Catastrophes minimization on the equilibrium manifold

Andrea Loi* Stefano Matta[†] (University of Cagliari)

April 27, 2010

Abstract: In a fixed total resources setting we show that there exists a Riemannian metric g on the equilibrium manifold, which coincides with any (fixed) Riemannian metric with economic meaning in an arbitrarily small neighborhood of the set of critical equilibria such that a minimal geodesic connecting two regular equilibria is arbitrarily close to a smooth path which minimizes catastrophes.

Keywords: Equilibrium manifold, regular economies, catastrophes, Riemannian metric.

JEL Classification: D50, D51, D52, D80.

^{*}Dipartimento di Matematica e Informatica, E-mail: loi@unica.it

[†]Correspondence to S. Matta, Dipartimento di Economia, University of Cagliari, viale S. Ignazio 84, 09123 Cagliari, Italy, tel. 00390706753405, Fax 0039070660929 E-mail: smatta@unica.it

1 Introduction

It has been shown by [5] the existence of a Riemannian metric g on the equilibrium manifold E(r), which coincides with any given metric g_{eco} with economic meaning outside an arbitrarily small neighborhood of the set of critical equilibria, such that a minimal geodesic connecting two regular equilibria intersects the set of critical equilibria $E_c(r)$ transversally in a finite number points (see the Introduction in [5] for an economic interpretation). The idea behind this construction is that discontinuities of prices (catastrophes), which can arise when a path crosses the set of critical equilibria, should be reflected by the Riemannian metric: hence catastrophic paths should be longer than regular paths. Since the metric by [5] does not provide a criterion to choose amongst paths which have a different but finite number of intersections with $E_c(r)$, it is an interesting economic problem to construct a metric which enables us to choose paths which minimize this number.

This issue is strictly related to the investigation on catastrophes minimization led by [6], where the authors have defined the length of a path γ , $l(\gamma)$, connecting two regular equilibria x and y of the equilibrium manifold E(r), as the number of intersection points of γ with the set of critical equilibria, $E_c(r)$. Then the "distance" d(x,y) between x and y can be defined as the infimum of $l(\gamma)$, for all γ connecting x and y. A minimal path γ , i.e., $l(\gamma) = d(x,y)$, is showed to exist. The crucial point is that in [6] there is not any Riemannian metric on the equilibrium manifold.

In this paper we show that there exists a Riemannian metric on E(r) which enables to improve the results by [5, 6]. Our main result is Theorem 4.1, where we show that there exists a Riemannian metric g on E(r) which coincides with g_{eco} in an arbitrarily small neighborhood of critical equilibria and which satisfies the following condition. A minimal geodesic connecting two regular equilibria x and y is arbitrarily close to a path still connecting x and y, which is minimal as in [6], i.e. $l(\gamma) = d(x, y)$.

This paper is organized as follows. Section 2 recalls the economic setting. In Section 3 we consider the catastrophes minimization problem relative to a one connected component of the codimension one stratum of the set of critical equilibria. Finally, in Section 4 we provide a solution to the minimization problem in the general case (Theorem 4.1).

2 Economic setting

We consider a pure exchange economy with l goods and m consumers. Let $S = \{p = (p_1, \ldots p_l) \mid p_j > 0, j = 1, \ldots l, p_l = 1\}$ be the set of normalized prices. Denote by $\Omega = (\mathbb{R}^l)^m$ the space of endowments $\omega = (\omega_1, \ldots, \omega_m), \ \omega_i \in \mathbb{R}^l$. We assume that the standard assumptions of smooth consumer's theory are satisfied (see [2] Chapter 2). The problem of maximizing the smooth utility function $u_i : \mathbb{R}^l \to \mathbb{R}$ subject to the budget constraint $p \cdot \omega_i = w_i$ gives the unique solution $f_i(p, w_i)$, i.e. consumer's i demand. Let

E be the closed set consisting of pairs $(p,\omega) \in S \times \Omega$ satisfying the following equations:

$$\sum_{i=1}^{m} f_i(p, p \cdot \omega_i) = \sum_{i=1}^{m} \omega_i.$$

The set E is a smooth submanifold of $S \times \Omega$ globally diffeomorphic to \mathbb{R}^{lm} [2, p. 73]. Let $\pi: E \to \Omega$ be the *natural projection*, i.e. the smooth map defined by the restriction to E of $(p,\omega) \mapsto \omega$. Let E_c be the set of critical equilibria, namely the pairs $(p,\omega) \in E$ such that the derivative of π at (p,ω) is not onto. The set of *singular economies*, denoted by Σ , is the image via π of the set E_c . It is a closed and measure zero subset of Ω . The set of *regular economies* $\mathcal{R} = \Omega(r) \setminus \Sigma$ represent the regular values of the map π . The map $\pi|_{\pi^{-1}(R)}: \pi^{-1}(R) \to R$ is a finite covering [2, p. 91].

If total resources are fixed, the equilibrium manifold is defined as

$$E(r) = \{(p, \omega) \in S \times \Omega(r) | \sum_{i=1}^{m} f_i(p, p \cdot \omega_i) = r\},$$

where $r \in \mathbb{R}^l$ is the vector representing the total resources of the economy and $\Omega(r) = \{\omega \in \mathbb{R}^{lm} | \sum_{i=1}^m \omega_i = r\}$. Denote by $\pi : E(r) \to \Omega(r)$ the restriction of the natural projection to E(r) and by $E_c(r)$ the set of critical points of π . The set $E_c(r)$ in the fixed total resource setting has a nice topological structure (see [1] and [2]):

Theorem 2.1 (Balasko) E(r) is a smooth manifold globally diffeomorphic to $\mathbb{R}^{l(m-1)}$ and $E_c(r)$ is a disjoint union of closed smooth submanifolds S_i , $i = 1, \ldots, \inf(l-1, m-1)$ of E(r). The manifold S_i has dimension $l(m-1) - i^2$ and $S_i = \emptyset$ for $i > \inf(l-1, m-1)$.

Note that for a fixed i the manifold S_i could not be connected. Moreover, S_1 is the only stratum which disconnects E(r).

3 Product metric on a connected component of S_1

In this section we analyze the catastrophes minimization issue by focusing our attention on a connected component of S_1 , the codimension one stratum of the set of critical equilibria $E_c(r)$. We denote this component by S. Let g_{eco} be a fixed Riemannian metric on E(r) with an a priori economic meaning. Our aim is to construct a Riemannian metric g on E(r) which agrees with g_{eco} outside an arbitrarily small neighborhood of S and such that a minimal geodesic connecting two regular equilibria intersects S in the minimum number of points, namely 0 (resp. 1) if the regular equilibria belong (resp. do not belong) to the same connected component of $E(r) \setminus S$ (see Corollary 3.3 below). Let s_0 and s_1 be two critical equilibria belonging to S. We start our analysis by constructing a neighborhood S^{δ} of S (S^{δ} depends on a real number $\delta > 0$ and S^{δ} approaches S as $\delta \to 0$) and a Riemannian metric g on E(r), which agrees with g_{eco} outside S^{δ} , satisfying the following property: if $\gamma : I = [0,1] \to E(r)$ is a minimal geodesic such that $\gamma(0) = s_0$ and $\gamma(1) = s_1$, then $\gamma(I) \subset S$.

Consider the normal bundle of S in E(r), $N(S) = \{(x,v) \in S \times \mathbb{R} \mid v \in N_x(S)\}$, where $N_x(S)$ is the g_{eco} -orthogonal complement of S. By the Tubular Neighborhood Theorem [4, p. 76], there exists a diffeomorphism $T: U \to V$ from an open neighborhood U of S in E(r) onto an open neighborhood V of S in N(S), which maps each $S \in S$ to the zero vector at S. Choose $S \in S$ osufficiently small in such a way that $S \times (-\delta, \delta) \subset V \subset N(S)$ and let $S^{\delta} \subset U = T^{-1}(S \times (-\delta, \delta))$. Endow $S \times (-\delta, \delta)$ with the product metric $S_{p} = S_{s} \oplus S_{\delta}$, where $S_{s} = S_{\delta}$ is any Riemannian metric on $S_{\delta} = S_{\delta}$ and $S_{\delta} = S_{\delta} = S_{\delta}$ and $S_{\delta} = S_{\delta} = S_{\delta}$ where $S_{\delta} = S_{\delta} = S_{\delta}$ is the standard Riemannian metric on $S_{\delta} = S_{\delta} = S_{\delta}$. This means that given the two Riemannian manifolds $S_{\delta} = S_{\delta} = S_{\delta}$ and $S_{\delta} = S_{\delta} = S_{\delta} = S_{\delta}$ with the product structure $S_{\delta} = S_{\delta} = S_{\delta} = S_{\delta}$ with the product structure $S_{\delta} = S_{\delta} = S_{\delta}$ with the product structure $S_{\delta} = S_{\delta} = S_{\delta}$, where $S_{\delta} = S_{\delta} = S_{\delta}$ is the standard Riemannian metric on $S_{\delta} = S_{\delta} = S_{\delta}$.

$$(g_p)_{(x,y)}(v_1,v_2) = (g_s)_{(x)}(d\pi_s(v_1), d\pi_s(v_2)) + (g_\delta)_{(y)}(d\pi_\delta(v_1), d\pi_\delta(v_2)),$$

$$\forall (x,y) \in \mathcal{S} \times (-\delta,\delta), \ v_1,v_2 \in T_{(x,y)}(\mathcal{S} \times (-\delta,\delta))$$

where $\pi_s: \mathcal{S} \times (-\delta, \delta) \to \mathcal{S}$, and $\pi_{\delta}: \mathcal{S} \times (-\delta, \delta) \to (-\delta, \delta)$ are the natural projections. Finally, endow \mathcal{S}^{δ} with the *pull-back* metric

$$(g_p^*)_x(v,w) = (g_p)_{T(x)}(dT_x(v),dT_x(w)), \forall x \in \mathcal{S}^{\delta}, \forall v, w \in T_x\mathcal{S}^{\delta}.$$

Let C be a closed neighborhood of S such that $S^{\delta} \subset C \subset U$. Consider the partition of unity $\lambda_{\alpha} : E(r) \to [0,1]$, $\alpha = 1,2$, subordinate to the open cover of E(r) given by $U_1 = E(r) \setminus C$ and $U_2 = U$ such that

- $\lambda_1(x) + \lambda_2(x) = 1, \forall x \in E(r)$
- supp $\lambda_{\alpha} \subset U_{\alpha}$, $\alpha = 1, 2$.

Consider on E(r) the Riemannian metric

$$q = \lambda_1 q_{eco} + \lambda_2 q_n^*$$

It is equal to g_{eco} on $E(r) \setminus \text{supp}(\lambda_2)$ and coincides with g_p on \mathcal{S}^{δ} . Suppose now that γ is any smooth curve connecting s_0 and s_1 , i.e. $\gamma(0) = s_0$ and $\gamma(1) = s_1$, such that $\gamma(I) \subset \mathcal{S}^{\delta}$ (see Figure 1).

Figure 1: The path γ is not a minimal geodesic.

With a slight abuse of notation, identifying S^{δ} and $S \times (-\delta, \delta)$ via the diffeomorphism T, we can write $\gamma(t) = (\gamma_s(t), \gamma_\delta(t))$, where the first component belongs to S and the second one belongs to S. Then

$$l_g(\gamma) = \int_0^1 \|\gamma'(t)\|_{g_p} dt = \int_0^1 (\|\gamma'_s(t)\|_{g_s} + \|\gamma'_\delta(t)\|_{g_\delta}) dt \ge \int_0^1 \|\gamma'_s(t)\|_{g_s} dt = l_g(\gamma_s).$$

(Here $l_g(\gamma)$ (resp. $l_g(\gamma_s)$) denotes the length of γ (resp. γ_s) with respect to g, $\|\gamma'(t)\|_{g_p} = ((g_p)_{\gamma(t)}(\gamma'(t), \gamma'(t)))^{1/2}$ and similarly for the other terms).

Assume now that γ is a minimal geodesic, i.e., $l_g(\gamma) \leq l_g(\sigma)$ for all path $\sigma: I \to E(r)$ connecting s_0 and s_1 , Then the previous inequality is indeed an equality, i.e. $\|\gamma'_{\delta}(t)\|_{g_{\delta}} = 0$ and this forces the geodesic to lie on \mathcal{S} , i.e. $\gamma(I) \subset \mathcal{S}$.

What if a subset of γ does not belong to S^{δ} as in Figure 2?

Figure 2: The path γ is not a minimal geodesic.

In this case we need to change the metric g in a suitable way. Observe as the

Riemannian metric g_s on \mathcal{S} has not played any essential role so far. Let $\operatorname{diam}_{g_s}(\mathcal{S})$ be the diameter of \mathcal{S} with respect to the metric g_s , namely

$$\operatorname{diam}_{g_s}(\mathcal{S}) = \max_{x,y \in \mathcal{S}} d_{g_s}(x,y),$$

where $d_{g_s}: \mathcal{S} \times \mathcal{S} \to \mathbb{R}_+$ is the distance on \mathcal{S} induced by the metric g_s , i.e.

$$d_{g_s}(x,y) = \inf_{\sigma} \int_0^1 ||\sigma'(t)||_{g_{\mathcal{S}}} dt$$

and σ is varying amongst all the paths $\sigma: I \to \mathcal{S}$ such that $\sigma(0) = x$ and $\sigma(1) = y$. By choosing g_s in such a way that $\operatorname{diam}_{g_s}(\mathcal{S}) \leq 2\delta^{-1}$, where δ is the radius of \mathcal{S}^{δ} , one can change the metric g accordingly. Then, for any curve γ as in Figure 2, it is easily seen that $l_g(\gamma) > d_g(s_0, s_1)$ and, therefore, γ cannot be a minimal geodesic.

We summarize what we have just showed in the following proposition.

Proposition 3.1 Let g_{eco} be a metric on E(r) with an economic meaning. Then there exists a Riemannian metric g on E(r) which coincides with g_{eco} outside an arbitrarily small neighborhood of S and such that any minimal geodesic connecting two critical equilibria $s_0, s_1 \in S$ must belong to S.

Remark 3.2 Notice that the submanifold $S \subset E(r)$ is totally geodesic with respect to the metric g constructed in Proposition 3.1 (this property has also played a crucial role to show the main result in [5]). Indeed, the condition that any minimal geodesic connecting two critical equilibria of S must belong to S implies that any geodesic $\gamma: I \to S$ starting at $s = \gamma(0) \in S$ and such that $\gamma'(0) \in T_sS$ must belong to S, i.e. S is totally geodesic. On the other hand there exist totally geodesic submanifolds where this condition is not fulfilled. Take, for example, the unit sphere $S^2 \subset \mathbb{R}^3$ of equation $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ (with the spherical metric induced by the Euclidean metric of \mathbb{R}^3), its totally geodesic submanifold (the equator) $S^1 = S^2 \cap \{z = 0\}$ and the points x = (1,0,0) and y = (-1,0,0). Then the smooth curve $\gamma: I \to S^2$, $\gamma(t) = (\cos \pi t, 0, \sin \pi t)$, namely the meridian of S^2 connecting x and y and passing through the north pole $(0,0,1) = \gamma(\frac{1}{2})$, is a minimal geodesic of S^2 which does not belong to S^1 .

We finally state and prove the main result of this section.

Corollary 3.3 Let g_{eco} be a metric on E(r) with an economic meaning. Then there exists a Riemannian metric g on E(r) which coincides with g_{eco} outside an arbitrarily small neighborhood of S and such that any minimal geodesic $\gamma: [0,1] \to E(r)$ connecting

 $^{^{1}\}text{A metric }g_{s}\text{ with this property can be constructed as follows. Consider, for example, the Riemannian metric }\hat{g}\text{ on }E(r)\text{ obtained by the restriction of the spherical metric on }S^{l(m-1)}=E(r)\cup\{\infty\},\text{ the }Alexandroff\text{ one-point compactification of }E(r)\simeq\mathbb{R}^{l(m-1)}.\text{ Then the restriction of }\hat{g}\text{ on }S,\text{ still denoted by }\hat{g},\text{ satisfies }\mathrm{diam}_{\hat{g}}<\infty.\text{ Therefore the metric }g_{s}=\frac{2\delta}{\mathrm{diam}_{\hat{g}}(S)}\hat{g}\text{ satisfies }\mathrm{diam}_{g_{s}}(S)\leq2\delta.$

two regular equilibria x and y intersects S in at most one point. Moreover γ intersects S exactly in one point if and only if x and y belong to different connected components of $E(r) \setminus S$.

Proof: It follows by Theorem 2.1 that S is a connected codimension one submanifold of E(r) and hence $E(r) \setminus S$ consists of two disjoint connected open sets, say D_1 and D_2 , which have S as common boundary (see [6] for details). Since S is a totally geodesic submanifold of the Riemannian manifold (E(r), g) the geodesic joining x and y intersects S in a finite number of points (cfr. Remark 3.2 or [5]). If $x, y \in D_1$ (resp. $x, y \in D_2$) then $\sharp \{\operatorname{Im} \gamma \cap S\}$ is even. Hence, by Proposition 3.1, γ cannot cross S. Similarly, if $x \in D_1$ and $y \in D_2$ (or viceversa) $\sharp \{\operatorname{Im} \gamma \cap S\}$ is odd. Hence, again by Proposition 3.1, γ is forced to intersect S in exactly one point.

4 Main result

In this section our aim is to minimize catastrophes in the general case, where $E_c(r)$ is composed by a disjoint union of closed smooth submanifolds S_i , i denoting the codimension of the *stratum* of the set of critical equilibria with respect to E(r). In [6] we have considered a similar minimization problem. We have defined the length of a path γ , $l(\gamma)$, connecting any two regular equilibria x and y, as the number of its intersection points with $E_c(r)$ and the "distance" d(x,y) as the infimum of $l(\gamma)$, where γ is varying amongst all the smooth curves joining x and y. We have shown the existence of a minimal path γ , i.e., such that $l(\gamma) = d(x,y)$.

The crucial difference with respect to the present paper is that in [6] the equilibrium manifold is not endowed with a Riemannian structure. Moreover, according to this definition of distance, only S_1 matters in their analysis, since it disconnects. On the contrary, in this paper we have the more powerful result that there is a Riemannian metric which realizes the distance. In [5] we have also considered the catastrophes-minimization problem in the general set up. We have showed that there exists a Riemannian metric on E(r) such that a geodesic joining any two regular equilibria intersects $E_c(r)$ in a finite number of points. This construction does not rule out that the geodesic may intersect S_1 even when x and y belong to the same connected component. Both the results by [5, 6] are improved by the following theorem, where we construct a Riemannian metric on E(r) such that a minimal geodesic realizes the distance in terms of catastrophes.

Theorem 4.1 Let g_{eco} be any Riemannian metric on the equilibrium manifold E(r). Then there exists a Riemannian metric g on E(r) which coincides with g_{eco} in an arbitrarily small neighborhood of $E_c(r)$ and which satisfies the following condition. Let $\sigma: [0,1] \to E(r)$ be a minimal geodesic connecting two regular equilibria. Then there

²It is worth pointing out that the the map $d: (E(r) \setminus E_c(r)) \times (E(r) \setminus E_c(r)) \to \mathbb{R}$, defined by d(x, y) is not a *distance* in the standard metric spaces terminology. For example, if x and y are distinct points belonging to the same connected components $E(r) \setminus E_c(r)$ then d(x, y) = 0. Nevertheless, it defines a distance on the quotient space $(E(r) \setminus E_c(r))/\sim$, where $x \sim y$ if and only if they belong to the same connected component of $E(r) \setminus E_c(r)$ (see [6] for details).

exists a smooth curve $\gamma:[0,1] \to E(r)$, joining x and y, arbitrarily close to σ and intersecting $E_c(r)$ transversally in a finite number of points equals to the distance d(x,y).

Proof: By Theorem 2.1 we can write $S_1 = \bigcup_j S^j$ where each S^j is a connected codimension one submanifold of E(r) and $S^j \cap S^k = \emptyset$, for $j \neq k$. It is not hard to extend the construction used to prove Corollary 3.1 (each S^j plays the role of S) to get a Riemannian metric g on E(r) such that any minimal geodesic $\sigma: I \to E(r)$ connecting two regular equilibria $x, y \in E(r) \setminus E_c(r)$ intersects each S^j in at most one point and exactly in one point if x and y belong to different connected components of $E(r) \setminus S^j$. Note that σ does not generally realize the distance d(x, y) between x and y since the set $A = \operatorname{Im} \sigma \cap (E_c(r) \setminus S_1)$ can be non-empty. If $A = \emptyset$ then $\gamma = \sigma$ is the desired path. Otherwise, by the Transversality Theorem [4, p. 68-69], σ can be perturbed to a smooth path γ joining x and y arbitrarly close to σ and transversal to $E_c(r) \setminus S_1$. Since the codimension of $E_c(r) \setminus S_1$ is greater than one, γ will be transversal to $E_c(r) \setminus S_1$ if it does not intersect it and we are done.

Remark 4.2 In the case of two agents and two commodities, i.e. l = m = 2, it follows by Theorem 2.1 that there are not strata of critical equilibria of codimension greater than one: then the minimal geodesic connecting two regular equilibria needs not to be perturbed. In the general case, the probability that this perturbation will actually occur is zero since transversality is a generic property.

References

- [1] Balasko, Y., 1979, Geometric approach to equilibrium analysis, Journal of Mathematical Economics, 6, 217-228.
- [2] Balasko, Y., 1988, Foundations of the Theory of General Equilibrium, Academic Press, Boston
- [3] Do Carmo, M. P., 1992, Riemannian Geometry, Birkhäuser, Boston.
- [4] Guillemin, V. and Pollack, A., 1974, Differential Topology, Prentice Hall, Englewood Cliffs.
- [5] Loi, A. and Matta, S. 2008, Geodesics on the equilibrium manifold, Journal of Mathematical Economics, 44, 1379-1384.
- [6] Loi, A. and Matta, S. 2009, Evolution paths on the equilibrium manifold, Journal of Mathematical Economics, 45, 854-859.