

Weakly Supervised Visual Question Answer Generation

Charani Alampalle, Shamanthak Hegde, Soumya Jahagirdar, Shankar Gangisetty

PROBLEM AND MOTIVATION

- Conversational agents which promote **two-way human-computer communications** unlike one-way chatbots and systems which help **child education by asking and answering visual questions** have become an active area of research in AI.
- Many communities like robotics and VQA have started contributing in this field but they end up generating generic questions. Good QA pair is the one that has a tightly focused purpose and must be relevant to the image content.
- Works in this domain are dependent on large datasets to generate question answer pairs for images.
- In this work, we address this problem by introducing a method of visual question answer generation in a weakly supervised manner by utilizing the visual(image) and text(caption) information.

CONTRIBUTIONS

- We propose a method for addressing the problem of weakly supervised QA pair generation by creating **cloze question**, for a given image and its caption.
- We generate a new vocabulary on our generated QA pair and then **fine-tune the Vilbert** model to get better QA pairs.
- We experimentally evaluated our QA pairs on standard **VQA dataset** and compared our results with state of the art models.

VISUAL QUESTION ANSWER GENERATION

(i) Answer Extraction Module: Given an image and its captions, a list of objects (O_1, \ldots, O_n) are identified from the image and an answer word is extracted from captions (C_1, \ldots, C_n) that are part of the list of objects or words identified by **NER and noun chunkers** $(W_1 \text{ OR } W_2, \ldots, W_n)$.

If
$$O_i$$
 in $< C_1, ..., C_n > :$
ans $= O_i$
If O_i not in $< C_1, ..., C_1 > :$
ans $= < W_1 \text{ OR } W_2 ... W_n > :$

Question

Fine-tuning on VILBERT

- (ii) Question Generation Module: We use the method of Cloze Question generation: Answer word (which is masked) in the caption is replaced by one of category word such as THING, PERSON, LOCATION etc.
 - **Natural Question generation**: Using a dependency tree reconstruction method, the category word is replaced by the appropriate **question word.** (THING by "what", PERSON by "who", LOCATION by "where"). After this process we get our question answer pairs that can be used to train a VQA model for question answering task.
- (iii) Fine-tuning Module: Based on QA pair generated we create new vocabulary and the QA pairs are fine-tuned on Vilbert.

RESULTS

Fig - 1 Comparison of our results with SOTA

Models	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L
IA2Q[3]	30.42	13.55	6.23	4.44	9.42	_
V-IA2Q[3]	35.40	25.55	14.94	10.78	13.35	_
IMVQG[2]	31.2	16.20	11.18	6.24	12.11	40.27
C3VQG[1]	41.87	22.11	14.96	10.04	13.60	42.34
Ours	47.78	8.08	1.79	0.35	27.61	18.89

• Our method gave **BLEU score of 47.78** which is more than the SOTA works by value 6 due to the better utilization of both visual and textual information to generate QA pairs.

Fig - 2 Results: QA pairs generated by our method vs VQA

- The questions are more detailed and relevant to the image than ground truth.
- The test accuracy on VQA after finetuning on Vilbert is 49.367.

CONCLUSIONS & FUTURE WORK

We proposed a method of image-based QA pair generation in a weakly supervised manner because of proper utilization of visual information. Our method generates more detailed and relevant QA pair for a given image. **BLEU score value got increased by 6** in our method compared to SOTA. As qualitative and quantitative scores are better by this method, it can be used **to generate large datasets with minimum human efforts.**

REFERENCES

- [1] Uppal et al Category Consistent Cyclic Visual Question Generation, ACM MM Asia 20
- [2] Krishna et. al. Information Maximizing Visual Question Generation, CVPR 19
- [3] Banerjee et. Al. WeaQA: Weak Supervision via Captions for Visual Question Answering. *IJCNLP 21*