Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Лабораторная работа №2 «Исследование работы шифратора, дешифратора, мультиплексора, сумматора и компаратора»

Выполнили: Студенты группы 250502 Бекетова М.А. Шершнева Е.С. Проверил: Преподаватель Некревич Ю.И.

1 ЦЕЛЬ РАБОТЫ

Исследование работы шифратора, дешифратора, мультиплексора, сумматора и компаратора.

2 ХОД РАБОТЫ

2.1 Исследование работы шифратора

Логические состояния входов и выходов шифратора при "Е" равном нулю.

Таблица 2.1.1 – Таблица истинности шифратора Таблица истинности шифратора

Паолиц	аолица истипности шифратора													
	E	X7	Х6	X5	X4	ХЗ	X2	X1	X0	Y2	Y1	Y0	G	E0
Шаг 1	0	1	1	1	1	1	1	1	1	1	1	1	1	0
Шаг 2	0	1	1	1	1	1	1	1	0	1	1	1	0	1
Шаг 3	0	1	1	1	1	1	1	0	1	1	1	0	0	1
Шаг 4	0	1	1	1	1	1	0	1	1	1	0	1	0	1
Шаг 5	0	1	1	1	1	0	1	1	1	1	0	0	0	1
Шаг 6	0	1	1	1	0	1	1	1	1	0	1	1	0	1
Шаг 7	0	1	1	0	1	1	1	1	1	0	1	0	0	1
Шаг 8	0	1	0	1	1	1	1	1	1	0	0	1	0	1
Шаг 9	0	0	1	1	1	1	1	1	1	0	0	0	0	1

Рисунок 2.1.1 – Диаграмма состояний шифратора

Логические состояния входов и выходов шифратора при "Е" равном единице.

Таблица 2.1.2 – Таблица истинности шифратора

Таблица истинности шифратора

	E	X7	X6	X5	X4	Х3	X2	X1	X0	Y2	Y1	Y0	G	E0
Шаг 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Шаг 2	1	1	1	1	1	1	1	1	0	1	1	1	1	1
Шаг 3	1	1	1	1	1	1	1	0	1	1	1	1	1	1
Шаг 4	1	1	1	1	1	1	0	1	1	1	1	1	1	1
Шаг 5	1	1	1	1	1	0	1	1	1	1	1	1	1	1
Шаг 6	1	1	1	1	0	1	1	1	1	1	1	1	1	1
Шаг 7	1	1	1	0	1	1	1	1	1	1	1	1	1	1
Шаг 8	1	1	0	1	1	1	1	1	1	1	1	1	1	1
Шаг 9	1	0	1	1	1	1	1	1	1	1	1	1	1	1

Диаграмма состояний шифратора

Рисунок 2.1.2 – Диаграмма состояний шифратора

Активным уровнем входного сигнала Е является уровень логического нуля, т.к. из таблицы истинности для E=1 видно, что шифратор не изменяет состояния выходных сигналов. Следовательно, приведенный шифратор — шифратор низкого уровня.

На выходе G вырабатывается сигнал логического нуля при приходе сигнала логического нуля на любой информационный вход (X0-X7) и вход E.

Е0 становится активным (активный уровень – сигнал логического нуля) при условии, если на всех информационных входах (X0-X7) присутствует сигнал логической единицы, а также разрешена работа шифратора активным сигналом Е.

2.2 Исследование работы дешифратора

Таблица 2.2 – Таблица истинности дешифратора

Таблица истинности дешифратора

	E	X1	X0	Y3	Y2	Y1	Y0
Шаг 1	0	0	0	1	1	1	0
Шаг 2	0	0	1	1	1	0	1
Шаг 3	0	1	0	1	0	1	1
Шаг 4	0	1	1	0	1	1	1
Шаг 5	1	0	0	1	1	1	1
Шаг 6	1	0	1	1	1	1	1
Шаг 7	1	1	0	1	1	1	1
Шаг 8	1	1	1	1	1	1	1

Диаграмма состояний дешифратора

Рисунок 2.2 – Диаграмма состояний дешифратора

У дешифраторов с прямым разрешающим входом активным уровнем является уровень логической единицы, у дешифраторов с инверсным входом – уровень логического нуля. В нашем случае при подаче на вход Е логического сигнала 1, дешифратор находится в пассивном состоянии, то активным является логический сигнал Е=0, вход инверсный. В этом случае только один выход имеет нулевое значение, а все остальные единичное. При запрещении работы дешифратора на всех его выходах будет присутствовать логическая единица.

2.3 Исследование работы мультиплексора

Логические состояния входов и выходов мультиплексора при "Е" равном нулю и единице.

Таблица 2.3 – Таблица истинности мультиплексора

Таблица истинности мультиплексора

	E	A1	A0	Х3	X2	X1	X0	Y
Шаг 1	0	0	0	0	0	0	0	= X0
Шаг 2	0	0	1	0	0	0	0	= X1
Шаг 3	0	1	0	0	0	0	0	= X2
Шаг 4	0	1	1	0	0	0	0	= X3
Шаг 5	1	0	0	0	0	0	0	
Шаг 6	1	0	1	0	0	0	0	
Шаг 7	1	1	0	0	0	0	0	
Шаг 8	1	1	1	0	0	0	0	

Диаграмма состояний мультиплексора

Рисунок 2.3 – Диаграмма состояний мультиплексора

Если на вход разрешения подан пассивный уровень, мультиплексор перейдет в пассивное состояние. Т.к. при подаче на вход E логического сигнала 1, мультиплексор находится в пассивном состоянии, то активным является логический сигнал E=0.

2.4 Исследование работы сумматора

Таблица 2.4 – Таблица истинности сумматора

Таблица истинности сумматора

	CO	A3	A2	A1	A0	B3	B2	B1	BO	S3	S2	S1	S0	C4
Шаг 1	0	0	0	1	0	0	1	0	0	0	1	1	0	0
Шаг 2	0	1	0	0	1	1	1	0	1	0	1	1	0	1
Шаг 3	0	0	1	0	1	0	1	1	0	1	0	1	1	0
Шаг 4	0	1	0	1	1	0	1	1	1	0	0	1	0	1
Шаг 5	0	1	1	1	1	1	1	1	1	1	1	1	0	1
Шаг 6	1	0	0	1	1	0	1	0	1	1	0	0	1	0
Шаг 7	1	0	0	1	0	1	0	0	0	1	0	1	1	0
Шаг 8	1	1	0	0	1	0	0	1	1	1	1	0	1	0
Шаг 9	1	1	1	1	0	1	1	1	0	1	1	0	1	1
Шаг 10	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Диаграмма состояний сумматора

Рисунок 2.4 – Диаграмма состояний сумматора

Полученные данные были проверены с помощью приведённого уравнения:

$$C0 + 2^{0}(A0 + B0) + 2^{1}(A1 + B1) + 2^{2}(A2 + B2) + 2^{3}(A3 + B3) =$$

= $2^{0}S0 + 2^{1}S1 + 2^{2}S2 + 2^{3}S3 + 2^{4}C4$

1)
$$0 + 2^{0}(0 + 0) + 2^{1}(1 + 0) + 2^{2}(0 + 1) + 2^{3}(0 + 0) =$$

= $2^{0*}0 + 2^{1*}1 + 2^{2*}1 + 2^{3*}0 + 2^{4*}0$
 $2+4 = 2+4$
2) $0 + 2^{0}(1 + 1) + 2^{1}(0 + 0) + 2^{2}(0 + 1) + 2^{3}(1 + 1) =$
= $2^{0*}0 + 2^{1*}1 + 2^{2*}1 + 2^{3*}0 + 2^{4*}1$
 $2+4+16=2+4+16$

3)
$$0 + 2^{0*}1 + 2^{1*}1 + 2^{2*}2 + 2^{3*}1 = 2^{0*}1 + 2^{1*}1 + 2^{2*}0 + 2^{3*}1 + 2^{4*}0$$
 $1 + 2 + 8 = 1 + 2 + 8$
4) $0 + 2^{0*}2 + 2^{1*}2 + 2^{2*}1 + 2^{3*}1 = 2^{0*}0 + 2^{1*}1 + 2^{2*}0 + 2^{3*}0 + 2^{4*}1$
 $2 + 4 + 4 + 8 = 2 + 16$
5) $0 + 2^{0*}2 + 2^{1*}2 + 2^{2*}2 + 2^{3*}2 = 2^{0*}0 + 2^{1*}1 + 2^{2*}1 + 2^{3*}1 + 2^{4*}1$
 $2 + 4 + 8 + 16 = 2 + 4 + 8 + 16$
6) $1 + 2^{0*}2 + 2^{1*}1 + 2^{2*}1 + 2^{3*}0 = 2^{0*}1 + 2^{1*}0 + 2^{2*}0 + 2^{3*}1 + 2^{4*}0$
 $1 + 2 + 4 + 4 + 1 + 8$
7) $1 + 2^{0*}0 + 2^{1*}1 + 2^{2*}0 + 2^{3*}1 = 2^{0*}1 + 2^{1*}1 + 2^{2*}0 + 2^{3*}1 + 2^{4*}0$
 $1 + 2 + 8 + 1 + 2 + 8$
8) $1 + 2^{0*}2 + 2^{1*}1 + 2^{2*}0 + 2^{3*}1 = 2^{0*}1 + 2^{1*}0 + 2^{2*}1 + 2^{3*}1 + 2^{4*}0$
 $1 + 2 + 2 + 8 + 1 + 4 + 8$
9) $1 + 2^{0*}0 + 2^{1*}2 + 2^{2*}2 + 2^{3*}2 = 2^{0*}1 + 2^{1*}0 + 2^{2*}1 + 2^{3*}1 + 2^{4*}1$
 $1 + 4 + 8 + 16 + 1 + 4 + 8 + 16$
10) $1 + 2^{0*}2 + 2^{1*}2 + 2^{2*}2 + 2^{3*}2 = 2^{0*}1 + 2^{1*}1 + 2^{2*}1 + 2^{3*}1 + 2^{4*}1$
 $1 + 2 + 4 + 8 + 16 + 1 + 2 + 4 + 8 + 16$

Результаты сложения двоичных чисел с помощью уравнения сходятся с результатом работы сумматора.

2.5 Исследование работы компаратора

Таблица 2.5 — Таблица истинности компаратора Таблица истинности цифрового компаратора

	A3	A2	A1	A0	B3	B2	B1	В0	I(A>B)	I(A=B)	I(A <b)< th=""><th>A>B</th><th>A=B</th><th>A<b< th=""></b<></th></b)<>	A>B	A=B	A <b< th=""></b<>
Шаг 1	1	0	0	0	0	0	0	0	1	1	1	1	0	0
Шаг 2	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Шаг 3	0	1	0	0	0	0	0	0	1	1	1	1	0	0
Шаг 4	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Шаг 5	0	0	1	0	0	0	0	0	1	1	1	1	0	0
Шаг 6	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Шаг 7	0	0	0	1	0	0	0	0	1	1	1	1	0	0
Шаг 8	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Шаг 9	0	0	0	0	0	0	0	0	1	0	0	1	0	0
Шаг 10	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Шаг 11	0	0	0	0	0	0	0	0	0	1	0	0	1	0
Шаг 12	0	0	0	0	0	0	0	0	1	1	1	0	1	0
Шаг 13	0	0	0	0	0	0	0	0	1	0	1	0	0	0
Шаг 14	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Рисунок 2.5.1 – Диаграмма состояний компаратора

На основе таблицы истинности можно определить, что для сравнения пятиразрядных двоичных чисел необходимо старшие четыре разряда подать на входы для сравнения и на управляющие входы подать результат сравнения младшего разряда. Выходы компаратора младших разрядов подключаются к одноимённым входам компаратора старших разрядов сравниваемых чисел. Выходами всего многоразрядного компаратора кодов являются выходы компаратора самых старших сравниваемых разрядов.

Пример такого компаратора:

Рисунок 2.5.2 – Компаратор

3 ВЫВОД

В процессе данной работы исследовалась работа цифровых логических элементов на практике, в результате которой были получены таблицы истинности для шифратора, дешифратора, мультиплексора, сумматора, компаратора, а также их диаграммы состояний.