Discrete Test 3 Review

- (1) Do Test 1 Review, then rework Test 1.
- (2) Do Test 2 Review, then rework Test 2.
- (3) Rework all quizzes, 1-9.

Given sets $A = \{4, 7, 8, 9, 2\}$, $B = \{5, 9, 1\}$

- (4) Let $R = \{(7,9), (2,8), (4,5), (2,1)\}$ Is R a relation from A to B?
- (5) Let $R = \{(5,9), (5,5), (1,1), (9,5)\}$ Is R a symmetric relation from B to B?
- (6) Let $R = \{(5,9), (5,5), (1,1), (9,5)\}$ Is R a reflexive relation from B to B? NO, missing (9,9)
- (7) Let $R = \{(5,9), (5,5), (1,1), (9,5)\}$ Is R a transitive relation on B? NO missing (9,9)
- (8) Let $R = \{(5,9), (1,1), (9,5)\}$ Is R a transitive relation on B?
- (9) Let $R = \{\{(5,1), (1,1), (9,5)\}\$ Is R a transitive relation on B? (9,1)
- (10) Let $R = \{(7,9), (2,1), (4,5), (2,5)\}$ Is R a function from A to B?
- (11) Let $R = \{(5,9), (1,7), (9,4)\}$ Is R a function from B to A?
- (12) Let $R = \{(5,9), (1,7), (9,4)\}$ Is R an onto function from B to A?
- (13) Let $R = \{(5,9), (1,7), (9,4)\}$ Is R a 1-1 function from B to A?
- (14) Let $R = \{(5,9), (1,7), (9,4)\}$ Find the range of R.

Given sets $A = \{4, 7, 8, 9, 2\}$, $B = \{5, 9, 1\}$

- (15) Let $f = \{(5,9), (1,1), (9,5)\}$ and $g = \{(5,1), (1,1), (9,5)\}$. Find the composition $f \circ g = \{(5,1), (1,1), (9,9)\}$
- (16) Let $f = \{(5,9), (1,1), (9,5)\}$ and $g = \{(5,1), (1,1), (9,5)\}$. Find the composition $g \circ f = \{(5,5), (1,1), (9,1)\}$
- (17) Find the number of functions from A to B. 3
- (18) Find the number of functions from A to A. 5
- (19) Find the number of functions from B to A. $5^3 = 125$
- (20) Find the number of 1-1 functions from A to B.
- (21) Find the number of 1-1 functions from B to A. $5P_3 = 5.4.3 = 60$
- (22) Find the number of 1-1 functions from A to A. $S P_5 = 5! = 120$
- (23) Find the number of relations on B. $2^{3\cdot 3} = 2^9$
- (24) Find the number of symmetric relations on B. $2^{\frac{1}{2}\cdot 3\cdot 4} = 2^{\frac{6}{2}}$
- (25) Find the number of reflexive relations on B. $2^{3 \cdot 2} = 2^{6}$
- (26) Find the number of both reflexive and symmetric relations on B. $2^{\frac{1}{2} \cdot 3 \cdot 2} = 2^3$

	Test 3 Review List.
\rightarrow	Definitions: Relations
	functions reflexive
	symmetric transitale
	1-1 onto
	bijections equivalence
	identity
-	Counting A × B = (A) - (B) ; P(A) = 2 A
	[20] [22] [22] [22] [22] [22] [22] [22]
	Relations A to B = 2 AI(IBI) Relations on A = 2 AI(IAI)
	Reflexive relations on A = 2 (A1 (IAI-I)
	Symmetric relation on A = 2 = 1/Al(IAI+1)
	Reflexive and symmetric relations on A = 2 = 2 = [AI (IAI - I)
	Functions A to B = 1B1 IA1
	1-1 function, A to B = [BIPAI, A = B
	1-1 tenetion, A to B = (181PAI, A = 181
	(O, A ≠ B
	bijection A to B = {0, A \neq B }.
	subsets of A of size k = $\binom{ A }{k} = \frac{ A Pk}{k!}$
100	How many subsets of {0,1,2,3,4,5} of size 4? 6.5.4.3 = 15