MATIGO EXAMINATIONS BOARD

MATHEMATICS MARKING GUIDE 2023

PAPER 2

Qn	Answer	marks	Marking scheme
	SECTION A		
1(a)	$k = \frac{s}{t}$ 4.5	M1	For substituting.
	$ \begin{aligned} & = \frac{t}{4.5} \\ & = \frac{4.5}{9} \\ & = \frac{1}{2} \\ s & = \frac{1}{2}t \\ 22 \times 2 & = t \end{aligned} $	A1	For correct answer.
(b)	$s = \frac{1}{2}t$ $22 \times 2 = t$ $t = 44$	M1 A1 04	For substitutingk. For correct answer.
2	$2\sqrt{5}$ $3\sqrt{2}$	M1M1	For rationalization of
	$ \frac{\sqrt{5} \times \sqrt{5}}{\sqrt{5}} + \frac{\sqrt{2} \times \sqrt{2}}{\sqrt{2}} $ $ 2\sqrt{5} + 3\sqrt{2} $	M1	two terms. For simplifying.
	$\frac{2\sqrt{5}}{\sqrt{5} \times \sqrt{5}} + \frac{3\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ $\frac{2\sqrt{5}}{5} + \frac{3\sqrt{2}}{2}$ $a = \frac{2}{5}, b = \frac{3}{2}$	A1	For correct answers.
		04	
3	L(-3,2) $M(-5,-4)$ mid point, $K\left(\frac{-3-5}{2},\frac{2-4}{2}\right)$ = $K(-4,-1)$	M1M1 M1	Formula for mid-point. Substitution in formula. Coordinate k .

	$=$ $\begin{pmatrix} -4 \end{pmatrix}$	A1	Correct answer.
	ackslash -1 eta ALTERNATIVELY		
	$\widetilde{OR} = \widetilde{OL} + \widetilde{LR} = \widetilde{OL} + \frac{1}{2} \left[\widetilde{OM} - \widetilde{OL} \right] = {\binom{-3}{2}} + \frac{1}{2} \left[{\binom{-5}{-4}} - {\binom{-3}{2}} \right] = {\binom{-4}{-1}}$		
		04	
4	$m = \frac{13 - 9}{4 - 2} = 2$	B1	For numerical substitution for gradient.
	$2m_{2} = -1$ $m_{2} = \frac{-1}{2}$ $midpoint, K\left(\frac{2+4}{2}, \frac{9+13}{2}\right)$	B1	Correct answer
	(2,9) $midpoint, K\left(\frac{2+4}{2}, \frac{9+13}{2}\right) = K(3,11)$ $\frac{-1}{2} = \frac{y-11}{x-3}$ $2y = 25 - x$ $or \ y = \frac{-1}{2}x + \frac{25}{2}$	B1 A1	For numerical expression of equation of a line. For correct answer.
		04	
5	n(N)=20 n(V)= 14	M1	For 14
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	For 6
		M1	For 8
	$n(\varepsilon) = 20 + 8$ $= 28 \text{ students}$	A1	For correct answer
		04	
6	$V = \frac{22}{7} \times 10 \times \left(\left(\frac{37}{100} \right)^2 + \left(\frac{30}{100} \right)^2 \right)$	M1 M1 M1	For big volume For small volume For difference

	$=\frac{22}{4}\times10\times\frac{67}{4}\times\frac{7}{4}$	A 1	For answer
	$= \frac{22}{7} \times 10 \times \frac{67}{100} \times \frac{7}{100}$ $= 14.74m^3$		
	$= 14.74m^3$	0.4	
		04	
7	100 - 20 = 80%	M1	For Difference.
	$\frac{80}{100} \text{ of } x = 64,000$	M1	For unknown.
	$100^{6/3} = 0.000$		
	$x = \frac{64,000 \times 100}{80}$	M1	For making the subject.
	00	A1	For correct answer.
	x = 80,000/=		
		04	
8	$let f^{-1}(x) = y$		
	$v = \frac{14x + 5}{x}$	M1	For
	$y = \frac{14x + 5}{7x - 6}$ $14x + 5 = 7xy - 6y$		$f^{-1}(x) = y$
	14x + 5 = 7xy - 6y		
	14x - 7xy = -6y - 5	M1	For $f(x)$
	$x = \left(\frac{-6y - 5}{14 - 7y}\right)$		
	(14-7y)		
	$or x = \left(\frac{6y+5}{2}\right)$		
	(7y-14)	7./Г1	
	$f(x) = \frac{6x+5}{}$	M1	For $\left(\frac{1}{0}\right)$
	$or x = \left(\frac{6y+5}{7y-14}\right)$ $f(x) = \frac{6x+5}{7x-14}$ $7x-14 = 0$		For correct answer
	7x - 14 = 0 $x = 2$	A1	
	$x \equiv Z$		
		04	
9	p		
	P		
	3cm 8cm		
	$_{2\mathrm{cm}}$ $_{3\mathrm{cm}}$ $_{8\mathrm{cm}}$		
	$f A \qquad \qquad f B \qquad f C \qquad 16cm \qquad f D$		
	$\Delta R = 16$	M 1	_
	$\frac{AB}{2} = \frac{16}{8}$	141.1	For any expression.
	AB = 4cm		
	IID - 10III		

	$\frac{PD}{3} = \frac{8}{2}$ $PD = 12cm$ $BD = 12 - 3$	M1	For PD For difference.
	PD = 12cm		For difference.
			For difference.
	RD = 12 - 3		For answer.
		A1	For answer.
	=9cm		
	SECTION B	04	
10			
	No. scientific form log		
	0.01	M1	For $log 0.81 = \bar{1}.9085$
	$(1.9085) \times \frac{1}{3}$		2
	$(-3 + 2.9085) \times \frac{2}{3}$	M1	For $\frac{2}{3}$
	-2 + 1.9390	3.50	F 0.600 v. 10=1
	0.8689 8.689×10^{-1} $\overline{1}.9390$	M1	For 8.689×10^{-1}
		A1	For correct answer with
	$\therefore \sqrt[3]{0.81^2} = 0.8689$	Al	(4dp)
		04	
11(
a)	$n(\mathcal{E}) = 100$		
		M1	For $n(\varepsilon) = 100$
	n(A) n(B)		For 10
		M1	101 10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.54	
		M1	For 19
		7./1	
		IVII	For 17
		M1	For 15
		IVII	FOF 15
	17 /	M1	For 17
		1,11	
	x		
	n(C)		
			For summation
	8 10 9 17	M1 M1 M1 M1 M1	For 19 For 17 For 15 For 17

(b)		n(A) = 15 + 7 + 10 + 8 = 40 people		M1 A1	For correct answer
	$B \ and \ C \ only = 9 \ people$				For correct answer
(c)		40 + 18 + 9 + 17 + x = 100 $x = 100 - 84$		M1	For adding all
(d)		x = 100 - 84 $x = 16 people$		M1 A1	For simplifying For correct answer
				12	
12	Allowance Water and Electricity	Calculation 48,000 × 1	Total value 48,000	M1	For housing.
	Housing Medical	240,000 12 600,000	50,000	M1	For medical.
	Transport Marriage	$ \begin{array}{r} 12 \\ 50,000 \times 1 \\ \hline \frac{1}{10} \times 700,000 \end{array} $	50,000 70,000	M1	For marriage.
	Children	12,000 × 2 8,000 × 1	24,000 8,000	M1	For child allowance.
		total allowance = 270,000/= Taxable income (TI) = 700,000		M1	For summation.
		- 270,000 430,000/=		M1	For correct answer of taxable income.

	TI	Calculation	Tax	Balance		
	30,000	-	0	400,000		
	60,000	$\frac{10}{100} \times 60,000$	6,000	340,000		
	90,000	$\frac{20}{100} \times 90,000$	18,000	250,000	M1	For (TI).
	70,000	$\frac{30}{100} \times 70,000$	21,000	180,000	M1 M1	For TI column.
	150,000	$\frac{40}{100} \times 150,000$	60,000	30,000		Tax column
	30,000	$\frac{50}{100} \times 30,000$	15,000	0		
			120,000 /		M1	Tax (120,000).
	$Total\ TAX = 120,000/= 120,000$				M1	For computation of
	$=\frac{120,000}{700,000}\times100\%$					percentage.
	= 17.143% ≈ 17%				A1	percentage.
		≈ 1	17%			For correct answer.
					12	
13			= f(x)		M1	For $y = f(x)$.
(a)		y = 3	3x + 2			
(i)		$\chi = $	$\frac{y-2}{3}$		M1	For $f^{-1}(x)$.
		$f^{-1}(2)$	$ \frac{y-2}{3} \\ = \frac{x-2}{3} \\ = \frac{2-2}{3} $		M1	For working out.
		$f^{-1}(x) = f(x)$	$\begin{aligned} 2) &= 0 \\ &= f g(x) \end{aligned}$		A1	For correct answer.
(ii)			=3(5x-4)+2		M1M1 M1	For $ff(x) \& fg(x)$ For equating.
(11)		9x + 8 =	15x - 10			
			=6x		A1	For correct answer.
		$\therefore x$	=3			

(b)	$ \begin{array}{c} & 3 \\ & 6 \\ \hline & 18 \\ & 36 \end{array} $ $ \begin{array}{c} & 36 \\ \hline & 36 \end{array} $ $ \begin{array}{c} & 54 \\ \hline & 27 \end{array} $	A1	$1 \rightarrow 3 \rightarrow 9$
		A1 A1	$6 \rightarrow 18 \rightarrow 54$ $4 \rightarrow 12 \rightarrow 36$
	"is a third of"	A1	9 → 27
	AT AN AN	12	
14 (a)	$ \begin{array}{c} AE = AD + DE \\ = AD + DC + CE \\ 7 + 7 + 17 \end{array} $	M1	AE = AB + BF
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	$BF = \frac{2}{3}BC$
		M 1	
	A B $AE = \frac{1}{2}(2\widetilde{d} + 3\widetilde{b})$	A1	
	AF = AB + BF		
	$= AB + \frac{1}{3}BC$ $\approx 2 \approx$	M1	$\frac{AF}{AE}$ or $\frac{AF}{FE}$ or $\frac{AE}{FE}$
	$= b + \frac{1}{3}d$ $3b + 2d$	M1	
	$AE = \frac{1}{2}(2\tilde{d} + 3\tilde{b})$ $AF = AB + BF$ $= AB + \frac{2}{3}BC$ $= \tilde{b} + \frac{2}{3}\tilde{d}$ $= \frac{3\tilde{b} + 2\tilde{d}}{3}$ $AF = \frac{1}{3}(2\tilde{d} + 3\tilde{b})$	M1 A1	Follow student work.
(b)	AF:AE	M1	For ratio

	$\frac{AF}{AE} = \frac{\frac{1}{3}(2\tilde{d} + 3\tilde{b})}{\frac{1}{2}(2\tilde{d} + 3\tilde{b})}$ $\frac{AF}{AE} = \frac{2}{3}$ $AF: AE = 2: 3$ $common\ point\ (A), Ratio\ 2: 3$	M1 A1	For simplifying For correct answer.
		12	
15 (a)	W $TV^2 = 6^2 + 12^2$ $TV^2 = 180$ $TV = \sqrt{180}$ OR TV = 13.416cm	M1	For Pythagoras theorem.
	$h^{2} = 8.25$ $h = \sqrt{8.25}$ OR $h = 2.872cm$		and correct answer of h .
	h $PV^{2} = (\sqrt{180})^{2} + (\sqrt{8.25})^{2}$ $PV^{2} = 188.25$	M1	For manipulation.
(b)	$PV = \sqrt{188.25}$ OR $PV = 13.72cm$	A1	For correct answer.

	$tan\beta = \frac{\sqrt{8.25}}{2}$	B1M1	For correct expression of $tan \beta$
	$\beta = tan^{-1} \left(\frac{\sqrt{8.25}}{} \right)$		ταπ ρ
	$\sqrt{8.25}$ $\beta = 55.2^{\circ}$	A1	For correct answer.
(c)	${2}$	M1	For $\tan \theta$ expression.
	$tan\theta = \frac{\sqrt{8.25}}{12}$ $\theta = tan^{-1} \left(\frac{\sqrt{8.25}}{12}\right)$		For tail v expression.
	$\sqrt{8.25}$ $\theta = 13.5^{\circ}$	A1	F
	$\frac{\theta}{12 \text{ cm}}$		For correct answer.
(d)	$V = \frac{1}{2} \times \sqrt{8.25} \times 12 \times (6+8)$	M1	
	$= 6 \times \sqrt{8.25} \times 14$ = 241.272 cm^3		For formula.
	= 241.272cm²	A1	For correct answer.
		12	
16	$D_1 = 80\left(t + \frac{5}{6}\right)$ $D_2 = 100\left(t + \frac{2}{6}\right)$		
	$D_2 = 100\left(t + \frac{1}{6}\right)$		
	$80\left(t + \frac{5}{6}\right) = 100\left(t + \frac{2}{6}\right)$ 200 100		
	$80t + \frac{200}{3} = 100t + \frac{100}{3}$ $100t - 80t = \frac{200}{3} - \frac{100}{3}$ $20t = \frac{100}{3}$		
	$20t = \frac{100}{3}$		

	$t = \frac{100}{60}, t = 1\frac{2}{3}hours \text{ OR}$ $1:40 \text{ minutes}$ $D = 80\left(\frac{5}{3} + \frac{5}{6}\right)$ $= 80 \times \frac{5}{2}$ $D = 200km$		
		12	
17 (a)	$S = aN + b$ $600,000 = 1000a + b \dots 1$ $720,000 = 14000a + b \dots 2$ $equation 2 - equation 1$ $720,000 = 1400a + b$	M1 M1	For Equation $S = aN + b$. For the two equations.
	$\frac{-600,000 = 1000a + b}{120,000 = 400a}$	M1	Solving simultaneously.
	$a = \frac{120,000}{400}$ $= 300$ $600,000 = 300 \times 1000 + b$ $b = 300,000$	B1 B1	Correct answer $a = 300$. Correct answer.
(b)	Equation $S = 300N + 300,000$ $1,200,000 = 300N + 300,000$ $300N = 900,000$	A1 M1	b = 300,000. For correct equation. S = 300N + 300,000. For substitution.
	N = 3000 Students	M1 A1	For simplifying. For correct answer.
(c)	$S = 300 \times 2000 + 300,000$ $= 600,000 + 300,000$ $S = 900,000/=$	M1 M1 A1	For substitution. For simplifying. For correct answer.

