МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32453— 2017

Глобальная навигационная спутниковая система

СИСТЕМЫ КООРДИНАТ

Методы преобразований координат определяемых точек

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 PA3PAБOTAH Акционерным обществом «Научно-технический центр современных навигационных технологий «Интернавигация» (АО «НТЦ «Интернавигация»)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации по результатам голосования (протокол от 30 августа 2017 г. № 102-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3186) 004—97	Код страны по МК (ИСО 3166) 004 ~ 97	Сохращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узгосстандарт
Украина	UA I	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2017 г. № 1055-ст межгосударственный стандарт ГОСТ 32453—2017 введен в действие в качестве национального стандарта с 1 июля 2018 г.
 - 5 B3AMEH FOCT 32453-2013

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

ı	Оспасть применения	
2	Термины и определения	1
3	Сокращения	2
4	Земная система координат и ее практические реализации	3
	4.1 Системы геодезических параметров	
	4.2 Референцные геодезические системы координат Российской Федерации	5
5	Методы преобразований координат определяемых точек	6
	5.1 Преобразование геодезических координат в прямоугольные пространственные координаты	_
	и обратно	
	5.2 Преобразование пространственных прямоугольных координат	
	5.3 Преобразование геодезических координат	8
	5.4 Преобразование геодезических координат в плоские прямоугольные координаты	
	и обратно	9
	5.5 Преобразование приращений пространственных прямоугольных координат	
	из одной системы координат в другую	11
	5.6 Связь между геодезической и нормальной высотами	11
Π	риложение А (обязательное) Параметры преобразования между системой координат ПЗ-90.11	
	и референцными системами координат Российской Федерации	12
П	риложение Б (обязательное) Параметры преобразования между системой координат ПЗ-90.11	
	и системой координат ПЗ-90.02	14
Π	риложение В (обязательное) Параметры преобразования между системой координат ПЗ-90.11	
		15
П	риложение Г (обязательное) Параметры преобразования между системой координат ПЗ-90.11	
		16
П	риложение Д (обязательное) Параметры преобразования между системой координат ПЗ-90.11	
		17
п	риложение Е (обязательное) Алгоритм учета эпохи параметров преобразования	
	при преобразовании координат из одной системы в другую	18
Б	иблиография	
_	······································	

Поправка к ГОСТ 32453—2017 Глобальная навигационная спутниковая система. Системы координат. Методы преобразования координат определяемых точек

В каком месте	Напечатано	Должно быть
Пункт 5.4.2. Формула (33), по- следняя строка	– –0,00328sin ⁶ <i>B</i> ₀))));	-0,00328sin ⁶ B ₀))))
Подраздел 5.5. Формула (37)	$\begin{pmatrix} \Delta X \\ \Delta \Delta Y \\ Z \end{pmatrix}_{A}$	$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{A}$
Приложение Г, подраздел Г.1	-[-0,003] -0,001 0,000]	+0,013 +0,106 +0,022
подраздел Г.2	-\begin{bmatrix} -0.003 \\ -0.001 \\ 0.000 \end{bmatrix}	-\begin{bmatrix} -0.013 \\ +0.106 \\ +0.022 \end{bmatrix}

(ИУС № 7 2019 г.)

Поправка к ГОСТ 32453—2017 Глобальная навигационная спутниковая система. Системы координат. Методы преобразований координат определяемых точек

В каком месте	Напечатано	Должно быть
Подраздел 5.5. Формула (37)	$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{\delta} = (1 + m) \begin{pmatrix} 1 & +\omega_2 & -\omega_Y \\ -\omega_2 & 1 & *\omega_X \\ +\omega_Y & -\omega_X & 1 \end{pmatrix} \begin{pmatrix} \Delta X \\ \Delta Y \\ +\omega_Y & -\omega_X \end{pmatrix} \cdot \begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{A} \cdot \begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}$	$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{\mathbf{g}} = (1 + m) \begin{pmatrix} 1 & + \omega_{\mathbf{Z}} & -\omega_{\mathbf{Y}} \\ -\omega_{\mathbf{Z}} & 1 & + \omega_{\mathbf{X}} \\ +\omega_{\mathbf{Y}} & -\omega_{\mathbf{X}} & 1 \end{pmatrix} \begin{pmatrix} \Delta X \\ \Delta Y \\ A Z \end{pmatrix}_{\mathbf{A}}$
Формупа (38)	$\begin{pmatrix} \Lambda X \\ \Delta Y \\ \Delta Z \end{pmatrix} = (1 - m) \begin{pmatrix} 1 & -\omega_z & +\omega_y \\ +\omega_z & 1 & -\omega_x \\ -\omega_y & +\omega_x & 1 \end{pmatrix} \begin{pmatrix} \Lambda X \\ \Delta Y \\ -\omega_y & +\omega_x \end{pmatrix} - \begin{pmatrix} \Lambda X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{\mathcal{E}}$	$\begin{pmatrix} \Lambda X \\ \Lambda Y \\ \Lambda Z \end{pmatrix}_A = (1-m) \begin{pmatrix} 1 & -\omega_Z & +\omega_Y \\ +\omega_Z & 1 & -\omega_X \\ -\omega_Y & +\omega_X & 1 \end{pmatrix} \begin{pmatrix} \Lambda X \\ \Lambda Y \\ -\Delta Z \end{pmatrix}_B$

(MYC Ne 2 2020 r.)

Глобальная навигационная спутниковая система

СИСТЕМЫ КООРДИНАТ

Методы преобразований координат определяемых точек

Global navigation satellite system. Coordinate systems. Methods of transformations for determinated points coordinates

Дата введения -- 2018--- 07--- 01

1 Область применения

Настоящий стандарт распространяется на системы координат, входящие в состав систем геодезических параметров «Параметры Земли 1990 года» и референцные системы координат Российской Федерации.

Настоящий стандарт устанавливает методы преобразований координат и их приращений из одной системы в другую, а также порядок использования параметров преобразования систем координат при выполнении геодезических, навигационных, картографических работ с применением аппаратуры потребителей глобальных навигационных спутниковых систем.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 большая полуось эллипсоида а: Параметр, характеризующий размер эллипсоида.
- 2.2 высокоточная геодезическая сеть; ВГС: Спутниковая геодезическая сеть со средним расстоянием между смежными пунктами 150—300 км. координаты которой определяются относительно пунктов фундаментальной астрономо-геодезической сети.
- 2.3 геоид: Эквипотенциальная поверхность, совпадающая с поверхностью Мирового океана в состоянии полного покоя и равновесия и продолженная под материками.
- 2.4 геодезическая высота: Высота точки над поверхностью отсчетного эллипсоида, отсчитываемая по нормали к эллипсоиду.
- 2.5 геодезическая долгота: Двугранный угол между плоскостями геодезического меридиана данной точки и начального геодезического меридиана.
- 2.6 геодезическая широта: Угол между нормалью к поверхности отсчетного эллипсоида, проходящей через заданную точку, и плоскостью его экватора.
- 2.7 гравитационное поле Земли; ГПЗ: Поле силы тяжести на поверхности Земли и во внешнем пространстве, обусловленное силой притяжения Земли и центробежной силой. возникающей в результате суточного вращения Земли.
- 2.8 квазигеоид: Геометрическое место точек, получаемых путем откладывания нормальных высот от точек физической поверхности Земли по нормали к эллипсоиду. Математическая поверхность, близкая к геоиду, и являющаяся отсчетной для установления системы нормальных высот.
- 2.9 космическая геодезическая сеть; КГС: Сеть геодезических пунктов, закрепляющих геоцентрическую систему координат, положение которых на земной поверхности определено по наблюдениям искусственных спутников Земли.
- 2.10 модель гравитационного поля Земли: Математическое описание характеристик гравитационного поля Земли.
- 2.11 нормальная высота: Измеренная разность геопотенциала в данной точке и начале счета высот, деленная на среднее значение нормальной силы тяжести.

- 2.12 **нормальное гравитационное поле Земли**: Модель гравитационного поля Земли, представляемая нормальным потенциалом силы тяжести уровенного эплипсоида вращения и фундаментальными геодезическими параметрами, однозначно определяющими отсчетную систему.
- 2.13 **общеземной эллипсоид**; ОЗЭ: Эллипсоид вращения, который характеризует фигуру и размеры Земли и применяется для обработки геодезических измерений на всей поверхности Земли в общеземной (геоцентрической) системе координат.
- 2.14 отсчетный эллипсоид: Эллипсоид вращения, который характеризует фигуру и размеры Земли и определенным образом ориентирован в теле Земли.
- 2.15 планетарная модель гравитационного поля Земли: Модель гравитаионного поля Земли, отражающая гравитационные особенности Земли в целом.
- 2.16 плоскость астрономического меридиана: Плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.
- 2.17 плоскость геодезического меридиана: Плоскость, проходящая через нормаль к поверхности отсчетного эллипсоида в данной точке и параллельная его малой оси.
 - 2.18 плоскость начального меридиана: Плоскость меридиана, от которого ведется счет долгот.
- 2.19 плоские прямоугольные координаты: Линейные величины, определяющие положение точек на плоскости, на которой отображена в заданной картографической проекции ограниченная часть поверхности отсчетного эллипсоида. Осями координат являются прямолинейные изображения экватора эллипсоида и осевого меридиана соответствующей зоны, пересекающиеся под прямым углом.
- 2.20 **сжатие эллипсоида д:** Разность между большой или малой осями эллипсоида, выраженная в единицах большой полуоси и вычисляемая по формуле

$$\alpha = \frac{a-b}{a}$$
.

- 2.21 первый (второй) эксцентриситет e(e') эллипсоида: Фокальное расстояние c, выраженное в единицах большой (малой) полуоси эллипсоида и вычисляемое по формуле $e = \frac{c}{a} \left(e' = \frac{c}{b} \right)$, где $c = \sqrt{a^2 b^2}$.
- 2.22 геодезические координаты: Параметры, два из которых (геодезическая широта и геодезическая долгота) характеризуют направление нормали к поверхности отсчетного эллипсоида в данной точке пространства относительно плоскостей его экватора и начального меридиана, а третий (геодезическая высота) представляет собой высоту точки над поверхностью отсчетного эллипсоида.
- 2.23 система геодезических параметров Земли: Совокупность параметров и точностных характеристик фундаментальных геодезических постоянных, общеземного эллипсоида, модели гравитационного поля Земли, геоцентрической системы координат и параметров трансформирования ее в другие системы координат.
- 2.24 **спутниковая геодезическая сеть 1-го класса**; СГС-1: Спутниковая геодезическая сеть со средним расстоянием между соседними пунктами 15 20 км, координаты которых определяются относительно высокоточной геодезической сети.
- 2.25 фундаментальная астрономо-геодезическая сеть; ФАГС: Спутниковая геодезическая сеть со средним расстоянием между соседними пунктами 650 1000 км, координаты которых определяются в геоцентрической системе координат.
- 2.26 фундаментальные геодезические постоянные: Взаимосогласованные геодезические постоянные, однозначно определяющие параметры общеземного эллипсоида и нормальное гравитационное поле Земли.
- 2.27 **эквипотенциальная поверхность:** Поверхность, в каждой точке которой потенциал остается постоянным.
- 2.28 параметры трансформирования систем координат: Параметры, с помощью которых выполняется преобразование координат из одной системы координат в другую.

3 Сокращения

В настоящем стандарте применены следующие сокращения:

ВГС — высокоточная геодезическая сеть;

ГГС — государственная геодезическая сеть:

ГЛОНАСС — глобальная навигационная спутниковая система Российской Федерации:

ГНСС — глобальная навигационная спутниковая система;

ГПЗ — гравитационное поле Земли;

ПЗ-90, ПЗ-90.02, ПЗ-90.11 — системы геодезических параметров «Параметры Земли 1990 года» Российской Федерации:

ГСК -2011 — геодезическая система координат 2011 года Российской Федерации, эпоха 2011 года:

СГС-1 — спутниковая геодезическая сеть 1-го класса;

СК — система координат,

ФАГС — фундаментальная астрономо-геодезическая сеть;

ВІН — Международное бюро времени;

GPS — глобальная навигационная спутниковая система Соединенных Штатов Америки:

IERS — Международная служба вращения Земли;

ITRF — практическая реализация системы координат TRS, осуществляемая IERS;

IRM — референцный меридиан, установленный IERS; IRP — референцный полюс, установленный IERS;

TRS — земная система координат, участвующая вместе с Землей в ее суточном вращении

вокруг оси,

TRF — практическая реализация системы координат TRS;

а_{WGS-84} — большая полуось общеземного эллипсоида в системе WGS-84:

а_{ко} — большая полуось эллипсоида Красовского;

ако
 сжатие эллипсоида Красовского:

WGS-84 — система геодезических параметров «Мировая геодезическая система 1984 года»

Соединенных Штатов Америки.

4 Земная система координат и ее практические реализации

Земная система координат предназначена для количественного описания положения и движения объектов, находящихся на поверхности Земли и в околоземном пространстве.

Количественными характеристиками положения точки в земной системе координат являются координаты, имеющие вариации во времени, вызванные геофизическими явлениями (тектоническими или приливными деформациями).

Практическая реализация TRS, осуществляемая IERS, получила наименование ITRF и заключается в определении координат пунктов (и их скоростей изменения во времени), закрепляющих ITRF на поверхности Земли.

Начало и направление осей системы координат ITRF определены следующим образом:

- начало в центре масс Земли;
- ось Z направлена в IRP;
- ось X направлена в точку пересечения плоскости IRM с плоскостью, проходящей через начало системы координат TRF и перпендикулярную к оси Z;
 - ось У дополняет систему до правой ортогональной координатной системы.

Точность последних практических реализаций TRS находится на субсантиметровом уровне точности определения координат пунктов.

Практические реализации земной системы координат TRS, используемые в глобальных навигационных спутниковых системах ГЛОНАСС (ПЗ-90) и GPS (WGS-84), а также референцные системы координат Российской Федерации (СК-42, СК-95, ГСК-2011) приведены в 4.1.

П р и м е ч а н и е — В настоящее время Международной службой вращения Земли получена практическая реализация TRS, обозначаемая как ITRF-2014 на эпоху 2010 года.

4.1 Системы геодезических параметров

4.1.1 Система геодезических параметров «Параметры Земли 1990 года»

4.1.1.1 Система геодезических параметров ПЗ-90 включает в себя:

- фундаментальные геодезические постоянные;
- параметры ОЗЭ;

FOCT 32453-2017

- систему координат ПЗ-90, закрепляемую координатами пунктов космической геодезической сети:
 - характеристики модели ГПЗ.
- параметры трансформирования геоцентрической системы координат ПЗ-90 в референцные системы координат России и зарубежные системы координат.

Параметры трансформирования между системой координат ПЗ-90 и референциыми системами координат России и порядок их использования при преобразовании систем координат приведены в приложении A.

П р и м е ч а н и е — В соответствии с [1] в настоящее время установлена государственная геоцентрическая система координат «Параметры Земли 1990 года» (ПЗ-90), отнесенная к эпохе 2010.0 и обозначаемая как ПЗ-90.11.

Числовые значения элементов трансформирования между системами координат ПЗ-90, ПЗ-90.02 и ПЗ-90.11, а также порядок их использования при преобразовании систем координат приведены в приложениях Б и В.

- 4.1.1.2 Теоретическое определение системы координат ПЗ-90 основывается на следующих положениях:
 - начало системы координат расположено в центре масс Земли;
 - ось Z направлена к условному земному полюсу (международному условному началу);
- ось X лежит в плоскости начального астрономического меридиана, установленного IERS и Международным бюро времени;
 - ось У дополняет систему до правой системы координат.
- 4.1.1.3 Положения точек в системе ПЗ-90 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр ОЗЭ совпадает с началом системы координат ПЗ-90, ось вращения эллипсоида — с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

П р и м е ч а н и е — За отсчетную поверхность в системах геодезических параметров П3-90, П3-90.02 и П3-90.11 принят общеземной эллипсоид с большой полуосью $a_{\rm D3}$ = 6378136 м и сжатием $a_{\rm D3}$ = 1/298,25784.

4.1.2 Система геодезических параметров «Мировая геодезическая система 1984 года»

- 4.1.2.1 Система параметров WGS-84 включает в себя:
- фундаментальные геодезические постоянные;
- систему координат WGS-84, закрепляемую координатами пунктов глобальной геодезической сети;
 - параметры ОЗЭ,
 - характеристики модели ГПЗ;
- параметры элементов трансформирования между геоцентрической системой координат WGS-84 в различные национальные системы координат.

Параметры элементов трансформирования между геоцентрическими системами координат ПЗ-90 и WGS-84, а также порядок использования элементов трансформирования приведены в приложении Г.

П р и м е ч а н и е — В настоящее время действует шестая версия системы координат WGS-84, отнесенная к эпохе 2005.0 и обозначаемая как WGS-84(G1762). В приведенных обозначениях версий системы координат WGS-84 литера «G» означает «GPS», а «730», «873», «1150» и «1762» указывают на номер GPS-недели, соответствующей дате, к которой отнесены эти версии системы координат WGS-84.

По оценкам зарубежных специалистов система координат WGS-84(G1762) согласована с системой координат ITRF-2008 на субмиллимитровом уровне.

- 4.1.2.2 Теоретическое определение системы координат WGS-84 основывается на следующих положениях:
 - начало системы координат расположено в центре масс Земли;
 - ось Z направлена в IERS Reference Pole (IRP);
- ось X направлена в точку пересечения плоскости (IRM) с плоскостью, проходящей через начало системы координат WGS-84 и перпендикулярную к оси Z;
 - ось У дополняет систему до правой системы координат.

4.1.2.3 Положения точек в системе WGS-84 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр эллипсоида совпадает с началом системы координат WGS-84, ось вращения эллипсоида совпадает с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

П р и м е ч а н и е — За отсчетную поверхность в WGS принят общеземной эллипсоид с большой полуосью $a_{\text{WGS-84}}$ равным 6378137 м, и сжатием $\alpha_{\text{WGS-84}}$ равным 1/298,257223563.

4.2 Референцные геодезические системы координат Российской Федерации

4.2.1 Геодезическая система координат Российской Федерации ГСК-2011

4.2.1.1 В соответствии с [1] в качестве государственной установлена также ГСК-2011, отнесенная к эпохе 2011 года.

ГСК-2011 — государственная геодезическая система координат, предназначенная для осуществления геодезической, картографической, навигационной и других видов деятельности для текущих и перспективных потребностей экономики, науки, обороны и безопасности Российской Федерации и обеспечивающая преемственность существующих геодезических систем координат СК-95 и СК-42.

- 4.2.1.2 Теоретическое определение системы координат ГСК-2011 основывается на следующих попожениях:
 - начало системы координат расположено в центре масс Земли;
 - ось Z направлена к Условному земному полюсу, как определено рекомендациями IERS и BIH;
- ось X направлена в точку пересечения плоскости экватора и начального меридиана, установленного ВІН:
 - ось У дополняет систему до правой системы координат.
- 4.2.1.3 ГСК-2011 закрепляется на поверхности Земли пунктами ФАГС, ВГС, СГС-1, а также пунктами ГГС Российской Федерации общим числом около 300000.
- 4.2.1.4 Положения точек в системе ГСК-2011 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр ОЗЭ совпадает с началом системы координат ГСК-2011, ось вращения эллипсоида совпадает с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

П р и м е ч а н и е — За отсчетную поверхность в ГСК-2011 принят общеземной эллипсоид с большой полуосью $a_{\rm ICK-2011}$ равной, 6 378 136,5 м, и сжатием $\alpha_{\rm ICK-2011}$ равным 2564151.

4.2.2 Референциые системы координат СК-95 и СК-42

Кроме ГСК-2011 координатная основа Российской Федерации представлена референцной системой координат, реализованной в виде ГГС, закрепляющей систему координат на территории страны, и государственной нивелирной сети, распространяющей на всю территорию страны систему нормальных высот (Балтийская система), исходным началом которой является нуль Кронштадтского футштока.

Положения определяемых точек относительно координатной основы могут быть получены в виде пространственных прямоугольных или геодезических координат либо в виде плоских прямоугольных координат и высот.

Геодезические координаты в референцных системах координат Российской Федерации СК-95 и СК-42 относятся к эллипсоиду Красовского, размеры и форма которого определяются значениями большой полуоси $a_{\mathrm{Kp.}}$ равной 6378245 м, и сжатия $\alpha_{\mathrm{Kp.}}$ равного 1/298.3.

Центр эллипсоида Красовского совпадает с началом референцной системы координат, ось вращения эллипсоида параллельна оси вращения Земли, а плоскость нулевого меридиана определяет положение начала счета долгот.

П р и м е ч а н и е — В соответствии [1] система геодезических координат 1995 года (СК-95) и единая система геодезических координат 1942 года (СК-42), введенная в соответствии с [2], применяются до 1 января 2021 г. в отношении материалов (документов), созданных с их использованием.

5 Методы преобразований координат определяемых точек

5.1 Преобразование геодезических координат в прямоугольные пространственные координаты и обратно

5.1.1 Преобразование геодезических координат в прямоугольные пространственные координаты осуществляют по формулам:

$$X = (N + H)\cos B \cos L$$

$$Y = (N + H)\cos B \sin L$$

$$Z = [(1 - e^{2})N + H]\sin B$$
(1)

где X, Y, Z — прямоугольные пространственные координаты точки:

В. L — геодезические широта и долгота точки соответственно, рад:

Н — геодезическая высота точки, м;

N — радиус кривизны первого вертикала, м;

е — эксцентриситет эллипсоида.

Значения радиуса кривизны первого вертикала и квадрата эксцентриситета эллипсоида вычисляют соответственно по формулам.

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}},\tag{2}$$

$$e^2 = 2\alpha - \alpha^2, \tag{3}$$

где а — большая полуось эллипсоида, м;

а — сжатие эллипсоида.

5.1.2 Для преобразования пространственных прямоугольных координат в геодезические необходимо проведение итераций при вычислении геодезической широты.

Для этого используют следующий алгоритм:

1 — вычисляют вспомогательную величину D по формуле

$$D = \sqrt{X^2 + Y^2} \tag{4}$$

2 — анализируют значение D:

а) если D = 0, то

$$B = \frac{x}{2} \frac{Z}{|Z|}.$$
 (5)

$$L = 0,$$

 $H = Z \sin B - a\sqrt{1 - e^2 \sin^2 B},$ (6)

б) если $D \neq 0$, то при

$$Y < 0, X > 0, \qquad L = 2\pi - L_a.$$

$$Y < 0, X < 0, \qquad L = \pi + L_a.$$

$$Y > 0, X < 0, \qquad L = \pi - L_a.$$

$$Y > 0, X > 0, \qquad L = L_a.$$

$$Y = 0, X > 0, \qquad L = 0,$$

$$Y = 0, X < 0, \qquad L = \pi.$$
(7)

$$r_{D}e L_{a} = \left| \arcsin \left(\frac{Y}{D} \right) \right| \tag{8}$$

3 — анализируют значение Z:

а) если Z = 0, то

$$B = 0, H = D - a,$$
 (9)

б) во всех других случаях вычисления выполняют следующим образом:

- вычисляют значения вспомогательных величин г, с, р по формулам:

$$r = \sqrt{X^2 + Y^2 + Z^2} \,\,\,\,(10)$$

$$c = \arcsin\left(\frac{Z}{r}\right),\tag{11}$$

$$\rho = \frac{e^2 a}{2c}; \tag{12}$$

реализуют итеративный процесс, используя вспомогательные величины s₁ и s₂:

$$s_1 = 0, \tag{13}$$

$$b = c + s_1 \tag{14}$$

$$s_2 = \arcsin\left(\frac{\rho\sin(2b)}{\sqrt{1 - e^2\sin^2b}}\right),\tag{15}$$

$$d = |s_2 - s_1|. (16)$$

если значение d, определяемое по формуле (16), меньше установленного значения допуска, то

$$B=b, (17)$$

$$H = D \cdot \cos B + Z \cdot \sin B - a \cdot \sqrt{1 - e^2 \sin^2 B} , \qquad (18)$$

если значение d не менее установленного значения допуска, то

$$s_1 = s_2,$$
 (19)

и вычисления повторяют, начиная с формулы (14).

5.1.3 При преобразованиях координат в качестве допуска прекращения итеративного процесса принимают значение *d*, равное 10⁻⁴.

В этом случае погрешность вычисления геодезической высоты не превышает 0,003 м.

5.2 Преобразование пространственных прямоугольных координат

Пользователям ГНСС ГЛОНАСС и GPS необходимо выполнять преобразования координат из системы ПЗ-90 в систему WGS-84 и обратно, а также из ПЗ-90 и WGS-84 в референцные системы координат Российской Федерации, используя семь элементов трансформирования, точность которых определяет точность преобразований.

Параметры трансформирования между системами координат указаны в соответствии с приложениями A — Д:

- П3-90.11 и CK-42, CK-95, ГСК-2011 (см. приложение A);
- П3-90.11 и П3-90.02 (см. приложение Б);
- П3-90.11 и П3-90 (см. приложение В);
- П3-90.11 и WGS-84(G1150) (см. приложение Г);
- П3-90.11 и ITRF-2008 (см. приложение Д);

Приложения А, Б и Д содержат эпоху параметров преобразования.

Это обстоятельство необходимо учитывать при преобразовании координат в соответствии с процедурой, приведенной в приложении Е.

Если данные об эпохе параметров преобразования отсутствуют, то преобразование координат выполняют стандартным образом.

Преобразование координат из системы WGS-84 в координаты референцных систем Российской Федерации осуществляют последовательным преобразованием координат сначала в систему ПЗ-90, а затем — в координаты референцных систем.

Преобразование пространственных прямоугольных координат выполняют по формуле

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{6} = (1+m) \begin{pmatrix} 1 & +\omega_{Z} & -\omega_{Y} \\ -\omega_{Z} & 1 & +\omega_{X} \\ +\omega_{Y} & -\omega_{X} & 1 \end{pmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{A} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}, \tag{20}$$

где Δx , Δy , Δz — линейные параметры трансформирования при переходе из системы A в систему b, м; ω_x , ω_y , ω_z — угловые параметры трансформирования при переходе из системы a в систему b, рад; a — масштабный параметр трансформирования при переходе из системы a в систему a.

Обратное преобразование прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{A} = (1 - m) \begin{pmatrix} 1 & -\omega_{Z} & +\omega_{Y} \\ +\omega_{Z} & 1 & -\omega_{X} \\ -\omega_{Y} & +\omega_{X} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{E} - \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}.$$
 (21)

5.3 Преобразование геодезических координат

Преобразование геодезических координат из системы А в систему Б выполняют по формулам

$$B_{\mathcal{B}} = B_{\mathcal{A}} + \Delta B,$$

$$L_{\mathcal{B}} = L_{\mathcal{A}} + \Delta L,$$

$$H_{\mathcal{B}} = H_{\mathcal{A}} + \Delta H,$$
(22)

где В. L — геодезические широта и долгота, выраженные в единицах плоского угла:

Н — геодезическая высота, м:

 ΔB , ΔL , ΔH — поправки к геодезическим координатам точки.

Поправки к геодезическим координатам вычисляют по формулам:

$$\Delta B = \frac{\rho}{(M+H)} \left[\frac{N}{a} e^{2} \sin B \cos B \Delta a + \left(\frac{N^{2}}{a^{2}} + 1 \right) N \sin B \cos B \frac{\Delta e^{2}}{2} - \right.$$

$$- (\Delta x \cos L + \Delta y \sin L) \sin B + \Delta z \cos B \right] -$$

$$- \omega_{x} \sin L (1 + e^{2} \cos 2B) + \omega_{y} \cos L (1 + e^{2} \cos 2B) - \rho m e^{2} \sin B \cos B;$$

$$\Delta L = \frac{\rho}{(N+H) \cos B} \left(-\Delta x \sin L + \Delta y \cos L \right) + tg B (1 - e^{2}) (\omega_{x} \cos L + \omega_{y} \sin L) - \omega_{z};$$

$$\Delta H = -\frac{a}{N} \Delta a + N \sin^{2} B \frac{\Delta e^{2}}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B -$$

$$- N e^{2} \sin B \cos B \left(\frac{\omega_{x}}{\rho} \sin L - \frac{\omega_{y}}{\rho} \cos L \right) + \left(\frac{a^{2}}{N} + H \right) m$$

$$(23)$$

где ΔB , ΔL — поправки к геодезическим широте, долготе, угл. с:

 ΔH — поправка к геодезической высоте, м;

В, L — геодезические широта и долгота, рад;

Н — геодезическая высота, м;

 Δx , Δy , Δz — линейные элементы трансформирования систем координат при переходе из системы A в систему B, м;

 $\omega_{\mathbf{y}},\,\omega_{\mathbf{y}},\,\omega_{\mathbf{z}}$ — угловые параметры трансформирования систем координат при переходе из системы Aв систему Б, угл. с;

т — масштабный элемент трансформирования систем координат при переходе из системы А в систему Б:

$$\Delta a = a_5 - a_A,$$

$$\Delta \theta^2 = \theta_5^2 - a_A^2;$$

$$a = \frac{a_5 + a_A}{2};$$

$$\theta^2 = \frac{\theta_5^2 + \theta_A^2}{2};$$

M — радиус кривизны меридианного сечения ($M = a(1 - e^2)(1 - e^2 \sin^2 B)^{-\frac{3}{2}}$);

N — радиус кривизны первого вертикала ($N = a(1 - e^2 \sin^2 B)^{\frac{1}{2}}$);

 a_{E}, a_{A} — большие полуоси эллипсоидов в системах координат E и A соответственно;

 e_{E}^{2} , a_{A}^{2} — квадраты эксцентриситетов эллипсоидов в системах координат E и A соответственно; р — число угловых секунд в 1 радиане [р = 206 264, 806"].

При преобразовании геодезических координат из системы А в систему Б в формуле (22) используют значения геодезических координат в системе А, а при обратном преобразовании — в системе Б, и знак поправок ΔB , ΔL , ΔH в формуле (22) меняют на противоположный.

Формулы (23) обеспечивают вычисление поправок к геодезическим координатам с погрешностью, не превышающей 0,3 м (в линейной мере). Для достижения погрешности не более 0,001 м выполняют вторую итерацию, т. е. учитывают значения поправок к геодезическим координатам по формулам (22) и повторно выполняют вычисления по формулам (23).

При этом

$$B = \frac{B_A + (B_A + \Delta B)}{2}.$$

$$L = \frac{L_A + (L_A + \Delta L)}{2}.$$

$$H = \frac{H_A + (H_A + \Delta H)}{2}.$$
(24)

Формулы (22), (23) и точностные характеристики преобразований по этим формулам справедливы до широт 89°.

5.4 Преобразование геодезических координат в плоские прямоугольные координаты и обратно

5.4.1 Для получения плоских прямоугольных координат в принятой на территории Российской Федерации проекции Гаусса-Крюгера используют геодезические координаты на эллипсоиде Красов-CKOTO.

Плоские прямоугольные координаты с погрешностью не более 0,001 м вычисляют по формулам

 $x = 6367558,4968B - \sin 2B(16002,8900 + 66,9607\sin^2B + 0.3515\sin^4B -l^2$ (1594561,25 + 5336,535 $\sin^2 B$ + 26,790 $\sin^4 B$ + 0,149 $\sin^8 B$ + $+ I^{2}$ (672483.4 - 811219.9 $\sin^{2}B$ + 5420.0 $\sin^{4}B$ - 10.6 $\sin^{6}B$ + (25) $+ l^2 (278194 - 830174 \sin^2 B + 572434 \sin^4 B - 16010 \sin^6 B +$ $+ l^2 (109500 - 574700 \sin^2 B + 863700 \sin^4 B - 398600 \sin^6 B)))))$ $v = (5 + 10n)10^6 + l \cos \theta (6378245 + 21346.1415 \sin^2 \theta + 107.1590 \sin^4 \theta + 108.1590 \sin^2 \theta + 108.1590 \sin^4 \theta + 108.1590 \cos^2 \theta +$

 $+0.5977 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^6 B + l^2 (1070204, 16 - 2136826, 66 \sin^2 B + 17.98 \sin^4 B - 11.99 \sin^4 B - 11.99$

 $+ I^{2}$ (270806 - 1523417 $\sin^{2}B$ + 1327645 $\sin^{4}B$ -21701 $\sin^{6}B$ +

$$+ l^{2}(79690 - 866190 \sin^{2}B + 1730360 \sin^{4}B - 945460 \sin^{6}B)))),$$
 (26)

где x. y — плоские прямоугольные координаты (абсцисса и ордината) определяемой точки в проекции Гаусса-Крюгера, м;

В — геодезическая широта определяемой точки, рад;

/ — расстояние от определяемой точки до осевого меридиана зоны, выраженное в радианной мере и вычисляемое по формуле

$$l = \{L - [3 + 6(n - 1)]\} / 57,29577951; \tag{27}$$

L — геодезическая долгота определяемой точки, град;

л — номер шестиградусной зоны в проекции Гаусса-Крюгера, вычисляемый по формуле

$$n = E[(6 + L) / 6], \tag{28}$$

Е[...] — целая часть выражения, заключенного в квадратные скобки.

5.4.2. Преобразование плоских прямоугольных координат в проекции Гаусса-Крюгера на эллипсоиде Красовского в геодезические координаты осуществляют по формулам

$$B = B_0 + \Delta B_1 \tag{29}$$

$$L = 6(n - 0.5) / 57,29577951 + l, \tag{30}$$

где В, L — геодезические широта и долгота соответственно определяемой точки, рад;

 B_0 — геодезическая широта точки, абсцисса которой равна абсциссе x определяемой точки, а ордината равна нулю, рад;

п — номер шестиградусной зоны в проекции Гаусса-Крюгера, вычисляемый по формуле

$$n = E[y_10^{-6}]. (31)$$

Е[...] — целая часть выражения, заключенного в квадратные скобки:

у — ордината определяемой точки в проекции Гаусса-Крюгера, м.

Значения B_0 , ΔB и I вычисляют по следующим формулам

$$B_0 = \beta + \sin 2\beta (0.00252588685 - 0.00001491860 \sin^2 \beta + 0.00000011904 \sin^4 \beta);$$
 (32)

$$-z_0^2(0.10500614 - 0.04559916\sin^2B_0 + 0.00228901\sin^4B_0 - 0.00002987\sin^6B_0 -$$

$$-z_0^2(0.042858 - 0.025318\sin^2 B_0 + 0.014346\sin^4 B_0 - 0.001264\sin^6 B_0 -$$
 (33)

 $-z_0^2(0.01672 - 0.00630\sin^2B_0 + 0.01188\sin^4B_0 - -0.00328\sin^6B_0))))$

$$I = z_0(1 - 0.0033467108\sin^2 B_0 - 0.0000056002\sin^4 B_0 - 0.0000000187\sin^6 B_0 - 0.00000000187\sin^6 B_0$$

$$-z_0^2(0.0420025 + 0.1487407\sin^2B_0 + 0.0059420\sin^4B_0 - 0.0000150\sin^6B_0 - (34)$$

$$-z_0^2(0.01225 + 0.09477\sin^2 B_0 + 0.03282\sin^4 B_0 - 0.00034\sin^6 B_0 -$$

 $-z_0^2(0.0038 + 0.0524\sin^2 B_0 + 0.0482\sin^4 B_0 - 0.0032\sin^6 B_0)))))$

где β — вспомогательная величина, вычисляемая по формуле

$$\beta = \frac{x}{6367558.4968} \,; \tag{35}$$

 z_0 — вспомогательная величина, вычисляемая по формуле

$$z_0 = \frac{(y - (10n + 5)10^5)}{(6378245\cos B_0)} \,. \tag{36}$$

х, у — абсцисса и ордината определяемой точки в проекции Гаусса-Крюгера соответственно, м.

Погрешность преобразования координат по формулам (25); (26) и (32) — (36) составляет не более 0,001 м.

5.5 Преобразование приращений пространственных прямоугольных координат из одной системы координат в другую

Преобразование приращений пространственных прямоугольных координат из системы координат A в систему B осуществляют по формуле

$$\begin{bmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{bmatrix}_{6} = (1+m) \begin{bmatrix}
1 & +\omega_{Z} & -\omega_{Y} \\
-\omega_{Z} & 1 & +\omega_{X} \\
+\omega_{Y} & -\omega_{X} & 1
\end{bmatrix} \begin{bmatrix}
\Delta X \\
\Delta \Delta Y \\
\Delta Z
\end{bmatrix}_{A} + \begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta Z
\end{bmatrix}.$$
(37)

Обратное преобразование приращений пространственных прямоугольных координат из системы $\mathcal B$ в систему $\mathcal A$ выполняют по формуле

$$\begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}_{A} = (1 - m) \begin{bmatrix} 1 & -\omega_{Z} & +\omega_{Y} \\ +\omega_{Z} & 1 & -\omega_{X} \\ -\omega_{Y} & +\omega_{X} & 1 \end{bmatrix} \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}_{5} - \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta Z \end{bmatrix}. \tag{38}$$

В формулах (37) и (38) угловые элементы трансформирования ω_{X} , ω_{Y} , ω_{Z} выражены в радианах.

5.6 Связь между геодезической и нормальной высотами

Геодезическая и нормальная высоты связаны соотношением:

$$H = H' + \zeta, \tag{39}$$

где Н — геодезическая высота определяемой точки, м;

H: — нормальная высота определяемой точки, м;

4 — высота квазигеоида над эллипсоидом в определяемой точке, м.

Высоты квазигеоида над отсчетным эллипсоидом систем геодезических параметров ПЗ и WGS вычисляют по моделям ГПЗ, являющимися составной частью систем геодезических параметров.

При перевычислении высот квазигеоида из системы координат А в систему координат Б используют формулу

$$\zeta_6 = \zeta_A + \Delta H,\tag{40}$$

где $\zeta_{\rm E}$ — высота квазигеоида над ОЗЭ, м;

 ζ_A — высота квазигеоида над эплипсоидом Красовского, м;

 ΔH — поправка к геодезической высоте, вычисляемая по формуле (23), м.

Приложение А (обязательное)

Параметры преобразования между системой координат ПЗ-90.11 и референцными системами координат Российской Федерации

А.1 Преобразование координат из референциой системы координат 1942 года (СК-42) в систему координат ПЗ-90.11

$$\Delta x = + 23.557 \text{ M};$$
 $\omega_x = -0.00230^\circ;$ $\Delta y = -140.844 \text{ M};$ $\omega_y = -0.34646^\circ;$ $\Delta z = -79.778 \text{ M};$ $\omega_z = -0.79421^\circ;$ $m = (-0.228) \cdot 10^{-6};$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3.90.11} = \begin{bmatrix} 1 & -3.850439 \cdot 10^{-6} & +1.679685 \cdot 10^{-6} \\ +3.850439 \cdot 10^{-6} & 1 & -1.115071 \cdot 10^{-8} \\ -1.679685 \cdot 10^{-6} & +1.115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CX.42} + \begin{bmatrix} +23.557 \\ -140.844 \\ -79.778 \end{bmatrix}.$$

А.2 Преобразование координат из системы координат ПЗ-90.11 в референциую систему координат 1942 года (СК-42)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-42}} = \begin{bmatrix} 1 & +3,850439 \cdot 10^{-6} & -1,679685 \cdot 10^{-6} \\ -3,850439 \cdot 10^{-6} & 1 & +1,115071 \cdot 10^{-8} \\ +1,679685 \cdot 10^{-6} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{D3-90.11}} - \begin{bmatrix} +23,557 \\ -140,844 \\ -79,778 \end{bmatrix}.$$

А.3 Преобразование координат из референциой системы координат 1995 года (СК-95) в систему координат ПЗ-90.11

$$\Delta x = + 24.457 \text{ M};$$
 $\omega_x = -0.00230 \text{ '};$ $\Delta y = -130.784 \text{ M};$ $\omega_y = +0.00354 \text{ '};$ $\Delta z = -81.538 \text{ M};$ $\omega_z = -0.13421 \text{ '};$ $m = (-0.228)10^{-6};$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.11} = \begin{bmatrix} 1 & -6.506684 \cdot 10^{-7} & -1.716240 \cdot 10^{-8} \\ +6.506684 \cdot 10^{-7} & 1 & -1.115071 \cdot 10^{-8} \\ +1.716240 \cdot 10^{-8} & +1.115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CX \cdot 95} + \begin{bmatrix} +24.457 \\ -130.784 \\ -81.538 \end{bmatrix}.$$

А.4 Преобразование координат из системы координат ПЗ-90.11 в референциую систему координат 1995 года (СК-95)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-95}} = \begin{bmatrix} 1 & +6,506684 \cdot 10^{-7} & +1,716240 \cdot 10^{-8} \\ -6,506684 \cdot 10^{-7} & 1 & +1,115071 \cdot 10^{-8} \\ -1,716240 \cdot 10^{-8} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3.90.11}} - \begin{bmatrix} +24,457 \\ -130,784 \\ -81,538 \end{bmatrix}.$$

А.5 Преобразование координат из референцной системы координат ГСК-2011 в систему координат ПЗ-90.11

$$\Delta x = 0.000 \text{ M};$$
 $\omega_x = -0.000562^{\circ},$ $\Delta y = +0.014 \text{ M};$ $\omega_y = -0.000019^{\circ},$ $\Delta z = -0.008 \text{ M};$ $\omega_z = +0.000053^{\circ},$ $m = (-0.0006)10^{-6}.$

Эпоха параметров преобразования 2011,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.11} = \begin{bmatrix} 1 & +2,569513 \cdot 10^{-10} & +9,211460 \cdot 10^{-11} \\ -2,569513 \cdot 10^{-10} & 1 & -2,724653 \cdot 10^{-9} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Gamma CK \cdot 2011} + \begin{bmatrix} 0,000 \\ +0,014 \\ -0,008 \end{bmatrix}.$$

А.6 Преобразование координат из системы координат ПЗ-90.11 в референциую систему координат ГСК-2011

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Gamma \text{CK-}2011} = \begin{bmatrix} 1 & -2.56951 \cdot 10^{-10} & -9.21146 \cdot 10^{-11} \\ +2.569513 \cdot 10^{-10} & 1 & -2.72465 \cdot 10^{-9} \\ +9.211460 \cdot 10^{-11} & -2.72465 \cdot 10^{-9} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.11} - \begin{bmatrix} 0.000 \\ +0.014 \\ -0.008 \end{bmatrix}.$$

Приложение Б (обязательное)

Параметры преобразования между системой координат П3-90.11 и системой координат П3-90.02

Б.1 Преобразование координат из системы координат ПЗ-90.02 в систему координат ПЗ-90.11

$$\Delta x = -0.373 \text{ M};$$
 $\omega_x = -0.00230 \text{ }^{\circ}.$ $\Delta y = +0.186 \text{ M};$ $\omega_y = +0.00354 \text{ }^{\circ}.$ $\Delta z = +0.202 \text{ M};$ $\omega_z = -0.00421 \text{ }^{\circ}.$ $m = (-0.008)10^{-6}$

Эпоха параметров преобразования: 2010,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.11} = \begin{bmatrix} 1 & -2.04107 \cdot 10^{-8} & -1.71624 \cdot 10^{-8} \\ +2.04107 \cdot 10^{-8} & 1 & -1.11507 \cdot 10^{-8} \\ +1.71624 \cdot 10^{-8} & +1.11507 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.02} + \begin{bmatrix} -0.373 \\ +0.186 \\ +0.202 \end{bmatrix}.$$

Б.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат ПЗ-90.02

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3.90.02} = \begin{bmatrix} 1 & +2.041086 \cdot 10^{-8} & +1.716240 \cdot 10^{-8} \\ -2.041086 \cdot 10^{-8} & 1 & +1.115071 \cdot 10^{-8} \\ -1.716240 \cdot 10^{-8} & -1.115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3.90.11} - \begin{bmatrix} -0.373 \\ +0.186 \\ +0.202 \end{bmatrix}.$$

Приложение В (обязательное)

Параметры преобразования между системой координат ПЗ-90.11 и системой координат ПЗ-90

В.1 Преобразование координат из системы координат ПЗ-90 в систему координат ПЗ-90.11

$$\Delta x = -1,443 \text{ M};$$
 $\omega_x = -0.00230^{\circ};$ $\Delta y = +0,156 \text{ M};$ $\omega_y = +0,00354^{\circ};$ $\Delta z = +0,222 \text{ M};$ $\omega_z = -0.134210^{\circ};$ $m = (-0.228) \cdot 10^{-6}$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90 \ 11} = \begin{bmatrix} 1 & -6.50668 \cdot 10^{-7} & -1.71624 \cdot 10^{-8} \\ +6.50668 \cdot 10^{-7} & 1 & -1.11507 \cdot 10^{-8} \\ +1.71624 \cdot 10^{-8} & +1.11507 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90} + \begin{bmatrix} -1.443 \\ +0.156 \\ +0.222 \end{bmatrix}.$$

В.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат ПЗ-90

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90} = \begin{bmatrix} 1 & +6.506684 \cdot 10^{-7} & +1.716240 \cdot 10^{-8} \\ -6.506684 \cdot 10^{-7} & 1 & +1.115071 \cdot 10^{-8} \\ -1.716240 \cdot 10^{-8} & -1.115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3 \cdot 90.11} - \begin{bmatrix} -1.443 \\ +0.156 \\ +0.222 \end{bmatrix}.$$

Приложение Г (обязательное)

Параметры преобразования между системой координат ПЗ-90.11 и системой координат WGS-84 (G1150)

Г.1 Преобразование координат из системы координат WGS-84 (G1150) в систему координат ПЗ-90.11

$$\Delta x = -0.013 \text{ M};$$
 $\omega_x = -0.00230 \text{ "};$ $\Delta y = +0.106 \text{ M};$ $\omega_y = +0.00354 \text{ "};$ $\Delta z = +0.022 \text{ M};$ $\omega_z = -0.00421 \text{ "};$ $\omega_z = -0.008110 \text{ "}$

$$m = (-0.008)10^{-6}$$
.

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3.90.11} = \begin{bmatrix} 1 & -2.041066 \cdot 10^{-8} & -1.716240 \cdot 10^{-8} \\ +2.041066 \cdot 10^{-8} & 1 & -1.115071 \cdot 10^{-8} \\ +1.716240 \cdot 10^{-8} & +1.115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84(G1150)}} + \begin{bmatrix} -0.003 \\ -0.001 \\ 0.000 \end{bmatrix}$$

Г.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат WGS-84 (G1150)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84(G1150)}} = \begin{bmatrix} 1 & +2,041066 \cdot 10^{-8} & +1,716240 \cdot 10^{-8} \\ -2,041066 \cdot 10^{-8} & 1 & +1,115071 \cdot 10^{-8} \\ -1,716240 \cdot 10^{-8} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II}3-90.11} = \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}.$$

Приложение Д (обязательное)

Параметры преобразования между системой координат ПЗ-90.11 и системой координат ITRF-2008

Д.1 Преобразование координат из системы координат ПЗ-90.11 в систему координат ITRF-2008

$$\Delta x = -0.003 \text{ M};$$
 $\omega_x = +0.000019^\circ.$ $\Delta y = -0.001 \text{ M};$ $\omega_y = -0.000042^\circ.$ $\Delta z = 0.000 \text{ M};$ $\omega_z = +0.000002^\circ.$ $m = (-0.000) \cdot 10^{-6}.$

Эпоха параметров преобразования: 2010,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{ITRF-2008}} = \begin{bmatrix} 1 + (-0,000)10^{-8} \end{bmatrix} \begin{bmatrix} 1 & +9,696274 \cdot 10^{-12} & +2,036217 \cdot 10^{-10} \\ -9,696274 \cdot 10^{-12} & 1 & +9,211460 \cdot 10^{-11} \\ -2,036217 \cdot 10^{-10} & -9,211460 \cdot 10^{-11} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{ITS-90.11}} + \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}.$$

Д.2 Преобразование координат из системы координат ITRF-2008 в систему координат ПЗ-90.11

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3.90.11} = \begin{bmatrix} 1 & -9.696274 \cdot 10^{-12} & -2.036217 \cdot 10^{-10} \\ +9.696274 \cdot 10^{-12} & 1 & -9.211460 \cdot 10^{-11} \\ +2.036217 \cdot 10^{-10} & +9.211460 \cdot 10^{-11} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi RF-2008} - \begin{bmatrix} -0.003 \\ -0.001 \\ 0.000 \end{bmatrix}.$$

Приложение Е (обязательное)

Алгоритм учета эпохи параметров преобразования при преобразовании координат из одной системы в другую

Так как системы координат ПЗ-90.11, ПЗ-90.02, ITRF-2008, WGS-84 (G1150), ГСК-2011 отличаются повышенной точностью, то перед выполнением преобразования из одной системы координат в другую координаты пунктов должны быть приведены на эпоху вывода параметров преобразования этих систем координат с использованием скоростей изменения координат пунктов. Для этого используют следующую трехшаговую процедуру.

В качестве примера преобразуем координаты пункта Менделеево (MDVJ), заданные в системе ITRF-2008 и отнесенные к эпохе 2005,0, в систему координат ПЗ-90.11 на произвольную эпоху 2013,9.

Координаты пункта Менделеево (MDVJ) в системе ITRF-2008 на эпоху 2005,0 и скорости изменения координат пункта имеют значения:

```
X = 2845456,081 м; V_x = -0.0212 м/год; Y = 2160954,245 м; V_y = +0.0124 м/год; Z = 5265993,223 м; V_z = +0.0072 м/год.
```

Пеовый шаг.

Вычисляем координаты пункта Менделеево (MDVJ) в системе координат ITRF-2008 на эпоху 2010,0

 $X = 2845456,081 + (-0.0212) \times (2010,0-2005,0) = 2845455,975$:

 $Y = 2160954,245+(+0.0124)\times(2010.0-2005.0) = 2160954,307;$

 $Z = 5265993.223 + (+0.0072) \times (2010, 0-2005, 0) = 5265993, 259.$

Второй шаг.

Выполнив преобразование координат пункта Менделеево (MDVJ) из системы координат ITRF-2008 в систему ПЗ-90.11 на эпоху 2010,0 с использованием параметров преобразования, приведенных в приложении Д, получаем

X = 2845455,9769 M;

Y = 2160954,3075 M;

Z = 5265993.2598 M.

Третий шаг.

Вычисляем координаты пункта Менделеево (MDVJ) в системе координат ПЗ-90.11 на эпоху 2013,9

 $X = 2845455,977 + (-0.0212) \times (2013,9-2010,0) = 2845455,894$;

 $Y = 2160954,308+(+0.0124)\times(2013,9-2010,0)=2160954,356$;

 $Z = 5265993,260+(+0,0072)\times(2013,9-2010,0)=5265993,288.$

Библиография

- [1] Постановление Правительства Российской Федерации от 26 ноября 2016 г. № 1240 «Об установлении государственных систем координат, государственной системы высот и государственной гравиметрической системы».
- [2] Постановление Совета Министров СССР от 07.04.1946 г. № 760 «О введении единой системы геодезических координат и высот на территории СССР».

УДК 629.783:[528.2+528.344+523.34.13]:006.354

MKC 07.040

Ключевые слова: приемная аппаратура глобальной навигационной спутниковой системы, системы координат, определение координат местоположения

БЗ 9-2017/4

Редактор *Р.Г. Говердовская* Технический редактор *В.Н. Прусакова* Корректор *И.А. Королева* Компьютерная верстка *А.А. Ворониной*

Поправка к ГОСТ 32453—2017 Глобальная навигационная спутниковая система. Системы координат. Методы преобразования координат определяемых точек

В каком месте	Напечатано	Должно быть
Пункт 5.4.2. Формула (33), по- следняя строка	0,00328sin ⁶ B ₀))));	-0,00328sin ⁶ B ₀))))
Подраздел 5.5. Формула (37)	$\begin{pmatrix} \Delta X \\ \Delta \Delta Y \\ Z \end{pmatrix}_{A}$	$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{A}$
Приложение Г, подраздел Г.1	-[-0,003] -0,001 0,000]	+0,013 +0,106 +0,022
подраздел Г.2	- -0,003 -0,001 0,000	-\begin{bmatrix} -0.013 \\ +0.106 \\ +0.022 \end{bmatrix}

(ИУС № 7 2019 г.)

Поправка к ГОСТ 32453—2017 Глобальная навигационная спутниковая система. Системы координат. Методы преобразований координат определяемых точек

В каком месте	снецененен на применения на пр	Должно быть
Подраздел 5.5. Формула (37)	$\begin{pmatrix} z_{\Delta} \\ v_{\Delta} \\ v_{\Delta} \end{pmatrix} \cdot \begin{pmatrix} z_{\Delta} \\ v_{\Delta} $	$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{b} = (1 + m) \begin{pmatrix} 1 & +\omega_{2} & -\omega_{\gamma} \\ -\omega_{2} & 1 & +\omega_{\gamma} \\ +\omega_{\gamma} & -\omega_{\chi} & 1 \end{pmatrix} \begin{pmatrix} \Delta X \\ \Delta Y \\ A Z \end{pmatrix}_{A}$
Формула (38)	$ \begin{pmatrix} \Lambda X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{A} = (1-m) \begin{pmatrix} 1 & -\omega_{z} & +\omega_{y} \\ +\omega_{z} & 1 & -\omega_{x} \\ -\omega_{y} & +\omega_{x} & 1 \end{pmatrix} \begin{pmatrix} \Lambda X \\ \Delta Y \\ -\omega_{y} & +\omega_{x} \end{pmatrix} - \begin{pmatrix} \Lambda X \\ \Delta Y \\ \Delta Z \end{pmatrix}_{b} $	$\begin{pmatrix} AX \\ AY \\ AZ \end{pmatrix}_{A} = (1-m) \begin{pmatrix} 1 & -\omega_{2} & +\omega_{Y} \\ +\omega_{2} & 1 & -\omega_{X} \\ -\omega_{Y} & +\omega_{X} & 1 \end{pmatrix} \begin{pmatrix} AX \\ AY \\ AZ \end{pmatrix}_{b}$

(MYC Ne 2 2020 r.)