

Artificial Neural Networks

[2500WETANN]

José Oramas

Convolutional Neural Networks

[Part 2 - Relevant Architectures & Components]

José Oramas

Announcement

- Research Paper Assignment
 - Groups of two students
 - Submission
 - 26/03/2025
 - Send group information via email (add "[RPA]" in the subject of your email)
 - 27/03/2025: students without a group will be randomly assigned.

Locality

Translation Invariance

Some Characteristics of Visual Data

Compositionality

* Translation Equivariance

Response/feature map

- The kernel slides across the input
- Produces an output (or response) for every location where it is evaluated

Response/feature map

- The kernel slides across the input
- Produces an output (or response) for every location where it is evaluated
- Repeating the process with *k* multiple kernels produces multiple features maps (channels)

- Inputs an ouputs are usually "data cubes" [Tensors]
- Filter reponses across inputs are aggregated

Convolutional Neural Network

*Promotes Compositionality

Useful Techniques

[Data Augmentation & Dropout]

What?

 Apply a set of operations on a given data sample to produce additional samples

Original Image

What?

 Apply a set of operations on a given data sample to produce additional samples

Original Image

Cropped samples

What?

 Apply a set of operations on a given data sample to produce additional samples

Original Image

Cropped samples

Mirrored samples

What?

 Apply a set of operations on a given data sample to produce additional samples

Benefits

- Increase training data
- Introduce variability

Original Image

Cropped samples

Mirrored samples

OK, but...

Can I apply any random operation?

Original Image

Applying any random operation for augmentation

Original Image

Applying any random operation for augmentation

How?

 Deactivate a neuron with a given probability.

- Avoid overfitting
- Promote ensemble learning

After applying dropout.

How?

 Deactivate a neuron with a given probability.

- Avoid overfitting
- Promote ensemble learning

OK, but...
How this helps in practice?

After applying dropout.

How?

 Deactivate a neuron with a given probability.

- Avoid overfitting
- Promote ensemble learning

How?

Deactivate a neuron with a given probability.

- Avoid overfitting
- Promote ensemble learning

Scene Recognition

How?

Deactivate a neuron with a given probability.

- Avoid overfitting
- Promote ensemble learning

Standard Neural Net

After applying dropout.

How would it help?

Nice, but...
How did we get there?

Relevant Architectures

[AlexNet, VGG-Net, GoogLeNet, ResNet,*Net]

1982: Neocognitron [Fukushima & Miyake., 1982]

- Goal: Recognition of position-shifted / shape-distorted patterns
- Proposed the cell-plane arrangement (convolution)
- Hierarchical structure
- Convolution/sub-sampling combination

1998: LeNet-5 [Lecun et al., 1998]

7 layers

- 3 conv. layers
- 2 subsampling layers
- 2 FC layers

- Addressed handwritten digit recognition task
- Modified NIST (MNIST) dataset was proposed
- One of the first use of ConvNets + Backprop

```
3681796691
6757863485
2179712846
4819018894
7592658197
222234485
01264698
01464698
7128769861
```


- 5 conv. layers + 3 FC layers
- 60M param., 650K neurons
- Trained across 2 GPUs(Model Parallelism)
- No need to pair convolutional with pooling layers
- ReLU for Convolutional Layers
- Data Augmentation and Dropout

Relevance → Winner: ILSVRC 2012 (1K categories, 1.2M images)

- Challenges?
- Performance Metrics?

Relevance

• Winner: ILSVRC 2012 (1K categories, 1.2M images)

ILSVRC Classification Performance

Relevance

"Deep Learning" goes mainstream

Relevance

"Deep Learning" goes mainstream

Relevance

"Deep Learning" goes mainstream

Microsoft's speech recognition engine listens as well as a human

"This is an historic achievement" - Xuedong Huang

Andrew Tarantola, @terrortola 10.18.16 in Personal Computing

Relevance

"Deep Learning" goes mainstream

Microsoft's speech recognition engine listens as well as a human

"This is an historic achievement" - Xuedong Huang

Andrew Tarantola, @terrortola 10.18.16 in Personal Computing

Intelligent Machines

Deep-Learning Machine Listens to Bach, Then Writes Its Own Music in the Same Style

Can you tell the difference between music composed by Bach and by a neural

network?

Relevance

"Deep Learning" goes mainstream

Intelligent Machines

by Emerging Technology from the arXiv

Deep-Learning Machine Listens to Bach, Then Writes Its Own Music in the Same Style

Can you tell the difference between music composed by Bach and by a neural

network?

Article | Open Access | Published: 29 August 2019 **Deep Learning to Improve Breast Cancer Detection on Screening Mammography** Li Shen ⊡, Laurie R. Margolies, Joseph H. Rothstein, Eugene Fluder, Russell McBride & Weiva Sieh Scientific Reports 9, Article number: 12495 (2019) | Cite this article 9229 Accesses | 2 Citations | 27 Altmetric | Metrics

Relevance

"Deep Learning" goes mainstream

Web of Science entries, topic "deep learning"

Relevance

"Deep Learning" goes mainstream

deepBlue - Chess

Relevance

"Deep Learning" goes mainstream

deepBlue - Chess

Watson - Jeopardy

Relevance

"Deep Learning" goes mainstream

deepBlue - Chess

Watson - Jeopardy

AlphaGo - Go

Relevance

From Engineered Features to Learning-based Representations

• Idea: Engineer informative features + Use ML to discriminate between those features

Relevance

From Engineered Features to Learning-based Representations

Relevance

From Engineered Features to Learning-based Representations

Deep Neural Network

Relevance

From Engineered Features to Learning-based Representations

dataset input layer hidden layer 2 hidden layer 3 output layer "Siamese cat"

Deep Neural Network

Learning-based Representations

Scientific Community

Open-Access Datasets

Open-Access Datasets

The Post-AlexNet Era

[The Birth of "Deep Learning"]

The Post-AlexNet Era

Everything was built on top of deep models

Going Very Deep

Going Very Deep

- Fixed-size 3x3 kernels
- Use same conv. to preserve resolution
- Trained by splitting data across 4 copies of the same model → data parallelism

[Simoyan & Zisserman., 2015]

ConvNet Configuration								
A	A-LRN	В	C	D	Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								

Going Very Deep

- Fixed-size 3x3 kernels
- Use same conv. to preserve resolution
- Trained by splitting data across 4 copies of the same model → data parallelism

ILSVRC Classification Performance

[Simoyan & Zisserman., 2015]

A	ConvNet Configuration									
layers l	A	A-LRN	В	С	D	Е				
Input (224 × 224 RGB image) Conv3-64	11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
Conv3-64	layers	layers	layers	layers	layers	layers				
Conv3-128	input (224 × 224 RGB image)									
Conv3-128	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
conv3-128 conv3-256 conv3-252 conv3-252 <t< td=""><td></td><td>LRN</td><td></td><td></td><td>conv3-64</td><td>conv3-64</td></t<>		LRN			conv3-64	conv3-64				
Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128										
Conv3-256 Conv	conv3-128	conv3-128								
conv3-256 conv3-256 conv3-256 conv3-512 conv3-512 conv3-512					conv3-128	conv3-128				
conv3-256 conv3-512 conv3-512 <t< td=""><td colspan="9"></td></t<>										
Conv3-512 Conv										
Conv3-512 Conv	conv3-256	conv3-256	conv3-256		l					
Conv3-512 Conv				conv1-256	conv3-256					
conv3-512 con						conv3-256				
conv3-512 conv3-512 <t< td=""><td colspan="9">1</td></t<>	1									
Conv3-512 Conv										
Conv3-512 Conv	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
Conv3-512 Conv				conv1-512	conv3-512	conv3-512				
conv3-512 con						conv3-512				
conv3-512 conv3-512 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
conv1-512 conv3-512 conv3-	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
maxpool FC-4096 FC-4096 FC-1000	conv3-512	conv3-512	conv3-512	conv3-512						
maxpool FC-4096 FC-4096 FC-1000				conv1-512	conv3-512					
FC-4096 FC-4096 FC-1000						conv3-512				
FC-4096 FC-1000										
FC-1000										
soft-max	FC-1000									
	soft-max									

1st Conv. Layer (3x3)

Going Very Deep via Stacked kernels and Same Convolutions

Some Benefits

- Smaller kernels
 - → less parameters to estimate.

Larger receptive field with less parameters.

Going Deeper

Going Deeper

- Branching Architecture
- Aggregate the output of different branches.

Going Deeper

- Branching Architecture
- Aggregate the output of different branches.

Going Deeper

Inception Module

Aggregate the output of different branches.

- Provide a skip mechanism to assist the backpropagation of gradients.
- Enable going deeper (18, 34, ..., 152 layers!)

- Provide a skip mechanism to assist the backpropagation of gradients.
- Enable going deeper (18, 34, ..., 152 layers!)

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

- Provide a skip mechanism to assist the backpropagation of gradients.
- **Enable going deeper** (18, 34, ..., 152 layers!)

- Provide a skip mechanism to assist the backpropagation of gradients.
- Enable going deeper (18, 34, ..., 152 layers!)

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor

Squeeze and Excitation Networks

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor

Squeeze and Excitation Networks

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor
 - **Excitation:** learn calibration weights per channel

Squeeze and Excitation Networks

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor
 - **Excitation:** learn calibration weights per channel

Squeeze and Excitation Networks

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor
 - Excitation: learn calibration weights per channel

- Problem: Convolution is a very local operation
- Do: Propagate channel information at different spatial locations
 - Squeeze: produce a channel-wise descriptor
 - Excitation: learn calibration weights per channel

[Finally:D]

ConvNets are not new

lots of progress in the last decade

0.3 0.2 0.1 0.2 0.1 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

year

Top-5 Error

ConvNets are not new

lots of progress in the last decade

Serveral techniques to assist training

Data augmentation | Dropout

ULSVRC Classification Performance 0.3 0.2 0.1 0.1 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

year

ConvNets are not new

lots of progress in the last decade

Serveral techniques to assist training

Data augmentation | Dropout

Relevant new components

inception | Residual | Squeeze-Excitation blocks

References

- Kunihiko Fukushima, Sei Miyake, Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position, Pattern Recognition, Volume 15, Issue 6. 1982.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel, *Handwritten digit recognition with a back-propagation network*. NeurIPS 1989
- Y. Lecun, L. Bottou, Y. Bengio and P. Haffner. *Gradient-based Learning Applied to Document Recognition*. Proceedings of IEEE, 1998
- A. Krizhevsky, I. Sutskever, G. E. Hinton. *ImageNet Classification with Deep Convolutional Neural Networks*. NeurIPS 2012
- * K. Simonyan & A. Zisserman, Very Deep Convolutional Networks for large-scale Image Recognition, ICLR 2015
- * C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, *Going deeper with convolutions*, CVPR 2015.
- K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, CVPR 2016.
- J. Long, E. Shelhamer, T. Darrell, *Fully Convolutional Networks for Semantic Segmentation*, CVPR 2015.
- J. Hu1, L. Shen, G. Sun, **Squeeze-and-Excitation Networks**, CVPR 2017
- D. E. Rumelhart, G. E. Hinton & R. J. Williams. Learning representations by back-propagating errors. 1986
- L. Antanas, M. van Otterlo, J. Oramas, T. Tuytelaars and L. De Raedt. *There are Plenty of Places like Home: Using Hierarchies and Relational Representations for Distance-based Image Understanding*. Neurocomputing 2014.

Convolutional Neural Networks

[ConvNets, CNNs]

