semestre 3

Définition 1. Soient deux entiers a et b avec b strictement positif. Effectuer la division euclidienne de a par b, c'est déterminer l'unique couple d'entiers (q,r) tel que $a = b \times q + r$ avec 0 < r < b.

q est appelé le quotient de a par b et r le reste de la division de a par b.

Exercice 1. On donne $3782 = 251 \times 15 + 17$.

- 1. Déterminer le reste de la division euclidienne de 3782 par 251.
- 2. Déterminer le reste de la division euclidienne de 3782 par 15.

Définition 2. Si m est le reste dans la division euclidienne de a par b, alors on note $a \equiv m \mod b$ ou $a \equiv m \mod [b]$. On dit que a est congru à m modulo b.

Exemple 1. $145 = 13 \times 11 + 2$ donc $145 \equiv 2[13]$.

Exercice 2. Compléter les égalités suivantes:

1.
$$86 \equiv \dots [8]$$
.

$$2. \ 25 \equiv \dots [8].$$

3.
$$111 \equiv \dots [8]$$
.

Proposition 1. Soient quatre entiers $a,b,c,d\in\mathbb{Z}$ et $n\in\mathbb{N}$. Si $a\equiv b\mod n$ et $c\equiv d\mod n$ alors

1. $a + c \equiv b + d \mod n$.

3. $ka \equiv kb \mod n$.

2. $ac \equiv bd \mod n$.

4. $a \equiv b \mod n \text{ alors } a^p \equiv b^p \mod n$.

Exercice 3. On considère deux entiers a et b tels que $a \equiv 2 \mod 9$ et $b \equiv 5 \mod 9$. Démontrer que $25a + 8b \equiv 0 \mod 9$.

Exercice 4. Montrer que $35^{228} + 84^{501} \equiv 0 \mod 17$, puis que $2305^{2019} + 1106^{2019} \equiv 0 \mod 9$.

Définition 3. Étant donné deux entiers a et b dont l'un au moins des deux est non nul, l'ensemble des diviseurs communs à a et b admet un plus grand élément, que l'on appelle plus grand commun diviseur à a et b et que l'on note pgcd(a,b).

Exercice 5. Déterminer les diviseurs de 48 et 27. En déduire leur pgcd.

Définition 4. On dit que les entiers a et b sont premiers entre eux si, et seulement si,

$$pgcd(a,b) = 1.$$

Définition 5. – On dit que $p \in \mathbb{N}^*$ est un **nombre premier** si et seulement s'il admet exactement deux diviseurs dans \mathbb{N} : 1 et lui-même.

- Un nombre qui n'est pas premier est dit composé.

Exercice 6. Donner la liste des nombres premiers inférieurs à 50.