RTL8762E RCU MP Test Sample Flow

Version 1.0

2021/07/07

修订历史(Revision History)

日期	版本	修改	作者	Reviewer
2021/07/07	V1.0	初稿	Chenjie Jin	

目 录

修订历史(Revision History)	2
目 录	3
图目录	4
1 概述	5
2 测试流程	6
2.1 烧录程序	9
2.1.1 线下 SWD 烧录	
2.1.2 MP Tool 烧录	9
2.1.3 烧录文件	9
2.2 PCBA 级测试	10
2.2.1 读取 RCU MAC 地址	10
2.2.2 读取 RCU 版本信息	10
2.2.3 PCBA 按键矩阵测试	11
2.2.4 PCBA 语音测试	11
2.2.5 RF 频偏校准测试	11
2.2.6 RF Performance 测试	12
2.2.7 DLPS 电流测试	13
2.3 整机功能测试	15
2.3.1 整机 RF 测试	
2.3.2 整机基本功能测试	15
2.3.3 连接配对测试	
2.3.4 按键及语音测试	
2.3.5 退出测试模式	
31 III	10

图目录

图表	1 产线测试整体流程图	6
图表	2 PCBA 级测试流程图	7
图表	3 整机功能测试流程图	8
图表	4 PCBA 级测试系统框图	. 10
图表	5 频偏自动校准系统框图	. 12
图表	6 RF Performance 测试系统框图	. 13
图表	7 Single Tone 波形图	. 15
图表	8 整机基本功能测试系统框图	. 16
图表	9 自动化语音测试流程图	. 17

1 概述

此文档介绍了RTL8762E 遥控器中测试的典型流程以及相关的技术实现。通过测试流程,保证遥控器的相关规格符合生产要求。

2测试流程

典型的产线测试流程包括: 遥控器烧录、PCBA 级测试和整机功能测试。基本流程如图表 1 产线测试整体流程图所示。

图表 1 产线测试整体流程图

PCBA 级测试包括: MAC 地址读取、版本号检测、按键测试、MIC 性能测试、频偏校准、RF 性能测试及电流功耗测试等。基本流程如图表 2 PCBA 级测试流程图所示。

图表 2 PCBA 级测试流程图

整机功能测试包括: Single Tone 测试、BLE 连接配对、MAC 地址读取、版本号检测、按键功能测试、语音功能测试、清除 RCU 信息等。基本流程如图表 3 整机功能测试流程图所示。

图表 3 整机功能测试流程图

2.1 烧录程序

RTL8762E 支持两种烧录方式:线下 SWD 烧录和在线 MP Tool 烧录。

2.1.1 线下 SWD 烧录

线下 SWD 烧录方式是为了支持在 RTL8762E 贴片之前,使用第三方烧录器对 RTL8762E 进行烧录。目前,提供了两种方式进行线下 SWD 烧录方式:

- 1. 使用 J-Link Flash Algorithm, 具体实现请参考《RTL8762E Flash Programming with J-Flash or J-Link Commander》^[1];
- 2. 使用 RTL8762E FW Loader, 具体实现请参考《RTL8762E FW Loader Programming Flow》[2];

2.1.2 MP Tool 烧录

量产烧录软件使用 Realtek Bluetooth MP Tool。

MP Tool 支持 UART 或 SWD 两种 interface 对 RTL8762E 烧录:

- 1. 使用 UART 需要使用 P3_0, P3_1 作为烧录口;
- 2. 使用 SWD 需要使用 P1_0, P1_1 作为烧录口;

MP Tool 具体使用方法,请参见文档《RTL8762E_量产用户指南》[3]。

2.1.3 烧录文件

• 量产时必须要烧录的文件如下:

Patch image: realtek 提供的 patch 镜像;

APP Image: 客户应用程序镜像;

Config file: 芯片设定文件;

OTA Header: 芯片运行环境控制字段 image;

Secure Boot: 安全管理 image;

Upperstack image: 上层协议栈 image;

• 量产时用户根据实际需要选择烧录 User data:

User data file: 客户私有数据文件。

2.2 PCBA 级测试

PCBA 级测试的基本方法是通过外部触发方式,使 RCU 进入 HCI UART 测试模式或 Data UART 测试模式,通过 UART 命令控制 RCU 执行相应操作并返回响应,具体实现和设计请参考《RTL8762E RCU MP Test Mode Design Spec》^[4]。系统基本框图如图表 4 PCBA 级测试系统框图所示。

图表 4 PCBA 级测试系统框图

2.2.1 读取 RCU MAC 地址

上位机通过 Data UART 命令读取 RCU 的 MAC 地址,进行有效性的验证及结果记录。测试步骤:

- 1. RCU 上电,并进入 Data UART 测试模式;
- 2. 发送 READ_MAC_ADDR 串口命令,读取 RCU 的 MAC 地址;
- 3. 进行 MAC 地址的验证;

2.2.2 读取 RCU 版本信息

上位机通过 Data UART 命令读取 RCU 的版本信息,进行有效性的验证及结果记录。测试步骤:

1. RCU 上电,并进入 Data UART 测试模式;

- 2. 发送 READ PATCH VERSION 串口命令,读取 RCU 的 Patch 版本;
- 3. 发送 READ_APP_VERSION 串口命令,读取 RCU 的 APP 版本
- 4. 进行版本信息的验证;

2.2.3 PCBA 按键矩阵测试

上位机通过 Data UART 命令使 RCU 进入按键测试模式。在按键测试模式下,RCU 检测到任何按键被按下,将按键的键值及行列信息通过 Data UART 返回给上位机。上位机进行按键有效性的验证及结果记录。测试步骤:

- 1. RCU 上电,并进入 Data UART 测试模式;
- 2. 发送 ENTER_KEYSCAN_TEST_MODE 串口命令,使 RCU 进入按键测试模式;
- 3. 依次按下RCU按键,RCU通过UART将检测到的按键信息返回给上位机;
- 4. 上位机进行按键有效性的验证;
- 5. 发送 EXIT_KEYSCAN_TEST_MODE 串口命令, 使 RCU 退出按键测试模式

2.2.4 PCBA 语音测试

上位机通过 Data UART 命令使 RCU 开始 MIC 录音。RCU 开始语音之后,将语音数据通过 Data UART 返回给上位机。上位机对收到的语音数据进行分析,对信噪比、谐波失真等参数进行判断。同时,测量 RCU 语音时的工作电流,进行判断。

测试步骤:

- 1. RCU 上电,并进入 Data UART 测试模式;
- 2. 发送 VOICE_TEST_BEGIN 串口命令,使 RCU 进入语音测试模式;
- 3. RCU 对语音模块进行初始化并开始录音,将收到的语音数据通过 Data UART 上传给上位机;
- 4. 同时,测量 RCU 语音时的工作电流是否符合规格;
- 5. 发送 VOICE TEST END 串口命令,使 RCU 退出语音测试模式;
- 6. 上位机对语音数据进行分析,对信噪比、谐波失真等参数进行判断;

2.2.5 RF 频偏校准测试

RTL8762E 实现了通过调整内部 Register "Frequency Offset" 的值对 BLE 频偏值进行微调的功能。目前有两种频偏校准方案:

1. 采用固定校准值,量产时不对每个 RCU 单独校准,在后续 RF 性能测试环节将不良品筛选出来。该方案,需要在量产前,测试小批次样本的最佳"Frequency Offset";在量产时,通过 MP Tool 来设置 config 中 "Frequency Offset"的值,对 RF 频偏进行微调^[3]。该方案使用场景前提是对于 BLE RF 频偏要求不是很高的话(如±30KHz 以内)。另外需要注意,最佳"Frequency Offset"值和外围器件有关,特别是 40MHz 晶体的旁路电容。如果相关外围器件有改动,需要重新设定最佳"Frequency Offset"值。

2. 自动校准方案。对于 BLE RF 频偏要求较高的环境下,需要使用自动在线频偏校准方案。该方案包括上位机、Golden Sample 校准源及被测设备,系统框图如所示。该方案使用 Golden Sample 校准源,在固定频点上打 Single Tone 信号。RCU 经触发进入自动频偏校准模式之后,在固定频点上 Rx 并通过内部算法,获得频偏最小的 Register 设定及频偏值。最后,将最小频偏值和上位机设定的阈值进行比较,返回测试结果。频偏自动校准系统框图如图表 5 频偏自动校准系统框图所示。

图表 5 频偏自动校准系统框图

测试步骤:

- 1. Golden Sample 上电,上位机通过 UART 命令使校准源发射单载波;
- 2. Golden Sample 校准源,在固定频点上打 Single Tone 信号;
- 3. RCU 上电,上位机通过 UART 命令使 RCU 进行如自动频偏校准模式;
- 4. RCU 进入自动频偏校准模式之后,在固定频点上 Rx 并通过内部算法,获得频偏最小的 Register 设定及频偏值:
- 5. RCU 校准完成后,将最小频偏值和上位机设定的阈值进行比较,返回测试结果;

2.2.6 RF Performance 测试

HCI UART 测试模式允许在正常 APP 模式下的 BLE RCU 设备通过外部触发(比如说通过在 reboot 过程中拉低某个 GPIO 管脚),来临时地把 HCI 层通过 UART 暴露出来。这么做的目的是能让 RCU 在产线上做测试的时候,在已经烧录了最终产品固件的前提下,还能直接通过 UART,和蓝牙测试仪器进行连接,

运行"直接测试模式"(Direct Test Mode, DTM)的命令进行产线测试,同时保证这个 UART 在普通模式下能被用作于其他用途^[4]。

和标准的 BLE 测试模式 DTM 一样,RCU 在 HCI UART 测试模式支持一系列标准通用的 HCI 命令,配合蓝牙测试仪器(如 Anritsu MT8852B),可以验证 BLE RCU 的射频性能,包括输出功率、调制特性、载波频率漂移、灵敏度等。具体的测试命令描述可以参见 Bluetooth Core Specification 相关章节。

RF Performance 测试的系统框图如图表 6 RF Performance 测试系统框图所示。

图表 6 RF Performance 测试系统框图

测试步骤:

- 1. RCU 上电,并进入 HCI UART 测试模式;
- 2. 使用蓝牙测试仪器(如 Anritsu MT8852B)验证 BLE RCU 的射频性能,包括输出功率、调制特性、载波频率漂移、灵敏度等;

2.2.7 DLPS 电流测试

BLE RCU 的 DLPS 电流是一项关乎遥控器使用寿命的重要指标。产测时,进行 DLPS 电流测试可以筛选功耗较高的不良品,保证遥控器的使用寿命。

测试步骤:

- 1. RCU 上电,并进入 Data UART 测试模式;
- 2. 发送 ENTER_DLPS_TEST_MODE 串口命令, 使 RCU 进行 DLPS 模式;
- 3. 使用电流测试仪,测试 DLPS 状态下电流;

2.3 整机功能测试

整机功能测试,主要目的是测试 RCU 在组装之后,验证 RCU 的相关功能。该阶段首先可以使用 Single Tone 模式验证组装之后 RCU 的 RF 性能。另外,通过 BLE Test Dongle,并模拟用户操作,验证 RCU 基本功能:包括:BLE 连接配对、按键功能测试、语音功能测试等。最后,清除 RCU 使用信息及测试标志位,保证 RCU 出厂设置正确。

2.3.1 整机 RF 测试

在遥控器组装之后,需要对 RF 性能进行简单验证。此时,可以使用 RCU 的 Single Tone 测试模式^[4]。遥控器通过外部触发(比如说组合键进入或通过在 reboot 过程中拉低某个 GPIO 管脚),进入到 Single Tone 测试模式下,会在某一设定的 Channel 上打单载波信号。使用频谱仪,通过观察和测量单载波的频谱波形,可以对 RCU RF 的发射功率及频偏值进行判断。频谱仪看到的 Single Tone 波形类似图表 7 Single Tone 波形图所示。

图表 7 Single Tone 波形图

测试步骤:

- 4. RCU 上电, 并进入 Single Tone 测试模式;
- 5. 使用频谱仪,通过观察和测量单载波的频谱波形;
- 6. 对 RCU RF 的发射功率及频偏值进行判断验证;

2.3.2 整机基本功能测试

RTL8762E 遥控器使用 Windows RCU Tool 和 Windows RCU test dongle 进行量产时基本功能测试。

Windows RCU Test Tool 的具体使用参见 Realtek RCU Test Tool User Guide^[5]。基本测试框图如图表 8 整机基本功能测试系统框图所示。

图表 8 整机基本功能测试系统框图

2.3.3 连接配对测试

RTL8762E RCU 进行整机基本功能测试,需要首先和 RCU Test Dongle 建立连接并配对。为了效率考虑,在产测时可能会同时进行多只遥控器的测试。为解决同时测试的问题,RCU Test Dongle 和 RCU 建立BLE 连接有几种方案可供选择:

方案 1: RCU 和 Test Dongle 放在同一屏蔽盒内,进行一对一测试;

方案 2: RCU Test Tool 如果发现多只 RCU 同时发送配对广播,自动连接接收到 RSSI 最强的 RCU。该方案比较简单,适合生产线不支持方案 1,但多条生产线距离相对较远的场景,但设置不当可能会造成无法连接或连接错误测试设备的问题;

方案 3: RCU Test Tool 通过其他方式(如串口读取)被测 RCU 的 MAC Address, 只向固定 MAC Address 的 RCU 发送配对请求, 该方案需要事先获取 RCU 的 MAC Address;

方案 4: 使用快速配对测试模式,该方案使用事先约定的 Mac Address 和 Link Key 发送 direct 回连广播,尝试和对应的测试 dongle 建立连接,具体参考 RTL8762E RCU MP Test Mode Design Spec^[5];

RCU Test Tool 和 RCU 建立连接之后,可以通过 BLE 读取 RCU 的 MAC 地址、版本号等信息,并进行相关检查。

2.3.4 按键及语音测试

遥控器和 RCU Test Tool 建立连接之后,可以进行按键和语音测试。

按键测试主要测试遥控器按键功能。方法是遥控器端顺序地按遥控器上所有按钮,按的同时 RCU Tool 界面也会显示哪个按键被按下。最后根据程序中固定的按键顺序判定此次按键是成功还是失败。

语音测试可分为手动及自动两种方案:

手动方案: 按住遥控器语音键并说一段固定的话, RCU 通过 BLE 将语音数据传输给 RCU Test Dongle, RCU Tool 收到语音数据后会解析保存数据并播放出来,由此测试人员可以判断语音功能是否正确。

自动方案:由上位机程序自动控制音源播放标准声音,并通过 BLE write command 使 RCU 开始或结束语音功能,示例流程如图表 9 自动化语音测试流程图所示。

图表 9 自动化语音测试流程图

2.3.5 退出测试模式

作为在遥控器出厂之前的最后一个步骤,需要将遥控器恢复出厂设置,包括清除配对信息、退出测试模式、清除测试标志位等。退出测试模式命令,可以由串口或 BLE 命令进行控制,具体实现可以参考《RTL8762E RCU MP Test Mode Design Spec》中相关章节。

引用

- [1] RTL8762E Flash Programming with J-Flash or J-Link Commander
- [2] RTL8762E FW Loader Programming Flow
- [3] RTL8762E MP User Guide
- [4] RTL8762E RCU MP Test Mode Design Spec
- [5] Realtek RCU Test Tool User Guide