Homework 2

Math 55b Due Tuesday, 10 Feb 2009.

Figure 1. A connected set (?)

- 1. Let B' = X B. Give an example of set $A \subset \mathbb{R}$ such that, by repeatedly taking closures and complements (i.e. by forming $A, A', \overline{A}, \overline{A'}, \overline{A'}, \ldots$), you obtain a total of 14 distinct subsets of \mathbb{R} .
- 2. Prove that for any subset E of a metric space (X, d), we have $\partial E = \overline{E} \text{int}(E)$. (Recall $x \in \partial E$ iff every neighborhood of x meets both E and X E.)
- 3. Let E_1 denote the set of limit points of E, and E_{n+1} the set of limit points of E_n . For each n > 0, given an example of a set $E \subset [0, 1]$ such that $E_n \neq \emptyset$ but $E_{n+1} = \emptyset$.

Prove or disprove: for any $E \subset [0,1]$, $F = \bigcap E_n$ is perfect (it satisfies $F_1 = F$).

4. Prove that any open subset $U \subset \mathbb{R}$ can be expressed as a union $U = \bigcup_{i \in I} (a_i, b_i)$ of disjoint open intervals (we allow $\pm \infty$ as endpoints). Prove that the number of intervals |I| appearing in this union is at most countable.

Now assume U is bounded. Does $\partial U = \bigcup \{a_i, b_i\}$?

5. A collections of open sets \mathcal{B} forms a base for a metric space (X, d) if for every open set $U \subset X$ and $x \in U$, there is a $B \in \mathcal{B}$ such that $x \in B \subset U$.

- (i) Prove that \mathbb{R} has a countable base.
- (ii) Prove that if X has a countable base, then any open cover of X has a countable subcover.
- (iii) Suppose every infinite subset of X has a limit point. Prove (directly from the definitions) that X has a countable base.
- 6. (See Figure.) Prove that [0,1] is connected. Is the locus

$$X = (0 \times [-1, 1]) \cup \{(x, y) : x \neq 0, y = \sin(1/x)\}\$$

in \mathbb{R}^2 also connected?