TRC3000 Automation Project

Management: Systems Development Model

Associate Professor Tuck Wah NG

Tuck.Ng@monash.edu

Development Models

- Projects need to be completed within a specific allocated time and cost
- It is helpful to apply a systems development model when approaching projects
- The existence of a model helps the project team to relate the required tasks to the goals of the project
- Possible models to adopt
 - Prototyping
 - Waterfall
 - V
 - Iterative Enhancement
 - Spiral

Prototyping Model

- A prototype is a system that does not include all the requirements of the user
- The prototyping model is useful when
 - Identification of all the requirements is difficult
 - The requirements change drastically during development
 - Venturing into a relatively new area
 - It is possible to abandon the project without too much consequences
- Problems in using this model include
 - Possible protracted process of refinement which results in too much time, effort and money
 - Difficulty in management

Waterfall Model

- The main feature in the waterfall model is that the phases do not overlap.
- Some salient points are
 - It is simple and easy to understand and use
 - Works well in projects where requirements are clearly defined and very well understood
 - Used when there are strict standards and requirements that have to be followed
 - Design is assumed to be straightforward and a once-off process

General Overview of "Waterfall Model"

V Model

The V-model involves

Analyzing all requirements on the total system

 Define the sub-functions (left branch of the V-model)

- Develop, verify, and test the sub-functions using cooperating development teams
- Integrate the sub-functions step by step (right branch of the V-model)
- Check the performance of the integrated system
- If improvement is needed, repeat the process again

It enhances the waterfall model by extensive use of testing to validate requirements and introduce changes in design if necessary

Case study: Continuously Variable Transmission (CVT) Development

- Similar to an automatic in that it doesn't use any input from the driver.
- Doesn't have any gears.
- It has two pulleys, one pulley connects to the engine, and the other connects to the wheels.
- A flexible belt connects the two pulleys
- When one pulley gets larger, the other one gets smaller.
- This provides an infinite number of gear ratios, unlike the automatic, which has a set number of gears.
- Project uses the V-model for characterization

Case study: CVT Development V-model in document form

Case study: CVT Development V-model in pictorial form

Case study: CVT Development System Schematics

Test Board & TCU Code Generation

Case study: CVT Development

Hardware in the loop (HIL) testing

- Integration of real control system hardware, often a controller under test, with a simulation model representing the real environment.
- Reduces reliance on expensive prototype systems.

Case study: CVT Development Dynanometer testing

Measures the torque and power of the transmission system

Case study: CVT Development In-vehicle testing

Iterative Enhancement Model

- The main feature is that the system is developed in increments
- Each increment adds some functionalities to the system
- Some salient points are
 - More parallel development can be implemented
 - Risks are identified and resolved during iteration, making each iteration easier to manage
 - Model runs into difficulty if significant changes to the system is required

Spiral Model

- The model adopts a cyclic conception
- There are 4 quadrant phases, as the process continues, the radius increases and thus also the cumulative cost of the project
- Some salient points are
 - It is suited when budget constraints and risk evaluation are important in the project
 - It allows requirements to be added in as they become known
 - The management tends to be more difficult
 - It is not suited for small or low risk projects

