Лабораторная работа №2.2.6 Определение энергии активации по температурной зависимости вязкости жидкости

Рожков А. В. Руководитель Яворский В. А.

11 февраля 2025 г.

Цель работы: измерение скорости падения шариков при разной температуре жидкости; вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат ($\sigma_T = 0.1 \text{ K}$); секундомер ($\sigma_t = 0.6 \text{ сек}$); микроскоп ($\sigma_d = 0.02 \text{ мм}$); мелкие шарики (диаметром 1-2 мм).

1 Теоретическая часть

1.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно описать формулой

$$\eta = Ae^{W/kT} \tag{1}$$

Из формулы (1) следует, что существует линейная зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

1.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta \frac{d}{2}v \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v_{\rm ycr} = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho_{\rm x}}{\eta} \tag{4}$$

$$\eta = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho_{\mathcal{K}}}{v_{\text{ycr}}}\tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

1.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрический сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика $v_{\text{уст}}$. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

2 Ход работы

2.1 Измерение диаметра шариков

Выбираем 12 стальных и 12 стеклянных шариков. Из-за неидеальности формы измерения производим в 2 случайных направлениях при помощи микроскопа и усредняем. Данные измерений приведены в таблице 1. Погрешность измерений $\sigma_d=0.02$ мм. Плотности шариков:

$$ho_{\rm стекло} = (2.5 \pm 0.1) \ {
m \Gamma/cm}^3$$
 $ho_{\rm сталь} = (7.8 \pm 0.1) \ {
m \Gamma/cm}^3$

Nº	Материал	Диаметр, мм
1	Стекло	2,07
2	Стекло	2,08
5	Стекло	2,11
6	Стекло	2,10
9	Стекло	2,09
11	Стекло	2,12
13	Стекло	2,09
14	Стекло	2,12
17	Стекло	2,09
18	Стекло	2,12
21	Стекло	2,12
22	Стекло	2,16

№	Материал	Диаметр, мм
3	Сталь	0,85
4	Сталь	0,75
7	Сталь	0,81
8	Сталь	0,72
10	Сталь	0,71
12	Сталь	0,84
15	Сталь	0,78
16	Сталь	0,91
19	Сталь	0,83
20	Сталь	0,91
23	Сталь	0,78
24	Сталь	0,79

Таблица 1: Измеренные диаметры шариков

2.2 Измерение установившихся скоростей падения шариков

Измеренные длины частей цилиндра установки (см. рис. 1):

$$l_1 = l_2 = (10.0 \pm 0.1) \text{ cm}$$

Измерения производим для 6 значений температуры от 25 до 50 °C. При помощи секундомера измеряем время прохождения шариком участков l_1 и l_2 ($\sigma_t=2t_{\rm peaky}\approx 0.6$ с). Усредняем значение, вычисляем установившуюся скорость шариков в жидкости. По графику на рис. 2 определим плотность глицерина для каждой температуры. По формуле (5) рассчитываем вязкость глицерина ($\sigma_{\rho_{\rm глиц}}=0.01~{\rm г/cm}^3$). Примем $g=(9.81\pm0.01)~{\rm m/c}^2$. Результаты представлены в таблице 2.

Рис. 2: График плотности глицерина в зависимости от температуры.

$N_{\overline{0}}$	Материал	T, K	t_{l_1}, c	t_{l_2}, c	$t_{\rm cp}, { m c}$	$\sigma t_{\rm cp}, { m c}$	$v_{\rm ycr}$,	$\sigma_{v_{ m ycr}}$,	$\rho_{\scriptscriptstyle \Gamma \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	η ,	σ_{η} ,
							$_{\rm MM}/c$	$_{\rm MM}/c$	Γ/cm^3	мПа∗с	мПа∗с
1	Стекло	298	27.9	27.9	27.9	0.6	3.6	0.1	1.26	809	70
2	Стекло	298	27.3	27.1	27.2	0.6	3.7	0.1	1.26	796	69
3	Сталь	298	29.1	29.0	29.0	0.6	3.4	0.1	1.26	748	41
4	Сталь	298	34.8	34.5	34.7	0.6	2.9	0.1	1.26	695	41
5	Стекло	303	18.8	18.9	18.8	0.6	5.3	0.2	1.26	568	51
6	Стекло	303	18.6	18.7	18.6	0.6	5.4	0.2	1.26	557	50
7	Сталь	303	21.9	21.9	21.9	0.6	4.6	0.1	1.26	512	30
8	Сталь	303	26.6	26.6	26.6	0.6	3.8	0.1	1.26	492	31
9	Стекло	308	12.6	12.7	12.7	0.6	7.9	0.4	1.25	376	36
10	Сталь	308	17.6	18.1	17.9	0.7	5.6	0.2	1.25	322	22
11	Стекло	308	12.2	12.1	12.1	0.6	8.2	0.4	1.25	371	36
12	Сталь	308	14.8	15.2	15.0	0.6	6.7	0.3	1.25	378	25
13	Стекло	313	8.6	8.5	8.6	0.6	11.6	0.8	1.25	255	28
14	Стекло	313	8.4	8.4	8.4	0.6	11.9	0.9	1.25	257	28
15	Сталь	313	10.8	11.0	10.9	0.6	9.2	0.5	1.25	237	18
16	Сталь	313	8.4	8.2	8.3	0.6	12.0	0.9	1.25	246	21
17	Стекло	318	6.7	6.4	6.5	0.6	15.3	1.4	1.25	195	24
18	Стекло	318	6.4	6.5	6.4	0.6	15.5	1.5	1.25	198	25
19	Сталь	318	8.1	8.1	8.1	0.6	12.3	0.9	1.25	199	18
20	Сталь	318	7.0	6.8	6.9	0.6	14.5	1.3	1.25	204	21
21	Стекло	323	4.8	4.8	4.8	0.6	20.8	2.6	1.25	148	22
22	Стекло	323	4.9	4.6	4.7	0.6	21.1	2.7	1.25	151	23
23	Сталь	323	5.5	5.6	5.6	0.6	18.0	2.0	1.25	121	15
24	Сталь	323	5.7	5.8	5.7	0.6	17.5	1.9	1.25	127	15

Таблица 2: Результаты измерений установившихся скоростей шариков и соответствующих плотностей глицерина

$$\sigma_{t_{\rm cp}} = \sqrt{\sigma_t^2 + \sigma_{\rm cnyq}^2} = \sqrt{\sigma_t^2 + (t - t_{\rm cp})^2}$$

$$\sigma_{\eta} = \eta \sqrt{\left(\frac{\sigma_g}{g}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{v_{\rm ycr}}}{v_{\rm ycr}}\right)^2 + \frac{\sigma_\rho^2 + \sigma_{\rho_{\rm r,nun}}^2}{(\rho - \rho_{\rm r,nun})^2}}$$

$$\sigma_{v_{\rm ycr}} = v_{\rm ycr} \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{t_{\rm cp}}}{t_{\rm cp}}\right)^2 + \left(\frac{\sigma_{t_{\rm cp}}}{t_{\rm cp}}\right)^2}$$

Средняя относительная погрешность измерений вязкости $\varepsilon_{\eta}=9.5\%$

2.3 Вычисление числа Рейнольдса, оценка времени и пути релаксации. Анализ применимости формулы Стокса

Для каждого из опытов вычислим число Рейнольдса Re (6), оценим время релаксации τ (7) и путь релаксации S (8). Результаты представлены в таблице 3.

$$Re = \frac{d}{2} \frac{v_{\text{уст}} \rho_{\text{глиц}}}{\eta}, \qquad \varepsilon_{Re} = \sqrt{\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{v_{\text{уст}}}}{v_{\text{уст}}}\right)^2 + \left(\frac{\sigma_{\rho_{\text{глиц}}}}{\rho_{\text{глиц}}}\right)^2 + \left(\frac{\sigma_{\eta}}{\eta}\right)^2}$$
 (6)

$$\tau = \frac{2}{9} \frac{d^2}{4} \frac{\rho}{\eta}, \qquad \varepsilon_{\tau} = \sqrt{\left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{\rho}}{\rho}\right)^2 + \left(\frac{\sigma_{\eta}}{\eta}\right)^2} \tag{7}$$

$$S = v_{\text{ycr}}\tau, \qquad \varepsilon_S = \sqrt{\left(\frac{\sigma_{v_{\text{ycr}}}}{v_{\text{ycr}}}\right)^2 + \left(\frac{\sigma_{\tau}}{\tau}\right)^2}$$
 (8)

Итого:

$$\langle \varepsilon_{Re} \rangle = 11.7\%, \qquad \langle \varepsilon_{\tau} \rangle = 10.8\%, \qquad \langle \varepsilon_{S} \rangle = 6.2\%$$

Как видим, во всех экспериментах число Рейнольдса меньше 1, а путь релаксации пренебрежимо мал. Следовательно формула Стокса применима.

2.4 График зависимости $ln\eta$ от 1/T

По методу наименьших квадратов вычислим угол наклона прямой.

$$k_{\text{\tiny HAKJI}} = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = (6570 \pm 160) \text{K}$$

Прямая, полученная по МНК не проходит через 0. Это объясняется тем, что в формуле (1) есть константа A. Коэффициент b прямой соответственно равен lnA.

2.5 Вычисление энергии активации

При помощи формулы (2) рассчитаем энергию активации:

$$W = k * k_{\text{накл}} = 1.38 * 10^{-23} \text{Дж/K} * 6570 \text{ K} = 90.7 \text{ зДж} = 1.511 \frac{\text{кДж}}{\text{моль}}$$

Nº	материал	T, K	η , м $\Pi a * c$	Re	σ_{Re}	τ , MC	$\sigma_{ au}$, MC	S, mkm	σ_S , MKM
1	Стекло	298	809	5.8	0.5	0.74	0.07	2.64	0.06
2	Стекло	298	796	6.1	0.6	0.76	0.07	2.78	0.07
3	Сталь	298	748	2.5	0.2	0.42	0.03	1.44	0.03
4	Сталь	298	695	2.0	0.1	0.35	0.03	1.01	0.02
5	Стекло	303	568	12.4	1.2	1.09	0.11	5.78	0.19
6	Стекло	303	557	12.7	1.2	1.10	0.11	5.91	0.20
7	Сталь	303	512	4.5	0.3	0.56	0.04	2.54	0.07
8	Сталь	303	492	3.4	0.3	0.46	0.04	1.71	0.04
9	Стекло	308	376	27.5	3.0	1.61	0.17	12.72	0.62
10	Сталь	308	322	7.7	0.7	0.68	0.06	3.79	0.14
11	Стекло	308	371	29.5	3.3	1.68	0.18	13.86	0.70
12	Сталь	308	378	9.3	0.8	0.81	0.07	5.39	0.23
13	Стекло	313	255	59.7	7.8	2.38	0.28	27.69	1.96
14	Стекло	313	257	61.6	8.1	2.43	0.29	28.99	2.10
15	Сталь	313	237	18.9	1.9	1.11	0.10	10.22	0.58
16	Сталь	313	246	27.9	3.2	1.46	0.14	17.56	1.29
17	Стекло	318	195	102.3	16.1	3.11	0.41	47.55	4.48
18	Стекло	318	198	104.0	16.3	3.16	0.42	49.04	4.61
19	Сталь	318	199	32.1	3.9	1.50	0.15	18.50	1.38
20	Сталь	318	204	40.4	5.5	1.76	0.19	25.49	2.28
21	Стекло	323	148	186.4	36.5	4.23	0.66	88.07	11.05
22	Стекло	323	151	188.4	38.0	4.29	0.69	90.69	11.79
23	Сталь	323	121	72.5	12.0	2.18	0.29	39.32	4.27
24	Сталь	323	127	67.8	10.9	2.12	0.27	37.21	3.94

Таблица 3: Результаты вычисления $Re,\, au,\, S$

2.6 Оценка погрешностей

Случайная погрешность энергии активации:

$$\begin{split} \sigma_{k_{\text{накл}}} &= \frac{1}{\sqrt{24}} \sqrt{\frac{\left\langle y^2 \right\rangle - \left\langle y \right\rangle^2}{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2} - k_{\text{накл}}^2} = 160~K \\ \sigma_W^{\text{случ}} &= W \frac{\sigma_{k_{\text{накл}}}}{k} = 1.511~\frac{\text{кДж}}{\text{моль}} * 2.4\% = 0.036~\frac{\text{кДж}}{\text{моль}} \end{split}$$

Приборная погрешность энергии активации:

$$\sigma_W^{ ext{приб}} = W \sqrt{\left(rac{\sigma_T}{T}
ight)^2 + \left(rac{\sigma_\eta}{\eta lnrac{\eta}{A}}
ight)^2} = 0.010 \,\,rac{ ext{кДж}}{ ext{моль}}$$

Полная погрешность энергии активации:

$$\sigma_W = \sqrt{\sigma_W^{\text{приб}^2} + \sigma_W^{\text{случ}^2}} = 0.037 \ \frac{\text{кДж}}{\text{моль}}$$
 $\varepsilon_W = 2.5\%$

График зависимости Іпп от 1/Т

Рис. 3: График зависимости $ln\eta$ от 1/T.

3 Вывод

$$W = (91 \pm 2)$$
 зДж = $(1.51 \pm 0.04) \frac{ кДж}{ моль}$

Измерили скорости падения шариков при разной температуре жидкости, вычислили вязкость жидкости по закону Стокса и рассчитали энергию активации. Полученная вязкость глицерина при $25^{\circ}C$ совпадает с табличным значением.