

# Job Scheduling in MiniZinc

Knowledge Representation Project - Università della Calabria Master Degree in Artificial Intelligence and Data Science a.y. 2021/2022



# Job Scheduling in MiniZinc Kr Project

- Job Scheduling Problems
- MiniZinc Models
- Java Execution Functions

# Job Scheduling Problems

- Job Scheduling (JS)
   or Job Problem (JP) is a popular
   optimization problem in computer
   science and operational research.
- This focus on assigning jobs to one or more resources or machines at particular times.



The schedule of 4 job and 3 machines.

# Job Scheduling Problems

- There are several type of job scheduling problems.
- Our application is focused on process single or multiple machine(s) problem with or without assigning weights to jobs.
- In addition, the objective function aims to minimize the sum of completion times.

 The home page allows users to select the type of job scheduling problem to process.



## MiniZinc Models

Our project requires four MiniZinc models (one per type of job scheduling problem)

- Single Machine Model
- Single Machine with weights Model
- Multiple Machines Model
- Multiple Machines with weights Model

• For example the jobScheduling\_MultipleMachines\_weights.mzn file is structured as shown in the next slide.

### MiniZinc Models

#### jobScheduling\_MultipleMachines\_weights.mzn file

```
1 int: njobs;
2 int: nmachines;
3 set of int:jobs=1..njobs;
4 set of int:machines=1..nmachines;
5 set of int: dom = 0..1;
7 array[jobs] of int: p; %input tempi di processamento
8 array[jobs] of int: w;%input dei pesi
9 array[machines] of int: wMachines; %input dei pesi sulle macchine
11 constraint assert(njobs > 0, "ValueError: njobs must be non-negative, you have to schedule at least 1 job");
12 constraint assert(nmachines > 1, "ValueError: machines must be more than one, otherwise select single machine option");
13 constraint assert(nmachines < njobs, "ValueError: machines must be less than jobs");
14 constraint assert(forall(i in jobs)(p[i]>0), "ValueError: processing times must be at least 1");
15 constraint assert(forall(i in jobs)(w[i]>0), "ValueError: weights must be at least one");
16 constraint assert(forall(i in machines)(wMachines[i]>0), "ValueError: weights on Machines must be at least 1, otherwise select multiple machine option");
17
19 array[machines, jobs] of var dom: assign; % tempi di completamento
21 var int: v;
22 constraint forall(i in machines)(assign[i,i]=1);
23 constraint forall(j in jobs)(sum(i in machines)(assign[i,j]) = 1);
24 constraint forall(i in machines)(v>=sum(j in jobs)(assign[i,j]*p[j]));
26 %vincolo sulle macchine che possono processare job con pesi <= wMachines[i]
27 constraint forall(i in machines, j in jobs)(assign[i,j]*w[j] <= wMachines[i]);
29 solve minimize v;
30
31 output[
32 show_int(3, assign[i,j]) ++ if j==njobs then "\n" else " " endif | i in machines, j in jobs
34 output["total completion time minimized =\(v)\n"];
```

# Java Execution Functions

• To invoke the **MiniZinc Solver** in Java it is necessary to run a simple command line.

> Minizinc.exe --solver Gecode filename.dzn filename.mzn

### Java Execution Functions

 In our code the function runSolver(Strings) executes the right model in base of the matching of the type passed as parameter.

```
public String runSolver(String s){
    String cmd = "C:\\Program Files\\MiniZinc\\minizinc.exe --solver Gecode jobSchedulingInput.dzn
    Runtime run = Runtime.getRuntime();
    Process pr = null;
    String 1 = "";
            pr.waitFor();
        } catch (InterruptedException e) {
            e.printStackTrace();
        BufferedReader buf = new BufferedReader(new InputStreamReader(pr.getInputStream()));
        String line = "";
        while (true) {
                if (!((line=buf.readLine())!=null)) break;
            System.out.println(line);
            l+="\n"+line;
    } catch (IOException e) {
        e.printStackTrace();
    System.out.println(l);
```

# Java Execution Functions

- This function is called when all the text field are filled and the user click on the button "Execute".
- In the right part of the window it is shown the output of the MiniZinc Solver.





# Demo

To download the app: <u>GitHub</u>

# **THANKS**

Project and Presentation by Boca Paolo, Canonaco Martina, Fazio Francesco, Moscato Giuseppe and Passarelli Chiara.