<u>Dashboard</u> / My cou	rses / <u>CS305_2022</u> / <u>Quiz / Quiz 1 (re-exam)</u>
Started on	Friday, 12 August 2022, 2:16 PM
State	Finished
Completed on	Friday, 12 August 2022, 2:26 PM
Time taken	10 mins
Marks	7.50/16.00
Grade	4.69 out of 10.00 (47 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
$(0+1)^*01(0+1)^*$	$^* + 1^*0^* = (0+1)^*$
Select one:	
■ True	
○ False	
The correct answer	is 'True'.
Question 2	

Since finite languages are regular, all regular languages must be finite.

Select one:

Mark 1.00 out of 1.00

O True

Correct

■ False

The correct answer is 'False'.

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

Is the string 011110011 accepted by the following DFA

$$\delta(q_0,0)=q_1$$
 , $\delta(q_0,1)=q_3$, $\delta(q_1,1)=q_2$, $\delta(q_1,0)=q_3$, $\delta(q_2,0)=q_2$, $\delta(q_2,1)=q_0$, $\delta(q_3,1)=q_2$, $\delta(q_3,0)=q_3$ where q_0 and q_3 are the initial and final states, respectively.

Select one:

- True
- False

The correct answer is 'True'.

Question 4

Correct

Mark 1.00 out of 1.00

Transition function δ of NFA is given by

$$igcup$$
 a. $\delta:\Sigma imes Q o Q$

$$igodots$$
 b. $\delta: \Sigma imes Q \cup \{\lambda\}
ightarrow 2^Q$

$${}$$
 © c. $\delta:\Sigma imes Q o 2^Q$

$$\quad \ \, \bigcirc \ \, \mathrm{d.} \, \delta : \Sigma \times Q \cup \{\lambda\} \rightarrow Q$$

Your answer is correct.

The correct answer is:

$$\delta: \Sigma imes Q o 2^Q$$

Question 5
Incorrect
Mark 0.00 out of 1.00

If P,Q,R are regular expressions such that $\lambda \not\in P$, then the equation

 $R=PR+Q\;\;{
m has}\;{
m a}\;{
m solution}$

- \bigcirc b. $R=P^{st}Q$

Your answer is incorrect.

The correct answer is:

$$R = P^*Q$$

Question **6**

Incorrect

Mark 0.00 out of 1.00

A transition table is given for a λ -NFA with 7 states (1 is the initial state)

 $\operatorname{qa}\ \mathbf{b}\ \lambda$

1 {5} Ø {4}

2 {1}Ø Ø

3 Ø {2} Ø

4 Ø {7}{3}

5 Ø Ø {1}

6 Ø {5} {4}

7 {6} Ø Ø

Calculate $\hat{\delta}(1,ba)$.

Answer:

2520

The correct answer is: {1,6}

Question 7

Correct

Mark 1.00 out of 1.00

The language accepted by the following DFA is

- \bigcirc a. $L=\{wbaa:w\in\{a,b\}^*\}$
- b. \Emptyset
- igcup c. $L = \{w_1w_2baaa: w_1 \in \{a,b\}^*, w_2 \in (ab)^*\}$
- $@ \ \mathrm{d.}\ L=\{a^nb^maaa:n\geq 0, m\geq 1\}$

Your answer is correct.

The correct answers are:

$$L=\{wbaa:w\in\{a,b\}^*\}$$
 ,
$$L=\{a^nb^maaa:n\geq0,m\geq1\}$$
 ,

 $L = \{w_1w_2baaa: w_1 \in \{a,b\}^*, w_2 \in (ab)^*\}$

The correct answer is 'False'.

Question 8					
Incorrect					
Mark 0.00 out of 1.00					
Non-determinism	adds extra function	nality to the fini	te automata.		
Select one:					
Select one: True					

Convert the given DFA into a regular expression by finding out the solutions for each of the states.

Your answer is incorrect.

The correct answer is:

Convert the given DFA into a regular expression by finding out the solutions for each of the states.

A=[(a(ab)*b+bb(ab)*b)*]

B = [((ab)*b) A]

C=[(b(ab)*b) A]

D=[Empty set]

22/22, 3:47 PM	Quiz 1 (re-exam): Attempt review
Question 10	
Correct	
Mark 1.00 out of 1.00	
If $L_1 = L(a^*baa^*)$ and $L_2 = L(ab^*)$ then L_1/L_2 is	
where $L_1/L_2=\{x: xy\in L_1 ext{ for some } y\in L_2\}$	
\bigcirc a. $L(aa^*b)$	
	•
$lacksquare$ b. $L(a^*ba^*)$	~
○ c. Ø	
Your answer is correct.	
The correct answer is:	
$L(a^*ba^*)$	
Question 11	
Incorrect	
Mark 0.00 out of 1.00	
It is possible to construct a finite automaton that accepts strings length.	s over the binary alphabet $\{a,b\}$ such that run of a and run of b has same
Select one:	

- True X
- False

The correct answer is 'False'.

Question 12 Partially correct Mark 0.50 out of 1.00 The regular expression for the language consisting of all strings of even length over $\{0,1\}$ is \square a. $((0+1)(0+1))^*$ \square b. $(00+01+10+11)^*$ Your answer is partially correct. You have correctly selected 1. The correct answers are: $(00+01+10+11)^*$ $((0+1)(0+1))^*$ Question 13 Correct Mark 1.00 out of 1.00 The set of all states that can be reached from that state to all the states with input λ is called Answer: E closure × The correct answer is: lambda-closure Comment: **◄** Quiz 1 Jump to...

Quiz 2 ►