# 数据处理与误差分析

# 磁场强度定标

### 实验数据

| 磁铁电源 $I/\mathrm{A}$    | 0.99 | 1.04 | 1.09 | 1.14 | 1.19 | 1.24 | 1.29 |
|------------------------|------|------|------|------|------|------|------|
| 特斯拉计读数 $B/\mathrm{mT}$ | 28   | 29   | 31   | 32   | 33   | 35   | 36   |

### 拟合曲线



根据拟合曲线,磁感应强度  $B(\mathrm{mT})$  与磁铁电源  $I(\mathrm{A})$  的关系为:

$$B(mT) = 27.143 \times I(A) + 1.057$$

### 不确定度

斜率不确定度 (A类):

$$U(a) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[y_i - \left(\hat{a}x_i + \hat{b}
ight)
ight]^2}{(n-2)\sum\limits_{i=1}^{N} (x_i - ar{x})^2}} = 3.076$$

截距不确定度 (A类):

$$U(b) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[ y_i - \left( \hat{a} x_i + \hat{b} 
ight) 
ight]^2}{(n-2)}} \cdot \sqrt{rac{ar{x}^2}{\sum\limits_{i=1}^{N} (x_i - ar{x})^2} + rac{1}{n}} = 3.520$$

置信度为 0.95.

# 角度定标

#### 实验数据

| 螺旋测微头读数 $L/\mathrm{mm}$ | 4.220 | 5.680 | 7.215 | 8.675 | 10.175 |
|-------------------------|-------|-------|-------|-------|--------|
| 角度 $	heta/^\circ$       | 235   | 240   | 245   | 250   | 255    |

### 拟合曲线



根据拟合曲线,角度  $\theta(^\circ)$  与螺旋测微头读数 L(mm) 的关系为:

$$heta(^\circ) = 3.354 imes L( ext{mm}) + 220.872$$

### 不确定度

斜率不确定度(A类):

$$U(a) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[y_i - \left(\hat{a}x_i + \hat{b}
ight)
ight]^2}{(n-2)\sum\limits_{i=1}^{N} (x_i - ar{x})^2}} = 0.060$$

截距不确定度(A类):

$$U(b) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[y_i - \left(\hat{a}x_i + \hat{b}
ight)
ight]^2}{(n-2)}} \cdot \sqrt{rac{ar{x}^2}{\sum\limits_{i=1}^{N} (x_i - ar{x})^2} + rac{1}{n}} = 0.445$$

置信度为 0.95.

# 螺旋测微器读数与 SEV 信号关系

#### 实验数据

| ${ m SEV}$ 信号 $U/{ m V}$ | 1.16  | 1.46  | 1.78  | 2.12  | 2.46  | 2.78  | 3.08  |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|
| 螺旋测微头读数 $L/\mathrm{mm}$  | 3.500 | 3.550 | 3.600 | 3.650 | 3.700 | 3.750 | 3.800 |

## 拟合曲线



根据拟合曲线,螺旋测微读数 L(mm) 与 SEV 信号 U(V) 的关系为:

$$L({
m mm}) = 0.154 imes U({
m V}) + 3.323$$

### 不确定度

斜率不确定度(A类):

$$U(a) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[y_i - \left(\hat{a}x_i + \hat{b}
ight)
ight]^2}{(n-2)\sum\limits_{i=1}^{N} (x_i - ar{x})^2}} = 0.004$$

截距不确定度(A类):

$$U(b) = t(N-2) \cdot \sqrt{rac{\sum\limits_{i=1}^{N} \left[ y_i - \left( \hat{a} x_i + \hat{b} 
ight) 
ight]^2}{(n-2)}} \cdot \sqrt{rac{ar{x}^2}{\sum\limits_{i=1}^{N} (x_i - ar{x})^2} + rac{1}{n}} = 0.008$$

置信度为 0.95.

# 角度 $\theta$ 与 SEV 信号 U 的关系

# 磁滞回线

计算机自动采集了 SEV 信号 U 与磁铁电源 I 的关系。

根据定标得到的关系  $\theta(^\circ)=0.5025\times U(\mathrm{V})+231.992$  和  $B(\mathrm{mT})=27.14\times I(\mathrm{A})+1.06$  可以得到  $\theta$  与 B 的关系。

用平滑曲线连结数据点,得到磁滞回线。

最后平移图像,使得磁滞回线的中心与坐标原点重合,得到克尔转角与磁感应强度的关系。

### 平移后的磁滞回线



## 克尔转角最大差值

$$\Delta heta_{k, ext{max}} = 0.075^{\circ}$$

# 误差分析

激光光强的波动会导致测量信号的波动,环境光的干扰可能会影响反射光强。可以采用稳定激光源,并在暗室中实验以避免环境光干扰。

光学元件不共轴会降低信噪比,降低磁滞回线的光滑性。在测量前尽量把光路调共轴以提高信噪比。

光学实验平台的微小形变会导致元件高度发生改变,从而降低信噪比。在实验过程中应避免身体倚靠光 学实验平台。

# 思考题

- 1) 实验测得磁滞回线光滑性不如讲义上的磁滞回线。这是因为实验信噪比低。
- 2) 矫顽力是指在磁性材料已经磁化到磁饱和后,要使其磁化强度减到零所需要的磁场强度。从磁滞回线中可以读出, $B_c=0.2~{
  m mT}$ ,矫顽力为

$$H_c = rac{B_c}{\mu_0} = rac{0.2 imes 10^{-3}}{4\pi imes 10^{-7}} \; ext{A/m} = 159.15 \; ext{A/m}$$

3) 饱和磁化强度  $M_s$  正比于克尔转角最大值  $\theta_{k,\max}$ ,因此可以通过饱和磁化强度已知的材料来确定比例系数,而磁滞回线中可读出样品克尔转角的最大值,于是可以确定样品的饱和磁化强度。