PARTE A

1. Inf, min, sup e max dell'insieme

$$A = \{ y = e^{-e^x} \ x \in]0,1] \}$$

valgono

 $\text{A: } \{-\text{e, -e, e}, N.E.\} \quad \text{B: N.A.} \quad \text{C: } \{1, N.E., \text{e, e}\} \quad \text{D: } \{0, N.E., \text{e}^{-\text{e}}, \text{e}^{-\text{e}}\} \quad \text{E: } \{0, N.E., +\infty, N.E.\}$

2. Sia a > 0. La serie

$$\sum_{n=2}^{\infty} n^{-\log(1+a)}$$

risulta convergente per

A: N.A. B: N.E. C: e < a < 2e D: a > e - 1 E: a > 1

3. Il massimo e minimo della funzione $f(x) = x - x^3$ su (-1,1) sono A: non esiste max, min = 0 B: max = 0, min $= -\frac{2}{3\sqrt{3}}$ C: N.A. D: max $= \frac{2}{3\sqrt{3}}$, min $= -\frac{2}{3\sqrt{3}}$ E: entrambi non esistono

4. Il polinomio di Taylor di ordine 2, relativo al punto $x_0 = \frac{\pi}{2}$ della funzione $y(x) = \sin(x)$ vale $P_2(x) =$

A: 1 B: N.A. C:
$$1 - x + \frac{x^2}{2}$$
 D: $-\frac{x^2}{2} + \frac{\pi x}{2} - \frac{\pi^2}{8} + 1$ E: $1 - \frac{x^2}{2}$

5. La soluzione dell'equazione differenziale $\left\{\begin{array}{ll} y''-2y'=-2\\ y(0)=0,y'(0)=1 \end{array}\right.$ è data da y(x)=0

A:
$$\frac{1}{2}e^{2x} - \frac{1}{2}$$
 B: $e^{\sqrt{2}x} + e^{-\sqrt{2}x} + \frac{x}{2}$ C: x D: N.A. E: $\frac{1}{2}e^{2x} - \frac{1}{2} + x$

6. L'integrale

$$\int_{-\infty}^{\sqrt{e}} 4x e^{-x^2} dx$$

vale

A:
$$\log(e^2)$$
 B: $-2e^{-e}$ C: N.A. D: $-\infty$ E: e^{e}

7. Il limite

$$\lim_{x \to 0^{-}} \frac{e^{-\sin(x)} - 1}{\tan(x)}$$

vale

A:
$$N.A.$$
 B: N.E. C: 1 D: $-\infty$ E: -1

8. L'integrale

$$\int_{2}^{4} \frac{1}{1-x^2} dx$$

vale

A: 1 B:
$$\arctan(4) - \arctan(2)$$
 C: 0 D: N.A. E: $\log(\sqrt{5}) - \log(3)$

9. La funzione $f(x): [2,10] \to \mathbb{R}$ definita da $f(x) = xe^{-x/e}$ è

A: negativa o nulla B: iniettiva C: N.A. D: derivabile 15 volte E: surgettiva

10. Siano dati gli insiemi (complessi) $A:=\{z\in\mathbb{C}:z=\mathrm{e}^{1+i\theta},\ \theta\in[0,2\pi)\}$ e $B:=\{z\in\mathbb{C}:|z-i+1|=2\}$. Il numero degli elementi di $A\cap B$ è

A: 0 B: 2 C: infiniti D: 1 E: N.A.

30 gennaio 2017

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2017

(Cognome)											-			(No	me)			=	ume	ro d	i ma	trice	ola)				

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2017

(Cognome)											_			(No	me)			•	(N	ume	ro di	ma	trice	ola)				

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2017

(Cognome)											-			(No	me)			=	ume	ro d	i ma	trice	ola)				

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2017

PARTE B

- 1. a) Si studi la funzione $\frac{1}{x}e^{-\frac{1}{2x^2}}$ per x > 0.
 - b) Dimostrare che vale la seguente diseguaglianza per ogni $n\in\mathbb{N}$

$$x^{2n} + n^{n/2} > \frac{1}{x^n} e^{-\frac{1}{2x^2}} \qquad \forall x > 0$$

Sugg: Cosa succede per n = 1?

Soluzione: La funzione è positiva e si ha

$$\lim_{x \to 0^+} \frac{1}{x} e^{-\frac{1}{2x^2}} = 0 \qquad e \qquad \lim_{x \to +\infty} \frac{1}{x} e^{-\frac{1}{2x^2}} = 0$$

dove in particolare il primo limite si calcola risolvendo la forma indeterminata $\infty \cdot 0$ tramite la sostituzione $x \to 1/x$.

Si ha poi

$$\frac{d}{dx}\frac{1}{x}e^{-\frac{1}{2x^2}} = -\frac{e^{-\frac{1}{2x^2}}(x^2 - 1)}{x^4}$$

e quindi si ha un punto di massimo assoluto in $x_1 = 1$, dato che la derivata è strettamente positiva in [0, 1[e strettamente negativa per $]1, +\infty[$. Quindi

$$\max_{\{x>0\}} \frac{1}{x} \mathrm{e}^{-\frac{1}{2x^2}} = \frac{1}{x} \mathrm{e}^{-\frac{1}{2x^2}} \bigg|_{x=1} = \mathrm{e}^{-\frac{1}{2}}.$$

Nel caso di $\frac{1}{x^n}e^{-\frac{1}{2x^2}}$ si ha di nuovo

$$\lim_{x \to 0^+} \frac{1}{x^n} e^{-\frac{1}{2x^2}} = 0 \qquad e \qquad \lim_{x \to +\infty} \frac{1}{x^n} e^{-\frac{1}{2x^2}} = 0$$

e inoltre

$$\frac{d}{dx}\frac{1}{x}e^{-\frac{1}{2x^2}} = \frac{1}{x^{n+1}}e^{-\frac{1}{2x^2}}\left(\frac{1}{x^2} - n\right).$$

Le stesse considerazioni di prima portano dimostrare che si ha un punto di massimo assoluto in $x_n = \frac{1}{\sqrt{n}}$ e quindi

$$\max_{\{x>0\}} \frac{1}{x^n} e^{-\frac{1}{2x^2}} = \frac{1}{x^n} e^{-\frac{1}{2x^2}} \bigg|_{x=1/\sqrt{n}} = n^{n/2} e^{-\frac{n}{2}} \le n^{n/2}.$$

La diseguaglianza è verificata dato che

$$\frac{1}{x^n} e^{-\frac{1}{2x^2}} < n^{n/2} < x^{2n} + n^{n/2}.$$

- 2. Si consideri l'equazione differenziale $y' = x y \log(y)$.
 - a) Si determinino eventuali soluzioni costanti
 - b) Si risolva il problema di Cauchy

$$\begin{cases} y' = x y \log(y) \\ y(0) = 3 \end{cases}$$

c) sapendo che y(x) > 0 per ogni $x \in \mathbb{R}$, si risolva il problema di Cauchy

$$\begin{cases} y' = x y \log(y) \\ y(0) = 1/2 \end{cases}.$$

Detta y(x) la sua soluzione, si calcoli $\lim_{x\to\infty} y'(x)$.

Soluzione: a) La funzione y=1 è soluzione (attenzione: y=0 non è soluzione costante perché il logaritmo non è definito in zero.)

b) La soluzione risulta $y=3^{e^{x^2/2}}$, infatti, per separazione di variabili si ha

$$\int_{3}^{Y} \frac{dy}{y \log(y)} = \int_{0}^{X} x dx$$

quindi log $|\log |y||$ – log log $3=\frac{x^2}{2}$ e, considerando che y(x)>1 perché y(0)>1 e la soluzione non può mai essere uguale ad 1 perché $y\equiv 1$ è una soluzione costante, possiamo togliere i moduli ottenendo

$$\log \log y - \log \log 3 = \frac{x^2}{2} \to \log \left(\frac{\log y}{\log 3} \right) = \frac{x^2}{2} \to \frac{\log y}{\log 3} = e^{x^2/2},$$

quindi $\log y = e^{x^2/2} \log 3 = \log 3^{(e^{x^2/2})}$ e concludendo $y = 3^{(e^{x^2/2})}$.

c) Procediamo come prima, considerando che in questo caso 0 < y < 1 quando togliamo i moduli, ottenendo $y = 2^{e^{-x^2/2}}$. Usando l'equazione differenziale si ha

$$y' = x2^{e^{-x^2/2}} \log 2^{e^{-x^2/2}} = x2^{e^{-x^2/2}} e^{-x^2/2} \log(2)$$

da cui ricaviamo facilmente che $\lim_{x\to\infty} y'(x) = 0$.

3. Considerato $\lambda \geq 0,$ si determini il raggio di convergenza della serie

$$\sum_{n=1}^{\infty} \frac{n^{\lambda} + 1}{\lambda^n + 1} x^n.$$

Si dica qual è l'insieme di convergenza della serie per ogni $\lambda \geq 0$.

Soluzione. Iniziamo con $\lambda = 0$, in tal caso la serie diventa

$$\sum_{n=1}^{\infty} \frac{1+1}{1} x^n = 2 \sum_{n=1}^{\infty} x^n$$

che converge se e solo se |x| < 1.

Studiamo ora li raggio di convergenza calcolando

$$\lim_{n \to +\infty} \sqrt[n]{\left|\frac{n^{\lambda}+1}{\lambda^n+1}\right|} = \lim_{n \to +\infty} \sqrt[n]{\frac{n^{\lambda}+1}{\lambda^n+1}} \sim \begin{cases} \lim_{n \to +\infty} \sqrt[n]{n^{\lambda}} = 1 \text{ se } \lambda \leq 1\\ \lim_{n \to +\infty} \frac{\sqrt[n]{n^{\lambda}}}{\lambda} = \frac{1}{\lambda} \text{ se } \lambda > 1 \end{cases}$$

Pertanto si ha

$$R = \begin{cases} 1 & \text{se } \lambda \le 1 \\ \lambda & \text{se } \lambda > 1 \end{cases}$$

Studiamo l'insieme di convergenza. Nel caso $\lambda \leq 1$ abbiamo che per x=1

$$\lim_{n \to +\infty} \frac{n^{\lambda} + 1}{\lambda^n + 1} = +\infty,$$

mentre per x = -1

$$\lim_{n \to +\infty} \frac{n^{\lambda} + 1}{\lambda^n + 1} (-1)^n = N.E$$

e in entrambi i casi la condizione necessaria per la convergenza delle serie numeriche non è soddisfatta. Per $0 < \lambda \le 1$, l'insieme di convergenza è] -1,1[.

Per $\lambda > 1$ si ha per $x = \lambda$

$$\lim_{n \to +\infty} \frac{n^{\lambda} + 1}{\lambda^n + 1} \lambda^n = +\infty,$$

e per $x = -\lambda$

$$\lim_{n \to +\infty} \frac{n^{\lambda} + 1}{\lambda^n + 1} (-1)^n \lambda^n = N.E.,$$

come nel caso precedente si ha convergenza solo per $x \in]-\lambda,\lambda[.$

4. Sia $f:[0,1] \to \mathbb{R}$ una funzione C^{∞} , tale che f(x)>0 se $0 < x \leq 1, \ f(0)=0$ e f'(0)=1.

Si dica se l'integrale $\int_0^1 \frac{1}{f(x)} dx$ è convergente.

Soluzione. L'integrale improprio, se esistente è definito da

$$\int_0^1 \frac{1}{f(x)} \, dx = \lim_{a \to 0^+} \int_a^1 \frac{1}{f(x)} \, dx$$

ed è importante studiare il comportamento di f per x in intorno destro di 0. Usando lo sviluppo di Taylor si ha

$$f(x) = f(0) + f'(0)x + o(x) = x + o(x)$$

Pertanto si ha che $\frac{1}{f(x)} = \frac{1}{x + o(x)}$ e dunque

$$\lim_{x \to 0^+} \frac{\frac{1}{f(x)}}{\frac{1}{x}} = 1$$

e per il teorema del confronto asintotico l'integrale è divergente perchè comparabile con quello di

$$\int_0^1 \frac{1}{x} \, dx.$$