Comparaisons des suites

Équivalents et composition

QCOP CSUIT. 1

Soient $(u_n)_n, (v_n)_n \in (\mathbb{R}_+^*)^{\mathbb{N}}$.

 \blacksquare Définir « $u_n \sim v_n$ ».

Montrer que, en général,

$$u_n \sim v_n \implies \ln(u_n) \sim \ln(v_n)$$
.

On suppose que

$$\begin{cases} u_n \sim v_n \\ v_n \longrightarrow \ell \in [0, +\infty] \setminus \{1\} . \end{cases}$$

- (a) Vérifier que $\left(\frac{1}{\ln(v_n)}\right)_n$ est bornée.
- (b) Montrer que

$$\frac{\ln(u_n)}{\ln(v_n)}-1\longrightarrow 0.$$

(c) En déduire que

$$ln(u_n) \sim ln(v_n)$$
.

QCOP CSUIT.2

Soit $a \in \mathbb{R}$. Montrer que

$$\left(1+\frac{a}{n}\right)^n\longrightarrow e^a.$$

Soient $(u_n)_n, (v_n)_n \in \mathbb{R}^{\mathbb{N}}$. Montrer que, en général,

$$u_n \sim v_n \implies u_n^n \sim v_n^n$$
.

QCOP CSUIT.3

Soient $(u_n)_n, (v_n)_n \in \mathbb{R}^{\mathbb{N}}$.

 \blacksquare Définir « $u_n \sim v_n$ ».

Montrer que, en général,

$$u_n \sim v_n \implies e^{u_n} \sim e^{v_n}$$
.

 \aleph On suppose que $u_n \sim v_n$. Montrer que

$$e^{u_n} \sim e^{v_n} \iff u_n - v_n \longrightarrow 0.$$

QCOP CSUIT.4

Soient $(u_n)_n$, $(v_n)_n$ deux suites réelles strictement positives à partir d'un certain rang. Soit C > 0.

Définir « $u_n \sim v_n$ » à l'aide d'une limite égale à 0.

Montrer que, en général,

$$u_n \sim v_n \implies u_n + C \sim v_n + C.$$

% Montrer que

$$\begin{vmatrix} u_n \sim v_n \\ v_n \longrightarrow +\infty \end{vmatrix} \implies u_n + C \sim v_n + C.$$

Autres considérations

QCOP CSUIT.5

 \blacksquare Soient $(u_n)_n, (v_n)_n, (w_n)_n \in \mathbb{R}^{\mathbb{N}}$.

(a) Définir « $w_n = \mathcal{O}(v_n)$ ».

(b) Caractériser « $u_n \sim v_n$ » à l'aide d'un $\phi(\cdot)$.

On admet que

$$\exists \gamma \in \mathbb{R}: \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \mathcal{O}(1).$$

Montrer que

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n).$$

QCOP CSUIT.6

Soient $(u_n)_n, (v_n)_n \in \mathbb{C}^{\mathbb{N}}$.

Donner les définitions avec quantificateurs de « $u_n = \mathcal{O}(v_n)$ » et « $u_n = \mathcal{O}(v_n)$ ».

Montrer que

$$u_n = \mathcal{O}(v_n) \implies u_n = \mathcal{O}(v_n).$$

Q Donner une suite qui est un $\mathcal{O}(n)$ mais pas un $\mathcal{O}(n)$.