Despliegue y Análisis de T-Pot Honeypot

Presenter Name

Alejandro García Maximiliano Altamirano Alvaro Munilla

Entendiendo T-Pot

T-Pot es:

una plataforma de honeypots de código abierto basada en contenedores Docker, diseñada para detectar, registrar y analizar ataques en tiempo real.

Ayuda a la investigación y la prevención.

Ayuda a mejorar las medidas de seguridad basándose en los datos recopilados.

Recopila datos sobre ataques

Proporciona información sobre patrones y técnicas de ataque.

T-Pot admite múltiples servicios.

Integra varias herramientas para realizar análisis de seguridad exhaustivos.

Fases del Proyecto T-Pot

Un desglose detallado de cada etapa en el despliegue y análisis de T-Pot.

Instalación local de T-Pot y exploración inicial.

Fundamental para probar TPoT

Selección de honeypots a implementar para un análisis efectivo.

Clave para estudiar amenazas específicas.

Configuración integral, personalización/optimiza ción del sistema y despliegue en la nube

Ajustes necesarios para un rendimiento óptimo.

Recolección y análisis de datos para informes precisos.

Estudio de los logs obtenidos

Proceso de Configuración de T-Pot Honeypot

Instalación y configuración de T-Pot en un entorno local.

Personalización y Despliegue de T-Pot

Personalización del sistema T-Pot y validación de su funcionamiento.

Ejecutar el script customizer.py para personalizar T-Pot.

Lanzamos el script **customizer.py** desde el directorio /tpotce/compose para aplicar las configuraciones personalizadas necesarias en el sistema.

Copiar el archivo dockercompose personalizado.

Trasladamos el fichero dockercompose-custom.yml al directorio /tpotce/, asegurando que la configuración personalizada esté disponible. Validar la configuración de T-Pot.

Ejecutamos **docker-compose** para iniciar el sistema con la configuración personalizada, verificando su correcto funcionamiento.

Verificar el inicio del sistema.

Al ejecutar docker-compose -f docker-compose-custom.yml up, observamos los logs para confirmar que todos los servicios de T-Pot se inician sin errores.

Despliegue y Configuración de T-Pot en AWS

Implementación de T-Pot Honeypot utilizando recursos de AWS para un análisis efectivo.

- 1 Seleccionamos servidores de AWS
 - Utilizamos servidores de **AWS** por su capacidad de ofrecer configuraciones amplias de conectividad y recursos adecuados para nuestras necesidades de despliegue.
- 2 Recursos recomendados para la instancia
 Se recomienda una configuración inicial de 16GB RAM y 150GB de almacenamiento para asegurar un rendimiento óptimo del sistema y de los Honeypots.
- 3 Generación de claves SSH únicas
 Creamos un par de claves únicas para el acceso SSH externo, asegurando que la conexión sea segura y controlada desde el exterior.
- 4 Puertos de monitoreo configurados

 Configuramos los puertos 64295 para SSH y 64297 para acceder a la interfaz web de T-Pot, lo que permite un monitoreo efectivo del sistema.
- 5 Exposición de múltiples Honeypots

 Exponemos T-Pot con múltiples Honeypots y validamos la conexión externa, facilitando la captación de datos y el análisis de intrusiones.
- 6 Validación de conexión externa

 Realizamos pruebas para validar la conexión externa a **T-Pot**, asegurando que el sistema esté accesible y funcional desde el exterior.

Honeypots

Honeypots desplegados y analisis de resultados

En esta sección, describimos la configuración y personalización de los honeypots a utilizar

Honeypots desplegadas

Honeypots	¿Por qué los hemos elegido?
Cowrie	Simula un sistema SSH y Telnet vulnerable, registrando intentos de acceso, comandos ejecutados y técnicas de intrusión. Es útil para estudiar las tácticas, técnicas y procedimientos (TTPs).
<u>Dionaea</u>	Emula múltiples servicios (SMB, FTP, HTTP, etc.) para atraer <u>malware</u> y registrar <u>payloads</u> maliciosos, facilitando el análisis forense.
Conpot	Simula sistemas SCADA/ICS (Industrial Control Systems) para detectar ataques dirigidos a infraestructuras críticas, permitiendo estudiar ataques específicos contra sistemas industriales.
Elasticpot	Integra datos del <u>honeypot</u> en <u>Elasticsearch</u> para análisis avanzado y visualización en <u>Kibana</u> .
<u>Honeytrap</u>	Ofrece una plataforma flexible para crear honeypots personalizados en diferentes protocolos o servicios.
Mailoney	Detecta campañas de spam o phishing mediante la captura de correos electrónicos maliciosos o sospechosos.
WordPot	Captura intentos de explotación relacionados con vulnerabilidades en WordPress u otros CMS similares.
DDoSPot	Detecta y analizar ataques <u>DDoS</u> dirigidos a la infraestructura del <u>honeypot</u> o red protegida.
Suricata	Analiza tráfico capturado o en tránsito usando reglas específicas para identificar amenazas.
<u>Kibana</u>	Visualiza datos almacenados en <u>Elasticsearch</u> para detectar patrones o incidentes rápidamente.
Elasticsearch	Almacena grandes volúmenes de datos generados por los <u>honeypots</u> para facilitar búsquedas y análisis.

Análisis de Ataques a Honeypots T-Pot

Estadísticas sobre la actividad de ataques en Honeypots como Honeytrap y Glutton

Distribución Diaria De Ataques: 2h*Dia

Reflexiones sobre el proyecto

¿Qué os ha aportado desarrollar este proyecto? ¿Qué habéis aprendido?

¿Qué no volveríais a hacer?

¿Qué seguiríais haciendo en el futuro?

¡Muchas gracias a todos!

¿Preguntas?

