# HW2-影响超重的因素

# 崔孝荣 15320171151887 何嘉欣 15320171151899

### March 2019

# 目录

| 1 | 引言          | 2 |
|---|-------------|---|
| 2 | 数据变量        | 2 |
|   | 2.1 数据样本    |   |
|   | 2.2 变量定义    | 2 |
|   | 2.3 数据处理    | 2 |
| 3 | 计量模型        | 3 |
| 4 | stata 回归结果  | 3 |
| 5 | python 处理   | 5 |
|   | 5.1 数据处理    |   |
|   | 5.2 处理步骤    | 5 |
|   | 5.3 回归结果与效果 | 6 |
| 6 | 附录          | 6 |

## 1 引言

线性回归可以说是实证分析的基础,也是实证分析的起点。除了其简便易于操作的优点外,对回归结果的分析也能够很好地解释变量之间的关系。如今,许多计算机编程软件能够实现多种不同的线性回归,本次作业我们拟以 Python 跟 Stata 两种常见的软件为例,试研究影响 BMI 指数的因素,以及他们之间的关系。

## 2 数据变量

### 2.1 数据样本

本次作业运用 2016 年中国家庭追踪调查(CFPS)数据进行实证分析,主要采用成人问卷的数据。CFPS 于 2010 年开始基线调查,并持续对个人进行追踪,本次作业运用 2016 年对 16 岁以上成人的追踪调查结果的数据进行实证分析。

### 2.2 变量定义

因变量:本次作业的因变量为 BMI 指数,由于 CFPS 数据里没有直接的 BMI 数据,因此我们采用以下计算公式来计算 BMI 指数, $BMI = (weight/2)/(height/100)^2$ ,备注:CFPS 里的体重数据以斤为单位,身高数据以厘米为单位,身高范围为 0-195 厘米,体重范围为 0-260 斤。

自变量:本次作业的自变量为工作日睡眠时长(sleep),年龄(age)及工作日锻炼时长(exercise)。工作日睡眠时长范围为 0-24 小时,年龄范围为 16-98 岁。控制变量:本次作业的控制变量为半年内是否有慢性疾病,半年内有慢性疾病为 1,否则为 0。

因变量、自变量的最大值、最小值、均值、标准差见图 1。

|   |           |        |        |     | -     |          |
|---|-----------|--------|--------|-----|-------|----------|
| • | summarize | height | weight | age | sleep | exercise |

| Variable | Obs    | Mean     | Std. Dev. | Min | Max |
|----------|--------|----------|-----------|-----|-----|
| height   | 5,917  | 166.2631 | 8.290138  | 90  | 195 |
| weight   | 33,170 | 122.934  | 22.99365  | 50  | 260 |
| age      | 33,288 | 45.76938 | 16.90851  | 16  | 98  |
| sleep    | 23,463 | 7.616899 | 1.45246   | .1  | 24  |
| exercise | 13,856 | 8.312659 | 10.49891  | .1  | 105 |

图 1: 因变量, 自变量的基本情况

#### 2.3 数据处理

对缺失数据的处理:本次作业没有剔除缺失数据,而是将缺失数据以.替代,如在 Stata 中输入以下语句: replace age = . if age < 0,再如 replace height = . if height < 0。缺失值的情况如图 2。从图 2 可看出,BMI的缺失情况比较严重,由于身高数据的缺失或是体重数据的缺失导致,而年龄数据的缺失最少,总体而言数据缺失较多,因此本次作业采用 bootstrap regress 方法来减少缺失值对回归效果的影响。

3 计量模型 3

#### . misstable summarize BMI age sleep exercise

Unique Variable 0bs=.Obs>. Obs<. values Min Max BMI 27,403 5,893 >500 8.891624 93.82716 33,288 82 16 98 age 9,833 23,463 42 .1 24 sleep 19,440 13,856 exercise 114 .1 105

图 2: 缺失值情况统计图

### 3 计量模型

本作业的回归模型如下:

$$BMI = \beta_1 sleep + \beta_2 exercise + \beta_3 age + \gamma X_i + \epsilon_i \tag{1}$$

Obs<.

其中,BMI 指数计算公式如上所述,sleep 表示工作日休息时长,exercise 表示工作日锻炼时长,age 表示受访者年龄, $X_i$  表示控制变量,本作业我们以半年内是否有慢性疾病作为控制变量,存在慢性疾病为 1,否则为 0。以下是运用 Stata 及 Python 做 bootstrap regress 的结果。

### 4 stata 回归结果

运用 Stata 做 bootstrap 回归得到图 3 所示结果:(bootstrap 次数为 50)从回归结果可以看出,该模型的解释力度不够,拟合优度仅 0.05,且 *sleep*, *exercise* 的系数均不显著,只有 *age* 的系数为显著的。对上述模型系数不显著及解释力度不足的解释为:

- (1) 影响 BMI 指数的因素有许多,模型中缺少了关键的因素;
- (2) 模型设置为线性不合适,重新选择模型;
- (3) 自变量关系与因变量关系不密切;各变量关系散点图:



| BMI      | Observed<br>Coef. | Bootstrap<br>Std. Err. | Z     | P> z  | Normal<br>[95% Conf. |          |
|----------|-------------------|------------------------|-------|-------|----------------------|----------|
| sleep    | 0954034           | .0692086               | -1.38 | 0.168 | 2310498              | .040243  |
| exercise | .0120514          | .0087419               | 1.38  | 0.168 | 0050824              | .0291853 |
| age      | .0699675          | .0091854               | 7.62  | 0.000 | .0519644             | .0879705 |
| _cons    | 20.65543          | .62361                 | 33.12 | 0.000 | 19.43317             | 21.87768 |

图 3: Stata 的 Bootstrap 回归结果



图 4: 各变量关系散点图

5 PYTHON 处理 5

## 5 python 处理

### 5.1 数据处理

首先将数据导入python,并进行数据清洗,检查是否含有缺省值、删除缺省值所在的记录进行后续分析。(本部分代码见附录)

画出变量的箱线图,通过箱线图我们可以看出年龄和一周运动时间的数据是比较分散的,睡眠时间和BMI数据则相对集中。



图 5: 箱型图

### 5.2 处理步骤

利用 python 的 sklearn 包进行线性回归。

第一步,建立训练集与测试集,利用 sklearn 中的 train\_test\_split 函数,将 80% 的随机样本设为训练集,剩余的 20% 的数据设为测试集。

第二步,将第一步得到的训练集中的特征值与标签值放入 LinearRegression() 模型中且使用 fit 函数进行训练,在模型训练完成之后,利用 intercept\_与 coef\_方法会得到所对应的方程式(线性回归方程式)需要估计的参数。

第三步,对数据集进行预测与模型测评。通过 prodict 和 score 对模型进行测评,并且画出测试集上预测值和真实值的差距(见图 6)

参考文献 6

# 5.3 回归结果与效果

通过上述的分析过程以及软件代码的运行, 我们可以得到

$$BMI = -0.0346sleep + 0.1076exercise + 0.0667age + 19.861 + \epsilon_i$$
(2)



图 6: 测试集测试结果

通过学习效果的分析,我们发现这几个变量对超重的影响是不显著的,说明模型缺少了关键的决定性的变量。(结果同 stata 分析的结论)

# 参考文献

[1] A.Collin Cameron, Pravin K Trivedi. Microeconometrics Using Stata. Stata Press. 706 pp.

# 6 附录

6 附录

```
8 import pandas as pd
9 import numpy as np
10 import matplotlib.pyplot as plt
11 import seaborn as sns
12 from sklearn.cross_validation import train_test_split
13 from sklearn import linear_model
15#导入数据
16 dt=pd.read stata(r"C:\Users\smile\Desktop\data drop allnone.dta")
17 #处理缺省值
18 np.isnan(dt).any()
19 dt.dropna(inplace=True)
20 np.isnan(dt).any()
21 #数据描述
22 print(dt.describe())
23 dt.boxplot()
24 plt.savefig("boxplot.jpg")
25 plt.show
26 print(dt.corr())
27
28 #通过加入一个参数kind='reg', seaborn可以添加一条最佳拟合直线和95%的置信带。
29 sns.pairplot(dt, x_vars=['age','exercise','sleep'], y_vars='bmi', size=7, aspect=0.8,kind = 'reg')
30 plt.savefig("pairplot.jpg")
31 plt.show()
32 #training
33 X_train,X_test,Y_train,Y_test = train_test_split(dt.ix[:,:3],dt.bmi,train_size=.80)
34 print("原始数据特征:",dt.ix[:,:3].shape,",训练数据特征:",X_train.shape,",测试数据特征:",X_test.shape)
35 print("原始数据标签:",dt.bmi.shape,",训练数据标签:",Y train.shape,",测试数据标签:",Y test.shape)
36
37 model=linear_model.LinearRegression()
38 model.fit(X_train,Y_train)
39 a= model.intercept_#蘇距
40 b= model.coef_#回归系数
41 print("最佳拟合线: 截距", a, ", 回归系数: ", b)
42
43 score=model.score(X_test,Y_test)
44 print(score)
45 Y_pre=model.predict(X_test)
46 print(Y_pre)
48 plt.plot(range(len(Y_pre)),Y_pre,"b",label='predict')
49 plt.savefig('predict.jpg')
50 plt.show()
```

图 7: python 代码