Math 571 - Exam 2 (05.22)

Richard Ketchersid

Definition: $\prod_n b_n$ converges to P iff $P_n = \prod_{i=1}^n b_i \to P$ as $n \to \infty$ for $P \neq 0$. (If P = 0, then we say the product **diverges to** 0.)

Problem 1 (Convergent Products). (ii) and (iii) below follow easily from (i).

i) Show that for sequences (a_n) and (b_n) where $a_n \ge 0$ and $b_n > 0$, if $\lim_n \frac{a_n}{b_n} = c > 0$, then

$$\sum a_n$$
 converges $\iff \sum b_n$ converges

- ii) Show that $\sum \ln(1+a_n)$ converges iff $\sum a_n$ converges, for $a_n > 0$.
- iii) If $a_n > 0$ for all n, show that $\prod_{i=1}^{\infty} (1 + a_n)$ converges iff $\sum_{i=1}^{\infty} a_n$ converges.

Recall: $f: X \to Y$ is an *open map* iff f(O) is open in Y for every open $O \subseteq X$. So if f is a bijection, then f^{-1} is continuous iff f is open.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be open and continuous. Show that f must be monotonic.

Definition: Fix an interval [a,b] and $\alpha:[a,b]\to\mathbb{R}$ monotonic increasing. For f bounded on [a,b] define $||f||_1 = \int_a^b |f| \, d\alpha$. Let $L^1(\alpha)$ be the set of all bounded f on [a,b] so that $||f||_1 < \infty$ where f and g are considered the "same" if $||f - g||_1 = 0$. $L^1(\alpha)$ is a vector space with norm $||\cdot||_1$. Thus $d_1(f,g) = ||f-g||_1$ is a metric which turns out to be both complete and separable. Here we condider two dense sets of functions in $L^1(\alpha)$.

Problem 3. Let α be monotonic increasing on [a, b] and f bounded on [a, b] with $f \in \mathcal{R}(\alpha)$. Show that for any $\delta > 0$ there is a step function f_1 so that $||f_1 - f||_1 < \delta$.

As a consequence, in the space $L^1(\alpha)$, the set of step functions is a dense subset.

Note: A step function on [a, b] is given as follows: There is a partition $a = x_0 < \cdots < x_n = b$ so that on $[x_i, x_{i-1}]$ the function just takes a constant value, that is, $f|_{(x_{i-1}, x_i)} = a_i$ for some a_i . (I do not specify exactly what f does at the x_i 's, but this does not really matter. Can you explain why? – Not part of the exam, just a thought question.)

Hint: Fix a partition P so that $U(f,P) - L(f,P) < \delta$ and use this to define a step function, s, so that $||f - s||_1 = \int_a^b |f - s| \, d\alpha < \delta$. You must argue here that $|f - s| \in \mathcal{R}(\alpha)$.

Problem 4 (Generalization of FTC). Suppose that F is a differentiable function on [a,b] with F'=f, show that

$$\int_{\underline{a}}^{\underline{b}} f \, dx \le F(\underline{b}) - F(\underline{a}) \le \overline{\int_{\underline{a}}^{\underline{b}}} f \, dx$$