Lösung zu Aufgabe 12

a) Die täglichen Testzahlen werden durch u.i.v. ganzzahlige Zufallsvariablen X_1, \ldots, X_n mit n = 31 und unbekanntem Erwartungswert μ und unbekannter Varianz σ^2 modelliert (eine Normalverteilungsannahme ist hier nicht unbedingt plausibel, eher schon das Vorliegen einer Poisson-Verteilung).

Aus der Aufgabenstellung geht hervor, dass $\mu_0 = 150$ der für den Betrieb kritische Mindesterwartungswert $E(X_i)$ ist. Eine Einstellung des Betriebes wird in Betracht gezogen, wenn der tatsächliche Erwartungswert $\mu < \mu_0$ ist. Damit ist die Gegenhypothese $H_1: \mu < 150$ gefunden, hierzu gehört die Nullhypothese $H_0: \mu \ge 150$.

b) Es handelt sich hier damit um den approximativen Mittelwerttest mit der Teststatistik

$$V = \sqrt{n} \frac{\bar{X} - \mu}{S}$$

weil σ unbekannt ist.

Als Ablehnungsbereich wird] $-\infty; z_{\alpha}[=] -\infty; z_{0,05}[\approx] -\infty; -1,645[$ genommen.

S ist dabei die empirische Standardabweichung, $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$.

Die Nullhypothese wird demnach abgelehnt, wenn V < -1,645.

c) Für den vorliegenden Datensatz berechnet man: $\sum x_i = 4332$ und $s \approx 9.563708$ und daher:

$$-v = \sqrt{31} \frac{\sum x_i/31 - 150}{s} = \sqrt{31} \frac{4332/31 - 150}{9.563708} = -5,972$$

- Dieser Wert liegt unterhalb von $-1,645, H_0$ wird also abgelehnt.
- Nach den festgelegten Entscheidungskriterien sollte die Teststation geschlossen werden.

Alternative Vorgehensweise, wenn angenommen werden kann, dass die X_i alle Poisson(λ)-verteilt sind:

- $-\lambda$ ist der Erwartungswert der Poisson-Verteilung.
- Dann: Testproblem $H_0: \lambda \geq \lambda_0$ vs. $H_1: \lambda < \lambda_0$, wobei $\lambda_0 = 150$.
- $-T = X_1 + \cdots + X_n$ besitzt eine Poisson $(n\lambda)$ -Verteilung.
- Die Nullhypothese wird abgelehnt, wenn T < c, wobei c das α -Quantil der Poisson $(n\lambda_0)$ -Verteilung ist, dabei $n\lambda_0 = 31 \cdot 150 = 4650$
- Dieses Quantil kann z.B. mit R ausgerechnet werden:qpois(0.05,4650) ergibt c=4538.
- Für die in c) gegebenen Daten bekommt man T=4332, also wird H_0 abgelehnt.

Bei Vorliegen der Poisson-Verteilung ist dies die aus Sicht der theoretischen Statistik bessere Vorgehensweise, weil dieser Test die höhere Güte hat. Beide angegebenen Tests haben allerdings die gleiche Entscheidung.

Lösung zu Aufgabe 13

Berechnung der Teststatistik: $v = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} = \frac{480 - 550}{100/\sqrt{90}} = -6.640783$

 $z_{\alpha} = z_{0.01} = -2.32, \Rightarrow v < z_{0.01},$ deshalb muss H_0 abgelehnt werden.

$$p^* = \Phi(v) = 1.560105 \times 10^{-11}$$
.

 $\Phi(v)$ lässt sich in R mit der Funktion pnorm() berechnen.

Lösung zu Aufgabe 14

a) Anzuwenden ist die Formel $V=\sqrt{n}\cdot \frac{\bar{x}-\mu_o}{S}$ f $\tilde{\rm A}_4^1$ r die Teststatistik.

Die Summe der Daten ist 3165, der Mittelwert ist somit $\bar{x} = \frac{3165}{11} = 287.\overline{7}2.$

Die Summe der quadrierten Daten ist 915979. Daher lautet die empirische Streuung

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\Rightarrow S = \sqrt{\frac{1}{10}(915979 - \frac{3165^2}{11})} = \sqrt{\frac{58544}{10 \cdot 11}} = \sqrt{532.2\overline{18}} \approx 23.0699$$

Die t-Statistik ist dann

$$V = \sqrt{11} \cdot \frac{287.\overline{72} - 300}{23.0699} \approx -1.764$$

b) Nach Vorlesung lauten die p-Werte in den drei Testsituationen mit der in a) berechneten t-Statistik v=-1.764 und der Verteilungsfunktion $F=F_{t(10)}$

$$\begin{array}{lcl} (1) & p^* & = & 1 - P(|V| \leq |v|) \\ & = & 1 - (P(V \leq |v|) - P(V \leq -|v|)) \\ & = & 1 - (P(V \leq |v|) - (1 - P(V \leq |v|))) \\ & = & 1 - (F(|v|) - (1 - F(|v|))) \\ & = & 2 \cdot (1 - F(|v|)) \end{array}$$

$$(2) \ p^* = P(V \le v) = F(v)$$

(3)
$$p^* = (1 - P(V \le v)) = 1 - F(v)$$

Dabei gilt

$$F(1.764) = 0.36F(1.7) + 0.64 \cdot F(1.8)$$
 Interpolation
= $0.36 \cdot 0.940 + 0.64 \cdot 0.949$ ablesen aus Tabelle
= 0.94576

und

$$F(-1.764) = P(V \le -1.764)$$

= 1 - P(V > -1.764) Gegenereignis
= 1 - P(V \le 1.764) Symmetrie der t-
Verteilung
= 1 - 0.94576
= 0.05424

Daraus folgen die p-Werte

(1)
$$p^* = 2 \cdot (1 - F(|v|)) = 2 \cdot (1 - 0.94576) = 2 \cdot 0.05424 = 0.10848$$

(2)
$$p^* = P(V \le v) = F(v) = 0.05424$$

(3)
$$p^* = 1 - F(v) = 0.94576$$

Zu einer Ablehnung der jeweiligen Hypothese kommt es nur, wenn der jeweilige p-Wert kleiner als 0.05 ist, was in keinem der drei Tests der Fall ist.

c) Test mit R-Bordmitteln

- t.test(xdata,alternative="two.sided", mu=300)
- t.test(xdata,alternative="less",mu=300)
- t.test(xdata,alternative="greater",mu=300)

Pruefgroesse und p-Wert, z.B. fuer zweiseitigen Test

- t.test(xdata,alternative="two.sided",mu=300)\$statistic
- t.test(xdata,alternative="two.sided",mu=300)\$p.value