198718 Simple Guidelines for Screening Development Options for Oil-Rim Reservoirs

Idoko Job John (AUST Abuja), Saka Matemilola (AUST Abuja), Kazeem A. Lawal (FIRST E&P)

Presentation Outline

Introduction

Problem Statement and Study Objectives

Study Method

Results and Analysis

Conclusion

Introduction

- Oil-rim is a saturated reservoir, with
 - a large, active gas cap,
 - o a relatively thin oil column, and
 - o a large, active aquifer
- Structurally:
 - Doughnut, or
 - Pancake
- Common in the Niger Delta
 - Challenging to screen and manage
 - Yet, high economic attraction
 - Optimality of development solution
 - Exploit oil, gas, or both?

Lawal et al. (2010)

Conference & Exhibition

Problem Statement and Study Objectives

- Screening of possible development options is challenging
 - Considerable manpower
 - High computational costs
 - Delayed business decisions
- Develop simple guidelines to screen development options i.e.
 - Oil-then-gas development (OTG)
 - Concurrent oil and gas development (COG)
 - Gas-only development (GOD)

Existing Methods

- Analytic: based on first principles, but relatively simplistic
 - Lawal et al. (2010)
- Simulations: based on extensive numerical simulation studies, but not generic
 - Uwaga and Lawal (2006)
 - Kabir et al. (2008)
- Empirical correlations: based on actual performance data, but field-specific
 - o Vo et al. (2000)
 - Osoro et al. (2005)
- Hybrid: combination of above methods
 - Wyne et al. (2005)

Most of these methods do <u>not</u> consider both static and dynamic reservoir properties!

Some Screening Methods

Vo et al. (2000)

Wyne et al. (2005)

Model and Parameterisation

Parameter	Low	Medium	High	Туре	
Oil rim thickness (ft)	20	40	60	Static	
Oil API	24	32	40	Dynamic	
Kv/Kh	0.01	0.1	0.5	Static	
Krg	0.7	0.85	1	Dynamic	
Krw	0.3	0.5	0.7	Dynamic	
Kro	0.5	0.7	0.9	Dynamic	
HGOC (ft) i.e. well	(i.e.	Ctatio			
stand-off from GOC	10	20	30	Static	
Kh (mD)		Static			
HWL (ft)		Static			
Qliquid (%STOIIP per annum)		Constraint			
Qgas (% FGIIP) per annum		Constraint			

Some Cases and Results

Run	Ho (ft)	Oil API	Kv/Kh	Krg	Krw	Kro	QI (STB/d)	Qg (MSCF/d)	OTG Oil RF (%)	COG Oil RF (%)	GOD Gas RF (%)
1	20	40	0.50	0.70	0.3	0.9	442	6014	17.09	15.16	76.72
2	60	24	0.50	0.70	0.7	0.5	1654	6681	12.17	12.24	76.42
3	60	40	0.01	1.00	0.3	0.5	1328	7139	23.92	19.88	75.43
4	20	24	0.50	1.00	0.3	0.5	551	5861	8.35	7.86	77.17
5	20	24	0.01	1.00	0.7	0.9	551	5861	16.53	13.49	77.11
6	20	40	0.01	0.70	0.7	0.5	442	6013	21.15	17.65	76.74
7	60	24	0.01	0.70	0.3	0.9	1654	6681	20.62	17.71	76.42
8	20	24	0.01	0.70	0.3	0.5	551	5861	13.12	10.79	77.10
9	40	32	0.10	0.85	0.5	0.7	1007	6435	16.74	14.10	76.47
10	60	40	0.50	1.00	0.7	0.9	1328	7139	18.05	16.04	75.40
11	60	24	0.50	0.70	0.3	0.9	1654	6681	16.76	13.87	76.42
12	60	24	0.01	0.70	0.7	0.5	1654	6681	15.61	13.50	76.42
13	20	24	0.50	0.70	0.7	0.9	551	5861	11.11	10.91	77.17
14	20	24	0.50	1.00	0.7	0.5	551	5861	8.08	7.36	77.10
15	60	24	0.01	1.00	0.7	0.9	1654	6681	18.89	16.78	67.97

Results Analysis: OTG

$$R_f = 17.21 + 3.38B - 3.19C + 1.99F + 1.93G - 1.18BC$$

Where:

B = -7.5287 + 0.170651 (API)

$$C = 1.975141 \left(\frac{k_V}{k_h}\right)$$

 $F = 5.00794 K_{ro}$

 $G = 0.001658Q_l$

$$BC = 0.511525 \left[(API) \left(\frac{k_V}{k_h} \right) \right]$$

 $\frac{K_v}{\overline{}}$

 $Vertical\ anisotropy\ or\ ratio\ of\ vertical\ to$

 $horizontal\ permeability\ (fraction)$

 K_{rw} : Relative permeability to water at s_{orw} (fraction)

 K_{ro} : res.

 $property \textit{Relative permeability to oil at } s_{wmin} \, (fraction)$

 H_o : Oil rim thickness (ft)

 Q_l : Liquid flow rate, 5%STOIIP/yr (stb/day)

Results Analysis: COG

$$R_f = 15.00 + 2.28B - 1.85C + 1.18F + 1.89G$$

Where:

B = -7.33465 + 0.154518(API)

 $C = 4.083676 \left(\frac{K_V}{K_h}\right)$

 $F = 4.982034 K_{ro}$

 $G = 0.00164 Q_{I}$

API: Oil API (degree)

 K_{v}

Vertical anisotropy or ratio of vertical to

 K_h

horizontal permeability (fraction)

 K_{rw} : Relative permeability to water at s_{orw} (fraction

 K_{ro} : Relative permeability to oil at s_{wmin} (fraction)

 H_o : Oil rim thickness (ft)

 Q_l : Liquid flow rate, 5%STOIIP/yr (stb/day)

Results Analysis: GOD

$$R_f = 75.66 + 0.4564A + 6.55D - 0.0113E + 0.0115F - 7.87G - 25.35AD - 5.93AG - 4.34BD - 0.0280DE + 36.24DG$$

Where:

$$A = -11.1267 + 0.800962H_O$$

$$D = -0.05091 K_{rg}$$

$$E = -0.0156 K_{rw}$$

$$G = 11796.29Q_g$$

$$AD = 20.01527(H_o \times K_{rq})$$

$$AG = 513049 (H_o \times Q_g)$$

$$BD = 15.21879 (API \times K_{rg})$$

$$DE = 0.030695 \left(K_{rg} \times K_{rw} \right)$$

$$DG = 1317.555(K_{rg} \times Q_g)$$

Performance Comparison

Conclusion

- Simple box models can give good insights for oil-rim development screening
- New guidelines developed for screening oil-rim development
 - Discriminate the development options
 - Account for both static and dynamic properties
 - For the cases examined, high-impact subsurface properties identified

5-7 August 2019 EKO HOTEL & SUITES Lagos, Nigeria

Acknowledgements

