IPESUP 2022/2023

Kholle 7 filière MPSI Planche 1

- 1. Donner et démontrer l'expression du terme général d'une suite arithmético-géométrique.
- 2. On se donne α , β , λ trois réels strictement positifs, puis la suite u définie par $u_0 = \alpha$, $u_1 = \beta$ puis $\forall n \in \mathbb{N}$, $u_{n+2} = \lambda \sqrt{u_{n+1} u_n}$. Étudier la suite u et en particulier sa convergence.
- 3. Soit $f: [1, +\infty[, x \mapsto x \ln(x)/(x+1)]$. Montrer que pour tout entier naturel non nul n, il existe un unique réel strictement positif α_n tel que $f(\alpha_n) = n$. Démontrer ensuite que

$$\forall n \in \mathbb{N}^*, \ln(\alpha_n e^{-n}) = n/\alpha_n$$

et en déduire la limite de $(\alpha_n e^{-n})_{n\geqslant 1}$.

Kholle 7 filière MPSI Planche 2

- 1. Soit $f:A\to\mathbb{R}$ une application décroissante d'une partie A de \mathbb{R} qui stabilise A. Soit $u_0\in A$ et u définie par récurrence via $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. Quel résultat sur la monotonie de u a-t-on? Le démontrer.
- 2. Pour tout entier naturel non nul n, on note

$$u_n = \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n}}}}$$

- (a) Montrer que $\forall n \in \mathbb{N}^*, u_{n+1}^2 \leqslant 1 + u_n \sqrt{2}$.
- (b) Montrer que la suite u est convergente
- 3. On considère la suite u définie par $u_0=-1, u_1=-1$, et

$$\forall\,n\in\mathbb{N},\,u_{n+2}=(n+2)u_{n+1}-(n+1)u_n$$

Donner le terme général de cette suite via l'étude de la suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$.

Kholle 7 filière MPSI Planche 3

- 1. Soit a et b deux complexes avec $b \neq 0$. Soit u une suite complexe vérifiant $\forall n \in \mathbb{N}, u_{n+2} + au_{n+1} + bu_n = 0$. Donner l'expression du terme général de u et le démontrer.
- 2. Soit x un réel. pour tout entier naturel non nul n, on note

$$v_n = \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{2^k}\right)$$

Démontrer que la suite v converge et déterminer sa limite.

3. Soit n une entier naturel. Montrer qu'il existe un unique réel x_n dans l'intervalle $[n\pi, (n+1)\pi]$ tel que $x_n \cos(x_n) - \sin(x_n) = 0$. Montrer que

$$\forall n \in \mathbb{N}, x_n < (2n+1)\pi/2$$

$$\forall n \in \mathbb{N}, x_n = n\pi + \arctan x_n$$

Déterminer alors la limite de $(x_n/(2n+1))_{n\in\mathbb{N}}$.

IPESUP 2022/2023

Kholle 7 filière MPSI Bonus

1. Étudier
$$u_0 > 0$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$.

2.
$$u_0 > 1$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{(1 + u_n)/2}$. Démontrer que

$$\prod_{k=1}^{n} u_k \xrightarrow[n \to +\infty]{} \frac{\sqrt{u_0^2 - 1}}{\operatorname{argch}(u_0)}$$
