PORTABLE GENERAL PURPOSE INTELLIGENT ARM Operating Manual (CE Marking) (91-00411)

Rev. 1

MITSUBISHI HEAVY INDUSTRIES, LTD.

CONTENTS

Introduction	0-1
1. General Precautions	0-1
2. Notes for safe operation	0-2
2.1 Introduction	0-2
2.2 Safety measures	0-3
(1) General	0-3
(2) Unpacking/Transportation	0-4
(3) Setting Up	0-6
(4) Power Supply ON, Control ON and Servo ON	0-7
(5) Teaching Work	0-7
(6) Program Motion	0-9
(7) Automatic Operation	0-9
(8) Abnormality	0-11
(9) Motion Recovery	0-11
3. Warning Label	0-12
Chapter 1 Overview	1-1
1.1 Appearance of Arm	1-3
1.2 Appearance of controller	1-4
Chapter 2 Specifications	2-1
2.1 Inter-Unit Connections	2-2
2.2 Arm	2-7
(1) Specifications	2-7
•	2-9
(3) Outline Drawing	2-10
(4) Range of Operation	2-11
(5) Surface Flange Dimensions	2-12
<u>e</u>	2-13
(7) Setting and canceling of the mechanical limit switch	2-15
2.3 Controller	2-16
(1) Specifications	2-16
(2) Outline Drawing	2-17
6	2-20
v .	2-21
2.4 Servo Driver	2-25
(1) Outline of Basic Specifications	2-25
•	2-29
	2-37
(1) Specifications	2-37
•	2-38
2.6 Emergency Stop Box	2-39
	2-39
(2) Outline Drawing	2-39

2.7	Motion Control CPU Board	2-40
2.8	Operation Controller	2-42
	•	
Chapter	3 Specifications of Optional Products	3-1
3.1		3-2
3.2	PA Library	3-3
3.3	Operation Support Program	3-4
3.4	Simple Simulator	
3.5	User Interface Set	3-6
	(1) Keyboard	3-6
	·	3-6
	(3) Display	
3.6		
3.3	(1) External DI/O Panel	3-7
		3-8
37	Force Sensor	3-9
0.7		3-9
	(2) Outline Drawing	3-10
3.8	Electric Parallel Hand Set	3-11
0.0		3-11
	(2) Outline Drawing	
	(a) Outline Drawing	J-12
Chapter	4 Setup	4-1
-		4-1
1.1	(1) Power Supply	
	(2) Safety Measures	
4.2	Instructions for Installation	
1.2	(1) Instructions for Power Supply	
	(2) Instructions for Maintenance and Operating Environment	
	(3) Requirements for Installation Environment	
4.3	Inter-Unit Connections	
	Connections to External Units	
7.7	(1) Connection by Connector	
	(2) Connection by DI/O Board	
	(2) Connection by DIO Board	4-11
Chanter	5 How to Change Settings	5-1
5.1	Setting of Motion Control CPU Board	
5.2	Setting of Operation Control CPU Board	
0.2	Setting of Operation Control of O Board	3-3
Chapter	6 Maintenance & Inspection Manual	6-1
-	General	
	(1) Inspection Frequency	-
	(2) Other Matters to Note	
6.2	Daily Inspection	
	Periodic Inspection	
0.0	· · · · · · · · · · · · · · · · · · · 	- -

Chapter	7 Before Purchasing Produ	ct	7-1
7.1	Delivery Term		7-1
7.2	Delivery		7-1
7.3	Acceptance		7-1
7.4	Guarantee		7-1
	(1) Period of Guarantee		7-1
	(2) Scope of Guarantee		7-1
	(3) Contents of Guarantee		7-2
7.5	Maintenance Contract		7-2
	(1) Contents of Maintenance	e Contract	7-2
	(2) Instructions for Mainter	nance Contract	7-2
7.6	Operating Conditions		
	for Programs Supplied by 0	Other Companies	7-3
7.7	Contact Address		7-3

Introduction

Thank you for your purchasing this Portable General Purpose Intelligent Arm. This Operating Manual describes the handling, setting procedure and instructions for "Portable General Purpose Intelligent Arm PA-10". Please read this Operating Manual before use.

For Safe Operation

1. General Precautions

General Precautions

- Read this Operating Manual carefully, and operate the machine properly. Keep this manual with care so that it can be referred to as required.
- Before starting work or operation, check if the functions and performance of this product are properly available.
- Please note we are not responsible for the functions and performance of any product used, or modified in manners other than the standards shown in the specifications.
- In case our product is used in combination with other system, the functions and/or performance
 may not be realized due to operating conditions and environment. Pay enough attention to
 possible problems before such use.
- To prevent various damages possibly caused by unexpected failure or malfunction, establish sufficient safety measures.
- Please note we are not responsible for any damage caused directly, or indirectly by the use of this
 product or its failure.

2. Notes for safe operation

2.1 Introduction

PA-10 arm moves based on software prepared by the customer. For work application, in addition to the arm, various other equipment will be required, for example; transfer equipment, endeffector tools, sensors, etc. PA-10 including these peripheral devices belongs to the manipulator controlled by labor safety & health rules, and must meet the regulations specified in related ordinances. For the teaching and inspection carried out in the robot's motion range without cutting off the drive power (power supply) above all must meet the regulations specified in related ordinances .

The followings are the related ordinances for robot. Please ensure that you will respect these regulations, and work safely.

(a) EN775(ISO 10218) :Manipulating industrial robots, safety

(b) ISO 11161 :Industrial automation systems—

Safety of integrated manufacturing systems

(c) EN60204-1(IEC60204-1): Electrical equipment of industrial machines

To configure an original system by integrating the portable general purpose intelligent arm PA-10, prepare an operating manual reflecting the contents of this document, and pay enough attention to safety measures.

2.2 Safety Measures

Please ensure safe operation, by employing appropriate safety measures for the work site, based on the following recommendations.

(1) General

(a) Do not approach arm while in motion.

For safe operation, install interlocks to protect against arm motion caused by unexpected malfunction. Do not take unnecessary risks. While in operation, take care not to enter within manipulator motion limits.

(b) Matters for special attention during stoppage

Confirm what condition the arm has been stopped in. If the arm is stopped in automatic operation, etc., sudden movement can occur, which could be very dangerous. Please indicate work conditions, and consider the safety of others working around you. It is important for an observer to keep watch at all times, indicating what the manipulator is presently doing, and preventing the other worker from unintentionally entering within the arm motion limits.

(c) Put into effect two fold safety measures

Accidents occur due to some sort of carelessness, or lack of checking. To ensure safe working, it is recommended to apply two fold safety measures on the work site.

(d) Know the work

Before beginning work, thoroughly understand what the arm is made to do, what it does, what it can do, contents of work, arm specifications, etc. Studying first can prevent accidents later.

(e) Decide procedures and signals

Please decide upon procedures for teaching, operation, inspection, work in case of abnormality, etc. For good work safety, work carefully step by step through procedures, following signals when 2 or more people are working.

(f) Two people for teaching work, test work, etc.

When carrying out work within arm motion limits (teaching, inspection, etc.), it is recommended to work in groups of two to ensure the safety of the worker within the motion limits, so that one person can observe the work circumstances at all times.

(g) Carry out inspection before starting work

Carelessness is a powerful enemy. Even with familiar work, always carry out inspection before starting work to avoid malfunction.

(2) Unpacking/Transportation

Portable general purpose intelligent arm PA-10 is light in weight, so it can be handled without special lifting equipment. During unpacking/transportation, however, take sufficient care to avoid dropping on feet, crushing hands, back injury, etc.

Also, take care not to allow the arm to fall down when setting it.

- -MIND YOUR FEET
- -LIFT WITH CORRECT POSTURE
- -USE LIFTING AIDS
- -KEEP GOOD BALANCE
- -SIGNAL

- -MIND YOUR FEET
- -LIFT WITH CORRECT POSTURE
- -USE LIFTING AIDS
- -KEEP GOOD BALANCE

- (3) Setting Up

 When setting up the PA-10 please take the following precaution:
- (a) Consider arrangements for work and maintenance.
- (b) Attach arm to mounting of sufficient strength and hardness taking into account arm weight, work-tool weight, payload weight, handling speed, etc.
- (c) If using two or more robots working together, take sufficient precautions to avoid mutual interference by providing the required mutual interlock function. As a safety measure for work, please add emergency stop function, etc.
- (d) Please take sufficient precautions to ensure that operating devices, such as the operating box, are mounted/held securely to avoid drops which could result in unexpected arm movement. Also, usually the stop switch, so during work (teaching automatic operation, etc) ensure the operation device can be approached easily.
- (e) Noise may cause unexpected arm motion, so ensure all equipment is earthed.
- (f) Take sufficient measures to protect cables.
- (g) It is recommended to position operation state indicators (rotating lamps, sign board, etc) in easily visible places.
- (h) When working in high places, take measures to ensure workers and objects are prevented from falling.

- (4) Power Supply ON, Control ON and Servo ON Before switching ON the power, control and servos, please check the followings:
- (a) No one is within arm motion limits.
- (b) Controller door is closed.
- (c) Daily inspection has been carried out, and there are no abnormalities.
- (d) Connected equipment will not move dangerously when manipulator is started.
- (e) Tools, etc. have not been left within arm motion limits.
- (f) Emergency switch can be operated quickly and easily.
- (g) Workers are not at dangers from flying objects caused by unexpected arm motion.
- (h) Workers are not at dangers when the arm drops in emergency stop, or any object held by the hand is ejected.
- (i) Operation device is not indicating any abnormality.

(5) Teaching Work

When carrying out the teaching work, please observe the followings:

- (a) If any teaching work is carried out in the robot motion limits without cutting off the power for robot, ensure that such work be performed by operators who have been trained specially as specified by Labor Ministry.
- (b) Before starting work, confirm the followings from outside of the arm motion limits. If any abnormality is detected, please correct it immediately.
 - -No abnormal movement of surrounding equipment.
 - -Emergency stop function is working normally.
 - -No leak of air or oil from any pipes/tubes.
 - -Sign indicating teaching in progress.
 - -Teaching mode key switch of the controller is teach mode.
 - -Teaching speed is slow.
- (c) Avoid working within arm motion limits. Please work from outside of arm motion limits if possible.
- (d) Ensure that an escape route is prepared in case of mishap.
- (e) Work is often carried out with arm power ON, and the worker tends to concentrate only on the end of arm. So, it is recommended during work that an observer should stand outside of arm motion limits in a position where whole arm can be seen easily, so that arm can be stopped immediately if any malfunction occurs.
- (f) Please ensure adequate lighting is provided for the work environment.
- (g) Please ensure the workers wear appropriate protective gears.
- (h) During teaching, please operate the arm as slowly as possible.

(6) Program Motion

When moving robot to check prepared program, please observe the following precautions:

- (a) Please check the contents of program before attempting automatic operation.
- (b) Please check the teaching mode key switch of the controller at run mode before attempting automatic operation.
- (c) When the contents of program has been checked, please confirm for each step if arm moves correctly in accordance with the program.
- (d) When checks have been completed, please run the actual program at low speed.
- (e) If there is no problem in the movement check, check the safety measures, and start automatic operation.

NOTE: Pay sufficient attention to safety, and do not place too much confidence on the written program. Robot is faithful, and moves faithfully as programmed. "YOU" the programmer must ensure safety. Please pay great attention to safety when programming.

(7) Automatic Operation

During automatic operation, please pay attention to the following precautions:

- (a) Before starting automatic operation, please check the followings:
 - -There is no one within the arm motion limits.
 - -The contents of work agrees with the program to be executed.
 - -Connected devices have no sign of abnormality, and are ready for starting automatic operation.
 - -The teaching mode key switch of the controller is at run mode.
- (b) Establish a system to trigger emergency stop immediately in case abnormality occurs.
- (c) Check movement for at least 1 cycle.
- (d) If the machine is suspected to move "strangely", or any abnormality occurs actually, stop the robot quickly (as a fundamental rule, switch off the power), and inspect. (If there appears to be an abnormality in the specifications, then please inform MHI of the case.)
- (e) Please check if sign is indicating automatic operation.
- (f) During automatic operation, please take measures to prevent personnel from entering within arm motion limits, no matter what the conditions may be (even non-moving condition).
 - eg observer, or safety barrier (Japan Green Cross, etc.), safety plug, beam-type switch, etc.

(KEYENCE http://www.keyence.co.jp/OMRON http://www.omron.co.jp/, etc.)

- -Check Program
- -Check Movement
- -Check Indication

-Check Entry Prevention

-Emergency Stop Button

(8) Abnormality

If any abnormality occurs, take the following steps:

- (a) As a fundamental rule, turn OFF the power supply before inspection.
- (b) Indicate that inspection is in progress.
- (c) Take measures so that other people can not operate the machine, and assign an observer to guard.
- (d) Observer should always be ready to push emergency stop button.
- (e) If inspection is carried out without cutting off the power, specially trained workers should perform such inspection.
- (f) Re-check what is abnormal.
- (g) If you have any doubt, please inform MHI, before entering arm motion limits, of the "process to failure", "failure" and "present condition" in details as far as possible.

(9) Motion Recovery

For motion recovery, carry out the checks for each step as in starting the machine initially. If abnormalities occur, please check not only the section affected in such case but also the whole system.

3. Warning Label

Establish measures to prevent human approach to the machine in operation.

Operating the machine with the cover opened could lead to electric shock. Be sure to close the cover.

To prevent electric shock, also be sure to operate the machine properly earthed (type 3 earthing).

Chapter1 Overview

Portable General Purpose Intelligent Arm has the following features:

- 1. Employing epoch-making open system
 - Arm can be assembled in the existing work system freely, and various types of work can be performed by utilizing the user's know-how.
 - For the controller, the internal PC or any PC available in the market can be used.
- 2. As dexterous as human hand even under adverse environment
 With the arm length of 950mm the same as human hand, the 7-joint specification allows the work to be
 performed while avoiding obstacles. The machine (arm only) can be operated even under an
 environment requiring dust-proof/drip proof (standard spec.), explosion-proof/water proof/ cleanness
 (optional).
- Dead weight is only 35kg. The controller is also compact, light in weight, and portable.
 Yet, 10kg can be lifted up. The machine can be brought in, and used at a construction site or a factory where system lines are not established.

The following page shows the system configuration of Portable General Purpose Intelligent Arm.

1.1 Appearance of Arm

1.2

1.2 Appearance of controller

Chapter 2 Specifications

This chapter describes the specifications of Portable General Purpose Intelligent Arm.

2.1 Inter-Unit Connections

Before starting operation, connect the units as shown in the drawing on the next page.

installed in Operation Control Unit Mouse Connection of Motion Control CPU Board ·Level 4set: installed in user's PC Optical Board Metion Control CPU Board ·Level 3set: Keyboard Display ISA Teaching Mode Key SW Open Cable ARCNET Cable RS-232C (for Simple Simulator (optional)only) -Power SW -Optical fiber connector ARCNET Connector VGA Port þ Operation Control Unil CNI CN2 Keyboard/Mouse Port Parallel Port-Serial Port-Power Supply Cable RJ45-Serial Port blank (PCI) blank (PCI) (male) (male) Arm-Controller Cable Arm-Controller Cable Power Supply Cable Equipment (Signal) (Orive) B0 x Emergency Stop (female) Between Arm Mechanism Connections

2-3

If purchasing the level 2 system, connect between your ARCNET board and optical board as shown in the drawing on the next page. \\

(1) CONNECTION BETWEEN YOUR ARCNET BOARD AND Optical BOARD

- (1) Remove HYC2485S from YOUR ARCNET BOARD.
- ②Install an 8pins socket on YOUR ARCNET BOARD.
- ③Connect an 8pins plug of Optical BOARD to the 8pins socket. (Refer to Fig-1 and 2)

Fig-1. Installation of 8pins socket

Fig-2. Connection between YOUR ARCNET BOARD and Optical BOARD

(2) CONNECTION BETWEEN Optical BOARD AND CONTROLLER

Fig-3. Connection between ARCNET BOARD and Optical BOARD with Optical fiber cable

2.2 Arm

Portable General Purpose Intelligent Arm employs an "Open Architecture" dividing the system into levels, and arm itself comprises the 1st level.

(1) Specifications

Item	Specifications					
Name	Main body of portable general purpose intelligent arm					
Model	PA-10A-ARM					
Туре	Vertical multi-joint type					
Configuration			ion (explosion-pro	of/water-proof as op	otional)	
Number of joints	Dust-proof/drip-proof construction (explosion-proof/water-proof as optional) 7					
Joint configuration	R-P-R-P-R from robot-mounting side (R : rotation , P : pivot)					
T	S1-S2-S3-E1-E2-W1-W2 from robot-mounting side					
Joint names	(S: shoulder joint, E: elbow joint, W: wrist joint)					
	Shoulder reach : 315mm (base surface to S2)					
A 1	Upper arm	: 450mm (S2	2 to E1 axes)			
Arm length	Lower arm	: 500mm (E	1 to W1 axes)			
	Wrist reach	: 80mm (W	/1 to mechanical i	nterface side)		
Movable range	See 2.2.(4).				_	
	Axis name		Limit (angle)		Max. operating	
		Mechanical	Servo limit	Software limit	speed	
		limit			(rad/sec)	
	S1 (rotation)	+-180	+-178	+-177	+-1	
Joint operating	S2 (swing)	+- 94	+- 92	+- 91	+-1	
range & max.	S3 (rotation)	+-180	+-175	+-174	+-2	
operating speed *1	E1 (swing)	+-143	+-138	+-137	+-2	
	E2 (rotation)	+-270	+-256	+-255	+-2π	
	W1 (swing)	+-180	+-166	+-165	+-2π	
	W2 (rotation)	+-limitless	+-361	+-360	+-2π	
		rotation				
Max. integrated	1550mm/sec					
speed						
Load capacity	10kgf					
Drive method	AC servo motor with non-excitation brake/brushless resolver					
Sensor	Output axis brushless resolver *2					
Ambient temp.	0 to 5°C					
Humidity	30 to 90% RH (no condensation)					
Din	65.9dB					
Altitude	Below 1000m					
Storage temp.	-10 to 60 °C					
Mass of main body	36kg					
External	Finished by aluminium alloy painting					
appearance						
Paint color	Body : pastel white (Japan Paint Industry Association S10-733)					
1 dirit coloi	Cover : pastel green (Japan Paint Industry Association S38-552)					

^{*1} The software limit of W2 axis is +-360 degrees. Please note: If power is re-supplied when it is lost at a

position exceeding +-180 degrees, initial angle is not recovered, but an angle displaced by 180 degrees is given.

*2 The zero point of the output axis resolver does not correspond to the zero point of manipulator.

(a) Installation

This arm can be installed in any position (floor, wall and suspended). When installing the arm, check if the flatness of the place is 0.05 or less, and tighten the 4 bolts on the base surface. When installing this arm, please use the attached bolts.

(Spec of the attached bolts)

Size	ISO M screw M16	
Material	SUSXM7	
Intension	A2-70	
bind torque	122Nm	

The surface of arm base shall come in contact with the installation place by more than an area of radius 50mm around the installing bolts.

(b) Mechanical operating range of joint

Each joint shall be used within the movable range. The rotary joints (S1, S3 and E2) and W1 joint above all can move across the movable range, but should not be used in such way, because such movement could damage the internal cables.

If the customer prepares the servo driver or control software, set the electrical, or software limit to a range narrower than this mechanical movable range, and make sure that such mechanical range is not exceeded.

(c) Motor output

Set the torque duty and speed duty of each arm joint to 50% or less.

(d) Brake

Internal electromagnetic brake is not for controlling but for maintenance. Never try to operate the machine in a way that joints are activated when brake is applied.

(e) Maintenance

The inside of arm is of extremely complicated construction. Customer shall never try to disassemble or repair anything. Please contact MHI instead.

(f) Earthing

The body of this arm is connected to the F.GND terminal of the motor cable connector. The main body of arm is earthed by connecting the arm and controller by using an arm-board cable. Therefore, be sure to earth the main body of controller.

(2) Definition of Coordinate System

The definition of coordinate system for the portable general purpose intelligent arm is shown below:

(3) Outline Drawing

The outline drawing of the portable general purpose intelligent arm is shown below:

(4) Range of Operation

The range of operation for the portable general purpose intelligent arm is shown below:

(5) Base Flange Dimensions

The flange dimensions the base-mounting surface for the portable general purpose intelligent arm is shown below:

INSTALLATION FLANGE MATERIAL: ALUMINIUM ALLOY (A7075-T6)

(6) Mechanical Interface Flange Dimensions

The flange dimensions mechanical interface surface for the portable general purpose intelligent arm is shown below:

INTERFACE SURFACE MATERIAL: STAINLESS STEEL (SUS304)

The requirements for installing the load on top of the manipulator (mechanical interface flange) is shown.

- (a) The portable mass of a robot is generally an indication of mass. However, even with the same tool and work mass, the load may be restricted when widely decentered. The portable weight shown in the specifications means the total mass including the tool unit under the following conditions:
- (b) Allowable load values are shown below:

Table Allowable load values

Torque	9.8 N∙ m
Inertia moment	0.1 Kg• m²

If the volume of load is small, and can be regarded as a mass point, the torque/inertia moment is given by the following formula:

Torque = 9.8GL
$$N \cdot m$$

Inertia moment = GL^2 $Kg \cdot m^2$

Where, G: mass of load (unit: Kg)
L: moment arm length (unit: m)

Note L is the larger of Lp (distance from W1 joint to load) and Lr (distance from W2 joint to load).

Regard a force as the load the same way as for mass.

(7) Setting and canceling of the mechanical limit switch

The mechanical limit switch is installed on the S1 axes because preventing the overrun. The setting and cancellation for the mechanical limit switch are shown the following.

(A) Setting for shipping

The mechanical limit switch of S1 axis is set to "on" at about +177 deg dor shipping to stop the S1 axis operation.

(B) Modification of limit angle

To change the operating range of the S1 axis, modify the striker installation position of the limit switch to the optional position. Make sure to check and see the operation for safety after modifying the striker installation position.

(C) Cancel of limit switch

In case that the limit switch was turned to "on" to stop the arm, cancel the limit switch as follows:

- (a) Power off the controller.
- (b) Release the striker installation bolt of the limit switch to slide the striker until the limit switch is turned to "off".
- (c) Start up the controller to operate the S1.
- (d) Power off the controller again to reinstall the striker of the limit switch.

2.3 Controller

(1) Specifications

Controller comprises the 2nd level of the portable general purpose intelligent arm, along with the servo driver in the section 2.4. Servo driver has IPM and PS in it. The arm-board cable, power supply cable and emergency stop box are attached additionally.

The specifications of the controller are shown as follows:

Item	Specifications		
Model	PA-10A-CNT		
External dimensions	2nd, 3rd levels : 262Wx346Hx396D		
[mm]	4th level only : 166Wx170Hx393D		
Mass	2nd, 3rd levels : 22kg		
	4th level : 29kg(only 4 th level:7kg)		
Drive method	Internal servo driver described later		
Emergency stop	Emergency stop box attached		
Environment	Ambient temp From 0 to 40 °C (When operated outdoors, use this in		
		the shade.)	
	Humidity	80% RH or less (no condensation)	
Power supply	AC85-264V+-10%, 50/60Hz 2nd, 3rd levels : 1kVAx1		
		4th level : 1kVAx1 + 0.15kVAx1	
Protection circuit	Internal leak breaker		
Altitude	Below 1000m		
Storage temp.	From -10 to 60 °C		
Painting	Main body: Munsell 5Y7/1		

(2) Outline Drawing

The outline of the controller is shown below: Outline of controller (4th level)

Outline of controller (2nd level/3rd level)

Inside view of the controller(2nd level)

By removing the screws shown below, the state-indicating LED of the servo driver can be checked.

(3) Setting method of selector key switch of operate mode

Operate the key switch on the front of the control panel to set the operate mode of the arm.

Run mode: Normal operate mode. Every axis of the arm can be operated till the rated speed. Teach mode: In teach mode, the operating speed of every axis is limited the arm tip operating speed so as to be less than 250mm/sec.

Caution:

To teach the arm, set the selector key switch of the operate mode "Teach mode".

Key switch condition

-Teach mode

-Run mode

(4) Interlock

The controller interlock diagram is shown in the following page.

The close cable is connected to CN4 in the normal shipment. See the connection diagram in the following page to connect the external emergency stop switch or the door switch.

2.4 Servo Driver

Servo driver comprises the 2nd level of the portable general purpose intelligent arm, and is integrated in the controller of the section 2.3. For details, see the operating manual for the servo driver.

(1) Outline of Basic Specifications

Item	Specifications
Type & configuration	Semi-digital servo 7 axes/board
Command values	Speed command / Motor-torque command Input via ARCNET
Control capacity	Speed control : 1000:1 for full-scale range Within 1% of speed deviation (actuator loaded as rated) Control function : Speed control: 665µs digital PI Current loop: analog P
Communication I/F	Optic/Electric-Electric/Optic + ARCNET controller (5 Mbps)
Displays functions (by LEDs)	Mechanical brake ON/OFF, control power ON/OFF Speed control/torque control, motor power ON/OFF Error display, position limit ON/OFF

Sketch Drawing of Servo Driver

(2) How to use the servo driver (outline)

All the command to the servo driver, all the information from the servo driver is via ARCNET. The motion controller in the standard system is the MHI's motion controller (MHID6780). Here, general purpose CPU will be mainly described, where the motion controller side is called <upper controller>.

(a) Connection and ARCNET_ID

Set the ARCNET_ID addresses for the upper controller and servo driver as follows: Servo driver consists of 4 driver units. The driver numbers are as shown below:

	1st axis	2nd axis
Driver No. 1	S1 axis	S2 axis
Driver No. 2	S3 axis	E1 axis
Driver No. 3	E2 axis	W1 axis
Driver No. 4	W2 axis	

The ARCNET address of the destination shall be set by the DIP switch on the servo driver front panel. When using MHI's motion controller, set this to ${\bf FE}$.

(b) State Transition Diagram of The Servo Driver

During the communication between the servo driver and upper controller, the following 3 states are available:

Control mode

Brake release mode

Adjustment/stop mode (wait for command)←Power startup

The servo driver shows the following state transition according to the command sent from the upper controller.

(c) Type of Communication Commands

The commands sent from the upper controller to the servo driver can be classified as follows:

- -Commands used in the control mode
- -Commands required in adjustment
- -Commands used when error occurs, or used in exceptional processing

(1) Commands used in control mode

The commands used in the normal control are the control command ('S')/control data transmit command ('C') and control end command ('E'). They are sent at once to all the servo drivers.

They are transmitted normally in the order of 'S' \rightarrow 'C' \rightarrow ----- 'C' \rightarrow 'E'.

After the 'S' command is transmitted, the 'C' command is recognized also in the servo driver side if such command is transmitted from upper controller in each specified cycle.

Time-out check is then performed.

In the MHI's motion control CPU, the control 'C' command is transmitted in each control cycle (10ms) in the control mode.

(d) Command specifications(outline)

Control Data Transmit Command 'C'

Control data transmit command $^{\prime}C^{\prime}$ is transmits at a time the command values for the drivers No.1-No.4.

In the normal control, the 'C' command shall be used with the 'S' and 'E' commands.

If the deadman switch of the 'C' command is turned Enable, the state of servo lock is given when the deadman switch is OFF. Note however that MHI's motion control CPU is always used under the setting of Disable.

If used by 'T->'C', only brake ON/OFF of the 'C' command is effective on the servo ON condition.

(1) Upper controller → servo driver

In the control mode, the control command value (control data transmit command) is transmitted to the servo driver from the upper controller in each control cycle.

<Data format>

Sender ID: FFH

Receiver ID: FEH

Data type: 'C'

Number of transmitted data: 35

After transmitting the control data transmit command from the upper controller, the current value and status of each axis shall be transmitted (returned) to the upper controller.

<Data format>

Sender ID: FEH

Receiver ID: FFH

Data type: 'C'

Number of transmitted data: 58

	Transmitted data	Bytes	
	Servo status_1	2	777.0
1st axis of driver \(\) No.1 (S1)	Joint angle_1	4	RV format
(81)	Motor torque command value_1	2	0.001Nm/digit
	Servo status_2	2	
2nd axis (S2)	Joint angle_2	4	
	Motor torque command value_2	2	
Driver No.2	Same as above		
			*) RV format RV= degx2 ¹⁴ x50 360
1st axis of driver No.4 (W2)	Servo status_1	2	
	Joint angle_1	4	
	Motor torque command value_1	2	
	Master servo status	2	

(e) Format of Communication Command

The format of ARCNET communication command is shown below:

(1) Upper controller -> servo driver transmit format (short packet)

<Sequential No.>

The upper controller side attaches some ID (sequential No.) when sending. (Servo driver side returns the value as it is.)

<Data type>

-Normal control

('S' = control start command

'C' = control data transmit command

'E' = control end command

-Adjustment

'I' = parameter setting request command

'M' = mechanical zero point measurement instruction command

'R' = transmit request command for current EEPROM table

'W' = command for writing RAM in EEPROM table

\('P' = command for changing EEPROM table \)

-Brake released

' 'T' = brake release start command

'C' = control data transmit command

'E' = control end command

(2) Servo driver upper controller transmit format (short packet)

<Sequential No.>

The ID (sequential No.) transmitted from the upper controller side shall be returned as it is.

<Data type>

-Normal control

'S' = Complete command for control start command

 $\label{eq:C'} \mbox{'C'} = \mbox{Current value transmit command for control data transmitted (including error status)}$

'E' = Complete command for control end command

-Adjustment

'I' = Complete command for initial setting request

'M' = Complete command for mechanical zero point measurement (including mechanical zero point measurement value)

'R' = Command to transmit the current contents of EEPROM table to the upper controller

'W' = Complete command for writing into EEPROM table

'P' = Complete command for changing EEPROM table

-Brake release

'T' = Complete command for brake release start command

'C' = Current value transmit command for control data transmitted (including error status)

'E' = Complete command for control end command

Transmit data differs for each data type (command).

2.4 Arm-Board Cable and Power Supply Cable

-Arm-board cable

This is the cable to connect the main body of arm and controller, comprising the signal cable to transmit the sensor information and the drive cable to supply power to motor.

-Power supply cable

This is the cable to supply power to the controller.

(1) Specifications

The specifications for the arm-board cable power supply cable and optical fiber cable are shown below:

Arm-board cable

Item	Specifications	
Wire type	For signal	For drive
Model	PA-10A-CBL1	PA-10A-CBL2
External	Approx. \$\phi 23.5mm x 5m (max 25mm)	Approx. \$\phi19.5mm x 5m (max 25mm)
dimensions		
Weight	0.52kgf/m	0.53kgf/m
Bending radius	250mm or less prohibited	200mm or less prohibited

Power supply cable

1 ower supply casic	
Item	Specifications
Model	PA-10A-CBL0
Connector type	Ordinary earthing type 2P
Cable length	3m

Optical fiber cable

Optical liber cable	
Item	Specifications
Fiber type	e.g. FVST2 62G-P
Cable length	1m

(2) Outline Drawing

The outline of the arm-board cable is shown below:

Arm-board cable (for signal)

Arm-board cable (for drive)

The outline of the power supply cable is shown below:

The outline of the optical fiber cable is shown below:

2.5 Emergency Stop Box

This is used to stop the operation of the arm in emergency.

(1) Specifications

The specifications of the emergency stop box are shown below:

Item	Specifications
Model	PA-10A-CBL3
Operational function	Push-lock/turn reset
Contact	2b
Cable length	5m

(2) Outline Drawing

The outline drawing of the emergency stop box is shown as follows:

2.6 Motion Control CPU Board

Motion control CPU Board (3rd level) consists of 1 sheet of CPU board. This unit calculates the speed command value for each axis from the hand position, attitude command and axis angle command sent from upper operation controller or external PC.

ISA Bus Specification is available.

The specifications of the motion controller are shown below.

Item	Specifications
Model	MHI-D6780
Control method	Control by each axis
	Hand control/attitude control by 7 axes at once
Input	Command issuance by PA library (via bus)
Output	Speed command of each axis (via ARCNET)
Play-back function	PTP: arc-circle compensation, linear compensation, CP for each axis
Teaching data	1 Mbyte
memory capacity	
Number of teaching	PTP: 2000 points CP: approx. 60 sec
data	
Teaching data	Hard disk, floppy disk (4th level)
storage	
External I/O signal	RS-232C 1ch
	(appropriated for each axis output for monitor to simple simulator)
	DI/O 32 points each

Sketch Drawing of Motion Control CPU Board

Sketch Drawing of Optical Board

2.7 Operation Controller

Operation controller (4th level) is a PC. Under standard settings, a PC for industrial use is built in the controller. Any PC at your hand may be used. Operation controller is a user interface unit to generate the hand position and attitude commands. Generated commands are handed to the operation controller by using PA library.

The specifications of the operation controller under standard settings are shown below:

	Item	Specifications
Standard		based on PICMG Standard
CPU		Intel® Celeron TM (433 MHz)
Memory	1st cash memory	32 KB (built in CPU)
	2nd cash memory	128 KB (built in CPU)
	Main RAM	64 MB (SDRAM/EDO 64 MB x1)
		[168Pin DIMM slot x3]
		[MAX:768MB]
	Video RAM	4 MB (SGRAM)
Display	Video chip	ATI 3D Rage Pro
	Display resolution	1,600x1,200 (max 64k colors)
FDD		3.5 inch floppy disk drive
HDD		10 GB (E-IDE)
Interface		Enhanced IDE x2 (1ch used)
		FDD connector x1 (used)
		Parallel x1
		Serial x2
		Key board/mouse connect PS/2 connector x1
		VGA connector x1
		RJ-45 connector x1
Free slot		PCI: 1 (half size loadable)
(MHI motion control CPU mounted)		ISA: 1 (full size loadable)
OS		Windows®NT Workstation 4.0 Service Pack4(pre installed)

In case any customer tries to prepare a motion controller (PC), the specifications of such PC shall be as follows:

Item	Specifications
Applicable type	PC/AT compatible
OS	Windows®NT Workstation 4.0
	(Service Pack4 or more recommended)
CPU	i80486DX(25 MHz) or more
	(Pentium® or more recommended)
Memory	32 MB or more
HDD	The amount available on the partition more than
	165MB is necessary to store the system file.
FDD	2-mode floppy disk drive
Display resolution	640 x 480 256 colors
& number of	(1024 x 768 256 colors or more recommended)
display colors	
Required free slot	ISA bus x2 (full size) *1
Mouse	Required

 $^{{\}bf *1}$: This is required when our motion controller is loaded.

CAUTION:

Prepare the CE marking-ready operation controller to do it by yourself.

Chapter 3 Specifications of Optional Products

This chapter describes the specifications of the optional products for portable general purpose intelligent α rm.

3.1 Arm-support Stand

This is a support stand for portable general purpose intelligent arm. Its outline is shown below: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$

3.2 PA Library

This is a library required to execute/develop the operation-assist programs and application software for portable general purpose intelligent arm. DLL type library prepared by Visual $C++^{\circ}$ is used for this. Sample software is attached so that the PA libraries prepared by Visual $C++^{\circ}$ or Visual Basic compilers can be used.

When developing applications, Visual $C++^{\circ}$ or Visual Basic compiler is required additionally. (All the source programs are attached.)

(Operation checked by Visual Basic® Ver. 5.0 or Visual C++® Ver. 5.0)

-List of PA library functions (excerpt)

pa_ini_sys Initializes PA library.
pa_ter_sys Ends PA library.
pa_opn_arm Opens arm (control arm select)
pa_cls_arm Closes arm (control arm cut off)

pa_sta_arm Controller start (servo driver communication start)
pa_ext_arm Controller end (servo driver communication end)

pa_stp_arm Arm brake stopped
pa_sus_arm Arm stopped temporarily
pa_rsm_arm Arm's temporary stop released
pa_exe_axs Angle control of each axis

pa_mov_XYZ Positon deviation control at base coordinate
pa_mov_YPR Attitude deviation control at base coordinate
pa_mov_mat Absolute position control of top position/attitude

pa_ply_pnt Play-back control

pa_add_pnt Adds the teaching points.

pa_set_pnt Sets the attributes of teaching points.

pa_mod_vel Sets the speed control mode.

pa_odr_jou Sets the redundant axis control data.

pa_mod_dpd Sets the target position/attitude real control.
pa_set_mat Sets the coordinate space conversion matrix.

pa_get_mod Reads the control status of arm.
pa_inp_dio Digital input (by unit of 32 ch)
pa_oup_dio Digital output (by unit of 32 ch)
pa_set_tol Sets the tool information.

3.3 Operation Support Program

This is a program allowing the operator to operate the arm interactively on the display by using the keyboard or mouse. It is also possible to edit the operation/teaching data. (If purchased with PA library, all the source files are attached.)

Examples of screen message are shown below:

3.4 Simple Simulator

This is a simulator allowing a screen check of arm actions, and is used for debugging in developing application programs.

In the simulator , no additional PC is necessary, because the computer for operation control receives the data. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$

Examples of screen message is shown below:

3.5 User Interface Set

(1) Key board

This is a key board for PC/AT compatible machines, and is used to enter data by connecting to the operation controller of standard specifications. A key board is 104key key board.

CAUTION:

Prepare the CE making-ready keyboard to do it by yourself. Select the connecting cable of 3m or less to the keyboard. The keyboard is not assured its operation when it is connected to the cable of 3m or more.

(2) Mouse

This is a mouse of PS2 specifications for PC/AT compatible machines, and is used in GUI operations by connecting to the operation controller of standard specifications.

CAUTION:

Prepare the CE making-ready Mouse to do it by yourself. Select the connecting cable of 3m or less to the mouse. The mouse is not assured its operation when it is connected to the cable of 3m or more.

(3) Display

This is a 15-inch display of multi-scan type adapted for various frequencies, and is used to display pictures by connecting to the operation controller of standard specifications.

3.6 External DI/O Connection Set

This is a kit for connection with external devices by connecting to the DI/O connector on the operation control CPU board, and drawing the DI/O connector out of the casing, and consists of external DI/O panel and external DI/O cable.

(1) External DI/O Panel

This is a panel to draw the connectors out onto the PC's expansion slots; connectors to exchange information between the portable general purpose intelligent arm and external devices by using DI/O signals.

Its outline is shown below:

:41-48,89-96: Not used

(2) External DI/O Cable

This is a shielded cable of 96 pins to be connected between the external DI/O panel and external devices. Its outline is shown below:

3.7 Force Sensor

This is a force sensor of 6 degrees-of-freedom.

(1) Specifications

The specifications of force sensor are shown below:

Item	Specifications
	Fx,Fy : 200N
	Fz : 400N
Rated load	Mx, My, Mz: 12.5 Nm
Nateu loau	(Coordinate corresponds to the mechanical interface coordinate
	of PA-10 which is moved in parallel by the sensor width in the
	direction Z.)
Sampling time	125 μsec (max.)
Machine I/F	Sensor can be installed on PA-10 directly.
Wathine 1/1	Sensor flange is of the same shape as PA-10.
System configuration	Sensor unit, receiver board, sensor-receiver cable (5m)
External dimensions	φ67x25 (excl. protrusions)
Mass	180g
Power supply	Supplied from receiver board.
Environmental requirements	Temp. 0 to 50 °C, not drip proof/ not dust proof
BUS specification of receiver	ISA bus
board	

(2) Outline Drawing

The outline drawing of force sensor is shown below:

3.8 Electric Parallel Hand Set

This is an electric parallel hand installed on the hand top of the arm. By using the attached hand-mount bracket, this is installed on the hand top of the arm. To control this from the motion controller, an external DI/O cable is necessary.

(1) Specifications

The specifications of electric parallel hand are shown below:

Item		Specifications	
Hand	Drive method	DC motor	
	Number of axes	Open/close 1 axis	
	Holding force	0.5 kgf-7.0 kgf (manual volume adjustment)	
	Stroke	60mm (one side 30mm)	
Controller	Input	Open command/close command/speed slow	
		command (non-voltage contact or transistor input)	
	Output	Open status/close status (open collector output)	
	Power	AC100V	
Common	Environmental requirements	Temp. from 0 to 40 °C., non-drip proof	
	Cable length	5m	

^{*} This can be controlled directly from the digital output of external DI/O board. (Cables shall be prepared by the user, or the external DI/O cable of PA-10 option shall be purchased.)

(2) Outline Drawing

The outlines of the electric parallel hand and hand mounting bracket are shown below:

Chapter 4 Setup

This chapter describes the method for setting up the portable general purpose intelligent arm. Please read this chapter carefully before use.

4.1 Preparations by Customer

Please prepare the followings before use.

(1) Power supply

In using by the 2nd level or 3rd level, AC85V-AC264V of a capacity 1kVA is necessary as the power for the controller. Connector type should be ordinary earthing type of 2P. In using by the 4th level, AC90V-AC132V/AC180-AC264V of a capacity 0.15kVA is additionally required as the power for the operation controller. Connector type shall be ordinary earthing type of 2P. Please prepare these power supplies. Also in addition to these power supplies, the power sources should be prepared for any other peripheral devices then used (electric hand, display, etc.).

(2) Safety Measures

Before using the machine, carry out the safety trainings specified in the applicable laws and regulations, and take safety measures according to the application. (Be sure to read Chapter 1 "Safety Manual".)

4.2 Instructions for Installation

To install the machine, take the following precautions:

- (1) Instructions for Power Supply
- (a) Before pulling off/plugging in the power supply cable, be sure to turn OFF the power switch.
- (b) When pulling off/plugging in the power supply cable, be sure to hold the plug, and not to pull the cable.
- (c) Once the power switch is turned OFF, wait for 5 seconds or more, and then turn it ON again. If the power plug is pulled off while the power switch is ON, first turn OFF the power switch, wait for 5 seconds or more, and then turn it ON again.
- (d) For improving the noise resistance, and for safety reasons (preventing electric shock), be sure to provide proper earthing. In earthing, use wire of a cross section area of 2mm² or more according to the type 3 earthing (earth resistance 100 or less).
- (e) Receiving plug is not of water-proof type.

- (2) Instructions for Maintenance and Operating Environment
 - (a) Don't store, or use this system in a highly humid or dusty place
 - (b) Arm controller has ventilation holes in the back and left side to prevent temp. rise. Install the system in a way that the ventilation hole in the left side is 5cm or more apart from other unit or walls, and the ventilation hole in the back is 10cm or more apart from other unit or walls. Also take care so that heat may not be accumulated and raise the ambient temp. up to a level exceeding the range specified in 4.2. (3) "Requirements for Installation Environment".
 Avoid storing, or using the controller in a place other than specified by environmental
 - Avoid storing, or using the controller in a place other than specified by environmental specifications, such as the place of extremely high or low temp., or place subject to frequent temp. change.
 - (c) Don't store, or use the controller in a place exposed to direct sunlight, or place near heat source.
 - (d) Don't use the controller in the rain.
 - (e) Don't apply any shock to the controller, because it is made of delicate electronic parts. Don't store, or use either the controller in a place subject to shock or vibration. If any shock or vibration is applied, internal HDD could be crushed.
 - (f) If this system is operated with water, any other liquid or metals trapped in it, dangerous situations could be brought about. Take sufficient care not to trap any foreign matter.
 - (g) Avoid storing, or using this system in the air including chemical fumes or steam emitted around, or in a place exposed to chemicals.
 - (h) Don't try to store, or use this system as it is disassembled, because it could cause failure or electric shock.
 - (i) Don't store, or use this system with anything heavy placed on the controller.
 - (j) Since the controller has heat-radiating units in both sides, neither side of the controller should be contacted directly by hand(s) when power is ON.
 - (k) Be sure to connect, or disconnect cables of this system when power is OFF.
 - (l) Be sure to operate the controller as it stands upright. If laid horizontal, or upside down, heat is radiated insufficiently, ending in a malfunction or failure.
 - (m) To guarantee a continuous operation or data, external uninterruptive power supply should be provided, and power should be supplied via such source.
 - (n) If any noise comes from the power supply, provide a noise cutting transformer in the input line of the power supply, or noise filter, etc. out of the main body of controller. Noise resistance may be improved by such means.
 - (o) To use this system under adverse environment, be sure to meet 4.2 (3) "Requirements for Installation Environment".
 - (p) When installing the arm, be sure to prepare the arm support stand (PA-10A-AF) or anything equivalent to, or exceeding it.
 - (q) Be sure to take safety measures such as providing safety barriers around the place where the arm is installed. (For details, see Chapter 1 "Safety Manual").

(3) Requirements for Installation Environment

"PA-10" is a manipulator designed for use in a work place identified by 3K (Japanese phrase meaning "Dangerous", "Dirty" and "Hard"). The units shown in the following table can be used under such adverse conditions. Note, however, that any other unit could malfunction, or fail if used under such adverse conditions. Therefore, pay enough attention to the requirements for installation environment before starting work.

Units that can be used under adverse conditions

OTHER CHIEF CHIEF CHIEF CHIEF CHIEF COTTAINED				
Name of unit	Model			
Arm	PA-10A-ARM			
Arm-board cable (for signal)	PA-10A-CBL1			
Arm-board cable (for drive)	PA-10A-CBL2			
Arm-support stand	PA-10A-AF			

Operating environment of arm and controller

Item	Arm	Arm controller	
Ambient temp.	From 0 to 50 °C	From 0 to 40 °C	
Storage temp.	From -10 to 60 °C	From -10 to 60 °C	
Humidity	30-90% RH (no condensation)	80% RH or less (no condensation)	
Altitude	Below 1000m	Below 1000m	
Direct sunlight	Can be used (Surface temp. should not rise.)	Cannot be used (Use this in a shade.)	
Rain	Should not be extremely heavy.	Not permitted	
Drifting dust	Should not be extremely dense.	Not permitted	
Corrosive gases	Not permitted	Not permitted	
Explosive gases Not permitted (Arm separately specified may be used.)		Not permitted	
Oil mist	Should not be extremely dense.	Not permitted	
Vibration	3G		
Power voltage		Single-phase AC85-264V	
Power frequency		50/60 Hz	
Insulation resistance		50 Mohm	
Withstand		ACTOON 1	
voltage		AC500V 1 min	
Earthing	Controller is earthed by connecting a special cable. Therefore, no earthing is necessary.	Type 3 earthing	

4.3 Inter-Unit Connections

Before starting operation, connect the units as shown in the drawing on the next page.

__ Mouse Se installed in Operation Control Unit Connection of Motion Control CPU Board ·Level 4set: installed in user's PC Optical Board Motion Control CPU Board ·Level 3set: Display Keyboar ISA 5 - Teaching Mode Key SW -Open Cable ARCNET Cable RS-232C (for Simple Simulator (optional)only) Power SW Optical fiber connector - ARCNET Connector VGA Port þ <u>Б</u> Operation Control Unit CN2 Keyboard/Mouse Port Power Supply Cable Parallel Port-RJ45-Serial Port-Serial Port blank (PCI) blank (PCI) (male) (male) Arm-Controller Cable Arm-Controller Cable (Signal) (Power Supply Cable Equipment (Orive) Emersency Stop Box (female) (female) Between Arm Mechanism Connections

If purchasing the level2 system, connect between your ARCNET board and optical board as shown
in the drawing on the next page.

(1) CONNECTION BETWEEN YOUR ARCNET BOARD AND O/E-E/O BOARD

- (1) Remove HYC2485S from YOUR ARCNET BOARD.
- ②Install an 8pins socket on YOUR ARCNET BOARD.
- ③Connect an 8pins plug of O/E-E/O BOARD to the 8pins socket. (Refer to Fig-1 and 2)

Fig-1. Installation of 8pins socket

Fig-2. Connection between YOUR ARCNET BOARD and O/E-E/O BOARD

(2) CONNECTION BETWEEN O/E-E/O BOARD AND CONTROLLER

Concerning the connection between O/E-E/O BOARD and CONTROLLER , refer to Fig-3.

Fig-3. Connection between ARCNET BOARD and O/E-E/O BOARD with Optical fiber cable

This is the connector pin assignment for arm-board cables.

Arm-board cable (for signal)

	board cable (1	or signai)
No.	Signal Name	Use
1	RMS1-SIN(+)	S1 Axis Motor Resolver SIN(+)
2	RMS1-SIN(-)	S1 Axis Motor Resolver SIN(-)
	RMS1-COS(+)	S1 Axis Motor Resolver COS(+)
	RMS1-COS(-)	S1 Axis Motor Resolver COS(-)
	RGS1-SIN(+)	S1 Axis Gear Resolver SIN(+)
	RGS1-SIN(-)	S1 Axis Gear Resolver SIN(-)
7	RGS1-COS(+)	S1 Axis Gear Resolver COS(+)
8	RGS1-COS(-)	S1 Axis Gear Resolver COS(-)
9	RMS2-SIN(+)	S2 Axis Motor Resolver SIN(+)
	RMS2-SIN(-)	S2 Axis Motor Resolver SIN(-)
	RMS2-COS(+)	S2 Axis Motor Resolver COS(+)
	RMS2-COS(-)	S2 Axis Motor Resolver COS(-)
	RGS2-SIN(+)	S2 Axis Gear Resolver SIN(+)
14	RGS2-SIN(-)	S2 Axis Gear Resolver SIN(-)
15	RGS2-COS(+)	S2 Axis Gear Resolver COS(+)
16	RGS2-COS(-)	S2 Axis Gear Resolver COS(-)
	RMS3-SIN(+)	S3 Axis Motor Resolver SIN(+)
	RMS3-SIN(-)	S3 Axis Motor Resolver SIN(-)
	RMS3-COS(+)	S3 Axis Motor Resolver COS(+)
	RMS3-COS(-)	S3 Axis Motor Resolver COS(-)
	RGS3-SIN(+)	S3 Axis Gear Resolver SIN(+)
	RGS3-SIN(-)	S3 Axis Gear Resolver SIN(-)
	RGS3-COS(+)	S3 Axis Gear Resolver COS(+)
	RGS3-COS(-)	S3 Axis Gear Resolver COS(-)
	RME1-SIN(+)	E1 Axis Motor Resolver SIN(+)
	RME1-SIN(-)	E1 Axis Motor Resolver SIN(-)
	RME1-COS(+)	E1 Axis Motor Resolver COS(+)
	RME1-COS(-)	E1 Axis Motor Resolver COS(-)
29	RGE1-SIN(+)	E1 Axis Gear Resolver SIN(+)
	RGE1-SIN(-)	E1 Axis Gear Resolver SIN(-)
	RGE1-COS(+)	E1 Axis Gear Resolver COS(+)
	RGE1-COS(-)	E1 Axis Gear Resolver COS(-)
	RME2-SIN(+)	E2 Axis Motor Resolver SIN(+)
	RME2-SIN(-)	E2 Axis Motor Resolver SIN(-)
35	RME2-COS(+)	E2 Axis Motor Resolver COS(+)
36	RME2-COS(-)	E2 Axis Motor Resolver COS(-)
37	RGE2-SIN(+)	E2 Axis Gear Resolver SIN(+)
	RGE2-SIN(-)	E2 Axis Gear Resolver SIN(-)
	RGE2-COS(+)	E2 Axis Gear Resolver COS(+)
	RGE2-COS(-)	E2 Axis Gear Resolver COS(-)
	RMW1-SIN(+)	W1 Axis Motor Resolver SIN(+)
	RMW1-SIN(-)	W1 Axis Motor Resolver SIN(-)
		WI AXIS MOULT RESULVEL SIN(-)
	RMW1-COS(+)	W1 Axis Motor Resolver COS(+)
43	RMW1-COS(+)	W1 Axis Motor Resolver COS(+)
43 44	RMW1-COS(+) RMW1-COS(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-)
43 44 45	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+)
43 44 45 46	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-)
43 44 45 46 47	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+)
43 44 45 46 47 48	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-)
43 44 45 46 47 48 49	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-) RMW2-SIN(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+)
43 44 45 46 47 48 49 50	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-)
43 44 45 46 47 48 49 50	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-) RMW2-SIN(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+)
43 44 45 46 47 48 49 50	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-)
43 44 45 46 47 48 49 50 51	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(+) RMW2-COS(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-)
43 44 45 46 47 48 49 50 51 52 53	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(+) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver SIN(-)
43 44 45 46 47 48 49 50 51 52 53	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RMW2-SIN(-) RGW2-SIN(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-)
43 44 45 46 47 48 49 50 51 52 53 54 55	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(+) RGW2-SIN(-) RGW2-SIN(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver SIN(-)
43 44 45 46 47 48 49 50 51 52 53 54 55 56	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(+) W2 Axis Gear Resolver COS(-)
43 44 45 46 47 48 49 50 51 52 53 54 55 56	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver COS(-)
43 44 45 46 47 48 49 50 51 52 53 53 55 56 57	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(+) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+)
43 44 45 46 47 48 49 50 51 52 53 53 55 56 57	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(+) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(+) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF1(-) REF2(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (+) Resolver Reference 2 (-)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(+) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) REF2(-) MLSW(+)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(+) MLSW(-)	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(+) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver SIN(+) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (+) Resolver Reference 2 (-)
43 44 45 46 47 48 49 50 51 51 52 53 54 55 56 60 61 61 62	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGF1(-) REF2(-) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(+) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGF1(-) REF2(-) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(+) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 61 62 63 64 65 66	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-SIN(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(-) N.C N.C N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 67 60 61 62 63 64 65 66 67	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(-) MLSW(-) N.C N.C N.C N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 51 51 52 53 54 55 56 56 60 61 61 62 63 64 65 66 66 67 68	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(-) MLSW(-) N.C N.C N.C N.C N.C N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66 67 68 69	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(-) MLSW(-) N.C N.C N.C N.C N.C N.C N.C N.C N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66 67 68 69 70	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF1(-) REF2(-) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66 67 68 69 70 71	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-COS(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF2(-) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 66 67 68 69 70 71 72	RMW1-COS(+) RMW1-COS(-) RGW1-SIN(+) RGW1-SIN(+) RGW1-SIN(-) RGW1-COS(-) RMW2-SIN(-) RMW2-SIN(-) RMW2-COS(-) RMW2-SIN(-) RGW2-SIN(-) RGW2-SIN(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) RGW2-COS(-) REF1(-) REF1(-) REF2(-) MLSW(-) N.C	W1 Axis Motor Resolver COS(+) W1 Axis Motor Resolver COS(-) W1 Axis Gear Resolver SIN(+) W1 Axis Gear Resolver SIN(-) W1 Axis Gear Resolver COS(+) W1 Axis Gear Resolver COS(-) W2 Axis Motor Resolver SIN(+) W2 Axis Motor Resolver SIN(-) W2 Axis Motor Resolver COS(-) W2 Axis Motor Resolver COS(-) W2 Axis Gear Resolver COS(-) W2 Axis Gear Resolver SIN(-) W2 Axis Gear Resolver COS(-) Resolver Reference 1 (+) Resolver Reference 2 (-) Mechanical Limit Switch(+)

Arm-board cable (for drive)

	1-board cable	
No.	Signal Name	Use
	S1-U	S1 Axis Motor Phase U
2	S1-V	S1 Axis Motor Phase V
	S1-W	S1 Axis Motor Phase W
4	S2-U	S2 Axis Motor Phase U
5	S2-V	S2 Axis Motor Phase V
6	S2-W	S2 Axis Motor Phase W
7	N.C	
	S3-U	S3 Axis Motor Phase U
9	S3-V	S3 Axis Motor Phase V
10	S3-W	S3 Axis Motor Phase W
11	E1-U	E1 Axis Motor Phase U
12	E1-V	E1 Axis Motor Phase V
13	E1-W	E1 Axis Motor Phase W
	N.C	
15	E2-U	E2 Axis Motor Phase U
16	E2-V	E2 Axis Motor Phase V
	E2-W	E2 Axis Motor Phase W
18	W1-U	W1 Axis Motor Phase U
	W1-V	W1 Axis Motor Phase V
	W1-W	W1 Axis Motor Phase W
	N.C	
	W2-U	W2 Axis Motor Phase U
	W2-V	W2 Axis Motor Phase V
	W2-W	W2 Axis Motor Phase W
	N.C	
26	N.C	
	N.C	
28	N.C	
	S1 Brake	S1 Axis Brake
	S2 Brake	S2 Axis Brake
	S3 Brake	S3 Axis Brake
	E1 Brake	E1 Axis Brake
	E2 Brake	E2 Axis Brake
	W1 Brake	W1 Axis Brake
	W2 Brake	W2 Axis Brake
	Brake Common	
	S1-LSW	S1 Axis Limit Switch
	S3-LSW	S3 Axis Limit Switch
39	E2-LSW	E2 Axis Limit Switch
40	LSW-GND	Limit Switch Common (GND)
	N.C	
42	N.C	
	FG	Frame Ground

4.4 Connection to External Units

(1) Connection by connector

The connection to the emergency stop box will be described below as an example.

(2) Connection by DI/O Board

The following drawing shows an example of the connection to external units via DI/O board. To operate the externally-connected units (relay, etc.) by the DI/O signal, it is necessary to supply from outside the power (from +12V to +24V) to the DI/O circuit board on the controller. Please prepare a power source in the side of externally-connected unit.

The connector pin assignment for external DI/O board is shown below:

	3rd le			DIIC		Exterr	ıal DI/O Coı	nnecti	on Set (option			
	Motion Contro				ector panel	Conno	on nin Mal	Cal	External DI		Corn	oton nin Mc
\vdash	Signal name Con DI0	inector pin No.		Pll	1 No.	Соппес	or pin No.	COL	or of cable Orange	Mark of cable Black point 1	Conne	LUI PIII INO.
	DIU	2			2		1 2		Orange			2
	DI2	3	Ħ		3		3		Gray			3
1	DI3	4			4		4		Gray	Red point 1		4
1	DI4	5			5		5		White			5
	DI5 DI6	6			6		6 7		White Yellow	Red point 1 Black point 1		6
	DI7	8			8		8		Yellow	Red point 1		8
	DICOM0	g			9		9		Pink			9
	DICOM0	10			10		10		Pink	Red point 1		10
	DI8	11			11		11		Orange			11
	DI9 DI10 ~	12			12 13		12 13		Orange Gray	Red point 2 Black point 2		12 13
	DI10 MI11 DI12 DI13 DI14 DI15 DICOM1 DI16 DI17 DI18	13			13		13		Gray	Red point 2		13
	DI12	15			15		15		White			15
	DI13 2	16			16		16		White	Red point 2		16
	DI14	17	<u>1</u> _e		17		17		Yellow			17
1 5	DI15 DICOM1	18	gap		18 19		18 19		Yellow Pink	Red point 2 Black point 2		18 19
Ē	DICOM1	20			20		20		Pink	Red point 2		20
1 =	DI16	21] =		21		21		Orange			21
ita	DI17	22	i ii		22		22		Orange	Red point 3		22
Digital INPUT	DITO	₩0	4 6		23		23		Gray			23
-	DI19 DI20	24	1		24 25		24 25		Gray White	Red point 3 Black point 3		24 25
1	DI20	26			26		26		White	Red point 3		26
1	DI20 DI21 DI22 DI23	27	1	_	27		27		Yellow	Black point 3		27
		28		¥	28 29	4	28		Yellow	Red point 3	_	28
	DICOM2	29		6P	29	F/	29		Pink		Ψ̈́	29
	DICOM2 DI24	30		E9	30 31	196	30 31		Pink Orange	Red point 3 Black point 4	1 96	30 31
	DI25	32		<u> </u>	32	Ή. Ή	32		Orange	Red point 4	Ĕ	32
	DI26	33		F	32 33	Ċ	33		Gray		S	32 33
	DI27	34		 .:	34	т.	34	e	Gray	Red point 4	Ч.	34
	DI28	35		In	35	JC.	35	ap	White		nc	35
	DI29 DI30	36		уо,	36 37	П,	36 37	ir	White Yellow	Red point 4 Black point 4), I	36 37
	DI30	38		00	38	86	38	pa	Yellow	Red point 4	88	38
	DICOM3	39		n k	39	8	39	eq	Pink		ko	39
	DICOM4	40		Shi	40	ij	40	/ist	Pink	Red point 4	Ξį	40
	41-48(HONDA tsushin kogyo, Inc. : PCR-E96PMA	41-48	HONDA tsushin kogyo, Inc. : PCR-E96PFA	41-48	96 pin AWG#28 twisted pair cable		ght connection	HONDA tsushin kogyo, Inc : PCR-E96PFA	41-48
	DO0 DO1	1 2		A t	49	tsı	49	28	Pink Pink	Black all Red all	ts.	49 50
	DO1	3		9	50 51	PΑ	50 51	#	Orange	Black long 1	DA	51
	DO3	4		Į QĮ	52	Z	52	$\mathbf{\tilde{s}}$	Orange	Red long 1	N	52
	DO4	5			53	Ξ	53	۷.	Gray	Black long 1	H	53
	DO5	6		J.	54		54	pin	Gray	Red long 1		54
	DO6 DO7	7		ecto	55	tor	55 56	96	White White	Black long 1 Red long 1	ţo	55 56
	DOCOM0	9		ŭ	56 57	эес	57		Yellow		nec	57
	DOCOM0	10		00	58	oni	58		Yellow	Red long 1	ΩO.	58 59
	DO8	11		cle	59	st c	59		Pink	Black long 1	et (
1	DO9	12		Receptacle connector	60	Socket connector	60		Pink	Red long 1	Socket connector	60
	DO10 P	13		ece	61 62	$^{\circ}$	61 62		Orange Orange	Black long 2 Red long 2	$\tilde{\mathbf{S}}$	61
1	DO10 DO11 DO12	114		쬬	63		63		Gray			63
	DO13 2	16	1		64		64		Gray	Red long 2		64
	DO14	17	7		65		65		White	Black long 2		65
Digital OUTPUT	DO13 DO14 DO15 DOCOM1 DOCOM1 DO16 DO17	18			66		66		White	Red long 2		66
	DOCOWI 4	20	H ==		67 68		67 68		Yellow Yellow	Black long 2 Red long 2		67 68
l C	DOCOM1 of	21	Ή ₽		69		69		Pink			69
a] (DO16	22	Į į		70		70		Pink	Red long 2		70
git	DOTO		01		71		71		Orange	Black long 3		71
ΞĞ	DO19	24			72		72		Orange	Red long 3		72
1	DO20 DO21 DO22 DO23	25 26	븸		73 74		73 74		Gray	Black long 3 Red long 3		73 74 75 76 77 78 79 80 81
1	DO21 DO22	27	∄		74 75		74		Gray White			75
	DO22 DO23	28	3		76		76		White	Red long 3		76
1	DOCOM2	29			77		77		Yellow	Black long 3		77
1	DOCOM2	30)		78		78		Yellow	Red long 3		78
	DO24	31	1		79 80		79		Pink			79
1	DO25 DO26	32 33	1		80 81		80 81		Pink Orange	Red long 3 Black long 4		80 81
1	DO26 DO27	34	†		82		82		Orange	Red long 4		82
1	DO28	35			83		83		Gray	Black long 4		83
1	DO29	36	<u>i</u>		84		84		Gray	Red long 4		83 84
	DO30	37			85		85		White			85
1	DO31 DOCOM3	38	}		86 87		86 87		White Yellow			86 87
	DOCOM3	40	1		88		88		Yellow			88
1	89-96(NC)		Ì	89-96		89-96			ight connection		89-96

Chapter 5 How to Change Settings

5.1 Setting of Motion Control CPU BoardThe setting of the motion control CPU board is shown as follows:

Setting of DipSW1---Setting of ISA's base address

Setting of DipSW2

The following drawing shows the DI/O board as it is mounted. This can be removed by loosening 4 screws. External unit can be connected to the DI and DO connectors. By connecting the optional DI/O connect kit to the DI and DO connectors, the connectors can be taken out of the case, and connected to external units by shielded cable.

The panel unit of the motion control CPU board is shown below:

RS232C ch0 (D-sub 9 pin male)

	1 1 1		
No.	Signal name		
1	Not used		
2	RXD		
3	TXD		
4	DTR		
5	GND		
6	DSR		
7	RTS		
8	CTS		
9	Not used		

Front view

ARCNET (6 pin moduler)

No.	Signal name
1	Not used
2	Not used
3	PH-A
4	PH-B
5	Not used
6	Not used

Front view

4bit ROTARY SW

No.	Requirements to start
0	Not used
1	Starts motion control program.
2	Not used
3	Not used
4	Not used
5	Not used
6	Not used
7	Not used
8	Not used
9	Not used
A	Not used
В	Not used
C	Not used
D	Not used
E	Not used
F	Starts motion control program, and
	outputs the value of each monitor axis.

Front view

ROTARY SW is used to select the starting conditions for motion control program. Set this to "1" or "F".

5.2 Setting of Operation Control CPU BoardEstablish connections by referring to the following drawing:

Operation control CPU board

Chapter 6 Maintenance & Inspection Manual

Introduction

Thank-you very much for patronage of the PA-10 Portable General Purpose Intelligent Arm.

The PA-10 is a precision device, so to keep it in good working order, regular maintenance and inspection are necessary. This document, the "Maintenance and Inspection Manual", is a compilation of matters to note about maintenance and inspection. For peace of mind and safety please study this document carefully before using the PA-10.

6.1 General

(1) Inspection Frequency

There are two types of maintenance and inspection work; "Daily Inspection" carried out by user, and "Periodic Inspection" which must be carried out by MHI since arm disassembly is required.

The "Daily Inspection" should be carried out at the beginning of each day before the robot is used.

The "Periodic Inspection" interval is set as written below. If using the MHI controller, the accumulated operating time is indicated by the "time counter" inside the controller box. If using a controller of your own design, please ensure that a record of accumulated operating time is kept. If by any chance trouble should occur and a record of the accumulated operating time is not available, the guarantee will become invalid.

Especially if considering application in severe conditions (if payload duty is large, or if used in bad environment, powder dust, etc) it is recommended to shorten the interval between periodic inspections being carried out.

Periodic inspection interval:

- (a) 1000 hours or 1 year, which ever is shortest.
- (b) Every 1000 hours, after first inspection.

Periodic inspection is necessary even within the guarantee period (1 year from delivery of goods, or 3000 hours of use, which ever comes first). If the PA-10 is used without periodic inspection, the guarantee will become invalid.

- (2) Other Matters to Note
- (a) In compliance with labor health and safety regulations as well as related notices, maintenance and inspection work must be carried out according to a set schedule, in a set procedure, by appropriately qualified workers. Please read carefully and observe the related rules, etc, which appear in the "Safety Manual".
- (b) Please leave all maintenance and inspection work requiring disassembly to MHI. Please note that trouble resulting from disassembly work not authorized by MHI is exempt from the guarantee, even if occurring within the guarantee period.
- (c) During daily inspections if abnormality is recognized, please stop using immediately, and consult MHI.
- (d) Please note that "Periodic Inspection" is at customers expense, and that the guarantee period can not be extended.

6.2 Daily Inspection

When using PA-10, before starting work every day, please inspect the following items. While carrying out in-operation inspection, please ensure that all personnel remain outside the manipulator motion limits.

Inspection Items	Date & time	Inspector			
	Manipulator				
-Manipulator remains in the same position	•	Good / Not good			
-Screws not loose		Good / Not good			
-No abnormal noise, smell or vibration dete	ected during operation	Good / Not good			
-When emergency stop button is press	sed, manipulator motion is	Good / Not good			
stopped, and when button is released, the	he motion does not resume.				
	Cables				
-Not damaged		Good / Not good			
-No abnormal generation of heat at connec	tions	Good / Not good			
-Connectors not loose		Good / Not good			
	Controller				
-Connectors not loose		Good / Not good			
-Supply voltage is as specified, and earth co	onnection (type 3) connected.	Good / Not good			
-Floppy disk drive cleaned regularly		Good / Not good			
-System works normally when power is sw	itched ON.	Good / Not good			
-When emergency stop button is pressed,	manipulator stops, and when	Good / Not good			
the button is released, the motion does					
-Cooling fans work.	Good / Not good				
-No abnormal noise, smell, etc. detected du	Good / Not good				
Peripheral Equipment					
-No abnormality detected with interlocks b	Good / Not good				
PA-10					
-No abnormality detected with safety ba	Good / Not good				
devices					
** Anything else that should be considered **					

6.3 Periodic Inspection

Periodic inspection involves disassembly, and is to be carried out at MHI's factory.

Periodic inspection fee includes; the inspection fee (including fee for exchange of consumable goods*1), packing fee, and return fee.

Expense for dispatch to MHI's factory should be borne by customer. The periodic inspection items are as shown below. Standard time for the complete process is one (1) week (However, time for transportation is excluded. If exchange of component is required, it may take more time).

If it is necessary to exchange any component other than consumables as a result of inspection, MHI will contact the customer each time, and get approval before carrying out the work. Component exchange within the guarantee period will not be charged. However, fees will be charged, even within the guarantee period, if goods are deemed to have been handled inadvertently, or used by customer in any way other than specified *2 .

*1: Consumable parts & O-ring:

Grease for gear, bearing and O-ring

W1 axis timing belt

Controller fan filter

*2: Damages and failure caused by external reasons such as natural disasters including earthquake, storm and flood, or fire and abnormal voltage.

Failure due to misuse

Failure due to other devices then connected

Damages/failure caused during transfer/transportation

Failure as a result of repair/modification carried out in a place other than MHI

Others similar to the above items

Chapter 7 Before Purchasing Product

Before purchasing the product, please consider the followings:

7.1 Delivery Term

Delivery term is 3 months from accepting order.

Such term will get longer or shorter according to the options taken or the conditions of production. Please consult MHI in advance.

7.2 Delivery

F.O.B

Please note that any other requirement for delivery (set-up, adjustment, dispatch of instructors, etc.) will be charged.

7.3 Acceptance

The delivery of the product shall be regarded as acceptance of products.

If delivery test records are required in delivery, consult MHI. Unless requested additionally, such document will not be attached.

7.4 Guarantee

(1) Period of Guarantee

The period of guarantee shall be one (1) year from delivery of arm (main body), or 3000 hours of use whichever comes first. The period of guarantee for the products exchanged or repaired shall be the rest of the initial guarantee period, or 30 days from delivery of exchanged/repaired product whichever comes later.

(2) Scope of Guarantee

Any nonconformance of portable general purpose intelligent arm, caused by any fault of MHI during the period of guarantee, will be corrected free of charge. The substitute product(s) leased during such repair work will be charged.

Please note there may be no substitute products available according to the case.

Repair of any fault detected after expiration of guarantee shall be charged. Also note that the repair of the troubles shown below, and consumables will be charged, even within the guarantee period, if goods are deemed to have been handled inadvertently, or used by customer in any way other than specified:

- -Damages and failure caused by external reasons such as natural disasters including earthquake, storm and flood, or fire and abnormal voltage.
- -Failure due to mis-use
- -Failure due to other devices then connected
- -Damages/failure caused by shock from transfer/transportation/drop
- -Failure as a result of repair/modification carried out in a place other than MHI

(3) Contents of Guarantee

In discretion of MHI, the guarantee will be performed in either the repair, exchange or refund for portable general purpose intelligent arm.

In any case, MHI will be responsible for up to the amount actually paid by the customer.

7.5 Maintenance Contract

To operate this portable general purpose intelligent arm comfortably, customer is requested to conclude a maintenance contract. Maintenance contract is effective for one (1) year.

(1) Contents of Maintenance Contract

-Superiority Services

If any unexpected fault occurs, the product will be repaired and dispatched within 1 week from acceptance at the factory. Therefore, downtime will be minimized. Of course, the repair of any fault attributable to MHI within the period of guarantee will not be charged.

-Half-charge Service for Initial Periodic Inspection

If maintenance contract is concluded by the time the arm is purchased, the customer can have its arm checked in the periodic inspection for the first year at half cost (normal: 600,000 yen) when such contract is updated after 1 year of use.

-Free Technical Consulting

Concerning the operation of the machine, questions will be answered by telephone and facsimile. However, any question concerning the programming techniques (use of PA library, use of internal variables, etc.) for preparing application programs will be charged.

-Free Version-up of Software

In time for version-up of the purchased software, updated versions will be provided free of charge. (Change of hardware will be charged separately for actual costs.)

(2) Instruction for Maintenance Contract

-This contract relates to arm, and is not applied to the maintenance of applications (excluding version-ups).

You can choose to contract, or not contract. If however, such contract is concluded by the time the arm is purchased, chores of proceedings are settled at a time. You are then eligible for the half-charge service mentioned above for periodic inspection. This is a more convenient, and costsaving way.

7.6 Operating Conditions for Programs Supplied by Other Companies

Programs Supplied by Other Companies shall be approved for use by the suppliers directly. Therefore, customer will not be guaranteed by MHI for such things, and MHI will not be responsible for anything about them. The customer is requested to use these programs according to the conditions provided by the suppliers.

Programs Supplied by Other Companies include the followings:

- -Blue Water Systems WinRT $^{\!\mathsf{TM}}$
- -Microsoft® Visual C++®
- -Microsoft ® Visual Basic®

7.7 Contact Address

For anything about Portable General Purpose Intelligent Arm, please contact the following address. Also please feel free to contact the same way for a system configuration using the arm.

100-8315

5-1, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100-8315, JAPAN

Mitsubishi Heavy Industries, Ltd. Laser & Electronics Team. General Machinery Dept. Machinery Headquarters.

TEL: +81-3-3212-9675 FAX: +81-3-3212-9859

Also by way of the home page (http://www.robot-arm.com/), programs using applications and PA library are introduced, and a free download service for sample programs and arm CAD data is available. Please feel free to access the home page.

- -Visual Basic and Visual C++ are the registered trade marks of U.S. Microsoft Corporation.
- -WinRT is the trade mark of Blue Water Systems, Inc.
- -The company names and trade names shown in this document are the trade marks or registered trade marks of the companies.

The specifications shown in this document may be subject to changes for improvement without prior notice.