定義

- $I = [a, b], I^i = (a, b)$ 上で考える。
- $Y \in C(I;\mathbb{R}) \cap C^1(I^i;\mathbb{R})$ が $Y(a) = Y_0$ を満たし、 I^i 上で $\frac{d}{dx}Y(x) = f(x,Y(x))$ を 満たすとき、これを解と呼ぶ。

Lipschitz 条件

• $\Omega = I \times \mathbb{R}$ 上で、任意の $(x, Y), (x, Z) \in \Omega$ に対して:

$$|f(x,Y)-f(x,Z)| \le L|Y-Z|$$

を満たすとき、f は Lipschitz 連続。

必要な準備

- 連続関数空間 $C(I;\mathbb{R})$ は一様ノルム $||f|| = \sup_{x \in I} |f(x)|$ で完備。
- 積分作用素 $T(f)(x) = \int_{a}^{x} f(t)dt$ は連続線形作用素。
- Picard の逐次近似法により基本列を構成可能。
- Gronwall の不等式を用いて一音性を証明。