机器学习算法对比				
	决策树	随机森林	gbdt	adBoost
1、算法原理	通过将数据集递归地分割 为更小的子集来构建树形 结构,每个节点根据某个 特征选择最佳分裂点,直 到达到停止条件。	基于决策树的集成学习方法, 在训练过程中通过自助采样和 随机选择特征进行多个决策树 的构建,并通过投票或平均预 测结果来进行分类或回归。	通过迭代地拟合残差来训练 一系列的弱学习器(通常是 决策树),每个学习器都试 图修正前一个学习器的预测 误差,最后将所有学习器的 预测结果加权求和得到最终 结果。	通过改变样本权重来递归地训练多个弱学习器(如决策树),每个学习器都试图纠正前一个学习器的错误,最后将所有学习器的预测结果加权求和得到最终结果。
2、缺省值处理	可以选择忽略该样本或使 用其他策略进行处理。	不直接处理缺失值,而是通过 投票或平均多个决策树的预测 结果来获得最终结果。	使用插补方法(比如均值、 中位数)来处理缺失值,以 便在每次迭代中计算残差。	需要进行适当的插补处理,以 确保正确训练弱学习器。
3、并行计算	构建单棵决策树时,可以 通过并行计算来加快训练 速度。	更加注重内存优化,使用GOSS 方法选择具有较大梯度的样本 进行训练,减少内存使用和加 快训练速度。	由于每个弱学习器的训练是 顺序进行的,无法直接进行 并行计算。	与梯度提升类似,每个弱学习 器的训练也是顺序进行的,无 法直接进行并行计算。
4、内存使用	内存使用较低,因为只需 存储树结构和少量的特征 值。	由于需要存储多个决策树,随 机森林的内存占用相对较高。	需要存储多个决策树,因此 内存占用较高。	需要存储多个弱学习器,内存 占用较高。
5、处理大规 模数据	可以处理大规模数据,但 可能会受限于内存和计算 资源。	通过并行计算和随机子采样, 随机森林能够有效地处理大规 模数据集。	可以处理大规模数据,但较 大的数据集可能导致训练时 间较长。	可以处理大规模数据,但也可 能受限于计算资源。
6、样本不平 衡		通过调整类别权重或使用平衡 子采样等策略来处理样本不平 衡问题。		使用样本权重来处理样本不平 衡,通过递归地学习和纠正错 误来提高对少数类的预测性能
7、GPU加速	不支持	不支持	XGBoost、LightGBM支持	不支持
8、优点	1. 直购所用的 现别清明的 那所的 那所的 那所的 那所的 那所的 那所的 那所的 那是 好型失有 理特数较 理大 理大 要是 要是 要是 是是 是是 是是 是是 是是	1. 随机森林通过随机选择特格机。 1. 随机森林通过随机样可高机。 1. 随机条件角风险机选可高级力。 1. 随机子提合风险, 1. 在处理数据时处理, 2. 在规模够可以, 3. 能性, 4. 具有并加快训练速度。 4. 具有加快训练速度。 4. 具有加快训练速度。	 梯度提升通过迭代地拟合 线差来提高模型的 系。对于升更极机。 是其有更好的,且则的的,是有更好的,是有更好的。 我活到,是有更好的。 我说,是一个大型的。 我说。 在方面,是一个大型的。 在一个大型的,是一个大型的。 在一个大型的,是一个大型的。 	AdaBoost通过递归地学习和纠正错误来提高模型性能够获取更高的准确度。 可以处理各种类型的特征。 相对于单个弱学习器,AdaBoost能够更好地处理样本不平衡问题。
9、缺点	1. 容据数以深拟对需型决心部最分导上,其外,是是为人,实际的人,实际,是是一个人,,是是一个人,,是是一个人,,是是一个人,,是是一个人,,是一个人,,是一个人,,是一个人,,是一个人,,是一个人,是一个人	1. 对于噪声较大或包含冗余 特征的数据集,可能会导 致模型性能下降。 2. 由于需要构建多个决策 树,并行计算和存储 销较高。 3. 模型的预测结果不容易 解释。	1. 对于大规模数据集,训练时间较长。但可以通过则用近似算法(如Histogrambased Gradient Boosting)来加快速度。 2. 容易可以多数。 据,要调节参数来控制型的负急。 3. 模型的预测结果不容易解释。	 对于噪声较大的数据集, AdaBoost可能过拟合训练数据。 对异常值和离群点敏感,可能导致模型性能下降。 训练时间较长。