High-Assurance Scientific Computing: A Unified Approach

Zhoulai Fu

IT University of Copenhagen

October 14, 2021

Intended Learning Outcomes for today

- Mathematical Optimisation as a general software technique
- Satisfiability Solving
- Path Reachability
- Overflow Detection

Boundary value analysis (recall)

```
double w;
void Prog(double x) {
    if (x <= 1.0) x++;
    double y = x * x;
    if (y <= 4.0) x--;
}

double w;
void Prog_W (double x) {
    w = w * abs(x - 1.0);
    if (x <= 1.0) x++;
    double y = x * x;
    w = w * abs(y - 4.0);
    if (y <= 4.0) x--;
}

double w;
void Prog_W (double x) {
    w = w * abs(x - 1.0);
    if (x <= 1.0) x++;
    double y = x * x;
    w = w * abs(y - 4.0);
    if (y <= 4.0) x--;
}

double w;
void Prog_W (double x) {
    w = 1; Prog_W(x); return w;
}</pre>
```

Property 1. W $(x) \ge 0$

Property 2. W (x) = 0 if and only if x is a boundary input

Boundary value analysis as a search problem

- Search an element of S among all inputs of Prog
- Minimize W as mathematical optimization,

looking for 0

Introducing the weak distance

- W(x) is non-negative
- W(x) = 0 if and only if x reaches S

Get the weak distance W from the syntax of Prog

Generalization

Analyzing floating-point code

- FP constraint solving
- Coverage-based testing
- Path reachability
- Boundary value analysis
- Overflow detection

W

Mathematical Optimization

Input x satisfies \$ \iff x minimizes W

(under the condition that S is non-empty)

The satisfiability problem

DEMO

$$3x + 2y - z = 1$$

$$2x - 2y + 4z = -2$$

$$-x + \frac{1}{2}y - z = 0$$

Satisfiability solving

Planning
Invariant Generation

Type Checking

Model Based Testing

Termination
...

Example 2

$$a>b+2$$
, $a=2c+10$, $c+b\leq 1000$

Model

SAT

 $a=0$, $b=-3$, $c=-5$
 $0>-3+2$, $0=2(-5)+10$, $(-5)+(-3)\leq 1000$

The intro part taken from http://fm.csl.sri.com/SSFT12/introduction.pdf

Example 3

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Array Theory

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Uninterpreted Functions

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), b+2-2)) \neq f(b+2-b+1)$

$$b + 2 = c$$
, $f(read(write(a,b,3), b)) \neq f(3)$

Array Theory Axiom

 $\forall a,i,v : read(write(a, i, v), i) = v$

$$b + 2 = c$$
, $f(3) \neq f(3)$

Floating-point Satisfiability

Floating-point satisfiability solving in the digital age

```
Zero[] = \{0.0, -0.0,\};
hx = *(1+(int*)&x);
lx = *(int*)&x;
hy = *(1+(int*)\&y);
ly = *(int*)&y;
sx = hx&0x80000000;
hx ^=sx;
hy &= 0x7ffffffff;
if((hy|ly)==0||(hx>=0x7ff00000)||
   ((hy|((ly|-ly)>>31))>0x7ff00000))
  return (x*y)/(x*y);
if(hx<=hy) {</pre>
  if((hx<hy)||(lx<ly)) return x;</pre>
  if(lx==ly)
    return Zero[(unsigned)sx>>31];
if(hx<0x00100000) {
  if(hx==0) {
    for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
```

Where challenges lie

Solving constraints with:

- floating-point arithmetic
- non-linear properties
- external functions, such as SIN, LOG, EXP

An example of solving floating-point constraints

Find a floating-point x to satisfy

$$(SIN(x) == x) \land (x \ge 10^{-10})$$

Existing solutions would not solve it

Solvers of **Reals** cannot solve this constraint

If
$$x \in \mathbb{R}$$
, $SIN(x) = x \Leftrightarrow x = 0$

Reducing to boolean satisfiability (bit-blasting) would require semantics approximation.

"IEEE-754 contains recommendations for trigonometric functions and exponentials but neither are mandated. The accuracy of implementations of these functions vary significantly, making it very hard to come up with logical models that are widely applicable. . ."

[Ref] Brain et al., "An automatable formal semantics for IEEE-754 ng-point arithmetic." In Computer Arithmetic 2015

Approach with Mathematical Optimisation

Step 1: Represent constraint κ by a function R

- $R(x) \ge 0$ for all x
- $R(x) = 0 \Leftrightarrow x \models \kappa$

Step 2: Minimize *R*

Theoretical guarantee: κ satisfiable $\Leftrightarrow R(x^*) = 0$ where x^* is a minimum point

Example $\kappa_1 \mid x \leq 1.5$

$$x \le 1.5$$

Step 1. Transform κ_1 to

$$R_1(x) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x \le 1.5\\ (x - 1.5)^2 & \text{otherwise} \end{cases}$$

Step 2. Minimize R_1 (local optimization)

- x* can be anything < 1.5

Example
$$\kappa_2$$
 $(x-1)^2 = 4 \land x \le 1.5$

Step 1. Transform κ_2 to R_2

$$((x-1)^2-4)^2 + \begin{cases} 0 & \text{if } x \le 1.5\\ (x-1.5)^2 & \text{otherwise} \end{cases}$$

Step 2. Minimize R_2 (Basinhopping)

•
$$x^* = -1$$

•
$$x^* = -1$$

• $R_2(x^*) = 0 \implies x^* \models R_2$

Example
$$K_3$$
 $S/N(x) == x \land x \ge 10^{-10}$

Step 1. Transform κ_3 to R_3 :

$$(SIN(x)-x)^2 + \begin{cases} 0 & \text{if } x \ge 10^{-10} \\ (x-10^{-10})^2 & \text{otherwise} \end{cases}$$

Step 2. Minimize R_3 (Basinhopping)

- $x^* = 9.0 * 10^{-9}$ (can be others)
- $R_3(x^*) = 0 \implies x^* \models R_3$

Construct R systematically

Constraint κ	Program R
x == y	$(x-y)^2$
$x \leq y$	$x \le y ? 0 : (x - y)^2$
$\kappa_1 \wedge \kappa_2$	R_1+R_2
$\kappa_1 \vee \kappa_2$	$R_1 * R_2$

Constraint κ	Program <i>R</i>
x == y	$(x-y)^2$
$x \leq y$	$x \le y ? 0 : (x - y)^2$
$\kappa_1 \wedge \kappa_2$	R_1+R_2
$\kappa_1 \vee \kappa_2$	R_1*R_2

Theoretical guarantee and limitation

- In theory, κ is satisfiable $\Leftrightarrow R(x^*) = 0$
- In practice, $R(x^*)$ may be inaccurate

Path reachability

```
F00: Program under test

double square(double x){
   return x * x;}

void F00(double x){
   l_0: if (x <= 1) x++;
      double y = square(x);
   l_1: if (y == 4) ...;}</pre>
```

Goal: Search inputs that reach the path "L0-true, L1-true"

Construct a weak distance

F00: Program under test

```
double square(double x){
    return x * x;}
void F00(double x){
l<sub>0</sub>: if (x <= 1) x++;
    double y = square(x);
l<sub>1</sub>: if (y == 4) ...;}
```


Quiz: FOO_R is a weak distance iff. ___

DEMO: /Users/zhfu/Google Drive/active/19_teaching_asa/python/demo4.py

Overflow Detection

GNU Scientific Library's bessel function

```
int gsl_sf_bessel_Knu_scaled_asympx_e(const double nu,
const double x, gsl_sf_result* result) {
 double mu = 4.0 * nu * nu; ___
 double mum1 = mu - 1.0;
 double mum9 = mu - 9.0;
 double pre = sqrt(M_PI / (2.0 * x));
 double r = nu / x;
 result->val = pre * (1.0 + mum1 / (8.0 * x) +
                  mum1 * mum9 / (128.0 * x * x));
 result->err = 2.0 * GSL_DBL_EPSILON *
   fabs(result->val) + pre * fabs(0.1 * r * r * r);
 return GSL_SUCCESS;
                                       l_1: t = 4.0
```

Goal: Trigger FP overflow for the first statement

Overflow detection via weak distance minimization

Step 1. Construct W

- Non-negative for all x
- W = 0 if and only if x reaches S

Step 2. Minimize W repeatedly until > 0

31

```
{ l_1: t = 4.0 * nu if (l_1 is not in L) w = |t|<MAX? MAX-|t| : 0 l_2: mu = t * nu if (l_2 is not in L) w = |mu|<MAX? MAX-|mu| : 0
```

Program_after_insertion (const double nu,...)

Round 1

nu	VV
0	Max
•	•
$\frac{1}{8}\sqrt{\mathtt{Max}}$	$rac{15}{16} exttt{Max}$
$rac{1}{4}\sqrt{ exttt{Max}}$	$rac{3}{4}\mathtt{Max}$
$\frac{1}{2}\sqrt{\mathtt{Max}}$	0

Round 2

L: Overflowed instructions

nu	W
0	Max
•	•
$\frac{1}{16}\mathtt{Max}$	$\frac{3}{4}\texttt{Max}$
$\frac{1}{8}\mathtt{Max}$	$\frac{1}{2}\mathtt{Max}$
$\frac{1}{4}\texttt{Max}$	0

Summary: Weak-distance minimization

- + A general method
- + Do not analyze the FP code; minimize another one
- + Theoretical guarantee
- Minimizing is inherently incomplete (see exercises)

Conclusions

S

Analyzing floating-point code

- FP constraint solving
- Coverage-based testing
- Path reachability
- Boundary value analysis
- Overflow detection

W

Mathematical Optimization

Input x satisfies \$ \iff x minimizes W