Mobilidade em NDN: Consumidores versus Produtores

Francisco R. C. Araújo^{1*}, Leobino N. Sampaio¹

¹Programa de Pós-Graduação em Ciência da Computação (PGCOMP) Instituto de Matemática – Universidade Federal da Bahia (UFBA) Salvador – BA – Brasil

{franciscorca, leobino}@ufba.br

Resumo. As ICNs surgiram para reconstruir uma arquitetura que atenda as demandas, atuais e futuras, da Internet. NDN apresenta-se como uma arquitetura ICN de destaque por possuir diversas características para a Internet do Futuro, sua comunicação baseia-se em consumidores que requisitam interesses aos produtores para a obtenção de dados. A mobilidade do consumidor é razoavelmente suportada pela arquitetura, no entanto, a mobilidade do produtor é um desafio por apresentar danos à rede. Neste contexto, este trabalho apresenta avaliações sobre os diferentes impactos causados na rede pela mobilidade do produtor e do consumidor. Os experimentos realizados evidenciam os desafios de manter a comunicação ativa com o produtor móvel.

1. Introdução

A quantidade de dispositivos e a forma de acesso à *Internet* mudaram significativamente nos últimos anos. De acordo com a [Cisco 2016], o tráfego de dados móveis global cresceu 74% em 2015 e a perspectiva é que alcance o valor de 30,6 *exabytes* mensais em 2020. No entanto, a arquitetura da *Internet* foi projetada para uma época em que um conjunto limitado de máquinas compartilhavam recursos entre si, o que resultou em um modelo de comunicação entre duas máquinas finais [Jacobson et al. 2009].

Diante das novas demandas em torno da utilização da *Internet* surgiram as *Information-Centric Networking* (ICN). Há várias abordagens em ICN [Xylomenos et al. 2014] [Liu et al. 2017]. Dentre estas abordagens ganharam destaque as *Content Centric Network* (CCN) [Jacobson et al. 2009], bem como sua sucessora *Named Data Networking* (NDN) [Zhang et al. 2014]. CCN/NDN possuem três estruturas: (I) *Forwarding Information Base* (FIB) mantém as rotas para as fontes de dados (produtores); (II) *Pending Interest Table* (PIT) mantém os registros de interesses, que ainda não foram atendidos, para possibilitar que os dados retornem aos solicitantes (consumidores); (III) *Content Store* (CS) armazena os dados em *cache* para atender a futuros interesses.

Em NDN não existe estabelecimento de conexão, os consumidores emitem interesses na rede que responde com os dados solicitados. Esta característica possibilita o suporte a mobilidade do consumidor, pois ao se mover para uma nova rede o consumidor basta enviar novamente os interesses para os dados que ainda não recebeu. Por outro lado, a mobilidade do produtor apresenta um desafio em aberto [Zhang et al. 2016]. Devido às mudanças nos nomes dos conteúdos e ao tempo necessário para atualizar as tabelas de roteamento ao longo da rede [Xylomenos et al. 2014] [Huynh et al. 2017].

^{*}Os autores agradecem a Fundação de Amparo à Pesquisa do Estado da Bahia – FAPESB, pelo apoio financeiro.

Este trabalho apresenta a seguinte contribuição: uma análise comparativa entre os danos ocasionados pela mobilidade do produtor e pela mobilidade do consumidor em Redes Centradas no Conteúdo. Além disso, apresenta uma visão geral do estado da arte relacionado a mobilidade de produtores em NDN.

O restante do artigo está organizado da seguinte forma: a Seção 2 apresenta o estado da arte relacionado a mobilidade em NDN. A Seção 3 apresenta a descrição do ambiente adotado nos experimentos. A Seção 4 aborda as avaliações relacionadas aos impactos causados na rede pela mobilidade de nós; e por fim, a Seção 5 conclui o trabalho e discute direções para trabalhos futuros.

2. Estado da Arte

Diversas abordagens surgiram para investigar o problema da mobilidade do produtor em NDN. Dado o fluxo bidirecional de pacotes de interesses/dados, a mobilidade em NDN pode ser dividida em dois sub-problemas: como os dados solicitados podem ser devolvidos a um consumidor em movimento (mobilidade de consumidores); e como os interesses podem atingir os dados gerados pelos produtores em movimento (mobilidade de produtores) [Zhang et al. 2016].

- 1. **Mobilidade do consumidor** Quando um consumidor se move em NDN, ele pode simplesmente emitir novas mensagens de interesse a partir de seu local atual para os dados que ainda não recebeu. Se os caminhos antigos e novos se cruzam, os interesses reexpressos recuperam os dados anteriormente solicitados da CS do primeiro roteador comum a ambos os caminhos, ou são combinados com o interesse anterior sem se propagar mais [Zhang et al. 2016]. No entanto, os pacotes de dados correspondentes também serão entregues à sua localização antiga [Xylomenos et al. 2014].
- 2. **Mobilidade do produtor** Em NDN, o nome do conteúdo é usado para identificar cada conteúdo e também encapsulado em pacotes NDN para roteamento. A vinculação Localizador/Identificador torna a mobilidade do produtor mais desafiadora. Primeiro, um produtor móvel precisa anunciar os prefixos de nome do conteúdo em um novo local, o que traz grande pressão e grave problema de escalabilidade no plano de roteamento. Em segundo lugar, os interesses dos consumidores de conteúdo podem ir para os antigos locais desatualizados o que causa *timeout* e retransmissão de interesse [Gao and Zhang 2016].

O apoio à mobilidade de produtores na NDN continua a ser um desafio de investigação em aberto, particularmente no caso de transmissões em tempo real, como vídeo *streaming* [Ge et al. 2016].

De acordo com [Lehmann et al. 2016] a mobilidade dos produtores pode ser dividida em dois períodos: (1) indisponibilidade – caracterizado pela falta de conectividade de rede do produtor durante a mobilidade, e (2) reconexão – refere-se ao processo de restabelecer a conectividade do produtor. Para tratar o período de indisponibilidade do produtor [Lehmann et al. 2016] classifica, de acordo com a literatura, quatro categorias de extensão da arquitetura NDN:

1. **Envio proativo** – Visa manter os dados disponíveis, através de replicação proativa, em vez de manter a alta disponibilidade do produtor. Antes de se deslocar, o produtor descarrega os dados proativamente para o solicitante. O roteador que recebe os dados os armazena, para atender aos pedidos futuros [Lehmann et al. 2016].

- 2. **Armazenar e encaminhar pedidos** Tenta evitar a perda de pacotes de interesses e seus reenvios, através da adição de um elemento de rede responsável pelo armazenamento de pedidos em períodos de indisponibilidade do produtor e reencaminhá-los quando o produtor retoma à rede [Lehmann et al. 2016].
- 3. **Usar a comunicação padrão NDN ou estendê-la** Algumas abordagens usam a comunicação padrão: mapeamento dos nomes de dados persistentes e temporários de produtores móveis; detecção de degradação no sinal do *link* atual do produtor causado pelo movimento. Outras abordagens estendem o protocolo NDN, através de um esquema que usa âncoras roteáveis para rastrear o movimento do produtor [Lehmann et al. 2016].
- 4. Técnicas não NDN para suporte à mobilidade Abordagens que fazem uso de técnicas contrárias aos princípios NDN propostos por [Jacobson et al. 2009]. É empregado o uso de outras tecnologias como roteamento guloso, que pode coexistir com o roteamento padrão NDN, combinado com pontos de indireção; SDN combinada com NDN para atualizar as FIBs globais e locais [Lehmann et al. 2016].

3. Cenário

Para realizar os experimentos, foi utilizado o ndnSIM¹ um simulador de ICN baseado no NS-3². O ndnSIM é escrito em C++ e oferece uma plataforma de simulação comum e amigável, além disso, está em sincronia com a equipe de pesquisa NDN, o que resulta em uma combinação da plataforma de simulação com os mais recentes avanços da pesquisa NDN [Mastorakis et al. 2016].

O cenário dos experimentos consiste em seis nós. Dois Pontos de Acesso (APs – AP1 e AP2), dois roteadores (UFBA-rt1 e UFBA-rt2), um nó fixo denominado Nó-A e um nó móvel identificado com o número 5. A Figura 1 representa visualmente a topologia empregada. Foi usado a GUI *visualizer* e a topologia foi descrita em um arquito .txt.

Figura 1. Topologia da rede. Dois tipos de experimentos: (1) Nó 5 é o Consumidor móvel e o Nó-A é o Produtor fixo, e (2) o caso inverso.

O consumidor requisita 100 interesses por segundo a uma frequência constante, para isso, foi utilizado a aplicação *ConsumerCbr* e o produtor irá responder aos interesses recebidos, através da aplicação *Producer*. Foi empregada a estratégia de encaminhamento

http://ndnsim.net/2.3/

²https://www.nsnam.org/

Figura 2. Caso 1: Consumidor Móvel e Produtor Fixo

multicast e a política de descarte LRU padrão. O tempo da simulação para cada caso foi de exatamente 60 segundos, tempo suficiente para o nó móvel 5 sair da rede do AP1 e se conectar a rede do AP2, efetuando o *handoff*.

Como o objetivo deste trabalho é evidenciar as diferenças da mobilidade do consumidor e do produtor sobre a NDN, em seu estágio atual, foi adotado apenas os recursos providos pelo simulador, assim, não estendemos suas funcionalidades, para não interferir na arquitetura padrão NDN, isto será feito em trabalhos futuros.

4. Experimentos

As avaliações realizadas, do impacto da mobilidade de nós em NDN, visam evidenciar através de experimentos as diferenças entre a mobilidade do consumidor e do produtor.

4.1. Impactos da mobilidade do consumidor

Para obter o comportamento do consumidor móvel na rede, foi realizado um experimento com o nó 5 (ver Figura 1) representando o consumidor móvel e o Nó-A representando o produtor fixo. Os impactos da mobilidade do consumidor podem ser observado na Figura 2. Na Figura 2(a) está representado os impactos da mobilidade sobre o consumidor e na Figura 2(b) sobre o produtor.

O consumidor móvel (Nó 5) inicialmente está conectado à rede do AP1 e se move em direção a rede do AP2. A Figura 2(a) mostra que a porcentagem de interesses satisfeitos tem uma queda brusca por volta do tempo 25, essa queda representa exatamente o momento em que o consumidor começa a perder o sinal do AP1 até o momento em que se reconecta à rede no AP2, ou seja, o período do *handoff*. Como reação a não obtenção de dados, nesse período de transição, o *timeout* de interesses se eleva inversamente proporcional à porcentagem de interesses satisfeitos. No entanto, apesar de haver uma queda na comunicação com o consumidor, a arquitetura da rede consegue restabelecê-la, pois logo após o consumidor se conectar ao AP2, reexpressa seus interesses a partir da sua nova rede. Assim, o *timeout* de interesses cai para zero novamente como consequência do restabelecimento da comunicação.

Na Figura 2(b), é possível observar os efeitos sobre o produtor fixo. Este responde a todos os interesses que consegue alcançá-lo. Essa pequena queda na comunicação, representa maiores prejuízos principalmente para aplicações em que atrasos são críticos.

Figura 3. Caso 2: Consumidor Fixo e Produtor Móvel.

4.2. Impactos da mobilidade do produtor

Por outro lado, para obter o comportamento do produtor móvel, foi realizado um experimento com o nó 5 (ver Figura 1) representando o produtor móvel e o Nó-A representando o consumidor fixo. Os impactos da mobilidade do produtor estão representado na Figura 3. A Figura 3(b) retrata as reações da mobilidade no produtor e a Figura 3(a) no consumidor.

O produtor móvel (Nó 5) inicialmente encontra-se na rede do AP1 e se desloca rumo ao AP2. A satisfação de interesses é mantida em sua totalidade até o momento em que produtor perde o sinal com o AP1 (Figura 3(b)). Neste ponto, por volta do tempo 25, a porcentagem de satisfação de interesses se degrada rapidamente atingindo o eixo zero, exatamente no período do *handoff*. O produtor se reconecta na rede do AP2, no entanto, a arquitetura não consegue provê o restabelecimento da comunicação neste caso, pois a comunicação parte do consumidor. Observando a Figura 3(a) nota-se que o consumidor continua a expressar interesses na rede, mas estes atingem constantemente o *timeout* a partir do momento que ocorre o *handoff* do produtor móvel.

Neste experimento, se torna evidente que a arquitetura da rede não dar suporte adequado aos produtores móveis. Assim, nessa direção alguns trabalhos recentes tem investigado mecanismos (como os descritos na Seção 2) para manter a satisfação de interesses elevada mesmo que o produtor seja móvel.

5. Conclusão e Trabalhos Futuros

Diante das novas demandas da *Internet* surgiu a filosofia das ICNs, dentre as várias arquiteturas, a NDN tem ganhado destaque, mas ainda possui alguns problemas que necessitam de investigação, como o caso da mobilidade de nós. No entanto, estas abordagens se mostram de cunho experimental, o que torna difícil a sua reprodução em ambientes reais. Pois estas arquiteturas se diferem da arquitetura atual (TCP/IP) principalmente da camada de rede. Para facilitar pesquisas com essas novas redes pode-se empregar a técnica de simulação.

Nesse contexto, esse trabalho apresentou um breve reflexo do estado da arte relacionado a mobilidade de nós em Redes Centradas no Conteúdo. Um estudo comparativo entre a mobilidade do consumidor e a mobilidade do produtor foi apresentado para evidenciar os diferentes impactos causados na rede. Os resultados dos experimentos tornam

explícito a divergência nas formas com que a arquitetura da rede reage diante da mobilidade do consumidor e do produtor.

Diversas questões teóricas e práticas em ICN em geral e em NDN especificamente necessitam de uma melhor investigação, no entanto, para trabalhos futuros nos atentaremos as questões relacionadas à mobilidade de nós, nesse sentido enumeramos as seguintes:

- Suporte a mobilidade de produtores para aplicações de tempo real;
- Suporte a mobilidade de produtores e consumidores em paralelo.

Referências

- Cisco (2016). Cisco Visual Networking Index (VNI) Update Global Mobile Data Traffic Forecast Update, 2015-2020. Technical report, Cisco.
- Gao, S. and Zhang, H. (2016). Scalable Mobility Management for Content Sources in Named Data Networking. In 2016 13th IEEE Annual Consumer Communications \& Networking Conference (CCNC), pages 79–84.
- Ge, J., Wang, S., Wu, Y., Tang, H., and E, Y. (2016). Performance improvement for source mobility in named data networking based on global–local FIB updates. *Peer-to-Peer Networking and Applications*, 9(4):670–680.
- Huynh, T., Priyono, O., Lee, S.-H., and Hwang, W.-J. (2017). Simultaneous mobility of data sources and content requesters in content-centric networking. *Peer-to-Peer Networking and Applications*, 10(1):31–44.
- Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., and Braynard, R. L. (2009). Networking named content. In *Proceedings of the 5th international conference on Emerging networking experiments and technologies CoNEXT '09*, volume 6, pages 1–12. ACM Press.
- Lehmann, M. B., Barcellos, M. P., and Mauthe, A. (2016). Providing producer mobility support in NDN through proactive data replication. In *NOMS 2016 2016 IEEE/IFIP Network Operations and Management Symposium*, pages 383–391. IEEE.
- Liu, X., Li, Z., Yang, P., and Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: A survey. *Ad Hoc Networks*, 58:255–268.
- Mastorakis, S., Afanasyev, A., Moiseenko, I., and Zhang, L. (2016). ndnSIM 2: An updated NDN simulator for NS-3. Technical Report NDN-0028, Revision 2, NDN.
- Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K. V., and Polyzos, G. C. (2014). A Survey of information-centric networking research. *IEEE Communications Surveys and Tutorials*, 16(2):1024–1049.
- Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., Papadopoulos, C., Wang, L., and Zhang, B. (2014). Named data networking. *SIGCOMM Comput. Commun. Rev.*, 44(3):66–73.
- Zhang, Y., Afanasyev, A., Burke, J., and Zhang, L. (2016). A survey of mobility support in Named Data Networking. In 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 83–88. IEEE.