приняв x за функцию и t = xy — за независимое переменное.

Вводя новые переменные, преобразовать следующие обыкновенные дифференциальные уравнения: 3434. $x^2y'' + xy' + y = 0$, если $x = e^t$.

3434.
$$x^2y'' + xy' + y = 0$$
, если $x = e^t$.

3435.
$$y''' = \frac{6y}{x^3}$$
, если $t = \ln |x|$.

3436.
$$(1-x^2) y'' - xy' + n^2y = 0$$
, если $x = \cos t$.

3437.
$$y'' + y'$$
 th $x + \frac{m^2}{\cosh^2 x}$ $y = 0$, если $x = \ln \lg \frac{t}{2}$.

3438.
$$y''+p(x)$$
 $y'+q(x)$ $y=0$, если $y=ue^{-1/2\sum_{x_0}^{x}p(\xi)}$ $d\xi$ $ep(x) \in C^{(1)}$.

гле $p(x) \in C^{(1)}$. 3439. $x^4y'' + xyy' - 2y^2 = 0$, если $x = e^t$ и $y = ue^{2t}$.

3440. $(1+x^2)^2y''=y$, если x=tg t и $y=\frac{u}{\cos t}$. rде u = u(t).

3441. $(1-x^2)^2 y'' = -y$, если $x = \text{th } t \text{ if } y = \frac{u}{\text{ch } t}$,

где u = u(t). 3442. $y'' + (x + y)(1 + y')^3 = 0$, если x = u + t $\mathbf{n} \ y = \mathbf{u} - t, \ \mathrm{rge} \ u = u \ (t).$

3443.
$$y''' - x^3y'' + xy' - y = 0$$
, если $x = \frac{1}{t}$

н
$$y = \frac{u}{t}$$
, где $u = u(t)$.

3444. Преобразовать уравнение Стокса

$$y'' = \frac{Ay}{(x-a)^2(x-b)^2}$$
,

полагая

$$u = \frac{y}{x-b}, t = \ln \left| \frac{x-a}{x-b} \right|$$

u принимая u за функцию переменной t. 3445. Показать, что если уравнение

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$