ZAAWANSOWANE PROGRAMOWANIE W C++

Wstępne sprawozdanie z Projektu

Temat projektu: Ewolucja pojazdów w 2D

Mateusz Krakowski Jakub Marcowski

1 Oryginalny Temat Projektu

Oprogramowanie przeprowadzające ewolucję sztucznych pojazdów w 2D. Chodzi o wyewoluowanie pojazdu, który dotrze jak najdalej w zadanym czasie. Coś podobnego dostępne jest online. Przydatna może być biblioteka do symulacji fizyki, np. Box2D. Przed rozpoczęciem realizacji projektu proszę zapoznać się z zawartością strony.

2 Co chcemy zrobić

Naszym zadaniem jest stworzenie aplikacji realizującej ewolucje sztucznych pojazdów. W tym celu skorzystamy z algorytmu ewolucyjnego z selekcją turniejową i mutacją gaussowską. Samochód będzie składał się z dwóch kół oraz szkieletu.

W skład genomu pojazdu wchodzi:

- rozmiar kół
- rozstawienie wierzchołków w szkielecie samochodu
- · gestości kół
- gęstość szkieletu samochodu

3 Funkcjonalności

- obserwacja zachodzącej mutacji samochodzików,
- generator samochodzików z możliwością zmiany parametrów samochodzika (prędkość zadana, maksymalna gestość, minimalna gestość)
- generator mapy z możliwością zmiany parametrów (minimalna i maksymalna zmiana nachylenia terenu, prędkość narastania kąta nachylenia terenu)
- mechanizm ewolucji samochodzików z możliwością zmiany jego parametrów
- zapisywanie genomu i wyników samochodzików

4 Planowanie

4.1 Zadania do wykonania

- 1. planowanie (10h):
 - wybór odpowiednich bibliotek
 - rozpisanie zadań 6h

2h

- podział odpowiedzialności 2h
- 2. szkielet aplikacji (24h):

• zapoznanie się z biblioteką 2DBox 8h • stworzenie dema aplikacji 16h 3. implementacja samochodzika (24h): • klasa samochodzika 12h – klasa koła 4h - klasa szkieletu 4h• generator samochodzików na podstawie podanego genomu 4h4. implementacja mapy (20h): • klasa mapy 8h prostokąt 4h8h • generator mapy 5. implementacja algorytmu ewolucyjnego (32h): • klasa przechowująca populacje (wektor genomów, wyniki samochodzików) 8h• funkcja inicjalizująca populacje 2h • funkcja oceniająca samochód 6h • mechanizm selekcji 8h• mechanizm mutacji (mutacja gaussowska) 8h

6. mechanizm eksportowania danych samochodzików do zewnętrznego pliku (8h)

4.2 Estymata

Według naszych pozytywnych estymacji, projekt powinien potrwać 118 godzin, po 59 godzin na członka zespołu.