

Hisilicon IP Camera 图像质量测试标准

文档版本 00B01

发布日期 2016-05-20

版权所有 © 深圳市海思半导体有限公司 2016。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何 形式传播。

商标声明

(上) AISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做 任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指 导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

概述

- 本文档规定了 Hisilicon IP Camera 图像效果测试标准,明确了各个测试项目的具体测试方法、测试标准。
 - 本标准为 Hisilicon IP Camera 图像效果测试提供技术指导。
 - 本标准描述了 Hisilicon 对 IP Camera 图像效果的测试要求,供 Hisilicon 内部决策参考,适用于 IP Camera 模组的规格制定、产品设计、及质量控制等方面。
- 本标准规定的 IP Camera 图像效果相关测试项目,根据测试类型的不同,主要分为以下三种测试项。
 - 指标测试
 - 场景测试
 - 外场测试
- 完成以上测试项目需要的测试设备及软件。
 - 硬件设备:多光源测试灯箱(可提供 D65、TL84、F 光等多种光源)、色温照度测试计、均匀光源(亮度可调)、各种 Chart,包括 ColorChecker(24-patch) Chart、ISO12233 Chart(1x, 2x, 4x)、Kodak Gray Scale Chart Q14、FOV Chart 等:
 - 软件: imatest、IPOP、Elecard、HYRes、画图等。
 - 其他工具: 三角架、直尺、射灯等。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3516A	V100
Hi3516D	V100
Hi3518E	V200
Hi3518E	V201
Hi3516C	V200

产品名称	产品版本
Hi3519	V100
Hi3519	V101
Hi3516C	V300

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

参考标准及文件

- 《数字移动终端图像及视频传输特性技术要求和测试方法》(中国国家标准,于 2007年10月1日发布);
- 《照相手机的成像性能技术要求》(国家照相机质量监督检查中心标准,于 2006 年发布):
- 《手机照相评价流程与标准 V1.1》(OV 公司标准,于 2008 年 12 月 22 日发布);
- BYD, Foxconn 等 IP Camera 模组制造企业争对 IP Camera 模组制定的图像效果测试标准;
- TI、安霸等友商对终端制定的相关图像效果测试标准;
- 安防监控高清电视摄像机测量方法 110329 (CJ)。

缩略语

对本文所用术语进行说明,要求提供每个术语的英文全名和中文解释。

缩略语	英文全名	中文解释	
AWB	Automatic White Balance	自动白平衡	
FOV	Field of View	视场角	
WDR	Wide Dynamic Range	宽动态范围	

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 00B01 (2016-05-20)

第一次临时版本发布。

目录

ij	言		i
推	标测量	h 4	.1
•		}辨率/解析度测试	
		1.1 测试目的	
	1.	1.2 测试设备	. 1
		1.3 测试软件	
	1.	1.4 测试环境	. 1
	1.	1.5 测试步骤	. 1
		1.6 解析度读取方法	
		1.7 测试标准	
		色彩还原测试	
	1.3	2.1 测试目的	. 6
	1.3	2.2 测试设备	. 6
	1.3	2.3 测试软件	. 6
		2.4 测试环境	
	1.3	2.5 测试步骤	. 6
		2.6 色彩还原的计算方法	
	1.3	2.7 测试标准	. 7
	1.3 É	3平衡测试	. 8
	1.3	3.1 测试目的	. 8
	1.3	3.2 测试设备	. 8
	1.3	3.3 测试软件	. 8
	1.3	3.4 测试环境	. 8
	1.3	3.5 测试步骤	. 8
	1.3	3.6 白平衡计算方法	. 9
	1	3.7 测试标准	. 9
	1.4	√阶测试	10
		4.1 测试目的	
	1.4	4.2 测试设备	10
	1.4	4.3 测试软件	10

	1.4.4 测试环境	. 10
	1.4.5 测试步骤	. 10
	1.4.6 灰阶值计算方法	. 11
	1.4.7 测试标准	. 11
1.5	宽动态范围测试	. 11
	1.5.1 测试目的	. 11
	1.5.2 测试设备	. 11
	1.5.3 测试环境	. 11
	1.5.4 测试步骤	. 11
	1.5.5 宽动态范围计算方法	. 11
	1.5.6 测试标准	. 11
1.6	延时测试	. 12
	1.6.1 测试目的	. 12
	1.6.2 测试设备	. 12
	1.6.3 测试软件	. 12
	1.6.4 测试环境	. 12
	1.6.5 测试步骤	. 12
	1.6.6 延时计算方法	. 13
	1.6.7 测试标准	. 13
1.7	最低可用照度测试	. 13
	1.7.1 测试目的	. 13
	1.7.2 测试设备	. 13
	1.7.3 测试软件	. 13
	1.7.4 测试环境	. 13
	1.7.5 测试步骤	. 13
	1.7.6 低照度计算方法	. 14
	1.7.7 测试标准	. 14
1.8	码率控制测试	. 14
	1.8.1 测试目的	. 14
	1.8.2 测试设备	. 14
	1.8.3 测试软件	. 14
	1.8.4 测试环境	. 14
	1.8.5 测试步骤	. 15
	1.8.6 码率控制计算方法	. 15
	1.8.7 测试标准	. 15
1.9	信噪比测试	. 15
	1.9.1 测试目的	. 15
	1.9.2 测试设备	. 15
	1.9.3 测试软件	. 16

	1.9.4 测试环境	16
	1.9.5 测试步骤	16
	1.9.6 信噪比计算方法	16
	1.9.7 测试标准	16
	1.10 亮度均一性测试	17
	1.10.1 测试目的	17
	1.10.2 测试设备	17
	1.10.3 测试软件	17
	1.10.4 测试环境	17
	1.10.5 测试步骤	17
	1.10.6 亮度均一性的计算方法	17
	1.10.7 测试标准	17
	1.11 畸变(几何失真)测试	18
	1.11.1 测试目的	18
	1.11.2 测试设备	18
	1.11.3 测试软件	18
	1.11.4 测试环境	18
	1.11.5 测试步骤	18
	1.11.6 几何失真值计算方法	19
	1.11.7 测试标准	19
	1.12 视场角测试(此测试产品中关注,作为测试参考,不作为指标)	
	1.12.1 测试目的	
	1.12.2 测试设备	20
	1.12.3 测试软件	
	1.12.4 测试环境	20
	1.12.5 测试步骤	20
	1.12.6 视场角计算方法	20
	1.12.7 测试标准	22
2 均	汤景测试	23
	2.1 图像边缘测试	
	2.1.1 测试目的	23
	2.1.2 测试设备	23
	2.1.3 测试环境	23
	2.1.4 测试步骤	23
	2.1.5 关注维度	23
	2.2 静物场景	23
	2.2.1 测试目的	23
	2.2.2 测试设备	23
	2.2.3 测试环境	24

2.2.4 测试步骤	24
2.2.5 关注维度	24
2.3 人物场景	24
2.3.1 测试目的	24
2.3.2 测试设备	24
2.3.3 测试环境	24
2.3.4 测试步骤	24
2.3.5 关注维度	25
2.4 远景场景	25
2.4.1 测试目的	25
2.4.2 测试设备	25
2.4.3 测试环境	25
2.4.4 测试步骤	25
2.4.5 关注维度	25
2.5 宽动态场景	25
2.5.1 测试目的	25
2.5.2 测试设备	25
2.5.3 测试环境	25
2.5.4 测试步骤	26
2.5.5 关注维度	26
2.6 低照度场景	26
2.6.1 测试目的	26
2.6.2 测试设备	26
2.6.3 测试环境	26
2.6.4 测试步骤	26
2.6.5 关注维度	26
2.7 红外场景	27
2.7.1 测试目的	27
2.7.2 测试设备	27
2.7.3 测试环境	27
2.7.4 场景选择	27
2.7.5 关注维度	27
2.8 复杂纹理场景	27
2.8.1 测试目的	27
2.8.2 测试设备	27
2.8.3 测试环境	27
2.8.4 测试步骤	27
2.8.5 关注维度	28
2.9 运动场景	28

	2.9.1 测试目的	28
	2.9.2 测试设备	28
	2.9.3 测试环境	28
	2.9.4 测试步骤	28
	2.9.5 关注维度	28
	2.10 光线变化场景(AE 收敛)	28
	2.10.1 测试目的	28
	2.10.2 测试设备	29
	2.10.3 测试环境	29
	2.10.4 测试步骤	29
	2.10.5 关注维度	29
	2.11 强光场景	30
	2.11.1 测试目的	30
	2.11.2 测试设备	31
	2.11.3 测试环境	31
	2.11.4 测试步骤	31
	2.11.5 关注维度	31
	2.12 大面积单色	31
	2.12.1 测试目的	31
	2.12.2 测试设备	31
	2.12.3 测试环境	31
	2.12.4 测试步骤	
	2.12.5 关注维度	32
3 外	卜场测试	33
	3.1 开阔场景	33
	3.1.1 测试目的	33
	3.1.2 测试设备	33
	3.1.3 测试环境	33
	3.1.4 场景选择	33
	3.1.5 关注维度	33
	3.2 外场 AWB 测试	33
	3.2.1 测试目的	33
	3.2.2 测试设备	33
	3.2.3 测试环境	34
	3.2.4 场景选择	34
	3.2.5 关注维度	34
	3.3 外场宽动态测试	34
	3.3.1 测试目的	34
	3.3.2 测试设备	34

5	附录	44
	4.5 数据结果及应用	42
	4.4 主观场景评估	
	4.3 五分值主观维度评估方式	
	4.2 五分制图像质量主观评测法	
	4.1 指标数据汇总	37
4	数据评估与应用	37
	3.7.5 关注维度	36
	3.7.4 场景选择	
	3.7.3 测试环境	
	3.7.2 测试设备	
	3.7.1 测试目的	
	3.7 外场强光抑制测试	
	3.6.5 关注维度	
	3.6.4 场景选择	
	3.6.3 测试环境	36
	3.6.2 测试设备	36
	3.6.1 测试目的	36
	3.6 外场红外场景测试	36
	3.5.5 关注维度	
	3.5.4 场景选择	
	3.5.3 测试环境	
	3.5.2 测试设备	
	3.5.1 测试目的	
	3.5 外场运动场景测试	
	3.4.4 切京远洋	
	3.4.3 测试环境	
	3.4.2 测试设备	
	3.4.1 测试目的	
	3.4 外场低照度测试	
	3.3.5 关注维度	
	3.3.4 场景选择	
	3.3.3 测试环境	

插图目录

图 1-1 ISO12233 4:3 取景图示	2
图 1-2 ISO12233 4:3 左边角取景图	3
图 1-3 ISO12233 4:3 右边缘取景图	3
图 1-4 EIA RESOLUTION Chart 1956 图示	4
图 1-5 ISO12233 MTF 选择区域图示(绿色-水平 MTF,紫色-垂直 MTF)	5
图 1-6 Color Checker	7
图 1-7 Color Checker	9
图 1-8 KODAK Q14	10
图 1-9 延时示意图	12
图 1-10 方格图	18
图 1-11 几何失真计算图	19
图 1-12 视场角计算图 1	21
图 1-13 视场角计算图 2	21
图 2-1 AE 的收敛示意图	29
图 2-2 AE 震荡示意图	30
图 2-3 AWB 收敛示意图	30

表格目录

表 1-1	分辨率的主要指标(中心位置,水平分辨率)	5
	测试标准	
表 1-3	测试标准	9
表 1-4	可供参考的码率设置	15
表 1-5	测试标准	16
表 1-6	测试标准	17
表 1-7	测试标准	19
表 1-8	测试标准	22
表 4-1	视频测试指标汇总示例	37
表 4-2	五分制图像质量主观评测法	38
表 4-3	五分值主观维度评估表	39
表 4-4	主观维度评估表示例	42
表 4-5	数据结果及应用示例	42
表 5-1	设备和软件列表	44

1 指标测试

1.1 分辨率/解析度测试

1.1.1 测试目的

测试 IP Camera、Analog Camera 分辨率/解析度。

1.1.2 测试设备

- IP Camera: 灯箱, 12233 Chart (1x, 2x, 4x), 色温照度计 (精度 1K、 0.01Lux):
- Analog Camera: 透射测试光源(ImageQualityLabs 透射灯箱),解析度透射测试卡(模拟摄像机专用),色温照度计(精度 1K、0.01Lux)、专用三角支架(含三维云台控制)。

1.1.3 测试软件

- IP Camera: imatest:
- Analog Camera: ResolutionCharRead (基于 opency 自研)。

1.1.4 测试环境

- IP Camera: D65 光源,且保证光线照度为 600 Lux±100 Lux;保证 ISO12233 整个 Chart 表面的亮度值相差小于 20%,镜头以所有参与评测对象的最高分辨率为准,测试使用的镜头有效像素一般须不低于该最高分辨率。
- Analog Camera: ImageQualityLabs 透射测试光源,照度为 80 Lux±10 Lux; 镜头以所有参与评测对象的最高分辨率为准,测试使用的镜头有效像素一般须不低于该最高分辨率。

1.1.5 测试步骤

IP Camera

步骤 1. 调节 IP Camera 的驱动参数调试到最佳(一般采用默认参数), IP Camera 相关的参数 设置为普通模式,如曝光设为自动等;

- 步骤 2. 调节灯箱光源为指定光源环境,将 I2233 Chart 置于灯箱中;注意:本标准规定 130 万和 200 万的 IP Camera 选用 1X 的 Chart, 300 万以上的 IP Camera 选用 4X 的 Chart;
- 步骤 3. 中心解析度的测试:将 ISO12233 Chart 置于灯箱中,调节 IP Camera 的位置,保证其光轴与 ISO12233 Chart 平面垂直,且使 ISO12233 Chart 的 16:9 或者 4:3 区域(根据 IP Camera 的分辨率长宽比决定)正好落在 IP Camera 的预览画面中,下面以分辨率是 4:3 的 IP Camera 为例,如图 1-1 红线框所示。

图1-1 ISO12233 4:3 取景图示

□ 说明

手动调整对焦共 3 次,每次抓拍 3 张图片或录像 1min 供分析。

- 步骤 4. 固定 IP Camera,在画面稳定的条件下拍照;
- 步骤 5. 分析解析度蓝线区域图像,得出解析度值为中心解析度;
- 步骤 6. 边角解析度的测试: 方法同步骤 3、4、5,不同的是调节 IP Camera 的预览区域,以达到测试各个角落解析度的目的,具体拍照区域见图 1-2 和图 1-3。

图1-2 ISO12233 4:3 左边角取景图

图1-3 ISO12233 4:3 右边缘取景图

---结束

Analog Camera

- 步骤 1. 调节 Analog Camera 的驱动参数调试到最佳(一般采用默认参数),Analog Camera 相关的参数设置为普通模式,如曝光设为自动等;
- 步骤 2. 使用 ImageQualityLabs 透射测试光源(透射灯箱),将 EIA RESOLUTION Chart 1956 分辨率测试卡置于灯箱卡槽中,开启灯箱光源控制,保持默认透射光源设置,照度为 80 Lux±10 Lux;

步骤 3. 水平解析度测试:通过专用支架的三维控制云台调节 Analog Camera 位置,保证其光 轴与 Resolution Chart 平面垂直,且使 Resolution Chart 正好落在 Analog Camera 的预览 画面中,如图 1-4 所示。

图1-4 EIA RESOLUTION Chart 1956 图示

- 步骤 4. 固定 Analog Camera 和三维云台位置,在画面稳定的条件下,保存当前预览画面(可通过视频捕获卡或者搭建 DVR 环境进行抓拍截图);
- 步骤 5. 调整幅度,再次对焦,每次对焦后抓拍 3 张图片或者录像 1min,共调整 3 次,供分析。

---结束

1.1.6 解析度读取方法

- IP Camera:
 - 从低频楔形线对(可以很容易的辨别为 5 条线)开始往高频率开始读,当不能 再辨别为 5 条线对的时候,就认为该处的值为此处的解析度值;
 - HYRes 软件读取电视线;
 - 使用 imatest 软件亦可分析出解析度值(MTF值),拍照区域为红色区域,见图 4。绿色线框中表述的是水平解析度值,紫色线框中表述的是垂直解析度值;中间区域线框中表述的是中心的解析度值,其他为各个对应角落的解析度值:

图1-5 ISO12233 MTF 选择区域图示(绿色-水平 MTF, 紫色-垂直 MTF)

• Analog Camera:

- 从低频楔形线对(可以很容易的辨别为 4 条线)开始往高频率开始读,当不能再辨别为 4 条线对的时候,就认为该处的值为此处的解析度值;
- ResolutionCharRead 自研工具软件读取电视线;
- 共读取9个数据,取其最大值。

1.1.7 测试标准

∭ 说明

清晰度的指标主要有 MTF 和 TVL, MTF 需要倾向于度量边缘的锐利程度, TVL 侧重于图像的分辨能力, 意义不同, 在本标准的指标要求中, 两者可采取同样的数值标准。

本标准中以判别线对为准,如表 1-1 所示。

表1-1 分辨率的主要指标(中心位置,水平分辨率)

Sensor 像素	水平电视线(TVL)		垂直电视线 (TVL)		MTF	
	中心	四角	中心	四角	MTF50	MTF30
720P (1280×720)	700	500	650	500	-	-
1080P (1920×1080)	1050	650	900	650	-	-
3M	1100	800	1000	800	-	-
5M	1400	1000	1200	1000	-	-
8M	2100	1200	1500	1200	-	-
D1 (PAL)	540	-	-	-	-	-

Sensor 像素	水平电视线(TVL)		垂直电视线 (TVL)		MTF	
	中心	四角	中心	四角	MTF50	MTF30
960H (PAL)	720	-	-	-	-	-

1.2 色彩还原测试

1.2.1 测试目的

测试 IP Camera 对色彩的还原能力;滤光片对测试结果影响很大,需在测试数据中提供使用的型号相关信息。

1.2.2 测试设备

灯箱, 24 色色卡(Gretag Macbeth Color Checker), 色温照度计。

1.2.3 测试软件

imatest 测试软件。

1.2.4 测试环境

色温可低、中、高转换,如 A light(2800K), Day light(5000K), Day light(6500K), Day light(7500K), 照度均调至 600 Lux±100 Lux, (注意白色色块不能出现过曝现象), 整个 Chart 表面的亮度值相差小于 20%

1.2.5 测试步骤

- 步骤 1. 调节 IP Camera 的驱动参数调试到最佳,IP Camera 拍照相关的参数设置为普通模式,如白平衡设置为自动,曝光设为自动等;
- 步骤 2. 调节光源及照度到指定的标准
- 步骤 3. 将 24 色色卡置于灯箱正面中心,调节 IP Camera 的位置,使图卡宽度为 500-1500 像素,如图 1-6 所示。

图1-6 Color Checker

步骤 4. 待画面稳定后,拍摄照片;

步骤 5. 使用 imatest 软件分析拍摄照片,颜色空间选 sRGB,曝光错误<0.25,得出 Saturation 值,及△C corr、△E 的 sigma 值。

----结束

1.2.6 色彩还原的计算方法

$$\Delta C = ((a - a^*)^2 + (b - b^*)^2)^{1/2}$$

$$\Delta E = ((L - L^*)^2 + (a - a^*)^2 + (b - b^*)^2)^{1/2}$$

Saturation = 100%
$$\times ((a^2 + b^2)^{1/2}) / ((a^{*2} + b^{*2})^{1/2})$$

其中 L、a、b 为摄像机抓拍的图像转为为 Lab 后获取的数据,L*、a*、b*为 Color Checker 的实际值。

1.2.7 测试标准

表1-2 测试标准

测试类别	Sensor 类					
	CIF and D1	720P and 1080P	3M 以上			
$\triangle C_{00}$ (avr)	<5	<5	<5			
⊿E ₀₀ (max)	<15	<15	<15			
Sat	100~130	100~130	100~130			

□ 说明

饱和度: 当前对色彩还原主要有两种期望。

- 第一种为尽量接近真实色彩,这样的测试标准就要求 sat 范围为 100%±N%;
- 第二种为获得主观的视觉感受效果,期望色彩略为浓烈;

其中第一种在国外及其产品中采用较多,其产品色彩和100%偏差较小,色彩略偏淡,相较起来图像略发朦;第二种在国内及产品中采用较多,其产品色彩饱和度普遍偏高,色彩艳丽,主观感受起来效果较好;目前在国内主要采用第二种作为当前的测试标准。

1.3 白平衡测试

1.3.1 测试目的

测试 IP Camera 在不同色温环境下对白色的再现能力。

1.3.2 测试设备

灯箱(含低、中、高色温的光源),24色色卡,色温照度计。

1.3.3 测试软件

imatest 测试软件。

1.3.4 测试环境

色温可低、中、高转换,如 A light(2800K), Day light(5000K), Day light(6500K), Day light(7500K), 照度均调至 600 Lux±100 Lux。

1.3.5 测试步骤

- 步骤 1. 保证 IP Camera 的驱动参数调试到最佳, IP Camera 拍照相关的参数设置为普通模式, 如白平衡设置为自动, 曝光设为自动等;
- **步骤 2**. 将 24 色色卡置于灯箱正面中心,调试 IP Camera 的位置,使图卡宽度为 500-1500 像素,如图 1-7 所示:

图1-7 Color Checker

- 步骤 3. 调节光源到 F 光源(2500K),一般不需要调整光照强度,待画面稳定后,拍摄照片, 并记录实际色温和光照强度;
- 步骤 4. 调节光源到 TL84 光源(4000K), 光照强度 600 Lux±100 Lux, 待画面稳定后, 拍摄照片, 并记录实际色温和光照强度;
- 步骤 5. 调节光源到 D65 光源(6500K),光照强度 600 Lux±100 Lux,待画面稳定后,拍摄照片,并记录实际色温和光照强度;
- 步骤 6. 调节光源到 D75 光源(7500K),光照强度 600 Lux±100 Lux,待画面稳定后,拍摄照片,并记录实际色温和光照强度;
- 步骤 7. 使用 imatest 软件对拍摄的照片, 颜色空间选 sRGB,曝光错误<0.25,进行白平衡分析。

---结束

1.3.6 白平衡计算方法

直接使用 imatest 分析不同色温下拍摄的照片,即可得出每个色块的白平衡差值,本标准参考 Colorcheck 的 20~23 色块(去掉 6 个灰度块中的 19、24 的数据),取其中最大值;

1.3.7 测试标准

表1-3 测试标准

测试类别	jų	Sensor 类型			
		CIF and D1 1.3M and 2M 3M以上			
D65、TL84 光源		⊿S < 0.10	\triangle S < 0.10	⊿S < 0.08	
AWD	F 光源	△S < 0.15	△S < 0.12	△S < 0.10	

1.4 灰阶测试

1.4.1 测试目的

测试 IP Camera 的动态范围

1.4.2 测试设备

灯箱,20级灰阶卡(KODAK Q14),色温照度计。

1.4.3 测试软件

无。

1.4.4 测试环境

D65 光源, Chart 表面照度在 600 Lux±100 Lux, 整个 Chart 表面的亮度值相差小于10%。

1.4.5 测试步骤

- 步骤 1. 调节 IP Camera 相关的拍照参数至最佳;
- 步骤 2. 正对该 20 级灰阶卡,保证该卡整个 Caputure 画面中至少占 50%的大小,如图 1-9 所示;

图1-8 KODAK Q14

步骤 3. 画面状态稳定后,拍照。

---结束

1.4.6 灰阶值计算方法

观察拍摄的图像,哪两个相邻的灰阶是肉眼不可区分的,记录灰阶数。

1.4.7 测试标准

灰阶数目≥18

□ 说明

灰阶在很大程度上体现了图像在不同的亮度下的分辨能力,通常灰阶数越高,分辨能力也越高;当灰阶损失时,其对应的亮度条件下相类的场景和物体都无法分辨清楚,一般体现出来就是亮处过亮或过曝无法看清,或暗处 过暗无法看清物体;另外,一般情况下,当灰阶数目较高时,这时亮暗的细节能够较好保留,但图像的通透感会有一定程度的降低;对比度、亮度、Gamma等对亮度调节的算法对灰阶影响很大。

1.5 宽动态范围测试

1.5.1 测试目的

测试 IP Camera 的宽动态范围

1.5.2 测试设备

宽动态测试灯箱(灯箱有亮区和暗区,两个区可以分别调节亮度)、照度计。

1.5.3 测试环境

IP Camera 放置于灯箱外的中央位置,IP Camera 的图像一半是亮区,一半是暗区。

1.5.4 测试步骤

- 步骤 1. 调节 IP Camera 的驱动参数调试到 WDR (若无 WDR 模式,则采用默认参数);
- 步骤 2. 亮区和暗区分别放上一张灰阶卡,调节亮区和暗区的光照强度,一般是增强亮区的光照,减弱暗区的光照,直到亮暗区分别都能分辨出 7 阶灰阶为止;
- 步骤 3. 读出亮区的光照强度记为 X, 暗区的光照强度记为 Y。

---结束

1.5.5 宽动态范围计算方法

宽动态 A=20 LogX/Y (dB)

1.5.6 测试标准

A≥50dB(亮暗区光照强度比 350:1)

1.6 延时测试

1.6.1 测试目的

测试 IP Camera 的延时性能

1.6.2 测试设备

PC 机(假设 PC 为 N 核,视频点播所在进程不能超 $1/N \times 80\%$,若超过该指标,则需提高 PC 机的配置)

1.6.3 测试软件

秒表 (精度 10ms)、画图板。

1.6.4 测试环境

IP Camera 直连 PC, PC 机上运行秒表点播图像。在对 IP Camera 点播前,通过任务管理器确保平均 CPU 占用小于 10%, 若超过 10%, 请关闭 CPU 效果过大的应用进程。

1.6.5 测试步骤

- 步骤 1. IP Camera 拍摄 PC 机屏幕,并截屏;
- 步骤 2. 将截取的图片粘贴到画图板上。
- 步骤 3. .计算 PC 上的时间与 IP Camera 拍摄显示的时间差值。如图 1-9 所示。

图1-9 延时示意图

---结束

1.6.6 延时计算方法

观察 PC 机上截取屏幕的图像,读出 IP Camera 拍摄的秒表数值 A,PC 机上的秒表数值 B,IP Camera 的演示 T=A-B。

1.6.7 测试标准

延时要求≤200ms。

1.7 最低可用照度测试

1.7.1 测试目的

测试 IP Camera 的最低照度值,这里的最低可用照度以能够分辨为标准;

1.7.2 测试设备

灯箱, 12233 Chart (1x, 2x, 4x), 色温照度计。

1.7.3 测试软件

无。

1.7.4 测试环境

使用固定焦距镜头,镜头 F=1.2,镜头光圈处于最大位置; D65 光源,光线照度最低可调至 0.05Lux 以下;保证 ISO12233 整个 Chart 表面的亮度值相差小于 20%。

1.7.5 测试步骤

基于分辨率的测试

- 步骤 1. 见分辨率/解析度测试中 1.1.5 "测试步骤",读出此时的解析度;
- 步骤 2. 在不改变光源的情况下调节光源照度,当输出图像的分辨率刚好达到步骤 1 的分辨率的 70%时,用照度计测出测试图上的照度 φ。
 - M id oo

当灯箱光源无法达到需要的更低照度时,使用遮光布左右两方向均匀透光,调整透光量达到测试 条件

---结束

基于灰阶的测试

- 步骤 1. 见灰阶测试中 1.4.5 "测试步骤",读出此时的灰阶数目;
- 步骤 2. 在不改变光源的情况下调节光源照度,当输出图像的灰阶降低为 N 阶时,用照度计测出测试图上的照度 φ 。
 - Ш 说明

N 值的体现低照度对视频识别的要求,N 值越小,可分辨能力越低,N 值最小为 2,当前采用 N=2。

---结束

1.7.6 低照度计算方法

- φ即为 IP Camera 的最低照度值;
- 当实际测量镜头光圈不能满足要求时,可通过下面方法换算。 (F)²/(F1)²=φ/φx,各参数意义如下:
 - F: 标称光圈值;
 - F1: 实际光圈值:
 - φ: 实测最低照度;
 - φx: 最低照度。

1.7.7 测试标准

- 彩色: φ<1Lx/F1.2;
- 黑白: φ<0.1Lx/F1.2。

1.8 码率控制测试

1.8.1 测试目的

测试 IP Camera 的码率控制情况。

1.8.2 测试设备

灯箱。

1.8.3 测试软件

IPOP 或者 windows 任务管理器等统计网卡流量的工具。

1.8.4 测试环境

IP Camera 码率控制模式设置为 CBR,设定 IP Camera 的码率为 A,分为低码率、中码率和高码率三个场景。如表 1-4 所示。

表1-4 可供参考的码率设置

Resolution	低码率/kbps	中码率/kbps	高码率/kbps	备注
D1	512	1024	2048	-
CIF	256	512	1024	-
1080P30	2048	4096	8192/6144	-
720P30	1024	2048	4096	-
720P60	1536	3072	6144	-

1.8.5 测试步骤

- 步骤 1. IP Camera 拍摄运动物体(例如手臂在镜头前挥动),通过 IPOP 读出码率的最大瞬时 值 B 和平均值 C:
- 步骤 2. IP Camera 置于灯箱内,频繁调节灯箱内的亮度,通过 IPOP 读出码率的最大瞬时值 B 和平均值 C。

---结束

1.8.6 码率控制计算方法

计算实际与设定值的波动情况:

• 最大码率=
$$\frac{|B - A|}{A} \times 100\%$$
• 平均码率= $\frac{|C - A|}{A} \times 100\%$

1.8.7 测试标准

要求瞬时最大码率波动≤10%,平均码率波动≤5%

1.9 信噪比测试

1.9.1 测试目的

测试 IP Camera 的 Noise 程度。

1.9.2 测试设备

灯箱,24色色卡(Gretag Macbeth Color Checker),色温照度计。

1.9.3 测试软件

imatest

1.9.4 测试环境

D65 光源, 照度 600 Lux ± 100 Lux, 整个 Chart 表面的亮度值相差小于 10%;

1.9.5 测试步骤

步骤 1. 调节 IP Camera 的驱动参数调试到最佳,IP Camera 拍照相关的参数设置为普通模式,如白平衡设置为自动,曝光设为自动等;

- 步骤 2. 调节光源及照度到指定的标准:
- 步骤 3. 将 24 色色卡置于灯箱正面中心,调节 IP Camera 的位置,调试 IP Camera 的位置,使图卡面积约占画面的 70%,如图 1-6 所示;
- 步骤 4. 待画面稳定后,拍摄照片;
- 步骤 5. 使用 imatest 软件分析拍摄照片,得出 Noise 值。特别注意:视频中截取不同的关键帧 5 帧,并取均值。

---结束

1.9.6 信噪比计算方法

SNR = $20 \log_{10}((S_{19}-S_{24})/N_{22});$

 S_{19} 、 S_{24} 分别为第 19,第 24 灰阶块的信号亮度值,而 N_{22} 是第 22 灰阶块的噪声值; imatest (3.8)或更新版本,Noise display 选 Pixel SNR(dB)(20*log10(S/N))可以直接计算出该值。

1.9.7 测试标准

表1-5 测试标准

测试类别	Sensor 类型						
	CIF	D1	720P	1080P	3M 以上	5M	2160P
SNR (dB)	≥35	≥48	≥45	≥48	≥48	≥46	≥46

□ 说明

《安防视频监控摄像机通用技术要求-2011[1][1].3.16》要求(720P)≥45dB

1.10 亮度均一性测试

1.10.1 测试目的

测试 IP Camera 成像的均匀性: 阴影主要由镜头引入。

1.10.2 测试设备

均匀光源, 色温照度计。

1.10.3 测试软件

Imatest 测试软件。

1.10.4 测试环境

- 背景材料要求: (D65/10° Lab 值为 56.8, -0.6, 0.7, Neutral5 (反射率 0.70), RGB 值为 122、122、121)。
- 调节均匀光源的照度至 600 Lux±100 Lux。

1.10.5 测试步骤

- 步骤 1. 保证均匀光源处无其他光源干扰,调节 IP Camera 的驱动参数调试到最佳;
- 步骤 2. 使 IP Camera 正对均匀光源的发光面,且距离均匀光源 2cm 到 5cm 左右,使 IP Camera 的预览为均匀光源的发光面;
- 步骤 3. 画面状态稳定后,拍照;
- 步骤 4. 使用 imatest 软件分析亮度均一性值。

---结束

1.10.6 亮度均一性的计算方法

Shading 值=(四角最暗处的亮度值 Y/中心最亮处的亮度值)×100%

1.10.7 测试标准

表1-6 测试标准

测试类别	Sensor 类型					
	CIF	D1	720P & 1080P	300 万以上		
Shading	≥70%	≥75%	≥80%	≥85%		

1.11 畸变(几何失真)测试

1.11.1 测试目的

测试 IP Camera 成像的几何失真程度;畸变一般由镜头引入。

1.11.2 测试设备

灯箱,色温照度计,几何失真测试 Chart(Checkerboard Distortion Test Target for Microsoft© Lync" Certification),如图 1-10 所示。

图1-10 方格图

1.11.3 测试软件

imatest 测试软件。

1.11.4 测试环境

D65 光源,保证该 Chart 表面照度在 600 Lux \pm 100 Lux,整个 Chart 表面的亮度值相差 小于 10%

1.11.5 测试步骤

- 步骤 1. 将该 Chart 置于灯箱正面,保证照相系统的光轴中心正对几何失真 Chart 的正中心;
- 步骤 2. 预览画面状态稳定后,拍照;
- 步骤 3. 使用 imatest 软件分析几何失真值。

---结束

1.11.6 几何失真值计算方法

产生了几何失真的图,如图 1-2 所示。

图1-11 几何失真计算图

计算方法:

- A = (A1 + A2) / 2
- Distortion= 100(A-B)/B

1.11.7 测试标准

表1-7 测试标准

测试类别	Sensor 类型					
	CIF	D1	720P	1080P	300 万以上	
Distortion	<3%	<2%	<2%	<1.50%	<1%	

1.12 视场角测试(此测试产品中关注,作为测试参考,不作为指标)

1.12.1 测试目的

测试 IP Camera 的最大视角。

1.12.2 测试设备

灯箱,色温照度计,FOV Chart,直尺。

1.12.3 测试软件

无。

1.12.4 测试环境

D65 光源,保证该 Chart 表面照度在 600 Lux±100 Lux,整个 Chart 表面的亮度值相差小于 10%

1.12.5 测试步骤

- 步骤 1. 将 FOV Chart 置于灯箱正面,保证照相系统的光轴中心正对 FOV Chart 的正中心;
- 步骤 2. 预览画面状态稳定后,拍照;
- 步骤 3. 测量 IP Camera 到 Chart 的距离 L,测量实际拍摄到的 Chart 区域的对角线长度 C,根据数值计算视场角值。

---结束

1.12.6 视场角计算方法

● 拍照画面为平面 a,L 为垂直于平面 a 的线段,即 IP Camera 到 FOV Chart 的距 离,A、B 为实际拍摄画面的最长宽边和长边,o 点为 Chart 中心,如图 1-12 所示。

图1-12 视场角计算图 1

● 实际拍摄画面如图 1-13,测量实际所拍摄画面对角线 C 的长度,也可由公式计算;测量 IP Camera 到 FOV Chart 的实际距离 L。

• 视场角为θ计算如下:

$$C = sqrt (A^2 + B^2)$$

$$\theta = 2 a tan (C/2L)$$

1.12.7 测试标准

表1-8 测试标准

测试类别	分辨率					
	CIF	D1	720P	1080P	300 万以上	
FoV (度)						

□□ 说明

FOV: 不同的产品应用要求的视场角不同, 本标准对 FOV 不作限定;

2 场景测试

2.1 图像边缘测试

2.1.1 测试目的

测试 IP Camera 预览显示画面中是否存在异常现象。

2.1.2 测试设备

正常光源、单一的某种鲜艳颜色(如红色、蓝色、黄色等等)。

2.1.3 测试环境

使用 IP Camera 对着单一的某种鲜艳进行抓怕图像,观察图像边缘效果。

2.1.4 测试步骤

步骤 1. 观察 IP Camera 抓拍的单一某种鲜艳的图片;

步骤 2. 观察拍摄的画面,上下左右四个边缘是否存在与抓怕时的图像颜色不相符的颜色。

---结束

2.1.5 关注维度

黑边现象、白边现象。

2.2 静物场景

2.2.1 测试目的

测试 IP Camera 在静物场景下的效果。

2.2.2 测试设备

正常光源、静止的颜色丰富的静物模型(例如花草、公仔、彩色布匹等)。

2.2.3 测试环境

使用 IP Camera 对静物进行拍摄,观察图像效果。

2.2.4 测试步骤

- 步骤 1. 观察 IP Camera 拍摄的静物模型颜色饱和度;
- **步骤 2**. 观察静物模型的色彩是否能够较好的还原出来,主体三种颜色所占的比例是否都能很好的进行区分;
- 步骤 3. 使用 IP Camera 小角度拍摄直边缘观察锯齿现象;
- 步骤 4. 观察边缘是否存在杂色;
- 步骤 5. 更换不同的色温测试颜色是否偏色。

---结束

2.2.5 关注维度

清晰度、色彩还原、通透性、噪点、锯齿、闪烁、块现象、呼吸效应、伪彩。

- 黑色平坦区域是否容易出现块现象(比如黑色显示器屏幕、黑色衣裤);
- 倾斜角度容易出现锯齿。

2.3 人物场景

2.3.1 测试目的

测试 IP Camera 在人物场景下的效果。

2.3.2 测试设备

正常光源、人物。

2.3.3 测试环境

使用 IP Camera 对人物进行拍摄,观察图像效果。

2.3.4 测试步骤

- 步骤 1. 均匀光源,正常光照情况下观察人物肤色表现是否自然,有无失真现象,亮度控制是 否得当,有没有出现过曝现象;关注胳膊、手臂等是否存在振铃效应;
- 步骤 2. 观察人脸肤色是否柔和细节是否清晰及人物是否有立体感。

---结束

2.3.5 关注维度

清晰度、色彩还原、通透性。

2.4 远景场景

2.4.1 测试目的

测试 IP Camera 在远景场景下的效果。

2.4.2 测试设备

无特殊设备。

2.4.3 测试环境

使用 IP Camera 对远景环境(例如狭长的通道)进行拍摄,观察图像效果。

2.4.4 测试步骤

观察 IP Camera 的远景能力,景深是否足够,是否可以看清远处的细节。

2.4.5 关注维度

清晰度、通透性、景深。色彩还原。

2.5 宽动态场景

2.5.1 测试目的

测试 IP Camera 在宽动态场景下的效果。

2.5.2 测试设备

无特殊设备。

2.5.3 测试环境

- 使用 IP Camera 对有亮度差异明显的区域(例如窗口,窗外光照较强,窗内光线较弱)拍摄,观察图像效果:
- 使用强光灯对准立体物品直射,摄像机在物品的另一侧进行监控,分辨观察亮暗图像效果;

宽动态实际应用场景主要关注两种,一个是写字楼、办公区、大厅门口场景,另一个为酒店走廊、通道场景;前者画面中亮区面积较大且有较亮照度光源情况,后者的亮区面积较小且整体画面亮度较低。

2.5.4 测试步骤

- 步骤 1. 观察 WDR 关闭和打开时的图像效果,对比亮区和暗区的景物是否有变化,变化是否明显,整体亮度与暗处亮度是否足够;
- 步骤 2. 观察亮区边缘是否有紫边现象。

---结束

2.5.5 关注维度

- 亮处细节、暗处细节、色彩还原、紫边或绿边、通透性、噪点、拖影。
- WDR 场景下最重要的就是人脸、衣服细节(含色彩和纹理),另补充关注人物走动的拖影、跟随噪声。

2.6 低照度场景

2.6.1 测试目的

测试 IP Camera 在低照度场景下的效果。

2.6.2 测试设备

灯箱、小物品(置于灯箱内)、可运动的物体(例如钟摆)。

2.6.3 测试环境

使用 IP Camera 在灯箱内进行拍摄,观察图像效果。

2.6.4 测试步骤

- 步骤 1. 调节灯箱内的照度值,一般从 5Lux 以下开始观察图像,并逐渐降低照度值,固定的照度 0.01、0.1、0.2、0.5、1、5lux 必须覆盖;
- 步骤 2. 观察图像的整体亮度情况,噪声控制是否明显,块效应和呼吸效应是否明显;
- **步骤** 3. 记录指定照度下物体是否可分辨,噪声数目及颗粒大小,运动物体的周围是否会有运动噪声和拖影。

---结束

2.6.5 关注维度

亮度、清晰度、通透性、噪声、块效应、呼吸效应、色彩还原、拖影。

2.7 红外场景

2.7.1 测试目的

测试 IP Camera 的红外效果。

2.7.2 测试设备

色温照度计、红外灯、激光红外测距仪。

2.7.3 测试环境

使用 IP Camera 在室内低照度场景下打开红外灯,保证红外灯和 IP Camera 照射在同一物体上拍摄,观察图像效果。

□ 说明

- 该场景下请将测试产品的日夜模式设置为自动或夜 模式;
- 低照度下是否采用丢幀模式,需要注意,该测试中一般采用不丢幀的测试方式。

2.7.4 场景选择

室内低照度场景,打开红外灯,IP Camera 拍摄物体。

2.7.5 关注维度

清晰度、通透性、噪声、亮度、亮处效果、暗处效果、曝光、拖影。

2.8 复杂纹理场景

2.8.1 测试目的

测试 IP Camera 在复杂纹理场景下的效果。

2.8.2 测试设备

具有复杂纹理的物体 (例如条纹衣服、条纹测试卡、单板等)。

2.8.3 测试环境

使用 IP Camera 对复杂纹理的物体进行拍摄,观察图像效果。

2.8.4 测试步骤

观察图像是否存在亮色分离的现象,图像有无模糊现象。

2.8.5 关注维度

清晰度、伪彩。

2.9 运动场景

2.9.1 测试目的

测试 IP Camera 在运动场景下的效果。

2.9.2 测试设备

运动物体 (例如人物、钟摆等)。

2.9.3 测试环境

使用 IP Camera 对运动物体进行拍摄,观察图像效果。运动物体可分为:

- 运动主体由远及近运动;
- 运动主体以不同运动方式: 平动, 转动;
- 运动主体以不同的运动速度:快、慢。

□ 说明

如 IP Camera 有防抖功能,还可测试 IP Camera 自身的运动。

2.9.4 测试步骤

步骤 1. 观察运动物体的清晰度、边缘的锐利度;

步骤 2. 观察运动物体周围是否有噪声,运动后是否有颜色残留。

---结束

2.9.5 关注维度

清晰度(主体清晰度)、清晰度(背景清晰度)、色彩残留、连贯性、噪点、拖影、块效应、呼吸效应、边缘闪烁。

2.10 光线变化场景(AE 收敛)

2.10.1 测试目的

测试 IP Camera 的 AE 收敛能力,包括 AE 收敛速度和 AE 收敛稳定性。

2.10.2 测试设备

灯箱/辉度箱,射灯/车灯,挡板(深色为佳)。

2.10.3 测试环境

● 使用 IP Camera 在灯箱内进行拍摄,调节光源的亮度(调亮或者调暗),观察图像 效果;

- 使用 IP Camera 在正常场景下进行拍摄,待图像稳定后用挡板放在镜头前,完全遮挡画面(3秒左右),取开挡板,观察图像效果;
- 使用 IP camera 在室内正常照度下,到室内关灯后 AE 稳定后,在打开室内灯后 AE 稳定后即可。

2.10.4 测试步骤

- 步骤 1. 观察灯箱光源变化或者镜头被遮挡取开后,图像恢复的时间;
- 步骤 2. 图像恢复正常后,是否会产生震荡现象(亮度变化)。

---结束

2.10.5 关注维度

AE 收敛速度、AE 收敛稳定性、AWB 收敛速度、AWB 收敛稳定性、块效应、拖影、码率波动。

● AE 的收敛示意,如图 2-1 所示。

图2-1 AE 的收敛示意图

● AE 震荡示意,如图 2-2 所示。

图2-2 AE 震荡示意图

● AWB 收敛示意,如图 2-3 所示。

图2-3 AWB 收敛示意图

2.11 强光场景

2.11.1 测试目的

测试 IP Camera 在强光场景下的效果。

2.11.2 测试设备

射灯/车灯。

2.11.3 测试环境

使用 IP Camera 对强光周围的物体进行拍摄,注意强光光源和摄像机的角度形成的角度保持一致,观察图像效果。

2.11.4 测试步骤

观察强光周围的物体是否可分辨 (强光抑制效果)。

2.11.5 关注维度

亮处效果、暗处效果、紫边、通透性、光晕大小、色彩还原。

• 大面积单色场景。

2.12 大面积单色

2.12.1 测试目的

测试大面积单色下中性区域是否出现偏色。

2.12.2 测试设备

不同色彩的遮挡布(红色、绿色、蓝色、黄色、淡黄色、灰色)。

2.12.3 测试环境

将大面积灰色卷帘放置到与桌面平行的位置,在桌面上垂直放置 24 色卡,卷帘放下后不影响到 24 色卡即可。

2.12.4 测试步骤

- 步骤 1. 选择一个中性色的背景(如灰色),使用大面积单色卷帘遮挡整个画面的 30%、50%、80%等左右的面积,持续时间约 3min,观察 24 色卡中的 19 至 23 色块中是否存在偏色,实时录制码流;
- 步骤 2. 将卷帘调整移开时,观察是否能够快速还原为灰色;
- 步骤 3. 更换其他色彩的遮挡布,重复执行步骤 1~2;
- 步骤 4. 使用 imatest 工具分析 24 色卡偏色程度。

---结束

2.12.5 关注维度

色彩还原。

3 外场测试

3.1 开阔场景

3.1.1 测试目的

测试 IP Camera 在开阔场景下的效果。

3.1.2 测试设备

色温照度计、激光红外测距仪。

3.1.3 测试环境

使用 IP Camera 对开阔场景进行拍摄,观察图像效果。

3.1.4 场景选择

广场、低层建筑楼顶等、树、花、人群,可选择在不同天气状况下进行测试。

3.1.5 关注维度

清晰度、亮度、通透性、景深、色彩还原、噪点、锯齿。

3.2 外场 AWB 测试

3.2.1 测试目的

测试 IP Camera 在外场的 AWB 效果。

3.2.2 测试设备

色温照度计。

3.2.3 测试环境

使用 IP Camera 在外场进行拍摄,观察图像效果。

3.2.4 场景选择

色彩尽量丰富的场景,场景中有路面、花草、建筑物等,测试时间覆盖日间全天(一般 6:00~20:00)。

3.2.5 关注维度

清晰度、通透性、色彩还原。

3.3 外场宽动态测试

3.3.1 测试目的

测试 IP Camera 在外场宽动态场景下的效果。

3.3.2 测试设备

色温照度计。

3.3.3 测试环境

测试 IP Camera 在外场宽动态场景拍摄,观察图像效果。

3.3.4 场景选择

- 如:大堂、白天室外光线强,室内关闭灯光,IP Camera 架设在室内,拍摄门口的环境,人从室外走进室内时的该场景图像效果;
- 如: IP Camera 架设在室外,且室外光线充足,通过玻璃门拍摄室内暗处效果。

3.3.5 关注维度

亮处效果、暗处效果、紫边、色彩还原、通透性、噪点、拖影

3.4 外场低照度测试

3.4.1 测试目的

测试 IP Camera 在外场的低照度效果。

3.4.2 测试设备

色温照度计。

3.4.3 测试环境

使用 IP Camera 在外场低照度场景拍摄,观察图像效果,在该条件下默认是不采用红外灯照射,仅评测产品自身的处理效果。

3.4.4 场景选择

夜间的室外,照度可选择 0.1Lux 到 1Lux 中间的三个场景,场景光线尽量均匀,场景中有运动的物体(例如人走动)。

□ 说明

低照度:

- 月光级: 仅有月光下的应用, 一般将 0.5lux 以上的条件称之为月光级;
- 星光级:仅有星光条件下的应用,该条件下光线极暗,一般将低于 0.5lux 的外界条件称之为星光级。

3.4.5 关注维度

清晰度、通透性、亮度、噪点、色彩还原、锯齿。

3.5 外场运动场景测试

3.5.1 测试目的

测试 IP Camera 在外场运动场景下的效果。

3.5.2 测试设备

色温照度计。

3.5.3 测试环境

使用 IP Camera 在外场进行拍摄运动物体,观察图像效果。

3.5.4 场景选择

运动物体可分高速、中速和低速。

- 高速:高速公路天桥上,拍摄过往的车辆;
- 中速:公司大门车辆出入口,拍摄进出的车辆;
- 低速:拍摄正常速度走动的行人。

3.5.5 关注维度

清晰度、边缘闪烁、拖影、色彩残留、噪点、块效应。

3.6 外场红外场景测试

3.6.1 测试目的

测试 IP Camera 在外场的红外效果。

3.6.2 测试设备

色温照度计、红外灯。

3.6.3 测试环境

使用 IP Camera 在外场打开红外灯,保证红外灯和 IP Camera 照射在同一物体上拍摄,观察图像效果。

3.6.4 场景选择

夜间(较黑暗)的室外场景(需达到星光级的条件,即小于 0.5 lux),打开红外灯,IP Camera 拍摄物体。

3.6.5 关注维度

清晰度、通透性、噪声、亮度、亮处效果、暗处效果、过曝、拖影。

3.7 外场强光抑制测试

3.7.1 测试目的

测试 IP Camera 在外场的强光抑制效果。

3.7.2 测试设备

色温照度计,汽车,补光灯。

3.7.3 测试环境

使用 IP Camera 在外场强光抑制场景下拍摄,观察图像效果。

3.7.4 场景选择

夜间的室外,打开车头大灯,IP Camera 拍摄车牌。可适当调整镜头的光圈和车灯的亮度。车可分为运动和静止两种场景,运动时需要用补光灯对车牌进行补光。

3.7.5 关注维度

亮处细节、暗处细节、光晕大小、色彩还原、块效应。

4 数据评估与应用

4.1 指标数据汇总

在指标的测试中,需按照步骤进行,并将数据记录到对应的列表中。指标测试完成后与标准对比,达到要求,该项测试即为通过。测试表示例如表 4-1 所示。

表4-1 视频测试指标汇总示例

测试项	指标	单位	达标标准	XX 测试 结果	结论
級北帝	-L. MI (D	TO II	720P 中心≥700	-	Passed
解析度	电视线	TVL	1080P 中心≥1050	-	Passed
色彩还	Saturation	-	110%~ 120%,100%~130%	-	Passed
原	ΔC	-	≤10%	-	Passed
	ΔE	-	≤15%		Passed
白平衡	S	-	≤0.10	-	Passed
灰阶	灰阶数目	阶	≥18	-	Passed
宽动态	亮暗对比	dB	≥50dB	-	Passed
延时	时间差	ms	≤200	-	Passed
低照度	φ	Lux	彩色: φ< 1Lux/F1.2; 黑白: φ <0.1Lux/F1.2	-	Passed
码率控 制	-	-	要求瞬时码率波动 ≤10%,平均码率 波动≤5%	-	Passed
信噪比	信噪比	dB	≥35dB	-	Passed

测试项	指标	单位	达标标准	XX 测试 结果	结论
亮度均 一性	Shading	-	≥80%	-	Passed
几何失 真	Distortion	-	<1.50%	-	Passed
视场角	FoV	度	-	-	Passed

4.2 五分制图像质量主观评测法

表4-2 五分制图像质量主观评测法

分数	Level	五级质量制<正向>	五级损伤制<逆向>			
5	优	图像质量极佳,十分 满意	图像上无法察觉有损伤或干扰存在			
4	良	图像好,比较满意	图像上有稍可察觉的损伤或干扰,但并不令人讨厌			
3	中	图像一般,可以接受	图像上有明显察觉的损伤或干扰,令人有些 讨厌			
2	差	图像较差,勉强可看	图像上损伤或干扰较严重,令人相当讨厌			
1	劣	图像低劣,无法观看	图像上损伤或干扰及严重,不能观看			

评价应该采用专业人士和非专业人士共同组成的专家组来评价,建议参与人数 5~12,评测过程中可提过程,不讨论结果(可提要测试什么,但不能讨论图像效果怎么样),对每个项目按照 5 分制打分。参与评测人员参考以上五分制对所有的图像质量维度进行打分,在打分时可扩展到一位小数对结果进行修正。对正向或中性维度可参考表 4-2 中"五级质量制"进行评分,比如清晰度、色彩还原等;对负向维度可参考表 4-2 中"五级损伤制",去噪效果、去隔行效果、亮色串扰等。

按表 4-2 "五分制"评分后可对结果做以修正,精确到扩展一位,即可以给出一位小数部分的评分。如,大致看了某视频序列后,觉得图像质量一般,初步评分为 3,之后在后几个序列中,感觉还可以提升,这时可将该维度评分修正为 3.2。修正时根据场景在实际引用中的重要性考虑修正评分的幅度。

图像质量主观评价时,发现存在的明显缺陷,如物体移动时图像边缘明显的锯齿状、拉毛、断裂等现象。应根据程度给对应的评价维度降分,甚至到最低。

参评人员打分结果最多可精确到小数点后 1 位,但最终的数据处理结果精确到小数点后 2 位。

所有产品保持黑盒,参与人员不能有明示或暗示具体的产品及其型号,评测数据记录中以代号,如 A、B、C 替代,评测完毕后方可进行具体产品的讨论。

评测概要表述如下:

- 产品黑盒
- 评估人员(专业人士和非专业人士5~12人)
- 总体粗略印象(1、2、3、4、5)
- 根据具体场景修正评分(一般精度 0.1)
- 汇总平均(精度 0.01)(该结果为产品最终评估结果)

4.3 五分值主观维度评估方式

表4-3 五分值主观维度评估表

No	测试维度	参考关注方式	初始 分值	参考评分方式(仅供参考,不限定,打分1~5,不能超过5,不低于0)
1	清晰度	主要观察静止、 运动物体的纹 理,亮处纹理、 暗处纹理;	3	• 图像纹理清晰, +2 分; 图像纹理模糊, -2 分; • 图像混叠(线条叠加再一起,虽线条清楚,但不是原图像内容, -1 分; 图像假(sharpen), -2 分; (无加分项);
				 运动时,运动主题模糊,-2分;运动时,静止背景模糊,-3分;反之为加相应分; 亮处细节好(亮处可看清,+1分,暗处细节好(暗处可看清,+1分);反之减分;
				● 边缘重影(含白边等现象),-2分; (无加分项);
				 图像完全不可辨, -5 分; (专项)人脸不可或难以分辨, -2 分;人脸可分辨+2 分;车牌不可辨, -1 分;车牌可分辨,+1 分;
				• 其他因素(必须先及时提改标准,方能应用)。
2	通透性	主要包含对比度和锐度	3	 对比度高(亮处够亮,暗处够暗),+2分;/对比度低,-2分; 主观感觉有足够黑的暗处,+1分;/主观找不到够黑处-1; 图像静止的边缘锐利,+1分,/图像边缘模糊,-1分;
3	去噪	图像噪声大小	5	 图像完全不可见, -5 分。 由于噪声,背景图像无法分辨, -4 分; 噪声颗粒感很大, -2 分;噪声细碎, -1 分; 色度噪声成条状, -2 分;

No	测试维度	参考关注方式	初始 分值	参考评分方式(仅供参考,不限定,打分 1~5,不能超过 5,不低于 0)
				• (特指编码) 十字噪声等, -2 分;
				●噪声数量较大,-1分;
				● 画面干净,+1 分。
4	色彩还原	色彩还原主要包	5	• 全局的整理偏色, -5 分;
		含三个方面:白 平衡(灰色的还		◆ 灰色区域出现其他颜色(白平衡),-2分;
		原)、饱和度、		• 大面积纯色导致灰色偏色,每例现象,-0.5 分;
		色彩偏差		• 混合光源导致偏色, -1 分;
				● 色彩偏淡, -1 分;
				• 人眼可识别出来的颜色偏差(肤色, -3 分; 天空, -2 分; 树叶, -3 分)。
5	锯齿	边缘的平滑程度	5	• 目测每个锯齿所占据像素大小,目测可以看到的每 个像素扣 1 分。
6	闪烁	画面整理或局部	5	• 明显的 AE 闪烁, -5 分;
		边缘的明暗变化		● 明显的 AWB 闪烁, -5 分;
				• 边缘/线条产生的剧烈闪烁, -3 分。
7	伪彩	密集的条纹处出	5	• 全屏的摩尔纹, -5 分;
		现的源图像中不		• 伪彩闪烁, -2 分;
		存在的颜色		• 彩条和纹理线条的比例 1:1, -5 分;
		不包含紫边?		
8	块效应	由量化步长较大 引起的图像效果	5	• 块较大, -3 分;
		损失,这里侧重		• 块数量多, -2 分;
		于静态图像(单		
		幅或暂停) 图像 出现的马赛克现		
		面塊的勻發兒塊 象,		
9	呼吸效应	图像帧间参考引	5	● 画面比例占到全屏, -3 分;
	1X \X\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	起的累计损伤,		● 图像方块刷新现象程度剧烈,-3 分。
		和块效应不同,		[[[] [] [] [] [] [] [] [] []
		该现象属于动态 效果,连续播放		
		观察图像是否存		
		在动态"刷新"		
		现象;		
10	拖影	物体运动后背景	5	•运动物体出现背景的边缘线条等,-2分;
		出现的残留或者在运动物体上出		• 运动物体背后出现残留, -3 分;
		现背景图像的边		• 出现颜色残留, -2 分;

No	测试维度	参考关注方式	初始 分值	参考评分方式(仅供参考,不限定,打分1~5,不能 超过5,不低于0)
		缘或纹理		• 仅运动物体过后出现大量噪声, -1 分;
11	(肤色)还原	属于色彩还原中 的一个专项,专 用于肤色的还原	5	肤色失真,偏向其他颜色,-5分;肤色偏淡或过饱和,-2分。
12	亮处细节	属于清晰度中的 一个专项测试, 仅用于评估亮处 细节	3	亮处过亮,无法分辨,-3分;较亮处可以压制,物体分辨清楚,+2分;较亮处损失部分细节,难以分辨,-2分;
13	暗处细节	属于清晰度中的 一个专项测试, 仅用于评估暗处 细节	3	暗处过暗,无法分辨,-3分;较暗处可以提升,物体分辨清楚,+2分;较暗处损失部分细节,难以分辨,-2分。
14	紫边	亮处边缘出现的 紫色现象	5	 点光源,目测光源紫边相比光源直径每20%,-1分; 面光源,目测紫色边缘的宽度,每2像素,-1分; 实际强光照射的物体,目测边缘紫色的宽度,每像素,-1分; 画面大片紫色现象,-3分。
15	景深	专项,这里特指 场景远近物体均 能聚焦清晰	3	 远处清晰,+1分,远处模糊,-1分; 近处清晰,+1分,近处模糊,-1分; 中间模糊,-2分,中间清晰,+0分。
16	亮度	专项,属于清晰 度子项,仅指较 暗处画面的明亮 程度	3	 画面整体亮度近同 正常照度人眼实景,+2分; 画面亮度较低,部分物体不可见,-1分; 画面完全过暗,-3分; 画面过亮,-1分。
17	光晕大小	较亮处 (如强光 光源)周围的过 渡区域	5	 点光源,目测光源光晕相比光源直径每20%,-1分; 面光源,目测光晕边缘的大小,每2像素,-1分; 实际强光照射的物体,目测边缘光晕的大小,每像素,-1分; 画面大片光晕现象,-5分。

4.4 主观场景评估

在主观维度的评估中,评测人员在每个场景中给相应维度独立打分,各维度取平均即为该场景的评分,所有场景的平均分加权后即得到全场景的加权分,这个即可视为总分。评测人员使用的评测表举例,如表 4-4 所示。

表4-4 主观维度评估表示例

测试维度	A 产品	B 产品	备注
静物场景	5.0	5.0	-
人物场景	5.0	5.0	-
远景场景	5.0	5.0	-
宽动态场景	5.0	5.0	-
低照度场景	5.0	5.0	-
复杂纹理场景	5.0	5.0	-
运动场景	5.0	5.0	-
光线变化场景(AE)	5.0	5.0	-
强光场景	5.0	5.0	-
开阔场景	5.0	5.0	-
外场 AWB	5.0	5.0	-
外场低照度	5.0	5.0	-
外场运动	5.0	5.0	-
外场强光抑制	5.0	5.0	-
关键维度加权平均	-	-	-

4.5 数据结果及应用

表4-5 数据结果及应用示例

评测结果分级	指标	单维度	全部维度 加权	关键维度加 权	备注
A 级—有竞争力的产品	Passed	≥3.0	高于标杆	高于标杆	全部条件成立
B级—质量(图像) 达标的产品	Passed	≥3.0	高于标杆	-	全部条件成立

评测结果分级	指标	单维度	全部维度 加权	关键维度加 权	备注
C 级—不合格或无竞 争力产品	Failed	-	低于标杆	低于标杆	达成条件之 一

- 标杆: 在参与评测前由版本测试策略制定。
- 单维度:参与主观评测的每个维度。

5 附录

设备和软件要求,如表 5-1 所示。

表5-1 设备和软件列表

设备和软件列表	要求	备注
imatest 分析软件	推荐 imatest3.6 及以上版本	-
灯箱	- 箱 光源覆盖 D50、D65、D75、A/F	
Chart	Iso12233、Gretag Macbeth Color Checker、 KODAK Q14、Checkerboard Distortion Test Target	-
辉度箱	LV0~LV17, 0.1step	-
色彩照度计	CL200、T10	-