Понятие субстанциальной и локальной производных.

$$\frac{d}{dt} = \frac{\partial}{\partial t} + (\vec{v}\nabla)$$
- субстанциальная $\frac{\partial}{\partial z}$ - локальная

2 Уравнение неразрывности для сжимаемой и несжимаемой жидкости.

$$\begin{split} \frac{d\rho}{dt} + \rho \operatorname{div}(\vec{v}) &= 0, \\ \frac{d\rho}{dt} &= 0 \text{ - для несжимаемой}(\operatorname{div}(\vec{v}) = 0) \end{split}$$

3 Уравнение Эйлера в векторной форме и в проекциях на оси в декартовой системе координат.

$$\begin{split} \frac{d\vec{v}}{dt} &= -\frac{\nabla p}{\rho} + \vec{f} \\ \frac{\partial v_i}{\partial t} &+ \sum_{k=1}^{3} v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial t} + f_i \end{split}$$

4 Закон сохранения энергии идеальной жидкости. Поток энергии.

$$\int\limits_V \left[rac{\partial}{\partial t} (rac{
ho v^2}{2} +
ho arepsilon) + \mathrm{div} (rac{
ho v^2}{2} + W) (v) \right] dV = 0$$
, где

$$W = \rho \varepsilon + p$$
 - энтальпия

или в дифференциальной форме

$$\frac{\partial E}{\partial t} + div \vec{N} = 0$$
, где

$$E = \frac{\rho v^2}{2} + \rho \varepsilon$$
 - плотность энергии

$$ec{N} = \left\lceil rac{
ho v^2}{2} +
ho arepsilon + p
ight
ceil ec{v}$$
 - вектор плотности потока энергии

5 Закон сохранения импульса идеальной жидкости. Тензор плотности потока импульса и его представление в декартовой системе координат.

$$\frac{\partial}{\partial t} \int\limits_{V} \vec{p(v)} dV = - \oint\limits_{S} \left[p \vec{n} + \rho \vec{v} (\vec{v} \vec{n}) \right] d\sigma$$

$$\frac{\partial}{\partial t}(\rho v_i) = -\sum_{k=1}^{3} v_k \frac{\partial \Pi_{ik}}{\partial x_k} + \rho f_i$$

 $\Pi_{ik} = p\delta_{ik} + \rho v_i v_k$ - тензор ППИ

6 Уравнение гидростатики.

$$\operatorname{grad} p = \rho \vec{f}, \ p = p(\rho)$$

7 Частота Брента-Вяйсяля.

$$N = \sqrt{\frac{g}{\rho}} \frac{d\rho}{dz}$$

8 Теорема Бернулли для потенциальных и непотенциальных, стационарных и нестационарных

$$\frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - стационарное безвихревое $(const$ во всём объёме)

$$\frac{v^2}{2} + W - gz = const$$
 - стационарное вихревое ($const$ на линии тока)

$$\frac{\partial \varphi}{\partial t} + \frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - нестационарное безвихревое

Циркуляция скорости вдоль замкнутого контура, перемещающегося в идеальной жидкости. остается постоянной.

$$\frac{d\Gamma}{dt} = \oint\limits_L d\left(\frac{v^2}{2} - W - u\right) = 0$$

$$\Gamma = \oint \vec{v} d\vec{r} - \text{циркуляция}$$

10 Потенциальные течения идеальной несжимаемой жидкости. Основные уравнения, граничные условия.

$$\Delta \varphi = 0, \ \vec{v} = \operatorname{grad}(\phi)$$

граничное условие не проникания:

$$\vec{v}\vec{n}|_s = \frac{\partial \varphi}{\partial n} = \vec{v_0}\vec{n}$$

Граничное условие на бесконечности?

11 Парадокс Д'Аламбера-Эйлера.

- $\Phi 1.$ При обтекании тела с гладкой поверхностью идеальной несжимаемой жидкостью сила лобового сопротивления, действующая на тело со стороны потока, равна нулю.
- $\Phi 2$. Для тела, движущегося равномерно в идеальной несжимаемой жидкости постоянной плотности без границ, сила сопротивления равна нулю.

$$\vec{F} = -\oint p_s \vec{n} dS = 0$$

12 Понятие присоединенной массы. Присоединенная масса сферы и единицы длины бесконечного кругового цилиндра.

$$F - F_{\text{conp}} = ma$$

$$M = F_{\text{conp}}/a$$

$$F = (M + m)a$$

$$M_{\rm сферы} = \frac{2}{3} \rho \pi R^3$$

$$M_{\text{цилиндра}} = \rho \pi R^2$$

13 Функция тока и ее свойства.

Для плоского потенциального течения несжимаемой идеальной жидкости:

$$\psi = \psi(x, y, t); v_x = \frac{\partial \psi}{\partial y}; v_y = -\frac{\partial \psi}{\partial x}$$

$$d\psi = \frac{\partial \psi}{\partial x}dx + \frac{\partial \psi}{\partial y}dy = -v_y dx + v_x dy$$

14 Комплексный потенциал.

- $F(z) = \phi + i\Psi$ (действительная часть потенциал, мнимая функция тока)
- 15 Линии тока и эквипотенциальные линии.

Линия тока - это линия, касательные к которой в данный момент времени и в каждой точке совпадают с вектором скорости \vec{v}

 $\Psi = const$ - линии тока (постоянная функция тока)

 $\varphi = const$ - эквипотенциальные линии (постоянный потенциал)

16 Формула Жуковского.

$$F_y = -\int p_n y dl = \rho \Gamma v_0$$

17 Точечные вихри и их взаимодействия.

Устремляем сечение нашей вихревой трубки к нулю, а частоту к бесконечности - получаем точечный вихрь. Скорость точечного і-ого вихря равна скорости жидкости в данной точке, создаваемой всеми остальными вихрями.

$$\frac{d\vec{r_i}}{dt} = \sum_{k \neq i} \vec{v_k}(\vec{r_i})$$

18 Поверхностные гравитационные волны (длинные, короткие, гравитационно-капиллярные) и их основные свойства (траектории движения частиц, дисперсионные уравнения, фазовые и групповые скорости).

Траектории и описываются

$$\frac{\xi^2}{a_{\varepsilon}^2} + \frac{\eta^2}{a_{\eta}^2} = 1, \quad a_{\xi} = \frac{a \operatorname{ch} k(z+H)}{\operatorname{sh} kH}, \quad a_{\eta} = \frac{a \operatorname{sh} k(z+H)}{\operatorname{sh} kH}$$

 $\Gamma \!\!\!\! / \!\!\! / = \xi$ и η смещения частицы по вертикали и горизонтали соответственно.

$$\xi = -\frac{a}{\sin kH} \operatorname{ch} k(z+H) \sin (kx - \omega t)$$

$$\eta = \frac{\sin kH}{\sin kH} \sin k(z+H) \cos (kx - \omega t)$$

Дисперсионное уравнение:

$$\omega^2 = (gk + \gamma k^3) \operatorname{th} kH$$

$$v_{\Phi}^2 = \omega^2 k^2 = gk + \gamma k$$

$$k_* = \sqrt{gk}$$
 - минимум v_Φ

$$v_{\rm rp} = \frac{d\omega}{dk} \quad \Rightarrow \quad v_{\rm rp} = \frac{v_{\rm \Phi}}{2} \frac{k_*^2 + 3k^2}{k_*^2 + k^2}$$

Если $k \gg k_*$, это капиллярные волны. Если $H \ll k \ll k_*$, то это гравитационные короткие волны (дно ещё не чувствуется). Если же $k \ll H$, то это длинные гравитационные волны.

19 Уравнение Навье-Стокса для несжимаемой вязкой жидкости в векторной форме и в проекциях на оси в декартовой системе координат.

Запись через кинематическую вязкость $\nu = \eta/\rho$:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\nabla)\vec{v} = -\frac{\nabla p}{\rho} + \nu\Delta\vec{v}$$
$$\frac{\partial v_i}{\partial t} + v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_k^2}$$

20 Тензор вязких напряжений, физический смысл, представление в декартовой системе коорди-

Общий вид тензора вязких напряжения (при относительном смещении слоёв жидкости, зависимость $\sim \eta$ линейна, жидкость будем считать изотропной):

$$\sigma_{ik} = a \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + c \left(\frac{\partial v_i}{\partial x_k} - \frac{\partial v_k}{\partial x_i} \right) + b \sum \frac{\partial v_l}{\partial x_l} \delta_{ik}$$

Переобозначим константы $a = \eta, \, \dot{b} = \xi$. Тогда тензор вязких напряжений перепишется как

$$\sigma_{ik} = \eta \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + \xi \sum_l \frac{\partial v_l}{\partial x_l} \delta_{ik}$$

21 Граничные условия для несжимаемой вязкой жидкости на поверхности твердого тела и свободной поверхности.

В случае вязкой жидкости на поверхности твердого неподвижного тела модуль скорости на поверхности равна нулю:

$$\underline{\vec{v}} = (v_x(y), 0, 0)$$

При рассмотрении гидродинамики слоя жидкости на верхней границе жидкости

$$f_i = \sigma_{ik} n_k = \eta \frac{\partial v_x}{\partial y} = 0$$

22 Формула Пуазейля для расхода жидкости.

$$Q = 2\pi \int_{0}^{R} v(r)rdr = \frac{\pi}{8\eta} \left(\frac{\partial p}{\partial z}\right) R^{4}$$

23 Скин-слой.

Поскольку среда вязкая, возмущения передаются наверх, но затухают на характерном масштабе

$$\delta = \sqrt{\frac{2\nu}{\omega}}$$

24 Числа Рейнольдса, Фруда, Струхаля и их физический смысл.

$$Re = \frac{v_0 l}{\mu} = \frac{2v_0 R}{\mu} = \frac{V_{\rm cp} H}{\nu}$$

$$u = \frac{\eta}{\rho}$$
 - кинематический коэффициент вязкости

Число Рейнольдса показывает относительное влияние нелинейных эффектов. Если Re мало, то можно пренебречь в уравнении движения вязкой жидкости всем, кроме давления.

$$Fr = \frac{v_0^2}{al}$$

Число Фруда описывает отношение кинетической энергии жидкости к потенциальной (энергии гравитационных сил).

$$Sh = \frac{v_0 T}{I}$$

Число Čтрухаля характеризхует стационарность. Если Sh >> 1 можно пренебречь нестационар-

25 Формула Стокса.

$$F = 6\pi\eta Rv_0, Re \ll 1$$

$$F = 6\pi \eta R v_0, Re << 1$$

 $F = 6\pi \eta R v_0 \left(1 + \frac{3}{16}Re\right)$

26 Зависимость ширины пограничного слоя от параметров.

Во-первых, чем больше вязкость, тем толще пограничный слой. Кроме того, чем дальше по x. тем слой толще. И, наконец, чем больше скорость, тем больше пограничный слой должен быть прижат к пластине.

27 Уравнения линейной акустики. Волновое уравнение.

Уравнение Эйлера, уравнение непрерывности и последнее уравнение - состояния:

уравнение Эилера,
$$\frac{\partial \vec{v}'}{\partial t} = -\frac{\nabla p'}{\rho_0}$$

$$\frac{\partial \rho'}{\partial t} + \rho_0 c^2 \operatorname{div} \vec{v} = 0$$

$$p' = c^2 \rho'$$

Волновое уравнение: $\frac{\partial^2 \varphi}{\partial t^2} - c^2 \Delta \varphi = 0$

28 Монохроматические волны, уравнение Гельмгольца

Уравнение Гельмгольца: $\Delta \Phi_0 + k_0^2 \Phi_0 = 0$, $k = \frac{\omega}{2}$

Простейшее решение его - плоские волны: $\Phi_0 = e^{i(\vec{k}, \vec{r})}$

В случае $\vec{k} = \vec{k}_1 + i\vec{k}_2$ (неоднородная плоская волна):

 $\Phi_0 = e^{i(\vec{k}_1, \vec{r})} e^{-(\vec{k}_2, \vec{r})}$. Всякую волну можно представить в виде суперпозиции плоских монохроматических волн с различными волновыми векторами

Закон сохранения энергии (звуковой волны)

$$\frac{\partial E}{\partial t} + \operatorname{div} \vec{J} = 0$$

 \vec{J} - вектор Умова-Пойнтинга, $\vec{J}=\rho \vec{v}$