Complex Analysis

Ikhan Choi

September 29, 2021

Contents

	Holomorphic functions		
	1.1	Holomorphic functions	2

Chapter 1

Holomorphic functions

1.1 Holomorphic functions

1.1. Let $p \in \mathbb{C}[z]$ with $p(z) = \sum_{k=0}^{n} a_k z^k$. There is R > 0 such that $\frac{|a_n|}{2} |z|^n \le |p(z)| \le \frac{3|a_n|}{2} |z|^n$ for $|z| \ge R$.

Proof. Since $z \neq 0$, let $w(z) := p(z)/z^n - a_n$. If we choose R > 0 such that

$$\max_{0 \le k \le n} \frac{|a_k|}{R^{n-k}} \le \frac{|a_n|}{2n}$$

so that we have for $|z| \ge R$

$$|w(z)| \le \sum_{k=0}^{n-1} \frac{|a_k|}{|z|^{n-k}} \le \frac{|a_n|}{2},$$

hence we get

$$|p(z)| = |a_n + w(z)||z|^n \ge \frac{|a_n|}{2}|z|^n.$$

1.2. Let $f: \Omega \to \mathbb{C}$ be a holomorphic function on a domain. Then, $f(\bar{z}) = f(\bar{z})$ if and only if $f(z) \in \mathbb{R}$ for $z \in \Omega \cap \mathbb{R}$.