Course code: URP 4128

Course title: Transportation Planning Studio

Group: 14

Presented By

Presented To

Muhammad Waresul Hassan Nipun

Lecturer

MD. Shakil Ar Salan

Lecturer

Dept. of Urban & Regional Planning
Rajshahi University of Engineering & Technology

Date: 07 January, 2022

Background

- In Rajshahi, there are several number off railway crossings where a huge amount of delay occurs.
- These delay causes a huge amount of economic loss.
- So this loss should be minimized.

Objective

- 1. To monitor and evaluate the traffic congestion scenario at rail crossings.
- 2. To estimate the economic loss for congestion in the rail crossings.

Major railway crossings of Rajshahi:

- Vodra
- Railgate
- Nogor Bhaban
- Bornali
- Bondhogate
- City Bypass
- Rajshahi CourtStation
- Raipara

Literature Review

Case Study 01:Traffic Congestion Induced Cost of A Road Section: A Study on Fulbarigate to Dakbangla Midblock, Khulna

The objective of the study is to estimate economic loss due to traffic congestion. The study measured three major types of hidden cost (i.e. opportunity cost, vehicle operating cost and externality cost) due to traffic congestion in monetary values.

Case Study 02: Estimating Costs of Traffic Congestion in Dhaka City

The main goal of the study is to estimate the impacts of traffic congestion in monetary terms for Dhaka city. The study estimated the total traffic congestion cost of Dhaka city with the available data. This study also identified different important item costs associated with traffic congestion using economic theory, i.e. travel time delay, travel time variability, vehicle operating cost, externality costs etc.

Coordination Schema

Objectives	Complex variable	Simple variable	Data Type	Data Source	Collection method
To monitor and evaluate the traffic	Demographic Information	 Age Gender 	Qualitative & Quantitative	Primary	Questionnaire
congestion scenario at rail crossings.	Crossing Information	 Gate Activity Lighting Facilities Lighting Safety Measures 	Qualitative	Primary	Questionnaire
	Traffic Congestion	 Type of Vehicles Number of Vehicles No of Train cross this intersection Time Duration No of time in crossing 	Qualitative and Quantitative	Primary & Secondary	Questionnaire & Railway data.

Coordination Schema

To estimate the economic loss for congestion in the rail crossings.	1. Type of Vehicles 2. Number of Vehicles 3. Time duration 4. No of time in crossing 5. A General Trip time 6. Income from that trip	Quantitative and qualitative	Primary	Physical observation, Questionnaire & Traffic Volume Survey
---	--	------------------------------	---------	---

Methodology

Figure 02 :Flow chart of methodology

Data Collection & Calculation

- The types of vehicle and volume will be identified with Traffic Volume survey.
- Total number of time the rail crossing are need to remain stopped is observed.
- Loss for each vehicle will be calculated by comparing the most common trip value and time needed for the trip.
- Then total loss of each intersection can be calculated.

Data Collection & Calculation

- Economic loss of Auto Rickshaw = L_a
- Total Time Loss for one stoppage= T
- Time of one possible trip= t
- Income from that possible Trip =M
- Number of vehicles= N
- T/t= Number of possible trips.
- $L_a = T/t * M * N$
- So, Total Loss, L= L_a + L_b + L_c ++ L_n (a= Auto rickshaw, b=Bus, c= Car, etc.)

Data Analysis

• Traffic Congestion Scenario

Data Analysis

• Traffic Congestion Scenario

Volume of vehicles at each Crossing for one stoppage

Loss at Vodra Crossing = 48510

Easy Bikes

Time Period	Total time loss (min)	Possible trip(min)	Possible Income (taka)	Le (taka)	Total loss Le*No of Stoppage	Total Loss for Easy bikes (per Day)
Morning	5	6	25	708.33	6374.97	
Afternoon	6	6	25	775	10075	22236.61
Night	8	6	20	723.33	5786.64	

Auto Rickshaw

Time Period	Total time loss (min)	Possible trip (min)	Possible Income (taka)	La (taka)	Total loss La*No of Stoppage	Total Loss for Auto Rickshaw (per Day)
Morning	5	5	15	918	8262	
Afternoon	6	5	15	972	12636	26274
Night	8	5	15	672	5376	15

Data Analysis

• Economic Loss

Loss at Railgate Intersection=18575

Easy Bikes

Time Period	Total time loss (min)	Possible trip(min)		Le(taka)	Total loss Le*No of Stoppage	Total Loss for Easybikes (per Day)
Morning	6	6	25	975	2925	9725
Night	8	6	20	1360	6800	

Auto Rickshaw

Time Period	Total time loss (min)	Possible trip(min)		La(taka)	Total loss La*No of Stoppage	Total Loss for Auto Rickshaw (per Day)
Morning	6	5	15	990	2970	8850
Night	8	5	15	1568	5880	

Data Analysis

• Economic Loss

Loss at other crossings

Rail Crossing	Type of Vehicle	Loss (taka)	Total loss of Crossing (per Day)
Nagor Bhaban	Easy Bikes	5412.49	8517.49
	Auto Rickshaw	3105	
Bornali	Easy Bikes	3708.45	6453.45
	Auto Rickshaw	2745	
Bondhogate	Easy Bikes	3250	6355
	Auto Rickshaw	3105	
City bypass	Easy Bikes	3475	5815
	Auto Rickshaw	2340	
Rajshahi Court	Easy Bikes	5466.65	8973.65
	Auto Rickshaw	3507	
Raipara	Easy Bikes	2600	4706
	Auto Rickshaw	2106	17

Total loss in Rail crossings

Satisfaction Level of the Respondents about Intersections:

Shaheed AHM Kamaruzzaman Railway crossing

Nogor Vobon Mor Railway Crossing

Barnali Railway Crossing

Satisfaction Level of the Respondents about Intersections:

Bondhogate Railway Crossing

Rajshahi Court Railway Crossing

City Bypass Railway Crossing

Raipara Railway Crossing

Findings

- The maximum loss occurs in Vodra Railway Crossing.
- Meanwhile the minimum loss occurs in Raipara Railway crossing.
- At night the delay occurs much more because of long stoppage time.
- There is no proper signal system and lighting in any of the crossings.
- The safety and security system is inadequate in every crossing.
- Autorickshaw drivers and easy bike drivers have suffered the most.
- Peoples satisfaction about the activities and facilities is very poor.

Recommendation from the Respondents

Recommendation from Respondents

Opinion for each intersection

Recommendation

- Underpass for vehicles in Vodra crossing as the loss is maximum here.
- Proper signal system and lighting for every crossings.
- Communication between gateman and the responsible authority.
- Using advance technology for proper signal and signing system.
- Awareness among the pedestrians and vehicle operators.
- Adequate facilities and services.
- Proper and timely gate activity.
- Proper maintenance of the system.

Limitation

- Minor railway crossings are excluded from this study.
- Only auto rickshaw and easy bikes are considered for economic loss as these are the most used vehicle in Rajshahi.
- As the survey is done manually so there can be error in counting.
- Survey is done in three shift. And each shift, survey is done only one time.
- The freight trains are excluded from the calculation.

Conclusion

- In economy railway crossing has great impact.
- Because of poor maintenance city's economic development is greatly hampered.
- In Vodra crossing the loss is maximum so much concentration should be given upon this crossing.
- The proper facility, services as well as maintenance should be ensured.
- The traffic rule should be maintained properly.
- And responsible authority should take necessary steps to minimize the loss.

References

- Das, P. C., Bintee, N. Z., Azad, A. K., & Roy, T. K. (2019). Traffic congestion induced cost of a road section: a study on Fulbarigate To Dakbangla Midblock, Khulna. Journal of Engineering, 10(1), 103-112.
- Khan, T., & Islam, M. R. (2013). Estimating costs of traffic congestion in Dhaka city. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(3), 281-289.
- Jayasooriya, S. A. C. S., & Bandara, Y. M. M. S. (2017, May). Measuring the Economic costs of traffic congestion. In 2017 Moratuwa Engineering Research Conference (MERCon) (pp. 141-146). IEEE.
- Ali, M. S., Adnan, M., Noman, S. M., & Baqueri, S. F. A. (2014). Estimation of traffic congestion cost-a case study of a major arterial in Karachi. Procedia Engineering, 77, 37-44.
- Chowdhury, T. U., Raihan, S. M., Fahim, A., & Bhuiyan, M. A. (2016, April). A case study on reduction of traffic congestion of Dhaka City: Banani Intersection. In International Conference on Agricultural, Civil and Environmental Engineering (ACEE-16) (pp. 61-65).

THANK YOU