Memoria Principal e Interconexión

Organización de computadoras

Universidad Nacional de Quilmes

2 de septiembre de 2013

Repaso

- Ciclo de vida del programa
- O Dentro de la CPU
 - Unidad de Control
 - ALU
 - Registros
- Ensamblar y desensamblar: Jugamos a la panadería
- O Ciclo de ejecución de una instrucción: Decodificación
- Computadora Q1

Arquitectura de Von Neumann

Memoria Principal

Memoria principal

- Conjunto de celdas, todas del mismo tamaño (cantidad de bits).
- Cada celda se accede a través de su dirección.
- Permite leer o escribir celdas.

 Se la conoce también como RAM (Memoria de Acceso Aleatorio)

- Se la conoce también como RAM (Memoria de Acceso Aleatorio)
- Se utiliza para almacenar temporalmente datos y programas.

- Se la conoce también como RAM (Memoria de Acceso Aleatorio)
- Se utiliza para almacenar temporalmente datos y programas.
- Es volátil: Pierde su contenido al desconectar la energía eléctrica

- Se la conoce también como RAM (Memoria de Acceso Aleatorio)
- Se utiliza para almacenar temporalmente datos y programas.
- Es volátil: Pierde su contenido al desconectar la energía eléctrica

Memoria de Acceso Aleatorio

Es posible acceder a cualquier celda con el mismo consumo de tiempo (¡No es azar!)

Memoria de Ejemplo

0	0101
1	1010
2	0000
3	1111
4	1100

Memoria de Ejemplo

0	0101
1	1010
2	0000
3	1111
4	1100

- Direcciones: {0, 1, 2, 3, 4}
- Celdas de 4 bits

Memoria de Ejemplo

0	0101
1	1010
2	0000
3	1111
4	1100

- Direcciones: {0, 1, 2, 3, 4}
- Celdas de 4 bits

Si la memoria recibe una orden de lectura sobre la celda 3 ¿Que responde?

Funcionamiento: Lectura

- Recibe la señal de lectura
- Recibe una dirección
- O Entrega el dato contenido en la celda correspondiente.

Funcionamiento: Lectura

000	0101
001	1010
010	0000
011	1111
100	1100
101	1010
110	0000
111	1111

Funcionamiento: Lectura

000	0101
001	1010
010	0000
011	1111
100	1100
101	1010
110	0000
111	1111

1111

Funcionamiento: Escritura

- Recibe la señal de escritura
- Recibe una dirección
- Recibe un dato
- Almacena el dato en la celda correspondiente.

Funcionamiento: Escritura

000	0101
001	1010
010	0000
011	0000
100	1100
101	1010
110	0000
111	1111

Espacio direccionable

Conjunto de todas las direcciones de las celdas de memoria

- Si la memoria tiene 2^m celdas, se necesitan \mathbf{m} bits para expresar las direcciones $[0:2^m-1]$
- Las celdas se agrupan en palabras. La palabra es la unidad natural de organización de la memoria. El tamaño de la palabra suele coincidir con lo necesario para representar números, y puede ser de 1 celda.
- Unidad de transferencia: cantidad de bits que se transmiten al mismo tiempo.

¿Cómo le llegan los datos/las direcciones/las señales a la memoria principal?

Buses Interconexión entre la memoria y la CPU

Bus

- Medio de transmisión compartido entre 2 o mas dispositivos
- Conjunto de señales (cables) agrupadas con un determinado objetivo

¿Que se necesita?

- Transmitir datos desde y hacia la memoria principal
- Transmitir direcciones hacia la memoria principal
- Transmitir señales de control hacia la memoria principal

- Cada línea de un bus transmite 1 bit a la vez.
- Ancho del bus: cantidad de líneas

- Cada línea de un bus transmite 1 bit a la vez.
- Ancho del bus: cantidad de líneas

Bus de datos

Transporta datos entre los módulos. El ancho del bus determina cuantos bits pueden transmitirse simultáneamente (en paralelo)

Arquitectura de Von Neumann: Bus de direcciones

Bus de direcciones

Indica el destino o el origen del dato que está en el bus de datos.

El ancho de este bus determina el espacio direccionable.

Revisamos la lectura

(datos)	1111	•00000
(dirección)	011	•••••
(control)	lectura	•••••

000	0101
001	1010
010	0000
011	1111
100	1100
101	1010
110	0000
111	1111

Revisamos la escritura

(datos)	0000	•••••
(dirección)	011	•••••
(control)	escritura	•••••

000	0101
001	1010
010	0000
011	0000
100	1100
101	1010
110	0000
111	1111

Interconexión: medios compartidos

Muchos dispositivos se conectan al bus y la señal transmitida por cualquiera de ellos está disponible para ser leida por cualquier otro.

Interconexión: medios compartidos

Muchos dispositivos se conectan al bus y la señal transmitida por cualquiera de ellos está disponible para ser leida por cualquier otro.

Si mas de un dispositivo transmite al mismo tiempo sus señales colisionan

Interconexión: medios compartidos

Muchos dispositivos se conectan al bus y la señal transmitida por cualquiera de ellos está disponible para ser leida por cualquier otro.

Si mas de un dispositivo transmite al mismo tiempo sus señales colisionan

Se necesita algún mecanismo de control y sincronización para asegurar que solo uno transmita al mismo tiempo.

Bus de control

Transmite señales de temporización y de comando hacia la memoria.

- La temporización indica la validez de los datos y direcciones transmitidos en los otros buses
- Los comandos indican el tipo de operación que debe llevar a cabo la memoria (lectura o escritura)

Bus de control

Transmite señales de temporización y de comando hacia la memoria.

- La temporización indica la validez de los datos y direcciones transmitidos en los otros buses
 - ¿El bus está ocupado?/Necesito usar el bus
- Los comandos indican el tipo de operación que debe llevar a cabo la memoria (lectura o escritura)

Bus de control

Transmite señales de temporización y de comando hacia la memoria.

- La temporización indica la validez de los datos y direcciones transmitidos en los otros buses
- Los comandos indican el tipo de operación que debe llevar a cabo la memoria (lectura o escritura)

Lectura/Escritura

Relación entre los buses y memoria principal

0	01010000
1	10010000
2	10101010
3	11001100
4	01010000
5	10010000
6	10101010
7	11001100

Relación entre los buses y memoria principal

0	01010000
1	10010000
2	10101010
3	11001100
4	01010000
5	10010000
6	10101010
7	11001100

Se tienen 8 celdas ****

Relación entre los buses y memoria principal

0	01010000
1	10010000
2	10101010
3	11001100
4	01010000
5	10010000
6	10101010
7	11001100

• Se tienen 8 celdas •••• El bus de direcciones debe tener 3 bits

Relación entre los buses y memoria principal

0	01010000
1	10010000
2	10101010
3	11001100
4	01010000
5	10010000
6	10101010
7	11001100

- Se tienen 8 celdas El bus de direcciones debe tener 3 bits
- Las celdas contienen 8 bits ****

Relación entre los buses y memoria principal

0	01010000
1	10010000
2	10101010
3	11001100
4	01010000
5	10010000
6	10101010
7	11001100

- Se tienen 8 celdas El bus de direcciones debe tener 3 bits
- Las celdas contienen 8 bits *** El bus de datos debe tener 8 bits

Acceso a las celdas

¿Cómo se activa una sola celda?

Acceso a las celdas

Usando un circuito decodificador

Acceso a las celdas

Cada bit es un flip-flop

De los creadores de Q1 llega...

• Tiene 8 registros de uso general de 16 bits: R0..R7

- Tiene 8 registros de uso general de 16 bits: R0..R7
- Tiene instrucciones de 2 operandos:

- Tiene 8 registros de uso general de 16 bits: R0..R7
- Tiene instrucciones de 2 operandos:

instrucción	sintaxis	efecto
ADD	ADD destino, origen	$\texttt{destino} \leftarrow \texttt{destino+origen}$
SUB	SUB destino, origen	$\texttt{destino} \leftarrow \texttt{destino} - \texttt{origen}$
MUL	MUL destino, origen	$(\texttt{R7,destino}) \leftarrow \texttt{destino} * \texttt{origen}$
DIV	DIV destino, origen	$\texttt{destino} \leftarrow \texttt{destino\%} \texttt{origen}$
MOV	MOV destino, origen	$\texttt{destino} \leftarrow \texttt{origen}$

- Tiene 8 registros de uso general de 16 bits: R0..R7
- Tiene instrucciones de 2 operandos:

instrucción	sintaxis	efecto
ADD	ADD destino, origen	$ ext{destino} \leftarrow ext{destino+origen}$
SUB	SUB destino, origen	$ ext{destino} \leftarrow ext{destino} - ext{origen}$
MUL	MUL destino, origen	$(R7, destino) \leftarrow destino * origen$
DIV	DIV destino, origen	$ ext{destino} \leftarrow ext{destino} \% ext{ origen}$
MOV	MOV destino, origen	$ ext{destino} \leftarrow ext{origen}$

- Tiene direcciones de 16 bits.
- Los operandos pueden estar en registros, ser constantes o estar en direcciones de memoria.

Arquitectura Q2: modos de direccionamiento

Q2 permite 3 modos de direccionamiento:

- modo registro: el valor buscado está en un registro
- modo inmediato: el valor buscado está codificado dentro de la instrucción
- modo directo: el valor buscado está contenido en una celda de memoria

Arquitectura Q2: modos de direccionamiento

Modo de direccionamiento directo

MOV R0, [3456]

ADD [FFEE], [AB01]

ADD [FFEE], 0xAB01

Arquitectura Q2: formato de instrucciones

Formato de instrucción

Define la organización de los bits dentro de una instrucción, en términos de las partes que la componen. Debe incluir el **código de la operación** y los **operandos**

Arquitectura Q2: formato de instrucciones

Formato de instrucción

Define la organización de los bits dentro de una instrucción, en términos de las partes que la componen. Debe incluir el **código de la operación** y los **operandos**

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

(Idem **Q1**)

Arquitectura Q2: Códigos de Operación

Operación	CodOp
MUL	0000
MOV	0001
ADD	0010
SUB	0011
DIV	0111

(Idem Q1)

Arquitectura **Q2**: Códigos de los modos de direccionamiento

Modo	Codificación
Inmediato	000000
Directo	001000
Registro	100rrr

donde rrr es una codificación (en 3 bits) del número de registro.

Arquitectura Q2: formato de instrucciones

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Los campos de los opendos Destino y Origen...

- no existen (si el modo respectivo es registro),
- contienen valores constantes (si el modo respectivo es inmediato),
- o contiene una dirección de memoria (si el modo respectivo es directo)

Ejercicio: Ensamblar MOV R1,[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Ejercicio: Ensamblar MOV R1,[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Operación	CodOp
MUL	0000
MOV	0001
ADD	0010
SUB	0011
DIV	0111

Modo	Codificación
Inmediato	000000
Directo	001000
Registro	100rrr

Ejercicio: Ensamblar MOV R1,[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Efecto	R1 ← [0003]
Código de operación	0001
Modo Destino	R1 está en modo registro: 100rrr
Modo Origen	[0003] está en modo directo: 001000

Ejercicio: Ensamblar MOV [AAAA],[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Ejercicio: Ensamblar MOV [AAAA],[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Operación	CodOp
MUL	0000
MOV	0001
ADD	0010
SUB	0011
DIV	0111

Modo	Codificación
Inmediato	000000
Directo	001000
Registro	100rrr

Ejercicio: Ensamblar MOV [AAAA],[0003]

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Efecto	[AAAA] ← [0003]	
Código de operación	0001	
Modo Destino	[AAAA] está en modo directo: 001000	
Modo Origen	[0003] está en modo directo: 001000	

Computadora Q2: Ejemplos

Ejercicio: Ensamblar MOV [F0F0],R5

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Operación	CodOp
MUL	0000
MOV	0001
ADD	0010
SUB	0011
DIV	0111

Modo	Codificación
Inmediato	000000
Directo	001000
Registro	100rrr

Computadora Q2: Ejemplos

Ejercicio: Ensamblar MOV [F0F0],R5

Cod_Op	Modo Destino	Modo Origen	Operando Destino	Operando Origen
(4b)	(6b)	(6b)	(16b)	(16b)

Efecto	[F0F0] ← R5		
Código de operación	0001		
Modo Destino	[F0F0] está en modo directo: 001000		
Modo Origen	R5 está en modo registro: 100101		

0001001000100101111110000111110000

Computadora Q2: Ejercicios

Ejercicios

Computadora Q2: Ejercicios

Ejercicios

- Hacer un programa que multiplique por 12 el valor de la celda 0007.
- 4 Hacer un programa que sume los valores de las celdas 7654 y 0123, y guarde el resultado en R2

Computadora Q2

Si las direcciones son de 16 bits

Computadora Q2

Si las direcciones son de 16 bits

y las celdas contienen 16 bits

Computadora Q2

Si las direcciones son de 16 bits

y las celdas contienen 16 bits

¿Cuál es el tamaño de la memoria de Q2?

Computadora Q2: Ejercicios

Ejercicio: Desensamblar

1200 A1A0 0002

1200 A1A1 0003

0208 A1A0 A1A1

Operación	CodOp		
MUL	0000		
MOV	0001		
ADD	0010		
SUB	0011		
DIV	0111		

Modo	Codificación		
Inmediato	000000		
Directo	001000		
Registro	100rrr		

Computadora Q2: Ejercicios

Ejercicio: Desensamblar

1200 A1A0 0002

1200 A1A1 0003

0208 A1A0 A1A1

cadena	Codop	Modo Destino	Modo Origen	Origen	Destino
1200 A1A0 0002	MOV	Directo	Inmediato	A1A0	0002
1200 A1A1 0003	MOV	Directo	Inmediato	A1A1	0003
0208 A1A0 A1A1	MUL	Directo	Directo	A1A0	A1A1

Ciclo de ejecución de instrucción

Ciclo de ejecución de instrucción revisado

Revisemos el ciclo para Q2

Ciclo de ejecución de instrucción revisado

¿Cómo hace la Unidad de Control para responderlo?

Ciclo de ejecución de instrucción revisado

¿Cómo hace la Unidad de Control para responderlo?

Mediante los modos de direccionamiento

¿Cuanto tarda la ejecución de un programa?

¿Cuánto tarda la ejecución de un programa?

¿Cuánto tarda la ejecución de un programa?

¿De qué depende?

¿Cuánto tarda la ejecución de un programa? ¿De qué depende?

Accesos a memoria + tiempo de ejecución

Accesos a memoria

¿En que momento se accede a memoria?

Accesos a memoria

¿En que momento se accede a memoria?

¿Cuántos accesos tiene?

MOV R1, R2

MOV R1, R2

MOV R1, R2

Búsqueda de la instrucción

MOV R1, R2

Búsqueda de la instrucción

0001100001100010 (1 celda)

Búsqueda de operandos

MOV R1, R2

Búsqueda de la instrucción

0001100001100010 (1 celda)

Búsqueda de operandos

No tiene operandos en memoria

MOV R1, [0001]

MOV R1, [0001]

Búsqueda de la instrucción

MOV R1, [0001]

Búsqueda de la instrucción

Búsqueda de operandos

MOV R1, [0001]

Búsqueda de la instrucción

Búsqueda de operandos

Se lee la celda 0001

¿Cuantos accesos tiene este programa? MOV [0001],R1

MOV [0001],R1

- Búsqueda de instrucción: 2 celdas
- Búsqueda de operandos: 0 celdas
- Almacenamiento de operandos: 1 celda

- Memoria principal
- 2 Interconexión entre la memoria y la CPU
- 3 Arquitectura Q2
- 4 Ciclo de ejecución de instrucción