8 P 5 8 6 F

(B) BUNDESREPUBLIK
DEUTSCHLAND

Offenlegungsschrift
DE 41 15 315 A 1

(5) Int. Cl.⁵: **G 07 C 5/08** G 06 F 15/401

DEUTSCHES

PATENTAMT

21) Aktenzeichen:

P 41 15 315.4

2 Anmeldetag:

10. 5.91

Offenlegungstag:

12.11.92

(71) Anmelder:

Mannesmann Kienzle GmbH, 7730 Villingen-Schwenningen, DE @ Erfinder:

Gruler, Martin, Dipl.-Ing. (FH), 7209 Aixheim, DE; Hilger, Gernot, Dipl.-Phys., 7218 Trossingen, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- Werfahren zur Datenerfassung mit reduziertem Speicheraufwand für Daten zur Ermittlung von nicht geradliniger Bewegung eines Fahrzeuges
- Meßwertekreise (21), die mit fahrzeuggebundenen, magnetfeldsensierenden Meßeinrichtungen erfaßt und in einem Matrixspeicher (18) abgelegt werden, neigen zum Driften, da die Meßdaten (15) unvermeidlich von Störgrößen beeinflußt werden. Zur Reduzierung der für die Datenerfassung benötigten Speicherkapazität wird vorgeschlagen, zur Lagestabilisierung des durch Meßdaten (15) gebildeten Meßwertekreises (21) von allen Meßdaten (15) vor ihrem Einlesen in den Matrixspeicher (18) einen in einem Regelkreis nachgeführten Korrekturwert (16) zu subtrahieren. Die Erfindung schließt aufwandsminimierte Verfahren zur Gewinnung des Korrekturwertes (16) ein.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Datenerfassung mit reduziertem Speicheraufwand für Daten zur Ermittlung von nicht geradliniger Bewegung eines Fahrzeuges.

Es sind Verfahren und Vorrichtungen vorgeschlagen worden, die beispielsweise zum Zwecke der Rekonstruktion einer zweidimensionalen Bewegungsbahn eines Fahrzeugs den Flußdichtevektor eines äußeren, sta- 10 tionären Magnetfeldes, in welchem sich das Fahrzeug bewegt, zumindest hinsichtlich der in der Bewegungsebene des Fahrzeugs liegenden Komponenten sensorisch erfassen und die Meßwerte, welche den jeweiligen Raumachsen zugeordnet sind, mittels elektronischer 15 Speicher aufzeichnen sowie auf diese Weise Basisdaten bereitstellen, aus denen zumeist unter Zuhilfenahme weiterer Fahrzeugbewegungsdaten die Bewegungsbahn des Fahrzeugs ermittelt werden kann.

Die den beiden Raumachsen der Bewegungsebene 20 zugeordneten, magnetseldabhängigen Meßwerte werden z. B. als ein aus dem Frequenzsignalen f1 und f2 bestehendes Meßwertpaar (f1; f2) taktgesteuert nach ihrer Digitalisierung in einem Matrixspeicher registriert, dessen Speicherzellenkonfiguration eine vor- 25 zugsweise quadratische Netzebene abbildet. Die während des Fahrzeugbetriebs fortlaufend ermittelten Meßwertpaare werden jeweils derjenigen Speicherzelle zugeordnet, in deren Rasterfeld die Beträge der Meßwerte in Analogie zu einem Koordinatenpaar fallen, und 30 in der jeweiligen Speicherzelle durch De- oder Inkrementierung eines Zählers als Ereignishäufigkeit erfaßt. Dieses Datenersassungs- und Aufzeichnungsversahren führt dazu, daß im Matrixspeicher nach einer vollständigen Drehung der fahrzeuggebundenen Meßeinrichtung 35 eine ringförmige Häufigkeitsverteilung entsteht. Für die Bewegungsbahn-Rekonstruktion ist im allgemeinen die Ermittlung des Mittelpunktes dieser geometrischen, zumeist elliptischen Figur erforderlich, was aber in der Regel mit nicht im Fahrzeug angeordneten Mitteln er- 40 folgt, um unter anderem auch aus Kostengründen im Fahrzeug keine allzu große Rechnerleistung installieren

Aufgrund der Wechselwirkung mit ihrer elektromagnetischen Umwelt im Nah- und Fernfeld sowie zufolge 45 von Magnetfeldverzerrungen am Meßort und von Veränderungen in den Eigenschaften der verwendeten Bauteile liefert die Meßeinrichtung jedoch unter den üblichen Betriebsbedingungen eines Fahrzeugs Meßdaten. die zu einer ständigen Verschiebung der Mittelpunktsla- 50 ge der durch die Häufigkeitsverteilung gebildeten ringförmigen Figur führen, wodurch unter Umständen Information verloren geht, wenn der Meßwertekreis, wie die ringförmige Figur im nachfolgenden der Einfachheit halber genannt wird, sozusagen aus der aus einer be- 55 grenzten Anzahl von Speicherzellen bestehenden Rasterebene des Matrixspeichers hinausläuft. Diese unter fahrzeugtypischen Betriebsbedingungen unvermeidlichen, störenden Beeinflussungen bedingen zumeist eine fahrzeugspezifische Einmessung sowie eine regelmäßi- 60 Sollwertkoordinaten anzupassen, wird also der bisherige Nachkalibrierung der Meßeinrichtung, was in der Praxis zu einem unvertretbaren Aufwand führt.

Nachteilig ist auch, daß selbst ein mittig in der Rasterebene liegender Meßwertekreis, dessen Durchmesser jedoch von der Stärke der sensierten Flußdichte ab- 65 hängt und damit z. B. zufolge sich ändernder magnetischer Abschirmung Schwankungen unterworfen ist, die Netzebene im allgemeinen flächenmäßig nicht opti-

mal ausnutzt und dadurch weite Speicherbereiche des Matrixspeichers ungenutzt bleiben. Beide Nachteile führen dazu, daß im Matrixspeicher eine sehr hohe Speicherkapazität vorgehalten werden muß, was für fahr-5 zeugtechnische und damit kostensensible Anwendungen ungünstig, wenn nicht sogar völlig unpraktikabel ist.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren aufzuzeigen, das mit sehr geringem Speicheraufwand eine verbesserte Aufzeichnung von solchen Daten ermöglicht, welche zur Ermittlung einer ungeradlinigen Bewegung eines Fahrzeugs benötigt werden.

Die erfindungsgemäße Lösung besteht zunächst in einem übergeordneten Verfahren nach dem Oberbegriff des Anspruches 1, das dadurch gekennzeichnet ist, daß von allen Meßdaten vor ihrem Einlesen in einen Matrixspeicher ein in einem Regelkreis nachgeführter Korrekturwert subtrahiert wird.

Im Ergebnis wird dadurch erreicht, daß der Mittelpunkt des Meßwertekreises immer mit der geometrischen Mitte der Netzebene zusammenfällt und jeder Tendenz, davon abzuweichen, automatisch entgegengewirkt wird. Auf diese Weise wird die im Fahrzeug für den Matrixspeicher benötigte Speicherkapazität sehr gering gehalten und die Gefahr des Informationsverlustes durch einen über die Netzebene hinausdriftenden Meßwertekreis vermieden.

Da das einleitend beschriebene und hier vorausgesetzte Datenerfassungsverfahren die Mittelpunktskoordinaten des jeweils aktuellen Meßwertekreises nicht direkt bereitstellt, werden diese für die Nachführung des Korrekturwertes benötigten Koordinaten fortlaufend oder zumindest einmal innerhalb vorgegebener Zeitintervalle aus den ständig in den Matrixspeicher eingelesenen Meßwerten in einem untergeordneten, weiteren Verfahren zur vereinfachten Kreisanalyse nach Anspruch 2 ermittelt, das dadurch gekennzeichnet ist, daß alle in den Speicherzellen der Netzebene eingeschriebenen Ereignishäufigkeiten sowohl zeilenweise als auch spaltenweise aufsummiert werden, wodurch sich an den beiden Achsen der Netzebene charakteristische Profile für die summierten Ereignishäufigkeiten ergeben, für beide Achsen getrennt die Skalenwerte der Flanken dieser Profile durch die Abfrage ermittelt werden, an welcher Stelle die Summenwerte erst- bzw. letztmals einen zuvor festgelegten Schwellwert überschreiten, aus den beiden derart aus den Projektionsprofilen ermittelten Skalenwerten für beide Achsen der Netzebene die Mittelpunkte der durch die Flankenwerte begrenzten Intervalle durch Bildung des arithmetischen Mittelwertes berechnet werden und die beiden Skalenwerte der Intervallmitten ein Koordinatenpaar bilden, welches die aktuelle Lage des Mittelpunktes des Meßwertekreises an-

Die beiden Komponenten dieses Koordinatenpaares werden mit den Sollmittelpunktskoordinaten, die vorzugsweise im Zentrum der Netzebene liegen, verglichen. Führt der Vergleich zu einer Regelabweichung, wird der Korrekturwert als zu regelnde Größe verändert. Um die aktuellen Mittelpunktskoordinaten den ge Korrekturwert für beide Achsen nach dem im Anspruch 4 beschriebenen Verfahren nachgeregelt. Der Korrekturwert kann damit als ein zweidimensionaler Verschiebungsvektor dargestellt werden, um die aus den aktuellen Meßdaten ermittelten Mittelpunktskoordinaten in die Sollmittelpunktskoordinaten, die vorzugsweise den geometrischen Mittelpunkt der Netzebene kennzeichnen, zu überführen. Von allen folgenden Meßwertpaaren wird fortan der in der zuvor beschriebenen Weise korrigierte Korrekturwert so lange subtrahiert, bis eine erneute Anpassung des Korrekturwertes erforderlich wird.

Der Vollständigkeit halber sei erwähnt, daß der bei der ersten Inbetriebnahme geltende Korrekturwert durch einen Wert, der während der Herstellung der Vorrichtung ermittelt wird, werksseitig vorgegeben wird. Das Verfahren, welches bei der ersten Initialisierung zur Festlegung des als Regelgröße benutzten Kor- 10 rekturwertes verwendet wird, ist nach Anspruch 3 dadurch gekennzeichnet, daß die komplette Vorrichtung, die die für die Rekonstruktion einer ungeradlinigen Bewegungsbahn eines Fahrzeugs relevanten Daten erfaßt Meßeinrichtung, einen Matrixspeicher und eine Regeleinrichtung zum Nachführen eines Korrekturwertes zum Zwecke der automatischen Lagestabilisierung eines in den Matrixspeicher eingelesenen Meßwertekreises enthält, in beliebiger Orientierung in eine waage- 20 rechte Lage gebracht wird, mit der magnetfeldsensierenden Meßeinrichtung eine erste Feldmessung durchgeführt wird und die Meßdaten nach ihrer Digitalisierung in einem Matrixspeicher registriert werden, sodann die gesamte Vorrichtung in der waagrechten Lage 25 um 180° gedreht wird, eine zweite Feldmessung mit anschließender Digitalisierung und Registrierung der Meßdaten erfolgt, anschließend zum Zwecke der vereinfachten Mittelpunktsbestimmung des in seiner Lage durch die beiden Meßpunkte fixierten "Meßwertekrei- 30 ses" achsweise der arithmetische Mittelwert von beiden Meßpunkten ermittelt wird und der Verschiebungsvektor zwischen den derart ermittelten Mittelpunktskoordinaten und den im Zentrum der Netzebene liegenden itialisierung bildet.

Weder bei der Installation der Vorrichtung im Fahrzeug noch nach bestimmten Betriebszeiten ist ein Hardware-Abgleich, eine besondere Kalibrierung oder eine Vorrichtung, die nach dem oben beschriebenen Verfahren Daten zur Rekonstruktion einer ungeradlinigen Bewegung eines Fahrzeugs erfaßt, sich durch die erfindungsgemäßen Verfahren prinzipbedingt von selbst seiner jeweiligen Umgebung anpaßt.

Nachfolgend soll die Erfindung anhand von einigen Figuren noch näher erläutert werden. Es zeigen

Fig. 1 eine Veranschaulichung des Problems, das für Vorrichtungen der genannten Art unter fahrzeugtypischen Umgebungseinflüssen gegeben ist,

Fig. 2 das Prinzip der Lagestabilisierung des Meßwertekreises,

Fig. 3 das Verfahren zur Mittelpunktsbestimmung eines driftenden Meßwertekreises,

des Korrekturwertes bei der Initialisierung,

Fig. 5 ein Blockschaltbild des Regelkreises zur Nachführung des Korrekturwertes.

In Fig. 1 ist ein in der Netzebene 1 eines Matrixspeichers 18 aufgezeichneter Meßwertekreis 2 dargestellt. 60 Während des Betriebs der Vorrichtung, die die für die Rekonstruktion der ungeradlinigen Bewegungsbahn eines Fahrzeugs relevanten Daten erfaßt und speichert, kann der Meßwertekreis 2 zufolge von Umgebungseinder Meßeinrichtung verwendeten Bauteile seine Lage verändern (z. B. 3, 4, 5), wodurch der Mittelpunkt 6 z. B. auf der Kurve 7 entlangwandert und z. B. die Koordina-

ten 8, 9 oder 10 annimmt. Unter Umständen kann der Meßwertekreis auch teilweise oder vollständig aus der Netzebene hinauslaufen, siehe 5, wodurch Meßpunkte verloren gehen können. Meßwerte, die außerhalb der 5 Rasterebene liegen, werden in den Speicherzellen am Rand der Netzebene registriert. Außerdem zeigt diese Figur, wie sich z. B. der Durchmesser des Meßwertekreises zufolge unterschiedlicher magnetischer Feldstärken während des Betriebs der Vorrichtung verändern kann, wodurch eine mehr oder weniger gute, flächenmäßige Ausnutzung der Netzebene erfolgt.

Fig. 2 erläutert das Prinzip zur Lagestabilisierung des Meßwertekreises 21. Von allen zur Einlesung in den Matrixspeicher 18 anstehenden Meßdaten 15 wird in und speichert und dazu eine magnetfeldsensierende 15 einer Subtrahierstelle 17 ein in einem Regelkreis nachgeführter Korrekturwert 16 komponentenweise subtrahiert. Nur derart bereinigte Meßwerte gelangen fortan zur Abspeicherung in den Matrixspeicher 18.

Fig. 3 veranschaulicht das Verfahren zur Ermittlung des Mittelpunktes 20 eines fortlaufend durch Meßpunkte gebildeten Meßwertekreises 21, der von der ursprünglichen Mittelpunktslage 22 bereits abgedriftet ist. In den Speicherzellen der Netzebene 1 des Matrixspeichers 18 werden die von der magnetfeldsensierenden Meßeinrichtung erfaßten und digitalisierten Meßwerte als Ereignishäufigkeit durch Setzen eines Zählers registriert. Die Zuordnung der Meßwerte zu den Speicherzellen erfolgt in Analogie zur Eintragung von Meßpunkten in ein kartesisches Koordinatensystem. Die Zählerstände aller Speicherzellen werden zeilenweise und spaltenweise aufaddiert, wodurch sich für beide Achsen der Netzebene charakteristische Profile für die summierten Ereignishäufigkeiten ergeben. Nun werden zur Bestimmung der Profilflanken die Zählerstände, z. B. 25. Sollmittelpunktskoordinaten den Korrekturwert der In- 35 in jedem Skalenteil, z. B. 26, mit einem für jede Achse zuvor festgelegten Schwellwert 23, 24 verglichen und so diejenigen Skalenwerte ermittelt, bei denen die Summenwerte erstmals (27, 29) bzw. letztmals (28, 30) auf der betreffenden Achse den Schwellwert (23, 24) überfahrzeugspezifische Einmessung erforderlich, da die 40 schreiten. Durch Bildung des arithmetischen Mittelwertes über die Flankenskalenwerte jeder Achse werden die Mittelpunktskoordinaten (Xm; Ym) des aktuellen Meßwertekreises bestimmt. Durch Bildung der Differenz zwischen den neuen Mittelpunktskoordinaten 20 45 und den Sollmittelpunktskoordinaten 22 mit den Komponenten Xs und Ys wird der Verschiebungsvektor 52. d. h. der neue Korrekturwert ermittelt.

Fig. 4 erläutert das Verfahren, mit dem vor Auslieferung der Vorrichtung der genannten Art, d. h. also in der 50 Regel beim Hersteller, ein Korrekturwert zur Initialisierung der Regelschleife ermittelt wird. Die komplette Vorrichtung, die eine magnetfeldsensierende Meßeinrichtung, einen Matrixspeicher und eine den Korrekturwert nachführende Regeleinrichtung enthält, wird in be-Fig. 4 eine Darstellung des Verfahrens zur Ermittlung 55 liebiger Orientierung in eine waagrechte Lage gebracht. Es werden die Magnetfelddaten mit der Meßeinrichtung der Vorrichtung erfaßt und nach ihrer Digitalisierung in den Matrixspeicher 18 eingelesen, was zur Folge hat, daß in der Speicherzelle, z. B. 50, die dem Meßwertpaar zugeordnet ist, der Zählerstand um Eins verändert wird. Anschließend wird die gesamte Vorrichtung um 180° um die Hochachse gedreht und ein zweiter Meßpunkt 51 aufgenommen, der in gleicher Weise abgespeichert wird. Dabei habe der erste Meßpunkt in der Netzebene flüssen und Veränderungen in den Eigenschaften der in 65 1 die Koordinaten (X1; Y1) und der zweite Meßpunkt (X2; Y2). Achsweise wird nun der arithmetische Mittelwert über diese Koordinaten ermittelt, wodurch der Mittelpunkt 53 der Strecke 54 zwischen den beiden

Patentansprüche

Meßpunkten 50, 51 bestimmt ist.

Die Mittelpunktskoordinaten seien in diesem Beispiel (Xm0; Ym0). Diese Koordinatenwerte werden zur Festlegung des Korrekturwertes, der sich als der Verschiebungsvektor 52 zwischen den ermittelten Mittelpunktskoordinaten 53 und den im Zentrum der Netzebene 1 liegenden Sollmittelpunktskoordinaten 22 darstellt, für die Initialisierung benutzt.

Es sei angemerkt, daß man einen geschlossenen Meßkreis 55 erhalten würde, wenn die Vorrichtung in vielen 10 kleinen Schritten mit ständiger Feldmessung und Datenspeicherung vollständig um die Hochachse gedreht würde. Für die Mittelpunktsbestimmung zur Festlegung des Korrekturwertes für die Initialisierung ist jedoch diese im Fertigungsprozeß auch vollautomatisch durch- 15 führbare, vereinfachte "Kreiserkennung" mittels zweier. diametral gegenüberliegender Meßpunkte ausreichend.

Fig. 5 zeigt ein vereinfachtes Blockschaltbild des Regelkreises zur Nachführung des Korrekturwertes 16. Die Regelstrecke 41 ist der fortlaufend durch die stör- 20 größenbehafteten Meßdaten 44 gebildete und Lage- sowie Formveränderungen unterworfene Meßwertekreis 21, wobei die Koordinaten des Mittelpunktes 20 im Rückkopplungszweig 45 mittels einer Kreisanalyse 42 durch das Verfahren nach Anspruch 2 ermittelt werden. 25 In der Praxis sind die von der Meßeinrichtung erfaßten Meßdaten unvermeidlich von Störgrößen beeinflußt. Der daraus resultierenden Tendenz zur Lageänderung des Mittelpunktes 20 des Meßwertekreises 21 wird dadurch entgegengewirkt, daß in der Regeleinrichtung 40 30 ein Korrekturwert 16 gebildet wird, so daß der Mittelpunkt 20 des Meßwertekreises 21 stets zum Zentrum 22 der Netzebene 1 zurückgeführt wird.

In der bevorzugten Ausführung ist die Regeleinrichtung durch einen Mikroprozessor realisiert. In einer 35 vorteilhaften Weiterbildung der erfindungsgemäßen Lösung sind Mittel zur Zeitsteuerung vorgesehen, die sicherstellen, daß der Regelzyklus innerhalb vorgegebener Zeitintervalle, z.B. täglich, mindestens einmal durchlaufen wird. Bei sehr geringfügigen Meßdatenver- 40 änderungen könnte andernfalls über längere Zeit eine Korrekturwertanpassung ausbleiben. Durch die z. B. täglich ausgelöste Kontrollroutine werden auch langsame, z. B. durch Bauteilealterung verursachte und auch während Stillstandszeiten des Fahrzeugs voranschrei- 45 tende Veränderungen der Mittelpunktslage erkannt und korrigiert, was zur Erhöhung der Meßgenauigkeit beiträgt.

Neben der Automatisierbarkeit hat das Verfahren nach Anspruch 3 ebenso wie das Verfahren nach An- 50 spruch 2 zur Bestimmung der Mittelpunktskoordinaten eines Meßwertekreises, das während des Betriebs der Vorrichtung, d. h. nach ihrer Installation im Fahrzeug zum Einsatz kommt, den Vorteil, keinerlei Hardware-Abgleich zu erfordern.

Die hier beschriebenen Verfahren zur Datenerfassung mit Meßwertekreislagestabilisierung führen dazu, daß die Meßdaten stets um die durch Störgrößen verursachte Beeinflussung bereinigt im Matrixspeicher registriert und Regelabweichungen überprüft werden, was 60 im Ergebnis bedeutet, daß nur eine geringe Speicherkapazität für den Matrixspeicher vorgehalten werden muß, die vorhandene Speicherkapazität vorteilhaft ausgenutzt und ein Informationsverlust durch einen wegdriftenden Meßwertekreis vermieden wird.

- 1. Verfahren zur Datenerfassung mit reduziertem Speicheraufwand für Daten zur Ermittlung von nicht geradliniger Bewegung eines Fahrzeuges, dadurch gekennzeichnet, daß zur Lagestabilisierung eines Meßwertekreises (21), der in der Netzebene (1) eines Matrixspeicher (18), welcher Bestandteil eines in einem Fahrzeug angeordneten Datenerfassungsgerätes ist, aus Meßdaten (15) gebildet wird. die mittels einer fest mit dem Fahrzeug verbundenen, ein äußeres, stationäres Magnetfeld sensierenden Meßeinrichtung ermittelt und in einem Matrixspeicher (18) registriert werden, von allen Meßdaten (15) vor ihrem Einlesen in den Matrixspeicher (18) ein in einem Regelkreis nachgeführter Korrekturwert (16) subtrahiert wird.
- 2. Verlahren zur Bestimmung des Mittelpunktes (20) eines Meßwertekreises (21), dadurch gekennzeichnet, daß
 - alle in den Speicherzellen eines als Netzebene (1) ausgebildeten Matrixspeichers (18) eingeschriebenen Ereignishäufigkeiten sowohl zeilenweise als auch spaltenweise aufsummiert werden, wodurch sich an den beiden Achsen der Netzebene charakteristische Profile für die summierten Ereignishäufigkeiten ergeben,
 - für beide Achsen getrennt die Skalenwerte (27, 28, 29, 30) der Flanken dieser Profile durch die Abfrage ermittelt werden, an welcher Stelle die Summenwerte (25) erst- bzw. letztmals einen zuvor festgelegten Schwellwert (23, 24) überschreiten,
 - aus den beiden derart aus den Projektionsprofilen ermittelten Skalenwerten für beide Achsen der Netzebene (1) die Mittelpunkte Xm und Ym der durch die Flankenwerte (27, 28, 29, 30) begrenzten Intervalle durch Bildung des arithmetischen Mittelwertes berechnet werden und
 - die beiden Skalenwerte Xm und Ym der Intervallmitten ein Koordinatenpaar (Xm; Ym) bilden, welches die aktuelle Lage des Mittelpunktes (20) des Meßwertekreises (21) an-
- 3. Verfahren zur erstmaligen Festlegung des als Regelgröße benutzten Korrekturwertes (16), dadurch gekennzeichnet, daß
 - die komplette Vorrichtung, die die für die Rekonstruktion einer ungeradlinigen Bewegungsbahn eines Fahrzeugs relevanten Daten erfaßt und speichert und dazu eine magnetfeldsensierende Meßeinrichtung, einen Matrixspeicher (18) und eine Regeleinrichtung (40) zum Nachführen eines Korrekturwertes zum Zwecke der automatischen Lagestabilisierung eines in den Matrixspeicher (18) eingelesenen Meßwertekreises (21) enthält, in beliebiger Orientierung in eine waagerechte Lage gebracht wird,
 - mit der magnetfeldsensierenden Meßeinrichtung eine erste Feldmessung durchgeführt wird und die Meßdaten (50) nach ihrer Digitalisierung in einem Matrixspeicher (18) registriert werden,
 - sodann die gesamte Vorrichtung in der waagrechten Lage um 180° gedreht wird,
 - eine zweite Feldmessung mit anschließen-

der Digitalisierung und Registrierung der Meßdaten (51) erfolgt,

- anschließend zum Zwecke der vereinfachten Mittelpunktsbestimmung des in seiner Lage durch die beiden Meßpunkte (50, 51) fixierten "Meßwertekreises" (55) achsweise der arithmetische Mittelwert (Xm0, Ym0) von beiden diametral gegenüberliegenden Meßpunkten (50,51) ermittelt wird und
- der Verschiebungsvektor (52) zwischen den derart ermittelten Mittelpunktskoordinaten (53) und den im Zentrum der Netzebene (1) liegenden Sollmittelpunktskoordinaten (22) den Korrekturwert (16) der Initialisierung bildet.
- 4. Verfahren zum Nachführen des Korrekturwertes (16) nach Anspruch 1, dadurch gekennzeichnet, daß der den Verschiebungsvektor (52) darstellende Korrekturwert (16), der sich als Differenz aus den nach Anspruch 2 ermittelten Mittelpunktskoordinaten (20) und den im Zentrum der Netzebene (1) des Matrixspeichers (18) liegenden Sollmittelpunktskoordinaten (22) ergibt, mit dem bisherigen Korrekturwert verglichen und der bisherige Korrekturwert für beide Achsen der Netzebene (1) auf den Wert des in der zuvor beschriebenen Weise ermittelten Verschiebungsvektors (52) nachgeregelt wird, wenn eine Abweichung zwischen diesen beiden Signalwerten festgestellt wird.
- 5. Vorrichtung zur Durchführung des Verfahrens 30 nach einem oder allen der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Regeleinrichtung durch einen Mikroprozessor ausgebildet ist.
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Regelkreis zur Selbstüberwachung zeitabhängig gesteuert wird, um sicherstellen, daß der Regelzyklus mindestens einmal innerhalb vorgegebener Zeitintervalle durchlaufen wird.

Hierzu 3 Seite(n) Zeichnungen

BEST AVAILABLE COPY

40

45

50

55

DE 41 15 315 A1 G 07 C 5/08 12. November 1992

BEST AVAILABLE COPY

FIG. 1

FIG. 2

BEST AVAILABLE COPY

FIG. 3

BEST AVAILABLE COPY

