

Text Mining 4 Text Classification

Madrid Summer School on Advanced Statistics and Data Mining

Florian Leitner Data Catalytics, S.L. leitner@datacatytics.com

Incentive and applications

Assign one or more "labels" to a collection of "texts".

- Spam filtering
- Marketing and politics (opinion mining)
- Topic clustering

• ...

Generative vs. discriminative models

- Generative models describe how the [hidden] labels "generated" the [observed] input as **joint probabilities**: P(class, data)
- ▶ They learn the distributions of each individual class.
- ▶ Examples: Markov Chain, Naïve Bayes, Latent Dirichlet Allocation, Hidden Markov Model, ...
- ▶ Graphical models for detecting outliers or when there is a need to update models (change)
- Discriminative models predict ("discriminate") the [hidden] labels conditioned on the [observed] input: P(class | data)
- ▶ They ("only") learn the boundaries between classes.
- ▶ Ex.: Logistic Regression, Support Vector Machine, Conditional Random Field, Random Forest, ...
- Both can identify the most likely labels and their likelihoods
- Only generative models:
- Most likely input value[s] and their likelihood[s]
- Likelihood of input value[s] for some particular label[s]

Maximum entropy (MaxEnt) intuition

The principle of maximum entropy

Supervised MaxEnt classification $\int_{n}^{p(x)=\frac{1}{1+exp(-(\lambda_{0}+\lambda_{1}x))}}$

$$ln\frac{p(x)}{1-p(x)} = \lambda_0 + \lambda_1 x$$

$$\frac{p(x)}{1-p(x)} = exp(\lambda_0 + \lambda_1 x)$$

$$\frac{p(x)}{1-p(x)} = exp(\lambda_0 + \lambda_1 x)$$

a.k.a. multinomial logistic regression

- logistic function p
 Image Source: WikiMedia Commons, Qef
- Does not assume independence between the features
- Can model mixtures of binary, discrete, and real features
- Training data are **per-feature-label probabilities**: P(F, L)
- ▶ I.e., count(f_i , l_i) ÷ $\sum_{i=1}^{N}$ count(f_i , l_i)
- → words → very sparse training data (zero or few examples)
- Model parameters are commonly learned using gradient descent
- ▶ Expensive if compared to Naïve Bayes, but efficient optimizers exist (**L-BFGS**)

Example feature functions for MaxEnt classifiers

- Examples of indicator functions (a.k.a. feature functions)
- Assume we wish to classify the general polarity (positive, negative) of product reviews:
- $f(c, w) := \{c = POSITIVE \land w = "great"\}$
- Equally, for classifying words in a text, say to detect proper names, we could create a feature:
- $f(c, w) := \{c = NAME \land isCapitalized(w)\}$
- Note that while we can have multiple classes, we cannot require more than one class in the whole match condition of a single indicator (feature) function.

NB: typical text mining models can have a million or more features: unigrams + bigrams + trigrams + counts + dictionary matches + ...

Maximizing the conditional entropy

• The conditioned (on X) version of Shannon's entropy H:

$$H(Y|X) = -\sum_{x \in X} P(x) \ H(Y|X = x)$$

$$P(x,y) = P(x) \ P(y|x)$$

$$= -\sum_{x \in X} P(x) \sum_{y \in Y} P(y|x) \log_2 P(y|x)$$

$$\text{to remove the minus}$$

$$= \sum_{x,y \in X,Y} P(x,y) \log_2 \frac{P(x)}{P(x,y)}$$

 MaxEnt training then is about selecting the model p* that maximizes H:

$$p^* = \mathop{argmax}_{p \in P} \ H(P) = \mathop{argmax}_{p \in P} \ H(Y|X)$$

Maximum entropy (MaxEnt 1/2)

- Some definitions:
- ▶ The observed probability of y (the class) with x (the words) is:

$$\hat{P}(x,y) = count(x,y) \div N$$

▶ An indicator function ("feature") is defined as a binary valued function that returns 1 iff class and data match the indicated requirements (constraints):

$$f(x,y) = \begin{cases} 1 & if \ y = c_i \land x = w_i \\ 0 & otherwise \end{cases}$$

real/discrete/binary features now are all the same!

▶ The probability of a feature with respect to the observed distribution is:

$$\hat{P}(f_i, X, Y) = E_{\hat{P}}[f_i] = \sum \hat{P}(x, y) f_i(x, y)$$

Getting lost? Reality check:

- I have told you:
- MaxEnt is about maximizing "conditional entropy":
- ▶ By multiplying binary (0/1) feature functions for observations with the joint (observation, class) probabilities, we can calculate the conditional probability of a class given its observations H(Y=y|X=x)
- We will still have to do:
- ▶ Find weights (i.e., parameters) for each feature [function] that lead to the best model of the [observed] class probabilities.
- And you want to know:
- How do we use all this to actually classify new input data?

Maximum entropy (MaxEnt 2/2)

▶ In a **linear** model, we'd use weights ("lambdas") that identify the most relevant features of our model, i.e., we use the following MAP to select a class:

$$\underset{y \in Y}{argmax} \sum \lambda_i f_i(X, y)$$

▶ To do multinomial logistic regression, expand with a linear combination:

$$\underset{y \in Y}{argmax} \frac{exp(\sum \lambda_i f_i(X, y))}{\sum_{y \in Y} exp(\sum \lambda_i f_i(X, y))} \quad \text{``exponential model''}$$

Next: Estimate the λ weights (parameters) that maximize the conditional likelihood of this logistic model (MLE)

Maximum entropy (MaxEnt 2/2) [again]

▶ In summary, MaxEnt is about selecting the "maximal" model p*:

$$p^* = \underset{p \in P}{\operatorname{argmax}} - \sum_{x \in X} p(x) \sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

select some model that maximizes the conditional entropy...

▶ That obeys the following conditional equality constraint:

$$\sum_{x \in X} P(x) \sum_{y \in Y} P(y|x) f(x,y) = \sum_{x \in X, y \in Y} P(x,y) f(x,y)$$

...using a conditional model that matches the (observed) joint probabilities

MSS/ASDM: Text Mining

Next: Using, e.g., Langrange multipliers, one can establish the optimal λ parameters of the model that maximize the entropy of this probability:

$$p^*(y|X) = \frac{exp(\sum \lambda_i f_i(X,y))}{\sum_{y \in Y} exp(\sum \lambda_i f_i(X,y))}$$

Image Source: WikiMedia Commons, Nexcis

Newton's method for paramter optimization

- Problem: find the λ parameters
- an "optimization problem"
- MaxEnt surface is concave
- one **single maximum**
- Using Newton's method
- ▶ iterative, hill-climbing search for max.
- the first derivative f' is zero at the [global] maximum (the "goal")
- the **second derivative** f'' indicates rate of change: $\Delta \lambda_i$ (search direction)
- takes the most direct route to the maximum as opposed to gradient descent, which will follow a possibly curved path to the optimum

- Using L-BFGS
- ▶ a heuristic to simplify Newton's method it is said to be " quasi-Newtonian"
- ► L-BFGS: **limited memory B**royden— **F**letcher—**G**oldfarb—**S**hanno
- normally, the partial second derivatives would be stored in the Hessian, a matrix that grows quadratically with respect to the number of features
- only uses the last few [partial] gradients to approximate the search direction

MaxEnt vs. naïve Bayes

Lights Working

Image Source: Klein & Manning. Maxent Models, Conditional Estimation, and Optimization. ACL 2003 Tutorial

$$P(g,r,w) = 3/7$$

$$P(g,r,w) = 3/7$$
 $P(r,g,w) = 3/7$

$$P(r,r,b) = 1/7$$

MaxEnt adjusts the Langrange multipliers (weights) to **model** the correct (observed) **joint probabilities**.

Note that the example has dependent features: the two stoplights!

•
$$P(w) = 6/7$$

•
$$P(b) = 1/7$$

•
$$P(r,r,b) = (1/7)(1)(1) = 4/28$$

•
$$P(r|w) = 1/2$$

•
$$P(r|b) = 1$$

•
$$P(r,g,b) = P(g,r,b) = P(g,g,b) = 0$$

•
$$P(g|w) = 1/2$$

•
$$P(g|b) = 0$$

•
$$P(*,*,\mathbf{w}) = (6/7)(1/2)(1/2) = 3/14$$

$$\mathcal{R}(g,g,\omega) = 3/14??$$
 $\mathcal{R}(r,r,\omega) = 3/14 > \mathcal{R}(r,r,\delta) !?!?$

But even MaxEnt cannot detect feature interaction

Empirical (joint)

2 feature model: observations A=r or B=r observed

4 feature model: any a,b observed

Klein & Manning. MaxEnt Models, Conditional Estimation and Optimization. ACL 2003

Practical: Classifying Wikipedia pages

A first look at probabilistic graphical models

- Latent Dirichlet Allocation: LDA
- ▶ Blei, Ng, and Jordan. Journal of Machine Learning Research 2003
- ▶ For assigning "topics" to "documents" i.e., for text classification
- An unsupervised, generative model

Latent Dirichlet Allocation (LDA 1/3)

- Intuition for LDA
- From: Edwin Chen. Introduction to LDA. 2011
- "Document Collection"
- I like to eat broccoli and bananas.
- I ate a banana and spinach smoothie for breakfast.
- Chinchillas and kittens are cute.
- My sister adopted a kitten yesterday.
- Look at this cute hamster munching on a piece of broccoli.

→ Topic A

→ Topic B

→ Topic 0.6A + 0.4B

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ...

Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ...

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

The Dirichlet process

A Dirichlet process is like drawing from an (infinite) "bag of dice" (with finite faces).

 A Dirichlet is a [possibly continuos] distribution over [discrete/multinomial] distributions (probability masses).

$$D(\boldsymbol{\theta}, \boldsymbol{\alpha}) = \frac{\Gamma(\sum \alpha_i)}{\prod \Gamma(\alpha_i)} \frac{\theta_i^{\alpha_i-1}}{\prod \theta_i^{\alpha_i-1}}$$
 a Dirichlet prior: $\forall \alpha_i \in \alpha: \alpha_i > 0$
$$\sum \theta_i = 1; \text{ a Probability Mass Function}$$

• The **Dirichlet Process samples** multiple independent, discrete **distributions** θ_i with repetition from θ ("statistical clustering").

- 1. Draw a new distribution X from $D(\theta, \alpha)$
- 2. With probability $\alpha \div (\alpha + n 1)$ draw a new X With probability $n \div (\alpha + n 1)$, (re-)sample an X_i from X

The Dirichlet prior α

"density plots over the probability simplex in R3"

Documents and topic distributions (N=3)

Frigyik et al. Introduction to the Dirichlet Distribution and Related Processes. 2010

Latent Dirichlet Allocation (LDA 2/3)

$$\begin{array}{l} \textit{Joint Probability} \\ P(B,\Theta,Z,W) = \left(\prod_{k}^{K} P(\beta_{k}|\eta)\right) \left(\prod_{d}^{D} P(\theta_{d}|\alpha) \prod_{n}^{N} P(z_{d,n}|\theta_{d}) P(w_{d,n}|\beta_{1:K},z_{d,n})\right) \\ \textit{X.Topics}) \\ \end{array} \\ \begin{array}{l} \textit{X.Word-T. I. Document-T.} \end{array}$$

- α per-document Dirichlet $w_{d,n}$ **observed** words prior
- θ_d topic distribution of document d

η - per-topic Dirichlet prior

dampens the topic-specific score of terms assigned to many topics

• β_k - word distrib. of topic k

• z_{d,n} - word-topic assignments

nments
$$termscore_{k,n} = \hat{eta}_{k,n} \log \frac{\hat{eta}_{k,n}}{\left(\prod_{j}^{K} \hat{eta}_{j,n}\right)^{1/K}}$$
 what Topics is a Word assigned to?

MSS/ASDM: Text Mining

Latent Dirichlet Allocation (LDA 3/3)

- LDA inference in a nutshell
- ▶ Calculate the posterior probability that Topic t generated Word w.
- ▶ Initialization: Choose K, the number of Topics, and randomly assign one out of the K Topics to each of the N Words in each of the D Documents.
- The same word can have different Topics at different positions in the Document.
- ▶ Then, for each Topic:
 And for each Word in each Document:
- 1. Compute P(Word-Topic | Document): the proportion of [Words assigned to] Topic t in Document d
- 2. Compute P(Word | Topics, Word-Topic): the probability a Word w is assigned a Topic t (using the general distribution of Topics and the Document-specific distribution of [Word-] Topics)
- Note that a Word can be assigned a different Topic each time it appears in a Document.
- 3. Given the prior probabilities of a Document's Topics and that of Topics in general, reassign P(Topic | Word) = P(Word-Topic | Document) * P(Word | Topics, Word-Topic)
- Repeat until P(Topic | Word) stabilizes (e.g., MCMC Gibbs sampling, Course 04)

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Practical: Clustering Wikipedia pages

Evaluation metrics for classification tasks

Evaluations should answer questions like:

How to measure a change to an approach?

Did adding a feature improve or decrease performance?

Is the approach good at locating the relevant pieces or good at excluding the irrelevant bits?

How do two or more different methods compare?

Essential evaluation metrics: Accuracy, F-Measure, MCC Score

Patient Doctor	has cancer	is healthy
diagnose cancer	TP	FP
detects nothing	FN	TN

- Precision (P)
- correct hits [TP] ÷ all hits [TP + FP]
- Recall (R; Sensitivity, TPR)
- correct hits [TP] ÷ true cases [TP + FN]
- **Specificity** (True Negative Rate)
- correct misses [TN] ÷ negative cases [FP + TN]

NB: no result order

Accuracy

- correct classifications [TP + TN] ÷ all cases [TP + TN + FN + FP])
- highly sensitive to class imbalance
- F-Measure (F-Score)
- the harmonic mean between P & R
 = 2 TP ÷ (2 TP + FP + FN)
 = (2 P R) ÷ (P + R)
- does not require a TN count
- MCC Score (Mathew's Correlation Coefficient)
- χ^2 -based: (TP TN FP FN) ÷ sqrt[(TP+FP)(TP+FN)(TN+FP)(TN+FN)]
- robust against class imbalance

Ranked evaluation results:

AUC ROC and PR

Area Under the Curve Receiver-Operator Characteristic Precision-Recall

Davis & Goadrich. ICML 2006

TPR / Recall (aka. Sensitivity)
TP ÷ (TP + FN)

FPR (not Specificity!)
FP ÷ (TN + FP)

Precision

 $TP \div (TP + FP)$

P(FP)

100%

0%

To ROC or to PR?

Curve I:
10 hits in
the top 10,
and 10 hits
spread over
the next
1500
results.

AUC ROC 0.813 Results: 20 T « 1980 N

The Relationship Between Precision-Recall and ROC Curves

Figure 12. Comparing AUC-PR for Two Algorithms

"An algorithm which optimizes the area under the ROC curve is not guaranteed to optimize the area under the PR curve."

Davis & Goadrich, 2006

- Davis & Goadrich. The Relationship Between PR and ROC Curves. ICML 2006
- Landgrebe et al. Precision-recall operating characteristic (P-ROC) curves in imprecise environments. Pattern Recognition 2006
- Hanczar et al. Small-Sample Precision of ROC-Related Estimates. Bioinformatics 2010

→ Use (AUC) PR for [imbalanced] ranking scenarios!

Curve II:

Hits spread

evenly over

the first 500

results.

AUC ROC

0.875

Sentiment Analysis

as an example domain for text classification (only if there is time left after the exercises)

Cristopher Potts. Sentiment Symposium Tutorial. 2011 http://sentiment.christopherpotts.net/index.html

Opinion/Sentiment Analysis

- Harder than "regular" document classification
- irony, neutral ("non-polar") sentiment, negations ("not good"), syntax is used to express emotions ("!"), context dependent
- Confounding polarities from individual aspects (phrases)
- e.g., a car company's "customer service" vs. the "safety" of their cars
- Strong commercial interest in this topic
- "Social" (commercial?) networking sites (FB, G+, ...; advertisement)
- ▶ Reviews (Amazon, Google Maps), blogs, fora, online comments, ...
- Brand reputation and political opinion analysis

Polarity of Sentiment Keywords in IMDB

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

135

5+1 Lexical Resources for Sentiment Analysis

Cristopher Potts. Sentiment Symposium Tutorial. 2011

Disagree- ment	Opinion Lexicon	General Inquirer	SentiWordNet	LIWC
Subjectivity Lexicon	33/5402 (0.6%)	49/2867 (2%)	1127/4214 (27%)	12/363 (3%)
Opinion Lexicon		32/2411 (1%)	1004/3994 (25%)	9/403 (2%)
General Inquirer			520/2306 (23%)	1/204 (0.5%)
SentiWord Net				174/694 (25%)

MPQA Subjectivity Lexicon: http://mpqa.cs.pitt.edu/

Liu's Opinion Lexicon: http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

General Inquirer: http://www.wjh.harvard.edu/~inquirer/

SentiWordNet: http://sentiwordnet.isti.cnr.it/

LIWC (commercial, \$90): http://www.liwc.net/

NRC Emotion Lexicon (+1): http://www.saifmohammad.com/ (→Publications & Data)

Florian Leitner <florian.leitner@upm.es>

MSS/ASDM: Text Mining

Detecting the Sentiment of Individual Aspects

- Goal: Determine the sentiment for a particular aspect or establish their polarity.
- ▶ An "aspect" here is a phrase or concept, like "customer service".
- ▶ "They have a **great**+ <u>customer service</u> team, but the <u>delivery</u> **took ages**.."
- Solution: Measure the co-occurrence of the aspect with words of distinct sentiment or relative co-occurrence with words of the same polarity.
- ▶ The "sentiment" keywords are taken from some lexical resource.

Google's Review Summaries

"Great food, great atmosphere." - virtualtourist.com

atmosphere

🛨 dining, decor, dishes, ambience, ambiance

Sponsored Links

Ruth's Chris Steak House

Dine on US Prime Steak at Ruth's Chris. Official Site. See Our Menu! www.RuthsChris.com

Restaurant Supplies

Looking For Restaurant Equipment & Supplies? Find Them Here Now. www.ThomasNet.com

Commercial Kitchen Design

Restaurant Kitchen Design Design, Equipment and Installation www.BostonShowcase.com

Arabic CLasses NYC

ABC Language Exchange Group & Private Arabic Lessons NYC www.abclang.com

Using PMI to Detect Aspect Polarity

- **Polarity(aspect)** := PMI(*aspect*, pos-sent-kwds) PMI(*aspect*, neg-sent-kwds)
- ▶ Polarity > 0 = positive sentiment
- ► Polarity < 0 = negative sentiment
- Google's approach:

Blair-Goldensohn et al. Building a Sentiment Summarizer for Local Service Reviews.
 WWW 2008

Practical: Twitter sentiment mining

