Corrigé du Devoir Surveillé du 03/03/2008

Exercice 1 -

- 1) Si un entier $N \ge 1$ admet k chiffres en base 2, alors il s'écrit $N = \sum_{i=0}^{k-1} a_i 2^i$ avec $a_i \in \{0,1\}$ pour tout i et $a_{k-1} = 1$. On a donc $2^{k-1} \le N < 2^k$, d'où $k-1 \le \log_2 N < k$. On en déduit que $k = |\log_2 N| + 1$.
- 2) Par récurrence sur $k \in \mathbb{N}$, on montre d'abord que $T(2^k) \leqslant 2^k T(1) + k 2^k$. Si $N \geqslant 1$ est un entier quelconque, on peut trouver un entier $k \geqslant 1$ tel que $2^{k-1} \leqslant N < 2^k$. Comme T est croissante, on a donc $T(N) \leqslant T(2^k) \leqslant 2^k (k+T(1))$. Comme $k-1 \leqslant \log_2 N$, on a donc $T(N) \leqslant \frac{2}{\ln 2} N (\ln N + (1+T(1)) \ln 2) = O(N \ln N)$.
- 3) Si p est un nombre premier et $k \ge 1$ un entier, alors on peut construire un corps fini de cardinal p^k en prenant $\mathbb{F}_p[X]/(P)$, où P est un polynôme irréductible dans $\mathbb{F}_p[X]$ de degré k. Le polynôme $P := X^3 + X^2 + X + 1 \in \mathbb{F}_3[X]$ est de degré 3, sans racine dans le corps \mathbb{F}_3 , donc il est irréductible dans $\mathbb{F}_3[X]$. Par conséquent, le quotient $\mathbb{F}_3[X]/(X^3 + X^2 + X + 1)$ est un corps fini de cardinal 27. De même, il n'existe qu'un polynôme irréductible de degré 2 dans $\mathbb{F}_2[X]$ c'est $X^2 + X + 1$. Donc, si un polynôme de degré 4 est réductible dans $\mathbb{F}_2[X]$, alors, soit il a une racine dans \mathbb{F}_2 , soit il est égal à $(X^2 + X + 1)^2 = X^4 + X^2 + 1$. On en déduit que $X^4 + X + 1$ est irréductible dans $\mathbb{F}_2[X]$ et que $\mathbb{F}_2[X]/(X^4 + X + 1)$ est un corps fini de cardinal 16.

Exercice 2 -

- 1) L'application $u: \mathcal{P}_k \to (\mathbb{F}_q)^n$ qui à P associe $(P(x_1), \ldots, P(x_n))$ est \mathbb{F}_q -linéaire et Γ est l'image de u. Comme $P \in \mathcal{P}_k$ ne peut s'annuler en les n valeurs distinctes x_1, \ldots, x_n sans être nul (car $k \leq n$), on voit que u est injective. On en déduit que Γ est un sous-espace vectoriel de $(\mathbb{F}_q)^n$ de dimension k.
- 2)a) On écrit Q_0 (resp. Q_1) sous la forme $Q_0 = a_0 + \cdots + a_{n-1-t}X^{n-1-t}$ pour certains a_i à trouver dans \mathbb{F}_q (resp. $Q_1 = b_0 + \cdots + b_{n-1-t-(k-1)}X^{n-1-t-(k-1)}$ avec des $b_i \in \mathbb{F}_q$). Les conditions $Q_0(x_i) + r_i Q_1(x_i) = 0$ pour $i \in \{1, \ldots, n\}$ montrent que les coefficients de Q_0 et Q_1 que l'on cherche doivent vérifier un système linéaire homogène à n équations. Or le nombre d'inconnues est n-t+n-t-k+1=2n-k+1-2t. Puisque $t=\lfloor (n-k)/2\rfloor$, on voit qu'il y a au moins n+1 inconnues et le système admet donc au moins une solution non nulle. Il existe donc bien un polynôme non nul $Q \in \mathbb{F}_q[X,Y]$ vérifiant les conditions voulues.
- b) Le polynôme $Q(X, P(X)) = Q_0(X) + P(X)Q_1(X) \in \mathbb{F}_q[X]$ a un degré $\leq \max(\deg Q_0, \deg P + \deg Q_1) \leq n t 1$. Par ailleurs, l'hypothèse (*) montre qu'il y a au moins n t valeurs de $i \in \{1, \ldots, n\}$ telles que $P(x_i) = m_i = r_i$ et, pour ces valeurs, on a $Q(x_i, P(x_i)) = 0$. Le polynôme Q(X, P(X)) a donc au moins n t racines dans \mathbb{F}_q et est de degré $\leq n t 1$. Par conséquent,

- Q(X, P(X)) = 0. On en tire $Q_0 = -PQ_1$. Remarquons que $Q_1 \neq 0$, car sinon on aurait $Q(X, Y) = Q_0 = 0$ aussi. De ce fait, Q_1 divise Q_0 et on a $P = -Q_0/Q_1$.
- c) Pour calculer m à partir de r, on cherche d'abord un $Q(X,Y) \neq 0$ en résolvant le système linéaire du 2)a). L'hypothèse (*) entraine alors que Q_1 divise Q_0 et en faisant la division euclidienne on trouve $P = -Q_0/Q_1$. Finalement, $m = (P(x_1), \ldots, P(x_n))$. Pour ce qui est de la complexité, le calcul de Q demande de résoudre un système linéaire à n équations et O(n) inconnues, ce qui par le pivot demande $O(n^3)$ opérations dans \mathbb{F}_q ; le calcul de P par division euclidienne de Q_0 par Q_1 demande $O(n^2)$ opérations par la méthode usuelle car les deux polynômes ont un degré $\leq n$; enfin, le calcul de m par évaluation de P en les n points x_i demande $O(kn) = O(n^2)$ opérations. En tout, celà donne un coût en $O(n^3)$.
- 3) Dans notre exemple, on a t=1, $degQ_0 \leq 2$ et $degQ_1 \leq 1$. La résolution du système linéaire Q(1,0)=Q(2,4)=Q(3,3)=Q(4,0)=0 donne $Q_0=a(X^2-1)$ et $Q_1=a(X+1)$ avec $a\in \mathbb{F}_5$ non nul. On peut donc prendre $Q_0=X^2-1$ et $Q_1=X+1$. Si la condition (*) est vraie, alors P=-X+1 et m=(0,4,3,2). Il y a donc bien une erreur dans ce cas.

Exercice 3 -

- 1) Les polynômes $P_1, \ldots, P_k \in \mathbb{F}_p[X]$ étant irréductibles non associés, ils sont premiers entre eux deux à deux. Le lemme chinois dit que l'application naturelle f de $A := \mathbb{F}_p[X]/(P)$ vers $\mathbb{F}_p[X]/(P_1) \times \cdots \times \mathbb{F}_p[X]/(P_k)$ qui à Q mod P associe Q mod P_1, \ldots, Q mod P_k) est un isomorphisme de \mathbb{F}_p -algèbres. Par ailleurs, pour tout $i \in \{1, \ldots, k\}$, le quotient $\mathbb{F}_p[X]/(P_i)$ est un corps commutatif car P_i est irréductible dans l'anneau principal $\mathbb{F}_p[X]$. Ce corps est fini de cardinal $p^{\deg P_i}$ car, par division euclidienne, tout $Q \in \mathbb{F}_p[X]$ est dans la classe d'un unique $Q_0 \in \mathbb{F}_p[X]$ de degré $< \deg P_i$.
- 2) Notons que, puisque l'on est en caractéristique p, l'application Φ est bien \mathbb{F}_p -linéaire. Comme l'application f du lemme chinois est un isomorphisme de \mathbb{F}_p -algèbres, le noyau de Φ s'identifie par f à l'ensemble des éléments de l'anneau-produit $\prod_{i=1}^k \mathbb{F}_{p^{\deg P_i}}$ qui sont fixes par l'élévation à la puissance p. Or, dans le corps fini $\mathbb{F}_{p^{\deg P_i}}$, les racines de X^p-X sont exactement les éléments de \mathbb{F}_p . L'application f induit donc un isomorphisme de \mathbb{F}_p -espaces vectoriels entre $\ker(\Phi)$ et $(\mathbb{F}_p)^k$. Par le théorème du rang, on a alors $k = \dim_{\mathbb{F}_p} A \operatorname{rg}(\Phi) = n \operatorname{rg}(\Phi)$.
- **3)**a) Dans $\mathbb{F}_p[X][Y]$, on a $Y^p Y = \prod_{a \in \mathbb{F}_p} (Y a)$. En sustituant $Q \in \mathbb{F}_p[X]$ dans Y, on trouve $Q^p Q = \prod_{a \in \mathbb{F}_p} (Q a)$.
- b) Les $a \mod P$ pour $a \in \mathbb{F}_p$ sont toujours dans $Ker(\Phi)$. Si k > 1, alors on peut trouver dans le noyau de Φ une classe $Q \mod P$ avec Q non congru à une constante modulo P. Comme $Q \in \mathrm{Ker}(\Phi)$, on a $Q^p Q \equiv 0 \mod P$, donc P divise $Q^p Q = \prod_{a \in \mathbb{F}_p} (Q a)$ dans $\mathbb{F}_p[X]$ par le a). Si pour tout $a \in \mathbb{F}_p$, le polynôme P était premier avec Q a, alors P serait premier avec $Q^p Q$. Comme P divise $Q^p Q$ et est non constant, c'est impossible. Donc il existe $a \in \mathbb{F}_p$ tel

que $\operatorname{pgcd}(P,Q-a) \neq 1$. Si ce pgcd était P (à un inversible près), alors on aurait $Q \equiv a \mod P$. Or, par hypothèse sur le choix de Q, c'est faux. Pour ce a, on voit donc que $\operatorname{pgcd}(P,Q-a)$ est un facteur non trivial de P.

4) Pour calculer k on détermine d'abord la matrice M de Φ dans une base simple de A, par exemple $\mathcal{B} := (1, x, \dots, x^{n-1})$, où x est la classe de X dans A. Le calcul de $x^p \mod P$ par exponentiation rapide modulo P nécessite $O(\log p)$ operations dans A; la complexité d'une opération dans A est $\widetilde{O}(n \log p)$; soit $\widetilde{O}(n \log^2 p)$ au total. Les $(x^i)^p = (x^{i-1})^p \times x^p$ pour i > 1 s'obtiennent en n-1 multiplication dans A successives, soit un coût $\widetilde{O}(n^2 \log p)$. Bien sûr $(x^0)^p = 1$. En tout, nous en sommes à $O(n \log p(n + \log p))$ pour construire M.

Le calcul du rang de $M \in M_n(\mathbb{F}_p)$ par le pivot demande $O(n^3)$ opérations dans \mathbb{F}_p , d'où une complexité $\widetilde{O}(n^3 \log p)$ pour calculer k, et en fait pour calculer une forme échelonnée de M. Il faut ensuite trouver Q si k > 1.

On obtient une base de $\operatorname{Ker}(\Phi)$ en résolvant un système de Cramer triangulaire de taille $\operatorname{rg}(M) \leq n$: celà nécessite $O(n^2)$ opérations dans \mathbb{F}_p . On prend Q parmi cette base de $\operatorname{Ker}(\Phi)$. Ensuite, on calcule un à un les $\operatorname{pgcd}(P,Q-a)$, $a\in\mathbb{F}_p$ jusqu'à en trouver un de degré $\in]0,n[$. La complexité binaire de cette étape est au plus $p\widetilde{O}(n\log p)=\widetilde{O}(pn)$.

Finalement, le calcul total d'un facteur non trivial lorsque k > 1 a pour complexité $\widetilde{O}(pn + n^3 \log p)$.