Implementation exercises for the course Heuristic Optimization

Thomas Stützle ¹ stuetzle@ulb.ac.be

IRIDIA, CoDE, ULB

February 25, 2025

¹ Slides based on 2014 excersises by Dr. Franco Mascia and 2017 by Dr. Federico Pagnozzi.

Implement perturbative local search algorithms for the PFSP

- Permutation Flow Shop Scheduling Problem (PFSP)
- First-improvement and best-improvement
- Transpose, exchange and insert neighborhoods
- Random initialization vs. simplified RZ heuristic
- Statistical empirical analysis

Glazed Tile Production Flow Chart

Example in ceramic tile production

- Tiles need several processing steps with different machines
- Tiles of different type require specific processing times for each machine
- Goal: find a schedule of the jobs that minimizes an objective function (makespan or total completion time)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - each machine at most one job at a time

The Permutation Flow Shop Scheduling Problem (PFSP)

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Flow Shop Scheduling

- Several scheduling problems have been proposed with different formulations and constraints.
- In permutation flow shop problems:
 - jobs composed by operations to be executed on several machines
 - all jobs pass through the machines in the same order
 - all jobs available at time zero
 - pre-emption not allowed
 - each operation has to be performed on a specific machine
 - each job at most on one machine at a time
 - · each machine at most one job at a time

The Permutation Flow Shop Scheduling Problem (PFSP)

- Jobs pass trough all machines in the same order (FCFS queues)
- No constraints: infinite buffers between machines, no blocking, no no-wait requirements (steel production)

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Find a permutation π that minimizes the sum of the completion times $\sum_{i=1}^{n} C_i$.

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Find a permutation π that minimizes the sum of the completion times $\sum_{i=1}^{n} C_i$.

Given

A set of n jobs J_1, \ldots, J_n jobs, where each job J_i consists of m operations o_{i1}, \ldots, o_{im} performed on M_1, \ldots, M_m machines in that order, with processing time p_{ij} for operation o_{ij} .

Objective

Find a permutation π that minimizes the sum of the completion times $\sum_{i=1}^{n} C_i$.

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
ij	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
í	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} \qquad j = 1, \dots m$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} \qquad k = 1, \dots n$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} \qquad k = 2, \dots n, j = 2, \dots m$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
i	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
í	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{lll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = max \left\{ C_{\pi(k-1)j}, C_{\pi(k)(j-1)} \right\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J 5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
i	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

3	6	10	12	15
5	7	13	16	17
9	11	14	18	21
9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
ì	9	11	14	18	21

Makespan = 21

Computing completion times

$$\begin{array}{lll} C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = max \left\{ C_{\pi(k-1)j}, C_{\pi(k)(j-1)} \right\} + p_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
C_i	9	11	14	18	21

Makespan = 21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
ì	9	11	14	18	21

Makespan = 21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
ì	9	11	14	18	21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

M₁

Job	J_1	J_2	J ₃	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
ì	9	11	14	18	21

Makespan = 21

Computing completion times

$$\begin{array}{ll} C_{\pi(1)j} = \sum_{h=1}^{j} \rho_{\pi(1)h} & j = 1, \dots m \\ C_{\pi(k)1} = \sum_{h=1}^{k} \rho_{\pi(h)1} & k = 1, \dots n \\ C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + \rho_{\pi(k)j} & k = 2, \dots n, j = 2, \dots m \end{array}$$

Job	J_1	J_2	J_3	J_4	J ₅
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3

	3	6	10	12	15
	5	7	13	16	17
	9	11	14	18	21
C_i	9	11	14	18	21

Implement 12 iterative improvements algorithms for the PFSP

Implement 12 iterative improvements algorithms for the PFSP

- Pivoting rule:
 - first-improvement
 - 2 best-improvement
- Neighborhood:
 - Transpose
 - Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

Implement 12 iterative improvements algorithms for the PFSP

- Pivoting rule:
 - first-improvement
 - 2 best-improvement
- Neighborhood:
 - Transpose
 - Exchange
 - Insert
- Initial solution:
 - Random permutation
 - Simplified RZ heuristic

2 pivoting rules \times 3 neighborhoods \times 2 initialization methods = **12 combinations**

Implement 12 iterative improvements algorithms for the PFSP

Don't implement 12 programs!

Reuse code and use command-line parameters

```
pfsp-ii --first --transpose --srz
pfsp-ii --best --exchange --random-init
...
```

Iterative Improvement

```
\pi := \text{GenerateInitialSolution} \ ()
while \pi is not a local optimum do
choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi)
\pi := \pi'
```

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of π
 - ✓ Good quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of π
 - Good quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Which neighbour to choose? Pivoting rule

- Best Improvement: choose best from all neighbours of π
 - Good quality
 - Requires evaluation of all neighbours in each step
- First improvement: evaluate neighbours in fixed order and choose first improving neighbour.
 - More efficient
 - Order of evaluation may impact quality / performance

Iterative Improvement

```
\begin{array}{l} \pi := \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi \text{ is not a local optimum } \textbf{do} \\ \text{choose a neighbour } \pi' \in \mathcal{N}(\pi) \text{ such that } F(\pi') < F(\pi) \\ \pi := \pi' \end{array}
```

Initial solution

- Random permutation
- Simplified RZ heuristic

Iterative Improvement

```
\pi := \texttt{GenerateInitialSolution}\,() while \pi is not a local optimum do choose a neighbour \pi' \in \mathcal{N}(\pi) such that F(\pi') < F(\pi) \pi := \pi'
```

Simplified RZ heuristic

Start by ordering the jobs in ascending order of their sum of processing times.

Construct the solution by inserting **one job at a time** in the position that minimize the CT.

The sum of processing times of job J_i is computed as $\sum_{1}^{m} p_{ij}$ **Note:** the solution is constructed incrementally, and at each iteration C_i corresponds to the makespan of the partial solution.

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
T;	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

$$j = 1, \dots m$$

$$k = 1, \dots n$$

$$k = 2, \dots n, j = 2, \dots m$$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
	9	6	8	7	7

Starting sequence =
$$\{J_2 J_4 J_5 J_3 J_1\}$$

Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

	$j=1,\ldots m$
	$k=1,\ldots n$
$k=2,\ldots$	$n,j=2,\ldots m$

Step 1 $\pi = \{\}$	
	CT = 16
	CT = 16
Step 2 $\pi = \{J_2 \ J_4\}$	
	CT = 29
	CT = 29
	CT = 29
	CT = 49
	CT = 50
	CT = 45
	CT = 45
Step 4 $\pi = \{J_2 \ J_4 \ J_3 \ J_5\}$	
	CT = 68
	CT = 67
	CT = 65
	CT = 66
	CT = 66

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Ti	9	6	8	7	7

Starting sequence = $\{J_2 \ J_4 \ J_5 \ J_3 \ J_1\}$ Initial Solution = $\{J_2 \ J_4 \ J_1 \ J_3 \ J_5\}$

$j=1,\ldots m$
$k=1,\ldots n$
$k=2,\ldots n, j=2,\ldots m$

Step 1 $\pi = \{\}$	
$\{J_2 \ J_4\}$	<i>CT</i> = 16
$\{J_4 \ J_2\}$	CT = 16
Step 2 $\pi = \{J_2 \ J_4\}$	
	CT = 29
	CT = 29
	CT = 29
	CT = 49
	CT = 50
	CT = 45
	CT = 45
Step 4 $\pi = \{J_2 \ J_4 \ J_3 \ J_5\}$	
	CT = 68
	CT = 67
	CT = 65
	CT = 66
	CT = 66

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Ti	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

$$\begin{array}{lll} & \text{Step 1} \ \pi = \{\} \\ \{J_2 \ J_4\} & CT = 16 \\ \{J_4 \ J_2\} & CT = 16 \\ \text{Step 2} \ \pi = \{J_2 \ J_4\} \\ \{J_5 \ J_2 \ J_4\} & CT = 29 \\ \{J_2 \ J_4 \ J_5\} & CT = 29 \\ \{J_2 \ J_4 \ J_5\} & CT = 29 \\ \{J_3 \ J_2 \ J_4 \ J_5\} & CT = 49 \\ \{J_2 \ J_3 \ J_4 \ J_5\} & CT = 45 \\ \{J_2 \ J_4 \ J_3 \ J_5\} & CT = 45 \\ \{J_2 \ J_4 \ J_3 \ J_5\} & CT = 45 \\ \text{Step 4} \ \pi = \{J_2 \ J_4 \ J_3 \ J_5\} & CT = 45 \\ \end{array}$$

 $j=1,\ldots m$

 $k=1,\ldots,n$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
T;	9	6	8	7	7

Starting sequence =
$$\{J_2 J_4 J_5 J_3 J_1\}$$

Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

 $j=1,\ldots m$

 $k=1,\ldots,n$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Ti	9	6	8	7	7

Starting sequence =
$$\{J_2 \ J_4 \ J_5 \ J_3 \ J_1\}$$

Initial Solution = $\{J_2 \ J_4 \ J_1 \ J_3 \ J_5\}$

$$\begin{array}{lll} \text{Step 1} \ \pi = \{\} \\ \{J_2 \ J_4\} & CT = 16 \\ \{J_4 \ J_2\} & CT = 16 \\ \text{Step 2} \ \pi = \{J_2 \ J_4\} & CT = 29 \\ \{J_5 \ J_2 \ J_4\} & CT = 29 \\ \{J_2 \ J_5 \ J_4\} & CT = 29 \\ \{J_2 \ J_4 \ J_5\} & CT = 29 \\ \text{Step 3} \ \pi = \{J_2 \ J_4 \ J_5\} & CT = 49 \\ \{J_2 \ J_3 \ J_4 \ J_5\} & CT = 49 \\ \{J_2 \ J_4 \ J_3 \ J_5\} & CT = 45 \\ \{J_2 \ J_4 \ J_5 \ J_3\} & CT = 45 \\ \text{Step 4} \ \pi = \{J_2 \ J_4 \ J_3 \ J_5\} & CT = 45 \\ \end{array}$$

 $j=1,\ldots m$

 $k=1,\ldots,n$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	<i>J</i> ₁	J_2	J ₃	J_4	J ₅
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
T_i	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

Step 1
$$\pi$$
 = {}
{ $J_2 J_4$ } CT = 16
{ $J_4 J_2$ } CT = 16
Step 2 π = { $J_2 J_4$ }
{ $J_5 J_2 J_4$ } CT = 29
{ $J_2 J_5 J_4$ } CT = 29
Step 3 π = { $J_2 J_4 J_5$ } CT = 29
Step 3 π = { $J_2 J_4 J_5$ } CT = 49
{ $J_2 J_4 J_5 J_5$ } CT = 50
{ $J_2 J_4 J_3 J_5$ } CT = 45
{ $J_2 J_4 J_3 J_5$ } CT = 45
{ $J_2 J_4 J_3 J_5$ } CT = 68
{ $J_2 J_4 J_3 J_5$ } CT = 68
{ $J_2 J_4 J_3 J_5$ } CT = 66
{ $J_2 J_4 J_3 J_5$ } CT = 66
{ $J_2 J_4 J_3 J_5$ } CT = 65
{ $J_2 J_4 J_3 J_5$ } CT = 65

 $j=1,\ldots m$

 $k=1,\ldots,n$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
T_i	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

$$k = 2, \dots n, j = 2, \dots m$$

$$Step 1 \pi = \{\}$$

$$\{J_2 J_4\} \qquad CT = 16$$

$$\{J_4 J_2\} \qquad CT = 16$$

$$Step 2 \pi = \{J_2 J_4\} \qquad CT = 29$$

$$\{J_5 J_2 J_4\} \qquad CT = 29$$

$$\{J_2 J_4 J_5\} \qquad CT = 29$$

$$Step 3 \pi = \{J_2 J_4 J_5\} \qquad CT = 29$$

$$\{J_3 J_2 J_4 J_5\} \qquad CT = 49$$

$$\{J_2 J_3 J_4 J_5\} \qquad CT = 49$$

$$\{J_2 J_3 J_4 J_5\} \qquad CT = 50$$

$$\{J_2 J_4 J_3 J_5\} \qquad CT = 45$$

 $j=1,\ldots m$

 $k=1,\ldots,n$

CT = 45

Step 4 $\pi = \{J_2 \ J_4 \ J_3 \ J_5\}$

{ Jo Ja Jo Ja }

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
<i>p</i> _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
T_i	9	6	8	7	7

Starting sequence = $\{J_2 J_4 J_5 J_3 J_1\}$ Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

Step 1 $\pi = \{\}$	
$\{J_2 \ J_4\}$	<i>CT</i> = 16
$\{J_4 J_2\}$	<i>CT</i> = 16
Step 2 $\pi = \{J_2 \ J_4\}$	
$\{J_5 \ J_2 \ J_4\}$	CT = 29
$\{J_2 J_5 J_4\}$	CT = 29
$\{J_2 \ J_4 \ J_5\}$	CT = 29
Step 3 $\pi = \{J_2 \ J_4 \ J_5\}$	
$\{J_3 \ J_2 \ J_4 \ J_5\}$	CT = 49
{J ₂ J ₃ J ₄ J ₅ }	CT = 50
$\{J_2 \ J_4 \ J_3 \ J_5\}$	CT = 45
$\{J_2 \ J_4 \ J_5 \ J_3\}$	CT = 45
Step 4 $\pi = \{J_2 \ J_4 \ J_3 \ J_5\}$	
$\{J_1 \ J_2 \ J_4 \ J_3 \ J_5\}$	CT = 68
$\{J_2 J_1 J_4 J_3 J_5\}$	CT = 67
$\{J_2 \ J_4 \ J_1 \ J_3 \ J_5\}$	CT = 65
$\{J_2 \ J_4 \ J_3 \ J_1 \ J_5\}$	CT = 66
(J ₂ J ₄ J ₃ J ₅ J ₁)	CT = 66

 $j = 1, \dots m$ $k = 1, \dots n$

 $k = 2, \ldots, n, j = 2, \ldots, m$

$$C_{\pi(1)j} = \sum_{h=1}^{j} p_{\pi(1)h}$$

$$C_{\pi(k)1} = \sum_{h=1}^{k} p_{\pi(h)1}$$

$$C_{\pi(k)j} = \max\{C_{\pi(k-1)j}, C_{\pi(k)(j-1)}\} + p_{\pi(k)j}$$

$$T_{i} = \sum_{1}^{m} p_{ij}$$

Job	J_1	J_2	J_3	J_4	J_5
p _{i1}	3	3	4	2	3
p_{i2}	2	1	3	3	1
p_{i3}	4	2	1	2	3
Ti	9	6	8	7	7

Starting sequence =
$$\{J_2 J_4 J_5 J_3 J_1\}$$

Initial Solution = $\{J_2 J_4 J_1 J_3 J_5\}$

 $j=1,\ldots m$

 $k=1,\ldots,n$

CT = 66

k = 2, ..., n, j = 2, ..., m

{ Jo J4 J3 J5 J1 }

Iterative Improvement

```
\begin{aligned} \pi &:= \texttt{GenerateInitialSolution}\,() \\ \textbf{while} \, \pi &\: \text{is not a local optimum do} \\ &\: \text{choose a neighbour} \, \pi' \in \mathcal{N}(\pi) \, \text{such that} \, F(\pi') < F(\pi) \\ &\: \pi := \pi' \end{aligned}
```

Which neighborhood $\mathcal{N}(\pi)$?

- Transpose
- Exchange
- Insertion

transpose neighbourhood

exchange neighbourhood

exchange neighbourhood

Example: Exchange π_i and π_j (i < j), $\pi' = \text{Exchange}(\pi, i, j)$

Only jobs after i are affected!

Do not recompute the evaluation function from scratch!

Equivalent speed-ups with Transpose and Insertion

Instances

- PFSP instances with 50, 100 and 200 jobs, and 20 machines.
- More info will be available on teams

Experiments

Apply each algorithm k ten times to each instance i and compute:

- Relative percentage deviation $\Delta_{ki} = 100 \cdot \frac{\text{cost}_{ki} \text{best-known}_i}{\text{best-known}_i}$
- **②** Computation time (t_{ki})

Report for each algorithm k

- Average relative percentage deviation
- Sum of computation time

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Statistical test

- Paired t-test
- Wilcoxon signed-rank test

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Background: Statistical hypothesis tests (1)

- Statistical hypothesis tests are used to assess the validity of statements about properties of or relations between sets of statistical data.
- The statement to be tested (or its negation) is called the *null hypothesis* (H₀) of the test.
 Example: For the Wilcoxon signed-rank test, the null hypothesis is that 'the median of the differences is zero'.
- The *significance level* (α) determines the maximum allowable probability of incorrectly rejecting the null hypothesis. Typical values of α are 0.05 or 0.01.

Is there a statistically significant difference between the solution quality generated by the different algorithms?

Background: Statistical hypothesis tests (2)

- The application of a test to a given data set results in a p-value, which represents the probability that the null hypothesis is incorrectly rejected.
- The null hypothesis is rejected iff this p-value is smaller than the previously chosen significance level.
- Most common statistical hypothesis tests are already implemented in statistical software such as the R software environment (http://www.r-project.org/).

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Is there a statistically significant difference between the solution quality generated by the different algorithms?

```
best.known <- read.csv ("bestSolutions.txt")
a.cost <- read.table("ii-best-ex-rand.dat")$V1
a.cost <- 100 * (a.cost - best.known) / best.known$BS
b.cost <- read.table("ii-best-ins-rand.dat")$V1
b.cost <- 100 * (b.cost - best.known) / best.known$BS
t.test (a.cost, b.cost, paired=T)$p.value
[1] 0.8819112
wilcox.test (a.cost, b.cost, paired=T)$p.value
[1] 0.0019212</pre>
```

Exercise 1.2 VND algorithms for the PFSP

Implement 2 VND algorithms for the PFSP

- Pivoting rule: first-improvement
- Neighborhood order:
 - transpose \rightarrow exchange \rightarrow insert
 - 2 transpose \rightarrow insert \rightarrow exchange
- Initial solution:
 - Simplified RZ heuristic

Exercise 1.2 VND algorithms for the PFSP

Variable Neighbourhood Descent (VND)

```
k neighborhoods \mathcal{N}_1, \ldots, \mathcal{N}_k
\pi := GenerateInitialSolution()
i := 1
repeat
   choose the first improving neighbor \pi' \in \mathcal{N}_i(\pi)
   if \nexists \pi' then
      i := i + 1
   else
      \pi := \pi'
      i := 1
until i > k
```

Exercise 1.2 VND algorithms for the PFSP

Implement 2 VND algorithms for the PFSP

- Instances: Same as 1.1
- Experiments: ten runs of each algorithm per instance
- Report: Same as 1.1
- Statistical tests: Same as 1.1

- Instances and barebone code will be soon available on Teams
- Deadline is April 8 (23:59)
- Questions in the meantime? stuetzle@ulb.ac.be