NEMANASHI. Den Boben vorbereiten.

Die Methodik ermöglicht eine Transformation der in den Vernzahlen enthaltene Information in graphischer torm. Gegeben ist Management System mit ni Kannzahlen. Durch Nemanashi ermöglichen wir eine schnelle Interpretation

der Dynamik.

· Hypothese: wir haben . n'i kennzahlen als Funktion der Zeit KP1 = KP1 (t) i=1,...,n

· Wirmessen die Vaniabilität einer Kennzah!

$$VAR(x) = \frac{\sum(x_i - x)^2}{n}$$

Weilwir Vaniabilität durch die VAR messen, wenn wir die Vaniabilität von versch. KPis vergleichen wolken www.ssen wir die Daten normieren

$$\frac{1}{x_{i}} = \frac{x_{i} - x_{min}}{x_{max} - x_{min}}$$

$$\frac{1}{x_{max} - x_{min}}$$

$$\frac{1}{x_{i}} = \frac{x_{i} - x_{i}}{x_{max} - x_{min}}$$

$$\frac{1}{x_{i}} = \frac{x_{i} - x_{i}}{x_{i}}$$

$$\frac{$$

Beispiel: Ein Nennzahlensystem einer Falonik ist 3 dimensional und hat Jolgende Daten ergeben: Qualitat [ppm] lieb treve [1] Koster [fikt]

۷۱	valitat [ppm	liefertreve [/	Koster[#5+]
Kwl	3300	91	17
KWZ	2700	93	18
Kw3	1800	89	16
Kw4	1500	92	15
kw5	1300	9 5	16

1. SCHRITT. Normierung [Min-MAX] noch KPIS. Dannit wir einen Vergleich erstellen honnen.

	Q*	LT*	14	
CWI	3300-1300 = 1	91-89 = 0133	17-15=0'66	
Coop	3300-1300	95-89		
cw2	2700-1300 = 1 3300-1300	0'7 95-89 = 0'66	18-15 = 1	
cw3	1800-1300 -		$\frac{16-15}{8-15}=0.33$	
	3500-1300	1901	10 10	
CNY	6 1	0'5		
CMS	0	I	0'33	4

2. SCHRITT. Alle Werte der Zeitscheiben vonssen 1 aufaddieren.

$$CW_1 = \frac{1}{1+0^{1}33+0^{1}66} = 0^{1}5 = \frac{0^{1}33}{1+0^{1}33+0^{1}66} = 0^{1}67 = 0^{1}66 = 0^{1}33$$

$$CW_2 = \frac{0^{1}7}{0^{1}7+0^{1}66+1} = 0^{1}297 = \frac{0^{1}66}{0^{1}7+0^{1}66+1} = 0^{1}28 = \frac{1}{0^{1}7+0^{1}66+1} = 0^{1}42$$

CW3
$$\frac{0'25}{0'25+0'33} = 0'43$$
 0 $\frac{0'33}{0'25+0'33} = 0'59$
CW4 $\frac{0'1}{0'|+0'5} = 0'|67$ $\frac{0'5}{0'|+0'5} = 0'833$ 0

CW5 0 $\frac{1}{0'33} = 0'59$

SCHRITT3. Graphik.

Schriff 4. Interpretation:

· Wenn der Abstand zw. til & tz kleiner ist als der Abstand zw. tz&tz, die Organisation ist nicht in Alignment. (und umgeliehrt).

d(cm, -cwz) > d(cwz-cwz) -> Alignment d(cnz-cnz) < d(cnz-cny) -> Kein Atign. d(CN3-CN4) > d(CN4-CN5) - Atigment