

Trabajo práctico Nº3

Comportamiento Térmico de Capacitores y Resistencias

Materia: Tecnología Electrónica

Profesor: González Dondo, Diego

Integrantes:

Schamun Lucas Gabriel, 62378

Ponce Nicolás, 64725

Curso: 5R2

Medición de la variación de la capacidad y la resistencia debidos a cambios de temperatura de operación.

Para las mediciones de las variaciones de las resistencias y capacitores se utilizo un metodo de medicion indirecto. Este consiste en medir la frecuencia de oscilacion en funcion de la temperatura dejando alguno de los elementos a temperatura constante y sometiendo a otro a saltos térmicos controlados.

Circuito utilizado:

La frecuencia de oscilación está determinada por:

$$f_0 = \frac{1}{2,2RC}$$

Donde:

 f_0 : Frecuencia de oscilación

R: Valor de resistencia

C: Valor de capacidad

La primera experiencia se realizó manteniendo la temperatura de capacitor constante y se aplicaron saltos de temperatura a distintos tipos de tecnologías de resistencias.

Las resistencias utilizadas fueron:

- 100kΩ Cerámico
- 820kΩ metalfilm
- 22Ω potencia

Se montó el circuito propuesto para tal experiencia y se obtuvieron los siguientes resultados:

Resistencia de carbón:

	Frecuencia	Temperatura	Ctr (ppm)	resistencia
	14,5	25	0,07474126	94993,8254
	14,5	27	7,1E-06	94993,8254
	14,5	29	3,55E-06	94993,8254
	14,5	32	2,0286E-06	94993,8254
	14,5	33	1,775E-06	94993,8254
	14,5	36	1,2909E-06	94993,8254
Resistencia	14,54	39	-196,502259	94732,4944
	14,56	41	-257,554944	94602,3673
100K carbon	14,58	44	-288,787812	94472,5973
capacitor	14,6	46	-295,77777	94343,1828
	14,66	51	-419,771224	93957,0579
330pF	14,68	53	-437,913585	93829,051
	14,69	55	-431,132289	93765,1782
	14,75	60	-484,261501	93383,7606

Resistencia metal-film:

	Frecuencia	Temperatura	resistencia	Ctr (%)
	3,37	25	408727,142	0
	3,37	29	408727,142	0
	3,37	30	408727,142	0
	3,37	31	408727,142	0
	3,37	34	408727,142	0
	3,37	36	408727,142	0
Resistencia	3,37	38	408727,142	0
820K METAL-	3,37	39	408727,142	0
FILM con	3,368	43	408969,854	1,06888361
capacitor	3,368	45	408969,854	1,18764846
polyester	3,368	48	408969,854	1,36579572
polyester	3,368	50	408969,854	1,48456057
	3,368	52	408969,854	1,60332542
	3,368	60	408969,854	2,0783848
	3,367	63	409091,318	3,38580339
	3,367	66	409091,318	3,65310365
	3,367	69	409091,318	3,92040392

Resistencia de potencia:

Para esta experiencia no se utilizó el método indirecto ya que el bajo valor de la resistencia impide que funcione correctamente el oscilador. Por este motivo se sometió el dispositivo a saltos de temperatura y se midió su resistividad con un multímetro.

Como se vio, la variación de resistencia es diferente para cada tecnología ya que los materiales con los que se fabrican cada dispositivo son distintos, además la tolerancia de cada resistencia influye también en el valor final. Se puede observar en las siguientes imágenes información con respecto a la variación de la resistividad para distintos materiales, con su determinado coeficiente de temperatura.

Material	Resistencia especifica a 20°C en CM ' Ω/ft	Coeficiente de variación con la temperatura α, en Ω por °C
Aluminio	17	0.004
Carbono	+	-0.0003
Constantán	295	(promedio)
Cobre	10.4	0.004
Oro	14	0.004
Fierro	58	0.006
Nicromel	676	0.0002
Niquel	52	0.005
Plata	9.8	0.004
Tungsteno	33.8	0.005

Material	а	Material	a
Aluminio	0.0039	Plata	0.0038
Manganita	nulo	Estaño	0.0042
Advance	0.00002	Platino	0.0025
Mercurio	0.00089	Hierro	0.0052
Bronce fosforoso	0.002	Plomo	0.0037
Nicromio	0.00013	Kruppina	0.0007
Carbón	0.0005	Tungsteno	0.0041
Níquel V///	0.0047	Latón	0.002
Niquelina	0.0002	Wolframio	0.0045
Cobre	0.00382	Oro	0.0034

Luego se realizó manteniendo la temperatura de una resistencia de $100 \text{K}\Omega$ constante y se aplicaron saltos de temperatura a distintos tipos de tecnologías de capacitores.

Los capacitores utilizados fueron:

- Capacitor de polyester de 100pF
- Capacitor de cerámico de 10nF
- Capacitor de micaplate de 3,9nF

Se montó el circuito propuesto para tal experiencia y se obtuvieron los siguientes resultados:

Capacitor de polyester:

Dispositivo	Frecuencia [KHz]	Temperatura [°C]	Capacitancia [F]	Ctc [ppm/°C]	Variación capacidad [%]
	16,67	25	2,72673E-10	0	0
	16,65	29	2,73E-10	300,3003003	0,12012012
	16,6	33	2,73823E-10	340,787845	0,421686747
	16,59	37	2,73988E-10	401,8485031	0,482218204
16,55 41		2,7465E-10	2,7465E-10 453,1722054		
100pF con resistencia 100K	2,75482E-10	515,1515152	1,03030303		
	-	2,77162E-10	685,9756098	1,646341463	
		2,78862E-10	810,6923751	2,26993865	
	16,1	57	2,82326E-10	878,98758	3,540372671
	16,1	61	2,82326E-10	983,436853	3,540372671
	16	65	2,84091E-10	1046,875	4,1875
	16	69	2,84091E-10	1058,25568	4,1875
	16	73	2,84091E-10	1088,24786	4,1875

Capacitor de cerámico:

Dispositivo	Frecuencia [Khz]	Temperatura [°C]	Capacitancia [F]	Ctc [ppm/°C]	Variación capacidad [%]
	1,16	26	3,9185E-09	0	0
	1,2	30	3,78788E-09	-8333,33333	-3,333333333
	1,21	31	3,75657E-09	-8264,46281	-4,132231405
	1,28	33	3,55114E-09	-13392,8571	-9,375
1,31	35	3,46981E-09	-12722,6463	-11,45038168	
	1,33	37	3,41763E-09	-11619,959	-12,78195489
	1,4	38	3,24675E-09	-14285,7143	-17,14285714
	1,43	40	3,17864E-09	-13486,5135	-18,88111888
Canacitor coramico	1,5	42	3,0303E-09	-14166,6667	-22,66666667
Capacitor ceramico 10nF con resistencia 100K	1,67	43	2,72183E-09	-17964,0719	-30,53892216
	1,71	46	2,65816E-09	-16081,8713	-32,16374269
	1,87	47	2,43072E-09	-18079,9593	-37,96791444
	1,97	48	2,30734E-09	-18689,4324	-41,11675127
	2,1	49	2,1645E-09	-19461,6977	-44,76190476
	2,25	50	2,0202E-09	-20185,1852	-48,4444444
	2,31	51	1,96773E-09	-19913,4199	-49,78354978
	2,4	52	1,89394E-09	-19871,7949	-51,66666667
	2,51	53	1,81094E-09	-19920,3187	-53,78486056
	2,61	56	1,74155E-09	-18518,5185	-55,5555556
	2,8	61	1,62338E-09	-22050	-58,57142857

Capacitor de Mica plate:

Dispositivo	Frecuencia [KHz]	Temperatura [°C]	Capacitancia [F]	Ctc [ppm/°C]	Variación capacidad [%]
	1,95	25	2,331E-09	0	0
	2,08	27	2,18531E-09	-31250	-6,25
	2,18	29	2,08507E-09	-32178,2487	-10,55045872
	2,27	30	2,0024E-09	-33015,7569	-14,0969163
	2,38	31	1,90985E-09	-33178,2897	-18,06722689
	2,41	32	1,88608E-09	-33478,2158	-19,08713693
	2,52	33	1,80375E-09	-33789,4879	-22,61904762
	2,61	34	1,74155E-09	-34158,8978	-25,28735632
Capacitor	2,77	35	1,64096E-09	-34298,2874	-29,60288809
micaplate	2,87	38	1,58378E-09	-34687,8795	-32,05574913
3,9nF con	2,91	39	1,56201E-09	-35107,9875	-32,98969072
resistencia	3,14	40	1,4476E-09	-35208,6879	-37,89808917
100K	3,2	42	1,42045E-09	-35895,7854	-39,0625
1001	3,27	43	1,39005E-09	-36011,8795	-40,36697248
	3,38	45	1,34481E-09	-36147,1036	-42,30769231
	3,47	46	1,30993E-09	-36789,1258	-43,80403458
	3,51	50	1,295E-09	-37014,3569	-44,4444444
	3,56	53	1,27681E-09	-38168,1579	-45,2247191
	3,64	55	1,24875E-09	-38169,4876	-46,42857143
	3,64	57	1,24875E-09	-39156,1568	-46,42857143
	3,68	60	1,23518E-09	-40265,8798	-47,01086957
	3,7	61	1,2285E-09	-40358,9879	-47,2972973

Г	COEFICIENTE DE TEMPERATURA p.p.m. ℃											
	Color	Rojo + Violeta (Oro)	Gris oscuro	Negro	Marrón	Rojo oscuro	Rojo claro	Naranja	Verde oscuro	Azul claro	Violeta	Azul oscuro
	Coeficiente (x10 ⁻⁶)	+100	+33	0	-33	-47	-75	-220	-330	-475	-750	-1500

- ·				TOLER	ANCIA					
CARA POSTERIOR	C < 10 pF (+1-pF)	Negro (2)	Marrón (0,01)	_	_	_	Verde (0,1)	_	Gris (0,25)	Blanco (1)
Secret Courts - 1	C >= 10 pF (+ l - %)	Negro (20)	Marrón (1)	Rojo (2)	Naranja (3)	_	Verde (5)	_	_	Blanco (10)

TP. N°1 Tecnología Electrónica - 5R2

<u>Ejercicios sobre los efectos en circuitos a causa de los cambios</u> de valores de los componentes:

Amplificador operacional:

En el siguiente circuito determinar el voltaje final de salida para una temperatura de 100 °C si el valor a 25°C es el indicado para R y amplificación.

La resistencia resultante con el cambio de temperatura viene dada por:

$$R_f = \frac{R_i C T_r \Delta T}{10^6} + R_i$$

Valores de resistencias a 100°C (ΔT=75°C)

• R1: 99 Ω 101,227 Ω

R2:1 Ω → 1,015 Ω

• R3:498 Ω 501,735 Ω

• R4: 2 Ω 2,06 Ω

El voltaje de salida viene dado por

$$V_o = 5 * \left(\frac{R_4}{R_3 + R_4}\right) \left(1 + \frac{R_1}{R_2}\right) = 2,06V$$

Se sabe que el valor de la tensión de salida era de 2V para una temperatura de 25ºC. Por consecuencia al cambio de valores en los componentes tenemos una variación del 3% en la tensión de salida

En el circuito anterior ¿Cuál será la banda de error en la amplificación si las resistencias presentan una tolerancia del 10 %? Expresar en +/- %.

La variación de voltaje en la salida viene dado por el diferencial total:

$$\Delta V_o = 5 \left(\frac{R_1 R_4 \Delta R_2}{(R_3 + R_4) R_2^2} + \frac{R_4 \Delta R_1}{(R_3 + R_4) R_2} + \frac{R_3 \Delta R_4}{(R_3 + R_4)^2} \left(1 + \frac{R_1}{R_2} \right) + \left(1 + \frac{R_1}{R_2} \right) R_4 \frac{\Delta R_3}{{R_3}^2} \right)$$

Realizando el cálculo teniendo en cuenta las tolerancias del 10% obtenemos una Δ Vo= \pm 0,62V Es equivalente a un error= \pm 30%

Oscilador:

Se pretende construir un oscilador RC, como el de la figura, donde el capacitor tiene un CTC = -0.05 [%/°C], y su tolerancia es de 10 %, el resistor presenta un CTR = 200 ppm/°C y una tolerancia de 5 %.

Determinar la banda de frecuencia de oscilación teniendo en cuenta las tolerancias de los componentes. Luego determinar la frecuencia de oscilación sin tener en cuenta las tolerancias para una a 75°C si los valores presentados son para 25°C.

Frecuencia mínima y máxima debido a las tolerancias:

$$f_{min} = \frac{1}{(R+0.1R)(C+0.05C)} = 865.8 Hz$$

$$f_{max} = \frac{1}{(R - 0.1R)(C - 0.05C)} = 1169.59 Hz$$

Valores de capacitancia y resistencia debido a cambios de temperatura:

$$C_f = \frac{CT_CC_i\Delta T}{100} + C_i = 975nF$$

$$R_f = \frac{CT_R R_i \Delta T}{100} + R_i = 110\Omega$$

Entonces la frecuencia de oscilación será:

$$f_{max} = 1015,46 Hz$$

Conclusión

En el presente informe se comprobó la influencia que tiene la temperatura en la variación de la frecuencia de capacitores y resistencia, con diferentes tecnologías. Así como también, se evaluó el efecto de las tolerancias en dichos componentes.

En el caso del análisis de las resistencias, para la tecnología de carbón, al aumentar la temperatura, fue el único material en el que se obtuvo una pendiente negativa en la gráfica, luego para las resistencias de metal-film y la de potencia, la pendiente resultó positiva.

Luego para los capacitores, la gráfica para el capacitor de polyester fue la única con pendiente positiva, y la variación con respecto a la temperatura fue menor en comparación con los capacitores de cerámico y metal film.