Jingrong Cao et al.

Application No.:

10/696,862

AMENDMENT'S TO THE CLAIMS

1. (Currently amended) A compound of formula I:

or a pharmaceutically acceptable salt thereof, wherein:

wherein is
$$X_2-X_1$$
, X_1-S , or $S-X_1$;

R¹ is halogen, CN, NO₂, or V_mR;

 Z^1 and Z^3 are each independently CR^Z , and Z^2 is CR^1 ; each occurrence of R^Z is independently halogen, CN, NO_2 , or U_nR' ; R^2 is U_nR' ;

X1 and X2 are each independently CR4 or N;

each occurrence of R^4 is independently halogen, CN, NO₂, or $V_m R$, each occurrence of U or V is independently an optionally substituted C_{1-6}

alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by -NR-, -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRNR-, -NRCONR-,

-OCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-, -P(O) , -P(O)₂-, or -P(OR')-;

m and n are each independently 0 or 1;

each occurrence of R is independently hydrogen or an optionally substituted C_{1-6} aliphatic group; and each occurrence of R is independently hydrogen or an optionally substituted C_{1-6} aliphatic group, a 3-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms

Jingrong Cao et al.

Application No.:

10/696,862

independently selected from nitrogen, oxygen, or sulfur; or R and R, two occurrences of R, or two occurrences of R, are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 Q^1 is -CO-, -SO₂-, or -SO₂NR-;

 R^3 is Q^2 -Ar¹,

or R² and Q¹-R³, taken together with the nitrogen atom, form the cyclic group:

get N Ar2

, where s is 1 or 2, each occurrence of Y is independently, as valency and stability permit, -CO-, -CS-, -SO₂-, -O-, -S-, -NR⁵-, or -C(R⁵)₂-, and R⁵ is U_nR^5 ;

Q² and Q³ are each independently a bond or a C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are each optionally and independently replaced by -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR'-, -NR'CO-, -NR'CO₂-, -SO₂NR'-, -NR'SO₂-, -CONR'NR'-, -NR'CONR'-, -OCONR'-, -NR'NR'-, -NR'SO₂NR'-, -SO-, or -SO₂-, and wherein any carbon atom in the one or more methylene units is optionally substituted with one or two occurrences of R⁶, wherein each occurrence of R⁶ is independently halogen, CN, NO₂, or U_nR', or two occurrences of R⁶, or R' and R⁶, taker together with the atoms to which they are bound, form an optionally substituted 3-6-membered cycloalkyl, heterocyclyl, aryl or heteroaryl ring, and

Ar¹ is a 5-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from oxygen or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from oxygen or sulfur; wherein Ar¹ is optionally substituted with 0-5 independent occurrences of TR⁷; wherein T is a bond or is a C₁-C₆ alky-lidene chain wherein up to two methylene units of T are optionally and independently replaced by –NR-, -S-, -O-, -CS-, -CO₂-,

Jingrong Cao et al.

Application No.:

10/696,862

-OCO-, -CO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRNR-, -NRCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-,

Ar² is a 5-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with 0-5 independent occurrences of TR⁷; wherein T is a bond or is a C₁-C₆ alkylidene chain wherein up to two methylene units of T are optionally and independently replaced by –NR-, -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRNR-, -NRCONR-, -NCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-; and

each occurrence of R⁷ is independently R', halogen, NO₂, or CN; provided that:

I) for compounds described where of the following conditions apply:

B is
$$X_2-X_1$$
, one or more of, or al

A) for compounds having the structure:

i) when R^1 is Cl, and R^2 is $-CH(CH_3)COOCH_3$ or hydrogen, then Q^1 - R^3 is not -CO(unsubstituted phenyl), -CO(unsubstituted 2-furyl), or $-COCH_2(unsubstituted phenyl)$;

ii) when R¹ is hydrogen, R² is hydrogen, and Q¹ is -CO-, then R³ is not:

- a) phenyl substituted with 4-O(CH₂)₄₋₇CH₃ or 4-(CH₂)₄₋₇CH₃;
- b) phenyl substituted with 2-Cl, 4-NO₂, 4-Cl, 2-Br, 3-Br, 3-I, 3-CH₃, 4-OCH₃, 3-NC₂, or 4-I;

Applicants:
Application No.:

Jingrong Cao et al

10/696,862

c) 2,6-OCH₃-phenyl.

- d) (5-Cl, 3-CH₃, 1-phenyl)- pyrazol-4-yl; or
- e) 4-OnBu-phenyl, -CH₂O(2-F-phenyl), -(CH₂)₂phenyl, furan-2-yl, thiophen-2-yl, 4-CH₃-phenyl, -CH₂O(2-CH₃-phenyl), 3-OCH₃-phenyl, 2-(2,5-dimethoxylphenyl)quinolin-4-yl, -NH-(4-Cl-phenyl), -NH-(3-4-dichlorophenyl), (2-CO₂H, 3-NO₂)-phenyl, 3,5-dimethyl-ix(ixazol-4-yl, -CH=CH-phenyl, 4-F-phenyl, C(CH₃)₂O-(4-Cl-phenyl), -NH(3-Cl-phenyl), -NHphenyl, unsubstituted phenyl, 3,4,5-OCH₃-phenyl, 4-NO₂-phenyl, 4-cyclopentoxy-phenyl, -(CH₂)₃phenyl, (tricyclo[3.3.1.13,7]decan-1-yl, -CH₂O-(3-CH₃-phenyl), 3-NO₂-phenyl, -cyclopropyl-(4-tert-butyl-phenyl), 2,3-OCH₃-phenyl, 1,3-benzodioxo-5-yl, -CH₂-O-(4-F-phenyl), or 3-Br-phenyl;
- iii) when R^1 is hydrogen, R^2 is hydrogen, and Q^1 is -CSNH-, then R^3 is not 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl;
- iv) when R^1 is hydrogen, R^2 is hydrogen, and Q^1 is SO_2 , then R^3 is not unsubstituted phenyl, unsubstituted benzyl, unsubstituted naphthyl, phenyl substituted with para-NHCOCH₃, para-NH₂, or para-CH₃; and
- v) when R¹ is hydrogen, R² is -CH₂CH=CH₂, and Q¹ is CO, then R³ is not 4-OCH₃-phenyl, unsubstituted naphthyl, -NH-(4-OCH₃-phenyl), 3,5-OCH₃-phenyl, -CH₂Ophenyl, -CH₂-thiophen-2-yl, or -CH(phenyl)(CH₂CH₃); and
- vi) when R^1 is hydrogen, R^2 is CH_2CH_3 , and Q^1 is CO, then R^3 is not 2,4-Cl-phenyl; and
- B) for compounds having the structure: (S_1, S_2, R_3) , when (R^2, R^3) , when (R^2, R^3) is hydrogen or (R^3, R^3) and (R^3, R^3) is not (R^3, R^3) is not (R^3, R^3) is $(R^3$

Jingrong Cao et al.

Application No.:

10/696,862

II) for compounds described where $\frac{A^2 + A_1}{B}$ is $\frac{A_1 - A_2}{A_1 - A_2}$, one or more of, or all of the following conditions apply:

A) for compounds having the structure:

i) when R³ is Q²-Ar¹, and Q² is a bond then Ar¹ is not any one or more of the following: unsubstituted phenyl or phenyl substituted with 2-Br; 2-Cl; 2-I; 2,6-F; 3,5-OCH₃; 3,4,5-OCH₃; 2,4-OCH₃; 3,4-CH₃; 2,5-Cl; 3,4,-OCH₃; 2-Cl, 5-NO₂; 3,5-Cl; 3-O(CH₂)₄CH₃, 3-O-n-butyl, 3-CF₃, 3-OCH₃, 3-Br; 3-NO₂; 3-CH₃; 3-O-phenyl; 3-Cl; 4-N(CH₃)₂; 4-N(CH₂CH₃)₂; 4-SO₂N(R')₂; 4-CN; 4-COOCH₃; 4-C(O)phenyl; 4-phenyl; 4-tert-butyl, 4-O-phenyl; 4-O-isopropyl; 4-OCH₃; 4-OCH₂CH₃; 4-On-butyl; 4-Cl; 4-Br; 4-F; 4-CH₃; 4-NO₂; 4-Cl; 3-NO₂, 4-morpholino; 3-NO₂, 2,5-dioxopyrrolidinyl, or 4-piperidinyl; and

ii) R3 is not any one or more of the following groups:

CH=CH-unsubstituted phenyl, -CH₂(3-NHCOPh-phenyl), -6-bromo-2-(4-ethylphenyl)-4-quinolinyl, -CH₂-pyrrolidine, unsubstituted cyclohexyl, unsubstituted benzyl, unsubstituted furan-2-yl, -CH=CH(3-NO₂-phenyl), -CH=CH(4-NO₂-phenyl), -CH₂-naphthyl, unsubstituted naphthyl, unsubstituted thiophene, unsubstituted cyclopropyl, 1,4-benzodioxin, 2-oxo-1-benzopyran, 4-oxo-1-benzopyran, 2-thienyl-quinolin-4-yl, 3-chloro-benzo[b]thiophen-2-yl, 5-Br-(thiophen-2-yl), 5-Cl-(thiophen-2-yl), 5-NO₂-(thiophen-2-yl), 5-NO₂-(furan-2-yl), 2,5-Cl-(thiophen-3-yl), -CH=CH-(5-NO₂-thiophen-2-yl), 5-NO₂-(benzothiophen-2-yl), 3-OCH₂-(naphth-2-yl), -CH₂O(2,4-Cl-phenyl), -CH₂CH₂-3-(4-Cl-phenyl)-1-phenyl-1-H-pyrazol-4-yl, or -CH₂(1,3-dioxoisoindòle); and

Jingrong Cao et al.

Application No.:

10/696,862

B) for compounds having the structure:

i) when R¹ is Cl, and X₁ is C-Cl, then R³ is not NHSO₂-(2-CF₃-phenyl) or -NHSO₂-(2,6-dimet loxy-phenyl);

ii) when R¹ is CH₃, and X₁ is C-CH₃, then R³ is not an optionally substituted indole or optionally substituted dihydroindole; and C) for compounds of general formula I, when Z₁, Z₂ and Z₃ are each CH, R¹ is H, X¹ is CH and X₂ is C-COOCH₃, then R³ is not 2-(4-ethyl-phenyl)-6-bromoquinolin-4-yl; and

III) for compounds described above where $\frac{1}{B}$ is $S-X_1$, one or more of, or all of the following conditions apply:

A) when Z^1 , Z^2 and Z^3 are each CH, X^2 is N, X^4 is CH, Q^1 is -CONR-, and R^2 is hydrogen or -CH₃, then R^3 is not optionally substituted pyridyl, optionally substituted thiazol-4-yl, -CH₂pyridyl, benzimidazol-4-yl, quinolin-2-yl, 1-bromo-isoquinolin-3-yl, benzthiazol-2-yl, optionally substituted 5,6,7,8-tetrahydronaphthyridin-2-yl, or phenyl substituted with -CH₂piperidinyl; and

B) when Z^1 , Z^2 and Z^3 are each CH, X^2 is N, X^1 is CH, Q^1 is SO₂, and R^2 is hydrogen, then R^3 is not phenyl substituted with where R^3 is hydrogen or -COCH₃;

C) when Z^1 , Z^2 and Z^3 are each CH, X_1 is C-CO₂H, X^2 is CH, R^2 is hydrogen, and Q^1 is SO₂, then R^3 is not 2-CH₃-phenyl; and

D) when Z^1 , Z^2 and Z^3 are each CH, X_1 is CH, X^2 is N, R^2 is hydrogen, and Q^1 is CO, then R^3 is not 5-methoxy-6-trifluoromethyl-1H-indole.

2. (Original) The compound of claim 1, wherein the compound has one of the structures:

Jingrong Cao et al.

Application No.: 10/696,862

3. (Original) The compound of claim 1, wherein R^3 is Q^2 -Ar¹ and compounds have one of formulas I-A-i, I-B-i, or I-C-i:

- 4. (Original) The compound of claim 3, wherein R^2 is hydrogen, or is U_nR^2 , where n is 1, and U is a C_{1-6} alkylidene chain wherein one or two methylene units are optionally and independently replaced by O, NR, S, or C(O).
- 5. (Original) The compound of claim 3, wherein U is -CH₂-, -CH₂CH₂-, -CH₂CH₂-CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂CH₂-, -CH₂-CH₂-, -CH₂-, -

Jingrong Cao et al.

Application No.:

10/696,862

6. (Original) The compound of claim 3, wherein Q¹ is -C(O)- or -SO₂NR-.

- 7. (Original) The compound of claim 3, wherein Q² is a direct bond, or is $-(CHR^6)_q, -(CHR^6)_qO-, -(CHR^6)_qS-, -(CHR^6)_{q}S(O)_2-, -(CHR^6)_qS(O)_2-, -(CHR^6)_qS(O)_2-, -(CHR^6)_qNR-, or -(CHR^6)_qC(O)_2-, wherein q is 0, 1, 2, or 3, and R^6 is R', -N(R)(R'), -(CH_2)_{1-4}N(R)(R'), -OR', -(CH_2)_{1-4}OR', -NR(CH_2)_{1-4}N(R)(R'), -NR(CH_2)_{1-4}SO_2R', -NR(CH_2)_{1-4}COOR', or -NR(CH_2)_{1-4}COR', or two occurrences of R^6, taken together with the atoms to which they are bound, form an optionally substituted 3-6-membered saturated, partially unsaturated, or fully unsaturated ring$
- 8. (Original) The compound of claim 7, wherein R⁶ is CH₂OH, CH₂CH₂OH, OH, OMe, OEt, NH₂, NH(Me), NH(Et), N(Me)(Me), CH₂NH₂, CH₂CH₂NH₂, NHCO₂t-butyl, phenyl, cyclopentyl, methyl, ethyl, isopropyl, cyclopropyl, NH(CH₂)₃NH₂, NH(CH₂)₂NHEt, NHCH₂pyridyl, NHSO₂phenyl, NHC(O)CH₂C(O)Ot-butyl, NHC(O)CH₂NH₃, and NHCH₂-imidazol-4-yl.
- 9. (Previously presented) The compound of claim 3, wherein Ar¹ is:

Jingrong Cao et al.

Application No.:

10/696,862

ij

jj

kk

wherein t is 0, 1, 2, 3, 4 or 5, and wherein any Ar^1 is bonded to Q^2 through any substitutable nitrogen or carbon atom, and wherein one or more hydrogen atoms on any substitutable nitrogen or carbon atom is substituted with one or more independent occurrences of TR^7 .

- 10. (Previously presented) The compound of claim 9, wherein Ar¹ is a, e, i, k, cc, jj, or pp.
- 11. (Original) The compound of claim 9, wherein T is a bond or is an optionally substituted C₁₋₆ alkylidene chain wherein one or two methylene units are optionally and independently replaced by -O-, -NR-, -S-, -SO₂-, -COO-, -CO-, -OSO₂-, -NRSO₂, -CONR-, or -SO₂NR-, and R⁷ is R' or halogen.
- 12. (Original) The compound of claim 9, wherein each occurrence of TR^7 is independently $-C_{1-3}$ alkyl, -OR', -SR', $-CF_3$, $-DCF_3$, $-SCF_3$, -F, -Cl, I, -Br, -COR', -COR', $-O(CH_2)_4N(R)(R')$, $-O(CH_2)_3N(R)(R')$, $-O(CH_2)_2N(R)(R')$, $-O(CH_2)N(R)(R')$, $-O(CH_2)_4CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_4CON(R)(R')$, $-C(CH_2)_4OR'$, $-C(CH_2)_4N(R)(R')$, $-C(CH_2)_4N$

Jingrong Cao et al.

Application No.:

10/696,862

(Original) The compound of claim 1, wherein R3 is Q2-Ar1, or R2 and Q1-R3, taken 13.

together with the nitrogen atom, form the cyclic group:

each occurrence of Y is independently, as valer cy and stability permit, -CO-, -CS-, -SO₂-, -O-, -S-, -NR⁵-, or -C(R⁵)₂-, and R⁵ is U_nR', and compounds of formula I-A-ii, I-B-ii, and I-Cii are provided:

I-I⊦ii I-A-ii

I-C-ii.

(Original) The compound of claim 13, wherein Q3 is a direct bond, or is $-(CHR^6)_{q^-}, -(CHR^6)_qO_-, -(CHR^6)_qS_-, -(CHR^6)_qS(O)_{2^-}, -(CHR^6)_qS(O)_-, -(CHR^6)_qNR_-, \text{ or } -(CHR^6)_qS(O)_-, -(CHR^6)_qNR_-, \text{ or } -(CHR^6)_qS(O)_-, -(CHR^6)_qNR_-, \text{ or } -(CHR^6)_qS(O)_-, -(CHR^6)_qNR_-, -(CHR^6)$ $(CHR^6)_qC(O)$ -, wherein q is 0, 1, 2, or 3, and R^6 is R', -N(R)(R'), - $(CH_2)_{14}N(R)(R')$, -OR', - $(CH_2)_{14}OR'$, -NR $(CH_2)_{14}N(R)(R')$, -NR $(CH_2)_{14}SO_2R'$, -NR(CH₂)₁₋₄COOR', or -NR(CH₂)₁₋₄COR', or two occurrences of R⁶, taken together with the atoms to which they are bound, form an optionally substituted 3-6-membered saturated, partially unsaturated, or fully unsaturated ring.

- (Original) The compound of claim 14, wherein R⁶ is CH₂OH, CH₂CH₂OH, OH, OMe, 15. OEt, NH₂, NH(Me), NH(Et), N(Me)(Me), CH₂NH₂, CH₂CH₂NH₂, NHCO₂t-butyl, phenyl, cyclopentyl, methyl, ethyl, isopropyl, cyclopropyl, NH(CH₂)₃NH₂, NH(CH₂)₂NH₂, NH(CH₂)₂NHEt, NHCH₂pyridyl, NHSO₂phenyl, NHC(O)CH₂C(O)Ot-butyl, NHC(O)CH₂NH₃, and NHCH₂-imidazol-4-yl.
- (Original) The compound of claim 13, wherein Ar² is: 16.

Jingrong Cao et al.

Application No.:

100

Applicants:

Jingrong Cao et al.

Application No.: 10/696,862

wherein t is 0, 1, 2, 3, 4 or 5, and wherein any Ar² is bonded to Q³ through any substitutable nitrogen or carbon atom, and wherein one or more hydrogen atoms on any substitutable nitrogen or carbon atom is substituted with one or more independent occurrences of TR⁷.

Jingrong Cao et al.

4

Application No.:

10/696,862

17. (Original) The compound of claim 16, wherein Ar² is a, b, c, g, h, i, j, k, n, r, cc, dd, ff, jj, ll, or pp.

- 18. (Original) The compound of claim 16, wherein T is a bond or is an optionally substituted C₁₋₆ alkylidene chain wherein one or two methylene units are optionally and independently replaced by -O-, -NR-, -S-, -SO₂-, -COO-, -CO-, -OSO₂-, -NRSO₂, -CONR-, or -SO₂NR-, and R⁷ is R' or halogen.
- 19. (Original) The compound of claim 16, wherein each occurrence of TR^7 is independently -C₁₋₃alkyl, -OR', -SR', -CF₃, -CCF₃, -SCF₃, -F, -Cl, I, -Br, -COOR', -COR', -O(CH₂)₄N(R)(R'), -O(CH₂)₃N(R)(R'), -O(CH₂)₂N(R)(R'), -O(CH₂)N(R)(R'), -O(CH₂)₂CON(R)(R'), -O(CH₂)₂CON(R)(R'), -O(CH₂)₂CON(R)(R'), -O(CH₂)₂CON(R)(R'), -C(O)N(R)(R'), -(CH₂)₄OR', -(CH₂)₃OR', -(CH₂)₂OR', -CH₂OR', optionally substituted phenyl or benzyl, -N(R)(R'), -(CH₂)₄N(R)(R') -(CH₂)₃N(R)(R'), -(CH₂)₂N(R)(R'), -(CH₂)₂N(R)(R'), -(CH₂)₃N(R)(R'), or -OSO₂R'.
- 20. (Original) The compound of claim 13, wherein R⁵ is hydrogen, (CH₂)₃OR', (CH₂)₂OR', (CH₂)₃N(R')₂, (CH₂)₂N(R')₂, (CH₂)N(R')₂, or C₁₋₄aliphatic.
- 21. (Currently amended) The compound of claim 1, wherein X¹ and X² are each independently CR⁴ or N, and compounds have one of formulas II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, or XIII:

$$R^{1}$$
 Z^{1}
 Z^{2}
 Z^{3}
 R^{4}
 R^{4}
 R^{4}

$$\begin{array}{c|c}
R^1 \\
N \\
Z^2 \\
Z^3
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
N \\
R^4
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
R^4
\end{array}$$
III

Applicants:
Application No.:

Jingrong Cao et al.

$$\begin{array}{c|c}
R^1 \\
N \\
Z^1 \\
Z^2 \\
Z^3
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
N \\
N \\
N \\
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
\end{array}$$

$$\begin{array}{c|c}
IV$$

$$\begin{array}{c|c}
R^1 \\
N & Z^1 & R^2 \\
Z^2 & N & N & Q^1 \\
R^4 & V
\end{array}$$

$$\begin{array}{c|cccc}
R^1 & & & & \\
N & Z^1 & R^4 & R^2 & & \\
Z^2 & & & & & \\
Z^2 & & & & & \\
R^4 & & & & & \\
VI & & & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
N \\
Z^1 \\
Z^2 \\
Z^3
\end{array}$$

$$\begin{array}{c|c}
N \\
N \\
N \\
Q^1
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
\end{array}$$

$$\begin{array}{c|c}
R^4 \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
N & Z^1 \\
Z^2 \\
N-S \\
VIII
\end{array}$$

$$R^1$$
 Z^1
 R^4
 Z^2
 Z^3
 R^4
 R^4
 R^4
 R^4

$$R^{1}$$
 Z^{1}
 Z^{2}
 Z^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}

$$\begin{array}{c|cccc}
R^1 & & & \\
N & Z^1 & & R^2 \\
Z^2 & & & & \\
XIII
\end{array}$$

Jingrong Cao et al.

Application No.:

10/696,862

22. (Currently amended) The compound of claim 21, wherein compounds have one of formulas II-A, III-A, IV-A, V-A, VI-A, VII-A, VIII-A, IX-A, X-A, XI-A, XII-A, or XIII:

Jingrong Cao et al.

Application No.:

$$\begin{array}{c|cccc}
R^1 & R^Z & R^4 & R^2 \\
R^1 & R^Z & R^4 & R^2 & R^3 \\
R^2 & S-N & R^3 & R^3
\end{array}$$
XIII-A.

- 23. (Original) The compound of claim 1, wherein each occurrence of R^1 is independently hydrogen, halogen, optionally substituted C_1 - C_4 aliphatic, OR, SR, or $N(R)_2$.
- 24. (Previously presented) The compound of claim 23, wherein each occurrence of R¹ is independently hydrogen, halogen, -CH₃, -CH₂CH₃, -OH, -OCH₃, -SCH₃, -NH₂, -N(CH₃)₂, -N(CH₂CH₃)₂, -NH(CH₂)₂NHCH₃, -NH(cyclopropyl), -NH(CH₂)₂vclopropyl, or -NH(CH₂)₂N(CH₃)₂.
- 25. (Original) The compound of claim 1, wherein each occurrence of R^Z is independently hydrogen, halogen, C₁-C₄aliphatic, OH, OR', or N(R)(R').
- 26. (Original) The compound of claim 25, wherein each occurrence of R² is independently hydrogen, halogen, Me, OH, OMe, NH₂, or N(Me)₂.
- 27. (Original) The compound of claim 1, wherein R⁴ groups are each independently hydrogen, C₁₋₆aliphatic, CN, COR, C(=O)OR, C(=O)N(R)₂, or halogen.
- 28. (Currently amended) The compound of claim 1, wherein one occurrence of R⁴ is CN and compounds have the general structure II-a:

Jingrong Cao et al.

Application No.:

10/696,862

II.a.

29. (Currently amended) The compound of claim 1, wherein R⁴ is hydrogen and compounds have the general structure III-a:

$$Z^1$$
 Z^1
 Z^2
 Z^3
 Z^3

30. (Currently amended) The compound of claim 1, wherein one occurrence of \mathbb{R}^4 is hydrogen and the other occurrence of \mathbb{R}^4 is -COOR and compounds have the general structure VI-a:

VI-a.

31. (Currently amended) The compound of claim 1, wherein R⁴ is hydrogen and compounds have the general structure VII-a:

32. (Currently amended) The compound of claim 1, wherein one occurrence of R⁴ is hydrogen and the other occurrence of R⁴ is C(=O)OR and compounds have the general structure X-a:

Jingrong Cao et al.

Application No.:

10/696,862

$$R^1$$
 Q^1
 Q^1
 Q^1
 Q^1
 Q^2
 Q^1
 Q^2
 Q^3
 Q^4
 Q^4

33. (Currently amended) The compound of claim 1, wherein R⁴ is hydrogen and compounds have the general structure XI-a:

34. (Currently amended) The compound of claim 9, wherein Q¹ is -CO-, Q² is CHR⁶, q is

1 2, or 3, and compounds have one of formulas XIV, XV, or XVI:

$$\begin{array}{c|cccc}
R^1 & R^2 & R^4 & R^2 & R^6 \\
R^1 & R^2 & R^4 & R^2 & R^6 & R^4 &$$

Jingrong Cao et al.

Application No.:

10/696,862

35. (Currently amended) The compound of claim 9, wherein Q¹ is -CO-, Q² is CHR⁶, q is 1, 2 or 3, and compounds have one of formulas XVII, XVIII, or XIX:

- 36. (Previously presented) The compound of claims 34 or 35, wherein compound variables are selected from one of more of the following groups:
- a) each occurrence of R^1 is independently hydrogen, halogen, optionally substituted C_1 - C_4 aliphatic, OR, SR, or $N(R)_2$;
- b) each occurrence of R¹ is independently hydrogen, halogen, -CH₃, -CH₂CH₃, -OH, -OCH₃, -SCH₃, -NH₂, -N(CH₃)₂, -N(CH₂CH₃)₂, -NH(CH₂)₂NHCH₃, -NH(cyclopropyl), -NH(CH₂)cyclopropyl, or ::NH(CH₂)₂N(CH₃)₂;
- c) each occurrence of R^Z is independently hydrogen, halogen, optionally substituted C_1 - C_4 aliphatic, OH, O(R'), or N(R)(R');
- d) each occurrence of R^Z is independently hydrogen, halogen, Me, OH, OMe, NH₂, or N(Me)₂;
- e) R² is hydrogen, or is U_nR', where n is 1, and U is-CH₂-, -CH₂CH₂-, -CH₂-, -(CH₂-, -(CH₂-

Jingrong Cao et al.

Application No.:

10/696,862

-CH₂CH₂NHCH₂CH₂-, and R' groups are hydrogen, C₁-C₄alkyl, optionally substituted tetrahydropyranyl, pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyridinyl, phenyl, or cyclohexyl, or R and R', taken together with the nitrogen atom to which they are bound, form an optionally substituted 5- or 6-membered heterocyclyl ring;

f) each occurrence of R⁴ is independent y hydrogen, C₁₋₆aliphatic, CN, COR, COOR, CON(R)₂, or halogen;

- g) q is 1, 2, or 3;
- h) R⁶ is R', -N(R)(R'), -(CH₂)₁₋₄N(R)(F'), -OR', -(CH₂)₁₋₄OR', -NR(CH₂)₁₋₄N(R)(R'), -NR(CH₂)₁₋₄SO₂R', -NR(CH₂)₁₋₄COR', or -NR(CH₂)₁₋₄COR', or two occurrences of R⁶, taken together with the atoms to which they are bound, form an optionally substituted 3-6-membered saturated, partially unsaturated, or fully unsaturated ring;
- i) R⁶ is CH₂OH, CH₂CH₂OH, OH, OMe, OEt, NH₂, NH(Me), NH(Et), N(Me)(Me), CH₂NH₂, CH₂CH₂NH₂, NHCO₂t-butyl, phenyl, cyclopentyl, methyl, ethyl, isopropyl, cyclopropyl, NH(CH₂)₃NH₂, NH(CH₂)₂NH₂, NH(CH₂)₂NHEt, NHCH₂pyridyl, NHSO₂phenyl, NHC(O)CH₂C(O)Ot-butyl, NHC(O)CH₂NH₃, and NHCH₂-imidazol-4-yl;
- j) Ar¹ is ring **a**, **e**, **i**, **k**, **cc**, **jj**, or **pp** wherein t is 0, 1, 2, or 3, and T is a bond or is an optionally substituted C₁₋₆ alkylidene chain wherein one or two methylene units are optionally and independently replaced by -O-, -NR-, -S-, -SO₂-, -COO-, -CO-, -OSO₂-, -NRSO₂, -CONR-, or
- -SO₂NR-, and R⁷ is R' or halogen; or
- k) Ar^1 is ring a, e, i, k, cc, jj, or pp wherein t is 0, 1, 2, or 3, and each occurrence of TR^7 is independently $-C_{1-3}$ alkyl, -OR', -SR', $-CF_3$, $-OCF_3$, $-SCF_3$, -F, -Cl, I, $-B_1$, -COOR', -COR', $-O(CH_2)_4N(R)(R')$, $-O(CH_2)_3N(R)(R')$, $-O(CH_2)_2N(R)(R')$, $-O(CH_2)N(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_2CON(R)(R')$, $-O(CH_2)_2CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_3N(R)(R')$, optionally substituted phenyl or benzyl, -N(R)(R'), $-(CH_2)_4N(R)(R')$, $-(CH_2)_3N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_3N(R)(R')$, or $-OSO_2R'$.

Jingrong Cao et al.

Application No.:

10/696,862

37. (Previously presented) The compound of claim 34 or 35, q is 1, and Ar¹ is optionally substituted phenyl and compounds of general formula XIV-A through XIX-A are provided:

wherein:

each occurrence of R¹ is hydrogen; each occurrence of R² is hydrogen;

R² is hydrogen, or is U_nR', where n is 1, and U is-CH₂-, -CH₂CH₂-, -CH₂-, -CH₂

Jingrong Cao et al.

Application No.:

10/696,862

nitrogen atom to which they are bound, form an optionally substituted 5- or 6-membered heterocyclyl ring;

each occurrence of R⁴ is independently hydrogen, C₁₋₆aliphatic, CN, COR, COOR, CON(R)₂, or halogen;

t is 0, 1, 2, or 3, and each occurrence of TR^7 is independently $-C_{1-3}$ alkyl, -OR', -SR', $-CF_3$, $-OCF_3$, $-SCF_3$, -F, -Cl, I, -Br, -COOR', -COR', $-O(CH_2)_4N(R)(R')$, $-O(CH_2)_3N(R)(R')$, $-O(CH_2)_2N(R)(R')$, $-O(CH_2)N(R)(R')$, $-O(CH_2)_4CON(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_2CON(R)(R')$. $-O(CH_2)_2CON(R)(R')$, -C(O)N(R)(R'), -C(O)N(R)(R'), $-C(CH_2)_4OR'$, $-(CH_2)_3OR'$, $-(CH_2)_2OR'$, $-CH_2OR'$, optionally substituted phenyl or benzyl, -N(R)(R'), $-(CH_2)_4N(R)(R')$, $-(CH_2)_3N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, $-(CH_2)_2N(R)(R')$, or $-OSO_2R'$.

38. (Currently amended) The compound of claim 16, wherein R² and Q¹-R³, taken together with the atoms to which they are bound form a 5-membered cyclic group, and compounds have the general formula XX through XXV:

Jingrong Cao et al.

Application No.:

10/696,862

$$\begin{array}{c|c}
R^{1} & R^{Z} & Q & Q^{3}-Ar^{2} \\
R^{1} & R^{Z} & R^{4} & N - R^{5} \\
\hline
XXV_{\underline{}} & XXV_{\underline{}}
\end{array}$$

39. (Currently amended) The compound of claim 16, R² and Q¹-R³, taken together with the atoms to which they are bound form a 5-membered cyclic group, and compounds have the general formula XXVI through XXXI:

XXVIII

XXIX

$$R^1$$
 R^2
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^5

40. (Previously presented) The compound of claim 16, wherein R² and Q¹-R³, taken together with the atoms to which they are bound form a 6-membered cyclic group, and compounds have the general formula XXXII through XXXVII:

Jingrong Cao et al.

Application No.:

10/696,862

wherein W is O, NR⁵, or CHR⁵.

41. (Original) The compound of claims 38, 39 or 40, wherein compound variables are selected from one of more of the following groups:

a) each occurrence of R^1 is independently hydrogen, halogen, optionally substituted C_1 - C_4 aliphatic, OR, SR, or $N(R)_2$;

b) each occurrence of R^Z is independently hydrogen, halogen, optionally substituted C_1 - C_4 aliphatic, OH, OR' or N(R)(R');

c) each occurrence of R⁴ is independently hydrogen, C₁₋₆aliphatic, CN, COR, COOR, CON(R)₂, or halogen;

d) R^5 is hydrogen, $(CH_2)_3OR'$, $(CH_2)_2OR'$, $(CH_2)OR'$, $(CH_2)_3N(R')_2$, $(CH_2)_2N(R')_2$, $(CH_2)N(R')_2$, or C_{1-4} aliphatic;

e) Q^3 is a direct bond, or is -(CHR⁶)_q-, -(CHR⁶)_qO-, -(CHR⁶)_qS-, -(CHR⁶)_qS(O)₂-, -(CHR⁶)_qS(O)-, -(CHR⁶)_qNR-, or -(CHR⁶)_qC(O)-, wherein q is 0, 1, 2, or 3; and

Jingrong Cao et al.

Application No.:

10/696,862

f) Ar² is ring **a**, **b**, **e**, **g**, **h**, **i**, **j**, **k**, **n**, **r**, **cc**, **dd**, **ff**, **jj**, **ll**, or **pp**, wherein t is 0, 1, 2, or 3, and T is a bond or is an optionally substituted C₁₋₆ alkylidene chain wherein one or two methylene units are optionally and independently replaced by -O-, -NR-, -S-, -SO₂-, -COO-, -CO-, -OSO₂-, -NRSO₂, -CONR-, or -SO₂NR-, and R⁷ is R' or halogen.

- 42. (Previously presented) The compound of claims 38, 39 or 40, wherein compound variables are selected from one of more of the following groups:
- a) each occurrence of R¹ is independently hydrogen, halogen, -CH₃, -CH₂CH₃, -OH, -OCH₃, -SCH₃, -NH₂, -N(CH₃)₂, -N(CH₂CH₃)₂, NH(CH₂)₂NHCH₃, NH(cyclopropyl), NH(CH₂)₂vclopropyl, or NH(CH₂)₂N(CH₃)₂;
- b) each occurrence of R² is independently hydrogen, halogen, Me, OH, OMe, NH₂, or N(Me)₂;
- c) each occurrence of R⁴ is independently hydrogen, C₁₋₆aliphatic, CN, COR, COOR, CON(R)₂, or halogen;
- d) R^5 is hydrogen, $(CH_2)_3OR'$, $(CH_2)_2OR'$, $(CH_2)OR'$, $(CH_2)_3N(R')_2$, $(CH_2)_2N(R')_2$, $(CH_2)N(R')_2$, or C_{1-4} aliphatic;
- e) Q^3 is a direct bond, or is -(CHR⁶)_q-, -(CHR⁶)_qO-, -(CHR⁶)_qS-, -(CHR⁶)_qS(O)₂-, -(CHR⁶)_qS(O)-, -(CHR⁶)_qNR-, or -(CHR⁶)_qC(O)-, wherein q is 0, 1, 2, or 3; and
- f) Ar^2 is ring **a**, **b**, **e**, **g**, **h**, **i**, **j**, **k**, **n**, **r**, **cc**, **dd**, **ff**, **jj**, **ll**, or **pp**, wherein t is 0, 1, 2, or 3, and each occurrence of TR^7 is independently C_{1-3} alkyl, -OR', -SR', $-CF_3$, $-OCF_3$, $-SCF_3$, -F, -Cl, I, -Br, -COOR', -COR', $-O(CH_2)_4N(R)(R')$, $-O(CH_2)_3N(R)(R')$, $-O(CH_2)_2N(R)(R')$, $-O(CH_2)_3CON(R)(R')$, $-O(CH_2)_2CON(R)(R')$, -O(CON(R)(R')), -O(CON(
- (CH₂)₄OR', -(CH₂)₃OR', -(CH₂)₂OR', -CH₂C'R', optionally substituted phenyl or benzyl, -
- N(R)(R'), -(CH_2)₄N(R)(R'), -(CH_2)₃N(R)(R'), -(CH_2)₂N(R)(R'),
- -(CH₂)N(R)(R'), -SO₂N(R)(R'), -NRSO₂R', -CON(R)(R'), or -OSO₂R'.
- 43. (Currently amended) The compound of claims 38, 39 or 40, wherein Ar² is optionally substituted phenyl and compounds of general formula XX-A, through XXXVII are provided:

Jingrong Cao et al.

Application No.:

10/696,862

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{7}
 R^{7

$$R^1$$
 R^2
 Q^3
 $(TR^7)_t$
 R^2
 R^4
 R^4
 R^5
 R^5
 $XXIV-A$

XXI-A

XXVI-A

Jingrong Cao et al.

Application No.:

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{4}
 \mathbb{R}^{2}
 \mathbb{R}^{4}
 \mathbb{R}^{2}
 \mathbb{R}^{4}
 \mathbb{R}^{2}
 \mathbb{R}^{4}
 \mathbb{R}^{5}
 \mathbb{R}^{4}
 \mathbb{R}^{5}

$$R^{1}$$
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{5}

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{5}
 R^{5}

$$R^1$$
 R^2
 R^3
 R^4
 R^3
 R^4
 R^4
 R^5
 R^4
 R^5

 R^1 R^2 R^4 R^2 R^4 R^5 R^4 R^5 R^4 R^5 R^4 R^5

Jingrong Cao et al.

Application No.:

10/696,862

44. (Previously presented) The compound of claim 43, wherein compound variables are selected from:

each occurrence of R1 is hydrogen;

each occurrence of RZ is hydrogen;

each occurrence of R⁴ is independently hydrogen, C_{1.6}aliphatic, CN, COR, COOR, CON(R)₂, or halogen;

 $R^5 \text{ is hydrogen, } (CH_2)_3OR', \\ (CH_2)_2OR', \\ (CH_2)OR', \\ (CH_2)_3N(R')_2, \\ (CH_2)_3N(R)_2, \\ (CH_2)_3$

 $Q^3 \text{ is a direct bond, or is -(CHR^6)}_{q^-}, -(CHR^6)_qO_-, -(CHR^6)_qS_-, -(CHR^6)_qS(O)_2-, -(CHR^6)_qS(O)_-, -(CHR^6)_qNR_-, \text{ or -(CHR^6)}_qC(O)_-, \text{ wherein q is 0, 1, 2, or 3; and}$

t is 0, 1, 2, or 3, and each occurrence of TR^7 is independently -C₁₋₃alkyl, -OR', -SR', -CF₃, -OCF₃, -SCF₃, -F, -Cl, I, -Br, -COOR', -COR', -O(CH₂)₄N(R)(R'),

 $-O(CH_2)_3N(R)(R'), -O(CH_2)_2N(R)(R'), -O(CH_2)N(R)(R'), -O(CH_2)_4CON(R)(R'), -O(CH_2)_4CON(R'), -O(CH_2)_4CON(R)(R'), -O(CH_2)_4CON(R)(R'), -O(CH_2)_4CON(R)(R'), -O(CH_2)_$

 $-O(CH_2)_3CON(R)(R'), -O(CH_2)_2CON(R)(R'), -O(CH_2)CON(R)(R'), -C(O)N(R)(R'), -C(O)N(R'), -C(O)N$

(CH₂)₄OR', -(CH₂)₃OR', -(CH₂)₂OR', -CH₂OR', optionally substituted phenyl or benzyl, -

N(R)(R'), -(CH₂)₄N(R)(R'), -(CH₂)₅N(R)(R'), -(CH₂)₂N(R)(R'),

-(CH₂)N(R)(R'), -SO₂N(R)(R'), -NRSO₂R', -CON(R)(R'), or -OSO₂R'.

į

Applicants:

Jingrong Cao et al.

Application No.:

10/696,862

45. (Currently amended) The compound of claim 1, having one of the structures:

I-A-11

I-A-12

I-A-10

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Š

Application No.:

3

Applicants:

Jingrong Cao et al.

Application No.:

Attorney Docket No. VPI/02-115 US

I-B-22

I-B-23

I-B-24

I-B-35

I-B-34

Jingrong Cao et al.

Application No.:

3

Applicants:

Jingrong Cao et al.

Application No.:

10/696,862

I-B-51 I-B-50 I-B-49 I-B-54 I-B-53 I-B-52 I-B-57 I-B-56 I-B-55 NH₂ **I-B**-60 I-B-59 I-B-58 I-B-63 I-B-62 I-B-61 I-B-66

Ì

-38-

I-B-65

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.:

è

Applicants:

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.:

10/696,862

I-B-125

I-B-124

Jingrong Cao et al.

Application No.:

10/696,862

Jingrong Cao et al.

Application No.:

10/696,862

I-B-191

I-B-192

I-B-193

I-B-194

I-B-197

I-B-198

I-B-199

I-B-200

I-B-201

I-B-202

I-B-203

N NH OH

Jingrong Cao et al.

Application No.: 10/696,862

I-B-205

I-B-206

I-B-207

I-B-208

I-B-209

I-B-210

I-B-211

I-B-212

I-B-213

I-B-214

Jingrong Cao et al.

Application No.:

10/696,862

I-B-215

I-B-216

I-B-217

I-B-218

I-B-219

I-B-220

I-B-221

I-B-222

I-B-223

Jingrong Cao et al.

Application No.:

10/696,862

I-B-225

I-B-226

I-B-227

I-B-228

I-B-229

I-B-230

I-B-231

I-B-232

ž,

Applicants:

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.:

10/696,862

I-B-246

I-B-247

I-B-248

I-B-249

I-B-250

I-B-251

I-B-252

I-B-253

I-B-254

I-B-255

I-E-256

I-B-275

I-B-276

Jingrong Cao et al.

Application No.: 10/696,862

I-B-278

I-B-279

I-B-280

I-B-281

I-B-282

I-B-283

I-B-284

I-B-285

I-B-286

Jingrong Cao et al.

Application No.:

10/696,862

I-B-288

1-B-289

I-B-290

I-B-291

I-B-292

I-B-293

I-B-294

I-B-295

✓ I-B-296 S N N

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.: 10/6

10/696,862

NJ N N

I-B-314

I-B-315

I-B-322

I-B-323

I-B-324

I-B-325

I-B-326

Jingrong Cao et al.

Application No.:

10/696,862

I-B-328

II-B-329

I-B-330

I-B-331

1-B-332

I-B-333

I-B-334

I-B-335

I-B-336

I-B-337

I-B-338

I-B-339

I-B-340

I-B-341

I-B-342

Jingrong Cao et al.

Application No.:

Jingrong Cao et al.

Application No.: 10/696,862

I-C-9

I-C-10

I-C-16

N NH NH S

N O Br

1-C-17

Jingrong Cao et al. 10/696,862

Application No.:

Jingrong Cao et al.

Application No.:

10/696,862

46. (Original) A composition comprising an effective amount of compound of claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

47-53. (Canceled)

54. (Currently amended) A method of treating or lessening the severity of a disease or disorder selected from The method of claim 50, wherein said compound is used to treat or

Jingrong Cao et al.

Application No.:

10/696,862

lessen the severity of Alzheimer's disease, an allergy, asthma, or diabetes in a patient, said method comprising administering to said patient a compound or a composition comprising a compound having the formula:

$$\frac{
\begin{array}{c|c}
R^1 \\
N \\
Z^2 \\
Z^3
\end{array}$$

$$\underline{
\begin{array}{c|c}
R^2 \\
N \\
Q^1
\end{array}
}$$

$$\underline{
\begin{array}{c|c}
R^3 \\
I
\end{array}
}$$

or a pharmaceutically acceptable salt thereof, wherein:

$$\begin{array}{c|c}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

R¹ is halogen, CN, NO₂, or V_mR;

 Z^1 and Z^3 are each independently CR^Z , and Z^2 is CR^1 ;

each occurrence of R² is independently halogen, CN, NO₂, or U_nR';

 R^2 is U_nR' ;

 X^1 and X^2 are each independently CF_1^4 or N_1^2

each occurrence of R⁴ is independently halogen, CN, NO₂, or V_mR;

each occurrence of U or V is independently an optionally substituted C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by –NR-, -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRN R-, -NRCONR-, -OCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-;

m and n are each independently 0 or 1;

each occurrence of R is independently hydrogen or an optionally substituted C₁₋₆
aliphatic group; and each occurrence of R is independently hydrogen or an optionally
substituted C₁₋₆ aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully
unsaturated monocyclic ring having 0-3 heteroatoms independently selected from

Jingrong Cao et al.

Application No.:

10/696,862

nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having ()-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or R and R, two occurrences of R, or two occurrences of R, are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

Q1 is -CO-, -SO2-, or -SO2NR-;

 R^3 is Q^2 -Ar¹,

or R² and Q¹-R³, taken together with the nitrogen atom, form the cyclic group:

stability permit, -CO-, -CS-, -SO₂-, -O-, -S-, -NR⁵-, or -C(R⁵)₂-, and R⁵ is U_nR⁷;

Q² and Q³ are each independently a bond or a C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are each optionally and independently replaced by -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR'-, -NR'CO-, -NR'CO₂-, -SO₂NR'-, -NR'SO₂-, -CONR'NR'-, -NR'CONR'-, -OCONR'-, -NR'NR'-, -NR'SO₂NR'-, -SO-, or -SO₂-; and wherein any carbon atom in the one or more methylene units is optionally substituted with one or two occurrences of R⁶, wherein each occurrence of R⁶ is independently halogen, CN, NO₂, or U_nR', or two occurrences of R⁶, or R' and R⁶, taken together with the atoms to which they are bound, form an optionally substituted 3-6-membered cycloalkyl, heterocyclyl, aryl or heteroaryl ring; [[and]]

Ar¹ is a 5-8 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from oxygen or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from oxygen or sulfur; wherein

Jingrong Cao et al.

Application No.:

10/696,862

Ar¹ is optionally substituted with 0-5 independent occurrences of TR⁷; wherein T is a bond or is a C₁-C₆ alkylidene chain wherein up to two methylene units of T are optionally and independently replaced by –NR-, -S-, -O-, -CS-, -CO₂-, -OCO-, -CO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRNR-, -NRCONR-, -OCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-;

Monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with 0-5 independent occurrences of TR⁷; wherein T is a bond or is a C₁-C₆ alkylic ene chain wherein up to two methylene units of T are optionally and independently replaced by -NR-, -S-, -O-, -CS-, -CO₂-, -OCO-, -COCO-, -CONR-, -NRCO-, -NRCO₂-, -SO₂NR-, -NRSO₂-, -CONRNR-, -NRCONR-, -NRNR-, -NRSO₂NR-, -SO-, or -SO₂-; and each occurrence of R⁷ is independently R', halogen, NO₂, or CN.

- 55. (Currently amended) The method of claim <u>54</u> [[50]], wherein said compound or composition is used to treat or lessen the severity of an allergy or asthma.
- 56. (Currently amended) The method of claim <u>54</u> [[50]], wherein said compound or composition is used to treat or lessen the severity of diabetes.