INRAe

Maladies cryptogamiques : pathogénèse et réponses de l'hôte

19 février 2021 / Master 1 Biologie Santé

Sébastien GUYADER - INRAE - UR Astro - Petit-Bourg - sebastien.guyader@inrae.fr

Plan

1. Introduction

- 1.1. L'état normal de la plante
- 1.2. Interactions plantes/microbes
- 1.3. Relations trophiques plantes / champignons pathogènes
- 1.4. Conséquences des interactions

2. Immunité, résistance et sensibilité

- 2.1. Mécanismes de reconnaissance de l'agression
- 2.2. Contre-attaque du pathogène
- 2.3. Différences entre types d'interactions (biotrophes/nécrotrophes)

3. Perturbations physiologiques et symptômes

- 3.1. Différents types de symptômes
- 3.2. Effets des perturbations

1. Introduction

1.1. L'état normal de la plante

>> Une attaque par des pathogènes conduit à une modification de l'état normal

1.2. Interactions plantes/microbes

- ▶ Deux grands types d'interaction plante/microbe :
 - Interaction compatible : maladie
 - progression de l'infection
 - dommages sur la plante

- Interaction incompatible : immunité
 - o immunité basale "MTI"
 - o immunité indirecte "ETI"

▶ Types de relations trophiques / modes de vie des champignons :

Types	Définition	
Saprotrophes	Survivent uniquement sur des débris, tissus en décomposition	
Biotrophes	Dépendent des tissus vivants de leur hôte pour leur croissance	
Nécrotrophes	Envahissent des tissus en produisant des facteurs cytolytiques pour utiliser les tissus dégradés	
Hémibiotrophes	Cycle en 2 phases : d'abord biotrophes, puis nécrotrophes	

▶Types de relations trophiques / modes de vie des champignons :

Biotrophes	Nécrotrophes		
Morphologiques et biochimiques			
Cellules hôtes tuées lentement	Cellules hôtes tuées rapidement		
Pas ou peu de toxines produites	Production de toxines et enzymes cytolytiques		
Formation de structure parasitaire (haustorium)	Pas de formation de structure parasitaire spéciale		
Pénétration via blessures, ouvertures naturelles	Pénétration directe, blessure, ou ouvertures naturelles		
Ecologiques			
Faible gamme d'hôtes	Importante gamme d'hôtes		
Incapables de se développer en saprophyte	Capables de se développer en saprophyte		
Attaquent les tissus sains	Attaquent tous les types de tissus (jeunes, matures, sénescents)		

▶ Types de relations trophiques / modes de vie des champignons :

Hémibiotrophe

▶ Types de relations trophiques / modes de vie des champignons :

1.4. Conséquences des interactions

▶ Suite à une attaque, le fonctionnement de la plante est modifié à plusieurs niveaux :

• Moléculaire :

- reconnaissance de l'attaque → signalisation moléculaire
- niveau local (défense sur le site) et systémique (prémunition)

• Physiologique :

- o changements dus à la mise en place de mécanismes de défense
- o dus à l'expression du pathogène

• Organes, plante :

- o dus à l'expression du pathogène
- dégâts, symptômes visibles

2. Immunité, résistance et sensibilité

2.1.1. Réponse immunitaire basale : PTI (PAMP-triggered immunity)

PAMP: "pathogen-associated molecular pattern"

(MAMP : microbe-associated molecular pattern → induisent la MTI)

Ce sont des molécules constituantes des microbes (chitine, LPS...), dont certains motifs sont reconnus par des PRR

PRR : "Pattern recognition receptor", récepteurs transmembranaires de l'hôte

domaine extracellulaire : interaction récepteur/ligand, souvent via un domaine LRR ("leucine rich repeat")

domaine intracellulaire : interaction avec kinases, cascade de phosphorylations → signal

2.1.1. Réponse immunitaire basale : PTI (PAMP-triggered immunity)

- 1. fixation PAMP/PRR
- 2. activation des kinases
- 3. influx de Ca²⁺
- 4. burst **oxydatif** (activité antimicrobienne et signal d'activation)
- 5. augmentation synthèse **SA** (=salicilic acid) dans les cas des biotrophes, ou **JA/ET** (=jasmonic acid et ethylene) dans le cas des nécrotrophes ou de blessures
- 6. induction expression des gènes impliqués dans la **défense** (protéines PR = "Pathogenesis related")
- 7. transmission **systémique** du signal par SA et JA/ET

▶ défense au niveau local et prémunition à l'échelle de la plante : **SAR**="systemic acquired resistance"

Maladies cryptogamiques : pathogénèse et réponses de l'hôte 19 février 2021 / Master 1 Biologie Santé / Sébastien Guyader

2.1.2. Réponse immunitaire indirecte : ETI (effector-triggered immunity)

- Les pathogènes peuvent "injecter" certaines molécules pour faciliter l'infection : ce sont des **éliciteurs**
- Les plantes ont développé la capacité de **détecter** certaines de ces molécules spécifiques à l'infection
- Comme dans le cas de la PTI, il y a une **reconnaissance éliciteur/récepteur**, qui induit une réponse de la plante (parfois reconnaissance indirecte d'un changement induit au niveau de protéines de l'hôte)
- Souvent les récepteurs sont de type **NB-LRR** (nucleotide binding leucine rich repeat)
- A la différence des PRR qui sont transmembranaires, les protéines R sont **cytosoliques**
- On parle de protéines **R** ("résistance") pour le récepteur, et de facteur **avr** ("avirulence") pour l'éliciteur
- La réponse ETI est en général + rapide et + intense que la PTI
- En plus du burst oxydatif et de l'activation des voies de défense, une spécificité est la **réaction hypersensible** (HR) : mort cellulaire programmée pour endiguer l'infection (biotrophes)
- Toutefois, ETI et PTI partagent largement les mêmes voies de signalisation et d'activation

2.1.2. Réponse immunitaire indirecte : ETI (effector-triggered immunity)

2.1.2. Réponse immunitaire indirecte : ETI (effector-triggered immunity)

Modèle "direct" gène-pour-gène :

Modèle "gardien":

Modèle "leurre":

2.2. Contre-attaque du pathogène

▶ Rôle des éliciteurs

- Certains éliciteurs produits par les pathogènes sont des suppresseurs de PTI:
 - en interférant avec la cascade de phosphorylation
 - en interférant avec la signalisation hormonale (SA/JA/ET)
 - une suppression efficace amène à l'ETS (effector-triggered susceptibility)
- Les éliciteurs **avr** reconnus par les gènes **R** sont soumis à une sélection :
 - o pour échapper à le reconnaissance des récepteurs de l'hôte
 - pour supprimer activement l'ETI
- Il y a coévolution entre les gènes codant pour les éliciteurs **avr** et pour protéines **R** correspondantes

2.2. Contre-attaque du pathogène

▶ Schéma synthétique en "zigzag"

2.3. Différences entre types d'interactions (biotrophes/nécrotrophes)

• Biotrophes :

- o induction quasi-systématique de la voie SA, conduisant à la mort cellulaire
- si la voie JA/ET est induite, elle est efficace

• Nécrotrophes :

- la mort cellulaire est inefficace
- la PTI est déclenchée par des PAMPs ou des éliciteurs (toxines)
- très peu de gènes R connus pour conférer la résistance
- o au contraire, des récepteurs type NB-LRR sont cette fois la cible de toxines et confèrent la sensibilité (ETS)
- o induction de la voie JA/ET en général, et production de molécules de défense type "phytoalexines"
- Les voies SA et JA/ET sont antagonistes : l'induction d'une des voies inhibe l'autre

2.3. Différences entre types d'interactions (biotrophes/nécrotrophes)

3. Perturbations physiologiques et symptômes

3.1. Différents types de symptômes

► Exemples de symptômes :

- Modification de couleur : anthacyanose, chlorose, mélanose
- Altération des organes : nécrose, pourriture, flétrissement
- Modification des fleurs
- Anomalies de croissance : nanisme, déformation organes
- Anomalies internes : callose, thyllose, gomme,...
- Excroissances pathologiques : mycocécidies (galles = développement tumoral)

▶ Effets sur la membrane plasmique :

- L'émission de toxines et/ou d'enzymes (pectinases, phospholipases) modifie la **perméabilité** membranaire :
 - o dégradation de la lignine, celullose, hémicellulose
 - inhibition de la fonction de protéines de surface
 - o modification de l'activité ATPase et des canaux inoniques
 - action aussi sur les membranes des organites (chloroplastes, mitochondries)
 - o accumulation de formes actives d'oxygène
- Impact sur:
 - la régulation des échanges ioniques
 - le **transfert des assimilats** (produits dela photsynthèse) par la cellule
 - o ouverture des stomates (fuite accélérée de l'eau intercellulaire)
 - la **transduction du signal** d'activation des gènes de défense

▶ Effets sur la respiration :

Augmentation générale de la respiration

- **Décomposition des tissus** (par les nécrotrophes) : augmentation liée à l'induction des mécanismes de défense, puis chute liée à la mort des tissus
- **Détournement du métabolisme** des cellules (par les biotrophes) : augmentation liée à la création d'un nouveau puits pour la plante
- Activation de certaines voies métaboliques

▶ Effets sur la photosynthèse :

Facteurs physiques

- modification de la **géométrie des feuilles** (moindre interception du rayonnement)
- perte de **surface foliaire** efficace (nécrose, pourriture, chlorose...)

▶ Effets sur la photosynthèse :

Facteurs biochimiques et métaboliques

- dégradation de la **chlorophylle** : action d'enzymes et de toxines (nécrotrophes), effet rétro-actif inhibant la photosynthèse (biotrophes)
- altération des **chloroplastes** : mort des cellules (toxines), perméabilité membranaire, modification structurelle

▶ Effets sur le métabolisme :

- Inhibition du transfert d'électrons :
 - inhibition du mécanisme de couplage de la photophosphorylation
 - o perte de composants de la chaîne de **transfert des électrons**
- Blocage de la synthèse d'**ATP** par séquestration du P_i
- Réduction de l'activité des enzymes du cycle de Calvin (RuBisCO, NADPH-GADPH, FBPase, 3PGK), stimulation de l'activité d'autres enzymes

▶ Effets sur le transfert des ressources :

- Alimentation en eau :
 - o **obstruction** des vaisseaux (gommes, thyllose, pathogène)
 - perturbation de la transpiration
- Translocation des photo-assimilats :
 - **hydrolyse** enzymatique (nécrotrophes)
 - détournement des ressources carbonnées (biotrophes)
- Perturbation de la croissance de la plante :
 - nanisme, rabougrissement, déformations
 - flétrissement
 - o ...

Schéma synthétique : résistance acquise / induite

Maladies cryptogamiques : pathogénèse et réponses de l'hôte 19 février 2021 / Master 1 Biologie Santé / Sébastien Guyader