Assignment: Solving a Non-Linear Equation

Name: 안견힐 ID: 21900416

Instructions:

You must submit, report file and program file: "myNM.h", "myNM.c", "Assignment nonlinear.c" on Hisnet.

Problem: Solve the following non-linear equation [30pt]

A simply supported I-beam is loaded with a distributed load, as shown. The deflection, y, of the center line of the beam as a function of the position, x, is given by the equation:

From the solution of the equation of motion for this model, the steady-state up-and-down motion of the car (mass) is given by x(t), due to the wheel motion of y(t). The ratio between amplitude X and amplitude Y is given by:

$$y = \frac{w_0 x}{360 LEI} (7L^4 - 10L^2 x^2 + 3x^4)$$

where L=4m is the length, E=70 GPa is the elastic modulus, I=52.9x10⁻⁶ m⁴ is the moment of inertia, and w_0 =20 kN/m.

Find the position x where the deflection at the point where the deflection of the beam is maximum and determine the deflection at this point.

HINT: The maximum deflection is at the point where dy/dx=0=f(x). First, find dy/dx=f(x). Then solve for f(x).

- a. Solve for the solution using MATLAB's functions of *fzero()* [5pt]
- b. Use your defined Newton-Rhapson method to solve for the solution. [20pt
- c. Compare the result with MATLAB's solution [5pt]

```
clc; clear; close all;
L=4;
E=70*10^9;
I=52.9*10^-6;
W0=20*10^3;
x=0.001:L;

y=(W0.*x/(360*L*E*I)).*(7*(L^4)-10*(L^2).*(x.^2)+3.*x.^4);
F=inline('(20000.*x/(360*4*70*10^9*52.9*10^-6)).*(7*(4^4)-10*(4^2).*(x.^2)+3.*x.^4)',x);
dF=inline('(20000/(360*4*70*10^9*52.9*10^-6)).*(7*(4^4)-10*(4^2).*(x.^2)+3.*x.^4)+(20000.*x/(360*4*70*10^9*52.9*10^-6)).*(-2*10*(4^2).*x+3.*4*x.^3)',x);
% F'

plot(x,dF(x));
x0=3; %initial x

sol=fzero(dF,x0) %dy/dx=0=f(x)
```

Procedure:

You need to create the main source file ('Assignment nonlinear.c'). You should fill in your codes on the main source file and in your library. Show the output results on the report.

```
Upload (1) Assignment nonlinear.c, (2) myNM.h, (3) myNM.c) as a zip file
```

Create newtonRaphson function to solve a non-linear equation.

```
double newtonRaphson (double func(double x), double dfunc(double x),
                      double x0, double tol)
```

- The declaration of the function must be in "myNP.h"
- The definition of the function must be in "myNP.cpp"
- User defined non-linear function, f(x), and the derivative function f'(x) must be defined in main source file (e.g. .Assignment nonlinear.c)

```
double func(double x);
double dfunc(double x);
```

Show the output results by capturing the output screen by running the main source. Display the output value of x(n), iteration number, and the relative error or tolerance.

Example)

```
Newton-Raphson Method Results
                  [olerance]
```

Pseudo Code

Pouble Newton Rapson ()

While
$$(K < N - max)$$
 And $E > tol$
 $(X + e) = -\frac{d Func}{d Func} (X - e)$
 $(X + e) = -\frac{d Func}{d Func} (X - e)$
 $(X + e) = -\frac{d Func}{d Func} (X - e)$
 $(X + e) = -\frac{d Func}{d Func} (X - e)$
 $(X + e) = -\frac{d Func}{d Func} (X - e)$

Paste your code of newtonRaphson()

HINT:

- Need to select MaxItr to prevent infinite loop errors
- Calculate for f'(x) analytically. If it is too complex to find f'(x), then use the secant method technique to estimate f'(x).
- Try to make a fail-safe program with error-handling techniques.
 - Check(Try-Catch) for possible errors such as f'(x) = 0
- Example code for using MATLAB fzero(function, x0)

```
FUN = @ (x) 8-4.5*(x-sin(x));
x0=2;
x=fzero(FUN,x0)
```

Examples of defining functions in C.

Eg.
$$y = x^2 - x$$

```
double func(x) {
   return x*x-x;}

double dfunc(x) {
   return 2*x-1;}
```