

Projections, Viewing Pipeline

OpenGL 3D Viewing Pipeline

MC: Modeling Coordinates

WC: World Coordinates

EC: Eye Coordinates **CC**: Clip Coordinates

NDC: Normalized Device Coordinates

WdC: Window Coordinates

DC: Device Coordinates

OpenGL 3D Viewing Pipeline

WC: World Coordinates

EC: Eye Coordinates **CC**: Clip Coordinates

NDC: Normalized Device Coordinates

WdC: Window Coordinates

DC: Device Coordinates

```
in vec4 vPosition;
in vec4 vColor;
out vec4 fColor;
layout(location=1) uniform mat4 M;
layout(location=2) uniform mat4 V;
layout(location=3) uniform mat4 P;

void main()
{
    gl_Position = P * V * M * vPosition;
    fColor = vColor;
}
```

shader.vert

Eye (Camera) coordinate system (F_E):

The eye coordinate system is a coordinate system defined by the camera position and orientation.

- Camera position and orientation in world coordinates
 - center: Center of projection, projection reference point.
 - eye: The camera position is a vector in world space that points to the camera's position.
 - up vector: view up vector

Clip coordinate system (F_c):

All coordinate values are converted into clip coordinates by normalizing the viewing frustum into a cube

Renderable space

$$p' = \frac{1}{w}p$$

Perspective division:

Convert all the clip coordinates in the cube by mapping them to the corresponding Euclidean point.

- Camera position and orientation in world coordinates
 - Center of projection, projection reference point ($^{W}p_{center}$)
 - The camera position is a vector in world space that points to the camera's position ($^Wp_{eye}$)
 - View up vector($^{W}v_{up}$)
- Transformation
 - 1) Translation of all vertex positions by projection center
 - 2) Rotation of all vertex position by camera orientation

- Parallel (Orthographic) projection
 - Rays or projection lines in parallel projection are parallel to each other.

View volumes

- Perspective projection
 - In this, all the parallel lines in the object which is not parallel to the view plane are converged and the point of converging is known as the vanishing point.

- Perspective projection
 - In this, all the parallel lines in the object which is not parallel to the view plane are converged and the point of converging is known as the vanishing point.

Projections

- Orthographic projection(parallel projection)
 - We specify a direction of projection(DOP) instead of a COP

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Projections

- Perspective projection
 - Consider the projection of a point onto the projection plane

■ By similar triangles, we can compute x' and y' $\frac{y'}{d} = \frac{y}{z} \Rightarrow y' = \frac{d}{z}y, x' = \frac{d}{z}x$

$$\frac{y'}{d} = \frac{y}{z} \Rightarrow y' = \frac{d}{z}y, \ x' = \frac{d}{z}x$$

Projections

Perspective projection

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \left(\frac{d}{z}\right)x \\ \left(\frac{d}{z}\right)y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$