Math Camp

Justin Grimmer

Associate Professor Department of Political Science University of Chicago

September 6th, 2017

Multivariable Calculus

Functions of many variables:

- 1) Policies may be multidimensional (policy provision and pork buy off)
- Countries may invest in offensive and defensive resources for fighting wars
- 3) Ethnicity and resources could affect investment

Today:

- 0) Determinant
- 0) Eigenvector/Diagonalization
- 1) Multivariate functions
- 2) Partial Derivatives, Gradients, Jacobians, and Hessians
- 3) Total Derivative, Implicit Differentiation, Implicit Function Theorem
- 4) Multivariate Integration

Suppose we have a square $(n \times n)$ matrix A

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

A determinant is a function that assigns a number to square matrices

Facts needed to define determinant:

Definition

A permutation of the set of integers $\{1, 2, ..., J\}$ is an arrangement of these integers in some order without omissions or repetition.

For example, consider $\{1, 2, 3, 4\}$ $\{3, 2, 1, 4\}$ $\{4, 3, 2, 1\}$

If we have J integers then there are J! permutations

Definition

An inversion occurs when a larger integer occurs before a smaller integer in a permutation

Even permutation: total inversions are even

Odd permutation: total inversions are odd

Count the inversions

```
{3,2,1}
```

$$\{1, 2, 3\}$$

$${3,1,2}$$

$$\{2, 1, 3\}$$

$$\{1, 3, 2\}$$

$$\{2, 3, 1\}$$

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1.

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Definition

For a square nxn matrix A, we will call an elementary product an n element long product, with no two components coming from the same row or column. We will call a signed elementary product one that multiplies odd permutations of the column numbers by -1.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

There are n! elementary products

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 2×2 matrix

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 2×2 matrix

$$\det(A) = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 2×2 matrix

$$det(A) = det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$= a_{11}a_{22} - a_{12}a_{21}$$

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 3×3 matrix.

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 3×3 matrix.

$$\det(A) = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 3×3 matrix.

$$\det(A) = \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

Definition

Suppose A is an $n \times n$ matrix. Define the determinant function det(A) to be the sum of signed elementary products from A. Call det(A) the determinant of A

Suppose A is a 3×3 matrix.

$$\det(A) = \det\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

R Code!

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector and λ is the associated eigenvalue

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then x is an eigenvector and λ is the associated eigenvalue

- **A** stretches the eigenvector **x**

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector and λ is the associated eigenvalue

- **A** stretches the eigenvector **x**
- ${\bf A}$ stretches ${\bf x}$ by λ

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then x is an eigenvector and λ is the associated eigenvalue

- \boldsymbol{A} stretches the eigenvector \boldsymbol{x}
- ${\bf \it A}$ stretches ${\bf \it x}$ by λ
- To find eigenvectors/values: (eigen in R)

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector and λ is the associated eigenvalue

- **A** stretches the eigenvector **x**
- ${\bf A}$ stretches ${\bf x}$ by λ
- To find eigenvectors/values: (eigen in R)
 - Find λ that solves $\det(\mathbf{A} \lambda \mathbf{I}) = 0$

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then x is an eigenvector and λ is the associated eigenvalue

- **A** stretches the eigenvector **x**
- ${\bf A}$ stretches ${\bf x}$ by λ
- To find eigenvectors/values: (eigen in R)
 - Find λ that solves $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - Find vectors in null space of:

Definition

Suppose **A** is an $N \times N$ matrix and λ is a scalar. If

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Then \mathbf{x} is an eigenvector and λ is the associated eigenvalue

- **A** stretches the eigenvector **x**
- ${\bf A}$ stretches ${\bf x}$ by λ
- To find eigenvectors/values: (eigen in R)
 - Find λ that solves $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
 - Find vectors in null space of:

$$(\mathbf{A} - \lambda \mathbf{I}) = 0$$

Theorem

Suppose **A** is an invertible $N \times N$ matrix and further suppose that **A** has N distinct eigenvalues and N linearly independent eigenvectors. Then we can write **A** as,

$$\mathbf{A} = \mathbf{W} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix} \mathbf{W}^{-1}$$

where $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_N)$ is an $N \times N$ matrix with the N eigenvectors as column vectors.

Proof: Note

$$\mathbf{AW} = \begin{pmatrix} \lambda_1 \mathbf{w}_1 & \lambda_2 \mathbf{w}_2 & \dots & \lambda_N \mathbf{w}_N \end{pmatrix}$$
$$= \mathbf{W} \mathbf{\Lambda}$$
$$\mathbf{A} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^{-1}$$

Examples of Diagonalization

Suppose \mathbf{A} is an $N \times N$ invertible matrix with eigenvalues $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$ and eigenvectors \mathbf{W} . Calculate $\mathbf{A}\mathbf{A} = \mathbf{A}^2$

$$\begin{array}{rcl}
\mathbf{AA} & = & \mathbf{W} \mathbf{N} \mathbf{W}^{-1} \mathbf{W} \mathbf{N} \mathbf{W}^{-1} \\
& = & \mathbf{W} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix} \mathbf{W}^{-1} \\
& = & \mathbf{W} \begin{pmatrix} \lambda_1^2 & 0 & \dots & 0 \\ 0 & \lambda_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N^2 \end{pmatrix} \mathbf{W}^{-1}$$

$$f(x_1, x_2) = x_1 + x_2$$

$$f(x_1, x_2) = x_1^2 + x_2^2$$

$$f(x_1, x_2) = \sin(x_1)\cos(x_2)$$

$$f(x_1, x_2) = -(x-5)^2 - (y-2)^2$$

$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3$$

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_N)$$

$$= x_1 + x_2 + \dots + x_N$$

$$= \sum_{i=1}^{N} x_i$$

Definition

Suppose $f: \Re^n \to \Re^1$. We will call f a multivariate function. We will commonly write,

$$f(\mathbf{x}) = f(x_1, x_2, x_3, \dots, x_n)$$

- $\Re^n = \Re \underbrace{\times}_{\text{cartesian}} \Re \times \Re \times \dots \Re$
- The function we consider will take n inputs and output a single number (that lives in \Re^1 , or the real line)

Example 1

$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3$$

Evaluate at $\mathbf{x} = (x_1, x_2, x_3) = (2, 3, 2)$

$$f(2,3,2) = 2+3+2$$

= 7

Example 1

$$f(x_1, x_2) = x_1 + x_2 + x_1 x_2$$
 Evaluate at $\mathbf{w} = (w_1, w_2) = (1, 2)$
$$f(w_1, w_2) = w_1 + w_2 + w_1 w_2$$
$$= 1 + 2 + 1 \times 2$$
$$= 5$$

Preferences for Multidimensional Policy

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

= $-(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U:\Re^N o\Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

Suppose $\mu = (\mu_1, \mu_2, \dots, \mu_N) = (0, 0, \dots, 0)$.

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

$$U(\mathbf{m}) = U(1,1,\ldots,1)$$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

$$U(\mathbf{m}) = U(1,1,...,1)$$

= $-(1-0)^2 - (1-0)^2 - ... - (1-0)^2$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

$$U(m) = U(1,1,...,1)$$

$$= -(1-0)^2 - (1-0)^2 - ... - (1-0)^2$$

$$= -\sum_{j=1}^{N} 1$$

Recall that in the spatial model, we suppose policy and political actors are located in a space.

Suppose that policy is N dimensional—or $x \in \Re^N$.

Suppose that legislator i's utility is a $U: \Re^N \to \Re^1$ and is given by,

$$U(\mathbf{x}) = U(x_1, x_2, \dots, x_N)$$

$$= -(x_1 - \mu_1)^2 - (x_2 - \mu_2)^2 - \dots - (x_N - \mu_N)^2$$

$$= -\sum_{j=1}^{N} (x_j - \mu_j)^2$$

$$U(\mathbf{m}) = U(1,1,...,1)$$

$$= -(1-0)^2 - (1-0)^2 - ... - (1-0)^2$$

$$= -\sum_{j=1}^{N} 1 = -N$$

Often we administer randomized experiments:

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, $Vote_i$

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual i turns out to vote, $Vote_i$

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

= $\beta_0 + \beta_1 T + \beta_2 x_2$

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

= $\beta_0 + \beta_1 T + \beta_2 x_2$

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

= $\beta_0 + \beta_1 T + \beta_2 x_2$

$$f(T = 1, x_2) - f(T = 0, x_2) = \beta_0 + \beta_1 1 + \beta_2 x_2 - (\beta_0 + \beta_1 0 + \beta_2 x_2)$$

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T=0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

= $\beta_0 + \beta_1 T + \beta_2 x_2$

$$f(T = 1, x_2) - f(T = 0, x_2) = \beta_0 + \beta_1 1 + \beta_2 x_2 - (\beta_0 + \beta_1 0 + \beta_2 x_2)$$

= $\beta_0 - \beta_0 + \beta_1 (1 - 0) + \beta_2 (x_2 - x_2)$

Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and wonder if individual *i* turns out to vote, Vote;

- T=1 (treated): voter receives mobilization
- T=0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x_2 is a participant's age:

$$f(T, x_2) = Pr(Vote_i = 1 | T, x_2)$$

= $\beta_0 + \beta_1 T + \beta_2 x_2$

$$f(T = 1, x_2) - f(T = 0, x_2) = \beta_0 + \beta_1 1 + \beta_2 x_2 - (\beta_0 + \beta_1 0 + \beta_2 x_2)$$

= $\beta_0 - \beta_0 + \beta_1 (1 - 0) + \beta_2 (x_2 - x_2)$
= β_1

Multivariate Derivative

Definition

Suppose $f: X \to \Re^1$, where $X \subset \Re^n$. $f(\mathbf{x}) = f(x_1, x_2, \dots, x_N)$. If the limit,

$$\frac{\partial}{\partial x_{i}} f(\mathbf{x}_{0}) = \frac{\partial}{\partial x_{i}} f(x_{01}, x_{02}, \dots, x_{0i}, x_{0i+1}, \dots, x_{0N})
= \lim_{h \to 0} \frac{f(x_{01}, x_{02}, \dots, x_{0i} + h, \dots, x_{0N}) - f(x_{01}, x_{02}, \dots, x_{0i}, \dots, x_{0N})}{h}$$

exists then we call this the partial derivative of f with respect to x_i at the value $\mathbf{x}_0 = (x_{01}, x_{02}, \dots, x_{0N})$.

Rules for Taking Partial Derivatives

Partial Derivative: $\frac{\partial f(\mathbf{x})}{\partial x_i}$

- Treat each instance of x_i as a variable that we would differentiate before
- Treat each instance of $\mathbf{x}_{-i} = (x_1, x_2, x_3, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ as a constant

$$f(\mathbf{x}) = f(x_1, x_2)$$
$$= x_1 + x_2$$

Partial derivative, with respect to x_1 at (x_{01}, x_{02})

$$\frac{\partial f(x_1, x_2)}{\partial x_1}|_{(x_{01}, x_{02})} = 1 + 0|_{x_{01}, x_{02}}$$
$$= 1$$

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

= $x_1^2 \log(x_1) + x_2 x_1 x_3 + x_3^2$

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

= $x_1^2 \log(x_1) + x_2 x_1 x_3 + x_3^2$

What is the partial derivative with respect to x_1 ? $\mathbf{x}_0 = (x_{01}, x_{02}, x_{03})$.

Evaluated at

$$\frac{\partial f(\mathbf{x})}{\partial x_1}|_{\mathbf{x}_0} = 2x_1 \log(x_1) + x_1^2 \frac{1}{x_1} + x_2 x_3|_{\mathbf{x}_0}$$
$$= 2x_{01} \log(x_{01}) + x_{01} + x_{02} x_{03}$$

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

= $x_1^2 \log(x_1) + x_2 x_1 x_3 + x_3^2$

What is the partial derivative with respect to x_1 ? x_2 ? Evaluated at $\mathbf{x}_0 = (x_{01}, x_{02}, x_{03})$.

$$\frac{\partial f(\mathbf{x})}{\partial x_2}|_{\mathbf{x}_0} = x_1 x_3|_{\mathbf{x}_0} = x_{01} x_{03}$$

$$f(\mathbf{x}) = f(x_1, x_2, x_3)$$

= $x_1^2 \log(x_1) + x_2 x_1 x_3 + x_3^2$

What is the partial derivative with respect to x_1 ? x_2 ? x_3 ? Evaluated at $\mathbf{x}_0 = (x_{01}, x_{02}, x_{03})$.

$$\frac{\partial f(\mathbf{x})}{\partial x_3}|_{\mathbf{x}_0} = x_1 x_2 + 2x_3|_{\mathbf{x}_0} = x_{01} x_{02} + 2x_{03}$$

Rate of Change, Linear Regression

Suppose we regress Approval; rate for Obama in month i on Employ; and Gas;. We obtain the following model:

$$Approval_i = 0.8 - 0.5 Employ_i - 0.25 Gas_i$$

We are modeling Approval_i = $f(Employ_i, Gas_i)$. What is partial derivative with respect to employment?

$$\frac{\partial f(\mathsf{Employ}_i, \mathsf{Gas}_i)}{\partial \mathsf{Employ}_i} = -0.5$$

Gradient

Definition

Suppose $f: X \to \mathbb{R}^1$ with $X \subset \mathbb{R}^n$ is a differentiable function. Define the gradient vector of f at \mathbf{x}_0 , $\nabla f(\mathbf{x}_0)$ as,

$$\nabla f(\mathbf{x}_0) = \left(\frac{\partial f(\mathbf{x}_0)}{\partial x_1}, \frac{\partial f(\mathbf{x}_0)}{\partial x_2}, \frac{\partial f(\mathbf{x}_0)}{\partial x_3}, \dots, \frac{\partial f(\mathbf{x}_0)}{\partial x_n}\right)$$

- The gradient points in the direction that the function is increasing in the fastest direction
- We'll use this to do optimization (both analytic and computational)

Example Gradient Calculation

Suppose

$$f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$$

= $x_1^2 + x_2^2 + ... + x_n^2$
= $\sum_{i=1}^n x_i^2$

Then $\nabla f(\mathbf{x}^*)$ is

$$\nabla f(\mathbf{x}^*) = (2x_1^*, 2x_2^*, \dots, 2x_n^*)$$

So if $x^* = (3, 3, ..., 3)$ then

$$\nabla f(\mathbf{x}^*) = (2*3, 2*3, \dots, 2*3)$$

= $(6, 6, \dots, 6)$

Second Partial Derivative

Definition

Suppose $f: X \to \Re$ where $X \subset \Re^n$ and suppose that $\frac{\partial f(x_1, x_2, ..., x_n)}{\partial x_i}$ exists. Then we define,

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i} \equiv \frac{\partial}{\partial x_j} \left(\frac{\partial f(\mathbf{x})}{\partial x_i} \right)$$

- Second derivative could be with respect to x_i or with some other variable x_i
- Nagging question: does order matter?

Second Partial Derivative: Order Doesn't Matter

Theorem

Young's Theorem Let $f: X \to \Re$ with $X \subset \Re^n$ be a twice differentiable function on all of X. Then for any i, j, at all $\mathbf{x}^* \in X$,

$$\frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x}^*) = \frac{\partial^2}{\partial x_i \partial x_i} f(\mathbf{x}^*)$$

Second Order Partial Derivates

$$f(\boldsymbol{x}) = x_1^2 x_2^2$$

Then,

$$\frac{\partial^2}{\partial x_1 \partial x_1} f(\mathbf{x}) = 2x_2^2$$

$$\frac{\partial^2}{\partial x_1 \partial x_2} f(\mathbf{x}) = 4x_1 x_2$$

$$\frac{\partial^2}{\partial x_2 \partial x_2} f(\mathbf{x}) = 2x_1^2$$

Hessians

Definition

Suppose $f: X \to \Re^1$, $X \subset \Re^n$, with f a twice differentiable function. We will define the Hessian matrix as the matrix of second derivatives at $\mathbf{x}^* \in X$,

$$\boldsymbol{H}(f)(\boldsymbol{x}^*) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\boldsymbol{x}^*) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\boldsymbol{x}^*) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\boldsymbol{x}^*) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\boldsymbol{x}^*) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(\boldsymbol{x}^*) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\boldsymbol{x}^*) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\boldsymbol{x}^*) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\boldsymbol{x}^*) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\boldsymbol{x}^*) \end{pmatrix}$$

- Hessians are symmetric
- They describe curvature of a function (think, how bended)
- Will be the basis for second derivative test for multivariate optimization

$$f(x_1, x_2, x_3) = x_1^2 x_2^2 x_3^2$$

$$f(x_1, x_2, x_3) = x_1^2 x_2^2 x_3^2$$

$$\nabla f(\mathbf{x}) = (2x_1x_2^2x_3^2, 2x_1^2x_2x_3^2, 2x_1^2x_2^2, x_3)$$

$$f(x_1, x_2, x_3) = x_1^2 x_2^2 x_3^2$$

$$\nabla f(\mathbf{x}) = (2x_1x_2^2x_3^2, 2x_1^2x_2x_3^2, 2x_1^2x_2^2, x_3)$$

$$\mathbf{H}(f)(\mathbf{x}) = \begin{pmatrix} 2x_2^2x_3^2 & 4x_1x_2x_3^2 & 4x_1x_2^2x_3 \\ 4x_1x_2x_3^2 & 2x_1^2x_3^2 & 4x_1^2x_2x_3 \\ 4x_1x_2^2x_3 & 4x_1^2x_2x_3 & 2x_1^2x_2^2 \end{pmatrix}$$

Functions with Multidimensional Codomains

Definition

Suppose $f: \mathbb{R}^m \to \mathbb{R}^n$. We will call f a multivariate function. We will commonly write,

$$f(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{pmatrix}$$

Example Functions

Suppose
$$f: \Re \to \Re^2$$
,

$$f(t) = (t^2, \sqrt(t))$$

Example Functions

Suppose $f: \Re^2 \to \Re^2$ defined as

$$f(r,\theta) = \begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$$

Example Functions

Suppose we have some policy $\mathbf{x} \in \Re^{M}$. Suppose we have N legislators where legislator i has utility

$$U_i(\mathbf{x}) = \sum_{j=1}^{M} -(x_j - \mu_{ij})^2$$

We can describe the utility of all legislators to the proposal as

$$f(\mathbf{x}) = \begin{pmatrix} \sum_{j=1}^{M} -(x_j - \mu_{1j})^2 \\ \sum_{j=1}^{M} -(x_j - \mu_{2j})^2 \\ \vdots \\ \sum_{j=1}^{M} -(x_j - \mu_{Nj})^2 \end{pmatrix}$$

Jacobian

Definition

Suppose $f: X \to \Re^n$, where $X \subset \Re^m$, with f a differentiable function. Define the Jacobian of f at \mathbf{x} as

$$J(f)(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{x_1} & \frac{\partial f_n}{x_2} & \cdots & \frac{\partial f_n}{x_m} \end{pmatrix}$$

Example of Jacobian

$$f(r,\theta) = \begin{pmatrix} r\cos\theta\\r\sin\theta \end{pmatrix}$$

$$\mathbf{J}(f)(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

Implicit Functions and Differentiation

We have defined functions explicitly

$$Y = f(x)$$

We might also have an implicit function:

$$1 = x^2 + y^2$$

Implicit Function Theorem (From Avi Acharya's Notes)

Definition

Suppose $X \subset \Re^m$ and $Y \subset \Re$. Let $f: X \cup Y \to \Re$ be a differentiable function (with continuous partial derivatives). Let $(\mathbf{x}^*, y^*) \in X \cup Y$ such that

$$\frac{\partial f(\mathbf{x}^*, y^*)}{\partial y} \neq 0$$
$$f(\mathbf{x}^*, y^*) = 0$$

Implicit Function Theorem (From Avi Acharya's Notes)

Definition

Suppose $X \subset \Re^m$ and $Y \subset \Re$. Let $f: X \cup Y \to \Re$ be a differentiable function (with continuous partial derivatives). Let $(\mathbf{x}^*, y^*) \in X \cup Y$ such that

$$\frac{\partial f(\mathbf{x}^*, y^*)}{\partial y} \neq 0$$
$$f(\mathbf{x}^*, y^*) = 0$$

Then there exists $B \subset \Re^n$ such that there is a differentiable function $g: B \to \Re$ such that $x^* \in B$ then $g(x^*) = y^*$ and f(x, g(x)) = 0. The derivative of g for $x \in B$ is given by

$$\frac{\partial g}{\partial x_j} = -\frac{\frac{\partial f}{\partial x_j}}{\frac{\partial f}{\partial y}}$$

Suppose that the equation is

$$1 = x^2 + y^2
0 = x^2 + y^2 - 1$$

Suppose that the equation is

$$1 = x^2 + y^2
0 = x^2 + y^2 - 1$$

$$y = \sqrt{1-x^2}$$
 if $y>0$

Suppose that the equation is

$$1 = x^2 + y^2
0 = x^2 + y^2 - 1$$

$$y = \sqrt{1 - x^2} \text{ if } y > 0$$

$$y = -\sqrt{1 - x^2} \text{ if } y < 0$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y = 2\sqrt{1 - x^2} \text{ if } y > 0$$

$$\frac{\partial f}{\partial y} = 2y = -2\sqrt{1 - x^2} \text{ if } y < 0$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y = 2\sqrt{1 - x^2} \text{ if } y > 0$$

$$\frac{\partial f}{\partial y} = 2y = -2\sqrt{1 - x^2} \text{ if } y < 0$$

$$\frac{\partial g(x)}{\partial x}|_{x_0} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$\begin{aligned} \frac{\partial f}{\partial x} &= 2x \\ \frac{\partial f}{\partial y} &= 2y = 2\sqrt{1 - x^2} \text{ if } y > 0 \\ \frac{\partial f}{\partial y} &= 2y = -2\sqrt{1 - x^2} \text{ if } y < 0 \\ \frac{\partial g(x)}{\partial x}|_{x_0} &= -\frac{\partial f/\partial x}{\partial f/\partial y} \\ &= -\frac{2x_0}{2y} = -\frac{x_0}{\sqrt{1 - x_0^2}} \text{ if } y > 0 \end{aligned}$$

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2y = 2\sqrt{1 - x^2} \text{ if } y > 0$$

$$\frac{\partial f}{\partial y} = 2y = -2\sqrt{1 - x^2} \text{ if } y < 0$$

$$\frac{\partial g(x)}{\partial x}|_{x_0} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$= -\frac{2x_0}{2y} = -\frac{x_0}{\sqrt{1 - x_0^2}} \text{ if } y > 0$$

$$= -\frac{2x_0}{2y} = \frac{x_0}{\sqrt{1 - x_0^2}} \text{ if } y < 0$$

- Q: What's the deal with the implicit function theorem failing?

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$y = \sqrt{1 - x^2}$$

$$\frac{\partial y}{\partial x} = -\frac{x}{\sqrt{1 - x^2}}$$

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$y = \sqrt{1 - x^2}$$

$$\frac{\partial y}{\partial x} = -\frac{x}{\sqrt{1 - x^2}}$$

As $x \to 1$ or $x \to -1$ this derivative diverges

- Q: What's the deal with the implicit function theorem failing?
- A: Consider our proposed solution

$$y = \sqrt{1 - x^2}$$

$$\frac{\partial y}{\partial x} = -\frac{x}{\sqrt{1 - x^2}}$$

As $x \to 1$ or $x \to -1$ this derivative diverges

The intuition from the Implicit Function Theorem is that any function g(x) = y there would need an "infinite" slope.

- Q: What's the deal with the following equation?:

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$0 = f(x,y)$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$0 = f(x,y)$$

$$0 = x^2 - y$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$0 = f(x,y)$$

$$0 = x^2 - y$$

$$\frac{\partial y}{\partial x} = 2x$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

$$0 = f(x,y)$$

$$0 = x^{2} - y$$

$$\frac{\partial y}{\partial x} = 2x$$

$$\frac{\partial f(x,y)/\partial x}{\partial f(x,y)/\partial y} = \frac{2x}{-1} = -\frac{\partial y}{\partial x}$$

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

- A: Consider, first, the following example:

$$0 = f(x,y)$$

$$0 = x^{2} - y$$

$$\frac{\partial y}{\partial x} = 2x$$

$$\frac{\partial f(x,y)/\partial x}{\partial f(x,y)/\partial y} = \frac{2x}{-1} = -\frac{\partial y}{\partial x}$$

In this example, the negative sign is "moving things to the other side".

- Q: What's the deal with the following equation?:

$$\frac{\partial g(x)}{\partial x} = -\frac{\partial f/\partial x}{\partial f/\partial y}$$

- A: Consider, first, the following example:

$$0 = f(x,y)$$

$$0 = x^{2} - y$$

$$\frac{\partial y}{\partial x} = 2x$$

$$\frac{\partial f(x,y)/\partial x}{\partial f(x,y)/\partial y} = \frac{2x}{-1} = -\frac{\partial y}{\partial x}$$

In this example, the negative sign is "moving things to the other side". In general, the negative sign will capture that we want to measure the compensatory behavior of the function: how y moves in response to some x_i along a level curve

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$.

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$. Total income $Y = \sum_{i=1}^{n} y_i$

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$. Total income $Y = \sum_{i=1}^{n} y_i$

Per capita income: $\bar{y} = Y/n$

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$. Total income $Y = \sum_{i=1}^{n} y_i$

Per capita income: $\bar{y} = Y/n$

Individuals pay a proportional tax $t \in (0,1)$

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$.

Total income $Y = \sum_{i=1}^{n} y_i$

Per capita income: $\bar{y} = Y/n$

Individuals pay a proportional tax $t \in (0,1)$

Suppose:

Suppose there n individuals, each individual i earns pre-tax income $y_i > 0$.

Total income $Y = \sum_{i=1}^{n} y_i$

Per capita income: $\bar{y} = Y/n$

Individuals pay a proportional tax $t \in (0,1)$

Suppose:

$$U_i(t,y_i) = y_i(1-t^2) + t\bar{y}$$

An individual's optimal tax rate is:

$$\frac{\partial U_i(t, y_i)}{\partial t} = -2y_i t + \bar{y}$$

$$0 = -2y_i t^* + \bar{y}$$

$$\frac{\bar{y}}{2y_i} = t_i^*$$

Checking the second derivative:

$$\frac{\partial U_i(t,y_i)}{\partial^2 t} = -2y_i$$

If we set utility equal to some constant a, it defines an implicit function

MRS =
$$-\frac{\partial U(t, y_i)/\partial t}{\partial U(t, y_i/\partial y_i)} = \frac{\partial Y(t)}{\partial t}$$

MRS =
$$-\frac{\partial U(t, y_i)/\partial t}{\partial U(t, y_i/\partial y_i)} = \frac{\partial Y(t)}{\partial t}$$

$$\partial U(t, y_i)/\partial t = -2y_i t + \bar{y}$$

MRS =
$$-\frac{\partial U(t, y_i)/\partial t}{\partial U(t, y_i/\partial y_i)} = \frac{\partial Y(t)}{\partial t}$$

$$\partial U(t, y_i)/\partial t = -2y_i t + \bar{y}$$

 $\partial U(t, y_i/\partial y_i) = (1 - t^2)$

MRS =
$$-\frac{\partial U(t, y_i)/\partial t}{\partial U(t, y_i/\partial y_i)} = \frac{\partial Y(t)}{\partial t}$$

$$\partial U(t, y_i)/\partial t = -2y_i t + \bar{y}$$

 $\partial U(t, y_i/\partial y_i) = (1 - t^2)$
MRS = $\frac{2y_i t - \bar{y}}{1 - t^2}$

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area.

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area.

Area under function.

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area.

Area under function.

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area.

Area under function.

-
$$A = \{x, y : x \in [0, 1], y \in [0, 1]\}$$

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area. Area under function.

-
$$A = \{x, y : x \in [0, 1], y \in [0, 1]\}$$

-
$$A = \{x, y : x^2 + y^2 \le 1\}$$

Suppose we have a function $f: X \to \mathbb{R}^1$, with $X \subset \mathbb{R}^2$.

We will integrate a function over an area. Area under function.

-
$$A = \{x, y : x \in [0, 1], y \in [0, 1]\}$$

-
$$A = \{x, y : x^2 + y^2 \le 1\}$$

-
$$A = \{x, y : x < y, x, y \in (0, 2)\}$$

Suppose we have a function $f: X \to \Re^1$, with $X \subset \Re^2$.

We will integrate a function over an area.

Area under function.

Suppose that area, A, is in 2-dimensions

-
$$A = \{x, y : x \in [0, 1], y \in [0, 1]\}$$

-
$$A = \{x, y : x^2 + y^2 \le 1\}$$

-
$$A = \{x, y : x < y, x, y \in (0, 2)\}$$

How do calculate the area under the function over these regions?

Definition

Suppose $f: X \to \Re$ where $X \subset \Re^n$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I = \int_A f(\mathbf{x}) d\mathbf{A}$

Definition

Suppose $f: X \to \Re$ where $X \subset \Re^n$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I = \int_A f(\mathbf{x}) d\mathbf{A}$

That's horribly abstract. There is an extremely helpful theorem that makes this manageable.

Definition

Suppose $f: X \to \Re$ where $X \subset \Re^n$. We will say that f is integrable over $A \subset X$ if we are able to calculate its area with refined partitions of A and we will write the integral $I = \int_A f(\mathbf{x}) d\mathbf{A}$

That's horribly abstract. There is an extremely helpful theorem that makes this manageable.

Theorem

Fubini's Theorem Suppose $A = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n]$ and that $f : A \to \Re$ is integrable. Then

$$\int_{A} f(\mathbf{x}) d\mathbf{A} = \int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \dots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\mathbf{x}) dx_{1} dx_{2} \dots dx_{n-1} dx_{n}$$

$$\int_{A} f(\mathbf{x}) d\mathbf{A} = \int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \dots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\mathbf{x}) dx_{1} dx_{2} \dots dx_{n-1} dx_{n}$$

$$\int_{A} f(\mathbf{x}) d\mathbf{A} = \int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \dots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\mathbf{x}) dx_{1} dx_{2} \dots dx_{n-1} dx_{n}$$

1) Start with the inside integral x_1 is the variable, everything else a constant

$$\int_{A} f(\mathbf{x}) d\mathbf{A} = \int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \dots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\mathbf{x}) dx_{1} dx_{2} \dots dx_{n-1} dx_{n}$$

- 1) Start with the inside integral x_1 is the variable, everything else a constant
- 2) Work inside to out, iterating

$$\int_{A} f(\mathbf{x}) d\mathbf{A} = \int_{a_{n}}^{b_{n}} \int_{a_{n-1}}^{b_{n-1}} \dots \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(\mathbf{x}) dx_{1} dx_{2} \dots dx_{n-1} dx_{n}$$

- 1) Start with the inside integral x_1 is the variable, everything else a constant
- 2) Work inside to out, iterating
- 3) At the last step, we should arrive at a number

Intuition: Three Dimensional Jello Molds, a discussion

Multivariate Uniform Distribution

Suppose $f:[0,1]\times[0,1]\to\Re$ and $f(x_1,x_2)=1$ for all $x_1,x_2\in[0,1]\times[0,1]$. What is $\int_0^1\int_0^1f(x)dx_1dx_2$?

$$\int_{0}^{1} \int_{0}^{1} f(x)dx_{1}dx_{2} = \int_{0}^{1} \int_{0}^{1} \frac{1}{1} dx_{1}dx_{2}$$

$$= \int_{0}^{1} x_{1}|_{0}^{1} dx_{2}$$

$$= \int_{0}^{1} (1-0)dx_{2}$$

$$= \int_{0}^{1} 1 dx_{2}$$

$$= x_{2}|_{0}^{1}$$

$$= 1$$

Suppose $f: [a_1, b_1] \times [a_2, b_2] \rightarrow \Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \int_{a_1}^{b_1} x_2 x_1 dx_1 dx_2$$

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \int_{a_1}^{b_1} x_2 x_1 dx_1 dx_2$$
$$= \int_{a_2}^{b_2} \frac{x_1^2}{2} x_2 \Big|_{a_1}^{b_1} dx_2$$

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \int_{a_1}^{b_1} x_2 x_1 dx_1 dx_2$$

$$= \int_{a_2}^{b_2} \frac{x_1^2}{2} x_2 \Big|_{a_1}^{b_1} dx_2$$

$$= \frac{b_1^2 - a_1^2}{2} \int_{a_2}^{b_2} x_2 dx_2$$

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \int_{a_1}^{b_1} x_2 x_1 dx_1 dx_2$$

$$= \int_{a_2}^{b_2} \frac{x_1^2}{2} x_2 \Big|_{a_1}^{b_1} dx_2$$

$$= \frac{b_1^2 - a_1^2}{2} \int_{a_2}^{b_2} x_2 dx_2$$

$$= \frac{b_1^2 - a_1^2}{2} \left(\frac{x_2^2}{2}\Big|_{a_2}^{b_2}\right)$$

Example 2

Suppose $f:[a_1,b_1]\times[a_2,b_2]\to\Re$ is given by

$$f(x_1,x_2) = x_1x_2$$

Find $\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2$

$$\int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x_1, x_2) dx_1 dx_2 = \int_{a_2}^{b_2} \int_{a_1}^{b_1} x_2 x_1 dx_1 dx_2$$

$$= \int_{a_2}^{b_2} \frac{x_1^2}{2} x_2 \Big|_{a_1}^{b_1} dx_2$$

$$= \frac{b_1^2 - a_1^2}{2} \int_{a_2}^{b_2} x_2 dx_2$$

$$= \frac{b_1^2 - a_1^2}{2} \left(\frac{x_2^2}{2}\Big|_{a_2}^{b_2}\right)$$

$$= \frac{b_1^2 - a_1^2}{2} \frac{b_2^2 - a_2^2}{2}$$

Suppose $f:\Re^2_+\to\Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_0^\infty \int_0^\infty f(x_1, x_2) =$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_0^\infty \int_0^\infty f(x_1, x_2) = 2 \int_0^\infty \int_0^\infty \exp(-x_1) \exp(-2x_2) dx_1 dx_2$$

$$=$$

$$=$$

$$=$$

$$=$$

$$=$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$=$$

$$=$$

$$=$$

$$=$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$= 2(-\exp(-x)|_{0}^{\infty})(-\frac{1}{2} \exp(-2x_{2})|_{0}^{\infty})$$

$$=$$

$$=$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$= 2(-\exp(-x)|_{0}^{\infty})(-\frac{1}{2} \exp(-2x_{2})|_{0}^{\infty})$$

$$= 2 \left[(-\lim_{x_{1} \to \infty} \exp(-x_{1}) + 1)(-\frac{1}{2} \lim_{x_{2} \to \infty} \exp(-2x_{2}) + \frac{1}{2}) \right]$$

$$=$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$= 2(-\exp(-x)|_{0}^{\infty})(-\frac{1}{2} \exp(-2x_{2})|_{0}^{\infty})$$

$$= 2 \left[(-\lim_{x_{1} \to \infty} \exp(-x_{1}) + 1)(-\frac{1}{2} \lim_{x_{2} \to \infty} \exp(-2x_{2}) + \frac{1}{2}) \right]$$

$$= 2[\frac{1}{2}]$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$= 2(-\exp(-x)|_{0}^{\infty})(-\frac{1}{2} \exp(-2x_{2})|_{0}^{\infty})$$

$$= 2 \left[(-\lim_{x_{1} \to \infty} \exp(-x_{1}) + 1)(-\frac{1}{2} \lim_{x_{2} \to \infty} \exp(-2x_{2}) + \frac{1}{2}) \right]$$

$$= 2 \left[\frac{1}{2} \right]$$

$$= 1$$

Suppose $f: \Re^2_+ \to \Re$ and that

$$f(x_1, x_2) = 2 \exp(-x_1) \exp(-2x_2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} f(x_{1}, x_{2}) = 2 \int_{0}^{\infty} \int_{0}^{\infty} \exp(-x_{1}) \exp(-2x_{2}) dx_{1} dx_{2}$$

$$= 2 \int_{0}^{\infty} \exp(-x_{1}) dx_{1} \int_{0}^{\infty} \exp(-2x_{2}) dx_{2}$$

$$= 2(-\exp(-x)|_{0}^{\infty})(-\frac{1}{2} \exp(-2x_{2})|_{0}^{\infty})$$

$$= 2 \left[(-\lim_{x_{1} \to \infty} \exp(-x_{1}) + 1)(-\frac{1}{2} \lim_{x_{2} \to \infty} \exp(-2x_{2}) + \frac{1}{2}) \right]$$

$$= 2 \left[\frac{1}{2} \right]$$

$$= 1$$

Challenge Problems

- 1) Find $\int_0^1 \int_0^1 x_1 + x_2 dx_1 dx_2$
- 2) Demonstrate that

$$\int_0^b \int_0^a x_1 - 3x_2 dx_1 dx_2 = \int_0^a \int_0^b x_1 - 3x_2 dx_2 dx_1$$

More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in more complicated regions

How do we do this?

More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in more complicated regions

How do we do this?

Example 4: More Complicated Regions

Suppose $f : [0,1] \times [0,1] \to \Re$, $f(x_1, x_2) = x_1 + x_2$. Find area of function where $x_1 < x_2$.

Trick: we need to determine bound. If $x_1 < x_2$, x_1 can take on any value from 0 to x_2

$$\iint_{x_1 < x_2} f(\mathbf{x}) = \int_0^1 \int_0^{x_2} x_1 + x_2 dx_1 dx_2$$

$$= \int_0^1 x_2 x_1 |_0^{x_2} dx_2 + \int_0^1 \frac{x_1^2}{2} |_0^{x_2}$$

$$= \int_0^1 x_2^2 dx_2 + \int_0^1 \frac{x_2^2}{2}$$

$$= \frac{x_2^3}{3} |_0^1 + \frac{x_2^3}{6} |_0^1$$

$$= \frac{1}{3} + \frac{1}{6}$$

$$= \frac{3}{6} = \frac{1}{2}$$

Consider the same function and let's switch the bounds.

$$\iint_{x_1 < x_2} f(\mathbf{x}) = \int_0^1 \int_{x_1}^1 x_1 + x_2 dx_2 dx_1
= \int_0^1 x_1 x_2 \Big|_{x_1}^1 + \int_0^1 \frac{x_2^2}{2} \Big|_{x_1}^1 dx_1
= \int_0^1 x_1 - x_1^2 + \int_0^1 \frac{1}{2} - \frac{x_1^2}{2} dx_1
= \frac{x_1^2}{2} \Big|_0^1 - \frac{x_1^3}{3} \Big|_0^1 + \frac{x_1}{2} \Big|_0^1 - \frac{x_1^3}{6} \Big|_0^1
= \frac{1}{2} - \frac{1}{3} + \frac{1}{2} - \frac{1}{6}
= \frac{1}{2} - \frac{3}{6}
= \frac{1}{2}$$

Example 5: More Complicated Regions

Suppose $f[0,1] \times [0,1] \to \Re$, $f(x_1,x_2) = 1$. What is the area of $x_1 + x_2 < 1$? Where is $x_1 + x_2 < 1$? Where, $x_1 < 1 - x_2$

$$\iint_{x_1+x_2<1} f(\mathbf{x}) d\mathbf{x} = \int_0^1 \int_0^{1-x_2} 1 dx_1 x_2$$

$$= \int_0^1 x_1 |_0^{1-x_2} dx_2$$

$$= \int_0^1 (1-x_2) dx_2$$

$$= x_2 |_0^1 - \frac{x_2^2}{2}|_0^1$$

$$= 1 - (\frac{1}{2})$$

$$= \frac{1}{2}$$