# 2 Signals and Systems: Part I

# Recommended Problems

## P2.1

Let  $x(t) = \cos(\omega_x(t + \tau_x) + \theta_x)$ .

(a) Determine the frequency in hertz and the period of x(t) for each of the following three cases:

|      | $oldsymbol{\omega}_x$ | $	au_x$ | $	heta_x$ |  |
|------|-----------------------|---------|-----------|--|
| (i)  | $\pi/3$               | 0       | $2\pi$    |  |
| (ii) | $3\pi/4$              | 1/2     | $\pi/4$   |  |

- (iii) 3/4 1/2 1/4
- (b) With  $x(t) = \cos(\omega_x(t + \tau_x) + \theta_x)$  and  $y(t) = \sin(\omega_y(t + \tau_y) + \theta_y)$ , determine for which of the following combinations x(t) and y(t) are identically equal for all t.

|       | $\omega_x$ | $	au_x$ | $	heta_x$ | $oldsymbol{\omega}_y$ | $	au_y$ | $\theta_y$ |
|-------|------------|---------|-----------|-----------------------|---------|------------|
| (i)   | $\pi/3$    | 0       | $2\pi$    | $\pi/3$               | 1       | $-\pi/3$   |
| (ii)  | $3\pi/4$   | 1/2     | $\pi/4$   | $11\pi/4$             | 1       | $3\pi/8$   |
| (iii) | 3/4        | 1/2     | 1/4       | 3/4                   | 1       | 3/8        |

### P2.2

Let  $x[n] = \cos(\Omega_x(n + P_x) + \theta_x)$ .

(a) Determine the period of x[n] for each of the following three cases:

|       | $\Omega_x$ | $P_x$ | $	heta_x$ |  |
|-------|------------|-------|-----------|--|
| (i)   | $\pi/3$    | 0     | $2\pi$    |  |
| (ii)  | $3\pi/4$   | 2     | $\pi/4$   |  |
| (iii) | 3/4        | 1     | 1/4       |  |

(b) With  $x[n] = \cos(\Omega_x(n + P_x) + \theta_x)$  and  $y[n] = \cos(\Omega_y(n + P_y) + \theta_y)$ , determine for which of the following combinations x[n] and y[n] are identically equal for all n.

|       | $\Omega_x$ | $P_x$ | $\theta_x$ | $\Omega_y$ | $P_y$ | $\theta_y$ |
|-------|------------|-------|------------|------------|-------|------------|
| (i)   | $\pi/3$    | 0     | $2\pi$     | $8\pi/3$   | 0     | 0          |
| (ii)  | $3\pi/4$   | 2     | $\pi/4$    | $3\pi/4$   | 1     | $-\pi$     |
| (iii) | 3/4        | 1     | 1/4        | 3/4        | 0     | 1          |

### P2.3

(a) A discrete-time signal x[n] is shown in Figure P2.3.



Sketch and carefully label each of the following signals:

- (i) x[n-2]
- x[4-n](ii)
- (iii) x[2n]
- (b) What difficulty arises when we try to define a signal as x[n/2]?

**P2.4** 

For each of the following signals, determine whether it is even, odd, or neither.

(a)







(d)







#### P2.5

Consider the signal y[n] in Figure P2.5.



- (a) Find the signal x[n] such that  $Ev\{x[n]\} = y[n]$  for  $n \ge 0$ , and  $Od\{x[n]\} = y[n]$  for n < 0.
- (b) Suppose that  $Ev\{w[n]\} = y[n]$  for all n. Also assume that w[n] = 0 for n < 0. Find w[n].

#### P2.6

- (a) Sketch  $x[n] = \alpha^n$  for a typical  $\alpha$  in the range  $-1 < \alpha < 0$ .
- (b) Assume that  $\alpha = -e^{-1}$  and define y(t) as  $y(t) = e^{\beta t}$ . Find a complex number  $\beta$  such that y(t), when evaluated at t equal to an integer n, is described by  $(-e^{-1})^n$ .
- (c) For y(t) found in part (b), find an expression for  $Re\{y(t)\}$  and  $Im\{y(t)\}$ . Plot  $Re\{y(t)\}$  and  $Im\{y(t)\}$  for t equal to an integer.

#### P2.7

Let  $x(t) = \sqrt{2}(1+j)e^{j\pi/4}e^{(-1+j2\pi)t}$ . Sketch and label the following:

- (a)  $Re\{x(t)\}$
- **(b)**  $Im\{x(t)\}$
- (c)  $x(t+2) + x^*(t+2)$

P2.8

Evaluate the following sums:

$$(a) \sum_{n=0}^{5} 2\left(\frac{3}{a}\right)^{n}$$

**(b)** 
$$\sum_{n=2}^{6} b^{n}$$

(c) 
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{2n}$$

Hint: Convert each sum to the form

$$C\sum_{n=0}^{N-1}\alpha^n=S_N$$
 or  $C\sum_{n=0}^{\infty}\alpha^n=S_\infty$ 

and use the formulas

$$S_N = C\left(\frac{1-\alpha^N}{1-\alpha}\right), \quad S_\infty = \frac{C}{1-\alpha} \quad \text{for } |\alpha| < 1$$

P2.9

- (a) Let x(t) and y(t) be periodic signals with fundamental periods  $T_1$  and  $T_2$ , respectively. Under what conditions is the sum x(t) + y(t) periodic, and what is the fundamental period of this signal if it is periodic?
- (b) Let x[n] and y[n] be periodic signals with fundamental periods  $N_1$  and  $N_2$ , respectively. Under what conditions is the sum x[n] + y[n] periodic, and what is the fundamental period of this signal if it is periodic?
- (c) Consider the signals

$$x(t) = \cos \frac{2\pi t}{3} + 2\sin \frac{16\pi t}{3},$$
  
$$y(t) = \sin \pi t$$

Show that z(t) = x(t)y(t) is periodic, and write z(t) as a linear combination of harmonically related complex exponentials. That is, find a number T and complex numbers  $c_k$  such that

$$z(t) = \sum_{k} c_{k} e^{jk(2\pi/T)t}$$

P2.10

In this problem we explore several of the properties of even and odd signals.

(a) Show that if x[n] is an odd signal, then

$$\sum_{n=-\infty}^{+\infty} x[n] = 0$$

(b) Show that if  $x_1[n]$  is an odd signal and  $x_2[n]$  is an even signal, then  $x_1[n]x_2[n]$  is an odd signal.

(c) Let x[n] be an arbitrary signal with even and odd parts denoted by

$$x_e[n] = Ev\{x[n]\}, \qquad x_o[n] = Od\{x[n]\}$$

Show that

$$\sum_{n=-\infty}^{+\infty} x^{2}[n] = \sum_{n=-\infty}^{+\infty} x_{e}^{2}[n] + \sum_{n=-\infty}^{+\infty} x_{o}^{2}[n]$$

(d) Although parts (a)-(c) have been stated in terms of discrete-time signals, the analogous properties are also valid in continuous time. To demonstrate this, show that

$$\int_{-\infty}^{+\infty} x^2(t) dt = \int_{-\infty}^{+\infty} x_e^2(t) dt + \int_{-\infty}^{+\infty} x_o^2(t) dt,$$

where  $x_e(t)$  and  $x_o(t)$  are, respectively, the even and odd parts of x(t).

#### P2.11

Let x(t) be the continuous-time complex exponential signal  $x(t) = e^{j\omega_0 t}$  with fundamental frequency  $\omega_0$  and fundamental period  $T_0 = 2\pi/\omega_0$ . Consider the discrete-time signal obtained by taking equally spaced samples of x(t). That is,  $x[n] = x(nT) = e^{j\omega_0 nT}$ .

- (a) Show that x[n] is periodic if and only if  $T/T_0$  is a rational number, that is, if and only if some multiple of the sampling interval *exactly equals* a multiple of the period x(t).
- **(b)** Suppose that x[n] is periodic, that is, that

$$\frac{T}{T_0} = \frac{p}{q} \,, \tag{P2.11-1}$$

where p and q are integers. What are the fundamental period and fundamental frequency of x[n]? Express the fundamental frequency as a fraction of  $\omega_0 T$ .

(c) Again assuming that  $T/T_0$  satisfies eq. (P2.11-1), determine precisely how many periods of x(t) are needed to obtain the samples that form a single period of x[n].