El Futuro de la Energía Solar Fotovoltaica

solar Energía fotovoltaica

José María Román

Jefe de Servicio

Índice

- Radiación solar
- Sistemas de conversión Fotovoltaica
- Situación actual
- Tendencias de futuro
- Tecnologías de conversión Fotovoltaica
 - ☐ Tecnologías de obleas de silicio
 - ☐ Células de lámina delgada
 - ☐ Sistemas de concentración
 - ☐ Tecnologías emergentes
- Integración en edificios (BIPV)
- Conclusiones

Radiación solar

Fuente: PV-TRAC (European Commission) Michele Pappalardo

Radiación solar

Fuente: PV-TRAC (European Commission) Michele Pappalardo

Radiación solar

Espectro solar

- Células Fotovoltaicas
- Módulos Fotovoltaicos
- Sistemas Fotovoltaicos

Células Fotovoltaicas

- □ Convierten la luz directamente en electricidad
- ☐ Formadas por silicio o compuestos de elementos III-V (multi-junctions), II-VI (lámina delgada), así como sustancias orgánicas.
- ☐ Generan corriente y voltage

Módulos Fotovoltaicos

- ☐ Interconexión eléctrica de las células para formar cadenas (serie/paralelo) para aumentar la corriente y voltaje generados por las células individuales
- □ Encapsulado de las cadenas de células para la protección de las células y conexiones

Sistemas Fotovoltaicos

- ☐ Interconexión eléctrica de módulos fotovoltaicos (serie/paralelo)
- ☐ Balance del sistema (BOS)
 - ∠ Cableado
 - ∠ Regulador de carga
 - ∠ Sistema de acumulación: Batería
 - ∠ Inversor DC/AC

Sistema FV conectado a red

Situación actual

©En los años 50 los Bell Telephone Laboratories desarrollaron las primeras células de silicio cristalino, para aplicaciones espaciales

\$La eficiencia ha crecido desde entonces (10-20%)

Situación actual

SEI desarrollo del mercado comenzó en los años 80

Producción Mundial de Módulos Fotovoltaicos (MW)

Fuente: PV News, Paul Maycock, editor

Situación actual

Sistemas aislados

- □ Electrificación rural
- ☐ Equipamiento aislado (torres de comunicaciones, equipos de navegación...)
- ☐ Estos sistemas son rentables en comparación con las alternativas

Sistemas conectados a red

- ☐ Eficiencia es 10-12%
- □ Aporte a la estabilización de la red en momentos de consumos máximos
- ☐ Comienzo de líneas de producción para la integración de células solares en elementos de construcción (BIPV)
- □ El coste de generación es todavía elevado en comparación con la electricidad convencional (~0,50 €/kWh frente a 0,05 €/kWh)

- ©PV-NET: Photovoltaic Network for the Development of a Roadmap for European Photovoltaics Research and Development
- SPV-TRAC: Photovoltaic Technology Research Advisory Council
- European PV Platform (Plataforma Europea Fotovoltaica)
 - ☐ WG1: Grupo de Política e Instrumentos
 - ☐ WG2: Grupo de Información, Promoción, Educación y Despliegue del Mercado
 - ☐ WG3: Grupo de Ciencia, Tecnología y Aplicaciones
 - ☐ WG4: Grupo de Países en Desarrollo

Objetivo

☐ Reducción del coste de la generación de electricidad mediante sistemas fotovoltaicos a precios competitivos en el mercado

Curva de aprendizaje

	Módulos	Sistemas
☐ Hoy	3,00 €/Wp	5,00 €/Wp
2010	2,00 €/Wp	3,50 €/Wp
2 020	1,00 €/Wp	2,00 €/Wp
2 030	0,50 €/Wp	1,00 €/Wp

SReducción del coste

- □ Reducción del 20% en precio al doblar la producción
- Crecimiento continuo del mercado
- ☐ Esfuerzos de investigación focalizados

Tendencia de costes de generación de electricidad Fotovoltaica

Fuente: A Vision for Photovoltaic Technology (European Commission)

\$2005 Comparación de coste y precio de compra

\$2010 Comparación de coste y precio de compra

\$2015 Comparación de coste y precio de compra

\$2020 Comparación de coste y precio de compra

\$2030 Comparación de coste y precio de compra

Acciones a desarrollar

- □ Promoción de la producción
- ☐ Crecimiento continuo del mercado (Reducción del 20% en precio al doblar la producción)
- ☐ Esfuerzos de investigación focalizados

Fuente: A Vision for Photovoltaic Technology (European Commission)

Mejoras de los sistemas de conversión

- ☐ Rango de eficiencias actuales: 5-15%
- ☐ Tecnologías actuales podrían alcanzar: 15-20%
- Nuevas estrategias para aumentar la eficiencia
 - ∠ Tecnologías poliméricas
 - ∠ Módulos de papel (module foils)
 - Seguidores solares con concentración de alta eficiencia
- ☐ Reducción del coste de fabricación
- ☐ Integración de células solares en elementos de construcción (BIPV)

Tecnologías de conversión Fotovoltaica

- ☐ Tecnologías de obleas de silicio
- ☐ Células de lámina delgada
- ☐ Sistemas de concentración
- ☐ Tecnologías emergentes

Distribución de la producción de células por tecnologías

- Mayor parte de sistemas utilizan Silicio cristalino
- Módulos de Silicio ofrecen mayor fiabilidad y rendimiento
- Necesario aumentar la capacidad de abastecimiento de Silicio de grado solar

Fuente: A Vision for Photovoltaic Technology (European Commission)

Tecnologías de obleas de silicio

- ☐ Crecimiento de lingotes de silicio de grado solar
- ☐ Cortes de obleas más finas a partir del lingote
- ☐ Interconexión eléctrica de las células más eficiente (back contacts)
- □ Reducción del desperdicio en el encapsulado de las cadenas de células

Células de lámina delgada

- ☐ Células formadas por elementos de grupos II-VI y a-Si
- □ Deposición substratos de gran tamaño (vidrio, o acero...)
- Mejora de capas de conductores transparentes (TCO)
- ☐ Deposición uniforme de capas semiconductoras (absorbente)
- □ Proceso continuo de encapsulado

SEficiencias de células de lámina delgada

The Best One-of-a-Kind Laboratory Cell Efficiencies for Thin Films

Silicio amorfo (a-Si)

Tendencia de producción de células de silicio y lámina delgada

Production of PV Modules

c-Si, Thin Films

Fuente: EPIA, European Photovoltaic Industry Association

Source:

Sistemas de concentración

- ☐ Amplia superficie óptica con seguimiento solar para hacer incidir la luz sobre la célula
 - ∠ Lentes
 - ∠ Espejos
- \square Pueden trabajar a valores de x=1000 (1000 soles)
 - \angle x=400 es un valor habitual

Sistemas de concentración

- ☐ Células formadas por elementos de grupos III-V
 - ∠ GaAs, GaInAs, AlGaAs
 - ∠ Gap variable según el doping (In, Al,...)
- □ La eficiencia de la célula aumenta con la intensidad de luz. Estas células alcanzan eficiencias del 30% en campo y 35% en laboratorio
- ☐ Hetero-estructuras, multi-junctions y configuraciones de pozos cuánticos
 - ∠ Permiten absorber mayor cantidad del espectro
- ☐ TPV: Thermo-photovoltaics
 - ∠ Células que trabajan con el espectro infrarrojo
- ☐ Se precisa abaratar las técnicas de deposición
 - ∠ Deposición química por vapor
 - ∠ Deposición epitaxial

Tecnologías emergentes

- ☐ Enfocadas a la reducción de coste
 - ∠ Células de oxido sensibilizado
 - Utilizan el efecto de electrolisis
 - ∠ Células solares orgánicas (polímeros)
 - ∠ Materiales de nano-estructuras
- Enfocadas a una alta eficiencia
 - ∠ Células multi-junction para concentración
 - ∠ Células hot-carrier
 - Aprovechan un fotón para generar dos electrones

Evolución de las tecnologías fotovoltaicas

Sistemas Fotovoltaicos integrados en edificios (BIPV)

- Módulos fotovoltaicos (serie/paralelo)
- Balance del sistema (BOS)
 - ∠ Cableado
 - ∠ Inversor DC/AC

Distribución del coste de un sistema montado en un tejado alemán (2 kWp)

Fuente: PV NET, European Roadmap for PV R&D (European Commission)

Tendencia de costes para sistemas integrados

☐ El BOS supone 40-50% del coste

Motivación para la promoción de la integración

Reducción del perfil de demanda eléctrica

Acoplo demanda-generación FV Comunidad de Madrid

Potencial fotovoltaico en edificios

Superficie FV disponible y requerida para generar el consumo doméstico por vivenda

⑤Techo de la estación de ferrocarriles de Berna (Suiza). Módulos solares semitransparentes

Fuente: Página web de PV NET (http://www.pv-net.net/)

Tejados semitransparentes, tejas solares

- ☐ Absorben el coste de encapsulado
- No ocupan lugar adicional

Conclusiones

- ©El coste de producción eléctrica fotovoltaica está en 0,50 €/kWh
- ©Con el apoyo al sector de producción se pueden reducir los costes de producción de módulos y de instalación para competir con la electricidad convencional (~0,1 €/kWh)
- Los sistemas de silicio seguirán siendo dominantes
- Las células de lámina delgada aumentarán su porcentaje
- ©El apoyo en investigación permitirá la transferencia a producción de tecnologías más innovadoras
- La integración en edificios será un elemento esencial para la diseminación y el avance de las tecnologías fotovoltaicas

Avda. Ciudad de la Innovación, nº 7 31621 Sarriguren. Navarra (España)

Tel. +34 948 25 28 00 Fax. +34 948 27 07 74 Email. info@cener.com

www.cener.com

