Билет №29

Вопрос 1

1. Энергетические характеристики стационарных СП. Теорема Винера-Хинчина.

Энергетические характеристики случайных процессов.

1) Корреляционная функция стационарного СП.

Пусть $\zeta(t)$ - стационарный СП с математическим ожиданием (средним значением) $M\{\zeta(t)\}=m_x$ и дисперсией $M\{\zeta(t)-m_x\}^2=\sigma_x^2$. Тогда корреляционная и ковариационная функция определяются следующим образом:

$$R_{x}(\tau) = M\{\zeta(t)\zeta(t+\tau), B_{x}(\tau) = M\{(\zeta(t) - m_{x})(\zeta(t+\tau) - m_{x})\} = R_{x}(\tau) - m_{x}^{2}.$$
(6.1)

Значение ковариационной функции при $\tau = 0$ равно дисперсии сигнала:

$$\sigma_{x}^{2} = B_{x}(0) = R_{x}(0) - m_{x}^{2}, \tag{6.2}$$

где $R_x(0) = M\{\zeta(t)\}^2 = m_{2x}$. Выражение (6.2) выполняется для стационарных в широком смысле случайных процессов.

Свойства корреляционной и ковариационной функции.

- а) $R_x(\tau) = R_x(-\tau), B_x(\tau) = B_x(-\tau)$, т.е. функции являются четными.
- б) $|R_x(\tau)| \le R_x(0), |B_x(\tau)| \le B_x(0)$, т.е. функции принимают максимальное значение при $\tau = 0$.
- в) Отношение $\rho_x(\tau) = \frac{B_x(\tau)}{B_x(0)}$ называют **нормированной** корреляционной функцией. Она обладает следующими свойствами:

$$\rho_x(0) = 1, \, \rho_x(\infty) = 0, \, \rho_x(\tau) = \rho_x(-\tau), \, |\rho_x(\tau)| \le 1$$

Для стационарного СП всегда можно указать такое $\tau_0 = \tau$, при котором величины $\zeta(t)$ и $\zeta(t+\tau)$ для любого t будут практически

некоррелированными, т.е. при $\tau > \tau_0$ $\rho_x(\tau) < 0.05$. Величина τ_0 называется **интервалом корреляции** и определяется следующим образом:

$$\tau_0 = \int_0^\infty |\rho_x(\tau)| d\tau. \tag{6.3}$$

 Взаимная корреляционная и ковариационная функция стационарно связанных случайных процессов.

Два стационарных случайных процесса $\zeta(t)$ и $\eta(t)$ стационарно связаны в широком смысле, если взаимная корреляционная и ковариационная функция зависит только от временного сдвига τ :

$$M\{\zeta(t)\eta(t+\tau)\} = R_{xy}(\tau), M\{(\zeta(t) - m_x)(\eta(t+\tau) - m_y)\} = B_{xy}(\tau)$$
(6.4)

Свойства функций $R_{xy}(\tau), B_{xy}(\tau)$.

- а) $R_{xy}(\tau) = R_{yx}(-\tau), R_{xy}(\tau) \neq R_{xy}(-\tau), B_{xy}(\tau) = B_{yx}(-\tau), B_{xy}(\tau) \neq B_{xy}(-\tau)$, т.е. функции не являются четными.
- 6) $|R_{xy}(\tau)| \le R_x(0)R_y(0), |B_{xy}(\tau)| \le B_x(0)B_y(0).$
- в) Нормированная взаимная корреляционная функция задается выражением

$$\rho_{xy}(\tau) = \frac{B_{xy}(\tau)}{\sqrt{B_x(0)B_y(0)}}.$$

3) Спектральный анализ случайных процессов.

Для детерминированных сигналов успешно применяется гармонический анализ: ряды Фурье для периодических функций, интеграл Фурье для апериодических сигналов. Пусть x(t) - детерминированный непериодический сигнал. Тогда он связан со своим комплексным спектром $S(j\omega)$ парой преобразований Фурье:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega) e^{j\omega t} d\omega,$$

$$S(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

где $j=\sqrt{-1}$ - мнимая единица. Условие существования спектра: $\int_{-\infty}^{\infty}|x(t)|dt < \infty$. Непосредственное применение гармонического анализа для СП невозможно, т.к. $\int_{-\infty}^{\infty}|x^{(k)}(t)|dt = \infty$ и, следовательно, амплитудный спектр такой реализации не существует (не ограничен) при любых частотах. Поэтому, для случайных процессов введена спектральная плотность мощности (СПМ) $G_x(\omega)$.

4) Теорема Винера - Хинчина.

Данная теорема утверждает, что ковариационная функция $B_x(\tau)$ и спектральная плотность мощности СП $G_x(\omega)$ связаны парой преобразований Фурье:

$$G_{x}(\omega) = \int_{-\infty}^{\infty} B_{x}(\tau)e^{-j\omega\tau}d\tau,$$

$$B_{x}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_{x}(\omega)e^{j\omega\tau}d\omega.$$
(6.6)

Из теоремы следует, что чем шире СПМ случайного процесса, тем меньше интервал корреляции τ_0 и соответственно, чем больше интервал корреляции, тем уже спектр.

Вопрос 2

 Помехоустойчивое кодирование. Линейные блоковые коды. Минимальное кодовое расстояние. Порождающая и проверочная матрицы. Способность обнаружения и исправления ошибок.

6.Помехоустойчивое кодирование.

Для увеличения помехоустойчивости приема (уменьшения вероятности ошибки) применяют канальное (помехоустойчивое) кодирование. Оно позволяет обнаружить и исправить ошибки в приемнике, тем самым уменьшая вероятность ошибки приема символа.

6.1. Линейные блоковые коды.

Блоковый код состоит из набора векторов фиксированной длины, которые называются кодовыми словами. Длина кодового слова — число элементов в векторах, обозначим ее буквой n. Элементы кодового слова выбираются из алфавита с q элементами. Если q=2, тогда код называют двоичным. Если q>2, то код недвоичный. Если же $q=2^b$, где b - целое положительное число, то каждый элемент имеет эквивалентное двоичное представление, состоящее из b битов. Т.е. недвоичный код длины N можно представить двоичным кодом длиной n=bN.

Кодовое слово длины n содержит k < n информационных символов. Код обозначается как (n,k) - код, а отношение

$$R_c = \frac{k}{n} \tag{6.1}$$

называется скоростью кода. Величина $1 - R_c$ - избыточность.

Блок из k информационных бит отображается в кодовое слово длины n, выбираемое из набора $M=2^k$ кодовых слов. Каждое кодовое слово состоит из k информационных бит и n-k проверочных.

Вес кода w_i (i = 1,2,..,M) — число ненулевых элементов слова, является одной из важных характеристик кода. Для двоичных кодов вес - это количество единиц в кодовом слове. Каждое кодовое слово имеет свой вес. Набор всех весов кода $\{w_i\}$ образует **распределение весов кода**. Если все M кодовых слов имеют одинаковый вес, тогда код называется кодом с **постоянным весом**.

Функции кодирования и декодирования включают арифметические операции сложения и умножения, выполненные над кодовыми словами. Эти операции соответствуют соотношениям и правилам для алгебраического поля с q элементами. Если q=2, то имеем символы $\{0;1\}$. В общем поле F состоит из q элементов $\{0;1;....,q-1\}$. Операции сложения и умножения удовлетворяют следующим аксиомам.

Сложение.

- 1. Поле F замкнуто относительно сложения: если $a,b \in F$, то $a+b \in F$.
- 2. Ассоциативность: если $a,b,c \in F$, то a+(b+c)=(a+b)+c.
- 3. Коммутативность: $a, b \in F \Rightarrow a+b=b+a$.
- 4. Поле F содержит **нулевой элемент** 0 такой, что a+0=a.
- 5. Каждый элемент поля F имеет свой **отрицательный элемент**, т.е., если $b \in F \Rightarrow -b \in F$ его отрицательный элемент. Вычитание a-b определено как a+(-b).

Умножение.

- 1. Поле F замкнуто относительно умножения: если $a,b \in F$, то $ab \in F$.
- 2. Ассоциативность: если $a,b,c \in F$, то a(bc) = (ab)c.
- 3. Коммутативность: $a, b \in F \Rightarrow ab = ba$.
- 4. Поле F содержит единичный элемент 1 такой, что $a \cdot 1 = a$.
- 5. Каждый элемент поля F, исключая нулевой элемент, имеет **обратный**. Если $b \in F, b \neq 0 \Rightarrow b^{-1}$ его обратный элемент и $b \cdot b^{-1} = 1$. Деление $\frac{a}{b}$ определено как ab^{-1} .

Пусть C_i и C_j - два кодовых слова в (n,k) кодовом блоке. Мера разницы между C_i, C_j - число позиций, в которых они различаются. Эта мера называется **расстоянием Хемминга** и обозначается $d_{i,j}$, причем $0 < d_{i,j} \le n$, $i \ne j$. Минимальное кодовое расстояние определяется следующим образом:

Рассмотрим два кодовых слова C_i, C_j и скалярные величины α_1, α_2 . Код называется линейным, если $\alpha_1 C_i + \alpha_2 C_j$ тоже является кодовым словом из (n,k) блока. Значит, линейный код должен содержать кодовое слово, состоящее из одних нулей. Поэтому код с постоянным весом — нелинейный. Пусть C_i - линейный двоичный блоковый код, i = 1,2,...,M. $C_1 = (0,...,0)_{lxn}$ - кодовое слово из нулей, w_i - вес i - го кодового слова. Тогда w_i - расстояние Хемминга между C_i и C_i . В результате имеем:

$$d_{\min} = \min_{i \neq 1} \left\{ w_i \right\},\tag{6.3}$$

так как $d_{i,j}$ равно весу разности $C_i - C_j$, а разность эквивалентна сумме по модулю 2, но $C_i - C_j$ - тоже кодовое слово с весом, включенным в набор $\{w_i\}$.

6.1.1. Порождающая и проверочная матрица.

Пусть $X_i = (x_{i1}, x_{i2},, x_{ik})_{1 \times k}$ - вектор из k информационных бит, $C_i = (c_{i1}, c_{i2}, ..., c_{in})_{1 \times n}$ - вектор помехоустойчивого кода. Тогда

$$X_i$$
 Кодер (G) C_i $C_i = X_i G$ (6.4)

 $G_{k\! imes\!n}$ - порождающая матрица кода.

$$G = \begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ g_{k1} & g_{k2} & \cdots & g_{kn} \end{pmatrix} = \begin{pmatrix} \vec{g}_1 \\ \vdots \\ \vec{g}_k \end{pmatrix}$$
. Если выражение (6.4) раскрыть, то

$$C_i = \begin{pmatrix} x_{i1} & \cdots & x_{ik} \end{pmatrix} \begin{pmatrix} \vec{g}_1 \\ \vdots \\ \vec{g}_k \end{pmatrix} = x_{i1}\vec{g}_1 + \cdots + x_{ik}\vec{g}_k$$
 , т.е. произвольное кодовое слово —

линейная комбинация векторов $\{\vec{g}_i\}, l=1,2,...,k$ из порождающей матрицы G. Вектора $\{\vec{g}_i\}$ должны быть **линейно независимыми**.

Система векторов $\{\vec{g}_i\}$ называется линейно зависимой, если хотя бы один из этих векторов является линейной комбинацией остальных векторов и линейно независимой в противоположном случае.

Любую порождающую матрицу G(n,k)- кода путем проведения операций над строками и столбцами можно свести к **систематической** форме:

$$G = \begin{pmatrix} I_{k \times k} & P_{k \times (n-k)} \end{pmatrix}, \tag{6.5}$$

где $I_{k\times k}$ - единичная матрица размерностью $k\times k$, $P_{k\times (n-k)}$ - матрица дополнение, которая определяет n-k избыточных (проверочных) символов. Тогда по формуле (6.4) получим **систематический код**, у которого первые k бит информационные, остальные n-k проверочные.

Для декодирования используется проверочная матрица $H_{(n-k)\times n}$, причем,

$$C_i H^T = 0_{1 \times (n-k)},$$

$$GH^T = 0_{k \times (n-k)}.$$
(6.6)

Если линейный двоичный (n,k) код систематический, то проверочная матрица имеет вид:

$$H = \begin{pmatrix} P^T & \mathbf{I}_{(n-k) \times (n-k)} \end{pmatrix} \tag{6.7}$$

Коды Хемминга.

Двоичные коды Хемминга: $(n,k) = (2^m - 1, 2^m - 1 - m)$, где m - целое положительное число. Если m = 3, то получим (7,4) код. $n = 2^m - 1$ столбцов матрицы H состоят из всех возможных двоичных векторов с n - k = m элементами, исключая нулевой вектор.

Пример. Рассмотрим систематический (7,4) код Хемминга с проверочной

матрицей
$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}_{3\times7}$$
 . Здесь $P^T = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}_{3\times4}$.

транспонированная матрица дополнение. Тогда порождающая матрица имеет

вид:
$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}_{4\times7}$$
. Пусть $X_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4})$ информационное

кодовое слово, которое поступает на вход кодера. Далее по формуле (6.4) получим помехоустойчивое кодовое слово:

$$C_{i} = (x_{i1}, x_{i2}, x_{i3}, x_{i4}) \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = (c_{i1}, c_{i2}, c_{i3}, c_{i4}, c_{i5}, c_{i6}, c_{i7}),$$

ГДе $c_{i1} = x_{i1}, c_{i2} = x_{i2}, c_{i3} = x_{i3}, c_{i4} = x_{i4}, c_{i5} = x_{i1} \oplus x_{i2} \oplus x_{i3}, c_{i6} = x_{i2} \oplus x_{i3} \oplus x_{i4}, c_{i7} = x_{i1} \oplus x_{i2} \oplus x_{i4}.$

Рисунок 6.1. Кодер систематического кода (7,4).

Кодер использует 4 –х битовый и 3-х битовый регистр сдвига, а также 3 сумматора по модулю 2.

Замечание. При m > 1 для (n,k) кода Хемминга $d_{min} = 3$.

6.1.2. Оптимальное декодирование линейных блоковых кодов.

Блоковый (n,k) код способен обнаружить $d_{\min}-1$ ошибку и исправить $\left\lfloor \frac{1}{2} (d_{\min}-1) \right\rfloor$ ошибок, где $\lfloor \bullet \rfloor$ - наибольшее целое, содержащееся в аргументе.

Пусть C_i - переданное кодовое слово, $Y = C_i + e$ - принятое кодовое слово, где e - вектор ошибок. Тогда

$$YH^{T} = (C_{i} + e)H^{T} = C_{i}H^{T} + eH^{T} = eH^{T} = S$$
, T.K. $C_{i}H^{T} = 0_{1 \times (n-k)}$.

Произведение

$$YH^T = eH^T = S (6.8)$$

называется **синдромом**. S - характеристика образцов ошибок. Существует 2^n возможных образцов ошибок, но только 2^{n-k} синдромных. Следовательно, разные образцы ошибок приводят к одинаковым синдромам.

Для декодирования составляется таблица размером , $2^k \times 2^{n-k}$ которая называется стандартным расположением для заданного кода.

C_1	C_2	C_3		C_{2^k}
e_2	$C_2 + e_2$	$C_3 + e_2$		$C_{2^k} + e_2$
e_3	$C_2 + e_3$	$C_3 + e_3$		$C_{2^k} + e_3$
:	:	:	:	:
$e_{2^{n-k}}$	$C_2 + e_{2^{n-k}}$	$C_3 + e_{2^{n-k}}$	•••	$C_{2^k} + e_{2^{n-k}}$

Первый столбец – образцы ошибок, первая строка – все возможные кодовые слова, начиная с кодового слова, состоящего из одних нулей. Каждую строку называют смежным классом, а первый столбец – лидеры смежных классов. Таким образом, смежный класс состоит из всевозможных принимаемых кодовых слов, получающегося от частного образца ошибки (лидера смежного класса).

Пример. Задан код (5,2) с порождающей матрицей
$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
.

Тогда
$$2^k=2^2=4$$
, $2^{n-k}=2^{5-2}=8$, проверочная матрица $H=\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$.

Стандартное расположение (таблица декодирования):

Таблица 1.

 $X_4 = (11)$

$$X_1 = (00)$$
 $X_2 = (01)$ $X_3 = (10)$ $X_4 = (11)$ 00000 01011 10101 11110 00001 01010 10100 11111 11100 00100 01111 10001 11010 11010 01000 01111 11010 10100 11011 10110 10000 11011 10110 10000 11011 10110 11000 11000 10011 11010 11000 11010 11000 11010 11010 11010

 $X_3 = (10)$

Образцы ошибок с весом 2 были выбраны так, чтобы соответствующие ей синдромы отличались от тех, которые соответствуют одиночным ошибкам.

Для заданного кода минимальное кодовое расстояние $d_{\min} = 3$. Его можно определить по формуле (6.3) для разрешенных кодовых комбинаций (первая строка таблицы 1), исключая из рассмотрения нулевое кодовое слово.

e_{i}	S_i
00000	000
00001	001
00010	010
00100	100
01000	011
10000	101
11000	110
10010	111

Пусть принято кодовое слово Y. Находим синдром $S = YH^T$, далее выбираем соответствующий этому синдрому наиболее правдоподобный вектор ошибки \hat{e} (по таблице 2). Тогда оценка передаваемого кодового слова

Рисунок 6.2. Структурная схема декодера.

Данный код может обнаружить 2 $(d_{\min} - 1 = 3 - 1 = 2)$ ошибки, исправить все одиночные ошибки $(\left\lfloor \frac{1}{2} (d_{\min} - 1) \right\rfloor = 1)$ и только 2 двойные, синдромы которых отличаются от синдромов одиночных ошибок. Подтвердим сказанное на примере.

Пусть принимаемое кодовое слово Y = (11111), где $C_i = (01011) = C_2$, e = (10100).

Тогда
$$S = (11111) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (001)$$
. Полученному синдрому соответствует вектор

ошибки $\hat{e}=(00001)=e_1$. По (6.9) находим оценку переданного кодового слова $\hat{C}=(11111)\oplus(00001)=(11110)=C_4\neq C_2$. Т.е получаем ошибку декодирования.

Вывод. Алгоритм (6.9) работает по критерию максимального правдоподобия (МП) или по критерию минимального расстояния. Он

обеспечивает минимальную вероятность ошибки декодирования в двоичном симметричном канале связи.

ЗАДАЧА

Задача. На вход ФНЧ с импульсной характеристикой $h(t) = \frac{1}{RC}e^{-\frac{t}{RC}}$ поступает 3 отсчета: x(0) = 2, x(T) = 4, x(2T) = 1. Рассчитайте напряжение на выходе ФНЧ.

5 mus
$$529$$
 3 agara
 $h(t) = \frac{1}{RC} e^{-\frac{t}{RC}}$
 $x(0) = 2; x(T) = 4; x(2T) = 1$

