УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 51

> Студент XXX XXX XXX P31XX

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C=A*B (C — 5 бит, A — 3 бита, B — 2 бита, $B\neq 0$).

Таблица истинности

№	a_1	a_2	a_3	b_1	b_2	c_1	c_2	c_3	c_4	c_5
0	0	0	0	0	0	d	d	d	d	d
1	0	0	0	0	1	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0
3	0	0	0	1	1	0	0	0	0	0
4	0	0	1	0	0	d	d	d	d	d
5	0	0	1	0	1	0	0	0	0	1
6	0	0	1	1	0	0	0	0	1	0
7	0	0	1	1	1	0	0	0	1	1
8	0	1	0	0	0	d	d	d	d	d
9	0	1	0	0	1	0	0	0	1	0
10	0	1	0	1	0	0	0	1	0	0
11	0	1	0	1	1	0	0	1	1	0
12	0	1	1	0	0	d	d	d	d	d
13	0	1	1	0	1	0	0	0	1	1
14	0	1	1	1	0	0	0	1	1	0
15	0	1	1	1	1	0	1	0	0	1
16	1	0	0	0	0	d	d	d	d	d
17	1	0	0	0	1	0	0	1	0	0
18	1	0	0	1	0	0	1	0	0	0
19	1	0	0	1	1	0	1	1	0	0
20	1	0	1	0	0	d	d	d	d	d
21	1	0	1	0	1	0	0	1	0	1
22	1	0	1	1	0	0	1	0	1	0
23	1	0	1	1	1	0	1	1	1	1
24	1	1	0	0	0	d	d	d	d	d
25	1	1	0	0	1	0	0	1	1	0
26	1	1	0	1	0	0	1	1	0	0
27	1	1	0	1	1	1	0	0	1	0
28	1	1	1	0	0	d	d	d	d	d
29	1	1	1	0	1	0	0	1	1	1
30	1	1	1	1	0	0	1	1	1	0
31	1	1	1	1	1	1	0	1	0	1

Минимизация булевых функций на картах Карно

b_1b_2										
00	01	11	10							
d										
d										
d		1								
d		1								
$a_1 = 1$										

$$c_1 = a_1 a_2 b_1 b_2 \quad (S_Q = 4)$$

$$c_2 = b_1 \ (a_1 \vee a_2) \ (a_1 \vee a_3) \ (a_1 \vee b_2) \ \left(\overline{a_1} \vee \overline{a_2} \vee \overline{b_2}\right) \quad (S_Q = 14)$$

$$c_3 = (a_1 \vee a_2) \ (a_1 \vee b_1) \ (a_2 \vee b_2) \ \left(a_1 \vee \overline{a_3} \vee \overline{b_2} \right) \ \left(\overline{a_1} \vee \overline{a_2} \vee a_3 \vee \overline{b_1} \vee \overline{b_2} \right) \quad (S_Q = 19)$$

$$c_4 = (a_2 \vee a_3) \ (a_2 \vee b_1) \ (a_3 \vee b_2) \ (\overline{a_2} \vee \overline{a_3} \vee \overline{b_1} \vee \overline{b_2}) \quad (S_Q = 14)$$

 $c_5 = a_3 b_2 \quad (S_Q = 2)$

Преобразование системы булевых функций

$$\begin{cases} c_{1} = a_{1} a_{2} b_{1} b_{2} & (S_{Q}^{c_{1}} = 4) \\ c_{2} = b_{1} (a_{1} \vee a_{2}) (a_{1} \vee a_{3}) (a_{1} \vee b_{2}) (\overline{a_{1}} \vee \overline{a_{2}} \vee \overline{b_{2}}) & (S_{Q}^{c_{2}} = 14) \\ c_{3} = (a_{1} \vee a_{2}) (a_{1} \vee b_{1}) (a_{2} \vee b_{2}) (a_{1} \vee \overline{a_{3}} \vee \overline{b_{2}}) (\overline{a_{1}} \vee \overline{a_{2}} \vee a_{3} \vee \overline{b_{1}} \vee \overline{b_{2}}) & (S_{Q}^{c_{3}} = 19) \\ c_{4} = (a_{2} \vee a_{3}) (a_{2} \vee b_{1}) (a_{3} \vee b_{2}) (\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{1}} \vee \overline{b_{2}}) & (S_{Q}^{c_{4}} = 14) \\ c_{5} = a_{3} b_{2} & (S_{Q} = 53) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} c_{1} = a_{1} \, a_{2} \, b_{1} \, b_{2} & (S_{Q}^{c_{1}} = 4) \\ c_{2} = b_{1} \, \left(a_{1} \vee a_{2} \, a_{3} \, b_{2} \right) \, \left(\overline{a_{1}} \vee \overline{a_{2}} \vee \overline{b_{2}} \right) & (S_{Q}^{c_{2}} = 11) \\ c_{3} = \left(a_{2} \vee b_{2} \right) \, \left(a_{1} \vee a_{2} \, b_{1} \, \left(\overline{a_{3}} \vee \overline{b_{2}} \right) \right) \, \left(\overline{a_{1}} \vee \overline{a_{2}} \vee a_{3} \vee \overline{b_{1}} \vee \overline{b_{2}} \right) & (S_{Q}^{c_{3}} = 17) \\ c_{4} = \left(a_{2} \vee b_{1} \right) \, \left(a_{3} \vee a_{2} \, b_{2} \right) \, \left(\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{1}} \vee \overline{b_{2}} \right) & (S_{Q}^{c_{4}} = 13) \\ c_{5} = a_{3} \, b_{2} & (S_{Q} = 47) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_{0} = a_{1} a_{2} b_{2}, \quad \overline{\varphi_{0}} = \overline{a_{1}} \vee \overline{a_{2}} \vee \overline{b_{2}}$$

$$\begin{cases} \varphi_{0} = a_{1} a_{2} b_{2} & (S_{Q}^{\varphi_{0}} = 3) \\ c_{1} = \varphi_{0} b_{1} & (S_{Q}^{c_{1}} = 2) \\ c_{2} = b_{1} (a_{1} \vee a_{2} a_{3} b_{2}) \overline{\varphi_{0}} & (S_{Q}^{c_{2}} = 8) \\ c_{3} = (a_{2} \vee b_{2}) (a_{1} \vee a_{2} b_{1} (\overline{a_{3}} \vee \overline{b_{2}})) (\overline{\varphi_{0}} \vee a_{3} \vee \overline{b_{1}}) & (S_{Q}^{c_{3}} = 15) \\ c_{4} = (a_{2} \vee b_{1}) (a_{3} \vee a_{2} b_{2}) (\overline{a_{2}} \vee \overline{a_{3}} \vee \overline{b_{1}} \vee \overline{b_{2}}) & (S_{Q}^{c_{4}} = 13) \\ c_{5} = a_{3} b_{2} & (S_{Q}^{c_{5}} = 2) \end{cases}$$

Проведем совместную декомпозицию системы.

$$c_{5} = a_{3} b_{2}, \quad \overline{c_{5}} = \overline{a_{3}} \vee \overline{b_{2}}$$

$$\begin{cases}
c_{5} = a_{3} b_{2} & (S_{Q}^{c_{5}} = 2) \\
\varphi_{0} = a_{1} a_{2} b_{2} & (S_{Q}^{\varphi_{0}} = 3) \\
c_{1} = \varphi_{0} b_{1} & (S_{Q}^{c_{1}} = 2) \\
c_{2} = b_{1} (a_{1} \vee c_{5} a_{2}) \overline{\varphi_{0}} & (S_{Q}^{c_{2}} = 7) \\
c_{3} = (a_{2} \vee b_{2}) (a_{1} \vee a_{2} b_{1} \overline{c_{5}}) (\overline{\varphi_{0}} \vee a_{3} \vee \overline{b_{1}}) & (S_{Q}^{c_{3}} = 13) \\
c_{4} = (a_{2} \vee b_{1}) (a_{3} \vee a_{2} b_{2}) (\overline{c_{5}} \vee \overline{a_{2}} \vee \overline{b_{1}}) & (S_{Q}^{c_{4}} = 12) \\
(S_{Q} = 41)
\end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_1 = a_2 \, b_2$$

$$\begin{cases} \varphi_1 = a_2 \, b_2 & (S_Q^{\varphi_1} = 2) \\ c_5 = a_3 \, b_2 & (S_Q^{\varphi_5} = 2) \\ \varphi_0 = \varphi_1 \, a_1 & (S_Q^{\varphi_0} = 2) \\ c_1 = \varphi_0 \, b_1 & (S_Q^{e_1} = 2) \\ c_2 = b_1 \, (a_1 \vee c_5 \, a_2) \, \overline{\varphi_0} & (S_Q^{e_2} = 2) \\ c_3 = (a_2 \vee b_2) \, (a_1 \vee a_2 \, b_1 \, \overline{c_5}) \, (\overline{\varphi_0} \vee a_3 \vee \overline{b_1}) & (S_Q^{e_3} = 13) \\ c_4 = (a_2 \vee b_1) \, (a_3 \vee \varphi_1) \, (\overline{c_5} \vee \overline{a_2} \vee \overline{b_1}) & (S_Q^{e_4} = 10) \\ (S_Q = 40) & (S_Q = 40) \end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 1, a_2 = 0, a_3 = 1, b_1 = 1, b_2 = 1$$

Выходы схемы из таблицы истинности:

$$c_1 = 0, c_2 = 1, c_3 = 1, c_4 = 1, c_5 = 1$$

Цена схемы: $S_Q=40$. Задержка схемы: $T=5\tau$.