

Image Classification Workshop

Agenda

- Introduction
 - Motivation and intuition

6:00pm - 6:30pm

- Image Classification
 - Hands-on walkthrough

6:30pm - 7:00pm

- Transfer Learning
 - Hands-on walkthrough

7:00pm - 7:30pm

What is Image Classification?

 Given a image, determine what category it belongs to

How to Build an Image Classifier: Intuition

- We might say an image contains a cat if we detect eyes, nose, fur, and whiskers
- Classify an image by detecting features present within an image
- Abstract these two procedures as feature extraction and classification

How to Build an Image Classifier: Intuition

Feature Extractor: A module which extracts features from the image

2D Convolution: A mathematical operation which can be used to **filter** images for specific **shapes** or **patterns**

Vertical Edges (x filter)

Horizontal Edges (y filter)

-1	0	+1
-2	0	+2
-1	0	+1

+1	+2	+1
0	0	0
-1	-2	-1

x filter

y filter

- Takes an image as an input and outputs another filtered image
- Works by taking a matrix (kernel) and sliding it across an image. At each point the values are multiplied and summed.
- The kernel matrix contains parameters which can be adjusted to extract the information we are looking for.

Classifier: A module which takes a set of features and predicts a category

How to Build an Image Classifier: Machine Learning

- We can construct the feature extractor and image classifier using machine learning
- Given a set of training data, we can train an image classifier by penalizing the model when it makes an error

How to Build an Image Classifier: Machine Learning

How to Build an Image Classifier: Machine Learning

In summary, the complete image classifier:

How to Build an Image Classifier: Implementation

- Lastly, in order to implement our image classifier, we will be using the **Keras** library
- Keras provides a simple interface for implementing neural networks and is great for beginners!
- Documentation: https://keras.io/

https://colab.research.google.com/drive/1A0yrGhh_G8iOownG62kgqwcL5re4hv1Z

Solutions: https://colab.research.google.com/drive/1hxsJltPixt7eOI5qvyL6f8ugw7bsRjiN

What is Transfer Learning?

- Informally, transfer learning is the concept of taking a model trained to perform one task and repurposing the knowledge for another task
- For instance, an image classifier trained to identify vehicles may be repurposed to identify cats and dogs

What can we use Transfer Learning for?

- We can reuse the feature extractor from another image classifier instead of training our own from scratch
- This saves us a lot of time and effort. We can take a model "off-the-shelf" and tailor it for our use-case!
- Very useful for when training data is limited

How to apply Transfer Learning for Image Classification

https://colab.research.google.com/drive/1A0yrGhh_G8iOownG62kgqwcL5re4hv1Z#scrollTo=QrL9qBV5DOVhhttps://colab.research.google.com/drive/1hxsJltPixt7eOl5qvyL6f8ugw7bsRiiN#scrollTo=QrL9qBV5DOVh

Thanks!

Any questions?

You can find us at:

https://mcgillai.com/

Please also give feedback at: tiny.cc/MAIS-F2019-W4-feedback