가우스 소거법 사용 ML 모델

● 생성자때 재환 김Ⅲ 태그엔지니어링

1. 선형 회귀 (Linear Regression)

선형 회귀 모델은 주어진 데이터에 대해 선형 관계를 학습하는 모델입니다. 이 모델은 최적의 가중치 θ \theta θ 를 찾기 위해 최소제곱법(Ordinary Least Squares, OLS)을 사용하며, 이 과정에서 정규 방정식(Normal Equation)이 등장합니다.

정규 방정식은 다음과 같은 형태로 표현됩니다:

$$\theta = (X^T X)^{-1} X^T y$$

여기서,

- X는 입력 데이터의 행렬,
- y는 목표 변수의 벡터,
- θ는 모델의 가중치 벡터입니다.

이 과정에서 행렬의 역행렬 계산이 필요하고, 이 역행렬을 구하는 데 **가우스 소거법**이 활용될수 있습니다. 특히, 데이터를 적게 사용할 때는 정규 방정식을 풀어 정확한 가중치를 찾는 방식으로 계산할 수 있습니다.

하지만 데이터의 차원이 크면, 경사 하강법(Gradient Descent)을 더 많이 사용합니다. 즉, 선형 회귀 모델에서 가우스 소거법은 소규모 데이터셋이나 행렬 역행렬 계산에 유용하게 쓰 일 수 있습니다.

2. 서포트 벡터 머신 (Support Vector Machine, SVM)

SVM에서 최적화 문제를 풀 때, 특히 선형 커널을 사용하는 경우, 시스템이 선형 방정식의 형태로 나타나게 됩니다. 이 방정식을 풀기 위해 가우스 소거법을 사용할 수 있습니다. SVM의 최적화 문제를 해석적 방식으로 풀 때 일부 경우 가우스 소거법과 같은 선형 대수학적 기법이 사용될 수 있습니다.

그러나, SVM도 대부분은 **경사 하강법**이나 **이차 계획법(Quadratic Programming)** 등을 사용해 최적화 문제를 해결합니다. 가우스 소거법은 특정 행렬 연산에서 간접적으로 등장할 수 있지만, 기본적인 학습 알고리즘으로는 잘 사용되지 않습니다.

3. 라쏘 회귀 (Lasso Regression) 및 리지 회귀 (Ridge Regression)

가우스 소거법 사용 ML 모델

라쏘 회귀와 **리지 회귀**는 선형 회귀의 확장 모델입니다. 이 모델들은 과적합을 방지하기 위해 **정규화** 항을 추가하여 문제를 해결합니다.

이 회귀 문제는 다음과 같은 형태로 표현됩니다:

$$\theta = (X^T X + \lambda I)^{-1} X^T y$$

여기서 λ\lambdaλ는 정규화 파라미터입니다. 이 방정식도 역행렬을 계산하는 과정에서 가우스 소거법이 사용될 수 있습니다. 하지만 일반적으로는 역행렬을 구하는 데 더 빠르고 안정적인 알고리즘(LU 분해나 QR 분해 등)을 사용합니다.

4. 가우시안 프로세스 회귀 (Gaussian Process Regression)

가우시안 프로세스 회귀는 비선형적 관계를 학습하는 회귀 모델로, 커널 트릭(Kernel Trick)을 사용하여 높은 차원에서의 관계를 모델링합니다. 가우시안 프로세스 회귀에서는 **커널 행렬**의 역행렬을 계산하는 과정이 중요하며, 이때 가우스 소거법이 사용될 수 있습니다.

5. 최소 자승법(Least Squares) 기반 모델들

최소 자승법을 사용하는 다양한 모델들이 있습니다. 이 경우, 방정식을 풀 때 가우스 소거법을 사용할 수 있습니다. 최소 자승법은 **선형 회귀**뿐만 아니라 다변량 회귀(Polynomial Regression)에서도 사용됩니다.

6. 선형 판별 분석 (Linear Discriminant Analysis, LDA)

LDA는 두 개 이상의 클래스를 구분하기 위한 선형 경계면을 찾는 방법입니다. LDA는 각 클래스의 공분산 행렬과 평균을 계산한 후, 선형 방정식 형태로 모델을 학습할 수 있습니다. 이과정에서 선형 방정식의 해를 구할 때 가우스 소거법을 사용할 수 있습니다.

결론

가우스 소거법은 선형 방정식을 푸는 데 가장 기본적인 방법 중 하나로, 선형 회귀나 라쏘 회귀, 리지 회귀와 같이 행렬 연산이 중요한 모델에서 간접적으로 사용될 수 있습니다. 그러나, 기계학습의 현대적인 알고리즘에서는 가우스 소거법보다 더 효율적인 방법(LU 분해, QR 분해, 경사 하강법 등)이 자주 사용됩니다.

가우스 소거법 사용 ML 모델 2