Preparing for the Physics GRE: Day 1 Introduction and Strategies

Daniel T. Citron
Cornell University
2/6/14

Who Am I?

- Daniel Citron
- dtc65@cornell.edu
- 3rd Year Physics Grad Student
- (Study nonlinear dynamics and networks)
- My credentials:
 - Took the test three times
 - Got the score I wanted the third time
 - (You should not need to make the same mistakes as me)

Why Take the Physics GRE?

- You're applying to physics graduate school
- ... and that's it.
- The test does not really evaluate your merits as a physicist or scientist
- Focuses on problem solving, calculation, basic physics
- Not the most important part of your application
- But, you might as well do as well as you can

Test Format

- 100 Multiple-choice questions, 170 minutes
- (~ 100 seconds per question)
- No calculators allowed, only pencils and scratch paper
- Topics:
 - Classical mechanics (20%)
 - Electromagnetism (18%)
 - Optics and waves (9%)
 - Thermodynamics and statistical mechanics (10%)
 - Quantum mechanics (12%)
 - Special relativity (6%)
 - Laboratory methods (6%)
 - Atomic physics (10%)
 - Other topics: nuclear physics, particle physics, crystals, semiconductors (9%)

Test Format

- Bad news:
 - Test covers a ton of different topics
 - Need to perform calculations very quickly
 - (Also, it's at early o'clock in the morning)
- Good news:
 - Most material relates to topics covered in the first two years
 - Only some memorization is required (eg: Maxwell's equations)
 - There are tricks for making calculations simpler that don't require special knowledge

Course Format

- Meeting dates: 2/6, 2/13, 2/20, 2/27 (possibly also 3/6)
- Thursdays 3:30-4:30, Rockefeller 231
- Today
 - Resources for studying
 - Test-taking strategies
- Next four classes
 - Review topics as requested
 - Will emphasize topics such that we learn to perform calculations required on the test
- Additionally:
 - Will provide paper copies of practice tests
 - Encourage you to take tests in real time on Saturday mornings (830 AM) following each course session (before you take the test for real)
 - This is the best way to know what you need to review
 - This is a skill that requires a little <u>practice</u>

Resources

- ETS website:
 - http://www.ets.org/gre/subject/about/content/physics
- Ohio State SPS
 - http://www.physics.ohio-state.edu/undergrad/ugs_gre.php
- Harvard SPS
 - http://www.hcs.harvard.edu/~physics/gre-resources/
- GREPhysics (not great, last updated 6 years ago...)
 - http://grephysics.net/ans/

Recommended Textbooks

- Your favorite freshmen general physics book
- <u>Classical Mechanics</u>, Taylor
- Quantum Mechanics, Griffiths
- Electricity and Magnetism, Griffiths
 - Also for intro to special relativity
- Mathematical Methods, Boas
- Quantum Physics, Eisberg and Resnick
 - Atomic physics, nuclear physics, blackbody radiation...

Tricks

Tricks: Always guess

- If you can eliminate at least one answer, guess
- Correct answers worth 1 point
- Incorrect answers worth -.25 points
- Totally random guess:
 - .2*1 + .8*(-.25) = 0
 - 0 expected score gain
- Random guess, eliminating one answer:
 - .25*1 + .75*(-.25) = .0625
 - 1/16 of a point expected score gain
 - (Better than nothing)
- All test-taking strategies that will make the Physics GRE easier depend on your ability to use intuition to immediately eliminate one or more answers.

Tricks: Orders of Magnitude

$$e = 3 = \pi = 4 = 10^{1/2}$$

- Arithmetic does not need to be exact
- Save time by avoiding digits larger than 1 or 2.
- Collect orders of magnitude
- Numerical answers often differ by enough that you avoid rounding errors this way

Tricks: Orders of Magnitude

Which of the following is most nearly the mass the Earth? (The radius of the Earth is about 6.4×10^6 meters.)

(A)
$$6 \times 10^{24} \text{ kg}$$

(B)
$$6 \times 10^{27} \text{ kg}$$

(C)
$$6 \times 10^{30} \text{ kg}$$

(D)
$$6 \times 10^{33} \text{ kg}$$

(E)
$$6 \times 10^{36} \text{ kg}$$

Note: $G = 6.67 \times 10^{-11} \text{ meter}^3/(\text{kilogram second}^2)$

Tricks: Orders of Magnitude

Which of the following is most nearly the mass the Earth? (The radius of the Earth is about 6.4×10^6 meters.)

(A)
$$6 \times 10^{24} \text{ kg}$$

(B)
$$6 \times 10^{27} \text{ kg}$$

(C)
$$6 \times 10^{30} \text{ kg}$$

(D)
$$6 \times 10^{33} \text{ kg}$$

(E)
$$6 \times 10^{36} \text{ kg}$$

$$mg = \frac{GMm}{r^2}$$

$$M = \frac{gr^2}{G} = \frac{6^2 \cdot 10 \cdot (10^6)^2}{6 \cdot 10^{-11}}$$

$$M = 6 \cdot 10^{12+1+11} = 6 \cdot 10^{24}$$

Tricks: Dimensional analysis

- Can easily eliminate many possible answers because they have incorrect dimensions
- Quick example (you have 10 seconds to answer)

Q: How tall am I?

(A): 5 dollars

(B): 12 N

(C): 70 Gpa

(D): 6 feet

(E): 14Ω

Tricks: Dimensional analysis

- A slightly harder question:
 - 10. A massless spring with force constant k launches a ball of mass m. In order for the ball to reach a speed v, by what displacement s should the spring be compressed?
 - (A) $s = v \sqrt{\frac{k}{m}}$
 - (B) $s = v \sqrt{\frac{m}{k}}$
 - (C) $s = v \sqrt{\frac{2k}{m}}$
 - (D) $s = v \frac{m}{k}$
 - $(E) \quad s = v^2 \frac{m}{2k}$

Tricks: Dimensional analysis

•
$$[v] = m/s$$

•
$$[k] = N/m = kg/s^2$$

•
$$[m] = kg$$

•
$$[k/m] = 1/s^2$$

•
$$[answer] = m$$

•
$$[A] = m/s^2$$

•
$$[B] = m$$

•
$$[C] = m/s^2$$

• [D] =
$$m/s^3$$

•
$$[E] = m^2$$

10. A massless spring with force constant k launches a ball of mass m. In order for the ball to reach a speed v, by what displacement s should the spring be compressed?

(A)
$$s = v \sqrt{\frac{k}{m}}$$

(B)
$$s = v \sqrt{\frac{m}{k}}$$

(C)
$$s = v \sqrt{\frac{2k}{m}}$$

(D)
$$s = v \frac{m}{k}$$

$$(E) \quad s = v^2 \frac{m}{2k}$$

Tricks: Taking Limits

- Examine answers and check to see if they make sense in certain limits
- Quick example:

What is the force on the block in the direction parallel to the

ramp?

- (A) mg $sin(\theta)$
- (B) mg $cos(\theta)$
- (C) mg $tan(\theta)$

Tricks: Taking Limits

- (A) mg $sin(\theta)$
- (B) $mg cos(\theta)$
- (C) mg tan(θ)

Examine answers and check to see if they make sense in certain limits

- Let $\theta \rightarrow 0$
- Force goes to 0,
 like sin(θ) and tan(θ)

- Let $\theta \rightarrow \pi/2$
- Force goes to mg

Answer: $mg sin(\theta)$

Tricks: Taking Limits

12. Two large conducting plates form a wedge of angle α as shown in the diagram above. The plates are insulated from each other; one has a potential V_0 and the other is grounded. Assuming that the plates are large enough so that the potential difference between them is independent of the cylindrical coordinates z and ρ , the potential anywhere between the plates as a function of the angle φ is

- Look at potential at:
 - $\phi \rightarrow 0$
 - $\phi \rightarrow \alpha$
- Which answers make sense?Which answers do not?

(A)
$$\frac{V_0}{\alpha}$$

(B)
$$\frac{V_0\varphi}{\alpha}$$

(C)
$$\frac{V_0\alpha}{\varphi}$$

(D)
$$\frac{V_0 \varphi^2}{\alpha}$$

(E)
$$\frac{V_0\alpha}{\varphi^2}$$

End

- What additional topics do you want me to cover?
- Please sign in if you plan on continuing to attend!