# VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

Masashi Yokozuka, Shuji Oishi, Thompson Simon, Atsuhiko Banno

Robot Innovation Research Center, National Institute of Advanced Industrial Science and Technology (AIST)

**CVPR2019** 

## 目次

- 1. 研究背景・目的
- 2. VITAMIN-E の発想に至るまで
- 3. 特徵点追跡
- 4. SLAM
- 5. 環境復元
- 6. 実験
- 7. まとめ・今後の課題
- 8. デモ

# 背景

- 現状の Visual SLAM の精度・ロバスト性は LiDAR SLAM の代わりにはなり得ない.
  - 移動体のナビゲーションには不十分な性能.
  - ・ 精度・ロバスト性の追求が必要.

- 現状の Visual SLAM では LiDAR SLAM のように 高密度・高精度な地図が作れない。
  - 移動体のナビゲーションに十分な環境復元ができない.
  - 現実の利用には実時間性が重要.

# 目的1

#### Visual SLAM の 高精度化 及び 高ロバスト化

既存 SLAM ベンチマーク上で

State-of-the-art の SLAM 手法 を

精度・ロバスト性の両面で超える手法の開発

# 目的2

#### 単眼カメラによる 実時間3次元環境復元

既存 SLAM ベンチマーク上で State-of-the-art の SLAM 手法では未実現な CPUのみによる実時間3次元環境復元の実現

#### Visual SLAM の State-of-the-art

- LSD-SLAM (直接法, 高密度)
  - J. Engel and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In *Proc. of European Conference on Computer Vision (ECCV)*, 2014.
- SVO (直接法, 低密度)
  - C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. SVO: Semidirect visual odometry for monocular and multicamera systems. *IEEE Transactions on Robotics*, 33(2):249–265, 2017.
- ORB-SLAM (特徵点法, 低密度)
  - R. Mur-Artal and J. D. Tardos. ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. *IEEE Transactions on Robotics*, 33(5):1255–1262, 2017.
- DSO (直接法, 中密度)
  - J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. *IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI)*, 2018.

#### State-of-the-art 分類

特徵点法 直接法 (色の 誤差 最小化) (射影 誤差 最小化) **SVO** Sparse **ORB-SLAM** (地図が粗) **DSO** 未提案 Dense LSD-SLAM (地図が密)

高密度な特徴点 = 高精度&ロバスト

#### 従来の特徴点法の問題点

- 特徴点を密にマッチングできない。
  - 【計算コスト問題】特徴点抽出・特徴量記述が必要.
    - 密に点検出 → 大量の記述 → 計算コスト大.
  - 【ロバスト性問題】マッチングが安定しない。
    - ・ 低テクスチャ → 特徴量記述が不安定 → 誤マッチング.
- •特徴量記述が根本原因.
  - 特徴量を利用しない → 計算コスト削減・不安定性を回避.
- 本研究では特徴量記述なしでトラッキングを行う.
  - 特徴点群の位置関係(全体的な形状)を重視.

# 提案手法概要



VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points Masashi Yokozuka, Shuji Oishi, Thompson Simon, Atsuhiko Banno, **CVPR 2019**.

# 提案手法概要



# 2.VITAMIN-Eの発想に至るまで

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

#### VITAMIN-E 以前の研究1: DTAM追実装



DTAM原著: R.A.Newcombe, S.J.Lovegrove, A.J..Davison, "DTAM: Dense tracking and mapping in real-time", IEEE International Conference on Computer Vision (ICCV), 2011

#### VITAMIN-E 以前の研究2:

# **Visual SLAM from Binary Images**



#### VITAMIN-E 以前の研究3:

#### **Dense Reconstruction from Sparse Points**



Result of applying our method (without texture, *only lighting*)

#### VITAMIN-E 以前の研究3:

#### **Dense Reconstruction from Sparse Points**



## VITAMIN-Eの着想

- DTAM再実装
  - Direct法は明度変化に弱い.
  - ・特徴点法は比較的明度変化に強い → 密にできないか?
- Visual SLAM from Binary Images
  - 連続的に処理する場合 → 2値程度の情報量で充分.
    - ただし、Direct法でやるとトラッキングが外れやすい.
- Dense Reconstruction from Sparse Points
  - ・密な形状復元は、疎な点の集合からできる.
  - ・特徴点をある程度,密にとれば可能なはず.

# 3.特徵点追跡

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

## 特徵点追跡:概要

#### 1. Coarse Matching

- ・ 低解像度:画像全体を支配するフローを推定.
  - 特徴点マッチングからアフィン変換を推定.

#### 2. Fine Tracking

- 高解像度:密に特徴点トラッキング.
  - 特徴量を利用せずに特徴点の対応付け.

# 特徴点追跡: 1. Coarse Matching



低解像度化 (1/4~1/6程度)



特徴点抽出&特徴量記述 (BRIEF を 32bit で利用)



特徴点対応付け (BRIEFによるマッチング)

#### 4 支配的フロー推定

 $y_i = Ax_i + b$ 

y<sub>i</sub> 現フレームの特徴点位置

 $x_i$  前フレームの特徴点位置

*A*, *b* 支配的フロー

(2次元ベクトル)

(2次元ベクトル)

(2x2行列, 2次元ベクトル)

$$A, b = \underset{A,b}{\operatorname{argmin}} \rho(\|y_i - (Ax_i + b)\|_2)$$

ガウス・ニュートン法で最適化し支配的フローを求める

$$\rho(x) = \frac{x^2}{x^2 + \sigma^2}$$
  
M推定カーネル

# 特徴点追跡:2. Fine Tracking

(1) 曲率画像 κ の生成 (高解像度画像上で)

$$\kappa = f_y^2 f_{xx} - 2f_x f_y f_{xy} + f_x^2 f_{yy}$$

 $f_x$  : X方向に 1 回 Sobel Filter を適用

 $f_{xy}$ : X方向に適用後,y方向に Sobel Filter を適用

(2) 支配的フローによる予測

$$\bar{x}_{t_1} = Ax_{t_0} + b$$

 $ar{x}_{t_1}$  現フレームの予測位置 (2次元ベクトル)  $x_{t_0}$  前フレームの特徴点位置 (2次元ベクトル) A.b 支配的フロー (2x2行列, 2次元ベクトル)

(3) 山登り法による曲率極大探索

$$x_{t_1} = \underset{x_{t_1}}{\operatorname{argmax}} \frac{\kappa\left(\boldsymbol{x}_{t_1}, t_1\right) + \lambda w\left(\|\boldsymbol{x}_{t_1} - \bar{\boldsymbol{x}}_{t_1}\|_2\right)}{\operatorname{maxem}}$$

初期値を予測位置  $\bar{x}_{t_1}$ から探索開始. 曲率画像上で上式が極大になるように, 山登り法(8方向)で探索.



$$w(x) = 1 - \rho(x)$$

$$\rho(x) = \frac{x^2}{x^2 + \sigma^2}$$

## 特徵点追跡

- 1. Coarse Matching:フローの要約を求める.
- 2. Fine Tracking:検出した特徴点全ての追跡.
  - ・特徴量を利用せずに追跡 → 高速化の達成.



#### 4.SLAM

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

# SLAM: 問題設定 (コスト関数)



$$\underset{R_{j},t_{j},p_{i}}{\operatorname{argmin}} E = \sum_{i}^{N} \sum_{j}^{M} \rho \left( \| \boldsymbol{u}_{ij} - \phi \left( R_{j}^{T} \left( \boldsymbol{p}_{i} - \boldsymbol{t}_{j} \right) \right) \|_{2} \right)$$

 $\phi(x)$ : 射影関数(ピンホールカメラモデル)  $\rho(x) = \frac{x^2}{x^2 + \sigma^2}$ : M推定カーネル

# SLAM: ガウス・ニュートン法(従来法)

コスト関数 
$$E = \sum_{i}^{N} \sum_{j}^{M} \rho \left( \| \boldsymbol{u}_{ij} - \phi \left( R_{j}^{T} \left( \boldsymbol{p}_{i} - \boldsymbol{t}_{j} \right) \right) \|_{2} \right)$$

ヤコビアン 
$$J = \frac{dE}{dx}$$
 ヘッセ行列  $H = J^T J$  勾配  $\mathbf{g} = \mathbf{e}^T J$ 

ヘッセ行列 
$$H = J^T J$$

勾配 
$$g = e^T$$

$$H\delta x = -g, \quad x = x + \delta x$$

$$H = \begin{bmatrix} H_{cc} & H_{cp} \\ H_{cp}^T & H_{pp} \end{bmatrix}$$



# SLAM:部分空間ニュートン法(提案手法)

$$H\delta oldsymbol{x} = -oldsymbol{g}, \quad oldsymbol{x} = oldsymbol{x} + \delta oldsymbol{x} \quad H = egin{bmatrix} H_{cc} & H_{cp} \ H_{cp}^T & H_{pp} \end{bmatrix}, \quad oldsymbol{g} = egin{bmatrix} oldsymbol{g}_c \ oldsymbol{g}_p \end{bmatrix}$$

$$H_{c_i c_i} \delta \boldsymbol{x}_{c_i} = -\left(\boldsymbol{g}_{c_i} + \sum_{l=1}^{i-1} H_{c_l c_i} \delta \boldsymbol{x}_{c_l} + \sum_{r=i+1}^{M} H_{c_i c_r} \delta \boldsymbol{x}_{c_r} + \sum_{j=1}^{N} H_{c_i p_j} \delta \boldsymbol{x}_{p_j}\right),$$

$$H_{p_{j}p_{j}}\delta\boldsymbol{x}_{p_{j}} = -\left(\boldsymbol{g}_{p_{j}} + \sum_{l=1}^{j-1} H_{p_{l}p_{j}}\delta\boldsymbol{x}_{p_{l}} + \sum_{r=j+1}^{N} H_{p_{i}p_{r}}\delta\boldsymbol{x}_{p_{r}} + \sum_{i=1}^{M} H_{c_{i}p_{j}}^{T}\delta\boldsymbol{x}_{c_{i}}\right).$$

- カメラ変数(6次元),特徴点変数(3次元)を個別に最適化を行う.
  - 従来法 :全てを一括で最適化 → 巨大行列 → 計算コスト大
  - 提案手法:個々に最適化 → 小行列 → 計算コスト小

# SLAM:部分空間ニュートン法(提案手法)

$$H_{c_ic_i}\delta \boldsymbol{x}_{c_i} = -\bigg(\boldsymbol{g}_{c_i} + \sum_{l=1}^{i-1} H_{c_lc_i}\delta \boldsymbol{x}_{c_l} + \sum_{r=i+1}^{M} H_{c_ic_r}\delta \boldsymbol{x}_{c_r} + \sum_{j=1}^{N} H_{c_ip_j}\delta \boldsymbol{x}_{p_j}\bigg),$$

$$H_{p_{j}p_{j}}\delta\boldsymbol{x}_{p_{j}} = -\left(\boldsymbol{g}_{p_{j}} + \sum_{l=1}^{j-1} H_{p_{l}p_{j}}\delta\boldsymbol{x}_{p_{l}} + \sum_{r=j+1}^{N} H_{p_{i}p_{r}}\delta\boldsymbol{x}_{p_{r}} + \sum_{i=1}^{M} H_{c_{i}p_{j}}^{T}\delta\boldsymbol{x}_{c_{i}}\right).$$



#### SLAM:提案手法の解釈

- 「多次元正規分布」としての解釈.
  - 1. 更新したい変数以外を固定 → 条件付き分布推定.
  - 2. 条件付き分布の期待値 → 変数更新.
  - 3. 繰り返し.

- 「Linear Solver」としての解釈.
  - Gauss-Seidel法(線形方程式の反復解法)の多変数同時更新.
  - 通常のGauss-Seidel法は1次元(=1変数)更新.
  - 提案手法は多変数に拡張.

# SLAM:提案手法の解釈

初期值:x = 2, y = 1









収束後: x = 0, y = 0

# 5.環境復元

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

# メッシュ生成&ノイズ除去

1 メッシュ生成:ドロネー三角形分割



画像上の特徴点群に対して, 互いに交差しないように辺を構成.

デプス画像の代わりとして, 三角形メッシュを利用.

デプス画像のノイズ除去手法を三角形メッシュに適用.

(2) ノイズ除去: Nonlocal Total Generalized Variation (NLTGV) 最小化



# メッシュ統合:TSDFの利用

TSDF = Truncated Signed Distance Function

| -0.9 | -0.4 | -6   | c.2        | 09  | 1          | 1   | 1 | 1 | 1 |
|------|------|------|------------|-----|------------|-----|---|---|---|
| -1   | -0.9 | -0.2 | 1          | 0.5 | 0.9        | 1   | 1 | 1 | 1 |
| -1   | -0.9 | -0.3 | 0.         | 0.2 | 0.8        | 1   | 1 | 1 | 1 |
| -1   | -0.9 | -0.4 | 0(0        | 0.2 | 0.8        | 1   | 1 | 1 | 1 |
| -1   | -1   | -0.8 | -0.1       | ٦.2 | 0.6        | 0.8 | 1 | 1 | 1 |
| -1   | -0.9 | -0.3 | -0/        | 0.3 | 0.7        | 0.9 | 1 | 1 |   |
| -1   | -0.9 | -0.4 | -01        | 0.3 | 0.8        | 1   |   | 1 | 1 |
| -0.9 | -0.7 | -0.5 | do         | 0.4 | <b>U.9</b> | 1   | 1 | 1 | 1 |
| -0.1 |      | 0.0  | <b>U.1</b> | 0.4 | 1          | 1   | 1 | 1 | 1 |
| 1    | 1    | 1    | 1          | 1   | 1          | 1   | 1 | 1 | 1 |



各ボクセルが保持する値



中心から面までの距離

面復元=距離が0になる場所を抽出

# 6.実験

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

# SLAM ベンチマーク



## 評価方法

- 1. 推定軌跡の平均誤差 [cm]: 精度評価
  - ・ 単眼SLAMなので推定結果を定数倍して真値と比較.
- 2. 自己位置推定の成功率 [%]: ロバスト性評価
  - ・ 画像シーケンスの内, 自己位置推定が行えた割合.
- 3. 初期化のリトライ数 [times]
  - 単眼SLAMの初期地図作成は難しいので評価.

# 実験結果: MH01~MH05

| Sequence name (no. of images) | Our method |                                                                     |                  |          | DSO[6]                                                                 |                  |          | ORB-SLAM[21]<br>w/o loop closure                                        |                  |   | LSD-SLAM[5]<br>w/o loop closure          |                  |  |
|-------------------------------|------------|---------------------------------------------------------------------|------------------|----------|------------------------------------------------------------------------|------------------|----------|-------------------------------------------------------------------------|------------------|---|------------------------------------------|------------------|--|
| MH01 easy<br>(3682)           | V          | $12.9 \pm 0.5 \\ 100.0 \pm 0.0 \\ 0 \pm 0$                          | cm<br>%<br>times | ✓        | $\begin{array}{c} 6.0 \pm 0.8 \\ 100.0 \pm 0.0 \\ 0 \pm 0 \end{array}$ | cm<br>%<br>times | ✓        | $\begin{array}{c} 5.2 \pm 1.1 \\ 97.7 \pm 1.6 \\ 19 \pm 11 \end{array}$ | cm<br>%<br>times | × | $(44.9 \pm 7.2)$<br>$28.9 \pm 23.6$<br>- | cm<br>%<br>times |  |
| MH02 easy<br>(3040)           | ~          | $8.8 \pm 0.5$ $100.0 \pm 0.0$ $0 \pm 0$                             | cm<br>%<br>times | <b>√</b> | $4.2 \pm 0.2$ $100.0 \pm 0.0$ $0 \pm 0$                                | cm<br>%<br>times | ✓        | $egin{array}{l} 4.1 \pm 0.4 \ 92.4 \pm 1.1 \ 56 \pm 6 \end{array}$      | cm<br>%<br>times | × | $(58.3 \pm 6.9)$<br>$73.0 \pm 1.5$       | cm<br>%<br>times |  |
| MH03 medium<br>(2700)         | <b>√</b>   | $egin{array}{c} 10.6 \pm 1.3 \ 100.0 \pm 0.0 \ 0 \pm 0 \end{array}$ | cm<br>%<br>times | <b>√</b> | $21.1 \pm 0.9$<br>$100.0 \pm 0.0$<br>$0 \pm 0$                         | cm<br>%<br>times | ×        | $(4.5 \pm 0.4)$<br>$48.9 \pm 0.8$<br>$0 \pm 0$                          | cm<br>%<br>times | × | $(266.2 \pm 61.3)$<br>$28.4 \pm 20.7$    | cm<br>%<br>times |  |
| MH04 difficult<br>(2033)      | <b>√</b>   | $19.3 \pm 1.6$ $100.0 \pm 0.0$ $0 \pm 0$                            | cm<br>%<br>times | ✓        | $20.3 \pm 1.0$<br>$95.7 \pm 0.0$<br>$5 \pm 0$                          | cm<br>%<br>times | <b>√</b> | $33.6 \pm 9.4$<br>$95.2 \pm 0.8$<br>$6 \pm 1$                           | cm<br>%<br>times | × | $(136.4 \pm 114.3)$<br>$27.2 \pm 7.0$    | cm<br>%<br>times |  |
| MH05 difficult<br>(2273)      | <b>V</b>   | $14.7 \pm 1.1$<br>$100.0 \pm 0.0$<br>$0 \pm 0$                      | cm<br>%<br>times | V        | $10.2 \pm 0.6$ $95.5 \pm 0.0$ $2 \pm 0$                                | cm<br>%<br>times | <b>√</b> | $14.9 \pm 4.6$<br>$90.0 \pm 4.0$<br>$18 \pm 5$                          | cm<br>%<br>times | × | $(27.4 \pm 16.4)$<br>$22.7 \pm 0.5$      | cm<br>%<br>times |  |

- ・各シーケンスで5回実験 → 平均&標準偏差.
- ✔ or ×: 自己位置推定 の 成功 or 失敗 (成功率90%以上で ✔).

# 実験結果: V101~V203

| Sequence name (no. of images) | Our method |                                             |                  | DSO[6]   |                                                 |                  |   | ORB-SLAM[21]<br>w/o loop closure                                      |                  |   | LSD-SLAM[5]<br>w/o loop closure         |                  |  |
|-------------------------------|------------|---------------------------------------------|------------------|----------|-------------------------------------------------|------------------|---|-----------------------------------------------------------------------|------------------|---|-----------------------------------------|------------------|--|
| V101 easy<br>(2911)           | <b>V</b>   | $9.7 \pm 0.2$ $100.0 \pm 0.0$ $0 \pm 0$     | cm<br>%<br>times | ✓        | $13.4 \pm 5.8 \\ 100.0 \pm 0.0 \\ 0 \pm 0$      | cm<br>%<br>times | ✓ | $\begin{array}{c} 8.8 \pm 0.1 \\ 96.6 \pm 0.0 \\ 1 \pm 0 \end{array}$ | cm<br>%<br>times | × | $(20.0 \pm 22.8)$ $11.6 \pm 11.2$       | cm<br>%<br>times |  |
| V102 medium<br>(1710)         | <b>√</b>   | $9.3 \pm 0.6$ $100.0 \pm 0.0$ $0 \pm 0$     | cm<br>%<br>times | V        | $53.0 \pm 5.5$<br>$100.0 \pm 0.0$<br>$0 \pm 0$  | cm<br>%<br>times | × | $(14.5 \pm 11.7)$<br>$52.0 \pm 3.3$<br>$17 \pm 4$                     | cm<br>%<br>times | × | $(67.0 \pm 14.0)$<br>$15.2 \pm 0.1$     | cm<br>%<br>times |  |
| V103 difficult<br>(2149)      | <b>√</b>   | $11.3 \pm 0.5$ $100.0 \pm 0.0$ $0 \pm 0$    | cm<br>%<br>times | <b>V</b> | $85.0 \pm 36.4$<br>$100.0 \pm 0.0$<br>$0 \pm 0$ | cm<br>%<br>times | × | $(37.2 \pm 20.7)$<br>$65.5 \pm 8.8$<br>$56 \pm 26$                    | cm<br>%<br>times | × | $(29.3 \pm 2.0)$<br>$11.0 \pm 0.1$<br>- | cm<br>%<br>times |  |
| V201 easy<br>(2280)           | ~          | $7.5 \pm 0.4$ $100.0 \pm 0.0$ $0 \pm 0$     | cm<br>%<br>times | <b>√</b> | $7.6 \pm 0.5$ $100.0 \pm 0.0$ $0 \pm 0$         | cm<br>%<br>times | V | $egin{array}{c} 6.0 \pm 0.1 \ 95.2 \pm 0.0 \ 0 \pm 0 \end{array}$     | cm<br>%<br>times | × | $(131.3 \pm 20.4)$<br>$74.1 \pm 8.9$    | cm<br>%<br>times |  |
| V202 medium<br>(2348)         | <b>√</b>   | $8.6 \pm 0.7 \\ 100.0 \pm 0.0 \\ 0 \pm 0$   | cm<br>%<br>times | <b>√</b> | $11.8 \pm 1.4$<br>$100.0 \pm 0.0$<br>$0 \pm 0$  | cm<br>%<br>times | V | $12.3 \pm 2.7$<br>$99.5 \pm 1.2$<br>$0 \pm 0$                         | cm<br>%<br>times | × | $(42.1 \pm 9.2)$<br>$11.3 \pm 0.2$      | cm<br>%<br>times |  |
| V203 difficult<br>(1922)      | √          | $140.0 \pm 5.2 \\ 100.0 \pm 0.0 \\ 0 \pm 0$ | cm<br>%<br>times | <b>√</b> | $147.5 \pm 6.6 \\ 100.0 \pm 0.0 \\ 0 \pm 0$     | cm<br>%<br>times | × | $(104.3 \pm 64.0)$<br>$16.8 \pm 15.9$<br>$233 \pm 123$                | cm<br>%<br>times | × | $(17.7 \pm 1.6)$<br>$11.9 \pm 0.2$      | cm<br>%<br>times |  |

Num. of Wins

Our method: 6

DSO: 1

ORB-SLAM: 4

LSD-SLAM: 0

# 実験:他データセット(TUM-RGBD ICL-NUIM)

データセット名

1 TUM-RGBD

ICL-NUIM Living Room

ICL-NUIM
Office Room







# 実験:他データセット(TUM-RGBD ICL-NUIM)

Table 1. Trajectory errors [cm] in the additional datasets.

|              |                                                                  | Our method                 | DSO                          | SVO                         | ORB-SLAM (with loop closure) | ORB-SLAM (w/o loop closure)         | LSD-SLAM (with loop closure) | LSD-SLAM (w/o loop closure)        |
|--------------|------------------------------------------------------------------|----------------------------|------------------------------|-----------------------------|------------------------------|-------------------------------------|------------------------------|------------------------------------|
| TUM<br>RGB-D | fr2_desk<br>fr2_xyz                                              | 1.7 0.4                    | :=:<br>:=:                   | 6.7<br>0.8                  | 0.9                          | ( <del>-</del>                      | 4.5<br>1.5                   | 181<br>181                         |
| ICL-<br>NUIM | Living Room 0<br>Living Room 1<br>Living Room 2<br>Living Room 3 | 11.0<br>3.1<br>2.4         | 1.0<br>2.0<br>6.0<br>3.0     | 2.0<br>7.0<br>10.0<br>7.0   |                              | 1.0<br>2.0<br>7.0<br>3.0            | 1 1 1 1                      | 12.0<br>5.0<br><b>3.0</b><br>12.0  |
| ICL-<br>NUIM | Office Room 0<br>Office Room 1<br>Office Room 2<br>Office Room 3 | 31.6<br>40.1<br>3.8<br>5.5 | 21.0<br>83.0<br>36.0<br>64.0 | 34.0<br>28.0<br>14.0<br>8.0 | •                            | <b>20.0</b><br>89.0<br>30.0<br>64.0 |                              | 26.0<br><b>8.0</b><br>31.0<br>56.0 |

# 考察

- EuRoC:高速運動&照明変化大.
  - 従来手法に比べて高精度・高ロバスト
    - 特に難しいシーケンスに対して.
- TUM-RGBD:容易なケース.
  - ・ループクロージングなしでも十分な精度
- ICL-NUIM: 低テクスチャ環境.
  - ・ 従来法に比べれば改善してはいる.
  - 失敗しているケースは概ね以下になる.
    - その場回転のみの運動: 単眼では原理的に不可能.
    - 直線が一つしかない環境:エッジベースSLAMでも不可能.

# 7.まとめ・今後の課題

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points

## まとめ

- ・提案手法は、精度・ロバスト性について従来手法を 超えることができた。
  - 既存ベンチマークで公平に評価して実証した.

- ・GPUを用いずに実時間3次元環境復元を行えた.
  - ・ドロネー三角形分割によるメッシュ生成.
  - NLTGV最小化によるメッシュノイズ除去.
  - TSDFによるメッシュ統合.

# 今後の課題

- 精度・密度の追求 → 継続.
  - ・特徴点抽出の改善:曲率ではなく,機械学習の利用.
  - Loop Closureの実装: ICPベースの実装(BoFは非利用).
- ロバスト性の追求 → IMUとのセンサ統合.
  - EKF(Loose Coupling), Graph Opt.(Tight Coupling)でない, Semi-tight CouplingなIMU統合.
- ・形状復元 → 四面体空間分割によるDirect Meshing.
  - TSDFはメモリ効率が悪い:空間を均一なGrid分割.
  - ・ 3 次元ドロネー三角形分割