Convex hulls in 2D

The problem: Given a set P of n points in the plane, find their convex hull.

Algorithm: Graham scan

Idea: start from a point p interior to the hull. Order all points by their ccw angle wrt p and traverse them. Maintain the CH of all points traversed so far and add the next point to it.

Algorithm GrahamScan (input: points P)

- Find interior point p_0 (instead of an interior point, can pick the lowest point)
- Sort all other points ccw around p_0 ; denote them $p_1, p_2, ..., p_{n-1}$ in this order.
- Initialize stack $S = (p_2, p_1)$
- for i = 3 to n-1 do
 - if p_i is left of (second(S), first(S)): push p_i on S
 - else:
 - * repeat: pop S while p_i is right of (second(S), first(S))
 - * push p_i on S

Questions:

- 1. Run Graham-scan on a small set of points and check how it works. Assume no "degenerate" cases.
- 2. Argue that once the points are sorted, the algorithm takes linear time.
- 3. What are the degenerate cases for Graham-scan, and how do you extend the algorithm to handle these cases?