Proyecto // Parcial II

Introducción al álgebra conmutativa y algunas aplicaciones a la teoría de singularidades

22 de octubre de 2017

Resumen

En este proyecto se presentarán los conceptos más fundamentales del álgebra conmutativa. Posteriormente, se utilizará dicho lenguaje para el estudio del álgebra de *gérmenes* de funciones diferenciables.

1. Definiciones básicas de álgebra conmutativa

En el estudio de la topología y geometría de variedades diferenciables, nos encontramos de manera realtivamente natural con dos familias de ejemplos de álgebras:

- Dada una variedad, el álgebra de funciones diferenciables $C^{\infty}(M)$
- El álgebra de gérmenes de funciones en \mathbb{R}^n , $\mathcal{E}(n)$.

Antes de entrar de lleno al estudio de estas dos familias de álgebras, desarrollaremos los conceptos básicos del álgebra conmutativa. La referencia principal para esta sección es [1].

1.1. Anillos e ideales

Un anillo~A es un conjunto con dos operaciones binarias y asociativas + y \cdot a las que llamaremos adici'on y multiplicaci'on, que satisfacen:

- 1. A es un grupo abeliano con respecto a la adición (es decir, tiene un elemento neutro, denotado por 0 y todo elemento x tiene un inverso que denotaremos -x.
- 2. La multiplicación es distributiva sobre la adición es decir x(y+z) = xy+xz
- 3. La multiplicación es conmutativa xy = yx para todo x, y en A,
- 4. Existe un elemento neutro con respecto a la multiplicación, mismo que denotaremos por 1.

Un homomorfismo de anillos (o más brevemente, un morfismo) es una aplicación f de un anillo A a un anillo B tal que:

- 1. f(x+y) = f(x) + f(y)
- $2. \ f(xy) = f(x)f(y)$

3. f(1) = 1

En otras plabras, f preserva la adición, la multiplicación y el neutro multiplicativo.

Un subconjunto S de un anillo A es un subanillo si es cerrado bajo la adición y la multiplicación y tiene al neutro multiplicativo.

- **Ejercicio 1.1.** 1. Demuestra que la función identidad $1_A: A \to A$ es un morfismo de anillos.
 - 2. Demuestra que la composición de dos morfismos de anillos es un morfismo de anillos. Estas dos propiedades anteriores implican que la familia de todos los anillos y morfismos de anillos forman una categoría.
 - 3. Sea $S \subseteq A$ un subanillo. Demuestra que la función inclusión $i_S : S \to A$ es un morfismo de anillos.

Ideales y anillos cociente

Un *ideal* \Im de un anillo A es un subconjunto de A que es un subgrupo aditivo y tal que $a\Im\subseteq A$ para todo $a\in A$, es decir, si $x\in\Im$ entonces $ax\in\Im$ para todo $a\in A$.

Ejercicio 1.2. Sea $f: A \to B$ un morfismo de anillos. Demuestra que:

- 1. el núcleo de f es decir $Nuc(f) := f^{-1}(0)$ es un ideal de A
- 2. si \mathfrak{J} es un ideal de B entonces $f^{-1}(\mathfrak{J})$ es un ideal de A (observa que el inciso anterior es un caso particular de este)
- 3. Demuestra que F(A) es un subanillo de B
- 4. Demuestra que si \Im es un ideal de A entonces $f(\Im)$ es un ideal de f(A)
- 5. $\dot{\epsilon}$ es cierto que $f(\mathfrak{I})$ es un ideal de B? demuestralo o da un contraejemplo

Proposicion 1.1. Sea $f:A\to B$ un morfismo de anillos. El morfismo f induce una biyección

 $\{\mathfrak{I} \mid \mathfrak{I} \supseteq \operatorname{Nuc}(f) \text{ y es un ideal de } A\} \to \{\mathfrak{I} \mid \mathfrak{J} \subseteq f(A) \text{ es un ideal de } f(A)\}$ dada por la imagen directa e inversa bajo f.

Ejercicio 1.3. Demuestra la proposición anterior.

Sea A un anillo y \Im un ideal de A. De manera similar a como se define el grupo cociente de un grupo bajo un subgrupo normal, podemos definir la relación de equivalencia $x \sim y$ si y solo si $x - y \in \Im$. Denotaremos la clase de equivalencia de $x \in A$ por [x], y al conjunto de clases de equivalencia A/\Im .

- **Ejercicio 1.4.** 1. Demuestra que la relación arriba definida es una relación de equivalencia
 - 2. Demuestra que la adición y multiplicación de A inducen operaciones binarias en A/\Im y que con dichas operaciones A/\Im es un anillo
 - 3. Demuestra que la función $p:A\to A/\mathfrak{I}$ dada por p(x)=[x] es un morfismo de anillos cuyo núcleo es \mathfrak{I} .

Divisores de cero, elementos nilpotentes y unidades

Sea A un anillo y x un elemento de A. Decimos que x es:

- un divisor de cero si existe $a \neq 0$ tal que ax = 0 (es decir, x divide a cero)
- un elemento nilpotente si existe un número natural n tal que $x^n = 0$
- una unidad si existe un elemento a tal que ax = 1.

Ejercicio 1.5. Demuestra que:

- 1. Todo elemento nilpotente es un divisor de cero
- 2. el conjunto de todos los elementos nilpotentes forma un ideal, mismo que denotaremos $\mathfrak N$ y que recibe el nombre de nilradical de A
- 3. Si A es un anillo y $x \in A$ es simultaneamente una unidad y un divisor de cero, entonces $A = \{0\}$
- ¿ Es cierto que todo divisor de cero es nilpotente? Demuestralo o da un contraejemplo.

Ideales primos y maximales

Decimos que un anillo A es un dominio entero si el único divisor de cero en A es el cero. Decimos que A es un campo si todo elemento no nulo es una unidad. Sea \Im un ideal de A. Decimos que \Im es un ideal primo si A/\Im es un dominio entero. Por otro lado, si A/\Im es un campo, decimos que \Im es un ideal maximal.

Ejercicio 1.6. Demuestra que:

- 1. Todo ideal maximal es primo.
- 2. Un ideal \mathfrak{P} es primo si y solo si para cualquier $x, y \in A$ $xy \in \mathfrak{P}$ implica que $x \in \mathfrak{P}$ o $y \in \mathfrak{P}$
- 3. Un ideal \mathfrak{M} es maximal si y solo si para cualquier \mathfrak{I} ideal, $\mathfrak{M} \subseteq \mathfrak{I}$ implica que $\mathfrak{M} = \mathfrak{I}$ o $\mathfrak{I} = A$.

Álgebras y módulos

Un álgebra es un anillo que simultáneamente es espacio vectorial sobre un campo y ambas estructuras son compatibles. Más precisamente, sea \mathbb{K} un campo. Una \mathbb{K} -álgebra es un morfismo inyectivo de anillos $\varphi: \mathbb{K} \to A$. Notemos que usando el morfismo φ , podemos definir una multiplicación (izquierda) entre los elementos del campo y del anillo A, es decir, si $k \in \mathbb{K}$ y $x \in A$ definimos kx como $\varphi(k)x \in A$.

Ejercicio 1.7. Sea $\varphi : \mathbb{K} \to A$ una \mathbb{K} -álgebra. Demuestra que con la multiplicación arriba definida y la adición de A, A es un \mathbb{K} espacio vectorial.

Usualmente denotaremos una \mathbb{K} -álgebra simplemente refiriendonos al anillo A, pues por lo general la multiplicación por los elementos del campo se puede deducir del contexto. Usualmente $\mathbb{K} = \mathbb{R}$ o \mathbb{C} .

Sean A y B dos \mathbb{K} -álgebras. Un morfismo de \mathbb{K} -álgebras es un morfismo de anillos $f:A\to B$ tal que para todo $k\in\mathbb{K}$ y $x\in A$ se tiene que f(kx)=kf(x). Dicho de otro modo, f es \mathbb{K} -lineal.

Ejercicio 1.8. 1. Demuestra que todo morfismo $f : \mathbb{K} \to A$ de un campo \mathbb{K} en un anillo A es inyectivo o identicamente 0 y en tal caso, $A = \{0\}$.

- 2. Sea \mathbb{K} un campo $y \mathbb{K}[x]$ el anillo de polinomios con coeficientes en \mathbb{K} con una indetermindada. Para cada $n \in \mathbb{N}$ sea $\langle x^n \rangle$ el ideal generado por x^n . Calcula la dimensión como \mathbb{K} espacio vectorial de $\mathbb{K}[x]/\langle x^n \rangle$.
- 3. Demuestra que la imagen y el cociente por un ideal de una K-álgebra son K-álgebras.

2. Gérmenes y funciones

En esta sección definiremos el álgebra de funciones diferenciables y el ágebra de gérmenes de funciones, para posteriormente traducir al lenguaje del álgebra conmutativa algunas nociones de topología diferencial.

Sea M una variedad diferenciable. El álgebra de funciones (diferenciables) sobre M es el conjunto

$$C^{\infty}(M) := \{ f : M \to \mathbb{R} | f \text{ es } C^{\infty} \}$$

dotado de las operaciones de adición y multiplicación usual de funciones. Es claro que es una \mathbb{R} -álgebra y de hecho el morfismo $\varphi: \mathbb{R} \to C^{\infty}(M)$ identifica a \mathbb{R} con las funciones constantes.

Ejercicio 2.1. Sea M una variedad diferenciable $y p \in M$. Demuestra que:

- 1. $C^{\infty}(M)$ es un álgebra de dimensión infinita.
- 2. La función evaluación en p es decir eval $_p$: $C^{\infty}(M) \to \mathbb{R}$ dada por eval $_p(f) := f(p)$ es un morfismo de álgebras. Demuestra que el núcleo de dicho morfismo es un ideal maximal y que es el ideal de funciones que sea anulan en p.
- 3. Asume que M es una variedad compacta. Demuestra que si \mathfrak{M} es un ideal maximal de $C^{\infty}(M)$ entonces existe algun $p \in M$ tal que $\mathfrak{M} = \operatorname{Nuc}(eval_p)$

Denotaremos al ideal maximal $Nuc(eval_p)$ como \mathfrak{M}_p .

Sea $\phi:M\to N$ una aplicación diferenciable entre variedades diferenciables. Definimos la función

$$\tilde{\phi}: C^{\infty}(N) \to C^{\infty}(M)$$

$$f \mapsto f \circ \phi$$

Ejercicio 2.2. Sean $\phi: X \to Y$ y $\psi: Y \to Z$ dos aplicaciones diferenciables. Demuestra que $\tilde{\phi}$ es un morfismo de álgebras. Demuestra que $\tilde{\psi} \circ \phi = \tilde{\phi} \circ \tilde{\psi}$ y que $\widetilde{Id}_X = Id_{C^{\infty}(X)}$

Gérmenes de funciones

Sean X un espacio topológico, C un conjunto, y $p \in X$ cualquier punto de X. Denotemos provisionalmente al conjunto de funciones de X en C por Fun(X,C). Definimos una relación de equivalencia en Fun(X,C) como sigue: Decimos que $f \sim_p g$ si y solo si existe un abierto \mathcal{U} que es vecindad de p y tal que f = g en \mathcal{U} .

Ejercicio 2.3. Demuestra que la relación arriba definida es una relación de equivalencia.

Definición 2.1. A una clase de equivalencia de dicha relación, le llamaremos un gérmen de función en p.

Si $f \in Fun(X,C)$ a su clase de equivalencia, le llamaremos el gérmen de f y lo denotaremos $[f]_p$.

Denotaremos el conjunto de todos los gérmenes en p por Germ(X, Y, p)

Es claro que para que una función tenga gérmen bien definido, basta que esté definida en una vecindad de p, es decir, si $f: \mathcal{U} \to C$ es cualquier función y $p \in \mathcal{U}$, entonces tiene sentido hablar del gérmen de f.

Observación 2.1. Si escojemos otro punto $q \in X$ la relación de equivalencia es distinta y obtenemos un conjunto diferente de gérmenes de funciones.

El ejemplo más usual de gérmenes es el de gérmenes de funciones diferenciables en \mathbb{R}^n :

$$\mathcal{E}_n := \{ [f]_0 | f : \mathbb{R}^n \to \mathbb{R} \text{ es diferenciable} \} \subseteq Germ(\mathbb{R}^n, \mathbb{R}, 0)$$

Ejercicio 2.4. Demuestra que la adición y multiplicación de funciones usuales inducen operaciones binarias en \mathcal{E}_n y que con dichas operaciones \mathcal{E}_n es una \mathbb{R} -álgebra.

Sea $F: C^{\infty}(\mathbb{R}^n) \to \mathcal{E}_n$ dada por $F(f) = [f]_0$, es decir a cada función le asigna su gérmen en 0. Demuestra que F es un morfismo de álgebras.

Última actialización: 22 de octubre de 2017

Referencias

- [1] Michael Francis Atiyah y Ian Grant Macdonald. *Introduction to commutative algebra*. Westview press, 1994.
- [2] Theodor Bröcker. Differentiable germs and catastrophes. Cambridge England New York: Cambridge University Press, 1975. ISBN: 978-0521206815.
- [3] Theodor Bröcker y Klaus Jänich. *Introduction to differential topology*. Cambridge New York: Cambridge University Press, 1982. ISBN: 978-0521284707.
- [4] Martin Golubitsky. Stable mappings and their singularities. New York: Springer-Verlag, 1974. ISBN: 978-0387900735.