Lecture 01 Course Overview and Binary

Euhyun Moon, Ph.D.

Machine Learning Systems (MLSys) Lab
Computer Science and Engineering
Sogang University

Slides adapted from Randy Bryant and Dave O'Hallaron: Introduction to Computer Systems, CMU

Course Information

- Instructor: Prof. Euhyun Moon
 - Research areas: Machine Learning & High-Performance Computing
 - Office: AS 813
 - Office Hours: Tuesday and Thursday 11am~1pm or by appointment
 - Email: ehmoon@sogang.ac.kr
- T/A: Eunji Lee (grad student in CSE) & Jaehun Jung (undergrad student in CSE)
 - Office: AS 815
 - Office Hours: TBD
 - Email:
 - Eunji Lee: dmswl23@sogang.ac.kr
 - Jaehun Jung: <u>seolan25@gmail.com</u>
- Course Lecture Meeting Time
 - Tuesday and Thursday from 9am to 10:15am
- Classroom
 - R404

Course Objectives

- Upon course completion, students can be expected to:
 - Be competent with fundamental concepts of computer systems understand architectural characteristics of computers which directly affect performance of program
 - Be able to find and eliminate bugs in the program efficiently
 - Be able to improve the quality and performance of program
 - Be prepared for other systems courses, such as Compilers, Operating Systems, Networks, Computer Architecture, Parallel and Distributed Computing, and Embedded Systems

Course Outline

- Introduction to Computer Systems
- Bits, Bytes, and Integers
- Machine-Level Programming
- Memory Hierarchy
- Cache Memories
- Code Optimization

Course Materials

- Lecture slides are the main course materials
 - Lecture slides will be uploaded on Cyber Campus
 - Use the textbook to supplement your learning
- Textbook
 - Randal E. Bryant and David R. O'Hallaron,
 - Computer Systems: A Programmer's Perspective, Third Edition, Pearson, 2016
 - This book really matters for the course!
 - How to solve labs
 - Practice problems typical of exam problems

Grading Policies

 The final course grade will be based on a composite score computed according to the following breakdown:

Graded Component	Percent of Final Grade
Midterm Exam	35 %
Final Exam	35 %
Programming Assignments	30 %
Total	100 %

General Course Policies

- Attendance is required for all students
 - Tardy (late for class): 9:01am ~ 9:15am
 - Absence: 9:16am ~

Exam

- The midterm will be held during a regularly scheduled course lecture meeting time
- The final exam will be held during the time slot scheduled by the university
- In the event of an unavoidable unanticipated absence from an exam, the student should notify the instructor as soon as possible

Electronic Media

 Students are responsible for being aware of any announcements made via Cyber Campus

General Course Policies

Programming Assignments

- Programming assignments will be assigned via posting to the Cyber Campus (https://cyber.sogang.ac.kr) in the "Assignments" section
 - All programming assignments must be submitted/uploaded to the Cyber Campus in the "Assignments" section
- All programming assignments are individual exercises
- Copying the source code of another student may result in academic penalties
 - For the first occurrence, you will receive a zero and reduction in one letter grade (e.g., A0→B0, B+→C+)
 - For the second occurrence, you will receive an "F" in this course
- Programming assignments will be accepted past the due date and time according to the following penalty: 24 hours late → -20%
- No late homework will be accepted after 24 hours from the due date

Binary

- Decimal, Binary, and Hexadecimal
- Base Conversion
- Binary Encoding

Decimal Numbering System

- Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Represent larger numbers as a sequence of digits
 - Each digit is one of the available symbols
- Example: 7061 in decimal (base 10)
 - $7061_{10} = (7 \times 10^3) + (0 \times 10^2) + (6 \times 10^1) + (1 \times 10^0)$

Octal Numbering System

- Eight symbols: 0, 1, 2, 3, 4, 5, 6, 7
 - Notice that we no longer use 8 or 9
- Base comparison:
 - Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
 - Base 8: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14...
- Example: What is 7061₈ in base 10?
 - $7061_8 = (7 \times 8^3) + (0 \times 8^2) + (6 \times 8^1) + (1 \times 8^0) = 3633_{10}$

Warmup Question

• What is 34₈ in base 10?

- **A.** 32₁₀
- B. 34₁₀
- C. 7₁₀
- D. 28₁₀
- E. 35₁₀

Binary and Hexadecimal

- Binary is base 2
 - Symbols: 0, 1
 - Convention: $2_{10} = 10_2 = 0b10$
- Example: What is 0b110 in base 10?
 - $0b110 = 110_2 = (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 6_{10}$
- Hexadecimal (hex, for short) is base 16
 - Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...?
 - Convention: $16_{10} = 10_{16} = 0 \times 10$
- Example: What is 0xA5 in base 10?
 - $0xA5 = A5_{16} = (10 \times 16^{1}) + (5 \times 16^{0}) = 165_{10}$

Converting to Base 10

- Can convert from any base to base 10
 - $0b110 = 110_2 = (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 6_{10}$
 - $0xA5 = A5_{16} = (10 \times 16^{1}) + (5 \times 16^{0}) = 165_{10}$
- We learned to think in base 10, so this is fairly natural for us
- Challenge: Convert into other bases (e.g. 2, 16)

Challenge Question

- Convert 13₁₀ into binary
- Hints:
 - $2^3 = 8$
 - $2^2 = 4$
 - $2^1 = 2$
 - $2^0 = 1$
- Think!

Converting from Decimal to Binary

- Given a decimal number N:
 - 1. List increasing powers of 2 from right to left until $\geq N$
 - 2. Then from *left to right*, ask is that (power of 2) \leq N?
 - If YES, put a 1 below and subtract that power from N
 - If NO, put a 0 below and keep going
- Example: 13 to binary

24=16	2 ³ =8	2 ² =4	21=2	20=1

Converting from Decimal to Base B

- Given a decimal number N:
 - 1. List increasing powers of B from right to left until $\geq N$
 - 2. Then from *left to right*, ask is that (power of B) $\leq N$?
 - If YES, put how many of that power go into N and subtract from N
 - If NO, put a 0 below and keep going
- Example: 165 to hex

16 ² =256	16 ¹ =16	16 ⁰ =1

- Hex → Binary
 - Substitute hex digits, then drop any leading zeros
 - Example: 0x2D to binary
 - 0x2 is 0b0010, 0xD is 0b1101
 - Drop two leading zeros, answer is 0b101101
- Binary → Hex
 - Pad with leading zeros until multiple of 4, then substitute each group of 4
 - Example: 0b101101
 - Pad to 0b 0010 1101
 - Substitute to get 0x2D

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Binary → **Hex Practice**

- Convert 0b100110110101101
 - How many digits?
 - Pad:
 - Substitute:

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Base Comparison

- Why does all of this matter?
 - Humans think about numbers in base
 10, but computers "think" about numbers in base 2
 - Binary encoding is what allows computers to do all of the amazing things that they do!
- You should have this table memorized by the end of the class
 - Might as well start now!

Base 10	Base 2	Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Numerical Encoding

- AMAZING FACT: You can represent anything countable using numbers!
 - Need to agree on an encoding
 - Kind of like learning a new language
- Examples:
 - Decimal Integers: 0→0b0, 1→0b1, 2→0b10, etc.
 - English Letters: CSE→0x435345, yay→0x796179

Binary Encoding

- With N binary digits, how many "things" can you represent?
 - Need N binary digits to represent n things, where $2^{N} \ge n$
 - Example: 5 binary digits for alphabet because 2⁵ = 32 > 26
- A binary digit is known as a bit
- A group of 4 bits (1 hex digit) is called a nibble
- A group of 8 bits (2 hex digits) is called a byte
 - 1 bit → 2 things, 1 nibble → 16 things, 1 byte → 256 things

So What's It Mean?

- A sequence of bits can have many meanings!
- Consider the hex sequence 0x4E6F21
 - Common interpretations include:
 - The decimal number 5140257
 - The characters "No!"
 - The color of this text
 - The real number 7.203034 x 10⁻³⁹
- It is up to the program/programmer to decide how to interpret the sequence of bits

Binary Encoding – Colors

- RGB Red, Green, Blue
 - Additive color model (light): byte (8 bits) for each color
 - Commonly seen in hex (in HTML, photo editing, etc.)
 - Examples: Blue→0x0000FF, Gold→0xFFD700,
 White→0xFFFFF, Deep Pink→0xFF1493

Binary Encoding – Characters/Text

- ASCII Encoding (<u>www.asciitable.com</u>)
 - American Standard Code for Information Interchange

```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
                                       32 20 040   Space
 0 0 000 NUL (null)
                                                            64 40 100 a#64; 0
                                                                                96 60 140 4#96;
 1 1 001 SOH (start of heading)
                                       33 21 041 6#33; !
                                                            65 41 101 @#65; A
                                                                                97 61 141 @#97; 8
                                       34 22 042 @#34; "
                                                            66 42 102 a#66; B
                                                                                98 62 142 @#98; b
    2 002 STX (start of text)
                                                            67 43 103 @#67; C
                                                                               99 63 143 @#99; 0
 3 3 003 ETX (end of text)
                                       35 23 043 # #
                                       36 24 044 @#36; $
                                                            68 44 104 D D
                                                                               100 64 144 @#100; d
    4 004 EOT (end of transmission)
                                                                              101 65 145 @#101; 6
    5 005 ENQ (enquiry)
                                       37 25 045 4#37; %
                                                            69 45 105 E E
                                                                               102 66 146 @#102; f
   6 006 ACK (acknowledge)
                                       38 26 046 4#38; 4
                                                            70 46 106 F F
                                                                              103 67 147 @#103; g
   7 007 BEL (bell)
                                       39 27 047 4#39; '
                                                            71 47 107 4#71; 🚱
                                       40 28 050 @#40; (
                                                            72 48 110 @#72; H
                                                                              104 68 150 @#104; h
   8 010 BS
              (backspace)
   9 011 TAB (horizontal tab)
                                       41 29 051 6#41; )
                                                            73 49 111 @#73; I
                                                                              105 69 151 @#105; i
                                                            74 4A 112 @#74; J
                                                                              106 6A 152 @#106; j
                                       42 2A 052 * *
10 A 012 LF
              (NL line feed, new line)
                                                            75 4B 113 K K
11 B 013 VT
                                       43 2B 053 + +
                                                                              107 6B 153 @#107; k
             (vertical tab)
                                       44 2C 054 @#44; ,
                                                            76 4C 114 L L
                                                                              |108 6C 154 l <del>1</del>
12 C 014 FF
             (NP form feed, new page)
13 D 015 CR
             (carriage return)
                                       45 2D 055 - -
                                                            77 4D 115 6#77; M
                                                                              |109 6D 155 m 🍱
                                                            78 4E 116 @#78; N
14 E 016 SO
                                       46 2E 056 . .
                                                                              |110 6E 156 n n
              (shift out)
                                       47 2F 057 / /
                                                            79 4F 117 @#79; 0
                                                                              111 6F 157 o º
15 F 017 SI
             (shift in)
                                                            80 50 120 P P
                                                                              112 70 160 @#112; p
16 10 020 DLE (data link escape)
                                       48 30 060 4#48; 0
17 11 021 DC1 (device control 1)
                                       49 31 061 4#49; 1
                                                            81 51 121 6#81; 0
                                                                              |113 71 161 @#113; q
18 12 022 DC2 (device control 2)
                                       50 32 062 4#50; 2
                                                            82 52 122 R R
                                                                              114 72 162 @#114; r
19 13 023 DC3 (device control 3)
                                       51 33 063 3 3
                                                            83 53 123 4#83; 5
                                                                              115 73 163 @#115; 3
                                       52 34 064 @#52; 4
                                                            84 54 124 @#84; T
                                                                              |116 74 164 @#116; t
20 14 024 DC4 (device control 4)
21 15 025 NAK (negative acknowledge)
                                      53 35 065 4#53; 5
                                                            85 55 125 U U
                                                                              117 75 165 @#117; <mark>u</mark>
22 16 026 SYN (synchronous idle)
                                                            86 56 126 @#86; V
                                       54 36 066 6 6
                                                                              |118 76 166 v ♥
23 17 027 ETB (end of trans. block)
                                       55 37 067 4#55; 7
                                                            87 57 127 6#87; ₩
                                                                              |119 77 167 w ₩
24 18 030 CAN (cancel)
                                       56 38 070 4#56; 8
                                                            88 58 130 6#88; X | 120 78 170 6#120; X
25 19 031 EM (end of medium)
                                      57 39 071 4#57; 9
                                                            89 59 131 6#89; Y 121 79 171 6#121; Y
                                       58 3A 072 4#58; :
                                                            90 5A 132 Z Z
                                                                              122 7A 172 @#122; Z
26 1A 032 SUB (substitute)
                                                            91 5B 133 [ [
                                       59 3B 073 &#59; ;
                                                                              123 7B 173 @#123; {
27 1B 033 ESC (escape)
                                                            92 5C 134 @#92; \
28 1C 034 FS
             (file separator)
                                       60 3C 074 < <
                                                                              124 7C 174 @#124; |
29 1D 035 GS
              (group separator)
                                       61 3D 075 = =
                                                            93 5D 135 ] ]
                                                                              125 7D 175 @#125; }
                                                                              126 7E 176 ~ ~
                                       62 3E 076 > >
                                                            94 5E 136 @#94; ^
30 1E 036 RS
              (record separator)
                                                            95 5F 137 6#95; _ | 127 7F 177 6#127; DEL
                                       63 3F 077 ? ?
31 1F 037 US
              (unit separator)
```

Source: www.LookupTables.com

Binary Encoding – Files and Programs

- At the lowest level, all digital data is stored as bits!
- Layers of abstraction keep everything comprehensible
 - Data/files are groups of bits interpreted by program
 - Program is actually groups of bits being interpreted by your CPU
- Computer Memory Demo (try it!)
 - From vim: %!xxd
 - From emacs: M-x hexl-mode

Summary

- Humans think about numbers in decimal; computers think about numbers in binary
 - Base conversion to go between them
 - Hexadecimal is more human-readable than binary
- All information on a computer is binary
- Binary encoding can represent anything!
 - Computer/program needs to know how to interpret the bits

Let's have a great semester!