Elementary Statistical Informace:
Bigomial distribution;
Let X = { 1 saccess, XN Bin(n, 0), 0 \in [0]
Likelihood estimate based on a sample on X: $L(\theta) = \prod_{i \in \Lambda} p(x_i; \theta) = \theta \stackrel{\stackrel{\sim}{\sim}}{\sim} x_i (1-\theta)^n \stackrel{\stackrel{\sim}{\sim}}{\sim} x_i$
$L(\theta) = \prod_{i \in A} p(x_i; \theta) = \theta^{\sum_{i \in A} x_i} (1-\theta)^{n-\sum_{i \in A} x_i}$
logs: $l(\theta) = \sum_{i=1}^{n} x_i \log(\theta) + \left(n - \sum_{i=1}^{n} x_i\right) \log(1-\theta)$
$\frac{\partial l(\theta)}{\partial \theta} = \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{\sum_{i=1}^{n} x_i}{1-\theta}$
solving for o , we get of = n-1 \(\int \times \); proportion of successes in n' indep. Bernoull: trials.
proportion of successes in it moves. Dernout. It is.
eg. In a study we find that 18 out of 79 patients are at risk of a disease "d". Likelihood estimator.
a disease "d". Likelihood estimator.
$\Theta_{i} = \frac{10}{2} \approx 0.228$
Reference: Introduction to mathematical statistics togg; McKean; Gaig, 2019