Statistics & Probablities

Descriptive Statistics

Agenda-

In this session you will learn about

- Basics of Statistics
- > Types of Variables 7
- Measure of Central Tendancy
- Measure of Dispersion
- Case studies of Central tendencies and Dispersion
- Percentile/Quartile & Correlation and Covariance
- > Central Limit Theorem CLA
- Data Visualization and distribution

Presentation, buterstand,

What is Statistics?

Avalysing Interpretation Collection: Organisation.

What is Statistics

Statistics is a way to get information from data.

Majer it Structured
To drawing hts
DESCRIBE

Case 1 - Answer in 5 seconds!

Case 1 - Answer in 5 seconds!

A college in US has students from the following countries for a Masters degree. Which country is in majority?

Case 1 - Answer in 5 seconds!

A college in US has students from the following countries. Which country is in majority?

Juina - 1-2 US -> 2+1+1+1 India > 1+1 Japan England Merciko

US	China	US 2	Sweden	China
Canada	China	Japan	Mexico	3 US
China	Germany	India	India	Japan
US	US	US	China	China
India	Japan	England	India	Japan
England	India	China	Mexico	US
Mexico	US	Canada	Pakistan	India
Japan	China	US	Japan	Germany
China	India	India	China	China
Germany	Japan	China	US	Japan

Frequency Table

Country	Frequency
Canada	2
√ China	12
England	2
Germany	3
India	8
Japan	8
Mexico	3
Pakistan	1
Sweden	ı
US	10

Summarized
Summarized
Easy to understand

Case 2

Problem

A parent changes school of their Son who is studying in 11th standard since his academic results are not good in 10th Standard in his current School.

They change Student A from ABC school to XYZ school

Case 2

Problem

A parent changes school of their Son who is studying in 11th standard since his academic results are not good in 10th Standard in his current School.

They change Student A from ABC school to XYZ school

Results

- 1. Ranked 15th in ABC school
- 2. Ranked 2nd in XYZ school

What's the conclusion?

In X4Z

(1) Coaching is
goods

(2) Results are
goods

(3) Students not

Grap

(4) organized

(5) Paris

Case 2

Problem

A parent changes school of their Son who is studying in 11th standard since his academic results are not good in 10th Standard in his current School.

They change Student A from ABC school to XYZ school

Results

- 1. Ranked 15th in ABC school
- 2. Ranked 2nd in XYZ school

What's the conclusion: Has the student improved?

Number of Students

No of Students in ABC School

No of Students in XYZ School

Knowledge of Statistics allows you to make better sense of the ubiquitous use of numbers.

Statistics is ...

- 1. Collecting Data
- 2. Analyzing Data
- 3. Interpreting Data
- 4. Presenting Data

What does it Tell?

Classification

Variables

Categorical Data (Qualitative)

Nominal Examples

- Employee ID

- Ethnicity have or in codes
- Place of birth
- Aadhaar numbers

Ordinal

Examples

- Mutual fund risk ratings Fortune 50 rankings
- Movie ratings

While there is an order, difference between consecutive levels are not always equal.

Discrete and Continuous

· Time between customer arrivals at a retail outlet

 Time between customer arrivals at a retail outlet Continuous

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- · Lengths of newly designed automobiles -

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- Lengths of newly designed automobiles -Continuous

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- Lengths of newly designed automobiles -Continuous
- No. of customers arriving at a retail outlet during a five- minute period

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- Lengths of newly designed automobiles -Continuous
- No. of customers arriving at a retail outlet during a five- minute period
 Discrete

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- Lengths of newly designed automobiles Continuous
- No. of customers arriving at a retail outlet during a five- minute period
 Discrete
- · No. of defects in a batch of 50 items

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
 Discrete
- Lengths of newly designed automobiles -Continuous
- No. of customers arriving at a retail outlet during a five- minute period
 Discrete
- · No. of defects in a batch of 50 items

Discrete

Numerical or Categorical?

Age	Gender	Major	Units	Housing	GPA
18	Male	l¹sychology	16	Dorm	3.6
21	Male	Nursing	15	Parents	3.1
20	Female	Business	16	Apartment	2.8

Numerical

Age GPA Units Categorical

Gender Major House'ng

Numerical or Categorical?

Age	Gender	Major	Units	Housing	GPA
18	Male	l¹sychology	16	Dorm	3.6
21	Male	Nursing	15	Parents	3.1
20	Female	Business	16	Apartment	2.8

- Numerical
 - Age
 - Units
 - GPA

- Categorical
 - □ Gender
 - Major
 - Housing

Variables - Dependent and Independent

Dependent variables on y-axis and Independent on x-axis.

Dependent variable also called Target variable or Class variable.

Summarizing Data

Modality

Symmetry

Central Tendency

Variability

Central Tendency

A measure of **Central Tendency** is a single value that attempts to describe a set of data **by identifying the central position** within that set of data. In other words, the Central Tendency computes the "center" around which the data is distributed.

The reliable quantity

Mean

Mean,
$$\mu = \frac{2}{h} \Rightarrow \frac{2 \ln f \chi_2 f \chi_3 + \chi_5}{n}$$

Alan went for a trek. On the way, he had to cross a stream. As Alan did not know swimming, he started exploring alternate routes to cross over.

Suddenly he saw a sign-post, which said "Average depth 3 feet". Alan was 5'7" tall and thought he could safely cross the stream.

Alan never reached the other end and drowned in the stream.

Why did Alan Drown?

Why did Alan Drown?

The "Hotshot" Sales Executive

Kurt works as a sales manager at vsellhomes.com. In the monthly sales review, Kurt reports that he will achieve his quarterly target of \$1M.

Kurt claims his average deal size is \$100,000 and he has 10 deals in his pipeline. Kurt's boss Ross is very delighted with his numbers.

At the end of quarter, even after closing 8 deals Kurt fails to meet his target number and falls short by more than \$500,000.

Discussion

The Reality of the "Hotshot" Salesman

Average deal size in pipeline

= \$100,000

COV

	Deal #	Deal Value	Deal Status
	1	70,000	Open
	2	50,000	Closed
	3	55,000	Closed
	4	60,000	Closed
1	5	55,000	Closed
	6	50,000	Closed
}	7	50,000	Closed
	8	,60,000	Closed
_	- 9	50,000	Closed
ゔ [10	5,00,000	Open

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

Median

Median

Median: Arrange data in increasing order and find the mid-point $\frac{(n+1)}{2}$.

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
 = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic measure

80-1. Howards	CC M
20 1. /vn[1
50,501	יו של

Deal #	Deal Value	Deal Status
1	70,000	Open
2	50,000	Closed
3	55,000	Closed
4	60,000	Closed
5	55,000	Closed
6	50,000	Closed
7	50,000	Closed
8	60,000	Closed
9	50,000	Closed
10	5,00,000	Open

1 55 15,000,000 J W10
1 55 10,000 00 J W10

The Reality of the "Hotshot" Salesman

- Average deal size in pipeline = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic

Average deal size in pipeline	Deal #	Deal Value	Deal Status		
= \$100,000	1	70,000	Open		
D 1 1140 1 C 1 10 11 11 1	2	50,000	Closed		
Deal #10 is of significantly higher	3	55,000	Closed		
value than all the other deals and impacts the average calculation	4	60,000	Closed		
	5	55,000	Closed		
Median = \$55,000 more realistic		50,000	Closed		
·	7	50,000	Closed		
Measure No and Jaan de		60,000	Closed		
Maria Wilder 1500 -	9	50,000	Closed		
Mean I moutation [10	5,00,000	Open		
measure 1					

Median is less susceptible to the influence of Outliers.

Mode

Mode

Mode – the most frequently occurring

Central Tendency: Example

- Timing for the Men's 500-meter Speed Skating event in Winter Olympics is tabulated.
- The Central Tendency measures are computed below:

Year	Time		Year	Time		Year	Time	
1928	43.4	Mean	1988	36.4	Median	36.4 1 N	Mode	
1932	43.4	=	1980	38.03	= (7 th + 8 th			= Value with
1936	43.4	(43.4++36.4)/1	1984	38.19	Value)/2	38.03	1	highest
1948	43.1	4 = 568.53/14	1976	39.17	= (40.2+40.2)/2	38.19	1	frequency = 43.4
1952	43.2	= 40.61	1972	39.44	= 40.2	39.17	1	
1956	40.2		1964	40.1		39.44	1	
1960	40.2		1956	40.2				
1964	40.1		1960	40.2		40.1	1	
1968	40.3		1968	40.3		40.2	2	
1972	39.44		1948	43.1		40.3	1	
1976	39.17		1952	43.2		42.1	1	
			1928	43.4		43.1	1	
1980	38.03		1932	43.4		43.2	1	
1984	38.19		1936	43.4		43.4	3	
1988	36.4				1		9	l

Player_A Vs Player_B – Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37

Player_A Vs Player_B – Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351

Player_A Vs Player_B - Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39

Player_A Vs Player_B - Who is Better?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39
MEDIAN	40	40

Dispersion Measures

Measures of Dispersion describe the data spread or how far the measurements are from the center.

Spread of Data - Range

Range = Max - Min

Spread of Data - SD and Variance

Who's Best?

Match	Player A	Player B
1	40	40
2	40	35
3	7	45
4	40	52
5	0	30
6	90	40
7	3	29
8	11	43
9	120	37
SUM	351	351
MEAN	39	39
MEDIAN	40	40
STANDARD DEVIATION	41.5180683558376	7.28010988928052

Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

ATT

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Mean = Median = Mode = 10 for all 3.

13 by out he

Measuring Variability and Spread

Range = Max - Min	2 	P 54	A A		1	>=12	=2
Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1
•					

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	2	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

MEAN = MEDIAN = MODE = 10 RANGE = 5,5,27

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

Points scored per game	3	6	7	10	11	13	30
Frequency, f	2	1	2	3	1	1	1

MEAN = MEDIAN = MODE = 10 RANGE = 5, 5, 27 Reject Player 3

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

Points scored per game	7	8	9	10	11	12	13
Frequency, f	1	1	2	2	2	1	1

Points scored per game	7	9	10	11	13
Frequency, f	1	2	4	2	1

STANDARD DEVIATION

Player 1 = 1.7873008824606 - 3 . 30% Player 2 = 3.30823887354653 - 3 . 30%

What is your Decision?????????

A

Percentile & Quartile

Nth percentile states that there are atleast N% of values less than or equal to this value and (100-N) values are greater or equal to this value

n – Number of values

EXAMPLE FOR PERCENTILE

If the scores of a set of students in a math test are 20, 30, 15 and 75 what is the percentile rank of the score 30?

EXAMPLE FOR PERCENTILE

If the scores of a set of students in a math test are 20, 30, 15 and 75 what is the percentile rank of the score 30?

Arrange the numbers in ascending order and give the rank ranging from $\bf 1$ to the lowest to $\bf 4$ to the highest.

NUMBER	15	20	30	75
RANK	¹ /I	²]]	³ /J	4

Example for percentile

Use the formula now, 3 = (P/100)4 75 = PTherefore, the score 30 has 75^{th} percentile

BOX plot

A data scientist conducted a survey of times it takes for him to reach to the office from his home. He drove through Car and recoded the times and went through bus and recorded the time

BUS (min)	12	14	16	16	17	18	22	25	32
CAR (min)	8	9	10	10	11	11	12	14	17
	8	\	K 2	2,	1			-	-\ 17

BOX plot

Bus

Car

Inter Quartile Range

Quartile

Dividing data into $\frac{1}{4}$ – 4 parts

Q1 – First Quartile – 25th percentile

Q2 – Second Quartile – 50th percentile (Median)

Q3 – Third Quartile – 75th percentile

IQR (Inter Quartile Range) = Q3 – Q1/

Box-and-Whisker Plots to find outliers

Box-and-Whisker Plots to find outliers

