第十章 优化基础

第 31 讲 凸优化问题

黄定江

DaSE @ ECNU

djhuang@dase.ecnu.edu.cn

- ❶ 31.1 凸优化概念和性质
- ② 31.2 典型凸优化问题

- ❶ 31.1 凸优化概念和性质
- ② 31.2 典型凸优化问题

31.1.1 凸优化问题

标准形式的凸优化问题

$$\begin{aligned} & \min \quad f_0(\boldsymbol{x}) \\ & \text{s.t.} \quad f_i(\boldsymbol{x}) \leq 0, \quad i = 1, \cdots, m \\ & \boldsymbol{a}_j^T \boldsymbol{x} = b_j, \quad j = 1, \cdots, p \end{aligned}$$

• f_0, \dots, f_m 为凸函数; 等式约束是仿射的。

凸优化问题

标准形式的凸优化问题也经常等价地表达为:

$$\begin{aligned} &\min \quad f_0({\pmb x})\\ &\text{s.t.} \quad f_i({\pmb x}) \leq 0, \quad i=1,\cdots,m\\ &\pmb{A}{\pmb x} = {\pmb b} \end{aligned}$$

有时原凸优化问题并非上述形式,但可以进行转化成标准形式。如下例题:

例 1

min
$$f_0(\mathbf{x}) = x_1^2 + x_2^2$$

s.t. $f_1(\mathbf{x}) = x_1/(1+x_2^2) \le 0$
 $h_1(\mathbf{x}) = (x_1 + x_2)^2 = 0$

可转化成:

min
$$f_0(\mathbf{x}) = x_1^2 + x_2^2$$

s.t. $f_1(\mathbf{x}) = x_1 \le 0$
 $h_1(\mathbf{x}) = x_1 + x_2 = 0$

◆□▶◆□▶◆■▶◆■▶ ■ 990

31.1.2 凸问题的其他等价转换

如果从一个问题的解,容易得到另一个问题的解,且反之亦然,称两问题 (非正式定义)等价。

• 消除等式约束

$$egin{aligned} \min & f_0(oldsymbol{x}) \ & ext{s.t.} & f_i(oldsymbol{x}) \leq 0, \quad i=1,\cdots,m \ & oldsymbol{A}oldsymbol{x} = oldsymbol{b} \end{aligned}$$

等价于

$$\min \quad f_0({m F}{m z} + {m x}_0)$$
 s.t. $f_i({m F}{m z} + {m x}_0) \leq 0,$

其中 F 和 x_0 满足:

$$Ax = b \iff x = Fz + x_0$$

4 D > 4 D > 4 E > 4 E > E 990

• 引入等式约束

$$\min \quad f_0(\boldsymbol{A}_0\boldsymbol{x}+\boldsymbol{b}_0)$$

s.t.
$$f_i(\boldsymbol{A}_i\boldsymbol{x}+\boldsymbol{b}_i)\leq 0, \quad i=1,\cdots,m$$

等价于

min
$$f_0(\mathbf{y}_0)$$

s.t.
$$f_i(\boldsymbol{y}_i) \leq 0, \quad i = 1, \cdots, m$$

$$\boldsymbol{y}_i = \boldsymbol{A}_i \boldsymbol{x} + \boldsymbol{b}_i, \quad i = 0, \cdots, m$$

• 引入松弛变量

$$\min \quad f_0(\boldsymbol{x})$$
 s.t. $\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, \quad i = 1, \cdots, m$

等价于

$$\begin{aligned} & \min \quad f_0(\boldsymbol{x}) \\ & \text{s.t.} \quad \boldsymbol{a}_i^T \boldsymbol{x} + s_i = b_i, \quad i = 1, \cdots, m \\ & s_i \geq 0, \quad i = 1, \cdots, m \end{aligned}$$

• 转化为上镜图形式

$$egin{aligned} \min & f_0(m{x}) \ & ext{s.t.} & f_i(m{x}) \leq 0, \quad i=1,\cdots,m \ & m{A}m{x} = m{b} \end{aligned}$$

等价于

$$\begin{array}{ll} \min & t \\ \text{s.t.} & f_0({\boldsymbol x}) - t \leqslant 0 \\ & f_i({\boldsymbol x}) \leqslant 0, \quad i = 1, \cdots, m \\ & {\boldsymbol A}{\boldsymbol x} = {\boldsymbol b} \end{array}$$

目标函数是线性的 (因而也是凸的) 并且新的约束函数 $f_0(\mathbf{x}) - t$ 也是 (\mathbf{x}, t) 上的 凸函数, 所以上境图问题也是凸的。

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕 Q G

• 转化为极小化部分变量的优化问题

极小化凸函数的部分变量将保持凸性不变。因此,对于问题

$$\begin{aligned} & \min \quad & f_0\left(\boldsymbol{x}_1, \boldsymbol{x}_2\right) \\ & \text{s.t.} \quad & f_i\left(\boldsymbol{x}_1\right) \leqslant 0, \quad i = 1, \cdots, m_1 \\ & & \tilde{f}_i\left(\boldsymbol{x}_2\right) \leqslant 0, \quad i = 1, \cdots, m_2, \end{aligned}$$

这里假定变量 $\boldsymbol{x} \in \mathbf{R}^n$ 被分为 $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2)$, 其中 $\boldsymbol{x}_1 \in \mathbf{R}^{n_1}, \boldsymbol{x}_2 \in \mathbf{R}^{n_2}$, 并且 $n_1 + n_2 = n$ 。 我们首先优化 \boldsymbol{x}_2 : 定义 \boldsymbol{x}_1 的函数 \tilde{f}_0 为

$$\tilde{f}_0\left(\boldsymbol{x}_1\right) = \inf \left\{ f_0\left(\boldsymbol{x}_1, \boldsymbol{z}\right) \mid \tilde{f}_i(\boldsymbol{z}) \leqslant 0, i = 1, \cdots, m_2 \right\}.$$

则原问题等价于

$$\begin{aligned} &\min & \quad \tilde{f}_0\left(\boldsymbol{x}_1\right) \\ &\text{s.t.} & \quad f_i\left(\boldsymbol{x}_1\right) \leqslant 0, \quad i=1,\cdots,m_1 \end{aligned}$$

31.1.3 凸优化的全局最优性

定理1

凸优化问题中, 局部最优点就是 (全局) 最优点。

Proof.

设 x 是凸优化问题的局部最优解,即存在 R > 0,对任意可行的 z 且 $\|z - x\|_2 \le R$,则 $f_0(z) \ge f_0(x)$ 。设 y 是最优点使得 $f_0(y) < f_0(x)$ 。 考虑 $z = (1 - \theta)x + \theta y$,其中 $\theta = R/2\|y - x\|_2$

- $\|y x\|_2 > R$,因此 $0 < \theta < 1/2$
- z 是两个可行点的凸组合, 因此也是可行的
- $\|\boldsymbol{z} \boldsymbol{x}\|_2 = R/2 < R \ \ \ \ \ \ f_0(\boldsymbol{z}) \le (1 \theta) f_0(\boldsymbol{x}) + \theta f_0(\boldsymbol{y}) < f_0(\boldsymbol{x})$ 。这与 \boldsymbol{x} 是局部最优解矛盾。

- 31.1 凸优化概念和性质
- 2 31.2 典型凸优化问题

31.2.1 线性规划(LP)

min
$$oldsymbol{c}^Toldsymbol{x}+d$$
 s.t. $oldsymbol{G}oldsymbol{x}\leqoldsymbol{h}$ $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$

- 目标函数和约束函数都是仿射的凸优化问题
- 可行集是一个多面体

分片线性极小化

$$\min_{oldsymbol{x}} \max_{i=1,\cdots,m} (oldsymbol{a}_i^T oldsymbol{x} + b_i)$$

等价于如下线性规划问题:

$$\min t$$

s.t.
$$\boldsymbol{a}_i^T \boldsymbol{x} + b_i \leq t, \quad i = 1, \cdots, m$$

马尔科夫决策过程

在马尔科夫决策过程中,考虑终止时间 $T=\infty$ 的情形。假设奖励有界,为求出最优动作以及最优期望奖励、将 Bellman 方程转化为如下线性规划问题:

$$\begin{aligned} & \max_{V \in \mathbb{R}^{|S|}} & \sum_{i} V(i) \\ & s.t. & V(i) \geq \sum_{i} P_a(i,j)(r(i,a) + \gamma V(j)), \forall i \in S, \forall a \in A, \end{aligned}$$

其中 V(i) 是向量 V 的第 i 个分量,表示从状态 i 出发得到的累积奖励, $P_a(i,j)$ 是转移概率,r(i,a) 是单步奖励, γ 为折现因子。

◆□▶◆□▶◆■▶◆■▶ ■ 990

16 / 39

多面体的 Chebyshev 中心

多面体 $\mathcal{P} = \{x | a_i^T x < b_i, i = 1, \dots, m\}$ 的 Chebyshev 中心是最大的内切球球心

$$\mathcal{B} = \{\boldsymbol{x}_c + \boldsymbol{u} | \|\boldsymbol{u}\|_2 \le r\}$$

• 对于所有的 $x \in B$, 有 $a_i^T x \leq b_i$ 。这等价于

$$\sup\{\boldsymbol{a}_{i}^{T}(\boldsymbol{x}_{c}+\boldsymbol{u})|\|\boldsymbol{u}\|_{2} \leq r\} = \boldsymbol{a}_{i}^{T}\boldsymbol{x}_{c} + r\|\boldsymbol{a}_{i}\|_{2} \leq b_{i}$$

• 因此 x_c , r 可以通过解决一个 LP 问题被确定下来

$$\max r$$

s.t.
$$\mathbf{a}_{i}^{T}\mathbf{x}_{c} + r||\mathbf{a}_{i}||_{2} \leq b_{i}, \quad i = 1, \cdots, m$$

压缩感知中的基追踪问题

基追踪问题是压缩感知中的一个基本问题, 可以写为

$$\min \quad \|\boldsymbol{x}\|_1,$$
 $s.t. \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}.$

对每个 $|x_i|$ 引入一个新的变量 z_i , 可以将问题 (11) 转化为

min
$$\sum_{i=1}^{n} z_i$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$,
 $-z_i \le x_i \le z_i$, $i = 1, 2, \dots, n$,

这是一个线性规划问题.

18 / 39

黄定江 (DaSE@ECNU) 第十章 优化基础

分式线性问题

$$egin{array}{ll} \min & f_0(oldsymbol{x}) \ & oldsymbol{s.t.} & oldsymbol{G} oldsymbol{x} \leq oldsymbol{h} \ & oldsymbol{A} oldsymbol{x} = oldsymbol{b} \end{array}$$

其中

$$f_0(oldsymbol{x}) = rac{oldsymbol{c}^Toldsymbol{x} + d}{oldsymbol{e}^Toldsymbol{x} + f}, \quad \operatorname{\mathbf{dom}} f_0 = \{oldsymbol{x} | oldsymbol{e}^Toldsymbol{x} + f \geq 0\}$$

可以转换为等价的线性规划

min
$$c^T y + dz$$

s.t. $Gy - hz \le 0$
 $Ay - bz = 0$
 $e^T y + fz = 1$
 $z > 0$

31.2.2 二次规划 (QP)

$$\min \quad (1/2) oldsymbol{x}^T oldsymbol{P} oldsymbol{x} + oldsymbol{q}^T oldsymbol{x} + r$$
 s.t. $oldsymbol{G} oldsymbol{x} \leq oldsymbol{h}$ $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$

- $P \in S^n_+$,因此,目标函数是凸二次型。
- 在多面体上极小化一个凸二次函数,显然是凸优化问题。

最小二乘问题是经典的二次规划问题:

$$\min \quad \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2$$

- 解析解 $x = A^{\dagger}b$. 其中. $A^{\dagger} \neq A$ 的伪逆。
- 可以增加线性约束, l < x < u

随机线性规划问题

min
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E}(c^T x) + \gamma \mathbf{var}(c^T x)$$

s.t. $Gx \le h$
 $Ax = b$

- c 是随机向量,均值为 \bar{c} ,协方差 Σ
- 因此, $c^T x$ 是随机变量, 均值 $\bar{c}^T x$, 方差 $x^T \Sigma x$
- $\gamma > 0$ 为风险厌恶参数; 权衡期望损失和方差 (风险)

31.2.3 二次约束二次规划(QCQP)

min
$$(1/2)\mathbf{x}^T\mathbf{P}_0\mathbf{x} + \mathbf{q}_0^T\mathbf{x} + r_0$$

s.t. $(1/2)\mathbf{x}^T\mathbf{P}_i\mathbf{x} + \mathbf{q}_i^T\mathbf{x} + r_i \le 0, \quad i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

- $P_i \in S_+^n$, $i = 0, \dots, m$, 目标和限制函数都是凸二次型
- 如果 $P_i \in S_{++}^n$, 可行域是 m 个椭球和一个仿射集合的交集

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

31.2.4 二阶锥规划 (SOCP)

$$\min \ m{f}^Tm{x}$$
 s.t. $\|m{A}_im{x}+m{b}_i\|_2 \leq m{c}_i^Tm{x}+d_i, \qquad i=1,\cdots,m$ $m{F}m{x}=m{g}$

其中 $\mathbf{A}_i \in \mathbb{R}^{n_i \times n}$ 以及 $\mathbf{F} \in \mathbb{R}^{p \times n}$ 。

• 不等式约束称为二阶锥(SOC)约束:

$$(\boldsymbol{A}_{i}\boldsymbol{x}_{i}+\boldsymbol{b}_{i},\boldsymbol{c}_{i}^{T}\boldsymbol{x}_{i}+d_{i})\in R^{n_{i}+1}$$
的二阶锥中

- $c_i = 0, i = 1, \cdots, m$ 时,SOCP 等同于 QCQP。
- $A_i = 0, i = 1, \dots, m$ 时,SOCP 退化为 LP。

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ 釣りの

黄定江 (DaSE@ECNU) 第十章 优化基础 24 / 39

鲁棒线性规划

优化问题中的参数经常是不确定的, 例如, 在线性规划中

$$\min \ \ \, oldsymbol{c}^T oldsymbol{x}$$

s.t.
$$\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, \qquad i = 1, \cdots, m$$

其中的参数 c, a_i, b_i 含有一些不确定性或变化。

两种通用方式处理不确定性 (简化起见,这里只考虑 a_i)

例 10

• 一种为确定性方法: 必须满足约束所有的 $a_i \in \mathcal{E}_i$, 即

$$\min \quad \boldsymbol{c}^T \boldsymbol{x}$$

s.t.
$$\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i$$
, $\forall \boldsymbol{a}_i \in \mathcal{E}_i$, $i = 1, \dots, m$

31.2.5 SOCP 确定性方法

给定椭球 ε_i:

$$\boldsymbol{a}_i \in \mathcal{E}_i = \{\bar{\boldsymbol{a}}_i + \boldsymbol{P}_i \boldsymbol{u} | \|\boldsymbol{u}\|_2 \le 1\}$$

其中 $\bar{a}_i \in \mathbb{R}^n$ 是椭球中心,半轴由 $P_i \in \mathbb{R}^{n \times n}$ 的奇异值/奇异向量决定。

27 / 39

黄定江 (DaSE@ECNU) 第十章 优化基础

SOCP 确定性方法

• 由此得到鲁棒线性规划

$$\min \ \ \, oldsymbol{c}^T oldsymbol{x}$$

s.t.
$$\boldsymbol{a}_i^T \boldsymbol{x} \leq b_i, \quad \forall \boldsymbol{a}_i \in \mathcal{E}_i, \qquad i = 1, \cdots, m$$

等价于 SOCP

$$\min \ \boldsymbol{c}^T \boldsymbol{x}$$

s.t.
$$\bar{\boldsymbol{a}}_i^T \boldsymbol{x} + \|\boldsymbol{P}_i^T \boldsymbol{x}\|_2 \leq b_i, \qquad i = 1, \cdots, m$$

曲
$$\sup_{\|\boldsymbol{u}\|_2} (\bar{\boldsymbol{a}}_i + \boldsymbol{P}_i \boldsymbol{u})^T \boldsymbol{x} = \bar{\boldsymbol{a}}_i^T \boldsymbol{x} + \|\boldsymbol{P}_i^T \boldsymbol{x}\|_2$$
得到。

• 另一种为随机性方法: a_i 是随机变量; 以概率 η 满足约束

$$\min \ \ \, oldsymbol{c}^T oldsymbol{x}$$

s.t.
$$\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \qquad i = 1, \dots, m$$

31.2.6 SOCP 随机性方法

- 假设 a_i 是服从高斯分布,均值为 \bar{a}_i ,协方差阵 Σ_i ,即 $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$
- $a_i^T x$ 服从高斯分布,均值为 $\bar{a}_i^T x$,方差为 $x^T \Sigma_i x$;因此

$$extstyle{\mathsf{prob}}(oldsymbol{a}_i^Toldsymbol{x} \leq b_i) = \phi\left(rac{b_i - ar{oldsymbol{a}}_i^Toldsymbol{x}}{\|\sum_i^{1/2}oldsymbol{x}\|_2}
ight)$$

其中
$$\phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt$$
。

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

30 / 39

黄定江 (DaSE@ECNU) 第十章 优化基础

SOCP 随机性方法

• 鲁棒线性规划

$$egin{aligned} \min & oldsymbol{c}^T oldsymbol{x} \end{aligned}$$
 s.t. $oldsymbol{\mathsf{prob}}(oldsymbol{a}_i^T oldsymbol{x} \leq b_i) \geq \eta, \quad i = 1, \cdots, m,$

其中
$$\eta \geq 1/2$$
, 等价于 SOCP

$$\min \quad \boldsymbol{c}^T \boldsymbol{x}$$
 s.t. $\bar{\boldsymbol{a}}_i^T \boldsymbol{x} + \phi^{-1}(\eta) \| \Sigma_i^{1/2} \boldsymbol{x} \|_2 \leq b_i, \quad i=1,\cdots,m,$

31.2.7 半定规化(SDP)

半定规划(semidefinite programming, SDP)是线性规划在矩阵空间中的一种推广,它与线性规划不同的地方是其自变量取值于半正定矩阵空间。并具有如下一般形式

min
$$m{c}^Tm{x}$$

s.t. $x_1m{F}_1+\cdots+x_nm{F}_n+m{G} \preceq 0$
 $m{A}m{x}=m{b}$

其中 G, F_1 , \cdots , F_n 都是对称矩阵。如果这些矩阵为对角阵,那么上式中的线性矩阵不等式 (LMI) 等价于 n 个线性不等式,此时,SDP 便退化为线性规划。

黄定江 (DaSE@ECNU) 第十章 优化基础 32 / 39

仿照线性规划的分析,SDP 同样具有标准形式。标准形式的 SDP 具有对变量 $X \in S^n$ 的线性等式约束和(矩阵)非负定约束:

$$egin{aligned} \min & \mathsf{Tr}(extbf{ extit{CX}}) \ & \mathsf{s.t.} & \mathsf{Tr}(extbf{ extit{A}}_i extbf{ extit{X}}) = extbf{ extit{b}}_i, i = 1, \cdots, p \ & extbf{ extit{X}} \succeq 0 \end{aligned}$$

其中 $C, A_1, \dots, A_p \in S^n$, $Tr(\cdot)$ 是迹函数。

如同不等式形式的 LP,不等式形式的 SDP 不含有等式的约束,但是具有一个 LMI:

$$\min \quad \boldsymbol{c}^T \boldsymbol{x}$$

s.t.
$$x_1 \mathbf{A}_1 + \cdots + x_n \mathbf{A}_n \leq \mathbf{B}$$

其优化变量为 $x \in \mathbb{R}^n$,参数为 B, $A_1, \dots, A_n \in S^k$, $c \in \mathbb{R}^n$ 。

黄定江 (DaSE@ECNU) 第十章 优化基础 34 / 39

最大割问题的半定规划松弛 令 G=< V, E> 是一个无向图,其中 V 是含有 n 个顶点的顶点集,E 表示边的集合。假定对于边 $(i,j)\in E$ 的权重为 w_{ij} 。最大割问题是找到节点集合 V 的一个子集 U,使得 U 与它的补集 \bar{U} 之间相连边的权重之和最大化。若令 $x_i=1,\ i\in U$ 和 $x_i=-1,\ i\in \bar{U}$,则可得如下整数规划

$$\max \frac{1}{2} \sum_{i < j} (1 - x_i x_j) w_{ij}$$
s.t. $x_i \in \{-1, 1\}, i = 1, 2, \dots, n.$ (1)

显然,只有 x_i 与 x_j 不相等时,即分别在集合 U 和 \bar{U} 中,目标函数中 w_{ij} 的系数非零。该问题很难在多项式时间内找到它的最优解。接下来探讨如何将其松弛成一个半定规划问题。

←□▶ ←□▶ ←≡▶ ←≡ ▶ ←□ ▶ ←□▶

黄定江 (DaSE@ECNU) 第十章 优化基础 35 / 39

(续) 今 W 表示无向图的邻接矩阵,D 表示该图的度矩阵,并定义

$$A = -\frac{1}{4}(D - W)$$
 为图的拉普拉斯矩阵的 $-\frac{1}{4}$ 倍,则问题(1)可以等价地写为

min
$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$$

s.t. $x_i^2 = 1, i = 1, 2, \dots, n$. (2)

(续)现在令 $X = xx^T$,注意到约束条件 $x_i^2 = 1$ 。利用矩阵形式,我们可将最大割问题化为

min
$$\langle \boldsymbol{A}, \boldsymbol{X} \rangle$$

s.t. $X_{ii} = 1, \ i = 1, 2, \cdots, n,$
 $\boldsymbol{X} \succeq 0,$
 $\operatorname{rank}(\boldsymbol{X}) = 1.$ (3)

(续)容易验证问题(2)与(3)是等价的。现在将问题(3)的约束 $\operatorname{rank}(\boldsymbol{X})=1$ 去掉,那么便得到最大割的半定规划松弛形式

min
$$\langle \boldsymbol{A}, \boldsymbol{X} \rangle$$

s.t. $X_{ii} = 1, \ i = 1, 2, \cdots, n,$ (4)
 $\boldsymbol{X} \succeq 0.$

需要声明的是问题(4)与原问题并不等价,但确实能得到一个较好的近似解。

本讲小结

凸优化

- 凸优化的概念
- 凸优化的一些等价转换
- 凸优化的全局最优性

典型的凸优化问题

- 线性规划
- 二次规划
- 二次约束二次规划
-

我们已经了解凸优化相关的许多概念。在实际问题中,也经常遇到凸优化问题。那么怎么去求解凸优化问题呢?这就是接下来要介绍的内容。