Mécanique Quantique II Série n^o 2 - SMP, S5

Exercice 1

Considérons un oscillateur harmonique à une dimension dont l'hamiltonien est donné par

$$H = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2.$$

L'état du système est déterminé par le ket $|\psi(t)\rangle$.

- 1. Rappeler les expressions des énergies propres E_n et les états propres $|n\rangle$ de H.
- 2. Soit f(X) une fonction de l'opérateur position, montrer que $[a, f(X)] = \sqrt{\frac{\hbar}{2m\omega}} f'(X)$ et $\left[a^+, f(X)\right] = -\sqrt{\frac{\hbar}{2m\omega}} f'(X)$, avec a et a^+ sont, respectivement, les opérateurs d'annihilation et de création.
- 3. On prend $f(X) = e^{ikX}$, où k est un paramètre réel.
 - (a) Montrer que $\langle n | f(X) | 0 \rangle = \frac{ik}{\sqrt{n}} \sqrt{\frac{\hbar}{2m\omega}} \langle n 1 | f(X) | 0 \rangle$.
 - (b) En déduire que $\langle n | f(X) | 0 \rangle = \frac{(ik)^n}{\sqrt{n!}} \left(\frac{\hbar}{2m\omega} \right)^{\frac{n}{2}} e^{-\frac{\hbar k^2}{4m\omega}}$.
- 4. Sachant que le système est préparé dans l'état initial $|\psi(0)\rangle = \mathbf{e}^{ikX} |0\rangle$.
 - (a) Calculer les valeurs moyennes des observables X et P_x .
 - (b) Quelles valeurs de l'énergie peut on trouver et avec quelles probabilités?.
- 5. A l'instant t > 0, on mesure l'énergie, Quelles valeurs de l'énergie peut on trouver et avec quelles probabilités ?.

Exercice 2

On considère un oscillateur harmonique à une dimension, constitué d'une particule de masse m dans un potentiel quadratique. On suppose que la particule est chargée et soumise à un champ électrique uniforme $\vec{\mathcal{E}}$ parallèle à l'axe \vec{ox} . L'hamiltonien total du système s'écrit :

$$H = H_0 - q\mathcal{E}X$$

avec
$$H_0 = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2$$

1. Montrer que l'hamiltonien peut s'écrire sous la forme

$$H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 (X - \xi)^2 - \frac{q^2 \mathcal{E}^2}{2m\omega^2}$$

avec
$$\xi = \frac{q\mathcal{E}}{m\omega^2}$$

2. On introduit l'opérateur unitaire $D(\xi) = \mathbf{e}^{\frac{i\xi P}{\hbar}}$. Montrer que l'hamiltonien du système peut s'écrire sous la forme :

$$H = \widetilde{H} - \frac{q^2 \mathcal{E}^2}{2m\omega^2}$$

οù

$$\widetilde{H} = D^+(\xi)H_0D(\xi)$$

- 3. Montrer que les états propres de H sont donnés par $|\widetilde{n}\rangle = D^+(\xi)|n\rangle$ en précisant les valeurs propres \widetilde{E}_n correspondantes.
- 4. A l'instant t = 0 l'état du système est préparé dans l'état fondamental de l'hamiltonien H_0 , c'est à dire : $|\psi(0)\rangle = |0\rangle$.
 - (a) Calculer les valeurs moyennes $\langle x \rangle_0, \langle p \rangle_0, \langle x^2 \rangle_0$ et $\langle p^2 \rangle_0$. Le principe d'incertitude de Heisenberg est il vérifié?
 - (b) Calculer la probabilité de trouver la particule dans l'état fondamental $|\widetilde{0}\rangle$ de l'hamiltonien H.
 - (c) Déterminer l'état du système à un instant t > 0. Calculer la probabilité de trouver la particule dans l'état fondamental $|\widetilde{0}\rangle$ de l'hamiltonien H.

Exercice 3

Un oscillateur harmonique est formé d'une particule de masse m pouvant se déplacer dans l'espace à deux dimensions. Cette masse est soumise à une force de rappel centrale $\vec{F} = -k\vec{r}$, \vec{r} est le vecteur position de la particule.

- 1. Déterminer l'énergie potentiel de la particule.
- 2. Ecrire l'opérateur hamiltonien H du système sous la forme d'une somme de deux opérateurs indépendants H_x et H_y .On note respectivement par $|\varphi_{n_x}\rangle$ et $|\varphi_{n_y}\rangle$ leurs vecteurs propres.
- 3. Déterminer les vecteurs propres de l'hamiltonien et les énergies correspondantes. En déduire les fonctions d'ondes associées.
- 4. Calculer la dégénérescence des niveaux d'énergie.
- 5. L'état du système à l'instant t=0 est décrit par le vecteur d'état

$$|\psi(0)\rangle = \frac{1}{2} \left(|\varphi_{00}\rangle + |\varphi_{01}\rangle + i \; |\varphi_{11}\rangle - i \; |\varphi_{02}\rangle \right)$$

avec
$$|\varphi_{n_x n_y}\rangle := |\varphi_{n_x}\rangle \otimes |\varphi_{n_y}\rangle$$

- (a) A l'instant t=0, on mesure l'énergie de l'oscillateur, quels résultats peut-on trouver et avec quelle probabilités?
- (b) Déterminer l'état de l'oscillateur à un instant t > 0.
- (c) A l'instant t > 0, on mesure H_x et H_y , quels résultats peut-on trouver et avec quelle probabilités?
- (d) Calculer la valeur moyenne $\langle y \rangle_t$ de la position de l'oscillateur suivant \vec{oy} . En déduire la valeur moyenne de l'impulsion $\langle p_y \rangle_t$.
- (e) A l'instant t on mesure l'énergie de l'oscillateur et on trouve $3\hbar\omega$, quel est l'état de l'oscillateur immédiatement après cette mesure.