1. Algebrai és gyökös kifejezések I.

1.1. Kiegészítés az elmélethez

Ajánlott átnézni az alábbiakat:

- 1. Nevezetes azonosságok.
- 2. Hatványok (pozitív egész hatványok, negatív egész hatványok, racionális hatványok) és műveletek hatványokkal.
- 3. Gyökök és műveletek gyökökkel.
- 4. Szorzattá alakítás, polinomok, polinomok gyökei.

Néhány nevezetes azonosság

- $(a+b)^2 = a^2 + 2ab + b^2$ $(a, b \in \mathbb{R});$
- $(a-b)^2 = a^2 2ab + b^2$ $(a, b \in \mathbb{R});$
- $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a, b \in \mathbb{R});$
- $(a-b)^3 = a^3 3a^2b + 3ab^2 b^3$ $(a, b \in \mathbb{R});$
- $a^2 b^2 = (a+b) \cdot (a-b)$ $(a, b \in \mathbb{R});$
- $a^3 + b^3 = (a+b) \cdot (a^2 ab + b^2)$ $(a, b \in \mathbb{R});$
- $a^3 b^3 = (a b) \cdot (a^2 + ab + b^2)$ $(a, b \in \mathbb{R});$
- $a^n b^n = (a b) \cdot (a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1})$ $(a, b \in \mathbb{R}).$

Polinomok, polinomok gyökei

Adott $n \in \mathbb{N}$ esetén n-edfokú polinomon értjük az alábbi kifejezést:

$$P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0,$$

ahol a_n , a_{n-1} , ..., a_1 , a_0 adott valós számok (a polinom együtthatói), $a_n \neq 0$. Az a_n együttható neve: a polinom főegyütthatója. x jelöli a polinom ún. változóját, ami tetszőleges valós szám lehet. Az n=0 esetben konstans polinomról beszélünk. Ezek tehát a nem nulla valós számokkal azonosíthatók. A 0-át is tekinthetjük polinomnak, e polinom fokát és főegyütthatóját azonban nem értelmezzük.

Az $\alpha \in \mathbb{R}$ számot a P polinom gyökének nevezzük, ha $P(\alpha) = 0$. Az $x - \alpha$ elsőfokú polinom az α gyökhöz tartozó gyöktényező.

Az $a^n - b^n$ különbség szorzattá alakítási szabályának segítségével bebizonyítható, hogy az $\alpha \in \mathbb{R}$ szám akkor és csak akkor gyöke a P polinomnak, ha az $x - \alpha$ gyöktényező kiemelhető P-ből, azaz, ha van olyan Q polinom, hogy

$$P(x) = (x - \alpha) \cdot Q(x)$$
 $(x \in \mathbb{R}).$

Az említett azonosság segítségével a kiemelés a gyakorlatban is végrehajtható (ld. Függelék 27.1. szakasz).

Gyakran használt módszer a gyöktényező kiemelésére a Horner-féle táblázat alkalmazása (ld. Függelék 27.2. szakasz).

Legyen α a P polinom gyöke. Ekkor az előzőek szerint van olyan van olyan Q_1 polinom, hogy

$$P(x) = (x - \alpha) \cdot Q_1(x)$$
 $(x \in \mathbb{R}).$

Ha α gyöke a Q_1 polinomnak is, akkor van olyan van olyan Q_2 polinom, hogy

$$P(x) = (x - \alpha) \cdot (x - \alpha) \cdot Q_2(x) = (x - \alpha)^2 \cdot Q_2(x) \qquad (x \in \mathbb{R}).$$

Az eljárást addig folytatjuk, amíg lehet. Így azt kapjuk, hogy van olyan $m \in \mathbb{N}^+$ szám és Q_m polinom, hogy

$$P(x) = (x - \alpha)^m \cdot Q_m(x) \qquad (x \in \mathbb{R}),$$

és α már nem gyöke Q_m -nek, azaz $Q_m(\alpha) \neq 0$.

Az m számot az α gyök multiplicitásának nevezzük (a P polinomban).

A gyöktényezők most vázolt sorozatos kiemelésével belátható, hogy egy n-edfokú polinomnak legfeljebb n db gyöke van.

1.1.1. Ellenőrző kérdések az elmélethez

- 1. Végezze el a következő hatványozást: $(a-2b+c)^2$, ha $a,b,c\in\mathbb{R}$.
- 2. Alakítsa szorzattá a következő kifejezést, ha $x, y, z \in \mathbb{R}$:

$$4x^2y^2 - (x^2 + y^2 - z^2)^2$$
.

3. Hozza a legegyszerűbb alakra a következő polinomot:

$$P(x) := (2x - 1)^3 - 2 \cdot (2 + x)^3 + x + 5 \quad (x \in \mathbb{R}).$$

4. Alakítsa elsőfokú polinomok szorzatává az alábbi polinomot:

$$P(x) := 3x^3 + 3x^2 - 6x \quad (x \in \mathbb{R}).$$

5. Egyszerűsítse a következő algabrai törtet:

$$E(x) := \frac{x^3 - 1}{1 - x^5} \quad (1 \neq x \in \mathbb{R}).$$

11

6. Egyszerűsítse a következő algabrai törtet:

$$E(x) := \frac{x^4 + x^2 + 1}{x^6 - 1} \quad (\pm 1 \neq x \in \mathbb{R}).$$

7. Egyszerűsítse a következő algabrai törtet:

$$E(x) := \frac{x^2 + x + 1}{x^4 + x^2 + 1} \quad (x \in \mathbb{R}).$$

8. Végezze el a következő műveleteket és hozza a legegyszerűbb alakra a kapott kifejezést:

$$\left(\frac{y^2}{x^3 - xy^2} + \frac{1}{x+y}\right) : \left(\frac{x-y}{x^2 + xy} - \frac{x}{y^2 + xy}\right) \quad (x; y \in \mathbb{R}; x \neq 0; |x| \neq |y|).$$

9. Gyöktelenítse a következő törtek nevezőjét:

(a)
$$\frac{2}{\sqrt{3-\sqrt{2}}-1}$$
.

(b)
$$\frac{1}{1+\frac{1}{1+\frac{1}{\sqrt{2}}}}$$
.

10. Számítsa ki az alábbi kifejezések pontos értékét:

(a)
$$\left(\sqrt{9+6\sqrt{2}}-\sqrt{9-6\sqrt{2}}\right)^2$$
.

(b)
$$\frac{1}{\sqrt{3-2\sqrt{2}}} - \frac{1}{\sqrt{3+2\sqrt{2}}}$$

11. Számítsa ki az alábbi kifejezés pontos értékét:

$$\left(\frac{1}{\sqrt{5}-2}\right)^3 - \left(\frac{1}{\sqrt{5}+2}\right)^3.$$

12. Végezze el a következő műveleteket:

$$\frac{\sqrt{a} + \sqrt{b} - 1}{a + \sqrt{ab}} + \frac{\sqrt{a} - \sqrt{b}}{2\sqrt{ab}} \cdot \left(\frac{\sqrt{b}}{a - \sqrt{ab}} + \frac{\sqrt{b}}{a + \sqrt{ab}}\right) \quad (a; b > 0; ab \neq 0; a \neq b).$$

13. Végezze el a következő műveleteket:

$$\frac{\left(a^{1/2} \cdot b^{2/3}\right)^{-3/4} \cdot \left(a^{1/3} \cdot b^{1/4}\right)^2}{\left(a^{1/12}\right)^{-1/2}} \quad (a > 0; b \ge 0).$$

14. Tekintsük az alábbi függvényt:

$$f(x) := \sqrt{x + 2\sqrt{x} + 1} + \sqrt{x - 2\sqrt{x} + 1} \quad (x \in [0; +\infty)).$$

Hozza az f utasítását a legegyszerűbb alakra.

15. Legyenek $x,y,z\in\mathbb{R}\setminus\{0\}$ olyan valós számok, melyekre teljesül, hogy:

$$x + y + z = 1 \land \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0.$$

Mennyi lesz az alábbi kifejezés pontos értéke:

$$x^2 + y^2 + z^2$$
?

1.2. Feladatok

1.2.1. Órai feladatok

Algebrai átalakítások, azonosságok

■ Mutassuk meg, hogy minden $a, b \in \mathbb{R}$ esetén

$$a^{2} + ab + b^{2} = 3 \cdot \left(\frac{a+b}{2}\right)^{2} + \left(\frac{a-b}{2}\right)^{2}.$$

Számítsuk ki ennek alapján a^3-b^3 pontos értékét, ha a-b=2 és $a+b=\sqrt{5}$.

- **2.** Az x > 0 valós számra teljesül, hogy $x^2 + \frac{1}{x^2} = 7$. Bizonyítsuk be, hogy $x^5 + \frac{1}{x^5}$ is egész szám.
- **3.** Bizonyítsuk be, hogy:

(a)
$$\frac{1}{(a+b)^2}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{2}{ab(a+b)^2}=\frac{1}{a^2b^2};$$

(b)
$$\frac{a}{a^3 + a^2b + ab^2 + b^3} + \frac{b}{a^3 - a^2b + ab^2 - b^3} + \frac{1}{a^2 - b^2} - \frac{1}{a^2 + b^2} - \frac{a^2 + 3b^2}{a^4 - b^4} = 0;$$

(c)
$$\frac{1}{a(a-b)(c-a)} + \frac{1}{b(a-b)(b-c)} + \frac{1}{c(c-a)(b-c)} = -\frac{1}{abc};$$

(d)
$$\frac{a^2 - bc}{(a+b)(a+c)} + \frac{b^2 - ac}{(a+b)(b+c)} + \frac{c^2 - ab}{(a+c)(b+c)} = 0.$$

- 4. Igazoljuk, hogy ha
 - (a) $a, b, c \in \mathbb{R}$ és a + b + c = 0, akkor $a^3 + a^2c abc + b^2c + b^3 = 0$;
 - **(b)** $a, b, c \in \mathbb{R}$ és a + b + c = 0, akkor $a^3 + b^3 + c^3 = 3abc$;
 - (c) $a, b, c \in \mathbb{R}$ és $a^2 + b^2 + c^2 = ab + ac + bc$, akkor a = b = c.
- **5.** Bizonyítsuk be, hogy ha az x, y, z pozitív valós számokra:

$$x + 2y + 3z = 6$$
 \wedge $\frac{6}{x} + \frac{3}{y} + \frac{2}{z} = 1$

akkor

$$(x-6) \cdot (y-3) \cdot (z-2) = 0.$$

6. Egyszerűsítsük a következő kifejezést az x, y változók olyan valós értékei mellett, melyekre $x \neq y$:

$$E(x,y) = \frac{x^3 - x - y^3 + y + xy^2 - x^2y}{x^3 + x - y^3 - y + xy^2 - x^2y}.$$

Bizonyítsuk be, hogy a fenti egyszerűsített kifejezésben az x, y változóknak az alábbi értékeket adva az új kifejezés nem függ a z paramétertől:

$$x = \frac{k(1-z^2)}{1+z^2}; \quad y = \frac{2kz}{1+z^2} \quad (k, z \in \mathbb{R}).$$

7. Alakítsuk szorzattá az

$$(a^2 + b^2 - c^2)^2 - (a^2 - b^2 + c^2)^2$$
 $(a, b, c \in \mathbb{R})$

különbséget!

8. Számítsuk ki az alábbi összeget, ahol az utolsó tagban n darab 1-es jegy szerepel $(1 \le n \in \mathbb{N})$:

$$1 + 11 + 111 + \dots + \underbrace{1 \cdots 1}_{n \text{ jegy}} = ?$$

9. Tekintsük az alábbi függvényeket:

$$f(x) := \frac{1-x}{1+x} \ (x \in \mathbb{R} \setminus \{-1\}); \ g(x) := \frac{1+x}{1-x} \ (x \in \mathbb{R} \setminus \{1\}).$$

Bizonyítsuk be, hogy minden $x \in \mathbb{R} \setminus \{-1; 0; 1\}$ valós szám esetén:

$$f(q(x)) \cdot q(f(x)) + 1 = 0.$$

10. Határozzuk meg az $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$ függvényt, úgy, hogy teljesüljön az alábbi egyenlőség minden $x \in \mathbb{R} \setminus \{1\}$ esetén:

$$\frac{x^n+1}{x-1} = x^{n-1} + x^{n-2} + \dots + x^{n-k} + f(x) \quad (1 \le k \le n; 1 \le k, n \in \mathbb{N}).$$

Gyökös kifejezések, átalakítások

Lássuk be, hogy

(a)
$$a - b = (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})$$
 $(a, b \ge 0);$

(b)
$$a + b = (\sqrt[3]{a} + \sqrt[3]{b})(\sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2})$$
 $(a, b \in \mathbb{R}).$

(c)
$$a - b = (\sqrt[3]{a} - \sqrt[3]{b})(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2})$$
 $(a, b \in \mathbb{R}).$

12. Hozzuk egyszerűbb alakra a következő kifejezéseket:

(a)
$$\frac{\sqrt{a+b} - \sqrt{a-b}}{\sqrt{a+b} + \sqrt{a-b}} \quad (a, b \in \mathbb{R}, \ 0 < b < a).$$

(b)
$$\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{a} + \sqrt{b}}$$
 $(a, b \in \mathbb{R}, 0 < b, a).$

$$\left(\sqrt{x} - \frac{\sqrt{xy} + y}{\sqrt{x} + \sqrt{y}} \right) \cdot \left(\frac{\sqrt{x}}{\sqrt{x} + \sqrt{y}} + \frac{\sqrt{y}}{\sqrt{x} - \sqrt{y}} + \frac{2\sqrt{xy}}{x - y} \right) \quad (0 < x \neq y).$$

13. Hozzuk a legegyszerűbb alakra az alábbi kifejezést, a változók megengedett értékei mellett $(0 < x, y; \ x \neq y)$:

$$E(x,y) := \left(\frac{x^{-1/6} - \frac{5}{\sqrt[6]{y}}}{\frac{1}{x^{1/3}} - y^{-1/3}} - 5 \cdot \frac{x^{-1/6} - y^{-1/6}}{x^{-1/3} - \sqrt[3]{y^{-1}}}\right)^{-1} \cdot \frac{6\sqrt[6]{x}}{\sqrt[3]{x} - \sqrt[3]{y}}.$$

14. Írjuk egyszerűbb alakba a következő kifejezést, és számítsuk ki az értékét, ha x=0,5 :

$$E(x) := \left(\frac{\sqrt{1+x}}{\sqrt{1+x} - \sqrt{1-x}} + \frac{1-x}{\sqrt{1-x^2} - 1 + x}\right) \cdot \left(\sqrt{x^{-2} - 1} - \frac{1}{x}\right) \qquad (0 < x < 1) .$$

15. Hozzuk egyszerűbb alakra az alábbi számot:

$$\sqrt{7 - \sqrt{48}} + \sqrt{5 - \sqrt{24}} + \sqrt{3 - \sqrt{8}}.$$

16. Számítsuk ki az alábbi "teleszkópikus" összegeket:

a)
$$\sum_{k=1}^{n} \frac{1}{k^2 + k}$$
 $(1 \le n \in \mathbb{N}).$

b)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k-1} + \sqrt{k}}$$
 $(1 \le n \in \mathbb{N}).$

17. Tekintsük az alábbi függvényt:

$$f(x) := \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \quad (x \in [1; +\infty)).$$

Hozza az f utasítását a legegyszerűbb alakra.

Polinomok

18. Alakítsuk szorzattá az alábbi polinomokat:

(a)
$$P(x) := x^3 + 8 \quad (x \in \mathbb{R});$$

(b)
$$Q(x) := x^5 + x^4 + x^3 + x^2 + x + 1 \quad (x \in \mathbb{R}).$$

19. Igazoljuk, hogy a megadott x_0 szám a mellette álló P polinom gyöke, majd emeljük ki a hozzá tartozó gyöktényezőt P-ből:

(a)
$$x_0 = 2$$
. $P(x) = 3x^2 - 7x + 2$:

(b)
$$x_0 = 3$$
, $P(x) = 2x^3 - 4x^2 - 18$;

(c)
$$x_0 = -1$$
, $P(x) = 2x^4 - 5x^3 - 6x^2 + 3x + 2$.

20. Milyen $k \in \mathbb{R}$ mellett lehet

(a)
$$(2x^2 + x + k)$$
-ból $(x + 3)$ -at $(x \in \mathbb{R})$;

(b)
$$(4x^2 - 6x + k)$$
-ból $(x - 3)$ -at $(x \in \mathbb{R})$

kiemelni? Emeljük is ki!

21. Legyen x_1, x_2 az $x^2 + px + 1$ másodfokú polinom, x_3 és x_4 pedig az $x^2 + qx + 1$ másodfokú polinom két-két valós gyöke. Írjuk fel az alábbi szorzatot p és q függvényében:

$$(x_1-x_3)\cdot(x_2-x_3)\cdot(x_1+x_4)\cdot(x_2+x_4).$$

22. Bizonyítsuk be, hogy a következő polinom értéke minden egész x-re egész:

$$P(x) = \frac{1}{315} \cdot x^9 - \frac{2}{21} \cdot x^7 + \frac{13}{15} \cdot x^5 - \frac{164}{63} \cdot x^3 + \frac{64}{35} \cdot x.$$

23. Határozza meg az a, b, c valós paraméterek értékét úgy, hogy az

$$P(x) = x^4 + x^3 + ax^2 + bx + c$$

polinom (x-1)-gyel, (x-2)-vel, (x-3)-mal való osztási maradéka rendre 1, 2, illetve 3 legyen.

1.2.2. További feladatok

 $Algebrai\ \acute{a}talak\acute{i}t\acute{a}sok,\ azonoss\acute{a}gok$

1. Hozzuk a legegyszerűbb alakra az alábbi kifejezést:

$$\frac{a}{a^2 - 2ab + b^2} - \frac{a}{a^2 - b^2} + \frac{1}{a + b} \quad (a, b \in \mathbb{R}, \ |a| \neq |b|).$$

2. Igazoljuk az alábbi azonosságot:

$$\left(\frac{a}{a+2b} - \frac{a+2b}{2b}\right) \left(\frac{a}{a-2b} - 1 + \frac{8b^3}{8b^3 - a^3}\right) = \frac{a}{2b-a}$$

$$(a, b \in \mathbb{R}, |a| \neq 2|b|, b \neq 0)$$
.

3. Lássuk be, hogy minden $a, b, c, x, y \in \mathbb{R}$ esetén

(a)
$$a(b+c)^2 + b(c+a)^2 + c(a+b)^2 - 4abc = (a+b)(b+c)(c+a);$$

(b)
$$(a^2 + b^2)(x^2 + y^2) - (ax + by)^2 = (ay - bx)^2$$
;

(c)
$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
.

4. Bizonyítsuk be, hogy bármely $a, b, c \in \mathbb{R}$ esetén

(a)
$$(a+b)^3 + (b+c)^3 + (c+a)^3 - 3(a+b)(b+c)(a+c) = 2(a^3+b^3+c^3-3abc)$$
;

(b)
$$(a-b)^3 + (b-c)^3 + (c-a)^3 - 3(a-b)(b-c)(c-a) = 0$$
;

(c)
$$(a^2 - bc)^3 + (b^2 - ac)^3 + (c^2 - ab)^3 - 3(a^2 - bc)(b^2 - ac)(c^2 - ab) = (a^3 + b^3 + c^3 - 3abc)^2;$$

(d)
$$(a+b-c)^3 + (b+c-a)^3 + (c+a-b)^3 - 3(a+b-c)(b+c-a)(c+a-b) = 4(a^3+b^3+c^3-3abc).$$

5. Mutassuk meg, hogy ha a, b, c > 0 és abc = 1, akkor

$$\frac{a}{ab+a+1} + \frac{b}{bc+b+1} + \frac{c}{ca+c+1} = 1 \; .$$

6. Tegyük fel, hogy az a, b, c valós számok teljesítik az alábbi feltételeket:

$$a + b + c = 1 \quad \wedge \quad \frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} = 1$$
.

Számítsuk ki a következő kifejezés értékét:

$$\frac{1}{1+a+ab} + \frac{1}{1+b+bc} + \frac{1}{1+c+ac} \; .$$

7. Bizonyítsuk be, hogy ha $x, y, z \in \mathbb{R}$ és

$$x^{3} + y^{3} + z^{3} = x^{2} + y^{2} + z^{2} = x + y + z = 1,$$

akkor xyz = 0.

8. Adjuk meg

$$a^{3} + b^{3} + 3(a^{3}b + ab^{3}) + 6(a^{3}b^{2} + a^{2}b^{3})$$

értékét, ha $a, b \in \mathbb{R}$ és a + b = 1.

- **9.** Bizonyítsuk be, hogy ha két egész szám különbsége 2, akkor a köbeik különbsége felbontható három egész szám négyzetének összegére!
- 10. Hozzuk egyszerűbb alakra a következő kifejezést:

$$\left(\frac{4}{3x} - \frac{1}{x-1}\right) : \left(1 - \frac{3(x-2)}{2(x-1)}\right) \quad (x \in \mathbb{R}, \ x \neq 0; 1) .$$

11. Számítsuk ki a következő kifejezések értékét:

(a)
$$\frac{(a+1)(a^8+a^4+1)}{(a^4-a^2+1)(a^2+a+1)}$$
, ha $a=10$;

(b)
$$\left(\frac{8+b^3}{x^2-y^2}: \frac{4-2b+b^2}{x-y}\right) \left(x+\frac{xy+y^2}{x+y}\right)$$
, ha $b=8, \ x=997, 5, \ y=-0, 75;$

12. Tekintsük az alábbi függvényeket:

$$f(x) := 2x + 3 \quad (x \in \mathbb{R}); \quad g(x) := 4x + 9 \quad (x \in \mathbb{R}).$$

Igazoljuk, hogy:

$$f(g(x)) = g(f(x)) \quad (x \in \mathbb{R}).$$

- 13. Tegyük fel, hogy $x + \frac{1}{x} = a$. Fejezzük ki az $x^4 + \frac{1}{x^4}$ kifejezés értékét a segítségével.
- **14.** Határozzuk meg az $f: \mathbb{R} \setminus \{0; 1\} \to \mathbb{R}$ függvényt, úgy, hogy teljesüljön az alábbi egyenlőség minden $x \in \mathbb{R} \setminus \{0; 1\}$ esetén:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^{n+1} \cdot f(x) \quad (1 \le n \in \mathbb{N}).$$

Hogyan definiálhatnánk az f(0) értéket, hogy az azonosság fennálljon x = 0-ra is? Mennyi az $\frac{1}{f(2018)}$ érték?

Gyökös kifejezések, átalakítások

15. Mutassuk meg, hogy

(a)
$$\sqrt{a} - \sqrt{b} = (\sqrt[4]{a} - \sqrt[4]{b})(\sqrt[4]{a} + \sqrt[4]{b})$$
 $(a, b \ge 0)$;

(b)
$$a\sqrt{a} - b\sqrt{b} = (\sqrt{a})^3 - (\sqrt{b})^3 = (\sqrt{a} - \sqrt{b})(a + \sqrt{ab} + b)$$
 $(a, b \ge 0)$;

(c)
$$\sqrt{a^3} + \sqrt{b^3} = (\sqrt{a} + \sqrt{b}) \left(a - \sqrt{ab} + b \right) \quad (a, b \ge 0).$$

16. Hozzuk egyszerűbb alakra a következő kifejezést:

$$\frac{a-b}{a+b} \cdot \sqrt{\frac{a^2 + ab}{a^2 - 2ab + b^2}} \quad (a, b \in \mathbb{R}, \ 0 < b < a).$$

17. Számítsuk ki a következő kifejezés értékét:

$$\frac{2\sqrt{xy} + 4\sqrt{y} - 3\sqrt{x} - 6}{2 - 2y} : \left(\frac{4y + 19 - 2\sqrt{y}}{2 + 2\sqrt{y}} - 5\right),$$

ha x = 16, y = 9.

18. Igazoljuk, hogy

(a)
$$\sqrt{7+2\sqrt{6}} \cdot \sqrt{7-2\sqrt{6}}$$
;

(b)
$$\sqrt[3]{\sqrt{5}+2} - \sqrt[3]{\sqrt{5}-2}$$
;

(c)
$$\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}};$$

(d)
$$\sqrt[3]{1-27\sqrt[3]{26}+9\sqrt[3]{26^2}}+\sqrt[3]{26}$$

egész számok!

19. Számítsuk ki az alábbi "teleszkópikus" összegeket:

a)
$$\sum_{k=1}^{n} \frac{2k+1}{k^2 \cdot (k+1)^2}$$
 $(1 \le n \in \mathbb{N}).$

b)
$$\sum_{k=1}^{n} \frac{1}{k\sqrt{k+1} + (k+1)\sqrt{k}}$$
 $(1 \le n \in \mathbb{N}).$

20. Hozzuk a legegyszerűbb alakra a következő kifejezést:

$$E(x,y) := \left(\frac{x^{1/2} + y^{1/2}}{(x+y)^{1/2}} - \frac{(x+y)^{1/2}}{x^{1/2} + \left(\frac{1}{y}\right)^{-1/2}}\right)^{-2} - \frac{x+y}{2\sqrt{xy}}; \quad (0 < x, y).$$

21. Hozzuk a legegyszerűbb alakra a következő kifejezést a változók megengedett értékei mellett:

$$E(a,b) := \frac{(ab)^{3/2} - (a-b) \cdot \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)}{ab\left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} + \sqrt{ab}\right) + (a-b)\left(\sqrt{\frac{b}{a}} - \sqrt{\frac{a}{b}} - \sqrt{ab}\right)}.$$

Polinomok

22. Alakítsuk szorzattá az alábbi kifejezéseket:

- (a) $4x^2 9b^2$;
- (b) $y^3 + 1$:
- (c) $8a^3 27$:
- (d) $27a^3 + 8$;
- (e) $8a^3 + b^6$:
- (f) $27a^6x^{12} 64b^9y^{15}$;
- (g) $x^3 + 18x^2 + 108x + 216$.

23. Igazoljuk, hogy a megadott x_0 szám a mellette álló P polinom gyöke, majd emeljük ki a hozzá tartozó gyöktényezőt P-ből:

(a)
$$x_0 = 1$$
, $P(x) = 5x^3 - 2x^2 + 7x - 10$;

(b)
$$x_0 = -2$$
, $P(x) = 3x^3 + 10x^2 + 8x$.

24. Milyen $k \in \mathbb{R}$ mellett lehet

(a)
$$(x^3 - 4x + 2k)$$
-ból $(x - 4)$ -et;

(b)
$$(x^4 - 3x^3 + 5x^2 + 7x - 3k)$$
-ból $(x+1)$ -et

kiemelni? Emeljük is ki!

25. Hány különböző megoldása van az alábbi egyenletnek a valós számhalmazon

$$\sum_{k=1}^{n} (x_k^2 + \frac{1}{x_k^2}) = 2n ?$$

26. Bizonyítsa be, hogy ha x,y,z különböző egész számok, akkoraz alábbi kifejezés értéke is egész szám:

$$\frac{x^{2008}}{(x-y)(x-z)} + \frac{y^{2008}}{(y-x)(y-z)} + \frac{z^{2008}}{(z-y)(z-x)}.$$

27. Igazoljuk, hogy ha a k egész szám gyöke a

$$P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

egész együtthatós polinomnak (tehát $k, a_0, \ldots, a_n \in \mathbb{Z}$), akkor k osztója a_0 -nak!

28. Határozzuk meg az alábbi polinomok egész gyökeit:

(a)
$$x^4 - 2x^3 - 8x^2 + 13x - 4$$
;

(b)
$$x^4 - 2x^3 - 8x^2 + 13x - 6$$
:

(c)
$$x^3 - 6x^2 + 15x - 14$$
:

(d)
$$x^5 - 2x^4 - 4x^3 + 4x^2 - 5x + 6$$
;

(e)
$$x^5 - 7x^3 - 12x^2 + 6x + 36$$
.

 $Megjegyz\acute{e}s$: Igazolható, hogy ha a polinom főegyütthatója $a_n=1$ vagy $a_n=-1$, akkor a polinom valós gyökei vagy egész számok, vagy pedig irracionális számok.

29. Adott a $P(x) := x^2 + ax + b \quad (x \in \mathbb{R})$ polinom, ahol a, b tetszőleges valós paraméterek. Határozzuk meg a következő kifejezést:

$$P(-P(x)) - P(P(-x))) \quad (x \in \mathbb{R}).$$