ECE235- notes for final

I. Introduction

- **Semiconductors**: Materials with conductivity between conductors and insulators (e.g., Silicon (Si), Germanium (Ge)).
- Importance: Ability to control electrical properties via doping.

II. Energy Bands and Density of States

A. Energy Bands

- In solids, atomic energy levels split into energy bands.
- Valence band: Filled with electrons.
- Conduction band: Empty in insulators, partially filled in semiconductors.
- Bandgap (E_a) : Energy difference between the conduction and valence bands.
- Direct vs. Indirect Bandgap:
 - **Direct**: Minimum of conduction band and maximum of valence band occur at the same momentum. Efficient for light emission (e.g., GaAs).
 - **Indirect**: Minimum of conduction band and maximum of valence band occur at different momenta. Less efficient for light emission (e.g., Si).
 - Focus on direct bandgap for problem-solving.

B. Effective Mass (m^*)

- Electrons/holes in a crystal behave as if they have a different mass (m^*) due to interactions with the lattice.
- m^* affects mobility and density of states.

C. Density of States (DOS)

- **Definition**: Number of available energy states per unit volume per unit energy.
- Effective density of states (N_c, N_v) : Simplified representation, used in calculations.
- $N_c \propto (m_n^*)^{3/2}$, $N_v \propto (m_p^*)^{3/2}$ (Higher effective mass \Rightarrow higher DOS).

III. Carrier Concentrations and Fermi Level

A. Intrinsic Semiconductors

- Pure materials: electron concentration (n) = hole concentration (p) = intrinsic carrier concentration (n_i) .
- Intrinsic carrier concentration:

$$n_i = \sqrt{N_c N_v} \exp\left(-\frac{E_g}{2kT}\right)$$

- $-N_c$: Effective density of states in the conduction band.
- $-N_v$: Effective density of states in the valence band.
- $-E_g$: Bandgap energy.
- -k: Boltzmann constant (8.617 × 10⁻⁵ eV/K).
- -T: Temperature in Kelvin.
- Temperature dependence: n_i increases exponentially with temperature.

Example 1: Calculating Intrinsic Carrier Concentration

Problem: Calculate n_i for silicon at room temperature (300 K), given:

$$N_c = 2.81 \times 10^{19} \ \mathrm{cm^{-3}}, \quad N_v = 1.16 \times 10^{19} \ \mathrm{cm^{-3}}, \quad E_g = 1.10 \ \mathrm{eV}$$

Solution:

$$n_i = \sqrt{(2.81 \times 10^{19})(1.16 \times 10^{19})} \exp\left(-\frac{1.10}{2 \times 8.617 \times 10^{-5} \times 300}\right)$$

$$n_i = \sqrt{3.2596 \times 10^{38}} \exp(-21.333) \approx 1.0 \times 10^{10} \text{ cm}^{-3}$$

B. Extrinsic Semiconductors (Doping)

- **n-type**: Doped with donor impurities (e.g., P in Si).
 - Donors contribute extra electrons.
 - Electron concentration: $n \approx N_D$ (N_D is donor concentration).

- Hole concentration: $p = n_i^2/N_D$.
- p-type: Doped with acceptor impurities (e.g., B in Si).
 - Acceptors create holes.
 - Hole concentration: $p \approx N_A$ (N_A is acceptor concentration).
 - Electron concentration: $n = n_i^2/N_A$.

Example 3: Calculating Carrier Concentrations in n-type Silicon

Problem: A 1 cm³ silicon crystal doped with 1 ppb arsenic (n-type). Given atomic concentration in silicon 5×10^{22} cm⁻³:

$$N_D = \frac{5 \times 10^{22}}{10^9} = 5 \times 10^{13} \text{ cm}^{-3}$$

$$n \approx N_D = 5 \times 10^{13} \text{ cm}^{-3}, \quad p = \frac{(1.0 \times 10^{10})^2}{5 \times 10^{13}} = 2.0 \times 10^6 \text{ cm}^{-3}$$

Example 4: Calculating Carrier Concentrations in p-type Silicon

Problem: A silicon crystal doped with 1 ppb boron (p-type). Given atomic concentration in silicon 5×10^{22} cm⁻³:

$$N_A = \frac{5 \times 10^{22}}{10^9} = 5 \times 10^{13} \text{ cm}^{-3}$$

$$p \approx N_A = 5 \times 10^{13} \text{ cm}^{-3}, \quad n = \frac{(1.0 \times 10^{10})^2}{5 \times 10^{13}} = 2.0 \times 10^6 \text{ cm}^{-3}$$

C. Mass Action Law

• In any semiconductor at thermal equilibrium:

$$np = n_i^2$$

• Applies to both intrinsic and extrinsic semiconductors.

D. Compensation Doping

- Occurs when both donor and acceptor impurities are present.
- If $N_A > N_D$: $p \approx N_A N_D$, $n = n_i^2/p$ (p-type).
- If $N_D > N_A$: $n \approx N_D N_A$, $p = n_i^2/n$ (n-type).

Example 5: Compensated Doping in Silicon

Problem: An n-type Si semiconductor containing $N_D = 10^{16}$ cm⁻³ phosphorus atoms is doped with $N_A = 10^{17}$ cm⁻³ boron atoms.

Solution:

$$N_A > N_D \Rightarrow \text{p-type}$$

$$p \approx N_A - N_D = 10^{17} - 10^{16} = 9 \times 10^{16} \text{ cm}^{-3}$$

$$n = \frac{(1.0 \times 10^{10})^2}{9 \times 10^{16}} \approx 1.1 \times 10^3 \text{ cm}^{-3}$$

E. Non-degenerate limit

• Assumption: doping is not too high, so the Fermi level E_F is at least a few kT away from the conduction band edge E_C and valence band edge E_V .

F. Fermi Level (E_F)

- Indicates the probability of an energy state being occupied by an electron.
- Intrinsic: E_F is near the middle of the bandgap (E_{Fi}) .
- **n-type**: E_F shifts up towards the conduction band.
- **p-type**: E_F shifts down towards the valence band.
- Formulas (Memorize):

$$E_F - E_{Fi} = kT \ln \left(\frac{N_D}{n_i}\right)$$
 (n-type)

$$E_{Fi} - E_F = kT \ln \left(\frac{N_A}{n_i}\right)$$
 (p-type)

Example 6: Fermi Level Shifts in Doped Silicon

Problem: Calculate the position of the Fermi energy with respect to the intrinsic Fermi energy E_{Fi} in intrinsic Si, doped first with $N_D = 10^{16}$ cm⁻³ and then with $N_A = 2 \times 10^{17}$ cm⁻³. Given $n_i = 1.0 \times 10^{10}$ cm⁻³ at T = 300 K. **Solution:**

1. n-type Doping:

$$E_F - E_{Fi} = kT \ln \left(\frac{N_D}{n_i}\right) = (8.617 \times 10^{-5} \times 300) \ln \left(\frac{10^{16}}{1.0 \times 10^{10}}\right) \approx 0.36 \text{ eV}$$

2. Compensation Doping (p-type):

$$N_A' = N_A - N_D = 2 \times 10^{17} - 10^{16} = 1.9 \times 10^{17} \text{ cm}^{-3}$$

$$E_{Fi} - E_F = kT \ln \left(\frac{N_A'}{n_i} \right) = (8.617 \times 10^{-5} \times 300) \ln \left(\frac{1.9 \times 10^{17}}{1.0 \times 10^{10}} \right) \approx 0.43 \text{ eV}$$

IV. Carrier Transport

A. Drift Current

- Due to the influence of an electric field.
- Mobility (μ): Measure of how easily carriers move in response to an electric field.
- Electron Drift Current Density: $J_{drift,n} = qn\mu_n E$
- Hole Drift Current Density: $J_{drift,p} = qp\mu_p E$
- Conductivity: $\sigma = q(n\mu_n + p\mu_p)$
 - In intrinsic semiconductor: $\sigma = qn_i(\mu_e + \mu_h)$
- Resistivity: $\rho = 1/\sigma$

Example 2: Calculating Intrinsic Conductivity and Resistivity

Problem: For silicon with $n_i = 1.0 \times 10^{10}$ cm⁻³, $\mu_e = 1350$ cm²/V·s, and $\mu_h = 450$ cm²/V·s:

$$\sigma = q n_i (\mu_e + \mu_h) \approx 2.88 \times 10^{-6} \Omega^{-1} \text{cm}^{-1}$$

$$\rho = \frac{1}{2.88 \times 10^{-6}} \approx 3.47 \times 10^{5} \Omega \text{cm}$$

Example 7: Calculating Drift Current in n-type Silicon

Problem: An n-type silicon sample has a donor concentration of $N_D = 10^{16} \text{ cm}^{-3}$ at room temperature (T = 300 K). Given electron mobility $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$ and an electric field E = 100 V/cm, calculate the drift current density.

Solution:

$$J_{\text{drift}} = qN_D\mu_nE = (1.602 \times 10^{-19} \text{ C}) \times (10^{16} \text{ cm}^{-3}) \times (1350 \text{ cm}^2/\text{V} \cdot \text{s}) \times (100 \text{ V/cm})$$

= $2.16 \times 10^{-3} \text{ A/cm}^2 = 216 \text{ mA/cm}^2$

B. Diffusion Current

- Due to concentration gradients (carriers move from high to low concentration).
- **Diffusion Coefficient** (D): Measure of how quickly carriers diffuse.
- Electron Diffusion Current Density: $J_{diff,n} = qD_n \frac{dn}{dx}$
- Hole Diffusion Current Density: $J_{diff,p} = -qD_p \frac{dp}{dx}$

Example 8: Calculating Diffusion Current in p-type Silicon

Problem: A p-type semiconductor has a linear variation in hole concentration from 10^{17} cm^{-3} to $5 \times 10^{16} \text{ cm}^{-3}$ over a distance of $50 \mu \text{m}$. Given hole diffusion coefficient $D_p = 12 \text{ cm}^2/\text{s}$, calculate the diffusion current density.

Solution:

$$\frac{dp}{dx} = \frac{5 \times 10^{16} - 10^{17}}{50 \times 10^{-4} \text{ cm}} = \frac{-5 \times 10^{16}}{50 \times 10^{-4}} = -1 \times 10^{19} \text{ cm}^{-4}$$

$$J_{\text{diff}} = -qD_p \frac{dp}{dx} = -(1.602 \times 10^{-19} \text{ C}) \times 12 \text{ cm}^2/\text{s} \times (-1 \times 10^{19} \text{ cm}^{-4}) = 1.92 \times 10^{-3} \text{ A/cm}^2 = 1.92 \text{ mA/cm}^2$$

C. Einstein Relation

• Relates diffusion coefficient (D) and mobility (μ):

$$\frac{D}{\mu} = \frac{kT}{q}$$

Example 9: Calculating Diffusion Coefficient Using Einstein Relation

Problem: At 300 K, calculate the diffusion coefficient D_n for electrons with mobility $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}.$

$$D_n = \mu_n \frac{kT}{a} = 1350 \times \frac{8.617 \times 10^{-5} \times 300}{1} \approx 34.965 \text{ cm}^2/\text{s}$$

D. Total Current

• Total current density is the sum of drift and diffusion current densities:

$$J = J_{drift} + J_{diff}$$

Example 10: Calculating Total Current in Silicon

Problem: Silicon with $n(x) = 5 \times 10^{15} + 3 \times 10^{14} x$ cm⁻³, an electric field E = 50 V/cm, electron mobility $\mu_n = 1350$ cm²/V·s, and diffusion coefficient $D_n = 35$ cm²/s. Calculate J_{drift} , J_{diff} , and J_{total} at $x = 10 \mu \text{m}$.

Solution:

$$n(10\mu\text{m}) = 5 \times 10^{15} + 3 \times 10^{14} \times 10^{-3} = 5.3 \times 10^{15} \text{ cm}^{-3}$$

 $J_{\text{drift}} = qn\mu_n E = (1.602 \times 10^{-19}) \times 5.3 \times 10^{15} \times 1350 \times 50 \approx 5.74 \times 10^{-3} \text{ A/cm}^2 = 5.74 \text{ mA/cm}^2$

$$\frac{dn}{dx} = 3 \times 10^{14} \text{ cm}^{-4}$$

$$J_{\text{diff}} = qD_n \frac{dn}{dx} = (1.602 \times 10^{-19}) \times 35 \times 3 \times 10^{14} \approx 1.68 \times 10^{-3} \text{ A/cm}^2 = 1.68 \text{ mA/cm}^2$$

$$J_{\text{total}} = J_{\text{drift}} + J_{\text{diff}} = 5.74 \text{ mA/cm}^2 + 1.68 \text{ mA/cm}^2 = 7.42 \text{ mA/cm}^2$$

V. Continuity Equation and Carrier Dynamics

A. Generation and Recombination

- Focus on **excess carriers**: carriers in addition to the thermal equilibrium concentrations.
- Minority carrier lifetime (τ): Average time a minority carrier exists before recombining.

B. Continuity Equation

• Describes the conservation of charge:

$$\frac{\partial n}{\partial t} = G - R + \frac{1}{q} \frac{\partial J_n}{\partial x}$$

7

where G is the generation rate and R is the recombination rate.

- Focus on these solutions:
 - 1. Uniform carrier decay: $\Delta p(t) = \Delta p(0)e^{-t/\tau_p}$
 - 2. Uniform carrier generation: $\Delta p(t) = g_0 \tau_p \left(1 e^{-t/\tau_p}\right)$

3. Steady-state diffusion from a point source: $\Delta p(x) = \Delta p(0)e^{-x/L_p}$

Example 12: Calculating Carrier Concentration Under Uniform Generation

Problem: An n-type semiconductor has a uniform generation rate $g_0 = 5 \times 10^{21} \text{ cm}^{-3} \text{s}^{-1}$ and a minority carrier lifetime $\tau_p = 10^{-7} \text{ s}$. Determine the excess hole concentration $\Delta p(t)$ at $t = 10^{-7} \text{ s}$.

Solution:

$$\Delta p(t) = 5 \times 10^{21} \times 10^{-7} \times (1 - e^{-1}) \approx 3.16 \times 10^{14} \text{ cm}^{-3}$$

Example 13: Calculating Carrier Decay Time

Problem: An n-type semiconductor has an initial excess hole concentration of 10^{14} cm⁻³ and a minority carrier lifetime $\tau_p = 50$ ns. Determine the time at which $\Delta p(t) = \frac{1}{e} \Delta p(0)$.

Solution:

$$\Delta p(t) = \Delta p(0)e^{-t/\tau_p} = \frac{1}{e}\Delta p(0) \Rightarrow t = \tau_p = 50 \text{ ns}$$

Example 14: Calculating Carrier Concentration at a Distance from Point Source

Problem: In a p-type semiconductor, excess electrons are generated at x=0 with $\Delta n(0)=10^{15}~{\rm cm}^{-3}$. Given the diffusion length $L_n=35.4\mu{\rm m}$, calculate Δn at $x=30\mu{\rm m}$.

Solution:

$$\Delta n(x) = 10^{15} \times e^{-30/35.4} \approx 4.27 \times 10^{14} \text{ cm}^{-3}$$

C. Diffusion Length

• Average distance a minority carrier travels before recombination:

$$L = \sqrt{D\tau}$$

Example 11: Calculating Diffusion Length

Problem: In a p-type semiconductor, the minority carrier (electron) lifetime is $\tau_n = 5 \times 10^{-7}$ s and the diffusion coefficient is $D_n = 25$ cm²/s. Calculate the diffusion length L_n .

$$L_n = \sqrt{D_n \tau_n} = \sqrt{25 \times 5 \times 10^{-7}} = \sqrt{1.25 \times 10^{-5}} \approx 3.54 \times 10^{-3} \text{ cm} = 35.4 \mu\text{m}$$

VI. PN Junction Diode

A. Formation and Depletion Region

- Formed by joining p-type and n-type materials.
- Carrier diffusion: Electrons diffuse from n to p, holes from p to n.
- **Depletion region (space charge region)**: Forms near the junction, depleted of free carriers, containing only fixed ionized dopants (positive ions in n-side, negative ions in p-side).

B. Built-in Potential (V_{bi})

- Potential difference across the depletion region at equilibrium.
- Arises due to the internal electric field created by the fixed charges.
- Formula (Memorize):

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Example 15: Calculating Built-In Potential

Problem: Consider a silicon PN junction diode at 300 K with doping concentrations of $N_d = 10^{15}$ cm⁻³ and $N_a = 2 \times 10^{17}$ cm⁻³. Given $n_i = 1.5 \times 10^{10}$ cm⁻³, calculate V_{bi} . Solution:

$$V_{bi} = \frac{0.0259 \text{ V}}{1} \ln \left(\frac{(2 \times 10^{17})(10^{15})}{(1.5 \times 10^{10})^2} \right) \approx 0.713 \text{ V}$$

C. Depletion Width (W)

- Width of the depletion region.
- Formula (Memorize):

$$W = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{N_A + N_D}{N_A N_D}\right) V_{bi}}$$

where ε_s is the permittivity of the semiconductor.

• Depletion width partitioning:

$$N_A W_P = N_D W_N, \quad W = W_P + W_N$$

where W_P is the depletion width on the p-side and W_N is the depletion width on the n-side.

Example 16: Calculating Depletion Width

Problem: Using the parameters from Example 15, calculate the depletion region width W. Given $\varepsilon_s = 11.7 \times 8.85 \times 10^{-14} \text{ F/cm}$.

Solution:

$$W = \sqrt{\frac{2 \times (11.7 \times 8.85 \times 10^{-14})}{1.602 \times 10^{-19}} \times \frac{(2 \times 10^{17} + 10^{15})}{(2 \times 10^{17})(10^{15})} \times 0.713} \approx 1.024 \times 10^{-4} \text{ cm} = 1.024 \mu\text{m}$$

Example 17: Calculating Individual Depletion Widths

Problem: For a PN junction with $N_D=10^{15}~{\rm cm}^{-3},~N_A=10^{16}~{\rm cm}^{-3},$ and total depletion width $W=0.951\mu{\rm m}$:

$$W_N = \frac{N_A}{N_A + N_D} W = \frac{10^{16}}{10^{16} + 10^{15}} \times 0.951 \mu \text{m} \approx 0.8644 \mu \text{m}$$

$$\begin{split} W_P &= \frac{N_D}{N_A + N_D} W = \frac{10^{15}}{10^{16} + 10^{15}} \times 0.951 \mu\text{m} \approx 0.08644 \mu\text{m} \\ W &= W_N + W_P = 0.8644 \mu\text{m} + 0.08644 \mu\text{m} = 0.951 \mu\text{m} \end{split}$$

D. Maximum Electric Field (E_{max})

- The peak electric field within the depletion region, occurring at the junction interface.
- Formula (Memorize):

$$E_{max} = \frac{qN_DW_N}{\varepsilon_s} = \frac{qN_AW_P}{\varepsilon_s}$$

Example 18: Calculating Maximum Electric Field

Problem: For the PN junction from Example 17 with $W_N = 0.8644 \mu \text{m}$ and $N_D = 10^{15} \text{ cm}^{-3}$:

$$E_{max} = \frac{(1.602 \times 10^{-19} \text{ C}) \times (10^{15} \text{ cm}^{-3}) \times (0.8644 \times 10^{-4} \text{ cm})}{(11.7 \times 8.85 \times 10^{-14} \text{ F/cm})} \approx 1.34 \times 10^4 \text{ V/cm}$$

VII. PN Junction Under Bias

A. Biasing

- Forward Bias:
 - Positive terminal of voltage source connected to p-type, negative to n-type.

- Reduces the depletion region width.
- Lowers the built-in potential barrier.
- Allows significant current flow.

• Reverse Bias:

- Positive terminal of voltage source connected to n-type, negative to p-type.
- Increases the depletion region width.
- Raises the built-in potential barrier.
- Blocks current flow (except for a small leakage current).

B. Forward Bias

- Minority carrier injection: Under forward bias, majority carriers are injected across the junction and become minority carriers.
 - Formulas:

$$n_p(-x_p) = n_{p0}e^{\frac{V_a}{V_T}}, \quad p_n(x_n) = p_{n0}e^{\frac{V_a}{V_T}}$$

where V_a is the applied forward bias voltage, $V_T = \frac{kT}{q}$ is the thermal voltage, $n_{p0} = \frac{n_i^2}{N_A}$ is the equilibrium minority carrier concentration in p-region, and $p_{n0} = \frac{n_i^2}{N_D}$ is the equilibrium minority carrier concentration in n-region.

• Current Components in Forward Bias:

- The total current is the sum of electron and hole diffusion currents at the edges of the depletion region.
- Formulas:

$$J_n = q\sqrt{\frac{D_n}{\tau_{n0}}} \frac{n_i^2}{N_A} \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

$$J_p = q \sqrt{\frac{D_p}{\tau_{p0}}} \frac{n_i^2}{N_D} \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

- Electric Field in Forward-Biased Diode: The electric field outside the depletion region is responsible for the majority carrier drift current.
 - Formula:

$$E = \frac{J}{q\mu_n N_D}$$

Example 22: Calculating Injected Minority Carrier Concentrations

Problem: Silicon PN junction at 300 K with $N_D = 10^{16} \text{ cm}^{-3}$, $N_A = 6 \times 10^{15} \text{ cm}^{-3}$, $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, and $V_a = 0.60 \text{ V}$. Calculate $n_p(-x_p)$ and $p_n(x_n)$.

Solution:

$$n_{p0} = \frac{n_i^2}{N_A} = \frac{(1.5 \times 10^{10})^2}{6 \times 10^{15}} = 3.75 \times 10^4 \text{ cm}^{-3}$$

$$p_{n0} = \frac{n_i^2}{N_D} = \frac{(1.5 \times 10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$$

$$n_p(-x_p) = 3.75 \times 10^4 \times e^{\frac{0.60}{0.0259}} \approx 4.31 \times 10^{14} \text{ cm}^{-3}$$

$$p_n(x_n) = 2.25 \times 10^4 \times e^{\frac{0.60}{0.0259}} \approx 2.59 \times 10^{14} \text{ cm}^{-3}$$

Example 23: Designing a PN Junction Diode with Specified Currents

Problem: Design a silicon PN junction diode at T = 300 K such that $J_n = 20$ A/cm² and $J_p = 5$ A/cm² at $V_a = 0.65$ V, given:

$$D_n = 25 \text{ cm}^2/\text{s}, \quad D_p = 10 \text{ cm}^2/\text{s}, \quad \tau_{n0} = \tau_{p0} = 5 \times 10^{-7} \text{ s}, \quad n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$$

Solution:

1. Solving for N_A using J_n :

$$20 = (1.602 \times 10^{-19}) \sqrt{\frac{25}{5 \times 10^{-7}}} \frac{(1.5 \times 10^{10})^2}{N_A} \left(e^{\frac{0.65}{0.0259}} - 1\right)$$

$$N_A \approx 1.01 \times 10^{15} \text{ cm}^{-3}$$

2. Solving for N_D using J_p :

$$5 = (1.602 \times 10^{-19}) \sqrt{\frac{10}{5 \times 10^{-7}}} \frac{(1.5 \times 10^{10})^2}{N_D} \left(e^{\frac{0.65}{0.0259}} - 1\right)$$

$$N_D \approx 2.55 \times 10^{15} \text{ cm}^{-3}$$

Example 24: Calculating Electric Field in Forward-Biased Diode

Problem: For a forward-biased diode with $J=3.295~\mathrm{A/cm}^2,~q=1.602\times10^{-19}~\mathrm{C},~\mu_n=1350~\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s},~\mathrm{and}~N_D=10^{16}~\mathrm{cm}^{-3},~\mathrm{calculate~the~electric~field}~E.$

$$E = \frac{3.295}{1.602 \times 10^{-19} \times 1350 \times 10^{16}} \approx 1.525 \text{ V/cm}$$

C. Reverse Bias

- Reverse saturation current $(I_s \text{ or } J_s)$: Small leakage current that flows under reverse bias, due to drift of minority carriers across the depletion region.
- Formulas:

$$J_s = q n_i^2 \left(\frac{1}{N_A} \sqrt{\frac{D_n}{\tau_{n0}}} + \frac{1}{N_D} \sqrt{\frac{D_p}{\tau_{p0}}} \right)$$
$$I_s = Aq n_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_n N_D} \right)$$

where A is the junction cross-sectional area.

Example 20: Calculating Reverse Saturation Current

Problem: Silicon PN junction at 300 K with $N_A = N_D = 10^{16} \text{ cm}^{-3}$, $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$, $D_n = 25 \text{ cm}^2/\text{s}$, $\tau_{n0} = \tau_{p0} = 5 \times 10^{-7} \text{ s}$, and $D_p = 10 \text{ cm}^2/\text{s}$. Calculate J_s . Solution:

$$J_s = (1.602 \times 10^{-19})(1.5 \times 10^{10})^2 \left(\frac{1}{10^{16}} \sqrt{\frac{25}{5 \times 10^{-7}}} + \frac{1}{10^{16}} \sqrt{\frac{10}{5 \times 10^{-7}}}\right) \approx 4.16 \times 10^{-11} \text{ A/cm}^2$$

D. Diode Equation

- Describes the current-voltage (I-V) characteristic of a PN junction diode.
- Formula (Memorize):

$$I = I_s \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

where I_s is the reverse saturation current, V_a is the applied bias voltage, and $V_T = \frac{kT}{q}$ is the thermal voltage ($\approx 0.0259 \text{ V}$ at 300 K).

Example 21: Applying the Diode Equation

Problem: Using $I_s = 1.116 \times 10^{-13}$ A and $V_a = 0.7$ V, calculate the diode current I.

$$I = 1.116 \times 10^{-13} \left(e^{\frac{0.7}{0.0259}} - 1 \right) \approx 2.175 \times 10^{-2} \text{ A}$$

VIII. Summary of Key Formulas (Prioritized)

• Intrinsic Carrier Concentration:

$$n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2kT}}$$

• Mass Action Law:

$$np = n_i^2$$

• Fermi Level Position:

$$E_F - E_{Fi} = kT \ln \left(\frac{N_D}{n_i}\right)$$
 (n-type)

$$E_{Fi} - E_F = kT \ln \left(\frac{N_A}{n_i}\right)$$
 (p-type)

• Drift Current:

$$J_{drift,n} = qn\mu_n E$$
 (electrons)

$$J_{drift,p} = qp\mu_p E$$
 (holes)

• Diffusion Current:

$$J_{diff,n} = qD_n \frac{dn}{dx} \quad \text{(electrons)}$$

$$J_{diff,p} = -qD_p \frac{dp}{dx} \quad \text{(holes)}$$

• Einstein Relation:

$$\frac{D}{\mu} = \frac{kT}{q}$$

• Diffusion Length:

$$L = \sqrt{D\tau}$$

• Built-in Potential:

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

• Depletion Width:

$$W = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{N_A + N_D}{N_A N_D}\right) V_{bi}}$$

• Maximum Electric Field:

$$E_{max} = \frac{qN_DW_N}{\varepsilon_s} = \frac{qN_AW_P}{\varepsilon_s}$$

• Reverse Saturation Current Density:

$$J_{s} = q n_{i}^{2} \left(\frac{1}{N_{A}} \sqrt{\frac{D_{n}}{\tau_{n0}}} + \frac{1}{N_{D}} \sqrt{\frac{D_{p}}{\tau_{p0}}} \right)$$

• Diode Current Equation:

$$I = I_s \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

• Minority Carrier Concentration Under Bias:

$$n_p(-x_p) = n_{p0}e^{\frac{V_a}{V_T}}, \quad p_n(x_n) = p_{n0}e^{\frac{V_a}{V_T}}$$

• Current Components in Forward Bias:

$$J_n = q\sqrt{\frac{D_n}{\tau_{n0}}} \frac{n_i^2}{N_A} \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

$$J_p = q \sqrt{\frac{D_p}{\tau_{p0}}} \frac{n_i^2}{N_D} \left(e^{\frac{V_a}{V_T}} - 1 \right)$$

• Electric Field in Forward-Biased Diode

$$E = \frac{J}{q\mu_n N_D}$$