AN/UYK-7 COMPUTER REPERTOIRE OF INSTRUCTIONS

Code	Mnemonia	NAME	DESCRIPTION	F	CA	R	UF	Time:
01 0	OR	Inclusive OR (Selective Set A)	(Y) : (A _a)→A _a	Ш	Υ	Υ	2	1.5
01 1	SC	Selective Clear A	(A_a) $(Y)^i \rightarrow A_a$	11	Υ	Y	2	1.5
01 2	MS	Selective Substitute	$(Y)_n \rightarrow (A_{a+1})_n$ for all $(A_a)_n = 1$; $(A_a)_i = (A_a)_i$	11	Υ	Y	2	1.5
01 3	XOR	Exclusive OR (Sel. Comp. A)	$(Y) = (A_a) \rightarrow A_a : (A_a)_n! \rightarrow (A_a)_n \text{ for } (Y)_{n=1}$	11	Y	Y	2	1.5
01 4	ALP	Add Logical Product	$(A_{a+1}) + (Y)$ $(A_a) \rightarrow A_{a+1}$; $(A_a)_i = (A_a)_i$	ii.	Ý	Ÿ	2	1.5
01 5	LLP	Load Logical Product	$(Y) (A_a) \rightarrow A_a$	ii	Ý	Ϋ́	2	1.5
01 6	NLP	Subtract Logical Product		202	Y	Y	2	
01 7	LLPN	Load Logical Product Next	$(A_{a+1})-(Y)$ $(A_a) \longrightarrow A_{a+1}$; $(A_a)_i = (A_a)_f$	11				1.5
			(Y) $(A_a) \rightarrow A_{a+1}$; $(A_a)_{i=1} (A_a)_{i=1}$	Н	Υ	Y	2	1.5
02 0	CNT	Count Ones	No. of Bits Set in $(Y) \rightarrow A_a$	11	Υ	Υ	2	7.5†
02 2	ХR	Execute Remote	(Y)→U	11	N	N	8	1.5
02 3	XRL	Execute Remote Lower	(Y)L→U	11	N	N	8	1.5
02 4	SLP	Store Logical Product	(A_{a+1}) $(A_a) \rightarrow Y$; $(A_a)_1 = (A_a)_1$; $(A_{a+1})_1 = (A_{a+1})_1$	П	Υ	γ.	2	1.5
02 5	SSUM	Store Sum	$(A_a)_+(A_{a+1}) \rightarrow A_{a+1} \& Y; (A_a)_1 = (A_a)_1$	II	Ý	Ý	2	2.0
02 6	SDIF	Store Difference	$(A_{a+1})-(A_a) \rightarrow A_{a+1} & Y; (A_a) = (A_a)f$	ii	Y	Y	2	2.0
02 7	DS	Double Store A		- 313		N		
03 0	ROR		$(A_{a+1}, A_{a}) \rightarrow Y + 1, Y$	П	N		2	3.0
		Replace Inclusive OR	$(Y) \oplus (A_a) \longrightarrow A_a \& Y$	Ш	Υ	Y	2	2.5
03 1	RSC	Replace Selective Clear	(A_a) $(Y)' \rightarrow A_a \& Y$	H	Υ	Υ	2	2.5
03 2	RMS	Replace Selective Substitute	$(Y)_n \rightarrow (A_{a+1})_n$ for all $(A_a)_n = 1$;					9420E
26.727	VIENNIVE:	V26 757 - \$1.15 - 17 - 5555	Then $(A_{a+1}) \longrightarrow Y$; $(A_a)_{i=1} (A_a)_{i=1}$	11	Y	Y	2	2.5
03 3	RXOR	Replace Exclusive OR	$(Y) \equiv (A_a) \longrightarrow A_a \& Y ; (A_a)_n! \longrightarrow A_a \& Y \text{ for } Y_{n=1}$	11	N	Υ	2	2.5
03 4	RALP	Replace A+Logical Product	$(A_{a+1})_+(Y)$ $(A_a) \rightarrow A_{a+1} \& Y : (A_a)_i = (A_a)_f$	11	• Y	Y	2	2.5
03 5	RLP	Replace Logical Product	$(Y) (A_a) \longrightarrow Y \& A_{a+1}; (A_a)_i = (A_a)_i$	11	Y	Υ	2	2.5
03 6	RNLP	Replace A-Logical Product	$(A_{a+1})-(Y)$ $(A_a) \longrightarrow A_{a+1} \& Y; (A_a)_{i=}(A_a)_{f}$	11	Y	Y	2	2.5
03 7	TSF	Test and Set Flag	If $(Y)_{31}=0$, CD Set EQUAL. $1 \rightarrow Y_{31}$ If $(Y)_{31}=1$, CD Set UNEQUAL.	11	N	Y	8	2.5
05 0	DL	Double Load A	$(Y+1, Y) \rightarrow A_{a+1}, A_a$	11	Ν	N	2	3.0
05 1	DA	Double Add A	$(A_{a+1}, A_a) + (Y+1, Y) \longrightarrow A_{a+1}, A_a$	11	N	N	2	3.0
05 2	DAN	Double Subtract A						
	1. The state of th		$(A_{a+1}, A_a) - (Y+1, Y) \longrightarrow A_{a+1}, A_a$	11	N	N	2	3.0
05 3	DC	Double Compare	Compare (A_{a+1}, A_a) to $(Y+1, Y)$. Set CD	11	N	N	2	. 3.0
05 4	LBMP	Load Base and Memory Protection	$(Y)_{17.0} \rightarrow S_a$; $(Y+1)_{20.0} \rightarrow SPR_a$; $Y \rightarrow SIR_a$ Privileged if; ASR bit $8=0$, $s \neq 7$ or $a=7$	11	N	N	2	5.75
06 0	FA	Floating-point Add	Shift (A_{a+1}) or $(Y+1)$ Right such that $(A_a)=(Y)$ $(A_{a+1})+(Y+1) \longrightarrow A_{a+1}$; Normalize	11	N	Ν	2	6.25
06 1	FAN	Floating-point Subtract	Shift (A_{a+1}) or $(Y+1)$ Right such that $(A_a)=(Y)$ $(A_{a+1})-(Y+1) \longrightarrow A_{a+1}$; Normalize	11	N	N	2	6.25
06 2	FM	Floating-point Multiply	$(A_a)_+(Y) \longrightarrow (A_a)$	11	Ν	N	2	10.0†
06 3	FD	Floating-point Divide	$(A_{a+1}) \cdot (Y+1) \longrightarrow A_{a+1}$; Normalize $(A_a) - (Y) \longrightarrow (A_a)$	11	N	N	2	17.0†
			$(A_{a+1})+(Y+1) \longrightarrow A_{a+1}$; Normalize					
06 4	FAR	Floating-point Add with Round	Same as FA with (Aa+1) rounded	11	N	N	2	6.25
06 5	FANR	Floating-point Subtract w Rd.	Same as FAN with (Aa+1) rounded	11	N	N	2	6.25
06 6	FMR	Floating-point Multiply w Rd.	Same as FM with (Aa+1) rounded	11	N	N	2	10.0 †
06.7	FDR	Floating-point Divide w Rd.	Same as FD with (Aa+1) rounded	11	N	N	2	17.0†
070 a = 0	XS	Enter Executive State	sy+(Bb)→CMR 156; Enter class IV (Executive)	11	Ν	N	11	4.0
	IPI	Interprocessor Interrupt	Send Class II interrupt to processors n (0-7) IF bit n of $sy_+(B_b)=1$	II	N	N	ÎÌ	4.0
07 1**	AEI	Allow Enable Interrupt	Allow Monitor interrupts from IOCa on	11	N.	AI.	c	2.0
07 2**	PEI	Prevent Enable Interrupt	Channels n; IF bit n of $sy+(B_b)=1$ Prevent Monitor interrupts from IOCa on	11	N	N	6	2.0
			Channels n; IF bit n of $sy+(B_b)=1$	11	Ν	N	6	2.0
07 3**	LIM	Load IOC Monitor Clock	$sy_{+}(B_b) \rightarrow IOCa MON CLK$	11	N	N	6	3.0
07 4**	10	Initiate I O	Initiate IOCa at address Y	11	N	N	2	3.5
)7 5 [*]	IR	Interrupt Return	Return to State Specified by ASR storage DSW	11	N	N	9	3.0
07 6	RP	Repeat	Repeat N.I.B7 Times; sy of Repeat added to Bb of N.I. after each cycle. See Repeat Conditions	11	N	N	6	1.5
0	LA	Load A	Y->Aa	7	Y	Y	1	1.5
1	LXB	Load A and Index B		1	Y	N	1	1.5
2			$\underline{Y} \rightarrow A_a; (B_b) + 1 \rightarrow B_b$	1			- 59	
	LDIF	Load Difference	$\underline{Y} - (A_a) \longrightarrow A_{a+1}$; $(A_a)_i = (A_a)_i$	1	Y	Υ	1	1.5
.3	ANA	Subtract A	$(A_a) - \underline{Y} \longrightarrow A_a$	1.	Y	Y	1	1.5

Code	Mnemoni	c NAME	DESCRIPTION	F	CA	R	UF	Time u S
14	AA.	Add A	$(A_a) + \underline{Y} \longrightarrow A_a$	ī	Υ	Υ	1	1.5
15	LSUM	Load Sum	$(A_a) + \overline{Y} \longrightarrow A_{a+1}$: $(A_a)_1 = (A_a)_1$	1	Υ	Y	1	1.5
16	LNA	Load Negative	$\underline{Y} \rightarrow A_a$	1	Y	Y	1	1.5
17	LM	Load Magnitude	$\underline{Y} \rightarrow A_a$	1	Υ	Y	1	1.5
20	LB	Load B	$\underline{Y} \longrightarrow B_a$	1	Υ	Y	1	2.0
21°	AB .	Add B	$(B_a) + \underline{Y} \rightarrow B_a$; B_a zero extended	1	Υ	Y	1	2.0
22	ANB	Subtract B	$(B_a) - \underline{Y} \rightarrow B_a$; B_a zero extended	1	Υ	Y	l	2.0
23	SB	Store B	$(B_a) \longrightarrow \underline{Y}$	1	Y	Y	1	1.5
24	SA	Store A	(A _a)→ <u>Y</u>	1	Y	Y	1	1.5
25	SXB	Store A and Index B	$(A_a) \longrightarrow \underline{Y} : (B_b) + 1 \longrightarrow B_b$	- 1	Υ	N	1	1.5
26	SNA	Store Negative	$(A_a)' \longrightarrow \underline{Y}$	1	Υ	Υ	1	1.5
27	SM	Store Magnitude	$(A_a) \rightarrow \underline{Y}$	f	Υ	Y	1	1.5
32	BZ	Clear Bit	0→Yak	1	N	Y	3	2.5
33	BS	Set Bit	l→Yak	1	N	Υ	3	2.5
34	RA .	Replace Add	$(Aa) + Y \longrightarrow Aa + 1 & Y : (Aa) = (Aa) $	1	Y	Y	1	2.5
35 36	RI RAN	Replace Increment	$\underline{Y} + 1 \longrightarrow A_a \& \underline{Y}$	ı	Y	Y	1	2.5
36 37		Replace Subtract	$\underline{\underline{Y}} - (A_a) \longrightarrow A_{a+1} \& \underline{\underline{Y}}; (A_a)_1 = (A_a)_1$	ŀ	Y	Y	I	2.5
	RD	Replace Decrement	$\underline{Y}-1 \longrightarrow A_a \& \underline{Y}$	- 1	Y	Y	1	2.5
40	M	Multiply A	$(A_a) \cdot \underline{Y} \longrightarrow A_{a+1}, A_a$		Y	Y	1	7.5
41 42	D BC	Divide A Compare Bit to Zero	$(A_{a+1}, A_a) + Y \longrightarrow A_a$; remainder $\longrightarrow A_{a+1}$ If $(Y)_{ak=0}$, CD Set EQUAL If $(Y)_{ak=1}$, CD Set UNEQUAL	ì	Y	Y	1	14.5 1.5
43	CXI	Compare Index Increment	If $(B_a) \ge Y$, CD Set OUTSIDE, $0 \rightarrow B_a$ If $(B_a) < \overline{Y}$, CD Set WITHIN, $(B_a) + 1 \rightarrow B_a$	1	Y	Y	1	2.0
44	C	Compare	Compare (A _a) to \underline{Y} , Set the CD	- 1	Y	Υ	1	1.5
45	CL	Compare Limits	If $(A_{a+1}) > \underline{Y} \subseteq (A_a)$. Set CD within	1	Υ	Υ	1	1.5
46	CM	Compare Masked	Compare (A_{a+1}) to (A_a) \underline{Y} , Set the CD	- 1	Y	Y	1	1.5
47	CG	Compare Gated	Compare $Y-(A_a)$ to (A_{a+1}) , Set the CD	- 1	Υ	Υ	1	1.5
50 0	JEP	Jump on Even Parity	If (A_{a+1}) (A_a) is Even Parity, jump to Y	111	N	N	1	2.0
50 1	JOP	Jump on Odd Parity	If (A_{a+1}) (A_a) is Odd Parity, jump to Y	111	N	N	1	2.0
50 2 50 3	DJZ DJNZ	Jump Double Precision Zero Jump Double Precision Not Zero	If $(A_{a+1}, A_a) = 0$, jump to Y	111	N	N	1	2.0
51 0	JP	Jump A Positive	If $(A_{a+1}, A_a) \neq 0$, jump to Y	111	N	N	1	2.0
51 1	JN	Jump A Negative	If $(A_a) \ge 0$, jump to Y If $(A_a) < 0$, jump to Y	111	N	N	1	1.5
51 2	JZ	Jump A Zero	If $(A_a) \ge 0$, jump to Y If $(A_a) = 0$, jump to Y	111	N	N	1	, 1.5
51 3	JNZ	Jump A Not Zero	If $(A_a) \neq 0$, jump to Y	111	N	N	1	1.5
52 0	LBJ	Load B and Jump	$P + 1 \rightarrow B_a$, jump to Y	111	N	N	1	1.8
52 1	JBNZ	Index Jump B	If $(B_a) \neq 0$, then $(B_a) = 1 \rightarrow B_a$, jump to Y	111	N		1	1.8
52 2	JS	Jump sy+B	Jump to $sy_+(B_b)$	111	N	N	13	1.5
52 3	JL	Unconditional Jump Lower	Jump to the Lower of Y	111	N	N	12	1.5
53 0 a=0	JNF	Jump on No Overflow	If OD is not Set, jump to Y; Clear OD	111	N	N	12	1.5
530a=1	JOF	Jump on Overflow	If OD is Set, jump to Y; Clear OD	111	N	N	12	1.5
53 1 a=0	JNE	Jump on Not Equal	If CD ≠, jump to Y	iii	N	N	12	1.5
53 l a=1	JE	Jump on Equal	If CD =, jump to Y	iii -	N	N	12	1.5
53 1 a=2	JG	Jump on Greater Than	If CD >, jump to Y	III	N	N	12	1.5
$53 \ 1 \ a=3$	JGE	Jump on Greater Than or Equal	If CD >, jump to Y	Ш	N	N	12	1.5
531a=4	JLT	Jump on Less Than	If CD <, jump to Y	111	N	N	12	1.5
531a = 5	JLE	Jump on Less Than or Equal	If CD ≤, jump to Y	111	N	N	12	1.5
531a=6	JNW	Jump Outside Limits	If CD Outside Limits, jump to Y	111	N	N	12	1.5
$53 \ 1 \ a = 7$	JM	Jump Within Limits	If CD Within Limits, jump to Y	111	N	N	12	1.5
53 2	RJ	Return Jump a=0	$P+1 \rightarrow Y$, jump to $Y+1$	111	N	N	12	3.0
53 2	RJC	Return Jump a=1, 2, 3	If switch a is Set, $P+1 \rightarrow Y$, jump to $Y+1$; otherwise N.I.	Ш	N	N	1	3.0
53 2*	RJSC	Return Jump a=4, 5, 6, 7	If switch a is Set, Stop; $P+1 \rightarrow Y$, jump to $Y+1$ at restart	Ш	N	N	1	3.7
53 3) J	Manual Jump a=0	Jump to Y	111	N	N	12	1.5
53 3	JC	Manual Jump a=1, 2, 3	If switch a is Set, jump to Y; otherwise N.I.	111	N	N	1	1.5
53 3*	JSC	Manual Jump a=4, 5, 6, 7	If switch a is Set, Stop; Jump to Yat restart	iii	N	N	1	2.25
54 、 / 55*	LCT LCI	Load CMR Task	(Y)→CMR _{ak}	1	N	Y	3	1.5

REPERTOIRE OF INSTRUCTIONS (CONT.)

Code	Mnemonio	NAME	DESCRIPTION	F	CA	R	UF	Time;
56 _x '	SCT	Store CMR Task	(CMRak)→Y	Ŧ	N	Υ	3	1.5
57	SCI	Store CMR Interrupt	(CMR _{ak+100})→Y	1	N	Υ	3	1.5
60√i=0	HSCT	Store CMR in A	(CMRa[4)→Ab	IV A		N	4	1.75
60 i = 1	HSCI	Store CMR in A	(CMR _{af4+100})→A _b	IV A	10000	N	4	1.75
$61\sqrt{i}=0$	HLCT	Load CMR from A	(Ab)→CMRat4	IV A	5229	N	4	1.75
$61^{i}=1$	HLCI	Load CMR from A	$(Ab) \rightarrow CMRa14 + 100$	IV A		N	4	1.75
62	HLC	Shift Left Circularly	(A _a) Left Shifted End Around→A _a	IV B		N	10	1.75
63	HDLC	Shift Left Circularly Double	(Aa+1, Aa) Left Shifted End Around→Aa+1, Aa			N	10	1.75
64	HRZ	Shift Right Fill Zeros	(A _a) Right Shifted, Zero Fill→A _a	IV B		N	10	1.75
65	HDRZ	Shift Right Double, Fill Zeros	(Aa+1, Aa) Right Shifted, Zero Fill-Aa+1, Aa	IV B		N	10	1.75
66	HRS	Shift Right Fill Sign	(Aa) Right Shifted, Sign Fill→Aa	IV B	1000	N	10	1.75
67	HDRS	Shift Right Double, Fill Sign	(Aa+1, Aa) Right Shifted Sign Fill→Aa+1, Aa	IV B	N	N	10	1.75
70 0	HSF	Scale Factor	Normalize (Aa) Shift Count→Ab	IV A		N	5	2.25
70 1	HDSF	Double Scale Factor	Normalize (Aa+1, Aa) Shift Count→Ab	IV A	0.000	N	5	2.25
70 2	HCP	Complement A	$(A_a)^i \longrightarrow A_a$	IV A		N	7	1.1
70 3	HDCP	Double Complement A	$(A_{a+1}, A_a)' \longrightarrow A_{a+1}, A_a$	IV A		N	7	1.1
71 0	HOR	Logical Sum	$(A_a) \oplus (A_b) \longrightarrow A_a$; $(A_b)_i = (A_b)_f$	IV A		N	5	1.0
71.1	HA	Sum	$(A_a) + (A_b) \rightarrow A_a$	IV A		N	5	1.0
71 2	HAN	Difference	$(A_a) - (A_b) \rightarrow A_a$	IV A		N	5	1.0
71 3	HXOR	Logical Difference	$(A_a) \odot (A_b) \rightarrow A_a$	IV A		N	5	1.0
71 5	HAND	AND	(A_a) $(A_b) \rightarrow A_a$; $(A_b)_i = (A_b)_f$	IV A		N	5	1.0
74 0	HM	Multiply Register	$(A_a) \cdot (A_b) \rightarrow A_{a+1}, A_a$	IV A		N	5	7.75
74 1	HD	Divide Register	$(A_{a+1}, A_a) + (A_b) \rightarrow A_a$; Remainder $\rightarrow A_{a+1}$	IV A	N	N	5	15.0†
74 2	HRT	Square Root	$\sqrt{(A_{a+1}, A_a)} \rightarrow A_b$; Residue $\rightarrow A_{b+1}$	IV A		N	5	15.0†
74 3	HLB	Load Ba with Bb	$(B_b) \rightarrow B_a$	IV A	N	N	5	1.75
74 4	HC	Compare, Register	Compare (Aa) to (Ab), Set CD	IV A	N	N	5	1.1
74 5	HCL	Compare Limits. Register	If $(A_{a+1}) > (A_b) \ge (A_a)$, Set CD in Limit	IV A		N	5	1.75
746	HCM	Compare Masked, Register	Compare (Aa+1) (Aa) to (Ab), Set the CD	IV A	N	N		1.1
74 7	HCB	Compare Bb with Ba	Compare (Bb) to (Ba), Set the CD	IV A		N	5	2.0
77 0**	HSIM	Store IOC Monitor Clock in A	(IOC _a MON CLK)→Ab	IV A		N	5 5 5 5	3.0
77 1	HSTC	Store Real-Time Clock in A	(IOCa RTC)→Ab	IV A		N	5	3.5
77 4*	HPI	Prevent Class III Interrupts		IV A	5050	N	9	2.25
77 5*	HAI	Allow Class III Interrupts	# 22 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	IV A		N	9	2.25
77 6*i=0	HALT	Stop Processor	지기 가지 시에 보면 이렇게 되는 그는 그리고 있다면 되었다면 얼마나 있다면 하는데 하면 되었다면	IV A		N	9	2.25
77 6*i=1	HWF.I	Wait for Interrupt	Cease Memory References until Interrupted	IV A	N	N	9	2.25

10	ZA	Clear A	0→Aa			1	N	Υ	7	1.5
20	ZB	Clear B	0→Ba			ì	N	Ÿ	7	2.0
20	NOOP	No Operation	0→Bo			i	N	Ý	9	2.0
23	SZ	Store Zeros	0- > Y	159		i	Y	Ÿ	12	1.5
74 3	HNO	Half Word No Oper	ation $(B_0) \rightarrow I$	Bo -		IV A	N	N	9	1.75
ULTRA	/32 FORMA	TING MNEMONICS								
-	HK	Half Word Constant	t (Variable field beco	mes next halfword)		_			16	
-	IW	Indirect Word (c=1				-	_	_	8	_
-	IWS	Indirect Word, Spe-	cial Base (c=00, c1=	.0)	4) (1)	_	_		11	
-	IWB	Indirect Word, Spe	cial Index (c=00, c1=	=1)		_		-	11	-
-	IWC	Indirect Word, Cha		- 14 S		_		_	14	777
-	IWCI	Indirect Word, Cha	racter Increment (c=	:11)	3 6	_	200		14	200
-	MP	Memory Protection		S. 15		_	_	-	15	_
ULTRA	/32 CODING	G FORMATS (UF)		(An Asterisk (*) Preceding	y Indicat	es Ir	dire	ct Add	ressin
No. Va	ariable Field	No. Variable Field	No. Variable Field	No. Variable Field	No. Varia	ble Field	No		Variable	e Field
	y, k, b, s y, b, s	4 af4, b 5 a, b	7 a 8 y, b, s	10 a, m (shift by m) a, b, 1 (shift by B _b)	11 sy, b 12 y, k, b), S	14		w, p, b	
3 ak,	, y, b, s	6 a, sy, b	9 None	a, b, 2 (shift by Ab)	13 sy, k,		16	e	8 8	

^{*}Privileged

[‡]Times shown assume 1.5 us memory with operands not in same bank as instructions (overlapped).

^{**}CPU->IOC Instr.-Privileged

[√] Privileged when ak=2X, 6X or 7X

[†]Execution time independent of overlap operation

REV. 5.71

I/O CONTROLLER COMMANDS

Code	Mnemonic	NAME	DESCRIPTION	UF**	Time "
10 11 12 13 14 k=0 14 k=1 14 k=2 14 k=3 15 k=0 15 k=1 16 k=2 16 k=3 17 m=0 17 m=1 20 22 23 24 25 26 27	IB OB FB XB TIB TOB TFB TXB IMIR OMIR FMIR XMIR AIC AOC AFC AXC TBZ TBS JIO LICM ILTC SICM IBS IBZ ITSF	Initiate Input Buffer on Cj Initiate Output Buffer on Cj Initiate External Function Buffer on Cj Initiate External Interrupt Buffer on Cj Ireminate Input Buffer on Cj Terminate Output Buffer on Cj Terminate External Function Buffer on Cj Terminate External Interrupt Buffer on Cj Set Input Monitor Interrupt Request on Cj Set Output Monitor Interrupt Request on Cj Set Ef Monitor Interrupt Request on Cj Set El Monitor Interrupt Request on Cj Set Input Chain Active on Cj Set Output Chain Active on Cj Set External Function Chain Active on Cj Set External Interrupt Chain Active on Cj Test Bit Zero Test Bit Zero Test Bit Set Jump to y Load IOC Control Memory Load Real-Time Clock Store IOC Control Memory Set Bit Clear Bit Test and Set Flag	(y)→CMA* 0+j; Activate Input (y)→CMA* 20+j; Activate Output (y)→CMA* 40+j; Activate EF (y)→CMA* 60+j; Activate EI Terminate Input m=0 Suppress Terminate Output Queued Interrupt: Terminate EF m=1 Allow Queued Terminate EI Interrupt on Chan j Set Input Monitor Interrupt on Chan j Set EF Monitor Interrupt on Chan j Set EI Monitor Interrupt on Chan j Set EI Monitor Interrupt on Chan j Y→Command Address Pointer Field (bits 55-38) of CMA* 20k+j; Activate Chain If (y) _{kj} ≠ 0, SKIP; Else NI If (y) _{kj} ≠ 0, SKIP; Else NI y→Command Address Pointer or CAR‡ (y)→10C Control Memory Address kj (y)→Real Time Clock (IOC Control Memory) _{kj} →y 1→y _{kj} 0→y _{kj} 1→y ₃₁ ; If (y) ₃₁ was Originally Cleared,	1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 7 7 6 5 6 5 5 5 6	3.25 3.25 3.25 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.25 4.0 2.75 3.25 4.0 2.75 3.25 3.25
	100.0000	FORMATING MNE	Skip; Else NI		
	BCW BCWE	Buffer Control Word Buffer Control Word ESI		8 9	-

k-DESIGNA	TOR DEFINITIONS	r 6 v	1 69	1 1 2
f=10, 11, 13	K=U Suppress data	k=1 Pack Quarter word	k=2 Pack Half word	k=3 Whole word
f=12	Force One Word (y) is EF	One Word Buffer (y) is EF	Multi Word Buffer	Not Used

NORMAL E	BUFFER CON	TROL WORD	FORMAT
31	18	17	C
Final Address		Current Add	dress
Compare Bits			

ESI BUFFER CONTROL WORD FORMAT

31		29	28	18	17	0
Pa	rtial	Word	Final Address		Currer	ıt
De	esign	ator	Compare Bits		Addre	SS
		Pa	rtial Word Designator [efinitio	ins	
31	30	29	Y			
X	X	1	Quarter Word XX	=00 ne	xt word 3	11-24
			<u> </u>	01 ne:	xt word 2	3-16
Χ	1	0	Half Word	10 ne	xt word 1	5- 8
		2:	X=0 next word 31-16	11 ne	xt word	7- 0
			X=1 next word 15- 0			
1	0	0	Full Word			
0	0	0	Suppress Data			
		Ma	ximum ESI Buffer is 2	048 Wo	rds	

IOC COMMAND WORD FORMAT

31	26	25	24	23	20	19	18	17	0
		Part Word	d	Chan No. (0-17			Ch	Oper Addr	ess y
Function	n Code f	Desi k	g.	J	1	Mo	-	sin Fla Flag i	Sec. 1999

IOC CONTROL MEMORY WORD FORMAT

	38	37	36	35	34	33	32	31	18	17	0
d		Par Wo	rtial rd			Byt	e	Fin But		Curr	
		Des	sig.		Mo	nitor	Inte	rrup	t Fla	g	
	3	Des	sig.	Cha	Mo ain F		Inte	rrup		t Fla	t Flag

IOC CONTROL MEMORY .ASSIGNMENT

Address	Use	
0-17	Input	
20-37	Output	
40-57	External Function	20
60-77	External Interrupt	

INTERRUPT STATUS CODES

Class	INTERRUPT		S	tati	ıs (Coc	le l	Bit	5 * *		14
		9	8	7	6	5	4	3	2	1 1	0
1	CP—Operand Memory Resume CP—IOC Command Resume	OKO	0 K	MO	0	M 0	0	0	0	0 (0
	CP—Instruction Memory Resume	0	0		M	M	M	~	0	1 1	U
18	CP-IOC Interrupt Code Resume	K	K	0	0 M	0	0 M	U	0	1	1
1.	IOC Memory Resume Intercomputer Timeout	K	K	C	C	M	C	1	0	1	1
18	Power Tolerance (never locked out)	0	0	0	0	0	0	1	1	1	1
11*		۲	-	U	U	v	0	0	0	0 1	0
ii	Interprocessor Interrupt Floating Point Error							0	-	0	1
ii	CP Illegal Instruction Error							0	0	1 1	U
ii	Privileged Instruction Error							0	0	1	ĭ
11	Not Assigned						*	0	1	n 1	'n
11	Operand Breakpoint Match							ñ	i	n	i
ii	Operand Read or Indirect Addressing							ñ	i	1	'n
	Not Assigned							ñ	i	i	ĭ
	Not Assigned							i	ń	n i	ń
11	Operand Write	l						i	0	n	ĭ
ΪĹ	Operand Limit							i	0	1	Ô
ii	Instruction Breakpoint Match							ī	0	1	i
	Not Assigned		- 7					i	1	0	Ó
11	Instruction Execute							ī	ī	0	i
H	Instruction Limit	1						1	1	1	0
11*	CP Monitor Clock							1	1	1	1
111*	IOC Illegal CAR Instruction	K	K	0	0	P	P	0	0	0	ō
111*	IOC Illegal Chain Instruction	K	K	C	C	C	C	0	1	F	F
111*	IOC Monitor Clock	K	K	0	0	0	Û	1	0	1	0
111*	IOC CP Interrupt	K	K	0	0	0	0	1	0	1	1
111*	IOC External Interrupt Monitor	K	K		C	C		1	1	0	0
111*	IOC External Function Monitor	K	K		C	C	C	1	1	0	1
111*	IOC Output Data Monitor	K	K		C	C	C	1	1	1	0
111*	IOC Input Data Monitor	K	K	C	C	C	C	1	l	1	1
IV	Executive Return 16 bit code as:	sig	ne	d t	hru	pr	ogi	ran	n		

*Queued

**Definitions: PP—CPU NO. (0-2)

MMMM—Memory Bank (0-17)

CCCC—IOC Channel (0-17)

KK—IOC NO. (0-3)

FF=00-EXT. INT. 01-EXT. FCT. 10-OUTPUT 11-INPUT

MEMORY PROTECTION REGISTERS

		S	torag	ge Pr	otection Register (SPR)		
20	19	18	17	16	15 0		
1	OR	OW	IA	IR	R		
					Displacement Value		
	. 7			Reg	e Interrupt B&S gisters during Indirect Addressing		
. 9	Allow Indirect Addressing*						
		Allo) w	nd Writing*			
	Alle	ow 0	pera	nd R	eading*		
Allo	w I	nstru	ction	Exe	cution*		
			*Ope	ratio	n Allowed if Bit is Set		
		Seg	men	t Ide	intification Register (STR)		
20	19		17	16	15 0		
		SIR,			SIRd		
					16 Bit Displacement		
Base Regist			aicte	r De	ecianator		

BREAKPOINT REGISTER

19	18	17 Comparison Address Bits	0		
0	0	- Disabled			
0	1	-Instruction address			
1	0	—Operand address			
1	1	-Instruction and operand addresses			

CENTRAL PROCESSOR CONTROL MEMORY ADDRESS ASSIGNMENT

	Task Mode		
Address	Use	Bits	
0-7 10 11-17 20-27 30-57	Accumulator (A) registers 0-7 Unassigned Index (B) registers 1-7 Base (S) registers 0-7** Unassigned (not usable)	32 19 19† 18	
6x 7x	Breakpoint register** Active status register**	20 23	
	Interrupt Mode		
Address	Use	Bits	
100-107 110 111-117 120-127 130-137 140 141 142 143 144 145 146 147	Accumulator (A) registers 0-7 CP monitor clock register Index (B) registers 1-7 Base (S) registers 0-7 Unassigned (not usable) ICW—Class I DSW—Class I ASR storage DSW—Class I interrupt status code DSW—Class II P—storage ICW—Class II DSW—Class II ASR storage DSW—Class II I nterrupt status code DSW—Class II P—storage	32 19* 19 18 	
150 151 152 153	ICW—Class III DSW—Class III ASR storage DSW—Class III interrupt status code DSW—Class III P—storage	20 20 20 20 20	
154 155 156 157 160-167 170-177	ICW—Class IV DSW—Class IV ASR storage DSW—Class IV interrupt status code DSW—Class IV P—storage Storage Protection Registers (SPR) 0-7 Segment Identification Registers (SIR) 0-7	20 20 20 20 20 21 21	

*Clock is Low order 16 bits.
**Not Addressable in the Task Mode.

(Privileged instruction error will occur)

†Lower 16 bits used for index and arithmetic functions. Upper three bits used only as a base-register designation.

ACTIVE STATUS REGISTER

Bit	Designator			
22-20	Central Processor I	dentifier \		
19	State I			
18	State II	Hardwired		
17	State III	(Haruwireu		
16	State IV	1		
15	Upper-lower	<i>y</i>		
14	Class I lockout	9		
13	Class II lockout			
12	Class III lockout			
11	Base (s) register selector			
10	Accumulator B register selector			
9	Memory lockout in	hibit		
9 8 7	Load base enable			
7	Bootstrap mode			
6-4	Programmable spare bits			
6-4 3 2 1	Fixed point overflow indicator			
2	0-Not equal	1 — Equal		
1	0-Less than	1—G.T. or equal		
0	0-Within limits	1—Outside !imits		
Bits	9-11 1—Interrupt m 0—Task mode	od e		

