

TP2 - Business Intelligence SSIS - DataFlow

Master: Traitement intelligent des systèmes

Préparé par: Mme. ELANSARI Khawla

Année Universitaire: 2021/2022

Flux de données

1. Exporter des données sans transformations

<u>Objectif:</u> Charger les données depuis la table *HumanResources.Departments* dans un fichier Plat. Aucune transformation des données n'est requise

1.1 Configurer la source de données (OLEDB)

1.2 Configurer la destination (Fichier Plat)

1.2 Configurer la destination (Fichier Plat) :

Définir les mappings entre les colonnes sources et les colonnes destination

2. Transformation SSIS: Character Map

- Charger les données de la table HumanResources.Departments dans un fichier plat : CharacterMapOutput.txt
- · Ajouter une nouvelle colonne DepartmentName contenant les noms des départements convertis en Majuscule
- Convertir les valeurs du GroupName en Minuscule

2. Transformation SSIS: Character Map

3. Transformation SSIS: Copy Column

- Charger les données de la table HumanResources.Departments dans un fichier plat : CopyColumnOutput.txt
- Ajouter 2 nouvelles colonnes copies des colonnes : Name , Groupname. Nommer les nouvelles colonnes: Copy of Name ,
 Copy of Groupname

3. Transformation SSIS: Copy Column

4. Transformation SSIS: Derived Column

- Charger les données de la table Person.Person dans un fichier plat : DerivedColumnOutput.txt
- Ajouter une nouvelle colonne FullName contenant la concaténation des 3 valeurs: FirstName, MiddleName et LastName

4. Transformation SSIS: Derived Column

- Charger les données de la table Person.Person dans un fichier Excel : PercentageSamplingOutput.xlsx
- Dans une 1ère feuille du fichier nommée Selected_Records, charger 20% des données de la source
- Dans une 2^{ème} feuille du fichier nomée Unselected_Records, charger les 80% restantes des données

6. Transformation SSIS: Row Sampling

Objectifs:

Charger 20 enregistrements de la table Person.Person dans un fichier plat : RowSamplingOutput.txt

6. Transformation SSIS: Row Sampling

7. Transformation SSIS: Sort

- Charger les données de la table Person. State Province dans un fichier plat : Sort Output.txt
- Trier les données selon les les valeurs de la colonne CountryRegionCode par ordre croissant
- Pour chaque CountryRegionCode, trier les données selon les valeurs de la colonne StateProvinceCode par ordre décroissant
- Pour chaque StateProvinceCode, trier les données selon les valeurs de la colonne Name par ordre croissant

7. Transformation SSIS: Sort


```
SortOutput.txt - Notepad

File Edit Format View Help

StateProvinceID, StateProvinceCode, CountryRegionCode, Name, TerritoryID

5,AS ,AS,American Samoa,1

77,VIC,AU,Victoria,9

71,TAS,AU,Tasmania,9

66,SA ,AU,South Australia,9

64,QLD,AU,Queensland,9

50,NSW,AU,New South Wales,9

83,YT ,CA,Yukon Territory,6

69,SK ,CA,Saskatchewan,6

63,QC ,CA,Quebec,6

60,PE ,CA,Prince Edward Island,6
```

8. Transformation SSIS: Union All

- Charger les données des deux tables Person. State Province, Person. New State Province Details dans un fichier plat :
 Union All.txt
- N.B: les deux tables doivent avoir la même structure

8. Transformation SSIS: Union All


```
UnionAll.txt - Notepad
File Edit Format View Help
StateProvinceID, StateProvinceCode, CountryRegionCode, Name, TerritoryID
1,AB ,CA,Alberta,6
2,AK ,US,Alaska,1
3,AL ,US,Alabama,5
4, AR , US, Arkansas, 3
5,AS ,AS,American Samoa,1
6,AZ ,US,Arizona,4
7,BC ,CA,British Columbia,6
8,BY ,DE,Bayern,8
9,CA ,US,California,4
10,CO ,US,Colorado,3
11,CT ,US,Connecticut,2
12,DC ,US,District of Columbia,2
13,DE ,US,Delaware,2
14, ENG, GB, England, 10
179,93 ,FR,Seine Saint Denis,7
180,94 ,FR,Val de Marne,7
181,95 ,FR,Val d'Oise,7
1,87 ,FR,Vienne (Haute),7
```

9. Transformation SSIS: Multicast

Objectifs:

Copier les données de la table Person. State Province dans 3 fichiers séparés : Multicast1.txt, Multicast2.txt, Multicast3.xlsx

9. Transformation SSIS: Multicast

10. Transformation SSIS: Conditional Split

- Charger les données de la table Sales.SalesOrderDetails dans 4 feuilles du fichier Excel ConditionalSplit.xlsx selon la valeur de la colonne TotalLine :
 - Si TotalLine<100: Ajouter la ligne de données à la feuille PoorOrders
 - Si TotalLine<1000: Ajouter la ligne de données à la feuille AverageOrders
 - Si TotalLine<3000: Ajouter la ligne de données à la feuille GoodOrders
 - Sinon: Ajouter la ligne de données au fichier ExcellentOrders

10. Transformation SSIS: Conditional Split

10. Transformation SSIS: Conditional Split

11. Transformation SSIS: Aggregate

- Charger les données de la table Sales.SalesOrderDetails dans 2 feuilles du fichier Excel AggregateOutput.xlsx de la manière suivante:
 - La feuille GrpByOrderID contient les valeurs SumOfLineTotal, CountLineOrder, AverageLineTotal, MinLineTotal et MaxLineTotal par orderID
 - La feuille GrpByProdID contient les valeurs SumOfLineTotal par ProductID.

11. Transformation SSIS: Aggregate

11. Transformation SSIS: Aggregate

12. Transformation SSIS: Audit

Objectifs:

Retourner dans un fichier Excel – AuditlOutput.xlsx - les données relatives à l'environnement d'execution du package: User
 Name, Task Name, Package Name, Machine Name, Execution Start Time

12. Transformation SSIS: Audit

13. Transformation SSIS: Merge

Objectifs:

Combiner les données triées par CountryRegionCode des deux tables Person.StateProvince et
 Person.NewStateProvinceDetails dans un fichier Excel trié : MergeOutput.txt

13. Transformation SSIS: Merge

13. Transformation SSIS: Merge

14. Transformation SSIS: MergeJoin

Objectifs:

Charger le résultat de la jointure des deux tables: SalesOrderHeader et SalesOrderDetail dans un fichier Excel trié :
 MergeJoinOutput.txt

14. Transformation SSIS: MergeJoin

14. Transformation SSIS: MergeJoin

15. Transformation SSIS: Row Count

Objectifs:

Enregistrer le nombre de lignes de la table Occupation dans une variable Counter

15. Transformation SSIS: Row Count

15. Transformation SSIS: Row Count

SalesOrderDetail

Product

Objectifs:

Pour chaque order de ta table SalesOrderDetail, on veut retourner aussi les details du produit commandé depuis la table
 Products. Le résultat doit être chargé dans un fichier Excel LookupOutput

Cache modes

 Full Cache: Si les données de référence sont très importantes, nous pouvons utiliser Full Cache. Pour qu'il n'y ait pas de déplacements vers la base de données pour obtenir les données de SQL vers SSIS. Des données entières sont capturées avant d'exécuter le Lookup. Ce mode est le mode préféré.

A ne pas utiliser quand:

- l'ensemble de données de recherche est très volumineux
- OU lorsque le nombre d'enregistrements d'entrée est vraiment petit par rapport à l'ensemble de données de recherche.

Exemple:

- Données Source: 2 enregistrements.
- Données de référence: 200 millions enregistrements.
- => SSIS va charger les 200 millions enregistrements en mémoire, puis va faire le lookup. => Consommation de la mémoire => Ne pas utiliser le Full cache

Cache modes

• No cache: SSIS ne conserve aucun cache et envoie une requête à la base de données de référence pour chaque enregistrement qu'il doit rechercher.

Quand l'utiliser?

- Le nombre d'enregistrements dans l'ensemble de données source est très petit (et le restera)
- ET l'ensemble de données de référence est très volumineux (sinon, utilisez simplement le mode cache complet)

Exemple:

- Données Source: 2 enregistrements.
- Données de référence: 200 millions enregistrements.
- => SSIS va envoyer la requête à la BD 2 fois uniquement => No Cache est la meilleure option

Cache modes

 Partial cache: si une correspondance est trouvée, la clé et les valeurs de recherche sont ajoutées au cache. Si cette même clé entre à nouveau dans le composant de recherche, elle peut récupérer la valeur correspondante du cache local au lieu de la table de référence

Quand l'utiliser?

- Le nombre de combinaisons de recherche uniques dans l'ensemble de données source est faible
- ET l'ensemble de données de référence est très volumineux (sinon, utilisez simplement le mode cache complet)

Exemple:

- Données Source: 10.000 enregistrements avec 100 valeurs uniques seulement
- Données de référence: 200 millions enregistrements.
- => Partial cache est la meilleure option

Objectifs:

Charger les données de la table table SalesOrderDetail dans un cache

Utiliser un lookup pour charger les details du produit commandé depuis la table **Products.** Le résultat doit être chargé dans un

1- Loading data into Cache

1- Loading data into Cache

2- Data Flow Task (Lookup)

2- Data Flow Task (Lookup)

2- Data Flow Task (Lookup)

Objectifs:

 Pour chaque employee du fichier FuzzyExample, on veut retourner aussi les details du de l'occupation depuis la table Occupations. Le résultat doit être chargé dans un fichier Excel FuzzyLookupOutput

OccupationID	OccupationTitle
1	CUSTOMER SERVICE REPRESENTATIVE
2	SHIFT LEADER
3	ASSISTANT MANAGER
4	STORE MANAGER
5	DISTRICT MANAGER
6	REGIONAL MANAGER
102	CUSTOMER SERVICE REPRESENTATIVE
103	SHIFT LEADER
104	ASSISTANT MANAGER
105	STORE MANAGER
106	DISTRICT MANAGER
107	REGIONAL MANAGER

Objectifs:

Pour chaque employee du fichiier FuzzyExample, on veut retourner aussi les details du de l'occupation depuis la table
 Occupations. Le résultat doit être chargé dans un fichier Excel FuzzyLookupOutput

LASTNAME	FIRSTNAME	TITLE	OccupationID	OccupationTitle
WALKER	JEREMY	CUSTOMER SERVICE REPRESENTATIVE	1	CUSTOMER SERVICE REPRESENTATIVE
OWENS	BENJAMIN	ASSISTANT MANAGER	3	ASSISTANT MANAGER
SCOTT	MICHAEL	REGIONAL MANAGER	6	REGIONAL MANAGER
SCHRUTE	DWIGHT	CUSTOMER SERVICE REPRESENTATIVE	1	CUSTOMER SERVICE REPRESENTATIVE
PAIGE	CARRINGTON	STORE MANAGER	4	STORE MANAGER
SCHACHT	BRADLEY	DISTRICT MANAGER	5	DISTRICT MANAGER
SHOWALTER	CHRISTOPHER	SHIFT LEADER	2	SHIFT LEADER
MCNAMARA	SEAN	REGIONAL MANAGER	6	REGIONAL MANAGER
COLBERT	STEPHEN	STORE MANAGER	4	STORE MANAGER
ISHEE	SAM	SHIFT LEADER	2	SHIFT LEADER
ENGLE	DANIEL	ASSISTANT MANAGER	3	ASSISTANT MANAGER
STEWART	JON	DISTRICT MANAGER	5	DISTRICT MANAGER
HENDERSON	HARRY	CUST SERVICE REP.	102	CUSTOMER SERVICE REPRESENTATIVE
ALBREKTSON	CHRISTOPHER	SHIFT LEAD	103	SHIFT LEADER
MCFLY	MARTY	REGION MANAGER	107	REGIONAL MANAGER
HALPERT	JIM	STORE MGR.	105	STORE MANAGER
FOSTER	DERRICK	CUSTOMER SERVICE REP	102	CUSTOMER SERVICE REPRESENTATIVE
BEESLY	PAM	ASSIST. MANAGER	104	ASSISTANT MANAGER
LANDEN	COLLIN	CUTSOMER SERIVCE REPRESENTATIVE	102	CUSTOMER SERVICE REPRESENTATIVE
RYAN	DUSTIN	DISTRICT MGR.	106	DISTRICT MANAGER
TROY	CHRISTIAN	REGIONAL MGR	107	REGIONAL MANAGER
WOOD	JOHN	CUSTOMER SERIVCE REP	102	CUSTOMER SERVICE REPRESENTATIVE

Questions?