Rank-74099 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1244209741

General information

Number of lines	2
Number of points	81
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	16
Number of points off lines	64
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{2}
Type of lines on points	$2, 1^{16}, 0^{64}$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4680} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{17}$$

$$\ell_1 = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{4744} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (4680, 4744)

Rank of points on Klein quadric: (17, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 16 single points: The single points on the surface are:

$0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0	9: $P_{138} = (0,0,1,1)$ lies on line ℓ_1
1: $P_2 = (0, 0, 1, 0)$ lies on line ℓ_1	10: $P_{201} = (0,0,2,1)$ lies on line ℓ_1
2: $P_{82} = (0, 1, 0, 1)$ lies on line ℓ_0	11: $P_{265} = (0,0,3,1)$ lies on line ℓ_1
$3: P_{90} = (0, 2, 0, 1)$ lies on line ℓ_0	12 : $P_{329} = (0, 0, 4, 1)$ lies on line ℓ_1
4: $P_{98} = (0, 3, 0, 1)$ lies on line ℓ_0	13: $P_{393} = (0,0,5,1)$ lies on line ℓ_1
$5: P_{106} = (0, 4, 0, 1)$ lies on line ℓ_0	14: $P_{457} = (0,0,6,1)$ lies on line ℓ_1
6: $P_{114} = (0, 5, 0, 1)$ lies on line ℓ_0	15: $P_{521} = (0,0,7,1)$ lies on line ℓ_1
7: $P_{122} = (0, 6, 0, 1)$ lies on line ℓ_0	
8: $P_{130} = (0,7,0,1)$ lies on line ℓ_0	

The single points on the surface are:

Points on surface but on no line

The surface has 64 points not on any line: The points on the surface but not on lines are:

$0: P_0 = (1,0,0,0)$	11: $P_{104} = (6, 3, 0, 1)$
$1: P_4 = (1, 1, 1, 1)$	$12: P_{113} = (7, 4, 0, 1)$
$2: P_{20} = (1, 1, 1, 0)$	$13: P_{117} = (3, 5, 0, 1)$
$3: P_{30} = (3, 2, 1, 0)$	$14: P_{127} = (5, 6, 0, 1)$
$4: P_{33} = (6, 2, 1, 0)$	$15: P_{132} = (2,7,0,1)$
$5: P_{46} = (3,4,1,0)$	$16: P_{163} = (2, 3, 1, 1)$
$6: P_{48} = (5, 4, 1, 0)$	17: $P_{168} = (7, 3, 1, 1)$
$7: P_{72} = (5, 7, 1, 0)$	$18: P_{179} = (2, 5, 1, 1)$
$8: P_{73} = (6,7,1,0)$	$19: P_{181} = (4, 5, 1, 1)$
$9: P_{75} = (1,0,0,1)$	$20: P_{189} = (4, 6, 1, 1)$
$10: P_{94} = (4, 2, 0, 1)$	$21: P_{192} = (7, 6, 1, 1)$

```
44: P_{411} = (2, 2, 5, 1)
22: P_{205} = (4,0,2,1)
23: P_{212} = (3, 1, 2, 1)
                                                                  45: P_{412} = (3, 2, 5, 1)
24: P_{213} = (4, 1, 2, 1)
                                                                  46: P_{431} = (6, 4, 5, 1)
25: P_{226} = (1, 3, 2, 1)
                                                                  47: P_{443} = (2, 6, 5, 1)
26: P_{234} = (1, 4, 2, 1)
                                                                  48: P_{447} = (6, 6, 5, 1)
27: P_{235} = (2, 4, 2, 1)
                                                                  49: P_{454} = (5, 7, 5, 1)
28: P_{252} = (3, 6, 2, 1)
                                                                  50: P_{462} = (5, 0, 6, 1)
29: P_{271} = (6,0,3,1)
                                                                  51: P_{479} = (6, 2, 6, 1)
30: P_{286} = (5, 2, 3, 1)
                                                                  52: P_{484} = (3, 3, 6, 1)
31: P_{300} = (3,4,3,1)
                                                                  53: P_{485} = (4, 3, 6, 1)
32: P_{310} = (5, 5, 3, 1)
                                                                  54: P_{493} = (4, 4, 6, 1)
33: P_{312} = (7,5,3,1)
                                                                  55: P_{494} = (5, 4, 6, 1)
34: P_{327} = (6,7,3,1)
                                                                  56: P_{516} = (3, 7, 6, 1)
35: P_{328} = (7,7,3,1)
                                                                  57: P_{523} = (2, 0, 7, 1)
36: P_{336} = (7,0,4,1)
                                                                  58: P_{531} = (2, 1, 7, 1)
37: P_{342} = (5, 1, 4, 1)
                                                                  59: P_{535} = (6, 1, 7, 1)
38: P_{344} = (7, 1, 4, 1)
                                                                  60: P_{538} = (1, 2, 7, 1)
39: P_{358} = (5, 3, 4, 1)
                                                                  61: P_{544} = (7, 2, 7, 1)
40: P_{370} = (1, 5, 4, 1)
                                                                  62: P_{567} = (6, 5, 7, 1)
41: P_{386} = (1,7,4,1)
                                                                  63: P_{570} = (1, 6, 7, 1)
42: P_{389} = (4,7,4,1)
43: P_{396} = (3, 0, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_3

Line 1 intersects

Line	ℓ_0
in point	P_3

The surface has 81 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$14: P_{90} = (0, 2, 0, 1)$	$28: P_{168} = (7, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$15: P_{94} = (4, 2, 0, 1)$	$29: P_{179} = (2, 5, 1, 1)$
$2: P_2 = (0,0,1,0)$	$16: P_{98} = (0, 3, 0, 1)$	$30: P_{181} = (4, 5, 1, 1)$
$3: P_3 = (0,0,0,1)$	$17: P_{104} = (6, 3, 0, 1)$	$31: P_{189} = (4, 6, 1, 1)$
$4: P_4 = (1, 1, 1, 1)$	$18: P_{106} = (0, 4, 0, 1)$	$32: P_{192} = (7, 6, 1, 1)$
$5: P_{20} = (1, 1, 1, 0)$	$19: P_{113} = (7, 4, 0, 1)$	$33: P_{201} = (0, 0, 2, 1)$
$6: P_{30} = (3, 2, 1, 0)$	$20: P_{114} = (0, 5, 0, 1)$	$34: P_{205} = (4, 0, 2, 1)$
$7: P_{33} = (6, 2, 1, 0)$	$21: P_{117} = (3, 5, 0, 1)$	$35: P_{212} = (3, 1, 2, 1)$
$8: P_{46} = (3, 4, 1, 0)$	$22: P_{122} = (0, 6, 0, 1)$	$36: P_{213} = (4, 1, 2, 1)$
$9: P_{48} = (5, 4, 1, 0)$	$23: P_{127} = (5, 6, 0, 1)$	$37: P_{226} = (1, 3, 2, 1)$
$10: P_{72} = (5, 7, 1, 0)$	$24: P_{130} = (0, 7, 0, 1)$	$38: P_{234} = (1,4,2,1)$
$11: P_{73} = (6,7,1,0)$	$25: P_{132} = (2, 7, 0, 1)$	$39: P_{235} = (2,4,2,1)$
$12: P_{75} = (1,0,0,1)$	$26: P_{138} = (0, 0, 1, 1)$	$40: P_{252} = (3, 6, 2, 1)$
13: $P_{82} = (0, 1, 0, 1)$	$27: P_{163} = (2, 3, 1, 1)$	$41: P_{265} = (0,0,3,1)$

$42: P_{271} = (6,0,3,1)$	$56: P_{389} = (4, 7, 4, 1)$	$70: P_{493} = (4, 4, 6, 1)$
	* * * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·
$43: P_{286} = (5, 2, 3, 1)$	$57: P_{393} = (0,0,5,1)$	$71: P_{494} = (5, 4, 6, 1)$
$44: P_{300} = (3, 4, 3, 1)$	$58: P_{396} = (3, 0, 5, 1)$	$72: P_{516} = (3,7,6,1)$
$45: P_{310} = (5, 5, 3, 1)$	$59: P_{411} = (2, 2, 5, 1)$	73: $P_{521} = (0,0,7,1)$
$46: P_{312} = (7, 5, 3, 1)$	$60: P_{412} = (3, 2, 5, 1)$	$74: P_{523} = (2, 0, 7, 1)$
$47: P_{327} = (6,7,3,1)$	$61: P_{431} = (6, 4, 5, 1)$	$75: P_{531} = (2, 1, 7, 1)$
$48: P_{328} = (7,7,3,1)$	$62: P_{443} = (2, 6, 5, 1)$	76: $P_{535} = (6, 1, 7, 1)$
$49: P_{329} = (0, 0, 4, 1)$	$63: P_{447} = (6, 6, 5, 1)$	77: $P_{538} = (1, 2, 7, 1)$
$50: P_{336} = (7, 0, 4, 1)$	$64: P_{454} = (5, 7, 5, 1)$	78: $P_{544} = (7, 2, 7, 1)$
$51: P_{342} = (5, 1, 4, 1)$	$65: P_{457} = (0, 0, 6, 1)$	$79: P_{567} = (6, 5, 7, 1)$
$52: P_{344} = (7, 1, 4, 1)$	$66: P_{462} = (5, 0, 6, 1)$	$80: P_{570} = (1, 6, 7, 1)$
$53: P_{358} = (5, 3, 4, 1)$	$67: P_{479} = (6, 2, 6, 1)$	
$54: P_{370} = (1, 5, 4, 1)$	$68: P_{484} = (3, 3, 6, 1)$	
$55: P_{386} = (1, 7, 4, 1)$	$69: P_{485} = (4, 3, 6, 1)$	