## V504: Thermische Elektronenemission

Simon Schulte simon.schulte@udo.edu tim.sedlaczek@udo.edu

Tim Sedlaczek

Durchführung: 23.05.2017 Abgabe: 30.05.2017

TU Dortmund – Fakultät Physik

## Inhaltsverzeichnis

| 1   | Zielsetzung |                                                                         |    |  |
|-----|-------------|-------------------------------------------------------------------------|----|--|
| 2   | The         | orie                                                                    | 1  |  |
| 3   |             | chführung                                                               | 4  |  |
|     | 3.1         | Versuchsaufbau                                                          | 4  |  |
|     |             | Versuchsablauf                                                          |    |  |
| 4   | Aus         | wertung                                                                 | 6  |  |
|     | 4.1         | Bestimmung von 5 Kennlinien                                             | 6  |  |
|     | 4.2         | Betrachtung der Strom-Spannungs-Beziehung nach dem Langmuir-Schottkysch | en |  |
|     |             | Gesetz                                                                  | 8  |  |
|     | 4.3         | Bestimmung der Kathodentemperatur mittels Messung des Anlaufstrom-      |    |  |
|     |             | gebiets                                                                 | 9  |  |
|     | 4.4         | Bestimmung der Kathodentemperatur über die Leistungsbilanz              |    |  |
|     | 4.5         | Bestimmung der Austrittsarbeit                                          |    |  |
| 5   | Disk        | cussion                                                                 | 13 |  |
| Lit | eratur 14   |                                                                         |    |  |

### 1 Zielsetzung

Ziel des Versuchs ist es, durch Erwärmung einer Metallfläche, freie Elektronen aus dieser zu emittieren.

#### 2 Theorie

Die durch Erhitzung hervorgerufene Elektronenemission aus einer Metallfläche wird auch als glühelektrischer Effekt bezeichnet. Die Grundlage, um diesen Effekt zu beobachten ist die Austrittsarbeit der Metalloberfläche zu überwinden. Die innere Energie der Elektronen muss somit etwa gleich groß wie die Austrittsarbeit sein, damit diese die Metalloberfläche verlassen können. Dieser Effekt ist basierend auf der Fermi-Dirac Verteilung temperaturabhängig.

Aufgrund des Pauliprinzips besitzen die Elektronen in einem Material selbst am absoluten Temperaturnullpunkt eine Energie, die von Null verschieden ist (Fermische Grenzenergie). Die Fermi-Dirac Verteilung beschreibt in Abhängigkeit von der Energie die Wahrscheinlichkeit, dass ein entsprechender Zustand besetzt ist. Der Verlauf dieser Verteilung ist in Abbildung 1 dargestellt und die entsprechende Funktion lautet:

$$f(E) = \frac{1}{\exp\left(\frac{E-\zeta}{kT}\right) + 1}.$$
 (1)

Mit der Energie E, der Fermischen Grenzenergie  $\zeta$ , der Boltzmann- Konstante k und der Temperatur T.



**Abbildung 1:** Fermie-Dirac Verteilung für T = 0 und T >> 0. [TuD17]

Je größer die Temperatur ist desto größer ist auch die Abweichung von der Stufenform. Die Elektronen in den oberen Energieniveaus können dann durch die höhere Temperatur spontan ionisieren.

Wegen der Temperaturabhängigkeit werden in diesem Versuch fünf Kennlinien mit fünf verschiedenen Heizströmen und Heizzspannungen aufgenommen. Abbildung 2 zeigt eine



Abbildung 2: Der Graph einer Kennlinie. [TuD17]

übliche Kennlinie. Dabei wird prinzipiell die Spannung zwischen Anode und Kathode gegen den fließenden Strom abgebildet. Logischerweise muss das Experiment in einem Vakuum durchgeführt werden, da sonst Teilchen miteinander wechselwirken könnten und somit die Messungen verfälschen würden. Abbildung 3 zeigt den Aufbau einer in diesem Versuch verwendeten Diode.



Abbildung 3: Der Versuchsaufbau einer Hochvakuumdiode. [TuD17]

Zu sehen ist, dass der Graph in Abbildung 2 drei Teilgebiete aufgeteilt ist. Zum ersten das Anlaufstromgebiet, indem selbst für kleine Gegenspannungen noch ein Anodenstom vorgewiesen werden kann. Dieser Effekt ist darauf zurückzuführen, dass die Elektronen eine Eigengeschwindigkeit beim Verlassen der Kathode besitzen. Dabei ergibt sich für die Stromdichte der Gegenspannung V der Zusammenhang

$$j(V) = const \exp\left(-\frac{e_0 V}{kT}\right). \tag{2}$$

Nach dem Anlaufstromgebiet folgt das Raumladungsgebiet. Nach der Gleichung

$$j_{\rm S}(T) = 4\pi \frac{e_0 m_0 k^2}{h^3} T^2 exp\left(-\frac{e_0 \phi}{kT}\right)$$
 (3)

ist die Zahl der pro Zeiteinheit emittierten Elektronen nicht von der Anodenspannung abhängig, sondern lediglich von der Temperatur. Dadurch ist das Raumladungsgebiet nicht für beliebig hohe Anodenspannungen gültig. Die Stromdichte j ist an jeder Stelle konstant und gegeben durch

$$j = -\rho v. (4)$$

Aufgrund der ortsabhängigen Geschwindigkeitsverteilung ergibt sich damit auch eine ortsabhängige Raumladungsdichte. Daraus folgt, dass die Raumladungsdichte  $\rho$  den Verlauf der Feldstärke zwischen Anode und Kathode beeinflusst. Daher gilt das Langmuir-Schottkysche Raumladungsgesetz:

$$j = \frac{4}{9} \epsilon_0 \sqrt{\frac{2e_0}{m_0}} \frac{V^{\frac{3}{2}}}{a^2}.$$
 (5)

Durch eine wachsende Gegenspannung wird der Anodenstrom einem Sättigungswert zustreben. Das darauffolgende Gebiet nennt sich dann Sättigungsstromgebiet. In diesem Bereich erreichen alle Elektronen die Anode.

## 3 Durchführung

#### 3.1 Versuchsaufbau

Abbildung 4 zeigt den Versuchsaufbau zur Aufnahme der Kennlinien. Die Kathode der Diode wird dafür durch den Heizstrom erwärmt. Dadurch emittiert diese dann Elektronen, die mit Hilfe der Anodenspannung  $U_A$  dann zur Anode gelangen.



Abbildung 4: Der Versuchsaufbau zur Aufnahme der Kennlinien. [TuD17]

Es wird ein Konstantspannungsgerät benutzt, welches den Heizstrom  $I_f$  liefert, der am eingebauten Amperemeter abgelesen werden kann. Dieses ist mit der Diode verbunden, welche die Kennlinien liefert. Es ist außerdem ein weiteres regelbares Konstantspannungsgerät im Schaltkreis verbaut. Mit diesem wird die Anodenspannung  $U_A$  bestimmt. Einen XY-Schreiber gab es allerdings nicht.

In Abbildung 5 ist der Versuchsaufbau zur Aufnahme der Anlaufstromkurve zu sehen.



Abbildung 5: Der Versuchsaufbau zur Aufnahme der Anlaufstromkurve. [TuD17]

Auch hier ist wieder ein Konstantspannungsgerät verbaut, welches für einen konstanten Heizstrom  $I_f$  sorgt. Außerdem ist dieses erneut mit der Diode verbunden, welche allerdings nun mit einem Konstantspannunggerät verbunden ist, welches lediglich Spannungen zwischen  $0.1~\rm V$  und  $0.96~\rm V$  erzeugen kann. Außerdem ist die Diode mit einem Nanoampere-Meter verschaltet.

#### 3.2 Versuchsablauf

Zuerst werden die Geräte, wie in Abbildung 4 dargestellt, verschaltet. Danach werden 5 mal 40 Werte für die Anodenspannung  $U_A$  und für den Anodenstrom  $I_A$  gemessen.  $U_A$  befindet sich währendessen stets zwischen 0 V und 250 V. Die Heizspannung  $U_f$  und der Heizstrom  $I_f$  werden vor jedem Durchgang von 40 Messungen jeweils bestimmt und bleiben konstant. Danach werden 10 Werte für  $I_A$  aufgenommen, um daraus unter anderem die Anlaufstromkurve zu bekommen. Dabei befindet sich  $U_A$  währendessen stets zwischen 0,1 V und 0,96 V. Das Messgerät hat dabei einen Innenwiderstand von 1 M $\Omega$ .

## 4 Auswertung

Die in der Auswertung verwendeten Mittelwerte mehrfach gemessener Größen sind gemäß der Gleichung

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{6}$$

bestimmt. Die Standardabweichung des Mittelwertes ergibt sich dabei zu

$$\Delta \bar{x} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$
 (7)

#### 4.1 Bestimmung von 5 Kennlinien

Für die Bestimmung der 5 Kennlinien werden die in Tabelle 1 stehenden Werte gemessen. Diese werden dann in einem Graphen, welcher in Abbildung 6 zu sehen ist, dargestellt. Der jeweils größte Wert wird dabei als Sättigungsstrom  $I_{\rm S}$  angenommen.



Abbildung 6: Gemessene Werte der Kennlinien.

| Kennlinie 1      |                   | Kenr             | nlinie 2          |                  | Kennlinie         | n 3, 4 und 5          |                   |
|------------------|-------------------|------------------|-------------------|------------------|-------------------|-----------------------|-------------------|
| $U_{\rm A}$ in V | $I_{\rm A}$ in mA | $U_{\rm A}$ in V | $I_{\rm A}$ in mA | $U_{\rm A}$ in V | $I_{\rm A}$ in mA | $I_{\rm A}^{'}$ in mA | $I_{\rm A}$ in mA |
| 0,0              | 0,000             | 0,0              | 0,000             | 0,0              | 0,000             | 0,000                 | 0,000             |
| 2,5              | 0,001             | 2,5              | 0,001             | 2,5              | 0,003             | 0,004                 | 0,005             |
| 5,0              | 0,003             | 5,0              | 0,005             | 5,0              | 0,008             | 0,011                 | 0,014             |
| 7,5              | 0,006             | 7,5              | 0,009             | 7,5              | 0,014             | 0,018                 | 0,022             |
| 10,0             | 0,008             | 10,0             | 0,014             | 10,0             | 0,021             | 0,026                 | 0,033             |
| 12,5             | 0,010             | 12,5             | 0,018             | 12,5             | 0,028             | 0,034                 | 0,045             |
| 15,0             | 0,012             | 15,0             | 0,023             | 15,0             | 0,034             | 0,042                 | 0,054             |
| 17,5             | 0,014             | 17,5             | 0,026             | 17,5             | 0,041             | 0,050                 | 0,065             |
| 20,0             | 0,016             | 20,0             | 0,031             | 20,0             | 0,048             | 0,059                 | 0,078             |
| $22,\!5$         | 0,017             | 22,5             | 0,035             | 22,5             | 0,055             | 0,067                 | 0,090             |
| 25,0             | 0,019             | 25,0             | 0,039             | 25,0             | 0,061             | 0,080                 | 0,104             |
| 27,5             | 0,020             | 27,5             | 0,042             | 27,5             | 0,069             | 0,090                 | 0,117             |
| 30,0             | 0,020             | 30,0             | 0,044             | 30,0             | 0,076             | 0,101                 | $0,\!129$         |
| $32,\!5$         | 0,021             | 32,5             | 0,047             | 32,5             | 0,083             | 0,111                 | $0,\!142$         |
| 35,0             | 0,022             | 35,0             | 0,049             | 35,0             | 0,090             | 0,123                 | $0,\!155$         |
| 37,5             | 0,022             | 37,5             | 0,050             | 37,5             | 0,096             | 0,133                 | 0,166             |
| 40,0             | 0,022             | 40,0             | 0,052             | 40,0             | 0,101             | 0,142                 | 0,180             |
| $42,\!5$         | 0,023             | 42,5             | 0,053             | 45,0             | 0,110             | 0,161                 | 0,212             |
| 45,0             | 0,023             | 45,0             | 0,054             | 50,0             | 0,118             | 0,181                 | 0,240             |
| 50,0             | 0,023             | 47,5             | 0,055             | 55,0             | $0,\!124$         | 0,202                 | $0,\!267$         |
| 55,0             | 0,024             | 50,0             | 0,056             | 60,0             | $0,\!125$         | $0,\!223$             | 0,300             |
| 60,0             | 0,024             | 55,0             | 0,057             | 70,0             | 0,129             | $0,\!252$             | 0,363             |
| 70,0             | 0,025             | 60,0             | 0,059             | 80,0             | $0,\!135$         | $0,\!273$             | $0,\!421$         |
| 80,0             | 0,025             | 65,0             | 0,060             | 90,0             | 0,139             | 0,280                 | $0,\!475$         |
| 90,0             | 0,026             | 70,0             | 0,060             | 100,0            | $0,\!142$         | 0,300                 | $0,\!524$         |
| 100,0            | 0,026             | 80,0             | 0,061             | 110,0            | 0,144             | 0,307                 | $0,\!567$         |
| 110,0            | 0,026             | 90,0             | 0,061             | 120,0            | $0,\!146$         | 0,314                 | 0,601             |
| 120,0            | $0,\!027$         | 100,0            | 0,060             | 130,0            | $0,\!147$         | 0,316                 | 0,623             |
| 130,0            | $0,\!027$         | 110,0            | 0,062             | 140,0            | $0,\!148$         | 0,320                 | 0,643             |
| 140,0            | 0,028             | 120,0            | 0,063             | 150,0            | 0,149             | 0,323                 | 0,659             |
| 150,0            | 0,028             | 130,0            | 0,064             | 160,0            | $0,\!150$         | $0,\!325$             | 0,671             |
| 160,0            | 0,028             | 140,0            | 0,064             | 170,0            | $0,\!151$         | $0,\!328$             | 0,680             |
| 170,0            | 0,028             | 150,0            | 0,065             | 180,0            | $0,\!152$         | $0,\!330$             | 0,685             |
| 180,0            | 0,028             | 160,0            | 0,066             | 190,0            | $0,\!153$         | $0,\!331$             | 0,691             |
| 190,0            | 0,028             | 170,0            | $0,\!066$         | 200,0            | $0,\!153$         | 0,332                 | 0,696             |
| 200,0            | 0,029             | 180,0            | 0,066             | 210,0            | $0,\!154$         | $0,\!334$             | 0,700             |
| 210,0            | 0,029             | 190,0            | 0,067             | 220,0            | $0,\!154$         | $0,\!336$             | 0,704             |
| 220,0            | $0,\!029$         | 200,0            | 0,067             | 230,0            | $0,\!155$         | $0,\!337$             | 0,708             |
| 230,0            | $0,\!029$         | 210,0            | 0,067             | 240,0            | $0,\!156$         | 0,339                 | 0,711             |
| 240,0            | $0,\!029$         | 220,0            | 0,067             | 250,0            | $0,\!156$         | 0,340                 | 0,715             |
| 250,0            | 0,029             | 230,0            | 0,067             |                  |                   |                       |                   |
|                  |                   | 240,0            | 0,068             |                  |                   |                       |                   |
|                  |                   | 250,0            | 0,068             |                  |                   |                       |                   |

**Tabelle 1:** Gemessene Ströme und Spannungen.

Die Kennlinien werden bei den in Tabelle 2 stehenden Heizspannungen und Strömen gemessen.

Tabelle 2: Gemessene Heizströme/Spannungen und Sättigungsströme.

|             | $U_{\mathrm{f}}$ in V | $I_{\mathrm{f}}$ in A | $I_{ m S}$ in mA |
|-------------|-----------------------|-----------------------|------------------|
| Kennlinie 1 | 3,25                  | 1,8                   | 0,029            |
| Kennlinie 2 | $3,\!5$               | 1,9                   | 0,068            |
| Kennlinie 3 | 4,0                   | $^{2,0}$              | $0,\!156$        |
| Kennlinie 4 | $4,\!25$              | $^{2,1}$              | $0,\!340$        |
| Kennlinie 5 | $4,\!5$               | $^{2,2}$              | 0,715            |

## 4.2 Betrachtung der Strom-Spannungs-Beziehung nach dem Langmuir-Schottkyschen Gesetz

Für diese Betrachtung werden die gemessenen Werte der fünften Kennlinie verwendet. Diese werden doppelt-logarithmisch aufgetragen und anschließend mit der Funktion curve-fit von scipy.optimize eine Anpassung an eine lineare Funktion

$$f(x) = m \cdot x + b \tag{8}$$

durchgeführt. Hierzu werden nur die ersten 23 Werte verwendet, da bei den darauf folgenden Werten das Langmuir-Schottkysche Gesetz nicht mehr gültig ist. Dabei ergeben sich die folgenden Parameter:

$$m = 1,254 \pm 0,009$$
$$b = -6,33 \pm 0.03$$

Die Steigung m der Geraden steht für den Exponenten der Spannung in Formel (5). In Abbildung 7 ist der entsprechende Graph zu sehen.



Abbildung 7: Logarithmierte Werte der fünften Kennlinie und Fit.

# 4.3 Bestimmung der Kathodentemperatur mittels Messung des Anlaufstromgebiets

Bei der Messung des Anlaufstromgebiets werden die in Tabelle 3 stehenden Werte gemessen. Dabei wird eine Heizspannung von  $4,5\,\mathrm{V}$  verwendet. Da das Messgerät für den Strom einen Innenwiderstand von  $1\,\mathrm{M}\Omega$  besitzt muss die Spannung zunächst noch korrigiert werden. Hierzu wird der Strom nach dem Ohmschen Gesetz mit dem Widerstand multipliziert und anschließend dieser Wert von der gemessenen Spannung abgezogen. Diese Werte werden nun logarithmisch aufgetragen und erneut eine Anpassung an eine lineare Funktion (8) durchgeführt. Der entsprechende Graph ist in Abbildung 8 dargestellt.

 ${\bf Tabelle~3:~Gemessene~Spannungen~und~Str\"ome.}$ 

| $U_{\rm A}$ in V | $I_{\rm A}$ in nA |
|------------------|-------------------|
| 0,0              | 8,4               |
| 0,1              | 4,6               |
| 0,2              | $2,\!5$           |
| 0,3              | $1,\!45$          |
| 0,4              | $0,\!85$          |
| $0,\!5$          | 0,5               |
| 0,6              | 0,3               |
| 0,7              | $0,\!22$          |
| 0,8              | $0,\!165$         |
| 0,9              | $0,\!13$          |
| 0,96             | 0,115             |



Abbildung 8: Logarithmierte Werte des Anlaufstromgebiets und Fit.

Als Parameter ergeben sich:

$$m = -4.5 \pm 0.2$$
  
 $b = -18.9 \pm 0.1$ 

Über die Steigung und den Exponenten von Formel (2) lässt sich dann die Kathodentemperatur bestimmen:

$$T = -\frac{e_0}{k \cdot m} = (2582 \pm 130) \,\mathrm{K} \tag{9}$$

Dabei werden für  $e_0$  und k die bei Scipy [J+] enthaltenen Werte der Elementarladung und der Boltzmann-Konstante verwendet. ( $e_0 \approx 1,602 \cdot 10^{-19} \, \mathrm{C}, \ k \approx 1,381 \cdot 10^{-23} \, \mathrm{J/K}$ )

#### 4.4 Bestimmung der Kathodentemperatur über die Leistungsbilanz

Für die Abschätzung der Kathodentemperatur werden die fünf Heizspannungen und Ströme aus der ersten Messung verwendet. Diese stehen mit den sich daraus nach

$$N = U \cdot I \tag{10}$$

ergebenden zugeführten Leistungen in Tabelle 4. Die Formel für die Leistungsbilanz

Tabelle 4: Gemessene Heizströme/Spannungen und Leistungen.

|             | $U_{\mathrm{f}}$ in V | $I_{\mathrm{f}}$ in A | $N_{\mathrm{zu}}$ in W |
|-------------|-----------------------|-----------------------|------------------------|
| Kennlinie 1 | $3,\!25$              | 1,8                   | 5,850                  |
| Kennlinie 2 | $3,\!5$               | 1,9                   | 6,650                  |
| Kennlinie 3 | 4,0                   | $^{2,0}$              | 8,000                  |
| Kennlinie 4 | $4,\!25$              | $^{2,1}$              | 8,925                  |
| Kennlinie 5 | $4,\!5$               | $^{2,2}$              | 9,900                  |

lautet:

$$N_{\rm zu} = N_{\rm Str} + N_{\rm WL}.\tag{11}$$

 $N_{\rm Str}$  ist mit

$$N_{\rm Str} = f \eta \sigma T^4 \tag{12}$$

gegeben. Damit lässt sich die Leistungsbilanz auch als

$$N_{\rm zu} = f \eta \sigma T^4 + N_{\rm WL} \tag{13}$$

schreiben.  $N_{\rm WL}$  muss abgeschätzt werden. In disem Fall wird dafür ein Wert von  $0.95\,\rm W$  verwendet. Die Fläche f der Diode beträgt  $0.32\,\rm cm^2$ .  $\eta$  ist mit 0.28 und  $\sigma$  mit  $5.7\cdot 10^{-12}\,\rm W/(cm^2\,\rm K^4)$  gegeben. Schließlich wird die Gleichung nach T umgeformt um die Temperatur zu erhalten.

$$T = \left(\frac{N_{\rm zu} - N_{\rm WL}}{f\eta\sigma}\right)^{\frac{1}{4}} \tag{14}$$

Die Ergebnisse der Rechnung für die fünf Heizspannungen stehen in Tabelle 5

Tabelle 5: Gemessene Heizspannungen, Sättigungsströme und Temperaturen.

|             | $U_{\mathrm{f}}$ in V | $I_{\mathrm{S}}$ in mA | T in K |
|-------------|-----------------------|------------------------|--------|
| Kennlinie 1 | 3,25                  | 0,029                  | 1760   |
| Kennlinie 2 | $3,\!5$               | 0,068                  | 1828   |
| Kennlinie 3 | 4,0                   | $0,\!156$              | 1928   |
| Kennlinie 4 | $4,\!25$              | 0,340                  | 1988   |
| Kennlinie 5 | $4,\!5$               | 0,715                  | 2046   |

#### 4.5 Bestimmung der Austrittsarbeit

Zur Bestimmung der Austrittsarbeit wir Formel (3) nach  $e_0\phi$  aufgelöst. Sie lautet dann:

$$e_0 \phi = \ln \left( \frac{j_{\rm S} \cdot h^3}{4\pi \cdot e_0 m_0 k^2 T^2} \right) \cdot kT \tag{15}$$

Da in der Formel die Sättigungsstromdichte  $j_{\rm S}$  verwendet wird muss der gemessene Sättigungsstrom  $I_{\rm S}$  noch durch die Fläche geteilt werden. Dabei ist auf die Einheiten zu achten. Für die Elementarladung  $e_0$ , die Elektronenmasse  $m_0~(\approx 9,109 \cdot 10^{-31}\,{\rm kg})$ , die Boltzmann-Konstante k und die Planksche Konstante  $h~(\approx 6,626 \cdot 10^{-34}\,{\rm J\,s})$  werden die Werte von Scipy [J+] verwendet. Damit ergeben sich die in Tabelle 6 stehenden Austrittsarbeiten.

Tabelle 6: Gemessene Heizspannungen, Sättigungsströme und Austrittsarbeiten.

|             | $U_{\mathrm{f}}$ in V | $j_{\rm S}$ in mA | $e_0\phi$ in $10^{-19}\mathrm{J}$ | $e_0\phi$ in eV |
|-------------|-----------------------|-------------------|-----------------------------------|-----------------|
| Kennlinie 1 | 3,25                  | 0,906             | 7,06                              | 4,41            |
| Kennlinie 2 | $3,\!5$               | $2{,}125$         | $7{,}13$                          | $4,\!45$        |
| Kennlinie 3 | 4,0                   | $4,\!875$         | $7,\!33$                          | $4,\!58$        |
| Kennlinie 4 | $4,\!25$              | 10,625            | $7,\!36$                          | $4,\!60$        |
| Kennlinie 5 | 4,5                   | $22,\!344$        | 7,38                              | 4,61            |

Die Austrittsarbeit wird anschließend zu

$$e_0 \phi = (4.53 \pm 0.04) \,\text{eV}$$
 (16)

gemittelt.

#### 5 Diskussion

In Tabelle 7 stehen die Ergebnisse des Versuchs.

Tabelle 7: Ergebnisse.

| Größe                                     | Ergebnis                      | Theoriewert                       |
|-------------------------------------------|-------------------------------|-----------------------------------|
| $I_{\mathrm{S}_1}$                        | $0{,}029\mathrm{mA}$          | /                                 |
| $I_{\mathrm{S}_2}^{-1}$                   | $0{,}068\mathrm{mA}$          | /                                 |
| $I_{\mathrm{S_3}}$                        | $0{,}156\mathrm{mA}$          | /                                 |
| $I_{\mathrm{S}_4}^{}}$                    | $0{,}340\mathrm{mA}$          | /                                 |
| $I_{\mathrm{S}_{5}}^{^{\mathtt{q}}}$      | $0{,}715\mathrm{mA}$          | /                                 |
| $V^{\ddot{x}}$                            | $1,254 \pm 0,009$             | 1,5                               |
| $T_{4,5\mathrm{V}}(\mathrm{Methode}\ 1)$  | $(2582 \pm 130)  {\rm K}$     | /                                 |
| $T_{3,25\mathrm{V}}(\mathrm{Methode}\ 2)$ | $1760\mathrm{K}$              | /                                 |
| $T_{3,5 \text{ V}}(\text{Methode 2})$     | $1828\mathrm{K}$              | /                                 |
| $T_{4,0 \text{ V}}(\text{Methode 2})$     | $1928\mathrm{K}$              | /                                 |
| $T_{4,25\mathrm{V}}(\mathrm{Methode}\ 2)$ | $1988\mathrm{K}$              | /                                 |
| $T_{4,5 \text{ V}}(\text{Methode 2})$     | $2046\mathrm{K}$              | /                                 |
| $\phi$                                    | $(4,53 \pm 0,04) \mathrm{eV}$ | $4,54\mathrm{eV}[\mathrm{Spe}17]$ |

Die erhaltenen Kurven der Kennlinien passen gut zu dem Schema aus Abbildung 2. Der bestimmte Exponent der Spannungsabhängigkeit von Formel (5) liegt etwas unterhalb von dem Theoriewert, was an einem systematischen Fehler liegen dürfte, da der statistische Fehler der Steigung kleiner ist als die Abweichung. Ein derartiger Fehler wäre z.B. ein ungenaues Ablesen der Werte. Außerdem ist während dem Versuch aufgefallen, dass teilweise bei einem bestimmten Wert auf der Skala der Spannung ein kleiner Sprung stattfand, nachdem sich für davor gemessene Werte bei erneutem Messen ein etwas höherer Wert ergab. Somit könnte auch durch die Messgeräte ein Fehler zustande kommen.

Beim Vergleich der bestimmten Temperaturen fällt eine größere Differenz zwischen den beiden Werten für 4,5 V auf. Da das Ergebnis der Austrittsarbeit sehr gut ist und den Theoriewert einschließt sollten die dazu verwendeten Ergebnisse für die Sättigungsströme sowie die mit Methode 2 bestimmten Temperaturen ebenfalls sehr gut passen. Daraus lässt sich schließen, dass die Bestimmung der Temperatur nach der ersten Methode weniger genau ist. Der statistische Fehler ist mit 130 K schon groß.

Wie bereits erwähnt liegt der bestimmte Wert der Austrittsarbeit  $e_0\phi$  sehr dicht an dem Theoriewert. Insgesamt ist der Versuch einfach durchzuführen und liefert gute Ergebnisse.

### Literatur

- [Hun07] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [J+] Eric Jones, Travis E. Oliphant, Pearu Peterson u.a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [Leb] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties*. Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [Oli07] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10-20. URL: http://www.numpy.org/.
- [Spe17] Spektrum. Lexikon der Physik: Austrittsarbeit. 29. Mai 2017. URL: http://www.spektrum.de/lexikon/physik/austrittsarbeit/1067.
- [TuD17] Tu-Dortmund. Versuch 504: Thermische Elektronenemission. 29. Mai 2017. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V504.pdf.