$\dot{x} = x^3$. Itudy the stability of the equilibrium point $\eta^2 = 0$.

$$f(x) = x^3$$

n=0 is the only

the orbits are (-00,0), {0}, (0,0)

From the phase portrait me deduce that q =0 is a repeller.

Note that, since f(0)=0 the linearized on method doesn't work.

 $n_1 = i \in \mathbb{C} \setminus \mathbb{R}$ $n_2 = i = 0$ x' - i = 0 me do not consider d.e. with coefficients that $n_1 = \pm i$ $n_2 + 1 = 0$ x' + x = 0 are not real!!!

 $h^{2} - \sqrt{3}h + \Lambda = 0 \qquad \Delta = 3 - 4 = -\Lambda$ $\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \qquad \theta = \operatorname{ard}_{5} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$ $R_{1,2} = \frac{\sqrt{3} \pm i}{2} = R_{1} = \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \qquad R_{2} = \frac{\pi}{6}$ $R_{1,4} = ? \qquad |h_{1}| = \sqrt{\frac{3}{4} + \frac{1}{9}} = 1 \qquad \cos \theta = \frac{\sqrt{3}}{2} \qquad \Rightarrow \theta = \frac{\pi}{6}$ $R_{1,6} = \frac{\pi}{6} \qquad \text{As } \theta = \frac{1}{2}$ $R_{1,6} = -\frac{\pi}{6} \qquad \text{As } \theta = \frac{\pi}{6}$ $R_{2,1} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,1} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,2} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,1} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,2} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,1} = -\frac{\pi}{6} \qquad \Rightarrow R_{2,2} =$

26 = C, cos ki + Cz sin ki , C, Cz 6 iz.

 $x_{k+2} - \sqrt{3}x_{k+1} + x_k = 0, \quad x_0 = 1, \quad x_1 = 0$

 $x_k = c_1 \cos \frac{k^{-1}}{6} + c_2 \sin \frac{k^{-1}}{6}$, $k \in \mathbb{N}$ $c_1, c_2 = ?$ o.t. $x_0 = 1$, $x_1 = 0$

$$(26)_{keN} = C_1 \cos 0 + C_2 \sin 0 = C_1 \qquad 24 = C_1 \cos \frac{\pi}{6} + C_2 \sin \frac{\pi}{6} = C_1 \frac{\sqrt{3}}{2} + C_2 \cdot \frac{1}{2}$$

(Ken $\left\{ C_{4} \cdot \frac{\sqrt{3}}{3} + C_{4} \cdot \frac{1}{3} = 0 \right\} = C_{4} = 1 \quad C_{2} = -\sqrt{3}$ (c, = 1 the unique sol of the IVP is $\alpha_{k} = \cos\frac{k\pi}{c} - \sqrt{3}\sin\frac{k\pi}{c}$, Lew layange. $\frac{x^2 - 2x = 7}{x_p = a}$ $x_{k+1} - 2x_k = 7$ IS = a I + LEN a-2a:7 > a=-7 if = -7, HEN. $\dot{x} = 2x(2-x)$ $f(x) = 2x(2-x) = 2(2x-x^2)$ 1. f(x) = 0 (=) $\eta_2^* = 0$, $\eta_2^* = 2$ 2. the orbits are: (-00,0), {0}, (0,2), 124, (2,+00)

f'(x) = 2(2-2x) = 4(1-x) $f'(0) = 4 > 0 \implies 0 \text{ is an attractor}$ $f'(2) = -4 < 0 \implies 2 \text{ is an attractor}$

 $\varphi(t,1)$ $\varphi(t,2)$ $\varphi(t,s)$

 $\varphi(t,1)$ is strictly increasing and bounded be with values between 0 and 2. lim $\varphi(t,1)=0$, $\lim_{t\to -\infty} \varphi(t,1)=2$.

 $1 \in (0,2) \Rightarrow \forall_A = (0,2) \Rightarrow$

Im (q(+11) = (0,2)

2 is an equilibrium print => $\varphi(t,2)=2$, $\forall t \in \mathbb{R}$.