

Unit1_Unit2_Unit3:Revision Class #8 Typical Concepts and QnAs related to Operating Systems

Nitin V Pujari Faculty, Computer Science Dean, IQAC, PES University

Course Syllabus => Unit 1

Class No.	Chapter Title / Reference Literature	Topics to be covered	% of Portions cov	ered
			Reference chapter	Cumulative
1		Introduction: What Operating Systems Do, Computer-System Organization	1.1, 1.2	21.4
2		Computer-System Architecture, Operating-System Structure & Operations	1.3,1.4,1.5	
3		Kernel Data Structures, Computing Environments	1.10, 1.11	
4		Operating-System Services, Operating-System Design and Implementation	2.1, 2.6	
5		Process concept: Process In memory, Process State, Process Control Block, Context switch, Process Creation & Termination,	3.1 - 3.3	
6		CPU Scheduling - Preemptive and Non-Preemptive, Scheduling Criteria, FIFO Algrorithm	5.1-5.2	
7		Scheduling Algorithms:SJF, Round-Robin and Priority Scheduling	5.3	
8		Multi-Level Queue, Multi-Level Feedback Queue	5.3	
9		Multiprocessor and Real Time Scheduling	5.5, 5.6	
10		Case Study: Linux/ Windows Scheduling Policies.	5.7	
11		Inter Process Communication – Shared Memory, Messages	3.4	
12.		Named and unnamed pipes (+Review)	3.6.3	

Course Syllabus => Unit 2

Course Syllabus => Unit 3

Facts, Concepts, True / False, Fill in the Blanks

- A dual-core system requires each core has its own cache memory => False
- The operating system kernel consists of all system and application programs in a computer =>
 False
- A <u>timer</u> can be used to prevent a user program from never returning control to the operating system.
- <u>Mainframe</u> operating systems are designed primarily to maximize resource utilization.
- Embedded computers typically run on a <u>realtime</u> operating system.
- Two important design issues for cache memory are <u>Size</u> and <u>Replacement</u> Policy
- If a program terminates abnormally, a dump of memory may be examined by a <u>debugger</u> to determine the cause of the problem
- A message-passing model is <u>easier to implement than a shared memory for intercomputer</u> <u>communication</u>
- The Windows CreateProcess() system call creates a new process. What is the equivalent system call in UNIX => fork ()

Facts, Concepts, True / False, Fill in the Blanks

- Modules allow operating system services to be loaded dynamically
- When a child process is created, following is a possibility in terms of the execution or address space of the child process
 - The child process runs concurrently with the parent.
 - The child process has a new program loaded into it.
 - The child is a duplicate of the parent.
 - All the above
- The <u>stack</u> of a process contains temporary data such as function parameters, return addresses, and local variables.
- **shell** is the interface between the user and the operating system
- system call => A program request a service from an operating system's kernel
- <u>Data register</u> => Used in micro computer to temporarily store data being transmitted to/from an device
- Address Register => Portion of computer memory that keeps track of location in memory

Facts, Concepts, True / False, Fill in the Blanks

- <u>PC (Program Counter) => A register in a computer processor that contains</u> the address (location) of the instruction being executed at the current time.
- <u>PSW (Program Status Word)</u> => Controls the order in which instructions are fed to the processor, and indicates the status of the system in relation to the currently running program
- wait for graph used for deadlock detection for single instance of resource
- Banker's Safety Algorithm => used for Deadlock Avoidance
- Banker's Resource Request Algorithm => used for
 Deadlock Detection for Multiple instances of resources

OS Exercise

Find Rmax, Need, check for safety - using Banker's Algorithm

RMax					
Α	С				
?	?	,			

Available=>Rmax-Allocated					
A B C					
1	5	2			

Dunana		Allocation		Max			
Process	A	В	С	А	В	С	
P0	0	0	1	0	0	1	
P1	1	0	0	1	7	5	
P2	1	3	5	2	3	5	
Р3	0	6	3	0	6	5	
Total	?	?	?	?	?	?	

OS Exercise

Find Available, Need, check for safety - using Banker's Algorithm

RMax					
А	В	С			
4	2	5			

Available=>Rmax-Allocated					
A B C					
?	?	?			

Process		Allocation		Max		
	А	В	С	А	В	С
P0	1	0	1	2	1	2
P1	0	0	1	3	2	4
P2	1	1	1	4	2	1
Total	?	?	?	?	?	?

OS Exercise

Find Available, Maximum, check for safety - using Banker's Algorithm

RMax					
Α	В	С			
4	2	5			

Available=>Rmax-Allocated						
А В С						
?	?	?				

D		Allocation		Мах			
Process	A	В	С	А	В	С	
P0	1	0	1	?	?	?	
P1	0	0	1	?	?	?	
P2	1	1	1	?	?	?	
Total	?	?	?	?	?	?	

	Need					
Α	В	С				
2	1	2				
3	2	4				
4	2	1				
?	?	?				

OS Exercise

Req#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
Page #	4	7	6	1	7	6	1	4	7	2

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
1										
2										
3										
Flag										

Apply:

- 1. Optimal Page Replacement Policy
- 2. Most Recently Used (MRU) Page replacement policy
- 3. Least Recently Used (LRU) Page replacement policy

```
Working Set => { }
```

Total Number of Page Requests = >

Total Number of Frames =>

OS Exercise

Req#	R1	R2	R3	R4	R5	R6
Page #	4	7	6	1	7	6

Apply:

- 1. Most Frequently Used (MFU) Page replacement policy
- 2. Least Frequently Used (LFU) Page replacement policy

Fr#	R1	FQ	Fr#	R2	FQ	Fr#	R3	FQ	Fr#	R4	FQ	Fr#	R5	FQ	Fr#	R6	FQ
1			1			1			1			1			1		
2			2			2			2			2			2		
3			3			3			3			3			3		
Flag			Flag			Flag			Flag			Flag			Flag		

Working Set => {

Total Number of Page Requests =>

Total Number of Frames =>

Total Number of Page faults =>
% of Page Faults =>
% of Page Hits =>

Legend
Page Fault => PF
Page Hit => PH
FQ => Frequency Count

PES UNIVERSITY

OS Exercise

Req #	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20
Page #	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6

Fr#	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20
1																				
2																				
3																				
Flag																				

Working Set => { }

Total Number of Page Requests = >

Total Number of Frames =>

Total Number of Page faults =>

% of Page Faults = >

% of Page Hits =>

Legend

Page Fault => PF

Page Hit => PH

Apply and Compare:

- 1. FIFO Page Replacement Policy
- 2. Most Recently Used (MRU) Page replacement policy
- 3. Least Recently Used (LRU) Page replacement policy

THANK YOU - Wishing you the Very Best for the upcoming ISA - 1

Nitin V Pujari Faculty, Computer Science Dean, IQAC, PES University

nitin.pujari@pes.edu

For Course Deliverables by the Anchor Faculty click on www.pesuacademy.com