高等数学 2

Thursday $18^{\rm th}$ September, 2025

目录

Ι	极阳		4
1	基础	l .	4
	1.1	常用极限	4
	1.2	常用等价无穷小	4
2	间断	· i点	4
	2.1	第一类间断点	4
		2.1.1 可去间断点	5
		2.1.2 跳跃间断点	5
	2.2	第二类间断点	5
		2.2.1 振荡间断点	5
		2.2.2 无穷间断点	5
9	.አ. 🕏	· ·达法则	5
3		· 达太则 使用条件	5
	_		
	3.2	结论	5
4	泰勒	展开	6
	4.1	常用泰勒级数	6
5	极限	审敛	6
	5.1	单调有界准则	6
	5.2	一类二重极限	6
II	导	数	7
6	基础		7
	6.1	求导法则	7
	6.2	常用高阶导数	7
	6.3	莱布尼茨公式	7
	6.4	中值定理	8
	6.5	泰勒中值定理	8
		6.5.1 拉格朗日型余项	8
		6.5.2 佩亚诺型余项	8
	6.6	极值(拉格朗日乘数法)	8
	6.7	隐函数存在定理	9
	6.8	雅可比行列式	9
Π	I 积	只分	9

7	基础		1 0
	7.1	牛顿-莱布尼茨公式	10
	7.2	第一类换元(凑微分)法	10
	7.3	第二类换元法	10
	7.4	分部积分	10
	7.5	常用积分表	11
		7.5.1 三角函数总表	11
		7.5.2 其他	11
		7.5.3 华里士公式	11
	7.6	区间再现	12
		7.6.1 对称区间	12
	7.7	极坐标图形面积	12
	7.8	旋转体体积(参数方程)	12
	7.9	旋转体侧面积(参数方程)	12
	7.10	平面曲线弧长(参数方程)	12
	7.11	平面曲线曲率(参数方程)	13
8	重积		13
	8.1	二重积分	
		8.1.1 换元	13
		8.1.2 广义极坐标变换	13
	8.2	* 积分应用	13
		8.2.1 质量	13
		8.2.2 质心	14
		8.2.3 转动惯量	14
		8.2.4 古尔丁定理	14
ΙV	微	的分方程	14
9	n 阶	线性微分方程	14
	9.1	线性相关	14
10			14
	10.1	通解	15
11	n 阶	常系数线性齐次微分方程	15
	11.1	特征方程	15
		通解对应项	
19	一际	常系数线性微分方程	15
		非齐次通解	
		12.1.1 大致形式	

			运算关																
	12.2		分方程																
		12.2.1	特征方	程 .		 													16
		12.2.2	通解 .			 													16
	12.3	非齐次	微分方	程		 													16
			特解 .																
		12.3.2	算子法	求特	解	 													17
13	全微	分方程																	18
	13.1	条件(微分换	字)		 					 								18

Part I

极限

- 1 基础
- 1.1 常用极限

$$\begin{split} &\lim_{x\to 0^+} \left(1+\frac{1}{x}\right)^x &= 1\\ &\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x &= \mathrm{e}\\ &\lim_{n\to \infty} \frac{1}{n} \sum_{i=1}^n f\left(\frac{i}{n}\right) &= \int_0^1 f\left(x\right) \mathrm{d}x \left(n \in \mathbb{N}^+\right) \end{split}$$

1.2 常用等价无穷小

x 为函数, $\lim_{x\to 0}$ 时, 可对乘除因子替换

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$x \sim (e^x - 1) \sim \ln(x + 1) \sim \ln\left(x + \sqrt{1 + x^2}\right)$$

$$x^3 \sim 6(x - \sin x) \sim 6(\arcsin x - x) \sim 3(\tan x - x)$$

$$x^3 \sim 3(x - \arctan x) \sim 2(\tan x - \sin x)$$

$$1 - \cos x \qquad \sim \frac{x^2}{2}$$

$$\log_a(1 + x) \qquad \sim \frac{x}{\ln a}$$

$$(1 + x)^a \qquad \sim ax + 1$$

$$a^x - 1 \qquad \sim x \ln a (0 < a \neq 1)$$

$$(1 + ax)^{\frac{1}{bx}} \qquad \sim e^{\frac{a}{b}}(1 - \frac{a^2}{2b}x)$$

- 2 间断点
- 2.1 第一类间断点

$$\exists \lim_{x \to x_0^-} \exists \exists \lim_{x \to x_0^+}$$

2.1.1 可去间断点

$$\lim_{x \to x_{0}^{-}} f\left(x\right) = \lim_{x \to x_{0}^{+}} f\left(x\right) = A\left(\iff \lim_{x \to x_{0}} f\left(x\right) = A\right)$$

2.1.2 跳跃间断点

$$\lim_{x \to x_0^-} f\left(x\right) \neq \lim_{x \to x_0^+} f\left(x\right)$$

2.2 第二类间断点

$$\lim_{x \to x_0^-}$$
, $\lim_{x \to x_0^+}$ 至少满足有一个

2.2.1 振荡间断点

左、右极限至少一个为振荡不存在

2.2.2 无穷间断点

左、右极限至少一个为∞

3 洛必达法则

3.1 使用条件

定义存在

$$x \in \mathring{U}(x_0)$$
 $(x_0$ 可取 ∞ $) , \exists f'(x_0), \exists g'(x_0)$

极限存在或为无穷

$$g'(x_0) \neq 0, \exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \vec{\mathbb{R}} = \infty$$

符合 $\frac{0}{0}$ 或 $\frac{\cdot}{\infty}$

3.2 结论

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \implies \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

4 泰勒展开

$$f(x) \sim \sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

4.1 常用泰勒级数

f(x)	x ₀ 处泰勒展开式前部分项	x ₀ 处泰勒展开式通项	收敛区间
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$	$\sum_{n\in\mathbb{N}} \frac{x^n}{n!}$	\mathbb{R}
$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$	$\sum_{n \in \mathbb{N}} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	\mathbb{R}
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o\left(x^4\right)$	$\sum_{n \in \mathbb{N}} (-1)^n \frac{x^{2n}}{(2n)!}$	\mathbb{R}
$\tan x$	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$	$\sum_{n \in \mathbb{N}^+} \frac{B_{2n} (-4)^n (1 - 4^n)}{(2n)!}^{2n-1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$\arctan x$	$x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$	$\sum_{n\in\mathbb{N}} \frac{(-1)^n}{2n+1} x^{2n+1}$	[-1,1]
$\arcsin x$	$x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^5)$	$\sum_{n \in \mathbb{N}} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}$	(-1,1)
$\ln\left(1+x\right)$	$x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$	$\sum_{n \in \mathbb{N}^+} -\frac{(-x)^n}{n}$	(-1,1]
	$-x - \frac{x^2}{2} - \frac{x^3}{3} + o\left(x^3\right)$	$\sum_{n \in \mathbb{N}^+} -\frac{x^n}{n}$	(-1,1]
$\frac{1}{1+x}$	$1 - x + x^2 - x^3 + o(x^3)$	$\sum_{n\in\mathbb{N}} \left(-x\right)^n$	(-1,1)
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + o(x^3)$	$\sum_{n\in\mathbb{N}} x^n$	(-1,1)
$(1+x)^{\alpha}$	$1 + \alpha x + \frac{\alpha (\alpha - 1)}{2!} x^2 + o(x^2)$	$\sum_{n\in\mathbb{N}} \binom{\alpha}{n} x^n$	(-1,1)

5 极限审敛

5.1 单调有界准则

单调有界必有极限

5.2 一类二重极限

$$\lim_{\substack{x \to 0^+ \\ y \to 0^+}} \frac{x^p y^q}{x^m + y^n}$$

$$m$$
、 n 全为偶数且 $\frac{p}{m}+\frac{q}{n}>1$ 时 $\lim_{\substack{x\to 0^+\\y\to 0^+}}\frac{x^py^q}{x^m+y^n}=0$,否则不存在 $\frac{p}{m}+\frac{q}{n}\leqslant 1$ 时,路径 $y=kx^{\frac{m-p}{q}}$ 可说明极限不存在

Part II

导数

- 6 基础
- 6.1 求导法则

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(t) dt\right)' = f[u(x)]u'(x) - f[v(x)]v'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(x,t) dt\right)' = \int_{v(x)}^{u(x)} f'_x(x,t) dt + f[x,u(x)]u'(x) - f[x,v(x)]v'(x)$$

6.2 常用高阶导数

$$\sin^{(n)} \omega x = \omega^n \sin\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\cos^{(n)} \omega x = \omega^n \cos\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\ln^{(n)} (1+x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \in \mathbb{N}^+)$$

$$\ln^{(n)} (1-x) = -\frac{(n-1)!}{(1-x)^n} \quad (n \in \mathbb{N}^+)$$

6.3 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

6.4 中值定理

定理	公式	约束
积分中值定理	$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{x \Big _{a}^{b}}$	$\xi \in [a,b]$
罗尔中值定理	$a = b \Rightarrow f'(\xi) = 0$	$\xi \in (a,b)$
拉格朗日中值定理	$f'(\xi) = \frac{f(x) _a^b}{x _a^b}$	$\xi \in (a,b)$
柯西中值定理	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) _a^b}{g(x) _a^b}$	$\xi \in (a,b)$

6.5 泰勒中值定理

 $R_n(x)$ 为余项

$$P_n(x) = \sum_{i=0}^{n} (x - x_0)^i \frac{f^{(i)}(x_0)}{i!} + R_n(x)$$

6.5.1 拉格朗日型余项

 ξ 介于 x,x_0

$$R_n(x) = (x - x_0)^{n+1} \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

6.5.2 佩亚诺型余项

$$R_n(x) = o\left[\left(x - x_0\right)^n\right]$$

6.6 极值(拉格朗日乘数法)

二元情况

$$\begin{cases} \text{约束条件: } \varphi(x,y) = 0 \\ \text{目标函数: } f(x,y) \\ \begin{cases} \nabla f = \lambda \nabla \varphi \left(\mathbb{P} \nabla f \parallel \nabla \varphi \right) \\ \varphi(x,y) = 0 \end{cases} \end{cases} \Longrightarrow \begin{cases} \text{解得几组 } (x_i,y_i) \text{ 即为可能的极值点} \\ \text{活无约束条件 } \varphi(x,y) = 0, \\ \text{可设约束为 } 0 = 0, \text{ } \mathbb{P} \nabla \varphi = (0,0) \\ \mathbb{P} \nabla f = (0,0) \end{cases}$$

检验可能的极值点 (x_0, y_0)

$$\begin{cases}
f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) > 0
\end{cases} \implies f(x_{0}, y_{0}) 为极小值点$$

$$f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0}) 为极大值点$$

$$f_{xy}''^{2}(x_{0}, y_{0}) > f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies f(x_{0}, y_{0})$$
不取极值
$$f_{xy}''^{2}(x_{0}, y_{0}) = f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies$$
需进一步讨论

n 元情况

6.7 隐函数存在定理

$$F(x,y)$$
 (二元)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

$$F(x,y,z)$$
 (多元)

$$\frac{\partial y}{\partial x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

6.8 雅可比行列式

$$\frac{\partial (u_1, u_2, \cdots, u_n)}{\partial (x_1, x_2, \cdots, x_n)} = \begin{vmatrix} \partial_{x_1} u_1 & \partial_{x_2} u_1 & \cdots & \partial_{x_n} u_1 \\ \partial_{x_1} u_2 & \partial_{x_2} u_2 & \cdots & \partial_{x_n} u_2 \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} u_n & \partial_{x_2} u_n & \cdots & \partial_{x_n} u_n \end{vmatrix}$$

Part III

积分

- 7 基础
- 7.1 牛顿-莱布尼茨公式

$$\int_{a}^{b} f'(x) dx = f(x)|_{a}^{b}$$

7.2 第一类换元(凑微分)法

$$\int f(x) g(x) dx = \int f(x) d\left(\int g(x) dx\right)$$

7.3 第二类换元法

$$\int f(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$

$$\int_{a}^{b} f[\varphi(x)] dx = \int_{\varphi(a)}^{\varphi(b)} f(t) \frac{d\varphi^{-1}(t)}{dt} dt \Big|_{t=\varphi(x)}$$

7.4 分部积分

$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$

$$uv = \int u dv + \int v du$$

$$uv|_a^b = \int_a^b u dv + \int_a^b v du$$

7.5 常用积分表

7.5.1 三角函数总表

$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)	$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)
$-\cos x$	$\sin x$	$\cos x$	$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\sec^2 x$	$\ln \sin x $	$\cot x$	$-\csc^2 x$
$\ln \sec x + \tan x $	$\sec x$	$\sec x \tan x$	$-\ln \csc x + \cot x $	$\csc x$	$-\csc x \cot x$
	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$		$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
	$\arctan x$	$\frac{1}{1+x^2}$		$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$		arccscx	$-\frac{1}{ x \sqrt{x^2-1}}$
$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$
$\ln \cosh x $	$\tanh x$	$\mathrm{sech}^2 x$	$\ln \sinh x $	$\coth x$	$-\operatorname{csch}^2 x$
$2\arctan\left(\mathrm{e}^{x}\right)$	$\operatorname{sech} x$	$-\operatorname{sech} x \tanh x$	$-\ln \mathrm{csch}x + \coth x $	$\operatorname{csch} x$	$-\operatorname{csch} x \operatorname{coth} x$
	arsinhx	$\frac{1}{\sqrt{x^2+1}}$		$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$
	artanhx	$\frac{1}{1-x^2}$		arcothx	$\frac{1}{x^2 - 1}$
	$\operatorname{arsech} x$	$-\frac{1}{ x \sqrt{1-x^2}}$		$\operatorname{arcsch} x$	$-\frac{1}{ x \sqrt{1+x^2}}$

7.5.2 其他

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

7.5.3 华里士公式

7.6 区间再现

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

7.6.1 对称区间

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

Definition 7.6.1 (以下极坐标方程中都有).

$$r = r(\theta)$$

7.7 极坐标图形面积

$$A = \iint_{D} r dr d\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^{2} d\theta$$

Definition 7.7.1 (以下参数方程中都有,且都可轮换).

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

7.8 旋转体体积(参数方程)

绕 x 轴

圆盘法

$$V = \pi \int_{a}^{b} x' y^2 dt = \pi \int_{a}^{b} y^2 dx$$

柱壳法

$$V = 2\pi \int_{a}^{b} xy'ydt = 2\pi \int_{a}^{b} xydy$$

7.9 旋转体侧面积(参数方程)

绕 x 轴

$$S = 2\pi \int_a^b y \sqrt{x'^2 + y'^2} \mathrm{d}t$$

7.10 平面曲线弧长(参数方程)

$$s = \int_{a}^{b} \sqrt{x'^2 + y'^2} dt = \int_{\alpha}^{\beta} \sqrt{r^2 + r'^2} d\theta$$

7.11 平面曲线曲率(参数方程)

曲率半径 $\rho = K^{-1}$

$$K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

在点 M(x,y) 处的曲率中心 (α,β) (曲率圆圆心) (不是参数方程)

$$\begin{cases} \alpha = x - \frac{y'(1 + y'^2)}{y''} \\ \beta = y + \frac{1 + y'^2}{y''} \end{cases}$$

曲率圆方程:

$$(x - \alpha)^2 + (y - \beta)^2 = \rho^2$$

8 重积分

8.1 二重积分

Definition 8.1.1 $(d\sigma = dxdy)$.

$$\iint\limits_{D} f\left(x,y\right) \mathrm{d}\sigma$$

8.1.1 换元

$$\begin{cases} x = x (u, v) \\ y = y (u, v) \end{cases} \implies \iint\limits_{D} f(x, y) \, \mathrm{d}x \mathrm{d}y = \iint\limits_{D'} f(x, y) \, |J| \, \mathrm{d}u \mathrm{d}v$$

$$J = \frac{\partial (x, y)}{\partial (u, v)} \Big|_{D'} \neq 0$$

8.1.2 广义极坐标变换

$$\begin{cases} x(r,\theta) = x_0 + ar\cos\theta \\ y(r,\theta) = y_0 + br\sin\theta \end{cases} \implies \iint_D f(x,y) \, dx dy = \iint_D f(x,y) \, abr dr d\theta$$

8.2 * 积分应用

密度为 $\rho(x,y)$ 或 $\rho(x,y,z)$

8.2.1 质量

$$M = \iint_{D} \rho(x, y) \, d\sigma$$

8.2.2 质心

质心的 x 坐标为

$$\bar{x} = \frac{\iint\limits_{D} x \rho\left(x, y\right) d\sigma}{M}$$

$$\rho(\cdots) \equiv 1$$
 时,质心相当于形心

8.2.3 转动惯量

绕 x 轴时

$$I_{x} = \iint_{D} y^{2} \rho(x, y) d\sigma$$

8.2.4 古尔丁定理

旋转体体积(平面图形 D 绕直线 l:Ax+By+C=0 旋转)

$$V = \iint\limits_{D} 2\pi d_{l}\left(x,y\right) \mathrm{d}x \mathrm{d}y = 2\pi \iint\limits_{D} \frac{|Ax + By + C|}{\sqrt{A^{2} + B^{2}}} \mathrm{d}x \mathrm{d}y$$

若 D 形心为 (x_0, y_0)

$$V = 2\pi d_l(x_0, y_0) S_D = 2\pi \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \iint_D dxdy$$

Part IV

微分方程

9 n 阶线性微分方程

Definition 9.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i(x) y^{(i)} = f(x)$$

9.1 线性相关

$$\frac{f(x)}{g(x)} = C(C \in \mathbb{C})$$

10 一阶线性微分方程

Definition 10.0.1 $(f(x) \equiv 0$ 时,为齐次).

$$(9.0.1)$$

$$n = 1$$

$$\implies y' + P(x) y = f(x)$$

10.1 通解

$$y = \frac{\int f(x) \exp(\int P(x) dx) dx + C}{\exp(\int P(x) dx)}$$

11 n 阶常系数线性齐次微分方程

Definition 11.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i y^{(i)} = 0 (p_i \in \mathbb{C})$$

11.1 特征方程

$$r^n + \sum_{i=0}^{n-1} p_i r^i = 0$$

11.2 通解对应项

k 重实根 r 在通解中对应项

$$y_r = \sum_{i=1}^k C_i x^{i-1} \cdot e^{rx}$$

特别的: r 为共轭复根($r = \alpha \pm \beta i$)时,可改写为两个实根

$$y_r = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

12 二阶常系数线性微分方程

Definition 12.0.1.

$$y'' + P(x)y' + Q(x)y = f(x)$$

12.1 非齐次通解

12.1.1 大致形式

12.1.2 运算关系

齐特 + 齐特(线性无关) = 齐通

齐通 + 非特 = 非通

齐特 + 非特 = 非特

非特 - 非特 = 齐特

12.2 齐次微分方程

Definition 12.2.1.

$$y'' + py' + qy = 0$$

12.2.1 特征方程

$$r^2 + pr + q = 0$$

12.2.2 通解

 $r_1 \neq r_2$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

 $r_1 = r_2$

$$y = (C_1 + C_2 x) e^{r_1 x}$$

 $r_{1,2} = \alpha \pm \beta i$

$$y = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

12.3 非齐次微分方程

Definition 12.3.1.

$$y'' + py' + qy = f(x)$$

12.3.1 特解

 \mathcal{P}_n 表示 n 次多项式

$$(12.3.1)$$

$$f(x) = \left[\mathcal{P}_{n_1}(x)\cos\omega x + \mathcal{P}_{n_2}(x)\sin\omega x\right]e^{\lambda x}$$

$$m = \max\{n_1, n_2\}$$

$$\Longrightarrow$$

$$y^* = x^k \left[\mathcal{U}_m(x) \cos \omega x + \mathcal{V}_m(x) \sin \omega x \right] e^{\lambda x} \begin{cases} k = 0 & (\lambda \pm \omega i$$
 不是特征方程根)
$$k = 1 & (\lambda \pm \omega i$$
 是特征方程根)

当 $\omega = 0$ 时, $m = n_1$

$$(12.3.1)$$

$$f(x) = \mathcal{P}_m(x) e^{\lambda x}$$

$$\Longrightarrow y^* = x^k \mathcal{Q}_m(x) e^{\lambda x} \begin{cases} k = 0 & (\lambda \text{ 不是特征方程根}) \\ k = 1 & (\lambda \text{ 是特征方程单根}) \\ k = 2 & (\lambda \text{ 是特征方程重根}) \end{cases}$$

12.3.2 算子法求特解

Definition 12.3.2 (*D* 算子).

$$Df(x) = f'(x), \frac{1}{D}f(x) = \int f(x) dx$$

对于 (12.3.1):

$$y^* = \frac{1}{D^2 + pD + q} f(x) = \frac{1}{\mathcal{F}(D)} f(x)$$

若代入 D 后分母 $\mathcal{F}(D)$ 出现为 0 的状况,则(可多次使用,D 算子只对右侧 f(x) 有效):

$$y^* = x^n \frac{1}{\mathcal{F}(D)} f(x) \longrightarrow y^* = x^{n+1} \frac{1}{\mathcal{F}'(D)} f(x)$$

 $f(x) = e^{kx}$: D 换为 k

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} = \frac{1}{\mathcal{F}(k)}$$

 $f(x) = \sin ax$ 或 $\cos ax$: D^2 换为 $-a^2$ 若代入 D^2 后,分母有 mD + n (mn > 0) 一次多项式,可以配 平方将一次多项式化到分子,再代入 D^2 后直接使用 D 算子求导

 $f(x) = \mathcal{P}_n(x)$: 使用 $\frac{1}{1-x} = \sum_{n \in \mathbb{N}} x^n$ 泰勒展开 $\frac{1}{\mathcal{F}(D)}$ (不考虑收敛域),使得展开后 D 的最高次幂不小于 $\mathcal{P}_n(x)$ 即可

若 $\mathcal{F}(D)$ 不含常数项,则先提出 $\frac{1}{D}$ 展开时将 $1-\mathcal{F}(D)$ 当作 x,但 $1-\mathcal{F}(D)$ 中不应含有常数项,形如:

$$\frac{1}{D^2+pD+q}=\frac{1}{q}\cdot\frac{1}{1+\frac{D^2+pD}{q}}$$

 $f(x) = e^{kx}y(x)$: 移位定理

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} y(x) = e^{kx} \frac{1}{\mathcal{F}(D+k)} y(x)$$

 $f(x) = \mathcal{P}_n(x) \sin ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) \sin ax = \operatorname{Im} \left[\frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{iax} \right]$$

 $f(x) = \mathcal{P}_n(x) \cos ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) \cos ax = \text{Re}\left[\frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{iax}\right]$$

13 全微分方程

13.1 条件(微分换序)

$$P(x,y) dx + Q(x,y) dy = 0$$
是全微分方程 $\iff P'_y = Q'_x$