## Book 1 Proposition 22

To construct a triangle from three straight-lines which are equal to three given [straight-lines]. It is necessary for (the sum of) two (of the straight-lines) taken together in any (possible way) to be greater than the remaining (one), [on account of the (fact that) in any triangle (the sum of) two sides taken together in any (possible way) is greater than the remaining (one) [Prop. 1.20]].



Let A, B, and C be the three given straight-lines, of which let (the sum of) two taken together in any (possible way) be greater than the remaining (one). (Thus), (the sum of) A and B (is greater) than C, (the sum of) A and C than B, and also (the sum of) B and C than A. So it is required to construct a triangle from (straight-lines) equal to A, B, and C.

Let some straight-line DE be set out, terminated at D, and infinite in the direction of E. And let DF made equal to A, and FG equal to B, and GH equal to C [Prop. 1.3]. And let the circle DKL have been drawn

with center F and radius FD. Again, let the circle KLH have been drawn with center G and radius GH. And let KF and KG have been joined. I say that the triangle KFG has been constructed from three straight-lines equal to A, B, and C.

For since point F is the center of the circle DKL, FD is equal to FK. But, FD is equal to A. Thus, KF is also equal to A. Again, since point G is the center of the circle LKH, GH is equal to GK. But, GH is equal to G. Thus, G is also equal to G. And G is also equal to G. Thus, the three straight-lines G is also equal to G are equal to G, and G (respectively).

Thus, the triangle KFG has been constructed from the three straight-lines KF, FG, and GK, which are equal to the three given straight-lines A, B, and C (respectively). (Which is) the very thing it was required to do.