- A sequence is determined by the recurrence relation $u_{n+1} = 3u_n + 2$ and initial term $u_1 = 2$.
- ▶ Prove by induction the following statement, for all $n \in \mathbb{Z}^+$.

$$u_n = 3^n - 1$$

Step 1: Base Step

▶ Demonstrate the expression is valid for n = 1 (i.e. $u_1 = 2$).

$$u_n = 3^n - 1$$

 $u_1 = 3^1 - 1$
 $u_1 = 3 - 1 = 2$

Step 2: Induction Hypothesis

Demonstrate the expression is valid for n = k.

$$u_k=3^k-1$$

Step 3: Induction Step

▶ Demonstrate the expression is valid for n = k + 1.

$$u_{k+1} = 3^{k+1} - 1$$

$$u_{k+1} = 3 \cdot 3^k - 1$$

$$u_{k+1} = (1+2) \cdot 3^k - 1$$

$$u_{k+1} = 3^k + 2 \cdot 3^k - 1$$