Machine Learning Final Project

FinalProjecTeam

B07902037 蔡沛勳 B07902072 陳光裕 B07902128 蘇聖祐

—, Data Preprocessing

Preprocess主要分為以下三個階段,

1. Csv file preprocess:

將 csv 檔讀進來後轉換為數字, 其中若是二分類的 feature (Yes / No) 則轉為 (1 / -1), 而若是多分類的 feature (eg. city) 則用 One-hot 的方式處理。然後再對具有相關性的或從屬關係的 features 各自調整, 最後刪除單分類及被包含關係的feature。具體如下:

Demographics:

若 Dependents 為 NaN 或 0 且 Number of Dependents 為 NaN 則將 Number of Dependents 設為 0。

Drop: Count, Under 30, Senior Citizen, Dependents

Satisfaction:

直接使用 Satisfaction Score。

Location & Population:

由於 Country、State 都只有一種, 而 City 若用 One-hot 方式處理會有 1101 種分類, 太過細碎, 故三者都不使用。而 Latitude 或 Longitude 為 NaN 實則由 Lat Long 項取值。Zip Code 項則從 population.csv 中找出 對應的 Population 並替換。

Drop: Count, Country, City, State, Lat Long

Service:

service.csv 中包含 12 個二分類 features及 4 個多分類 features 依前面提到的方式處理, 而若 Referred a Friend 為 No 且 Number of Referrals 為 NaN 則將 Number of Referrals 設為 0。

Drop: Count, Quarter, Referred a Friend

Status:

依 kaggle 競賽格式,將No Churn、Competitor、Dissatisfaction、Attitude、Price 及 Other 轉為 0、1、2、3、4、5。

2. Merge all data and fill NaN:

將前一部分五個 csv 檔的處理結果依照 Train_IDs 及 Test_IDs 對齊 Customer ID merge 成兩組 data, 再統一對 NaN 值去做處理。首先我們可分分為 X 中的 feature 及 y 中的 NaN, y 為 NaN 的 ID 屬於 train data 則丟棄該筆資料, 若屬於 test data 則將其填上數量最多的種類。若是 X 中的 features 為 NaN, 則先決定是否丟棄該筆資料, 若否, 對於前文中的二分類 feature NaN 值填 0,其他則分為四種填值方式,分別為:

Fill 0:將 NaN 填上 0。

Fill mean: 將 NaN 填上該 feature 不含 NaN 的平均數。

Fill forward: 將 NaN 填上該筆資料往前第一筆非 NaN 的值。

Fill backward: 將 NaN 填上該筆資料往後第一筆非 NaN 的值。

3. Scaler

為了使 SVM 等需要運算到距離的模型能夠正常運作,我們測試了兩種 scaler 對資料做最後一步處理,分別是

MinMaxScaler:(x - x.min) / (x.max - x.min), 將資料壓到 [0, 1]。

StandardScaler:(x - x.mean) / x.var, 使資料 mean = 0、var = 1。

二、Machine Learning Models

我們選擇了八種模型來做測試,分別為一個純手刻的用 Logistic Regression 實作的 One versus one model。Sklearn 函式庫中用 SVC 實作的 OneVsOne 及 OneVsRest 的 Classifier,用 DecisionTreeClassifier 實作的 AdaBoost 及 Bagging 的 Classifier,其餘還有GradientBoosting Classifier 及 RandomForest Classifier,和整合上述六個 model 的 Voting Classifier。我們以 GridSearchCV 的方式調整模型參數,得到結果如下:

1. Self-implemented One Vs One Logistic Regression model:

由於是手刻出來的 model, 速度緩慢, 跑完四次 V_folds(5) 的時間為 21:35, Train F1 mean 為 0.216821, Validation F1 mean 為 0.214689, 兩者的 variance 都在 1e-7 左右, 分數不高但表現相當穩定且不會 overfitting。

2. Sklearn One Vs One Classifier:

3. Sklearn One Vs Rest Classifier:

4. Sklearn AdaBoost Classifier:

5. Sklearn Bagging Classifier:

6. Sklearn Gradient Boosting Classifier:

7. Sklearn Random Forest Classifier:

8. Sklearn Voting Classifier:

三、**Experiments**

實驗分為兩個部分,分別針對 data preprocessing 及 machine learning model 做進一步的測試,並比較各自的數據來找出最好的 preprocessed data 及 machine learning model, 最終將兩者結合再放上 kaggle 做測試。

Data Preprocessing:

本部分的測試使用 Sklearn 的用 SVC 實作的 One Vs One Classifier 來做比較測試, 測試方式為以V_fold 分為五份做 train 及 validation 並將 F1 Score 收集起來, 重複 20 次一共 100 筆

1. 比較兩種 Scaler (MinMaxScaler 和 StandardScaler)、是否移除有 NaN 的 資料、四種 fill NaN的方式, 共 2 x (4+1) = 10 種組合的訓練結果:

MinMaxScaler:

	Fill 0	Fill mean	Fill forward	Fill backward
Save NaN	0.241589	0.287337	0.249973	0.254839
Drop NaN	0.231332			

StandardScaler:

	Fill 0	Fill mean	Fill forward	Fill backward
Save NaN	0.18575	0.20637	0.18961	0.19095
Drop NaN	0.194105			

 用結果最好的組合 (MinMaxScaler x Save NaN x Fill mean),實驗發現移除 X₃₅ 可以有較高的 F1 score,以此為基礎接著再依序移除 X₂₄、X₃₃、X₂₂、X₃

```
35:Internet type DSL \rightarrow 24:total refunds \rightarrow 33:Offer E \rightarrow 22: monthly charges \rightarrow 3:married (Final validation F1 = 0.29315)
```

Machine Learning Model:

本部分的測試在 meow1 工作站上進行, 對不同 model 進行比較:

	Train F1 mean	Train F1 variance	Validation F1 mean	Validation F1 variance	Computing Time (Total)
AdaBoost	0.594921	0.000124	0.314446	0.000005	2'49''
Gradient Boosting	0.998900	4.5*10^-7	0.335014	7*10^-5	18'27''
Random Forest	0.938392	1.17*10^-5	0.312251	3.94*10^-5	14'14''
Bagging	0.432289	0.000130	0.294688	0.000113	36"
One Vs One	0.951935	4.29*10^-7	0.297713	5.21*10^-5	5'10"
One Vs Rest	0.944285	4.06*10^-7	0.283582	4.48*10^-5	5'18"
Voting	0.994210	6.88*10^-7	0.323433	0.000190	31'13"

四、Conclusion

結合 Data Preprocessing 兩項實驗的結果, 再從 Machine Learning Model 中選取三個較具代表性的 model, 我們選了以下三個 model:

	Validation F1 Score	Public Score	Private Score	Computing Time per Round
Gradient Boosting	0.33518	0.38402	0.32751	10 s
Bagging	0.29254	0.28451	0.31858	0.25 s
Voting	0.32256	0.30762	0.32695	17.07 s

選取 Gradient Boosting 的原因為他是 Validation F1 Score mean 最高者,此外也擁有很低的 Validation F1 Score variance,代表模型足夠穩定。測出來的結果如預期中是我們所有 model 中分數最高的, Public Score 甚至比本機分數還高不少。而其餘兩個 model 分別為運算速度最快及預期最穩定的 model,兩者也都有不錯表現。

其中比較特殊的點為我們原本預期 Gradient Boosting 的 Public 與 Private 的差距要最小,最終結果卻是相反。而 Voting 就如預期般穩定不少,而在時間、運算資源有限的情況下, Bagging 雖然 Private Score 低於其他 model,但運算時間遠勝其他 model。

五、Division of Works

蔡沛勳 B07902037	 Code Implementation of a. Train b. Test Experiments designing Models' parameters fine-tuning Report writer
陳光裕 B07902072	 Data preprocessing experiments - StandardScaler Models' parameters fine-tuning Experiments executing Report writer
蘇聖祐 B07902128	 Code Implementation of data preprocess Data preprocessing experiments executing a. MinMaxScaler b. delete 5 columns to achieve highest F1 Score Report writer