Europäisches Pateniamt

European Patent Office

Office européen des brevets

(11) EP 1 004 907 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 31.05.2000 Bulletin 2000/22

(51) Int. Cl.⁷: **G02B 6/293**

(21) Application number: 99114619.2

(22) Date of filing: 26.07.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 24.11.1998 US 199988

(71) Applicant:
Hewlett-Packard Company
Palo Alto, California 94304 (US)

(72) Inventors:

Lemoff, Brian E.
 Union City, CA 94587 (US)

Aronson, Lewis B.
 Los Altos, CA 94024 (US)

(74) Representative:
Liesegang, Roland, Dr.-Ing. et al
FORRESTER & BOEHMERT
Franz-Joseph-Strasse 38
80801 München (DE)

(54) Optical wavelength demultiplexer

(57) A demultiplexer (10) includes a unitary optically transparent structure (14) that utilizes focusing relay mirrors (30, 32, and 36) to relay a multi-wavelength beam of light among a series of wavelength-specific interference filters (20, 22, 24, and 26), with each filter separating out a specific wavelength component from the multi-wavelength beam. The relay mirrors are focusing mirrors, so that the demultiplexer can be operated with a non-collimated light beam in a manner that controls the potentially large angle of divergence of non-collimated light, while taking advantage of the small beam diameter in order to create a demultiplexer with greater miniaturization.

Description

TECHNICAL FIELD

[0001] The invention relates generally to wavelength division multiplexed optical communication systems and more particularly to an optical wavelength division demultiplexer.

DESCRIPTION OF THE RELATED ART

[0002] In a wavelength division multiplexed (WDM) optical system, light from several lasers, each having a different central wavelength, is combined into a single beam that is introduced into an optical fiber. Each wavelength is associated with an independent data signal through the fiber. At the exit end of the fiber, a demultiplexer is used to separate the beam by wavelength into the independent signals. In this way, the data transmission capacity of a fiber is increased by a factor equal to the number of single-wavelength signals combined into a single fiber.

[0003] Many examples of prior art optical demultiplexers exist. One example of a bulk optical filter-based demultiplexer is disclosed in U.S. Pat. No. 5,808,763, entitled "Optical Demultiplexer," issued to Duck et al. (hereinafter Duck). The optical demultiplexer of Duck receives collimated light into a glass block and directs the collimated light onto a single interference filter. The single interference filter has a wavelength filtering characteristic that is dependent upon the angle of incidence with which the collimated light impacts the filter. To manipulate the angle of incidence of the collimated light impacting the filter, a series of reflective surfaces are located opposite the filter and are angled such that the collimated light zigzags between the filter and the reflective surfaces within the glass block, reaching the filter each time at a different angle of incidence. The different angles of incidence are predetermined to enable separation of a multi-wavelength beam of light into its wavelength components. Although the demultiplexer of Duck works well for its intended purpose, the beam diameters involved with collimated light place physical constraints on the degree of miniaturization that can be achieved in a demultiplexer of this type. In addition, the reflective surfaces must be precisely angled to achieve light filtration at the desired wavelength.

[0004] In another known bulk optical filter-based demultiplexer, a compound objective lens collimates light from an optical fiber and then directs the light onto a succession of wavelength-specific optical filters at a particular angle. At each optical filter, light of one wavelength, or a group of wavelengths, is transmitted while light of the remaining wavelengths is reflected. The transmitted light from each optical filter is refocused by filter-specific compound objective lenses and coupled into outgoing fibers for subsequent use. The light reflected from each optical filter propagates back and

forth between successive wavelength-specific optical filters in a zigzag fashion within the body of the demultiplexer. Although the demultiplexer works well for its intended purpose, the demultiplexer requires several discrete objective lenses which must be assembled and precisely aligned with respect to one another. In addition, as with the Duck demultiplexer, the use of collimated light limits the degree of miniaturization that can be achieved in a demultiplexer of this type.

[0005] Another example of a prior art demultiplexer is disclosed in U.S. Pat. No. 4,675,860, entitled "Compact Wavelength Multiplexer-Demultiplexer with Variable Filtration," issued to Laude et al. (hereinafter Laude). Laude discloses a demultiplexer that utilizes a number of spherical interference filters that are arranged in series along an optical path of a beam of light that is emitted from an optical fiber. Each filter is selective to a particular wavelength and reflects light of the particular wavelength back to a wavelength-specific output fiber, while the light of other wavelengths is passed onto the next filter in the series. While the demultiplexer works well for its intended purpose, since the filters are located in series along the direction of light propagation, light of a wavelength that is not initially reflected by a first filter will pass through each filter twice. For example, in a three-channel demultiplexer, portions of the original light beam must pass forwardly and rearwardly through two filters. In addition, since the filters refocus the diverging light upon reflection, the curvature of the filters must be precisely formed. Further, because the filters are arranged in a series along the optical path, the filters must be bonded to a device that is formed by combining multiple separately fabricated parts.

[0006] In view of the size constraints involved with bulk optical multiplexers and the drawbacks involved with utilizing filters arranged in series along an optical path, what is needed is an optical demultiplexer that can be easily produced with greater miniaturization.

SUMMARY OF THE INVENTION

[0007] A demultiplexer in accordance with the invention includes an optically transparent structure that utilizes focusing relay mirrors to relay a multi-wavelength light beam among laterally arranged wavelength-specific interference filters, with each filter separating out a specific wavelength component from the multi-wavelength beam. The relay mirrors are focusing mirrors, so that the demultiplexer can be operated with a non-collimated light beam in a manner that controls the tendency of such a beam to have a large angle of divergence, while taking advantage of the small beam diameter in order to create a demultiplexer with greater miniaturization.

[0008] A preferred demultiplexer includes a main optical block, wavelength-specific interference filters coupled to the main optical block, and a series of relay

mirrors formed within the main optical block to direct and focus light onto the interference filters. The preferred main optical block of the demultiplexer is composed of a monolithic optically transparent material, such as plastic or glass. Mechanical features at an input end of the main optical block align and register an optical fiber, so that a beam of light from the fiber enters the block through a flat input surface of the block. An objective mirror is integrated into another surface of the main optical block to receive the beam of multi-wavelength optical energy from the input fiber and to direct the beam to the first one of the interference filters. The objective mirror is preferably a convex surface relative to the exterior of the block and is shaped such that light that is incident on the first interference filter has the desired spatial and angular characteristics. The surface segment that forms the objective mirror is preferably coated so as to be internally reflective, however at sufficient angles of incidence, an uncoated mirror with total internal reflection can be used. In an alternative embodiment, an objective lens is integrated into the input surface to focus the incoming beam of light. The focused light is directed from the objective lens to the first filter by a flat mirror that is formed on a surface of the main optical block. In either embodiment, additional internally reflecting surfaces can be implemented to fold the incoming beam from the optical fiber, so that the necessary optical distance between the input fiber and the first interference filter is obtained in a relatively small space.

[0009] The main optical block also includes an output end. The output end of the main optical block preferably includes a flat output surface to which the interference filters are attached. In some cases, mechanical features can be integrated into the output end of the main optical block to aid in the alignment and registration of the interference filters.

[0010]The interference filters are wavelengthselective filters that are preferably connected to the output end of the MOB in a linear array with fixed center-tocenter spacing. Each filter has high transmission and low reflection over a particular range of wavelengths and low transmission and high reflection over another range of wavelengths. The preferable transmission spectrum for WDM demultiplexer applications is a "flat top" shape in which very high and uniform transmission is achieved over one wavelength range, while immediately outside the range a very low transmission and high reflection is achieved. Although the interference filters are preferably separated into discrete pieces, the interference filters can also be integrated onto a single substrate that is attached to the output end of the main optical block. Moreover, the interference filters can be deposited directly onto the output end of the main optical block.

[0011] The relay mirrors are focusing mirrors that are preferably integrated into a surface of the main optical block that is parallel to the surface which is in contact

with the interference filters. The relay mirrors are located and shaped to produce the desired spatial and angular characteristics of a beam that propagates in a zigzag fashion between the interference filters and the relay mirrors. The relay mirrors are preferably convex aspheric surfaces relative to the exterior of the block and are coated so that they are internally reflective. In situations in which the fiber core and the beam diameter at the filters can be treated as "points," because they are significantly smaller than any other dimension in the optical system, an ellipsoidal objective mirror and ellipsoidal relay mirrors with foci at the input fiber and the filter centers can be utilized to provide more precise imaging.

[0012] In an additional aspect of the invention, a lens array is coupled to the output end of the main optical block to direct and focus the filtered light that is output from the main optical block to an adjacent array of detectors. Preferably, the lens array is integrated into a lens array block that is a structure of plastic or glass similar to the main optical block. The lens array block and the main optical block can be made to have complementary mechanical features that enable the two parts to fit together with precise alignment. Additional mechanical features on the lens array block and/or the main optical block can be formed to act as spacers that fix the distance between the lens array and an optical detector array or an array of output optical fibers.

When implemented in a preferred four-channel WDM communications system, light from an optical fiber is coupled directly into the main optical block through the input surface without the light being collimated. The objective mirror integrated into the main optical block focuses and directs the light from the optical fiber to a first of four wavelength-specific interference filters that are formed on the output end of the main optical block. The light propagates from the objective mirror to the first interference filter at a pre-established angle of incidence. The light that is transmitted through the first filter is focused by a lens of the attached lens array onto a detector for signal detection. The light that is not transmitted through the first filter is reflected from the first filter and re-reflected to a second filter by the first relay mirror. The second filter further separates the beam, and the same process is repeated between the second and third, and between the third and fourth wavelength-specific interference filters, using the second and third relay mirrors, respectively. As the light beam is relayed among the four wavelength-specific filters, the components of the light beam have been separated by wavelength and transmitted through the attached lens array to appropriate detectors of the detector array, thereby demultiplexing the WDM signal. Advantages of the invention include the ability to fabricate the demultiplexer using high volume, low cost techniques, such as injection molding, without the need to rely on specialized materials. In addition. because dielectric interference filters have reflectivities

higher than 99% outside of their passband, essentially all of the light of a particular wavelength reaches the appropriate filter, thereby limiting signal loss to the transmission loss of the filter. Because the demultiplexer uses integrated focusing reflectors in a folded geometry, the demultiplexer occupies less space than prior designs while providing the same performance. Further, assembly of the demultiplexer involves attaching the interference filters to the main optical block with only a very coarse alignment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

Fig. 1 is a depiction of a four-channel demultiplexer with an objective mirror and separate MOB and lens array in accordance with the invention.

Fig. 2 is a depiction of a four-channel demultiplexer with an objective mirror and direct coupling to 20 detectors in accordance with the invention.

Fig. 3 is a depiction of a four-channel demultiplexer with an objective lens, an integrated filter array, and a detector array with an integrated lens array in accordance with the invention.

DETAILED DESCRIPTION

[0016] Fig. 1 is a depiction of a demultiplexer 10 in accordance with a preferred embodiment of the invention. The demultiplexer includes a main optical block 14 (MOB), an input surface 38, an objective mirror 40, wavelength-specific dielectric interference filters 20, 22, 24 and 26 coupled to the MOB, and a series of relay mirrors 30, 32, and 36 integrated into the MOB to direct and focus light between the interference filters. The term "wavelength" is used herein to designate the approximate center wavelength of a wavelength distribution that is typical of an optical signal.

[0017] In brief, when implemented in a four-channel WDM communications system, light is coupled from an optical fiber 42 into the MOB through the input surface 38 without the light being collimated. The objective mirror 40 integrated into the MOB receives the input light 44 that is diverging from the input surface and focuses and directs the light 70 to a first filter 20 of the four wavelength-specific interference filters that are attached to an output end 46 of the MOB.

[0018] The light beam 58 that is transmitted through the first filter is focused by an adjacent lens 50 onto a detector 60 for signal detection. The light beam portion 68 that is not transmitted through the first filter is reflected by the first filter for impingement upon a second filter 22 via the first internally reflective concave relay mirror 30. The second filter further separates the beam based upon wavelength. The same process is repeated between the second and third 24 and between the third and fourth 26 wavelength-specific filters, using

the second 32 and third 36 relay mirrors respectively. By directing the WDM signal to each of the wavelength-specific filters, the WDM signal is separated into its four channels. It is important to note that the relay mirrors are concave mirrors, so that the non-collimated and diverging light beam is continuously refocused while propagating between adjacent filters, allowing the demultiplexer to be extremely small as compared to prior art bulk optical demultiplexers for non-collimated beams. With the basic structure and function of a preferred demultiplexer briefly described, more details of the preferred embodiment and alternative embodiments are described below.

The MOB 14 of Fig. 1 utilizes a flat input surface 38 at the input end 39 of the MOB and an objective mirror 40 at another surface of the MOB to direct the incoming light to the first filter 20. The objective mirror 40 is preferably a convex mirror (relative to the exterior of the MOB) integrated into the surface of the MOB in alignment to receive the multi-wavelength light 44 that is introduced at the input surface. The objective mirror can be coated so as to be internally reflective, or at sufficiently high incident angles an uncoated mirror with totally internal reflection can be used. As can be seen, the multi-wavelength light 44 is diverging as it travels from the input surface 38 to the objective mirror. Ideally, the mirror is configured such that the multi-wavelength light 70 is converging as the light propagates from the objective mirror 40 to the first filter. The input structure of the MOB is designed so that a converging light beam is incident on the first filter 20 at a non-perpendicular angle with respect to the filters 20-26. For each filter, the preferred angle of incidence relative to the output end 46 is approximately 78 degrees.

[0020] Mechanical features 45 can be formed in the input end 39 of the MOB 14 for aligning and registering the optical fiber 42. The preferred MOB is composed of a monolithic, homogeneous, and optically transparent material such as plastic or glass. injection molding is preferably used to fabricate the MOB, but other molding techniques or precision machining techniques can also be used. The dimensions of the preferred MOB as shown in Fig. 1 may be approximately 7 mm high, 5 mm long, and 1.75 mm wide, although the exact dimensions are not critical.

[0021] Fig. 2 is an alternative input arrangement in which like elements are numbered as in Fig. 1. In the arrangement of Fig. 2, the input fiber 42 is perpendicular to the output end 46 of the MOB. A flat objective mirror 88 and a convex integrated mirror 41 (concave relative to incident light) are utilized to direct and focus the light from the input surface 38 to the first filter 20. Fig. 2 is one example of a folded geometry that can be implemented, but various other arrangements are possible. For example, additional flat reflective surfaces can be used following the input surface to fold the beam, so that the required optical distance between the objective and the first filter can be obtained in a relatively small

space.

[0022] Fig. 3 is another alternative input arrangement in which like elements are numbered as in Figs. 1 and 2. In the arrangement of Fig. 3, the input surface is an objective lens 82 that is integrated into the surface of the MOB 14. The objective lens is preferably an aspheric convex surface that is shaped such that the light that reaches the first interference filter 20 has the desired spatial and angular characteristics. Because the light is being focused by the objective lens, a flat integrated mirror 80 can be utilized to direct the light from the objective lens to the first filter. Alternatively, the objective lens can be arranged such that the light propagates directly from the objective lens to the first filter. As with Figs. 1 and 2, mechanical features 43 can be formed in the MOB to register and align the optical fiber 42 with the input surface of the MOB.

Referring back to Fig. 1, the output end 46 of the MOB 14 preferably includes a flat output surface. The interference filters 20-26 are preferably attached to or deposited on the flat output surface. As an alternative, mechanical features can be integrated into the output end of the MOB to aid in the alignment and registration of the interference filters. For example, Fig. 2 depicts a design in which depressions are formed in the output end 46 of the MOB to precisely position the four distinct interference filters 20-26. Fig. 3 depicts another alternative design in which a single depression is formed in the output end 46 to receive an integrated filter array 84.

In some embodiments, the interference fil-[0024] ters can be deposited directly onto the output end 46 of the MOB 14. When the filters are deposited directly onto the output end of the MOB, the output surfaces do not have to be flat. For example, curved output surfaces formed at the output end of the MOB may be used to maintain the desired beam characteristics within the MOB and to focus the beams of light that are output from the MOB. Although some examples of the output end arrangement are shown and described, the exact arrangement is not critical to the invention and may be modified as would be apparent to one of ordinary skill in the art.

Referring back to Fig. 1, the interference fil-[0025] ters 20-26 are preferably dielectric filters that are used to separate one optical wavelength from another. The wavelength-selective filters are discrete pieces that are preferably arranged in a linear array with fixed center-tocenter spacing. The interface of the interference filters and the output end 46 of the MOB 14 defines a mirror plane. Each filter has high transmission and low reflection over a selected set or sets of wavelengths, called the passband, and low transmission and high reflection over another set or sets of wavelengths, called the stopband. The preferable transmission spectrum for WDM demultiplexer applications is a "flat-top" shape in which very high and uniform transmission is achieved over the passband wavelength interval, while immediately out-

side the passband very low transmission and high. reflection is achieved. The wavelength interval over which the transmission varies from high to low should be as small as possible to accommodate narrow channel spacing. In a preferred four-channel WDM system. the four channels are centered at approximately 1280. 1300, 1320, and 1340 nanometers (nm). Another preferred four-channel spacing distribution includes wavelengths of 820, 835, 850, and 865 nm. Although the demultiplexer is described with reference to a four-channel demultiplexer, more or fewer channels can be demultiplexed by adding or subtracting filters and relay mirrors.

[0026] Because the transmission spectrum of an interference filter changes as a function of the angle of incidence, the best performance is achieved when the angular extent of the light passing through a filter is minimized. In addition, the use of materials with high refractive indices will reduce the dependence of the transmission spectrum on the incident angle. Although the interference filters 20-26 are separated into discrete pieces in Figs. 1 and 2, in the demultiplexer of Fig. 3, the four interference filters 20-26 are monolithically integrated onto a single substrate to form a filter array 84 that is attached to the output surface of the MOB. Either arrangement can be implemented in accordance with the invention. In another alternative embodiment, the interference filters can be deposited directly onto the output end of the MOB.

[0027] The relay mirrors 30-36 in Figs. 1, 2, and 3 are converging or focusing mirrors that are preferably integrated into a surface of the MOB 14 that is parallel to the faces of the interference filters 20-26. The relay mirrors are located and shaped to produce the desired spatial and angular characteristics of a beam that propagates in a zigzag fashion between the interference filters and the relay mirrors. The relay mirrors are preferably convex aspheric surfaces that are coated so that they are internally reflective. The relay mirrors may also be diffractive mirrors or any other mirror that causes an increase in the angle of convergence or a decrease in the angle of divergence of a beam of light.

In the ideal limit, where the fiber core and the beam diameter at the filters can be treated as points. much smaller than any other dimension in an optical system, an ellipsoidal objective mirror and ellipsoidal relay mirrors with foci at the fiber and the filter centers can be utilized to provide more precise imaging. The objectives should be chosen such that the ratio of image-to-object distances gives the angular reduction factor necessary to achieve satisfactory filter transmission spectra. However, when space limitations dictate small dimensions for the MOB, this ideal limit is a poor approximation to the system. In this case, the surface profiles of the objective mirror or lens and the relay mirrors should be optimized with a more general aspheric surface to produce beams with sufficiently small angular and beam diameter at the filters.

[0029] Referring to Fig. 1, in an additional aspect of the invention, an array of lenses 50, 52, 54, and 56 is coupled to the output end 46 of the MOB 14 to direct and focus the filtered light to the adjacent array of detectors 60, 62, 64, and 66, or alternatively to other output devices, such as optical fibers. In the arrangement of Fig. 1, the lenses 50-56 are integrated into a lens array block 76. The lens array block is preferably a structure of plastic or glass similar to the MOB. The lens array block and the MOB can be made to have complementary mechanical features 72, 74 and 92, 94 that enable the two parts to fit together with precise alignment. In the design of Fig. 1, the lens array block and the MOB are fit together and secured with adhesive. In an alternative to the two-part design of Fig. 1, a lens array can be integrated into the MOB, with the MOB having a slot where the interference filters are inserted between the output end of the MOB and the lens array. In either case, mechanical features 96 and 98 of the lens array block and/or the MOB can be formed to act as spacers that fix the distance between the lenses and the detectors.

The lenses 50-56 integrated into the lens [0030] array block 76 are preferably either plano-convex or biconvex aspheres. The plano-convex aspheres have the advantage that the planar sides can face the interference filters 20-26 with index-matching adhesive filling in the intervening space to reduce loss due to Fresnel reflection. The convex side of the lenses can face the detectors 60-66, with the mechanical features 96 and 98 fixing the distance between the lenses and the detectors. Referring to Fig. 3, in another embodiment lenses 50-56 are integrated into the substrate side of a substrate-illuminated detector array 100. In the case of Fig. 3, a roughly spherical convex surface is etched into the detector array substrate and the substrate thickness sets the lens-to-detector distance. Diffractive lenses can also be used for focusing an output beam and an array of diffractive lenses can be integrated into the detector substrate, the MOB, or a separate lens part.

[0031] Referring to Fig. 2, in another alternative embodiment, light 110, 112, 114, and 116 output from the interference filters 20-26 propagates directly to the detectors 60-66. In order to implement direct coupling, the detector array 100 is preferably closely aligned with the filters and the spatial extent of the beam incident on the filters is sufficiently smaller than the detector diameter to allow for alignment tolerances and divergence between the filters and the detectors. Direct coupling sets a lower bound on the angular divergence of the beam that is incident on the interference filter.

[0032] As stated above, the light output from the interference filters 20-26 can be directed into optical fibers, instead of detectors. When outputting into optical fibers, the fiber core diameter and numerical aperture define limitations regarding the spatial and angular extent of the output beam. Mechanical features on the MOB and/or the lens array block can be formed to align and register the output fibers.

[0033] Although the MOB 14 is described with reference to a WDM demultiplexer, the MOB can be slightly modified and operated in reverse as a WDM multiplexer. When used as a WDM multiplexer, single-wavelength beams of light are input to the MOB behind the interference filters 20-26. The interference filters pass the input wavelengths and reflect other wavelengths within the MOB. The combined light is then reflected by the objective mirror 40 into the optical fiber 42, which acts as an output fiber.

Claims

1. An optical demultiplexer comprising:

a main optical block (14) having an input for receiving a beam of multi-wavelength optical energy and a plurality of outputs for outputting a plurality of wavelength-specific optical energy beams;

a plurality of wavelength-specific filters (20, 22, 24, and 26) aligned with said plurality of outputs and connected to said main optical block such that a first of said filters is impinged by said received beam of multi-wavelength optical energy, each of said wavelength-specific filters having optical characteristics that cause transmission of optical energy at a first set of wavelengths and reflection of optical energy at a second set of wavelengths outside of said first set; and

a plurality of converging reflectors (30, 32, and 36) formed at a surface of said main optical block wherein said converging reflectors are located relative to said wavelength-specific filters such that each converging reflector receives at least a portion of said beam of optical energy from one of said wavelength-specific filters and refocuses said received optical energy toward a different one of said wavelength-specific filters.

- The optical demultiplexer of claim 1 further comprising an input reflector (40) located relative to said input such that said beam of multi-wavelength optical energy is reflected from said input reflector to said first of said wavelength-specific filters.
- The optical demultiplexer of claim 1 or 2 wherein said plurality of converging reflectors (30, 32, and 36) are formed in a linear array on a surface of said main optical block (14).
- 4. The optical demultiplexer of claim 2 wherein said input reflector (40) is an ellipsoidal reflector with a first focus point at said input and a second focus point at said first of said plurality of wavelength-specific filters.

50

- The optical demultiplexer of claim 2 wherein said input reflector (40) is formed at said surface of said main optical block (14), said main optical block being a unitary body that includes said input reflector and said converging reflectors (30, 32, and 36).
- 6. The optical demultiplexer of one of the preceding claims wherein said main optical block (14) is coupled to a lens array (50, 52, 54, and 56) that receives said wavelength-specific optical energy beams from said plurality of outputs and that directs and focuses said wavelength-specific optical energy beams to collectors (60, 62, 64, and 66).
- 7. The optical demultiplexer of one of the preceding claims wherein said collectors (60, 62, 64, and 66) are optical fibers.
- The optical demultiplexer of one of claims 1 to 6 wherein said collectors (60, 62, 64, and 66) are 20 optical detectors.
- The optical demultiplexer one of the preceding claims wherein said converging reflectors (30, 32, and 36) are concave mirrors.
- The optical demultiplexer of one of claims 1 to 8 wherein said converging reflectors (30, 32, and 36) are diffractive mirrors.

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

[®] DE 40 08 483 A 1

(5) Int. Cl.5: G 02 B 6/26 G 02 B 6/42

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 40 08 483.3

Anmeldetag: 16. 3.90

Offenlegungstag:

19. 9.91

(71) Anmelder:

Standard Elektrik Lorenz AG, 7000 Stuttgart, DE

(72) Erfinder:

Kaiser, Manfred, Dipl.-Phys., 7254 Hemmingen, DE

(5) Koppelelement für ein optisches Signal-Übertragungssystem

Die Erfindung betrifft ein Koppelelement für ein optisches Signal-Übertragungssystem, mit einem Lichtwellenleiter-Anschluß und einem Lichtein- bzw. Lichtausgang. Für eine optimale Übertragung ist das Koppelelement als einstückiges, transparentes Winkelstück (3) mit im Winkelbereich (6) gelegener, parabolischer Lichtumlenkfläche (15) ausgebildet, wobei die Oberfläche (11) an einem Winkelstückende zur Bildung einer Linse (12) gewölbt ist und am anderen Winkelstückende der Lichtwellenleiter-Anschluß (9) liegt.

Beschreibung

Die Erfindung betrifft ein Koppelelement für ein optisches Signal-Übertragungssystem, mit einem Lichtwellenleiter-Anschluß und einem Lichtein- bzw. Lichtaus-

Für Breitbandübertragunssysteme, die vorzugsweise in Gestellrahmen untergebracht sind, ist es bekannt, die einzelnen Einschübe eines derartigen Gestells zu verkabeln. Hierzu werden zum Beispiel Kupfer-Koax-Kabel 10 verwendet. Eine derartige Gestellverkabelung ist sehr aufwendig. Die notwendigen Koppelelemente (Koaxstecker sowie zugehörige Buchsen) erfordern eine langwierige und daher kostenintensive Kabelmontage. Überdies sind derartige Bauelemente teuer, da sie aus 15 einer Vielzahl von Einzelteilen bestehen.

Sofern die erwähnte Verkabelung mit Lichtwellenleitern vorgenommen wird, es sich also um ein Lichtwellenleiter-Breitbandübertragungssystem handelt, sind geeignete Koppelelemente für den Anschluß der Licht- 20 wellenleiter mit den Einschüben erforderlich. Die Erfindung bezieht sich auf derartige Koppelelemente, wobei diese universell, also nicht nur bei Breitbandübertrags-

systemen verwendet werden können.

Sie sind unter anderem zum Beispiel auch für eine 25

Rechner-Vernetzung einsetzbar.

Koppelelemente für optische Signal-Übertragungssysteme sind ebenfalls bekannt. Diese können im Spritzgußverfahren aus Thermoplasten hergestellte Linsen aufweisen. Nachteilig sind in den Verbindungsbereichen 30 die zur Luft bestehenden Grenzflächen, da hierdurch nur ein niedriger Ankoppelwirkungsgrad erzielbar ist.

Der Erfindung liegt die Aufgabe zugrunde, ein Koppelelement für ein optisches Signal-Übertragungssystem zu schaffen, das einen hohen Ankoppelwirkungs- 35 grad aufweist sowie preisgünstig und störungsunanfällig ist und für kurze Übertragungsstrecken eine hohe Band-

breite bietet.

Diese Aufgabe wird erfindungsgemäß gelöst durch die Ausbildung als einstückiges, transparentes Winkel- 40 stück mit im Winkelbereich gelegener parabolischer Lichtumlenkfläche, wobei die Oberfläche an einem Winkelstückende zur Bildung einer Linse gewölbt ist und am anderen Winkelstückende der Lichtwellenleiter-Anschluß liegt. Mithin weist das Koppelelement erfin- 45 dungsgemäß zwei optische Systeme auf, nämlich die genannte Linse und die parabolische Lichtumlenkfläche. Ein beispielsweise von einem optischen Sender stammender Lichtkegel trifft auf die Linse, die vorzugsweise einen parallelen Lichstrahl im Innern des Koppelele- 50 ments erzeugt. Dieser Lichstrahl trifft auf die parabolische Lichtumlenkfläche und wird dort gebündelt, so daß in den angekoppelten Lichtwellenleiter, der direkt mit dem Koppelelement am entsprechenden Winkelstükkende in Verbindung steht (z. B. dort verklebt ist) ein 55 entsprechend dem Faserdurchmesser des Lichtwellenleiters fokussierter Lichtstrahl eintreten kann. Zwischen der parabolischen Lichtumlenkfläche und dem Lichtwellenleiter ist daher keine Verluste bewirkende Grenzfläche zur Luft vorhanden. Durch die verwendeten Ma- 60 terialien (z. B. PMMA), läßt sich durch die erfindungsgemäße Ausbildung trotz relativ niedriger Brechzahl der verwendeten Werkstoffe eine optimale Lichtführung bzw. die gewünschte Apertur erzielen. Die Ausbildung des Koppelelements als Winkelstück eignet sich hervor- 65 ragend für die bereits erwähnte Gestellverdrahtung (back panel wiring). Durch die erfindungsgemäße Ausgestaltung ist es möglich, das Licht an der einen Winkel-

stirnseite eintreten zu lassen, es im Winkelbereich umzulenken, so daß es dann aus der anderen Winkelstirnseite wieder austritt.

Nach einer Weiterbildung der Erfindung ist vorgesehen, daß der Lichtwellenleiter-Anschluß einen Einsteckkanal für den Lichtwellenleiter aufweist. Der Lichtwellenleiter ist daher bei der Montage einfach in den Einsteckkanal einzuführen und dort gegebenenfalls mit etwas Klebstoff festzulegen. Seine Stirnfläche grenzt daher unmittelbar an das Koppelelement an, ohne daß sich eine Grenzfläche "Luft - Faser" gibt.

Vorzugsweise besteht das Winkelstück aus Kunststoff. Insbesondere ist es vorteilhaft, wenn das Winkelstück im Kunststoff-Spritzgußverfahren hergestellt ist. Diese Herstellung ist besonders preiswert. Für das Spritzgußverfahren werden transparente Kunststoffe (z. B. PMMA, Polystyrol, Polykarbonat oder ein thermoplastisches Mischpolymerisat) eingesetzt. Derartige Kunststoffe besitzen eine außerordentlich gute optische

Besonders vorteilhaft ist es, wenn die Lichtumlenkflä-

che als Parabolspiegel ausgebildet ist.

Nach einem bevorzugten Ausführungsbeispiel ist die Umlenkfläche an der Oberfläche eines Außenwinkelbereichs ausgebildet. Da hier Reflexion vorliegt, tritt das Licht nicht im Außenwinkelbereich aus, sondern wird zur entsprechend anderen Winkelstirnseite geleitet. Die erwähnte Reflexion ergibt sich durch die Grenzfläche zur Luft. Um alternativ insbesondere auch für achsennahe Lichtstrahlen eine Totalreflexion zu erzielen, ist die Oberfläche des Außenwinkelbereichs verspiegelt. Hierzu kann beispielsweise Aluminium eingesetzt werden.

Um das Licht innerhalb des Koppelelements zentral führen zu können, ist die Lichtumlenkfläche am Boden einer im Außenwinkelbereich liegende Vertiefung ausgebildet. Die Vertiefung bildet ferner einen Schutz für

den Parabolspiegel.

Nach einem speziellen Ausführungsbeispiel ist die Oberfläche zur Bildung der Linse konvex gewölbt. Diese Oberfläche bildet eine der bereits erwähnten Winkelstirnseiten. Durch die konvexe Wölbung ist eine Sammellinse gebildet. Die Wölbung kann insbesondere sphärisch oder auch asphärisch ausgebildet sein.

Schließlich ist es vorteilhaft, wenn ein die Linse aufweisender Schenkel des Winkelstücks in einem Aufnahmekanal eines Gegensteckerteils eingesteckt ist, wobei im Aufnahmekanal ein optoelektrisches Bauelement angeordnet ist. Hierdurch ist eine optisch einwandfreie Kopplung mit dem optoelektrischen Bauelement möglich. Durch Einstecken bzw. Herausziehen aus dem Aufnahmekanal läßt sich die optische Verbindung herstel-

Zur Aufnahme des optoelektrischen Bauelements kann der Aufnahmekanal im Durchmesser stufenförmig vergrößert sein. Dies ist ferner auch aus thermischen Gründen vorteilhaft (Abführung der Verlustwärme).

Als optoelektrisches Bauelement kann insbesondere eine Laserdiode (Sender) oder eine Fotodiode (Empfänger) verwendet werden.

Anhand eines Ausführungsbeispiels wird die Erfindung in Verbindung mit den Zeichnungen veranschaulicht. Und zwar zeigt:

Fig. 1 eine Seitenansicht des Koppelelements im Schnitt,

Fig. 2 eine Rückansicht des Koppelelements und

Fig. 3 eine Explosionsdarstellung des mit einem Gegensteckerteil versehenen Koppelelements im Schnitt.

Die Fig. 1 zeigt ein Koppelelement 1, das aus transpa-

rentem Kunststoff einstückig im Spritzgußverfahren hergestellt ist. Als Kunststoff wird bevorzugt PMMA, Polystyrol, Polykarbonat oder ein thermoplastisches Mischpolymerisat verwendet.

Das Koppelelement 1 bildet somit ein transparentes
Bauteil 2. Es ist vorzugsweise als Winkelstück 3 ausgebildet, das heißt, es besitzt einen ersten Schenkel 4 sowie
einen zweiten Schenkel 5. Die beiden Schenkel 4, 5 sind
einstückig über einen Winkelbereich 6 miteinander verbunden. Der erste Schenkel 4 weist eine erste Winkelstirnseite 7 und der zweite Schenkel 5 eine zweite Winkelstirnseite 8 auf. Die Winkelstirnseite 7 und 8 bilden
Lichtein- bzw. Lichtausgänge 24. Der Querschnitt des
Winkelstücks 3 ist kreisförmig ausgebildet.

Zentral im ersten Schenkel 4 ist ein LichtwellenleiterAnschluß ausgebildet. Dieser besteht aus einem Einsteckkanal 10 zur Aufnahme eines Lichtwellenleiters
LWL (Fig. 3). Die Oberfläche 11 der zweiten Winkelstirnseite 8 ist konvex gewölbt und bildet eine Linse 12.

lm Außenwinkelbereich 14 des Koppelelements 1 ist 20 eine Lichtumlenkfläche 15 vorgesehen. Diese ist als Parabolspiegel 16 ausgebildet. Der Parabolspiegel 16 ist am Boden 17 einer Vertiefung 18 ausgebildet.

In der Fig. 1 ist mit gestrichelter Linie angedeutet, wie ein zwischen Einsteckkanal 10 und Linse 12 verlaufen- 25 der Lichtstrahl am Parabolspiegel 16 umgelenkt wird.

Die Fig. 2 zeigt einen Blick auf den Parabolspiegel 16. Es ist erkennbar, daß er eine kreisförmige Peripherie aufweist.

Die Fig. 3 zeigt zusätzlich zur Darstellung der Fig. 1 30 ein Gegensteckerteil 25 des Koppelelements 1, das einen Aufnahmekanal 19 für den zweiten Schenkel 5 des Winkelstücks 3 aufweist. Im Aufnahmekanal 19 ist ein optoelektrisches Bauelement 20 derart angeordnet, daß dessen querschnittsgrößerer Flanschbereich 21 in einer 35 sich stufenförmig erweiternden Vergrößerung 26 des Aufnahmekanals 19 liegt. Das optoelektrische Bauelement 20 kann beispielsweise als Laserdiode 22 ausgebildet sein. In diesem Falle wäre das optoelektrische Bauelement 20 als Sender tätig. Nach einem anderen Ausführungsbeispiel ist es jedoch auch möglich, daß das optoelektrische Bauelement 20 eine Fotodiode ist, die als Empfänger arbeitet.

Um den Lichtwellenleiter LWL in Wirkverbindung zur Laserdiode 22 zu bringen, wird dieser in den Einsteckkanal 10 eingeführt und mit einer geringen Menge Kleber festgelegt. Zur Verbindung mit der Laserdiode 22 erfolgt ein Einschieben des zweiten Schenkels 5 des Winkelstücks 3 in den Aufnahmekanal 19 derart, daß das von der Laserdiode 22 ausgesendete Licht auf die 50 Linse 12 fällt, von dort in parelleler Lichtführung bis zum Parabolspiegel 16 gelangt und dort umgelenkt wird. Das umgelenkte und gebündete Licht gelangt auf die Stirnseite des Lichtwellenleiters LWL.

Sofern der Lichtwellenleiter LWL Licht liefert gelangt dieses zum Parabolspiegel 16 und von dort zur Linse 12, der eine als Empfänger arbeitende Fotodiode (nicht dargestellt) gegenüberliegt.

Durch die erfindungsgemäße Lösung läßt sich ein preisgünstiges und störungsunempfindliches optisches 60 Übertragungssystem mit hoher Bandbreite für kurze Übertragungsstrecken realisieren. Als Lichtwellenleiter LWL können vorzugsweise Plastik-Dickkernfasern zum Einsatz kommen. Diese sind besonders preiswert. Diese lassen sich wesentlich einfacher verarbeiten, als z. B. die 65 aus dem Stand der Technik bekannten metallischen Leiter.

Die Besonderheit des erfindungsgemäßen Koppelele-

ments liegt insbesondere auch darin, daß in einem Herstellungs-Arbeitsgang (Spritzgußverfahren) zwei unabhängig voneinander optimierbare, abbildende Systeme erzeugt werden können. Dieses sind die Linse 12 sowie der Parabolspiegel 16. Diese beiden voneinander unabhängigen optischen Systeme haben den Vorteil einer flexiblen Anpassung an die numerischen Aperturen der zu verbindenden Systemelemente. Es besteht ein hoher Koppelwirkungsgrad, insbesondere eine hohe Einstrahlungsleistung in die Faser. In das optoelektrische Bauelement 20 erfolgt nur eine sehr geringe Rückreflexion. Uberdies ergibt sich nur ein sehr geringes reflexionsinduziertes Rauschen. Außer den genannten optischen Vorteile ergibt sich in mechanischer und herstellungstechnischer Sicht folgendes: es liegen geringe mechanische Abmessungen vor; durch abgeknickten Strahlengang (Winkelstück 3) besteht eine hervorragende Eignung für Gestellverdrahtungen; geringe Kosten; sehr einfache, zeitsparende Installation mit einem minimalen Aufwand an Werkzeugen (Messer und Kleber); keine Korrosions- und sonstige Umweltprobleme; keine Störstrahlung; hohe Datensicherheit, z. B. bei der Vernetzung von Rechenanlagen; keine RFI- oder EMI-Probleme; hohe Betriebszuverlässigkeit; hohe Lebensdauer und bei kurzen Übertragungsstrecken sind Datenraten im Gigabit/s-Bereich möglich. Gegenüber bekannten Koppelelementen besteht bei der Erfindung der Vorteil, daß durch den Einsatz der Lichtumlenkfläche als abbildendes System eine reflektierende Luft-Grenzfläche vermieden ist, die ofmals zu dramatischen Qualitätseinbu-Ben im Breitbandsystem führt. Die Leistungsfähigkeit des erfindungsgemäßen Systems reicht von Gbit/s über einige Meter Streckenlänge bis zu Mbit/s über mehrere 100 Meter.

Patentansprüche

1. Koppelelement für ein optisches Signal-Übertragungssystem, mit einem Lichtwellenleiter-Anschluß und einem Lichtein- bzw. Lichtausgang, gekennzeichnet durch die Ausbildung als einstückiges, transparentes Winkelstück (3) mit im Winkelbereich (6) gelegener, parabolischer Lichtumlenkfläche (15), wobei die Oberfläche (11) an einem Winkelstückende zur Bildung einer Linse (12) gewölbt ist und am anderen Winkelstückende der Lichtwellenleiter-Anschluß (9) liegt.

2. Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß der Lichtwellenleiter-Anschluß (9) einen Einsteckkanal (10) für den Lichtwellenleiter (LWL) aufweist.

3. Koppelelement nach Anspruch 2, dadurch gekennzeichnet, daß das Winkelstück (3) aus Kunststoff besteht.

4. Koppelelement nach Anspruch 3, dadurch gekennzeichnet, daß das Winkelstück (3) im Kunststoff-Spritzgußverfahren hergestellt ist.

5. Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß die Lichtumlenkfläche (15) als Parabolspiegel (16) ausgebildet ist.

6. Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß die Lichtumlenkfläche (15) an der Oberfläche eines Außenwinkelbereichs (14) ausgebildet ist.

7. Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß die Lichtumlenkfläche (15) am Boden (17) einer im Außenwinkelbereich (14) liegenden Vertiefung (18) ausgebildet ist. 44、15、1等所提供是TTM程度的TM设备值例的设施

8. Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche (11) zur Bildung der Linse (12) konvex, insbesondere sphärisch oder asphärisch, gewölbt ist.

9: Koppelelement nach Anspruch 1, dadurch gekennzeichnet, daß ein die Linse (12) aufweisender Schenkel (5) des Winkelstücks (3) in einen Aufnahmekanal (19) eines Gegensteckerteils (25) eingesteckt ist, das im Aufnahmekanal (19) ein optoelektrisches Bauelement (20) aufweist.

10. Koppelelement nach Anspruch 9, dadurch gekennzeichnet, daß der Aufnahmekanal (19) zur Aufnahme des optoelektrischen Baulements (20) stufenförmig vergrößert ist.

Hierzu 2 Seite(n) Zeichnungen

15

20

25

30

35

40

45

50

55

Nummer: Int. Cl.⁵: Offenlegungstag: DE 40 08 483 A1 G 02 B 6/26 19. September 1991

FIG. 2

Nummer: Int. Cl.⁵: Offenlegungstag: DE 40 08 483 A1 G 02 B 6/26 19. September 1991

