transitivity of the relation \leq . In other words, Q is \mathcal{NP} -complete. In symbols:

$$P \prec Q$$
 and $P \in \mathcal{NPC} \Rightarrow Q \in \mathcal{NPC}$.

Cook and Levin made a fundamental breakthrough by showing that there do indeed exist \mathcal{NP} -complete problems. More precisely, they proved that the satisfiability problem for boolean formulae is \mathcal{NP} -complete. We now describe this problem, and examine the theoretical and practical implications of their discovery.

3.3.2 Boolean formulae and satisfiability

A boolean variable is a variable which takes on one of two values, false or true. Boolean variables may be combined into boolean formulae, which may be defined recursively as follows.

- Every boolean variable is a boolean formula.
- If f is a boolean formula, then so too is $(\neg f)$, the *negation* of f.
- If f_1 and f_2 are boolean formulae, then so too are:
 - $(f_1 \vee f_2)$, the disjunction of f_1 and f_2 ,
 - $(f_1 \wedge f_2)$, the *conjunction* of f_1 and f_2 .

These three operations may be thought of informally as 'not f', ' f_1 or f_2 ', and ' f_1 and f_2 ', respectively.

An assignment of values to the variables is called a *truth assignment*. Given a truth assignment, the value of the formula may be computed according to the following rules:

- if f = false, then $(\neg f) = true$, else $(\neg f) = false$;
- if $f_1 = true$ or $f_2 = true$, then $(f_1 \lor f_2) = true$, else $(f_1 \lor f_2) = false$;
- if $f_1 = true$ and $f_2 = true$, then $(f_1 \wedge f_2) = true$, else $(f_1 \vee f_2) = false$.

Two boolean formulae are *equivalent* (written \equiv) if they take the same value for each assignment of the variable involved. It follows easily from the above rules that disjunction and conjunction are *commutative* and *associative*. Hence, all the formulae obtained from k subformulae f_1, f_2, \ldots, f_k by means of disjunction are all equivalent. Any of these is denoted by $(f_1 \lor f_2 \lor \cdots \lor f_k)$.

A boolean formula is *satisfiable* if there is a truth assignment of its variables for which the value of the formula is *true*. Clearly, some boolean formulae are satisfiable and some are not. This poses the general problem:

Problem 3.5 (SAT; Boolean Satisfiability).

Instance: a boolean formula f. Decide: Is f satisfiable?