RÉVISIONS ORAUX

Suites

Solution 1

1. Posons $\varphi \colon x \mapsto \frac{\ln x}{x}$. φ est clairement continue sur \mathbb{R}_+^* et une étude rapide montre que φ est strictement croissante sur]0,e] et strictement décroissante sur $[e,+\infty[$. De plus, pour tout entier $n \ge 3$,

$$-\infty = \lim_{0^+} \varphi < \frac{1}{n} < \frac{1}{e} = \varphi(e) \qquad \text{et} \qquad \varphi(e) > \frac{1}{n} > 0 = \lim_{+\infty} \varphi$$

donc le théorème des valeurs intermédiaires montre que l'équation (E_n) admet exactement deux solutions, l'une sur]0, e[et l'autre sur $]e, +\infty[$.

Autrement dit, pour $n \ge 3$, il existe bien deux solutions u_n et v_n à l'équation (E_n) et $0 < u_n < e < v_n$.

- 2. Pour tout $n \ge 3$, $\ln(u_n) = \frac{u_n}{n}$. On en déduit que $0 \le \ln(u_n) \le \frac{e}{n}$ puis $\lim_{n \to +\infty} \ln(u_n) = 0$ par encadrement. Par continuité de l'exponentielle en 0, $\lim_{n \to +\infty} u_n = e^0 = 1$.
- 3. Comme (u_n) converge vers 1 i.e. $(u_n 1)$ converge vers 0

$$\frac{1}{n} = \frac{\ln(1 + (u_n - 1))}{u_n} \underset{n \to +\infty}{\sim} u_n - 1$$

Solution 2

- 1. Soient $n \in \mathbb{N}^*$ et $f_n : x \mapsto \sum_{k=1}^n \frac{x^k}{k}$. La fonction f_n est strictement croissante et continue sur \mathbb{R}_+ . De plus, $f_n(0) = 0$ et $\lim_{t \to \infty} f_n = +\infty$. L'équation $f_n(x) = 0$ admet donc une unique solution sur \mathbb{R}_+ en vertu du théorème des valeurs intermédiaires. Remarquons pour la suite que $f_n(x_n) = 1$ pour tout $n \in \mathbb{N}^*$.
- **2.** Soit $n \in \mathbb{N}^*$. Remarquons que

$$f_n(x_{n+1}) = f_{n+1}(x_{n+1}) - \frac{x_{n+1}^{n+1}}{n+1} = 1 - \frac{x_{n+1}^{n+1}}{n+1} \le 1 = f_n(x_n)$$

Par stricte croissance de f_n , on a donc $x_{n+1} \le x_n$.

La suite (x_n) est donc décroissante. Comme elle est minorée par 0, elle converge.

3. On peut calculer $x_2 = \sqrt{3 - 1} < 1$. La suite (x_n) est donc à valeurs dans [0, 1[à partir du range 2. Soit $f: x \mapsto -\ln(1-x)$. L'application f est de classe \mathcal{C}^{∞} sur $]-\infty, 1[$. D'après l'inégalité de Taylor-Lagrange, pour tout $n \ge 2$,

$$\left| f(x_n) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x_n^k \right| \le \max_{[0, x_n]} |f^{(n+1)}| \cdot \frac{x_n^{n+1}}{(n+1)!}$$

Puisque $f^{(k)}(x) = \frac{(k-1)!}{(1-x)^k}$ pour tout $k \in \mathbb{N}^*$, on a :

$$|f(x_n) - 1| = |f(x_n) - f_n(x_n)| \le \frac{x_n^{n+1}}{(n+1)(1-x_n)^{n+1}} \le \frac{x_2^{n+1}}{(n+1)(1-x_2)^{n+1}}$$

Puisque $x_2 \in]0,1[$, $\lim_{n \to +\infty} \frac{x_2^{n+1}}{(n+1)(1-x_2)^{n+1}} = 0$. Ainsi $\lim_{n \to +\infty} f(x_n) = 1$. On en déduit alors sans peine que $\lim_{n \to +\infty} x_n = 1 - \frac{1}{e}$.

1

Solution 3

1. Soit $n \in \mathbb{N}^*$. Posons $f_n : x \mapsto \cos x - nx$. f_n est dérivable et $f'_n(x) = -\sin x - n < 0$ pour tout $x \in [0,1]$. f_n est continue et strictement décroissante sur [0,1]. De plus, $f_n(0) = 1 > 0$ et $f_n(1) = \cos(1) - n < 0$. On en déduit que f_n s'annule une unique fois sur [0,1]. D'où l'existence et l'unicité de x_n .

- 2. On a $\cos x_n = nx_n$ et donc $x_n = \frac{\cos x_n}{n}$ pour tout $n \in \mathbb{N}^*$. On en déduit que $|x_n| \le \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$ puis que (x_n) converge vers 0.
- 3. Soit $n \in \mathbb{N}^*$. Remarquons que $f_n \ge f_{n+1}$ sur [0,1]. Donc $f_n(x_{n+1}) \ge f_{n+1}(x_{n+1}) = 0 = f_n(x_n)$. La stricte décroissance de f_n implique que $x_{n+1} \le x_n$. Par conséquent la suite (x_n) est décroissante.
- **4.** Comme $x_n \xrightarrow[n \to +\infty]{} 0$ et que cos est continue en 0, $\cos x_n \xrightarrow[n \to +\infty]{} \cos 0 = 1$. Donc $x_n = \frac{\cos x_n}{n} \sim \frac{1}{n}$.
- 5. Comme $x_n \underset{n \to +\infty}{\longrightarrow} 0$, $\cos x_n \underset{n \to +\infty}{=} 1 \frac{x_n^2}{2} + o(x_n^2)$. Or $x_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\cos x_n \underset{n \to +\infty}{=} 1 \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$. Ainsi $x_n = \frac{\cos x_n}{n} \underset{n \to +\infty}{=} \frac{1}{n} \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right)$. On en déduit que $x_n \frac{1}{n} \underset{n \to +\infty}{\sim} -\frac{1}{2n^3}$.

Solution 4

D'après l'inégalité de Taylor-Lagrange,

$$\forall x \in \mathbb{R}, \ |\sin(x) - x| \le \max_{\mathbb{R}} |\sin^{(3)}| \cdot \frac{|x|^3}{6}$$

On en déduit que

$$\left| \sum_{k=1}^{n} \frac{k}{n^2} - \sin\left(\frac{k}{n^2}\right) \right| \le \sum_{k=1}^{n} \left| \frac{k}{n^2} - \sin\left(\frac{k}{n^2}\right) \right| \le \sum_{k=1}^{n} \frac{k^3}{6n^6} \le \sum_{k=1}^{n} \frac{n^3}{6n^6} = \frac{1}{6n^2}$$

On en déduit que

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{k}{n^2} - \sin\left(\frac{k}{n^2}\right) \right) = 0$$

Comme

$$\sum_{k=1}^{n} \frac{k}{n^2} = \frac{n(n+1)}{2n^2} \xrightarrow[n \to +\infty]{} \frac{1}{2}$$

on en déduit que

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \sin\left(\frac{k}{n^2}\right) = \frac{1}{2}$$

Polynômes

Solution 5

S'il existe $m \in \mathbb{Z}$ tel que $\theta = \frac{m\pi}{n}$, alors $P = X^{2n} - 2(-1)^m X^n + 1$.

• Si *m* est pair,

$$P = (X^{n} - 1)^{2} = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{C}[X]$. Il faut alors distinguer suivant la parité de n. Si n est pair, alors

$$P = (X - 1)^{2}(X + 1)^{2} \prod_{k=1}^{\frac{n}{2} - 1} \left(X^{2} - 2\cos\frac{2k\pi}{n} + 1\right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$. Si n est impair, alors

$$P = (X - 1)^2 \prod_{k=1}^{\frac{n-1}{2}} \left(X^2 - 2\cos\frac{2k\pi}{n} + 1 \right)^2$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$.

• Si m est impair,

$$P = (X^{n} + 1)^{2} = \prod_{k=0}^{n-1} \left(X - e^{\frac{(2k+1)i\pi}{n}} \right)^{2}$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{C}[X]$. Il faut alors distinguer suivant la parité de n. Si n est pair, alors

$$P = \prod_{k=0}^{\frac{n}{2}-1} \left(X^2 - 2\cos\frac{(2k+1)\pi}{n} + 1 \right)^2$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X].$

Si n est impair, alors

$$P = (X+1)^2 \prod_{k=0}^{\frac{n-1}{2}-1} \left(X^2 - 2\cos\frac{(2k+1)\pi}{n} + 1 \right)^2$$

qui est la décomposition en facteurs irréductibles de P dans $\mathbb{R}[X]$.

Dans toutes les expressions précédentes, on convient qu'un produit indexé sur le vide vaut 1 et les facteurs sont bien irréductibles car les cosinus ne valent ni 1 ni -1.

On suppose maintenant qu'il n'existe pas d'entier $m \in \mathbb{Z}$ tel que $\theta = \frac{m\pi}{n}$. Remarquons que

$$P = (X^n - e^{ni\theta})(X^n - e^{-ni\theta})$$

On a

$$X^{n} - e^{ni\theta} = \prod_{k=0}^{n-1} \left(X - e^{i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

et par conjugaison

$$X^{n} - e^{-ni\theta} = \prod_{k=0}^{n-1} \left(X - e^{-i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

La décomposition de P en facteurs irréductibles dans $\mathbb{C}[X]$ est donc

$$P = \prod_{k=0}^{n-1} \left(X - e^{i\left(\theta + \frac{2k\pi}{n}\right)} \right) \prod_{k=0}^{n-1} \left(X - e^{-i\left(\theta + \frac{2k\pi}{n}\right)} \right)$$

On en déduit que la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$ est

$$P = \prod_{k=0}^{n-1} \left(X^2 - 2X \cos \left(\theta + \frac{2k\pi}{n} \right) + 1 \right)$$

Les facteurs sont bien irréductibles car la condition $\theta \notin \frac{\pi}{n} \mathbb{Z}$ assure qu'aucun des cosinus ne vaut 1 ou -1.

Solution 6

Supposons que P soit réductible sur \mathbb{Q} . Alors il existe des polynômes Q et R non constants de $\mathbb{Q}[X]$ tels que P = QR. Puisque deg Q+deg R = deg P = 3, l'un de ces deux polynômes est donc de degré 1. Ceci implique alors que P admet une racine rationnelle; notons la p/q avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ et $p \wedge q = 1$. On a alors

$$(p/q)^3 + 3(p/q)^2 + 2 = 0$$

ou encore

$$p^3 + 3p^2q + 2q^3 = 0$$

Comme q divise $3p^2q + 2q^3$, q divise également p^3 . Comme $p \land q = 1$, ceci impose q = 1. On a alors $p^3 + 3p^2 + 2 = 0$. A nouveau, p divise $p^3 + 3p^2$ donc p divise 2. Ainsi $p/q \in \{-1, 1, -2, 2\}$ mais on vérifie qu'aucun de ces quatre entiers n'est racine de P. On a montré par l'absurde que P était irréductible sur \mathbb{Q} .

Solution 7

- **1.** Soit P un tel polynôme. Alors pour tout $x \in \mathbb{R}$, $P(x) = \overline{P(x)} = \overline{P(x)}$. Les polynômes P et \overline{P} coïncident sur \mathbb{R} qui est infini donc il sont égaux. Ainsi $P = \overline{P}$ i.e. $P \in \mathbb{R}[X]$. Réciproquement tout polynôme $P \in \mathbb{R}[X]$ vérifie $P(\mathbb{R}) \subset \mathbb{R}$.
- 2. Soit P un tel polynôme. P est forcément non nul : notons $n = \deg P$. Alors pour tout $z \in \mathbb{U}$, $P(z)\overline{P(z)} = 1$ ou encore $P(z)\overline{P}\left(\frac{1}{z}\right) = 1$. On en déduit que pour tout $z \in \mathbb{U}$, $P(z)z^n\overline{P}\left(\frac{1}{z}\right) = z^n$. Posons $Q = X^n\overline{P}\left(\frac{1}{X}\right)$. Q est bien un polynôme et pour tout $z \in \mathbb{U}$, $P(z)Q(z) = z^n$. Comme \mathbb{U} est infini, $PQ = X^n$. Ainsi P divise X^n et $\deg P = n$ donc il existe $\lambda \in \mathbb{C}^*$ tel que $P = \lambda X^n$. Mais la condition $P(\mathbb{U}) \subset (\mathbb{U})$ impose alors $\lambda \in \mathbb{U}$. Réciproquement, tout polynôme de la forme λX^n avec $\lambda \in \mathbb{U}$ et $n \in \mathbb{N}$ convient.
- 3. Soit P un tel polynôme et posons $P = \sum_{k=0}^{n} a_k X^k$ avec a_0, \dots, a_n dans \mathbb{C} a priori. Soient x_0, \dots, x_n des rationnels distincts deux à deux.

Posons
$$y_k = P(x_k)$$
 pour $0 \le k \le n$. Notons $A = \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}$, $Y = \begin{pmatrix} y_0 \\ \vdots \\ y_n \end{pmatrix}$ et $M = \begin{pmatrix} x_i^j \\ 0 \le i, j \le n \end{pmatrix}$. Ainsi $MA = Y$. M est une matrice de

Vandermonde inversible puisque les x_k sont distincts deux à deux. Comme M est à coefficients dans \mathbb{Q} , M^{-1} l'est également. Enfin, Y est aussi à coefficients dans \mathbb{Q} par hypothèse et finalement $A = M^{-1}Y$ est à coefficients rationnels. Ainsi $P \in \mathbb{Q}[X]$. Réciproquement tout polynôme $P \in \mathbb{Q}[X]$ convient évidemment.

Remarque. La preuve qui précède est valable pour tout sous-corps de $\mathbb C$ (et pas seulement pour $\mathbb Q$). En effet, tout sous-corps de $\mathbb C$ contient $\mathbb Q$ et est donc infini : on peut toujours trouver n+1 scalaires x_0,\ldots,x_n distincts deux à deux dans ce sous-corps quelque soit $n\in\mathbb N$.

Solution 8

En multipliant la seconde équation par xyz, on obtient xy + yz + zx = 0. Notons a = xyz. En utilisant les relations coefficients/racines d'un polynôme, on peut affirmer que x, y, z sont les racines du polynôme $X^3 - a$. Ce sont donc les racines cubiques de a qui ont toutes le même module.

Solution 9

- 1. Simple calcul.
- 2. On peut clairement choisir $P_0 = 2$ et $P_1 = X$. Supposons qu'il existe $n \in \mathbb{N}^*$ et deux polynômes P_n et P_{n-1} adéquats. En vertu de la question précédente, le polynôme $P_{n+1} = XP_n P_{n-1}$ convient. Par récurrence double, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que $\forall z \in \mathbb{C}^*$, $f(z^n) = P_n(f(z))$.

On vérifie alors aisément par récurrence double que la suite de polynômes (P_n) définie par $P_0 = 2$, $P_1 = X$ et $P_{n+1} = XP_n - P_{n-1}$ vérifie deg $P_n = n$ pour tout $n \in \mathbb{N}$ et que le coefficient dominant de P_n vaut 1 pour tout $n \in \mathbb{N}^*$.

- 3. Soit Q un polynôme vérifiant $\forall z \in \mathbb{C}^*$, $f(z^n) = Q(f(z))$. Alors $Q(f(z)) = P_n(f(z))$ pour tout $z \in \mathbb{C}^*$. Ainsi $Q P_n$ admet tous les complexes de $f(\mathbb{C}^*)$ pour racines. Or $f(\mathbb{C}^*)$ est infini (par exemple, la suite $(f(n))_{n \in \mathbb{N}^*}$ est strictement croissante). Donc $Q P_n = 0$ i.e. $Q = P_n$.
- **4.** On trouve sans difficulté $f(z_k^n) = 0$. On en déduit que $P_n(f(z_k)) = 0$ i.e. $P_n\left(2\cos\frac{(2k+1)\pi}{2n}\right) = 0$. Comme cos est strictement décroissante sur $[0,\pi]$, les réels $2\cos\frac{(2k+1)\pi}{2n}$ pour $k \in [0,n-1]$ sont n racines distinctes de P_n . Or P_n est de degré n et de coefficient dominant 1 donc

$$P_n = \prod_{k=0}^{n-1} \left(X - 2\cos\frac{(2k+1)\pi}{2n} \right)$$

- 5. **a.** On sait que $P_{n+1} = XP_n P_{n-1}$ donc $P_{n+1}(0) = -P_{n-1}(0)$.
 - **b.** Or $P_0(0) = 2$ donc $P_{2n}(0) = 2(-1)^n$ pour tout $n \in \mathbb{N}$. De plus, $P_1(0) = 0$ donc $P_{2n+1}(0) = 0$ pour tout $n \in \mathbb{N}$.
- **6.** Notons A_n le produit de l'énoncé. Alors $(-2)^n A_n = P_n(0)$. Donc $A_{2n+1} = 0$ et $A_{2n} = \frac{2(-1)^n}{(-2)^{2n}} = \frac{(-1)^n}{2^{2n-1}}$

7. Notons B_n la somme de l'énoncé. Par le changement d'indice $k \mapsto n-1-k$, $B_n=-B_n$ donc $B_n=0$.

Solution 10

Soit P un tel polynôme. En substituant 0 à X dans la condition de l'énoncé, on trouve P(0) = 0. Puis en substituant -1 à X, on trouve P(-1) = 0. En substituant -2 à X, on trouve P(-2) = 0. Enfin, en substituant -3 à X, on trouve P(-3) = 0. On ne peut pas aller plus loin. Ainsi P est divisible par X(X+1)(X+2)(X+3). Il existe donc un polynôme $Q \in \mathbb{R}[X]$ tel que P = X(X+1)(X+2)(X+3)Q. La condition de l'énoncé donne X(X+1)(X+2)(X+3)(X+4)Q(X) = X(X+1)(X+2)(X+3)(X+4)Q(X+1) et donc Q(X) = Q(X+1) par intégrité de $\mathbb{R}[X]$. On montre par récurrence que tout entier naturel est racine de Q - Q(0) donc Q est constant. Ainsi P est de la forme X(X+1)(X+2)(X+3) avec $X \in \mathbb{R}$.

Réciproquement tout polynôme de la forme $\lambda X(X+1)(X+2)(X+3)$ avec $\lambda \in \mathbb{R}$ vérifie bien la condition de l'énoncé.

Solution 11

- 1. Il est clair que $\mathbb{R}_0[X] \subset \text{Ker } u$. Réciproquement, soit $P \in \text{Ker } u$. Alors P(X+1) P(X) = 0. Ainsi P(n+1) = P(n) pour tout $n \in \mathbb{N}$ puis P(n) = P(0) pour tout $n \in \mathbb{N}$. Aisni P P(0) admet une inifinité de racines (tous les entiers naturels) : il est nul et $P \in \mathbb{R}_0[X]$. Ainsi $\text{Ker } u = \mathbb{R}_0[X]$.
- 2. Il suffit de remarquer que deg $N_k = k$ pour tout $k \in [0, n]$. Ainsi $(N_0, ..., N_n)$ est une famille de n + 1 polynômes à degrés étagés et dim E = n + 1 donc c'est une base de E.
- **3.** On trouve $u(N_0) = 0$ et $u(N_k) = N_{k-1}$ pour $k \in [1, n]$.
- **4.** D'après la question précédente, $u^{n+1}(N_k) = 0$ pour tout $k \in [0, n]$. Comme $(N_0, ..., N_n)$ est une base de E, $u^{n+1} = 0$. Or $u^n(N_n) = N_0 = 1 \neq 0$ donc u est nilpotent d'indice n + 1.
- 5. On a clairement $\operatorname{Im} u \subset \mathbb{R}_{n-1}[X]$. Mais $\operatorname{dim} \operatorname{Ker} u = 1$ d'après la première question donc $\operatorname{dim} \operatorname{Im} u = n = \operatorname{dim} \mathbb{R}_{n-1}[X]$ d'après le théorème du rang. Ainsi $\operatorname{Im} u = \mathbb{R}_{n-1}[X]$. Remarquons que $\operatorname{H} = \{P \in E, \ P(0) = 0\}$ est un hyperplan de E en tant que noyau d'une forme linéaire non nulle. Comme $\operatorname{Ker} u$ est une droite non incluse dans H, H est un supplémentaire de $\operatorname{Ker} u$ dans E. D'après le cours, u induit un isomorphisme de H sur $\operatorname{Im} u$. Pour tout $P \in \operatorname{Im} u$, il existe donc un unique $Q \in \operatorname{H}$ tel que u(Q) = P i.e. pour tout $P \in \mathbb{R}_{n-1}[X]$, il existe un unique $Q \in \operatorname{H}$ tel que u(Q) = P et Q(0) = 0.

Algèbre générale

Solution 12

- 1. Cf. cours.
- 2. On a clairement $I \subset A$. Supposons que $1_A \in I$. Par définition d'un idéal, pour tout $a \in A$, $1_A \times a \in I$ i.e. $A \subset I$. Ainsi I = A.
- 3. $0_A = a0_A \in I_a$.
 - Soit $(x, y) \in A^2$. Alors $ax + ay = a(x + y) \in I_a$.
 - Soit $x \in A$. Alors pour tout $y \in A$, $(ax)y = a(xy) \in I_a$.

On en déduit que I_a est bien un idéal de A.

4. Supposons que A est un corps. Soit I un idéal non nul de A. Alors il existe a ∈ I tel que a ≠ 0_A. Mais comme A est un corps, a est inversible. Par conséquent, 1_A = aa⁻¹ ∈ I car I est un idéal de A. D'après une question précédente, I = A. Réciproquement supposons que les seuls idéaux de A soient {0_A} et A. Soit a un élément non nul de A. On sait que I_a est un idéal de A. On ne peut avoir I_a = {0_A} sinon on aurait a = 0_A. Ainsi I_a = A. Notamment 1_A ∈ I_a. Il existe donc x ∈ A tel que ax = 1_A. Ainsin a est inversible et A est un corps.

Solution 13

Soit $(x, y) \in A^2$ tel que xy = 0. Comme $\{0\}$ est un idéal premier par hypothèse, x = 0 ou y = 0, ce qui prouve que A est intègre. Pour $x \in A$, on notera $\langle x \rangle$ l'idéal engendré par x. Soit $x \in A$. L'idéal $\langle x^2 \rangle$ est premier et $x^2 \in \langle x^2 \rangle$ donc $x \in \langle x^2 \rangle$. Il existe donc $y \in A$ tel que $x = x^2y$ ou encore x(1 - xy) = 0. Notamment, si $x \ne 0$, on a xy = 1 par intégrité de A et donc x est inversible.

Solution 14

1. \mathbb{Z} est un sous-groupe discret de \mathbb{Z} .

Le sous-groupe engendré par $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ autrement dit l'ensemble des matrices de la forme $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ avec $a \in \mathbb{Z}$ est un sous-groupe discret de $\mathrm{SL}_2(\mathbb{R})$.

2. Puisque Γ est discret, il existe un élément z_0 de Γ^* de module minimal. Mais par hypothèse $\lambda z_0 \in \Gamma^*$ donc $|\lambda| \ge 1$. Mais on a également $\frac{1}{\lambda}\Gamma = \Gamma$ donc $\left|\frac{1}{\lambda}\right| \ge 1$. On en déduit que $|\lambda| = 1$. Il existe donc $\theta \in \mathbb{R}$ tel que $\lambda = e^{i\theta}$. De plus, $z_1 = \lambda z_0 + \frac{1}{\lambda} z_0 \in \Gamma$ et $z_1 = 2\cos\theta z_0$. Supposons que $2\cos\theta \notin \mathbb{Z}$ et posons $z_2 = z_1 - \lfloor 2\cos\theta \rfloor z_0$. Alors $z_2 \in \Gamma$

De plus, $z_1 = \lambda z_0 + \frac{1}{\lambda} z_0 \in \Gamma$ et $z_1 = 2\cos\theta z_0$. Supposons que $2\cos\theta \notin \mathbb{Z}$ et posons $z_2 = z_1 - \lfloor 2\cos\theta \rfloor z_0$. Alors $z_2 \in \Gamma$ puisque Γ est un groupe. De plus, $z_2 \neq 0$ et $|z_2| < |z_0|$, ce qui contredit la définition de z_0 . Finalement $2\cos\theta \in \mathbb{Z}$. On a donc $\cos\theta \in \left\{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$ et ainsi $\lambda^4 = 1$ ou $\lambda^6 = 1$.

3. Posons A = $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et B = $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$. Pour tout $n \in \mathbb{Z}$, la matrice

$$B^n A B^{-n} = \begin{pmatrix} 1 & \lambda^{2n} \\ 0 & 1 \end{pmatrix}$$

appartient à Γ . Comme Γ est discret, la matrice I_2 est isolée et donc $|\lambda|=1$ i.e. $\lambda=\pm 1$.

Réciproquement si $\lambda = 1$, on montre que Γ est l'ensemble des matrices de la forme $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ avec $n \in \mathbb{Z}$ donc Γ est discret. Si $\lambda = -1$,

 $\Gamma \text{ est l'ensemble des matrices de la forme} \left(\begin{array}{c} 1 & n \\ 0 & 1 \end{array} \right) \text{et} \left(\begin{array}{c} -1 & n \\ 0 & -1 \end{array} \right) \text{avec } n \in \mathbb{Z} \text{ donc } \Gamma \text{ est à nouveau discret.}$

Solution 15

On a $2^p \equiv 1[k]$ donc $\bar{2}^p = \bar{1}$ dans $\mathbb{Z}/k\mathbb{Z}$. Notons r l'ordre de 2 dans le groupe multiplicatif $(\mathbb{Z}/k\mathbb{Z})^*$. La remarque précédente montre que r divise p. Or p est premier et on ne peut évidemment pas avoir r = 1 donc r = p. Puisque k est premier, $(\mathbb{Z}/k\mathbb{Z})^* = (\mathbb{Z}/k\mathbb{Z}) \setminus \{\bar{0}\}$ et l'ordre de $\bar{2}$ divise le cardinal de $(\mathbb{Z}/k\mathbb{Z})^*$ i.e. p divise k - 1. Enfin, $2^p - 1$ est impair donc k également i.e. 2 divise k - 1. Puisque p est impair, $2 \land p = 1$ donc 2p divise k - 1 i.e. $k \equiv 1[2p]$.

Solution 16

Remarquons déjà que G est commutatif. En effet, si $(x, y) \in G^2$, alors $(xy)^2 = e$ où e est le neutre. Ainsi xyxy = e puis en multipliant par yx à droite, xy = yx.

Comme G est fini, il admet une partie génératrice minimale $\{g_1,\ldots,g_r\}$. On montre alors que l'application $\left\{ \begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z})^r & \longrightarrow & \mathbf{G} \\ (\bar{\varepsilon}_1,\ldots,\bar{\varepsilon}_r) & \longmapsto & g_1^{\varepsilon_1}\cdots g_r^{\varepsilon_r} \end{array} \right.$ est un isomorphisme de groupes. On en déduit que $|\mathbf{G}| = |(\mathbb{Z}/2\mathbb{Z})^r| = 2^r$.

Solution 17

1. Comme $a \in \mathbb{R}_+^*$, $\det(A(h)) = a^h \neq 0$ pour tout $h \in \mathbb{R}$. Ainsi $E \subset GL_3(\mathbb{R})$. On vérifie de plus que

$$\forall (h, k) \in \mathbb{R}^2, \ A(h+k) = A(h)A(k)$$

donc A est un morphisme de groupe de $(\mathbb{R}, +)$ dans $GL_2(\mathbb{R})$. Notamment, E = Im A est un sous-groupe de $GL_3(\mathbb{R})$. Enfin, $Ker A = \{0\}$ donc A est injectif et E = Im A est isomorphe à $(\mathbb{R}, +)$.

2. On a A'(h) =
$$\begin{pmatrix} a^h \ln(a) & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 donc V = A'(0) = $\begin{pmatrix} \ln(a) & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Tout d'abord, $\exp(t \ln a) = a^t$. Puis, en posant N = $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,

 $N^2 = 0$ donc $\exp(tN) = I_2 + tN$. En raisonnant par blocs,

$$\exp(tV) = \begin{pmatrix} a^t & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} = A(t)$$

Solution 18

- 1. 1 n'est pas d'ordre fini dans \mathbb{Z} donc \mathbb{Z} est de caractéristique 0. L'ordre de $\overline{1}$ dans $\mathbb{Z}/n\mathbb{Z}$ est n donc $\mathbb{Z}/n\mathbb{Z}$ est de caractéristique n.
- 2. Supposons que A est de caractéristique n. Remarquons que $n \cdot 1_A = 0_A$ même si n = 0. Soit $x \in A$. Alors

$$nx = n(1_A \times x) = (n \cdot 1_A)x = 0_A \times x = 0_A$$

3. Supposons que A est de caractéristique non nulle n. Soit d un diviseur positif de n. Il existe donc $k \in \mathbb{N}^*$ tel n = dk. Alors

$$(d \cdot 1_{\mathcal{A}}) \times (k \cdot 1_{\mathcal{A}}) = (kd)1_{\mathcal{A}} = n \cdot 1_{\mathcal{A}} = 0_{\mathcal{A}}$$

Comme A est intègre $d \cdot 1_A = 0_A$ ou $k \cdot 1_A = 0_A$. Dans le premier cas, d divise l'ordre de 1_A , à savoir n donc d = n. Dans le second cas, k = n i.e. d = 1.

De plus, comme A n'est pas nul, A ne peut être de caractéristique 1 de sorte que $n \ge 2$. Ainsi n est premier.

4. Puisque A est commutatif, il est clair que $f(x \times y) = f(x) \times f(y)$ pour tout $(x, y) \in A^2$. De plus, $f(1_A) = 1_A$. Soit $(x, y) \in A^2$. Comme x et y commutent, on a par la formule du binôme de Newton

$$f(x+y) = \sum_{k=0}^{p} \binom{p}{k} x^k y^{p-k}$$

Pour $k \in [1, p-1]$, $k \binom{p}{k} = p \binom{p-1}{k-1}$. Puisque $k \in [1, p-1]$, p ne peut diviser k de sorte que $p \wedge k = 1$ d'après le lemme de Gauss. Ainsi p divise $\binom{p}{k}$ puis $\binom{p}{k}x^ky^{n-k} = 0_A$ d'après la deuxième question. On en déduit que f(x+y) = f(x) + f(y). f est donc

bien un endomorphisme d'anneau.

Si f est intègre, il est clair que $Ker f = \{0_A\}$ donc f est injectif. Si A est de plus fini, f est bijectif : c'est donc un automorphisme de l'anneau A.

5. Comme \mathbb{K} est fini, $1_{\mathbb{K}}$ est d'ordre fini. Ainsi la caractéristique de \mathbb{K} n'est pas nulle. Comme un corps est intègre, sa caractéristique est un nombre premier p.

On vérifie que si $(k, l) \in \mathbb{Z}^2$ vérifie $k \equiv l[p]$, alors kx = lx pour tout $x \in \mathbb{K}$. Ceci permet de définir une loi externe · sur \mathbb{K} en posant $\overline{k} \cdot x = kx$ pour $k \in \mathbb{Z}$ et $x \in \mathbb{K}$. On laisse au lecteur le soin de vérifier que $(\mathbb{K}, +, \cdot)$ est bien un $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel. Comme \mathbb{K} est

fini, il possède a fortiori une base (e_1, \dots, e_n) . L'application $\begin{cases} (\mathbb{Z}/p\mathbb{Z})^{\hat{n}} & \longrightarrow & \mathbb{K} \\ (k_1, \dots, k_n) & \longmapsto & \sum_{i=1}^n k_i e_i \end{cases}$ est alors bijective (c'est un isomorphisme).

On en déduit que card $\mathbb{K} = p^n$.

Algèbre linéaire

Solution 19

1. Si P_1 et P_2 sont deux polynômes de $\mathbb{R}_p[X]$ vérifiant :

$$\forall n \in \mathbb{N}, u_{n+1} = \alpha u_n + P_1(n) = \alpha u_n + P_2(n)$$

alors $P_1(n) - P_2(n) = 0$ pour tout $n \in \mathbb{N}$. Le polynôme $P_1 - P_2$ admet une infinité de racines : il est nul. Donc $P_1 = P_2$.

2. Notons F l'ensemble des suites de la forme $(P(n))_{n\in\mathbb{N}}$ avec $P\in\mathbb{R}_p[X]$. Comme $\mathbb{R}_p[X]$ est un \mathbb{R} -espace vectoriel, F en est également un. Notons $f: \left\{ \begin{array}{ccc} \mathbb{R}^\mathbb{N} & \longrightarrow & \mathbb{R}^\mathbb{N} \\ (u_n)_{n\in\mathbb{N}} & \longmapsto & (u_{n+1}-\alpha u_n)_{n\in\mathbb{N}} \end{array} \right.$ f est un endomorphisme et $S_p = f^{-1}(F)$ est donc un sous-espace vectoriel de $\mathbb{R}^\mathbb{N}$.

- 3. Soient $u, v \in S_p$ et $\lambda, \mu \in \mathbb{R}$. On a alors $\lambda u_{n+1} + \mu v_{n+1} = \alpha(\lambda u_n + \mu v_n) + (\lambda P_u + \mu P_v)(n)$. Par l'unicité montrée à la première question, on a $P_{\lambda u + \mu v} = \lambda P_u + \mu P_v$.
 - Soit $u \in S_p$. Dire que $u \in Ker \varphi$ équivaut à dire que $P_u = 0$ i.e. $\forall n \in \mathbb{N}, u_{n+1} = \alpha u_n$. Ker φ est donc l'ensemble des suites géométriques de raison α . Ainsi la suite $(\alpha^n)_{n \in \mathbb{N}}$ engendre Ker Φ . Puisque $\alpha \neq 0$, cette suite est non nulle, c'est donc une base de Ker φ .
- **4.** Par définition de S_p , Im $\phi = \mathbb{R}_p[X]$. Notons u_k la suite de terme général n^k . On a $\phi(u_k) = R_k$. Comme $\alpha \neq 1$, deg $R_k = k$. On en déduit que (R_0, \ldots, R_p) est une base de $\mathbb{R}_p[X]$. La famille (u_0, \ldots, u_p) est donc libre et $\operatorname{vect}(u_0, \ldots, u_p)$ est en somme directe avec $\operatorname{Ker} \phi$. Notons u la suite de terme général α^n . La famille (u, u_0, \ldots, u_p) est donc libre. Par le théorème du rang $\dim S_p = \dim \operatorname{Ker} \phi + \operatorname{rg} \phi = p + 2$. On en déduit que (u, u_0, \ldots, u_p) est une base de S_p .
- 5. Dans ce cas, p = 1 et $\alpha = 2$. La question précédente montre que (u_n) est de la forme $u_n = a \cdot 2^n + bn + c$. On va déterminer a, b, c à partir des 3 premiers termes de la suite. On calcule $u_1 = 3$, $u_2 = 11$. On est amené à résoudre le système :

$$\begin{cases} a+c = -2\\ 2a+b+c = 3\\ 4a+2b+c = 11 \end{cases}$$

On trouve a = 3, b = 2 et c = -5. Ainsi $u_n = 3 \cdot 2^n + 2n - 5$ pour tout $n \in \mathbb{N}$.

Solution 20

1. Posons L: $g \in \mathcal{L}(E) \mapsto f \circ g$ et R: $g \in \mathcal{L}(E) \mapsto g \circ f$. Alors $\Phi = L - R$. De plus, L et R sont des endomorphismes de E qui commutent. En effet, pour tout $g \in E$, $L \circ R(g) = R \circ L(g) = f \circ g \circ f$. D'après la formule du binôme de Newton,

$$\Phi^p = \sum_{k=0}^p (-1)^k \binom{p}{k} \mathbf{L}^{p-k} \circ \mathbf{R}^k$$

On en déduit que pour tout $g \in \mathcal{L}(E)$,

$$\Phi^{p}(g) = \sum_{k=0}^{p} (-1)^{k} \binom{p}{k} f^{p-k} \circ g \circ f^{k}$$

Dans la formule écrite au rang p=2n-1, pour $0 \le k \le p$, on a soit $k \ge n$, soit $p-k \ge n$ donc tous les termes de la somme précédente sont nuls. Φ est donc nilpotent d'indice inférieur ou égal à 2n-1.

2. Soit $a \in \mathcal{L}(E)$. Soit S un supplémentaire de Ker a. a induit un isomorphisme \tilde{a} de S sur Im a. Soit T un supplémentaire de Im a. On pose $b(x) = \tilde{a}^{-1}(x)$ pour $x \in \text{Im } a$ et b(y) = 0 pour $y \in T$. Ainsi on a bien $a \circ b \circ a = a$.

Remarque. On peut aussi raisonner matriciellement. Notons A la matrice de a dans une base de E. On sait qu'il existe $(P,Q) \in GL_n(\mathbb{K})^2$ tel que $A = PJ_rQ$ où $n = \dim E$, r = rg(A) et $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$. Comme $J_r^2 = J_r$, on obtient ABA = A en posant $B = Q^{-1}J_rP^{-1}$. Il suffit de prendre pour b l'endomorphisme de E dont la matrice est B dans la base précédente.

Montrons que Φ est d'ordre 2n-1 exactement. Pour p=2n-2 et $0 \le k \le p$, on a soit $k \le n$, soit $p-k \le n$ sauf pour k=n-1. Ainsi

$$\Phi^{2n-2}(g) = (-1)^{n-1} \binom{2n-2}{n-1} f^{n-1} \circ g \circ f^{n-1}$$

D'après ce qui précéde, il existe $g_0 \in \mathcal{L}(E)$ tel que

$$f^{n-1} \circ g_0 \circ f^{n-1} = f^{n-1}$$
.

Par conséquent, $\Phi^{2n-2}(g_0) = f^{n-1} \neq 0$.

Solution 21

- 1. Comme $\mathcal{L}(\mathbb{R}^n) = H_1 + H_2$, tout élément de $\mathcal{L}(\mathbb{R}^n)$ en particulier Id peut s'écrire comme la somme d'un élément de H_1 et d'un élément de H_2 .
- 2. On compose l'identité $p_1 + p_2 = \operatorname{Id} \operatorname{par} p_1$ une fois à gauche et une fois à droite pour obtenir :

$$p_1^2 + p_1 \circ p_2 = p_1$$
 $p_1^2 + p_2 \circ p_1 = p_1$

On additionne ces deux égalités de sorte que

$$2p_1^2 + p_1 \circ p_2 + p_2 \circ p_1 = 2p_1$$

Mais comme $p_1 \in H_1$ et $p_2 \in H_2$, $p_1 \circ p_2 + p_2 \circ p_1 = 0$. Ainsi $2p_1^2 = 2p_1$ et finalement $p_1^2 = p_1$. Donc p_1 est un projecteur. Quitte à échanger p_1 et p_2 , on démontre de même que p_2 est un projecteur.

- 3. Soit $f \in H_1$. On a donc $f \circ p_2 + p_2 \circ f = 0$. Comme p_2 est un projecteur, il existe une base \mathcal{B} de \mathbb{R}^n dans laquelle la matrice de p_2 est $P_2 = \left(\begin{array}{c|c} I_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & 0_r \end{array}\right)$ où $r = \operatorname{rg} p_2$. Notons $F = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$ la matrice de f dans cette même base \mathcal{B} avec $A \in \mathcal{M}_r(\mathbb{R})$, $B \in \mathcal{M}_{r,n-r}(\mathbb{R})$, $C \in \mathcal{M}_{n-r,r}(\mathbb{R})$ et $D \in \mathcal{M}_{n-r}(\mathbb{R})$. On a donc $P_2 + P_2 = 0$, ce qui entraı̂ne $P_2 = 0$. Par conséquent, $P_2 = \left(\begin{array}{c|c} 0_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & D \end{array}\right)$. Notons $P_2 = 0$ l'isomorphisme qui associe à un endomorphisme de \mathbb{R}^n sa matrice dans la base $P_2 = 0$. On a donc
 - $\Phi(\mathrm{H}_1)\subset \mathrm{G}$ où G est le sous-espace vectoriel des matrices de la forme $\left(\begin{array}{c|c} 0_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & \mathrm{D} \end{array}\right)$ où $\mathrm{D}\in\mathcal{M}_{n-r}(\mathbb{R})$. Par conséquent $\dim\mathrm{H}_1\leq \dim\mathrm{G}$. Or $\dim\mathrm{G}=(n-r)^2$. Ainsi $\dim\mathrm{H}_1\leq (n-r)^2=(n-\mathrm{rg}\;p_2)^2$.

On prouve de la même manière que dim $H_2 \le (n - \operatorname{rg} p_1)^2$.

4. Comme $H_1 \oplus H_2 = \mathcal{L}(\mathbb{R}^n)$, dim $H_1 + \dim H_2 = n^2$. On déduit de la question précédente que

$$n^2 \le (n - \operatorname{rg} p_1)^2 + (n - \operatorname{rg} p_2)^2$$

Comme $n - \operatorname{rg} p_1 \ge 0$ et $n - \operatorname{rg} p_2 \ge 0$,

$$(n - \operatorname{rg} p_1)^2 + (n - \operatorname{rg} p_2)^2 \le \left[(n - \operatorname{rg} p_1) + (n - \operatorname{rg} p_2) \right]^2 = \left[2n - (\operatorname{rg} p_1 + \operatorname{rg} p_2) \right]^2$$

On sait que $p_1 + p_2 = \text{Id.}$ Donc $\operatorname{rg}(p_1 + p_2) = n$. Or c'est un exercice classique que de montrer que $\operatorname{rg} p_1 + \operatorname{rg} p_2 \ge \operatorname{rg}(p_1 + p_2)$. On en déduit que $\operatorname{rg} p_1 + \operatorname{rg} p_2 \ge n$. De plus $\operatorname{rg} p_1 + \operatorname{rg} p_2 \le 2n$ donc

$$[2n - (\operatorname{rg} p_1 + \operatorname{rg} p_2)]^2 \le n^2$$

Finalement,

$$n^2 \leq (n - \operatorname{rg} \, p_1)^2 + (n - \operatorname{rg} \, p_2)^2 \leq \left[2n - (\operatorname{rg} \, p_1 + \operatorname{rg} \, p_2)\right]^2 \leq n^2$$

On en déduit que $[2n - (\operatorname{rg} p_1 + \operatorname{rg} p_2)]^2 = n^2$ i.e. $\operatorname{rg} p_1 + \operatorname{rg} p_2 = n$ et que $n^2 = (n - \operatorname{rg} p_1)^2 + (n - \operatorname{rg} p_2)^2$. Notons $r = \operatorname{rg} p_1$. On a alors $n^2 = (n - r)^2 + r^2$ i.e. r(n - r) = 0. Deux cas se présentent.

- Si r=0, alors $p_1=0$ et donc $p_2=\mathrm{Id}$. On a alors $\dim H_1\leq (n-\mathrm{rg}\;p_2)^2=0$. Donc $H_1=\{0\}$. Par conséquent $H_2=\mathcal{L}(\mathbb{R}^n)$.
- Si r = n, alors $p_1 = \text{Id}$. On a alors dim $H_2 \le (n \text{rg } p_1)^2 = 0$. Donc $H_2 = \{0\}$. Par conséquent $H_1 = \mathcal{L}(\mathbb{R}^n)$.

Réciproquement, on vérifie que ces deux couples (H₁, H₂) vérifient bien les hypothèses de l'énoncé.

Solution 22

On applique le théorème du rang à $u_{|Ker(u+v)}$. Alors

$$\dim \operatorname{Ker}(u+v) = \dim \operatorname{Ker}(u_{|\operatorname{Ker}(u+v)}) + \dim \operatorname{Im}(u_{|\operatorname{Ker}(u+v)})$$

D'une part,

$$\operatorname{Ker}(u_{\mid \operatorname{Ker}(u+v)}) = \operatorname{Ker}(u) \cap \operatorname{Ker}(u+v) = \operatorname{Ker}(u) \cap \operatorname{Ker} v$$

D'autre part, soit $y \in \operatorname{Im}(u_{|\operatorname{Ker}(u+v)})$. Il existe donc $a \in \operatorname{Ker}(u+v)$ tel que y=u(a). Or $u(a)+v(a)=0_{\operatorname{F}}$ donc $y=-v(a)\in \operatorname{Im}(v)$ donc $y \in \operatorname{Im}(u)\cap \operatorname{Im}(v)$ donc $\operatorname{Im}(u_{|\operatorname{Ker}(u+v)})\subset \operatorname{Im}(u)\cap \operatorname{Im}(v)$ puis dim $\operatorname{Im}(u_{|\operatorname{Ker}(u+v)})\leq \operatorname{dim}(\operatorname{Im}(u)\cap \operatorname{Im}(v))$. On en déduit le résultat voulu.

Solution 23

On supposera que a, b, c et m sont des paramètres réels.

$$\begin{cases} a^{2}x + a^{3}y + az = m \\ a^{2}x + y + az = m \\ x + ay + a^{2}z = m \end{cases}$$

$$\iff \begin{cases} (a^{3} - 1)y = 0 \\ a^{2}x + y + az = m \\ x + ay + a^{2}z = m \end{cases}$$

$$\iff \begin{cases} (a^{3} - 1)y = 0 \\ (1 - a^{3})y + a(1 - a^{3})z = (1 - a^{2})m L_{2} \leftarrow L_{2} - a^{2}L_{1} \\ x + ay + a^{2}z = m \end{cases}$$

$$\iff \begin{cases} (a^{3} - 1)y = 0 \\ a(1 - a^{3})z = (1 - a^{2})m \\ x + ay + a^{2}z = m \end{cases}$$

On distingue alors des cas.

Si a = 1,

$$(S) \iff x + y + z = m$$

L'ensemble des solutions est le plan affine (m, 0, 0) + vect((1, -1, 0), (1, 0, -1)).

Si a = 0

$$\cos \iff \{y = 00 = mx = m\}$$

Le système n'admet de solutions que si m = 0 et dans ce cas, l'ensemble des solutions est la droite vectorielle vect(0, 1, 0). Si $a \notin \{0, 1\}$,

(S)
$$\begin{cases} (a^2 + a + 1)y = 0\\ a(1 + a + a^2)z = (1 + a)m\\ x + ay + a^2z = m \end{cases}$$

On a supposé a réel de sorte que $a^2+a+1>0$. L'unique solution du système est alors $\left(\frac{(1+a-a^3)m}{1+a+a^2},0,\frac{(1+a)m}{1+a+a^2}\right)$.

Solution 24

1. f est linéaire par linéarité de l'intégrale. Soit $k \in [0, n]$. On a

$$f(X^k) = \frac{1}{k+1}((X+1)^{k+1} - X^{k+1}) = \frac{1}{k+1} \sum_{l=0}^{k} {k+1 \choose l} X^l$$

Ainsi deg $f(X^k) = k \le n$ et $f(X^k) \in \mathbb{R}_n[X]$. Par linéarité, $f(P) \in \mathbb{R}_n[X]$ pour tout $P \in \mathbb{R}_n[X]$. f induit bien un endomorphisme f_n de $\mathbb{R}_n[X]$.

2. L'expression de $f(X^k)$ trouvée à la question précédente montre que la matrice de f_n dans la base canonique est triangulaire supérieure et que ses coefficients diagonaux valent $\frac{1}{k+1} \binom{k+1}{k} = 1$ pour k variant de 0 à n. Le déterminant de f_n vaut donc 1.

Solution 25

Pour une matrice A, on notera A_{ij} le coefficient en position (i, j) et \tilde{A}_{ij} la matrice A privée de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne.

1. Notons U_n l'ensemble des matrices de taille $n \in \mathbb{N}^*$ à coefficients dans $\{-1,1\}$. Faisons l'hypothèse de récurrence suivante :

HR(n): étant donné une matrice de U_n , on peut rendre cette matrice inversible en changeant n-1 coefficients ou moins.

HR(1) est évidemment vraie puisqu'une matrice de U_1 est évidemment inversible.

Supposons HR(n) vraie pour un certain $n \in \mathbb{N}^*$. Soit $A \in U_{n+1}$. Quitte à changer n-1 coefficients de la matrice \tilde{A}_{11} , on peut la rendre inversible. Notons A' la matrice ainsi obtenue. Si A' est inversible, alors HR(n+1) est vraie. Sinon, puisque det $A' = \sum_{i=1}^{n+1} A'_{i1} \det \tilde{A}'_{i1} = 0$. Notons A'' la matrice A' où on a changé A'_{11} en son opposé. Alors

$$\det(A'') = \sum_{i=1}^{n+1} A''_{i1} \det \tilde{A}''_{i1}$$

$$= -A'_{11} \det \tilde{A}'_{11} + \sum_{i=2}^{n+1} A'_{i1} \det \tilde{A}'_{i1}$$

$$= -2A'_{11} \det \tilde{A}'_{11} + \sum_{i=1}^{n+1} A'_{i1} \det \tilde{A}'_{i1}$$

$$= -2A'_{11} \det \tilde{A}'_{11} + \det A' = -2A'_{11} \det \tilde{A}'_{11}$$

Puisque $A_1'1 = \pm 1$ et \tilde{A}_{11}' est inversible, $\det(A'') \neq 0$ et donc A'' est inversible, ce qui prouve que HR(n+1) est vraie. Par récurrence, HR(n) est vraie pour tout $n \in \mathbb{N}^*$.

Montrons maintenant qu'il existe des matrices de U_n pour lesquelles il faut changer exactement n-1 coefficients afin de les rendre inversibles. Il suffit de considérer une matrice de U_n dont toutes les colonnes sont égales au signe près. Considérons par exemple la matrice A de U_n dont tous les coefficients valent 1. Il faut au moins changer 1 coefficient dans n-1 colonnes sinon deux colonnes sont égales et la matrice n'est pas inversible.

2. On a évidemment card $U_n = 2^{n^2}$.

$$\begin{split} \sum_{\mathbf{A} \in \mathbf{U}_n} (\det \mathbf{A})^2 &= \sum_{\mathbf{A} \in \mathbf{U}_n} \left(\sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma) \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \right)^2 \\ &= \sum_{\mathbf{A} \in \mathbf{U}_n} \left[\sum_{\sigma \in \mathfrak{S}_n} \left(\epsilon(\sigma) \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \right)^2 + \sum_{\substack{(\sigma,\tau) \in \mathfrak{S}_n^2 \\ \sigma \neq \tau}} \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \mathbf{A}_{i\tau(i)} \right] \\ &= \sum_{\mathbf{A} \in \mathbf{U}_n} \sum_{\sigma \in \mathfrak{S}_n} \left(\epsilon(\sigma) \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \right)^2 + \sum_{\substack{(\sigma,\tau) \in \mathfrak{S}_n^2 \\ \sigma \neq \tau}} \sum_{\mathbf{A} \in \mathbf{U}_n} \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \mathbf{A}_{i\tau(i)} \end{split}$$

Comme la signature est à valeurs dans $\{-1,1\}$ de même que les coefficients d'une matrice A de U_n , on a

$$\sum_{\sigma \in \mathfrak{S}_n} \left(\varepsilon(\sigma) \prod_{i=1}^n \mathbf{A}_{i\sigma(i)} \right)^2 = \operatorname{card} \mathfrak{S}_n = n!$$

Soient maintenant $\sigma, \tau \in \mathfrak{S}_n$ telles que $\sigma \neq \tau$. Il existe donc $j \in [\![1,n]\!]$ tel que $\sigma(j) \neq \tau(j)$. L'application de U_n dans lui-même changeant le coefficient $A_{j\sigma(j)}$ en son opposé est une involution et laisse le coefficient $A_{i,\tau(i)}$ inchangé de sorte que la somme $\sum_{A \in U_n} \prod_{i=1}^n A_{i\sigma(i)} A_{i\tau(i)}$ est égale à son opposé et est donc nulle.

Finalement la moyenne recherchée, à savoir $\frac{1}{\operatorname{card} U_n} \sum_{A \in U_n} (\det A)^2$ vaut n!.

Solution 26

1. Soient x et y deux réels distincts. Le déterminant de la matrice $\begin{pmatrix} 1 & 1 \\ x & y \end{pmatrix}$ est $x-y \neq 0$ donc cette matrice est inversible. On en déduit que la matrice $\begin{pmatrix} f(1) & f(1) \\ f(x) & f(y) \end{pmatrix}$ est également inversible. Son déterminant f(1)(f(x)-f(y)) est donc non nul. En particulier, $f(x) \neq f(y)$. Ceci prouve l'injectivité de f.

2. On montrer d'abord que f(0) = 0. Comme f est surjective, il existe $x \in \mathbb{R}$ tel que 0 = f(x). La matrice (x) n'est alors pas inversible donc x = 0.

Soit
$$(x, y, z) \in \mathbb{R}^3$$
 tel que $\neq x + y$. Alors la matrice $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ x & y & z \end{pmatrix}$ a pour déterminant $z - x - y \neq 0$ et est donc inversible. La matrice

$$\begin{pmatrix} f(1) & f(0) & f(1) \\ f(0) & f(1) & f(1) \\ f(x) & f(y) & f(z) \end{pmatrix} = \begin{pmatrix} f(1) & 0 & f(1) \\ 0 & f(1) & f(1) \\ f(x) & f(y) & f(z) \end{pmatrix}$$
est donc également inversible et a pour déterminant $f(1)^2(f(z) - f(x) - f(y))$. Ainsi $f(z) \neq f(x) + f(y)$.

Par surjectivité de f, f(x) + f(y) admet un antécédent u par f. Si on avait $u \neq x + y$, alors on aurait $f(u) \neq f(x) + f(y)$, ce qui contredit ce qui précède. Ainsi u = x + y et f(x) + f(y) = f(u) = f(x + y).

3. On va montrer que f n'est ni majorée ni minorée. Comme elle est continue, elle sera surjective en vertu du théorème des valeurs intermédiaires.

Comme f est continue et injective, f est strictement monotone. Quitte à changer f en -f, on peut supposer f strictement croissante. Comme f(0) = 0, f est strictement positive sur \mathbb{R}_+^* .

De plus, pour
$$x \in \mathbb{R}^*$$
, la matrice $\begin{pmatrix} x+1/x & 1 \\ 1 & x \end{pmatrix}$ est inversible. On en déduit que $\begin{pmatrix} f(x+1/x) & f(1) \\ f(1) & f(x) \end{pmatrix}$ est également inversible. En

particulier, l'application continue $\varphi: x \mapsto f(x)f(x+1/x) - f(1)^2$ ne s'annule pas sur l'intervalle \mathbb{R}_+^* . Puisque f est strictement croissante, $\varphi(1) = f(1)(f(2) - f(1)) > 0$. Ainsi φ est strictement positive sur \mathbb{R}_+^* . On en déduit que $f(x+1/x) > f(1)^2/f(x)$ pour tout $x \in \mathbb{R}_+^*$. Or f est continue en 0 et positive sur \mathbb{R}_+^* donc $\lim_{0+} f = 0^+$. On en déduit que $\lim_{x \to 0^+} f(x+1/x) = +\infty$.

De la même manière, la matrice $\begin{pmatrix} x+1/x & -1 \\ -1 & x \end{pmatrix}$ est inversible. On en déduit comme précédemment que l'application $\psi \colon x \mapsto$

 $f(x)f(x+1/x) - f(-1)^2$ ne s'annule pas sur l'intervalle \mathbb{R}_+^* . Par ailleurs, $\psi(-2) = f(-1)(f(-2) - f(-1)) > 0$ par stricte croissance de f, donc ψ est strictement positive sur \mathbb{R}_+^* . On en déduit que $f(x+1/x) < f(-1)^2/f(x)$ pour tout $x \in \mathbb{R}_+^*$ (attention au signe de f(x)). Cecei permet aussi de conclure que $\lim_{x \to \infty} f(x+1/x) = -\infty$.

Finalement, f n'est ni bornée ni majorée et elle est donc surjective en vertu du théorème des valeurs intermédiaires.

La question précédente montre alors que pour tout $(x, y) \in \mathbb{R}^2$, f(x+y) = f(x)f(y) et on prouve classiquement que f est une fonction linéaire. De plus, f est non nulle car injective.

Réciproquement, supposons que f soit linéaire non nulle. Il existe donc $\lambda \in \mathbb{R}^*$ tel que $f(x) = \lambda x$ pour tout $x \in \mathbb{R}$. Soit A une matrice d'ordre n inversible. Alors la matrice A' telle que définie dans l'énoncé est également inversible puisque $\det(A') = \lambda^n \det(A)$.

Solution 27

Il est clair que si x = y, alors D = 0. Réciproquement, supposons D = 0. Notons M la matrice dont D est le déterminant. Alors M^T n'est pas inversible. Il existe alors un élément $X = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & a_4 \end{pmatrix}^T$ non nul du noyau de M. On posant $P = a_0 + a_1X + a_2X^2 + a_3X^3 + a_4X^4$, l'égalité $M^TX = 0$ donne P(x) = P'(x) = P(y) = P'(y) = P''(y) = 0. Si $\neq y$, alors P compte au cinq racines avec multiplicité ce qui est absurde puisque deg $P \le 4$ et $P \ne 0$. Ainsi x = y.

Solution 28

Remarquons tout d'abord que si deux des a_i sont égaux, le déterminant définissant D(x) admet deux colonnes identiques, il est donc nul. On supposera donc par la suite les a_i distincts deux à deux.

Remarquons que $\frac{P(x)}{x-a_i} = \prod_{j \neq i} (x-a_j)$ est polynomiale en x de degré n-1. En développant le déterminant par rapport à la première ligne,

on voit que D est polynomiale en x de degré inférieur ou égal à n-1 (on peut notamment la prolonger par continuité en les a_i). Pour $1 \le i \le n$, notons Δ_i le déterminant de Vandermonde des complexes $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$. On a donc $\Delta_i = \prod_{\substack{1 \le j < k \le n \\ j \ne i, k \ne i}} (a_k - a_j)$

On va calculer $D(a_i)$ pour $1 \le i \le n$. La première ligne du déterminant définissant $D(a_i)$ a tous ses coefficients nuls hormis le $i^{\text{ème}}$ qui vaut

 $\prod_{j\neq i} (a_j - a_i)$. En développant par rapport à cette ligne, on a donc :

$$\begin{split} \mathbf{D}(a_i) &= \left((-1)^{i-1} \prod_{j \neq i} (a_j - a_i) \right) \Delta_i = \left((-1)^{i-1} \prod_{j < i} (a_j - a_i) \right) \left(\prod_{j > i} (a_j - a_i) \right) \left(\prod_{1 \leq j < k \leq n} (a_k - a_j) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{j > i} (a_j - a_i) \right) \left(\prod_{1 \leq j < k \leq n} (a_k - a_j) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_k - a_i) \right) \left(\prod_{1 \leq j < k \leq n} (a_k - a_j) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_k - a_i) \right) \left(\prod_{1 \leq j < k \leq n} (a_k - a_j) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_k - a_i) \right) \left(\prod_{1 \leq j < k \leq n} (a_k - a_j) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k \leq n} (a_i - a_i) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k \leq n} (a_i - a_i) \right) \\ &= \left(\prod_{j < i} (a_i - a_j) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k \leq n} (a_i - a_i) \right) \\ &= \left(\prod_{i < k \leq n} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k \leq n} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k \leq n} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \\ &= \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right) \left(\prod_{i < k} (a_i - a_i) \right)$$

On peut partitionner l'ensemble $\{(j,k) \in [1,n]^2 \mid j < k\}$ en 3 parties suivant que $j \neq i$ et $k \neq i$ ou bien j = i et k > i ou bien k = i et j < i. On a donc

$$D(a_i) = \prod_{1 \le j < k \le n} (a_k - a_j)$$

Autrement dit $D(a_i) = \delta$ pour $1 \le i \le n$ où δ représente le déterminant de Vandermonde de a_1, \ldots, a_n . Le polynôme $D - \delta$ est donc de degré inférieur ou égal à n-1 et admet n racines distinctes (les a_i sont supposés distincts deux à deux) : il est donc nul. On a donc $D(x) = \delta$ pour tout $x \in \mathbb{C}$.

Arithmétique

Solution 29

L'ensemble de l'énoncé est formé des entiers de la forme $u_n = \sum_{k=0}^n 10^k$ pour $n \in \mathbb{N}$. On a facilement $u_n = \frac{1}{9}(10^{n+1} - 1)$. Remarquons que si p = 3, alors p divise 111 par exemple.

Soit p un entier premier différent de 2, 3 et 5. Alors $10 = 2 \times 5$ est premier avec p. D'après le petit théorème de Fermat, $10^{p-1} \equiv 1 \pmod{p}$ donc p divise $10^{p-1} - 1$. Comme $p \neq 3$, p est premier avec 9. On sait que 9 divise $10^{p-1} - 1$ puisque $\frac{1}{9}(10^{p-1} - 1) = u_{p-2} \in \mathbb{N}$. Donc 9p divise $10^{p-1} - 1$ i.e. p divise u_{p-2} .

Solution 30

Soit $(n, m) \in \mathbb{N}^2$ un éventuel couple vérifiant $n(n + 1)(n + 2) = m^2$.

Si n est pair, il existe $p \in \mathbb{N}$ tel que n = 2p. On en déduit que

$$4p(2p+1)(p+1) = m^2$$

Ainsi 2 divise m^2 et donc m puisque 2 est premier. Il existe donc $q \in \mathbb{N}$ tel que m = 2q. On en déduit que

$$p(2p+1)(p+1) = q^2$$

Or p, 2p+1 et p+1 sont premiers entre eux deux à deux (il existe des relations de Bézout évidentes entre ces entiers) et on prouve alors classiquement que p, 2p+1 et p+1 sont des carrés d'entiers en considérant les puissances de leurs facteurs premiers dans leurs décompositions en facteurs premiers. En particulier, il existe des entiers naturels c et d tels que $p=c^2$ et $p+1=d^2$. Ainsi $d^2-c^2=1$ i.e. (d+c)(d-c)=0. On en déduit d-c=d+c=1 et donc c=0 et d=1. Il s'ensuit que d=0 puis d=0.

Si *n* est impair, il existe $p \in \mathbb{N}$ tel que n = 2p + 1. On en déduit que

$$2(2p+1)(p+1)(2p+3) = m^2$$

Ainsi 2 divise m^2 et donc m puisque 2 est premier. Il existe donc $q \in \mathbb{N}$ tel que m = 2q. On en déduit que

$$(2p+1)(p+1)(2p+3) = 2q^2$$

Donc 2 divise (2p+1)(p+1)(2p+3). Comme 2p+1 et 2p+3 sont impairs, 2 divise p+1 et donc p est impair. Il existe donc $r \in \mathbb{N}$ tel que p=2r+1. Il s'ensuit que

$$(4r+3)(r+1)(4r+5) = q^2$$

r+1 est premier avec 4r+3 et 4r+5 en vertu de relations de Bézout évidentes. De plus (4r+5)-(4r+3)=2 donc le pgcd de 4r+3 et 4r+5 vaut 1 ou 2. Puisque 4r+3 et 4r+5 sont impairs, leur pgcd vaut 1 i.e. ces entiers sont premiers entre eux. Finalement, r+1, 4r+3 et 4r+5 sont premiers entre eux deux à deux et sont donc des carrés d'entiers comme précédemment. En particulier, il existe des entiers naturels c et d tes que $4r+3=c^2$ et $4r+5=d^2$. Ainsi $d^2-c^2=2$ i.e. (d+c)(d-c)=2. On en déduit que d-c=1 et d+c=2 i.e. $c=\frac{1}{2}$ et $d=\frac{3}{2}$ ce qui contredit le fait que c et d sont des entiers.

On en déduit finalement que la seule solution de l'équation $n(n+1)(n+2) = m^2$ est le couple (0,0).

Solution 31

- 1. Supposons que les c_i admettent un facteur premier commun p. Puisque p divise c_1 , il divise l'un des entiers a_2, \ldots, a_r en vertu du lemme d'Euclide. Quitte à réordonner les a_i , on peut supposer qu'il s'agit de a_2 . Mais p divise également c_2 donc il divise l'un des entiers a_1, a_3, \ldots, a_r . En notant a_j cet entier $(j \neq 2)$, p serait un diviseur commun de a_2 et a_j , ce qui contredit le fait que ces entiers sont premiers entre eux par hypothèse. Ainsi a_1, \ldots, a_r n'admettent pas de diviseur premier commun : ils sont premiers entre eux dans leur ensemble.
- 2. D'après la première question et le théorème de Bezout, il existe $(u_1, \dots, u_r) \in \mathbb{Z}^r$ tel que $\sum_{k=1}^r u_k c_k = 1$. Ainsi

$$\sum_{k=1}^{r} \frac{bu_k}{a_k} = \frac{b}{a_1 \dots a_r}$$

Notons respectivement q_k et x_k le quotient et le reste de la division euclidienne de bu_k par a_k . Alors on a bien $0leqx_k < a_k$ et

$$\sum_{k=1}^{r} q_k + \frac{x_k}{a_k} = b$$

ou encore

$$b = y + \sum_{k=1}^{r} \frac{x_k}{a_k}$$

en posant $y = \sum_{k=1}^{r} q_k$.

Reste à montrer l'unicité. Soit donc $(y', x_1', \dots, x_r') \in \mathbb{Z}^{r+1}$ tel que

$$[\forall k \in [1, r]], \ 0 \le x'_k < a_k$$
 et $\frac{b}{a_1 \dots a_r} = y' + \sum_{k=1}^r \frac{x'_k}{a_k}$

Ainsi

$$y - y' = \sum_{k=1}^{r} \frac{x'_k - x_k}{a_k}$$

ou encore

$$(y'-y)a_1 \dots a_r = \sum_{k=1}^r c_k (x'_k - x_k)$$

Fixons $j \in [1, r]$. Puisque a_j divise chacun des c_i avec $i \neq j$, l'égalité précédente montre que a_j divise $c_j(x'_j - x_j)$. Comme a_j est premier avec chacun des a_i avec $i \neq j$, il est également premier avec leur produit c_j . En vertu du lemme de Gauss, a_j divise donc $x'_j - x_j$. Or $-a_j < x'_j - x_j < a_j$ donc $x'_j - x_j = 0$ i.e. $x'_j = x_j$. Ceci étant valable pour tout $j \in [1, r]$, on en déduit alors immédiatement que y' = y.

Solution 32

1. Supposons que l'ensemble $\mathcal Q$ des nombres premiers p tels que $p\equiv 3[4]$ soit fini. Posons alors $N=\prod_{p\in\mathcal Q}p$ (on convient que N=1 si $\mathcal Q=\mathcal O$) et n=4N-1. Comme n est impair, les diviseurs premiers de n sont impairs et donc congrus à 1 ou 3 modulo 4. Comme $n\equiv 3[4]$, les diviseurs premiers de n ne peuvent pas tous être congrus à 1 modulo 4. Il existe donc un diviseur premier q de n tel que $q\equiv 3[4]$. Si q appartenait à $\mathcal Q$, q diviserait n0 et donc également n2 et qui est impossible. Ainsi n3 et n4 ce qui est absurde. L'ensemble n4 est donc infini.

- 2. On sait que pour tout $u \in (\mathbb{Z}/p\mathbb{Z})^*$, $u^{p-1} = 1$ (petit théorème de Fermat). Posons $U = u^{\frac{p-1}{2}}$ (U est bien défini car p-1 est pair). On a donc $U^2 = 1$ i.e. (U+1)(U-1) = 0. Comme $\mathbb{Z}/p\mathbb{Z}$ est un corps, il est intègre et donc $U = \pm 1$.
- 3. Le polynôme $X^{p-1}-1$ considéré comme un polynôme de $\mathbb{Z}/p\mathbb{Z}[X]$ possède p-1 racines en vertu du petit théorème de Fermat (à savoir tous les éléments de $(\mathbb{Z}/p\mathbb{Z})^*$). Or $X^{p-1}-1=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right)$ donc chaque racine de $X^{p-1}-1$ est racine de $X^{\frac{p-1}{2}}-1$ ou de $X^{\frac{p-1}{2}}+1$. Ces deux derniers polynômes sont de degré $\frac{p-1}{2}$ donc possèdent au plus $\frac{p-1}{2}$ racines. C'est donc qu'ils possèdent exactement $\frac{p-1}{2}$ racines. Le nombre de $u\in(\mathbb{Z}/p\mathbb{Z})^*$ tels que $u^{\frac{p-1}{2}}=-1$ vaut donc $\frac{p-1}{2}$.
- 4. D'après la question précédente, il existe $u \in (\mathbb{Z}/p\mathbb{Z})^*$ tel que $u^{\frac{p-1}{2}} = -1$. Si $p \equiv 1[4]$, on peut définir $U = u^{\frac{p-1}{4}}$ et on a alors $U^2 = -1$. -1 est donc bien un carré. Si $p \equiv 3[4]$, $-1 = u^{\frac{p-1}{2}} = uU^2$ avec $U = u^{\frac{p-3}{4}}$. Supposons que -1 soit un carré. Alors $u = (-1)(U^{-1})^2$ est également un carré i.e. il existe $x \in (\mathbb{Z}/p\mathbb{Z})^*$ tel que $u = x^2$. Mais alors $u^{\frac{p-1}{2}} = x^{p-1} = 1 \neq -1$. On aboutit à une contradiction donc -1 n'est pas un carré.
- 5. On vérifie que K est une sous-algèbre commutative de $\mathcal{M}_2(\mathbb{Z}/p\mathbb{Z})$ de dimension 2 engendrée par I_2 et $A = \begin{pmatrix} 0 & u \\ 1 & 0 \end{pmatrix}$ mais ce n'est pas vraiment ce qui est suggéré par la question.

Montrons que K est également un corps. On raisonne par analyse/synthèse. Soit $M = \begin{pmatrix} x & yu \\ y & x \end{pmatrix} \in K^*$ i.e. $(x, y) \neq (0, 0)$.

Supposons que M admette un inverse $M' = \begin{pmatrix} x' & y'u \\ y' & x' \end{pmatrix}$. Alors $\begin{cases} xx' + uyy' = 1 \\ xy' + x'y = 0 \end{cases}$. On en déduit que $\begin{cases} x'(x^2 - uy^2) = x \\ y'(uy^2 - x^2) = y \end{cases}$. Une condition nécessaire à l'existence d'un inverse est donc $x^2 - uy^2 \neq 0$.

Si x = 0, alors $y \neq 0$ et donc $x^2 - uy^2 = -uy^2 \neq 0$ (on a évidemment $u \neq 0$). Si $x \neq 0$, alors $x^2 = uy^2$ impliquerait que u est un carré et on a vu que c'était impossible. On a donc bien $x^2 - uy^2 \neq 0$.

Puisque $x^2 - uy^2 \neq 0$, il existe (x', y') tel que $\begin{cases} x'(x^2 - uy^2) = x \\ y'(uy^2 - x^2) = y \end{cases}$. Posons alors $M' = \begin{pmatrix} x' & y'u \\ y' & x' \end{pmatrix}$. On a $MM' = \begin{pmatrix} xx' + uyy' & u(xx' + yy') \\ xx' + yy' & xx' + uyy' \end{pmatrix}$. Or

$$(x^2 - uy^2)(xx' + uyy') = xx'(x^2 - uy^2) + uyy'(x^2 - uy^2) = x^2 - uy^2$$

$$(x^2 - uy^2)(xy' + x'y) = xy'(x^2 - uy^2) + yx'(x^2 - uy^2) = -xy + xy = 0$$

Comme $x^2 - uy^2 \neq 0$, xx' + uyy' = 1 et xy' + x'y = 0. On a alors bien $MM' = I_2$.

Remarque. K est un donc un corps à p^2 élément. On peut prouver que tous les corps à p^2 éléments lui sont isomorphes. De manière plus générale, si p est un nombre premier et $n \in \mathbb{N}$, on montre qu'il existe un unique corps à p^n éléments à isomorphisme près.

Solution 33

Soient p et q deux nombres premiers consécutifs avec p < q. Si p = 2, alors q = 3 et p + q = 5 ne peut être le produit de deux nombres premiers.

Si p > 2, alors p et q sont impairs donc p + q est pair. Supposons qu'il existe deux nombres premiers a et b tels que p + q = ab. Comme p + q est pair, un des deux nombres premiers a et b est égal à 2 par unicité de la décomposition en facteurs premiers. Supposons sans perte de généralité que a = 2. Alors $b = \frac{p+q}{2}$ est un nombre premier strictement compris entre p et q, ce qui contredit le fait que p et q sont des nombres premiers consécutifs.

Solution 34

- 1. $N(1) = N(1 \cdot 1) = N(1)^2$ donc $N(1) \in \{0, 1\}$. Mais $N(x) = 0 \implies x = 0$ donc N(1) = 1. De la même manière, $N(-1)^2 = N(1) = 1$ donc $N(-1) \in \{-1, 1\}$. Or N est à valeurs dans \mathbb{R}_+ donc N(-1) = 1.
- 2. Supposons que $q=\frac{c}{d}$ avec $(c,d)\in(\mathbb{Z}^*)^2$. On a donc ad=bc donc $\nu_p(ad)=\nu_p(bc)$ i.e $\nu_p(a)+\nu_p(d)=\nu_p(b)+\nu_p(c)$ ou enfin $\nu_p(a)-\nu_p(b)=\nu_p(c)-\nu_p(d)$.
- 3. Les deux premiers axiomes sont automatiquement vérifiés. Remarquons que l'aultramétrie implique directement le troisième axiome. Soit $(m,n) \in (\mathbb{Z}^*)^2$. Si m et n sont premiers entre eux, m et n n'ont pas de facteur premier commun donc $v_p(m) = 0$ ou $v_p(n) = 0$. Par conséquent, $v_p(m+n) \ge 0 = \min(v_p(m), v_p(n))$. Dans le cas général, posons $d = m \land n$ et m' et n' tels que m = dm' et n = dn'. Alors $m' \land n' = 1$. Par conséquent,

$$v_p(m+n) = v_p(d(m'+n')) = v_p(d) + v_p(m'+n') \ge v_p(d) + \min(v_p(m'), v_p(n')) = \min(v_p(d) + v_p(m'), v_p(d) + v_p(n')) = \min(v_p(dm'), v_p(dn'))$$
Enfin soit $(q, r) \in \mathbb{Q}^2$. Si $p = 0$ ou $q = 0$, l'inégalité $v_p(q+r) \ge \min(v_p(q), v_p(r))$ est trivialement vérifiée. Sinon, il existe $(a, b, c, d) \in \mathbb{Q}^2$. Alors $v_p(q+r) \ge v_p(q+r) = v_p(q+r)$. Alors $v_p(q+r) \ge v_p(q+r) = v_p(q+r)$.

 $(\mathbb{Z}^*)^4$ tel que $q = \frac{a}{b}$ et $r = \frac{c}{d}$. Alors $\nu_p(q+r) = \nu_p(ad+bc) - \nu_p(bd)$. D'après ce qui précède, $\nu_p(ad+bc) \ge \min(\nu_p(ad), \nu_p(bc))$ donc

$$\nu_{p}(q+r) \geq \min(\nu_{p}(ad), \nu_{p}(bc)) - \nu_{p}(bd) = \min(\nu_{p}(ad) - \nu_{p}(bd), \nu_{p}(bc) - \nu_{p}(bd)) = \min(\nu_{p}(a) - \nu_{p}(b), \nu_{p}(c) - \nu_{p}(d)) = \min(\nu_{p}(q), \nu_{p}(r)) = \min(\nu_{p}(ad) - \nu_{p}(bd), \nu_{p}(bc) - \nu_{p}(bd)) = \min(\nu_{p}(ad) - \nu_{p}(bd), \nu_{p}(bd)) = \min$$

Puisque $p \ge 1$, on en déduit automatiquement que $|q + r|_p \le \max(|q|_p, |q|_r)$.

- **4.** On montre par récurrence que $N(n) \le 1$ pour tout $n \in \mathbb{N}$. Ensuite, N(-n) = N(-1)N(n) = N(n) donc $N(n) \le 1$ pour tout $n \in \mathbb{Z}$. Notons \mathbb{P} l'ensemble des nombres premiers. Si N(p) = 1 pour tout $p \in \mathbb{P}$, la décomposition en facteurs premiers montre alors que N(n) = 1 pour tout $n \in \mathbb{Z}^*$. Mais alors pour $q = \frac{a}{b}$ avec $(a, b) \in (\mathbb{Z}^*)^2$, N(q) = N(bq) = N(a) = 1 donc N est triviale. Il existe donc $p \in \mathbb{P}$ tel que N(p) < 1.
 - Soit $a \in \mathbb{Z}$ premier avec p. Alors il existe $(u,v) \in \mathbb{Z}^2$ tel que au + pv = 1. Par ultramétrie, $\max(N(au), N(pv)) \ge N(1) = 1$. Mais puisque au et bv sont entiers, $N(au) \le 1$ et $N(bv) \le 1$. Ainsi $\max(N(au), N(pv)) = 1$. Mais N(pv) = N(p)N(v) < 1 car N(p) < 1 et $N(v) \le 1$ donc N(a)N(u) = N(au) = 1. A nouveau, $N(a) \le 1$ et $N(u) \le 1$ donc N(a) = N(u) = 1. On a donc montré que N(a) = 1 pour tout entier a premier avec p.

La décomposition en facteurs irréductibles nous apprend alors que $N(n) = N(p)^{\nu_p(n)}$ pour tout $n \in \mathbb{Z}$. Si $q = \frac{a}{b}$ avec $(a, b) \in (\mathbb{Z}^*)^2$,

alors
$$N(b)N(q) = N(bq) = N(a)$$
 donc $N(q) = \frac{N(a)}{N(b)} = \frac{N(p)^{\nu_p(a)}}{N(p)^{\nu_p(b)}} = N(p)^{\nu_p(a) - \nu_p(b)} = N(p)^{\nu_p(q)}$. Posons alors $\alpha = -\frac{\ln(N(p))}{\ln(p)}$. On

a bien $\alpha > 0$ car N(p) < 1 et p > 1. De plus, $N(p) = \frac{1}{p^{\alpha}}$. D'après ce qui précède,

$$\forall q \in \mathbb{Q}, \ \mathrm{N}(q) = \mathrm{N}(p)^{\nu_p(a)} = p^{-\alpha\nu_p(q)} = |q|_p^{\alpha}$$

Solution 35

Première méthode : On fixe un entier a impair et on fait l'hypothèse de récurrence suivante :

$$HR(n): a^{2^{n-1}} \equiv 1[2^n]$$

Initialisation : Puisque a est impair, a = 1[2] et HR(1) est vraie. **Hérédité :** Supposons HR(n) vraie pour un certain $n \in \mathbb{N}$. Alors $a^{2^{n-1}} - 1$ est divisible par 2^n . De plus $a^{2^{n-1}} + 1$ est pair car a est impair. Ainsi $a^{2^n} - 1 = (a^{2^{n-1}} - 1)(a^{2^{n-1}} + 1)$ est divisible par $2^n \times 2 = 2^{n+1}$ i.e. $a^{2^n} = 1[2^{n+1}]$ de sorte que HR(n + 1) est vraie.

Conclusion: Par récurrence, HR(n) est vraie pour tout entier $n \in \mathbb{N}^*$. Deuxième méthode: On fixe $n \in \mathbb{N}^*$. Comme a est impair, $a \wedge 2^n = 1$. D'après le petit théorème de Fermat, $a^{\varphi(2^n)} \equiv 1[2^n]$. Or $\varphi(2^n) = 2^n - 2^{n-1} = 2^{n-1}$ donc $a^{2^{n-1}} \equiv 1[2^n]$.

Solution 36

1. Comme $\mathbb{Z}/p\mathbb{Z}$ est un corps

$$x^2 = x \iff x(x-1) = 0 \iff (x = 0 \text{ ou } x = 1)$$

2. Comme $34 = 2 \times 17$ et $2 \wedge 17 = 1$, on peut considérer l'isomorphisme d'anneaux naturel φ de $\mathbb{Z}/34\mathbb{Z}$ sur $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/17\mathbb{Z}$. Alors

$$x^2 = x \iff \varphi(x^2) = \varphi(x) \iff \varphi(x)^2 = \varphi(x)$$

En posant $\varphi(x) = (y, z)$, ceci équivaut à $y^2 = y$ et $z^2 = z$. D'après la question précédente, on a donc

$$x^2 = x \iff (y, z) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

Il s'agit donc maintenant de trouver les antécédents de (0,0), (0,1), (1,0) et (1,1) par φ . Les solutions de $x^2 = x$ sont par conséquent 0, 18, 17 et 1.

REMARQUE. On confond ici les entiers avec leurs classes modulo 34, ce qui est très mal.

Remarque. Si on n'est pas à l'aise avec les anneaux $\mathbb{Z}/n\mathbb{Z}$, on peut raisonner en termes de congruence. Il s'agit en fait de résoudre $k^2 \equiv k[34]$ dans \mathbb{Z} . Cette équation équivaut à $34 \mid k^2 - k$ ou encore $2 \times 17 \mid k(k-1)$. Comme $2 \wedge 17 = 1$, ceci équivaut au système $\begin{cases} 2 \mid k(k-1) \\ 17 \mid k(k-1) \end{cases}$. Mais comme 2 et 17 sont premiers, ceci équivaut à

$$\begin{cases} 2 | k \text{ ou } 2 | k - 1 \\ 17 | k \text{ ou } 17 | k - 1 \end{cases}$$

ou encore à

$$\begin{cases} 2 \mid k \\ 17 \mid k \end{cases} \text{ou} \begin{cases} 2 \mid k-1 \\ 17 \mid k \end{cases} \text{ou} \begin{cases} 2 \mid k \\ 17 \mid k-1 \end{cases} \text{ou} \begin{cases} 2 \mid k-1 \\ 17 \mid k-1 \end{cases}$$

et finalement à

$$\begin{cases} k \equiv 0[2] \\ k \equiv 0[17] \end{cases} \text{OU} \begin{cases} k \equiv 1[2] \\ k \equiv 0[17] \end{cases} \text{OU} \begin{cases} k \equiv 0[2] \\ k \equiv 1[17] \end{cases} \text{OU} \begin{cases} k \equiv 1[2] \\ k \equiv 1[17] \end{cases}$$

Des solutions particulières de chacun de ces systèmes sont respectivement 0, 17, 18 et 1 donc, comme $2 \land 17 = 1$, on prouve classiquement que l'ensemble des solutions recherchées est $\{0, 1, 17, 18\} + 34\mathbb{Z}$.

Solution 37

- 1. On sait que $(\mathbb{F}_p, +, \times)$ est un corps et que (\mathbb{F}_p^*, \times) est un groupe. Ainsi (\mathcal{C}, \times) est également un groupe puisque c'est l'image de \mathbb{F}_p^* par l'endomorphisme de groupe $x \mapsto x^2$.
- **2.** On trouve $C = \{\overline{1}, \overline{4}, \overline{9}, \overline{5}, \overline{3}\}$.
- 3. D'après un résultat sur les polynômes interpolateurs de Lagrange :

$$P = \sum_{i=1}^{d} P(a_i) \prod_{j \neq i} \frac{X - a_j}{a_i - a_j}$$

Il existe donc des entiers m_1, \dots, m_d tels que

$$\left(\prod_{1 \le i < j \le n} a_j - a_i\right) P = \sum_{i=1}^n m_i P(a_i) \prod_{j \ne i} (X - a_j)$$

Soit $n \in \mathbb{Z}$. Alors

$$\left(\prod_{1 \le i < j \le n} a_j - a_i\right) P(n) = \sum_{i=1}^n m_i P(a_i) \prod_{j \ne i} (n - a_j)$$

Puisque p divise les $P(a_i)$, p divise le membre de droite. Les a_i étant distincts modulo p, aucun des facteurs $a_j - a_i$ n'est divisible par p. Comme p est premier, le lemme d'Euclide permet d'affirmer que p divise P(n).

4. Soit $y \in \mathcal{C}$. Il existe donc $x \in \mathbb{F}_p^*$ tel que $y = x^2$. Alors $y^{\frac{p-1}{2}} = x^{p-1} = \overline{1}$ car \mathbb{F}_p^* est un groupe multiplicatif d'ordre p-1. Montrons ensuite que card $\mathcal{C} = \frac{p-1}{2}$. Soit $(x,y) \in (\mathbb{F}_p^*)^2$. Alors $x^2 = y^2 \iff (x-y)(x+y) = 0 \iff x = \pm y$. De plus, y et -y sont distincts car $p \neq 2$. Ainsi tout élément de \mathbb{C} admet exactement deux antécédents par l'application $x \in \mathbb{F}_p^* \mapsto x^2$. Comme cette application est d'image \mathcal{C} par définition, le lemme des bergers permet de conclure que card $\mathbb{F}_p^* = 2$ card \mathcal{C} i.e. card $\mathcal{C} = \frac{p-1}{2}$. Soit $P = X^{\frac{p-1}{2}} - 1$. Supposons qu'il existe $a \in \mathbb{F}_p \setminus \mathcal{C}$ tel que $a^{\frac{p-1}{2}} = \overline{1}$. Comme deg $P = \text{card } \mathcal{C} = \frac{p-1}{2}$, la question précédente montrerait que P(n) est divisible par p pour tout $n \in \mathbb{Z}$, ce qui est évidemment absurde (prendre n = 0 par exemple).

Remarque. L'énoncé essaie de rester dans le cadre du programme et évite de parler de l'anneau des polynômes $\mathbb{F}_p[X]$. Si l'on s'autorise ce petit écart du programme, les choses sont plus simples. On peut encore affirmer qu'un polynôme non nul de $\mathbb{F}_p[X]$ possède au plus autant de racines que son degré. Le polynôme $X^{\frac{p-1}{2}}-1$ possède donc au plus $\frac{p-1}{2}$ racines dans \mathbb{F}_p . Tous les éléments de \mathcal{C} sont des racines de $X^{\frac{p-1}{2}}-1$ et card $\mathcal{C}=\frac{p-1}{2}$ donc \mathcal{C} est exactement l'ensemble des racines de $X^{\frac{p-1}{2}}$.

Solution 38

Le polynôme P-7 admet les λ_i pour racines donc il est divisible par les $X-\lambda_i$. Comme les λ_i sont distincts, les $X-\lambda_i$ sont premiers entre eux deux à deux. On en déduit que $(X-\lambda_1)(X-\lambda_2)(X-\lambda_3)(X-\lambda_4)$ divise P-7. On montre classiquement que le quotient d'un polynôme à coefficients entiers par un polynôme unitaire à coefficients entiers est un polynôme à coefficients entiers. Il existe donc un polynôme Q à coefficients entiers tel que

$$P = 7 + (X - \lambda_1)(X - \lambda_2)(X - \lambda_3)(X - \lambda_4)Q$$

Supposons qu'il existe $n \in \mathbb{Z}$ tel que P(n) = 14 alors

$$7 = (n - \lambda_1)(n - \lambda_2)(n - \lambda_3)(n - \lambda_4)Q(n)$$

Comme Q(n) et les $n - \lambda_i$ sont entiers, les $n - \lambda_i$ seraient quatre diviseurs de 7 distincts deux à deux dont le produit divise 7. Or 7 possède pour diviseurs -1, 1, -7 et 7 mais le produit de ces quatre entiers ne divise évidemment pas 7. Ainsi l'équation P(n) = 14 ne possède pas de solution entière.

Intégrales impropres

Solution 39

1. Soit f une fonction de classe C^{n+1} sur [a,b] à valeurs dans un espace vectoriel normé de dimension finie. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

On raisonne par récurrence sur n. La propriété est vraie pour n = 0, car si f est de classe \mathcal{C}^1 ,

$$f(b) = f(a) + \int_{a}^{b} f'(t) dt$$

Supposons que la propriété soit vraie pour un certain $n \in \mathbb{N}$. Supposons que f soit de classe \mathcal{C}^{n+2} . A fortiori, f est de classe \mathcal{C}^{n+1} donc on peut écrire

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

En intégrant par parties,

$$\int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt = -\left[\frac{(b-t)^{n+1}}{(n+1)!} f^{(n+1)}(t)\right]_{a}^{b} + \int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt = \frac{f^{(n+1)}(a)}{(n+1)!} (b-a)^{n+1} + \int_{a}^{b} \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

ce qui permet de conclure.

2. On peut déjà effectuer le changement de variable $t = u^2$ pour «simplifier» l'intégrale. L'intégrale de l'énoncé est alors de même nature que l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(u)}{u} du$. L'intégrale converge en 0 puisque $u \mapsto \frac{\sin u}{u}$ est prolongeable par continuité en 0. De plus, sous réserve de convergence, on obtient par intégration par parties

$$\int_{-\pi}^{+\infty} \frac{\sin u}{u} du = -\left[\frac{\cos u}{u}\right]_{\pi}^{+\infty} - \int_{-\pi}^{+\infty} \frac{\cos u}{u^2} du$$

Le crochet converge puisque, cos étant bornée, $\lim_{u\to +\infty} \frac{\cos u}{u} = 0$. La deuxième intégrale converge également puisque $\frac{\cos u}{u^2} = O\left(\frac{1}{u^2}\right)$. On peut alors en conclure que l'intégrale de Dirichlet converge et donc l'intégrale de l'énoncé également.

Remarque. Le changement de variable initiale n'était pas nécessaire. On aurait pu directement remarque que $\frac{\sin(\sqrt{t})}{t} \sim \frac{1}{\sqrt{t}}$, d'où l'intégrabilité en 0 et procéder à une intégration par parties en écrivant $\frac{\sin(\sqrt{t})}{t} = \frac{\sin(\sqrt{t})}{\sqrt{t}}c \cdot \frac{1}{\sqrt{t}}$.

3. Posons $f: t \mapsto \frac{\sin(\sqrt{t})}{t} dt$. Soit $n \in \mathbb{N}^*$. Remarquons que

$$\int_{n}^{n+1} f(t) dt - f(n) = \int_{n}^{n+1} (f(t) - f(n)) dt$$

D'après l'inégalité de Taylor-Lagrange, pour tout $t \in [n, n+1]$

$$|f(t) - f(n)| \le |t - n| \max_{[n,t]} |f'| \le \max_{[n,n+1]} |f'|$$

Or $f'(t) = \frac{\cos(\sqrt{t})}{2t^{3/2}} - \frac{\sin(\sqrt{t})}{t^2}$ donc, pour tout $t \in [n, n+1]$,

$$|f'(t)| \le \frac{1}{2t^{3/2}} + \frac{1}{t^2} \le \frac{3}{2t^{3/2}} \le \frac{3}{2n^{3/2}}$$

Ainsi, pour tout $t \in [n, n+1]$,

$$|f(t) - f(n)| \le \frac{3}{2n^{3/2}}$$

puis, par inégalité triangulaire,

$$\left| \int_{n}^{n+1} f(t) \, dt - f(n) \right| \le \int_{n}^{n+1} |f(t) - f(n)| \, dt \le \frac{3}{2n^{3/2}}$$

On en déduit que la série $\sum_{n\geq 1}\int_n^{n+1}f(t)\;\mathrm{d}t-f(n)$ converge (absolument) par comparaison à une série de Riemann. Comme $\int_0^{+\infty}f(t)\;\mathrm{d}t$ converge, la série $\sum_{n\geq 1}\int_n^{n+1}f(t)\;\mathrm{d}t$ converge et donc la série $\sum_{n\geq 1}f(n)$ également.

Solution 40

Notons F l'unique primitive de f sur \mathbb{R}_+ s'annulant en 0. On a donc $F' + F = \varphi$. Par variation de la constante, il existe $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+, \ F(x) = e^{-x} \int_0^x e^t \varphi(t) \ dt + \lambda e^{-x}$$

Notons ℓ la limite de φ en $+\infty$. On a donc

$$\forall x \in \mathbb{R}_+, \int_0^x \varphi(t)e^t \, \mathrm{d}t = \int_0^x \ell e^t \, \mathrm{d}t + \int_0^x (\varphi(t) - \ell)e^t \, \mathrm{d}t = \ell(e^x - 1) + \int_0^x (\varphi(t) - \ell)e^t \, \mathrm{d}t$$

Puisque $(\varphi(t) - \ell)e^t = o(e^t)$, que $t \mapsto e^t$ est positive et que l'intégrale $\int_0^{+\infty} e^t dt$ diverge, on a par intégration des relations de comparaison

$$\int_0^x (\varphi(t) - \ell)e^t dt = o\left(\int_0^x e^t dt\right)$$

ou encore

$$\int_{0}^{x} (\varphi(t) - \ell)e^{t} dt = o(e^{x})$$

Ainsi

$$\int_{0}^{x} \varphi(t)e^{t} dt = e^{x} + o(e^{x})$$

puis

$$F(x) = \ell + o(1)$$

Ainsi F admet également pour limite ℓ en $+\infty$. Puisque $f = \varphi - F$, f admet pour limite θ en $+\infty$.

Solution 41

1. Posons g = f' + af de sorte que f est solution de l'équation différentielle y' + ay = g. Par variation de la constante, il existe $\lambda \in \mathbb{C}$ tel que $f(x) = e^{-ax} \int_{-\infty}^{x} e^{at} g(t) dt + \lambda e^{-ax}$ pour $x \in \mathbb{R}_+$. Puisque g = o(1),

$$\int_{0}^{x} e^{at} g(t) dt = o\left(\int_{0}^{x} |e^{at}| dt\right)$$

Or pour $x \in \mathbb{R}_+$,

$$\int_{0}^{x} |e^{at}| dt = \int_{0}^{x} e^{\text{Re}(a)t} dt = \frac{1}{\text{Re}(a)} (e^{\text{Re}(a)x} - 1)$$

On en déduit que

$$\int_0^x e^{at} g(t) dt = o(e^{\operatorname{Re}(a)x})$$

puis finalement que

$$\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at} g(t) dt = 0$$

Par ailleurs, il est clair que $\lim_{x \to +\infty} e^{-ax} = 0$ puisque Re(a) < 0. Finalement, on a bien $\lim_{t \to \infty} f = 0$.

Remarque. On peut aussi introduire la fonction $\varphi: x \mapsto e^{ax} f(x)$. On a alors $\varphi'(x) = o(e^{ax})$. Ainsi

$$\varphi(x) - \varphi(0) = o\left(\int_{0}^{x} |e^{at}| dt\right)$$

On en déduit sans peine que $\varphi(x) = e^{\operatorname{Re}(a)x}$ i.e. $\varphi(x) = e^{ax}$ puis $\lim_{t \to \infty} f = 0$.

2. Posons $j = e^{\frac{2i\pi}{3}}$ et g = f' - jf. Alors $g' - \bar{j}g = f'' + f' + f$ admet une limite nulle en $+\infty$. Puisque $\text{Re}(\bar{j}) < 0$, la première question montre que g admet une limite nulle en $+\infty$. Puisque g = f' - jf et Re(j) < 0, la première question montre à nouveau que f admet une limite nulle en $+\infty$.

3. Soient P ∈ C[X] dont les racines sont toutes de parties réelles strictement négatives et D l'opérateur de dérivation. Si f est une fonction de classe Cⁿ (avec n = deg P) telle que lim P(D)(f) = 0, alors lim f = 0. Il suffit de raisonner par récurrence sur le degré n de P. Si n = 0, il n'y a rien à démontrer. Supposons le résultat vrai pour un certain n ∈ N. Soit alors P ∈ C[X] de degré n+1 dont les racines sont de parties réelles strictement négatives et f une fonction de classe Cⁿ⁺¹ sur R₊ telle que lim P(D)(f) = 0. Soit a une racine de P. On peut donc écrire P = (X - a)Q avec deg Q = n. Posons g = Q(a)(f). Alors g' - ag = P(D)(f) admet une limite nulle en +∞. Puisque Re(a) < 0, la première question montre que lim g = 0. Or g = Q(D)(f) et deg Q = n donc, par hypothèse de récurrence, lim f = 0. Par récurrence, le résultat est vrai pour tout n ∈ N.</p>

Solution 42

1. D'après la théorème fondamental de l'analyse, F: $x \mapsto \int_0^x f(t) dt$ est une primitive de f sur \mathbb{R}_+ . De plus,

$$\forall x \in \mathbb{R}_+^*, \ \frac{F(x) - F(0)}{x - 0} = g(x)$$

donc $\lim_{x \to 0} g(x) = F'(0) = f(0)$.

2. D'après l'inégalité de Cauchy-Schwarz,

$$\forall x \in \mathbb{R}_+, \ |\mathrm{F}(x)| = \left| \int_0^x 1 \cdot f(t) \ \mathrm{d}t \right| \leq \sqrt{\int_0^x \mathrm{d}t} \sqrt{\int_0^x f(t)^2} \ \mathrm{d}t \leq \sqrt{x} \sqrt{\int_0^{+\infty} f(t)^2} \ \mathrm{d}t$$

En posant C =
$$\sqrt{\int_0^{+\infty} f(t)^2 dt}$$
,

$$\forall x \in \mathbb{R}_+^*, \ |g(x)| \le \frac{C}{\sqrt{x}}$$

donc $\lim_{x \to +\infty} g(x) = 0$.

3. Soit $x \in \mathbb{R}_+^*$. Par intégration par parties,

$$\int_0^x g(t)^2 dt = \int_0^x \frac{1}{t^2} F(t)^2 dt = -\left[\frac{F(t)^2}{t}\right]_0^x + 2 \int_0^x \frac{F(t)F'(t)}{t} dt$$

L'intégration par parties est légitime car, par continuité de F en 0,

$$\lim_{t \to 0} \frac{F(t)^2}{t} = \lim_{t \to 0} g(t)F(t) = g(0)F(0) = 0$$

Ainsi

$$\int_0^x g(t)^2 dt = -\frac{F(x)^2}{x} + 2 \int_0^x g(t)f(t) dt \le 2 \int_0^x g(t)f(t) dt$$

Par inégalité de Cauchy-Schwarz,

$$\int_0^x g(t)^2 dt \le 2 \sqrt{\int_0^x g(t)^2 dt} \sqrt{\int_0^x f(t)^2 dt} \le 2 C \sqrt{\int_0^x g(t)^2 dt}$$

puis

$$\int_0^x g(t)^2 dt \le 4C^2$$

La fonction $x \mapsto \int_0^x g(t)^2 dt$ est croissante (intégrande positive) et majorée donc admet une limite en $+\infty$. L'intégrale $\int_0^{+\infty} g(t)^2 dt$ converge donc i.e. g est de carré intégrable sur \mathbb{R}_+ .

Solution 43

1. Soit $x \in I$. $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[$ et $\frac{e^{-t}}{t} = o\left(\frac{1}{t^2}\right)$ par croissances comparées. L'intégrale $\int_x^{+\infty} \frac{e^{-t}}{t} dt$ converge donc et f est définie sur I.

2. On peut remarquer que

$$\forall x \in I, \ f(x) = f(1) - \int_{1}^{x} \frac{e^{-t}}{t} \ dt$$

donc f est dérivable sur I d'après le théorème fondamental de l'analyse et

$$\forall x \in I, \ f'(x) = -\frac{e^{-x}}{x}$$

3. On sait que $\frac{e^{-t}}{t} \sim \frac{1}{t}$ et l'intégrale $\int_{0}^{1} \frac{dt}{t}$ diverge donc

$$f(x) - f(1) = \int_{x}^{1} \frac{e^{-t}}{t} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t} = -\ln(x)$$

Comme $\lim_{x\to 0^+} -\ln(x) = +\infty$,

$$f(x) \sim -\ln(x)$$

Par intégration par parties

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = -\left[\frac{e^{-t}}{t}\right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt$$

Comme $\frac{e^{-t}}{t^2} = o\left(\frac{e^{-t}}{t}\right)$ et que $\int_{1}^{+\infty} \frac{e^{-t}}{t} dt$ diverge,

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o\left(\int_{x}^{+\infty} \frac{e^{-t}}{t} dt\right)$$

Ainsi

$$f(x) \underset{x \to +\infty}{\sim} \frac{e^{-x}}{x}$$

4. Tout d'abord, f est continue sur I. De plus, $f(x) \underset{x \to 0^+}{\sim} -\ln(x)$ donc $f(x) \underset{x \to 0^+}{=} o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Enfin, $f(x) \underset{x \to +\infty}{\sim} \frac{e^{-x}}{x}$ donc $f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x^2}\right)$ par croissances comparées. Ainsi f est intégrable sur I et $\int_0^{+\infty} f(t) \, dt$ converge. Par intégration par parties,

$$\int_0^{+\infty} f(t) dt = \left[tf(t) \right]_0^{+\infty} - \int_0^{+\infty} tf'(t) dt$$

Cette intégration par parties est légitime car

$$tf(t) \underset{t \to 0^+}{\sim} -t \ln t$$
 et $tf(t) \underset{t \to +\infty}{\sim} e^{-t}$

de sorte que

$$\lim_{t \to 0^+} tf(t) = \lim_{t \to +\infty} tf(t) = 0$$

Ainsi

$$\int_{0}^{+\infty} f(t) dt = -\int_{0}^{+\infty} t f'(t) = \int_{0}^{+\infty} e^{-t} dt = 1$$

Solution 44

L'intégrale $\int_{1}^{+\infty} \frac{1-e^{-t}}{t^2} dt$ converge puisque $\frac{1-e^{-t}}{t^2} \sim \frac{1}{t^2}$. Alors, en posant

$$G(x) = \int_{x}^{+\infty} \frac{1 - e^{-t}}{t^2} dt$$

on a donc $\lim_{x \to +\infty} G(x) = 0$. Par conséquent,

$$F(x) = G(x) - G(7x) \xrightarrow[x \to +\infty]{} 0$$

Remarquons que

$$\frac{1 - e^{-t}}{t^2} = \frac{1}{t^{+0}} + \mathcal{O}(1)$$

On en déduit que l'intégrale $\int_0^1 \left(\frac{1-e^{-t}}{t^2} - \frac{1}{t}\right) dt$ converge. Notons C sa valeur. Alors en posant pour x > 0

$$H(x) = \int_{r}^{1} \left(\frac{1 - e^{-t}}{t^2} - \frac{1}{t} \right) dt$$

on a $\lim_{x\to 0^+} H(x) = C$. Par conséquent,

$$F(x) = H(7x) - H(x) + \int_{x}^{7x} \frac{dt}{t} = H(7x) - H(x) + \ln(7) \underset{x \to 0^{+}}{\longrightarrow} C - C + \ln(7) = \ln(7)$$

Solution 45

- 1. Posons $f(x,t) = \frac{\ln t}{x^2 + t^2}$ pour $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$. Si $x \neq 0$, $f(x,t) = o\left(\frac{1}{t^{\frac{1}{2}}}\right)$ et $f(x,t) = o\left(\frac{1}{t^{\frac{3}{2}}}\right)$ par croissance comparées donc $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* . Enfin, $\frac{1}{t} = o\left(\frac{\ln t}{t^2}\right)$ donc $t \mapsto f(0,t)$ n'est pas intégrable au voisinage de 0^+ . Le domaine de définition de F est donc \mathbb{R}^* .
- **2.** Effectuons le changement de variable u = 1/t:

$$F(1) = \int_{0}^{+\infty} \frac{\ln t}{1 + t^2} dt = -\int_{-\infty}^{0} \frac{\ln(1/u)}{1 + (1/u)^2} \cdot \frac{du}{u^2} = -\int_{0}^{+\infty} \frac{\ln u}{u^2 + 1} du = -F(1)$$

Ainsi F(1) = 0.

3. Soit $x \in \mathbb{R}_+^*$. Effectuons le changement de variable t = ux.

$$F(x) = \int_0^{+\infty} \frac{\ln(ux)}{x^2 + (ux)^2} \cdot x \, du$$

$$= \frac{1}{x} \int_0^{+\infty} \frac{\ln(x) + \ln(u)}{1 + u^2} \, du$$

$$= \frac{1}{x} \left(\ln(x) \int_0^{+\infty} \frac{du}{1 + u^2} + \int_0^{+\infty} \frac{\ln u}{1 + u^2} \, du \right)$$

$$= \frac{1}{x} \left(\frac{\pi \ln x}{2} + F(1) \right)$$

$$= \frac{\pi \ln x}{2x}$$

Comme F est clairement paire, $F(x) = \frac{\pi \ln |x|}{2|x|}$ pour $x \in \mathbb{R}^*$.

Solution 46

1. Soit $x \in [1, +\infty[$.

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{1}^{x} \frac{f(at)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

En effectuant le changement de variable u = at dans la première intégrale

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{a}^{ax} \frac{f(t)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

Enfin, d'après la relation de Chasles,

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{x}^{ax} \frac{f(t)}{t} dt - \int_{1}^{a} \frac{f(t)}{t} dt$$

2. Soit $x \in [1, +\infty[$. Comme f est continue, elle admet un minimum m_x et un maximum M_x sur le segment [x, ax]. Alors

$$m_x \int_{x}^{ax} \frac{\mathrm{d}t}{t} \le \int_{x}^{ax} \frac{f(t)}{t} \, \mathrm{d}t \le M_x \int_{x}^{ax} \frac{\mathrm{d}t}{t}$$

ou encore

$$m_x \ln(a) \le \int_x^{ax} \frac{f(t)}{t} dt \le M_x \ln(a)$$

Si a > 1,

$$m_x \le \frac{1}{\ln(a)} \int_{x}^{ax} \frac{f(t)}{t} dt \le M_x$$

D'après le théorème des valeurs intermédiaires, il existe donc $c_x \in [x, a_x]$ tel que

$$f(c_x) = \frac{1}{\ln(a)} \int_{x}^{ax} \frac{f(t)}{t} dt$$

ou encore

$$\int_{x}^{ax} \frac{f(t)}{t} dt = f(c_x) \ln(a)$$

Ceci est encore valable si a=1 (prendre $c_x=x$ par exemple). Comme $c_x\geq x$, $\lim_{x\to +\infty}f(c_x)=\ell$ de sorte que

$$\lim_{x \to +\infty} \int_{x}^{ax} \frac{f(t)}{t} dt = \ell \ln(a)$$

On en déduit que $\int_{1}^{+\infty} \frac{f(at) - f(t)}{t} dt$ converge et que

$$\int_{1}^{+\infty} \frac{f(at) - f(t)}{t} dt = \ell \ln(a) - \int_{1}^{a} \frac{f(t)}{t} dt$$

Solution 47

1. Soit $n \in \mathbb{N}^*$. L'application $t \mapsto f(t)e^{-t/n}$ est continue sur le segment $[0, \pi]$ donc u_n est défini. Cette application est également continue sur \mathbb{R}_+ et $f(t)e^{-t/n} = o(1/t^2)$ de sorte que v_n est défini.

2. Soit $n \in \mathbb{N}^*$. Puisque l'intégrale définissant v_n converge, on peut écrire que

$$v_n = \sum_{k=0}^{+\infty} \int_{k\pi}^{(k+1)\pi} f(t)e^{-t/n} dt$$

Mais en effectuant un changement de variable dans chaque intégrale, on obtient

$$v_n = \sum_{k=0}^{+\infty} \int_0^{\pi} f(t + k\pi) e^{-(t + k\pi)/n} dt$$

Par π -périodicité de f, on en déduit que

$$v_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} \int_0^{\pi} f(t)e^{-t/n} dt = u_n \sum_{k=0}^{+\infty} e^{-k\pi/n} = u_n a_n$$

avec

$$a_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} = \frac{1}{1 - e^{-\pi/n}}$$

- 3. Il s'agit jute d'un équivalent classique, à savoir $e^u 1 \sim u$. On en déduit immédiatement que $a_n \sim \frac{n}{n \to +\infty} \frac{n}{\pi}$
- **4.** Remarquons tout d'abord que comme $\int_0^{\pi} f(t) dt = 0,$

$$u_n = \int_0^{\pi} f(t)(e^{-t/n} - 1) dt$$

On remarque que $e^{-t/n} - 1 \sim \frac{t}{n \to +\infty}$, ce qui permet de conjecturer que $u_n \sim \frac{1}{n \to +\infty} - \frac{1}{n} \int_0^{\pi} t f(t) dt$ (ce qui précède n'est en aucun cas

une preuve). On en déduirait alors la limite de (v_n) . On propose alors deux méthodes.

Avec le théorème de convergence dominée. Posons $f_n: t \mapsto (e^{-t/n} - 1)f(t)$. La suite de fonctions (f_n) converge simplement vers la fonction nulle. De plus, pour tout $n \in \mathbb{N}^*$, $|f_n| \le |f|$ sur $[0, \pi]$ et |f| est évidemment intégrable sur $[0, \pi]$. D'après le théorème de convergence dominée, (u_n) converge vers 0.

On remarque ensuite que la suite de fonctions (nf_n) converge simplement vers la fonction $t \mapsto -f(t)$. De plus,

$$\forall n \in \mathbb{N}^*, \ \forall t \in [0, \pi], \ |nf_n(t)| = n(1 - e^{-t/n})|f(t)| \le t|f(t)|$$

en utilisant la convexité de exp. La fonction $t \mapsto t|f(t)|$ est à nouveau intégrable sur le segment $[0,\pi]$ donc, par convergence dominée,

$$(nu_n)$$
 converge vers $-\int_0^{\pi} t f(t) dt$. Puisque $v_n = a_n u_n$ et $a_n \underset{n \to +\infty}{\sim} \frac{n}{\pi}$, $\lim_{n \to +\infty} v_n = -\frac{1}{\pi} \int_0^{\pi} t f(t) dt$.

Sans le théorème de convergence dominée. Remarquons que f est continue donc bornée sur le segment $[0, \pi]$ (elle est même bornée sur \mathbb{R}_+ puisqu'elle est π -périodique). En notant M un majorant de |f| sur $[0, \pi]$,

$$|u_n| \le K \int_0^{\pi} (1 - e^{-t/n}) dt = K (\pi + n(e^{-\pi/n} - 1))$$

Or via le même équivalent usuel que précédemment,

$$\lim_{n \to +\infty} n(e^{-\pi/n} - 1) = -\pi$$

de sorte que (u_n) converge bien vers 0.

On constate que

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \int_0^{\pi} f(t) \left(e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right) dt$$

L'inégalité de Taylor-Lagrange donne pour $t \in \mathbb{R}_+$

$$\left| e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right| \le \frac{t^2}{2n^2}$$

Par inégalité triangulaire, on obtient donc

$$\left| u_n + \frac{1}{n} \int_0^{\pi} t f(t) \, dt \right| \le \frac{K}{2n^2} \int_0^{\pi} t^2 \, dt = \frac{K\pi^3}{6n^2}$$

En particulier,

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \mathcal{O}\left(\frac{1}{n^2}\right)$$

A fortiori

$$u_n \underset{n \to +\infty}{\sim} -\frac{1}{n} \int_0^{\pi} t f(t) dt$$

Via l'équivalent de (a_n) précédemment trouvé, on en déduit que

$$\lim_{n \to +\infty} v_n = -\frac{1}{\pi} \int_0^{\pi} t f(t) \, dt$$

Solution 48

De manière plus générale, posons $J_{n,p} = \int_0^1 t^n \ln(t)^p dt$ pour $(n,p) \in \mathbb{N}^2$. $J_{n,0}$ est clairement définie et, pour p > 0, $t^n \ln(t)^p = o\left(\frac{1}{\sqrt{t}}\right)^p$ par croissances comparées donc $t \mapsto t^n \ln(t)^p$ est intégrable sur]0,1]. $J_{n,p}$ est donc également définie pour p > 0. Par intégration par parties, lorsque p > 0,

$$\int_{0}^{1} t^{n} \ln(t)^{p} dt = \left[\frac{t^{n+1}}{n+1} \ln(t)^{p} \right]_{0}^{1} - \frac{p}{n+1} \int_{0}^{1} t^{n} \ln(t)^{p-1} dt$$

Cette intégration par parties est légitime car la seconde intégrale, à savoir $J_{n,p-1}$ converge. De plus, le crochet est nul par croissances comparées. Ainsi

 $J_{n,p} = -\frac{p}{n+1} J_{n,p-1}$

Par une récurrence facile

$$J_{n,p} = \frac{(-1)^p p!}{(n+1)^p} J_{n,0} = \frac{(-1)^p p!}{(n+1)^{p+1}}$$

En particulier,

$$I_n = J_{n,n} = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Solution 49

Supposons f intégrable sur \mathbb{R}_+ . Par décroissance de f,

$$\int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x) dt = xf(x)$$

et

$$\int_{x/2}^{x} f(t) dt \ge \int_{x/2}^{x} f(x) dx = \frac{xf(x)}{2}$$

Ainsi, pour tout $x \in \mathbb{R}_+$,

$$\int_{x}^{2x} f(t) dt \le x f(x) \le 2 \int_{x/2}^{x} f(t) dt$$

Mais
$$\int_0^{+\infty} f(t) dt$$
 converge donc $\lim_{x \to +\infty} \int_0^x f(t) dt = \lim_{x \to +\infty} \int_0^{2x} f(t) dt = \int_0^{+\infty} f(t) dt$ de sorte que $\lim_{x \to 0} \int_x^{2x} f(t) dt = 0$. Pour les mêmes raisons, $\lim_{x \to 0} \int_{x/2}^x f(t) dt = 0$. Ainsi $\lim_{x \to +\infty} xf(x) = 0$ par encadrement.

La réciproque est fausse. On peut par exemple considérer $f(x) = \frac{1}{(x+2)\ln(x+2)}$. f est bien décroissante sur \mathbb{R}_+ et $\lim_{x \to +\infty} xf(x) = 0$ mais f n'est pas intégrable en $+\infty$ puisque f admet pour primitive f0 et $\lim_{x \to +\infty} \ln(\ln(x+2)) = 1$ et $\lim_{x \to +\infty} \ln(\ln(x+2)) = 1$.

Convexité

Solution 50

1. Posons $z = (\varphi_1 - \varphi_2)^2$. On a successivement

$$z' = 2(\varphi_1 - \varphi_2)(\varphi_1 - \varphi_2)'$$

puis

$$z'' = 2\left[(\varphi_1 - \varphi_2)' \right]^2 + 2(\varphi_1 - \varphi_2)(\varphi_1 - \varphi_2)'' = 2\left[(\varphi_1 - \varphi_2)' \right]^2 + f(\varphi_1 - \varphi_2)^2 \ge 0$$

2. On en déduit que z est convexe. Puisque $\varphi_1(a) = \varphi_2(b) = 0$, $\varphi \le 0$ sur [a, b]. De plus, $z = (\varphi_1 - \varphi_2)^2 \ge 0$ sur [a, b]. On en déduit que z = 0 sur [a, b] i.e. $\varphi_1 = \varphi_2$.

Solution 51

Par une première intégration par parties

$$\int_0^{2\pi} f(t)\cos(t) dt = [f(t)\sin t]_0^{2\pi} - \int_0^{2\pi} f'(t)\sin t dt = -\int_0^{2\pi} f'(t)\sin t dt$$

Par une seconde intégration par parties

$$\int_{0}^{2\pi} f(t)\cos(t) dt = \left[f'(t)\cos t\right]_{0}^{2\pi} - \int_{0}^{2\pi} f''(t)\cos t dt = f'(2\pi) - f'(0) - \int_{0}^{2\pi} f''(t)\cos t dt$$

Enfin,

$$\int_{0}^{2\pi} f(t)\cos(t) dt = \int_{0}^{2\pi} f''(t) dt - \int_{0}^{2\pi} f''(t)\cos t dt = \int_{0}^{2\pi} f''(t)(1-\cos t) dt$$

Puisque f est convexe sur $[0, 2\pi]$, $f''(t) \ge 0$ pour tout $t \in [0, 2\pi]$. De plus, $1 - \cos t \ge 0$ pour tout $t \in [0, 2\pi]$. Finalement

$$\int_{0}^{2\pi} f(t)\cos(t) \, \mathrm{d}t \ge 0$$

Solution 52

La courbe de f étant située au-dessus de ses cordes, on obtient en comparant l'aire d'un trapèze à une intégrale

$$\forall x \in [0, 1], x \frac{f(x) + f(0)}{2} \le \int_{0}^{x} f(t) \, dt$$

Remarque. Si l'examinateur n'est pas convaincu par cet argument géométrique, on peut affirmer qu'un paramétrage de la corde passant par les points de la courbe d'abscisses 0 et *x* est

$$t \mapsto \frac{f(x) - f(0)}{x - 0}t + f(0)$$

Ainsi

$$\forall t \in [0, x], \ \frac{f(x) - f(0)}{x}t + f(0) \le f(t)$$

et donc

$$\int_0^x \left(\frac{f(x) - f(0)}{x} t + f(0) \right) dt \le \int_0^x f(t) dt$$

ce qui donne le résultat escompté.

Puisque f(0) = 1, on a donc

$$\forall x \in [0, 1], x \frac{f(x) + 1}{2} \le \int_0^x f(t) dt$$

On pose alors $F(x) = \int_0^x f(t) dt$. En intégrant sur [0, 1],

$$\frac{1}{2} \int_{0}^{1} x f(x) \, dx + \frac{1}{4} \le \int_{0}^{1} F(x) \, dx$$

En intégrant par parties, on obtient

$$\int_{0}^{1} F(x) dx = F(1) - \int_{0}^{1} x f(x) dx = \int_{0}^{1} f(t) dt - \int_{0}^{1} x f(x) dx$$

En reprenant le résultat précédent, on a donc

$$\frac{3}{2} \int_{0}^{1} x f(x) \, dx + \frac{1}{4} \le \int_{0}^{1} f(t) \, dt$$

ou encore

$$3\int_{0}^{1} x f(x) \, dx \le 2\int_{0}^{1} f(t) \, dt - \frac{1}{2}$$

Par ailleurs,

$$\left(\int_{0}^{1} f(t) \, \mathrm{d}t - \frac{1}{2}\right)^{2} \ge 0$$

donc

$$\left(\int_0^1 f(t) dt\right)^2 \ge \int_0^1 f(t) dt - \frac{1}{4}$$

En reprenant la dernière inégalité, on obtient bien

$$3\int_0^1 x f(x) \, \mathrm{d}x \le 2 \left(\int_0^1 f(t) \, \mathrm{d}t \right)^2$$

ou encore

$$\int_0^1 x f(x) \, \mathrm{d}x \le \frac{2}{3} \left(\int_0^1 f(x) \, \mathrm{d}x \right)^2$$

Solution 53

1. L'inégalité $H(p) \ge 0$ est claire car pour tout $i \in [1, n]$, $p_i \ge 0$ et $\ln(p_i) \ge 0$ car tous les p_i sont inférieurs à 1. Remarquons que la fonction ln est concave sur \mathbb{R}_+^* car elle y est de classe \mathcal{C}^2 et $\ln'' : x \mapsto \frac{1}{x^2}$ y estpositive.

Comme
$$\sum_{i=1}^{n} p_i = 1$$

$$\sum_{i=1}^n p_i \ln(\frac{1}{p_i}) \le \ln\left(\sum_{i=1}^n \frac{1}{p_i} \cdot p_i\right)$$

ou encore

$$H(p) \le \ln(n)$$

2. Toujours par concavité de ln,

$$\sum_{i=1}^{n} p_i \ln \left(\frac{q_i}{p_i} \right) \le \ln \left(\sum_{i=1}^{n} p_i \cdot \frac{q_i}{p_i} \right) = \ln(1) = 0$$

ce qui donne l'inégalité voulue.

Solution 54

1. Pour tout $x \in \mathbb{R}_+^*$, $\ln''(x) = -\frac{1}{x^2} < 0$ donc \ln est concave sur \mathbb{R}_+^* . Pour tout $x \in \mathbb{R}$, $\exp''(x) = \exp(x) > 0$ donc \exp est convexe sur \mathbb{R} .

2. L'inégalité est clairement vraie lorsque l'un des x_i est nul. SUpposons donc tous les x_i strictement psoitifs. Par concavité de ln,

$$\frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \le \ln\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)$$

Puis par croissance de l'exponentielle,

$$\exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(x_i)\right) \le \frac{1}{n}\sum_{i=1}^{n}x_i$$

ou encore

$$\left(\prod_{i=1}^n x_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^n x_i$$

3. Comme S est symétrique réelle, elle est orthodiagonalisable dans $\mathbb{M}_n(\mathbb{R})$. Supposons que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^TSX \ge 0$. Soit λ une valeur propre (nécessairement réelle) de S et X un vecteur propre associé. Alors $X^TSX = \lambda X^TX = \lambda \|X\|^2 \ge 0$. Comme X n'est pas nul, $\|X\|^2 > 0$ donc $\lambda \ge 0$. Ainsi $Sp(S) \subset \mathbb{R}_+$.

Récirpoquement, supposons $\operatorname{Sp}(S) \in \mathbb{R}_+$. On sait qu'il existe P orthogonale telle que $S = \operatorname{PDP}^\mathsf{T}$ où D est une matrice diagonale à coefficients diagonaux positifs. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Alors

$$\mathbf{X}^{\mathsf{T}}\mathbf{S}\mathbf{X} = (\mathbf{P}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}}\mathbf{D}(\mathbf{P}^{\mathsf{T}}\mathbf{X}) = \sum_{i=1}^{n} \lambda_{i}Y_{i}^{2} \geq 0$$

en notant $\lambda_1, \dots, \lambda_n$ les coefficients diagonaux de D et Y = P^TX .

4. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres de S. D'après la deuxième question,

$$\left(\prod_{i=1}^{n} \lambda_{i}\right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} \lambda_{i}$$

ce qui signifie $(\det(S))^{\frac{1}{n}} \le \frac{1}{n} \operatorname{tr}(S)$.

5. Remarquons que M^TM est une matrice symétrique. De plus, pour tout $M \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^T(M^TM)X = \|MX\|^2 \ge 0$ donc $Sp(M^TM) \subset \mathbb{R}_+$ d'après la troisième question. D'après la question précédente,

$$\det(\mathbf{M}^{\mathsf{T}}\mathbf{M})^{1/n} \leq \frac{1}{n}\operatorname{tr}(\mathbf{M}^{\mathsf{T}}\mathbf{M})$$

On conclut en remarquant que $det(M^TM) = det(M^T) det(M) = det(M)^2$.

Solution 55

1. Soit $x \in \mathbb{R}$. L'ensemble $\{f(x_1) + f(x_2), x_1 + x_2 = x\}$ est non vide et minorée par 0. On peut donc poser $h(x) = \inf\{f(x_1) + f(x_2), x_1 + x_2 = x\}$.

Soit $(x, y) \in E_h$. On a donc y > h(x). Mais par définition de h, il existe $(x_1, x_2) \in \mathbb{R}^2$ tel que $x_1 + x_2 = x$ et $y > f(x_1) + f(x_2) \ge h(x)$. Soit $\varepsilon = y - f(x_1) - f(x_2)$ et posons alors $y_1 = f(x_1) + \frac{\varepsilon}{2}$ et $y_2 = f(x_2) + \frac{\varepsilon}{2}$. On a bien $(x_1, y_1) \in E_f$ et $(x_2, y_2) \in E_g$. Ainsi

 $(x,y) = (x_1,y_1) + (x_2,y_2) \in E_f + E_g$. Soit $(x,y) \in E_f + E_g$. Il existe donc $(x_1,y_1) \in E_f$ et $(x_2,y_2) \in E_g$ tel que $(x,y) = (x_1,y_1) + (x_2,y_2)$. On a alors $y = y_1 + y_2 > f(x_1) + f(x_2) \ge h(x)$ puisque $x = x_1 + x_2$. Ainsi $(x,y) \in E_h$. Par double inclusion, $E_h = E_f + E_g$.

L'unicité vient du fait que h est uniquement définie par E_h . En effet, pour tout $x \in \mathbb{R}$, $h(x) = \inf\{y, (x, y) \in E_f\}$.

2. On prouve classiquement que $\varphi : \mathbb{R} \to \mathbb{R}_+$ est convexe si et seulement si E_{φ} est convexe. On prouve de même que si A et B sont deux parties convexes de \mathbb{R}^2 , alors A+B est convexe.

Ainsi, si f et g sont convexes, E_f et E_g le sont et, par conséquent, $E_h = E_f + E_g$ est également convexe. Finalement, h est convexe.

3. Prenons $f = g = 1 + \sin$. Alors pour tout $x \in \mathbb{R}$,

$$\begin{split} h(x) &= \inf\{2 + \sin(x_1) + \sin(x_2), \ x_1 + x_2 \in \mathbb{R}\} \\ &= 2 + \inf_{y \in \mathbb{R}} \left(\sin\left(\frac{x}{2} + y\right) + \sin\left(\frac{x}{2} - y\right) \right) \\ &= 2 + 2\inf_{y \in \mathbb{R}} \left(\sin\frac{x}{2}\cos y \right) \\ &= 2 - 2\left| \sin\frac{x}{2} \right| \end{split}$$

f et g sont bien de classe \mathcal{C}^{∞} tandis que h ne l'est pas.

Suites et séries de fonctions

Solution 56

- **1.** Soit $x \in \pi \mathbb{Z}$. Alors pour tout $n \in \mathbb{N}$, $f_n(x) = 0$. Soit maintenant $x \in \mathbb{R} \setminus \pi \mathbb{Z}$. Alors $|\cos x| < 1$ donc $\lim_{n \to +\infty} n \cos^n x = 0$ puis $\lim_{n \to +\infty} f_n(x) = 0$. Finalement la suite (f_n) converge simplement vers la fonction nulle.
- **2.** Posons $x_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors pour tout $n \in \mathbb{N}^*$, $x_n \in \left[0, \frac{\pi}{2}\right]$. D'une part, $n \sin(x_n) \underset{n \to +\infty}{\longrightarrow} 1$. D'autre part, $\cos^n(x_n) = e^{n \ln(\cos(1/n))}$ et

$$\ln(\cos(1/n)) = \ln(1 + o(1/n)) = \sum_{n \to +\infty} o(1/n)$$

de sorte que $\cos^n(x_n) \xrightarrow[n \to +\infty]{} 1$.

Finalement, $\lim_{n \to +\infty} f_n(x_n) = 1 \neq 0$ donc la suite (f_n) ne converge pas uniformément.

Soit maintenant $a \in \left[0, \frac{\pi}{2}\right]$. Alors pour tout $x \in \left[a, \frac{\pi}{2}\right]$,

$$|f_n(x)| \le n \cos^n(a) \sin(a)$$

donc

$$|f_n|_{\infty} \le n \cos^n(a) \sin(a)$$

(c'est même une égalité) donc $\lim_{n\to+\infty} |f_n| = 0$ puisque $0 \le \cos a < 1$. Ainsi (f_n) converge uniformément vers la fonction nulle sur $\left[a, \frac{\pi}{2}\right]$.

3. Méthode n°1

Remarquons tout d'abord que f_n est positive et que

$$\int_0^{\frac{n}{2}} f_n(t) dt = -\frac{n}{n+1} \left[\cos^{n+1} t \right]_0^{\frac{n}{2}} = \frac{n}{n+1}$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Comme g est continue en 0, il existe $\alpha \in \mathbb{R}_+^*$ tel que $|g(x) - g(0)| \le \frac{\varepsilon}{2}$ pour tout $x \in [0, \alpha]$. Ensuite,

$$\left| \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(t) dt - \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(0) dt \right| \leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)|g(t) - g(0)| dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \frac{n\varepsilon}{2(n+1)} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

$$\leq \frac{\varepsilon}{2} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

Comme (f_n) converge uniformément vers la fonction nulle sur le segment $\left[\alpha, \frac{\pi}{2}\right]$, $\lim_{n \to +\infty} \int_{-\alpha}^{\frac{\pi}{2}} f_n(t) \, \mathrm{d}t = 0$. Il existe donc $N \in \mathbb{N}$ tel que

pour tout entier $n \ge N$, $\|g - g(0)\|_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_n(t) dt \le \varepsilon$. On en déduit que pour $n \ge N$,

$$\left| \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t) g(0) dt \right| \le \varepsilon$$

Ainsi

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t)g(0) dt = 0$$

Finalement,

$$\int_{0}^{\frac{\pi}{2}} f_n(t)g(0) dt = \frac{ng(0)}{n+1} \xrightarrow[n \to +\infty]{} g(0)$$

donc

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = g(0)$$

Méthode n°2

L'application $t \mapsto \cos^{n+1} t$ est bijective de $[0, \pi/2]$ sur [0, 1], strictement décroissante et de classe \mathcal{C}^1 donc, par changement de variable

$$\int_{0}^{\frac{\pi}{2}} f_n(t)g(t) dt = \frac{n}{n+1} \int_{0}^{1} f(\arccos(^{n+1}\sqrt{u})) du$$

La fonction $u \mapsto f(\arccos(^{n+1}\sqrt{u}))$ converge simplement sur]0,1] vers la fonction constante égale à f(0) car f est continue en 0. De plus, g est bornée [0,1] (continue sur un segment) donc $u \mapsto g(\arccos(^{n+1}\sqrt{u}))$ est dominée par une constante (clairement intégrable sur le segment [0,1]). On peut donc appliquer le théorème de convergence dominée de sorte que

$$\lim_{n \to +\infty} \int_0^1 g(^{n+1}\sqrt{u}) \, du = \int_0^1 g(0) \, du = g(0)$$

On en conclut immédiatement que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt = g(0)$$

Solution 57

1. On remarque tout d'abord que les f_n sont définies sur $]-1,+\infty[$. On calcule un développement limité de $f_{n+1}(x)-f_n(x)$:

$$f_{n+1}(x) - f_n(x) = \frac{1}{n+1+x} - 2\sqrt{n+1} + 2\sqrt{n}$$

$$= \frac{1}{n+1+x} - \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

$$= \left(-\frac{1}{4} - \frac{x}{2}\right) \frac{1}{\frac{3}{n^{\frac{3}{2}}}} + o\left(\frac{1}{\frac{3}{n^{\frac{3}{2}}}}\right)$$

Comme la série $\sum_{n\geq 1} \frac{1}{n^{\frac{3}{2}}}$ converge, on en déduit que $\sum_{n\geq 1} f_{n+1} - f_n$ converge simplement sur $]-1,+\infty[$.

2. La convergence simple de la série $\sum_{n\geq 1} f_{n+1} - f_n$ équivaut à la convergence simple de la suite (f_n) vers une fonction f. Notons f sa limite et posons $g_n = f_{n+1} - f_n$. g_n est dérivable sur $]-1,+\infty[$ et pour $x\in]-1,+\infty[$:

$$g'_n(x) = -\frac{1}{2(n+1+x)^{\frac{3}{2}}}$$

De plus, pour $x \in]-1, +\infty[$

$$|g_n'(x)| \le \frac{1}{2n^{\frac{3}{2}}}$$

ce qui prouve que $\sum_{n\geq 1}g_n'$ converge normalement. Comme $\sum_{n\geq 1}g_n$ converge simplement vers une fonction g, on en déduit que g est de classe \mathcal{C}^1 sur $]-1,+\infty[$. De plus, en utilisant un télescopage, $g=f-f_1$. Comme f_1 est elle-même de classe \mathcal{C}^1 sur $]-1,+\infty$, on en déduit que f est de classe \mathcal{C}^1 .

3. Comme $\sum_{n\geq 1} g_n$ converge normalement, cette série converge uniformément. Par conséquent, la suite (f_n) converge uniformément. Par conséquent :

$$\int_{0}^{1} f(t) dt = \lim_{n \to +\infty} \int_{0}^{1} f_n(t) dt$$

Or, par une intégration facile :

$$\int_{0}^{1} f_{n}(t) dt = \left(2 \sum_{k=1}^{n} \sqrt{k+1} - \sqrt{k}\right) - 2\sqrt{n}$$
$$= 2\sqrt{n+1} - 2 - 2\sqrt{n} = \frac{2}{\sqrt{n+1} + \sqrt{n}} - 2$$

On en déduit que $\int_{0}^{1} f(t) dt = -2$.

Solution 58

1. Soit $x \in \mathbb{R}_+^*$. Alors $\frac{1}{\sinh(nx)} \sim 2e^{-nx}$ et $\sum e^{-nx}$ est une série à termes positifs convergente (série géométrique de raison $e^{-x} \in [0,1[)$). Ainsi la série $\sum \frac{1}{\sinh(nx)}$ converge. f est donc définie sur \mathbb{R}_+^* . Mais f est manifestement impaire donc f est définie sur \mathbb{R}_+^* .

On utilise ensuite une comparaison à une intégrale. Fixons $x \in \mathbb{R}_+^*$. La fonction $t \mapsto \frac{1}{\operatorname{sh}(xt)}$ est décroissante de sorte que pour tout $n \in \mathbb{N}^*$,

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} \le f(x) \le \frac{1}{\mathrm{sh}\,x} + \int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)}$$

Une primitive de $\frac{1}{\sinh}$ étant $t \mapsto \ln(\tanh(x/2))$, on trouve

$$-\frac{1}{x}\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right) \le f(x) \le \frac{1}{\operatorname{sh} x} - \frac{1}{x}\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right)$$

On montre aisément que $\ln\left(\operatorname{th}\left(\frac{x}{2}\right)\right) \underset{x \to 0^+}{\sim} \ln x$ et on sait que $\frac{1}{\operatorname{sh} x} \underset{x \to 0^+}{\sim} \frac{1}{x}$. Comme $\frac{1}{x} \underset{x \to 0^+}{=} o\left(\frac{\ln x}{x}\right)$, on en déduit que

$$f(x) \sim -\frac{\ln x}{x}$$

Comme f est impaire, on peut affirmer que

$$f(x) \underset{x \to 0}{\sim} -\frac{\ln|x|}{x}$$

REMARQUE. On peut également remarquer que pour $x \in]0,1]$, par le changement de variable u=xt,

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} = \frac{1}{x} \int_{x}^{+\infty} \frac{\mathrm{d}u}{\mathrm{sh}\,u} = \frac{1}{x} \int_{x}^{1} \frac{\mathrm{d}u}{\mathrm{sh}\,u} + \frac{1}{x} \int_{1}^{+\infty} \frac{\mathrm{d}u}{\mathrm{sh}\,u}$$

Mais $\frac{1}{\sinh u} \sim \frac{1}{u}$, $u \mapsto \frac{1}{u}$ est positive sur \mathbb{R}_+^* et $\int_0^1 \frac{\mathrm{d}u}{u}$ diverge, donc

$$\int_{x}^{1} \frac{\mathrm{d}u}{\sin u} \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{\mathrm{d}u}{u} = -\ln x$$

On en déduit donc que

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{\mathrm{sh}(xt)} = -\frac{\ln x}{x} + \mathcal{O}\left(\frac{1}{x}\right)$$

et on peut alors à nouveau conclure que $f(x) \sim \frac{-\ln x}{x^{-0+}}$

2. Soit $x \in \mathbb{R}_+^*$. Alors $\frac{1}{\sinh^2(nx)} \sim 4e^{-2nx}$ et $\sum e^{-2nx}$ est une série à termes positifs convergente (série géométrique de raison $e^{-2x} \in [0,1[)$). Ainsi la série $\sum \frac{1}{\sinh^2(nx)}$ converge. g est donc définie sur \mathbb{R}_+^* . Mais g est manifestement impaire donc g est définie sur \mathbb{R}_+^* .

Posons ensuite $u_n(x) = \frac{x^2}{\sinh^2(nx)}$. Pour tout $n \in \mathbb{N}^*$, $\lim_0 u_n = \frac{1}{n^2}$. De plus, sh est convexe sur \mathbb{R}_+ donc sh $x \ge x$ pour tout $x \in \mathbb{R}_+$ et donc $\frac{x^2}{\sinh^2(nx)} \le \frac{1}{n^2}$ pour tout $x \in \mathbb{R}_+^*$ et même pour tout $x \in \mathbb{R}^*$ (parité). On en déduit que la série $\sum_{n \in \mathbb{N}^*} u_n$ converge normalement sur \mathbb{R}^* . On peut alors utiliser le théorème d'interversion limite/série

$$\lim_{x \to 0} \sum_{n=1}^{+\infty} u_n(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

ou encore $\lim_{x\to 0} x^2 g(x) = \pi^2/6$. Par conséquent,

$$g(x) \underset{x \to 0}{\sim} \frac{\pi^2}{6x^2}$$

Solution 59

1. On raisonne par récurrence. Tout d'abord, g_0 est bornée. Si on suppose g_n bornée pour un certain $n \in \mathbb{N}$, alors

$$\forall x \in [0,1], \ |g_{n+1}(x)| \leq \int_0^x |g_n(1-t)| \ \mathrm{d}t \leq \int_0^x \|g_n\|_\infty \ \mathrm{d}t = x \|g_n\|_\infty \leq \|g_n\|_\infty$$

Notamment, g_{n+1} est bornée. On a donc montré par récurrence que g_n est bornée pour tout $n \in \mathbb{N}$.

En fait, on a montré plus précisément que pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$, $|g_{n+1}(x)| \le x ||g_n||_{\infty}$. Ainsi pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}^*$,

$$|g_{n+1}(x)| \le \int_0^x |g_n(1-t)| \, \mathrm{d}t \le \int_0^x (1-t) \|g_{n-1}\|_{\infty} \, \mathrm{d}t \le \int_0^1 (1-t) \|g_{n-1}\|_{\infty} \, \mathrm{d}t = \frac{1}{2} \|g_{n-1}\|_{\infty}$$

Par conséquent, $\|g_{n+1}\|_{\infty} \leq \frac{1}{2} \|g_{n-1}\|_{\infty}$.

2. D'après la question précédente, pour tout $n \in \mathbb{N}^*$, $\|g_{n+1}\|_{\infty} \leq \frac{1}{2} \|g_{n-1}\|_{\infty}$. On en déduit que pour tout $n \in \mathbb{N}$, $\|g_{2n}\|_{\infty} \leq \frac{1}{2^n} \|g_0\|_{\infty}$ et $\|g_{2n+1}\|_{\infty} \leq \frac{1}{2^n} \|g_1\|_{\infty}$. On vérifie alors qu'en prenant $K = \max(\|g_0\|_{\infty}, \sqrt{2}\|g_1\|_{\infty})$, on a $\|g_n\|_{\infty} \leq \frac{K}{\sqrt{2}}$.

Remarque. On calcule aisément $||g_0||_{\infty} = ||g_1||_{\infty} = 1$ de sorte que $K = \sqrt{2}$.

Comme la série $\sum \frac{1}{\sqrt{2}^n}$ est une série géométrique convergente, il en est de même de la série $\sum \|g_n\|_{\infty}$. Par conséquent, la série $\sum g_n$

converge normalement sur [0,1] et donc simplement. La fonction G est bien définie sur [0,1].

Tout d'abord, g_0 est dérivable de dérivée nulle. De plus, pour tout $n \in \mathbb{N}$, g_n est également dérivable d'après le théorème fondamental de l'analyse et $g'_n(x) = g_{n-1}(1-x)$. La série $\sum g'_n$ converge donc normalement et donc uniformément. On en déduit que G est dérivable et que

$$\forall x \in [0, 1], \ \mathrm{G}'(x) = \sum_{n=0}^{+\infty} g_n'(x) = \sum_{n=1}^{+\infty} g_{n-1}(1-x) = \sum_{n=0}^{+\infty} g_n(1-x) = \mathrm{G}(1-x)$$

Cette égalité montre à nouveau que G' est dérivable et que

$$\forall x \in [0, 1], \ G''(x) = -G'(1 - x) = -G(x)$$

3. Il existe donc $(\alpha, \beta) \in \mathbb{R}^2$ tel que $G = \alpha \cos + \beta \sin$. Mais pour tout $n \in \mathbb{N}^*$, $g_n(0) = 0$ donc $G(0) = g_0(0) = 1$. De plus, G'(1) = G(0) = 1. On en déduit que $\alpha = 1$ et $-\alpha \sin(1) + \beta \cos(1) = 1$ puis que $\beta = \frac{1 + \sin(1)}{\cos(1)}$.

Solution 60

1. Supposons qu'il existe une telle suite. Notamment

$$\sum_{n=0}^{+\infty} a_n^2 = 2$$

On en déduit notamment que $a_n^2 \le 2$ pour tout $n \in \mathbb{N}$. Par ailleurs

$$\sum_{n=0}^{+\infty} a_n^4 = 4$$

de sorte que

$$\sum_{n=0}^{+\infty} 2a_n^2 - a_n^4 = 0$$

ou encore

$$\sum_{n=0}^{+\infty} a_n^2 (2 - a_n^2) = 0$$

Notre remarque initiale montre qu'il s'agit d'une somme de termes positifs. Par conséquent, $a_n = 0$ ou $a_n^2 = 2$ pour tout $n \in \mathbb{N}$. Mais puisque $\sum_{n=0}^{+\infty} a_n^2 = 2$, il existe un unique $p \in \mathbb{N}$ tel que $a_p^2 = 2$ et $a_n = 0$ pour tout entier naturel $n \neq p$. Mais alors

$$\sum_{n=0}^{+\infty} a_n^6 = a_p^6 = 2^3 = 8 \neq 6$$

On a donc montré par l'absurde qu'il n'existe pas de suite vérifiant la condition de l'énoncé.

2. Supposons qu'il existe une telle suite (a_n) . Alors

$$\forall k \in \mathbb{N}, \ \sum_{n=0}^{+\infty} k^2 a_n^k = 1$$

Puisque

$$\sum_{n=0}^{+\infty} a_n^2 = \frac{1}{4}$$

on a $a_n^2 \leq \frac{1}{4}$ i.e. $|a_n| \leq \frac{1}{2}$ pour tout $n \in \mathbb{N}$. Posons $\varphi_n(k) = k^2 a_n^k$. Alors, pour tout $n \in \mathbb{N}$ et tout $k \geq 2$

$$|\varphi_n(k)| = k^2 |a_n|^{k-2} |a_n|^2 \le \frac{k^2}{2^{k-2}} a_n^2$$

La suite $(k^2/2^{k-2})_{k\in\mathbb{N}}$ converge vers 0 donc est bornée. On en déduit qu'il existe M tel que pour tout $n \in \mathbb{N}$ et tout $k \ge 2$

$$|\varphi_n(k)| \leq Ma_n^2$$

Comme la série $\sum_{n\in\mathbb{N}} \text{converge}$, la série $\sum_{n\in\mathbb{N}} \varphi_n$ converge normalement sur \mathbb{N} . De plus, pour tout $n\in\mathbb{N}$, $\lim_{k\to+\infty} \varphi_n(k)=0$ par la majoration a_n^2 $n \in \mathbb{N}$ précédente. Par le théorème de la double limite,

$$\lim_{k \to +\infty} \sum_{n=0}^{+\infty} k^2 a_n^k = 0$$

ce qui contredit le fait que

$$\forall k \in \mathbb{N}, \ \sum_{n=0}^{+\infty} k^2 a_n^k = 1$$

Solution 61

1. Posons $f_n: t \mapsto \ln(1+e^{nt})$. Si $t \in \mathbb{R}_+$, alors la suite $(f_n(t))$ ne converge pas vers 0 donc la série $\sum f_n(t)$ diverge. Si $t \in \mathbb{R}_+^*$, alors $f_n(t) \underset{n \to +\infty}{\sim} e^{-nt}$ et la série $\sum e^{-nt}$ est une série géométrique à termes positifs convergente (de raison $e^{-t} \in]0,1[$). Par conséquent, la série $\sum f_n(t)$ converge.

Finalement, le domaine de définition de f est \mathbb{R}_+^* .

2. On sait que $0 \le \ln(1+u) \le u$ pour tout $u \in \mathbb{R}_+$. Ainsi, pour tout $t \in \mathbb{R}$,

$$0 \le f_n(t) \le e^{nt}$$

Fixons $a \in \mathbb{R}_{-}^{*}$. Alors pour tout $t \in]-\infty, a]$,

$$0 \le f_n(t) \le e^{nt} \le e^{na}$$

et donc $\|f_n\|_{\infty} \leq e^{na}$ où $\|\cdot\|_{\infty}$ désigne la norme uniforme sur $]-\infty,a]$. A nouveau, la série géométrique $\sum e^{na}$ converge donc la série $\sum f_n$ converge normalement sur $]-\infty,a]$. A fortiori, elle converge uniformément sur $]-\infty,a]$. Par ailleurs, f_n admet pour limite 0 en $-\infty$ si $n \in \mathbb{N}^*$ et $\ln 2$ si n = 0. Le théorème d'interversion limite/série permet alors d'affirmer que

$$\lim_{-\infty} f = \sum_{n=0}^{+\infty} \lim_{-\infty} f_n = \ln 2$$

3. En étudiant la fonction $u \mapsto \ln(1+u) - u + \frac{u^2}{2}$, on prouve que

$$\forall u \in \mathbb{R}_+, \ \ln(1+u) \ge u - \frac{u^2}{2}$$

Ainsi

$$\forall t \in \mathbb{R}_{-}^*, \ f_n(t) \ge e^{nt} - \frac{1}{2}e^{2nt}$$

Par conséquent,

$$\forall t \in \mathbb{R}_{-}^{*}, \ f(t) \ge \sum_{n=0}^{+\infty} e^{nt} - \frac{1}{2} \sum_{n=0}^{+\infty} e^{2nt} = \frac{1}{1 - e^{t}} - \frac{1}{2} \cdot \frac{1}{1 - e^{2t}} = \frac{1 + 2e^{t}}{2(1 - e^{2t})}$$

Puisque $\lim_{t \to 0^-} \frac{1 + 2e^t}{2(1 - e^{2t})} = +\infty$, $\lim_{0^-} f = +\infty$.

Solution 62

1. Soit $t \in]0,1[$. Puisque $-t^b \in]-1,0[$, $\sum_{n=0}^{+\infty} (-t^b)^n = \frac{1}{1+t^b}$. On en déduit que

$$\frac{t^{a-1}}{1+t^n} = \sum_{n=0}^{+\infty} u_n(t)$$

avec $u_n(t) = (-1)^n t^{a-1+nb}$.

2. Soit $n \in \mathbb{N}$. Puisque a-1+nb>-1, $|u_n|$ est intégrable sur]0,1] et

$$\int_{0}^{1} |u_{n}|(t) dt = \int_{0}^{1} t^{a-1+nb} = \frac{1}{a+nb}$$

La série $\sum \frac{1}{a+nb}$ diverge. On ne peut donc pas apppliquer le théorème d'intégration terme à terme.

3. Soit $N \in \mathbb{N}$.

$$\begin{split} \int_0^1 \mathbf{S_N}(t) \; \mathrm{d}t &= \int_0^1 \sum_{n=0}^N (-1)^n t^{a-1+nb} \; \mathrm{d}t \\ &= \int_0^1 t^{a-1} \cdot \frac{1 - (-1)^{N+1} t^{(N+1)b}}{1 + t^b} \; \mathrm{d}t \qquad \text{(somme des termes d'une suite géométrique)} \\ &= \int_0^1 \frac{t^{a-1}}{1 + t^b} \; \mathrm{d}t - (-1)^{N+1} \int_0^1 \frac{t^{a-1+(N+1)b}}{1 + t^b} \; \mathrm{d}t \end{split}$$

Or

$$0 \le \int_0^1 \frac{t^{a-1+(N+1)b}}{1+t^b} dt \le \int_0^1 t^{a-1+(N+1)b} dt = \frac{1}{a+(N+1)b}$$

Ainsi, par théorème des gendarmes

$$\lim_{N \to +\infty} \int_{0}^{1} \frac{t^{a-1+(N+1)b}}{1+t^{b}} dt = 0$$

de sorte que

$$\lim_{N \to +\infty} \int_{0}^{1} S_{N}(t) dt = \int_{0}^{1} \frac{t^{a-1}}{1+t^{b}} dt$$

4. On déduit de la question précédente que

$$\int_{0}^{1} \frac{t^{a-1}}{1+t^{b}} dt = \sum_{n=0}^{+\infty} \int_{0}^{1} u_{n}(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{a+nb}$$

5. D'après la question précédente, en prenant a = 1 et b = 3

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^3}$$

On décompose $\frac{1}{1+X^3}$ en éléments simples. Il existe $(a,b,c) \in \mathbb{R}^3$ tel que

$$F = \frac{1}{1+X^3} = \frac{1}{X+1}X^2 - X + 1 = \frac{a}{X+1} + \frac{bX+c}{X^2 - X + 1}$$

On trouve $a = ((X + 1)F)(-1) = \frac{1}{3}$. De plus $\lim_{x \to +\infty} xF(x) = 0 = a + b$ donc $b = -\frac{1}{3}$. Enfin, F(0) = 1 = a + c donc $c = \frac{2}{3}$. On peut réécrire sous la forme

$$F(X) = \frac{1}{3} \cdot \frac{1}{X+1} - \frac{1}{3} \cdot \frac{X-2}{X^2 - X+1} = \frac{1}{3} \cdot \frac{1}{X+1} - \frac{1}{6} \cdot \frac{2X-1}{X^2 - X+1} + \frac{1}{2} \cdot \frac{1}{X^2 - X+1}$$

On calcule successivement

$$\int_{0}^{1} \frac{dt}{t+1} = [\ln(1+t)]_{0}^{1} = \ln(2)$$

$$\int_{0}^{1} \frac{2t-1}{t^{2}-t+1} dt = [\ln(t^{2}-t+1)]_{0}^{1} = 0$$

$$\int_{0}^{1} \frac{dt}{t^{2}-t+1} = \int_{0}^{1} \frac{dt}{\left(t-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} = \frac{2}{\sqrt{3}} \left[\arctan\left(\frac{2t-1}{\sqrt{3}}\right)\right]_{0}^{1} = \frac{4}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{2\pi}{3\sqrt{3}}$$

On en déduit que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{1}{3}\ln(2) + \frac{\pi}{3\sqrt{3}}$$

Solution 63

1. Remarquons que pour tout $n \in \mathbb{N}$, f_{n+1} est de classe \mathcal{C}^1 et $f'_{n+1} = f_n$. On en déduit que pour tout $n \in \mathbb{N}$, f_n est de classe \mathcal{C}^n est que $f_n^{(k)} = f_{n-k}$. Remarquons également que pour tout $n \in \mathbb{N}$, $f_{n+1}(a) = 0$ i.e. pour tout $n \in \mathbb{N}^*$, $f_n(a) = 0$. Fixons $x \in [a, b]$ et appliquons l'inégalité de Taylor-Lagrange à f_n entre f_n et f_n .

$$\left| f_n(x) - \sum_{k=0}^{n-1} \frac{f_n^{(k)}(a)}{k!} (x - a)^k \right| \le \max_{[a,x]} |f_n^{(n)}| \frac{(x - a)^n}{n!}$$

Or pour tout $k \in [0, n-1]$,

$$f_n^{(k)}(a) = f_{n-k}(a) = 0$$

et $f_n^{(n)} = f$ donc

$$|f_n(x)| \le \max_{[a,x]} |f| \frac{(x-a)^n}{n!} \le ||f||_{\infty} \frac{(b-a)^n}{n!}$$

Par conséquent

$$||f_n||_{\infty} \le ||f||_{\infty} \frac{(b-a)^n}{n!}$$

Comme la série exponentielle $\sum \frac{(b-a)^n}{n!}$ converge, la série $\sum f_n$ converge normalement sur [a,b].

2. La série $\sum_{n\in\mathbb{N}^*} f_n$ converge simplement vers F-f. De plus, pour tout $n\in\mathbb{N}^*$, f_n est de classe \mathcal{C}^1 et la série $\sum_{n\in\mathbb{N}^*} f'_n$, c'est-à-dire la série $\sum_{n\in\mathbb{N}^*} f_{n-1}$ converge normalement sur [a,b]. On en déduit que $F-f_0$ est de classe \mathcal{C}^1 sur [a,b] et que

$$(F - f)' = \sum_{n=1}^{+\infty} f_n' = \sum_{n=1}^{+\infty} f_{n-1} = \sum_{n=0}^{+\infty} f_n = F$$

La fonction φ : $x \mapsto e^{-x}(F(x) - f(x))$ est donc de classe \mathcal{C}^1 sur [a, b] et

$$\varphi'(x) = -e^{-x}(F(x) - f(x)) + e^{-x}(F - f)'(x) = -e^{-x}(F(x) - f(x)) + e^{-x}F(x) = e^{-x}f(x)$$

Ainsi φ est une primitive de $x \mapsto e^{-x} f(x)$ sur [a, b]. Par ailleurs

$$\varphi(a) = e^{-a}(F(a) - f(a)) = 0$$

car $f_n(a) = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi

$$\forall x \in [a, b], \ \varphi(x) = \int_{a}^{x} e^{-t} f(t) \ dt$$

ou encore

$$\forall x \in [a, b], \ F(x) = f(x) + e^x \int_a^x e^{-t} f(t) \ dt$$

Solution 64

1. Soit $x \in \mathbb{R}_+$. Via des développements limités usuels :

$$x \ln\left(1 + \frac{1}{n}\right) = \frac{x}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$
$$\ln\left(1 + \frac{x}{n}\right) = \frac{x}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

donc $u_n(x) = \mathcal{O}\left(\frac{1}{n^2}\right)$ donc $\sum u_n(x)$ converge. La série $\sum u_n$ converge simplement sur \mathbb{R}_+ .

2. Soit $n \in \mathbb{N}^*$. u_n est de classe \mathcal{C}^1 sur \mathbb{R}_+ et

$$\forall x \in \mathbb{R}_+, \ u'_n(x) = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n+x}$$

On montre classiquement que

$$\frac{1}{n+1} \le \ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$$

donc

$$\frac{1}{n+1} - \frac{1}{n+x} \le u'_n(x) \le \frac{1}{n} - \frac{1}{n+x}$$

ou encore

$$\frac{x-1}{(n+1)(n+x)} \le u_n'(x) \le \frac{x}{n(n+x)}$$

Ainsi

$$|u_n'(x)| \le \frac{x+1}{n^2}$$

Soit $a \in \mathbb{R}_+$.

$$\forall x \in [0, a], \ |u'_n(x)| \le \frac{a+1}{n^2}$$

La série $\sum u'_n$ converge donc normalement sur [0,a]. Ainsi g est de classe \mathcal{C}^1 sur [0,a] et, par suite, sur \mathbb{R}_+ .

3. On a clairement $u_n(1) = 0$ pour tout $n \in \mathbb{N}^*$. On en déduit immédiatement que f(1) = 0.

Les u'_n sont clairement croissante sur \mathbb{R}_+^* donc g' l'est également. Par ailleurs, $f'(x) = g'(x) - \frac{1}{x}$ pour tout $x \in \mathbb{R}_+^*$ donc f' est croissante sur \mathbb{R}_+^* comme somme de deux fonctions croissantes. On en déduit que f est convexe sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$.

$$g'(x+1) - g'(x) = \sum_{n=1}^{+\infty} u'_n(x+1) - \sum_{n=1}^{+\infty} u'_n(x) = \sum_{n=1}^{+\infty} u'_n(x+1) - u'_n(x) = \sum_{n=1}^{+\infty} \frac{1}{n+x} - \frac{1}{n+x+1}$$

Comme $\lim_{n \to +\infty} \frac{1}{n+x} = 0$, $g'(x+1) - g'(x) = \frac{1}{x+1}$ par télescopage. Posons $\psi(x) = f(x+1) - f(x) - \ln(x) = g(x+1) - g(x) - \ln(x+1)$. Alors ψ est dérivable sur \mathbb{R}_+^* et

$$\psi'(x) = g'(x+1) - g'(x) - \frac{1}{x+1} = 0$$

Ainsi ψ est constante sur \mathbb{R}_+^* . Mais comme $\psi(x) = g(x+1) - g(x) - \ln(x+1)$ pour tout $x \in \mathbb{R}_+^*$, ψ est en fait prolongebale par continuité (et même prolongeable en une fonction de classe \mathcal{C}^1) sur \mathbb{R}_+ puisqu'on a vu que g était de classe \mathcal{C}^1 sur \mathbb{R}_+ . En notant encore ψ ce prolongement, $\psi(0) = g(1) - g(0) - \ln(0+1) = 0$. Par conséquent, ψ est constamment nulle sur \mathbb{R}_+ . On en déduit que $f(x+1) - f(x) = \ln(x)$ pour tout $x \in \mathbb{R}_+^*$.

4. Posons $f_n(x) = x \ln(n) + \ln(n!) - \sum_{k=0}^{n} \ln(x+k)$.

Soit $x \in]0,1]$. Par convexité de la fonction de f

$$\frac{f(n+x) - f(n)}{x} \le \frac{f(n+1) - f(n)}{(n+1) - n} = \ln(n)$$

ou encore

$$f(n+x) \le x \ln(n) + f(n)$$

Par ailleurs, par télescopage

$$f(n) = f(n) - f(1) = \sum_{k=1}^{n-1} f(k+1) - f(k) = \sum_{k=1}^{n-1} \ln(k) = -\ln(n) + \sum_{k=1}^{n} \ln(k) = -\ln(n) + \ln(n!)$$

et

$$f(n+x) - f(x) = \sum_{k=0}^{n-1} f(k+1+x) - f(k+x) = \sum_{k=0}^{n-1} \ln(x+k) = -\ln(x+n) + \sum_{k=0}^{n} \ln(x+k)$$

On en déduit que

$$f(x) - \ln(x+n) + \sum_{k=0}^{n} \ln(x+k) \le x \ln(n) - \ln(n) + \ln(n!)$$

ou encore

$$f(x) - \ln\left(\frac{x+n}{n}\right) \le f_n(x)$$

Toujours par convexité de f,

$$\ln(n-1) = \frac{f(n) - f(n-1)}{n - (n-1)} \le \frac{f(n+x) - f(n)}{x}$$

ou encore

$$x\ln(n-1) + f(n) \le f(n+x)$$

ce qui équivaut à

$$x\ln\left(1-\frac{1}{n}\right) + x\ln(n) + f(n) \le f(n+x)$$

En raisonnant comme précédemment, on obtient

$$f_n(x) \le f(x) - \ln\left(\frac{x+n}{n}\right) - x\ln\left(1 - \frac{1}{n}\right)$$

Finalement

$$f(x) - \ln\left(\frac{x+n}{n}\right) \le f_n(x) \le f(x) - \ln\left(\frac{x+n}{n}\right) - x\ln\left(1 - \frac{1}{n}\right)$$

D'après le théorème des gendarmes,

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

On procède par récurrence, et on note \mathcal{P}_p l'assertion

$$\forall x \in]p, p+1], \lim_{n \to +\infty} f_n(x) = f(x)$$

On vient de montrer que \mathcal{P}_0 est vraie. Supposons qu'il existe $p \in \mathbb{N}$ tel que \mathcal{P}_p est vraie. Donnons-nous alors $x \in]p, p+1]$ et remarquons que

$$f_n(x+1) - f_n(x) = \ln(x) - \ln\left(\frac{x+n+1}{n}\right)$$

Ainsi

$$\lim_{n \to +\infty} f_n(x+1) = f(x) + \ln(x) = f(x+1)$$

Ceci prouve que \mathcal{P}_{p+1} est vraie. Par récurrence, \mathcal{P}_p est vraie pour tout $p \in \mathbb{N}$ ou encore

$$\forall x \in \mathbb{R}_+^*, \lim_{n \to +\infty} f_n(x) = f(x)$$

Solution 65

- 1. Soit $x \in \mathbb{R}$. Alors $|u_n(x)| \leq \frac{|\alpha|^n}{n!}$. La série $\sum \frac{|\alpha|^n}{n!}$ converge en tant que série exponentielle. La série $\sum |u_n(x)|$ converge donc par majoration. La série $\sum u_n(x)$ converge donc (absolument). On en déduit que $\mathcal{D} = \mathbb{R}$.
- 2. D'après la question précédente, $\|u_n\|_{\infty} \leq \frac{|\alpha|^n}{n!}$. A nouveau, la série $\sum \frac{|\alpha|^n}{n!}$ donc la série $\sum \|u_n\|_{\infty}$ converge par majoration. La série $\sum u_n$ converge donc normalement sur \mathbb{R} et donc uniformément sur \mathbb{R} .
- 3. Soit $x \in \mathbb{R}$. Posons $v_n(x) = \frac{\alpha^n e^{inx}}{n!} = \frac{(\alpha e^{ix})^n}{n!}$. La série $\sum v_n(x)$ est une série exponentielle. Elle converge et

$$\sum_{n=0}^{+\infty} v_n(x) = e^{\alpha e^{ix}} = e^{\alpha \cos x} e^{i\alpha \sin x}$$

Ainsi

$$C(x) = \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} \text{Re}(v_n(x)) = \text{Re}\left(\sum_{n=0}^{+\infty} v_n(x)\right) = e^{\alpha \cos x} \cos(\alpha \sin x)$$

4. a. Fixons $n \in \mathbb{N}$.

Remarquons que les fonctions u_n sont paires et donc C également. Par conséquent, $x \mapsto \sin(nx)\cos(nx)$ est impaire et $J_n = 0$.

Posons ensuite $w_k(x) = \cos(nx)u_k(x)$ pour $k \in \mathbb{N}$. Il est clair que $\sum_{k=0}^{+\infty} w_k(x) = \cos(nx)C(x)$. De plus, $\|w_k\|_{\infty} \le \|u_k\|_{\infty}$ donc

 $\sum w_k$ converge normalement sur \mathbb{R} et donc uniformément sur \mathbb{R} . En particulier, $\sum w_k$ converge uniformément sur le *segment* $[-\pi,\pi]$. Enfin, les w_k sont bien continues sur $[-\pi,\pi]$. On peut donc affirmer que

$$J_n = \int_{-\pi}^{\pi} \sum_{k=0}^{+\infty} w_k(x) \, dx = \sum_{k=0}^{+\infty} \int_{-\pi}^{\pi} w_k(x) \, dx$$

D'après l'indication de l'énoncé

$$\int_{-\pi}^{\pi} w_k(x) \, dx = \frac{\alpha^k}{2k!} \int_{-\pi}^{\pi} (\cos((n+k)x) + \cos((n-k)x)) \, dx$$

On en déduit que

$$\int_{-\pi}^{\pi} w_k(x) \, dx = \begin{cases} 0 & \text{si } k \neq n \\ 2\pi & \text{si } k = n = 0 \\ \frac{\pi \alpha^n}{n!} & \text{si } k = n \neq 0 \end{cases}$$

Par conséquent, $I_0 = 2\pi$ et $I_n = \frac{\pi \alpha^n}{n!}$ si $n \in \mathbb{N}^*$.

- **b.** On en déduit immédiatement que $\lim_{n \to +\infty} J_n = \lim_{n \to +\infty} I_n = 0$.
- 5. Soit $x \in \mathbb{R}$. Remarquons que $\cos^2(nx) = \frac{1 + \cos(2nx)}{2}$ de sorte que

$$\frac{\alpha^n \cos^2(nx)}{n!} = \frac{1}{2} \cdot \frac{\alpha^n}{n!} + \frac{1}{2} \cdot u_n(2x)$$

Or les séries $\sum \frac{\alpha^n}{n!}$ et $\sum u_n(2x)$ convergent donc $\sum \frac{\alpha^n \cos^2(nx)}{n!}$ converge également. Ainsi S est définie sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \ S(x) = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{\alpha^n}{n!} + \frac{1}{2} \sum_{n=0}^{+\infty} u_n(2x) = \frac{e^{\alpha}}{2} + \frac{1}{2} C(2x) = \frac{e^{\alpha}}{2} + \frac{1}{2} e^{\alpha \cos 2x} \cos(\alpha \sin(2x))$$

Solution 66

- 1. Pour tout $x \in \mathbb{R}_+$, la série $\sum_{n>0} (-1)^n \frac{e^{-nx}}{n+1}$ converge en vertu du critère spécial des séries alternées.
- 2. Posons $f_n: \mapsto (-1)^n \frac{e^{-nx}}{n+1}$. Alors $||f_n||_{\infty,\mathbb{R}_+} = \frac{1}{n+1}$ donc la série $\sum f_n$ ne converge pas normalement sur \mathbb{R}_+ . Néanmoins, en vertu du critère spécial des séries alternées et en notant $\mathbb{R}_n = \sum_{k=n+1}^{+\infty} f_k$,

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, |R_n(x)| \le |f_{n+1}(x)|$$

donc

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, \ \|\mathbf{R}_n\|_{\infty, \mathbb{R}_+} \le \|f_{n+1}\|_{\infty, \mathbb{R}_+} = \frac{1}{n+2}$$

 $\mathrm{donc}\left(\mathbf{R}_{n}\right)\mathrm{converge}\;\mathrm{uniform\acute{e}ment}\;\mathrm{vers}\;\mathrm{la}\;\mathrm{fonction}\;\mathrm{nulle}.\;\mathrm{Par}\;\mathrm{cons\acute{e}quent},\\ \sum f_{n}\;\mathrm{converge}\;\mathrm{uniform\acute{e}ment}\;\mathrm{sur}\;\mathbb{R}_{+}.$

- 3. Les fonctions f_n étant continues sur \mathbb{R}_+ et $\sum f_n$ convergeant uniformément sur \mathbb{R}_+ , S est continue sur \mathbb{R}_+ . Par ailleurs, $\lim_{n \to \infty} f_n = \delta_{n,0}$ donc d'après le théorème de la double limite, $\lim_{n \to \infty} S = \sum_{n=0}^{+\infty} \lim_{n \to \infty} f_n = 1$.
- **4.** Les solutions de l'équation homogène sont les fonctions $x \mapsto \lambda e^x$ avec $\lambda \in \mathbb{R}$. On cherche une solution particulière de la forme $x \mapsto \lambda(x)e^x$ avec λ dérivable sur \mathbb{R}_+^* ce qui donne $\lambda'(x)e^x = -\frac{e^x}{e^x+1}$ ou encore $\lambda'(x) = -\frac{e^{-x}}{1+e^{-x}}$. On peut donc choisir, $\lambda(x) = \ln(1+e^{-x})$. Les solutions sont donc les fonctions

$$x \mapsto \lambda e^x + \ln(1 + e^{-x})e^x$$

avec $\lambda \in \mathbb{R}$.

5. Remarquons que les f_n sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* et que $f_n'(x) = -(-1)^n \frac{ne^{-nx}}{n+1}$. Soit a > 0. Alors $\|f_n'\|_{\infty,[a,+\infty[} = \frac{ne^{-na}}{n+1} = o\left(\frac{1}{n^2}\right)$ donc $\sum f_n'$ converge normalement et donc uniformément sur $[a, +\infty[$. Ainsi S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_{+}^{*}, \ \mathbf{S}'(x) = \sum_{n=0}^{+\infty} f_{n}'(x) = -\sum_{n=0}^{+\infty} (-1)^{n} \frac{ne^{-nx}}{n+1} = -\sum_{n=0}^{+\infty} (-1)^{n} e^{-nx} + \sum_{n=0}^{+\infty} (-1)^{n} \frac{e^{-nx}}{n+1} = -\frac{1}{1+e^{-x}} + \mathbf{S}(x) = -\frac{e^{x}}{e^{x}+1} + \mathbf{S}(x)$$

Ainsi S est solution de l'équation différentielle de la question précédente sur \mathbb{R}_{+}^{*} . Il existe donc $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}^*_+$$
, $S(x) = \lambda e^x + \ln(1 + e^{-x})e^x$

Or $\ln(1+e^{-x}) \underset{x \to +\infty}{\sim} e^{-x}$ donc $\lim_{x \to +\infty} \ln(1+e^{-x})e^x = 1$. Comme $\lim_{x \to +\infty} S = 1$, on a alors $\lambda = 0$. Finalement

$$\forall x \in \mathbb{R}_+^*, \ S(x) = \ln(1 + e^{-x})e^x$$

Par continuité de S et $x \mapsto \ln(1 + e^{-x})e^x$ sur \mathbb{R}_+

$$\forall x \in \mathbb{R}_+, \ S(x) = \ln(1 + e^{-x})e^x$$

Solution 67

1. Si x > 0, $v_n(x) = o(1/n^2)$ par croissances comparées donc $\sum_{n \in \mathbb{N}^*} v_n(x)$ converge.

Si x < 0, alors $v_n(x) \xrightarrow[n \to +\infty]{} +\infty$ donc $\sum_{n \in \mathbb{N}^*} v_n(x)$ diverge grossièrement.

Enfin, $v_n(0) = 1$ pour tout $n \in \mathbb{N}^*$ donc $\sum_{n=1}^{\infty} v_n(0)$ diverge grossièrement.

Finalement, le domaine de définition de S est \mathbb{R}_+^*

- 2. Soit $n \in \mathbb{N}^*$. Alors v_n est dérivable sur \mathbb{R}_+^* et $v_n'(x) = (\ln(n) n)v_n(x) \le 0$ donc v_n est décroissante sur \mathbb{R}_+^* . Pour tout $n \in \mathbb{N}^*$, v_n est continue sur \mathbb{R}_+^* . Soit $a \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$ et tout $x \in [a, +\infty[, 0 \le v_n(x) \le v_n(a) \text{ donc } \|v_n\|_{\infty,[a,+\infty[} \le v_n(a).$ D'après la première question, $\sum_{n \in \mathbb{N}^*} v_n(a)$ converge donc $\sum_{n \in \mathbb{N}^*} v_n$ converge normalement et a fortiori uniformément sur $[a, +\infty[$. Par conséquent, S est continue sur $\bigcup_{a \in \mathbb{R}_+^*} [a, +\infty[= \mathbb{R}_+^*.$
- 3. Fixons $a \in \mathbb{R}_+^*$. $\sum_{n \in \mathbb{N}^*} v_n$ converge normalement sur $[a, +\infty[$. De plus, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+^*$, $v_n(x) = e^{(\ln(n) n)x}$ et $\ln(n) n < 0$ donc $\lim_{n \to \infty} v_n = 0$. Par théorème de la double limite, $\lim_{n \to \infty} S = 0$.
- **4.** Pour tout $n \in \mathbb{N}^*$, $\lim_{0^+} v_n = 1$. Si $\sum_{n \in \mathbb{N}^*} v_n$ convergeait uniformément sur $]0, +\infty[$, la série $\sum_{n \in \mathbb{N}^*} 1$ convergerait, ce qui est évidemment faux. Ainsi $\sum_{n \in \mathbb{N}^*} v_n$ ne converge pas uniformément sur $]0, +\infty[$.
- **5.** Pour tout $n \in \mathbb{N}^*$, v_n est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ v_n'(x) = (\ln(n) - n)v_n(x)$$

Soit $a \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}^*$, on obtient par décroissance de v_n ,

$$|v_n'(x)| = (n - \ln(n))v_n(x) \le nv_n(x) \le nv_n(a) = n^{a+1}e^{-na}$$

A nouveau, $n^{a+1}e^{-na} = o(1/n^2)$ par croissances comparées, ce qui permet de conclure que $\sum_{n \in \mathbb{N}^*} v_n'$ converge normalement et donc uniformément sur $[a, +\infty[$. On en déduit que S est de classe \mathcal{C}^1 sur $\bigcup_{a \in \mathbb{R}^*_+} [a, +\infty[= \mathbb{R}^*_+]$.

Solution 68

- Soit x ∈ R₊*. La suite ((-1)ⁿu_n(x)) est décroissante de limite nulle. La série ∑ u_n(x) converge donc en vertu du critère spécial des séries alternées. Ainsi f est définie sur R₊*.
 Montrons que f est continue sur R₊*.
 - Pour tout $n \in \mathbb{N}$, u_n est continue sur \mathbb{R}_+^* .
 - Posons $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$ pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$. En vertu du critère spécial des séries alternées,

$$\forall x \in \mathbb{R}_{+}^{*}, |R_{n}(x)| \le |u_{n+1}(x)| = \frac{1}{n+1+x} \le \frac{1}{n+1}$$

On en déduit que $\|\mathbf{R}_n\|_{\infty,\mathbb{R}_+^*} \leq \frac{1}{n+1}$ puis $\lim_{n\to+\infty} \|\mathbf{R}_n\|_{\infty,\mathbb{R}_+^*} = 0$. Ceci signifie que $\sum u_n$ converge uniformément sur \mathbb{R}_+^* .

Par théorème de transfert, f est continue sur \mathbb{R}_+^* .

© Laurent Garcin

MP Dumont d'Urville

2. Remarquons que pour tout $x \in \mathbb{R}_+^*$,

$$f(x) = \frac{1}{x} + \sum_{n=1}^{+\infty} u_n(x) = \frac{1}{x} + \sum_{n=0}^{+\infty} u_{n+1}(x) = \frac{1}{x} - \sum_{n=0}^{+\infty} u_n(x+1) = \frac{1}{x} - f(x+1)$$

Comme f est continue en 1, on peut écrire $f(x) = \frac{1}{x^{-0^+}} \frac{1}{x} - f(1) + o(1)$. A fortiori, $f(x) \sim \frac{1}{x^{-0^+}} \frac{1}{x}$. Remarquons maintenant que pour tout $x \in \mathbb{R}_+^*$,

$$f(x) = \frac{1}{x} + \sum_{n=1}^{+\infty} u_n(x) = \frac{1}{x} + \sum_{n=0}^{+\infty} u_{n+1}(x)$$

donc

$$2f(x) = \frac{1}{x} + \sum_{n=0}^{+\infty} u_n(x) + u_{n+1}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(x+n)(x+n+1)}$$

Posons $v_n: x \mapsto \frac{(-1)^n}{(x+n)(x+n+1)}$. On peut montrer comme précédemment que $\sum v_n$ converge uniformément sur \mathbb{R}_+^* grâce au critère spécial des séries alternées. Mais encore plus simplement, $\|v_n\|_{\infty,[1,+\infty[} = \frac{1}{(n+1)(n+2)} \operatorname{donc} \sum v_n$ converge normalement et a fortiori uniformément sur $[1,+\infty[$. Puisque $\lim_{x\to+\infty}v_n(x)=0$ pour tout $n\in\mathbb{N}$, $\lim_{x\to+\infty}\sum_{n=0}^{+\infty}v_n(x)=0$ par théorème d'interversion série/limite. On en déduit que $2f(x)=\frac{1}{x}+o(1)$. A fortiori, $f(x)\underset{x\to+\infty}{\sim}\frac{1}{2x}$.

3. Remarquons que pour tout $x \in \mathbb{R}_+^*$

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \int_0^1 t^{n+x-1} dt$$

On ne peut malheureusement pas appliquer le théorème d'interversion terme à terme. Posons donc

$$S_n(x) = \sum_{k=0}^{n} (-1)^k \int_0^1 t^{k+x-1} dt$$

de sorte que

$$f(x) = \lim_{n \to +\infty} S_n(x)$$

Alors

$$S_n(x) = \int_0^1 \left(\sum_{k=0}^n (-1)^k t^{k+x-1} \right) dt$$

$$= \int_0^1 t^{x-1} \cdot \frac{1 - (-t)^n + 1}{1+t} dt$$

$$= \int_0^1 \frac{t^{x-1} dt}{1+t} + (-1)^n \int_0^1 t^{n+x} 1 + t dt$$

Or

$$0 \le \int_0^1 t^{n+x} 1 + t \, dt \le \int_0^1 t^{n+x} \, dt = \frac{1}{n+x+1}$$

donc $\lim_{n \to +\infty} \int_0^1 t^{n+x} 1 + t \, dt = 0$. On en déduit que

$$f(x) = \lim_{n \to +\infty} S_n(x) = \int_0^1 \frac{t^{x-1} dt}{1+t}$$

Solution 69

1. La série $\sum f_n$ converge uniformément donc simplement sur X et la suite (R_n) de ses restes converge uniformément sur X vers la fonction nulle i.e. $\lim_{n\to+\infty}\|R_n\|_{\infty}=0$. Puisque $R_n=\sum_{k=n+1}^{+\infty}f_k$, $f_n=R_{n-1}-R_n$ puis, par inégalité triangulaire, $\|f_n\|_{\infty}\leq \|R_{n-1}\|_{\infty}+\|R_n\|_{\infty}$. On en déduit que $\lim_{n\to+\infty}\|f_n\|_{\infty}=0$ i.e. (f_n) converge uniformément sur X vers la fonction nulle.

2. Supposons que la série $\sum f_{n+1} - f_n$ converge uniformément sur X. Notons S sa somme. Alors la suite (S_n) des sommes partielles converge uniformément vers S sur X. Par télescopage, $S_n = f_{n+1} - f_0$ donc $\|f_n - (S + f_0)\|_{\infty} = \|S_{n-1} - S\|_{\infty} \xrightarrow[n \to +\infty]{} 0$ donc (f_n) converge uniformément sur X vers $S + f_0$. Réciproquement, supposons que (f_n) converge uniformément sur X. Notons f sa limite. Dans ce cas, $\|S_n - (f - f_0)\|_{\infty} = \|f_{n+1} - f\|_{\infty} \xrightarrow[n \to +\infty]{} 0$. Ainsi (S_n) converge uniformément sur X vers $f - f_0$. Par définition, $\sum f_{n+1} - f_n$ converge uniformément sur X.

Solution 70

- 1. Fixons $x \in \mathbb{R}_+^*$. La suite $(e^{-\lambda_n x})_{n \in \mathbb{N}}$ est décroissante puisque x > 0. D'après le critère spécial des séries alternées, la série $\sum f_n(x)$ converge i.e. la série $\sum f_n$ converge simplement sur \mathbb{R}_+^* .
- 2. Supposons que la série $\sum f_n$ converge uniformémement sur \mathbb{R}_+^* . Alors la suite (f_n) convergerait uniformément vers la fonction nulle sur \mathbb{R}_+^* . Or pour tout $n \in \mathbb{N}$, $\frac{1}{\lambda_n} \in \mathbb{R}_+^*$ et la suite de terme général $f_n(1/\lambda_n) = (-1)^n e^{-1}$ ne converge pas vers 0. La série $\sum f_n$ ne converge donc pas uniformémement sur \mathbb{R}_+^* .
- 3. D'après le critère spécial des séries alternées

$$\forall t \in \mathbb{R}_+^*, |S(t)| \le e^{-\lambda_0 t}$$

Or $t\mapsto e^{-\lambda_0 t}$ est intégrable sur \mathbb{R}_+ donc S également. Toujours d'après le critère des séries alternées,

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}_+^*, \left| \mathbf{S}(t) - \sum_{k=0}^n f_k(t) \, \mathrm{d}t \right| \le e^{-\lambda_{n+1}t}$$

donc

$$\forall n \in \mathbb{N}, \left| \int_0^{+\infty} \mathbf{S}(t) \, \mathrm{d}t - \sum_{k=0}^n \int_0^{+\infty} f_n(t) \, \mathrm{d}t \right| = \left| \int_0^{+\infty} \left(\mathbf{S}(t) - \sum_{k=0}^n f_k(t) \right) \, \mathrm{d}t \right| \leq \int_0^{+\infty} \left| \mathbf{S}(t) - \sum_{k=0}^n f_k(t) \right| \, \mathrm{d}t \leq \int_0^{+\infty} e^{-\lambda_{n+1} t} \, \, \mathrm{d}t$$

ou encore

$$\left| \int_0^{+\infty} \mathbf{S}(t) \, \mathrm{d}t - \sum_{k=0}^n \frac{(-1)^k}{\lambda_k} \right| \le \frac{1}{\lambda_{n+1}}$$

On obtient alors en passant à la limite

$$\int_{0}^{+} S(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\lambda_n}$$

Solution 71

1. Soit $x \in \mathbb{R}_+^*$. La suite $\left(\frac{1}{x+n}\right)_{n \in \mathbb{N}}$ est décroissante de limite nulle de sorte que la série $\sum u_n(x)$ vérifie le critère spécial des séries alternées. La série $\sum u_n(x)$ converge donc et

$$\forall x \in [a, +\infty[, \forall n \in \mathbb{N}, \left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \le |u_{n+1}(x)| \le \frac{1}{n}$$

La suite des restes $\left(\sum_{k=n+1}^{+\infty} u_k\right)_{n\in\mathbb{N}}$ converge donc uniformément vers la fonction nulle sur \mathbb{R}_+^* i.e. la série $\sum u_n$ converge uniformément sur \mathbb{R}_+^* . Les u_n étant continues sur \mathbb{R}_+^* , f est continue sur \mathbb{R}_+^* .

2. Soit $x \in \mathbb{R}_+^*$.

$$f(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k} = \frac{1}{x} + \sum_{k=1}^{+\infty} \frac{(-1)^k}{x+k} = \frac{1}{x} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}$$

via le changement d'indice $k \mapsto k - 1$.

3. Soit $x \in \mathbb{R}_+^*$. D'une part,

$$f(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k}$$

D'autre part,

$$f(x) = \frac{1}{x} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}$$

En additionnant ces deux inégalités,

$$2f(x) = \frac{1}{x} + \sum_{k=0}^{+\infty} \left[\frac{(-1)^k}{x+k} - \frac{(-1)^k}{x+k+1} \right] = \frac{1}{x} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)(x+k)}$$

4. Soit $x \in \mathbb{R}_+^*$. A nouveau, la série $\sum \frac{(-1)^n x}{(x+n+1)(x+n)}$ vérifie le critère spécial des séries alternées. Notamment,

$$\left| \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)(x+k)} \right| \le \frac{1}{(x+1)x}$$

On en déduit d'après la question précédente que

$$2f(x) - \frac{1}{x} = \mathcal{O}\left(\frac{1}{x^2}\right)$$

A fortiori

$$2f(x) - \frac{1}{x} = o\left(\frac{1}{x}\right)$$

et donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{2x}$$

5. D'après la question 2,

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{1}{x} - f(x+1)$$

Comme f est continue en 1,

$$f(x) = \frac{1}{x \to 0^+} \frac{1}{x} - f(1) + o(1)$$

A fortiori

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{x}$$

6. Soit $x \in \mathbb{R}_+^*$. Tout d'abord, l'intégrale $\int_0^1 \frac{t^{x-1}}{1+t} dt$ converge puisque $\frac{t^{x-1}}{1+t} \underset{t \to 0^+}{\sim} t^{x-1}$ et x-1 > -1. Fixons $n \in \mathbb{N}$. Remarquons que

$$\forall t \in [0, 1[, \ \frac{1}{1+t} = \frac{1-(-1)^{n+1}t^{n+1}}{1+t} + \frac{(-1)^{n+1}t^{n+1}}{1+t} = \left[\sum_{k=0}^{n} (-1)^k t^k\right] + \frac{(-1)^{n+1}t^{n+1}}{1+t}$$

Ainsi

$$\int_{0}^{1} \frac{t^{x-1}}{1+t} dt = \left[\sum_{k=0}^{n} (-1)^{k} \int_{0}^{1} t^{k+x-1} dt \right] + (-1)^{n+1} \int_{0}^{1} \frac{t^{n+x}}{1+t} dt$$
$$= \left[\sum_{k=0}^{n} \frac{(-1)^{k}}{x+k} \right] + (-1)^{n+1} \int_{0}^{1} \frac{t^{n+x}}{1+t} dt$$

Par ailleurs

$$\forall t \in [0,1], \ 0 \le \frac{t^{n+x}}{1+t} \le t^{n+x}$$

donc

$$0 \le \int_0^1 \frac{t^{n+x}}{1+t} \, \mathrm{d}t \le \int_0^1 t^{n+x} \, \mathrm{d}t = \frac{1}{n+x+1}$$

Ainsi

$$\lim_{n \to +\infty} \int_{0}^{1} \frac{t^{n+x}}{1+t} \, dt \le \int_{0}^{1} t^{n+x} \, dt = 0$$

de sorte que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{x+k} = \int_{0}^{1} \frac{t^{x-1}}{1+t} dt$$

i.e.

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

Solution 72

1. Fixons $x \in \mathbb{R}_+^*$. La suite de terme général $\frac{1}{n+x}$ décroît vers 0 donc $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+x}$ converge. Ainsi S est bien définie sur \mathbb{R}_+^* .

Posons $u_n: x \mapsto \frac{(-1)^n}{n+x}$. La série $\sum u_n$ converge simplement sur \mathbb{R}_+^* . De plus, les u_n sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivées $u_n': x \mapsto \frac{(-1)^{n+1}}{(n+x)^2}$. La série $\sum_{n \in \mathbb{N}} \frac{(-1)^{n+1}}{(n+x)^2}$ vérifie à nouveau le critère des séries alternées. Cette série converge donc et on peut majorer la valeur absolue du reste :

$$\forall x \in \mathbb{R}_+^*, \ \forall n \in \mathbb{N}, \ \left| \sum_{k=n+1}^{+\infty} u_k'(x) \right| \le \frac{1}{(n+1+x)^2} \le \frac{1}{(n+1)^2}$$

Le reste converge donc uniformément vers la fonction nulle sur \mathbb{R}_+^* i.e. la série $\sum u'_n$ converge uniformément. Par conséquent, S est de classe \mathcal{C}^1 et

$$\forall x \in \mathbb{R}_+^*, \ S'(x) = \sum_{n=0}^{+\infty} u'_n(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$$

- 2. Toujours d'après le critère spécial des séries alternées, S'(x) est du signe du premier terme de la somme $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$, c'est-à-dire du signe de $-\frac{1}{x^2}$. Par conséquent, S' est négative sur \mathbb{R}_+^* de sorte que S est décroissante sur \mathbb{R}_+^* .
- **3.** Soit $x \in \mathbb{R}_+^*$. Par changement d'indice

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n+x} = \frac{1}{x} + \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+1+x} = \frac{1}{x} - \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x+1} = \frac{1}{x} - S(x+1)$$

Comme S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , elle est a fortiori continue en 1. Ainsi $x \mapsto \mathrm{S}(x+1)$ admet une limite finie en 0. Comme $\lim_{x \to 0^+} \frac{1}{x} = +\infty$,

 $S(x) \sim \frac{1}{x \to +\infty} \frac{1}{x}$. Par décroissance de S, pour tout $x \in]1, +\infty[$,

$$S(x+1) \le S(x) \le S(x-1)$$

puis

$$S(x + 1) + S(x) \le 2S(x) \le S(x - 1) + S(x)$$

ou encore

$$\frac{1}{x} \le 2S(x) \le \frac{1}{x - 1}$$

On en déduit sans peine à l'aide du théorème des gendarmes que $S(x) \sim \frac{1}{2x}$

Solution 73

- 1. Soit $x \in J$. Puisque x > 0, la suite de terme général $\frac{1}{\sqrt{1+nx}}$ est décroissante et de limite nulle. D'après le critère spécial des séries alternées, $\sum f_n(x)$ converge. Ainsi $\sum f_n$ converge simplement sur J.
- **2.** Pour tout $n \in \mathbb{N}$,

$$||f_n||_{\infty,J} = \sup_{x \in J} \frac{1}{\sqrt{1+nx}} = \frac{1}{\sqrt{1+n}} \sim \frac{1}{\sqrt{n}}$$

Or la série $\sum \frac{1}{\sqrt{n}}$ est une série à termes positifs divergente donc $\sum \|f_n\|_{\infty,J}$ diverge également. Autrement dit, $\sum f_n$ ne converge pas normalement.

3. Comme la série $\sum f_n$ converge simplement sur J, il suffit de montrer que la suite de ses restes converge uniformément vers la fonction nulle sur J. Posons $R_n = \sum_{n=1}^{+\infty} f_n$. D'après le critère spécial des séries alternées,

$$\forall x \in J, |R_n(x)| \le \frac{1}{\sqrt{1 + (n+1)x}} \le \frac{1}{\sqrt{n+2}}$$

Ainsi

$$\|\mathbf{R}_n\|_{\infty,\mathbf{J}} \le \frac{1}{\sqrt{n+2}}$$

On en déduit que $\lim_{n \to +\infty} \|\mathbf{R}_n\|_{\infty,\mathbf{J}} = 0$ i.e. (\mathbf{R}_n) converge uniformément vers la fonction nulle sur J. Par conséquent, $\sum f_n$ converge uniformément sur J.

4. Pour tout $n \in \mathbb{N}^*$, $\lim_{\substack{+\infty \\ +\infty}} f_n = 0$ et $\lim_{\substack{+\infty \\ +\infty}} f_0 = 1$. Comme $\sum f_n$ converge uniformément sur $\mathbf{J} = [1, +\infty[$, on peut utiliser le théorème d'interversion série/limite :

$$\lim_{+\infty} \varphi = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

- a. Il s'agit à nouveau du critère spécial des séries alternées.
 - b. Remarquons que

$$\forall x \in J, \ \varphi(x) - \ell - \frac{a}{\sqrt{x}} = \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right)$$

De plus,

$$\left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| = \frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1 + nx}} = \frac{\sqrt{1 + nx} - \sqrt{nx}}{\sqrt{nx}\sqrt{1 + nx}} = \frac{1}{\left(\sqrt{1 + nx} + \sqrt{nx}\right)\sqrt{nx}\sqrt{1 + nx}} \le \frac{1}{2(nx)^{3/2}}$$

Ainsi, par inégalité triangulaire,

$$\forall x \in J, \ \left| \varphi(x) - \ell - \frac{a}{\sqrt{x}} \right| \le \sum_{n=1}^{+\infty} \left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| \le \sum_{n=1}^{+\infty} \frac{1}{2(nx)^{3/2}} = \frac{K}{x^{3/2}}$$

en posant K = $\frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$. On en déduit bien que

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

Intégrales à paramètres

Solution 74

- 1. Soit $x \in \pi \mathbb{Z}$. Alors pour tout $n \in \mathbb{N}$, $f_n(x) = 0$. Soit maintenant $x \in \mathbb{R} \setminus \pi \mathbb{Z}$. Alors $|\cos x| < 1$ donc $\lim_{n \to +\infty} n \cos^n x = 0$ puis $\lim_{n \to +\infty} f_n(x) = 0$. Finalement la suite (f_n) converge simplement vers la fonction nulle.
- **2.** Posons $x_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors pour tout $n \in \mathbb{N}^*$, $x_n \in \left[0, \frac{\pi}{2}\right]$. D'une part, $n \sin(x_n) \underset{n \to +\infty}{\longrightarrow} 1$. D'autre part, $\cos^n(x_n) = e^{n \ln(\cos(1/n))}$ et

$$\ln(\cos(1/n)) = \inf_{n \to +\infty} \ln(1 + o(1/n)) = = \inf_{n \to +\infty} o(1/n)$$

de sorte que $\cos^n(x_n) \xrightarrow[n \to +\infty]{} 1$.

Finalement, $\lim_{n \to +\infty} f_n(x_n) = 1 \neq 0$ donc la suite (f_n) ne converge pas uniformément.

Soit maintenant $a \in \left]0, \frac{\pi}{2}\right]$. Alors pour tout $x \in \left[a, \frac{\pi}{2}\right]$,

$$|f_n(x)| \le n \cos^n(a) \sin(a)$$

donc

$$|f_n|_{\infty} \leq n \cos^n(a) \sin(a)$$

(c'est même une égalité) donc $\lim_{n\to+\infty} |f_n| = 0$ puisque $0 \le \cos a < 1$. Ainsi (f_n) converge uniformément vers la fonction nulle sur $\left[a,\frac{\pi}{2}\right]$.

3. Méthode n°1

Remarquons tout d'abord que f_n est positive et que

$$\int_0^{\frac{\pi}{2}} f_n(t) dt = -\frac{n}{n+1} \left[\cos^{n+1} t \right]_0^{\frac{\pi}{2}} = \frac{n}{n+1}$$

Soit $\varepsilon \in \mathbb{R}_+^*$. Comme g est continue en 0, il existe $\alpha \in \mathbb{R}_+^*$ tel que $|g(x) - g(0)| \le \frac{\varepsilon}{2}$ pour tout $x \in [0, \alpha]$. Ensuite,

$$\left| \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(t) dt - \int_{0}^{\frac{\pi}{2}} f_{n}(t)g(0) dt \right| \leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)|g(t) - g(0)| dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g(t) - g(0)| dt$$

$$\leq \int_{0}^{\alpha} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \int_{0}^{\frac{\pi}{2}} f_{n}(t)\varepsilon dt + \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t)|g - g(0)|_{\infty} dt$$

$$\leq \frac{n\varepsilon}{2(n+1)} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

$$\leq \frac{\varepsilon}{2} + ||g - g(0)||_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_{n}(t) dt$$

Comme (f_n) converge uniformément vers la fonction nulle sur le segment $\left[\alpha, \frac{\pi}{2}\right]$, $\lim_{n \to +\infty} \int_{-\alpha}^{\frac{\pi}{2}} f_n(t) \, \mathrm{d}t = 0$. Il existe donc $N \in \mathbb{N}$ tel que

pour tout entier $n \ge N$, $\|g - g(0)\|_{\infty} \int_{\alpha}^{\frac{\pi}{2}} f_n(t) dt \le \varepsilon$. On en déduit que pour $n \ge N$,

$$\left| \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t) g(0) dt \right| \le \varepsilon$$

Ainsi

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt - \int_0^{\frac{\pi}{2}} f_n(t)g(0) dt = 0$$

Finalement,

$$\int_{0}^{\frac{\pi}{2}} f_n(t)g(0) dt = \frac{ng(0)}{n+1} \xrightarrow[n \to +\infty]{} g(0)$$

donc

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = g(0)$$

Méthode n°2

L'application $t \mapsto \cos^{n+1} t$ est bijective de $[0, \pi/2]$ sur [0, 1], strictement décroissante et de classe \mathcal{C}^1 donc, par changement de variable

$$\int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = \frac{n}{n+1} \int_0^1 f(\arccos(^{n+1}\sqrt{u})) du$$

La fonction $u \mapsto f(\arccos(^{n+1}\sqrt{u}))$ converge simplement sur]0,1] vers la fonction constante égale à f(0) car f est continue en 0. De plus, f est bornée [0,1] donc $u \mapsto f(\arccos(^{n+1}\sqrt{u}))$ est dominée par une constante (clairement intégrable sur le segment [0,1]). On peut donc appliquer le théorème de convergence dominée de sorte que

$$\lim_{n \to +\infty} \int_0^1 f(^{n+1}\sqrt{u}) \, du = \int_0^1 f(0) \, du = f(0)$$

On en conclut immédiatement que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t) g(t) dt = g(0)$$

Solution 75

On pose $f_n: t \mapsto \frac{1}{(1+t^3)^n}$ dans la suite.

1. Pour $n \in \mathbb{N}^*$, $f_n(t) \underset{t \to +\infty}{\sim} \frac{1}{t^{3n}}$ donc f_n est intégrable sur \mathbb{R}_+ et u_n est bien définie. La fonction f_0 est constante égale à 1. Elle n'est évidemment pas intégrable sur \mathbb{R}_+ donc u_0 n'est pas définie.

- 2. La suite de fonctions (f_n) converge simplement vers la fonction nulle sur \mathbb{R}_+^* . De plus, pour tout $n \in \mathbb{N}$, $|f_n| = f_n \le f_1$ et f_1 est intégrable sur \mathbb{R}_+^* donc (u_n) converge vers 0 d'après le théorème de convergence dominée.
- 3. La suite (f_n) est décroissante donc la suite (u_n) l'est aussi. De plus (u_n) converge vers 0. D'après le critère spécial des séries alternées, la série $\sum_{n=0}^{\infty} (-1)^n u_n$ converge. Pour tout $t \in \mathbb{R}_+^*$ et pour tout $n \in \mathbb{N}^*$

$$-\frac{1}{2+t^3} = \frac{-\frac{1}{1+t^3}}{1+\frac{1}{1+t^3}} = \sum_{k=1}^{n} \frac{(-1)^k}{(1+t^3)^k} + \frac{\frac{(-1)^{n+1}}{(1+t^3)^{n+1}}}{1+\frac{1}{1+t^3}}$$

Ainsi

$$\left| \int_{0}^{+\infty} -\frac{\mathrm{d}t}{2+t^3} - \sum_{k=1}^{n} (-1)^k u_k \right| \leq \int_{0}^{+\infty} \left| -\frac{1}{2+t^3} - \sum_{k=1}^{n} \frac{(-1)^k}{(1+t^3)^k} \right| \, \mathrm{d}t = \int_{0}^{+\infty} \frac{\frac{1}{(1+t^3)^{n+1}}}{1 + \frac{1}{1+t^3}} \, \, \mathrm{d}t \leq u_{n+1}$$

Comme $\lim_{n \to +\infty} u_{n+1} = 0$, on en déduit que

$$S = \sum_{n=1}^{+\infty} (-1)^n u_n = \lim_{n \to +\infty} \sum_{k=1}^{n} (-1)^k u_k = -\int_0^{+\infty} \frac{dt}{2 + t^3}$$

4. On effectue d'abord le changement de variable $u = t/\sqrt[3]{2}$. Alors

$$S = \frac{\sqrt[3]{2}}{2} \int_{0}^{+\infty} \frac{du}{1 + u^3}$$

On décompose en éléments simples : il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que

$$F(X) = \frac{1}{X^3 + 1} = \frac{1}{(X+1)(X^2 - X + 1)} = \frac{\alpha}{X+1} + \frac{\beta X + \gamma}{X^2 - X + 1}$$

Alors $\alpha = ((X+1)F(X))(-1) = \frac{1}{3}$. De plus, $\lim_{x \to +\infty} xF(x) = 0 = \alpha + \beta$ donc $\beta = -\frac{1}{3}$. Enfin, $F(0) = \alpha + \gamma = 1$ donc $\gamma = \frac{2}{3}$. Ainsi

$$F(X) = \frac{1}{3} \left(\frac{1}{X+1} - \frac{X-2}{X^2+X+1} \right) = \frac{1}{3} \left(\frac{1}{X+1} - \frac{1}{2} \cdot \frac{2X-1}{X^2-X+1} \right) + \frac{1}{2} \cdot \frac{1}{(X-1/2)^2 + (\sqrt{3}/2)^2}$$

On en déduit que

$$\int_0^{+\infty} \frac{\mathrm{d}u}{1+u^3} = \frac{1}{3} \left[\ln \left(\frac{u+1}{\sqrt{u^2-u+1}} \right) \right]_0^{+\infty} + \frac{1}{\sqrt{3}} \left[\arctan \left(\frac{2u-1}{\sqrt{3}} \right) \right]_0^{+\infty}$$

Or $\lim_{u \to +\infty} \frac{u+1}{\sqrt{u^2 - u + 1}} = 1$ (utiliser un équivalent) donc

$$\int_{0}^{+\infty} \frac{\mathrm{d}u}{1+u^3} = \frac{\pi}{2\sqrt{3}} + \frac{1}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}} + \frac{\pi}{6\sqrt{3}} = \frac{2\pi}{3\sqrt{3}}$$

Finalement, $S = \frac{\pi\sqrt[3]{2}}{3\sqrt{3}}$.

Solution 76

Remarquons que l'intégrale définissant a_n est bien définie puisque $f(t)\frac{e^{-nt}}{\sqrt{t}} = \mathcal{O}\left(\frac{1}{\sqrt{t}}\right)$ et $f(t)\frac{e^{-nt}}{\sqrt{t}} = o\left(e^{-nt}\right)$ car f est bornée.

Par le changement de variable u = nt,

$$a_n = \frac{1}{\sqrt{n}} \int_0^{+\infty} f(u/n) \frac{e^{-u}}{\sqrt{u}} dt$$

La suite de fonctionz de terme général $g_n: u \mapsto f(u/n)\frac{e^{-u}}{\sqrt{u}}$ converge simplement vers $u \mapsto f(0)\frac{e^{-u}}{\sqrt{u}}$ sur \mathbb{R}_+^* car f est continue en 0. De plus, comme f est bornée, il existe $M \in \mathbb{R}_+$ tel que

$$\forall n \in \mathbb{N}^*, \ \forall u \in \mathbb{R}_+^*, \ |g_n(u)| \le M \frac{e^{-u}}{\sqrt{u}}$$

Or $\varphi: u \mapsto \frac{e^{-u}}{\sqrt{n}}$ est bien intégrable sur \mathbb{R}_+ ($\varphi(u) \underset{u \to 0^+}{\sim} 1/\sqrt{u}$ et $\varphi(u) \underset{u \to +\infty}{=} o(e^{-u})$) donc, par théorème de convergence dominée,

$$\int_0^{+\infty} g_n(u) du \xrightarrow[n \to +\infty]{} \int_0^{+\infty} f(0) \frac{e^{-u}}{\sqrt{u}} du$$

On en déduit que

$$a_n \sim \frac{f(0)}{\sqrt{n}} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du$$

Remarque. On peut préciser que par le changement de variable $t = \sqrt{u}$,

$$\int_{0}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = 2 \int_{0}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

Solution 77

Posons
$$F(x) = \int_0^{+\infty} \frac{\arctan(x/t) dt}{1+t^2} \operatorname{et} G(x) = \int_0^x \frac{\ln(t) dt}{t^2-1} \operatorname{pour} \operatorname{tout} x \in \mathbb{R}_+^*.$$

Remarquons déjà que l'intégrale définissant F(x) est bien définie. Tout d'abord, $\frac{\ln(t)}{t^2-1} \sim -\ln(t)$ donc $t\mapsto \frac{\ln(t)}{t^2-1}$ est intégrable au voisinage de 0⁺. On va maintenant justifier que $t\mapsto \frac{\ln(t)}{t^2-1}$ est prolongeable par continuité en 1, pour justifier l'existence de G(x) pour x > 1. En effet,

$$\frac{\ln(t)}{t^2-1} \underset{t \to 1}{\sim} \frac{t-1}{t^2-1} \underset{t \to 1}{\sim} \frac{1}{t+1} \underset{t \to 1}{\sim} \frac{1}{2}$$

Finalement G est bien définie sur \mathbb{R}_+^* et le théorème fondamental de l'analyse montre alors que $G'(x) = \frac{\ln(x)}{x^2 - 1}$ pour tout $x \in \mathbb{R}_+^* \setminus \{1\}$ et que $G'(1) = \frac{1}{2}$.

Ensuite, nous allons montrer que G est continue en 0. En effet, puisque $\frac{\ln(t)}{t^2-1} \sim -\ln(t)$ et que l'intégrale définissant G(x) converge, $G(x) \underset{x \to 0^+}{\sim} - \int_{a}^{x} \ln(t) dt. \text{ Or } \int_{a}^{x} \ln(t) dt = x \ln x - x \underset{x \to 0^+}{\longrightarrow} 0 \text{ de sorte que } \lim_{t \to 0} G = 0 = G(0).$

On va ensuite montrer que F est continue sur \mathbb{R}_+ . Posons $u(x,t) = \frac{\arctan(x/t)}{1+t^2}$ pour $(x,t) \in (\mathbb{R}_+^*)^2$. Soit $a \in \mathbb{R}_+^*$. Alors

- pour tout $x \in \mathbb{R}_+$, $t \mapsto u(x,t)$ est continue par morceaux sur \mathbb{R}_+^* et intégrable sur \mathbb{R}_+^* car $u(x,t) = o(1/t^2)$ et $u(x,t) \xrightarrow[t \to +\infty]{} \frac{\pi}{2}$;
- pour tout $t \in \mathbb{R}_+^*$, $x \mapsto u(x,t)$ est continue sur $[a, +\infty[$;

- pour tout $x \in \mathbb{R}_+$, $t \mapsto u(x,t)$ est continue par morceaux sur \mathbb{R}_+^* ;
- pour tout $(x, t) \in \mathbb{R}_+ \times \mathbb{R}_+^*$,

$$|u(x,t)| \le \frac{\pi/2}{1+t^2}$$

• la fonction $t \mapsto \frac{\pi/2}{1+t^2}$ est intégrable sur \mathbb{R}_+ (continue sur \mathbb{R}_+ et équivalente à $t \mapsto \frac{1}{t^2}$ en $+\infty$).

On peut donc affirmer que F est continue sur \mathbb{R}_+ .

On va maintenant montrer que F est également dérivable sur \mathbb{R}_+^* et calculer sa dérivée.

- pour tout $x \in [a, +\infty[$, $t \mapsto u(x, t)$ est continue par morceaux sur \mathbb{R}_+^* et intégrable sur \mathbb{R}_+^* car $u(x, t) = o(1/t^2)$ et $u(x, t) \xrightarrow[t \to +\infty]{} \frac{\pi}{2}$;
- u admet une dérivée par rapport à sa première variable sur $[a, +\infty[\times \mathbb{R}^*_+]$ et

$$\forall (x,t) \in [a, +\infty[\times \mathbb{R}_+^*, \ \frac{\partial u}{\partial x}(x,t) = \frac{t}{(t^2 + x^2)(1 + t^2)}$$

- pour tout $t \in \mathbb{R}_+^*$, $x \mapsto u(x,t)$ est continue sur $[a, +\infty[$;
- pour tout $x \in [a, +\infty[$, $t \mapsto u(x, t)$ est continue par morceaux sur \mathbb{R}_+^* ;
- pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}^*_+,$

$$\left|\frac{\partial u}{\partial x}(x,t)\right| \le \frac{t}{(t^2 + a^2)(1 + t^2)}$$

• la fonction $t\mapsto \frac{t}{(t^2+a^2)(1+t^2)}$ est intégrable sur \mathbb{R}_+ (continue sur \mathbb{R}_+ et équivalente à $t\mapsto \frac{1}{t^3}$ en $+\infty$).

On peut donc affirmer que F est de classe \mathcal{C}^1 sur $[a, +\infty[$ pour tout $a \in \mathbb{R}_+^*$ et donc sur \mathbb{R}_+^* . De plus,

$$\forall x \in \mathbb{R}_+^*, \ F'(x) = \int_0^{+\infty} \frac{t \ dt}{(t^2 + x^2)(1 + t^2)}$$

A l'aide d'une décomposition en éléments simples, pour $x \neq 1$

$$\frac{t}{(t^2+x^2)(1+t^2)} = \frac{1}{1-x^2} \left(\frac{t}{t^2+x^2} - \frac{t}{t^2+1} \right)$$

On en déduit que

$$\forall x \in \mathbb{R}_+^* \setminus \{1\}, \ F'(x) = \frac{1}{2(1-x^2)} \left[\ln \left(\frac{t^2 + x^2}{1+t^2} \right) \right]_0^{+\infty} = \frac{\ln(x)}{x^2 - 1}$$

Ainsi F' et G' coïncident sur $\mathbb{R}_+^* \setminus \{1\}$ et comme elles sont continues sur \mathbb{R}_+^* , elles coïncident sur \mathbb{R}_+^* . Par conséquent, F et G sont égales à une constante près sur \mathbb{R}_+^* . Enfin, $\lim_0 F = F(0) = 0$ puisqu'on a montré que F était continue sur \mathbb{R}_+ et donc en 0 et $\lim_0 G = 0$. La contante en question est donc nulle : F et G coïncident donc sur \mathbb{R}_+^* .

Solution 78

1. La linéarité de R provient de la linéarité de l'intégration. La linéarité de S provient de la linéarité de l'intégration et de la dérivation. Soit $h \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$. Fixons $a \in \mathbb{R}_+$. L'application $x \mapsto h(x \sin t)$ est clairement continue sur [0, a] pour tout $t \in \left[0, \frac{\pi}{2}\right]$ et l'application $t \mapsto h(x \sin t)$ est clairement continue par morceaux (et même continue) sur $\left[0, \frac{\pi}{2}\right]$ pour tout $x \in [0, a]$. De plus h étant continue sur le segment [0, a], elle est bornée sur [0, a]. Il existe donc $M \in \mathbb{R}_+$ tel que

$$\forall (x,t) \in [0,a] \times \left[0,\frac{\pi}{2}\right], |h(x\sin t)| \le M$$

La fonction constante égale à M étant clairement intégrable sur $\left[0,\frac{\pi}{2}\right]$, R(h) est continue sur $\left[0,a\right]$ et, par suite sur \mathbb{R}_+ . Soit $g \in \mathcal{C}^1(\mathbb{R}_+,\mathbb{R})$. Remarquons que S(g)(x) = g(0) + xR(g')(x) pour tout $x \in \mathbb{R}_+$. Comme g' est continue sur \mathbb{R}_+ , ce qui précède montre que R(g') est continue sur \mathbb{R}_+ et donc S(g) également.

2. On procède par intégration par parties :

$$W_{n+2} = \int_0^{\frac{\pi}{2}} \sin^{n+1}(t) \sin(t) dt$$

$$= \left[-\sin^{n+1}(t) \cos(t) \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \sin^n(t) \cos^2(t) dt$$

$$= (n+1) \int_0^{\frac{\pi}{2}} \sin^n(t) (1 - \sin^2(t)) dt$$

$$= (n+1)W_n - (n+1)W_{n+2}$$

Ainsi $(n + 2)W_{n+2} = (n + 1)W_n$.

- 3. La relation précédente montre que pour tout $n \in \mathbb{N}$, $(n+2)W_{n+2}W_{n+1} = (n+1)W_{n+1}W_n$. La suite de terme général $(n+1)W_{n+1}W_n$ est donc constante égale à son premier terme $W_0W_1 = \frac{\pi}{2}$. Posons $f_n: x \mapsto x^n$. Un calcul évident montre que $R(f_0) = f_0$ et que $S(f_0) = f_0$, ainsi $S \circ R(f_0) = f_0$. Soit maintenant $n \in \mathbb{N}^*$. Un calcul non moins évident montre que $R(f_n) = \frac{2}{\pi}W_nf_n$ et $S(f_n) = nW_{n-1}f_n$. Ainsi $S \circ R(f_n) = nW_nW_{n-1}\frac{2}{\pi}f_n = f_n$ puisque $nW_nW_{n-1} = \frac{\pi}{2}$. Comme toute fonction polynomiale est combinaison linéaire des f_n , on obtient par linéarité de $S \circ R$, $S \circ R(P) = P$ pour tout polynôme P.
- **4.** Soit $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$. Montrons que R(g) est de classe \mathcal{C}^1 sur \mathbb{R}_+ . Soit $a \in \mathbb{R}_+$. Pour tout $t \in \left[0, \frac{\pi}{2}\right]$, $x \mapsto g(x \sin t)$ est de classe \mathcal{C}^1 sur [0, a] de dérivée $x \mapsto \sin(t)g'(x \sin t)$. Pour tout $x \in [0, a]$, $t \mapsto g(x \sin t)$ et $t \mapsto \sin(t)g'(x \sin t)$ sont continues par morceaux (et même continues) sur $\left[0, \frac{\pi}{2}\right]$. Enfin, g' est continue sur le segment [0, a], elle y est bornée. Il existe donc $M \in \mathbb{R}_+$ tel que

$$\forall (x,t) \in [0,a] \times \left[0,\frac{\pi}{2}\right], |\sin(t)g'(x\sin t)| \le \operatorname{M}\sin(t)$$

Comme $t \mapsto \in (t)$ est clairement intégrable sur $\left[0, \frac{\pi}{2}\right]$, on peut conclure que R(g) est de classe \mathcal{C}^1 sur [0, a] et par suite sur \mathbb{R}_+ . De plus,

$$\forall x \in \mathbb{R}_+, \ \mathrm{R}(g)'(x) = \int_0^{\frac{\pi}{2}} \sin(t)g'(x\sin t) \ \mathrm{d}t$$

Fixons $x \in \mathbb{R}_+$. On notera $\|\cdot\|_{[0,x]}$ la norme uniforme sur [0,x]. Par inégalité triangulaire

$$|S \circ R(g)(x)| \le |R(g)(0)| + x \int_0^{\frac{\pi}{2}} |R(g)'(x \sin t)| dt \le |R(g)(0)| + x \frac{\pi}{2} ||R(g)'||_{[0,x]}$$

Mais pour tout $y \in [0, x]$

$$|R(g)'(y)| = \left| \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \sin(t)g'(y\sin t) \, dt \right| \le \frac{2}{\pi} ||g'||_{[0,x]} \int_0^{\frac{\pi}{2}} \sin t \, dt = \frac{2}{\pi} ||g'||_{[0,x]}$$

Ainsi

$$\|\mathbf{R}(\mathbf{g})'\|_{[0,x]} \le \frac{2}{\pi} \|\mathbf{g}'\|_{[0,x]}$$

puis

$$|S \circ R(g)(x)| \le |g(0)| + x||g'||_{[0,x]}$$

D'après le théorème de Weierstrass, il existe une suite (Q_n) de polynômes convergeant uniformément vers g' sur [0, x]. On pose alors $P_n(x) = g(0) + \int_0^x Q_n(t) dt$ pour tout $x \in \mathbb{R}_+$. La suite (P_n) est également une suite de polynômes. On peut appliquer l'inégalité précédente à $g - P_n$, ce qui donne

$$|S \circ R(g - P_n)(x)| \le |(g - P_n)(0)| + x||(g - P_n)'||_{[0,x]}$$

ou encore, par linéarité de S o R, de l'évaluation en 0 et de la dérivation

$$|S \circ R(g) - S \circ R(P_n)(x)| \le |g(0) - P_n(0)| + x||g' - P_n'||_{[0,x]}$$

et finalement

$$|S \circ R(g) - P_n(x)| \le x ||g' - Q_n||_{[0,x]}$$

car $S \circ R(P_n) = P_n$ d'après la question précédente et car $P_n' = Q_n$ et $P_n(0) = g(0)$ par construction des P_n . Puisque Q_n converge uniformément vers g' sur [0,x], $\lim_{n \to +\infty} \|g' - Q_n\|_{[0,x]} = 0$. Ceci montre que

$$\lim_{n \to +\infty} P_n(x) = S \circ R(g)(x)$$

Enfin comme Q_n converge uniformément vers g' sur [0, x],

$$\lim_{n \to +\infty} P_n(x) = g(0) + \lim_{n \to +\infty} \int_0^x Q_n(t) dt = g(0) + \int_0^x g'(t) dt = g(x)$$

Par unicité de la limite, $S \circ R(g)(x) = g(x)$. Ceci étant valable pour tout $x \in \mathbb{R}_+$, $S \circ R(g) = g$.

Solution 79

- 1. Posons $f(x,t) = \frac{e^{-tx}}{t+1}$ pour $(x,t) \in \mathbb{R}_+^* \times \mathbb{R}$.
 - Pour tout $x \in \mathbb{R}_+^*$, $f(x,t) = o(1/t^2)$ donc $x \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}$, $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et $\frac{\partial f}{\partial x}(x,t) = -\frac{te^{-tx}}{t+1}$.
 - Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur \mathbb{R}_+ .
 - Donnons-nous $a \in \mathbb{R}_+^*$.

$$\forall (x,t) \in [a, +\infty[\times \mathbb{R}_+, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \le e^{-ta}$$

et $t \mapsto e^{-ta}$ est intégrable sur \mathbb{R}_+ .

Ainsi g est de classe \mathcal{C}^1 sur $[a, +\infty[$ pour tout $a \in \mathbb{R}_+^*$ donc de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

2. De plus,

$$\forall x \in \mathbb{R}_+^*, \ g'(x) = -\int_0^{+\infty} \frac{te^{-xt}}{t+1} \ dt$$

Notamment

$$\forall x \in \mathbb{R}_+^*, \ -g'(x) + g(x) = \int_0^{+\infty} e^{-xt} \ dt = \frac{1}{x}$$

3. Soit $x \in \mathbb{R}_+^*$. Effections le changement de variable u = xt:

$$g(x) = \int_0^{+\infty} \frac{e^{-u}}{u+x} du = \frac{1}{x} \int_0^{+\infty} \frac{e^{-u}}{1 + \frac{u}{x}} du$$

De plus,

$$\forall u \in \mathbb{R}_+, \lim_{x \to +\infty} \frac{e^{-u}}{1 + \frac{u}{x}} = e^{-u}$$

et

$$\forall (u, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*, \left| \frac{e^{-u}}{1 + \frac{u}{x}} \right| \le e^{-u}$$

Comme $u\mapsto e^{-u}$ est intégrable sur \mathbb{R}_+ , on peut appliquer le théorème de convergence dominée de sorte que

$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{e^{-u}}{1 + \frac{u}{x}} du = \int_0^{+\infty} e^{-u} du = 1$$

On en déduit que $g(x) \sim \frac{1}{x \to +\infty} \frac{1}{x}$.

Remarque. On peut aussi intégrer par parties pour x > 0:

$$xg(x) = \int_0^{+\infty} \frac{xe^{-tx}}{1+t} dt$$

$$= -\left[\frac{e^{-tx}}{1+t}\right]_0^{+\infty} - \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} dt$$

$$= 1 - \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} dt$$

Or pour tout x > 0,

$$0 \le \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} dt \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x}$$

donc, d'après le théorème des gendarmes,

$$\lim_{x \to +\infty} \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} \, \mathrm{d}t = 0$$

puis

$$\lim_{x \to +\infty} xg(x) = 1$$

ou encore

$$g(x) \sim \frac{1}{x \to +\infty}$$

Solution 80

- 1. Tout d'abord, F est clairement paire puisque cos l'est. Posons $f:(x,t)\in\mathbb{R}\times\mathbb{R}^*_+\mapsto \frac{1-\cos(xt)}{t^2}e^{-t}$. Soit $x\in\mathbb{R}$. Alors $\lim_{t\to 0^+}f(x,t)=\frac{x^2}{2}$ car $\cos u=1-\frac{u^2}{2}+o(u^2)$. Ainsi $t\mapsto f(x,t)$ est prolongeable par continuité en 0. Par ailleurs, comme cos est bornée, f(x,t)=0 $\left(\frac{e^{-t}}{t^2}\right)$. A fortiori, f(x,t)=0 donc $t\mapsto f(x,t)$ est intégrable au voisinage de $+\infty$. Ainsi $t\mapsto f(x,t)$ est intégrable sur \mathbb{R}^*_+ et F(x) est bien défini. La fonction F est donc définie sur \mathbb{R} .
- 2. Puisque $|\sin'| = |\cos| \le 1$, sin est 1-lipschitzienne sur \mathbb{R} en vertu du théorème des accroissements finis. Notamment, pour tout $u \in \mathbb{R}$, $|\sin(u) \sin(0)| \le |u 0|$ i.e. $|\sin u| \le |u|$.
- 3. Pour tout $t \in \mathbb{R}_+^*$, $x \mapsto f(x,t)$ est de classe \mathcal{C}^2 sur \mathbb{R} et pour tout $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$, $\frac{\partial^2 f}{\partial x^2}(x,t) = \cos(xt)e^{-t}$. De plus,

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+^*, \ \left| \frac{\partial^2 f}{\partial x^2}(x,t) \right| = |\cos(xt)e^{-t}| \le e^{-t}$$

et $t\mapsto e^{-t}$ est intégrable sur \mathbb{R}_+^* . Par conséquent, F est de classe \mathcal{C}^2 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ F''(x) = \int_0^{+\infty} \cos(xt)e^{-t} \ dt$$

On peut remarquer que F''(x) est la partie réelle de

$$\int_{0}^{+\infty} e^{ixt} e^{-t} dt = \int_{0}^{+\infty} e^{(ix-1)t} dt = \frac{1}{1-ix} = \frac{1+ix}{1+x^2}$$

Ainsi $F''(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

REMARQUE. On aurait aussi pu procéder à une double intégration par parties.

Remarquons que

$$F'(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$

En particulier, F'(0) = 0.

Remarque. On aurait aussi pu remarquer que F étant paire, F' est impaire et donc F'(0) = 0.

Par conséquent,

$$\forall x \in \mathbb{R}, \ F'(x) = \arctan x + F'(0) = \arctan(x)$$

Enfin, on a clairement F(0) = 0 et

$$\forall x \in \mathbb{R}, \ F(x) = F(0) + \int_0^x \arctan(t) \ dt$$

$$= \left[t \arctan t \right]_0^x - \int_0^x \frac{t \ dt}{1 + t^2} \quad \text{par intégration par parties}$$

$$= x \arctan x - \left[\frac{1}{2} \ln(1 + t^2) \right]_0^x$$

$$= x \arctan x - \frac{1}{2} \ln(1 + x^2)$$

Solution 81

1. f est dérivable sur $\mathbb R$ d'après le théorème fondamental de l'analyse. De plus,

$$\forall x \in \mathbb{R}, \ f'(x) = e^{-x^2}$$

Posons $\varphi: (x,t) \in \mathbb{R} \times [0,1] \mapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$. Pour tout $t \in [0,1], x \mapsto \varphi(x,t)$ est dérivable sur \mathbb{R} et pour tout $(x,t) \in \mathbb{R} \times [0,1], \frac{\partial \varphi}{\partial x}(x,t) = -2xe^{-x^2(1+t^2)}.$

$$\forall (x,t) \in [0,1] \times \mathbb{R}, \ \left| \frac{\partial \varphi}{\partial x}(x,t) \right| \le 2$$

et $t \mapsto 2$ est évidemment intégrable sur [0,1]. Ainsi g est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ g'(x) = -2x \int_{0}^{1} e^{-x^{2}(1+t^{2})} \ dt$$

On en déduit que $f^2 + g$ est dérivable sur \mathbb{R} et

$$\forall x \in [0,1], \ (f^2+g)'(x) = 2f'(x)f(x) + g'(x) = 2e^{-x^2} \int_0^x e^{-t^2} \ \mathrm{d}t - 2x \int_0^1 e^{-x^2(1+t^2)} \ \mathrm{d}t$$

En effectuant le changement de vatiable u = tx,

$$x \int_0^1 e^{-x^2(1+t^2)} dt = \int_0^x e^{-x^2} e^{-u^2} du = e^{-x^2} \int_0^x e^{-t^2} dt$$

Par conséquent, $(f^2 + g)'$ est nulle sur l'intervalle \mathbb{R} de sorte que $f^2 + g$ est constante sur \mathbb{R} . Enfin,

$$(f^2 + g)(0) = \int_0^1 \frac{\mathrm{d}t}{1 + t^2} = \arctan(1) - \arctan(0) = \frac{\pi}{4}$$

donc $f^2 + g$ est constante égale à $\frac{\pi}{4}$ sur \mathbb{R} .

2. Il est clair que

$$\forall (x,t) \in \mathbb{R} \times [0,1], \ 0 \le \varphi(x,t) \le e^{-x^2}$$

donc

$$\forall x \in \mathbb{R}, \ 0 \le g(x) \le e^{-x^2}$$

On en déduit que $\lim_{t\to\infty} g = 0$. On en déduit que $\lim_{t\to\infty} f^2 = \frac{\pi}{4}$. Comme f est clairement à valeurs positives sur \mathbb{R}_+ , $\lim_{t\to\infty} f = \frac{\sqrt{\pi}}{2}$. Autrement dit,

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Solution 82

Dans la suite, on pose $\varphi(x,t) = \frac{e^{-xt^2}}{1+t^2}$.

- **1. a.** Pour tout $t \in \mathbb{R}_+$, $x \mapsto \varphi(x,t)$ est continue sur \mathbb{R}_+ .
 - Pour tout $x \in \mathbb{R}_+$, $t \mapsto \varphi(x,t)$ est continue par morceaux sur \mathbb{R}_+ .
 - Pour tout $x \in \mathbb{R}_+$, $|\varphi(x,t)| \le \frac{1}{1+t^2}$ et $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ (c'est la dérivée de arctan qui admet une limite finie en $+\infty$).

Ainsi f est continue (et a fortiori définie) sur \mathbb{R}_+ .

- **b.** Fixons $a \in \mathbb{R}_+^*$.
 - Pour tout $x \in [a, +\infty[$, $t \mapsto \varphi(x, t)$ est continue par morceaux et intégrable sur \mathbb{R}_+ d'après la domination précédente.
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto \varphi(x,t)$ est de classe \mathcal{C}^1 sur $[a, +\infty[$
 - Pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+,$

$$\left| \frac{\partial \varphi}{\partial x}(x,t) \right| = \left| -\frac{t^2 e^{-xt^2}}{1+t^2} \right| = \frac{t^2 e^{-xt^2}}{1+t^2} \le e^{-xt^2} \le e^{-at^2}$$

et $t \mapsto e^{-at^2}$ est intégrable sur \mathbb{R}_+ $(e^{-at^2} = o(1/t^2))$.

Par conséquent, f est de classe \mathcal{C}^1 sur $[a, +\infty[$ pour tout a > 0 et donc de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

2. a. On peut de plus affirmer que

$$\forall x \in \mathbb{R}_{+}^{*}, \ f'(x) = -\int_{0}^{+\infty} \frac{t^{2}e^{-xt^{2}}}{1+t^{2}} \ \mathrm{d}t = -\int_{0}^{+\infty} \frac{(1+t^{2})-1}{1+t^{2}} e^{-xt^{2}} \ \mathrm{d}t = \int_{0}^{+\infty} \frac{e^{-xt^{2}}}{1+t^{2}} \ \mathrm{d}t - \int_{0}^{+\infty} e^{-xt^{2}} \ \mathrm{d}t = f(x) - \int_{0}^{+\infty} e^{-xt^{2}} \ \mathrm{d}t$$

Via le changement de variable $u = t\sqrt{x}$,

$$\int_{0}^{+\infty} e^{-xt^2} dt = \frac{1}{\sqrt{x}} \int_{0}^{+\infty} e^{-u^2} du = \frac{1}{2} \sqrt{\frac{\pi}{x}}$$

d'après le résultat admis. Ainsi f est bien solution de l'équation différentielle $y'-y=-\frac{1}{2}\sqrt{\frac{\pi}{x}}$.

b. Les solutions de l'équation homogène sont les fonctions $x \mapsto \lambda e^x$ avec $\lambda \in \mathbb{R}$. On cherche une solution particulière de (E) de la forme $x \mapsto \varphi(x)e^x$ avec φ de classe C^1 sur \mathbb{R}^*_+ (variation de la constante). On aboutit à $\varphi'(x)e^x = -\frac{1}{2}\sqrt{\frac{\pi}{x}}$ ou encore $\varphi'(x) = -\frac{\sqrt{\pi}}{2} \cdot \frac{e^{-x}}{\sqrt{x}}$. Comme $\frac{e^{-x}}{\sqrt{x}} \sim \frac{1}{\sqrt{x}}$, $x \mapsto \frac{e^{-x}}{\sqrt{x}}$ est intégrable au voisinage de 0^+ et on peut donc choisir $\varphi(x) = \int_{-\infty}^{x} \frac{e^{-t}}{\sqrt{t}} \, dt$.

Ainsi les solutions de (E) sont les fonctions

$$x \mapsto \lambda e^x + e^x \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$$

avec $\lambda \in \mathbb{R}$. Il existe donc $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \lambda e^x - \frac{\sqrt{\pi}}{2} e^x \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$$

Comme f est continue en 0 et comme $f(0) = \frac{\pi}{2}$.

$$\forall x \in \mathbb{R}_+, \ f(x) = \frac{\pi}{2} e^x - \frac{\sqrt{\pi}}{2} e^x \int_0^x \frac{e^{-t}}{\sqrt{t}} \ \mathrm{d}t$$

On peut éventuellement rajouter que par le changement de variable $u = \sqrt{t}$,

$$\forall x \in \mathbb{R}, \ f(x) = \frac{\pi}{2}e^x - \sqrt{\pi}e^x \int_0^{\sqrt{x}} e^{-u^2} \, \mathrm{d}u$$

Et comme
$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2},$$

$$\forall x \in \mathbb{R}, \ f(x) = \sqrt{\pi}e^x \int_{\sqrt{x}}^{+\infty} e^{-u^2} du$$

Remarque. Cette expression finale n'est pas forcément «meilleure» que l'expression initiale...

Solution 83

- 1. Posons $f(x,t) = \ln(t)e^{-xt}$. Pour tout $x \in \mathbb{R}$, $t \mapsto f(x,t)$ est continue (par morceaux) sur $]0, +\infty[$. Pour tout $x \in \mathbb{R}$, $f(x,t) = o(1/\sqrt{t})$ donc $t \mapsto f(x,t)$ est intégrable en 0^+ . Si x > 0, alors $\ln(t)e^{-xt} = o(1/t^2)$ par croissances comparées donc $t \mapsto f(x,t)$ est intégrable en $+\infty$. Si $x \le 0$, alors 1 = o(f(x,t)). Or $t \mapsto 1$ n'est pas intégrable en $+\infty$ donc $t \mapsto f(x,t)$ non plus. Comme $t \mapsto f(x,t)$ est positive au vosinage de +infty, l'intégrale définissant F(x) diverge en $+\infty$. En conclusion le domaine de définition de F est \mathbb{R}^*_+ .
- 2. On vérifie lé théorème de dérivation des intégrales à paramètre.
 - Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* .
 - Pour tout $t \in \mathbb{R}_+^*$, $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
 - Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto \frac{\partial f}{\partial x}(x,t) = -t \ln(t)e^{-xt}$ est continue par morceaux sur \mathbb{R}_+^* .
 - Soit $a \in \mathbb{R}_+^*$. Pour tout $(x,t) \in [a,+\infty[\times \mathbb{R}_+^*]$

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le t |\ln t| e^{-at} = \varphi(t)$$

Or $\varphi(t) \xrightarrow[t \to 0^+]{} 0$ et, par croissances comparées, $\varphi(t) = o(1/t^2)$ donc φ est intégrable sur \mathbb{R}_+^* .

On en déduit que F est de classe \mathcal{C}^1 sur $\bigcup_{a \in \mathbb{R}^*_+} [a, +\infty[=\mathbb{R}^*_+]$.

3. De plus, pour tout $x \in \mathbb{R}_+^*$,

$$F'(x) = -\int_0^{+\infty} t \ln(t)e^{-xt} dt$$

On procède à une intégration par parties.

$$F'(x) = \frac{1}{x} \left[t \ln(t) e^{-xt} \right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} (\ln(t) + 1) e^{-xt} dt = -\frac{1}{x} F(x) - \frac{1}{x} \int_0^{+\infty} e^{-xt} dt = -\frac{1}{x} F(x) - \frac{1}{x^2} \int_0^{+\infty} e^{-xt} dt = -\frac{1}{x} F(x) - \frac{1}{x} F(x) - \frac{1}{x^2} \int_0^{+\infty} e^{-xt} dt = -\frac{1}{x} F(x) - \frac{1}{x} \int_0^{+\infty} e^{-xt} dt = -\frac{1}{x} F(x) - \frac{1}{x} F($$

Ainsi F est solution sur \mathbb{R}_+^* de l'équation différentielle $y' + \frac{1}{x}y = -\frac{1}{x^2}$. L'ensemble des solutions de l'équation homogène est $\operatorname{vect}(x \mapsto 1/x)$. Par variation de la constante, une solution particulière de l'équation avec second membre est $x \mapsto -\frac{\ln(x)}{x}$. L'ensemble des solutions de l'équations avec second membre est donc $(x \mapsto -\frac{\ln(x)}{x}) + \operatorname{vect}(x \mapsto 1/x)$.

Remarque. En effectuant le changement de variable u = xt, on obtient bien

$$\forall x \in \mathbb{R}_+^*, \ F(x) = -\frac{\ln(x)}{x} + \frac{F(1)}{x}$$

On peut montrer que $F(1) = -\gamma$ où γ désigne la constante d'Euler.

Solution 84

Posons $\varphi(x,t) = e^{-t} \operatorname{sh}(x\sqrt{t}) \operatorname{pour}(x,t) \in \mathbb{R} \times \mathbb{R}_+$.

- 1. Remarquons tout d'abord que f est impaire. Soit alors $x \in \mathbb{R}_+$. On prouve aisément que $\lim_{t \to +\infty} e^{-t/2} \operatorname{sh}(x\sqrt{t}) = 0$ donc $\varphi(x,t) = o\left(e^{-\frac{t}{2}}\right)$. A fortiori $\varphi(x,t) = o\left(\frac{1}{t^2}\right)$. Par conséquent, $t \mapsto \varphi(x,t)$ est intégrable sur \mathbb{R}_+ . Ainsi f est définie sur \mathbb{R}_+ et finalement sur \mathbb{R}_+ par imparité.
- 2. Rappelons que

$$\forall u \in \mathbb{R}, \text{ sh } u = \sum_{n=0}^{+\infty} \frac{u^{2n+1}}{(2n+1)!}$$

On en déduit que

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+, \ \varphi(x,t) = \sum_{n=0}^{+\infty} \frac{x^{2n+1} e^{-t} t^{n+\frac{1}{2}}}{(2n+1)!}$$

Il s'agit maintenant d'appliquer le théorème d'intégration terme à terme. Posons

$$I_n = \int_0^{+\infty} \frac{e^{-t}t^{n+\frac{1}{2}}}{(2n+1)!} dt$$

Par intégration par parties,

$$I_n = \frac{1}{4n} I_{n-1}$$

Il s'ensuit que

$$I_n = \frac{1}{4^n n!} I_0$$

et à l'aide d'une dernière intégration par parties

$$I_0 = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}$$

One en déduit que

$$I_n = \frac{\sqrt{\pi}}{2^{2n+1}n!}$$

Fixons $x \in \mathbb{R}$. La série $\sum \int_0^{+\infty} \left| \frac{x^{2n+1}e^{-t}t^{n+\frac{1}{2}}}{(2n+1)!} \right| \, \mathrm{d}t$ i.e. la série $\sum I_n x^{2n+1}$ converge en tant que série exponentielle. On en déduit donc via le théorème d'intégration terme à terme que

$$f(x) = \sum_{n=0}^{+\infty} I_n x^{2n+1}$$

3. On peut enfin rajouter que

$$I_n = \frac{x\sqrt{\pi}}{2} \sum_{n=0}^{+\infty} \frac{x^{2n}}{2^{2n} n!} = \frac{x\sqrt{\pi}}{2} e^{\frac{x^2}{4}}$$

Solution 85

1. Soit $x \in [-1, 1]$. Pour tout $t \in [0, 1]$

$$\frac{1-t}{1-xt^3} = (1-t)\sum_{n=0}^{+\infty} (xt^3)^n = \sum_{n=0}^{+\infty} (1-t)x^n t^{3n}$$

Par ailleurs, pour tout $n \in \mathbb{N}$,

$$\int_{0}^{1} \left| (1-t)x^{n}t^{3n} \right| dt = \int_{0}^{1} (1-t)x^{n}t^{3n} dt = x^{n} \left(\frac{1}{3n+1} - \frac{1}{3n+2} \right) = \frac{x^{n}}{(3n+1)(3n+2)}$$

et $\frac{x^n}{(3n+1)(3n+2)} = \mathcal{O}\left(\frac{1}{n^2}\right)$ donc la série $\sum \int_0^1 |(1-t)x^n t^{3n}| dt$ converge. On peut donc appliquer le théorème d'intégration terme à terme.

$$\int_{0}^{1} \frac{1-t}{1-xt^{3}} dt = \sum_{n=0}^{+\infty} \int_{0}^{1} (1-t)x^{n}t^{3n} dt = \sum_{n=0}^{+\infty} \frac{x^{n}}{(3n+1)(3n+2)}$$

2. En prenant x = 1, on obtient

$$\sum_{n=0}^{+\infty} \frac{1}{(3n+1)(3n+2)} = \int_0^1 \frac{1-t}{1-t^3} dt = \int_0^1 \frac{dt}{t^2+t+1} = \int_0^1 \frac{dt}{\left(t+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \left[\frac{2}{\sqrt{3}} \arctan\left(\frac{2t+1}{\sqrt{3}}\right)\right]_0^1 = \frac{2}{\sqrt{3}} \left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{\pi}{3\sqrt{3}}$$

Solution 86

- **1.** Par intégration par parties, $I_n = nI_{n-1}$ pour $n \in \mathbb{N}^*$. Comme $I_0 = 1$, on obtient aisément $I_n = n!$ pour $n \in \mathbb{N}$.
- 2. Soi $x \in \mathbb{R}$. Comme $\sum a_n$ converge (absolument), la suite (a_n) converge vers 0. A fortiori, elle est bornée. On en déduit que $\frac{a_n}{n!} = \mathcal{O}\left(\frac{1}{n!}\right)$. Comme la série entière $\sum \frac{x^n}{n!}$ est de rayon de convergence infini, il en est de même de la série $\sum \frac{a_n}{n!}x^n$.
- **3.** Pour tout $n \in \mathbb{N}$,

$$\int_{0}^{+\infty} \left| \frac{a_n x^n e^{-x}}{n!} \right| dx = \frac{|a_n|}{n!} \int_{0}^{+\infty} x^n e^{-x} dx = |a_n|$$

Comme la série $\sum |a_n|$ converge, on peut appliquer le théorème d'intégration terme à terme :

$$\int_{0}^{+\infty} e^{-x} f(x) \, dx = \int_{0}^{+\infty} \sum_{n=0}^{+\infty} \frac{a_n x^n e^{-x}}{n!} \, dx = \sum_{n=0}^{+\infty} \int_{n=0}^{+\infty} \frac{a_n x^n e^{-x}}{n!} \, dx = \sum_{n=0}^{+\infty} a_n$$

Solution 87

1. Puisque $\ln(x) \ln(1-x) \sim -x \ln x$, $\lim_{\substack{x \to 0 \\ u \to 0}} \ln(x) \ln(1-x)$. En posant u = 1-x, $\ln(x) \ln(1-x) = \ln(1-u) \ln(u)$. Comme $\lim_{\substack{u \to 0 \\ u \to 0}} \ln(1-u) \ln(u) = 0$, $\lim_{\substack{x \to 1 \\ x \to 1}} \ln(x) \ln(1-x) = 0$. Ainsi $x \mapsto \ln(x) \ln(1-x)$ est prolongeable en une fonction continue sur [0,1] donc elle est intégrable sur le segment [0,1]: I est bien définie.

C'est du cours

$$\forall x \in]-1,1[, \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

Le rayon de convergence est 1.

3. Pour $x \in]0,1[$,

$$\ln(x)\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{1}{n} x^n \ln(x)$$

Pour tout $n \in \mathbb{N}^*$, $x \mapsto \frac{1}{n} x^n \ln(x)$ est continue sur]0,1[et prolongeable en une fonction continue sur [0,1], elle est donc intégrable

De plus, pour tout $n \in \mathbb{N}^*$, $x \mapsto -\frac{x^n}{n} \ln(x)$ est positive sur]0,1]. On peut donc appliquer le théorèmpe d'intégration terme à terme

$$I = \sum_{n=1}^{+\infty} I_n$$

où $I_n = -\int_{-\infty}^{\infty} x^n \ln(x) dx$. Par intégration par parties

$$I_n = -\frac{1}{n+1} \left[x^{n+1} \ln(x) \right]_0^1 + \frac{1}{n+1} \int_0^1 x^n \, dx = \frac{1}{(n+1)^2}$$

L'intégration par parties est légitimée par le fait que $\lim_{x\to 0} x^{n+1} \ln(x) = \lim_{x\to 1} x^{n+1} \ln(x) = 0$.

$$I = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2}$$

4. On procède à une décomposition en éléments simples :

$$\frac{1}{n(n+1)^2} = \frac{(n+1)-n}{n(n+1)^2} = \frac{1}{n(n+1)} - \frac{1}{(n+1)^2} = \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2}$$

Comme la série télescopique $\sum_{n=1}^{\infty} \frac{1}{n+1}$ et la série de Riemann converge,

$$I = \sum_{n=1}^{+\infty} \frac{1}{n} - \frac{1}{n+1} - \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2} = 1 - \sum_{n=2}^{+\infty} \frac{1}{n^2} = 2 - \sum_{n=1}^{+\infty} \frac{1}{n^2} = 2 - \frac{\pi^2}{6}$$

Solution 88

1. Posons $\varphi(t) = \frac{\ln(t)\ln(1-t)}{t}$. φ est continue sur]0, 1[.

De plus, $\varphi(t) \sim -\ln(t)$ donc $\varphi(t) = \frac{1}{t \to 0^+}$

Par ailleurs, $\varphi(t) \sim (t-1) \ln(1-t) \operatorname{donc} \lim_{t \to 1^{-}} \varphi(t) = 0$. Tout ceci montre que φ est intégrable sur]0,1[donc l'intégrale I converge.

2. Pour $t \in]0,1[$,

$$\ln(1-t) = \sum_{n=1}^{+\infty} -\frac{t^n}{n}$$

donc

$$\varphi(t) = \sum_{n=1}^{+\infty} u_n(t)$$

avec

$$u_n(t) = -\frac{\ln(t)t^{n-1}}{n}$$

Soit $n \in \mathbb{N}^*$. Comme $u_n(t) = o\left(\frac{1}{\sqrt{t}}\right)$, u_n est intégrable sur]0,1]. De plus, u_n est positive sur]0,1] donc on peut appliquer le théorème d'intégration terme à terme positif

$$I = \sum_{n=1}^{+\infty} \int_{0}^{1} u_n(t) dt$$

Par intégration par parties,

$$\int_{0}^{1} u_{n}(t) dt = -\frac{1}{n} \int_{0}^{1} \ln(t) t^{n-1} dt = -\frac{1}{n^{2}} \left[\ln(t) t^{n} \right]_{0}^{1} + \frac{1}{n^{2}} \int_{0}^{1} t^{n-1} dt = \frac{1}{n^{3}}$$

Ainsi

$$I = \sum_{n=1}^{+\infty} \frac{1}{n^3}$$

On peut confirmer avec Python.

```
>>> from numpy import log
>>> from scipy.integrate import quad
>>> quad(lambda t:log(t)*log(1-t)/t,0,1)[0]
1.2020569031596005
>>> sum([1/n**3 for n in range(1,1001)])
1.2020564036593442
```

Solution 89

- 1. Remarquons que pour tout $t \in [0, 1], 0 \le \frac{t^n}{1+t} \le 1$ donc $0 \le a_n \le 1$. On en déduit que $R \ge 1$.
- 2. Si les u_n sont continues par morceaux sur le segment [a,b] et si la série de fonctions $\sum u_n$ converge uniformément sur [a,b], alors

$$\sum_{n=0}^{+\infty} \int_{a}^{b} u_{n}(t) dt = \int_{a}^{b} \sum_{n=0}^{+\infty} u_{n}(t) dt$$

3. Soit $x \in]-1,1[$. Posons $u_n: t \in [0,1] \mapsto \frac{(xt)^n}{1+t}$. Pour tout $t \in [0,1]$,

$$|u_n(t)| = \frac{|x|^n t^n}{1+t} \le |x|^n$$

et la série $\sum |x|^n$ converge donc $\sum u_n$ converge normalement sur [0,1]. Ainsi

$$\sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} \int_0^1 u_n(t) dt = \int_0^1 \sum_{n=0}^{+\infty} u_n(t) dt = \int_0^1 \sum_{n=0}^{+\infty} \frac{(xt)^n}{1+t} dt = \int_0^1 \frac{dt}{(1+t)(1-xt)} dt$$

Une décomposition en éléments simples donne

$$\frac{1}{(1+t)(1-xt)} = \frac{1}{1+x} \left(\frac{1}{1+t} + \frac{x}{1-xt} \right)$$

Ainsi

$$\sum_{n=0}^{+\infty} a_n x^n = \frac{1}{1+x} \left(\left[\ln(1+t) \right]_0^1 - \left[\ln(1-xt) \right]_0^1 \right) = \frac{\ln(2) - \ln(1-x)}{1+x}$$

Remarque. On peut en fait faire différemment de que ce qui est suggéré par l'énoncé. En effet, on remarque que

$$a_n + a_{n+1} = \int_0^1 \frac{t^n + t^{n+1}}{1+t} dt = \int_0^1 t^n dt = \frac{1}{n+1}$$

Ainsi pour $x \in]-1,1[$,

$$\sum_{n=0}^{+\infty} a_n x^{n+1} + \sum_{n=0}^{+\infty} a_{n+1} x^{n+1} = \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$$

Donc, en notant $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et en remarquant que $x \mapsto \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1}$ est la primitive nulle en 0 de $x \mapsto \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$, on obtient

$$xf(x) + f(x) - a_0 = -\ln(1-x)$$

et donc

$$f(x) = \frac{\ln(2) - \ln(1 - x)}{1 + x}$$

puisque $a_0 = \ln(2)$.

Solution 90

- **1.** f est clairement continue sur]0,1]. De plus, $f \sim (\ln x)^2$. Par croissances comparées, $f(x) = \frac{1}{\sqrt{x}}$. Comme $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur [0,1], il en est de même de f.
- 2. Pour tout $n \in \mathbb{N}^*$, u_n est clairement continue sur]0,1]. Comme $u_0(x) \underset{x \to 0^+}{\sim} (\ln x)^2$, on conclut comme à la question précédente que u_0 est intégrable sur]0,1]. Pour $n \in \mathbb{N}^*$, $\lim_{0 \to \infty} u_n = 0$ donc u_n est prolongeable en une fonction continue sur le segment [0,1]: elle est donc intégrable sur]0,1]. Posons $I_n = \int_0^1 u_n(x) \, dx$. Comme $x \mapsto x^{2n+1} \ln(x)^2$ admet une limite nulle en 0^+ , on peut intégrer par parties:

$$I_n = \frac{1}{2n+1} \left[x^{2n+1} (\ln x)^2 \right]_0^1 - \frac{2}{2n+1} \int_0^1 x^{2n} \ln(x) \, dx = -\frac{2}{2n+1} \int_0^1 x^{2n} \ln(x) \, dx$$

A nouveau, $x \mapsto x^{2n+1} \ln(x)$ admet une limite nulle en 0⁺ donc on peut à nouveau intégrer par parties :

$$I_n = -\frac{2}{2n+1} \left(\frac{1}{2n+1} \left[x^{2n+1} \ln(x) \right]_0^1 - \frac{1}{2n+1} \int_0^1 x^{2n} \, dx \right) = \frac{2}{(2n+1)^2} \int_0^1 x^{2n} \, dx = \frac{2}{(2n+1)^3}$$

3. Remarquons que pour tout $x \in]0,1]$,

$$\frac{(\ln x)^2}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n u_n(x)$$

Remarquons que u_n est positive sur [0,1] de sorte que $|(-1)^n u_n| = u_n$. On a vu que u_n était intégrable sur]0,1] et que $I_n = \int_0^1 u_n(x) dx = \frac{2}{(2n+1)^3} \sim \frac{1}{n^{3/2}}$. Or $\sum \frac{1}{n^2}$ converge donc $\sum I_n$ converge également. D'après le théorème d'intégration terme à terme, f est intégrable sur]0,1] et $I = \sum_{n=0}^{+\infty} \frac{2(-1)^n}{(2n+1)^3}$.

4. Notons S_n et R_n la somme partielle et le reste de rang n de la série $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{(2n+1)^3}$. Cette série vérifie de manière évidente le critère spécial des séries alternées donc

$$|I - S_n| = |R_n| \le \frac{2}{(2(n+1)+1)^3} = \frac{2}{(2n+3)^3}$$

Pour que S_n soit une valeur approchée de I à ε près, il suffit donc de choisir n tel que $\frac{2}{(2n+3)^3} \le \varepsilon$ i.e. $2n+3 \ge \sqrt[3]{2/\varepsilon}$ ou encore $n \ge \frac{1}{2} \left(\sqrt[3]{2/\varepsilon} - 3 \right)$.

Solution 91

1. Soit $n \in \mathbb{N}$. Tout d'abord, f_n est continue (par morceaux) sur \mathbb{R}_+ . De plus, pour tout $x \in \mathbb{R}_+$, $0 \le f_n(x) \le e^{-x}$ et $x \mapsto e^{-x}$ est intégrable sur \mathbb{R}_+ d'après le cours. On en déduit que f_n est intégrable sur \mathbb{R}_+ et donc que J_n converge. On peut ensuite appliquer le théorème de convergence dominée : la suite de fonctions (f_n) converge simplement vers la fonction $f: x \mapsto \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$. De plus, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}_+$, $|f_n(x)| \le e^{-x}$ et $x \mapsto e^{-x}$ est intégrable sur \mathbb{R}_+ . On en déduit que (J_n) converge vers $\int_0^{+\infty} f(t) \, dt = 0$.

Remarque. On peut procéder plus simplement en remarquant que pour tout entier $n \ge 2$,

$$0 \le J_n \le \int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)^n} = \frac{1}{n-1}$$

2. On remarque que poue tout $x \in \mathbb{R}_+$,

$$f'_n(x) = -f_n(x) - nf_{n+1}(x)$$

En intégrant sur \mathbb{R}_+ , on obtient

$$J_n + nJ_{n+1} = f_n(0) - \lim_{x \to +\infty} f_n(x) = 1$$

Puisque $\lim_{n \to +\infty} J_n = 0$, $\lim_{n \to +\infty} n J_{n+1} = 0$. Ainsi $J_n \underset{n \to +\infty}{\sim} \frac{1}{n-1} \underset{n \to +\infty}{\sim} \frac{1}{n}$

3. a. D'après la question précédente,

$$\frac{|\mathsf{J}_{n+1}|}{|\mathsf{J}_n|} = \frac{\mathsf{J}_{n+1}}{\mathsf{J}_n} = \frac{1}{n\mathsf{J}_n} - \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 1$$

D'après la règle de d'Alembert, le rayon de convergence de $\sum J_n z^n$ vaut 1.

- **b.** Soit $z \in \mathbb{C}$ tel que |z| < 1. On va appliquer le théorème d'intégration terme à terme.
 - Pour tout $n \in \mathbb{N}$, $z^n f_n$ est continue par morceaux et intégrable sur \mathbb{R}_+ puisque f_n l'est.
 - $\sum z^n f_n$ converge simplement sur \mathbb{R}_+ (série géométrique) vers la fonction

$$\varphi: x \mapsto \frac{e^{-x}}{1 - \frac{z}{x+1}} = \frac{(x+1)e^{-x}}{x+1-z}$$

• La fonction φ est continue par morceaux sur \mathbb{R}_+ .

• Pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{+\infty} |z^n f_n(x)| dx = |z|^n J_n = o(|z|^n)$$

Or $\sum |z|^n$ converge puisque |z| < 1 donc $\sum I_n$ converge.

On en déduit que

$$\sum_{n=0}^{+\infty} J_n z^n = \int_0^{+\infty} \varphi(x) \, dx = \int_0^{+\infty} \frac{(x+1)e^{-x}}{x+1-z} \, dx$$

REMARQUE. A nouveau, on peut raisonner de manière plus rudimentaire à l'aide de sommes partielles.

$$\sum_{k=0}^{n} z^{k} J_{k} = \int_{0}^{+\infty} \frac{1 - \left(\frac{z}{x+1}\right)^{n+1}}{1 - \frac{z}{x+1}} e^{-x} dx = \int_{0}^{+\infty} \frac{(x+1)e^{-x}}{x+1-z} dx - \int_{0}^{+\infty} \left(\frac{z}{x+1}\right)^{n+1} e^{-x} \cdot \frac{dx}{1 - \frac{z}{x+1}}$$

Par inégalité triangulaire,

$$\left| \int_{0}^{+\infty} \left(\frac{z}{x+1} \right)^{n+1} e^{-x} \cdot \frac{\mathrm{d}x}{1 - \frac{z}{x+1}} \right| \le \frac{|z|^{n+1}}{1 - |z|} J_{n+1}$$

et $\lim_{n \to +\infty} \frac{|z|^{n+1}}{1-|z|} J_{n+1} = 0$, ce qui permet de conclure.

Solution 92

Posons $\varphi(x,t) = \frac{1}{t^x(1+t)}$.

- 1. Pour tout $x \in \mathbb{R}$, $\varphi(x,t) \sim \frac{1}{t^{x-0+1}} \frac{1}{t^x}$ et $\varphi(x,t) \sim \frac{1}{t^{x+1}}$ donc l'intégrale définissant f est définie si et seulement si x < 1 et x + 1 > 1 i.e. 0 < x < 1.
- 2. On va d'abord modifier l'expression de f pour simplifier le raisonnement. Soit $x \in]0, 1[$. D'après la relation de Chasles

$$f(x) = \int_0^1 \frac{dt}{t^x(1+t)} + \int_1^{+\infty} \frac{dt}{t^x(1+t)}$$

En effectuant le changement de variable $t\mapsto \frac{1}{t}$ dans la seconde intégrale :

$$f(x) = \int_0^1 \frac{\mathrm{d}t}{t^x(1+t)} + \int_0^1 \frac{\mathrm{d}t}{t^{1-x}(1+t)}$$

Posons

$$g: x \mapsto \int_0^1 \frac{\mathrm{d}t}{t^x(1+t)}$$

Alors g est définie sur [0, 1[et

$$\forall x \in]0,1[, f(x) = g(x) + g(1-x)]$$

On va donc étudier les limites de g en 0⁺ et 1⁻.

$$g(x) = \int_0^1 \frac{(1+t)-t}{t^x(1+t)} dt = \int_0^1 t^{-x} dt - \int_0^1 \frac{t^{1-x}}{1+t} dt = \frac{1}{1-x} - \int_0^1 \frac{t^{1-x}}{1+t} dt$$

Par ailleurs, puisque 1 - x > 0

$$0 \le \int_0^1 \frac{t^{1-x}}{1+t} \, \mathrm{d}t \le \int_0^1 \frac{\mathrm{d}t}{1+t} = \ln(2)$$

donc

$$g(x) \underset{x \to 1^{-}}{\sim} \frac{1}{1-x}$$

Enfin, on vérifie aisément que g est croissante et positive donc bornée au voisinage de 0. On en déduit que

$$f(x) \underset{x \to 1^{-}}{\sim} \frac{1}{1-x}$$

et, comme f(x) = f(1-x),

$$f(x) \underset{x \to 0^+}{\sim} \frac{1}{x}$$

Réduction

Solution 93

Déterminons dans un premier temps le noyau de ϕ . Comme (a, b) est libre

$$x \in \operatorname{Ker} \varphi$$

$$\iff \langle a \mid x \rangle = \langle b \mid x \rangle = 0$$

$$\iff x \in \operatorname{vect}(a, b)^{\perp}$$

Ainsi Ker $\phi = \text{vect}(a, b)^{\perp}$.

Par ailleurs, comme a et b sont unitaires,

$$\phi(a+b) = (1 + \langle a \mid b \rangle)(a+b)$$

$$\phi(a-b) = (1 - \langle a \mid b \rangle)(a+b)$$

Ainsi si $\langle a \mid b \rangle = 0$,

$$Ker(\phi - Id_E) = vect(a + b, a - b) = vect(a, b)$$

et sinon

$$Ker (\phi - (1 + \langle a \mid b \rangle) Id_{E}) = vect(a + b)$$

$$Ker (\phi - (1 - \langle a \mid b \rangle) Id_{E}) = vect(a - b)$$

Pour récapituler, 0 est valeur propre et le sous-espace propre associé est $\text{vect}(a,b)^{\perp}$.

Si $\langle a \mid b \rangle = 0$, 1 est valeur propre et le sous-espace propre associé est vect(a, b).

Si $\langle a \mid b \rangle \neq 0$, $1 + \langle a \mid b \rangle$ et $1 - \langle a \mid b \rangle$ sont valeurs propres et leurs sous-espaces propres associés respectifs sont vect(a + b) et vect(a - b). Dans tous les cas, la somme des dimensions de ces sous-espaces propres est égale à la dimension de E donc on a bien trouvé toutes les valeurs propres de ϕ . On peut également en conclure que ϕ est diagonalisable. On aurait aussi pu constater que ϕ est un endomorphisme symétrique pour justifier qu'il était diagonalisable. En effet, pour tout $(x, y) \in E^2$,

$$\langle \phi(x) \mid y \rangle = \langle x \mid \phi(y) \rangle = \langle a \mid x \rangle \langle a \mid y \rangle + \langle b \mid x \rangle \langle b \mid y \rangle$$

Solution 94

Soit $\lambda \in \operatorname{Sp}(u)$ et M un vecteur propre associé. Alors $M + \operatorname{tr}(M)I_n = \lambda M$ puis en considérant la trace des deux membres, $(n+1)\operatorname{tr}(M) = \lambda \operatorname{tr}(M)$. Si $\lambda = n+1$ ou $\operatorname{tr}(M) = 0$. Si $\operatorname{tr}(M) = 0$ alors $M = \lambda M$ et donc $\lambda = 1$. Ainsi $\operatorname{Sp}(u) \subset \{1, n+1\}$.

Déterminons les sous-espaces propres associés à ces potentielles valeurs propres. Clairement, le sous-espace associé à la valeur propre 1 est l'hyperplan des matrices de traces nulles. De plus, I_n est clairement un vecteur propre associé à la valeur propre n+1 donc le sous-espace propre associé à la valeur propre n+1 est vect (I_n) puisque la somme des dimensions des sous-espaces propres ne peut excéder la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. On constate que u est diagonalisable puisque la somme des dimensions des sous-espaces propres est égale à la dimension de $\mathcal{M}_n(\mathbb{R})$.

Remarque. Si n = 1, 1 n'est en fait pas valeur propre puisqu'alors le sous-espace vectoriel des matrices de trace nulle est le sous-espace nul.

Solution 95

Remarquons tout d'abord que pour $S \in GL_n(\mathbb{C}), \overline{S^{-1}} = \overline{S}^{-1}.$

Commençons par le sens le plus simple : supposons qu'il existe $S \in GL_n(\mathbb{C})$ telle que $A = S\overline{S}^{-1}$. Dans ce cas,

$$A\overline{A} = S\overline{S}^{-1}\overline{S}\overline{\overline{S}^{-1}} = S\overline{S}^{-1}\overline{S}S^{-1} = I_n$$

Pour la réciproque, on raisonne par récurrence sur n.

Si n=1, alors $A=(\lambda)$ avec $|\lambda|=1$. On a donc $\lambda=e^{i\theta}$ avec $\theta\in\mathbb{R}$. Il suffit alors de prendre $S=\left(e^{\frac{i\theta}{2}}\right)$.

On suppose maintenant la propriété vraie à un rang $n-1 \ge 1$. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A\overline{A} = I_n$.

Montrons d'abord que toutes les valeurs propres de A sont de module 1. Soient $P, Q \in \mathcal{M}_n(\mathbb{R})$ telles que A = P + iQ. Ainsi $(P + iQ)(P - iQ) = I_n$. En passant aux parties réelle et imaginaire, on obtient $P^2 + Q^2 = I_n$ et QP - PQ = 0. Ainsi P et Q commutent et trigonalisent dans une base commune i.e. il existe $R \in GL_n(\mathbb{C})$ et $U, V \in \mathcal{T}_n^+(\mathbb{C})$ telles que $P = RUR^{-1}$ et $Q = RVR^{-1}$. Posons T = U + iV. On a donc $A = RTR^{-1}$ et $\overline{A} = R\overline{T}R^{-1}$. La diagonale de T contient les valeurs propres de A. Comme $A\overline{A} = I_n$, on en déduit que toutes les valeurs propres de A sont de module 1.

Soit λ une valeur propre de A (il en existe toujours une complexe). On a donc $|\lambda|=1$. On a à nouveau $\lambda=e^{i\theta}$ avec $\theta\in\mathbb{R}$. Posons $\mu=e^{\frac{i\theta}{2}}$, de sorte que $\frac{\mu}{\mu}=1$. Soit X un vecteur propre de A associée à la valeur propre λ . Dans ce cas, \overline{X} est également un vecteur propre de X associé

à la valeur propre λ . En effet, $AX = \lambda X$ donc $\overline{AX} = \overline{\lambda} \overline{X}$ puis $A\overline{AX} = \overline{\lambda} A\overline{X}$. Puisque $A\overline{A} = I_n$, on obtient $\overline{X} = \overline{\lambda} A\overline{X}$ puis $A\overline{X} = \lambda \overline{X}$ puisque $\frac{1}{\lambda} = \lambda$. On peut supposer X réel. En effet, les vecteurs $X + \overline{X}$ et $i(X - \overline{X})$ sont réels et l'un des deux est non nul. L'un de ces deux vecteurs est donc un vecteur propre réel associé à la valeur propre λ . On peut compléter X en une base de \mathbb{C}^n à l'aide de vecteurs réels (ceux de la base canonique, par exemple). Notons P la matrice de cette base dans la base canonique. Posons $B = P^{-1}AP$. Cette matrice est de la forme

$$\begin{pmatrix} \lambda & \mathbf{Y}^{\mathsf{T}} \\ \hline 0 & \\ \vdots & \mathbf{C} \\ 0 & \end{pmatrix} \text{ avec } \mathbf{Y} \in \mathbb{C}^{n-1} \text{ et } \mathbf{C} \in \mathcal{M}_{n-1}(\mathbb{C}). \text{ On a } \mathbf{B} \overline{\mathbf{B}} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \overline{\mathbf{P}}^{-1} \overline{\mathbf{A}} \overline{\mathbf{P}} = \mathbf{I}_n \text{ car } \overline{\mathbf{P}} = \mathbf{P} \text{ et } \overline{\mathbf{P}}^{-1} = \mathbf{P}^{-1} \text{ (P est à coefficients réels). On en }$$

déduit que $C\overline{C} = I_n$. D'après notre hypothèse de récurrence, il existe $T \in GL_{n-1}(\mathbb{C})$ telle que $C = T\overline{T}^{-1}$.

Montrons qu'il existe $Z \in \mathbb{C}^{n-1}$ tel que $Z - \lambda \overline{Z} = Y^T \overline{T}$. Puisque $B\overline{B} = 0$, on a en particulier $\lambda \overline{Y}^T T + Y^T \overline{T} = 0$. Notons $\varphi(z) = z + \lambda \overline{z}$ et $\psi(z) = z - \lambda \overline{z}$ pour $z \in \mathbb{C}$. φ et ψ sont des endomorphismes du \mathbb{R} -espace vectoriel \mathbb{C} . On vérifie que $\varphi \circ \psi = 0$ en utilisant $|\lambda| = 1$. On a donc $\text{Im } \psi \subset \text{Ker } \varphi$. φ et ψ ne sont pas nuls donc dim $\text{Im } \psi \geq 1 \geq \dim \text{Ker } \varphi$. Ainsi $\text{Im } \psi = \text{Ker } \varphi$. Les composantes de $Y\overline{T}$ sont dans $\text{Ker } \varphi$ donc dans $\text{Im } \psi$, ce qui justifie l'existence de Z.

Posons alors
$$U = \begin{pmatrix} \mu & Z^T \\ \hline 0 & \\ \vdots & T \\ 0 & \end{pmatrix}$$
. On a alors $\overline{U}^{-1} = \begin{pmatrix} \frac{1}{\overline{\mu}} & -\frac{1}{\mu}\overline{Z}^T\overline{T}^{-1} \\ \hline 0 & \\ \vdots & T \\ 0 & \end{pmatrix}$. On vérifie alors que $U\overline{U}^{-1} = B$. Il suffit alors de poser $S = PUP^{-1}$

pour avoir $A = S\overline{S}^{-1}$.

Solution 96

1. Première méthode. Il existe une matrice $P \in GL_n(\mathbb{C})$ telle que $C = P^{-1}BP$ soit trigonale. Notons $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de C i.e. les valeurs propres de B. La matrice $\chi_A(C)$ est également triangulaire et a pour coefficients diagonaux $\chi_A(\lambda_1), \ldots, \chi_A(\lambda_n)$. Les spectres de A et B étant disjoints, ces coefficients sont non nuls, ce qui prouve que $\chi_A(C)$ est inversible. Or les matrices $\chi_A(B)$ et $\chi_A(C)$ sont semblables puisque $\chi_A(C) = \chi_A(P^{-1}BP) = P^{-1}\chi_A(B)P$. Donc $\chi_A(B)$ est également inversible.

Deuxième méthode. Avec les mêmes notations, $\chi_{A} = \prod_{i=1}^{n} (X - \lambda_{i})$. Ainsi $\chi_{A}(B) = \prod_{i=1}^{n} (B - \lambda_{i}I_{n})$. Pour tout $i \in [[1, n]]$, $\lambda_{i} \notin Sp(B)$ donc $B - \lambda_{i}I_{n} \in GL_{n}(\mathbb{C})$. Comme $GL_{n}(\mathbb{C})$ est un groupe, $\chi_{A}(B) \in GL_{n}(\mathbb{C})$.

2. On montre par récurrence que $A^nX = XB^n$ pour tout $n \in \mathbb{N}$. On montre ensuite le résultat voulu par bilinéarité du produit matriciel. On a notamment $\chi_A(A)X = X\chi_A(B)$. Or $\chi_A(A) = A$ d'après Cayley-Hamilton donc $X\chi_A(B) = 0$. Comme $\chi_A(B)$ est inversible, X = 0.

3. Considérons l'application $\Phi: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{C}) & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ X & \longmapsto & \mathrm{AX-XB} \end{array} \right.$ Φ est clairement un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ et la question précédente montre que $\mathrm{Ker}(\Phi) = \{0\}$ i.e. que Φ est injectif. Puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, Φ est également surjectif, ce qui prouve le résultat voulu.

Solution 97

Supposons que les les polynômes caractéristiques χ_A et χ_B de A et B soient premiers entre eux. D'après le théorème de Bézout, il existe $(U,V)\in\mathbb{C}[X]^2$ tel que $U\chi_A+V\chi_B=1$. En évaluant cette égalité en B, on obtient $U(B)\chi_A(B)=I_n$ car $\chi_B(B)=0$ d'après le théorème de Cayley-Hamilton. La matrice $\chi_A(B)$ est donc inversible. Soit alors $X\in\mathcal{M}_n(\mathbb{C})$ telle que AX=XB. On montre alors aisément par récurrence que $A^kX=XB^k$ pour tout $k\in\mathbb{N}$ et on en déduit alors que P(A)X=XP(B) pour tout polynôme $P\in\mathbb{C}[X]$. Notamment, $X\chi_A(B)=\chi_A(A)X=0$ à nouveau par le théorème de Cayley-Hamilton. Mais on a vu que $\chi_A(B)$ était inversible donc X=0.

Supposons que χ_A et χ_B ne soient pas premiers entre eux. Il ont donc une racine commune λ , qui est également une valeur propre commune de A et B. C'est également une valeur propre de B^T puisque

$$\det(\mathbf{B}^{\mathrm{T}} - \lambda \mathbf{I}_n) = \det((\mathbf{B} - \lambda \mathbf{I}_n)^{\mathrm{T}}) = \det(\mathbf{B} - \lambda \mathbf{I}_n) = 0$$

Il existe donc des matrices colonnes U et V non nulles de $\mathcal{M}_{n,1}(\mathbb{C})$ telles que $AU = \lambda U$ et $B^TV = \lambda V$. La deuxième égalité peut s'écrire $V^TB = \lambda V^T$ en transposant. On en déduit que $AUV^T = UV^TB = \lambda UV^T$. On a donc AX = XB en posant $X = UV^T \in \mathcal{M}_n(\mathbb{C})$. Il est alors aisé de voir que la matrice X est non nulle car U et V ne le sont pas.

Solution 98

Notons A, B, et C les matrices de f, g et h dans une base de E. On a alors CB = AC. Comme C est de rang r, il existe deux matrices inversibles P et Q telles que $C = PJ_rQ^{-1}$, où J_r désigne traditionnellement la matrice dont tous les coefficients sont nuls hormis les r premiers coefficients diagonaux qui valent 1. On a donc $PJ_RQ^{-1}B = APJ_RQ^{-1}$ ou encore $J_r(Q^{-1}BQ) = (P^{-1}AP)J_r$. Comme deux matrices semblables ont même polynôme caractéristique, on peut supposer pour simplifier que $J_rB = AJ_r$. En effectuant un calcul par blocs, on trouve que A et B sont

respectivements de la forme $\binom{M}{0} * \det \binom{M}{0} * \det \binom{M}{0} = 0$ où M est un bloc carré de taille r. On en déduit que χ_M , qui est bien un polynôme de degré

r, divise χ_A et χ_B et donc également χ_f et χ_g .

La réciproque est fausse dès que $n \ge 2$. En effet, on peut encore raisonner matriciellement en considèrant A la matrice nulle et B une matrice non nulle nilpotente. Alors $\chi_A = \chi_B = X^n$ de sorte que χ_A et χ_B ont un facteur commun de degré n (à savoir X^n). Mais il n'existe évidemment pas de matrice C de rang n (i.e. inversible) telle que CB = AC car AC est nulle tandis que CB ne l'est pas (C est inversible et C est non nulle).

Solution 99

1. La matrice A de u dans la base (e_1, \dots, e_{2n+1}) est

$$A = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Ainsi

$$\chi_{u}(X) = \chi_{A}(X) = \begin{vmatrix} X - 1 & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & X - 1 & -1 \\ -1 & 0 & \cdots & 0 & X - 1 \end{vmatrix}$$

En développant par rapport à la première colonne, on obtient

$$\chi_u(X) = (X - 1)^{2n+1} - 1$$

2. $\chi_u(0) = -2 \neq 0$ donc 0 n'est pas valeur propre de u et u est inversible. D'après le théorème de Cayley-Hamilton, $\chi_u(u) = 0$ i.e. $(u - \mathrm{Id_E})^{2n+1} = \mathrm{Id_E}$. Par conséquent

$$\sum_{k=0}^{2n+1} {2n+1 \choose k} (-1)^{2n+1-k} u^k = \mathrm{Id}_{\mathbf{E}}$$

ou encore

$$u \circ \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} u^k = 2 \operatorname{Id}_{\mathbf{E}}$$

Ainsi en posant $P = \sum_{k=0}^{2n} {2n+1 \choose k+1} (-1)^{2n-k} X^k$, on a bien $u^{-1} = P(u)$.

3. Les valeurs propres de u sont les racines de χ_u . Autrement dit,

$$\operatorname{Sp}(u) = 1 + \mathbb{U}_{2n+1} = \left\{ 1 + e^{\frac{2ik\pi}{2n+1}}, \ k \in \llbracket 0, 2n \rrbracket \right\} = \left\{ 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right), \ k \in \llbracket 0, 2n \rrbracket \right\}$$

4. Comme card $\mathbb{U}_{2n+1}=2n+1$ et deg $\chi_u=2n+1$, toutes les valeurs propres de u sont simples (on en déduit également que u est diagonalisable, ce qui n'est pas demandé). D'après les liens entre les coefficients et les racines d'un polynôme

$$\prod_{k=0}^{2n} 2e^{\frac{ik\pi}{2n+1}} \cos\left(\frac{k\pi}{2n+1}\right) = (-1)^{2n+1} \chi_u(0) = 2$$

En notant P_n le produit à calculer,

$$2^{2n+1}P_n \prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = 2$$

Comme
$$\sum_{k=0}^{2n} k = n(2n+1),$$

$$\prod_{k=0}^{2n} e^{\frac{ik\pi}{2n+1}} = e^{in\pi} = (-1)^n$$

Finalement,

$$P_n = \frac{(-1)^n}{2^{2n}}$$

Solution 100

Soit $n \in \mathbb{N}^*$ tel qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^3 - M^2 - M - 2I_n = 0$ et tr(M) = 0. Le polynôme $P = X^3 - X^2 - X - 2 = (X - 2)(X - j)(X - \bar{j})$ est un polynôme annulateur de M. On en déduit que $Sp(M) \subset \{2, j, \bar{j}\}$. De plus, P est simplement scindé donc M est diagonalisable. Notons p, q, r les dimensions respectives de $Ker(M - 2I_n)$, $Ker(M - jI_n)$ et $Ker(M - \bar{j}I_n)$. On a donc $tr(M) = 2p + qj + r\bar{j} = 0$. En passant aux parties réelle et imaginaire, on en déduit $2p - \frac{q}{2} - \frac{r}{2} = 0$ et q - r = 0 puis 2p = q = r. Ainsi n = p + q + r = 5p est un multiple de \bar{j} . On peut alors affirmer que \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} et \bar{j} in \bar{j} Alors $tr(M) = \frac{n}{2}tr(D) = 0$. De plus \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} et \bar{j} in \bar{j} Alors $tr(M) = \frac{n}{2}tr(D) = 0$. De plus \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} en par blocs dont tous les blocs valent \bar{j} et \bar{j} in \bar{j} alors $tr(M) = \frac{n}{2}tr(D) = 0$. De plus \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les blocs valent \bar{j} est semblable à une matrice diagonale par blocs dont tous les

valent P(D) = diag(P(2), P(j), P(j), P(j)) = diag(0, 0, 0, 0, 0). On a donc bien P(M) = 0.

REMARQUE. Si *n* n'est pas un multiple de 5, il n'existe pas de matrice vérifiant les conditions de l'énoncé.

Solution 101

On remarque que $C^3 - C^2 - 3C = 0$. Ainsi $X^3 - X^2 - 3X = X(X^2 - X - 3)$ est un polynôme scindé à racines simples (le polynôme de degré 2 n'admet évidemment pas 0 pour racine et est de disciminant strictement positif). Par conséquent C est diagonalisable et donc semblable à une matrice diagonale D. On voit alors aisément que $A = 3C - C^2$ est semblable à la matrice diagonale $3D - D^2$ et que $B = C^2 - 2C$ est semblable à la matrice diagonale $D^2 - 2D$. A et B sont donc diagonalisables.

Solution 102

Simplification du problème: Comme M est symétrique, elle est diagonalisable dans une base orthonormale. Il existe donc $P \in \mathcal{O}_n(\mathbb{R})$ telle

$$P^{\mathsf{T}}MP = D$$
 où D est diagonale de la forme $\begin{pmatrix} D_1 & \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & D_2 & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$ où D_1 et D_2 sont des matrices diagonales à coefficients respectivement extrictement positifs et estrictement e

strictement positifs et strictement négatifs. On peut alors trouver une matrice diagonale inversible Δ telle que $\Delta D\Delta = 2I$ avec I =

strictement positifs et strictement negatifs. On peut alors trouver une matrice diagonale inversible
$$\Delta$$
 telle que $\Delta D\Delta = 21$ avec $1 = \begin{pmatrix} I_p & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -I_q & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$. En posant $Q = P\Delta$, on a donc $Q^TMQ = 2I$. Alors $A + A^T = M$ si et seulement si $Q^TAQ + (Q^TAQ)^T = I$. Comme

Q est inversible, $\operatorname{rg} Q^{\mathsf{T}} A Q = \operatorname{rg} A$. On peut donc supposer par la suite que M = 2I.

Remarquons que $A + A^{T} = 2I$ si et seulement si A est de la forme I + N où N est une matrice antisymétrique. Le problème revient alors à trouver les rangs maximal et minimal de A = I + N quand N décrit l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$.

Cas p = q = 0: Dans ce cas I = 0. Si on prend N = 0, alors A = 0 et rg A = 0. Le rang minimal recherché est donc 0. Notons T_n la matrice de $\mathcal{M}_n(\mathbb{R})$ formée d'une sous-diagonale de 1, d'une sur-diagonale de -1 et de 0 ailleurs. T_n est bien antisymétrique. Si n est pair Ker $T_n = \{0\}$ et donc rg $T_n = n$. Le rang maximal recherché est donc n. Si n est impair, Ker $T_n = \text{vect}((1, 0, 1, ..., 1, 0, 1)^T)$. Donc $\operatorname{rg} T_n = n - 1$. De plus, pour toute matrice antisymétrique N, $\det N = \det(N^T) = (-1)^n \det N = -\det N$ donc $\det N = 0$. Ainsi $\det N \le n - 1$. Le rang maximal recherché est donc n - 1.

Cas
$$p \neq 0$$
 ou $q \neq 0$: Les matrices A sont de la forme
$$\begin{pmatrix} I_p + A_1 & -B^T & -C^T \\ \hline B & -I_q + A_2 & -D^T \\ \hline C & D & A_3 \end{pmatrix}$$
 où A_1, A_2 et A_3 sont antisymétriques de taille res-

pectives p, q et n - p - q. C'est un exercice classique que de montrer que toute matrice somme de la matrice identité et d'une matrice antisymétrique est inversible. Ainsi $I_p + A_1$ et $-I_q + A_2$ sont inversibles. Si n - p - q est pair, prenons B, C et D nulles et $A_3 = T_{n-p-q}$. D'après ce qui précède, A_3 est inversible et donc rg A=n. Si n-p-q est impair, on garde la même matrice à une exception près : l'un des blocs C et D est de taille non nulle (p et q ne sont pas tous deux nuls), on le remplace par un bloc dont un coefficient vaut 1 et on garde les autres coefficients nuls. Une étude du noyau de la matrice A ainsi formée montre que $Ker A = \{0\}$ et donc A est inversible. On a à nouveau rg A = n. Dans tous les cas, le rang maximal recherché est donc n.

Revenons au cas général : on a vu que $I_p + A_1$ et $-I_q + A_2$ étaient inversibles. Donc $\operatorname{rg} A \ge \max(p,q)$. Prenons maintenant $A_1, A_2, A_3 = \max(p,q)$ A₃, C et D nulles. Prenons pour B la matrice formée d'une diagonale de 1 et de zéros ailleurs (attention B n'est pas nécessairement une matrice carrée, la diagonale en question est celle débutant en haut à gauche de la matrice). Si $p \le q$, alors les p premières colonnes de A sont les opposées des p suivantes. De plus les q colonnes suivant les p premières sont linéairement indépendantes donc rg A = q. Si $p \ge q$, on se retrouve dans la situation inverse et rg A = p. On a donc rg A = max(p,q). Le rang minimal recherché est donc $\max(p,q)$.

Remarque. Le couple d'entiers (p,q) est uniquement associé à la matrice M. On l'appelle la signature de la forme quadratique canoniqument associée à la matrice symétrique M.

Solution 103

Soit $A \in \mathcal{M}_n(\mathbb{R})$ la matrice de u dans une base de E. A est également une matrice à coefficients complexes et on montre classiquement que le rang de A en tant que matrice complexe est le même que le rang de A en tant que matrice complexe. En effet, si r = rg A, il existe $P,Q \in GL_n(\mathbb{R})$ telles que $A = PJ_{r,n}Q$ avec $J_{r,n}$ la matrice carrée de taille n comportant des 1 sur les r premiers coefficients diagonaux et des 0 partout ailleurs. Or P, Q appartiennent également à $GL_n(\mathbb{C})$ donc le rang de A est également r en tant que matrice complexe. Le polynôme $X(X^2 + 1)$ est un polynôme annulateur de A scindé à racines simples (sur \mathbb{C}). A est donc diagonalisable et $Sp(A) \subset \{0, -i, +i\}$. Notons p et q les dimensions repectives de $Ker(A - iI_n)$ et $Ker(A + iI_n)$. On a donc tr(A) = (p - q)i. Or A est à coefficients réels donc $tr(A) \in \mathbb{R}$. Ainsi p = q. De plus, rg(A) = p + q = 2p. Donc rg(u) = rg(A) est pair.

Solution 104

1. On montre par exemple aisément que c'est un sous-groupe de $GL_2(\mathbb{R})$.

2. Soit $M \in G$. Puisque le morphisme de groupe $\left\{ egin{array}{ll} \mathbb{Z} & \longrightarrow & G \\ M & \longmapsto & M^n \end{array} \right.$ ne peut être injectif puisque \mathbb{Z} est infini et que G est fini. Son noyau contient donc un entier non nul n tel que $M^n = I_2$. On peut même supposer n positif quitte à le changer en son opposé. Puisque le polynôme $X^n - 1$ est scindé à racines simples dans \mathbb{C} et annule M, M est diagonalisable. On peut également ajouter que ses valeurs propres sont des racines de l'unité et en particulier des complexes de module 1.

Si M est diagonalisable dans \mathbb{R} , ses valeurs propres ne peuvent être que 1 ou -1. Dans ce cas, M est semblable à I_2 , $-I_2$ ou $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Dans tous les cas, $M^6 = I_2$.

Si M n'est pas diagonalisable dans \mathbb{R} , elle l'est quand même dans \mathbb{C} et ses valeurs propres sont des complexes de module 1 conjugués puisque M est à coefficients réels. M est donc semblable à une matrice de la forme $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ où $\theta \in \mathbb{R}$. Puisque la trace est un invariant de similitude, $2\cos\theta = \operatorname{tr}(M) \in \mathbb{Z}$. Puisque cos est à valeurs dans [-1,1], $\cos\theta \in \{-1,-1/2,0,1/2,1\}$.

- Si $\cos \theta = \pm 1$, $e^{i\theta} = e^{-i\theta} = \pm 1$ et on est ramené au cas précédent (en fait, M serait diagonalisable dans \mathbb{R} et on a supposé que ce n'était pas le cas).
- Si $\cos \theta = \frac{1}{2}$, alors $\theta \equiv \pm \frac{\pi}{3} [2\pi]$. Il est alors clair que $M^{12} = I_2$.
- Si $\cos \theta = \frac{-1}{2}$, alors $\theta \equiv \pm \frac{2\pi}{3} [2\pi]$. Il est alors clair que $M^{12} = I_2$.
- Si $\cos\theta=0$, alors $\theta\equiv\pm\frac{\pi}{2}[2\pi].$ Il est alors clair que $M^{12}=I_2.$

Solution 105

- 1. Puisque X^2-1 est un polynôme annulateur de A scindé à racines simples, A est diagonalisable et $Sp(A) \subset \{-1,1\}$. Notons $\lambda_1,\ldots,\lambda_n$ les valeurs propres de A comptées avec multiplicité. Ainsi pour tout $k \in [1,n]$, $\lambda_k = \pm 1$ et, a fortiori, $\lambda_k \equiv 1[2]$. Puisque $tr(A) = \sum_{k=1}^n \lambda_k$, $tr(A) \equiv n[2]$.
- 2. Les valeurs propres de A ne peuvent pas toutes être égales à 1 ou -1 sinon, A serait semblable à I_n ou $-I_n$ et donc égale à I_n ou $-I_n$. En notant a le nombre de valeurs propres égales à 1 et b le nombre de valeurs propres égales à -1. On a donc a+b=n, $1 \le a \le n-1$ et $1 \le b \le n-1$. Ainsi $\operatorname{tr}(A) = a-b$ est compris entre -n+2 et n-2 i.e. $|\operatorname{tr}(A)| \le n-2$.

Solution 106

1. Le polynôme caractéristique de A est

$$\chi_A = (X-2)(X-3) - 2 = X^2 - 5X + 4 = (X-1)(X-4)$$

Ainsi A est diagonalisable et le spectre de A est $Sp(A) = \{1, 4\}$. On vérifie que

$$Ax_1 = x_1$$
 avec $x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

et que

$$Ax_2 = 4x_2$$
 avec $x_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Comme A est de taille 2, les sous-espaces propres associés aux valeurs propres 1 et 4 dont donc de dimension 1. Ce sont respectivement $vect(x_1)$ et $vect(x_2)$.

De plus,
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.

2. Soit $M \in \mathcal{M}_2(\mathbb{R})$ telle que $M^2 = A$. Alors $AM = M^3 = MA$. Alors $AMx_1 = MAx_1 = Mx_1$ donc Mx_1 est un vecteur propre de A. Comme le sous-espace propre associé à la valeur propre 1 est $vect(x_1)$, il existe $\lambda \in \mathbb{R}$ tel que $Mx_1 = \lambda x_1$. Donc $\lambda^2 x_1 = M^2 x_1 = Ax_1 = x_1$ puis $\lambda^2 = 1$ i.e. $\lambda = \pm 1$ et $Mx_1 = \pm x_1$. De même, $Ax_2 = \pm 2x_2$. On peut alors affirmer que

$$M = P \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 2 \end{pmatrix} P^{-1}$$

Réciproquement ces quatres matrices conviennent.

REMARQUE. Les quatre matrices en question sont

$$\pm \frac{1}{3} \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$$
 et $\pm \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$

Solution 107

On calcule $\chi_A = (X-2)(X-1)^2$, $E_2(A) = \text{vect} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $E_1(A) = \text{vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$. Ainsi A est diagonalisable. De même, $\chi_B = (X-2)(X-1)^2$

 $(X-2)(X-1)^2$, $E_2(B) = \text{vect}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ mais $E_1(B) = \text{vect}\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. Donc B n'est pas diagonalisable. Donc A et B ne sont pas semblables

même si elles ont mêmes valeurs propres et même polynôme caractéristique.

Solution 108

1. On trouve $\chi_A = X^2 + 7X - 8 = (X + 8)(X - 1)$. De plus, $E_{-8}(A) = \text{vect}\left(\begin{pmatrix} -1 \\ 1 \end{pmatrix}\right)$ et $E_1(A) = \text{vect}\left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}\right)$. Ainsi $A = PDP^{-1}$ avec $D = \begin{pmatrix} -8 & 0 \\ 0 & 1 \end{pmatrix}$ et $P = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$.

2. Alors en posant Y = P⁻¹XP, l'équation X³ = A équivaut à Y³ = D. Supposons que X³ = A i.e. Y³ = D. Alors Y commute avec Y³ = D. En notant, Y = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, YD = DY donne b = c = 0. Par conséquent, Y est diagonale. L'équation Y³ = D équivaut $a^3 = -8$ et $d^3 = 1$ i.e. a = -2 et d = 1 ou encore Y = $\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$. L'unique solution de l'équation X³ = A est alors

$$P\begin{pmatrix} -2 & 0\\ 0 & 1 \end{pmatrix} P^{-1} = \begin{pmatrix} -1 & 1\\ 2 & 0 \end{pmatrix}$$

Solution 109

- **1.** On trouve $A = aI_3 + bJ + cJ^2$.
- 2. On trouve $\chi_J = X^3 1 = (X 1)(X j)(X j^2)$. Comme χ_J est scindé à racines simples, J est diagonalisable.
- 3. Les sous-espaces propres associés à 1, j et j^2 sont respectivement engendrés par $\omega_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\omega_1 = \begin{pmatrix} 1 \\ j \\ j^2 \end{pmatrix}$ et $\omega_1 = \begin{pmatrix} 1 \\ j^2 \\ j \end{pmatrix}$. Remarquons que $(\omega_0, \omega_1, \omega_2)$ est une base de $\mathcal{M}_{3,1}(\mathbb{C})$ car J est diagonalisable.

Enfin, $A\omega_0 = (a+b+c)\omega_0$, $A\omega_1 = (a+bj+cj^2)\omega_1$, $A\omega_2 = (a+bj^2+cj^4)\omega_2$ donc $(\omega_0, \omega_1, \omega_2)$ est également une base de vecteurs propres de A. Ainsi A est diagonalisable. En posant $P = a+bX+cX^2$, $D = \begin{pmatrix} P(1) & 0 & 0 \\ 0 & P(j) & 0 \\ 0 & 0 & P(j^2) \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$, $A = QDQ^{-1}$.

Solution 110

- 1. Notons u_1, \ldots, u_p les endomorphismes canoniquement associés à A_1, \ldots, A_p .
 - a. Les sous-espaces propres de u_1 sont stables par u_2 car u_1 et u_2 commutent. Soit $\lambda \in \operatorname{Sp}(u_1)$. Comme u_2 est diagonalisable, il induit un endomorphisme diagonalisable de $\operatorname{E}_{\lambda}(u_1)$. Notons \mathcal{B}_{λ} une base de diagonalisation de cet endomorphisme. Comme $\mathbb{C}^n = \bigoplus_{\lambda \in \operatorname{Sp}(u_1)} \operatorname{E}_{\lambda}(u_1)$, la concaténation des bases \mathcal{B}_{λ} est une base de \mathcal{B}_{λ} . On vérifie sans peine que c'est une base de diagonalisation commune de u_1 et u_2 . On en déduit alors que A_1 et A_2 sont simultanément diagonalisables.
 - **b.** On note HR(p) l'assertion :

si u_1, \dots, u_p sont des endomorphismes diagonalisables commutant deux à deux, alors ils sont simultanément diagonalisables.

 $\operatorname{HR}(1)$ est évidemment vraie. Supposons $\operatorname{HR}(p)$ vraie pour un certain $p \in \mathbb{N}^*$. Soient alors u_1, \dots, u_{p+1} des endomorphismes diagonalisables commutant deux à deux. Soit $\lambda \in \operatorname{Sp}(u_{p+1})$. Alors $\operatorname{E}_{\lambda}(u_{p+1})$ est stable par u_1, \dots, u_p . Les endomorphismes de $\operatorname{E}_{\lambda}(u_{p+1})$ induits âr u_1, \dots, u_p sont encore diagonalisables et commutent deux à deux. On peut ainsi trouver une base commune \mathcal{B}_{λ} de diagonalisation de ces endomorphismes induits. A nouveau, la concaténation des base \mathcal{B}_{λ} pour $\lambda \in \operatorname{Sp}(u_{p+1})$ est une base commune de diagonalisation de u_1, \dots, u_{p+1} de sorte que $\operatorname{HR}(p+1)$ est vraie. Ainsi $\operatorname{HR}(p)$ est vraie pour tout $p \in \mathbb{N}^*$.

2. Montrons que G est commutatif. Remarquons que A⁻¹ = A pour tout A ∈ G. Soit (A, B) ∈ G². Alors AB = (AB)⁻¹ = B⁻¹A⁻¹ = BA. Comme le polynôme simplement scindé X² − 1 annule tous les éléments de G, ceux-ci sont tous diagonalisables. On peut de plus préciser que le spectre de chaque élement de G est inclus dans {−1, 1}.

Si l'on considère une partie finie F de G de cardinal p, la question précédente montre qu'il existe une matrice $P \in GL_n(\mathbb{C})$ diagonalisant tous les éléments de F. L'application $M \in A \mapsto P^{-1}MP$ est une injection de A dans le groupe D_n des matrices diagonales à coefficients diagonaux égaux à ± 1 . Ainsi $p \le 2^n$.

Ainsi G est fini de cardinal inférieur à 2^n .

REMARQUE. On peut préciser la réponse même si ce n'est pas utile pour la question suivante. Il existe une matrice P diagonalisant tous les éléments de G. Le morphisme $M \in G \mapsto P^{-1}MP$ est une injection de G dans D donc G est isomorphe à un sous-groupe de D. Son cardinal divise donc 2^n . Il existe ainsi $k \in [0, p]$ tel que card $G = 2^k$.

3. Notons S_n l'ensemble des matrices $M \in GL_n(\mathbb{C})$ telles que $M^2 = I_n$. On définit de la même manière S_m . Supposons qu'il existe un isomorphisme φ de $GL_n(\mathbb{C})$ sur $GL_m(\mathbb{C})$. On vérifie sans peine que φ induit une bijection de S_n sur S_m . Les sous-groupes de $GL_n(\mathbb{C})$ inclus dans S_n sont donc isomorphes aux sous-groupes de $GL_m(\mathbb{C})$ inclus dans S_m . Notamment, le sous-groupe D_n défini dans la question précédente est isomorphe à un sous-groupe de $GL_m(\mathbb{C})$ inclus dans S_m . Ainsi S_m contient un sous-groupe d'ordre 2^n . D'après la question précédente, on a donc $2^n \le 2^m$. Mais de manière symétrique $2^m \le 2^n$ donc n = m.

Solution 111

Supposons u diagonalisable et donnons-nous un sous-espace vectoriel F de E stable par u. Puisque u est diagonalisable, il existe un polynôme scindé à racines simples annulant u. A fortiori, ce polynôme annule la restriction $u_{|F}$ de u à F, qui est donc lui même diagonalisable. De plus, on a clairement $\operatorname{Sp}(u_{|F}) \subset \operatorname{Sp}(u)$ et $\operatorname{E}_{\lambda}(u_{|F}) \subset \operatorname{E}_{\lambda}(u)$ pour tout $\lambda \in \operatorname{Sp}(u_{|F})$. Pour $\lambda \in \operatorname{Sp}(u_{|F})$, notons alors G_{λ} un supplémentaire de $\operatorname{E}_{\lambda}(u_{|F})$ dans $\operatorname{E}_{\lambda}(u)$. Remarquons que pour tout $\lambda \in \operatorname{Sp}(u_{|F})$, G_{λ} est stable par u puisque c'est un sous-espace vectoriel du sous-espace propre $\operatorname{E}_{\lambda}(u)$.

Posons finalement

$$G = \left(\bigoplus_{\lambda \in \operatorname{Sp}(u_{|F})} G_{\lambda}\right) \oplus \left(\bigoplus_{\lambda \in \operatorname{Sp}(u) \setminus \operatorname{Sp}(u_{|F})} E_{\lambda}(u)\right)$$

D'après notre dernière remarque, G est stable par u. Puisque u et $u_{|F}$ sont diagonalisables, $E = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$ et $F = \bigoplus_{\lambda \in Sp(u_{|F})} E_{\lambda}(u_{|F})$. On en déduit que $E = F \oplus G$.

Supposons que tout sous-espace vectoriel de E stable par u admette un supplémentaire dans E stable par u. Posons alors $F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{E}_{\lambda}(u)$.

F étant stable par u, il admet un supplémentaire G stable par u. Supposons que $G \neq \{0_E\}$. Alors $\chi_{u|G}$ étant scindé dans \mathbb{C} , u|G possède une valeur propre et donc un vecteur propre x associé. Alors $x \in F \cap G$ est non nul, ce qui contredit le fait que F et G soient en somme directe. Ainsi $G = \{0_E\}$ puis E = F, ce qui prouve que u est diagonalisable.

Le résultat ne persiste pas si E est un \mathbb{R} -espace vectoriel. Par exemple, si u est une rotation de \mathbb{R}^2 d'angle non congru à 0 modulo π , les seuls sous-espaces stables par u sont $\{0\}$ et \mathbb{R}^2 qui admettent donc bien des supplémentaires stables par u. Néanmoins, u n'est pas diagonalisable.

Solution 112

1. a. Comme f est bijectif, A est inversible. Alors

$$\chi_{AB} = \det(XI_n - AB) = \det(A(XA^{-1} - B)) = \det(A)\det(XA^{-1} - B)$$

$$= \det(XA^{-1} - B)\det(A) = \det((XA^{-1} - B)A) = \det(XI_n - BA) = \chi_{BA}$$

- **b.** Supposons que $f \circ g$ est diagonalisable. Alors AB est diagonalisable et il existe une matrice diagonale D et une matrice inversible P telles que AB = PDP⁻¹. Alors BA = A⁻¹PDP⁻¹A = A⁻¹PD(A⁻¹P)⁻¹. Donc BA est diagonalisable et $g \circ f$ également.
- a. Soit λ ∈ Sp(f ∘ g). Si λ ≠ 0, considérons un vecteur propre x associé à λ. Alors f ∘ g(x) = λx. Remarquons que g(x) ≠ 0_E car λx ≠ 0_E. De plus, g ∘ f(g(x)) = λg(x) donc λ est un vecteur propre de g ∘ f. Si λ = 0, alors f ∘ g n'est pas inversible. Ainsi det(f ∘ g) = 0. Par conséquent det(g ∘ f) = det(g) det(g) = det(f) det(g) = det(f ∘ g) = 0. Donc g ∘ f n'est pas inversible et 0 ∈ Sp(g ∘ f). On a donc montré que Sp(g ∘ f) ⊂ Sp(f ∘ g). En inversant les rôles de f et g, on a l'inclusion réciproque de sorte que Sp(f ∘ g) = Sp(g ∘ f).
 - **b.** Posons $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Alors $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ et $BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. AB est diagonale donc diagonalisable mais BA ne l'est pas. En effet, la seule valeur propre de BA est 0, donc, si BA était diagonalisable, elle serait semblable à la matrice nulle donc elle serait nulle, ce qu'elle n'est pas.

Solution 113

1. D'une part, $f = f \circ g - g = (f - \operatorname{Id}_{\operatorname{E}}) \circ g$ donc $\operatorname{Ker} g \subset \operatorname{Ker} f$. D'autre part, $g = f \circ g - f = f \circ (g - \operatorname{Id}_{\operatorname{E}})$ donc $\operatorname{Im} g \subset \operatorname{Im} f$. On en déduit que dim $\operatorname{Ker} g \leq \dim \operatorname{Ker} f$ et que dim $\operatorname{Im} g \leq \dim \operatorname{Im} f$. Mais, d'après le théorème du rang, on a également

$$\dim \operatorname{Im} g = \dim E - \dim \operatorname{Ker} g \ge \dim E - \dim \operatorname{Ker} f = \dim \operatorname{Im} f$$

donc dim Im $f = \dim \operatorname{Im} g$. Or Im $g \subset \operatorname{Im} f$ donc Im $g = \dim \operatorname{Im} f$. D'après le théorème du rang, dim Ker $g = \dim \operatorname{Ker} f$. Or Ker $g \subset \operatorname{Ker} f$ donc Ker $g = \operatorname{Ker} f$.

2. Comme g est diagonalisable, il existe une base (e_1, \dots, e_n) de E formée de vecteurs propres de E. Notons λ_i la valeur propre associée au vecteur propre e_i . Alors $f \circ g(e_i) = f(e_i) + g(e_i)$ i.e. $(\lambda_i - 1)f(e_i) = \lambda_i e_i$. On ne peut avoir $\lambda_i = 1$ sinon on devrait avoir $\lambda_i = 0$ car $e_i \neq 0_E$. Ainsi $f(e_i) = \frac{\lambda_i}{\lambda_i - 1} e_i$. Les e_i sont donc également des vecteurs propres de f et comme (e_1, \dots, e_n) est une base de E, f est diagonalisable.

Ensuite, $f \circ g(e_i) = \lambda_i f(e_i) = \frac{\lambda_i^2}{\lambda_i - 1} e_i$ donc $f \circ g$ est aussi diagonalisable pour les mêmes raisons. On peut également affirmer que $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi$ avec $\varphi \colon t \in \mathbb{R} \setminus \{1\} \mapsto \frac{t^2}{t-1}$. φ est dérivable $\operatorname{Sur} \mathbb{R} \setminus \{1\}$ et $\varphi'(t) = \frac{t(t-2)}{(t-1)^2}$. On en déduit le tableau de variations suivant.

Ainsi $\operatorname{Sp}(f \circ g) \subset \operatorname{Im} \varphi = \mathbb{R} \setminus]0, 4[.$

Solution 114

1. La linéarité de Φ est évidente. Pour montrer que $\Phi(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$, il suffit de montrer que $\Phi(X^k) \in \mathbb{R}_n[X]$ pour tout $k \in [0, n]$ car $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.

Soit $k \in [0, n]$. Alors, en convenant qu'une somme indexée sur l'ensemble vide est nulle

$$\Phi(X^k) = (X+1)X^k - X(X+1)^k = (1-k)X^k - \sum_{j=0}^{k-2} \binom{k}{j} X^j \in \mathbb{R}_n[X]$$

 Φ est donc bien un endomorphisme de $\mathbb{R}_n[X]$.

2. D'après la question précédente, la matrice de Φ dans la base canonique de $\mathbb{R}_n[X]$ est triangulaire supérieure et ses coefficients diagonaux sont les $1-k \in [\![0,n]\!]$. On peut donc affirmer que les valeurs propres de Φ sont ces mêmes coefficients diagonaux. Φ possède donc n+1 valeurs propres distinctes et dim $\mathbb{R}_n[X] = n+1$ donc Φ est diagonalisable. De plus, on peut préciser que tous les sous-espaces propres de Φ sont de dimension 1.

Recherchons maintenant les éléments propres de Φ . Soit $k \in [0, n]$. Posons $\Gamma_k = \prod_{i=0}^{k-1} X - i$ (en particulier $\Gamma_0 = 1$). On vérifie aisément que $\Phi(\Gamma_k) = (1 - k)\Gamma_k$. Comme les sous-espaces propres de Φ sont de dimension 1, le sous-espace propre associé à la valeur propre 1 - k est la droite vectorielle vect (Γ_k) .

Solution 115

Puisque rg(A) = 1, 0 est valeur propre de A et dim $E_0 = \dim \operatorname{Ker} A = n - 1$. Ainsi X^{n-1} divise χ_A . On a alors $\chi_A = X^{n-1}(X - \lambda)$. Comme la trace est égale à la somme des valeurs propres comptées avec multiplicité, $\lambda = \operatorname{tr}(A)$.

Si $\lambda = 0$, alors A n'est pas diagonalisable puisque la multiplicité de 0 dans χ_A n'est pas égale à la dimension du sous-espace propre associé à la valeur propre 0.

Si $\lambda \neq 0$, alors λ est valeur propre de A. Comme E_0 et E_λ sont en somme directe, dim E_0 + dim $E_\lambda \leq n$ i.e. dim $E_\lambda \leq 1$. De plus, dim $E_\lambda \geq 1$ donc dim $E_\lambda = 1$. La somme des dimensions des sous-espaces propres est alors égale à n et A est diagonalisable.

Solution 116

1. Supposons $x \neq 0$ et soit $M \in E_x$. Alors

$$-\frac{1}{x}M(M + I_n) = -\frac{1}{x}(M + I_n)M = I_n$$

donc $M \in GL_n(\mathbb{R})$ et $M^{-1} = -\frac{1}{x}(M + I_n)$.

Soit $M \in E_0$. Alors $M^2 + M = 0$. Si M est inversible, alors, en multipliant par M^{-1} , $M = -I_n$ et $-I_n$ est bien inversible. La seule matrice inversible de E_0 est $-I_n$.

2. Remarquons que $P_x = X^2 + X + x$ est un polynôme annulateur de toutes les matrices de E_x .

Si le discriminant de P_x est strictement négatif i.e. $x > \frac{1}{4}$, alors les matrices de E_x ne possèdent pas de valeur propre réelle et ne sont donc pas diagonalisables dans $\mathcal{M}_2(\mathbb{R})$.

Si le discriminant de P_x est strictement positif i.e. $x < \frac{1}{4}$, alors P_x est scindé sur \mathbb{R} à racines simples donc toutes les matrices de E_x sont diagonalisables.

Si
$$x = \frac{1}{4}$$
, $P_{\frac{1}{4}} = \left(X + \frac{1}{2}\right)^2$. On vérifie que $\begin{pmatrix} -\frac{1}{2} & 1\\ 0 & -\frac{1}{2} \end{pmatrix}$ appartient à $E_{\frac{1}{4}}$ mais n'est pas diagonalisable.

Ainsi E_x ne contient que des matrices diagonalisables si et seulement si $x < \frac{1}{4}$.

3. Remarquons que $P_{-2} = (X - 1)(X + 2)$. Les spectres des matrices de E_{-2} sont inclus dans $\{1, -2\}$. Leurs traces peuvent donc valoir 1 + 1 = 2, 1 - 2 = -1 et -2 - 2 = -4. Il existe effectivement des matrices de E_{-2} dont les traces valent 2, -1 et -4, à savoir $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

$$\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$
 et $\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$. Ainsi $T = \{2, -1, -4\}$ et card $T = 3$.

Solution 117

 $\textbf{1.} \ \ \text{On a} \ f = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})} + 2g \ \text{avec} \ g : \ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mapsto \mathbf{M}^\top. \ \text{Comme} \ \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})} \ \text{et} \ g \ \text{sont des endomorphismes} \ \text{de} \ \mathcal{M}_n(\mathbb{R}), \ f \ \text{en est un \'egalement}.$

2. Notons $\mathcal{S}_n(\mathbb{R})$ le sous-espace vectoriel des matrices symétriques et $\mathcal{A}_n(\mathbb{R})$ le sous-espace vectoriel des matrices antisymétriques.

$$\forall M \in \mathcal{S}_n(\mathbb{R}), \ f(M) = 3M$$

 $\forall M \in \mathcal{A}_n(\mathbb{R}), \ f(M) = -M$

Ainsi

$$S_n(\mathbb{R}) \subset \operatorname{Ker}(f - 3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$$

 $\mathcal{A}_n(\mathbb{R}) \subset \operatorname{Ker}(f + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$

Comme $S_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$, on peut affirmer (détailler si cela ne semble pas clair) que

$$\begin{split} \operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) &= \mathcal{S}_n(\mathbb{R}) \\ \operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) &= \mathcal{A}_n(\mathbb{R}) \\ \mathcal{M}_n(\mathbb{R}) &= \operatorname{Ker}(f-3\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) \oplus \operatorname{Ker}(f+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) \end{split}$$

On en déduit que f est diagonalisable, que ses valeurs propres sont 3 et -1 et que les sous-espaces propres associés respectifs sont $S_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$.

- 3. Déjà répondu à la question précédente.
- **4.** Comme la trace et le déterminant d'un endomorphisme trigonalisable sont respectivement la somme et le produit des valeurs propres comptées avec multiplicité et comme *f* est diagonalisable,

$$\operatorname{tr}(f) = 3 \cdot \dim \mathcal{S}_n(\mathbb{R}) + (-1) \cdot \dim \mathcal{A}_n(\mathbb{R}) = 3 \frac{n(n+1)}{2} - \frac{n(n-1)}{2} = n(n+2)$$
$$\det(f) = 3^{\dim \mathcal{S}_n(\mathbb{R})} \cdot (-1)^{\dim \mathcal{A}_n(\mathbb{R})} = 3 \frac{n(n+1)}{2} \cdot (-1)^{\frac{n(n-1)}{2}}$$

Solution 118

Posons $M = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}$. On calcule $\chi_M = X^2 - 3X + 2 = (X - 1)(X + 2)$. Comme χ_M est scindé à racines simples, M est diagonalisable.

De plus, $Sp(M) = \{1, 2\}$, $E_1(M) = \text{vect}\left(\begin{pmatrix} 2 \\ 1 \end{pmatrix}\right)$ et $E_2(M) = \text{vect}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$. On en déduit notamment que $D = P^{-1}MP$ avec $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ et

 $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. On calcule aussi aisément $P^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. On propose ensuite plusieurs manières de procéder.

Méthode n°1. A est diagonalisable donc il existe une base $(U_1, ..., U_n)$ de $\mathcal{M}_{n,1}(\mathbb{K})$ formée de vecteurs propres de A. On note $\lambda_1, ..., \lambda_n$ les valeurs propres respectivement associées. En s'inspirant de la réduction de M, on vérifie qu'en posant $X_i = \begin{pmatrix} 2U_i \\ U_i \end{pmatrix}$ et $Y_i = X_i = \begin{pmatrix} U_i \\ U_i \end{pmatrix}$,

 $\mathrm{BX}_i = \lambda_i \mathrm{X}_i$ et $\mathrm{BY}_i = 2\lambda_i \mathrm{Y}_i$. Ainsi les X_i et les Y_i sont des vecteurs propres de B. On vérifie manitenant que $(\mathrm{X}_1, \ldots, \mathrm{X}_n, \mathrm{Y}_1, \ldots, \mathrm{Y}_n)$ est une base de $\mathcal{M}_{2n,1}(\mathbb{K})$. Puisque cette famille compte 2n éléments, il sufit de montrer sa liberté. Soit $(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n) \in \mathbb{K}^{2n}$ tel que

$$\sum_{i=1}^{n} \alpha_i X_i + \sum_{i=1}^{n} \beta_i Y_i = 0$$

En raisonnant par blocs, on a donc

$$2\sum_{i=1}^{n} \alpha_{i} U_{i} + \sum_{i=1}^{n} \beta_{i} U_{i} = 0$$
 (L₁)

$$\sum_{i=1}^{n} \alpha_i \mathbf{U}_i + \sum_{i=1}^{n} \beta_i \mathbf{U}_i = 0$$
 (L₂)

En considérant $(L_1)-(L_2)$, on obtient $\sum_{i=1}^n \alpha_i U_i = 0$ et en considérant $2(L_2)-(L_1)$, on otient $\sum_{i=1}^n \beta_i U_i = 0$. Comme (U_1,\ldots,U_n) est libre, les α_i et les β_i sont nuls. Ainsi $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ est une base de $\mathcal{M}_{2n,1}(\mathbb{K})$ formée de vecteurs propres de B:B est diagonalisable. **Méthode n°2.** Comme A est diagonalisable, il existe $Q \in GL_n(\mathbb{K})$ tel que $\Delta = P^{-1}QP$ soit diagonale. En s'inspirant de la réduction de A, on pose $R = \begin{pmatrix} 2Q & Q \\ Q & Q \end{pmatrix}$. On vérifie alors que R est inversible d'inverse $R = \begin{pmatrix} Q^{-1} & -Q^{-1} \\ -Q^{-1} & 2Q^{-1} \end{pmatrix}$. On vérifie ensuite que

$$R^{-1}BR = \begin{pmatrix} Q^{-1}AQ & 0 \\ 0 & 2Q^{-1}AQ \end{pmatrix} = \begin{pmatrix} \Delta & 0 \\ 0 & 2\Delta \end{pmatrix}$$

R⁻¹BR est donc bien une matrice diagonale : B est donc diagonalisable.

Solution 119

1. On calcule le polynôme caractéristique

$$\chi_{A_m}(X) = \begin{vmatrix} X+m+1 & -m & -2 \\ m & X-1 & -m \\ 2 & -m & X+m-3 \end{vmatrix}$$

$$= \begin{vmatrix} X+m-1 & -m & -2 \\ 0 & X-1 & -m \\ X+m-1 & -m & X+m-3 \end{vmatrix} \quad C_1 \leftarrow C_1 + C_3$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-3 \end{vmatrix} \quad \text{en factorisant la première colonne}$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-1 \end{vmatrix} \quad L_3 \leftarrow L_3 - L_1$$

$$= (X+m-1)^2(X-1)$$

On en déduit que $Sp(A_m) = \{1, 1 - m\}.$

Comme la multiplicité de 1 dans A_m vaut 1, on en déduit que dim $E_1(A_m) = 1$ puis

$$E_1(A_m) = \operatorname{Ker}(A_m - I_n) = \operatorname{Ker} \begin{pmatrix} -m - 2 & m & 2 \\ -m & 0 & m \\ -2 & m & 2 - m \end{pmatrix} = \operatorname{vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Si m = 0, $Sp(A_0) = \{1\}$ et on vient alors de déterminer l'unique sous-espace propre de A_0 .

Supposons donc $m \neq 0$ et déterminons $E_{1-m}(A_m)$.

$$\begin{split} \mathbf{E}_{1-m}(\mathbf{A}_m) &= \mathrm{Ker}(\mathbf{A}_m + (m-1)\mathbf{I}_n) \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \\ -2 & m & 2 \end{pmatrix} \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{L}_3 \leftarrow \mathbf{L}_3 - \mathbf{L}_1 \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \end{pmatrix} \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ -m & m & m \end{pmatrix} \\ &= \mathrm{Ker} \begin{pmatrix} -2 & m & 2 \\ 2 - m & 0 & m - 2 \end{pmatrix} \qquad \mathbf{L}_2 \leftarrow \mathbf{L}_2 - \mathbf{L}_1 \end{split}$$

On en déduit que si $m \neq 2$,

$$E_{1-m}(A_m) = \operatorname{Ker} \begin{pmatrix} -2 & m & 2 \\ 1 & 0 & -1 \end{pmatrix} = \operatorname{vect} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \operatorname{car} m \neq 0$$

Et si m=2,

$$E_{1-m}(A_m) = E_{-1}(A_2) = Ker(-1 \ 1 \ 1) = vect \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

On récapitule.

Cas
$$m = 0$$
 Sp(A₀) = {1} et E₁(A₀) = vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
Cas $m = 2$ Sp(A₂) = {-1, 1}, E₁(A₂) = vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et E₋₁(A₂) = vect $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

$$\mathbf{Cas}\ m \notin \{0,2\}\ \mathrm{Sp}(\mathbf{A}_m) = \{1,1-m\}, \ \mathrm{E}_1(\mathbf{A}_m) = \mathrm{vect}\left(\left(\begin{array}{c}1\\1\\1\end{array}\right)\right) \mathrm{et}\ \mathrm{E}_{1-m}(\mathbf{A}_m) = \mathrm{vect}\left(\left(\begin{array}{c}1\\0\\1\end{array}\right)\right).$$

- 2. On peut par exemple utiliser le fait que A_m est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à 3. On en déduit que A_m est diagonalisable si et seulement si m = 2.
 De plus, A_m est inversible si et seulement si 0 ∉ Sp(A_m) i.e. m ≠ 1.
- 3. Dans le cas où A_m est diagonalisable i.e. m = 2, une base de vecteurs propres est $\text{vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}$. On peut donc choisir

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Solution 120

1. On calcule $\chi_A = X^3 - X - 1$. On étudie sur \mathbb{R} la fonction polylomiale $x \mapsto \chi_A(x)$.

x	-∞		$-1/\sqrt{3}$		$1/\sqrt{3}$	1	+∞
$\chi'_{\mathrm{A}}(x)$		+	0	_	0	+	
$\chi_{\mathrm{A}}(x)$	-∞		$\frac{2\sqrt{3}}{9}-1$		$-\frac{2\sqrt{3}}{9} - 1$	<i>_</i> -1	+∞

Comme $\chi_A(-1/\sqrt{3}) = \frac{2\sqrt{3}}{9} - 1 < 0$ et $\chi_A(1) = -1 < 0$, les variations de χ_A et le théorème des valeurs intermédiaires montrent que χ_A ne s'annule qu'une fois sur $\mathbb R$ en un réel a > 1.

Comme χ_A est un polynôme à coefficients réels de degré 3, χ_A possède encore deux racines complexes non réelles conjuguées (et donc distinctes). On en déduit que χ_A est simplement scindé sur $\mathbb C$ de sorte que A est diagonalisable dans $\mathcal M_3(\mathbb C)$.

2. Comme A est diagonalisable, A est semblable à une matrice diagonale dont les coefficients diagonaux sont les valeurs propres de A. On montre sans peine que A^n est alors semblable à une matrice diagonale dont les coefficients diagonaux sont les puissances $n^{\text{èmes}}$ des valeurs propres de A. La trace étant un invariant de similitude, $\text{tr}(A^n) = \sum_{\lambda \in \text{Sp}(A)} \lambda^n$. Comme A est à coefficients entiers, A^n l'est également et sa trace est notamment un entier.

REMARQUE. La trigonalisabilité suffit pour aboutir au même résultat.

3. Notons $\mu = re^{i\theta}$ et $\overline{\mu} = re^{-i\theta}$ les deux autres valeurs propres conjuguées de A (r > 0). D'après la question précédente et un peu de trigonométrie,

$$|\sin(\pi a^n)| = |\sin(\pi(\mu^n + \overline{\mu}^n))| = |\sin(2\pi r^n \cos(n\theta))| \le 2\pi r^n |\cos(n\theta)| \le 2\pi r^n$$

Or λ , μ et $\overline{\mu}$ sont les racines de $\chi_A = X^3 - X - 1$ donc, d'après les liens coefficients/racines, $\lambda \mu \overline{\mu} = 1$ i.e. $ar^2 = 1$. Comme a > 1, 0 < r < 1. On en déduit que $\sum r^n$ converge. La majoration précédente montre que la série $\sum \sin(\pi a^n)$ converge (absolument).

Solution 121

Posons
$$M=\begin{pmatrix}0&2\\-1&3\end{pmatrix}$$
. Alors $\chi_M=X^2-3X+2=(X-1)(X-2)$. On prouve alors que $M=P\begin{pmatrix}1&0\\0&2\end{pmatrix}P^{-1}$ avec $P=\begin{pmatrix}2&1\\1&1\end{pmatrix}$ et $P^{-1}=\begin{pmatrix}1&-1\\-1&2\end{pmatrix}$.

On va maintenant s'inspirer de la diagonlisation de M pour effectuer celle de B. Comme A est diagonalisable, il existe une matrice inversible Q et une matrice inversible D telles que $A = QDQ^{-1}$. Posons alors $R = \begin{pmatrix} 2Q & Q \\ Q & Q \end{pmatrix}$. On vérifie alors que R est inversible et que $R^{-1} = R$

$$\begin{pmatrix} Q^{-1} & -Q^{-1} \\ -Q^{-1} & 2Q^{-1} \end{pmatrix} puis que$$

$$B = R \begin{pmatrix} D & 0 \\ 0 & 2D \end{pmatrix} R^{-1}$$

Ainsi B est bien diagonalisable.

Solution 122

- 1. Récurrence.
- 2. Soit $\Phi : M \in \mathcal{M}_n(\mathbb{K}) \mapsto MB BM$. Pour tout $k \in \mathbb{N}$, $\Phi(A^k) = kA^k$. Or Φ est un endomorphisme d'un espace vectoriel de dimension finie donc il possède un nombre fini de valeurs propres. Il existe donc $p \in \mathbb{N}$ tel que $A^p = 0$. Ainsi A est nilpotente.

Solution 123

Notons \mathcal{N} le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ engendré par les matrices nilpotentes et \mathcal{T} celui des matrices de trace nulle. Comme une matrice nilpotente admet 0 comme seule valeur propre, sa trace est nulle. Ainsi $\mathcal{N} \subset \mathcal{T}$. Notons $(E^{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$. Comme \mathcal{T} est un hyperplan, on montre aisément qu'il possède pour base la concaténation des familles

$$(E^{i,j})_{1 \le i \ne j \le n}$$
 et $(E^{i,i} + E^{i,i+1} - E^{i+1,i} - E^{i+1,i+1})_{1 \le i \le n-1}$

Les matrices $\mathbf{E}^{i,j}$ pour $i \neq j$ sont clairement nilpotentes (triangulaires strictes). Les matrices $\mathbf{E}^{i,i} + \mathbf{E}^{i,i+1} - \mathbf{E}^{i+1,i} - \mathbf{E}^{i+1,i+1}$ le sont également puisque la matrice $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ est nilpotente (carré nul). On en déduit que $\mathcal{F} \subset \mathcal{N}$.

Solution 124

phisme nul.

- 1. La condition n'est pas suffisante. Il existe des endomorphismes de rang 1 qui ne sont pas des projecteurs. Si (e_1, \dots, e_n) est une base de E, on peut par exemple définir f en posant $f(e_1) = 2e_1$ et $f(e_i) = 0_E$ pour $i \in [2, n]$. Alors f est clairement de rang 1 et $f \circ f(e_1) = 4e_1 \neq f(e_1)$ donc f n'est pas un projecteur. La condition n'est pas non plus nécessaire. Il existe des projecteurs de rang différent de 1. On peut par exemple considérer l'endomor-
- 2. On a alors dim Ker f = n 1. 0 est donc valeur propre de f et sa multiplicité dans χ_f est au moins égale à n 1. Il existe donc $\alpha \in \mathbb{K}$ tel que $\chi_f = X^{n-1}(X \alpha)$. Or

$$tr(f) = 0 \times (n-1) + 1 \times \alpha = \alpha$$

donc $\alpha = 1$. Ainsi 1 est valeur propre de f. De plus, dim $\operatorname{Ker}(f - \operatorname{Id}_{\operatorname{E}}) = 1$ et dim $\operatorname{Ker} f = n - 1$ donc f est diagonalisable et $\operatorname{E} = \operatorname{Ker}(f - \operatorname{Id}_{\operatorname{E}}) \oplus \operatorname{Ker} f$. Si on note (e_1, \dots, e_n) une base adaptée à cette décomposition en somme directe, il est clair que $f^2(e_1) = e_1 = f(e_1)$ et $f^2(e_i) = 0_{\operatorname{E}} = f(e_i)$ pour $i \in [2, n]$ donc f est un projecteur.

3. Notons $(E^{i,j})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Les matrices $E^{i,i}$ pour $1 \leq i \leq n$ sont bien de rang 1 et de trace 1 de même que les matrices $E^{i,i} + E^{i,j}$ pour $1 \leq i \neq j \leq n$. On vérifie que ces n^2 matrices forment bien une famille libre et donc une base de $\mathcal{M}_n(\mathbb{R})$. Les endomorphismes de E dont les matrices dans une base donnée de E sont ces matrices forment alors également une base de $\mathcal{L}(E)$ et ce sont des projecteurs d'après la question précédente.

Solution 125

Remarquons que X^n-1 est un polynôme annulateur de A donc le polynôme minimal π_A divise X^n-1 . De plus, il n'existe pas de polynôme annulateur de A de degré strictement inférieur à n sinon la famille $(I_n, A, A^2, ..., A^{n-1})$ serait libre. On en déduit que $\pi_A = X^n - 1$. Or π_A divise χ_A et deg $\chi_A = n$ donc $\chi_A = \pi_A = X^n - 1$. Les valeurs propres de A sont donc les racines $n^{\text{èmes}}$ de l'unité et sont toutes de multiplicités 1. Ainsi

$$tr(A) = \sum_{\omega \in \mathbb{U}_n} \omega = \sum_{k=0}^{n-1} e^{\frac{2ik\pi}{n}} = \frac{e^{2i\pi} - 1}{e^{\frac{2i\pi}{n}} - 1} = 0$$

Solution 126

On notera classiquement π_{M} le polynôme minimal d'une matrice M.

1. Posons $n = \deg \pi_A$ et $P = X^n \pi_A \left(\frac{1}{X}\right)$. Comme A est inversible, le coefficient constant de π_A est non nul et $\deg P = n$. P est un polynôme annulateur de A^{-1} donc $\pi_{A^{-1}}$ divise P. En particulier, $\deg \pi_{A^{-1}} \le n$. De même, en posant $p = \deg \pi_{A^{-1}}$ et $Q = X^p \pi_{A^{-1}} \left(\frac{1}{X}\right)$, $\deg Q = p$ et on trouve que π_A divise Q. En particulier, $\deg \pi_A \le p$.

Finalement, $\deg \Pi_{A^{-1}} = \deg P$. En notant a le coefficient constant (non nul) $\deg \pi_A$, on a $\pi_{A^{-1}} = \frac{1}{a}P \operatorname{car} \pi_{A^{-1}}$ est unitaire par convention.

2. Puisque pour tout polynôme P et toute matrice M à coefficients réels

$$P(M) = 0 \iff P(M)^{T} = 0 \iff P(M^{T}) = 0$$

A et $A^T = A^{-1}$ ont le même polynôme minimal. Si ce polynôme minimal était de degré impair, il admettrait une racine réelle λ . Ainsi A admettrait λ pour valeur propre. Soit X un vecteur propre associé à cette valeur propre. On a donc $AX = \lambda X$ et donc $||AX|| = ||\lambda|| ||X||$ où ||.|| désigne la norme euclidienne de \mathbb{R}^n . Mais comme A est orthogonale, ||AX|| = ||X|| d'où $\lambda = \pm 1$ ($||X|| \neq 0$ car un vecteur propre est non nul). Ceci contredit l'énoncé. C'est donc que le polynôme minimal de A est de degré pair.

Solution 127

1. Les deux premières colonnes de A ne sont pas colinéaires et les autres colonnes sont toutes colinéaires à la seconde. Ainsi rg(A) = 2 puis dim Ker(A) = n - 2.

- 2. La matrice A est symétrique réelle donc diagonalisable.
- 3. Comme A est diagonalisable, la multiplicité de la valeur propre 0 est la dimension du sous-espace propre associé, c'est-à-dire n-2.
- 4. Remarquons que $\chi_{A}(1) = \begin{vmatrix} 0 & -2 & \cdots & \ddots & -n \\ -2 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -n & 0 & \cdots & 0 & 1 \end{vmatrix}$. Via l'opération $C_{1} \leftarrow 2C_{2} + 3C_{3} + \cdots + nC_{n}, \chi_{A}(1) = \begin{vmatrix} \alpha & -2 & \cdots & \ddots & -n \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{vmatrix} = \alpha$ où $\alpha = -\sum_{k=2}^{n} k^{2} < 0$. Comme $\lim_{x \to +\infty} \chi_{A}(x) = +\infty$, χ_{A} admet une racine $\lambda > 1$ d'après le théorème des valeurs intermédiaires. Ainsi il

existe $\mu \in \mathbb{R}$ tel que $\chi_A = X^{n-2}(X - \lambda)(X - \mu)$. Mais $tr(A) = 1 = \lambda + \mu$ donc $\mu = 1 - \lambda$. On en déduit que $Sp(A) = \{0, \lambda, 1 - \lambda\}$ avec $\lambda > 1$.

5. Comme A est diagonalisable, π_A est scindé à racines simples et ses racines sont les valeurs propres de A. Ainsi $\pi_A = X(X - \lambda)(X - 1 + \lambda) = X^3 - X^2 + \lambda(1 - \lambda)X$ est un polynôme annulateur de A. Or $\chi_A = X^{n-2}(X - \lambda)(X - 1 + \lambda)$ donc, comme vu à la question précédente,

$$\lambda(1 - \lambda) = \chi_{A}(1) = -\sum_{k=2}^{n} k^{2}$$

Finalement, un polynôme annulateur de A est $X^3 - X^2 - \left(\sum_{i=1}^{n} k^2\right) X$.

Solution 128

- 1. On sait que le rang de B est le rang de la famille de ses colonnes. Comme les n dernières colonnes de B sont également les n dernières, le rang de B est celui de $\begin{pmatrix} A \\ 0 \end{pmatrix}$. Mais le rang de B est également le rang de la famille de ses lignes donc rg B = rg A.
- **2.** Une récurrence simple montre que $B^p = \begin{pmatrix} A^p & A^p \\ 0 & 0 \end{pmatrix}$ pour tout $p \in \mathbb{N}^*$. De plus, $B^0 = I_{2n} = \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix}$. Soit $P = \sum_{n=0}^{+\infty} a_n X^n \in \mathbb{R}[X]$. Alors

$$P(B) = a_0 I_{2n} + \sum_{p=1}^{+\infty} a_p B^p$$

$$= a_0 \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix} + \sum_{p=1}^{+\infty} a_p \begin{pmatrix} A^p & A^p \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} P(A) & P(A) - a_0 I_n \\ 0 & a_0 I_n \end{pmatrix}$$

$$= \begin{pmatrix} P(A) & P(A) \\ 0 & 0 \end{pmatrix} + P(0) \begin{pmatrix} 0 & -I_n \\ 0 & I_n \end{pmatrix}$$

car $a_0 = P(0)$.

3. Comme A est diagonalisable, le polynôme minimal π_A de A est scindé à racines simples.

Supposons que A n'est pas inversible. Alors $0 \in Sp(A)$ donc 0 est racine de π_A i.e. $\pi_A(0) = 0$. D'après la question précédente, $\pi_A(B) = 0$ et donc B est diagonalisable puisque π_A est scindé à racines simples.

Supposons que A est inversible. Alors 0 n'est pas racine de π_A . Le polynôme $P = X\pi_A$ est donc encore scindé à racines simples et annule B d'après la question précédente. B est encore diagonalisable.

Solution 129

1. On calcule le polynôme caractéristique

$$\chi_{A_m}(X) = \begin{vmatrix} X+m+1 & -m & -2 \\ m & X-1 & -m \\ 2 & -m & X+m-3 \end{vmatrix}$$

$$= \begin{vmatrix} X+m-1 & -m & -2 \\ 0 & X-1 & -m \\ X+m-1 & -m & X+m-3 \end{vmatrix} \quad C_1 \leftarrow C_1 + C_3$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-3 \end{vmatrix} \quad \text{en factorisant la première colonne}$$

$$= (X+m-1) \begin{vmatrix} 1 & -m & -2 \\ 0 & X-1 & -m \\ 1 & -m & X+m-1 \end{vmatrix} \quad L_3 \leftarrow L_3 - L_1$$

$$= (X+m-1)^2(X-1)$$

On traite d'abord le cas m=0. Alors $\chi_{A_0}=(X-1)^3$. Comme π_{A_0} divise χ_{A_0} et est unitaire, π_{A_0} vaut (X-1), $(X-1)^2$ ou $(X-1)^3$. On $M\neq I_3$, $\pi_{A_0}\neq X-1$. Un calcul montre que $(A_0-I_3)^2=0$ donc $\pi_{A_0}=(X-1)^2$.

On suppose ensuite $m \neq 0$. Puisque $Sp(A_m) = \{1, 1-m\}$ et π_{A_m} divise χ_{A_m} , π_{A_m} vaut (X-1)(X+m-1) ou $(X-1)(X+m-1)^2$. Un calcul donne

$$(A - I3)(A + (m - 1)I3) = \begin{pmatrix} m(2 - m) & 0 & m(m - 2) \\ 0 & 0 & 0 \\ m(2 - m) & 0 & m(m - 2) \end{pmatrix}$$

Cette matrice n'est nulle que si m=2. On en déduit que $\pi_{A_2}=(X+1)(X-1)$ et si $m\neq 2$, $\pi_{A_m}=(X-1)(X+m-1)^2$. On récapitule :

- $\pi_{A_0} = (X-1)^2$;
- $\pi_{A_2} = (X-1)(X+1);$
- $\pi_{A_m} = (X-1)(X+m-1)^2 \text{ si } m \notin \{0,2\}.$

Solution 130

 X^n-1 est un polynôme annulateur de A. Comme $(I_n,A,A^2,\dots,A^{n-1})$ est libre, il n'existe pas de polynôme annulateur de A de degré strictement inférieur à n. Ainsi $\pi_A=X^n-1$. De plus $\pi_A\mid \chi_A$ et deg $\chi_A=n$ donc $\chi_A=\pi_A=X^n-1$. Le coefficient de X^{n-1} dans χ_A est $-\operatorname{tr}(A)$. Comme $n\geq 2$, $\operatorname{tr}(A)=0$.

Solution 131

1. On a clairement $\chi_M = \chi_A^2$ (déterminant triangulaire par blocs). Les polynômes χ_M et χ_A ont donc les mêmes racines. Ainsi Sp(A) = Sp(M).

2. On montre par récurrence que

$$\forall n \in \mathbb{N}, \ \mathbf{M}^n = \begin{pmatrix} \mathbf{A}^n & 0 \\ n\mathbf{A}^n & \mathbf{A}^n \end{pmatrix}$$

On en déduit alors que

$$\forall P \in \mathbb{R}[X], \ P(M) = \begin{pmatrix} P(A) & 0 \\ AP'(A) & P(A) \end{pmatrix}$$

3. Supposons que M soit diagonalisable. Son polynôme minimal π_M est donc scindé à racines simples. D'après la question précédente, π_M et $X\pi'_M$ annulent A. Ainsi π_A divise π_M et $X\pi'_M$. Comme π_M est scindé à racines simples, $\pi_M \wedge \pi'_M = 1$. Or π_A divise π_M donc $\pi_A \wedge \pi'_M = 1$ également. D'après le lemme de Gauss, π_A divise X i.e. $\pi_A = X$ puis A = 0. Réciproquement, si A = 0, A = 0 est diagonalisable.

Solution 132

1. On vérifie que pour $u \in \mathcal{L}(E)$, $G_u \in \mathcal{L}(\mathcal{L}(E))$. Ainsi $u \mapsto G_u$ est bien à valeurs dans l'algèbre $\mathcal{L}(\mathcal{L}(E))$. Il est clair que $u \mapsto G_u$ est linéaire. De plus, $G_{\mathrm{Id}_E} = \mathrm{Id}_{\mathcal{L}(E)}$ et pour tout $(u,v) \in \mathcal{L}(E)^2$, $G_{u \circ v} = G_u \circ G_v$. Ainsi $u \mapsto G_u$ est bien un morphisme d'algèbres.

Soit $u \in \mathcal{L}(E)$ tel que $G_u = 0$. Alors $u = G_u(Id_E) = 0$ donc $u \mapsto G_u$ est injectif.

On montre de la même manière que $u \mapsto D_u$ est un morphisme d'algèbres injectif.

- 2. Démonstration laissée au lecteur. C'est en fait vrai pour tout morphisme d'algèbres $\Phi \colon E \to F$: pour tout $x \in E$ et tout $P \in \mathbb{K}[X]$, $\Phi(P(x)) = P(\Phi(x))$.
- 3. D'après une question précédente, $P(G_u) = 0 \iff G_{P(u)} = 0$. Mais, par injectivité de $u \mapsto G_u$, $G_{P(u)} = 0 \iff P(u) = 0$. Ainsi u et G_u ont le même idéal annulateur et également le même polynôme minimal i.e. $\pi_{G_u} = \pi_u$. On montre de la même manière que $\pi_{D_u} = \pi_u$.
- **4.** Il suffit d'utiliser la question précédente et le fait qu'un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.
- 5. Si u est diagonalisable, G_u et D_u le sont également. Comme G_u et D_u commutent, on montre classiquement qu'ils sont simultanément diagonalisables i.e. il existe une base de $\mathcal{L}(E)$ constituée de vecteurs propres communs à G_u et D_u . C'est aussi une base de vecteurs propres de $G_u D_u$ qui est donc aussi diagonalisable.
- 6. On s'inspire des questions précédentes. Si u est nilpotent alors $\pi_u = \Pi_{G_u} = \Pi_{D_u} = X^p$ pour un certain $p \in \mathbb{N}^*$, donc G_u et D_u sont nilpotents. Comme ils commutent,

$$(G_u - D_u)^{2p-1} = \sum_{k=0}^{2p-1} {2p-1 \choose k} G_u^k D_u^{2p-1-k}$$

Tous les termes de cette somme sont nuls puisque si $k \ge p$, $G_u^k = 0$ et si k < p, $2p - 1 - k \ge p$ et $D_u^{2p - 1 - k} = 0$. Donc $G_u - D_u$ est nilpotent.

Séries et familles sommables

Solution 133

Remarquons que l'intégrale I = $\int_0^{+\infty} \frac{\sin(\pi x)}{1-x} dx$ converge. En effet, $\sin(\pi x) = \sin(\pi(1-x)) \sim \pi(1-x)$ donc $x \mapsto \frac{\sin(\pi x)}{1-x}$ est prolongeable en une fonction φ continue sur le segment [0,1].

Posons $S_n = \sum_{k=0}^n u_k$. Alors

$$I - S_n = \int_0^1 \left(\frac{1}{1 - x} - \sum_{k=0}^n x^k \right) \sin(\pi x) dx$$
$$= \int_0^1 \frac{x^{n+1}}{1 - x} \sin(\pi x) dx$$
$$= \int_0^1 x^{n+1} \varphi(x) dx$$

Comme φ est continue et positive sur le segment [0,1], il existe $M \in \mathbb{R}_+$ tel que $0 \le \varphi(x) \le M$ pour tout $x \in [0,1]$. On en déduit que

$$0 \le I - S_n \le M \int_0^1 x^{n+1} dx = \frac{M}{n+2}$$

Donc $S_n \xrightarrow[n \to +\infty]{} I$ via le théorème des gendarmes.

Solution 134

On sait, du moins j'espère, que

$$u_n = \frac{1}{6}n(n+1)(2n+1)$$

Par une décomposition en éléments simples

$$\frac{1}{u_n} = 6\left(\frac{1}{n} + \frac{1}{n+1} - \frac{4}{2n+1}\right)$$

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$. On montre classiquement qu'il existe $\gamma \in \mathbb{R}$ tel que

$$H_n = \ln(n) + \gamma + o(1)$$

Ainsi

$$\begin{split} \sum_{k=1}^{n} \frac{1}{u_k} &= 6 \left(\sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{1}{k+1} - \sum_{k=1}^{n} \frac{4}{2k+1} \right) \\ &= 6 \left(H_n + H_{n+1} - 1 - 4 \left(\sum_{k=1}^{2n+1} \frac{1}{2k+1} - \sum_{k=1}^{n} \frac{1}{2k} \right) \right) \\ &= 6 \left(H_n + H_{n+1} - 1 - 4 \left(H_{2n+1} - 1 - \frac{1}{2} H_n \right) \right) \\ &= 6 \left(3 H_n + H_{n+1} - 4 H_{2n+1} + 3 \right) \\ &= 6 \left(3 \ln(n) + 3\gamma + \ln(n+1) + \gamma - 4 \ln(2n+1) - 4\gamma + 3 + o(1) \right) \\ &= 6 \left(\ln \left(\frac{n^3(n+1)}{(n+1/2)^4} \right) + 3 - 4 \ln(2) + o(1) \right) \\ &= 6 \left(3 - 4 \ln(2) \right) + o(1) \end{split}$$

car $\lim_{n\to+\infty} \frac{n^3(n+1)}{(n+1/2)^4} = 1$. On en déduit que $\sum \frac{1}{u_n}$ converge et que

$$\sum_{n=1}^{+\infty} \frac{1}{u_n} = 6(3 - 4\ln(2))$$

On peut vérifier avec Python.

Solution 135

- 1. C'est du cours.
- 2. **a.** Supposons $\lambda \neq 0$. Si $\lambda \in \mathbb{R}^*$, $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n}$ et $\sum u_n$ diverge. Si $\lambda \in \{-\infty, +\infty\}$, $\frac{1}{n} \underset{n \to +\infty}{=} = o(u_n)$ et (u_n) est de signe constant à partir d'un certain rang donc $\sum u_n$ diverge. Par l'absurde, $\lambda = 0$.
 - ${\bf b.}\,$ Remarquons que (u_n) est positive puisqu'elle est décroissante de limite nulle.

Notons $S_n = \sum_{k=0}^n u_k$. Par décroissance de (u_n) ,

$$0 \le 2nu_{2n} = 2\sum_{k=n+1}^{2n} u_{2n} \le 2\sum_{k=n+1}^{2n} u_k = 2(S_{2n} - S_n)$$

Comme $\sum u_n$ converge, $(S_{2n} - S_n)$ converge vers 0 puis $(2nu_{2n})$ également via le théorème des gendarmes. Par ailleurs,

$$0 \le (2n+1)u_{2n+1} \le (2n+1)u_{2n} = 2nu_{2n} + u_{2n}$$

A nouveau, $((2n+1)u_{2n+1})$ converge vers 0 par le théorème des gendarmes. On peut alors conclure que (nu_n) converge vers 0 puisque c'est le cas pour ses suites extraites $(2nu_{2n})$ et $((2n+1)u_{2n+1})$.

c. Remarquons que

$$n(u_n - u_{n+1}) = (nu_n - (n+1)u_{n+1}) + u_{n+1}$$

Puisque la suite (nu_n) converge, la série télescopique $\sum nu_n - (n+1)u_{n+1}$ converge. De plus, $\sum u_{n+1}$ converge par hypothèse. Ainsi, $\sum n(u_n - u_{n+1})$ converge comme somme de deux séries convergentes. On peut rajouter que

$$\sum_{n=0}^{+\infty} n(u_n - u_{n+1}) = \sum_{n=0}^{+\infty} (nu_n - (n+1)u_{n+1}) + \sum_{n=0}^{+\infty} u_{n+1} = \sum_{n=1}^{+\infty} u_n$$

Solution 136

Pour simplifier l'exercice, on remarquera que, via le changement de variable $u = \tan x$,

$$\forall n \in \mathbb{N}, \ \mathbf{I}_n = \int_0^1 \frac{u^n}{1 + u^2} \ \mathrm{d}u$$

1. Pour tout $u \in [0, 1], 0 \le \frac{u^n}{1 + u^2} \le u^n$ donc

$$0 \le \mathbf{I}_n \le \int_0^1 u^n \, \mathrm{d}u = \frac{1}{n+1}$$

D'après le théorème des gendarmes, (I_n) converge vers 0.

2. Il est clair que

$$I_n + I_{n+2} = \int_0^1 u^n \, du = \frac{1}{n+1}$$

3. Remarquons que

$$(-1)^n I_{2n} + (-1)^n I_{2n+2} = \frac{(-1)^n}{2n+1}$$

donc en posant $v_n = (-1)^n I_{2n}$

$$v_n - v_{n+1} = \frac{(-1)^n}{2n+1}$$

La série télescopique $\sum v_n - v_{n+1}$ converge puisque (v_n) converge vers 0. On en déduit que $\sum \frac{(-1)^n}{2n+1}$ converge et que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \sum_{n=0}^{+\infty} v_n - v_{n+1} = v_0 - \lim_{n \to +\infty} v_n = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

Remarque. On aurait aussi pu utiliser le critère spécial des séries alternées pour montrer que $\sum \frac{(-1)^n}{2n+1}$ converge.

4. Pour tout $u \in [0, 1]$,

$$\frac{u^n}{1+u^2} \le \frac{u^{n+1}}{1+u^2}$$

donc $I_{n+1} \le I_n$. La suite (I_n) converge vers 0 en décroissant donc la série $\sum (-1)^n I_n$ converge d'après le critère spécial des séries alternées.

Posons $S_n = \sum_{k=0}^{n} (-1)^k I_k$. Alors

$$\begin{split} \mathbf{S}_n &= \int_0^1 \frac{\sum_{k=0} (-1)^k u^k}{1+u^2} \; \mathrm{d}u \qquad \text{par linéarité de l'intégrale} \\ &= \int_0^1 \frac{1-(-1)^{n+1} u^{n+1}}{(1+u)(1+u^2)} \; \mathrm{d}u \qquad \text{somme des termes d'une suite géométrique} \\ &= \int_0^1 \frac{\mathrm{d}u}{(1+u)(1+u^2)} + (-1)^{n+1} \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \; \mathrm{d}u \end{split}$$

On prouve comme précédemment que

$$0 \le \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \, \mathrm{d}u \le \int_0^1 u^{n+1} \, \mathrm{d}u = \frac{1}{n+2}$$

donc

$$\lim_{n \to +\infty} \int_0^1 \frac{u^{n+1}}{(1+u)(1+u^2)} \, \mathrm{d}u = 0$$

On en déduit que

$$\sum_{n=0}^{+\infty} (-1)^n \mathbf{I}_n = \lim_{n \to +\infty} \mathbf{S}_n = \int_0^1 \frac{\mathrm{d}u}{(1+u)(1+u^2)}$$

Par une décomposition en éléments simples,

$$\frac{1}{(1+u)(1+u^2)} = \frac{1}{2} \left(\frac{1-u}{1+u^2} + \frac{1}{1+u} \right)$$

donc

$$\int_{0}^{1} \frac{\mathrm{d}u}{(1+u)(1+u^{2})} = \frac{1}{2} \left[\arctan u - \frac{1}{2} \ln(1+u^{2}) + \ln(1+u) \right]_{0}^{1} = \frac{\pi}{8} + \frac{1}{4} \ln 2$$

Finalement

$$\sum_{n=0}^{+\infty} (-1)^n I_n = \frac{\pi}{8} + \frac{1}{4} \ln 2$$

On vérifie avec Python.

```
>>> from numpy import pi, log

>>> from scipy.integrate import quad

>>> I=lambda n:quad(lambda u:u**n/(1+u**2),0,1)[0]

>>> S=sum([(-1)**n*I(n) for n in range(1000)])

>>> S, pi/8+log(2)/4

(0.5657357520891468, np.float64(0.5659858768387105))
```

Solution 137

Pour tout entier $n \ge 3$,

$$\frac{nu_n}{(n-1)u_{n-1}} \stackrel{=}{\underset{n\to+\infty}{=}} \frac{n}{n-1} \left(2 - e^{\frac{1}{n}} \right)$$

$$\stackrel{=}{\underset{n\to+\infty}{=}} \frac{1}{1 - \frac{1}{n}} \left(2 - e^{\frac{1}{n}} \right)$$

$$\stackrel{=}{\underset{n\to+\infty}{=}} \left(1 + \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right) \left(1 - \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right)$$

$$\stackrel{=}{\underset{n\to+\infty}{=}} 1 + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Ainsi $v_n = \mathcal{O}\left(\frac{1}{n^2}\right)$. Par conséquent $\sum v_n$ converge.

Mais comme $v_n = \ln(nu_n) - \ln((n-1)u_{n-1})$, on peut affirmer grâce au lien entre suite et série télescopique que la suite $(\ln(nu_n))$ converge. Notons ℓ sa limite. Ainsi $\lim_{n\to +\infty} nu_n = e^{\ell}$ i.e. $u_n \sim \frac{e^{\ell}}{n}$. Comme la série à termes positifs $\sum \frac{1}{n}$ diverge, il en est de même de la série $\sum u_n$.

Solution 138

- 1. La fonction $f: x \mapsto \int_{x}^{1} \frac{e^{t}}{t} dt$ est strictement décroissante sur]0,1] (elle est dérivable et sa dérivée est $x \mapsto -\frac{e^{x}}{x}$). Comme $\frac{e^{t}}{t} \approx \frac{1}{t}$, $\int_{0}^{1} \frac{e^{t}}{t} dt$ diverge. Puisque $t \mapsto \frac{e^{t}}{t}$ est positive, $\lim_{0+} f = +\infty$. Par ailleurs, f(1) = 0. Enfin, f est continue sur]0,1] donc, d'après le théorème des valeurs intermédiaires, pour tout $n \in \mathbb{N}^{*}$, il existe un unique $u_{n} \in]0,1]$ tel que $f(u_{n}) = n$.
- 2. D'après la question précédente, f induit une bijection strictement décroissante de]0,1] sur $[0,+\infty[$. Sa bijection réciproque est donc également strictement décroissante. Comme $u_n=f^{-1}(n)$, (u_n) est strictement décroissante. de plus, $\lim_{0^+} f=+\infty$ donc $\lim_{+\infty} f^{-1}=0$. Par conséquent, (u_n) converge vers 0.
- 3. Remarquons que

$$v_n = \int_{u_n}^1 \frac{e^t}{t} dt - \int_{u_n}^1 \frac{dt}{t} = \int_{u_n}^1 \frac{e^t - 1}{t} dt$$

Comme $\lim_{t\to 0} \frac{e^t - 1}{t} = 1$, l'intégrale $\int_0^1 \frac{e^t - 1}{t} dt$ converge. Comme (u_n) converge vers 0,

$$\lim_{n \to +\infty} v_n = \int_0^1 \frac{e^t - 1}{t} \, \mathrm{d}t$$

4. Posons I = $\int_{1}^{1} \frac{e^{t} - 1}{t} dt$. Ainsi $\ln(u_n) = -n + I + o(1)$ puis $u_n \sim \frac{e^{I}}{n}$. On en déduit que $\sum u_n$ diverge.

Solution 139

On va raisonner par récurrence. Notons \mathcal{P}_{p} l'assertion

Pour tout $n \in [2^p, 2^{p+1} - 1]$, a_n est défini et $a_n = 2^{\lfloor \log_2(n) \rfloor} = 2^p$

 \mathcal{P}_0 est évidemment vraie. Supposons \mathcal{P}_p vraie pour un certain $p \in \mathbb{N}^*$. Soit alors $n \in [2^{p+1}, 2^{p+2} - 1]$. Alors $[n/2] \in [2^p, 2^{p+1} - 1]$ donc a_n est bien défini et

$$a_n = 2a_{\left|\frac{n}{2}\right|} = 2 \cdot 2^p = 2^{p+1} = 2^{\left[\log_2(n)\right]}$$

de sorte que \mathcal{P}_{p+1} est vraie.

Ainsi \mathcal{P}_p est vraie pour tout $p \in \mathbb{N}^*$.

Comme la série $\sum_{n \in \mathbb{N}^*} \frac{1}{a_n^2}$ est à termes positifs, elle converge ou diverge vers $+\infty$. Il suffit donc de considérer une suite extraite de la suite (S_n) de ses sommes partielles pour déterminer sa nature et sa somme éventuelle.

$$\forall p \in \mathbb{N}, \ S_{2^{p+1}-1} = \sum_{k=0}^{p} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{a_{j}^{2}} = \sum_{k=0}^{p} \sum_{k=0}^{p} \sum_{j=2^{k}}^{2^{k+1}-1} \frac{1}{(2^{k})^{2}} = \sum_{k=0}^{p} \frac{2^{k}}{(2^{k})^{2}} = \sum_{k=0}^{p} \frac{1}{2^{k}}$$

Ainsi $S_{2^{p+1}-1}$ est la somme partielle de rang p de la série géométrique $\sum_{k\in\mathbb{N}}\frac{1}{2^k}$. On en déduit que $\lim_{p\to+\infty}S_{2^{p+1}-1}=\frac{1}{1-\frac{1}{2}}=3$. On en déduit que $\sum_{n=0}^{\infty} \frac{1}{a_n^2}$ converge et que sa somme est 2.

Remarque. On aurait aussi pu utiliser le théorème de sommation par paquets à la famille $(a_n)_{n\in\mathbb{N}^*}$ et à la partition $\mathbb{N}^* = \bigsqcup_{p\in\mathbb{N}} [\![2^p, 2^{p+1} - 1]\!]$.

Solution 140

1. Avec les notations de l'énoncé, $\lim_{n \to +\infty} a_n S_n = 1$. La série $\sum_{n \in \mathbb{N}^{|*}} a_n^2$ est à termes positifs donc la suite (S_n) converge ou diverge vers $+\infty$. Supposons qu'elle converge. Alors elle converge vers une limite ℓ strictement positive $(S_n \ge S_1 = a_1^2 > 0)$. Alors (a_n) converge vers $1/\ell$. La série $\sum_{n=0}^{\infty} a_n^2$ divergerait alors grossièrement, ce qui contredirait la convergence de la suite (S_n) .

Par conséquent, la série $\sum_{n=0,1}^{\infty} a_n^2$ diverge et la suite (S_n) converge vers $+\infty$. Puisque $a_n = \frac{a_n S_n}{S_n}$, (a_n) converge vers 0.

2. La suite (S_n) est clairement croissante. Soit $n \in \mathbb{N}^*$ et $t \in [S_{n-1}, S_n]$. Alors, par croissance de $t \mapsto t^2$ sur \mathbb{R}_+ ,

$$(S_n - S_{n-1})S_{n-1}^2 \le \int_{S_{n-1}}^{S_n} t^2 dt \le (S_n - S_{n-1})S_n^2$$

ou encore, en posant $u_n = \int_0^{s_n} t^2 dt$,

$$a_n^2 S_{n-1}^2 \le u_n \le a_n^2 S_n^2$$

On rappelle que $\lim_{n \to +\infty} a_n S_n = 1$ donc $\lim_{n \to +\infty} a_n^2 S_n^2 = 1$. De plus,

$$a_n^2 S_{n-1}^2 = a_n^2 (S_n - a_n)^2 = a_n^2 S_n^2 - 2S_n a_n^3 + a_n^4$$

Or $\lim_{n\to +\infty} a_n S_n = 1$ et $\lim_{n\to +\infty} a_n = 0$ donc $\lim_{n\to +\infty} a_n^2 S_{n-1}^2 = 1$. D'après le théorème des gendarmes, (u_n) converge vers 1.

3. Remarquons que

$$\sum_{k=1}^{n} u_k = \int_{0}^{S_n} t^2 dt = \frac{S_n^3}{3}$$

Par sommation de relation de comparaison pour les séries divergentes à termes positifs, $\sum_{k=1}^{n} u_n \sim n$. On en déduit que $S_n \sim \sqrt[3]{3n}$ et, comme $a_n \sim \frac{1}{S_n}$, $a_n \sim \frac{1}{N-1+\infty}$.

Solution 141

1. Supposons que $\lim_{n \to +\infty} u_n = \ell$. Puisque $u_n = \ell + o(1)$ et que la série $\sum 1$ est une série à termes positifs divergente,

$$\sum_{k=0}^{n-1} u_k = \sum_{n \to +\infty}^{n-1} \ell + o\left(\sum_{k=0}^{n-1} 1\right)$$

ou encore

$$\sum_{k=0}^{n-1} u_k = n\ell + o(n)$$

et enfini

$$\frac{1}{n}\sum_{k=0}^{n-1}u_k = \ell + o(1)$$

Ainsi

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} u_k = \ell$$

- 2. **a.** $f(x) x \sim -\lambda x^{\alpha}$ donc $x \mapsto f(x) x$ est de même signe que $x \mapsto -\lambda x^{\alpha}$ au voisinage de 0^+ . Ainsi il existe $\varepsilon > 0$ tel que $x \mapsto f(x) x$ est négative sur $[0, \varepsilon]$ et ne s'annule qu'en 0.
 - **b.** Par hypothèse, f est positive sur $[0, \varepsilon]$. Comme 0 est le seul point fixe de f sur $[0, \varepsilon]$, $x \mapsto f(x) x$ est de signe constant sur cet intervalle puisqu'elle y est continue. Or $f(x) x \sim -\lambda x^{\alpha}$ donc $x \mapsto f(x) x$ est négative sur $[0, \varepsilon]$. On en déduit que

$$\forall x \in [0, \varepsilon], \ 0 \le f(x) \le x \le \varepsilon$$

On en déduit alors aisément que (u_n) est à valeurs dans $[0, \varepsilon]$ et décroissante. Elle converge donc d'après le théorème de convergence monotone ar contnuité de f, (u_n) converge vers l'unique point fixe de f sur $[0, \varepsilon]$, à savoir 0.

c. Tout d'abord, $\alpha > 1$ donc $x^{\alpha-1} \xrightarrow[x \to 0]{} 0$. On peut alors utiliser le développement limité usuel de $(1+u)^{\beta}$ lorsque u tend vers 0:

$$f(x)^{1-\alpha} = \underset{x \to 0}{=} x^{1-\alpha} \left(1 - \lambda x^{\alpha-1} + o(x^{\alpha-1}) \right)^{1-\alpha} = \underset{x \to 0}{=} x^{1-\alpha} \left(1 + (\alpha-1)\lambda x^{\alpha-1} + o(x^{\alpha-1}) \right) = \underset{x \to 0}{=} x^{1-\alpha} 1 + (\alpha-1)\lambda + o(1)$$

d. Comme (u_n) converge vers 0

$$\lim_{n \to +\infty} f(u_n)^{1-\alpha} - u_n^{1-\alpha} = (\alpha - 1)\lambda$$

ou encore

$$\lim_{n \to +\infty} u_{n+1}^{1-\alpha} - u_n^{1-\alpha} = (\alpha - 1)\lambda$$

D'après la première question

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} u_{k+1}^{1-\alpha} - u_k^{\alpha} = (\alpha - 1)\lambda$$

ou encore

$$u_n^{1-\alpha} - u_0^{1-\alpha} \sim_{n \to +\infty} (\alpha - 1) \lambda n$$

Or $\lim_{n\to+\infty} (\alpha-1)\lambda n = +\infty$ de sorte que

$$u_n^{1-\alpha} \sim (\alpha-1)\lambda n$$

et enfin

$$u_n \underset{n \to +\infty}{\sim} ((\alpha - 1)\lambda n)^{\frac{1}{1-\alpha}}$$

e. Dans le cas de la fonction $x \mapsto \sin x$, on a $\lambda = \frac{1}{6}$, $\alpha = 3$ donc

$$u_n \sim \sqrt{\frac{3}{n}}$$

Dans le cas de la fonction $x \mapsto \ln(1+x)$, on a $\lambda = \frac{1}{2}$, $\alpha = 2$ donc

$$u_n \sim \frac{2}{n \to +\infty}$$

Solution 142

- 1. Puisque cos est bornée, $v_n = O\left(\frac{1}{n}\right)$. En particulier, (v_n) converge vers 0. Par conséquent, $(\cos(v_{n-1}))$ converge vers 1 puis $v_n \sim \frac{1}{n}$. Puisque la série harmonique est une série à termes positifs divergente, la série $\sum v_n$ diverge également.
- 2. Il suffit de constater que cette série vérifie le critère des séries alternées.
- 3. Il nous faut un développement asymptotique de (v_n) . On remarque que $v_n \frac{1}{n} = \mathcal{O}\left(\frac{v_{n-1}^2}{n}\right)$. Or $v_{n-1} \sim \frac{1}{n-1} \sim \frac{1}{n-1}$ donc $v_n \frac{1}{n} = \mathcal{O}\left(\frac{1}{n^3}\right)$. Par conséquent, $(-1)^n v_n = \frac{(-1)^n}{n} + \mathcal{O}\left(\frac{1}{n^3}\right)$. Puisque la série $\sum \frac{(-1)^n}{n}$ converge et que la série $\sum \frac{1}{n^3}$ est une série à termes positifs convergente, la série $\sum (-1)^n v_n$ converge également.

Solution 143

Pour $n \in \mathbb{N}^*$,

$$\ln\left(\frac{n}{n+1}\right) = -\ln\left(1 + \frac{1}{n}\right) = -\frac{1}{n} + \frac{1}{2n^2} - \frac{1}{3n^3} + \mathcal{O}\left(\frac{1}{n^4}\right)$$

Par conséquent

$$u_n = \cos\left(-n\pi + \frac{\pi}{2} - \frac{\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)$$
$$= (-1)^n \sin\left(-\frac{\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)$$
$$= \frac{(-1)^{n+1}\pi}{3n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Or la série $\sum \frac{(-1)^{n+1}\pi}{3n}$ converge en vertu du critère spécial des séries alternées et la série de Riemann $\sum \frac{1}{n^2}$ converge donc $\sum u_n$ converge en tant que somme de deux séries convergentes.

Solution 144

$$\frac{(-1)^n}{n+(-1)^n} = \frac{(-1)^n}{\sqrt{n}} \cdot \frac{1}{1+\frac{(-1)^n}{\sqrt{n}}}$$

$$= \frac{(-1)^n}{\sqrt{n}} \left(1 - \frac{(-1)^n}{\sqrt{n}} + \mathcal{O}\left(\frac{1}{n}\right)\right)$$

$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \mathcal{O}\left(\frac{1}{\frac{3}{n^2}}\right)$$

$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + u_n$$

avec $u_n = \mathcal{O}\left(\frac{1}{n^{\frac{3}{2}}}\right)$. La série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge en vertu du critère spécial des séries alternées, la série $\sum u_n$ converge par comparaison à une série de Riemann mais la série $\sum \frac{1}{n}$ diverge. Par conséquent, la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ diverge.

Remarque. Pourtant, $\frac{(-1)^n}{\sqrt{n} + (-1)^n} \sim \frac{(-1)^n}{\sqrt{n}}$. La condition de positivité est donc nécessaire pour le critère de convergence par équivalence.

Solution 145

1. Puisque (a_n) converge vers 0,

$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + \mathcal{O}(a_n)^3 = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

La série $\sum \frac{(-1)^n}{\sqrt{n}}$ vérifie le critère spécial des séries alternées donc converge. La série $\sum \frac{1}{n^3}$ converge. Enfin la série harmonique $\sum \frac{1}{n}$ diverge vers $+\infty$. On en déduit que la série $\sum \ln(1+a_n)$ diverge vers $-\infty$.

2. Par propriété du logarithme

$$\ln\left(\prod_{k=2}^{n}(1+a_k)\right) = \sum_{k=2}^{n}\ln(1+a_k) \xrightarrow[n \to +\infty]{} -\infty$$

Par passage à l'exponentielle,

$$\lim_{n \to +\infty} \left(\prod_{k=2}^{n} (1 + a_k) \right) = 0$$

Solution 146

1. Pour tout entier $n \ge 2$,

$$\ln(n) - \ln(n-1) = -\ln\left(\frac{n-1}{n}\right) = -\ln\left(1 - \frac{1}{n}\right)$$

Or $\ln(1+x) = x + \mathcal{O}(x^2)$ donc

$$\ln(n) - \ln(n-1) = \frac{1}{n \to +\infty} \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

2. Posons $u_n = \ln(n) - \ln(n-1) - \frac{1}{n}$ pour $n \ge 2$. D'après la question précédente, $u_n = O\left(\frac{1}{n^2}\right)$ donc $\sum u_n$ converge. Notamment la suite des sommes partielles admet une limite $\ell \in \mathbb{R}$ i.e.

$$\sum_{k=2}^{n} u_k = \ell + o(1)$$

Or

$$\sum_{k=2}^{n} u_k = \ln(n) - \sum_{k=2}^{n} \frac{1}{k} = \ln(n) + 1 - \sum_{k=1}^{n} \frac{1}{k}$$

donc

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

avec $\gamma = 1 - \ell$.

Solution 147

Remarquons que

$$\frac{1}{k^2} - \frac{1}{k+1}^2 = \frac{(k+1)^2 - k^2}{k^2(k+1)^2} = \frac{2k+1}{k^2(k+1)^2} = \frac{2}{k^3}$$

Comme la série $\sum \frac{1}{n^3}$ est un série à termes positifs convergente,

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^3} \underset{n \to +\infty}{\sim} \frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2} - \frac{1}{k+1}^2 = \frac{1}{2(n+1)^2} \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$$

Solution 148

1. Soit $n \in \mathbb{N}^*$. D'une part,

$$\frac{u_{n+1}}{u_n} = \frac{3n+1}{3n+3}$$

D'autre part,

$$\frac{v_{n+1}}{v_n} = \left(\frac{n}{(n+1)}\right)^{\frac{2}{3}}$$

Par concavité de ln,

$$\frac{1}{3}\ln(3n+3) + \frac{2}{3}\ln(3n) \le \ln\left(\frac{1}{3}(3n+3) + \frac{2}{3}\cdot 3n\right) = \ln(3n+1)$$

Ainsi

$$\ln(3n+1) - \ln(3n+3) \ge \frac{2}{3}\ln(3n) - \frac{2}{3}\ln(3n+3) = \frac{2}{3}\ln(n) - \frac{2}{3}\ln(n+1)$$

On conclut en par croissance de l'exponentielle.

- 2. D'après la question précédente, la suite $\left(\frac{u_n}{v_n}\right)$ est croissante. Notamment, pour tout $n \in \mathbb{N}^*$, $\frac{u_n}{v_n} \ge \frac{u_1}{v_1} = \frac{1}{3}$. Ainsi, pour tout $n \in \mathbb{N}^*$, $u_n \ge \frac{1}{3}v_n$. Or $\sum \frac{1}{3}v_n$ est une série à termes positifs divergente donc $\sum u_n$ diverge.
- **3.** Pour tout $n \in \mathbb{N}^*$,

$$w_n = -\frac{2}{3}\ln\left(1 - \frac{1}{n+1}\right) + \ln\left(1 - \frac{2}{3(n+1)}\right)$$

Puisque $\ln(1+u) \underset{u\to 0}{\sim} u + \mathcal{O}(u^2)$, on en déduit que $w_n = \mathcal{O}\left(\frac{1}{(n+1)^2}\right)$. Comme $\sum \frac{1}{(n+1)^2}$ est une série à termes positifs convergente, $\sum w_n$ converge (absolument).

4. Il existe donc $\ell \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n-1} w_k \xrightarrow[n \to +\infty]{} \ell$$

Par télescopage, ceci signifie que

$$\frac{2}{3}\ln(n) + \ln(u_n) - \ln(u_1) \underset{n \to +\infty}{\longrightarrow} \ell$$

Par passage à l'exponentielle

$$n^{\frac{2}{3}}u_n \xrightarrow[n \to +\infty]{} u_1 e^{\ell} = \frac{1}{3}e^{\ell}$$

En posant $C = \frac{1}{3}e^{\ell}$ et $a = \frac{2}{3}$, on a bien le résultat voulu.

Solution 149

1. Notons J_n l'intégrale à calculer. Tout d'abord, $J_0 = 2\pi^2$ et, si $n \neq 0$, on intégre par parties

$$\int_{0}^{2\pi} te^{-int} dt = -\frac{1}{in} \left[te^{-int} \right]_{0}^{2\pi} + \frac{1}{in} \int_{0}^{2\pi} e^{-int} dt = \frac{2i\pi}{n}$$

2. D'après la question précédente,

$$\begin{split} \sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} &= \frac{1}{2i\pi} \sum_{(n,m)\in \mathbb{I}^2} a_n b_m \int_0^{2\pi} t e^{-i(n+m)t} \, \, \mathrm{d}t \\ &= \frac{1}{2i\pi} \int_0^{2\pi} t \sum_{(n,m)\in \mathbb{I}^2} a_n b_m e^{-int} e^{-imt} \, \, \mathrm{d}t \\ &= \frac{1}{2i\pi} \int_0^{2\pi} t \left(\sum_{n\in \mathbb{I}} a_n e^{-int} \right) \left(\sum_{m\in \mathbb{I}} b_m e^{-imt} \right) \, \mathrm{d}t \end{split}$$

Posons $f(t) = \sum_{n \in I} a_n e^{-int}$ et $g(t) = \sum_{m \in I} b_m e^{-imt}$. Par inégalité, triangulaire,

$$\sum_{(n,m)\in I^2} \frac{a_n b_m}{n+m} = \left| \sum_{(n,m)\in I^2} \frac{a_n b_m}{n+m} \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left(\sqrt{t} |f(t)| \right) \left(\sqrt{t} |g(t)| \right) dt$$

puis, par inégalité de Cauchy-Schwarz,

$$\sum_{(n,m)\in \mathbb{I}^2} \frac{a_n b_m}{n+m} \leq \frac{1}{2\pi} \sqrt{\int_0^{2\pi} t \; |f(t)|^2 \; \mathrm{d}t \int_0^{2\pi} t \; |g(t)|^2 \; \mathrm{d}t}$$

Calculons ensuite

$$\begin{split} \int_{0}^{2\pi} t |f(t)|^{2} \, \mathrm{d}t &= \int_{0}^{2\pi} t f(t) \overline{f(t)} \, \mathrm{d}t \\ &= \int_{0}^{2\pi} t \left(\sum_{n \in \mathbf{I}} a_{n} e^{-int} \right) \left(\sum_{m \in \mathbf{I}} a_{m} e^{imt} \right) \mathrm{d}t \\ &= \sum_{(n,m) \in \mathbf{I}^{2}} a_{n} a_{m} \int_{0}^{2\pi} t e^{-i(n-m)t} \, \mathrm{d}t \\ &= \sum_{(n,m) \in \mathbf{I}^{2}} a_{n} a_{m} \mathbf{J}_{n-m} \end{split}$$

Or pour $n \neq m$, J_{n-m} est imaginaire pur et l'intégrale qu'on calcule est réelle de sorte que

$$\int_{0}^{2\pi} t|f(t)|^2 dt = \sum_{n \in I} a_n^2 J_0 = 2\pi^2 \sum_{n \in I} a_n^2$$

De la même manière,

$$\int_{0}^{2\pi} t |g(t)|^2 dt = 2\pi^2 \sum_{n \in \mathbb{I}} b_m^2$$

On en déduit le résultat demandé.

3. Soit K une partie finie de $(\mathbb{N}^*)^2$. Il existe une partie finie I de \mathbb{N}^* telle que $K \subset I^2$. Alors

$$\sum_{(n,m)\in\mathbb{K}}\frac{|a_nb_m|}{n+m}\leq \sum_{(n,m)\in(\mathbb{N}^*)^2}\frac{|a_nb_m|}{n+m}\leq \pi\sqrt{\sum_{n\in\mathbb{I}}a_n^2\sum_{n\in\mathbb{I}}b_n^2}\leq \pi\sqrt{\sum_{n\in\mathbb{N}^*}a_n^2\sum_{n\in\mathbb{N}^*}b_n^2}$$

Ceci étant valide pour toute partie finie K de $(\mathbb{N}^*)^2$,

$$\sum_{(n,m)\in(\mathbb{N}^*)^2}\frac{|a_nb_m|}{n+m}\leq \pi\sqrt{\sum_{n\in\mathbb{N}^*}a_n^2\sum_{n\in\mathbb{N}^*}b_n^2}<+\infty$$

La famille $\left(\frac{a_n b_m}{n+m}\right)_{(n,m)\in(\mathbb{N}^*)^2}$ est donc sommable et

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} \frac{a_n b_m}{n+m} \le \sum_{(n,m)\in\mathbb{K}} \frac{|a_n b_m|}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{N}^*} a_n^2 \sum_{n\in\mathbb{N}^*} b_n^2}$$

Séries entières

Solution 150

- 1. On sait que $u_n = \sin\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$ donc $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$. Le rayon de convergence de $\sum_{n \in \mathbb{N}^*} u_n x^n$ vaut donc 1 d'après la règle de d'Alembert
- 2. Puisque $u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$ et que la série à termes positifs $\sum_{n \in \mathbb{N}^*} \frac{1}{\sqrt{n}}$ diverge, $\sum_{n \in \mathbb{N}^*} u_n$ diverge. Il n'y a donc pas convergence en 1. Comme sin est croissante sur [0,1], la suite (u_n) est décroissante. De plus, elle converge vers 0. Le critère spécial des séries alternées permet d'affirmer que la série $\sum_{n \in \mathbb{N}^*} (-1)^n u_n$ converge. Il y a donc convergence en -1.
- 3. Première méthode. La fonction sin est concave sur [0,1]. On en déduit que $\sin(x) \ge \sin(1)x$ pour $x \in [0,1]$. Par conséquent, pour $x \in [0,1[$,

$$f(x) \ge \sin(1) \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}} \ge \sin(1) \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\sin(1)\ln(1-x)$$

On en déduit par minoration que $\lim_{n \to +\infty} f(x) = +\infty$.

Deuxième méthode. Les fonctions $x\mapsto \sin\left(\frac{1}{\sqrt{n}}\right)x^n$ sont croissantes sur [0,1[. Ainsi f est-elle également croissante sur [0,1[. Notamment elle admet une limite $\ell\in\mathbb{R}\cup\{+\infty\}$ en 1^- . Fixons $N\in\mathbb{N}^*$. Comme les f_n sont positives sur [0,1[,

$$\forall x \in [0, 1[, f(x) \ge \sum_{n=1}^{N} f_n(x)]$$

Les deux membres admettant une limite lorsque x tend vers 1^- (le deuxième membre est une somme finie), on obtient par passage à la limite :

$$\ell \ge \sum_{n=1}^{N} \frac{1}{\sqrt{n}}$$

La série à termes positifs $\sum \frac{1}{\sqrt{n}}$ diverge vers $+\infty$ donc, en faisant tendre N vers $+\infty$, on obtient $\ell \ge +\infty$ i.e. $\ell = +\infty$.

4. Pour $x \in [0, 1[$,

$$(1-x)f(x) = \sum_{n=1}^{+\infty} u_n x^n - \sum_{n=1}^{+\infty} u_n x^{n+1} = u_1 x + \sum_{n=2}^{+\infty} (u_n - u_{n-1}) x^n$$

Première méthode. Pour $x \in [0, 1]$,

$$|(u_n - u_{n-1})x^n| \le u_{n-1} - u_n$$

Comme la série télescopique $\sum u_{n-1} - u_n$ converge, la série de fonctions de terme genéral $x \mapsto (u_n - u_{n-1})x^n$ converge normalement et donc uniformément sur [0,1]. On peut alors appliquer le théorème d'interversion limite série

$$\lim_{x \to 1^{-}} \sum_{n=2}^{+\infty} (u_n - u_{n-1}) x^n = \sum_{n=2}^{+\infty} \lim_{x \to 1^{-}} (u_n - u_{n-1}) x^n = \sum_{n=2}^{+\infty} u_n - u_{n-1} = -u_1$$

On en déduit que $\lim_{x\to 1^-} (1-x)f(x) = 0$. **Deuxième méthode.** La série entière $\sum (u_n - u_{n-1})x^n$ admet un rayon de convergence supérieur ou égal à 1 puisque $(u_n - u_{n-1})$ est convergente (vers 0) donc bornée (on peut même montrer que le rayon de convergence vaut exactement 1). De plus, la série télescopique $\sum u_n - u_{n-1}$ converge puisque la suite (u_n) converge. On peut alors appliquer le théorème de convergence radial d'Abel pour affirmer que

$$\lim_{x \to 1^{-}} \sum_{n=2}^{+\infty} (u_n - u_{n-1}) x^n = \sum_{n=2}^{+\infty} u_n - u_{n-1} = -u_1$$

On en déduit que $\lim_{x\to 1^-} (1-x)f(x) = 0$.

Solution 151

- 1. Remarquons que r_n est la somme partielle d'une série de Riemann.
 - Si $\beta > 1$, (r_n) converge vers un réel strictement positif donc (b_n) également. On en déduit que R = 1.
 - Si $\beta = 1$, on montre par comparaison série/intégrale que $r_n \sim \ln(n)$ i.e. $b_n \sim \frac{1}{\ln(n)}$. Le critère de d'Alembert montre que R = 1.
 - Si β < 1, on montre à nouveau par comparaison série/intégrale que $r_n \sim \frac{n^{1-\beta}}{1-\beta}$ i.e. $b_n \sim (1-\beta)n^{\beta-1}$. Le critère de d'Alembert montre à nouveau que R = 1.
- 2. Etudions maintenant la convergence en 1.
 - Si $\beta > 1$, (b_n) ne converge pas vers 0 donc $\sum b_n$ diverge grossièrement.
 - Si $\beta = 1$, $b_n \sim \frac{1}{\ln(n)}$ donc, a fortiori, $\frac{1}{n} = o(b_n)$ de sorte que $\sum b_n$ diverge.
 - Si $\beta < 1$, $b_n \sim \frac{1-\beta}{n^{1-\beta}}$ donc $\sum b_n$ converge si et seulement si $1-\beta > 1$ i.e. $\beta < 0$.

Pour récapituler, $\sum b_n$ converge si et seulement si $\beta < 0$.

Etudions maintenant la convergence en -1.

- Supposons $\beta > 1$. La suite (b_n) converge alors vers un réel strictement positif. La suite $((-1)^n b_n)$ ne tend donc pas vers 0 et la série $\sum (-1)^n b_n$ diverge grossièrement.
- Supposons $\beta \le 1$. La suite (r_n) croît vers $+\infty$ donc la suite (b_n) décroît vers 0. Le critère des séries alternées assure la convergence de la série $\sum (-1)^n b_n$.

Solution 152

1. Pour tout entier $n \ge 2$,

$$\frac{|(-1)^{n+1}\ln(n+1)|}{|(-1)^n\ln(n)|} = \frac{\ln(n+1)}{\ln(n)} = 1 + \frac{\ln(1+1/n)}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$$

D'aprè la règle de d'Alembert, le rayon de convergence de la série entière $\sum_{n>1} (-1)^n \ln(n) x^n$ vaut 1.

2. Soit $x \in]-1,1[$.

$$(1+x)S(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(n)x^n + \sum_{n=1}^{+\infty} (-1)^n \ln(n)x^{n+1}$$

$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \ln(n+1)x^{n+1} - \sum_{n=1}^{+\infty} (-1)^{n+1} \ln(n)x^{n+1} \qquad \text{par changement d'indice et car } \ln(1) = 0$$

$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)x^{n+1}$$

On en déduit que

$$\forall x \in]-1,1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}$$

3. Première méthode. Soit $x \in [0,1]$. La suite de terme général $\ln\left(1+\frac{1}{n}\right)x^{n+1}$ décroît vers 0 donc la série $\sum_{n\geq 1}(-1)^{n+1}\ln\left(1+\frac{1}{n}\right)x^{n+1}$ vérifie le critère spécial des séries alternées. Elle converge et on peut majorer son reste en valeur absolue

$$\forall n \in \mathbb{N}^*, \ \left| \sum_{k=n+1}^{+\infty} (-1)^{k+1} \ln \left(1 + \frac{1}{k} \right) x^{k+1} \right| \le \ln \left(1 + \frac{1}{n+1} \right) x^{n+2} \le \ln \left(1 + \frac{1}{n+1} \right)$$

Le reste converge donc uniformément vers la fonction nulle sur [0,1]. La série entière $\sum_{n\geq 1} (-1)^{n+1} \ln\left(1+\frac{1}{n}\right) x^{n+1}$ converge donc uniformément sur [0,1]: elle est donc continue sur [0,1]. En particulier, elle est continue en 1 de sorte que

$$\lim_{x \to 1} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1} = \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

Deuxième méthode. Comme la suite $\left(\ln\left(1+\frac{1}{n}\right)\right)$ est décroissante de limite nulle, la série $\sum (-1)^{n+1} \ln\left(1+\frac{1}{n}\right)$ converge en vertu du critère spécial des séries alternées. Le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} (-1)^{n+1} \ln\left(1+\frac{1}{n}\right) x^n$ vaut 1 (utiliser la règle de d'Alembert par exemple). D'après le théorème de convergence radiale d'Abel,

$$\lim_{x \to 1} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1} = \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

Comme $\lim_{x \to 1} \frac{1}{1+x} = \frac{1}{2}$, on en déduit par produit que

$$\lim_{x \to 1} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

4. Posons $S_N = \sum_{n=1}^N (-1)^n \ln\left(1 + \frac{1}{n}\right)$. On sait déjà que (S_N) converge. Pour déterminer sa limite, il suffit donc de déterminer la limite de (S_{2N}) .

$$S_{2N} = \sum_{n=1}^{2N} (-1)^n \ln\left(1 + \frac{1}{n}\right)$$

$$= \sum_{n=1}^{N} \ln\left(1 + \frac{1}{2n}\right) - \sum_{n=1}^{N} \ln\left(1 + \frac{1}{2n-1}\right)$$

$$= \sum_{n=1}^{N} \ln\left(\frac{2n+1}{2n}\right) - \ln\left(\frac{2n}{2n-1}\right)$$

$$= \sum_{n=1}^{N} \ln(2n+1) + \ln(2n-1) - 2\ln(2n)$$

$$= \ln(2N+1) + 2\sum_{n=1}^{N} \ln(2n-1) - 2\sum_{n=1}^{N} \ln(2n)$$

$$= \ln(2N+1) + 2\sum_{n=1}^{2N} \ln(n) - 4\sum_{n=1}^{N} \ln(2n)$$

$$= \ln(2N+1) + 2\ln((2N)!) - 4N\ln(2) - 4\ln(N!)$$

$$= \ln\left(\frac{(2N+1)((2N)!)^2}{2^{4N}(N!)^4}\right)$$

D'après la formule de Stirling,

N!
$$\sim \sqrt{2\pi N} \cdot N^N \cdot e^{-N}$$

donc

$$((2N)!)^2 \underset{N \to +\infty}{\sim} 4\pi N (2N)^{4N} e^{-4N}$$

 $(N!)^4 \underset{N \to +\infty}{\sim} 4\pi^2 N^2 N^{4N} e^{-4N}$

de sorte que

$$\frac{(2N+1)((2N)!)^2}{2^{4N}(N!)^4} \underset{N \to +\infty}{\longrightarrow} \frac{2}{\pi}$$

Ainsi

$$\sum_{n=1}^{+\infty} (-1)^n \ln\left(1 + \frac{1}{n}\right) = \lim_{N \to +\infty} S_{2N} = \ln\left(\frac{2}{\pi}\right)$$

puis

$$\lim_{x \to 1} S(x) = -\frac{1}{2} \ln \left(\frac{2}{\pi} \right) = \ln \left(\sqrt{\frac{\pi}{2}} \right)$$

Solution 153

- 1. On prouve aisément par récurrence que (a_n) est strictement positive. De plus, un argument de concavité montre que $\ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$: la suite (a_n) est donc décroissante. D'après le théorème de convergence monotone, (a_n) converge vers $\ell \in \mathbb{R}_+$. Par continuité de $f: x \mapsto \ln(1+x)$, $\ln(1+\ell) = \ell$. Une étude rapide de $x \mapsto \ln(1+x) x$ montre que 0 est l'unique point fixe de f. AInsi $\ell = 0$.
- **2.** Comme (a_n) converge vers 0, $\ln(1+a_n) \sim a_n$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{a_{n+1}}{a_n} \underset{n \to +\infty}{\longrightarrow} 1$$

D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum a_n z^n$ vaut 1.

3. Il s'agit d'étudier la convergence en -1 et 1. La série $\sum (-1)^n a_n$ vérifie le critère spécial des séries alternées car (a_n) est décroissante de limite nulle : cette série converge. Remarquons que

$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2) = a_n \left(1 - \frac{a_n}{2} + o(a_n)\right)$$

Par conséquent

$$\frac{1}{a_{n+1}} \underset{n \to +\infty}{=} \frac{1}{a_n} \cdot \frac{1}{1 - \frac{a_n}{2} + o(a_n)} = \frac{1}{a_n} \left(1 + \frac{a_n}{2} + o(a_n) \right) \underset{n \to +\infty}{=} \frac{1}{a_n} + \frac{1}{2} + o(1)$$

Ainsi $\frac{1}{a_{n+1}} - \frac{1}{a_n} \sim \frac{1}{a_{n-1}}$. Or la série $\sum \frac{1}{2}$ diverge. Par sommation de relation d'équivalence pour des séries à termes positifs divergentes, on obtient

$$\sum_{k=0}^{n-1} \frac{1}{a_{k+1}} - \frac{1}{a_k} \sim \sum_{k=0}^{n-1} \frac{1}{2}$$

ou encore

$$\frac{1}{a_n} - \frac{1}{a_0} \underset{n \to +\infty}{\sim} \frac{n}{2}$$

Ainsi

$$\frac{1}{a_n} \underset{n \to +\infty}{\sim} \frac{n}{2}$$

puis

$$a_n \sim \frac{2}{n}$$

On en déduit que la série $\sum a_n$ diverge par critère de Riemann.

Le domaine de définition de $x \in \mathbb{R} \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est donc]-1,1].

Solution 154

Par souci de simplicité, on confondra les fractions rationnelles et leurs fonctions rationnelles associées.

Montrons tout d'abord qu'une fraction rationnelle est développable en série entière en 0 si et seulement si elle n'admet pas 0 pour pôle. Si une fraction rationnelle est développable en série entière en 0, il est clair qu'elle n'admet pas 0 pour pôle.

Soit $a \in \mathbb{C}^*$. Il est clair que $\frac{1}{X-a}$ est développable en série entière en 0. Par dérivations successives, $\frac{1}{(X-a)^n}$ est également développable en série entière en 0 pour tout $n \in \mathbb{N}$. En utilisant une décomposition en éléments simples, on prouve qu'une fraction rationnelle n'admettant pas 0 pour pôle est développable en série entière en 0 de rayon de convergence le minimum des modules de ses pôles.

Soient \mathcal{D} l'ensemble des fonctions développables en série entière en 0 et \mathcal{F} l'ensemble des fractions rationnelles de $\mathbb{C}(X)$ n'admettant pas 0 pour pôle. \mathcal{F} est un sous-espace vectoriel de \mathcal{D} .

Notons T l'application de \mathcal{D} dans $\mathbb{C}^{\mathbb{N}}$ qui à une fonction développable en série entière associe la suite des coefficients de son développement en série entière. T est bien définie par unicité du développement en série entière. De plus, T est clairement linéaire et injective. Notons enfin S l'endomorphisme de $\mathbb{C}^{\mathbb{N}}$ qui à une suite (u_n) associe la suite (u_{n+1}) .

Remarquons qu'une suite $(u_n) \in \mathbb{C}^{\mathbb{N}}$ est récurrente linéaire si et seulement si il existe $P \in \mathbb{C}[X]$ non nul tel que $(u_n) \in \operatorname{Ker} P(S)$. On en déduit en particulier que l'ensemble des suites récurrentes linéaires est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. En effet, si (u_n) et (v_n) sont récurrentes linéaires, il existe $P, Q \in \mathbb{C}[X]$ tels que $(u_n) \in \operatorname{Ker} P(S)$ et $(v_n) \in \operatorname{Ker} Q(S)$. Mais alors pour $\lambda, \mu \in \mathbb{C}$,

$$\lambda(u_n) + \mu(v_n) \operatorname{Ker} P(S) + \operatorname{Ker} Q(S) \subset \operatorname{Ker}(PQ)(S)$$

et donc $\lambda(u_n) + \mu(v_n)$ est récurrente linéaire.

Soit $G \in \mathbb{C}[X]$. Alors T(G) est une suite presque nulle donc récurrente linéaire. Soient $a \in \mathbb{C}^*$ et $r \in \mathbb{N}^*$. On montre classiquement que

$$\operatorname{Ker}\left(S - \frac{1}{a}\operatorname{Id}_{\mathbb{C}^{\mathbb{N}}}\right) = \left\{\left(\frac{P(n)}{a^n}\right), P \in \mathbb{C}_{r-1}[X]\right\}$$

Puisque
$$T\left(\frac{1}{X-a}\right) = \left(-\frac{1}{a^{n+1}}\right)$$
 et que

$$\frac{1}{(X-a)^r} = \frac{(-1)^{r-1}}{(r-1)!} \left(\frac{1}{X-a}\right)^{(r-1)}$$

on obtient en dérivant (r-1) fois la série entière définissant $\frac{1}{X-a}$:

$$T\left(\frac{1}{(X-a)^r}\right) = \left((-1)^r \frac{(n+r-1)!}{n!(r-1)!} \frac{1}{a^{n+r}}\right)$$

On a donc bien $T\left(\frac{1}{(X-a)^r}\right)$ de la forme $\left(\frac{P(n)}{a^n}\right)$ avec $P\in\mathbb{C}_{r-1}[X]$. Ainsi

$$T\left(\frac{1}{(X-a)^r}\right) \in \operatorname{Ker}\left(S - \frac{1}{a}\operatorname{Id}_{\mathbb{C}^{\mathbb{N}}}\right) = \operatorname{Ker}\operatorname{Q}(S)$$

avec Q = $\left(X - \frac{1}{a}\right)^r$. On en déduit que T $\left(\frac{1}{(X - a)^r}\right)$ est récurrente linéaire.

Soit $F \in \mathcal{F}$. Alors F est la somme de sa partie entière et de ses parties polaires. Ce qui précède montre que T(F) est récurrente linéaire.

Réciproquement, soit $f \in \mathcal{D}$ telle que T(f) soit une suite récurrente linéaire. Alors il existe $P \in \mathbb{C}[X]$ non nul tel que $T(f) \in \text{Ker P}(S)$. Posons $P = X^nQ$ où $Q \in \mathbb{C}[X]$ n'admet pas 0 pour racine. D'après le lemme des noyaux $T(f) \in \text{Ker S}^n + \text{Ker Q}(S)$. T(f) est donc la somme d'une suite presque nulle et d'une suite de Ker Q(S). Il existe donc $G \in \mathbb{C}[X]$ et $g \in \mathcal{D}$ tels que f = G + g avec $G \in \mathbb{C}[X]$ et $T(g) \in \text{Ker Q}(S)$.

Si Q est constant (non nul), alors T(g) est nulle et g est nulle par injectivité de T. Dans ce cas, $f = G \in \mathcal{F}$. Sinon, on écrit la décomposition en facteurs irréductibles de Q:

$$Q = \prod_{i=1}^{n} (X - a_i)^{r_i}$$

où les a_i sont non nuls. Posons $q = \deg Q$. On montre que dim $\operatorname{Ker} Q(S) = q$ en considérant l'isomorphisme $\left\{ \begin{array}{ccc} \operatorname{Ker} Q(S) & \longrightarrow & \mathbb{C}^q \\ (u_n) & \longmapsto & (u_0, \dots, u_{q-1}) \end{array} \right. .$ La famille $\mathcal{B} = \left(\frac{1}{(X - a_i)^{k_i}}\right)_{\substack{1 \le i \le r \\ 1 \le i \le r}}$ est libre et T est injective donc la famille $T(\mathcal{B})$ est libre. De plus, on a montré plus haut que

$$T\left(\frac{1}{(X-a_i)^{r_i}}\right) \in \operatorname{Ker}\left(S - \frac{1}{a_i}\operatorname{Id}_{\mathbb{C}^n}\right)^{r_i} \subset \operatorname{Ker} Q(S)$$

Ainsi $T(\mathcal{B})$ est une famille de vecteurs de Ker Q(S). De plus, elle possède q éléments : c'est donc une base de Ker Q(S). Ainsi $T(g) \in$ $\operatorname{vect}(\operatorname{T}(\mathcal{B})) = \operatorname{T}(\operatorname{vect}(\mathcal{B}))$. Par injectivité de $\operatorname{T}, g \in \operatorname{vect}(\mathcal{B}) \subset \mathcal{F}$ puis $f = \operatorname{G} + g \in \mathcal{F}$.

En conclusion, les suites recherchées sont les suites récurrentes linéaires.

Solution 155

1. L'unicité provient du fait que deux polynômes qui coïncident sur un ensemble infini (\mathbb{C} en l'occurrence) sont égaux. Tout d'abord, la série entière $\sum_{n\in\mathbb{N}}\frac{P(n)z^n}{n!}$ a un rayon de convergence infini car la suite de terme général $\frac{P(n)z^n}{n!}$ est bornée pour tout

 $z\in\mathbb{C}.$ Posons $P_k=\prod_{i=0}^{k-1}(X-i)$ pour tout $k\in\mathbb{N}$ $(P_0=1).$ On remarque que pour tout $z\in\mathbb{C},$

La seule valeur propre de u est donc 1 et le sous-espace propre associé est $\mathbb{C}_1[X]$.

$$e^{-z} \sum_{n=0}^{+\infty} \frac{P_k(n)z^n}{n!} = z^k$$

De plus, $\deg P_k = k$ et on montre alors classiquement que $(P_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{C}[X]$. Il existe donc une suite presque nulle (a_k) de complexes telle que $P = \sum_{k=0}^{+\infty} a_k P_k$. En posant $Q = \sum_{k=0}^{+\infty} a_k X^k$, on a donc

$$e^{-z} \sum_{n=0}^{+\infty} \frac{P(n)z^n}{n!} = Q(z)$$

- 2. La question précédente montre que u est bien une application de $\mathbb{C}[X]$ dans lui-même. On vérifie sans peine sa linéarité (on l'a en fait déjà utilisé). On a même montré que l'endomorphisme u envoie la base $(P_k)_{k\in\mathbb{N}}$ de $\mathbb{C}[X]$ sur la base canonique de $\mathbb{C}[X]$: c'est donc un automorphisme de $\mathbb{C}[X]$.
- 3. Notons λ une valeur propre de u et P un polynôme associé à cette valeur propre. Posons $d = \deg P$. Il existe alors $(a_0, \dots, a_d) \in \mathbb{C}^{d+1}$ tel que $P = \sum_{k=0}^d a_k P_k$ puisque (P_0, \dots, P_d) est une base de $\mathbb{C}_d[X]$. Notamment $a_d \neq 0$ puisque $\deg P = d$. Or $u(P) = \sum_{k=0}^d a_k X^k$ donc en identifiant le coefficient de X^d dans u(P) et λP , on obtient $a_d = \lambda a_d$ et donc $\lambda = 1$. On a donc $\sum_{k=0}^{n} a_k (P_k - X^k) = 0$. Si l'on suppose $d \ge 2$, on obtient $\sum_{k=2}^d a_k (P_k - X^k)$ car $P_0 = X^0$ et $P_1 = X^1$. Or deg $P_k - X^k = k - 1$, donc la famille $(P_2 - X^2, \dots, P_d - X^d)$ est libre de sorte $a_2 = \dots = a_d = 0$, ce qui contredit le fait que $a_d \ne 0$. Ainsi $d \le 1$. Donc le sous-espace propre associé à la valeur propre 1 est inclus dans $\mathbb{C}_1[X]$. On vérifie sans peine l'inclusion réciproque.

Solution 156

1. Soit $z \in D$. Puisque les a_n sont réels, $\overline{f(z)} = f(\overline{z})$. Ainsi, si $z \in \mathbb{R}$,

$$\overline{f(z)} = f(\overline{z}) = f(z)$$

de sorte que $f(z) \in \mathbb{R}$.

Réciproquement, si $z \in D$ et $f(z) \in \mathbb{R}$, alors

$$f(\overline{z}) = \overline{f(z)} = f(z)$$

et donc $z = \overline{z}$ par injectivité de f, puis $z \in \mathbb{R}$.

2. Posons $H^+ = \{z \in \mathbb{C}, \text{ Im}(z) > 0\}$ et $H^- = \{z \in \mathbb{C}, \text{ Im}(z) < 0\}$. D'après la question précédente, $f(D \cap H^+) \subset \mathbb{C} \setminus \mathbb{R} = H^+ \sqcup H^-$. Or f est continue sur D et $D \cap H^+$ est une partie connexe par arcs (et même convexe) de D en tant qu'intersection de deux convexes. Ainsi f(D) est une partie connexe par arcs de $\mathbb{C} \setminus \mathbb{R}$. En particulier, $f(D \cap H^+) \subset H^+$ ou $f(D \cap H^+) \subset H^-$. De plus, pour $f \in [-1,1[$,

$$Im(f(ir) = r + \sum_{n=1}^{+\infty} (-1)^n a_{2n+1} r^{2n+1}$$

En particulier, $\operatorname{Im}(f(ir)) \sim r$. Puisque deux fonctions équivalentes en 0 sont de même signe au voisinage de 0, il existe $r \in]0,1[$ tel que $\operatorname{Im}(f(ir)) > 0$. On en déduit donc que $f(D \cap H^+) \subset H^+$.

De la même manière, $f(D \cap H^-) \subset H^+$ ou $f(D \cap H^-) \subset H^-$. A nouveau, $\operatorname{Im}(f(ir)) \sim r$ et donc il existe $r \in]-1,0[$ tel que $\operatorname{Im}(f(ir)) < 0$, de sorte que $f(D \cap H^-) \subset H^-$.

On rappelle enfin que $f(D \cap \mathbb{R}) \subset \mathbb{R}$ d'après la question précédente.

Soit alors $z \in D$. Si Im(z) > 0, alors Im(f(z)) > 0 puisque $f(D \cap H^+) \subset H^+$. Réciproquement, si Im(f(z)) > 0, on a nécessairement Im(z) > 0 puisque $f(D \cap H^+) \subset H^+$ et $f(D \cap \mathbb{R}) \subset \mathbb{R}$

3. Pour simplifier, posons $a_1 = 1$. Pour tout $\theta \in \mathbb{R}$,

$$\operatorname{Im}(f(re^{i\theta}))\sin(n\theta) = \sum_{k=1}^{+\infty} a_k r^k \sin(k\theta)\sin(n\theta)$$

Posons $g_k: \theta \mapsto a_k r^k \sin(k\theta) \sin(n\theta)$. Pour tout $k \in \mathbb{N}^*$ et tout $\theta \in [0, \pi]$,

$$|g_k(\theta)| \le |a_k| r^k$$

Comme la série entière définissant f(r) converge absolument, la série $\sum_{k \in \mathbb{N}^*} g_k$ converge normalement sur $[0, \pi]$. On en déduit que

$$I_n(r) = \sum_{k=1}^{+\infty} a_k r^k \int_0^{\pi} \sin(k\theta) \sin(n\theta) d\theta$$

Or pour tout $k \in \mathbb{N}^*$,

$$\sin(k\theta)\sin(n\theta) = \cos((k-n)\theta) - \cos((k+n)\theta)$$

On en déduit notamment que

$$\int_0^{\pi} \sin(k\theta) \sin(n\theta) \ d\theta = \delta_{k,n}$$

Finalement, $I_n(r) = a_n r^n$.

4. Soient $n \in \mathbb{N}^*$ et $r \in [0, 1[$. Par inégalité triangulaire,

$$|a_n|r^n = |\mathbf{I}_n(r)| \le \int_0^{\pi} |\operatorname{Im}(f(re^{i\theta}))| |\sin(n\theta)| \, d\theta \le n \int_0^{\pi} |\operatorname{Im}(f(re^{i\theta}))| \sin\theta \, d\theta$$

D'après les questions $\mathbf{1}$ et $\mathbf{2}$, $\operatorname{Im}(z) \ge 0 \implies \operatorname{Im}(f(z)) \ge 0$. Or pour $\theta \in [0,\pi]$, $\operatorname{Im}(re^{i\theta}) = r \sin \theta \ge 0$ donc $\operatorname{Im}(f(re^{i\theta})) \ge 0$. On en déduit donc que

$$|a_n|r^n \le n \int_0^{\pi} \operatorname{Im}(f(z)) \sin \theta \ d\theta = na_1 r^1 = nr$$

En faisant tendre r vers 1, on obtient bien $|a_n| \le n$.

Montrons maintenant le résultat stipulant que $|\sin(n\theta)| \le n \sin \theta$ pour tout $\theta \in [0, \pi]$. On peut en fait montrer que $|\sin(n\theta)| \le n |\sin \theta|$ pour tout $\theta \in \mathbb{R}$, ce qui donne le résultat par positivité de sin sur $[0, \pi]$. On procède par récurrence. Le résultat est évidemment vrai lorsque n = 0. Supposons le vrai pour un certain $n \in \mathbb{N}$. Alors

$$|\sin(n+1)\theta| = |\sin(n\theta)\cos\theta + \sin\theta\cos(n\theta)| \le |\sin(n\theta)| + |\sin\theta| \le (n+1)|\sin\theta|$$

ce qui permet de conclure la récurrence.

Solution 157

1. On rappelle que S(E) désigne l'ensemble des permutations de E et que card S(E) = n!. Notons $S_k(E)$ l'ensemble des permutations de E possédant exactement k points fixes. Alors $S(E) = \bigsqcup_{k=0}^{n} S_k(E)$. Se donner une permutation à k point fixes correspond à se donner une partie de E à k éléments qui formeront les k points fixes et un dérangement des n-k éléments restants. Ainsi $card S_k(E) = \binom{n}{k} D_{n-k}$.

$$\operatorname{card} S(E) = \sum_{k=0}^{n} \operatorname{card} S_k(E)$$

donc

Or.

$$n! = \sum_{k=0}^{n} {n \choose k} D_{n-k} = \sum_{k=0}^{n} {n \choose n-k} D_k = \sum_{k=0}^{n} {n \choose k} D_k$$

- 2. On a clairement $D_n \le n!$ donc $0 \le \frac{D_n}{n!} \le 1$. Le rayon de convergence de la série entière $\sum \frac{D_n}{n!} x^n$ est donc supérieur ou égal à 1, ce qui justifie que f est définie sur]-1,1[.
- 3. On sait que la série entière $\sum_{n\in\mathbb{N}}\frac{x^n}{n!}$ a un rayon de convergence infini et a pour somme e^x . Par conséquent, par produit de Cauchy

$$\forall x \in]-1,1[, e^x f(x) = \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n\right)$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(n-k)!} \cdot \frac{D_k}{k!}\right) x^n$$

$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \binom{n}{k} D_k\right) x^n$$

$$= \sum_{n=0}^{+\infty} x^n \qquad \text{d'après la première question}$$

$$= \frac{1}{1-x}$$

Autrement dit

$$\forall x \in]-1, 1[, f(x) = \frac{e^{-x}}{1-x}$$

4. D'une part,

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n$$

D'autre part, en utilisant un nouveau produit de Cauchy,

$$\frac{e^{-x}}{1-x} = \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} x^n\right) \left(\sum_{n=0}^{+\infty} x^n\right)$$
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!}\right) x^n$$

Par unicité du développement en série entière,

$$\forall n \in \mathbb{N}, \ \frac{\mathbf{D}_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

ou encore

$$\forall n \in \mathbb{N}, \ \mathbf{D}_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$

5. Puisque $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = \frac{1}{e}$, la dernière égalité peut aussi s'écrire

$$D_n = n! \left(\frac{1}{e} - R_n\right)$$

en posant

$$R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!}$$

Comme la série $\sum \frac{(-1)^n}{n!}$ vérifie clairement le critère des séries alternées,

$$|\mathbf{R}_n| \le \frac{1}{(n+1)!}$$

Ainsi

$$\frac{n!}{e} - \frac{1}{n+1} \le D_n \le \frac{n!}{e} + \frac{1}{n+1}$$

Pour $n \ge 2$, on a

$$\frac{n!}{e} - \frac{1}{2} < \frac{n!}{e} - \frac{1}{3} \le D_n \le \frac{n!}{e} + \frac{1}{3} \le \frac{n!}{e} + \frac{1}{2}$$

donc D_n est bien la partie entière de $\frac{n!}{e} + \frac{1}{2}$.

Lorsque n = 1, on peut remarquer que R_1 est du signe de $\frac{(-1)^1}{1!} = -1$ donc négatif. Ainsi $-\frac{1}{2} \le R_1 \le 0$ donc

$$\frac{n!}{e} - \frac{1}{2} < \frac{n!}{e} \le D_n \le \frac{n!}{e} + \frac{1}{2}$$

A nouveau, D_n est bien la partie entière de $\frac{n!}{e} + \frac{1}{2}$.

Solution 158

1. Notons \mathcal{P}_n l'assertion de l'énoncé. Il est clair que $u_1(x) = 1 + x$ donc \mathcal{P}_0 est vraie. Supposons \mathcal{P}_n vérifiée pour un certain $n \in \mathbb{N}$. Alors

$$\forall x \in \mathbb{R}_+, \ u_{n+2}(x) - u_{n+1}(x) = \int_0^x \left(u_{n+1}(t/2) - u_n(t/2) \right) \, \mathrm{d}t$$

Or

$$\forall x \in \mathbb{R}_+, \ 0 \le u_{n+1}(x) - u_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

donc

$$\forall x \in \mathbb{R}_+, \ 0 \leq \int_0^x \left(u_{n+1}(t/2) - u_n(t/2)\right) \, \mathrm{d}t \leq \int_0^x \frac{t^{n+1}}{2^{n+1}(n+1)!} \, \, \mathrm{d}t = \frac{1}{2^{n+1}} \cdot \frac{x^{n+2}}{(n+2)!} \leq \frac{x^{n+2}}{(n+2)!}$$

Ainsi \mathcal{P}_{n+1} est vraie. Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Comme la série exponentielle $\sum \frac{x^{n+1}}{(n+1)!}$ converge, la série télescopique $\sum u_{n+1}(x) - u_n(x)$ converge également donc la suite $(u_n(x))$ converge. La suite de fonctions (u_n) converge simplement vers une certaine fonction u.

2. Fixons $x \in \mathbb{R}_+$. Remarquons que

$$\forall t \in [0,x/2], \ 0 \leq u_{n+1}(t) - u_n(t) \leq \frac{t^{n+1}}{(n+1)!} \leq \frac{x^{n+1}}{2^{n+1}(n+1)!}$$

A nouveau la série $\sum \frac{x^{n+1}}{2^{n+1}(n+1)!}$ converge donc la série de fonctions $\sum u_{n+1} - u_n$ converge normalement sur [0, x/2]. A fortiori, elle converge uniformément sur [0, x/2]. On en déduit que la suite (u_n) converge uniformément vers u sur le segment [0, x/2]. On peut alors affirmer que

$$\lim_{n \to +\infty} \int_0^x u_n(t/2) \, dt = 2 \lim_{n \to +\infty} \int_0^{x/2} u_n(t) \, dt = \int_0^{x/2} u(t) \, dt = \int_0^x u(t/2) \, dt$$

Or

$$u_{n+1}(x) = 1 + \int_0^x u_n(t/2) dt$$

donc par passage à la limite

$$u(x) = 1 + \int_0^x u(t/2) \, \mathrm{d}t$$

La fonction u est bien solution de (E).

3. Soit u une fonction développable en série entière sur \mathbb{R} dont la restriction à \mathbb{R}_+ est solution de (E). Il existe donc $(a_n) \in \mathbb{R}^{\mathbb{N}}$ telle que

$$\forall x \in \mathbb{R}_+, \ u(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Fixons $x \in \mathbb{R}_+$. Comme la série entière $\sum a_n t^n$ converge normalement sur le segment [0, x/2],

$$\int_{0}^{x} u(t/2) dt = 2 \int_{0}^{x/2} u(t) dt = 2 \int_{0}^{x/2} \sum_{n=0}^{+\infty} a_n t^n dt = 2 \sum_{n=0}^{+\infty} \int_{0}^{x/2} a_n t^n dt = 2 \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^{n+1}(n+1)} = \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^n (n+1)}$$

Ainsi

$$\forall x \in \mathbb{R}_+, \ \sum_{n=0}^{+\infty} a_n x^n = 1 + \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^n (n+1)} = 1 + \sum_{n=1}^{+\infty} \frac{a_{n-1} x^n}{2^{n-1} n}$$

Par unicité du développement en série entière, $a_0 = 1$ et

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{a_{n-1}}{2^{n-1}n}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ a_n = \frac{1}{2^{\frac{n(n-1)}{2}}n!}$$

Réciproquement, la série entière $\sum_{n \in \mathbb{N}} \frac{x^n}{2^{\frac{n(n-1)}{2}}n!}$ pssoède bien un rayon de convergence infini (règle de d'Alembert ou comparaison à la série exponentielle) et ce qui précède montre que sa somme est effctivement solution de (E).

Solution 159

1. Par la règle de d'Alembert, le rayon de convergence de la série entière $\sum \frac{x^{n+1}}{n+1}$ vaut 1. Par conséquent, si $|t| > \sqrt{2}$, la série $\sum f_n(t)$ diverge grossièrement et si $|t| < \sqrt{2}$, elle converge. Si $|t| = \sqrt{2}$, la série $\sum f_n(t)$ diverge (série de Riemann). Finalement, $D =] - \sqrt{2}, \sqrt{2}[$.

2. On sait que pour $x \in]-1,1[$, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$ donc, par intégration d'une série entière, $\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x)$. Ainsi, pour $t \in]-\sqrt{2},\sqrt{2}[$,

$$\sum_{n=0}^{+\infty} f_n(t) = -\ln(1 - (t^2 - 1)) = -\ln(2 - t^2)$$

3. Remarquons que

$$\max_{[0,1]} |f_n| = |f_n(0)| = \frac{1}{n+1}$$

et $\sum \frac{1}{n+1}$ diverge. La série $\sum f_n$ ne converge donc pas normalement sur [0,1].

4. Lorsque $t \in [0,1]$, la suite de terme général $\frac{(1-t^2)^{n+1}}{n+1}$ est décroissante et converge vers 0. La série $\sum gf_n(t)$ vérifie donc le critère spécial des séries alternées. En particulier,

$$\forall t \in [0,1], \left| \sum_{k=n+1}^{+\infty} f_k(t) \right| \le |f_{n+1}(t)| = \frac{(1-t^2)^{n+2}}{n+2} \le \frac{1}{n+2}$$

Le reste de la série $\sum f_n$ converge donc uniformément vers la fonction nulle sur [0,1] i.e. la série $\sum f_n$ converge uniformément sur [0,1].

- 5. Comme la série $\sum f_n$ converge uniformément sur le segment [0,1], la série $\sum_{n\in\mathbb{N}}u_n$ converge vers $-\int_0^1\ln(2-t^2)\ \mathrm{d}t$.
- 6. Il s'agit d'un simple calcul.

$$-\int_{0}^{1} \ln(2-t^{2}) dt = -\int_{0}^{1} \ln(\sqrt{2}-t) dt - \int_{0}^{1} \ln(\sqrt{2}+t) dt$$

$$= -\int_{\sqrt{2}-1}^{\sqrt{2}} \ln u du - \int_{\sqrt{2}}^{\sqrt{2}+1} \ln u du \quad \text{par changement de variable}$$

$$= -\left[u \ln u - u\right]_{\sqrt{2}-1}^{\sqrt{2}} - \left[u \ln u - u\right]_{\sqrt{2}}^{\sqrt{2}+1}$$

$$= 2 - 2\sqrt{2} \ln(\sqrt{2}+1)$$

On peut vérifier avec Python.

```
>>> from scipy.integrate import quad
>>> from numpy import log, sqrt
>>> I=quad(lambda t: -log(2-t**2),0,1)[0]
>>> J=2-2*sqrt(2)*log(sqrt(2)+1)
>>> print(I,J)
-0.49290096056092203 -0.49290096056092203
```

Solution 160

1. Raisonnons par l'absurde en supposant que les a_n ne soient pas tous nuls. Posons $m = \min\{n \in \mathbb{N}, \ a_n \neq 0\}$. Alors

$$\forall z \in D(0, R), \ f(z) = \sum_{k=m}^{+\infty} a_k z^p = z^m \sum_{k=0}^{+\infty} a_{k+m} z^k$$

Posons alors $g(z) = \sum_{k=0}^{+\infty} a_{k+m} z^k$ de sorte que

$$\forall z \in D(0, R), \ f(z) = z^m g(z)$$

Par conséquent,

$$\forall p \in \mathbb{N}, \ f(z_p) = z_p^m g(z_p)$$

Mais comme la suite (z_p) ne s'annule pas,

$$\forall p \in \mathbb{N}, \ g(z_p) = 0$$

g est évidemment développable en série entière donc continue en 0. Notamment, $\lim_{z\to 0}g(z)=g(0)=a_p\neq 0$. Mais comme (z_p) converge vers 0, la continuité de g en 0, montre que $g(0)=\lim_{p\to +\infty}g(z_p)=0$, ce qui est contradictoire. Finalement, la suite (a_n) est nulle.

2. Notons R le rayon de convergence commun de f et g. Alors f − g est développable en série entière et son rayon de convergence au moins égal à R. D'après la question précédente, tous les coefficients du développement en série entière de f − g son nuls. Autrement dit f − g est nul sur D(0, R). Ainsi f et g coïncident sur leur disque ouvert de convergence commun.

Solution 161

1. Pour tout $n \in \mathbb{N}^*$, $\|w_n\|_{\infty} = \frac{|\alpha|^n}{n} \le |\alpha|^n$. Or $|\alpha| < 1$ donc $\sum \|al|^n$ converge donc $\sum w_n$ converge normalement et donc simplement sur \mathbb{R} . De plus, pour tout $n \in \mathbb{N}^*$, w_n est de classe \mathcal{C}^1 sur \mathbb{R} et $w'_n(x) = -\alpha^n \sin(nx)$ pour tout $x \in \mathbb{R}$. Ainsi $\|w'_n\|_{\infty} = |\alpha|^n$ et donc $\sum w'_n$ converge normalement et donc uniformément sur \mathbb{R} . On en déduit que \mathbb{R} et de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\forall x \in \mathbb{R}, \ W'(x) = \sum_{n=1}^{+\infty} w'_n(x)$$

$$= -\sum_{n=1}^{+\infty} \alpha^n \sin(nx)$$

$$= -\sum_{n=0}^{+\infty} \alpha^n \sin(nx)$$

$$= -\operatorname{Im} \left(\sum_{n=0}^{+\infty} \alpha^n e^{inx}\right)$$

$$= -\operatorname{Im} \left(\frac{1}{1 - \alpha e^{ix}}\right) \quad \operatorname{car} |\alpha e^{ix}| < 1$$

$$= -\frac{\alpha \sin x}{1 - 2\alpha \cos x + \alpha^2}$$

2. On en déduit qu'il existe $C \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ W(x) = -\frac{1}{2}\ln(1 - 2\alpha\cos x + \alpha^2) + C$$

D'après un développement en série entière usuel,

$$W(0) = \sum_{n=1}^{+\infty} \frac{\alpha^n}{n} = -\ln(1-\alpha)$$

On en déduit que C = 0. La série $\sum w_n$ converge vers W uniformément sur le segment $[-\pi, \pi]$ donc

$$\int_{-\pi}^{\pi} \ln\left(1 - 2\alpha\cos x + \alpha^2\right) \, \mathrm{d}x = -2 \int_{-\pi}^{\pi} W(x) \, \mathrm{d}x$$
$$= -2 \sum_{n=1}^{+\infty} \int_{-\pi}^{\pi} w_n(x) \, \mathrm{d}x$$
$$= -2 \sum_{n=1}^{+\infty} \frac{\alpha^n}{n} \int_{-\pi}^{\pi} \cos(nx) \, \mathrm{d}x$$
$$= 0$$

Solution 162

1. Posons $q = \operatorname{card} \mathbb{K}$ et notons \mathcal{P}_n l'ensemble des polynômes irréductibles unitaires de degré n. Posons $P_n(t) = \prod_{k=1}^n \prod_{P \in \mathcal{P}_k} \frac{1}{1 - t^{\deg P}}$ pour $t \in [0, 1[$,

$$\ln(P_n(t)) = \sum_{k=1}^{n} \sum_{P \in \mathcal{P}_k} -\ln(1 - t^k)$$

Or il est clair que card \mathcal{P}_k est inférieur ou égal au nombre de polynômes unitaires de degré k, c'est-à-dire q^k , donc

$$0 \le \ln(P_n(t)) \le \sum_{k=1}^n -q^k \ln(1-t^k)$$

Or pour $t \in [0, 1[, -q^k \ln(1 - t^k)] \sim (qt)^k$. On en déduit que la série de terme général $-q^k \ln(1 - t^k)$ converge pour $t \in [0, \frac{1}{q}[$. Il en est donc de même pour la suite $(\ln(P_n(t)))$ et donc pour le produit infini définissant $\zeta(t)$. La fonction ζ est donc définie sur $\left[0, \frac{1}{q}[$.

2. On va montrer que pour $t \in \left[0, \frac{1}{q}\right[$

$$\zeta(t) = \sum_{k=0}^{+\infty} q^k t^k$$

Pour $n \in \mathbb{N}$, notons Q_n l'ensemble des polynômes irréductibles unitaires de degré inférieur ou égal à n. Fixons $N \in \mathbb{N}$ et remarquons que

$$\prod_{\mathbf{P} \in \mathcal{Q}_{\mathbf{N}}} \sum_{k=0}^{\mathbf{M}} t^{k \deg \mathbf{P}} = \sum_{k \in [\![0,\mathbf{M}]\!]^{\mathcal{Q}_n}} t^{\deg \mathbf{Q}_k}$$

avec $Q_k = \prod_{P \in \mathcal{Q}_n} P^{k_P}$. Tout d'abord, on sait que tout polynôme unitaire de $\mathbb{K}[X]$ s'écrit de manière unique sous la forme $\prod_{P \in \mathcal{P}} \prod_{k \in \mathbb{N}^{(\mathcal{P})}} P^{k_P}$

(où $\mathbb{N}^{(\mathcal{P})}$ désigne classiquement l'ensemble des familles presque nulles de $\mathbb{N}^{\mathcal{P}}$). De plus, il existe exactement q^n polynômes unitaires de degré n. On en déduit :

$$\prod_{\mathbf{P} \in \mathcal{Q}_{\mathbf{N}}} \sum_{k=0}^{\mathbf{M}} t^{k \deg \mathbf{P}} \leq \sum_{n=0}^{+\infty} q^n t^n$$

Enfin la décomposition en facteurs irréductibles unitaires d'un polynôme unitaire de $\mathbb{K}[X]$ de degré inférieur ou égal à N fait intervenir des polynômes irréductibles unitaires de degré au plus N donc

$$\sum_{n=0}^{N} q^n n t^n \le \prod_{P \in \mathcal{Q}_N} \sum_{k=0}^{M} t^{k \deg P}$$

En faisant tendre M vers $+\infty$, on obtient

$$\sum_{n=0}^{\mathrm{N}} q^n t^n \leq \prod_{\mathrm{P} \in \mathcal{Q}_{\mathrm{N}}} \frac{1}{1 - t^{\deg \mathrm{P}}} \leq \sum_{n=0}^{+\infty} q^n t^n$$

Il suffit alors de faire tendre N vers $+\infty$ pour avoir le résultat voulu

Remarque. On a en fait prouvé que $\zeta(t) = \frac{1}{1 - qt}$ pour $t \in \left[0, \frac{1}{q}\right[$.

Solution 163

Remarquons que f est dérivable sur $\mathbb R$ car le discriminant du trinôme $X^2 - \sqrt{2}X + 1$ est strictement négatif. De plus,

$$\forall x \in \mathbb{R}, f'(x) = \frac{2x - \sqrt{2}}{1 - \sqrt{2}x + x^2} = \frac{2x - \sqrt{2}}{\left(x - e^{\frac{i\pi}{4}}\right)\left(x - e^{-\frac{i\pi}{4}}\right)} = \frac{1}{x - e^{\frac{i\pi}{4}}} + \frac{1}{x - e^{-\frac{i\pi}{4}}} = -\frac{e^{-\frac{i\pi}{4}}}{1 - xe^{-\frac{i\pi}{4}}} - \frac{e^{\frac{i\pi}{4}}}{1 - xe^{\frac{i\pi}{4}}}$$

Or on sait que pour tout nombre complexe z tel que z < 1,

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$

Ainsi pour tout $x \in]-1,1[$

$$f'(x) = -e^{-\frac{i\pi}{4}} \sum_{n=0}^{+\infty} x^n e^{-\frac{ni\pi}{4}} - e^{\frac{i\pi}{4}} \sum_{n=0}^{+\infty} e^{\frac{ni\pi}{4}} = -\sum_{n=1}^{+\infty} x^{n-1} e^{-\frac{ni\pi}{4}} - \sum_{n=1}^{+\infty} x^{n-1} e^{\frac{ni\pi}{4}} = -2\sum_{n=1}^{+\infty} \cos\left(\frac{n\pi}{4}\right) x^{n-1}$$

Comme f(0) = 0, on obtient en intégrant,

$$\forall x \in]-1,1[, f(x) = -2\sum_{n=1}^{+\infty} \frac{\cos\left(\frac{n\pi}{4}\right)}{n} x^n$$

Solution 164

- 1. Posons $u_n(x) = e^{-n+n^2ix}$. Les u_n sont clairement de classe \mathcal{C}^{∞} sur \mathbb{R} . Soit $k \in \mathbb{N}$. Alors $u_n^{(k)}(x) = n^{2k}i^ke^{-n+n^2ix}$. Pour tout $n \in \mathbb{N}$, $\|u_n^{(k)}\|_{\infty} = n^{2k}e^{-n}$ et la série $\sum_{n \in \mathbb{N}} n^{2k}e^{-n}$ converge $(n^{2k}e^{-n}) = 0$ or $(1/n^2)$. La série $\sum_{n \in \mathbb{N}} u_n^{(k)}$ converge normalement sur \mathbb{R} . Par conséquent, f est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Supposons que g soit développable en série entière. Il existerait donc R > 0 tel que

$$\forall x \in]-R, R[, g(x) = \sum_{k=0}^{+\infty} \frac{g^{(k)}(0)}{k!} x^k$$

D'après la question précédente

$$\forall k \in \mathbb{N}, \ g^{(k)}(0) = \sum_{n=0}^{+\infty} u_n^{(k)}(0) = i^k \sum_{n=0}^{+\infty} n^{2k} e^{-n}$$

donc

$$\forall k \in \mathbb{N}, \ \left| \frac{g^{(k)}(0)}{k!} \right| = \frac{1}{k!} \sum_{n=0}^{+\infty} n^{2k} e^{-n} \ge \frac{k^{2k} e^{-k}}{k!} = \frac{k^k}{k!} \cdot k^k e^{-k} \ge k^k e^{-k}$$

Notamment pour r > 0,

$$\left| \frac{g^{(k)}(0)}{k!} r^k \right| \ge \left(\frac{kr}{e} \right)^k$$

donc

$$\lim_{k \to +\infty} \left| \frac{g^{(k)}(0)}{k!} r^k \right| = +\infty$$

ce qui contredit la convergence de la série $\sum_{k\in\mathbb{N}}\frac{g^{(k)}(0)}{k!}r^k$. g n'est donc pas développable en série entière.

Solution 165

1. On décompose en éléments simples :

$$f(z) = \frac{1}{(1 - 2z)(1 - 3z)} = \frac{3}{1 - 3z} - \frac{2}{1 - 2z}$$

D'une part

$$\frac{1}{1 - 3z} = \sum_{n=0}^{+\infty} 3^n z^n$$

avec rayon de convergence $\frac{1}{3}$.

D'une part

$$\frac{1}{1 - 2z} = \sum_{n=0}^{+\infty} 2^n z^n$$

avec rayon de convergence $\frac{1}{2}$. Par conséquent

$$f(z) = \sum_{n=0}^{+\infty} (3^{n+1} - 2^{n+1})z^n$$

Et comme $\frac{1}{3} \neq \frac{1}{2}$, le rayon de convergence est min $\left(\frac{1}{3}, \frac{1}{2}\right) = \frac{1}{3}$.

2. Remarquons que

$$g(x) = \ln(2) + \ln\left(1 + \frac{x}{2}\right) - \ln(1 - x)$$

Or

$$\ln\left(1 + \frac{x}{2}\right) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{2^n n}$$

avec rayon de convergence 2 et

$$\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

avec rayon de convergence 1. Ainsi

$$g(x) = \ln(2) + \sum_{n=1}^{+\infty} \left(\frac{(-1)^{n-1}}{2^n n} + \frac{1}{n} \right) x^n$$

avec rayon de convergence min(1, 2) = 1.

3. Tout d'abord

$$\sin(x^2) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!}$$

avec rayon de convergence infini. Par «primitivation»

$$h(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{4n+3}}{(2n+1)!(4n+3)}$$

avec rayon de convergence infini également.

Solution 166

1. Supposons qu'une telle fonction f existe. On montre alors par récurrence que

$$\forall n \in \mathbb{N}, \ \forall x \in]-1,1[, \ f(x) = f(q^n x) \prod_{k=0}^{n-1} \frac{1+q^k x}{1-q^k x}$$

Fixons $x \in]-1,1[$. Comme $q \in]-1,1[$, $\lim_{n \to +\infty} f(q^n x) = f(0) = 1$ par continuité de f en 0. Posons $u_n(x) = \prod_{k=0}^{n-1} \frac{1+q^k x}{1-q^k x}$ pour $n \in \mathbb{N}$. Il est clair que la suite $(u_n(x))$ est strictement positive. De plus,

$$\ln(u_n + 1(x)) - \ln(u_n(x)) = \ln(1 + q^n x) - \ln(1 - q^n x) \sim 2q^n x$$

On en déduit que la série télescopique $\sum \ln(u_n+1(x)) - \ln(u_n(x))$ converge. Par conséquent, la suite $(\ln(u_n(x)))$ converge puis la suite $(u_n(x))$ converge également. Ona donc nécessairement $f(x) = \lim_{n \to +\infty} u_n(x)$, ce qui permet de conclure à l'unicité de f.

Posons maintenant $u_n(x) = \prod_{k=0}^{n-1} \frac{1+q^k x}{1-q^k x}$ pour $x \in]-1,1[$ et $n \in \mathbb{N}$. Comme précédemment, pour tout $x \in]-1,1[$, la suite $(u_n(x))$

converge vers un réel que l'on note f(x). Remarquons que pour tout $n \in \mathbb{N}$ et tout $x \in]-1,1[,u_{n+1}(x)=\frac{1+x}{1-x}u_n(qx)]$ donc $f(x)=\frac{1+x}{1-x}f(qx)$ par passage à la limite.

Démontrons enfin que f est continue en 0 (en fait sur] – 1, 1[). Tout d'abord, les fonctions $\ln \circ u_{n+1} - \ln \circ u_n$ sont continues sur] – 1, 1[. Fixons $a \in [0, 1[$. Pour tout $n \in \mathbb{N}$ et $x \in [-a, a]$,

$$|\ln(u_{n+1}(x)) - \ln(u_n(x))| \le 2\max\{\ln(1+|q|^na), -\ln(1-|q|^na)\} \le 2|q|^na$$

On en déduit que la série $\sum \ln \circ u_{n+1} - \ln \circ u_n$ converge normalement et donc uniformément sur [-a,a]. Ainsi sa somme $\ln \circ f$ est continue sur]-1,1[. Par continuité de l'exponentielle, f est donc également continue sur]-1,1[et donc a fortiori en 0.

2. Supposons que f soit développable en série entière sur un intervalle]-r,r[. Notons $f(x)=\sum_{n=0}^{+\infty}a_nx^n$ son développement en série entière. Puisque (1-x)f(x) = (1+x)f(qx) pour tout $x \in]-r, r[$

$$\sum_{n=0}^{+\infty} a_n x^n - \sum_{n=0}^{+\infty} a_n x^{n+1} = \sum_{n=0}^{+\infty} a_n q^n x^n + \sum_{n=0}^{+\infty} a_n q^n x^{n+1}$$

ou encore

$$\sum_{n=1}^{+\infty} a_n x^n - \sum_{n=1}^{+\infty} a_{n-1} x^n = \sum_{n=1}^{+\infty} a_n q^n x^n + \sum_{n=1}^{+\infty} a_{n-1} q^{n-1} x^n$$

ou enfin

$$\sum_{n=1}^{+\infty} (a_n - a_{n-1}) x^n = \sum_{n=1}^{+\infty} (a_n q^n - a_{n-1} q^{n-1}) x^n$$

Par unicité du développement en série entière

$$\forall n \in \mathbb{N}^*, \ a_n - a_{n-1} = a_n q^n - a_{n-1} q^{n-1}$$

ou encore

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{1 - q^{n-1}}{1 - q^n} a_{n-1}$$

De plus, on a $a_0 = f(0) = 1$.

Réciproquement, considérons la suite (a_n) telle que $a_0 = 1$ et

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{1 - q^{n-1}}{1 - q^n} a_{n-1}$$

Comme $q \in]-1,1[$, $\lim_{\substack{n \to +\infty \\ +\infty}} \frac{|a_n|}{|a_{n-1}|} = 1$. D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum a_n x^n$ vaut 1. Posons alors $g(x) = \sum_{\substack{n=0 \\ n \neq 0}} a_n x^n$ pour $x \in]-1,1[$. Alors g(0) = 1 et g est continue sur]-1,1[donc en 0. Par ailleurs, en reprenant «à l'apprentie que $[a_n]$ on montre que

$$\forall x \in]-1,1[, g(x) = \frac{1+x}{1-x}g(qx)$$

D'après l'unicité prouvée à la première question, f = g. Ainsi f est développable en série entière et cette série entière a pour rayon de convergence 1.

REMARQUE. La deuxième question prouve en fait la partie «existence» de la première question. En étant un peu malin, on aurait pu rechercher une fonction f développable en série entière dans la première question.

Solution 167

La série entière $\sum_{n\in\mathbb{N}^*} H_n x^n$ est le produit de Cauchy des séries entières $\sum_{n\in\mathbb{N}} x^n$ et $\sum_{n\in\mathbb{N}^*} \frac{x^n}{n}$. Comme ces deux séries entières ont pour rayon de convergence 1, le rayon de convergence de $\sum_{n\in\mathbb{N}^*} H_n x^n$ est supérieur ou égal à 1. De plus, (H_n) ne converge pas vers 0 donc le rayon de convergence est inférieur ou égal à 1. El x^n est supérieur ou égal à 1. De plus, (H_n) ne converge pas vers 0 donc le rayon de convergence est inférieur ou égal à 1 : il vaut donc 1. Enfin, pour tout $x \in]-1,1[$

$$\sum_{n=1}^{+\infty} H_n x^n = \left(\sum_{n=0}^{+\infty} x^n\right) \left(\sum_{n=1}^{+\infty} \frac{x^n}{x}\right) = -\frac{\ln(1-x)}{1-x}$$

Solution 168

Soit $r \in \mathbb{R}_+^*$. La suite $(a_n r^n)$ est bornée si et seulement si la suite extraite $(a_{n^2} r^{n^2})$ est bornée (les autres termes sont nuls), c'est-à-dire si et seulement si la suite $(a^n r^{n^2})$ est bornée. Or

$$q^n r^{n^2} = \exp(n^2 \ln(r) + n \ln(q))$$

On en déduit que $(q^n r^{n^2})$ diverge vers $+\infty$ si r > 1 ou si r = 1 et q > 1 et qu'elle est bornée sinon. Le rayon de convergence vaut donc toujours 1.

Solution 169

- 1. C'est du cours. La série entière $\sum_{n \in \mathbb{N}} (-1)^n x^{2n}$ a pour rayon de convergence 1 et pour somme $\frac{1}{1+x^2}$. Par intégration, la série entière $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n+1}}{2n+1}$ a également pour rayon de convergence 1 et pour somme $\arctan(x)$, ce qui répond à la question.
- 2. Une simple application de la règle de d'Alembert montre que le rayon de convergence vaut 1.
- 3. f est bien dérivable sur]-1,1[et pour $x \in]-1,1[$,

$$f'(x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1} x^{2k}}{2k-1} = x \sum_{k=0}^{+\infty} \frac{(-1)^k}{x^{2k+1}} 2k + 1 = x \arctan(x)$$

Par intégration par parties,

$$f(x) = f(0) + \int_0^x t \arctan(t) dt$$

$$= 0 + \frac{x^2 \arctan(x)}{2} - \frac{1}{2} \int_0^x \frac{t^2}{1 + t^2} dt$$

$$= \frac{x^2 \arctan(x)}{2} - \frac{x}{2} + \frac{1}{2} \arctan(x)$$

4. Pour tout $k \in \mathbb{N}^*$ et tout $x \in [-1, 1]$,

$$\left| \frac{(-1)^{k+1}}{(2k+1)(2k-1)} x^{2k+1} \right| \le \frac{1}{4k^2 - 1}$$

Or la série $\sum_{k \in \mathbb{N}^*} \frac{1}{4k^2 - 1}$ converge (équivalent + critère de Riemann) donc la série entière définissant f converge normalement sur [-1, 1].

5. La convergence normale et donc uniforme sur [-1,1] permet d'appliquer le théorème d'interversion limite/série. Ainsi

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \lim_{x \to 1^-} f(x) = \frac{\pi}{4} - \frac{1}{2}$$

Solution 170

1. Soit $n \in \mathbb{N}$. Par intégration par parties,

$$a_n = \left[\frac{t}{(2+t^2)^{n+1}}\right]_0^1 + 2(n+1) \int_0^1 \frac{t^2 dt}{(2+t^2)^{n+2}}$$
$$= \frac{1}{3^{n+1}} + 2(n+1)(a_n - 2a_{n+1})$$

Par conséquent

$$4(n+1)a_{n+1} = (2n+1)a_n + \frac{1}{3^{n+1}}$$

puis

$$\frac{a_{n+1}}{a_n} = \frac{2n+1}{4(n+1)} + \frac{1}{4(n+1)3^{n+1}a_n}$$

Or pour $t \in [0,1]$

$$\frac{1}{(2+t^2)^{n+1}} \ge \frac{1}{3^{n+1}}$$

donc

$$a_n \ge \frac{1}{3^{n+1}}$$

Par conséquent,

$$4(n+1)3^{n+1}a_n \ge 4(n+1)$$

de sorte que

$$\lim_{n \to +\infty} \frac{1}{4(n+1)3^{n+1}a_n} = 0$$

puis

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$$

D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum a_n x^n$ vaut 2.

2. Notons f(x) la somme de cette série entière.

Soit $x \in]-2, 2[$. En reprenant la relation obtenue à la première question

$$4\sum_{n=0}^{+\infty}(n+1)a_{n+1}x^n = \sum_{n=0}^{+\infty}(2n+1)a_nx^n + \sum_{n=0}^{+\infty}\frac{x^n}{3^{n+1}}$$

ou encore

$$4f'(x) = 2xf'(x) + f(x) + \frac{1}{3-x}$$

puis

$$f'(x) = \frac{1}{2(2-x)}f(x) + \frac{1}{2(2-x)(3-x)}$$

Les solutions de l'équation différentielle $y' = \frac{1}{2(2-x)}f(x)$ sur]-2,2[sont les fonctions $x\mapsto \frac{\lambda}{\sqrt{2-x}}$ avec $\lambda\in\mathbb{R}$. On applique alors la méthode de variation de la constante et on recherche une solution de l'équation différentielle

(E)
$$y' = \frac{1}{2(2-x)}y + \frac{1}{2(2-x)(3-x)}$$

de la forme $x \mapsto \frac{\varphi(x)}{\sqrt{2-x}}$ avec φ dérivable sur] – 2, 2[ce qui donne

$$\frac{\varphi'(x)}{\sqrt{2-x}} = \frac{1}{2(2-x)(3-x)}$$

ou encore

$$\varphi'(x) = \frac{1}{2\sqrt{2-x}(3-x)} = \frac{1}{2\sqrt{2-x}} \cdot \frac{1}{1+\sqrt{2-x^2}}$$

On peut alors choisir

$$\varphi(x) = -\arctan(\sqrt{2-x})$$

Les solutions de (E) sont donc les fonctions

$$x \mapsto \frac{\lambda}{\sqrt{2-x}} - \frac{\arctan(\sqrt{2-x})}{\sqrt{2-x}}$$

Or

$$f(0) = a_0 = \frac{1}{\sqrt{2}} \arctan\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{2\sqrt{2}} - \frac{\arctan(\sqrt{2})}{\sqrt{2}}$$

donc

$$f(x) = \frac{\pi/2 - \arctan(\sqrt{2-x})}{\sqrt{2-x}} = \frac{1}{\sqrt{2-x}} \arctan\left(\frac{1}{\sqrt{2-x}}\right)$$

Solution 171

D'après la règle de d'Alembert, le rayon de convergence vaut 1.

On effectue maintenant une décomposition en éléments simples :

$$\frac{n^2 + 4n - 1}{n + 2} = n + 2 - \frac{5}{n + 2}$$

Ainsi pour $x \in]-1,0[\cup]0,1[,$

$$\frac{n^2 + 4n - 1}{n + 2}x^n = (n + 1)x^n + x^n - \frac{5}{x^2} \cdot \frac{x^{n+2}}{n+2}$$

La série géométrique $\sum x^n$ converge et

$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$

En considérant la dérivée de cette série géométrique

$$\sum_{n=0}^{+\infty} (n+1)x^n = \sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

Et en en considérant une primitive

$$\sum_{n=0}^{+\infty} \frac{x^{n+2}}{n+2} = \sum_{n=1}^{+\infty} \frac{x^{n+1}}{n+1} = -x + \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x) - x$$

Finalement,

$$\forall x \in]-1,0[\cup]0,1[, \ \sum_{n=0}^{+\infty} \frac{n^2+4n-1}{n+2} x^n = \frac{1}{(1-x)^2} + \frac{1}{(1-x)} + \frac{5(\ln(1-x)+x)}{x^2}$$

La somme vaut $-\frac{1}{2}$ lorsque x = 0.

Probabilités

Solution 172

- 1. Notons Y_i la variable aléatoire valant 1 si la i-ème ampoule est annulée et 0 sinon. Les Y_i sont des variables aléatoires de Bernoulli de paramètre p_i mutuellement indépendantes et $Y = \sum_{i=1}^n Y_i$. Ainsi $\mathbb{E}(Y) = \sum_{i=1}^n \mathbb{E}(Y_i) = \sum_{i=1}^n p_i$ et $\mathbb{V}(Y) = \sum_{i=1}^n \mathbb{V}(Y_i) = \sum_{i=1}^n p_i p_i^2$.
- 2. Dans ce cas, $\mathbb{V}(Y) = m \sum_{i=1}^{n} p_i^2$. D'après l'inégalité de Cauchy-Schwarz,

$$\left(\sum_{i=1}^{n} p_i\right)^2 \le \sum_{i=1}^{n} 1 \sum_{i=1}^{n} p_i^2$$

ou encore

$$\sum_{i=1}^{n} p_i^2 \ge \frac{m^2}{n}$$

De plus, cette inégalité est une égalité lorsque tous les p_i sont égaux à $\frac{m}{n}$. $\mathbb{V}(Y)$ est donc maximale dans ce cas et alors Y suit une loi binomiale de paramètres n et $\frac{m}{n}$.

Solution 173

Z est à valeurs dans \mathbb{N}^* puisque X et Y le sont. Soit $k \in \mathbb{N}^*$. Remarquons que $\{Z \ge k\} = \{X \ge k\} \cap \{Y \ge k\}$ donc par indépendance de X et Y:

$$\mathbb{P}(Z \ge k) = \mathbb{P}\left(\{X \ge k\} \cap \{Y \ge k\}\right) = \mathbb{P}(X \ge k)\mathbb{P}(Y \ge k)$$

Puisque $\{X \ge k\} = \bigsqcup_{n=k}^{+\infty} \{X = k\},$

$$\mathbb{P}(X \ge k) = \sum_{n=k}^{+\infty} \mathbb{P}(X = k) = \sum_{n=k}^{+\infty} (1 - p_1)^{n-1} p_1 = (1 - p_1)^{k-1}$$

Remarque. On aurait pu se passer du calcul de somme de série puisqu'une loi géométrique représente la loi du premier succès.

De la même manière

$$\mathbb{P}(Y \ge k) = (1 - p_2)^{k - 1}$$

Ainsi

$$\mathbb{P}(Z \ge k) = (1 - p_1)^{k-1} (1 - p_2)^{k-1}$$

On constate enfin que

$${Z \ge k} = {Z = k} \sqcup {Z \ge k + 1}$$

donc

$$\mathbb{P}(Z=k) = \mathbb{P}(Z \ge k) - \mathbb{P}(Z \ge k+1) = (1-p_1)^{k-1}(1-p_2)^{k-1} - (1-p_1)^k(1-p_2)^k$$

Solution 174

1. Remarquons que

$${X = Y} = \bigsqcup_{n \in \mathbb{N}^*} ({X = n} \cap {Y = n})$$

Ainsi par indépendance de X et Y,

$$\mathbb{P}(X = Y) = \sum_{n=1}^{+\infty} \mathbb{P}(X = n) \mathbb{P}(Y = n) = \sum_{n=1}^{+\infty} \left((1 - p)^{n-1} p \right)^2 = p^2 \sum_{n=0}^{+\infty} (1 - p)^{2n} = \frac{p^2}{1 - (1 - p)^2} = \frac{p}{2 - p}$$

2. X + Y est à valeurs dans $[2, +\infty]$. Soit $n \in [2, +\infty]$. Remarquons que

$$\{X + Y = n\} = \bigsqcup_{k=1}^{n-1} (\{X = k\} \cap \{Y = n - k\})$$

A nouveau par indépednace de X et Y,

$$\mathbb{P}(X+Y=n) = \sum_{k=1}^{n-1} \mathbb{P}(X=k) \mathbb{P}(Y=n-k) = \sum_{k=1}^{n-1} (1-p)^{k-1} p (1-p)^{n-k-1} p = (n-1)p^2 (1-p)^{n-2}$$

Remarque. On aurait aussi pu utiliser les fonctions génératrices de X et Y.

3. Puisque $\{Z > n\} = \bigsqcup_{k \ge n+1} \{Z = k\},$

$$\mathbb{P}(Z > n) = \sum_{k=n+1}^{+\infty} \mathbb{P}(Z = k) = \sum_{k=n+1}^{+\infty} (1-p)^{k-1} p = p(1-p)^n \sum_{k=0}^{+\infty} (1-p)^k = (1-p)^n$$

Remarque. Ceci est cohérent avec l'interprétation de la loi géométrique comme loi du premier succès.

4. On remarque que

$$\{Z > X + Y\} = \bigsqcup_{n \ge 2} (\{Z > n\} \cap \{X + Y = n\})$$

Par indépendance de Z et X + Y,

$$\mathbb{P}(Z > X + Y) = \sum_{n=2}^{+\infty} \mathbb{P}(Z > n) \mathbb{P}(X + Y = n)$$

$$= \sum_{n=2}^{+\infty} (1 - p)^n (n - 1) p^2 (1 - p)^{n-2}$$

$$= p^2 \sum_{n=2}^{+\infty} (n - 1) (1 - p)^{2n-2}$$

$$= p^2 \sum_{n=1}^{+\infty} n (1 - p)^{2n}$$

$$= p^2 (1 - p)^2 \sum_{n=1}^{+\infty} n (1 - p)^{2(n-1)}$$

$$= \frac{p^2 (1 - p)^2}{(1 - (1 - p)^2)^2}$$

 $\operatorname{car} \sum_{n=1}^{+\infty} nt^{n-1} = \frac{1}{(1-t)^2} \text{ pour } t \in]-1,1[.\text{ En simplifiant}]$

$$\mathbb{P}(Z > X + Y) = \frac{(1-p)^2}{(2-p)^2}$$

On peut vérifier avec Python.

```
>>> import numpy.random as rd
>>> p=.2
>>> n=10000
>>> X=rd.geometric(p,n)
>>> Y=rd.geometric(p,n)
>>> Z=rd.geometric(p,n)
>>> z=rd.geometric(p,n)
>>> sum(Z>X+Y)/n
np.float64(0.2008)
>>> (1-p)**2/(2-p)**2
0.19753086419753088
```

Solution 175

- 1. La loi de X est une loi géométrique de paramètre 1/2.
- 2. Notons B l'événement consitant à obtenir une boule blanche à la fin de l'expérience. Alors

$$B = \bigsqcup_{n \in \mathbb{N}^*} (B \cap \{X = n\})$$

Or

$$\mathbb{P}(\mathrm{B} \cap \mathrm{X} = n) = \mathbb{P}_{\mathrm{X} = n}(\mathrm{B})\mathbb{P}(\mathrm{X} = n) = \frac{1}{n} \cdot \frac{1}{2^n}$$

Par conséquent

 $\mathbb{P}(\mathbf{B}) = \sum_{n=1}^{+\infty} \frac{1}{2^n n}$

Comme

$$\forall x \in]-1,1[, \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$

on obtient par intégration

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

Ainsi

$$\mathbb{P}(B) = -\ln\left(1 - \frac{1}{2}\right) = \ln(2)$$

On peut vérifier avec Python.

Solution 176

1. X et Y sont à valeurs dans \mathbb{N}^* et pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(X = n) = \mathbb{P}(Y = n) = (1 - p)^{n-1}p$$

2. a. U et V sont respectivement à valeurs dans \mathbb{N}^* et \mathbb{Z} . Soit alors $(n, m) \in \mathbb{N}^* \times \mathbb{Z}$. Traitons d'abord le cas où m = 0. Alors

$$\{(U, V) = (n, 0)\} = \{X = n\} \cap \{Y = n\}$$

donc, par indépendance de X et Y

$$\mathbb{P}((U, V) = (n, 0)) = \mathbb{P}(X = n)\mathbb{P}(Y = n) = p^2(1 - p)^{2n-2}$$

Traitons maintenant le cas m > 0. Alors

$$\{(U, V) = (n, m)\} = (\{X = n + m\} \cap \{Y = n\})$$

A nouveau, par indépendance de X et Y,

$$\mathbb{P}((U, V) = (n, m)) = \mathbb{P}(X = n + m)\mathbb{P}(Y = n) = p^{2}(1 - p)^{2n + m - 2}$$

En intervertissant X et Y, on trouve que si m < 0,

$$\mathbb{P}((U, V) = (n, m)) = p^{2}(1 - p)^{2n - m - 2}$$

Dans tous les cas.

$$\mathbb{P}((U, V) = (n, m)) = p^{2}(1 - p)^{2n + |m| - 2}$$

On retrouve alors les lois marginales.

$$\mathbb{P}(\mathbf{U} = n) = \sum_{m = -\infty}^{+\infty} \mathbb{P}(\mathbf{U} = n, \mathbf{V} = m)$$

$$= p^{2}(1 - p)^{2n - 2} + 2\sum_{m = 1}^{+\infty} p^{2}(1 - p)^{2n + m - 2}$$

$$= p^{2}(1 - p)^{2n - 2} + 2p^{2}(1 - p)^{2n - 1}\sum_{m = 1}^{+\infty} (1 - p)^{m - 1}$$

Or

$$\sum_{m=1}^{+\infty} (1-p)^{m-1} = \frac{1}{1-(1-p)} = \frac{1}{p}$$

donc

$$\mathbb{P}(U = n) = p(1-p)^{2n-2}(2-p) = \left((1-p)^2\right)^{n-1} \left(1 - (1-p)^2\right)$$

Notamment, U suit la loi géométrique de paramètre $1 - (1 - p)^2$.

De la même manière

$$\mathbb{P}(V = m) = \sum_{n=1}^{+\infty} \mathbb{P}(U = n, V = m)$$

$$= \sum_{n=1}^{+\infty} p^{2} (1 - p)^{2n + |m| - 2}$$

$$= p^{2} (1 - p)^{|m|} \sum_{n=1}^{+\infty} (1 - p)^{2(n-1)}$$

$$= p^{2} (1 - p)^{|m|} \cdot \frac{1}{1 - (1 - p)^{2}} = \frac{p(1 - p)^{|m|}}{2 - p}$$

b. Il s'agit d'une simple vérification :

$$\forall (n,m) \in \mathbb{N}^* \times \mathbb{Z}, \ \mathbb{P}(\mathbb{U} = n) \mathbb{P}(\mathbb{V} = m) = p(1-p)^{2n-2}(2-p) \cdot \frac{p(1-p)^{|m|}}{2-p} = p^2(1-p)^{2n+|m|-2} = \mathbb{P}(\{\mathbb{U} = n\} \cap \{\mathbb{V} = m\})$$

3. L'énoncé suppose implicitement que U et V sont respectivement à valeurs dans N* et Z. Puisque X = U + max(V,0) et Y = U − $\min(V, 0)$, X et Y sont à valeurs dans \mathbb{N}^* .

Posons $p_n = \mathbb{P}(X = n) = \mathbb{P}(Y = n)$ pour $n \in \mathbb{N}^*$. Par indépendance de U et V d'une part et de X et Y d'autre part,

$$\mathbb{P}(U = n)\mathbb{P}(V = 0) = \mathbb{P}(U = n, V = 0) = \mathbb{P}(X = n, Y = n) = p_n^2$$

De même,

$$\mathbb{P}(U = n)\mathbb{P}(V = 1) = \mathbb{P}(U = n, V = 1) = \mathbb{P}(X = n + 1, Y = n) = p_n p_{n+1}$$

Par hypotèse ces deux quantités ne sont pas nulles, donc en divisant membre à membre

$$\frac{p_{n+1}}{p_n} = \frac{\mathbb{P}(V=1)}{\mathbb{P}(V=0)}$$

La suite de terme général $\frac{p_{n+1}}{p_n}$ est donc constante i.e. la suite (p_n) est géométrique. En notant 1-p sa raison, $p_n=(1-p)^{n-1}p_1$.

Mais comme $\sum_{n=0}^{+\infty} p_n = 1$, $p_1 = p$. Ainsi

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}(X = n) = \mathbb{P}(Y = n) = (1 - p)^{n-1}p$$

donc X et Y suivent bien la loi géométrique de paramètre
$$p$$
.
On a vu plus haut que $1 - p = \frac{\mathbb{P}(V = 1)}{\mathbb{P}(V = 0)}$ i.e. $p = 1 - \frac{\mathbb{P}(V = 1)}{\mathbb{P}(V = 0)}$.

Solution 177

- 1. a. Les variables aléatoires Y_k sont mutuellement indépendantes. On a clairement $Y_1 = 1$.
 - **b.** Y_k suit la loi géométrique de paramètre $\frac{n-k+1}{n} = 1 \frac{k-1}{n}$. On en déduit que $\mathbb{E}(Y_k) = \frac{n}{n-k+1}$ et que $\mathbb{V}(Y_k) = \frac{\frac{k-1}{n}}{\left(\frac{n-k+1}{n}\right)^2} = \frac{n(k-1)}{(n-k+1)^2}$.
- 2. On a clairement $X = \sum_{k=1}^{n} Y_k$. Par linéarité de l'espérance,

$$\mathbb{E}(Y) = \sum_{k=1}^{n} \mathbb{E}(Y_k) = n \sum_{k=1}^{n} \frac{1}{n-k+1} = n \sum_{k=1}^{n} \frac{1}{k} = n H_n$$

3. Par comparaison série/intégrale, on obtient classiquement $H_n \sim \lim_{n \to +\infty} \ln(n)$. Par conséquent, $\mathbb{E}(X) \sim \lim_{n \to +\infty} n \ln n$.

Solution 178

Pour $1 \le i \le 6$, notons p_i (resp. q_i) la probabilité d'obtenir i en lançant le premier (resp. le deuxième) dé. De même, pour $2 \le i \le 12$, notons r_i la probabilité d'obtenir i en lançant deux dés. On a la relation suivante : $r_k = \sum_{i+j=k} p_i q_j$.

Notons $P = \sum_{i=1}^{6} p_i X^{i-1}$, $Q = \sum_{i=1}^{6} q_i X^{i-1}$ et $R = \sum_{i=2}^{12} q_i X^{i-2}$. La relation précédente signifie que R = PQ. S'il y avait équiprobabilité sur les sommes, on aurait $r_i = \frac{1}{11}$ pour $2 \le i \le 12$ i.e. $R = \frac{1}{11} \sum_{i=0}^{10} X^i$.

Les racines de R sont les racines $11^{\text{èmes}}$ de l'unité privées de 1. Aucune de ces racines n'est réelle. De plus, deg $P \le 5$ et deg $Q \le 5$. Puisque deg $R = \deg PQ = 10$, deg $P = \deg Q = 5$. Puisque 5 est impair, les polynômes P et Q admettent chacun au moins une racine réelle en vertu du théorème des valeurs intermédiaires, d'où une contradiction.

Il est donc impossible de piper deux dés de manière à avoir équiprobabilité sur les sommes.

Solution 179

- **1.** Il est nécessaire et suffisant d'avoir $\sum_{n \in \mathbb{N}^*} \mathbb{P}(\{n\}) = 1$ et $\mathbb{P}(\{n\}) \ge 0$ pour tout $n \in \mathbb{N}^*$. On prend donc $\lambda = \sum_{n=1}^{+\infty} \frac{1}{n^s} = \frac{1}{\zeta(s)}$.
- 2. Comme $A_r = \bigcup_{n \in \mathbb{N}^*} \{rn\},\$

$$\mathbb{P}(\mathbf{A}_r) = \sum_{n=1}^{+\infty} \mathbb{P}(\{rn\}) = \frac{1}{r^s}$$

3. Soient p_1, \ldots, p_n des nombres premiers distincts. Comme les p_i sont premiers entre eux deux à deux,

$$\bigcap_{i=1}^{n} \mathbf{A}_{p_i} = \mathbf{A}_q$$

avec
$$q = \prod_{i=1}^{n} p_i$$
. Ainsi

$$\mathbb{P}\left(\bigcap_{i=1}^{n} \mathbf{A}_{p_i}\right) = \mathbb{P}(\mathbf{A}_q) = \frac{1}{q^s} = \prod_{i=1}^{n} \frac{1}{p_i^s} = \prod_{i=1}^{n} \mathbb{P}(\mathbf{A}_{p_i})$$

Les A_p pour $p \in \mathcal{P}$ sont donc mutuellement indépendants.

4. A_p est l'ensemble des multiples de p strictement positifs i.e. l'ensemble des entiers naturels non nuls divisibles par p. Ainsi $\bigcap_{p \in \mathcal{P}} \overline{A_p}$ est l'ensemble des entiers naturels non nuls ne possédant aucun diviseur premier. Il est donc clair que $\bigcap_{p \in \mathcal{P}} \overline{A_p} = \{1\}$.

On montre classiquement que les $\overline{A_p}$ pour $p \in \mathcal{P}$ sont également mutuellement indépendants. Notons $(p_n)_{n \in \mathbb{N}^*}$ la suite strictement croissante des nombres premiers. Soit $n \in \mathbb{N}^*$.

$$\mathbb{P}\left(\bigcap_{i=1}^{n} \overline{\mathbf{A}_{p_i}}\right) = \prod_{i=1}^{n} \mathbb{P}(\overline{\mathbf{A}_{p_i}}) = \prod_{i=1}^{n} 1 - \frac{1}{p_i^s}$$

Posons $B_n = \bigcap_{i=1}^n \overline{A_{p_i}}$. La suite (B_n) est décroissante pour l'inclusion et

$$\bigcap_{n\in\mathbb{N}^*} \mathbf{B}_n = \bigcap_{i\in\mathbb{N}^*} \overline{\mathbf{A}_{p_i}} = \bigcap_{p\in\mathcal{P}} \overline{\mathbf{A}_p}$$

Par continuité décroissante,

$$\mathbb{P}\left(\bigcap_{p\in\mathcal{P}}\overline{\mathbf{A}_p}\right) = \lim_{n\to+\infty}\mathbb{P}(\mathbf{B}_n) = \lim_{n\to+\infty}\prod_{i=1}^n 1 - \frac{1}{p_i^s} = \prod_{p\in\mathcal{P}} 1 - \frac{1}{p^s}$$

Remarque. La notion de produit indexé sur un ensemble infini n'est pas au programme. Il faudrait établir pour les produits une théorie similaire à celle des familles sommables pour donner un sens précis à ce produit infini.

Finalement

$$\mathbb{P}(\{1\}) = \prod_{p \in \mathcal{P}} 1 - \frac{1}{p^s}$$

et donc

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - \frac{1}{p^s}}$$

5. Supposons que la famille $\left(\frac{1}{p}\right)_{p\in\mathcal{P}}$ soit sommable. Comme il s'agit d'une famille positive, ceci équivaut à la convergence de la série

$$\sum_{n\in\mathbb{N}^*}\frac{1}{p_n}.\text{ Comme }p_n\underset{n\to+\infty}{\longrightarrow}+\infty, \frac{1}{p_n}\underset{n\to+\infty}{\sim}-\ln(1-\frac{1}{p_n}).\text{ Ainsi la série }\sum_{n\in\mathbb{N}^*}-\ln(1-\frac{1}{p_n})\text{ converge. Notons }S_n=\sum_{i=1}^n-\ln\left(1-\frac{1}{p_i}\right).$$
 Alors (S_n) converge vers un réel ℓ . Par conséquent

$$e^{\mathbf{S}_n} = \prod_{i=1}^n \frac{1}{1 - \frac{1}{p_i}} \xrightarrow[n \to +\infty]{} e^{\ell}$$

Mais pour tout s > 1,

$$\prod_{i=1}^{n} \frac{1}{1 - \frac{1}{p_i^s}} \le \prod_{i=1}^{n} \frac{1}{1 - \frac{1}{p_i}}$$

donc, en passant à la limite, $\zeta(s) \le e^{\ell}$ pour tout s > 1.

On montre alors que $\lim_{t \to 0} \zeta = +\infty$ pour aboutir à une contradiction. On peut par exemple utiliser une comparaison série/intégrale :

$$\forall s > 1, \ \zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s} \ge \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^s} = \frac{1}{s-1}$$

Solution 180

- 1. Notons $S_{j,k}$ la somme de l'énoncé. Si $\omega^j = 1$, autrement dit si k divise j, $S_{j,k} = k$. Sinon, $S_{j,k} = \frac{\omega^k 1}{\omega 1} = 0$.
- **2.** X_n suit clairement la loi binomiale de paramètres n et $\frac{1}{2}$. D'après la question précédente,

$$\begin{split} \mathbb{P}(k \mid \mathbf{X}_n) &= \sum_{j=0}^n \frac{\mathbf{S}_{j,k}}{k} \mathbb{P}(\mathbf{X} = j) \\ &= \sum_{j=0}^n \frac{\mathbf{S}_{j,k}}{k} \cdot \frac{1}{2^n} \cdot \binom{n}{j} \qquad \text{car } \mathbf{X}_n \sim \mathcal{B}(n, 1/2) \\ &= \frac{1}{2^n k} \sum_{j=0}^n \sum_{\ell=0}^{k-1} \binom{n}{j} \omega^{\ell j} \\ &= \frac{1}{2^n k} \sum_{\ell=0}^{k-1} \sum_{j=0}^n \binom{n}{j} \omega^{\ell j} \qquad \text{car les deux sommes sont finies} \\ &= \frac{1}{k} \sum_{\ell=0}^{k-1} \frac{1}{2^n} (1 + \omega^{\ell})^n \end{split}$$

Lorsque $\ell = 0$, $\frac{1}{2^n}(1 + \omega^{\ell})^n = 1$ et lorsque $\ell \in [[1, k-1]]$,

$$\left|1 + \omega^{\ell}\right| = 2\left|\cos\frac{\pi\ell}{k}\right| < 2$$

Ainsi, dans ce cas, $\lim_{n \to +\infty} \frac{1}{2^n} (1 + \omega^{\ell})^n = 0$. On en déduit que

$$\lim_{n\to +\infty} \mathbb{P}(k\mid \mathbf{X}_n) = \frac{1}{k}$$

ce qui est conforme à l'intuition.

Solution 181

- 1. Le premier tirag eétant effectué, on tire des jetons jusqu'à obtention d'un jeton différent du premier jeton tiré. A chaque tentative, la probabilité de réussite est de $\frac{2}{3}$. On en déduit que Y 1 ~ $\mathcal{G}(2/3)$.
- **2.** Par conséquent, Y est à valeurs dans $\mathbb{N} \setminus \{0, 1\}$ et

$$\forall n \ge 2, \ \mathbb{P}(Y = n) = \mathbb{P}(Y - 1 = n - 1) = \left(\frac{1}{3}\right)^{n - 2} \cdot \frac{2}{3} = \frac{2}{3^{n - 1}}$$

- **3.** On sait alors que $\mathbb{E}(Y-1)=\frac{3}{2}$ et $\mathbb{V}(Y-1)=\frac{3}{4}$. Donc $\mathbb{E}(Y)=\frac{5}{2}$ et $\mathbb{V}(Y)=\frac{3}{4}$.
- **4.** Remarquons que (Y, Z) est à valeurs dans $\{(k, \ell) \in \mathbb{N}^2, \ 2 \le k < \ell\} \cup \{(+\infty, +\infty)\}$. De plus, pour $2 \le k < \ell$,

$$\mathbb{P}((Y,Z) = (k,\ell)) = \mathbb{P}(Y = k)\mathbb{P}(Z = \ell \mid Y = k) = \frac{2}{3^{k-1}} \cdot \left(\frac{2}{3}\right)^{\ell-k-1} \cdot \frac{1}{3} = \frac{2^{\ell-k}}{3^{\ell-1}}$$

5. \mathbb{Z} est à valeurs dans $[3, +\infty]$. Pour tout entier $\ell \geq 3$,

$$\mathbb{P}(Z=\ell) = \sum_{k=2}^{\ell-1} \mathbb{P}((Y,Z) = (k,\ell)) = \sum_{k=2}^{\ell-1} \frac{2^{\ell-k}}{3^{\ell-1}} = \frac{2^{\ell-1}}{3^{\ell-1}} \left(1 - \frac{1}{2^{\ell-2}}\right)$$

On peut vérifier avec Python.

```
from random import randint
def Z():
   X=randint(1,3)
   Y=randint(1,3)
   n=2
   while X==Y:
        Y=randint(1,3)
        n + = 1
   Z=randint(1,3)
   n + = 1
   while Y==Z or X==Z:
        Z=randint(1,3)
   return n
def frequencies(l):
   proba theorique = lambda i: 2**(i-1)/3**(i-1)*(1-1/2**(i-2))
   proba_empirique = lambda i: l.count(i)/len(l)
   return [(proba_theorique(i), proba_empirique(i)) for i in range(3, max(l)+1)]
>>> frequencies([Z() for _ in range(100000)])
[(0.222222222222222, 0.22267), (0.2222222222222222, 0.22117), (0.1728395061728395, 0.17327),
(0.1234567901234568, 0.12389), (0.0850480109739369, 0.08669), (0.05761316872427984, 0.05584),
   (0.03871361073007164, 0.03852), (0.025910684346898336, 0.02558), (0.017307659740215753,
   0.01737), (0.011549729885349455, 0.01163), (0.007703583276412622, 0.00785),
   (0.005136976635223854, 0.00512), (0.003425069240465493, 0.00335), (0.0022835188770824145,
   0.00239), (0.001522392379201194, 0.00155), (0.0010149437398495463, 0.00111),
   (0.0006766343222492809, 0.00064), (0.00045109126894938174, 0.00051), (0.00030072808622731934,
  0.00026), (0.00020048558201634563, 0.00028), (0.00013365711841027467, 9e-05),
  (8.910476685108673e-05, 7e-05), (5.9403184982136813e-05, 4e-05), (3.9602125681895316e-05,
  8e-05), (2.6401417908087134e-05, 2e-05), (1.760094553433262e-05, 0.0),
   (1.1733963776979923e-05, 0.0), (7.82264254712823e-06, 0.0), (5.215095041132692e-06, 1e-05)]
```

Solution 182

1. Si n voitures sont passés en 1H, chacune de ces voitures a une probabilité $\frac{1}{m}$ de chosir le gucihet n°1. Ainsi la loi de X conditionnée par l'événement N = n est une loi binomiale de paramètres n et $\frac{1}{m}$. Autrement dit

$$\mathbb{P}(X = k \mid N = n) = \binom{n}{k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^{n-k}$$

2. D'après la formule des probailités totales, pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(X = k) = \sum_{n=0}^{+\infty} \mathbb{P}(X = k \mid N = n) \mathbb{P}(N = n)$$

Or $\mathbb{P}(X = k \mid N = n) = 0$ lorsque k > n donc

$$\mathbb{P}(\mathbf{X} = k) = \sum_{n=k}^{+\infty} \mathbb{P}(\mathbf{X} = k \mid \mathbf{N} = n) \mathbb{P}(\mathbf{N} = n)$$

$$= \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{X} = k \mid \mathbf{N} = n + k) \mathbb{P}(\mathbf{N} = n + k)$$

$$= \sum_{n=0}^{+\infty} \binom{n+k}{k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^n e^{-\lambda} \frac{\lambda^{n+k}}{(n+k)!}$$

$$= e^{-\lambda} \left(\frac{\lambda}{m}\right)^k \frac{1}{k!} \sum_{n=0}^{+\infty} \lambda^n \left(1 - \frac{1}{m}\right)^n \frac{1}{n!}$$

3. On reconnaît la somme d'une série exponentielle

$$\sum_{n=0}^{+\infty} \lambda^n \left(1 - \frac{1}{m} \right)^n \frac{1}{n!} = e^{\lambda \left(1 - \frac{1}{m} \right)}$$

Ainsi

$$\mathbb{P}(X = k) = e^{-\frac{\lambda}{m}} \left(\frac{\lambda}{m}\right)^k \frac{1}{k!}$$

Par conséquent, X suit une loi de Poisson de paramètre $\frac{\lambda}{m}$.

4. C'est du cours : $\mathbb{E}(X) = \mathbb{V}(X) = \frac{\lambda}{m}$

Solution 183

- 1. L'application $t \mapsto t^n e^{-t^2}$ est continue sur \mathbb{R} et $t^n e^{-t^2} = \frac{1}{t^2}$ par croissances comparées, donc l'intégrale I_n converge par comparaison à une intégrale de Riemann.
- 2. Remarquons que
 - $t \mapsto t^{n+1}/(n+1)$ est de classe \mathcal{C}^1 sur \mathbb{R} ;
 - $t \mapsto e^{-t^2}$ est de classe \mathcal{C}^1 sur \mathbb{R} ;
 - $\lim_{t \to +\infty} \frac{t^{n+1}}{n+1} e^{-t^2} = 0.$

Donc, par intégration par parties

$$I_n = \left[\frac{t^{n+1}}{n+1} e^{-t^2} \right]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \frac{2t^{n+2}}{n+1} e^{-t^2} dt$$

ou encore

$$2I_{n+2} = (n+1)I_n$$

Comme $t\mapsto te^{-t^2}$ est impaire, ${\rm I}_1=0.$ Ainsi ${\rm I}_{2n+1}=0$ pour tout $n\in\mathbb{N},$ On montre également que

$$\forall n \in \mathbb{N}, \ I_{2n} = \frac{(2n)!}{2^{2n}n!} I_0 = \frac{(2n)!}{2^{2n}n!} \sqrt{\pi}$$

3. On utilise la formule de transfert :

$$\mathbb{E}(\mathbf{Y}) = \sum_{n=0}^{+\infty} \mathbb{P}(\mathbf{X} = n) \mathbf{I}_n$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^n \mathbf{I}_n}{n!}$$

$$= e^{-\lambda} \sum_{n=0}^{+\infty} \frac{\lambda^{2n} \mathbf{I}_{2n}}{(2n)!}$$

$$= e^{-\lambda} \sqrt{\pi} \sum_{n=0}^{+\infty} \frac{\lambda^{2n}}{2^{2n} n!}$$

$$= e^{-\lambda} \sqrt{\pi} e^{\frac{\lambda^2}{4}}$$

$$= \sqrt{\pi} e^{-\lambda + \frac{\lambda^2}{4}}$$

L'utilisation de la formule de transfert est justifiée a posteriori puisque le calcul précédent montre que la série à termes postifs $\sum_{\mathbf{x} \in \mathbb{N}} \mathbb{P}(\mathbf{X} = \mathbf{X})$ $n)I_n$ converge.

Solution 184

On note respectivement P_n et F_n le nombre de «piles» et de «faces» obtenus en P_n coups. En remarquant que $P_n + P_n = P_n$, l'événement $P_n = 2P_n$ est également l'événement $3F_n = n$. Remarquons que, F_n étant à valeurs entières, l'événement $3F_n = n$ est vide si n n'est pas multiple de 3. Si on note A l'événement dont on recherche la probabilité, alors $\overline{A} = \bigcup_{n \in \mathbb{N}^*} \{F_{3n} = n\}$. From Notons $T = \min\{n \in \mathbb{N}^*, F_{3n} = n\}$. On convient que $T = \infty$ si F_{3n} n'est jamais égal à n.

Posons $S_1 = \sum_{n=0}^{+\infty} \mathbb{P}(F_{3n} = n) = \sum_{n=0}^{+\infty} \frac{\binom{3n}{n}}{2^{3n}}$ et $S_2 = \sum_{n=1}^{+\infty} \mathbb{P}(T = n)$.

On vérifie que pour tout $n \in \mathbb{N}^*$

Posons
$$S_1 = \sum_{n=0}^{+\infty} \mathbb{P}(F_{3n} = n) = \sum_{n=0}^{+\infty} \frac{\binom{3n}{n}}{2^{3n}} \text{ et } S_2 = \sum_{n=1}^{+\infty} \mathbb{P}(T = n)$$

$$\mathbb{P}(\mathbf{A}_n) = \sum_{k=1}^n \mathbb{P}(\mathbf{A}_{n-k}) \mathbb{P}(\mathbf{T} = k)$$

$$S_1 = 1 + S_1 S_2$$

$$f(1) = \sum_{n=0}^{+\infty} \frac{\binom{3n}{n}}{2^{3n}} = 1 + \frac{3}{\sqrt{5}}$$

$$\mathbb{P}(T = \infty) = 1 - \sum_{n=1}^{+\infty} \mathbb{P}(T = n) = 1 - S_2 = \frac{1}{S_1} = \frac{\sqrt{5}}{\sqrt{5} + 3}$$

Solution 185

- **a.** Le nombre de tirages possibles est $\binom{2n}{n}$
 - **b.** Notons A l'ensemble des tirages possibles et A_k le nombre de tirages dans lesquels figurent k boules blanches. Alors De plus, se donner un tirage dans A_k équivaut à choisir k boules parmi les n boules blanches et n-k boules parmi les n noires. Ainsi

$$\binom{2n}{n} = \operatorname{card}(A) = \sum_{k=0}^{n} \operatorname{card}(A_k) \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^2$$

a. Pour que la puce se retrouve en O, il faut qu'elle est sauté autant de fois à gauche qu'à droite et le nombre de sauts doit donc être pair. Ainsi $\mathbb{P}(C_{2n+1}) = 0$ pour tout $n \in \mathbb{N}$. De plus, si le nombre de sauts est 2n, il y faut placer n sauts à droite parmi les 2nsauts, le reste des sauts étant à gauche. Ainsi $\mathbb{P}(C_{2n}) = \binom{2n}{n} \cdot \frac{1}{2^n} \cdot \frac{1}{2^n} = \frac{\binom{2n}{n}}{2^{2n}}$

b. D'après la formule de Stirling

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Ainsi

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \underset{n \to +\infty}{\sim} \frac{(2n)^{2n} e^{-2n} \sqrt{4\pi n}}{(n^n e^{-n} \sqrt{2\pi n})^2} = \frac{2^{2n}}{=} \frac{2^{2n}}{\sqrt{\pi n}}$$

puis

$$\mathbb{P}(\mathsf{C}_{2n}) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{\pi n}}$$

puis $\lim_{n\to+\infty} \mathbb{P}(C_{2n}) = 0.$

- **3. a.** Pour se retrouver à l'origine, il faut, pour les mêmes raisons que précédemment, un nombre pair de déplacements horizontaux et un nombre pair de déplacements verticaux. Ainsi pour se retrouver à l'origine en 2*n* coups :
 - on fixe un nombre 2k ($k \in [0, n]$) de déplacements horizontaux (les 2n 2k déplacements restants sont horizontaux);
 - on choisit k déplacements à doite parmi les 2k déplacements horizontaux (les k déplacements restants étant à gauche);
 - on choisit n-k déplacements vers le haut parmi les 2n-2k déplacements verticaux (les n-k déplacements restants étant vers le bas).

Finalement

$$\mathbb{P}(C_{2n}) = \frac{1}{4^n} \sum_{k=0}^n \binom{2n}{2k} \binom{2k}{k} \binom{2n-k}{n-k} = \frac{1}{4^n} \binom{2n}{n} \sum_{k=0}^n \binom{n}{k}^2 = \frac{1}{4^n} \binom{2n}{n}^2$$

b. On avait trouvé précédemment

$$\binom{2n}{n} \underset{n \to +\infty}{\sim} \frac{2^{2n}}{\sqrt{\pi n}}$$

donc

$$\binom{2n}{n}^2 \underset{n \to +\infty}{\sim} \frac{4^{2n}}{\pi n}$$

puis

$$\mathbb{P}(\mathsf{C}_{2n}) \underset{n \to +\infty}{\sim} \frac{1}{\pi n}$$

et enfin $\lim_{n\to+\infty} \mathbb{P}(C_{2n}) = 0.$

Solution 186

1. Posons
$$a_n = \frac{n^2 + n + 1}{n!}$$
. Alors

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^2 + (n+1) + 1}{(n^2 + n + 1)(n+1)} \xrightarrow[n \to +\infty]{} 0$$

On en déduit que $R = +\infty$.

2. Pour tout $t \in \mathbb{R}$,

$$S(t) = \sum_{n=0}^{+\infty} \frac{n(n-1) + 2n + 1}{n!} t^n$$

$$= \sum_{n=2}^{+\infty} \frac{t^n}{(n-2)!} t^n + 2 \sum_{n=1}^{+\infty} \frac{t^n}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{t^n}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{t^{n+2}}{n!} t^n + 2 \sum_{n=0}^{+\infty} \frac{t^{n+1}}{n!} + \sum_{n=0}^{+\infty} \frac{t^n}{n!}$$

$$= t^2 e^t + 2t e^t + e^t = (t^2 + 2t + 1) e^t$$

- 3. a. On doit avoir $G_X(1) = 1$ donc $\lambda = \frac{1}{4e}$.
 - **b.** On sait que $\mathbb{E}(X) = G'_X(1)$. Or $G'_X(t) = \lambda(t^2 + 4t + 3)e^t$ donc $\mathbb{E}(X) = 2$. Par ailleurs, $\mathbb{V}(X) = G''_X(1) + G'_X(1) - G'_X(1)^2$. Or $G''_X(t) = \lambda(t^2 + 6t + 7)e^t$ donc $\mathbb{V}(X) = \frac{7}{2} + 2 - 2^2 = \frac{3}{2}$.

Equations différentielles

Solution 187

En posant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $A = \begin{pmatrix} 3 & 6 & 0 \\ -3 & -6 & 0 \\ -3 & -6 & -5 \end{pmatrix}$, il s'agit de résoudre l'équation différentielle X' = AX. Ces solutions sont de la forme

 $t \mapsto \exp(tA)X_0 \text{ avec } X_0 \in \mathcal{M}_{3,1}(\mathbb{R}).$

Procédons à la réduction de A.

$$\chi_{A} = \begin{vmatrix} X - 3 & -6 & 0 \\ 3 & X + 6 & 0 \\ 3 & 6 & X + 5 \end{vmatrix} = (X + 5) \begin{vmatrix} X - 3 & 6 \\ 3 & X + 6 \end{vmatrix} = X(X + 3)(X + 5)$$

Ainsi, χ_A est scindé à racines simples donc A est diagonalisable et $Sp(A) = \{0, -3, -5\}$. Des vecteurs propres associés aux valeurs propres

$$0, -3, -5 \text{ sont respectivement} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \text{ Ainsi, en posant D} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -5 \end{pmatrix} \text{ et P} = \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 0 \\ 0 & 3 & 1 \end{pmatrix}, A = PDP^{-1}. \text{ En posant D}$$

$$Y = P^{-1}X$$
, le système $X' = AX$ équivaut à $Y' = DY$. L'ensemble des solutions de ce système est $V(Y_1, Y_2, Y_3)$ avec $Y_1 : t \mapsto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$Y_2: t \mapsto e^{-3t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 et $Y_3: t \mapsto e^{-5t} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. On en déduit que l'ensemble des solutions du système $X' = AX$ est $\text{vect}(X_1, X_2, X_3)$, avec

$$X_1 = \operatorname{PY}_1, X_2 = \operatorname{PY}_2 \text{ et } X_3 = \operatorname{PY}_3, \text{ c'est-\`a-dire } X_1 : t \mapsto \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, Y_2 : t \mapsto e^{-3t} \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \text{ et } X_3 : t \mapsto e^{-5t} \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}.$$

Solution 188

1. Soit $t \in \mathbb{R}$. Le polynôme caractéristique de A(t) est

$$\chi_{A(t)} = X^2 - \text{tr}(A(t))X + \text{det}(A(t)) = X^2 - 2X + (1 - t^2) = (X - 1 - t)(X - 1 + t)$$

Les valeurs propres de A(t) sont donc 1 + t et 1 - t.

2. On remarque $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ est un vecteur propre de A associé à la valeur propre 1+t et que $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ est un vecteur propre de A associé à la valeur propre 1-t. Ainsi en posant $P=\begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$,

$$\forall t \in \mathbb{R}, \ P^{-1}A(t)P = \begin{pmatrix} 1+t & 0\\ 0 & 1-t \end{pmatrix} = D(t)$$

3. En posant $X = P^{-1}Y$ le système équivaut à X' = D(t)X. Si on note $X = \begin{pmatrix} x \\ y \end{pmatrix}$, le système équivaut à $\begin{pmatrix} x' = (1+t)x \\ y' = (1-t)y \end{pmatrix}$. On en déduit que les solutions de X' = D(t)X sont les fonctions $t \mapsto \begin{pmatrix} \lambda e^{t+t^2/2} \\ \mu e^{t-t^2/2} \end{pmatrix}$ avec $(\lambda, \mu) \in \mathbb{R}^2$. Les solutions de Y' = A(t)Y sont donc les

fonctions

$$t \mapsto P \begin{pmatrix} \lambda e^{t+t^2/2} \\ \mu e^{t-t^2/2} \end{pmatrix} = \begin{pmatrix} \lambda e^{t+t^2/2} + \mu e^{t-t^2/2} \\ -2\lambda e^{t+t^2/2} - \mu e^{t-t^2/2} \end{pmatrix}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

Solution 189

Première version

On écrit le système sous la forme X' = AX + B(t) avec $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $A = \begin{pmatrix} 9 & -5 \\ 10 & -6 \end{pmatrix}$ et $B(t) = \begin{pmatrix} 2t \\ e^t \end{pmatrix}$. On calcule

$$\chi_A(\lambda) = \lambda^2 - \operatorname{tr}(A)\lambda + \operatorname{det}(A) = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1)$$

Comme χ_A est scindé à racines simples, A est diagonalisable et $Sp(A) = \{4, -1\}$. On trouve sans peine que $A = PDP^{-1}$ avec $D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$

et $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Le système X' = AX + B équivaut donc à Y' = DY + C(t) avec $Y = P^{-1}X$ et $C = P^{-1}B(t)$. On trouve sans peine

$$P^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$
 de sorte que $C(t) = \begin{pmatrix} 4t - e^t \\ -2t + e^t \end{pmatrix}$. En posant $Y = \begin{pmatrix} u \\ v \end{pmatrix}$, le système $Y' = DY + C(t)$ équivaut à

$$\begin{cases} u' - 4u = 4t - e^t \\ v' + v = -2t + e^t \end{cases}$$

On résout séparément ces deux équations différentielles. Les solutions de la première sont les fonctions

$$t \mapsto ae^{4t} - t - \frac{1}{4} + \frac{1}{3}e^t, \ a \in \mathbb{R}$$

tandis que les solutions de la seconde sont les fonctions

$$t \mapsto be^{-t} - 2t + 2 + \frac{1}{2}e^t, \ b \in \mathbb{R}$$

On en déduit que les solutions de X' = AX + B(t) sont les fonctions

$$t \mapsto P\left(\begin{array}{c} ae^{4t} - t - \frac{1}{4} + \frac{1}{3}e^{t} \\ be^{-t} - 2t + 2 + \frac{1}{2}e^{t} \end{array}\right) = \left(\begin{array}{c} ae^{4t} + be^{-t} - 3t + \frac{7}{4} + \frac{5}{6}e^{t} \\ ae^{4t} + 2be^{-t} - 5t + \frac{15}{4} + \frac{4}{3}e^{t} \end{array}\right)$$

Deuxième version

On résout d'abord l'équation homogène. On trouve comme précédemment que $X_1: t \mapsto e^{4t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $X_2: t \mapsto e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ forment une base

du sous-espace vectoriel des solutions du système homogène. On recherche une solution particulière du système avec second membre. On cherche donc une solution de la forme $\lambda_1 X_1 + \lambda_2 X_2$ où λ_1 et λ_2 sont des fonctions dérivables sur $\mathbb R$ telles que

$$\lambda_1'(t)\mathbf{X}_1(t) + \lambda_2'(t)\mathbf{X}_2(t) = \begin{pmatrix} 2t \\ e^t \end{pmatrix}$$

ce qui équivaut à

$$\begin{cases} \lambda'_1(t)e^{4t} + \lambda'_2(t)e^{-t} = 2t \\ \lambda'_1(t)e^{4t} + 2\lambda'_2(t)e^{-t} = e^t \end{cases}$$

ou encore

$$\begin{cases} \lambda_1'(t) = 4te^{-4t} - e^{-3t} \\ \lambda_2'(t) = e^{2t} - 2te^t \end{cases}$$

A l'aide d'intégration par parties, on peut choisir

$$\begin{cases} \lambda_1(t) = -te^{-4t} - \frac{1}{4}e^{-4t} + \frac{1}{3}e^{-3t} \\ \lambda_2(t) = \frac{1}{2}e^{2t} - 2te^t + 2e^t \end{cases}$$

On en déduit donc qu'une solution de l'équation avec second membre est

$$\lambda_1 X_1 + \lambda_2 X_2 : t \mapsto \begin{pmatrix} -3t + \frac{7}{4} + \frac{5}{6}e^t \\ -5t + \frac{15}{4} + \frac{4}{3}e^t \end{pmatrix}$$

Solution 190

1. Remarquons que $Ker(A - 2I_3) = vect \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ On cherche trois vecteurs C_1 , C_2 et C_3 tels que $AC_1 = 2C_1$, $AC_2 = 2C_2 + C_1$ et

 $AC_3 = 2C_3$. On choisit un vecteur C_2 qui n'est pas dans $Ker(A - 2I_3)$, par exemple $C_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. On pose ensuite $C_1 = AC_2 - C_2 = \frac{1}{1}$

 $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. On vérifie que $C_1 \in \text{Ker}(A-2I_3)$ i.e. $AC_1 = 2C_1$ (c'est forcément le cas puisque $(A-2I_3)^2 = 0$). On choisit ensuite un

dernier vecteur C_3 dans $Ker(A - 2I_3)$ non colinéaire à C_1 , par exemple, $C_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Ainsi en posant $P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, on a bien $A = PTP^{-1}$.

2. En posant $Y(t) = P^{-1}X(t)$, le système X'(t) = AX(t) équivaut à Y'(t) = TY(t). Les solutions de ce système sont les fonctions

$$t\mapsto \exp(t\mathrm{T})\mathrm{Y}_0,\;\mathrm{Y}_0\in\mathcal{M}_{3,1}(\mathbb{R})$$

Or T = 2I₃ + N avec N = $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Les matrices I₃ et N commutent et N² = 0 de sorte que

$$\exp(tT) = e^{2t}(I_3 + tN) = \begin{pmatrix} e^{2t} & te^{2t} & 0\\ 0 & e^{2t} & 0\\ 0 & 0 & e^{2t} \end{pmatrix}$$

Ainsi les solutions de X'(t) = AX(t) sont les fonctions

$$t \mapsto P \exp(tT) \begin{pmatrix} a \\ b \\ c \end{pmatrix}, (a, b, c) \in \mathbb{R}^3$$

ou encore

$$\begin{cases} f(t) = ae^{2t} + b(t+1)e^{2t} \\ g(t) = -ae^{2t} - bte^{2t} + ce^{2t} \\ h(t) = ae^{2t} + bte^{2t} \end{cases}$$

Solution 191

- 1. On recherche une solution polynomiale de degré 2. On trouve sans difficulté $x \mapsto x^2 + \frac{1}{9}$.
- 2. On pose $z(t) = y(x) = y(e^t)$ ou encore $y(x) = z \ln(x)$. On trouve sans peine que y est solution de $4x^2y'' 8xy' + 9y = 0$ sur \mathbb{R}_+^* si et seulement si z est solution de 4z'' 12z' + 9z = 0 sur \mathbb{R} .

L'équation homgène associée 4z'' - 12z' + 9z = 0 admet pour polynôme caractéristique $4X^2 - 12X + 9 = (2X - 3)^2$ donc ses solutions sur \mathbb{R} sont les fonctions $t \mapsto (At + B)e^{\frac{3t}{2}}$ avec $(A, B) \in \mathbb{R}^2$.

On en déduit que les solutions sur \mathbb{R}_+^* de l'équation homogène $4x^2y'' - 8xy' + 9y = 0$ sont les fonctions $x \mapsto (A \ln(x) + B)x^{\frac{3}{2}}$. D'après la première question, les solutions de l'équation différentielle $4x^2y'' - 8xy' + 9y = x^2 + 1$ sur \mathbb{R}_+^* sont les fonctions

$$x \mapsto x^2 + \frac{1}{9} + (A \ln(x) + B)x^{\frac{3}{2}}$$

avec $(A, B) \in \mathbb{R}^2$.

3. En effectuant cette fois-ci le changement de variable $x = -e^t$, on trouve de la même manière que les solutions de l'équation différentielle $4x^2y'' - 8xy' + 9y = x^2 + 1$ sur \mathbb{R}_+^* sont les fonctions

$$x \mapsto x^2 + \frac{1}{9} + (A \ln(-x) + B)(-x)^{\frac{3}{2}}$$

avec $(A, B) \in \mathbb{R}^2$.

Solution 192

- 1. On a $f' = \frac{y''}{y} \frac{y'^2}{y^2} = -q f^2$. f vérifie donc $f^2 + f' = -q$.
- 2. Supposons que f s'annule. Il existe donc $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$. On en déduit $y'(x_0) = 0$. Comme $y'' = -qy \le 0$, y est concave sur \mathbb{R}_+ . On a donc $y(x) \le y'(x_0)(x-x_0) + y(x_0) = y(x_0)$. Supposons qu'il existe $x_1 > x_0$ tel que $y(x_1) < y(x_0)$. D'après l'inégalité des pentes,

$$\forall x \ge x_1 \frac{y(x) - y(x_0)}{x - x_0} \le \frac{y(x_1) - y(x_0)}{x_1 - x_0}$$

ou encore, en posant $c = \frac{y(x_1) - y(x_0)}{x_1 - x_0} < 0$

$$y(x) \le c(x - x_0) + f(x_0)$$

On en déduirait que $\lim_{t\to\infty} y=-\infty$, ce qui contredirait la stricte positivité de f sur \mathbb{R}_+ . On en déduit par l'absurde que $y(x_1)=y(x_0)$ pour tout $x_1\in]x_0,+\infty[$.

Ainsi y est constante sur $[x_0, +\infty[$ puis qy = -y'' = 0 sur $[x_0, +\infty[$ et enfin, comme y ne s'annule pas, q est nulle sur $[x_0, +\infty[$, ce qui contredit l'énoncé. f ne s'annule donc pas.

3. Puisque $f' = -q - f^2$ et que q est à valeurs positives, f' est négative sur \mathbb{R}_+ : f est donc décroissante sur \mathbb{R}_+ . Comme f ne s'annule pas, l'équation différentielle $f^2 + f' = -q$ peut se réécrire $\left(\frac{1}{f}\right)' = q + 1$. Comme q est positive, on a donc

 $\left(\frac{1}{f}\right)' \geq 1$. L'inégalité des accroissements finis donne alors $\frac{1}{f(x)} - \frac{1}{f(0)} \geq x$ pour tout $x \in \mathbb{R}_+$. On en déduit notamment que

 $\lim_{x \to +\infty} \frac{1}{f(x)} = +\infty \text{ et donc que } \lim_{x \to +\infty} f(x) = 0. \text{ Comme } f \text{ est décroissante sur } \mathbb{R}_+, f \text{ est positive sur } \mathbb{R}_+. \text{ Comme } f \text{ ne s'annule pas, elle est en fait strictement positive sur } \mathbb{R}_+.$

4. On a vu à la question précédente que $\frac{1}{f(x)} - \frac{1}{f(0)} \ge x$ pour tout $x \in \mathbb{R}_+$. On en déduit que $0 < f(x) \le \frac{1}{\frac{1}{f(0)} + x}$ pour $x \in \mathbb{R}_+$.

Ainsi $f(x) = \mathcal{O}\left(\frac{1}{x}\right)$ puis $f(x)^2 = \mathcal{O}\left(\frac{1}{x^2}\right)$. Notamment f^2 est intégrable sur \mathbb{R}_+ . De plus, comme f' est négative, on a pour tout

 $x \in \mathbb{R}_+$

$$\int_0^x |f'(x)| \, \mathrm{d}x = -\int_0^x f'(x) \, \mathrm{d}x = f(0) - f(x) \underset{x \to +\infty}{\longrightarrow} f(0)$$

car on a montré que f est de limite nulle en 0. Ceci prouve que f' est intégrable sur \mathbb{R}_+ . Enfin, $q = -f^2 - f'$ est intégrable sur \mathbb{R}_+ comme combinaison linéaire de fonctions intégrables sur cet intervalle.

5. Comme $f(x)^2 = \mathcal{O}\left(\frac{1}{x^2}\right)$, on a $\int_{[x,+\infty[} f^2 = \mathcal{O}\left(\frac{1}{x}\right)] dx$ par intégration d'une relation de domination. Enfin puisque f a une limite nulle en 0, $\int_{[x,+\infty[} f' = f(x) = \mathcal{O}\left(\frac{1}{x}\right)] dx$. Puisque $q = -f^2 - f'$, on en déduit que $\int_{[x,+\infty[} q = \mathcal{O}\left(\frac{1}{x}\right)] dx$.

Solution 193

Il suffit de montrer que f s'annule au moins une fois sur tout intervalle du type $[A, +\infty[$. En effet, pour A = 0, on trouve que f s'annule au moins une fois sur \mathbb{R}_+ . Si on suppose que f ne s'annule qu'un nombre fini de fois sur \mathbb{R}_+ , disons n fois, et en notant x_1, \ldots, x_n les zéros de f sur \mathbb{R}_+ , on aboutit à une contradiction en choisissant $A > \max\{x_i \mid 1 \le i \le n\}$.

Soit donc $A \in \mathbb{R}$. Supposons que f ne s'annule pas sur $[A, +\infty[$. Quitte à changer f en -f qui est aussi solution de l'équation différentielle y'' + qy = 0, on peut supposer f > 0 sur $[A, +\infty[$.

Comme q est non identiquement nulle et positive, il existe $a \in \mathbb{R}$ tel que q(a) > 0. Posons $c = \frac{q(a)}{2}$. Par continuité de q, il existe $\alpha > 0$ tel

que $q \ge c > 0$ sur $[a - \alpha, a + \alpha]$. On peut supposer $\alpha \le \frac{T}{2}$ où T est une période de q. Comme q est périodique et positive, on a alors pour tout $k \in \mathbb{N}$

$$\int_{A+kT}^{A+(k+1)T} q(t) dt \ge 2\alpha c$$

Supposons que $f' \ge 0$ sur $[A, +\infty[$. Alors f est croissante sur $[A, +\infty[$ et donc $f \ge f(A) > 0$ sur $[A, +\infty[$. On a alors pour $n \in \mathbb{N}$

$$f'(A + nT) = f'(A) - \int_{A}^{A+nT} q(t)f(t) dt$$

$$\geq f'(A) - f(A) \int_{A}^{A+nT} q(T) dt$$

$$\geq f'(A) - 2n\alpha c f(A)$$

Comme $\alpha c f(A) > 0$, on obtient que $f'(A + nT) \xrightarrow[n \to +\infty]{} -\infty$, ce qui contredit notre hypothèse selon laquelle $f' \ge 0$ sur $[A, +\infty[$. Ainsi il existe $B \ge A$ tel que f'(B) < 0.

Or $f'' = -qf \ge 0$ sur $[A, +\infty[$ donc f' est décroissante sur $[A, +\infty[$. En particulier, $f' \le f'(B) < 0$ sur $[B, +\infty[$. Pour $x \ge B$, on a donc

$$f(x) = f(B) + \int_{B}^{x} f'(t) dt \le f(B) + f'(B)(x - B)$$

Puisque f'(B) < 0, $f(x) \xrightarrow[x \to +\infty]{} -\infty$, ce qui contredit notre hypothèse suivant laquelle f > 0 sur $[A, +\infty[$. On en déduit donc que f s'annule sur $[A, +\infty[$.

Solution 194

- 1. On peut trouver une suite injective (x_n) de zéros de f. Comme [0,1] est compact, on peut supposer que (x_n) converge quitte à considérer une suite extraite. Notons $\ell \in [0,1]$ sa limite. Comme deux termes consécutifs x_n et x_{n+1} de cette suite sont distincts, en appliquant le théorème de Rolle, il existe y_n strictement compris entre x_n et x_{n+1} tel que $f'(y_n) = 0$. Par encadrement, (y_n) converge également vers ℓ . Par continuité de f et f', $f(\ell) = f'(\ell) = 0$.
- 2. Soit f une solution de (E) s'annulant une infinité de fois sur [0,1]. D'après la question précédente, il existe $\ell \in [0,1]$ tel que f est solution du problème de Cauchy $\begin{cases} y'' + a(t)y' + b(t)y = 0 \\ f(\ell) = f'(\ell) = 0 \end{cases}$. La fonction nulle est également solution de ce problème de Cauchy. Par unicité de la solution de ce problème, f est nulle. Ainsi l'unique solution de (E) s'annulant une infinité de fois est la fonction nulle.

Solution 195

Supposons que A^T possède une valeur propre λ strictement positive. Notons u un vecteur propre associé. Posons $\varphi(t) = u^T x(t)$. Comme $\ell : y \in \mathcal{M}_{n,1}(\mathbb{R}) \mapsto u^T y$ est une forme linéaire, φ est également de classe \mathcal{C}^1 et

$$\forall t \in \mathbb{R}, \ \varphi'(t) = u^{\mathsf{T}} x'(t) = u^{\mathsf{T}} A x(t) = (A^{\mathsf{T}} u)^{\mathsf{T}} x(t) = \lambda u^{\mathsf{T}} x(t) = \lambda \varphi(t)$$

Ainsi $\varphi(t) = \varphi(0)e^{\lambda t}$ pour tout $t \in \mathbb{R}$. Mais comme $\lim_{t \to +\infty} x(t) = 0$, $\lim_{t \to +\infty} \varphi(t) = 0$. On ne peut avoir $\varphi(0) \neq 0$ sinon $\lim_{t \to +\infty} \varphi(t) = \pm \infty$ puisque $\lambda > 0$. Ainsi $\varphi(0) = 0$ puis $\varphi(t) = 0$ pour tout $t \in \mathbb{R}$, ou encore $\ell(x(t)) = 0$ pour tout $t \in \mathbb{R}$.

Si A^{T} ne possède aucune valeur propre strictement positive, on peut néanmoins affirmer que A^{T} possède une valeur propre complexe λ non réelle de partie réelle strictement positive car $tr(A^{T}) = tr(A) > 0$. On note à nouveau u un vecteur propre associé.

ATTENTION! u est un vecteur à coefficients complexes donc on va devoir raisonner un peu différemment que dans le cas précédent.

Comme précédemment, $\varphi(t) = \varphi(0)e^{\lambda t}$ pour tout $t \in \mathbb{R}$. A nouveau, $\lim_{t \to +\infty} \varphi(t) = 0$ car $\lim_{t \to +\infty} x(t) = 0$. Si $\varphi(0) \neq 0$, $|\varphi(t)| = |\varphi(0)|e^{\operatorname{Re}(\lambda)t} \longrightarrow_{t \to +\infty} +\infty$ donc $\varphi(0) = 0$ puis $\varphi(t) = 0$ pour tout $t \in \mathbb{R}$. On ne peut plus poser $\lambda : y \mapsto u^{\mathsf{T}}y$ car λ serait alors à valeurs dans \mathbb{C} et ne serait pas une forme linéaire sur $\mathcal{M}_{n,1}(\mathbb{R})$. Néanmoins, il existe $(v,w) \in \mathcal{M}_{n,1}(\mathbb{R})^2$ tel que u = v + iw. Comme $u^{\mathsf{T}}x(t) = 0$ pour tout $t \in \mathbb{R}$ et que x est à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$, $v^{\mathsf{T}}x(t) = w^{\mathsf{T}}x(t) = 0$ pour tout $t \in \mathbb{R}$. On peut donc poser au choix $\lambda : y \mapsto v^{\mathsf{T}}y$ ou $\lambda : y \mapsto w^{\mathsf{T}}y$.

Solution 196

- 1. **a.** On a W' = u''v uv'' = (q p)uv.
 - **b.** Supposons que v ne s'annule pas sur [a,b]. Comme u et v sont continues, elles restent de signe constant respectivement sur]a,b[et [a,b]. Quitte à changer u en -u et/ou v en -v (qui sont aussi solution des mêmes équations différentielles que u et v), on peut supposer u>0 sur [a,b[et v>0 sur [a,b]. Alors $w'\geq 0$ sur [a,b] et donc v est croissante sur v. De plus, v et v e
- **2. a.** Soit $a \in \mathbb{R}$. La fonction $u : x \mapsto \sin(M(x-a))$ vérifie $u'' + M^2u = 0$. De plus, u s'annule en a et $a + \frac{\pi}{M}$ mais ne s'annule pas sur $\left[a, a + \frac{\pi}{M}\right]$. On déduit de la question précédente que f s'annule sur $\left[a, a + \frac{\pi}{M}\right]$.
 - **b.** Soit $\varepsilon \in \left]0, \frac{\pi}{M}\right[$. La fonction $v: x \mapsto \sin(M(x-a+\varepsilon))$ vérifie $v'' + M^2v = 0$. La question précédente montre que v s'annule sur [a, b]. Comme v ne s'annule pas sur $\left[a, \frac{a}{+M} \varepsilon\right]$, on a $b \ge a + \frac{\pi}{M} \varepsilon$ i.e. $b a \ge \frac{\pi}{M} \varepsilon$. Ceci étant vrai pour tout $\varepsilon \in \left]0, \frac{\pi}{M}\right[$, $b a \ge \frac{\pi}{M}$.

Topologie

Solution 197

1. Remarquons déjà que l'existence de la valeur d'adhérence (x', y') est justifiée par la compacité de K^2 . Il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que la suite $(x_{\varphi(n)}, y_{\varphi(n)})_{n \in \mathbb{N}}$ converge vers (x', y'). Remarquons alors que pour tout $n \in \mathbb{N}$,

$$\|g^n(x') - x\| = \|g^n(x') - g^n(x_n)\| \le \|x' - x_n\| \qquad \text{et} \qquad \|g^n(y') - y\| = \|g^n(y') - g^n(y_n)\| \le \|y' - y_n\|$$

car g et donc g^n est 1-lipschitzienne. On en déduit donc que pour tout $n \in \mathbb{N}$,

$$\|(g^{\varphi(n)}(x') - g^{\varphi(n)}(y')) - (x - y)\| \le \|g^{\varphi(n)}(x') - x\| + \|g^{\varphi(n)}(y') - y\| \le \|x' - x_{\varphi(n)}\| + \|y' - y_{\varphi(n)}\|$$

Ainsi la suite $(g^{\varphi(n)}(x') - g^{\varphi(n)}(y'))_{n \in \mathbb{N}}$ converge vers x - y, qui est bien une valeur d'adhérence de la suite $(g^n(x') - g^n(y'))_{n \in \mathbb{N}}$.

2. A nouveau, le fait que g soit 1-lipschitzienne montre que la suite $(\|g^n(x') - g^n(y')\|)_{n \in \mathbb{N}}$ est une suite réelle décroissante. Elle est également minorée donc elle converge.

La question précédente et la continuité de la norme montrent que ||x - y|| est une valeur d'adhérence de cette même suite. C'est donc que la suite $(||g^n(x') - g^n(y')||)_{n \in \mathbb{N}}$ converge vers ||x - y||. Si l'on reprend la première question,

$$\|g^{n+1}(x') - g(x)\| \le \|g^n(x') - x\| = \|g^n(x') - g^n(x_n)\| \le \|x' - x_n\| \qquad \text{et} \qquad \|g^{n+1}(y') - g(y)\| \le \|g^n(x') - x\| = \|g^n(y') - g^n(y_n)\| \le \|y' - y_n\|$$

On en déduit comme précédemment que g(x) - g(y) est encore une valeur d'adhérence de la suite $(g^n(x') - g^n(y'))_{n \in \mathbb{N}}$ et donc également de la suite $(\|g^n(x') - g^n(y')\|)_{n \in \mathbb{N}}$. On en déduit que $\|g(x) - g(y)\| = \|x - y\|$. g est donc bien une isométrie.

3. Fixons $y \in E$. La suite $(g^n(y))_{n \in \mathbb{N}}$ est à valeurs dans le compact K donc on peut en extraire une suite $g^{(\varphi(n)}(y))_{n \in \mathbb{N}}$ convergente. La suite $(g^{\varphi(n+1)}(y) - g^{\varphi(n)}(y))_{n \in \mathbb{N}}$ converge donc vers 0. Mais comme g est une isométrie,

$$\forall n \in \mathbb{N}, \ \|g^{\varphi(n+1)-\varphi(n)}(y) - y\| = \|(g^{\varphi(n+1)}(y) - g^{\varphi(n)}(y))\|$$

donc la suite $(g^{\varphi(n+1)-\varphi(n)}(y))_{n\in\mathbb{N}}$ converge vers y. Or pour tout $n\in\mathbb{N}$, $\varphi(n+1)>\varphi(n)$ car φ est strictement croissante donc $g^{\varphi(n+1)-\varphi(n)}(y)$ appartient à g(K). On en déduit que $y\in\overline{g(K)}$. Mais comme g est continue et K est compact, g(K) est compact donc fermé. Ainsi $\overline{g(K)}=g(K)$ et $y\in g(K)$. L'application g est donc surjective. Pour le contre-exemple, on peut considérer l'espace vectoriel E des suites bornées muni de la norme infinie ainsi que la boule unité K. L'application g qui à une suite $u\in E$ associe la suite v définie par $v_0=0$ et $v_{n+1}=u_n$ pour tout $n\in\mathbb{N}$ est clairement une isométrie. De plus, K est stable par K mais g n'est clairement pas surjective.

Solution 198

- 1. L'application $\phi: \begin{cases} K^2 \longrightarrow \mathbb{R} \\ (x,y) \longmapsto \|x-y\| \end{cases}$ est continue comme composée des applications continues $(x,y) \mapsto x-y$ et $x \mapsto \|x\|$. Comme K^2 est compact comme produit de compacts, $\phi(K^2)$ est un compact de \mathbb{R} . En particulier, $\phi(K)$ est majoré et contient sa borne supérieure. Ainsi $\delta(K)$ existe et la borne supérieure le définissant est atteinte.
- 2. Remarquons tout d'abord que le symétrique par rapport à a d'un point x de E est 2a x.

Soit
$$B \in \mathcal{S}_a$$
. Pour $y \in E$, notons ϕ_y :
$$\begin{cases} E & \longrightarrow \mathbb{R} \\ x & \longmapsto \|x - y\| \end{cases}$$
. On a

$$T(B) = B \cap \left(\bigcap_{y \in B} \phi_y^{-1} \left(\left[0, \frac{1}{2} \delta(B) \right] \right) \right)$$

Comme ϕ_y est continue pour tout $y \in B$, les $\phi_y^{-1}\left(\left[0, \frac{1}{2}\delta(B)\right]\right)$ sont fermés. Ainsi T(B) est fermé comme intersection de fermés. De plus, $T(B) \subset B$ avec B compact donc T(B) est compact.

Montrons que T(B) est symétrique par rapport à a. Soit $x \in T(B)$. On veut donc montrer que $2a - x \in T(B)$. Or pour tout $y \in B$:

$$\|(2a - x) - y\| = \|x - (2a - y)\| \le \frac{1}{2}\delta(B)$$

car $x \in T(B)$ et $2a - y \in B$ par symétrie de B par rapport à a. Ainsi $2a - x \in T(B)$. Donc $T(B) \in S_a$.

3. Soient $B \in \mathcal{S}_a$ et $(x,y) \in T(B)^2$. A fortiori, $(x,y) \in B^2$ de sorte que, par définition de $T(B) \|x - y\| \le \frac{1}{2} \delta(B)$. On en déduit que $\delta(T(B)) \le \frac{1}{2} \delta(B)$. On peut alors montrer par récurrence que $\delta(B_n) \le \frac{1}{2^n} \delta(B_0)$ pour tout $n \in \mathbb{N}$.

Posons $\tilde{B} = \bigcap_{n>0} B_n$. Alors \tilde{B} est fermé comme intersection de fermés et \tilde{B} est inclus dans le compact B_0 donc il est compact. Puisque

 $\tilde{\mathbb{B}} \subset \mathbb{B}_n$, $\delta(\tilde{\mathbb{B}}) \leq \delta(\mathbb{B}_n) \leq \frac{1}{2^n} \delta(\mathbb{B}_0)$ pour tout $n \in \mathbb{N}$. Ainsi $\delta(\tilde{\mathbb{B}}) = 0$. Si $\mathbb{B}_0 = \emptyset$, alors clairement $\tilde{\mathbb{B}} = \emptyset$. Montrons maintenant que si $\mathbb{B}_0 \neq \emptyset$, alors $\tilde{\mathbb{B}} = \{a\}$. Soit $x \in \tilde{\mathbb{B}}$. Alors $x \in \mathbb{B}$ appartiennent à $\tilde{\mathbb{B}}$ puisque tous les $T_n(\mathbb{B})$ sont symétriques par rapport à $x \in \mathbb{B}$. En particulier, ||x - (2x - x)|| = 0 puis x = x.

4. Soient u une isométrie et $(x, y) \in E^2$. On pose alors $B_0 = \{x, y\}$ et on définit la suite (B_n) comme précédemment. Posons $m = \frac{x+y}{2}$ de sorte que B_0 est symétrique par rapport à m. Alors, comme précédemment, $\bigcap \in \mathbb{N}B_n = \{m\}$.

Montrons maintenant que si B est un compact de E, alors $T(u(B)) \subset u(T(B))$. Soit en effet $x \in T(u(B))$. En particulier, $x \in u(B)$ donc il existe $a \in T(B)$ tel que x = u(a). De plus, pour tout $y \in u(B)$, $||x - y|| \le \frac{1}{2}\delta(u(B))$ donc pour tout $b \in B$, $||u(a) - u(b)|| \le \frac{1}{2}\delta(u(B))$.

Or u est une isométrie donc ||u(a) - u(b)|| = ||a - b|| et on montre facilement que $\delta(u(B)) = \delta(B)$. Finalement $||a - b|| \le \frac{1}{2}\delta(B)$ pour tout $b \in B$ i.e. $a \in T(B)$. Ainsi $x = u(a) \in u(T(B))$.

On en déduit alors par récurrence que $T^n(u(B_0)) \subset u(T^n(B_0))$ i.e. $C_n \subset u(B_n)$ en posant $C_n = T^n(u(B_0))$. Finalement,

$$\bigcap_{n\in\mathbb{N}} C_n \subset \bigcap_{n\in\mathbb{N}} u(B_n)$$

Mais comme u est injective en tant qu'isométrie,

$$\bigcap_{n\in\mathbb{N}} u(\mathbf{B}_n) = u\left(\bigcap_{n\in\mathbb{N}} \mathbf{B}_n\right) = u(\{a\}) = \{u(a)\}$$

Mais $C_0 = \{u(x), u(y)\}$ est symétrique par rapport à $n = \frac{u(x) + u(y)}{2}$ donc on montre comme à la question précédente que $\bigcap_{n \in \mathbb{N}} C_n = \{n\}$. Finalement, $\{n\} \subset \{u(a)\}$ donc n = u(a). u conserve bien les milieux.

Solution 199

- 1. Tout d'abord, f est continue sur K car lipschitzienne. L'application φ : $x \in K \mapsto \|f(x) x\|$ est allors elle-même continue par continuité de la norme. Elle admet donc un minimum sur le compact K atteint en $a \in K$. Supposons que $f(a) \neq a$. D'après la propriété vérifiée par f, on aurait alors $\varphi(f(a)) < \varphi(a)$, ce qui est contradictoire. Ainsi f(a) = a et f admet un point fixe. Supposons maintenant que f possède deux points fixes a et b. Comme $a \neq b$, $\|f(a) f(b)\| < \|a b\|$ i.e. $\|a b\| < \|a b\|$, ce qui est absurde. Ainsi f possède un unique point fixe.
- 2. Notons a l'unique point fixe de f. La suite de terme général $||x_n a||$ est décroissante et minorée par 0. Elle converge donc. Notons m sa limite. Soit alors ℓ une valeur d'adhérence de la suite (x_n) . On peut alors extraire de la suite (x_n) une suite $(x_{\psi(n)})$ convergeant vers ℓ .

La suite de terme général $||x_{\psi(n)} - a||$

- converge vers m en tant que suite extraite de la suite de terme général $||x_n a||$;
- converge vers $\|\ell a\|$ par continuité de la norme.

Ainsi $m = \|\ell - a\|$.

De même, la suite de terme général $||x_{\psi(n)+1} - a||$

- converge vers m en tant que suite extraite de la suite de terme général $||x_n a||$;
- converge également vers $||f(\ell) a||$ puisque pour tout $n \in \mathbb{N}$, $||x_{\psi(n)+1} a|| = ||f(x_{\psi(n)}) a||$ et que f est continue.

Ainsi $m = ||f(\ell) - a||$.

Supposons que $\ell \neq a$. Alors

$$m = ||f(\ell) - a|| = ||f(\ell) - f(a)|| < ||\ell - a|| = m$$

ce qui est absurde. Ainsi $\ell = a$.

La suite (x_n) est donc à valeurs dans un compact et ne possède que a comme unique valeur d'adhérence : elle converge donc vers a.

3. On peut par exemple considérer $f: x \in \mathbb{R} \mapsto \sqrt{x^2 + 1}$. f n'admet clairement aucun point fixe. Par contre, pour $(x, y) \in \mathbb{R}^2$ tel que $x \neq y$,

$$|f(x) - f(y)| = \left| \sqrt{x^2 + 1} - \sqrt{y^2 + 1} \right| = \frac{|x^2 - y^2|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} = \frac{|x - y| \cdot |x + y|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}}$$

Or, par stricte croissance de la racine carrée et inégalité triangulaire

$$\sqrt{x^2 + 1} + \sqrt{y^2 + 1} > \sqrt{x^2} + \sqrt{y^2} = |x| + |y| \ge |x + y|$$

On en déduit que

$$|f(x) - f(y)| < |x - y|$$

Solution 200

Tout d'abord les deux maxima sont bien définies car B et S sont des compacts et $z \mapsto |P(z)|$ est continue.

Tout d'abord, $S \subset B$ donc $\max_{z \in B} |P(z)| >= \max_{z \in S} |P(z)|$. Supposons que l'inégalité soit stricte. Le maximum de |P| sur B est alors atteint en un point z_0 qui n'appartient pas à S, autrement dit un point intérieur à S.

Si pour tout $k \in \mathbb{N}^*$, $P^{(k)}(z_0) = 0$, alors P est constant d'après la formule de Taylor. De même, si $P(z_0) = 0$, P est le polynôme constant nul. Mais on a alors clairement $\max_{z \in \mathbb{B}} |P(z)| = \max_{z \in \mathbb{S}} |P(z)|$, ce qui contredit notre hypothèse.

Ainsi $P(z_0) \neq 0$ et on peut poser $p = \min\{k \in \mathbb{N}^*, P^{(k)}(z_0) \neq 0\}$. D'après la formule de Taylor, il existe un polynôme $Q \in \mathbb{C}[X]$ tel que

$$\forall z \in \mathbb{C}, \ P(z) = P(z_0) + \frac{P^{(p)}(z_0)}{p!} (z - z_0)^p + Q(z - z_0)(z - z_0)^{p+1}$$

Notamment,

$$\forall (r,\theta) \in \mathbb{R}^2, \ P(z_0 + re^{i\theta}) = P(z_0) \left(1 + \frac{P^{(p)}(z_0)}{p!P(z_0)} r^p e^{ip\theta} + \frac{Q(re^{i\theta})}{P(z_0)} r^{p+1} e^{i(p+1)\theta} \right)$$

Posons A =
$$\frac{P^{(p)}(z_0)}{p!P(z_0)}$$
 et R = $\frac{Q}{P(z_0)}$.

$$\forall (r,\theta) \in \mathbb{R}^2, \ \mathrm{P}(z_0 + re^{i\theta}) = \mathrm{P}(z_0) \left(1 + \mathrm{A} r^p e^{ip\theta} + \mathrm{R} (re^{i\theta} r^{p+1} e^{i(p+1)\theta}) \right)$$

Choisissons θ de telle sorte que $Ae^{ip\theta} = |A|$. Par inégalité triangulaire,

$$\forall r \in \mathbb{R}_+, \ |P(z_0 + re^{i\theta})| \ge |P(z_0)| \left(1 + |A|r^p - |R(re^{i\theta})|r^{p+1}\right) = |P(z_0)| \left(1 + r^p(|A| - |R(re^{i\theta})|r\right) = |P(z_0)| = |P(z_0)| = |P$$

Ainsi

$$\forall r \in \mathbb{R}_+, \ |\mathrm{P}(z_0 + re^{i\theta})| - |\mathrm{P}(z_0)| \geq |\mathrm{A}||\mathrm{P}(z_0)|r^p - |\mathrm{R}(re^{i\theta})|r^{p+1} = r^p \left(|\mathrm{A}||\mathrm{P}(z_0)| - |\mathrm{R}(re^{i\theta})|r\right)$$

Comme R est continue et $|A||P(z_0)| \neq 0$,

$$r^p\left(|\mathbf{A}||\mathbf{P}(z_0)|-|\mathbf{R}(re^{i\theta})|r\right) \sim |\mathbf{A}||\mathbf{P}(z_0)|r^p$$

Notamment, $r \mapsto |P(z_0 + re^{i\theta})| - |P(z_0)|$ est strictement positive au voisinage de 0^+ . Comme z_0 est intérieur à B, il existe r > 0 tel que $z_0 + re^{i\theta} \in B$ et $|P(z_0 + re^{i\theta})| - |P(z_0)| > 0$, ce qui contredit le fait que |P| admet son maximum sur B en z_0 .

On conclut donc par l'absurde que $\max_{z \in B} |P(z)| = \max_{z \in S} |P(z)|$.

Solution 201

On raisonne par récurrence sur n.

Soit A une partie convexe et dense de \mathbb{R} . A est donc un intervalle vérifiant $\bar{A} = \mathbb{R}$. On a donc sup $A = \sup \bar{A} = +\infty$ et inf $A = \inf \bar{A} = -\infty$. Ainsi $A = \mathbb{R}$.

Supposons la propriété à montrer vraie à un rang $n-1 \ge 1$. Soit alors A une partie convexe et dense de \mathbb{R}^n . Soit H un hyperplan de \mathbb{R}^n . On va montrer que $A \cap H$ est une partie convexe et dense de H.

D'abord $A \cap H$ est convexe comme intersection de deux convexes.

On munit alors \mathbb{R}^n de sa structure euclidienne canonique et on note u un vecteur unitaire normal à H. Soit $x \in H$ et $\varepsilon > 0$.

Posons $a = x + \frac{\varepsilon}{2}u$. Par densité de A dans \mathbb{R}^n , il existe $b \in \mathbb{R}^n$ tel que $||b-a|| < \frac{\varepsilon}{2}$. On a alors en utilisant l'inégalité de Cauchy-Schwarz et le fait que ||u|| = 1:

$$\langle b, u \rangle = \langle b - a, u \rangle + \langle a, u \rangle \ge -\|b - a\|\|u\| + \frac{\varepsilon}{2}\|u\|^2 > 0$$

Posons $c=x-\frac{\varepsilon}{2}u$. Par densité de A dans \mathbb{R}^n , il existe $d\in\mathbb{R}^n$ tel que $\|d-c\|<\frac{\varepsilon}{2}$. On a alors en utilisant l'inégalité de Cauchy-Schwarz et le fait que $\|u\|=1$:

$$\langle d, u \rangle = \langle d - c, u \rangle + \langle c, u \rangle \le ||d - c|| ||u|| - \frac{\varepsilon}{2} ||u||^2 < 0$$

Par le théorème des valeurs intermédiaires, l'application $t \mapsto \langle (1-t)b+td,u \rangle$ s'annule en un point $t_0 \in]0,1[$. Posons $e=(1-t_0)b+t_0d$. On a donc $e \in H$ et $e \in A$ par convexité de A. De plus,

$$||b-x|| \le ||b-a|| + ||a-x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

et

$$||d-x|| \le ||d-c|| + ||c-x|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Par inégalité triangulaire,

$$\|e-x\| = (\leq (1-t_0)\|b-x\| + t_0\|d-x\| < (1-t_0)\varepsilon + t_0\varepsilon = \varepsilon$$

Ceci achève de prouver la densité de A∩H dans H.

D'après notre hypothèse de récurrence, $A \cap H = H$. Or \mathbb{R}^n est égal à la réunion de ses hyperplans. Donc $A = \mathbb{R}^n$.

REMARQUE. L'énoncé est faux en dimension infinie. $\mathbb{R}[X]$ est une partie convexe (en tant que sous-espace vectoriel) et dense (d'après le théorème de Stone-Weierstrass) de $\mathcal{C}([0,1])$ muni de la topologie de la convergence uniforme. Pourtant, $\mathbb{R}[X]$ est d'intérieur vide. En effet, $\mathbb{R}[X]$ est l'union des $\mathbb{R}_n[X]$ qui sont des fermés d'intérieur vide en tant que sous-espaces vectoriels de dimension finie. On conclut par le théorème de Baire.

Solution 202

Si $\alpha_1, \dots, \alpha_n$ et β_1, \dots, β_n sont des réels strictement positifs, on montre que

$$\det\left(\left(\frac{1}{\alpha_i + \beta_j}\right)_{1 \le i, j \le n}\right) = \frac{\left(\prod_{1 \le i < j \le n} \alpha_i - \alpha_j\right)\left(\prod_{1 \le i < j \le n} \beta_i - \beta_j\right)}{\prod_{1 \le i, j \le n} \alpha_i + \beta_j} \tag{1}$$

Pour des vecteurs x_1, \ldots, x_n d'un espace préhilbertien E, on pose $Gram(x_1, \ldots, x_n) = \det((x_i|x_j)_{1 \le i,j \le n})$. On montre que si (u_1, \ldots, u_n) est une famille libre de vecteurs de E et u un vecteur de E, alors

$$d(x, \text{vect}(u_1, \dots, u_n))^2 = \frac{Gram(u_1, \dots, u_n, u)}{Gram(u_1, \dots, u_n)}$$
(2)

Pour $\alpha \in \mathbb{R}_+$, on notera $f_{\alpha} \in \mathcal{C}([0,1],\mathbb{R})$ la fonction $x \mapsto x^{\alpha}$. On a donc pour $\alpha, \beta \in \mathbb{R}_+$, $(f_{\alpha}|f_{\beta}) = \frac{1}{\alpha + \beta + 1}$.

 $(i) \implies (ii)$ Comme la suite (a_n) est croissante, soit elle converge, soit elle diverge vers $+\infty$. Si elle converge, la série $\sum_{n \in \mathbb{N}} \frac{1}{a_n}$ est grossièrement divergente. Supposons donc que la suite (a_n) diverge vers $+\infty$. En utilisant (1) et (2), on montre que

$$d_n^2 = d(f_0, \text{vect}(f_{a_0}, \dots, f_{a_n}))^2 = \frac{\prod_{i=0}^n a_i^2}{\prod_{i=0}^n (1 + a_i)^2} = \left(\prod_{i=0}^n \frac{a_i}{1 + a_i}\right)^2$$

et donc

$$d_n = \prod_{i=0}^n \frac{a_i}{1 + a_i}$$

Comme vect $((f_{a_n})_{n\in\mathbb{N}})$ est dense dans $\mathcal{C}([0,1],\mathbb{R}),(d_n)$ converge vers 0. En passant au logarithme, on en déduit que la série $\sum_{n\in\mathbb{N}}\ln\left(1+\frac{1}{a_n}\right)$ diverge vers $+\infty$. Puisque (a_n) diverge vers $+\infty$, $\ln\left(1+\frac{1}{a_n}\right)\sim\frac{1}{n}$ et la série $\sum_{n\in\mathbb{N}}\frac{1}{a_n}$ diverge donc également.

 $(ii) \implies (i)$ Fixons $p \in \mathbb{N}$. En utilisant à nouveau (1) et (2), on trouve

$$d_{p,n}^2 = d(f_p, \text{vect}(f_{a_0}, \dots, f_{a_n})^2 = \frac{1}{2p+1} \left(\prod_{i=0}^n \frac{a_i - p}{1+p+a_i} \right)^2$$

et donc

$$d_{p,n} = \frac{1}{\sqrt{2p+1}} \prod_{i=0}^{n} \frac{|a_i - p|}{1+p+a_i}$$

S'il existe $i \in \mathbb{N}$ tel que $a_i = p$, alors $d_{p,n} = 0$ pour tout $n \ge i$. Dans le cas contraire, on a

$$\ln d_{p,n} = -\frac{1}{2}\ln(2p+1) + \sum_{i=0}^{n} \ln\left|\frac{a_i - p}{1 + p + a_i}\right|$$

On distingue à nouveau plusieurs cas :

- Si (a_n) converge vers un réel l, on montre que la suite $\left(\left|\frac{a_n-p}{1+p+a_n}\right|\right)_{n\in\mathbb{N}}$ converge vers un réel positif strictement inférieur à 1 (distinguer les cas $l \le p$ et l > p). La série $\sum_{n\in\mathbb{N}} \ln\left|\frac{a_n-p}{1+p+a_n}\right|$ diverge donc grossièrement vers -∞. On en déduit que $d_{p,n} \xrightarrow[n \to +\infty]{} 0$.

- Si (a_n) diverge vers +∞, alors

$$\ln \left| \frac{a_n - p}{1 + p + a_n} \right| \sim -\frac{2p + 1}{1 + p + a_n} \sim -\frac{2p + 1}{a_n}$$

Comme la série $\sum_{n\in\mathbb{N}}\frac{1}{a_n}$ diverge vers $+\infty$, la série $\sum_{n\in\mathbb{N}}\ln\left|\frac{a_n-p}{1+p+a_n}\right|$ diverge également vers $+\infty$ et, à nouveau, $d_{p,n}\underset{n\to+\infty}{\longrightarrow}0$.

Bref, dans tous les cas $d_{p,n}$ tend vers 0 lorsque n tend vers $+\infty$.

Soit maintenant $\varepsilon > 0$ et $f \in \mathcal{C}([0,1],\mathbb{R})$. Par le théorème de Weierstrass, il existe un polynôme P à coefficients réels tels que $||f-P||_{\infty} < \frac{\varepsilon}{2}$. On montre facilement que $||f-P||_{\infty} < \frac{\varepsilon}{2}$. Si P est nul c'est fini, puisqu'alors P appartient à $\operatorname{vect} \left((f_{a_n})_{n \in \mathbb{N}} \right)$.

Sinon, posons $P = \sum_{p=0}^{n} a_p f_p$. Posons $M = \max\{|a_p|, 0 \le p \le n\}$. Pour $p \in [0, n]$, il existe $g_p \in \text{vect}((f_{a_n})_{n \in \mathbb{N}})$ tel que $||f_p - g_p||_2 < n$

 $\frac{\varepsilon}{2\mathrm{M}(n+1)}$. Posons alors $g=\sum_{p=0}^n a_p g_p$. Alors, par inégalité triangulaire

$$\|P - g\|_2 \le \sum_{p=0}^n |a_p| \|f_p - g_p\|_2 < \frac{\varepsilon}{2}$$

A nouveau par inégalité triangulaire

$$||f - g||_2 \le ||f - P||_2 + ||P - g||_2 < \varepsilon$$

ce qui prouve la densité de vect $((f_{a_n})_{n\in\mathbb{N}})$.

Solution 203

- 1. Tout d'abord $0 \in F \subset \overline{F}$. Soient $(x,y) \in \overline{F}^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. Il existe donc deux suites (x_n) et (y_n) à valeurs dans F convergeant respectivement vers x et y. Alors $(\lambda x_n + \mu y_n)$ est une suite à valeurs dans F (puisque c'est un sous-espace vectoriel de E) convergeant vers $\lambda x + \mu y$. Ainsi $\lambda x + \mu y \in \overline{F}$. Par conséquent, \overline{F} est un sous-espace vectoriel de E.
- 2. On a H \subset H \subset E. Supposons H non fermé i.e. $\overline{H} \neq H$. Il existe donc $u \in \overline{H} \setminus H$. Soit alors $x \in E$. Puisque H est un hyperplan, c'est le noyau d'une forme linéaire non nulle φ sur E. Puisque $u \notin H$, $\varphi(u) \neq 0$. Posons alors $\lambda = \frac{\varphi(x)}{\varphi(u)}$ et $h = x \lambda u$. Alors $\varphi(h) = 0$ donc $h \in H \subset \overline{H}$. De plus, $u \in \overline{H}$. Puisque \overline{H} est un sous-espace vectoriel de E, $x = h + \lambda u \in \overline{H}$. Finalement, $E = \overline{H}$ i.e. H est dense dans E.

Solution 204

Clairement, N est positive, homogène et vérifie l'inégalité triangulaire. Soit alors $P \in \mathbb{R}_n[X]$ tel que N(P) = 0. Alors $P(\alpha_k) = 0$ pour tout $k \in [0, n]$. Puisque deg $P \le n$, P = 0. Ainsi N est bien une norme. Supposons que N soit une norme euclidienne. Alors pour tout $(P, Q) \in \mathbb{R}_n[X]^2$,

$$N(P + Q)^2 + N(P - Q)^2 = 2N(P)^2 + 2N(Q)^2$$

Par interpolation de Lagrange, il existe deux polynômes P et Q tels que $P(\alpha_k) = \delta_{k,0}$ et $Q(\alpha_k) = \delta_{k,n}$ pour tout $k \in [0, n]$. Puisque $n \neq 0$, N(P+Q) = N(P-Q) = 2 tandis que N(P) = N(Q) = 1, ce qui contredit l'égalité précédente.

Solution 205

1. a. Supposons que la suite (x_n) converge faiblement vers x et x'. Soit $y \in E$. Alors $\lim_{n \to +\infty} \langle x_n - x, y \rangle = 0$ et $\lim_{n \to +\infty} \langle x_n - x', y \rangle = 0$. Par différence, $\langle x' - x, y \rangle = 0$. Ainsi $x' - x \in E^{\perp} = \{0_E\}$ et x = x'.

b. Supposons que (x_n) converge fortement vers x. Soit $y \in E$. Alors, par l'inégalité de Cauchy-Schwarz,

$$|\langle x_n - x, y \rangle| \le ||x_n - x|| ||y||$$

On en défuit immédiatement que $\lim_{n\to+\infty} \langle x_n - x, y \rangle = 0$. Ainsi (x_n) converge faiblement vers x.

2. Supposons que (x_n) converge fortement vers x. Alors, d'après la question précédente, (x_n) converge faiblement vers x. De plus, par inégalité triangulaire,

$$|||x_n|| - ||x||| \le ||x_n - x||$$

Donc $\lim_{n\to+\infty} ||x_n|| = ||x||$.

Supposons maintenant que (x_n) converge faiblement vers x et $\lim_{n \to +\infty} ||x_n|| = ||x||$. Remarquons que

$$||x_n - x||^2 = ||x_n||^2 + ||x||^2 - 2\langle x_n, x \rangle$$

Par hypothèse, $\lim_{n\to +\infty} \|x_n\|^2 = \|x\|^2$. De plus, (x_n) converge faiblement vers x $\lim_{n\to +\infty} \langle x_n - x, x \rangle = 0$ ou encore $\lim_{n\to +\infty} \langle x_n, x \rangle = \|x\|^2$. Finalement,

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ce qui prouve que (x_n) converge fortement vers x.

3. Supposons que E soit de dimension finie.

Soit donc une suite (x_n) convergeant faiblement vers x. Notons (e_1, \dots, e_n) une base orthonormale de E. Par convergence faible, pour tout $i \in [1, n]$, $\lim_{n \to +\infty} \langle x_n - x, e_i \rangle = 0$. De plus, la base (e_1, \dots, e_n) étant orthonormée, pour tout $n \in \mathbb{N}$,

$$||x_n - x||^2 = \sum_{i=1}^n \langle x_n - x, e_i \rangle^2$$

On en déduit que

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 0$$

ou encore $\lim_{n\to+\infty} ||x_n - x|| = 0$.

4. Considérons $E = \mathbb{R}[X]$, que l'on munit de sa norme usuelle (somme des produits des coefficients), c'est-à-dire

$$(P,Q) \in \mathbb{R}[X]^2 \mapsto \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} \cdot \frac{Q^{(k)}(0)}{k!}$$

On considère alors la suite (X^n) . Pour tout $P \in \mathbb{R}[X]$, $\langle X^n, P \rangle = 0$ dès lors que $n > \deg P$. Ainsi $\lim_{n \to +\infty} \langle X^n, P \rangle = 0$, ce qui permet d'affirmer que (X^n) converge faiblement vers 0. Mais, pour tout $n \in \mathbb{N}$, $||X^n|| = 1$ donc la suite (X^n) ne peut converger fortement vers 0.

Solution 206

1. Pour tout $f \in E$,

$$||f||_2^2 = \int_{[0,1]} f^2 \le \int_{[0,1]} ||f||_{\infty}^2 = ||f||_{\infty}^2$$

Par conséquent, $||f||_2 \le ||f||_{\infty}$.

- Les normes ||.||₂ et ||.||_∞ induisent des normes sur V. Comme V est de dimension finie, ces normes sont équivalentes et on en déduit l'inégalité demandée.
- 3. On peut munir V du produit scalaire $(f,g) \mapsto \int_{[0,1]} fg$. On se donne une famille libre de V à p éléments. On peut alors l'orthonormaliser en une famille (f_1,\ldots,f_D) . Soit $x\in[0,1]$. Alors pour $(\lambda_1,\ldots,\lambda_n)\in\mathbb{R}^n$

$$\left(\sum_{i=1}^{p} \lambda_{i} f_{i}(x)\right)^{2} \leq \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{\infty}^{2} \leq n^{2} \|\sum_{i=1}^{p} \lambda_{i} f_{i}\|_{2}^{2}$$

Or la famille (f_1, \dots, f_p) étant orthonormale, $\|\sum_{i=1}^p \lambda_i f_i\|_2^2 = \sum_{i=1}^p \lambda_i^2$. L'astuce consiste à prendre maintenant $\lambda_i = f_i(x)$ pour $1 \le i \le p$. On obtient alors

$$\left(\sum_{i=1}^{p} f_i(x)^2\right)^2 \le n^2 \sum_{i=1}^{p} f_i(x)^2$$

et donc

$$\sum_{i=1}^{p} f_i(x)^2 \le n^2$$

Il suffit alors d'intégrer entre 0 et 1 pour obtenir

$$\sum_{i=1}^{p} ||f_i||^2 \le n^2$$

La famille $(f_1, ..., f_p)$ étant normée, on aboutit à $p \le n^2$, ce qui prouve que V est nécessairement de dimension finie et que dim $V \le n^2$.

Solution 207

- 1. N_{∞} est la norme de la convergence uniforme. On en déduit sans peine que N et N_1 sont également des normes.
- 2. Posons $f_n: x \in [0,1] \mapsto x^n$. On a clairement $N_{\infty}(f_n) = 1$ pour tout $n \in \mathbb{N}$. Cependant, $N(f_n) = N_1(f_n) = n^2 n + 1 \underset{n \to +\infty}{\longrightarrow} +\infty$. Donc N_{∞} n'est équivalente ni à N ni à N_1 .
- **3.** Soit $x \in [0, 1]$. Par intégration par parties

$$\int_0^x \sin(x-t)f''(t) dt = \left[\sin(x-t)f'(t)\right]_0^x + \int_0^x \cos(x-t)f'(t) dt$$

Puisque $f \in E$, f'(0) = 0 de sorte que le crochet est nul. Par une seconde intégration par parties,

$$\int_0^x \sin(x-t)f''(t) dt = \left[\cos(x-t)f(t)\right]_0^x - \int_0^x \sin(x-t)f(t) dt$$

Finalement

$$\int_0^x \sin(x-t)(f(t) + f''(t)) dt = \left[\cos(x-t)f(t)\right]_0^x = f(x) - f(0)\cos x = f(x)$$

car f(0) = 0 puisque $f \in E$.

4. On a clairement $N \le N_1$.

Soit $f \in E$. D'après la question précédente, pour tout $x \in E$

$$f(x) = \int_{0}^{x} \sin(x - t)(f(t) + f''(t)) dt$$

puis

$$|f(x)| \le \int_0^x |\sin(x-t)||f(t) + f''(t)| dt \le \int_0^x N(f) = xN(f) \le N(f)$$

Par conséquent $N_{\infty}(f) \leq N(f)$. Par ailleurs,

$$N_{\infty}(f'') = N_{\infty}(f'' + f - f) \le N(f) + N_{\infty}(f)$$

puis $N_{\infty}(f'') - N_{\infty}(f) \leq N(f)$. Finalement

$$N_1(f) = N_{\infty}(f'') - N_{\infty}(f) + 2N_{\infty}(f) \le 3N(f)$$

Ainsi $N \le N_1 \le 3N$ donc N et N_1 sont équivalentes.

Solution 208

1. La forme linéaire $\phi: f \in E \mapsto f(0)$ est continue puisque pour tout $f \in E$, $|f(0)| \leq ||f||_{\infty}$. De même, la forme linéaire $\psi: f \in E \mapsto \int_0^1 f(t) \, dt$ est également continue puisque pour tout $f \in E$, $\left| \int_0^1 f(t) \, ft \right| \leq ||f||_{\infty}$.

On en déduit que $\phi^{-1}(\{0\})$ et $\psi^{-1}([1, +\infty[)$ sont fermés en tant qu'images réciproques de fermés par des applications continues. Enfin, A est fermé en tant qu'intersection de ces deux fermés.

- 2. Soit $f \in A$. Supposons $||f||_{\infty} \le 1$. Alors $|f(t)| \le 1$ pour tout $t \in [0,1]$. En particulier, $f \le 1$ sur [0,1] donc $\int_0^1 f(t) \, dt \le 1$. Mais puisque $f \in A$, $\int_0^1 f(t) \, dt \ge 1$. Finalement $\int_0^1 f(t) \, dt = 1$ ou encore $\int_0^1 (1 f(t)) \, dt = 0$. L'application 1 f est positive, continue et d'intérgrale nulle sur [0,1]: elle est donc nulle i.e. f est constante égale à 1, ce qui contredit le fait que f(0) = 0. On a donc montré par l'absurde que $||f||_{\infty} > 1$.
- 3. On vérifie que f_n est bien continue en α donc continue sur [0,1]. On a bien également $f_n(0)=0$. Enfin, par la relation de Chasles,

$$\int_{0}^{1} f(t) dt = \int_{0}^{\alpha} \frac{1}{\alpha} \left(1 + \frac{1}{n} \right) t dt + \int_{\alpha}^{1} \left(1 + \frac{1}{n} \right) dt = \left(1 - \frac{\alpha}{2} \right) \left(1 + \frac{1}{n} \right)$$

Il suffit donc de choisir $\alpha = \frac{2}{n+1}$ pour avoir $\int_0^1 f_n(t) dt = 1$ de sorte que $f_n \in A$. On vérifie également que $\frac{2}{n+1} \in]0,1]$.

4. Puisque pour tout $f \in A$, $||f||_{\infty} > 1$, $d(0, A) \ge 1$. De plus, en définissant f_n comme dans la question précédente

$$d(0, A) \le ||f_n||_{\infty} = 1 + \frac{1}{n}$$

Par passage à la limite, $d(0, A) \le 1$. Finalement, d(0, A) = 1.

Solution 209

- 1. L'application $\varphi \colon f \in E \mapsto f(1)$ est une forme linéaire. De plus, pour tout $f \in E$, $|\varphi(f)| = |f(1)| \le \|f\|_{\infty}$ donc φ est continue lorsque l'on munit E de la norme $\|\dot{\|}_{\infty}$. Ainsi 0 est ouvert pour la norme $\|\cdot\|_{\infty}$ comme image réciproque de l'ouvert \mathbb{R}_+^* par l'application continue φ .
- 2. L'application ψ : $f \in E \mapsto \int_0^1 f(t) dt$ est une forme linéaire. De plus, pour tout $f \in E$,

$$|\psi(f)| = \left| \int_0^1 f(t) \, dt \right| \le \int_0^1 |f(t)| \, dt = ||f||_1$$

Ainsi ψ est à nouveau continue si l'on unit E de la norme $\|\cdot\|_1$. Par conséquent, F est fermé pour la norme $\|\cdot\|_1$ comme image réciproque du fermé \mathbb{R}_- par l'application continue ψ .

Pour montrer que 0 n'est pas ouvert pour la norme ||·||₁, on va montrer que E \ O n'est pas fermé pour cette même norme. Posons pour n ∈ N*,

$$f_n: x \in [0,1] \mapsto \begin{cases} 1 & \text{si } 0 \le x \le 1 - \frac{1}{n} \\ n - nx & \text{sinon} \end{cases}$$

On vérifie aisément que $f_n \in E \setminus O$ pour tout $n \in \mathbb{N}^*$. De plus, en notant f la fonction constante égale à 1, pour tout $n \in \mathbb{N}^*$

$$||f - f_n|| = \frac{1}{2n}$$

Donc (f_n) converge vers f pour la norme $\|\cdot\|_1$ mais $f \in 0$. D'après la caractérisation séquentielle des fermés, $E \setminus O$ n'est pas fermé pour la norme $\|\cdot\|_1$ et O n'est donc pas ouvert pour cette norme.

Solution 210

- 1. Evident.
- **2.** Supposons que |b| > 1. Alors

$$\frac{|f(X^n)|}{\|X^n\|} = |b|^n \xrightarrow[n \to +\infty]{} +\infty$$

D'après la caractérisation de la continuité pour les applications linéaires, f n'est pas continue.

Supposons $|b| \le 1$. Soit $P = \sum_{k=0}^{+\infty} a_k X^k \in E$. Par inégalité triangulaire,

$$|f(\mathbf{P})| \le \sum_{k=0}^{+\infty} |a_k| |b|^k \le \sum_{k=0}^{+\infty} |a_k| = ||\mathbf{P}||$$

D'après la caractérisation de la continuité pour les applications linéaires, f est continue.

On en déduit de plus que $|||f||| \le 1$. Mais comme

$$|||f||| \ge \frac{|f(1)|}{\|1\|} = 1$$

on a donc |||f||| = 1.

Solution 211

Remarquons déjà que $T_{\omega}(f)$ est définie sur \mathbb{R}^* puisque le dénominateur ne s'annule pas (stricte positivité de l'intégrale).

1. Pour tout $x \in \mathbb{R}^*$,

$$T_{\omega}(f)(x) = \frac{x}{\int_0^x \omega(t) dt} \cdot \frac{\int_0^x f(t)\omega(t) dt}{x}$$

Comme $x \mapsto \int_0^x \omega(t) dt$ est une primitive de ω , on a par définition du nombre dérivé en 0 :

$$\lim_{x \to 0} \frac{\int_0^x \omega(t) \, dt}{x} = \omega(0) > 0$$

De même.

$$\lim_{x \to 0} \frac{\int_0^x f(t)\omega(t) dt}{x} = \omega(0)f(0)$$

On en déduit que

$$\lim_{x \to 0} T_{\omega}(f)(x) = f(0)$$

de sorte que $T_{\omega}(f)$ est bien prolongeable par continuité en 0.

2. T_{ω} est clairement linéaire. Soit $f \in \mathcal{C}([0,a],\mathbb{R})$. Alors $T_{\omega}(f)$ est continue sur]0,a] comme quotient de fonctions continues (et même \mathcal{C}^1), le dénominateur ne s'annulant pas sur cet intervalle. La question précédente montre que $T_{\omega}(f)$ est continue en 0. Ainsi $T_{\omega}(f) \in \mathcal{C}^0([0,a],\mathbb{R})$. T_{ω} est donc un endomorphisme de $\mathcal{C}([0,a],\mathbb{R})$. De plus, par inégalité triangulaire et positivité de ω ,

$$\forall x \in [0, a], \ |T_{\omega}(f)(x)| \le \frac{1}{\int_0^x \omega(t) \, dt} \int_0^x |f(t)| \omega(t) \, dt \le \frac{1}{\int_0^x \omega(t) \, dt} \int_0^x ||f||_{\infty} \omega(t) \, dt = ||f||_{\infty}$$

Autrement dit, $\|T_{\omega}(f)\|_{\infty} \leq \|f\|_{\infty}$ donc T_{ω} est continu en vertu de la caractérisation de la continuité pour les applications linéaires. Soit $k \in \text{Ker } T_{\omega}$. Alors

$$\forall x \in \mathbb{R}^*, \int_0^x f(t)\omega(t) \, dt = 0$$

puis en dérivant,

$$\forall x \in \mathbb{R}^*, \ f(x)\omega(x) = 0$$

et comme ω ne s'annule pas,

$$\forall x \in \mathbb{R}^*, \ f(x) = 0$$

Mais comme f est continue sur \mathbb{R} et donc notamment en 0, f = 0. Ainsi Ker $T_{\omega} = \{0\}$ et T_{ω} est injectif.

3. a. T_{ω} est injectif et $f \neq 0$ donc $\lambda \neq 0$. Comme $T_{\omega}(f) = \lambda f$, on a donc

$$\forall x \in \mathbb{R}^*, \ f(x) = \frac{1}{\lambda \int_0^x \omega(t) \ dt} \int_0^x f(t)\omega(t) \ dt$$

On en déduit que f est de classe \mathcal{C}^2 sur \mathbb{R}^* comme quotient de fonctions de classe \mathcal{C}^1 (théorème fondamental de l'analyse), le dénominateur ne s'annulant pas.

Posons $\Omega(x) = \int_0^x f(t) dt$. Alors Ω est une primitive de ω donc, en dérivant sur \mathbb{R}^* la relation

$$\forall x \in \mathbb{R}, \ \lambda \Omega(x) f(x) = \int_0^x f(t) \omega(t) \ dt$$

on obtient

$$\forall x \in \mathbb{R}^*, \ f'(x) = \frac{1-\lambda}{\lambda} \cdot \frac{\omega(x)}{\Omega(x)} f(x)$$

Ainsi f est solution sur \mathbb{R}_+^* et sur \mathbb{R}_-^* de l'équation différentielle

$$y' = \frac{1 - \lambda}{\lambda} \cdot \frac{\omega}{\Omega} y$$

Les solutions sur \mathbb{R}_+^* et sur \mathbb{R}_-^* de cette équation différentielle sont les fonctions

$$x \mapsto C\Omega(x)^{\frac{1-\lambda}{\lambda}}$$
 où $C \in \mathbb{R}$

b. Il existe $C \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ f(x) = C\Omega(x)^{\frac{1-\lambda}{\lambda}}$$

Pour tout $x \in \mathbb{R}^*$,

$$\Omega(x)^{\frac{1-\lambda}{\lambda}} = \exp\left(\frac{1-\lambda}{\lambda}\ln(\Omega(x))\right)$$

et $\lim_{x \to 0} \Omega(x) = 0$ donc si $\lambda < 0$ ou $\lambda > 1$,

$$\lim_{x \to 0^+} \Omega(x)^{\frac{1-\lambda}{\lambda}} = +\infty$$

Comme f est continue en 0, ceci impose que C = 0. Mais f n'est pas nulle donc on a nécessairement $\lambda \in [0,1]$. On a vu à la question précédente que $\lambda \neq 0$ donc $\lambda \in]0,1]$.

Solution 212

Commençons par supposer A inversible. Puisque l'application $M \in \mathcal{M}_n(\mathbb{C}) \mapsto A^{-1}MA$ est linéaire et que $\mathcal{M}_n(\mathbb{C})$ est de dimension finie, cette application est continue. On en déduit que $A^{-1} \exp(AB)A = \exp(A^{-1}ABA) = \exp(BA)$. Ainsi $\exp(AB)$ et $\exp(BA)$ sont semblables; elles ont donc même polynôme caractéristique.

Revenons au cas général. On montre classiquement que $GL_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$. Fixons $\lambda \in \mathbb{C}$. L'application $M \in \mathcal{M}_n(\mathbb{C}) \mapsto MB$ est linéaire donc continue puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie. L'application exp est également continue sur $\mathcal{M}_n(\mathbb{C})$. Enfin, l'application $M \in$ $\mathcal{M}_n(\mathbb{C}) \mapsto \det(M - \lambda I_n)$ est aussi continue puisque $\det(M - \lambda I_n)$ est polynomial en les coefficients de M. Par composition, $M \in \mathcal{M}_n(\mathbb{C}) \mapsto$ $\det(\exp(MB) - \lambda I_n) = \chi_{\exp(MB)}(\lambda)$ est continue. De même, $M \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_{\exp(MB)}(\lambda)$. D'après cas A inversible, ces deux applications continues coïncident sur l'ensemble dense $GL_n(\mathbb{C})$. On en déduit qu'elles sont égales sur tout $\mathcal{M}_n(\mathbb{C})$. Ainsi $\chi_{\exp(AB)}(\lambda) = \chi_{\exp(BA)}(\lambda)$ pour tout $\lambda \in \mathbb{C}$ puis $\chi_{exp(AB)} = \chi_{exp(BA)}$.

Espaces préhilbertiens réels

Solution 213

Soit S_n l'ensemble des vecteurs de \mathbb{R}^n de norme 1. Pour $A \in \S_n(\mathbb{R})$ et $X \in \mathbb{R}^n$, on pose $\varphi_A(X) = X^T A X$. Soit $A \in \mathcal{S}_n(\mathbb{R})$. Il existe une base orthonormée (E_1, \dots, E_n) de \mathbb{R}^n dans laquelle A diagonalise. Pour $i \in [\![1,n]\!]$, notons λ_i la valeur propre de A associée à E_i . Soit $X \in S_n$. Il existe donc $(x_1, \dots, x_n) \in \mathbb{R}^n$ tel que $X = \sum_{i=1}^n x_i E_i$ et $\sum_{i=1}^n x_i^2 = 1$. On a alors $\varphi_A(X) = \sum_{i=1}^n \lambda_i x_i^2$. On a

alors $\varphi(X) \le \left(\max_{i \in [\![1,n]\!]} \lambda_i\right) \sum_{i=1}^n x_i^2 = \Phi(A)$. De plus, notons j l'indice de la plus grande valeur propre de A, on a alors $\varphi_A(E_j) = \lambda_j = \Phi(A)$. Par conséquent, $\Phi(A) = \max_{X \in S_n} \varphi_A(X)$.

Soient A, B $\in S_n(\mathbb{R})$ et $\lambda \in [0,1]$.

$$\Phi(\lambda A + (1 - \lambda)B) = \max_{X \in S_n} \phi_{\lambda A + (1 - \lambda)B}(X) = \max_{X \in S_n} (\lambda \phi_A(X) + (1 - \lambda)\phi_B(X))$$

Puisque $\lambda \geq 0$ et $1 - \lambda \geq 0$, on a pour tout $X \in S_n$

$$\lambda \phi_{\mathbf{A}}(\mathbf{X}) + (1-\lambda)\phi_{\mathbf{B}}(\mathbf{X}) \leq \lambda \max_{\mathbf{X} \in \mathbf{S}_n} \phi_{\mathbf{A}}(\mathbf{X}) + (1-\lambda) \max_{\mathbf{X} \in \mathbf{S}_n} \phi_{\mathbf{B}}(\mathbf{X}) = \lambda \Phi(\mathbf{A}) + (1-\lambda)\Phi(\mathbf{B})$$

Il suffit alors de passer au maximum pour $X \in S_n$ pour obtenir

$$\Phi(\lambda A + (1 - \lambda)B) < \lambda \Phi(A) + (1 - \lambda)\Phi(B)$$

Autrement dit, Φ est convexe.

Solution 214

Comme A est symétrique, elle diagonalise dans une base orthonormale i.e. il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^TAP = D$ avec D diagonale. Posons $Q = \frac{1}{\sqrt{2}} \left(\begin{array}{c|c} P & P \\ \hline P & -P \end{array} \right)$. On vérifie que $Q \in \mathcal{O}_{2n}(\mathbb{R})$. De plus, $Q^TBQ = \left(\begin{array}{c|c} D + I_n & 0 \\ \hline 0 & D - I_n \end{array} \right)$. Ceci prouve que B est diagonalisable et que ses valeurs propres sont les $\lambda \pm 1$ où $\lambda \in Sp(A)$.

Solution 215

Supposons (i). Alors il existe une base (e_1, \dots, e_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de A. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres associées.

Posons également $E_{i,j} = e_i e_j^{\mathsf{T}} + e_j e_i^{\mathsf{T}}$. On montre aisément que $(E_{i,j})_{1 \le i \le j \le n}$ est une base de $\mathcal{S}_n(\mathbb{R})$. L'application

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{S}_n(\mathbb{R}) & \longrightarrow & \mathcal{S}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{AM} + \mathrm{MA} \end{array} \right.$$

est bien définie et c'est un endomorphisme de $S_n(\mathbb{R})$. De plus, pour tout $1 \le i \le j \le n$, $\Phi(E_{i,j}) = (\lambda_i + \lambda_j)E_{i,j}$. L'application Φ est donc diagonalisable et ses valeurs propres sont les $\lambda_i + \lambda_j$ pour $1 \le i \le j \le n$. Aucune de ces valeurs propres n'est nulle donc Φ est un automorphisme. On en déduit la proposition (ii).

Remarque. On peut raisonner différemment. Il existe $P \in O_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telle que $A = PDP^T$. Fixons $B \in \mathcal{S}_n(\mathbb{R})$. L'équation AM + MA = B équivaut à DN + ND = C en posant $N = P^TMP$ et $C = P^TBP$. Cette équation équivaut à

$$\forall (i, j) \in [[1, n]]^2, (\lambda_i + \lambda_j) N_{i,j} = C_{i,j}$$

Comme $\lambda_i + \lambda_j \neq 0$ pour tout $(i, j) \in [[1, n]]^2$, l'équation admet donc bien une unique solution N. Comme C est symétrique, N l'est également et donc M aussi. L'équation AM + MA = B admet donc bien une unique solution symétrique.

Supposons (ii). Considérons l'application Ψ qui à $B \in \mathcal{S}_n(\mathbb{R})$ associe l'unique matrice $M \in \mathcal{S}_n(\mathbb{R})$ telle que AM + MA = B. On vérifie aisément que Ψ est un automorphisme de $\mathcal{S}_n(\mathbb{R})$. Alors $I_n = \Psi(\Psi^{-1}(I_n))$ est l'unique matrice telle que $AI_n + I_nA = \Psi^{-1}(I_n)$. Ainsi $A = \frac{1}{2}\Psi^{-1}(I_n) \in \mathcal{S}_n(\mathbb{R})$. On reprend alors le raisonnement de la première implication. L'endomorphisme Φ (qui n'est autre que Ψ^{-1}) est alors un automorphisme. Ses valeurs propres, à savoir les $\lambda_i + \lambda_j$ ne peuvent être nulles.

Solution 216

Il est clair que si S est nulle, S + D est semblable à D.

Supposons maintenant que S + D est semblable à D. On rappelle que $X \mapsto tr(X^TX)$ est une norme euclidienne de $\mathcal{M}_n(\mathbb{R})$. Comme S + D est semblable à D, $(S + D)^2$ est également semblable à D^2 et ces deux matrices ont même trace. Ainsi

$$tr(D^2) = tr((S+D)^2) = tr(S^2) + tr(SD) + tr(DS) + tr(D^2)$$

On vérifie aisément que SD a une diagonale nulle donc tr(SD) = tr(DS) = 0. Ainsi $tr(S^2) = tr(S^TS) = 0$ puis S = 0 via la norme euclidienne citée plus haut.

Solution 217

- 1. M est symétrique réelle donc M est diagonalisable. De plus, M est nilpotente donc sa seule valeur propre est 0. On en déduit que M=0.
- 2. Comme M et M^T commutent, $(M^TM)^n = M^n(M^T)^n M^n = 0$. Comme M^TM est symétrique réelle, M^TM = 0 d'après la question précédente. Ainsi $tr(M^TM) = 0$. On en déduit que $\sum_{i=1}^n \sum_{j=1}^n M_{i,j}^2 = 0$ puis $M_{i,j} = 0$ pour tout $(i,j) \in [[1,n]]^2$ (somme nulle de termes positifs). Ainsi M = 0.

Solution 218

- 1. Notons p_u le projecteur orthogonal sur $\operatorname{vect}(u)$. Remarquons que $p_u(e_i) = \left\langle \frac{u}{\|u\|}, e_i \right\rangle \frac{u}{\|u\|}$. Ainsi $\|p_u(e_i)\| = \frac{|\langle u, e_i \rangle|}{\|u\|}$. Posons alors $u = \sum_{i=1}^n \frac{e_i}{\|e_i\|^2}$. Comme (e_1, \dots, e_n) est orthogonale, pour tout $k \in [\![1, n]\!]$, $\langle u, e_k \rangle = 1$. Donc pour tout $k \in [\![1, n]\!]$, $\|p_u(e_k)\| = \frac{1}{\|u\|}$. Les projetés orthogonaux de e_1, \dots, e_n sur $\operatorname{vect}(u)$ ont donc toute la même norme.
- 2. Soit u un vecteur répondant aux conditions de l'énoncé. Notons N la norme commune des vecteurs $p_u(e_1), \dots, p_u(e_n)$. On a donc $N = \frac{|\langle e_i, u \rangle|}{\|u\|}$ pour $1 \le i \le n$.

Comme la base $\left(\frac{e_i}{\|e_i\|}\right)_{1 \le i \le n}$ est orthonormale, on a :

$$||u||^2 = \sum_{i=1}^n \frac{\langle e_i, u \rangle^2}{||e_i||^2} = \sum_{i=1}^n \frac{N^2 ||u||^2}{||e_i||^2}$$

Comme u est non nul, on obtient :

$$N = \left(\sum_{i=1}^{n} \frac{1}{\|e_i\|^2}\right)^{-\frac{1}{2}}$$

Ceci prouve que N est indépendante de u et nous donne bien une expression de N en fonction de $||e_1||, \dots, ||e_n||$.

Solution 219

- 1. Tout d'abord, pour $(P,Q) \in E^2$, $P(t)Q(t)e^{-t} = o(1/t^2)$ par croissances comparées donc $\langle P,Q \rangle$ est bien défini. La bilinéarité et la positivité sont évidentes. Soit enfin $P \in E$ tel que $\langle P,P \rangle = 0$. Comme $t \mapsto P^2(t)e^{-t}$ est continue, positive et d'intégrale nulle sur \mathbb{R}_+ , cette fonction est nulle sur \mathbb{R}_+ . Ainsi P admet une infinité de racines puis P = 0.
- **2.** Notons I_n l'intégrale à calculer. Par intégration par parties, $I_n = nI_{n-1}$ pour $n \in \mathbb{N}^*$. Or $I_0 = 1$ donc $I_n = n!$ pour tout $n \in \mathbb{N}$.
- 3. On orthonormalise la base (1, X, X²) de F via le procédé de Gram-Schmidt. On pose

$$\begin{split} &P_0 = \frac{1}{\|1\|} = 1 \\ &P_1 = \frac{X - \langle P_0, X \rangle P_0}{\sqrt{\|X\|^2 - \langle P_0, X \rangle^2}} = \frac{X - I_1 P_0}{\sqrt{I_2 - I_1^2}} = X - 1 \\ &P_2 = \frac{X^2 - \langle P_0, X^2 \rangle P_0 - \langle P_1, X^2 \rangle P_1}{\sqrt{\|X^2\|^2 - \langle P_0, X^2 \rangle^2 - \langle P_1, X^2 \rangle^2}} = \frac{X^2 - I_2 P_0 - (I_3 - I_2) P_1}{\sqrt{I_4 - I_2^2 - (I_3 - I_2)^2}} = \frac{1}{2} X^2 - 2X + 1 \end{split}$$

Alors (P₀, P₁, P₂) est une base orthonormée de F.

4. Comme (P_0, P_1, P_2) est une base orthonormée de F, le projeté orthogonal de X^3 sur F est

$$\langle P_0, X^3 \rangle P_0 + \langle P_1, X^3 \rangle P_1 + \langle P_2, X^3 \rangle P_2 = I_3 P_0 + (I_4 - I_3) P_1 + (I_5/2 - 2I_4 + I_3) P_2 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_2 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^3 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 9X^2 - 18X + 6X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 + (I_5/2 - 2I_4 + I_3) P_3 = 12X^2 + (I_5/2 - 2I_4 + I_3) P_3 + (I_5/2 - 2I_4 + I_5/2 - 2I_4 + I_5/2 + (I_5/2 - 2I_4 + I_5/2 + I_5/2 + (I_5/2 - 2I_5/2 + I_5/2 +$$

5. Par inégalité de Cauchy-Schwarz,

$$\left| \int_{0}^{+\infty} P(t)e^{-t} dt \right| = |\langle P, 1 \rangle| \le ||P|| ||1|| = \sqrt{\int_{0}^{+\infty} P^{2}(t)e^{-t} dt}$$

Solution 220

Comme E est ouvert, un minimum de f est forcément un minimum local et donc un point critique. Pour $x \in E$, $\nabla f(x) = 2\sum_{i=1}^{p} (x - x_i)$.

L'unique point critique de f sur E est donc $m=\frac{1}{p}\sum_{i=1}^p x_i$. Il suffit donc de vérifier que m est bien un minimum : il sera nécessairement unique. Pour $x\in E$

$$f(x) = \sum_{i=1}^{p} \|x - m + m - x_i\|^2$$

$$= \sum_{i=1}^{p} (\|x - m\|^2 + 2\langle x - m, m - x_i \rangle + \|m - x_i\|^2)$$

$$= p\|x - m\|^2 + f(m) + \left\langle x - m, \sum_{i=1}^{p} m - x_i \right\rangle$$

$$= p\|x - m\|^2 + f(m) \ge f(m)$$

car $\sum_{i=1}^{p} m - x_i = 0$. Ceci prouve que f atteint bien son minimum en m.

Solution 221

- 1. Remarquons que l'intégrale définissant $\langle P, Q \rangle$ est bien définie car $P(t)Q(t)e^{-t^2} = o(1/t^2)$.
 - (i) $\langle \cdot, \cdot \rangle$ est clairement symétrique.
 - (ii) $\langle \cdot, \cdot \rangle$ est bilinéaire par linéarité de l'intégrale.
 - (iii) $\langle \cdot, \cdot \rangle$ est positive par positivité de l'intégrale.
 - (iv) Soit $P \in \mathbb{R}[X]$ tel que $\langle P, P \rangle = 0$. Alors $\int_{-\infty}^{+\infty} P(t)^2 e^{-t^2} dt = 0$. Comme $t \mapsto P(t)e^{-t^2}$ est continue, elle est nulle sur $]-\infty, +\infty[$. Par conséquent. P admet une infinité de racines (tous les réels) puis P = 0.

Ainsi $\langle \cdot, \cdot \rangle$ est bien un produit scalaire sur $\mathbb{R}[X]$.

2. Remarquons que $t \mapsto t^{2n+1}e^{-t^2}$ est impaire donc $A_{2n+1} = 0$. Par intégration par parties

$$A_n = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} t^n e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \left(\frac{1}{n+1} \left[t^{n+1} e^{-t^2} \right]_{-\infty}^{+\infty} + \frac{2}{n+1} \int_{-\infty}^{+\infty} t^{n+2} e^{-t^2} dt \right)$$

L'intégration par parties est légitimée par le fait que $\lim_{t\to\pm\infty}t^{n+1}e^{-t^2}=0$. On en déduit que

$$A_n = \frac{2}{n+1} A_{n+2}$$

ou encore

$$\mathbf{A}_{n+2} = \frac{n+1}{2} \mathbf{A}_n$$

Comme $A_0 = 1$, on en déduit que

$$A_{2n} = \frac{(2n)!}{2^{2n} n!}$$

3. On peut orthonormaliser la base canonique $(1, X, X^2)$ via le processus de Gram-Schmidt.

Remarque. Si (e_1, \dots, e_n) est une base d'un espace euclidien E, on peut l'orthonormaliser en une base orthonormée en posant

$$\forall k \in [[1, n]], \ f_k = \frac{e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i}{\left\|e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i\right\|} = \frac{e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i}{\sqrt{\|e_k\|^2 - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle^2}}$$

- (i) $||1||^2 = A_0 = 1$ donc on pose $P_0 = 1$.
- (ii) $\langle 1, X \rangle = A_1 = 0$ et $||X||^2 = A_2 = \frac{1}{2}$ donc on pose $P_1 = X\sqrt{2}$.

(iii)
$$\langle 1, X^2 \rangle = A_2 = \frac{1}{2}, \langle X, X^2 \rangle = A_3 = 0$$
 et $||X^2||^2 = A_4 = \frac{3}{4}$ donc on pose $P_2 = \frac{2(2X^2 - 1)}{\sqrt{5}}$.

 (P_0, P_1, P_2) est alors une base orthonormée de $\mathbb{R}_2[X]$.

4. Si *p* désigne le projecteur orthogonal sur $\mathbb{R}_2[X]$,

$$\begin{split} d(X^3,\mathbb{R}_2[X])^2 &= \|X^3 - p(X^3)\|^2 \\ &= \|X^3\|^2 - \|p(X^3)\|^2 \\ &= \|X^3\|^2 - \langle X^3,P_0\rangle^2 - \langle X^3,P_1\rangle^2 - \langle X^3,P_2\rangle^2 \\ &= A_6 - A_3^2 - 2A_4 \qquad \text{car } X^3P_2 \text{ est impair} \\ &= \frac{15}{8} - \frac{3}{2} = \frac{3}{8} \end{split}$$

 $\mathrm{donc}\; d(\mathrm{X}^3,\mathbb{R}_2[\mathrm{X}]) = \frac{\sqrt{6}}{4}.$

Solution 222

Soit $A \in \mathcal{O}_n(\mathbb{R})$ laissant $(\mathbb{R}_+)^n$ invariant. On notera $(C_j)_{1 \leq j \leq n}$ la famille des vecteurs colonnes de A et $(L_i)_{1 \leq i \leq n}$ la famille des vecteurs lignes de A. Notons $(E_i)_{1 \leq j \leq n}$ la base canonique de \mathbb{R}^n . Comme $E_i \in (\mathbb{R}_+)^n$ pour tout $i \in [1, n]$, $C_i = AE_i \in (\mathbb{R}_+)^n$ pour tout $i \in [1, n]$. Autrement dit A est à coefficients positifs.

Soit $(i, j) \in [1, n]^2$. Supposons $A_{ij} \neq 0$, c'est-à-dire $A_{ij} > 0$ puisque A est à coefficients positifs. Soit $k \in [1, n] \setminus \{i\}$.

$$\langle \mathbf{L}_i, \mathbf{L}_k \rangle = \sum_{l=1}^n \mathbf{A}_{il} \mathbf{A}_{kl} \ge \mathbf{A}_{ij} \mathbf{A}_{kj}$$

car A est à coefficients positifs. Or la famille des vecteurs lignes de A est orthonormée donc $\langle L_i, L_k \rangle = 0$. On en déduit que $A_{kj} = 0$. En raisonnnant sur les colonnes de A, on démontre de la même manière que pour $k \in [1, n]$, $\{j\}$, $A_{ik} = 0$.

Ceci signifie que chaque ligne et chaque colonne comporte au plus un coefficient non nul. Puisque les vecteurs lignes et colonnes de A sont normés, chaque ligne et chaque colonne possède exactement un coefficient non nul valant ± 1 , en fait 1 car A est à coefficients positifs. Ainsi A est une matrice de permutation.

Réciproquement, toute matrice de permutation est bien orthogonale et laisse stable $(\mathbb{R}_+)^n$.

Solution 223

Soient $y \in \text{Im } v$ et $z \in \text{Ker } v$. Il existe donc $x \in \text{E}$ tel que y = v(x) i.e. y = x - u(x). On a également $v(z) = 0_E$ i.e. z = u(z).

$$(y|z) = (x - u(x)|z) = (x|z) - (u(x)|z) = (x|z) - (u(x)|u(z)) = 0$$

car u conserve le produit scalaire. On a donc prouvé que Im v et Ker v sont orthogonaux.

En particulier, ces deux sous-espaces vectoriels sont en somme directe. De plus, d'après le théorème du rang dim Ker v + dim Im v = dim E, donc Im v et Ker v sont supplémentaires.

Solution 224

f et g sont deux rotations. Si l'une des deux est l'identité, alors on peut toujours considérer que f et g sont deux rotations de même axe. Supposons maintenant f et g distinctes de l'identité. Soit u un vecteur directeur de l'axe de f. Comme f et g commutent, f(g(u)) = g(f(u)) = g(u). Donc g(u) appartient à l'axe de f, c'est-à-dire vect(u). Mais comme g est une isométrie, ||g(u)|| = ||u|| et donc g(u) = u ou g(u) = -u. Si g(u) = u, alors g(u) = u est un vecteur de l'axe de g(u) = u sont donc deux rotations de même axe.

Si g(u) = -u, notons v un vecteur directeur de l'axe de g de sorte que g(v) = v. Puisque g est une isométrie $\langle g(u), g(v) \rangle = \langle u, v \rangle$ et donc $\langle u, v \rangle = 0$. Les axes de f et g sont donc orthogonaux. Comme g(u) = -u, g est une rotation d'angle π autrement dit une symétrie orthogonale par rapport à son axe. On a également g(f(v)) = f(v) donc f(v) appartient à l'axe de g et on a à nouveau f(v) = v ou f(v) = -v. On ne peut avoir f(v) = v puisque v n'appartient pas à l'axe de g (il lui est orthogonal et non nul). Ainsi g(v) = -v, ce qui prouve que g(v) = v son axe.

Solution 225

1. Soit $(x, y) \in \text{Ker}(f - \text{Id}_E) \times \text{Im}(f - \text{Id}_E)$. Alors f(x) = x et il existe $a \in E$ tel que y = f(a) - a. Alors

$$\langle x, y \rangle = \langle x, f(a) - a \rangle = \langle x, f(a) \rangle - \langle x, a \rangle = \langle f(x), f(a) \rangle - \langle x, a \rangle = 0$$

car $f \in O(E)$. Ainsi $Ker(f - Id_E) \subset Im(f - Id_E)^{\perp}$. De plus, d'après le théorème du rang,

$$\dim \operatorname{Ker}(f - \operatorname{Id}_{E}) = \dim E - \dim \operatorname{Im}(f - \operatorname{Id}_{E}) = \dim \operatorname{Im}(f - \operatorname{Id}_{E})^{\perp}$$

Par conséquent, $Ker(f - Id_E) = Im(f - Id_E)^{\perp}$.

2. Supposons que $(f-Id_E)^2 = 0$. Alors $Im(f-Id_E) \subset Ker(f-Id_E)$. D'après la question précédente, on a donc $Im(f-Id_E) \subset Im(f-Id_E)^{\perp}$. Ainsi $F \subset Im(f-Id_E) \cap Im(f-Id_E)^{\perp} = \{0_E\}$ puis $Im(f-Id_E) = \{0_E\}$ i.e. $f = Id_E$.

Remarque. On peut également directement en terme d'adjoint sans utiliser la question précédente. Comme $f \in O(E)$, $f^* = f^{-1}$. Remarquons alors que

$$(f - \operatorname{Id})^* \circ (f - \operatorname{Id}_{\operatorname{E}}) = f^* \circ f - f - f^* + \operatorname{Id}_{\operatorname{E}} = 2\operatorname{Id}_{\operatorname{E}} - f - f^{-1} = -f^{-1} \circ (f - \operatorname{Id}_{\operatorname{E}})^2 = 0$$

Alors pour tout $x \in E$,

$$||f(x) - x||^2 = \langle f(x) - x, f(x) - x \rangle = \langle x, (f - \operatorname{Id}_{\mathsf{E}})^* \circ (f - \operatorname{Id}_{\mathsf{E}})(x) \rangle = 0$$

puis $f = Id_E$

Solution 226

1. Si A est symétrique $A^T = A$ et donc $A^2 = I_n$. On en déduit que a est une symétrie orthogonale.

2. Première méthode. Remarquons que

$$A = (A^{T})^{2} + A^{T} - I_{n} = (A^{2} + A - I_{n})^{2} + (A^{2} + A - I_{n}) - I_{n}$$

Après simplification, on obtient

$$A^4 + 2A^2 - 2A - I_n = 0$$

Ainsi $X^4 + 2X^3 - 2X - 1 = (X - 1)(X + 1)^3$ est un polynôme annulateur de A. Ainsi $Sp(A) \subset \{-1, 1\}$. On en déduit que 0 est la seule valeur propre de $A^T - A = A^2 - I_n$. Autrement dit, $M = A^T - A$ est nilpotente. Comme $A^T = A^2 + A - I_n$, A^T commute avec A puis M^T commute avec M. On en déduit que M^TM est également nilpotente. Comme M^TM est symétrique réelle, elle est également diagonalisable donc nulle. Ainsi

$$||M||^2 = tr(M^T M) = 0$$

puis M = 0. Ceci signifie que $A^T = A$ et on est ramené à la question précédente : a est à nouveau une symétrie orthogonale.

Deuxième méthode. Posons $S = \frac{A + A^T}{2}$ et $T = \frac{A - A^T}{2}$. Alors A = S + T et S et T sont respectivement symétrique et antisymétrique.

Comme A et A^{T} commutent, S et T commutent également. L'égalité $A^{\mathsf{T}} = A^2 + A - I_n$ peut alors s'écrire

$$\mathbf{S} - \mathbf{T} = \mathbf{S}^2 + \mathbf{T}^2 + 2\mathbf{S}\mathbf{T} + \mathbf{S} + \mathbf{T} - \mathbf{I}_n$$

ou encore

$$S^2 + T^2 + 2ST + 2T = I_n$$

Remarquons que ST est antisymétrique. Comme toute matrice s'écrit de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique,

$$\begin{cases} S^2 + T^2 = I_n \\ ST + T = 0 \end{cases}$$

puis

$$\begin{cases} S^2 + T^2 = I_n \\ S^2 T^2 = T^2 \end{cases}$$

Comme S² et T² sont symétriques et diagonalisables, elles possèdent une base commune de vecteurs propres. En notant $\lambda_1, \dots, \lambda_n$ et μ_1, \dots, μ_n leurs valeurs propres respectives, on a alors

$$\forall i \in [1, n], \begin{cases} \lambda + \mu &= 1 \\ \lambda \mu &= \mu \end{cases}$$

On en déduit sans peine que $\lambda_i = 1$ et $\mu_i = 0$. Ainsi $T^2 = 0$ et $S^2 = I_n$. De plus,

$$||T||^2 = tr(T^TT) = tr(-T^2) = 0$$

donc T = 0. Ainsi A = S = A^T et $A^2 = S^2 = I_n$. a est donc une symétrie orthogonale.

Solution 227

1. Soit $(x, y) \in E^2$. Alors $\langle u(x + y), x + y \rangle = 0$. En développant, on obtient

$$\langle u(x), x \rangle + \langle u(x), y \rangle + \langle u(y), x \rangle + \langle u(y), y \rangle$$

puis $\langle u(y), x \rangle = -\langle u(x), y \rangle$ car $\langle u(x), x \rangle = \langle u(y), y \rangle = 0$.

Soit $(e_1, ..., e_n)$ une base orthonormale de E. On note A la matrice de u dans \mathcal{B} . On a alors $A_{i,j} = \langle u(e_j), e_i \rangle$ pour $(i, j) \in [1, n]^2$. D'après ce qui précède,

$$A_{i,j} = \langle u(e_i), e_i \rangle = -\langle u(e_i), e_i \rangle = -A_{i,i}$$

Ainsi A est antisymétrique.

2. Soit $x \in (\text{Ker } u)^{\perp}$. Alors pour tout $y \in \text{Ker } u$,

$$\langle u(x), v \rangle = -\langle x, u(v) \rangle = -\langle x, 0_{\rm F} \rangle = 0$$

donc $u(x) \in (\operatorname{Ker} u)^{\perp}$ et $(\operatorname{Ker} u)^{\perp}$ est stable par u.

- 3. On choisit une base orthonormale de Ker u et une base orthonormale de (Ker u) $^{\perp}$. La concaténation de ces deux bases est une base orthonormale de E dans laquelle la matrice de u est de la forme $A = \begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix}$ où $N \in \mathcal{M}_r(\mathbb{R})$ avec $r = \dim(\operatorname{Ker} u)^{\perp} = n \dim \operatorname{Ker} u = \operatorname{rg} u$. Or $\operatorname{rg}(u) = \operatorname{rg}(A) = \operatorname{rg}(N)$ donc N est inversible.
- **4.** Comme A est antisymétrique, N l'est également. Ainsi $\det(N) = \det(N^T) = \det(-N) = (-1)^r \det(N)$. Comme N est inversible, $\det(N) \neq 0$ donc $(-1)^r = 1$ et r = rg(u) est pair.

Solution 228

Remarquons que $\phi = p + q$ où p et q sont les projecteurs orthogonaux respectifs sur vect(a) et vect(b). Ainsi ϕ est un endomorphisme auto-adjoint comme somme d'endomorphismes auto-adjoints. En particulier, ϕ est diagonalisable. On va de toute façon s'en rendre compte en déterminant les éléments propres de ϕ .

Remarquons déjà que ϕ est nulle sur $(\text{vect}(a) + \text{vect}(b))^{\perp}$. Ainsi $(\text{vect}(a) + \text{vect}(b))^{\perp} \subset \text{Ker } \phi$. Réciproquement si $x \in \text{Ker } \phi$, $\langle a, x \rangle a + \langle b, x \rangle b = 0$ de sorte que $\langle a, x \rangle = \langle b, x \rangle = 0$ car la famille (a, b) est libre. Ainsi $x \in \text{vect}(a)^{\perp} \cap \text{vect}(b)^{\perp} = (\text{vect}(a) + \text{vect}(b))^{\perp}$. Finalement, $\text{Ker } \phi = (\text{vect}(a) + \text{vect}(b))^{\perp}$.

La nature géométrique de ϕ incite fortement à penser que a+b et a-b sont vecteurs propres. En effet, ces deux vecteurs sont non nuls puisque a et b sont non colinéaires et un calcul simple montrer que $\phi(a) = a + \langle a, b \rangle b$ et $\pi(b) = b + \langle a, b \rangle b$ donc $\phi(a+b) = (1+\langle a, b \rangle)(a+b)$ et $\phi(a-b) = (1-\langle a, b \rangle)(a-b)$. Donc a+b et a-b sont bien des vecteurs propres associés aux valeurs propres $1+\langle a, b \rangle$ et $1-\langle a, b \rangle$. Si $\langle a, b \rangle \neq 0$, ces valeurs propres sont distinctes : les sous-espaces propres associées à ces valeurs propres sont donc de dimension 1 puisqu'on a déjà vu que le noyau i.e. le sous-espace propre associé à la valeur propre 0 était de dimension n-2. Ces sous-espaces propres sont donc respectivement vect(a+b) et vect(a-b). Si $\langle a, b \rangle = 0$, alors le sous-espace propre associé à la valeur propre 1 contient vect(a+b,a-b) = vect(a,b) et est en fait exactement égal à celui-ci puisque la diemnsion de vect(a,b) est 2 et que Ker ϕ est déjà de dimension n-2.

Récapitulons. Dans tous les cas, 0 est valeur propre de ϕ et le sous-espace propre associé est $(\text{vect}(a) + \text{vect}(b))^{\perp}$. Si $\langle a, b \rangle \neq 0$, ϕ possède deux valeurs propres supplémentaires $1 + \langle a, b \rangle$ et $1 - \langle a, b \rangle$ et les sous-espaces propres respectivement associés sont vect(a + b) et vect(a - b). Si $\langle a, b \rangle = 0$, ϕ possède 1 comme seule valeur propre en sus de 0 et le sous-espace propre associé est vect(a, b). Il est d'ailleurs géométriquement clair dans ce cas que ϕ induit l'identité sur vect(a, b).

Solution 229

1. Pour tout $x \in E$,

$$\langle f(x), x \rangle = \sum_{k=1}^{n} \langle x, u_k \rangle^2 \ge 0$$

donc v est positif. Supposons maintenant que $\langle f(x), x \rangle = 0$. Tous les termes de la somme précédente étant positifs, ils sont tous nuls. Ainsi x est orthogonal à chacun des u_k et donc au sous-espace vectoriel qu'ils engendrent, c'est-à-dire E. Ainsi $x = 0_E$.

2. Considérons une base orthonormée (e_1, \dots, e_n) de E formée de vecteurs propres de E. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres assocciées à ces vecteurs propres. Ces valeurs propres sont toutes strictement positives. Comme (e_1, \dots, e_n) est une base de E, il existe un unique endomorphisme g de E tel que $g(e_i) = \frac{1}{\sqrt{\lambda_i}} e_i$. On a clairement $g^2(e_i) = \frac{1}{\lambda_i} e_i = f^{-1}(e_i)$ pour tout $i \in [1, n]$. Comme (e_1, \dots, e_n) est

une base de E, $g^2 = f^{-1}$. Soit $(x, y) \in E^2$. Alors

$$\langle g(x), y \rangle = \sum_{i=1}^{n} \frac{1}{\lambda_i} \langle x, e_i \rangle \langle y, e_i \rangle = \langle x, g(y) \rangle$$

donc g est auto-adjoint. Les valeurs propres de g sont les réels strictement positifs $\frac{1}{\sqrt{\lambda_i}}$ donc v est défini positif.

3. Soit $i \in [1, n]$. Alors

$$u_i = f(f^{-1}(u_i)) = \sum_{k=1}^n \langle f^{-1}(u_i), u_k \rangle u_k$$

Mais comme $(u_1, ..., u_n)$ est libre, $\langle f^{-1}(u_i), u_k \rangle = \delta_{i,k}$ pour tout $k \in [[1, n]]$. Soit $(i, j) \in [[1, n]]^2$. Alors, comme g est auto-adjoint,

$$\langle g(u_i),g(u_j)\rangle = \langle g^2(u_i),u_j\rangle = \langle f^{-1}(u_i),u_j\rangle = \delta_{i,j}$$

Ainsi $(g(u_1), \dots, g(u_n))$ est bien une base orthonormée de E.

Solution 230

On note $n = \dim E$ dans ce qui suit.

1. Soit $x \in E$. Alors

$$x \in \operatorname{Im}(u)^{\perp}$$

$$\Leftrightarrow \qquad \forall y \in E, \langle x, u(y) \rangle = 0$$

$$\Leftrightarrow \qquad forall y \in E, \langle u(x), y \rangle = 0$$

$$\Leftrightarrow \qquad u(x) = 0_{E}$$

$$\Leftrightarrow \qquad x \in \operatorname{Ker}(u)$$

Ainsi $\text{Im}(u)^{\perp} = \text{Ker}(u)$ mais, comme E est de dimension finie, $\text{Im}(u) = \text{Ker}(u)^{\perp}$.

- 2. Soit $x \in E$. Si u(x) = 0, il est clair que $\langle u(x), x \rangle = 0$. Réciproquement, supposons que $\langle u(x), x \rangle = 0$. Alors $\sum_{i=1}^{n} \lambda_i \langle x, e_i \rangle^2 = 0$. Comme il s'agit d'une somme de termes positifs, pour tout $i \in [1, n]$, $\lambda_i \langle x, e_i \rangle^2 = 0$ ou encore $\lambda_i \langle x, e_i \rangle = 0$. Ainsi $u(x) = \sum_{i=1}^{n} \lambda_i \langle x, e_i \rangle e_i = 0_E$.
- 3. a. D'une part, $u+v \in \mathcal{S}(E)$ car $\mathcal{S}(E)$ est un espace vectoriel. D'autre part, pour tout $x \in E$, $\langle (u+v)(x), x \rangle = \langle u(x), x \rangle + \langle v(x), x \rangle \geq 0$. On en déduit que $u+v \in \mathcal{S}^+(E)$.
 - **b.** Il est clair que $\text{Ker}(u) \cap \text{Ker}(v) \subset \text{Ker}(u+v)$. Réciproquement, soit $x \in \text{Ker}(u+v)$. Alors $\langle u(x), x \rangle + \langle v(x), x \rangle = \langle (u+v)(x), x \rangle = 0$. Les deux termes étant positifs, $\langle u(x), x \rangle = \langle v(x), x \rangle = 0$. D'après la question v(x) = v(x) = 0. D'après la question v(x) = v(x) = 0.
 - **c.** On montre classiquement que, si F et G sont des sous-espaces vectoriels de E, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$. Comme u, v et u + v sont auto-adjoints, la question 1 donne alors

$$\operatorname{Im}(u+v) = \operatorname{Ker}(u+v)^{\perp} = (\operatorname{Ker}(u) \cap \operatorname{Ker}(v))^{\perp} = \operatorname{Ker}(u)^{\perp} + \operatorname{Ker}(v)^{\perp} = \operatorname{Im}(u) + \operatorname{Im}(v)$$

Solution 231

1. Il existe une base orthonormée (e_1, \dots, e_n) de E formée de vecteurs propres de u. Notons $\lambda_1, \dots, \lambda_n$ leurs valeurs propres associés. Soit $i \in [\![1,n]\!]$.

$$\exp(u)(e_i) = \left(\sum_{p=0}^{+\infty} \frac{u^p}{p!}\right)(e_i)$$

L'application $v \in \mathcal{L}(E) \mapsto v(e_i)$ est une application linéaire et $\mathcal{L}(E)$ est de dimension finie donc cette application est continue. Ainsi

$$\exp(u)(e_i) = \sum_{p=0}^{+\infty} \frac{1}{p!} u^p(e_i)$$

On montre aisément par récurrence que $u^p(e_i) = \lambda_i^p e_i$ pour tout $n \in \mathbb{N}$. Ainsi

$$\exp(u)(e_i) = \sum_{p=0}^{+\infty} \frac{\lambda_i^p}{p!} e_i = e^{\lambda_i} e_i$$

Ainsi (e_1, \dots, e_n) est également une base orthonormée de vecteurs propres de $\exp(u)$ donc $\exp(u)$ est auto-adjoint. De plus, $\operatorname{Sp}(\exp(u)) = \{e^{\lambda_1}, \dots, e^{\lambda_n}\} \subset \mathbb{R}_+^*$ donc $\exp(u)$ est défini positif.

2. Soit (e_1, \dots, e_n) une base orthonormée de E formée de vecteurs propres de v. Notons μ_1, \dots, μ_n les valeurs propres associées toutes strictement positives. Posons $\lambda_i = \ln(\mu_i)$ pour $i \in [\![1,n]\!]$. On peut définir un endomorphisme u en posant $u(e_i) = \lambda_i e_i$ pour $i \in [\![1,n]\!]$. Alors (e_1, \dots, e_n) est une base orthonormée de E formée de vecteurs propres de u donc u est auto-adjoint. La question précédente montre que

$$\forall i \in [1, n], \exp(u)(e_i) = e^{\lambda_i} e_i = \mu_i e_i = v(e_i)$$

Comme les endomorphismes v et $\exp(u)$ coïncident sur une base de E, ils sont égaux.

Supposons qu'il existe $w \in S(E)$ tel que $v = \exp(u) = \exp(w)$. Notons $(f_1, ..., f_n)$ une base orthonormée de vecteurs propres de w et $v_1, ..., v_n$ les valeurs propres associées. Soit $(i, j) \in [1, n]^2$. D'une part,

$$\langle \exp(u)(e_i), f_j \rangle = e^{\lambda_i} \langle e_i, f_j \rangle$$

mais comme $\exp(u)$ est auto-adjoint

$$\langle \exp(u)(e_i), f_j \rangle = \langle e_i, \exp(u)(f_j) \rangle = \langle e_i, \exp(w)(f_j) \rangle = e^{\nu_j} \langle e_i, f_j \rangle$$

Ainsi

$$e^{\lambda_i}\langle e_i, f_i \rangle = e^{\nu_j}\langle e_i, f_i \rangle$$

Si on a $\langle e_i, f_j \rangle = 0$, alors $\lambda_i \langle e_i, f_j \rangle = \nu_j \langle e_i, f_j \rangle$. Sinon $e^{\lambda_i} = e^{\nu_j}$ puis $\lambda_i = \nu_j$ par injectivité de exp. On a a nouveau $\lambda_i \langle e_i, f_j \rangle = \nu_j \langle e_i, f_j \rangle$. Ceci peut également s'écrire $\langle u(e_i), f_j \rangle = \langle e_i, w(f_j) \rangle$ ou encore $\langle u(e_i), f_j \rangle = \langle w(e_i), f_j \rangle$ car w est auto-adjoint. Ceci est valable pour tout $j \in [1, n]$ et (f_1, \dots, f_n) est une base de E donc $u(e_i) = w(e_i)$ pour tout $i \in [1, n]$. Comme (e_1, \dots, e_n) est également une base de E, u = w.

Solution 232

1. Soit $(x, y) \in E^2$. Par bilinéarité et symétrie du produit scalaire,

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

Ainsi

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

2. La première implication est triviale. Supposons donc que

$$\forall (x, y) \in E^2, \langle x, y \rangle = 0 \implies \langle s(x), s(y) \rangle = 0$$

Soient x et y deux vecteurs unitaires. Alors $\langle x+y,x-y\rangle=\|x\|^2-\|y\|^2=0$. On en déduit que $\langle s(x+y),s(x-y)\rangle=0$, ce qui donne, par linéarité de s, $\|s(x)\|^2=\|s(y)\|^2$. Ainsi le carré de la norme de s est constant sur la sphère unité. Notons c cette constante. Soit $x\in E$. Si $x=0_E$, alors $\|s(x)\|^2=0=c\|x\|^2$. Sinon, $x/\|x\|$ est unitaire donc $\|s(x/\|x\|)\|^2=c$ i.e. $\|s(x)\|^2=c\|x\|^2$ par linéarité de s et homogénéité de la norme. Finalement, $\|s(x)\|^2=c\|x\|^2$ pour tout $x\in E$.

Soit alors $(x, y) \in E^2$. Par identité de polarisation,

$$\langle s(x), s(y) \rangle = \frac{1}{2} (\|s(x) + s(y)\|^2 - \|s(x)\|^2 - \|s(y)\|^2)$$

$$= \frac{1}{2} (\|s(x+y)\|^2 - \|s(x)\|^2 - \|s(y)\|^2)$$

$$= \frac{1}{2} (c\|x+y\|^2 - c\|(x)\|^2 - c\|(y)\|^2)$$

$$= c\langle x, y \rangle$$

3. Soit $u \in \mathcal{L}(E)$ vérifiant la condition de l'énoncé. Soit $(x, y) \in E^2$ tel que $\langle x, y \rangle = 0$. En considérant V = vect(x), on a donc $y \in V^{\perp}$. Ainsi $u(y) \in u(V)^{\perp}$. Notamment, $\langle u(x), u(y) \rangle = 0$. D'après la question précédente, il existe $c \in \mathbb{R}$ tel que

$$\forall (x, y) \in E^2, \langle u(x), u(y) \rangle = c \langle x, y \rangle$$

En choisissant $x = y \neq 0_E$, on constate que $c \geq 0$. Si $c \neq 0$, alors $v = u/\sqrt{c} \in O(E)$ puisque

$$\forall (x, y) \in E^2, \langle v(x), v(y) \rangle = \langle x, y \rangle$$

Ainsi u est la composée d'une homothétie de rapport \sqrt{c} et d'une isométrie vectorielle. C'est aussi vrai si c=0 i.e. u=0. Réciproquement supposons que u est la composée d'une homothétie et d'une isométrie vectorielle. Il existe donc $\lambda \in \mathbb{R}$ et $v \in O(E)$ tels que $u=\lambda v$. Soit V un sous-espace vectoriel de E. Soit ensuite $x \in V^{\perp}$. Alors pour tout $y \in V$,

$$\langle u(x), u(y) \rangle = \lambda^2 \langle v(x), v(y) \rangle = \lambda^2 \langle x, y \rangle = 0$$

donc $u(x) \in u(V)^{\perp}$. On a donc bien $u(V^{\perp}) \subset u(V)^{\perp}$.

Solution 233

- 1. **a.** La linéarité de $u \otimes v$ découle essentiellement de la bilinéarité du produit scalaire. De plus, $\text{Im}(u \otimes v) \subset \text{vect}(u)$ donc $\text{rg}(u \otimes v) \leq 1$. Par ailleurs, $(u \otimes v)(v) = \|v\|^2 u \neq 0_E$ car u et v sont non nuls. Par conséquent, $\text{rg}(u \otimes v) = 1$.
 - **b.** Soit λ une valeur propre de $u \otimes v$ et x un vecteur propre associé. Alors $\langle v|x\rangle u = \lambda x$. Si $\lambda \neq 0$, alors $x \in \text{vect}(u)$. On en déduit que $\langle v|u\rangle u = \lambda u$ puis $\lambda = \langle v|u\rangle$ car $u \neq 0_E$. Si $\langle v|u\rangle \neq 0$, alors $\text{Sp}(u\otimes v) \subset \{0,\langle v|u\rangle\}$. De plus, $\text{Ker}(u\otimes v) = \text{vect}(v)^{\perp}$ et, ce qui précède montre que $\text{Ker}(u\otimes v \langle v|u\rangle \text{Id}_E) \subset \text{vect}(u)$. L'inclusion réciproque est triviale. En conclusion, $\text{Sp}(u\otimes v) = \{0,\langle v|u\rangle\}$, $\text{E}_0(u\otimes v) = \text{vect}(v)^{\perp}$ et $\text{E}_{\langle v|u\rangle}(u\otimes v) = \text{vect}(u)$. Si $\langle v|u\rangle = 0$, ce qui précède montre que $\text{Sp}(u\otimes v) = \{0\}$ et $\text{E}_0(u\otimes v) = \text{vect}(v)^{\perp}$.
 - **c.** Si $\langle v|u\rangle \neq 0$, alors $u \otimes v$ est diagonalisable car dim $E_0(u \otimes v) + \dim E_{\langle v|u\rangle}(u \otimes v) = \dim E 1 + 1 = \dim E$. Si $\langle v|u\rangle \neq 0$, $u \otimes v$ n'est pas diagonalisable car 0 est son unique valeur propre et dim $E_0(u \otimes v) = \dim E - 1 < \dim E$.
- **2.** Soit $x \in E$. Alors

$$(u \otimes v)^{2}(x) = \langle v | x \rangle (u \otimes v)(u) = \langle v | x \rangle \langle v | u \rangle u = \langle v | u \rangle (u \otimes v)(x)$$

Ainsi $(u \otimes v)^2 = \langle v | u \rangle (u \otimes v)$. On en déduit que $P = X^2 - \langle v | u \rangle X$ annule $u \otimes v$. Si $\langle v | u \rangle \neq 0$, alors P est simplement scindé et $u \otimes v$ est diagonalisable. Si $\langle v | u \rangle = 0$, alors $(u \otimes v)^2 = 0$ et $u \otimes v$ est nilpotent. Il ne peut être diagonalisable car sinon il serait nul.

3. Supposons que g commute avec $u \otimes v$. Alors, pour tout $x \in E$,

$$(u \otimes v) \circ g(x) = g \circ (u \otimes v)(x)$$

ou encore

$$\langle v|g(x)\rangle u = \langle v|x\rangle g(u)$$

Notamment, comme $v \neq 0_E$, $g(u) = \alpha u$ avec $\alpha = \frac{\langle v | g(v) \rangle}{\|v\|^2}$. La dernière égalité peut également s'écrire

$$\forall x \in \mathcal{E}, \ \langle g^*(v)|x\rangle u = \alpha \langle v|x\rangle u$$

Comme $u \neq 0_E$, on a donc $\langle g^*(v) - \alpha v | x \rangle = 0$ pour tout $x \in E$ et donc $g^*(v) = \alpha v$. Réciproquement, supposons qu'il existe $\alpha \in \mathbb{R}$ tel que $g(u) = \alpha u$ et $g^*(v) = \alpha v$. Alors, pour tout $x \in E$,

$$(u \otimes v) \circ g(x) = \langle v | g(x) \rangle u = \langle g^*(v) | x \rangle u = \alpha \langle v | x \rangle u$$
$$g \circ (u \otimes v)(x) = \langle v | x \rangle g(u) = \alpha \langle v | x \rangle u$$

donc g et $u \otimes v$ commutent.

Calcul différentiel

Solution 234

1. On montre sans difficulté que D est un sous-espace vectoriel de E*. On vérifie également sans peine que les formes linéaires φ_i : $f \mapsto \frac{\partial f}{\partial x_i}(0)$ pour $i \in [1, n]$ appartiennent toutes à D. Elles sont calirement non nulles puisque $\varphi_i(e_i^*) = 1$ pour tout $i \in [1, n]$.

2. Notons ψ l'application de l'énoncé. Soit $(a,b) \in (\mathbb{R}^n)^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$\forall f \in E, \ \psi(\lambda a + \mu b)(f) = df(0) \cdot (\lambda a + \mu b) = \lambda \ df(0) \cdot a + \mu \ df(0) \cdot b = \lambda \psi(a)(f) + \mu \psi(b)(f)$$

car df(0) est linéaire par définition. Ainsi $\psi(\lambda a + \mu b) = \lambda \psi(a) + \mu \psi(b)$ de sorte que ψ est linéaire. Soit $a \in \text{Ker } \psi$. Pour tout $f \in E$, $\psi(a)(f) = 0$. Notons (e_1, \dots, e_n) la base canonique et (e_1^*, \dots, e_n^*) sa base duale. Pour tout $i \in [1, n]$, $e_i^* \in E$ et $de_i^*(0) = e_i^*$ car e_i^* est linéaire. Ainsi

$$\forall i \in [1, n], \ \psi(a)(e_i^*) = 0 = e_i^*(a)$$

Par conséquent, $a = \sum_{i=1}^{n} e_i^*(a)e_i = 0$. L'application ψ est donc bien injective.

3. Soit $f \in E$. Fixons $x \in \mathbb{R}^n$. Par composition, l'application $\xi \colon t \in \mathbb{R} \mapsto f(tx)$ est dérivable et, d'après la règle de la chaîne,

$$\forall t \in \mathbb{R}, \ \xi'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(tx)e_i^*(x)$$

D'après le théorème fondamental de l'analyse

$$f(x) - f(0) = \xi(1) - \xi(0) = \int_0^1 \xi'(t) dt = \sum_{i=1}^n e_i^*(x) \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$$

Notons 1 la fonction constante égale à 1 sur \mathbb{R}^n ainsi que $f_i: x \in \mathbb{R}^n \mapsto \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$ pour $i \in [1, n]$. Ainsi

$$f = f(0)1 + \sum_{i=1}^{n} f_i e_i^*$$

On peut prouver à l'aide du théorème de dérivation des intégrales à paramètre que les f_i sont de classe \mathcal{C}^{∞} et sont donc des éléments de E. Soit alors $\varphi \in D$.

$$\varphi(f) = f(0)\varphi(1) + \sum_{i=1}^{n} \varphi(f_i e_i^*)$$

Tout d'abord,

$$\varphi(1) = \varphi(1^2) = 21(0)\varphi(1) = 2\varphi(1)$$

donc $\varphi(1) = 0$. De plus, pour tout $i \in [1, n]$,

$$\varphi(f_i e_i^*) = f_i(0)\varphi(e_i^*) + e_i^*(0)\varphi(f_i) = \varphi(e_i^*)f_i$$

Ainsi

$$\varphi(f) = \sum_{i=1}^{n} \varphi(e_i^*) f_i(0) = \sum_{i=1}^{n} \varphi(e_i)^* \int_0^1 \frac{\partial f}{\partial x_i}(0) dt = \sum_{i=1}^{n} \varphi(e_i^*) \frac{\partial f}{\partial x_i}(0) \sum_{i=1}^{n} \varphi(e_i^*) \varphi_i$$

On a vu à la première question que les φ_i appartiennaient à D. Comme les $\varphi(e_i^*)$ sont des scalaires, on peut affirmer que la famille $(\varphi_1, \dots, \varphi_n)$ engendre D. De plus, $(\varphi_1, \dots, \varphi_n)$ est l'image de la base (e_1, \dots, e_n) par l'application linéaire injective ψ donc cette famille est libre : c'est une base de D.

Solution 235

1. Comme le produit scalaire est bilinéaire, g est différentiable sur \mathbb{R}^n et

$$\forall (x,h) \in (\mathbb{R}^n)^2$$
, $dg(x) \cdot h = 2\langle f(x) - a \mid df(x) \cdot h \rangle$

2. Posons M = g(0). Puisque $\lim_{\|x\|\to+\infty} f(x) = +\infty$, il existe A $\in \mathbb{R}_+$ tel que

$$\forall x \in \mathbb{R}^n, ||x|| > A \implies ||g(x)|| > M$$

Comme la boule de centre 0 et de rayon A est compact, la fonction continue g admet un minimum m sur cette boule. De plus, comme 0 appartient à cette boule, $m \le g(0) = M$. Comme f(x) > M lorsque x n'appartient pas à cette boule, m est bien le minimum de g sur \mathbb{R}^n .

3. Notons x_0 le point où est atteient le minimum de g. Par conséquent, $dg(x_0) = 0$. D'après la première question,

$$\forall h \in \mathbb{R}^n, \langle f(x_0) - a \mid df(x_0) \cdot h \rangle = 0$$

Mais $df(x_0)$ est un endomorphisme de \mathbb{R}^n injectif et donc également surjectif. Il s'ensuit que

$$\forall k \in \mathbb{R}^n, \ \langle f(x_0) - a \mid k \rangle = 0$$

puis $f(x_0) - a = 0$. Ainsi $f(x_0) = a$ de sorte que f est surjective.

Solution 236

1. Tout d'abord, par sous-multiplicativité de la norme, $\|H\|^n \le \|H\|^n$ pour tout $n \in \mathbb{N}^*$. Comme $\|H\| < 1$, la série géométrique $\sum \|H\|^n$ converge. On en déduit que $\sum H^n$ converge absolument puis que $\sum H^n$ converge puisque $\mathcal{M}_n(\mathbb{R})$ est de dimension finie. Par ailleurs, par continuité de la multiplication matricielle à gauche,

$$(I_n - H) \sum_{n=0}^{+\infty} H^n = \sum_{n=0}^{+\infty} H^n - H \sum_{n=0}^{+\infty} H^n = \sum_{n=0}^{+\infty} H^n - \sum_{n=0}^{+\infty} H^{n+1} = \sum_{n=0}^{+\infty} H^n - \sum_{n=1}^{+\infty} H^n = H^0 = I_n$$

Ainsi $I_n - H$ est inversible, d'inverse $\sum_{n=0}^{\infty} H^n$.

- 2. On remarque que $GL_n(\mathbb{R})$ est l'image réciproque de l'ouvert \mathbb{R}^* par l'application continue $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \det(M)$. Ainsi $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$.
- 3. a. Soit $H \in \mathcal{M}_n(\mathbb{R})$ telle que ||H|| < 1. D'après ce qui précède

$$f(I_n + H) = (I_n + H)^{-1} = \sum_{n=0}^{+\infty} (-1)^n H^n = I_n - H + \sum_{n=2}^{+\infty} (-1)^n H^n = f(I_n) - H + \sum_{n=2}^{+\infty} (-1)^n H^n$$

Posons $\varphi(H) = \sum_{n=2}^{+\infty} (-1)^n H^n$. Par continuité de la multiplication matricielle à gauche,

$$\varphi(H) = \sum_{n=0}^{+\infty} (-1)^n H^{n+2} = H^2 \sum_{n=0}^{+\infty} (-1)^n H^n$$

Puis, par inégalité triangulaire et sous-multiplicativité de la norme,

$$\|\varphi(\mathbf{H})\| \le \|\mathbf{H}\|^2 \left\| \sum_{n=0}^{+\infty} (-1)^n \mathbf{H}^n \right\| \le \|\mathbf{H}\|^2 \sum_{n=0}^{+\infty} \|\mathbf{H}\|^n = \frac{\|\mathbf{H}\|^2}{1 - \|\mathbf{H}\|}$$

Comme
$$\frac{\|H\|}{1-\|H\|} \xrightarrow[H\to 0]{} \varphi(H) = o(H)$$
 puis

$$f(I_n + H) = I_n - H + o(H)$$

Comme l'application $H \mapsto -H$ est clairement linéaire, f est différentiable en I_n et $df(I_n) = -\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$.

b. Fixons $M \in GL_n(\mathbb{R})$. Soit $H \in \mathcal{M}_n(\mathbb{R})$ telle que $||H|| < 1/||M^{-1}||$ de sorte que $||M^{-1}H|| \le ||M^{-1}|| ||H|| < 1$. On peut alors écrire :

$$f(M+H) = (M+H)^{-1} = (M(I_n + M^{-1}H))^{-1} = (I_n + M^{-1}H)^{-1}M^{-1} = f(M) - M^{-1}HM^{-1} + \varphi(M^{-1}H)M^{-1}$$

Mais, d'après la question précédente,

$$\|\phi(M^{-1}H)M^{-1}\| \leq \|\phi(M^{-1}H)\|\|M^{-1}\| \leq \frac{\|M^{-1}H\|^2}{1-\|M^{-1}H\|}\|M^{-1}\| \leq \frac{\|M^{-1}\|^3\|H\|^2}{1-\|M^{-1}\|\|H\|}$$

On en déduit alors que $\phi(M^{-1}H)M^{-1} = o(H)$ et donc que

$$f(M + H) = f(M) - M^{-1}HM^{-1} + o(H)$$

Comme l'application $H \mapsto -M^{-1}HM^{-1}$ est clairement linéaire, f est différentiable en M et $df(M)(H) = -M^{-1}HM^{-1}$ pour tout $H \in \mathcal{M}_n(\mathbb{R})$.

Solution 237

1. En vertu du théorème spectral, il existe une base orthornormée $(e_1, ..., e_n)$ de vecteurs propres de f. Notons $\lambda_1, ..., \lambda_n$ les valeurs propres associées à ces vecteurs propres. Soit alors $h \in E \setminus \{0_E\}$. Alors

$$h = \sum_{i=1}^{n} (e_i \mid h) e_i$$

puis

$$f(h) = \sum_{i=1}^{n} (e_i \mid h) f(e_i) = \sum_{i=1}^{n} (e_i \mid h) \lambda_i e_i$$

Mais comme (e_1, \dots, e_n) est une base orthornormée

$$(f(h) | h) = \sum_{i=1}^{n} \lambda_i (e_i | h)^2$$

Les λ_i sont strictement positifs et les $(e_i \mid h)$ ne peuvent être tous nuls car $h \neq 0_E$. Ainsi $(f(h) \mid h) > 0$.

2. a. Première méthode. Soit $(x, h) \in E^2$. Remarquons que

$$g(x+h) = \frac{1}{2}(f(x) \mid x) + \frac{1}{2}(f(x) \mid h) + \frac{1}{2}(f(h) \mid x) + \frac{1}{2}(f(h) \mid h) - (u \mid x) - (u \mid h)$$

$$g(x+h) = g(x) + (f(x) - u \mid h) + \frac{1}{2}(f(h) \mid h) \qquad \text{car } (f(h) \mid x) = (f(x) \mid h) \text{ en vertu de la symétrie de } f(h) = (f(x) \mid h)$$

Comme f est linéaire et que E est de dimension finie, il existe $C \in \mathbb{R}_+$ tel que $||f(z)|| \le C||z||$ pour tout $z \in E$. D'après Cauchy-Schwarzn

$$|(f(h) \mid h) \le ||f(h)|| ||h|| \le C||h||^2$$

En particulier,

$$(f(h) \mid h) = o(h)$$

On en déduit que g est différentiable en x et que dg(x) est l'application $h \mapsto (f(x) - u \mid h)$. On peut également affirmer que $\nabla g(x) = f(x) - u$.

Deuxième méthode L'application φ : $x \mapsto (u \mid x)$ est linéaire donc est différentiable sur E et $d\varphi = \varphi$. f et Id_E sont différentiables sur E en tant qu'applications linéaires, donc ψ : $x \mapsto (f(x) \mid x)$ est également différentiable sur E car le produit scalaire est bilinéaire. De plus, df = f et $dId_E = Id_E$ de sorte que

$$\forall (x,h) \in E^2, \ d\psi(x) \cdot h = (f(h) \mid x) + (f(x) \mid h) = 2(f(x) \mid h)$$

Finalement, $g = \frac{1}{2}\psi - \varphi$ est également différentiable et

$$\forall (x, h) \in E^2$$
, $dg(x) \cdot h = (f(x) - u \mid h)$

- **b.** D'après la question précédente, les points critiques de g sont les vecteurs $z \in E$ tels que f(z) = u. Mais comme $\operatorname{Sp}(f) \in \mathbb{R}_+^*$, f est inversible. L'unique point critique de g est donc $z_0 = f^{-1}(u)$.
- c. En reprenant la question 2.a,

$$\forall h \in E, \ g(z_0 + h) = g(z_0) + (f(z_0) - u \mid h) + \frac{1}{2}(f(h) \mid h) = g(z_0) + \frac{1}{2}(f(h) \mid h)$$

D'après la première question

$$\forall h \in E, \ g(z_0 + h) \ge g(z_0)$$

donc g admet bien un minimum global en z_0 . Mais on a même prouvé que $(f(h) \mid h) > 0$ pour tout $h \in E$ non nul donc $g(z_0 + h) = g(z_0)$ si et seulement si $h = 0_E$. On peut donc préciser que z_0 est l'unique point en lequel g admet son minimum global.

Solution 238

1. Comme T est ouvert, si F admet un extremum local sur T, il s'agira d'un point critique. Or pour $(x, y) \in T$, F(x, y) = x(1 - y) de sorte que pour $(x, y) \in T$,

$$\frac{\partial F}{\partial x}(x, y) = 1 - y$$
 $\frac{\partial F}{\partial y}(x, y) = -x$

Puisque 0 < x < y < 1 pour $(x, y) \in T$, ces dérivées partielles ne s'annulent pas sur T : F n'admet pas d'extremum local sur T.

2. Remarquons que F est continue sur K. Si on n'est pas convaincu, on peut par exemple remarquer que

$$\forall (x, y) \in K, F(x, y) = \min(x, y)(1 - \max(x, y))$$

De plus, les fonctions $(x, y) \mapsto \min(x, y)$ et $(x, y) \mapsto \max(x, y)$ sont continues puisque

$$\min(x, y) = \frac{x + y - |x - y|}{2}$$

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$

Comme $K = [0, 1]^2$ est compact comme produit de compacts, la fonction continue F admet un maximum et un minimum sur K. D'après la question précédente, ces extrema ne peuvent être atteints sur T, et par symétrie des rôles de x et y, ils ne peuvent pas non plus être atteints sur $T' = \{(x, y) \in \mathbb{R}^2, 0 < y < x < 1\}$. Par conséquent, ils sont atteints sur

$$(\{0,1\} \times [0,1]) \cup ([0,1] \times \{0,1\}) \cup \Delta$$

Or

$$\forall y \in [0,1], \ F(0,y) = 0$$

 $\forall x \in [0,1], \ F(x,0) = 0$
 $\forall t \in [0,1], \ F(t,t) = t(1-t)$

Une rapide étude montre que le minimum de $t \mapsto t(1-t)$ sur [0,1] est 0 et que son maximum est $\frac{1}{4}$. On en déduit que $\max_{K} F = \frac{1}{4}$ et $\min_{K} F = 0$.

Remarque. On peut aussi pressentir que $\max_{K} F = \frac{1}{4}$. Dans ce cas, il suffit de constater que $F\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{4}$ et que

$$\forall (x,y) \in \mathbb{R}^2, \ F(x,y) = \begin{cases} x(1-y) \le x(1-x) \le \frac{1}{4} & \text{si } 0 \le x \le y \le 1\\ y(1-x) \le y(1-y) \le \frac{1}{4} & \text{si } 0 \le y \le x \le 1 \end{cases}$$

Ceci prouve bien que $\max_{K} F = \frac{1}{4}$.

Solution 239

1. On prouve classiquement que $\varphi : x \mapsto \|x\|^2$ est différentiable sur E et que pour tout $x \in E$, $d\varphi(x)$ est l'application $h \mapsto 2\langle x, h \rangle$. L'application $\psi : x \mapsto f(x) - a$ est également différentiable et pour tout $x \in E$, $d\psi(x) = df(x)$. Par composition, $g = \varphi \circ \psi$ est différentiable sur E et

$$\forall (x,h) \in E^2$$
, $dg(x) \cdot h = d\varphi(\psi(x)) \circ d\psi(x) \cdot h = 2\langle f(x) - a, df(x) \cdot h \rangle$

2. Pour tout $x \in E$, $g(x) \ge (\|f(x)\| - \|a\|)^2$. Comme $\lim_{\|x\| \to +\infty} \|f(x)\| = +\infty$, on a également $\lim_{\|x\| \to +\infty} g(x) = +\infty$. Ainsi il existe $A \in \mathbb{R}_+$ tel que

$$\forall x \in E, \ \|x\| \ge A \implies g(x) \ge g(0)$$

Par ailleurs, la boule B fermée de centre 0 et de rayon A est compact car E est de dimension finie. g est continue sur E car elle y est différentiable donc g admet un minimum m sur le compact B. Par définition de A, m est le minimum de g sur E.

3. Notons x_0 un point où g admet son minimum. On a alors dg(x) = 0 et donc

$$\forall h \in E, \langle f(x_0) - a, df(x_0) \cdot h \rangle = 0$$

ou encore

$$\forall h \in \text{Im } df(x_0), \langle f(x_0) - a, h \rangle = 0$$

Comme $df(x_0)$ est un endomorphisme injectif de l'espace vectoriel de dimension finie E, elle est également surjective i.e. Im $df(x_0)$ = E. Ainsi

$$\forall h \in E, \langle f(x_0) - a, h \rangle = 0$$

On en déduit que $f(x_0) - a \in E^{\perp} = \{0_E\}$ i.e. $a = f(x_0)$. L'application f est donc surjective.

Solution 240

f est clairement continue sur \mathbb{R}^2 donc elle admet un maximum et un minimum sur le compact S. Posons $g:(x,y)\in\mathbb{R}^2\mapsto x^2+y^2-1$ de sorte que $S=g^{-1}(\{0\})$. Alors f et g sont clairement de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Notons $(a,b) \in S$ le point où f atteint son minimum/maximum. Comme $\nabla(a,b) = (2a,2b) \neq (0,0)$ puisque $(a,b) \in S$, on peut appliquer le

théorème des extrema liés : on résout le système $\begin{cases} \nabla f(a,b) = \lambda \nabla g(a,b) \\ g(a,b) = 0 \end{cases} \text{ i.e. } \begin{cases} b = 2\lambda a \\ a = 2\lambda b \text{ ce qui donne } a = \pm \frac{1}{\sqrt{2}} \text{ et } b = \pm \frac{1}{\sqrt{2}}. \text{ Puisque } a^2 + b^2 = 1 \end{cases}$

$$f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \frac{1}{2} \text{ et } f\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = -\frac{1}{2}, \text{ on en d\'eduit que } \max_{S} f = \frac{1}{2} \text{ et } \min_{S} f = -\frac{1}{2}.$$

Solution 241

Remarquons que $\mathcal{E} = \{(x,y) \in \mathbb{R}^2, \ g(x,y) = 0\}$ est compact. Tout d'abord, \mathcal{E} est fermé comme image réciproque du fermé $\{0\}$ par l'application continue g. On montre aisément que $xy \ge -\frac{1}{2}(x^2+y^2)$ pour tout $(x,y) \in \mathbb{R}^2$. On en déduit que pour $(x,y) \in \mathcal{E}$,

$$\frac{1}{2}(x^2 + y^2) \le x^2 + y^2 - xy = 1$$

Ainsi \mathcal{E} est inclus dans le disque de centre l'origine et de rayon $\sqrt{2}$. Notamment, \mathcal{E} est bornée. Comme \mathbb{R}^2 est de dimension finie, \mathcal{E} est compacte.

Soit (a, b) un extremum global de f sur \mathcal{E} . C'est a fortiori un extremum local. Comme $\nabla f(a, b) = (2, -1) \neq (0, 0), \nabla g(a, b) = (2a + b, a + 2b)$ est colinéaire à $\nabla f(a, b)$. Ainsi $\begin{vmatrix} 2a + b & 2 \\ a + 2b & -1 \end{vmatrix} = -2a - b - 2(a + 2b) = -4a - 5b = 0$. Comme g(a, b) = 0, on obtient $b = \pm \frac{4}{\sqrt{21}}$. Ainsi $(a, b) = \pm \frac{1}{\sqrt{21}}(-5, 4)$. Or

$$f\left(-\frac{5}{\sqrt{21}}, \frac{4}{\sqrt{21}}\right) = -\frac{14}{\sqrt{21}} < \frac{14}{\sqrt{21}} = f\left(\frac{5}{\sqrt{21}}, -\frac{4}{\sqrt{21}}\right)$$

Donc f admet pour minimum $-\frac{14}{\sqrt{21}}$ atteint en $\left(-\frac{5}{\sqrt{21}}, \frac{4}{\sqrt{21}}\right)$ et comme maximum $\frac{14}{\sqrt{21}}$ atteint en $\left(\frac{5}{\sqrt{21}}, -\frac{4}{\sqrt{21}}\right)$

Solution 242

1. Comme les applications $(x, y) \mapsto x^3 - y^3$ et $(x, y) \mapsto x^2 + y^2$ sont polynomiales, elles sont continue sur \mathbb{R}^2 . De plus, $(x, y) \mapsto x^2 + y^2$ ne s'annule qu'en (0, 0) donc f est continue sur $\mathbb{R}^2 \setminus \{(0, 0)\}$. De plus,

$$\forall (x, y) \in \mathbb{R}^2, |x^3 - y^3| \le |x^3| + |y^3| \le (|x| + |y|)(x^2 + y^2)$$

donc

$$\forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}, |f(x, y)| \le ||(x, y)||_1$$

Ainsi f est bien continue en (0,0). Finalement, f est bien continue sur \mathbb{R}^2 .

2. De la même manière, les applications polynomiales $(x, y) \mapsto x^3 - y^3$ et $(x, y) \mapsto x^2 + y^2$ sont de classe \mathcal{C}^1 donc f est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0, 0)\}$ et pour tout $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$,

$$\frac{\partial f}{\partial x}(x,y) = \frac{x^4 + 3x^2y^2 + 2xy^3}{(x^2 + y^2)^2} \qquad \text{et} \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{y^4 + 3x^2y^2 + 2x^3y}{(x^2 + y^2)^2}$$

Par ailleurs,

$$\forall x \in \mathbb{R}^*, \ \frac{f(x,0) - f(0,0)}{x - 0} = 1$$

 $\operatorname{donc} \frac{\partial f}{\partial x}(0,0) = 1,$

$$\forall y \in \mathbb{R}^*, \ \frac{f(0,y) - f(0,0)}{y - 0} = -1$$

donc $\frac{\partial f}{\partial y}(0,0) = -1$.

Enfin.

$$\forall y \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(0, y) = 0 \neq 1 = \frac{\partial f}{\partial x}(0, 0)$$

donc $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0). De même,

$$\forall x \in \mathbb{R}^*, \ \frac{\partial f}{\partial y}(x,0) = 0 \neq -1 = \frac{\partial f}{\partial y}(0,0)$$

donc $\frac{\partial f}{\partial v}$ n'est pas non plus continue en (0,0).

3. Attention, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ peuvent ne pas être continues en (0,0) mais pourtant y admettre des dérivées partielles.

$$\forall x \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = \frac{1}{x}$$

donc $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ n'est pas définie.

De même.

$$\forall y \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial x}(0, y) - \frac{\partial f}{\partial x}(0, 0)}{y - 0} = -\frac{1}{y}$$

donc $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ n'est pas non plus définie.

Par contre,

$$\forall x \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial x}(x,0) - \frac{\partial f}{\partial x}(0,0)}{x - 0} = 0$$

 $\operatorname{donc} \frac{\partial^2 f}{\partial x^2}(0,0) = 0 \text{ et}$

$$\forall y \in \mathbb{R}^*, \ \frac{\frac{\partial f}{\partial y}(0, y) - \frac{\partial f}{\partial y}(0, 0)}{y - 0} = 0$$

 $\operatorname{donc} \frac{\partial^2 f}{\partial y^2}(0,0) = 0.$

Solution 243

1. Par composition, u et v sont de classe \mathcal{C}^1 sur \mathbb{R} et on obtient leurs dérivées par la règle de la chaîne :

$$\forall x \in \mathbb{R}, \ u'(x) = \frac{\partial f}{\partial x}(x, x) + \frac{\partial f}{\partial y}(x, x)$$

$$\forall x \in \mathbb{R}, \ v'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

 w_x n'est autre qu'une application partielle de f: elle est donc de classe \mathcal{C}^1 et

$$\forall y \in \mathbb{R}, \ w_x'(y) = \frac{\partial f}{\partial y}(x, y)$$

2. Si x = 0, il suffit de prendre $y_0 = 0$ puisque f(0, 0) = 0.

Soit $x \in \mathbb{R}_+^*$. Par hypothèse,

$$\forall t \in [0, x], \ u'(t) = \frac{\partial f}{\partial x}(t, t) + \frac{\partial f}{\partial y}(t, t) > 0$$

Ainsi u est strictement croissante sur [0, x] de sorte que $w_x(x) = f(x, x) = u(x) > u(0) = 0$. De même

$$\forall t \in [0, x], \ v'(t) = \frac{\partial f}{\partial x}(t, -t) - \frac{\partial f}{\partial y}(t, -t) < 0$$

Ainsi v est strictement décroissante sur [0, x] de sorte que $w_x(-x) = f(x, -x) = v(x) < v(0) = 0$. Comme w_x est continue sur [-x, x], il existe $y_x \in [-x, x]$ tel que $w_x(y_x) = 0$.

Soit $x \in \mathbb{R}^*$. Par hypothèse,

$$\forall t \in [x,0], \ u'(t) = \frac{\partial f}{\partial x}(t,t) + \frac{\partial f}{\partial y}(t,t) > 0$$

Ainsi u est strictement croissante sur [x,0] de sorte que $w_x(x) = f(x,x) = u(x) < u(0) = 0$. De même

$$\forall t \in [x, 0], \ v'(t) = \frac{\partial f}{\partial x}(t, t) - \frac{\partial f}{\partial y}(t, t) < 0$$

Ainsi v est strictement décroissante sur [x, 0] de sorte que $w_x(-x) = f(x, -x) = v(x) > v(0) = 0$. Comme w_x est continue sur [-x, x], il existe $y_x \in [-x, x]$ tel que $w_x(y_x) = 0$.

Dans tous les cas, on a bien montré qu'il existe $y_x \in [-x, x]$ tel que $w_x(y_x) = 0$.

Enfin, $w_x'(t) = \frac{\partial f}{\partial y}(x, t) > 0$ pour tout $t \in \mathbb{R}$ donc w_x est strictement croissante sur \mathbb{R} et y_x est unique.

3. Par définition,

$$\forall x \in \mathbb{R}, \ f(x, \varphi(x)) = w_x(\varphi(x)) = 0$$

D'après la règle de la chaîne, $x \mapsto f(x, \varphi(x))$ est dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \ \frac{\partial f}{\partial x}(x, \varphi(x)) + \varphi'(x) \frac{\partial f}{\partial y}(x, \varphi(x)) = 0$$

Comme $\frac{\partial f}{\partial y}$ est strictement positive sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \ \varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \varphi(x))}{\frac{\partial f}{\partial y}(x, \varphi(x))}$$

Comme f est \mathcal{C}^1 , $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues, de même que φ qui est même dérivable d'après l'énoncé. On en déduit que φ' est continue sur \mathbb{R} i.e. φ est de classe \mathcal{C}^1 sur \mathbb{R} .

Solution 244

Remarquons que $v = y - \frac{x^2}{2}$ et posons g(u, v) = f(x, y).

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial g}{\partial u} - x \frac{\partial g}{\partial v}$$
$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y} = \frac{\partial g}{\partial v}$$

Enfin, $x + y = \frac{u^2}{2} + u + v$. Donc (E) équivaut à $\frac{\partial g}{\partial u} = \frac{u^2}{2} + u + v$. Ainsi

$$g(u, v) = \frac{u^3}{6} + \frac{u^2}{2} + uv + \varphi(v)$$

où ϕ : $\mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^1 . On a alors

$$f(x,y) = g\left(x, y - \frac{x^2}{2}\right) = \frac{x^3}{6} + \frac{x^2}{2} + x\left(y - \frac{x^2}{2}\right) + \varphi\left(y - \frac{x^2}{2}\right) = -\frac{x^3}{3} + \frac{x^2}{2} + xy + \varphi\left(y - \frac{x^2}{2}\right)$$

La condition f(0, y) = 0 donne $\varphi(y) = y$ pour tout $y \in \mathbb{R}$.

La solution recherchée est donc

$$f: (x,y) \mapsto -\frac{x^3}{3} + \frac{x^2}{2} + xy + \left(y - \frac{x^2}{2}\right) = -\frac{x^3}{3} + xy + y$$