Modello

Mario Zavarella

May 2025

1 Introduction

Parametri del Modello

1. Rete di Trasporto

- Percorsi (Paths): si considerano due percorsi, ciascuno composto da una sequenza di archi (coppie ordinate di stazioni):
 - Percorso **A**: $(1 \rightarrow 2)$, $(2 \rightarrow 4)$
 - Percorso **B**: $(1 \rightarrow 3)$, $(3 \rightarrow 4)$
- Nota: I percorsi possono essere generati casualmente per una maggiore generalità.

2. Insieme dei Nodi e Archi

• Nodi: insieme delle stazioni numerate da 1 fino alla stazione più alta coinvolta nei percorsi:

$$\text{Nodi} = \{1, 2, \dots, N\}, \quad \text{dove } N = \max_{(i, j) \in \text{paths}} \max(i, j)$$

• Archi possibili (non direzionali):

$$Archi = \{(i, j) \mid i, j \in Nodi, i < j\}$$

3. Tempi di Percorrenza

• Tempi sugli archi: a ogni arco (i, j) è associato un tempo di percorrenza w_{ij} , generato casualmente in un intervallo tra 5 e 15:

$$w_{ij} \in \{5, 6, \dots, 15\}$$
 minuti

• Nota: Si può aggiungere un controllo per garantire che i tempi w_{ij} siano almeno pari alla differenza temporale tra due stazioni consecutive nella tabella oraria, per evitare arrivi anticipati.

- 4. Tabella Oraria (Timetable)
 - Orario Ts previsto per ogni stazione (in minuti):

$$T_1 = 100$$

$$T_2 = 110$$

$$T_3 = 120$$

$$T_4 = 130$$

$$T_5 = 140$$

$$T_6 = 150$$

$$T_7 = 160$$

• Finestra di prelievo passeggeri: intervallo accettabile di arrivo presso la stazione:

$$[T_s, T_s + 10] \quad \forall s \in \text{Stazioni}$$

- 5. Passeggeri
 - Numero totale di passeggeri:

$$num_passengers = 10$$

- Assegnazione dei passeggeri: ogni passeggero è associato a un arco di partenza scelto casualmente.
- Distribuzione dei passeggeri per nodo di partenza:

 P_s = numero di passeggeri che partono da s

- 6. Capacità
 - Capacità massima per arco:

capMax = 2 (numero massimo di passeggeri per arco)

7. Considerazioni Future

- Randomizzazione: si prevede di introdurre generatori casuali per:
 - I percorsi
 - La tabella oraria
 - La distribuzione dei passeggeri
- Controlli di coerenza:
 - Verifica che $w_{ij} \ge |T_j T_i|$ per ogni arco (i, j)
 - Evitare arrivi anticipati rispetto alla finestra di tempo prevista

Variabili Decisionali

• Variabili di selezione percorso:

$$Z_p = \begin{cases} 1 & \text{se il percorso } p \in \{A, B, \dots\} \text{ viene selezionato} \\ 0 & \text{altrimenti} \end{cases}$$

Dove \mathbb{Z}_p è una variabile binaria per ogni percorso p disponibile.

• Orario di arrivo alle stazioni:

$$a_s \in \mathbb{R}_{>0} \quad \forall s \in \text{Stazioni}$$

Dove a_s rappresenta il tempo (in minuti) di arrivo previsto alla stazione s.

• Passeggeri serviti (totale):

$$P_{\text{served}} \in \mathbb{Z}_{>0}$$

Variabile intera che rappresenta il numero totale di passeggeri serviti lungo i percorsi selezionati (in questo caso un solo percorso).

• Variabili individuali per i passeggeri:

$$x_i = \begin{cases} 1 & \text{se il passeggero } i \text{ viene servito} \\ 0 & \text{altrimenti} \end{cases} \quad \forall i = 1, \dots, \text{num_passengers}$$

Dove x_i è una variabile binaria che indica se il passeggero i è stato servito.

Vincoli del Modello

• Selezione percorso: al massimo uno può essere attivo

$$\sum_{p \in \mathcal{P}} Z_p \le 1$$

Dove \mathcal{P} è l'insieme dei percorsi possibili.

• Vincoli di capacità sugli archi:

Per ogni arco (u, v), si considera l'insieme \mathcal{I}_{uv} dei passeggeri che lo attraversano, e l'insieme \mathcal{P}_{uv} dei percorsi che includono (direttamente o indirettamente) entrambi i nodi u e v.

$$\sum_{i \in \mathcal{I}_{uv}} x_i \le C_{\max} \cdot \sum_{p \in \mathcal{P}_{uv}} Z_p$$

Dove:

- $-\ x_i$ è una variabile binaria che indica se il passeggero i viene servito.
- $-C_{\text{max}}$ è la capacità massima di ogni arco.
- $-Z_p$ è la variabile binaria che vale 1 se il percorso p è selezionato.
- \mathcal{P}_{uv} è l'insieme dei percorsi che includono entrambi i nodi u e v.

• Vincoli di servizio passeggeri:

Per ogni passeggero i associato a un arco (u, v), definiamo:

- $-\mathcal{P}_{uv}$: insieme dei percorsi che includono entrambi i nodi $u \in v$;
- $-[t_u^-,t_u^+]$: finestra di prelievo ammessa alla stazione di partenza u.

Se $\mathcal{P}_{uv} \neq \emptyset$ (cioè esistono percorsi compatibili), valgono i seguenti vincoli:

Per ogni
$$p \in \mathcal{P}_{uv}$$
:
 $t_u \ge t_u^- - M \cdot (1 - Z_p)$
 $t_u \le t_u^+ + M \cdot (1 - Z_p)$

$$x_i \le \sum_{p \in \mathcal{P}_{uv}} Z_p$$

Dove:

- $-t_u$: orario di arrivo alla stazione u;
- $-x_i$: variabile binaria, vale 1 se il passeggero i è servito;
- $-Z_p$: variabile binaria, vale 1 se il percorso p è attivo;
- -M: una costante sufficientemente grande (Big-M).

Se invece $\mathcal{P}_{uv} = \emptyset$ (cioè nessun percorso include l'arco), allora il passeggero non può essere servito:

$$x_i = 0$$

• Vincolo di somma passeggeri serviti:

La variabile intera pax_served rappresenta il numero totale di passeggeri serviti. Essa è pari alla somma delle variabili binarie x_i , una per ciascun passeggero i.

$$pax_served = \sum_{i=1}^{N} x_i$$

Dove:

- -N è il numero totale di passeggeri;
- $-x_i = 1$ se il passeggero i è servito, 0 altrimenti;
- $-\ pax_served$ è una variabile intera che conta il totale dei passeggeri serviti.

Funzione Obbiettivo

L'obiettivo del modello è minimizzare una combinazione lineare tra:

- la somma dei **ritardi** (ritardo_i), ciascuno ponderato da un coefficiente (in questo caso 0.5);
- il numero totale di passeggeri serviti, che si desidera massimizzare (equivalente a minimizzare il suo opposto).

La funzione da minimizzare è quindi:

$$\min\left(0.5 \cdot \sum_{i} \text{ritardo}_{i} - pax_served\right)$$

Dove:

- ritardo_i: ritardo alla stazione i (può essere definito come $\max(0, t_i timetable_i)$ se serve una definizione esplicita);
- pax_served: numero totale di passeggeri serviti (variabile intera).

Il peso 0.5 sui ritardi e -1 sui passeggeri serviti può essere calibrato in base alla priorità tra puntualità e servizio.

Riassunto - Formulazione compatta

Parametri

- P: insieme dei percorsi disponibili (es. $P = \{A, B\}$)
- $-A_p$: insieme di archi nel percorso $p \in P$
- N: insieme delle stazioni
- $-w_{uv}$: tempo di percorrenza sull'arco (u, v)
- $-\ T_s$: orario previsto di arrivo alla stazione s
- $-[T_s, T_s + 10]$: finestra di prelievo accettabile alla stazione s
- capMax: capacità massima su ogni arco
- M: valore grande (Big-M)
- n: numero di passeggeri
- $-a_i = (u_i, v_i)$: arco associato al passeggero i

Variabili decisionali

- $-Z_p \in \{0,1\}$: vale 1 se il percorso p è selezionato
- $-x_i \in \{0,1\}$: vale 1 se il passeggero *i* è servito
- $-t_s \in \mathbb{R}_{>0}$: orario di arrivo alla stazione s
- $pax_served \in \mathbb{Z}_{\geq 0}$: numero totale di passeggeri serviti

Funzione obiettivo

$$\min\left(0.5 \cdot \sum_{s \in N} \max(0, t_s - T_s) - pax_served\right)$$

Vincoli

1. Un solo percorso può essere scelto:

$$\sum_{p \in P} Z_p \le 1$$

2. Relazione temporale sugli archi selezionati:

$$t_v \ge t_u + w_{uv} + 5 - (1 - Z_p) \cdot M \quad \forall p \in P, (u, v) \in A_p$$

3. Condizione di partenza per ogni percorso:

$$t_u \ge T_u \cdot Z_p \quad \forall p \in P, (u, v) \in A_p \text{ con } u \text{ iniziale}$$

4. Finestra temporale per i passeggeri serviti:

$$t_{u_i} \ge T_{u_i} - (1 - Z_p) \cdot M$$

 $t_{u_i} \le T_{u_i} + 10 + (1 - Z_p) \cdot M$ $\forall i = 1, ..., n, \forall p \in P : a_i \in A_p$

5. Compatibilità tra passeggero e percorso:

$$x_i \le \sum_{p \in P: a_i \in A_p} Z_p \quad \forall i = 1, \dots, n$$

6. Capacità massima su ogni arco:

$$\sum_{i: a_i = (u, v)} x_i \le capMax \cdot \sum_{p \in P: (u, v) \in A_p} Z_p \quad \forall (u, v)$$

7. Conteggio totale passeggeri serviti:

$$pax_served = \sum_{i=1}^{n} x_i$$