LPC82X 培训资料

I2C串行接口

MAY, 2016

内容

- I2C性能概述
- · I2C具体应用操作
- I2C低功耗模式唤醒
- I2C基础知识

I2C性能概述

性能概述

- 支持数据速率400 Kbit/s 的标准模式和高达1Mbitr 的快速模式
- 独立的主机、从机和监视器功能
- 硬件中支持多个I2C 从机地址
- 支持SMBus
- 片上ROM提供I2C驱动
- 收发支持DMA
- 支持低功耗模式唤醒

I2C0与I2C1/2/3异同

功能	I2C0	I2C1/2/3
引脚	SCL: PI00_10 SDA: PI00_11	SCL, SDA: Any GPIO pin
速率	0~1Mbit/s	$0^{\sim}400$ kbit/s
Fast-mode Plus	支持	N/A
standard & fast mode	支持	支持
失效保护操作	支持	N/A

I2C时钟框图

I2C功能框图

I2C具体应用操作

时钟配置

• I2C的AHB时钟使能

寄存器: SYSAHBCLKCTRL		
bit	Symbol	
bit5	I2C0	
bit21	I2C1	
bit22	I2C2	
bit23	I2C3	
0: 禁能; 1: 使能		

• I2C的时钟分频寄存器

寄存器: CLKDIV	
bit	Symbol
15:0	DIVVAL

0x0000: 1分频 0x0001: 2分频 0x0002: 3分频

•••

0xFFFF: 65536分频

• I2C的时钟SCL主机时间寄存器

寄存器: MSTTIME	
bit	Symbol
2:0	MSTSCLLOW
6:4	MSTSCLHIGH
0: 2时钟 1: 3时钟 2: 4时钟 ··· 7: 9时钟	

• 波特率计算

Nominal SCL rate = I2C function clock rate / (SCL high time + SCL low time)

```
SCL high time (in I2C function clocks) =
(CLKDIV + 1) * (MSTSCLHIGH + 2)

SCL low time (in I2C function clocks) =
(CLKDIV + 1) * (MSTSCLLOW + 2)

I2C function clock rate: 对于LPC82x为外设时钟,即系统时钟
```


IO配置

• I2C的管脚分配

寄存器: PINENA	BLE0	寄存器: PINENA	BLE9	寄存器: PINENA	BLE10
bit	Symbol	bit	Symbol	bit	Symbol
bit11	I2CO_SDA	15:8	I2C1_SDA_I0	7:0	I2C2_SCL_I0
bit12	12C0_SCL	23:16	I2C1_SCL_I0	15:8	I2C3_SDA_I0
I2CO_SDA: PIOO_11	(0: 使能)	31:24	I2C2_SDA_I0	23:16	I2C3_SCL_I0
I2C0_SCL: PI00_10	(0: 使能)	PI00_0 (= 0) to F	PI00_28 (= 0x1C)	PI00_0 (= 0) to P	I00_28 (= 0x1C)

• I2C的管脚配置

寄存器: PIO0_10,PIC	00_11	寄存器: 其它IO	寄存器
bit	Symbol	bit	Symbol Symbol
9:8	I2CMODE	10	Open-drain mode
0x0: Standard mode/ Fas 0x1: 标准GPIO功能,需要 0x2: Fast-mode Plus I20 0x3: 预留	导外部上拉	0x0: 禁能 0x1: 使能漏极开路	B模式,非真正的漏极开路

地址配置

• 从机地址寄存器

寄存器: SLVADR[0:3]			
bit	Symbol	Value	Description
O CADICADI D	SADISABLE	0	使能从机地址
U	SADISABLE	1	忽略从机地址
7:1	SLVADR		7位从机地址值

• 从机地址限定寄存器

寄存器: SLVQUAL			
bit	Symbol	Value	Description
0	OTAL MODEO	0	从机地址掩码模式
U	O QUALMODEO	1	从机地址扩展模式
7:1	SLVQUAL0		7位从机地址限定值
当QUALMODE0=0,SLVQUAL0中为0的位是掩码			
当QUALMODEO=1, SLVADR<=从机地址<=SLVQUAL			

主从功能配置

• I2C配置寄存器

寄存器: CFG		
bit	Symbol	Description
0	MSTEN	0: 禁能I2C主机功能,1: 使能I2C主机功能
1	SLVEN	0: 禁能I2C从机功能,1: 使能I2C从机功能
2	MONEN	0: 禁能I2C监测功能, 1: 使能I2C监测功能
3	TIMEOUTEN	0: 禁能I2C超时功能, 1: 使能I2C超时功能
4	MONCLKSTR	0: 禁能I2C作为监测功能时的时钟拉伸功能 1: 使能I2C作为监测功能时的时钟拉伸功能

其它寄存器一览

Register	Symbol	Description
I2C状态寄存器	STAT	提供I2C状态信息的寄存器
I2C中断使能设置和读寄存器	INTENSET	使能允许产生I2C中断的I2C状态
I2C中断使能清除寄存器	INTENCLR	清除已使能允许产生I2C中断的I2C状态
超时值寄存器	TIMEOUT	设置超时值
中断状态寄存器	INTSTAT	提供I2C中断源信息的寄存器
主机控制寄存器	MSTCTL	主机控制I2C的寄存器
主机数据寄存器	MSTDAT	主机收发数据的寄存器
从机控制寄存器	SLVCTL	从机控制I2C的寄存器
从机数据寄存器	SLVDAT	从机收发数据的寄存器
监测数据寄存器	MONRXDAT	监测模式接收数据的寄存器
外设复位寄存器	PRESETCTRL	控制外设复位的寄存器(属于SYSCON章节)

I2C主机功能初始化

• 引脚分配(Pin Mux) • 引脚配置(IO CONF) 初始化Pin和IO • I2C AHB时钟使能 I2C端口复位(PRESETCTRL) • I2C时钟频率(CLKDIV)分频 SCLL和SCLH设置 设置I2C主机 • 使能主机功能 • 使能I2C中断 使能I2C NVIC中 断

I2C主机数据传输

初始化传输数据 机构体 • I2C传输状态清零

• 初始化收发数据及其长度

设置从机接收地址

设置I2C传输状态为busy

主机传输设置

• 清零I2C状态寄存器状态

• 使能主机控制寄存器启动位

• 等待I2C传输完成

将从设备地址写入DATA寄存器

使能I2C中断类型

清零I2C中断类型使能

I2C中断处理

• I2C中断处理函数执行

I2C主机中断处理

状态读取

- •读取I2C状态寄存器
- •判断I2C状态

错误处理

- 主机失去仲裁
- 起始位/停止位错误

数据传输处理

- 读取主机状态
- 判断主机状态
- 数据收发处理

I2C从机功能初始化

初始化Pin和IO 设置I2C从机

• 引脚分配(Pin Mux)

• 引脚配置(IO CONF)

• I2C AHB时钟使能

• 从机地址设置并使能 清除I2C状态

• 使能从机对应中断

使能从机功能

I2C端口复位(PRESETCTRL)

使能I2C NVIC中 断 • 使能I2C中断

I2C从机中断处理

状态读取

- 读取I2C中断状态寄存器
- 判断I2C从机是否处于Pending

数据传输处理

- 读取从机状态
- 判断从机状态
- 调用对应的回调函数

监测功能

- · 监测功能用于监听I2C总线数据传输
- 操作配置寄存器使能监测功能
- 读取MONRXDAT寄存器,获取I2C总线数据传输信息

配置寄存器: CFG	
bit	Symbol
2	MONEN
0: 禁能 1: 使能	

DMA应用

- I2C被设置为主机或从机模式,都可以使用DMA进行数据收发
- 需要软件来确认地址传输
- 使用DMA模式,需要配置DMA控制器相关寄存器
- DMA请求

DMA Channel #	Request Input
10	I2C0_SLV_DMA
11	I2C0_MST_DMA
12	I2C1_SLV_DMA
13	I2C1_MST_DMA
14	I2C2_SLV_DMA
15	I2C2_MST_DMA
16	I2C3_SLV_DMA
17	I2C3_MST_DMA

I2C低功耗模式唤醒

低功耗模式唤醒-1

- Sleep模式下,任何触发I2C中断的信号都可以唤醒芯片。
 - 相关配置如下:

第一步

• 配置I2C为主机模式或从机模式

第二步

• 使能NVIC寄存器中的I2C中断

第三步

• 使能I2C中断使能寄存器INTENSET中的中断

低功耗模式唤醒-2

Deep_Sleep/Power_down模式下,只能支持I2C从机模式的唤醒 (因为I2C时钟被关闭)。

-相关配置如下:

第一步

- •配置I2C为从机模式
- 使能STARTERP1寄存器中的I2C唤醒中断

第二步

• 在PDAWAKE寄存器中,配置所有唤醒后需要正常工作的外设模块

第三步

- 使能NVIC寄存器中的I2C中断
- 使能I2C中断使能寄存器INTENSET中的中断作为唤醒事件

Start logic 1 interrupt wake-up enable register

Bit	Symbol	Value	Description
			I2C interrupt wake-up.
7/8/21/22	I2C1/0/2/3	0	Disabled
		1	Enabled

I2C基础知识

I2C主要特点

- I2C Bus=Inter-IC Bus
- ■简单的双向两线总线(漏极开路模式):
 - 串行数据(SDA)
 - 串行时钟(SCL)
- 带仲裁功能的多主机的总线
- 主机与从机间的通讯,且只在两个设备之 间进行通讯
- 总线上的每个设备都具有不同的识别地址
- 每次数据传输都是由主机发起,且时钟总 是由主机提供

I2C模式及其电气特性

	标准模式 Standard- mode	快速模式 Fast-mode	加快速模式 Fast-mode Plus	高速模式 High-spe	ed mode	超高速模式 Ultra Fast- mode
位速率(kbit/s) Bit Rate(fSCL)	0~100	0~400	0~1000	0~1700	0~3400	0~5000
最大负载电容(pF) Max Cap Load(Cb)	400	400	550 ?	400	100	N/A
上升时间(ns) Rise time(tr)	1000	300	120	80	40	50
尖峰滤波(ns) Spike Filtered(tsp)	N/A	50	50	10	10	10
地址位数 Address Bits	7和10	7和10	7和10	7和10	7和10	7和10
向下兼容 Downward compatible	YES	YES	YES	YES	YES	NO

I2C硬件框图

I2C数据通讯

• 主机对从机进行写操作(7位地址)

S/Sr	7bits Address	1bit W(0)		8bits Data	1bit ACK			8bits Data	1bit NAC K	Sr/P	
------	------------------	--------------	--	------------	-------------	--	--	------------	------------------	------	--

• 主机对从机进行读操作(7位地址)

S/Sr	7bits Address	1bit R(1)		8bits Data	1bit ACK			8bits Data	1bit NAC K	Sr/P
------	------------------	--------------	--	------------	-------------	--	--	------------	------------------	------

I2C数据通讯

从机	从机地址:1 st Byte(7bits Address + 1bit W/R)						从机地址:2 nd Byte(8bits Address)								
5位填	真充位([固定的)			最高2	位	W/R	低8位							
1	1	1	1	0	X9	X8	0/1	X7	X6	X5	X4	Х3	X2	X1	X0

• 主机对从机进行写操作(10位地址: XX为最高的两位)

S	7bits Address(MS B)	1bit W(0)	A 1	8bits Address(LSB)	A2	Data	A			Data	Ā	Р	
---	---------------------------	--------------	------------	-----------------------	----	------	---	--	--	------	---	---	--

• 主机对从机进行读操作(10位地址: XX为最高的两位)

I2C时钟同步

低周期(LOW period)	取决于最长低电平周期的时钟
高周期(HIGH period)	取决于最短高电平周期的时钟

I2C仲裁

当SCL先为高电平时,仲裁在SDA线发生。

低电平有效,当其它主机发送低电平时,发送高电平的主机将失去仲裁。

SECURE CONNECTIONS FOR A SMARTER WORLD