Homework 5

Due on: Wednesday, September 25

Problem 1

We have seen that for open strings in flat d-dimensional spacetime one can choose two types of boundary conditions (b.c.) both at $\sigma = 0$ and at $\sigma = \pi$, and for any given value of the index μ of X^{μ} : either N b.c. which read $\partial_{\sigma}X^{\mu} = 0$, or D b.c. which read $X^{\mu} = \alpha^{\mu}$. In the text we discussed the N b.c. in detail; here we work out the corresponding results for the other cases. There are clearly 4^d cases for open strings in d spacetime dimensions.

To explain the physical ideas behind D b.c., we consider an example. Let d=10, and at $\sigma=0$ the X^{μ} satisfy $\partial_{\sigma}X^{\mu}=0$ for $\mu=0,1,3,4$ and $X^{\mu}=\alpha^{\mu}$ for $\mu=2,5,\cdots 9$. Further, at $\sigma=\pi$ $\partial_{\sigma}X^{\mu}=0$ for $\mu=0,1,6,7,8$ and $X^{\mu}=\beta^{\mu}$ for $\mu=2,3,4,5,9$. Since the endpoint at $\sigma=0$ is fixed in the $\mu=2,5,\cdots,9$ direction, we can introduce a p=3 brane D_1 spanned by X^0,X^1,X^3,X^4 (this is called a 3-brane because at any time X^0 it is p=3-dimensional). The string originates then at D_1 . Similarly, at $\sigma=\pi$ X^{μ} is fixed for $\mu=2,\cdots,5,9$, and the p=4 brane D_2 is spanned by X^0,X^1,X^6,X^7,X^8 . The string ends then at the D_2 .

Figure 1: The endpoint with $\sigma = 0$ lies on D_1 (it can not move in the $\mu = 2, 5, \dots, 9$ directions), and the endpoint with $\sigma = \pi$ lies on D_2 (it can not move in the $\mu = 2, \dots, 5, 9$ directions).

It is clear from the figure that the boundary conditions for the various values of μ are of the following type:

 $X^0: \text{NN}$ $X^3: \text{ND}$ $X^6: \text{DN}$ $X^9: \text{DD}$ $X^1: \text{NN}$ $X^4: \text{ND}$ $X^7: \text{DN}$ $X^2: \text{DD}$ $X^5: \text{DD}$ $X^8: \text{DN}$

- (a) Write down the mode expansion for the three new cases DD, ND and DN. *Hint:* The field equation allows terms of the form $a + bt + c\sigma + de^{-in(t+\sigma)} + fe^{-in(t-\sigma)}$.
- (b) Quantize the string for each of these cases. *Hint:* Decompose X^{μ_0} into a background part that depends on α^{μ} and a quantum part, and quantize the latter.