

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Universidad del Perú, DECANA DE AMÉRICA

FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA E.A.P. DE INGENIERÍA DE SOFTWARE

ÁLGEBRA Y GEOMETRÍA ANALÍTICA

INGENIERÍA DE SOFTWARE

EXAMEN	PARCIAL

	EAAWEN FARCIAL
	Y NOMBRESFECHA
CODIGO	
INST	TRUCCIONES AL ESTUDIANTE:
• El exa	amen es individual
• Usar	lapiceros para el desarrollo de la evaluación.
I)	Indicar el valor de verdad de cada una de las siguientes proposiciones justificando su
	respuesta. (4 ptos.)
	a) La siguiente proposición es una Tautología: $[q \land (p \lor \sim q)] \rightarrow q$

b) Las proposiciones $[(\sim p \lor q) \lor (\sim r \land \sim p)] \lor [\sim q \to \sim p]$ no son equivalentes.

- c) El número $N = 5^{2n} + 7$; es divisible por 8 para todo $n \in \mathbb{N}$.
- d) Se cumple que para todo $n \in \mathbb{N}$, $\sum_{i=1}^{n} \frac{1}{(i+1)[(i-1)!]} = \frac{(i-1)!}{(i+1)}$
- II) Probar por el método de inducción los siguientes teoremas. (4 ptos.)

UNMSM; jueves 30 de junio.

- a) En polinomio (x + y) es un factor del polinomio $x^{2n-1} + y^{2n-1}$, para todo $n \in \mathbb{N}$
- b) Para todo $n \in \mathbb{N}$, se cumple $[cos(\alpha) + i sen(\alpha)]^n = cos(n\alpha) + i sen(n\alpha)$
- III) Sean x e y números reales y positivos tales que la suma de dichos números es 1, comprobar que

$$xy \le \frac{1}{4} \tag{4 ptos.}$$

- IV) Si se cumple que $x^3 4\sqrt{3} + 4i = 0$, calcule los tres valores que de x que satisfacen dicha igualdad. (4 ptos.)
- V) Encontrar un polinomio P(x) de grado mínimo y coeficientes reales que tenga como raíces a $x_1 = 1$, $x_2 = 1 \sqrt{5}$, $x_3 = -3i$ con P(0) = 6 (4 ptos.)