Natality Models

DATA621 Business Analytics & Data Mining - CUNY

Daniel Dittenhafer & Justin Hink May 9, 2016

Agenda

- · Research Question
- Data Sets
- Methodology
- Models
- Results

Research Question

Using national aggregate data, how can the number of births be forecast? What factors are significant predictors of births in the United States?

Why is this important?

-Having a glimpse into a society's future population size and demographics can give governments (and private companies) insight into things that need to be done to keep things running efficiently

 In the case of a private company it may illuminate new business areas and profit opportunities

Data Sets

- · Natality, 2007-2014
- Natality, 2003-2006
- Women's Earnings 2003-2014 Current Population Survey
- Unemployment Rates 2003-2015
- Census Estimates 2000-2010
- Census Estimates 2010-2015

Methodology

- · Data Tidying
- Joining Data
- Exploration
- Building Models
- Selecting Model(s)

Methodology - Data Tidying

- · Census Data
- · 2000-2010: Only Total Population
- · 2010-2015: Broken down by Age and Gender

Methodology - Gender Bins

$$G_{year} = rac{F_{year}}{P_{year}}$$

$$F_{month} = P_{month} * G_{year}$$

$$M_{month} = P_{month} - F_{month}$$

Where:

- G Gender Ratio
- F Total females, TOT_FEMALE
- M Total males, TOT_MALE
- P Total population, TOT_POP

Methodology: Age Bins

$$F_{year_x_y} = \sum_{i=x}^{y-1} F_{year_i}$$

$$A_{year_x_y} = rac{F_{year_x_y}}{F_{year}}$$

$$F_{month_x_y} = F_{month} * A_{year_x_y}$$

Where:

- x Lower age bound of bin
- y Upper age bound of bin
- A Age bin's ratio

Model Data

Year	Month	Births	Date		TOT_POF	0	Gender	Ratio	TOT_FEMALE	TOT_MALE	
2003	1	329803	2003	-01-01	288998.	8	0.50904	86	147114.4	141884.4	
2003	2	307248	2003	-02-01	289132.7	7	0.50904	86	147182.6	141950.1	
2003	3	336920	2003	-03-01 289258.		7 0.509048		86 147246.7		142012.0	
2003	4	330106	2003	-04-01	289400.	2	0.50904	86	147318.8	142081.4	
2003	5	346754	2003	-05-01	289554.8	8	0.50904	86	147397.5	142157.3	
2003	6	337425	2003	-06-01	289819.	5	0.50904	86	147532.2	142287.3	
2003	7	364226	2003	-07-01	290107.	9	0.5090486		147679.0	142428.9	
FEMALE	_15_24	FEMALE_2	5_34	FEMAL	E_35_44	Ea	rnings	Unem	ploymentRate	Month9Ago	
20103.1	.4	19426.37		22121.8	30	55	1	5.8		4	
20112.4	5	19435.37		22132.6	96	55	1	5.9		5	
20121.2	2	19443.84		22141.7	70	55	1	5.9		6	
20131.06		19453.35		22152.53		547		6.0		7	
20141.81		19463.74		22164.36		547		6.1		8	
20160.23		19481.54		22184.63		547		6.3		9	
20180.29		19500.92		22206.70		550		6.2		10	

Methodology: Year over Year Birth Rates

Methodology: Birth Rates By Month

Models

- 11 models investigated
 - 7 Multiple Linear Regression models
 - 3 Possion Generalized Linear models
 - 1 Negative Binomial Generalized Linear model
- · 80% training data / 20% validation

Models

Model	VS Error	Adj R^2	AIC	Variables	VIF
All Variables	161072343	0.6112935	2504.690	11	BAD
Neg Binomial Step	161290241	NA	2506.956	10	BAD
Poisson Step	161316049	NA	40569.475	10	BAD
Step	172024296	0.6200088	2497.456	5	BAD
Poisson Signif Ltd	176055186	NA	51551.445	4	OK
Significant Limited	176416016	0.5258888	2522.176	4	OK
Signif Ltd w/ Interaction	177767094	0.5218164	2524.118	5	BAD
High Cor	212269346	0.4788873	2535.031	6	BAD
Significant	227028994	0.4771385	2536.351	7	BAD
Significant Minus	231634851	0.3600735	2557.915	5	BAD 14/21

Models: Significant Limited

Significant Variables Limited Linear Model Coefficient Estimates

	Estimate	Pr(> t)
Intercept *	468350.706460	0.0000000
Month *	2490.804603	0.0000000
Month9Ago *	2649.171132	0.0000000
FEMALE_25_34 *	-7.181586	0.0003757
UnemploymentRate *	-2190.844273	0.0030120

Models

The Significant Limited model has an F-statistic of 32.89 and a mean squared error (MSE) of 146358133.79.

```
y_{births} = 468350.7064601 + 2490.8046026x_{Month} + 2649.1711324x_{Month9Ago} - 7.181586x_{FEMALE\_25\_34} - 2190.8442727x_{UnemploymentRate}
```

We can interpret the coefficients in the following manner. Holding all other predictors constant, for variable:

- · Month, as the month of the year increased, a 2490.8 increase in births would occur.
- *Month9Ago*, as the 9 month lagged month of the year increased, a 2649.17 increase in births would occur.
- FEMALE_25_34, a unit increase in the population of females age 25-34 would yield a 7.18 decrease in births.
- *UnemploymentRate*, a unit increase in the *UnemploymentRate* related to a 2190.84 decrease in births.

Results: Diagnostics

17/21

Results: Inverse Response Plot

Results

- · Red = Model
- Green = Actual

Conclusions

- · Reasonable for the time period studied
- Changepoint during recession?
- Other independent variables we aren't including?
- Further validation against historical data, 1980s, 1990s?

Thank you!

· Questions?