Viral-NGS:

Cloud Compute for Viral Genomics Using GA4GH Standards

Danny Park¹, Chris Tomkins-Tinch¹, Ilya Shlyakhter¹, Christine Loreth¹, Sushma Chaluvaldi¹, Simon Ye¹, Lydia Krasilnikova¹, Hayden Metsky¹, Irwin Jungreis¹, Mike Lin², Pardis C. Sabeti¹

¹Broad Institute of Harvard and MIT, Cambridge, MA, ²DNAnexus & Chan Zuckerberg Institute, Mountain View, CA.

With support from

CDC (NCEZID & OAMD)

The problem

A long-standing challenge for bioinformatics has been to publish software tools that **prioritize portability across compute environments**, and **increase accessibility to a wide range of researchers**, enabling genomic analyses conducted directly by the labs and scientists that are producing the data and samples, all within a data environment they fully control and own.

Metagenomics

Workspaces to

notebook style)

Build Augur Tree

build_augur_tree

Download the output file

auspice_input_json

Drop your .json file into

ttp://auspice-us.herokuapp.com/

auspice_input_json

compute

(workflow &

manage data and

What it does

Genome assembly (de novo and reference based)

Phylogenetics & Nextstrain-based viz

Multi-platform supported

Who uses it

In our experience, cloud compute platforms facilitate much faster adoption of the analysis work by local research staff with less informatic resources or experience

Enabled local investigations:

- 2014
- Nigeria: Ebola
- 2015
- Nigeria: unknown VHF death in hospital
- 2017
- Nigeria: monkeypox
- Sierra Leone: Ebola HCW retrospective
- Senegal: non-malaria fevers
 Dengue
- 2018
- Nigeria: Lassa, Yellow fever
- Senegal: antimalarial resistance
- 2020
- Nigeria & Sierra Leone:SARS-CoV-2

Folarin, et al., *J Infectious Diseases* (2016) Siddle, et al., *NEJM* (2018)

Enabled US State Public Health Lab NGS trainings:

- Training SPHLs in MA, NH, VT, RI, CT, NJ, NY, DE since 2017
- Viral sequencing (lab) and viral metagenomics, assembly, and phylogenetics (bioinformatics)
- w/CDC OAMD & MA DPH

How we achieve cross platform portability

Aggressively adopt existing interop standards

General design patterns

- Modular
- Open

wdl

- Community-driven
- Standards-based

Write pipelines in GA4GH Workflow Execution Standard (WES) compliant language

e.g. Workflow Description Language

Distribute pipelines via GA4GH Tool Registry Service (TRS) compliant service

e.g. dockstore.org

- 1-click launch on many cloud platforms
- Or run locally
- Collections can be curated by independent groups (e.g. PHA4GE)

And achieve true pipeline portability

