A Practical Guide to Training and Fine-Tuning Language Models

NASHVILLE DATA SCIENCE MEETUP

JULY 17TH, 2023

LIMING ZHOU

XSOLIS, FRANKLIN, TN

Agenda

Some NLP Concepts

History of Language Models

Hugging Face

- Fine tuning pretrained Language Models
- Train a language model from scratch
- Example code

Agenda

Some NLP Concepts

History of Language Models

Hugging Face

- Fine tuning pretrained Language Models
- Train a language model from scratch
- Example code

What is Natural Language Processing?

- Giving computers the ability to understand and generate text and spoken words in the same way human beings can
- NLP tasks:
 - Speech recognition
 - Sentiment analysis
 - Translation
 - Summarization
 - Question & Answer

How to train an NLP model?

Neural Network

One-hot Encoding

categories	Sport	Politic	Science	Health
Sport	1	0	0	0
Politic	0	1	0	0
Sport	1	0	0	0
Science	0	0	1	0
Sport	1	0	0	0
Health	0	0	0	1

Agenda

Some NLP Concepts

History of Language Models

Hugging Face

- Fine tuning pretrained Language Models
- Train a language model from scratch
- Example code

History of Language Model

What is language model?

Predicts the next word given a sequence of words

Stochastic Model

- Count number of words cooccurrence
 - P("like"|"I") = count("I like")/count("I")
- N-gram
 - P("like"|"I don't") = count("I don't like")/count("I don't")

History of Language Model

Recurrent Neural Networks (LSTM, GRU)

hi: hidden state

• Store early tokens' information across time steps $\begin{array}{c} y_T \\ h_0 \\ \hline \\ h_1 \\ \hline \\ x_1 \\ \hline \\ x_2 \\ \hline \\ x_T \\ \hline \end{array}$ What is ... model

History of Language Model

Transformers (BERT, GPT, T5)

- Encoder-Decoder
 - Encoder models: understand whole sentence
 - Decoder models: text generation
- Parallel
- Attention!!!
 - Let model itself to decide which part in the sentence is important
- Hugging Face

Agenda

Some NLP Concepts

History of Language Models

Hugging Face

- Fine tuning pretrained Language Models
- Train a masked language model from scratch
- Example code

Hugging Face

Library:

- Datasets: Use Arrow
- Evaluate: Evaluate machine learning models

Classes:

- Auto
 - AutoConfig, AutoModel, AutoTokenizer,
 - AutoModelForSequenceClassification
- Trainer
 - TrainerArguments, Trainer

Hub:

- Datasets
- Pre-trained models

tokenizer("Welcome to the 😝 Tokenizers library. This is a library from Hugging Face.")

- Transfer learned knowledge from source dataset to target dataset
 - If you have small target dataset
 - If you can't train a model from scratch
 - If you work in a unique domain (specialized vocab)

- Transfer learned knowledge from source dataset to target dataset
 - If you have small target dataset
 - If you can't train a model from scratch
 - If you work in a unique domain (specialized vocab)

- Transfer learned knowledge from source dataset to target dataset
 - If you have small target dataset
 - If you can't train a model from scratch
 - If you work in a unique domain (specialized vocab)

Summary

- Total size of source dataset:
 - BooksCorpus (800M words)
 - English Wikipedia (2,500 M words)
 - Totally ~26GB
- Fine tuning uncased base BERT model for CNNnews dataset,
 - 6 different categories: business, entertainment, health, news, politics, sport
 - Total size of target dataset:
 - ~38k cases
 - ~24MB
- Fine tuning with classifier layer only:
 - # of trainable parameters = 4,614
 - Converge after 6th epoch
 - Training time for each epoch: 3.5 mins
 - F1: 0.46, acc: 0.66
- Fine tuning the whole model:
 - # of trainable parameters = 109,486,854
 - Converge after 9th epoch
 - Training time for each epoch: 8.8 mins
 - F1: 0.85, acc: 0.96

Masked Language Model

- Predict masked word based on given context
- Try to learn the language rules

Summary

Masked Language Model

- Uncased BERT masked language Model
- OpenWebText: ~16GB
- Vocab_size = 30k
- Used based BERT config
- Chunk_size = 128
- Batch_size =256
- 10K steps/checkpoint
- 132 mins / checkpoint
- CPU: AMD Ryzen Threadripper 3960X 24-Core Processor
- Memory: 256GB
- GPU: 2 X NVIDIA RTX A5000 (24GB)

Tokenization in NLP:

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Word embedding:

https://www.turing.com/kb/guide-on-word-embeddings-in-nlp

Machine Learning course (Stanford)

https://www.youtube.com/watch?v=jGwO_UgTS7I

Hugging Face NLP course:

https://huggingface.co/learn/nlp-course/chapter1/1

Attention is all you need:

https://arxiv.org/abs/1706.03762

Bert:

https://arxiv.org/abs/1810.04805

Q&A