2. Необходимый математический аппарат

2.1. Декартова система координат

Под описанием двумерного (трехмерного) объекта будем понимать знание о положении каждой точки объекта на плоскости (в пространстве) в любой момент времени. Положение точек будем описывать с помощью декартовой системы координат (ДСК). Базовая информация о двумерной и трехмерной ДСК и координатах точки в ДСК должна быть хорошо знакома из курса геометрии. Напомним лишь некоторые определения, обозначения и соотношения.

2.1.1. Двумерные точки в ДСК

Взаимное расположение осей в двумерной ДСК может быть двух видов. Проведем ось Ox слева направо, как показано на рис. 2.3. Ось Oy при этом может проходить

Рис. 2.1. Двумерная декартова система координат: а) левосторонняя, б) правосторонняя

вниз (рис. 2.1, a) или вверх (рис. 2.1, δ). В первом случае система координат будет называться правой или левосторонней (левой), а во втором случае — правосторонней (правой).

От расположения осей в ДСК зависит знак отмеряемых углов. В левой системе координат будем считать, что угол положительный, если он отмеряется по часовой стрелке. В противном случае — угол отрицательный. В правой системе координат положительное направление отсчета угла — против часовой стрелки.

Рассмотрим двумерную точку P в ДСК с координатами (x, y) (см. рис. 2.2).

Расстояние от точки P до начала координат (длина отрезка OP на рисунке) можно вычислить по формуле

$$|OP| = \sqrt{x^2 + y^2}.$$

Рис. 2.2. Точка на плоскости в декартовой системе координат

Когда известна длина отрезка OP и угол ϑ между этим отрезком и положительной частью координатной оси, можно вычислить соответствующую координату точки P по формуле:

$$a = |OP|\cos\vartheta. \tag{2.1}$$

Таким образом, для системы координат, изображенной на рисунке 2.2

$$x = |OP|\cos \alpha,$$

 $y = |OP|\cos \beta = |OP|\cos \left(\frac{\pi}{2} - \alpha\right) = |OP|\sin \alpha.$

Если точка P на плоскости имеет координаты (x,y), то будем писать P=(x,y).

2.1.2. Трехмерные точки в ДСК

Взаимное расположение осей в трехмерной ДСК также может быть двух видов. Проведем ось Ox слева направо, а ось Oy снизу вверх, как показано на рис. 2.3.

Рис. 2.3. Трехмерная декартова система координат: а) левосторонняя, б) правосторонняя

Ось Oz при этом может проходить как от наблюдателя в плоскость листа (рис. 2.3, a), так и в направлении от плоскости листа к наблюдателю (рис. 2.3, δ).

В первом случае система координат будет называться левосторонней (левой), а во втором случае — правосторонней (правой).

Более точное определение правой и левой систем координат можно дать следующее. Если посмотреть из положительной полуоси Oz в направлении начала координат, то для совмещения положительной полуоси Ox с положительной полуосью Oy необходимо повернуть Ox относительно начала координат против часовой стрелки — в этом случае имеем правую систему координат; если же поворот производится по часовой стрелке — то система координат левая.

Существует также легкий способ определения вида системы координат по правой или левой руке, как показано на рис. 2.4. Для левой руки большой, указательный и средний пальцы формируют левую тройку ортогональных векторов.

Рис. 2.4. Левая декартова система координат.

В правой системе координат углы вращения относительно осей координат отмеряются против часовой стрелки, если смотреть против направления соответствующей оси. В левой системе координат углы отмеряются по часовой стрелке.

Для точки P в трехмерном пространстве (см. рис. 2.5) расстояние до начала координат определяется по формуле

$$|OP| = \sqrt{x^2 + y^2 + z^2}.$$

При известном значении |OP| значения координат точки можно определить по той-же формуле (2.1), где ϑ — угол между положительной частью соответствующей координатной оси и отрезком, соединяющим начало координат с точкой. Например, на рисунке 2.5 значение y равно $|OP|\cos\beta$.

Рис. 2.5. Точка в пространстве в декартовой системе координат

Если точка P в пространстве имеет координаты (x,y,z), то будем записывать P=(x,y,z).

2.2. Векторы. Операции над векторами

Различают понятие свободного и связанного вектора. Связанный вектор или направленный отрезок — упорядоченная пара точек евклидова пространства.

Свободный вектор — класс эквивалентности направленных отрезков. При этом, два направленных отрезка считаются эквивалентными если они: параллельны, равны по длине, одинаково направлены (сонаправлены).

2.2.1. Векторы в двумерном пространстве

Свободный вектор \bar{p} в двумерном пространстве представляется набором из 2-х элементов — координат вектора и обозначается

$$\bar{p} = (p_1, p_2).$$
 (2.2)

Геометрически вектор \bar{p} можно представить в виде связанного вектора с точкой начала вектора в начале координат, и с точкой конца вектора в точке с координатами (p_1, p_2) (рис. 2.6).

Очевидно, что длину вектора можно вычислить по формуле

$$|\bar{p}| = \sqrt{p_1^2 + p_2^2}. (2.3)$$

Единичным вектором будем называть вектор, имеющий длину равную 1.

Через e_1 и e_2 будем обозначать единичные векторы сонаправленные с осями координат Ox и Oy соответственно.

Рис. 2.6. Двумерный вектор

Зная длину вектора и угол его наклона α , следуя (2.1) можно вычислить координаты вектора:

$$p_1 = |\bar{p}| \cos \alpha,$$

$$p_2 = |\bar{p}| \sin \alpha.$$

Суммой векторов $\bar{p}=(p_1,p_2)$ и $\bar{q}=(q_1,q_2)$, называется вектор

$$\bar{r} = \bar{p} + \bar{q} = (p_1 + q_1, p_2 + q_2).$$
 (2.4)

Результат сложения двух векторов можно представить следующим образом. Изобразим векторы \bar{p} и \bar{q} таким образом, чтобы точка конца вектора \bar{p} совпадала с точкой начала вектора \bar{q} (см. рис. 2.7). Тогда результат сложения — вектор, соединяющий на-

Рис. 2.7. Сумма векторов

чало вектора \bar{p} с концом вектора \bar{q} .

Разность векторов — операция обратная сложению. Если

$$\bar{r} = \bar{p} + \bar{q}$$

то справедливо

$$\bar{p} = \bar{r} - \bar{q} = (r_1 - q_1, r_2 - q_2),
\bar{q} = \bar{r} - \bar{p} = (r_1 - p_1, r_2 - p_2).$$
(2.5)

Результат вычитания вектора q из вектора r можно представить следующим образом. Изобразим векторы исходящими из одной точки (см. рис. 2.8). Тогда результат вы-

Рис. 2.8. Разность векторов

читания — вектор, начинающийся в точке окончания вектора q и заканчивающийся в точке окончания вектора r.

Результат умножения вектора \bar{p} на скаляр k — вектор

$$k\bar{p} = (kp_1, kp_2).$$
 (2.6)

Можно представить результат умножения \bar{p} на скаляр k, как вектор, имеющий то же направление, что и \bar{p} , и длина которого в k раз больше, чем длина вектора \bar{p} (см. рис. 2.9).

Рис. 2.9. Умножение вектора на скаляр

Произвольный вектор $\bar{p} = (p_1, p_2)$ можно представить в виде

$$\bar{p} = p_1 \boldsymbol{e}_1 + p_2 \boldsymbol{e}_2 \tag{2.7}$$

(см. рис. 2.10).

Рис. 2.10. Разложение вектора по осям координат

Скалярным произведением векторов \bar{p} и \bar{q} называется величина

$$\bar{p}\bar{q} = |p||q|\cos\widehat{\bar{p}\bar{q}},\tag{2.8}$$

где через $\widehat{ar{p}}ar{q}$ обозначается угол, отмеренный от вектора $ar{p}$ к вектору $ar{q}$.

Из свойств косинуса следует, что скалярное произведение равно нулю, если векторы \bar{p} и \bar{q} перпендикулярны. Кроме того,

$$\mathbf{e}_{i}\mathbf{e}_{j} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Если вектор \bar{q} — единичный, то (2.8) превращается в

$$\bar{p}\bar{q} = |p|\cos\widehat{\bar{p}}\bar{q},$$

что представляет интерпретацию (2.1) и является длиной проекции вектора \bar{p} на вектор \bar{q} (см. рис. 2.11). Таким образом значение скалярного произведения \bar{p} на \bar{q} можно представить как произведение длины вектора \bar{q} на длину проекции вектора \bar{p} на \bar{q} или как произведение длины вектора \bar{p} на длину проекции вектора \bar{q} на \bar{p} .

Из вышесказанного следует

$$\bar{p}\bar{q} = \bar{q}\bar{p};$$

$$k\bar{p}\bar{q} = (k\bar{p})\bar{q} = \bar{p}(k\bar{q});$$

$$\bar{p}(\bar{q} + \bar{r}) = \bar{p}\bar{q} + \bar{p}\bar{r}.$$
(2.9)

Рис. 2.11. Скалярное произведение векторов

Учитывая последние выкладки можно вывести формулу для получения значения скалярного произведения через координаты векторов:

$$\bar{p}\bar{q} = (p_1\mathbf{e}_1 + p_2\mathbf{e}_2)(q_1\mathbf{e}_1 + q_2\mathbf{e}_2) = = p_1q_1\mathbf{e}_1 + p_1q_2\mathbf{e}_1\mathbf{e}_2 + p_2q_1\mathbf{e}_2\mathbf{e}_1 + p_2q_2\mathbf{e}_2\mathbf{e}_2 = p_1q_1 + p_2q_2$$
(2.10)

Скалярное умножение вектора на себя (скалярный квадрат) в результате дает квадрат длины этого вектора:

$$\bar{p}^2 = \bar{p}\bar{p} = |p||p|\cos 0 = |p|^2$$

откуда

$$|p| = \sqrt{\bar{p}^2} \tag{2.11}$$

Нормализацией вектора \bar{p} называется операция получения единичного вектора, сонаправленного вектору \bar{p} . Для нормализации вектора \bar{p} нужно разделить каждую координату вектора на его длину:

$$\frac{\bar{p}}{|p|} = \left(\frac{p_1}{|p|}, \frac{p_2}{|p|}\right). \tag{2.12}$$

Псевдоскалярным произведением векторов \bar{p} и \bar{q} называется величина

$$\bar{p} \times \bar{q} = |p||q| \sin \widehat{p}\overline{\hat{q}}.$$
 (2.13)

Геометрически псевдоскалярное произведение можно представить как ориентированную площадь параллелограмма, построенного на перемножаемых векторах (рис. 2.12).

Из свойств синуса следует

$$\bar{p} \times \bar{q} = -(\bar{q} \times \bar{p}).$$

Рис. 2.12. Псевдоскалярное произведение векторов

Псевдоскалярное произведение равно нулю, если векторы \bar{p} и \bar{q} параллельны, что влечет

$$egin{aligned} & m{e}_1 imes m{e}_1 = 0, \\ & m{e}_1 imes m{e}_2 = 1, \\ & m{e}_2 imes m{e}_1 = -1, \\ & m{e}_2 imes m{e}_2 = 0. \end{aligned}$$

Из вышесказанного следует

$$k(\bar{p} \times \bar{q}) = (k\bar{p}) \times \bar{q} = \bar{p} \times (k\bar{q});$$

$$\bar{p} \times (\bar{q} + \bar{r}) = (\bar{p} \times \bar{q}) + (\bar{p} \times \bar{r}).$$

Следуя свойствам псевдоскалярного произведения можно вывести формулу получения значения псевдоскалярного произведения через координаты векторов:

$$\bar{p} \times \bar{q} = (p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2) \times (q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2) =$$

$$= p_1 q_1 (\mathbf{e}_1 \times \mathbf{e}_1) + p_1 q_2 (\mathbf{e}_1 \times \mathbf{e}_2) + p_2 q_1 (\mathbf{e}_2 \times \mathbf{e}_1) + p_2 q_2 (\mathbf{e}_2 \times \mathbf{e}_2) = p_1 q_2 - p_2 q_1.$$

Последнюю формулу можно представить в виде вычисления определителя:

$$\bar{p} \times \bar{q} = \begin{vmatrix} p_1 & p_2 \\ q_1 & q_2 \end{vmatrix}.$$

2.2.2. Векторы в трехмерном пространстве

Свободный вектор \bar{p} в трехмерном пространстве представляется тройкой координат обозначается

$$\bar{p} = (p_1, p_2, p_3).$$
 (2.14)

Геометрически вектор \bar{p} можно представить в виде связанного вектора с точкой начала вектора в начале координат, и с точкой конца вектора в точке (p_1, p_2, p_3) (рис. 2.13).

Рис. 2.13. Трехмерный вектор

Длину вектора \bar{p} можно вычислить по формуле

$$|\bar{p}| = \sqrt{p_1^2 + p_2^2 + p_3^2}. (2.15)$$

Вычисление i-й координаты вектора \bar{p} по его длине сводится к формуле (2.1) вычисления i-й координаты точки конца вектора. Например, на рисунке 2.13 значение p_2 равно $|\bar{p}|\cos\beta$

Операции над двумерными векторами и их свойства, заданные формулами (2.4)–(2.12) легко расширяются для трехмерных векторов:

1. Сумма

$$\bar{p} + \bar{q} = (p_1 + q_1, p_2 + q_2, p_3 + q_3);$$

2. Разность

$$\bar{p} - \bar{q} = (p_1 - q_1, p_2 - q_2, p_3 - q_3);$$

3. Умножение на скаляр k

$$k\bar{p} = (kp_1, kp_2, kp_3);$$

4. Разложение вектора по проекциям на оси

$$\bar{p} = p_1 e_1 + p_2 e_2 + p_3 e_3;$$

5. Скалярное произведение

$$\bar{p}\bar{q} = |p|\cos\widehat{p}\bar{q},$$

$$\bar{p}\bar{q} = p_1q_1 + p_2q_2 + p_3q_3,$$

$$\bar{p}\bar{q} = \bar{q}\bar{p};$$

$$k\bar{p}\bar{q} = (k\bar{p})\bar{q} = \bar{p}(k\bar{q});$$

$$\bar{p}(\bar{q} + \bar{r}) = \bar{p}\bar{q} + \bar{p}\bar{r};$$

$$|\bar{p}| = \sqrt{\bar{p}^2};$$

6. Нормализация вектора

$$\frac{\bar{p}}{|p|} = \left(\frac{p_1}{|p|}, \frac{p_2}{|p|}, \frac{p_3}{|p|}\right).$$

Операция псевдоскалярного произведения отсутствует для векторов в трехмерном пространстве. Вместо нее определяется операция векторного произведения.

Операция векторного произведения \bar{p} и \bar{q} обозначается $\bar{p} \times \bar{q}$. Результатом векторного произведения \bar{p} и \bar{q} называется новый вектор \bar{r} , который удовлетворяет следующим условиям:

1. длина вектора \bar{r} вычисляется по формуле

$$\bar{p} \times \bar{q} = |\bar{p}||\bar{q}| \sin \widehat{\bar{p}}\overline{q};$$

- 2. вектор \bar{r} перпендикулярен векторам \bar{p} и \bar{q} ;
- 3. векторы \bar{p} , \bar{q} , \bar{r} образуют левую тройку векторов (рис. 2.14).

Рис. 2.14. Векторное произведение

Из определения следуют свойства векторного произведения:

$$\begin{split} \bar{p}\times\bar{q} &= -(\bar{q}\times\bar{p}),\\ k(\bar{p}\times\bar{q}) &= (k\bar{p})\times\bar{q} = \bar{p}\times(k\bar{q}),\\ \bar{p}\times(\bar{q}+\bar{r}) &= (\bar{p}\times\bar{q}) + (\bar{p}\times\bar{r}). \end{split}$$

Кроме того, векторное произведение равно нулю, если перемножаемые векторы параллельны.

Для векторов e_1 , e_2 и e_3 в правой системе координат имеют место соотношения:

$${m e}_1 imes {m e}_2 = {m e}_3, \ {m e}_2 imes {m e}_3 = {m e}_1, \ {m e}_3 imes {m e}_1 = {m e}_2.$$

В левой системе координат последние соотношения выглядят иначе:

$${m e}_2 imes {m e}_1 = {m e}_3, \ {m e}_3 imes {m e}_2 = {m e}_1, \ {m e}_1 imes {m e}_3 = {m e}_2.$$

Раскладывая множители по осям координат можно выразить результат векторного произведения через координаты множителей (в правой системе координат):

$$\bar{p} \times \bar{q} = (p_1 \mathbf{e}_1 + p_2 \mathbf{e}_2 + p_3 \mathbf{e}_3) \times (q_1 \mathbf{e}_1 + q_2 \mathbf{e}_2 + q_3 \mathbf{e}_3) =$$

$$= p_1 q_1 (\mathbf{e}_1 \times \mathbf{e}_1) + p_1 q_2 (\mathbf{e}_1 \times \mathbf{e}_2) + p_1 q_3 (\mathbf{e}_1 \times \mathbf{e}_3) + p_2 q_1 (\mathbf{e}_2 \times \mathbf{e}_1) +$$

$$+ p_2 q_2 (\mathbf{e}_2 \times \mathbf{e}_2) + p_2 q_3 (\mathbf{e}_2 \times \mathbf{e}_3) + p_3 q_1 (\mathbf{e}_3 \times \mathbf{e}_1) + p_3 q_2 (\mathbf{e}_3 \times \mathbf{e}_2) + p_3 q_3 (\mathbf{e}_3 \times \mathbf{e}_3) =$$

$$= p_1 q_2 \mathbf{e}_3 + p_1 q_3 (-\mathbf{e}_2) + p_2 q_1 (-\mathbf{e}_3) + p_2 q_3 \mathbf{e}_1 + p_3 q_1 \mathbf{e}_2 + p_3 q_2 (-\mathbf{e}_1) =$$

$$= (p_2 q_3 - p_3 q_2) \mathbf{e}_1) + (p_3 q_1 - p_1 q_3) \mathbf{e}_2 + (p_1 q_2 - p_2 q_1) \mathbf{e}_3 =$$

$$= (p_2 q_3 - p_3 q_2, p_3 q_1 - p_1 q_3, p_1 q_2 - p_2 q_1).$$

Последнюю формулу можно представить в виде результата вычисления определителя:

$$ar{p} imes ar{q} = egin{vmatrix} m{e}_1 & m{e}_2 & m{e}_3 \ p_1 & p_2 & p_3 \ q_1 & q_2 & q_3 \end{bmatrix}.$$

2.2.3. Радиус-векторы

Радиус-вектор — связанный вектор, начало которого находится всегда в начале координат. Это свойство радиус-векторов позволяет поставить во взаимно однозначное соответствие всем точкам пространства соответствующие им радиус-векторы.

Формально это соответствие запишем в следующем виде. Пусть точка P имеет координаты (x,y,z). Тогда точке P взаимнооднозначно соответствует радиус-вектор $\bar{p}=(x,y,z)$. Таким образом, можно легко переходить от координат точек к радиусвекторам и обратно.

Отметим, что радиус-вектор иногда определяют как преобразование переноса точки из начала координат в заданную точку пространства с известными координатами. При этом умножение радиус-вектора \bar{p} на число k означает перенос точки из начала координат в направлении вектора \bar{p} на расстояние $k|\bar{p}|$.

Сложение радиус-векторов \bar{p} и \bar{q} можно рассматривать как перенос точки P по направлению вектора \bar{q} на расстояние $|\bar{q}|$.

Направленный отрезок P_1P_2 можно представить в виде вектора $\bar{p}_2 - \bar{p}_1$, где \bar{p}_1 и \bar{p}_2 радиус-векторы точек P_1 и P_2 соответственно.

2.3. Уравнение прямой

Рассмотрим теперь каким образом можно использовать координаты точек и радиус-векторы для описания прямых в двумерном пространстве. Под описанием прямой понимаем знание того принадлежит ли точка с заданными координатами нашей прямой или нет. То есть нужно получить некую математическую зависимость или уравнение прямой.

Прямую можно задать, определив пару точек P_1 и P_2 , через которые она должна проходить.

Проведем от точки P_1 к точке P_2 обычный вектор равный разности векторов $\bar{p}_2 - \bar{p}_1$. Этому вектору соответствует параллельный ему радиус-вектор $\bar{p}^* = \bar{p}_2 - \bar{p}_1$, как показано на рис. 2.15. Тогда радиус-вектор \bar{p} , определяющий некоторую точку P на

Рис. 2.15. Вывод уравнения прямой.

прямой, можно получить сложением, например, вектора \bar{p}_1 и вектора \bar{p}^\star , умноженного на некоторое число t:

$$\bar{p} = \bar{p}(t) = \bar{p}_1 + \bar{p}^* t,$$
 (2.16)

откуда получаем

$$\bar{p}(t) = \bar{p}_1 + (\bar{p}_2 - \bar{p}_1)t$$
 (2.17)

— параметрическое уравнение прямой, заданное в векторной форме. Число t называют параметром. Когда t пробегает значения от $-\infty$ до ∞ вектор $\bar{p}(t)$ пробегает радиусвекторы всех точек заданной прямой.

Из векторного уравнения (2.17) получаем два скалярных (для координат вектора $\bar{p}(t)$):

$$\begin{cases} x(t) = x_1 + (x_2 - x_1)t \\ y(t) = y_1 + (y_2 - y_1)t. \end{cases}$$

Эту систему систему можно записать в виде

$$\begin{cases} x(t) - x_1 = (x_2 - x_1)t \\ y(t) - y_1 = (y_2 - y_1)t, \end{cases}$$

откуда

$$(x(t)-x_1)(y_2-y_1)-(y(t)-y_1)(x_2-x_1)=0.$$

Здесь x(t) и y(t) — координаты произвольной точки заданной прямой. Последнее равенство уже не зависит от параметра t, а поэтому заменим обозначения x(t) и y(t) на x и y соответственно:

$$(x-x_1)(y_2-y_1)-(y-y_1)(x_2-x_1)=0.$$

Последнее равенство представим в форме

$$Ax + By + C = 0, (2.18)$$

где

$$A = y_2 - y_1,$$

 $B = x_1 - x_2,$
 $C = y_1x_2 - x_1y_2.$

Уравнение (2.18) с указанными значениями A, B и C представляет собой частный случай уравнения прямой на плоскости. Очевидно, что при одновременном умножении значений A, B и C на одну и ту же константу, определяемое этим уравнением множество точек не меняется.

Получить параметрическое уравнение прямой в пространстве можно тем же способом, что и на плоскости. При этом можно убедиться, что параметрическое уравнение в векторной форме не изменится. Но этому векторному уравнению будет соответствовать система уже не двух, а трех уравнений в скалярной форме:

$$\begin{cases} x(t) = x_1 + (x_2 - x_1)t \\ y(t) = y_1 + (y_2 - y_1)t \\ z(t) = z_1 + (z_2 - z_1)t. \end{cases}$$

Дополнив параметрическое уравнение прямой неравенством $0\leqslant t\leqslant 1$ получим параметрическое уравнение отрезка P_1P_2 :

$$\begin{cases} \bar{p}(t) = \bar{p}_1 + (\bar{p}_2 - \bar{p}_1)t, \\ 0 \leqslant t \leqslant 1 \end{cases}$$
 (2.19)

или

$$\begin{cases} x(t) = x_1 + (x_2 - x_1)t \\ y(t) = y_1 + (y_2 - y_1)t \\ z(t) = z_1 + (z_2 - z_1)t \\ 0 \le t \le 1. \end{cases}$$
 (2.20)

В дальнейшем, прямую, на которой лежит отрезок P_1P_2 , будем называть несущей прямой этого отрезка или просто прямой отрезка P_1P_2 .

2.4. Уравнение плоскости

Используем свойства скалярного произведения для получения уравнения плоскости. Рассмотрим некоторую плоскость в пространстве и некоторую точку $P_1 = (x_1, y_1, z_1)$, про которую известно, что она лежит в этой плоскости, как показано на рис. 2.16. Возьмем также некоторый вектор $\bar{n} = (n_x, n_y, n_z)$, перпендикулярный на-

Рис. 2.16. Вывод уравнения плоскости

шей плоскости. Этот вектор назовем нормалью к плоскости. Пусть теперь требуется определить, принадлежит ли некоторая точка P плоскости или нет. Для этого заметим, что для любой точки P=(x,y,z), принадлежащей плоскости, вектор разности радиус-векторов $\bar{p}-\bar{p}_1$ и вектор нормали \bar{n} — перпендикулярны. А это значит, что их скалярное произведение равно нулю:

$$\bar{n}(\bar{p} - \bar{p}_1) = 0. \tag{2.21}$$

Уравнение (2.21) уже представляет собой уравнение плоскости в векторной форме.

Его можно преобразовать в скалярную форму:

$$n_x x + n_y y + n_z z - n_x x_1 - n_y y_1 - n_z z_1 = 0.$$

Последнее равенство представим в виде

$$Ax + By + Cz + D = 0,$$
 (2.22)

где

$$A = n_x,$$

 $B = n_y,$
 $C = n_z,$
 $D = -n_x x_1 - n_y y_1 - n_z z_1.$

Форма (2.22) задает уравнение плоскости. Как и в случае с уравнением прямой в двумерном пространстве, коэффициенты уравнения плоскости задаются с точностью до общего множителя.

2.5. Полярность прямой/плоскости

Пусть задана прямая ℓ на плоскости своим уравнением:

$$Ax + By + C = 0.$$
 (2.23)

Рассмотрим функцию

$$f(x,y) = Ax + By + C.$$

Из (2.23) следует, что f(x,y)=0 в точках прямой ℓ . Следовательно неравенство f(x,y)>0 удовлетворяется только во всех точках плоскости, лежащих по одну сторону от прямой ℓ , а f(x,y)<0— во всех точках плоскости, лежащих по другую сторону от ℓ . Будем говорить, что первое неравенство определяет положительную, а второе отрицательную полуплоскость относительно прямой ℓ .

Полярность прямой ℓ можно поменять, если задать новое уравнение прямой умножив обе части равенства (2.23) на отрицательную константу.

В трехмерном случае аналогичную ситуацию наблюдаем при задании уравнения плоскости. Плоскость делит трехмерное пространство на два полупространства. Полярность плоскости зависит от выбранного уравнения плоскости.

2.6. Геометрические преобразования

Упомянутые ниже преобразования играют роль элементарных преобразований, из которых складывается большинство операций, применяемых к объектам при построении изображений.

Применение любого из последующих преобразований к изображению (фрагменту изображения) означает выполнение этого преобразования для каждой точки исходного изображения (фрагмента изображения).

2.6.1. Двумерные преобразования

При описании преобразований будем предполагать, что P=(x,y) — исходная точка; P'=(x',y') — точка после преобразования.

Перенос (параллельный перенос)

Преобразование переноса подразумевает перемещение изображения (или его части) на новую позицию относительно начала координат. Полученное изображение после преобразования должно сохранять свои размеры и углы наклона к осям координат.

Преобразование переноса в плоском случае задается соотношениями:

$$\begin{cases} x' = x + T_x, \\ y' = y + T_y, \end{cases}$$
 (2.24)

где T_x , T_y — величины сдвига по осям Ox и Oy соответственно (см. рис. 2.17).

Рис. 2.17. Преобразование перенос, двумерный случай

Масштабирование относительно начала координат

При преобразовании масштабирования относительно начала координат меняется расположение всех точек изображения (за исключением точки в начале координат): расстояние от начала координат до проекции точки на ось увеличивается в соответствующее количество раз.

Преобразование масштабирования относительно начала координат имеет вид:

$$\begin{cases} x' = xS_x, \\ y' = yS_y, \end{cases}$$
 (2.25)

 S_x , S_y — коэффициенты масштабирования по осям Ox и Oy соответственно.

Преобразование масштабирования, в котором $S_x = S_y$ называется равномерным масштабированием. При равномерном масштабировании сохраняются пропорции изображения и углы наклона отрезков к осям координат; расстояния от всех точек изображения до начала координат увеличиваются в одно и то же количество раз. На рисунке 2.18 приведен пример равномерного масштабирования с коэффициентом $S_x = S_y = 2.3$.

Рис. 2.18. Преобразование масштабирование, двумерный случай

Поворот

При преобразовании поворота относительно начала координат каждая точка изображения меняет свой угол наклона к осям координат на заданную величину (ϑ). При этом расстояние от каждой точки до начала координат остается неизменным.

Преобразование поворота относительно начала координат против часовой стрелки на угол ϑ (см. рис. 2.19):

Рис. 2.19. Преобразование поворот, двумерный случай

$$\begin{cases} x' = x \cos \vartheta - y \sin \vartheta, \\ y' = x \sin \vartheta + y \cos \vartheta. \end{cases}$$
 (2.26)

Соотношения (2.26) легко получаются из (2.1). Действительно, координаты точки P на рис. 2.19:

$$x = |OP| \cos \alpha,$$

$$y = |OP| \sin \alpha.$$
 (2.27)

После проведения поворота координаты новой точки (P') равны

$$x' = |OP'| \cos(\alpha + \vartheta),$$

$$y' = |OP'| \sin(\alpha + \vartheta).$$

Принимая во внимание, что |OP'| = |OP| и раскрывая формулы синуса и косинуса суммы получим

$$x' = |OP|(\cos \alpha \cos \theta - \sin \alpha \sin \theta),$$

$$y' = |OP|(\sin \alpha \cos \theta + \cos \alpha \sin \theta).$$

Раскроем скобки и перегруппируем:

$$x' = (|OP|\cos\alpha)\cos\vartheta - (|OP|\sin\alpha)\sin\vartheta,$$

$$y' = (|OP|\sin\alpha)\cos\vartheta + (|OP|\cos\alpha)\sin\vartheta,$$

откуда, с учетом (2.27), получается (2.26).

Зеркальное отражение

Под зеркальным отражением понимается семейство симметричных преобразований изображения относительно осей координат. Каждое такое преобразование заключается в изменении знака соответствующей координаты каждой точки. Так, зеркальное отражение относительно оси Ox заключается в том, что координата каждой точки остается неизменной, а координата y меняет знак (см. рис. 2.20):

Рис. 2.20. Зеркальное отражение относительно Ох

$$\begin{cases} x' = x, \\ y' = -y. \end{cases}$$
 (2.28)

. При зеркальном отражении относительно Oy неизменной остается координата y каждой точки, а координата x меняет знак (см. рис. 2.21):

Рис. 2.21. Зеркальное отражение относительно Оу

$$\begin{cases} x' = -x, \\ y' = y. \end{cases}$$
 (2.29)

Обратные преобразования

Для каждого из преобразований можно определить обратное преобразование. Так для преобразования переноса с величинами сдвига T_x и T_y обратным преобразованием будет перенос с величинами сдвига $-T_x$ и $-T_y$. Для преобразования масштабирования с коэффициентами S_x и S_y обратным преобразованием будет масштабирование с коэффициентами $1/S_x$ и $1/S_y$. Для преобразования поворота на угол ϑ обратным будет поворот на угол $-\vartheta$.

.

Двойственность преобразований

Любое из приведенных выше преобразований можно рассматривать как преобразование изображения (например перенос точки из одной части изображения в другую). Но в то же время преобразование, примененное ко всем точкам изображения можно рассматривать как преобразование системы координат. Так, например, перенос точек в положительном направлении оси Ox можно рассматривать как сдвиг системы координат в отрицательном направлении оси Ox (сравни рисунки 2.17 и 2.22), а поворот

Рис. 2.22. Преобразование перенос начала координат, двумерный случай

точек против часовой стрелки относительно начала координат можно рассматривать как поворот системы координат по часовой стрелке (сравни рисунки 2.19 и 2.23).

Рис. 2.23. Преобразование поворот системы координат, двумерный случай

Так как координаты любой точки совпадают с координатами ее радиус-вектора, любое из перечисленных преобразований можно отнести к векторам.

2.6.2. Трехмерные преобразования

При описании преобразований будем предполагать, что P=(x,y,z) — исходная точка; P'=(x',y',z') — точка после преобразования. Считаем, что преобразования выполняются в правой ДСК.

Перенос (параллельный перенос)

Преобразование переноса в трехмерном случае имеет вид:

$$\begin{cases} x' = x + T_x, \\ y' = y + T_y, \\ z' = z + T_z, \end{cases}$$

$$(2.30)$$

где T_x , T_y , T_z — величины сдвига по осям Ox, Oy и Oz соответственно.

Масштабирование

Преобразование масштабирования относительно начала координат имеет вид:

$$\begin{cases} x' = xS_x, \\ y' = yS_y, \\ z' = zS_z, \end{cases}$$
 (2.31)

 S_x , S_y , S_z — коэффициенты масштабирования по осям Ox, Oy и Oz соответственно.

Вращение

В трехмерном случае вместо преобразования поворота имеет место преобразование вращения вокруг координатной оси. Трем осям координат соответствуют три преобразования вращения. В результате каждого такого преобразования координата, соответствующая оси вращения, остается неизменной, и преобразование сводится к двумерному повороту относительно начала координат (см. рис. 2.24).

При совершении преобразования вращения вокруг некоторой оси отмеряем угол против часовой стрелки когда смотрим на начало координат с положительной полуоси данной оси.

Рис. 2.24. Вращение вокруг оси Ог

Преобразование вращения относительно оси Ox начала координат против часовой стрелки на угол ϑ :

$$\begin{cases} x' = x, \\ y' = y \cos \vartheta - z \sin \vartheta, \\ z' = y \sin \vartheta + z \cos \vartheta. \end{cases}$$
 (2.32)

Преобразование вращения относительно оси Oy начала координат против часовой стрелки на угол ϑ :

$$\begin{cases} x' = z \sin \vartheta + x \cos \vartheta, \\ y' = y, \\ z' = z \cos \vartheta - x \sin \vartheta. \end{cases}$$
 (2.33)

Преобразование вращения относительно оси Oz начала координат против часовой стрелки на угол ϑ :

$$\begin{cases} x' = x \cos \vartheta - y \sin \vartheta, \\ y' = x \sin \vartheta + y \cos \vartheta, \\ z' = z. \end{cases}$$
 (2.34)

Зеркальное отражение

В трехмерном случае преобразование зеркального отражения проводится относительно координатных плоскостей. Как и в двумерном случае преобразование зеркального отражения сводится к смене знака одной из координат каждой точки изображения

Зеркальное отражение относительно плоскости хОу выражается соотношением:

$$\begin{cases} x' = x, \\ y' = y, \\ z' = -z; \end{cases}$$
 (2.35)

относительно плоскости уОг:

$$\begin{cases} x' = -x, \\ y' = y, \\ z' = z; \end{cases}$$

$$(2.36)$$

и относительно плоскости хОг

$$\begin{cases} x' = x, \\ y' = -y, \\ z' = z. \end{cases}$$

$$(2.37)$$

2.6.3. Совмещение преобразований

Когда последовательность элементарных преобразований применяется к изображению, возможны два подхода к выполнению такой задачи. При первом походе получается последовательность изображений, где каждое последующее изображение в последовательности получено с помощью очередного элементарного преобразования из предыдущего. С другой стороны можно рассматривать задачу как получение результата из исходного изображения в результате применения единого сложного преобразования — комбинации элементарных преобразований. Такое сложное преобразование будем назвать «совмещенное преобразование».

Рассмотрим совмещение преобразований на примере преобразования поворота относительно заданной точки $A=(x_A,y_A)$ против часовой стрелки на угол ϑ . Получить такое преобразование можно совместив преобразования переноса и поворота относительно начала координат. Сначала совершим переход к новой системе координат с началом координат в точке A. То есть совершим преобразование переноса с величинами сдвига $-x_A$, $-y_A$. Теперь, когда точка A в начале координат, то необходимое преобразование — поворот относительно начала координат против часовой стрелки на угол ϑ , после чего необходимо вернуться к исходной системе координат совершив обратный перенос с величинами сдвига x_A , y_A . Таким образом должны совершить

последовательно три преобразования:

$$\begin{cases} x_1 = x - x_A, \\ y_1 = y - y_A, \end{cases}$$

$$\begin{cases} x_2 = x_1 \cos \vartheta - y_1 \sin \vartheta, \\ y_2 = x_1 \sin \vartheta + y_1 \cos \vartheta, \\ x' = x_2 + x_A, \\ y' = y_2 + y_A. \end{cases}$$

Избавляясь от промежуточных величин x_1 , y_1 , x_2 , y_2 получим формулы совмещенного преобразования:

$$\begin{cases} x' = (x - x_A)\cos\vartheta - (y - y_A)\sin\vartheta + x_A, \\ y' = (x - x_A)\sin\vartheta + (y - y_A)\cos\vartheta + y_A. \end{cases}$$

2.7. Матричные преобразования

2.7.1. Матричная форма

Когда будем представлять операции в матричной форме, координаты вектора будем записывать как вектор-столбец. Таким образом, когда у нас есть вектор $\bar{p}=(p_1,p_2)$, в матричной форме его будем представлять как

$$\bar{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$
.

Тогда запись \bar{p}^T будет обозначать вектор-строку с теми же элементами, что и в векторе \bar{p} .

Скалярное произведение двух векторов \bar{p} и \bar{q} в матричной форме запишется

$$\bar{p}^T \bar{q}$$
.

Векторное произведение

$$ar{p} imes ar{q} = egin{bmatrix} p_2 q_3 - p_3 q_2 \\ p_3 q_1 - p_1 q_3 \\ p_1 q_2 - p_2 q_1 \end{bmatrix}$$

может быть представлено в виде умножения матрицы на вектор

$$\bar{p} \times \bar{q} = [\bar{p}]_{\times} \bar{q},$$

где $[\bar{p}]_{\times}$ — кососимметричная матрица составленная из координат вектора \bar{p} :

$$[\bar{p}]_{\times} = \begin{bmatrix} 0 & -p_3 & p_2 \\ p_3 & 0 & -p_1 \\ -p_2 & p_1 & 0 \end{bmatrix}.$$

Пусть координаты точки (x, y) задаются вектором столбцом

$$\begin{bmatrix} x \\ y \end{bmatrix}$$
.

В таком случае двумерные преобразования поворота, масштабирования и зеркального отражения легко представимы в матричной форме:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Для трехмерных преобразований имеют место формулы:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta & -\sin \vartheta \\ 0 & \sin \vartheta & \cos \vartheta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & 0 & \sin \vartheta \\ 0 & 1 & 0 \\ -\sin \vartheta & 0 & \cos \vartheta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Перечисленные преобразования имеют одну и ту же форму:

$$\bar{p}' = M\bar{p}. \tag{2.38}$$

Где \bar{p} и \bar{p}' — радиус-векторы точек, M — матрица преобразования. Преимущество такого представления в том, что каждое преобразование задается в виде матрицы, а применение преобразования заключается в умножении соответствующей матрицы на столбец координат. При этом элементы матрицы преобразования зависят только от типа преобразования и его параметров и не зависят от координат преобразуемых точек.

Преимущество становится очевидным, когда в матричной форме представляется совмещенное преобразование. Предположим, что к точке с радиус-вектором \bar{p} применяются последовательно преобразования, заданные матрицами $M_1,\ M_2,\ \ldots,\ M_k$. Это можно представить в виде последовательных вычислений:

$$\bar{p}_1 = M_1 \bar{p},$$
 $\bar{p}_2 = M_2 \bar{p}_1,$
 \dots
 $\bar{p}' = M_k \bar{p}_{k-1}.$

Если избавиться от вспомогательных имен $\bar{p}_2, \bar{p}_3, \ldots, \bar{p}_{k-1}$, то получим

$$\bar{p}' = M_k \cdots M_2 M_1 \bar{p}.$$

Последняя формула подходит под шаблон (2.38), в котором

$$M = M_k \cdots M_2 M_1$$

— матрица совмещенного преобразования. То есть для получения матрицы совмещенного преобразования достаточно перемножить в обратном порядке матрицы его составляющих элементарных преобразований.

Но из этого ряда преобразований выпадает преобразование переноса. Это преобразование невозможно представить в форме (2.38). Представление преобразования переноса в форме отличной от (2.38) заметно усложняет как унификацию операций, так и получение соотношений для совмещенных преобразований.

Выход из сложившейся ситуации предлагает аппарат однородных координат, рассматриваемый в пунктах 2.7.4–2.7.5.

2.7.2. Двойственность трехмерного вращения

Взглянем еще раз на матричную форму записи преобразований трехмерного врашения.

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta & -\sin \vartheta \\ 0 & \sin \vartheta & \cos \vartheta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & 0 & \sin \vartheta \\ 0 & 1 & 0 \\ -\sin \vartheta & 0 & \cos \vartheta \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Можно представить каждое из этих преобразований в форме

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}_1'^T \\ \boldsymbol{e}_2'^T \\ \boldsymbol{e}_3'^T \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \tag{2.39}$$

где $e_i^{\prime T}$ обозначает вектор-строку — строку матрицы преобразования вращения. Например, для преобразования вращения вокруг оси Oz:

$$\mathbf{e}'_{1} = \begin{bmatrix} \cos \vartheta \\ -\sin \vartheta \\ 0 \end{bmatrix}, \quad \mathbf{e}'_{2} = \begin{bmatrix} \sin \vartheta \\ \cos \vartheta \\ 0 \end{bmatrix}, \quad \mathbf{e}'_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$
 (2.40)

Обратим внимание на то, что все e_i' — единичные вектора. Кроме того, эти векторы попарно перпендикулярны. Действительно, скалярное произведение пар векторов в (2.40):

$$\begin{aligned} \mathbf{e}_{1}'\mathbf{e}_{2}' &= \cos\vartheta\sin\vartheta - \sin\vartheta\cos\vartheta + 0\cdot0 = 0, \\ \mathbf{e}_{1}'\mathbf{e}_{3}' &= 0\cdot\cos\vartheta - 0\cdot\sin\vartheta + 0\cdot1 = 0, \\ \mathbf{e}_{2}'\mathbf{e}_{3}' &= 0\cdot\sin\vartheta + 0\cdot\cos\vartheta + 0\cdot1 = 0. \end{aligned}$$

То есть можно воспринимать эти три вектора как систему координат.

Если исходная система координат у нас правая, то и система координат $e'_1e'_2e'_3$ — тоже правая. Действительно, векторное произведение пар векторов в (2.40):

$$\mathbf{e}_1' \times \mathbf{e}_2' = \begin{bmatrix} 0 \cdot (-\sin \vartheta) - 0 \cdot \cos \vartheta \\ 0 \cdot \sin \vartheta - 0 \cdot \cos \vartheta \\ \cos \vartheta \cos \vartheta - (-\sin \vartheta) \sin \vartheta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \mathbf{e}_3'$$

$$\mathbf{e}_2' \times \mathbf{e}_3' = \begin{bmatrix} 1 \cdot \cos \vartheta - 0 \cdot 0 \\ 0 \cdot 0 - 1 \cdot \sin \vartheta \\ 0 \cdot \sin \vartheta - 0 \cdot \cos \vartheta \end{bmatrix} = \begin{bmatrix} \cos \vartheta \\ -\sin \vartheta \\ 0 \end{bmatrix} = \mathbf{e}_1'$$

$$\mathbf{e}_{3}' \times \mathbf{e}_{1}' = \begin{bmatrix} 0 \cdot 0 - 1 \cdot (-\sin \vartheta) \\ 1 \cdot \cos \vartheta - 0 \cdot 0 \\ 0 \cdot (-\sin \vartheta) - 0 \cdot \cos \vartheta \end{bmatrix} = \begin{bmatrix} \sin \vartheta \\ \cos \vartheta \\ 0 \end{bmatrix} = \mathbf{e}_{2}'$$

Матричную запись преобразования вращения (2.39) можно рассматривать как результат трех скалярных произведений:

$$x' = \mathbf{e}_1'^T \bar{p},$$

$$y' = \mathbf{e}_2'^T \bar{p},$$

$$z' = \mathbf{e}_2'^T \bar{p}$$

Так как каждый вектор \mathbf{e}'_i — единичный, то результатом каждого скалярного произведения является длина проекции радиус-вектора \bar{p} на вектор \mathbf{e}'_i , т. е. i-я координата радиус радиус-вектора \bar{p} в системе координат $\mathbf{e}'_1\mathbf{e}'_2\mathbf{e}'_3$.

Таким образом, построить матрицу поворота можно взяв в качестве ее строк компоненты единичных направляющих векторов осей повернутой системы координат.

2.7.3. Вращение относительно произвольного вектора. Формула Родригеса

Будем рассматривать вращение относительно произвольной оси, проходящей через начало координат. Будем предполагать, что ось вращения задается единичным вектором \bar{n} , угол вращения ϑ отсчитывается против часовой стрелки, если смотреть против направления \bar{n} , а вращаемая точка P задана своим радиус-вектором \bar{p} (см. рис. 2.25). Выведем соотношение для получения результата поворота — координат точки P' (радиус-вектора \bar{p}').

Представим вектор \bar{p} в виде суммы двух двух векторов

$$\bar{p} = \bar{p}_{\parallel} + \bar{p}_{\perp},$$

где вектор \bar{p}_{\parallel} параллелен вектору \bar{n} , а вектор \bar{p}_{\perp} — перпендикулярен вектору \bar{n} . Так как \bar{n} — единичный, вектор \bar{p}_{\parallel} легко найти как результат скалярного произведения, умноженный на вектор \bar{n} :

$$\bar{p}_{\parallel}=(\bar{p}\bar{n})\bar{n}.$$

В свою очередь

$$\bar{p}_{\perp} = \bar{p} - \bar{p}_{\parallel}$$
.

Если теперь осуществить поворот относительно оси \bar{n} вектора \bar{p}_{\perp} на угол ϑ , добавив к результату вектор \bar{p}_{\parallel} получим координаты искомого вектора. Чтобы осуществить

Рис. 2.25. Вращение вокруг произвольной оси

этот поворот, найдем координаты вектора \bar{r} , перпендикулярного векторам \bar{p} и \bar{n} . Это можно сделать с помощью векторного произведения:

$$\bar{r} = \bar{n} \times \bar{p}$$
.

Из свойств векторного произведения следует, что длины векторов \bar{r} и \bar{p}_{\perp} совпадают. Вследствие этого, координаты вектора \bar{p}'_{\perp} (вектор \bar{p}_{\perp} после поворота на угол ϑ) равны

$$\bar{p}'_{\perp} = \bar{p}_{\perp} \cos \vartheta + \bar{r} \sin \vartheta,$$

откуда получаем результат:

$$\bar{p}' = \bar{p}_{\perp}' + \bar{p}_{\parallel}.$$

Соберем все выкладки в единую формулу

$$\bar{p}' = (\bar{p} - (\bar{p}\bar{n})\bar{n})\cos\vartheta + (\bar{n}\times\bar{p})\sin\vartheta + (\bar{p}\bar{n})\bar{n}.$$

Раскроем первые скобки и представим векторное произведение в матричной форме

$$\bar{p}' = \bar{p}\cos\vartheta - (\bar{p}\bar{n})\bar{n}\cos\vartheta + [\bar{n}]_{\times}\bar{p}\sin\vartheta + (\bar{p}\bar{n})\bar{n}.$$

Сгруппируем второе и последнее слагаемые:

$$\bar{p}' = \bar{p}\cos\vartheta + (\bar{p}\bar{n})\bar{n}(1-\cos\vartheta) + [\bar{n}]_{\times}\bar{p}\sin\vartheta.$$

Первое слагаемое представим в матричной форме

$$\bar{p}' = (E\cos\vartheta)\bar{p} + (\bar{p}\bar{n})\bar{n}(1-\cos\vartheta) + [\bar{n}]_{\times}\bar{p}\sin\vartheta,$$

где E — единичная матрица. Исходя из того, что

$$(\bar{p}\bar{n})\bar{n}=(\bar{n}\bar{p})\bar{n}=\bar{n}\bar{n}^T\bar{p}$$

получим

$$\bar{p}' = (E\cos\vartheta)\bar{p} + \bar{n}\bar{n}^T\bar{p}(1-\cos\vartheta) + [\bar{n}]_{\times}\bar{p}\sin\vartheta,$$

Последнее равенство можно представить в виде

$$\bar{p}' = M\bar{p}$$
,

где матрица M вычисляется по формуле

$$M = E \cos \vartheta + \bar{n}\bar{n}^T (1 - \cos \vartheta) + [\bar{n}]_{\times} \sin \vartheta. \tag{2.41}$$

Можно показать, что

$$\bar{n}\bar{n}^T = [\bar{n}]_{\times}^2 + E.$$
 (2.42)

Действительно,

$$[\bar{n}]_{\times}^2 = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} = \begin{bmatrix} -n_2^2 - n_3^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & -n_1^2 - n_3^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & -n_1^2 - n_2^2 \end{bmatrix}.$$

С другой стороны

$$\bar{n}\bar{n}^T = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \begin{bmatrix} n_1 & n_2 & n_3 \end{bmatrix} = \begin{bmatrix} n_1^2 & n_1n_2 & n_1n_3 \\ n_1n_2 & n_2^2 & n_2n_3 \\ n_1n_3 & n_2n_3 & n_3^2 \end{bmatrix}.$$

Так как \bar{n} — единичный вектор, имеет место соотношение

$$n_1^2 + n_2^2 + n_3^2 = 1$$
,

откуда

$$n_1^2 = 1 - n_2^2 - n_3^2,$$

$$n_2^2 = 1 - n_1^2 - n_3^2,$$

$$n_3^2 = 1 - n_1^2 - n_2^2.$$

Таким образом

$$\bar{n}\bar{n}^T = \begin{bmatrix} 1 - n_2^2 - n_3^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & 1 - n_1^2 - n_3^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & 1 - n_1^2 - n_2^2 \end{bmatrix} = [\bar{n}]_{\times}^2 + E.$$

Подставим (2.42) в (2.41). Получим

$$M = E\cos\vartheta + ([\bar{n}]_{\times}^2 + E)(1 - \cos\vartheta) + [\bar{n}]_{\times}\sin\vartheta.$$

Раскроем скобки во втором слагаемом

$$M = E\cos\vartheta + [\bar{n}]_{\times}^{2} + E - [\bar{n}]_{\times}^{2}\cos\vartheta - E\cos\vartheta + [\bar{n}]_{\times}\sin\vartheta.$$

и приведем подобные

$$M = E + [\bar{n}]_{\times} \sin \vartheta + [\bar{n}]_{\times}^{2} (1 - \cos \vartheta). \tag{2.43}$$

Соотношение (2.43) называется формулой Родригеса вращения вокруг произвольной оси \bar{n} .

Можно расписать эту формулу через координаты вектора \bar{n} :

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \sin \vartheta + \begin{bmatrix} n_1^2 - 1 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 - 1 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 - 1 \end{bmatrix} (1 - \cos \vartheta)$$

или без последнего преобразования

$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cos \vartheta + \begin{bmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 \end{bmatrix} (1 - \cos \vartheta) + \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \sin \vartheta.$$

Формула Родригеса является универсальной: легко проверить, что подставив вместо \bar{n} любой из векторов e_i получим стандартную матрицу вращения относительно соответствующей оси.

2.7.4. Однородные координаты

Однородные координаты точки, прямой и т. д., — координаты, обладающие тем свойством, что определяемый ими объект не меняется, когда все координаты умножаются на одно и то же число.

Существуют различные способы определения однородных координат. Мы будем исходить из задачи унифицированного представления координат точек в пространстве.

Пусть заданы два действительных числа — a и α . Рассмотрим их отношение a/α . Зафиксируем значение a, и будем варьировать значение α . При уменьшении α , значение a/α будет увеличиваться. Заметим, что если α стремится к нулю, то a/α стремится к бесконечности. Таким образом, чтобы включить в рассмотрение понятие бесконечности, для представления значения ν используется пара чисел (a,α) , таких, что $\nu=a/\alpha$. Если $\alpha\neq 0$, значение ν в точности равно a/α . В противном случае $\nu=a/0$, т.е. равно бесконечности.

Таким образом, координаты двумерной точки v=(x,y) можно представить через координаты

$$(\chi, \gamma, \alpha),$$

где $\chi = \alpha x$, $\gamma = \alpha y$.

Если взять произвольную тройку (χ, γ, α) , то при $\alpha \neq 0$ эти координаты описывают точку с конечными координатами $(\chi/\alpha, \gamma/\alpha)$, а при $\alpha = 0$ — точку, бесконечно удаленную в направлении (χ, γ) .

Рассмотрим двумерную плоскость, некоторую точку (x,y) на ней и заданную функцию f(x,y). Если заменить x и y на χ/α и γ/α , то выражение f(x,y)=0 заменится на $f(\chi/\alpha,\gamma/\alpha)=0$. Если f(x,y) — многочлен, то его умножение на α^n (n — степень многочлена) уберет все знаменатели.

Например, пусть имеется прямая на плоскости, заданная своим уравнением

$$Ax + Bu + C = 0$$
.

Замена x и y на χ/α и γ/α дает $A\chi/\alpha+B\gamma/\alpha+C=0$. Умножая на обе части равенства на α , получаем

$$A\chi + B\gamma + C\alpha = 0. (2.44)$$

Равенство (2.44) задает точки прямой в однородных координатах. Это уравнение будем называть уравнением прямой в однородных координатах, коэффициенты этого уравнения A, B и C — однородными координатами прямой (действительно, для одной и той же прямой эти значения определяются с точностью до общего ненулевого множителя).

В дальнейшем однородные координаты точки будем представлять в виде векторастолбца

$$\begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}$$

однородные координаты двумерной прямой — в виде вектора-солбца

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
.

Тогда уравнение прямой (2.44) можно представить в матричной форме:

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix}^T \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix} = 0.$$

Аналогичные рассуждения можно провести при введении однородных координат трехмерных точек. В этом случае равенство

$$A\chi + B\gamma + C\zeta + D\alpha = 0.$$

представляет собой уравнение плоскости, которое можно представить в матричной форме

$$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}^T \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix} = 0,$$

где вектор-столбец

$$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

— однородные координаты плоскости.

Итак, приведем более формальное определение.

Однородными координатами точки $P \in \mathbb{R}^n$ называется вектор столбец

$$\begin{bmatrix} \chi_1 & \chi_2 & \dots & \chi_n & \chi_{n+1} \end{bmatrix}^T \in R^{n+1},$$

среди элементов которого хотя бы один элемент χ_i должен быть отличен от нуля. Если χ_{n+1} , то точка P является бесконечно удаленной.

Евклидовыми координатами точки Р будут являться координаты

$$\left(\frac{\chi_1}{\chi_{n+1}}, \frac{\chi_2}{\chi_{n+1}}, ..., \frac{\chi_n}{\chi_{n+1}}\right)$$
.

Преобразование из однородных координат в евклидовы однозначно; преобразование из евклидовых координат в однородные — нет.

Однородными координатами прямой в двумерном пространстве называются координаты

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
,

одновременно не равные нулю. Если A=B=0, то прямая является бесконечно удаленной (т. к. такой прямой принадлежат только бесконечно удаленные точки).

Однородными координатами плоскости называются координаты

$$\begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix},$$

одновременно не равные нулю. Если A=B=C=0, то плоскость является бесконечно удаленной.

2.7.5. Геометрические преобразования в однородных координатах

В общем случае преобразование в трехмерном пространстве имеет вид:

$$\begin{cases} x' = a_1 x + b_1 y + c_1 z + d_1, \\ y' = a_2 x + b_2 y + c_2 z + d_2, \\ z' = a_3 x + b_3 y + c_3 z + d_3. \end{cases}$$
(2.45)

Если перейти от обычных координат (x, y, z) к однородным $(\chi, \gamma, \zeta, \alpha)$, то преобразование (2.45) запишется в виде

$$\begin{cases} \chi' = a_1 \chi + b_1 \gamma + c_1 \zeta + d_1 \alpha, \\ \gamma' = a_2 \chi + b_2 \gamma + c_2 \zeta + d_2 \alpha, \\ \zeta' = a_3 \chi + b_3 \gamma + c_3 \zeta + d_3 \alpha, \\ \alpha' = \alpha. \end{cases}$$

Последнюю систему равенств можно записать в матричной форме (принимая во внимание тот факт, что однородные координаты точки представляем в виде векторастолбца):

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}. \tag{2.46}$$

В двумерном случае аналогичными рассуждениями получаем общий вид преобразования в матричной форме:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}. \tag{2.47}$$

Заметим, что содержимое матриц преобразований не зависит от множителя α перехода к однородной системе координат, а содержат только коэффициенты преобразований.

Зная матрицу преобразования можно легко получить матрицу обратного преобразования: если M — матрица преобразования, то M^{-1} — матрица обратного преобразования.

Пользуясь шаблонами (2.47) и (2.46) можем переписать формулы преобразований в однородных координатах.

Двумерные преобразования

Из (2.24) и (2.47) преобразование переноса запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

Из (2.25) и (2.47) преобразование масштабирования запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

Из (2.26) и (2.47) преобразование поворота относительно начала координат на угол ϑ против часовой стрелки запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

Из (2.28), (2.29) и (2.47) преобразования зеркального отражения относительно осей запишутся в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}$$

И

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

Таким образом все элементарные двумерные преобразования представлены в одной и той же форме

$$\bar{p}' = M\bar{p}$$
.

Следовательно можно представить в такой же форме и любое совмещенное преобразование. Рассмотрим, например, еще раз преобразование поворота относительно произвольной точки, описанное в п. 2.6.3.

Последовательность преобразований можно представить в виде последовательного домножения полученного результат на матрицу очередного преобразования. Тогда получим

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_A \\ 0 & 1 & y_A \\ 0 & 0 & 1 \end{bmatrix} \left(\begin{bmatrix} \cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & -x_A \\ 0 & 1 & -y_A \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix} \right).$$

Раскроем скобки и перегруппируем, получим

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & x_A \\ 0 & 1 & y_A \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \vartheta & -\sin \vartheta & 0 \\ \sin \vartheta & \cos \vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_A \\ 0 & 1 & -y_A \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

Результат выражения в круглых скобках— матрица совмещенного преобразования. Перемножив матрицы получим

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta & x_A (1 - \cos \vartheta) + y_A \sin \vartheta \\ \sin \vartheta & \cos \vartheta & y_A (1 - \cos \vartheta) - x_A \sin \vartheta \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix}.$$

где

$$\begin{bmatrix} \cos \vartheta & -\sin \vartheta & x_A (1 - \cos \vartheta) + y_A \sin \vartheta \\ \sin \vartheta & \cos \vartheta & y_A (1 - \cos \vartheta) - x_A \sin \vartheta \\ 0 & 0 & 1 \end{bmatrix}$$

матрица совмещенного преобразования.

Трехмерные преобразования

Из (2.30) и (2.46) преобразование переноса запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}.$$

Из (2.31) и (2.46) преобразование масштабирования запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}.$$

Из (2.35)-(2.37) и (2.46) преобразования зеркального отражения относительно координатных плоскостей запишутся в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix},$$

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}$$

И

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix}.$$

Из (2.43) и (2.46) преобразование вращения относительно оси \bar{n} на угол ϑ против часовой стрелки запишется в виде:

$$\begin{bmatrix} \chi' \\ \gamma' \\ \zeta' \\ \alpha' \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ \gamma \\ \zeta \\ \alpha \end{bmatrix},$$

где R_{ij} — элементы матрицы вращения из (2.43).

Преобразование прямых/плоскостей

Пусть заданы однородные координаты прямой в двумерном пространстве

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
.

Для точек, принадлежащих прямой, имеет место

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix}^T \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix} = 0.$$

В результате проведения преобразования точки должны остаться точками прямой. Пусть преобразование для точек задается матрицей M.

$$\begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = M \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix} . \tag{2.48}$$

Предположим, что координаты прямой после преобразования —

$$\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix}.$$

Тогда должно выполняться

$$\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix}^T \begin{bmatrix} \chi' \\ \gamma' \\ \alpha' \end{bmatrix} = 0.$$

В последнее равенство подставим (2.48):

$$\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix}^T M \begin{bmatrix} \chi \\ \gamma \\ \alpha \end{bmatrix} = 0,$$

откуда вытекает

$$\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix}^T = \begin{bmatrix} A \\ B \\ C \end{bmatrix}^T M^{-1},$$

и следовательно

$$\begin{bmatrix} A' \\ B' \\ C' \end{bmatrix} = \left(M^{-1} \right)^T \begin{bmatrix} A \\ B \\ C \end{bmatrix}.$$

По аналогии, получаем соотношение для трехмерного преобразования плоскости. Если преобразование для точек задается матрицей M, то это же преобразование для координат плоскости задается матрицей $\left(M^{-1}\right)^T$.