Math 415 - Lecture 25

Multiple linear regression, Gram Schmidt and Orthogonal matrices

Monday October 26th 2015

Textbook reading: Chapters 3.3,3.4

Suggested practice exercises: Chapter 3.3, 3,5,6,13,22,24,25,26 and Chapter 3.4, 10,11,13,14,16,26

Khan Academy video: Another Least Squares Example, Gram-Schmidt Example

Strang lecture: Orthogonal Matrices and Gram-Schmidt Process.

1 Review

 $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$

 \iff $\hat{\mathbf{x}}$ is such that $A\hat{\mathbf{x}} - \mathbf{b}$ is as small as possible

 $\stackrel{FTLA}{\Longleftrightarrow} A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equations)

2 Application: fitting data

2.1 Least square lines

Example 1. Find β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

Comment

As usual in practice, we are minimizing the (the sum of the squares of the) vertical offsets.

2.2 Solution

The equations $y = \beta_1 + \beta_2 x$ in matrix form:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$
 design matrix X observation vector \mathbf{y}

Here, we need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$
$$X^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving
$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$
, we find $\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$. Hence the least squares line is $y = \frac{2}{7} + \frac{5}{14}x$.

2.3 Fitting to other curves

What happens if the data just lie close to any line? We can also fit the experimental data using other curves. Try to find $\beta_1, \beta_2, \beta_3$ such that $y = \beta_1 + \beta_2 x + \beta_3 x^2$ fits the data. To fit: $y_i \approx \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ with parameters $\beta_1, \beta_2, \beta_3$. The equations $y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2$ in matrix form:

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{bmatrix}$$
design matrix X observation vector \mathbf{y}

Given data (x_i, y_i) , we then find the least squares solution to $X\beta = \mathbf{y}$.

2.4 Multiple linear regression

Of course, sometimes the variable y might not just depend on a single variable x, but on two variables, say u and v. So, here you have find the least-squares solution of

$$\begin{bmatrix} 1 & v_1 & w_1 \\ 1 & v_2 & w_2 \\ 1 & v_3 & w_3 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{bmatrix}$$
design matrix observation vector

And we again proceed by finding a least squares solution.

3 Review

Suppose $\mathbf{v}_1, \dots, \mathbf{v}_m$ is an orthonormal basis of W. The **orthogonal projection** of \mathbf{x} onto W is :

$$\hat{\mathbf{x}} = \underbrace{\langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1}_{\text{proj. of } \mathbf{x} \text{ onto } \mathbf{v}_1} + \ldots + \underbrace{\langle \mathbf{x}, \mathbf{v}_m \rangle \mathbf{v}_m}_{\text{proj. of } \mathbf{x} \text{ onto } \mathbf{v}_m}$$

(To stay agile, we are writing $\langle \mathbf{x}, \mathbf{v}_1 \rangle = \mathbf{x} \cdot \mathbf{v}_1$ for the inner product.)

4 Gram-Schmidt

4.1 Our goal

- * In calculating projections we used an *orthogonal basis* and the easy formula for the coefficients.
- * What if we are given an arbitrary basis, not orthogonal?
- * Turn the starting basis into an orthogonal (or orthonormal) basis.
- * Gram-Schmidt Process.

Recipe. (Gram-Schmidt orthonormalization)

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce a orthogonal basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ and an orthonormal basis $\mathbf{q}_1, \dots, \mathbf{q}_n$.

$$\begin{array}{ll} \mathbf{b}_1 = \mathbf{a}_1, & \mathbf{q}_1 = \frac{\mathbf{b}_1}{\|\mathbf{b}_1\|} \\ \mathbf{b}_2 = \mathbf{a}_2 - \langle \mathbf{a}_2, \mathbf{q}_1 \rangle \mathbf{q}_1, & \mathbf{q}_2 = \frac{\mathbf{b}_2}{\|\mathbf{b}_2\|} \\ \mathbf{b}_3 = \mathbf{a}_3 - \langle \mathbf{a}_3, \mathbf{q}_1 \rangle \mathbf{q}_1 - \langle \mathbf{a}_3, \mathbf{q}_2 \rangle \mathbf{q}_2, & \mathbf{q}_3 = \frac{\mathbf{b}_3}{\|\mathbf{b}_3\|} \\ \dots & \dots & \dots \end{array}$$

Example 2. Find an orthonormal basis for $V = \text{Span}\left\{\begin{bmatrix} 1\\0\\0\\0\end{bmatrix},\begin{bmatrix} 2\\1\\0\\0\end{bmatrix},\begin{bmatrix} 1\\1\\1\\1\end{bmatrix}\right\}$.

Solution.

$$\begin{aligned} \mathbf{b}_1 &= \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, & \mathbf{q}_1 &= \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \\ \mathbf{b}_2 &= \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, -\langle \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \mathbf{q}_1 \rangle \mathbf{q}_1 &= \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, & \mathbf{q}_2 &= \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \\ \mathbf{b}_3 &= \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, -\langle \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \mathbf{q}_1 \rangle \mathbf{q}_1 -\langle \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \mathbf{q}_2 \rangle \mathbf{q}_2 &= \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}, & \mathbf{q}_3 &= \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} \end{aligned}$$

We have obtained an orthonormal basis for $V: \mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$.

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

Why does Gram-Schmidt work? Recall, if W is a subspace, ${\bf b}$ any vector, then

$$\hat{\mathbf{b}} \leadsto \text{ projection to } W, \, \mathbf{b}^{\perp} = \mathbf{b} - \hat{\mathbf{b}} \leadsto \text{ orth. to } W$$

Recipe. (Gram-Schmidt orthonormalization)

Given a basis $\mathbf{a}_1, \dots, \mathbf{a}_n$, produce a orthogonal basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ and an orthonor-

mal basis $\mathbf{q}_1, \ldots, \mathbf{q}_n$.

$$\begin{array}{ll} b_1 = a_1, & q_1 = \underbrace{\frac{b_1}{\|b_1\|}}_{\substack{normalize}} \\ b_2 = a_2 - \underbrace{\langle a_2, q_1 \rangle q_1}_{\substack{\hat{a_2} \sim \text{projection to Span}\{q_1\}}} \underbrace{a_2 - \langle a_2, q_1 \rangle q_1}_{\substack{a_2^{\perp} \sim \text{orth. to Span}\{q_1\}}}, & q_2 = \underbrace{\frac{b_2}{\|b_2\|}}_{\substack{normalize}} \\ b_3 = \underbrace{a_3 - (\langle a_3, q_1 \rangle q_1 + \langle a_3, q_2 \rangle q_2)}_{\substack{a_3^{\perp} \text{ orth. to Span}\{q_1, q_2\}}} & \underbrace{q_3 = \underbrace{\frac{b_3}{\|b_3\|}}_{\substack{normalize}} \\ & \underbrace{normalize}}_{\substack{normalize}} \end{array}$$

Example 3. Let $V = \text{Span}\left\{\begin{bmatrix} 2\\1\\2\end{bmatrix}, \begin{bmatrix} 0\\0\\3\end{bmatrix}\right\}$. Find an orthonormal basis for V. Check that your basis is actually orthonormal.

4.2 Orthogonal matrices

Theorem 1. Let $A = [\mathbf{a_1}, \dots, \mathbf{a_n}]$ be an matrix. Then $A^T A$ is the matrix of dot products of the columns of A:

$$A^{T}A = \begin{bmatrix} \mathbf{a_1} \cdot \mathbf{a_1} & \mathbf{a_1} \cdot \mathbf{a_2} & \mathbf{a_1} \cdot \mathbf{a_3} & \dots \\ \mathbf{a_2} \cdot \mathbf{a_1} & \mathbf{a_2} \cdot \mathbf{a_2} & \mathbf{a_2} \cdot \mathbf{a_3} & \dots \\ \mathbf{a_3} \cdot \mathbf{a_1} & \mathbf{a_3} \cdot \mathbf{a_2} & \mathbf{a_3} \cdot \mathbf{a_3} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

What happens if the columns of A are orthonormal?

Theorem 2. The columns of Q are orthonormal $\iff Q^TQ = I$

Proof. Let $\mathbf{q}_1, \dots, \mathbf{q}_n$ be the columns of Q. They orthonormal if and only if $\mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$ All these products are packaged in $Q^T Q = I$:

$$\begin{bmatrix} -- & \mathbf{q}_1^T & -- \\ -- & \mathbf{q}_2^T & -- \\ \vdots & & \end{bmatrix} \begin{bmatrix} | & | & \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots \\ | & | & \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$$

Definition. An **orthogonal matrix** is a square matrix Q with orthonormal columns.

It is historical convention to restrict to square matrices, and to say orthogonal matrix even though "orthonormal matrix" might be better.

An $n \times n$ matrix Q is orthogonal $\iff Q^TQ = I$ In other words, $Q^{-1} = Q^T$.

6

Example 4.
$$P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 is orthogonal. Why?

Why is $P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ orthogonal?

Solution. Because their columns are a permutation of the standard basis. And so we always have $P^TP = I$. So what is P^{-1} ?

Example 5.
$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal, Why?

Solution. • $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$, $\begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ is an orthonormal basis of \mathbb{R}^2 . Just to make sure: why length 1? Because $\|\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}\| = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$.

$$\bullet \text{ Alternatively: } Q^TQ = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 So what is Q^{-1} ?

Example 6. Is
$$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 orthogonal?

Solution. No, the columns are orthogonal but not normalized. But $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$ is an orthogonal matrix.

Example 7. (Just for fun) an $n \times n$ matrix with entries ± 1 whose columns are orthogonal is called a *Hadamard matrix* of size n. A size 4 example:

$$\begin{bmatrix} H & H \\ H & -H \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$
 Continuing this construction, we get examples of size 8.16.22. It is believed that Hadamard matrices exist for all sizes

ples of size $8, 1\overline{6}, 32, \ldots$ It is believed that Hadamard matrices exist for all sizes 4n. But, no example of size 668 is known yet. If you find one you will be famous!