Ch 5. Polynomial Interpolation and Clustered Grids

Solving homework using Python

Program. Previous Homework results
$$\begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} = h^{-1} \begin{pmatrix} 0 & \frac{1}{2} & \cdots & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \cdots & \cdots \\ & & \ddots & 0 & \frac{1}{2} \\ \frac{1}{2} & & & -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix}. \quad (1.2)$$

Calculate Max Error Value

Modified of the matrix and Derived correct plot

Program1. Matlab Code

1. Follow Program 8* (in Chapter 4) to solve the problem of a quantum harmonic oscillator

$$-u_{xx} + x^2 u = \lambda u, \quad x \in \mathbb{R}$$

Produce a result similar to Output 8.

(Program 8 is our first eigenvalue problem. We will see more of these later in the course.)

Output 8

(with added shading of unconverged digits)

Program 8				
		N = 6	N = 12	
% p8.m - eigenvalues of harmonic osci	llator -u"+x^2 u on R	0.46147291699	0.97813728129859	
format long		7.49413462105	052 3.17160532064718	
L = 8;	% domain is [-L L], periodic	7.72091605300	4.45593529116679	
for N = 6:6:36		28.83248377834	015 8.92452905811993	
$h = 2*pi/N; x = h*(1:N); x = L*(x column = [-pi^2/(3*h^2)-1/6$		N = 18	N = 24	
$5*(-1).^{(1:N-1)./sin(h*(1:N-1))}$ $D2 = (pi/L)^{2*toeplitz(column)}; %$ $eigenvalues = sort(eig(-D2 + diag(x)))$	% 2nd-order differentiation	0.999970001499	32 0.9999999762904	
		3.000644066795	82 3.0000009841085	
N, eigenvalues(1:4)		4.992595324407	70 4.99999796527330	
end		7.039571897981	7.00002499815654	
		N = 30	N = 36	
		0.99999999999	0.99999999996	
		3.00000000000	75 3.000000000003	
		4.99999999975	60 4.999999999997	
		7.00000000508	6.999999999999	

Program1. Python Code

Approximation $(-D_N^{(2)} + S)v = \lambda v$,

 $-u'' + x^2 u = \lambda u,$

```
from scipy, linalg import toeplitz
import pandas as pd
L = 8
                                                                        Library for creating tables
df = pd.DataFrame()
for N in np.arange(6.36 +6.6):
  h = 2*np.pi/N
  x = h + np. arange(1.N + 1.1) ; x = L + (x - np.pi)/np.pi
  column = [-np.pi**2/(3*h**2)-1/6]
  column = np.append(column, -0.5 * (-1)**np.arange(1,N,1)/np.sin(1/2*h*np.arange(1,N,1))**2)
  D2 = (np.pi/L)**2*toeplitz(column)
  eigenvalues = np.sort(np.linalg.eigvals(np.diag(x**2)-D2))
  df['N = '+str(N)] = eigenvalues[0:6]
                                                                                       \frac{d^2}{dx^2} = \left(\frac{\pi}{L}\right)^2 \frac{d^2}{dt^2}
df
```

$$S_N''(x_j) = \begin{cases} -\frac{\pi^2}{3h^2} - \frac{1}{6} & j \equiv 0 \pmod{N}, \\ -\frac{(-1)^j}{2\sin^2(jh/2)} & j \not\equiv 0 \pmod{N}. \end{cases}$$
(3.11)

Thus second-order spectral differentiation can be written in the matrix form

$$D_N^{(2)}v = \begin{pmatrix} & \ddots & & \vdots & & \\ & \ddots & -\frac{1}{2}\csc^2(\frac{2h}{2}) & & & \\ & & \frac{1}{2}\csc^2(\frac{h}{2}) & & & \\ & & -\frac{\pi^2}{3h^2} - \frac{1}{6} & & & \\ & & \frac{1}{2}\csc^2(\frac{h}{2}) & & \ddots & \\ & & -\frac{1}{2}\csc^2(\frac{2h}{2}) & & \ddots & \\ & & \vdots & & \ddots & \end{pmatrix} v.$$
 (3.12)

 $x's space : [-L, L], t's space : [0,2\pi]$

In Python

In Matlab

	N = 6	N = 12	N = 18	N = 24	N = 30	N = 36
0	0.461473	0.978137	0.999970	1.000000	1.0	1.0
1	7.494135	3.171605	3.000644	3.000000	3.0	3.0
2	7.720916	4.455935	4.992595	4.999998	5.0	5.0
3	28.832484	8.924529	7.039572	7.000025	7.0	7.0
4	29.037940	9.288546	8.814572	8.999765	9.0	9.0
5	64.494202	17.836071	11.462089	11.001484	11.0	11.0

As the value of N increases, it can be seen that it converges at 1,3,5,7,9......

In other words, the error is thought to be decreasing.

N	=	6
		0.46147291699547
		7.49413462105052
		7.72091605300656
		28.83248377834015

0.9999999999996

3.00000000000003

4.9999999999997

6.9999999999999

N = 12

Program2. Matlab Code

```
Program 9
% p9.m - polynomial interpolation in equispaced and Chebyshev pts
 N = 16;
  xx = -1.01:.005:1.01; clf
  for i = 1:2
    if i=1, s = 'equispaced points'; <math>x = -1 + 2*(0:N)/N; end
    if i==2, s = 'Chebyshev points'; <math>x = cos(pi*(0:N)/N); end
    subplot(2,2,i)
    u = 1./(1+16*x.^2);
    uu = 1./(1+16*xx.^2);
    p = polyfit(x,u,N);
                                     % interpolation
                                     % evaluation of interpolant
    pp = polyval(p,xx);
    plot(x,u,'.','markersize',13)
    line(xx,pp,'linewidth',.8)
    axis([-1.1 1.1 -1 1.5]), title(s)
    error = norm(uu-pp,inf);
    text(-.5,-.5,['max error = 'num2str(error)])
  end
```

2. Implement Program 9 and produce a plot similar to Output 9.

Output 9

Program2. Python Code

```
N = 16
xx = np.linspace(-1.01, 1.01, 1000)
fig, ax = plt.subplots(1,2,sharex=True,sharey=True,figsize=(16,6))
for i in [1.2]:
  if i == 1:
   s = 'Equispaced points'
   x = -1 + 2 * np.arange(0.N+1.1)/N
  else:
                                                  This part selects that the grid's method.
   s = 'Chebyshev points'
                                                                    (Equispace or Chebyshev)
   x = np.cos(np.pi*np.arange(0,N+1,1)/N)
 u = 1 / (1 + 16 * x**2)
 uu = 1 / (1 + 16 * xx**2)
  p = polyfit(x,u,N)
                                                                 → Execute polynomial Least Squares Method
  pp = polyval(p, xx) -
                                                                                        (N is the highest order term setting value)
  ax[i-1].scatter(x,u,marker='o',s=20)
  ax[i-1].plot(xx.pp)
  ax[i-1].set_title(s,fontsize=20)
  error = max(uu-pp)
  ax[i-1].text(-0.5,-0.5,'Max error ='+str(round(error,6)),fontsize=20)
                                                                             Calculate using derived coefficients
plt.xlim(-1-0.1,1+0.1)
plt.vlim(-1.1.5)
```

In Python

I think it's a better fitting because the error is small in Chebyshev's method.

In Matlab

Program2. Additionally There was a tendency to not fit well with data on low N values.

But I found a problem with this method.

Program2. Additionally

values.

I solved this with machine learning techniques. I will skip detailed machine learning techniques.

-0.50

-0.25

0.00

0.25

