Infraestructures del **Transport Aeri**

Area Navigation (RNAV) and Performance Based **Navigation (PBN)**

Xavier Prats

xavier.prats@upc.edu

September 2014 – Version 1.0

Conventional Procedures

RNAV Concept

RNAV = Area/Range Navigation

A method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids, or a combination of these

A method of navigation using flight tracks joining any two points without the need for overflying specific ground facilities (e.g. VOR)

RNAV Concept

RNAV = Area/Range Navigation

RNAV concept

The ANSP can publish ATS routes (or terminal procedures: SIDs, STARs or approaches) requiring a RNAV capable navigation system

Free route concept

The operator can freely plan routes between entry and exit points without reference to ATS route network.

http://www.eurocontrol.int/news/free-route-airspace-deployed-europe

Free flight concept

The aircraft crew can freely chose a trajectory within a free flight area and assure self-separation with other aircraft (non centralized air traffic control)

http://www.eurocontrol.int/airspace/public/standard_page/1492_concept.html

RNAV capable system

DME/DME
VOR/DME

GNSS
(with augmentation system)

INS/IRS (Loran C)

Aircraft position

FMS + DB

RNAV System

VOR/DME

RNAV System

DME/DME

- Automatic position computation
- Good geometry required

RNAV System

GNSS, INS/IRS, (Loran C)

• GNSS: Good geometry required

Good geometry?

The RNAV system:

- Selects the best source of navigation if more than one is available
- Always flies to the next waypoint and provides guidance data to the autopilot system
- Provides guidance data to the flight director (FD) in order to fly manually
- Express waypoints in WGS84 coordinates

RNAV advantages

RNAV navigation vantages:

- More direct routes (flight time reduction)
- Less fuel consumption
- Delay reduction (more routes, no bottlenecks)
- Noise reduction
- Less track dispersion

RNAV advantages

Conventional Navigation

RNAV Navigation

Same procedure flown with different nav concepts!!

RNAV procedures

Fly-Over waypoints

Fly-by waypoints

Named

waypoints:

IAF

Initial Approach Fix

IF Intermediate Fix

FAF Final Approach Fix

MAPt

Missed Approach Point

MAHF

Missed Approach Holding Fix

[NOTE: IAWP, IWP, FAWP, MAWP removed in amendment 12, ICAO Doc 8168]

RNAV procedures

- Transform procedures into coded flight path
- How to navigate from a starting point/location to a

Guided Path

Non-guided Path

Transform procedures into coded flight path

How to navigate from a starting point/location to a

terminating point/condition

DF: Direct to a Fix

Non-guided Path

DF

Transform procedures into coded flight path

How to navigate from a starting point/location to a

terminating point/condition

CF: Course to a Fix

CF

Guided Path

Non-guided Path

Path & Terminator

- Specification: ARINC 424 standard
- Set of two alphabetic characters
- Instructions to navigate to a specific point or a terminating condition
- 23 different path terminators
- Procedures transformed into a coded flight path

With RNAV the aircraft flies according to the data base, not to the charts!!!

IF DF	Initial Fix Direct to fix	PI	Procedure turn to intercept next leg
TF	Track between fixes	FC	From fix to a distance
RF	Radius to fix	FD	From fix to a DME arc
CF	Course to fix	FA	From fix to an altitude
CD	Course to DME arc	FM	From fix to manual
CR	Course to VOR radial		termination
CA	Course to altitude	AF	DME arc to fix
CI	Course to intercept next leg	VD	Heading to DME arc
HF	Hold/racetrack to fix	VA	Heading to altitude (climb)
HA	Hold/racetrack to altitude	VM	Heading to manual
HM	Hold/racetrack for manual		termination (vectors)
	termination (clearance)	VI	Heading to intercept next leg
		VR	Heading to VOR Radial

RNAV path terminators. Others used to code conventional procedures

RNAV Implementation (Spain)

B-RNAV routes	B-RNAV routes	P-RNAV free routes?
Optional B-RNAV routes Conventional routes	FL 150 Conventional RNAV routes routes	4D RNAV?
TMA Exceptional B-RNAV	Optional P-RNAV	P-RNAV procedures?
procedures Conventional	procedures Conventional	Vertical Guidance?
procedures	procedures	4D RNAV?
1998	Mar 2011	2020

RNAV Implementation (Spain)

Departure En-Route Arrival Approach

VOR

DME SRE

NDB

VOR: VHF Omnidirectional Range

DME: Distance Measurement Equipment

NDB: Non Directional Beacon SRE: Secondary Radar Equipment

Final Approach segment **EN-ROUTE** TAXI **DEPARTURE** Rodatge TAKE OFF Enlairament **Non Precision** Approach (NPA) VOR (+DME) DF **NDB** MLS azimuth

Precision
Approach (PA)
ILS
PAR
MLS

ARRIVAL APPROACH

FINAL APPROACH and LANDING

Aproximació Final i Aterratge

Arribada Aproximació

Rodatge

MISSED APPROACH

Aproximació Fustrada

DF: Direction Finder

L: Locator

LOC (or LLZ): Localizer (ILS)
MLS: Microwave Landing System

ILS: Instrumental Landing System PAR: Precision Approach Radar

RNAV: Area Navigation LNAV: Lateral Navigation LP: Localizer Performance

RNAV Non Precision Approach (NPA)

- LNAV (Lateral Navigation): DME/DME, VOR/DME, INS/IRS, ABAS, GPS...
- LP (Localizer Performance): SBAS not able to provide vertical guidance

INS: Inertial Navigation System IRS: Inertial Reference System

ABAS: Airborne Based Augmentation System SBAS: Satellite Based Augmentation System

RNAV Approach with Vertical Guidance (APV)

- LNAV/VNAV (Lateral Navigation/Vertical Navigation)
 (APV BaroVnav): SBAS class 2, Baro-VNAV system
- LPV (Localizer Performance with Vertical guidance) (APV SBAS): SBAS class 3-4

RNAV Precision Approach (PA)

GLS (GNSS Landing System): GBAS, dual frequency SBAS...

What is the cost of such implementation (APV approaches) for the airport?

- No extra radionavigation aids required at the airport.
- Current ALS (approach landing systems) is enough, no modifications required.

And for the operator?

GNSS (SBAS) equipment

ICAO resolution 37-11

"Encourages" states to implement PBN such that all approaches have vertical guidance by 2016

Benefits of APV approaches

- Improved safety and prevention of CFIT (controlled flight into terrain)
- More airport accessibility (reduced minima) for those runways without Precision Approaches
- Reduction of conventional radionavigation aids
- Improves guidance for continuous descent approaches
- Due to RNAV lateral routing: more direct routes and therefore more fuel efficient and environmentally friendly procedures

Performance based navigation (PBN)

In conventional navigation and RNAV, the procedure design (and execution) depends on the sensor (radionavigation aid)

E.j.: VOR approach, VOR-DME approach, ILS approach,... RNAV (DME/DME) approach, RNAV (GNSS) approach,...

With the PBN concept, the performance and functionalities of the navigation system is specified beforehand

E.j.: B-RNAV, P-RNAV, RNAV-5, RNAV-0.3,... RNP-2, RNP-1, RNP-0.3,...

B-RNAV: Basic RNAV

P-RNAV: Precision RNAV

RNP: Required Navigation Performance

Sensor based → Performance based navigation

Performance based navigation (PBN)

 Performance-based Navigation (PBN) defines performance requirements for aircraft navigating on an ATS route, terminal procedure or in a designated airspace. It is ICAO's effort and objective to redefine the regional differences of various Area Navigation (RNAV) and Required Navigation Performance (RNP) specifications into a globally harmonized set of PBN applications.

May 2014: GBAS approach in malaga (4th operational GBAS station in the world)

Required
Navigation
Performance (RNP)

Figure 1-11. Required Navigation Performance.

Airbus FMS

B737 Navigation Display

Approach minimas

CAT I:

Approach "Minima-Minima" (ICAO Annex 6)

Decision Height (DH)

DH ≥ 200 ft

Visibility ≥ 800m

Visibility

or RVR ≥ 550m

RVR ≥ 350 m

 $RVR \ge 200 \text{ m}$

 $RVR \ge 50 \text{ m}$

No RVR limitation

Precision Approaches (PA)

CAT II*: $200 \text{ ft} \ge DH \ge 100 \text{ ft}$

CAT III-A*: $100 \text{ ft} \ge DH \ge 0 \text{ ft}$

CAT III-B*: $50 \text{ ft} \ge DH \ge 0 \text{ ft}$

CAT III-C*: No DH limitation

Approaches with vertical guidance (APV)

APV I: $DH \ge 250 \text{ ft}$

APV II: To be defined

RVR≥ 600m

To be defined

^{*} Subject to operations and airworthiness evaluation (aircraft equipment, crew training, maintenance procedures, airport infrastructure, ATC training...)

Thank you!! Gràcies!!

