

Fig. 1A

19	1	OE-L	
46	56	Three frame translational stop	
5	65	69	Streptomyces consensus Ribosome binding site
77	796	eGFP	
971	849	T4 terminator	
2101	1316	aac(3) IV (apramycin resistance)	
10	2451	2573	T4 terminator
2856	2745	oriT	
3316	3335	EZR1 sequencing primer	
3424	3442	OE-R	
15	CTGTCTCTTATACACATCTAACCATCATCGATGAATTGGATCCTAATTAATTAAT CTAGAAAGGAGGTGATCATATGGTAGCAAGGGCGAGGAGCTGTCACCAGGGTGGT GCCCATCCTGGTCAGCTGGACGGCACGTAAACGCCACAAGTTCAGCGTGTCCGG CGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTGAAGTTCATCTGCACCAC CGGCAAGCTGCCGTGCCCTGGCCCACCCTCGTACCGACCCCTGACCTACGGCGTGCA		
20	GTGCTTCAGCCGCTACCCGACCATGAAGCAGCACGACTTCTCAAGTCCGCCAT GCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTCAAGGACGACGGCAACTACAA GACCCGCGCCGAGGTGAAGTTGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAA GGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGACAAGCTGGAGTACAACCA CAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAA		
25	CTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACTACCA GCAGAACACCCCCATCGGCACGGCCCCGTGCTGCCGACAACCAACTACCTGAG CACCCAGTCCGCCCTGAGCAAAGACCCAACGAGAAGCGCGATCACATGGCCTGCT GGAGTTCGTACCGCCGGGATCACTCTGGCATGGACGAGCTGTACAAGTAAAG CGGCCGCTTAAGGTACCGAATTGAGGGGATCCGGTATTGAGCAAGCTTTA		
30	TGCTTGTAAACCGTTTGAAAAAAATTTTAAAATAAAAAAGGGGACCTCTAGGGT CCCCAATTAATTAGTAATATAATCTATTAAAGGTATTCAAAAGGTATCCACCGGA TCAGCTTAGTAAAGCCCTCGCTAGATTTAATGCGGATGTTGCGATTACTCGCCAA CTATTGCGATAACAAGAAAAAGCCAGCCTTCATGATATATCTCCAATTGTGTAG GGCTTATTATGCACGCTTAAATAATAAAAGCAGACTTGACCTGATAGTTGGCTG		
35	TGAGCAATTATGTGCTTAGTCATCTAACGCTTGAGTTAACCGCGCCGGAAGCGG CGTCGGCTTGAACGAATTGTTAGACATTATTGCCGACTACCTGGTATCTCGCCT TTCACGTGTTGCCCTAGCAATCAGCGCGACCTTGCCCTCCAACGTATCTCGTTCT CCGCTCATGAGCTCAGCCAATCGACTGGCGAGCGGCATCGCATTCTCGCATCCGC CCTCTGGCGGATGCAGGAAGATCAACGGATCTGGCCCTAGTTGACCCAGGGCTGTCG		
40	CCACAATGTCGCGGGAGCGGATCAACCGAGCAAAGGCATGACCGACTGGACCTTCCT TCTGAAGGCTCTCCTTGAGGCCACCTGTCCGCCAAGGCAAAGCGCTCACAGCAGT GGTCATTCTCGAGATAATCGACCGTACCAACTGCCATCCTGAAGAATGGTGCAGT GTCTCGGCACCCATAGGAAACCTTGCCATCAACTCGGCAAGATGCAGCGTGTG TGGCATCGTGTCCCACGCCAGGGAGAAGTACCTGCCATCGAGTTCATGGACACGGG		

Fig. 1B

CGACCGGGCTTGCAGGCGAGTGAGGTGGCAGGGGCAATGGATCAGAGATGATCTGCT
CTGCCTGTGGCCCCGCTGCCGCAAAGGCAAATGGATGGCGCTGCCTTACATTG
GCAGGGGCCAGAATGTGTAGAGACAACCCAAGGTCCGGTAAACGGCGACGTGG
5 CAGGATCGAACGGCTCGTCGTCCAGACCTGACCACGAGGGCATGACGAGCGTCCCTC
CCGGACCCAGCGCAGCACGCAGGGCCTCGATCAGTCCAAGTGGCCCCTTCGAGGG
GCCGGACGCTACGGAAGGAGCTGTGGACCAGCAGCACACCGCCGGGGTAACCCCAA
GGTTGAGAAGCTGACCGATGAGCTCGGCTTCGCCATTGTATTGCACGACATTGC
ACTCCACCGCTGATGACATCAGTCATAGCACGATCAACGGCACTGTTGCAAAT
10 AGTCGGTGGTATAAACTTATCATCCCCTTTGCTGATGGAGCTGCACATGAACCCA
TTCAAAGGCCGGCATTTCAGCGTGACATCATTCTGTGGCCGTACGCTGGTACTGC
AAATAACGGCATCAGTTACCGTGAGCCGGATCAGTGAGGGTTGCAACTGCGGGTCAA
GGATCTGGATTCGATCACGGCACGATCATCGTGCAGGGAGGGCAAGGGCTCCAAGGA
TCGGGCCTTGATGTTACCGAGAGCTTGGCACCCAGCCTGCGCAGCAGGGGAATTG
15 ATCCGGTGGATGACCTTTGAATGACCTTAATAGATTATATTACTAATTAATTGGG
GACCCTAGAGGTCCCCTTTTATTTAAAAATTTCACAAAACGGTTACAAGC
ATAAAGCTTGCCTAATCAATCACCGGATCCCCGACCTGCAGGTGACTTTCCGCTG
CATAACCCTGCTTCGGGTCATTATAGCGATTTTCGGTATATCCATCCTTTCG
CACGATATACAGGATTTGCCAAAGGGTCGTAGACTTCCTGGTATCCAAC
20 GGC GT CAGCCGGCAGGATAGGTGAAGTAGGCCACCCCGAGCGGGTGTCTCT
TCACTGTCCCTTATTGCACCTGGCGGTGCTCAACGGGAATCCTGCTCTGCAGGGCT
GGCCGGCTACCGCCGGCGTAACAGATGAGGGCAAGCGGATGGCTGATGAAACCAAGC
CAACCAGGAAGGGCAGCCACCTATCAAGGTGTACTGCCTCCAGACGAACGAAGAG
CGATTGAGGAAAAGGC GGCGGCCGGCATGAGCCTGTCGGCTACCTGCTGGCCG
25 TCGGCCAGGGCTACAAAATCACGGCGTGTGGACTATGAGCACGTCCCGAGCTGG
CCCGCATCAATGGCGACCTGGCCGCTGGCGGTGCTGAAACTCTGGCTCACCG
ACGACCCCGCGCACGGCGGGTTGGTGTAGGCCACGATCCTGCCCTGCTGGCGAAGA
TCGAAGAGAAGCAGGACAGCTGGCAAGGTGTAGATGGCGTGGTCCGCCCCAGGG
CAGAGCCATGACTTTTAGCCGCTAAACGGCCGGGGTGCCTGATTGCCAAG
30 CACGTCCCCATGCCTCCATCAAGAAGAGCGACTTCGCGGAGCTGGTGAAGTACATC
ACCGACGAGCAAGGCAAGACCGATCCCCGGGGACCTGCAGGCATGCAAGCTTCAGGG
TTGAGATGTGTATAAGAGACAG

Fig. 2

5

