Lec 4.1 PLA intuition

1. Recap:

Decision Rule: $y = sign(\underline{w}^T \underline{x})$

is Angemented: $W = (W_0, W_1, W_2, ..., W_d)$

 $\underline{X} = (\chi_0 = 1, \chi_1, \chi_2 - Wd)$

13. Preception Learning Algo:

updated step: pick mis-classified example (Xn. yn),

 $\underline{\omega} \leftarrow \underline{\omega} + y_n \underline{x}_n$

2. PLA intuition:

and the state of t										
<u> </u>	<u>ω</u> T <u>X</u> n	classfied?	yn·w ^T xn							
+1	+	J	+							
+1	_	Х	-							
-1	+	×	-							
- 1	-	J	+							
0	0	×	0							

4 If (\underline{x}_n, y_n) is correctly classified. $y_n \underline{w}^T \underline{x}_n > 0$

" mis classified, $y_n \underline{w}^T \underline{x}_n \leq 0$

3. updating rule:

Suppose (Xn. yn) is mis-classified.

: yn wnew xn = yn (w + yn xn) xn

$$= y_n \underline{w}^T \underline{\chi}_n + \underline{y}_n^2 \underline{\|\underline{\chi}_n\|^2}$$

$$= y_n \underline{w}^T \underline{\chi}_n + \underline{y}_n^2 \underline{\|\underline{\chi}_n\|^2}$$

(: Augmented X_n always has $X_{no} = 1$) $> y_n \underline{\omega}^T \chi_n$

6. So this is a strict improvement for Xn!
But could also cause new mis-classification for other data points.
4 Thrm: (Rosenblatt, 1957)
Given a linearly seperable dataset. PLA terminates in a finite No.
of steps yielding $E_{in}(\underline{W}) = 0$
(prf: problem set 1.3)
4. Remarks: The output of PLA is not unique
It depends on the linitial line you choose and the order of
classifed points.
Lec 4.2 Pocket Algorithm
. Pocket Algo:
4. Extends PLA for datasets that are not linearly seperable
" keep the "best" weight vector up to iteration t in the pocket.
Ein ,
t
La. Algo Step:
0'. pick time horizon T
1'. Set pocketed weight vector $\hat{\omega}$ to \underline{w} (0) of PLA.

∠′.	For	七=	0	۱, ک	,	7-1,	do:

- 3'. Run PLA for one update to obtain $\underline{W}(t+1)$
- 4' Evaluation Ein (W (++1))
- J'. If $E_{h}(\underline{\omega}(t+1)) \in E_{in}(\underline{\hat{\omega}})$

6'. Return $\frac{\Lambda}{W}$

"No garturee to find the optimal sol. This only heuristic also. But perform well in practice.

4. Note:

Multiary classification can be implemented by a sequence of binary classfication e.g. 10 digit example:

$$\frac{\chi}{3} \rightarrow \frac{0?}{1?} \rightarrow \frac{\lambda}{1?} \rightarrow \frac{\lambda}{1?}$$