UCS1524 – Logic Programming

Introduction to Logic Programming

Session Meta Data

Author	Dr. D. Thenmozhi
Reviewer	
Version Number	1.2
Release Date	16 July 2020

Session Objectives

- Understanding introduction to logic programming
- Know about the course overview, course objectives and course outcomes

Session Outcomes

- At the end of this session, participants will be able to
 - Understand the overview of the course.

Agenda

- Introduction to logic programming
- Course overview
- Course objectives
- Course outcomes

Introduction

- Artificial Intelligence (AI) is the ability for an artificial machine to act intelligently.
- Logic Programming is a method that computer scientists are using to try to allow machines to reason because it is useful for knowledge representation.
- In logic programming, logic is used to represent knowledge and inferences used to manipulate it.

Why logic?

- The logic used to represent knowledge in logic programming is clausal form which is a subset of firstorder predicate logic.
- It is used because first-order logic is well understood and able to represent all computational problems.
- Knowledge is manipulated using the resolution inference system which is required for proving theorems in clausalform logic.

Assumptions Resolution Conclusions

First Order Logic (FOL)

- First order logic is an extension of propositional logic.
- First order logic is made up of syntax and semantics.
- The syntax of first order logic is a formal language that is used to express concepts.
- The semantics of first order logic formulae tells us how to determine the truth value of any first order logic formula.

Why Prolog?

- Prolog, PROgramming in LOGic, is a declarative programming language which is based on the ideas of logic programming.
- The idea of Prolog was to make logic look like a programming language and allow it to be controlled by a programmer to advance the research for theoremproving.
- Many non-logical primitives have been added to the language which are beneficial to programmers.

Example for Reasoning in Prolog

 Example: Given information about fatherhood and motherhood, determine grand parent relationship.

Facts

- father(Ram,Anu)
- Mother(Nithya,Anu)
- Mother(Selvi,Nithya)
- Father(Shankar, Nithya)
 - In logic, words like father, mother are called *predicates*.
 - A statement like father(Ram,Anu) is called an atomic formula called an atom, stating a true fact
- Express the grand parent relationship:
 - grandparent(X,Z): parent(X,Y), parent(Y,Z).
 - parent(X,Y): father(X,Y).
 - parent(X,Y): mother(X,Y).
 - These are called conditional statements
- ?- grandparent(Q,Anu)

Course Overview

- Logics
 - Proposition logic
 - Syntax, semantics and resolution principles
 - Predicate logic or First order logic
 - Syntax, semantics and resolution principles
- Logic Programming
 - Answer generation
 - Horn Clause Programs
 - Semantics of logic program
 - Procedural semantics
 - Model-theoretic semantics
 - Evaluation Strategies

Course Overview

Programming in Prolog

- Syntax and semantics
- Facts, questions and variables
- Rules and structures
- I/O and Exception handling
- Prolog and Al
 - Data structures
 - Problem solving strategies in Al
- Prolog and Expert Systems
 - Features, functions, structure
 - Knowledge representation and shell implementations

Course Objective

- To understand the foundations of Logic programming
- To learn programming in PROLOG
- To implement informed and uninformed search algorithms in PROLOG
- To implement Expert system shell in PROLOG

Course Outcome

- Understand the foundations of logic (K2)
- Understand the foundations of logic programming (K2)
- Write programs in PROLOG (K3)
- Implement AI search algorithms in PROLOG (K3)
- Implement a simple Expert system shell in PROLOG (K3)

Books

TEXTBOOKS

- 1. Uwe Schoning, "Logic for Computer Scientists", Birkhauser, 1999 (Units I, II).
- 2. Ivan Bratko, "PROLOG: Programming for Artificial Intelligence", 4th Edition, Pearson, 2011 (Units III, IV, V).

REFERENCE BOOKS

- 1. Kees Doets, "From Logic to Logic Programming", MIT Press 1994.
- 2. Patrick Blackburn, Johan Bos, Kristina Streignitz, "Learn PROLOG Now", College Publications, 2006.
- 3. Dennis Merritt, "Building Expert Systemsin PROLOG", Amzi! Inc. 2000
- 4. Helder Coelho, Jose C Cotta, "PROLOG by Example: How to Learn, Teach and Use It", Springer-Verlag, 2011.
- 5. W F Clocksin, C S Mellish, "Programming in PROLOG", Springer-Verlag, 2016.

Summary

- Introduction to logic programming
 - Logic
 - Logic programming
 - Prolog
 - Example
- Course overview
- Course objectives
- Course outcomes

