(Almost) Fully Connected Net

 $\mathbf{h}^1 = \sigma(\mathbf{A}^1 \mathbf{h}^0)$

 $\mathbf{h}^2 = \sigma(\mathbf{A}^2 \mathbf{h}^1)$

 $= \sigma(A^3 h^2)$

 $\mathbf{h}^4 = \sigma(\mathbf{A}^4 \mathbf{h}^3)$

Number of neurons in layer i: $|\mathbf{h}'| = \mathbf{d}_i$

 A^{i} is $d_{i} \times d_{i-1}$ matrix

Need to constrain each A' to save space & runtime

(Almost) Fully Connected Net

$$\mathbf{h}^4 = \sigma(\mathbf{A}^4 \mathbf{h}^3)$$

$$\mathbf{h}^3 = \sigma(\mathbf{A}^3 \mathbf{h}^2)$$

$$\mathbf{h}^2 = \sigma(\mathbf{A}^2 \mathbf{h}^1)$$

$$\mathbf{h}^1 = \sigma(\mathbf{A}^1 \mathbf{h}^0)$$

Number of neurons in layer i: $|\mathbf{h}^{i}| = \mathbf{d}_{i}$

 A^{i} is $d_{i} \times d_{i-1}$ matrix

Need to constrain each A' to save space & runtime

Sparsity Constraints

