Linear Algebra I

- Proof for Existence of Basis -

Ji, Yong-hyeon

July 8, 2025

Zorn's Lemma

Axiom. Let (P, \leq) be a nonempty partially ordered set with property that every chain $C \subseteq P$ has an upper bound in P; that is, for every chain $C \subseteq P$,

 $\exists u \in P$ such that $\forall c \in C$, $c \leq u$.

Then *P* contains at least one maximal element; that is,

 $\exists m \in P \text{ such that } \forall a \in P, (m \le a) \Longrightarrow (m = a).$

Observation (Existence of Basis). Let $\mathcal{L} := \{ S \subseteq \mathbb{R}^3 : S \text{ is linearly independent} \}.$

Hasse Diagram for a poset (\mathcal{L},\subseteq) in \mathbb{R}^3

Any chain *C*

 $U = \emptyset \cup \{\mathbf{u}_1\} \cup \{\mathbf{u}_1, \mathbf{u}_3\} \cup \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

Upper Bound $U = \bigcup_{S \in C} S$

Maximal element $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$

★ Basis Theorem ★

Theorem. Every vector space V over a field F has a basis.

Proof.

Key Idea: "By considering all linearly independent subsets of *V* and partially ordering them by inclusion, we use Zorn's Lemma to guarantee a maximal linearly independent set exists."

Step 1 **Definition of Poset.** Define the set

$$\mathcal{L} := \{ S \subseteq V : S \text{ is linearly independent} \}.$$

with the partial order \leq on \mathcal{L} by set inclusion:

$$\forall S, T \in \mathcal{L}, \quad S \leq T \iff S \subseteq T.$$

Since $\emptyset \in \mathcal{L}$, we have $\mathcal{L} \neq \emptyset$. Thus, (\mathcal{L}, \subseteq) forms a poset.

Step 2 Chains and Upper Bounds. Let $C \subseteq \mathcal{L}$ be any chain, i.e.,

$$\forall S, T \in C$$
, $S \subseteq T$ or $T \subseteq S$.

Now, we need to find an upper bound $U \in \mathcal{L}$ of C. Define

$$U:=\bigcup_{S\in\mathcal{C}}S.$$

Clearly, $U \subseteq V$. We claim that U is linearly independent, i.e., $U \in \mathcal{L}$:

(*Proof of U* \in \mathcal{L}) Let $n \in \mathbb{N}$ and suppose

$$a_1$$
u₁ + a_2 **u**₂ + ··· + a_n **u**_n = 0 with $a_i \in F$, **u**_i $\in U$ for $i = 1, 2, ..., n$.

Since $U = \bigcup_{S \in C} S$,

$$\mathbf{u}_i \in U \iff \exists S_i \in C \text{ such that } \mathbf{u}_i \in S_i$$

for each $i \in \{1, 2, ..., n\}$. Since C is a chain (totally ordered by inclusion), the sets $S_1, S_2, ..., S_n$ are comparable. Therefore, there exists at least one set $S^* \in C$ such that

$$(\forall i \in \{1, 2, ..., n\}, \mathbf{u}_i \in S^*)$$
 i.e., $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\} \subseteq S^*$.

Since S^* is an element of C (and $C \subseteq \mathcal{L}$, where every element is linearly independent), the linear independence of S^* implies that

$$a_1 = a_2 = \cdots = a_n = 0.$$

Thus, U is linearly independent, i.e., $U \in \mathcal{L}$.

By definition of U, we know

$$\forall S \in C, S \subseteq U$$

and so $U \in \mathcal{L}$ be an upper bound of C.

Step 3 Application of Zorn's Lemma.

Since every chain C in \mathcal{L} has an upper bound $U \in \mathcal{L}$, Zorn's Lemma guarantees the existence of a maximal element $\mathcal{B} \in \mathcal{L}$ such that

$$\forall S \in \mathcal{L}, (\mathcal{B} \subseteq S) \implies (\mathcal{B} = S), \text{ i.e., } \nexists S \in \mathcal{L} \text{ with } \mathcal{B} \subseteq S.$$

Step 4 \mathcal{B} is a Basis of V.

We now show that \mathcal{B} spans V, i.e., span $\mathcal{B} = V$. Assume, for contradiction, that

span
$$\mathcal{B} \neq V$$
, i.e., $\exists \mathbf{v}_0 \in V \setminus \operatorname{span} \mathcal{B}$.

Consider

$$\mathcal{B}' = \mathcal{B} \cup \{\mathbf{v}_0\}.$$

We NTS that \mathcal{B}' is linearly independent. Suppose that for $n \in \mathbb{N}$, scalars $a_0, a_1, \dots, a_n \in F$ and distinct vectors $\mathbf{v}_0, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n \in \mathcal{B}'$, the followings holds:

$$a_0$$
v₀ + $(a_1$ **b**₁ + a_2 **b**₂ + ··· + a_n **b**_n) = 0.

(Case I) If $a_0 = 0$, then

$$a_1\mathbf{b}_1 + a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n = 0$$

and since \mathcal{B} is linearly independent, $a_i = 0$ for i = 1, 2, ..., n.

(Case II) If $a_0 \neq 0$, then

$$\mathbf{v}_0 = -\frac{1}{a_0}(a_1\mathbf{b}_1 + a_2\mathbf{b}_2 + \dots + a_n\mathbf{b}_n) \in \operatorname{span} \mathcal{B},$$

which contradicts the assumption that $\mathbf{v}_0 \notin \operatorname{span} \mathcal{B}$.

Thus, in all cases,

$$a_0=a_1=\cdots=a_n=0.$$

Hence, \mathcal{B}' is linearly independent, i.e., $\mathcal{B}' \in \mathcal{L}$, and $\mathcal{B} \subseteq \mathcal{B}'$, contradicting the maximality of \mathcal{B} .

Remark. This theorem and its proof is a classic demonstration of how abstract set-theoretic principles can yield concrete and essential results in linear algebra.