19.04

На этой паре мы занимались тем, что ввели определения, обсудили связь между ними и попытались мотивировать изучение эвристик из класса 1DSPACE'.

Определение 1. Машина Тьюринга называется онлайн машиной Тьюринга, если она может двигать (но не обязана) головку на входной ленте только в одном направлении.

Определение 2. Класс всех языков, распознаваемых онлайн машиной Тьюринга, использующей не более f(n) памяти, будем обозначать 1DSPACE(f).

Определение 3. Класс языков, распознаваемых онлайн машиной Тьюринга, которая может узнать длину входа и использует не более f(n) памяти, будем обозначать 1DSPACE'(f).

Лемма 1. Существует язык $L \in 1DSPACE'(\log n)$ такой, что $L \notin 1DSPACE(o(n))$.

Здесь в качестве L подходит множество всех таких двоичных слов s, что двоичная запись |s| является некоторым префиксом s.

Лемма 2. Для любой функции f такой, что $f(n) < \frac{n}{2}$ при всех достаточно больших n, и f можеет быть вычислено c использованием $O(\log f)$ памяти, существует язык L такой, что $L \in \mathrm{DSPACE}(\log f) \cap \mathrm{1DSPACE}'(f)$ и $L \not\in \mathrm{1DSPACE}'(o(f))$.

Тут подходит множество всех f-периодичных строк.

В лемме 2 у нас возникла трудность с вычислением f и на семинаре я предложил просто взять f=n/4, но после мы выяснили, что в качестве f подходит любая достаточно разумная функция, просто нужно внимательно следить за определениями. Подробнее в разделе с замечаниями.

Основным результатом была такая теорема.

Теорема 1. Для любой функции $f = \Omega(\log \log n)$ и языка L, распознаваемого оффлайн машиной Тьюринга M с использованием f(n) памяти и рабочим алфавитом Γ , $L \in \mathrm{1DSPACE}'(f(n) \cdot |\Gamma|^{f(n)})$, если f(n) может быть вычислено с использованием $O(f(n) \cdot |\Gamma|^{f(n)})$ памяти.

Доказательство этой теоремы очень похоже на сведение двусторонних конечных автоматов к односторонним (обычным), с одной небольшой тонкостью, связанной с зацикливанием. Дело в том, что машина

Тьюринга, даже если она останавливается на любом входе, может зациклиться, если ее запустить из неправильной конфигурации. В автоматах такое тоже бывает, но там об этом можно не думать, поскольку все функции переходов можно вычислить заранее (они же конечные!). Я эту проблему обходил при помощи техники baby-step giant-step (то есть запуска двух симуляций с разными скоростями), но на самом деле ее можно решать как угодно, например, просто добавлением счетчика (но тогда надо внимательно следить за памятью).

Algorithm 1 DPLL

```
1: procedure DPLL_{A,B}(\varphi)
         if \varphi is empty then
 2:
             return satisfiable
 3:
 4:
         if \varphi contain empty clause then
             return unsatisfiable
 5:
         x \leftarrow A(\varphi)
 6:
         b \leftarrow B(\varphi, x)
 7:
         if DPLL_{A,B}(\varphi[x=b]) = satisfiable then
 8:
 9:
             return satisfiable
10:
         return DPLL<sub>A,B</sub>(\varphi[x = \neg b])
 1: procedure DPLL<sub>H</sub>(\varphi)
 2:
         if \varphi is empty then
             return satisfiable
 3:
         if \varphi contain empty clause then
 4:
 5:
             return unsatisfiable
 6:
         (x,b) \leftarrow H(\varphi)
         if DPLL_H(\varphi[x=b]) = \text{satisfiable then}
 7:
             return satisfiable
 8:
         return DPLL<sub>H</sub>(\varphi[x = \neg b])
 9:
```

Еще мы определили два вида DPLL (классический с двумя эвристиками, а нужный для наших целей — с одной) и поняли, что они друг от друга в терминах сложности по памяти почти ничем не отличаются.

26.04

Мы всю пару доказывали экспоненциальную нижнюю оценку на DPLL_H с $H \in \mathrm{1DSPACE}'(o(\frac{n}{\log n}))$. Подробности напишу позже.

Общие замечания

Здесь чуть позже появятся замечания, которые могут быть интересны тем, кто был на семинаре.