## Comparing Classical and Nonclassical Symmetries of Nonlinear Partial Differential Equations

William Helman and Daniel Sinderson

Southern Oregon University

2023

#### Table of Contents

#### Introduction

Project Goal What is a Symmetry? What is a Differential Equation? Background on our Equations

#### Results

Classical Symmetries Nonclassical Symmetries

#### Conclusion

Discussion Open Questions Next Steps

## Project Goal

Our research objective for this project was to calculate the classical and nonclassical symmetry groups for the reduced Gibbons-Tsarev equation and the Born-Infeld equation and compare them.

#### Definition

A symmetry is a transformation that leaves an object invariant.

#### Definition

A symmetry is a transformation that leaves an object invariant.

#### Definition

A symmetry is a change that doesn't change anything.

Let's see this in action using the simple linear equation x - y = 0.



### Example (A Non-Example)

- For our first transformation, let's define new variables  $\bar{x} = x + 1$  and  $\bar{y} = y$ .
- Now we rewrite our equation using these new variables.

$$ar x-ar y=0$$
 by definition  $x+1-y=0$  by substitution  $y=x+1$  by rewriting in slope-intercept form

► This transformation is not a symmetry:

$$x - y + 1 \neq x - y$$

#### A Transformation that is a Symmetry

### Example (2)

- Let's define some new variables again  $\bar{x} = x + 1$  and  $\bar{y} = y + 1$ .
- Now we rewrite our equation using these new variables.

$$\begin{array}{c} \bar{x}-\bar{y}=0 & \text{by definition} \\ (x+1)-(y+1)=0 & \text{by substitution} \\ (x-y)+(1-1)=0 & \text{by algebra} \\ x-y=0 & \text{by algebra} \\ y=x & \text{by rewriting in slope-intercept form} \end{array}$$

► This transformation is a symmetry:

$$x - y = x - y$$

The graphs of our three equations.



#### Who cares?

Symmetries help us understand and solve equations that we wouldn't normally be able to.

#### Who cares?

- Symmetries help us understand and solve equations that we wouldn't normally be able to.
- Symmetries encode physically meaningful aspects of equations, like conservation laws.

#### Definition

▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.

#### Definition

- ▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.
- ▶ Differential equations show up everywhere we model something using information about how that thing changes. This includes everything from population dynamics to planetary orbits.

#### Definition

- ▶ A differential equation is an equation that contains both an unknown function and information about how that function relates to its rates of change.
- Differential equations show up everywhere we model something using information about how that thing changes. This includes everything from population dynamics to planetary orbits.
- Differential equations are different from algebraic equations, and can't be solved in the same ways.

As an example, let's look a frictionless spring-mass system.



This system can be modeled by the following differential equation.

$$m\ddot{x} = -\kappa x$$

- ▶ Here m is the mass,  $\ddot{x}$  is the acceleration,  $\kappa$  is the spring constant, and x is the position.
- ▶ If we set both m and  $\kappa$  to 1, we get  $\ddot{x} = -x$ .
- This is a simple differential equation with the algebraic solution of  $x(t) = c_1 \cos(t) + c_2 \sin(t)$ .

The graph of our spring system  $x(t) = \cos(t) + \sin(t)$ , where  $c_1 = c_2 = 1$ .



# The History of the Born-Infeld and the reduced Gibbons-Tsarev Equations

- The goal of our project was to find symmetry transformations for these two PDEs, both classical and nonclassical, and compare them.
- It turns out that there's a standard method for calculating both kinds of symmetry transformations for differential equations.
  - Input Equation  $\rightarrow$  Calculate Lie's invariance condition
    - $\rightarrow$  Solve linear system of PDEs
    - $\rightarrow$  Symmetries!

➤ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.

- ➤ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ► For a differential equation, this means that the function and any derivatives of that function that are present in the equation must not change under the transformation.

- ▶ To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ► For a differential equation, this means that the function and any derivatives of that function that are present in the equation must not change under the transformation.
- Lie's invariance condition gives us a way to generate transformations that meet all these requirements.

- ► To guarantee that a transformation is a symmetry, we need to ensure that all aspects of the equation remain the same under the transformation.
- ► For a differential equation, this means that the function and any derivatives of that function that are present in the equation must not change under the transformation.
- Lie's invariance condition gives us a way to generate transformations that meet all these requirements.
- ► If you can solve Lie's invariance condition for your equation, you can find its symmetries.

The general form of Lie's invariance condition is the falsely unassuming

$$\Gamma^{(n)}\Delta|_{\Delta=0}=0$$

Here  $\Gamma$  is the infinitesimal operator, n is the order of the equation, and  $\Delta$  is the equation itself set to equal 0 (this is standard form).

For our equations, the infinitesimal operator  $\Gamma$  looks like the following:

$$\begin{split} T\frac{\partial}{\partial t} + X\frac{\partial}{\partial x} + U\frac{\partial}{\partial u} + U_{[t]}\frac{\partial}{\partial u_t} + U_{[x]}\frac{\partial}{\partial u_x} + U_{[tt]}\frac{\partial}{\partial u_{tt}} + U_{[tx]}\frac{\partial}{\partial u_{tx}} + U_{[xx]}\frac{\partial}{\partial u_{xx}} \\ U_{[t]} &= D_t(U) - u_t D_t(T) - u_x D_t(X) \\ U_{[x]} &= D_x(U) - u_t D_x(T) - u_x D_x(X) \\ U_{[tt]} &= D_t(U_{[t]}) - u_{tt} D_t(T) - u_{tx} D_t(X) \\ U_{[tx]} &= D_t(U_{[x]}) - u_{tx} D_t(T) - u_{xx} D_t(X) \\ U_{[xx]} &= D_t(U_{[x]}) - u_{tx} D_x(T) - u_{xx} D_x(X) \end{split}$$

$$D_{t} = \frac{\partial}{\partial t} + u_{t} \frac{\partial}{\partial u} + u_{tt} \frac{\partial}{\partial u_{t}} + u_{tx} \frac{\partial}{\partial u_{x}}$$

$$D_{x} = \frac{\partial}{\partial x} + u_{x} \frac{\partial}{\partial u} + u_{tx} \frac{\partial}{\partial u_{t}} + u_{xx} \frac{\partial}{\partial u_{x}}$$



► The result of putting our PDEs through Lie's invariance condition was a system of 24 linear PDEs for the Born-Infeld equation and 21 for the reduced Gibbons-Tsarev equation.

- ► The result of putting our PDEs through Lie's invariance condition was a system of 24 linear PDEs for the Born-Infeld equation and 21 for the reduced Gibbons-Tsarev equation.
- ➤ Though difficult, these systems were easier to solve than the original single equations because of their linearity. This resulted in the following symmetries.

### Classical Symmetries of the Born-Infeld Equation

- $X(x, y, u) = c_1x + c_2u + c_3y + c_4$
- $Y(x, y, u) = c_1y + c_3x + c_5u + c_6$
- $V(x, y, u) = c_1u c_2x + c_5y + c_7$

### Classical Symmetries of the reduced Gibbons-Tsarev Equation

- $X(x, y, u) = -2c_5y + (-c_2 + 2c_4)x + c_7$
- $Y(x,y,u) = -\frac{c_1x}{2} + c_4y + c_5u + c_6$
- $U(x, y, u) = c_1y + c_2u + c_3$

Future Work: Does Integrability Imply Equivalence of Classical and Nonclassical Symmetries?

# Future Work: Does Equivalence of Classical and Nonclassical Symmetries Imply Integrability?