METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – implementacja wybranej metody rozwiązywania układu równań liniowych

Opis rozwiązania

Naszym zadaniem była implementacja metody eliminacji Jordana (w literaturze nazywana również metodą Gaussa-Jordana) rozwiązywania układu N równań liniowych z N niewiadomymi. Zdecydowaliśmy się nie ograniczać z góry maksymalnej ilości równań, a ich wprowadzenie następuję poprzez załadowanie pliku ze współczynniki w formacie CSV.

Algorytm realizowany przez nasz program wygląda następująco:

- 1) W pierwszym kroku następuje sprawdzenie warunków wyjątkowych. Jeśli wyznacznik macierzy współczynników A jest równy zero, oznacza to, że być może układ równań jest nierozwiązywalny lub ma nieskończenie wiele rozwiązań. W takim przypadku następuje sprawdzenie czy iloczyn macierzy A i wektora wyników x jest równy wektorowi b. Jeżeli nie to zostaje zwrócona informacja o nierozwiązywalności układu.
- 2) Następnie macierz A i wektor b są łączone w jedną rozszerzoną macierz.
- 3) Następuje właściwa realizacja metody Gaussa-Jordana przekształcenie macierzy współczynników na macierz jednostkową:
 - dla każdej kolumny od 0 do n-1 następuje iteracja po każdym wierszu i sprawdzenie czy jego wartość bezwzględna jest większa od dotychczasowego potencjalnego elementu głównego (na początku algorytmu potencjalny element główny to po prostu pierwszy element),
 - następuje zamiana miejscami wiersza z nowym potencjalnym elementem głównym i dotychczasowym elementem głównym
 - następnie następuje sprawdzenie czy nasz potencjalny element główny (będący już na przekątnej macierzy) jest równy 0. Jeżeli tak to nie można kontynuować eliminacji, ponieważ dzielenie przez zero jest matematycznym błędem.
 - jeżeli element główny jest niezerowy, to przechodzimy do kolejnego kroku, czyli od (aktualnego wiersza + 1) do (n-1) redukowane są kolejne wiersze poprzez odejmowanie od nich odpowiednio przeskalowanych wierszy wcześniejszych, aby uzyskać wartości zero pod przekątną.
- **4)** Gdy w wyniku eliminacji mamy macierz trójkątną zachodzi substytucja wsteczna polegająca na obliczeniu macierzy rozwiązań *x*:
 - iteracja odbywa się od ostatniego do pierwszego wiersza włącznie (równania rozwiązujemy od dołu do góry).
 - wartość x_i jest obliczana jako iloraz odpowiedniego elementu przekształconej macierzy przez główny element diagonalny.
- 5) Po zakończeniu wszystkich iteracji program zwraca wektor x zawierający rozwiązania układu równań.

Wyniki

Przykład a):

X	y	Z		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
3	3	1	=	12	X	1	1
2	5	7	=	33	y	2	2
1	2	1	=	8	Z	3	3

Przykład b):

X	y	Z		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
3	3	1	=	1	X		
2	5	7	=	20	y	Układ nieoznaczony	Układ nieoznaczony
-4	-10	-14	=	-40	Z		

Przykład c):

X	у	Z		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
3	3	1	=	1	X		
2	5	7	=	20	у	Układ sprzeczny	Układ sprzeczny
-4	-10	-14	=	-40	Z		

Przykład d):

X	y	Z	W		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
0,5	-0,0625	0,1875	0,0625	=	1,5	X	2	2
-0,0625	0,5	0	0	=	-1,625	y	-3	-3
0,1875	0	0,375	0,125	=	1	Z	1,5	1,5
0,0625	0	0,125	0,25	=	0,3475	W	0,5	0,5

Przykład e):

- 4									
	X	у	Z	W		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
	3	2	1	-1	=	0	X		
	5	-1	1	2	=	-4	у	Układ sprzeczny	Układ sprzeczny
	1	-1	1	2	=	4	Z	Okiau sprzeczny	Okiad spizeczny
	7	8	1	-7	=	6	W		

Przykład f):

X	y	Z	W		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
3	-1	2	-1	=	-13	X	1	1
3	-1	1	1	=	1	y	3	3
1	2	-1	2	=	21	Z	-4	-4
-1	1	-2	-3	=	-5	W	5	5

Przykład g):

	<u> </u>						
X	у	Z		b	Niewiadome	Wyniki programu	Wyniki analityczne
0	0	1	=	3	X	7	7
1	0	0	=	7	y	5	5
0	1	0	=	5	Z	3	3

Przykład h):

X	у	Z		b		Niewiadome	Wyniki programu	Wyniki teoretyczne
10	-5	1	=	3		X	1	1
4	-7	2	=	-4		у	2	2
5	1	4	=	19		Z	3	3

Przykład i):

X	y	Z		b	Niewiadome	Wyniki programu	Wyniki teoretyczne
6	-4	2	=	4	X		
-5	5	2	=	11	y	Układ nieoznaczony	Układ nieoznaczony
0,9	0,9	3,6	=	13,5	Z		

Przykład j):

X	у	Z		b		Niewiadome	Wyniki programu	Wyniki teoretyczne
1	0,2	0,3	=	1,5		X	1	1
0,1	1	-0,3	=	0,8		y	1	1
-0,1	-0,2	1	=	0,7		Z	1	1

Wnioski

- 1. Program spełnia warunki założone w zadaniu:
 - a) jest uniwersalny, tzn. umożliwia rozwiązywanie dowolnej ilości równań w danym układu,
 - b) użytkownika ma możliwość wyboru ilości rozwiązywanych równań poprzez dodanie do programu własnego pliku CSV,
 - c) program automatycznie wybiera element podstawowy.
- 2. Rozwiązania oznaczonych układów równań przedstawiane przez program pokrywają się z teoretycznymi wartościami dla danego układu.
- 3. W przypadku nierozwiązywalnych układów równań (sprzecznych bądź nieznaczonych) program automatycznie i prawidłowo wyświetla stosowną informację o niemożliwości rozwiązania danego układu, po czym przestaje szukać rozwiązań kończąc swoje działanie.