Bayesian Insights into Aerial Bombing Strategies: An Ordered Logistic Regression Analysis of WWII Target Prioritization Against Germany*

Yunzhao Li

April 17, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

Some of our data is of penguins (?@fig-bills), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Table 1: 2022 CES (Cooperative Election Study) Data (Cultural)

 $^{{\}rm ^*Code\ and\ data\ are\ available\ at:\ https://github.com/yunzhaol/aerial_bomb_priority.git.}$

```
# analysis_data |>
# ggplot(aes(x = width, y = length)) +
# geom_point(alpha = 0.8) +
# theme_minimal() +
# labs(x = "Wing width (mm)",
# y = "Wing length (mm)")
```

Talk way more about it.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained aloft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$y_i|\mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 2.

Model Info:

function: stan_polr

family: ordered [logistic]

formula: tgt_priority_explanation ~ tgt_industry + country_flying_mission +

total_tons + ac_attacking

algorithm: sampling

sample: 4000 (posterior sample size)
priors: see help('prior_summary')

observations: 500

Estimates:

	mean	sd 10%	50%	90%
tgt_industryunidentified targets	-3.4	0.3 -3.9	-3.4	-3.0
tgt_industryurban areas	-1.3	0.3 -1.6	-1.3	-1.0
country_flying_missionothers	0.7	0.7 -0.1	0.8	1.6
country_flying_missionusa	1.2	0.7 0.3	1.2	2.0
total_tons	0.0	0.0 0.0	0.0	0.0
ac_attacking	0.1	0.0 0.0	0.1	0.1
target of last resort target of opportunity	-4.8	0.8 -5.8	-4.7	-3.7
target of opportunity secondary target	-0.4	0.8 -1.4	-0.4	0.6
secondary target primary target	0.4	0.8 -0.6	0.4	1.3

Fit Diagnostics:

	mean	sd	10%	50%	90%
mean_PPD:target of last resort	0.0	0.0	0.0	0.0	0.1
<pre>mean_PPD:target of opportunity</pre>	0.5	0.0	0.4	0.5	0.5
mean_PPD:secondary target	0.1	0.0	0.1	0.1	0.1
mean_PPD:primary target	0.4	0.0	0.3	0.4	0.4

The mean_ppd is the sample average posterior predictive distribution of the outcome variable

MCMC diagnostics

	mcse	Rhat	n_eff
tgt_industryunidentified targets	0.0	1.0	4885
tgt_industryurban areas	0.0	1.0	4867
country_flying_missionothers	0.0	1.0	4846
country_flying_missionusa	0.0	1.0	4676

```
0.0 1.0 4332
total_tons
                                           0.0 1.0 3226
ac_attacking
target of last resort|target of opportunity 0.0 1.0 5296
target of opportunity|secondary target
                                          0.0 1.0 4979
secondary target|primary target
                                           0.0 1.0 5012
mean_PPD:target of last resort
                                          0.0 1.0 4230
mean_PPD:target of opportunity
                                          0.0 1.0 3740
mean_PPD:secondary target
                                          0.0 1.0 3978
mean_PPD:primary target
                                           0.0 1.0 4404
log-posterior
                                           0.1 1.0
                                                     922
```

For each parameter, mose is Monte Carlo standard error, n_{eff} is a crude measure of effective

```
Priors for model 'aerial_priority_model'
-----
Coefficients
  ~ flat
Counts
  ~ dirichlet(concentration = [1,1,1,...])
-----
See help('prior_summary.stanreg') for more details
```

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Table 2: Explanatory models of flight time based on wing width and wing length

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In Figure 1a we implement a posterior predictive check. This shows...

In Figure 1b we compare the posterior with the prior. This shows...

B.2 Diagnostics

Figure 2a is a trace plot. It shows... This suggests...

Figure 2b is a Rhat plot. It shows... This suggests...

Figure 1: Examining how the model fits, and is affected by, the data

Figure 2: Checking the convergence of the MCMC algorithm

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. *Palmerpenguins:* Palmer Archipelago (Antarctica) Penguin Data. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.