Анализ, 4 семестр

Михаил Пирогов записал со слов лектора А. А. Лодкина

6 июня 2017 г.

Оглавление

1	Teop	рия меры	3
	1	Алгебры и σ -алгебры множеств	3
	2	Борелевская σ -алгебра	4
	3	Мера на алгебре. Примеры мер	5
	4	Свойства меры	6
	5	Объём в \mathbb{R}^n . Мера Лебега и её свойства	7
	6	Измеримость функции относительно σ -алгебры.	
		Свойства измеримых функций	11
	7	Определение интеграла по мере. Свойства интеграла от неотрицательных функций.	13
	8	Теорема Беппо Леви	
	9	Свойства интеграла от суммируемых функций	15
	10	Счётная аддитивность интеграла.	16
	11	Абсолютная неперывность интеграла	17
	12	Вычисление интеграла от непрерывной функции по мере Лебега	17
	13		18
	14		19
	15	Интеграл по дискретной мере и по мере, задаваемой плотностью	20
	16	Интеграл по мере Лебега-Стилтьеса. Интеграл по распределению	21
		16.1 Интеграл по мере Лебега-Стилтьеса	
		16.2 Интеграл по образу меры	
		16.3 Интеграл по распределению.	
	17	Интеграл Эйлера-Пуассона	
	18	Вероятностный смысле меры и интеграла	24
	19	Принцип Кавальери. Геометрический смысл интеграла	
		по мере Лебега (мера подграфика)	
		19.1 «Почти всюду» и вариаци теоремы Леви	
		19.2 Кратные интегралы	26
	20	Сведение кратного интеграла к повторному	
		(теоремы Тоннели и Фубини)	
	21	Поведение меры Лебега при сдвиге и линейном преобразовании	
	22		29
	23	Гладкая замена переменной в интеграле. Пример (полярные и сферические коор-	
		динаты)	
	24	Теорема Фату	
	25		31
	26	Равномерная сходимость интеграла,	
		зависящего от параметра. Формулировка признаков	
			31
	27	Формулировки основных теорем о несобственном интеграле с параметром	
			33
			33
	28		33
	29		35
	30	Объём n -мерного шара	35

ОГЛАВЛЕНИЕ 2

2	Диф	ференциальная геометрия	36
	31	Регулярная кривая и её естественная параметризация	
	32	Кривизна кривой	
	33		38
	34	Формулы Френе. Теорема о восстановлении кривой по заданным кривизне и кру-	
		чению	39
	35	Регулярная поверхность, касательная плоскость, первая квадратичная форма по-	
		верхности	39
	36	Вычисление длин и площадей с помощью первой квадратичной формы	40
		36.1 Длина кривой	40
		36.2 Мера Лебега на поверхности	40
	37	Вторая квадратичная форма. Эллиптическая, гиперболическая и параболическая	
		точки поверхности.	41
	38	Нормальная кривизна в данном направлении. Главные кривизны поверхности	42
	39	Полная (гауссова) кривизна. Теорема Гаусса.	43
	40	Понятие о геодезической кривизне и геодезической кривой. Формулировка тео-	
		рема Гаусса-Бонне.	43

Глава 1 Теория меры

Билет 1: Алгебры и σ -алгебры множеств.

Определение 1.1. Пусть X – некоторое множество. Тогда $\mathcal{A}\subset 2^X$ называется *алгеброй*, если выполняются следующие условия:

- 1. \emptyset , $X \in \mathcal{A}$.
- 2. $A, B \in \mathcal{A} \Rightarrow A \cup B, A \cap B, A \setminus B \in \mathcal{A}$.

Упражнение 1. Пусть $\mathcal{A} \subset 2^X$ – алгебра, $|\mathcal{A}| < \infty$. Тогда $|\mathcal{A}| = 2^n$ для некоторого n.

Доказательство. Так как $X \in \mathcal{A}$, каждый элемент X содержится как минимум в одном элементе \mathcal{A} . Пусть A(x) – пересечение всех множеств из \mathcal{A} , содержащих x. Понятно, что A(x) непусто, т.к. $x \in A(x)$. Разобьём дальнейшее доказательство на несколько пунктов:

- 1. Мы определили A(x), как наименьшее по включению множество, удовлетворяющее некоторому свойству. Поэтому у него есть эквивалентное определение: A(x) такое множество, что если $x \in B \in \mathcal{A}$, то $A(x) \subset B^{-1}$.
- 2. Введём отношение на X: пусть $x \sim y$, если A(x) = A(y). Очевидно, что это отношение эквивалентности. Докажем, что $x \sim y \Leftrightarrow y \in A(x)$.
 - Пусть $y \in A(x)$. Предположим, что $A(y) \neq A(x)$. Тогда выполняется минимум одно из двух утверждений: либо A(y) содержит элемент, которого нет в A(x), либо наоборот. Пусть первое. Тогда $B = A(x) \cap A(y)$ элемент \mathcal{A} , который содержит y и строго меньше A(y), чего не может быть. Пусть второе. Тогда если A(y) не содержит x, то $A(x) \setminus A(y)$ является элементом \mathcal{A} , содержащим x, а если содержит, то снова $A(x) \cap A(y)$ является таким элементом. Причём строго меньшим, чем A(x), что опять ведёт нас к противоречию.
 - Пусть A(x) = A(y). Предположим, что $y \notin A(x)$. Но тогда $y \notin A(y)$, что точно ложь.
- 3. Разобьём X на классы эквивалентности по отношению \sim ; обозначим множество этих классов $\hat{\mathcal{A}}$. Понятно, что $|\hat{\mathcal{A}}| < \infty$, ведь $\hat{\mathcal{A}} \subset \mathcal{A}$. Пусть $B \in \mathcal{A}$ и $\hat{B} \in \hat{\mathcal{B}}$. Докажем, что если $B \cap \hat{B} \neq \emptyset$, то $B \cap \hat{B} = \hat{B}$.
 - Предположим противное: пусть $x \in B \cap \hat{B}$ и $y \in \hat{B} \setminus B$. Из определения отношения эквивалентности понятно, что $\hat{B} = A(x) = A(y)$. Но заметим тогда, что $\hat{B} \setminus B$ множество из \mathcal{A} , содержащее y и строго меньшее \hat{B} , чего не может быть.
- 4. Из сделанного нетрудно увидеть, что любое $B \in \mathcal{A}$ можно представить, как объединение множеств из $\hat{\mathcal{A}}$: просто для каждого $b \in B$ взять A(b) и объединить их все. При этом понятно, что любое объединение множеств из $\hat{\mathcal{A}}$ лежит в A. Т.к. элементы $\hat{\mathcal{A}}$ не пересекаются, нетрудно увидеть, что отображение, сопоставляющее множеству $\mathcal{B} \subset \hat{\mathcal{A}}$ объединение всех его элементов есть биекция биекция между множествами $2^{\hat{\mathcal{A}}}$ и \mathcal{A} . Поэтому количество элементов \mathcal{A} имеет искомый вид.

Примеры привести не очень сложно, не будем здесь на этом останавливаться.

¹Заметим, что мы существенно испльзуем конечность $\mathcal A$ каждый раз, когда говорим, что $A(x) \in \mathcal A!$

Определение 1.2. σ -алгеброй называется алгебра, замкнутая относительно счётных объединений и пересечений.

Определение 1.3. Пусть $\mathcal{E} \subset 2^X$. Тогда наименьншая σ -алгебра, содержащая \mathcal{E} , называется борелевской оболочкой \mathcal{E} и обозначается $\sigma(\mathcal{E})$. (Ссылаясь на факт, который уже упоминался в упражнении, заметим, что $\sigma(\mathcal{E})$ совпадает с пересечением всех σ -алгебр, содержащих \mathcal{E}).

Лемма 1.1. Если $\mathcal{E}_2 \subset \sigma(\mathcal{E}_1)$, то $\sigma(\mathcal{E}_2) \subset \sigma(\mathcal{E}_1)$.

Доказательство. Из определения борелевской оболочки понятно, что

$$\mathcal{E}_2 \subset \sigma(\mathcal{E}_1) \Rightarrow \sigma(\mathcal{E}_2) \subset \sigma(\sigma(\mathcal{E}_1)).$$

При этом понятно, что правая часть равна $\sigma(\mathcal{E}_1)$, чего нам и надо.

Билет 2: Борелевская σ -алгебра.

Определение 2.1. Пусть \mathcal{O}_n – множество всех открытых множеств в \mathbb{R}^n . Тогда σ -алгебра $\sigma(\mathcal{O}_n)$ называется борелевской.

Определение 2.2. Назовём n-мерной ячейкой такое подмножество \mathbb{R}^n :

$$n = 1 \Rightarrow \Delta = \begin{cases} [a, b), [a, \infty); \\ (-\infty, b), (-\infty, \infty); \end{cases}$$
$$n > 1 \Rightarrow \Delta = \prod_{i=1}^{k} \Delta_{i},$$

где Δ_i – одномерные ячейки.

Определение 2.3. Назовём n-мерной алгеброй ячеек множество

$$\operatorname{Cell}_n = \left\{ \bigcup_{i=1}^k \Delta_i \,\middle|\, k \in \mathbb{N} \right\},$$

где Δ_i – ячейки.

Утверждение 2.1. Cell_n – действительно алгебра.

Доказательство. Чтобы сделать, нужно увидеть, что пересечение ячеек – ячейка, а потом представить пересечение объединений, как объединение пересечений.

Теорема 2.1. $\sigma(Cell_n) = \sigma(\mathcal{O}_n)$.

Доказательство. Зная последний результат из предыдущего билета, имеем возможность доказывать, что

$$Cell_n \subset \sigma(\mathcal{O}_n)$$
 и $\mathcal{O}_n \subset \sigma(Cell_n)$.

Это даст нам утверждение теоремы.

Первое включение очевидно: можно представить любую ячейку, как пересечение вложенных прямоугольников, например. Поэтому и с объединением проблем не будет.

Чтобы доказать второе, рассмотрим сначала ячейки с целыми вершинами, назовём их ячей-ками первого ранга. Побив каждую из них на 2^n частей (поделив каждую сторону на 2), получим ячейки второго ранга, продолжая процесс — ячейки ранга n. Пусть U — произвольное открытое множество, а U_k — объединение всех ячеек ранга k, пересекающих U.

Рассмотрим x – произвольную точку не из U. Т.к. U открыто, существует такое ε , что

$$B_{\varepsilon}(x) \cap U = \varnothing$$
.

Заметим однако, что если ячейка ранга k, то её сторона равна 2^{1-k} , а значит, диагональ —

$$\sqrt{n} \, 2^{1-k}$$
.

Эта последовательность стремится к нулю при k стремящемся к бесконечности, поэтому можно сделать так, что диагональ ячейки станет меньше, чем ε , при всех k>K. Из этого будет следовать, что при k>K $x\notin U_k$.

Отсюда ясно, что

$$U = \bigcap_{k=1}^{\infty} U_k \Rightarrow U \in \sigma(\mathsf{Cell}_n) \Rightarrow \mathcal{O} \subset \sigma(\mathsf{Cell}_n).$$

Утверждение 2.2. Борелевской σ -алгебре принадлежат множества следующих типов:

- 1. Точки.
- 2. Открытые, замкнутые.
- 3. Не более чем счётные.
- 4. Счётные пересечения открытых множеств множества типа G_{δ} .
- 5. Счётные объединения замкнутых множества типа F_{σ} .
- 6. Счётные объединения множеств типа G_{δ} множества типа $G_{\delta\sigma}$.
- 7. Счётные пересечения множеств типа F_{σ} множества типа $F_{\sigma\delta}$.

Билет 3: Мера на алгебре. Примеры мер.

Определение 3.1. Пусть X – множество, \mathcal{A} – алгебра на X. Тогда мерой на \mathcal{A} называется отображение μ : $\mathcal{A} \to [0, \infty]$, удовлетворяющее двум свойствам:

- 1. $\mu(\emptyset) = 0$.
- 2. Если $\{A_k\}_{k=1}^\infty$ семейство дизъюнктных 2 множеств из $\mathcal{A},$ то

$$\mu\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k).$$

Пример 3.1. Пусть $\mathcal{A} = 2^X$, и $a \in X$ – произвольная точка. Введём меру

$$\mu(A) = \begin{cases} 1, \ a \in A, \\ 0, \ a \notin A. \end{cases}$$

Проверка аксиом. Первое свойство, конечно, выполняется; чтобы проверить второе, можно увидеть, что в семействе дизъюнктных множеств точка может содержаться лишь в одном из них. □

Такая мера называется дельта-мерой, атомической мерой или мерой Дирака, обозначается, как δ_a . В физике порой рассматривается (на $\mathbb R$), как интеграл от дельта-функции Дирака — такой функции, что она равна нулю всюду, кроме a, а интеграл по всей прямой от неё равен 1.

Пример 3.2. В той же ситуации вместо точки a зафиксируем не более, чем счётное множество точек $\{a_k\}$. Меру определим, как

$$\mu(A) = \sum_{k} m_k \delta_{a_k}(A),$$

где m_k – некторые фиксированные неотрицательные вещественные числа, веса. Такая мера называется молекулярной.

²Попарно непересекающихся друг с другом. Если в объединении участвует семейство дизъюнктных множеств, то будем его обозначать ⊔ вместо ∪, забывая упоминать дизъюнктность.

Проверка аксиом. Первая снова тривиальна, вторая следует из счётной аддитивности дельтамеры (на самом деле, тут нужно воспользоваться теоремой о перестановке/группировке членов в абсолютно сходящемся ряде; т.к. всё положительно, никакой условной сходимости тут не бывает, и при перестановке/группировке членов сохраняется как сходимость, так и расходимость). □

Пример 3.3. В той же ситуации пусть

$$\mu(A) = |A|$$
.

Билет 4: Свойства меры

Свойство 4.1 (Монотонность). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Доказательство.

$$\mu(B) = \mu(A) + \mu(B \setminus A) \geqslant \mu(A).$$

Свойство 4.2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu B < \infty$. Тогда $\mu(B \setminus A) = \mu B - \mu A$.

Доказательство.

$$\mu(B) = \mu(A) + \mu(B \setminus A) \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A).$$

Условие $\mu(B) < \infty$ было использовано, когда мы вычли $\mu(A)$ из двух частей равенства; действительно, по предыдущему свойству $\mu(A) \leqslant \mu(B) < \infty$, поэтому $\mu(A)$ можно вычитать. 3

Свойство 4.3 (Усиленная монотонность). Пусть $A_1, ..., A_n, B \in \mathcal{A}, A_1, ..., A_n \subset B$, причём множества A_k дизъюнктные. Тогда

$$\sum_{k=1}^{n} \mu(A_k) \leqslant \mu(B).$$

Доказательство. Очевидно.

Свойство 4.4 (Полуаддитивность). Пусть $A_1, ..., A_n, B \in \mathcal{A}, B \subset \cup A_k$. Тогда

$$\mu(B) \leqslant \sum_{k=1}^{n} \mu(A_k).$$

Доказательство. Введём семейство множеств:

$$C_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i, \ 1 \leqslant k \leqslant n.$$

Нетрудно понять, что они дизъюнктны; при этом

$$\bigsqcup_{k=1}^{n} C_k = \bigcup A_k,$$

потому что никаких точек извне $\cup A_k$ в это объединение точно попасть не может, а для любой точки a из $\cup A_k$ можно взять наименьшее k_0 такое, что $a \in A_{k_0}$; тогда $a \in C_{k_0}$.

Из этого следует, что B можно представить, как

$$B = \bigsqcup_{k=1}^{n} B \cap C_k = \bigsqcup_{k=1}^{n} D_k.$$

Заметим, что

$$\mu(D_k) = \mu(B \cap C_k) \leqslant \mu(C_k) \leqslant \mu(A_k).$$

Поэтому и

$$\mu(B) = \sum_{k=1}^{n} \mu(D_k) \leqslant \sum_{k=1}^{n} \mu(A_k).$$

 $^{^3}$ Не достаточно ли потребовать, что $\mu(A)<\infty$?

Свойство 4.5 (Непрерывность меры снизу). Пусть $\{A_k\}_{k=1}^\infty$ – такое семейство множеств из \mathcal{A} , что $A_k \subset A_{k+1}$, и

$$A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}.$$

Тогда $\mu(A) = \lim \mu(A_k)$.

Доказательство. Пусть $C_k=A_k\setminus A_{k-1}$, причём $A_0=\varnothing$ и $k\geqslant 1$. Тогда нетрудно увидеть, что C_k дизъюнктны, и

$$A_k = \bigsqcup_{i=1}^k C_k.$$

При этом

$$A = \bigsqcup_{i=1}^{\infty} C_k.$$

Но тогда искомое утверждение очевидно из второй аксиомы меры и определения суммы ряда.

Свойство 4.6 (Непрерывность меры сверху). Пусть $\{A_k\}_{k=1}^{\infty}$ – такое семейство множеств из \mathcal{A} , что $A_k \supset A_{k+1}, \ \mu A_1 < \infty$ и

$$B = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}.$$

Тогда $\mu(B) = \lim \mu(A_k)$.

Доказательство. Пусть $B_k=A_{k-1}\setminus A_k$, причём $A_0=\varnothing$ и $k\geqslant 1$. Тогда нетрудно увидеть, что B_k дизъюнктны, и

$$A_k \sqcup \bigsqcup_{i=1}^k B_i = A_1.$$

При этом

$$B \sqcup \bigsqcup_{i=1}^{\infty} B_i = A_1.$$

Конечность всех мер позволяет завершить доказательство так же, как в прошлый раз, перенеся суммы рядов вправо и перейдя к пределу. \Box

Теорема 4.1. Если мера конечно-аддитивна и непрерывна снизу (или сверху), то она счётноаддитивна.

Билет 5: Объём в \mathbb{R}^n . Мера Лебега и её свойства.

Определение 5.1. Объёмом ячейки $\Delta = \sqcap \Delta_i$ в \mathbb{R}^n называется

$$v_n(\Delta) = \prod_{i=1}^n |\Delta_i|.$$

Аналогично определим и объём открытых/замкнутых прямоугольников для удобства.

Утверждение 5.1. Любой элемент $Cell_n$ можно представить, как дизъюнктное объединение ячеек (разбить на ячейки).

Набросок доказательства. Кажется, делается двойной индукцией по количеству ячеек. Предполагаем сначала, что мы научились объединение n прямоугольников представлять в виде дизъюнктного объединения нескольких ячеек. После этого делаем переход: доказываем, что если добавить (n+1)-ю ячейку, то всё равно получится.

Чтобы доказать переход, вновь применяем индукцию. Предположим, что мы доказали, что можем представить в виде дизъюнктного объединения объединение ячейки и дизъюнктного

объединения k ячеек. А потом новый переход: добавляем (k+1)-ю. Здесь удобно рассматривать «сетчатую» конструкцию разбиения: на пути индукции всё время поддерживать разбиение таким, чтобы все разрезающие линии кончались на границе какой-нибудь из объединяемых в данный момент ячеек.

Определение 5.2. Объёмом элемента $Cell_n$ называется сумма объёмов ячеек, входящих в его разбиение.

Утверждение 5.2 (Корректность). Объём элемента $Cell_n$ не зависит от выбора разбиения.

Hабросок доказательства. Обсудим сначала случай n=2. Проделаем с разбиением операции как на картинке, проверив, что объём в смысле нашего определения сохранится:

Если у нас было какое-то другое разбиение, мы получим какое-то другое разбиение на столбцы. После этого не очень трудно доказать, что два разбиения на столбцы задают одинкаовые объёмы: нужно просто нанести и те, и те линии, а после доказать, что «суммарное» разбиение задаёт тот же объём.

В n-мерном случае нужно действовать индукцией по размерности: основания «столбцов» будут многомерные, а независимость от разбиения для n-1 будет использоваться, когда мы будем смотреть на разбиения оснований. $\hfill \Box$

Теорема 5.1. Объём – конечно-аддитивная функция на $Cell_n$.

Доказательство. Теперь это очевидно: если в дизъюнктном объединении множеств из $Cell_n$ разбить каждый элемент на ячейки, то мы получим разбиение объединения на ячейки; а в конечных суммах ассоциативность точно работает.

Теорема 5.2. Объём – счётно-аддитивная функция на $Cell_n$.

Доказательство. Переформулируем утверждение: $A, A_1, ... \in \mathsf{Cell}_n, \sqcup A_i = A$. Доказать хочется, что

$$\sum_{k=1}^{\infty} v_n(A_k) = v_n(A).$$

Рассмотрим сначала частный случай: пусть $A=\Delta$ и $A_k=\Delta_k$ – ячейки.

1. Пусть Δ — ограниченная ячейка в $\mathbb{R}^n,\ \varepsilon>0$. Тогда можно взять замкнутый параллелепипед $\Delta'\subset\Delta$ и открытый $\Delta''\supset\Delta$ такие, что

$$v_n(\Delta) - v_n(\Delta') < \varepsilon \text{ if } v_n(\Delta'') - v_n(\Delta) < \varepsilon.$$

Явно они будут выглядеть, как

$$\Delta = \prod_{k=1}^{n} [a_k, b_k),$$

$$\Delta' = \prod_{k=1}^{n} \left[a_k, b_k - \frac{1}{i} \right],$$

$$\Delta'' = \prod_{k=1}^{n} \left(a_k + \frac{1}{i}, b_k \right),$$

Проделаем это для ячеек Δ и Δ_k :

$$\forall \varepsilon > 0 \; \exists \; \Delta' \subset \Delta \colon v_n(\Delta') > v_n(\Delta) - \varepsilon$$
$$\forall k \; \exists \; \Delta_k \subset \Delta''_k \colon v_n(\Delta''_k) < v_n(\Delta_k) + \frac{\varepsilon}{2^k}.$$

Заметим, что

$$\Delta'$$
 $\subset \Delta = igsqcup_{k=1}^\infty \Delta_k \subset igsqcup_{k=1}^\infty \Delta_k''$.

По определению компакта

$$\Delta' \subset \bigcup_{k=1}^N \Delta''_k.$$

Теперь запишем объёмы:

$$v_n(\Delta') \leqslant v_n\left(\bigcup_{k=1}^N \Delta_k''\right) \leqslant \sum_{k=1}^N v_n(\Delta_k'') < \sum_{k=1}^N v_n(\Delta_k) + \sum_{k=1}^N \frac{\varepsilon}{2^k} < \sum_{k=1}^N v_n(\Delta_k) + \varepsilon.$$

Используя неравенство для $v_n(\Delta')$ запишем

$$v_n(\Delta) < \sum_{k=1}^N v_n(\Delta_k) + 2\varepsilon.$$

Устремляя ε к нулю и увеличивая сумму в правой части, имеем

$$v_n(\Delta) \leqslant \sum_{k=1}^{\infty} v_n(\Delta_k).$$

С другой стороны,

$$\bigsqcup_{k=1}^{N} \Delta_k \subset \Delta \Rightarrow \sum_{k=1}^{N} v_n(\Delta_k) \leqslant v_n(\Delta) \Rightarrow \sum_{k=1}^{\infty} v_n(\Delta_k) \leqslant v_n(\Delta).$$

Поэтому на самом деле имеет место равенство.

2. Для неограниченной ячейки интересна лишь гипотетическая ситуация, в которой $v_n(\Delta) = \infty$, а сумма оказывается конечной (а значит, и все Δ_k ограниченные). Для неё вроде работает примерно та же оценка, что и в первом случае.

Понятно, что разбивать сразу можно на ячейки, а не на элементы Cell_n , потому что каждый из них разбивается на конечное число ячеек. Чтобы A тожн сделать ячейкой, нужно разбить его не конечное число ячеек, а потом немного изменить разбиения составных частей, чтобы каждая из этих ячеек разбивалась на составные ячейки составных частей. Лень.

Поэтому объём – мера на алгебре $Cell_n$.

Определение 5.3. Мера μ на σ -алгебре $\mathcal A$ называется полной, если для любого $A \in \mathcal A$ такого, что $\mu(A) = 0$ верно, что $\forall B \subset A \ \mu(B) = 0$.

Определение 5.4. Мера на алгебре ${\mathcal A}$ называется σ -конечной, если существуют X_k такие, что $\mu(X_k)<\infty$ и

$$\bigcup_{k=1}^{\infty} X_k = X.$$

Например, уже введённый объём v_n – σ -конечная мера.

Определение 5.5. Пусть $\mathcal{A}_1\subset\mathcal{A}_2$ – алгебры, и $\mu_1,\,\mu_2$ – меры на них. Тогда μ_2 называют продолжением $\mu_1,\,$ если $\mu_2|_{\mathcal{A}_1}=\mu_1.$

ГЛАВА 1. ТЕОРИЯ МЕРЫ

Теорема 5.3 (Лебега-Каратеодори). Пусть $\mu - \sigma$ -конечная мера на алгебре \mathcal{A} . Тогда:

- 1. Существуют её полные продолжения на σ -алгебры.
- 2. Среди них есть единственное продолжение $\overline{\mu}$ такое, что если μ' полное продолжение μ , то $\overline{\mu}$ полное продолжение μ' . Его называют *стандартным*.

Набросок доказательства.

1. Построим функцию $\mu^*: 2^X \to [0, \infty]$ таким образом:

$$\mu^*(E) = \inf \left\{ \sum_{k=1}^{\infty} \mu(A_k) \middle| \{A_k\}_{k=1}^{\infty} \subset \mathcal{A}, \bigcup_{k=1}^{\infty} A_k \supset E \right\}.$$

Она называется внешней мерой для меры μ , но мерой не является: ей не хватает счётной аддитивности.

2. $E\subset X$ называют хорошо разбивающим, если $\forall A\in \mathcal{A}\ \mu^*(A)=\mu^*(A\cap E)+\mu^*(A\setminus E)$. Можно доказать, что класс хорошо разбивающих множеств $\overline{\mathcal{A}}$ является σ -алгеброй, а μ^* – мерой и является стандартным продолжением μ .

Определение 5.6. *Мера Лебега* λ_n на \mathbb{R}^n – стандартное продолжение объёма. σ -алгебра, на которой она определена, обозначается \mathcal{M}_n .

Свойство 5.1. Все борелевские множества измеримы по Лебегу.

Доказательство. σ -алгебра борелевских множеств — наименьшая, содержащая Cell_n , поэтому она содержится в \mathcal{M}_n .

Свойство 5.2. Мера Лебега точки – ноль.

Доказательство. Это следует из того, что внешняя мера точки ноль, потому что существует сколь угодно малая ячейка, которая её содержит. \Box

Свойство 5.3. Конечные и счётные множества имеют нулевую меру Лебега.

Доказательство. Из-за счётной аддитивности.

Свойство 5.4. Пусть $L \subset \mathbb{R}^n$ – линейное подпространство размерности меньше, чем n. Тогда его мера Лебега равна нулю.

Доказательство. Нужно покрыть ячейками и сделать оценку.

Свойство 5.5. (Регулярность) Пусть $A \in \mathcal{M}_n, \ \varepsilon > 0$. Тогда найдутся открытое G и замкнутое F такие, что

$$F \subset A \subset G, \ \lambda_n(G \setminus A) < \varepsilon, \ \lambda_n(A \setminus F) < \varepsilon.$$

Доказательство. В случае, когда E ограничено, это совсем просто: нужно взять покрывающий набор ячеек из определения внешней меры, и каждую ячейку приблизить открытым параллелипипедом, а потом провернуть оценку. Чтобы получить замкнутое множество, придётся повторить это для дополнения E относительно какого-нибудь куба, содержащего E.

Для бесконечных надо доказать!

Билет 6: Измеримость функции относительно σ -алгебры. Свойства измеримых функций.

Определение 6.1. Функция $f: X \to \mathbb{R}$ называется измеримой относительно σ -алгебры \mathcal{A} , если для любого промежутка $\Delta \in \mathbb{R}$ $f^{-1}(\Delta) \in \mathcal{A}$.

Определение 6.2. Множества вида $X[f < a] = \{x \in X \mid f(x) < a\}$ – множества Лебега 1 типа, а $X[f \leqslant a], \ X[f > a], \ X[f > a] - 2, \ 3,$ и 4 соответственно.

Теорема 6.1. Чтобы функция f была измерима относительно \mathcal{A} , достаточно, чтобы все множества одного из четырёх типов Лебега лежали в \mathcal{A} .

Доказательство.

1. $1 \to 2$:

$$X[f \leqslant a] = \bigcup_{k=1}^{\infty} X\left[f < a - \frac{1}{k}\right].$$

- 2. $2 \rightarrow 3$: $X[f > a] = X \setminus X[f \leqslant a]$.
- 3. $3 \rightarrow 4$: так же, как $1 \rightarrow 2$.
- 4. $4 \rightarrow 1$: так же, как $2 \rightarrow 3$.

Имея множества Лебега всех четырёх типов, нетрудно получить из них все промежутки.

Лемма 6.1. Любое открытое множество $G \subset \mathbb{R}^n$ представимо, как счётное объединение ячеек.

Доказательство. Возьмём около каждой рациональной точки G окрестность в форме параллелипипеда, лежащую в G. Понятно, что из того, что множество рациональных точек всюду плотно, следует, что мы получили счётное открытое покрытие G.

В свою очередь, любой открытый параллелипипед легко представить, как объединение счётного количества ячеек. А счётное объединение счётных объединений – счётное объединение.

Теорема 6.2. Пусть функции $f_1, ..., f_n$: $X \to \mathbb{R}$ измеримы, а функция $g: \mathbb{R}^n \to \mathbb{R}$ непрерывна. Тогда функция $\varphi = g \circ f: X \to \mathbb{R}$ измерима.

Доказательство. Т.к. функция g непрерывна, $G = \mathbb{R}^n[g < a]$ – открытое множество. Его можно представить, как

$$G = \bigcup_{k=1}^{\infty} \Delta_k,$$

где Δ_k — ячейки. Тогда

$$X[\varphi < a] = f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}(\Delta_k).$$

Пусть

$$\Delta_k = \prod_{i=1}^n [a_i, b_i).$$

Тогда

$$f^{-1}(\Delta_k) = \bigcap_{i=1}^n X[a_i \leqslant f_i < b_i].$$

Поэтому

$$X[\varphi < a] = \bigcup_{k=1}^{\infty} \bigcap_{i=1}^{n} X[a_i^{(k)} \le f_i < b_i^{(k)}].$$

Это измеримое множество.

Теорема 6.3. f, g измеримы \Rightarrow измеримы $f+g, f-g, fg, <math>\frac{f}{g}, |f|, \lambda f, f \lor g = \max\{f, g\}, f \land g = \min\{f, g\}, f^n.$

Доказательство. Довольно очевидное следствие предыдущей теоремы.

Теорема 6.4. Если $\{f_i\}_{i=1}^{\infty}$ измеримы, то измеримы и $\sup f_i$, $\inf f_i$, $\liminf_i f_i$, $\liminf_i f_i$.

Доказательство.

1.
$$g = \sup f_i$$
; $X[g \leqslant a] = X[\forall i \ f_i \leqslant a] = \bigcap_{i=1}^{\infty} X[f_i \leqslant a]$.

2. Инфимум – аналогично.

3.
$$g = \lim_{x \to \infty} f_i \Rightarrow (g(x) \leqslant a \Leftrightarrow \exists N : \forall i > N \ f_i(x) \leqslant a) \Rightarrow X[g \leqslant a] = \bigcup_{N=1}^{\infty} \bigcap_{i=N+1}^{\infty} X[f_i(x) \leqslant a].$$

4. Верхний и нижний пределы – пределы инфимумов и супремумов, поэтому эти результаты следуют из уже доказанного.

Определение 6.3. $f: X \to \mathbb{R}$ называется *простой* (относительно \mathcal{A} ,) если она измерима относительно \mathcal{A} и принимает конечное число значений.

Определение 6.4. *Индикатором* множества E называется функция

$$\mathbb{1}_E(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

Утверждение 6.1. Индикатор E прост (измерим) тогда и только тогда, когда измеримо E.

Утверждение 6.2. Пусть f – функция, которая принимает значения $\{a_i\}_{i=1}^N$ на множествах E_i . Тогда

$$f = \sum_{i=1}^{N} a_i \mathbb{1}_{f^{-1}(a_i)} = \sum_{i=1}^{N} a_i \mathbb{1}_{E_i}.$$

Утверждение 6.3. Функция f, принимающая конечное число значений, проста (измерима) тогда и только тогда, когда множества E_i измеримы.

Теорема 6.5. Если $\{f_i\}_{i=1}^\infty$ – последовательность простых функций, имеющая предел, то этот предел измерим.

Теорема 6.6. Пусть f – неотрицательная измеримая функция. Тогда найдётся неубывающая последовательность $\{\varphi_i\}_{i=1}^\infty$ простых функций, которая поточечно сходится к f.

Доказательство. Разобъём $[0,+\infty)$ следующим образом:

$$[0,\infty) = \bigsqcup_{k=0}^{n^2} \Delta_k,$$

где

$$\Delta_k = \begin{cases} \left[\frac{k}{n}, \frac{k+1}{n}\right], \ 0 \leqslant k < n^2, \\ [n, \infty), \ k = n^2. \end{cases}$$

Пусть
$$e_k=f^{-1}(\Delta_k)\in\mathcal{A},\; c_k=\min\Delta_k=rac{k}{n}$$
 и

$$\psi_n = \sum_{k=0}^{n^2} c_k \mathbb{1}_{e_k}.$$

ГЛАВА 1. ТЕОРИЯ МЕРЫ

Рассмотрим $x \in e_k$. Начиная с некоторого n эта точка точно попадёт в e_k с $k < n^2$. Значение $f(x) \in \Delta_k = \left[c_k, \, c_k + \frac{1}{n}\right]$, поэтому

$$|f(x) - \psi_n(x)| \leqslant \frac{1}{n}$$

начиная с некоторого n. Отсюда следует поточечная сходимость.

Чтобы сделать последовательность функций неубывающей, сохранив сходимость, введём

$$\varphi_n=\max\{\psi_1,\,...,\,\psi_n\}.$$

Сходимость сохранится, т.к.

$$f - \frac{1}{n} \leqslant \psi_n \leqslant \varphi_n \leqslant f.$$

Билет 7: Определение интеграла по мере. Свойства интеграла от неотрицательных функций.

Определение 7.1. Пусть f – простая, и представлена, как

$$\sum_{k=1}^{p} c_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_X f \,\mathrm{d}\mu = \sum_{k=1}^p c_k\,\mu(E_k).$$

Если $A \in \mathcal{A}$, то

$$\int f \, \mathrm{d}\mu = \sum_{k=1}^p c_k \, \mu(E_k \cap A).$$

Утверждение 7.1. Если f – простая на X, то

$$\int f \, \mathrm{d}\mu = \int f \, \mathbb{1}_A \, \mathrm{d}\mu.$$

Доказательство.

$$f \, \mathbb{1}_A = \mathbb{1}_A \sum_{k=1}^p c_k \mathbb{1}_{E_k} = \sum_{k=1}^p c_k \mathbb{1}_{E_k \cap A}.$$

Определение 7.2. Пусть f — измеримая, неотрицательная функция. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \sup \left\{ \int\limits_X g \, \mathrm{d}\mu \, \bigg| \, g - \mathrm{простая}, \, \, 0 \leqslant g \leqslant f \right\}$$

При этом

$$\int\limits_A f \,\mathrm{d}\mu = \int\limits_Y f \,\mathbb{1}_A \,\mathrm{d}\mu.$$

В следующих свойствах функции измеримые и неотрицательные.

Свойство 7.1.

$$0\leqslant f\leqslant g\Rightarrow\int\limits_Xf\,\mathrm{d}\mu\leqslant\int\limits_Xg\,\mathrm{d}\mu.$$

Доказательство. Очевидно из определения, для g супремум берётся по большему множеству функций.

Свойство 7.2.

$$A \subset B \subset X \Rightarrow \int_B f \, \mathrm{d}\mu \leqslant \int_A f \, \mathrm{d}\mu.$$

Доказательство. Следует из предыдущего свойства.

Определение 7.3. Пусть f – произвольная измеримая функция. Определим

$$f_{+} = \max\{f(x), 0\}, f_{-} = \max\{-f(x), 0\}.$$

Тогда

$$\int\limits_X f \,\mathrm{d}\mu = \int\limits_X f_+ \,\mathrm{d}\mu - \int\limits_X f_- \,\mathrm{d}\mu.$$

Определение 7.4. f называется *суммируемой* на X, если интеграл от неё конечен. Семейство суммируемых функций обозначается, как $L(X, \mu)$.

Билет 8: Теорема Беппо Леви.

Теорема 8.1. Пусть $\{f_n\}_{n=1}^{\infty}$ – неубывающая последовательность измеримых неотрицательных функций, и $f=\lim f_n$. Тогда

$$\int\limits_X f\,\mathrm{d}\mu=\lim\int\limits_X f_n\,\mathrm{d}\mu.$$

Доказательство.

$$\begin{split} f_n \leqslant f \Rightarrow \int\limits_X f_n \, \mathrm{d}\mu \leqslant \int\limits_X f \, \mathrm{d}\mu, \\ f_n \leqslant f_{n+1} \Rightarrow \int\limits_X f_n \, \mathrm{d}\mu \leqslant \int\limits_X f_{n+1} \, \mathrm{d}\mu \Rightarrow \exists \lim \int\limits_X f_n \, \mathrm{d}\mu = L. \end{split}$$

Из этих двух утверждений следует, что

$$L \leqslant \int_X f \, \mathrm{d}\mu.$$

Теперь проверим неравенство в другую сторону. По определению

$$\int\limits_X f \, \mathrm{d}\mu = \sup\limits_{\varphi} \int\limits_X \varphi \, \mathrm{d}\mu,$$

где φ – неотрицательные простые функции, не превосходящие f. Рассмотрим какую-нибудь φ :

$$\varphi = \sum_{k=1}^{p} c_k \mathbb{1}_{E_k},$$

причём $c_k\geqslant 0$. Примем $c_0=0$; тогда понятно, что $E_0=\varnothing\Leftrightarrow\varphi>0$. Возьмём $\varepsilon\colon 0<\varepsilon<\min\{c_1,...,c_p\}$ и

$$\varphi_{\varepsilon} = 0 \cdot \mathbb{1}_{E_0} + \sum_{k=1}^{p} (c_k - \varepsilon) \mathbb{1}_{E_k}.$$

Рассмотрим $X_n = X[f_n \geqslant \varphi_{\varepsilon}]$. Понятно, что $E_0 \subset X_n$.

Т.к. $f_n \to f$, для любой точки x найдётся n такое, что $f_n(x) > \varphi_{\varepsilon}(x)$, т.е.

$$\forall x \; \exists \, n : x \in X_n.$$

Поэтому

$$\bigcup_{n=1}^{\infty} X_n = X.$$

Т.к. последовательность неубывающая, $X_n \subset X_{n+1} \Rightarrow \mu(X_n) \xrightarrow{n \to \infty} \mu(X)$. Вообще, для любого измеримого A верно, что $\mu(A \cap X_n) \xrightarrow{n \to \infty} \mu(A)$.

$$\int\limits_X f_n \, \mathrm{d}\mu \geqslant \int\limits_{X_n} f_n \, \mathrm{d}\mu \geqslant \int\limits_{X_n} \varphi_\varepsilon \, \mathrm{d}\mu = \sum_{k=1}^p (c_k - \varepsilon) \, \mu(X_n \cap E_k).$$

Устремляя n к бесконечности и ε к нулю, получим

$$L \geqslant \sum_{k=1}^{p} c_k \, \mu(E_k) = \int_{X} \varphi \, \mathrm{d}\mu.$$

Переходя к супремуму, получим

$$L\geqslant\int\limits_Xf\,\mathrm{d}\mu.$$

Значит, на самом деле есть равенство.

Свойство 8.1. Пусть f, g – измеримые и неотрицательные функции. Тогда

$$\int_{X} (f+g) \, \mathrm{d}\mu = \int_{X} f \, \mathrm{d}\mu + \int_{X} g \, \mathrm{d}\mu.$$

Доказательство. Нужно сначала проверить для простых функций, записав их через индикаторы и повозившись с суммами. После этого в общем случае можно выделить возрастающие последовательности простых функций, которые сходятся к f и g и воспользоваться теоремой Леви. \square

Свойство 8.2.

$$\int\limits_X \lambda f \,\mathrm{d}\mu = \lambda \int\limits_X f \,\mathrm{d}\mu.$$

Доказательство. Аналогично.

Билет 9: Свойства интеграла от суммируемых функций.

Свойство 9.1. Пусть f, g – суммируемые, $f \leqslant g$. Тогда

$$\int\limits_{Y} f \, \mathrm{d}\mu \leqslant \int\limits_{Y} g \, \mathrm{d}\mu.$$

Доказательство. Расписать положительную и отрицательную части и свести к свойству для неотрицательных функций; суммируемость нужна, чтобы не вычитать бесконечность из неравенства.

Свойство 9.2. ⁴ Пусть f, g – суммируемые. Тогда

$$\int\limits_X f + g \,\mathrm{d}\mu \leqslant \int\limits_X f \,\mathrm{d}\mu + \int\limits_X g \,\mathrm{d}\mu.$$

 $^{^4}$ В конспекте был \pm , но это ведь следует из умножения на константу? И, кстати, нужна ли тут вообще суммируемость, или это верно, даже когда интеграл расходится?

Доказательство. Аналогично.

Свойство 9.3. Если f – суммируемая, то

$$\int\limits_X \lambda f \,\mathrm{d}\mu = \lambda \int\limits_X f \,\mathrm{d}\mu.$$

Доказательство. Аналогично.

Свойство 9.4. Пусть $f, g \in L, |f| \leqslant g \Rightarrow |\int f| \leqslant \int g$.

Доказательство.

$$|f| \leqslant g \Rightarrow f \leqslant g \land -f \leqslant g \Rightarrow \left(\int f \leqslant \int g \right) \land \left(-\int f \leqslant \int g \right) \Rightarrow \left| \int f \right| \leqslant \int g.$$

Свойство 9.5. $\left| \int f \right| \leqslant \int |f|$.

Доказательство. Очевидно следует из предыдущего.

Свойство 9.6. $f \in L \Leftrightarrow |f| \in L$.

Доказательство. ←:

$$|f| = f_+ + f_- \Rightarrow 0 \leqslant f_{\pm} \leqslant |f| \Rightarrow 0 \leqslant \int f_{\pm} \leqslant \int |f|.$$

 \Rightarrow : Если f суммируема, то суммируемы и $f_\pm,$ а |f| – их сумма.

Свойство 9.7. $f \in L, \mu X \leqslant \infty, \ |f| \leqslant M \Rightarrow \left| \int f \, \mathrm{d}\mu \right| \leqslant M \mu(X).$

Доказательство.

$$\left| \int f \, \mathrm{d} \mu \right| \leqslant \int |f| \, \mathrm{d} \mu \leqslant \int M \, \mathrm{d} \mu \leqslant M \mu(X).$$

Билет 10: Счётная аддитивность интеграла.

Теорема 10.1. Пусть f — измеримая функция, причём либо $f\geqslant 0$, либо $f\in L$. Тогда для любых измеримых $A,\,A_1,\,\dots$ таких, что $A=\sqcup A_k$ верно, что

$$\int\limits_A f = \sum_{k=1}^\infty \int\limits_{A_k} f.$$

Доказательство.

1. Пусть $f \geqslant 0$. Тогда

$$\int\limits_A f = \int\limits_X f\, \mathbb{1}_A, \, \int\limits_{A_n} f = \int\limits_X f\, \mathbb{1}_{A_n}.$$

При этом

$$\sum_{n=1}^\infty \mathbb{1}_{A_n} = \mathbb{1}_A \Rightarrow f \, \mathbb{1}_A = \sum_{n=1}^\infty f \, \mathbb{1}_{A_n}$$

Рассмотрим частичные суммы:

$$S_N = \sum_{n=1}^N f \, \mathbb{1}_{A_n}.$$

Понятно, что они образуют неубывающую неотрицательную последовательность, сходящуюся к $f\,\mathbb{1}_A$, поэтому из теоремы Леви

$$\int f \, \mathbb{1}_A = \lim \int S_n = \lim \int \sum_{n=1}^N f \, \mathbb{1}_{A_n} = \lim \sum_{n=1}^N \int_{A_n} f = \sum_{n=1}^\infty \int_{A_n} f.$$

2. Пусть теперь $f \in L$. Тогда просто расписать через f_{\pm} и воспользоваться первым пунктом.

Билет 11: Абсолютная неперывность интеграла

Теорема 11.1. Пусть $f \in L$. Тогда

$$orall arepsilon > 0 \ \exists \ \delta > 0 \colon orall \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left| \int\limits_A f \ \mathrm{d} \mu \right| < arepsilon.$$

Доказательство.

1. Если f ограничена, то найдётся M такое, что $|f|\leqslant M$. Тогда

$$\left|\int\limits_A f \right| \leqslant M\mu(A) \leqslant arepsilon$$
 при $\delta = rac{arepsilon}{M}.$

2. Пусть теперь $f \in L$ и всё. Тогда $|f| \in L$, и

$$\int\limits_X |f| = \sup\limits_g \int\limits_X g.$$

g – простая, а потому ограниченная.

$$orall arepsilon > 0$$
 \exists простая $g, \ 0 \leqslant g \leqslant |f|$: $\int\limits_X |f| - \int\limits_X g < rac{arepsilon}{2}.$

Используя ограниченность g, находим по любому ε такую δ , что

$$\mu(A) < \delta \Rightarrow \int_A g < \frac{\varepsilon}{2}.$$

Отсюда мгновенно получается искомая оценка:

$$\left| \int_A f \right| \leqslant \int_A |f| = \int_A g + \int_A (|f| - g) < \varepsilon.$$

Билет 12: Вычисление интеграла от непрерывной функции по мере Лебега.

Теорема 12.1. Пусть $f \in C([a,b])$ и λ – мера Лебега. Тогда f суммируема и

$$\int_{[a,\,b]} f \, \mathrm{d}\lambda = \int_a^b f.$$

Доказательство.

- 1. Сначала докажем, что f измерима по Лебегу. Заметим, что $f^{-1}\big((-\infty,\,a)\big)$ открытое множество, т.е. измеримое множество. А значит и функция f измерима.
- 2. |f| ограничен, т.к. f непрерывная функция на компакте, поэтому

$$\int\limits_{[a,\,b]}|f|\,\mathrm{d}\lambda\leqslant\int\limits_{[a,\,b]}M\,\mathrm{d}\lambda\leqslant M(b-a).$$

Значит, |f| — суммируемая функция, а значит, и f — суммируемая функция.

3. Рассмотрим функцию

$$F(x) = \int_{[a, x]} f \, \mathrm{d}\lambda.$$

Она определена, поскольку все интегралы будут конечны. Хочется доказать, что она дифференцируема.

Запишем, что значит непрерывность функции:

$$\forall \varepsilon > 0 \ \exists \ \delta : |\Delta x| < \delta \Rightarrow \forall t \in (x - \Delta x, \ x + \Delta x) \ f(t) \in (f(x) - \varepsilon, \ f(x) + \varepsilon).$$

Отсюда следует, что

$$\Delta x (f(x) - \varepsilon) \leqslant \int_{(x, x + \Delta x]} f \, d\lambda \leqslant \Delta x (f(x) + \varepsilon).$$

Разделив на Δx и подставив интеграл посередине, получаем, что

$$\forall \varepsilon > 0 \ \exists \ \delta \colon |\Delta x| < \delta \Rightarrow \left| \frac{F(x + \Delta x) - F(x)}{\Delta x} - f(x) \right| < \varepsilon.$$

Но это значит, что F'(x) = f(x)! Поэтому значение нашего интеграла будет такое же, как по Риману.

Билет 13: Сравнение подходов Римана и Лебега

Есть три разных способа определить интеграл на отрезке:

1. (подход Ньютона-Лейбница) Если f непрерывна и F – её первообразная, то

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$$

2. (подход Римана)

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{\max\{\Delta x_i\} \to 0} \sum_{i=0}^{n+1} f(\xi_i) \Delta x_i, \ \xi_i \in [x_i, \, x_{i+1}], \ \Delta x_i = x_{i+1} - x_i.$$

3. Наше текущее определение интеграла по мере.

Пример 13.1. Функция Дирихле $f: X = [0, 1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Интеграл по Риману от неё не существует, потому что при сколь угодно малом ранге разбиения можно выбрать в каждом промежутке все ξ_i рациональными, и тогда значение суммы Римана будет равно длине отрезка, или иррациональными, и тогда значение суммы будет равно нулю. Поэтому предела этих сумм при ранге разбиения, стремящемся к нулю, не существует.

При этом f является простой функцией: она принимает два значения, при этом одно из них — на счётном (а значит, измеримом) множестве точек. Поэтому и его дополнение тоже измеримо — его мера равна 1. Поэтому интеграл Лебега от этой функции будет равен 1.

В суммировании по Риману основной принцип — разбить промежуток интегрирования на малые участки. В суммировании по Лебегу, напротив, на промежутки бьётся область значений, а промежуток интегрирования оказывается разбит на множества произвольной формы. Вид этой конструкции для интеграла Лебега подробно продемонстрирован в билете 6, в доказательстве теоремы о существовании сходящейся последовательности из простых функций.

Билет 14: Сравнение интеграла по мере с несобственным интегралом

Определение 14.1 (Напоминание). Пусть f непрерывна на $[a,\,b)$. Тогда несобственный интеграл по этому промежутку —

$$\int_{a}^{b} f = \lim_{x \to b-0} \int_{a}^{x} f.$$

Теорема 14.1. Пусть непрерывная f либо неотрицательна, либо суммируема на [a,b), тогда

$$\int_{[a,b)} f \, \mathrm{d}\lambda = \int_a^{\to b} f.$$

Доказательство. Рассмотрим

$$F(x) = \int_{[a, x]} f.$$

Понятно, что⁵

$$\lim_{x \to b} F(x) = \int_{a}^{b} f,$$

потому что мы уже доказали, что интегралы по отрезку от непрерывной функции по Лебегу и по Риману совпадают.

Нужно доказать, что

$$\lim_{x \to b} F(x) = \int_{[a,b)} f.$$

Если f суммируема, то это следует из теоремы об абсолютной непрерывности интеграла Лебега (и существование предела оказывается совсем очевидным).

Рассмотрим случай, когда f неотрицательна, но не суммируема. Мы знаем, что интеграл Лебега от неё по [a,b) равен $+\infty$, и нужно лишь доказать, что предел F(x) существует и не может быть конечен. Существует он потому, что F(x) будет функцией возрастающей. Конечным же он быть не может, потому что это противоречило бы теореме Леви, что сейчас и покажем.

Возьмём последовательность точек $\{x_n\}_{n=1}^\infty$ из $[a,\,b)$, сходящуюся к b. Заметим, что

$$\lim \int\limits_{[a,\,x_n]} f \,\mathrm{d}\lambda = \lim \int\limits_{[a,\,b)} f \,\mathbb{1}_{[a,\,x_n]} \,\mathrm{d}\lambda.$$

Функции $f\,\mathbb{1}_{[a,\,x_n]}$ образуют неубывющую неотрицательную последовательность, сходящуюся к f, поэтому по теореме Леви этот предел будет равен как раз $+\infty$.

⁵Если этот предел существует.

Пример 14.1. Условно сходящийся интеграл

$$\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

не представим в виде интеграла по мере, потому что для этой функции этот интеграл просто не определён: f_+ и f_- одновременно не являются суммируемыми, что плохо.

Билет 15: Интеграл по дискретной мере и по мере, задаваемой плотностью

Определение 15.1. Пусть X – множество, $\mathcal{A}=2^X$ и есть не более чем счётные множества $\{a_i\}\in X$ и $\{m_i\}\in \mathbb{R}.$ Тогда дискретная мера задаётся, как

$$\mu(E) = \sum_{i} m_i \delta_{a_i}(E).$$

Лемма 15.1. Интеграл от любой (измеримой) функции по множеству E нулевой меры равен нулю.

Доказательство. Для начала можно заметить, что для простых функций это точно так. Действительно, пусть

$$f = \sum_{k=1}^{p} a_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_E \sum_{k=1}^p a_k \mathbb{1}_{E_k} = \sum_{k=1}^p a_k \int\limits_Y \underbrace{\mathbb{1}_{E_k \cap E}}_{=0} = 0.$$

Но тогда понятно, что для неотрицательных функций это тоже будет верно, потому что супремум нулей ноль. Ещё более очевидно, что для произвольных измеримых функций ничего не изменится. □

Лемма 15.2. Интеграл от измеримой функции f по множеству a равен $f(a)\mu(\{a\})$.

Доказательство.

$$\int\limits_{\{a\}} f = \int\limits_X f \, \mathbb{1}_{\{a\}} = \int\limits_X f(a) \, \mathbb{1}_{\{a\}} = f(a) \int\limits_X \mathbb{1}_{\{a\}} = f(a) \, \mu(\{a\}).$$

Теорема 15.1. Пусть $f: X \to \mathbb{R}$ либо неотрицательна, либо суммируема относительно дискретной меры. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \sum\limits_k f(a_k) m_k.$$

Доказательство. Во-первых понятно, что относительно дискретной меры все функции измеримы. Во-вторых, если $E = X \setminus \{a_k\}$, можно записать

$$\int_X f \, \mathrm{d}\mu = \int_E f \, \mathrm{d}\mu + \sum_k \int_{\{a_k\}} f \, \mathrm{d}\mu = \sum_k f(a_k) m_k.$$

Неотрицательность или суммируемость использовалась для счётной аддитивности.

Утверждение 15.1. Для дискретной меры суммируемость функции равносильна абсолютной сходимости ряда, записанного в предыдущей теореме.

Доказательство. Суммируемость функции равносильна суммируемости её модуля. Модуль же функция неотрицательная, для него выполняется предыдущая теорема, и интеграл от него равен сумме из модулей. Значит, и их сходимости равносильны. □

Пример 15.1. Если, например, взять $X=\mathbb{N},\ a_k=k$ и $m_k=1,$ то мера будет обозначать просто сумму значений функции в точках. Функция из \mathbb{N} в \mathbb{R} – ряд, а суммируемость – абсолютная сходимость.

Определение 15.2. Пусть X – пространство с мерой μ , и есть измеримая неотрицательная функция ρ : $X \to \mathbb{R}$. Тогда можно ввести меру

$$\nu(E) = \int_{E} \rho \, \mathrm{d}\mu.$$

Утверждение 15.2. ν и правда мера.

Доказательство. Первая аксиома очевидна, а вторая следует из теоремы о счётной аддитивности интеграла — ведь наша ρ неотрицательна.

Теорема 15.2. Пусть f измерима на X и либо неотрицательна, либо суммируема относительно ν . Тогда

$$\int_X f \, \mathrm{d}\nu = \int_X f \rho \, \mathrm{d}\mu.$$

Доказательство.

1. Пусть сначала f – простая:

$$f = \sum_{k=1}^{p} a_k \mathbb{1}_{E_k}.$$

Тогда

$$\int\limits_{X} f \,\mathrm{d}\nu = \sum_{k=1}^{p} a_k \nu(E_k) = \sum_{k=1}^{p} a_k \int\limits_{E_k} \rho \,\mathrm{d}\mu = \sum_{k=1}^{p} a_k \int\limits_{X} \mathbbm{1}_{E_k} \,\rho \,\mathrm{d}\mu = \int\limits_{X} f \rho \,\mathrm{d}\mu.$$

- 2. Если f измеримая неотрицательная, можно выделить неубывающую неотрицательную последовательность простых, сходящуюся к ней. От умножения на g она этих свойств не потеряет, поэтому равенство благополучно перенесётся по теореме Леви.
- 3. Ну и для произвольной суммируемой нужно просто написать.

Определение 15.3. ρ называют *плотностью* меры ν относительно меры μ .

Пример 15.2. Например, мера Коши с

$$\rho = \frac{1}{1 + x^2}.$$

Билет 16: Интеграл по мере Лебега-Стилтьеса. Интеграл по распределению.

16.1 Интеграл по мере Лебега-Стилтьеса.

Определение 16.1. Пусть I – интервал на прямой, $F\colon I\to\mathbb{R}$ – возрастающая, непрерывная слева (F(x)=F(x-0)) функция. Введём функцию

$$\mu([a,b)) = F(b) - F(a).$$

Она счётно-аддитивна на $Cell_1^6$ Стандартное продолжение этой функции на σ -алгебру называется мерой Лебега-Стилтьеса.

⁶Кажется, это делается примерно так же, как с обычным объёмом. Но вообще там тоже было не очень строго, да и как-то грустно это.

Утверждение 16.1. Все борелевсекие множества измеримы по Лебегу-Стилтьесу.

Доказательство. Рассуждение одинаково для всех мер, распространённых с ячеек.

Свойство 16.1. Пусть $\Delta = [a, b]$. Тогда $\mu(\Delta) = F(b+0) - F(a)$.

Доказательство. Нужно рассмотреть сходящуюся к отрезку справа последовательность ячеек.

Свойство 16.2. $\mu(a) = f(a+0) - f(a) = f(a+0) - f(a-0) = \Delta f_a$.

Свойство 16.3. $\mu((a, b)) = f(b) - f(a+0)$.

Утверждение 16.2. Любая мера, определённая на борелевских множествах, есть мера Лебега-Стилтьеса для некоторой F.

Доказательство. Это выглядит довольно логичным, но на паре доказательства не было.

Утверждение 16.3. Если F – гладкая на I, и $\Delta \subset I$ – ячейка, то

$$\mu_F(\Delta) = \int_{\Delta} F' \, \mathrm{d}\lambda.$$

Доказательство. Очевидно.

Утверждение 16.4. Это верно не только для ячеек, но и для множеств произвольной формы. На самом деле, в такой ситуации мера по сути задаётся плотностью F'.

Теорема 16.1. Пусть F – кусочно-гладкая (и обладает остальным, чтобы задать меру) на I, т.е. найдутся $c_i \in I$ такие, что F гладкая на (c_i, c_{i+1}) . Пусть f измерима (относительно борелевской алгебры \mathcal{B}) и либо суммируема относительно μ_F , либо неотрицательна. Тогда

$$\int_{I} f \, \mathrm{d}\mu_{F} = \sum_{c_{i}} \int_{c_{i}}^{c_{i+1}} f(x)F'(x) \, \mathrm{d}x + \sum_{c_{i}} f(c_{i})\Delta_{c_{i}}.$$

Доказательство. Надо I разбить на точки c_i и промежутки между ними. Интеграл по точкам выражается через скачки, потому что мы знаем, что интеграл в точке равен произведению значения f на меру точки. Ну а на интервалах мера по сути задаётся плотностью: про такое мы уже всё знаем. $\hfill \Box$

16.2 Интеграл по образу меры

Определение 16.2. Пусть X – пространство с мерой, и есть $f: X \to Y$. Назовём $E \subset Y$ измеримым относительно f, если $f^{-1}(E)$ измеримо.

Утверждение 16.5. Множество измеримых относительно f множеств образует σ -алгебру.

Доказательство. Нужно просто проверить это.

Определение 16.3. Введём меру ν на Y следующим образом: $\nu(E) = \mu(f^{-1}(E))$.

Утверждение 16.6. ν действительно мера.

Доказательство. Просто проверить.

Теорема 16.2. Пусть g – измеримая относительно заданной f σ -алгебры функция $Y \to \mathbb{R}$, причём либо неотрицательная, либо суммируемая относительно ν . Тогда

$$\int\limits_V g\,\mathrm{d}\nu = \int\limits_V g\circ f\,\mathrm{d}\mu.$$

Доказательство.

- 1. Для простых функций проверяется легко: там будет сумма коэффициентов, умноженных на меры множеств, вот эти меры и нужно раскрыть.
- 2. Если g неотрицательна, то можно взять неубывающую последовательность неотрицательных простых, сходящуюся к g. Т.к. композиция с g этого свойства не испортит, дальше просто теорема Леви.
- 3. Для суммируемых тоже как обычно: нужно просто написать g_{\pm} .

16.3 Интеграл по распределению.

Определение 16.4. Распределением измеримой функции $f:X \to \mathbb{R}, \; \mu(X) < \infty$ называется

$$F(t) = \mu(X[f < t]).$$

Свойство 16.4. F не убывает.

Доказательство. Это следует из того, что мера подмножества не превосходит меры множества.

Свойство 16.5. F непрерывна слева.

Доказательство. Следует из непрерывности меры снизу.

Теорема 16.3. Пусть $\mu(X) < \infty, \ f \colon X \to \mathbb{R}$ измерима и либо неотрицательна, либо суммируема. Тогда

$$\int\limits_X f\,\mathrm{d}\mu = \int\limits_{\mathbb{R}} t\,\mathrm{d}\mu_F.$$

Доказательство. Убедимся, что $\mu_F = \nu = \mu \circ f^{-1}$, как в теореме про образ меры. Для ячеек это проверяется тривиально:

$$\mu_F([a,b)) = F(b) - F(a) = \mu(X[f < b]) - \mu(X[f < a]) = \mu(X[a \leqslant f < b]) = \mu(f^{-1}([a,b)).$$

Отсюда это вроде бы следует даже для борелевских множеств.

Но тогда

$$\int\limits_{\mathbb{D}} t \, \mathrm{d} \mu_F = \int\limits_{\mathbf{Y}} f \, \mathrm{d} \mu.$$

Конечность меры X нужна, чтобы F гарантированно существовала. В принципе, такое бывает и без неё. \Box

Билет 17: Интеграл Эйлера-Пуассона

Теорема 17.1.

$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} \, \mathrm{d}\lambda_2 = \pi.$$

Доказательство. Найдём распределение функции $f(x,y) = -e^{-(x^2+y^2)}$.

$$-e^{-(x^2+y^2)} < t \Rightarrow x^2+y^2 < -\ln(-t) \Rightarrow F(t) = \mu \big(\mathbb{R}^2[x^2+y^2 < -\ln(-t)]\big) = -\pi \ln(-t).$$

На самом деле, если внимательно следить за граничными значениями, то

$$F(t) = \begin{cases} 0, \ t \leqslant -1, \\ -\pi \ln(-t), \ -1 < t \leqslant 0, \\ +\infty, \ t > 0. \end{cases}$$

Теперь мы по сути применяем слегка искажённые версии предыдущих теорем, потому что $\mu(X)$ не конечна, поэтому и F определена не на всём $\mathbb{R},$ а только до нуля. Но, кажется, это не сильно изменит их доказательств, поэтому

$$\int\limits_{\mathbb{R}^2} f \, \mathrm{d}\lambda_2 = \int\limits_{-1}^0 t (-\pi \ln t)' \, \mathrm{d}t = -\pi.$$

Значит, искомый интеграл равен π .

Билет 18: Вероятностный смысле меры и интеграла.

Собственно, довольно легко строится соответствие между понятиями теории меры и теории вероятностей.

- 1. Множество X множество элементарных событий.
- 2. σ -алгебра \mathcal{A} множество событий, её элемент событие.
- 3. Мера μ вероятность (но только $\mu(X) = 1$).
- 4. Измеримая функция f случайная величина.
- 5. Распределение функции F распределение случайной величины.
- 6. $\int_X f \, \mathrm{d} \mu$ матожидание случайной величины.

Пример 18.1. Самый простой пример – кубик. Для этого надо рассмотреть $X=\{1,\,2,\,3,\,4,\,5,\,6\}$ с понятно какой мерой.

Пример 18.2 (Задача Бюффона). На плоскости есть бесконечно много параллельных прямых с расстоянием d между соседними, и на неё кидают отрезок длины a случайным образом. Какова вероятность, что он пересечёт одну из прямых?

Пусть h – расстояние от нижней точки отрезка до ближайшей (снизу) линии, а α – угол от горизонтали. Этими двумя координатами положение отрезка задаётся однозначно (с учётом симметрии задачи,) причём все точки равноправны между собой.

Поэтому естественно сказать, что $X=[0,d)\times [0,\pi)$ – множество исходов, \mathcal{A} – множество измеримых по Лебегу подмножеств X, а мера $P(A)=C\lambda_2(A)$. Поскольку P(X)=1,

$$C\lambda_2(X) = 1 \Rightarrow C \cdot \pi \cdot d = 1 \Rightarrow C = \frac{1}{\pi d}.$$

При этом множество исходов, когда пересечение происходит, задаётся неравенством

$$a \sin \alpha \geqslant d - h$$
.

Отсюда

$$h \geqslant d - a \sin \alpha$$
.

Площадь соответствующей области можно найти, как

$$\int_{0}^{\pi} a \sin \alpha \, d\alpha = 2a \Rightarrow P(A) = \frac{1}{\pi d} \cdot 2a = \frac{2a}{\pi d}.$$

Билет 19: Принцип Кавальери. Геометрический смысл интеграла по мере Лебега (мера подграфика).

19.1 «Почти всюду» и вариаци теоремы Леви.

Определение 19.1. Пусть (X,μ) – пространство с мерой, и задана функция $P\colon X\to\{0,1\}$ (утверждение, которое либо правдиво, либо ложно). Говорят, что P верно *почти всюду*, если $\mu\big(X[P=0]\big)=0$.

Лемма 19.1. Если f(x) = 0 почти всюду, то

$$\int_X f \, \mathrm{d}\mu = 0.$$

Доказательство. Можно заметить, что такая функция автоматически измерима. Ну а дальше просто разбить на два множества и записать интегралы. \Box

Лемма 19.2. Пусть f и q суммируемы, причём f=q почти везде. Тогда

$$\int_{X} f \, \mathrm{d}\mu = \int_{X} g \, \mathrm{d}\mu.$$

Доказательство. Интеграл разности будет равен нулю по предыдущей лемме.

Лемма 19.3 (Теорема Леви для рядов). Пусть $\{u_n\}_{n=1}^{\infty}$ – последовательность неотрицательных измеримых функций из X в \mathbb{R} . Тогда

1.

$$\int\limits_X\sum_{n=1}^\infty u_n\,\mathrm{d}\mu=\sum_{n=1}^\infty\int\limits_Xu_n\,\mathrm{d}\mu.$$

2. Если эти два равных числа конечны, то ряд сходится почти всюду 7 .

Доказательство.

1. Пусть S_n – частичная сумма ряда, и $S=\lim_{n \to \infty} S_n^{-8}$. По теореме Леви тогда

$$\int S = \lim \int S_n.$$

Ну а дальше очевидно.

2. Пусть

$$\int\limits_{Y} S \, \mathrm{d}\mu < \infty.$$

Рассмотрим E – множество точек, где ряд расходится. Выберем на E неубывающую неотрицательную последовательность простых функций g_n , сходящуюся к S: $g_n(x) = n$. По теореме Леви

$$\lim \int g_n = \int S.$$

Но

$$\lim \int g_n = \lim n\mu(E) = \infty,$$

если $\mu(E) \neq 0$. А такого не может быть, потому что в этой ситуации интеграл по X будет тоже ∞ , что не так.

Лемма 19.4 (Теорема Леви «вверх ногами»). Пусть $\{f_n\}_{n=1}^{\infty}$ – невозрастающая последовательность неотрицательных измеримых функций из X в \mathbb{R} . Пусть f_1 суммируема. Тогда

$$\lim \int f_n = \int \lim f_n.$$

Доказательство. Рассмотрим $g_n=f_1-f_n\geqslant 0$. При этом g_n возрастают и неотрицательные. Ну тогда по теореме Леви

$$\lim \int g_n = \int \lim g_n = \int f_1 - \int f.$$

Т.к. все функции суммируемы, можно всё перенести, и получится то, что надо.

⁷ А разве левое выражение определено, если ряд хоть где-то расходится? Ну то есть вроде можно определить, но это же странно, честно говоря.

⁸Почему конечен?

19.2 Кратные интегралы

Определение 19.2. Введём пару обозначений. Пусть $E \subset \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n$. Возьмём какойнибудь $x \in \mathbb{R}^m$. Тогда проекция сечения E на \mathbb{R}^n «вертикальной линией» записывается, как

$$E_x = \{ y \in \mathbb{R}^n \mid (x, y) \in E \},$$

проекция множества E на \mathbb{R}^m обозначается, как

$$\pi_1(E) = \{ x \in \mathbb{R}^m \, | \, E_x \neq \emptyset \},\,$$

и проекция сечения E на \mathbb{R}^m «горизонтальной линией» записывается, как

$$E^y = \{ x \in \mathbb{R}^n \mid (x, y) \in E \}.$$

Теорема 19.1 (Принцип Кавальери). Пусть $E \subset \mathbb{R}^m \times \mathbb{R}^n$ измеримо. Тогда

$$\lambda_{m+n}(E) = \int_{\mathbb{R}^m} \lambda_n(E_x) \, \mathrm{d}\lambda_m.$$

Доказательство.

- 1. Для ячеек проверяется в лоб.
- 2. Если

$$E = \bigsqcup_{k=1}^{\infty} E_k,$$

где E_k – ячейки, то

$$E_x = \bigsqcup_{k=1}^{\infty} (E_k)_x,$$

а дальше используется первый пункт, аддитивность меры и теорема Леви для рядов.

В таком виде можно представить любой элемент Cell_{n+m} . Ещё мы знаем, что открытое множество можно представить в виде счётного объединения ячеек, а значит можно и в виде дизъюнктного⁹

- 3. Пусть E– множество типа G_{δ} счётное пересечение вложенных открытых множеств, мера первого из которых конечна 10 . Здесь должна работать «перевёрнутая» теорема Леви.
- 4. Дальше вообще плохо понятно. Но вроде можно приблизить ограниченное E ограниченным G_δ так, чтобы разность M имела меру ноль. Утверждается, что M_x измеримы почти всегда, и их мера равна нулю, поэтому теорема верна и для разности, и для приближения, а потому и для E.
- 5. Если множество не ограничено, нужно представить его, как дизъюнктное объединение ограниченных. А потом повторить рассуждение про дизъюнктное объединение ячеек.

Теорема 19.2 (Мера подграфика). Пусть $f: \mathbb{R}^n \to \mathbb{R}$ – измеримая и неотрицательная, а

$$\Gamma_{-}^{f} = \{(x, t) \in \mathbb{R}^{n+1} \mid 0 \leqslant t \leqslant f(x)\}.$$

Тогда

- 1. Γ_-^f измерим.
- 2

$$\lambda_{n+1}\Gamma_-^f = \int_{\mathbb{R}^n} f \, \mathrm{d}\lambda_n.$$

⁹Хотя мы этого не доказывали, конечно...

 $^{^{10}}$ Вроде это можно сделать не умаляя общности. Кажется. По крайней мере для ограниченных множеств типа G_{δ} , можно, например, объединения пересекать.

Доказательство.

- 1. Если функция индикатор измеримого множества, то вроде бы должно быть очевидно, хотя вроде не так чтобы, ибо почему $\lambda_n(E) = \lambda_{n+1}(E \times [0, 1])$?
- 2. Переход к простой функции вроде бы и правда очевиден.
- 3. К произвольным измеримым как обычно, по теореме Леви.

Билет 20: Сведение кратного интеграла к повторному (теоремы Тоннели и Фубини).

Теорема 20.1. (Тоннели) Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$ – измеримая неотрицательная функция. Тогда

$$\int\limits_{\mathbb{R}^{m+n}} f(x,\,y)\,\mathrm{d}\lambda_{m+n}(x,\,y) = \int\limits_{\mathbb{R}^m} \int\limits_{\mathbb{R}^n} f(x,\,y)\,\mathrm{d}\lambda_n(y)\,\mathrm{d}\lambda_m(x),$$

11

Доказательство.

$$\int_{\mathbb{R}^{m+n}} f(x, y) \, \mathrm{d}\lambda_{m+n}(x, y) = \lambda_{m+n+1} \Gamma_-^f = \int_{\mathbb{R}^m} \lambda_{n+1} (\Gamma_-^f)_x \, \mathrm{d}\lambda_m(x).$$

Введём функцию $\psi_x(y)$: $\mathbb{R}^n \to \mathbb{R}$ такую, что $\psi_x(y) = f(x,y)$. Тогда $(\Gamma_-^f)_x = \Gamma_-^{\psi_x}$, поэтому

$$\int\limits_{\mathbb{R}^m} \lambda_{n+1}(\Gamma_-^f)_x \, \mathrm{d}\lambda_m(x) = \int\limits_{\mathbb{R}^m} \lambda_{n+1}\Gamma_-^\psi \, \mathrm{d}\lambda_m(x) = \int\limits_{\mathbb{R}^n} f(x,\,y) \, \mathrm{d}\lambda_n(y) \, \mathrm{d}\lambda_m(x).$$

Теорема 20.2. (Фубини) Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$ – суммируемая функция. Тогда

$$\int\limits_{\mathbb{R}^{m+n}} f(x,\,y)\,\mathrm{d}\lambda_{m+n}(x,\,y) = \int\limits_{\mathbb{R}^m} \int\limits_{\mathbb{R}^n} f(x,\,y)\,\mathrm{d}\lambda_n(y)\,\mathrm{d}\lambda_m(x),$$

Доказательство. Простое следствие из предыдущей.

Билет 21: Поведение меры Лебега при сдвиге и линейном преобразовании

Утверждение 21.1. Пусть T – параллельный перенос в \mathbb{R}^n . Тогда если E измеримо по Лебегу, то и T(E) тоже, причём $\lambda(T(E)) = \lambda(E)$.

Доказательство. Параллельный перенос переводит ячейки в ячейки с сохранением меры, поэтому он сохраняет внешнюю меру, а значит, он сохраняет и хорошо разбивающие множества. Поэтому он переводит измеримые в измеримые, сохраняя объём. □

Теорема 21.1. Пусть L – линейное отображение. Тогда если E измеримо, то L(E) тоже измеримо.

¹¹Не знаю пока, что делать с измеримостями.

Почти доказательство. Если определитель равен нулю, то это очевидно, потому что подмножество линейного пространства меньшей размерности – множество меры ноль. Это следует из полноты меры.

Если определитель не равен нулю, то L – гомеоморфизм, поэтому, в частности, переводит открытые множества в открытые и множества типа G_{δ} в множества типа G_{δ} .

Посмотрим, что будет с L(E), если $\lambda E=0$. Раз мера E равна нулю, можно покрыть E конечным набором ячеек $\{\Delta_k\}_{k=1}^n$ таким, что сумма их мер меньше ε^{12} . Понятно, что

$$L(E) \subset \bigcup_{k=1}^{N} L(\Delta_k).$$

При этом

$$\lambda(L(E)) \leqslant \sum_{k=1}^{N} \lambda(L(\Delta_k))$$

Рассмотрим какую-нибудь ячейку Δ со стороной δ . Тогда $\lambda(\Delta)=\delta^n$. Пусть $x,y\in\Delta$. Тогда

$$||L(x) - L(y)|| = ||L(x - y)|| \le ||L|| \cdot ||x - y|| \le ||L||\delta\sqrt{n}.$$

Образ Δ точно можно вписать в ячейку с такой стороной, поэтому

$$\lambda(L(\Delta)) \leqslant ||L||^n n^{\frac{n}{2}} \lambda(\Delta).$$

Это значит, что образ множества E тоже получтися ограничить ячейками, поэтому мера образа тоже ноль.

Любое измеримое множество можно представить, как $A \setminus B$, где A класса G_{δ} , а B – меры нуль. Но это значит, что образ будет представлен так же, что даёт нам доказательство.

Теорема 21.2. Пусть L – линейное отображение. Тогда если E измеримо, то $\lambda \big(L(E) \big) = C \lambda(E)$.

Доказательство. Для начала можно положить $C = \lambda \big(L([0, 1)^n \big) \big)$. Теперь хочется как-то доказать, что любая другая ячейка будет преобразовываться так же.

Идея доказательства этого заключается в том, чтобы сначала доказать это для ячеек вида $[0,\,k)^n$ и $[0,\,\frac{1}{k})^n$, либо разбивая ячейки на $[0,\,1)^n$, либо наоборот, пользуясь доказанным фактом про параллельный перенос. После же ячейку $[0,\,t)$ можно представить, как счётное объединение подходящих ячеек.

Лемма 21.1. Для отображения L(x) = ax константа $C = a^n$.

Доказательство. Ну, тут ведь ячейка переходит в ячейку, объём можно просто посчитать.

Лемма 21.2. Для отображения L с диагональной матрицей C равна модулю произведения диагональных членов.

Доказательство. Тут тоже можно просто посчитать объём ячейки.

Лемма 21.3. Для ортогонального L константа C равна 1.

Доказательство. Оно переводит единичный шар в себя.

Теорема 21.3. Для произвольного L верно, что $C = |\det L|$.

Доказательство. Можно представить L как $U_1 \circ D \circ U_2$, где U_1 и U_2 ортогональные, а D — диагональное. Дальше очевидно.

 $^{^{12}}$ Это следует из того, что набор точно можно сделать дизъюнктным, например.

Билет 22: Преобразование меры Лебега при гладком отображении

Теорема 22.1. Пусть $F:G\subset\mathbb{R}^n\to\mathbb{R}^n-C^1$ -гладкая инъекция. Тогда

$$orall$$
 измеримого $E\subset G\;\lambdaig(F(E)ig)=\int\limits_{E}|J_{F}(x)|\,\mathrm{d}x,$

где $J_F(x)$ – якобиан F в точке x.

 ${\it Идея}$ доказательства. Докажем только для $E=\Delta$ – ячейки. Рассмотрим разбиение

$$\Delta = \bigsqcup_{k} \Delta_{k}.$$

Пусть x_k – угол k-й ячейки.

$$F(x) = \underbrace{F(x_k) + F'(x_k)(x - x_k)}_{\Phi(x)} + o(x - x_k).$$

 $\Phi(x) = y_k + \mathrm{d}F(x_k;x) = y_k + L(x)$. Тогда

$$\lambda\big(L(\Delta)\big) = \sum_k \lambda\big(L(\Delta_k) \approx \sum_k |\det \mathrm{d} F(x_k;x)| \lambda(\Delta_k) = \sum_k J_F(x_k) \lambda(\Delta_k).$$

Измельчая разбиение, получим утверждение теоремы.

Билет 23: Гладкая замена переменной в интеграле. Пример (по-лярные и сферические координаты).

Теорема 23.1. Пусть $F:G\subset\mathbb{R}^n\to\mathbb{R}^n-C^1$ -гладкая инъекция, $E\in F(G)$ – измеримое множество. Пусть $f\colon E\to\mathbb{R}(\mathbb{C})$ – измеримая и либо неотрицательная, либо суммируемая функция. Тогда

$$\int_{E} f = \int_{F^{-1}(E)} f \circ F \cdot |J_{F}|.$$

Доказательство.

1. Пусть

$$f = \sum_{k=1}^{p} c_k \mathbb{1}_{B_k}.$$

Тогда

$$f \circ F = \sum_{k=1}^{p} c_k \mathbb{1}_{F^{-1}(B_k)}.$$

При этом

$$\int\limits_E f = \sum_{k=1}^p c_k \lambda(B_k) = \sum_{k=1}^p c_k \int\limits_{F^{-1}(B_k)} |J_F| = \sum_{k=1}^p c_k \int\limits_{F^{-1}(E)} |J_F| \mathbb{1}_{F^{-1}(B_k)} = \int\limits_{F^{-1}(E)} f \circ F \cdot |J_F|.$$

2. Для неотрицательных – теорема Леви, как всегда, для суммируемых расписать f_{\pm} .

Пример 23.1. Полярные координаты задаются уравнениями

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$

По сути, у нас есть гладкая инъекция $F:(0,\infty)\times[0,2\pi)\to\mathbb{R}^2$. Можно найти якобиан:

$$J_F = y'_{\omega}x'_r - x'_{\omega}y'_r = r\cos^2\varphi + r\sin^2\varphi = r.$$

Поэтому если E – измеримое подмножество \mathbb{R}^2 , то

$$\int_{E} f = \int_{F^{-1}(E)} f \circ F \cdot r.$$

Для сферических координат

$$\begin{cases} x = r \cos \varphi \cos \psi, \\ y = r \sin \varphi \cos \psi, \\ z = r \sin \psi \end{cases}$$

якобиан будет равен $r^2 \cos^2 \psi$.

Билет 24: Теорема Фату

Определение 24.1. Пусть на X задана мера μ . Тогда

- Говорят, что последовательность функций $f_n \to f$ почти везде по μ , если $\exists N \subset X, \ \mu(N) = 0$ такое, что $\forall x \in X \setminus N \ f_n(x) \to f(x)$.
- Говорят, что $f_n \xrightarrow{\mu} f$ сходится по мере μ , если

$$\forall \sigma > 0 \ \mu(X[|f_n - f| > \sigma]) \to 0.$$

Это самая слабая сходимость.

Теорема 24.1. Сходимость почти везде влечёт сходимость по мере.

Теорема 24.2 (Рисс). Если $f_n \stackrel{\mu}{\to} f$, то из $\{f_n\}$ можно выделить подпоследовательность, сходящуюся к f почти всюду.

Теорема 24.3. Пусть $f_n
ightharpoons f$ на X, и $\mu(X) < \infty^{13}$. Тогда

$$\lim \int_X f_n = \int_X f.$$

Доказательство. Нужно просто оценить разность.

Теорема 24.4 (Фату). Пусть $\{f_n\}$ — неубывающая последовательность неотрицательных измеримых функций, сходящаяся f к f. Тогда

$$\int\limits_X \underline{\lim} f_n \leqslant \underline{\lim} \int\limits_X f_n.$$

Доказательство.

$$f(x) = \lim_{n \to \infty} \inf_{\substack{m \ge n \\ g_n(x)}} f_m(x) = \sup_n g_n(x).$$

¹³Кажется, ещё нужно, чтобы они были суммируемы.

 $^{^{14}}$ Здесь достаточно сходимости почти всюду, кажется. Но я не уверен.

 g_n образуют неубывающую неотрицательную последовательность измеримых функций, поэтому к ним применима теорема Леви. Поэтому

$$\lim \int g_n = \int \lim g_n = \int \underline{\lim} f_n.$$

Очевидно, что $g_n \leqslant f_n$, поэтому

$$\int g_n \leqslant \int f_n \Rightarrow \varliminf \int g_n \leqslant \varliminf \int f_n \Rightarrow \lim \int g_n \leqslant \varliminf \int f_n.$$

Отсюда немедленно следует утверждение теоремы.

Билет 25: Теорема Лебега об ограниченной сходимости.

Теорема 25.1. Пусть X – пространство с мерой μ , f_n измеримы и $f_n \to f$ почти всюду. Пусть существует $\varphi \in L$: $\forall n \ |f_n| \leqslant \varphi$ – выполняется условие Лебега $\mathcal L$. Тогда

$$\lim \int f_n = \int f.$$

Доказательство. Из условия $-\varphi \leqslant f_n \leqslant \varphi \Rightarrow \varphi + f_n \geqslant 0$ и $\varphi - f_n \geqslant 0$. Для этих последовательностей выполяняется теорема Фату:

 $\int \varphi + f \leqslant \underline{\lim} \int \varphi + f_n \Rightarrow \int f \leqslant \underline{\lim} \int f_n$ $\int \varphi - f \leqslant \underline{\lim} \int \varphi - f_n \Rightarrow \int f \geqslant \overline{\lim} \int f_n,$

откуда

И

$$\int f = \lim \int f_n.$$

Следствие 1. Пусть X — пространство с мерой μ , f_n измеримы и $f_t \xrightarrow{t \to t_0} f$ почти всюду, где t — параметр, возможно многомерный. Пусть существует $\varphi \in L$: $\forall t \in V(t_0) \ |f_t| \leqslant \varphi$ — выполняется локальное условие Лебега \mathcal{L}_{loc} в окрестности t_0 . Тогда

$$\lim \int f_t = \int f.$$

Доказательство. Если переформулировать на языке последовательностей.

Следствие 2. В ситуации предыдущей теоремы, если f_t непрерывна в t_0 , то функция

$$\int\limits_X f_t$$

непрерывна в t_0 .

Билет 26: Равномерная сходимость интеграла, зависящего от параметра. Формулировка признаков Больцано-Коши, Дирихле и Абеля.

Здесь мы рассматриваем несобственный интеграл, зависящий от параметра:

$$I(t) = \int_{a}^{b} f(x, t) dx = \lim_{A \to b-0} f(x, t) dx.$$

Пусть I сходится при $t \in T$. Естественно, здесь и далее предполагается, что все интегралы определены в том смысле, что функции измеримы, а ещё что все интегралы до A < b конечны.

Определение 26.1. Интеграл I называют равномерно сходящимся на T, если

$$I^{A}(t) = \int_{a}^{A} f(x, t) dx \Rightarrow I(t),$$

т.е.

$$\forall \varepsilon > 0 \ \exists \ \delta \colon \forall t \in T \ |b - A| < \delta \Rightarrow |I^A(t) - I(t)| < \varepsilon.$$

Теорема 26.1 (Больцано-Коши). Равномерная сходимость на T равносильна тому, что

$$\forall \varepsilon > 0 \; \exists \, A_0 \in (a, \, b) \colon \forall A_1, \, A_2 \in (A_0, \, b) \quad \left| \int_{A_1}^{A_2} f(x, \, t) \, \mathrm{d}x \right| < \varepsilon.$$

Теорема 26.2 (Дирихле). Пусть

$$I(t) = \int_{a}^{b} f(x, t)g(x, t) dx,$$

причём

1.

$$f(x, t) \underset{x \to b-0}{\Longrightarrow} 0,$$

на T, при этом монотонно убывая по x, и

2.

$$G(x, t) = \int_{a}^{x} g(\xi, t) \, \mathrm{d}\xi; \quad \exists M \colon |G(x, t)| \leqslant M \, \forall x \in [a, b) \, \forall t \in T.$$

Тогда интеграл I равномерно сходится на T.

Теорема 26.3 (Абеля). Пусть

$$I(t) = \int_{a}^{b} f(x, t)g(x, t) dx,$$

причём

- 1. f убывает по x $\forall t$ и f равномерно ограничена: $|f(x,t)| \leqslant M \ \forall x \ \forall t.$
- 2.

$$\int_{a}^{b} g(x, t) \, \mathrm{d}x$$

равномерно сходится на T.

Тогда I равномерно сходится на T.

Билет 27: Формулировки основных теорем о несобственном интеграле с параметром.

Рассматриваем тот же интеграл с параметром.

27.1 Суммируемый случай.

$$\forall t \int_{a}^{b} |f(x, t)| \, \mathrm{d}x < +\infty.$$

Теорема 27.1. Пусть $f(x,t) \xrightarrow{t \to t_0} f(x,t_0)$ для п. в. $x \in [a,b)$, и f удовлетворяет локальному условию Лебега в t_0 . Тогда $I(t) \xrightarrow{t \to t_0} I(t_0)$.

Теорема 27.2. Пусть f дифференцируема по t для п.в. $x \in [a, b)$, и f'_t удовлетворяет локальному условию Лебега в t_0 . Тогда

$$I'(t_0) = \int_a^{\to b} \frac{\partial f}{\partial t}(x, t) dx.$$

Теорема 27.3. Пусть D – область изменения t, и $f \in L([a,b) \times D)$. Тогда

$$\int_{D} I(t) dt = \int_{a}^{b} dx \int_{D} f(x, t) dt.$$

27.2 Случай равномерной сходимости

Теорема 27.4. Пусть f(x, t) непрерывна по t в точке t_0 для почти всех $x \in [a, b)$, и интеграл I сходится равномерно на некоторой окрестности t_0 . Тогда I непрерывен в t_0 .

Теорема 27.5. Пусть f_t' существует для почти всех $x \in [a, b)$ и

1.

$$\int\limits_{a}^{b}f(x,\,t)\,\mathrm{d}x$$
 равномерно сходится на T , где T – интервал.

2.

$$\int\limits_{a}^{\rightarrow b}f_{t}^{\prime}(x,\,t)\,\mathrm{d}x$$
 равномерно сходится в окрестности $t_{0}.$

Тогда существует

$$I'(t_0) = \int_a^{\to b} f'_t(x, t_0) \, \mathrm{d}x.$$

Теорема 27.6. Пусть $f \in C([a, b) \times [c, d])$, и пусть I равномерно сходится на [c, d]. Тогда

$$\int_{a}^{d} I(t) dt = \int_{a}^{b} dx \int_{a}^{d} f(x, t) dt.$$

Билет 28: Г-функция Эйлера. Её свойства.

Определение 28.1.

$$\Gamma(t)=\int\limits_0^{+\infty}x^{t-1}e^{-x}\,\mathrm{d}x$$
 – гамма-функция Эйлера.

Утверждение 28.1. Гамма-функция определена при t>0.

Доказательство. Заметим, что подинтегральное выражение неотрицательно. Сначала рассмотрим сходимость интеграла

$$\int\limits_{0}^{1}x^{t-1}e^{-x}\,\mathrm{d}x.$$

 $x^{t-1}e^{-x} \sim x^{t-1}$ вблизи нуля, поэтому он сходится при t>0.

Теперь сходимость интеграла

$$\int_{1}^{+\infty} x^{t-1} e^{-x} \, \mathrm{d}x.$$

Сравним со сходящимся:

$$\frac{x^{t-1}e^{-x}}{\frac{1}{x^2}} = \frac{x^{t+1}}{e^x} \xrightarrow{x \to +\infty} 0.$$

Это значит, что наш интеграл сходится на \mathbb{R} .

Поэтому в целом функция определена при t > 0.

Свойство 28.1. $\Gamma(1) = 1$.

Свойство 28.2. $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

Свойство 28.3. $\Gamma(t+1) = t \Gamma(t)$.

Свойство 28.4. $\Gamma(n+1) = n!, \ n \in \mathbb{N}.$

Свойство 28.5. Γ выпукла.

Доказательство.

1. Докажем сначала, что $\Gamma \in C^{\infty} \big([0, +\infty) \big)$. Рассмотрим производные подинтегрального выражения:

$$f_t^{(n)}(x,t) = \frac{\partial^n}{\partial t^n}(x^{t-1}e^{-x}) = x^{t-1} \ln^n(x) e^{-x}.$$

Чтобы использовать теоремы о несобственных интегралах, хочется $\forall n\geqslant 0$ и $\forall t_0\in[0,+\infty)$ найти функцию $\varphi_n^{t_0}\in Lig([0,+\infty)ig)$ такую, что

$$\exists V(t_0) = (t_1, t_2) : \forall t \in V(t_0) \ \forall x \in [0, \infty) \ |f_t^{(n)}(x, t)| \leq \varphi_n^{t_0}(x).$$

Сначала сделаем эту оценку для интеграла от 0 до 1:

$$x^{t-1} < x^{t_1-1}, \ \ln^n(x) = o_{x \to 0}(x^{-p}) \, \forall p > 0 \Rightarrow |\ln^n(x)| \leqslant \frac{C}{\frac{t_1}{x \cdot 2}}.$$

Отсюда вблизи нуля

$$|x^{t-1}| \ln^n(x) e^{-x}| \leqslant \frac{C}{x^{1-\frac{t_1}{2}}} \in L.$$

Теперь интеграл от 0 до бесконечности.

$$\frac{x^{t-1}\,\ln^n(x)}{e^{\frac{x}{2}}}\xrightarrow[]{x\to\infty}0\Rightarrow x^{t-1}\,\ln(x)< Ce^{\frac{x}{2}}\Rightarrow |x^{t-1}\,\ln^n(x)\,e^{-x}|\leqslant Ce^{-\frac{x}{2}}\in L.$$

Функции найдены, поэтому по теоремам о несобственном интеграле можно вносить производную под знак интеграла.

2.

$$\Gamma''(t) = \int\limits_0^\infty x^{t-1} \, \ln^2(x) \, e^{-x} \, \mathrm{d}x > 0 \Rightarrow \Gamma$$
 выпукла.

Свойство 28.6. $\Gamma(t) \sim \frac{1}{t}$ вблизи нуля.

Свойство 28.7. $\Gamma(t) \sim \sqrt{2\pi} \, \sqrt{t} \, t^t \, e^{-t}$ вблизи бесконечности.

Свойство 28.8. $\Gamma(t)\Gamma(1-t)=\frac{\pi}{\sin \pi t}$.

Билет 29: B-функция и её сведение к Γ -функции.

Определение 29.1.

$$B(y,\,z)=\int\limits_0^1 x^{y-1}(1-x)^{z-1}\,{
m d}x$$
 — бета-функция.

Интеграл сходится при y, z > 0.

Утверждение 29.1.

$$B(y, z) = B(z, y).$$

Утверждение 29.2.

$$B(y, z) = \frac{\Gamma(y)\Gamma(z)}{\Gamma(y+z)}.$$

Доказательство. Долго писать, посмотрите в конспекте, пожалуйста: тут просто выкладки.

Билет 30: Объём n-мерного шара.

Утверждение 30.1. Пусть объём единичного n-мерного шара равен α_n . Тогда объём n-мерного шара радиуса R равен $R^n\alpha_n$.

Доказательство. Следует из теоремы о поведении меры Лебега при растяжении в R раз. \Box

Теорема 30.1.

$$\alpha_n = \frac{\pi^{\frac{n}{2}}}{\frac{n}{2}\Gamma\left(\frac{n}{2}\right)}.$$

Доказательство. n-мерный шар задаётся уравнением

$$x_1^2 + \dots + x_n^2 = 1.$$

Если зафиксировать одну из координат, получится уравнение, задающее проекцию сечения соответствующей плоскостью:

 $x_2^2 + \dots + x_n^2 = 1 - x_1^2 = r(x_1)^2.$

Согласно принципу Кавальери

$$\alpha_n = \int_1^1 r(x_1)^{n-1} \alpha_{n-1} \, dx_1 = \alpha_{n-1} \int_1^1 (1 - x_1^2)^{\frac{n-1}{2}} \, dx_1.$$

Вычислим этот интеграл:

$$\int\limits_{-1}^{1} (1-x_1^2)^{\frac{n-1}{2}} \, \mathrm{d}x_1 \bigg|_{x_1^2=t}^{\mathrm{d}x_1=\frac{\mathrm{d}t}{2\sqrt{t}}} = \int\limits_{0}^{1} (1-t)^{\frac{n-1}{2}} t^{-\frac{1}{2}} \, \mathrm{d}t = \int\limits_{0}^{1} t^{\frac{1}{2}-1} (1-t)^{\frac{n+1}{2}-1} \, \mathrm{d}t = B\left(\frac{1}{2},\,\frac{n+1}{2}\right).$$

Отсюда

$$\alpha_n = \alpha_{n-1} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}.$$

Теперь искомую формулу получить уже несложно.

Глава 2 Дифференциальная геометрия

Билет 31: Регулярная кривая и её естественная параметризация

Определение 31.1. Под *кривой* в этой главе будем понимать гладкое отображение $[a, b] \to \mathbb{R}^3$ (иногда \mathbb{R}^2)¹.

Определение 31.2. Кривая называется регулярной, если её производная не обращается в ноль.

Определение 31.3. Регулярная кривая r(t) называется натурально параметризованной, если

$$\int_{a}^{t} |r'(\tau)| \, \mathrm{d}\tau = t.$$

Утверждение 31.1. У любой регулярной кривой существует эквивалентная натуральная параметризация.

Доказательство.

$$l(t) = \int_{a}^{t} |r'(\tau)| \, \mathrm{d}\tau.$$

l – гладкая возрастающая функция из $[a,b] \to \mathbb{R}$. Раз она возрастающая, значит является инъекцией, раз непрерывная, то её образ – связный компакт, то есть отрезок. При это непрерывная биекция из компакта в хаусдорфово – гомеоморфизм. Т.к. $|r'(\tau)|$ не обращается в ноль, обратная функция тоже будет класса C^1 вблизи каждой точки. Поэтому можно рассмотреть отображение $r \circ l^{-1}\colon [c,d] \to \mathbb{R}^3$, и оно будет эквивалентно r в смысле, введённом нами в том семестре, т.е. будет по сути параметризацией той же кривой. 2

Утверждение 31.2. Пусть r(t) – регулярная кривая, а r(s) – её натуральная параметризация. Тогда

$$\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}s} = \frac{\frac{\mathrm{d}r}{\mathrm{d}t}}{\frac{\mathrm{d}s}{\mathrm{d}t}} = \frac{r'}{|r'|}.$$

Билет 32: Кривизна кривой.

Определение 32.1. Пусть r(s) – натурально параметризованная регулярная кривая, тогда $\tau = \dot{r}(s)$ – единичный касательный вектор.

Определение 32.2. Пусть $\Delta \theta = \angle (\tau(s), \tau(s + \Delta s))$. Тогда

$$k_1 = \lim_{\Delta_s \to 0} \frac{|\Delta\theta|}{\Delta s} = |\dot{\theta}|$$

 $^{^1}$ Под гладкостью, кажется, понимается минимум C^3 . Иногда её надо меньше, но бог с ней, пусть везде будет столько, сколько надо. Вопросы различия между путём и кривой оставим на потом, пожалуй.

²В многих местах мы будем слегка лукавить, обозначая разные параметризации одной буквой. Тут это не страшно.

Утверждение 32.1. $k_1 = |\dot{\tau}|$.

Доказательство. Из геометрии следует, что

$$|\Delta \tau| = 2 \left| \sin \frac{\Delta \theta}{2} \right|.$$

Заметим, что

$$|\dot{\tau}| = \lim_{\Delta s \to 0} \frac{|\Delta \tau|}{\Delta s} = \lim_{\Delta s \to 0} \frac{2\left|\sin\frac{\Delta \theta}{2}\right|}{\Delta s} = \lim_{\Delta s \to 0} \frac{|\Delta \theta|}{\Delta s}.$$

Утверждение 32.2. Пусть $r(t) \in \mathbb{R}^n$ – регулярная кривая в \mathbb{R}^n , причём |r(t)| = R, т.е. кривая лежит на сфере. Тогда $r' \perp r$.

Доказательство.

$$R^2 = r \cdot r \Rightarrow 0 = (r \cdot r)' = 2rr'.$$

Определение 32.3.

 $R = \frac{1}{k_1}$ – радиус кривизны кривой.

Теорема 32.1. Пусть r(t) – произвольно параметризованная гладкая регулярная кривая. Тогда

$$k_1 = \frac{|r' \times r''|}{|r'|^3}.$$

Доказательство.

$$k_1 = |\dot{\tau}| = \left| \frac{\mathrm{d}^2 r}{\mathrm{d}s^2} \right|.$$

Мы уже знаем, что

$$\frac{\mathrm{d}r}{\mathrm{d}s} = \frac{r'}{|r'|}.$$

$$\frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{r'}{|r'|}\right) = \frac{(\dot{r'})|r'| - |\dot{r'}|r'}{r'^2}.$$

Распишем:

$$(\dot{r'})=rac{\mathrm{d}r'}{\mathrm{d}s}=rac{r''}{|r'|}$$
 и $|\dot{r'}|=rac{\mathrm{d}|r'|}{\mathrm{d}s}=rac{|r'|'}{|r'|}.$

При этом

$$|r'|' = \sqrt{r' \cdot r'}' = \frac{1}{2|r'|} (r' \cdot r')' = \frac{r' \cdot r''}{|r'|}.$$

Подставим всё:

$$\frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{r'}{|r'|} \right) = \frac{\frac{r''}{|r'|} |r'| - \frac{r' \cdot r''}{|r'|^2} r'}{r'^2} = \frac{r'' |r'|^2 - (r' \cdot r'') r'}{|r'|^4}.$$

Чтобы найти модуль, возведём это в квадрат:

$$\left(\frac{r''|r'|^2-(r'\cdot r'')r'}{|r'|^4}\right)^2=\frac{r''^2|r'|^4-2(r'\cdot r'')^2|r'|^2+(r'\cdot r'')^2|r'|^2}{|r'|^8}=\frac{r''^2r'^2-(r'\cdot r'')^2}{|r'|^6}.$$

Заметим, что

$$|a \times b|^2 = |a|^2 |b|^2 \sin^2 \alpha = |a|^2 |b|^2 - |a|^2 |b|^2 \cos^2 \alpha = |a|^2 |b|^2 - |a \cdot b|^2.$$

Поэтому

$$k_1 = \frac{|r' \times r''|}{|r'|^3}.$$

Билет 33: Векторы au, au, eta, абсолютное кручение, кручение кривой.

Определение 33.1. ν – вектор *нормали* к кривой в точке; определён там, где $k_1 \neq 0$.

Строгое обоснование. Пусть r(s) — натуральная параметризация кривой. Тогда $\tau=\dot{r}(s)$ — единичный касательный вектор. Мы знаем, что $|\dot{\tau}|=k_1\neq 0$; поэтому конец вектора τ , отложенный от начала координат, описывает регулярную кривую в пространстве. Т.к. $|\tau|$ постоянен, можно использовать последнюю теорему из последнего билета и понять, что $\dot{\tau}\perp \tau$. Таким образом, строгое определение вектора ν таково:

$$\nu = \frac{\dot{\tau}}{k_1}.$$

Определение 33.2. Пусть r(s) – натурально параметризованная гладкая регулярная кривая с $k_1 \neq 0$. Тогда соприкасающейся плоскостью в точке называется плоскость, содержащая τ и ν .

Альтернативное определение. Пусть P=r(s) – точка на кривой, и T – плоскость, содержащая P. Пусть h – перпендикуляр, опущенный из $r(s+\Delta s)$ на T. Если $|h|=o(\Delta s^2)$, то T – соприкасающаяся плоскость.

Замечание 33.0. Если $k_1=0$ на некотором интервале, то наша кривая – прямая. Поэтому в смысле второго определения любая плоскость, проходящая через точку P и содержащая касательный вектор будет соприкасаться, ибо |h|=0.

Теорема 33.1. Определения эквивалентны.

Доказательство. Пусть e – единичный вектор, ортогональный T. Найдём вектор h:

$$h = \alpha e$$
; $r(s + \Delta s) + h - r(s) \perp e \Rightarrow (r(s + \Delta s) + \alpha e - r(s)) \cdot e = 0$.

Отсюда

$$\alpha = (r(s) - r(s + \Delta s)) \cdot e \Rightarrow h \Rightarrow |h| = |(r(s) - r(s + \Delta s)) \cdot e|.$$

Заметим, что

$$r(s + \Delta s) - r(s) = \tau \Delta s + \frac{k_1 \nu}{2} \Delta s^2 + o(\Delta s^2).$$

Поэтому

$$|h| = \left| \tau \cdot e \,\Delta s + \nu \cdot e \, \frac{k_1 \Delta s^2}{2} + o(\Delta s^2) \right|.$$

Дальше утверждение становится очевидным.

Теорема 33.2.

$$\left|\begin{array}{ccc} \tilde{x}-x & \tilde{y}-y & \tilde{z}-z\\ x' & y' & z'\\ x'' & y'' & z'' \end{array}\right|=0$$
 — уравнение соприкасающейся плоскости в точке $(x,\,y,\,z).$

Доказательство. У нас доказательства нет, кажется. Но для натуральной параметризации это очевидно из геометрических соображений. \Box

Определение 33.3. Вектор $\beta= au imes
u$ – бинормаль к кривой. $|\dot{eta}|=|k_2|$ – абсолютное кручение кривой в точке.

Определение 33.4. Тройка (τ, ν, β) называется сопровождающим трёхгранником или сопровождающим репером.

Теорема 33.3.

$$|k_2| = \frac{(\dot{r}, \ddot{r}, \ddot{r})}{k_1^2} = \frac{|(r', r'', r''')|}{|r' \times r''|^2}.$$

Доказательство. $|k_2|=|\dot{\beta}|$, мы знаем, что $|\beta|={\sf const}$, поэтому $\beta\perp\dot{\beta}$. При этом

$$\dot{\beta} = \tau \times \nu = \tau \times \dot{\nu} + \dot{\tau} \times \nu = \tau \times \dot{\nu} \Rightarrow \dot{\beta} \perp \tau.$$

В связи с этим $\dot{\beta} \parallel \nu \Rightarrow |\dot{\beta}| = |\dot{\beta} \cdot \nu|$.

$$\dot{\nu} = \frac{\mathrm{d}}{\mathrm{d}s}\frac{\dot{\tau}}{k_1} = \frac{\ddot{\tau}k_1 - \dot{\tau}\dot{k_1}}{k_1^2} \Rightarrow \tau \times \dot{\nu} = \frac{\tau \times \ddot{\tau}}{k_1} \Rightarrow |\dot{\beta}| = |\dot{\beta} \cdot \nu| = \left|\frac{(\dot{r}, \, \dddot{r}, \, \ddot{r})}{k_1^2}\right|.$$

Доказательство для произвольной параметризации – много выкладок.

Определение 33.5. Кручение –

$$k_2 = -\frac{(\dot{r}, \ddot{r}, \ddot{r})}{k_2^2}.$$

Билет 34: Формулы Френе. Теорема о восстановлении кривой по заданным кривизне и кручению.

Теорема 34.1. Пусть r(s) – C^3 -гладкая, натурально параметризованная регулярная кривая с $k_1 > 0$. Тогда выполняются формулы Френе:

$$\begin{cases} \dot{\tau} = k_1 \nu, \\ \dot{\nu} = -k_1 \tau - k_2 \beta, \\ \dot{\beta} = k_2 \nu. \end{cases}$$

Доказательство. Из доказательства предыдущей теоремы следует третье равенство³.

$$\beta = \tau \times \nu \Rightarrow \nu = \beta \times \tau \text{ in } \tau = \nu \times \beta.$$

Отсюда

$$\dot{\nu} = \dot{\beta} \times \tau + \beta \times \dot{\tau} = k_2 \nu \times \tau + k_1 \beta \times \nu = -k_2 \beta - k_1 \tau.$$

Утверждение 34.1. Если $k_2 = 0$, то решение – плоская кривая.

Теорема 34.2. Если задать k_1 , k_2 , сопровождающий репер при $s=s_0$ и значение $r(s_0)$, причём $k_1>0$, то получится единственная кривая на [0,A] (с точностью до параметризации).

Доказательство. НУО, пусть репер задан в точке s=0, ну и значение r(0). Тогда из теоремы о существовании и единственности решений ЛОСДУ функции $\tau, \, \nu$ и β определены однозначно. Тогда можно найти r(s):

$$r(s) = \int_{0}^{s} \tau(\sigma) d\sigma + r(0).$$

Дальнейшее пока пропустим.

Билет 35: Регулярная поверхность, касательная плоскость, первая квадратичная форма поверхности

Определение 35.1. Поверхность – отображение из φ : $[a,b] \times [c,d] \to \mathbb{R}^3$. Поверхность называется регулярной, если $\operatorname{rk} \varphi' = 2$.

Определение 35.2. Вектором *нормали* к поверхности r(u, v) называют

$$N=r_u imes r_v$$
; $n=rac{N}{|N|}$ — единичная нормаль.

³Только про знак не совсем очевидно.

Определение 35.3. Первая квадратичная форма поверхности –

$$I(u, v) = dr^2 = r_u^2 du^2 + 2r_u r_v du dv + r_v^2 dv^2$$

Определение 35.4.

Определение 35.5. Касательная плоскость к поверхности – плоскость, натянутая на вектора r_u и r_v .

Билет 36: Вычисление длин и площадей с помощью первой квадратичной формы.

36.1 Длина кривой.

Определение 36.1. *Кривой на поверхности* r(u, v) называется отображение $\gamma: [a, b] \to \mathbb{R}^2$, которое сопоставляет параметру t значения u и v.

Утверждение 36.1. Длина кривой γ на поверхности r находится, как

$$\int_{t_1}^{t_2} \sqrt{I}.$$

Доказательство.

$$l = \int\limits_{t_1}^{t_2} \sqrt{r'(u,v)^2} \, \mathrm{d}t = \int\limits_{t_1}^{t_2} \sqrt{(r_u u' + r_v v')^2} \, \mathrm{d}t = \int\limits_{t_1}^{t_2} \sqrt{r_u^2 u'^2 + 2r_u r_v u' v' + r_v^2 v'^2} \, \mathrm{d}t = \int\limits_{t_1}^{t_2} \sqrt{I}.$$

Замечание 36.0. Первую квадратичную форму часто записывают в виде

$$^{2} = E du^{2} + 2F du dv + G dv^{2}$$
.

где ds – «элемент длины». Тут много записей, которые мы пока можем считать лишь формальными.

36.2 Мера Лебега на поверхности.

Здесь будет долгое определение меры Лебега на k-поверхности в \mathbb{R}^n . Эта самая поверхность – отображение $\varphi \colon G \subset \mathbb{R}^k \to \mathbb{R}^n$, видимо, как минимум класса C^1 .

1. Пусть сначала отображение φ линейное, т.е. поверхность является многомерной плоскостью. Рассмотрим вектора, в которые перейдёт стандартный базис \mathbb{R}^k : $a_k = \varphi(e_k)$. Заметим, что в случае n=k мы знаем, чему будет равен объём натянутого на них параллелипипеда:

$$\lambda_k(\varphi(\Delta)) = |\det \varphi|.$$

Пусть L – матрица отобрежения φ . Тогда можно записать это иначе:

$$\lambda_k\big(\varphi(\Delta)\big) = \sqrt{\det L^T\,L}.$$

Введём обозначение для этой матрицы: $G=(g_{ij})=L^TL$; $g_{ij}=a_ia_j$. Это матрица, составленная из скалярных произведений; она называется матрица Грама.

При этом естественно сказать, что при k < n ответ на наш вопрос не изменится: представим на секунду, что наша поверхность — единичный квадрат, который превратило в параллелипипед и вложило в трёхмерное пространство. Понятно, что его можно перенести ортогональным преобразованием в такой же на плоскости, стандартным образом вложенный в пространство.

2. Теперь рассмотрим произвольную простую поверхность. Пусть $M=\varphi(D),\ D\subset\mathbb{R}^k$ – открыто, $\varphi\in C^1,\ \mathrm{rk}\ \varphi'=k$ и φ инъективно. φ называют параметризацией, а φ^{-1} – картой.

Определение 36.2. *Касательное пространство* – множество векторов, касательных к поверхности в точке, или

$$T_p(M) = \{ \varphi'(p)(\Delta t) \mid \Delta t \in D \}.$$

Альтернативный подход. Можно ещё сказать, что это множество векторов, касательных к гладким кривым, проходящим через точку p. Этот подход гораздо проще обобщить. \Box

Определение 36.3. Ну а гладкой k-мерной поверхностью в \mathbb{R}^n называют множество, каждая точка которого имеет окрестность, являющуюся k-мерной гладкой простой поверхностью. 4

Здесь есть много наводящих рассуждений о том, почему мера определяется именно так, на самом деле идея всё та же – гладкое отображение локально линейно.

Определение 36.4.

$$\lambda_k M = \int\limits_{D} \sqrt{\det G},$$

просто G теперь зависит от параметров: $G = \varphi'^T \varphi'$.

Теорема 36.1. Пусть r(u, v) – поверхность, $u, v \in D$. Тогда её площадь

$$S = \int\limits_{D} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v$$

Эта теорема очевидно следует из определения меры на поверхности.

Определение 36.5. Две поверхности называют *изометричными*, если между ними есть отображение, сохраняющее длины всех кривых.

Теорема 36.2. Если есть параметризация, при которой квадратичные формы поверхностей совпадают, то они изометричны.

Доказательство. Но тогда ведь длины будут одинаковые, т.к. интегралы будут одинаковые.

Билет 37: Вторая квадратичная форма. Эллиптическая, гиперболическая точки поверхности.

Определение 37.1. Второй квадратичной формой поверхности называют

$$| = - dr \cdot dn = L du^2 + 2N du dv + M dv^2$$
.

где n – единичная нормаль.

Утверждение 37.1.

$$II = d^2r \cdot n = (r_{uu} \cdot n) du^2 + 2(r_{uv} \cdot n) du dv + (r_{vv} \cdot n) dv^2.$$

Доказательство. Я в упор не понимаю, как работает эта выкладка, но работает:

$$dr \perp n \Rightarrow dr \cdot n = 0 \Rightarrow 0 = d(dr \cdot n) = d^2r \cdot n + dr \cdot dn.$$

Определение 37.2. $z=rac{1}{2}$ II — соприкасающийся параболоид.

 $^{^{4}}$ Здесь проще сказать честное определение многообразия. Уже ведь очень недалеко.

Пояснение.

$$r - r_0 = \Delta r = dr + \frac{1}{2} d^2 r + \alpha \Rightarrow \Delta r \cdot n = \underbrace{dr \cdot n}_{=0} + \frac{1}{2} d^2 r \cdot n + \alpha.$$

В координатах, в которых наша точка касания лежит в начале координат, а ось z направлена по нормали, это уравнение задаёт соприкасающийся парабалоид. \Box

Определение 37.3.

- 1. $| \cdot | \cdot | > 0$ или $| \cdot | \cdot | < 0$ эллиптическая точка.
- 2. II > < 0 гиперболическая точка.
- 3. $|I| \ge 0$ или $|I| \le 0$ точка «выпрямления» (как согнутый лист бумаги).
- 4. II = 0 точка уплощения.

Билет 38: Нормальная кривизна в данном направлении. Главные кривизны поверхности.

Теорема 38.1. Пусть на поверхности r(u, v) расположена кривая, заданная функциями $u = \varphi_1(t), \ v = \varphi_2(t)$. Тогда её кривизна в любой точке равна

$$k = \frac{||}{I \cos \theta},$$

где θ – угол между вектором ν нормали к кривой и вектором n нормали к поверхности.

Доказательство. Рассмотрим сначала натуральную параметризацию $\varphi(s)$. Пусть $\psi(s)=f(\varphi(s))$. Тогда

$$k_1 = |\ddot{\psi}(s)| = \frac{\ddot{\psi}(s) \cdot n}{\cos \theta}.$$

Заметим, что

$$\dot{\psi}(s) = f_u \dot{\varphi}_1 + f_v \dot{\varphi}_2 \Rightarrow \ddot{\psi}(s) \Rightarrow \ddot{\psi}(s) = (f_u u \dot{\varphi}_1 + f_u v \dot{\varphi}_2) \dot{\varphi}_1 + f_u \ddot{\varphi}_1 + (f_u v \dot{\varphi}_1 + f_v v \dot{\varphi}_2) \dot{\varphi}_2 + f_v \ddot{\varphi}_2.$$

Умножая на n, получим, что

$$\dot{\psi}(s) \cdot n = \frac{||}{\mathrm{d}s^2} \Rightarrow k_1 = \frac{||}{\mathrm{d}s^2 \cos \theta}.$$

Возвращаясь к нормальной параметризации, получим, что

$$k_1 = \frac{||}{I\cos\theta}.$$

Определение 38.1. *Нормальной кривизной* поверхности в точке P в направлении e называется

$$k_n = \frac{|\mathbf{l}|}{I}.$$

Другими словами, это кривизна кривой, лежащей на поверхности, проходящей через P в направлении e такой, что вектор $\nu \parallel n$.

Теорема 38.2 (Мёнье). Кривизна кривой на поверхности в точке зависит только от направления, в котором она проходит через неё, и от угла θ . Она вычисляется по формуле

$$k_0 = \frac{k_n}{\cos \theta}.$$

П

Теорема 38.3. В одном направлении нормальная кривизна достигает максимума k_1 , а в другом – минимума k_2 , причём если обозначить за θ угол от прямой, соответствующей максимуму, то

$$k_n(\theta) = k_1 \cos^2 \theta + k_2 \sin^2 \theta.$$

 k_1 и k_2 называются *главными кривизнами* поверхности в точке.

Доказательство. Если разместить начало координат в нужной точке и направить z по нормали, то поворотом осей можно привести параболоид к виду

$$z = \frac{1}{2}(k_1x^2 + k_2y^2).$$

Пусть некоторая прямая в касательной плоскости проходит через начало координат и точку (x_0, y_0) . Тогда нормальная кривизна в этом направлении будет равна

$$k_n = \frac{\|(x_0, y_0)\|}{I(x_0, y_0)} = \frac{k_1 x_0^2 + k_2 y_0^2}{x_0^2 + y_0^2} = k_1 \frac{x_0^2}{x_0^2 + y_0^2} + k_2 \frac{y_0^2}{x_0^2 + y_0^2}.$$

Это ровно то, что нужно.

Билет 39: Полная (гауссова) кривизна. Теорема Гаусса.

Определение 39.1. Гауссова кривизна кривой в точке – произведение главных кривизн.

Определение 39.2. *Сферическое отображение поверхности* – отображение, которое точке поверхности сопоставляет единичный вектор нормали в ней (как точку единичной сферы).

Теорема 39.1. Пусть $\Gamma(U)$ – сферическое отображение U. Тогда

$$\lim_{U \to P} \frac{s(\Gamma(U))}{S(U)} = |K(P)|,$$

где K – гауссова кривизна в P, а U – окрестность точки P.

Доказательство. Чтобы посчитать, нужно сделать оценку через векторные произведения и теорему о среднем. \Box

Билет 40: Понятие о геодезической кривизне и геодезической кривой. Формулировка теорема Гаусса-Бонне.

Определение 40.1. Пусть кривая, лежащая на поверхности, проходит через точку на ней. Вектор ν можно разложить на нормальную и касательную составляющие:

$$\nu = \nu_{\tau} + \nu_{r}$$

Геодезической кривизной кривой называется $|\nu_{ au}|$. При этом $|\nu_n|$ – нормальная кривизна. Так же кривизна проекции кривой на касательную плоскость равна геодезической кривизне.

Утверждение 40.1.

$$k_g = \frac{|(\varphi''(t_0), \, \varphi'(t_0), \, n)|}{|\varphi'(t_0)|^3}.$$

Определение 40.2. *Геодезическими кривыми* называются кривые на поверхности, геодезические кривизны которых равны нулю.