Functions

魏恒峰

hfwei@nju.edu.cn

2018年02月26日

Function

Function

Function

PROOF! PROOF! PROOF!

4 / 39

Definition of Function

5 / 39

Definition (Relation)

Let A and B be sets.

R is a (binary) relation if

$$R\subseteq A\times B=\{(a,b)\mid a\in A\wedge b\in B\}$$

Definition (Relation)

Let A and B be sets.

R is a (binary) relation if

$$R \subseteq A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$(a,b) = \{\{a\}, \{a,b\}\}$$
 (UD Problem 9.16)

Definition (Function)

A function f from A to B is a relation f from A to B such that

$$\forall a \in A \; \exists! b \in B \; (a,b) \in f.$$

7 / 39

Definition (Function)

A function f from A to B is a relation f from A to B such that

$$\forall a \in A \exists! b \in B \ (a,b) \in f.$$

For Proof:

 \forall

$$\exists ! : \forall b, b' \in B, (a, b) \in f \land (a, b') \in f \implies b = b'.$$

7 / 39

Definition (Function)

A **function** f from A to B is a relation f from A to B such that

$$\forall a \in A \; \exists! b \in B \; (a,b) \in f.$$

For Proof:

$$\exists ! : \forall b, b' \in B, (a, b) \in f \land (a, b') \in f \implies b = b'.$$

Notations:

$$f: A \to B, \quad a \mapsto b = f(a)$$

$$A: dom(f)$$
 $B: cod(f)$

$$\operatorname{ran}(f) = f(A) = \{ f(a) \mid a \in A \} \subseteq B$$

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet Function

8 / 39

Weierstrass Function (1872)

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

$$0 < a < 1, \ b \in 2\mathbb{N} + 1, \ ab > 1 + \frac{3}{2}\pi$$

UD Problem 13.3 (g)

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}$$

10 / 39

UD Problem 13.4

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

Definition (Axiom of Extensionality (集合的外延公理))

$$\forall A \forall B \forall x (x \in A \iff x \in B) \iff A = B.$$

Definition (Axiom of Extensionality (集合的外延公理))

$$\forall A \forall B \forall x (x \in A \iff x \in B) \iff A = B.$$

Definition (函数的外延性原则)

$$f = g \iff \mathsf{dom}(f) = \mathsf{dom}(g) \land \Big(\forall x \in \mathsf{dom}(f) : f(x) = g(x) \Big)$$

Special Functions (-jectivity)

$$f:A\to B$$

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

$$f:A\to B \qquad f:A\rightarrowtail B$$

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

$$f: A \to B$$
 $f: A \rightarrowtail B$

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

For Proof:

▶ To prove that *f* is 1-1:

$$\forall a_1, a_2 \in A : f(a_1) = f(a_2) \implies a_1 = a_2$$

$$f: A \to B$$
 $f: A \rightarrowtail B$

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

For Proof:

▶ To prove that *f* is 1-1:

$$\forall a_1, a_2 \in A : f(a_1) = f(a_2) \implies a_1 = a_2$$

► To show that *f* is not 1-1:

$$\exists a_1, a_2 \in A : a_1 \neq a_2 \land f(a_1) = f(a_2)$$

$$f:A\to B$$

$$\mathsf{ran}(f) = B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$

$$\mathop{\rm ran}(f)=B$$

$$f:A \to B$$
 $f:A woheadrightarrow B$
$$\operatorname{ran}(f) = B$$

For Proof:

► To prove that *f* is onto:

$$\forall b \in B \ \Big(\exists a \in A : f(a) = b \Big)$$

$$f:A \to B$$
 $f:A \xrightarrow{\hspace*{0.2cm}{\rightarrow}\hspace*{0.2cm}} B$
$$\operatorname{ran}(f) = B$$

For Proof:

► To prove that *f* is onto:

$$\forall b \in B \ (\exists a \in A : f(a) = b)$$

► To show that *f* is not onto:

$$\exists b \in B \ (\forall a \in A : f(a) \neq b)$$

Theorem (Cantor Theorem (ES Theorem 24.4))

Let A he a set

If $f: A \to 2^A$, then f is not onto.

Proof.

Proof. Let A be a set and let $f: A \to 2^A$. To show that f is not onto, we must find a $B \in 2^A$ (i.e., $B \subseteq A$) for which there is no $a \in A$ with f(a) = B. In other words, B is a set that f "misses." To this end, let

$$B = \{x \in A : x \notin f(x)\}.$$

We claim there is no $a \in A$ with f(a) = B.

Suppose, for the sake of contradiction, there is an $a \in A$ such that f(a) = B. We ponder: Is $a \in B$?

- If $a \in B$, then, since B = f(a), we have $a \in f(a)$. So, by definition of B, $a \notin f(a)$; that is, $a \notin B. \Rightarrow \Leftarrow$
- If $a \notin B = f(a)$, then, by definition of $B, a \in B. \Rightarrow \Leftarrow$

Both $a \in B$ and $a \notin B$ lead to contradictions, and hence our supposition [there is an $a \in A$ with f(a) = B is false, and therefore f is not onto.

Let A be a set.

If $f:A\to 2^A$, then f is not onto.

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Let A be a set.

If $f:A\to 2^A$, then f is not onto.

Let A be a set.

If $f:A\to 2^A$, then f is not onto.

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

 2^A

$$2^{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

 2^A

$$2^A = \left\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\right\}$$

Onto

$$\forall B \in 2^A \ (\exists a \in A \ f(a) = B).$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

 2^A

$$2^A = \Big\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\Big\}$$

Onto

$$\forall B \in 2^A \ \Big(\exists a \in A \ f(a) = B \Big).$$

Not Onto

$$\exists B \in 2^A \ (\forall a \in A \ f(a) \neq B).$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Proof.

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Proof.

► Constructive proof (∃):

$$B = \{ x \in A \mid x \notin f(x) \}.$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Proof.

► Constructive proof (∃):

$$B = \{ x \in A \mid x \notin f(x) \}.$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Proof.

► Constructive proof (∃):

$$B = \{ x \in A \mid x \notin f(x) \}.$$

▶ By contradiction (∀):

$$\exists a \in A : f(a) = B.$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Proof.

► Constructive proof (∃):

$$B = \{ x \in A \mid x \notin f(x) \}.$$

▶ By contradiction (∀):

$$\exists a \in A : f(a) = B.$$

 $Q: a \in B$?

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	
:	:	:	:	:	:	

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	
5	0	1	0	1	0	
:	:	:	:	:	:	

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	
4	1	1	1	1	1	• • •
5	0	1	0	1	0	
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Let A be a set.

If $f: A \to 2^A$, then f is not onto.

对角线论证 (Cantor's diagonal argument) (以下仅适用于可数集合 A).

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	• • •
4	1	1	1	1	1	
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Definition (Bijective (one-to-one correspondence) ——对应)

 $f:A\to B$

1-1 & onto

Definition (Bijective (one-to-one correspondence) ——对应)

$$f: A \to B$$
 $f: A \stackrel{1-1}{\longleftrightarrow} B$

1-1 & onto

UD Problem 14.12

$$a, b, c, d \in \mathbb{R}, \ a < b, \ c < d$$

Define a bijective function:

$$f: [a, b] \xleftarrow[onto]{1-1} [c, d]$$
$$f: (a, b) \xleftarrow[onto]{1-1} (c, d)$$

$$f:(a,b) \stackrel{1-1}{\longleftrightarrow} (c,d)$$

UD Problem 14.12

$$a, b, c, d \in \mathbb{R}, \ a < b, \ c < d$$

Define a bijective function:

$$f: [a,b] \xleftarrow[onto]{1-1} [c,d]$$

$$f:(a,b) \stackrel{1-1}{\longleftrightarrow} (c,d)$$

Answer.

$$f(x) = c + \frac{d-c}{b-a}(x-a)$$

Operations on Functions

Operations on Functions

Set

Relation

$$\circ$$
 $f^{-1}(a)$ $f(A)\&f^{-1}(B)$

Definition (Intersection, Union)

$$f_1, f_2: A \to B$$

- (i) Q: Is $f_1 \cup f_2$ a function from A to B?
- (ii) Q: Is $f_1 \cap f_2$ a function from A to B?

Definition (Intersection, Union)

$$f_1, f_2: A \to B$$

- (i) Q: Is $f_1 \cup f_2$ a function from A to B?
- (ii) Q: Is $f_1 \cap f_2$ a function from A to B?

Definition (Restriction (UD Problem 15.20))

$$f: A \to B, A_0 \subseteq A$$

$$f|_{A_0}: A_0 \to B, \qquad f|_{A_0}(a) = f(a), \forall a \in A_0$$

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$

$$\operatorname{ran}(f) \subseteq C$$

The composition function

$$g\circ f:A\to D$$

$$(g \circ f)(x) = g(f(x))$$

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$

$$\operatorname{ran}(f) \subseteq C$$

The composition function

$$g \circ f : A \to D$$

$$(g \circ f)(x) = g(f(x))$$

Non-commutative:

$$f \circ g \neq g \circ f$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof.

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof.

$$\mathsf{dom}(h\circ(g\circ f))=\mathsf{dom}((h\circ g)\circ f)$$

$$(h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x)$$

Theorem (Properties of Composition (UD Theorem 15.7))

$$f:A\to B \qquad g:B\to C$$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Theorem (Properties of Composition (UD Theorem 15.7))

$$f:A\to B \qquad g:B\to C$$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Proof for (i).

Theorem (Properties of Composition (UD Theorem 15.7))

$$f:A \to B$$
 $g:B \to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Proof for (i).

$$\forall a_1, a_2 \in A \left((g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2 \right)$$

Theorem (Properties of Composition (UD Theorem 15.8))

$$f:A\to B$$
 $g:B\to C$

- (i) If $g \circ f$ is injective, then f is injective.
- (ii) If $g \circ f$ is surjective, then g is surjective.
- (iii) If $g \circ f$ is bijective, then f is injective and g is surjective.

Theorem (Properties of Composition (UD Theorem 15.8))

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is injective, then f is injective.
- (ii) If $g \circ f$ is surjective, then g is surjective.
- (iii) If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof.

Left as an Exercise (15.9).

$$f:A\to B$$
 $g_1,g_2:B\to A$

$$f \circ g_1 = f \circ g_2 \wedge f$$
 is bijective $\implies g_1 = g_2$

$$f:A\to B$$
 $g_1,g_2:B\to A$

$$f \circ g_1 = f \circ g_2 \wedge f$$
 is bijective $\implies g_1 = g_2$

Remark:

f is one-to-one.

$$f: A \to B$$
 $g_1, g_2: B \to A$

$$f \circ g_1 = f \circ g_2 \wedge f$$
 is bijective $\implies g_1 = g_2$

Remark:

f is one-to-one.

Proof.

$$f: A \to B$$
 $g_1, g_2: B \to A$

$$f \circ g_1 = f \circ g_2 \wedge f$$
 is bijective $\implies g_1 = g_2$

Remark:

f is one-to-one.

Proof.

$$\forall b \in B \Big(f \circ g_1(b) = f \circ g_2(b) \implies \cdots \Big)$$

Definition (Inverse)

Let $f:A\to B$ be a bijective function.

The inverse of f is the function $f^{-1}:B\to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The inverse of f is the function $f^{-1}: B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

Q: Why "Bijective"?

Theorem (UD Theorem 15.4 (ii))

 $f: A \to B$ is bijective $\implies f^{-1}$ is bijective.

Theorem (Solving Equations (UD Theorem 15.4))

 $f:A \rightarrow B$ is bijective

(i)
$$f \circ f^{-1} = i_B$$

(ii)
$$g: B \to A \land f \circ g = i_B \implies g = f^{-1}$$

(iii)
$$f^{-1} \circ f = i_A$$

(iv)
$$g: B \to A \land g \circ f = i_A \implies g = f^{-1}$$

Theorem (Solving Equations (UD Theorem 15.4))

 $f:A \rightarrow B$ is bijective

(i)
$$f \circ f^{-1} = i_B$$

(ii)
$$g: B \to A \land f \circ g = i_B \implies g = f^{-1}$$

(iii)
$$f^{-1} \circ f = i_A$$

(iv)
$$g: B \to A \land g \circ f = i_A \implies g = f^{-1}$$

Solving the equations:

$$f \circ g = i_B$$
 $g \circ f = i_A$

$$f:A \to B$$
 is bijective

$$\Longrightarrow$$

$$\exists g: B \to A \ \Big(f \circ g = i_B \land g \circ f = i_A \Big)$$

$$f: A \rightarrow B$$
 is bijective

$$\Longrightarrow$$

$$\exists g: B \to A \left(f \circ g = i_B \land g \circ f = i_A \right) \land g = f^{-1}$$

33 / 39

$$f:A o B$$
 is bijective
$$\Longrightarrow$$
 $\exists g:B o A\ \Big(f\circ g=i_B\wedge g\circ f=i_A\Big)\wedge g=f^{-1}$

Theorem (Inverse
$$\implies$$
 Bijective (UD Theorem 15.8 (iii)))
$$\exists g: B \to A \ \Big(g \circ f = i_A \land f \circ g = i_B\Big)$$
 \implies $f: A \to B$ is bijective

$$f:A o B$$
 is bijective
$$\Longrightarrow$$
 $\exists g:B o A\ \Big(f\circ g=i_B\wedge g\circ f=i_A\Big)\wedge g=f^{-1}$

Theorem (Inverse
$$\implies$$
 Bijective (UD Theorem 15.8 (iii)))
$$\exists g: B \to A \ \Big(g \circ f = i_A \land f \circ g = i_B\Big)$$

$$\implies$$

$$f: A \to B \text{ is bijective } \land g = f^{-1}$$

Theorem (Inverse of Composition (UD Theorem 15.6))

$$f:A \rightarrow B, g:B \rightarrow C$$
 are bijective

- (i) $g \circ f$ is bijective
- (ii) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Proof for (ii).

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = i_A$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = i_B$$

$$f: A \to B, A_0 \subseteq A, B_0 \subseteq B$$

Definition (Image)

The image of A_0 under f is the set

$$f(A_0) = \{ f(a) \mid a \in A_0 \}.$$

Definition (Inverse Image)

The inverse image of B_0 under f is the set

$$f^{-1}(B_0) = \{ a \in A \mid f(a) \in B_0 \}.$$

Theorem (Properties of f and f^{-1} (UD Theorem 16.7))

$$f: A \to B, \ A_0, A_1, A_2 \subseteq A, \ B_0, B_1, B_2 \subseteq B$$

- (i) f, when applied to subsets of A, preserves only " \subseteq " and \cup :
 - (1) $A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$
 - (2) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - (3) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - $(4) f(A \setminus A_0) \neq B \setminus f(A_0)$
- (ii) f^{-1} , when applied to subsets of B, preserves \subseteq, \cup, \cap , and \setminus :
 - (5) $B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$
 - (6) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
 - (7) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 - (8) $f^{-1}(B \setminus B_0) = A \setminus f^{-1}(B_0)$

Theorem (Properties of f and f^{-1} (UD Theorem 16.7))

$$f: A \to B, \ A_0 \subseteq A, \ B_0 \subseteq B$$

- (iii) f and f^{-1} :
 - (9) $A_0 \subseteq f^{-1}(f(A_0))$

Q: When is $A_0 = f^{-1}(f(A_0))$?

Theorem (Properties of f and f^{-1} (UD Theorem 16.7))

$$f: A \to B, \ A_0 \subseteq A, \ B_0 \subseteq B$$

(iii) f and f^{-1} :

(9)
$$A_0 \subseteq f^{-1}(f(A_0))$$

Q: When is $A_0 = f^{-1}(f(A_0))$?

(10)
$$B_0 \subseteq f(f^{-1}(B_0))$$

Q: When is $B_0 = f(f^{-1}(B_0))$?

UD Problem 16.20

$$f: A \to B, \quad A_1, A_2 \subseteq A$$

(i) When is
$$f(A_1) = f(A_2) \implies A_1 = A_2$$
?

UD Problem 16.21

$$f: A \to B, \quad B_1, B_2 \subseteq B$$

(i) When is
$$f^{-1}(B_1) = f^{-1}(B_2) \implies B_1 = B_2$$
?

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn