作业题 1-运动学

(-)	对描述质点	言法动物理	量的理解
	- カココ田 メビカス 5	3,42,47,177,72	- 早. ロコンモ. 卅十.

- 1、关于加速度的物理意义,下列说法正确的是()
 - (A) 加速度是描述物体运动快慢的物理量:
 - (B) 加速度是描述物体位移变化率的物理量:
 - (C) 加速度是描述物体速度变化的物理量:
 - (D) 加速度是描述物体速度变化率的物理量.

解析:

- 2、一质点作抛体运动,忽略空气阻力,在运动过程中,该质点的 $\frac{dv}{dt}$ 和 $\frac{d\overline{v}}{dt}$ 的变化情况是()
- (A) $\frac{dv}{dt}$ 的大小和 $\frac{d\overline{v}}{dt}$ 的大小都不变; (B) $\frac{dv}{dt}$ 的大小改变, $\frac{d\overline{v}}{dt}$ 的大小不变;
- (C) $\frac{dv}{dt}$ 的大小和 $\frac{d\overline{v}}{dt}$ 的大小均改变; (D) $\frac{dv}{dt}$ 的大小不变, $\frac{d\overline{v}}{dt}$ 的大小改变。

解析:

- 3、一沿直线运动的物体,其速度与时间成反比,则其加速度大小与速度大小的关系是()
 - (A) 与速度成正比; (B) 与速度平方成正比;
 - (C) 与速度成反比; (D) 与速度平方成反比。

解析:

4.作匀变速圆周运动的物体()							
(A) 法向加速度大小不变;	(B) 切向加速度大小不变;						
(C) 总加速度大小不变;	(D) 以上说法都不对。						
解析:							
5.作圆周运动的物体()							
(A) 加速度的方向必指向圆 ₄	心; (B)切向加速度必定等于零;						
(C) 法向加速度必定等于零;	(D) 总加速度必定不总等于零。						
解析:							
6.一质点在平面上运动,已知质点位置矢量的表达式为 $\vec{r} = at^2\vec{i} + bt^2\vec{j}$							
(其中 a、b 为常量),则该质点作()							
(A) 匀速直线运动;) 匀速直线运动; (B) 变速直线运动;						
(C) 抛物曲线运动;	(D) 一般曲线运动。						
解析:							
(二)两类问题: 第一类问题 由位矢求其它状态量求导							
1. 已知质点的运动学方程为 r :	$=4t^2\bar{i}+(2t+3)\bar{j}$ (SI),求该质点的轨						
道方程? 速度和加速度的表达式?							
2. 已知质点的运动学方程为							
$\vec{r} = (5 + 2t - \frac{1}{2}t^2)\vec{i} + (4t + \frac{1}{3}t^3)\vec{j} (SI)$							
当 $t = 2$ s 时,加速度的大小为 $a =$							
// / / / / / / / / / / / / / / / / / /							

第二类问题: 由状态量求位矢或速度----积分

V =	, 运	动学方程为:	x =		
为 x ₀ ,	加速度 a = 0	Ct ² (其中 C)	为常量),	则其速度与时间	间的关系为
1.在 x	轴上作变加速	速直线运动的	质点,已	知其初速度为v。	,初始位置

- 2.一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即 $dv/dt = -Kv^2$,式中K为常量. 试证明电艇在关闭发动机后又行驶x距离时的速度为 $v = v_0 \exp(-Kx)$,其中 v_0 是发动机关闭时的速度.
- **3.**一质点沿x 轴运动,其加速度a 与位置坐标x 的关系 $a=2+6x^2$ (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.
- **4.**质点 P 在水平面内沿一半径为 R=2 m 的圆轨道转动. 转动的角速度 ω 与时间 t 的函数关系为 $\omega = kt^2$ (k 为常量). 已知 t=2s 时,质点 P 的速度值为 32 m/s. 试求 t=1s 时,质点 P 的速度与加速度的大小.