

ATMS

東京大学大学院 情報理工学系科学研究科 電気情報学専攻 伊庭斉志

iba lab.

- Assumption-based TMS
 - de Kleer, J.

- TMS
 - 計算コスト:多くの解が必要なとき非効率的
 - Inefficient data-dependency backtracking
- ATMS
 - Multiple contexts

4

ATMSのデータ

- Premise <P,{{}},{()}>
- Choise
- Assumption (A,{{A}},{(A)}>
- Node <datum, label, justication>
 - Label = $\{env_1,, envi_m\}$

$$\gamma_{x=1} :< x = 1, \{\{D\}\}, \{...\} >$$

ATMS: Extension environm

Environment lattice

4

ATMS:例

- 1 直角三角形
 - $x^2 + y^2 = z^2$
- 2 xを3とする
- 3. $\{x \neq v 4\}$ を満たす

ATMS:例

- Premise $P_1 < x^2 + y^2 = z^2, \{\{\}\}, \{()\} >$
- Assumption $A_1 < x = 3, \{\{x = 3\}\}, \{(x = 3)\} >$

z=5の成り立つ環境:

$$\{x = 3, w = 6\} \subset \{x = 3, w = 6, u = 8\} \cdots$$

Nodes

$$N_1 < y = 4, \{\{w = 6\}\}\{v = 7\}\}, \dots > 1$$

$$N_2$$
 < $z = 5, \{\{\{x = 3, w = 6\}\}\}, \{(P_1, A_1, N_1) \cdots \} >$

Nogood $\{x = v - 4\}$ $\{x = 3, w = 6\}\{x = 3, v = 7\}$

$${x = 3, w = 6}{x = 3, v = 7}$$

z=50 support

ATMSの特色

- Multiple Contexts
 - 充足性の判定がsubset testでできるので効率的である
- Data-dependency backtracking を回避
 - 効率性の向上
 - "Back to backtracking", AAAI86, by deKleer

Nクィーン問題とATMS

- Label updatesによる解法
 - 1. Make assumptions $Queen_{i,j}$ for each position of $n \times n$ board.
 - 2. Make nogoods for capturing Position pair on different rows.
 - 3. Create nodes for 1st-row Queens $Pos_{i,1}$ and Justify it with its position: $Queen_{i,1} \Rightarrow Pos_{i,1}$.
 - 4. Repeat for $2 \le k \le n$, $Pos_{i,k}, Queen_{j,k-1} \Rightarrow Pos_{i,k}$
 - 5. Gather labels of $Queen_{i,n}$ for $n. \implies$ solutions.