GBI-Tutorium 3

Richard Feistenauer

14. November. 2014

Inhaltsverzeichnis

- Wiederholung
 - Übungsblatt
 - Huffmancode
- 2 Speicher
 - Bit und Byte
 - Größenpräfixe
 - Speicher

Letztes Übungsblatt

Probleme

- Formale Definitionen
- Vollständige Induktion
- induktiv ≈ rekursiv

Huffman Übung

was ist die kürzeste Codierung für das Wort "MISSISSIPPI"

- ohne Blockcode
- mit Blockcode

Bit und Byte

Definition

Ein Bit ist ein Zeichen des Alphabetes {0,1}

Ein Byte sind üblicherweise 8 Bit. {vor allem früher war das nicht immer so}

Deshalb gibt es die Bezeichnung Octet das ist ein Byte mit 8 Bit

Größenpräfixe Dezimal

-10^{-3}	10^{-6}	10^{-9}	10^{-12}	10^{-15}	10^{-18}
1000^{-1}	1000^{-2}	1000^{-3}	1000^{-4}	1000^{-5}	1000^{-6}
milli	mikro	nano	pico	femto	atto
m	μ	n	р	f	а
10 ³	10 ⁶	10 ⁹	10^{12}	10^{15}	10 ¹⁸
1000^{1}	1000^{2}	1000^{3}	1000^{4}	1000^{5}	1000^{6}
kilo	mega	giga	tera	peta	exa
k	М	G	Т	Р	Е

Größenpräfixe Binär

2 ¹⁰	2^{20}	2^{30}	2^{40}	2^{50}	2^{60}
1024^{1}	1024^{2}	1024^{3}	1024 ⁴	1024^{5}	1024^{6}
kibi	mebi	gibi	tebi	pebi	exbi
Ki	Mi	Gi	Ti	Pi	Ei

Speicher als Tabelle

Adresse 1	Wert 1	000	01001011
Adresse 2	Wert 2	001	10010101
Adresse 3	Wert 3	010	00111001
Adresse n	Wert n	111	11100101

Speicher als Abbildung

Abbildung

```
m: Adr \rightarrow Val
m(a) = v
```

 $\begin{array}{l} \mathsf{memread} : \mathsf{Mem} \times \mathsf{Adr} \to \mathsf{Val} \\ \mathsf{memread} : \mathit{Val}^{\mathit{Adr}} \times \mathsf{Adr} \to \mathsf{Val} \end{array}$

 $\mathsf{memread}(\mathsf{m},\,\mathsf{a}) \mapsto \mathsf{m}(\mathsf{a})$

memwrite : Mem \times Adr \times Val \rightarrow Mem memwrite : $Val^{Adr} \times$ Adr \times Val \rightarrow Val^{Adr}

memwrite(m, a, v) \mapsto m'

Übung

• memread(memwrite(m,a,v),a) =

Übung

- memread(memwrite(m,a,v),a) = v
- memread(memwrite(m,a',v'),a) =

Übung

- memread(memwrite(m,a,v),a) = v
- memread(memwrite(m,a',v'),a) = memread(m,a)

Bit und Byte Größenpräfixe Speicher

Fragen?

Speicher

Unnützes Wissen

Als Bibliotaphen bezeichnet man Menschen, die ihre Bücher in Verstecken aufbewahren und nicht verleihen.