# TASK - 1 | Run the example as given in Listing - 1. Print top 10 rows of the data and also print the data summary as given in Figure - 2.

#### Top 10 Rows

```
import seaborn as sns
import pandas as panda

data_frame_tips = sns.load_dataset("tips")
data_frame_tips.head(10)
```

| Out[ ]: |   | total_bill | tip  | sex    | smoker | day | time   | size |
|---------|---|------------|------|--------|--------|-----|--------|------|
|         | 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
|         | 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
|         | 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
|         | 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
|         | 4 | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |
|         | 5 | 25.29      | 4.71 | Male   | No     | Sun | Dinner | 4    |
|         | 6 | 8.77       | 2.00 | Male   | No     | Sun | Dinner | 2    |
|         | 7 | 26.88      | 3.12 | Male   | No     | Sun | Dinner | 4    |
|         | 8 | 15.04      | 1.96 | Male   | No     | Sun | Dinner | 2    |
|         | 9 | 14.78      | 3.23 | Male   | No     | Sun | Dinner | 2    |

#### **Data Summary**

```
In [ ]: data_frame_tips.describe()
```

Out[

| ]:  |       | total_bill | tip        | size       |  |  |
|-----|-------|------------|------------|------------|--|--|
|     | count | 244.000000 | 244.000000 | 244.000000 |  |  |
| mea | mean  | 19.785943  | 2.998279   | 2.569672   |  |  |
|     | std   | 8.902412   | 1.383638   | 0.951100   |  |  |
|     | min   | 3.070000   | 1.000000   | 1.000000   |  |  |
|     | 25%   | 13.347500  | 2.000000   | 2.000000   |  |  |
|     | 50%   | 17.795000  | 2.900000   | 2.000000   |  |  |
|     | 75%   | 24.127500  | 3.562500   | 3.000000   |  |  |
|     | max   | 50.810000  | 10.000000  | 6.000000   |  |  |

# TASK - 2 | Repeat Task 1 on pima-indians-diabetes.csv dataset.

### Top 10 Rows

```
In [ ]: data_diabetes = panda.read_csv("diabetes.csv")
    data_diabetes.head(10)
```

| Out[ ]: |   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunc |
|---------|---|-------------|---------|---------------|---------------|---------|------|----------------------|
|         | 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | C                    |
|         | 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | (                    |
|         | 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | C                    |
|         | 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | C                    |
|         | 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2                    |
|         | 5 | 5           | 116     | 74            | 0             | 0       | 25.6 | C                    |
|         | 6 | 3           | 78      | 50            | 32            | 88      | 31.0 | C                    |
|         | 7 | 10          | 115     | 0             | 0             | 0       | 35.3 | C                    |
|         | 8 | 2           | 197     | 70            | 45            | 543     | 30.5 | C                    |
|         | 9 | 8           | 125     | 96            | 0             | 0       | 0.0  | C                    |
|         | 4 |             |         |               |               |         |      | <b>•</b>             |

#### **Data Summary**

```
In [ ]: data_diabetes.describe().T
```

| [ ]:                     | count | mean       | std        | min    | 25%      | 50%      |       |
|--------------------------|-------|------------|------------|--------|----------|----------|-------|
| Pregnancies              | 768.0 | 3.845052   | 3.369578   | 0.000  | 1.00000  | 3.0000   | 6.0   |
| Glucose                  | 768.0 | 120.894531 | 31.972618  | 0.000  | 99.00000 | 117.0000 | 140.2 |
| BloodPressure            | 768.0 | 69.105469  | 19.355807  | 0.000  | 62.00000 | 72.0000  | 80.0  |
| SkinThickness            | 768.0 | 20.536458  | 15.952218  | 0.000  | 0.00000  | 23.0000  | 32.0  |
| Insulin                  | 768.0 | 79.799479  | 115.244002 | 0.000  | 0.00000  | 30.5000  | 127.2 |
| ВМІ                      | 768.0 | 31.992578  | 7.884160   | 0.000  | 27.30000 | 32.0000  | 36.6  |
| DiabetesPedigreeFunction | 768.0 | 0.471876   | 0.331329   | 0.078  | 0.24375  | 0.3725   | 0.6   |
| Age                      | 768.0 | 33.240885  | 11.760232  | 21.000 | 24.00000 | 29.0000  | 41.0  |
| Outcome                  | 768.0 | 0.348958   | 0.476951   | 0.000  | 0.00000  | 0.0000   | 1.0   |
| 4                        |       |            |            |        |          |          | •     |

TASK - 3 | Generate dot plot and distribution plot on heart.csv dataset.

#### DotPlot

```
In [ ]: data_heart = panda.read_csv("heart.csv")
    data_heart.head()
    sns.relplot(data=data_heart,x="Age",y="RestingBP",col="Sex",hue="Sex",style="Sex",a

D:\ANACONDA\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layou
    t has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x22d0d4f8210>



**Distribution Plot (Histogram)** 

```
In [ ]: sns.displot(data=data_heart,x='Age',kde=True,rug=True,color="red")

D:\ANACONDA\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layou t has changed to tight self._figure.tight_layout(*args, **kwargs)
```





TASK - 4 | Run the example as given in Listing - 3 and review the number of missing values in the dataset before and after the data imputation transform.

```
In []: # statistical imputation transfo rm for the horse colic dataset
    from numpy import isnan
    from pandas import read_csv
    from sklearn.impute import SimpleImputer
    # Load dataset
    url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/horse-colic.csv"
    dataframe = read_csv(url,header=None, na_values = "?")
    # split into input and output elements
    data = dataframe.values
    ix = [i for i in range ( data.shape [1]) if i != 23]
    X , y = data [: , ix ], data [: , 23]
    # print total missing
    print ( "Missing(Before) : % d " % sum ( isnan(X).flatten ()))
```

```
# define imputer
imputer = SimpleImputer(strategy="constant")
# fit on the dataset
imputer.fit (X)
# transform the dataset

Xtrans = imputer.transform(X)
# print total missing
print ("Missing(After) : % d " % sum (isnan(Xtrans).flatten()))

Missing(Before) : 1605
Missing(After) : 0
```

## TASK - 5 | Repeat Task 4 on heart.csv dataset.

```
In [ ]: from pandas import read csv
        from sklearn.impute import SimpleImputer
        # Load dataset
        dataframe = read_csv("heart.csv", header=None, na_values="?")
        # Split into input and output elements
        x = dataframe.drop(columns=[11]) # Exclude the target variable (assuming it's the
        y = dataframe[11] # Assuming the target variable is in the last column
        # Print total missing values
        print("Missing(Before): %d" % x.isnull().sum().sum())
        # Define imputer
        imputer = SimpleImputer(strategy="mean")
        # Fit and transform the dataset
        Xtrans = imputer.fit_transform(X)
        # Print total missing values after transformation
        print("Missing(After): %d" % panda.DataFrame(Xtrans).isnull().sum().sum())
       Missing(Before): 1
       Missing(After): 0
```