Leçon 223. Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications.

1. NOTATION. Tout au long de cette leçon, on considère le corps \mathbf{K} des réels ou des complexes. Une *suite numérique* est une fonction $u \colon \mathbf{N} \longrightarrow \mathbf{K}$ qu'on notera $(u_n)_{n \in \mathbf{N}}$ où, pour chaque entier $n \in \mathbf{N}$, on a posé $u_n = u(n)$. On omettra l'adjectif « numérique ».

1. Des outils simples concernant la convergence

1.1. Limite d'une suite

2. DÉFINITION. Une suite $(u_n)_{n\in\mathbb{N}}$ converge vers un scalaire $\ell\in\mathbb{K}$ si

$$\forall \varepsilon > 0, \ \exists N \in \mathbf{N}, \ \forall n \geqslant N, \qquad |u_n - \ell| \leqslant \varepsilon.$$

- 3. PROPOSITION. Un suite convergente $(u_n)_{n\in\mathbb{N}}$ converge vers un unique scalaire $\ell\in\mathbb{K}$, appelé sa limite. Cette dernière sera notée $\ell=\lim_{n\to+\infty}u_n$ et on écrira $u_n\longrightarrow\ell$.
- 4. EXEMPLE. La suite $(2^{-n})_{n\in\mathbb{N}}$ converge vers 0. La suite $(\cos n)_{n\in\mathbb{N}}$ ne converge pas.
- 5. PROPOSITION. Une fonction $f : \mathbf{K} \longrightarrow \mathbf{K}$ est continue si et seulement si, pour toute suite $(u_n)_{n \in \mathbf{N}}$ convergeant vers un scalaire $\ell \in \mathbf{K}$, on a $f(u_n) \longrightarrow f(\ell)$.
- 6. DÉFINITION. Une extraction est une fonction strictement croissante de **N** vers **N**. Une sous-suite d'une suite $(u_n)_{n\in\mathbb{N}}$ est une suite de la forme $(u_{\varphi(n)})_{n\in\mathbb{N}}$ pour une extraction $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$.
- 7. EXEMPLE. La suite constante égale à 1 est une sous-suite de la suite $((-1)^n)_{n\in\mathbb{N}}$.
- 8. PROPOSITION. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers un scalaire $\ell\in\mathbb{K}$. Alors toute sous-suite $(u_{\omega(n)})_{n\in\mathbb{N}}$ de cette dernière converge vers le scalaire $\ell\in\mathbb{K}$.
- 9. Théorème (passage à la limite). Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles convergentes qui vérifie

$$\forall n \in \mathbf{N}, \quad u_n \leqslant v_n.$$

Alors leurs limites respectivement ℓ et ℓ' vérifient $\ell \leqslant \ell'$.

- 10. THÉORÈME (des gendarmes). Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites réelles. On suppose que
 - pour tout $n \in \mathbf{N}$, on a $u_n \leqslant v_n \leqslant w_n$;
 - les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers un même réel $\ell\in\mathbb{R}$.

Alors la suite $(v_n)_{n \in \mathbb{N}}$ converge vers le réel ℓ .

11. DÉFINITION. Une suite $(u_n)_{n \in \mathbb{N}}$ est bornée s'il existe un réel $M \geqslant 0$ tel que

$$\forall n \in \mathbf{N}, \quad |u_n| \leqslant M.$$

Lorsque $\mathbf{K} = \mathbf{R}$, une suite $(u_n)_{n \in \mathbf{N}}$ est *minorée* (respectivement *majorée*) s'il existe un réel $M \ge 0$ tel que

$$\forall n \in \mathbf{N}, \quad u_n \geqslant M \quad \text{(respectivement } u_n \leqslant M\text{)}.$$

- 12. THÉORÈME. Toute suite réelle croissante et majorée (respectivement décroissante et minorée) est convergente et sa limite vaut $\sup_{n \in \mathbb{N}} u_n$ (respectivement $\inf_{n \in \mathbb{N}} u_n$).
- 13. PROPOSITION (suites adjacentes). Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle croissante et $(v_n)_{n\in\mathbb{N}}$ une suite réelle décroissante telles que $u_n-v_n\longrightarrow 0$. Alors ces deux suites convergent vers la même limite. On dit qu'elles sont adjacentes
- 14. EXEMPLE. La suite $(1-1/n)_{n\geqslant 1}$ et $(1+1/n^2)_{n\geqslant 1}$ sont adjacentes.

15. APPLICATION. Soit $(a_n)_{n \in \mathbb{N}}$ une suite réelle positive décroissante convergeant vers 0. Alors la série $\sum (-1)^n a_n$ converge et, pour tout entier $n \in \mathbb{N}$, on peut écrire

$$\left| \sum_{k=n}^{+\infty} (-1)^k a_k \right| \leqslant a_n.$$

1.2. Comportements asymptotiques

16. DÉFINITION. Une suite $(u_n)_{n \in \mathbb{N}}$ est dominée par une autre suite $(v_n)_{n \in \mathbb{N}}$ s'il existe un réel $A \ge 0$ et un entier $N \in \mathbb{N}$ tels que

$$\forall n \geqslant N, \qquad |u_n| \leqslant M |v_n|.$$

On note alors $u_n = O(v_n)$. Elle est *négligeable* devant la suite $(v_n)_{n \in \mathbb{N}}$ si, pour tout réel $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \qquad |u_n| \leqslant \varepsilon |v_n|.$$

On note alors $u_n = o(v_n)$. Les deux suites sont équivalentes si

$$u_n - v_n = o(u_n).$$

- 17. EXEMPLE. Une suite $(u_n)_{n\in\mathbb{N}}$ tend vers 0 si et seulement si $u_n=o(1)$. On peut écrire $\alpha^n=o(n!)$ pour tout réel $\alpha\in\mathbb{R}$.
- 18. THÉORÈME. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites. On suppose que la suite $(v_n)_{n\in\mathbb{N}}$ ne s'annule plus à partir d'un certain rang $N\in\mathbb{N}$. Alors
 - on a $u_n = o(v_n)$ si et seulement si la suite $(u_n/v_n)_{n \ge N}$ tend vers 0;
 - on a $u_n = O(v_n)$ si et seulement si la suite $(u_n/v_n)_{n \ge N}$ est bornée.
 - on a $u_n \sim v_n$ si et seulement si la suite $(u_n/v_n)_{n \geq N}$ tend vers 1.
- 19. PROPOSITION. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites équivalentes. Si la première converge vers une limite $\ell\in\mathbb{K}$, alors la seconde converge vers cette limite ℓ . Réciproquement, si elles convergent vers une même limite non nulle, alors elles sont équivalentes.
- 20. Contre-exemple. Pour la réciproque, la non nullité de la limite est nécessaire : on pourra penser aux suites $(1/n)_{n\geqslant 1}$ et $(1/n^2)_{n\geqslant 1}$ qui tendent vers 0 et qui ne sont pas équivalentes.
- 21. Théorème (Stirling). Lorsque $n \longrightarrow +\infty$, on a

$$n! \sim \sqrt{2\pi n} n^n e^{-n}.$$

1.3. Suites de Cauchy

22. DÉFINITION. Une suite $(u_n)_{n \in \mathbb{N}}$ est une suite de Cauchy si, pour tout réel $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que

$$\forall p, q \geqslant N, \qquad |u_p - u_q| \leqslant \varepsilon.$$

- 23. Proposition. Toute suite convergente est de Cauchy.
- 24. PROPOSITION. Toute suite de Cauchy est bornée.
- 25. Proposition. Une suite de Cauchy qui admet une sous-suite convergente converge.
- 26. Théorème. Toute suite réelle ou complexe de Cauchy est convergente.

μ

27. EXEMPLE. La série harmonique $(1+\cdots+1/n)_{n\geqslant 1}$ n'est pas de Cauchy, donc elle ne peut pas converger.

2. Des notions plus avancées pour étudier les suites

2.1. Valeurs d'adhérence

- 28. DÉFINITION. Un scalaire $\ell \in \mathbf{K}$ est une valeur d'adhérence d'une suite $(u_n)_{n \in \mathbf{N}}$ si $\forall \varepsilon > 0, \ \forall N \in \mathbf{N}, \ \exists n \geqslant N, \quad |u_n \ell| \leqslant \varepsilon.$
- 29. EXEMPLE. La suite $((-1)^n)_{n\in\mathbb{N}}$ admet deux valeurs d'adhérence, à savoir ± 1 .
- 30. Proposition. Une suite convergente admet une unique valeur d'adhérence qui se trouve être sa limite.
- 31. Proposition. Soient $(u_n)_{n\in\mathbb{N}}$ une suite et $\ell\in\mathbb{K}$ un scalaire. Alors les points suivants sont équivalents :
 - le scalaire ℓ est une valeur d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$;
 - la suite $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite convergente vers le scalaire ℓ ;
 - pour tout entier $N \in \mathbb{N}$, on a $\ell \in \{x_n \mid n \geqslant N\}$.
- 32. APPLICATION. Soit $\sum a_n z^n$ une série entière de rayon de convergence $R \geqslant 0$. Considérons la plus grande valeur d'adhérence $\ell \in [0, +\infty]$ de la suite $(|a_n|^{1/n})_{n\geqslant 1}$. Alors $R=1/\ell$.
- 33. Théorème (Bolzano-Weierstrass). Toute suite réelle ou complexe admet une valeur d'adhérence.

2.2. Limites supérieure et inférieure

34. DÉFINITION. La limite supérieure et la limite inférieure d'une suite réelle $(u_n)_{n \in \mathbb{N}}$ sont respectivement les quantités

$$\liminf_{n\to +\infty} u_n \coloneqq \lim_{n\to +\infty} \inf_{k\geqslant n} u_k \qquad \text{et} \qquad \limsup_{n\to +\infty} u_n \coloneqq \lim_{n\to +\infty} \sup_{k\geqslant n} u_k.$$

- 35. EXEMPLE. Les limites supérieure et inférieure de la suite $((-1)^n)_{n\in\mathbb{N}}$ sont respectivement les réels 1 et -1.
- 36. Proposition. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Alors
 - $\lim \inf_{n \to +\infty} u_n \leqslant \lim \sup_{n \to +\infty} u_n$;
 - la suite $(u_n)_{n \in \mathbb{N}}$ converge vers un réel $\ell \in \mathbb{R}$ si et seulement si ses limites supérieures et inférieures sont égales à ce réel ℓ ;
- 37. Théorème. La limite supérieure (respectivement inférieure) d'une suite réelle est sa plus grande (respectivement petite) valeurs d'adhérence.

2.3. La convergence au sens de Cesàro

38. DÉFINITION. Une suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de Cesàro si la limite

$$\lim_{n \to +\infty} \frac{u_1 + \dots + u_n}{n}$$

existe.

- 39. Théorème. Une suite convergente vers une limite réelle $\ell \in \mathbf{R}$ converge au sens de Cesàro vers cette même limite ℓ .
- 40. Contre-exemple. La réciproque est fausse : la suite $((-1)^n)_{n\in\mathbb{N}}$ converge vers 0 au sens de zéro bien qu'elle diverge.

41. APPLICATION. Soit $(u_n)_{n \in \mathbb{N}}$ une suite non nulle convergeant vers une limite $\ell \neq 0$. Alors

$$\frac{n}{1/u_1 + \dots + 1/u_n} \longrightarrow \ell.$$

42. THÉORÈME (Féjer). Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ une fonction continue 2π -périodique. Notons $(c_n(f))_{n \in \mathbf{Z}}$ sa suite de ses coefficients de Fourier et, pour $N \in \mathbf{N}$, on note

$$S_N(f)(t) \coloneqq \sum_{n=-N}^{N} c_n(f)e^{int}, \quad t \in \mathbf{R}.$$

Alors la suite de terme général

$$\frac{1}{N} \sum_{n=-N}^{N} S_n(f)$$

converge vers la fonction f dans l'espace $L^p(\mathbf{T})$.

3. Les suites numériques récurrentes

3.1. Les suites récurrentes d'ordre 1

43. DÉFINITION. Une suite récurrente linéaire d'ordre 1 est une suite $(u_n)_{n \in \mathbb{N}}$ s'écrivant sous la forme

$$u_{n+1} = f(u_n), \qquad n \in \mathbf{N}$$

pour une fonction $f: E \longrightarrow E$ et une partie $E \subset \mathbf{K}$. On dit que la suite $(u_n)_{n \in \mathbf{N}}$ est une *orbite* de la fonction f.

- 44. DÉFINITION. Soient $I \subset \mathbf{R}$ un intervalle et $(u_n)_{n \in \mathbf{N}}$ une orbite d'une fonction continue $f \colon I \longrightarrow I$. Si la suite $(u_n)_{n \in \mathbf{N}}$ converge dans I, alors sa limite est un point fixe de la fonction f.
- 45. PROPOSITION. Soient $(u_n)_{n\in\mathbb{N}}$ une orbite d'une fonction continue $f\colon I\longrightarrow I$.
 - Si la fonction f est croissante, alors la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
 - Si la fonction f est décroissante, alors les suite $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones et leurs sens de variation sont opposés.
- 46. EXEMPLE. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle vérifiant

$$u_{n+1} = \sin u_n$$
 et $|u_0| \leqslant \pi/2$.

Alors elle converge vers 0.

47. THÉORÈME (méthode de Newton). Soit $f:[c,d] \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^2 vérifiant

$$f(c) < 0 < f(d)$$
 et $f' > 0$.

Soit $a \in [c,d]$ son unique zéro. On définit une suite $(x_n)_{n \in \mathbb{N}}$ par la relation

$$x_{n+1} = F(x_n)$$
 avec $F(x) := x - \frac{f(x)}{f'(x)}$.

Alors il existe un intervalle $I \subset [c, d]$ qui est stable par la fonction F telle que, si $x_0 \in I$, alors la suite $(x_n)_{n \in \mathbb{N}}$ converge vers le réel a.

48. Théorème. Soit $(x_n)_{n\in\mathbb{N}}$ une suite complexe d'un compact $X\subset\mathbb{C}$ vérifiant

$$|x_{n+1}-x_n|\longrightarrow 0.$$

Alors l'ensemble Γ de ses valeurs d'adhérence est connexe.

49. COROLLAIRE. Soient $f: [0,1] \longrightarrow [0,1]$ une fonction continue et $(x_n)_{n \in \mathbb{N}}$ une suite de l'intervalle [0,1] définie par l'égalité

$$x_{n+1} = f(x_n), \qquad n \in \mathbf{N}.$$

On suppose que $x_{n+1} - x_n \longrightarrow 0$. Alors la suite $(x_n)_{n \in \mathbb{N}}$ converge.

3.2. Études des suites récurrentes linéaires d'ordre 2

50. DÉFINITION. Une suite récurrente linéaire d'ordre p est une suite $(u_n)_{n \in \mathbb{N}}$ s'écrivant sous la forme

$$\forall n \geqslant p, \qquad u_n = a_1 u_{n-1} + \dots + a_p u_{n-p} \tag{1}$$

pour des complexes $a_1, \ldots, a_p \in \mathbf{C}$.

51. Remarque. On peut reformuler cette dernière relation matriciellement en écrivant

$$\forall n \in \mathbf{N}, \qquad X_{n+1} = AX_n$$

où l'on a définit

$$X_n \coloneqq \begin{pmatrix} u_n \\ \vdots \\ u_{n+p-1} \end{pmatrix} \quad \text{et} \quad A \coloneqq \begin{pmatrix} 0 & 1 \\ & \ddots & \ddots \\ & & 0 & 1 \\ a_p & \cdots & \cdots & a_1 \end{pmatrix}.$$

52. EXEMPLE. Soit $(u_n)_{n \in \mathbb{N}}$ une suite complexe vérifiant

$$\forall n \in \mathbf{N}, \qquad u_{n+2} = au_{n+1} + bu_n$$

pour deux complexes $a,b \in \mathbf{C}$. Notons $r,q \in \mathbf{C}$ les deux racines, comptées avec multiplicité, du polynôme $X^2 - aX - b \in \mathbf{C}[X]$.

- Si $r \neq q$, alors il existe deux constantes $\lambda, \mu \in \mathbf{C}$ telles que

$$\forall n \in \mathbf{N}, \qquad u_n = \lambda r^n + \mu q^n ;$$

– Si r=q, alors il existe deux constantes $\lambda, \mu \in \mathbf{C}$ telles que

$$\forall n \in \mathbf{N}, \qquad u_n = (\lambda + \mu n)r^n.$$

53. EXEMPLE. La suite de Fibonacci $(F_n)_{n \in \mathbb{N}}$ définie par les relations

$$F_0 = F_1 = 1$$
 et $F_{n+2} = F_{n+1} + F_n$, $n \in \mathbb{N}$

s'écrit sous la forme

$$F_n = \frac{\varphi^n - \tilde{\varphi}^n}{\sqrt{5}}, \qquad n \in \mathbf{N}$$

avec $\varphi := (1 + \sqrt{5})/2$ et $\tilde{\varphi} := (1 - \sqrt{5})/2$.

^[1] Mohammed El Amrani. Suites et séries numériques. Suites et séries de fonctions. Ellipses, 2011.

Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

^[3] François Rouvière. Petit quide de calcul différentiel. Quatrième édition. Cassini, 2015.