Afina in projektivna geometrija

Ian Kesar Andrej Matevc

18. februar 2022

Kazalo

Uvod		3
	Afina geometrija 1.1 Afini podprostori v vektorskem prostoru	4
Stv	varno kazalo	6

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani zapiski s predavanj predmeta Afina in projektivna geometrija v letu 2021/22. Predavatelj v tem letu je bil izr. prof. dr. Aleš Vavpetič.

Ker tega predmeta sam nisem izbral v 2. letniku, sta se za pisanje skripte prijazno ponudila Ian in Andrej.

1 Afina geometrija

1.1 Afini podprostori v vektorskem prostoru

Definicija 1.1.1. Naj bo V končnorazsežen vektorski prostor nad obsegom $O, a \in V$ in $W \leq V$. Množico

$$a + W = \{a + x \mid x \in W\}$$

imenujemo $afin \ podprostor$ v V. Množica A je $afin \ prostor$, če je afin podprostor v kakšnem vektorskem prostoru.

Opomba 1.1.1.1. V nadaljevanju V označuje končnorazsežen vektorski prostor nad obsegom O, A pa afin prostor v V.

Lema 1.1.2. Naj bo A = a + W afin podprostor. Tedaj je A = b + W za vse $b \in A$.

Dokaz. Po definiciji je b = a + w za nek $w \in W$, torej je w = b - a. Za vsak $x \in W$ je

$$a + x = b + (a - b) + x = b - w + x,$$

in ker je W vektorski podprostor je $(x-w) \in W$, torej je $a+x=b+(x-w) \in b+W$. Enako pokažemo drugo smer.

Posledica 1.1.2.1. Naj bosta A=a+U in B=b+W afina podprostora v V. Če je $A\subseteq B,$ je $U\le W.$

Dokaz. Velja

$$a + U = A \subseteq B = b + W = a + W.$$

Posledica 1.1.2.2. Naj bo A afin prostor v V. Če je A = a + W in A = a' + W', potem je W = W'.

Definicija 1.1.3. Razsežnost afinega prostora A = a + W je

$$\dim A = \dim U$$
.

Definicija 1.1.4. Naj bodo $a_i \in A$ in $\alpha_i \in O$ za vse $1 \le i \le n$, in naj bo $\sum_{i=1}^n \alpha_i = 1$. Vsoto

$$\sum_{i=1}^{n} \alpha_i a_i$$

imenujemo afina kombinacija točk a_1, \ldots, a_n .

Lema 1.1.5. Naj bo karakteristika O različna od 2. Poljubna afina kombinacija dveh elementov iz A je v A natanko tedaj, ko je poljubna afina kombinacija poljubno elementov iz A v A.

Dokaz. Lemo dokažemo z indukcijo po številu sumandov. Primera n=1 in n=2 sta trivialna.

Naj bo $n \geq 3$ in predpostavimo, da velja izrek za vse m < n. Ideja dokaza je, da pogledamo vsoto prvih n-1 členov in pametno izpostavimo tak faktor, da postane afina in na njej uporabimo izrek in zmanjšamo vsoto na afino kombinacijo dveh elementov, za katero izrek trivialno velja. Označimo $\alpha = \alpha_1 + \cdots + \alpha_{n-1}$. Sedaj ločimo dva primera:

i) Velja $\alpha \neq 0$. Sledi, da je

$$\alpha_1 a_1 + \dots + \alpha_{n-1} a_{n-1} + \alpha_n a_n = \underbrace{\alpha \cdot \overbrace{(\alpha^{-1} \cdot \alpha_1 a_1 + \dots + \alpha^{-1} \cdot \alpha_{n-1} a_{n-1})}^{\text{afina kombinacija } n - 1 \text{ elementov}}_{\text{afina kombinacija dveh elementov}}.$$

Po indukcijski predpostavki je torej afina kombinacija znova element A.

ii) Velja $\alpha = 0$. Brez škode za splošnost je $\alpha_1 + \cdots + \alpha_{n-2} \neq 0$, drugače bi bil $\alpha_{n-1} = 0$ in bi imeli kombinacijo n-1 elementov, za katero po indukcijski predpostavki izrek drži. Dokaz je isti kot zgoraj, le da vzamemo prvih n-2 elementov namesto n-1 in vsoto zmanjšamo na 3 elemente namesto 2.

Dovolj je tako pokazati trditev za n=3. Ker ima O karakteristiko različno od 2, lahko izberemo taka α_1 in α_2 , da je $\alpha_1 + \alpha_2 \neq 0$, saj drugače velja

$$\alpha_1 + \alpha_2 = \alpha_3 + \alpha_2 = \alpha_1 + \alpha_3 = 0,$$

torej velja $\alpha_1 = \alpha_2 = \alpha_3 = 1$ in zato $\alpha_1 + \alpha_2 + \alpha_3 = 1 + 1 + 1 = 1$, oziroma 1 + 1 = 0, kar je protislovje. Sedaj zaključimo kot v prejšnjem primeru.

Trditev 1.1.6. Naj bo karakteristika O različna od 2. $A \leq V$ je afin podprostor natanko tedaj, ko poljubna afina kombinacija dveh točk iz A leži v A.

Dokaz. Predpostavimo, da je A afin podprostor. Naj bo A=a+W in $a+w_1, a+w_2 \in A$, kjer sta $w_1, w_2 \in W$, ter naj bosta $\alpha_1, \alpha_2 \in O$ taka, da velja $\alpha_1+\alpha_2=1$. Potem velja

$$\alpha_{1}a_{1} + \alpha_{2}a_{2} = \alpha_{1}(a + w_{1}) + \alpha_{2}(a + w_{2})$$

$$= \alpha_{1}a + \alpha_{1}w_{1} + \alpha_{2}a + \alpha_{1}w_{2}$$

$$= \alpha_{1}a + \alpha_{2}a + \alpha_{1}w_{1} + \alpha_{1}w_{2}$$

$$= \underbrace{(\alpha_{1} + \alpha_{2})}_{=1} a + \underbrace{(\alpha_{1}w_{1} + \alpha_{1}w_{2})}_{\text{leži v }W}.$$

Sedaj predpostavimo, da poljubna afina kombinacija dveh točk iz A leži v A. A je afin prostor natanko tedaj, ko obstajata nek $W \leq V$ in $a \in A$, da je A = a + W, oziroma ko za vsak $v \in A$ velja $v - a \in W$.

Fiksiramo $a \in A$. Pokazali bomo da je množica $W = \{b - a \mid b \in A\}$ vektorski prostor. Naj bosta x in y poljubna elementa W, torej x = b - a in y = c - a za neka $b, c \in A$, in naj bosta $\alpha, \beta \in O$.

Linearna kombinacija $\alpha x + \beta y$ leži v W natanko tedaj, ko za nek $d \in A$ velja

$$\alpha x + \beta y = \alpha(b-a) + \beta(c-a) = d-a,$$

oziroma

$$a + \alpha(b - a) + \beta(c - a) = (1 - \alpha - \beta)a + \alpha b + \beta c = d.$$

Ker pa velja $(1 - \alpha - \beta) + \alpha + \beta = 1$, je zgornja vsota afina kombinacija elementov a, b in c iz A, torej po predpostavki njihova vsota leži v A.

Stvarno kazalo

A

Afin prostor, 4 Afina kombinacija, 4

\mathbf{R}

Razsežnost, 4