Interpolazione di dati

Problema 1 (es_robot).

Siano
$$(x_i, y_i)$$
 con $i = 0, ..., 5$,

i punti da cui deve passare il braccio di un robot per effettuare dei controlli.

Determinare le traiettorie (interpolatorie) che il robot può compiere, utilizzando:

- 1. l'interpolazione globale di Lagrange,
- 2. l'interpolazione composita lineare di Lagrange,
- 3. le spline cubiche.

Rappresentarla graficamente le traiettorie insieme ai punti di passaggio.

Nell'ottica di avere una traiettoria breve ed allo stesso tempo regolare, quale approssimazione è da preferirsi?

Svolgimento del punto 1. (interp. globale di Lagrange)

- 1.1. definire i vettori dei dati x=[x0,..., xn] e y=[y0,..., yn]
- 1.2. costruire la matrice di Vander-Monde: X=vander(x)
- 1.3. risolvere il sistema di Vander-Monde e trovare il vettore a dei coefficienti del polinomio
- 1.4. definire un vettore x1 di ascisse molto più fitte delle ascisse di x (ad esempio con il comando linspace)
- 1.5. valutare il polinomio sul vettore di ascisse x1 con il comando polyval: y1=polyval(a,x1)
- 1.6. rappresentare con il comando plot i punti dati (senza congiungerli) e il polinomio interpolatore valutato nei nodi x1 con una linea continua.

Svolgimento del punto 2. (interp. composita di Lagrange)

- 2.1. definire i vettori dei dati x=[x0,..., xn] e y=[y0,..., yn]
- 2.2. definire un vettore x1 di ascisse molto più fitte delle ascisse di x (ad esempio con il comando linspace)
- 2.3. costruire l'interpolatore lineare composito $p_1^c(x)$ con il comando y1=interp1(x,y,x1). y1 è un vettore della dimensione di x1 che contiene i valori di p_1^c nei punti del vettore x1 2.4. rappresentare con il comando plot i punti dati (senza congiungerli) e il polinomio interpolatore valutato nei nodi x1 con

Svolgimento del punto 3. (interp. con spline cubiche)

Come per il punto 2, ma con 2.3 sostituito da:

3.3 costruire la spline cubica $s_3(x)$ con il comando y1=spline(x,y,x1). y1 è un vettore della dimensione di x1 che contiene i valori di s_3 nei punti del vettore x1

una linea continua.

Rappresentazione grafica degli interpolatori costruiti

Problema 2 (es_clima): climatologia

La temperatura t in prossimità del suolo varia al variare della concentrazione K dell'acido carbonico e della latitudine L. In particolare, per K=1.5, la temperatura al suolo subirebbe una variazione (Δt) dipendente dalla latitudine come descritto in tabella:

L	-55	-45	-35	-25	-15	-5	
Δt	3.7	3.7	3.52	3.27	3.2	3.15	
						+55	
Λ+	2 1 5	3 25	2 /17	3 53	3 65	3.62	3 53

Si vuole dare un'approssimazione della variazione di temperatura Δt a Roma (la latitudine a Roma è L=+42) e ad Oslo (L=+59), utilizzando interpolazione globale di Lagrange, interpolazione composita lineare e interpolazione con spline cubiche. Le approssimazioni trovate sono significative?

Svolgimento

Impostare il lavoro come si è fatto per il problema es_robot. Per valutare le variazioni di temperatura a Roma e ad Oslo:

```
% Lagrange globale
t_roma1=polyval(a,42); t_oslo1=polyval(a,59);
% interpolazione composita lineare
t_roma2=interp1(x,y,42); t_oslo2=interp1(x,y,59);
% interpolazione spline
t_roma3=spline(x,y,42); t_oslo3=spline(x,y,59);
```

