Gaussian Random Vectors: Marginal and Conditional Distributions

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Goal						
Study r	marginal and	conditional	distribution	ns of Gauss	ian random	vectors
orday i	narginar ana	conditional	distribution	15 01 04435	ian random	vectors

Gaussian random vector

Gaussian random vector

A Gaussian random vector \tilde{x} is a random vector with joint pdf

$$f_{\tilde{x}}\left(x\right) = \frac{1}{\sqrt{\left(2\pi\right)^{d}\left|\Sigma\right|}} \exp\left(-\frac{1}{2}\left(x-\mu\right)^{T}\Sigma^{-1}\left(x-\mu\right)\right)$$

where $\mu \in \mathbb{R}^d$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ the covariance matrix

 $\Sigma \in \mathbb{R}^{d imes d}$ is symmetric and positive definite (positive eigenvalues)

Gaussian random vector (\tilde{a}, \tilde{b}) with zero mean and covariance matrix

$$\Sigma := egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} \qquad -1 <
ho < 1$$

Marginal distribution of ã?

Conditional distribution of \tilde{b} given $\tilde{a} = a$?

Correlation coefficient

$$\begin{split} \Sigma &:= \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \qquad \Sigma^{-1} = \frac{1}{1 - \rho^2} \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix} \\ f_{\tilde{a}, \tilde{b}}(a, b) &:= \frac{1}{\sqrt{(2\pi)^2 |\Sigma|}} \exp\left(-\frac{1}{2} \begin{bmatrix} a \\ b \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} a \\ b \end{bmatrix}\right) \\ &= \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{a^2 - 2\rho ab + b^2}{2(1 - \rho^2)}\right) \\ &= \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{(1 - \rho^2)a^2 + (b - \rho a)^2}{2(1 - \rho^2)}\right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{a^2}{2}\right) \frac{1}{\sqrt{2\pi(1 - \rho^2)}} \exp\left(-\frac{(b - \rho a)^2}{2(1 - \rho^2)}\right) \\ &= f_{\tilde{a}}(a) f_{\tilde{b} | \tilde{a}}(b | a) \end{split}$$

Gaussian random vector (\tilde{a}, \tilde{b}) with zero mean and covariance matrix

$$\Sigma := egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} \qquad -1 <
ho < 1$$

Marginal distribution of \tilde{a} ?

Gaussian with standard deviation 1

Marginals are Gaussian

Gaussian random vector (\tilde{a}, \tilde{b}) with zero mean and covariance matrix

$$\Sigma := egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} \qquad \qquad -1 <
ho < 1$$

Conditional distribution of \tilde{b} given $\tilde{a} = a$?

Gaussian with mean ρa and standard deviation $\sqrt{1-\rho^2}$

$$\mu = \rho a = 0$$
, $\sigma = \sqrt{1 - \rho^2} = 1$

$$\mu = \rho a = 0, \ \sigma = \sqrt{1 - \rho^2} = 1$$

$$\mu = \rho a = 0, \ \sigma = \sqrt{1 - \rho^2} = 1$$

$\rho = 0.5$

 $\mu = 0.5$ a, $\sigma = \sqrt{1 - \rho^2} = 0.87$

 $\mu = 0.5$ a, $\sigma = \sqrt{1 - \rho^2} = 0.87$

$$\mu = 0.5$$
a, $\sigma = \sqrt{1 - \rho^2} = 0.87$

 $\rho = 0.9$

 $\mu = 0.9$ a, $\sigma = \sqrt{1 - \rho^2} = 0.44$

 $\mu = 0.9$ a, $\sigma = \sqrt{1 - \rho^2} = 0.44$

$$\mu = 0.9$$
a, $\sigma = \sqrt{1 - \rho^2} = 0.44$

Gaussian random vector (\tilde{a}, \tilde{b}) with

$$\mu := \begin{bmatrix} \mu_{\tilde{\mathbf{a}}} \\ \mu_{\tilde{\mathbf{b}}} \end{bmatrix} \qquad \Sigma := \begin{bmatrix} \sigma_{\tilde{\mathbf{a}}}^2 & \rho \sigma_{\tilde{\mathbf{a}}} \sigma_{\tilde{\mathbf{b}}} \\ \rho \sigma_{\tilde{\mathbf{a}}} \sigma_{\tilde{\mathbf{b}}} & \sigma_{\tilde{\mathbf{b}}}^2 \end{bmatrix}$$

Marginal distribution of ã?

Gaussian with mean $\mu_{\tilde{a}}$ and standard deviation $\sigma_{\tilde{a}}$

Gaussian random vector (\tilde{a}, \tilde{b}) with

$$\mu := \begin{bmatrix} \mu_{\tilde{\mathbf{a}}} \\ \mu_{\tilde{\mathbf{b}}} \end{bmatrix} \qquad \Sigma := \begin{bmatrix} \sigma_{\tilde{\mathbf{a}}}^2 & \rho \sigma_{\tilde{\mathbf{a}}} \sigma_{\tilde{\mathbf{b}}} \\ \rho \sigma_{\tilde{\mathbf{a}}} \sigma_{\tilde{\mathbf{b}}} & \sigma_{\tilde{\mathbf{b}}}^2 \end{bmatrix}$$

Conditional distribution of \tilde{b} given $\tilde{a} = a$?

Gaussian with

$$\mu_{\text{cond}} = \mu_{\tilde{b}} + \frac{\rho \, \sigma_{\tilde{b}}(a - \mu_{\tilde{a}})}{\sigma_{\tilde{a}}}$$
$$\sigma_{\text{cond}} = \sigma_{\tilde{b}} \sqrt{1 - \rho^{2}}$$

d-dimensional Gaussian

Gaussian random vector

$$ilde{z} := egin{bmatrix} ilde{x} \ ilde{y} \end{bmatrix} \qquad \mu := egin{bmatrix} \mu_{ ilde{y}} \ \mu_{ ilde{y}} \end{bmatrix} \qquad \Sigma_{ ilde{z}} = egin{bmatrix} \Sigma_{ ilde{x}} & \Sigma_{ ilde{x}, ilde{y}} \ \Sigma_{ ilde{x}, ilde{y}} & \Sigma_{ ilde{y}} \end{bmatrix}$$

Marginal distribution of \tilde{x} ?

Gaussian with mean $\mu_{\tilde{x}}$ and covariance matrix $\Sigma_{\tilde{x}}$

d-dimensional Gaussian

Gaussian random vector

$$\tilde{\mathbf{z}} := \begin{bmatrix} \tilde{\mathbf{x}} \\ \tilde{\mathbf{y}} \end{bmatrix} \qquad \mu := \begin{bmatrix} \mu_{\tilde{\mathbf{x}}} \\ \mu_{\tilde{\mathbf{y}}} \end{bmatrix} \qquad \boldsymbol{\Sigma}_{\tilde{\mathbf{z}}} = \begin{bmatrix} \boldsymbol{\Sigma}_{\tilde{\mathbf{x}}} & \boldsymbol{\Sigma}_{\tilde{\mathbf{x}},\tilde{\mathbf{y}}} \\ \boldsymbol{\Sigma}_{\tilde{\mathbf{x}},\tilde{\mathbf{y}}}^T & \boldsymbol{\Sigma}_{\tilde{\mathbf{y}}} \end{bmatrix}$$

Conditional distribution of \tilde{y} given $\tilde{x} = x$?

Gaussian with

$$\mu_{\text{cond}} = \mu_{\tilde{y}} + \Sigma_{\tilde{x}, \tilde{y}} \Sigma_{\tilde{x}}^{-1} (x - \mu_{\tilde{x}})$$

$$\Sigma_{\text{cond}} = \Sigma_{\tilde{y}} - \Sigma_{\tilde{x}, \tilde{y}} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}, \tilde{y}}$$

Marginal and conditional distributions are all Gaussian

For 2D Gaussian dependence is governed by correlation coefficient