MGTST-Outline

Nate Olson 2016-07-08

Objectives

- Provide a detailed description of the dataset and qa/qc methods used to validate the use of the dataset for evaluating 16S metagenomic pipelines and differential abundance detection methods
- Demonstrate how the dataset is used to evaluate the performance of different pipelines and differential abundance methods
- Provide an R package to facilitate using the dataset for evaluating pipelines and differential abundance detection methods

Abstract

Background

Methods

Experimental design

Sample selection

Sequencing

Sequence processing

Data analysis

Results

Sample Selection

wetlab QC

seq data QA and sequence processing

focus is on characterizing and validating the data, highlight the quality of the data and study

- Sample selection
- Wetlab QC
 - sample concentration results summary
 - qPCR

- * ERCC
- * bacterial quant (http://www.zymoresearch.com/dna/dna-analysis/femto-bacterial-dna-quantification-kit)
- Seq data QA
 - number of reads
 - read length distributions
 - PhiX error rate analysis
 - base quality summary
- Sequence processing
 - Table pipeline sequence budget
 - * number of reads filtered due to low quality
 - * number of reads merged
 - * number of chimeras
- OTU table
 - section objective identify/ highlight OTUs used in the following sections
 - Figure OTU abundance distribution by pipeline
 - Summary of Pre vs. Post specific OTUs
 - * abundance
 - * taxonomy
- Count Variance
 - section objective characterize count variance between PCR replicates
 - * is the variance correlated with experimental values e.g. biological sample, PCR plate, well, sequencing depth, or observed count value
 - Figure relationship between count and PCR replicate variance
- Normalization
 - section objective used PCR replicate variance values to validate normalization methods
 - Compare variance distributions for different normalization methods
 - Test-train or cross-validation based approach????
 - * split set of replicates based on the distribution/ range of sequences in a dataset
- Response linearity
 - section objective demonstrate how the dataset is used to characterize relative abundance estimates and identify potential sources of bias
 - Figure observed vs expected plots
 - Figure representative OTUs showing different types of response linearity
 - Differentiating between high and low linearity OTUs
- Differential Abundance
 - section objective demonstrate how the dataset can be used to evaluate the limit of differential abundance
 - Figure MA plot
 - Pre and Post unique OTUs
 - OTUs in both pre and post
 - Differential abundance decrection between unmixed and tritrated samples

Discussion

Acknowladgements

References