# PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

### FACULTAD DE MATEMATICAS

### DEPARTAMENTO DE MATEMATICA

Primer semestre 2022

## Ayudantía 10 - MAT1610

- 1. (a) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann:  $\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2+kn}}{n^2}$ 
  - (b) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann:  $\lim_{n\to\infty}\sum_{k=1}^n\frac{\ln(n+k)-\ln(n)}{n}$

(c) Calcule 
$$\lim_{n\to\infty} \frac{e-1}{n} \left( \frac{1}{1+\frac{e-1}{n}} + \frac{1}{1+\frac{2(e-1)}{n}} + \frac{1}{1+\frac{3(e-1)}{n}} + \dots + \frac{1}{e} \right)$$

### Solución:

(a)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n^2} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n} \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

Así, considerando  $\Delta x=\frac{1}{n}$  (note que el intervalo de intergración debe tener longitud 1) y Una opción,  $[a,b]=[1,2],\ f(x)=\sqrt{x},\ x_0^*=1,\ x_k^*=1+k\Delta x=1+k\frac{1}{n},\ 1\leq k\leq n,$   $(x_n^*=2)$ 

Otra opción,  $f(x) = \sqrt{1+x}, [a,b] = [0,1], x_0^* = 0, x_k^* = 0 + k\Delta x = k\frac{1}{n}, 1 \le k \le n, (x_n^* = 1)$ 

Por lo tanto,

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2+kn}}{n^2}=\int_1^2\sqrt{x}dx=\int_0^1\sqrt{1+x}dx$$



(b)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(\frac{n+k}{n}\right) \frac{1}{n} \text{ propiedad ln}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(1 + k \underbrace{\frac{1}{n}}_{\Delta x}\right) \underbrace{\frac{1}{n}}_{\Delta x}$$

Así, considerando  $\Delta x = \frac{1}{n}$  (note que el intervalo de intergración debe tener longitud 1) y Una opción, tomar [a,b]=[1,2],  $f(x)=\ln(x),$   $x_0^*=1,$   $x_k^*=1+k\Delta x=1+k\frac{1}{n},$   $1\leq k\leq n,$   $(x_n^*=2)$  Otra opción, tomar  $f(x)=\ln(1+x),$  [a,b]=[0,1],  $x_0^*=0,$   $x_k^*=0+k\Delta x=k\frac{1}{n},$   $1\leq k\leq n,$ 

Otra opción, tomar  $f(x) = \ln(1+x)$ , [a,b] = [0,1],  $x_0^* = 0$ ,  $x_k^* = 0 + k\Delta x = k\frac{1}{n}$ ,  $1 \le k \le n$ ,  $(x_n^* = 1)$ 

Por lo tanto,



$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \int_{1}^{2} \ln(x) dx = \int_{0}^{1} \ln(1+x) dx$$

(c) Notar que  $\frac{1}{e} = \frac{1}{1 + \frac{n(e-1)}{n}}$ 

$$\lim_{n \to \infty} \frac{e - 1}{n} \left( \frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \lim_{n \to \infty} \frac{e - 1}{n} \sum_{k=1}^{n} \frac{1}{1 + k \frac{(e - 1)}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1 + k \frac{(e - 1)}{n}} \underbrace{\frac{e - 1}{n}}_{\Delta x} \underbrace{\frac{e - 1}{n}}_{\Delta x}$$

Así, considerando  $\Delta x = \frac{e-1}{n}$  (note que el intervalo de intergración debe tener longitud e-1) y

Una opción, [a,b]=[1,e] y  $f(x)=\frac{1}{x},\ x_0^*=1,\ x_k^*=1+k\Delta x=1+k\frac{e-1}{n},\ 1\leq k\leq n,$   $(x_n^*=e)$ 



Otra opción,  $f(x) = \frac{1}{1+x}$ , [a,b] = [0,e-1],  $x_0^* = 0$ ,  $x_k^* = 0 + k\Delta x = k\frac{e-1}{n}$ ,  $1 \le k \le n$ ,  $(x_n^* = e-1)$ 

Entonces,



$$\lim_{n \to \infty} \frac{e - 1}{n} \left( \frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \int_{1}^{e} \frac{1}{x} dx = \ln(e) - \ln(1) = 1$$
o
$$\lim_{n \to \infty} \frac{e - 1}{n} \left( \frac{1}{1 + \frac{e - 1}{n}} + \frac{1}{1 + \frac{2(e - 1)}{n}} + \frac{1}{1 + \frac{3(e - 1)}{n}} \cdots + \frac{1}{e} \right) = \int_{0}^{e - 1} \frac{1}{1 + x} dx = 1$$

2. Calcule las siguientes integrales:

a) 
$$\int_{2}^{6} (6-2x) dx$$

b) 
$$\int_{-5}^{4} |2x - 2| dx$$

c) 
$$\int_{-3}^{5} [x] dx$$

Solución:

a) Usando la interpretación de área tenemos que



$$\int_{2}^{6} (6 - 2x) \, dx = 1 - 9 = -8$$

b) Usando la interpretación de área tenemos que



$$\int_{-5}^{4} |2x - 2| dx = 36 + 9 = 45$$

c) Usando la interpretación de área tenemos que



$$\int_{-3}^{5} [x]dx = 10 - 6 = 4$$

3. Use la definición de integral de Riemann para encontrar una expresión para el área bajo la gráfica de  $y=\frac{2x}{x^2+1}$  para  $-1\leq x\leq 3$ 

# Solución:

El área bajo la curva indicada se puede determinar usando sumas de Riemann como

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{4}{k} \left( \frac{2(-3+4/k)}{(-3+4/k)^2 + 1} \right)$$