Spazi Vettoriali - Sommario

Spazi e sottospazi vettoriali. Formalizzazione del linguaggio a partire dalla lezione del 31.10.2023

A. LE DEFINIZIONI BASILARI

A1. Spazio vettoriale

Spazi Vettoriali

Definizione di \mathbb{R} -spazio vettoriale, gli 8 assiomi dei spazi vettoriali. L'utilità di spazi vettoriali; esempi di spazi vettoriali.

1. Definizione di spazio vettoriale e vettore

Cerchiamo di astrarre quanto visto in Vettori Liberi e Operazioni sui vettori liberi.

#Definizione

P Definizione (Definizione 1.1. (spazio vettoriale sul campo K)).

Un \mathbb{K} -spazio vettoriale (o spazio vettoriale su \mathbb{K} , dove \mathbb{K} è un campo (Definizione 1 (Definizione 1.1 (campo)))) è un insieme V, dotato di due operazioni definiti come:

$$egin{aligned} +: V imes V &\longrightarrow V; \ (u,v) \mapsto u + v \ \cdot: \mathbb{R} imes V &\longrightarrow V; \ (\lambda,v) \mapsto \lambda \cdot v \end{aligned}$$

tali per cui $\forall \lambda, \mu \in \mathbb{R}$ e $\forall u, v, w \in V$ sono soddisfatte le seguenti proprietà:

$$egin{aligned} & \mathrm{v}_1: (u+v) + w = u + (v+w) \ & \mathrm{v}_2: u+v = v+u \ & \mathrm{v}_3: \exists 0 \in V \mid 0+v = v+0 = v \ & \mathrm{v}_4: \exists -v \in V \mid v + (-v) = (-v) + v = 0 \ & \mathrm{v}_5: \lambda \cdot (u+v) = \lambda u + \lambda v \ & \mathrm{v}_6: (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u \ & \mathrm{v}_7: (\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \ & \mathrm{v}_8: 1 \cdot v = v \end{aligned}$$

Inoltre uno *spazio vettoriale* può essere anche definito con la seguente *terna*:

$$(V,+,\cdot)$$

#Definizione

▶ Definizione (Definizione 1.2. (l'elemento neutro di un spazio vettoriale)).

Chiamiamo l'elemento 0 della v_3 l'elemento *neutro*. In alternativa si può denominarla come 0_V , in riferimento al spazio vettoriale V.

#Osservazione

Osservazione 1.1. (1 non verrà chiamato come l'elemento neutro)

Notare che nella v_8 non chiameremo 1 *l'elemento neutro* per ragioni di convenzione, particolarmente per quanto riguarda l'algebra astratta. Infatti, per essere definito tale, si dovrebbe trattare di una *moltiplicazione interna* in V (ovvero del tipo $\pi:V\longrightarrow V$)

#Proposizione

${\mathscr O}$ Proposizione 1.1. (V_2 è un ${\mathbb R}$ -spazio vettoriale)

Ciò che abbiamo visto fino ad ora ci mostra che V_2 (ovvero l'insieme dei vettori liberi nel piano (Vettori Liberi)) è un \mathbb{R} -spazio vettoriale.

#Definizione

▶ Definizione (Definizione 1.1. (vettore)).

Sia V un \mathbb{K} -spazio vettoriale; gli elementi $v \in V$ si dicono *vettori*. **! ATTENZIONE!** Si nota immediatamente che questa definizione del *vettore* non deve necessariamente corrispondere alla nostra idea di un *vettore libero*.

2. Conseguenze immediate delle 8 "v"

#Proposizione

Proposizione 2.1. (l'unicità di 0)

L'assioma v_3 garantisce che *esiste* almeno un vettore neutro 0 tali che certe proprietà vengono soddisfatte; però ciò che *NON* garantisce è l'unicità del vettore neutro 0. Potrebbe esistere un altro vettore *neutro* che possiamo chiamare 0'.

Però 0' non esiste e lo dimostreremo.

DIMOSTRAZIONE dell'unicità di 0_V

Voglio dimostrare che se V è un \mathbb{R} -spazio vettoriale, allora l'elemento neutro 0 è unico.

Supponiamo quindi che esistano due elementi neutri: 0 e 0'; mostreremo che con questa supposizione deve necessariamente valere 0=0', quindi da questo seguirà la tesi.

Per ipotesi, $\forall v \in V$,

$$A. \ 0 + v \stackrel{\mathrm{v}_3}{=} v + 0 = v$$
 $B. \ 0' + v \stackrel{\mathrm{v}_3}{=} v + 0' = v$

In A. scegliamo v=0'; allora

$$0 + 0' = 0' + 0 = 0'$$

In B. scegliamo invece v=0; allora

$$0' + 0 = 0 + 0' = 0$$

Quindi notiamo che

$$0 = 0 + 0' = 0'$$

per la proprietà transitiva dell'uguaglianza, 0 = 0'.

#Proposizione

${\mathscr O}$ Proposizione 2.2. ($0\in{\mathbb K}$ è l'elemento nullo dello scalamento)

La proposizione

$$0 \cdot v = 0$$

sembra ovvia e banale, come ci suggerirebbe la notazione; però in realtà non lo è veramente, in quanto associamo due concetti *diversi*; da una parte abbiamo lo *scalamento* del vettore v per $\lambda=0$, dall'altra abbiamo il *vettore neutro* 0.

Quindi vogliamo dimostrare che se V è un spazio vettoriale su \mathbb{R} , allora per ogni $v \in V$ sussiste la proposizione.

DIMOSTRAZIONE della proposizione 2.2.

Per dimostrare la tesi, supponiamo che $v \in V$ e quindi abbiamo che:

$$egin{aligned} 0 \cdot v &= (0+0) \cdot v \stackrel{\mathrm{v_6}}{=} 0 \cdot v + 0 \cdot v \ 0 \cdot v &= 0 \cdot v + 0 \cdot v \ (0 \cdot v) + (-(0 \cdot v)) &= (0 \cdot v) + (-(0 \cdot v)) + (0 \cdot v) \ 0 &= 0 \cdot v \ 0 \cdot v &= 0 \blacksquare \end{aligned}$$

#Osservazione

Osservazione 2.1. (c'è ancora qualcosa da dimostrare)

Notare che in questi passaggi abbiamo fatto un *assunto* che non è dato per scontato; ovvero che il vettore opposto -v è unico ad ogni vettore v. Infatti questo assunto è ancora da *dimostrare* (che è necessario per non invalidare questa dimostrazione).

#Proposizione

 ${\mathscr O}$ Proposizione 2.3. (l'elemento opposto è l'elemento scalato per -1)

Anche la proposizione

$$(-1) \cdot v = -v$$

sembra intuitiva, ma in realtà non è dato per scontato secondo gli assiomi v; infatti da un lato abbiamo lo scalamento di un vettore, invece dall'altro abbiamo il $vettore\ opposto\ del\ vettore\ v$.

Quindi vogliamo dimostrare che se V è un spazio vettoriale su \mathbb{R} , allora per ogni vettore $v \in V$ vale la proposizione appena enunciata.

DIMOSTRAZIONE della proposizione 2.3.

Per dimostrare la tesi, utilizziamo la proprietà v₃, ovvero

$$v + (-v) = -v + v = 0$$

e dimostriamo la seconda uguaglianza, assumendo che $-v=(-1)\cdot v$;

$$(-1) \cdot v + (1) \cdot v \stackrel{\mathrm{v}_6}{=} (-1+1) \cdot v = 0 \cdot v = 0$$

EXCURSUS. Il senso della definizione dei spazi vettoriali

#Osservazione

Osservazione filosofica (il senso di definire e studiare i spazi vettoriali)

Si nota che in questa pagina non abbiamo veramente imparato qualcosa di nuovo; come il filosofo F. Nietzsche criticherebbe l'uomo che produce la definizione di un mammifero poi per riconoscere un cammello come un $mammifero^{(1)}$, non abbiamo veramente scoperto nulla di nuovo: infatti abbiamo solo dato definizioni poi per riconoscerle, ad esempio abbiamo definito lo spazio vettoriale e abbiamo riconosciuto V_2 come uno spazio vettoriale.

In realtà il discorso del filosofo tedesco non varrebbe qui: abbiamo dato questa definizione di spazio vettoriale per un motivo ben preciso, ovvero quello di *astrarre*, "abs-trahĕre". Astrarre nel senso che togliamo l'aspetto "accidentale" dei vettori geometrici, concentrandoci invece sull'aspetto "sostanziale".

Infatti dopo potremmo vedere che esistono molti insiemi che sono dei *spazi vettoriali*; se dimostro che un certo insieme A è uno spazio vettoriale, allora le proprietà \mathbf{v}_n saranno sicuramente vere.

(1) "Se io produco la definizione di un mammifero e poi dichiaro, alla vista di un cammello: guarda, un mammifero! certo con questo una verità viene portata alla luce, ma essa è di valore limitato, mi pare; in tutto e per tutto essa è antropomorfica e non contiene un solo singolo punto che sia «vero in sé», reale e universalmente valido, al di là della prospettiva dell'uomo." (Su verità e menzogna in senso extramorale, 1896, Friedrich Nietzsche)

3. Esempi di spazi vettoriali

#Esempio

Consideriamo $V = \mathbb{R}$; con l'usuale definizione di somma + e moltiplicazione, si verifica che anche \mathbb{R} è uno \mathbb{R} -spazio vettoriale.

#Esempio

${\mathscr O}$ Esempio 3.2. (V_2)

Consideriamo $V=\mathbb{R} imes\mathbb{R}$, ovvero

$$V = \{(a,b): a \in \mathbb{R}, b \in \mathbb{R}\}$$

con le operazioni

$$(a,b)+(c,d):=(a+c,b+d) \ \lambda\cdot(a,b):=(\lambda\cdot a,\lambda\cdot b)$$

allora $V=\mathbb{R}^2$ è uno spazio vettoriale.

#Esempio

\mathscr{O} Esempio 3.3. (\mathbb{R}^n)

Generalizziamo l'ESEMPIO 2.1. Coppie ordinate V_2 ; ovvero definiamo

$$V=\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}$$

V è l'insieme delle n-uple ordinate dei numeri reali, con le operazioni

$$egin{aligned} +: V imes V &\longrightarrow V; \ &((a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n)) \mapsto (a_1 + b_1, \ldots, a_n + b_n) \ &\cdot : \mathbb{R} imes V &\longrightarrow V; \ &\lambda \cdot (a_1, a_2, \ldots, a_n) \mapsto (\lambda \cdot v_1, \lambda \cdot v_2, \ldots, \lambda \cdot v_n) \end{aligned}$$

 $(V,+,\cdot)$ è uno spazio vettoriale su $\mathbb R.$

#Esempio

Consideriamo l'insieme delle funzioni di variabile reale (Definizione 4 (Definizione 1.4. (funzione di reale variabile))), ovvero

$$V = \{ \text{funzioni } f : A \subseteq \mathbb{R} \longrightarrow B \subseteq \mathbb{R} \}$$

con le operazioni

$$egin{aligned} +: V imes V &\longrightarrow V; \ (f,g) \mapsto f + g \ &\cdot : \mathbb{R} imes V \longrightarrow V; \ (\lambda,f) \mapsto \lambda \cdot f \end{aligned}$$

#Osservazione

Osservazione 3.1. (chiarimenti sul comportamento della sommo a dello scalamento)

Qui è importante chiarire il comportamento della somma, in quanto per noi non risulta immediatamente intuibile. Siano f,g funzioni, quindi

$$f + g = h$$

ove

$$h:\mathbb{R}\longrightarrow\mathbb{R}$$

data dalla seguente: se $a \in \mathbb{R}$, allora

$$h(a) = (f+g)(a) := f(a) + g(a)$$

Lo stesso discorso vale per lo scalamento;

$$\lambda \cdot f = F \ F : \mathbb{R} \longrightarrow \mathbb{R}$$

ove per ogni a reale,

$$F := \lambda \cdot (f(a))$$

#Osservazione

🧷 Osservazione 3.2. (la "funzione nulla")

Vogliamo trovare la funzione nulla, ovvero la funzione che appartiene a V e gioca lo stesso ruolo di 0. La funzione la chiamiamo O e si definisce come

$$O:\mathbb{R}\longrightarrow \mathbb{R},\ x\mapsto 0$$

infatti, se definiamo $f:\mathbb{R}\longrightarrow\mathbb{R}$, allora

$$(f+O): \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f(x) + 0 = f(x)$$

Abbiamo visto che $\forall x \in \mathbb{R}$,

$$(f+O)(x) = f(x)$$

pertanto

$$O + f = f$$
; $f + O = f$

quindi abbiamo verificato che O è *l'elemento neutro* dello *spazio vettoriale* $(V,+,\cdot).$

A2. Sottospazio vettoriale

Sottospazi Vettoriali

Sottospazio vettorali: definizione, esempi, interpretazione geometrica. Alcuni lemmi sui sottospazi vettoriali.

1. Sottospazio Vettoriale

#Definizione

▶ Definizione (Definizione 1.1. (sottospazio vettoriale)).

Sia V un \mathbb{K} -spazio vettoriale; un sottoinsieme $W \subseteq V$ si dice un sottospazio vettoriale se valgono le seguenti:

- 1. Il vettore *nullo* di *V* appartiene a *W*
- 2. $\forall v, w \in W$; vale che $v + w \in W$ (chiusura rispetto alla somma)
- 3. $\forall \lambda \in \mathbb{R}$, $\forall v \in W$, vale che $\lambda \cdot v \in W$ (chiusura rispetto allo scalamento)

#Esempio

\mathcal{O} Esempio 1.1. (V_2)

Consideriamo ora l' \mathbb{R} -spazio vettoriale V_2 , ovvero

$$V_2:(\mathbb{R}^2,+,\cdot)$$

introdotto in precedenza (ESEMPIO 2.1.).

Ora consideriamo il seguente sottoinsieme $W\subseteq V_2$;

$$W:=\{(x,y)\in V_2: x-3y=0\}$$

Facciamo le seguenti osservazioni.

#Osservazione

${\mathscr O}$ Osservazione 1.1. (l'elemento nullo di V_2)

In V_2 esiste il vettore nullo (0,0); in questo caso il vettore nullo (0,0) vale anche in W.

#Osservazione

${\mathscr O}$ Osservazione 1.2. (somma in V_2)

In V_2 è definita una somma+. Se v, w sono due elementi di W, allora sono in particolare elementi di V_2 ; dunque $v+w\in V_2$. In aggiunta vale che $v+w\in W$. Infatti: se $v=(v_1,v_2)$ $w=(w_1,w_2)$ allora

$$egin{aligned} v \in W \implies v_1 - 3v_2 &= 0 \ w \in W \implies w_1 - 3w_2 &= 0 \end{aligned}$$

quindi

$$(v_1 - 3v_2) + (w_1 - 3w_2) = 0 = 0 + 0 = 0$$

ovvero

$$(v_1+w_1)-3(v_2+w_2)=0$$

ovvero $(v+w)\in W$

#Osservazione

${\mathscr O}$ Osservazione 1.3. (scalamento in V_2)

Infine consideriamo $v \in W$ e $\lambda \in \mathbb{R}$. Se

$$\lambda \cdot v \in V_2$$

allora vale anche

$$\lambda \cdot v \in W$$

Infatti se $v=(v_1,v_2)$, allora $\lambda \cdot v=(\lambda \cdot v_1,\lambda \cdot v_2)$;

$$egin{aligned} v \in W \implies v_1 - 3v_2 = 0 \ ext{allora} \ \lambda \cdot (v_1 - 3v_2) = \lambda \cdot 0 = 0 \ ext{quindi} \ (\lambda \cdot v_1) - 3(\lambda \cdot v_2) = 0 \ ext{ovvero} \ \lambda \cdot v \in W \end{aligned}$$

2. Interpretazione geometrica

#Esempio

Esempio 2.1. (la retta sul piano)

Consideriamo \mathbb{R}^2 come l'insieme dei *punti nel piano*, ovvero il classico piano cartesiano π

Definiamo il sottoinsieme

$$W:=\{(x,y)\in \mathbb{R}^2: x-3y=0\}$$

Ovviamente W è uno sottospazio vettoriale di \mathbb{R}^2 ; notiamo che se rappresentiamo \mathbb{R}^2 come l'insieme dei punti nel piano, allora si può rappresentare W come l'insieme dei punti nella retta r, ove

$$r: x - 3y = 0 \iff y = \frac{1}{3}x$$

FIGURA 2.1. (*Esempio 2.1.*)

#Esempio

In \mathbb{R}^2 consideriamo il seguente:

$$C:=\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$$

Osserviamo subito che la proprietà caratterizzante di C non è un'equazione lineare; infatti si tratta di un'equazione di secondo grado.

Precisamente nel contesto della $geometria\ analitica,\ C$ rappresenterebbe la circonferenza

$$(x-\alpha)^2 + (y-\beta)^2 = \gamma^2$$

ove (α, β) , quindi (0, 0), rappresentano le coordinate dell'origine del cerchio

e γ , quindi 1, il raggio.

Vediamo subito che C non è un sottospazio vettoriale di \mathbb{R}^2 , in quanto (0,0) non appartiene a C.

FIGURA 2.2. (*Esempio 2.2.*)

3. Formare sottospazi a partire da due sottospazi

#Lemma

Lemma (Lemma 3.1. (l'intersezione di due sottospazi forma un sottospazio)).

Sia V un K-spazio vettoriale, siano $U, W \subseteq V$ dei sottospazi vettoriali di V. Se voglio avere un nuovo sottospazio vettoriale a partire da U, W allora posso prendere la loro intersezione (Operazioni con gli Insiemi). Infatti

 $U \cap W$

è sottospazio vettoriale di V.

#Dimostrazione

DIMOSTRAZIONE del *lemma 3.1*.

Verifichiamo che $U \cap W$ sia sottospazio vettoriale di V, quindi che soddisfa le tre proprietà elencate in **DEF 1.**.

1. $0 \in (U \cap W)$ è vera perché *per ipotesi* abbiamo che 0 appartiene sia ad U che W, in quanto sono dei sottospazi vettoriali; quindi è un *elemento* comune di questi due insiemi.

2. Possiamo verificare la chiusura della somma: infatti

$$egin{aligned} orall v_1, v_2 &\in (U \cap W) \implies v_1, v_2 \in U; v_1, v_2 \in W \ ext{per ipotesi} &\Longrightarrow v_1 + v_2 \in U; v_1 + v_2 \in W \ &\Longrightarrow (v_1 + v_2) \in (U \cap W) \end{aligned}$$

3. Ora verifichiamo la *chiusura dello scalamento* con lo stesso procedimento:

$$egin{aligned} orall \lambda \in K, orall v \in (U \cap W) &\Longrightarrow v \in U; v \in W \ & ext{per ipotesi} &\Longrightarrow \lambda v \in U; \lambda v \in W \ &\Longrightarrow \lambda v \in (U \cap W) \end{aligned}$$

Il vuoto

#Osservazione

Osservazione 3.1. (l'unione di due sottospazi NON forma un sottospazio)

Purtroppo questa non vale per l'unione di due sottospazi vettoriali. Infatti, avendo V uno spazio vettoriale e U,W i suoi sottospazi vettoriali, non è sempre garantito che

$$U \cup W$$

sia anch'esso uno sottospazio vettoriale. Qui la simmetria si spezza.

#Dimostrazione

DIMOSTRAZIONE di osservazione 3.1..

Per "dimostrare" questa osservazione troviamo alcuni esempi specifici di sottospazi vettoriali per cui non vale almeno una delle tre proprietà dello sottospazio vettoriale: scopriremo che non varrà la chiusura della somma per un caso specifico.

Considero $U,W\subseteq\mathbb{R}^2$,

$$U = \{(x,y) \in \mathbb{R}^2 : 2x - y = 0\} \ W = \{(x,y) \in \mathbb{R}^2 : x - 2y = 0\}$$

Per ora mostriamo algebricamente che non vale la chiusura della somma per $U \cup W$.

1. Scegliamo alcuni elementi di U, W;

$$(1,2)\in U; (2,1)\in W$$

2. Ora li sommiamo

$$(1,2) + (2,1) = (3,3)$$

3. Verifichiamo che

$$(3,3)
otin (U \cup W)$$

Infatti

$$2(3) - 3 \neq 0; 3 - 3(3) \neq 0$$

Volendo si può vedere la situazione graficamente, osservando che U e W corrispondono a rette passanti per l'origine e vedendo poi che vettore libero (3,3) dato dalla somma di due vettori non appartiene alla nessuna delle due rette.

FIGURA 3.1. (Osservazione 3.1.)

Sottospazio somma

Allora vogliamo trovare un "surrogato" per questo vuoto formato dal fatto che $U \cup W$ non sia uno sottospazio.

#Definizione

▶ Definizione (Definizione 3.1. (sottospazio somma)).

Sia V un K-spazio vettoriale, siano U,W due sottospazi vettoriali di V. Definiamo dunque il sottospazio vettoriale somma di U,V come

$$U+W:=\{u+w:u\in U,w\in W\}$$

#Lemma

Lemma (Lemma 3.2. (la somma di due sottospazio forma un sottospazio)).

U+W è sottospazio vettoriale di V.

#Dimostrazione

DIMOSTRAZIONE. (Esercizio lasciato a noi)

1. L'appartenenza dell'elemento neutro Verifichiamo che

$$0 \in (U+W)$$

è vera: infatti basta scegliere $u=0, w=0 \implies 0+0=0$.

2. Chiusura della somma

$$egin{aligned} v_1, v_2 \in (U+W) &\Longrightarrow v_1 = u_1 + w_1, v_2 = u_2 + w_2 \ v_1 + v_2 &= v_1 + v_2 + w_1 + w_2 \ &= (v_1 + v_2) + (w_1 + w_2) \ &= v + w \ v_1 + v_2 \in (U+W) \end{aligned}$$

3. Chiusura dello scalamento

$$egin{aligned} \lambda \in K; v \in (U+W) \ v \in (U+W) \implies v = u+w; u \in U, w \in W \ \lambda \cdot v = \lambda u + \lambda w \end{aligned} \quad \blacksquare \ & ext{per ipotesi } \lambda u \in U, \lambda w \in W \ \implies \lambda \cdot v \in (U+W) \end{aligned}$$

Lemma (Lemma 3.3. (due sottospazi appartengono alla loro somma)).

Con la notazione precisa valgono che

$$U \subseteq (U+W) \wedge W \subseteq (U+W)$$

#Dimostrazione

DIMOSTRAZIONE del *lemma 3.2..*

Mostrare la prima significa mostrare che per ogni elemento u di U vale che u appartiene anche a U+W. Analogamente lo stesso discorso vale per w elemento di W.

$$u \in (U+W) \implies u = u+w \stackrel{w=0}{\Longrightarrow} u = u \implies u \in U$$

#Corollario

Corollario (Corollario 3.1. (l'intersezione di due sottospazi appartiene alla loro somma)).

Vale che

$$(U \cup W) \subseteq (U+W)$$

inoltre si può dimostrare che U+W è il *più piccolo* sottospazio vettoriale di V che contiene $U\cup W$.

#Dimostrazione

DIMOSTRAZIONE del corollario 3.1..

Omessa.

B. LA COMBINAZIONE LINEARE E I SUOI FIGLI

B1. Combinazione lineare

Combinazione Lineare

Definizione di combinazione lineare di un K-spazio vettoriale; definizione di span; definizione di sistema di generatori per uno sottospazio vettoriale.

1. Definizione di Combinazione Lineare

#Definizione

▶ Definizione (Definizione 1.1. (combinazione lineare)).

Sia V un K-spazio vettoriale (Spazi Vettoriali, DEF 1.), siano

$$\mathbf{v}_1, \dots, \mathbf{v}_n \in V$$

degli elementi di V. Alternativamente possiamo pensare questi elementi come il sottoinsieme $S\subseteq V$.

Allora definiamo *combinazione lineare* un qualsiasi *vettore* (Spazi Vettoriali, **DEF 1.1.**) della forma

$$\lambda_1 \mathbf{v}_1 + \ldots + \lambda_n \mathbf{v}_n$$

dove $\lambda_i \in K, \forall i \in \{1,\ldots,n\}.$

#Esempio

\mathscr{O} Esempio 1.1. (esempio su \mathbb{Q}^2)

In \mathbb{Q}^2 considero

$$q_1=(1,0); q_2=(rac{1}{2},rac{1}{2}); q_3=(1,2)$$

Una combinazione lineare di $S=\left(q_{1},q_{2},q_{3}
ight)$ può essere ad esempio

$$rac{3}{4}q_1 - rac{12}{7}q_2 + 15q_3$$

2. L'insieme delle combinazioni lineari span

Ora voglio considerare l'insieme delle combinazioni lineari.

#Definizione

Sia V un K-spazio vettoriale e sia $S = (v_1, \dots, v_n)$.

Allora chiamo lo span di S o di v_1, \ldots, v_n come l'insieme di tutte le combinazioni lineari di tale sottoinsieme S:

$$\operatorname{span}(\operatorname{v}_1,\ldots,\operatorname{v}_n):=\{\lambda_1\operatorname{v}_1+\ldots+\lambda_n\operatorname{v}_n:\lambda_1,\ldots,\lambda_n\in K\}$$

oppure in forma compatta

$$\operatorname{span}(S) := \{ \sum_{i=1}^n \lambda_i \mathrm{v}_i : i \in \{1,\dots,n\}, \lambda_i \in K \}$$

#Lemma

Lemma (Lemma 2.1. (lo span è sempre un sottospazio vettoriale)).

Lo span di un qualunque $S = \{v_1, \dots, v_n\}$ è sottospazio vettoriale di V (Sottospazi Vettoriali).

#Dimostrazione

DIMOSTRAZIONE del *lemma 2.1*.

Verifichiamo le tre proprietà fondamentali dello sottospazio vettoriale.

- 1. L'appartenenza dell'elemento 0Verifichiamo che 0 può essere espresso come una combinazione lineare ponendo tutti i coefficienti $\lambda_i = 0$.
- 2. Chiusura della somma

Siano $u,w\in \mathrm{span}\,(v_1,\ldots,v_n)$. Allora per ipotesi abbiamo

$$u = \sum_{i=1}^n \lambda_i v_i \mid w = \sum_{i=1}^n \mu_i v_i$$

Allora sommandoli abbiamo

$$u+w=\sum_{i=1}^n (\lambda_i+\mu_i)v_i \implies u+w$$
 è combinazione lineare

3. Chiusura dello scalamento

Sia
$$\lambda \in K$$
, $w \in \mathrm{span}\,(v_1,\ldots,v_n)$. Allora

$$\lambda \cdot w = \lambda \sum_{i=1}^n \mu_i v_i = \sum_{i=1}^n (\lambda \mu_i) v_i \in \mathrm{span}\,(v_1,\ldots,v_n)$$
 $lacksquare$

3. Sistema di generatori

#Definizione

→ Definizione (Definizione 3.1. (sistema di generatori per un spazio vettoriale)).

Sia V un K-spazio vettoriale, $U\subseteq V$ un qualunque sottospazio vettoriale di V.

Un insieme di elementi $\{u_1,\ldots,u_n\}\subseteq U$ si dice un sistema di generatori di/per U se ogni vettore $u\in U$ è una combinazione lineare dell'insieme di elementi stesso; equivalentemente

$$\{u_1,\ldots,u_n\}$$
 è sistema di generatori $\iff U=\mathrm{span}(\{u_1,\ldots,u_n\})$

ovvero se ogni vettore di U è una combinazione lineare di quell'insieme di elementi, allora quell'insieme è un sistema di generatori.

#Esempio

${\mathscr O}$ Esempio 3.1. (su ${\mathbb R}^2$)

Consideriamo $V=\mathbb{R}^2$, $U=\mathbb{R}^2$ (ovvero V=U) e i vettori

$$u_1 = (1,0) \mid u_2 = (0,1)$$

Vale che $\{u_1,u_2\}$ è un sistema di generatori per U.

Infatti dato un vettore $(a,b)\in U$ abbiamo $(a,b)=a(1,0)+b(0,1)=au_1+bu_2.$ Notiamo inoltre che se definiamo

$$u_3 = (1,1)$$

allora anche $\{u_1, u_2, u_3\}$ è un sistema di generatori per U.

#Osservazione

Osservazione 3.1. (la flessibilità dei sistemi di generatori)

Osserviamo che se $\{u_1, \ldots, u_n\}$ è un sistema di generatori per U allora

$$\forall u \in U, \{u_1, \dots, u_n, u\}$$

anche questo è un sistema di generatori per U.

In parole, dato un *sistema di generatori* per un certo sottoinsieme allora possiamo aggiungerci qualsiasi elemento del sottoinsieme, dandoci comunque un altro *sistema di generatori* per lo stesso sottoinsieme. Da questo discende che la definizione di *sistema di generatori* presenta in sé molta flessibilità e variabilità; tuttavia secondo una specie di *"legge meta-matematica"*, troppa flessibilità è un segno di un ente matematico meno forte.

Introdurremo dunque della "rigidità" con le basi (Definizione di Base), arricchendo questo concetto con ulteriori vincoli.

B2. Dipendenza, indipendenza lineare

Dipendenza e Indipendenza Lineare

Definizione di dipendenza o indipendenza lineare per degli elementi di uno spazio vettoriale.

1. Dipendenza lineare

#Definizione

▶ Definizione (Definizione 1.1. (dipendenza lineare di vettori)).

Sia V un K-spazio vettoriale, siano v_1, \ldots, v_n elementi (o vettori) di V (Spazi Vettoriali).

Allora gli elementi/vettori v_1,\ldots,v_n si dicono linearmente dipendenti se possiamo scrivere il vettore nullo $0\in V$ come la combinazione lineare (Combinazione Lineare) di v_1,\ldots,v_n in cui non tutti i coefficienti λ_i in K sono nulli. Ovvero

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n : \exists \lambda_i
eq 0$$

Proposizione 1.1. (definizione 'alternativa' di dipendenza lineare)

Sia V un K-spazio vettoriale, siano $v_1,\ldots,v_n\in V$. Allora questi vettori v_1,\ldots,v_n sono linearmente dipendenti se e solo se uno di essi può essere scritto come combinazione lineare di altri vettori.

Equivalentemente, se e solo se

$$\exists j \in \{1,\ldots,n\}: v_j \in \operatorname{span}(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n)$$

◆ Definizione (Notazione (esclusione di alcuni elementi da una n-upla)).

Per poter compattare la scrittura sopra si può scrivere

$$(v_1,\ldots,v_{j-1},v_{j+1},\ldots,v_n)$$

come

$$(v_1,\ldots,\hat{v}_j,\ldots,v_n)$$

e il "cappello" su v_j vuol dire che lo escludiamo dalla n-upla.

#Dimostrazione

DIMOSTRAZIONE della proposizione 1.1.

Dimostro che vale l'implicazione da ambi i lati in quanto abbiamo un enunciato del tipo "se e solo se".

" \Longrightarrow ": Suppongo che v_1,\dots,v_n siano linearmente dipendenti. Allora

$$egin{aligned} \exists \lambda_i
eq 0, i \in \{1,\ldots,n\} : \lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \ & \Longrightarrow \ -\lambda_i v_i = \lambda_1 v_1 + \ldots + \lambda_n v_n \ & \Longrightarrow \ v_i = rac{(\lambda_1 v_1 + \ldots + \lambda_n v_n)}{-\lambda_i} \ & \Longrightarrow \ v_i = -rac{\lambda_1}{\lambda_i} v_1 + \ldots + (-rac{\lambda_n}{\lambda_i} v_n) \ & \Longrightarrow \ v_i \in \mathrm{span}(v_1,\ldots,\hat{v}_i,\ldots,v_n) \end{aligned}$$

" \longleftarrow ": Suppongo che $\exists i \in \{1,\ldots,n\}: v_i \in \operatorname{span}(v_1,\ldots,\hat{v}_j,\ldots,v_n)$. Allora

$$egin{aligned} v_i &= \mu_1 v_1 + \ldots + \mu_{i-1} v_{i-1} + \mu_{i+1} v_{i+1} + \ldots + \mu_n v_n \ 0 &= \mu_1 v_1 + \ldots + \mu_{i-1} v_{i-1} - v_i + \mu_{i+1} v_{i+1} + \ldots + \mu_n v_n \ \Longrightarrow \ \exists \lambda_i = -1
eq 0 : \mu_1 v_1 + \ldots + \mu_n v_n = 0 \end{aligned}$$

2. Indipendenza lineare

Ora siamo pronti per definire l'indipendenza lineare.

#Definizione

Definizione (Definizione 2.1. (vettori linearmente indipendenti)).

Sia V un K-spazio vettoriale, v_1, \ldots, v_n dei vettori di V.

Dichiamo che questi vettori v_1, \ldots, v_n sono linearmente indipendenti se non sono linearmente dipendenti.

Equivalentemente, v_1,\ldots,v_n sono linearmente indipendenti se e solo se l'unico modo di scrivere 0 è quello di porre tutti i coefficienti $\lambda_i=0$ Alternativamente,

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0 \implies \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

#Esempio

${\mathscr O}$ Esempio 2.1. (esempio su ${\mathbb R}^2$)

Considero in $V=\mathbb{R}^2$ i seguenti vettori:

$$v_1 = egin{pmatrix} 1 \ 0 \end{pmatrix} \mid v_2 = egin{pmatrix} 0 \ 1 \end{pmatrix} \mid v_3 = egin{pmatrix} 1 \ 1 \end{pmatrix}$$

Vale che v_1,v_2,v_3 sono linearmente dipendenti dal momento che

$$v_3 = 1v_1 + 1v_2$$

Invece vale che v_1, v_2 sono linearmente indipendenti in quanto se suppongo

$$\lambda_1 v_1 + \lambda_2 v_2 = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

allora vale che

$$egin{pmatrix} \lambda_1 \ \lambda_2 \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix} \implies \lambda_1 = \lambda_2 = 0$$

In parole l'unico modo di scrivere il vettore nullo come la combinazione lineare di v_1,v_2 è quello di porre $\lambda_1=\lambda_2=0$.

B3. Nesso tra i spazi vettoriali e i sistemi lineari

Generatori, Indipendenza Lineare e Sistemi Lineari

Breve osservazione sui concetti di generatori, indipendenza lineare come astrazioni di aspetti dei sistemi lineare.

Osservazione sui sistemi di generatori e indipendenza lineare

#Osservazione

Osservazione 1.1. (sistemi di generatori in termini di sistemi lineari)

In K^n , l'essere un sistema di generatori può essere "parafrasato" in termini di sistemi lineari (Sistemi Lineari); infatti se $\{v_1,\ldots,v_s\}\subseteq K^n$ è un sistema di generatori per K^n , allora abbiamo

$$\forall v \in K^n, \exists \lambda_1, \dots, \lambda_s : v = \lambda_1 v_1 + \dots + \lambda_s v_s$$

ATTENZIONE! Notiamo che usiamo l'altro valore s in quanto n è stato già fissato con K^n : infatti non abbiamo stabilito a priori che s=n. Scriviamo dunque

$$v_1 = egin{pmatrix} a_{11} \ dots \ a_{1n} \end{pmatrix}; \ldots; v_s = egin{pmatrix} a_{s1} \ dots \ a_{sn} \end{pmatrix}; v = egin{pmatrix} b_1 \ dots \ b_n \end{pmatrix}$$

Allora "l'essere v una combinazione lineare del sistema di generatori" equivale ad avere il seguente sistema lineare:

$$\left\{egin{aligned} \lambda_1 a_{11} + \ldots + \lambda_s a_{s1} &= b_1 \ dots \ \lambda_1 a_{1n} + \ldots + \lambda_s a_{sn} &= b_n \end{aligned}
ight.$$

Quindi si dice che v è combinazione lineare di v_1,\ldots,v_s se e solo se il sistema lineare del tipo

$$egin{pmatrix} a_{11} & \dots & a_{s1} \ drapprox & & drapprox \ a_{1n} & \dots & a_{sn} \end{pmatrix} egin{pmatrix} \lambda_1 \ drapprox \ \lambda_s \end{pmatrix} = egin{pmatrix} b_1 \ drapprox \ b_n \end{pmatrix}$$

è compatibile.

#Osservazione

Osservazione 1.2. (indipendenza lineare in termini di sistemi lineari)

Analogamente l'essere *linearmente indipendenti* può essere parafrasata in termini di *sistemi lineari* usando il *sistema lineare omogeneo associato*: infatti avendo un sistema del tipo

$$\begin{pmatrix} a_{11} & \dots & a_{s1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{sn} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_s \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

e se questa è compatibile e la sua soluzione è unica, allora tutti i vettori v_1, \ldots, v_s sono linearmente indipendenti.

#Osservazione

Osservazione 1.3. (a mo' di conclusione)

Concludiamo che i concetti di *sistemi di generatori* (Combinazione Lineare, **DEF 3.1.**) e di *indipendenza lineare* (Dipendenza e Indipendenza Lineare) sono modi di *astrarre* dei concetti che riguardano i *sistemi lineari* (Sistemi Lineari).

C. BASE, DIMENSIONE E RANGO

C1. Definizione di base

Definizione di Base

Definizione di base. Teorema di caratterizzazione della base. Coordinate del vettore v rispetto alla base B. Esempi di base.

1. Definizione di base

#Definizione

Ø Definizione 1.1. (Definizione 1.1. (Base).).

Sia V un K-spazio vettoriale (Definizione 1 (Definizione 1.1. (spazio vettoriale sul campo K))) e sia $U \subseteq V$ un sottospazio vettoriale di V (Definizione 1 (Definizione 1.1. (sottospazio vettoriale))).

Allora una base di U è un insieme $\{u_1, \ldots, u_n\}$ formato da vettori di U tali che:

 $\{u_1, \ldots, u_n\}$ è un sistema di generatori per U (Definizione 4 (Definizione 3.1. (sistema di generatori per un spazio vettoriale)))

e anche

 u_1, \ldots, u_n sono linearmente indipendenti (Definizione 3 (Definizione 2.1. (vettori linearmente indipendenti)))

Teorema di caratterizzazione delle basi

(#Teorema

Sia V un K-spazio vettoriale finitamente generato, allora un sottoinsieme $B\subseteq V$, $B=\{v_1,\ldots,v_n\}$ è una base di V se e solo se ogni vettore $v\in V$ si può scrivere in modo unico come combinazione lineare di B.

$$B$$
è base di $V\iff \forall v\in V, \exists!\lambda_1,\ldots,\lambda_n:\lambda_1v_1+\ldots+\lambda_nv_n$

#Dimostrazione

DIMOSTRAZIONE del teorema di caratterizzazione delle basi (Teorema 1.1. (Caratterizzazione delle basi))

Questo è un teorema del tipo se e solo se: quindi andiamo per due passi.

" \Longrightarrow ": Sia B una base di V, allora devo dimostrare che ogni elemento di V può essere scritta come combinazione lineare di B in un modo unico. Dato che B è in particolare un sistema di generatori di V, allora dato $v \in V$ si può scrivere come combinazione lineare di B, cioè

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

Ora ci rimane da dimostrare l'*unicità* di tale scrittura: supponiamo allora che esiste

$$v = \mu_1 v_1 + \ldots + \mu_n v_n$$

Allora

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = \mu_1 v_1 + \ldots + \mu_n v_n$$

Pertanto

$$(\lambda_1-\mu_1)v_1+\ldots+(\lambda_n-\mu_n)v_n=0$$

Questa è una combinazione lineare nulla di v_1, \ldots, v_n (ovvero elementi di B): dato che questi sono anche linearmente indipendenti, allora l'unica possibilità di tale scrittura è solo se

$$\lambda_1 = \mu_1, \dots, \lambda_n = \mu_n$$

che dimostra l'unicità della scrittura del vettore.

" \Longleftarrow ": Ora supponiamo che ogni elemento $v \in V$ può essere scritta in una maniera *unica* come combinazione lineare di B.

Allora in particolare B è sistema di generatori per V.

Ci rimane da dimostrare che gli elementi di B sono linearmente indipendenti; per farlo prendiamo il vettore nullo $0 \in v$ e scriviamo la sua combinazione lineare di elementi di B:

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$$

D'altra parte si può scrivere

$$0v_1 + \ldots + 0v_n = 0$$

Per ipotesi la scrittura di combinazioni lineare di 0 come elementi di B è *unica*, allora discende che *tutti* i coefficienti λ_i sono *nulli*. Ovvero

$$\lambda_1 = \lambda_2 = \ldots = \lambda_i = 0, \forall_i \in \{1, \ldots, n\}$$

ovvero $v_1, \ldots v_n$ sono linearmente indipendenti.

Coordinate di vettori rispetto ad una base

#Definizione

Definizione 1.2. (Definizione 1.2. (Coordinate di vettore rispetto alla base).).

Sia V un K-spazio vettoriale finitamente generato, sia $B=(v_1,\ldots,v_n)$ una base di V, e sia v un vettore $v\in V$. Allora possiamo scrivere

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

in modo unico con $\lambda_1, \ldots, \lambda_n \in K$.

Gli scalari $\lambda_1, \ldots, \lambda_n$ sono detti le coordinate di v rispetto alla base B.

2. Esempi di basi

Ora consideriamo degli esempi di basi di spazi vettoriali.

#Esempio

\mathscr{O} Esempio 2.1. (Esempio 2.1. (Basi di K^n).).

In K^n possiamo considerare l'insieme

$$\mathcal{B} = \left\{ egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}, egin{pmatrix} 0 \ 1 \ dots \ 0 \end{pmatrix}, \ldots, egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix}
ight\}$$

Si può dimostrare che \mathcal{B} è una base per K^n .

Infatti è chiaramente sia sistema di generatori per K^n e ogni vettore v di $\mathcal B$ sono linearmente indipendenti: si lascia la dimostrazione da svolgere per esercizio.

Si definisce tale base la base standard di K^n .

Proof. Esempio 2.2. (Esempio 2.2. (Basi delle matrici $M_{m,n}(K)$).).

Nell'insieme delle *matrici* $M_{m,n}(K)$ (Matrice, **DEF 1.2.**) possiamo considerare le matrici del tipo

$$\mathcal{B} = \left\{ egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 0 & \dots & 0 \ dots & & dots \ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, egin{pmatrix} 0 & 0 & \dots & 0 \ 0 & 0 & \dots & 0 \ dots & & dots \ 0 & 0 & \dots & 1 \end{pmatrix}
ight\}$$

dove ogni matrice $v \in \mathcal{B}$ è una matrice dove *tutte* le entrate sono 0 a parte un elemento del posto a_{ij} , che è uguale a 1. In parole prendiamo la matrice

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & & & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

e la "spacchettiamo" in matrici con un singolo elemento. Quindi è possibile dimostrare che tutti gli elementi di \mathcal{B} sono sia sistema di generatori per una qualsiasi matrice che linearmente indipendenti.

#Osservazione

Osservazione 2.1.

Notiamo che il *numero degli elementi* (ovvero la cardinalità) dell'insieme \mathcal{B} è esattamente $m \cdot n$.

C2. Teoremi sulle basi

Teoremi sulle Basi

Tutti i teoremi sulle basi: teorema di estrazione di una base, teorema del completamento/estensione, lemma di Steinitz, teorema sul numero di elementi delle basi. Cenni/idee alle dimostrazioni di questi teoremi

1. Teorema di estrazione di una base

Questo primo teorema, come ci suggerisce il titolo, serve per "estrarre" una base da uno spazio vettoriale (Spazi Vettoriali), ovvero di determinarla.

#Teorema

Sia V un K-spazio vettoriale, finitamente generato, sia $\{v_1,\ldots,v_k\}$ un sistemi di generatori di V.

Allora esiste $\mathcal{B} \subseteq \{v_1, \dots, v_k\}$ tale che \mathcal{B} è *base* di V.

#Dimostrazione

DIMOSTRAZIONE del teorema di estrazione (Teorema 1.1. (Teorema di estrazione di una base))

Nota: questa non è una vera e propria dimostrazione, bensì un semplice cenno. Ci si focalizza in particolare su un algoritmo per scopi informatici. In questa dimostrazione procediamo per costruzione, ovvero troviamo la base $\mathcal B$ mediante il cosiddetto algoritmo dello scarto. Inoltre supponiamo $V \neq \{0\}$.

ALGORITMO (dello scarto)

- 1. Inizializziamo la "lista vuota" $\mathcal{B} = \{\}$ (nel linguaggio C sarebbe un vettore/array, in Python una lista)
- 2. Iterare tutti gli elementi di (v_1, \ldots, v_k) (equiv. for v in V)
 - 1. Consideriamo v_1 di: se $v_1=0$, allora passiamo al prossimo; altrimenti aggiungo v_1 a \mathcal{B} .

ATTENZIONE! Per 0 ovviamente si intende il *vettore nullo* di *V*.

- 2. Consideriamo v_2 : se $v_2 = 0$ oppure $v_2 \in \text{span}(\mathcal{B})$, allora procedere al prossimo; altrimenti aggiungo questo a \mathcal{B} .
- 3. Ripetere fino a v_k .
- 3. Alla fine otteniamo una lista che è sicuramente contenuto in (v_1, \ldots, v_k) che si può dimostrare essere base di V (omessa, anche se semplice da dimostrare).

PSEUDOCODICE (quasi-Python)

2. Teorema del completamento

Ora consideriamo un teorema "speculare" a parte, ovvero a partire da un insieme di vettori linearmente indipendenti possiamo avere una base aggiungendo degli elementi (o anche nessuno).

(#Teorema

Teorema 2.1. (Teorema 2.1. (Teorema del completamento/estensione).).

Sia V un K-spazio vettoriale, finitamente generato, siano $\{v_1, \ldots, v_p\}$ elementi di V linearmente indipendenti.

Allora esiste una base \mathcal{B} di V tale che

$$\{v_1,\ldots,v_p\}\subseteq \mathcal{B}$$

in parole gli elementi $\{v_1,\ldots,v_p\}$ possono essere "completati" per formare una base.

#Dimostrazione

DIMOSTRAZIONE del teorema di estensione/completamento (Teorema 2.1. (Teorema del completamento/estensione))

Nota: anche qui diamo semplicemente un'idea della dimostrazione. Dato che V è finitamente generato, esiste un insieme di vettori di V $\{w_1, \ldots, w_r\}$ che è sistema di generatori per V.

Allora se considero $\{v_1,\ldots,v_p,w_1,\ldots,w_r\}$, vedo che anche questo è un

sistema di generatori per V. Infatti aggiungendo qualsiasi vettore $v \in V$ ad un sistema di generatori, questo rimane comunque un sistema di generatori. A quest'ultimo applico *l'algoritmo dello scarto*, ottenendo una base $\mathcal B$ di V, in quanto per come è fatto l'algoritmo "scarto" i vettori linearmente dipendenti.

Connessione tra base e indipendenza lineare

#Osservazione

Osservazione 2.1. (enti minimali e massimali)

Da questi due teoremi osserviamo una relazione tra il concetto di *base* (Definizione di Base), *indipendenza lineare* (Dipendenza e Indipendenza Lineare) e *sistema di generatori* (Combinazione Lineare).

Da un lato abbiamo una base come un sistema di generatori "minimale", ovvero che contiene un numero minimo di vettori; oppure possiamo equivalentemente caratterizzare una base come un insieme di vettori linearmente dipendenti "massimale", ovvero che può essere estesa.

3. Teorema sulla cardinalità delle basi

Ora enunciamo un teorema importante che ci permetterà di definire la dimensione (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))) di un spazio vettoriale.

Lemma di Steinitz

(#Lemma)

Lemma (Lemma 3.1. (di Steinitz).).

Sia V un K-spazio vettoriale, finitamente generato, sia $\mathcal{B}=\{v_1,\ldots,v_n\}$ una base di V.

Allora $\forall k > n$ e per ogni scelta di vettori $\{w_1, \dots, w_k\} \subseteq V$ vale che $\{w_1, \dots, w_k\}$ sono *linearmente dipendenti*.

#Dimostrazione

DIMOSTRAZIONE del lemma di Steinitz (Lemma 1 (Lemma 3.1. (di Steinitz).))

Per ipotesi vale che gli elementi w_1, \ldots, w_k sono elementi di V (dunque esprimibili come combinazione lineari della base), ovvero:

$$egin{cases} w_1=c_{11}v_1+\ldots+c_{n1}v_n\ dots\ w_k=c_{1k}v_1+\ldots+c_{nk}v_n \end{cases}$$

Ora consideriamo le coordinate di ogni vettore w_i esprimibile come

$$\begin{pmatrix} c_{1i} \\ \vdots \\ c_{ni} \end{pmatrix}$$

Adesso consideriamo la combinazione lineare delle coordinate di w_i , ovvero

$$egin{aligned} a_1 egin{pmatrix} c_{11} \ dots \ c_{n1} \end{pmatrix} + \ldots + a_k egin{pmatrix} c_{1k} \ dots \ c_{nk} \end{pmatrix} \end{aligned}$$

Ora consideriamo il sistema lineare omogeneo del tipo

$$egin{pmatrix} c_{11} & \dots & c_{1k} \ drappeoldrent & & drappeoldrent \ c_{n1} & \dots & c_{nk} \end{pmatrix} egin{pmatrix} a_1 \ drappeoldrent \ a_k \end{pmatrix} = egin{pmatrix} 0 \ drappeoldrent \ 0 \ \end{pmatrix}$$

di cui possiamo dimostrare che è *compatibile* con una *una soluzione* non (tutta) nulla. ■

#Osservazione

Osservazione 3.1. (giustificazione dell'ultimo passaggio)

Osserviamo che la matrice dei coefficienti

$$egin{pmatrix} c_{11} & \dots & c_{1k} \ dots & & dots \ c_{n1} & \dots & c_{nk} \end{pmatrix}$$

per ipotesi ha k>n, ovvero è più "lunga" orizzontalmente. Quindi per "accuratezza" la scriviamo come

$$egin{pmatrix} c_{11} & \dots & \dots & c_{1k} \ dots & & dots \ c_{n1} & \dots & \dots & c_{nk} \end{pmatrix}$$

quindi gradinizzandola con Gauß (Algoritmo di Gauß) abbiamo dei "gradini" più lunghi di un elemento. Allora ho più "parametri liberi" non-nulli, determinando così soluzioni non nulle.

Teorema principale

(#Teorema

🖪 Teorema (Teorema 3.1. (sulla cardinalità delle basi)).

Sia V un K-spazio vettoriale, finitamente generato, siano $\{v_1, \ldots, v_n\}$ e $\{w_1, \ldots, w_m\}$ due basi di V.

Allora n=m; ovvero le due basi hanno lo stesso *numero di elementi* (alt. "cardinalità").

#Dimostrazione

DIMOSTRAZIONE del *teorema 3.1.* (Teorema 2 (Teorema 3.1. (sulla cardinalità delle basi)))

Per il *lemma di Steinitz* (Lemma 1 (Lemma 3.1. (di Steinitz).)), abbiamo che questi due insiemi di vettori per essere *basi* (ovvero *linearmente indipendenti* e *sistemi di generatori*), deve valere

$$m < n \land n < m \implies m = n$$

C3. Dimensione di un spazio vettoriale

Dimensione

Definizione di dimensione, esempi, osservazioni.

1. Definizione di Dimensione

#Definizione

✔ Definizione (Definizione 1.1. (dimensione di un spazio vettoriale)).

Sia *V* un *K-spazio vettoriale*, *finitamente generato*; per definire la *dimensione* di *V* abbiamo due opzioni.

Se $V=\{0\}$, dove 0 rappresenta il *vettore nullo* allora definiamo la

dimensione di V come il numero $0 \in \mathbb{N}$.

Altrimenti la definiamo come il numero di elementi di una sua qualsiasi base, ovvero la cardinalità della sua base \mathcal{B} .

Inoltre la denotiamo con

 $\dim_K V$ oppure $\dim V$ se chiaro

#Osservazione

Osservazione 1.1. (la definizione è ben posta)

Per il teorema sulla cardinalità delle basi (Teorema 2 (Teorema 3.1. (sulla cardinalità delle basi))), questa definizione è ben posta.

2. Esempi vari

#Esempio

Esempio 2.1. (esempi misti)

Consideriamo le dimensioni dei seguenti spazi vettoriali:

i.
$$\dim \mathbb{R}^2=2$$

ii.
$$\dim_K K^2 = 2$$

iii.
$$\dim_K K^n = n$$

iv.
$$\dim_K M_{m,n}(K) = m \cdot n$$

#Esempio

Esempio 2.2. (numeri complessi)

Nota: questo esempio è tratto dalla dispensa e l'ho riproposta in quanto la si ritiene interessante

Ora consideriamo l'insieme dei numeri complessi \mathbb{C} (Introduzione ai Numeri Complessi), che sappiamo essere un *campo*.

Se lo consideriamo come il spazio vettoriale su *se stesso*, allora questa ovviamente ha

$$\dim_{\mathbb{C}} \mathbb{C} = 1 \iff \mathcal{B} = \{(1,1)\}$$

Tuttavia, possiamo considerare l' $\mathbb R$ spazio vettoriale $\mathbb C$, dando a $\mathbb C$ un

operazione di *scalamento* su \mathbb{R} , secondo delle osservazioni (Operazioni sui Numeri Complessi > ^d57f49), e un operazione di *somma componente per componente*: allora in questo caso si ha

$$\mathcal{B} = \{0,i\} \implies \dim_{\mathbb{R}} \mathbb{C} = 2$$

Questo esempio è importante per ricordarci che la nozione di dim non dipende *solo* dal spazio vettoriale in sé, ma anche la "base d'appoggio" della base stessa.

3. Dimensione di un sottospazio

#Osservazione

Osservazione 3.1. (osservazione sui sottospazi vettoriali)

Notiamo che il concetto di dimensione \dim di un spazio vettoriale V si applica anche ai suoi sottospazi vettoriali (Definizione 1 (Definizione 1.1. (sottospazio vettoriale))) $U \subseteq V$.

#Proposizione

Proposizione 3.1. (dimensione di un sottospazio vettoriale)

Sia V un K-spazio vettoriale, finitamente generato; sia $W\subseteq V$ un sottospazio vettoriale. Allora valgono le seguenti:

$$1.\dim W \leq \dim V$$

$$2.\dim W = \dim V \iff W = V$$

#Dimostrazione

DIMOSTRAZIONE della proposizione 3.1. (^265196)

Nota: la dimostrazione è stata lasciata per esercizio, quindi non è detto che sia corretta.

La dimostrazione segue dal teorema di completamento della base (Teorema 2.1. (Teorema del completamento/estensione)); supponiamo la base di W $\mathcal{B}_W = \{w_1, \dots, w_k\}.$

Allora sapendo che $W \subseteq V$ deduciamo che $\mathcal{B}_W \subseteq V$ (ovvero tutti gli *elementi della base di W* sono *elementi di V*); poiché questi sono anche *linearmente indipendenti*, per il *teorema di completamento della base* abbiamo

 $\mathcal{B}_V = \mathcal{B}_W \cup \{\ldots\}$, dove l'insieme a destra rappresenta gli elementi necessari per poter "completare" la base.

Pertanto gli elementi dell'insieme che sta a sinistra sarà sempre *maggiore* o uguale agli elementi dell'insieme a destra, in quanto a questo "aggiungo o qualcosa o nulla". ■

Supponendo che non ho nessun elemento da *aggiungere* per completare la base, avrei $\mathcal{B}_V = \mathcal{B}_W$.

Quindi le basi sono le *stesse*, che vuol dire che una base di W è anche di V e viceversa: pertanto W=V.

4. Idea del concetto

#Osservazione

Conclusione.

Con il concetto della *dimensione* per i spazi vettoriali siamo riusciti ad associare ogni *K-spazio vettoriale* finitamente generato ad un numero naturale \mathbb{N} ; infatti è possibile pensare la *dimensione* come una funzione che dato un certo spazio vettoriale ci manda un numero naturale. Infatti

$$\dim:V(K)\longrightarrow \mathbb{N}$$

Dopodiché compiremo una azione analoga con le *matrici* mediante il concetto di Rango.

C4. Rango di una matrice

Rango

Definizione di rango, osservazioni, esempi.

1. Definizione di rango

#Osservazione

 ${\mathscr O}$ Osservazione 1.1. (le colonne di una matrice vivono in K^m)

Sia $A \in M_{m,n}(K)$, allora le *colonne* di A sono *tutti* elementi di K^m . Dunque

$$A^{(1)},\ldots,A^{(n)}\in K^n$$

#Definizione

◆ Definizione (Definizione 1.1. (rango)).

Sia $A \in M_{m,n}(K)$; definiamo il rango della matrice (Definizione 1 (Definizione 1.1. (matrice $m \times n$ a coefficienti in K))) A e lo denotiamo con rg(A) oppure rk(A) (la seconda è la dicitura internazionale) come la dimensione (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))) dello span (Lemma 3 (Lemma 2.1. (lo span è sempre un sottospazio vettoriale))) dello sottospazio generato dalle colonne di A:

$$\operatorname{rg}(A) := \dim(\operatorname{span}(A^{(1)}, \dots, A^{(n)}))$$

2. Osservazioni sul rango

#Osservazione

🖉 Osservazione 2.1. (il rango è limitato da due numeri)

Se $A\in M_{m,n}(K)$ allora

• $\operatorname{rg}(A) \leq m$; infatti

$$A^{(1)},\ldots,A^{(n)}\in K^m \implies \operatorname{span}(A^{(1)},\ldots,A^{(n)})\subseteq K^m$$

dunque per la *proposizione 3.1.* sulla dimensione (Dimensione > ^265196)

$$\dim(A^{(1)},\ldots,A^{(n)}) \leq \dim(K^m) = m$$

• $\operatorname{rg}(A) \leq n$; infatti abbiamo n colonne, dunque $\operatorname{span}(A^{(1)},\ldots,A^{(n)})$ ha n generatori; pertanto una base di $\operatorname{span}(A^{(1)},\ldots,A^{(n)})$ ha al più n generatori (che viene verificato quando tutti i vettori colonna solo linearmente indipendenti); pertanto

$$\mathrm{span}(A^{(1)},\ldots,A^{(n)}) \leq K^n = n$$

Per concludere, traiamo che

$$A \in M_{m,n}(K) \implies \operatorname{rg} A \le \min\{m,n\}$$

#Osservazione

Osservazione 2.2.

Noteremo che questa definizione *non* cambierebbe, se invece di considerare le *colonne* considerassimo le *righe*.

3. Esempio

#Esempio

Esempio 3.1. (matrice 2×3)

Consideriamo la matrice

$$A\in M_{2,3}(K)=egin{pmatrix} 2&1&3\1&0&-1 \end{pmatrix}$$

Dalla definizione di rango e dall'osservazione 1.2. sappiamo che

$$\operatorname{rg}(A) = \dim(\operatorname{span}((2,1),(1,0),(3,-1))) \leq \min\{2,3\} = 2$$

Dato che tutte le *colonne* sono linearmente indipendenti. Invece se due colonne fossero invece *linearmente dipendenti*, quindi *proporzionali* tra di loro (in quanto una di queste sono ottenibili mediante lo scalamento dell'altro), allora avremmo

$$rg(A) = 1$$

#Esempio

// Esempio 3.2. (matrice identità $\mathbb{1}_n$)

Sia $\mathbb{1}_n$ la matrice identità $n \times n$ (Definizione 8 (Definizione 2.5. (matrice identità di ordine n))), abbiamo

$$\operatorname{rg}(\mathbb{1}_n) = \dim(\operatorname{span}(egin{pmatrix}1\ dots\0\end{pmatrix}), \ldots, egin{pmatrix}0\ dots\1\end{pmatrix}) = \dim(K^n) = n$$

4. Teoremi

Per dei teoremi vedere questa pagina: Teoremi su Rango

C5. Teoremi sul rango

Teoremi su Rango

Teoremi e/o proposizioni sul rango: metodo per computare il rango, connessione colonne-righe.

1. Metodo per computare il rango

Ora vedremo una proposizione che ci permetterà di calcolare il rango di una matrice usando l'algoritmo di Gauß (Algoritmo di Gauß)

#Proposizione

Proposizione 1.1. (Effetti degli O.E. sul rango)

Sia $A \in M_{m,n}(K)$ e \tilde{A} una matrice ottenuta da A applicando le *operazioni* elementari OE1,2,3,. (Algoritmo di Gauß > ^8a7c5e, Algoritmo di Gauß > ^1f10d6, Definizione 2 (Definizione 2.1. (le operazioni elementari))); allora valgono le seguenti:

- 1. $\operatorname{rg}(A) = \operatorname{rg}(\tilde{A})$
- 2. $ilde{A}$ a scala $\implies \operatorname{rg}(ilde{A}) = r, \text{ ove } r$ è il numero di righe non nulle

DIMOSTRAZIONE della proposizione 1.1..

Omessa.

2. Connessione colonne-righe

#Proposizione

Proposizione 2.1.

Sia $A \in M_{m,n}(K)$; allora vale che

$$\operatorname{rg}(A) = \operatorname{rg}({}^tA)$$

ovvero che il *rango* di una matrice è alla stessa della sua *trasposta* (Operazioni particolari con matrici > ^bf11d7); quindi considerare la *colonna* oppure la *riga* per trovare il rango non cambia.

3. Invertibilità di una matrice

#Osservazione

Osservazione 3.1. (collegamento Rouché-Capelli e Cramer)

Guardando il corollario del teorema di Rouché-Capelli (Corollario 2 (Corollario 3.1. (del teorema di Rouché-Capelli))), notiamo che questo ci ricorda il teorema di Cramer (Teorema 1 (Teorema 1.1. (di Cramer))): infatti entrambe prescrivono la compatibilità di un sistema lineare, sotto certe condizioni. C'è una connessione più profonda tra questi due teoremi? Ora vediamo con la seguente proposizione.

#Proposizione

Proposizione 3.1. (Invertibilità di una matrice)

Sia $A \in M_n(K)$ una matrice quadrata (Definizione 4 (Definizione 2.1. (matrice quadrata di ordine n))).

Allora il rango di questa matrice è massima (ovvero n) se e solo se questa è invertibile:

$$\overline{\operatorname{rg}(A) = n \iff \exists A^{-1} : A \cdot A^{-1} = \mathbb{1}_n}$$

(#Dimostrazione)

DIMOSTRAZIONE della *Proposizione 3.1.*.

Questo è un teorema del tipo "se e solo se": dimostriamo dunque due implicazioni.

" \Leftarrow ": Sia A invertibile, allora per il teorema di Cramer,

$$\forall b \in K^n, Ax = b \text{ compatibile}$$

Dunque per il corollario di Rouché-Capelli (Corollario 2 (Corollario 3.1. (del teorema di Rouché-Capelli))),

$$\forall b \in K^n, Ax = b \text{ compatibile } \Longrightarrow \operatorname{rg}(A) = n$$

" \Longrightarrow ": Supponendo $\operatorname{rg}(A)=n$, voglio mostrare che esiste $B\in M_n(K)$ inversa di A (ovvero $AB=BA=\mathbb{1}_n$).

Allora è sufficiente costruire la matrice B tale che $AB=\mathbb{1}_n$. Ora, vale che

$$AB = \mathbb{1}_n \iff A \cdot B^{(i)} = egin{pmatrix} 0 \ dots \ 1 \ dots \ 0 \end{pmatrix}$$

Dove il numero 1 sta in posizione i-esimo.

Chiamo dunque e_i il vettore-colonna

$$e_i = egin{pmatrix} 0 \ dots \ 1 \ dots \ 0 \end{pmatrix} = (K^n)_j, egin{cases} 0 & ext{se } j
eq i \ 1 & ext{se } j = 1 \ 0 \end{pmatrix}$$

Allora $AB = \mathbb{1}_n$ se e solo se tutti i sistemi lineari

$$A \cdot B^{(i)} = e_i$$

sono *compatibili* per $i \in \{1, \dots, n\}$.

Dato che rg(A) = n, sappiamo che *tutti* questi sistemi lineari sono compatibili e dunque le loro *soluzioni* determineranno le colonne della matrice B.

D. CONSEGUENZE TEORICHE

D1. Teorema di dimensione di soluzione dei sistemi lineari

Teorema di dimensione delle soluzioni di sistemi lineari

Teorema di dimensione delle soluzioni di sistemi lineari: enunciato e dimostrazione

1. Enunciato del teorema

#Teorema

■ Teorema (Teorema 1.1. (teorema di dimensione delle soluzioni di sistemi lineari)).

Sia $A \in M_{m,n}(K)$;

sia W l'insieme delle soluzioni del sistema lineare omogeneo associato ad A (Definizione 5 (Definizione 1.4. (sistema omogeneo))) con $A=A, s\in K^n$, ovvero

$$W = \{s \in K^n : A \cdot s = 0\}$$

Allora

$$\overline{\dim W = n - \operatorname{rg}(A)}$$

2. Dimostrazione

#Dimostrazione

DIMOSTRAZIONE (*Teorema 1.1.*)

Questo teorema segue direttamente dal teorema di struttura della dimensione delle applicazioni lineari (Teorema 1 (Teorema 1.1. (di dimensione per le applicazioni lineari)))

#Dimostrazione

DIMOSTRAZIONE del *corollario 1.1.* (Corollario 1 (Corollario 1.1. (teorema di dimensione delle soluzioni di un sistema lineare omogeneo)))

Visto che $W = \ker L_A$, allora per il teorema di dimensione (Teorema 1

(Teorema 1.1. (di dimensione per le applicazioni lineari))) sappiamo che

$$\dim K^n = \dim \ker L_A + \dim \operatorname{im} L_A \ \Longrightarrow n = \dim W + \operatorname{rg} L_A \ \operatorname{rg} L_A = \operatorname{rg} A \ \Longrightarrow \boxed{\dim W = n - \operatorname{rg} A}$$

D2. Teorema di Rouché-Capelli

Teorema di Rouché-Capelli

Teorema Rouché-Capelli: enunciato, dimostrazione e corollario. Esempio di applicazione

1. Enunciato

#Teorema

Teorema (Teorema 1.1. (di Rouché-Capelli)).

Sia $A \in M_{m,n}(K)$ una matrice, sia $b \in K^m$ un "vettore-colonna". Allora il sistema lineare composto da

$$A \cdot x = b$$

è *compatibile* se e solo se vale che il rango di A è uguale a quella della matrice completa (A|b) (Definizione 1 (Definizione 1.1. (matrice completa di un sistema lineare)));

$$\operatorname{rg}(A) = \operatorname{rg}(A|b)$$

In tal caso la generica soluzione della soluzione dipende da $n-\operatorname{rg}(A)$ parametri liberi.

2. Dimostrazione

(#Dimostrazione)

DIMOSTRAZIONE (*Teorema 1.1.*)

La dimostrazione si articolerà in due parti principali: nella prima dimostriamo l'equivalenza "se e solo se", nella seconda dimostriamo che la generica

soluzione dipende da n - rg(A).

Dunque dimostriamo l'equivalenza

$$ig|Ax = b ext{ compatibile } \iff \operatorname{rg}(A) = \operatorname{rg}(A|b)ig|$$

" \Longrightarrow ": Suppongo che Ax=b sia compatibile; allora esiste una soluzione $s\in K^n$ tale che As=b. Notiamo che possiamo "esplicitare la scrittura" applicando la definizione della moltiplicazione righe per colonne (Operazioni particolari con matrici > ^eecbc9); allora questo equivale a dire

$$s_1 A^{(1)} + \ldots + s_n A^{(n)} = b$$

il che significa b è combinazione lineare dei vettori colonna della matrice A. Dunque

$$b \in \operatorname{span}(A^{(1)}, \dots, A^{(n)})$$

e ciò implica il seguente

$$\mathrm{span}(A^{(1)},\ldots,A^{(n)})=\mathrm{span}(A^{(1)},\ldots,A^{(n)},b)$$

(la dimostrazione è lasciata da svolgere per esercizio) Allora

$$\dim(\operatorname{span}(A^{(1)},\ldots,A^{(n)}))=\dim(\operatorname{span}(A^{(1)},\ldots,A^{(n)},b))$$

che per definizione è proprio

$$\boxed{\operatorname{rg}(A) = \operatorname{rg}(A|b)}$$

Ora dimostriamo il viceversa.

" \Longleftarrow ": Supponiamo che valga rg(A) = rg(A|b).

Allora per definizione del rango (Definizione 1 (Definizione 1.1. (rango))) ricaviamo che

$$\dim(\mathrm{span}(A^{(1)},\ldots,A^{(n)})) = \dim(\mathrm{span}(A^{(1)},\ldots,A^{(n)},b))$$

Il fatto che le *dimensioni* (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))) di queste sono uguali implica che i sottospazi stessi sono uguali (Dimensione > ^265196); allora

$$\mathrm{span}(A^{(1)},\ldots,A^{(n)})=\mathrm{span}(A^{(1)},\ldots,A^{(n)},b)$$

Pertanto

$$b\in \operatorname{span}(A^{(1)},\ldots,A^{(n)},b)\implies b\in \operatorname{span}(A^{(1)},\ldots,A^{(n)})$$

Ma precedentemente abbiamo osservato che quest'ultima equivale a dire che il sistema

$$Ax = b$$

è compatibile.

Passaggio non banale

Il passaggio meno scontato di questa dimostrazione è quella di esplicitare la scrittura, applicando la nozione di prodotto righe per colonne. Inoltre un altro passaggio non banale è quello di applicare la proposizione per cui se due vettori sono linearmente dipendenti, allora il span di entrambi è uguale a span di una dei vettori.

$$a \in \operatorname{span} b \implies \operatorname{span} b = \operatorname{span}(a, b)$$

Ora mostriamo la seconda parte del teorema: ovvero che se Ax=b è compatibile, allora la sua generica soluzione dipende da $n-\operatorname{rg}(A)$ parametri liberi.

Per farlo useremo il teorema di struttura delle soluzioni di sistemi lineari (Definizione 4 (Definizione 1.1. (sistema lineare omogeneo associato))) e il teorema di dimensione per le soluzioni di un sistema lineare omogeneo (Teorema 1 (Teorema 1.1. (teorema di dimensione delle soluzioni di sistemi lineari))).

Il primo ci dice che la generica soluzione s è della forma

$$s = \tilde{s} + s_0$$

dove \tilde{s} è una soluzione fissata di Ax=b, s_0 invece una soluzione per il sistema lineare omogeneo associato Ax=0.

Il secondo teorema ci dice che il sottospazio vettoriale W delle soluzioni del sistema lineare omogeneo associato ha la dimensione n - rg(A).

Allora esiste una base \mathcal{B}_W di W formata da $k=n-\operatorname{rg}(A)$ elementi;

$${\mathcal B}_W = \{w_1, \dots, w_k\}$$

e ogni $s_i \in W$ è combinazione lineare (unica) di $\mathcal{B}_W.$ Allora

$$s_0 = t_1 w_1 + \ldots + t_k w_k, orall t_i \in K$$

In definitiva la generica soluzione s di Ax=b è della forma

$$s = ilde{s} + t_1 w_1 + \ldots + t_k w_k$$

3. Corollario

Dalla dimostrazione di questo teorema segue il seguente corollario.

#Corollario

⊞ Corollario (Corollario 3.1. (del teorema di Rouché-Capelli)).

Sia $A\in M_{m,n}(K)$.

Allora rg(A)=n (ovvero il rango è il *massimo* possibile) se e solo se per ogni $b\in K^n$ il sistema lineare Ax=b è *compatibile*.

$$oxed{\operatorname{rg}(A) = n \iff orall b \in K^n, \exists s \in K^m : As = b}$$

(#Dimostrazione)

DIMOSTRAZIONE (Corollario 3.1.)

Nella dimostrazione del teorema 1.1. (^fe5f64) abbiamo visto che

$$Ax = b ext{ compatibile } \iff b \in ext{span}(A^{(1)}, \dots, A^{(n)})$$

Nella nostra situazione abbiamo che $\mathrm{span}(A^{(1)},\dots,A^{(n)})\subseteq K^n$ e $\dim K^n=n$; pertanto

$$\operatorname{rg}(A) \iff \dim(\operatorname{span}(A^{(1)},\ldots,A^{(n)})) = n = \dim K^n \ \iff \operatorname{span}(A^{(1)},\ldots,A^{(n)}) = K^n \ \iff \forall b \in K^n, b \in \operatorname{span}(A^{(1)},\ldots,A^{(n)}) \ \iff \forall b \in K^n, Ax = b \text{ è compatibile}$$

4. Esempio

Vediamo un esempio che fa uso di questo teorema.

Esempio 4.1.

Considero il sistema lineare

$$egin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 1 \ x_2 - x_4 = 2 \end{cases}$$

Lo "traduciamo" in termini di matrici e vettori colonna:

$$Ax = b$$

dove

$$A = egin{pmatrix} 1 & -2 & 3 & -4 \ 0 & 1 & 0 & -1 \end{pmatrix}; x = egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix}; b = egin{pmatrix} 1 \ 2 \end{pmatrix}$$

Calcolando rg(A) e rg(A|b), ci viene fuori

$$\operatorname{rg}(A) = \operatorname{rg}(A|b)$$

dato che sono entrambi a scala e non hanno righe nulle.

Dunque per il teorema di Rouché-Capelli il sistema lineare Ax=b ammette soluzione/i; inoltre la generica soluzione dipende da 4-2=2 elementi. Si lascia al lettore di completare l'esempio determinando la generica soluzione per esercizio.