1. 群の定義

問題 1.1. 次の $(1) \sim (10)$ で与えられる集合と演算 \bullet が群の定義を満たすかどうかを調べ、群になる場合はアーベル群かどうかを述べよ。また、群にならないときは群の定義のどこが成り立たないかを指摘せよ。

- (1) 集合は複素数全体 \mathbb{C} , 演算は, $a,b \in \mathbb{C}$ に対し $a \bullet b = ab$ (複素数の積).
- (2) 集合は $\mathbb{C}^{\times}=\mathbb{C}\setminus\{0\}$ (複素数全体から 0 を除いた集合), 演算 \bullet は (1) と同様に 複素数の積.
 - (3) 集合は有理数全体 \mathbb{Q} , 演算は, $a,b \in \mathbb{Q}$ に対し $a \bullet b = -a b$.
 - (4) 3 つの元からなる集合 $S = \{x, y, z\}$ に次の表によって演算 を定めたもの:

(5) 集合 $S = \{x, y, z\}$ に次の表によって演算 • を定めたもの:

(6) 4 つの元からなる集合 $S = \{w, x, y, z\}$ に次の表によって演算 ● を定めたもの:

- (7) W をアルファベットの小文字 1 文字以上からなる文字列 (スペースは含まない) 全体の集合とする. $a,b\in W$ に対して $a\bullet b$ は文字列 a の後に文字列 b をつなげたもの. 例えば a= daisuu, b= gaku のとき, $a\bullet b=$ daisuugaku.
- (8) 上記の (W, \bullet) に "0 文字の文字列" (便宜上, 記号 e で表す) を加えたもの. 任意の $a \in W \cup \{e\}$ に対して $e \bullet a = a \bullet e = a$ とする.

¹ホームページ http://www.math.tsukuba.ac.jp/~amano/lec2009-2/e-algebra-ex/index.html

- (9) 上記にさらに別の元 d を加える. 文字列 a に対し, $a \bullet d$ は a の末尾の 1 文字を除いたもの, $d \bullet a$ は a の先頭の 1 文字を除いたものとする (ただし, e に対しては $e \bullet d = d \bullet e = e$). 例えば, a = daisuu のとき, $a \bullet d =$ daisu, $d \bullet a =$ aisuu. また, d 同士の積は $d \bullet d = d$ とする.
- $(10) 集合は <math>T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| \begin{array}{c} a,b,c \in \mathbb{C}, \\ ac \neq 0 \end{array} \right\}, \ \text{演算} \bullet \ \textbf{は}, \ A,B \in T \ \textbf{に対して}$ $A \bullet B = AB \ (行列の積) \ \text{で定める}.$
 - (11) 集合は $U=\left\{\left(egin{array}{cc} 1 & a \ 0 & 1 \end{array}
 ight) \left| \begin{array}{cc} a\in\mathbb{C} \end{array}
 ight\},$ 演算 ullet は行列の積で定める.

問題 1.2. G を群とする.

- (1) G の単位元は唯一つしか存在しないことを示せ. (つまり, ある $e,e'\in G$ があって, 任意の $x\in G$ に対し $ex=x=xe,\ e'x=x=xe'$ を満たすならば e=e' であることを示せ.)
- (2) 任意の $x \in G$ に対し, x の逆元は唯一つしか存在しないことを示せ. (つまり, G の単位元を e とするとき, ある $x', x'' \in G$ があって, xx' = e = x'x, xx'' = e = x''x を満たすならば x' = x'' であることを示せ.)
 - (3) 任意の $x, y \in G$ に対し, $(xy)^{-1} = y^{-1}x^{-1}$ であることを示せ.
- (4) 任意の $a,x,y\in G$ に対し, $ax=ay\Rightarrow x=y$ および $xa=ya\Rightarrow x=y$ が成り立つことを示せ.