h e g

Haute école de gestion de Genève
Geneva School of Business Administration

Intervalle de confiance

Dr Sacha Varone

ත ත	Objectif

Rappels
Intervalle de

IC pour μ

confiance

Comprendre et savoir calculer un intervalle de confiance pour la moyenne

0 Φ _

Rappels Ô

 TCL

 \bar{p}

Intervalle de confiance

IC pour μ

Rappels

 \Box

Estimation ponctuelle

Rappels

Â

TCL

Intervalle de

IC pour μ

confiance

Une estimation ponctuelle, ou point d'estimation, est une valeur calculée à partir d'un échantillon pour estimer un paramètre d'une population.

Une distribution d'échantillonnage d'un estimateur Θ est la distribution des valeurs possibles d'une statistique pour un échantillon de taille fixée, sélectionné à partir d'une population.

Le biais :
$$E(\hat{\Theta} - \theta) = E(\hat{\Theta}) - \theta$$

Estimateur convergent si, lorsque la taille n de l'échantillon devient grande

- 1. le biais disparaît : $\lim_{n\to\infty} \operatorname{Biais}(\hat{\Theta}) = 0$
- 2. la variance devient nulle : $\lim_{n\to\infty} \operatorname{Var}(\hat{\Theta}) = 0$

Rappels

 Θ

TCL

10

Intervalle de confiance

IC pour μ

Soit une suite (X_1, X_2, \dots, X_n) de n variables aléatoires identiquement et indépendamment distribuées (μ, σ^2) . Lorsque $n \to \infty$,

$$\overline{X} = \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

où

 μ = moyenne dans la population

 σ^2 = variance dans la population

n = taille de l'échantillon

Intervalle de confiance

IC pour μ

source: "The Cartoon Guide to Statistics", L. Gonick & W. Smith

Rappels

 $\hat{\Theta}$

TCL

 \bar{p}

Intervalle de confiance

IC pour μ

Lorsque $n\pi \geq 5$ et $n(1-\pi) \geq 5$, la distribution d'échantillonnage d'une proportion peut être approchée par une loi normale :

$$\bar{p} \sim \mathcal{N}\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

οù

 π = proportion dans la population

n = taille de l'échantillon

Remarque. En général, π n'est pas connu. On l'estimera donc avec $\hat{p} = \bar{p}$, la proportion dans l'échantillon.

ь О

Rappels

Intervalle de

Principe

Définition

 α

Construction

IC pour μ

Intervalle de confiance

Rappels

Intervalle de confiance

Principe Définition

Construction

IC pour μ

source: "The Cartoon Guide to Statistics", L. Gonick & W. Smith

Rappels

Intervalle de confiance

Princip.

Définition

0/

Construction

IC pour μ

Estimation ponctuelle

ightarrow une valeur précise $\hat{ heta}$

Estimation par intervalle

ightarrow intervalle $\left[\hat{ heta}_{inf}\;;\;\hat{ heta}_{sup}
ight]$

avec un niveau de confiance fixé.

Rappels

Intervalle de confiance

Principe

Définition

Construction

IC pour μ

Définition

 $1-\alpha$ est appelé le *degré de confiance* ou *niveau de confiance* ; il indique la probabilité que la vraie valeur du paramètre θ soit comprise dans l'intervalle de confiance.

$$\underbrace{1-\alpha}_{\text{degr\'e de confiance}} = P\big(\,\theta \in \underbrace{\,\left[\hat{\theta}_{\inf}\,;\,\hat{\theta}_{\sup}\right]\,}_{\text{intervalle al\'eatoire}}\,\big)$$

Le risque de première espèce α est le risque que l'intervalle ne recouvre pas θ .

Rappels

Intervalle de confiance

Principe Définition

Construction

IC pour μ

- \blacksquare α petit \Rightarrow intervalle fiable, mais large
- \blacksquare α grand \Rightarrow intervalle précis, mais risque de non recouvrement du paramètre

En pratique : $\alpha = 5\%$ ou 10 %.

Rappels

Intervalle de confiance

Principe Définition

Construction

IC pour μ

statistics to prove it."

Rappels

Intervalle de confiance

Principe Définition

 α

Construction

IC pour μ

Un intervalle de confiance de niveau $1-\alpha$ pour un paramètre inconnu θ d'une population est un intervalle tel que la probabilité pour que cet intervalle recouvre θ est $1-\alpha$.

Les bornes de cet intervalle se calculent à partir d'un échantillon.

ь О

Rappels

Intervalle de confiance

IC pour μ

 σ^2 connu

Étapes

 σ^2 inconnu

Étapes

Remarque

IC pour μ

 σ^2 inconnu

Étapes

Remarque

Population qui suit une loi normale de variance σ^2 connue,

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

où :

 σ

 \bar{x} = moyenne de l'échantillon

 $z_{\alpha/2} = \mbox{valeur critique de la distribution normale standard}$ pour un degré de confiance de $1-\alpha$

= écart type de la population

n = taille de l'échantillon

Rappels

Intervalle de confiance

IC pour μ

Étapes σ^2 inconnu Étapes

Remarque

Considérons la population suivante : l'ensemble des pots de peinture d'1lt remplis par une machine industrielle. Supposons que la quantité de peinture est une variable aléatoire X suivant une loi normale d'écart type $\sigma = 0.04$ lt. Votre but en tant que responsable qualité est de contrôler qu'en moyenne, la machine remplisse 1lt de peinture par pot.

Vous prenez 4 pots au hasard

Pot	x_1	x_2	x_3	x_4
Quantité [lt]	1.0	0.98	1.1	1.1

Intervalle de confiance à 95% pour la quantité de peinture par pot?

ත Exemple (suite)

Rappels

Intervalle de confiance

IC pour μ

 σ^2 connu

 $\begin{array}{c} {\rm \acute{E}tapes} \\ \sigma^2 \ {\rm inconnu} \end{array}$

Étapes

Remarque

1. Population d'intérêt

Σ Exemple (suite)

Rappels

Intervalle de confiance

_

IC pour μ

 σ^2 connu

Étapes

 $\sigma^2 \ {\rm inconnu}$

Étapes

Remarque

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1-\alpha$

Rappels

Intervalle de confiance

IC pour μ

 σ^2 connu

 $\begin{array}{c} {\rm \acute{E}tapes} \\ \sigma^2 \ {\rm inconnu} \end{array}$

Remarque

Étapes

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1 \alpha = 0.95$
- 3. Moyenne de l'échantillon

Rappels

Intervalle de confiance

IC pour μ

σ^2 connu

 $\begin{array}{l} {\rm \acute{E}tapes} \\ \sigma^2 \ {\rm inconnu} \\ {\rm \acute{E}tapes} \end{array}$

Remarque

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1 \alpha = 0.95$
- 3. Moyenne de l'échantillon = $\bar{x} = \frac{1.0 + 0.98 + 1.1 + 1.1}{4} = 1.045$
- 4. Erreur standard de la moyenne

Rappels

Intervalle de confiance

IC pour μ

Étapes σ^2 inconnu Étapes Remarque

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1 \alpha = 0.95$
- 3. Moyenne de l'échantillon = $\bar{x} = \frac{1.0 + 0.98 + 1.1 + 1.1}{4} = 1.045$
- 4. Erreur standard de la moyenne = $\sigma_{\bar{x}} = \frac{0.04}{\sqrt{A}} = 0.02$
- 5. Les pots peuvent être trop peu remplis, ou trop remplis. L'erreur de première espèce α est alors divisée en 2 parties. La valeur critique est donc $z_{\alpha/2}=z_{0.025}=1.96$
- 6. L'intervalle de confiance est

Rappels

Intervalle de confiance

IC pour μ

σ^2 connu

Étapes σ^2 inconnu Étapes Remarque

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1 \alpha = 0.95$
- 3. Moyenne de l'échantillon = $\bar{x} = \frac{1.0 + 0.98 + 1.1 + 1.1}{4} = 1.045$
- 4. Erreur standard de la moyenne = $\sigma_{\bar{x}} = \frac{0.04}{\sqrt{4}} = 0.02$
- 5. Les pots peuvent être trop peu remplis, ou trop remplis. L'erreur de première espèce α est alors divisée en 2 parties. La valeur critique est donc $z_{\alpha/2}=z_{0.025}=1.96$
- 6. L'intervalle de confiance est

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.045 \pm 1.96 \cdot 0.02 = [1.0058; 1.0842]$$

Rappels

Intervalle de confiance

IC pour μ

σ^2 connu

Étapes σ^2 inconnu Étapes

Remarque

- 1. Population d'intérêt = ensemble des pots.
- 2. Degré de confiance $1 \alpha = 0.95$
- 3. Moyenne de l'échantillon = $\bar{x} = \frac{1.0 + 0.98 + 1.1 + 1.1}{4} = 1.045$
- 4. Erreur standard de la moyenne = $\sigma_{\bar{x}} = \frac{0.04}{\sqrt{4}} = 0.02$
- 5. Les pots peuvent être trop peu remplis, ou trop remplis. L'erreur de première espèce α est alors divisée en 2 parties. La valeur critique est donc $z_{\alpha/2}=z_{0.025}=1.96$
- 6. L'intervalle de confiance est

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.045 \pm 1.96 \cdot 0.02 = [1.0058; 1.0842]$$

Conclusion : l'IC ne comprend pas la valeur 1lt. Donc la machine est mal réglée.

Rappels

Intervalle de confiance

 $\frac{\text{IC pour }\mu}{\sigma^2}$ connu

Étapes

 σ^2 inconnu Étapes Remarque Calcul d'un IC estimé pour une moyenne de population, lorsque l'écart type de la population est connue, et

- soit la moyenne suit une loi normale
- soit l'échantillon est de taille au moins 30.
 - 1. Définir la population d'intérêt et sélectionner un échantillon aléatoire de taille n
 - 2. Spécifier le degré de confiance $1-\alpha$
 - 3. Calculer la moyenne de l'échantillon $\bar{x} = \frac{\sum x_i}{n}$
 - 4. Déterminer l'erreur standard de la moyenne $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$
 - 5. Déterminer la valeur critique $z_{\alpha/2}$
 - 6. Calculer l'intervalle de confiance

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Rappels

Intervalle de confiance

 $\frac{1C \text{ pour } \mu}{\sigma^2 \text{ connu}}$

Étapes

 σ^2 inconnu

Étapes

Remarque

Hypothèse : la distribution de la population suit une loi normale.

$$\bar{x} \pm t_{\frac{\alpha}{2}, n-1} \cdot \frac{s}{\sqrt{n}}$$

où:

 \bar{x} = moyenne de l'échantillon

 $t_{\frac{\alpha}{2},n-1}$ = valeur critique de la \mathcal{T} -distribution à n-1 dl pour un degré de confiance de $1-\alpha$

s = écart type de l'échantillon

n = taille de l'échantillon

Rappels

Intervalle de confiance

 $\frac{1C \text{ pour } \mu}{\sigma^2 \text{ connu}}$

Étapes

 σ^2 inconnu

Étapes

Remarque

En tant que responsable d'un "backoffice" dans une entreprise, vous souhaitez calculer l'intervalle de confiance à 95% du temps moyen passé au téléphone par les employés du "backoffice" avec les clients. Vous avez recueilli les temps, en minutes, de 25 appels.

7.1	13.6	1.4	3.6	1.9
11.6	1.7	16.9	2.6	7.7
12.4	11.0	3.7	14.6	8.8
8.5	6.1	3.3	6.1	6.9
0.4	11.0	0.8	6 4	9.1

1. Population:

Exemple

Rappels

Intervalle de confiance

 $\frac{1C \text{ pour } \mu}{\sigma^2}$ connu

Étapes

Étapes

Remarque

7.1	13.6	1.4	3.6	1.9
11.6	1.7	16.9	2.6	7.7
12.4	11.0	3.7	14.6	8.8
8.5	6.1	3.3	6.1	6.9
0.4	11.0	0.8	6.4	9.1

- 1. Population : tous les appels des clients au "backoffice"
- 2. Niveau de confiance souhaité :

Rappels

Intervalle de confiance

 $\frac{\text{IC pour }\mu}{\sigma^2}$ connu Étapes

 σ^2 inconnu

Étapes

Remarque

- 1. Population : tous les appels des clients au "backoffice"
- 2. Niveau de confiance souhaité : $1 \alpha = 0.95$
- 3. Moyenne estimée

Rappels

Intervalle de confiance

 $\frac{1C \text{ pour } \mu}{\sigma^2 \text{ connu}}$

Étapes σ^2 incorp

Étapes

Remarque

- 1. Population : tous les appels des clients au "backoffice"
- 2. Niveau de confiance souhaité : $1 \alpha = 0.95$
- 3. Moyenne estimée $\bar{x} \approx 7.088$ et écart type estimé $s \approx 4.64$
- 4. l'erreur standard de la moyenne

Rappels

Intervalle de confiance

 $\frac{\text{IC pour }\mu}{\sigma^2}$ connu Étapes

 σ^2 inconnı

Étapes

Remarque

- 1. Population : tous les appels des clients au "backoffice"
- 2. Niveau de confiance souhaité : $1 \alpha = 0.95$
- 3. Moyenne estimée $\bar{x} \approx 7.088$ et écart type estimé $s \approx 4.64$
- 4. l'erreur standard de la moyenne $\sigma_{\bar{x}}=\frac{s}{\sqrt{n}}pprox 0.928$ stat III cours 4 22 / 25

Rappels

Intervalle de confiance

IC pour μ

Étapes

 σ^2 inconnu

Étapes

Remarque

5. Comme vous ne savez pas *a priori* si la population est normalement distribuée, vous vérifiez à l'aide d'une boîte à moustache que la distribution de votre échantillon soit normalement distribuée :

la valeur critique vaut $t_{0.025,24} = 2.0639$

6. IC:

Rappels

Intervalle de confiance

IC pour μ σ^2 connu

Étapes

 σ^2 inconnu

Étapes

Remarque

5. Comme vous ne savez pas *a priori* si la population est normalement distribuée, vous vérifiez à l'aide d'une boîte à moustache que la distribution de votre échantillon soit normalement distribuée :

15

la valeur critique vaut $t_{0.025,24} = 2.0639$

6. IC: $7.088 \pm 2.0639 \cdot 0.928 = [5.173; 9.003]$

Rappels

Intervalle de confiance

$$\frac{\text{IC pour }\mu}{\sigma^2 \text{ connu}}$$

Étapes $\sigma^2 \text{ inconnu}$

Étapes

Remarque

IC pour une moyenne de population, lorsque la variance de la population est inconnue, échantillon de petite taille $(n \le 30)$ Hypothèse : population distribuée suivant une loi normale.

- 1. Définir la population d'intérêt et sélectionner un échantillon aléatoire de taille n
- 2. Spécifier le degré de confiance $1-\alpha$
- 3. Calculer la moyenne et l'écart type de l'échantillon $\bar{x} = \frac{\sum x_i}{n} \quad s = \sqrt{\frac{\sum (x_i \bar{x})^2}{n-1}}$
- 4. Déterminer l'erreur standard de la moyenne $\sigma_{ar{x}}=rac{s}{\sqrt{n}}$
- 5. Déterminer la valeur critique $t_{\frac{\alpha}{2},n-1}$
- 6. Calculer l'intervalle de confiance $\bar{x} \pm t_{\frac{\alpha}{2},n-1} \cdot \sigma_{\bar{x}}$

Rappels

Intervalle de confiance

IC pour μ σ^2 connu
Étapes σ^2 inconnu

Étapes

Remarque

Échantillon de grande taille $(n \ge 30)$

$$\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$$

où:

 \bar{x} = moyenne de l'échantillon

 $z_{\alpha/2} =$ valeur critique de la distribution normale standard pour un degré de confiance de $1-\alpha$

s = écart type de l'échantillon

n = taille de l'échantillon