PETRI NET ENCODINGS FOR REGULAR OPEN MAS

TEST CASES

Test Case 1

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \emptyset, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e,b,\{a_1\},l_e\rangle$ and crucially depends on $(b,\{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle} = \{(\langle l_0,a_1,\emptyset,b,l_1\rangle,\langle l_e,b,\{a_1\},l_e\rangle), (\langle l_0,a_1,\{a_1\},b,l_1\rangle,\langle l_0,a_1,\{a_1\},b,l_1\rangle,\langle l_e,b,\{a_1\},l_e\rangle)\}$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = \{(\langle l_1, a_2, \emptyset, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle), (\langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)\}$
- Let us denote the tuples in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e\rangle}$ by \mathfrak{t}_1 and \mathfrak{t}_2 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e\rangle}$ by \mathfrak{t}_3 and \mathfrak{t}_4 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}, t_{\mathfrak{t}_3}, t_{\mathfrak{t}_4}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\}$ $\cup \{\langle l_0, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2}, l_1 \rangle, \langle t_{\mathfrak{t}_2}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_3} \rangle, \langle t_{\mathfrak{t}_3}, l_2 \rangle, \langle t_{\mathfrak{t}_3}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_4} \rangle, \langle t_{\mathfrak{t}_4}, l_2 \rangle, \langle t_{\mathfrak{t}_4}, l_e \rangle\}.$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_e \rangle \mapsto 1\} \cup \{\langle l_0, t_{\mathfrak{t}_2} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_1 \rangle \mapsto 2, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_3} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_3} \rangle \mapsto 1, \langle t_{\mathfrak{t}_3}, l_e \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_4} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_4} \rangle \mapsto 1, \langle t_{\mathfrak{t}_4}, l_e \rangle \mapsto 2, \langle t_{\mathfrak{t}_4}, l_e \rangle \mapsto 1\}.$

Test Case 2

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_1\}, l_e \rangle$ and crucially depends on $(b, \{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = (\langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_0, a_1, \{a_1\}, b, l_1 \rangle, \langle l_e, b, \{a_1\}, l_e \rangle)$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = (\langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_1, a_2, \{a_2\}, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)$
- Let us denote the tuple in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ by \mathfrak{t}_1 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ by \mathfrak{t}_2 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}} : \{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle, \langle l_e, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2}, l_2 \rangle, \langle t_{\mathfrak{t}_2}, l_e \rangle\}.$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 2, \langle t_{\mathfrak{t}_1}, t_{e} \rangle \mapsto 1\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle \mapsto 2, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_2 \rangle \mapsto 2, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\}$.

Test Case 3

Let $\mathcal{O} = \langle A, E \rangle$ be a regular OMAS given as follows:

Agent Template $A = (L, \iota, Act, P, tr, leave)$ with

- $L = \{l_0, l_1, l_2\}$
- $\iota = l_0$
- $Act = \{a_1, a_2\}$
- $P = \{l_0 : a_1, l_1 : a_2\}$
- $leave = l_2$
- $tr = \{\langle l_0, a_1, \emptyset, b, l_1 \rangle, \langle l_1, a_2, \emptyset, b, l_2 \rangle\}$

Environment $E = (L_E, \iota_E, Act_E, P_E, tr_E)$ with

- $L_E = \{l_e\}$
- $\iota_E = l_e$
- $Act_E = \{b\}$
- $\bullet \ P_E = \{l_e : b\}$
- $tr_E = \{\langle l_e, b, \{a_1\}, l_e \rangle, \langle l_e, b, \{a_2\}, l_e \rangle\}$

The equivalent Petri net $\langle P_{\mathcal{O}}, T_{\mathcal{O}}, F_{\mathcal{O}}, W_{\mathcal{O}} \rangle$ is defined as follows:

- $P_{\mathcal{O}} = L \cup L_E = \{l_0, l_1, l_2, l_e\}.$
- Recall that the computation of $T_{\mathcal{O}}$ depends, essentially, on the computation of $\mathcal{TR}_{\mathcal{O}}$, which is done iteratively over the transitions in tr_E . In the present case, $\mathcal{TR}_{\mathcal{O}} = \mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} \cup \mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$.
 - $-\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e,b,\{a_1\},l_e\rangle$ and crucially depends on $(b,\{a_1\})$. Hence, $\mathcal{TR}_{\langle l_e,b,\{a_1\},l_e\rangle} = \{(\langle l_0,a_1,\emptyset,b,l_1\rangle,\langle l_e,b,\{a_1\},l_e\rangle)\}$
 - Similarly, $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ contains all those global joint transitions which are consistent with environment transition $\langle l_e, b, \{a_2\}, l_e \rangle$ and crucially depends on $(b, \{a_2\})$. Hence, $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle} = \{(\langle l_1, a_2, \emptyset, b, l_2 \rangle, \langle l_e, b, \{a_2\}, l_e \rangle)\}$
- Let us denote the tuple in $\mathcal{TR}_{\langle l_e, b, \{a_1\}, l_e \rangle}$ by \mathfrak{t}_1 and $\mathcal{TR}_{\langle l_e, b, \{a_2\}, l_e \rangle}$ by \mathfrak{t}_2 , respectively. Then, $T_{\mathcal{O}} = \{t_{aj}, t_{al}, t_{\mathfrak{t}_1}, t_{\mathfrak{t}_2}\}.$
- The information computed in \mathcal{TR} helps us to augment $F_{\mathcal{O}}$ as follows. Recall that $F_{\mathcal{O}}$ is initialized to be $\{\langle t_{aj}, l_0 \rangle, \langle l_2, t_{al} \rangle\}$. We add the following edges to $F_{\mathcal{O}} : \{\langle l_0, t_{\mathfrak{t}_1} \rangle, \langle l_e, t_{\mathfrak{t}_1} \rangle, \langle t_{\mathfrak{t}_1}, l_1 \rangle, \langle t_{\mathfrak{t}_1}, l_e \rangle\} \cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle, \langle l_e, t_{\mathfrak{t}_2} \rangle, \langle t_{\mathfrak{t}_2}, l_2 \rangle, \langle t_{\mathfrak{t}_2}, l_e \rangle\}.$
- Similarly, the initial content of $W_{\mathcal{O}} = \{\langle t_{aj}, l_0 \rangle \mapsto 1, \langle l_2, t_{al} \rangle \mapsto 1\}$. We augment $W_{\mathcal{O}}$ with the following weights computed from \mathcal{TR} , corresponding to the edges in $F_{\mathcal{O}}$: $\{\langle l_0, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_1} \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_1 \rangle \mapsto 1, \langle t_{\mathfrak{t}_1}, l_e \rangle \mapsto 1\}$ $\cup \{\langle l_1, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle l_e, t_{\mathfrak{t}_2} \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1, \langle t_{\mathfrak{t}_2}, l_e \rangle \mapsto 1\}$.