Automi e Linguaggi Formali - Esame del 15 Luglio 2024

Problema 1 (12 punti)

Parte (a): Definizione formale della funzione di transizione di una JTM

Definizione formale di JTM: Una JTM (Jumping Turing Machine) è una tupla $M = (\Gamma, \delta, w_0)$ dove:

- Γ è l'alfabeto del nastro che include sempre {A, E, N, Y, ⊔}
- $w_0 \in \Gamma^3$ è la configurazione iniziale della testina (3 simboli)
- δ : $\Gamma^3 \to \Gamma^3 \times \{L, R, HALT\}$ è la funzione di transizione

Funzione di transizione: $\delta(a, b, c) = (a', b', c', d)$ dove:

- $(a, b, c) \in \Gamma^3$ è il contenuto corrente delle 3 celle sotto la testina
- (a', b', c') $\in \Gamma^3$ è il nuovo contenuto da scrivere nelle 3 celle
- $d \in \{L, R, HALT\}$ è la direzione di movimento (o halt)

Condizioni speciali:

- Se (a', b', c') = (Y, E, A), la macchina si ferma e accetta
- Se (a', b', c') = (N, A, Y), la macchina si ferma e rifiuta
- Altrimenti, la testina si sposta di una posizione nella direzione d

Configurazione: Una configurazione è (i, tape) dove:

- i è la posizione della testina (centro delle 3 celle)
- tape: $\mathbb{Z} \to \Gamma$ è il contenuto del nastro

Parte (b): Le JTM riconoscono i linguaggi Turing-riconoscibili

Teorema: JTM ≡ TM (stessa potenza computazionale)

Dimostrazione:

Parte 1: JTM ⊆ **TM** Ogni JTM può essere simulata da una TM standard:

- La TM mantiene lo stesso nastro della JTM
- Simula la lettura di 3 celle consecutive usando stati per "ricordare" i simboli letti

- Simula la scrittura di 3 celle con una sequenza di scritture individuali
- Gestisce i movimenti di una cella alla volta

Parte 2: TM \subseteq **JTM** (costruzione principale) Data una TM M = (Q, Σ , Γ , δ , q₀, q_acc, q_rej), costruiamo una JTM equivalente.

Codifica dello stato sul nastro: Usiamo una codifica speciale dove lo stato corrente e la posizione della testina originale sono codificati direttamente sul nastro:

- Ogni cella del nastro originale è rappresentata da un blocco di simboli
- Il blocco contiene: [stato_corrente, simbolo_originale, marker_testina]

Algoritmo di simulazione:

- 1. Inizializzazione: Codifica l'input e lo stato iniziale sul nastro
- 2. Ricerca della testina: Trova il blocco marcato come posizione della testina
- 3. Lettura dello stato: Estrae stato corrente e simbolo sotto la testina
- 4. **Applicazione della transizione:** Applica δ (stato, simbolo) = (nuovo_stato, nuovo_simbolo, direzione)
- 5. Aggiornamento: Modifica il nastro per riflettere la nuova configurazione
- 6. Movimento: Sposta il marker della testina nella direzione appropriata
- 7. **Controllo terminazione:** Se raggiunge stato finale, scrive YEA o NAY

Gestione dei dettagli tecnici:

- La JTM usa la sua capacità di leggere/scrivere 3 celle per manipolare efficacemente i blocchi
- I movimenti di una cella permettono di navigare tra i blocchi
- Stati di accettazione/rifiuto della TM sono mappati in YEA/NAY

Correttezza: La simulazione preserva la semantica di ogni transizione della TM originale.

Quindi JTM ≡ TM, e le JTM riconoscono esattamente i linguaggi Turing-riconoscibili. □

Problema 2 (12 punti)

Parte (a): Formulazione come linguaggio GROSS_TM

Definizione di grawlix: Un grawlix è una stringa di simboli "volgari" (da definire). Sia GRAWLIX l'insieme di tutte le stringhe considerate grawlix.

Definizione del problema:

```
GROSS_{TM} = \{ (M) \mid M \text{ è una TM e L}(M) \cap GRAWLIX \neq \emptyset \}
```

In altre parole, GROSS_TM contiene le codifiche delle TM il cui linguaggio contiene almeno un grawlix.

Parte (b): GROSS_TM è indecidibile

Teorema: GROSS_TM è indecidibile.

Dimostrazione per riduzione da A_TM:

Useremo il fatto che $A_TM = \{(M, w) \mid M \text{ accetta } w\}$ è indecidibile.

Riduzione: A_TM ≤ GROSS_TM

Dato: Un'istanza (M, w) di A_TM

Costruzione: Costruiamo una TM M' tale che $\langle M' \rangle \in GROSS_TM \iff \langle M, w \rangle \in A_TM$

Costruzione di M':

M'(input x):

- 1. Ignora l'input x
- 2. Simula M su w
- 3. Se M accetta w:
 - Scrivi e accetta il grawlix "*#@%!"
- 4. Se M rifiuta w:
 - Rifiuta (non accetta nessun grawlix)
- 5. Se M cicla su w:
 - Cicla (non accetta nessun grawlix)

Correttezza della riduzione:

 \Rightarrow : Se $\langle M, w \rangle \in A$ TM, allora M accetta w.

Quindi M' raggiungerà il passo 3 e accetterà "*#@%!" ∈ GRAWLIX.

Pertanto L(M') \cap GRAWLIX $\neq \emptyset$, quindi $\langle M' \rangle \in$ GROSS_TM.

 \Leftarrow : Se $\langle M' \rangle$ ∈ GROSS_TM, allora L(M') \cap GRAWLIX $\neq \emptyset$.

L'unico grawlix che M' può accettare è "*#@%!", e questo accade solo se M accetta w.

Quindi $\langle M, w \rangle \in A_TM$.

Computabilità della riduzione: M' può essere costruita algoritmicamente da M e w.

Poiché A_TM è indecidibile e A_TM ≤ GROSS_TM, concludiamo che GROSS_TM è indecidibile. □

Problema 3 (12 punti)

Parte (a): ALIBABA ∈ NP

Problema ALIBABA:

```
\mathsf{ALIBABA} = \{ \langle \mathsf{N}, \mathsf{P}, \mathsf{W}, \mathsf{M}, \mathsf{L} \rangle \mid \exists \mathsf{B} \subseteq \{1, ..., \mathsf{N}\} : \Sigma_{\mathsf{j}} \in \mathsf{B} \; \mathsf{W}[\mathsf{j}] \leq \mathsf{M} \; \land \; \Sigma_{\mathsf{j}} \in \mathsf{B} \; \mathsf{P}[\mathsf{j}] \geq \mathsf{L} \}
```

Certificato: Un sottoinsieme B \subseteq {1, 2, ..., N}

Verificatore polinomiale:

```
Verify(⟨N, P, W, M, L⟩, B):

1. peso_totale := 0

2. prezzo_totale := 0

3. Per ogni j ∈ B:

a. peso_totale := peso_totale + W[j]

b. prezzo_totale := prezzo_totale + P[j]

4. Return (peso_totale ≤ M) ∧ (prezzo_totale ≥ L)
```

Analisi di complessità:

- Dimensione del certificato: O(N) bit per rappresentare B
- Tempo di verifica: O(N) per calcolare le somme
- La verifica è polinomiale

Quindi ALIBABA ∈ NP. □

Parte (b): ALIBABA è NP-hard

Riduzione: SUBSET-SUM \leq_p ALIBABA

Dato: Un'istanza (S, t) di SUBSET-SUM dove $S = \{s_1, s_2, ..., s_k\}$ e target t.

Costruzione dell'istanza ALIBABA:

• N = k (numero di oggetti = dimensione di S)

- P[i] = s_i per i = 1, ..., k (prezzo = valore nell'insieme)
- W[i] = s_i per i = 1, ..., k (peso = valore nell'insieme)
- M = t (limite di peso = target)
- L = t (prezzo minimo = target)

Correttezza della riduzione:

⇒: Se $\langle S, t \rangle \in SUBSET-SUM$, allora $\exists S' \subseteq S$ tale che $\Sigma_x \in S' \times X = t$.

Sia B = $\{i \mid s_i \in S'\}$. Allora:

- $\Sigma_i \in B W[j] = \Sigma_i \in B s_i = \Sigma_x \in S' x = t = M \checkmark$
- $\Sigma_i \in B P[j] = \Sigma_i \in B s_i = \Sigma_x \in S' x = t = L \checkmark$

Quindi $(N, P, W, M, L) \in ALIBABA$.

 \Leftarrow : Se $(N, P, W, M, L) \in ALIBABA, allora <math>\exists B \subseteq \{1,...,N\}$ tale che:

- $\Sigma_j \in B W[j] \le M = t$
- $\Sigma_i \in B P[j] \ge L = t$

Poiché $W[j] = P[j] = s_i$, abbiamo:

- $\Sigma_j \in B \ s_j \le t$
- $\Sigma_i \in B \ s_i \ge t$

Quindi $\Sigma_i \in B$ $s_i = t$, e $S' = \{s_i \mid j \in B\}$ è una soluzione per SUBSET-SUM.

Computabilità: La trasformazione è chiaramente polinomiale.

Poiché SUBSET-SUM è NP-completo e SUBSET-SUM \leq_p ALIBABA, concludiamo che ALIBABA è NP-hard. \square

Conclusione: ALIBABA è NP-completo.