PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001093177 A

(43) Date of publication of application: 06.04.01

(21) Application number: 11269136
(22) Date of filing: 22.09.99

(71) Applicant: HITACHI MEDIA ELECTORONICS CO LTD

(72) Inventor: SUGIYAMA TOSHIO YABE AKIO SAITO HIDENAO HADO JUN OCHI NAOHIKO

(54) OBJECTIVE LENS DRIVING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To realize an objective lens driving device that supplies a stable electric current to a tilting coil for driving an objective lens at a tilt and that obtains stable operating characteristics.

SOLUTION: A movable part in which the objective lens 1 is arranged is supported with six electrically conductive elastic supporting members 8; a focusing coil 3, a tracking coil 4 and a tilting coil 9 are electrically combined with the supporting members 8; and proper supply of a driving current is made possible to each coil through these supporting members. Consequently, feeding parts can be dispensed with such as leader lines that cause the variation of operating characteristics; further, this is effective in realizing stable operating characteristics.

COPYRIGHT: (C)2001,JPO

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-93177 (P2001-93177A)

(43)公開日 平成13年4月6日(2001.4.6)

(51) Int.Cl.7

識別記号

F I

テーマコード(参考)

G 1 1 B 7/095

G11B 7/095

D 5D118

G

審査請求 未請求 請求項の数9 OL (全 6 頁)

(21)出願番号

(22)出顧日

特願平11-269136

平成11年9月22日(1999.9.22)

(71)出願人 000153535

株式会社日立メディアエレクトロニクス

岩手県水沢市真城字北野1番地

(72)発明者 杉山 俊夫

岩手県水沢市真城字北野1番地 株式会社

日立メディアエレクトロニクス内

(72)発明者 矢部 昭雄

神奈川県横浜市戸塚区吉田町292番地 株

式会社日立画像情報システム内

(74)代理人 100078134

弁理士 武 顕次郎

最終頁に続く

(54) 【発明の名称】 対物レンズ駆動装置

(57)【要約】

【課題】 対物レンズを傾動駆動する傾動コイルに安定 した電流供給を可能とし、かつ安定した動作特性を得ら れる対物レンズ駆動装置を実現する。

【解決手段】 対物レンズ1が配置された可動部を6本の導電性弾性支持部材8で支持し、かつ、フォーカシングコイル3、トラッキングコイル4、傾動コイル9を電気的に導電性弾性支持部材8と結合し、この導電性弾性支持部材8を介して適切に各駆動電流を各コイルに供給することが可能となることにより、動作特性のバラツキの原因となる引出し線等の給電用部品が不要となり、安定した動作特性を実現できる効果がある。

図 1

1

【特許請求の範囲】

【請求項1】 光ビームを光ディスク上に集光させる対物レンズと、該対物レンズをその光軸方向に駆動するための第1の駆動コイルと、前記対物レンズをその光軸と直角方向に駆動するための第2の駆動コイルと、前記第1、第2の駆動コイルおよび前記対物レンズを保持するレンズホルダを含む可動部と、

該可動部に一端が固定され可動部を弾性支持する6本の 直線状部材からなる弾性支持部材と、

該弾性支持部材の他端が固定される固定部と、

前記駆動コイルに駆動力を発生させるためのマグネット と、

前記可動部に配置された前記対物レンズあるいは前記可 動部を前記光ディスク半径方向に傾動駆動する傾動駆動 コイルと、

該傾動駆動コイルに対して磁束を発生するマグネットを 備えたことを特徴とする対物レンズ駆動装置。

【請求項2】 前記6本の弾性支持部材が導電性部材により構成されているととを特徴とする請求項1に記載の対物レンズ駆動装置。

【請求項3】 前記6本の弾性支持部材が、前記可動部の対物レンズの光軸方向のほぼ中央に対し前記光ディスク側に4本、前記光ディスクとは反対側に2本、それぞれ配置したことを特徴とする請求項1または請求項2に記載の対物レンズ駆動装置。

【請求項4】 前記6本の弾性支持部材の内、少なくとも2本の弾性支持部材の一部に、巻方向が該弾性支持部材の軸方向に略直交方向である巻中心を有するねじりバネ状部分を有したことを特徴とする請求項1ないし請求項3のいずれかに記載の対物レンズ駆動装置。

【請求項5】 前記6本の弾性支持部材の内、少なくとも2本の弾性支持部材の一部に、巻方向が該弾性支持部材の軸方向に略平行方向である巻中心を有するコイルバネ状部分を有したことを特徴とする請求項1ないし請求項3のいずれかに記載の対物レンズ駆動装置。

【請求項6】 前記6本の弾性支持部材の内、少なくとも2本以上の弾性支持部材の少なくとも一端が、弾性支持部材の軸方向に対して略直角方向に曲げられていることを特徴とする請求項1ないし請求項5のいずれかに記載の対物レンズ駆動装置。

【請求項7】 前記6本の弾性支持部材の内、少なくとも2本以上の弾性支持部材が、レンズホルダまたは固定部の少なくとも1箇所以上に設けられたV字状またはU字状または三角形状の溝によって、位置決め配置されていることを特徴とする請求項1ないし請求項6のいずれかに記載の対物レンズ駆動装置。

【請求項8】 前記6本の弾性支持部材の内、少なくと も2本の弾性支持部材の可動部側での固定位置と前記固 定部側での固定位置との間隔または距離が、他の弾性支 持部材と異なることを特徴とする請求項1ないし請求項 50 7のいずれかに記載の対物レンズ駆動装置。

【請求項9】 前記6本の弾性支持部材が、前記可動部の光ディスク半径方向断面において、前記可動部の重心位置または支持中心位置を中心とした同一円周上に略一致するように配置されたことを特徴とする請求項1ないし請求項8のいずれかに記載の対物レンズ駆動装置。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク装置に 10 用いられる対物レンズ駆動装置に係り、特に対物レン ズ、駆動コイル、レンズホルダなどから構成される可動 部を弾性支持する弾性支持部材に関するものである。 【0002】

【従来の技術】光ディスク装置に用いられる対物レンズ 駆動装置の一例として、例えば特開平6-251405 号公報、特開平6-139600号公報に記載のものが 知られている。

【0003】図7ないし図9は基本的な対物レンズ駆動 装置の構成を示したもので、図7は従来の対物レンズ駆 3 動装置の光ディスク接線方向の断面図、図8はその対物 レンズ駆動装置の側面図、図9はその対物レンズ駆動装置の光ディスク半径方向の断面図である。

【0004】対物レンズ1はレンズホルダ2上面に配置され、レンズホルダ2の側面にフォーカシングコイル3が巻回され、かつ、レンズホルダ2の側面にトラッキングコイル4および対物レンズ1を光ディスク半径方向に傾動駆動する傾動コイル9が貼付けられている。

【0005】4本の平行な直線状の弾性支持部材8は、その一端をレンズホルダ2に、他端を固定部に固定さ30 れ、対物レンズ1を支持しているレンズホルダ2はフォーカシング方向、トラッキング方向に移動可能で、かつ、光ディスク半径方向への傾動動作も可能になるように弾性支持されている。

【0006】弾性支持部材8の一端が固定されている固定部に、ヨーク5とマグネット6から構成される磁気回路が配置され、前記フォーカシングコイル3、トラッキングコイル4および傾動コイル9を流れる駆動電流は、この磁気回路から発生される磁束に作用するように配置されている。対物レンズ1を支持しているレンズホルダ 2の上面に、光ディスクの傾きを検出する傾き検出器7が配置されている。

【0007】フォーカシング制御時は、光ディスク記録面の面振れに対応してフォーカシングコイル3に電流を適切に供給して対物レンズ1を光軸方向に動作させ、光ビームのスポットを光ディスク記録面上に追従させるととができる。トラッキング制御時は、光ディスクのトラックの偏芯・蛇行に対応してトラッキングコイル4に適切に電流を供給して、対物レンズ1を光軸と直角方向に動作させ、光ビームのスポットを光ディスクのトラック上に追従させることができる。光ディスクの傾きに対し

3

ては、傾き検出器7からの信号を基に傾動コイル9に適 切に電流を供給し、対物レンズ1を光ディスクの傾きに 対応して傾動駆動させる。

[8000]

【発明が解決しようとする課題】近年、光ディスク装置 においては高記録密度化が進められている。高記録密度 化を実現する一つの方法に光ビームをより細く絞り込 み、光ディスクの記録面上でのスポット径を小さくする 方法がある。このスポット径は、光ビームの波長をλ、 対物レンズ1の開口数をNAとすると、(λ/NA)に 比例する。

【0009】そのため一般的には、光ビームの波長入を 小さくし、かつ、対物レンズ1の開口数(NA)を従来 よりも大きな値とすることにより光ビームを細く絞り込 み、髙記録密度化に対応する方法が主流となっている。 対物レンズ1のNAを大きくすることにより、光ビーム をより細く絞り込むことが可能となる反面、光ディスク と対物レンズ1との傾きによる光学特性の劣化は顕著に なる。従って何らかの手段により、光ディスクと対物レ ンズ1との傾き角度を一定値以内に抑える必要がある。 【0010】この対物レンズ駆動装置は、光ディスクと 対物レンズ1との相対傾き角度を傾き検出器7で検出 し、それに基づき傾動コイル9に適切に電流を供給する ことにより、対物レンズ1と光ディスクとの相対傾き角 度を一定に保つように構成されていた。

【0011】しかし、従来提案された発明では、各駆動 コイルに供給する電流の通電手段について考慮されてい ない。また、一般的に導電性部材で構成されている弾性 支持部材8は4本しかなく、この弾性支持部材8により 電流を供給できるのは、最大2個の駆動コイルである。 仮に、フォーカシングコイル3とトラッキングコイル4 に対して弾性支持部材8を介して電流を供給すると、傾 動コイル9には、特開平6-139600号公報にある ように傾動コイル9専用の引出し線が必要となる。しか し、この引出し線は、組立て作業性が悪く、かつ、対物 レンズ1の動作傾き特性に与える悪影響が大きいため、 光ディスク半径方向の傾動制御を行う高精度の対物レン ズ駆動装置には不適当である。

【0012】このように従来の対物レンズ駆動装置では 各駆動コイルへの電流供給手段については考慮されてい ないため、4本の導電性弾性支持部材の他に引出し線等 が必要となり、組立て作業性が悪く かつ、安定した動 作特性を得られないという欠点があった。

【0013】本発明は上記課題を解決するためになされ たもので、各駆動コイルへの電流供給を導電性弾性支持 部材にて行い、安定した動作特性を得られる傾動可能な 対物レンズ駆動装置を実現することを目的としている。 [0014]

【課題を解決するための手段】上記目的は、光ビームを

をその光軸方向に駆動するためのフォーカシングコイル などの第1の駆動コイルと、前記対物レンズをその光軸 と直角方向に駆動するためのトラッキングコイルなどの 第2の駆動コイルと、前記第1、第2の駆動コイルおよ び前記対物レンズを保持するレンズホルダを含む可動部 と、該可動部に一端が固定され可動部を弾性支持する6 本の直線状部材からなる弾性支持部材と、該弾性支持部 材の他端が固定される固定部と、前記駆動コイルに駆動 力を発生させるためのマグネットと、前記可動部に配置 された前記対物レンズあるいは前記可動部を前記光ディ スク半径方向に傾動駆動する傾動駆動コイルと、該傾動 駆動コイルに対して磁束を発生するマグネットを備えた ことを特徴とする第1の手段により達成される。

【0015】また上記目的は、前記第1の手段におい て、前記6本の弾性支持部材を導電性部材により構成す る第2の手段により達成される。

【0016】さらに上記目的は、前記第1の手段におい て、前記6本の弾性支持部材の配置を、前記可動部の対 物レンズの光軸方向のほぼ中央に対し前記光ディスク側 に合計4本、前記光ディスクとは反対側に2本、それぞ れ配置する第3の手段により達成される。

【0017】さらにまた上記目的は、前記6本の弾性支 持部材の内、少なくとも2本の弾性支持部材の一部に巻 方向が該弾性支持部材の軸方向に略直交方向である巻中 心を有するねじりバネ状部分を有し、軸方向の剛性を他 の4本より小さくする第4の手段により達成される。

【0018】また上記目的は、前記6本の弾性支持部材 の内、少なくとも2本の弾性支持部材の一部に巻方向が 該弾性支持部材の軸方向に略平行方向である巻中心を有 30 するコイルバネ状部分を有し、軸方向の剛性が他の4本 より小さくする第5の手段により達成される。

【0019】さらに上記目的は、前記6本の弾性支持部 材の内、少なくとも2本以上の弾性支持部材の少なくと も一端が、弾性支持部材の軸方向に対して略直角方向に 曲げられている第6の手段により達成される。

【0020】さらにまた上記目的は、前記6本の弾性支 持部材の内、少なくとも2本以上の弾性支持部材が、レ ンズホルダまたは固定部の少なくとも1箇所以上に設け られたV字状またはU字状または三角形状の溝によっ

て、位置決め配置されている第7の手段により達成され 40 る。

【0021】また上記目的は、前記6本の弾性支持部材 の内、少なくとも2本の弾性支持部材の可動部側での固 定位置と前記固定部での固定位置との間隔または距離 が、他の弾性支持部材と異ならしめる第8の手段により 達成される。

【0022】さらに上記目的は、前記6本の弾性支持部 材が、光ディスク記録面に直交する面から見て、前記可 動部の重心位置または前記6本の弾性支持部材の支持中 光ディスク上に集光させる対物レンズと、該対物レンズ 50 心位置を中心とした同一円周上に略一致するように配置

40

5

される第9の手段により達成される。

[0023]

【発明の実施の形態】以下、図面を用いて本発明の実施の形態について説明する。図1、図2、図3は本発明による対物レンズ駆動装置の第1の実施形態を示した上面構成図、光ディスク接線方向の要部断面図(図1のA-A断面図)および光ディスク半径方向の要部断面図(図1のB-B断面図)である。

【0024】 これらの図において、対物レンズ1はレンズホルダ2の上面に配置され、レンズホルダ2の外周に 10対物レンズ1をほぼその巻中心としてフォーカシングコイル3が巻回されている。フォーカシングコイル3の光ディスク半径方向の両側に、傾動コイル9が配置されている。フォーカシングコイル3の光ディスク接線方向の外側にトラッキングコイル4がレンズホルダ2にかかるように配置されている。

【0025】との対物レンズ1、レンズホルダ2、フォーカシングコイル3、トラッキングコイル4、傾動コイル9等から可動部が構成されている。可動部は6本の弾性支持部材8で支持され、弾性支持部材8の一端は可動部に、他端は固定部に固定されている。との弾性支持部材8は例えばベリリウム銅、リン青銅などの導電性材料で構成され、可動部に配置された前記フォーカシングコイル3、トラッキングコイル4、傾動コイル9と、それぞれ電気的に接続され、固定部から導電性弾性支持部材8を経由してフォーカシングコイル3、トラッキングコイル4、傾動コイル9にそれぞれ電流を供給することができる。

【0026】この6本の弾性支持部材8は、図1および図3に示すように対物レンズ1の光軸方向において、光 30 ディスク側に4本(8a、8b、8c、8d)、光ディスクと反対側に2本(8e、8f)配置されている。光ディスク側に配置された弾性支持部材の内2本(8a、8b)は、レンズホルダ2及び固定部に設けられたV字状の溝に、光ディスク側より配置、位置決めが可能である。

【0027】弾性支持部材8a、8bのレンズホルダ2側の先端をL字状に曲げることにより、他の4本(8c、8d、8e、8f)から離れた位置での各コイルとの結線を可能にし、組立て作業性を向上させている。【0028】また図1に示すように、弾性支持部材8a、8bの一部にねじりバネ状部分を設け、軸方向の剛性を小さくすることにより、6本の弾性支持部材8による過剰拘束の悪影響を軽減し、安定した動作特性を得ることができる。

【0029】前記弾性支持部材8の一端が固定されている固定部に、ヨーク5とマグネット6から構成される磁気回路が配置されている。トラッキングコイル4とフォーカシングコイル3の光ディスク接線方向外周部を挟むようにマグネット6a、6bとヨーク5から構成される

磁気回路が2組配置され、それぞれその磁気ギャップ内 にフォーカシングコイル3とトラッキングコイル4の有 効線部分が位置するように構成されている。

6

【0030】傾動駆動用に2個のマグネット6c、6dが可動部の光ディスク半径方向の外周部に配置され、マグネット6c、6dから出る磁束と前記傾動コイル9を流れる電流との作用により、傾動駆動力が発生するように構成されている。

【0031】図示しないが、対物レンズ1の傾動動作は、光ディスクから読み取った信号からジッター量を算出し、このジッター量を小さくするように傾動駆動信号が生成する傾動駆動回路が設けられ、この傾動駆動回路からの信号により前記傾動コイル9に適切な駆動電流が供給されて、対物レンズ1の傾動動作が行なわれる。

【0032】次にこの対物レンズ駆動装置の動作について説明する。光ディスクの上下の面振れに対して、光ピックアップで光学的にフォーカシングエラー信号を作成し、この信号に応じてフォーカシング駆動回路からフォーカシングコイル3に適切な駆動電流が導電性弾性支持部材8を介して供給され、対物レンズ1により集光された光ビームの光スポットが、常に光ディスクの記録面上に位置するようにフォーカシング制御される。

【0033】トラックの蛇行・偏芯に対しても、光ビックアップで光学的にトラッキングエラー信号を作成し、この信号に応じてトラッキング駆動回路からトラッキングコイル4に適切な駆動電流が導電性弾性支持部材8を介して供給され、光ビームの光スポットが常に光ディスクのトラック上に位置するようにトラッキング制御される。このようにしてフォーカシング制御とトラッキング制御が行なわれ、光ディスクから信号を読み取ることが可能となる。

【0034】光ディスクから読み取った信号には、主に 光ディスクと対物レンズ1との相対傾き角度により、そ の大きさが左右される時間軸方向の誤差(ジッター)が 含まれている。従って、対物レンズ1を光ディスクの傾 きに合わせて適切に傾けることにより、ジッター量を小 さく抑えるととができる。逆に、この読み取り信号に含 まれるジッター量を算出し、ジッター量が最小になるよ うに対物レンズ1の傾動駆動信号を作成し、この傾動駆 動信号に応じて傾動コイル9に適切な傾動駆動電流を導 電性弾性支持部材8を介して供給することにより、対物 レンズ1の傾動制御(チルト制御)を行うことができ る。

【0035】しかし、傾動コイル9への通電の為に配置した弾性支持部材8は可動部を拘束する意味においては過剰拘束となる為、高度な取付精度を実現しなければ、安定した可動部の動作を確保できない。そこで本発明では、低い取付精度でも過剰拘束の影響を軽減できるよう5、6本目の弾性支持部材(8a、8b)の一部に、ね50 じりバネ状またはコイルバネ状部分を設けることにより

軸方向の剛性を低下させ、安定した可動部の動作を可能 としている。

【0036】図4、図5、図6は本発明による対物レン ズ駆動装置の第2の実施形態を示した上面構成図、光デ ィスク接線方向の要部断面図(図4のA-A断面図)、 光ディスク半径方向の要部断面図(図4のB-B断面 図)である。

【0037】との実施形態において特徴的なのは、弾性 支持部材8 a、8 b の可動部側での固定位置と固定部側 での固定位置との距離(有効長)が、他の4本と異なっ 10 ている点である。との構成により弾性支持部材8 a、8 bは、他の4本から離れた位置で、各コイルとの結線が 可能で、組立て作業性を向上させている。

【0038】しかしながら、前記可動部が弾性支持部材 8 c、8 d、8 e、8 fを腕とした平行リンク機構とし て機能する場合、弾性支持部材8の内の2本(8a、8 b) は、他の4本(8c、8d、8e、8f) と有効長 が異なるため、安定した可動部の動作を確保することが 困難となる。

【0039】そこで弾性支持部材8a、8bの一部にコ イルバネ状部を設け、弾性支持部材8a、8bの軸方向 の剛性を小さくすることにより、6本の弾性支持部材8 の有効長が異なっていても、安定した可動部の動作を可 能としている。

【0040】また、図6において6本の弾性支持部材8 a~8fは、可動部の重心位置または6本の弾性支持部 材8a~8fの支持中心位置を中心とした同一円周上に 略一致するように配置されている。これにより可動部 は、前記重心位置または前記支持中心位置を中心として 傾動動作し、安定した傾動動作特性を得ることができ る。

[0041]

【発明の効果】本発明は以上説明した通り、対物レンズ が配置された可動部を6本の導電性弾性支持部材で支持 し、かつ、フォーカシングコイル、トラッキングコイ ル、傾動コイルを電気的に導電性弾性支持部材と接続 * * し、この弾性支持部材を介して適切に各駆動電流を各コ イルに供給することが可能となることにより、動作特性 のバラツキの原因となる引出し線等の給電用部品が不要 となり、安定した動作特性が得られる。

【0042】その結果、フォーカシング制御およびトラ ッキング制御を動作させながら、対物レンズを光ディス ク半径方向に傾動させ、最適な傾きに制御することが可 能となり、光ディスクから、ジッターの小さい正確な信 号の読み出し、書き込みが可能となる。

【図面の簡単な説明】

【図1】本発明による対物レンズ駆動装置の第1の実施 形態を示した上面構成図である。

【図2】その対物レンズ駆動装置の光ディスク接線方向 の要部断面図である。

【図3】その対物レンズ駆動装置の光ディスク半径方向 の要部断面図である。

【図4】本発明による対物レンズ駆動装置の第2の実施 形態を示した上面構成図である。

【図5】その対物レンズ駆動装置の光ディスク接線方向 20 の要部断面図である。

【図6】その対物レンズ駆動装置の光ディスク半径方向 の要部断面図である。

【図7】従来の対物レンズ駆動装置の光ディスク接線方 向の断面図である。

【図8】その対物レンズ駆動装置の側面図である。

【図9】その対物レンズ駆動装置の光ディスク半径方向 の断面図である。

【符号の説明】

- 対物レンズ 1
- 2 レンズホルダ 30
 - 3 フォーカシングコイル
 - トラッキングコイル 4
 - 5 ヨーク
 - 6 マグネット
 - 8, 8a~8f 弾性支持部材
 - 傾動コイル

【図1】 【図2】 【図9】

図 9

図 1

[図3] 【図4】 -в 8,с 8,а 図3 図 4 【図5】 【図6】 図 6 図 5 【図7】 【図8】 3 2

フロントページの続き

(72)発明者 斎藤 秀直

岩手県水沢市真城字北野1番地 株式会社 日立メディアエレクトロニクス内

図7

(72)発明者 羽藤 順

岩手県水沢市真城字北野1番地 株式会社 日立メディアエレクトロニクス内 (72)発明者 落 尚彦

図8

岩手県水沢市真城字北野1番地 株式会社 日立メディアエレクトロニクス内

F ターム(参考) 5D118 AA13 BA01 BB02 BF02 BF03 DC03 EA02 EB05 ED07 ED08 EE05 EE06 FA27 FA34 FA41

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第4区分

【発行日】平成16年11月25日(2004.11.25)

【公開番号】特開2001-93177(P2001-93177A)

【公開日】平成13年4月6日(2001.4.6)

【出願番号】特願平11-269136

【国際特許分類第7版】

G11B 7/095

[FI]

G 1 1 B 7/095

D

G 1 1 B 7/095

G

【手続補正書】

【提出日】平成15年12月2日(2003.12.2)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正の内容】

【発明の名称】対物レンズ駆動装置<u>ならびにそれを</u>用いた光ディスク装置

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

光ビームを光ディスク上に集光させる対物レンズと、

該対物レンズをその光軸方向に駆動するための第1の駆動コイルと、

前記対物レンズをその光軸と直角方向に駆動するための第2の駆動コイルと、

前記対物レンズを前記光ディスク半径方向に傾動駆動する傾動駆動コイルと、

<u>前記対物レンズを保持する</u>レンズホルダと、

<u>前記第1、第2の駆動コイル、傾動駆動コイルに対して磁束を発生させるためのマグネッと、</u>

前記対物レンズ,レンズホルダ,第1、第2の駆動コイル,傾動駆動コイルを含む可動部 に一端が固定されてその可動部を弾性支持すると共に第1、第2の駆動コイル,傾動駆動 コイルにそれぞれ電流を供給する6本の導電性弾性支持部材と、

<u>該弾性支持部材の他端を固定する固定部とを</u>備えたことを特徴とする対物レンズ駆動装置

【請求項2】

<u>前記マグネットの内、少なくとも2個のマグネットが光ディスクの半径方向に配置されている</u>ことを特徴とする請求項1に記載の対物レンズ駆動装置。

【請求項3】

<u>前記2個のマグネットが傾動駆動用のマグネットであり、当該マグネットから発生する磁</u> 東と前記傾動駆動コイルを流れる電流とにより前記対物レンズに対する傾動駆動力が発生 するように構成されていることを特徴とする請求項2に記載の対物レンズ駆動装置。

【請求項4】

前記6本の弾性支持部材が、前記可動部の対物レンズの光軸方向<u>において</u>前記光ディスク側に4本、前記光ディスクとは反対側に2本、それぞれ配置したことを特徴とする請求項

<u>1に</u>記載の対物レンズ駆動装置。

【請求項5】

前記6本の弾性支持部材の内、少なくとも2本の弾性支持部材の一部<u>にコイルバネ状部分</u>を有したことを特徴とする<u>請求項1</u>に記載の対物レンズ駆動装置。

【請求項6】

前記6本の弾性支持部材の内、少なくとも2本の弾性支持部材の可動部側での固定位置と 前記固定部側での固定位置<u>との距離</u>が、他の弾性支持部材と異なることを特徴とする<u>請求</u> 項1に記載の対物レンズ駆動装置。

【請求項7】

光ビームを光ディスク上に集光させるための対物レンズを駆動する対物レンズ駆動装置を 備えた光ディスク装置において、前記対物レンズ駆動装置が請求項1ないし請求項6のい ずれか1項に記載の対物レンズ駆動装置であることを特徴とする光ディスク装置。

【請求項8】

光ディスクから読み取った信号からジッター量を算出し、このジッター量を小さくするように傾動駆動信号が生成する傾動駆動回路を設け、この傾動駆動回路からの信号により前記傾動駆動コイルに電流を供給することを特徴とする請求項7に記載の光ディスク装置。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正の内容】

[0013]

本発明は上記課題を解決するためになされたもので、各駆動コイルへの電流供給を導電性弾性支持部材にて行い、安定した動作特性を得られる傾動可能な対物レンズ駆動装置<u>ならびにそれを用いた光ディスク</u>装置を実現することを目的としている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正の内容】

[0014]

【課題を解決するための手段】

上記目的<u>を達成するため本発明の第1の手段</u>は、光ビームを光ディスク上に集光させる対 物レンズと、

該対物レンズをその光軸方向に駆動するためのフォーカッシングコイルなどの第1の駆動 コイルと、

前記対物レンズをその光軸と直角方向に駆動するためのトラッキングコイルなどの第2の 駆動コイルと、

前記対物レンズを前記光ディスク半径方向に傾動駆動する傾動駆動コイルと、

<u>前記対物レンズを保持するレンズホルダと、</u>

<u>前記第1、第2の駆動コイル、傾動駆動コイルに対して磁束を発生させるためのマグネッと、</u>

前記対物レンズ、レンズホルダ、第1、第2の駆動コイル、傾動駆動コイルを含む可動部 に一端が固定されてその可動部を弾性支持すると共に第1、第2の駆動コイル、傾動駆動 コイルにそれぞれ電流を供給する6本の導電性弾性支持部材と、

該弾性支持部材の他端を固定する固定部とを備えたことを特徴とするものである。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正の内容】

[0015]

<u>本発明の第2の手段は前記第1の手段において、前記マグネットの内、少なくとも2個のマグネットが光ディスクの半径方向に配置されていることを特徴とするものである。</u>

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正の内容】

[0016]

本発明の第3の手段は前記第2の手段において、前記2個のマグネットが傾動駆動用のマグネットであり、当該マグネットから発生する磁束と前記傾動駆動コイルを流れる電流とにより前記対物レンズに対する傾動駆動力が発生するように構成されていることを特徴とするものである。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正の内容】

[0017]

本発明の第4の手段は前記第1の手段において、前記6本の弾性支持部材が、前記可動部の対物レンズの光軸方向において前記光ディスク側に4本、前記光ディスクとは反対側に2本、それぞれ配置したことを特徴とするとするものである。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0018

【補正方法】変更

【補正の内容】

[0018]

本発明の第5の手段は前記第1の手段において、前記6本の弾性支持部材の内、少なくとも2本の弾性支持部材の一部<u>にコイルバネ状</u>部分を有し<u>たことを特徴とするとするもので</u>ある。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0019

【補正方法】変更

【補正の内容】

[0019]

本発明の第6の手段は前記第1の手段において、前記6本の弾性支持部材の内、少なくと も2本の弾性支持部材の可動部側での固定位置と前記固定部側での固定位置との距離が、 他の弾性支持部材と異なることを特徴とするものである。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0020

【補正方法】変更

【補正の内容】

[0020]

本発明の第7の手段は、光ビームを光ディスク上に集光させるための対物レンズを駆動する対物レンズ駆動装置を備えた光ディスク装置において、前記対物レンズ駆動装置が前記第1の手段ないし第6の手段のいずれかの対物レンズ駆動装置であることを特徴とするも

のである。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 1

【補正方法】変更

【補正の内容】

[0021]

本発明の第8の手段は前記第7の手段において、光ディスクから読み取った信号からジッター量を算出し、このジッター量を小さくするように傾動駆動信号が生成する傾動駆動回路を設け、この傾動駆動回路からの信号により前記傾動駆動コイルに電流を供給することを特徴とするものである。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 2

【補正方法】削除

【補正の内容】