

Model Optimization and Tuning Phase Template

Date	July 2024
Team ID	Team-739774
Project Title	Cereal analysis based on ratings by using mechine learning techniques
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters	
Linear Regression Model	LINEAR REGRESSION MODEL from sklearn.linear_model import LinearRegression	
R2_Score Model	R2_SCORE MODEL] from sklearn.metrics import r2_score r2_score(y_test,lr_pred) \$\frac{1}{2}\$ 0.999999999999999999999999999999999999	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
Random Forest	<pre>complex datasets high predictive ac lr_pred = lr.predict(x_test) lr_pred array([[29.92428517],</pre>	1 yz = 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0