183.605

Machine Learning for Visual Computing Assignment 1

Group 12: Hanna Huber (0925230) Lena Trautmann (1526567) Elisabeth Wetzer ()

November 16, 2016

- Upload a zip-file with the required programs. You can choose the programming language.
- Add a PDF document with answers to all of the questions of the assignment (particularly all required plots) and description and discussion of results.

1 Assignment 1

1.1 Part 1: Binary classification and the perceptron

1.1.1 Reading data

Tasks:

• Read the data using functions of your programming language resp. simulation software.

First, we wrote a new .csv-file with our .py-script to delete all extra blanks. Afterwards we could read in the data using dlmread().

• Plot the input vectors in \mathbb{R}^2 and visualize corresponding target values (e.g. by using color).

Figure 1: Plot of the input vectors with the target value visualized by colour.

Fig. 1 shows the input vectors.

• Use the feature transformation $(x_1,x_2) \to (x_1^2,x_2^2)$ and plot the data in the new feature space. The data should now be linearly separable.

Fig. 2 shows the transformed input vectors.

Figure 2: Plot of the transformed input vectors with the target value visualized by colour.

1.1.2 Perceptron training algorithm

The function

$$y = perc(w, X)$$
.

simulates a perceptron. The first argument is the weight vector \mathbf{w} and the second argument is a matrix with input vectors in its columns \mathbf{X} . The output \mathbf{y} is a binary vector with class labels 1 or -1.

The function

returns a weight vector \mathbf{w} corresponding to the decision boundary separating the input vectors in \mathbf{X} according to their target values \mathbf{t} .

The argument maxIts determines an upper limit for iterations of the gradient based optimization procedure. If this upper limit is reached before a solution vector is found, the function returns the current w, otherwise it returns the solution weight vector. online is *true* if the *online*-version of the optimization procedure is to be used or *false* for the *batch*-version.

Tasks:

- ullet Implement both functions. Use homogeneous coordinates and the corresponding augmented weight vector $\mathbf{w} \in \mathbb{R}^3$.
- Plot the data and decision boundary in \mathbb{R}^2 , both in the original data space (see e.g. Figure 3) and in the feature space of basis functions, each at three different stages of the training: after the first iteration, after approximately half of the required iterations, and after convergence.
- Initialize w = 0. What is the influence of the learning rate?

Figure 3: Plot of the decision boundary in the original data space found by the perceptron (green curve) together with labelled data points.

Table 1: Weight vector derived for the LMS-rule and of closed form

	ϕ_0	ϕ_1	ϕ_2
wLMS	-0.1288	-16.6005	3.7258
wClosed			

1.2 Part 2: Linear basis function models for regression

1.2.1 Experimental setup

At the end of the setup we have:

• xtrain and ttrain: the training data

• phi: the transformation function

• xtrain_phi: the transformation of xtrain

1.2.2 Optimization: LMS-learning rule vs. closed form

Tasks:

• What is the resulting weight vector when using the LMS-rule?

Figure 4: Optimization using the LMS-rule

The values of the resulting weight vector are summarized in Tab. 1 and the corresponding curve plotted in Fig. 4.

ullet How can you determine the optimal \mathbf{w}^* in closed form? Compare \mathbf{w}^* with the outcome of the LMS-rule training.

The closed form is calculated by updating the weight vector, determined by all N points, in one step.

• What is the influence of γ ? Which value for γ represents a good tradeoff between number of iterations and convergence?

1.2.3 Model-complexity and model-selection

Determine \mathbf{w}^* in closed form for 2000 different training sets, in which only the t_i are varyied according to $\mathcal{N}(\mu=y_i,\sigma=16)$, while the x_i remain unchanged.

Tasks¹:

- Select a fixed x', which is not an observation of the training set, but lies between two observations (e.g. x'=2)
- Estimate the mean squared error

$$mse = \mathcal{E}(f(x') - f_{\mathbf{w}^*}(x'))^2, \tag{1}$$

i.e., the mean of the squared residuals of the models prediction $f_{\mathbf{w}^*}(x')$ from the true function value f(x') for all $0 \le d \le 8$ (d = 0 corresponds to a constant function) using at least 2000 trials.

 $^{^1}$ In all tasks $\mathcal E$ refers to the expected value with respect to the random variable $\mathbf w^*$, i.e. $\mathcal E \equiv \mathcal E_{\mathbf w^*}$

- $\bullet \ \ \text{Estimate by the same way the quantities} \ \ \textit{bias}^2 = (f(x') \mathcal{E}f_{\mathbf{w}^*}(x'))^2 \ \ \text{and} \ \ \textit{var} = (f_{\mathbf{w}^*}(x') \mathcal{E}f_{\mathbf{w}^*}(x'))^2.$
- ullet Plot $\mathit{mse}, \mathit{bias}^2$ and var against d together in one plot. What is the relation of the quantities?
- (optional) Generate the above plots only for d=8, but minimize instead of $E(\mathbf{w})$ the regularized error function

$$E_{\lambda}(\mathbf{w}) = \sum_{i=1}^{N} (t_i - \mathbf{w}^T \mathbf{\Phi}(x_i))^2 + \lambda ||\mathbf{w}||^2,$$
(2)

i.e. $\mathbf{w}^* = \arg\min_{\mathbf{w}}^* E_{\lambda}(\mathbf{w})$. Plot the quantities against λ instead of d. Hint: The minimum can be obtained in closed form (see lecture slides).