Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет

${f y}$ равнения математической физики Курсовая работа

Тема: Решение двумерной гармонической задачи при помощи четрырёхслойной неявной схемы. Базисные функции билинейные

Факультет: ФПМИ Группа: ПМ-63

Студент: Утюганов Д.С.

Вариант: 70

1. Цель работы

Разработать программу решения двумерной гармонической задачи методом конечных элементов. Сравнить прямой и итерационные методы решения получаемой в результате конечноэлементной аппроксимации СЛАУ.

2. Задание

- 1. Выполнить конечноэлементную аппроксимацию исходного уравнения в соответствии с заданием. Получить формулы для вычисления компонент матрицы ${\bf A}$ и вектора правой части ${\bf b}$.
- 2. Реализовать программу решения гармонической задачи с учетом следующих требований:
 - язык программирования С++ или Фортран;
 - предусмотреть возможность задания неравномерной сетки по пространству, разрывность параметров уравнения по подобластям, учет краевых условий;
 - матрицу хранить в разреженном строчно-столбцовом формате с возможностью перегенерации ее в профильный формат;
 - реализовать (или воспользоваться реализованными в курсе «Численные методы») методы решения СЛАУ: итерационный локально-оптимальную схему или метод сопряженных градиентов для несимметричных матриц с предобусловливанием и прямой LU-разложение или его модификации [2, с. 871; 3].
 - 3. Протестировать разработанную программу на полиномах первой степени.
- 4. Исследовать реализованные методы для сеток с небольшим количеством узлов 500 1000 и большим количеством узлов примерно 20 000 50 000 для различных значений параметров $10^{-4} \le \omega \le 10^9, \ 10^2 \le \lambda \le 8 \cdot 10^5, \ 0 \le \sigma \le 10^8, \ 8.81 \cdot 10^{-12} \le \chi \le 10^{-10}$. Для всех решенных задач сравнить вычислительные затраты, требуемые для решения СЛАУ итерационным и прямым методом.

Вариант 70: Решить одномерную гармоническую задачу в декартовых координатах, базисные функции - линейные.

3. Анализ

3.1. Постановка задачи

Дано гиперболическое уравнение в декартовой системе координат:

$$div(\lambda gradu) + \gamma u + \sigma \frac{du}{dt} + \chi \frac{d^2u}{dt^2} = f$$

3.2. Дискретизация по времени

3.3. Вариационная подстановка

3.4. Конечноэлементная дискретизация

Представим искомое решение и на интервале (\mathbf{t}_{j-2},t_j) :

$$\mathbf{u}(\mathbf{x},\mathbf{y},\mathbf{t}) = \mathbf{u}^{j-2}\eta_2^j(t) + u^{j-1}\eta_1^j(t) + u^{j-0}\eta_0^j(t)$$

где функции $\eta^j_
u(t)$ являются базисными кубическими полиномами Лагранжа и имеют следующий вид

$$\eta_2^j(t) = \frac{(t - t_{j-1})(t - t_j)}{(t_{j-1} - t_{j-2})(t_j - t_{j-2})}$$

$$\eta_1^j(t) = \frac{(t - t_{j-2})(t - t_j)}{(t_{j-1} - t_{j-2})(t_j - t_{j-1})}$$

$$\eta_0^j(t) = \frac{(t - t_{j-2})(t - t_{j-1})}{(t_j - t_{j-2})(t_j - t_{j-1})}$$

Возьмём первые и вторые производные от полиномов Лагранжа в точке $t=t_j$ (т.к. схема неявная)

	полином Лагранжа	1ая производная	2ая производная
$\eta_2^j(t)$	$t_{01}t_{00}$	t_{01}	_ 2
$\eta_2(\iota)$	$\frac{t_{01}t_{00}}{t_{12}t_{02}}$	$\overline{t_{12}t_{02}}$	$\overline{t_{12}t_{02}}$
$\eta_1^j(t)$	$t_{02}t_{00}$	t_{02}	-2
$\eta_1(\iota)$	$\overline{t_{12}t_{01}}$	$\frac{t_{02}}{t_{12}t_{01}}$	$\overline{t_{12}t_{01}}$
$m^{j}(t)$	$t_{02}t_{01}$	$t_{02} + t_{01}$	2
$\eta_0^{j}(t)$	$\frac{t_{02}t_{01}}{t_{02}t_{01}}$	$\overline{t_{02}t_{01}}$	$\overline{t_{02}t_{01}}$

где:

$$t_{01} = t_0 - t_1, t_0 = t_j, t_1 = t_{j-1},$$

 $t_{02} = t_0 - t_2, t_0 = t_j, t_2 = t_{j-2},$
...

Подставим их в исходное уравнение, а затем выведем из него 4-х слойную неявную схему:

$$\left(\left[\frac{2\chi}{t_{01}t_{02}} + \sigma \frac{t_{02} + t_{01}}{t_{01}t_{02}} + \gamma \right] M + G \right) q^{j} = b^{j}$$

$$- \left[\frac{2\chi}{t_{01}t_{02}} + \sigma \frac{t_{01}}{t_{02}t_{12}} \right] M q^{j-2}$$

$$+ \left[\frac{2\chi}{t_{01}t_{12}} + \sigma \frac{2}{t_{01}t_{12}} \right] M q^{j-1}$$

3.5. Локальные матрицы и вектора

Аналитические выражения для вычисления элементов локальных матриц:

$$G_{ij} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \lambda \left(\frac{\psi_i}{x} \frac{\psi_j}{x} + \frac{\psi_i}{y} \frac{\psi_j}{y} \right) dxdy$$

$$M_{ij}^{\gamma} = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} \gamma \psi_i \psi_j dxdy$$

$$b_i = \int_{x_p}^{x_{p+1}} \int_{y_s}^{y_{s+1}} f \psi_i x dy$$

$$G = \frac{\lambda}{6} \frac{h_y}{h_x} \begin{pmatrix} 2 & -2 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{pmatrix} + \frac{\lambda}{6} \frac{h_x}{h_y} \begin{pmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ -1 & 2 & 1 & 2 \end{pmatrix}$$

$$M = \frac{h_x h_y}{36} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix}$$

$$b = \frac{h_x h_y}{36} \begin{pmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_t \end{pmatrix}$$

3.6. Решатели

Для решения полученных СЛАУ использовались следующие методы:

- LU-разложение
- локально-оптимальная схема
- метод бисопряжённых градиентов

4. Исследования

Проверим сходимость метода на разных функциях Равномерная сетка по пространству

Равномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	1.33e-16	1.16e-13	9.08e-13	2.62e-03	7.50e-03	1.38e-02	3.28e-04	9.00e-04
x+y	6.08e-13	3.52e-13	6.56e-13	2.62e-03	7.50e-03	1.38e-02	3.28e-04	9.00e-04
$x^2 + y^2$	8.20e-13	2.91e-13	1.03e-13	2.62e-03	7.50e-03	1.38e-02	3.28e-04	9.00e-04
$x^{3} + y^{3}$	2.30e-13	1.21e-13	2.34e-13	2.62e-03	7.50e-03	1.38e-02	3.28e-04	9.00e-04
$x^4 + y^4$	1.69e-04	1.69e-04	1.69e-04	2.45e-03	7.33e-03	1.36e-02	4.98e-04	7.31e-04
$x^5 + y^5$	4.26e-04	4.26e-04	4.26e-04	2.20e-03	7.07e-03	1.33e-02	7.53e-04	4.79e-04
sin(x) + sin(y)	3.32e-06	3.32e-06	3.32e-06	2.62e-03	7.49e-03	1.38e-02	3.32e-04	8.97e-04
$e^x + e^y$	1.19e-05	1.19e-05	1.19e-05	2.61e-03	7.48e-03	1.37e-02	3.40e-04	8.88e-04

Равномерная сетка по пространству Неравномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	4.45e-17	4.94e-13	2.96e-13	3.98e-03	1.13e-02	2.12e-02	4.97e-04	1.37e-03
x + y	6.04e-13	2.55e-13	5.91e-13	3.98e-03	1.13e-02	2.12e-02	4.97e-04	1.37e-03
$x^2 + y^2$	8.13e-13	3.06e-13	1.31e-13	3.98e-03	1.13e-02	2.12e-02	4.97e-04	1.37e-03
$x^{3} + y^{3}$	2.29e-13	1.08e-13	2.46e-13	3.98e-03	1.13e-02	2.12e-02	4.97e-04	1.37e-03
$x^4 + y^4$	1.68e-04	1.68e-04	1.68e-04	3.82e-03	1.11e-02	2.11e-02	6.64e-04	1.20e-03
$x^5 + y^5$	4.22e-04	4.22e-04	4.22e-04	3.57e-03	1.09e-02	2.08e-02	9.17e-04	9.51e-04
sin(x) + sin(y)	3.28e-06	3.28e-06	3.28e-06	3.98e-03	1.13e-02	2.12e-02	5.00e-04	1.37e-03
$e^x + e^y$	1.18e-05	1.18e-05	1.18e-05	3.97e-03	1.13e-02	2.12e-02	5.09e-04	1.36e-03

Неравномерная сетка по пространству Равномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	1.86e-16	1.05e-13	7.99e-13	2.28e-03	6.57e-03	1.21e-02	2.85e-04	7.87e-04
x + y	9.08e-13	2.07e-13	3.08e-13	2.28e-03	6.57e-03	1.21e-02	2.85e-04	7.87e-04
$x^2 + y^2$	2.58e-13	6.66e-14	2.78e-13	2.28e-03	6.57e-03	1.21e-02	2.85e-04	7.87e-04
$x^3 + y^3$	1.45e-13	8.13e-14	2.91e-13	2.28e-03	6.57e-03	1.21e-02	2.85e-04	7.87e-04
$x^4 + y^4$	2.47e-04	2.47e-04	2.47e-04	2.04e-03	6.32e-03	1.19e-02	5.31e-04	5.44e-04
$x^5 + y^5$	7.71e-04	7.71e-04	7.71e-04	1.54e-03	5.82e-03	1.14e-02	1.05e-03	1.74e-04
sin(x) + sin(y)	5.90e-06	5.90e-06	5.90e-06	2.28e-03	6.56 e - 03	1.21e-02	2.91e-04	7.81e-04
$e^x + e^y$	1.96e-05	1.96e-05	1.96e-05	2.27e-03	6.55 e-03	1.21e-02	3.04e-04	7.68e-04

Неравномерная сетка по пространству Неравномерная сетка по времени

space(x,y) time(t)	1	t	t^2	t^3	t^4	t^5	sin(t)	e^t
1	1.24e-16	4.27e-13	2.67e-13	3.49e-03	9.92e-03	1.87e-02	4.34e-04	1.20e-03
x+y	8.99e-13	2.47e-13	3.76e-13	3.49e-03	9.92e-03	1.87e-02	4.34e-04	1.20e-03
$x^2 + y^2$	2.56e-13	6.04e-14	1.13e-13	3.49e-03	9.92e-03	1.87e-02	4.34e-04	1.20e-03
$x^3 + y^3$	1.47e-13	1.81e-13	2.73e-13	3.49e-03	9.92e-03	1.87e-02	4.34e-04	1.20e-03
$x^4 + y^4$	2.45e-04	2.45e-04	2.45e-04	3.25e-03	9.68e-03	1.85e-02	6.76e-04	9.62e-04
$x^5 + y^5$	7.62e-04	7.62e-04	7.62e-04	2.75e-03	9.18e-03	1.80e-02	1.19e-03	4.94e-04
sin(x) + sin(y)	5.83e-06	5.83e-06	5.83e-06	3.48e-03	9.91e-03	1.87e-02	4.39e-04	1.20e-03
$e^x + e^y$	1.94e-05	1.94e-05	1.94e-05	3.47e-03	9.90e-03	1.87e-02	4.53e-04	1.18e-03

4.1. Вывод

Если порядок полинома по пространству не превышает порядка используемых базисных функций, а порядок полинома по времени не соответсвует порядку точности используемой временной схемы, то получаемое численное решение должно полностью совпадать с точным решением задачи.

5. Исходный код программы