Course and Year: ____

Part 1. Give the truth value of each statement if t is true. Write T or F after the statement.

1. $\sim p \rightarrow t$

4. $p \wedge \sim t$

2. $\sim p \vee t$

5. $\sim (p \to t)$

3. $p \rightarrow (t \lor \sim p)$

Part 2. Give the truth value of each sentence. Write T or F after the sentence.

1. $p \wedge q$ if q is not true.

4. $p \to (q \lor \sim r)$ if r is false.

2. $p \to (p \lor q)$ if p is true.

5. $p \to q$ if $\sim (p \land q)$ is false.

3. $(\sim p \lor r) \lor (q \to s)$ if q is false.

Part 3. Find the truth value of each symbolic statement. Show your solution

- 1. Let p be true, q be false and r be true.
- a. $r \to (p \to q)$

- b. $\sim [(p \land q) \to (r \leftrightarrow q)]$
- 2. Let p be true, q be false and r be false.
- a. $\sim p \to (q \wedge r)$
- b. $\sim [(\sim q \land p) \leftrightarrow r] \rightarrow q$ c. $(\sim p \leftrightarrow \sim r) \lor [p \rightarrow (q \rightarrow r)]$

Part 4. Determine whether the statement is a tautology, a contradiction or indeterminate. Use a truth table to show your answer.

- a. $\sim q \vee (p \rightarrow q)$
- b. $p \to [(\sim q \to p) \land (q \lor \sim p)]$ c. $(p \land q) \land (q \to \sim p)$

Part 5. Determine the relation between	een the two statements. Use a truth table to show your answer.
a. $(p \land q) \to (p \lor q)$	b. $(p \land \sim q) \leftrightarrow (p \rightarrow q)$

Part 6. Write the converse, inverse and contrapositive of "If n^2 is even, then n is even."

Part 7. Give the Rules of Replacement and the Rules of Inference.

Part 8. Represent the argument symbolically and determine whether it is a valid argument. Use method 1, method 2, and method 3 for items 1, 2, and 3 respectively.

1. Mark attended his classes or he went to the mall.

Mark did not went to the mall.

- \therefore He attended his classes.
- 2. If you will do your best in the contest, then I will not win.

If I will not win, then I will be sad.

- \therefore If you will do your best in the contest, then I will be sad.
- 3. Mathematics is fun and challenging.

Mathematics is fun or easy.

Mathematics is not easy.

 \therefore Mathematics is challenging.

Part 9. Assume each statement is true and draw a valid conclusion.

1. If Ryan is industrious, then he is responsible. Ryan is industrious.

Ryan is not responsible or trustworthy.

- 2. Logic and Set Theory is very interesting. Logic and Set theory is not easy.
- 3. The president is not corrupt or the people dont trust the president. If the people dont trust the president, then the country is in chaos.

Part 10. Derive a conclusion from the following premises assuming they are true.

- $\begin{array}{ccc} 1. & p \rightarrow q \\ & \sim r \rightarrow \sim q \\ & \sim r \end{array}$
- $\begin{array}{ccc} 2. & p \leftrightarrow q \\ & \sim p \lor r \\ & \sim r \end{array}$
- 3. $j \to (k \land \sim l)$ $(k \land \sim l) \to m$ j

A good proof is one that makes us wiser. Yu. I. Manin