Пользуясь интегральным признаком Коши, исоледовать сходимость рядов с общим членом:

2619.
$$a_n = \frac{1}{n \ln^p n}$$
 $(n > 1)$.
2620. $a_n = \frac{1}{n (\ln n)^p (\ln \ln n)^q}$ $(n > 2)$.

2620.1. Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \frac{\ln 2 \cdot \ln 3 \cdot ... \ln (n+1)}{\ln (2+p) \cdot \ln (3+p) \cdot ... \ln (n+1+p)} \quad (p>0).$$

2620.2. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{y(n)}{n^2}$, где v(n) — число цифр числа n.

2620.3. Пусть λ_n $(n=1, 2, \ldots)$ — последовательные положительные корни уравнения $\lg x = x$.

Исследовать сходимость ряда $\sum_{n=1}^{\infty} \lambda_n^{-2}$.

2621. Исследовать сходимость ряда
$$\sum_{n=2}^{\infty} \frac{1}{\ln{(n!)}}$$
.

- **2622.** Доказать, что ряд $\sum_{n=1}^{\infty} a_n$ с положительными монотонно убывающими членами сходится или расходится одновременно с рядом $\sum_{n=0}^{\infty} 2^n a_{2n}$.
- **2623.** Пусть f(x) положительная монотонно невозрастающая функция.

Доказать, что если ряд $\sum_{n=1}^{\infty} f(n)$ сходится, то для остатка его

$$R_n = \sum_{k=n+1}^{\infty} f(k)$$

справедлива оценка

$$\int_{n+1}^{+\infty} f(x) dx < R_n < f(n+1) + \int_{n+1}^{+\infty} f(x) dx.$$