Otto Álan Pinto De Sousa

ottolopes20@gmail.com

Departamento de Engenharia de Teleinformática Universidade Federal do Ceará

15 de julho de 2022

Sumário

- 1 Introdução
- 2 Fundamentação Teórica
- 3 Metodologia

- 4 Resultados
- 5 Conclusão
- 6 Imagens

Introdução

Introdução •000

Um dispositivo *datalogger* é um sistema embarcado que realiza que realiza e armazena leituras do ambiente em que está presente por meio de sensores.

Introdução ○●○○

Métodos de recuperação dos dados coletados:

- Manual Um operador deve ir ao local de instalação. Preço unitário acessível:
- Automatizada Envio de informações via interface sem fio. Eleva o preço unitário do datalogger.

Objetivo geral

Introdução

Desenvolver os esquemáticos eletrônicos e leiaute da placa de circuito impresso de um *datalogger* de baixo custo, com interfaces Wi-Fi e *Bluetooth*, que possa realizar medições de temperatura, umidade e luminosidade.

Introdução ○○○●

objetivos especificos

Os objetivos específicos desse trabalho são:

- Análise de soluções existentes;
- Levantamento de escopo e especificações;
- Criação de arquitetura;
- Seleção de componentes e criação de esquemáticos eletrônicos:
- Desenvolvimento de PCI;
- Mensuração dos custos;
- Definição da autonomia típica;
- Comparativo de mercado.

Sistemas Embarcados

São sistemas computacionais que são parte integrante de um produto ou ferramenta e são limitados em tamanho, consumo, poder de processamento e custo.

Sistemas Embarcados

Produtos que possuem um sistema embarcado são:

- Controles remotos;
- Impressoras;
- Eletrodomésticos;
- Automóveis;

Sistemas embarcados

Possuem *hardwares* muito diferentes entre si mas há uma estrutura básica que consiste de:

- Unidade de processamento;
- Interfaces de entrada e saída para interação;
- Memórias de dados e de programa;
- Interfaces de comunicação;
- Unidade de fornecimento de energia elétrica;

Referências

Tecnologias de processamento

Característica chave em um sistema embarcado, categoriza as variadas formas de como a unidade de processamento é organizada para realizar uma dada tarefa.

Processadores de uso geral

- Dispositivos programáveis;
- Possuem grande número de instruções;
- Pode executar múltiplos processos simultaneamente;
- Menor tempo de desenvolvimento;
- Maior custo unitário.

Processadores especializados

- Número de instruções reduzidos;
- Menor custo e poder de processamento;
- Menor custo unitário;
- Maior tempo de desenvolvimento;
- Podem ser programados;

Processadores especializados

Microcontroladores

- CPU, RAM, I/O, UART, I²C e SPI em um mesmo chip;
- Otimizado para aplicações de controle;
- Não lida com grande volume de dados ou cálculos complexos;

Digital Signal Processors

- Semelhante a microcontroladores:
- Realiza operações de adição e multiplicação mais eficientemente;
- Processa grande volume de dados;
- Otimizado para processamento de sinais;

Processadores dedicados

- Não programáveis;
- Implementa instruções para uma aplicação em específica;
- Maior custo de desenvolvimento:

Processadores dedicados

- Application Specific Integrated Circuit (ASIC)
 - Circuito integrado de aplicação específica;
 - Possui a lógica necessária para execução de tarefas;
 - Não permite reconfiguração da lógica implementada;
- Field Programmable Gate Array
 - Semelhante ao ASIC:
 - Matriz de blocos lógicos reconfiguráveis;
 - Conexões programáveis interligam os blocos da matriz;
 - Permite a reconfiguração da lógica implementada;

System-On-A-Chip

- Circuito integrado formado por diversos módulos que compõem um sistema computacional;
- Visa reduzir o número de CIs utilizados em um sistema embarcado:
- Implementa módulos além de CPU, RAM e I/Os;
 - Módulos de comunicação sem fio;
 - Módulos de processamento de sinais.

Desafios de Projeto

- Um sistema embarcado deve atingir a dependabilidade;
 - Segurança da informação;
 - Confidencialidade;
 - Operação segura;
 - Confiabilidade;
 - Reparabilidade;
- Realizar uso eficiente dos recursos computacionais disponíveis;

Soluções existentes

- Busca de dispositivos com as seguintes propriedades:
 - Leitura de umidade e temperatura;
 - Comunicação sem fio;
 - Opção de alimentação por bateria;
- Análise de custo e propriedades de soluções existentes.

Pundamentação Teórica Metodologia Resultados Conclusão Imagens Referências

Tabela: Dataloggers: Preços e Mercados

	Modelo	Fabricante	Preço (R\$)	Mercado	Nível de Proteção	Interface sem Fio	
RCW-360		Elitech	1.499,00	Nacional	IP64/IP65	WiFi	
	EL-WiFi-TH	Lascar Electronics	1.305,14	Estrangeiro	IP55	WiFi	
	TandD RTR-507B	TandD	2.242,57	Estrangeiro	IP64	Interface Própria	
	160 TH	testo	2.842,00	Nacional	IP20	WiFi	

tiny: o autor

Tabela: Dataloggers: Propriedades

Modelo	Dimensões	Autonomia	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	Não informado	3 meses	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	82 x 70 x 23 mm	6 meses	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	62 x 47 x 19 mm	10 meses	-25 a 70	0,3	0 a 99	2,50
160 TH	76 x 64 x 22 mm	Não informado	-30 a 50	0,1	0 a 100	2

tiny: o autor

Escopo de Projeto

Escopo de projeto

Desenvolvimento um datalogger de baixo custo que seja capaz de ler temperatura, umidade relativa e luminosidade de um ambiente em que ele estiver instalado. Deve ser possível que essas leituras sejam realizadas periodicamente de forma que o intervalo mínimo entre cada possa estar na casa dos segundos e devem ser armazenadas em uma mídia de armazenamento de massa removível para facilitar o resgate dessas informações posteriormente.

Especificações técnicas

- Possuir a capacidade de ler a temperatura do ambiente;
- Possuir a capacidade de ler a umidade relativa do ambiente;
- Possuir a capacidade de ler o nível de luminosidade do ambiente;
- 4 Possuir alternativa de alimentação direta ou via bateria;
- Leitura de sensores via interfaces I²C, SPI e/ou UART;
- Persistir os dados em um cartão SD para facilitar a recuperação manual dos dados coletados;
- Persistência dos dados coletados por no mínimo 45 dias;
- 8 Possuir interface de interação com o usuário;
- 9 Permitir o envio de dados coletados via interface de comunicação sem fio;

Arquitetura de Hardware

- Unidade de processamento;
- Sensor de luminosidade;
- Sensor de temperatura;
- Sensor de umidade;
- Unidade de alimentação;
- Unidade de interface de usuário;
- Unidade de leitura e escrita de dados em cartão SD;

Arquitetura de Hardware

Figura: Diagrama de blocos.

Fonte: Elaborado pelo autor (2022)

Seleção de Componentes

Critérios

Foram definidos alguns critérios para se escolher um componente:

- Tempo de suporte de ciclo de vida maior 10 anos p/ componentes ativos;
- Selecionar componentes passivos com propriedades que facilitem sua substituição;
- 3 Possuir mais de uma solução para cada componente passivo;

Microcontrolador

- Baixo custo unitário;
- 8MB de Flash e 36 GPIOs;
- Wi-Fi 2.4GHz e BLE Radio;
- ADC 10-bits;
- 12 anos de suporte de ciclo de vida.

Figura: Diagrama de blocos do módulo

Fonte: Espressif Systems

Sensores

TI HDC1080

- ±2% de precisão de umidade relativa:
- ±0.2 ℃ precisão de temperatura;
- 1.3 μA p/ leitura e 100 nA hibernação;

Light Dependant Resistor (LDR)

- Baixo custo;
- 10 a 10.000 lux;
- Necessita de ADC;

Interface de usuário e suporte MicroSD

- LEDs e botões táteis
 - LEDs genéricos vermelho e verde;
 - Dois botões táteis;

Suporte microSD

Requisitos

- Fornecer 3,3 V;
- Suportar alimentação por 4 pilhas;
- 3 "Chaveamento" entre pilhas e alimentação direta;

- Circuito "chaveador" pilha-alimentação direta:
 - MOSFET Canal P:
 - Resistor 10kΩ;
 - Diodo schottky;
- Schottky ON NSR0320MW2T1
 - Tensão direta típica: 0,3 V;

Regulação de tensão

Quatro pilhas do tipo AA fornecem até 6V de tensão. É preciso reduzi-lá para 3,3 V, nível de tensão operacional dos demais componentes.

- Regulador Linear
 - Baixo custo:
 - Baixa complexidade;
 - Baixa eficiência:
 - Step-down;

- Regulador Chaveado
 - Major custo:
 - Alta complexidade;
 - Alta eficiência:
 - Step-up ou Step-down;

Regulador linear low-dropout

Reguladores lineares que podem regular a tensão de saída mesmo quando a tensão entrada se aproximar muito da tensão de saída.

- Diodes AP2114HA-3.3TRG1
 - Suporta até 6,5 V de entrada;
 - 3,3 V fixo como saída;
 - Queda típica de 0,1 V;

Design PCI

Especificações

- Dimensões aproximadas de 50x50 mm;
- Placa de duas camada;

Fundamentação Teórica Metodologia Resultados Conclusão Imagens Referências

Design PCI

Stackup PCI

Define características e parâmetros do cobre e dielétrico de uma PCI.

Impedância típica: 50Ω

Fonte: Elaborado pelo autor.

Design PCI

Particionamento Funcional

- Posição de componentes;
- Auxílio de roteamento;
- Redução EMI;

Fonte: Elaborado pelo autor.

Fundamentação Teórica Metodologia Resultados Conclusão Imagens Referências

Design PCI

Posicionamento

Figura: PCB Placement

Fonte: Elaborado pelo autor

Design PCI

Roteamento

- Somente sinais inicialmente;
- Largura 10 mil;

Fonte: Elaborado pelo autor

32 / 43

Design PCI

Roteamento

- Evita ciclos;
- Largura 20 mil;

Fonte: Elaborado pelo autor

Design PCI

Plano de Terra

Propicia o menor caminho de retorno possível

Figura: Top Plane

Figura: Bottom Plane

Fonte: Elaborado pelo autor

Resultados

Propriedades e Design finais

Propriedades:

- Temperaturas de -20 °C a 80 °C;
 - Precisão de ± 0,4 °C.
- Umidade relativa de 0% a 99%;
 - Precisão de \pm 2%.
- Luminosidade de 10 lux a 10.000 lux.
- microSD de até 4GB;
- Wi-Fi ou Bluetooth;

Resultados

Propriedades e Design finais

Figura: Visualização 3D da PCI

- 3,3 V a 6,5 V;
- 39 componentes;
- 51 x 53 mm;

Fonte: Elaborado pelo autor.

Produção

Materiais

- Fornecedor de Componentes
 - LCSC Electronics
- Fabricação e Montagem PCI
 - JLCPCB

Tabela: Custo de materiais por unidades

Quantidade	Custo de Materiais
	LICA FOO CO
50	US\$ 502,60
100	US\$ 938,41
1000	US\$ 8.736,80

Fonte: o autor.

Produção

Fabricação e Montagem

Tabela: Custos de Fabricação e Montagem

Quantidade	Fabricação	Montagem	Total
50	US\$ 22,4	US\$ 64,47	US\$ 86,87
100	US\$ 34,4	US\$ 96,97	US\$ 131,37
1000	US\$ 249,70	US\$ 447,92	US\$ 667,62

Fonte: o autor.

Tabela: Custo Unitário

Custo Total	Custo Unitário
US\$ 582,42	US\$ 11,65
US\$ 1048,93	US\$ 10,49
US\$ 9261,29	US\$ 9,26
	US\$ 582,42 US\$ 1048,93

Fonte: o autor.

Custos de Importação

Fatores considerados durante o cálculo dos custos de importação:

- Cotação: R\$5,13 p/ cada Dólar;
- Imposto de importação zerado;
- ICMS para o estado do Ceará.

Tabela: Custos de importação para o Brasil

Quantidade	Valor	Frete	IPI	PIS	COFINS	ICMS	Total	Valor Unitário
50	2.576,22	412,35	38,85	62,76	288,40	741,64	4.120,22	82,40
100	4.815,26	567,11	69,97	113,03	519,40	1.335,68	7.420,46	74,20
1000	44.831,14	2.691,32	617,79	997,97	4.585,92	11.793,10	65.517,24	65,52

Fonte: o autor.

o autor.

Energia

Tabela: Consumo por circuito em uso ativo

Circuito	Consumo
Controle	30 mA
Sensores	27 mA
Circuito microSD	100 mA
Interface de Usuário	60 mA

Tabela: Consumo por circuito em sono profundo

Circuito	Consumo
Controle	8 μ A
Sensores	$0,2~\mu A$ $_{ m o}$ and
Regulador de tensão	65 μ A
Circuito microSD	450μA
Interface de Usuário	0 //A

Comparativo de mercado

Tabela: Comparativo: Dimensões e Autonomia

		The second second	
Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informa
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

autor.

Comparativo - Precisão

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Rel
RCW-360	-35 a 80	0,5	0 a 9
EL-WiFi-TH	-20 a 60	0,3	0 a 10
TandD RTR-507B	-25 a 70	0,3	0 a 9
160 TH	-30 a 50	0,1	0 a 10
Hardware Proposto	-20 a 85	0,4	0 a 10

o autor.

Comparativo - Preço Unitário

Tabela: Comparativo: Custo unitário

Modelo	Valor (R\$)
RCW-360	1.499,00
EL-WiFi-TH	1.305,14
TandD RTR-507B	2.242,57
160 TH	2.842,00
Hardware Proposto	65,52
o autor.	

Tabela: Comparativo: Custo unitário revisado

	Modelo	Valor (R\$)
•	RCW-360	1.499,00
	EL-WiFi-TH	1.305,14
	TandD RTR-507B	2.242,57
	160 TH	2.842,00

Explicações

Fundamentação Teórica Metodologia Resultados Conclusão Imagens Referências

Seção III - Figures

Figura: Emblema da UFC.

Fonte: Obtido pelo site oficial da UFC [1] [2]

Referências

- [1] Universidade Federal do Ceará. Identidade Visual da UFC. http://www.ufc.br/. Online; acessado em 26 de Dezembro de 2020. 2020.
- [2] Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". Em: Annalen der Physik 322.10 (1905), 891–921. DOI: {http://dx.doi.org/10.1002/andp.19053221004}.

Obrigado(a) pela Atenção!

Contato:

usuario@dominio

