



18 - 19 June 2018

# NODOS IMPORTANTES EN REDES: CENTRALITY

Camila Umaña-Ruiz PhD(c)
Universidad de los Andes

mc.umana@uniandes.edu.co

Guillermo Ruiz Pava PhD
Profesor Asistente
CESA





# ¿QUIÉN ES IMPORTANTE EN ESTA RED?



### CENTRALITY

- Medida de importancia "estructural" de los nodos en la red
- Contribuye a entender la "importancia" o poder de un nodo
- Valor asociado a cada nodo: centrality vs. Centralization
- Hay diferentes formas de medirlo, que capturan distintos aspectos
  - 4 básicas en grafos no dirigidos:
    - Grado/Degree
    - Cercanía/Closeness
    - Betweenness (estar entre nodos)
    - Eigenvector

#### GRADO/DEGREE

- La suma de las filas para un nodo en la matriz.
- Índice de exposición de lo que está fluyendo en la red
- Oportunidad de influenciar y ser influenciado por otros.
- Predice varios resultados: resistencia a virus, poder y liderazgo, satisfacción laboral, conocimiento...
- Centrality? No se requiere conocer la estructura de la red.



#### GRADO/ DEGREE

#### Aplicaciones:

- Capital Social: a mayor número de vínculos, mas recursos para resolver un problema.
- Poder/ Influencia: a mayor número de vínculos, más personas que puedo influenciar directamente
- Adopción/ ser influenciado por otros: si se tienen más vínculos de confianza podré influenciar a más personas.

|            | 11 | 13 | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | S1 | S2  | <b>S4</b> | Suma |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----------|------|
| <b>I</b> 1 | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0         | 4    |
| 13         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0         | 0    |
| W1         | 1  | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 1  | . 0 | 0         | 6    |
| W2         | 1  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1  | . 0 | 0         | 5    |
| W3         | 1  | 0  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 1  | . 0 | 0         | 6    |
| W4         | 1  | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | . 0 | 0         | 6    |
| W5         | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0  | 1  | 0  | 0  | 1  | . 0 | 0         | 5    |
| W6         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0   | 0         | 3    |
| W7         | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 0  | 0   | 1         | . 5  |
| W8         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 0  | 0   | 1         | 4    |
| W9         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0   | 1         | 4    |
| S1         | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0   | 0         | 5    |
| S2         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0         | 0    |
| <b>S4</b>  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0   | 0         | 3    |

# GRADO/ DEGREE CON DATOS DIRIGIDOS

|       |         | Α | В | С | D | Е | F | G | Н |   | J | • |
|-------|---------|---|---|---|---|---|---|---|---|---|---|---|
|       | А       | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 4 |
|       | В       | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 3 |
|       | С       | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 5 |
|       | D       | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 |
|       | Е       | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 3 |
|       | F       | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 3 |
|       | G       | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 4 |
|       | Н       | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 5 |
|       | l       | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 3 |
|       | J       | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 |
| ree 🗕 | <b></b> | 4 | 3 | 4 | 4 | 3 | 5 | 3 | 5 | 4 | 3 |   |

Outdegree

# CERCANÍA /CLOSENESS

- La medida en que un nodo está cerca a todos los demás.
- Suma de las distancias de un nodo a todos los demás
- Medida inversa de centralidad
- Si algo "cae" en un lugar aleatorio de la red, closeness es un índice del tiempo esperado hasta esto llegue al resto de la red.
  - Un chisme.



# CERCANÍA /CLOSENESS

#### Aplicaciones:

Situaciones donde el valor de la información (o costo de la infección) sea una función del tiempo.

- Adquirir una enfermedad antes que el tratamiento esté disponible
- Conocer un chisme antes que otra gente
- Obtener información del mercado antes que otros inversores.

#### Problemas:

- Solo mira los caminos más cortos
- Con gráficos desconectados las distancias entre nodos son indefinidos.

# CERCANÍA / CLOSENESS

- Se calcula a partir de la matriz de distancia geodésica
- En UCINET: a través de Network|Cohesion|Di stance
- Es una medida inversa, por lo que el más cercano es el que tiene el valor más bajo!

|           |    |           |    |    |    |    |    |    |    |    |    |           |           |           | Sum |
|-----------|----|-----------|----|----|----|----|----|----|----|----|----|-----------|-----------|-----------|-----|
|           | l1 | <b>13</b> | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | <b>S1</b> | <b>S2</b> | <b>S4</b> | a   |
| 11        | 0  |           | 1  | 1  | 1  | 1  | 2  | 4  | 3  | 4  | 4  | 2         |           | 4         | 27  |
| 13        |    | 0         |    |    |    |    |    |    |    |    |    |           |           |           | 0   |
| W1        | 1  |           | 0  | 1  | 1  | 1  | 1  | 3  | 2  | 3  | 3  | 1         |           | 3         | 20  |
| W2        | 1  |           | 1  | 0  | 1  | 1  | 2  | 4  | 3  | 4  | 4  | 1         |           | 4         | 26  |
| W3        | 1  |           | 1  | 1  | 0  | 1  | 1  | 3  | 2  | 3  | 3  | 1         |           | 3         | 20  |
| W4        | 1  |           | 1  | 1  | 1  | 0  | 1  | 3  | 2  | 3  | 3  | 1         |           | 3         | 20  |
| W5        | 2  |           | 1  | 2  | 1  | 1  | 0  | 2  | 1  | 2  | 2  | 1         |           | 1         | 17  |
| W6        | 4  |           | 3  | 4  |    | 3  | 2  | 0  | 1  | 1  | 1  | 3         |           | 2         | 27  |
| W7        | 3  |           | 2  | 3  | 2  | 2  | 1  | 1  | 0  | 1  | 1  | 2         |           | 1         | 19  |
| W8        | 4  |           | 3  | 4  | 3  | 3  | 2  | 1  | 1  | 0  | 1  | 3         |           | 1         | 26  |
| W9        | 4  |           | 3  | 4  | 3  | 3  | 2  | 1  | 1  | 1  | 0  | 3         |           | 1         | 26  |
| <b>S1</b> | 2  |           | 2  | 1  | 1  | 1  | 1  | 3  | 2  | 3  | 3  | 0         |           | 3         | 22  |
| S2        |    |           |    |    |    |    |    |    |    |    |    |           | 0         |           |     |
| <b>S4</b> | 4  |           | 3  | 4  | 3  | 3  | 2  | 2  | 1  | 1  | 1  | 3         |           | 0         | 27  |

### BETWENNESSS CENTRALITY

- La medida en que un nodo se encuentra en medio del camino más corto entre cualquier otro par de nodos.
- Índice del potencial de un nodo de controlar el flujo de información, ser broker o "gatekeeper".
- Servir de enlace entre partes separadas de la red.
- Se interpreta como un indicador de acceso a diversidad de lo que fluye a través de la red, un potencial para controlar este flujo.

#### **BETWEENNESS CENTRALITY**

- Nodos que tienen alto betweeness y bajo grado con frecuencia pasan desapercibidos por otros miembros de la red.
- Grado es notorio pero betweenness no.



### EIGENVECTOR CENTRALITY

- Un nodo tiene un alto Eigenvector en la medida en que esté conectado con otros nodos que también tengan altos puntajes.
- Interpretado como popularidad o status: no solo tiene conexiones con otros, sino que además están bien conectados.
- Altamente correlacionado con grado, sin embargo el nodo con un eigenvector más alto no siempre es el que tiene el mayor grado.
- Con datos dirigidos no funciona bien. No tiene sentido para aquellos nodos que no tienen indegree.



#### **EIGENVECTOR**

#### • Aplicaciones:

- Tener muchos amigos, pero si son "rechazados" no mejorará mi status.
- Tener un solo amigo, pero si es el más popular en el colegio, mi status mejorará.
- Estar bien



## BETA CENTRALITY O PODER DE BONACICH (1987)

 Idea clave: es una medida que captura qué tanto un nodo está conectado a otro nodos bien conectados y funciona bien con datos dirigidos.

$$P=(I-\beta R)^{-1}R1$$

 Mide el número total de caminos (walks) de todas las distancias, ponderado inversamente por la longitud del camino que emana de un nodo.

### BETA CENTRALITY O PODER DE BONACICH (1987)

- Uno puede decidir qué tanta "importancia" darle a los nodos que están conectados indirectamente con el nodo focal.
  - Cuando Beta es cero, P es igual a grado, solo las distancias cortas importan
  - Cuando se acerca a  $1/\lambda$  las distancias largas importan más.
- Estar conectado con nodos bien conectados aumenta el propio puntaje.

### TIPOS DE DATOS PARA CALCULAR MEDIDAS DE CENTRALIDAD

|                         | Degree | Closeness     | Betwenness | Eigenvector      | Beta<br>Centrality |
|-------------------------|--------|---------------|------------|------------------|--------------------|
| No dirigido             | OK     | OK            | Ok         | Ok               | Ok                 |
| Dirigido                | OK     | Problemático* | Ok         | Muy problemático | Ok                 |
| Valores (no<br>binario) | OK     | No**          | No***      | Ok               | Ok                 |
| Desconectado            | OK     | no            | ok         | No               | No                 |

<sup>•</sup> Porque con frecuencia este tipo de grafos están desconectados y tienen nodos inalcanzables

<sup>\*\*</sup> Se puede hacer en UCINET pero no son bien aceptadas

<sup>\*\*\*</sup> No es posible con UCINET, en principio se puede hacer con valores que representen costos o distancias.