Construction and comparison of three HMM profiles for the annotation of proteins based on the presence of Kunitz-type protease inhibitor domain

Denys Carbini - LM Bioinformatics - LB1 Project

SUPPLEMENTARY MATERIALS

PFAM	CATH	INTERPRO
1AAP:A	1AAP:A	1AAP:A
1BUN:B	1BUN:B	1BUN:B
1DTX:A	1D0D:A	1D0D:A
1FAK:I	1DTX:A	1DTX:A
1KTH:A	1FAK:I	1FAK:I
1YC0:I	1KTH:A	1KTH:A
1ZR0:B	1YC0:I	1YC0:I
3BYB:A	1ZR0:B	1ZR0:B
3M7Q:B	2UUY:B	2FMA:A
4BQD:A	2W8X:A	2UUY:B
4DTG:K	3AUB:A	3BYB:A
4ISO:B	3BYB:A	3M7Q:B
4NTW:B	3M7Q:B	4BQD:A
4U30:X	4BQD:A	4DTG:K
4U32:X	4DTG:K	4ISO:B
5M4V:A	4ISO:B	4NTW:B
5NX1:D	4NTW:B	4U30:X
5PTI:A	4U30:X	4U32:X
5YV7:A	4U32:X	5M4V:A
6Q61:A	5M4V:A	5NX1:D
6YHY:A	5NX1:D	5PTI:A
	5YV7:A	5YV7:A
	6Q61:A	6Q61:A
		6YHY:A

Table 1: List of PDB ids used to generate the multiple structure alignment and HMMs divided by the external reference used to retrieve them from RCSB PDB

SwissProt ids sp—C5H8E7—TICK1_RHIAP sp—G9I929—VKTA_MICTN sp-O43278-SPIT1_HUMAN sp-O43291-SPIT2_HUMAN $sp-P00974-BPT1_BOVIN$ sp—P00980—VKTHA_DENAN sp—P00989—VKTH2_BUNMU sp-P02760-AMBP-HUMANsp—P05067—A4_HUMAN sp—P08592—A4_RAT sp—P0C1X2—VKTS1_CONST sp—P10646—TFPI1_HUMAN sp-P12023-A4MOUSE $sp-P12111-CO6A3_HUMAN$ $sp-P17726-TAP_ORNMO$ sp—P29216—A4_MACMU sp—P31713—VKT1 $_$ STIHL sp—P48307—TFPI2_HUMAN sp—P53601—A4_MACFA $sp-P79307-A4_PIG$ sp—P81658—VKTHC_DENAN -Q1RPT0-VKTH4_BUNMU -Q28864-TFPI1_MACMU $-Q5IS80-A4_PANTR$ -Q60495--A4_CAVPO -Q6ITB4—VKT2_OXYMI –Q6ITB5—VKT1₋OXYMI sp—Q6ITB6—VKT2_OXYSC sp—Q6ITB7—VKT1_OXYSC sp—Q6ITB9—VKT3_PSEAU $sp-Q75S50-VKTH3_BUNCA$ $sp-Q8AY44-VKTH7_BUNCA$ sp—Q8AY45—VKBH2_BUNCA sp-Q90WA1-VKT1_PSETT sp—Q95241—A4_SAISC

Table 2: List of SwissProt ids that have to be removed from the set of positives downloaded from UniProt and then used for the optimization and the testing of the method.

Train	Test	Threshold	Acc	MCC	TPR	PPV	F1 Score
Set 1,2,3	Set 4	1e-06	1.0	1.0	1.0	1.0	1.0
Set $1,2,4$	Set 3	1e-06	1.0	1.0	1.0	1.0	1.0
Set $1,3,4$	Set 2	1e-06	0.99998999	0.99215177	0.984375	1.0	0.99212598
Set $2,3,4$	Set 1	1e-06	0.99998999	0.99215177	0.984375	1.0	0.99212598

Table 3: PFAM summary of the 4-folds cross-validation

Train	Test	Threshold	Acc	MCC	TPR	PPV	F1 Score
Set 1,2,3	Set 4	1e-06	0.99998999	0.99215177	0.984375	1.0	0.99212598
Set $1,2,4$	Set 3	1e-06	1.0	1.0	1.0	1.0	1.0
Set $1,3,4$	Set 2	1e-05	0.99998999	0.99215177	0.984375	1.0	0.99212598
Set $2,3,4$	Set 1	1e-05	0.99997999	0.98436499	0.984375	0.984375	0.984375

Table 4: CATH summary of the 4-folds cross-validation

Train	Test	Threshold	Acc	MCC	TPR	PPV	F1 Score
Set 1,2,3	Set 4	1e-06	0.99998999	0.99215177	0.984375	1.0	0.9921259
Set $1,2,4$	Set 3	1e-06	0.99998999	0.99227291	1.0	0.9846153	0.99224806
Set $1,3,4$	Set 2	1e-06	0.99997999	0.98424113	0.96875	1.0	0.98412698
Set $2,3,4$	Set 1	1e-06	0.99998999	0.99215177	0.984375	1.0	0.99212598

Table 5: INTERPRO summary of the 4-folds cross-validation