

Calhoun: The NPS Institutional Archive DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1976-12

Finite element solution of a three-dimensional nonlinear reactor dynamics problem with feedback

Bermudes, Eulogio Conception

Monterey, California. Naval Postgraduate School

<http://hdl.handle.net/10945/17779>

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

FINITE ELEMENT SOLUTION OF A THREE-
DIMENSIONAL NONLINEAR REACTOR
DYNAMICS PROBLEM WITH FEEDBACK

Eulogio Conception Bermudes

DEP' KNOX LIBRARY
KNUST POSTGRADUATE SCHOOL

2017

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

FINITE ELEMENT SOLUTION OF A THREE-DIMENSIONAL NONLINEAR REACTOR DYNAMICS PROBLEM WITH FEEDBACK

by

Eulogio Conception Bermudes

December 1976

Thesis Advisor:
Thesis Advisor:

D. Salinas
D. H. Nguyen

Approved for public release; distribution unlimited.

T177136

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER		2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Finite Element Solution of a Three-Dimensional Nonlinear Reactor Dynamics Problem with Feedback		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis and Mechanical Engineer; Dec 1976	
7. AUTHOR(s) Eulogio Conception Bermudes		8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		12. REPORT DATE December 1976	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Naval Postgraduate School Monterey, California 93940		13. NUMBER OF PAGES 160	
16. DISTRIBUTION STATEMENT (of this Report)		15. SECURITY CLASS. (of this report) Unclassified	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This work examines the three-dimensional dynamic response of a nonlinear fast reactor with temperature-dependent feedback and delayed neutrons when subjected to uniform and local disturbances. The finite element method was employed to reduce the partial differential reactor equation to a system of ordinary differential equations which can be numerically integrated. A program for the numerical solution of large			

sparse systems of stiff differential equations developed by Franke and based on Gear's method solved the reduced neutron dynamics equation. Although a study of convergence by refining element mesh sizes was not carried out, the crude finite element mesh utilized yielded the correct trend of neutron dynamic behavior.

FINITE ELEMENT SOLUTION OF A THREE-
DIMENSIONAL NONLINEAR REACTOR
DYNAMICS PROBLEM WITH FEEDBACK

by

Eulogio Conception Bermudes
Lieutenant, United States Navy
B.S., United States Naval Academy, 1970

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

and

MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
December 1976

Thesis
B4524
L.1

ABSTRACT

This work examines the three-dimensional dynamic response of a nonlinear fast reactor with temperature-dependent feedback and delayed neutrons when subjected to uniform and local disturbances. The finite element method was employed to reduce the partial differential reactor equation to a system of ordinary differential equations which can be numerically integrated. A program for the numerical solution of large sparse systems of stiff differential equations developed by Franke and based on Gear's method solved the reduced neutron dynamics equation. Although a study of convergence by refining element mesh sizes was not carried out, the crude finite element mesh utilized yielded the correct trend of neutron dynamic behavior.

WORLD HISTORY
APPROVED BY THE STATE BOARD OF EDUCATION

TABLE OF CONTENTS

I.	INTRODUCTION - - - - -	10
II.	THE NUCLEAR REACTOR WITH TEMPERATURE DEPENDENT FEEDBACK AND DELAYED NEUTRONS - - - - -	11
	A. THE PHYSICAL SYSTEM - - - - -	11
	B. PROMPT AND DELAYED NEUTRONS - - - - -	14
	C. DOPPLER EFFECT AND TEMPERATURE FEEDBACK MODEL - - - - -	16
	D. FIELD EQUATIONS - - - - -	20
III.	FINITE ELEMENT - - - - -	23
	A. INTRODUCTION - - - - -	23
	B. THE METHOD OF GALERKIN - - - - -	24
	C. THE ELEMENT - - - - -	26
	D. DIVISION OF THE SYSTEM INTO ELEMENTS - - - -	35
	E. COORDINATE TRANSFORMATION - - - - -	42
	F. CONSTRUCTION OF ELEMENT MATRICES - - - - -	48
	G. CONSTRUCTION OF SYSTEM MATRICES - - - - -	54
IV.	NUMERICAL INTEGRATION - - - - -	60
	A. LINE AND AREA INTEGRATION - - - - -	60
	B. NUMBER OF INTEGRATION POINTS - - - - -	63
V.	TEST PROBLEMS AND RESULTS - - - - -	68
VI.	CONCLUSIONS AND RECOMMENDATIONS - - - - -	85
APPENDIX A - MESH I	CONVECTIVITY AND COORDINATES - -	87
APPENDIX B - MESH II	CONVECTIVITY AND COORDINATES - -	101
COMPUTER PROGRAM - - - - -	-	121
LIST OF REFERENCES - - - - -	-	159
INITIAL DISTRIBUTION LIST - - - - -	-	160

LIST OF TABLES

I.	Physical Coordinates - - - - -	12
II.	Coordinates of Local Nodal Points - - - - -	33
III.	Abscissae and Weight Coefficients of the Gaussian Quadrature Formula - - - - -	61
IV.	Numerical Formulas for Triangles - - - - -	62
V.	Selection of Integration Points for $[G_{ji}]$ - - -	65
VI.	Selection of Integration Points for $[GG_{ji}]$ - - -	67

LIST OF FIGURES

1.	Schematic of cylindrical reactor	- - - - -	13
2.	Quadratic triangular prism parent element	- - -	28
3.	Definition of area coordinates	- - - - -	29
4.	Isoparametric coordinates	- - - - -	30
5.	Element classification	- - - - -	34
6.	Layers of mesh I	- - - - -	36
7.	Top nodal plane of the first layer of mesh I, $z = 110$ cm	- - - - -	38
8.	Middle nodal plane of the first layer of mesh I, $z = 95$ cm	- - - - -	39
9.	Bottom nodal plane of the first layer of mesh I, $z = 80$ cm	- - - - -	40
10.	Local nodal numbering of curved elements	- - -	41
11.	$\eta\xi$ coordinates in a triangle	- - - - -	46
12.	Sample grid used for illustrating OCS	- - - - -	57
13.	Neutron flux transient history at three test points with a uniform perturbation of 10 dollar of reactivity per second	- - - - -	70
14.	Neutron flux transient history at various test points for a local central perturba- tion of 100 dollar/sec of reactivity	- - - - -	71
15.	Linear and nonlinear fluxes at $(0,0,0)$ due to a local perturbation of 100 dollar /sec of reactivity at $(0,60,40)$	- - - - -	72
16.	Linear and nonlinear fluxes at $(60,0,0)$ due to a local perturbation of 100 dollar /sec of reactivity at $(0,60,40)$	- - - - -	73
17.	Linear and nonlinear fluxes at $(-60,0,80)$ due to a local perturbation of 100 dollar /sec at $(0,60,40)$	- - - - -	74

18. Linear and nonlinear fluxes at (0,0,0) due to a 50 dollar/sec local perturba- tion at (0,60,40) - - - - -	75
19. Linear and nonlinear fluxes at (60,0,0) due to a 50 dollar/sec local perturba- tion at (0,60,40) - - - - -	76
20. Linear and nonlinear fluxes at (-60,0,80) due to a 50 dollar/sec local perturba- tion at (0,60,40) - - - - -	77
21. Linear and nonlinear fluxes at (0,0,0) due to a 10 dollar/sec local perturba- tion at (0,60,40) - - - - -	78
22. Linear and nonlinear fluxes at (60,0,0) due to a 10 dollar/sec local perturba- tion at (0,60,40) - - - - -	79
23. Linear and nonlinear fluxes at (-60,0,80) due to a 10 dollar/sec local perturba- tion at (0,60,40) - - - - -	80
24. Radial flux distribution for the steady state and 100 dollar/sec local perturbation - - -	81
25. Axial flux distribution for the steady state and 100 dollar/sec local perturbation - - -	82
26. Early time history of the neutron flux at core center using mesh I and mesh II - - - - -	83

ACKNOWLEDGEMENT

The author wishes to thank Professors Dong H. Nguyen and David Salinas for their moral support and professional guidance throughout this work. Sincere appreciation is also expressed to Professor Dick Franke for his priceless assistance in the implementation of the time integration package and to Professor Giles Cantin for his invaluable counsel on finite elements. Special thanks is given to Ed Donnellan, Kris Butler, and Manus Anderson at the NPS Computer Center for their patience and cooperation in running the long computer programs required by this work. Their willingness to help and their professionalism, I am sure, are recognized and greatly appreciated by NPS students. Finally, I wish to thank my wife, Carmen, who had served outstandingly as mother and father to our children during the course of this study.

I. INTRODUCTION

The nuclear reactor with delayed neutrons and temperature-dependent feedback is a nonlinear system, whose response to uniform and local disturbances differs greatly from that of a linear reactor. The prompt temperature feedback model and one average group of delayed neutrons were incorporated in this work. Practically all neutron dynamics analysis today deals with two-dimensional geometry, implying a symmetry in neutron dynamics behavior during transient [1,2]. This symmetry assumption, however, could be unrealistic in the safety analysis of nuclear reactors. A unique feature of this work is the consideration of the three-dimensional dependence of the neutron flux. No symmetry assumptions were imposed on the problem. This work investigated neutron dynamics under uniform and local disturbances in the core. A uniform initial flux throughout the interior of the reactor was imposed. The finite element method (FEM) was employed to solve this nonlinear initial-boundary value problem. The FEM is quite effective in handling discontinuous forcing functions thereby making it particularly suited for examining the effects of localized perturbations and space-dependent feedbacks.

II. THE NUCLEAR REACTOR WITH TEMPERATURE DEPENDENT FEEDBACK AND DELAYED NEUTRONS

A. THE PHYSICAL SYSTEM

The system under consideration is a fast reactor of cylindrical geometry that is composed of two different regions. The reactor core or region I is cylindrical in shape and is fueled by U-235. Region II or the reflector region completely surrounds the core and is composed of U-238. Both regions were assumed to be homogeneous. Table I lists the physical properties and geometry for each region. A schematic of the fast reactor geometry is shown in figure 1.

Temperature and delayed neutron effects were taken into account. Also, a one-velocity or one-group model was assumed, thereby making the velocity independent of spatial or temporal effects. The delayed neutrons were considered only in region I since region II was assumed to be a non-multiplying medium. The temperature effects were also assumed to be only in the core region.

In general form, the one-velocity neutron diffusion equation is [3]

$$\frac{\partial N(\bar{r},t)}{\partial t} = vD\nabla^2N - \Sigma_a vN + S(\bar{r},t) \quad (1)$$

where $\bar{r} = (x, y, z)$

D = neutron diffusion coefficient

Σ_a = macroscopic absorption cross-section

$N(\bar{r},t)dV$ = number of neutrons in a volume element dV at a point \bar{r} at time t

TABLE I
Physical Constants

<u>SYMBOL</u>	<u>DEFINITION</u>	<u>VALUE</u>
R_I	radius of Region I	60 cm
R_{II}	total reactor radius	90 cm
H_I	height of Region I	160 cm
H_{II}	total reactor height	220 cm
v	neutron speed	4.8×10^7 cm/sec
D_I	core neutron diffusion coefficient	0.913 cm
D_{II}	reflector neutron diffusion coefficient	1.200 cm
Σ_{α_I}	core neutron absorption cross section	0.01401 cm^{-1}
$\Sigma_{\alpha_{II}}$	reflector neutron absorption cross section	0.0040 cm^{-1}
ν	number of neutrons per fission	2.54
Σ_f^*	critical fission cross section	0.005736 cm^{-1}
β	delayed neutron fraction; dollar reactivity	0.00642
ϵ	fission energy	7.652×10^{-12} cal/fission
$\bar{h}(\frac{A}{V})$	modified convection heat transfer coefficient	$0.0632 \text{ cal}/(\text{cm}^2 \text{ sec } {}^\circ\text{C})$
α	temperature coefficient	$-0.004/{}^\circ\text{C}$
$\bar{\lambda}$	abundance-weighted mean decay constant	0.4350 sec^{-1}

a. top view

b. front view

I - core
II - reflector

Figure 1. Schematic of cylindrical reactor.

$v D \nabla^2 N dV$ = number of neutrons diffusing into dV per unit time at time t

$\Sigma_a v N dV$ = number of neutrons absorbed in dV per unit time at time t

$S(\bar{r}, t) dV$ = number of neutrons produced in dV per unit time at time t

The neutron number density is related to the neutron flux by the expression [4]

$$\phi(\bar{r}, t) = vN(\bar{r}, t) \quad (2)$$

where $\phi(\bar{r}, t)$ is the flux at time t . The neutron diffusion equation in terms of the flux is depicted by

$$\frac{1}{v} \frac{\partial \phi(\bar{r}, t)}{\partial t} = D \nabla^2 \phi - \Sigma_a \phi + S(\bar{r}, t) \quad (3)$$

B. PROMPT AND DELAYED NEUTRONS

The source or production term in equation (3) is composed of the contributions of the prompt and delayed neutrons. The majority of the fission neutrons are prompt neutrons that appear almost instantaneously (within 10^{-7} second) on fission. Assuming a fast neutron non-leakage probability of unity, the prompt neutron source is described by

$$S_p(\bar{r}, t) = (1-\beta) K_\infty(\bar{r}, t) \phi(\bar{r}, t) \quad (4)$$

where

$K_\infty(\bar{r}, t)$ = infinite medium multiplication factor

β = total fraction of delayed neutrons

The fraction of delayed neutrons is very small (note that $\beta = 0.00642$ from Table I). However, they have a very significant effect on the reactivity because their mean lifetimes are long. Without delayed neutrons, reactor control would not be possible. These delayed neutrons are born in the decay by neutron emission of nuclei produced following the β -decay of certain fission fragments. For example, the β -decay of the fission fragment Br^{87} leads to Kr^{86} plus a neutron. Nuclei such as Br^{87} whose production in fission eventually leads to the emission of a delayed neutron are called delayed neutron precursors [4].

There are six main groups of delayed neutrons. Each group is classified according to its decay constant. The delayed neutron source term is portrayed by

$$S_d(\bar{r}, t) = \sum_{i=1}^6 c_i(\bar{r}, t) \lambda_i \quad (5)$$

where

λ_i = decay constant of the i^{th} group

$c_i(\bar{r}, t)$ = density of the i^{th} precursor

Assuming that the fission fragments do not migrate appreciable distances and assuming a non-circulating fuel reactor [3], the precursor density is delineated by

$$\frac{\partial c_i(\bar{r}, t)}{\partial t} = \beta_i K_\infty \sum_a \phi - \lambda_i c_i \quad (6)$$

where β_i is the fraction of delayed neutrons of the i^{th}

group. The solution to the precursor equation is in terms of a time integral expressed by

$$c_i(\bar{r}, t) = \beta_i \sum_a \int_0^t e^{-\lambda_i(t-t')} K_\infty(\bar{r}, t') \phi(\bar{r}, t') dt' \quad (7)$$

Inserting equation (7) in equation (5) yields the delayed neutron production term as

$$s_d(\bar{r}, t) = \sum_{i=1}^6 \beta_i \lambda_i \sum_a \int_0^t e^{-\lambda_i(t-t')} K_\infty(\bar{r}, t') \phi(\bar{r}, t') dt' \quad (8)$$

For convenience the six main groups of delayed neutrons were considered as one group. This was accomplished by using the abundance-weighted mean decay constant defined by

$$\bar{\lambda} = \frac{1}{\beta} \sum_{i=1}^6 \beta_i \lambda_i \quad (9)$$

This is a reasonable approximation since many of the important phenomena of nuclear reactor dynamics can be characterized satisfactorily by combining all the emitters or precursors into one, two, or, at most, three effective groups [3]. Replacing λ_i with the abundance-weighted mean decay constant showed the delayed neutron source term to be

$$s_d(\bar{r}, t) = \beta \bar{\lambda} \sum_a \int_0^t e^{-\bar{\lambda}(t-t')} K_\infty(\bar{r}, t') \phi(\bar{r}, t') dt' \quad (10)$$

C. DOPPLER EFFECT AND TEMPERATURE FEEDBACK MODEL

The Doppler effect in fast reactors is due to the temperature broadening of many closely spaced high-energy resonances in both the fission and parasitic-absorption cross-sections.

These resonances basically mean that as the temperature increases, the number of neutrons that are absorbed increases and, similarly, the number of fission events increases.

These nonproductive and productive processes compete in a complicated manner, and the net effect may be either an increase or decrease in reactivity [3]. For most fast reactors, the effect is negative, and it will be so assumed in this work.

The reactivity change with respect to the fuel temperature change is modeled by [2]

$$\frac{dK_{\infty}}{dT} = aT^{-3/2} + bT^{-1} + cT^{(m-1)} \quad (11)$$

where a , b , and c are parameters determined from experimental or neutronic calculations, m is an integer, and T is the current fuel temperature. For most fast reactor cores (ceramic-fueled cores), TdK_{∞}/dT is very close to being constant over a wide range of temperatures. Therefore, it is assumed that a and c are zero and the Doppler coefficient is expressed by

$$b = T \frac{dK_{\infty}}{dT} \quad (12)$$

The following initial conditions were used:

$$K_{\infty}(\bar{r}, 0^+) = K_{\infty}^o \quad (12a)$$

$$T(\bar{r}, 0^+) = T_0 \quad (12b)$$

The reactivity model is then expressed by

$$K_{\infty}(\bar{r}, t) = K_{\infty}^{\circ} + b \ln \left(\frac{T}{T_0} \right) \quad (13)$$

where

- K_{∞}° = multiplication factor at steady-state
- v = number of neutrons produced per fission
- T_0 = original fuel temperatures
- b = Doppler constant

The definition of K_{∞}° is

$$K_{\infty}^{\circ} = \frac{v \Sigma_f^*}{\Sigma_a^c} \quad (14)$$

where

- Σ_f^* = critical fission cross-section
- Σ_a^c = macroscopic absorption cross-section of the core

The rise in fuel temperature is depicted by

$$\theta(\bar{r}, t) = T(\bar{r}, t) - T_0(\bar{r}) \quad (15)$$

This is also described by the integral [5]

$$\theta(\bar{r}, t) = \int_0^t f(t-t') \psi(\bar{r}, t') dt' \quad (16)$$

where $f(t-t')$ is the feedback kernel and is dependent upon the type of temperature feedback model used. $\psi(\bar{r}, t)$ is the

rise in neutron flux above the steady state and is expressed by

$$\psi(\bar{r}, t) = \phi(\bar{r}, t) - \phi_0(r) \quad (17)$$

where $\phi_0(r)$ is the neutron flux at steady state.

There are three types of temperature feedback models that can be considered here. The first is known as "Newton's feedback" which determines the reactor temperature by Newton's law of cooling. The second temperature feedback model is called the adiabatic feedback model. This represents the temperature for the loss of coolant case. The third model is the prompt temperature feedback model in which the fuel temperature follows the behavior of the neutron flux without delay [5,6]. The prompt feedback model was employed in this analysis. The feedback kernel for this temperature feedback model is

$$f(t-t') = \frac{K}{\gamma} \delta(t-t') \quad (18)$$

where K is an energy production operator with units of $^{\circ}\text{C}$ per unit flux and γ , a dimensionless quantity, is related to the mean time for heat transfer to coolant.

Inserting equation (18) in equation (16) and performing the integration produced a rise in temperature of

$$\theta(\bar{r}, t) = \frac{K}{\gamma} \psi(\bar{r}, t) \quad (19)$$

From equation (19) the temperature of the fuel is

$$T(\bar{r}, t) = \frac{K}{\gamma} \psi(\bar{r}, t) + T_0(\bar{r}) \quad (20)$$

The ratio of the current temperature to the steady-state temperature is therefore

$$\frac{T}{T_0} = \frac{K}{\gamma T_0} \psi + 1 \quad (21)$$

In this work T_0 was considered to be constant throughout the core. Incorporating equation (21) into equation (13) gave the reactivity model of

$$K_\infty(\bar{r}, t) = K_\infty^\circ + b \ln \left[\frac{K}{\gamma T_0} \psi(\bar{r}, t) + 1 \right] \quad (22)$$

D. FIELD EQUATIONS

Before establishing the field equations it is desirable to express equation (3) in terms of the rise in flux. Using equation (17) in equation (3) and grouping terms yielded the following diffusion equation:

$$\begin{aligned} \frac{1}{v} \frac{\partial \psi}{\partial t} &= [D \nabla^2 \psi - \sum_a \psi + (1-\beta) K_\infty \sum_a \psi + \beta \bar{\lambda} \sum_a \int_0^t e^{-\bar{\lambda}(t-t')} K_\infty \psi dt'] \\ &+ [D \nabla^2 \phi_0 - \sum_a \phi_0 + (1-\beta) K_\infty \sum_a \phi_0 + \beta \bar{\lambda} \sum_a \int_0^t e^{-\bar{\lambda}(t-t')} K_\infty \phi_0 dt'] \end{aligned} \quad (23)$$

The second bracketed term in equation (23) is identically equal to zero since it is the steady state portion of the

diffusion equation. The rise in neutron flux above its steady state value is therefore expressed, for the core, by

$$\frac{1}{v} \frac{\partial \psi}{\partial t} = D \nabla^2 \psi - \sum_a \psi + (1-\beta) K_\infty \sum_a \psi + \beta \bar{\lambda} \sum_a \int_0^t e^{-\bar{\lambda}(t-t')} K_\infty \psi dt' \quad (24)$$

and, for the reflector region, by

$$\frac{1}{v} \frac{\partial \psi}{\partial t} = D \nabla^2 \psi - \sum_a \psi \quad (25)$$

Inserting the reactivity model into equation (24) yielded

$$\begin{aligned} \frac{1}{v} \frac{\partial \psi}{\partial t} &= D \nabla^2 \psi - \sum_a \psi + (1-\beta) \sum_a K_\infty^\circ \psi \\ &+ (1-\beta)b \sum_a \left\{ \ln \left[\frac{K_\infty \psi}{\gamma T_0} + 1 \right] \right\} \psi + \beta \bar{\lambda} K_\infty^\circ \int_0^t e^{-\bar{\lambda}(t-t')} \psi dt' \\ &+ \beta \bar{\lambda} \sum_a b \left\{ \int_0^t e^{-\bar{\lambda}(t-t')} \left[\ln \left(\frac{K_\infty \psi}{\gamma T_0} + 1 \right) \right] \psi dt' \right\} \end{aligned} \quad (26)$$

For the reflector, the last four terms of equation (26) are zero. The effects of the temperature on the delayed neutrons were neglected in this work. The field equations can now be expressed, for the core, as

$$\begin{aligned} \frac{\partial \psi}{\partial t} - v D \nabla^2 \psi + [v \sum_a - v(1-\beta) v \sum_f] \psi \\ + [- (1-\beta) v \sum_a b] \left[\ln \left(\frac{K_\infty \psi}{\gamma T_0} + 1 \right) \right] \psi \\ + [- \beta \bar{\lambda} v \sum_f v] \left[\int_0^t e^{-\bar{\lambda}(t-t')} \psi dt' \right] = 0 \end{aligned} \quad (27)$$

and, for the reflector, as

$$\frac{\partial \psi}{\partial t} - v D \nabla^2 \psi + v \sum_a \psi = 0 \quad (28)$$

The non-linear terms of the core field equation will be linearized accordingly. In more compact form, equations (27) and (28) became

$$\frac{\partial \psi}{\partial t} - c_1 \nabla^2 \psi + c_2 \psi + c_4 [\ln(\frac{K_\psi}{Y_{T_0}} + 1)] \psi + c_5 \left[\int_0^t e^{-\bar{\lambda}(t-t')} \psi dt' \right] = 0 \quad (29)$$

and

$$\frac{\partial \psi}{\partial t} - c_1 \nabla^2 \psi + c_2 \psi = 0 \quad (30)$$

where the meanings of the coefficients c_1 , c_2 , etc., are obvious for the core and reflector.

Equations (29) and (30) were subjected to the following conditions:

boundary condition:

$$\psi_R(\bar{r}_B, t) = 0 \quad (31)$$

where \bar{r}_B are coordinates of points on the outer surface of the reflector and the subscript R refers to the reflector continuity of flux:

$$\psi_R(\bar{r}, t) = \psi_c(\bar{r}_I, t) \quad (32)$$

where \bar{r}_I are coordinates of points on the core-reflector interface and the subscript c refers to the core.

III. FINITE ELEMENT

A. INTRODUCTION

The application of the finite elements of nonlinear continua has been mostly in the field of solid mechanics. Prior work [1] using the finite elements of nonlinear continua on a nonlinear reactor dynamics problem has been successful. The FEM in this work was utilized to reduce a nonlinear partial differential equation of the nuclear reactor to a system of nonlinear ordinary differential equations in time. The time integration was accomplished by using a computer program for the numerical solution of stiff differential equations developed by Franke [7]. In order to minimize computer storage requirements, an optimum compacting scheme (OCS), described by Ref. 8, was adopted.

The finite element models of operator equations are generally classified into three categories: a) the variational finite element models such as the Ritz method, b) the weighted residuals method such as the method of Galerkin, and c) the direct finite element models which are not based on functional minimization. From experience in structural mechanics, the most effective method for generating acceptable finite element models of nonlinear equations is the Galerkin method [1]. This work adopted the method of Galerkin in a finite element approximation over the spatial domain of the field equations.

B. THE METHOD OF GALERKIN

The Galerkin method is a special case of the method of weighted residuals. It involves a rational choice of weighting function that is consistent with the type of finite element approximation considered. Indeed, the weighting functions chosen are the basis or shape functions employed in the finite element approximation. There are two favorable characteristics of the Galerkin method which makes it attractive. The first attribute is its amenability to integration by parts. This supplied the freedom of using a lower order finite element than might be otherwise possible. The second favorable characteristic of the Galerkin method is that the symmetric operators in the field equations transform into symmetric matrix operators. Both these attributes are attractive for computational purposes.

Consider the initial-boundary-value problem

$$\frac{\partial \psi}{\partial t} = \mathcal{L}\psi - f(\bar{r}, t) \quad (33)$$

where \mathcal{L} contains the nonlinear operators. According to the spatial finite element discretization, the solution of equation (33) is in the form of an union of an \bar{N} -term approximation given by

$$\psi(\bar{r}, t) \approx \tilde{\psi}(\bar{r}, t) = \bigsqcup_{J=1}^{\bar{N}} \psi_J(t) G_J(\bar{r}) , \quad J=1, 2, \dots, \bar{N} \quad (34)$$

where \bar{N} is the number of system degrees of freedom (i.e., number of coordinates), and $G_J(\bar{r})$ are the system or global basis functions which span the space of the approximate

solution $\tilde{\psi}(\bar{r},t)$ [1]. The Einstein summation is used. The global basic functions are "pyramid functions", each of which has a prescribed functional description over a sub-domain of the system and is zero elsewhere [9]. The unknown coordinate functions $\psi_j(t)$ are the time-dependent magnitudes of the approximated flux $\tilde{\psi}(\bar{r},t)$ and/or its derivatives at discrete nodal points [10].

The residual function, $R(\bar{r},t)$, is defined such that it is identical to zero when $\tilde{\psi}(\bar{r},t)$ is equal to the exact solution. The residual function is expressed by

$$R(\bar{r},t) = \frac{\partial \tilde{\psi}}{\partial t} - \mathcal{L}\tilde{\psi} - f \quad (35)$$

The Galerkin orthogonality condition (using the basis functions as weight functions), when applied to the residual function, requires that

$$\int_{Vol} G_I R(\bar{r},t) dVol = 0 , \quad I=1,2,\dots,N \quad (36)$$

From the field equations, the residual function for the core is

$$R(\bar{r},t) = \frac{\partial \tilde{\psi}}{\partial t} - c_1 \nabla^2 \tilde{\psi} + c_2 \tilde{\psi} + c_4 [\ln(\frac{K\tilde{\psi}}{\gamma T_0} + 1)] \tilde{\psi} \\ + c_5 \left[\int_0^t e^{-\lambda(t-t')} \tilde{\psi} dt' \right] \quad (37)$$

and for the reflector

$$R(\bar{r},t) = \frac{\partial \tilde{\psi}}{\partial t} - c_1 \nabla^2 \tilde{\psi} + c_2 \tilde{\psi} \quad (38)$$

Using equation (34) and applying Galerkin's orthogonality condition produced a core equation of

$$\begin{aligned}
 & \int_{Vol} G_I \{ G_J \dot{\psi}_J(t) - \nabla^2 G_J (c_1 \cdot \psi)_J + G_J (c_2 \cdot \psi)_J \\
 & + [\ln(\frac{K}{\gamma T_0}) G_K \psi_K + 1] G_J (c_4 \cdot \psi)_J \\
 & + [\int_0^t e^{-\bar{\lambda}(t-t')} (c_5 \cdot \psi)_J dt'] G_J \} = 0 \quad (39)
 \end{aligned}$$

where $I = 1, 2, \dots, \bar{N}$

$J = 1, 2, \dots, \bar{N}$

$K = 1, 2, \dots, \bar{N}$

The reflector has a similar equation without the nonlinearity and is expressed by

$$\int_{Vol} G_I \{ G_J \dot{\psi}_J(t) - \nabla^2 G_J (c_1 \cdot \psi)_J + G_J (c_2 \cdot \psi)_J \} dVol = 0 \quad (40)$$

C. THE ELEMENT

A three-dimensional quadratic isoparametric element was employed in this work. The parent element is a triangular prism or solid wedge with straight sides. The element shape functions are expressed in terms of area coordinates in the plane of the triangle and by an isoparametric coordinate

along the prism axis. Figure 2 shows the parent element. This element was chosen because of the ease with which it fits the cylindrical structure when it is transformed into a curved element. This type of element has been used before as filler elements [11].

The area coordinates are defined by area ratios. Consider the triangle shown in figure 3. An arbitrary point P within the triangle defines three subareas designated by A_1 , A_2 , and A_3 . The ratio of each of the subareas to the total area is known as an area coordinate. In equation form, the area coordinates are

$$L_1 = A_1 / A \quad (41a)$$

$$L_2 = A_2 / A \quad (41b)$$

$$L_3 = A_3 / A \quad (41c)$$

where A is total area of the triangle. L_1 , L_2 , and L_3 are the natural coordinates for a triangle. The requirement that the sum of the subareas be equal to the total area is obviously satisfied by the identity

$$L_1 + L_2 + L_3 = 1 \quad (42)$$

In the plane of the triangle, only two of the area coordinates are independent.

The isoparametric coordinates are best visualized by considering the rectangular prism shown in figure 4. Isoparametric coordinates are normalized coordinates such that their values on the faces of the rectangle are ± 1 . The ξ axes are in general not orthogonal. They are orthogonal

Figure 2. Quadratic triangular prism parent element

Figure 3. Definition of area coordinates

Figure 4. Isoparametric coordinates

only in the special case of a rectangular prism element [12]. The element basis functions use the ζ coordinate in the prism axis and the L_1 , L_2 , and L_3 coordinates in the plane of the triangle.

The parent element, as shown in figure 2, has 15 local nodal points around its periphery. As such, there are 15 basis functions which are given below [11]:

Corner nodes: (nodes 1, 3, 5, 10, 12, 14)

$$\begin{aligned}N_1 &= \frac{1}{2} L_1 (2L_1 - 1)(1 + \zeta) - \frac{1}{2} L_1 (1 - \zeta^2) \\N_3 &= \frac{1}{2} L_2 (2L_2 - 1)(1 + \zeta) - \frac{1}{2} L_2 (1 - \zeta^2) \\N_5 &= \frac{1}{2} L_3 (2L_3 - 1)(1 + \zeta) - \frac{1}{2} L_3 (1 - \zeta^2) \\N_{10} &= \frac{1}{2} L_1 (2L_1 - 1)(1 - \zeta) - \frac{1}{2} L_1 (1 - \zeta^2) \\N_{12} &= \frac{1}{2} L_2 (2L_2 - 1)(1 - \zeta) - \frac{1}{2} L_2 (1 - \zeta^2) \\N_{14} &= \frac{1}{2} L_3 (2L_3 - 1)(1 - \zeta) - \frac{1}{2} L_3 (1 - \zeta^2)\end{aligned}$$

Midside nodes of rectangles: (nodes 7, 8, 9)

$$\begin{aligned}N_7 &= L_1 (1 - \zeta^2) \\N_8 &= L_2 (1 - \zeta^2) \\N_9 &= L_3 (1 - \zeta^2)\end{aligned}$$

Midside nodes of triangles: (nodes 2, 4, 6, 11, 13, 15)

$$\begin{aligned}N_2 &= 2L_1 L_2 (1 + \zeta) \\N_4 &= 2L_2 L_3 (1 + \zeta) \\N_6 &= 2L_3 L_1 (1 + \zeta) \\N_{11} &= 2L_1 L_2 (1 - \zeta) \\N_{13} &= 2L_2 L_3 (1 - \zeta) \\N_{15} &= 2L_3 L_1 (1 - \zeta)\end{aligned}$$

The coordinates of each local node, in terms of L_1 , L_2 , L_3 , and ξ are listed in table II. These element basis functions $\{N\}$ define the geometry of the element. Note that they satisfy the relationship

$$N_i = \begin{cases} 1, & \text{at node } i \\ 0, & \text{at other nodes} \end{cases} \quad (43)$$

On the element level, the variation of the unknown function ψ is approximated by

$$\tilde{\psi}^e = \langle N' \rangle \{ \psi \}^e \quad (44)$$

where $\langle N' \rangle$ = row vector of element shape functions

$\{ \psi \}^e$ = column vector of time-dependent nodal values of $\tilde{\psi}^e$

To satisfy continuity requirements, the shape functions $\langle N' \rangle$ have to be such that the continuity of the unknown function ψ is preserved in the parent coordinates [11].

The shape functions $\{N\}$ which characterize the element geometry and the shape functions $\langle N' \rangle$ which describe the unknown function do not necessarily have to be the same. There is no requirement that the nodal values be associated with the same nodes which were used to define the element geometry, though in practice it is often the case. Consider for example, the illustrations in figure 5. If the nodes defining the element geometry and the nodes defining the

TABLE II

Coordinates of Local Nodal Points

Local Node	L_1	L_2	L_3	5
1	1	0	0	1
2	$\frac{1}{2}$	$\frac{1}{2}$	0	1
3	0	1	0	1
4	0	$\frac{1}{2}$	$\frac{1}{2}$	1
5	0	0	1	1
6	$\frac{1}{2}$	0	$\frac{1}{2}$	1
7	1	0	0	0
8	0	1	0	0
9	0	0	1	0
10	1	0	0	-1
11	$\frac{1}{2}$	$\frac{1}{2}$	0	-1
12	0	1	0	-1
13	0	$\frac{1}{2}$	$\frac{1}{2}$	-1
14	0	0	1	-1
15	$\frac{1}{2}$	0	$\frac{1}{2}$	-1

(a) Isoparametric

(b) Super-parametric

(c) Sub-parametric

- - geometry nodes
- - variable function nodes

Figure 5. Element classification

unknown function are identical, the element is known as an isoparametric element. This means that the shape functions describing the geometry and the shape functions describing the unknown function ψ are equal, or

$$\langle N' \rangle = \langle N \rangle \quad (45)$$

If there are more nodes defining the geometry than nodes defining the variable function, the element is called a superparametric element. Using more nodal points to define the unknown function than to describe the geometry of the element results in a subparametric element [11]. This work utilized the isoparametric element classification.

D. DIVISION OF THE SYSTEM INTO ELEMENTS

In three-dimensional space, the division of the system into discrete elements is difficult to visualize. It is virtually impossible to show every nodal point of the system in one schematic. To present a clear view of the discretized domain, a "layer" approach was adopted. The first finite element grid or mesh employed here consisted of 128 elements. Under this grid (mesh I), the reactor was divided into four layers as shown in figure 6. Each layer was composed of 32 elements. The first and fourth layers were each 30 cm in height and each contained entirely reflector elements. The second and third layers were each 80 cm in height and together they encompassed the entire core plus the remaining reflector elements. Each layer, in turn, was partitioned into three horizontal (xy) planes. The top plane included all the global

I - core II - reflector

Figure 6. Layers of mesh I

or system nodes corresponding to local or element nodes 1 through 6. The middle plane contained all the system nodes corresponding to the local nodes 7, 8, and 9. System nodes corresponding to element nodal points 10 through 15 comprised the bottom plane. To fix ideas, the three nodal planes of the first layer of mesh I are shown in figures 7, 8, and 9.

In this work there was only one curved side which was in the plane of the triangle, as shown in figure 10. The first, seventh, and tenth element nodes were each arbitrarily assigned to have as an opposite side the curved side of the triangle. The remaining local nodes in each of the respective planes of the element were then numbered consecutively in the counter-clockwise direction.

At this point it is appropriate to define connectivity. The connectivity of an element is a row vector array that relates the local nodes to system nodal points. The connectivity lists the system nodal points that are "connected" to form the element domain in the sequence of local nodal numbering. Thus, the connectivity matrix for mesh I is a matrix of size 128 x 15. To illustrate, the connectivity of element number 106 is

<235, 210, 193, 194, 195, 211, 266, 176, 177, 283, 152, 10, 11, 12, 53>

A second finite element mesh (mesh II) consisting of 192 elements was developed. It contained the same number of elements per layer as mesh I. However, mesh II has six layers. The second and third layers of mesh I were each divided in

Number - element number

Figure 7. Top nodal plane of the first layer of mesh I,
 $z = 110 \text{ cm}$

Number - element number

Figure 8. Middle nodal plane of the first layer of mesh I, $z = 95$ cm

Number - element number

Figure 9. Bottom nodal plane of the first layer of mesh I, $z = 80$ cm

Figure 10. Local nodal numbering of curved elements

half, thus forming the two additional layers of mesh II. The connectivity matrix and the coordinates of each global node for mesh I are given in Appendix A. Appendix B lists the connectivity matrix and nodal coordinates of mesh II. The reader can construct the different layers and elements without much difficulty by using the nodal coordinates and the connectivity matrix. A mesh generator was not utilized in this work.

E. COORDINATE TRANSFORMATION

The use of a quadratic or higher order element permits the transformation or mapping of the straight-sided parent element into an element with curved sides. Distorted or curved elements provide a better fit to curved domains than linear elements, and thus a smaller number of elements is required to represent the structure adequately.

The transformation from cartesian coordinates to curvilinear coordinates can be accomplished by employing a one-to-one correspondence defined by [11]

$$\begin{Bmatrix} x \\ y \\ z \end{Bmatrix} = f \begin{Bmatrix} \xi \\ \eta \\ \zeta \end{Bmatrix} \quad \text{or} \quad f \begin{Bmatrix} L_1 \\ L_2 \\ L_3 \\ \zeta \end{Bmatrix} \quad (46)$$

The element shape functions are utilized to achieve this transformation via the relation

$$\begin{Bmatrix} x \\ y \\ z \end{Bmatrix} = \begin{Bmatrix} \sum_i N_{i1} x_i \\ \sum_i N_{i2} y_i \\ \sum_i N_{i3} z_i \end{Bmatrix}, \quad i=1,2,\dots,n^e \quad (47)$$

where n^e is the number of element nodes, and the element shape functions N_i are in terms of local coordinates. Each set of local coordinates corresponds to only one set of cartesian coordinates.

In performing the transformation, the compatibility requirement must be met. The transformation into the new, curved elements should leave no gaps between adjacent elements. If two adjacent elements are generated from parents in which the element shape functions satisfy continuity requirements, then the curved elements will be contiguous [11]. For the isoparametric element, uniqueness of coordinates ensures compatibility. Continuity is assured when adjacent elements are given the same sets of coordinates at common nodes.

Since the element shape functions are in terms of local coordinates, an element of volume, $dxdydz$, must be transformed into an element of volume expressed in local coordinates. This is achieved through the use of the Jacobian matrix defined below. Using the chain rule, the relationship between ξ, η, ζ and a corresponding set of cartesian coordinates x, y, z is

$$\begin{Bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \\ \frac{\partial N_i}{\partial \zeta} \end{Bmatrix} = \begin{Bmatrix} \frac{\partial x}{\partial \xi}, \frac{\partial y}{\partial \xi}, \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta}, \frac{\partial y}{\partial \eta}, \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta}, \frac{\partial y}{\partial \zeta}, \frac{\partial z}{\partial \zeta} \end{Bmatrix} \begin{Bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \\ \frac{\partial N_i}{\partial z} \end{Bmatrix} \quad (48)$$

The Jacobian matrix [J] is defined as

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial \xi}, \frac{\partial y}{\partial \xi}, \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta}, \frac{\partial y}{\partial \eta}, \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \zeta}, \frac{\partial y}{\partial \zeta}, \frac{\partial z}{\partial \zeta} \end{bmatrix} \quad (49)$$

From equation (47), the Jacobian matrix becomes

$$[J] = \begin{bmatrix} \sum_i \frac{\partial N_i}{\partial \xi} x_i, \sum_i \frac{\partial N_i}{\partial \xi} y_i, \sum_i \frac{\partial N_i}{\partial \xi} z_i \\ \sum_i \frac{\partial N_i}{\partial \eta} x_i, \sum_i \frac{\partial N_i}{\partial \eta} y_i, \sum_i \frac{\partial N_i}{\partial \eta} z_i \\ \sum_i \frac{\partial N_i}{\partial \zeta} x_i, \sum_i \frac{\partial N_i}{\partial \zeta} y_i, \sum_i \frac{\partial N_i}{\partial \zeta} z_i \end{bmatrix} \quad (50)$$

The determinant of the Jacobian is used to transform the volume of element in cartesian coordinates to local coordinates.

For a volume of element [11],

$$dxdydz = \det [J] d\xi d\eta d\zeta \quad (51)$$

Note that the determinant of the Jacobian is a variable for elements of curved geometry. Only in the case of straight-sided elements is the determinant of the Jacobian a constant.

In the plane of the triangle, the area coordinates (L_1, L_2, L_3) number one more than the cartesian coordinates (x, y). Thus, L_3 is defined as a dependent variable. This establishes the origin of the $\xi\eta$ coordinate system at corner point 3, as

illustrated in figure 11. Recall that the ξ axes need not be orthogonal. As such

$$\xi = L_1 \quad (52a)$$

$$\eta = L_2 \quad (52b)$$

Using equation (42),

$$L_3 = 1 - \xi - \eta \quad (52c)$$

Applying the chain rule yields

$$\frac{\partial N_i}{\partial \xi} = \frac{\partial N_i}{\partial L_1} \frac{\partial L_1}{\partial \xi} + \frac{\partial N_i}{\partial L_2} \frac{\partial L_2}{\partial \xi} + \frac{\partial N_i}{\partial L_3} \frac{\partial L_3}{\partial \xi} \quad (53a)$$

$$\frac{\partial N_i}{\partial \eta} = \frac{\partial N_i}{\partial L_1} \frac{\partial L_1}{\partial \eta} + \frac{\partial N_i}{\partial L_2} \frac{\partial L_2}{\partial \eta} + \frac{\partial N_i}{\partial L_3} \frac{\partial L_3}{\partial \eta} \quad (53b)$$

Using equations (52a), (52b), and (52c) in equations (53a) and (53b) gives

$$\frac{\partial N_i}{\partial \xi} = \frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \quad (54a)$$

$$\frac{\partial N_i}{\partial \eta} = \frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \quad (54b)$$

Figure 11. $\eta\xi$ coordinates in a triangle

Now the Jacobian matrix can be evaluated using the shape functions $N_i = N_i(L_1, L_2, L_3, \xi)$. Inserting equations (54a) and (54b) in equation (50) produces

$$[J(L_1, L_2, L_3, \xi)] = \begin{bmatrix} \sum_i \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) x_i, & \sum_i \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) y_i, & \sum_i \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) z_i \\ \sum_i \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) x_i, & \sum_i \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) y_i, & \sum_i \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) z_i \\ \sum_i \left(\frac{\partial N_i}{\partial \xi} \right) x_i, & \sum_i \left(\frac{\partial N_i}{\partial \xi} \right) y_i, & \sum_i \left(\frac{\partial N_i}{\partial \xi} \right) z_i \end{bmatrix} \quad (55)$$

To summarize, suppose it is required to transform the integral

$$I = \int_{Vol} F'(L_1, L_2, L_3, \xi) dx dy dz \quad (56)$$

to an integral entirely in terms of local coordinates. The determinant of equation (55) is then utilized to give

$$I = \int_{-1}^1 \int_0^1 \int_0^{1-L_1} F'(L_1, L_2, L_3, \xi) \det[J(L_1, L_2, L_3, \xi)] dL_1 dL_2 d\xi \quad (57)$$

Equation (56) is now in a form suitable for numerical integration.

The development of coordinate transformation to this point has been under the general assumption that all the sides of the element are curved. In this work, the only

curved side is in the plane of the triangle. The sides of the element along the prism axis are straight. As such, a modified Jacobian matrix can be employed, thereby reducing the number of calculations to be performed. This modified Jacobian is the 2x2 matrix defined by

$$[J^*] = \begin{bmatrix} \sum_i \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) x_i & \sum_i \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) y_i \\ \sum_i \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) x_i & \sum_i \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) y_i \end{bmatrix} \quad (58)$$

Along the prism axis or ζ direction, it can be shown that

$$dz = \frac{h}{2} d\zeta \quad (59)$$

where h = height of the element. The volume relationship is then given by

$$dxdydz = \frac{h}{2} \det[J^*] dL_1 dL_2 d\zeta \quad (60)$$

The integral of equation (56) then assumes the form of

$$I = \frac{h}{2} \int_{-1}^1 \int_0^1 \int_0^1 F'(L_1, L_2, L_3, \zeta) \det[J^*(L_1, L_2, L_3, \zeta)] dL_1 dL_2 d\zeta \quad (61)$$

Equation (61) is the basis of numerical integration applied in this work.

F. CONSTRUCTION OF ELEMENT MATRICES

The system matrix operators can be constructed through the use of the global basis functions G_j or through the

application of the element shape functions. Although the global basis functions were used to demonstrate the method of Galerkin, the construction of the system matrices in this work was achieved through element considerations. The solution of the unknown variable ψ within the element domain was approximated by

$$\tilde{\psi}^e = \sum_{i=1}^{n^e} N_i \psi_i^e(t) , \quad i=1,2,\dots,n^e \quad (62)$$

where n^e is the number of element nodal points, N_i are the element shape functions, and $\psi_i^e(t)$ are the time-dependent nodal magnitudes of $\tilde{\psi}^e$. The element contribution to the system matrix operators is defined by Galerkin's orthogonality condition expressed by

$$\int_{Vol} N_j R^e dVol = 0 , \quad j=1,2,\dots,n^e \quad (63)$$

where R^e is defined by replacing $\tilde{\psi}$ with $\tilde{\psi}^e$ in equations (37) and (38), and the integration is over the element volume. Using equation (62), the element contribution is portrayed for the core by

$$\begin{aligned} & \left[\int_{Vol} N_j N_i dVol \right] \{ \psi_i^e(t) \} - \left[\int_{Vol} N_j \nabla^2 N_i dVol \right] \{ (c1 \cdot \psi^e)_i \} + \left[\int_{Vol} N_j N_i dVol \right] \{ (c2 \cdot \psi^e)_i \} \\ & + \left[\int_{Vol} N_j N_i \ln \left(1 + \frac{K}{\gamma T_0} \sum_k N_k \psi_k^e(t) \right) dVol \right] \{ (c4 \cdot \psi^e)_i \} \\ & + \left[\int_{Vol} N_j N_i dVol \right] \left\{ \int_0^t e^{-\bar{\lambda}(t-t')} (c5 \cdot \psi(t'))_i dt' \right\} = 0 \end{aligned} \quad (64)$$

where $i, j, k = 1, 2, \dots, 15$, and c_1, c_2, \dots , are constants at node i . The bracketed expressions represent square matrices of size 15×15 , and the braced expressions represent column vectors of size 15×1 . For the reflector, the last two terms of equation (64) are zero. Before any operation can be performed on equation (64), the nonlinear terms (last two terms) must be "linearized" and the term with the ∇^2 operator must be integrated by parts.

The nonlinear feedback term, $\ln[1 + \frac{K}{\gamma T_0} \sum_{k=1}^{15} N_k \psi_k^e(t)]$, was linearized by using predicted values of the unknown function at time t . These predicted values come from the time integration scheme by Franke [7]. Basically, the integration scheme utilizes a predictor-corrector method which predicts values of the unknown function at the next time by using the derivatives of the function. Adopting the predicted values ψ_k^P enabled integration over space. The term in equation (64) involving the nonlinear feedback can be written as

$$[\int_{Vol} N_j N_i \ln(1 + \frac{K}{\gamma T_0} (N_1 \psi_1^P + N_2 \psi_2^P + \dots + N_{15} \psi_{15}^P)) dVol] \{(c_4 \cdot \psi_i^e)\}$$

The last term of equation (64) describes the delayed neutron contribution. In general,

$$\begin{aligned} e^{-\bar{\lambda} t_n} \int_0^{t_n} e^{\bar{\lambda} t'} \psi_i^e(t') dt' &= e^{-\bar{\lambda}(t_n - t_{n-1})} \left[e^{-\bar{\lambda} t_{n-1}} \int_0^{t_{n-1}} e^{\bar{\lambda} t'} \psi_i^e(t') dt' \right] \\ &\quad + e^{-\bar{\lambda} t_n} \int_{t_{n-1}}^{t_n} e^{\bar{\lambda} t'} \psi_i^e(t') dt' \end{aligned} \quad (65)$$

where n is number of time steps, t_n is the current time,

and t_{n-1} is the previous time. To approximate the integrals in equation (65), the predicted values ψ_i^P were employed in a simple trapezoidal rule. The trapezoidal rule was believed to be sufficient since very small time steps were utilized in this work. For example, at time t_2 ,

$$(\text{SUM}_i) = (\text{previous SUM}_i) e^{-\bar{\lambda}H} + \frac{H}{2}(e^{\bar{\lambda}H}\psi_i^e(t_1) + \psi_i^P)$$

where

$$H = \text{current time step} = t_2 - t_1$$

$$(\text{SUM}_i) = e^{-\bar{\lambda}t_2} \int_0^{t_2} e^{\bar{\lambda}t'} \psi_i^e(t') dt'$$

$$(\text{previous SUM}_i) = e^{-\bar{\lambda}t_1} \int_0^{t_1} e^{\bar{\lambda}t'} \psi_i^e(t') dt'$$

The previous sum is formed by accumulating the trapezoidal integration of each time step. In general then, for time t_n

$$(\text{SUM}_i) = (\text{previous SUM}_i) e^{-\bar{\lambda}H} + \frac{H}{2}(e^{\bar{\lambda}H}\psi_i^e(t_{n-1}) + \psi_i^P) \quad (66)$$

The delayed neutron term in equation (64) can be expressed as

$$[\int_{\text{Vol}} N_j N_i d\text{Vol}] \{(c5 \cdot \text{SUM})_i\}$$

In order to bring equation (64) to final form, the ∇^2 operator was integrated by parts. Since the flux at the surface of the reactor is zero, integration by parts yields

$$\int_{Vol} N_j \nabla^2 N_i dx dy dz = - \int_{Vol} \left(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} + \frac{\partial N_i}{\partial z} \frac{\partial N_j}{\partial z} \right) dx dy dz \quad (67)$$

In vector notation, equation (67) is expressed as

$$\int_{Vol} N_j \nabla^2 N_i dx dy dz = - \int_{Vol} \begin{pmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \\ \frac{\partial N_i}{\partial z} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial N_j}{\partial x} \\ \frac{\partial N_j}{\partial y} \\ \frac{\partial N_j}{\partial z} \end{pmatrix} dx dy dz \quad (68)$$

Using the chain rule produces

$$\begin{pmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \\ \frac{\partial N_i}{\partial z} \end{pmatrix} = \begin{bmatrix} \frac{\partial L_1}{\partial x}, \frac{\partial L_2}{\partial x}, 0 \\ \frac{\partial L_1}{\partial y}, \frac{\partial L_2}{\partial y}, 0 \\ 0, 0, \frac{\partial \zeta}{\partial z} \end{bmatrix} \begin{pmatrix} \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right) \\ \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right) \\ \left(\frac{\partial N_i}{\partial \zeta} \right) \end{pmatrix} \quad (69)$$

Letting the 3×3 matrix above be $[B']$, the ∇^2 term becomes

$$\begin{aligned} \int_{Vol} N_j \nabla^2 N_i dx dy dz &= \\ - \int_{Vol} &\left\langle \left(\frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3} \right), \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right), \frac{\partial N_i}{\partial \zeta} \right\rangle [B']^T [B'] \begin{pmatrix} \left(\frac{\partial N_j}{\partial L_1} - \frac{\partial N_j}{\partial L_3} \right) \\ \left(\frac{\partial N_j}{\partial L_2} - \frac{\partial N_j}{\partial L_3} \right) \\ \frac{\partial N_j}{\partial \zeta} \end{pmatrix} dx dy dz \end{aligned} \quad (70)$$

where $[B']^T$ is the transpose of $[B']$. By applying the chain rule in equation (47) and using equation (59), it can be shown that for this work

$$[B'] = \begin{bmatrix} \frac{1}{\frac{\partial N_1}{\partial L_1} x_1 + \dots + \frac{\partial N_{15}}{\partial L_1} x_{15}}, \frac{1}{\frac{\partial N_1}{\partial L_2} x_1 + \dots + \frac{\partial N_{15}}{\partial L_2} x_{15}}, 0 \\ \frac{1}{\frac{\partial N_1}{\partial L_1} y_1 + \dots + \frac{\partial N_{15}}{\partial L_1} y_{15}}, \frac{1}{\frac{\partial N_1}{\partial L_2} y_1 + \dots + \frac{\partial N_{15}}{\partial L_2} y_{15}}, 0 \\ 0, 0, \frac{2}{h} \end{bmatrix} \quad (71)$$

$[B']^T$ can be derived from equation (71).

Note from equation (64) that there are three basic element matrices which are defined as follows after applying equation (60):

$$[G_{ji}] = \frac{h}{2} \int_{-1}^1 \int_0^1 \int_0^{1-L_1} N_j N_i \det[J^*] dL_1 dL_2 d\zeta \quad (72)$$

$$[GG_{ji}] = \frac{h}{2} \int_{-1}^1 \int_0^1 \int_0^{1-L_1} \left\langle \frac{\partial N_i}{\partial L_1} - \frac{\partial N_i}{\partial L_3}, \left(\frac{\partial N_i}{\partial L_2} - \frac{\partial N_i}{\partial L_3} \right), \left(\frac{\partial N_i}{\partial \zeta} \right) \right\rangle [B']^T$$

$$[B'] \left\{ \begin{array}{l} \left(\frac{\partial N_j}{\partial L_1} - \frac{\partial N_j}{\partial L_3} \right) \\ \left(\frac{\partial N_j}{\partial L_2} - \frac{\partial N_j}{\partial L_3} \right) \\ \frac{\partial N_j}{\partial \zeta} \end{array} \right\} \det[J^*] dL_1 dL_2 d\zeta \quad (73)$$

$$[GGG_{ji}] = \frac{h}{2} \int_{-1}^1 \int_0^1 \int_0^{1-L_1} N_j N_i \ln \left(1 + \frac{K}{\gamma T_0} (N_1 \psi_1^P + \dots + N_{15} \psi_{15}^P) \right) \det[J^*] dL_1 dL_2 d\zeta \quad (74)$$

Element matrices $[G_{ji}]$ and $[GG_{ji}]$ are independent of time. However, $[GGG_{ji}]$ is time dependent due to the utilization of the predicted values ψ_i^P which changes with time. In terms of these three basic element matrices, equation (64) is

$$[G_{ji}]\{\dot{\psi}_i^e\} + [GG_{ji}]\{c1 \cdot \psi_i^e\}_i + [G_{ji}]\{(c2 \cdot \psi_i^e)_i\} \\ + [GGG_{ji}]\{(c4 \cdot \psi_i^e)_i\} + [G_{ji}]\{(c5 \cdot \text{SUM})_i\} = 0 \quad (75)$$

The last two terms of equation (75) are zero for the reflector.

G. CONSTRUCTION OF THE SYSTEM MATRICES

The 15×15 coefficient element matrices were calculated according to equations (72), (73), and (74); and the results were collected element by element into the corresponding system coefficient matrices. The system coefficient matrix $[\text{BIGG}]$ is developed from $[G_{ji}]$, $[\text{BIGGG}]$ from $[GG_{ji}]$, and $[\text{BIGH}]$ from $[GGG_{ji}]$. $[\text{BIGG}]$ and $[\text{BIGGG}]$ are independent of time and can be constructed once and for all from geometry considerations. $[\text{BIGH}]$ is dependent on both geometry and time due to the time dependence of the predicted flux utilized in the feedback term. Thus, $[\text{BIGH}]$ is recalculated at each time increment.

Non-zero contributions to a global nodal point I come only from adjacent elements sharing that same nodal point I. Thus, the system matrices are sparse and banded. The process of assembling contributions from element matrices

requires the identification of a local nodal point ($i=1, 2, \dots, 15$) with a global nodal point ($I=1, 2, \dots, \text{NUMNP}$, where NUMNP is the total number of system nodes). This correspondence between element and global nodes is accomplished via the connectivity matrix.

The formal treatment of the field equations in terms of the system coefficient matrices is described by the equation

$$[\text{BIGG}] \{\dot{\psi}_I\} + [\text{BIGGG}] \{(c1 \cdot \psi)_I\} + [\text{BIGG}] \{(c2 \cdot \psi)_I\} \\ + [\text{BIGH}] \{(c4 \cdot \psi)_I\} + [\text{BIGG}] \{(c5 \cdot \text{SUM})_I\} = 0 \quad (76)$$

where the system matrices are $\text{NUMNP} \times \text{NUMNP}$ and the column vectors are of length $\text{NUMNP} \times 1$. However, the direct application of equation (76) requires a large amount of computer storage. To take advantage of the sparsity of the system matrices, an optimum compacting scheme described by Ref. 8 was employed.

The concept behind OCS is simply to store only the non-zero terms of a coefficient matrix. OCS requires two integer arrays, say JB and NAME , and a vector of non-zero coefficients of the square system matrix. For purposes of illustration, the square system matrix is called B , and the vector of non-zero coefficients of B is called BB . The i^{th} integer entry in the $\text{NUMNP} \times 1$ JB vector is the number q_i . This number is defined by

$$q_i = 1 + \sum_{j=1}^{i=1} p_j, \quad i=1, 2, \dots, \text{NUMNP} \quad (77)$$

where p_j is the number of terms in the i^{th} equation. In

other words, p_j is the number of nodes that the i^{th} node "sees". JB is therefore a pointer vector of length NUMNP+1 whose i^{th} term locates the initial position in the BB vector of the contributing coefficients to the i^{th} equation. The NAME vector of length $M \times 1$, where $M = \sum_{j=1}^{\text{NUMNP}} p_j$, consists of NUMNP successive vector blocks of variable length p_i , $i=1, 2, \dots, \text{NUMNP}$. The p_i integer numbers in the i^{th} block of NAME list the p_i contributors to the i^{th} equation. The $M \times 1$ BB vector contains the real non-zero coefficients of the $\text{NUMNP} \times \text{NUMNP}$ B matrix, arranged in the same contiguous block arrangement as the NAME vector. The j^{th} term in the i^{th} block or $\text{BB}(JB(I) + J - 1)$ is $B(I, K)$, where $K = \text{NAME}(JB(I) + J - 1)$. To illustrate, consider the grid shown in figure 12. The two array vectors and the coefficient vector matrix of non-zero terms are:

$$JB = <1, 5, 10, 13, 18, 25, 30, 33, 38, 42>$$

$$\text{NAME} = <1, 2, 4, 5 | 2, 3, 1, 6, 5 | \dots | 9, 8, 6, 5>$$

$$\text{BB} = < B_{11}, B_{12}, B_{14}, B_{15} | B_{22}, B_{23}, B_{21}, B_{26}, B_{25} | \dots | B_{99}, B_{98}, B_{96}, B_{95} >$$

In this illustration, $\text{NUMNP} = 9$ and $M = 41$ [8].

In this work, a judicious method of numbering the system nodal points was adopted to further reduce computer storage requirements. Since the surface boundary nodes of the reactor represent zero neutron fluxes, the contributions of these nodes to interior or non-zero nodes can be discarded. Thus, only the interior nodal points need to be considered. These non-zero nodes were numbered first in the finite element mesh

Number - element number

Figure 12. Sample grid used for illustrating OCS

used so that in the OCS, the number of non-zero nodes (NNZ) replaces NUMNP.

The vectors of non-zero coefficients will be designated BIGG, BIGGG and BIGH since the square coefficient matrices described in equation (76) were not utilized. To illustrate the application of OCS in the system, the following sample program is given:

```
DO 450 I=1, NNZ
    JBB = JB(I)
    JE = JB(I+1)-1
    DY(I) = 0.0
    DO 500 J=JBB, JE
        LL = NAME(J)
        DY(I) = DY(I) + BIGG(J)*ψ(LL) + BIGGG(J)*c1(LL)*
            ψ(LL) + BIGG(J)*c2(LL)*ψ(LL) + BIGH(J)*c4(LL)*
            ψ(LL) + BIGG(J)*c5(LL)*SUM(LL)          (78)
500 CONTINUE
450 CONTINUE
```

where

LL = nodal point "seen" by node I

JE-JBB = total number of nodal points that node I "sees"

DY(I) = summation of all contributions to node I and
should sum to zero as stated by the field equa-
tion

The assumption of a homogeneous reflector was relaxed in the application of equation (78). Interface nodes were assigned properties of the core. Therefore, if LL is a reflector

node not on the core reflector interface, the last two terms of equation (78) are nonexistent.

IV. NUMERICAL INTEGRATION

A. LINE AND AREA INTEGRATION

The solution of the element matrix equations was achieved through numerical integration since an exact closed form solution cannot be established. The volume integration was accomplished by using a line integration in the ζ -direction and an area integration in the plane of the triangle. The line integral is described by the Gaussian quadrature formula [12]

$$\int_{-1}^1 f(\zeta) d\zeta \approx \sum_{k=1}^n H_k f(a_k) \quad (79)$$

where n is the number of Gauss integration points

H_k = weighting coefficients

$f(a_k)$ = the function $f(\zeta)$ evaluated at Gauss point a_k

Table III lists a_k , H_k and n [11].

The area integration was achieved by the equation

$$\int_0^1 \int_0^{1-L_1} f(L_1, L_2, L_3) dL_1 dL_2 \approx \sum_{m=1}^{\bar{m}} w_m f(L_1^m, L_2^m, L_3^m) \quad (80)$$

where \bar{m} is the number of area integration points and w_m are the weights. The numerical integration points for the area integration are given in Table IV which was extracted

TABLE III
Abscissae and Weight Coefficients
of the Gaussian Quadrature Formula

$\int_{-1}^1 f(\xi) d\xi = \sum_{k=1}^n H_k f(a_k)$		
$\pm a$	H	
	$n = 2$	
0.57735 02691 89626	1.00000 00000 00000	
	$n = 3$	
0.77459 66692 41483	0.55555 55555 55556	
0.00000 00000 00000	0.88888 88888 88889	
	$n = 4$	
0.86113 63115 94053	0.34785 48451 37454	
0.33998 10435 84856	0.65214 51548 62546	
	$n = 5$	
0.90617 98459 38664	0.23692 68850 56189	
0.53846 93101 05683	0.47862 86704 99366	
0.00000 00000 00000	0.56888 88888 88889	
	$n = 6$	
0.93246 95142 03152	0.17132 44923 79170	
0.66120 93864 66265	0.36076 15730 48139	
0.23861 91860 83197	0.46791 39345 72691	
	$n = 7$	
0.94910 79123 42759	0.12948 49661 68870	
0.74153 11855 99394	0.27970 53914 89277	
0.40584 51513 77397	0.38183 00505 05119	
0.00000 00000 00000	0.41795 91836 73469	
	$n = 8$	
0.96028 98564 97536	0.10122 85362 90376	
0.79666 64774 13627	0.22238 10344 53374	
0.52553 24099 16329	0.31370 66458 77887	
0.18343 46424 95650	0.36268 37833 78362	
	$n = 9$	
0.96816 02395 07626	0.08127 43883 61574	
0.83603 11073 26636	0.18064 81606 54857	
0.61337 14327 00590	0.26061 06964 02935	
0.32425 34234 03809	0.31234 70770 40003	
0.00000 00000 00000	0.33023 93550 01260	
	$n = 10$	
0.97390 65285 17172	0.06667 13443 08688	
0.86506 33666 88985	0.14945 13491 50581	
0.67940 95682 99024	0.21908 63625 15982	
0.43339 53941 29247	0.26926 67193 09996	
0.14887 43389 81631	0.29552 42247 14753	

TABLE IV
Numerical Formulas for Triangles

Order	Fig.	Error	Points	Triangular Co-ordinates	Weights $2W_i$
Linear		$R = O(h^2)$	a	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	1
Quadratic		$R = O(h^3)$	a b c	$\frac{1}{3}, \frac{1}{3}, 0$ $0, \frac{1}{3}, \frac{1}{3}$ $\frac{1}{3}, 0, \frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
Cubic		$R = O(h^4)$	a b c d	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ $\frac{1}{15}, \frac{2}{15}, \frac{1}{15}$ $\frac{2}{15}, \frac{1}{15}, \frac{1}{15}$ $\frac{1}{15}, \frac{1}{15}, \frac{2}{15}$	$-\frac{27}{40}$ $\frac{27}{40}$
Cubic		$R = O(h^4)$	a b c d e f g	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ $\frac{1}{15}, \frac{1}{15}, 0 \}$ $0, \frac{1}{3}, \frac{1}{3} \}$ $\frac{1}{3}, 0, \frac{1}{3} \}$ $1, 0, 0 \}$ $0, 1, 0 \}$ $0, 0, 1 \}$	$\frac{27}{60}$ $\frac{8}{60}$ $\frac{3}{60}$
Quintic		$R = O(h^6)$	a b c d e f g	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ x_1, β_1, β_1 β_1, x_1, β_1 β_1, β_1, x_1 x_2, β_2, β_2 β_2, x_2, β_2 β_2, β_2, x_2	0.225 0.13239415 0.12593918
with					
$x_1 = 0.05971587$					
$\beta_1 = 0.47014206$					
$x_2 = 0.79742699$					
$\beta_2 = 0.10128651$					

from Ref. 11. The volume integration of the function $f(L_1, L_2, L_3, \zeta)$ using numerical integration is therefore

$$\int_{-1}^1 \int_0^1 \int_0^{1-L_1} f(L_1, L_2, L_3, \zeta) dL_1 dL_2 d\zeta \approx \sum_{k=1}^{\bar{n}} w_k \sum_{m=1}^{\bar{m}} w_m f(L_1^m, L_2^m, L_3^m, \zeta^k) \quad (81)$$

where $w_k = H_k$. In the manner of equation (81), the element matrices become

$$[G_{ji}] = \frac{h}{2} \sum_{k=1}^{\bar{n}} w_k \sum_{m=1}^{\bar{m}} w_m N_j(L_1^m, L_2^m, L_3^m, \zeta^k) N_i \det[J^*] \quad (82)$$

$$[GG_{ji}] = \frac{h}{2} \sum_{k=1}^{\bar{n}} w_k \sum_{m=1}^{\bar{m}} w_m F(L_1^m, L_2^m, L_3^m, \zeta^k) \det[J^*] \quad (83)$$

$$[GGG_{ji}] = \frac{h}{2} \sum_{k=1}^{\bar{n}} w_k \sum_{m=1}^{\bar{m}} w_m T(L_1^m, L_2^m, L_3^m, \zeta^k) \det[J^*] \quad (84)$$

where F and T are easily derived from equations (73) and (74), respectively. Note that N_i and $\det[J^*]$ are also evaluated at each integration point. They are not shown as such merely for the sake of convenience in writing the equations.

B. NUMBER OF INTEGRATION POINTS

It is difficult to estimate the number of integration points required for good accuracy due to the complexity of the functions involved. The basic rule that the best number of integration points is found by trial and experience was adopted. For the $[G_{ji}]$ element matrix, the numbers involved

can be approximated. This was done by letting the determinant of the Jacobian equal to twice the area of the curved triangle (checking $\det[J^*]$ at each integration point showed that this assumption was not too unreasonable). With $\det[J^*]$ outside the integration process, $[G_{ji}]$ can be solved in closed form by integrating out ξ from -1 to +1 and then applying the closed form equation [12]

$$\int_{\text{Area}} L_1^{m_1} L_2^{m_2} L_3^{m_3} d(\text{Area}) = 2A \frac{m_1! m_2! m_3!}{(m_1 + m_2 + m_3 + 2)!} \quad (85)$$

where m_1, m_2, m_3 are positive integer exponents and A is the area of the triangle.

Five test points within the 15×15 element matrix were selected, as listed in Table V. The values obtained from the application of equation (85) are also given in Table V. Three sets of area integration points, each with a different number of ξ Gauss points, were used. These three sets of area integration points, given in Table IV, are:

1. cubic order (4 points)
2. cubic order (7 points)
3. quintic order (7 points)

Using each of the three integration points above with different ξ Gauss points in equation (82) produced the results obtained in Table V. From these results, the quintic order area integration points were selected for the element matrix $[G_{ji}]$ with three ξ Gauss points in the prism axes. This set of integration points was also used for $[GGG_{ji}]$.

TABLE V.

Selection of Integration Points for $[G_{ji}]$

ζ points	Area points	$G(1,1)$	$G(2,2)$	$G(1,9)$	$G(6,9)$	$G(9,9)$
13	cubic (4 pts)	1415	5278	-2756	5072	8536
5	"	1817	5278	-3170	5072	10240
7	"	1817	5278	-3170	5072	10240
3	cubic (7 pts)	3248	8247	-3114	4960	10243
5	"	3249	8247	-3114	4960	10240
7	"	3249	8247	-3114	4960	10240
3	quintic (7 pts)	2464	6600	-3144	5020	10240
5	"	2464	6600	-3144	5020	10240
7	"	2464	6600	-3144	5020	10240
Approximated values		2500	6700	-3142	5026	10053

The numbers for the $[GG_{ji}]$ element matrix could not be approximated. The best that could be done was to obtain an idea of the order of magnitude of this element matrix. Towards this end, a linear triangular element was assumed. Using linear approximation, the order of magnitude was found to be about 10^3 . Using the three different area integration points mentioned above with varying ζ Gauss points in equation (83) yielded the results given in Table VI. Further checks on the $[GG_{ji}]$ element matrix showed that the cubic order with four area integration points yielded the desired order of magnitude. Thus, the fourth order cubic with five ζ Gauss points was employed for the $[GG_{ji}]$ element matrix. A note should be mentioned here in regards to the vast difference in results obtained for $[GG_{ji}]$ using different area integration points. Most likely, it was due to the $[B']$ and $[B']^T$ matrices which required the inversion of $\frac{\partial x}{\partial L_1}$, $\frac{\partial x}{\partial L_2}$, etc. Or perhaps it was caused by the nature of the hybrid element used in this work. In any case, further investigation is warranted in this area.

TABLE VI

Selection of Integration Points for $[GG_{ji}]$

<u>s</u> points	Area points	GG(1,9)	GG(3,3)	GG(14,9)	GG(8,8)	GG(15,15)
3	cubic (4 pts)	18.4	170.1	-165	165.9	106.1
5	"	22.0	177.6	-186	195.9	106.1
7	"	22.0	177.6	-186	195.9	106.1
3	cubic (7 pts)	-1.03×10^4	2.11×10^7	1.05×10^7	8.42×10^7	2056
5	"	-1.03×10^4	2.11×10^7	1.05×10^7	8.42×10^7	2056
7	"	-1.03×10^4	2.11×10^7	1.05×10^7	8.41×10^7	2056
3	quintic (7 pts)	-52.6	1.27×10^4	-6.64×10^4	6.84×10^4	1.51×10^5
5	"	-52.6	1.27×10^4	-6.64×10^4	6.84×10^4	1.51×10^5
7	"	-52.6	1.27×10^4	-6.64×10^4	6.84×10^4	1.51×10^5

V. TEST PROBLEMS AND RESULTS

The reactor was subjected to uniform and local perturbations in the form of a ramp input described by

$$\Sigma_f = \Sigma_f^* + \alpha t \quad (86)$$

where α is the change in Σ_f per unit time and Σ_f^* is the critical fission cross-section. Σ_f^* must first be obtained before the perturbations can be applied. This was accomplished by trial and error until a stationary solution was reached. For mesh I, Σ_f^* was found to be 0.0057360 per cm. No attempt was made to find Σ_f^* for mesh II due to time limitations. As such, the test problems outlined below were applied to mesh I. Future work is planned to apply the test problems on mesh II.

The following perturbations were applied:

- Uniform perturbation of 10 dollar of reactivity per second:

$$\Sigma_f(\bar{r}, t) = \Sigma_f^* + \alpha t, \quad \text{in the core}$$

where $\alpha = 0.005893/\text{cm-sec}$

- Local perturbation at the core center of 100 dollar of reactivity per second:

$$\Sigma_f(\bar{r}, t) = \Sigma_f^* + \alpha t \delta(\bar{r}_0), \quad \text{in the core}$$

where \bar{r}_0 is $(0,0,0)$ and $\alpha = 0.015407/\text{cm-sec}$

c) Local, off-center perturbation:

$$\Sigma_f(\bar{r}, t) = \Sigma_f^* + \alpha_i t \delta(\bar{r}_1), \quad i = 1, 2, 3, \text{ in the core}$$

where

$$\bar{r}_1 = (0, 60, 40)$$

$$\alpha_1 = 0.015407/\text{cm-sec} = 100 \text{ dollar per second}$$

$$\alpha_2 = 0.008123/\text{cm-sec} = 50 \text{ dollar per second}$$

$$\alpha_3 = 0.005894/\text{cm-sec} = 10 \text{ dollar per second}$$

Three test points, $(0,0,0)$, $(60,0,0)$, and $(-60,0,80)$, were selected to trace the neutron time history. For cases a) and b), the neutron flux was plotted at each test point during transience. This is shown in figures 13 and 14. Case c) involved three ramp inputs and were conducted for both the linear and nonlinear reactor equations. The linear and nonlinear responses were compared at each test point for each ramp input and are illustrated in figures 15 through 23. The radial and axial flux distributions at time $t = 0.0123$ second were plotted for the steady state and the 100 dollar perturbation case. These are embodied in figures 24 and 25. Finally, a neutron flux early time history between mesh I and mesh II was plotted to check the effect of using a finer element mesh. The result is portrayed in figure 26.

Figures 13 and 14 revealed a clear space dependence of the neutron flux during transience as expected. Figures 15 through 23 demonstrated the effects of temperature feedback

A - neutron flux at test point $(0,0,0)$
 B - neutron flux at test point $(60,0,0)$
 C - neutron flux at test point $(-60,0,80)$

Figure 13. Neutron flux transient history at three test points with a uniform perturbation of 10 dollar of reactivity per second.

Figure 14. Neutron flux transient history at various test points for a local central perturbation of 100 dollar/sec of reactivity.

Figure 15. Linear and nonlinear fluxes at $(0,0,0)$ due to a local perturbation of 100 dollar/sec of reactivity at $(0,60,40)$.

Figure 16. Linear and nonlinear fluxes at (60,0,0) due to a local perturbation of 100 dollar/sec at (0,60,40).

Figure 17. Linear and nonlinear fluxes at (-60,0,80) due to a local perturbation of 100 dollar/sec at (0,60,40).

Figure 18. Linear and nonlinear fluxes at $(0,0,0)$ due to a 50 dollar/sec local perturbation at $(0,60,40)$.

Figure 19. Linear and nonlinear fluxes at (60,0,0)
 due to a 50 dollar/sec local perturbation
 at (0,60,40).

Figure 20. Linear and nonlinear fluxes at (-60,0,80)
 due to a 50 dollar/sec local perturbation
 at (0,60,40).

Figure 21. Linear and nonlinear fluxes at (0,0,0) due to a 10 dollar/sec local perturbation at (0,60,40).

Figure 22. Linear and nonlinear fluxes at (60,0,0) due to a 10 dollar/sec local perturbation at (0,60,40).

Figure 23. Linear and nonlinear fluxes at (-60,0,80)
due to a 10 dollar/sec local perturbation
at (0,60,40).

$x=0, z=0, y=y$

- - point of local perturbation
- A - neutron flux at steady-state
- B - neutron flux under local perturbation

Figure 24. Radial flux distribution for the steady state and 100 dollar/sec local perturbation.

- - point of local perturbation
- A - axial flux distribution during steady state
- B - axial flux distribution during perturbation

Figure 25. Axial flux distribution for the steady state and 100 dollar/sec local perturbation.

Figure 26. Early time history of the neutron flux at core center using mesh I and mesh II.

and delayed neutrons on the flux. To obtain an idea of the difference in magnitude between the linear and nonlinear flux for the 100 dollar local perturbation, at time $t = 10^{-3}$ second, the linear case predicted a neutron flux at the core center of 2.024×10^{12} neutrons per cm^2 per sec. The nonlinear reactor predicted 1.85×10^{10} neutrons per cm^2 per sec. Although the numbers are not sufficiently accurate due to the crudeness of the finite element mesh, the significant difference in the order of magnitude between the linear and nonlinear neutron flux leads to the belief that the three-dimensional finite element model utilized is predicting the correct trend of neutron flux behavior.

The radial flux distribution for the steady state shown in figure 24 portrays the expected flux distribution. The radial flux distributions for the local perturbation case show a skew distribution at the point of perturbation. The axial flux distribution at steady state is very much symmetric about the center. Again, the expected skew at the point of perturbation is there, as shown in figure 25. Figure 26 gives an indication that the Σ_f^* for finer meshes is higher. However, curve B of figure 26 should be extended to longer times to verify this hypothesis. Curve B, as plotted in figure 26, used four hours of computer time employing the H-compiler of the IBM 360/67.

VI. CONCLUSIONS AND RECOMMENDATIONS

The finite element mesh employed here is crude, and, thus, results that were obtained should be considered as positive indicators rather than numerically conclusive facts. The trend of neutron flux behavior is the major thrust of this work. From the results obtained, it is concluded that the expected patterns of neutron behavior as predicted by the three-dimensional finite element model used do occur. These patterns were best demonstrated by the differences between the linear and nonlinear flux responses and by the spatial flux distribution at steady state and during local perturbation. The three-dimensional quadratic finite element model utilized should produce better results by resorting to a finer mesh. The draw-back to a finer mesh, of course, is the significant increase in computer time and storage requirements. Once accurate results are obtained through finer element meshes, comparisons between three- and two-dimensional models can be attempted.

A mesh generator was not developed for this problem. It is recommended that this be done to ease the transition from one mesh to another and to minimize human error. In addition, a similar calculation using a three-dimensional linear element should be performed to corroborate the results obtained here. It should be particularly noted that this type of problem is highly sensitive to the fission cross-section.

In the search for Σ_f^* , it was necessary to adjust Σ_f to the sixth decimal place. There is no exact method of deriving Σ_f^* due to the highly nonlinear aspect of the problem; therefore, trial and error must be used. Finally, the Gaussian quadrature used to determine the element matrices should be investigated. The cause of the differences in values obtained by using different number of integration points should be established. Was it due to the integration points, the coordinate transformation, or the element shape functions? This is an important question upon which future numerical results could be based.

APPENDIX A

MESH I CONNECTIVITY AND COORDINATES

The connectivity matrix for the 128-element mesh is as follows:

ELEMENT NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	3	4	5	6	7	8	9	10	11	12	13	14	14	15
3	3	4	5	6	7	8	9	10	11	12	13	14	15	15	15
4	4	5	6	7	8	9	10	11	12	13	14	15	15	15	15
5	5	6	7	8	9	10	11	12	13	14	15	15	15	15	15
6	6	7	8	9	10	11	12	13	14	15	15	15	15	15	15
7	7	8	9	10	11	12	13	14	15	15	15	15	15	15	15
8	8	9	10	11	12	13	14	15	15	15	15	15	15	15	15
9	9	10	11	12	13	14	15	15	15	15	15	15	15	15	15
10	10	11	12	13	14	15	15	15	15	15	15	15	15	15	15
11	11	12	13	14	15	15	15	15	15	15	15	15	15	15	15
12	12	13	14	15	15	15	15	15	15	15	15	15	15	15	15
13	13	14	15	15	15	15	15	15	15	15	15	15	15	15	15
14	14	15	15	15	15	15	15	15	15	15	15	15	15	15	15
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
16	16	17	18	19	20	21	22	23	24	25	26	27	28	28	29
17	17	18	19	20	21	22	23	24	25	26	27	28	28	28	29
18	18	19	20	21	22	23	24	25	26	27	28	29	29	29	29
19	19	20	21	22	23	24	25	26	27	28	29	29	29	29	29
20	20	21	22	23	24	25	26	27	28	29	29	29	29	29	29
21	21	22	23	24	25	26	27	28	29	29	29	29	29	29	29
22	22	23	24	25	26	27	28	29	29	29	29	29	29	29	29
23	23	24	25	26	27	28	29	29	29	29	29	29	29	29	29
24	24	25	26	27	28	29	29	29	29	29	29	29	29	29	29
25	25	26	27	28	29	29	29	29	29	29	29	29	29	29	29
26	26	27	28	29	29	29	29	29	29	29	29	29	29	29	29
27	27	28	29	29	29	29	29	29	29	29	29	29	29	29	29
28	28	29	29	29	29	29	29	29	29	29	29	29	29	29	29
29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
30	30	31	32	33	34	35	36	37	38	38	38	38	38	38	38
31	31	32	33	34	35	36	37	38	38	38	38	38	38	38	38
32	32	33	34	35	36	37	38	38	38	38	38	38	38	38	38
33	33	34	35	36	37	38	38	38	38	38	38	38	38	38	38
34	34	35	36	37	38	38	38	38	38	38	38	38	38	38	38
35	35	36	37	38	38	38	38	38	38	38	38	38	38	38	38
36	36	37	38	38	38	38	38	38	38	38	38	38	38	38	38
37	37	38	38	38	38	38	38	38	38	38	38	38	38	38	38

The coordinates of the 128-element mesh are as follows:

NODE NUMBER	X	Y	Z
1	0.0	0.0	0.0
2	21.21	30.00	80.00
3	30.00	21.21	80.00
4	-21.21	0.0	80.00
5	21.21	-21.21	80.00
6	-21.21	0.0	80.00
7	0.0	21.21	80.00
8	22.96	55.43	80.00
9	55.43	22.96	80.00
10	60.00	55.43	80.00
11	21.21	60.00	80.00
12	-21.21	60.00	80.00
13	0.0	60.00	80.00
14	22.96	42.43	80.00
15	55.43	22.96	80.00
16	60.00	55.43	80.00
17	21.21	60.00	80.00
18	-21.21	60.00	80.00
19	0.0	60.00	80.00
20	22.96	42.43	80.00
21	55.43	22.96	80.00
22	60.00	55.43	80.00
23	21.21	60.00	80.00
24	-21.21	60.00	80.00
25	0.0	60.00	80.00
26	22.96	42.43	80.00
27	55.43	22.96	80.00
28	60.00	55.43	80.00
29	21.21	60.00	80.00
30	-21.21	60.00	80.00
31	0.0	60.00	80.00
32	22.96	42.43	80.00
33	55.43	22.96	80.00
34	60.00	55.43	80.00
35	21.21	60.00	80.00
36	-21.21	60.00	80.00
37	0.0	60.00	80.00
38	22.96	42.43	80.00
39	55.43	22.96	80.00
40	60.00	55.43	80.00
41	21.21	60.00	80.00
42	-21.21	60.00	80.00
43	0.0	60.00	80.00
44	21.21	60.00	80.00

55	43
57	55.00
62	71.60
53	62.90
38	53.03
100	17.00
101	-13.80
102	-17.00
103	-13.80
104	-17.00
105	-13.80
106	-17.00
107	-13.80
108	-17.00
109	-13.80
110	-17.00
111	-13.80
112	-17.00
113	-13.80
114	-17.00
115	-13.80
116	-17.00
117	-13.80
118	-17.00
119	-13.80
120	-17.00
121	-13.80
122	-17.00
123	-13.80
124	-17.00
125	-13.80
126	-17.00
127	-13.80
128	-17.00
129	-13.80
130	-17.00
131	-13.80
132	-17.00
133	-13.80
134	-17.00
135	-13.80
136	-17.00
137	-13.80
138	-17.00
139	-13.80
140	-17.00
93	-80.00
94	-80.00
95	-80.00
96	-80.00
97	-80.00
98	-80.00
99	-80.00
100	-80.00
101	-80.00
102	-80.00
103	-80.00
104	-80.00
105	-80.00
106	-80.00
107	-80.00
108	-80.00
109	-80.00
110	-80.00
111	-80.00
112	-80.00
113	-80.00
114	-80.00
115	-80.00
116	-80.00
117	-80.00
118	-80.00
119	-80.00
120	-80.00
121	-80.00
122	-80.00
123	-80.00
124	-80.00
125	-80.00
126	-80.00
127	-80.00
128	-80.00
129	-80.00
130	-80.00
131	-80.00
132	-80.00
133	-80.00
134	-80.00
135	-80.00
136	-80.00
137	-80.00
138	-80.00
139	-80.00
140	-80.00

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

382	63	64
383	74	83
384	83	15
385	88	27
386	83	00
387	74	04
388	63	64
389	50	04
390	34	56
391	17	05
392	07	05
393	83	00
394	83	27
395	83	15
396	83	00
397	83	00
398	83	00
399	83	00
400	83	00
401	83	00
402	83	00
403	83	00
404	83	00
405	83	00
406	83	00
407	83	00
408	83	00
409	83	00
410	83	00
411	83	00
412	83	00
413	83	00
414	83	00
415	83	00
416	83	00
417	83	00
418	83	00
419	83	00
420	83	00
421	83	00
422	83	00
423	83	00
424	83	00
425	83	00
426	83	00
427	83	00
428	83	00
381	-80	00
382	-80	00
383	-80	00
384	-80	00
385	-80	00
386	-80	00
387	-80	00
388	-80	00
389	-80	00
390	-80	00
391	-80	00
392	-80	00
393	-80	00
394	-80	00
395	-80	00
396	-80	00
397	-80	00
398	-80	00
399	-80	00
400	-80	00
401	-80	00
402	-80	00
403	-80	00
404	-80	00
405	-80	00
406	-80	00
407	-80	00
408	-80	00
409	-80	00
410	-80	00
411	-80	00
412	-80	00
413	-80	00
414	-80	00
415	-80	00
416	-80	00
417	-80	00
418	-80	00
419	-80	00
420	-80	00
421	-80	00
422	-80	00
423	-80	00
424	-80	00
425	-80	00
426	-80	00
427	-80	00
428	-80	00

477	50.00
478	63.64
479	74.83
480	83.15
481	88.27
482	90.00
483	83.27
484	53.64
485	50.00
486	34.44
487	17.56
488	-17.56
489	-34.44
490	-50.00
491	-63.64
492	-74.83
493	-83.15
494	-90.00
495	-88.27
496	-90.00
497	-88.27
498	-90.00
499	-88.27
500	-83.15
501	-74.83
502	-63.64
503	-50.00
504	-34.44
505	-17.56

APPENDIX B

MESH II CONNECTIVITY AND COORDINATES

The connectivity matrix for the 192-element mesh is as follows:

ELEMENT NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
5	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
6	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
7	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
8	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
9	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
10	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
11	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
12	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
13	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74
14	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
17	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
18	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
19	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
20	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
21	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
22	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
23	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
24	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
25	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
26	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
27	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
28	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
29	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
30	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

263	264
266	267
269	270
272	273
275	276
278	279
281	282
284	285
287	288
290	293
294	296
297	299
299	301
325	327
328	330
331	331
333	333
334	336
459	461
462	463
464	465
466	467
467	468
468	469
469	470
470	472
471	473
472	473
473	475
475	477
476	478
477	479
478	480
479	481
480	482
481	483
482	484
483	485
484	486
485	487
486	488
487	489
488	490
489	491
490	492
491	493
492	494
493	495
494	497
495	499
496	500
497	501
498	502
499	503
500	504
501	505
502	506
503	508
504	510
505	512
506	514
507	516
508	518
509	520
510	522
511	524
512	526
513	528
514	530
515	532
516	534
517	536
518	538
519	540
520	542
521	544
522	546
523	548
524	550
525	552
526	554
527	556
528	558
529	560
530	562
531	564
532	566
533	568
534	570
535	572
536	574
537	576
538	578
539	580
540	582
541	584
542	586
543	588
544	590
545	592
546	594
547	596
548	598
549	600
550	602
551	604
552	606
553	608
554	610
555	612
556	614
557	616
558	618
559	620
560	622
561	624
562	626
563	628
564	630
565	632
566	634
567	636
568	638
569	640
570	642
571	644
572	646
573	648
574	650
575	652
576	654
577	656
578	658
579	660
580	662
581	664
582	666
583	668
584	670
585	672
586	674
587	676
588	678
589	680
590	682
591	684
592	686
593	688
594	690
595	692
596	694
597	696
598	698
599	700
600	702
601	704
602	706
603	708
604	710
605	712
606	714
607	716
608	718
609	720
610	722
611	724
612	726
613	728
614	730
615	732
616	734
617	736
618	738
619	740
620	742
621	744
622	746
623	748
624	750
625	752
626	754
627	756
628	758
629	760
630	762
631	764
632	766
633	768
634	770
635	772
636	774
637	776
638	778
639	780
640	782
641	784
642	786
643	788
644	790
645	792
646	794
647	796
648	798
649	800
650	802
651	804
652	806
653	808
654	810
655	812
656	814
657	816
658	818
659	820
660	822
661	824
662	826
663	828
664	830
665	832
666	834
667	836
668	838
669	840
670	842
671	844
672	846
673	848
674	850
675	852
676	854
677	856
678	858
679	860
680	862
681	864
682	866
683	868
684	870
685	872
686	874
687	876
688	878
689	880
690	882
691	884
692	886
693	888
694	890
695	892
696	894
697	896
698	898
699	900
700	902
701	904
702	906
703	908
704	910
705	912
706	914
707	916
708	918
709	920
710	922
711	924
712	926
713	928
714	930
715	932
716	934
717	936
718	938
719	940
720	942
721	944
722	946
723	948
724	950
725	952
726	954
727	956
728	958
729	960
730	962
731	964
732	966
733	968
734	970
735	972
736	974
737	976
738	978
739	980
740	982
741	984
742	986
743	988
744	990
745	992
746	994
747	996
748	998
749	1000
750	1002
751	1004
752	1006
753	1008
754	1010
755	1012
756	1014
757	1016
758	1018
759	1020
760	1022
761	1024
762	1026
763	1028
764	1030
765	1032
766	1034
767	1036
768	1038
769	1040
770	1042
771	1044
772	1046
773	1048
774	1050
775	1052
776	1054
777	1056
778	1058
779	1060
780	1062
781	1064
782	1066
783	1068
784	1070
785	1072
786	1074
787	1076
788	1078
789	1080
790	1082
791	1084
792	1086
793	1088
794	1090
795	1092
796	1094
797	1096
798	1098
799	1100
800	1102
801	1104
802	1106
803	1108
804	1110
805	1112
806	1114
807	1116
808	1118
809	1120
810	1122
811	1124
812	1126
813	1128
814	1130
815	1132
816	1134
817	1136
818	1138
819	1140
820	1142
821	1144
822	1146
823	1148
824	1150
825	1152
826	1154
827	1156
828	1158
829	1160
830	1162
831	1164
832	1166
833	1168
834	1170
835	1172
836	1174
837	1176
838	1178
839	1180
840	1182
841	1184
842	1186
843	1188
844	1190
845	1192
846	1194
847	1196
848	1198
849	1200
850	1202
851	1204
852	1206
853	1208
854	1210
855	1212
856	1214
857	1216
858	1218
859	1220
860	1222
861	1224
862	1226
863	1228
864	1230
865	1232
866	1234
867	1236
868	1238
869	1240
870	1242
871	1244
872	1246
873	1248
874	1250
875	1252
876	1254
877	1256
878	1258
879	1260
880	1262
881	1264
882	1266
883	1268
884	1270
885	1272
886	1274
887	1276
888	1278
889	1280
890	1282
891	1284
892	1286
893	1288
894	1290
895	1292
896	1294
897	1296
898	1298
899	1300
900	1302
901	1304
902	1306
903	1308
904	1310
905	1312
906	1314
907	1316
908	1318
909	1320
910	1322
911	1324
912	1326
913	1328
914	1330
915	1332
916	1334
917	1336
918	1338
919	1340
920	1342
921	1344
922	1346
923	1348
924	1350
925	1352
926	1354
927	1356
928	1358
929	1360
930	1362
931	1364
932	1366
933	1368
934	1370
935	1372
936	1374
937	1376
938	1378
939	1380
940	1382
941	1384
942	1386
943	1388
944	1390
945	1392
946	1394
947	1396
948	1398
949	1400
950	1402
951	1404
952	1406
953	1408
954	1410
955	1412
956	1414
957	1416
958	1418
959	1420
960	1422
961	1424
962	1426
963	1428
964	1430
965	1432
966	1434
967	1436
968	1438
969	1440
970	1442
971	1444
972	1446
973	1448
974	1450
975	1452
976	1454
977	1456
978	1458
979	1460
980	1462
981	1464
982	1466
983	1468
984	1470
985	1472
986	1474
987	1476
988	1478
989	1480
990	1482
991	1484
992	1486
993	1488
994	1490
995	1492
996	1494
997	1496
998	1498
999	1500
1000	1502
1001	1504
1002	1506
1003	1508
1004	1510
1005	1512
1006	1514
1007	1516
1008	1518
1009	1520
1010	1522
1011	1524
1012	1526
1013	1528
1014	1530
1015	1532
1016	1534
1017	1536
1018	

The coordinates of the 192-element mesh are as follows:

NODE NUMBER	X	Y	Z
1	0.0	0.0	80.00
2	0.0	0.0	80.00
3	0.0	0.0	80.00
4	0.0	0.0	80.00
5	0.0	0.0	80.00
6	0.0	0.0	80.00
7	0.0	0.0	80.00
8	0.0	0.0	80.00
9	0.0	0.0	80.00
10	0.0	0.0	80.00
11	0.0	0.0	80.00
12	0.0	0.0	80.00
13	0.0	0.0	80.00
14	0.0	0.0	80.00
15	0.0	0.0	80.00
16	0.0	0.0	80.00
17	0.0	0.0	80.00
18	0.0	0.0	80.00
19	0.0	0.0	80.00
20	0.0	0.0	80.00
21	0.0	0.0	80.00
22	0.0	0.0	80.00
23	0.0	0.0	80.00
24	0.0	0.0	80.00
25	0.0	0.0	80.00
26	0.0	0.0	60.00

123	-22.96
124	-40.00
125	-40.00
126	-40.00
127	-40.00
128	-40.00
129	-40.00
130	-40.00
131	-40.00
132	-40.00
133	-40.00
134	-40.00
135	-40.00
136	-40.00
137	-40.00
138	-40.00
139	-40.00
140	-40.00
141	-40.00
142	-40.00
143	-40.00
144	-40.00
145	-40.00
146	-40.00
147	-40.00
148	-40.00
149	-40.00
150	-40.00
151	-40.00
152	-40.00
153	-40.00
154	-40.00
155	-40.00
156	-40.00
157	-40.00
158	-40.00
159	-40.00
160	-40.00
161	-40.00
162	-40.00
163	-40.00
164	-40.00
165	-40.00
166	-40.00
167	-40.00
168	-40.00
169	-40.00
170	-40.00

315	
316	-42•43
317	-52•96
318	-22•43
319	-55•03
320	-55•43
321	-42•96
322	-55•43
323	-42•96
324	-55•43
325	-22•96
326	16•80
327	16•03
328	16•80
329	16•00
330	16•80
331	16•00
332	16•80
333	16•00
334	16•80
335	16•00
336	16•80
337	16•00
338	16•80
339	16•00
340	16•80
341	16•00
342	16•80
343	16•00
344	16•80
345	16•00
346	16•80
347	16•00
348	16•80
349	16•00
350	16•80
351	16•00
352	16•80
353	16•00
354	16•80
355	16•00
356	16•80
357	16•00
358	16•80
359	16•00
360	16•80
361	16•00
362	16•80
363	16•00
364	16•80
365	16•00
366	16•80
367	16•00
368	16•80
369	16•00
370	16•80
371	16•00
372	16•80
373	16•00
374	16•80
375	16•00
376	16•80
377	16•00
378	16•80
379	16•00
380	16•80
381	16•00
382	16•80
383	16•00
384	16•80
385	16•00
386	16•80
387	16•00
388	16•80
389	16•00
390	16•80
391	16•00
392	16•80
393	16•00
394	16•80
395	16•00
396	16•80
397	16•00
398	16•80
399	16•00
400	16•80
401	16•00
402	16•80
403	16•00
404	16•80
405	16•00
406	16•80
407	16•00
408	16•80
409	16•00
410	16•80
411	16•00
412	16•80
413	16•00
414	16•80
415	16•00
416	16•80
417	16•00
418	16•80
419	16•00
420	16•80
421	16•00
422	16•80
423	16•00
424	16•80
425	16•00
426	16•80
427	16•00
428	16•80
429	16•00
430	16•80
431	16•00
432	16•80
433	16•00
434	16•80
435	16•00
436	16•80
437	16•00
438	16•80
439	16•00
440	16•80
441	16•00
442	16•80
443	16•00
444	16•80
445	16•00
446	16•80
447	16•00
448	16•80
449	16•00
450	16•80
451	16•00
452	16•80
453	16•00
454	16•80
455	16•00
456	16•80
457	16•00
458	16•80
459	16•00
460	16•80
461	16•00
462	16•80
463	16•00
464	16•80
465	16•00
466	16•80
467	16•00
468	16•80
469	16•00
470	16•80
471	16•00
472	16•80
473	16•00
474	16•80
475	16•00
476	16•80
477	16•00
478	16•80
479	16•00
480	16•80
481	16•00
482	16•80
483	16•00
484	16•80
485	16•00
486	16•80
487	16•00
488	16•80
489	16•00
490	16•80
491	16•00
492	16•80
493	16•00
494	16•80
495	16•00
496	16•80
497	16•00
498	16•80
499	16•00
500	16•80

363	-44.44	15
364	-37.56	.27
365	-17.00	.00
366	-53.44	.15
367	-63.64	.44
368	-83.15	.56
369	-74.83	.00
370	-50.64	.44
371	-34.44	.00
372	-74.44	.56
373	-88.27	.00
374	-83.15	.44
375	-63.64	.00
376	-34.44	.56
377	-88.07	.00
378	-17.00	.44
379	-17.00	.00
380	-34.44	.56
381	-63.64	.00
382	-83.15	.44
383	-90.05	.00
384	-83.15	.44
385	-63.64	.00
386	-34.44	.56
387	-83.15	.44
388	-90.05	.00
389	-34.44	.56
390	-63.64	.00
391	-34.44	.56
392	-83.15	.44
393	-90.05	.00
394	-34.44	.56
395	-63.64	.00
396	-34.44	.56
397	-83.15	.44
398	-90.05	.00
399	-34.44	.56
400	-63.64	.00
401	-34.44	.56
402	-83.15	.44
403	-90.07	.00
404	-34.44	.56
405	-63.64	.00
406	-34.44	.56
407	-83.15	.44
408	-90.07	.00
409	-34.44	.56
410	-63.64	.00

C THIS PROGRAM DERIVES THE NAME VECTOR THROUGH THE USE OF THE
C CONNECTIVITY MATRIX.

```
      INTEGER*2 CONN(JA,NAME,JB)
      DIMENSION CONN(128,15),JA(183),NAME(183,94),NAME(4615),JB(184)

      FORMAT(1615)
      FORMAT(1615)
      FORMAT(/'2X','ELEMENT',1X,'NODE 1',1X,'NODE 2',1X,'NODE 3',1X,
     1 '4',1X,'NODE 5',1X,'NODE 6',1X,'NODE 7',1X,'NODE 8',1X,
     1 'NODE 10',1X,'NODE 11',1X,'NODE 12',1X,'NODE 13',1X,'NODE 14',1X,
     1 '15')
      FORMAT(1615)
      FORMAT(2515)
      FORMAT(0,0)      JA(I) VECTOR
      FORMAT(0,0)      JB(I) VECTOR
      FORMAT(0,0)      NAME(JC) VECTOR
      FORMAT(/'2X',JC=1,110)

      THIS PROGRAM CALCULATES THE NAME ARRAY

      NUMNP=183
      NUMEL=128
      NELDOF=15
      DO 455 I=1,128
      READ(5,150) I,(CONN(I,J),J=1,15)
150  FORMAT(1615)
      WRITE(6,150) I,(CONN(I,J),J=1,15)
      CONTINUE
      DO 40 I=1,NUMNP
      JA(I)=1
40    CONTINUE
      DO 60 I=1,NUMNP
      DO 50 J=1,93
      NAME(I,J)=0
50    CONTINUE
      DO 65 I=1,NUMNP
      NAME(I,1)=I
65    CONTINUE
      DO 100 I=1,NUMEL
      DO 90 J=1,NELDOF
      JJ=CONN(I,J)
      IF(JJ.GT.183) 30 TO 90
      DO 80 K=1,NELDOF
      IF(K.EQ.J) GO TO 80
```



```

KK=CONN(I,K)
IF(KK.GT.183) GO TO 80
JA(JJ)=JA(JJ)+1
DO 70 L=2,JAA
JJL=MAME(JJ,L)
IF(JJL.EQ.KK) JA(JJ)=JA(JJ)-1
IF(JJL.EQ.0) MAME(JJ,JA)=KK
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
      JB(1)=1
JC=0
DO 200 I=1,183
JN=JA(1)
JB(I+1)=JB(I)+JA(I)
JC=JC+JA(I)
CONTINUE
WRITE(6,215)
DO 250 I=1,183
DO AA=JA(1)
JBL=JB(I)
DO 240 J=1,JA
JJ=JBL+J-1
NAME(JJ)=MAME(I,J)
240 CONTINUE
CONTINUE
250 WRITE(6,204)
WRITE(6,205)(JA(I),I=1,183)
WRITE(6,207)
WRITE(6,205)(JB(I),I=1,183)
WRITE(6,208)
WRITE(6,205)(NAME(I),I=1,JC)
STOP
END

```


THIS IS THE MAIN PROGRAM WHICH CALCULATES THE BIGG AND BIGG
 SYSTEM MATRICES BY USING SUBROUTINES FLOWIE AND TANYA. THE SYSTEM
 MATRICES ARE THEN PUT ON TAPE NUMBER NPS182.

```

REAL*8 G,GG,BIGG,BIGG
REAL*8 WL,W$S,CL1,CL2,CL3, FN,DL1,DL2,DL3,DS,DETJ
INTEGER*2 NAME,JAI,NMNP,NUMEL,NELEOF,CONN
COMMON/GTRY2/NAME(4615),JA(183),JB(183),NNZ,JC,NUMNP,NUMEL,NELEOF,
1CONN(128,15)
COMMON/GTRY1/X(505),P(505),Z(505)
COMMON/XDCAL/XX(15),YY(15),ZZ(15),PPSI(15)
COMMON/GMAT/G(15,15)
COMMON/GGMAT/G(15,15)
COMMON/SYSMT1/BIGG(4615)
COMMON/SYSMT2/BIGG(4615)
COMMON/GAJSS/S(7),S(5),S(5),S(5)
1521) DL2(15,21),DL3(15,21),DL3(7),DL2(7),DETJ(21),DL1(1
150 FORMAT(16,15)
160 FORMAT(25,15)
161 FORMAT(8E16.8)
211 FORMAT(12F10.4)
609 FORMAT(20,16)
702 FORMAT(10F8.2)
800 FORMAT(20I4)
952 FORMAT(20I4)
NNZ=183
NUMEL=128
NUMNP=505
JC=4615
DO 455 I=1,NUMEL
NELEOF=15
CONTINUE
READ(5,150) I,(CONN(I,J),J=1,NELEOF)
455 READ(5,952)(JA(I),I=1,NNZ)
READ(5,952)(JB(I),I=1,NNZ)
READ(5,952)(NAE(I),I=1,JC)
READ(5,800)(X(I),I=1,NUMNP)
READ(5,800)(P(I),I=1,NUMNP)
READ(5,800)(Z(I),I=1,NUMNP)
DO 465 I=1,JC
BIGG(I)=0.0
BIGG(I)=0.0
CONTINUE
465 CALL TANYA
CALL FLOWIE
STOP
  
```


END

M-620

C THIS SUBROUTINE EVALUATES THE 66 ELEMENT MATRIX USING 20 POINTS OF
C INTEGRATION. THE 66 ELEMENT MATRIX IS THEN INSERTED INTO THE BIGGG
C SYSTEM MATRIX.

SUBROUTINE TANYA

```
REAL*8 GG,BIGG5
REAL*8 WL,WS,S,CL1,CL2,CL3, FN,DL1,DL2,DL3,DS,DETJ
INTEGER*2 NAME,JA,JB,NNZ,JC,NJMN,P,NUMEL,NELDOF,CONN
COMMON/GTRY2/NAME(8199),JA(299),JB(299),NNZ,JC,NUMNP,NUMEL,NELDOF,
ICONN(19215)
COMMON/GTRY1/X(15),Y(15),Z(15),PSS(15)
COMMON/XOCAL/XX(15),YY(15),ZZ(15)
COMMON/GGMAT/G(1515)
COMMON/SYSUMT2/B16GG(8199)
COMMON/GAUSS7/ML(7),WS(5),S(5),CL1(7),CL2(7),CL3(7),FN(15,21),DL1(1
15,21),DL2(15,21),DL3(15,21),DETJ(21)
WS(1)=0.236926885056189
WS(2)=0.478628670499366
WS(3)=0.5688888888888889
WS(4)=0.4788628670499366
WS(5)=0.236926885056189
SC(1)=0.906179845938664
SC(2)=0.53846931105683
SC(3)=0.0
SC(4)=-.538469310105683
SC(5)=-.906179845938664
WL(1)=-0.281250
WL(2)=0.2604166666666667
WL(3)=0.2604166666666667
WL(4)=0.2604166666666667
CL1(1)=0.3333333333333333
CL1(2)=0.60
CL1(3)=0.20
CL1(4)=0.20
CL2(1)=0.3333333333333333
CL2(2)=0.20
CL2(3)=0.60
CL2(4)=0.20
CL3(1)=0.3333333333333333
CL3(2)=0.20
CL3(3)=0.20
CL3(4)=0.60
DO 80 K=1,5
DO 90 M=1,4
```



```

10   GO TO 60
20   N=M+4
30   GO TO 60
40   N=M+12
50   N=M+16
60   CONTINUE
FN(1,N)= 0.50*CL1(M)*(2.0*CL1(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2)
FN(2,N)= 0.250*CL1(M)*(2.0*CL2(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2)
FN(3,N)= 0.250*CL2(M)*(2.0*CL2(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2)
FN(4,N)= 0.250*CL3(M)*(2.0*CL3(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2)
FN(5,N)= 0.050*CL3(M)*(2.0*CL3(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2)
FN(6,N)= 0.2*0*CL1(M)*CL3(M)*(1.0-S(K))-(1.0-S(K)**2)
FN(7,N)= CL1(M)*(1.0-S(K))**2
FN(8,N)= CL2(M)*(1.0-S(K))**2
FN(9,N)= CL3(M)*(1.0-S(K))**2
FN(10,N)= 0.050*CL1(M)*(2.0*CL1(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2)
FN(11,N)= 0.250*CL1(M)*(2.0*CL2(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2)
FN(12,N)= 0.250*CL2(M)*(2.0*CL2(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2)
FN(13,N)= 0.250*CL3(M)*(2.0*CL3(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2)
FN(14,N)= 0.050*CL3(M)*(2.0*CL3(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2)
FN(15,N)= 0.2*0*CL1(M)*CL3(M)*(1.0-S(K))-(1.0-S(K)**2)
DL1(1,2)= 0.5*CL1(M)*(4.0*CL1(M)-1.0)-(1.0-S(K)**2)
DL1(1,3)= 0.2*0*CL2(M)*(1.0+S(K))-(1.0-S(K))
DL1(1,4)= 0.0*0
DL1(1,5)= 0.0*0
DL1(1,6)= 2.0*CL3(M)*(1.0+S(K))-(1.0-S(K)**2)
DL1(1,7)= (1.0-S(K))**2
DL1(8,N)= 0.0
DL1(9,N)= 0.0
DL1(10,N)= 0.50*((1.0-S(K))*(4.0*CL1(M)-1.0)-(1.0-S(K)**2))
DL1(11,N)= 2.0*CL2(M)*(1.0-S(K))
DL1(12,N)= 0.0
DL1(13,N)= 0.0
DL1(14,N)= 0.0
DL1(15,N)= 2.0*CL3(M)*(1.0-S(K))
DL2(1,N)= 0.0
DL2(2,N)= 2.0*CL1(M)*(1.0+S(K))-(4.0*CL2(M)-1.0)-(1.0-S(K)**2)
DL2(3,N)= 0.50*((1.0+S(K))*(4.0*CL2(M)-1.0)-(1.0-S(K)**2))

```



```

DL2(4,N)=2.*J*CL3(M)*(1.0+S(K))
DL2(5,N)=0.*0
DL2(6,N)=0.*0
DL2(7,N)=0.*0
DL2(8,N)=1.-J-S(K)**2)
DL2(9,N)=0.*0
DL2(10,N)=0.*0
DL2(11,N)=2.*0*CL1(M)*((1.0-S(K))*
DL2(12,N)=0.5*0*((1.0-S(K))*
DL2(13,N)=2.*J*CL3(M)*((1.0-S(K))*
DL2(14,N)=0.*0
DL2(15,N)=0.*0
DL3(1,N)=0.*0
DL3(2,N)=0.*0
DL3(3,N)=0.*0
DL3(4,N)=2.*J*CL2(M)*((1.0+S(K))*
DL3(5,N)=0.5*0*((1.0+S(K))*
DL3(6,N)=0.*0*CL1(M)*((1.0+S(K))*
DL3(7,N)=0.*0
DL3(8,N)=0.*0
DL3(9,N)=1.-J-S(K)**2)
DL3(10,N)=0.*0
DL3(11,N)=0.*0
DL3(12,N)=0.*0
DL3(13,N)=2.*0*CL2(M)*((1.0-S(K))*
DL3(14,N)=0.*5*0*((1.0-S(K))*
DL3(15,N)=2.*0*CL1(M)*((1.0-S(K))*
DS(1,N)=0.*50*(2.*0*CL1(M)*CL2(M)**
DS(2,N)=0.*50*(2.*0*CL2(M)*CL1(M)*)+CL1(M)*S(K)
DS(3,N)=0.*50*(2.*0*CL2(M)*CL2(M)*)+CL2(M)*S(K)
DS(4,N)=0.*50*(2.*0*CL3(M)*CL3(M)*)+CL3(M)*S(K)
DS(5,N)=0.*50*(2.*0*CL3(M)*CL3(M)*)+CL3(M)*S(K)
DS(6,N)=2.*0*CL1(M)*CL3(M)
DS(7,N)=2.*0*CL1(M)*S(K)
DS(8,N)=2.*0*CL2(M)*S(K)
DS(9,N)=2.*0*CL3(M)*S(K)
DS(10,N)=-0.50*(2.*0*CL1(M)*CL2(M)*)+CL1(M)*S(K)
DS(11,N)=-2.*0*CL1(M)*CL2(M)
DS(12,N)=-0.50*(2.*0*CL2(M)*CL1(M)*)+CL2(M)*S(K)
DS(13,N)=-2.*0*CL2(M)*CL3(M)
DS(14,N)=-0.50*(2.*0*CL3(M)*CL1(M)*)+CL3(M)*S(K)
DS(15,N)=-2.*0*CL1(M)*CL3(M)
90 CONTINUE
80 DO 510 L=1,NUMEL
      DO 475 I=1,NELDOF
        DO 470 J=1,NELDOF
          G6(I,J)=0.0

```



```

470 CONTINUE
DO 480 JJ=1,NELDOF
NN=CONN(L,JJ)
XX(JJ)=X(NN)
YY(JJ)=P(NN)
ZZ(JJ)=Z(NN)
CONTINUE
A5=2.0/(ZZ(1)-ZZ(15))
DETJJ=0
DET200 K=1,5
DETJ1=0
DO 210 M=1,4
IF(K*EQ.1) GO TO 11
IF(K*EQ.2) GO TO 21
IF(K*EQ.3) GO TO 31
IF(K*EQ.4) GO TO 41
IF(K*EQ.5) GO TO 51
11 N=M
GO TO 61
21 N=M+4
GO TO 61
31 N=M+8
GO TO 61
41 N=M+12
GO TO 61
51 N=M+16
CONTINUE
T1=DL1(1,N)*XX(1)+DL1(2,N)*YY(2)-DL3(4,N)*XX(4)-DL3(5,N)*XX(5)
T2=DL1(7,N)*XX(7)-DL3(9,N)*XX(9)+DL1(10,N)*XX(10)+DL1(11,N)*XX(11)
T3=(DL1(6,N)-)L3(6,N)*XX(6)-DL3(13,N)*XX(13)-DL3(14,N)*XX(14)
T4=(DL1(15,N)-)L3(15,N)*XX(15)
D1=T1+T2+T3
D1=DL1(1,N)*YY(1)+DL1(2,N)*YY(2)-DL3(4,N)*YY(4)-DL3(5,N)*YY(5)
D2=DL1(7,N)*YY(7)-DL3(9,N)*YY(9)+DL1(10,N)*YY(10)+DL1(11,N)*YY(11)
D3=(DL1(6,N)-)L3(6,N)*YY(6)-DL3(13,N)*YY(13)-DL3(14,N)*YY(14)
D4=(DL1(15,N)-)L3(15,N)*YY(15)
DJ12=D1+D2+D3+D4
T5=DL2(2,N)*XX(2)+DL2(3,N)*XX(3)-DL3(5,N)*XX(5)-DL3(6,N)*XX(6)
T6=DL2(8,N)*XX(8)-DL3(9,N)*XX(9)+(DL2(4,N)-DL3(4,N))*XX(4)
T7=DL2(11,N)*XX(11)+DL2(12,N)*XX(12)+(DL2(13,N)-DL3(13,N))*XX(13)
T8=-DL3(14,N)*XX(14)-DL3(15,N)*XX(15)
DJ21=T5+T6+T7+T8
D5=DL2(2,N)*YY(2)+DL2(3,N)*YY(3)-DL3(5,N)*YY(5)-DL3(6,N)*YY(6)
D6=DL2(8,N)*YY(8)-DL3(9,N)*YY(9)+(DL2(4,N)-DL3(4,N))*YY(4)
D7=DL2(11,N)*YY(11)+DL2(12,N)*YY(12)+(DL2(13,N)-DL3(13,N))*YY(13)
D8=-DL3(14,N)*YY(14)-DL3(15,N)*YY(15)
DJ22=D5+D6+D7+D8

```



```

DETJ(N)=DJ11*D22-DJ12*D21
DETJ1=DETJ1+DETJ(N)*WL(M)
CONTINUE
DETJJ=DETJJ+WS(K)*DETJ1
200 CONTINUE
DO 600 M=1,4
1F(K.EQ.1) GO TO 12
1F(K.EQ.2) GO TO 22
1F(K.EQ.3) GO TO 32
1F(K.EQ.4) GO TO 42
1F(K.EQ.5) GO TO 52
N=M
12 GO TO 62
22 N=M+4
32 N=M+8
42 N=M+12
52 N=M+16
62 CONTINUE
DXDL5=DL1(1,N)*XX(1)+(DL1(2,N)*XX(2)-DL2(3,N))*XX(3)
DXDL6=-(DL2(4,N)*XX(4)-DL3(5,N)*XX(5))
DXDL7=(DL1(6,N)-DL3(6,N))*XX(6)+DL1(7,N)*XX(7)-DL2(8,N)*XX(8)
DXDL8=-DL3(9,N)*XX(9)+DL1(10,N)*XX(10)+(DL1(11,N)-DL2(11,N))*XX(11)
1) DXDL9=-DL2(12,N)*XX(12)-(DL2(13,N)+DL3(13,N))*XX(13)-DL3(14,N)*XX(
114)+(DL1(15,N)-DL3(15,N))*XX(15)
DXDL1=DXDL5+DXDL6+DXDL7+DXDL8+DXDL9
DYDL5=DL1(1,N)*YY(1)+(DL1(2,N)*YY(2)-DL2(3,N))*YY(3)
DYDL6=-(DL2(4,N)+DL3(4,N))*YY(4)-DL3(5,N)*YY(5)
DYDL7=(DL1(6,N)-DL3(6,N))*YY(5)+DL1(7,N)*YY(7)-DL2(8,N)*YY(8)
DYDL8=-DL3(9,N)*YY(9)+DL1(10,N)*YY(10)+(DL1(11,N)-DL2(11,N))*YY(11)
1) DYDL9=-DL2(12,N)*YY(12)-(DL2(13,N)+DL3(13,N))*YY(13)-DL3(14,N)*YY(
114)+(DL1(15,N)-DL3(15,N))*YY(15)
DYDL1=DYDL5+DYDL6+DYDL7+DYDL8+DYDL9
DXDL55=-DL1(1,N)*XX(1)+(DL1(2,N)*XX(2)+DL2(3,N)*XX(3)
DXDL56=(DL2(4,N)-DL3(4,N))*XX(4)-DL3(5,N)*XX(5)-DL1(7,N)*XX(7)
DXDL77=-(DL1(6,N)+DL3(6,N))*XX(6)+DL2(3,N)*XX(8)-DL3(9,N)*XX(9)
DXDL88=-DL1(10,N)*XX(10)+(DL2(11,N)-DL1(11,N))*XX(11)
DXDL99=DL2(12,N)*XX(12)+(DL2(13,N)-DL3(13,N))*XX(15)-DL3(14,N)*XX(114)-(DL1(15,N)+DL3(15,N))*XX(15)

```



```

DXDL2=DXDL55+DXDL66+DXDL77+DXDL88+DXDL99
DYDL55=-DL1(1,N)*YY(1)+(DL2(2,N)-DL1(2,N))*YY(2)+DL2(3,N)*YY(3)
DYDL66=(DL2(4,N)-DL3(4,N))*YY(4)-DL3(5,N)*YY(5)-DL1(7,N)*YY(7)
DYDL77=-(DL1(6,N)+DL3(6,N))*YY(6)+DL2(8,N)*YY(8)-DL3(9,N)*YY(9)
DYDL88=-DL1(12,N)*YY(10)+(DL2(11,N)-DL1(11,N))*YY(11)
DYDL99=DL2(12,N)*YY(12)+(DL2(13,N)-DL3(13,N))*YY(13)-DL3(14,N)*YY(14)
114)-(DL1(15,N)+DL3(15,N))*YY(15)
1 DYDL2=DYDL55+DYDL66+DYDL77+DYDL88+DYDL99

DL1DY=1.0/DYDL1
DL2DX=1.0/DXDL2
DL1DX=1.0/DYDL1
DL2DY=1.0/DXDL2
BB11=(DL1DX**2)+(DL1DY**2)
BB12=DL1DX*DL2DX+DL1DY*DL2DY
BB22=(DL2DX**2)+(DL2DY**2)
H1=BB11*((DL1(J,N)-DL3(J,N))*DL1(I,N)-DL3(I,N))
H2=BB12*((DL2(J,N)-DL3(J,N))*DL1(I,N)-DL3(I,N))
H3=BB12*((DL1(J,N)-DL3(J,N))*DL2(I,N)-DL3(I,N))
H4=BB22*((DL2(J,N)-DL3(J,N))*DS(I,V)
H5=(A5**2)*DS(J,N)*DS(I,V)
H6=(H1+H2+H3+H4+H5)*DETJ(N)
FFG=FFG+WLN(M)*H6

CONTINUE
670 FGG=W(S(K))*FFG+FFG
660 CONTINUE
GG(J,I)=FFG/A5
610 CONTINUE
600 CONTINUE
C **** INSERT ELEMENT MATRIX INTO SYSTEM MATRIX *****
DO 505 K=1,NELEOF
KK=CONN(L,K)
IF(KK.GT.NNZ) GO TO 505
KK=JA(KK)
LLL=JB(KK)-1
DO 500 I=1,NELEOF
I=CONN(L,I)
IF(I.GT.NNZ) GO TO 500
DO 490 M=1,KKK
MM=LLL+M
KKM=NAME(MM)
IF(I.I.EQ.KKM) GO TO 495
490 CONTINUE
495 BIGGG(MM)=BIGGG(MM)+GG(K,I)
500 CONTINUE
505 CONTINUE
510 RETURN

```


END

C THIS SUBROUTINE EVALUATES THE 6 ELEMENT MATRIX USING 21 POINTS OF
C INTEGRATION. THE 6 ELEMENT MATRIX IS THEN INSERTED INTO THE BIGG
C SYSTEM MATRIX.

SUBROUTINE FLOWIE

```
REAL*8 G,BIGG
REAL*8 WL,WS,S,CL1,CL2,CL3,FN,DL1,DL2,DL3,DS,DETJ
INTEGER*2 NAME,JB,NNZ,JC,NELDOF,CONN
COMMON/GTRY2/NAME(8199),JA(299),JB(299),NNZ,JC,NUMNP,NUMEL,NELDOF,
1 COMMON(192,15)
COMMON/GTRYL/X(717),P(717),YY(15),ZZ(15),PPSI(15)
COMMON/XOCAL/XX(15)
COMMON/GMAT/G(15,15)
COMMON/SYSMT1/B16G(8199)
COMMON/GAUSS/WL(7),WS(5),S(5),CL1(7),CL2(7),CL3(7),FN(15,21),DL1(1
15,21),DL2(15,21),DL3(15,21),DETJ(21)
WS(1)=0.5555555555555556
WS(2)=0.8888888888888889
WS(3)=0.5555555555555556
S(1)=0.774596669241483
S(2)=0.0
S(3)=-0.774596669241483
WL(1)=0.12500
WL(2)=0.0661977500
WL(3)=0.06619707500
WL(4)=0.0629695900
WL(5)=0.0629695900
WL(6)=0.0629695900
WL(7)=0.0629695900
CL1(1)=0.3333333333333333
CL1(2)=0.3333333333333333
CL1(3)=0.3333333333333333
CL1(4)=0.470142060
CL1(5)=0.470142060
CL1(6)=0.797426990
CL1(7)=0.101286510
CL2(1)=0.3333333333333333
CL2(2)=0.470142060
CL2(3)=0.059615870
CL2(4)=0.470142060
CL2(5)=0.101286510
CL2(6)=0.797426990
CL2(7)=0.101286510
CL3(1)=0.3333333333333333
```



```

CL3(2)=0.470142060
CL3(3)=0.470142060
CL3(4)=0.059615870
CL3(5)=0.101286510
CL3(6)=0.101286510
CL3(7)=0.797426990
DO 10 K=1,3
DO 20 M=1,7
      THE 3 X 7 MATRICES ARE BEING CONVERTED TO 1 X 21 VECTORS
      IF(K-2)30,40,50
 30 N=M
 40 GO TO 60
 50 N=M+14
 60 CONTINUE
FN(1,N)= 0.50*CL1(M)*((2.0*CL1(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2))
FN(2,N)= 0.2*0*CL1(M)*CL2(M)*(1.0+S(K))
FN(3,N)= 0.50*CL2(M)*((2.0*CL2(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2))
FN(4,N)= 0.2*0*CL3(M)*CL2(M)*(1.0+S(K))
FN(5,N)= 0.50*CL2(M)*((2.0*CL3(M)-1.0)*(1.0+S(K))-(1.0-S(K)**2))
FN(6,N)= 0.2*0*CL1(M)*CL3(M)*(1.0+S(K))
FN(7,N)= CL1(N)*(1.0-S(K)**2)
FN(8,N)= CL2(N)*(1.0-S(K)**2)
FN(9,N)= CL3(N)*(1.0-S(K)**2)
FN(10,N)= 0.50*CL1(M)*((2.0*CL1(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2))
FN(11,N)= 0.2*0*CL1(M)*CL2(M)*(1.0-S(K))
FN(12,N)= 0.50*CL2(M)*((2.0*CL2(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2))
FN(13,N)= 0.2*0*CL3(M)*CL2(M)*(1.0-S(K))
FN(14,N)= 0.50*CL2(M)*((2.0*CL3(M)-1.0)*(1.0-S(K))-(1.0-S(K)**2))
FN(15,N)= 0.2*0*CL1(M)*CL3(M)*(1.0-S(K))
DL1(1,N)= 0.50*((1.0+S(K))*(4.0*CL1(M)-1.0)-(1.0-S(K)**2))
DL1(2,N)= 0.2*CL2(M)*(1.0+S(K))
DL1(3,N)= 0.0
DL1(4,N)= 0.0
DL1(5,N)= 0.0
DL1(6,N)= 2.0*CL3(M)*(1.0+S(K))
DL1(7,N)= (1.0-S(K)**2)
DL1(8,N)= 0.0
DL1(9,N)= 0.0
DL1(10,N)= 0.50*((1.0-S(K))*(4.0*CL1(M)-1.0)-(1.0-S(K)**2))
DL1(11,N)= 2.0*CL2(M)*(1.0-S(K))
DL1(12,N)= 0.0
DL1(13,N)= 0.0
DL1(14,N)= 0.0
DL1(15,N)= 2.0*CL3(M)*(1.0-S(K))
DL2(1,N)= 0.0
DL2(2,N)= 2.0*CL1(M)*(1.0+S(K))

```



```

DL2(3,N) = 0.50*((1.0+S(K))*(4.0*CL2(M)-1.0)-(1.0-S(K)**2))
DL2(4,N) = 2.0*CL3(M)*(1.0+S(K))
DL2(5,N) = 0.0
DL2(6,N) = 0.0
DL2(7,N) = 0.0
DL2(8,N) = (1.0-S(K)**2)
DL2(9,N) = 0.0
DL2(10,N) = 0.0
DL2(11,N) = 2.0*0*CL1(M)*(1.0-S(K))
DL2(12,N) = 0.5*((1.0-S(K))*(4.0*CL2(M)-1.0)-(1.0-S(K)**2))
DL2(13,N) = 2.0*CL3(M)*(1.0-S(K))
DL2(14,N) = 0.0
DL2(15,N) = 0.0
DL3(1,N) = 0.0
DL3(2,N) = 0.0
DL3(3,N) = 0.0
DL3(4,N) = 2.0*CL2(M)*(1.0+S(K))
DL3(5,N) = 0.5*((1.0+S(K))*(4.0*CL3(M)-1.0)-(1.0-S(K)**2))
DL3(6,N) = 0.0
DL3(7,N) = 0.0
DL3(8,N) = 0.0
DL3(9,N) = (1.0-S(K)**2)
DL3(10,N) = 0.0
DL3(11,N) = 0.0
DL3(12,N) = 0.0
DL3(13,N) = 2.0*CL2(M)*(1.0-S(K))
DL3(14,N) = 0.5*(1.0-S(K))*CL3(M)
DL3(15,N) = 0.0
DS(1,N) = 0.50*(2.0*CL1(M)*S(K)+CL1(M)*S(K))
DS(2,N) = 0.20*(2.0*CL1(M)*S(K)+CL1(M)*S(K))
DS(3,N) = 0.50*(2.0*CL2(M)*S(K)+CL2(M)*S(K))
DS(4,N) = 0.20*(2.0*CL2(M)*S(K)+CL2(M)*S(K))
DS(5,N) = 0.50*(2.0*CL3(M)*S(K)+CL3(M)*S(K))
DS(6,N) = 0.20*(2.0*CL3(M)*S(K)+CL3(M)*S(K))
DS(7,N) = -2.0*CL1(M)*S(K)
DS(8,N) = -2.0*CL2(M)*S(K)
DS(9,N) = -2.0*CL3(M)*S(K)
DS(10,N) = -0.50*(2.0*CL1(M)*S(K)+CL1(M)*S(K))
DS(11,N) = -2.0*CL1(M)*CL2(M)
DS(12,N) = -0.50*(2.0*CL2(M)*S(K)+CL2(M)*S(K))
DS(13,N) = -2.0*CL2(M)*CL3(M)
DS(14,N) = -0.50*(2.0*CL3(M)*S(K)+CL3(M)*S(K))
DS(15,N) = -2.0*CL1(M)*CL3(M)
CONTINUE
DO 510 L=1,NUMEL
DO 475 I=1,NELDF
DO 470 J=1,NELDOF

```

20

$G(1,1,1) = 0.0$

470 CONTINUE
475 DO 480 JJ=1,NELDOF

NN=CONN(L,JJ)

XX(JJJ)=X(NN)

YY(JJJ)=P(NN)

ZZ(JJJ)=Z(NN)

CONTINUE
A5=2.0/(ZZ(1)-ZZ(15))

DETJJ=0.0
DO 200 K=1,3

DETJ1=0.0
DO 210 M=1,7

IF(K-2)31,41,51

31 N=M
GO TO 61

41 N=M+7
GO TO 61

51 N=M+14
61 CONTINUE

T1=DL1(1,N)*XX(1)+DL1(2,V)*XX(2)-DL3(4,V)*XX(4)-DL3(5,N)*XX(5)

T2=DL1(7,N)*XX(7)-DL3(9,V)*XX(9)+DL1(12,N)*XX(10)+DL1(11,N)*XX(11)

T3=(DL1(6,N)-DL3(6,N))*XX(6)-DL3(13,N)*XX(13)-DL3(14,N)*XX(14)

T4=(DL1(15,N)-DL3(15,N))*XX(15)

DJ11=T1+T2+T3+T4

D1=DL1(1,N)*YY(1)+DL1(2,V)*YY(2)-DL3(4,N)*YY(4)-DL3(5,N)*YY(5)

D2=DL1(7,N)*YY(7)-DL3(9,V)*YY(9)+DL1(10,N)*YY(10)+DL1(11,N)*YY(11)

D3=(DL1(6,N)-DL3(6,N))*YY(6)-DL3(13,N)*YY(13)-DL3(14,N)*YY(14)

D4=(DL1(15,N)-DL3(15,N))*YY(15)

DJ12=D1+D2+D3+D4

T5=DL2(2,N)*XX(2)+DL2(3,V)*XX(3)-DL3(5,N)*XX(5)-DL3(6,N)*XX(6)

T6=DL2(8,N)*XX(8)-DL3(9,N)*XX(9)+(DL2(4,N)-DL3(4,N))*XX(4)

T7=DL2(11,N)*XX(11)+DL2(12,N)*XX(12)+(DL2(13,N)-DL3(13,N))*XX(13)

T8=-DL3(14,V)*XX(14)-DL3(15,N)*XX(15)

DJ21=T5+T6+T7+T8

D5=DL2(2,N)*YY(2)+DL2(3,N)*YY(3)-DL3(5,V)*YY(5)-DL3(6,N)*YY(6)

D6=DL2(8,N)*YY(8)-DL3(9,V)*YY(9)+(DL2(4,N)-DL3(4,N))*YY(4)

D7=DL2(11,N)*YY(11)+DL2(12,N)*YY(12)+(DL2(13,N)-DL3(13,N))*YY(13)

D8=-DL3(14,N)*YY(14)-DL3(15,N)*YY(15)

DJ22=D5+D6+D7+D8

DETJ(N)=DETJ(N)*WL(M)+DETJ1

210 CONTINUE
DETJJ=DETJJ+WS(K)*DETJ1

200 CONTINUE
DO 600 J=1,15
DO 610 I=1,15


```

FG=0.0      K=1,3
DO 660
F=0.0
DO 670 M=1,7
IF(K=2) 620,630,640
620 N=M
       GO TO 650
630 N=M+7
       GO TO 650
640 N=M+14
CONTINUE
650 F=F+W(L,M)*FN(J,N)*FN(I,N)*DETJ(N)
       FG=FG+WS(K)*F
660 CONTINUE
G(J,I)=FG/A5
670 CONTINUE
680 CONTINUE
690 CONTINUE
*** INSERT ELEMENT MATRIX INTO SYSTEM MATRIX *****
DO 505 K=1,NELODF
KK=CONN(L,K)
IF(KK.GT.NNZ) GO TO 505
KK=JA(KK)
LLL=JB(KK)-1
DO 500 I=1,NELODF
II=CONN(L,I)
IF(II.GT.NNZ) GO TO 500
DO 490 M=1,KK<
MM=LLL+M
KKM=NAME(MM)
IF(II.EQ.KKM) GO TO 495
495 CONTINUE
BIGG(MM)=BIGG(MM)+G(K,I)
500 CONTINUE
505 CONTINUE
510 CONTINUE
RETURN
END

```

C

THIS IS THE MAIN PROGRAM FOR THE SOLUTION OF THE FIELD EQUATIONS.
 THE DATA FROM THE TAPE IS READ OUT, VJDAL CONSTANTS ARE EVALUATED,
 THE INTEGRATION PACKAGE IS INITIATED, ETC.

```

REAL*8 SIGF,SIGA,C1,C2,C4,C5
REAL*8 GGG,BIGG,BIGH
REAL*8 WL,WS,CL1,CL2,CL3,FN,DL1,DL2,DL3,DS,DETJ
INTEGER*2 NAME,JA,JBNNZ,JC,NELDOF,NUMNP,CONN
COMMON/GTRY2/NAME(4615),JA(183),JB(184),NNZ,JC,NUMNP,NUMEL,NELDOF,
1CONN(12815)
COMMON/GTRY1/X(505),P(505),Z(505)
COMMON/XOCAL/XX(15),YY(15),ZZ(15),PPSI(15)
COMMON/DELY/W(7200)Y(7,183)
COMMON/TEMP/C3(183),PSI(93)
COMMON/TEMP/C3(183),C6(15)
COMMON/SIGF(93),SIGA(183)
COMMON/COEF/C1(183),C2(183),C4(183),C5(183)
COMMON/GGGMAT/GGG(15,15)
COMMON/SYSMT1/BIGGG(4615)
COMMON/SYSMT2/BIGGG(4615)
COMMON/SYSMT3/BIGH(4615)
COMMON/GAUSS/WL(7),WS(5),S(5),C1(7),C2(7),DETJ(21),FN(15,21),DL1(1
15,21),DL2(15,21),DL3(15,21),DS(15,21)
NZ=183
NUMEL=128
NUMNP=505
NELDOF=15
JC=4615
FMAX=1.0E10
DO 771 I=1,NUMEL
    READ(4) (CONN(I,J),J=1,NELDOF)
    CONTINUE
771
    READ(4) (JA(I),I=1,NNZ)
    READ(4) (JB(I),I=1,NNZ)
    READ(4) (NAME(I),I=1,JC)
    READ(4) (X(I),I=1,NUMNP)
    READ(4) (P(I),I=1,NUMNP)
    READ(4) (Z(I),I=1,NUMNP)
    READ(4) (BIGG(I),I=1,JC)
    READ(4) (BIGGG(I),I=1,JC)
    DO 772 I=1,3
        READ(4) WS(I),S(I)
    CONTINUE
    M-105

```

772


```

DO 773 I=1,7
READ(4) WL(I), CL1(I), CL2(I), CL3(I)
CONTINUE
773
DO 781 I=1, NELDOF
    DO 782 J=1,2I
        READ(4) FN(I,J), DL1(I,J), DL2(I,J), DL3(I,J)
CONTINUE
782
CONTINUE
781
DO 460 I=1,NNZ
    Y(1,I)=FMAX
    Y(2,I)=0.0
    SUM(I)=0.0
    IF(I*GT.93) GJ TO 460
    PSI(I)=FMAX
460
CONTINUE
    WRITE(6,3)
3   FORMAT(6,3)
    V=4.800E07
    SIGF(I)=0.0057450, SIGA(I)=0.014010, 0.0080  !
    Q=0.4349710
    BETA=0.006420
    B=-0.00400
    DO 445 I=1,NNZ
        IF(I*GT.93) GJ TO 420
        D=0.9130
        SIGF(I)=0.0057450
        SIGA(I)=0.014010
        ZNU=2.54
        C1(I)=V*D
        C2(I)=V*SIGA(I)-V*(1.0-BETA)*SIGF(I)*ZNU
        C3(I)=(2.0179325E-13)*SIGF(I)
        C4(I)=-V*(1.0-BETA)*SIGA(I)*B
        C5(I)=-V*BETA*Q*ZNU*SIGF(I)
        GO TO 445
420
        D=1.200
        SIGA(I)=0.00800
        C1(I)=V*D
        C2(I)=V*SIGA(I)
        C3(I)=0.0
        C4(I)=0.0
        C5(I)=0.0
445
CONTINUE
    TEND=0.0010
    NY=NNZ
    NL=0
    H=1.0E-19
    T=0.0
    HMIN=1.0E-20
    HMAX=0.10

```



```

JSKF=0
CALL SDESOL(Y,YL,T,TEND,NY,NL,NY,JSKF,s,1,H,HMIN,HMAX,1.E-2,W)
STOP
END

```

```

C      SUBROUTINE SDESOL (Y,YL,T,TEND,NY,NL,M,JSKF,MAXDER,IPRT,H,HMIN,
1HMAX,RMSEPS,W)

```

SUBROUTINE SDESOL IS A DRIVER ROUTINE FOR SUBROUTINE LDASUB.
ITS PURPOSE IS TO SET UP THE NECESSARY REFERENCES TO A LARGE
BLOCK OF AUXILIARY STORAGE, AND OBTAIN INITIAL VALUES OF
DERIVATIVES. SEQUENCES FOR SDESOL IS

```

CALL SDESOL (Y,YL,T,TEND,NY,NL,M,JSKF,MAXDER,IPRT,H,HMAX,RMSEPS,W)
WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS.
```

Y - ARRAY DIMENSIONED (7,NY). THIS ARRAY CONTAINS THE
DEPENDENT VARIABLES AND THEIR SCALED DERIVATIVES.
Y(J+1) CONTAINS THE J-TH DERIVATIVE OF THE I-TH VAR
TABLE TIMES H**J/J-FACTORIAL, WHERE H IS THE CURRENT
STEP SIZE. ON FIRST ENTRY THE CALLER SUPPLIES THE
INITIAL VALUES OF EACH VARIABLE IN Y(1,1). ON SUB-
SEQUENT ENTRIES IT IS ASSUMED THE ARRAY HAS NOT
BEEN CHANGED. TO INTERPOLATE TO NON-MESH POINTS,
THESE VALUES CAN BE USED AS FOLLOWS. IF H IS THE
CURRENT STEP SIZE AND VALUES AT TIME T+E ARE
NEEDED, LET S = E/H AND THEN

```

JSUM Y(J+1,1)*S**J
I-TH VARIABLE AT T+E IS JSUM Y(J+1,1)*S**J

```

THE VALUE JS IS OBTAINED IN THE CALLING PROGRAM
BY JS = LABS(JSKF/10)
- ARRAY OF NL VARIABLES WHICH APPEAR LINEARLY
- CURRENT VALUE OF THE INDEPENDENT VARIABLE (TIME)
TEND - END TIME
NY - NUMBER OF DIFFERENTIAL EQUATIONS AND NONLINEAR
 VARIABLES.
NL - NUMBER OF LINEAR VARIABLES INCLUDED IN THE ERROR TEST
M - NUMBER OF VARIABLES USED BOTH ON INPUT AND OUTPUT
JSKF - AN INDICATOR USED ON INPUT, JSKF = -1 INDICATES A RESTART CALL TO
SDESOL. JSKF = 0 INDICATES AN INITIAL CALL TO

SDE 440
 SDE 450
 SDE 460
 SDE 470
 SDE 480
 SDE 490
 SDE 500
 SDE 510
 SDE 520
 SDE 530
 SDE 540
 SDE 550
 SDE 560
 SDE 570
 SDE 580
 SDE 590
 SDE 600
 SDE 610
 SDE 620
 SDE 630
 SDE 640
 SDE 650
 SDE 660
 SDE 670
 SDE 680
 SDE 690
 SDE 700
 SDE 710
 SDE 720
 SDE 730
 SDE 740
 SDE 750
 SDE 760
 SDE 770
 SDE 780
 SDE 790
 SDE 800
 SDE 810
 SDE 820
 SDE 830
 SDE 840
 SDE 850
 SDE 860
 SDE 870
 SDE 880
 SDE 890
 SDE 900
 SDE 910

SDE 0 INDICATES A CONTINUATION OF THE PREVIOUS CALL TO SDESOL. JSKF <-1 MAY HAVE RESULTED FROM THE USER NEGLECTING TO TEST FOR ERROR RETURNS BECAUSE OF THIS POSSIBILITY. JSKF <-1 IS THE TERMINATION OF THE RUN WITH THE APPROPRIATE COMMENJSKF CONSISTS OF TWO DIGITS AND SIGN, THE ORDER OF THE FORMULA CURRENTLY ON OUTPJT. JSKF <0 IS THE NORMAL RETURN, AS + OR - QP. P INDICATES THE TYPE OF RETURN, AS FOLLOWS.
 JSKF >0, P = 0 IS AN ERROR RETURN, WITH THE FOLLOWING MEANINGS.
 P = 1 ERROR TEST FAILURE FOR H > HMIN
 P = 2 CORRECTOR FAILED TO CONVERGE FOR FIRST
 P = 3 CORRECTOR FAILED TO CONVERGE FOR FIRST
 P = 4 ORDER METHOD
 P = 5 ORDER RETURN FROM SUBROUTINE NUISSL
 P = 6 ORDER RETURN FROM SUBROUTINE Derval
 MAXDER - MAXIMUM ORDER DERIVATIVE THAT SHOULD BE USED IN METHOD.
 - INTERNAL PRINT CONTROL INDICATOR FOR LDASUB.
 IPRT - IPRT > 0 PRINT COUNTERS, STEPSIZE, CURRENT TIMES AT EACH STEP AND VALUES OF DEPENDENT VARIABLES AT EACH STEP.
 - CURRENT STEPSIZE NOT BEING ALLOWED
 - SUBROUTINE WILL CHOOSE A SMALLER ONE IF NECESSARY TO KEEP THE ERROR PER STEP SMALLER THAN THE SPECIFIED VALUE. IT IS BETTER TO USE ESTIMATE THE INITITAL STEPSIZE THAN TO OVERESTIMATE IT.
 - SYMTROLLMALLY NOT CHANGED BY THE USER.
 - MAXIMUM STEPSIZE ALLOWED
 - THE SINGLE TEST CONSTRUCTOR ESTIMATE ER(1) DIVIDED BY YMAX(1) = (MAXIMJM TO CURRENT TIME OF Y(1)) MUST BE LESS THAN EPS. THE STEPSIZE AND/OR THE ORDER ARE VARIED TO ACHIEVE THIS.
 - SCRATCH STORAGE ARRAY. THIS MUST BE AT LEAST 13*NY + 5*NLS.
 - LOCAL MATRIX PW (PLUS DESCRIPTION OF SUBROUTINE JACMAT).
 THE STORAGE IF PW WILL USUALLY REQUIRE NO MORE THAN N**2 + 2*N LOCATIONS, AND IF COMPACT STORAGE TECHNIQUES ARE USED, CAN BE MUCH FEWER.


```

DIMENSION Y(7,1), YL(1), W(1)
IF (JSKF.GT.0) GO TO 120
IF (JSKF.LT.-1) GO TO 140
N = NY+NL
IF (JSKF.LT.0) GO TO 110

C IF THIS IS THE FIRST ENTRY, OBTAIN VALUES OF THE DERIVATIVES.
C CALL DERRVAL(Y,YLT,N,NY,W,KRETR)
IF (KRETR.NE.0) GO TO 130

C NOW SET UP STORAGE BLOCKS IN THE W ARRAY. THIS NEEDS TO BE DONE
C ONLY INITIALLY AND ON RESTARTS.

      THE ARRAY      SAVE      STARTS AT LOCATION 1 NSVL      IN THE W ARRAY
      THE ARRAY      YLSV     STARTS AT LOCATION 1 NYMAX      IN THE W ARRAY
      THE ARRAY      YMAX     STARTS AT LOCATION 1 NER      IN THE W ARRAY
      THE ARRAY      ER       STARTS AT LOCATION 1 NESV      IN THE W ARRAY
      THE ARRAY      ESV      STARTS AT LOCATION 1 NF1      IN THE W ARRAY
      THE ARRAY      F1       STARTS AT LOCATION 1 NDY      IN THE W ARRAY
      THE ARRAY      DY       STARTS AT LOCATION 1 NPW      IN THE W ARRAY
      THE MATRIX     PW       STARTS AT LOCATION 1          IN THE W ARRAY

      SDE 920
      SDE 930
      SDE 940
      SDE 950
      SDE 960
      SDE 970
      SDE 980
      SDE 990
      SDE 1000
      SDE 1010
      SDE 1020
      SDE 1030
      SDE 1040
      SDE 1050
      SDE 1060
      SDE 1070
      SDE 1080
      SDE 1090
      SDE 1100
      SDE 1110
      SDE 1120
      SDE 1130
      SDE 1140
      SDE 1150
      SDE 1160
      SDE 1170
      SDE 1180
      SDE 1190
      SDE 1200
      SDE 1210
      SDE 1220
      SDE 1230
      SDE 1240
      SDE 1250
      SDE 1260
      SDE 1270
      SDE 1280
      SDE 1290
      SDE 1300
      SDE 1310
      SDE 1320
      SDE 1330
      SDE 1340
      SDE 1350
      SDE 1360
      SDE 1370
      LDA 10

110 NSVL = 7*NY+1
NYMAX = NSVL+NL
NER = NYMAX+NY
NESV = NER+NY
NF1 = NESV+NY
NDY = NF1+N
NPW = NDY+N

120 JS = JSKF
CALL LDASUB({YL,TEND,N,NY,M},JS,KS,MAXDER,IPRT,HMIN,HMAX,
1RMSEPS,W,NSVL,W(NYMAX),W(NER),W(NESV),W(NF1),W(NDY),W(NPW))

C CODE JSKF ON RETURN FROM LDASUB
JSKF = ISIGN(JS*10+IABS(KF),KF)

130 RETURN
JSKF = -6
130 RETURN
140 PRINT 1, JSKF
STOP

C 1 FORMAT ('0IT IS AN ERROR TO ENTER SDESJL WITH JSKF = ',I10//,
C 1 RUN HAS BEEN TERMINATED.')
1 END

C SUBROUTINE LDASUB (Y,YLT,TEND,N,NY,M,JSTART,KFLAG,MAXOR,IPRT,H,
```


HMIN, HMAX, RMSEPS, SAVE, YLSV, YMAX, ER, ESV, F1, DY, PW)

11HMIN, HMAX, RMSEPS, SAVE, YLSV, YMAX, ER, ESV, F1, DY, PW) 20
 SUBROUTINE LDASUB IS A MODIFICATION OF SUBROUTINE DFASUB
 WHICH IS DUE TO R. L. BROWN AND C. W. GEAR. DFASUB IS DOCUMENTED
 IN THE REPORTATION FOR DFASUB--
 BY R. L. BROWN AND C. W. GEAR
 REPORT UICDS-R-73-575. JULY 1973
 UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 URBANA, ILLINOIS 61801
 THIS REPORT IS AVAILABLE FROM THE NATIONAL TECHNICAL INFORMATION SERVICE OF THE U. S. DEPARTMENT OF COMMERCE UNDER ACCESSION NUMBER COO-1459-225.
 THE MODIFICATION HERE IS DOCUMENTED IN THE REPORT
 A PROGRAM FOR THE NUMERICAL SOLUTION OF LARGE SPARSE SYSTEMS OF
 ALGEBRAIC AND IMPLICITLY DEFINED STIFF DIFFERENTIAL EQUATIONS
 BY RICHARD FRANKE
 REPORT NPS-53-FE-76051, MAY 1976
 NAVAL POST GRADUATE SCHOOL
 MONTEREY, CALIFORNIA 93940

THE CALLING SEQUENCE FOR LDASUB IS
 CALL LDASUB(YYL,T'TEND, NY,M,JSTART,KFLAG,MAXOR,IPRT,H,HMIN,
 HMAX,RMSEPS,SAVE,YLSV,YMAX,ER,ESV,F1,DY,PW)

WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS.
 Y - ARRAY DIMENSIONED (7,NY). THIS ARRAY CONTAINS THE
 DEPENDENT VARIABLES AND THEIR SCALED DERIVATIVES.
 Y(J+1) CONTAINS THE J-TH DERIVATIVE OF THE I-TH VARIABLE
 IABLE TIMES H**J/J-FACTORY WHEREVER H IS THE CURRENT
 STEPSIZE. ON FIRST ENTRY THE CALLER SUPPLIES THE
 INITIAL VALUES OF EACH VARIABLE IN Y(1) AND AN
 ESTIMATE OF THE INITIAL VALUES OF THE DERIVATIVES
 IN Y(2,1). ON SUBSEQUENT ENTRIES IT IS ASSUMED THAT
 THE ARRAY HAS NOT BEEN CHANGED. TO INTERPOLATE TO
 NON-MESH POINTS, THESE VALUES CAN BE USED AS FOLLOWS.
 IF H IS THE CURRENT STEPSIZE AND VALUES AT TIME T+
 NEEDED, LET S = E/H AND THEN

I-TH VARIABLE AT T+E IS $\sum_{j=0}^{NQ} Y(j+1, i) * S^{** j}$
 THE VALUE OF NQ IS OBTAINED IN THE CALLING PROGRAM

THE VALUE OF THE CALLING PROGRAM

IPRT - INTERNAL PRINT CONTROL INDICATOR
 = 0 NO PRINT COUNTERS, STEP SIZE, CURRENT TIME
 > 0 AND VALUES OF DEPENDENT VARIABLES AT
 EACH STEP.
 H CURRENT STEPSIZE. AN INITIAL VALUE MUST BE SUPPLIED
 BUT NEED NOT BE THE ONE WHICH WILL BE USED SINCE THE
 SUBROUTINE WILL CHOOSE A SMALLER ONE IF NECESSARY
 KEEP THE ERROR PER STEP SMALLER THAN THE SPECIFIED
 VALUE. IT IS BETTER TO UNDERESTIMATE THE INITIAL
 STEPSIZE THAN TO OVERESTIMATE IT. THE STEPSIZE IS
 NORMALLY NOT CHANGED BY THE USER.
 HMIN MINIMUM STEPSIZE ALLOWED
 RMSEPS - THE ERROR TEST CONSTANT ESTIMATES THE ROOT-MEAN-SQUARE OF
 THE SINGLE STEP ERROR. IT IS DIVIDED BY
 $y_{MAX}(1)$ = (MAXIMUM TIME OF $y(1)$) MUST BE
 LESS THAN RMSEPS. THIS IS DETERMINED BY
 VARIED TO ACHIEVE THIS.
 SAVE AN ARRAY OF LENGTH AT LEAST 7^*NY
 YLSV AN ARRAY OF LENGTH AT LEAST NY WHICH CONTAINS THE MAXIMUM
 YMAX VECTOR OF LENGTH NY WHICH SEE FAR. ON THE FIRST CALL THESE WILL
 BE INITIALIZED AS $y_{MAX}(1) = \max(y(1), y(1,1))$,
 ER - A VECTOR OF LENGTH NY
 ESV - A VECTOR OF LENGTH $NY + NL$
 F1 - A VECTOR OF LENGTH NY
 DY - AN ARRAY IN WHICH THE J MATRIX COMPUTED
 PW - IN SUBROUTINE JACMAT WILL BE STORED. SIZE WHICH
 MUST BE ALL USED IS DETERMINED BY THE STORAGE TECH-
 NIQUE USED FOR IT, BUT NORMALLY WON'T BE MORE THAN
 $N^{**}2 + 2*N$ LOCATIONS, THE LATTER $2*N$ BEING REQUIRED
 BY THE LINEAR EQUATION SOLVER.
 DIMENSION Y(7,1), YL(1), YMAX(1), ER(1), YLSV(1), F1(1)
 1, PERT(6,3), CDF(2,1), ESY(1), DY(1), PW(1), SAV(1), A(29)
 1, EQUIVALENCE (A(8), BND), (A(9), BR), (A(10), E), (A(11), EDWN)
 1(A(12), ENQ1), (A(13), ENQ2), (A(14), ENQ3), (A(15), EPS), (A(16), EUP)
 2(A(17), HNEW), (A(18), PEPSH), (A(19), IDOUB), (A(20), IWEVAL),
 3(A(21), K), (A(22), LCOPY), (A(23), LCOPY), (A(24), MAXDER),
 4(A(25), M1), (A(26), NL), (A(27), NS), (A(28), NW)

 THE COEFFICIENTS IN THE PERT ARRAY ARE USED FOR ERROR TESTING AND
 CHANGING STEPSIZE AND NEED TO BE ACCURATE TO ONLY A FEW DIGITS.

CCC C


```

C      YMAX(J) = AMAX1(1., ABS(Y(1,J)))
C      Y(2,J) = Y(2,J)*H
C
C      NQ = 1
C      BR = 1. 190 TO IRET
C      SET COEFFICIENTS FOR THE ORDER CURRENTLY BEING USED.
C      THIS IS A TEST FOR ERRORS OF THE CURRENT ORDER, EDWN FOR DECREASING THE
C      ORDER, EDUP FOR INCREASING THE ORDER, EDWN FOR DECREASING THE
C      ORDER.
C
C      140 K = NQ*(NQ-1)/2
C          CALL COPYZ(A(.2), COF(K+1), NQ)
C          K = NQ+1
C          IDOUB = NQ
C          ENQ1 = .5/NQ
C          ENQ2 = .5/(NQ+2)
C          PEP SH = EPS**2
C          E = PERT(NQ,1)*PEP SH
C          EUP = PERT(NQ,2)*PEP SH
C          EDWN = PERT(NQ,3)*PEP SH
C          BND = (EPS*ENQ3)**2
C          IWEVAL = 1
C          GO TO IRET, (190, 200, 490, 570)
C
C      150 IF (H.EQ.HNEW) GO TO 190
C
C      IF CALLER HAS CHANGED H, RESCALE DERIVATIVES TO REFLECT THAT HNEW
C      WAS USED ON THE LAST CALL.
C
C      R = H/HNEW
C      ASSIGN 190 TO IRET
C      GO TO 610
C
C      SET JSTART TO NQ, THE CURRENT ORDER OF THE METHOD, BEFORE EXIT,
C      AND SAVE THE CURRENT STEPSIZE IN HNEW.
C
C      160 JSTART = NQ
C      HNEW = H
C      RETURN
C      NS = NS+1
C      IF (IPRT.LE.0) GO TO 180
C
C      PRINT DATA IF DESIRED BY USER
C
C      PRINT 1, NS, NQ, H, T, (Y(I,I), I=1, NY)
C      IF (NL.GT.0) PRINT 2, (YL(I,I), I=1, NL)

```



```

180 CONTINUE
IF (KFLAG.LT.0) GO TO 160
IF (T.GE.TEND) GO TO 160
C TAKE ANOTHER STEP IF T < TEND
C JSTART = 1
C SAVE DATA FOR TRIAL WITH A SMALLER TIMESTEP IF THIS STEP FAILS
C 190 CALL COPYZ (SAVE,Y,LCOPYY)
CALL COPYZ (YLSV,YL,LCOPYL)
RACUM = 1.
KFLAG = 1
HOLD = H
NQOLD = NQ
TOLD = T
200 HINV = 1./H
C COMPUTE PREDICTED VALUES BY EFFECTIVELY MULTIPLYING DERIVATIVE
VECTOR BY PASCAL TRIANGLE MATRIX
C DO 210 J=2,K
J3 = K+J-1
C DO 210 J1=J,K
J2 = J3-J1
C DO 210 I=1,NY
Y(J2,I) = Y(J2,1)+Y(J2+1,1)
C DO 220 I=1,NY
ER(I) = 0.
C DO UP TO THREE CORRECTOR ITERATIONS. CONVERGENCE IS OBTAINED WHENLDA
CHANGES ARE LESS THAN BND WHICH IS DEPENDENT ON THE ERROR TEST LDA
CONSTANT. THE SUM OF CORRECTIONS IS ACCUMULATED IN ER(I). IT IS LDA
EQUAL TO THE K-TH DERIVATIVE OF Y TIMES H**K/(K-FACTORIAL*(K)) LDA
AND THUS IS PROPORTIONAL TO THE ACTUAL ERRORS TO THE LOWEST POWER LDA
OF H PRESENT, WHICH IS H**K. LDA
DO 270 L=1,3
CALL DIFFUN (Y,YL,T,HINV,DY)

```



```

IF (IWEVAL.LT.1) GO TO 230
C
C IF THERE HAS BEEN A CHANGE OF ORDER OR THERE HAS BEEN TROUBLE
C WITH CONVERGENCE PW IS RE-EVALUATED PRIOR TO STARTING THE
C CORRECTOR ITERATION. IWEVAL IS THEN SET TO -1 AS AN INDICATOR
C THAT IT HAS BEEN DONE. NEWPW IS SET NONZERO TO INDICATE TO
C SUBROUTINE NUTSL THAT A NEW PW HAS BEEN PROVIDED.
C
CALL JACMAT (Y,YL,T,HINV,A(2),N,NY,EPS,DY,F1,PW)
C
KFLAG = 1
IWEVAL = -1
NW = NW+1
NEWPW = 1
CALL NUTSL (PN,DY,F1,N,NY,EPS,YMAX,NEWPW,KRRET)
IF (KRRET.NE.0) GO TO 600
IF (NL.LE.0) GO TO 250
C
DO 240 I=1,NL
YL(I) = YL(I)-F1(I+NY)
C
240 CONTINUE
C
250 CONTINUE
DEL = 0.
C
DO 260 I=1,NY
Y(1,I) = Y(1,I)-F1(I)
Y(2,I) = Y(2,I)+A(2)*F1(I)
ER(I) = ER(I)+F1(I)
DEL = DEL+(F1(I)/AMAX1(YMAX(I),ABS(Y(1,I))))**2
C
260 CONTINUE
C
IF (L.GE.2) BR = AMAX1(.9*BR,DEL/DEL1)
DEL1 = DEL
IF (AMINI(DEL,BR*DEL*2.0).LE.BND) GO TO 330
C
270 CONTINUE
C
THE CORRECTIOR ITERATION FAILED TO CONVERGE IN 3 TRIES. VARIOUS
POSSIBILITIES ARE CHECKED FOR. IF H IS ALREADY HMIN AND PW HAS
ALREADY BEEN RE-EVALUATED, A NO CONVERGENCE EXIT IS TAKEN.
OTHERWISE THE MATRIX PW IS RE-EVALUATED AND/OR (IN THAT ORDER) THE
STEP IS REDUCED TO TRY AND GET CONVERGENCE.
C
T = TOLD
IF (IWEVAL) 280,300,290
280 IF (H.LE.HMIN*.1*00001) GO TO 310
290 RACUM = RACUM*.25
300 CONTINUE
GO TO 560

```



```

310 KFLAG = -3
C   RESTORE Y AND YL AFTER CONVERGENCE FAILURE
C
C 320 CALL COPYZ (Y,SAVE,LCOPYYY)
C     CALL COPYZ (YL,YLSV,LCOPYYL)
C     H = HOLD
C     NQ = NQOLD
C     GO TO 170
C
C     THE CORRECTOR CONVERGED, SO NOW THE ERROR TEST IS MADE.
C
C 330 D = 0.
C
C     DO 340 I=1,M1
C     YM = AMAX1(ABS(Y(1,I)),YMAX(I))
C     340 D = D+(ER(I)/YM)**2
C
C     IWEVAL = 0
C     IF (D.GT.E) GO TO 380
C
C     THE ERROR TEST IS OKAY! SO THE STEP IS ACCEPTED. IF IDOUB
C     NOW BECOMES NEGATIVE, A TEST IS MADE TO SEE IF THE STEP SIZE
C     CAN BE INCREASED AT THIS ORDER OR ONE LOWER. OR ONE LOWER.
C     THE CHANGE IS MADE ONLY IF THE STEP CAN BE INCREASED BY AT
C     LEAST 10%. IDJUB IS SET TO NQ TO PREVENT FURTHER TESTING
C     FOR A WHILE. IF NO CHANGE IS MADE, IDJUB IS SET TO 9.
C
C     IF (K.LT.3) GO TO 360
C
C     DO 350 J=3,K
C
C     350 Y(J,I) = Y(J,I)+A(J)*ER(I)
C
C 360 KFLAG = 1
C     IDOUB = IDOUB-1
C     IF (IDOUB) 410,370,510
C     370 CALL COPYZ (FSV,ER,M1)
C     GO TO 510
C
C     THE ERROR TEST FAILED. IF JSTART = 0, THE DERIVATIVES IN THE
C     SAVE ARRAY ARE UPDATED. TESTS ARE THEN MADE TO FIX THE STEPSIZE
C     AND PERHAPS REDUCE THE ORDER. AFTER RESTORING AND SCALING THE
C     Y VARIABLES, THE STEP IS RETRIEVED.
C
C 380 IF (JSTART.GT.0) GO TO 400

```



```

C      DO 390 I=1,NY
C      390 SAVE(2,I) = Y(2,I)
C
C      400 KFLAG = KFLAG-2
C      IF (H.LE.HMIN) GO TO 550
C      T = TDLD
C      IF (KFLAG.LE.-5) GO TO 530
C      PR2 = (D/E)**-5*Q2*I.2
C      L = 0
C      IF (NQ.LE.1) GO TO 430
C      D = 0.
C
C      DO 420 J=1,M1
C      YM = AMAX1(ABS(Y(1,J)),YMAX(J))
C      420 D = D+(Y(K,J)/YM)**2
C
C      PR1 = (D/EDWN)**ENQ1**1.3
C      IF (PR1.GE.PR2) GO TO 430
C      PR2 = PR1
C      L = -1
C      IF (KFLAG.LT.0.JR.NQ.GE.MAXDER) GO TO 450
C      D = 0
C
C      DO 440 J=1,M1
C      YM = AMAX1(ABS(Y(1,J)),YMAX(J))
C      440 D = D+((ER(J)-ESV(J))/YM)**2
C
C      PR1 = (D/EUP)**ENQ3**1.4
C      IF (PR1.GE.PR2) GO TO 450
C      PR2 = PR1
C      L = 1
C      R = 1./AMAX1(P32,1.E-5)
C      IF ((KFLAG.LT.0.JR.R.GE.1.1) GO TO 460
C      DOUB = 9
C      GO TO 510
C
C      460 NEWQ = NQ+L
C      K = NEWQ+1
C      IF (NEWQ.LE.NQ) GO TO 480
C      R1 = A(NEWQ)/FLOAT(NEWQ)
C
C      DO 470 J=1,NY
C      470 Y(K,J) = ER(J)*R1
C
C      480 CONTINUE
C      IF THE STEP WAS OKAY, SCALE THE Y VARIABLES IN ACCORDANCE
C      WITH THE NEW VALUE OF H. IF KFLAG < 0, HOWEVER, USE THE
C      SAVED VALUES (IN SAVE AND YLSV). IN EITHER CASE, IF THE ORDER

```


C HAS CHANGED IT IS NECESSARY TO FIX CERTAIN PARAMETERS BY CALLING LDA 4340
 C THE PROGRAM SEGMENT AT STATEMENT NUMBER 140.
 C
 1 DOUB = NQ LDA 4350
 IF (NNEWQ.EQ.NQ) GO TO 490 LDA 4360
 NQ = NEWQ LDA 4370
 ASSIGN 490 TO IRET LDA 4380
 GO TO 140 LDA 4390
 IF (KFLAG.GT.0) GO TO 500 LDA 4400
 RACUM = RACUM*R LDA 4410
 GO TO 560 LDA 4420
 R = AMAX1(AMIN1(HMAX/H,R),HMIN/H) LDA 4430
 H = H*R LDA 4440
 IWEVAL = 1 LDA 4450
 ASSIGN 510 TO IRET LDA 4460
 GO TO 610 LDA 4470
 C
 510 DO 520 I=1 M1 LDA 4480
 YMAMX(I) = AMAX1(ABS(Y(I,I)),YMAX(I)) LDA 4490
 C
 520 GO TO 170 LDA 4500
 C
 THE ERROR TEST HAS NOW FAILED THREE TIMES, SO THE DERIVATIVES ARE LDA 4510
 IN BAD SHAPE. RETURN TO FIRST ORDER METHOD AND TRY AGAIN. OF LDA 4520
 COURSE, IF NQ = 1 ALREADY, THEN THERE IS NO HOPE AND WE EXIT WITH LDA 4530
 KFLAG = -4. LDA 4540
 C
 530 IF (NQ.EQ.1) GO TO 540 LDA 4550
 NQ = 1 LDA 4560
 DOUB = 1 LDA 4570
 ASSIGN 570 TO IRET LDA 4580
 GO TO 140 LDA 4590
 C
 540 NQOLD = 1 LDA 4600
 KFLAG = -4 LDA 4610
 GO TO 320 LDA 4620
 KFLAG = -1 LDA 4630
 GO TO 170 LDA 4640
 C
 THIS SECTION RESTORES THE SAVED VALUES OF Y AND YL1 SCALING THE LDA 4650
 Y DERIVATIVES AS NECESSARY, AND THEN RETURNS TO THE PREDICTOR LOOP LDA 4660
 C
 560 H = HOLD*RACUM LDA 4670
 H = AMAX1(HMIN,Y,AMIN1(H,HMAX)) LDA 4680
 RACUM = H/HOLD LDA 4690
 R1 = 1. LDA 4700
 C
 DO 580 J=2,K LDA 4710
 R1 = R1*RACUM LDA 4720
 C
 570 LDA 4730
 C
 580 LDA 4740
 R1 = R1*RACUM LDA 4750
 C
 590 LDA 4760
 C
 600 LDA 4770
 C
 610 LDA 4780
 C
 620 LDA 4790
 C
 630 LDA 4800
 C
 640 LDA 4810


```

C      DO 580 I=1,NY
C      580 Y(J,I) = SAVE(J,I)*R1
C
C      DO 590 I=1,NY
C      590 Y(J,I) = SAVE(1,I)
C
C      CALL COPYZ (YL,YLSV,LCOPYL)
C      IWEVAL = 1
C      GO TO 200
C      KFLAG = -5
C      GO TO 160
C
C      THIS SECTION SCALES THE Y DERIVATIVES BY R***J
C
C      610 R1 = 1.
C
C      DO 620 J=2,K
C      R1 = R1*R
C
C      DO 620 I=1,NY
C      620 Y(J,I) = Y(J,I)*R1
C
C      GO TO IRET, (190,510)
C
C      THIS SECTION ALLOWS FOR RESTARTS AFTER SOLVING ANOTHER PROBLEM, OR
C      HAVING TERMINATED THE CURRENT COMPUTER RUN. SUBROUTINE LDASAV
C      SAVES THE NECESSARY VALUES WHICH ARE INTERNAL TO LDASUB. FOR
C      DOUBLE PRECISION, WITH COPYZ IN SINGLE PRECISION, THE NUMBER OF
C      LOCATIONS TO BE SAVED AND RESTORED, LCOPYS AND LCOPYR, MUST BE
C      SET TO 58.
C      IT IS ASSUMED THAT IN ADDITION TO THE VARIABLES IN THE ARRAY A
C      SAVED BY CALLING LDASAV, THE USER ALSO SAVES THE ARRAYS SAVE,
C      YLSV, YMAX, ESV, AND PW.
C
C      TO RESTART THE USER FIRST CALLS LDARST TO RESTORE THE VALUES SAVED
C      BY LDASAV, THEN RE-ENTERS LDASUB WITH JSTART < 0 AND WITH THE
C      OTHER PARAMETERS THE SAME AS RETURNED FROM THE LAST ENTRY TO
C      LDASUB, PARTICULARLY THOSE ARRAYS MENTIONED ABOVE.
C
C      ENTRY LDASAV(SAV)
C      LCOPYS = 29
C      CALL COPYZ (SAVE,A,LCOPYS)
C      CALL COPYZ (SAVE,Y,LCOPYY)
C      CALL COPYZ (YLSV,YL,LCOPYL)
C      RETURN

```



```

ENTRY LDARST(SAV)
LCOPYR = 29
CALL COPYZ(A, SAV, LCOPYR)
RETURN

C      1 FORMAT(2I5,1P14.6)
C      2 FORMAT(32X,1P14.6)
C      3 FORMAT(1,13,   NL =*,13,*    RMSEPS =*,1PE9.2,*   TEND =*
C      4 FORMAT(1,E9.2//) H =*,E9.2//)
C      1 E9.2(* NS NW Q   *,8X, *T   *,8X, *Y(1,*) AND YL(*) //)
C      END

C      SUBROUTINE COPYZ(S,Y,L)
C      DIMENSION S(1),Y(1),L
C
C THIS SUBROUTINE COPIES THE ARRAY Y, OF LENGTH L, INTO THE ARRAY S
C
C      IF(L.LE.0)RETJRN
C      DO 100 J=1,L
C      S(J) = Y(J)
C      RETURN
C      100
C
C      SUBROUTINE DERVAL(Y,YL,T,N,NY,W,KERET)
C
C THIS SUBROUTINE CALCULATES THE INITIAL VALUES OF THE DERIVATIVES
C IN THE GENERAL CASE. IT IS WRITTEN SO THAT IT SHOULD WORK IF THE
C FIRST NY EQUATIONS ALL INVOLVE DERIVATIVES. IT ATTEMPTS TO SOLVE
C THE FIRST NY EQUATIONS USING NEWTON'S METHOD, BUT SINCE IT TRIES
C TO EVALUATE DF/DY BY CALLING JACMAT IN SUCH A WAY AS TO MAKE THE
C DF/DY TERM INSIGNIFICANT, IT IS POSSIBLE THAT IT MAY FAIL FOR THAT
C REASON. IT MAY FAIL FOR OTHER REASONS, AS WELL. IF IT DOES FAIL
C THE USER CAN SUPPLY HIS OWN VERSION OF DERVAL OR MODIFY THIS
C ROUTINE IN SUITABLE FASHION. THIS ROUTINE ASSUMES THAT VALUES OF
C THE LINEAR VARIABLES HAVE BEEN SUPPLIED PREVIOUSLY IF THOSE
C MUST BE SOLVED FOR SIMULTANEOUSLY WITH THE DERIVATIVES, THE USER
C MUST SUPPLY HIS OWN VERSION OF DERVAL.

C      THE CALLING SEQUENCE FOR THIS SUBROUTINE IS
C      CALL DERVAL(Y,YL,T,N,NY,W,KERET)
C
C WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS

```



```

210 DER
220 DER
230 DER
240 DER
250 DER
260 DER
270 DER
280 DER
290 DER
300 DER
310 DER
320 DER
330 DER
340 DER
350 DER
360 DER
370 DER
380 DER
390 DER
400 DER
410 DER
420 DER
430 DER
440 DER
450 DER
460 DER
470 DER
480 DER
490 DER
500 DER
510 DER
520 DER
530 DER
540 DER
550 DER
560 DER
570 DER
580 DER
590 DER
600 DER
610 DER
620 DER
630 DER
640 DER
650 DER
660 DER
670 DER
680 DER

Y      - SAME AS IN LDASUB AND SDESOL. Y(1,I) CONTAINS THE
       - INITIAL VALUES OF THE DEPENDENT VARIABLES. THE
       - VALUES OF THE DERIVATIVES ARE RETURNED IN Y(2,I).
       - SAME AS IN LDASUB AND SDESOL. THE INITIAL VALUES OF
       - THE LINEAR VARIABLES MUST BE SUPPLIED TO THIS VERSION
       - INITIAL TIME DER
       - SAME AS IN LDASUB, TOTAL NUMBER OF VARIABLES DER
       - SAME AS IN LDASUB, NUMBER OF DIFFERENTIAL EQUATIONS DER
       - AND NONLINEAR VARIABLES DER
       - SCRATCH ARRAY W FROM THE CALLING SEQUENCE OF SDESOL.
W      - THIS CAN BE USED AS NEEDED IN THIS SUBROUTINE. DER
KERET - RETURN INDICATOR DER
       =0 NORMAL RETURN DER
       =1 ERROR RETURN DER
-----+
C      DIMENSION Y(7,1), YL(1), W(1)
C      DO 100 I=1,NY
      W(2*N+1) = AMAX1(ABS(Y(1,I)),1.)
      100 Y(3,I) = 0.
C      HINV = 16.***20
      KERET = 0.
      EPS2 = NY/1.E3
      EPS = SQRT(EPS2)
C      DO 110 IT=1,10
      DO 110 I=1,NY
      Y(2,I) = Y(3,I)/HINV
C      CALL DIFFUN (Y,YL,T,HINV,W)
      CALL JACMAT (Y,YL,T,HINV,-1.,NY,EPS,W,W(N+1),W(3*N+1))
      NEWPW = 1
C      DO 120 I=1,NY
      120 W(I) = W(I)*HINV
C      CALL NUTSL (W(3*N+1) TO 176(N+1),NY,NY,EPS,W(2*N+1),NEWPW,KRET)
      IF (KERET.NE.0) GO TO 176(N+1),NY,NY,EPS,W(2*N+1),NEWPW,KRET)
      ER = 0.
C      DO 130 I=1,NY
      Y(3,I) = Y(3,I)-W(N+1)
      130 ER = ER+(W(N+1)/AMAX1(ABS(Y(3,I)),1.))**2

```



```

140 IF (ER.LT.EPS2) GO TO 150
C CONTINUE
C GO TO 170
C 150 DO 160 I=1,NY
160 Y(2,I) = Y(3,I)
C RETURN
170 KERET = 1
RETURN
END

```

THIS SUBROUTINE IS REQUIRED BY THE TIME INTEGRATION PACKAGE AND
MUST BE SUPPLIED BY THE USER. ITS PURPOSE IS TO EVALUATE THE
FUNCTION AT CURRENT VALUES OF THE VARIABLES.

```

SUBROUTINE DIFFUN(Y,YL,T,HINV,DY)
REAL*8 C1,C2,C5
REAL*8 BIGG,BIGGG,BIGH
INTEGER*2 NAME(JB,NNZ,JC,NUMNP,NUMEL,NELDOF,CONN,
COMMON/GTRY2/NAME(4615),JA(183),JB(184),NNZ,JC,NUMNP,NUMEL,NELDOF,
1CONN(128,15),
DIMENSION Y(71),YL(1),DY(1),
COMMON/DELAY/SUM(183),PSI(93),
COMMON/COEF/C1(183),C2(183),C4(183),C5(183),
COMMON/SYSMT1/BIGG(4615),
COMMON/SYSMT2/BIGGG(4615),
COMMON/SYSMT3/BIGH(4615),
DATA TOLD/-1.0E-30/
IF(T.EQ.TOLD) GO TO 97
CALL SUM(Y,TOLD,T-TOLD)
96 TOLD=T
CONTINUE
CALL FEDBK(Y,TOLD)
DO 110 I=1,NNZ
IF(I.GT.93) GOTO 401
PSI(I)=Y(1,1)
D-005
D-010
D-015
D-020
D-025
D-035
D-050
D-055
D-065
D-075
D-080
D-085
D-090
D-100
D-110
D-115
D-120
D-125
D-130
D-135
D-140
CONTINUE
401
DY(I)=0.0
JB=JB(1)
JE=JB(1)+JA(1)-1
DO 120 J=JBB,JE
LL=NAME(J)

```



```

IF(LL.GT.NNZ) GO TO 120
DY(I)=DY(I)+BIGG(J)*Y(I,LL)*C2(LL)*C5(LL)+C5(LL)*SUM(LL)+C
110 1*(LL)*BIGG(J)*Y(I,LL)+C4(LL)*BIGH(J)*Y(I,LL)
CONTINUE
RETURN
END

```

C THIS SUBROUTINE IS REQUIRED BY THE TIME INTEGRATION PACKAGE AND
 C MUST BE SUPPLIED BY THE USER. ITS PURPOSE IS TO EVALUATE THE J
 C MATRIX NEEDED WHEN THE CORRECTOR EQUATION IS BEING SOLVED.

```

SUBROUTINE JACMAT(Y,YL,T,HINV,A2,N,NY,EPS,DY,F1,PW)
REAL*8 C1,C2,C3,C4,C5,BIGH
REAL*8 BIGGBIGGG,BIGH
INTEGER*2 NAME(JB,NNZ),JA(4615),NAME(4615),JB(184),NNZ,JC,NUMNP,NUMEL,NELDOF,
COMMON/GTRY2/NAME(4615),JA(183),JB(183),NNZ,JC,NUMNP,NUMEL,NELDOF,
1CONN(128,15)
DIMENSION Y(711),YL(711),DY(711),PW(711)
COMMON/COEF/C1(183),C2(183),C4(183),C5(183)
COMMON/SYSMT1/BIGG(4615)
COMMON/SYSMT2/BIGGG(4615)
COMMON/SYSMT3/BIGH(4615)
AH=-A2*HINV
DO 300 I=1,NNZ
JBB=JB(I)
JE=JB(I)+JA(I)-1
DO 310 J=JBB,JE
LL=NAME(J)
PW(J)=BIGG(J)*(AH+C2(LL))+C1(LL)*BIGGG(J)+C4(LL)*BIGH(J)
310 CONTINUE
300 RETURN
END

```

C THIS SUBROUTINE IS REQUIRED BY THE TIME INTEGRATION PACKAGE AND
 C MUST BE SUPPLIED BY THE USER. ITS PURPOSE IS TO SOLVE A LINEAR
 C SYSTEM OF EQUATIONS FOR THE NEWTON ITERATES WHEN THE CORRECTOR
 C EQUATION IS BEING SOLVED.

```

SUBROUTINE NUTSL(PW,DY,F1,N,NY,EPS,YMAX,NEWPW,KRET)
INTEGER*2 K,JA,JB,NNZ,JC,NUMNP,NUMEL,NELDOF,CONN

```

D-145

D-180
D-185
D-195
D-200

J-005

J-010
J-015
J-020
J-025
J-035
J-045
J-050

J-115
J-120
J-130
J-135

N-005
N-010


```

COMMON/GTRY2/ ((4615), JA(183), JB(184), VVZ, JC, NUMNP, NUMEL, NELDOF, CON
1N(128 15)
DIMENSION PW(1), DY(1), F1(1), YMAX(1)
DATA SPD, SPDM1/1.05/, .05/
KRET = 0
EPS = EPS**2
EPSA2 = EPS*.0001
NOIT = N
280 DO 281 I=1, NY
      LL=JB(I)
      DO 285 I=1, NY
          JBB=JB(I)+1
          JE=JB(I)+JA(I)-1
          FN = DY(I)
          DO 284 J=JBB, JE
              IF(K(J)*LE>0*K(J).GT.NY) GO TO 284
              FN=FN-PW(J)*F1(K(J))
          CONTINUE
          FN=FN/PW(LL)
          FN = FN*SPD - SPDM1*F1(I)
          ACH = F1(I) -
          CH = C + (AC/YMAX(I))**2
          RCH = RCH + (ACH/AMAX(ABS(FN), EPS))**2
282 F1(I) = FN
          IF(RCH.LT.EPS) GO TO 288
          IF(CH.LE.EPSA2) GO TO 288
287 CONTINUE
          KRET = 3
288 CONTINUE
          RETURN
        END

```

C-----
C THIS SUBROUTINE CALCULATES THE GGG ELEMENT MATRIX USING 21 POINTS
C OF INTEGRATION. IT THEN PUTS THE GGG ELEMENT MATRIX INTO THE BIGH
C SYSTEM MATRIX.

```

I-005
T-010
T-015
T-020
SUBROUTINE FEEDBK(Y, TOLD)
REAL*8 GGG,BIGH
REAL*8 WL,WS,CL1,CL2,CL3, FN,DL1,DL2,DL3,DS,DETJ
INTEGER*2 NAME, JA, JB, NNZ, JC, NUMNP, NUMEL, NELDOF, CONN

```



```

COMMON/GTRY2/ NAME( 4615 ), JA( 183 ), JB( 184 ), NNZ, JC, NUMNP, NUMEL, NELDOF,
1 CONN( 128,15 )
COMMON/GTRY1/ X( 505 ), P( 505 ), Z( 505 )
COMMON/XOCAL/ XX( 15 ), YY( 15 ), ZZ( 15 ), PPSI( 15 )
DIMENSION Y( 7,1 )
COMMON/TEMP/C3( 183 ) C6( 15 )
COMMON/GGGMAT/ GGG( 15,15 )
COMMON/SYSMT3/BIGH( 4615 )
COMMON/GAUSS/WL( 7 ), WS( 5 ), CL1( 7 ), CL2( 7 ), CL3( 7 ), FN( 15,21 ), DL1( 1
15,21 ), DL2( 15,21 ), DL3( 15,21 ), DLS( 15,21 ), DETJ( 21 )
DO 300 I=1,JC
BIGH( 1 )=0.0
CONTINUE
NNAAA=7
NNSSS=3
DO 800 L=1,NUMEL
DO 600 I=1,15
DO 610 J=1,15
GGG( I,J)=0.0
610 CONTINUE
DO 805 JJ=1,15
NN=CONN( L,JJ )
XX( JJ )=X( NN )
YY( JJ )=P( NN )
ZZ( JJ )=Z( NN )
1F( NN * GT * NNZ )=C3( NN )
PPSI( JJ )=Y( 1,NN )
GO TO 805
803 PPSI( JJ )=0.0
C6( JJ )=0.0
805 CONTINUE
A5=2.0/( ZZ( 1 )-ZZ( 15 ) )
DETJ=0
DO 802 K=1,NNSSS
DETJ=0
DO 798 M=1,NNAAA
1F( K.EQ.1 ) GO TO 111
1F( K.EQ.2 ) GO TO 222
1F( K.EQ.3 ) GO TO 333
GO TO 788
111 N=M
222 GO TO 788
333 N=M+14
788 CONTINUE
T-025
T-030
T-035
T-045
T-040
T-055
T-065
T-070
T-085
T-090
T-095
T-100
T-120
T-125
T-130
T-135
T-140
T-145
T-155
T-160
T-165
T-170
T-175
T-180
T-185
T-190
T-195
T-200
T-205
T-210
T-215
T-220
T-225
T-230
T-235
T-240
T-245
T-250
T-255
T-260
T-265
T-270

```



```

T1=DL1(1,N)*XX(1)+DL1(2,N)*XX(2)-DL3(4,N)*XX(4)-DL3(5,N)*XX(5)
T2=DL1(7,N)*XX(7)-DL3(9,N)*XX(9)+DL1(10,N)*XX(10)+DL1(11,N)*XX(11)
T3=(DL1(6,N)-DL3(6,N))*XX(13,N)*XX(13)-DL3(14,N)*XX(14)
T4=(DL1(15,N)-DL3(15,N))*XX(15)
DJ1=T1+T2+T3+T4
D1=DL1(1,N)*YY(1)+DL1(2,N)*YY(2)-DL3(4,N)*YY(4)-DL3(5,N)*YY(5)
D2=DL1(7,N)*YY(7)-DL3(9,N)*YY(9)+DL1(10,N)*YY(10)+DL1(11,N)*YY(11)
D3=(DL1(6,N)-DL3(6,N))*YY(6)-DL3(13,N)*YY(13)-DL3(14,N)*YY(14)
D4=(DL1(15,N)-DL3(15,N))*YY(15)
DJ12=DL1(D2+D3+D4)
T5=DL2(2,N)*XX(2)+DL2(3,N)*XX(3)-DL3(5,N)*XX(5)-DL3(6,N)*XX(6)
T6=DL2(8,N)*XX(8)-DL3(9,N)*XX(9)+(DL2(4,N)-DL3(4,N))*XX(4)
T7=DL2(11,N)*XX(11)+DL2(12,N)*XX(12)+(DL2(13,N)-DL3(13,N))*XX(13)
T8=-DL3(14,N)*XX(14)-DL3(15,N)*XX(15)
DJ21=T5+T6+T7+T8
D5=DL2(2,N)*YY(2)+DL2(3,N)*YY(3)-DL3(5,N)*YY(5)-DL3(6,N)*YY(6)
D6=DL2(8,N)*YY(8)-DL3(9,N)*YY(9)+(DL2(4,N)-DL3(4,N))*YY(4)
D7=DL2(11,N)*YY(11)+DL2(12,N)*YY(12)+(DL2(13,N)-DL3(13,N))*YY(13)
D8=-DL3(14,N)*YY(14)-DL3(15,N)*YY(15)
DETJ(N)=DJ1*D5+D6+D7+D8
DETJ1=DETJ(N)*WL(M)+DETJ1
CONTINUE
DETJ=DETJ+WS(K)*DETJ1
802
DO 700 J=1,15
DO 710 I=1,15
FHH=0.0
DO 806 K=1,NNNN
FH=0.0
DO 799 M=1,NNAAA
DTT1=0.0
DTT2=0.0
DTT3=0.0
IF(K.EQ.1) GO TO 7888
IF(K.EQ.3) GO TO 7888
GO TO 7888
N=M
GO TO 7888
2222 N=M+7
GO TO 7888
3333 N=M+14
CONTINUE
7888
TT1=FN(1,N)*PPSI(1)*C6(1)+FN(2)*PPSI(2)*C6(2)+FN(3)*PPSI(3)*C6
1(3)+FN(4,N)*PPSI(4)*C6(4)+FN(5,N)*PPSI(5)*C6(5)+FN(6,N)*PPSI(6)*C6
1(6)+FN(7,N)*PPSI(7)*C6(7)+FN(8,N)*PPSI(8)*C6(8)
TT2=FN(9,N)*PPSI(9)*C6(9)+FN(10,N)*PPSI(10)*C6(10)+FN(11,N)*PPSI(11)

```



```

11)*C6(11)+FN(12)*PPSI(12)*C6(14)*FN(15,N)*PPSI(13)*C6(15)
1N)*PPSI(14)*C6(14)+FN(15,N)*PPSI(15)*C6(15)
TT3=TT1+TT2+1
FH=FH+W(M)*FN(J,N)*FN(1,N)*ALOG(TT3)*DETJ(N)
FH=FH+WS(K)*FH+FH
CONTINUE
806 CONTINUE
GGG(J,I)=FHH/A5
710 CONTINUE
700 CONTINUE
C INSERT INTO SYSTEM MATRIX
DO 20 K=1,15
KK=CONN(L,K)
IF(KK.GT.NNZ) GO TO 20
KKK=JA(KK)
LLL=JB(KK)-1
DO 10 I=1,15
II=CONN(L,I)
DO 91 M=1,KKK
MM=LLL+M
KKM=NAME(MM)
IF(II.EQ.KKM) GO TO 92
91 CONTINUE
GO TO 10
92 CONTINUE
BIGH(MM)=BIGH(MM)+GGG(K,I)
10 CONTINUE
20 CONTINUE
800 RETURN
END

```

C-----
THE CUMULATIVE CONTRIBUTION OF THE DELAYED NEUTRON FLUX IS
CALCULATED BY THIS SUBROUTINE.

```

SUBROUTINE SUMT(Y,T,H)
DIMENSION Y(71)
COMMON/DELAY/ SUM(183),PSI(93)
Q=0.4349710
TC=-Q*H
DO 100 I=1,93
SUM(I)=SUM(I)+EXP(-Q*H)+0.50*H*(PSI(I)*EXP(TC)+Y(1,I))
100 CONTINUE
RETURN
END

```

S-005
S-010
S-030
S-040
S-050
S-055
S-060

LIST OF REFERENCES

1. Nguyen, D. H. and D. Salinas, "Finite Element Solution of Space-Time Nonlinear Reactor Dynamics," Nuclear Science and Engineering, v. 60, p. 120-130, June 1976.
2. Hanford Engineering Development Laboratories Report HEDL-TME74-47, Melt III-A Neutronics Thermal-Hydraulic Computer Program for Fast Reactor Safety, v. 1, by A. E. Walter and others, 1974.
3. Hetrick, D. L., Dynamics of Nuclear Reactors, p. 1-15, University of Chicago Press, 1971.
4. Lamarch, J. R., Introduction to Nuclear Reactor Theory, Addison-Wesley, 1972.
5. Nguyen, D. H., "The Time-Dependent Nuclear Reactor with Feedback," Nuclear Science and Engineering, v. 55, p. 307-319, June 1974.
6. Nguyen, D. H., "The New Equilibrium State of a Perturbed Nuclear Reactor with Negative Feedback," Nuclear Science and Engineering, v. 52, p. 292-298, June 1973.
7. Naval Postgraduate School Report NPS-53Fe76051, A Program for the Numerical Solution of Large Sparse Systems of Algebraic and Implicitly Defined Stiff Differential Equations, by R. Franke, May 1976.
8. Naval Postgraduate School Report NPS-59Zc76111, An Optimum Compact Storage Scheme for Nonlinear Reactor Problems by FEM, by D. Salinas, D. H. Nguyen, and R. Franke, 1976.
9. Norrie, D. H. and G. de Vries, The Finite Element Method; Fundamentals and Applications, Chapter 5, Academic Press, 1973.
10. Salinas, D., D. H. Nguyen and T. W. Southworth, "Finite Element Solution of a Nonlinear Nuclear Reactor Dynamics Problem," International Conference on Computational Methods in Nonlinear Mechanics, Austin, Texas, p. 541-550, 1974.
11. Zienkiewicz, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, 1971.
12. Cook, R. D., Concepts and Applications of Finite Element Analysis, Wiley & Sons, 1974.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3. Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1
4. Dr. D. H. Nguyen (thesis advisor) 4625 Larchmont NE Albuquerque, New Mexico 87115	1
5. Assoc. Professor D. Salinas (thesis advisor) Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1
6. Assoc. Professor R. Franke (second reader) Department of Mathematics Naval Postgraduate School Monterey, California 93940	1
7. LT E. C. Bermudes, USN (student) 3721-D McCornack Rd. Schofield Barracks, Hawaii 96557	1
8. Professor Gilles Cantin Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1

7-74078 28-150

Thesis 168527
B4524 Bermudes
c.1 Finite element solution of a three-dimensional nonlinear reactor dynamics problem with feedback.

Thes
B452
c.1

Thesis 163527
B4524 Bermudes
c.1 Finite element solution of a three-dimensional nonlinear reactor dynamics problem with feedback.

thesB4524
Finite element solution of a three-dimen

3 2768 002 13763 0
DUDLEY KNOX LIBRARY