| DTC[] | P0171/25 SYSTEM TOO LEAN (FUEL TRIM) |
|-------|--------------------------------------|
|       |                                      |
| DTC□  | P0172/26 SYSTEM TOO RICH (FUEL TRIM) |
|       |                                      |
| DTC□  | P0174/25 SYSTEM TOO LEAN (BANK2)     |
|       |                                      |
| DTC□  | P0175/26 SYSTEM TOO RICH (BANK2)     |

# **CIRCUIT** DESCRIPTION

Fuel[]rim[]refers[]ro[]he[]eedback[compensation[]value[compared[]against[]]he[]basic[]njection[]ime.[]Fuel[]rim includes[]short-term[]uel[]rim[]and[]ong-term[]uel[]rim.

Short-term[fuel[]rim[]s[]the[]short-term[fuel[]compensation[]used[]to[]maintain[]the[]air-fuel[]atio[]at[]ts[]deal theoretical[]yalue. The[]signal[]rom[]the[]heated[]bxygen[]sensor[]ndicates[]yhether[]the[]air-fuel[]atio[]s[]RICH[]order LEAN[]compared[]to[]the[]deal[]theoretical[]yalue,[]triggering[]affeduction[]the[]tolume[]the[]air-fuel[]atio[]s[]ich, and []an[]ncrease[]n[]uel[]yolume[]the[]the[]air-fuel[]atio[]s[]ich, and []an[]ncrease[]n[]the[]yolume[]the[]the[]air-fuel[]atio[]s[]ich, and []an[]ncrease[]n[]the[]yolume[]the[]the[]air-fuel[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]atio[]ati

Long-term[fuel[frim[is] overall fuel[compensation] carried out llong-term[fue] compensate for continual deviation of the short-term[fuel[frim[form[the] central[value] due] of individual of the sage of the sage

If both the short-term due to many and the check beginning to the check beginning of the check beginning to the ch

| DTC[No.              | DTC[Detecting[Condition                                                                                                                       | Trouble[ <b>A</b> rea                                                                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0171/25<br>P0174/25 | When@irffuelfatioffeedback[]s[stable@ifter[]varming[]up@ingine, fuelf[]rim[]s[considerably[]n@irror[]on[]RICH[]side (2[]rip[]detection[]ogic) | Air intake (hose loose)  Fuel ine pressure  Injector blockage  Open brishort in A/F sensor circuit  A/F sensor malfunction  Intake air low meter  E.F.I. engine coolant emperature sensor  Gas eakage pn exhaust system |
| P0172/26<br>P0175/26 | When@irffuelfatioffeedback[isstable@fter@varming@p@ngine,<br>fuelftrim[issconsiderably@n@rror@n@EANside<br>(2ftrip@etection@ogic)             | Air induction system  Fuel ine pressure  Injector clockage  Open of short nave sensor circuit  A/F sensor malfunction  Intake air low meter  E.F.I. engine coolant temperature sensor  Gas leakage on exhaust system    |

### HINT:

If the total of the short–term fuel trim value and long–term fuel trim value is within  $\pm$  25 %, the system is functioning normally.

# **WIRING DIAGRAM**

Refer To DTC P0125 on page 05-333.

# INSPECTION PROCEDURE

HINT:

Read freed frame data using hand-held tester. Because freeze frame freeze frame from the malfunction is detected, when frouble shooting it is useful for determining whether the was funning from the frame from the frame from the frame frame frame from the frame frame frame frame from the frame frame

# when using Hand-held Tester:

1 CHECK[AIR[INDUCTION[\$YSTEM[(See[page 11-49)]

NG REPAIR OR REPLACE AIR INDUCTION SYSTEM

OK

2 | INSPECT[FUEL[INJECTOR[ASSY[[See]page 11-55]

NG | REPLACE FUEL INJECTOR ASSY

OK

3 | INSPECT INTAKE AIR FLOW METER SUB-ASSY See page 10-14)

NG REPLACE INTAKE AIR FLOW METER SUB-ASSY

OK

4 INSPECT E.F.I. ENGINE COOLANT TEMPERATURE SENSOR (See page 10-14)

NG REPLACE E.F.I. ENGINE COOLANT TEMPERATURE SENSOR

OK

5 | CHECK[FOR[\$PARK[AND[]GNITION[[See[page 18-5]

NG > GO TO IGNITION SYSTEM

OK

6 | CHECK[FUEL[PRESSURE[(See[page 11-52)

NG > GO TO FUEL SYSTEM

OK

## 7 CHECK EXHAUST GAS LEAK

NG REPAIR OR REPLACE EXHAUST GAS LEAKAGE POINT

OK

## 8 READ VALUE OF HAND-HELD TESTER(AIR FUEL RATIO SENSOR)

- (a) Connect the hand-held tester to the DLC3.
- (b) Warm up the A/F sensor with the engine speed at 2,500 rpm for approx. 90 sec.
- (c) Read the voltage value of the A/F sensor on the screen of hand-held tester when you perform all the following conditions.

### HINT:

The voltage of the AFR+ or AFL+ terminal of the ECM is 3.3 fixed the AFR- or AFL- terminal is 3.0 V fixed. Therefore, it is impossible to check the A/F sensor output voltage at the terminals (AFR+, AFL+/AFR-, AFL-) of the ECM.

#### Air fuel ration sensor output voltage:

| Condition                                                                                                                       | A/F Sensor Voltage value                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engine idling                                                                                                                   | Not remains at 3.30 V (0.660 V*)  Not remains at 3.8 V (0.76 V*) or more  Not remains at 2.8 V (0.56 V*) or less  When you use the hand-held tester. |
| Engine racing                                                                                                                   |                                                                                                                                                      |
| Driving at engine speed 1,500 rpm or more and vehicle speed 40 km/h (25 mph) or more, and operate throttle valve open and close |                                                                                                                                                      |

#### HINT:

- During fuel enrichment, there is a case that the output voltage of the A/F sensor is below 2.8 V (0.56 V\*), it is normal.
- During fuel cut, there is a case that the output voltage of the A/F sensor is above 3.8 V (0.76 V\*), it
  is normal.
- If the output voltage of the A/F sensor remains at 3.30 V (0.660 V\*) even after performing all the above conditions, the A/F sensor circuit may be open.
- If the output voltage of the A/F sensor remains at 3.8 V (0.76 V\*) or more, or 2.8 V (0.56 V\*) or less even after performing all the above conditions, the A/F sensor circuit may be short.
- \*: When you use the hand-held tester.

OK Go to step 10

NG

## 9 CHECK[HARNESS[AND]CONNECTOR(ECM - A/F[SENSOR)





- (a) Disconnect the air fuel fatio sensor connector.
- (b) ☐ Disconnect The ECM E9 connector.
- (c) Check flor open between the terminals HAFL of the ECM connector and HAFL of the air flue flatio sensor connector.

  Resistance: 1 Ω or less
- (d) Check of open between the derminals AFL+ of the ECM connector and AFL+ of the air flue fatio sensor connector.

  Resistance: 1 Ω or less
- (e) Check flor open between the terminals AFL of the ECM connector and AFL of the air flue fratio sensor connector. Resistance: 1  $\Omega$  or less
- (f) Check[f]or[open[between[t]he[t]erminals[HAFR[of[t]]he[t]ECM connector[and[HAFR[of[t]]he[t]atio[sensor[connector.

Resistance: 1 Ω[or[]ess

- (g) Check flor pen between the terminals AFR+ of the ECM connector and AFR+ of the air flue flatio sensor connector.

  Resistance: 1 Ω or less
- (h) Check flor open between the terminals AFR of the ECM connector and AFR of the air flue flatio sensor connector.

  Resistance: 1 Ω or less
- (i) Check for short between for file for mals HAFL, HAFR, AFL+, AFR+, AFL-, AFR-and 2 of the ECM connector.

  Resistance: 1 MΩ or more

NG REPAIR OR REPLACE HARNESS AND CONNECTOR

ОК

## **REPLACE AIR FUEL RATIO SENSOR**

10 | PERFORM CONFIRMATION DRIVING PATTERN (See page 05-333)

GO

11 CHECK READ OUTPUT DTC(BESIDES DTC P0171,P0172,P0174 AND P0175 OUTPUT AGAIN)

YES > CHECK AND REPLACE ECM

NO

DIAGNOSTICS[] - EFI[\$YSTEM[]1MZ-FE) 12∏ CONFIRM[VEHICLE[RUNS[OUT[OF[FUEL[]N[]THE[PAST NO[] CHECK[FOR[INTERMITTENT[PROBLEMS **YES** DTC[IS[CAUSED[RUNNING[OUT[OF[FUEL When not using Hand-held Tester: CHECK[AIR[INDUCTION[\$YSTEM[[See[page 11-49]] 1∏ NG∏> REPAIR OR REPLACE AIR INDUCTION SYSTEM OK INSPECT[FUEL[INJECTOR[ASSY[(See[page 11-55) 2 NG∏> REPLACE[FUEL[]NJECTOR[ASSY OK INSPECT INTAKE AIR FLOW METER SUB-ASSY (See page 10-14) 3∏ REPLACE | INTAKE | AIR | FLOW | METER NG∐ SUB-ASSY OK INSPECT[E.F.I.] ENGINE[COOLANT[TEMPERATURE[SENSOR 4□ (See page 10-14) **REPLACE ENGINE** NG E.F.I. **COOLANT TEMPERATURE SENSOR OK** CHECK[FOR[\$PARK[AND[]GNITION[[See[page 18-5]] 5∏ NG **GO TO IGNITION SYSTEM** OK CHECK[FUEL[PRESSURE[See[page 11-52)] 6∏ NG **GO TO FUEL SYSTEM** 

OK

7 | INSPECT[AIR[FUEL[RATIO[\$ENSOR(CHECK[RESISTANCE)[[See[page 12-13]]

NG > REPLA

**REPLACE AIR FUEL RATIO SENSOR** 

OK

**CHECK AND REPLACE ECM**