Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1.				
	2.				
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA					
WFiIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla płytki szklanej i pleksiglasowej metodą pomiaru grubości pozornej płytki przy pomocy mikroskopu.

Zagadnienia kontrolne	Ocena i podpis
1. Prawo odbicia.	
2. Załamanie światła na granicy dwóch ośrodków przeźroczystych	
3. Bezwzględny i względny współczynnik załamania ośrodka. Prawo załamania.	
4. Przeanalizuj bieg promieni w przezroczystej płytce płasko-równoległej, podaj zależność między jej prawdziwą grubością <i>d</i> , grubością pozorną <i>h</i> i współczynnikiem załamania <i>n</i> .	
5. Budowa mikroskopu – bieg promieni w mikroskopie. Od czego zależy powiększenie obrazu widzianego w mikroskopie?	

1. Układ pomiarowy

W skład układu pomiarowego wchodza:

- 1. Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową.
- 2. Śruba mikrometryczna.
- 3. Zestaw płytek szklanych i z pleksiglasu, różnej grubości.

Rys. w1. *Schemat budowy mikroskopu*: a) mikroskop i jego elementy: 1 – kondensor, 2 – obiektyw, 3 – okular, 4 – lusterko lub lampka oświetleniowa, 5 – czujnik mikrometryczny, którego stopka spoczywa na ruchomej części mikroskopu, 6 – nasadka krzyżowa XY mocująca z pokrętłami do przesuwu płytki, 7a – pokrętło służące do przesuwu stolika ruchem zgrubnym, 7b – pokrętło służące do przesuwu stolika ruchem dokładnym; b) zasada powstawania obrazu (*A''*) przedmiotu (*A*).

Do charakterystycznych cech mikroskopu zaliczamy powiększenie i zdolność rozdzielczą. Powiększenie z pewnym przybliżeniem można wyznaczyć ze wzoru:

$$p = \frac{l \cdot d}{f_1 \cdot f_2}$$

gdzie: l – odległość między obiektywem a okularem,

d – odległość dobrego widzenia,

 f_1 – ogniskowa obiektywu,

 f_2 – ogniskowa okularu.

2. Wykonanie ćwiczenia

- 1. Zapoznać się z budową mikroskopu.
- 2. Na obu powierzchniach płytki zrobić kreski, jedna nad drugą cienkim pisakiem (ewentualnie wykorzystać istniejące kreski).
- 3. Zmierzyć śrubą mikrometryczną grubość płytki d w pobliżu kresek.
- 4. Ustaw badaną płytkę na stoliku mikroskopu w uchwycie i dobierz ostrość tak by uzyskać kontrastowy obraz. Regulując położenie stolika pokrętłem 7a zaobserwuj górny i dolny ślad zaznaczony na płytce.
- 5. Pokrętłem 7b przesuń stolik mikroskopu do momentu uzyskania ostrego obrazu śladu na górnej powierzchni płytki.
- 6. Odczytaj położenie ag wskazówki czujnika mikrometrycznego.
- 7. Przesuń stolik mikroskopu do położenia, w którym widoczny jest ślad na dolnej powierzchni płytki (pokrętłem 7b).
- 8. Ponownie odczytaj położenie a_d wskazówki czujnika.
- 9. Odczyty zanotuj w tabeli 1, 2 lub 3.

3. Wyniki pomiarów

Tabela 1

	materiał:			
	grubość rzeczywista $d = \dots [mm]$			
	niepewność $u(d) = \dots [mm]$			
ln.	wskazanie	grubość pozorna		
lp.	<i>a</i> _d [mm]	$a_{ m g}$ [mm]	$h = a_{d} - a_{g}$ [mm]	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
	średnia grubo niepewność <i>u</i>			

Tabela 2

	materiał:	vviete d — [mm]	
		wista $d = \dots [1]$		
	niepewność	$u(d) = \dots [1]$	mm]	
lp.	wskazanie czujnika		grubość pozorna	
ъ.	$a_{ m d}$	a_{g}	$h=a_{\rm d}-a_{\rm g}$	
	[mm]	[mm]	[mm]	
1				
2				
3				
4				
5				
6				
7				
8				
	średnia grubość pozorna h			
	niepewność	<i>u</i> (<i>h</i>)		

Tabela 3

		wista <i>d</i> =[1 <i>u</i> (<i>d</i>) =[2	
ln.	wskazanie czujnika		grubość pozorna
lp.	a_{d}	$a_{ m g}$	$h = a_{\rm d} - a_{\rm g}$
	[mm]	[mm]	[mm]
1			
2			
3			
4			
5			
6			
7			
8			
średnia grubość pozorna h niepewność $u(h)$			

4. Opracowanie wyników pomiarów

- 1. Oblicz wartość współczynnika załamania *n* dla każdej badanej płytki.
- 2. Oszacuj niepewność typu B wyznaczenia grubości płytki rzeczywistej u(d) oraz niepewność typu A dla grubości pozornej h (wyniki zapisz w odpowiedniej tabeli).
- 3. Oblicz niepewność złożoną współczynnika załamania z prawa przenoszenia niepewności

$$u(n) = \sqrt{\left[\frac{1}{h}u(d)\right]^2 + \left[\frac{-d}{h^2}u(h)\right]^2} = \dots$$

względnie korzystając z wzoru wynikającego z prawa przenoszenia niepewności względnych

$$\frac{u(n)}{n} = \sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = \dots$$

czyli
$$u(n) = n\sqrt{\left(\frac{u(d)}{d}\right)^2 + \left(\frac{u(h)}{h}\right)^2} = \dots$$

(patrz pkt. 1.5 "Opracowania danych pomiarowych").

4. Zapisz otrzymane wartości współczynnika załamania wraz z obliczonymi niepewnościami i porównaj je z wartościami tablicowymi.

Zestawienie wyników

rodzaj materiału	n zmierzone	n tablicowe

5. Wnioski: