Insights from Compacted De Bruijn Graphs

De Bruijn graphs

OLC framework is the defacto standard but, De Bruijn is still used to assemble and correct long reads

Fig. 1 A de Bruijn graph in **a** and its compacted counterpart in **b** using 3-mers. For simplicity, reverse-complements are not considered

De Bruijn graphs

OLC framework is the defacto standard but, De Bruijn is still used to assemble and correct long reads

Problems such as

- de novo transcriptome assembly
- variant calling
- short read compression
- short read correction
- long read correction
- short read mapping

Fig. 1 A de Bruijn graph in **a** and its compacted counterpart in **b** using 3-mers. For simplicity, reverse-complements are not considered

Literature

- Faster
- Memory-efficient
- Smaller
- Structural Features(Bubbles, variant calling)
- No work on graph properties

Applications of de Bruijn graphs in microbiome research DOI: 10.1002/imt2.4

Opportunity

- Connectivity
- Paths
- Random walks
- Centers
- Node #
- Edge #

reverse-complements are not considered

Completed Steps

- 1. Literature survey
- 2. Install Bifrost
- 3. Generate cdbjgs
- 4. Working on analyzing GFA format

Future Steps

- 1. Complete graph analysis
- 2. Compare graph properties between different species
- 3. Compare graph properties between the same species
- Try to find correlation between local/global graph properties and phenotypes&diseases

Lessons Learnt

- 1. Familiarity with toolchains
- 2. Importance of available libraries
- 3. Preplanning and discovery
- 4. Estimating cost of the prior steps

Insights from Compacted De Brujin Graphs

Ömer Faruk Özdemir linktr.ee/FarukO