

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201

Email: info@thapar.edu

Contact Details

Office BC102

vishal.gupta@thapar.edu

Overview of the course

Mechanical Engineering Department

Course coordinator

Dr. Vishal Gupta

Assistant Professor

Mechanical Engineering Department

Course Co-coordinator

Dr. Sachin Singh

Assistant Professor

Mechanical Engineering Department

Electronics and Communication Engineering Department

Course Coordinator

Dr. Poonam Verma

Assistant Professor

Electronics and Communication Engineering Department

ENGINEERING DESIGN PROJECT-I UTA016

Lecture - 3

How Structures Fail

Instructional objective

- Failure Modes Axial members
- Failure Modes-Beams
- Factor of safety
- Failure Modes (TORSION)

FIRING A MANGONEL

Failure Modes – Axial members

ENGINEERING STRESS-STRAIN

The engineering stress and strain in a tensile test are defined relative to the original area and length of the test specimen.

TENSION IN A MEMBER

- 1. AXIAL STRESS
- 2. EXTENSION LEADING TO STRAIN

linear area

strain ε

Failure Modes – Axial members

STRESS= FORCE /FAILURE AREA (MPa or N/mm²)

AXIAL STRESS

For rectangular cross-section

$$\sigma_{a} = \frac{P}{b \times d}$$

For circular cross-section

$$\sigma_{a} = \frac{P}{\frac{\pi}{4}d^{2}} = \frac{4P}{\pi d^{2}}$$

BUCKLING IN COMPRESSION

• ELASTIC

STRESS= FORCE /FAILURE AREA

• PLASTIC

SHORT COLUMN: a column which fails in compression

$$\sigma_{a} = \frac{P}{b \times d}$$

LONG COLUMN: a column which buckles before full compression strength is reached

Where:

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

Failure Modes-Beams

TYPES OF BEAMS

1. CANTILEVER BEAM

Dr. Vishal Gupta, Asst. Prof. MED, TIET, Patiala

TYPES OF BEAMS

ti

2. SIMPLY SUPPORTED BEAM

TYPES OF BEAMS

3. OVERHANG BEAM

Overhanging Beam

Failure Modes-Beams

BENDING OF A BEAM

- 1. BENDING STRESS
- 2. TENSION AND COMPRESSION
- 3. SECOND MOMENT OF AREA
- 4. DEPTH V/S WIDTH
- 5. SECTION MODULUS

1. CANTILEVER BEAM

$M = P \times L$ (Cantilever beam)

EULER'S FLEXURE FORMULA

 $\frac{M}{I} = \frac{\sigma_b}{y} = \frac{E}{\rho}$

BENDING OF A BEAM

BENDING STRESS

$$\sigma_b = \frac{M.y}{I}$$

WHERE:

 $\sigma_{\rm b}$ = THE BENDING STRESS,

M= BENDING MOMENT,

y = DISTANCE FROM THE NEUTRAL AXIS

I = SECOND MOMENT OF AREA

$M = P \times L$ (Cantilever beam)

SECOND MOMENT OF AREA

$$y = d/2$$

$$I = \frac{bd^3}{12}$$

SECTION MODULUS

$$Z = \frac{I}{y}$$

$$I = \frac{\pi d^4}{64}$$

$$\sigma_{\rm b} = \frac{M}{Z}$$

2. SIMPLY SUPPORTED BEAM

SIMPLY SUPPORTED WITH LOAD AT THE MIDDLE

M=PL/4

Dr. Vishal Gupta, Asst. Prof. MED, TIET, Patiala

BEAM CROSS-SECTION

Dr. Vishal Gupta, Asst. Prof. MED, TIET, Patiala

Factor of safety

- While designing a component or a structural member, it is necessary to keep sufficient reserve strength in case of an accident.
- This is achieved by taking a suitable factor of safety (FOS)

$$FOS = \frac{FAILURE\ STRENGTH(STRESS)}{ACTUAL/ALLOWABLE\ STRESS}$$

$$FOS = \frac{FAILURE\ STRESS}{ALLOWABLE\ STRESS}$$

$$FOS = \frac{FAILURE\ LOAD}{WORKING\ LOAD}$$

$$FOS = \frac{S_{ut} / S_{yt}}{\sigma}$$

$$\sigma = \frac{S_{ut}}{FOS}$$

Failure Modes-Beams

SHEAR FAILURE

BOLT FAILURE

(Single Shear)

Dr. Vishal Gupta, Asst. Prof. MED, TIET, Patiala

SHEAR STRESS

$$\tau = \frac{P}{\left(\frac{\pi}{4}d^2\right)}$$

where 'd' is the diameter of bolt

(Single Shear)

(Double Shear)

SHEAR FAILURE

OTHER EXAMPLES OF SHEAR
PLATE FAILURE

Failure Modes (TORSION)

SHAFT

$$\frac{T}{I_p} = \frac{\tau}{r} = \frac{G\phi}{L}$$

WHERE T, I_p , τ , r, G, ϕ and L are, respectively, the twisting moment, polar moment of inertia, shear stress, radius of the shaft, shear modulus, angle of twist and length of shaft

$$\tau = \frac{T \times r}{I_p}$$

where

$$I_p = \frac{\pi}{32} d^4$$

OTHER MODES

- CYCLIC FATIGUE
- IMPACT
- CORROSION
- THERMAL MOVEMENT

