```
import numpy as np
import pandas as pd
import scipy.stats
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from scipy.stats import chi2 contingency
from google.colab import files
uploaded= files.upload()
     Choose Files No file chosen
                                      Upload widget is only available when the cell has been executed
     Saving Heart_disease_UCI_EDA.csv to Heart_disease_UCI_EDA (1).csv
df= pd.read csv("Heart disease UCI EDA.csv")
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
     Data columns (total 14 columns):
          Column
                   Non-Null Count Dtype
                    -----
     _ _ _
         -----
                                    ----
      0
                   303 non-null
                                    int64
         age
      1
         sex
                    303 non-null
                                    int64
      2
                   303 non-null
                                    int64
         ср
         trestbps 303 non-null
      3
                                    int64
      4
         chol
                    303 non-null
                                    float64
      5
         fbs
                   303 non-null
                                    int64
      6
         restecg 303 non-null
                                    int64
      7
         thalach 303 non-null
                                    float64
      8
                   303 non-null
                                    int64
         exang
      9
          oldpeak 303 non-null
                                    float64
      10 slope
                    303 non-null
                                    int64
      11 ca
                    303 non-null
                                    int64
      12 thal
                    303 non-null
                                    int64
      13 target
                    303 non-null
                                    int64
     dtypes: float64(3), int64(11)
     memory usage: 33.3 KB
df.isna().sum()
                 0
     age
                 0
     sex
                 0
     ср
     trestbps
                 0
                 0
     chol
     fbs
                 0
     restecg
                 0
```

thalach

exang 0
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64

df.describe()

	age	sex	ср	trestbps	chol	fbs	reste
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	54.366337	0.683168	0.528053	131.280528	245.134488	0.148515	0.5148
std	9.082101	0.466011	0.500038	16.582241	47.552910	0.356198	0.50060
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00000
75%	61.000000	1.000000	1.000000	140.000000	274.500000	0.000000	1.00000
max	77.000000	1.000000	1.000000	170.000000	369.750000	1.000000	1.00000

df.shape

(303, 14)

df1= df[:]

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	float64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64

```
dtypes: float64(3), int64(11)
memory usage: 33.3 KB
```

```
#Creating Dummies of Categorical Variables and dropping 1st dummy variable
Catg_vars =['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']
for i in Catg_vars:
    Catg_list = 'var'+'_'+i
    Catg_list = pd.get_dummies(df[i], drop_first=True, prefix = i)
    df1 = df1.join(Catg_list)
    df1

df.info()
    <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 303 entries, 0 to 302
        Data columns (total 14 columns):
```

Column Non-Null Count Dtype -----303 non-null 0 age int64 1 sex 303 non-null int64 2 cp 303 non-null int64 trestbps 303 non-null int64 4 chol 303 non-null float64 fbs int64 5 303 non-null restecg 303 non-null 6 int64 thalach 303 non-null float64 7 8 exang 303 non-null int64 float64 oldpeak 303 non-null 10 slope 303 non-null int64 11 ca 303 non-null int64 12 thal 303 non-null int64 13 target 303 non-null int64 dtypes: float64(3), int64(11) memory usage: 33.3 KB

df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	float64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64

```
int64
     10
         slope
                    303 non-null
     11 ca
                    303 non-null
                                    int64
     12 thal
                   303 non-null
                                    int64
     13 target
                  303 non-null
                                    int64
     14 sex_1
                   303 non-null
                                   uint8
     15 cp_1
                    303 non-null
                                   uint8
     16 fbs_1
                   303 non-null
                                   uint8
     17 restecg_1 303 non-null uint8
     18 exang_1
                    303 non-null
                                   uint8
     19 slope_2
                    303 non-null
                                   uint8
     20 ca 1
                    303 non-null
                                   uint8
                    303 non-null
     21 thal_1
                                    uint8
    dtypes: float64(3), int64(11), uint8(8)
    memory usage: 35.6 KB
#After Creating dummies and dropping 1st dummy now drop original variable
Catg_vars = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']
df_vars = df1.columns.values.tolist()
to_keep = [i for i in df_vars if i not in Catg_vars]
# keep only those which are not in the list of data vars
df_final = df1[to_keep]
df final.columns.values
    array(['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'target', 'sex_1',
            'cp_1', 'fbs_1', 'restecg_1', 'exang_1', 'slope_2', 'ca_1',
            'thal 1'], dtype=object)
df_final.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
    Data columns (total 14 columns):
     #
         Column
                    Non-Null Count Dtype
         _____
                    _____
     _ _ _
                                   ____
     0
                    303 non-null
                                   int64
         age
     1
        trestbps 303 non-null
                                   int64
     2
         chol
                   303 non-null
                                   float64
     3
         thalach
                    303 non-null
                                   float64
     4
         oldpeak 303 non-null
                                   float64
     5
        target
                   303 non-null
                                   int64
     6
         sex 1
                    303 non-null
                                   uint8
     7
         cp 1
                   303 non-null
                                   uint8
     8
         fbs 1
                   303 non-null
                                   uint8
         restecg_1 303 non-null
     9
                                   uint8
     10 exang_1
                   303 non-null
                                   uint8
     11 slope_2
                    303 non-null
                                   uint8
     12 ca 1
                    303 non-null
                                    uint8
     13 thal 1
                    303 non-null
                                    uint8
     dtypes: float64(3), int64(3), uint8(8)
    memory usage: 16.7 KB
```

```
X = df_final.loc[:, df_final.columns!= 'target']
y = df_final.loc[:, df_final.columns== 'target']
```

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):

Duca	COTAMINIS (CO	JCUI	15 COTAIIII	,,.
#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	trestbps	303	non-null	int64
2	chol	303	non-null	float64
3	thalach	303	non-null	float64
4	oldpeak	303	non-null	float64
5	sex_1	303	non-null	uint8
6	cp_1	303	non-null	uint8
7	fbs_1	303	non-null	uint8
8	restecg_1	303	non-null	uint8
9	exang_1	303	non-null	uint8
10	slope_2	303	non-null	uint8
11	ca_1	303	non-null	uint8
12	thal_1	303	non-null	uint8
dtype	es: float64	(3),	int64(2),	uint8(8)
memor	nv usage: 14	1 3 k	(R	

memory usage: 14.3 KB

У

	target
0	1
1	1
2	1
3	1
4	1
298	0
299	0
300	0
301	0
302	0

303 rows × 1 columns

^{&#}x27;'' Splitting the data into Train & Test (70-30 respectively) '''

```
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
train = X_train.join(y_train)
train.info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 212 entries, 137 to 172
    Data columns (total 14 columns):
                   Non-Null Count Dtype
         Column
        ____
                   -----
     0
         age
                   212 non-null
                                  int64
     1 trestbps 212 non-null
                                 int64
                  212 non-null
     2
        chol
                                  float64
     3
        thalach 212 non-null float64
     4 oldpeak 212 non-null float64
     5
        sex_1
                  212 non-null uint8
     6
        cp_1
                  212 non-null uint8
     7 fbs 1
                  212 non-null uint8
       restecg_1 212 non-null
                                  uint8
     8
        exang_1 212 non-null
     9
                                 uint8
     10 slope 2 212 non-null uint8
     11 ca_1
                  212 non-null uint8
     12 thal_1
                   212 non-null
                                  uint8
     13 target
                   212 non-null
                                  int64
    dtypes: float64(3), int64(3), uint8(8)
    memory usage: 23.2 KB
no_disease = train[train.target == 0]
len(no_disease)
    94
yes disease = train[train.target == 1]
len(yes disease)
    118
from sklearn.utils import resample
# Smote is done - over sampling
no disease os = resample(no disease,
                        replace = True,
                        n_samples = len(yes_disease),
                        random state = 14)
train_os = pd.concat([yes_disease, no_disease_os])
```

train os.target.value counts()

```
1
          118
     0
          118
     Name: target, dtype: int64
X_train_os = train_os.loc[:, train_os.columns != 'target']
y_train_os = train_os.loc[:, train_os.columns == 'target']
#Recurrsive Feature Elimination
from sklearn import datasets
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(max_iter=10000000)
rfe = RFE(logreg, n_features_to_select=11)
rfe = rfe.fit(X_train_os, y_train_os.values.ravel())
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: Convergence
       ConvergenceWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: Convergence
       ConvergenceWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: Convergence
       ConvergenceWarning,
rfe.n_features_to_select
     11
X_train_os.columns[rfe.get_support()]
     Index(['trestbps', 'thalach', 'oldpeak', 'sex 1', 'cp 1', 'fbs 1', 'restecg 1',
             'exang_1', 'slope_2', 'ca_1', 'thal_1'],
           dtype='object')
cols = X_train_os.columns[rfe.get_support()]
cols.to list()
     ['trestbps',
      'thalach',
      'oldpeak',
      'sex_1',
      'cp_1',
      'fbs 1',
```

'restecg_1',

```
'exang_1',
'slope_2',
'ca_1',
'thal 1']
```

#Logistic Model by statistic apporach

```
____sm model to see p_values
x1 = X_train_os[cols]
x1.info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 236 entries, 137 to 186
    Data columns (total 11 columns):
       Column
                   Non-Null Count Dtype
    --- -----
                   -----
        trestbps
                  236 non-null
                                 int64
     0
     1 thalach 236 non-null
                                float64
     2 oldpeak 236 non-null
                                 float64
     3
       sex 1
                 236 non-null uint8
       cp 1
                 236 non-null uint8
     4
     5
        fbs_1
                 236 non-null uint8
     6
        restecg_1 236 non-null uint8
     7
        exang 1 236 non-null uint8
     8
        slope_2 236 non-null uint8
     9
         ca 1
                   236 non-null
                               uint8
                 236 non-null
     10 thal_1
                                 uint8
    dtypes: float64(2), int64(1), uint8(8)
    memory usage: 9.2 KB
y_train_os.info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 236 entries, 137 to 186
    Data columns (total 1 columns):
       Column Non-Null Count Dtype
    --- -----
         target 236 non-null
                              int64
    dtypes: int64(1)
    memory usage: 3.7 KB
y_train_os.value_counts()
    target
    1
             118
             118
    dtype: int64
y1 = y_train_os
у1
```

target				
137	1			
106	1			
44	1			
139	1			
156	1			
263	0			
257	0			
221	0			
221	0			
186	0			

236 rows × 1 columns

```
#_____Stats model
import statsmodels.api as sm
```

x1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 236 entries, 137 to 186
Data columns (total 11 columns):

				, .	
#	Column	Non-	-Null Count	t Dtype	
0	trestbps	236	non-null	int64	
1	thalach	236	non-null	float64	
2	oldpeak	236	non-null	float64	
3	sex_1	236	non-null	uint8	
4	cp_1	236	non-null	uint8	
5	fbs_1	236	non-null	uint8	
6	restecg_1	236	non-null	uint8	
7	exang_1	236	non-null	uint8	
8	slope_2	236	non-null	uint8	
9	ca_1	236	non-null	uint8	
10	thal_1	236	non-null	uint8	
dtyp	es: float64	(2),	int64(1),	uint8(8)	
memory usage: 9.2 KB					

y1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 236 entries, 137 to 186
Data columns (total 1 columns):
 # Column Non-Null Count Dtype
--- 0 target 236 non-null int64

```
dtypes: int64(1)
memory usage: 3.7 KB
```

logit_model = sm.Logit(y1,x1)

result = logit_model.fit(method='bfgs')

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.290243

Iterations: 35

Function evaluations: 39 Gradient evaluations: 39

/usr/local/lib/python3.7/dist-packages/statsmodels/base/model.py:512: ConvergenceWarr

"Check mle_retvals", ConvergenceWarning)

print(result.summary2())

Results: Logit

______ Model: Logit Pseudo R-squared: 0.581 Dependent Variable: target AIC: 158.9947 2021-11-27 07:59 BIC: Date: 197.0969 No. Observations: 236 Log-Likelihood: -68.497 Df Model: LL-Null: 10 -163.58 Df Residuals: 225 LLR p-value: 1.8016e-35 Converged: 0.0000 Scale: 1.0000

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
trestbps thalach oldpeak sex_1 cp_1 fbs_1 restecg_1 exang_1 slope_2 ca_1	-0.0040 0.0197 -0.5144 -1.2426 1.7922 -0.6882 -0.5831 -0.7763 0.4471 -1.8748	0.0099 0.0089 0.2615 0.5543 0.5053 0.6324 0.4842 0.4994 0.5568 0.4714	-0.4054 2.2180 -1.9674 -2.2419 3.5467 -1.0883 -1.2043 -1.5545 0.8030 -3.9773 -2.2587	0.6852 0.0266 0.0491 0.0250 0.0004 0.2765 0.2285 0.1201 0.4220 0.0001 0.0239	-0.0233 0.0023 -1.0269 -2.3290 0.8018 -1.9277 -1.5321 -1.7551 -0.6442 -2.7987	0.0153 0.0371 -0.0020 -0.1563 2.7825 0.5513 0.3659 0.2025 1.5383 -0.9509
thal_1	-1.1527	0.5104	-2.2507	0.0233	-2.1530	-0.1524

#Logistic model by SK learn method

```
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
```

```
logreg= LogisticRegression(solver= 'sag')
logreg.fit(x1, y1)
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
y = column_or_1d(y, warn=True)

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: ConvergenceV
ConvergenceWarning,
LogisticRegression(solver='sag')

```
→
```

```
## X_test should alsso have only 2 columns
X_test2= X_test[cols]
```

X_test2.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 91 entries, 225 to 238
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	trestbps	91 non-null	int64
1	thalach	91 non-null	float64
2	oldpeak	91 non-null	float64
3	sex_1	91 non-null	uint8
4	cp_1	91 non-null	uint8
5	fbs_1	91 non-null	uint8
6	restecg_1	91 non-null	uint8
7	exang_1	91 non-null	uint8
8	slope_2	91 non-null	uint8
9	ca_1	91 non-null	uint8
10	thal_1	91 non-null	uint8
dtyp	es: float64	(2), int64(1),	uint8(8)
memo	ry usage: 3	.6 KB	

y_pred= logreg.predict(X_test2)

log_score= logreg.score(X_test2, y_test)

print("Accuracy of logistic regression classifier on test data:{}".format(log_score))

Accuracy of logistic regression classifier on test data:0.7032967032967034

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_pred)
print(confusion_matrix)

[[28 16] [11 36]]

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

precision recall f1-score support

0.72 0.64 0.67 44

```
0.77
            1
                     0.69
                                           0.73
                                                        47
                                           0.70
                                                        91
    accuracy
                     0.71
                                0.70
                                           0.70
                                                        91
   macro avg
weighted avg
                     0.70
                                0.70
                                           0.70
                                                        91
```


plt.title('ROC - AUC for Logistic Model')

plt.legend(loc="lower right")

plt.show()

Decision Tree Model

```
df.info()

<class 'pandas.core.frame.DataFrame'>
   RangeIndex: 303 entries, 0 to 302
   Data columns (total 14 columns):
```

```
#
    Column
             Non-Null Count Dtype
                             ----
0
              303 non-null
                             int64
    age
1
    sex
             303 non-null
                             int64
2
            303 non-null
    ср
                            int64
    trestbps 303 non-null
 3
                             int64
4
    chol
            303 non-null
                            float64
5
                           int64
    fbs
            303 non-null
    restecg 303 non-null
6
                             int64
7
    thalach 303 non-null
                            float64
8
            303 non-null
                            int64
    exang
    oldpeak 303 non-null
9
                             float64
10 slope
             303 non-null
                             int64
11 ca
             303 non-null
                            int64
12 thal
             303 non-null
                             int64
           303 non-null
13 target
                             int64
dtypes: float64(3), int64(11)
memory usage: 33.3 KB
```

df2=df[:]

df2.info()

```
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
            Non-Null Count Dtype
    Column
---
    -----
            -----
0
            303 non-null
                            int64
    age
1
    sex
             303 non-null
                           int64
2
           303 non-null int64
3
   trestbps 303 non-null
                          int64
4
    chol
             303 non-null
                          float64
5
    fbs
            303 non-null
                          int64
    restecg 303 non-null
                          int64
6
    thalach 303 non-null
 7
                           float64
8
    exang 303 non-null
                           int64
    oldpeak 303 non-null
9
                           float64
10 slope
           303 non-null
                            int64
11 ca
             303 non-null
                            int64
12 thal
             303 non-null
                            int64
13 target
             303 non-null
                            int64
dtypes: float64(3), int64(11)
```

<class 'pandas.core.frame.DataFrame'>

from sklearn.preprocessing import LabelEncoder
LE= LabelEncoder()

memory usage: 33.3 KB

```
df2['sex']= LE.fit_transform(df2['sex'])
df2['cp']= LE.fit_transform(df2['cp'])
df2['fbs']= LE.fit_transform(df2['fbs'])
df2['restecg']= LE.fit_transform(df2['restecg'])
df2['exang']= LE.fit_transform(df2['exang'])
df2['slope']= LE.fit_transform(df2['slope'])
df2['ca']= LE.fit_transform(df2['ca'])
```

df2['thal']= LE.fit_transform(df2['thal'])
df2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	1	145	233.0	1	0	150.0	0	2.3	0	0
1	37	1	1	130	250.0	0	1	187.0	0	3.5	0	0
2	41	0	1	130	204.0	0	0	172.0	0	1.4	1	0
3	56	1	1	120	236.0	0	1	178.0	0	0.8	1	0
4	57	0	0	120	354.0	0	1	163.0	1	0.6	1	0
298	57	0	0	140	241.0	0	1	123.0	1	0.2	0	0
299	45	1	1	110	264.0	0	1	132.0	0	1.2	0	0
300	68	1	0	144	193.0	1	1	141.0	0	3.4	0	1
301	57	1	0	130	131.0	0	1	115.0	1	1.2	0	1
302	57	0	1	130	236.0	0	0	174.0	0	0.0	0	1

303 rows × 14 columns

```
X = df2.loc[:, df2.columns != 'target']
y = df2.loc[:, df2.columns == 'target']
```

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):

Daca	CO_LU			, •
#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	float64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	float64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64

dtypes: float64(3), int64(10)

memory usage: 30.9 KB

у

```
target
       0
                1
       1
       2
                1
       3
       4
      298
                0
      299
                0
      300
                0
      301
                0
                0
      302
'''Fit Tree'''
#train test - split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
from sklearn.tree import DecisionTreeClassifier
#fit tree on train data
#model
clf = DecisionTreeClassifier()
#Fit Classifier model on train set
clf.fit(X_train, y_train)
     DecisionTreeClassifier()
#Predict/estimate train X train
y_pred_train = clf.predict(X_train)
y_pred_train
     array([1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
            0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
            0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,
            0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1,
            0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0,
```

0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,

```
[\text{Text}(180.20117647058825, 206.56799999999998, 'X[12] <= 0.5 \ngini = 0.494 \nsamples = 0.494 \nsa
  Text(110.28705882352942, 184.824, 'X[9] <= 1.7\ngini = 0.303\nsamples = 118\nvalue =
  Text(78.7764705882353, 163.0799999999999, 'X[11] <= 0.5 \neq 0.222 = 16
  Text(47.265882352941176, 141.336, 'X[0] <= 58.5\ngini = 0.139\nsamples = 80\nvalue =
   Text(31.51058823529412, 119.592, 'X[7] <= 156.5\ngini = 0.064\nsamples = 60\nvalue =
  Text(23.632941176470588, 97.848, 'X[3] <= 129.0\ngini = 0.219\nsamples = 16\nvalue =
  Text(15.75529411764706, 76.1039999999999, 'X[1] <= 0.5 \ngini = 0.48 \nsamples = 5 \nv
  Text(7.87764705882353, 54.360000000000014, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]
  Text(23.632941176470588, 54.360000000000014, 'gini = 0.0\nsamples = 2\nvalue = [2, 6]
  Text(31.51058823529412, 76.1039999999998, 'gini = 0.0\nsamples = 11\nvalue = [0, 11
   Text(39.38823529411765, 97.848, 'gini = 0.0 \times 10^{-1} = 0.0 \times 10^{-1} Text(39.38823529411765, 97.848, 'gini = 0.0 \times 10^{-1} Text(39.3882352941176, 97.848, 'gini = 0.0 \times 10^{-1} Text(39.3882352941176, 97.848, 'gini = 0.0 \times 10^{-1} Text(39.388235294, 97.848, 'gini = 0.0 \times 10^{-1}
  Text(63.02117647058824, 119.592, 'X[4] <= 243.5\ngini = 0.32\nsamples = 20\nvalue =
  Text(55.14352941176471, 97.848, 'gini = 0.0\nsamples = 9\nvalue = [0, 9]'),
  Text(70.89882352941177, 97.848, 'X[0] <= 64.5\ngini = 0.463\nsamples = 11\nvalue = [
  \label{text} Text(63.02117647058824, \ 76.10399999999999, \ 'X[7] <= 170.5 \\ line = 0.5 \\ line = 8 \\ line = 165.0 \\ line = 0.444 \\ line = 165.0 \\ line = 1
  Text(47.265882352941176, 32.61599999999985, 'X[4] <= 352.375 \ngini = 0.32 \nsamples
  Text(39.38823529411765, 10.872000000000014, 'gini = 0.0\nsamples = 4\nvalue = [4, 0]
  Text(55.14352941176471, 10.872000000000014, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
  Text(63.02117647058824, 32.61599999999995, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
  Text(70.89882352941177, 54.360000000000014, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]
  Text(78.7764705882353, 76.1039999999998, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]')
  Text(110.28705882352942, 141.336, 'X[2] <= 0.5\ngini = 0.434\nsamples = 22\nvalue =
  Text(94.53176470588235, 119.592, 'X[1] <= 0.5 \setminus 1 = 0.32 \setminus 1 = 0
  Text(86.65411764705883, 97.848, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1]'),
  Text(102.40941176470588, 97.848, 'gini = 0.0\nsamples = 4\nvalue = [4, 0]'),
  Text(126.04235294117647, 119.592, 'X[4] <= 172.0 \ngini = 0.291 \nsamples = 17 \nvalue
  Text(118.16470588235295, 97.848, 'gini = 0.0 \nsamples = 1 \nvalue = [1, 0]'), \\ Text(133.9200000000002, 97.848, 'X[4] <= 279.5 \ngini = 0.219 \nsamples = 16 \nvalue = 10 \
   Text(126.04235294117647, 76.1039999999998, 'gini = 0.0\nsamples = 9\nvalue = [0, 9]
  Text(133.9200000000002, 54.36000000000014, 'gini = 0.0\nsamples = 1\nvalue = [1, @
  Text(149.67529411764707, 54.360000000000014, 'X[7] <= 154.5 \ngini = 0.278\nsamples =
  Text(141.79764705882354, 32.615999999999985, 'X[0] <= 54.5\ngini = 0.5\nsamples = 2\
Text(133.9200000000000, 10.87200000000014, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]
   Text(149.67529411764707, 10.872000000000014, 'gini = 0.0\nsamples = 1\nvalue = \lceil 1, 6 \rceil
  Text(157.5529411764706, 32.615999999999985, 'gini = 0.0 \\ lnsamples = 4 \\ lnvalue = [0, 4] \\ lnsamples = 4.5 \\ lnsampl
  Text(133.9200000000000, 141.336, 'gini = 0.0\nsamples = 3\nvalue = [0, 3]'),
  Text(149.67529411764707, 141.336, 'X[0] <= 63.5\ngini = 0.426\nsamples = 13\nvalue = Text(141.79764705882354, 119.592, 'gini = 0.0\nsamples = 8\nvalue = [8, 0]'),
   Text(157.5529411764706, \ 119.592, \ 'X[7] <= 111.5 \\ line = 0.32 \\ line = 5 \\ line = 10.32 \\ 
  Text(149.67529411764707, 97.848, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
  Text(165.43058823529412, 97.848, 'gini = 0.0\nsamples = 4\nvalue = [0, 4]'),
  Text(250.11529411764707, 184.824, 'X[2] <= 0.5\ngini = 0.359\nsamples = 94\nvalue =
  Text(208.75764705882352, 163.07999999999999, 'X[9] <= 0.5 \ngini = 0.19 \nsamples = 66
  Text(181.18588235294118, 141.336, 'X[7] <= 117.0\ngini = 0.43\nsamples = 16\nvalue =
  Text(173.30823529411765, 119.592, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),
  Text(189.0635294117647, 119.592, 'X[4] <= 217.0\ngini = 0.337\nsamples = 14\nvalue =
  Text(181.18588235294118, 97.848, 'X[11] <= 0.5\ngini = 0.5\nsamples = 6\nvalue = [3,
  Text(173.30823529411765, 76.1039999999998, 'X[6] <= 0.5\ngini = 0.375\nsamples = 4\
  Text(165.43058823529412, 54.360000000000014, 'gini = 0.0\nsamples = 1\nvalue = [1, {
  Text(181.18588235294118, 54.360000000000014, 'gini = 0.0\nsamples = 3\nvalue = [0, ]
  Text(189.0635294117647, 76.1039999999999, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]
  Text(196.94117647058823, 97.848, 'gini = 0.0\nsamples = 8\nvalue = [8, 0]'),
  Text(236.3294117647059, 141.336, 'X[0] <= 65.5\ngini = 0.077\nsamples = 50\nvalue =
   Text(220.57411764705884, 119.592, 'X[3] <= 112.0\ngini = 0.042\nsamples = 47\nvalue
```

```
#Model has learnt unneccesaary things
#Need to optimize
from sklearn.metrics import accuracy_score
print(round(accuracy_score(y_train,y_pred_train), 2))
     1.0
print(round(accuracy_score(y_test,y_pred_test), 2))
     0.66
# Accuracy of train data is 1
# Accuracy of test data is 0.66
from sklearn import tree
path = clf.cost complexity pruning path(X train, y train)
path
     {'ccp_alphas': array([0. , 0.00393082, 0.00408805, 0.0043239 , 0.0045283 ,
             0.00581761, 0.00628931, 0.0067086, 0.006798, 0.00707547,
             0.00754717, 0.00754717, 0.00808625, 0.00825472, 0.00934166,
             0.01027254, 0.01189882, 0.01479953, 0.01782345, 0.02469498,
             0.03423776, 0.16576779]),
                                     , 0.00786164, 0.02421384, 0.03286164, 0.05097484.
      'impurities': array([0.
             0.10333333, 0.10962264, 0.11633124, 0.12312924, 0.13728018,
             0.14482735, 0.15237452, 0.16046078, 0.16871549, 0.18739882,
             0.19767136, 0.22146899, 0.25106805, 0.2688915, 0.29358648,
             0.32782424, 0.49359203])}
alphas = path['ccp alphas']
alphas
                      , 0.00393082, 0.00408805, 0.0043239 , 0.0045283 ,
     array([0.
            0.00581761, 0.00628931, 0.0067086 , 0.006798 , 0.00707547,
            0.00754717, 0.00754717, 0.00808625, 0.00825472, 0.00934166,
            0.01027254, 0.01189882, 0.01479953, 0.01782345, 0.02469498,
            0.03423776, 0.16576779])
acrcy_train, acrcy_test = [],[]
for i in alphas:
    clf = DecisionTreeClassifier(ccp alpha=i)
    clf.fit(X train, y train)
```

```
y_pred_train = clf.predict(X_train)
    y pred test = clf.predict(X test)
    acrcy_train.append(accuracy_score(y_train, y_pred_train))
    acrcy_test.append(accuracy_score(y_test,y_pred_test))
acrcy_train
     [1.0,
      0.9952830188679245,
      0.9858490566037735,
```

0.9811320754716981,

0.9716981132075472,

0.9433962264150944,

0.9386792452830188, 0.9339622641509434,

0.9292452830188679,

0.9150943396226415,

0.9056603773584906,

0.9056603773584906,

0.9056603773584906,

0.9009433962264151,

0.8915094339622641,

0.8820754716981132, 0.8679245283018868,

0.839622641509434,

0.8113207547169812,

0.8018867924528302,

0.7924528301886793,

0.5566037735849056]

acrcy_test

0.6813186813186813, 0.7802197802197802, 0.7582417582417582, 0.8131868131868132, 0.7912087912087912,

[0.7252747252747253,

0.8021978021978022,

0.8131868131868132,

0.7802197802197802,

0.7802197802197802,

0.7912087912087912,

0.8021978021978022,

0.8021978021978022,

0.8021978021978022,

0.8021978021978022,

0.8021978021978022,

0.7472527472527473,

0.7472527472527473,

0.7252747252747253,

0.7142857142857143,

0.7032967032967034,

0.5164835164835165]

```
# now we have scores
# lets, plot

sns.set()
plt.figure(figsize = (14,7))
sns.lineplot(y =acrcy_train, x = alphas, label = 'Train_Accuracy')
sns.lineplot(y =acrcy_test, x = alphas, label = 'Test_Accuracy')
plt.xticks(ticks=np.arange(0.00,0.2,0.01))
plt.xlabel('alphas')
plt.ylabel('accuracy')
plt.show()
```



```
#____with ccp = 0.015
clf = DecisionTreeClassifier(ccp_alpha=0.015, random_state = 14)

clf.fit(X_train,y_train)
    DecisionTreeClassifier(ccp_alpha=0.015, random_state=14)

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

from sklearn.metrics import accuracy_score
    print(round(accuracy_score(y_train,y_pred_train), 2))
    0.84
```

```
print(round(accuracy_score(y_test,y_pred_test), 2))
```

0.75

Confusion Matrix

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

confusion_matrix = confusion_matrix(y_test, y_pred_test)
print(confusion_matrix)

[[27 17] [6 41]]

Classification Report

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred_test))

precision	recall	f1-score	support
0.82	0.61	0.70	44
0.71	0.87	0.78	47
		0.75	91
0.76	0.74	0.74	91
0.76	0.75	0.74	91
	0.82 0.71 0.76	0.82	0.82 0.61 0.70 0.71 0.87 0.78 0.76 0.74 0.74

ROC AUC Curve

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
```

from sklearn.metrics import roc_curve, auc, roc_auc_score

predictedProbability = clf.predict_proba(X_test)[:, 1]
fpr,tpr, thresholds = metrics.roc_curve(y_test, predictedProbability)

fpr

```
array([0. , 0.27272727, 0.38636364, 0.45454545, 0.52272727, 1. ])
```

tpr

```
array([0. , 0.70212766, 0.87234043, 0.91489362, 0.93617021, 1. ])
```

thresholds

```
array([1.87254902, 0.87254902, 0.7
                                               , 0.4375
                                                           , 0.125
            0.10606061])
dff = pd.DataFrame(dict(fpr = fpr,tpr = tpr))
auc = auc(fpr,tpr)
auc
     0.7712765957446808
plt.figure()
lw = 2
plt.plot(fpr, tpr, color = 'darkorange',
         lw =lw, label = 'ROC Curve (area = %0.2f)' %auc)
plt.plot([0,1],[0,1], color='navy', lw = lw, linestyle = '--')
plt.xlim([-0.1, 1.0])
plt.ylim([0.0, 1.1])
plt.xlabel('1-Specificity(False Positive Rate)')
plt.ylabel('Sensitivity(True Positive Rate)')
plt.title("ROC - AUC for Decision Tree Model")
plt.legend(loc = "lower right")
plt.show()
```


Random Forest

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): Non-Null Count Dtype # Column 0 age 303 non-null int64 1 sex 303 non-null int64 2 ср 303 non-null int64 3 trestbps 303 non-null int64 4 chol 303 non-null float64 5 int64 fbs 303 non-null

303 non-null

int64

restecg

```
303 non-null
      7
          thalach
                                    float64
      8
          exang
                  303 non-null
                                    int64
          oldpeak
      9
                    303 non-null
                                    float64
      10
         slope
                    303 non-null
                                    int64
      11 ca
                    303 non-null
                                    int64
      12 thal
                    303 non-null
                                    int64
      13 target
                    303 non-null
                                    int64
     dtypes: float64(3), int64(11)
     memory usage: 33.3 KB
df2=df[:]
df2.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
     Data columns (total 14 columns):
          Column
                   Non-Null Count Dtype
     _ _ _
          ____
                    -----
                                    ----
      0
                    303 non-null
                                    int64
          age
      1
          sex
                    303 non-null
                                    int64
      2
                   303 non-null
                                    int64
         ср
      3
         trestbps 303 non-null
                                    int64
      4
          chol
                   303 non-null
                                    float64
      5
         fbs
                   303 non-null
                                    int64
      6
         restecg 303 non-null
                                    int64
      7
         thalach 303 non-null
                                    float64
      8
                   303 non-null
                                    int64
          exang
          oldpeak 303 non-null
                                    float64
      9
      10 slope
                    303 non-null
                                    int64
      11 ca
                    303 non-null
                                    int64
      12 thal
                    303 non-null
                                    int64
                   303 non-null
                                    int64
      13 target
     dtypes: float64(3), int64(11)
     memory usage: 33.3 KB
from sklearn.preprocessing import LabelEncoder
LE= LabelEncoder()
df2['sex']= LE.fit transform(df2['sex'])
df2['cp']= LE.fit transform(df2['cp'])
df2['fbs']= LE.fit_transform(df2['fbs'])
df2['restecg']= LE.fit transform(df2['restecg'])
df2['exang']= LE.fit transform(df2['exang'])
df2['slope']= LE.fit transform(df2['slope'])
df2['ca']= LE.fit transform(df2['ca'])
df2['thal']= LE.fit transform(df2['thal'])
df2
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	1	145	233.0	1	0	150.0	0	2.3	0	0
1	37	1	1	130	250.0	0	1	187.0	0	3.5	0	0
2	41	0	1	130	204.0	0	0	172.0	0	1.4	1	0
3	56	1	1	120	236.0	0	1	178.0	0	0.8	1	0
4	57	0	0	120	354.0	0	1	163.0	1	0.6	1	0
298	57	0	0	140	241.0	0	1	123.0	1	0.2	0	0
299	45	1	1	110	264.0	0	1	132.0	0	1.2	0	0
300	68	1	n	144	193 0	1	1	141 0	Ο	3 4	n	1
	_			ns != 'tar ns == 'tar	_							
JU2	υı	U	1	130	∠30.0	U	U	1/4.0	U	υ.υ	U	1

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):

#	Column	Non-Nul	1 Count	Dtype
0	age	303 non	-null	int64
1	sex	303 non	-null	int64
2	ср	303 non	-null	int64
3	trestbps	303 non	-null	int64
4	chol	303 non	-null	float64
5	fbs	303 non	-null	int64
6	restecg	303 non	-null	int64
7	thalach	303 non	-null	float64
8	exang	303 non	-null	int64
9	oldpeak	303 non	-null	float64
10	slope	303 non	-null	int64
11	ca	303 non	-null	int64
12	thal	303 non	-null	int64
		- / - >		

dtypes: float64(3), int64(10)

memory usage: 30.9 KB

У

```
target
      0
               1
      1
               1
      2
               1
      3
'''Fit Tree'''
#train test - split
from sklearn.model_selection import train_test_split
     204
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
#import the classifier
from sklearn.ensemble import RandomForestClassifier
#Create Classifier object
#in our previous experiment, we found ccp_alphas = 0.015 has the best accuarcy
clf_rf = RandomForestClassifier(n_estimators =100, ccp_alpha= 0.015, random_state = 14)
#fit the classifier with x and y data = train
mod_rf = clf_rf.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DataConversionWarning
#Prediction
y_train_pred = mod_rf.predict(X_train)
y_train_pred
     array([1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,
           0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
           0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
           1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1,
           0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0,
           0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
           0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
           1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0,
           1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1])
#Prediction
y_test_pred = mod_rf.predict(X_test)
y_test_pred
```

0.9

print(round(accuracy_score(y_test,y_test_pred), 2))

0.81

fi.head()

	feature	importance
12	thal	0.203829
11	ca	0.156076
9	oldpeak	0.115380
2	ср	0.113929
8	exang	0.100628

```
Int64Index: 212 entries, 137 to 172
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	age	212 non-null	int64
1	sex	212 non-null	int64
2	ср	212 non-null	int64
3	trestbps	212 non-null	int64
4	chol	212 non-null	float64
5	fbs	212 non-null	int64
6	restecg	212 non-null	int64
7	thalach	212 non-null	float64
8	exang	212 non-null	int64
9	oldpeak	212 non-null	float64
10	slope	212 non-null	int64
11	ca	212 non-null	int64
12	thal	212 non-null	int64
d+vn	es: float6	4(3) int64(10)	

dtypes: float64(3), int64(10)
memory usage: 23.2 KB

```
X_train1 = X_train.iloc[ : ,[2,8,9,11,12]]
X_train1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 212 entries, 137 to 172
Data columns (total 5 columns):
```

Data	COTUMITS	(COCAL) COLUMNIS	<i>)</i> •
#	Column	Non-Null Count	Dtype
0	ср	212 non-null	int64
1	exang	212 non-null	int64
2	oldpeak	212 non-null	float64
3	ca	212 non-null	int64
4	thal	212 non-null	int64
	67 .		

dtypes: float64(1), int64(4)
memory usage: 9.9 KB

mod_rf1 = clf_rf1.fit(X_train1, y_train)

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DataConversionWarning """Entry point for launching an IPython kernel.

```
\triangleleft
```

#Prediction

```
y_train_pred1 = mod_rf1.predict(X_train1)
y_train_pred1
```

```
X test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 91 entries, 225 to 238
     Data columns (total 13 columns):
      #
          Column
                   Non-Null Count Dtype
      0
                   91 non-null
                                    int64
         age
      1
                   91 non-null
                                    int64
          sex
                                    int64
      2
                   91 non-null
         ср
      3 trestbps 91 non-null
                                   int64
      4
         chol
                   91 non-null
                                   float64
      5
         fbs
                   91 non-null
                                    int64
      6
         restecg 91 non-null
                                   int64
      7
         thalach 91 non-null
                                  float64
                   91 non-null
                                   int64
      8
         exang
         oldpeak 91 non-null
      9
                                   float64
      10 slope
                   91 non-null
                                    int64
      11 ca
                    91 non-null
                                    int64
      12 thal
                    91 non-null
                                    int64
     dtypes: float64(3), int64(10)
     memory usage: 10.0 KB
X_{\text{test1}} = X_{\text{test.iloc}}[:,[2,8,9,11,12]]
X_test1.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 91 entries, 225 to 238
     Data columns (total 5 columns):
         Column Non-Null Count Dtype
                  91 non-null
      0
                                  int64
         ср
      1
                  91 non-null
                                  int64
          exang
      2
         oldpeak 91 non-null
                                  float64
      3
                   91 non-null
                                  int64
          ca
          thal
                   91 non-null
                                   int64
     dtypes: float64(1), int64(4)
     memory usage: 4.3 KB
#Prediction
y test pred1 = mod rf1.predict(X test1)
y test pred1
     array([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0,
            0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
            1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1,
            1, 1, 1])
from sklearn.metrics import accuracy score
print(round(accuracy_score(y_train,y_train_pred1), 2))
```

0.86

```
print(round(accuracy_score(y_test,y_test_pred1), 2))
     0.81
### There is no much difference in accuarcy
#Earlier train accuracy = 0.9 now with 4 features its 0.86
#Earlier test accuracy = 0.81 now with 4 features its 0.81
### Confusion Matrix
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_test_pred1)
print(confusion_matrix)
     [[31 13]
      [ 4 43]]
### Classification Report
print(classification_report(y_test, y_test_pred1))
                   precision
                              recall f1-score
                                                   support
                        0.89
                                  0.70
                                            0.78
                                                        44
                1
                        0.77
                                  0.91
                                            0.83
                                                        47
         accuracy
                                            0.81
                                                        91
                                            0.81
        macro avg
                        0.83
                                  0.81
                                                        91
     weighted avg
                        0.82
                                  0.81
                                            0.81
                                                        91
##################### ROC AUC Curve
from sklearn.metrics import roc auc score
from sklearn.metrics import roc_curve
from sklearn.metrics import roc curve, auc, roc auc score
predictedProbability1 = mod rf1.predict proba(X test1)[:, 1]
fpr,tpr, thresholds = metrics.roc_curve(y_test, predictedProbability1)
fpr
     array([0.
                      , 0.02272727, 0.06818182, 0.06818182, 0.09090909,
            0.09090909, 0.13636364, 0.13636364, 0.13636364, 0.15909091,
            0.15909091, 0.18181818, 0.18181818, 0.20454545, 0.20454545,
            0.22727273, 0.25
                               , 0.29545455, 0.29545455, 0.34090909,
            0.36363636, 0.56818182, 0.56818182, 0.63636364, 0.65909091,
```

1)

0.75

0.97727273, 1.

, 0.79545455, 0.84090909, 0.88636364, 0.93181818,

tpr

```
, 0.34042553, 0.36170213, 0.40425532, 0.46808511,
     array([0.
            0.4893617 , 0.5106383 , 0.55319149, 0.57446809, 0.59574468,
            0.61702128, 0.63829787, 0.68085106, 0.72340426, 0.72340426,
            0.76595745, 0.76595745, 0.78723404, 0.80851064, 0.85106383,
            0.87234043, 0.91489362, 0.91489362, 0.93617021, 0.93617021,
            0.95744681, 0.95744681, 0.9787234 , 0.9787234 , 1.
                                , 1.
                                             , 1.
                      , 1.
            1.
                      , 1.
                                 1)
thresholds
     array([1.89541299, 0.89541299, 0.87927376, 0.87323944, 0.86817101,
            0.85796746, 0.84706323, 0.83106041, 0.82920144, 0.78756654,
            0.77792825, 0.76811059, 0.72797353, 0.71908852, 0.71394146,
            0.69817409, 0.69024108, 0.67850108, 0.66600645, 0.61190299,
            0.60839611, 0.51014379, 0.5002123, 0.4982503, 0.45813156,
            0.42562654, 0.28671954, 0.27201602, 0.20334771, 0.17894051,
            0.11768904, 0.11394835, 0.10070404, 0.09012524, 0.08501373,
            0.082074 , 0.081574 ])
dff1 = pd.DataFrame(dict(fpr = fpr,tpr = tpr))
auc1 = auc(fpr,tpr)
auc1
     0.9008704061895552
''' Area Under Curve is 0.9 '''
plt.figure()
1w = 2
plt.plot(fpr, tpr, color = 'green',
         lw =lw, label = 'ROC Curve (area = %0.2f)' %auc1)
plt.plot([0,1],[0,1], color='navy', lw = lw, linestyle = '--')
plt.xlim([-0.1, 1.0])
plt.ylim([0.0, 1.1])
plt.xlabel('1-Specificity(False Positive Rate)')
plt.ylabel('Sensitivity(True Positive Rate)')
plt.title("ROC - AUC for Random forest")
plt.legend(loc = "lower right")
plt.show()
```


Gradient Boosting Model

```
≥ 0.4
```

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import GridSearchCV

100 04110 (4104 - 0.50)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	float64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	float64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
44	£1+C	4/2\	:-+(1/11)	

dtypes: float64(3), int64(11)

memory usage: 33.3 KB

df2=df[:]

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	float64
8	exang	303 non-null	int64

```
9
   oldpeak
            303 non-null
                            float64
10 slope
           303 non-null
                            int64
             303 non-null
                            int64
11 ca
12 thal
            303 non-null
                            int64
13 target
            303 non-null
                            int64
```

dtypes: float64(3), int64(11)
memory usage: 33.3 KB

from sklearn.preprocessing import LabelEncoder
LE= LabelEncoder()

```
df2['sex']= LE.fit_transform(df2['sex'])
df2['cp']= LE.fit_transform(df2['cp'])
df2['fbs']= LE.fit_transform(df2['fbs'])
df2['restecg']= LE.fit_transform(df2['restecg'])
df2['exang']= LE.fit_transform(df2['exang'])
df2['slope']= LE.fit_transform(df2['slope'])
df2['ca']= LE.fit_transform(df2['ca'])
df2['thal']= LE.fit_transform(df2['thal'])
df2
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	1	145	233.0	1	0	150.0	0	2.3	0	0
1	37	1	1	130	250.0	0	1	187.0	0	3.5	0	0
2	41	0	1	130	204.0	0	0	172.0	0	1.4	1	0
3	56	1	1	120	236.0	0	1	178.0	0	8.0	1	0
4	57	0	0	120	354.0	0	1	163.0	1	0.6	1	0
298	57	0	0	140	241.0	0	1	123.0	1	0.2	0	0
299	45	1	1	110	264.0	0	1	132.0	0	1.2	0	0
300	68	1	0	144	193.0	1	1	141.0	0	3.4	0	1
301	57	1	0	130	131.0	0	1	115.0	1	1.2	0	1
302	57	0	1	130	236.0	0	0	174.0	0	0.0	0	1

303 rows × 14 columns

```
X = df2.loc[:, df2.columns != 'target']
y = df2.loc[:, df2.columns == 'target']
```

X.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):
    # Column Non-Null Count Dtype
```

```
0
                             int64
    age
             303 non-null
1
   sex
             303 non-null
                             int64
2
              303 non-null
   ср
                             int64
3
   trestbps 303 non-null
                             int64
   chol
             303 non-null
                             float64
5
   fbs
              303 non-null
                             int64
6
   restecg 303 non-null
                             int64
7
   thalach 303 non-null
                             float64
8
    exang
             303 non-null
                             int64
9
   oldpeak 303 non-null
                             float64
10 slope
             303 non-null
                             int64
11 ca
              303 non-null
                             int64
12 thal
              303 non-null
                             int64
```

dtypes: float64(3), int64(10)

memory usage: 30.9 KB

У

	target
0	1
1	1
2	1
3	1
4	1
298	0
299	0
300	0
301	0
302	0

303 rows × 1 columns

```
"''Fit Tree'''
#train test - split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

GB = GradientBoostingClassifier()

GB_mod = GB.fit(X_train, y_train)

/usr/local/lib/python3.7/dist-packages/sklearn/ensemble/_gb.py:494: DataConversionWar y = column_or_1d(y, warn=True)
```

```
# Prediction
y_train_GB = GB_mod.predict(X_train)
y train GB
     array([1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
            0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
            0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0,
            0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1,
            0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0,
            0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
            1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0,
            1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0])
# Prediction
y_test_GB = GB_mod.predict(X_test)
y_test_GB
     array([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0,
            0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0,
            0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
            1, 1, 1])
print(round(accuracy_score(y_train, y_train_GB), 2))
     1.0
print(round(accuracy_score(y_test, y_test_GB), 2))
     0.81
### Confusion Matrix
from sklearn.metrics import confusion matrix
confusion_matrix = confusion_matrix(y_test, y_test_GB)
print(confusion matrix)
     [[33 11]
      [ 6 41]]
### Classification Report
from sklearn.metrics import classification report
print(classification_report(y_test, y_test_GB))
                   precision
                                recall f1-score
                                                   support
```

0	0.85	0.75	0.80	44
1	0.79	0.87	0.83	47
accuracy			0.81	91
macro avg	0.82	0.81	0.81	91
weighted avg	0.82	0.81	0.81	91

Knowing your Nearest Neighbours(KNN)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): Column Non-Null Count Dtype -----0 303 non-null int64 age 1 sex 303 non-null int64 2 ср 303 non-null int64 3 trestbps 303 non-null int64 4 chol 303 non-null float64

303 non-null 5 fbs int64 6 restecg 303 non-null int64 7 thalach 303 non-null float64 8 exang 303 non-null int64 oldpeak 303 non-null float64 9 10 slope 303 non-null int64 303 non-null int64 11 ca 12 thal 303 non-null int64

int64

13 target 303 non-null dtypes: float64(3), int64(11)

memory usage: 33.3 KB

df2=df[:]

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302

Data columns (total 14 columns):

	(, -
#	Column	Non-N	ull Count	Dtype
0	age	303 n	on-null	int64
1	sex	303 n	on-null	int64
2	ср	303 n	on-null	int64
3	trestbps	303 n	on-null	int64
4	chol	303 n	on-null	float64
5	fbs	303 n	on-null	int64
6	restecg	303 n	on-null	int64
7	thalach	303 n	on-null	float64
8	exang	303 n	on-null	int64
9	oldpeak	303 n	on-null	float64
10	slope	303 n	on-null	int64
11	ca	303 n	on-null	int64
12	thal	303 n	on-null	int64

13 target 303 non-null int64

dtypes: float64(3), int64(11)

memory usage: 33.3 KB

from sklearn.preprocessing import LabelEncoder
LE= LabelEncoder()

```
df2['sex']= LE.fit_transform(df2['sex'])
df2['cp']= LE.fit_transform(df2['cp'])
df2['fbs']= LE.fit_transform(df2['fbs'])
df2['restecg']= LE.fit_transform(df2['restecg'])
df2['exang']= LE.fit_transform(df2['exang'])
df2['slope']= LE.fit_transform(df2['slope'])
df2['ca']= LE.fit_transform(df2['ca'])
df2['thal']= LE.fit_transform(df2['thal'])
df2
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	1	145	233.0	1	0	150.0	0	2.3	0	0
1	37	1	1	130	250.0	0	1	187.0	0	3.5	0	0
2	41	0	1	130	204.0	0	0	172.0	0	1.4	1	0
3	56	1	1	120	236.0	0	1	178.0	0	0.8	1	0
4	57	0	0	120	354.0	0	1	163.0	1	0.6	1	0
298	57	0	0	140	241.0	0	1	123.0	1	0.2	0	0
299	45	1	1	110	264.0	0	1	132.0	0	1.2	0	0
300	68	1	0	144	193.0	1	1	141.0	0	3.4	0	1
301	57	1	0	130	131.0	0	1	115.0	1	1.2	0	1
302	57	0	1	130	236.0	0	0	174.0	0	0.0	0	1

303 rows × 14 columns

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64

```
7
    thalach
             303 non-null
                              float64
                              int64
 8
    exang
            303 non-null
    oldpeak 303 non-null
 9
                              float64
 10 slope
              303 non-null
                              int64
 11 ca
              303 non-null
                              int64
 12 thal
              303 non-null
                              int64
 13 target
              303 non-null
                              int64
dtypes: float64(3), int64(11)
memory usage: 33.3 KB
```

X = df2.loc[:, df2.columns != 'target']
y = df2.loc[:, df2.columns == 'target']

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	float64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64

dtypes: float64(3), int64(10)

memory usage: 30.9 KB

У

```
target
      0
              1
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
from sklearn.neighbors import KNeighborsClassifier
     ∠50
#Building Model @ n_neighbors = 9
knn = KNeighborsClassifier(n_neighbors = 9)
print(knn)
mpm_knn = knn.fit(X_train, y_train)
print(mpm knn)
    KNeighborsClassifier(n_neighbors=9)
    KNeighborsClassifier(n_neighbors=9)
    /usr/local/lib/python3.7/dist-packages/sklearn/neighbors/_classification.py:198: Data
      return self._fit(X, y)
#Applying on Test data for prediction
y_pred_KNN = mpm_knn.predict(X_test)
print(y_pred_KNN)
    00101000110110111]
#Prediction Score
mpm_knn.score(X_test, y_test)
    0.7142857142857143
#Accuracy Score
from sklearn.metrics import accuracy score
accuracy_score(y_test, y_pred_KNN)
    0.7142857142857143
# creating a confusion matrix
from sklearn.metrics import confusion matrix
knn predictions = knn.predict(X test)
cm = confusion_matrix(y_test, knn_predictions)
cm
```

```
array([[27, 17],
[ 9, 38]])
```

Classification Report

from sklearn.metrics import classification_report
print(classification_report(y_test, knn_predictions))

	precision	recall	f1-score	support
0	0.75	0.61	0.67	44
1	0.69	0.81	0.75	47
accuracy			0.71	91
macro avg	0.72	0.71	0.71	91
weighted avg	0.72	0.71	0.71	91

SVM

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype	
0	age	303 non-null	int64	
1	sex	303 non-null	int64	
2	ср	303 non-null	int64	
3	trestbps	303 non-null	int64	
4	chol	303 non-null	float64	
5	fbs	303 non-null	int64	
6	restecg	303 non-null	int64	
7	thalach	303 non-null	float64	
8	exang	303 non-null	int64	
9	oldpeak	303 non-null	float64	
10	slope	303 non-null	int64	
11	ca	303 non-null	int64	
12	thal	303 non-null	int64	
13	target	303 non-null	int64	
dtypes: float64(3), int64(11)				
memo	ry usage:	33.3 KB		

df2= df[:]

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64

```
3
    trestbps 303 non-null
                              int64
 4
    chol
             303 non-null
                              float64
 5
    fbs
              303 non-null
                              int64
 6
    restecg 303 non-null
                              int64
 7
    thalach 303 non-null
                              float64
 8
    exang
              303 non-null
                              int64
 9
    oldpeak 303 non-null
                              float64
 10 slope
            303 non-null
                              int64
 11 ca
              303 non-null
                              int64
 12 thal
              303 non-null
                              int64
 13 target
             303 non-null
                              int64
dtypes: float64(3), int64(11)
memory usage: 33.3 KB
```

from sklearn.preprocessing import LabelEncoder
LE= LabelEncoder()

```
df2['sex']= LE.fit_transform(df2['sex'])
df2['cp']= LE.fit_transform(df2['cp'])
df2['fbs']= LE.fit_transform(df2['fbs'])
df2['restecg']= LE.fit_transform(df2['restecg'])
df2['exang']= LE.fit_transform(df2['exang'])
df2['slope']= LE.fit_transform(df2['slope'])
df2['ca']= LE.fit_transform(df2['ca'])
df2['thal']= LE.fit_transform(df2['thal'])
df2
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	63	1	1	145	233.0	1	0	150.0	0	2.3	0	0
1	37	1	1	130	250.0	0	1	187.0	0	3.5	0	0
2	41	0	1	130	204.0	0	0	172.0	0	1.4	1	0
3	56	1	1	120	236.0	0	1	178.0	0	0.8	1	0
4	57	0	0	120	354.0	0	1	163.0	1	0.6	1	0
										•••		
298	57	0	0	140	241.0	0	1	123.0	1	0.2	0	0
299	45	1	1	110	264.0	0	1	132.0	0	1.2	0	0
300	68	1	0	144	193.0	1	1	141.0	0	3.4	0	1
301	57	1	0	130	131.0	0	1	115.0	1	1.2	0	1
302	57	0	1	130	236.0	0	0	174.0	0	0.0	0	1

303 rows × 14 columns

df2.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
```

```
#
   Column
            Non-Null Count Dtype
            303 non-null
                           int64
0
   age
1
            303 non-null
                           int64
   sex
2
            303 non-null
                           int64
   ср
   trestbps 303 non-null
3
                           int64
4
   chol
            303 non-null
                           float64
5
   fbs
           303 non-null
                          int64
   restecg 303 non-null
                           int64
6
7
   thalach 303 non-null
                           float64
8
   exang
            303 non-null
                           int64
   oldpeak 303 non-null
                           float64
9
10 slope
            303 non-null
                           int64
            303 non-null
11 ca
                           int64
12 thal
            303 non-null
                           int64
13 target
          303 non-null
                           int64
```

dtypes: float64(3), int64(11)

memory usage: 33.3 KB

```
X = df2.loc[:, df2.columns != 'target']
y = df2.loc[:, df2.columns == 'target']
```

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	float64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	float64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64

dtypes: float64(3), int64(10)

memory usage: 30.9 KB

У

```
target
       0
                1
       1
                1
       2
       3
       4
      298
                0
# splitting
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
      301
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
from sklearn import svm
from sklearn.svm import SVC
svm_model= svm.SVC(kernel='linear', C=1, gamma='auto', probability= True).fit(X_train, y_t
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
       y = column_or_1d(y, warn=True)
y_pred_SVM = svm_model.predict(X_test)
# model accuracy for X test
accuracy = svm_model.score(X_test, y_test)
print(accuracy)
     0.8241758241758241
# creating a confusion matrix
from sklearn.metrics import confusion matrix
cm = confusion_matrix(y_test, y_pred_SVM)
cm
     array([[34, 10],
            [ 6, 41]])
### Classification Report
from sklearn.metrics import classification report
print(classification_report(y_test, y_pred_SVM))
```

	precision	recision recall f		support	
0	0.85	0.77	0.81	44	
1	0.80	0.87	0.84	47	
accuracy			0.82	91	
macro avg	0.83	0.82	0.82	91	
weighted avg	0.83	0.82	0.82	91	

Naive Bayes

```
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB().fit(X_train, y_train)
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:985: DataConversic
y = column_or_1d(y, warn=True)


```
gnb_predictions = gnb.predict(X_test)
```

```
# accuracy on X_test
accuracy = gnb.score(X_test, y_test)
print(accuracy)
```

0.8131868131868132

```
# creating a confusion matrix
cm = confusion_matrix(y_test, gnb_predictions)
cm
```

Classification Report

from sklearn.metrics import classification_report
print(classification_report(y_test, gnb_predictions))

	precision	recall	f1-score	support
0	0.81	0.80	0.80	44
1	0.81	0.83	0.82	47
accuracy			0.81	91
macro avg	0.81	0.81	0.81	91
weighted avg	0.81	0.81	0.81	91