Tema 2

Caracterización de SSOO

Kernel

- Todos los sistemas operativos tienen una parte principal que se llama núcleo (o kernel, en inglés).
- ▶ El núcleo es el que se encarga de gestionar el hardware y hacer que todo pueda funcionar.
 - Es la programación básica del sistema operativo.

Introducción: ¿Qué es un Sistema Operativo

- Definición de Sistema Operativo:
 - Definición:
 - Programa o conjunto de programas que actúa como una interface entre el usuario o programador y la máquina física.
 - Principio de embellecimiento:
 - S. O. como conjunto de programas cuya misión es ofrecer al usuario final de la computadora la imagen de que ésta es una máquina sencilla de manejar, por muy difícil y complicado que sea el hardware con el que se haya construido.
 - Gobierno:
 - No desempeña ninguna función por sí sólo.
 - Crea un entorno dentro del que otros programas pueden realizar un trabajo útil.

Estructura del núcleo del SO

- Conjunto de reglas normas y procedimientos
 - que especifican
 - o las interrelaciones entre los componentes de un SI
 - y las características que deben cumplir cada uno de estos componentes
- Estructura Monolítica
- > Estructura Jerárquica
- > Estructura en Anillo
- Maguina Virtual
- ▶ Estructura Cliente-Servidor

Estructura Monolítica

- Es la estructura utilizada en los primeros
- Su estructura consiste en que no existe una estructura como tal.
- El SO está constituido por un único programa compuesto
 - de multitud de rutinas interrelacionadas entre sí
 - de forma que cada una pueda llamar a cualquier otra
- El núcleo tiende a ser de gran tamaño
 - aumentando las posibilidades de fallo (caídas del sistema).
- Difícil configuración y actualización
- Falta de protecciones y privilegios en rutinas de acceso a memoria, disco,
- Buena definición de parámetros entre rutinas
- Hechos a medida
 - Eficientes y rápidos
 - Poco flexible

Estructura del núcleo

- Conjunto de reglas normas y procedimientos
 - que especifican
 - · las interrelaciones entre los componentes de un SI
 - y las características que deben cumplir cada uno de estos componentes
- Estructura Monolítica
- Estructura Jerárquica
- ▶ Estructura en Anillo
- Maquina Virtual
- ▶ Estructura Cliente-Servidor

Ejemplo de SO Monolitico Programa de Prog

Estructura jerárquica

- A medida que los SSOO fueron creciendo, fue siendo necesaria una mayor estructuración.
- Es una estructura jerárquica ∘
 - que se divide en distintos niveles
- Pequeños módulos
- perfectamente definidos
- Perfectamente clara la relación con otros módulos (interface)
- El módulo de cada nivel funciona utilizando los servicios del nivel inferior
 - · Facilita la protección y el acceso al sistema
- > Se basan la mayor parte de sistemas actuales

Ejemplo de SO Jerárquico Programa de Apricación Mode Usuarlo Mode Kamel Sistema de Archives Administración da ErS y Memoria Hardware

Estructura en anillos

- Es una evolución de la jerárquica
- Organizado en anillos concéntricos o ring
 - · cada uno tiene una apertura
 - puerta o trampa (trap)
 - por donde pueden entrar las llamadas de las capas inferiores.
 - las zonas más internas del SO o núcleo del sistema estarán más protegidas de accesos indeseados desde las capas más externas
 - Las capas más internas serán, por tanto, más privilegiadas que las externas

Máquina virtual

- Permite crear sobre una máquina varias máquinas virtuales
- Presenta una interfaz a cada proceso
 mostrando una máquina que parece idéntica a la máquina real subyacente.
- En toda computadora se pueden definir dos máguinas abstractas
 - M. desnuda
 - Definida por el hardware
 - · Operaciones en lenguaje máquina
 - M. extendida
 - se constituye a partir de la máquina desnuda
 - · Definida por el hardware y el núcleo

Máquina virtual

- Maguina virtual
- Replica de la maquina real
- · no m. extendida
- \circ Cada máquina un SSOO distinto \rightarrow m. extendida al usuario

Máquina virtual

- ► El núcleo de estos SSOO se denomina monitor virtual
 - lleva a cabo la multiprogramación entre las MV
 - El SO crea la ilusión de múltiples procesos, cada uno de ellos ejecutando su propio procesador con su propia memoria virtual
 - presentando a los niveles superiores tantas MMVV como se soliciten

VMWare vSPhere vs VMWare Player o similiar

Estructura Cliente-Servidor

- > El tipo más reciente de SO
- Puede ser ejecutado en la mayoría de las computadoras
 grandes o pequeñas.
- De propósito general
- toda clase de aplicaciones
- Altamente modular
- · Módulos sin acceso al hardware
- El núcleo tiene como misión establecer la comunicación entre los clientes y los servidores.
- Los procesos pueden ser tanto servidores como clientes.
 - Un SO puede ser servidor y cliente a la vez
- Estos servidores deben tener mecanismos de seguridad y protección
 - son filtrados por el núcleo que controla el hardware.

Arquitectura de un SO

- Un SO
- es un programa o conjunto de programas
- que actúa como intermediario entre el usuario y el hardware del ordenador
- gestionando los recursos del sistema y optimizando su uso.
- El SO es en sí mismo un programa, pero un programa muy especial y quizá el más complejo e importante.
- El SO presenta al usuario la máquina de una forma más fácil de manejar y programar que el hardware que está por debajo
 - un usuario normal
 - · > abre los ficheros que grabó en un disco
 - → no se preocupa
 - · por la disposición de los bits en el medio físico
 - · los tiempos de espera del motor del disco
 - · la posición de un cabezal el acceso de otros usuarios, etc.

Estructura Cliente-Servidor

- Técnica message passing
- El proceso cliente solicita al núcleo un servicio mediante un mensaje
- El núcleo recibe el mensaje, envía el mensaje al servidor
- · El proceso servidor ejecuta la función solicitada
- · Devuelve un mensaje al núcleo con el resultado
- El núcleo reenvía el mensaje al proceso cliente

Arquitectura de un SO

Evolución de los SSOO

- Década de 1940
- Sin SO
 - Interactúan directamente con el HW
- Ordenadores de gran tamaño (ENIAC 1946 180m2)
- > Programas en código máquina, directamente con el HW
- Comunicación con la máquina:
 - Panel de programación (displays y switches)
 - Dispositivos de entrada: consola con interruptores manuales
 - o Dispositivos de salida: Bombillas de luz

Evolución de los SSOO

- Década de 1950
- > Se diseñaron nuevos SSOO
 - hacer más fluida la transición entre trabajos
 - se perdía demasiado tiempo entre la finalización de un trabajo y el comienzo de otro
- Cuando el trabajo estaba en ejecución
 - tenía control total sobre la máquina
- Al finalizar el trabajo
 - · el control era devuelto al SO
 - · mostraba los resultados
 - · comenzaba el trabajo siguiente.

Evolución de los SSOO

▶ ENIAC

Evolución de los SSOO

- Aparecen nuevos dispositivos de entrada y salida:
- Tarjetas perforadas e Impresoras

- Aparecen los cargadores, los primeros lenguajes y librerías comunes
- Comunicación con la máquina:
 - Dispositivos de entrada: lector de tarjetas con el programa
- Dispositivos de salida: impresora
- Dispositivo de gestión: consola
- Los programas eran cargadas manualmente en la memoria por el operario (tarjetas)
- La activación de los programas y recogida de datos se realizaba directamente desde la memoria del ordenador mediante una consola

Procesamiento en Serie

- Los usuarios acceden en serie a la máquina
 - Uno detrás de otro
- Ventajas:
 - Interactivo (los usuarios obtienen respuesta inmediata)
- Desventajas:
 - Sistema monousuario/monopuesto
 - Los usuarios acceden en serie a la máquina. Solamente un usuario operando la máquina en cada momento.
- Máquina cara y permanece bastante tiempo ociosa
 - debido a que las personas son lentas.
- Programación & depuración tediosas
 - Cada programa debe incluir código para operar periféricos: propenso a errores.

Sistema por Lotes

- Problema:
- Máquina antiguas muy caras y permanecían bastante tiempo ociosa, debido a que las personas son lentas.
- Necesidades de maximizar utilización (evitar perdidas en planificación y preparación)
- Solución:
- Nuevo concepto software: monitor
- El usuario no accede directamente a la máquina
- Un trabajo es un lote de tarjetas perforadas por el programador, posteriormente se utilizaban cintas magnéticas.

Procesamiento en Serie

- Problemas principales
- Planificación:
- Formularios de reserva EN PAPEL (p.e: múltiplos de 30 min.)
- · Desperdicio del tiempo del computador
- Tiempo de preparación:
- trabajo → compilador → programa objeto → montaje → carga → ejecución
- Cada paso podía implicar montar y desmontar cintas y/o tarietas
- Gran perdida de tiempo en la preparación
- Si se produce un error el usuario debía comenzar el proceso

 Horario Nombre trabajo Usu

Horario	Nombre trabajo	Usuario
10:00-10:30	Trabajo i	Usuario i
10:30-11:45	*****	
11:45-12:30	Trabajo i	Usuario i
12:45-13:30	Trabajo k	Usuario k

Sistema por Lotes

- Los primeros sistemas por lotes se desarrollaron:
 - 1940-1950, General Motors, en un IBM701
 - 1960, IBM, IBSYS en un 7090/7094
- Operativa:
- El usuario entrega los trabajos al operador
- El operador agrupaba trabajos en un lote y el monitor cargaba trabajos y los ejecutaba continuamente
- Los trabajos tenían unas rutinas finales que devolvían el control al monitor cuando terminaban

Sistema por Lotes

- El monitor debe estar siempre en memoria:
 - Monitor Residente
- Ofrece también un conjunto de funciones comunes como subrutinas para los programas de usuario
- El monitor lee trabajos uno a uno
- El control pasa al trabajo
- Al terminar, el trabajo devuelve el control al monitor
- El resultado de cada trabajo es impreso
- El monitor lee un nuevo trabajo
- Si ocurre alguna condición de error, el monitor también retoma el control

Sistema por Lotes. Características

- Protección de memoria:
 - mientras el programa del usuario este ejecutándose, no debe modificarse la zona de memoria en la que esta el monitor.
- Error → Control al monitor → siguiente trabajo
- Uso de temporizador:
- impide que un solo trabajo monopolice el sistema.
- El temporizador se carga al comenzar cada trabajo y, si expira el tiempo, se producirá una interrupción y el control volverá al monitor.
- Instrucciones privilegiadas:
 - ciertas instrucciones son designadas como privilegiadas y pueden ser ejecutadas solo por el monitor.
- ▶ El tiempo de maquina:
 - se reparte entre la ejecución de programas de usuario y la ejecución del monitor.

Sistema por Lotes

Ventajas:

- Computador se mantiene la mayor parte del tiempo ocupado
- Desventajas:
- No interactivo, prolongados tiempos de despacho
- Procesador costoso y aún permanece ocioso debido a trabajos limitados por E/S.
- Cantidad de memoria ocupada por el monitor
- Las desventajas son mejoras deseadas, aun con esto la mejora respecto a los sistemas anteriores son evidentes.

Sistema por lotes con multiprogramación

- Hasta la mitad de la década de los 60
- Máquinas muy caras y la ocupación de la CPU es pequeña por las esperas de E/S
- Objetivo:
 - Disminuir el tiempo de espera de la CPU ejecutando simultáneamente varias tareas
- Solución:
 - Mientras una tarea espera E/S otra tarea puede ejecutarse en el procesador
- Si hay espacio en memoria para: Monitor + 2 o más prog → Programa 1 (ops. E/S) → Programa 2 (paso a ejecución)

Multiprogramación

- Es el punto central de los Sistemas Operativos Modernos
- El monitor residente comienza a llamarse
 Sistema Operativo
- Características del S.O. necesarias:
 - Gestión de Memoria
- Planificación de procesos

Sistemas distribuidos

- Procesamiento centralizado
 - Un sistema de procesamiento de datos
 - en que todas las funciones estan centralizadas en una CPU
 - y en un SO
- Procesamiento distribuido
 - se ejecutan los datos en distintos nodos, dispersos geograficamente, interconectados mediante una red.

Sistemas de tiempo compartido

- Además de la multiprogramación los sistemas por lotes necesitan interactuar con el usuario.
- Varias tareas interactivas ejecutándose a la vez
 - Cada usuario accede al sistema mediante terminales.
 - Dedica a la tarea de cada usuario un quantum de tiempo, alternado los programas de estos.
- Se conoce como Tiempo compartido

Sistemas distribuidos

- Características:
 - Fragmentación de los elementos que componen una aplicación
 - en dos o más sistemas interconectados, de igual o diferente arquitectura operativa.
 - Los recursos de los sistemas se controlan y administran en forma independiente
 - La relación entre ambos sistemas puede tener diferentes formas:
 - arquitectura cliente/servidor
 - punto a punto (ambos nodos ofrecen los mismos servicios).

Funciones del SO

- Funciones principales que realiza todo sistema operativo:
 - Control de la ejecución de programas
 - Administración de periféricos
 - Gestión de permisos y de usuarios
 - Control de concurrencia
 - Control de errores
- Administración de memoria
- · Control de seguridad

Por los servicios ofrecidos

- Por el número de usuarios
- Monousuario.
- Multiusuario.
- Por el número de tareas
- Monotarea.
- Multitarea.
- Por el número de procesadores
 - Monoproceso
- Multiproceso
- Simétricos
- Asimétricos

Clasificaciones de los SSOO

- Por los servicios ofrecidos
 - Por el número de usuarios
 - Monousuario.
 - Multiusuario.
 - Por el número de tareas
 - Monotarea.
 - Multitarea.
 - Por el número de procesadores
 - Monoproceso
 - Multiproceso
 - Simétricos
 - Asimétricos

- Por la forma de ofrecer los servicios
- Sistemas centralizados
- Sistemas de Red
- Sistemas distribuidos
- Sistemas operativos de escritorio
- Por su disponibilidad
- SO propietarios
- SO libres

Por el número de usuarios

- Monousuario.
 - Únicamente soportan un usuario a la vez
 - sin importar las características de la máquina sobre la que es montado el sistema.
 - MS-DOS, Windows cliente o home
- Multiusuario.
 - o Son capaces de dar servicio a más de un usuario a la vez
- también independientemente de la plataforma *hardware*
- · A través de terminales
- UNIX
- · Cliente/ Servidor
- Windows

Por el número de tareas

- Monotarea.
 - Son sistemas antiguos (asociados a SO monolíticos)
 - solo permiten que un programa acapare al procesador o la memoria.
 - Sólo permiten una tarea a la vez por usuario
 - Puede darse el caso de un sistema multiusuario y monotarea
 - · se admiten varios usuarios al mismo tiempo
 - pero de todos puede estar sólo una tarea al mismo tiempo

Por el número de procesadores

- Monoproceso
- · Permiten utilizar un único procesador
- Permiten simular la multitarea
- El sistema realiza una tarea rotatoria con intercambio muy rápido.

Por el número de tareas

- Multitarea.
- Este tipo de SO permiten la ejecución de varios programas a la vez.
- Le permite al usuario estar realizando varios trabajos al mismo tiempo.
- Es común encontrar en ellos interfaces gráficas orientadas al uso de menús y el ratón
- permite un rápido intercambio de tareas para el usuario, mejorando su productividad.
- · La multitarea es relativamente falsa. Multitarea Virtual
- · Un micro solo puede ejecutar una instrucción cada vez

Por el número de procesadores

- Multiproceso
 - permiten utilizar varios procesadores simultáneamente
 - · son capaces de ejecutar varias tareas al tiempo.
 - Ventajas:
 - · Pueden ejecutar varias instrucciones simultáneamente (en paralelo).
 - · Aumento del rendimiento (más trabajos en menos tiempo).
 - · Compartición de periféricos y fuentes de potencia.
 - · Tolerancia a fallos (degradación gradual).
 - Desventaja:
 - · Sincronización entre procesos.
 - Simétricos (SMP, Symetrical Multiprocessing)
 - distribuyen la carga de procesamiento por igual entre todos los procesadores existentes.
 - Asimétricos (AMP, Asymetrical Multiprocessing)
 - · Determinados procesos los ejecutará siempre un procesador
 - Otro procesador sólo se utilizará para realizar procesos o programas de usuario
 - · Es posible que un procesador esté siempre trabajando y el otro sin actividad

Por la forma de ofrecer los servicios

- Sistemas centralizados
- Sistemas distribuidos
- ▶ Sistemas de Red
- Sistemas escritorio

Sistemas Centralizados

- Actualmente se siguen utilizando los sistemas centralizados
 - Terminal Services de Microsoft
 - los terminales dejan de ser tontos
 - pueden realizar otras muchas tareas por sí mismos.

Sistemas Centralizados

- Los ordenadores personales no tenían
 - · un precio asequible y suficiente potencia
 - Sistemas (UNIX)
 - · modelo de proceso centralizado.
- Mainframe se encarga de todo el procesamiento
- Los usuarios manejaban únicamente terminales "tontos"
 - o no disponían de memoria, ni de procesador

Sistemas distribuidos

- sistemas independientes
 - permiten distribuir los trabajos, tareas o procesos
 - entre un conjunto de procesadores.
 - en el mismo equipo
 - en equipos distintos
 - están conectados a través de una red de comunicaciones
 - · transparente para el usuario
- Los usuarios desconocen que se trata de un sistema centralizado

Sistemas distribuidos

Sistemas de Red vs Distribuidos

- SO de Red
- 。 Los usuarios saben de la existencia de varias computadoras pueden
- · conectarse con máquinas remotas
- · copiar archivos de una máquina a otra.
- Cada máguina
- · ejecuta su propio SO local
- · Se ejecuta de manera independiente de otras maquinas en la red.
- · tiene su propio usuario o grupo de usuarios
- Esquema de comunicaciones.
- SO Distribuido
- Aparece ante sus usuarios como un sistema tradicional de un solo procesador
- Parece un solo SO que controla la red.
- Los usuarios no deben saber
- el lugar donde su programa se ejecuta
- · el lugar donde se encuentran sus archivos
- Es indispensable el uso de redes para intercambiar datos.

Sistemas de Red

- Tienen a dos o más computadoras unidas a través de algún medio de comunicación (físico o no)
- Comparten los diferentes recursos y la información del sistema.
- Cada ordenador mantiene
- su propio sistema operativo
- su propio sistema de archivos local.
- Los SSOO de red usados más ampliamente son:
 - Windows Server, Linux Server, etc.

SSOO de escritorio

- Se utilizan en los equipos de sobremesa, estaciones de trabajo o portátiles.
- También se les puede denominar como sistemas operativos cliente.
- Entre ellos se encuentran: Windows Vista,
 Windows 7, Windows 8, Windows 10 y Linux.

Por su disponibilidad

- SSOO propietarios
- SSOO libres

SSOO Libres

- Son aquellos que garantizan las cuatro libertades del software libre (según Richard M. Stallman)
- Las cuatro libertades de los usuarios del software:
 - La libertad de usar el programa, con cualquier propósito

 - · La libertad de estudiar como funciona el programa, y adaptarlo a tus

 - El acceso al código fuente es una condición previa para esto.
 - La libertad de distribuir copias, con lo que puedes ayudar a tu vecino

 - La **libertad de mejorar el programa** y **hacer publicas las mejoras** a los demás, de modo que toda la comunidad se beneficie.

 - · El acceso al código fuente es un requisito previo para esto.

SSOO propietarios

- > Son propiedad intelectual de alguna empresa.
 - Se necesitan licencias de uso para que el usuario ejecute el software
 - No tiene acceso a su código fuente
 - · Si se puede acceder a el
 - · no se puede modificarlo ni distribuido.
 - · En este grupo se encuentra Windows.

Tipos de software

- Software:
 - o como el conjunto de instrucciones o programas usados por una computadora para hacer determinada tarea.
- · Virtual, intangible y están almacenados en diferentes sistemas de almacenamiento.
- Relación hardware ⇔ software
- · visión global de la estructura de un ordenador
- sistema completo esta formado por
- · subsistemas relacionados entre si de forma escalonada.
- · Niveles inferiores: la frontera entre el hardware y el software es bastante difusa.

Lenguajes de programación Instrucciones: distintas órdenes para operar sobre los datos Programa: conjunto ordenado de instrucciones ejecutadas en secuencia con eventuales cambios de flujo causados por el propio programa o eventos externos. Lenguaje de programación: conjunto de símbolos y reglas para codificar las instrucciones

Lenguaje ensamblador

Los programas traductores (ensambladores) convierten el código fuente...

 Escritos en lenguaje ensamblador a lenguaje máquina, traduciendo las instrucciones mnemónicas a su equivalente en lenguaje máquina

Lenguajes de programación

- Compilador
- traductor de un programa fuente que se encuentra en un lenguaje de alto nivel, para producir un programa objeto en un lenguaje de bajo nivel (ensamblador o código maquina).
- Tiene como objetivo obtener un programa ejecutable.

Lenguajes de alto nivel

- Son los mas utilizados por los programadores.
- Están diseñados para que las personas escriban y entiendan los programas de un modo mucho mas fácil que los lenguajes maquina y ensambladores.
- Un programa escrito en lenguaje de alto nivel es independiente de la maquina
- Las instrucciones del programa no dependen del diseño del hardware o de un ordenador en particular.
- Los programas escritos en lenguaje de alto nivel son portables

Peri C++ Javascript python Ruby Armywart hat fried Java

Software libre

- → El software libre
 - Las cuatro libertades de Stallman
 - Suele estar disponible gratuitamente
 - o al precio de coste de la distribución a través de otros medios
 - · no es obligatorio que sea así
 - No hay que asociar software libre a software gratuito, ya que, conservando su carácter de libre, podrá ser distribuido comercialmente (software comercial).
 - El software gratuito (freeware)
 - · puede incluir el código fuente
 - eso no quiere decir que se pueda considerar como "libre" a no ser que se garanticen los derechos de modificación y redistribución de las versiones modificadas del programa.

Software de dominio público

- Tampoco debe confundirse software libre con software de dominio publico.
 - tiene como particularidad la ausencia de Copyright
 - es software libre sin derechos de autor.
 - En este caso los autores renuncian a todos los derechos que les puedan corresponder.

Tipos de aplicaciones

- ▶ Libres o propietarias
 - Libre
 - · Distribución del código fuente junto con el programa
 - · cuatro premisas Stallman
 - · Gratuito o no
 - Propietario
 - · Usuarios tienen limitadas las posibilidades:
 - licencia
 - · de usarlo
 - · modificarlo
 - · redistribuirlo (con o sin modificaciones).

Tipos de aplicaciones

- Gratuitas o Comerciales (de pago)
 - Shareware
 - evaluar de forma gratuita el producto, pero con limitaciones de tiempo o de capacidades

Tipos de aplicaciones

- → Opensource
 - · código abierto al usuario
- ▶ Privativas
- código fuente no está disponible o el acceso a él se encuentra restringido

Tipos de licencia de distribución

- OEM
- Retail
- Licencias por volumen

Licencia OEM

- Licencia que supeditada a la compra de un equipo nuevo.
- Prohibida la venta por separado
- > Sobretodo en SSOO
- Aunque sea propiedad del comprador, puede haber limitaciones de uso
- o numero máximo de veces que se puede reinstalar.
- NO se pueden vender, ni ceder a terceros
- salvo en las mismas condiciones en las que se compraron
 - · como parte de un equipo

Licencia Retail

- Retail (venta)
 - Venta de software
 - Propiedad del usuario
 - · Pudiendo cederlo libremente a terceros o venderlo.

Gestores de arranque

- Arranque de un Sistema
- POST
- Se eiecuta el MBR
- MBR busca la partición activa
- Ejecuta su PBR (Partition Boot Record)
- · Ilama al gestor de arrangue del SO
- Gestor de arrangue
- pequeño programa
- permite seleccionar el SO en caso de disponer de arranque múltiple.
- Gestores
- NTLDR
- Bootmgr
- Lilo
- Grub

Licencias por volumen

- Destinado a grandes empresas
 - · Condiciones similares a las de las licencias OEM
 - · Sin equipos nuevos.
 - Número de equipos
 - · mismo código de licencia
- Fabricante esta autorizado para hacer las comprobaciones de numero
- NO se puede ceder a terceros ni total ni parcialmente

Gestores de arranque

- Lilo (Linux Loader)
 - Gestor de arranque de Linux
 - Permite iniciar Windows
 - Múltiples sistemas de archivos
 - Arrancar un SO desde el disco duro o desde un disco externo
- ▶ Grub
 - Mas moderno y flexible que Lilo
 - Permite que el administrador ejecute cualquier comando desde la línea de comando de Grub.
 - Características
 - · Posibilidad de incluir múltiples formatos de ejecutables
 - Puede arrancar SO no-multiarranque
 - · Agradable interfaz de usuario
 - · Interfaz de línea de comando muy flexible.

Actividad 2.4 Notation Activi

Gestores de arranque vs Máquinas virtuales

- ▶ Gestor de arranque
 - ahorro de hardware
 - No se puede disponer de ambos los SSOO simultáneamente.
 - Solución Maquinas Virtuales
- Maquinas Virtuales
 - Varios SSOO a la vez
 - · Pueden interactuar