

GurumDDS 소개

(주)구름네트웍스

TABLE OF CONTENTS

- 1. DDS 미들웨어
- 2. DDS 활용분야 (민간)
- 3. GurumDDS 제품 군
- 4. GurumDDS 적용 사례
- 5. GurumDDS 성능
- 6. GurumDDS for ROS2

01

DDS 미들웨어

DDS 개요(1)

• 함정 전투체계 DDS 적용

DDS 개요(2)

DDS 기술 적용시 장점

- 프로그래밍 언어, 운영체제, 전송 및 하드웨어에 대한 독립성
- 안정적 작동을 위한 이중화(Redundancy) 구성가능
- 확장 가능한 데이터 전달을 위한 멀티캐스트 지원
- 네트워크 및 CPU 리소스의 효율적 사용을 위한 데이터 선택 및 필터링
- 미션-크리티컬 시스템 구축에 검증된 통신 기능 수행
- 독점적인 독립실행 형태의 응용프로그램 방식이 아닌 미래지향적 국제표준

DDS 핵심 기술

Quality of Service

 신뢰성, 데이터 영속성, 실시간성, 그룹 관리, 자원 관리 등 총 22종 의 QoS 정책을 제공

Dynamic Discovery

 프로그램 구현 시, 통신 단말들의 위치를 알아야 하거나 직접 구성 해야 할 필요가 없음

Scalable Architecture

 DDS 아키텍처는 작은 디바이스 에서 클라우드 및 초대형 시스템 까지 확장 가능하도록 설계

[Scalable Architecture]

DDS 개요(3)

- Data Distribution Service
 - OMG(Object Management Group)에서 표준화한 실시간 발간-구독방식(Publish-Subscribe) 통신 미들웨어

- DCPS(Data Centric Publish-Subscribe)
 - o RTPS와 Application의 Interface 역할
 - o Domain, Participant, Topic 정의
 - QoS(Quality of Service)를 설정하고 발간-구독 수행

- RTPS(Real-Time Publish-Subscribe Wire Protocol)
 - 호환성 및 상호 운용성을 보장하며 데이터 송수신
 - 네트워크 정보 변경에 대한 자동 검색(discovery)
 - 통신 참여자의 동적인 추가/이탈 시에도 대응
 - 네트워크 내의 참여자 정보 유지

[OMG DDS 기본 구조]

DDS 개요(4)

- 토픽(Topic) 기반 발간-구독 방식
 - 참여자(Participant)가 논리적 데이터 공간(GDS: Global Data Space)에서 특정 Topic을 정의
 - Topic에 따라 참여자들간 직접 통신
- 응용프로그램들은 동일한 도메인에서 Topic을 중심으로 통신 가능
 - 응용프로그램이 데이터를 발간하면 DDS가 수신자들을 알아내어 실시간 배포

DDS 특징 (1)

Data Centric Communication

- DDS는 사용자 친화적인 형태로 Data 타입 정의(IDL, XML)
- DDS에 Topic 으로 등록
- DDS 사용자는 기본적인 Data 발간/구독
 처리만 수행
- Data 통신을 위한 복잡한 코드는 DDS미들웨어 내에서 처리

DDS 특징 (2)

- Platform Independent
 - OS 독립적
 - Windows, Linux, AIX, etc.
 - 아키텍처 독립적
 - Intel, ARM, PowerPC, etc.
 - 언어 독립적
 - C, C++, Java, Python, etc.

DDS 특징 (3)

Interoperability

- 서로 다른 벤더간 호환 가능
- 별도의 특별한 설정없이 호환 가능
- o 호환 예제 ShapeDemo

DDS 특징 (3)

- Dynamic Discovery
 - Scalability
 - 시스템을 구성하는 노드 추가/삭제/변경이 용이
 - 시스템을 새로 설계할 필요 없음
 - 기존 응용프로그램을 수정할 필요 없음

- 새로운 노드 추가/제거
 - 연결 중심 네트워크 새로운 노드와의 연결을 하나하나 맺어야 함
 - DDS 도메인 참여만 하면 연결됨

DDS 특징 (4)

- OMG 에서 정의한 22가지의 QoS로 통신 품질을 설정
 - 데이터 재전송 설정
 - 데이터의 생존 주기 설정
 - 내고장성 설정
 - 데이터 필터링 설정

DDS 구성요소(1)

- DDS 도메인(Domain)
 - 데이터 공간을 구분하는 논리적 네트워크
 - 동일한 도메인 내에서만 토픽(Topic) 데이터를 발간/구독 가능
 - 하나의 응용프로그램은 여러 도메인에 참여 가능

DDS 구성요소(2)

- DDS 도메인 참여자(DomainParticipant)
 - Domain ID를 가지고 있는 참여자
 - o Publisher, Subscriber를 보유
 - DataWriter, DataReader는 동일한 도메인 내에서만 토픽(Topic) 데이터를 발간/구독 가능

DDS 구성요소(3)

- DDS Topic
 - 데이터 발간/구독 객체를 연결하는 정보
 - {Topic Name, Type Name, QoS} 로 구성
 - Topic Name → 채널
 - Type Name → 채널에서 사용할 타입
 - QoS → 채널의 통신 특성 (재전송, 필터링)
 - Type은 여러 Topic에서 참조/사용 가능
 - DB 일부 개념 포함
 - MultiTopic → JOIN
 - ContentFilteredTopic → SELECT + WHERE

DDS 구성요소(4)

- DDS 토픽(Topic) 요소
 - Topic : 데이터(Sample)을 공유하기 위한 데이터 타입
 - Key: 데이터 타입의 필드로, 데이터를 객체로 구분
 - Instance: 같은 데이터 타입에서, Key로 구분된 객체

DDS 구성요소(5)

- OMG 표준 QoS
 - DDS 서비스 제어를 위한 22 종의 QoS 정책

QoS Policy	관련 객체	Qos Policy	관련 객체
ENTITY_FACTORY	DPF, DP, P, S	DURABILITY	T, DR, DW
USER_DATA	DP, DR, DW	DURABILITY_SERVICE	T, DW
TOPIC_DATA	Т	LIFESPAN	T, DW
GROUP_DATA	P, S	HISTORY	T, DR, DW
LIVELINESS	T, DR, DW	DEADLINE	T, DR, DW
PRESENTATION	P, S	LATENCY_BUDGET	T, DR, DW
RELIABILITY	T, DR, DW	TRANSPORT_PRIORITY	T, DW
PARTITION	P, S	TIME_BASED_FILTER	DR
DESTNATION_ORDER	T, DR, DW	RESOUCE_LIMITS	T, DR, DW
OWNERSHIP	T, DR, DW	WRITER_DATA_LIFECYCLE	DW
OWNERSHIP_STRENGTH	DW	READER_DATA_LIFECYCLE	DR

DDS QoS(1)

- Reliability QoS
 - Reliable
 - 네트워크 장애로 데이터 누락이 발생하면 재전송 메커니즘을 수행하는 정책

- Best-Effort
 - 데이터의 전송 속도를 중시하여 데이터의 누락이 발생해도 지속하여 데이터를 전송하는 정책

DDS QoS(2)

- Deadline QoS
 - 주기내에 데이터 송수신을 권장하는 정책
 - 정책 위반시 사용자에게 알람을 제공

DDS QoS(3)

- TimeBasedFilter Qos
 - 반복적으로 발생하는 데이터를 일정 주기에 하나만 수신하는 정책

[데이터 주기(minimum_seperation)가 2ms인 경우]

● 유효한 데이터 구간 (Deadline, TimeBasedFilter)

02

DDS 활용분야 (민간)

DDS 활용 분야 - 스마트그리드(1)

- 듀크에너지 스마트그리드 프로젝트에 DDS 적용
 - Microgrids에 포함되는 장치간의 연결, 데이터 수집, 저장 등을 최적화함

Ensuring Safe, Reliable, Affordable, and Sustainable Electric Power System

CURRENT STATE

- □ Centralized
- ☐ One-Way Flow
- ☐ Stable Load □ Static/Reactive
- □ Analog / Electromechanical
- ☐ Single-Purpose
- □ Proprietary
- □ Silo-oriented
- ☐ Latent / Data Overload
- □ OT / IT Disconnected
- ☐ Limited Customer Interaction
- ☐ Data Center Security
- ☐ Fragile

Drivers

Intermittent Renewables **Energy Storage**

> **Microgrids Electric Vehicles**

Cyber-Security Threats

Premise IoT Aging Infrastructure

Stranded Assets

"Big Data" Complexity

Strategy

- 1. Internet Protocol
- 2. Translation
- 3. Contextualization
- 4. Security
- 5. Analytics

FUTURE STATE

- ☐ Distributed & Centralized
- ☐ Multi-direction Flow
- ☐ Stochastic Load
- □ Dvnamic / Proactive ☐ Digital / Automated
- Multi-function
- ☐ Open Standards / Modular
- ☐ Interoperable / Integrated ☐ Timely / Filtered Data
- □ OT / IT Convergence
- ☐ Virtual Hand-shake
- ☐ Enterprise-wide Security
- ☐ Resilient

[DIP(Distributed Intelligence Platform)의 목표]

[DIP 아키텍처]

DDS 활용 분야 - 스마트그리드(2)

Field Message Bus: The Distributed "Internet of Things" Enabler

Interoperability between OT, IT, & Telecom

Modular & Scalable Hardware and Software

End-to-End Situational Awareness

Current State - Message Bus at Data Center

Distributed Intelligence Platform

DUKE ENERGY. Convergence of OT and IT **Analytics** Use-Case App(s) DDS. MOTT **OPEN API** IT Messaging AMOR COAP T # MESSAGE BUS Security Compression Translation Head-End DNP Other Modbus OT -OT System

or Device

DMS Sandbox Pi

DIP의 Message Bus Protocol에 DDS를 사용하는 이유

- DDS는 Tier 3, 4에서 주요 운용 제어 시스템의 성능과 보안을 위해 필요하다.
- 우측 표와 같이 다른 프로토콜은 Optional 또는 Recommended 이나, DDS는 Tier 3, 4에서 필수요소로 정의되었다.
- 원문: DDS is required in Tiers 3 and 4 due to the performance and security needs of critical operational controls systems(e.g., microgrids and substation automation)."

DUKE ENERGY.

Protocols	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
MQTT	Recommended	Recommended	Optional	Optional	Optional
DDS	Optional	Optional	Yes	Yes	Optional
AMQP	Optional	Optional	Optional	Optional	Optional
CoAP	Optional	Optional	Optional	Optional	Optional

Sensor Switch

Bank Meter

Inverters

DDS 활용 분야 - 에너지 분야(1)

- 지멘스 Wind Power 시스템: 다수의 풍력 발전기를 하나의 Farm으로 구성/관리하는 시스템
 - 500개 이상의 분산된 Wind Turbine들을 통합 원격 제어 및 모니터링
 - DDS는 정렬된 Turbine들을 지나가는 돌풍에 따른 빠른 제어를 실현함

[SIMENS Wind Power System]

DDS 활용 분야 - 에너지 분야(2)

- 미국 Grand Coulee 댐 관리 시스템: 40,000여개의 지점의 상태를 모니터하며 30개의 발전기를 제어함
 - Grand Coulee Dam은 미국에서 가장 큰 수력 발전 시설이며, Dam 네트워크는 30개의 Generator들과 Transmission Switchyard를 제어하는 40,000여개의 지점과 연결됨
 - DDS는 Generic Data Acquisition and Control System(GDACS)의 통신 매커니즘으로 사용되었으며, 2011년 11월에 DDS를 사용하여 성공적으로 완료됨
 - 해당 시스템에 DDS가 선택된 이유는 과부하 상황에서의 DDS의 고유한 확장성, 결정성, 견고 성등 때문임
 - 이후 해당 시스템에 대해 2014년 업그레이드 사업이 실시되었으며, 이때에도 마찬가지로 DDS 가 적용됨
 - GDACS의 업그레이드 사업은 24개의 파워터빈과 12개의 펌프제어, 4개의 주 전력시설과 3개의 고압 Transmission Switchyard등이 300,000개의 데이터를 신뢰성 있게 원거리 통신을 하는 시스템에서 극도의 가용성과 결함허용, 성능, 보안 등이 요구되는 사업이었음

[DDS System]

[Power Turbine]

DDS 활용 분야 - 철도시스템(1)

- 네덜란드 철도시설공단(ProRail)에서 ASTRIS 프로젝트에 DDS 활용
 - ProRail 社
 - 안정성, 신뢰성, 정시성 및 지속성장의 4개 목표로 네덜란드 국유철도의 건설과 유지관리를 담당하고 있는 독립 시설관리자
 - 네덜란드 국유철도는 일일 108만명(연간 144 열차-인키로) 여객 및 연간 39.5백만톤의 화물 수송(여객수 송은 NS사와 90%이상 독점)
 - ProRail은 네덜란드 국유철도의 열차관제를 담당하고 있으며, 과거 계전기 방식부터 최신의 ERTMS/ETCS Level2까지 다양한 신호와 연동장치가 CTC와 연계되어 있음

DDS 활용 분야 - 철도시스템(2)

- o ASTRIS(Anaturing en Status modeling van de RailInfra Structuur) 프로젝트
 - ASTRIS 프로젝트는 4년 전부터 진행되고 있으며, DDS가 인터페이스 통합을 위한 Data Centric Middleware 표준으로 사용되고 있음
 - 차관제 입장에서는 다양한 신호방식(ATS, ETcS Level2)과 연동장치(계전기방식, PLC 및 전자연동장치) 의 종류와 관계없이 하나의 표준 인터페이스만으로 CTC와 연계하여 장래의 기술변화와 관계없이 간결 한 시스템을 운영함
 - 향후 20년 이상 지속되는 프로젝트로서 장래 기술변화와 상관없이 DDS Data Model 설정 및 파라미터 튜닝만으로 현재의 열차관제를 그대로 유지할 수 있는 장점이 있음
 - TCS 개소를 현재 13곳에서 4곳으로 통합

DDS 활용 분야 - 스마트시티

- 프랑스 니스시 스마트시티 프로젝트에 DDS 활용
 - 유럽의 스마트 모빌리티는 교통혼잡으로 인한 직간접 비용 증가(800억 유로 이상), 환경, 주차 문제를 해결하기 위해 태동
 - 니스시의 경우 거주시민, 관광객, 시당국 등 다양한 요구에 의한 지능형 교통관리 및 도시관리 시스템의 개발과 적용 착수
 - 니스시의 스마트시티 관리시스템도 수많은 실시간 데이터의 처리, 센서네트워크의 효율적 관리 및 확장성을 고려하여 미들웨어 방식의 Data Centric Protocol인 DDS를 적용

DDS 활용 분야 - 교통 / 항공 / 우주 분야

- 감시제어 및 데이터 취득 (SCADA: Supervisory Control and Data Acquisition)
 분야
 - 미국 NASA의 대규모 우주선 발사 통제 시스템 (NASA KSC: Kennedy Space Center)

- 교통 통제 분야
 - European Flight Data Processor: 프랑스, 스위스, 이탈리아의 항공 운항 정보 공유 시스템
 - NAV Canada Air Traffic Control: 캐나다 전역을 대상으로 하는 항공 운항 통제 시스템

03

GurumDDS 제품군

GurumDDS

 GurumDDS는 국제표준화기구 OMG(Object Management Group)에서 제정한 DDS(Data Distribution Service) 데이터-중심 통신을 위한 미들웨어 프로토콜 및 API 표준을 준수하고, 국내 최초로 OMG의 DDS vender로 등록된 제품

출처: <u>https://dds-</u>foundation.org

GurumDDS

GurumDDS는 OMG의 표준을 준수하는 DDS로 충남대학교에서 개발된 기술을 구름네트웍스가 기술이전 받아 상용화에 성공한 순수 국산 DDS로, 타사 제품에 비해 높은 성능을 보일 뿐만아니라 네트워크가 불안정한 상황에서 월등한 성능을 제공

[타 DDS와 성능 비교]

- Linux, Windows, AIX UNIX등의 다양한 플랫폼 지원
- C, C++, Java, Python 언어를 지원하고 C# 과 같은 다양한 언어를 쉽게 지원할 수 있는 구조로 설계
- GurumDDS는 주요 DDS 제품 군(RTI, ADLINK사의 DDS)와 프로토콜 수준에서 상호호환과 연동이 가능

GurumDDS RS(Routing Service)

- GurumDDS Routing Service(GurumDDS RS)는 DDS를 LAN을 넘어 통신할 수 있도록 하는 DDS 특화 라우팅 솔루션
 - 가편한 설정
 - 기존 DDS 인프라 변경 불필요
 - DDS Vendor 중립적
 - Local Network-Remote Network 연결
 - WAN 구간 DDS 멀티캐스팅 지원
 - WAN 구간 DDS 데이터 압축
 - WAN 구간 DDS 데이터 암호화 (DTLS적용)

GurumDDS Security (in progress)

- DDS의 통신객체 생성, 검색, 통신 과정에 인증과 암호화를 제공하기 위한 보안 표준 제품
 - 플러그인 구조를 이용하여 다양한 암/복호화 기법 적용 가능
 - 메시지 전체, 보조메시지, 사용자 데이터 단위에 따라 별도로 또는 중복으로 암/복호화 가능

<DDS Security 1.1 표준 구조>

<GurumDDS Security 적용 성능>

GurumDDS RPC

- 저전력 기기(Low-Power Device)를 위한 DDS 기술
 - Low-Power Device에서도 Qos가 보장되는 실시간 데이터 통신 미들웨어에 대한 수요 증가
 - Mid Power 기기까지 적용되는 Micro DDS 역시 미들웨어 방식으로 DDS 아키텍처를 그대로 사용하여 적용시 기술적 한계가 있음
 - API를 제외한 DDS의 대부분의 기능을 라우터로 옮김으로써 저전력 기기에서도 DDS 사용
 - 향후 IoT에 적용하는 100% 기기에 적용 가능

GurumDDS Gateway (PacketNgin Flow)

- LAN 환경으로 제한되는 DDS의 연동 범위를 WAN 구간으로 확장
- 서로 다른 DDS 도메인 간의 연동 기능 제공
- 다양한 통신 프로토콜들과 DDS 연동 기능 제공
- 다양한 통신 프로토콜들 사이의 연동 기능 제공
- 동종, 이종 프로토콜 사이의 자유로운 데이터 가공, 변환
- 플러그인들 사이의 연결 관계 정의만을 통해 손쉽게 데이터의 흐름 제어 가능

GurumDDS Gateway (PacketNgin NOS)

- 기존 시스템(범용 Linux 운영체제)의 네트워크 처리 성능 개선
- 네트워크의 패킷 처리의 실시간성 향상
- 다양한 네트워크 애플리케이션 개발을 위한 라이브러리 제공
- 사용자 친화적인 고 수준 API 제공
- 네트워크 자원 관리를 위한 유틸리티 지원

GurumDDS 적용 사례

철도기술연구원

- 실시간 철도안전 통합 감시제어 시스템 DDS 적용 **안전검지 인터페이스 장치**
 - 열차 상태 정보와 기존설비 및 안전 검지정보를 **데이터분산서비스(DDS) 프로토콜로 변환**
 - 실시간 안전관제 종합콘솔을 통해 실시간 감시와 LTE 상용망을 통해 구로 관제실, 현장에 전송

철도기술연구원

• 안전 검지 인터페이스 장치 구성 및 역할

인터페이스 장치의 구성

- 스니핑 Tap 장치를 이용해 Legacy 네트워크의 형상을 건 들지 않고 데이터를 수합함
- 패킷 변환 노드 Tap 장치를 이용해 수합된 패킷의 세션을 복구하는 노드
- 데이터 변환 노드 데이터를 추출하고 해석(DPI:Deep Packet Inspection)하고, DDS로 변환하여 전송하는 노드

▶ 두산중공업(2) - 전남 영광 풍력발전기 시험센터

두산중공업(3) - 서남해 해상 풍력발전단지

육군정보통신학교 - C4I 체계간 데이터 연동

Robotis - ROS2 적용 원격 로봇 제어

- 원격 로봇 제어 및 관제
 - ROS2(Crystal, Dashing)을 사용하는 ARM 프로세서 기반의 로봇
 - o RMW(ROS2 MiddleWare)로 GurumDDS를 적용
 - o GurumDDS RS(Routing Service)를 이용하여 WAN 구간 DDS 연동
 - DTLS(Datagram Transport Layer Security)를 이용한 WAN 구간 데이터 보호

05

GurumDDS 성능

최대 처리량 성능 비교

^{*} 시험환경은 다음과 같습니다.
Intel Core i5 3.3GHz, 8GMB Mem, 1Gbps NIC, Netgear 1Gbps Switch

최대 처리량 성능 비교

^{*} 시험환경은 다음과 같습니다.
Intel Core i5 3.3GHz, 8GMB Mem, 1Gbps NIC, Netgear 1Gbps Switch

46:46 통신 처리량 비교 (RELIABLE)

^{*} **시험환경은 다음과 같습니다.**Intel Atom 1.4GHz, 2/4GB Mem, Ubuntu 16.04, NetGear 1Gbps Switch, 총 46개 노드

46:46 통신 처리량 비교 (BEST-EFFORT)

^{*} **시험환경은 다음과 같습니다.**Intel Atom 1.4GHz, 2/4GB Mem, Ubuntu 16.04, NetGear 1Gbps Switch, 총 46개 노드

1:1 통신 처리량 (GurumDDS)

통신 지연시간 비교 (1,000 mps)

^{*} 시험환경은 다음과 같습니다.
Intel Core i5 3.3GHz, 8GMB Mem, 1Gbps NIC, Netgear 1Gbps Switch

통신 지연시간 비교

- 초당 1,000개 메시지 전송
 - Best effort
 - C-DDS(1,099.74 us) < **GurumDDS(1,680.9 us)** < A-DDS(8,537.97 us) < B-DDS(5,110.54 us)
 - o Reliable
 - **GurumDDS(1,648.6 us)** = A-DDS(1,653.55 us) < B-DDS(10,289.62 us) < C-DDS(35,256,763.3 us)
- 초당 12,000개 메시지 전송
 - Best effort
 - GurumDDS(3,219.2 us) < A-DDS(9,568.95 us) < B-DDS(6,411.45 us) < C-DDS(17,981.49 us)</p>
 - Reliable
 - **GurumDDS(1,573.27 us)** = A-DDS(1,573.75 us) < B-DDS(51,798.45 us) < C-DDS(20,919,934.24 us)
- * 시험환경은 다음과 같습니다.

【TCP 대비 전송률 비교

^{*} 시험환경은 다음과 같습니다.
Intel Core i5 3.3GHz, 8GMB Mem, 1Gbps NIC, Netgear 1Gbps Switch

06

GurumDDS for ROS2

ROS2 개요

- ROS(Robot Operating System)는 로봇 응용 프로그램 개발에 필요한 도구와 기능을 제공하는 플랫폼
- ROS는 2007년 Willow Garage사와 Stanford 대학교에 의해 처음 시작
- 2010년에 ROS 1.0이 발표되었으며, 2015년 ROS 2 Alpha가 발표됨
- ROS2는
 - 기존 ROS1 플랫폼과 호환
 - Near Real-Time 목표
 - 다수의 로봇이 포함된 시스템 지원
 - 자원이 한정된 임베디드 플랫폼 지원
 - Wi-Fi 통신과 같은 불안정한 네트워크에 대한 대응
 - ROS1 대비 더 적어진 어플리케이션 개발 비용
 - o C++/Python3 언어 지원

ROS2 통신 API 구조

- Abstraction DDS API 부분은 ROS2에서 .so 파일 형태로 제공
- 별도의 컴파일 과정 없이 DDS 미들웨어 치환 가능(대신 버전이 일치해야 함)
- 툴 사용법 등 CMake 형태로 추상화 되어있어서 동일한 방법으로 사용 가능
- 기타 DDS 미들웨어 별로 특이사항이 있는 부분은 ROS2의 기본 DDS인 FastRTPS 방식을 따름

ROS2 응용프로그램 통신 수행 과정

▋그밖의 관련 패키지

유틸리티

- rosidl_generator
 - 사용자가 작성한 message, service 파일에서 구조체가 정의된 헤더 파일(.h) 생성
- rosidl_parser
 - 각 vendor 별로 작성된 typesupport 패키지의 템플릿 파일을 사용해 코드(.cpp) 생성

라이브러리

- rosidl_typesupport
 - RMW 구현 라이브러리와 대응하는 typesupport 라이브러리를 연결하는 역할
 - rosidl_typesupport_introspection
 - Dynamic type을 위한 typesupport
 - RMW에서 각 field의 type, 크기, 기본값 등 메타데이터에 접근할 수 있도록 API 제공
- rmw_implementation
 - 환경 변수로 지정된 RMW 구현 라이브러리를 찾는 역할

Thank you!

