Model Development Phase

Date	25 June 2025
Team ID	SWTID1750058607
Project Title	Early-Stage Disease Diagnosis System Using Human Nail
	Image
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks)

```
from tensorflow.keras.callbacks import EarlyStopping
# from sklearn.utils import class_weight

early_stop = EarlyStopping(
    monitor='val_accuracy',
    mode= 'max',
    patience=3,
    restore_best_weights=True
)

history =model.fit(train_set,validation_data=test_set, epochs=30, steps_per_epoch = len(train_set)//3, validation_steps = len(test_set)//3)
# Get final epoch's training and validation accuracy
train_acc = history.history['accuracy'][-1]
val_acc = history.history['val_accuracy'][-1]
# Print formatted values without scientific notation
print("Training Accuracy: {:.4f}".format(train_acc))
print("Validation Accuracy: {:.4f}".format(val_acc))
```

```
Epoch 1/20
                         484s 70s/step - accuracy: 0.4922 - loss: 1.6717 - val_accuracy: 0.4688 - val_loss: 1.8478
Epoch 2/20
                         502s 73s/step - accuracy: 0.4300 - loss: 1.9040 - val_accuracy: 0.4531 - val_loss: 1.7980
7/7
Epoch 3/20
                         480s 69s/step - accuracy: 0.4987 - loss: 1.7352 - val_accuracy: 0.6250 - val_loss: 1.2784
Epoch 4/20
                         537s 70s/step - accuracy: 0.5278 - loss: 1.5493 - val_accuracy: 0.5312 - val_loss: 1.6145
Epoch 5/20
                         501s 73s/step - accuracy: 0.6104 - loss: 1.5069 - val_accuracy: 0.5625 - val_loss: 1.2087
Epoch 6/20
                         502s 73s/step - accuracy: 0.4942 - loss: 1.5548 - val_accuracy: 0.5938 - val_loss: 1.3542
7/7
Epoch 7/20
                         480s 63s/step - accuracy: 0.6169 - loss: 1.4705 - val_accuracy: 0.5469 - val_loss: 1.4762
7/7
Epoch 8/20
                         473s 69s/step - accuracy: 0.5223 - loss: 1.5237 - val_accuracy: 0.5312 - val_loss: 1.4541
7/7
Epoch 9/20
7/7
                         502s 73s/step - accuracy: 0.5257 - loss: 1.5129 - val_accuracy: 0.6094 - val_loss: 1.2638
Epoch 10/20
7/7
                         438s 62s/step - accuracy: 0.6196 - loss: 1.3614 - val accuracy: 0.6406 - val loss: 1.1630
Epoch 11/20
                         502s 73s/step - accuracy: 0.6252 - loss: 1.2998 - val_accuracy: 0.6406 - val_loss: 1.1506
7/7 -
Epoch 12/20
7/7
                         501s 73s/step - accuracy: 0.5932 - loss: 1.3225 - val_accuracy: 0.6875 - val_loss: 1.0736
Epoch 13/20
                         502s 75s/step - accuracy: 0.6233 - loss: 1.3270 - val_accuracy: 0.7344 - val_loss: 0.9664
7/7
Epoch 14/20
                         465s 67s/step - accuracy: 0.6618 - loss: 1.3277 - val_accuracy: 0.6562 - val_loss: 1.0499
Epoch 15/20
                         502s 74s/step - accuracy: 0.7299 - loss: 1.0386 - val_accuracy: 0.7188 - val_loss: 0.8890
7/7
Epoch 16/20
                         502s 73s/step - accuracy: 0.6709 - loss: 1.2410 - val_accuracy: 0.7188 - val_loss: 1.0808
7/7
Epoch 17/20
                         501s 73s/step - accuracy: 0.6817 - loss: 1.1629 - val_accuracy: 0.6562 - val_loss: 1.0311
7/7 -
Epoch 18/20
                         431s 67s/step - accuracy: 0.6430 - loss: 1.0337 - val_accuracy: 0.7344 - val_loss: 0.8879
7/7
Epoch 19/20
                         490s 67s/step - accuracy: 0.7705 - loss: 0.8687 - val_accuracy: 0.7812 - val_loss: 0.8805
7/7
Epoch 20/20
7/7
                         462s 67s/step - accuracy: 0.6845 - loss: 1.0979 - val_accuracy: 0.6562 - val_loss: 1.0892
Training Accuracy: 0.7009
Validation Accuracy: 0.6562
```

Model Validation and Evaluation Report (5 marks)

```
Summary
Model
                 from tensorflow.keras.applications.vgg16 import VGG16,preprocess_input
                      from tensorflow.keras.models import Model
                     from \ tensorflow.keras.preprocessing \ import \ image
                     from tensorflow.keras.preprocessing.image import ImageDataGenerator
                     from tensorflow.keras.layers import Dense, Flatten, Input
                     from glob import glob
                      import numpy as np
                     import matplotlib.pyplot as plt
                     vgg = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
                      for layer in vgg.layers:
                         layer.trainable = False
                     x = Flatten()(vgg.output)
                     # x = Dense(256, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x)
                     predictions = Dense(17, activation='softmax')(x)
VGG16
                     model = Model(inputs=vgg.input, outputs=predictions)
                     model.summary()
                Output Shape
                                                                           Param #
                     input_layer (InputLayer)
                     block1_conv1 (Conv2D)
                     block1_conv2 (Conv2D)
                     block1_pool (MaxPooling2D)
                      block2_conv1 (Conv2D)
                     block2_pool (MaxPooling2D)
                     block3_conv1 (Conv2D)
                                                 (None, 56, 56, 256)
                     block3_conv3 (Conv2D)
                     block3_pool (MaxPooling2D)
                     block4_conv1 (Conv2D)
                     block4_conv3 (Conv2D)
                     block4_pool (MaxPooling2D)
                     block5_conv1 (Conv2D)
                      block5_conv2 (Conv2D)
                     block5_conv3 (Conv2D)
                     block5_pool (MaxPooling2D)
                      flatten (Flatten)
                                                 (None, 17)
                                      201 (57.76 MB)
,513 (1.63 MB)
14,714,688 (56.13 MB)
                    Total params: 15,141,2
Trainable params: 426,
Non-trainable params:
```

Training and Validation Performance Metrics

Validation Accuracy: 0.6562

```
from tensorflow.keras.callbacks import EarlyStopping
   # from sklearn.utils import class_weight
  early_stop = EarlyStopping(
      monitor='val_accuracy
      patience=3,
      restore_best_weights=True
  history -model.fit(train_set,validation_data=test_set, epochs=30, steps_per_epoch = len(train_set)//3, validation_steps = len(test_set)//3)
  # Get final epoch's training and validation accuracy
train_acc = history.history['accuracy'][-1]
  val_acc = history.history['val_accuracy'][-1]
  # Print formatted values without scientific notation
  print("Training Accuracy: {:.4f}".format(train_acc))
  print("Validation Accuracy: {:.4f}".format(val_acc))
Epoch 1/20
                               484s 70s/step - accuracy: 0.4922 - loss: 1.6717 - val_accuracy: 0.4688 - val_loss: 1.8478
    7/7
     Epoch 2/20
     7/7
                               502s 73s/step - accuracy: 0.4300 - loss: 1.9040 - val_accuracy: 0.4531 - val_loss: 1.7980
     Epoch 3/20
                               480s 69s/step - accuracy: 0.4987 - loss: 1.7352 - val accuracy: 0.6250 - val loss: 1.2784
     7/7
     Epoch 4/20
     7/7 -
                               537s 70s/step - accuracy: 0.5278 - loss: 1.5493 - val_accuracy: 0.5312 - val_loss: 1.6145
     Epoch 5/20
                               501s 73s/step - accuracy: 0.6104 - loss: 1.5069 - val_accuracy: 0.5625 - val_loss: 1.2087
     Epoch 6/20
                               502s 73s/step - accuracy: 0.4942 - loss: 1.5548 - val_accuracy: 0.5938 - val_loss: 1.3542
     7/7
    Epoch 7/20
     7/7
                               480s 63s/step - accuracy: 0.6169 - loss: 1.4705 - val_accuracy: 0.5469 - val_loss: 1.4762
     Epoch 8/20
                               473s 69s/step - accuracy: 0.5223 - loss: 1.5237 - val_accuracy: 0.5312 - val_loss: 1.4541
     7/7
     Epoch 9/20
                               502s 73s/step - accuracy: 0.5257 - loss: 1.5129 - val_accuracy: 0.6094 - val_loss: 1.2638
     7/7
     Epoch 10/20
                               438s 62s/step - accuracy: 0.6196 - loss: 1.3614 - val_accuracy: 0.6406 - val_loss: 1.1630
     Epoch 11/20
     7/7
                               502s 73s/step - accuracy: 0.6252 - loss: 1.2998 - val accuracy: 0.6406 - val loss: 1.1506
     Epoch 12/20
                               501s 73s/step - accuracy: 0.5932 - loss: 1.3225 - val_accuracy: 0.6875 - val_loss: 1.0736
     7/7
     Epoch 13/20
                               502s 75s/step - accuracy: 0.6233 - loss: 1.3270 - val_accuracy: 0.7344 - val_loss: 0.9664
     7/7
     Epoch 14/20
     7/7
                               465s 67s/step - accuracy: 0.6618 - loss: 1.3277 - val accuracy: 0.6562 - val loss: 1.0499
     Epoch 15/20
     7/7
                               502s 74s/step - accuracy: 0.7299 - loss: 1.0386 - val_accuracy: 0.7188 - val_loss: 0.8890
     Epoch 16/20
                               502s 73s/step - accuracy: 0.6709 - loss: 1.2410 - val_accuracy: 0.7188 - val_loss: 1.0808
     7/7
     Epoch 17/20
                               501s 73s/step - accuracy: 0.6817 - loss: 1.1629 - val_accuracy: 0.6562 - val_loss: 1.0311
     7/7
     Epoch 18/20
     7/7
                               431s 67s/step - accuracy: 0.6430 - loss: 1.0337 - val_accuracy: 0.7344 - val_loss: 0.8879
     Epoch 19/20
                               490s 67s/step - accuracy: 0.7705 - loss: 0.8687 - val_accuracy: 0.7812 - val_loss: 0.8805
     7/7
     Epoch 20/20
                              · 462s 67s/step - accuracy: 0.6845 - loss: 1.0979 - val_accuracy: 0.6562 - val_loss: 1.0892
     7/7
     Training Accuracy: 0.7009
```