

H2 Mathematics (9758) Chapter 6 3D Vector Geometry Extra Practice Questions Solutions

Qn 2	2007/IJC/I/5
(i)	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}, \ \overrightarrow{OC} = \begin{pmatrix} -7 \\ -2 \\ -1 \end{pmatrix}$
	Find any 2 of the 3 vectors: $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} -11 \\ -5 \\ -3 \end{pmatrix}$, $\overrightarrow{AC} = \begin{pmatrix} -8 \\ -3 \\ -2 \end{pmatrix}$ Since \overrightarrow{AB} not parallel to \overrightarrow{BC} (or equivalent), therefore A, B & C not collinear.
	Since AB hot parameter BE (or equivalent), therefore A, B & C not connect: $ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 11 \\ 5 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 8 \\ 3 \\ 2 \end{pmatrix} \text{ or equivalent, Vector } \bot \text{ to plane } ABC = \begin{pmatrix} 1 \\ 2 \\ -7 \end{pmatrix} $ $ (\text{or } -\begin{pmatrix} 1 \\ 2 \\ -7 \end{pmatrix}) $

(iii)
$$\overrightarrow{OP} = \begin{pmatrix} 2\\4\\7 \end{pmatrix} \text{ and } \overrightarrow{OQ} = \begin{pmatrix} 4\\4\\6 \end{pmatrix} \Rightarrow \overrightarrow{PQ} = \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$$

$$\underline{\text{Method 1:}}$$
Length of projection
$$= \frac{|\overrightarrow{PQ} \times n|}{|n|} = \frac{\begin{pmatrix} 2\\0\\-1 \end{pmatrix} \times \begin{pmatrix} 1\\2\\-7 \end{pmatrix}|}{\sqrt{1+4+49}} = \frac{\begin{pmatrix} 2\\13\\4 \end{pmatrix}|}{\sqrt{54}}$$

$$= \frac{\sqrt{4+169+16}}{\sqrt{54}} = \sqrt{\frac{7}{2}} \text{ or } \frac{\sqrt{14}}{2}$$

Method 2: Length of projection of
$$\overrightarrow{PQ}$$
 onto $n = \frac{|\overrightarrow{PQ} \cdot n|}{|n|} = \frac{\begin{vmatrix} 2 \\ 0 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 2 \\ -7 \end{vmatrix}}{\sqrt{1+4+49}} = \frac{9}{\sqrt{54}}$

Using Pythagoras' Theorem, length of projection of \overrightarrow{PQ} onto plane

$$=\sqrt{5-\frac{81}{54}}=\sqrt{\frac{7}{2}} \ or \ \frac{\sqrt{14}}{2}$$

Qn 3	2007/PJC/I/6
(i)	$l_1: \mathbf{r} = \begin{pmatrix} p \\ 3 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$
	Given $q=1$ and $p=4$,
	Since <i>C</i> lies on l_1 , $\overrightarrow{OC} = \begin{pmatrix} 4 \\ 3 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$;
	$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
	$\overrightarrow{AC} \perp l_2 \Rightarrow \begin{pmatrix} 4+\lambda \\ \lambda \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 0$
	$\Rightarrow \lambda = -12$
(ii)	$\overrightarrow{OC} = -8\mathbf{i} - 9\mathbf{j} + 7\mathbf{k}$
	$AB = q\mathbf{i} + 2\mathbf{k}$ Given acute angle between l_1 and l_2 is 60° ,
	$\cos 60^{\circ} = \frac{\begin{vmatrix} 1\\1\\0 \end{vmatrix} \bullet \begin{vmatrix} q\\0\\2 \end{vmatrix}}{\sqrt{2}\sqrt{q^2 + 4}}$

$$\sqrt{2}\sqrt{q^2+4} = 2q \implies q = \pm 2$$

Qn 4	2008/JJC/I/3
(i)	$l_1: \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix}, \lambda \in \mathbb{R}$
	since P lies on l_1 ,
	$\begin{pmatrix} a \\ 1 \\ 16 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix} \text{ for some suitable } \lambda \in \mathbb{R}$
	$\Rightarrow 3 - \lambda = 1 \Rightarrow \lambda = 2$
	$\Rightarrow a = 1 + \lambda = 3 \text{ (proven)}$
(ii)	since Q lies on l_2 ,
	$\overrightarrow{OQ} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} $ for some suitable $\mu \in \mathbb{R}$
	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} -2\\2\\-14 \end{pmatrix} + \mu \begin{pmatrix} 0\\-4\\3 \end{pmatrix} = \begin{pmatrix} -2\\2-4\mu\\-14+3\mu \end{pmatrix}$
	since $PQ \perp l_2$
	$\begin{pmatrix} -2\\2-4\mu\\-14+3\mu \end{pmatrix} \bullet \begin{pmatrix} 0\\-4\\3 \end{pmatrix} = 0$
	$(0) + (-8 + 16\mu) + (-42 + 9\mu) = 0$
	$\Rightarrow \mu = 2$
	(1)
	$\Rightarrow \overrightarrow{OQ} = \begin{pmatrix} 1 \\ -5 \\ 8 \end{pmatrix} (ans)$
(iii)	$ \begin{vmatrix} 1 \\ -1 \\ 7 \end{vmatrix} $
	$\cos \theta = \frac{25}{5\sqrt{51}} \Rightarrow \theta = 45.6^{\circ} \text{ (to 1 d.p.)}$

Qn 5 | 2008/HCI/I/12

Required Distance
$$= \frac{(\mathbf{a} - \mathbf{r}_1) \cdot \mathbf{n}}{|\mathbf{n}|} = \frac{\mathbf{a} \cdot \mathbf{n}}{|\mathbf{n}|} - \frac{\mathbf{r}_1 \cdot \mathbf{n}}{|\mathbf{n}|}$$
$$= \begin{pmatrix} 1 \\ 7 \\ -10 \end{pmatrix} \cdot \frac{1}{\sqrt{21}} \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} - \frac{13}{\sqrt{21}} = \frac{42}{\sqrt{21}} = 2\sqrt{21}$$

Alternatively

Take a point in Π_1 , say C (13,0,0) which satisfies $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = 13$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 12 \\ -7 \\ 10 \end{pmatrix}$$

Length of projection of \overrightarrow{AC} onto $\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = \begin{vmatrix} \overrightarrow{AC} \cdot \mathbf{n} \\ |\mathbf{n}| \end{vmatrix} = \begin{vmatrix} 12 \\ -7 \\ 10 \end{vmatrix} \cdot \frac{1}{\sqrt{21}} \begin{pmatrix} 1 \\ 2 \\ -4 \end{vmatrix} = 2\sqrt{21}$

Alternatively: Finding foot of perpendicular first (Long Method)

Vector equation of a line through A and parallel to $\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$:

$$\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -10 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

Let C be the foot of the perpendicular from A to \prod_{i}

Then
$$\overrightarrow{OC} = \begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix}$$

C lies on
$$\Pi_1$$
: $\begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = 13 \implies \lambda = -2$

$$\overrightarrow{OC} = \begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ -2 \end{pmatrix}; \overrightarrow{AC} = \begin{pmatrix} 1+\lambda-1 \\ 7+2\lambda-7 \\ -10-4\lambda+10 \end{pmatrix}$$

\Rightarrow Required distance = $AC = \sqrt{84} = 2\sqrt{21}$

(ii) Since d is positive, the angle between $(\mathbf{a} - \mathbf{r}_1)$ & \mathbf{n} is acute

$$\overrightarrow{OB} = \overrightarrow{OA} - 2 d \frac{\mathbf{n}}{|\mathbf{n}|} = \begin{pmatrix} 1 \\ 7 \\ -10 \end{pmatrix} - 2 \left(2\sqrt{21} \right) \frac{1}{\sqrt{21}} \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix}$$

Alternatively: Finding foot of perpendicular first (Long Method)

Vector equation of a line through A and parallel to $\begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$:

$$\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -10 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}, \lambda \in \mathbb{R}$$

Let C be the foot of the perpendicular from A to \prod_{1}

Then
$$\overrightarrow{OC} = \begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix}$$

C lies on
$$\Pi_1$$
:
$$\begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = 13 \implies \lambda = -2$$

$$\overrightarrow{OC} = \begin{pmatrix} 1+\lambda \\ 7+2\lambda \\ -10-4\lambda \end{pmatrix} = \begin{pmatrix} -1\\ 3\\ -2 \end{pmatrix}$$

By ratio theorem :
$$\overrightarrow{OC} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) \Rightarrow \overrightarrow{OB} = 2\overrightarrow{OC} - \overrightarrow{OA} : \overrightarrow{OB} = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix}$$

(iii)
$$\prod_1 : x + 2y - 4z = 13$$
(1)

$$\Pi_2: x + 3y + 3z = -8$$
(2)

By G.C. solve equations (1) & (2)

The vector equation of the line of intersection is

$$l: \mathbf{r} = \begin{pmatrix} 55 \\ -21 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} \quad \text{where} \quad \lambda \in \mathbb{R} \quad \text{or} \quad \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} \text{ etc}$$

(iv) Since B and l lie on the image plane of Π_2 so the equation of image plane is

$$\mathbf{r} = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix} + \alpha \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} + \beta \begin{bmatrix} 55 \\ -21 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ -1 \\ 6 \end{bmatrix}$$

$$\mathbf{r} = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix} + \alpha \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 29 \\ -10 \\ -3 \end{pmatrix} \text{ where } \alpha \text{ and } \beta \in \mathbb{R}$$

Qn 6	2010 DHS Prelim/P2/Q4
(i)	Let θ be acute angle between the 2 planes.
	$\cos \theta = \left \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{ \mathbf{n}_1 \mathbf{n}_2 } \right = \frac{\begin{vmatrix} 2 \\ 4 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 3 \\ 1 \end{vmatrix}}{\sqrt{21}\sqrt{11}} = \frac{15}{\sqrt{21}\sqrt{11}}$
	$\therefore \theta = 9.3^{\circ}.$ $2x + 4y + z = 10$
(ii)	
	x+3y+z=8
	Using GC, Let $z = t \in \mathbb{R}$,
	$\Rightarrow \qquad x = -1 + \frac{t}{2}, \qquad y = 3 - \frac{t}{2},$
	$\therefore l_1: \mathbf{r} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \qquad \alpha = \frac{t}{2} \in \mathbb{R}$
(iii)	Since the point with co-ordinates (6,m.5) lies on the first plane,
	$\mathbf{a} \cdot \mathbf{d}_1 = D_1$
	$\Rightarrow \begin{pmatrix} 6 \\ m \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = 10$ $\Rightarrow 12 + 4m + 5 = 10$ $\Rightarrow m = -\frac{7}{4}$
	$\Rightarrow m = -\frac{7}{4}$
(iv)	$l_2: \mathbf{r} = \mathbf{a_2} + \beta \mathbf{d_2} = \begin{pmatrix} 2 \\ m \\ 7 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \qquad \beta \in \mathbb{R}.$
	$\mathbf{d_1} \cdot \mathbf{d_2} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = 2 - 2 = 0 \qquad (independent \ of \ the \ value \ of \ m)$
	Therefore lines l_1 and l_2 are perpendicular for all real values of m .

Qn 7 2009/CJC/I/11 (i) Let $\mathbf{n_1}$ and $\mathbf{n_2}$ be the normals of p_1 an $\mathbf{n_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	d p_2 respectively.
$\mathbf{n_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	
$\mathbf{n_2} = \begin{pmatrix} 2\\3\\0 \end{pmatrix} \times \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\-2\\-3 \end{pmatrix}$	
$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix}$	
Therefore l is parallel to $5\mathbf{i} + 6\mathbf{j} + \mathbf{k}$	\
Acute angle bet. p_1 and $p_2 = \cos^{-1} \frac{1}{n}$	$ \begin{array}{c} 1 \\ 1 \\ \hline $
· · · · · · · · · · · · · · · · · · ·	1 d.p.)
(iii) Perpendicular distance = $\frac{\begin{bmatrix} 4 \\ 2 \\ -4 \\ 6 \end{bmatrix}}{\sqrt{22}}$	$ \begin{array}{ c c } \hline \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix} \end{array} $
$=\frac{\begin{pmatrix} 2\\-2\\-4 \end{pmatrix} \cdot \begin{pmatrix} 3\\-2\\-3 \end{pmatrix}}{\sqrt{22}}$	
$=\frac{ -22 }{\sqrt{22}}=\sqrt{22}$	
(iv) (1)	2)
p_1 : \mathbf{r} . $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = 4$ and p_3 : \mathbf{r} . $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{bmatrix} -2 \\ 2 \end{bmatrix} = b$
Distance between p_1 and $p_3 = \frac{1}{\sqrt{3}}$	
$\left \frac{4}{\sqrt{3}} - \frac{b}{2\sqrt{3}} \right = \frac{1}{\sqrt{3}}$	
$\frac{4}{\sqrt{3}} - \frac{b}{2\sqrt{3}} = \frac{1}{\sqrt{3}} \text{or} \frac{4}{\sqrt{3}} - \frac{b}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$ $b = 6 \text{ or } 10$	$\frac{-1}{\sqrt{3}}$

Qn 8	2009/MJC/I/9
(i)	Sub $(\alpha, \beta, 0)$ into Π_1 and Π_2 .
	π_1 : $1(\alpha) + 3(\beta) + a(0) = 8$
	π_2 : $3(\alpha) + 1(\beta) + b(0) = 0$
(44)	Using GC, $\alpha = -1, \beta = 3$
(ii)	$ \begin{pmatrix} 1\\3\\a \end{pmatrix} \times \begin{pmatrix} 3\\1\\b \end{pmatrix} = \begin{pmatrix} 3b-a\\3a-b\\-8 \end{pmatrix} $
	$\begin{pmatrix} -1 \end{pmatrix} \qquad \begin{pmatrix} 3b-a \end{pmatrix}$
	$l_{1}: \mathbf{r} = \begin{pmatrix} -1\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 3b - a\\3a - b\\-8 \end{pmatrix} , \lambda \in \mathbb{R}$
(iii)	$ \begin{pmatrix} -1\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 3b-a\\3a-b\\-8 \end{pmatrix} = \begin{pmatrix} 5\\2\\2 \end{pmatrix} + \mu \begin{pmatrix} 4\\1\\0 \end{pmatrix} $
	$\Rightarrow \lambda = -\frac{1}{4}$
	Sub $a = -b$ and $\lambda = -\frac{1}{4}$, we have
	$-1 - \frac{1}{4}(-4a) = 5 + 4\mu$
	$-1 - \frac{1}{4}(-4a) = 5 + 4\mu$ $3 - \frac{1}{4}(4a) = 2 + \mu$
	$\therefore a=2$
	b = -2

Qn 9	2014 SRJC P2 Q1
(i)	Vector equation l is $\mathbf{r} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}, \ \lambda \in \mathbb{R}$
	A unit vector c parallel to $l = \frac{1}{5} \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix} (OR \frac{1}{5} \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix})$
	$\left \overrightarrow{AB \cdot c} \right = \left \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 + \sqrt{5} \\ -1 \end{pmatrix} \right \cdot \frac{1}{5} \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$
	$= \frac{1}{5} \begin{bmatrix} -2 \\ -\sqrt{5} \\ 4 \end{bmatrix} \bullet \begin{bmatrix} -4 \\ 0 \\ 3 \end{bmatrix} = 4$
	$ \overrightarrow{AB} \cdot \mathbf{c} $ is the length of projection \overrightarrow{AB} onto l (or onto \mathbf{c})
(ii)	$\left \overrightarrow{AB} \right = \begin{pmatrix} -2 \\ -\sqrt{5} \\ 4 \end{pmatrix} = 5$
	By Pythagoras' Theorem,
	The shortest distance from A to $l = \sqrt{5^2 - 4^2} = 3$
(iii)	ΔAGF and ΔBGF are similar triangles. Since AF corresponds to BF , $\frac{\text{Area of } \Delta AGF}{\text{Area of } \Delta BGF} = \frac{3^2}{4^2} = \frac{9}{16}$
(iv)	$\frac{\text{Area of } \Delta AGF}{\text{Area of } \Delta BGF} = \frac{\frac{1}{2}(AG)(GF)}{\frac{1}{2}(BG)(GF)} = \frac{AG}{BG}$
	From above, $\frac{AG}{BG} = \frac{9}{16}$

$$\overrightarrow{OG} = \frac{9\overrightarrow{OB} + 16\overrightarrow{OA}}{25}$$

$$= \frac{1}{25} \left(9 \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + 16 \begin{pmatrix} 2 \\ 1 + \sqrt{5} \\ -1 \end{pmatrix} \right)$$

$$= \frac{1}{25} \begin{pmatrix} 32 \\ 25 + 16\sqrt{5} \\ 11 \end{pmatrix}$$