# Задача 1. Батареи

 Входной файл
 radiator.in

 Выходной файл
 radiator.out

 Ограничение по времени
 1 сек

 Ограничение по памяти
 256 МиБ

 Максимальный балл за задачу
 100

Вася решил обновить батареи у себя дома. Будем считать, что его дом имеет форму прямоугольного параллелепипеда со сторонами  $A,\ B$  и C метров. Одна батарея может обогреть X кубических метров жилого пространства. Посчитайте, какое наименьшее количество батарей необходимо, чтобы обогреть весь дом целиком.

### Формат входных данных

В первой строке входного файла содержатся 4 числа A, B, C и X ( $1 \le A, B, C \le 1000, 1 \le X \le 10000$ ).

### Формат выходных данных

Выведите необходимое количество батарей.

## Пример

| Входной файл | Выходной файл |
|--------------|---------------|
| 3 2 5 7      | 5             |

# Задача 2. Штрихкод

 Входной файл
 barcode.in

 Выходной файл
 barcode.out

 Ограничение по времени
 1 сек

 Ограничение по памяти
 256 МиБ

 Максимальный балл за задачу
 100

Для автоматизации торговли и складского учета в последнее время широко распространены штрихкоды, при помощи которых кодируют числовые индексы товаров. Каждый штрихкод представляет собой последовательность из черных и белых полосок, при этом полоски могут быть узкими и широкими. Узкая полоска (как черная, так и белая) кодирует бит 0, широкая полоска кодирует бит 1.

Полученная битовая последовательность разбивается на группы из 4 бит, каждая группа кодирует одну десятичную цифру в соответствии с ее представлением в двоичной системе счисления (группа 0000 кодирует цифру 0, группа 0001 кодирует цифру 1, группа 0010 кодирует цифру 2, 0011 — цифру 3, 0100 — цифру 4 и т. д.). Если число, которое кодирует группа из 4 бит, больше 9, то эта группа не может быть декодирована и весь штрихкод считается ошибочным.

Напишите программу, которая по данному штрихкоду определяет его числовое значение.

## Формат входных данных

Во входном файле содержится изображение штрихкода в виде строки из символов "В" и "W". Строка состоит из чередующихся черных и белых полосок, каждая из которых может быть узкой или широкой. Узкая черная полоска кодируется символом "В", широкая черная полоска кодируется символами "ВВ", узкая и широкая белые полоски кодируются символами "W" и "WW" соответственно. Общее число полосок в строке равно 16, штрихкод начинается с черной полоски.

#### Формат выходных данных

Программа должна вывести четыре цифры — результат декодирования данного штрихкода. Если хотя бы одна из четырех цифр не может быть декодирована, выведите слово ERROR.

#### Пример

| Входной файл    | Выходной файл |
|-----------------|---------------|
| BWBWBWBWBWBWWW  | 0001          |
| BWBWBWBWBWWBBWW | ERROR         |

# Задача 3. Патрульный робот

 Входной файл
 robot.in

 Выходной файл
 robot.out

 Ограничение по времени
 1 сек

 Ограничение по памяти
 256 МиБ

 Максимальный балл за задачу
 100

Дан робот, способный перемещаться по плоскости. За 1 шаг он перемещается на 1 метр в любом из четырех направлений. Программа для этого робота записывается на перфоленте, причем приняты такие обозначения:

- А) отсутствие обоих отверстий в некоторой позиции движение на север;
- Б) отверстие только вверху ленты движение на юг;
- В) отверстие только внизу ленты движение на запад;
- $\Gamma$ ) отверстия и вверху, и внизу ленты движение на восток.

На рисунке изображен кусочек ленты, содержащий две команды движения на запад и одну команду движения на восток.



Для того, чтобы экономить ленту, ее закольцовывают (склеивают начало и конец). Таким образом робот может исполнять записанную серию команд несколько раз, пока у него не кончится заряд батареи.

Однажды техник, который обслуживал робота, допустил ошибку и склеил перфоленту в виде ленты Мёбиуса (перед тем, как склеить концы, он один раз перекрутил ленту). Когда это обнаружилось, возник вопрос: в какой же точке следует теперь ожидать робота? Напишите программу, которая рассчитает координаты робота, если известно, что заряда батареи хватает ровно на N шагов.

### Формат входных данных

В первой строке входного файла записано число N (целое положительное, не превышающее  $10\,000)$  — на сколько шагов хватает заряда батареи робота. Во второй строке записана программа для робота, содержащая символы:

'N' — шаг на север (в положительном направлении оси y),

'S' — шаг на юг (в отрицательном направлении оси y),

'E' — шаг на восток (в положительном направлении оси x),

'W' — шаг на запад (в отрицательном направлении оси x).

Длина программы не превышает 200 символов, программа не пуста. Известно, что в начальный момент времени робот находится в точке с координатами (0,0). Каждый шаг имеет длину 1.

## Формат выходных данных

Выведите координаты точки, где остановится робот.

#### Пример

| Входной файл | Выходной файл |
|--------------|---------------|
| 8            | -2 2          |
| NNSS         |               |
| 2            | 1 -1          |
| ESNW         |               |

# Задача 4. Ханойская сортировка

 Входной файл
 pyramid.in

 Выходной файл
 pyramid.out

 Ограничение по времени
 1 сек

 Ограничение по памяти
 256 МиБ

 Максимальный балл за задачу
 100

Дано три колышка. На первый колышек надета пирамидка из N дисков разного диаметра, размещенных в произвольном порядке, два других колышка пусты. Разрешается перекладывать по одному верхнему диску с одного колышка на другой (**независимо от их размера**). Необходимо разместить все диски на первом колышке в порядке возрастания их диаметра, если считать снизу вверх.

#### Формат входных данных

Первая строка входного файла содержит число N ( $N \leq 50$ ) — количество дисков в пирамидке. Во второй строке записаны числа  $1, \ldots, N$  по одному разу в некотором порядке — диаметры дисков, в порядке снизу вверх.

#### Формат выходных данных

Программа должна вывести последовательность перекладываний дисков. Каждое перекладывание состоит из двух чисел, разделенных пробелами: номер колышка с которого берется диск и номер колышка на который кладется диск. На одной строке выводится одно перекладывание.

Количество выведенных строк должно быть не больше  $10^5$ .

### Пример

| Входной файл | Выходной файл |
|--------------|---------------|
| 2            | 1 2           |
| 2 1          | 1 3           |
|              | 2 1           |
|              | 3 1           |

# Задача 5. Игрушечный лабиринт

 Входной файл
 labirint.in

 Выходной файл
 labirint.out

 Ограничение по времени
 1 сек

 Ограничение по памяти
 256 МиБ

 Максимальный балл за задачу
 100

Дан игрушечный лабиринт, в нем находится шарик. Лабиринт можно наклонять влево, вправо, к себе или от себя, после чего шарик катится в сторону наклона до тех пор, пока не встретится с каким-нибудь препятствием, с отверстием в полу, или с границей лабиринта. Целью игры является, наклоняя лабиринт, загнать шарик в любое из таких отверстий-выходов. Определите, какое минимальное количество наклонов необходимо сделать, чтобы этого добиться. Гарантируется, что решение существует. В начале шарик находится в левом верхнем углу лабиринта. Гарантируется, что левый верхний угол лабиринта всегда свободен.

## Формат входных данных

В первой строке входного файла записаны числа N и M — размеры лабиринта (целые положительные числа, не превышающие 100). Затем идет N строк по M чисел в каждой — описание лабиринта. Число 0 в описании означает свободное место, число 1 — препятствие, число 2 — отверстие.

Например, лабиринту, изображенному на рисунке, будет соответствовать такое описание:



## Формат выходных данных

Выведите единственное число — минимальное количество наклонов, которые необходимо сделать, что- бы шарик покинул лабиринт через какое-нибудь из отверстий.

### Пример

| Входной файл | Выходной файл |
|--------------|---------------|
| 4 5          | 2             |
| 0 0 0 0 1    |               |
| 0 1 1 0 0    |               |
| 0 0 1 0 1    |               |
| 0 2 1 0 2    |               |