1.4: Multigraphs and Digraphs

- 29. Let $S = \{2, 3, 4, 7, 11, 13\}.$
 - (a) Construct the multigraph M whose vertex set is S and where ij is an edge for distinct elements i and j in S whenever i+j and ij is an edge whenever $|i-j| \in S$. In other words, i and j are joined by two edges if both $i+j \in S$ and $|i-j| \in S$.

(b) How are the problem and solution in (a) affected if we remove the word "distinct." This allows for loop edges, so add a loop on vertex 2.

30. Consider the twelve configurations $c_i, 1 \leq i \leq 12$, in Figure 1.38. Draw the digraph D, where $V(D) = \{c_1, c_2, \ldots, c_{12}\}$ and where (c_i, c_j) is a directed edge of D if it is possible to obtain c_j by rotating the configuration c_i either 90° or 180° clockwise about the midpoint of the checkerboard.

31. Using the twelve configurations in Figure 1.38, define a transformation different from the one described in Exercise 1.30 which can be modeled by a digraph but not by a graph.

First, move any coin in the upper row to the right (if possible), and then move the leftmost coin in the lower row up (if possible).

- 32. Let S and A be two finite nonempty sets of integers. Define a digraph D with V(D)=A, where (x,y) is an arc of D if $x\neq y$ and $y-x\in S$.
 - (a) Draw the digraph D for $A=\{0,1,2,3,4\}$ and $S=\{-2,1,2,4\}.$

- (b) What can be said about D if A and S consist only of odd integers? D will be empty because the difference of two odds is always even.
- (c) How can the question in (b) be generalized? $D \ \mbox{will be empty whenever} \ S \ \mbox{is all odd integers and} \ A \ \mbox{is either all odd or all even integers}.$
- (d) If |A|=|S|=5, how large can the size of D be? $\label{eq:model} m=14$

For example: $A = \{0, 1, 2, 3, 4\}$ and $S = \{-1, 1, 2, 3, 4\}$.

33. A digraph D has vertex set $\{-3,3,6,12\}$ and $(i,j) \in D$ if $i \neq j$ and $i \mid j$, that is, j is a multiple of i. Draw the digraph D.

