EXERCICE 10 série 01

Montrez que l'AFD du langage L2 de l'exercice 03 est un automate minimal

 $L_2 = \{x \in \Sigma^* / x \text{ contient la sous chaine } 101\}$

On nomme les états A ,B,C,D dans cet ordre D est l'état final $A - - \rightarrow B - - \rightarrow C - - \rightarrow D$

On commence par la partition $PO = \{A,B,C\},\{D\}$ car D est final et A,B,C ne le sont pas

A équivalent à B ? $\delta(A,0)=A$ $\delta(B,0)=C$

$$\delta(A,1)=B$$
 $\delta(B,1)=B$

on aboutit dans des états qui sont dans la même partition P0 donc A est équivalent à B

B est équivalent à C ? $\delta(B,0)=C$ $\delta(C,0)=A$

$$\delta(B,1) = B$$
 $\delta(C,1) = D$

Les résultats ne sont pas dans la même partition P0 : donc B n'est pas équivalent à C

De la même façon on montre que A n'est pas équivalent à C

D'où la nouvelle partition $P1 = \{\{A,B\},\{C\},\{D\}\}\}$

Maintenant on montre que A n'est pas équivalent à B car d(A,0)=A mais d(B,0)=C, or A et C ne sont pas dans la même partition P1 donc on aura une nouvelle partition P2={{A},{B},{C},{D}} qui montre que l'automate est minimal car il n'y a pas d'états équivalents.