Домашнее задание по алгоритмам №1

Максим Мартынов

23 февраля 2021 г.

1) а) $n^{\log n} = \mathcal{O}(1.1^n)$ - истина.

Докажем, что $n^{\log n} = o(1.1^n)$, то есть, что $\lim_{n \to +\infty} \frac{n^{\log n}}{1.1^n} = 0$.

Если мы прологарифмируем левую часть, то получим, что:

$$\lim_{n \to +\infty} \ln(n^{\log n}) - \ln(1.1^n) = \lim_{n \to +\infty} \log n \ln n - n \ln 1.1 = -\infty$$

Легко видеть, что последний факт правда, так как n растет намного быстрее, чем $\log n \ln n$.

б) $\frac{n^3}{n^2 + n \log n} = \mathcal{O}(n \log n)$ - истина.

Докажем, что $\frac{n^3}{n^2 + n \log n} = o(n \log n)$:

$$\lim_{n\to +\infty}\frac{n^3}{(n^2+n\log n)n\log n}=\lim_{n\to +\infty}\frac{n}{(n+\log n)\log n}=\lim_{n\to +\infty}\frac{1}{\log n+\frac{\log^2 n}{n}}=0$$

в) $\forall f: f(n) = \mathcal{O}(f(\frac{n}{2}))$ - ложь

Контрпример: $f(n) = 2^n$:

$$rac{f(n)}{f(rac{n}{2})}=rac{2^n}{2^{n/2}}=2^{n/2} o +\infty$$
 при $n o +\infty$

г) $\forall f: f(n) \pm o(f(n)) = \Theta(f(n))$ - истина

Например, можно написать такие неравенства: $\frac{1}{2}f(n)\leqslant f(n)\pm o(f(n))\leqslant 2f(n).$

Оно верно, потому что $\pm o(f(n)) \leqslant \frac{1}{2}f(n)$ и $\pm o(f(n)) \leqslant f(n)$ при $n \to +\infty$ по определению.

д) $\log(n!) = \Theta(n \log n)$ - истина

Так как $\log_a n = \Theta(\log_b n)$ для любых оснований a,b, будем считать, что здесь логарифм натуральный.

Воспользуемся формулой Стирлинга: $\ln n! = n \ln n - n + \mathcal{O}(\ln n)$.

Теперь легко написать следующие неравенства: $\frac{1}{2}n\ln n \leqslant n\ln n - n + \mathcal{O}(\ln n) \leqslant n\ln n$.

Первое неравенство верно, потому что $n + \mathcal{O}(\ln n) = o(n \ln n)$.

Второе неравенство верно, потому что $\mathcal{O}(\ln n) = o(n)$.

2)

A	В	0	0	Θ	ω	Ω
n	n^2	+	+	_		_
$ \begin{vmatrix} \log^k n \\ n^k \end{vmatrix} $	n^{ϵ}	+	+	_	—	-
n^k	c^n	+	+	—	—	-
\sqrt{n}	$n^{\sin n}$	-	_	—	—	-
2^n	$2^{n/2}$	_	_	_	+	+
$n^{\log m}$	$m^{\log n}$	+	_	+	_	+
$\log(n!)$	$\log(n^n)$	+	_	+	_	+

- 3) $1 = \Theta(n^{1/\log n}) \quad n^{1/\log n} \quad \log(\log^* n) \quad \log^*(\log n) = \Theta(\log^* n) \quad \log^* n \quad 2^{\log^* n} \quad \ln(\ln n) \quad \sqrt{\log n} \quad \ln n \quad \log^2 n$ $2^{\sqrt{2\log n}} \quad 2^{\ln n} \quad n \quad n \log n = \Theta(\log(n!)) \quad \log(n!) \quad n^2 = \Theta(4^{\log n}) \quad 4^{\log n} \quad n^3 \quad (\log n)! \quad n^{\log(\log n)} = \Theta((\log n)^{\log n}) \quad (\log n)^{\log n} \quad (\sqrt{n})^{\log n} \quad (3/2)^n \quad 2^n \quad e^n \quad n^2 \quad n! \quad (n+1)! \quad 2^{2^n} \quad 2^{2^{n+1}}$
- 4) a) $\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \dots$

Воспользуемся формулой для суммы бесконечно убывающей геометрической прогрессии:

$$\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{1 - 1/2} = 2$$

6)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \dots$$

Воспользуемся формулой для суммы бесконечно убывающей геометрической прогрессии:

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = \frac{1/2}{1 - 1/4} = \frac{2}{3}$$

5) а) $n^n=\mathcal{O}(n!)$ - ложь. Докажем, что $n!=o(n^n).$

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0 \Leftrightarrow \lim_{n \to +\infty} \ln n! - \ln n^n = \lim_{n \to +\infty} n \ln n - n + \mathcal{O}(\ln n) - n \ln n = -\infty$$

б) $n \log n - \log n! = \Theta(n)$ - истина.

Будем считать, что логарифм натуральный.

Можно написать такие неравенства:

$$\frac{1}{2}n \leqslant n \ln n - \ln n! = n + \mathcal{O}(\ln n) \leqslant 2n$$

Они верны, потому что $\mathcal{O}(\ln n) = o(n)$.