Lecture 6 - DAMLF | ML1

Ingredients:

Task to perform

Type of **Experience**

Performance *measure*

WHAT IS A LEARNING ALGORITHM?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E"

-Tom Mitchell

Ingredients:

Task to perform

Type of **Experience**

Performance measure

PERFORMANCE

- Numerical Performance Measures:
 - · Cost functions used to fit training data
 - Cost functions used to assess generalization error

Ingredients:

Task to perform

Type of Experience

Performance measure

PERFORMANCE

- Numerical Performance Measures:
 - Cost functions used to fit training data
 - Cost functions used to assess generalization error
- Other measures to assess generalization error

Banknote Authentication

Suppose there are 1000 examples in the **cross-validation** set $(m_{cv} = 1000)$, and your algorithm misclassifies 200 forged Euro banknotes as genuine.

What can you do?

Banknote Authentication

EDA: Exploratory Data Analysis.
 Are specific types (denomination) of notes are misclassified?

5, 10, 20, 50, etc.

¹See UCI repository https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Banknote Authentication

EDA: Exploratory Data Analysis.
 Are specific types (denomination) of notes are misclassified?

5, 10, 20, 50, etc.

2. **Feature Engineering**: What features (cues) do **you** think would have helped the algorithm classify them correctly?¹

variance of Wavelet skewness of Wavelet curtosis of Wavelet entropy of image

¹See UCI repository https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Numerical Evaluation

It is important to incorporate a **numerical evaluation** of your algorithm, such as **cross-validation error**, in order to evaluate your algorithm's performance as you make changes to it.

However, care and thought is required in picking a metric.

Numerical evaluation and Skewed Classes

To illustrate why numerical evaluation requires **practical** judgment, consider the case of **skewed classes**.

Suppose you train a logistic regression model to detect malignant tumors, where

y = 1, if the tumor is malignant

y = 0, if the tumor is benign

and suppose you got a 1% error on your test set, (i.e., 99% correct diagnoses).

Suppose you train a logistic regression model to detect malignant tumors, where

y = 1, if the tumor is malignant

y = 0, if the tumor is benign

and suppose you got a **1% error** on your test set, (i.e., 99% correct diagnoses).

However, suppose only 0.5% of patients have cancer (a malignant tumor).

Suppose you train a **logistic regression** model to detect malignant tumors, where

```
y = 1, if the tumor is malignant
```

y = 0, if the tumor is benign

and suppose you got a **1% error** on your test set, (i.e., 99% correct diagnoses).

However, suppose only 0.5% of patients have cancer (a malignant tumor).

In this situations, our 1% error no longer looks impressive:

Suppose you train a **logistic regression** model to detect malignant tumors, where

```
y = 1, if the tumor is malignant
```

```
y = 0, if the tumor is benign
```

and suppose you got a **1% error** on your test set, (i.e., 99% correct diagnoses).

However, suppose only 0.5% of patients have cancer (a malignant tumor).

In this situations, our 1% error no longer looks impressive:

```
def easyPredictCancer(x):
    y = 0  # ignore x
    return y
```

The non-learning easyPredictCancer has a 0.5% error rate!

Skewed Classes

Skewed classes appear when you have a lot more instances of some classes than of others.

Example: The occurrence of malignant tumors,

$$95\% (y = 0)$$

$$5\% (y = 1)$$

is an example of a skewed class.

Example: The occurrence of credit card fraud,

$$99.7\% (y = 0)$$

$$0.3\%$$
 ($y = 1$)

is an example of a skewed class.

Limits of Classification Accuracy

NUMERICAL ACCURACY SCORES

It is useful to have a single numerical "score" to evaluate learning algorithms.

However, moving from

99.3% accuracy (0.70% error)

to

99.7% accuracy (0.30% error)

is **not always** an indication of an improvement to your classifier.

Consider two new quantities for making numerical evaluations.

Consider two new quantities for making numerical evaluations.

We are interested in detecting y = 1 for rare classes.

Actual Class		
	1	0
1		
0		

Consider two new quantities for making numerical evaluations.

We are interested in detecting y = 1 for rare classes.

	Actual Class		
	1	0	
1	true		
	positive		
0			

Consider two new quantities for making numerical evaluations.

We are interested in detecting y = 1 for rare classes.

Actual Class		
	1	0
1	true	
	positive	
0		true
		negative

Consider two new quantities for making numerical evaluations.

We are interested in detecting y = 1 for rare classes.

	Actual Class	
	1	0
1	true	false
	positive	positive
0		true
		negative

Consider two new quantities for making numerical evaluations.

We are interested in detecting y = 1 for rare classes.

Actual Class		
	1	0
1	true	false
	positive	positive
0	false	true
	negative	negative

Confusion Matrix

Predicted Class

	Actual Class	
	1	0
1	true	false
	positive	positive
0	false	true
	negative	negative

A -1 -- 1 Cl - - -

Precision

Of all the patients where we **predicted positive** y = 1, what fraction actually has cancer?

Recall

Of all the patients that actually has cancer, what fraction did we **correctly** detect as having cancer?

Confusion Matrix

Predicted Class

	Actual Class	
	1	0
1	true	false
	positive	positive
0	false	true
	negative	negative

A -1 -- 1 Cl - - -

Precision

Of all the patients where we **predicted positive** y = 1, what fraction actually has cancer?

True Positives True Positives + False Positives

Recall

Of all the patients that actually has cancer, what fraction did we **correctly** detect as having cancer?

Confusion Matrix

Predicted Class

	Actual Class	
	1	0
1	true	false
	positive	positive
0	false	true
	negative	negative

A -1 -- 1 Cl - - -

Precision

Of all the patients where we **predicted positive** y = 1, what fraction actually has cancer?

True Positives
True Positives + False Positives

Recall

Of all the patients that actually has cancer, what fraction did we **correctly** detect as having cancer?

True Positives
True Positives + False Negatives

Precision & Recall

Precision: the frequency with which predictions are correct.

Other names for Precision:

- · Positive Predictive Value (PPV)
- True Positive Accuracy (TPA)

Recall: the frequency with relevant elements are retrieved (recalled) by a system.

Other names for Recall:

- True Positive Rate (TPR)
- Sensitivity

Let's look again at

```
def easyPredictCancer(x):
    y = 0  # ignore x
    return y
```

²Note: true positive (y = 1) is the occurrence of the rare class we wish to detect.

Let's look again at

Since
$$(y^{(i)} = 0)$$
 for all $x^{(i)}$, **true positive** $(y = 1) = 0.2$

So, both

Precision:

$$\frac{\textbf{True Positives}}{\textbf{True Positives} + \textbf{False Positives}} := \frac{\textbf{True Positives}}{\# \text{ of Predicted Positives}} = 0$$

Recall:

$$\frac{\textbf{True Positives}}{\textbf{True Positives} + \textbf{False Negatives}} := \frac{\textbf{True Positives}}{\# \text{ of Actual Positives}} = 0$$

²Note: true positive (y = 1) is the occurrence of the rare class we wish to detect.

Intuitively, precision and recall catch what is wrong with easyPredictCancer(x).

But a *numerical evaluation* promises the ability to make **meaningful comparisons**.

Intuitively, **precision** and **recall** catch what is wrong with easyPredictCancer(x).

But a *numerical evaluation* promises the ability to make **meaningful comparisons**.

How does this work for **precision** and **recall**?

In practice there is a **trade off** between **precision** and **recall**.

Precision and Recall Trade-off

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.5$

Predict (y = 0) if $h(x; \theta) < 0.5$

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Precision and Recall Trade-off

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.5$

Predict (y = 0) if $h(x; \theta) < 0.5$

Suppose we want to predict y = 1 only if we are very confident.

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Gregory Wheeler · 19

Precision and Recall Trade-off

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.5$

Predict (y = 0) if $h(x; \theta) < 0.5$

Suppose we want to predict y = 1 only if we are very confident.

We could do this by **modifying the threshold** points.

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.7$

Predict (y = 0) if $h(x; \theta) < 0.7$

Suppose we want to predict y = 1 only if we are very confident.

» Higher Precision / Lower Recall

Precision:

True Positives

of Predicted Positive

Recall:

True Positives

of Actual Positive

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.7$

Predict (y = 0) if $h(x; \theta) < 0.7$

Suppose we want to predict y = 1 only if we are very confident.

» Higher Precision / Lower Recall

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.3$

Predict (y = 0) if $h(x; \theta) < 0.3$

Suppose we want to predict y = 1 but **avoid missing** too many cases .

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.3$

Predict (y = 0) if $h(x; \theta) < 0.3$

Suppose we want to predict y = 1 but **avoid missing** too many cases .

» Higher Recall / Lower Precision

When in doubt, predict (y = 1)

Precision:

True Positives

of Predicted Positive

Recall:

True Positives
of Actual Positive

Logistic Regression: $0 \le h(x; \theta) \le 1$

Predict (y = 1) if $h(x; \theta) \ge 0.5$

Predict (y = 0) if $h(x; \theta) < 0.5$

Upshot:

Predict 1 if $h(x; \theta) \ge$ threshold.

Precision:

True Positives

of Predicted Positive

Recall:

True Positives

of Actual Positive

Suppose I have labeled data:

P: positive class (y = 1)

N: negative class (y = 0)

Ordered by $p(y = 1|x; \theta)$, max to min:

PPNPPN

 $P_{\wedge}PNPPN$

 $P_{\wedge}PNPPN$

Precision: 1

Recall: 1/4

 $PP_{\wedge}NPPN$

Precision: 1
Recall: 1/

PPN ∧ PPN

Precision: 2/3 Recall: 1/2

 $PPNP_{\wedge}PN$

Precision: 3/4

Recall: 3/4

 $PPNPP_{\wedge}N$

Precision: 4/5

Recall: 1

PPNPPN_^

Precision: 2/3

Recall: 1

Is there a way to choose threshold values automatically?

How ought we compare precision/recall values?

	Precision	Recall	
	(P)	(R)	
Algorithm 1	0.5	0.4	
Algorithm 2	0.7	0.1	
Algorithm 3	0.02	1.0	

How ought we compare precision/recall values?

	Precision	Recall	Average
	(P)	(R)	$\frac{P+R}{2}$
Algorithm 1	0.5	0.4	.45
Algorithm 2	0.7	0.1	.4
Algorithm 3	0.02	1.0	.51

How ought we compare precision/recall values?

	Precision	Recall	Average
	(P)	(R)	$\frac{P+R}{2}$
Algorithm 1	0.5	0.4	.45
Algorithm 2	0.7	0.1	.4
Algorithm 3	0.02	1.0	.51

[»] Algorithm 3 has highest average but predicts y = 1 all the time!

How ought we compare precision/recall values?

	Precision	Recall	Average
	(P)	(R)	$\frac{P+R}{2}$
Algorithm 1	0.5	0.4	.45
Algorithm 2	0.7	0.1	.4
Algorithm 3	0.02	1.0	.51

[»] Algorithm 3 has highest average but predicts y = 1 all the time! So, averaging is a **bad idea**.

How ought we compare precision/recall values?

2. We might try the **harmonic mean** by computing the F_1 Score.

	Precision	Recall	F ₁ Score
	(P)	(R)	
Algorithm 1	0.5	0.4	
Algorithm 2	0.7	0.1	
Algorithm 3	0.02	1.0	

How ought we compare precision/recall values?

2. We might try the **harmonic mean** by computing the F_1 Score.

	Precision	Recall	F ₁ Score
	(P)	(R)	$2\frac{PR}{P+R}$
Algorithm 1	0.5	0.4	.444
Algorithm 2	0.7	0.1	.175
Algorithm 3	0.02	1.0	.0392

How ought we compare precision/recall values?

2. We might try the **harmonic mean** by computing the F_1 Score.

	Precision	Recall	F ₁ Score
	(P)	(R)	$2\frac{PR}{P+R}$
Algorithm 1	0.5	0.4	.444
Algorithm 2	0.7	0.1	.175
Algorithm 3	0.02	1.0	.0392

[»] Algorithm 1 has highest F₁ score

How ought we compare precision/recall values?

2. We might try the **harmonic mean** by computing the F_1 Score.

	Precision	Recall	F ₁ Score
	(P)	(R)	$2\frac{PR}{P+R}$
Algorithm 1	0.5	0.4	.444
Algorithm 2	0.7	0.1	.175
Algorithm 3	0.02	1.0	.0392

» Algorithm 1 has highest F₁ score

If P = 0 or R = 0, then F_1 score = 0.

If P = 1 and R = 1, then F_1 score = 1.

The **harmonic mean** is often used to average *rates* or *frequencies*.

The class of F-scores allows differential weighting of Precision and Recall;

The F_1 assigns **equal** weight.

Although it is nice to have a single number to evaluate your threshold value, keep in mind that **Precision** and **Recall** are two different quantities.

Although it is nice to have a single number to evaluate your threshold value, keep in mind that **Precision** and **Recall** are two different quantities.

Just because they are each on the same scale (i.e., both are real numbers), it does not follow that they are necessarily comparable quantities.

Although it is nice to have a single number to evaluate your threshold value, keep in mind that **Precision** and **Recall** are two different quantities.

Just because they are each on the same scale (i.e., both are real numbers), it does not follow that they are necessarily comparable quantities.

Musical pitches and frequencies of light are both representable by real numbers. But, it does not follow that "*Royal Blue is closer to Middle C than Canary Yellow is*" is a meaningful comparison.

Computes a vector of F-scores given vectors of recall values (r) and vectors of precision values (p).

	Average F ₁ Score	Max F ₁ Score	
Algorithm 1	0.33	0.54	at 0.61 R
Algorithm 2	0.27	0.43	at 0.58 R
Algorithm 3	0.29	0.49	at 0.38 R

[»] According to either metric, Algorithm 3 is second best!

Residuals

A **residual** e is the difference between the observed value of the dependent variable y and the predicted value $h(x; \theta)$:

$$e = y - h(x; \theta)$$

Residual Plots

$$y = \underbrace{\theta^T x}_{\text{structural component}} + \underbrace{\epsilon}_{\text{error component}}$$

Some Properties of Residuals

Homoscedasticity: A vector of random variables is **homoscedastic** if all random variables in the sequence have the **same** variance.

Some Properties of Residuals

Homoscedasticity: A vector of random variables is **homoscedastic** if all random variables in the sequence have the **same** variance.

Heteroscedasticity: A vector of random variables is **heteroscedastic** if **not** all random variables in the sequence have the same variance.

Gregory Wheeler \cdot 46

Limits of Residual Plots

In higher-dimension models (i.e, with >5 variables), interactions between variables can go undetected by residual plots.

Two Cultures in Statistical Modeling

Two goals of data analysis

- 1. **Prediction**: To predict responses y from future input x
- 2. **Information**: To extract information about how **Nature** associates input *x* and response *y*.

Two goals of data analysis

- 1. **Prediction**: To predict responses y from future input x
- 2. **Information**: To extract information about how **Nature** associates input *x* and response *y*.

There are two different approaches:

Data Modeling Culture

Algorithmic Modeling Culture

Breiman's Two Cultures

Data Modeling Culture

Data Model: Examples: linear regression, logistic regression

Algorithmic Modeling Culture

The inside of the box is complicated and unknown. The goal is to find some function $h(x; \theta)$ that operates on x to predict responses y.

Goal: Predictive accuracy.

Statistics		Mac
	fluores aliahar	la

response variables (y) = f(predictor variables (x), parameters (β) random noise (ϵ)

Machine Learning

hypothesis (h) = f(features (x) parameters/weights (θ/ω) random noise (ϵ)

A Comparison

Statistics

Quantiative

Define theoretical / operational terms

Design Data Model

Select Variables and Measurement Scale

Parameter Selection

Model Selection

Check Model Fit

Refine

Machine Learning

Quantiative

Wrangle data (most of the effort)

Quick and dirty implementation.

Plot **learning curves** to guide your next step

Perform **error analysis** to search for systematic errors that could become a feature.

A Comparison

Statistics

Quantiative

Define theoretical / operational terms

Design Data Model

Select Variables and Measurement Scale

Parameter Selection

Model Selection

Check Model Fit

Refine

What **principles** warrant these **decisions**?

Machine Learning

Quantiative

Wrangle data (most of the effort)

Quick and dirty implementation.

Plot **learning curves** to guide your next step

Perform **error analysis** to search for systematic errors that could become a feature.

A Comparison

Statistics

Quantiative

Define theoretical / operational terms

Design Data Model

Select Variables and Measurement Scale

Parameter Selection

Model Selection

Check Model Fit

Refine

What **principles** warrant these **decisions**?

Machine Learning

Quantiative

Wrangle data (most of the effort)

Quick and dirty **implementation**.

Plot **learning curves** to guide your next step

Perform **error analysis** to search for systematic errors that could become a feature.

Empirical performance **without** (much) theoretical justification.

All models are wrong, but some models are useful.

George Box

No Free Lunch Theorem

There is no single best model that is optimal for all possible problems (Wolpert and Macready 1997).

No Free Lunch Theorem

In other words, a set of assumptions that performs well in one domain may perform poorly in another.

No Free Lunch Theorem

In other words, a set of assumptions that performs well in one domain may perform poorly in another.

Hence the need to develop many **different types of models** to cover the wide variety of data that occurs in the real world.

References

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82.