

Intrusion Detection for OAuth

Florian Nehmer

Einleitung (1)

- Open Authorization Framework 2.0 (OAuth)
 - Login-Prozess: "Weiter mit [Apple, Google, ...]"
 - Single Sign On
 - Smart Devices
 - RFC6749 (2012)
 - 30 RFCs die mit OAuth in Verbindung stehen
 - OAuth 2.1 in Arbeit
- Forschungsfragen
 - Welche Arten von Sicherheitsbedrohungen existieren aktuell für Implementierungen des OAuth Protokolls?
 - Wie kann man Anomalieerkennung einsetzen, um Angriffe auf das OAuth Protokoll zu erkennen?

Einleitung (2)

- Methoden und Verfahren
 - Kategorisierung verschiedener OAuth Bedrohungen
 - Implementierung einer OAuth Testumgebung
 - Netzwerkdatengenerierung
 - Anomalie-Erkennung
 - Word2Vec Enkodierung von Netzwerkdaten
 - Clustering Algorithmen zur Anomalieerkennung

OAuth 2.0 Protokoll Funktionsweise

Authorization Code Grant

OAuth 2.0 Bedrohungen

Bedrohungslage von OAuth

1. Leak von Credentials & Session Übernahme

2. Manipulation von Weiterleitungen

3. Umgehung von Integritätsmaßnahmen

4. Credential Injection

- 1. Leak von Credentials & Session Übernahme
- Ausnutzung von Web Mechanismen und Umgebungen zur Übernahme von Session Daten
 - Autorisierungsdaten / Credentials sichtbar in Logdateien und Services
 - Clickjacking
 - 307 Redirect

2. Manipulation von Weiterleitungen

- Manipulation des Opfers zur Weiterleitung der Autorisierungsdaten zum Angreifer
 - Unzureichende Überprüfung des redirect_uri Parameters
 - AS leitet zu Phishing Seite weiter
 - Mix-Up Angriff

- 3. Umgehung von Integritätsmaßnahmen
- Maßnahmen, die die Integrität des Resource Owners bewahren sollen werden umgangen
 - PKCE Downgrade Angriff
 - Cross Site Request Forgery

4. Credential Injection

- Geklaute Credentials werden benutzt, um an geschützte Daten zu gelangen
 - Authorization Code Injection
 - Access Token Injection

Fazit Bedrohungslage

- Verschiedenste Angriffsvektoren sind denkbar
- Viele involvierte Komponenten
 - Mensch
 - Browser
 - Client Applikation
 - Authorization Server
- Umgebung und Komponenten entwickeln sich weiter
 - Möglicherweise immer wieder neue unbekannte Angriffe denkbar

Anomalie-Erkennung für Angriffe auf OAuth 2.0

Anomalie-Erkennung für OAuth

Bedrohungsart: Manipulation von Weiterleitungen

Anomalie-Erkennung für OAuth

Bedrohungsart: Manipulation von Weiterleitungen

Testdatengenerierung

- 3627 Logeinträge im Testdatensatz insgesamt
- 44 Einträge, die Teil eines Angriffes sind
 - Angriffsrate 1,12 %
 - 2 Arten von Angriffen

Netzwerkdaten Beispiel ohne Angriff

Method	URI	ls_attack
GET	/?next=http://localhost:5123/oauth/authorize ?response_type=code &client_id=A30qfzW7fbvhAN4Otlq4ZNFR &redirect_uri=http://localhost:8080/index.html	0
GET	/	0
POST	/	0
POST	/create_client	0

Netzwerkdaten Beispiel mit Angriff

Method	URI	ls_attack
GET	/oauth/authorize ?response_type=code &client_id=A30qfzW7fbvhAN 4Otlq4ZNFR &redirect_uri=http://evil-server.com	1

- Clustering benötigt numerische Repräsentation der Daten
- Word2Vec
 - Methode aus der natürlichen Sprachverarbeitung
 - Wörter, die häufig zusammen auftauchen, stehen in einer Beziehung
 - Continuous Bag of Words (CBOW) vs. Skip-Gram
 - Wichtiger Hyperparameter: Fenstergröße
- Input Beispiele:
 - ['GET', 'api', 'v1.0', 'users']
 - ['GET', 'oauth', 'authorize', 'response_type', 'code', 'client_id', 'A30qfzW7fbvhAN4OtIq4ZNFR', 'redirect uri', 'http:', 'evil-server.com']

Word2Vec Ergebnisse

Clustering

- Anomalien erkennen durch Clusterbildung
- Definition von Schwelle für Anomaliecluster
 - >= 5% zählt als Anomalie
- Zwei Algorithmen wurden getestet
 - k-Means
 - Self-Organizing Maps

Clustering (2) [Llo82]

k-Means

- Vorbestimmte Anzahl von Clustern (k)
- Initial: Feste Anzahl (k) von zufälligen Cluster Mittelpunkten (Centroids) wird gewählt
- (a) Vektoren werden anhand der euklidischen Distanz dem nächsten Centroid zugeordnet – es bilden sich Cluster
- (b) Zu jedem entstandenen Cluster wird der tatsächliche Mittelpunkt berechnet
- Schritte a und b werden wiederholt, bis sich die Centroids nicht mehr ändern

Clustering (3) [Koh90]

Self-Organizing-Maps

- Clusteranzahl ergibt sich durch Algorithmus
- Initial: 2-dimensionales Raster von Neuronen wird initialisiert
- (a) Vektoren werden anhand der euklidischen Distanz, dem nächsten/ähnlichsten Neuron aus dem Raster zugeordnet -> Best Matching Unit (BMU)
- (b)
 Eine Nachbarschaftsfunktion wird angewendet um das Gewicht des BMU und benachbarten Neuronen anzupassen
- Schritte a und b werden für alle Vektoren mehrmals wiederholt für eine beg renzte Anzahl von Epochen

Clustering Ergebnis (k-Means) k=2

Clustering Ergebnis (k-Means) k=6

Clustering Ergebnis (k-Means) Clusteranzahl

Verhalten bei Erhöhung der Clusteranzahl; Anomalieschwelle = 5%

k	2	3	4	5	6	7	8	17	20	24
Anomalie Cluster	1	2	2	2	3	4	5	10	12	18
Accuracy	0,99	0,99	0,99	0,99	0,99	0,99	0,97	0,92	0,89	0,71
Precision	0,63	0,63	0,63	0,63	0,63	0,63	0,34	0,13	0,11	0,05

Clustering Ergebnis (SOM)

Ergebnisse beider Clustering Algorithmen

	Word2Vec + K-Means	Word2Vec + SOM
Accuracy	0,993	0,993
Yield	1.0	1.0
Precision	0,637	0,637

- Enkodierung durch Word2Vec hat die Ergebnisse maßgeblich beeinflusst
- Clustering Algorithmen entdecken offensichtliche Cluster
- Vorgehen trennt z.T. nur OAuth Netzwerkdaten von anderen Netzwerkdaten

Diskussion & zukünftige Ansatzpunkte

- Modellierung der Netzwerkdaten konzentriert sich auf Anwendungsdaten
 - Aggregierung von realen Daten
- Word2Vec Performance
 - Untersuchung von anderen NLP-Methoden anhand von realen Daten
- Klassifizierung
 - Untersuchung von Supervised Learning Methoden auf realen Daten

Zusammenfassung

1. Leak von Credentials & Session Übernahme

2. Manipulation von Weiterleitungen

3. Umgehung von Integritätsmaßnahmen

4. Credential Injection

- 3627 Logeinträge im Testdatensatz insgesamt
- 44 Einträge, die Teil eines Angriffes sind
 - Angriffsrate 1,12 %
 - 2 Arten von Angriffen

	B - Cluster 0 - Cluster 2 - Cluster 2 - Cluster 2 - Cluster 3 - C
0.15	
0.05 0.00	4-
0.29 0.13 0.10	3-
3 30 33 50 30 50 50 50 50 50 50 50 50 50 50 50 50 50	· · · · · · · · · · · · · · · · · · ·

	K-Means	SOM		
Accuracy	0,993	0,993		
Yield	1.0	1.0		
Precision	0,637	0,637		

Quellen

- [Lod+20] Torsten Lodderstedt et al. OAuth 2.0 security best current practice. In: IETF Web Authorization Protocol, Tech. Rep. draft-ietf-oauth-security-topics-16 (2020).
- [Har12] Dick Hardt. Rfc 6749: The oauth 2.0 authorization framework. 2012.
- [Mik+13] Tomas Mikolov et al. Efficient estimation of word representations in vector space. In: arXiv preprint arXiv:1301.3781 (2013).
- [Llo82] S. Lloyd. Least squares quantization in PCM. In: IEEE Transactions on Information Theory 28.2 (1982), pp. 129–137. DOI: 10.1109/TIT.1982.1056489.
- [Koh90] T. Kohonen. The self-organizing map. In: Proceedings of the IEEE 78.9 (1990), pp. 1464–1480.
 DOI: 10.1109/5.58325.

Authorization Code Grant

[Har12]

Implicit Grant

Authorization Code Grant

Anomalie Erkennung für OAuth

- Ansatzpunkt redirect_uri Parameter und HTTP Methode
 - Textuelle Repräsentation
 - Zwischen weiteren anderen Query-Parametern
 - Durch Implementierung in Clients sehr wenige Unterschiede in Netzwerkdaten
- Anomalie-Erkennung anhand der URI und der Methode von HTTP Requests
 - Testdatengenerierung
 - Enkodierung der textuellen Daten
 - Clustering

Anhang (1)

- Self-Organizing Maps
 - Euklidische Distanz:

•
$$D(w,x) = \sqrt{\sum_{i=1}^{N} (w_i - x_i)^2} = ||r^2||$$

- w = Gewichtsvektor, x = Inputvektor, N = Anzahl an Dimensionen von w und x
- Nachbarschaftsfunktion:

$$o h(r,t) = \exp\left(-\frac{\|r^2\|}{2\sigma^2(t)}\right)$$

 $||r^2||$ = Euklidische Distanz, t = Zeit/Iteration, σ^2 = Nachbarschaftsradius

- Xiaofei Qu et al. A survey on the development of self-organizing maps for unsupervised intrusion detection. In: Mobile networks and applications 26 (2021), pp. 808–829
- Corby Ziesman. Self-Organizing Maps. https://slideplayer.com/slide/7798627/ (Abgerufen: 10.11.2023)

Anhang (2)

- k-Means
 - Centroid mit der minimalen Distanz

•
$$\arg \min_{j} ||x_{i} - \mu_{j}||^{2}$$

- μ = Centroid, x = Inputvektor

Mittelpunkt berechnen

•
$$c_j = \frac{1}{|\mu_j|} \sum_{x_i \in \mu_i} x_i$$

- c = Mittelpunkt = neuer μ

- Chris Piech. K Means. 2013. URL: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html (Abgerufen: 15.10.2023).
- Jeremy Watt, Reza Borhani, Aggelos K. Katsaggelos. Machine Learning Refined: Notes, Exercises, Presentations, and Sample Chapters. URL: https://jermwatt.github.io/machine_learning_refined/notes/8_Linear_unsupervised_learning/8_5_Kmeans.html (Abgerufen: 15.10.2023)