Análise computacional do lançamento de uma bola

Universidade de São Paulo Aluno: *Luiz Felipe Diniz Costa - 13782032*

15 de setembro de 2025

Resumo

Este relatório descreve a solução computacional para análise da trajetória tridimensional de uma bola arremessada em uma sala de aula. O experimento foi gravado em vídeo pelo professor Fernando, e as posições bidimensionais da bola foram anotadas utilizando a ferramenta CVAT. O objetivo foi reconstruir a trajetória $3\,d$, estimar as grandezas cinemáticas e gerar saídas visuais para auxiliar na compreensão do movimento. O código fonte está disponível no repositório github.com/lfelipediniz/BallMotion, e o vídeo anotado pode ser visualizado clicando aqui. As figuras incluídas ao longo do texto foram geradas a partir de uma simulação representativa do arremesso.

1 Introdução

O estudo de movimentos em duas e três dimensões é um elemento central nos Capítulos 2 e 3 de Tipler. Para complementar a teoria, propomos a análise de um lançamento oblíquo real: o professor Fernando arremessou uma bola em sala de aula. O vídeo foi anotado frame a frame com coordenadas x_{2d} e y_{2d} através do CVAT, permitindo extrair a trajetória no plano da imagem. Em seguida, um modelo de física básica foi aplicado para reconstruir a trajetória espacial e derivar as grandezas cinemáticas. O objetivo do trabalho foi produzir um relatório comentado descrevendo cada etapa do pipeline computacional e interpretar os resultados obtidos.

2 Visão geral do pipeline

O projeto *BallMotion* organiza-se em módulos. A orquestração é feita pela função run_analysis, localizada no módulo principal, que chama as etapas a seguir:

- Leitura das anotações: as coordenadas x_{2d} e y_{2d} são lidas do arquivo XML exportado pelo CVAT.
- Detecção de voo: são identificados os frames de lançamento e pouso usando heurísticas simples sobre a variação de y_{2d} .
- Construção da trajetória 3D: a função build_trajectory cria uma trajetória balística contínua que liga a posição inicial $\mathbf{p}_0 = (x_0, y_0, z_0)$ à posição final $\mathbf{p}_1 = (x_1, y_1, z_1)$. As coordenadas x(t) e y(t) evoluem de forma linear, enquanto z(t) descreve uma parábola sob gravidade.

- Cálculo de cinemática: com base nos coeficientes analíticos das funções de posição, são obtidas as velocidades e acelerações por derivação.
- Geração de saídas: incluem gráficos da trajetória e das componentes, extração de quadros anotados e um vídeo com informações sobrepostas.

3 Detecção da janela de voo

A primeira etapa consiste em determinar o intervalo em que a bola está em movimento livre. A função $detect_launch_frame$ calcula a diferença entre coordenadas consecutivas y_{2d} e procura a primeira queda significativa. Este critério é baseado na observação de que, nas imagens, o eixo y cresce para baixo; portanto, quando a bola sobe, o valor de y_{2d} diminui. O frame em que ocorre a variação mais acentuada é tomado como instante do arremesso. De forma análoga, uma função irmã procura a primeira subida pronunciada para determinar o pouso.

4 Reconstrução da trajetória 3D

A reconstrução espacial supõe que, entre os instantes de lançamento (t_0) e pouso (t_1) , a bola descreve um movimento balístico em um referencial cartesiano fixo à sala. Seja $T=t_1-t_0$ o tempo total de voo. Define-se um parâmetro de progresso

$$s(t) = \frac{t - t_0}{T}, \quad 0 \le s \le 1.$$

As componentes horizontais são interpoladas linearmente:

$$x(t) = x_0 + s(t)(x_1 - x_0), \quad y(t) = y_0 + s(t)(y_1 - y_0).$$

A componente vertical, sujeita à gravidade g, é modelada por uma parábola simétrica em torno do tempo médio:

$$z(t) = z_0 + (z_1 - z_0)s(t) + \frac{1}{2}gT^2s(t)(1 - s(t)).$$

Esta expressão garante que $z(t_0)=z_0$ e $z(t_1)=z_1$. A Figura 1 ilustra a trajetória tridimensional simulada.

Figura 1: Trajetória 3D reconstruída do lançamento.

5 Cinemática

Conhecidas as funções de posição, calculam-se as velocidades e acelerações por derivação. Dentro do intervalo de voo, as velocidades horizontais são constantes:

$$v_x = \frac{x_1 - x_0}{T}, \quad v_y = \frac{y_1 - y_0}{T},$$

enquanto a velocidade vertical varia de forma linear devido à gravidade:

$$v_z(t) = \frac{z_1 - z_0}{T} + \frac{1}{2}gT(1 - 2s(t)).$$

Hipótese de repouso antes e depois do voo. Modelamos três trechos:

$$\mathbf{r}(t) = \begin{cases} \mathbf{p}_0, & t \le t_0, \\ \left(x(t), y(t), z(t)\right), & t_0 < t < t_1, \\ \mathbf{p}_1, & t \ge t_1, \end{cases}$$

$$\mathbf{v}(t) = \begin{cases} \mathbf{0}, & t \le t_0, \\ \left(v_x, v_y, v_z(t)\right), & t_0 < t < t_1, \\ \mathbf{0}, & t \ge t_1, \end{cases}$$

$$\mathbf{a}(t) = \begin{cases} \mathbf{0}, & t \le t_0, \\ \left(0, 0, -g\right), & t_0 < t < t_1, \\ \mathbf{0}, & t \ge t_1. \end{cases}$$

A condição $t \ge t_1$ implementa a suposição prática de que, ao tocar o chão, a bola fica imediatamente aderida (encostou em uma super cola). Assim, posição constante em \mathbf{p}_1 , velocidade nula e aceleração nula após o impacto.

Figura 2: Componentes de velocidade ao longo do tempo: v_x , v_y e v_z .

Figura 3: Componentes de aceleração: a_x , a_y e a_z .

6 Visualização e anotação

Para fins didáticos, foram extraídos três quadros representativos do vídeo: início, meio e fim do vo
o. Os quadros são anotados com o tempo e as posições x, y, z.

Figura 4: Quadros extraídos do vídeo anotado.

7 Discussão

O modelo empregado faz suposições simples: o ar é considerado sem resistência, as posições inicial e final da bola são medidas em metros e a gravidade é tomada como $g = 9.81 \,\mathrm{m/s^2}$. Nas figuras de velocidade verifica-se que v_x e v_y permanecem constantes durante o voo. A velocidade vertical decresce linearmente e cruza zero no ponto de altura máxima.

Sobre a hipótese de super cola no impacto. Em termos físicos, o contato com o chão envolve um pico de força durante um intervalo muito curto. Ao adotar aderência imediata, modelamos esse evento como uma colisão perfeitamente inelástica com parada instantânea, sem detalhar o transiente de impacto. Depois disso, as forças de contato equilibram o peso, resultando em aceleração líquida nula. Essa simplificação é adequada para focar no trecho balístico sem perder a coerência do pós-impacto.

8 Conclusões

Este relatório apresentou o desenvolvimento de um pipeline computacional para análise de um lançamento oblíquo em três dimensões. A partir de anotações de vídeo, identificou-se o intervalo de voo, construiu-se a trajetória 3D com um modelo balístico, calcularam-se as grandezas cinemáticas e geraram-se visualizações informativas. O uso das ferramentas CVAT e OpenCV foi fundamental para o sucesso da análise.

Agradecimentos Agradecemos ao professor Fernando pela atuação na gravação do experimento *BallMotion*.