

Caravel SOC Introduction

Housekeeping GPIO SPI MMIO Willy Chiang

Topics

- System Block Diagram (modules)
- Processor VexRISCV functions & its interface
- Reset / POR
- Management Protect Are power control
- Clocking / DLL, configuration SPI register
- Housekeeping SPI registers
- GPIO
- SPI

- IRQ
- Memory-mapped IO address
- SRAM Management area/Storage area
- Bus Wishbone
- Peripherals Counter/Timer/UART
- User project design (counter) Interface
- Testbench
- Firmware code

Topics

- System Block Diagram (modules)
- Processor VexRISCV functions & its interface
- Reset / POR
- Management Protect Are power control
- Clocking / DLL, configuration SPI register
- Housekeeping SPI registers
- GPIO
- SPI

- IRQ
- Memory-mapped IO address
- SRAM Management area/Storage area
- Bus Wishbone
- Peripherals Counter/Timer/UART
- User project design (counter) Interface
- Testbench
- Firmware code

Front door (SPI):

SPI interface connected to the **padframe** through GPIO pins

Back door (MMIO):

wishbone interface connected to the management SoC

SPI bus topology

Standard SPI Mode

SPI mode

mode	CPOL	СРНА
mode 0	0	0
mode 1	0	1
mode 2	1	0
mode 3	1	1

- CPOL (Clock Polarity)
 - CPOL=1 CLK=high @ bus idle
 - CPOL=0 CLK=low @ bus idle
- CPHA (Clock Phase)
 - CPHA=0 sample data @ 1st edge > Rising Edge
 - CPHA=1 sample data @ 2nd edge > Falling Edge

SPI mode 0 and mode 2

SPI mode 1 and mode 3

Housekeeping SPI

SDI (pin F9), CSB (pin E8), SCK (pin F8), and SDO (pin E9)

- An SPI slave that can be accessed from remote host
- The SPI implementation is mode 0
 - New data on SDI captured on the SCK rising edge
 - Output data on the falling edge of SCK
- SPI pin are shared with user area GPIO.

SPI protocol definition

• After **CSB** is set low, the SPI is always in the "command" state, awaiting a new command.

Table 8	Housekeeping SPI	Housekeeping SPI command word definition			
	00000000	No operation			
	10000000	Write in streaming mode			
	01000000	Read in streaming mode			
	11000000	Simultaneous Read/Write in streaming mode			
	11000100	Pass-through (management) Read/Write in streaming mode			
	11000110	Pass-through (user) Read/Write in streaming mode			
	10nnn000	Write in n-byte mode (up to 7 bytes).			
	01nnn000	Read in n-byte mode (up to 7 bytes).			
	11nnn000	Simultaneous Read/Write in n-byte mode (up to 7 bytes).			

```
housekeeping_spi.v // Command format:
// 00000000 No operation
// 10000000 Write until CSB raised
// 01000000 Read until CSB raised
// 11000000 Simultaneous read/write until CSB raised
// 11000100 Pass-through read/write to management area flash SPI until CSB raised
// urnnn000 Read/write as above, for nnn = 1 to 7 bytes, then terminate
```


Housekeeping SPI modes

0000000	No operation
10000000	Write in streaming mode
01000000	Read in streaming mode
11000000	Simultaneous Read/Write in streaming mode
11000100	Pass-through (management) Read/Write in streaming mode
11000110	Pass-through (user) Read/Write in streaming mode
10nnn000	Write in n-byte mode (up to 7 bytes).
01nnn000	Read in n-byte mode (up to 7 bytes).
11nnn000	Simultaneous Read/Write in n-byte mode (up to 7 bytes)

- Streaming Mode
 - The data is sent or received continuously, one byte at a time, with the internal address incrementing for each byte.
 - Operation continues until CSB is raised to end the transfer.
- N-byte mode
 - The number of bytes to be read and/or written is encoded in the command word, and may have a value from 1 to 7
 - After n bytes have been read and/or written, the SPI returns to waiting for the next command.

Pass-thru Mode

- The pass-thru mode puts the CPU into immediate reset, then sets FLASH_CSB low to initiate a data transfer to the QSPI flash
- After the pass-thru command byte has been issued
 - SDI → FLASH IOO
 - SCK → FLASH_CLK
 - FLASH_IO1 → SDO
- When **CSB** is raised, the **FLASH_CSB** is also raised, terminating the data transfer to the QSPI flash. The CPU is brought out of reset, and starts executing instructions at the program start address.

Housekeeping SPI registers

Register Address	msb 7	6	5	4	3	2	1 1	Isb 0	comments
0x00		SPI status and control							unused/ undefined
0x01		unu	sed		manu	facturer_	ID[11:8] (=	0x4)	read-only
0x02			manu	facturer_	ID[7:0] (=	0x56)			read-only
0x03				product_	_ID (= 0x1	10)			read-only
0x04- 0x07		us	er_project	_ID (uniq	ue value	per proje	ct)		read-only
0x08		unused PLL DCO enable enable						default 0x02	
0x09	unused PLL bypass						default 0x01		
0x0A	unused CPU IRQ						default 0x00		
0x0B		unused CPU reset						default 0x00	
0x0C	unused CPU trap						read-only		
0x0D- 0x10	DCO trim (26 bits) (= 0x3ffefff)						default 0x3ffefff		
0x11	unused PLL output divider 2 PLL output divider					default 0x12			
0x12	unused PLL 1				. feedbac	k divider		default 0x04	

docs/other/ memory_map.txt

```
SPI register
              description
                               signal
                                                     memory map address
00 SPI status (reserved)
                           (undefined)
                                                         2610 0000
01 Manufacturer ID (high) mfgr id[11:8]
                                                         2610 0006
                       prod id[7:0]
03 Product ID
                                                     2610 0004
04 User project ID
                          mask rev[31:24]
                                                         2610 000b
08 PLL enables
                       pll dco ena, pll ena
                                                 2610 000c
09 PLL bypass
                       pll bypass
                                             2610 0010
                                     2610 0014
0a IRQ
       Reset
                                                 2610 0018
                           reset
Oc CPU trap state
                           trap
                                                         2610 0028
0d PLL trim
                       pll trim[31:24]
                                                 2610 001f
                       pl190 sel[2:0], pl1 sel[2:0] 2610 0020
11 PLL source
                       pll div[4:0]
12 PLL divider
                                             2610 0024
                           serial resetn/clock/data
                                                         2600 0000
13 GPIO control
14 SRAM read-only control hkspi sram clk/csb
                                                     2610 0034
15 SRAM read-only address hkspi sram addr
                                                     2610 0030
16 SRAM read-only data
                          hkspi sram data[31:24]
                                                         2610 002f
17 SRAM read-only data
                          hkspi sram data[23:16]
                                                         2610 002e
18 SRAM read-only data
                          hkspi sram data[15:8]
                                                         2610 002d
19 SRAM read-only data
                          hkspi sram data[7:0]
                                                     2610 002c
1a Power monitor
                           usr1/2 vcc/vdd pwrgood
                                                         2620 0000
1b Output redirect
                           clk1/clk2/trap output dest
                                                         2620 0004
1c Input redirect
                           irq 8/7 inputsrc
                                                     2620 000c
                           gpio configure[0][12:8]
1d GPIO[0] configure
                                                         2600 0025
68 GPIO[37] configure
                           gpio configure[37][7:0]
                                                         2600 00b8
69 GPIO data
                      mgmt gpio in[37:32]
                                                 2600 0010
                                                     2600 0004
6e Power control
                           pwr ctrl out[3:0]
6f HK SPI disable
                           hkspi disable
                                                     2620 0010
```

rtl/housekeeping.v

- Base Decode
 - GPIO_BASE_ADR = 32'h2600_0000,
 - SPI_BASE_ADR = 32'h2610_0000,
 - SYS_BASE_ADR = 32'h2620_0000,
- Module enable status from SoC
 - input qspi_enabled // Flash SPI is in quad mode
 - input spi_enabled // SPI master is enabled
- SPI master interface to/from SoC
 - output spi_sdi,
 - input spi_csb,
 - input spi_sck,
 - input spi_sdo,
 - input spi_sdoenb,
- PassThru Mode detect by housekeeping_spi
 - wire pass_thru_mgmt
 - wire pass_thru_user

- GPIO data management (to padframe)
 - input [`MPRJ_IO_PADS-1:0] mgmt_gpio_in,
 - output [`MPRJ_IO_PADS-1:0] mgmt_gpio_out,
 - output [`MPRJ_IO_PADS-1:0] mgmt_gpio_oeb,
- SPI flash management (management SoC side)
 - input spimemio_flash_xx
 - output spimemio_flash_xx
- SPI flash management (padframe side)
 - output pad_flash_xx
 - input pad_flash_xx

Front door			mprj_id		mprj_io[3] CSB mprj_io[1]	Spi_master	*	spi_sck spi_csb spi_sdi spi_sdo	= mprj_io[32] = mprj_io[33] = mprj_io[34] = mprj_io[35]	((output) (output) (input) (output)
			SDI		SDO	Document t	суро				
E9	SDO	Digital out	Housekeeping serial interface data output			F9	spi_sdo	Digital out	Serial interface output	Serial interface controller data output	
F9	SDI	Digital in	Housekeeping serial interface data input			F8	spi_sck	Digital out	Serial interface controller clock		ock
E8	CSB	Digital in	Housekeeping serial interface chip select			E8	spi_csb	Digital out	Serial interface controller chip select		ip select
F8	SCK	Digital in	Housekeeping serial interface clock			E9	spi_sdi	Digital in	Serial interface	controller da	ata input
D8	flash_clk	Digital out	Flash SPI clock			F5	flash2_csb	Digital out	User area QSPI flash enable (sense inverted)		(sense
C10	flash_csb	Digital out	Flash SPI chip select			E4	flash2_sck	Digital out	User area QSPI flash clock		
D9, D10	flash_io[1:0]	Digital I/O	Flash SPI data input/output			E3, F4	flash2_io[1:0]	Digital I/O	User area QSPI	flash data	
Flash Controller or				Pass-thru U	Jser			mprj_io[12]	mprj_io[11] flash2_io[1]		

Flash_Controller or

clock

flash_csb

flash_io[1]

flash_io[0]

Pass-thru Management

mode

©BOLEDU

Pass-thru User mode

mprj_io[10] flash2_io[0]

mprj_io[9]

flash2_sck

mprj_io[7]

irq

mprj_io[8]

flash2_csb

Topics

- System Block Diagram (modules)
- Processor VexRISCV functions & its interface
- Reset / POR
- Management Protect Are power control
- Clocking / DLL, configuration SPI register
- Housekeeping SPI registers
- GPIO
- SPI

- IRQ
- Memory-mapped IO address
- SRAM Management area/Storage area
- Bus Wishbone
- Peripherals Counter/Timer/UART
- User project design (counter) Interface
- Testbench
- Firmware code

Agenda

- Architecture Introduction
- One pin GPIO
- MPRJ_IO

Descriptions

- In Harness Definition
 - GPIO handling moved out of management SoC and into SPI.
 - On power-up, the SPI automatically configures the GPIO. Manual load is possible from both the SPI and from the wishbone bus.
- In Management Area
 - Configure User Project I/O pads (mprj_io)
 - Control the User Project power supply (one bit gpio) [Not implement]
- In User Project Area
 - This is the user space. It has a limited silicon area 2.92mm x 3.52mm as well as a fixed number of I/O pads 38 and power pads 4.

Pin description (6x10 WLCSP)

Pin #	Name	Туре	Summary description
A9, B9, A8, B8, C8, A7, A6, B6, A5, B5, A4, B4, A3, C3, A1, B2, B1, C2, C1, D1, D2, E1, F1, E2, D3, F3, E3, F4, E4, F5, E5, F7, E7, F8, E8, F9, E9, D7	mprj_io[37:0]	Digital I/O	General purpose configurable digital I/O with pullup/pulldown, input or output, enable/disable, analog output, high voltage output, slew rate control. Shared between the user project area and the management SoC.
E10	gpio	Digital I/O	Management GPIO/user power enable

Package as viewed from the bottom.

Agenda

- Architecture Introduction
- One pin GPIO
- MPRJ_IO

General Purpose Input/Output (pin E10)

- A single GPIO port is provided from the Management SoC as general indicator and diagnostic for programming or as a means to control functionality off chip.
- One example user case is to set an enable for an off-chip LDO enabling a controlled power-up sequence for the user project.

Register Listing for GPIO				
Register	Address			
GPIO_MODE1	0xf0002800			
GPIO_MODE0	0xf0002804			
GPIO_IEN	0xf0002808			
GPIO_OE	0xf000280c			
GPIO_IN	0xf0002810			
GPIO_OUT	0xf0002814			

defs.h

```
#define reg_gpio_mode1 (*(volatile uint32_t*) CSR_GPIO_MODE1_ADDR)
#define reg_gpio_mode0 (*(volatile uint32_t*) CSR_GPIO_MODE0_ADDR)
#define reg_gpio_ien (*(volatile uint32_t*) CSR_GPIO_IEN_ADDR)
#define reg_gpio_oe (*(volatile uint32_t*) CSR_GPIO_OE_ADDR)
#define reg_gpio_in (*(volatile uint32_t*) CSR_GPIO_IN_ADDR)
#define reg_gpio_out (*(volatile uint32_t*) CSR_GPIO_OUT_ADDR)
```


"Caravel" harness chip power domain splits

Agenda

- Architecture Introduction
- One pin GPIO
- MPRJ_IO

GPIO Pad Structure

GPIO Pad Structure

GPIO Configuration

- Configuration settings define whether the GPIO is configured to connect to the user project area or the management SoC
- GPIOs are configured by assigning predefined values for each IO in the file rtl/header/user_defines.v
- Assigned configuration values for GPIO[5] thru GPIO[37], but GPIO[0] thru GPIO[4] are preset and cannot be changed.
- The following values are redefined for assigning to GPIOs:

```
GPIO_MODE_MGMT_STD_INPUT_NOPULL
GPIO_MODE_MGMT_STD_INPUT_PULLDOWN
GPIO_MODE_MGMT_STD_INPUT_PULLUP
GPIO_MODE_MGMT_STD_INPUT_PULLUP
GPIO_MODE_MGMT_STD_OUTPUT
GPIO_MODE_MGMT_STD_BIDIRECTIONAL
GPIO_MODE_USER_STD_INPUT_PULLUP
GPIO_MODE_USER_STD_OUTPUT
GPIO_MODE_USER_STD_BIDIRECTIONAL
GPIO_MODE_USER_STD_BIDIRECTIONAL
GPIO_MODE_USER_STD_OUT_MONITORED
GPIO_MODE_USER_STD_OUT_MONITORED
GPIO_MODE_USER_STD_ANALOG
```


mprj_io[i] Control Register Descriptions

hold override value (value is the value during hold mode)

output disable (0 - output enabled, 1 - output disabled)

management control enable (0 - user control, 1 - management control)

1

0

0

1

Mprjp_io MMIO Registers

Region	Address	Size
dff	0x00000000	0x00000400
sram	0x01000000	0x00000800
flash	0x10000000	0x01000000
hk	0x26000000	0x00100000
user project	0x30000000	0x10000000
csr	0xf0000000	0x00010000
vexriscv_debug	0xf00f0000	0x00000100

0x26	00	00	00	User project area GPIO data transfer (bit 0, auto	-zeroing) Mirrors housekeeping register 0x13
0x26	00	00	04	User project area GPIO power[0] configure	(These are currently undefined/unused.)
					Housekeeping register 0x6e
0x26	00	00	0c	User project area GPIO data (L) (GPIO 31 to 0)	Housekeeping registers 0x6a-0x6d
0x26	00	00	10	User project area GPIO data (H) (GPIO 37 to 32	, upper bits unused)
					Housekeeping register 0x69
0x26	00	00	24	User project area GPIO mprj_io[0] configure	Housekeeping registers 0x1d, 0x1e-
	:				:
026		00	L 0	Hear project area CDIO mari io[27] configure	Housekeeping registers 0v67 0v69
0x26	UU	UU	D8	User project area GPIO mprj_io[37] configure	Housekeeping registers —0x67, 0x68

rtl/header/user_defines.v

```
Useful GPIO mode values. These match the names used in defs.h
define GPIO MODE MGMT STD INPUT NOPULL
                                          13'h0403
define GPIO MODE MGMT STD INPUT PULLDOWN
                                          13'h0c01
define GPIO MODE MGMT STD INPUT PULLUP
                                           13'h0801
define GPIO MODE MGMT STD OUTPUT
                                          13'h1809
define GPIO MODE MGMT STD BIDIRECTIONAL
                                          13'h1801
define GPIO MODE MGMT STD ANALOG
                                          13'h000b
define GPIO MODE USER STD INPUT NOPULL
                                          13'h0402
define GPIO MODE USER STD INPUT PULLDOWN
                                          13'h0c00
define GPIO MODE USER STD INPUT PULLUP
                                           13'h0800
define GPIO MODE USER STD OUTPUT
                                           13'h1808
define GPIO MODE USER STD BIDIRECTIONAL
                                          13'h1800
define GPIO MODE USER STD OUT MONITORED
                                          13'h1802
define GPIO MODE USER STD ANALOG
                                           13'h000a
```

Mas k bit	Defaul t	Description
10- 12	001	Digital mode
9	TODO	input voltage trip point select
8	0	slow slew (0 - fast slew, 1 - slow slew)
7	TODO	analog bus polarity
6	TODO	analog bus select
5	TODO	analog bus enable (0 - disabled, 1 - enabled)
4	TODO	IB mode select
3	0	input disable (0 - input enabled, 1 - input disabled)
2	0	hold override value (value is the value during hold mode)
1	1	output disable (0 - output enabled, 1 - output disabled)
0	1	management control enable (0 - user control, 1 - management control)

rtl/header/user_defines.v

The power-on configuration for GPIO 0 to 4 is fixed and cannot be modified (allowing the SPI and debug to always be accessible unless overridden by a flash program)

```
`define USER_CONFIG_GPIO_5_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_6_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_7_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_8_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_9_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_10_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_11_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_12_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_13_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL `define USER_CONFIG_GPIO_13_INIT `GPIO_MODE_MGMT_STD_INPUT_NOPULL
```

```
Configurations of GPIO 14 to 24 are used on caravel but not caravan
define USER CONFIG GPIO 14 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 15 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 16 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 17 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 18 INIT `GPIO MODE MGMT STD
define USER CONFIG GPIO 19 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 20 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 21 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 22 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 23 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 24 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 25 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 26 INIT 'GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 27 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 28 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 29 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 30 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 31 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 32 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 33 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 34 INIT
                                GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 35 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 36 INIT `GPIO MODE MGMT STD INPUT NOPULL
define USER CONFIG GPIO 37 INIT `GPIO MODE MGMT STD INPUT NOPULL
```


firmware/caravel.h

```
#define reg_mprj_xfer (*(volatile uint32 t*)0x26000000)
#define reg mprj pwr (*(volatile uint32 t*)0x26000004)
#define reg mprj irq (*(volatile uint32 t*)0x26100014)
#define reg mprj datal (*(volatile uint32 t*)0x2600000c)
#define reg mprj datah (*(volatile uint32 t*)0x26000010)
#define reg mprj io 0 (*(volatile uint32 t*)0x26000024)
#define reg mprj io 1 (*(volatile uint32 t*)0x26000028)
#define reg mprj io 2 (*(volatile uint32 t*)0x2600002c)
#define reg mprj io 3 (*(volatile uint32 t*)0x26000030)
#define reg mprj io 4 (*(volatile uint32 t*)0x26000034)
#define reg mprj io 5 (*(volatile uint32 t*)0x26000038)
#define reg mprj io 6 (*(volatile uint32 t*)0x2600003c)
#define reg mprj io 7 (*(volatile uint32 t*)0x26000040)
#define reg mprj io 8 (*(volatile uint32 t*)0x26000044)
#define reg mprj io 9 (*(volatile uint32 t*)0x26000048)
#define reg mprj io 10 (*(volatile uint32 t*)0x2600004c)
#define reg mprj io 11 (*(volatile uint32 t*)0x26000050)
#define reg mprj io 12 (*(volatile uint32 t*)0x26000054)
#define reg mprj io 13 (*(volatile uint32 t*)0x26000058)
#define reg mprj io 14 (*(volatile uint32 t*)0x2600005c)
#define reg mprj io 15 (*(volatile uint32 t*)0x26000060)
#define reg_mprj_io_16 (*(volatile uint32_t*)0x26000064)
#define reg mprj io 17 (*(volatile uint32 t*)0x26000068)
#define reg mprj io 18 (*(volatile uint32 t*)0x2600006c)
#define reg mprj io 19 (*(volatile uint32 t*)0x26000070)
#define reg mprj io 20 (*(volatile uint32 t*)0x26000074)
#define reg mprj io 21 (*(volatile uint32 t*)0x26000078)
#define reg mprj io 22 (*(volatile uint32 t*)0x2600007c)
```

```
#define reg_mprj_io_23 (*(volatile uint32_t*)0x26000080)
#define reg_mprj_io_24 (*(volatile uint32_t*)0x26000084)
#define reg_mprj_io_25 (*(volatile uint32_t*)0x26000088)
#define reg_mprj_io_26 (*(volatile uint32_t*)0x2600008c)

#define reg_mprj_io_27 (*(volatile uint32_t*)0x26000090)
#define reg_mprj_io_28 (*(volatile uint32_t*)0x26000094)
#define reg_mprj_io_29 (*(volatile uint32_t*)0x26000098)
#define reg_mprj_io_30 (*(volatile uint32_t*)0x2600009c)
#define reg_mprj_io_31 (*(volatile uint32_t*)0x2600000a0)

#define reg_mprj_io_32 (*(volatile uint32_t*)0x2600000a4)
#define reg_mprj_io_34 (*(volatile uint32_t*)0x2600000ac)
#define reg_mprj_io_35 (*(volatile uint32_t*)0x2600000b0)
#define reg_mprj_io_36 (*(volatile uint32_t*)0x2600000b4)
#define reg_mprj_io_37 (*(volatile uint32_t*)0x2600000b4)
#define reg_mprj_io_37 (*(volatile uint32_t*)0x2600000b8)
```


testbench/counter_la/counter_la.c

```
void main()
       reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
       reg mprj io 16 = GPIO MODE MGMT STD OUTPUT;
       reg_mprj_io_15 = GPIO_MODE_USER_STD_OUTPUT;
       reg_mprj_io_0 = GPIO_MODE_USER_STD_OUTPUT;
       reg mprj io 6 = GPIO MODE MGMT STD OUTPUT;
   // Now, apply the configuration
   reg mprj xfer = 1;
   while (reg mprj xfer == 1);
   // Flag start of the test
   reg mprj datal = 0xAB4000000;
   reg mprj datal = 0xAB510000;
```


Topics

- System Block Diagram (modules)
- Processor VexRISCV functions & its interface
- Reset / POR
- Management Protect Are power control
- Clocking / DLL, configuration SPI register
- Housekeeping SPI registers
- GPIO
- SPI

- IRQ
- Memory-mapped IO address
- SRAM Management area/Storage area
- Bus Wishbone
- Peripherals Counter/Timer/UART
- User project design (counter) Interface
- Testbench
- Firmware code

Region	Address	Size
dff	0x00000000	0x00000400
sram	0x01000000	0x00000800
flash	0x10000000	0x01000000
hk	0x26000000	0x00100000
user project	0x30000000	0x10000000
csr	0xf0000000	0x00010000
vexriscv_debug	0xf00f0000	0x00000100

	Region	Address	Registers
	CTRL	0xf000000	CTRL_RESET 0xf0000000 CTRL_SCRATCH 0xf0000004 CTRL_BUS_ERRORS 0xf0000008
	DEBUG_MODE	0xf0000800	DEBUG_MODE_OUT 0xf0000800
	DEBUG_OEB	0xf0001000	DEBUG_OEB_OUT 0xf0001000
	FLASH_CORE	0xf0001800	FLASH_CORE_MMAP_DUMMY_BITS 0xf0001800 FLASH_CORE_MASTER_CS 0xf0001804 FLASH_CORE_MASTER_PHYCONFIG 0xf0001808 FLASH_CORE_MASTER_RXTX 0xf000180c FLASH_CORE_MASTER_STATUS 0xf0001810
٦	FLASH_PHY	0xf0002000	FLASH_PHY_CLK_DIVISOR 0xf0002000
	GPIO	0xf0002800	GPIO_MODE1 0xf0002800 GPIO_MODE0 0xf0002804 GPIO_IEN 0xf0002808 GPIO_OE 0xf000280c GPIO_IN 0xf0002810 GPIO_OUT 0xf0002814

Region	Address	Size
dff	0x0000000	0x00000400
sram	0x01000000	0x00000800
flash	0x10000000	0x01000000
hk	0x26000000	0x00100000
user project	0x30000000	0x10000000
csr	0xf0000000	0x00010000
vexriscv_debug	0xf00f0000	0x00000100

Region	Address	Registers
LA	0xf0003000	LA_IEN3-0 0xf0003000-0C LA_OE3-0 0xf0003010-1C LA_IN3-0 0xf0003020-2C LA_OUT3-0 0xf0003030-3C
MPRJ_WB_IENA	0xf0003800	MPRJ_WB_IENA_OUT 0xf0003800
SPI_ENABLED	0xf0004000	SPI_ENABLED_OUT 0xf0004000
SPI Controller	0xf0004800	SPI_MASTER_CONTROL 0xf0004800 SPI_MASTER_STATUS 0xf0004804 SPI_MASTER_MOSI 0xf0004808 SPI_MASTER_MISO 0xf000480c SPI_MASTER_CS 0xf0004810 SPI_MASTER_LOOPBACK 0xf0004814 SPI_MASTER_CLK_DIVIDER 0xf0004818

Region	Address	Size
dff	0x00000000	0x00000400
sram	0x01000000	0x00000800
flash	0x10000000	0x01000000
hk	0x26000000	0x00100000
user project	0x30000000	0x10000000
csr	0xf0000000	0x00010000
vexriscv_debug	0xf00f0000	0x00000100

	Region	Address	Registers
	TIMERO	0xf0005000	TIMERO_LOAD 0xf0005000 TIMERO_RELOAD 0xf0005004 TIMERO_EN 0xf0005008 TIMERO_UPDATE_VALUE 0xf000500c TIMERO_VALUE 0xf0005010 TIMERO_EV_STATUS 0xf0005014 TIMERO_EV_PENDING 0xf0005018 TIMERO_EV_ENABLE 0xf000501c
]	UART	0xf0005800	UART_RXTX 0xf0005800 UART_TXFULL 0xf0005804 UART_RXEMPTY 0xf0005808 UART_EV_STATUS 0xf000580c UART_EV_PENDING 0xf0005810 UART_EV_ENABLE 0xf0005814 UART_TXEMPTY 0xf0005818 UART_RXFULL 0xf000581c
ĺ	UART_ENABLED	0xf0006000	UART_ENABLED_OUT 0xf0006000

Region	Address	Size
dff	0x0000000	0x00000400
sram	0x01000000	0x00000800
flash	0x10000000	0x01000000
hk	0x26000000	0x00100000
user project	0x30000000	0x10000000
csr	0xf0000000	0x00010000
vexriscv_debug	0xf00f0000	0x00000100

Region	Address	Registers
USER_IRQ_0	0xf0006800	USER_IRQ_0_IN 0xf0006800 USER_IRQ_0_MODE 0xf0006804 USER_IRQ_0_EDGE 0xf0006808 USER_IRQ_0_EV_STATUS 0xf000680c USER_IRQ_0_EV_PENDING 0xf0006810 USER_IRQ_0_EV_ENABLE 0xf0006814
USER_IRQ_1	0xf0007000	Same as IRQ0
USER_IRQ_2	0xf0007800	Same as IRQ0
USER_IRQ_3	0xf0008000	Same as IRQ0
USER_IRQ_4	0xf0008800	Same as IRQ0
USER_IRQ_5	0xf0009000	Same as IRQ0
USER_IRQ_ENA	0xf0009800	USER_IRQ_ENA_OUT 0xf0009800

Question?

