The B-Form

Math 5600

Summer 2014

Peter Alfeld

pa@math.utah.edu

Department of Mathematics University of Utah

More information and software on www.math.utah.edu/~pa/
Pdf version of slides on www.math.utah.edu/~pa/mvs.pdf

State of the Art

Ming-Jun Lai and Larry L. Schumaker: *Spline Functions on Triangulations*.
Cambridge University Press, 2007. ISBN 0521875927.

What's in a name?

- "Spline" = smooth piecewise polynomial function.
- "smooth" means so many times differentiable.
- "Univariate" = one independent variable.
- Classic subject, used ubiquitously in numerical analysis for approximating data and functions.
- Example: cubic splines, pass an elastic wire through a bunch of points.

Univariate Splines

partition: [a, b] into N subintervals

$$a = x_0 < x_1 < \ldots < x_N = b$$

$$S_d^r = \{ s \in C^r[a, b] : s|_{I_i} \in P_d, \quad i = 1, \dots, N \}$$

where P_d is the space of univariate polynomials of degree d.

$$\dim S_d^r = (d+1) + (N-1)((d+1) - (r+1))$$

What could be **simpler**?

Triangulations

Tessellate by triangles connecting scattered points.

Bivariate Splines

- Triangulations are the natural generalizations of interval partitions because they can handle scattered (i.e., arbitrarily distributed) points.
- Key object: The set of all functions that are r
 times differentiable, and that on each triangle
 can be written as a bivariate polynomial of
 degree d.
- It's a linear space, and as such it has a dimension.
- Formally:

Natural bivariate analog of univariate S_d^r :

$$V$$
 Vertices: v_1, v_2, \ldots, v_V

N Triangles:
$$T_1, T_2, \ldots, T_N$$

polynomial of degree
$$d$$
: $p(x,y) = \sum_{i+j < d} x^i y^j$

domain:
$$\Omega = \bigcup_{i=1,...N} T_i$$

$$S_d^r = \{ s \in C^r(\Omega) : s_{T_i} \text{ is polynomial of degree } d. \}$$

Barycentric Coordinates

Let Δ be a triangle with vertices v_1 , v_2 , and v_3 . For $x \in \mathbb{R}^2$, define its barycentric coordinates b_1 , b_2 , b_3 by:

$$x = \sum_{i=1}^{3} b_i v_i$$
 where $\sum_{i=1}^{3} b_i = 1$.

Note that barycentric coordinates are linear functions of x.

Bernstein-Bezier Form

Any polynomial $p \in P_d$ can be written uniquely in its Bernstein-Bézier form as:

$$p(x) = \sum_{i+j+k=d} \frac{d!}{i!j!k!} c_{ijk} b_1^i b_2^j b_3^k.$$

where

 $c_{ijk}: B\'{e}zier\ ordinates$ $P_{ijk} = \frac{iv_1 + jv_2 + kv_3}{d} \in \mathbb{R}^2: Domain\ Points$ $(P_{ijk}, c_{ijk}) \in \mathbb{R}^3: B\'{e}zier\ control\ points$

Bézier Control Net

• The control points at the vertices lie on the graph of the polynomial. This is because

$$p(v_1) = c_{d00}, \quad p(v_2) = c_{0d0}, \quad p(v_3) = c_{0d0}$$

• The control points in the 1-disk, i.e.,

$$(P_{d00}, c_{d00}), (P_{d-1,1,0}, c_{d-1,1,0}), (P_{d-1,0,1}, c_{d-1,0,1})$$

lie in the tangent plane of p at v_1 . Similarly for v_2 and v_3 .

- The control points along an edge determine the values of the polynomial along that edge.
- The control points along an edge, and in the first row parallel to the edge, determine the values of first derivatives of the polynomial along that edge.

Smoothness Conditions

Idea of a particular proof: Let D be a first order directional derivative operator.

$$p(x) = \sum_{i+j+k=d} \frac{d!}{i!j!k!} c_{ijk} b_1^i b_2^j b_3^k,$$
 as before

On a neighboring triangle we have

$$\tilde{p}(x) = \sum_{i+j+k-d} \frac{d!}{i!j!k!} \tilde{c}_{ijk} b_1^i b_2^j b_4^k.$$

For continuity, we require $c_{ij0} = \tilde{c}_{ij0}$, i + j = d. We get:

in any math talk.

$$Dp(x) = \sum_{i+j+k=d} \frac{d!}{i!j!k!} c_{ijk}$$
 Aristotle, 346BC
$$\left(ib_1^{i-1}Db_1b_2^jb_3^k + b_1^ijb_2^{j-1}Db_2b_3^k + b_1^ib_2^jkb_3^{k-1}Db_k\right)$$

$$= \sum_{i+j+k=d-1} \frac{(d-1)!}{i!j!k!} \hat{c}_{ijk}b_1^ib_2^jb_3^k$$

where

$$\hat{c}_{ijk} = d(c_{i+1,j,k}Db_1 + c_{i,j+1,k}Db_2 + c_{i,j,k+1}Db_3)$$

Note that Db_1 , Db_2 , and Db_3 are *constant*. Differentiating on both triangles, restricting the derivative to the common edge, equating coefficients, and dividing by d gives the condition

$$a_1c_{i+1,j0} + a_2c_{ij+10} + a_3c_{ij1} + a_4\tilde{c}_{ij1} = 0 \tag{*}$$

for i + j = d - 1 where a_1 , a_2 , a_3 , and a_4 are independent of i, j, and d.

- Thus the equations (*) are *inde*pendent of the degree d and the particular quadrilateral along that edge.
- In particular, we obtain the same condition for the case d = 1. In that case, the C^1 condition means that the piecewise linear function be in fact linear.
- This means that in the large quadrilateral, formed by the two triangles, for d = 1, the four control points lie in the same plane.
- Since the small quadrilaterals are similar to the large quadrilateral the algebraic relation (*) has the same meaning: the quadrilateral in 3-space must be planar.

Algebra ↔ Geometry

Major Difficulty (major!)

The dimension of S_d^r depends not just on the **combinatorics** of a triangulation, but also on its **geometry**.

Simplest Example: Singular Vertex

Four triangles meeting at an interior vertex

$$\dim S_2^1 = 8$$

$$\dim S_2^1 = 7$$

It's not just the dimension!

Geometry affects Interpolation!

What's happening?

z=(b-d)-(a+b-c)+(a-c+d)=0independent of a,b,c,d

What do you expect to happen on a defective 6-star?

Can, or can't you interpolate?

Generic Dimension

Every spline space S has a generic dimension. If the dimension of S does not equal its generic value then there is an arbitrarily small perturbation of the location of the vertices such that the dimension of S does equal the generic value. Any other dimensions can only be larger than the generic dimension. **Proof:** Let $S = S_d^r$ be the subspace of S_d^0 with a coefficient vector c that satisfies the smoothness conditions

$$Ac = 0$$
.

The entries of A are rational functions of the location of the vertices of the underlying triangulation.

Let D be the minimum dimension of S. Then

$$D = \dim S_d^0 - R,$$

with $R = \operatorname{rank} A$, and where (without loss of generality)

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

with A_{11} being a non-singular $R \times R$ matrix.

The expression $\det A_{11}$ is a non-zero rational function of the locations of the vertices, and can vanish only on a set of measure zero.

The generic dimension of S_4^1 is 6V-3. Proof by Induction Add the star of a boundary vertex to the growing triangulation T.

Black points are determined by the spline on T.

The green, red, and cyan points are newly imposed.

3 green, 2 red, and 1 cyan point are newly assigned.

This argument also shows that one can interpolate generically to function and gradient at vertices.

- Things get easier as the polynomial degree increases.
- Exact dimension known if r=1 and $d\geq 4$, or r>1 and $d\geq 3r+2$.
- Generic dimension known for S_2^1 and S_3^1 , and for d = 3r + 1 when r > 1.
- Dimensions and many other facts known on many types of special triangulations.
- Most famous outstanding problem:

 V_B : number of boundary vertices

 V_I : number of interior vertices

 σ : number of singular vertices

Problem first mentioned in a conjecture by Gil Strang in the early seventies. What's the dimension of S_3^1 ?

$$\dim S_3^1 \ge 3V_B + 2V_I + 1 + \sigma$$

Does equality hold? Conjecture: yes.

If you solve this problem I want to know about it!

Why is this so hard?

You can't localize things.

$$\dim S_3^1 \ge 3V + N - E_I + \sigma = 3V_B + 2V_I + 1 + \sigma.$$

What works for large values of *d*?

Use vertex globs (green), edge globs (blue), and inactive points (red). Requires d > 4r. Smoothness conditions decouple.

- Similar problems. Dimension depends on the geometry.
- Morgan-Scott idea requires d > 8r.
- Generic dimension is known for r=1 and $d\geq 8$.
- One new problem:
- Knowing the dimension of the trivariate space S_d^r for sufficiently large d means we know the dimension of the bivariate space for all d.
- To see this construct a three dimensional triangulation by starting with a planar triangulation T and then connecting every vertex of T to a new vertex in \mathbb{R}^3 outside of the plane containing T.

d+1 bivariate
spline spaces

Lift planar Triangulation to \mathbb{R}^3 . Smoothness conditions decouple.

Most applications of multivariate splines are based on so called **macro elements** (when approximating data) or **finite elements** (when solving differential equations).

- The interpolant is determined on each simplex by data on that simplex.
- Simplices may be subdivided.
- The overall spline space is a sub or superspace of the full space S_d^r
- Many macro schemes are known in 2, 3, or n variables.

Macro Schemes

Clough-Tocher, *r*=1, *d*=3, 3 micro-triangles

Some Recent Tetrahedral Macro-Schemes

Schumaker, Sorokina, Worsey: Journal of Approximation Theory, 2009.

$$r = 1$$

$$d=2$$

504 micro-tetrahedra

no geometric constraints

T60

Alfeld and Sorokina, Journal of Approximation Theory, 2009.

$$r = 1$$

$$d = 3$$

60 micro-tetrahedra

no geometric constraints

Thank You

Multivariate Splines

Applied Mathematics Seminar

March 24, 2014

Peter Alfeld

pa@math.utah.edu

Department of Mathematics
University of Utah

More information and software on www.math.utah.edu/~pa/
Pdf version of slides on www.math.utah.edu/~pa/mvs.pdf