

Universidad Tecnológica de Bolívar

FÍSICA ELÉCTRICA

RC CIRCUIT SIMULATION

Mauro González, T67622

German De Armas Castaño, T68765

Angel Vega Rodriguez, T68186

Juan Jose Osorio Ariza, T67316

Revisado Por David Sierra Porta 27 de mayo de 2023

1. Datos experimentales

Constantes		
ε (V)	30	
Resistencia (Ω)	80	
Capacitancia (\mathcal{F})	0,2	
RC (τ) [Seg]	16	

Carga	
Tiempo [Seg]	Voltaje $[V]$
0,0	0,0
5,5	9,65
10,4	15,01
15,6	19,15
20,2	21,9
25,4	24,13
30,4	25,73
35,5	26,89
40,3	27,7
45,3	28,31
50,4	28,77
55,5	29,11
60,3	29,34
65,5	29,52
70,3	29,65
75,5	29,75
80,3	29,81
85,6	29,86
90,5	29,9
95,5	29,93
100,4	29,95

Voltaje [V] contra Tiempo [Seg]

▶ Linea de tendencia:

$$0,202 \cdot x + 14,8R^2 = 0,626$$

Tiempo [Seg]	$\ln(1-\frac{V}{\varepsilon})$
0,0	0
5,5	-0,3881164698
10,4	-0,6938140695
15,6	-1,017032302
20,2	-1,30933332
25,4	-1,631342748
30,4	-1,949583554
35,5	-2,266574655
40,3	-2,568288259
45,3	-2,876468853
50,4	-3,194183212
55,5	-3,517731198
60,3	-3,816712826
65,5	-4,135166557
70,3	-4,451019506
75,5	-4,787491743
80,3	-5,061928588
85,6	-5,367310238
90,5	-5,703782475
95,5	-6,060457419
100,4	-6,396929655

In(1-V/E) contra Tiempo [Seg]

▶ Linea de tendencia:

$$-0.0629 \cdot x - 0.0285R^2 = 1$$

Descarga		
Tiempo [Seg]	Voltaje [V]	
0,0	29,99	
5,5	20,82	
10,3	15,26	
15,5	11,0	
20,3	8,17	
25,3	5,97	
30,3	4,35	
35,5	3,14	
40,3	2,33	
45,4	1,0	
50,3	1,24	
55,3	0,91	
60,3	0,67	
65,4	0,49	
70,3	0,36	
75,2	0,26	
80,3	0,19	
85,3	0,14	
90,6	0,1	
95,3	0,07	
100,2	0,05	

Voltaje [V] contra Tiempo [Seg]

▷ Linea de tendencia:

$$-0.205 \cdot x + 15.4R^2 = 0.627$$

2. Charging a capacitor

2.1. Using the equations above what is the time constant τ ? (Seg)

Usando la ecuación, $\tau=R\cdot C$, tenemos, $\tau=80\Omega\cdot 0.2\mathcal{F}=16Seg$

2.2. When $t = \tau$ what is the value of the voltage? (V)

Usando la ecuación,

$$V_c = \frac{q}{c} = \varepsilon (1 - e^{\frac{-t}{RC}})$$
 (1)
$$V_c = 30V(1 - e^{-1}) = 18,9636V$$

2.3. What percentage of the battery voltage is the voltage across the capacitor at this time?

Usando la ecuación (1) despejada,

$$\frac{V_c}{\varepsilon}=1-e^{\frac{-t}{RC}} \tag{2}$$
 Si $\tau=RC, \frac{V_c}{\varepsilon}=1-e^{-1}=0.6321\,\%$

2.4. When $t = 2\tau$ what is the value of the voltage? (V)

Según la ecuación (1), $V_c = 30V(1-e^{-2}) = 25,9399V$

Referencias

```
Videos de Referencia. (s.f.). https:
//drive.google.com/drive/
folders/1n7157nrmw1cFU - QVgO -
UZnVsMojdDCpP?usp=sharing
```