E0 298 | Linear Algebra and Its Applications Assignment 5

Deadline: 11.30 AM, 16-11-23 Full Marks: 25

- 1. Prove that the set of invertible matrices in $\mathbb{R}^{n\times n}$ forms an open set (with respect to the topology induced by some matrix norm $\|\cdot\|$). That is, prove that for any invertible $A\in\mathbb{R}^{n\times n}$, there exists $\delta>0$ such that $\|X-A\|<\delta\Rightarrow X$ is invertible.
- 2. Let $A \in \mathbb{R}^{n \times n}$ and \mathbb{U} be a k-dimensional subspace of \mathbb{R}^n , where $1 \leqslant k \leqslant n$. For any orthonormal basis $\{v_1, \dots, v_k\}$ of \mathbb{U} , define

$$\varphi(v_1, \dots, v_n) = \sum_{i=1}^k v_i^{\top} A v_i.$$

Show that φ is the same for any choice of orthonormal basis $\{v_1, \ldots, v_k\}$ of \mathbb{U} .

- 3. Let $A, B \in \mathbb{S}^n$ and A be positive definite.
 - (a) Prove that though $A^{-1}B$ is generally not symmetric, its eigenvalues are real. (3)
 - (b) If B is positive definite, then prove that the eigenvalues of $A^{-1}B$ are positive. (2) (Hint: If A is positive semidefinite, we can construct a positive semidefinite matrix R such $R^2 = A$).
- 4. Let $A, B \in \mathbb{S}^n$ be positive semidefinite. Prove that if $A^2 = B^2$, then necessarily A = B. (4) (Hint: Use contradiction; e.g., assume that $A \neq B$ and v is an eigenvector of $A B \in \mathbb{S}^n$ with nonzero eigenvalue, and proceed).
- 5. Consider numbers $r_1, ..., r_m > 0$, and define $G \in \mathbb{S}^m$ to be

$$G_{ij} = \frac{1}{r_i + r_j + 1}$$
 $(1 \le i, j \le m).$

Show that G is positive semidefinite.

6. Consider the Gaussian function $g(x) = \exp(-\lambda ||x||^2)$ defined on \mathbb{R}^n . Given m points $x_1, ..., x_n \in \mathbb{R}^n$, define $K \in \mathbb{S}^n$ to be

$$K_{ij} = g(x_i - x_j) \qquad (1 \leqslant i, j \leqslant n).$$

Prove that *K* is positive semidefinite.
