Chapter 1

Finite State Machines

1.1 Finite state machines

A finite state machine $M = (S, I, O, f, g, s_0)$ consists of a finite set S of states, a finite input alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a new state, an output function g that assigns to each state and input pair an output and an initial state s_0 .

- We can use a state table to represent the values of the transition function f and the output function g for all pairs of states and input.
- A state diagram is a directed graph with labeled edges that represents a finite state machine.

		f		g	
	Inp	Input		out	
State	0	1	0	1	
s_0	s_1	s_0	1	0	
s_1	s_3	s_0	1	1	
s_2	s_1	s_2	0	1	
s_3	s_2	s_1	0	0	

	f		g	
	Input		Inp	out
State	0	1	0	1
$\overline{s_0}$	s_1	s_3	1	0
s_1	s_1	s_2	1	1
s_2	s_3	s_4	0	0
s_3	s_1	s_0	0	0
s_4	s_3	s_4	0	0

• If the input string is 101011, the output string is 001000.

• Let $M = (S, I, O, f, g, s_0)$ be a finite state machine and $L \subseteq I^*$ (the set of all input string over I). We say that M recognizes (or accepts) L if an input string x belongs to L if and only if the last output bit produced by M when given x as input as a 1.

Figure 1.1: A finite state machine for binary addition

1.2 Finite state machines with no output

A finite state automaton $M = (S, I, f, s_0, F)$ consists of a finite set S of states, a finite input alphabet I, a transition function f that assigns a next state to every pair of state and input (so that $f: S \times I \to S$), an initial or state s_0 and a subset F if S consisting of final (or accepting states).

	f	
State	Inp 0	ut 1
$\overline{s_0}$	s_0	s_1
s_1	s_0	s_2
s_2	s_0	s_0
s_3	s_2	s_1

 $M = (S, I, f, s_0, F), S = \{s_0, s_1, s_2, s_3\}, I = \{0, 1\}, F = \{s_0, s_3\}$ and f is given in the table.

- A string x is said to be recognized or accepted by the machine $M = (S, I, f, s_0, F)$ if it takes the initial state s_0 to a final state, that is, $f(s_0, x)$ is a state in F.
- The language recognized or accepted by the machine M, denoted by L(M), is the set of all strings that are recognized by M.
- Two finite state automata are called equivalent if they recognize the same language.

Figure 1.2: M_1

$$L(M_1) = \{1^n \mid n = 0, 1, 2, \dots\}$$

Figure 1.3: M_2

$$L(M_2) = \{1, 01\}$$

Figure 1.4: M_3

$$L(M_3) = \{0^n, 0^n 10x \mid n = 0, 1, 2, \dots \text{ and } x \text{ is any string}\}$$

Problem 1.2.1. Construct deterministic finite set automata that recognize each of these languages:

- (a) The set of bit strings that begin with two 0's.
- (b) The set of bit strings that contains two consecutive 0's.
- (c) The set of bit strings that do not contain two consecutive 0's.
- (d) The set of bit strings that end with two consecutive 0's.
- (e) The set of bit strings that contains at least two 0's.

Solution.

Figure 1.5: M_0

Figure 1.6: M_1

Problem 1.2.2. Show that M_0 and M_1 are equivalent.

Solution. For a string x to be recognized by M_0 , x must take us from s_0 to the final state s_1 or the final state s_4 .

The only string that takes us from s_0 to s_1 is the string 1.

The strings that take us from s_0 to s_4 are those strings that begin with a 0, which takes us from s_0 to s_2 , followed by zero or more additional zero which keep the machine in state s_2 followed by a 1, which takes us from s_2 to the final state s_4 .

<u>H.W.</u> Nondeterministic finite state automata

	f		
	Input		
State	0	1	
s_0	s_0, s_2	s_1	
s_1	s_3	s_4	
s_2		s_4	
s_3	s_3		
s_4	s_3	s_3	

	f			
	Input	Input		
State	0	1		
s_0	s_0, s_1	s_3		
s_1	s_0	s_1, s_3		
s_2		s_0, s_2		
s_3	s_0, s_1, s_2	s_1		