R Notebook - Parcial 3

Rudik Roberto Rompich

Base de datos tabulada

```
DB <- read.csv("/Users/rudiks/Desktop/DatosParcial.csv")
print(DB)</pre>
```

					_	
##		Marca		-	Temperatura	
##	1	X	En	polvo	Caliente	85
##	2	X	En	polvo	Caliente	88
##	3	X	En	polvo	Caliente	80
##	4	X	En	polvo	Tibia	82
##	5	Х	En	polvo	Tibia	83
##	6	Х		polvo	Tibia	85
##	7	Х		íquido	Caliente	78
##	8	Х		íquido	Caliente	75
##	9	Х		íquido	Caliente	72
##	10	Х		íquido	Tibia	75
##	11	Х	L	íquido	Tibia	75
##	12	Х	L	íquido	Tibia	73
##	13	Y	En	polvo	Caliente	90
##	14	Y	En	polvo	Caliente	92
##	15	Y	En	polvo	Caliente	92
##	16	Y	En	polvo	Tibia	88
##	17	Y	En	polvo	Tibia	86
##	18	Y	En	polvo	Tibia	88
##	19	Y	L	íquido	Caliente	78
##	20	Y	L	íquido	Caliente	76
##	21	Y	L	íquido	Caliente	70
##	22	Y	L	íquido	Tibia	76
##	23	Y	L	íquido	Tibia	77
##	24	Y	L	íquido	Tibia	76
##	25	Z	En	polvo	Caliente	85
##	26	Z	En	polvo	Caliente	87
##	27	Z	En	polvo	Caliente	88
##	28	Z	En	polvo	Tibia	76
##	29	Z	En	polvo	Tibia	74
##	30	Z	En	polvo	Tibia	78
##	31	Z	L	íquido	Caliente	60
##	32	Z		íquido	Caliente	70
##	33	Z		íquido	Caliente	68
##	34	Z		íquido	Tibia	55
##	35	Z		íquido	Tibia	57
##	36	Z		íquido	Tibia	54

Factores identificados

```
factorA_Marca <- factor(DB$Marca)
factorB_Tipo <- factor(DB$Tipo)
factorC_Temperatura <- factor(DB$Temperatura)
Suciedad <- DB$Suciedad</pre>
```

Modelo planteado

```
modelo <- lm (Suciedad ~ (factorA_Marca+factorB_Tipo+factorC_Temperatura)^3)</pre>
summary(modelo)
##
## Call:
## lm(formula = Suciedad ~ (factorA_Marca + factorB_Tipo + factorC_Temperatura)^3)
## Residuals:
     Min
           1Q Median
                            3Q
                                  Max
## -6.000 -1.333 0.500 1.333 4.000
##
## Coefficients:
##
                                                                 Estimate
## (Intercept)
                                                                  84.3333
## factorA MarcaY
                                                                   7.0000
## factorA MarcaZ
                                                                   2.3333
## factorB_TipoLíquido
                                                                  -9.3333
## factorC_TemperaturaTibia
                                                                  -1.0000
## factorA_MarcaY:factorB_TipoLíquido
                                                                  -7.3333
## factorA_MarcaZ:factorB_TipoLíquido
                                                                 -11.3333
## factorA_MarcaY:factorC_TemperaturaTibia
                                                                  -3.0000
## factorA_MarcaZ:factorC_TemperaturaTibia
                                                                  -9.6667
## factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                   0.3333
## factorA_MarcaY:factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                   5.3333
## factorA_MarcaZ:factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                  -0.3333
##
                                                                 Std. Error t value
## (Intercept)
                                                                     1.5456 54.563
## factorA MarcaY
                                                                     2.1858 3.202
## factorA_MarcaZ
                                                                     2.1858 1.067
## factorB_TipoLíquido
                                                                     2.1858 -4.270
## factorC_TemperaturaTibia
                                                                     2.1858 -0.457
## factorA_MarcaY:factorB_TipoLíquido
                                                                     3.0912 -2.372
## factorA_MarcaZ:factorB_TipoLíquido
                                                                     3.0912 -3.666
## factorA_MarcaY:factorC_TemperaturaTibia
                                                                     3.0912 -0.970
## factorA_MarcaZ:factorC_TemperaturaTibia
                                                                     3.0912 -3.127
## factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                     3.0912
                                                                            0.108
## factorA_MarcaY:factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                     4.3716
                                                                             1.220
## factorA_MarcaZ:factorB_TipoLíquido:factorC_TemperaturaTibia
                                                                     4.3716 -0.076
##
                                                                 Pr(>|t|)
## (Intercept)
                                                                  < 2e-16 ***
## factorA_MarcaY
                                                                 0.003818 **
## factorA_MarcaZ
                                                                 0.296371
## factorB_TipoLíquido
                                                                 0.000266 ***
## factorC_TemperaturaTibia
                                                                 0.651429
```

```
## factorA_MarcaY:factorB_TipoLíquido
                                                               0.026037 *
## factorA_MarcaZ:factorB_TipoLíquido
                                                               0.001219 **
## factorA MarcaY:factorC TemperaturaTibia
                                                               0.341480
## factorA_MarcaZ:factorC_TemperaturaTibia
                                                               0.004579 **
## factorB_TipoLíquido:factorC_TemperaturaTibia
                                                               0.915025
## factorA MarcaY:factorB TipoLíquido:factorC TemperaturaTibia 0.234322
## factorA MarcaZ:factorB TipoLíquido:factorC TemperaturaTibia
                                                               0.939853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.677 on 24 degrees of freedom
## Multiple R-squared: 0.9506, Adjusted R-squared: 0.928
## F-statistic: 42.02 on 11 and 24 DF, p-value: 5.787e-13
```

Análisis

Se comenzará definiendo un nivel de significancia de $\alpha=0.05$. Por otro lado, la hipotésis nula que se manejará es: la interacción es igual.

Los siguientes casos son triviales, así que no se analizarán (i.e. la hipótesis nula se acepta. No hay interacción significativa.):

Asúmase como factor A es marca, factor B es tipo y factor C Temperatura.

- $\bullet \ \ factor A_Marca Z: factor B_Tipo L\'iquido: factor C_Temperatura Tibia \\$
- $\bullet \ \, factor A_MarcaY: factor B_Tipo L\'iquido: factor C_Temperatura Tibia \\$
- factor
B_Tipo Líquido:factor
C_Temperatura Tibia
- factorA MarcaY:factorC TemperaturaTibia
- factorC TemperaturaTibia
- factorA MarcaZ

Entonces, ahora tenemos los siguientes tests:

Asúmase como factor A es marca, factor B es tipo y factor C Temperatura.

Factor A

 $H_0: \qquad \mu_A = \mu_A$ $H_a: \qquad \mu_A \neq \mu_A$

Hay evidencia significativa que hay diferencia entre el factor A.

Factor B - Marca Y

 $H_0: \qquad \mu_B y = \mu_B y$ $H_a: \qquad \mu_B y \neq \mu_B y$

Hay evidencia significativa que hay diferencia entre el factor B.

Factor - Marca Z

$$H_0: \qquad \mu_Z = \mu_Z$$

Hay evidencia significativa que hay diferencia entre en la marca Z.

$$H_a: \mu_Z \neq \mu_Z$$

Factor B - Liquido

$$H_0: \qquad \mu_B l = \mu_B l$$

$$H_a: \mu_B l \neq \mu_B l$$

Hay evidencia significativa que hay diferencia entre el factor B - líquido .

FactorA - MarcaY:FactorB-TipoLíquido

$$H_0: \qquad \mu_A y = \mu_B l$$

$$H_a: \mu_A y \neq \mu_B l$$

Hay evidencia significativa que hay diferencia entre el factor A - Marca Y y Factor B - Tipo Liquido.

FactorA_MarcaZ:FactorB-TipoLíquido

$$H_0: \qquad \mu_A Z = \mu_B l$$

$$H_a: \mu_A Z \neq \mu_B l$$

Hay evidencia significativa que hay diferencia entre el factor A - Marca Z y Factor B - Tipo líquido .

Factor A-MarcaZ:FactorC- TemperaturaTibia

$$H_0: \mu_A Z = \mu_C$$

$$H_a: \mu_A Z \neq \mu_B C$$

Hay evidencia significativa que hay diferencia entre el factor A - marca Z y factor B - tipo líquido.

ANOVA

##	Df	Sum Sq	Mean Sq	F value
## factorA_Marca	2	833.7	416.9	58.167
## factorB_Tipo	1	1906.8	1906.8	266.062
## factorC_Temperatura	1	160.4	160.4	22.388
<pre>## factorA_Marca:factorB_Tipo</pre>	2	200.7	100.4	14.004
<pre>## factorA_Marca:factorC_Temperatura</pre>	2	187.1	93.5	13.050
<pre>## factorB_Tipo:factorC_Temperatura</pre>	1	9.0	9.0	1.256
<pre>## factorA_Marca:factorB_Tipo:factorC_Temperatura</pre>	2	15.2	7.6	1.058

```
## Residuals
                                                  24 172.0
                                                                 7.2
##
                                                    Pr(>F)
## factorA_Marca
                                                  6.26e-10 ***
## factorB_Tipo
                                                   1.73e-14 ***
## factorC_Temperatura
                                                  8.22e-05 ***
## factorA_Marca:factorB_Tipo
                                                  9.33e-05 ***
## factorA_Marca:factorC_Temperatura
                                                  0.000146 ***
## factorB_Tipo:factorC_Temperatura
                                                  0.273534
## factorA_Marca:factorB_Tipo:factorC_Temperatura 0.362743
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Gráficas

plot(modelo)

Residuals vs Fitted

Im(Suciedad ~ (factorA_Marca + factorB_Tipo + factorC_Temperatura)^3)

Theoretical Quantiles
Im(Suciedad ~ (factorA_Marca + factorB_Tipo + factorC_Temperatura)^3)
Scale-Location

Fitted values
Im(Suciedad ~ (factorA_Marca + factorB_Tipo + factorC_Temperatura)^3)

Constant Leverage: Residuals vs Factor Levels

Factor Level Combinations

Se

verifican con los siguientes supuestos:

Varianza constante

A pesar de que la línea roja no es recta, la línea se ajusta en una forma casi recta, por lo que el test parece cumplirse.

Normalidad

El gráfico parece indicar que sí se cumple el test de normalidad.

Independencia

La independencia también paerce cumplirse por el el gráfico de normalidad.

Test de Shapiro

shapiro.test(rstandard(modelo))

```
##
## Shapiro-Wilk normality test
##
## data: rstandard(modelo)
## W = 0.95223, p-value = 0.1229
```

El test de Shapiro nos confirma que es normal.

Coeficientes

```
coef(modelo)
##
                                                       (Intercept)
##
                                                        84.3333333
##
                                                    factorA_MarcaY
##
                                                         7.000000
                                                    factorA_MarcaZ
                                                         2.3333333
##
##
                                              factorB_TipoLíquido
##
                                                        -9.3333333
                                        factorC_TemperaturaTibia
##
                                                        -1.0000000
##
##
                              factorA_MarcaY:factorB_TipoLiquido
##
                                                        -7.3333333
##
                              factorA_MarcaZ:factorB_TipoLíquido
##
                                                       -11.3333333
##
                        factorA_MarcaY:factorC_TemperaturaTibia
##
                                                        -3.0000000
                        {\tt factor A\_MarcaZ: factor C\_Temperatura Tibia}
##
##
                                                        -9.6666667
##
                   factorB_TipoLíquido:factorC_TemperaturaTibia
                                                         0.3333333
   factorA_MarcaY:factorB_TipoLiquido:factorC_TemperaturaTibia
##
                                                         5.3333333
## factorA_MarcaZ:factorB_TipoLíquido:factorC_TemperaturaTibia
##
                                                        -0.3333333
```

Modelo Final

```
modeloFinal <- lm(Suciedad ~(factorA_Marca+factorB_Tipo+factorC_Temperatura)^3)</pre>
modeloFinal
##
## Call:
## lm(formula = Suciedad ~ (factorA_Marca + factorB_Tipo + factorC_Temperatura)^3)
## Coefficients:
##
                                                       (Intercept)
##
                                                           84.3333
##
                                                    factorA_MarcaY
##
                                                            7.0000
##
                                                    factorA_MarcaZ
##
                                                            2.3333
##
                                              factorB_TipoLíquido
##
                                                           -9.3333
##
                                        factorC_TemperaturaTibia
##
                                                           -1.0000
                              factorA_MarcaY:factorB_TipoLíquido
##
##
                                                           -7.3333
##
                              factorA_MarcaZ:factorB_TipoLiquido
##
                                                          -11.3333
##
                        factorA_MarcaY:factorC_TemperaturaTibia
##
                                                           -3.0000
```

```
## factorA_MarcaZ:factorC_TemperaturaTibia
## -9.6667
## factorB_TipoLíquido:factorC_TemperaturaTibia
## 0.3333
## factorA_MarcaY:factorB_TipoLíquido:factorC_TemperaturaTibia
## 5.3333
## factorA_MarcaZ:factorB_TipoLíquido:factorC_TemperaturaTibia
## -0.3333
```

Predicciones