

Examination in School of Mathematical Sciences Semester 2, 2016

104831 MATHS 2100 Real Analysis II

Official Reading Time: 10 mins Writing Time: 120 mins Total Duration: 130 mins

NUMBER OF QUESTIONS: 6 TOTAL MARKS: 62

Instructions

- Attempt all questions.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided.
- Calculators are not permitted.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

Real Analysis II Page 2 of 4

- 1. Let S be a non-empty subset of \mathbb{R} .
 - (a) Let $f: S \to \mathbb{R}$ be a function and let $x_0 \in S$. Define what it means for f to be continuous at x_0 .
 - (b) Complete the statement of the following proposition from lectures: " $f: S \to \mathbb{R}$ is continuous at $x_0 \in S \iff$ for all sequences (x_n) such that and $x_n \to x_0, \ldots$ "
 - (c) Suppose that $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are both continuous at $x_0 \in S$. Use the proposition that you stated in part (b) and limit laws for sequences to prove that the function f(x) + g(x) is continuous at x_0 .
 - (d) Suppose that $f:[a,b] \to \mathbb{R}$ is a continuous function. Using theorems from lectures about continuous functions defined on closed bounded intervals, prove that the range f([a,b]) of f is equal to [c,d] for some real numbers c and d with $c \le d$.

[2+2+4+4=12 marks]

- 2. Let S be a non-empty subset of \mathbb{R} and let x_0 be a limit point of S.
 - (a) Suppose that $f: S \to \mathbb{R}$ is a function and $L \in \mathbb{R}$. Write down the $\epsilon \delta$ definition of what it means for $\lim_{x \to x_0} f(x)$ to equal L.
 - (b) Let $g: (-1,1) \to \mathbb{R}$ be the function defined by

$$g(x) = \begin{cases} 2x+1 & \text{if } x \in (-1,1), x \neq 0\\ 4 & \text{if } x = 0. \end{cases}$$

Prove that $\lim_{x\to 0} g(x) = 1$ using the definition that you wrote down in part (a) above.

(c) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $\lim_{x\to 0} f(x) = 0$ and that $g: \mathbb{R} \to \mathbb{R}$ is a bounded function (i.e. there exists M > 0 such that $|g(x)| \leq M$ for all $x \in \mathbb{R}$). Prove that $\lim_{x\to 0} f(x)g(x) = 0$ using the definition that you wrote down in part (a) above.

[2+3+4=9 marks]

3. Let $f:[a,b]\to\mathbb{R}$ be a bounded function and let $\mathscr{P}=\{a=x_0,x_1,\ldots,x_N=b\}$ be a partition of [a,b]. For each $i=1,\ldots,N$ let

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$
 and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$.

- (a) Write down the definition of the upper and lower sums $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$.
- (b) Write down the definition of the real numbers L(f) and U(f).
- (c) Complete the following statement of a proposition from lectures: "f is integrable on $[a,b] \iff for\ all\ \epsilon > 0$ there exists $a \ldots such\ that \ldots$ "

Real Analysis II Page 3 of 4

(d) Suppose that for all $\epsilon > 0$, there is a partition \mathscr{P}_{ϵ} such that $U(f, \mathscr{P}_{\epsilon}) - L(f) < \epsilon/2$. Prove that f is integrable on [a, b].

(e) Write down an example of a bounded function $f: [0,1] \to \mathbb{R}$ which is not integrable (you do not need to prove that the function you define is not integrable).

[1+1+2+5+1=10 marks]

- 4. (a) State the Mean Value Theorem.
 - (b) Suppose that $f:(a,b)\to\mathbb{R}$ is differentiable on (a,b) and that f'(x)=0 for all $x\in(a,b)$. Use the Mean Value Theorem to prove that f is a constant function.
 - (c) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function such that $|f(x) f(y)| \le |x y|^2$ for all $x, y \in \mathbb{R}$. Use part (b) above to prove that f is a constant function.
 - (d) Suppose that $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] with f(x)>0 for all $x\in[a,b]$. Define a function $F:[a,b]\to\mathbb{R}$ by

$$F(x) = \int_{a}^{x} f(t)dt.$$

Prove that if $x \in (a,b)$ then the inverse function F^{-1} is differentiable at F(x) with derivative

$$(F^{-1})'(F(x)) = \frac{1}{f(x)}.$$

[2+4+3+3=12 marks]

- 5. (a) Define what it means for a series $\sum_{n=1}^{\infty} a_n$ to converge.
 - (b) Suppose that $\sum_{n=1}^{\infty} a_n$ is a series of non-negative terms. Prove that the series converges if and only if the sequence of partial sums is bounded above.
 - (c) Complete the following statement of the Comparison Test for series: "Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that $0 \le a_n \le b_n$ for all $n \ge 1$. Ifthen"
 - (d) Use the Comparison Test for series to prove that $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$ diverges.

[1+2+2+3=8 marks]

- 6. Let S be a subset of \mathbb{R} ; let $f: S \to \mathbb{R}$ be a function and let $(f_n)_{n=1}^{\infty}$ be a sequence of functions $f_n: S \to \mathbb{R}$.
 - (a) Define what it means for the sequence of functions $(f_n)_{n=1}^{\infty}$ to converge uniformly on S to f.
 - (b) Complete the statement of the following proposition from lectures: "If $f_n \to f$ on S and then f is continuous on S."

Real Analysis II Page 4 of 4

(c) Prove that the sequence of functions $(g_n)_{n=1}^{\infty}$ on [0,1] defined by $g_n(x)=x^n$ for $x \in [0,1]$ does not converge uniformly to a function g on [0,1].

(d) Suppose that f_n is continuous on S for all n and $(f_n)_{n=1}^{\infty}$ converges uniformly to f. Let $x_0 \in S$ and let $(x_n)_{n=1}^{\infty}$ be a sequence in S such that $x_n \to x_0$. Prove that $f_n(x_n) \to f(x_0)$.

[2+2+3+4=11 marks]