Problem Set 6

Tufts University
Fall 2025
Math 065
Prof. George McNinch

Due: October 15, 2025

1. Let R be a commutative ring (with identity). We write 0 for the trivial R-module $\{0\}$.

Consider a diagram \mathcal{A} of the form:

$$\cdots \to A_{i-1} \xrightarrow{d_{i-1}} A_i \xrightarrow{d_i} A_{i+1} \xrightarrow{d_{i+1}} A_{i+2} \to \cdots$$

where for $i \in \mathbb{Z}$, A_i is an R-module and $d_i : A_i \to A_{i+1}$ is an R-module homomorphism. Then \mathcal{A} is said to be a *complex* provided that $d^2 = 0$; i.e., that for each $i \in \mathbb{Z}$ we have $d_i \circ d_{i-1} = 0$. This implies that im $d_{i-1} \subseteq \ker d_i$.

And the complex \mathcal{A} is said to be *exact* provided that for all $i \in \mathbb{Z}$, im $d_{i-1} = \ker d_i$.

Let \mathcal{A} be a complex:

- (a) For $i \in \mathbb{Z}$ write $H^i(A)$ for the R-module $\ker d_i / \operatorname{im} d_{i-1}$. Show that A is exact if and only if $H^i(A) = 0$ for each $i \in \mathbb{Z}$.
- (b) For R-modules X, Y, Z, we view a diagram

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

as a complex provided that $g \circ f = 0$ by taking $A_i = 0$ for $i \leq 0$, $A_1 = X$, $A_2 = Y$, $A_3 = Z$, and $A_j = 0$ for $j \geq 4$ as well as $d_1 = f$, $d_2 = g$, and $d_j = 0$ for $j \neq 1, 2$.

We say that the complex $0 \to X \to Y \to Z \to 0$ is a *short exact* sequence provided that it is an exact complex.

Prove that $0 \to X \to Y \to Z \to 0$ is a short exact sequence if and only if (i) f is injective, (ii) $\ker(g) = \operatorname{im}(f)$, and (iii) g is surjective.

(c) Let $\phi: M \to N$ be an R-module homomorphism. Show that

1

$$0 \to \ker \phi \xrightarrow{\iota} M \xrightarrow{\overline{\pi}} \operatorname{im} \phi \to 0$$

is a short exact sequence, where $\iota : \ker \phi \to M$ and $\pi : M \to \operatorname{im} \phi$ are the inclusion mapping and the quotient mapping, respectively.

2. Let M, N be R-modules. Show that there is a short exact sequence

$$0 \to M \xrightarrow{\iota_M} M \oplus N \xrightarrow{\pi_N} N \to 0$$

where $\iota_M: M \to M \oplus N$ and $\iota_N: N \to M \oplus N$ are the inclusion maps, and $\pi_M: M \oplus N \cong M \times N \to M$ and $\pi_N: M \oplus N \cong M \times N \to N$ are the projections.

- 3. For ideals $I, J \subseteq R$, the *product* of I and J is the ideal generated by $\{xy \mid x \in I, y \in J\}$.
 - (a) Prove that $IJ \subseteq I \cap J$.
 - (b) If $P \subseteq R$ is a *prime ideal* and if $IJ \subseteq P$, prove that either $I \subseteq P$ or $J \subset P$.
- 4. An element $a \in R$ is said to be nilpotent if $\exists N \in \mathbb{N}, a^N = 0$.

For an ideal I of R and $n \in \mathbb{N}$ we define the ideal I^n inductively as follows:

- $I^0 = R$, and
- for $n > 0, I^n = I \cdot I^{(n-1)}$.

An ideal I is nilpotent if $\exists N \in \mathbb{N}, I^N = 0$.

- (a) If $a \in R$ is nilpotent, prove that 1 ab is a unit in R^* for every $b \in R$, where R^* is the set of units of R.
- (b) Let $I = \langle a_1, a_2, \dots, a_m \rangle$ for $a_i \in R$ be a finitely generated ideal. Prove that if a_i is nilpotent for all i, then I is a nilpotent ideal.
- 5. Let G be a group, and let R[G] be the *monoid algebra* of G. Thus R[G] is a free R-module with a basis $\{e(g) \mid g \in G\}$ and the multiplication satisfies e(g)e(h) = e(gh) for $g, h \in G$.
 - (a) Prove that

$$I = \left\{ \sum_{g \in G} a_g e(g) \in R[G] \mid \sum_{g \in G} a_g = 0 \right\}$$

is a two-sided ideal of R[G] and that the R-algebra R[G]/I is isomorphic to R. I is called the *augmentation ideal* of R[G].

- (b) Let p be a prime number, let $G = \langle \sigma \rangle \cong \mathbb{Z}/p\mathbb{Z}$ be the cyclic group of order p (written multiplicatively), and let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the field of p elements. Show that the augmentation ideal I of $\mathbb{F}_p[G]$ has a basis consisting of $\{e(1) e(\sigma^i) \mid i = 1, \ldots, p-1\}$, show that $(e(1) e(\sigma^i))^p = 0$ for each i and deduce that I is a nilpotent ideal.
- 6. Let R[T] be the polynomial ring in a single variable over R. Recall that for $f \in R[T]$, $\langle f \rangle = f \cdot R[T]$ denotes the principal ideal generated by f.

- (a) Let $f = T^n + a_{n-1}T^{n-1} + \ldots + a_1T + a_0$ for $n \in \mathbb{N}$ and $a_i \in R$. Prove that the quotient ring $R[T]/\langle f \rangle$ is a free R-module with basis $\{\overline{T^i} = T^i + \langle f \rangle \mid 0 \le i \le n-1\}$.
- (b) Prove that $\mathbb{Z}[T]/\langle 2T \rangle$ is not a free \mathbb{Z} -module. Describe this ring as a \mathbb{Z} -module (i.e., as an abelian group).
- 7. A ring R is said to be a *local ring* if it has a unique maximal ideal.
 - (a) Prove that if R is local with unique maximal ideal M, then every element of $R \setminus M$ is a unit in R.
 - (b) Conversely, prove that if the set of non-units in R forms an ideal M, then R is local with unique maximal ideal M.
 - (c) Prove for a prime $p \in \mathbb{Z}$ that

$$R\subseteq \mathbb{Q}$$

defined by

$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \not\equiv 0 \pmod{p} \right\}$$

is a local ring with unique maximal ideal $pR = \langle p \rangle$.