

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 30V,62A, $R_{DS(on),max} = 5.2 m\Omega@V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- ◆ UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 30V \\ R_{DS(on),max} @ V_{GS} {=} 10V & 5.2 m\Omega \\ I_D & 62A \end{array}$

Pin Configuration

TO-252

Schematic

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

9			
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	30	V
Continuous drain current (T _C = 25°C)		62	A
(T _C = 100°C)	ID	38	A
Pulsed drain current ¹⁾	I _{DM}	186	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	16.2	mJ
Power Dissipation	P _D	32	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	3.9	°C/W
Thermal Resistance Junction-to-Ambient	R _{θJA}	80	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel	
VST03N052-T2	TO-252	VST03N052-T2	2500	

Electrical Characteristics T_J = 25°C unless otherwise noted

T _J = 25°C unless otherwise noted						
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	30			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.2	1.7	2.5	V
Drain-source leakage current	I _{DSS}	V _{DS} =30 V, V _{GS} =0V			1	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =20 A		4.2	5.2	mΩ
		V _{GS} =4.5 V, I _D =15 A		6.5	9	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =20A		66		S
Dynamic characteristics						
Input capacitance	C _{iss}	V 45.V.V 0.V		1115		pF
Output capacitance	Coss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		437		
Reverse transfer capacitance	C _{rss}	- F - IIVIDZ		56		
Turn-on delay time	t _{d(on)}			7.1		ns
Rise time	t _r	V_{DD} = 15V, V_{GS} =10V, I_D = 20A R_G =3.3 Ω		19		
Turn-off delay time	t _{d(off)}			19.3		
Fall time	t _f			3.4		
Gate resistance	Rg	V _{GS} =0 V,V _{DS} =0 V, F=1MHz		1.6		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	V 45V 1 00A		2.9		
Gate to drain charge	Q _{gd}	V_{DS} =15V, I_{D} =20A, V_{GS} = 10 V		3.5		nC
Gate charge total	Qg			16.5		
Drain-Source diode characteristic	s and Maxi	mum Ratings				
Continuous Source Current	Is				26.5	А
Pulsed Source Current ³⁾	Іѕм	_			79.5	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25℃			1.2	V

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =18A, Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

