

4 – Reti radio metropolitane (WMAN)

Reti Mobili Distribuite

Prof. Antonio Capone

Broadband Wireless Access (BWA)

- Architettura congruente con IP
 - IP mette WiMAX in posizione ottimale in termini di prestazione/costo
- □ Al contrario dei sistemi 3G WiMAX è stato progettato per realizzare sistemi fissi. La mobilità è stata aggiunta successivamente.
- □ WiMAX si pone in posizione intermedia tra WiFi e sistemi 3G in termini di
 - velocità
 - copertura
 - QoS
 - mobilità
- ☐ In futuro sono attesi lo standard IEEE 802.20 per l'altissima velocità (250 kmph) e lo standard IEEE 802.22 per sfruttare "the unused channels" presenti in aree rurali e remote

Broadband Wireless Access (BWA)

- □ Il "working group" IEEE 802.16 è stato costituito nel 1998 per definire un accesso BWA con le seguenti caratteristiche iniziali:
 - stazioni in visibilità (LOS)
 - topologia: point-to-multipoint
 - banda: 10 GHz 66 GHz
- Lo standard IEEE 802.16 pubblicato nel dicembre 2001 utilizza a livello fisico una sola portante con un MAC layer di tipo burst TDM
- ☐ Successivamente è stato aggiunto un emendamento, detto 802.16a:
 - applicazioni NLOS nella banda 2 GHz 11GHz con livello fisico basato su OFDM (Orthogonal Frequency Division Multiplexing)
 - livello MAC per supportare l'accesso OFDMA (Orthogonal Frequency Division Multiple Access)

IEEE 802.16 BWA Standards

- Infine sono state pubblicate due varianti standard
 - Io standard IEEE 802.16-2004 (giugno 2004) che definisce un accesso BWA fisso
 - lo standard IEEE 802.16e-2005 (dicembre 2005), emendamento dello standard IEEE 802.16-2004, che comprende la mobilità ed il fast handover
- WiMAX (Worldwide Interoperability for Microwave Access) è il nome normalmente usato per apparati basati sugli standard 802.16

BWA Working Groups

IEEE Standard	Bande di frequenza	Approvato	Descrizione
IEEE 802.16d (IEEE 802.16-2004)	2-66 GHz	2004	Interfaccia radio per Fixed Broadband Wireless Access System
IEEE 802.16.2-2004	2-66 GHz	2004	Coesistenza tra Fixed Broadband Wireless Access Systems
IEEE 802.16e (IEEE 802.16e-2005)	2-66 GHz	2005	Estensione dello standard IEEE 802.16d (IEEE 802.16-2004) al fine di supportare sia terminali fissi che mobili
IEEE 802.16f-2005	2-66 GHz	2005	Estensione dello standard IEEE 802.16d (IEEE 802.16-2004) per il management base
IEEE 802.16i	2-66 GHz	no	Estensione dello standard IEEE 802.16d (IEEE 802.16-2004) per il mobile management base
IEEE 802.16h	2-66 GHz	no	Meccanismi per facilitare la coesistenza in frequenze senza licenza
IEEE 802.16j	2-66 GHz	no	Estensione dello standard IEEE 802.16d (IEEE 802.16-2004) con specifiche per relay multi-hop
IEEE 802.16k	2-66 GHz	no	Estensione dello standard IEEE 802.16d (IEEE 802.16-2004) con specifiche di bridging
IEEE 802.20	< 3.5 GHz	no	Interfaccia radio per Mobile Wireless Access Systems

WiMAX versus 3G and WiFI

- ☐ Fessibilità nella scelta della banda del canale (da 1,25 a 20 MHz)
- □ In WiFI e WiMAX la modulazione OFDM permette di offrire velocità di picco molto più elevate rispetto ai sistemi CDMA che richiedono lo spreading
- ☐ In WiMAX efficienza spettrale superiore a quella dei sistemi 3G
- □ L'uso di antenne multiple è connaturato solo in WiMAX
- □ L'implementazione di tecnologia MIMO è più complessa nei sistemi 3G rispetto ai sistemi WiMAX
- WiMAX è più efficiente nel fornire link simmetrici (per sistemi E1) e più flessibile nel cambiare il rapporto di banda tra uplink e downlink
- □ I sistemi 3G presentano una asimmetria fissa nella velocità dei dati tra downlink e uplink
- □ WiMAX è progettato per lavorare con IP e per supportare a livello MAC differenti tipi di traffico

Protocolli IEEE 802.16

- □ Il Physical layer è definito mediante diverse specifiche in base alle frequenze utilizzate
- □ Il Privacy sub-layer fornisce autenticazione e meccanismi di scambio delle chiavi
- □ Il Common Part sub-layer fornisce le funzionalità base del livello MAC
- □ Il Service Specific Convergence sub-layer è un'interfaccia logica con i livelli superiori
 - ATM, IP, ecc.

Bande di frequenza

- □ 10-66 GHz con licenza
 - fenomeno attenuativo dovuto a strutture, pioggia, ecc.
 - Line-Of-Sight (LOS)
- □ 2-11 GHz con licenza
 - Non-Line-Of-Sight (NLOS)
 - fenomeno multi-path
- 2-11 GHz senza licenza
 - Non-Line-Of-Sight (NLOS)
 - fenomeno multi-path
 - interferenza dovuta ad altri utenti

Area urbana

Livello fisico (PHY)

Identificativo	Applicabilità		
WirelessMAN-SC	10-66 GHz		
WirelessMAN-SCa	2-11 GHz		
	Bande con licenza		
WirelessMAN-OFDM	2-11 GHz		
	Bande con licenza		
WirelessMAN-OFDMA	2-11 GHz		
	Bande con licenza		
WirelessHUMAN	2-11 GHz		
	Bande senza licenza		

Modulazione

- Single Carrier (SC)
- Multi Carrier
 - Orthogonal Frequency Division Multiplexing (OFDM)

Orthogonal Frequency Division Multiplexing (OFDM)

Dominio delle frequenze

Dominio del tempo

OFDMA: Orthogonal Frequency Division Multiple Access

□ Sub-channel: gruppo di sub-carrier dati

Livello fisico (PHY)

- ☐ PHY basato su trame (frame)
- Accesso multiplo Time Division Multiple Access (TDMA)
- □ Duplexing può essere
 - Frequency Division Duplexing (FDD)
 - Time Division Duplexing (TDD)

Frequency Division Duplexing (FDD)

Time Division Duplexing (TDD)

MAC Common Part sub-layer

Protocollo orientato alla connessione

- Messaggio di MAC management
- ✓ Dati (SDU)

Generic MAC PDU

Bandwidth Request

Messaggi di MAC Management

- Messaggi trasportati nel Payload delle MAC PDU
- □ sono utilizzati per
 - accesso alla rete
 - scheduling
 - ecc.

Management Message Type Management Message Payload

Generic MAC Header

HT = 0	EC			 TY 	PE		Rsv	CI	E	KS	Rsv	LEN
	LEN			CID								
			Cl	 [D 						H	CS	

HT: Header Type

EC: Encryption Control

TYPE: Payload Type

CI: CRC indicator

EKS: Encrypted Key Sequence

LEN: Length

CID: Connection Identifier

HCS: Header Check Sequence

Bandwidth Request MAC Header

BR: Bandwidth Request

CID: Connection Identifier

EC: Encryption Control

HCS: Header Check Sequence

HT: Header Type

TYPE: Bandwidth Request Type

MAC sub-header

- □ Esistono 5 tipi
 - Mesh
 - Fragmentation
 - Packing
 - Fast Feedback Allocation
 - Grant Management

Generic MAC Header		Grant Management	Fast Feedback Allocation	Packing/ Fragmentation	Payload	CRC opzionale
-----------------------	--	---------------------	-----------------------------	---------------------------	---------	------------------

Sub-header

MAC Common Part sub-layer

- II MAC Common sub-layer gestisce:
 - accesso alla rete
 - meccanismo di acceso multiplo
 - scheduling
 - qualità del servizio (QoS)
 - gestione della potenza

Service Convergence Specific sub-layer

- I dati ricevuti dai livelli superiori vengono classificati
 - applicando una lista di regole per ottenere
 - □ Service Flow ID
 - □ Connection ID (CID)
 - assegnando i parametri di QoS

Topologie di rete

- Lo standard IEEE 802.16 specifica due topologie di rete:
 - Point-to-MultiPoint (PMP)
 - MultiPoint-to-MultiPoint (Mesh)
- Nella topologia Mesh le connessioni multi-hop sono possibili attraverso connessioni dirette tra SSs, dette Mesh SSs

Sistemi BWA IEEE 802.16

	IEEE 802.16-2004 10-66 GHz	IEEE 802.162004 2-11 GHz PMP	IEEE 802.16e-2005 2-11 GHz PMP	IEEE 802.16-2004 2-11 GHz Mesh
Modulazione	Single Carrier	Single Carrier Multi Carrier (OFDM)	Single Carrier Multi Carrier (OFDMA)	Multi Carrier (OFDM)
Duplexing	FDD TDD	FDD TDD	FDD	TDD
Banda del canale	25-28 MHz	1.75-3-3.5-5.5- 7-10 MHz	1.25-3.5-7-10-14-20- 28 MHz	1.75-3-3.5-5.5- 7-10 MHz
Mobilità			$\sqrt{}$	
Advanced Antenna Systems (AAS)		V	V	V
Multi-hop				√

Point-to-MultiPoint (PMP)

IEEE 802.16-2004 OFDM

Parametri OFDM PHY

Parametro	Descrizione	Valore
N _{FFT}	numero dei punti della FFT	256
N _{SD}	numero portanti dati	192
N _{SP}	numero portanti pilota	8
N _{SN}	numero portanti nulle	56
BW	banda nominale del canale	variabile
n	fattore di campionamento	dipende da BW
G	rapporto tra prefisso ciclico ed il tempo di simbolo utile $(T_{\rm g}/T_{\rm b})$	1/4; 1/8; 1/16; 1/32
$T_{simbolo}$	durata del simbolo OFDM	dipende da N _{FFT} , BW, n, G
T _{FRAME}	durata del frame	variabile
N _{simboli}	numero di simboli OFDM per frame	$T_{FRAME}/T_{simbolo}$

Diagramma del trasmettitore

- La codifica di canale è realizzata in tre fasi
 - Randomizer
 - Forward Error Correction (FEC)
 - Interleaving
- al lato ricevitore vengono applicate in ordine inverso

Codifica e modulazione

Modulazione	Blocco non codificato [byte]	Blocco codificato [byte]	Rate del codice R _c	Codice Reed Solomon RS	Codice Convoluzionale Compatibile CC
BPSK	12	24	1/2	(12,12,0)	1/2
QPSK	24	48	1/2	(32, 24, 4)	2/3
QPSK	36	48	3/4	(40, 36, 2)	5/6
16-QAM	48	96	1/2	(64, 48, 8)	2/3
16-QAM	72	96	3/4	(80, 72, 4)	5/6
64-QAM	96	144	2/3	(108, 96, 6)	3/4
64-QAM	108	144	3/4	(120, 108, 6)	5/6

Downlink sub-frame (FDD)

FCH: Frame Control Header **DL-MAP: Downlink MAP UL-MAP: Uplink MAP PDU: Protocol Data Unit Porzione TDM Porzione TDMA** Long DL BURST #1 DL BURST #2 **FCH** DL BURST #m **Preamble** MAC MAC **UL-MAP** Padd. Preamble PDU **PDU** MAC **MAC** Padd. **PDU PDU**

Downlink sub-frame (TDD)

FCH: Frame Control Header

DL-MAP: Downlink MAP **UL-MAP:** Uplink MAP

PDU: Protocol Data Unit

Uplink sub-frame (FDD+TDD)

Accesso alla rete

- Il processo di accesso alla rete e di inizializzazione di una SS richiede:
 - 1. ricerca del canale downlink e sincronizzazione con la BS
 - 2. acquisizione dei parametri dei canali downlink e uplink
 - 3. ranging iniziale
 - 4. negoziazione della banda
 - 5. autenticazione e registrazione
 - 6. acquisizione della connettività IP
 - acquisizione della data e del tempo corrente
 - 8. set up delle connessioni definite nel profilo d'utente

Ranging iniziale

Negoziazione della banda

Meccanismo di accesso multiplo

A. Capone: Reti mobili distribuite

Meccanismo di accesso multiplo

Meccanismo di accesso multiplo

- □ Tre principi base
 - banda garantita
 - □ Voice over IP (VoIP)
 - polling
 - Video streaming
 - contesa
 - Web browsing
- applicati in base ai requisiti del servizio richiesto dalla SS
 - banda
 - ritardo

Service flow

- □ La qualità del servizio (QoS) è ottenuta associando ad un flusso dati un Service Flow
- La QoS è descritta da un set di parametri
 - throughput
 - ritardo
 - jitter
 - probabilità di perdere un pacchetto ed associata ad un Service Flow
- Il Service Flow è un flusso unidirezionale di pacchetti a cui è associata una QoS

Service Flow Identifier (SFID)

- ☐ Service flow è identificato da un Service Flow Identifier (SFID) di 32 bit
- □ II Convergence sub-layer associa un Service Flow ad un Connection Identifier (CID) di 16 bit
- Service Flow attivi e ammesso sono identificati da un CID

Gestione dei service flow

- □ I Service Flow possono essere configurati a priori o dinamicamente
- possono essere creati, modificati ed eliminati
- ☐ a tale scopo sono definiti dei messaggi di MAC management

Esempio: scheduling predefiniti in uplink

- Esistono quattro meccanismi di scheduling predefiniti per la tratta uplink
- sono basati sui concetti di
 - banda garantita
 - polling
 - procedure a contesa
- sono definiti dal protocollo al fine di permettere ai costruttori di ottimizzare le prestazioni del sistema combinando queste tecniche in modo opportuno

Unsolicited Grant Service (UGS)

- Disegnato per supportare Service Flow realtime che generano pacchetti di dimensione costante su una base periodica (p.e. Voice over IP)
- una banda costante viene assegnata periodicamente per la trasmissione uplink della SS
- Questo meccanismo consente di
 - eliminare overhead ed i ritardi introdotti dal meccanismo di richiesta di banda
 - garantire una banda costante che soddisfa i requisiti real-time dell'applicazione

Unsolicited Grant Service (UGS)

- □ La banda assegnata è composta da
 - una componente costante che non varia
 - una componente variabile in base alle condizioni di traffico
- □ La SS non deve utilizzare i meccanismi di richiesta a contesa

Real-time polling service (rtPS)

- □ Disegnato per supportare traffico real-time che genera pacchetti di lunghezza variabile su una base periodica (p. e. MPEG video)
- offre periodicamente opportunità di trasmettere richieste di banda
- Questo meccanismo consente
 - soddisfare i requisisti real-time
 - la SS richiede la banda di cui ha bisogno

Real-time polling service (rtPS)

- Questo meccanismo
 - introduce maggiore overhead dovuto alle richieste
 - la banda è quella necessaria e questo incrementa l'efficienza
- □ La BS deve fornire banda per la trasmissione periodica delle richieste
- La SS non deve utilizzare il meccanismo a contesa

Non-real-time polling service (nrtPS)

- Disegnato per supportare traffico non real-time che genera burst di dimensione variabile su una base periodica (p.e. FTP)
- offre periodicamente opportunità di trasmettere richieste di banda

La SS può utilizzare la procedura a contesa

Best effort (BE)

L'obbiettivo è fornire ad un traffico best effort un servizio più efficiente possibile

La SS può utilizzare il meccanismo a contesa

Richiesta delle risorse a contesa

- La SS può richiedere banda in uplink adottando il meccanismo a contesa
 - un messaggio di PiggyBack per richieste incrementali
 - un messaggio di richiesta Bandwidth Request (BR) per richieste aggregate ed a intervalli di tempo regolari
- Le richieste sono espresse in byte poiché l'allocazione temporale può variare in base alla modulazione e codifica adottata (adattamento al link)
- Le richieste da parte delle SS si riferiscono ad una connessione
- I grant generati dalla BS non differenziano le connessioni ma si riferiscono ad una SS

Finestra di backoff

- La scelta dello slot in cui trasmettere il Bandwidth Request (BR) avviene adottando il meccanismo di backoff esponenziale binario troncato
- □ la base della finestra di backoff è 2
- la dimensione iniziale viene decisa dalla BS
- La SS estrae un numero casuale all'interno della finestra di backoff
- la trasmissione della richiesta viene ritardata di un numero di slot pari al numero estratto
- Il Bandwidth Request (BR) viene trasmesso in un intervallo a contesa quindi si può verificare una collisione

Meccanismo di backoff

Se durante la richiesta non si verificano collisioni

Risoluzione delle collisioni

- □ Invece, se si verifica una collisione
 - la dimensione della finestra di backoff viene incrementata di un fattore 2
 - la dimensione della finestra di backoff non può superare un massimo deciso dalla BS
 - il numero di tentativi è limitato dalla BS

Risoluzione delle collisioni

meccanismo di backoff esponenziale binario troncato

$$X_{min}=2^{0}=1$$

 $X_{max}=2^{3}=8$
 $X_{i} = random(X_{max}; X_{min}) = 4$

$$X_{min}=2^{0}=1$$

 $X_{max}=2^{4}=16$
 X_{i} "= random($X_{max}; X_{min}$) = 9

Meccanismo di richiesta a polling

- La BS allocata nel UL-MAP una banda che la SS può utilizzare per trasmettere Bandwidth Request
- può essere per connessione o per SS
- □ Se la banda non è sufficiente per attivare un unicast polling verso tutte le SS inattive allora è possibile adottare un *multicast polling*
- anche in questo caso il polling non è un messaggio esplicito ma una banda allocata nel messaggio UL-MAP
- □ SS con delle connessioni UGS attive devono porre ad 1 il bit poll-me nel Grant management sub-header per richiedere banda per il polling

Certificazione: fase 1

Banda di frequenza [MHz]	Duplexing	Banda del canale [MHz]
3400 – 3600 (con licenza)	TDD	3.5
		7
	FDD	3.5
		7.0
5725 – 5850 (senza licenza)	TDD	10

Certificazione: fase 2

Banda di frequenza [MHz]	Duplexing	Banda del canale [MHz]
2500 – 2690 (con licenza)	TDD	5
		5.5
	FDD	5
		5.5

Esempio: Profilo 3.5 GHz

Parametro	Valore
Banda di frequenza	3.5 GHz
Banda del canale (BW)	3.5 MHz
Banda totale	14 MHz
T _{FRAME}	2, 4, 5 ms
FFT size (N _{FFT})	256
Data sub-carriers (N _{SD})	192

Modulazione	Rate del codice R _c	Massimo throughput per simbolo OFDM [Mbps]
BPSK	1/2	4.8
QPSK	1/2	9.6
QPSK	3/4	14.4
16-QAM	1/2	19.2
16-QAM	3/4	28.8
64-QAM	2/3	38.4
64-QAM	3/4	43.2

$$\Theta = \frac{N_{SD} \cdot \log M \cdot R_c}{T_{symbol}}$$

MultiPoint-to-MultiPoint (Mesh)

Topologie Mesh

TOPOGIA DISTRIBUITA

$$R_{detected} = 2 hop$$

TOPOLOGIA CENTRALIZZATA

$$R_{detected} = HR_{threshold} \ hop$$

Frame Mesh (TDD)

Modalità Mesh centralizzata

Modalità Mesh distribuita

IEEE 802.16e OFDMA

Point-to-MultiPoint (PMP)

Concetti base

- Segment: gruppo di sub-channel OFDMA, ad un segment corrisponde un'istanza del MAC
- Pemutation Zone: simboli OFDMA contigui che utilizzano la stessa formula di permutazione
 - Partial Usage of Sub-Channels (PUSC): solo una parte dei sottocanali sono allocati al trasmettitore
 - Full Usage of Sub-Channels (FUSC): tutti i sottocanali sono allocati al trasmettitore
- Slot: struttura tempo-frequenza che dipende dalla permutazione adottata e varia tra downlink e uplink
- Data Region: allocazione tempo-frequenza di gruppi contigui di simboli OFDMA e sub-channel.

Struttura del frame (TDD+FDD)

Dopo il preambolo è sempre presente almeno la modalità PUSC

Zone Switch IEs

Optional PUSC

FUSC: Full Usage of Sub-Channels

Optional FUSC

AMC: Advanced Modulation and Coding

Optional AMC

TUSC: Advanced Modulation and Coding

Optional TUSC

A. Capone: Reti mobili distribuite

Data Region

- ☐ La modalità PUSH prevede che uno slot sia costituito da due simboli OFDMA ed un sub-channel
- La modulazione e codifica è costante all'interno della Data Region
- La BS può trasmettere in downlink verso una SS/MSS oppure un gruppo di SS/MSS

Esempio: FFT 512 DL PUSC

Struttura del frame

- I campi FCH e DL-MAP devono essere trasmessi in ogni frame
- II campo FCH
 - trasmesso con modulazione QPSK ½
 - specifica la lunghezza del successivo messaggio DL-MAP

Struttura del frame

Architettura di rete

