# Mapa wykładu

- □ 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
  LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

### Bezprzewodowa sieć LAN IEEE 802.11

#### □ 802.11b

- pasmo radiowe 2.4-5
  GHz bez licencji
- o do 11 Mb/s
- w warstwie fizycznej, używa direct sequence spread spectrum (DSSS)
  - wszystkie hosty używają tego samego kodu dzielącego
- szeroko używane, korzysta z punktów dostępowych

- □ 802.11a
  - o pasmo 5-6 GHz
  - o do 54 Mb/s
- □ 802.11g
  - o pasmo 2.4-5 GHz
  - o do 54 Mb/s
- Używają CSMA/CA do wielodostępu
- Wszystkie mają wersję z punktami dostępowymi i ad-hoc

# Użycie punktów dostępowych

- Bezprzewodowy host komunikuje się z punktem dostępowym
  - stacja bazowa = ang. access point (AP)
- □ Basic Service Set (BSS) (tzw. "komórka") zawiera:
  - bezprzewodowe hosty
  - punkt dostępowy (AP)

□ BSS mogą być łączone, żeby stworzyć system

dystrybucji

### Sieci Ad Hoc

- □ Bez punktów dostępowych (AP)
- □ Bezprzewodowe hosty porozumiewają się ze sobą
  - pakiet z bezprzewodowego hosta A do B może być kierowany przez hosty X,Y,Z
- □ Zastosowania:
  - o spotkanie "laptopów" w pokoju konferencyjnym
  - o połączenie urządzeń "osobistych"
  - o pole walki
- □ grupa roboczaIETF MANET(Mobile Ad hoc Networks)



# IEEE 802.11: wielodostęp

- Kolizje, gdy 2 lub więcej węzłów transmituje w tym samym czasie
- □ CSMA jest dobrym rozwiązaniem:
  - o gdy jeden węzeł nadaje, dostaje cała przepustowość
  - o nie powinno powodować kolizji, gdy styszy się inną transmisję
- Wykrywanie kolizji nie działa: problem ukrytego terminala



#### Protokół MAC IEEE 802.11: CSMA/CA

#### 802.11 CSMA: nadawca

if kanał jest wolny przez
 DISF sekund
 then wyslij całą ramkę (bez wykrywania kolizji)

-if kanał jest zajęty then odczekaj losowy czas

#### 802.11 CSMA: odbiorca

 if odebrałem poprawnie
 wysyłam ACK po czasie SIFS
 (ACK jest potrzebne z powodu ukrytych terminali)



pozostałe

# Mechanizmy unikania kolizji

#### □ Problem:

- dwa węzły, wzajemnie niewidoczne, wysyłają całe ramki do stacji bazowej
- o przepustowość marnuje się przez długi czas!

#### □ Rozwiązanie:

- o małe ramki rezerwacji
- węzły kontrolują przedział rezerwacji przez wewnętrzny "wektor przydziału sieci" (ang. Network Allocation Vector, NAV)

### Unikanie kolizji: wymiana RTS-CTS

nadawca wysyła krótką ramkę RTS (request to send): podaje długość planowanej transmisji

 odbiorca odpowiada krótką ramką CTS (clear to send)

> zawiadamiając inne (ukryte) węzły

przez ustalony czas, ukryte węzły nie będą transmitowały: NAV





### Unikanie kolizji: wymiana RTS-CTS

- Ramki RTS i CTS są krótkie:
  - kolizje mniej prawdopodobne i trwające krócej
  - końcowy wynik podobny do wykrywania kolizji
- □ IEEE 802.11 pozwala na:
  - CSMA
  - OCSMA/CA: rezerwacje
  - odpytywanie prze stację bazową (protokół z kolejnością)





### Pare słów o Bluetooth

- Technologia sieci bezprzewodowych o małej mocy, małym zasięgu
  - → 10-100 metrów
- bezkierunkowy
  - nie to samo co podczerwień
- □ Łączy małe urządzenia
- Używa nie licencjonowanego pasma 2.4-2.5 GHz
- do 721 kb/s

- Zakłócenia za strony bezprzewodowych sieci LAN, telefonów bezprzewodowych, mikrofalówek:
  - pomaga przeskakiwanie po częstotliwościach
- □ Protokół MAC udostępnia:
  - naprawę błędów
  - ARQ
- Każdy węzeł ma 12bitowy adres

# Mapa wykładu

- □ 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
  LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

#### Point to Point Data Link Control

- □ jeden nadawca, jeden odbiorca, jedno łącze: prostsze niż łącze punkt-wielopunkt (rozgłaszające):
  - o nie potrzeba protokołów wielodostępowych (MAC)
  - o nie potrzeba adresowania MAC
  - o n.p., łącze modemowe, linia ISDN
- popularne protokoły DLC punkt-punkt:
  - PPP (point-to-point protocol)
  - HDLC: High level data link control (Kiedyś o warstwie łącza myślano jako o "wysokiej" warstwie...)

### Wymagania wobec PPP[RFC 1557]

- tworzenie ramek: enkapsulacja pakietu warstwy sieci w ramkę warstwy łącza
  - dzięki temu, może komunikować informacje dowolnego protokołu warstwy sieci (nie tylko IP) jednocześnie
  - następnie może demultipleksować pakiety
- przezroczystość bitowa: musi komunikować dowolny wzorzec bitowy w polu danych
- wykrywanie błędów (bez korekcji)
- aktywność łącza: wykrywa, powiadamia warstwę sieci o awariach łącza
- negocjacja adresów warstwy sieci: punkty końcowe mogą się uczyć/konfigurować swoje adresy sieciowe

### Czego PPP nie musi robić

- □ nie ma naprawy błędów
- nie ma kontroli przeciążenia
- 🗖 komunikacja bez kolejności
- nie musi obsługiwać łącz punkt-wielopunkt (n.p., przez odpytywanie)

Niezawodność, kontrola przeciążenia, zapewnianie kolejności są pozostawiane wyższym warstwom!

### Ramka PPP

- □ Pole *Flag*: ogranicza ramkę
- □ Pole *Address*: nic nie robi (tylko jedna wartość)
- □ Pole Control: nic nie robi; w przyszłości mogą być różne wartości
- □ Pole Protocol: protokół warstwy wyższej, do której dostarczona będzie zawartość ramki (np, PPP-LCP, IP, IPCP, itd)

| 1        | 1        | 1        | 1 or 2   | variable<br>length | 2 or 4 | 1        |
|----------|----------|----------|----------|--------------------|--------|----------|
| 01111110 | 11111111 | 00000011 | protocol | info               | check  | 01111110 |
| flag     | lddress  | control  |          |                    |        | flag     |

#### PPP Data Frame

- □ Pole *info*: dane warstwy wyższej
- □ Pole check: CRC w celu wykrywania błędów



# Nadziewanie bajtów

- wymaganie "przezroczystości bitowej": pole danych może zawierać ciąg bitów <01111110>
  - O Pytanie: czy ciąg <01111110> to dane, czy flaga?

- □ Nadawca: dodaje ("nadziewa") dodatkowy bajt <01111110> po każdym bajcie <01111110> danych
- □ Odbiorca:
  - dwa bajty 01111110 pod rząd: wyrzuć pierwszy bajt, odbieraj dalej dane
  - o pojedynczy bajt 01111110: bajt flagi

# Nadziewanie bajtów



# Protokół PPP: sygnalizacja

- Zanim rozpocznie się komunikacja w warstwie fizycznej, partnerzy na łączu muszą:
- skonfigurować łącze PPP (maks. długość ramki, uwierzytelnienie)
- □ nauczyć się/skonfigurować informację o w. sieci
  - dla IP: komunikaty protokołu IP Control Protocol (IPCP) (pole protokołu: 8021) w celu poznania adresów IP



# Mapa wykładu

- □ 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
  LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

#### Asynchronous Transfer Mode: ATM

- Standard 1990's/00 dla szybkich sieci (155Mb/s do 622 Mb/s i więcej) architektura Broadband Integrated Service Digital Network
- <u>Cel:</u> zintegrowana komunikacja głosu, wideo, danych
  - o realizująca wymagania jakości obsługi (QoS) głosu, wideo (nie jak w modelu Internetu: bestefort)
  - telefonia "następnej generacji": korzenie technologii ATM są w telefonii
  - komutacja pakietów (pakiety ustalonej długości, nazywane "komórkami") przy pomocy wirtualnych kanałów

### Architektura ATM



- warstwa adaptacji: tylko na brzegu sieci ATM
  - segmentacja/łączenie informacji
  - z grubsza odpowiada warstwie transportu w Internecie
- warstwa ATM: warstwa "sieci"
  - komutacja komórek, ruting
- warstwa fizyczna

### ATM: warstwa sieci, czy łącza?

<u>Wizja:</u> transport konieckoniec: "ATM od hosta do hosta"

> ATM jest technologia warstwy sieci

Rzeczywistość: używana do łączenia szkieletowych ruterów Internetu

- "IP over ATM"
- ATM jako komutowana warstwa łącza, łącząca rutery IP



### ATM Adaptation Layer (AAL)

- ATM Adaptation Layer (AAL): "adaptacja" warstw wyższych (IP lub aplikacji korzystających bezpośrednio z ATM) do niższej warstwy ATM
- AAL występuje tylko w systemach końcowych, a nie w przełącznikach ATM
- segment warstwy AAL (nagłówek/zakończenie, dane) jest fragmentowany w wielu komórkach ATM
  - o analogia: segment TCP w wielu pakietach IP



#### ATM Adaptation Layer (AAL) [cd]

#### Różne wersje warstwy AAL, zależnie od klasy usługi ATM:

- AAL2: dla ustug VBR (Variable Bit Rate), n.p., wideo MPEG
- AAL5: dla danych (n.p., pakiety IP)



# AAL5 - Simple And Efficient AL (SEAL)

- AAL5: mały narzut AAL w celu komunikacji pakietów IP
  - 4 byte na sumę kontrolną (CRC)
  - Wypełnienie (PAD) zapewnia, że długość segmentu to wielokrotność 48 bajtów
  - duży segment AAL5 ma być dzielony na 48bajtowe komórki ATM

| CPCS-PDU payload | PAD  | Length | CRC |
|------------------|------|--------|-----|
| 0-65535          | 0-47 | 2      | 4   |

#### Warstwa ATM

Usługa: przesyłanie komórek przez sieć ATM

- analogiczna do warstwy sieci IP
- zupełnie inne usługi niż w warstwie sieci IP

|   |                      |                |                           | Gwarancje ?      |            |                     |                                  |
|---|----------------------|----------------|---------------------------|------------------|------------|---------------------|----------------------------------|
| Α | rchitektura<br>sieci | Model<br>usług | Przepusto-<br>wość        | Straty           | Porząde    | Synchro-<br>nizacja | Informacja o<br>przeciążeni<br>u |
|   | Internet             | best effor     | t<br>brak                 | nie              | k<br>nie   | nie                 | nie<br>(wnioskowa-               |
|   | ATM                  | CBR            | stała                     | tak              |            | tak                 | `na ze strat)<br>nie ma          |
|   | ATM                  | VBR            | gwaranto-<br>wana         | tak              | tak        | tak                 | przeciążeni<br>a                 |
|   | ATM                  | ABR v          | gwaranto-<br>vane minimur | <sup>n</sup> nie | tak        | nie                 | nie ma<br>przeciążeni<br>a       |
|   | ATM                  | UBR            | brak                      | nie              | tak<br>tak | nie                 | tak <sub>5a-27</sub>             |

Cwaranaia 2

#### Warstwa ATM: Wirtualne Kanały

- usługa VC (Virtual Channel): komunikacja komórek przez
  VC od nadawcy do odbiorcy
  - o sygnalizacja musi poprzedzić komunikację informacji
  - o każdy pakiet zawiera identyfikator VC (nie adres odbiorcy)
  - Każda przełącznica na ścieżce nadawca-odbiorca utrzymuje "stan" dla każdego wirtualnego kanału
  - zasoby łącz, przełącznic (przepustowość, ) mogą zostać przydzielone do VC: żeby uzyskać jakość jak w kanale.
- State VCs (Permanent VC, PVC)
  - długotrwałe połączenia
  - typowo: "stała" trasa pomiędzy ruterami IP
- □ Przełączane VC (Switched VC, SVC):
  - tworzone dynamicznie gdy jest zapotrzebowanie

### Wirtualne kanały w sieci ATM

- □ Zalety mechanizmu VC w sieci ATM:
  - Gwarancje jakości usługi (QoS) są realizowane przez wirtualny kanał (przepustowość, opóźnienie, zmienność opóźnień (jitter))
- Wady mechanizmu VC w sieci ATM:
  - Niewydajny dla komunikacji bezpołączeniowej
  - jeden stały VC dla każdej pary nadawca/odbiorca nie jest skalowalne (potrzeba N\*2 kanałów)
  - Przełączane VC wymaga opóźnienia na tworzenie kanału, co zmniejsza wydajność dla krótkotrwałych połączeń

#### Warstwa ATM: Komórka ATM

- 5-bajtowy nagłówek komórki ATM
- □ 48-bajtowe dane
  - Dlaczego?: małe dane -> małe opóźnienie dla tworzenia komórki przy komunikacji głosu
  - o w połowie pomiędzy 32 i 64 (kompromis!)

Nagłówek komórki



Format komórki



# Nagłówek komórki ATM

- VCI: identyfikator wirtualnego kanału
  - o zmienia się na różnych łączach należących do VC
- PT: Typ danych (n.p. komórka RM lub komórka danych)
- CLP: bit priorytetu straty (Cell Loss Priority)
  - CLP = 1 oznacza komórkę o niskim priorytecie, może zostać wyrzucona przy przeciążeniu
- ☐ HEC: Suma kontrolna nagłówka (Header Error Checksum)
  - o cyclic redundancy check



### Warstwa fizyczna ATM

# Podwarstwa PMD (*Physical Medium Dependent*)

- SONET/SDH: struktura ramki transmisji (jak pojemnik na bity);
  - synchronizacja bitowa;
  - o podział przepustowości (TDM);
  - wiele prędkości: OC3 = 155.52 Mb/s; OC12 = 622.08 Mb/s; OC48 = 2.45 Gb/s, OC192 = 9.6 Gb/s
- □ TI/T3: struktura ramki transmisji (stara hierarchia telefoniczna): 1.5 Mb/s, 45 Mb/s
- bez struktury: po prostu komórki (zajęte/wolne)

### Warstwa fizyczna ATM (cd)

#### Dwie części (podwarstwy) warstwy fizycznej:

- □ Transmission Convergence Sublayer (TCS): dopasowuje warstwę ATM do warstwy PMD poniżej
- Physical Medium Dependent: zależy od użytego medium

#### Funkcje TCS:

- Tworzenie sumy kontrolnej nagłówka: 8 bitów, CRC
- Oddzielenie komórek
- Przy podwarstwie PMD "bez struktury", transmisja pustych komórek gdy nie ma danych do wysłania

#### IP-Over-ATM

#### Klasyczne IP

- ☐ 3 "sieci" (n.p., segmenty LAN)
- ☐ Adresy MAC (802.3) oraz IP



#### IP over ATM

- Adresy ATM, adresy IP



#### IP-Over-ATM

#### Zagadnienia:

- □ Enkapsulacja pakietów IP w segmentach ATM AAL5
- tłumaczenie adresów IP na adresy ATM
  - tak jak tłumaczenie adresów IP na adresy 802.3 MAC!



#### Podróż pakietu w sieci IP-over-ATM

- u nadawcy:
  - warstwa IP odwzorowuje adres IP odbiorcy na adres ATM (używa ARP)
  - o przekazuje pakiet do warstwy AAL5
  - AAL5 umieszcza pakiet w segmencie, tworzy komórki, przekazuje do warstwy ATM
- w sieci ATM: komórka przekazywana przez kanał wirtualny do odbiorcy
- u odbiorcy:
  - AAL5 łączy komórki w segment zawierający pakiet
  - o jeśli CRC jest OK, pakiet jest przekazywany do IP



# Mapa wykładu

- □ 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
  LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- **□** 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

# Frame Relay

#### Podobnie do ATM:

- technologia sieci rozległej
- używa wirtualnych kanałów
- początki w świecie telefonii
- może być używana do komunikacji pakietów IP
  - dlatego, może być traktowana jako warstwa łącza przez protokół IP

# Frame Relay

- Zaprojektowana w późnych latach 80tych, szeroko rozpowszechniona w latach 90tych
- Usługa sieci Frame Relay:
  - brak kontroli błędów
  - o kontrola przeciążenia koniec-koniec



# Frame Relay (cd)

- Zaprojektowana do łączenia sieci LAN korporacyjnych klientów
  - zwykle stałe VC's: "rura" przenosząca połączony ruch pomiędzy dwoma ruterami
  - o przełączane VC: jak w sieci ATM
- klient korporacyjny wynajmuje usługę FR od publicznej sieci Frame Relay (n.p., Sprint, ATT)



# Frame Relay (cd)

| flaga adres | dane | CRC | flaga |
|-------------|------|-----|-------|
|-------------|------|-----|-------|

- Bity flagi, 01111110, oznaczają początek i koniec ramki
- □ adres:
  - 10 bitowy identyfikator VC
  - 3 bity kontroli przeciążenia
    - FECN: forward explicit congestion notification (ramka doświadczyła przeciążenia na ścieżce VC)
    - BECN: przeciążenie na powrotnej ścieżce
    - DE: możliwość porzucenia

### <u>Frame Relay - kontrola prędkości w VC</u>

- Committed Information Rate (CIR)
  - o zdefiniowana, "gwarantowana" dla każdego VC
  - o negocjowana podczas tworzenia VC
  - o klient płaci zależnie od CIR
- ☐ Bit DE: Discard Eligibility
  - Przełącznik FR na brzegu sieci mierzy prędkość komunikacji dla każdego VC; zaznacza ramki bitem DE
  - DE = 0: wysoki priorytet, ramka zgodna z CIR; dostarczyć "za wszelką cenę"
  - DE = 1: niski priorytet, może zostać odrzucona przy przeciążeniu

#### Frame Relay - CIR & Zaznaczanie ramek

- Prędkość dostępu: prędkość R łącza dostępowego pomiędzy ruterem źródłowym (klientem) i brzegowym przełącznikiem FR (dostawcą); 64Kb/s < R < 1,544Kb/s</p>
- Zwykle, wiele VC (jeden dla każdego rutera dostępowego) są multipleksowane w tej samej wiązce dostępowej; każdy VC ma własny CIR
- Brzegowy przełącznik FR mierzy prędkość komunikacji dla każdego VC; zaznacza (DE = 1) ramki które przekraczają CIR (te mogą być później odrzucone)
- Nowy mechanizm differentiated service w Internecie używa podobnych pomysłów

### Podsumowanie warstwy łącza

- □ mechanizmy używane przez usługi w. łącza:
  - wykrywanie, korekcja błędów
  - o podział łącza rozgłaszającego: wielodostęp
  - o adresowanie warstwy łącza, ARP
- technologie warstwy łącza: Ethernet, koncentratory, mosty, switche (przełączniki), sieci LAN IEEE 802.11, PPP, ATM, Frame Relay
- podróż w dół stosu protokołów ZAKOŃCZONA!
  - co dalej: ochrona informacji w sieciach komputerowych