Laboratoria: piatek, 8:00

Grupa: 13

Informatyka Wydział informatyki i telekomunikacji.

Algorytmy i Strukrury Danych Prowadzacy: Dominik Witczak

Sprawozdanie do

Projektu 4 Algorytmy z powracaniem

Autor: Marcin Wrzaskowski nr indeksu: 160329

1 Uzasadnienie wyboru reprezentacji grafu (macierz sasiedztwa):

1.1 Prostota i przejrzystość:

Macierz sasiedztwa to dwuwymiarowa tablica, wypełniona 0 M[i, j] = 0 lub 1 M[i, j] = 1 jeżeli jest 1 to oznacza że wierzchołki i i j sa połaczone krawedzia.

1.2 Szybki dostep do krawedzi:

Sprawdzenie, czy istnieje krawedź miedzy dwoma wierzchołkami $\mathrm{O}(1)$ złożoność czasowa.

1.3 Efektywność dla grafów gestych:

Macierz sasiedztwa jest efektywna dla grafów gestych.

1.4 Łatwość implementacji algorytmów:

Łatwość implementacji algorytmów dla znajdywania cyklu Eulera/Hamiltona w grafie.

2 Wizualizacje grafów:

2.1 Graf hamiltonowski o |V| = 10

2.2 Graf nie hamiltonowski o |V| = 10

- 3 Wykresy zależności: (dla grafów hamiltonowskich o nasyceniu 30) t=f(n)
- 3.1 Skala liniowa t(ms):

3.2 Skala logarytmiczna t(ms):

- 4 Wykresy zależności: (dla grafów nie hamiltonowskich o nasyceniu 50) t=f(n)
- 4.1 Skala liniowa t(ms):

4.2 Skala logarytmiczna t(ms):

5 Obserwacje zwiazane z działaniem obu algorytmów w zależności od nasycenia grafu:

- 1. Dla grafów o nasyceniu 30%, wraz ze wzrostem ilości wierzchołki w grafie czas t rośnie wolniej niż dla grafów o nasyceniu 50%.
- 2. Wnioskujac z poprzedniego punktu te algorytmy (znajdowanie: cyklu Eulera, Hamiltona) dla grafów grafów o nasyceniu 30% działaja szybciej niż dla grafów grafów o nasyceniu 50%

6 Podsumowanie:

Nauczyłem sie

- 1. Generować grafy hamiltonowskie i nie hamiltonowskie.
- 2. Implementowac algorytmy ktore znajduja cykl Eulera, Hamiltona w grafach.
- 3. O grafach jako strukturach danych.
- 4. Wypisywania na ekran.
- 5. Wybierać odpowiednia implementacje maszynowa w zależności od rodzaju problemu do rozwiazania.

Spis treści

1	$\mathbf{U}\mathbf{z}$ a	sadnienie wyboru reprezentacji grafu (macierz sasiedz-		
	twa):		2	
	1.1	Prostota i przejrzystość:	2	
	1.2	Szybki dostep do krawedzi:	2	
	1.3	Efektywność dla grafów gestych:	2	
	1.4	Latwość implementacji algorytmów:	2	
2	Wizualizacje grafów: 2.1 Graf hamiltonowski o $ V =10$			
	2.1	Graf hamiltonowski o $ V = 10 \dots \dots \dots \dots$	2	
	2.2	Graf nie hamiltonowski o $ V = 10 \dots \dots \dots \dots$	į	
3	Wykresy zależności: (dla grafów hamiltonowskich o nasyceniu 30) $t = f(n)$			
		Skala liniowa t(ms):	4	
		Skala logarytmiczna t(ms):		
4	Wykresy zależności: (dla grafów nie hamiltonowskich o na-			
	syce	eniu 50) $t = f(n)$	6	
	4.1	Skala liniowa t(ms):	6	
	4.2	Skala liniowa t(ms):	7	

5	Obserwacje zwiazane z działaniem obu algorytmów w zależnośc	i
	od nasycenia grafu:	7
6	Podsumowanie:	8