明細書

ダイシング・ダイボンド用粘接着シートおよび半導体装置の製造方法 技術分野

[0001] 本発明は、新規なダイシング・ダイボンド用粘接着シートに関する。さらに詳しくは、本発明は、特にシリコンウエハ等をダイシングし、さらにリードフレーム等の基板のダイパッド部にダイボンディングする工程で使用するのに特に適したダイシング・ダイボンド用粘接着シートに関する。

背景技術

- [0002] シリコン、ガリウムヒ素などの半導体ウエハは大径の状態で製造され、このウエハは素子小片(ICチップ)に切断分離(ダイシング)された後に次の工程であるマウント工程に移されている。この際、半導体ウエハは予め粘着テープに貼着された状態でダイシング、洗浄、乾燥、エキスパンディング、ピックアップの各工程が加えられた後、次工程のボンディング工程に移送される。
- [0003] これらの工程の中でピックアップ工程とボンディング工程のプロセスを簡略化するために、ウエハ固定機能とダイ接着機能とを同時に兼ね備えたダイシング・ダイボンド 用粘接着シートが種々提案されている(たとえば、特許文献1~3)。
- [0004] 特許文献1~3には、特定の組成物よりなる粘接着剤層と、基材とからなる粘接着シートが開示されている。この粘接着剤層は、ウエハダイシング時には、ウエハを固定する機能を有し、さらに基材との間の接着力がコントロールできるため、ダイシング終了後、チップのピックアップを行うと、粘接着剤層は、チップとともに剥離する。粘接着剤層を伴ったICチップを基板に載置し、加熱すると、粘接着剤層中の熱硬化性樹脂が接着力を発現し、ICチップと基板との接着が完了する。
- [0005] 上記特許文献に開示されている粘接着シートは、いわゆるダイレクトダイボンディングを可能にし、ダイ接着用接着剤の塗布工程を省略できるようになる。すなわち、上記の粘接着シートの粘接着剤層は、エネルギー線硬化および熱硬化を経たダイボンド後には全ての成分が硬化し、チップと基板とを非常に強固に接着する。
- [0006] ところで、近年、ICのパッケージ構造は多様化し、その構造に応じて様々な特性が

要求されるようになってきている。たとえば、チップが搭載されるダイパッド部の構造も 多様化し、銅配線やソルダーレジストなどにより、高低差が5~20 µ m程度の凹凸が ダイパッド部に形成される場合もある。このように高低差の大きなダイパッド部に粘接 着剤層を介してチップを搭載する場合、ダイパッド部の凹凸のため粘接着剤が稠密 に埋め込まれずに、ダイパッド部と粘接着剤層との間にボイドが発生することがある。

[0007] このようなボイドが存在すると、ヒートサイクルや耐湿試験においてクラック発生の原因となり、生産効率の低下を招くことになる。

特許文献1:特開平2-32181号公報

特許文献2:特開平8-239636号公報

特許文献3:特開平10-8001号公報

発明の開示

発明が解決しようとする課題

[0008] 本発明は、上記のような従来技術に鑑みてなされたものであって、高低差の大きな ダイパッド部にチップを搭載した場合でも、ダイパッド部と粘接着剤層との間にボイド が発生することがない、ダイボンド時の埋め込み性に優れた粘接着剤層を有するダイ シング・ダイボンド用粘接着シートを提供することを目的としている。

課題を解決するための手段

- [0009] 本発明に係るダイシング・ダイボンド用粘接着シートは、100℃での弾性率 (M_{100}) と 70℃での弾性率 (M_{70}) との比 (M_{70}/M_{70}) が0.5以下である粘接着剤層が基材上 に設けられてなることを特徴としている。
- [0010] 本発明においては、前記粘接着剤層が、重量平均分子量が30,000~500,000 のアクリル系重合体からなる粘着成分と熱硬化性成分とからなることが好ましい。また 、該アクリル系重合体には、酢酸ビニルから導かれる繰り返し単位が5~50質量%の 割合で含まれていることが好ましい。
- [0011] さらに、前記粘接着剤層には、ガラス転移温度が60~150℃の熱可塑性樹脂が含まれていることが好ましい。この場合、アクリル系重合体と、熱可塑性樹脂との重量比(アクリル系重合体/熱可塑性樹脂)が、9/1~3/7であることが好ましい。
- [0012] また、本発明では、前記基材の粘接着剤層に接する面の表面張力が40mN/m

WO 2005/004216 3 PCT/JP2004/009629

以下であることが好ましい。

- [0013] 本発明に係る半導体装置の製造方法は、上記ダイシング・ダイボンド用粘接着シートの粘接着剤層に、半導体ウエハを貼着し、前記半導体ウエハをダイシングしてICチップとし、前記ICチップに粘接着剤層を固着残存させて基材から剥離し、前記ICチップをダイパッド部上に前記粘接着剤層を介して熱圧着することを特徴としている。発明の効果
- [0014] 本発明のダイシング・ダイボンド用粘接着シートにおいては、その粘接着剤層が、ダイパッド部の凹凸に対してダイボンド条件下で優れた埋め込み性を有するので、高低差の大きなダイパッド部にチップを搭載した場合でも、ダイパッド部と粘接着剤層との間にボイドが発生することなく、生産効率の向上に寄与することができる。 発明を実施するための最良の形態
- [0015] 以下、本発明についてさらに具体的に説明する。
- [0016] 本発明に係るダイシング・ダイボンド用粘接着シートは、基材とその上に形成された 粘接着剤層とからなり、該粘接着剤層の100℃での弾性率(M₁₀₀)と70℃での弾性 率(M₇₀)との比(M₁₀₀/M₇₀)が0.5以下、好ましくは0.4以下、さらに好ましくは0.1 ~0.3であることを特徴としている。
- [0017] また、該粘接着剤層の70℃での弾性率 (M_{70}) の下限値は、好ましくは5000Paであり、さらに好ましくは6000Paである。また、100℃での弾性率 (M_{100}) の上限値は、好ましくは4000Paであり、さらに好ましくは3000Paである。
- [0018] 粘接着剤層は、感圧接着性を有し、また熱硬化性を有するが、上記弾性率は、熱硬化を行う前の弾性率を意味する。また、粘接着剤層は、さらにエネルギー線硬化性を有する場合があるが、この場合、上記弾性率は、エネルギー線硬化後であって熱硬化を行う前の弾性率を意味する。
- [0019] この粘接着剤層は、上述したように、100℃における弾性率が、70℃における弾性率に比して著しく低い。このことは、高温領域において粘接着剤層が流動化することを意味している。一般に、半導体チップのダイボンドは100℃以上の加熱下で行われ、その他の作業は常温下で行われる。したがって、上記の粘接着剤層はダイボンド条件下では流動化しているため、ダイパッド部の凹凸にも十分に埋め込まれ、ボイド

の発生を防止できる。一方、低温領域においては、粘接着剤層はある程度の弾性率 を維持しているため、チップとよく密着し、ダイシング工程ーピックアップ工程における 操作性が損なわれることはない。

- [0020] 上記粘接着剤層は、基本的に粘着成分(A)と熱硬化性成分(B)からなり、熱可塑性樹脂(C)が配合されていても良い。また、必要に応じてエネルギー線硬化性成分(D)およびその他の添加物(E)が配合される。
- [0021] 以下、上記成分(A)〜(E)を説明する。

「粘着成分(A)」

粘着成分(A)としては、通常アクリル系重合体が好ましく使用される。アクリル系重合体の繰り返し単位としては、(メタ)アクリル酸エステルモノマーおよび(メタ)アクリル酸誘導体から導かれる繰り返し単位が挙げられる。ここで(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸ベンジルエステル、アルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステルが用いられる。これらの中でも、特に好ましくはアルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステル、アクリル酸アルキルエステル、たとえばアクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸ブチル、メタクリル酸ブチル等が用いられる。また、(メタ)アクリル酸誘導体としては、たとえば(メタ)アクリル酸グリシジル等を挙げることができる。

- [0022] 特に(メタ)アクリル酸グリシジル単位と、少なくとも1種類の(メタ)アクリル酸アルキルエステル単位を含む共重合体が好ましい。この場合、共重合体中における(メタ)アクリル酸グリシジルから誘導される成分単位の含有率は通常は0~80質量%、好ましくは5~50質量%である。グリシジル基を導入することにより、後述する熱硬化性成分としてのエポキシ樹脂との相溶性が向上し、また硬化後のTgが高くなり耐熱性も向上する。また(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等を用いることが好ましい。また、アクリル酸ヒドロキシエチル等の水酸基含有モノマーを導入することにより、被着体との密着性や粘着物性のコントロールが容易になる。
- [0023] アクリル系重合体の重量平均分子量は、30,000〜500,000、好ましくは40,00

0〜400, 000、さらに好ましくは50, 000〜300, 000である。アクリル系重合体の重量平均分子量が小さければ、 M_{100}/M_{70} の値を小さくすることができる。

- [0024] アクリル系重合体の重量平均分子量を小さくすると、粘接着剤層を塗布形成する際にピンホールが発生するなど、塗布液の塗工性が悪化しやすくなる。
- [0025] さらに、アクリル系重合体は、主鎖の繰り返し単位の一部に酢酸ビニル単位を有するものが好ましい。アクリル系重合体が酢酸ビニルの繰り返し単位を持つことにより粘接着剤層を形成するための塗布液の塗工性が改良され、ピンホールの発生を抑制できる。アクリル系重合体における酢酸ビニルから導かれる繰り返し単位の割合は、好ましくは5~50質量%、さらに好ましくは7.5~40質量%、特に好ましくは10~30質量%である。

「熱硬化性成分(B)」

熱硬化性成分(B)は、エネルギー線によっては硬化しないが、加熱を受けると三次元網状化し、被着体を強固に接着する性質を有する。このような熱硬化性成分(B)は、一般的にはエポキシ、フェノール、レゾルシノール、ユリア、メラミン、フラン、不飽和ポリエステル、シリコーン等の熱硬化性樹脂と、適当な硬化促進剤とから形成されている。このような熱硬化性成分は種々知られており、本発明においては特に制限されることなく従来より公知の様々な熱硬化性成分を用いることができる。このような熱硬化性成分の一例としては、(B-1)エポキシ樹脂と(B-2)熱活性型潜在性エポキシ樹脂硬化剤とからなる接着成分を挙げることができる。

[0026] エポキシ樹脂(B-1)としては、従来より公知の種々のエポキシ樹脂が用いられるが、通常は、重量平均分子量300~2000程度のものが好ましく、特に300~500、好ましくは330~400の常態液状のエポキシ樹脂と、重量平均分子量400~2000、好ましくは500~1500の常態固体のエポキシ樹脂とをブレンドした形で用いるのが望ましい。また、本発明において好ましく使用されるエポキシ樹脂のエポキシ当量は通常50~5000g/eqである。このようなエポキシ樹脂としては、具体的には、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラックなどのフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール類のグリシジルエーテル;フタル酸、イソフタ

ル酸、テトラヒドロフタル酸などのカルボン酸のグリシジルエステル;アニリンイソシアヌレートなどの窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4ーエポキシシクロヘキシルメチルー3,4ージシクロヘキサンカルボキシレート、2ー(3,4ーエポキシ)シクロヘキシルー5,5ースピロ(3,4ーエポキシ)シクロヘキサンーmージオキサンなどのように、分子内の炭素ー炭素二重結合をたとえば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。また分子内にジシクロペンタジエン骨格と、反応性のエポキシ基を有するジシクロペンタジエン骨格含有エポキシ樹脂を用いても良い。

- [0027] これらの中でも、本発明では、ビスフェノール系グリシジル型エポキシ樹脂、O-クレ ゾールノボラック型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂が好まし く用いられる。
- [0028] これらエポキシ樹脂は、1種単独で、または2種以上を組み合わせて用いることができる。
- [0029] 熱活性型潜在性エポキシ樹脂硬化剤(B-2)とは、室温ではエポキシ樹脂と反応せず、ある温度以上の加熱により活性化し、エポキシ樹脂と反応するタイプの硬化剤である。
- [0030] 熱活性型潜在性エポキシ樹脂硬化剤(B-2)の活性化方法には、加熱による化学 反応で活性種(アニオン、カチオン)を生成する方法;室温付近ではエポキシ樹脂(B-1)中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法;モレキュラーシーブ封入タイプの硬化剤で高温で溶出して硬化反応を開始 する方法;マイクロカプセルによる方法等が存在する。
- [0031] これら熱活性型潜在性エポキシ樹脂硬化剤は、1種単独で、または2種以上を組み合わせて用いることができる。特に上記の中でも、ジシアンジアミド、イミダゾール化合物あるいはこれらの混合物が好ましい。
- [0032] 上記のような熱活性型潜在性エポキシ樹脂硬化剤(B-2)は、エポキシ樹脂(B-1)1 00質量部に対して通常0.1~20質量部、好ましくは0.5~15質量部、特に好ましくは1~10質量部の割合で用いられる。

- [0033] 熱硬化性成分(B)は、前記粘着剤成分(A)と熱硬化性成分(B)との合計((A)+(B))100質量部中に、好ましくは10~97質量部、さらに好ましくは30~95質量部、特に好ましくは50~90質量部の割合で用いられる。
- [0034] また、重量比(A)/(B)が小さくなると、M₁₀₀/M₇₀が小さくなる。 「熱可塑性樹脂(C)」

本発明の粘接着剤層に、60~150℃にガラス転移点を有する熱可塑性樹脂を配合することにより、M₁₀₀/M₇₀の値を小さくすることができる。熱可塑性樹脂としては、たとえばポリエステル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール、ポリ塩化ビニル、ポリスチレン、ポリアミド樹脂、セルロース、ポリエチレン、ポリイソブチレン、ポリビニルエーテル、ポリイミド樹脂、フェノキシ樹脂、ポリメチルメタクリレート、スチレンーイソプレンースチレンブロック共重合体、スチレンーブタジエンースチレンブロック共重合体などが挙げられる。これらの中でも、粘接着剤層の他の成分との相溶性に優れることで、フェノキシ樹脂が特に好ましい。

[0035] 粘接着剤層における熱可塑性樹脂(C)の配合割合は、粘着成分(A)と熱硬化性成分(B)の合計100質量部当たり、好ましくは1~50質量部、さらに好ましくは2~40質量部、特に好ましくは3~30質量部の割合で用いられる。また、粘着成分(A)として、アクリル系重合体が用いられる場合、アクリル系重合体と、熱可塑性樹脂との重量比(アクリル系重合体/熱可塑性樹脂)が、9/1~3/7であること好ましい。粘接着剤層における熱可塑性樹脂(C)の配合比を多くすることにより、M₁₀₀/M₇₀の値は小さくなる。

「エネルギー線硬化性成分(D)」

粘接着剤層には、必要に応じ、エネルギー線硬化性成分(D)が配合されていてもよい。エネルギー線硬化性成分(D)を硬化させることで、粘接着剤層の粘着力を低下させることができるため、基材と粘接着剤層との層間剥離を容易に行えるようになる

[0036] エネルギー線硬化性成分(D)は、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する化合物である。このエネルギー線重合性化合物は、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタ

エリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールへキサアクリレートあるいは1,4ーブチレングリコールジアクリレート、1,6ーへキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマーなどのアクリレート系化合物が用いられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。

- [0037] さらにエネルギー線重合性化合物の他の例として、ジシクロペンタジエン骨格を有する化合物等も使用することができる。
- [0038] エネルギー線硬化性成分(D)は、前記成分(A)と(B)との合計100質量部に対して、0~50質量部、好ましくは0~30質量部、特に好ましくは5~20質量部程度の割合で用いられる。
- [0039] 上記のようなエネルギー線硬化性成分(D)を含有する粘接着剤組成物は、エネルギー線照射により硬化する。エネルギー線としては、具体的には、紫外線、電子線等が用いられる。
- [0040] エネルギー線として紫外線を用いる場合には、光重合開始剤を混入することにより、 、重合硬化時間ならびに光線照射量を少なくすることができる。
- [0041] このような光重合開始剤としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノンあるいは2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドなどが挙げられる。
- [0042] 光重合開始剤は、前記エネルギー線硬化性成分(D)100質量部に対して、0.01 ~20質量部、好ましくは0.1~15質量部程度の割合で用いることが好ましい。 「その他の成分(E)」

粘接着剤層には、カップリング剤(E1)を配合しても良い。カップリング剤(E1)は、上記(A)〜(D)成分、好ましくは成分(B)が有する官能基と反応する基を有することが望ましい。

- [0043] カップリング剤(E1)は硬化反応時に、カップリング剤中の有機官能基が熱硬化性成分(B)(特に好ましくはエポキシ樹脂)と反応すると考えられ、硬化物の耐熱性を損なわずに、接着性、密着性を向上させることができ、さらに耐水性(耐湿熱性)も向上する。
- [0044] カップリング剤(E1)としては、その汎用性とコストメリットなどからシラン系(シランカップリング剤)が好ましい。また、上記のようなカップリング剤(E1)は、前記熱硬化性成分(B)100質量部に対して通常0.1~20質量部、好ましくは0.3~15質量部、特に好ましくは0.5~10質量部の割合で用いられる。
- [0045] 上記粘接着剤には、エネルギー線照射前の初期接着力および凝集力を調節する ために、有機多価イソシアナート化合物、有機多価イミン化合物等の架橋剤(E2)を 添加することもできる。
- [0046] 上記有機多価イソシアナート化合物としては、芳香族多価イソシアナート化合物、脂肪族多価イソシアナート化合物、脂環族多価イソシアナート化合物およびこれらの多価イソシアナート化合物の三量体、ならびにこれら多価イソシアナート化合物とポリオール化合物とを反応させて得られる末端イソシアナートウレタンプレポリマー等をあげることができる。有機多価イソシアナート化合物のさらに具体的な例としては、たとえば2,4ートリレンジイソシアナート、2,6ートリレンジイソシアナート、1,3ーキシリレンジイソシアナート、1,4ーキシレンジイソシアナート、ジフェニルメタンー4,4'ージイソシアナート、ジフェニルメタンジイソシアナート、ジフェニルメタンジイソシアナート、ジフェニルメタンジイソシアナート、ジフェニルメタンジイソシアナート、ジシクロヘキシルメタンー4,4'ージイソシアナート、ジシクロヘキシルメタンー2,4'ージイソシアナート、リジンイソシアナートなどがあげられる。
- [0047] 上記有機多価イミン化合物の具体例としては、N,N'ージフェニルメタンー4,4'ービス (1ーアジリジンカルボキシアミド)、トリメチロールプロパンートリーβ-アジリジニルプロピオナート、アトラメチロールメタンートリーβ-アジリジニルプロピオナート、N,N'ートルエン-

WO 2005/004216 10 PCT/JP2004/009629

2,4-ビス(1ーアジリジンカルボキシアミド)トリエチレンメラミン等をあげることができる。

[0048] また、上記粘接着剤層には、さらに、ダイボンド後の導電性または熱伝導性の付与を目的として、金、銀、銅、ニッケル、アルミニウム、ステンレス、カーボン、またはセラミック、あるいはニッケル、アルミニウム等を銀で被覆したもののような導電性、熱伝導性のフィラーを添加してもよい。また石綿、シリカ、ガラス、雲母、酸化クロム、酸化チタン、顔料などの非伝導性フィラーを添加してもよい。これらのフィラーは、粘接着剤層を構成する成分(フィラーを除く)の合計100質量部に対して、0〜400質量部程度の割合で配合されていてもよい。

「粘接着剤層」

上記のような成分からなる粘接着剤層の厚さは、通常は、3〜100 μ m、好ましくは 5〜60 μ mであることが望ましい。

[0049] 上記のような各成分からなる粘接着剤は感圧接着性と加熱硬化性とを有し、ダイシングの際には基材に密着してウエハの固定に寄与し、マウントの際にはチップとダイパッド部とを接着する接着剤として使用することができる。そして熱硬化を経て最終的には耐衝撃性の高い硬化物を与えることができ、しかも剪断強度と剥離強度とのバランスにも優れ、厳しい熱湿条件下においても充分な接着物性を保持しうる。「ダイシング・ダイボンド用粘接着シート」

本発明に係るダイシング・ダイボンド用粘接着シートは、基材上に、粘接着剤層が 積層してなる。本発明に係るダイシング・ダイボンド用粘接着シートの形状は、テープ 状、ラベル状などあらゆる形状をとりうる。

[0050] ダイシング・ダイボンド用粘接着シートの基材としては、たとえば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリヴチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢ビフィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム等の透明フィルムが用いられる。またこれらの積

層フィルムであってもよい。また、上記の透明フィルムの他、これらを着色した不透明 フィルム、フッ素樹脂フィルム等を用いることができる。

- [0051] 本発明に係るダイシング・ダイボンド用粘接着シートを半導体装置の製造工程に使用する場合、ICチップに粘接着剤層を固着残存させて基材から剥離する。このため、基材の粘接着剤層に接する面の表面張力は、好ましくは40mN/m以下、さらに好ましくは37mN/m以下、特に好ましくは35mN/m以下であることが望ましい。このような表面張力が低い基材は、材質を適宜に選択して得ることが可能であるし、また基材に表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。
- [0052] 基材の剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系等が用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。特に基材への密着性が高く、表面張力が調整しやすいため、アルキッド樹脂が好ましい。
- [0053] 上記の剥離剤を用いて基材の表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーター等により塗布して、常温または加熱あるいは電子線硬化させたり、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などで積層体を形成すればよい。
- [0054] 基材の膜厚は、通常は $10-500\,\mu\,\mathrm{m}$ 、好ましくは $15-300\,\mu\,\mathrm{m}$ 、特に好ましくは $2-0-250\,\mu\,\mathrm{m}$ 程度である。
- [0055] ダイシング・ダイボンド用粘接着シートの製造方法は、特に限定はされず、基材上に、粘接着剤層を構成する組成物を塗布乾燥することで製造してもよく、また粘接着剤層を剥離フィルム上に設け、これを上記基材に転写することで製造してもよい。
- [0056] なお、本発明のダイシング・ダイボンド用粘接着シートの使用前に、粘接着剤層を 保護するために、粘接着剤層の上面に剥離フィルムを積層しておいてもよい。
- [0057] また、粘接着剤層の表面外周部には、リングフレームを固定するためのリングフレーム固定用粘着シートが設けられていてもよい。

「ダイシング・ダイボンド用粘接着シートの利用方法」

次に本発明に係るダイシング・ダイボンド用粘接着シートの利用方法について、該

粘接着シートを半導体装置の製造に適用した場合を例にとって説明する。

- [0058] 本発明に係る半導体装置の製造方法においては、まず、本発明に係るダイシング・ ダイボンド用粘接着シートをダイシング装置上に、リングフレームにより固定し、シリコ ンウエハの一方の面をダイシング・ダイボンド用粘接着シートの粘接着剤層上に載置 し、軽く押圧し、ウエハを固定する。
- [0059] その後、粘接着剤層に、エネルギー線硬化性成分が含まれている場合は、基材側からエネルギー線を照射し、粘接着剤層の凝集力を上げ、粘接着剤層と基材との間の接着力を低下させておく。
- [0060] 次いで、ダイシングソーなどの切断手段を用いて、上記のシリコンウエハを切断しI Cチップを得る。この際の切断深さは、シリコンウエハの厚みと、粘接着剤層の厚みと の合計およびダイシングソーの磨耗分を加味した深さにする。
- [0061] なお、エネルギー線照射は、ダイシングの後に行ってもよく、また下記のエキスパンド工程の後に行ってもよい。
- [0062] 次いで必要に応じ、ダイシング・ダイボンド用粘接着シートのエキスパンドを行うと、I Cチップ間隔が拡張し、ICチップのピックアップをさらに容易に行えるようになる。この際、粘接着剤層と基材との間にずれが発生することになり、粘接着剤層と基材との間の接着力が減少し、チップのピックアップ性が向上する。
- [0063] このようにしてICチップのピックアップを行うと、切断された粘接着剤層をICチップ に固着残存させて基材から剥離することができる。
- [0064] 次いで粘接着剤層を介してICチップをダイパッド部に載置する。ダイパッド部はIC チップを載置する前に加熱するか載置直後に加熱される。加熱温度は、通常は80~ 200℃、好ましくは100~180℃であり、加熱時間は、通常は0.1秒~5分、好ましく は0.5秒~3分であり、チップマウント圧力は、通常1kPa~200MPaである。
- [0065] ICチップをダイパッド部にチップマウントした後、必要に応じさらに加熱を行ってもよい。この際の加熱条件は、上記加熱温度の範囲であって、加熱時間は通常1~180分、好ましくは10~120分である。
- [0066] このような工程を経ることで、粘接着剤層が硬化し、ICチップとダイパッド部とを強固 に接着することができる。粘接着剤層はダイボンド条件下では流動化しているため、

ダイパッド部の凹凸にも十分に埋め込まれ、ボイドの発生を防止できる。

- [0067] すなわち、得られる実装品においては、チップの固着手段である粘接着剤が硬化し、かつダイパッド部の凹凸にも十分に埋め込まれた構成となるため、過酷な条件下にあっても、十分なパッケージ信頼性とボード実装性が達成される。
- [0068] なお、本発明の接着用シートは、上記のような使用方法の他、半導体化合物、ガラス、セラミックス、金属などの接着に使用することもできる。 (実施例)
- [0069] 以下本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
- [0070] なお、以下の実施例および比較例において、「弾性率」、「ダイシング性」、「ダイボンド時の埋め込み性」、「接着強度」、「パッケージ信頼性」および「ボード実装信頼性」は次のようにして評価した。

「弾性率」

実施例、比較例の粘接着剤層を厚さ3mmとなるように積層し、紫外線を照射して部分硬化させたものを弾性率測定用のサンプルとした。このサンプルを動的粘弾性測定装置(レオメトリクス社製、RDA II)により、周波数1Hzで所定温度での弾性率を測定した。

「ダイシング性」

実施例、比較例において、ダイシングを行った段階で、光学顕微鏡で半導体チップの割れ、クラックの有無を確認し、これによりダイシング性を評価した。

「ダイボンド時の埋め込み性」

実施例、比較例において、ダイパッド部に半導体チップをチップマウントした段階で、 、粘接着剤層とダイパッド部との界面を超音波探傷装置で観察し、空隙の有無でダイボンド時の埋め込み性を評価した。

「接着強度」

実施例、比較例のダイシング・ダイボンド用粘接着シートを用いて、シリコンウエハを ダイシングし、10mm角のチップを作成して、10mm幅の短冊状の銅板上に120℃、 150MPa、1秒間の条件でマウントし、更に160℃60分間で加熱硬化を行った。得ら れたサンプルを万能引張試験機に固定し、銅板とチップとの剥離角度を90度、剥離 速度を50mm/分として剥離試験を行い、得られた値を接着強度とした。

「パッケージ信頼性」

実施例、比較例において得られたICパッケージを85℃、60%RH条件下に168時間放置し、吸湿させた後、最高温度260℃のIRリフローを2回行った際に接合部位の浮き・剥がれの有無、パッケージクラック発生の有無を走査型超音波探傷装置および断面観察により評価した。

「ボード実装信頼性」

実施例、比較例において得られたICパッケージを、マザーボード(BTレジンを用いて高密度実装用に積層されたビルドアップ配線板)に260℃、1分で実装した。

[0071] ICパッケージが実装されたマザーボードを、-40および125℃の熱衝撃(加熱1分間、加熱温度保持9分間、冷却1分間、冷却温度保持9分間を1サイクルとする)を10 00サイクル行った。マザーボードとICパッケージとの間に発生するクラックの有無を走査型超音波探傷装置および断面観察により評価した。

「粘接着剤層」

粘接着剤層の成分を以下に示す。

(A)粘着成分:

A1:アクリル酸ブチル35質量部、酢酸ビニル20質量部、メタクリル酸2-ヒドロキシエチル25質量部、メタクリル酸グリシジル20質量部とを共重合してなる重量平均分子量約200,000の共重合体

A2:アクリル酸ブチル65質量部、メタクリル酸2-ヒドロキシエチル25質量部、メタクリル酸グリシジル10質量部とを共重合してなる重量平均分子量約200,000の共重合体

A3:アクリル酸ブチル35質量部、酢酸ビニル20質量部、メタクリル酸2-ヒドロキシエチル25質量部、メタクリル酸グリシジル20質量部とを共重合してなる重量平均分子量約700,000の共重合体

A4:アクリル酸ブチル65質量部、メタクリル酸2-ヒドロキシエチル25質量部、メタクリル酸グリシジル10質量部とを共重合してなる重量平均分子量約700,000の共重合

体

(B) 熱硬化性成分:

下記成分の混合物を用いた。

[0072] ビスフェノールA型液状エポキシ樹脂(日本触媒製、BPA328、エポキシ当量220 ~240g/eg、分子量約400):10質量部

ジシクロペンタジエン骨格含有固形エポキシ樹脂(大日本インキ化学工業製、

EXA7200HH、エポキシ当量275~280g/eq、分子量約800):40質量部

硬化剤(旭電化社製、アデカハードナー3636AS):2質量部

硬化促進剤(四国化成工業社製、キュアゾール2PHZ):2質量部

(C)熱可塑性樹脂

フェノキシ樹脂(東都化成製、フェノトートYP50-EK35、Tg:100℃)

(D)エネルギー線硬化性成分:

D1:ジシクロペンタジエン骨格含有紫外線硬化性樹脂(日本化薬社製、カヤラッド R-684)

D2:光重合開始剤(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド) (E)その他の成分:

E1:シランカップリング剤(三菱化学社製、MKCシリケートMSEP2)

E2:ポリイソシアナート系架橋剤(トリメチロールプロパンとトルイレンジイソシアナートとの付加物)

[実施例および比較例]

(1)ダイシング・ダイボンド用粘接着シートの作成

表1に記載の配合の粘接着剤組成物を、塗布面保護用の剥離フィルム(リンテック 社製、厚さ38 μ m、SP-PET3811)のシリコーン樹脂によって剥離処理した面に、 乾燥膜厚が20 μ mとなるように、ロールナイフコーターを用いて塗布乾燥し、厚み10 0 μ mの基材(ポリエチレンフィルム、表面張力32mN/m)に積層しダイシング・ダイ ボンド用粘接着シートを得た。

(2) 半導体チップの製造

#2000研磨処理したシリコンウエハ(100mm径、厚さ200 u m)の研磨面に、実

施例および比較例のダイシング・ダイボンド用粘接着シートの貼付をテープマウンター(リンテック社製、Adwill RAD 2500)により行い、ウエハダイシング用リングフレーム(ディスコ社製、2-6-1)に固定した。その後、UV照射装置(リンテック社製、Adwill RAD 2000)を用いて基材面から紫外線を照射した。次に、ダイシング装置(東京精密社製、AWD-4000B)を使用して9.0mm×9.0mmのチップサイズにダイシングした。ダイシングの際の切り込み量は、基材と粘接着剤層との界面から基材へさらに10μm深く切り込むようにした。続いて、ダイシング・ダイボンド用粘接着シート側よりニードルで突き上げて、粘接着剤層と基材との界面で剥離するようにピックアップした。

(3) 半導体装置の製造

ICパッケージ用の基板(ポリイミドフィルム(50 μ m)と電解銅箔(20 μ m)との積層体上に、ダイパッド部として銅箔上にパラジウムメッキおよび金メッキを順にパターン処理し、更に高さ25 μ mのソルダーレジストを有する)のダイパッド部に、積層状態のチップの粘接着剤層側を120℃、150MPa、1秒間の条件で圧着し、チップマウントを行った。その後、160℃、60分間の条件で粘接着剤層を加熱硬化した。更に、モールド樹脂(ビフェニル型エポキシ樹脂とフェノールノボラック樹脂を含有)で基板のチップの取り付けられた側を所定の形状にモールドし、175℃、6時間で樹脂を硬化させて高圧封止した。次に、封止されない基板側に直径0.5mmの鉛フリーのハンダボールを所定の方法で取り付け、BGA(Ball Grid Allay)型のICパッケージを完成させた。

[0073] 得られたダイシング・ダイボンド用粘接着シートおよび半導体装置について「ダイシング性」、「ダイボンド時の埋め込み性」、「接着強度」、「パッケージ信頼性」および「ボード実装信頼性」を上記の方法で評価した。結果を表2に示す。

[0074] [表1]

 M_{100}/M_{70} 0.70 22 0.25 53 8 99 57 0 Ö 0. Ö /70°Cにおける弾性率 100℃における弾性率 34700/65900 36000/63000 53000/75200 59000/74000 42000/63200 2100/9700 2300/9300 (Pa/Pa) その他の政分 E1:2 部 E2:2 部 E1:2 部 E2:2部 E1:2部 E2:2部 E2:2部 E1:2部 E2:2 部 E1:2部 E2:2 部 E1:2部 E1:2部 Œ エネルギー線 硬化性成分(0) D1:10 部 D2: 1 部 D1:10 串 02: 1部 01:10 鹄 02: 1部 D2: 1部 02: 1部 D1:10 串 02: 1部 01:10 串 D2: 1部 D1:10 鹎 01:10 鹄 粘接着剤層配合 熱可塑性樹脂 5七 50 の独 の智 の部 ව ţ I 熟硬化性成分 80 电 45 部 恕 串 恕 撮 恕 $\hat{\Xi}$ 45 8 8 8 \$ 粘着成分 A2:20 部 A3:20 部 A4:20 部 A3:40 部 A1:40 鹎 A1:20 部 點 A4:40 i € 比較例1 比較例5 比較例2 比較例3 比較例4 ~ 史施例 実施例:

部:質量部

[秦1]

[0075] [表2]

(表2]

2 年 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2	武	実施例			比較例		
ロボ皇壮	_	2	1	2	3	4	വ
ダイシング性	旣	田	不良	不良	可	百	可
ダイボンド時の埋め込み性	405	包女	不良	不良	不良	不良	不良
接着力 (N/10mm)	8.3	8.3	7.5	7.8	2.3	1.4	3.5
パッケージ信頼性	#EK	40%	不良	不成	不良	不良	不良
ボード実装信頼性	包以	包式	不良	大原	不良	下段	不良
カンドンがず 中国七 か	かけ作	と日本	きを	かけ右い			

タインング性: 艮=割れ、父仃無し。 不艮=割れ、欠け有り。 ダイボンド時の埋め込み性:良=完全に埋め込んでいる。 可=一部埋め込まれていない。 不良=完全に埋め込まれていない。

産業上の利用可能性

[0076] 本発明のダイシング・ダイボンド用粘接着シートにおいては、その粘接着剤層が、ダイパッド部の凹凸に対してダイボンド条件下で優れた埋め込み性を有するので、高低差の大きなダイパッド部にチップを搭載した場合でも、ダイパッド部と粘接着剤層との間にボイドが発生することなく、生産効率の向上に寄与することができる。

WO 2005/004216 19 PCT/JP2004/009629

請求の範囲

- [1] 100℃での弾性率(M₁₀₀)と70℃での弾性率(M₇₀)との比(M₁₀₀/M₇₀)が0.5以下である粘接着剤層が基材上に設けられてなるダイシング・ダイボンド用粘接着シート。
- [2] 前記粘接着剤層が、重量平均分子量が30,000~500,000のアクリル系重合体からなる粘着成分と熱硬化性成分からなることを特徴とする請求項1に記載のダイシング・ダイボンド用粘接着シート。
- [3] 前記アクリル系重合体が、酢酸ビニルから導かれる繰り返し単位を5~50質量%含有する共重合体であることを特徴とする請求項2に記載のダイシング・ダイボンド用粘接着シート。
- [4] 前記粘接着剤層が、さらに60~150℃にガラス転移点を有する熱可塑性樹脂を含むことを特徴とする請求項2または3に記載のダイシング・ダイボンド用粘接着シート。
- [5] アクリル系重合体と、熱可塑性樹脂との重量比(アクリル系重合体/熱可塑性樹脂) が、9/1~3/7である請求項4に記載のダイシング・ダイボンド用粘接着シート。
- [6] 前記基材の粘接着剤層に接する面の表面張力が40mN/m以下である請求項1~ 5の何れかに記載のダイシング・ダイボンド用粘接着シート。
- [7] 請求項1~6の何れかに記載のダイシング・ダイボンド用粘接着シートの粘接着剤層に、半導体ウエハを貼着し、前記半導体ウエハをダイシングしてICチップとし、前記ICチップに粘接着剤層を固着残存させて基材から剥離し、前記ICチップをダイパッド部上に前記粘接着剤層を介して熱圧着することを特徴とする半導体装置の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/009629

	ATION OF SUBJECT MATTER H01L21/301, H01L21/52, C09J7/	02				
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H01L21/301, H01L21/52, C09J7/02						
·						
Jitsuyo Kokai Ji	tsuyo Shinan Koho 1971-2004 Ji	roku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994–2004 1996–2004			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
A	JP 2002-226796 A (Hitachi Che 14 August, 2002 (14.08.02), Claim 1; Par. Nos. [0010], [0 (Family: none)		1-7			
P,A	JP 2004-39928 A (Hitachi Cher 05 February, 2004 (05.02.04), Claim 3; Par. No. [0005] (Family: none)		1-7			
Further do	ocuments are listed in the continuation of Box C.	See patent family annex.				
	gories of cited documents:	"T" later document published after the inte	ernational filing date or priority			
to be of part	efining the general state of the art which is not considered cular relevance	date and not in conflict with the applic the principle or theory underlying the i				
"E" earlier application or patent but published on or after the international filing date		"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be				
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special record (or profifed)						
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art				
"P" document p the priority	ublished prior to the international filing date but later than date claimed	"&" document member of the same patent family				
	al completion of the international search ober, 2004 (04,10.04)	Date of mailing of the international sear 19 October, 2004 (
	ng address of the ISA/	Authorized officer				
Japanese Patent Office						
Facsimile No.		Telephone No.	<u> </u>			

Form PCT/ISA/210 (second sheet) (January 2004)

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl7 H01L 21/301, H01	L 21/52, C09J 7/02			
				
B. 調査を行った分野	·			
調査を行った最小限資料(国際特許分類(IPC))		1		
Int. C17 H01L 21/301, H01	L $21/52$, C09 J $7/02$			
	•			
最小限資料以外の資料で調査を行った分野に含まれるもの				
日本国実用新案公報 1922-1996年				
日本国公開実用新案公報 1971-2004年				
日本国登録実用新案公報 1994-2004年				
日本国実用新案登録公報 1996-2004年				
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	•	<u></u>		
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)				
		<u> </u>		
		į		
C. 関連すると認められる文献				
引用文献の		関連する		
カテゴリー* 引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号		
A JP 2002-226796 A (E	立化成工業株式会社)	1 - 7		
2002.08.14,【請求項1】		- ·		
[0041], [0046] (7	アミリーなし)			
		_		
PA JP 2004-39928 A (日立		1-7		
2004.02.05,【請求項3】	[0005]			
(ファミリーなし)	,			
		·		
	•			
	•			
□ C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献のカテゴリー	の日の後に公表された文献	•		
「A」特に関連のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表	された文献であって		
80	出願と矛盾するものではなく、			
「E」国際出願日前の出願または特許であるが、国際出願日	の理解のために引用するもの	にグラッパ三人は左腕		
以後に公表されたもの	「X」特に関連のある文献であって、	当該文献のみで発明		
「L」優先権主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考			
日若しくは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、			
文献(理由を付す)	上の文献との、当業者にとって	自明である組合せに		
「〇」口頭による開示、使用、展示等に言及する文献	よって進歩性がないと考えられ			
「P」国際出願日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	<u> </u>		
国際調査を完了した日	国際調査報告の発送日			
04.10.2004	19.10	.2004		
国際調査機関の名称及びあて先	特許庁審査官(権限のある職員)	3P 8815		
日本国特許庁(ISA/JP)	紀本 孝	L		
郵便番号100-8915				
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3363		