

Introduction to BEAST

Louise Moncla Genomics of Disease in Wildlife Workshop June 12, 2023

Goals for this lecture and lab:

- 1. What is difference between BEAST and Nextstrain, and how do I decide which one to use?
- 2. What BEAST is doing, what is an MCMC chain, and how do I tell if it is working?
- 3. How do I make decisions about picking models and priors?
- 4. How, functionally, do I use this piece of software and interpret results?

What is BEAST and why would I use it?

- * The underlying probability is based on Bayes Theorem
- * Includes information about priors
- * Results are distributions, rather than point estimates
- * Slow

- * Meant to be flexible
- * An overwhelming array of evolutionary and epidemiologic models
- * Everything is inferred with Markov chain Monte Carlo (MCMC)
- * Parameters are sampled and evaluated probabilistically

Conditional probabilities

A conditional probability is a measure of the probability of an event occurring, given that another event has already occurred.

Conditional probabilities

NOT a conditional probability

Pr (the number you rolled is a 6) = 1/6

Conditional probabilities

NOT a conditional probability

Pr (the number you rolled is a 6) = 1/6

IS a conditional probability

Pr (the number you rolled is a 6, given that you know the number was even) = 1/3

Bayes Theorem allows us to calculate conditional probabilities

$$Pr (A | B) = \frac{Pr (B | A) \times Pr (A)}{Pr (B)}$$

This is pronounced: "the probability of A, given B"

Bayes Theorem allows us to calculate conditional probabilities

Pr (roll 6 | roll was even) =

Pr (roll was even | roll 6) x Pr (roll 6)

Pr (roll was even)

Bayes Theorem allows us to calculate conditional probabilities

Pr (roll 6 | roll was even) =

$$= \frac{1 \times 1/6}{1/2} = \frac{1/3}{1/2}$$

Bayesian phylogenetics

Bayesian phylogenetics uses Bayes theorem to evaluate probabilities of tree topologies, given data and substitution models.

Bayes Theorem for phylogenetics

Pr (Parameters | Data) =

^{*} Parameters = tree topology, branch lengths

^{*} Data = multi-sequence alignment

Bayes Theorem for phylogenetics

Likelihood of the alignment, given the parameters (tree topology, branch lengths)

Prior probability of the parameters (topology, branch lengths)

Pr(Data | Parameters) x Pr(Parameters)

Pr (Parameters | Data) =

Pr(Data)

* Parameters = tree topology, branch lengths

* Data = multi-sequence alignment

Marginal probability of the alignment

Markov chain Monte Carlo

- A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
- Monte Carlo methods are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.

<u>Input</u>

```
      G
      A
      A
      C
      A
      G
      T
      T
      A
      A

      G
      A
      A
      C
      A
      G
      T
      T
      A
      A

      G
      T
      A
      A
      A
      G
      G
      T
      T
      A
      A

      G
      T
      A
      A
      C
      A
      C
      T
      T
      A
      A

      G
      A
      A
      A
      C
      A
      C
      T
      T
      A
      A

      G
      A
      A
      A
      C
      A
      C
      T
      T
      A
      A

      G
      A
      A
      A
      C
      A
      C
      T
      T
      A
      A
```

Alignment

(protein, nucleotide, dates)

<u>Input</u>

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

 G
 T
 A
 A
 A
 T
 G
 T
 T
 A
 A

 G
 T
 A
 A
 C
 G
 G
 T
 T
 A
 A

 G
 A
 A
 C
 A
 C
 T
 T
 A
 A

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

What we're estimating

Alignment

(protein, nucleotide, dates)

Substitution model

(JC, HKY, GTR)

Tree model

(Coalescent, constant size, skyline, 15 structured, etc...)

<u>Input</u>

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

 G
 T
 A
 A
 A
 C
 G
 T
 T
 A
 A

 G
 T
 A
 A
 C
 A
 C
 T
 T
 A
 A

 G
 A
 A
 C
 A
 C
 T
 T
 A
 A

 G
 A
 A
 C
 A
 G
 T
 T
 A
 A

What we're estimating

Alignment (protein, nucleotide, dates)

Substitution model (JC, HKY, GTR)

Tree model

Coalescent, constant

size, skyline, 16

structured, etc...)

<u>Input</u>

G A A C A G T T A A
G A A C A G T T A A
G T A A
G T A A
G T T A A
G T A A
G T T A A
G T T A A
G T A A
G T T A A
G T A A
G T T A A
G A A C A C T T A A
G A A C A G T T A A
G A A C A G T T A A

What we're estimating

Alignment (nucleotide)

6 parameters: Transition rate, transversion rate, base frequencies for each base

Substitution model

HKY)

Tree model

Coalescent, constant

<u>size</u>)

1

3 parameters: Ne, topology, branch lengths

MCMC step 1a: pick random values for each parameter

```
C/T A/G Freq(A)
C/T \(A/G\)
Freq(C)
Freq(T)
```

MCMC step 1a: pick random values for each parameter

MCMC step 1a: pick random values for each parameter

MCMC step 1b: evaluate the probability of the alignment, given the sampled parameters

MCMC step 1b: evaluate the probability of the alignment, given the sampled parameters

* this represents the numerator of the equation on slide 12

MCMC step 2a: randomly sample new parameters, and calculate the probability, as in step 1

MCMC step 2b: compare that probability to the probability in step 1

If step 2's probability is higher, we accept the proposed parameters, and store them. If not, we reject with some probability.

Probability for step 1 = 10Probability for step 2 = 15 -> accept

MCMC step 2b: compare the probability for step 2 to the probability for step 1

MCMC step 3: repeat for millions of steps

MCMC step 3: repeat for millions of steps

MCMC step 4....

MCMC step 5...

MCMC step final: you've sampled a whole distribution of parameters, which are on average, more probable

Features of MCMC

- 1. Because the probabilities are multiplied by the prior, prior choice matters, and can influence your results.
- 2. MCMC chains are random. Usually, it takes the chain awhile to find a good search space. This initial phase is called "burnin" and is usually removed.
- 3. Because these chains are random, it is best to run multiple chains and compare results.
- 4. A good analysis is one that adequately explores parameter space, and converges. We evaluate "mixing" and "convergence" using Tracer.

Picking models and priors

Models:

- 1. What question are you trying to answer, and which model will help you answer it?
- 2. What biases exist in your data, and which model(s) will be most robust to those biases?

Picking models and priors

Models:

- 1. What question are you trying to answer, and which model will help you answer it?
- 2. What biases exist in your data, and which model(s) will be most robust to those biases?

Priors:

- 1. Generally want broad priors that allow sufficient space for exploration, but constrain the analysis to a reasonable array of values.
- 2. Best to think about which distributions reasonably match the estimate you are trying to make.
- 3. If model and data are particularly sensitive to a prior, good to evaluate results across multiple values of that prior.

BEAST vs. Nextstrain

Nextstrain

Tree inference method	Maximum likelihood, or approximate likelihood; results in single, best tree	Bayesian inference with MCMC, results in a posterior set of trees
Interactive visualization?	Yes	No
Substitution models?	Yes	Yes
Time-resolved trees?	Yes, inferred with TreeTime under coalescent model	Yes, inferred by MCMC, using a large variety of models
Flexible demographic models?	Yes, skyline or constant	Yes, an enormous array of models
Non-coalescent models?	No	Yes
Runtime	Fast	Slow
Input requirements/decisions	Un-aligned sequences; must decide subsampling regime, tree inference method, substitution model	Aligned, subsampled sequences; must decide on tree model, clock model, priors, chain length

Extra resources:

Felsenstein's pruning algorithm: https://link.springer.com/article/10.1007/
 BF01734359

MCMC robot example and exploration from Lewis lab: https://plewis.github.io/applets/mcmc-robot/

BEAST Lab

- 1. How did H3N8 transmit between hosts and geographic locations?
- 2. How did the H3N8 population size change during transmission in horses and dogs?
- 3. Is there evidence that H3N8 evolved at different rates in horses and dogs?

Some common prior distributions:

Markov chain Monte Carlo

Step 1:

- 1. Randomly pick starting values for all parameters you would like to estimate.
- 2. Evaluate the likelihood of those parameters given the data.
- 3. Multiply that likelihood by the prior (since we're doing this Bayesian!)
- 4. Store that probability.

Step 2:

- 5. Repeat steps 1-4.
- 6. Compare the probability from step 1 to step 2. If the parameters result in a higher probability for step 2 than step 1, accept step 2, store the values, and continue your search from there. If the probability is lower, reject the step.

Steps 3-end

7. Repeat this process, saving more probable steps and rejecting less probable ones, until the chain converges (10,000-100,000 steps)