Gears based on general smooth and sinusodial rack profile

Hugo Meder

August 4, 2016

Contents

1	\mathbf{Gec}	ometry
	1.1	Motion of gear and rack
	1.2	Shape of the rack and gear module
	1.3	The shape of the gear
		1.3.1 Another necessary condition for $z_b \in \Gamma$
	1.4	A curve that contains Γ

Abstract

The general geometrical and mechanical properties of gears based on general smooth rack profiles are discussed.

1 Geometry

1.1 Motion of gear and rack

We are considering a gear rotating with angular velocity ω around the coordinate origin (0,0) in the two-dimensional (complex) plane. On the other hand we are considering a rack moving along the x-axis (real axis) with velocity v. Thus we have two-dimensional moving rigid objects. We consider body-space coordinates z_g and z_r for the gear and the rack respectively. The time-dependent transform to world coordinates z are as follows:

$$\Phi_g(z_g, t) = z_g e^{i\omega t} \tag{1.1}$$

$$\Phi_r(z_r, t) = z_r + vt \tag{1.2}$$

Of course we have the inverse functions (inverse with respect to coordinates z):

$$\Phi_q^{-1}(z,t) = ze^{-i\omega t} \tag{1.3}$$

$$\Phi_r^{-1}(z,t) = z - vt \tag{1.4}$$

Thus, we get the mapping from one body space into the other as a function of time as follows:

$$\Xi_g(z_r, t) = \Phi_g^{-1}(\Phi_r(z_r, t), t) = (z_r + vt)e^{-i\omega t}$$
(1.5)

$$\Xi_r(z_q, t) = \Phi_r^{-1}(\Phi_q(z_q, t), t) = z_q e^{i\omega t} - vt$$
 (1.6)

with these time derivatives (velocity fields):

$$\dot{\Xi}_g(z_r, t) = (v - i(z_r + vt)\omega)e^{-i\omega t}$$
(1.7)

$$\dot{\Xi}_r(z_g, t) = i\omega z_g e^{i\omega t} - v \tag{1.8}$$

For any t, there is exactly one z_r respectively z_g , such that the respective velocity field vanishes. We denote these with $z_{r0}(t)$ $z_{q0}(t)$:

$$z_{r0}(t) = -i\frac{v}{\omega} - vt \tag{1.9}$$

$$z_{g0}(t) = -i\frac{v}{\omega}e^{-i\omega t} \tag{1.10}$$

The respective world space point does no longer depend on time t:

$$z_0 = \Phi_r(z_{r0}(t), t) = \Phi_g(z_{g0}(t), t) = -i\frac{v}{\omega}$$
(1.11)

We denote the quantity $\frac{v}{\omega}$ with r (pitch radius), obtaining the typical relation

$$v = \omega r \tag{1.12}$$

1.2 Shape of the rack and gear module

In body coordinates z_r , the surface of the rack is given by a (smooth and derivable) real function f(x) such that

$$z_r(x) = x + i(f(x) - r) (1.13)$$

We further assume that f(x) is periodic with periodicity p:

$$f(x+p) = f(x) \tag{1.14}$$

We consider all points z = x + iy (x, y real) with y < f(x) - r to be actual rack points (means, that these points really belong to the rack in the sense of a rigid body). We denote this set by

$$\Omega_r = \{x + yi|y < f(x) - r\} \tag{1.15}$$

After mapping this to the gear body space for a given time t gives

$$\Omega_g(t) = \Xi_g(\Omega_r, t) = \{(x + yi + vt)e^{-i\omega t} | y < f(x) - r\}$$
 (1.16)

After a full rotation of the gear at $\tau = \frac{2\pi}{\omega}$, we assume that

$$\Omega_g(0) = \Omega_g(\tau) = \{(x + yi + \frac{2\pi v}{\omega}) | y < f(x) - r\} = \{(x + yi + 2\pi r) | y < f(x) - r\} \quad (1.17)$$

We introduce a magnitude

$$\mathbf{z} = \frac{2\pi r}{p} \tag{1.18}$$

If z is an integer number (the number of teeth of the gear), then we get indeed

$$\Omega_g(\tau) = \{(x+yi+\mathbf{z}p)|y < f(x) - r\} = \{(x+yi+\mathbf{z}p)|y < f(x+\mathbf{z}p) - r\} = \{(x+yi)|y < f(x) - r\}
= \Omega(0)$$
(1.19)

In order to get rational numbers in the context of construction, the module number m is introduced to express the linear relation between the number of teeth and the diameter of the gear

$$2r = \mathbf{z}m \tag{1.20}$$

1.3 The shape of the gear

We define the swapped area of the rack in gear-body-coordinates:

$$\tilde{\Omega}_g = \bigcup_t \Omega_g(t) \tag{1.21}$$

Then the set

$$\bar{\Delta} = \mathbb{C}\backslash \tilde{\Omega}_{q} \tag{1.22}$$

is the largest set of gear body points that never coincide with the rack. Notice, from a topological point of view, the sets $\Omega_g(t)$ are open sets as well as $\tilde{\Omega}_g$. Thus $\bar{\Delta}$ is a closed set. We define Δ to be the interior of $\bar{\Delta}$:

$$\Delta = \operatorname{int}(\bar{\Delta}) \tag{1.23}$$

and Γ to be the border of $\bar{\Delta}$

$$\Gamma = \partial \bar{\Delta} \tag{1.24}$$

We now prove

Theorem 1.1 For any $z_q \in \Gamma$ there exists a t and an x such that

$$z_q = (x + (f(x) - r)i + vt)e^{-i\omega t}$$

$$\tag{1.25}$$

Proof 1.25 is equivalent to

$$Re(z_g e^{i\omega t}) = x + vt$$

$$Im(z_g e^{i\omega t}) = f(x) - r$$
(1.26)

Assuming that for a given z_g , t, and x we have

$$\begin{aligned} \operatorname{Re}(z_g e^{i\omega t}) &= x + vt \\ \operatorname{Im}(z_g e^{i\omega t}) &< f(x) - r \end{aligned} \tag{1.27}$$

Then we must have $z_g \in \Omega_g(t)$. And therefore $z_g \in \tilde{\Omega}$ and $g_z \notin \bar{\Delta}$ and finally $z_g \notin \Gamma$ which contradicts the proposition. Thus for all t we must have

$$\operatorname{Im}(z_g e^{i\omega t}) \geq f(\operatorname{Re}(z_g e^{i\omega t}) - vt) - r \tag{1.28}$$

We now define the function

$$g(z,t) = \operatorname{Im}(ze^{i\omega t}) - f(\operatorname{Re}(ze^{i\omega t}) - vt) + r \tag{1.29}$$

which is now known to satisfy

$$g(z_q, t) \geq 0 \tag{1.30}$$

for all t. Assuming that $g(z_g,t)>0$ for all t leads to another contradiction. Whenever $g(z_g,t)>0$ for a t, then there is a maximum radius $\rho(t)$ such that g(z,t) is non-negative for all z in the open disc $u_{\rho(t)}(z_g)$. $\rho(t)$ is a continuous function of t. Since g(z,t) is periodic with respect to t we can take the minimum radius ρ_{min} over a compact set. This means that $u_{\rho_{min}}(z_g) \subset \bar{\Delta}$ and thus $z_b \in \Delta$ and finally $z_b \notin \Gamma$.

1.3.1 Another necessary condition for $z_b \in \Gamma$

For any $z_q \in \Gamma$, from theorem 1.1 we know about the existence of a t and an x such that

$$z_q = (x + (f(x) - r)i + vt)e^{-i\omega t}$$

$$\tag{1.31}$$

This corresponds to a point in rack coordinates

$$z_r = \Xi_r(z_q, t) = z_q e^{i\omega t} - vt = x + (f(x) - r)i$$
 (1.32)

On the other hand the velocity of the gear at that point in rack coordinates is

$$\dot{\Xi}_{r}(z_{g},t) = i\omega z_{g}e^{i\omega t} - v = i\omega(x + (f(x) - r)i + vt) - v$$

$$= -\omega(f(x) - r) - v + i\omega(x + vt)$$

$$= -\omega f(x) + i\omega(x + vt)$$

$$= i\omega(x + vt + if(x))$$
(1.33)

Now intuition tells us that the velocity must be tangential to the rack boundary. Thus for a real λ we must have:

$$i\omega(x+vt+if(x)) = \lambda(1+f'(x)i) \tag{1.34}$$

or equivalently

$$i(x+vt+if(x)) = \lambda(1+f'(x)i) \tag{1.35}$$

Equating real and imaginary parts separately yields 2 real equations:

$$\begin{aligned}
-f(x) &= \lambda \\
x + vt &= \lambda f'(x)
\end{aligned} \tag{1.36}$$

After eliminating λ we get

$$x + vt + f(x)f'(x) = 0 (1.37)$$

Theorem 1.2 Given a $z_b \in \Gamma$, then for a t and x satisfying

$$z_g = (x + (f(x) - r)i + vt)e^{-i\omega t}$$

$$\tag{1.38}$$

this second condition is also satisfied:

$$x + vt + f(x)f'(x) = 0 (1.39)$$

Proof The velocity of that contact point on the gear is (1.33)

$$\dot{\Xi}_r(z_q, t) = i\omega(x + vt + if(x)) \tag{1.40}$$

This means, after Δt the point z_q is found at

$$z = z_r + i\omega(x + vt + if(x))\Delta t \tag{1.41}$$

in rack coordinates. The change of the rack-x-coordinate (the real part) is thus

$$\Delta x = -\omega f(x) \Delta t \tag{1.42}$$

while the change of profile elevation for this Δx is

$$\Delta y = f'(x)\Delta x = -\omega f'(x)f(x)\Delta t \tag{1.43}$$

On the other hand, the change of elevation of the moving gear point is (the imaginary part):

$$\Delta y' = \omega(x + vt)\Delta t \tag{1.44}$$

The difference

$$\Delta y' - \Delta y = \omega(x + vt + f'(x)f(x)) \tag{1.45}$$

only vanishes if the expression 1.39 is also vanishing. But a nonzero value of the above expression immediately implies a collision of the gear point z_g shortly before or after time t.

1.4 A curve that contains Γ

We now construct a smooth curve $\gamma(x)$ such that, due to the two above theorems, contains all points of Γ . First, for any x there is the only one

$$t(x) = -\frac{f(x)f'(x) + x}{v}$$
 (1.46)

which satisfies 1.37. Based on this, we have a point z(x) on the rack

$$z(x) = x + (f(x) - r)i ag{1.47}$$

and finally the point on the gear.

$$\gamma(x) = \Xi_g(z(x), t(x))
= (x + (f(x) - r)i + vt(x))e^{-i\omega t(x)}
= (-f(x)f'(x) + (f(x) - r)i)e^{-i\omega t(x)}$$
(1.48)