Trabalho de Dados Categorizados 1/2024

Profa. Maria Tereza Leão Costa

Bruno Gondim Toledo (15/0167636)Rafael de Acypreste (20/0060023)

13/07/2024

Sumário

1	Introdução			
	1.1	Análise exploratória	2	
2	Met	todologia	4	
	2.1	Análise de Regressão Logística	4	
3	Res	ultados	4	
	3.1	Modelo apenas com intercepto	4	
	3.2	Modelo acrescido do Nível de Fosfatase Ácida como variável preditora		
		3.2.1 Comparação dos modelos	7	
	3.3	Modelo Saturado	7	
		3.3.1 Comparação dos modelos		
	3.4	Demais modelos possíveis	9	
	3.5	Análise a partir do modelo escolhido	9	
	3.6	Aplicação do modelo escolhido ao conjunto de teste		
4	Con	nclusão	10	

1 Introdução

Ao se constatar que um paciente desenvolveu câncer, é fundamental, para se decidir qual tratamento utilizar, saber se o câncer já se espalhou para os linfonodos próximos. Um estudo foi realizado com o objetivo de medir a capacidade de predição para o envolvimento nodal em câncer de próstata de várias variáveis pré-operatórias cuja coleta é menos invasiva que uma cirurgia.

- Numa primeira etapa, desejava-se avaliar especificamente o efeito do nível de fosfatase ácida na predição para envolvimento nodal; e
- Na segunda etapa do estudo se considerou além desta variável as outras variáveis préoperatórias.

Com isso, o presente estudo objetiva analisar os dados coletados e verificar a capacidade de predição para o envolvimento nodal em câncer de próstata.

1.1 Análise exploratória

Os dados avaliados consistem no acompanhamento clínico de 146 pacientes com câncer de próstata. Um resumo das variáveis pode ser visto na Tabela 1.

Tabela 1: Resumo dos dados.

Variável	$N = 102^{1}$
Resultado da Radiografia	
Negativo	72~(71%)
Positivo	30~(29%)
Estágio do Tumor	
- grave	47~(46%)
+ grave	55~(54%)
Nível da Fosfatase Ácida	62 (50, 79)
Envolvimento Nodal (x100)	
Não	60~(59%)
Sim	42~(41%)

¹n (%); Median (IQR)

A variável resposta de interesse é de Envolvimento Nodal. Nesse sentido, a Tabela 2 apresenta a distribuição das variáveis coletadas por pessoas que apresentaram ou não o envolvimento.

Tabela 2: Distribuição das variáveis por envolvimento nodal.

Envolvimento nodal	$Não, N = 60^{1}$	$Sim, N = 42^{1}$	
Resultado da Radiografia			
Negativo	52~(87%)	20~(48%)	
Positivo	8 (13%)	22~(52%)	
Estágio do Tumor			
- grave	39~(65%)	8 (19%)	
+ grave	21 (35%)	34~(81%)	
Nível da Fosfatase Ácida	53 (50, 63)	74 (67, 84)	

¹n (%); Median (IQR)

O que se pode perceber é que as variáveis relativas ao resultado da tomografia, do estágio do tumor e do nível da Fosfatase ácida são mais elevados entre os pacientes que apresentaram envolvimento nodal. Entretanto, é preciso usar métodos estatísticos adequados para verificar se essas diferenças são significativas.

A relação entre o Envolvimento Nodal e o nível da Fosfatase Ácida pode ser vista na Figura 1. Por ela, também é reforçada a ideia de que o nível da Fosfatase Ácida é mais elevado entre os pacientes que apresentaram envolvimento nodal.

Figura 1: Relação entre o nível da Fosfatase Ácida e o Envolvimento Nodal.

2 Metodologia

2.1 Análise de Regressão Logística

Para a resposta às duas perguntas do problema, pode-se utilizar o modelo de regressão logística. Como a variável resposta, Envolvimento Nodal, é uma variável binária, pode-se codificá-la para que assuma o valor 1 se o paciente apresentou envolvimento nodal e 0 caso contrário.

Numa primeira etapa, para se avaliar apenas a capacidade do nível de fosfatase ácida em predizer o envolvimento nodal, pode-se ajustar o modelo de regressão logística com a variável nível de fosfatase ácida como preditora. O modelo utilizado é dado pela equação (1).

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_{3i} \tag{1}$$

em que π_i é a probabilidade de um paciente i apresentar envolvimento nodal, X_{3i} é o nível de fosfatase ácida do paciente i e β_0 e β_1 são os coeficientes do modelo. A função de ligação logito é dada por $\log\left(\frac{\pi_i}{1-\pi_i}\right)$, que tem como resposta o modelo linear visto na equação.

De maneira específica, o coeficiente e^{β_1} indica o quanto a razão de chances de um paciente apresentar envolvimento nodal aumenta para cada unidade de aumento no nível de fosfatase ácida.

Por mim, o modelo saturado inclui todas as variáveis disponíveis de Estágio do Tumor, Resultado da Radiografia e Nível da Fosfatase Ácida. Nesse caso, o modelo é dado pela equação (2).

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}$$
 (2)

em que X_{1i} , X_{2i} e X_{3i} são as variáveis Nível da Fosfatase Ácida, Resultado da Radiografia e Estágio do Tumor, respectivamente.

3 Resultados

3.1 Modelo apenas com intercepto

Como estratégia inicial, pode-se avaliar o modelo com uma média única pra todos os níveis de Fosfatase Ácida. Nesse caso, o modelo é dado pela equação (3).

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 \tag{3}$$

O modelo com esse ajuste pode ser avaliado na Figura 2.

Figura 2: Modelo de regressão logística com intercepto. Os pontos foram ligeiramente agitados para facilitar a visualização.

As estatísticas de avaliação do modelo podem ser vistas na Tabela 3.

Tabela 3: Estatísticas do modelo de regressão logística com intercepto.

Deviance	AIC	BIC	Log Likelihood
138.2	140.2	142.8	-69.1

3.2 Modelo acrescido do Nível de Fosfatase Ácida como variável preditora

O modelo para o nível de Fosfatase Ácida como variável preditora é dado pela equação (1). As probabilidades previstas estão apresentadas na Figura 3.

Probabilidades previstas de evolvimento nodal

Figura 3: Modelo de regressão logística com o nível de Fosfatase Ácida como variável preditora. Os pontos foram ligeiramente agitados para facilitar a visualização.

As estatísticas do modelo quando é acrescido o nível de Fosfatase Ácida como variável preditora estão apresentadas na Tabela 4.

Tabela 4: Estatísticas do modelo de regressão logística com o nível de Fosfatase Ácida como variável preditora.

Variável	Estimativa	Erro Padrao	Valor Z	$\Pr(> z)$
Intercepto	-1.326	0.565	-2.347	0.019
Nível de fosfatase ácida	0.014	0.008	1.828	0.068

O teste de Hosmer-Lemeshow pode ser utilizado para avaliar a qualidade do ajuste. Para o modelo da apresentado na Tabela 4, a estatística χ^2 do teste de Hosmer-Lemeshow é de 26.48 com um p-valor de 8.7×10^{-4} . O teste sugere que o modelo ajustado não é adequado para os dados.

Por fim, as estatísticas do modelo que inclui a variável "Nível de Fosfatase Ácida" como preditora estão apresentadas na Tabela 5.

Tabela 5: Estatísticas de qualidade do modelo de regressão logística com o nível de Fosfatase Ácida como variável preditora.

Deviance	AIC	BIC	Log Likelihood
134.45	138.45	143.7	-67.225

3.2.1 Comparação dos modelos

Uma forma de avaliar o modelo com a variável explicativa "Nível de Fosfatase Ácida" é comparar com o modelo apenas com intercepto. A Tabela 6 apresenta as estatísticas de comparação entre os modelos.

Tabela 6: Estatísticas de comparação entre os modelos de regressão logística com a variável "Nível de Fosfatase Ácida" e apenas com intercepto.

Teste	Estatistica	GL	P-valor
Razao de Verossimilhanca	3.759	1	0.053
Wald	3.340	1	0.068
Score	3.759	1	0.053

Portanto, percebe-se que que nenhum dos 3 testes rejeitaram a hipótese nula a 5%. Isto é, o modelo não é significativamente melhor que o modelo que contém apenas o intercepto.

3.3 Modelo Saturado

As demais informações disponíveis podem auxiliar um melhor ajuste do modelo. Nesse caso, o modelo saturado é ajustado. As estatísticas do modelo saturado estão apresentadas na Tabela 7.

Tabela 7: Estatísticas do modelo de regressão logística saturado.

Variável	Estimativa	Erro Padrao	Valor Z	$\Pr(> z)$
Intercepto	-5.1039	1.1454	-4.4559	0.0000
Resultado da Radiografia	2.7426	0.7360	3.7264	0.0002
Estágio do Tumor	3.2084	0.7543	4.2536	0.0000
Nível de Fosfatase Ácida	0.0278	0.0090	3.0762	0.0021

O teste de Hosmer-Lemeshow para o modelo saturado é de 22.05 com um p-valor de 0.00482.

O teste sugere que o modelo saturado ajustado não é adequado para os dados.

Pode-se inspecionar as previsões do modelo saturado na Figura 4.

Probabilidades previstas de evolvimento nodal de acordo com as variáveis do modelo saturado

Figura 4: Modelo de regressão logística saturado. Os pontos foram ligeiramente agitados para facilitar a visualização.

As estatísticas de qualidade do modelo saturado estão apresentadas na Tabela 8.

Tabela 8: Estatísticas de qualidade do modelo de regressão logística saturado.

Deviance	AIC	BIC	Log Likelihood
86.194	94.194	104.69	-43.097

3.3.1 Comparação dos modelos

A Tabela 9 apresenta as estatísticas de comparação entre o modelo saturado e o modelo com intercepto. e com a variável "Nível de Fosfatase Ácida" (SE DER)

Tabela 9: Estatísticas de comparação entre os modelos de regressão logística saturado e com intercepto.

Teste	Estatistica	GL	P-valor
Razao de Verossimilhanca	52.015	3	0
Score	52.015	3	0

3.4 Demais modelos possíveis

Também é possível avaliar as demais combinações de modelos, cujas estatísticas de qualidade de ajuste estão na Tabela 10.

Tabela 10: Estatísticas de qualidade dos modelos de regressão logística com as variáveis preditoras possíveis.

	Modelo	Deviance	AIC	BIC	Log Likelihood
1	X4 ~ 1	138.21	140.21	142.83	-69.10
3	$X4 \sim X1 + X2 + X3$	86.19	94.19	104.69	-43.10
4	$X4 \sim X1 + X2$	96.08	102.08	109.96	-48.04
5	$X4 \sim X1 + X3$	116.54	122.54	130.41	-58.27
6	$X4 \sim X2 + X3$	106.64	112.64	120.52	-53.32
8	$X4 \sim X1$	119.88	123.88	129.13	-59.94
7	$X4 \sim X2$	116.03	120.03	125.28	-58.01
2	$X4 \sim X3$	134.45	138.45	143.70	-67.22

O método stepwise pode ser utilizado para selecionar o melhor modelo. Nesse caso, considerando tal método e os dados apresentados de qualidade de ajustes dos modelos, a escolha indicada foi exatamente a do modelo completo.

Pode-se comparar o modelo completo com o modelo de segunda melhor *deviance*

3.5 Análise a partir do modelo escolhido

Para avaliar a qualidade do modelo, pode-se utilizar a curva ROC. A Figura 5 apresenta a curva ROC do modelo escolhido.

Figura 5: Curva ROC do modelo de regressão logística escolhido.

3.6 Aplicação do modelo escolhido ao conjunto de teste

O modelo escolhido é aplicado ao conjunto de teste. A Tabela 11 apresenta a matriz de confusão do modelo aplicado ao conjunto de teste. O valor de corte definido foi de 0.5.

Tabela 11: Matriz de confusão do modelo de regressão logística aplicado ao conjunto de teste.

Observado\Predito	0	1
0	54	10
1	10	28

Para esse caso específico, o modelo teve 80.39% de acertos, o que confere um caráter interessante para previsão dos resultados.

4 Conclusão