Deep Neural Networks

Ju Gwangjin

Computer Graphics Lab.

- Activate course environment by typing conda activate {env name}
- Install pytorch and torchvision

```
(course) C:#Users#owner>conda install pytorch torchvision
Collecting package metadata (current_repodata.json): done
Solving environment: done
```


- Deep Learning Library
- Open Source
- Primarily developed by Facebook's Al
- From September 2016
- Neural Network 학습에 필요한 전반적인 기능을 제공

- Load dataset
- Training
 - 1. Inference
 - 2. Loss
 - 3. Gradient
 - 4. Update

- Load dataset
- Training
 - 1. Inference
 - 2. Loss
 - 3. Gradient
 - 4. Update

- Load dataset
- Training
 - 1. Inference
 - 2. Loss
 - 3. Gradient
 - 4. Update

- Load dataset
- Training
 - 1. Inference
 - 2. Loss
 - 3. Gradient
 - 4. Update

$$\theta \leftarrow \theta - \nabla f_{\theta}(x)$$

Convolutional Neural Networks

Convolutional Neural Network (CNN)

• Filter values를 최적화 과정을 통해서 찾음 (+ bias)

Convolutional Neural Network (CNN)

CNN Diagram GIF

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

308

-498

Convolutional Neural Network (CNN)

- Filter values를 최적화 과정을 통해서 찾음 (+ bias)
- Input과 Output의 Dimension이 다를 수 있음
 - Padding과 Stride를 통해서 조절

$$-W' = \frac{W-F+2*P}{S} + 1,$$

- where W' output width, W input width, F convolution filter width, P padding, and S stride
- Normally, $P = \text{Floor}(\frac{F}{2})$ and S = 1 make identical spatial resolution

