Basics of Deep Learning

What is Deep Learning?

- Deep Learning (DL) is a subset of Machine Learning (ML) that uses artificial neural networks (ANNs) with multiple layers to learn from large amounts of data.
- It **automates feature extraction**, meaning it can learn patterns and insights without manual intervention.
- Deep Learning is inspired by how the human brain processes information.

Deep learning models can automatically extract features from data without the need for manual feature engineering.

Key Characteristics of Deep Learning

- Uses multiple layers (deep neural networks) to process data
- Automatically extracts features from raw data
- Requires large datasets and high computing power
- Can handle unstructured data (images, text, audio, etc.)
- Uses techniques like CNNs (for images), RNNs (for sequences), and Transformers (for NLP)

Machine Learning vs Deep Learning

•

Feature	Deep Learning	Machine Learning
Definition	Algorithms that learn from data with the help of statistical techniques.	A subset of ML using deep neural networks

Approach	Learns features automatically from raw data	Requires manual feature engineering
Data Needs	Requires large amounts of data	Works well with smaller datasets
Hardware	Needs GPUs/TPUs for training	Can run on CPUs
Interpretability	Hard to interpret ("black box")	More interpretable (e.g., decision trees)
Performance	Excels in complex tasks (e.g., image recognition)	Better for structured data & simpler tasks
Examples	CNNs (for images), RNNs (for text/speech)	SVM, Random Forest, Linear Regression

Neural Network example:

- Fundamental unit → Perceptrons
- Arrows → Weights
- Perceptrons aligned in a line \rightarrow Layers

- Lower Layers identify edges
- **Deeper layers i**dentify digits, letters or faces.

When to Use Deep Learning vs Machine Learning?

Use Machine Learning if:

- You have small or medium datasets
- You need a simple, interpretable model
- The problem involves structured data (tables, numerical values)

Use Deep Learning if:

- You have a large dataset (millions of images, text, or speech data)
- The problem involves unstructured data (e.g., image recognition, speech processing, NLP)
- You have access to high computing power (GPUs/TPUs)

Libraries

- Tensorflow by Google
 - o Difficult yo use
- Pytorch by Facebook
- Keras Front end library that talked to Tensorflow
 - Keras is build-in library in Tensorflow

Types of Neural Networks

Neural networks are the **brain \circ behind AI**, each designed for **specific tasks** like recognizing images **\(\tilde{\til**

Feedforward Neural Network (FNN)

- **✓ Structure:** Information moves **only forward** from input to output.
- ✓ Use Cases: Basic classification and regression tasks.
- **✓ Example:** Predicting house prices, simple image recognition.

Diagram:

ightharpoonup Input Layer ightharpoonup Hidden Layer(s) ightharpoonup Output Layer

Convolutional Neural Network (CNN) → Mage

- Master
 - What? Uses filters (kernels) to detect edges, shapes, and textures.
 - Best for? Images & videos (e.g., face recognition 🗞 💻, self-driving cars 🚄).
- **Example:** ResNet, VGG, YOLO (for object detection), Google Photos, Face ID, Self-driving cars.

Recurrent Neural Network (RNN) → **X** Memory Keeper

- What? Processes sequences (text, time-series) with memory loops.
- Best for? Speech recognition

 _■ , stock prediction

 ₁ , translation

 ₀ .

Weakness? Forgets long-term info → LSTM/GRU fixes this!

Input (Text/Speech) → Recurrent Layer (Memory) → Output (Prediction/Next word)

- Variants:
- LSTM (Long Short-Term Memory): Handles long-range dependencies better.
- GRU (Gated Recurrent Unit): Similar to LSTM but simpler.

Long Short-Term Memory (LSTM) → Smart Memory

- What? Advanced RNN with 3 gates (input, forget, output).
- Best for? Long sequences (e.g., predicting next word in a sentence ∠).

Gated Recurrent Unit (GRU) → Faster LSTM

- What? Simpler than LSTM (only 2 gates).
- Best for? Faster training on text/speech tasks 🗣

Autoencoder → **C** Data Compressor

- What? Compresses & reconstructs data (like a ZIP file).
- **V** Key Feature: Used for feature extraction and anomaly detection.
- Linput Data → Compresses → Louil Decoder (Reconstructs) → Compresses → Louil Decoder (Reconstructs)

What? Two NNs fighting:

- Generator (creates fake data <a>§).
- **Discriminator** (spots fakes \mathbb{Q}).
- Structure: Two networks (Generator & Discriminator) compete with each other.
- VKey Feature: Generates realistic fake images, videos, and text

GAN can generate images, stories, etc. that never existed.

Generator (Creates Fake Data) $\rightarrow \mathbb{Q}$ Discriminator (Detects Fake vs Real) $\rightarrow \mathbb{C}$ Training Loop

- What? Uses self-attention (no loops, processes data in parallel ϕ).
- Best for? Chatbots , translation , ChatGPT-like models.
- Example: BERT, GPT-4.

Overview:

- Working with images? → CNN
- Dealing with text/time data? → LSTM/Transformer \(\bar{\textstyle z} \) \(\bar{\text{\text{w}}} \)
- Need Al to generate data? → GAN
- Want super-fast NLP? → Transformer