

Exponential function

I- DEFINITION AND PROPERTIES

Definition

Since the function " ln " is continuous and strictly increasing from]0; $+\infty[$ in $]-\infty$; $+\infty[$, so for every real number x in $]-\infty$; $+\infty[$, there exists a unique real number y in]0; $+\infty[$ such that $\ln y = x$. We then obtain $y = e^x$.

In this way, we define over $]-\infty$; $+\infty[$ a new function f having values in]0; $+\infty[$ which is the exponential function denoted $f(x) = \exp(x) = e^x$ (e is the real number such that $\ln e = 1$).

- 1) The domain of definition of the function $f: x \mapsto e^x$ is: $]-\infty; +\infty[$.
- 2) $e^0 = 1$ and $e^1 = e$ with $e \approx 2.71$.
- 3) For every x in \mathbb{R} , we have: $e^x > 0$.
- 4) For every real number x we have: $\ln e^x = x$, and for every real number x > 0 we have: $e^{\ln x} = x$.
- 5) For every real numbers x and y we have:

$$\bullet \quad e^{-x} = \frac{1}{e^x}$$

 $e^x \times e^y = e^{x+y} \qquad \qquad e^x = e^{x-y}$

6) Differentiating both members of the equality $\ln y = x$ with respect to x, we obtain $\frac{y'}{y} = 1$ $y' = y = e^x$. We conclude that the function $f = \exp$ is differentiable over \mathbb{R} and that $f'(x) = \exp(x) = e^x$.

Application exercise 1

Simplify the following expressions:

$$1) \quad \left(e^{x}\right)^{4} \times e^{-3x};$$

2)
$$\frac{e^{3x+4}}{e^{3x+2}}$$

$$3) \quad \frac{e^{-x} + e^x}{e^{-x}}$$

4)
$$e^{2x} + e^{-2x} - (e^x - e^{-x})^2$$
 5) $\frac{e^{x^2} \times (e^x)^2}{e^{(x+1)^2}}$

5)
$$\frac{e^{x^2} \times (e^x)^2}{e^{(x+1)^2}}$$

6)
$$(e^x + e^{-x})^2 - (e^x + e^{-x})^2$$
.

Application exercise 2

Simplify the following expressions:

1)
$$\ln e^{-x} + 3 \ln e^{x+1}$$
.

2)
$$e^{\ln x^2} - \ln e^{x^2+1}$$
.

3)
$$\ln \left[\left(e^{2x} + e^{-x} \right)^2 - \left(e^{2x} + e^{-x} \right)^2 \right]$$

4)
$$\ln(1+e^{2x}) - \ln(1+e^{-2x})$$
 5) $e^{\ln 3}$

5)
$$e^{\ln 3}$$

6)
$$e^{-\ln 2}$$

7)
$$e^{-\frac{1}{2}\ln 4}$$

8)
$$e^{\ln 2 - \ln 5}$$

9)
$$e^{\ln 2 + \ln 3}$$
.

Application exercise 3

Simplify the following expressions:

1)
$$\ln e^{-x} + 3 \ln e^{x+1}$$
.

2)
$$e^{\ln x^2} - \ln e^{x^2+1}$$
.

3)
$$\ln(1+e^{2x})-\ln(1+e^{-2x})$$

4)
$$\ln \left[\left(e^{2x} + e^{-x} \right)^2 - \left(e^{2x} + e^{-x} \right)^2 \right].$$

II- EQUALITIES AND INEQUALITIES

Property

Since the exponential function $f: x \mapsto e^x$ is differentiable over \mathbb{R} and $f'(x) = e^x > 0$, then it is continuous and strictly increasing over \mathbb{R} , we deduce the following properties:

For every x and y in \mathbb{R} :

•
$$e^x > e^y \Leftrightarrow x > y$$

•
$$e^x < e^y \Leftrightarrow x < y$$

•
$$e^x = e^y \Leftrightarrow x = y$$
.

Application exercise 4

Solve in \mathbb{R} each of the following equations:

1)
$$e^{-2x} = 1$$

$$2) \quad e^{3x-8} = \frac{1}{e^2}$$

3)
$$e^{x^2} = e^{-5}$$

4)
$$e^{x^2+9} = e^{6x}$$

5)
$$(e^x + 8)(e^x - e) = 0$$
 6) $e^{2x} - 3e^x + 2 = 0$

$$6) \quad e^{2x} - 3e^x + 2 = 0$$

7)
$$e^{-2x} + e^{-x} - 2 = 0$$

8)
$$e^{3x+1} - 5e^{2x+1} + 4e^{x+1} = 0$$

9)
$$e^x - 4e^{-x} + 3 = 0$$
.

Application exercise 5

Solve in \mathbb{R} each of the following inequalities:

1)
$$e^{3x+2} \le 2$$

2)
$$3e^{2x+1} \le e^x$$

3)
$$e^x > -2$$

4)
$$(e^x-1)(e^x+3)<0$$

$$5) \quad \ln\left(e^x+1\right) \le 2$$

6)
$$e^{x^2-5} \le e^{-4x}$$

7)
$$e^{x^2} \ge \frac{1}{e^{6x}}$$

8)
$$e^{2x} - 3e^x > -2$$

9)
$$e^x - 5e^{-x} + 4 \le 0$$
.

Application exercise 6

Determine the domain of definition of the function f in each case:

1)
$$f(x) = (x^2 - 4x + 5)e^x$$

$$2) \quad f(x) = e^{\frac{1}{x}}$$

3)
$$f(x) = \frac{e^x + x}{e^x - 1}$$

$$4) \quad f(x) = \frac{e^x - 1}{e^x + 1}$$

$$5) \quad f(x) = \frac{e^x}{x^2 - 1}$$

$$6) \quad f(x) = \ln(e^x - 2)$$

7)
$$f(x) = \frac{\ln(3 + e^x)}{e^x + 1}$$

8)
$$f(x) = \frac{1}{x} + \frac{e^x}{e^x - 2}$$

8)
$$f(x) = \frac{1}{x} + \frac{e^x}{e^x - 2}$$
 9) $f(x) = \frac{\ln(e^x - 1)}{x - 3}$.

III- DERIVATIVES

Property

- The function $f: x \mapsto e^x$ is differentiable over \mathbb{R} and $f'(x) = (e^x)' = e^x$.
- If the function U is differentiable over an interval I, then the function $x \mapsto e^U$ is differentiable over I and $(e^U)' = U'e^U$.

Application exercise 7

Calculate the derivative of the function f over the interval I in each of the following cases:

1)
$$f(x) = e^x - x - 4$$
; $I = \mathbb{F}$

1)
$$f(x) = e^x - x - 4$$
; $I = \mathbb{R}$ 2) $f(x) = e^{2x^2 - 3x + 4}$; $I = \mathbb{R}$

3)
$$f(x) = e^{2x} - e^{-x}$$
; $I = \mathbb{R}$

4)
$$f(x) = \frac{1}{x}e^{x-1}$$
; $I = \mathbb{R}^*$

5)
$$f(x) = (x+1)e^{-x}$$
; $I = \mathbb{R}$

6)
$$f(x) = e^{\frac{1}{x}}; I = \mathbb{R}^*$$

7)
$$f(x) = (x^2 + 2x)e^{1-x}$$
; $I = \mathbb{R}$ 8) $f(x) = \frac{e^x - 1}{2e^x + 1}$; $I = \mathbb{R}$

8)
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$
; $I = \mathbb{R}$

9)
$$f(x) = \ln(e^x + 1);$$

 $I = \mathbb{R}$

10)
$$f(x) = x + 2 - \frac{2e^x}{e^x + 1}$$
; $I = \mathbb{R}$ 11) $f(x) = (-x + 2)^2 e^{-2x}$; $I = \mathbb{R}$ 12) $f(x) = \frac{\ln(e^x + 1)}{e^x}$;

11)
$$f(x) = (-x+2)^2 e^{-2x}$$
; $I = \mathbb{R}$

12)
$$f(x) = \frac{\ln(e^x + 1)}{e^x}$$

IV-IMPORTANT LIMITS

Property

- $\lim_{x \to +\infty} e^x = +\infty \quad ; \quad \lim_{x \to -\infty} e^x = 0$
- $\lim \frac{e^x}{1 + \infty} = +\infty \quad ; \quad \lim xe^x = 0$
- $\lim_{x \to 0^+} \frac{e^x 1}{x} = 1.$

Properties

Limits and indeterminate forms

1) Indeterminate forms " $\frac{0}{0}$ and $\frac{\pm \infty}{+\infty}$ ":

To remove indeterminacy, we apply the Hôpital's rule.

Examples:

a) $\lim_{x \to \infty} \frac{e^{-x} + 1}{x}$ is an indeterminate form " $\frac{+\infty}{x}$ ". We apply the Hôpital's rule:

$$\lim_{x \to -\infty} \frac{e^{-x} + 1}{x} = \lim_{x \to +\infty} \frac{\left[e^{-x} + 1\right]'}{(x)'} = \lim_{x \to +\infty} \frac{-e^{-x}}{1} = \lim_{x \to +\infty} -e^{-x} = -\infty.$$

b) $\lim_{x\to 2} \frac{e^x - e^2}{x - 2}$ is an indeterminate form " $\frac{0}{0}$ ". We apply the Hôpital's rule:

$$\lim_{x \to 2} \frac{e^x - e^2}{x - 2} = \lim_{x \to e} \frac{\left(e^x - e^2\right)'}{\left(x - 2\right)'} = \lim_{x \to 2} \frac{e^x}{1} = \lim_{x \to e} e^x = e^2.$$

Note: $\lim_{x\to 2} \frac{e^x - e^2}{x-2} = f'(2)$ where $f(x) = e^x$ (definition of the derivative of a function), so

$$\lim_{x\to 2} \frac{e^x - e^2}{x - 2} = f'(2) = e^2.$$

2) Indeterminate form " $\infty - \infty$ ":

To remove indeterminacy, we take a common factor which is often the exponential term:

a) $\lim_{x\to +\infty} (e^x - x)$ is an indeterminate form " $\infty - \infty$ ": we take the term " e^x " as a common factor:

$$\lim_{x \to +\infty} \left(e^x - x \right) = \lim_{x \to +\infty} e^x \left(1 - \frac{x}{e^x} \right) = +\infty \left(1 - 0 \right) = +\infty \text{ since } \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0.$$

b) $\lim_{x\to +\infty} (x^2 - x - e^x)$ is an indeterminate form " $\infty - \infty$ ": we take the term " e^x " as a common

factor:
$$\lim_{x \to +\infty} (x^2 - x - e^x) = \lim_{x \to +\infty} e^x \left(\frac{x^2}{e^x} - \frac{x}{e^x} - 1 \right) = (+\infty)(0 - 0 - 1) = -\infty$$
 since

$$\lim_{x\to+\infty}\frac{x^2}{e^x} = \lim_{x\to+\infty}\frac{2x}{e^x} = \lim_{x\to+\infty}\frac{2}{e^x} = 0 \text{ and } \lim_{x\to+\infty}\frac{x}{e^x} = \lim_{x\to+\infty}\frac{1}{e^x} = 0.$$

c)
$$\lim_{x\to +\infty} (e^{2x} - e^x + 1)$$
 is an indeterminate form " $\infty - \infty$ ": we take the term " e^{2x} " as a common

factor:
$$\lim_{x \to +\infty} \left(e^{2x} - e^x + 1 \right) = \lim_{x \to +\infty} e^{2x} \left[1 - \frac{1}{e^x} + \frac{1}{e^{2x}} \right] = (+\infty)(1 - 0 + 0) = +\infty$$
.

3) Indeterminate form " $0 \times \infty$ ":

To remove indeterminacy, the expression is transformed into the form of a fraction in order to obtain one of the indeterminate forms " $\frac{0}{0}$ or $\frac{\pm \infty}{+\infty}$ " and we apply the Hôpital's rule.

Example:

 $\lim_{x \to +\infty} xe^{-2x}$ is an indeterminate form " $+\infty \times 0$ ", we then write $\lim_{x \to +\infty} xe^{-2x} = \lim_{x \to +\infty} \frac{x}{e^{2x}}$ which is an

indeterminate form " $\frac{+\infty}{+\infty}$ " and we apply the Hôpital's rule:

$$\lim_{x \to +\infty} x e^{-2x} = \lim_{x \to +\infty} \frac{x}{e^{2x}} = \lim_{x \to +\infty} \frac{1}{2e^{2x}} = 0.$$

Application exercise 8

Calculate the following limits:

$$1) \quad \lim \left(e^x + e^{-x} \right)$$

$$\lim_{x \to \infty} \left(e^{2x} - e^x \right)$$

1)
$$\lim_{x \to +\infty} \left(e^x + e^{-x} \right)$$
 2) $\lim_{x \to +\infty} \left(e^{2x} - e^x \right)$ 3) $\lim_{x \to +\infty} \left(2e^{3x} - 4e^{2x} + 3 \right)$ 4) $\lim_{x \to -\infty} \frac{e^x + 1}{2x}$

$$4) \quad \lim_{x \to -\infty} \frac{e^x + 1}{2x}$$

$$\lim_{x \to +\infty} \frac{e^x - 1}{3e^x - 4}$$

6)
$$\lim_{x \to \infty} x(e^x - 1)$$

7)
$$\lim_{x \to +\infty} (3x-1)e^{-x}$$

5)
$$\lim_{x \to +\infty} \frac{e^x - 1}{3e^x - 4}$$
 6) $\lim_{x \to +\infty} x(e^x - 1)$ 7) $\lim_{x \to +\infty} (3x - 1)e^{-x}$ 8) $\lim_{x \to +\infty} (3e^x - 7x)$

$$9) \quad \lim_{x\to +\infty} \left(x^2 e^{-2x}\right)$$

9)
$$\lim_{x \to +\infty} \left(x^2 e^{-2x} \right)$$
 10) $\lim_{x \to -\infty} \left(x e^{\frac{1}{x}} - x \right)$ 11) $\lim_{x \to 0} \frac{e^x - e^{-x}}{x}$ 12) $\lim_{x \to 1} \frac{e^x - e}{x - 1}$

11)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$$

12)
$$\lim_{x \to 1} \frac{e^x - e^x}{x - 1}$$

13)
$$\lim_{x \to 0} \frac{e^{2x} - 5e^x + 4}{e^{2x} - 1}$$
 14) $\lim_{x \to 0} \frac{1}{x} e^{\frac{1}{x}}$ 15) $\lim_{x \to 0} x e^{\frac{1}{x}}$ 16) $\lim_{x \to 0} \frac{e^{2x} - 1}{x}$

14)
$$\lim_{x\to 0} \frac{1}{x} e^{\frac{1}{x}}$$

15)
$$\lim_{x\to 0} xe^{\frac{1}{x}}$$

16)
$$\lim_{x\to 0} \frac{e^{2x}-1}{x}$$

17)
$$\lim_{x \to -\infty} \frac{\ln(e^x + 1)}{e^x}$$

18)
$$\lim_{x \to -\infty} \left[x - \ln \left(1 + e^x \right) \right]$$

17)
$$\lim_{x \to -\infty} \frac{\ln(e^x + 1)}{e^x}$$
 18) $\lim_{x \to -\infty} \left[x - \ln(1 + e^x) \right]$ 19) $\lim_{x \to +\infty} \left[x - \ln(1 + e^x) \right]$ 20) $\lim_{x \to +\infty} \frac{e^x + 1}{xe^x + 2x}$.

$$\lim_{x \to +\infty} \frac{e^x + 1}{xe^x + 2x}$$

V- STUDY OF THE EXPONENTIAL FUNCTION

- The function $f: x \mapsto e^x$ is continuous over \mathbb{R} .
- $\lim_{x \to \infty} f(x) = 0$ then the x-axis is a horizontal asymptote to the curve (C_f) of f at $-\infty$.
- $\lim_{x\to +\infty} f(x) = +\infty$ and $\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$, so the curve (C_f) admits an asymptotic direction parallel to
- The function $f: x \mapsto e^x$ is differentiable over \mathbb{R} and $f'(x) = e^x > 0$ for every $x \in \mathbb{R}$, so the function f is strictly increasing over \mathbb{R} .
- Table of variations of the exponential function:

<u>x</u>	-∞	+∞
f'(x)	+	
$f(x) = e^x$	0	+∞

Page 4 H. Ahmad Website: Math4all

Representative curve of $f: x \mapsto e^x$

Application exercise 9

Study the variations of each function f and draw its representative curve (C):

1)
$$f(x) = (x+1)e^{-x}$$

$$2) \quad f(x) = \frac{e^x}{x}$$

1)
$$f(x) = (x+1)e^{-x}$$
 2) $f(x) = \frac{e^x}{x}$ 3) $f(x) = \frac{e^x}{e^x - 1}$.

Let f be the function defined over \mathbb{R} by $f(x) = \frac{3e^x - 1}{e^x + 1}$.

Denote by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$ of graphical unit 2 cm.

- 1) a) Calculate $\frac{f(x)+f(-x)}{2}$. What can be deduced about the point I(0;1) with respect to (C_f) .
 - **b)** Solve the equation f(x) = 0.
- 2) Calculate $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to +\infty} f(x)$. Deduce the asymptotes to (C_f) .
- 3) a) Justify that $f'(x) = \frac{4e^x}{(e^x + 1)^2}$ and deduce the sense of variations of the function f.
 - **b)** Set up the table of variations of f.
- 4) Write the equation of the tangent (T) to (C_f) at the point I.
- 5) Draw (T) and (C_f) .
- 6) Let t be a real number. Determine the values of t for which the curve (C_f) intersects the line of equation y = t at a single point.
- 7) Let h be the function defined by h(x) = f(-x). Explain how we can construct the representative curve (C_h) of h using (C_f) and plot (C_h) in the same coordinate system.

Problem 2

Part A

Let f be the function defined over \mathbb{R} by $f(x) = (ax+b)e^{-x} + 1$ where a and b are two real numbers.

Denote by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$ of unit 1 cm.

Determine the values of a and b so that the point A(-1;1) belongs to (C_f) and the slope of the tangent at A to (C_f) is -e.

Part B

Let g be the function defined over \mathbb{R} by $g(x) = (-x-1)e^{-x} + 1$ and let (C_g) be its representative curve in the same coordinate system.

- 1) Calculate $\lim_{x \to -\infty} g(x)$.
- 2) Show that $\lim_{x \to 0} g(x) = 1$ and interpret graphically the result.
- 3) Calculate g'(x) for every $x \in \mathbb{R}$ and set up the table of variations of g.
- 4) Show that the curve $(C_{\mathfrak{g}})$ admits an inflection point I whose coordinates will be determined.
- 5) Write the equation of the tangent at I to $(C_{\mathfrak{o}})$.
- 6) Trace (C_g) .
- 7) Determine graphically according to the values of the real parameter m the number of solutions of the equation g(x) = m.

Part C

Let h be the function defined by $h(x) = \ln [f(x)-1]$.

- 1) Determine the domain of definition D_h of the function h.
- 2) Prove that for every x in D_h , $h'(x) = \frac{-x}{x+1}$ and determine the sense of variations of the function h.

Problem 3

Let f be the function defined over \mathbb{R} by $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$.

Denote by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) a) Show that for every x in \mathbb{R} , $f(x) = x 1 + \frac{2}{e^x + 1}$.
 - b) Deduce the limit of f at $+\infty$.
 - c) Show that the line (D) of equation y = x 1 is an oblique asymptote to (C) at $+\infty$.
 - d) Study the relative position of (C) and (D).
- 2) a) Show that for every x in \mathbb{R} , $f(x) = x + 1 \frac{2}{e^{-x} + 1}$.
 - b) Deduce the limit of f at $-\infty$.
 - c) Show that the line (D') of equation y = x + 1 is an oblique asymptote to (C) at $-\infty$.
 - d) Study the relative position of (C) and (D').
- 3) Show that for every x in \mathbb{R} , $f'(x) = \frac{e^{2x} + 1}{\left(e^x + 1\right)^2}$ and set up the table of variations of f.
- 4) Write an equation of the tangent (d) to (C) at the point A of abscissa 0.
- 5) Trace (d), (D), (D') and (C).
- 6) Let g be the function defined over \mathbb{R} by g(x) = f(|x|).
 - a) Show that the function g is even.
 - b) One of the curves (G_1) or (G_2) is the representative curve of g in an orthonormal system.

Part A

Let g be the function defined over \mathbb{R} by $g(x) = e^{3x} + 3x + 2$.

The table below is the table of variations of the function g.

x	-∞	$+\infty$
g'(x)	+	
g(x)	«	+∞

- 1) Use the table to show that the equation g(x) = 0 admits a unique solution α and justify that $-0.71 < \alpha < -0.7$.
- 2) Deduce the sign of g(x) according to the values of x in \mathbb{R} .

Part B

Let f be the function defined over \mathbb{R} by $f(x) = -x + (x+1)e^{-3x}$.

Designate by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$ of unit 2 cm.

- 1) a) Justify that $\lim_{x \to -\infty} f(x) = -\infty$.
 - b) Calculate $\lim_{x \to +\infty} f(x)$ and show that the line (Δ) of equation y = -x is an oblique asymptote to (C_f) at $+\infty$.
 - c) Study the relative position of (C_f) and (Δ) .
- 2) Show that $f(\alpha) = \frac{-3\alpha^2 3\alpha 1}{3\alpha + 2}$.
- 3) Show that for every real number x, $f'(x) = \frac{-g(x)}{e^{3x}}$ and set up the table of variations of the function f.
- 4) Show that the curve (C_f) has a tangent (T) parallel to (Δ) whose equation to be determined.
- 5) Show that the curve (C_f) intersects the x-axis at two points of abscissas x_0 and x_1 $(x_0 < x_1)$. Justify that $-1.1 < x_0 < -1$ and that $0.4 < x_1 < 0.5$.
- 6) Trace (T), (Δ) and (C_f) (take $f(\alpha) \approx 3.15$).
- 7) Determine graphically according to the values of the real number m the number of solutions of the equation f(x) = -x + m.

Part C

Let h be the function defined by $h(x) = \ln[f(x)]$ and let (H) be its representative curve in the same system.

- 1) Show that the domain of definition of h is $]x_0; x_1[$.
- 2) Determine the point A on the curve (H) where the tangent is parallel to the x-axis.

Part A

Let g be the function defined by $g(x) = 1 + xe^{-x-1}$.

The curve (C_g) in the opposite figure is the representative curve

of g in an orthonormal system $(O; \vec{i}; \vec{j})$.

By graphical reading, determine:

- 1) The domain of definition D_g of g.
- 2) $\lim_{x\to -\infty} g(x)$ and $\lim_{x\to +\infty} g(x)$.
- 3) g(-1).
- 4) The solution of the equation g'(x) = 0.
- 5) The sign of g(x) according to the values of x in D_g .

H. Ahmad

Part B

Let f be the function defined over \mathbb{R} by $f(x) = x - (x+1)e^{-x-1}$.

Denote by (C_f) the representative curve of f in the system $(O; \vec{i}; \vec{j})$ of unit 1 cm.

- 1) Calculate $\lim_{x \to \infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2) Show that for every x in \mathbb{R} , f'(x) = g(x) and draw the table of variations of f.
- 3) a) Calculate $\lim_{x\to +\infty} [f(x)-x]$ and interpret the result graphically.
 - b) Study the relative position of (C_f) and the line of equation (Δ) y = x.
 - c) Show that (C_f) admits a tangent (T) parallel to (Δ) whose equation to be determined.
- 4) Use the curve (C_g) in Part A to prove that the curve (C_f) admits an inflection point I whose coordinates to be determined.
- 5) Show that (C_f) intersects the x-axis at two points of abscissas α and β such that: $0.3 < \alpha < 0.4$ and $-1.9 < \beta < -1.8$
- 6) Draw the lines (Δ) and (T) and the curve (C_f) .

Part C

Let h be the function defined over \mathbb{R} by $h(x) = e^{[f(x)]^2}$.

- 1) Justify that $h'(x) = 2f(x)f'(x)e^{[f(x)]^2}$.
- 2) Draw the table of variations of h.

The curve (C_f) in the opposite figure is the representative curve of a function f in an orthonormal system $(O; \vec{i}; \vec{j})$. The y-axis and the line of equation y = 1 are two asymptotes to (C_f) .

Part A

- 1) Determine graphically the domain of definition of the function f.
- 2) Justify graphically that f'(x) < 0 over its domain and set up the table of variations of the function f.
- 3) Study graphically the sign of f(x) over its domain of definition.

Part B

Suppose, in what follows, that f is the function defined over \mathbb{R}^* by $f(x) = \frac{e^x + x}{e^x - 1}$.

- 1) Justify that $-0.6 < \alpha < -0.5$.
- 2) Calculate $\lim_{x \to -\infty} [f(x) + x]$ and interpret graphically the result.
- 3) Study the relative position of the curve (C_f) and the line (d) of equation y = -x.
- 4) Solve in \mathbb{R} the inequality $\frac{e^x + x}{e^x 1} > 1$.

Part C

Let g be the function defined by $g(x) = \ln[f(x) - 1]$. Designate by (C_g) the representative curve of a function g in an orthonormal system.

- 1) Justify that the domain of definition of g is $D_g =]-\infty$; $-1[\cup]0$; $+\infty[$.
- 2) Calculate $\lim_{x\to(-1)^-} g(x)$ and $\lim_{x\to0^+} g(x)$. Deduce two asymptotes to the curve (C_g) .
- 3) For the G.S. section only
 - a) Show that (C_g) admits at $-\infty$ an asymptotic direction parallel to the x-axis.
 - b) Show that (C_g) admits at $+\infty$ an asymptotic direction parallel to the line (d).
- 4) Show that g is strictly decreasing over $]-\infty$; $-1[\cup]0$; $+\infty[$ and set up its table of variations.
- 5) The equation f(x) = 2 admits two solutions x_0 and x_1 such that $x_0 < x_1$.
 - a) Justify that $-1.8 < x_0 < -1.9$ and that $1.1 < x_1 < 1.2$.
 - b) Deduce that the curve (C_g) cuts the x-axis at two points whose coordinates to be determined.
- 6) Trace (C_g) .

Let f be the function defined over \mathbb{R} by $f(x) = (x+2)(e^x-1)$.

Denote by $\left(C_f\right)$ the representative curve of f in an orthonormal system $\left(O\;;\;\vec{i}\;;\;\vec{j}\right)$ of unit 2 cm.

- 1) Calculate $\lim_{x \to +\infty} f(x)$ and give a value of f(1) to the nearest 10^{-1} .
- 2) Determine the coordinates of the points of intersection of (C_f) with the x-axis.
- 3) a) Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to -\infty} [f(x) + x]$. Deduce that the curve (C_f) admits an oblique asymptote (Δ) whose equation will be determined.
 - **b)** Study the relative position of (C_f) and the line (Δ) .
- 4) a) Calculate f'(x), f''(x) and set up the table of variations of the function f'.
 - b) Show that the equation f'(x) = 0 admits over \mathbb{R} a unique solution α and justify that $-0.8 < \alpha < -0.7$.
 - c) Deduce the sign of f'(x) over \mathbb{R} and then set up the table of variations of the function f.
- 5) Write an equation of the tangent (T) to (C_f) which is parallel to (Δ) .
- 6) Plot (Δ) , (T) and (C_f) on the interval $]-\infty$; 1] (take $f(\alpha) \approx -0.7$).
- 7) Let g be the function defined by $g(x) = \frac{1}{f(x)}$.
 - a) Determine D_g the definition domain of g.
 - **b)** Show that, for every $x \in D_g$, $g'(x) = -\frac{f'(x)}{f^2(x)}$.
 - c) Set up the table of variation of g.

Problem 8

Let f be the function defined over \mathbb{R} by $f(x) = 2\ln(e^x + 1) - x + 1$.

Denote by (C_f) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) Calculate $\lim_{x \to -\infty} f(x)$ and show that the line (d_1) of equation y = -x + 1 is an oblique asymptote to (C_f) at $-\infty$.
- 2) Show that the function f is even.
- 3) Deduce $\lim_{x\to +\infty} f(x)$ and that the curve (C_f) admits at $+\infty$ another oblique asymptote (d_2) whose equation will be determined.
- 4) Show that for every x in \mathbb{R} , $f'(x) = \frac{e^x 1}{e^x + 1}$ and set up the table of variations of the function f.
- 5) Trace (d_1) , (d_2) and (C_f) .
- 6) Determine graphically according to the values of the real number m the number of solutions of the equation $2\ln(e^x+1)=x+m$.
- 7) Let g be the function defined by $g(x) = [f(x)]^2$. Set up the table of variation of g.

Part A

Let g be the function defined over \mathbb{R} by $g(x) = (ax+b)e^{-x} + c$ where a, b and c are real numbers. In the opposite figure:

•
$$(\Delta)$$
 is an asymptote to (C_g) at $+\infty$.

1) By graphical reading:

a) Determine
$$\lim_{x\to +\infty} g(x)$$
, $\lim_{x\to -\infty} g(x)$, $g(0)$, $g'(0)$ and $g'(-1)$.

3) Let
$$g(x) = (-x-2)e^{-x} + 2$$
.

a) Show that the equation
$$g(x) = 0$$
 admits two solutions, one of which is zero and the other is α such that $-1.75 < \alpha < -1.5$.

b) Deduce the sign of
$$g(x)$$
 over \mathbb{R} .

Part B

Let f be the function defined over \mathbb{R} by $f(x) = (x+3)e^{-x} + 2x$ and let (C_f) be its representative curve in the system $(O; \vec{i}; \vec{j})$.

1) Calculate
$$\lim_{x \to -\infty} f(x)$$
 and $f(-3)$.

- 2) a) Calculate $\lim_{x \to +\infty} f(x)$ and show that the line (D) with equation y = 2x is an asymptote oblique to (C_f) at $+\infty$.
 - b) Study the relative position of (C_f) and the line (D).
- 3) Show that for every x in \mathbb{R} , f'(x) = g(x) and draw the table of variations of f.
- 4) Determine without calculation the limit $\lim_{x\to\alpha} \frac{f(x)-f(\alpha)}{x-\alpha}$ and interpret graphically the result.
- 5) Show that $f(\alpha) = 2\alpha + 2 + \frac{2}{\alpha + 2}$ and determine a framing of $f(\alpha)$.
- 6) Show that the curve (C_f) admits a unique tangent (T') that is perpendicular to the line of equation $y = -\frac{1}{2}x$ at a point whose coordinates will be determined, and write an equation of (T').
- 7) Show that the curve (C_f) admits an inflection point I whose coordinates will be determined.
- 8) Show that (C_f) intersects the x-axis at a single point of abscissa β such that: $-2.7 < \beta < -2.6$.
- 9) Trace (D), (T') and (C_f) .

Let f be the function defined over \mathbb{R} by $f(x) = x - e + \ln[1 + 2e^{-(x-e)}]$ and let (C_f) be its representative curve in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) a) Show that for every real number x, $f(x) = -x + e + \ln \left[2 + e^{2(x-e)} \right]$.
 - b) Show that the curve (C_f) admits two oblique asymptotes (D) and (D') of equations y = x e and $y = -x + \ln 2 + e$ at $+\infty$ and $-\infty$ respectively.
 - c) Study the relative position of (C_f) with respect to the two lines (D) and (D').
 - d) Show that the line (Δ) of equation $x = \frac{1}{2} \ln 2 + e$ is an axis of symmetry of the curve (C_f) .
- 2) Study the sense of variations of the function f and set up its table of variations.
- 3) Trace (Δ) , (D), (D') and (C_f) .
- 4) Let (D_m) be the line of equation $y = mx m\left(e + \frac{\ln 2}{2}\right) + \frac{\ln 2}{2}$ where m is a real parameter.
 - a) Justify that all lines (D_m) pass through the fixed point $A\left(\frac{\ln 2}{2} + e; \frac{\ln 2}{2}\right)$.
 - b) Determine according to the values of the real parameter m the number of points of intersection of the line (D_m) and the curve (C_f) .

Problem 11

Let f be the function defined by $f(x) = (x+a)e^{-x} + b$ where a and b are two real numbers.

In the opposite figure:

- The curve (C_f) is the representative curve of f in an orthonormal system.
- The line (d) is an asymptote to (C_f) at $+\infty$.
- The line (T) is a tangent to (C_f) at O.
- 1) By graphical reading:
 - a) Determine the domain of definition of f.
 - **b)** Determine f(-3), f(0), $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
 - c) Determine f'(-2) and f'(0).
 - d) Determine the sign of f'(x) according to the values of x in \mathbb{R} .
- 2) Show that, for every x in \mathbb{R} , $f(x) = (x+3)e^{-x} 3$.
- 3) Set up the table of variations of f.
- 4) Show, by calculation, that the equation f(x) = 0 admits in \mathbb{R} exactly two solutions, one of which is 0 and the other is α such that $-2.9 < \alpha < -2.7$.
- 5) Deduce the sign of f(x) according to the values of x in \mathbb{R} .
- 6) Let g be the function defined by $g(x) = \ln[f(x)]$.

Designate by (C_g) the representative curve of g in an orthonormal system $(O; \vec{i}; \vec{j})$

a) Justify that the domain of definition of g is $]\alpha$; 0[.

- b) Show that (C_g) admits two vertical asymptotes.
- c) Set up the table of variations of g.
- d) Trace (C_g) .