Group Theory Notes

1 Revision of Groups

Definition 1.1.1: Definition of a Group

A group consists of a set G together with a function $G \times GztoG$ which maps an ordered pair $(g,h) \in G \times G$ to an element $g \star h \in G$. The following axioms must be satisfied:

- 1. Associativity: $(g \star h) \star k = g \star (h \star k)$ for each triple $(g,h,k) \in G \times G \times G$
- 2. **Identity**: $\exists e \in G$ such that $e \star g = g = g \star e$ for each $g \in G$
- 3. **Inverse**: To each element $g \in G$, there is an element $g^{-1} \in G$ such that $g \star h = e = h \star g$

Note: The closure axiom follows from the definition of a function.

Example 1.2.A: Examples of Groups

- **1.2.1**) S_n , the *n*-th symmetric group, is the group of permutations of $\{1, 2, \ldots, n\}$, with composition of functions.
- **1.2.2**) D_n , the *n*-th dihedral group, is the group of symmetries of the *n*-gon. It has 2n elements: n rotations, and n reflections.
- **1.2.3**) The **free group** on the letters x,y is written as $G = \langle x,y \rangle$. The elements of G are **words** in the symbols x,y,x^{-1},y^{-1} . The group operation \star is **concatenation**: so $xxx^{-1}y\star y^{-1}x = xxx^{-1}yy^{-1}x$. e is the **empty word** with 0 letters, and x^{-1} and y^{-1} is the inverse of x and y respectively. Thus $xxx^{-1}y = xy$.
- **1.2.4**) $(\mathbb{Z}, +)$ is a group, with e = 0. It is a **cyclic** group, and is **generated** by 1.
- **1.2.5**) \mathbb{Z}/n , the set of integers modulo n, is a group under +.

Definition 1.2.6: Abelian Group

A group (G,\star) is **abelian** if $g\star h=h\star g$ for all $g,h\in G$. **Note**: Often, when (G,\star) is ablian, we write g+h as the group operation.

Definition 1.3.1: Subgroup

If H is a nonempty subset of G then H is a $\mathbf{subgroup}$ provided that:

- $hk \in H$ for all $h, k \in H$.
- $h^{-1} \in H$ for all $h \in H$.

We usually just say "H is closed under the group operations". Note that $e \in H$ follows from the definition, and associativity follows from the fact that G is a group. Any subgroup H of G is a group using the same product as that of G.

group using the same product as that of G. We write $H \leq G$ when H is a subgroup of G (as opposed to $H \subseteq G$ which just means H is a subset of G). The notation H < G means that H is a subgroup of G and $H \neq G$. A subgroup H is **proper** if $H \neq G$ and is **non-trivial** if $H \neq \{e\}$.

Example 1.3.A: Examples of Subgroups

- **1.3.2**) The subsets $\{e\}$ and G are always subgroups of G
- **1.3.3**) The group of rotations of an n-gon is a subgroup of D_n
- **1.3.4**) The n-th alternating group, A_n is the subgroup of S_n consisting of all permutations that can be written as the product of an even number of 2-cycles.
- **1.3.5**) Let G be a group and $g \in G$. Then $\langle g \rangle := \{g^n : n \in \mathbb{Z}\}$ is a subgroup of G, called the **subgroup generated by** g. If $G = \langle q \rangle$ for some $g \in G$, then G is **cyclic**.

Definition 1.3.6: Coset

Let $H \leq G$ and $g \in G$. Then the **left coset** of H determined by g is the set

$$gH := \{gh \mid h \in H\}$$

Similarly, the **right coset** of H determind by g is the set

$$Hg := \{hg \mid h \in H\}$$