ΚΕΦΑΛΑΙΟ

Εκθετική - Λογαριθμική συνάρτη η

1.1 Εκθετική συνάρτηση

ΟΡΙΣΜΟΙ

Ορισμός 1: ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ

Εκθετική ονομάζεται κάθε συνάρτηση f της οποίας ο τύπος αποτελεί δύναμη με θετική βάση, διάφορη της μονάδας και εκθέτη που περιέχει την ανεξάρτητη μετβλητή. Η απλή εκθετική συνάρτηση θα είναι της μορφής:

$$f(x) = a^x , \quad 0 < a \neq 1$$

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΉΤΕΣ

Θεώρημα 1.1 : ΙΔΙΟΤΗΤΕΣ ΕΚΘΕΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Οι ιδιότητες των εκθετικών συναρτήσεων της μορφής $f(x) = a^x$, με $0 < a \ne 1$, είναι οι εξής. Σε ορισμένες ιδιότητες διακρίνουμε δύο περιπτώσεις για τη βάση a της συνάρτησης.

- i. Η συνάρτηση f έχει πεδίο ορισμού το σύνολο $\mathbb R.$
- ii. Το σύνολο τιμών της είναι το σύνολο $(0, +\infty)$ των θετικών πραγματικών αριθμών.
- Η συνάρτηση δεν έχει ακρότατες τιμές.

A. $\Gamma \alpha a > 1$

- Αν η βάση a της εκθετικής συνάρτησης είναι μεγαλύτερη της μονάδας τότε η συνάρτηση $f(x) = a^x$ είναι γνησίως αυξουσα στο $\mathbb R$.
- Η συνάρτηση δεν έχει ρίζες στο $\mathbb R.$
- Η γραφική παράστασή της έχει οριζόντια ασύμπτωτη τον άξονα x'x στη μεριά του $-\infty$ ενώ τέμνει τον κατακόρυφο άξονα y'y στο σημείο A(0,1).
- Για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

$$Av x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$$

$$Av x_1 = x_2 \Leftrightarrow a^{x_1} = a^{x_2}$$

Σχήμα 1.2: Εκθετική συνάρτηση με 0 < a < 1

B. $\Gamma \alpha 0 < a < 1$

- Αν η βάση a της εκθετικής συνάρτησης είναι μικρότερη της μονάδας τότε η συνάρτηση $f(x) = a^x$ είναι γνησίως φθίνουσα στο $\mathbb R$.
- Η συνάρτηση δεν έχει ρίζες στο \mathbb{R} .
- Η γραφική παράστασή της έχει οριζόντια ασύμπτωτη τον άξονα x'x στη μεριά του $+\infty$ ενώ τέμνει τον κατακόρυφο άξονα y'y στο σημείο A(0,1).
- Για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

Av
$$x_1 < x_2 \Leftrightarrow a^{x_1} > a^{x_2}$$

Av $x_1 = x_2 \Leftrightarrow a^{x_1} = a^{x_2}$

iv. Οι γραφικές παραστάσεις των εκθετικών συναρτήσεων με αντίστροφες βάσεις $f(x) = a^x$ και $g(x) = \left(\frac{1}{a}\right)^x$, με $0 < a \ne 1$, είναι συμμετρικές ως προς τον άξονα y'y.

Σχήμα 1.3: Εκθετικές συναρτήσεις με αντίστροφες βάσεις

1.2 Λογάριθμος

Ορισμός 2: ΛΟΓΑΡΙΘΜΟΣ

Λογάριθμος με βάση ένα θετικό αριθμό $a \neq 1$ ενός θετικού αριθμού β ονομάζεται ο εκθέτης στον οποίο θα υψωθεί ο αριθμός a ώστε να δώσει τον αριθμό β . Συμβολίζεται :

$$\log_{a} \beta$$

 $με 0 < a \neq 1$ και β > 0.

- Ο αριθμός α ονομάζεται βάση του λογαρίθμου.
- Ο αριθμός β έχει το ρόλο του αποτελέσματος της δύναμης με βάση a, ενώ ολόκληρος ο λογάριθμος, το ρόλο του εκθέτη.
- Αν ο λογάριθμος (εκθέτης) με βάση a του β είναι ίσος με x τότε θα ισχύει :

$$\log_a \beta = x \Leftrightarrow a^x = \beta$$

- Εαν η βάση ενός λογαρίθμου είναι ο αριθμός 10 τότε ο λογάριθμος ονομάζεται δεκαδικός λογάριθμος και συμβολίζεται : $\log x$.
- Εαν η βάση του λογαρίθμου είναι ο αριθμός e τότε ο λογάριθμος ονομάζεται φυσικός λογάριθμος και συμβολίζεται : $\ln x$.

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΗΤΕΣ

Θεώρημα 1.2 : ΙΔΙΟΤΗΤΕΣ ΛΟΓΑΡΙΘΜΩΝ

Για οπουσδήποτε θετικούς πραγματικούς αριθμούς $x, y \in \mathbb{R}^+$ έχουμε τις ακόλουθες ιδιότητες που αφορούν το λογάριθμο τους με βάση έναν θετικό πραγματικό αριθμό a.

Ιδιότητα	Συνθήκη
Λογάριθμος γινομένου	$\log_a(x \cdot y) = \log_a x + \log_a y$
Λογάριθμος πηλίκου	$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$
Λογάριθμος δύναμης	$\log_a x^{\kappa} = \kappa \cdot \log_a x \ , \ \kappa \in \mathbb{Z}$
Λογάριθμος ρίζας	$\log_a \sqrt[\nu]{x} = \frac{1}{\nu} \log_a x \ , \ \nu \in \mathbb{N}$
Λογάριθμος ως εκθέτης	$a^{\log_a x} = x$
Λογάριθμος δύναμης με κοινή βάση	$\log_a a^x = x$
Αλλαγή βάσης	$\log_a x = \frac{\log_\beta x}{\log_\beta a}$

Πίνακας 1.1: Ιδιότητες λογαρίθμων

Επίσης για κάθε λογάριθμο με οποιαδήποτε βάση $a \in \mathbb{R}^+$ και $a \neq 1$ έχουμε :

i.
$$\log_a 1 = 0$$

ii.
$$\log_a a = 1$$

1.3 Λογαριθμική συνάρτηση

ΟΡΙΣΜΟΙ

Ορισμός 3: ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

Λογαριθμική ονομάζεται κάθε συνάρτηση f της οποίας η τιμή της f(x) δίνεται με τη βοήθεια ενός λογαρίθμου, για κάθε στοιχείο του πεδίου ορισμού $x \in D_f$. Θα είναι :

$$f(x) = \log_a x , \quad 0 < a \neq 1$$

• Αν η βάση a του λογαρίθμου γίνει ίση με τον αριθμό 10 ή e τότε αποκτάμε τη συνάρτηση $f(x) = \log x$ ή $f(x) = \ln x$ αντίστοιχα.

ΘΕΩΡΗΜΑΤΑ - ΠΟΡΙΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΚΡΙΤΗΡΙΑ - ΙΔΙΟΤΉΤΕΣ

Θεώρημα 1.3: ΙΔΙΟΤΗΤΕΣ ΛΟΓΑΡΙΘΜΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Για κάθε λογαριθμική συνάρτηση της μορφής $f(x) = \log_a x$ ισχύουν οι ακόλουθες ιδιότητες.

- i. Η συνάρτηση f έχει πεδίο ορισμού το σύνολο $(0, +\infty)$ των θετικών πραγματικών αριθμών.
- ii. Το σύνολο τιμών της είναι το σύνολο $\mathbb R$ των πραγματικών αριθμών.
- iii. Η συνάρτηση δεν έχει μέγιστη και ελάχιστη τιμή.

1. $\Gamma \alpha a > 1$

- Αν η βάση a του λογαρίθμου είναι μεγαλύτερη της μονάδας τότε η συνάρτηση $f(x) = \log_a x$ είναι γνησίως αυξουσα στο $(0, +\infty)$.
- Η συνάρτηση έχει ρίζα τον αριθμό x = 1.
- Η γραφική παράστασή της έχει κατακόρυφη ασύμπτωτη τον άξονα y'y στη μεριά του $-\infty$ ενώ τέμνει τον οριζόντιο άξονα x'x στο σημείο A(1,0).
- Για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

$$\operatorname{Av} x_1 < x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$$

Av
$$x_1 = x_2 \Leftrightarrow \log_a x_1 = \log_a x_2$$

• Για x > 1 ισχύει $\log_a x > 0$ ενώ για 0 < x < 1 έχουμε $\log_a x < 0$.

Σχήμα 1.4: Λογαριθμική συνάρτηση με a>1

Σχήμα 1.5: Λογαριθμική συνάρτηση με 0 < a < 1

2. $\Gamma \alpha 0 < a < 1$

- Αν η βάση a του λογαρίθμου είναι μεγαλύτερη της μονάδας τότε η συνάρτηση $f(x) = \log_a x$ είναι γνησίως φθίνουσα στο $(0, +\infty)$.
- Η συνάρτηση έχει ρίζα τον αριθμό x = 1.
- Η γραφική παράστασή της έχει κατακόρυφη ασύμπτωτη τον άξονα y'y στη μεριά του $+\infty$ ενώ τέμνει τον οριζόντιο άξονα x'x στο σημείο A(1,0).
- Για κάθε ζεύγος αριθμών $x_1, x_2 \in \mathbb{R}$ ισχύει

Av
$$x_1 < x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$$

Av $x_1 = x_2 \Leftrightarrow \log_a x_1 = \log_a x_2$

- Για x>1 ισχύει $\log_a x<0$ ενώ για 0< x<1 έχουμε $\log_a x>0$.
- iv. Οι γραφικές παραστάσεις των λογαριθμικών συναρτήσεων με αντίστροφες βάσεις $f(x) = \log_a x$ και $g(x) = \log_{\frac{1}{a}} x$, με $0 < a \ne 1$, είναι συμμετρικές ως προς τον άξονα x'x.

Σχήμα 1.6: Λογαριθμικές συναρτήσεις με αντίστροφες βάσεις