

FCC SAR

TEST REPORT

of

Cell Phone

Model Name:

911

Trade Name:

LIFE ALERT

Report No .:

SZ09100061S01

FCC ID:

UDV-0606020060002

prepared for

Shanghai Simcom Ltd.

SIM Technology Building, 700 Yishan Rd., Shanghai 200233, P.R.China

Shenzhen Electronio Product Ouality ting Center Morlab Laboratory

3/F, Electronic Testing Building, Shahe Boad, Xili, Nanshan District Spenzhen, 518055

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant, it thall not be reproduced except in full, without the written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory: Any objections should be raised to us within thirty workdays since the date of issue,

Contents

1. GENERAL INFORMATION
1.1. Notes3
1.2. Organization item
1.3. Conclusion 3
2. TESTING LABORATORY4
2.1. Identification of the Responsible Testing Laboratory
2.2. Identification of the Responsible Testing Location
2.3. Accreditation Certificate4
2.4. List of Test Equipments4
3. TECHNICAL INFORMATION5
3.1. Identification of Applicant
3.2. Identification of Manufacturer
3.3. Equipment Under Test (EUT)
3.3.1. Photographs of the EUT
3.3.2. Identification of all used EUTs
4. TEST RESULTS6
4.1. Applied Reference Documents 6
4.2. Test Environment/Conditions
4.3. Operational Conditions During Test
4.3.1. Informations On The Testing
4.3.2. The Measurement System
4.3.3. Uncertainty Assessment 12
4.4. MEASUREMENT PROCEDURES
4.4.1. Procedures Used To Establish Test Signal
4.5. Items used in the Test Results List
4.6. Test Results List16
ANNEX A ACCREDITATION CERTIFICATE18
ANNEX B PHOTOGRAPHS OF THE EUT19
ANNEX C GRAPH TEST RESULTS25

General Information

1.1. Notes

The test results of this test report relate exclusively to the information specified in section 3.3. Shenzhen Electronic Product Quality Testing Center Morlab Laboratory does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the identification. The test report may only be reproduced or published in full. Reproduction or publications of extracts from the test report requires the prior written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. The test report shall be invalid without all the signatures of testing the Project Manager, the Deputy Project Manager and the Test Lab Manager. Any objections must be raised to Morlab within 30 days since the date when the report is received. It will not be taken into consideration beyond this limit.

1.2. Organization item

Report No.: SZ09100061S01

Date of Issue: Nov 6, 2009

Date of Tests: Nov 5, 2009 -Nov 5, 2009

Responsible for Accreditation: Shu Luan
Project Manager: Li Lei
Deputy Project Manager: Chen Chao

1.3. Conclusion

Shenzhen Electronic Product Quality Testing Center Morlab Laboratory has verified that all tests as listed in the section 4.5 of this report haven been performed succ essfully with the tested equipment.

Chen Chao

then the

Tested by

(Responsible for the Test Report)

Li Lei

Reviewed by

cation of the Test Report)

Shu Luan

Approved by

(Responsible Test Lab Manager)

2. Testing Laboratory

2.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Electronic Product Quality Testing Center

Department: Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan Telephone: +86 755 86130268 Facsimile: +86 755 86130218

2.2. Identification of the Responsible Testing Location

Name: Shenzhen Electronic Product Quality Testing Center Morlab

Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

2.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L1659 (see Annex A)

2.4. List of Test Equipments

No.	Instrument	Туре
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)
3	Voltmeter	Keithley (2000, SN:1000572)
4	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)
5	Amplifier	Nucl udes (ALB216, SN:10800)
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)
7	Probe	Antennessa (SN:SN_3708_EP80)
8	Phantom	Antennessa (SN:SN_36_08_SAM62)
9	Liquid	Antennessa (Last Calibration:21 08 04)

3. Technical Information

Note: the following data is based on the information by the applicant.

3.1. Identification of Applicant

Company Name: Shanghai Simcom Ltd.

Address: SIM Technology Building, 700 Yishan Rd., Shanghai 200233,

P.R.China

3.2. Identification of Manufacturer

Company Name: Shanghai Simcom Ltd.

Address: SIM Technology Building, 700 Yishan Rd., Shanghai 200233,

P.R.China

3.3. Equipment Under Test (EUT)

Brand Name: LIFE ALERT Type Name: LIFE ALERT

Marking Name: 911

Hardware Version: SIM300_V7.02 Software Version: TTPCOM10.0

Frequency Bands: GSM 850MHz (channel 128:824.20MHz,channel 190:836.59MHz,

channel 251:848.29MHz)

PCS 1900MHz (channel 512:1850.19MHz, channel 661:1880.00MHz,

channel 810:1909.80MHz)

Modulation Mode: GMSK Antenna type: Build inside

Development Stage: Identical prototype

3.3.1. Photographs of the EUT

Please see for photographs of the EUT.

3.3.2. Identification of all used EUTs

The EUT Identity consists of numerical and letter characters (see the table below), the first five numerical characters indicates the Type of the EUT defined by Morlab, the next letter character indicates the test sample, and the following two numerical characters indicates the software version of the test sample.

EUT Identity	Hardware Version	Software Version		
1#	SIM300 V7.02	TTPCOM10.0		

4. Test Results

4.1. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	47 CFR § 2. 1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
2	FCC OET	Evaluating Compliance with FCC Guidelines for Human
	Bulletin 65	Exposure to Radiofrequency Electromagnetic Fields
	(Edition 97-01),	
	Supplement C	
	(Edition 01-01)	
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human
		Exposure to Radio Frequency Electromagnetic Fields, 3kHz to
		300 GHz
4	IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average
		Specific Absorption Rate(SAR) in the Human Body Due to
		Wireless Communications Devices: Experimental Techniques.

4.2. Test Environment/Conditions

Normal Temperature (NT): 20 ... 25 °C
Relative Humidity: 30 ... 75 %
Air Pressure: 980 ... 1020 hPa
Details of Power Supply: 220V/50Hz AC

Extreme Temperature: Low Temperature (LT) = -10°C

High Temperature (HT) = 55°C

Extreme Voltage of the EUT: Normal Voltage (NV) = 3.70V

Low Voltage (LV) = 3.60V High Voltage (HV) = 4.20V

Test frequency: GSM 850MHz

PCS 1900MHz

Operation mode: Call established

Power Level: GSM 850 MHz Maximum output power(level 5)

PCS 1900 MHz Maximum output power(level 0)

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 125, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz, The EUT, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

4.3.Operational Conditions During Test

4.3.1. Informations On The Testing

I. INFORMATIONS ON THE TESTING

L1. Normative reference

IBBB 1528: Recommended Practice for determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. Institute of Electrical and Electronics Engineers, INC., 2003.

I.3. Positions and test conditions of the mobile phone under test

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

Description of the a cheek a position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the a tilted a position:

The mobile phone is well place in the "cheek" position as described above. Then the mobile phone is moved outward away from the mouth by an angle of 15 degrees or until contact with the ear lost

4.3.2. The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system.
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

COMOSAR bench

The mobile phone under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10 g mass.

II.1. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2 mm +/- 0,2 mm. It enables the dosimetric evaluation of left and right hand phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

II.2. Probe

For the measurements the Specific Dosimetric E-Field Probe SSE5 with following specifications is used

Dynamic range: 0.01-100 W/kg

Tip Diameter : 5 mm.

· Distance between probe tip and sensor center: 2.5 mm

 Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm).

Probe linearity: <0.25 dB
 Axial Isotropy: <0.25 dB
 Spherical Isotropy: <0.50 dB

Calibration range: 835 to 2500 MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line: less than 30°

II.3. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The
 connection between the mobile and the base station simulator is established via air
 interface.
- Measurement of the local E-field value at a fixed location. This value serves as a
 reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a
 constant distance to the inner surface of the phantom. Since the sensors can not
 directly measure at the inner phantom surface, the values between the sensors and the
 inner phantom surface are extrapolated. With these values the area of the maximum.
 SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR, value can be calculated.

II.4 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

4.3.3. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528.

The values are determined by Antennessa.

3	ь	c	d	e= f(d,k)	f	g	h=	i=	k
882	6					_	c*f/e	c*g/e	
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (lg)	Ci	lg Ui	10g Ui	Vi
		(+-	Dist.			(10g)	(+-%)	(+-%)	
Measurement System		%)	_	-	-	 		-	\vdash
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	_
Axial Isotropy	E.2.2	2.5	R	 	-	_	1.02	1.02	**
	0	100000	1400	√3	$(1 \cdot C_p)^{1/2}$	$\left(1 \cdot C_{p}\right)^{p/p}$			00
Hemispherical Isotropy	E.2.2	4.0	R	√3	√Cn	√Cn	1.63	1.63	00
Boundary effect	E.2.3	1.0	R	√3.	1	1	0.58	0.58	
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	00
System detection limits	E.2.5	1.0	R	V3	1	1	0.58	0.58	
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	
Reponse Time	E.2.7	3.0	R.	√3	1	1	1.73	1.73	
Integration Time	E.2.8	2.0	R	V3	1	1	1.15	1.15	
RF ambient Conditions	E.6.1	3.0	R	√3	1	1	1.73	1.73	00
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	
Tolerance				13					
Probe positioning with respect	E.6.3	0.05	R.	√3	1	1	0.03	0.03	00
to Phantom Shell			_				2.22	2.22	_
Extrapolation, interpolation and	E.5.2	5.0	R	√3	1	1	2.89	2.89	
integration Algoritms for Max. SAR Evaluation									
Test sample Related	-	-				-			\vdash
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N-1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	14-1
Output power Variation - SAR	6.6.2	4.76	R		1	1	2.75	2.75	
drift measurement				√3	-	l -			00
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape	E.3.1	0.05	R	√3	1	1	0.03	0.03	_
and thickness tolerances)		<u> </u>		13					
Liquid conductivity - deviation	E.3.2	0.57	R	√3	0.64	0.43	0.21	0.14	
from target value				15			<u></u>		

Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	М
Liquid permittivity - deviation from target value	E.3.2	3.66	R	√3	0.6	0.49	1.27	1.04	1
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	М
Combined Standard Uncertainty	0		RSS				11.28	10.78	
Expanded Uncertainty (95% Confidence interval)			k				21.99	21.03	

4.3.4. Equipments and results of validation testing

Equipments:

name	Type and specification
Signal generator	E4433B
Directional coupler	450MHz-3GHz
Amplifier	3W 502(10-2500MHz)
Reference dipole	SN 36/08 DIPF 101

Results:

Frequency	835MHz	1900MHz
Target value (1g)	10.8 W/Kg(body)	39.7 W/Kg
250 mW input power	2.709 W/Kg (head)	9.843 W/Kg (head)
	2.701 W/Kg (body)	10.22 W/Kg (body)
Test value (1a)	10.836 W/Kg (head)	39.372 W/Kg (head)
Test value (1g)	10.804 W/Kg (body)	40.88 W/Kg (body)

Note:Please refer to check the system performance data, the first 133-144 page. 250 mW input power

4.3.5. Dielectric Performance

The measured 1-gram averaged SAR values of the device against the head and the body are provided in Tables 1 and 2 respectively. The humidity and ambient temperature of test facility were 54% ~60% and 23.0 °C ~23.8°C respectively. The SAM head phantom (SN 0381 SH) were full of the head tissue simulating liquid. The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm (taking into account of the IEEE 1528 and the place of the antenna). A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested at the lowest, middle and highest frequencies in the transmit band.

Table 1: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.							
1	Frequency	Permittivity ε	Conductivity σ (S/m)				
Target value	835 MHZ	41.5	0.90				
Validation value (Nov 5)	835 MHZ	41.790001	0.866612				
Target value	1900 MHZ	40	1.40				
Validation value (Nov 5)	1900 MHZ	39.481223	1.395758				

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the belt holder.

Table 2: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.								
/	Frequency	Permittivity ε	Conductivity σ (S/m)					
Target value	835 MHz	55.0	0.95					
Validation value (Nov 5)	835 MHz	54.872231	1.054822					
Target value	1900 MHz	53.3	1.52					

Validation value	1900 MHz	52.548876	1.573978
(Nov 5)			

4.3.6. Simulant liquids

Simulant liquids that are used for testing at frequencies of GSM 850MHz and GSM 1900MHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 20litres for a horizontal bath phantom.

Ingredients	Frequer	ıcy Band	Frequency Band	
(% by weight)	835	MHz	1900	MHz
Tissue Type	Head	Body	Head	Body
Water	41.45	52.4	55.36	40.4
Salt(NaCl)	1.45	1.4	0.35	0.5
Sugar	56.0	45.0	30.45	58.0
HEC	1.0	1.0	0.0	1.0
Bactericide	0.1	0.1	0.0	0.1
Triton	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	13.84	0.0
Acticide SPX	0.0	0.0	0.0	0.0
Dielectric Constant	42.45	56.1	41.00	54.0
Conductivity (S/m)	0.91	0.95	1.38	1.45

4.4. Items used in the Test Results List

Terms in the column "Verdict" for the test results list of the section 4.5:

Verdict	Description	
PASS	EUT passed this test case	
FAIL	EUT failed this test case	
INC.	EUT did not pass and did not fail this test case, therefore the verdict is inconclusive	
Decl.	"Declaration": Morlab has received documents from the applicant and/or manufacturer which show conformity to the applied standards for this test case.	
N/A	Test case not applicable for the EUT, see the column "Note" for detailed	

4.5. Test Results List

Summary of Measurement Results (GSM 850MHz Band)

SAR Values (GSM 850MHz Band), Measured against the head.

Temperature: 23.0~23.8°C, humidity: 54~60%.			
Limit of SAR (W/kg)	1 g Average		
Limit of SAR (W/kg)	1.6		
dia see subsect	Measurement	Measurement Result (W/kg)	
Test Case	1 g Average	Power level	
	(W/kg)	(dBm)	
Left head, Touch cheek, Channel Low	0.386	32.82	
Left head, Touch cheek, Channel Middle	0.275	32.99	
Left head, Touch cheek, Channel High	0.197	33.10	
Left head, Tilt 15 Degree, Channel Low	0.272	32.82	
Left head, Tilt 15 Degree, Channel Middle	0.179	32.99	
Left head, Tilt 15 Degree, Channel High	0.130	33.10	
Right head, Touch cheek, Channel Low	0.411	32.82	
Right head, Touch cheek, Channel Middle	0.275	32.99	
Right head, Touch cheek, Channel High	0.206	33.10	
Right head, Tilt 15 Degree, Channel Low	0.235	32.82	
Right head, Tilt 15 Degree, Channel Middle	0.159	32.99	
Right head, Tilt 15 Degree, Channel High	0.115	33.10	

Summary of Measurement Results (GSM 1900MHz Band)
SAR Values (GSM 1900MHz Band), Measured against the head.

Townsestons 22 0 22 00C humidity 54 600/			
Temperature: 23.0~23.8°C, humidity: 54~60%.			
Limit of SAR (W/kg)	1 g Average		
Limit of Stric (W/kg)	1.6		
	Measurement	t Result (W/kg)	
Test Case	1 g Average	Power level	
	(W/kg)	(dBm)	
Left head, Touch cheek, Channel Low	0.030	29.00	
Left head, Touch cheek, Channel Middle	0.025	29.51	
Left head, Touch cheek, Channel High	0.023	29.78	
Left head, Tilt 15 Degree, Channel Low	0.011	29.00	
Left head, Tilt 15 Degree, Channel Middle	0.013	29.51	
Left head, Tilt 15 Degree, Channel High	0.179	29.78	
Right head, Touch cheek, Channel Low	0.018	29.00	

Right head, Touch cheek, Channel Middle	0.023	29.51
Right head, Touch cheek, Channel High	0.018	29.78
Right head, Tilt 15 Degree, Channel Low	0.012	29.00
Right head, Tilt 15 Degree, Channel Middle	0.015	29.51
Right head, Tilt 15 Degree, Channel High	0.017	29.78

SAR Values (GSM 850MHz Band), Measured against the body.

Temperature: 23.0~23.8°C, humidity: 54~60%.		
Limit of SAR (W/kg)	1 g Average	
Limit of SAR (W/kg)	1.6	
Service 1	Measurement Result (W/kg)	
Test Case	1 g Average	Power level
	(W/kg)	(dBm)
Side, Low frequency	0.889	32.82
Side, Middle frequency	0.663	32.99
Side, High frequency	0.516	33.10
Side, Middle frequency (with earphone)	0.873	32.82
Side, Middle frequency (back)	0.634	32.82
Side, Middle frequency (EUT 2.5cm distance front to	0.239	32.82
body Phantom)	0.239	32.02

SAR Values (GSM 1900MHz Band), Measured against the body.

Temperature: 23.0~23.8°C, humidity: 54~60%.			
Limit of SAR (W/kg)	1 g Average		
Limit of SAR (W/kg)	1.6		
	Measurement Result (W/kg)		
Test Case	1 g Average	Power level	
	(W/kg)	(dBm)	
Side, Low frequency	0.099	29.00	
Side, Middle frequency	0.125	29.51	
Side, High frequency	0.128	29.78	
Side, Middle frequency(with earphone)	0.114	29.78	
Side, Middle frequency (back)	0.105	29.78	
Side, Middle frequency (EUT 2.5cm distance front to body Phantom)	0.038	29.78	

Note: The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is cling.

Annex A Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L1659)

China National Accreditation Service for Conformity Assessment has accredited

Shenzhen Electronic Product Quality Testing Center

Electronic Testing Building, Shahe Road, Xili, Nanshan District

Shenzhen, Guangdong, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2009-09-29 Date of Expiry: 2012-09-28

Date of Initial Accreditation: 1999-08-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

Chica National Accorditation Service for Conformity Assessment(CNAS) is understood by Continuing and Accorditation Administration of the People's Expectle of Chica (CNCA) is operate the national accorditation systems for conformity. CNAS is the signatury to International Laboratory Accorditation Cooperation Multilateral Recognition According to the signatury of Aria Poplific Laboratory Accordination Cooperation Multilateral Recognition Accordinated (EAC MBA), and the signatury of Aria Poplific Laboratory Accordination Cooperation Multilateral Recognition Accordination (APLAC MBA).

Annex B Photographs of the EUT

1 EUT Left Head Touch Cheek Position

2 EUT Left Head Tilt15 Position

3 EUT Right Head Touch Cheek Position

4 EUT Right Head Tilt15 Position

5 spacer cling.

6 with earphone

7 EUT 2.5cm distance front to body Phantom

Appearance

Inside

Antenna

Annex C Graph Test Results

	BAND	<u>PARAMETERS</u>
TYPE	<u>GSM850</u>	Measurement 1: Right Head with Cheek device position on Low Channel in GSM mode Measurement 2: Right Head with Cheek device position on Middle Channel in GSM mode Measurement 3: Right Head with Cheek device position on High Channel in GSM mode Measurement 4: Right Head with Tilt device position on Low Channel in GSM mode Measurement 5: Right Head with Tilt device position on Middle Channel in GSM mode Measurement 6: Right Head with Tilt device position on High Channel in GSM mode Measurement 7: Left Head with Cheek device position on Low Channel in GSM mode Measurement 8: Left Head with Cheek device position on Middle Channel in GSM mode Measurement 9: Left Head with Cheek device position on High Channel in GSM mode Measurement 10: Left Head with Tilt device position on Low Channel in GSM mode Measurement 11: Left Head with Tilt device position on Middle Channel in GSM mode Measurement 12: Left Head with Tilt device position on High Channel in GSM mode Measurement 13: Validation Plane with Body device position on Low Channel in GSM mode Measurement 14: Validation Plane with Body device position on High Channel in GSM mode Measurement 15: Validation Plane with Body device position on High Channel in GSM mode Measurement 16: Validation Plane with Body device position on High Channel in GSM mode (with earphone) Measurement 17: Validation Plane with Body device position on High Channel in GSM mode (with earphone) Measurement 17: Validation Plane with Body device position on High Channel in GSM mode (with earphone) Measurement 17: Validation Plane with Body device position on High Channel in GSM mode (with earphone) Measurement 18: Validation Plane with Body device position on High Channel in GSM mode (Basurement 17: Validation Plane with Body device position on High Channel in GSM mode EUT 2.5cm distance front to body Phantom

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 26 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250

Conductivity (S/m)	0.866612
Variation (%)	-1.210000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-24.00, Y=-13.00

SAR 10g (W/Kg)	0.287623
SAR 1g (W/Kg)	0.411239

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.4082	0.3136	0.2472	0.1775	0.1325	0.0950

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 26 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	GSM850		
Channels	Middle		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976		
Relative permittivity (real part)	40.669998		
Relative permittivity	19.120001		

Conductivity (S/m)	0.888655		
Variation (%)	1.230000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-25.00, Y=-10.00

SAR 10g (W/Kg)	0.193433
SAR 1g (W/Kg)	0.274790

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.2866	0.2111	0.1650	0.1193	0.0872	0.0636

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 27 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	GSM850		
Channels	High		
Signal	GSM		

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409		
Variation (%)	-1.360000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-24.00, Y=-15.00

SAR 10g (W/Kg)	0.145014
SAR 1g (W/Kg)	0.206443

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.2119	0.1584	0.1205	0.0888	0.0628	0.0454

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 18 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Tilt		
Band	GSM850		
Channels	Low		
Signal	GSM		

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250

Conductivity (S/m)	0.866612	
Variation (%)	-0.020000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-22.00, Y=-1.00

SAR 10g (W/Kg)	0.166566
SAR 1g (W/Kg)	0.235114

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.2442	0.1826	0.1349	0.1019	0.0745	0.0538

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 20 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001

Conductivity (S/m)	0.888655	
Variation (%)	0.070000	
Ambient Temperature:	22.5°℃	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-18.00, Y=-5.00

SAR 10g (W/Kg)	0.111346
SAR 1g (W/Kg)	0.158575

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.1637	0.1203	0.0922	0.0686	0.0501	0.0345

MEASUREMENT 6

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 31 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409	
Variation (%)	-0.410000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-18.00, Y=-1.00

SAR 10g (W/Kg)	0.080044
SAR 1g (W/Kg)	0.114847

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.1172	0.0886	0.0640	0.0473	0.0338	0.0244

MEASUREMENT 7

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 23 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	GSM850		
Channels	Low		
Signal	GSM		

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012	
Relative permittivity (real part)	41.790001	
Relative permittivity	18.926250	

Conductivity (S/m)	0.866612		
Variation (%)	0.410000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-24.00, Y=-8.00

SAR 10g (W/Kg)	0.274779	
SAR 1g (W/Kg)	0.386308	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.4030	0.3068	0.2293	0.1664	0.1244	0.0917

MEASUREMENT 8

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 5/11/2009

Measurement duration: 7 minutes 25 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	GSM850		
Channels	Middle		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976	
Relative permittivity (real part)	40.669998	
Relative permittivity	19.120001	