(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-57381

(P2002-57381A) (43)公開日 平成14年2月22日(2002.2.22)

(51) Int.Cl. ⁷	識別	ー 記号	r I		テー	7]-ド(参考)
H01L			01L	43/08	Z	2G017
G01R	33/09	G	11B	5/39		5 D 0 3 4
G11B	5/39	н	01L	21/203	S	5 F 1 O 3
# H01L	21/203	G	01R	33/06	R	

G01R 33/09)	G11B 5/39	50034		
G11B 5/39	9	HO1L 21/203	S 5F103		
# HO1L 21/20		G01R 33/06	R		
		審查請求 未請求 請求	項の数8 書面 (全 5 頁)		
(21)出願番号	特顧2000-275666(P2000-275666)	, , , , , , , , , , , , , , , , , , ,	磁気材料研究所		
(22) 出顧日	平成12年8月8日(2000.8.8)	宮城県仙台市太白区八木山南2丁目1-1 (72)発明者 小林 伸聖 宮城県名取市ゆりが丘5丁目12番10号			
		(72)発明者 大沼 繁弘 宮城県仙台市	太白区人来田1丁目27番27号		
		(72)発明者 増本 健 宮城県仙台市	青葉区上杉3丁目8番22号		
		F 夕一ム(参考) 2CO17 AD55 AD63 AD65 5DO34 BA02 BA15 CA04 5F103 AA08 BB22 DD27 DD30 GG01 HH04 LL20			

(54) [発明の名称] トンネル接合膜

(57)【要約】

【課題】本発明は、欠陥が少なく、且つ安定で薄いトンネル絶縁層を有するトンネル接合膜を提供することを目的とする。

【解決手段】 上部磁性層と下部磁性層とそれに挟まれた絶縁層からなり、トンネル型の磁気抵抗効果を示すトンネル接合膜において、絶縁層がMgF2、CaF2、SrF2、BaF2のフッ化物絶縁体からなり、且つ結晶相であることを特徴とするトンネル接合膜。

【特許請求の範囲】

【請求項1】上部磁性層と下部磁性層と、それらに挟ま れた絶縁層とからなるトンネル型の磁気抵抗効果を示す トンネル接合膜において、該絶縁層がフッ化物絶縁体か らなり、且つ結晶相であることを特徴とするトンネル接 合膜。

【請求項2】絶縁層が、MgF2、CaF2、Sr Fa、BaFaのフッ化物絶縁体からなることを特徴と する請求項1に記載のトンネル接合膜。

【請求項3】上部磁性層および下部磁性層が、Fe、C 10 o、Niまたはそれらの合金からなることを特徴とする 請求項1または請求項2に記載のトンネル接合膜。

【請求項4】上部磁性層および下部磁性層が、マグネタ イト、二酸化クロム、NiMnSb、PtMnSbおよ び(LaSr) MnOsのハーフメタルからなることを 特徴とする請求項1ないし請求項3のいずれか1項に記 載のトンネル接合膜。

【請求項5】下部磁性層、絶縁層および上部磁性層が格 子整合し、全体がエピタキシャル成長したことを特徴と する請求項1ないし請求項4のいずれか1項に記載のト ンネル接合膜。

【請求項6】請求項1ないし請求項5のいずれか1項に 記載のトンネル接合膜からなる磁気センサ。

【請求項7】請求項1ないし請求項5のいずれか1項に 記載のトンネル接合膜からなる磁気記録用磁気ヘッド。 【請求項8】請求項1ないし請求項5のいずれか1項に 記載のトンネル接合膜からなる磁気メモリ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高感度磁気セン サ、高密度磁気記録用磁気ヘッドまたは高速高容量の磁 気メモリに用いられる、トンネル型の磁気抵抗効果を示 すトンネル接合膜に関するものである。

[0002]

【従来の技術】近年、情報の大容量・高速化に伴い、磁 気記録の分野においても、さらなる記録密度の高密度化 が求められている。また、半導体メモリーにおいても、 高容量化はもちろんのこと、高速化の要求も非常に強 い。磁気トンネル接合膜は、磁気ヘッド等の磁気センサ または磁気メモリ (MRAM) への応用によって、上記 40 の要請に対応できる新素子として注目され、基礎および 応用の両面から盛んに研究されている。トンネル接合膜 は、2つの強磁性体電極とそれに挟まれた薄い絶縁層を 含む素子である。絶縁層はトンネルバリアを形成し、そ の厚さは電子の量子力学的トンネル効果が起こりうるの に十分なほど薄く、絶縁層を通過するトンネル電子の伝 導率が、2つの強磁性体電極の磁気モーメントの相対的 向きによって変化し、トンネル型の磁気抵抗効果を示 す。トンネル接合膜を磁気ヘッドなどの素子に用いる際

化を起こさせるために、強磁性電極の磁気特性を制御し たり、硬磁性体や反強磁性体によって、一方の強磁性体 電極のスピンを固定するなどの工夫がなされている。

【0003】これらのトンネル接合膜では、絶縁層材料 としてAl2〇3等の酸化物が用いられている。大きな MR変化を得るためには、ピンホール等の欠陥が無く極 めて平坦な良質な絶縁層の作製が必要である。ところ が、従来絶縁層に用いられているAl2〇3等の酸化物 は、アモルファス構造であるため欠陥が入りやすく、良 質な絶縁層の形成が困難なので、技術的に良質な絶縁層 の作製が重要となっている。

【0004】トンネル接合膜はその構造上、電気抵抗が 非常に大きい。また、微細化によって接合面積が小さく なるため、素子の電気抵抗が増大する。磁気ヘッドやM RAMとして用いることを考えると、電気抵抗が大きい とノイズが増大する等の問題が発生するため、適当な 値、好ましくは10kΩ以下に設定することが必要であ る。適当な電気抵抗のトンネル接合膜を得るためには、 絶縁層を薄くする必要がある。しかし、欠陥が無く良質 で薄い絶縁層を形成することは技術的に非常に困難であ る。

[0005]

【発明が解決しようとする課題】これまでにトンネル接 合膜に用いられているAl2〇3等の絶縁層はアモルフ ァス構造であるため、ピンホール等の欠陥が入りやす く、良質な絶縁層の作製が困難である。また、素子の電 気抵抗を下げるために、絶縁層を薄く形成することが非 常に難しい。本発明は、上記の事情を鑑みてなされたも ので、良質で薄い絶縁層を容易に得ることを目標とす 30 る。

【課題を解決するための手段】本発明は、上記の事情を

[0006]

鑑みて鋭意努力した結果なされたものである。Mg F2、CaF2、SrF2、BaF2等のフッ化物は、 Al₂O₃等の酸化物と同様に絶縁体である。また、ス パッタ法や真空蒸着法等の成膜法によって、結晶構造の 薄い膜が得られることが明らかになった。このように、 トンネル接合膜の絶縁層にフッ化物を用いることによっ て、欠陥の少ない良質なトンネルバリアが形成される。 【0007】上部磁性層および下部磁性層には、強磁性 金属であるFe、Co、Niおよびそれらの合金が用い られる。一方、トンネル接合膜では、絶縁層を挟む磁性 体電極のスピン分極率 (P) が大きい場合に大きなMR が得られることが知られている。大きなPを有する磁性 体として、マグネタイト、二酸化クロム、NiMnS b、PtMnSb、および(LaSr)MnOョ等のハ ーフメタルが知られている。これらのハーフメタルは、 全体がほぼエピタキシャルに近い場合に大きなPを示 す。しかし、絶縁層がアモルファスである場合は、その には、磁界の変化によって効率よく磁気抵抗 (MR) 変 50 上に磁性体電極をエピタキシャル成長させることは困難 である。ところが絶縁層が結晶相であれば、これと格子整合するハーフメタルをエピタキシャル成長させることは容易である。 また結晶相のMgF2、CaF2、SrF2、BaF2以外にも絶縁性を示す結晶相のフッ化物は非常に多く知られており、上部磁性層および下部磁性層に用いる強磁性電極材料と格子整合するこれらのフッ化物を絶縁層に用いることによって、全体がエピタキシャルに成長し大きなMR比を示すトンネル接合膜が得られる。

【0008】本発明の特徴とするところは次の通りであ 10 る。第1発明は、上部磁性層と下部磁性層とそれに挟まれた絶縁層からなり、トンネル型の磁気抵抗効果を示すトンネル接合膜において、絶縁層がフッ化物絶縁体からなり、且つ結晶相であることを特徴とするトンネル接合膜に関する。

【0009】第2発明は、絶縁層がMgF2、CaF2、SrF2、BaF2のフッ化物絶縁体からなることを特徴とする請求項1に記載のトンネル接合膜に関する。

【0010】第3発明は、上部磁性層および下部磁性層 20 がFe、Co、Niまたはそれらの合金からなることを 特徴とする請求項1または請求項2に記載のトンネル接 合膜に関する。

【0011】第4発明は、上部磁性層および下部磁性層が、マグネタイト、二酸化クロム、NiMnSb、PtMnSbおよび(LaSr)MnOsのハーフメタルからなることを特徴とする請求項1ないし請求項3のいずれか1項に記載のトンネル接合膜に関する。

【0012】第5発明は、下部磁性層、絶縁層および上 部磁性層が格子整合し、全体がエピタキシャル成長した 30 ことを特徴とする請求項1ないし請求項3のいずれか1 項に記載のトンネル接合膜に関する。

【0013】第6発明は、請求項1ないし請求項4のいずれか1項に記載のトンネル接合膜からなる磁気センサに関する。

【0014】第7発明は、請求項1ないし請求項4のいずれか1項に記載のトンネル接合膜からなる磁気記録用磁気ヘッドに関する。

【0015】第8発明は、請求項1ないし請求項4のいずれか1項に記載のトンネル接合膜からなる磁気メモリ 40 に関する。

[0016]

【発明の実施の形態】次に、本発明を適用したトンネル 接合膜の実施例として、図面を参照しながら説明する。

【0017】トンネル接合膜は、図1に示すように、基本的には、一対の磁性層1、2を、非常に薄い絶縁層3を介し接合してなるものである。

【0018】本例では、基板材の上に下部磁性層1、強磁性トンネル接合のための絶縁層3、上部磁性層2が順次形成されている。

【0019】上記の上部磁性層 1 および下部磁性層 2 は、磁性体、例えば Fe、Co、Ni またはそれらの合金により形成されている。また、絶縁層 3 は、フッ化物絶縁体、例えば MgF2、CaF2、SrF2、またはBaF2で形成されており、その厚さは、トンネル電流が流れることが可能な厚さ(数 nm)である。

【0020】上述構成のトンネル接合膜の磁性層1、2 および絶縁層3は、スパッタ法によって作製した。以下 に製造方法の詳細を説明する。

【0021】成膜には、複数のターゲットを用いて同時に成膜が可能な、RF多元スパッタ装置を用いた。スパッタは、純Ar ガスを用い、基板にはコーニング#7059 ガラスを用いた。ターゲットは、Fe、Co、Ni、Fe-Co合金、Fe-Ni合金、マグネタイト、MgF2、CaF2、SrF2、およびBaF2円板を用いた。

【0022】始めに、Fe、Co、Ni、Fe-Co合金、Fe-Ni合金、あるいはマグネタイトターゲット直上に基板を固定し、下部磁性層2を作製した。その後、基板ホルダーを回転させ、MgF2、CaF2、SrF2あるいはBaF2ターゲット直上に基板を固定して、絶縁層3を作製し、再びFe、Co、Ni、Fe-Co合金、Fe-Ni合金、あるいはマグネタイトターゲット直上に基板を移動させて固定して上部磁性層1を作製した。それぞれの層の作製は、同一チャンバー内で連続して行った。

【0023】以上によって、図1に示す構成のトンネル 接合膜が作製される。

【0024】図2は、Fe-Co合金からなる下部磁性層2上に、 MgF_2 からなる絶縁層3を作製し、上部磁性層1を作製する前の状態で、X-ray回折法によって絶縁層3の構造を評価した結果である。 MgF_2 からの鋭い回折線が観察され、絶縁層3が結晶相であることが分かる。

【0025】本発明のトンネル接合膜において得られた 磁界-抵抗変化の一例として、下部磁性層 2 および上部 磁性層 1 が F e からなり、絶縁層 3 が M g F 2 からなるトンネル接合膜のMR曲線を図 3 に示す。磁界の変化に対して3.8%の磁気抵抗変化が得られており、磁気トンネリング効果が観測された。

【0026】表1には、本発明の代表的なトンネル接合 膜の特性を示した。

[0027]

【表1】

サンプル	下部磁性層 1	絶縁層3	上部磁性層 2	MR比
No.		(膜厚)	'	
3	Fe	MgF ₂ (0.9nm)	Fe	3.8%
10	Fe ₅₀ Co ₅₀	MgF ₂ (0.9nm)	Fe	4.5%
18	Fe ₅₀ Co ₅₀	CaF ₂ (1.2nm)	Fe	3.1%
25	Fe ₅₀ Co ₅₀	BaF ₂ (1.8nm)	Fe ₆₀ Ni ₄₀	3.2%
33	Fe _{so} Co _{so}	BaF ₂ (1.8nm)	Со	3.0%
51	Fe ₅₀ Co ₅₀	SrF ₂ (1.5nm)	Ni	2.8%
99	マグネタイト	MgF ₂ (1.0nm)	Fe	7.2%

[0028]

【発明の効果】本発明のトンネル接合膜は、絶縁層を薄い結晶相のフッ化物とすることにより、欠陥の少ない良質なトンネルバリアが形成される。 これによって、特性の安定性、特性の向上が達成され、磁気ヘッド、磁気センサまたは磁気メモリ等への応用に好適であり、本発明の工業的意義は大きい。

【図面の簡単な説明】

【図1】本発明を適用したトンネル接合膜の構成例を示す断面図である。

【図2】Fe-Co破性層上に作製したMgF2絶縁層の構造を示すX線回折図形である。

【図3】本発明のトンネル接合膜の磁気抵抗曲線の一例 を示す特性図である。

【図1】

【図2】

