

BÁO CÁO THỊ GIÁC MÁY TÍNH

ĐỀ TÀI NHẬN DẠNG CÁC LOẠI MÈO

Giáo viên hướng dẫn:

Phạm Nguyên Hoàng

Sinh viên thực hiện:

Lê Phát Thời

B1812307

Trần Vạn Đại

B1812334

Nguyễn Thị Kiều Trang B1812314

D404007

Phạm Thị Thanh Giang B1812337

NỘI DUNG BÁO CÁO

Bước 1: Thu thập dữ liệu

Thu thập hình ảnh của 8 loài mèo dưới đây:

Bước 1: Thu thập dữ liệu

Bước 1: Thu thập dữ liệu

Bước 1: Thu thập dữ liệu

Bước 2: Kiểm tra định dạng file ảnh

- ☐ Sử dụng code Python để thực hiện kiểm tra toàn bộ ảnh có đúng định dạng hay không.
- ☐ Tensorflow chấp nhận các định dạng file sau: bmp, gif, jpeg, png

C:\Users\admin\anaconda3\envs\tensorflow\python.exe D:/Tensorflow/workspace/training_demo/images/train/findFile.py

D:\Tensorflow\workspace\training_demo\images\train\anhtesx.png is not an image

D:\Tensorflow\workspace\training_demo\images\train\eps_202.jpg is not an image

Process finished with exit code 0

Thử thay đổi định dạng file bằng cách thủ công
VD: eps_202.jpeg -> eps_202.jpg

Bước 3: Gán nhãn

- ☐ Sử dụng Labellmg để gán nhãn
- ☐ Vùng gán nhãn: Phần mặt của mèo
- ☐ Dùng công cụ Create RectBox để tạo tọa độ vùng (Xmax, Ymax, Xmin, Ymin)

- ☐ Khởi tạo tọa độ
- ☐ Nhập nhãn cần gán

Bước 3: Gán nhãn

Tệp .XML được sinh ra tương ứng lưu trữ các thông tin quan trọng như:

o <filename>: Tên ảnh gốc

<size>: Kích thước của ảnh gốc

<name>: Tên nhãn đã gán trước đó

o <bndbox>: Tọa độ vùng gán nhãn

```
<annotation>
     <folder>New folder</folder>
     <filename>eps 324.jpg</filename>
     <path>D:\Tensorflow\workspace\training demo\data\image
\Test\european shorthair\New folder\eps 324.jpg</path>
     <source>
          <database>Unknown</database>
     </source>
     <size>
          <width>612</width>
          <height>409</height>
          <depth>3</depth>
     </size>
     <segmented>0</segmented>
     <object>
          <name>european shorthair</name>
          <pose>Unspecified</pose>
          <truncated>0</truncated>
          <difficult>0</difficult>
          <br/>bndbox>
                <xmin>199</xmin>
                <wmin>45
                <max>432</max>
                <ymax>282
          </bndbox>
     </object>
</annotation>
```

Bước 4: Kiểm tra nhãn

Sử dụng code Python thực hiện song song 2 chức năng:

- ☐ Đếm số lượng ảnh mèo trong từng lớp
- ☐ Kiểm tra các nhãn bị lỗi trong quá trình gán (sai tên ...)

```
C:\Users\admin\anaconda3\envs\tensorflow\python.exe D:/Tensorflow/workspace/training_demo/images/train/readXML_final.py
{'chartreux': 282, 'european shorthair': 300, 'abyssin': 300, 'angora turc': 300, 'bombay': 300, 'caracal': 300, 'sacre de birmanie': 300, 'serval': 300}
Process finished with exit code 0
```

Trường hợp gán nhãn không lỗi

```
C:\Users\admin\anaconda3\envs\tensorflow\python.exe D:/Tensorflow/workspace/training_demo/images/train/readXML_final.py

Error: 1

File gan nhan loi la:
['E:\\CODE\\Thi Giac May Tinh\\XML ALL\\docobject\\file_1 - Copy.xml']

{'chartreux': 282, 'european shorthair': 300, 'abyssin': 300, 'angora turc': 300, 'bombay': 300, 'caracal': 300, 'sacre de birmanie': 300, 'serval': 300}

Process finished with exit code 0
```

Trường hợp gán nhãn có lỗi -> Chỉ ra tên của file và đường dẫn kèm theo

Bước 5: Phân vùng tập dữ liệu

☐ Sử dụng 80% ảnh mèo kèm file .XML tương ứng cho thư mục train

☐ Sử dụng 20% ảnh còn lại kèm file

Name

test =

train

Date modified

3/5/2022 12:20 AM

3/31/2022 7:38 PM

Size

Type

File folder

File folder

Bước 6: Tạo file labelmap

- ☐ Tạo các item tương ứng với số lớp, tại mỗi item sẽ chứa id và tên của một lớp mèo.
- ☐ Ánh xạ các nhãn thành giá trị số nguyên để sử dụng cho quá trình huấn luyện và nhận dạng

```
id: 1
    name: 'chartreux'
item
    name: 'european shorthair'
item
    name: 'caracal'
item
    id: 4
    name: 'bombay'
item
    name: 'angora turc'
item
    id: 6
    name: 'abyssin'
item
    id: 7
    name: 'sacre de birmanie'
item
    id: 8
    name: 'serval'
```

Bước 7: Chuyển *.xml sang TFRecord

☐ Sử dụng toàn bộ file *.xml ở 2 thư mục train và test để thực hiện quá trình chuyển đổi

python generate_tfrecord.py -x [PATH_TO_IMAGES_FOLDER]/* -I [PATH_TO_ANNOTATIONS_FOLDER]/label_map.pbtxt -o [PATH_TO_ANNOTATIONS_FOLDER]/*.record

train.record và test.record được tạo ra

PS D:\Tensorflow\scripts\preprocessing> python generate_tfrecord.py -x D:/Tensorflow/workspace/training_demo/annotations/label_map.pbtxt -o D:/Tensorflow/workspace/training_demo/annotations/test.record

Successfully created the TFRecord file: D:/Tensorflow/workspace/training_demo/annotations/test.record

PS D:\Tensorflow\scripts\preprocessing> python generate_tfrecord.py -x D:/Tensorflow/workspace/training_demo/images/test -l D:/Tensorflow/workspace/training_demo/annotations/label_map.pbtxt -o D:/Tensorflow/workspace/training_demo/annotations/test.record

Successfully created the TFRecord file: D:/Tensorflow/workspace/training_demo/annotations/test.record

PS D:\Tensorflow\scripts\preprocessing>

test.record	3/5/2022 1:05 AM	RECORD File	31,079 KB
train.record	3/5/2022 1:05 AM	RECORD File	127,544 KB

Bước 8: Cấu hình Model

- ➤ Model sử dụng để huấn luyện: SSD ResNet50 V1 FPN 640x640
- Cấu hình lại model trong file *pipeline.config*, chỉnh sửa lại một số chỗ như
 - ☐ Số lượng lớp (num_classes)
 - ☐ Batch_size
 - ☐ Các đường dẫn
 - ☐ fine_tune_checkpoint_type: "detection"

Bước 9: Train Model

- ☐ Chuyển sang thư mục training_demo.
- ☐ Thực hiện câu lệnh sau trong cmd

python model_main_tf2.py --model_dir=models/my_ssd_resnet50_v1_fpn --pipeline_configpath=models/my_ssd_resnet50_v1_fpn/pipeline.config

```
'learning_rate': 7.4625013e-06}
INFO:tensorflow:Step 24900 per-step time 0.669s
I0305 05:53:36.231349 17204 model_lib_v2.py:705] Step 24900 per-step time 0.669s
INFO:tensorflow:{'Loss/classification_loss': 0.14740227,
 'Loss/localization_loss': 0.044395402,
 'Loss/regularization_loss': 0.15771493,
 'Loss/total_loss': 0.34951258,
 'learning_rate': 1.8656253e-06}
I0305 05:53:36.231349 17204 model_lib_v2.py:708] {'Loss/classification_loss': 0.14740227,
 'Loss/localization_loss': 0.044395402,
 'Loss/regularization_loss': 0.15771493,
 'Loss/total_loss': 0.34951258,
 'learning_rate': 1.8656253e-06}
                                                                                                                   ☐ Tổng số step: 25000
INFO:tensorflow:Step 25000 per-step time 0.669s
I0305 05:54:43.052117 17204 model_lib_v2.py:705] Step 25000 per-step time 0.669s
INFO:tensorflow:{'Loss/classification_loss': 0.086163044,
 'Loss/localization_loss': 0.02740234,
 'Loss/regularization_loss': 0.15771484,
 'Loss/total_loss': 0.27128023,
 'learning_rate': 0.0}
I0305 05:54:43.052117 17204 model_lib_v2.py:708] {'Loss/classification_loss': 0.086163044,
 'Loss/localization_loss': 0.02740234,
 'Loss/regularization_loss': 0.15771484,
 'Loss/total_loss': 0.27128023,
 'learning_rate': 0.0}
PS D:\Tensorflow\workspace\training_demo>
```

Bước 10: Xuất Model

PS D:\Tensorflow\workspace\training_demo>

- ☐ Copy script exporter_main_v2.py và chuyển nó vào thư mục training_demo.
- Sau đó thực hiện lệnh sau vào cmd tại thư mục training_demo:

```
python .\exporter_main_v2.py --input_type image_tensor
--pipeline_config_path .\models\my_ssd_resnet50_v1_fpn\pipeline.config
--trained_checkpoint_dir .\models\my_ssd_resnet50_v1_fpn\
--output_directory .\exported-models\my_model
```

```
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))
WARNING:tensorflow:Skipping full serialization of Keras layer <object_detection.meta_architectures.ssd_meta_arch.SSDMetaArch object at 0x000001DC8DA1FDF0
W0305 05:59:02.870842 2456 save_impl.py:71] Skipping full serialization of Keras layer <object_detection.meta_architectures.ssd_meta_arch.SSDMetaArch ob
2022-03-05 05:59:09.209323: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so cons
W0305 05:59:20.819850 2456 save.py:263] Found untraced functions such as WeightSharedConvolutionalBoxPredictor_layer_call_fn, WeightSharedConvolutionalBoxHead_layer_call_and_return_conditional_losses, WeightSharedConvolutionalBoxPred
ightSharedConvolutionalBoxHead_layer_call_fn, WeightSharedConvolutionalBoxHead_layer_call_and_return_conditional_losses, WeightSharedConvolutionalBoxPred
se functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: .\exported-model\saved_model\assets
INFO:tensorflow:Writing pipeline config file to .\exported-model\smy_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\saved_model\save
```

Bước 11: Xuất Model

Cấu trúc thư mục my_model sau khi xuất model thành công

Cấu trúc bên trong thư mục checkpoint

Cấu trúc bên trong thư mục saved_model

2. KIỂM THỬ

Lập bảng Confusion matrix

	Abyssin	Angora turc	Caracal	Chartreux	European Shorthair	Serval	Bombay	Sacre de Birnamie
Abyssin	27	0	1	0	2	0	0	0
Angora turc	1	29	0	0	0	0	0	0
Caracal	1	0	28	0	1	0	0	0
Chartreux	0	0	0	28	1	0	1	0
European Shorthair	0	0	0	1	29	0	0	0
Serval	0	0	0	0	1	29	0	0
Bombay	0	1	0	0	0	0	26	3
Sacre de Birnamie	0	1	0	0	1	0	0	28

2. KIỂM THỬ

Tính F1_score (Liên hệ giữa Precision và Recall)

	Precision	Recall	
Abyssin	0.90	0.93	
Angora turc	0.97	0.94	
Caracal	0.93	0.97	
Chartreux	0.93	0.97	
European Shorthair	0.97	0.83	
Serval	0.97	1.00	
Bombay	0.87	0.96	
Sacre de Birnamie	0.93	0.90	
Average	0.93	0.94	

F1_score =
$$\frac{2*recall*precision}{recall+precision} = 0.93$$

3. DEMO CHƯƠNG TRÌNH

Giao diện

- > Image Path: Chọn hình ảnh cần nhận dạng
- ➤ Min_score_thresh: Ngưỡng nhận dạng
- ➤ Detect: Sử dụng tf2 saved model

3. DEMO CHƯƠNG TRÌNH KẾT QUẢ

CẨM ƠN THẦY VÀ CÁC BẠN ĐÃ LẮNG NGHE!