CS 70 Discussion 1B

September 6, 2024

Induction Proof

Goal: Prove that for propositional function P, $(\forall n \in \mathbb{N})(P(n))$ **Approach**: Do the following:

- 1. Base Case: Prove P(0) is true
- 2. Inductive Hypothesis: Just state: "Assume that for some $n \in \mathbb{N}$, P(n) is true"
- 3. Inductive Step: Prove that $P(n) \implies P(n+1)$ for any $n \in \mathbb{N}$

Strong Induction

Goal: Prove that for propositional function P, $(\forall n \in \mathbb{N})(P(n))$ **Approach**: Do the following:

- 1. Base Case(s): Prove enough base cases (ex: if proving P(n) requires P(n-2), you need base cases for n=0 and n=1). We will say that $n=0, n=1, \ldots, n=k-1$ are base cases.
- 2. Inductive Hypothesis: Just state: "Assume that for some $n \in \mathbb{N}$ where $n \geq k$, P(m) is true for all m < n"
- 3. Inductive Step: Prove that $[(\forall m \in \{0, 1, ..., n-1\})(P(m))] \implies P(n)$ i.e. Instead of just using P(n-1) to prove P(n), we use as many of the previous n "steps" to prove P(n)

Some Tips

- ► Try to use simple induction whenever possible (less to write)
- ▶ Strengthening Induction Hypothesis: Oddly, it can be easier to prove a statement under even stricter conditions (ex. it can be easier to prove $f(n) \le 2$ instead of $f(n) \le 4$ using induction)
- A very important sign to use induction is if you are trying to prove a formula/statement for *only natural numbers*.