Physics Exam Solutions

Question 1

(i) Work done by friction

Given:

- Mass (m) = 1 kg
- Initial velocity $(v_0) = 10 \text{ m/s}$
- Coefficient of kinetic friction $(\mu_k) = 0.5$
- Distance traversed (d) = 5 m

Solution: Frictional force (f) = $\mu_k N = \mu_k mg = 0.5 \times 1 \times 9.8 = 4.9 \text{ N}$ Work done by friction (W) = $-f \times d = -4.9 \times 5 = -24.5 \text{ J}$ (Negative sign indicates work is done against the motion)

Answer: The work done by friction is -24.5 J.

(ii) Time period ratio for central force potential

Given potential $U(r) = -kr^n$ with 0 < n < 2.

Solution: For circular orbits in central potential, the time period $T \propto R^{(2-n)/2}$. Thus, $\frac{T_2}{T_1} = \left(\frac{2R}{R}\right)^{(2-n)/2} = 2^{(2-n)/2}$.

Answer: $2^{(2-n)/2}$.

(iii) Recoil momentum of nucleus

Given:

- Electron momentum $(p_e) = 1.2 \times 10^{-22} \text{ kg·m/s (let's say in x-direction)}$
- Neutrino momentum $(p_n) = 6.4 \times 10^{-23} \text{ kg·m/s}$ (at right angle, y-direction)

Solution: By conservation of momentum:

$$p_{Nx} = -p_e = -1.2 \times 10^{-22} \text{ kg·m/s}$$

 $p_{Ny} = -p_n = -6.4 \times 10^{-23} \text{ kg·m/s}$

Magnitude: $p_N = \sqrt{(1.2 \times 10^{-22})^2 + (6.4 \times 10^{-23})^2} \approx 1.36 \times 10^{-22} \text{ kg·m/s}$

Direction: $\theta = \arctan(p_{Ny}/p_{Nx}) = \arctan(0.533) \approx 28^{\circ}$ from negative x-axis.

Answer: The nucleus recoils with momentum $|1.36 \times 10^{-22} \text{ kg} \cdot \text{m/s}|$ at $|28^{\circ}|$ from the negative x-axis.

(iv) Moment of inertia and radius of gyration

Given:

- Three masses (m) = 2 kg each
- Equilateral triangle side (a) = 0.1 m
- Axis through one vertex perpendicular to plane

Solution: Moment of inertia (I) = $\Sigma mr^2 = 0 + 2 \times (0.1)^2 + 2 \times (0.1)^2 = 0.04 \text{ kg} \cdot \text{m}^2$

Total mass (M) = 6 kg

Radius of gyration (k): $I=Mk^2 \Rightarrow k=\sqrt{I/M}=\sqrt{0.04/6}\approx 0.0816$ m

Answer: Moment of inertia is $0.04 \text{ kg} \cdot \text{m}^2$ and radius of gyration is 0.0816 m.

(v) Speed of relativistic electron

Given:

- Total energy (E) = 2 MeV
- Rest mass energy $(m_e c^2) = 0.5 \text{ MeV}$

Solution: $\gamma = E/(m_e c^2) = 2/0.5 = 4$

 $\gamma = 1/\sqrt{1 - v^2/c^2} \Rightarrow v = c\sqrt{1 - 1/\gamma^2} = c\sqrt{15/16} \approx 0.968c$

Answer: The electron's speed is |0.968c|

(vi) Minimum speed for vertical circular motion

Given:

• Radius (r) = 0.75 m

Solution: At the top: $mg = mv^2/r \Rightarrow v = \sqrt{gr} = \sqrt{9.8 \times 0.75} \approx 2.71 \text{ m/s}$

Answer: The minimum speed is |2.71 m/s|

Question 2

(i) Center of mass of right triangular sheet

For a right triangle with base b and height h, the COM coordinates are: $\bar{x} = b/3$, $\bar{y} = h/3$ from the right angle.

Answer: The center of mass is at $\left| \left(\frac{b}{3}, \frac{h}{3} \right) \right|$ from the right angle.

(ii) Force on freight car with falling sand

Solution: Force required: F = v(dm/dt)

Power $(P) = Fv = v^2(dm/dt)$

Rate of KE increase: $dK/dt = d/dt(\frac{1}{2}mv^2) = \frac{1}{2}v^2(dm/dt)$

Thus, P = 2(dK/dt).

Answer: The required force is $v \frac{dm}{dt}$ and the power is twice the rate of KE increase.

(iii) Tension in hanging rope

Solution: At distance y from bottom: T(y) = (M/L)gy Tension changes at rate dT/dy = (M/L)g = constant.

At upper end (y = L): T = Mg.

Answer: The tension varies as $T(y) = \frac{Mgy}{L}$ and is Mg at the top.

Question 3

(i) Potential and oscillations

Potential U(x) = Bx - A/x

Equilibrium: $dU/dx = 0 \Rightarrow B + A/x_0^2 = 0 \Rightarrow x_0 = \sqrt{-A/B}$

Frequency: $\omega = \sqrt{k/m}$ where $k = d^2U/dx^2$ at x_0 .

(ii) Elastic collision

Using momentum conservation in x and y directions: $M/m = 2\sqrt{3}$.

(iii) Turning points on track

Using energy conservation: $\frac{1}{2}mv_{\text{max}}^2 = mgy \Rightarrow y_{\text{max}} = v_{\text{max}}^2/(2g)$

Then $x_{\text{max}} = \pm \sqrt{y_{\text{max}}/b}$.

Question 4

(i) Angular momentum decomposition

Total angular momentum $J = r_{\rm cm} \times p_{\rm cm} + \Sigma (r'_i \times p'_i) = J_0 + J_{\rm cm}$.

(ii) Rolling cylinder

Maximum θ : $\tan \theta = 3\mu$

Acceleration: $a = \frac{2}{3}g\sin\theta$.

(iii) Angular momentum

 $L=r\times p=2\times 4\times$ (distance from origin to line) = 24 kg·m²/s.

Question 5

(i) Relative velocity

From Lorentz transformations: $u'_x = (u_x - v)/(1 - u_x v/c^2)$.

(ii) Spacelike events

If $\Delta x > c \Delta t$, spacelike. Here $\Delta t = 0 \Rightarrow$ spacelike.

(iii) Bug on rotating wheel

Apparent forces: Coriolis, centrifugal, Euler.

Slip condition: $\mu_s g = \omega^2 r + 2\omega v_0 \Rightarrow r_{\text{max}} = (\mu_s g - 2\omega v_0)/\omega^2$.