

Distributed Computing and Introduction to High Performance Computing

Imad Kissami¹

¹Mohammed VI Polytechnic University, Benguerir, Morocco

May 10, 2023

OUTLINE

- Why HPC?
- What's Supercomputer?
- Data locality
- How to make Python Faster
- Parallel models s
- Performance metrics

OUTLINE

- · The flood of Data
- Big data problem
- What's HPC?
- Typical HPC workloads
- Data Analytics Process

THE FLOOD OF DATA

In 2021

- Internet user \sim 1.9 GB per day
- \bullet Self driving car \sim 4 TB per day
- ullet Connected airplane \sim 5TB per day
- Smart factory \sim 1 PB per day
- Cloud video providers \sim 750 PB per day

THE FLOOD OF DATA

A self-driving car

- Radar \sim 10 100 KB per second
- ullet Sonar \sim 10 100 KB per second
- \bullet GPS \sim 50 KB per second
- ullet Lidar \sim 10 70 MB per second
- ullet Cameras \sim 20 40 MB per second
- 1 car \sim 5 Exaflops per hour

BIG DATA PROBLEM

Too much data

Not enough computer power, storage or infrastructure

WHAT'S HPC?

Leveraging distributed compute resources to solve complex problems

- ullet Terabytes \longrightarrow Petabytes \longrightarrow Zetabytes of data
- Results in minutes to hours instead of days or weeks

TYPICAL HPC WORKLOADS

^{*} Source: https://www.xilinx.com/applications/data-center/high-performance-computing.html

MODULE

INTRODUCTION TO HPC

DATA ANALYTICS PROCESS

Inspecting, cleaning, transforming and modeling decision-making.

SUMMARY

- Larger datasets require distributed computing
- Several open source HPC frameworks available

OUTLINE

- A brief introduction on hardware
- Modern supercomputers

Modern architecture (CPU)

Moore's Law

- Number of transistors: from 37.5 million(2000) to fifty billion(2022)
- Cpu speed: from 1.3GHz to 3.4GHz

CPU vs RAM speeds

Common Processors

Processor	Launched	Nb. of Cores	Freq. (Ghz)
Xeon Platinum 9282 (formerly Cascade La		28	2.6-3.8
Xeon Platinum 8376H (formerly Cooper La	ke) 2019-Q2	28	2.6-4.3
i9-12900H (Mobile, 12th generation)	2022-Q1	4-16	3.8-5.0
i9-12900KS (Desktop, formerly Alder Lake)	2022-Q1	8-16	2.5-5.5

Table: Some Intel processors

Processor	L3 cache	Nb. of Cores	Freq. (Ghz)
AMD EPYC 7773X	768 MB	64	2.2-3.5
AMD EPYC 7763	256 MB	64	2.45-3.5
AMD Ryzen 9 5950X (Desktop)	72 MB	16-32	3.4-4.9
AMD Ryzen 9 3900X (Desktop)	70 MB	12-24	3.4-4.6

Table: Some AMD processors

What is a supercomputer?

- cdc 6600: 1964 three million calculations per second
- Summit: 2018 36000 processors 200 quadrillion calculations per second
- Frontier: 2022 8 million processors AMD EPYC with 64 cores and speed up to 2GHz - quintillion calculations per second Toubkal: 2021 - 69000 processors

What is a supercomputer?

Frontier (USA)

Top 500

- Cray 2: Gigascale milestone in 1985
- Intel ASCI Red System: Terascale in 1997
- IBM Roadrunner
 System: Petascale in
 2008
- Frontier: Exascale in 2022

Top 500 Family system share evolution November 2009

Top 500 Family system share evolution November 2011

Top 500 Family system share evolution November 2015

Top 500 Family system share evolution November 2017

Top 500 Family system share evolution

June 2022

.

SUMMARY

- Highlights
 - · New architectures are available
 - Supercomputers achieve Exascale
- Consequence for the developers
 - · Writing dedicated codes

OUTLINE

- · Some definitions
 - FLOPS
 - Frequency
 - Memory Bandwidth
 - Memory Latency
- Computational Intensity
- Two level memory model

FLOPS

Floating point operations per second (FLOPS or flop/second).

Frequency

Speed at which a processor or other component operates (Hz)

Memory Bandwidth

Rate at which data can be transferred between the CPU and the memory (bytes/second).

Memory Latency

Time delay between a processor requesting data from memory and the moment that the data is available for use (clock cycles or time units).

COMPUTATIONAL INTENSITY

Algorithms have two costs (measured in time or energy):

- Arithmetic (FLOPS)
- Communication: moving data between
 - levels of a memory hierarchy (sequential case)
 - processors over a network (parallel case)

Computational Intensity

It is the ratio between arithmetic complexity (or cost) and memory complexity (cost).

TWO LEVEL MEMORY MODEL

Modern architecture (CPU)

Cache Hit or Miss

- Cache Hit: CPU is able to find the Data in L1/L2/L3
- Cache Miss: CPU is not able to find the Data in L1-L2-L3 and must retrieve it from RAM

Typical sizes

- RAM \sim 4 GB 128 GB even higher on servers
- L3 \sim 4 MB 50 MB
- L2 \sim 256 KB 8 MB
- Holds data that is likely to be accessed by the CPU
- L1 ~ 256 KB
- Instruction and Data cache

MATRIX MULTIPLICATION: THREE NESTED LOOP


```
for i in range(0, n):
    #read row i of A into fast memory
    for j in range(0, n):
    #read row C[i,j] into fast memory
    #read col j of B into fast memory
    for k in range(0, n):
        C[i,j] = C[i,j] + A[i,k] *B[k,j]
        #write C[i,j] back to slow memory
```

```
arithmetic cost :: n**3*(ADD + MUL) = 2n**3 arithmetic operations memory cost :: n**3*READ + n**2*READ + n**2*(READ + WRITE) = n**3 + 3n**2 computational intensity :: 2n**3/(n**3 + 3n**2) -= 2
```

SUMMARY

- Running time of an algorithm is sum of 3 terms:
 - N_flops * time_per_flop
 - N_words / bandwidth
 - N_messages * latency
- Avoiding communication algorithms come with a significant speedup
- Some examples
 - Up to 12x faster for 2.5D matmul on 64K core IBM BG/P
 - Up to 3x faster for tensor contractions on 2K core Cray XE/6
 - Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CE6

OUTLINE

- Data Locality
 - The Penalty of Stride
 - High Dimensional Arrays
- Block Matrix Multiplication

DATA LOCALITY

- Data locality is key for improving per-core performance,
- Memory hierarchy has 4 levels,
- Processor looks for needed data in memory hierarchy,
- Simple or complex manipulations can increase speedup,
- Blocking version of mxm can increase computational intensity.

DATA LOCALITY

The Penalty of Stride > 1?

- Data should be arranged for unit stride access,
- Not doing so can result in severe performance penalty

Example:

```
do i=1, N*i_stride,i_stride
   mean = mean + a(i)
end do
```

- Compilation with all optimization and vectorization disabled (-00)
- Compulation with (-02) that activates some optimizations

DATA LOCALITY

The Penalty of Stride: CPU time

DATA LOCALITY

High Dimensional Arrays

- High Dimensional Arrays are stored as a contiguous sequence of elements
- Fortran uses Column-Major ordering
- C uses Row-Major ordering

mxm in Fortran N = 1000

- Naive version: CPU-time 1660.6 (msec)
- Transpose version: CPU-time 1139.8 (msec)

BLOCK MATRIX MULTIPLICATION

mxm example: Using block version (cache optimization)

BLOCK MATRIX MULTIPLICATION

mxm block version: CPU time & Bandwidth

SUMMARY

- Access contiguous, stride-one memory addresses
- Emphasize cache reuse
- Use data structures that improve locality
- Minimize communication across different memory levels
- Use parallelism to improve locality

OUTLINE

- About Python
- Python is slow!
- Profiling a Python code

ABOUT PYTHON

- Python was created by Guido van Rossum in 1991 (last version 3.11 24/10/2022)
- Python is simple
- Python is fully featured
- Python is readable
- Python is extensible
- Python is ubiquitous, portable, and free
- Python has many third party libraries, tools, and a large community

ABOUT PYTHON

- Python was created by Guido van Rossum in 1991 (last version 3.11 24/10/2022)
- Python is simple
- Python is fully featured
- Python is readable
- Python is extensible
- Python is ubiquitous, portable, and free
- Python has many third party libraries, tools, and a large community
- But Python is slow!!

ABOUT PYTHON

- Python was created by Guido van Rossum in 1991 (last version 3.11 24/10/2022)
- Python is simple
- Python is fully featured
- Python is readable
- Python is extensible
- Python is ubiquitous, portable, and free
- Python has many third party libraries, tools, and a large community
- → When does it really matter?

PYTHON IS SLOW

When does it matter?

- Is my code fast?
- How many CPUh?
- Problems on the system?
- How much effort is it to make it run faster?

PROFILING A PYTHON CODE: WHY?

- Code bottlenecks
- Premature optimization is the root of all evil D. Knuth
- First make it work. Then make it right. Then make it fast. K. Beck
- How?

PROFILING A PYTHON CODE: PROFILERS

- Deterministic and statistical profiling
 - the profiler will be monitoring all the events
 - it will sample after time intervals to collect that information
- The level at which resources are measured; module, function or line level
- Profile viewers

PROFILING A PYTHON CODE: TOOLS

- Inbuilt timing modules
- profile and cProfile
- pstats
- line_profiler
- snakeviz

PROFILING A PYTHON CODE: USE CASE

```
def linspace(start, stop, n):
 step =float(stop -start) / (n -1)
 return [start +i *step for i in range(n)]
def mandel(c, maxiter):
 7 = C
 for n in range(maxiter):
   if abs(z) > 2:
     return n
   2 = 2*2 +c
 return n
def mandel set(xmin=-2.0, xmax=0.5, vmin=-1.25, vmax=1.25,
              width=1000, height=1000, maxiter=80):
 r = linspace(xmin, xmax, width)
 i = linspace(ymin, ymax, height)
 n = [[0]*width for _ in range(height)]
 for x in range(width):
   for y in range(height):
     n[y][x] =mandel(complex(r[x], i[y]), maxiter)
 return n
```

PROFILING A PYTHON CODE: TIMEIT

The very naive way

```
import timeit

start_time =timeit.default_timer()
mandel_set()
end_time =timeit.default_timer()
# Time taken in seconds
elapsed_time =end_time -start_time

print('> Elapsed time', elapsed_time)
```

or using the magic method timeit

```
[In] %timeit mandel_set()
[Out] 3.01 s +/- 84.6 ms per loop (mean +/- std. dev. of 7 runs, 1 loop each)
```

PROFILING A PYTHON CODE: PRUN

```
[In] %prun -s cumulative mandel_set()
```

which is, in console mode, equivalent to

```
{\tt python} \ {\tt -m} \ {\tt cProfile} \ {\tt -s} \ {\tt cumulative} \ {\tt mandel.py}
```

```
25214601 function calls in 5.151 seconds
 Ordered by: cumulative time
                                    percall filename: lineno(function)
 ncalls
         tottime
                  percall
                           cumtime
                                      5.151 {built-in method builtins.exec}
           0.000
                    0.000
                             5.151
                  0.002
           0.002
                            5.151
                                      5.151 <string>:1(<module>)
           0.291
                  0.291
                            5.149
                                      5.149 <ipython-input-4-9421bc2016cb>:13(mandel set)
                  0.000
                                      0.000 <ipvthon-input-4-9421bc2016cb>:5(mandel)
 1000000
           3.461
                            4.849
24214592
           1 388
                   0.000
                            1.388
                                      0.000 (built-in method builtins.abs)
           0.008
                    0.008
                            0.008
                                      0.008 <ipython-input-4-9421bc2016cb>:17(<listcomp>)
           0.000
                    0.000
                             0.000
                                      0.000 <ipvthon-input-4-9421bc2016cb>:1(linspace)
                                      0.000 <ipython-input-4-9421bc2016cb>:3(<listcomp>)
           0.000
                    0.000
                             0.000
                                      0.000 {method 'disable' of 'lsprof.Profiler' objects}
           0.000
                    0.000
                             0.000
```

PROFILING A PYTHON CODE: LINE LEVEL

Use the line_profiler package

```
[In] %load_ext line_profiler
[In] %lprun -f mandel mandel_set()
```

```
Timer unit: 1e-06 s
Total time: 12 4456 s
File: <ipython-input-2-9421bc2016cb>
Function: mandel at line 5
                       Time Per Hit % Time Line Contents
#Line
           Hits
                                               def mandel(c, maxiter):
       1000000
                  250304.0
                                 0.3
                                          1.1
                                                   z = c
       24463110 6337732 0
                                 0.3
                                         27.7
                                                   for n in range(maxiter):
                                                       if abs(z) > 2:
       24214592 8327289 0
                                 0.3
                                         36.5
         751482
                201108.0
                                 0.3
                                          0.9
                                                           return n
      23463110 7658255.0
                                 0.3
                                         33.5
                                                       7 = 7*7 + 6
                                          0.3
   11
         248518
                     65444.0
                                 0.3
                                                   return n
```

PROFILING A PYTHON CODE: LINE LEVEL

This can be done in console mode as well

```
Oprofile
def mandel(c, maxiter):
    z = c
    for n in range(maxiter):
    if abs(z) > 2:
        return n
    z = z*z + c
    return n
```

Then on the command line

```
kernprof -1 -v mandel.py
```

Then

python3 -m line_profiler mandel.py.lprof

PROFILING A PYTHON CODE: MEMORY

• Use the memory_profiler package

```
[In] %load_ext memory_profiler
[In] %mprun -f mandel mandel_set()
```

```
Line #
         Mem usage
                       Increment Occurrences
                                                Line Contents
         118.2 MiB -39057.7 MiB
                                     1000000
                                               def mandel(c, maxiter):
         118 2 MiR -39175 5 MiR
                                     1000000
                                                 7 = C
                                                  for n in range(maxiter):
    10
         118 2 MiR -293081 8 MiR
                                     24463110
   11
         118.2 MiB -292425.7 MiB
                                     24214592
                                                    if abs(z) > 2:
         118.2 MiB -38519.6 MiB
                                     751482
                                                     return n
    13
         118.2 MiB -253906.1 MiB
                                     23463110
                                                    7 = 7*7 + 6
    14
         118.2 MiB -656.4 MiB
                                      248518
                                                 return n
```

PROFILING A PYTHON CODE: MEMORY

• Use the memory_profiler package

```
@profile
def mandel(c, maxiter):
    z = c
    for n in range(maxiter):
        if abs(z) > 2:
            return n
        z = z*z + c
    return n
```

Then on the command line

```
mprof run mandel.py
```

Then

mprof plot

Or

python3 -m memory_profiler mandel.py

OUTLINE

- Accelerate a Python code
 - Using NumpyUsing CythonUsing Numba

 - Using Pyccel
- Some Benchmarks

ACCELERATE A PYTHON CODE: NUMPY

- Library for scientific computing in Python,
- High-performance multidimensional array object,
- Integrates C, C++, and Fortran codes in Python,
- Uses multithreading.

ACCELERATE A PYTHON CODE: NUMPY VS LISTS

```
import numpy, time
size =1000000
print("Concatenation: ")
list1 =[i for i in range(size)]; list2 =[i for i in range(size)]
array1 =numpy.arange(size); array2 =numpy.arange(size)
# List
initialTime =time.time()
list1 =list1 +list2
# calculating execution time
print("Time taken by Lists: ". (time.time() -initialTime). "seconds")
# Numpy array
initialTime =time.time()
array =numpy.concatenate((array1, array2), axis =0)
# calculating execution time
print("Time taken by NumPy Arrays :", (time.time() -initialTime), "seconds")
Concatenation:
Time taken by Lists: 0.021048307418823242 seconds
Time taken by NumPy Arrays: 0.009451150894165039 seconds
```


- Cython is an optimizing static compiler for:
 - Python programming language
 - Cython programming language (based on Pyrex)
- Cython gives you the combined power of Python.

Python

Cython

Execution time

```
%%timeit -n1 -r1
m = np.zeros(s, dtype=np.int32)
mandelbrot(m, size, iterations)
>> 12.2 s +/- 0 ns per loop (mean +/- std. dev. of 1 run, 1 loop each)

%%timeit -n1 -r1
m = np.zeros(s, dtype=np.int32)
mandelbrot_cython(m, size, iterations)
>> 29.8 ms +/- 0 ns per loop (mean +/- std. dev. of 1 run, 1 loop each)
```

ACCELERATE A PYTHON CODE: NUMBA

- Open source Just-In-Time compiler for python functions.
- Uses the LLVM library as the compiler backend.

ACCELERATE A PYTHON CODE: NUMBA

Python

```
import numpy as np

def do_sum():
    acc =0.
    for i in range(10000000) :
        acc +=np.sqrt(i)
    return acc
```

Numba

```
from numba import njit

@njit
def do_sum_numba():
    acc =0.
    for i in range(10000000) :
        acc +=np.sqrt(i)
    return acc
```

Time for Pure Python Function: 7.724030017852783
Time for Numba Function: 0.015453100204467773

ACCELERATE A PYTHON CODE: PYCCEL

- Pyccel is a static compiler for Python 3, using Fortran or C as a backend language.
- Python function:

```
import numpy as np

def do_sum_pyccel():
    acc =0.
    for i in range(10000000):
        acc +=np.sqrt(i)
    return acc
```

ACCELERATE A PYTHON CODE: PYCCEL (F90)

Compilation using fortran:

```
pyccel --language=fortran pyccel_example.py
module pyccel example
use, intrinsic :: ISO_C_Binding, only : i64 => C_INT64_T . f64 => C_DOUBLE
    implicit none
    contains
   function do_sum_pyccel() result(acc)
       implicit none
       real(f64) :: acc
       integer(i64) :: i
       acc = 0.0_{f64}
       do i = 0 i64.99999999 i64.1 i64
            acc = acc + sqrt(Real(i, f64))
        end do
       return
    end function do sum pyccel
end module pyccel_example
Time for Pure Python Function: 7.400242328643799
Time for Pyccel Function: 0.01545262336730957
```

ACCELERATE A PYTHON CODE: PYCCEL (C)

Compilation using c:

```
pyccel --language=c pyccel_example.py
```

SOME BENCHMARKS

Rosen-Der

Tool	Python	Cython	Numba	Pythran	Pyccel-gcc	Pyccel-intel
Timing (µs)	229.85	2.06	4.73	2.07	0.98	0.64
Speedup	-	× 111.43	× 48.57	× 110.98	× 232.94	× 353.94

Black-Scholes

Tool	Python	Cython	Numba	Pythran	Pyccel-gcc	Pyccel-intel
Timing (μs)	180.44	309.67	3.0	1.1	1.04	$6.56 10^{-2}$
Speedup	_	× 0.58	× 60.06	× 163.8	× 172.35	× 2748.71

Laplace

Tool	Python	Cython	Numba	Pythran	Pyccel-gcc	Pyccel-intel
Timing (μs)	57.71	7.98	$6.46 10^{-2}$	$6.28 10^{-2}$	8.0210^{-2}	2.8110^{-2}
Speedup	_	× 7.22	× 892.02	× 918.56	× 719.32	× 2048.65

OUTLINE

- Parallel Programming
- Parallel strategies
- Parallel infrastructures

PARALLEL PROGRAMMING

PARALLEL PROGRAMMING

PARALLEL STRATEGIES

PARALLEL STRATEGIES

PARALLEL STRATEGIES

PARALLEL INFRASTRUCTURES

Shared memory

PARALLEL INFRASTRUCTURES

Distributed memory

SUMMARY

- Advantages
 - Parallel computing saves time
 - Solve Larger Problems
 - Data storage
- Walls
 - Writing parallel codes is time-consuming
 - · Power consumption
 - CPUs, GPUs, FPGAs

OUTLINE

- Performance and scalability
- Classes of performance metrics
- Execution time & Total Parallel Overhead
- Speedup & Efficiency
- Amdahl's & Gustafson's Laws

PERFORMANCE AND SCALABILITY

Design of parallel applications:

- Performance
- Scalability

CLASSES OF PERFORMANCE METRICS

Distinct classes of performance metrics:

- Performance metrics for processors/cores
- Performance metrics for parallel applications
 - · Practical metrics
 - · Theoretical metrics

EXECUTION TIME

Finding minimum element among [23,12,9,30,37,27,8,17].

- Execution time:
 - Serial Time $T_s(\theta(n))$

EXECUTION TIME

Finding minimum element among [23,12,9,30,37,27,8,17].

- Execution time:
 - Serial Time $T_s(\theta(n))$
 - Parallel Time $T_p(\theta(\log n))$

TOTAL PARALLEL OVERHEAD

Finding minimum element among [23,12,9,30,37,27,8,17].

- Execution time:
 - Serial Time $T_s(\theta(n))$
 - Parallel Time $T_p(\theta(\log n))$

Total Parallel Overhead

- With p processes:
 - Total time = pTp
 - Overhead = $pT_p T_s$

SPEEDUP

Speedup is a measure of performance.

$$S_p = \frac{T_s}{T_p}$$

• Example 1: Find out the minimum element in array

$$S_{p} = \frac{\theta(n)}{\theta(\log n)} = \theta\left(\frac{n}{\log n}\right)$$

• Example 2: Solve 1D transport equation

		1 CPUs	2 CPUs	4 CPUs	8 CPUs	16 CPUs
	Т(р)	1000	520	280	160	100
I	S(p)	- 1	1.92	3.57	6.25	10.00

EFFICIENCY

Efficiency is a measure of the usage of the computational capacity.

$$E_p = \frac{S_p}{p} = \frac{T_s}{p \times T_p}$$

• Example 1: Find out the minimum element in array

$$E_p = \frac{\theta \left(\frac{n}{\log n}\right)}{p} \ \ (\text{if } p = n) => E_p = \frac{\theta \left(\frac{n}{\log n}\right)}{n} = \theta \left(\frac{1}{\log n}\right)$$

• Example 2: Solve 1D transport equation

	1 CPUs	2 CPUs	4 CPUs	8 CPUs	16 CPUs
s(p)	1	1.92	3.57	6.25	10.00
E(p)	1	0.96	0.89	0.78	0.63

AMDAHL'S LAW: STRONG SCALING

• Serial part: $0 \le f \le 1$

$$S_p = \frac{1}{f + \frac{1 - f}{p}}$$

- Example: If f = 10%, what is the max. speedup achievable using 8 processors?
 - Solution:

$$S_p = \frac{1}{0.1 + \frac{1 - 0.1}{8}} \approx 4.7$$

• Limit:

$$\lim_{p \to \infty} = \frac{1}{0.1 + \frac{1 - 0.1}{p}} = 10$$

GUSTAFSON'S LAW: WEAK SCALING

• Parallel part: $0 \le f' \le 1$

$$S_p = (1 - f') + f' \times p = 1 + (p - 1) \times f'$$

- Example: f' = 90%, what is the scaled speedup using 64 processors?
- Solution:

$$S_p = 1 + (p - 1) \times f' = 1 + (64 - 1) \times 0.90 = 57.70$$

SUMMARY

- Scalable application
 - Strong scaling + Weak scaling

		1 CPUs	2 CPUs	4 CPUs	8 CPUs	16 CPUs
	n = 10 000	1	0.81	0.53	0.28	0.16
Efficiency	n = 20 000	1	0.94	0.80	0.59	0.42
	n = 40 000	1	0.96	0.89	0.79	0.58

• Superlinear Speedup

$$\frac{T_s}{T_p} \ge p$$