第一章 光的传播

§1光源与光谱

- 一、光源
- 1、热辐射光源
- 2、非热辐射光源——冷光源 气体放电光源——电致发光 固体发光光源——场致发光、发光二极管等 荧光——光致发光、 磷光——化学发光、生物发光 激光、同步辐射光源

第一章 光和光的传播

§1 光源与光谱

一、光源

- 1、热辐射光源
- 2、非热辐射光源——冷光源 气体放电光源——电致发光 固体发光光源——场致发光、发光二极管等 荧光——光致发光、 磷光——化学发光、生物发光

二、光谱

电磁波可见光波段 $\begin{cases} \lambda: 400 \text{nm} \sim 760 \text{nm} & 1 \text{nm} = 10^{-9} \text{m} \\ \mathbf{V}: 7.7 \times 10^{14} \sim 3.9 \times 10^{14} Hz \end{cases}$

颜色 红 橙 黄 绿 蓝 靛 紫

波长(nm) 760 647 588 550 472 455 430 360

单色光——具有单一波长的光 非单色光、准单色光

$$i(\lambda) = \frac{dI_{\lambda}}{d\lambda}$$
 谱密度: λ 处单位波长间隔内的光强

光谱: $i(\lambda) \sim \lambda$ 的分布曲线

总光强:
$$I = \int_0^\infty i(\lambda) d\lambda$$

连续光谱 线状光谱 ——光谱分析

三、光强

电磁波: 传播速率:
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

$$v = \frac{1}{\sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r}}$$

介质折射率 $n = \frac{c}{v} = \sqrt{\varepsilon_r \mu_r}$

横波性: $ar{E} \setminus ar{B}$ 均垂直于波传播方向 $ar{E} \perp ar{B}$

振幅满足: 真空中:
$$E_0/B_0 = c \rightarrow \sqrt{\varepsilon_0} E_0 = \sqrt{\mu_0} H_0$$
 介质中: $E_0/B_0 = v \rightarrow \sqrt{\varepsilon_0} \varepsilon_r E_0 = \sqrt{\mu_0 \mu_r} H_0$

光矢量 $\rightarrow \bar{E}$

(Photo vector)

*能流密度矢量——坡印廷矢量: $\bar{S} = \bar{E} \times \bar{H}$

大小S: 单位时间通过垂直于波传播方向的单位面积的能量方向: 沿波能量的传播方向

真空中:
$$B = \mu_0 H$$

 $E = cB$ $\rightarrow S = \frac{1}{\mu_0} EB = c\varepsilon_0 E^2 = \frac{E^2}{c\mu_0}$

介质中(各向同性、非铁磁性): $\rightarrow S = cn\varepsilon_0 E^2 = \frac{n}{c\mu_0} E^2$

*平均能流密度——光强/辐照度:S的时间平均值

$$I = \overline{S} = \begin{cases} = \frac{1}{2} c \varepsilon_0 E_0^2 = \frac{1}{2c\mu_0} E_0^2 & (真空中) \\ = \frac{1}{2} c n \varepsilon_0 E_0^2 = \frac{n}{2c\mu_0^2} E_0^2 & (介质中) \end{cases}$$
 (瓦特/米2)

§ 2 光的几何光学传播规律——光线

一、几何光学三定律(光波长→ 0时) 光在均匀介质中的直线传播定律

§ 2 光的几何光学传播规律——光线

一、几何光学三定律(光波长— 0时)

光在均匀介质中的直线传播定律

反射定律 折射定律

二、全反射

光密介质1 \longrightarrow 光疏介质2: $n_2 < n_1$: $\sin i_2 = \frac{n_1}{n_2} \sin i_1$

临界角
$$i_1 = \arcsin \frac{n_2}{n_1} \leftarrow \sin i_1 = \frac{n_2}{n_1}$$

$$\sin i_2 = 1$$

全反射原理的应用实例:

光学纤维 全反射棱镜

三、棱镜与色散

色散——折射率是光波长的函数: $n = n(\lambda)$

三棱镜的色散:

偏向角
$$\delta = (i_1 - r_1) + (i_2 - r_2)$$

= $(i_1 + i_2) - (r_1 + r_2)$

$$\begin{cases} A = \alpha = r_1 + r_2 \\ dA = 0 = dr_1 + dr_2 \end{cases} \rightarrow dr_1 = -dr_2$$

$$\delta = (i_1 + i_2) - \alpha$$

$$\frac{d\delta}{di_1} = 1 + \frac{di_2}{di_1} = 0 \longrightarrow di_1 = -di_2$$

由折射定律:

$$\frac{\sin i_1 = n \sin r_1}{n \sin r_2 = \sin i_2} \quad \text{微分} \quad \frac{\cos i_1 di_1 = n \cos r_1 dr_1}{n \cos r_2 dr_2 = \cos i_2 di_2} \rightarrow \therefore \frac{\cos i_1}{\cos i_2} = \frac{\cos r_1}{\cos r_2}$$

$$\begin{array}{c}
i_1 = i_2 \\
r_1 = r_2
\end{array} \longrightarrow \begin{matrix}
\delta_{\min} = 2i - \alpha \\
A = r_1 + r_2 = 2r_1
\end{matrix} \longrightarrow \begin{matrix}
i_1 = \frac{1}{2}(\delta_{\min} + \alpha) \\
r_1 = \frac{1}{2}\alpha
\end{matrix} \longrightarrow \begin{matrix}
n = \sin[\frac{1}{2}(\delta_{\min} + \alpha)]/\sin\frac{\alpha}{2}
\end{matrix}$$

$$\sin i_1 = n \sin r_1$$

已知 α , 测量 δ_{\min} →材料对某种的折射率

§3 费马原理——几何光学基本原理

一、光程

*光的传播特点:不同介质中频率 ν 不变 $\nu = \frac{c}{\lambda_0} = \frac{\nu}{\lambda}$

波速、波长改变
$$\begin{cases} v = \frac{c}{n} < c \\ \lambda = \frac{\lambda_0}{n} < \lambda_0 \end{cases}$$

*光程: L=nl $\left\{\begin{array}{l}l:$ 光在介质中传播的实际路程n: 介质折射率

*光程含义:
$$l = v\Delta t = \frac{c}{n}\Delta t \rightarrow nl = c\Delta t$$

相同时间内光在真空中所经过的路程

二、费马原理

最短时间原理: 光从一点传播到另一点,实际所走的路径是这两点间所有可能路径中费时最短的一条。

最小光程原理: 光从一点传播到另一点,实际所走的路径总是所有可能路径中光程最短的一条。

讨论1:以费马原理推导光的折射、反射定律

折射定律:

光程:
$$L = n_1 l_1 + n_2 l_2 = n_1 \sqrt{h_1^2 + (d - x)^2} + n_2 \sqrt{h_2^2 + x^2} \sim L(x)$$

$$\frac{dL}{dx} = 0 \rightarrow \frac{n_1 (d - x)}{l_1} = \frac{n_2 x}{l_2} \rightarrow n_1 \sin \alpha = n_2 \sin \gamma$$

反射定律:

光程:
$$L = nl_1 + nl_2 = n\sqrt{h^2 + (d-x)^2} + n\sqrt{h^2 + x^2} \sim L(x)$$

$$\frac{dL}{dx} = 0 \rightarrow \frac{(d-x)}{l_1} = \frac{x}{l_2} \rightarrow \sin\alpha = \sin\beta$$

讨论2: 费马原理的准确表述 $\rightarrow \delta \int_A^B n(l) dl = 0$

光从空间一点到另一点所走的实际路径的总光程的变化必须是平稳的一一总光程的变分为0

讨论3: 光学系统的成像过程满足费马原理

——等光程性

透镜改变光线方向, 但不引入附加光程差

§ 4 惠更斯原理——光波

波前上每一点都可以看作是一个新的子波源,它们各自发射球面子波,下一时刻这些球面子波的包络面就是新的波前

波阵面: 同相位点组成的面

波前:最前方的波阵面

波线,垂直于波前(波阵面)的有向线段

用惠更斯原理确定 下一时刻平面波的波前

$t + \Delta t$ 时刻的波面

用惠更斯原理确定 下一时刻球面波的波前

*应用惠更斯原理解释光的反射、折射定律

反射定律:

$$\begin{array}{c}
BC = v_1 \Delta t \\
AD = v_1 \Delta t
\end{array}
\rightarrow \angle DAC = \angle BCA \rightarrow \therefore \alpha = \beta$$

折射定律:

$$BC = v_1 \Delta t$$

$$AE = v_2 \Delta t$$

$$\sin \alpha = \cos(\angle BCA) = \frac{BC}{AC} = \frac{v_1 \Delta t}{AC}$$

$$\sin \gamma = \cos(\angle EAC) = \frac{AE}{AC} = \frac{v_2 \Delta t}{AC}$$

$$\Rightarrow \frac{\sin \alpha}{\sin \gamma} = \frac{v_1}{v_2} = \frac{c/n_1}{n_1} = \frac{n_2}{n_1}$$

*关于光的直线传播问题:

§ 5 光度学基本概念

一、视见函数曲线

电磁波可见光波段 $\begin{cases} \lambda: 400 \text{nm} \sim 760 \text{n} \\ \mathbf{V}: 7.7 \times 10^{14} \sim 3. \end{cases}$

人眼相对灵敏度随波长的变化曲线—

峰值波长: 510~550nm

二、光度学基本单位

电磁波——电磁辐射电磁波能量——辐射能

辐照度——光强
$$I = \overline{S} = \begin{cases} =\frac{1}{2}c\varepsilon_0 E_0^2 \text{(真空中)} \\ =\frac{1}{2}cn\varepsilon_0 E_0^2 \text{(介质中)} \end{cases} \propto E_0^2 \rightarrow A^2$$

光度学单位=辐射量度学单位x视见函数V(2)

辐射通量: ΔS 发射表面上单位时间发射的电磁波能量 $\Delta \Psi(\lambda) = \psi(\lambda) \Delta S$ ——瓦特

辐照度: 垂直于波传播方向上单位面积的辐射通量

$$I = \psi(\lambda)$$
 ——瓦特/米²

光通量: ΔS 表面上单位时间的(视觉)光能量 $\Delta \Phi = K_m V(\lambda) \Delta \Psi(\lambda) \longrightarrow 流明(lm)$

规定: $\lambda_0 = 550$ nm $\rightarrow V(\lambda_0) = 1$

 $\Delta\Psi(\lambda_0)=1$ 瓦特 $\rightarrow\Delta\Phi(\lambda_0)=683$ 流明

光功当量

光照度: 垂直光传播方向上单位面积的光通量

——勒克斯(lx)=流明/米²

发光强度: 光在某一方向单位立体角内的光通量

——坎德拉(cd)=流明/球面度

光亮度: $1cm^2$ 面光源在法线方向的发光强度——熙提(sb)