Functions on simplices

Signals on nodes, edges, triangles, ...

Node function

$$f_0: V \to \mathbb{R}$$

 $\mathbf{f}_0 = (f_0(1), ..., f_0(N_0))^{\mathsf{T}}$

Edge function

$$f_0: V \to \mathbb{R}$$
 $f_1: E \to \mathbb{R}$ $\mathbf{f}_0 = (f_0(1), ..., f_0(N_0))^{\mathsf{T}}$ $\mathbf{f}_1 = (f_1(e_1), ..., f_1(e_{N_1}))^{\mathsf{T}}$

- Alternating property
- Magnitude and sign

- Flow-type data (natural)
 - Physical world: traffic flow, water flow, information flow...
 - Forex: exchange rates
 - Game theory (Candogan et al. 2011)
 - Ranking data (Jiang et al. 2011)
 - Edge-based vector field discretisation (computer graphics)

- Representation learning
 - High-dim edge features

Triangle function

$$f_2:T\to\mathbb{R}$$

0-, 1-, 2-cochains in topology

Simplicial complexes and Data in real world

Traffic flows (Jia et al. 2019)

Foreign currency exchange (Jiang et al. 2011)

Others:

- Currents/Voltage in electric circuits/grid
- Game theory (Candogan et al. 2011)
- Ranking theory (Jiang et al. 2011)
- Information flows

- Discrete vector fields

Neuroscience (Anand et al. 2023):

- 1. Firing of neurons
- 2. Activation of multiple brain regions

Your Mind Is Eight-Dimensional - Your Brain as Math Part 3 | Infinite Series