Multilevel Modeling With Latent Variables Using Mplus

Linda K. Muthén Bengt Muthén

Copyright © Muthén & Muthén www.statmodel.com

1

Table Of Contents

General Latent Variable Modeling Framework	3
Analysis With Multilevel Data	5
Multilevel Regression Analysis	7
Numerical Integration	17
Twolevel Path Analysis	22
Twolevel Factor Analysis	32
Twolevel SEM	42
Multilevel Estimation	52
Practical Issues Related To The Analysis Of Multilevel Data	54
Multivariate Modeling of Family Members	57
Twin Modeling	61
Multilevel Mixture Modeling	63
Multilevel Growth Models	66
Multilevel Two-Part Growth Modeling	84
Multilevel Growth Mixture Modeling	85
Multilevel Discrete-Time Survival Analysis	101
References	103

General Latent Variable Modeling Framework

3

General Latent Variable Modeling Framework

Analysis With Multilevel Data

Used when the data have been obtained by cluster sampling and/or unequal probability sampling to avoid biases in parameter estimates, standard errors, and tests of model fit and to learn about both within- and between-cluster relationships.

Analysis Considerations

- Sampling perspective
 - Aggregated modeling SUDAAN
 - TYPE=COMPLEX
 - Stratification, sampling weights, clustering (Asparouhov, 2005)

5

Analysis With Multilevel Data (Continued)

- Multilevel perspective
 - Disaggregated modeling multilevel modeling
 - TYPE = TWOLEVEL
 - Multivariate modeling
 - TYPE = GENERAL

Analysis Areas

- Multilevel regression analysis
- Multilevel path analysis
- Multilevel factor analysis
- Multilevel SEM
- Multilevel latent class analysis
- Multilevel growth modeling
- Multilevel 2-part growth modeling
- Multilevel growth mixture modeling

Cluster-Specific Regressions

$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} w_j + u_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1j}$$

7

Multilevel Regression Analysis With Random Intercepts And Random Slopes In Multilevel Terms

Two-level analysis (individual i in cluster j):

 y_{ij} : individual-level outcome variable

 x_{ij} : individual-level covariate w_i : cluster-level covariate

Random intercepts, random slopes:

Level 1 (Within):
$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + r_{ij}$$
, (8)

Level 2 (Between):
$$\beta_{0j} = \gamma_{00} + \gamma_{01} \dot{w}_1 + \dot{u}_{0j}$$
, (9)

Level 2 (Between) :
$$\beta_{0j} = \gamma_{00} + \gamma_{01} w_j + u_{0j}$$
, (9)
Level 2 (Between) : $\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1j}$. (10)

- Mplus gives the same estimates as HLM/MLwiN ML (not REML): V(r)(residual variance for level 1), γ_{00} , γ_{01} , γ_{10} , γ_{11} , $V(u_0)$, $V(u_1)$, $Cov(u_0, u_1)$
- Centering of x: subtracting grand mean or group (cluster) mean
- Model testing with varying covariance structure, marginal covariance matrix for y

9

Input For Multilevel Regression Model

TITLE: multilevel regression

DATA: FILE IS completev2.dat;

! National Education Longitudinal Study (NELS)

FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2

f18.2 f8.0 4f8.2;

VARIABLE: NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92

m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp algebra retain aca_back female per_mino hw_time salary dis_fair clas_dis mean_col per_high unsafe num_frie teaqual par_invo ac_track urban size rural private mean_ses catholic stu_teac per_adva tea_exce

tea_res;

USEV = m92 female stud_ses per_adva private catholic
mean ses;

!per_adva = percent teachers with an MA or higher

WITHIN = female stud_ses;

BETWEEN = per_adva private catholic mean_ses;

MISSING = blank; CLUSTER = school;

CENTERING = GRANDMEAN (stud_ses);

Input For Multilevel Regression Model

ANALYSIS: TYPE = TWOLEVEL RANDOM MISSING;

MODEL:

%WITHIN%

s1 | m92 ON female;
s2 | m92 ON stud_ses;

%BETWEEN%

s1 WITH m92; s2 WITH m92;

m92 s1 s2 ON per_adva private catholic mean_ses;

OUTPUT: TECH8 SAMPSTAT;

11

Output Excerpts For Multilevel Regression Model (Continued)

N = 10,933

Summary of Data

Number of clusters 902

Size (s) Cluster ID with Size s

1	89863	75862	52654	1995	32661	89239	56214	
2	41743	81263	45025	26790	60281	82860	56241	21474
	4570	27159	11662	87842	38454			
3	65407	61407	83048	42640	41412	67708	83085	39685
	40402	93469	98582	68595	11517	17543	75498	81069
	66512							
4	31646	68153	85508	26234	83390	60835	7400	20770
	5095	10904	93569	38063	86733	66125	51670	10910
	98461	44395	95317	64112	50880	77381	12835	47555
	9208	93859	35719	67574	20048	34139	25784	80675
5	14464	74791	18219	10468	72193	97616	15773	877
	9471	83234	68254	68028	70718	3496	6842	45854

Output Excerpts For Multilevel Regression Model (Continued)

3459	917	58687	81919	37741	63302	63143	
79570	15426	97947	93599	85125	10926	4603	
6411	60328	70024	67835				
36988	22874	50626	19091				
56619	59710	34292	18826	62209			
44586	67832	16515					
82887							
847	76909						
36177							
12786	53660	47120	94802				
80553							
53272							
89842	31572						
99516							
75115							
uster size	12.187	7					
Intraclass	Correla	ations f	or the Y	Y Variab	les		
Intraclass							
orrelation							
0.107							
	79570 6411 36988 56619 44586 82887 847 36177 12786 80553 53272 89842 99516 75115 uster size Intraclass Intraclass	79570 15426 6411 60328 36988 22874 56619 59710 44586 67832 82887 847 76909 36177 12786 53660 80553 53272 89842 31572 99516 75115 custer size 12.187 Intraclass Correlation	79570 15426 97947 6411 60328 70024 36988 22874 50626 56619 59710 34292 44586 67832 16515 82887 847 76909 36177 12786 53660 47120 80553 53272 89842 31572 99516 75115 custer size 12.187 Intraclass Correlations formula in the state of the sta	79570 15426 97947 93599 6411 60328 70024 67835 36988 22874 50626 19091 56619 59710 34292 18826 44586 67832 16515 82887 847 76909 36177 12786 53660 47120 94802 80553 53272 89842 31572 99516 75115 uster size 12.187 Intraclass Correlations for the Signature of the	79570 15426 97947 93599 85125 6411 60328 70024 67835 36988 22874 50626 19091 56619 59710 34292 18826 62209 44586 67832 16515 82887 847 76909 36177 12786 53660 47120 94802 80553 53272 89842 31572 99516 75115 suster size 12.187 Intraclass Correlations for the Y Variab Intraclass Correlation	79570 15426 97947 93599 85125 10926 6411 60328 70024 67835 36988 22874 50626 19091 56619 59710 34292 18826 62209 44586 67832 16515 82887 847 76909 36177 12786 53660 47120 94802 80553 53272 89842 31572 99516 75115 suster size 12.187 Intraclass Correlations for the Y Variables Intraclass Correlation	79570 15426 97947 93599 85125 10926 4603 6411 60328 70024 67835 36988 22874 50626 19091 56619 59710 34292 18826 62209 44586 67832 16515 82887 847 76909 36177 12786 53660 47120 94802 80553 53272 89842 31572 99516 75115 suster size 12.187 Intraclass Correlations for the Y Variables Intraclass Correlation

Output Excerpts For Multilevel Regression Model (Continued)

Tests of Model Fit

Loglikelihood

H0 Value -39390.404

Information Criteria

Number of Free parameters
Akaike (AIC)
Bayesian (BIC)
Sample-Size Adjusted BIC
(n* = (n + 2) / 24)

-39390.404

78822.808
78976.213
78909.478

Model Results

	Estimates	S.E.	Est./S.E.
Level			
l es			
	70.577	1.149	61.442
Level			
ON			
ADVA	0.084	0.841	0.100
ATE	-0.134	0.844	-0.159
OLIC	-0.736	0.780	-0.944
_SES	-0.232	0.428	-0.542
	Level ON ADVA ATE OLIC	Level 1	Level 1

14

Output Excerpts For Multilevel Regression Model (Continued)

S2		ON				
	PER_ADV	A	1.348	0.521	2.587	
	PRIVATE		-1.890	0.706	-2.677	
	CATHOLIC	C	-1.467	0.562	-2.612	
	MEAN_SES	5	1.031	0.283	3.640	
М9	2	ON				
	PER_ADV	A	0.195	0.727	0.268	
	PRIVATE		1.505	1.108	1.358	
	CATHOLIC	C	0.765	0.650	1.178	
	MEAN_SES	5	3.912	0.399	9.814	
S1		WITH				
	M92		-4.456	1.007	-4.427	
S	2	WITH				
	M92		0.128	0.399	0.322	
In	tercepts					
	M92		54.886	0.428	128.231	
	S1		-0.856	0.507	-1.688	
	S2		4.075	0.309	13.208	
R	esidual V	<i>l</i> ariances				
	M92		8.679	1.003	8.649	
	S1		5.740	1.411	4.066	
	S2		0.307	0.527	0.583	15

Random Slopes

• In single-level modeling random slopes β_i describe variation across individuals i.

$$y_i = \alpha_i + \beta_i x_i + \varepsilon_i, \tag{100}$$

$$\alpha_{i} = \alpha + \zeta_{0i}, \qquad (101)$$

$$\beta_{i} = \beta + \zeta_{1i}, \qquad (102)$$

$$\beta_i = \beta + \zeta_{1i},\tag{102}$$

Resulting in heteroscedastic residual variances

$$V(y_i \mid x_i) = V(\beta_i) x_i^2 + \theta.$$
 (103)

• In two-level modeling random slopes β_i describe variation across clusters *j*

$$y_{ij} = a_j + \beta_j x_{ij} + \varepsilon_{ij}, \tag{104}$$

$$a_j = a + \zeta_{0j}, \tag{105}$$

$$\beta_j = \beta + \zeta_{1j},\tag{106}$$

 $y_{ij} = a_j + \beta_j x_{ij} + \varepsilon_{ij}, \qquad (104)$ $a_j = a + \zeta_{0j}, \qquad (105)$ $\beta_j = \beta + \zeta_{1j}, \qquad (106)$ A small variance for a random slope typically leads to slow convergence of the ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are

- Observed covariates
- Observed dependent variables (Version 3)
- Continuous latent variables (Version 3)

Numerical Integration

Numerical integration is needed with maximum likelihood estimation when the posterior distribution for the latent variables does not have a closed form expression. This occurs for models with categorical outcomes that are influenced by continuous latent variables, for models with interactions involving continuous latent variables, and for certain models with random slopes such as multilevel mixture models.

When the posterior distribution does not have a closed form, it is necessary to integrate over the density of the latent variables multiplied by the conditional distribution of the outcomes given the latent variables. Numerical integration approximates this integration by using a weighted sum over a set of integration points (quadrature nodes) representing values of the latent variable.

17

Numerical Integration (Continued)

Numerical integration is computationally heavy and thereby time-consuming because the integration must be done at each iteration, both when computing the function value and when computing the derivative values. The computational burden increases as a function of the number of integration points, increases linearly as a function of the number of observations, and increases exponentially as a function of the dimension of integration, that is, the number of latent variables for which numerical integration is needed.

Practical Aspects Of Numerical Integration

- Types of numerical integration available in Mplus with or without adaptive quadrature
 - Standard (rectangular, trapezoid) default with 15 integration points per dimension
 - Gauss-Hermite
 - Monte Carlo
- Computational burden for latent variables that need numerical integration
 - One or two latent variables
 Three to five latent variables
 Heavy
 - Over five latent variables Very heavy

19

Practical Aspects Of Numerical Integration (Continued)

- Suggestions for using numerical integration
 - Start with a model with a small number of random effects and add more one at a time
 - Start with an analysis with TECH8 and MITERATIONS=1 to obtain information from the screen printing on the dimensions of integration and the time required for one iteration and with TECH1 to check model specifications
 - With more than 3 dimensions, reduce the number of integration points to 5 or 10 or use Monte Carlo integration with the default of 500 integration points
 - If the TECH8 output shows large negative values in the column labeled ABS CHANGE, increase the number of integration points to improve the precision of the numerical integration and resolve convergence problems

Nonparametric Estimation Of The Random Effect Distribution

21

Twolevel Path Analysis With Categorical Outcomes

Logistic Regression

Path Model

23

Two-Level Path Analysis

Within

female mothed homeres expect lunch expel arrest droptht7 hisp black math7

Between

Input For A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable

TITLE: a twolevel path analysis with a categorical outcome

and missing data on the mediating variable

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = female mothed homeres math7 math10 expel

arrest hisp black hsdrop expect lunch droptht7

schcode;

MISSING = ALL (999); CATEGORICAL = hsdrop; CLUSTER = schcode;

WITHIN = female mothed homeres expect math7 lunch

expel arrest droptht7 hisp black;

ANALYSIS: TYPE = TWOLEVEL MISSING;

ESTIMATOR = ML;

ALGORITHM = INTEGRATION;

INTEGRATION = MONTECARLO (500);

25

Input For A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable (Continued)

MODEL:

%WITHIN%

hsdrop ON female mothed homeres expect math7 math10

lunch expel arrest droptht7 hisp black;

math10 ON female mothed homeres expect math7 lunch

expel arrest droptht7 hisp black;

%BETWEEN%

hsdrop*1; math10*1;

OUTPUT: PATTERNS SAMPSTAT STANDARDIZED TECH1 TECH8;

Output Excerpts A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On the Mediating Variable

Summary Of Data

	Number	of	patterns		2	2
	Number	of	clusters		44	1
Size	(s)		Cluster	ID with	Size	s
12	2		304			
13	3		305			
36	5		307	122		
38	3		106	112		
39	9		138	109		
40)		103			
41	L		308			
42	2		146	120		
43	3		102	101		
44	1		303	143		
45	5		141			

Output Excerpts A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data **On the Mediating Variable (Continued)**

```
Size (s)
                  Cluster ID with Size s
   46
                    144
   47
                    140
   49
                    108
                    126
   50
                             111
                                     110
   51
                    127
                             124
   52
                    137
                             117
                                     147
                                             118
                                                     301
                                                             136
   53
                    142
                             131
   55
                    145
                             123
   57
                    135
                             105
   58
                    121
   59
                    119
   73
                    104
   89
                    302
   93
                    309
   118
                    115
                                                                 28
```

Output Excerpts A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On the Mediating Variable (Continued)

1	VΤ	odel	D	CII	ltc
- 1	VI (ace	Kŧ	-811	HS

Within Level	Estimates	S.E.	Est./S.E.	Std	StdYX
HSDROP ON					
FEMALE	0.323	0.171	1.887	0.323	0.077
MOTHED	-0.253	0.103	-2.457	-0.253	-0.121
HOMERES	-0.077	0.055	-1.401	-0.077	-0.061
EXPECT	-0.244	0.065	-3.756	-0.244	-0.159
MATH7	-0.011	0.015	-0.754	-0.011	-0.055
MATH10	-0.031	0.011	-2.706	-0.031	-0.197
LUNCH	0.008	0.006	1.324	0.008	0.074
EXPEL	0.947	0.225	4.201	0.947	0.121
ARREST	0.068	0.321	0.212	0.068	0.007
DROPTHT7	0.757	0.284	2.665	0.757	0.074
HISP	-0.118	0.274	-0.431	-0.118	-0.016
BLACK	-0.086	0.253	-0.340	-0.086	-0.013

Output Excerpts A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On the Mediating Variable (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
MATH10 ON					
FEMALE	-0.841	0.398	-2.110	-0.841	-0.031
MOTHED	0.263	0.215	1.222	0.263	0.020
HOMERES	0.568	0.136	4.169	0.568	0.070
EXPECT	0.985	0.162	6.091	0.985	0.100
MATH7	0.940	0.023	40.123	0.940	0.697
LUNCH	-0.039	0.017	-2.308	-0.039	-0.059
EXPEL	-1.293	0.825	-1.567	-1.293	-0.026
ARREST	-3.426	1.022	-3.353	-3.426	-0.054
DROPTHT7	-1.424	1.049	-1.358	-1.424	-0.022
HISP	-0.501	0.728	-0.689	-0.501	-0.010
BLACK	-0.369	0.733	-0.503	-0.369	-0.009

Output Excerpts A Twolevel Path Analysis Model With A Categorical Outcome And Missing Data On the Mediating Variable (Continued)

I	Estimates	S.E.	Est./S.E.	Std	StdYX
Residual Variance MATH10	62.010	2.162	28.683	62.010	0.341
Between Level					
Means					
MATH10	10.226	1.340	7.632	10.226	5.276
Thresholds					
HSDROP\$1	-1.076	0.560	-1.920		
Variances					
HSDROP	0.286	0.133	2.150	0.286	1.000
MATH10	3.757	1.248	3.011	3.757	1.000

31

Twolevel Factor Analysis With Categorical Outcomes

Within

Between

33

Input For A Two-Level Factor Analysis Model With Categorical Outcomes

TITLE: this is an example of a two-level factor analysis

model with categorical outcomes

DATA: FILE = catrep1.dat;

VARIABLE: NAMES ARE u1-u6 clus; CATEGORICAL = u1-u6;

CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL;

ESTIMATION = ML;

ALGORITHM = INTEGRATION;

MODEL:

%WITHIN%

fw BY u1@1

u2 (1)

u3 (2)

u4 (3)

u5 (4)

u6 (5);

Input For A Two-Level Factor Analysis Model With Categorical Outcomes

%BETWEEN%
fb BY u1@1
u2 (1)
u3 (2)
u4 (3)
u5 (4)
u6 (5);
OUTPUT: TECH1 TECH8;

 $\lambda f_{ij} = \lambda (f_j^B + f_{ij}^W)$

Output Excerpts Two-Level Factor Analysis Model With Categorical Outcomes

Tests Of Model Fit

Loglikelihood

Output Excerpts Two-Level Factor Analysis Model With Categorical Outcomes (Continued)

Model Results

	Estimates	S.E.	Est./S.E.
Within Level			
FW BY			
U1	1.000	0.000	0.000
U2	0.915	0.146	6.264
U3	1.087	0.169	6.437
U4	1.058	0.164	6.441
U5	1.191	0.185	6.449
U6	1.143	0.178	6.439
Variances			
FW	0.834	0.191	4.360

37

38

Output Excerpts Two-Level Factor Analysis Model With Categorical Outcomes (Continued)

Between Level	Estimates	S.E.	Est./S.E.
FB BY			
U1	1.000	0.000	0.000
U2	0.915	0.146	6.264
U3	1.087	0.169	6.437
U4	1.058	0.164	6.441
U5	1.191	0.185	6.449
U6	1.143	0.178	6.439
Thresholds			
U1\$1	-0.206	0.096	-2.150
U2\$1	0.001	0.091	0.007
U3\$1	-0.016	0.100	-0.156
U4\$1	-0.064	0.098	-0.652
U5\$1	-0.033	0.105	-0.315
U6\$1	-0.021	0.102	-0.209
Variances			
FB	0.496	0.139	3.562

Two-Level Factor Analysis with Covariates

39

NELS Data

- The Data—National Education Longitudinal Study (NELS:88)
 - Base year Grade 8—followed up in Grades 10 and 12
 - Student sampled within 1,035 schools—approximately 26 students per school
 - Variables—reading, math, science, history-citizenshipgeography, and background variables
- Data for the analysis—reading, math, science, historycitizenship-geography, gender, individual SES, school SES, and minority status

Twolevel SEM: Random Slopes For Regressions Among Factors

Between y_1 y_2 y_3 y_4 y_8 y_8

Input For A Twolevel SEM With A Random Slope

TITLE: a twolevel SEM with a random slope

DATA: FILE = etaeta3.dat;

VARIABLE: NAMES ARE y1-y8 x clus;

CLUSTER = clus; BETWEEN = x;

ANALYSIS: TYPE = TWOLEVEL RANDOM MISSING;

ALGORITHM = INTEGRATION;

Input For A Twolevel SEM With A Random Slope (Continued)

```
MODEL:
            %WITHIN%
            flw BY y1@1
            y2 (1)
            y3 (2)
            y4 (3);
            f2w BY y5@1
            y6 (4)
            y7 (5)
            y8 (6);
            s | f2w ON f1w;
            %BETWEEN%
            flb BY yl@1
            y2 (1)
            y3 (2)
            y4 (3);
            f2b BY y5@1
            y6 (4)
            y7 (5)
            y8 (6);
            f2b ON f1b;
            s ON x;
OUTPUT:
            TECH1 TECH8;
```

45

Output Excerpts Twolevel SEM With A Random Slope

Tests Of Model Fit

Loglikelihood

Output Excerpts Twolevel SEM With A Random Slope (Continued)

Model Results

		Estimates	S.E.	Est./S.E.
Within L	evel			
F1W	BY			
Y1		1.000	0.000	0.000
Y2		0.992	0.035	28.597
Υ3		0.978	0.041	23.593
Y4		1.001	0.037	26.884
F2W	BY			
Y5		1.000	0.000	0.000
У 6		0.978	0.028	34.417
¥7		1.049	0.030	35.174
У8		1.008	0.026	38.090
F1W	WITH			
F2W		0.000	0.000	0.000

47

Output Excerpts Twolevel SEM With A Random Slope (Continued)

	(Estimates	S.E.	Est./S.E.)
Variances			
F1W	1.016	0.082	12.325
F2W	0.580	0.063	9.144
Residual Varia	ances		
Y1	0.979	0.063	15.517
Y2	0.949	0.056	16.854
Y3	1.052	0.060	17.406
Y4	0.971	0.053	18.174
Y5	1.039	0.057	18.187
Y6	1.062	0.058	18.292
¥7	0.941	0.058	16.191
Y8	1.076	0.060	17.835

Output Excerpts Twolevel SEM With A Random Slope (Continued)

		(Estimates	S.E.	Est./S.E.)
Between Level				
F1B	BY			
Y1		1.000	0.000	0.000
Y2		0.992	0.035	28.597
У3		0.978	0.041	23.593
Y4		1.001	0.037	26.884
F2B	BY			
Y5		1.000	0.000	0.000
Y 6		0.978	0.028	34.417
¥7		1.049	0.030	35.174
У8		1.008	0.026	38.090
F2B	ON			
F1B		0.180	0.080	2.248

49

Output Excerpts Twolevel SEM With A Random Slope (Continued)

	(Es	timates	S.E.	Est./S.E.)
S	ON			
X		0.999	0.082	12.150
Intercept	s			
Y1		-0.099	0.063	-1.560
Y2		-0.011	0.064	-0.175
Υ3		-0.069	0.067	-1.034
Y4		-0.001	0.065	-0.017
Y5		0.030	0.062	0.475
Y6		-0.008	0.064	-0.129
¥7		0.041	0.064	0.635
Y8		0.002	0.071	0.035
S		0.777	0.073	10.604
Variances				
F1B		0.568	0.096	5.900
Residual	Variances			
F2B		0.237	0.056	4.211
S		0.420	0.088	4.756

Multilevel Modeling With A Random Slope For Latent Variables

Student (Within)

School (Between)

51

Multilevel Estimation, Testing, Modification, And Identification

Estimators

- Muthén's limited information estimator (MUML) random intercepts
 - ESTIMATOR = MUML
 - Muthén's limited information estimator for unbalanced data
 - Maximum likelihood for balanced data
- Full-information maximum likelihood (FIML) random intercepts and random slopes
 - ESTIMATOR = ML, MLR, MLF
 - Full-information maximum likelihood for balanced and unbalanced data
 - Robust maximum likelihood estimator
 - MAR missing data
 - Asparouhov and Muthén

Multilevel Estimation, Testing, Modification, And Identification (Continued)

Tests of Model Fit

- MUML chi-square, robust chi-square, CFI, TLI, RMSEA, and SRMR
- FIML chi-square, robust chi-square, CFI, TLI, RMSEA, and SRMR
- FIML with random slopes no tests of model fit

Model Modification

- MUML modification indices not available
- FIML modification indices available

Model identification is the same as for CFA for both the between and within parts of the model.

53

Practical Issues Related To The Analysis Of Multilevel Data

Size Of The Intraclass Correlation

- Small intraclass correlations can be ignored but important information about between-level variability may be missed by conventional analysis
- The importance of the size of an intraclass correlation depends on the size of the clusters
- Intraclass correlations are attenuated by individual-level measurement error
- Effects of clustering not always seen in intraclass correlations

Practical Issues Related To The Analysis Of Multilevel Data (Continued)

Within-Level And Between-Level Variables

- Variables measured on the within-level can be used in both the between-level and within-level parts of the model or only in the within-level part of the model (WITHIN=)
- Variables measured on the between-level can be used only in the between-level part of the model (BETWEEN=)

Sample Size

- There should be at least 30-50 between-level units (clusters)
- Clusters with only one observation are allowed

55

Steps In SEM Multilevel Analysis For Continuous Outcomes

- Explore SEM model using the sample covariance matrix from the total sample
- Estimate the SEM model using the pooled-within sample covariance matrix
- Investigate the size of the intraclass correlations and DEFF's
- Explore the between structure using the estimated between covariance matrix
- Estimate and modify the two-level model suggested by the previous steps

Multivariate Modeling of Family Members

- Multilevel modeling: clusters independent, model for between- and within-cluster variation, units within a cluster statistically equivalent
- Multivariate approach: clusters independent, model for all variables for each cluster unit, different parameters for different cluster units.
 - used in the latent variable growth modeling, where the cluster units are the repeated measures over time
 - allows for different cluster sizes by missing data techniques
 - more flexible than the multilevel approach, but computationally convenient only for applications with small cluster sizes (e.g. twins, spouses)

57

Figure 1. A Longitudinal Growth Model of Heavy Drinking for Two-Sibling Families

Source: Khoo, S.T. & Muthen, B. (2000). Longitudinal data on families: Growth modeling alternatives. Multivariate Applications in Substance Use Research, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 43-78.

Input For Multivariate Modeling Of Family Data

TITLE: Multivariate Modeling Of Family Data

One Observation Per Family

DATA: FILE IS multi.dat;

VARIABLE: NAMES ARE o18-o32 y18-y32 omale oes ohsdrop ymale yoes

yhsdrop black hisp fh123 fh1 hf123;

MODEL: s210 BY o18-o32@1;

lrateo BY o18@0 o19@1 o20@2 o21@3 o22@4 o23@5 o24@6 o25@7 o26@8 o27@9 o28@10 o29@11 o30@12 o31@13 o32@14; qrateo BY o18@0 o19@1 o20@4 o21@9 o22@16 o23@25 o24@36 o25@49 o26@64 o27@81 o28@100 o29@121 o30@144 o31@169

032@196;

s21y BY y18-y32@1;

lratey BY y18@0 y19@1 y20@2 y21@3 y22@4 y23@5 y24@6 y25@7 y26@8 y27@9 y28@10 y29@11 y30212 y31@13 y32@14; qratey BY y18@0 y19@1 y20@4 y21@9 y22@16 y23@25 y24@36 y25@49 y26@64 y27@81 y28@100 y29@121 y30@144 y31@169

y32@196;

s21o ON omale oes ohsdrop black hisp fh123 fh1 fh23; 221y ON ymale yes yhsdrop black hisp fh123 fh1 fh23;

s21y ON s21o;

lratey ON s21o lrateo;

qratey ON s21o lrateo qrateo; [o18-y32@0 s21o-qratey];

59

Input For Multivariate Modeling Of Family Data (Continued)

!New Version 3 Language For Growth Models

023@5 024@6 025@7 026@8 027@9 028@10 029@11 030@12

o31@13 o32@14;

s21y lratey qratey | y18@0 y19@1 y20@2 y21@3 y22@4 y23@5

y24@6 y25@7 y26@8 y27@9 y28@10 y29@11 y30@12

y31@13 y32@14;

s120 ON omale oes ohsdrop black hisp fh123 fh1 fh23;

221y ON ymale yes yhsdrop black hisp fh123 fh1 fh23;

s21y ON s21o;

lratey ON s21o lrateo;

qratey ON s210 lrateo qrateo;

Twin Modeling

Multilevel Mixture Modeling

63

Two-Level Regression Mixture Modeling: Group-Randomized CACE

Two-Level Latent Class Analysis

65

Multilevel Growth Models

Growth Modeling Approached in Two Ways: Data Arranged As Wide Versus Long

• Wide: Multivariate, Single-Level Approach

$$y_{ti} = i_i + s_i \times time_{ti} + \epsilon_{ti}$$

i_i regressed on w_i s_i regressed on w_i

• Long: Univariate, 2-Level Approach (cluster = id)

Within

Between

67

Growth Modeling Approached in Two Ways: Data Arranged As Wide Versus Long (Continued)

• Wide (one person):

• Long (one cluster):

Three-Level Modeling In Multilevel Terms

Time point *t*, individual *i*, cluster *j*.

 y_{tii} : individual-level, outcome variable

 a_{1tij} : individual-level, time-related variable (age, grade)

 a_{2tij} : individual-level, time-varying covariate x_{ij} : individual-level, time-invariant covariate

 w_i : cluster-level covariate

Three-level analysis (Mplus considers Within and Between)

Level 1 (Within):
$$y_{tij} = \pi_{0ij} + \pi_{1ij} a_{1tij} + \pi_{2tij} a_{2tij} + e_{tij}$$
, (1)

Level 2 (Within):
$$\pi_{0ij} = \beta_{00j} + \beta_{01j} x_{ij} + r_{0ij},
\pi_{1ij} = \beta_{10j} + \beta_{11j} x_{ij} + r_{1ij},
\pi_{2tij} = \beta_{20tj} + \beta_{21tj} x_{ij} + r_{2tij}.$$
(2)

$$Level \ 3 \ (Between) : \begin{cases} \beta_{00j} = \gamma_{000} + \gamma_{001} \ w_{j} + u_{00j} \ , \\ \beta_{10j} = \gamma_{100} + \gamma_{101} \ w_{j} + u_{10j} \ , \\ \beta_{20tj} = \gamma_{200t} + \gamma_{201t} \ w_{j} + u_{20tj} \ , \\ \beta_{01j} = \gamma_{010} + \gamma_{011} \ w_{j} + u_{01j} \ , \\ \beta_{11j} = \gamma_{110} + \gamma_{111} \ w_{j} + u_{11j} \ , \\ \beta_{21tj} = \gamma_{2t0} + \gamma_{2t1} \ w_{j} + u_{2tj} \ . \end{cases}$$

$$(3)$$

Two-Level Growth Modeling (3-Level Modeling)

Between

71

Input For LSAY Two-Level Growth Model With Free Time Scores And Covariates

TITLE: LSAY two-level growth model with free time scores

and covariates

DATA: FILE IS lsay98.dat;

FORMAT IS 3f8 f8.4 8f8.2 3f8 2f8.2;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9

math10 att7 att8 att9 att10 gender mothed homeres;

USEOBS = (gender EQ 1 AND cohort EQ 2);

MISSING = ALL (999);

USEVAR = math7-math10 mothed homeres;

CLUSTER = school;

ANALYSIS: TYPE = TWOLEVEL;

ESTIMATOR = MUML;

```
MODEL:
           %WITHIN%
           iw BY math7-math10@1;
           sw BY math7@0 math8@1
           math9*2 (1)
           math10*3 (2);
           iw sw ON mothed homeres;
           %BETWEEN%
           ib BY math7-math10@1;
           sb BY math7@0 math8@1
           math9*2 (1)
           math10*3 (2);
           [math7-math10@0 ib sb];
           ib sb ON mothed homeres;
OUTPUT
           SAMPSTAT STANDARDIZED RESIDUAL;
```

73

Input For LSAY Two-Level Growth Model With Free Time Scores And Covariates (Continued)

Version 3

```
! %WITHIN%
! iw sw | math7@0 math8@1
! math9*2 (1)
! math10*3 (2);
! iw sw ON mothed homeres;
! %BETWEEN%
! ib sb | math7@0 math8@1
! math9*2 (1)
! math10*3 (2);
! ib sb ON mothed homeres;
```

Summary of Data

Number of	clusters	50)		
Size (s)	Cluster	ID with	Size	s	
1	114				
2	136				
6	132	304			
7	103				
8	102	109			
9	111	305			
14	134	118			
15	106	138	110	116	
16	105	122			
17	131	101	146	133	128
18	141				
19	124	147	303	137	143
20	112	129	142	307	

Output Excerpts LSAY Two-Level Growth Model With free Time Scores And Covariates (Continued)

```
Size (s) Cluster ID with Size s
 21
            120
                    145
 22
            144
                    127
 23
            140
                    121
                           139
                                   308
 24
            119
 25
            123
            301
                    117
 27
            108
 29
            135
 33
            115
 34
            104
 39
            309
            302
```

Average cluster size 18.627

Estimated Intraclass Correlations for the Y Variables

	Intraclass		Intraclass		Intraclass
Variable	Correlation	Variable	Correlation	Variable	Correlation
MATH7	0.199	MATH8	0.149	MATH9	0.168
MATH10	0.165				7.0

Tests Of Model Fit

Chi-square Test of Model Fit	
Value	24.058*
Degrees of Freedom	14
P-Value	0.0451
CFI / TLI	
CFI	0.997
TLI	0.995
RMSEA (Root Mean Square Error Of Approx	imation)
Estimate	0.028
SRMR (Standardized Root Mean Square Res	idual)
Value for Between	0.048
Value for Within	0.007

77

Output Excerpts LSAY Two-Level Growth Model With free Time Scores And Covariates (Continued)

Model Results

Within Level

SW	BY					
	MATH8	1.000	0.000	0.000	1.073	0.128
	MATH9	2.487	0.163	15.220	2.670	0.288
	MATH10	3.589	0.223	16.076	3.853	0.368
IW	ON					
	MOTHED	1.780	0.232	7.665	0.246	0.226
	HOMERES	0.892	0.221	4.031	0.124	0.173
SW	ON					
	MOTHED	0.053	0.063	0.836	0.049	0.045
	HOMERES	0.135	0.044	3.047	0.125	0.176
SW	WITH					
	IW	2.112	0.522	4.044	0.273	0.273

0.261	0.039	6.709	0.261	0.203
12.748	1.434	8.888	12.748	0.197
12.298	0.893	13.771	12.298	0.174
14.237	1.132	12.578	14.237	0.166
24.829	2.230	11.133	24.829	0.226
47.060	3.069	15.333	0.903	0.903
1.110	0.286	3.879	0.964	0.964
0.841	0.049	17.217	0.841	1.000
1.970	0.069	28.643	1.970	1.000
	12.748 12.298 14.237 24.829 47.060 1.110	12.748	12.748 1.434 8.888 12.298 0.893 13.771 14.237 1.132 12.578 24.829 2.230 11.133 47.060 3.069 15.333 1.110 0.286 3.879 0.841 0.049 17.217	12.748 1.434 8.888 12.748 12.298 0.893 13.771 12.298 14.237 1.132 12.578 14.237 24.829 2.230 11.133 24.829 47.060 3.069 15.333 0.903 1.110 0.286 3.879 0.964 0.841 0.049 17.217 0.841

79

Output Excerpts LSAY Two-Level Growth Model With free Time Scores And Covariates (Continued)

	Estimates	S.E.	Est./S.E	. Std	StdYX
Between Level					
SB BY					
MATH8	1.000	0.000	0.000	0.196	0.052
MATH9	2.487	0.163	15.220	0.488	0.119
MATH10	3.589	0.223	16.076	0.704	0.115
IB ON					
MOTHED	-1.225	2.587	-0.474	-0.362	-0.107
HOMERES	7.160	1.847	3.876	2.117	1.011
SB ON					
MOTHED	0.995	0.647	1.538	5.073	1.493
HOMERES	0.017	0.373	0.045	0.086	0.041
SB WITH					
IB	0.382	0.248	1.538	0.575	0.575

HOMERES WITH					
MOTHED	0.103	0.019	5.488	0.103	0.733
Residual Variances					
MATH7	2.059	0.552	3.732	2.059	0.153
8HTAM	0.544	0.268	2.033	0.544	0.039
MATH9	0.105	0.213	0.493	0.105	0.006
MATH10	1.395	0.504	2.767	1.395	0.067
IB	1.428	1.690	0.845	0.125	0.125
SB	-0.051	0.071	-0.713	-1.321	-1.321
Variances					
MOTHED	0.087	0.023	3.801	0.087	1.000
HOMERES	0.228	0.056	4.066	0.228	1.000
Means					
MOTHED	2.307	0.043	53.277	2.307	7.838
HOMERES	3.108	0.062	50.375	3.108	6.509
Intercepts					
IB	33.510	2.678	12.512	9.909	9.909
SB	0.163	0.776	0.210	0.830	0.830

Output Excerpts LSAY Two-Level Growth Model With free Time Scores And Covariates (Continued)

R-Square

-	
Within Level	
Observed Variable	R-Square
MATH7	0.803
MATH8	0.826
MATH9	0.834
MATH10	0.774
Latent Variable	R-Square
IW	0.097
SW	0.036

R-Square

Between Level

Observed Variable	R-Square
MATH7	0.847
MATH8	0.961
MATH9	0.994
MATH10	0.933

Latent Variable

Variable R-Square

IW 0.875

SW Undefined 0.23207E+01

83

Two-Level, Two-Part Growth Modeling

Within

iuw suw syw u1 u2 u3 u4

Between

Multilevel Growth Mixture Modeling

85

Growth Mixture Modeling: LSAY Math Achievement Trajectory Classes And The Prediction Of High School Dropout

Multilevel Growth Mixture Modeling

87

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement

```
TITLE: multilevel growth mixture model for LSAY math
```

achievement

DATA: FILE = lsayfull_Dropout.dat;

VARIABLE: NAMES = female mothed homeres math7 math8 math9 math10

expel arrest hisp black hsdrop expect lunch mstrat

droptht7;

!lunch = % of students eligible for full lunch

!assistance (9th)

!mstrat = ratio of students to full time math

!teachers (9th)

MISSING = ALL (9999);

CATEGORICAL = hsdrop;

CLASSES = c (3);

CLUSTER = schcode;

WITHIN = female mothed homeres expect droptht7 expel

arrest hisp black;

BETWEEN = lunch mstrat;

88

DEFINE: lunch = lunch/100;

mstrat = mstrat/1000;

ANALYSIS: TYPE = MIXTURE TWOLEVEL MISSING;

ALGORITHM = INTEGRATION;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8;

PLOT: TYPE = PLOT3;

SERIES = math7-math10 (s);

89

Input For A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

MODEL:

```
%WITHIN%
%OVERALL%
i s | math7@0 math8@1 math9@2 math10@3;
i s c#1 c#2 hsdrop ON female hisp black mothed homeres
expect droptht7 expel arrest;
%c#1%
[i*40 s*1];
math7-math10*20;
i*13 s*3;
%c#2%
[i*40 s*5];
math7-math10*30;
i*8 s*3;
i s ON female hisp black mothed homeres expect
droptht7 expel arrest;
```

```
%c#3%
[i*45 s*3];
math7-math10*10;
i*34 s*2;
is ON female hisp black mothed homeres expect
droptht7 expel arrest;
%BETWEEN%
%OVERALL%
ib | math7-math10@1; [ib@0];
ib*1; hsdrop*1; ib WITH hsdrop;
math7-math10@0;
ib c#1 c#2 hsdrop ON lunch mstrat;
[hsdrop$1*-.3];
%c#2%
[hsdrop$1*.9];
[hsdrop$1*1.2];
```

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement

Summary of Data

```
Number of patterns
                                  13
   Number of y patterns
                                 13
   Number of u patterns
                                   1
   Number of clusters
                                  44
Size (s)
            Cluster ID with Size s
   12
                 304
   13
                 305
   38
                 112
   39
                 109
   40
                 138
   42
                 120
   43
                 307
   44
                 303
   45
                 143
                           146
```

91

46	101					
48	144	106				
51	102	308				
52	136	118	133	111		
53	140	142	108	131	122	124
54	301	117	127	137	126	
55	103	141	123			
56	110					
57	147					
58	121	105	145	135		
59	119					
73	104					
89	302					
94	309					
118	115					

93

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

MAXIMUM LOG-LIKELIHOOD VALUE FOR THE UNRESTRICTED (H1) MODEL IS -36393.088

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE CONDITION NUMBER IS -0.758D-16. PROBLEM INVOLVING PARAMETER 54.

THE NONIDENTIFICATION IS MOST LIKELY DUE TO HAVING MORE PARAMETERS THAN THE NUMBER OF CLUSTERS. REDUCE THE NUMBER OF PARAMETERS.

THE MODEL ESTIMATION TERMINATED NORMALLY

Tests Of Model Fit

Loglikelihood

HO Value -26247.205

Information Criteria

Number of Free Parameters 122

Akaike (AIC) 52738.409

Bayesian (BIC) 53441.082

Sample-Size Adjusted BIC 53053.464

(n* = (n + 2) / 24)

Entropy 0.632

FINAL CLASS COUNTS AND PROPORTIONS OF TOTAL SAMPLE SIZE BASED ON ESTIMATED POSTERIOR PROBABILITIES

Class 1	686.43905	0.29285	
Class 2	430.83877	0.18380	
Class 3	1226.72218	0.52335	

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

Model Resu	lts	Estimates	S.E.	Est./S.E.	Std	StdYX
Between Le	vel					
CLASS 1						
IB	ON					
LUNCH		-1.805	1.310	-1.378	-0.851	-0.176
MSTRAT		-13.365	3.086	-4.331	-6.299	-0.448
HSDROP	ON					
LUNCH		1.087	0.543	2.004	1.087	0.290
MSTRAT		-0.178	1.478	-0.120	-0.178	-0.016
IB	WITH					
HSDROP		-0.416	0.328	-1.267	-0.196	-0.253

95

Intercepts					
MATH7	0.000	0.000	0.000	0.000	0.000
8HTAM	0.000	0.000	0.000	0.000	0.000
MATH9	0.000	0.000	0.000	0.000	0.000
MATH10	0.000	0.000	0.000	0.000	0.000
IB	0.000	0.000	0.000	0.000	0.000
Residual Variances					
HSDROP	0.550	0.216	2.542	0.550	0.915
MATH7	0.000	0.000	0.000	0.000	0.000
MATH8	0.000	0.000	0.000	0.000	0.000
MATH9	0.000	0.000	0.000	0.000	0.000
MATH10	0.000	0.000	0.000	0.000	0.000
IB	3.456	1.010	3.422	0.768	0.768

97

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

Model Results

LATENT C	CLASS	REGRESSION	MODEL	PART	
		Estima	ites	S.E.	Est./S.E.
Within I	Level				
C#1	O	Ŋ			
FEMA	ALE	-0.7	51	0.188	-3.998
HIS	<u> </u>	0.0	94	0.705	0.133
BLAG	CK	0.9	00	0.385	2.339
MOTE	HED	-0.0	03	0.106	-0.028
HOME	ERES	-0.0	60	0.069	0.864
EXPI	ECT	-0.2	51	0.074	-3.406
DROI	PTHT7	1.6	16	0.451	3.583
EXPI	ΞL	0.6	98	0.337	2.068
ARRI	EST	1.0	93	0.384	2.842

		(Estimates	S.E.	Est./S.E.)
C#2	ON			
FEMA	LE.	-1.610	0.450	-3.577
HISP		1.144	0.466	2.458
BLAC	K	-0.961	0.656	-1.465
MOTH	ED	-0.234	0.139	-1.684
HOME	RES	0.102	0.094	1.085
EXPE	CT	0.056	0.089	0.628
DROP	THT7	0.570	0.657	0.869
EXPE	L	1.217	0.397	3.068
ARRE	ST	1.133	0.580	1.951

99

Output Excerpts A Multilevel Growth Mixture Model For LSAY Math Achievement (Continued)

	(Estimates	S.E.	Est./S.E.)
Intercepts			
C#1	0.495	0.535	0.921
C#2	-0.533	0.627	-0.849
Between Leve	-		
C#1 OI	I		
LUNCH	2.265	0.706	3.208
MSTRAT	-2.876	2.909	-0.988
C#2 01	I		
LUNCH	-0.088	1.343	-0.065
MSTRAT	-0.608	2.324	-0.262

Multilevel Discrete-Time Survival Analysis

- Muthén and Masyn (2005) in Journal of Educational and Behavioral Statistics
- Masyn dissertation
- Asparouhov and Muthén

101

Discrete-Time Survival Frailty Modeling

References

(To request a Muthén paper, please email bmuthen@ucla.edu.)

General

Asparouhov, T. (2005). Sampling weights in latent variable modeling. Mplus Web Notes: No. 7. Forthcoming in Structural Equation Modeling.

Analysis With Multilevel Data

Cross-sectional Data

- Harnqvist, K., Gustafsson, J.E., Muthén, B. & Nelson, G. (1994). Hierarchical models of ability at class and individual levels. <u>Intelligence</u>, 18, 165-187. (#53)
- Heck, R.H. (2001). Multilevel modeling with SEM. In G.A. Marcoulides & R.E. Schumacker (eds.), New Developments and Techniques in Structural Equation Modeling (pp. 89-127). Lawrence Erlbaum Associates.
- Hox, J. (2002). <u>Multilevel analysis. Techniques and applications</u>. Mahwah, NJ: Lawrence Erlbaum.
- Kaplan, D. & Elliott, P.R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. <u>Structural Equation Modeling: A Multidisciplinary Journal</u>, 4, 1-24.

References (Continued)

- Kaplan, D. & Kresiman, M.B. (2000). On the validation of indicators of mathematics education using TIMSS: An application of multilevel covariance structure modeling. <u>International Journal of Educational Policy</u>, Research, and Practice, 1, 217-242.
- Kreft, I. & de Leeuw, J. (1998). <u>Introducing multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.
- Longford, N.T., & Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581-597. (#41)
- Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (#24)
- Muthén, B. (1990). Mean and covariance structure analysis of hierarchical data. Paper presented at the Psychometric Society meeting in Princeton, N.J., June 1990. UCLA Statistics Series 62. (#32)
- Muthén, B. (1991). Multilevel factor analysis of class and student achievement components. <u>Journal of Educational Measurement</u>, 28, 338-354. (#37)
- Muthén, B. (1994). Multilevel covariance structure analysis. In J. Hox & I. Kreft (eds.), Multilevel Modeling, a special issue of <u>Sociological Methods</u> & Research, 22, 376-398. (#55)
- Muthén, B., Khoo, S.T. & Gustafsson, J.E. (1997). Multilevel latent variable modeling in multiple populations. (#74)

- Muthén, B. & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (ed.), <u>Sociological Methodology 1995</u>, 216-316. (#59)
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Skinner, C.J., Holt, D. & Smith, T.M.F. (1989). <u>Analysis of complex surveys</u>. West Sussex, England, Wiley.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis. An introduction to basic and advanced multilevel modeling</u>. Thousand Oakes, CA: Sage Publications.

Longitudinal Data

- Khoo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. <u>Multivariate Applications in Substance use Research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 43-78. (#79)
- Masyn, K. E. (2003). Discrete-time survival mixture analysis for single and recurrent events using latent variables. Doctoral dissertation, University of California, Los Angeles.

References (Continued)

- Muthén, B. (1997). Latent variable modeling with longitudinal and multilevel data. In A. Raftery (ed.) <u>Sociological Methodology</u> (pp. 453-480). Boston: Blackwell Publishers.
- Muthén, B. (1997). Latent variable growth modeling with multilevel data. In M. Berkane (ed.), <u>Latent Variable Modeling with Application to Causality</u> (149-161), New York: Springer Verlag.
- Muthén, B. & Masyn, K. (in press). Discrete-time survival mixture analysis. Journal of Educational and Behavioral Statistics, Spring 2005.

General

Mplus Analysis

- Asparouhov, T. & Muthén, B. (2003a). Full-information maximum-likelihood estimation of general two-level latent variable models. In preparation.
- Asparouhov, T. & Muthén, B. (2003b). Maximum-likelihood estimation in general latent variable modeling. In preparation.
- Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81-117.

Muthén, B. & Asparouhov, T. (2003b). Advances in latent variable modeling, part II: Integrating continuous and categorical latent variable modeling using Mplus. In preparation.

Numerical integration

- Aitkin, M. A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 1999, 55, 117-128.
- Bock, R.D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. <u>Psychometrika</u>, 46, 443-459.

General

- Muthén, L. & Muthén, B. (1998-2003). Mplus User's Guide. Los Angeles, CA: Muthén & Muthén.
- Muthén, L.K. and Muthén, B. (2002). How to use a Monte Carlo study to decide on sample size and determine power. <u>Structural Equation Modeling</u>, 4, 599-620.
- Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. <u>Technometrics</u>, 34, 1-13.

References (Continued)

SEM

Latent variable interactions

Klein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457-474.

Indirect effects

- MacKinnon, D.P., Lockwood, C.M., Hoffman, J.M., West, S.G. & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. <u>Psychological Methods</u>, 7, 83-104.
- Shrout, P.E. & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422-445.

Growth Modeling

Carlin, J.B., Wolfe, R., Brown, C.H., Gelman, A. (2001). A case study on the choice, interpretation and checking of multilevel models for longitudinal binary outcomes. Biostatistics, 2, 397-416.

- Duan, N., Manning, W.G., Morris, C.N. & Newhouse, J.P. (1983). A comparison of alternative models for the demand for medical care. <u>Journal of Business and Economic Statistics</u>, 1, 115-126.
- Farrington, D.P. & West, D.J. (1990). The Cambridge study in delinquent development: A prospective longitudinal study of 411 males. In Criminality: Personality, Behavior, and Life History, edited by Hans-Jurgen Kernere and G. Kaiser. New York: Springer Verlag.
- Hedeker, D. (2000). A fully semi-parametric mixed-effects regression model for categorical outcomes. Presented at the Joint Statisticacl Meetings, Indianapolis, IN, 2000.
- Hedeker, D. & Gibbons, R.D. (1994). A random-effects ordinal regression model for multilevel analysis. <u>Biometrics</u>, 50, 933-944.
- Olsen, M.K. & Schafer, J.L. (2001). A two-part random effects model for semicontinuous longitudinal data. <u>Journal of the American Statistical</u> Association, 96, 730-745.
- Raudenbush, S.w. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u>
 <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Tubin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36.

References (Continued)

Multilevel Modeling

- Choi, K.C. (2002). Latent variable regression in a three-level hierarchical modeling framework: A fully Bayesian approach. Doctoral dissertation, University of California, Los Angeles.
- Seltzer, M., Choi, K., Thum, Y.M. (2002). Examining relationships between where students start and how rapidly they progress: Implications for conducting analyses that help illuminate the distribution of achievement within schools. CSE Technical Report 560. CRESST, University of California, Los Angeles.

Mixture Modeling

- Albert, P.A., McShane, L.M., Shih, J.H. & The US SCI Bladder Tumor Marker Network (2001). Latent class modeling approaches for assessing diagnostic error without a gold standard: With applications to p.53 immunohistochemical assays in bladder tumors. <u>Biometrics</u>, 57, 610-619.
- Heinen, D. (1996). <u>Latent class and discrete latent trait models: similarities and differences</u>. Thousand Oakes, CA: Sage Publications.

- Land, K.C. (2001). Introduction to the special issue on finite mixture models. Sociological Methods & Research, 29, 275-281.
- Lo, Mendell, & Rubin (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767-778.
- McLachlan, G.J. & Peel, D. (2000). <u>Finite mixture models</u>. New York: Wiley & Sons.
- Muthén, B. (2001b). Two-part growth mixture modeling. Draft.
- Muthén, B. (2003a). Statistical and substantive checking in growth mixture modeling. Psychological Methods, 8, 369-377.
- Muthén, B. (2003b). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. Forthcoming in D. Kaplan (ed.), Handbook of Quantitative Methodology for the Social Sciences, Sage Publications.
- Muthén, B. (2003c). Advances in latent variable modeling of heterogeneous phenotypes. Presentation at NICA, May 2003.
- Muthén, B. (2003d). Multilevel growth mixture modeling: Math achievement trajectory classes and high school dropout. Presentation at AERA, March 2003.

111

References (Continued)

- Muthén, B., Kreuter, F. & Asparouhov, T. (2003). Applications of growth mixture modeling to non-normal outcomes. In preparation.
- Muthén, B. & Masyn, K. (2001). Mixture discrete-time survival analysis. Submitted to Journal of Educational and Behavioral Statistics.
- Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. <u>Biometrics</u>, 55, 463-469.
- Nagin, D.S. & Land, K.C. (1993). Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model. <u>Criminology</u>, 31, 327-362.
- Qu, Y., Tan, M., & Kutner, M.H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. <u>Biometrics</u>, 52, 797-810.
- Nagin, D.S. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139-157.
- Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. <u>Journal of the American Statistical Association</u>, 94, 766-776.

- Rumberger, R.W. & Larson, K.A. (1998). Student mobility and the increased risk of high school dropout. <u>American Journal of Education</u>, 107, 1-35.
- Singer, J.D. & Willett, J.B. (1993). It's about time: using discrete-time survival analysis to study duration and the timing of events. <u>Journal of Educational Statistics</u>, 18, 155-195.
- Wang, C.P., Brown, C.H. & Bandeen-Roche, K. (2002). Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Manuscript submitted for publication.
- Yamamoto, K. & Gitomer, D. (1993). Application of a HYBRID model to a test of cognitive skill representation. In N. Frederiksen, R. Mislevy, and I Beijar (eds.), <u>Test theory for new generation of tests</u>. Hillsdale, N.J.: LEA.