Fuzzy Sets and Fuzzy Logic Systems

Pawel Herman

Department of Computational Biology
School of Computer Science and Communication
KTH Royal Institute of Technology

BEST summer school
Stockholm, June 9-13 2014

Genesis of Fuzzy Logic (FL)

- According to Aristotle every proposition must be either true or false
- Plato later proposed that a third region between true and false exists
- Lukasiewicz in the beginning of the XXth century presented a systematic alternative to the bi-valud logic of Aristotle
- On top of Lukasiewicz's possibility theory Zadeh introduced the concept of fuzzy logic as multi-valued logic mainly to capture imprecise, ambiguous and uncertain nature of the world
- Zadeh also proposed the idea of applying natural language terms in the realm of fuzzy logic

Introduction to Fuzzy Logic

- Fuzzy logic as a branch of fuzzy set theory representation and inference from knowledge
- Imprecise and uncertain knowledge based on the idea that physical reality is graded
- Fuzzy logic can also be synonymously used with fuzzy set theory
- Fuzzy logic is not logic that is fuzzy, but logic that is used to describe fuzziness. Fuzzy logic is the theory of fuzzy sets, sets that calibrate vagueness.

Motivation

- The importance of common sense and intuition when solving problems by experts
- Representing experts' knowledge that relies on vague ambiguous formulations is a challenging task
- Such imprecise knowledge however proves very effective in many applications where the complexity of problems prevents from quantitative understanding
- Fuzzy logic systems resemble human reasoning in how it exploits approximation and how it accounts for uncertainty (mathematical apparatus to do that.)

Examples of a wide range of applications

- automatic train control;
- tunnel digging machinery;
- washing machines;
- rice cookers;
- vacuum cleaners;
- air conditioners, etc

Fuzzy vs. crisp (conventional) set

$$A = \left\{ x, \mu_A(x) \mid x \in X \right\}$$

$$B = \{x \mid x \in (-10,10]\}$$

Set A is fuzzy whereas set B has crisp characteristics.

Fuzzy vs. crisp (conventional) set

$$A = \left\{ x, \mu_A(x) \mid x \in X \right\}$$

$$B = \{x \mid x \in (-10,10]\}$$

Set A is fuzzy whereas set B has crisp characteristics.

Both continuous and discrete quantities can be described using fuzzy sets

Fuzzy representation – membership function

o In the fuzzy theory, fuzzy set A of universe X is defined by function $\mu_A(x)$ called the membership function of set A

$$\mu_A(x)$$
: $X \to [0, 1]$, where $\mu_A(x) = 1$ if x is totally in A ;
$$\mu_A(x) = 0$$
 if x is not in A ;
$$0 < \mu_A(x) < 1$$
 if x is partly in A .

Fuzzy representation – membership function

o In the fuzzy theory, fuzzy set A of universe X is defined by function $\mu_A(x)$ called the *membership function* of set A

This set allows a continuum of possible choices. For any element x of universe X, membership function $\mu_A(x)$ equals the degree to which x is an element of set A. This degree, a value between 0 and 1, represents the **degree of membership**, also called **membership value**, of element x in set A.

Fuzzy representation

Pawel Herman FL

10

Family of membership functions

Fundamental operations on fuzzy sets

Intersection

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

Union

$$\mu_{A \cap B}(x) = \max(\mu_A(x), \mu_B(x))$$

$$\mu_{A \cap B}(x) = \mu_A(x) * \mu_B(x)$$

$$\mu_{A \cap B}(x) = \mu_A(x) + \mu_A(x) - \mu_A(x) * \mu_B(x)$$

Fundamental operations on fuzzy sets

Intersection

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$$

Union

$$\mu_{A \cap B}(x) = \max(\mu_A(x), \mu_B(x))$$

Alternatively,

$$\mu_{A \cap B}(x) = \mu_{A}(x) * \mu_{B}(x)$$

$$\mu_{A \cap B}(x) = \mu_{A}(x) + \mu_{A}(x) - \mu_{A}(x) * \mu_{B}(x)$$

T- and S-norms

T-Norms and S-	·Norms
----------------	--------

AND

T-Norm $T(\mu_A(x), \mu_B(x))$
Minimum
$MIN(\mu_A(x), \mu_B(x))$
Algebraic product
$\mu_A(x)\mu_B(x)$
Drastic product
$MIN(\mu_A(x), \mu_B(x)) \text{ if } MAX(\mu_A(x), \mu_B(x)) = 1$
0 otherwise
Lukasiewicz AND (Bounded Difference)
$MAX(0, \mu_A(x) + \mu_B(x) - 1)$
Einstein product
$\mu_A(x)\mu_B(x)/(2-(\mu_A(x)+\mu_B(x)-\mu_A(x)\mu_B(x)))$
Hamacher product

 $\mu_A(x)\mu_B(x)/(\mu_A(x)+\mu_B(x)-\mu_A(x)\mu_B(x))$

 $1 - MIN(1, ((1 - \mu_A(x))^b + (1 - \mu_B(x)^b)^{1/b}))$

Yager operator

OR S-Norm
$$S(\mu_A(x),\mu_B(x))$$

Maximum $MAX(\mu_A(x),\mu_B(x))$

Algebraic sum $\mu_A(x) + \mu_B(x) - \mu_A(x)\mu_B(x)$

Drastic sum $MAX(\mu_A(x),\mu_B(x))$ if $MIN(\mu_A(x),\mu_B(x)) = 0$

1 otherwise Lukasiewicz OR (Bounded Sum) $MIN(1,\mu_A(x)+\mu_B(x))$

Einstein sum $(\mu_A(x)+\mu_B(x))/(1+\mu_A(x)\mu_B(x))$

Hamacher sum $(\mu_A(x)+\mu_B(x)-2\mu_A(x)\mu_B(x))/(1-\mu_A(x)\mu_B(x))$

Yager operator

MIN(1, $(\mu_A(x)^b + \mu_B(x)^b)^{1/b}$)

Linguistic variables

- At the core of fuzzy logic is the use of linguistic variables in fuzzy computations (inference)
- The range of possible values of a linguistic variable represents the universe of discourse of that variable.

IF speed is low THEN

IF speed is medium THEN ...

Linguistic variables - hedges

Hedge	Mathematical Expression	Graphical Representation
A little	$\left[\mu_A(x)\right]^{1.3}$	
Slightly	$\left[\mu_A(x)\right]^{1.7}$	
Very	$[\mu_A(x)]^2$	
Extremely	$[\mu_A(x)]^3$	

Fuzzy implication – IF .. THEN rule

Pawel Herman FL 17

Fuzzy relations and IF...THEN... rules

Fuzzy relation R is a fuzzy set itself

$$R = \{(x, y), \mu_R(x, y)\}$$

There is a number of different ways to define $\mu_R(x, y)$

product rule

$$\mu_{A-|B}(x, y) = \mu_{R}(x, y) = \mu_{A}(x) * \mu_{B}(y)$$

Mamdani-type rule

$$\mu_{A-|B}(x, y) = \mu_{R}(x, y) = \min(\mu_{A}(x), \mu_{B}(y))$$

Approximate resoning

Modus Ponens

Premise: A "Paul is a driver"

Implication: A -> B

Conclusion: **B** "Paul has a driving license"

Pawel Herman FL 19

Approximate resoning

Generalized Modus Ponens

Premise: A

"The car speed is high"

Implication: A -> B

"If the car speed is very high, then the noise level is high"

Conclusion: **B**

"The noise level in the car is medium hight"

20

Pawel Herman FL

Approximate resoning

Generalized Modus Ponens

Modus Ponens

Premise: A'

Implication: A -> B

Conclusion: B'

Premise: A

Implication: A -> B

Conclusion: B

fuzzy sets, so we can talk about a degree of fulfilment

21

Fuzzy inference

Inference is a composition of the antecedent and the relation R.

 $\mu_B(y) = \sup{\{\mu_A(x)^* \mu_R(x, y)\}}$

product rule

Mamdani-type rule

Fuzzy inference in general cases

Multiple antecedents (combined with AND)

Minimum of the degrees of firing

Fuzzy inference in general cases

Multiple antecedents (combined with AND)

Minimum of the degrees of firing

- Multiple rules
 - The outputs of inference have to be aggregated across all rules
 - Max operator is often used to aggregate the resultant consequents

Pawel Herman FL 24

Example

Example with multiple antecedents and multiple rules

R1: IF age IS young AND car-power IS high THEN risk IS high R2: IF age IS normal AND car-power IS medium THEN risk IS medium

Pawel Herman FL 26

Example – fuzzification

· Step 1: Fuzzification of crisp inputs

Example – inference

Step 2a: Inference (e.g. via Min/Max-Norm)

Example – aggregation

Step 2b: Inference (e.g. via Maximum-Norm)

Example - defuzzification

Step 3: Defuzzification

Fuzzy inference system

 Mapping input-output relationship with crisp data requires fuzzification and defuzzification steps

How to obtain rules?

Fuzzy Logic Control

PD-type controller

Rule base

