學號:B04901061 系級: 電機三 姓名:蔡忠紘

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: b04901060 黃文璁)

答:word2vec維度:256

Maximum number of words: 25

【模型架構】

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 25, 256)	0
gru_1 (GRU)	(None, 25, 512)	1181184
gru_2 (GRU)	(None, 512)	1574400
dense_1 (Dense)	(None, 512)	262656
dropout_1 (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 256)	131328
dropout_2 (Dropout)	(None, 256)	0
dense_3 (Dense)	(None, 1)	257
Total params: 3,149,825 Trainable params: 3,149,829 Non-trainable params: 0	5	
Train on 180000 samples, v	alidate on 20000 sample	es .

試過多層LSTM和GRU後發現,兩層GRU三層Dense的結果最好。

【訓練過程】

【準確度】

	Accuracy
Private	0.82369
Public	0.82403
Average	0.82386

(1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何?
 (Collaborators: b04901060 黃文璁)

答: Maximum number of words: 25

【模型架構】

compile model		
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 3500)	0
dense_1 (Dense)	(None, 64)	224064
dense_2 (Dense)	(None, 1)	65
Total params: 224,129 Trainable params: 224,129 Non-trainable params: 0		
Train on 180000 samples,	validate on 20000 samp	les

model由dense_1(64)和dense_2(1, activation='sigmoid')組成。

【訓練過程】

【準確度】

	Accuracy
Private	0.79238
Public	0.79213
Average	0.792255

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。 (Collaborators: None)

答: line 1: "today is a good day, but it is hot"

line_2: "today is hot, but it is a good day"

	RNN	BOW
line_1	0.1105805	0.6282089
line_2	0.9462007	0.6193492

【RNN】GRU會考慮字詞前後關係,情緒分數顯示,第一句偏向負面情緒,而第二句偏向 正面情緒。就第一句而言,可能是因為good在but之前,而機器有learn到正向詞彙後面如果接but,代表事情朝負面發展,因此會給出偏向負評的分數。

【BOW】BOW只會數單字出現次數,與前後順序無關,因此兩句的BOW表達式相同,情緒分數應該要一樣,但我predict出來的結果有些許差距,差了約0.008,可能是電腦運算上的小差距。在我的BOW model中得到的是偏向正面情緒。

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

(Collaborators: None)

答: word2vec維度:256

	有標點符號	無標點符號
Private	0.82369	0.82268
Public	0.82403	0.82375
Average	0.82386	0.823215

Maximum number of words: 25

【訓練過程】 有標點符號

無標點符號

實驗顯示,有標點符號的準確率稍高0.06%,可能因爲twitter貼文比較日常,網友常以標

點符號表達情緒,因此加入標點符號去判斷能增加準確率。

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無semi-surpervised training對準確率的影響。

(Collaborators: None)

答:

threshold: 0.9

【標記方法】

一開始先以有label的data去train,並將train出來的model對nolabel data做predict,並將predict結果 >0.9 或 <0.1 的data加入原先有label的training data,一起train 20個epoch,再predict。上述步驟總共執行7輪。

	無semi	有semi
Private	0.82369	0.81101
Public	0.82403	0.81171
Average	0.82386	0.81136

實驗結果顯示, semi supervised的結果比沒有semi supervised還差。