Hospital Emergency Preparedness

For the Next Pandemic - Sprint 2

Erika Miguel

Problem Statement

How can we predict a hospital staffing shortage given past COVID data?

Solution

Employ different machine learning models to find accurate staffing predictions per U.S. region

Impact

Odds of patient dying¹

Lives saved in NY²

Cost saved due to readmission and length of stay > than hiring additional nurses³

Mid Atlantic Case Study

- Same dataset ~80,000 rows and 135 columns
- Grouped by region
- Regional features selected with Lasso regression
- Analyzed various lags of selected features for each model

Baseline Model - Mean

Linear Regression vs XGBoost vs Neural Network

Linear Regression - Mid Atlantic

Lag	R^2
1	92%
73	56%

Linear Regression vs XGBoost vs Neural Network

Lag	R ²
10	97%
46	85%

Linear Regression vs XGBoost vs Neural Network

Lag	R^2
1	96%
74	85%

Linear Regression vs XGBoost vs Neural Network R²

Linear Regression vs XGBoost vs Neural Network Mean Absolute Error

Next Steps

- Summarize findings
- Streamlit app
- Expand project post bootcamp