Деформационный ретракт

Промежуточное положение между гомеоморфизмом и ретракцией занимает отображение, называемое деформационной ретракцией.

Определение Подпространство A топологического пространства X называется <u>деформационным ретрактом X</u>, если существует ретракция $r: X \to A$, гомотопная тождественному отображению I_x . Отображение r при этом называют деформационной ретракцией.

Таким образом, если подпространство A - деформационный ретракт пространства X, то существует такая ретракция

 $r: X \to A$ и гомотопия $F: X \times I \to X$, что для любого $x \in X$

$$F(x,0) = x$$
, $F(x,1) = r(x)$

и F(a,t) = a для произвольных $a \in A$, $t \in I$.

Пример

Диаметр D любого круга A, пространства ${\bf R}^2$ является его деформационным ретрактом. Ортогональное проектирование точек A на D является ретракцией $r:A\to D$, а гомотопией от I_A к r - семейство непрерывных отображений F(x,t)=(1-t)x+ir(x), где $t\in[0;1]$, $x\in A$.

Самое простое непустое топологическое пространство состоит из одной точки. Охарактеризуем гомотопический тип такого пространства.

Топологическое пространство называется стягиваемым в точку, если существует такая точка $x_0 \in X$, что одноточечное множество $A = \left\{x_0\right\}$, является деформационным ретрактом x.

Теорема Топологическое пространство стягиваемо в точку тогда и только тогда, когда оно гомотопически эквивалентно одноточечному множеству, т.е. имеет гомотопический тип одноточечного множества.

§14 Фундаментальная группа

С помощью понятия фундаментальной группы, определяемого для любого топологического пространства в произвольной его точке многие топологические проблемы можно свести к чисто алгебраическим. Понятие фундаментальной группы было введено французским математиком А. Пуанкаре.

Определение <u>Путем</u> в топологическом пространстве называется непрерывное отображение $l:[0;1] \to X$. Путь $l:[0;1] \to X$ называется соединяющим точки x и y, если l(0) = x, l(1) = y. При этом точка x называется начальной, а y конечной точкой пути.

Определение Путь l_0 в пространстве X называется <u>единичным</u> или <u>нулевым</u>, если отображение $l_0:[0;1] \to X$ постоянно.

Определение Два пути $l_1:[0;1] \to X$ и $l_2:[0;1] \to X$ с общими началом и концом называются <u>эквивалентными</u>, если существует гомотопия от l_1 к l_2 не смещающая концов.

Следовательно, существует непрерывное отображение

$$F:[0;1] \times I \to X$$
, что $F(s,0) = l_1(s)$, $F(s,1) = l_2(s)$

для каждой точки $s \in [0;1]$ и, кроме того,

$$F(0,t) = l_1(0) = l_2(0)$$
; $F(1,t) = l_1(1) = l_2(1)$

для каждой точки $t \in I$. Эквивалентные пути обозначаются $l_1 \sim l_2$

Введенное отношение является отношением эквивалентности.

Если $l_1:[0;1] \to X$ и $l_2:[0;1] \to X$ два пути в X, причем начальная точка второго пути совпадает с конечной точкой первого, т.е. $l_1(1) = l_2(0)$ тогда <u>произведение путей</u> $l_1 l_2$ определим следующим образом

$$(l_1 l_2)(s) = \begin{cases} l_1(2s), & s \in [0; \frac{1}{2}], \\ l_2(2s-1), & s \in [\frac{1}{2}; 1]. \end{cases}$$

Теорема 1 $\mathit{Если},\ d_1{\sim}\,d_2$ и конечные точки путей l_1 и l_2 совпадают c начальными точками путей d_1 и d_2 соответственно (т.е. $l_1(1) = d_1(0)$ и $l_2(1) = d_2(0)$) mo $l_1 d_1 \sim l_2 d_2$

$$ightharpoonup$$
 Обозначим через F_1 гомотопию от l_1 к l_2 , т.е.
$$F_1 : I \times I \to X, \quad F_1 \big(s, 0 \big) = l_1 \big(s \big), \ F_1 \big(s, 1 \big) = l_2 \big(s \big)$$

при всех $s \in I$. Кроме того,

$$F_1(0,t) = l_1(0) = l_2(0), F_1(1,t) = l_1(1) = l_2(1)$$

Пусть F_2 гомотопия от d_1 к d_2 , т.е.

$$F_2: I \times I \to X$$
, $F_2(s,0) = d_1(s)$, $F_2(s,1) = d_2(s)$

при всех $s \in I$. Кроме того,

$$F_2(0,t) = d_1(0) = d_2(0), F_1(1,t) = d_1(1) = d_2(1).$$

Найдем произведение путей

$$(l_1d_1)(s) = \begin{cases} l_1(2s), & s \in [0; \frac{1}{2}], \\ d_1(2s-1), & s \in [\frac{1}{2}; 1]. \end{cases}$$

$$(l_2d_2)(s) = \begin{cases} l_2(2s), & s \in [0; \frac{1}{2}], \\ d_2(2s-1), & s \in [\frac{1}{2}; 1]. \end{cases}$$

Эти пути имеют общие начало и конец. Гомотопию от l_1d_1 к l_2d_2 определим следующим образом:

$$F(s,t) = \begin{cases} F_1(2s,t), & s \in \left[0; \frac{1}{2}\right], \\ F_2(2s-1,t), & s \in \left[\frac{1}{2}; 1\right], & t \in I \end{cases}$$

Отображение F(s,t) непрерывно (непрерывна каждая из компонент

и при $s = \frac{1}{2}$ $F_1(1,t) = F_2(0,t)$. Кроме того

$$F(s,0) = (l_1d_1)(s), \quad F(s,1) = (l_2d_2)(s), \quad s \in I;$$

$$F(0,t) = F_1(0,t), \quad F(1,t) = F_2(1,t), \quad t \in I.$$

что и требовалось доказать.

Множество всех путей, заданных в топологическом пространстве, не образует группу относительно операции умножения. Это связано с тем. что операция умножения не всегда возможно (начало второго сомножителя должно совпадать с концом первого), кроме того, операция умножения путей не ассоциативна.

Возможен другой подход к построению группы: рассмотрение классов эквивалентностей.

Пусть $a(l_1)$ и $a(l_2)$ два класса эквивалентности путей $l_1 \in a(l_1)$ и $l_2 \in a(l_2)$, то **произведением** классов эквивалентности $a(l_1)$ $a(l_2)$ называют класс эквивалентности, содержащий путь l_1l_2 .

Предыдущая теорема показывает, что введенное определение корректно.

Теорема 2 *Произведение классов эквивалентности путей ассоциативно*.

Пусть l_1, l_2, l_3 — такие пути в топологическом пространстве X, что конечная точка пути l_1 совпадает с начальной точкой пути l_2 , а конечная точка этого пути совпадает с начальной точкой пути l_3 .

Для доказательства теоремы надо показать, что $(l_1l_2)l_3 \sim l_1(l_2l_3)$ По определению произведения путей:

$$(l_1 l_2) l_3 = \begin{cases} (l_1 l_2)(2s), s \in \left[0; \frac{1}{2}\right] \\ l_3(2s-1), s \in \left[\frac{1}{2}; 1\right] \end{cases} = \\ \begin{cases} l_1(4s), s \in \left[0; \frac{1}{4}\right] \\ l_2(4s-1), s \in \left[\frac{1}{4}, \frac{1}{2}\right]; \\ l_3(2s-1), s \in \left[\frac{1}{2}; 1\right] \end{cases} \\ \\ l_1(l_2 l_3) = \begin{cases} l_1(2s), s \in \left[0; \frac{1}{2}\right] \\ (l_2 l_3)(2s-1), s \in \left[\frac{1}{2}; 1\right] \end{cases} = \\ \end{cases}$$

$$= \begin{cases} l_1(2s), s \in \left[0; \frac{1}{2}\right] \\ l_2(4s-2), s \in \left[\frac{1}{2}, \frac{3}{4}\right]; \\ l_3(4s-3), s \in \left[\frac{3}{4}; 1\right] \end{cases}$$

Непосредственной подстановкой в формулы можно убедиться, что пути $(l_1l_2)l_3$ и $l_1(l_2l_3)$ имеют общие начало и конец.

Разобьем прямоугольник $I \times I$ на части A, B. C. Сделаем это с помощью прямых $s = \frac{1}{4}(1+t)$ и $s = \frac{1}{4}(2+t)$.

Перейдем к построению функции F. В точках множества A она будет принимать значения $l_1 \left(\frac{4s}{1+t}\right)$. Аргумент выбран так, чтобы во всех

точках прямой $s=\frac{1}{4}(1+t)$ он принимал значение 1. В точках множества В функция F принимает значения $l_2(4s-1-t)$ (аргумент равен 0 в точках прямой L_1 и единице на прямой L_2 . В точках множества С $F=l_3\Big(\frac{4s-t-2}{2-t}\Big)$ (аргумент равен 0 на прямой L_2 и единице на прямой s=1). Суммируя сказанное выше

$$F(s,t) = \begin{cases} l_1 \left(\frac{4s}{1+t}\right), s \in \left[0; \frac{1}{4}(1+t)\right], \\ l_2 \left(4s - 1 - t\right), s \in \left[\frac{1}{4}(1+t), \frac{1}{4}(2+t)\right], \\ l_3 \left(\frac{4s - t - 2}{2 - t}\right), s \in \left[\frac{1}{4}(1+t), 1\right]. \end{cases}$$

Для всех аргументов отображение F непрерывно как сложная функция, состыкованная на границах. Кроме того,

$$F(s,0) = \begin{cases} l_1(4s), s \in \left[0; \frac{1}{4}\right], \\ l_2(4s-1), s \in \left[\frac{1}{4}; \frac{1}{2}\right], \\ l_3(2s-1), s \in \left[\frac{1}{2}; 1\right]. \end{cases}$$

$$F(s,1) = \begin{cases} l_1(2s), s \in \left[0; \frac{1}{2}\right], \\ l_2(4s-2), s \in \left[\frac{1}{2}; \frac{3}{4}\right], \\ l_3(4s-3), s \in \left[\frac{3}{24}; 1\right]. \end{cases}$$

Таким образом, найдена гомотопия, не смещающая концов путей, следовательно

$$(l_1l_2)l_3 \sim l_1(l_2l_3).$$

Теорема доказана.

Обозначим для произвольной точки x пространства X через e_x класс эквивалентности нулевого пути в этой точке, т.е. совокупность всех путей, гомотопных нулевому пути $l_0:I \to X$, для которого $l_0(I)=\{x\}$.

Теорема 3 Eсли α - класс эквивалентности путей c начальной точкой x и конечной точкой y , то $e_x \alpha = \alpha$ и $\alpha e_y = \alpha$.

Для произвольного пути $l:I\to X$ обратным к нему называется путь $l^{-1}(s)=l(1-s)$. Если x - начальная точка пути l , а y - конечная, т.е. l(0)=x , l(1)=y , то $l^{-1}(0)=l(1)=y$ и $l^{-1}(1)=l(0)=x$.

Теорема 4 Eсли α и α^{-1} - классы эквивалентности путей l и l^{-1} , то $\alpha\alpha^{-1}=e_x$ и $\alpha^{-1}\alpha=e_y$, где x- начальная точка пути l, а y- конечная.

Определение фундаментальной группы. Односвязные пространства.

Будем рассматривать частный случай путей, когда начало и конец пути совпадают. Такой путь называется петлей. Если начало и конец пути находятся в точке x_0 , то говорят о петле в этой точке. Для любых двух петель в точке x_0 определено их произведение. К одному классу эквивалентности относятся все петли в точке x_0 , эквивалентные между собой.

Теоремы 1-4 позволяют на множестве классов эквивалентности петель в точке x_0 ввести структуру группы.

Пусть x_0 - произвольная точка топологического пространства. Множество всех классов эквивалентности петель образуют группу относительно операции умножения классов эквивалентности. Эту группу называют фундаментальной группой или Группой Пуакаре.

Обозначается фундаментальная группа как $\pi(X,x_0)$.

Теорема 5 Если топологическое пространство X линейно связно, то для любых двух точек x_0 и x_1 группы $\pi(X,x_0)$ и $\pi(X,x_1)$ изоморфны.

Пусть X и Y - топологические пространства и отображение $f: X \to Y$ непрерывно. Тогда каждой петле $l: I \to X$ в точке $x_0 \in X$ ставится в соответствие петля $f \circ l: I \to Y$ в точке $y_0 = f(x_0)$.

Если петли $l_1:I\to X$ и $l_2:I\to X$, то гомотопны петли $f\circ l_1$ и $f\circ l_2$ в Y. Обозначим через α класс петель, к которому принадлежат l_1 и l_2 , а через $f^*(\alpha)$ класс путей в Y, в который входят пути $f\circ l_1$ и $f\circ l_2$. Очевидно этот класс есть образ. Тем самым мы определили отображение $f^*\colon \pi(X,x_0)\to \pi(Y,y_0)$

Отображение f^* : $\pi(X,x_0) \to \pi(Y,y_0)$, сохраняющее групповую операцию называют <u>индуцированным</u> <u>отображением</u> (или индуцированным гомоморфизмом)

Определение Линейно связное топологическое пространство называется односвязным, если его фундаментальная группа $\pi(X,x_0)$ для какой либо точки, а значит для любой точки x_0 тривиальна (т.е. состоит только из нейтрального элемента).

Можно показать, что произвольное выпуклое множество пространства R^n , в частности, само пространство R^n односвязно.

Можно показать, что фундаментальная группа сферы S^2 пространства R^3 (а также S^n в пространстве R^{n+1}) тривиальна.

Имеет место следующая