Problem 1. Construct several examples of homotopic and non-homotopic maps.
Problem 2. Show that the relation of fixed-endpoint homotopy is an equivalence relation. Proof. □
Problem 3. Construct some examples of paths which are fixed-endpoint homotopic, and some which are not.
Problem 4. a) Show that any convex open subset of \mathbb{R}^n is contractible. b) Show that a contractible space is path connected.
c) Show that if Y is contractible, then all maps
f:X o Y
$are\ homotopic.$
d) Show that if X is contractible and Y is path-connected, then all maps
f:X o Y
are homotopic. What happens if we remove the path-connectedness assumption?
Problem 5. Check that the fundamental group of a pointed space (X, x_0) is a group. Proof. a) b) c)
$^{ m d}$
Problem 6. Show that if x_0, x_1 are in the same path component of a space X , then $\pi_1(X, x_0) \simeq \pi_1(X, x_1)$.
Proof.