## HW 4

## November 16, 2020

1. Let  $f(x) = x^3$ , p be the Lagrange interpolation polynomial of f using interpolation points x = 0, x = 1. On the interval [0, 1], find the point c that maximizes the interpolation error |f(c) - p(c)|, and find another point  $s \in [0, 1]$  such that

$$f(c) - p(c) = f''(s)c(c-1)/2$$

Answer:

$$p(x) = 0 \cdot \frac{x-1}{0-1} + 1 \cdot \frac{x-0}{1-0} = x$$
$$|f-p| = |x^3 - x|$$

So this is maximalized at point  $c = \frac{\sqrt{3}}{3}$ .

$$f(c) - p(c) = c^3 - c = 3sc(c - 1)$$

So

$$s = \frac{c+1}{3} = \frac{\sqrt{3}+3}{9}$$

2. Let  $f(x) = e^x$ , p be the Lagrange interpolation polynomial of f on interval [0,2] using interpolation points  $x_0 = 0$ ,  $x_1 = 1$ ,  $x_2 = 2$ , find an upper bound for the  $L^{\infty}$  norm of f(x) - p(x) on [0, 2], using the error bound of Lagrange polynomial we covered in the lecture (Theorem 6.2 in textbook, Theorem 1.5 in lecture notes).

Answer:

The error bound of Lagrange polynomial is

$$|f(x) - p(x)| = \frac{|f'''(c)||x(x-1)(x-2)|}{3!}$$

When  $c \in [0, 2], |f'''(c)| \le e^2$ .

When  $x \in [0, 2]$ ,  $|x(x - 1)(x - 2)| \le \frac{2\sqrt{3}}{9}$ .

Hence an upper bound for this error is  $\frac{e^2\sqrt{3}}{27}$ . It's ok if you get a slightly larger error bound, for example  $4e^2/3$ .

- 3. Suppose f is continuous and with continuous derivatives of order up to and including 5 on [a, b], and there are three distinct points  $x_0, x_1, x_2$  in [a, b]. Let  $y_i = f(x_i), i = 0, 1, 2$ ;  $z_i = f'(x_i), j = 0, 2$ .
- (i) Find a polynomial p of degree at most 4, such that  $p(x_i) = y_i$ , i = 0, 1, 2;  $p'(x_j) = z_j$ , j = 0, 2.
- (ii) Use an argument similar to the error estimate of Hermite interpolation polynomial to show that for any  $x \in [a, b]$ , there is some number  $s \in [a, b]$  such that

$$f(x) - p(x) = f^{(5)}(s)(x - x_0)^2(x - x_1)(x - x_2)^2/5!$$

Answer:

(i) • Approach I: We can find five polynomials  $p_0$ ,  $p_1$ ,  $p_2$ ,  $q_0$ ,  $q_2$ , such that

$$p_0(x_0) = p_1(x_1) = p_2(x_2) = q'_0(x_0) = q'_2(x_2) = 0$$

$$p_i(x_i) = 0$$
 when  $i \neq i$ 

$$p'_{i}(x_{i}) = 0$$
 when  $j = 0, 2$ 

$$a_0'(x_2) = a_2'(x_0) = 0$$

$$q_i(x_i) = 0$$

Then the answer can be written as

$$p = \sum_{i} y_i p_i + z_0 q_0 + z_2 q_2$$

To get  $p_0$ , from  $p_0(x_1) = p_0(x_2) = p'_0(x_2) = 0$  we get  $p_0 = (x - x_1)(x - x_2)^2(Ax + B)$ , now use the remaining two conditions,  $p_0(x_0) = 1$ ,  $p'_0(x_0) = 0$ , to solve for A and B, we get

$$p_0 = \frac{(x - x_1)(x - x_2)^2}{(x_0 - x_1)(x_0 - x_2)^2} (1 - (x - x_0)(\frac{1}{x_0 - x_1} + \frac{2}{x_0 - x_2}))$$

Similarly,

$$p_1 = \frac{(x - x_0)^2 (x - x_2)^2}{(x_1 - x_0)^2 (x_1 - x_2)^2}$$

$$p_2 = \frac{(x - x_0)^2 (x - x_1)}{(x_2 - x_0)^2 (x_2 - x_1)} (1 - (x - x_2)(\frac{2}{x_2 - x_0} + \frac{1}{x_2 - x_1}))$$

$$q_0 = \frac{(x - x_0)(x - x_1)(x - x_2)^2}{(x_0 - x_1)(x_0 - x_2)^2}$$

So

$$p = y_0 \frac{(x - x_1)(x - x_2)^2}{(x_0 - x_1)(x_0 - x_2)^2} (1 - (x - x_0)(\frac{1}{x_0 - x_1} + \frac{2}{x_0 - x_2}))$$

$$+ y_1 \frac{(x - x_0)^2(x - x_2)^2}{(x_1 - x_0)^2(x_1 - x_2)^2}$$

$$+ y_2 \frac{(x - x_0)^2(x - x_1)}{(x_2 - x_0)^2(x_2 - x_1)} (1 - (x - x_2)(\frac{2}{x_2 - x_0} + \frac{1}{x_2 - x_1}))$$

$$+ z_0 \frac{(x - x_0)(x - x_1)(x - x_2)^2}{(x_0 - x_1)(x_0 - x_2)^2}$$

$$+ z_2 \frac{(x - x_0)^2(x - x_1)(x - x_2)}{(x_2 - x_0)^2(x_2 - x_1)}$$

 $q_2 = \frac{(x-x_0)^2(x-x_1)(x-x_2)}{(x_2-x_0)^2(x_2-x_1)}$ 

• We can also use Hermite interpolation polynomial: suppose  $f'(x_1) = a$ , use all information for  $f(x_i)$ , i = 0, 1, 2 and  $f'(x_i)$ , i = 0, 1, 2, we can write down the Hermite interpolation polynomial which is a polynomial of degree at most 5. The coefficient for  $x^5$  is

$$-\frac{y_0}{(x_0-x_1)^2(x_0-x_2)^2}\left(\frac{2}{x_0-x_1}+\frac{2}{x_0-x_2}\right)$$
$$-\frac{y_1}{(x_1-x_0)^2(x_1-x_2)^2}\left(\frac{2}{x_1-x_0}+\frac{2}{x_1-x_2}\right)$$

$$-\frac{y_2}{(x_2-x_1)^2(x_2-x_0)^2}(\frac{2}{x_2-x_1}+\frac{2}{x_2-x_0}) + \frac{z_0}{(x_0-x_1)^2(x_0-x_2)^2} + \frac{a}{(x_1-x_0)^2(x_1-x_2)^2} + \frac{z_2}{(x_2-x_0)^2(x_2-x_1)^2}$$

Since we want p to be of degree no more than 4, we must set this coefficient to be 0. Hence

$$a = \frac{y_0(x_1 - x_2)^2}{(x_0 - x_2)^2} \left(\frac{2}{x_0 - x_1} + \frac{2}{x_0 - x_2}\right)$$

$$+ y_1 \left(\frac{2}{x_1 - x_0} + \frac{2}{x_1 - x_2}\right)$$

$$+ \frac{y_2(x_1 - x_0)^2}{(x_2 - x_0)^2} \left(\frac{2}{x_2 - x_1} + \frac{2}{x_2 - x_0}\right)$$

$$- \frac{z_0(x_1 - x_2)^2}{(x_0 - x_2)^2} - \frac{z_2(x_1 - x_0)^2}{(x_2 - x_0)^2}$$

Now put this in the formula for Hermite interpolation polynomials, you'll get the exact same answer as above.

(ii) If  $x = x_i$  it's trivially true. Now suppose  $x \neq x_i$  for any i, consider

$$G(t) = f(t) - p(t) - \frac{(f(x) - p(x))(t - x_0)^2(t - x_1)(t - x_2)^2}{(x - x_0)^2(x - x_1)(x - x_2)^2}$$

 $G(x) = G(x_i) = G'(x_0) = G'(x_2) = 0$ , so G' is zero at at least 5 points, G(5) is zero at at least one point. Let that point be s, then  $G^{(5)}(s) = 0$  implies the equation we need to prove.

4. Let  $q_j = (1-x^2)^j$ ,  $\varphi_j = q_j^{(j)}$ , show that  $\varphi_j$  are orthogonal to each other in  $L^2([-1,1])$ . In other words, if  $j \neq j'$ ,  $\int_{-1}^1 \varphi_j \varphi_{j'} dx = 0$ .

Answer:

Firstly we show that if i < j, then  $q_j^{(i)}$  has a factor  $(1 - x^2)^{j-i}$ . Do induction on i. It is trivially true for i = 0. Now, suppose  $q_j^{(i)} = (1 - x^2)^{j-i}h(x)$  where h is a polynomial, then, by product rule,

$$q_j^{(i+1)} = ((1-x^2)^{j-i}h(x))' = -2(j-i)x(1-x^2)^{j-i-1}h(x) + (1-x^2)^{j-i}h'(x)$$
$$= (1-x^2)^{j-i-1}(-2(j-i)xh(x) + (1-x^2)h'(x))$$

Hence by induction this statement is proved.

Now, because  $\varphi_i$  are all non-zero, they all have non-zero  $L^2$  norms on [-1,1]. We only need to show that when  $i \neq j$ ,  $\int_{-1}^{1} \varphi_i \varphi_j dx = 0$ . Without loss of generality assume i < j, then by integration by parts and the conclusion in the previous step.

$$\int_{-1}^{1} \varphi_i \varphi_j dx = \int_{-1}^{1} q_i^{(i)} q_j^{(j)} dx$$

$$= -\int_{-1}^{1} q_i^{(i+1)} q_j^{(j-1)} dx$$

$$= \int_{-1}^{1} q_i^{(i+2)} q_j^{(j-2)} dx$$

$$= \dots = (-1)^j \int_{-1}^{1} q_i^{(i+j)} q_j dx$$

However the degree of  $q_j$  is 2j < i + j, hence  $q_i^{(i+j)} = 0$ , which implies that the integration is zero.

5. Find three distinct points  $x_0$ ,  $x_1$  and  $x_2$  in (-1,1), such that for any polynomial function f of degree 3, the best approximation of f under  $L^2$  norm on [-1,1] of degree at most 2 coincides with the Lagrange interpolation polynomial of f using interpolation points  $x_0$ ,  $x_1$  and  $x_2$ .

Answer:

Suppose f is the degree 3 Legendre polynomial  $f_3=x^3-\frac{3}{5}x$ , then, because it is orthogonal to the degree 0, 1, and 2 Legendre polynomials under  $L^2([-1,1])$ , and these three Legendre polynomials form an orthogonal basis of the space  $V_2$  of polynomials of degree no more than 2, the best approximation formula in inner product space implies that the best approximation of f on  $V_2$  under  $L^2([-1,1])$  norm must be 0. By assumption, the Legendre interpolation of  $f_3$  at  $x_0$ ,  $x_1$  and  $x_2$  must also be zero, so these three points can only be the three roots of  $x^3-\frac{3}{5}x$ , which are  $0,\pm\sqrt{\frac{3}{5}}$ .

Now suppose  $f = \sum_{i=0}^3 a_i x^i$  is any degree 3 polynomial. Then, because  $f - a_3 f_3$  is of degree at most 2 and is identical to f at  $0, \pm \sqrt{\frac{3}{5}}$ , the Lagrange interpolation of f at  $x_i$  is  $f - a_3 f_3$ . On the other hand, let  $e_0, e_1, e_2$  be any orthogonal basis of  $V_2$ , then the best approximation of f on  $V_2$  under  $L^2([-1,1])$  norm is  $\sum_i (f,e_i)e_i$ . However, because  $f_3$  is orthogonal to  $V_2$ ,  $(f,e_i)=(f-a_3 f_3,e_i)$ , so the best approximation of f is the same as the best approximation of  $f-a_3 f_3$ , which must be  $f-a_3 f_3$  itself as  $f-a_3 f_3 \in V_2$ . This proves that  $x_i$  being  $0, \pm \sqrt{\frac{3}{5}}$  satisfies the requirement in the problem.

6. Let f be a continuous function on [0,1],  $p_n$  be the polynomial of best approximation of degree no more than n under the  $L^2$  norm. Then, after studying Theorem 9.5 in the textbook, which proved that  $f - p_n$  is zero at at least n + 1 distinct points in (0,1), find a function f such that  $f - p_2$  is zero at 4 distinct points in (0,1).

## Answer:

Let  $V_2$  be the space of polynomials of degree no more than 2. If we pick f to be anything orthogonal to  $V_2$  under the  $L^2([0,1])$  norm, then the best approximation of f on  $V_2$  must be zero, so we just need to pick such a f with 4 or more zeros. So, for example, we can pick the degree 4 orthogonal polynomials with weight 1 on [0,1], which is  $70x^4 - 140x^3 + 90x^2 - 20x + 1$ .