da função derivada em cada caso.

Agrupe os protótipos das funções pedidas em um módulo "ode.h" e as implementações em um módulo "ode.c". Escreva o teste em outro módulo "main.c".

Entrega: Entrega: O código fonte deste trabalho (isto é, os arquivos 'ode.c", "ode.h"

e "main.c") devem ser enviados via página da disciplina no EAD. O prazo final para envio é sexta-feira, dia 25 de maio.