The group G is isomorphic to the group $\mathrm{PSL}(2,11): \mathrm{C2}.$ Ordinary character table of $G\cong\mathrm{PSL}(2,11):\mathrm{C2}:$

	1a	2a	3a	5a	5b	6a	11a	2b	4a	10a	10b	12a	12b
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_3	10	2	-2	0	0	2	-1	0	0	0	0	0	0
χ_4	10	-2	1	0	0	1	-1	0	2	0	0	-1	-1
χ_5	10	-2	1	0	0	1	-1	0	-2	0	0	1	1
χ_6	10	2	1	0	0	-1	-1	0	0	0	0	$-E(12)^7 + E(12)^{11}$	$E(12)^7 - E(12)^{11}$
χ_7	10	2	1	0	0	-1	-1	0	0	0	0	$E(12)^7 - E(12)^{11}$	$-E(12)^7 + E(12)^{11}$
χ_8	11	-1	-1	1	1	-1	0	1	-1	1	1	-1	-1
χ_9	11	-1	-1	1	1	-1	0	-1	1	-1	-1	1	1
χ_{10}	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	2	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0
χ_{11}	12	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	1	-2	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0
χ_{12}	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	2	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0
χ_{13}	12	0	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	1	-2	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0

Trivial source character table of $G \cong PSL(2,11)$: C2 at p = 3:

Normalisers N_i	N_1									N_2				
p-subgroups of G up to conjugacy in G					P_1							P_2		
Representatives $n_j \in N_i$	1a	5b	5a	2b	10a	10b	2a	4a	11a	1 <i>a</i>	2b	2a	4a	2c
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	12	2	2	2	2	2	0	0	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		1	1	1	1	1	-3	-3	-1	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		2	2	-2	-2	-2	0	0	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	21	1	1	-1	-1	-1	-3	3	-1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	30	0	0	0	0	0	6	0	-3	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13}$		$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13}$	12	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	12	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0	1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	10	0	0	0	0	0	-2	-2	-1	1	-1	-1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	10	0	0	0	0	0	-2	2	-1	1	-1	1	-1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	-1	-1	-1	1	-1	1	1	1	-1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	20	0	0	0	0	0	4	0	-2	2	0	0	0	-2

```
P_1 = Group([()]) \cong 1

P_2 = Group([(1, 8, 7)(2, 4, 9)(3, 6, 12)(5, 11, 10)]) \cong C3
```

 $N_1 = Group([(3,4)(5,7)(6,8)(9,10)(11,12),(1,2,3)(4,5,6)(7,9,10)(8,11,12)]) \cong PSL(2,11) : C2$ $N_2 = Group([(1,8,7)(2,4,9)(3,6,12)(5,11,10),(2,10)(3,6)(4,11)(5,9)(7,8),(1,2)(3,5)(4,7)(6,10)(8,9)(11,12)]) \cong D24$