Data structures

HEAPS

Heaps

- A heap is an (almost) complete binary tree.
 - Such a tree is composed of nodes.
 - Each nodes has at most two children.
 - A childless node is called a leaf.
 - All leaves on the lowest level occur to the left, and all levels except the lowest one are completely filled.
 - In a complete tree, all leaves are on the same level

Heaps

- In addition to the requirement of the almost complete binary tree, nodes in a heap satisfy the heap property.
- The element at each node is always bigger (or equal) to all of it's descendants.
- In this case we have we call the structure a max heap.
- Analogously we could define a min heap, by requiring that the element at each node will be smaller or equal to all of it's descendants.

Heaps – Implementation

- One way to implement a heap is to represent it internally as an array.
- The size of the array must be bigger than the number of elements in the heap.
- All elements of the heap are stored on the 'left' side of the array.
- The root is the first element of the array.
- For a node at location *i*, it's left child will be stored at location 2*i*, it's right child will be stored at location 2*i* + 1.
- Question: where can we find the parent of the node at location i?

Heaps – Implementation

- Another possible implementation is similar to a linked list, and consists of a Node class.
- Except having a field to store the data, each node will have two pointers for it's two children.
- A node with both children set to null is by definition a leaf.
- It may also be beneficial to have a third pointer, pointing to the parent of the node.

Heapify up and down

- Two important operations on a heap are:
 - Percolate up Move a node up the tree, as long as needed, until it reaches the correct level.
 - Max Heapify— Move a node down the tree, as long as needed, until it reaches the correct level.

```
Max Heapify(i):
while(A[i] is smaller than one of its children)
j <- index of maximal child
switch A[i] and A[j]
i <- j
```

```
PercolateUp(i):
while(A[i] is bigger than its parent)
j <- index of parent
switch A[i] and A[j]
i <- j
```

Both methods visit each level of the tree at most once.

Max Heapify

How will the tree look after percolating down the root?

Common operations

- FindMax:
 - Return the value of the root.
 - Runs in time O(1).
- ExtractMax:
 - Put the last element in place of the root.
 - Percolate down the root.
- Insert(x):
 - Put x as the last element.
 - Percolate up the last element.

Common operations

- BuildHeap (arr):
 - For i<-n/2 to 1:
 - percolate down the element at location i

Add the element

What will the tree look like after adding 43?

Extract maximum

• After extracting the maximum, twice?

- Finding the value of the maximal element in the heap in trivial.
- How can we find the value of the second largest element?

- Finding the value of the maximal element in the heap in trivial.
- How can we find the value of the second largest element?
- Answer:
- It must be a child of the root, one of the nodes in the second level.
- Just compare the two possibilities.
- This results in O(1) comparisons.

- How about the third largest?
- This time it could either be in the second level, but also on the third level.

- How about the third largest?
- This time it could either be in the second level, but also on the third level.

• Answer:

- The third largest element is either a child of the largest element (not counting the second largest element) or a child of the second largest element.
- Just compare the three possibilities.
- This results in O(1) comparisons.

 \circ We now wish to find the value of the k largest element, where k could be any positive integer.

• We now wish to find the value of the k largest element, where k could be any positive integer.

- Answer:
- Extract the maximal element k times.
- But this will destroy the heap in the process.
- Thus the *k* largest elements must be stored and inserted back into the heap after finding the required value.
- What is the runtime?

• Prove: in every nearly complete binary tree with n vertices, exactly $\left\lceil \frac{n}{2} \right\rceil$ of the vertices are leaves.

- Prove: in every nearly complete binary tree with n vertices, at least $\left\lceil \frac{n}{2} \right\rceil$ of the vertices are leaves.
- We prove by induction on h, the height of the tree.
- Base: For a tree of height 0, the only node is the root which is also a leaf.
- **Assumption:** Assume that for a nearly complete binary tree of height smaller or equal to h the claim is true and show for a nearly complete binary tree of height h+1.
- Step: Let T be a nearly complete binary tree with n vertices of height h+1 and consider T_L and T_R its left and right subtrees respectively and, denote by n_L and n_R the number of vertices in the trees. We note that each of the trees is a nearly complete binary tree and that each has height either h or h-1. Thus, by the induction hypothesis, the number of leaves in each tree is at least $\left\lceil \frac{n_L}{2} \right\rceil$ and $\left\lceil \frac{n_R}{2} \right\rceil$. One may show the claim now, since $n=n_L+n_R+1$, along with the
- observation that either T_L or T_R are complete binary trees and hence have an odd number of vertices.

- A queue is a data structure similar to a stack with a reverse order. That is, the first element into the queue is the first element to exit it.
- Suggest a way to implement a queue using two stacks.
- You may only use the basic stack operations.
- Try to keep runtime to a minimum.

- We will hold two stacks S_1 and S_2 .
- Items are always pushed to S_1 , moved to S_2 and then popped from there.
- Notice that pushing and popping elements reverses their order.

- enqueue(x):
 - S_1 .push(x)

- o dequeue():
 - if $(S_2.\text{isEmpty()})$:
 - while(! S_1 .isEmpty()):
 - S_2 .push(S_1 .pop())
 - ∘ *S*₂.pop()