PROBABILITÉS ET STATISTIQUES

Durée : 6 heures

NOTATIONS ET RAPPELS

1° On note 1_A la fonction indicatrice d'une partie A d'un ensemble X.

2° L'ensemble des entiers naturels est désigné par \mathbb{N} . On note \mathcal{B}_n la tribu borélienne de \mathbb{R}^n et on écrit \mathcal{B} à la place de \mathcal{B}_1 . Enfin \mathcal{B}_{∞} désigne la plus petite tribu sur $\mathbb{R}^{\mathbb{N}}$ qui, pour toute partie finie $\mathbf{J} \subset \mathbb{N}$, rend mesurable la projection canonique Π_J de $\mathbb{R}^{\mathbb{N}}$ sur \mathbb{R}^J .

 3° Toutes les variables aléatoires considérées sont prises sur un même espace probabilisé (Ω, \mathcal{F}, P) . Une variable aléatoire à valeurs dans \mathbb{R} est appelée variable aléatoire réelle (en abrégé v.a.r.). Le symbole E(X) désigne, quand elle existe, l'espérance mathématique de la v.a.r. X, relativement à P.

Si X est une variable aléatoire à valeurs dans \mathbb{R}^n ou dans \mathbb{R}^N , on note $\mathfrak{C}(X)$ la sous-tribu de \mathcal{F} engendrée par X et par P_X la loi de X, mesure image de P par X.

4º On rappelle que toute suite $(X_n; n \in \mathbb{N})$ de v.a.r. définit une variable aléatoire \underline{X} à valeurs dans $(\mathbb{R}^{\mathbb{N}}, \mathcal{B}_{\infty})$ et que la loi $P_{\underline{X}}$ de cette suite $\underline{X} = (X_n; n \in \mathbb{N})$ est déterminée de façon unique par ses valeurs sur l'algèbre des cylindres $\Pi_J^{-1}(B)$ où J décrit l'ensemble des parties finies de \mathbb{N} et B l'ensemble des boréliens de \mathbb{R}^J .

5° Soit L¹ (Ω, \mathcal{F}, P) l'espace des (P-classes de) v.a.r. intégrables sur (Ω, \mathcal{F}, P) . Pour toute sous-tribu \mathcal{G} de \mathcal{F} et pour toute v.a.r. $X \in L^1$ (Ω, \mathcal{F}, P) , on désigne par $E(X/\mathcal{G})$ l'espérance mathématique conditionnelle de X par rapport à \mathcal{G} .

Si Z est une variable aléatoire à valeurs dans \mathbb{R}^n , on note plus simplement E(X/Z) au lieu de $E(X/\mathcal{E}(Z))$ et on désigne par $E(X/Z = \cdot)$ l'unique élément de $L^1(\mathbb{R}^n, \mathcal{B}_n, P_Z)$ tel que pour toute $g: \mathbb{R}^n \to \mathbb{R}$ borélienne et bornée, on ait :

$$E(X g(Z)) = \int_{\mathbb{R}^n} E(X/Z = z) \cdot g(z) P_Z(dz).$$

6° On désigne par δ_0 la mesure de Dirac sur $\mathbb R$ au point zéro. Si μ est une probabilité borélienne sur $\mathbb R$, on note μ_n la puissance $n^{\text{ième}}$ de convolution de μ , c'est-à-dire $\mu_0 = \delta_0$, $\mu_1 = \mu$, $\mu_{n+1} = \mu_n * \mu$ pour $n \ge 1$.

PRÉLIMINAIRE

Soient X et Y deux variables aléatoires indépendantes à valeurs respectivement dans \mathbb{R}^n et $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ une fonction borélienne et bornée.

Montrer que

$$E(f(X, Y)/X = x) = \int_{\mathbb{R}^m} f(x, y) P_Y(dy)$$
 P_X presque-sûrement

Soit $\underline{X} = (X_n ; n \in \mathbb{N})$ une suite de v.a.r. positives ou nulles. On suppose que :

- a. la suite $(X_n; n \in \mathbb{N})$ est une suite indépendante de v.a.r.;
- b. les v.a.r. $X_{_1}$, $X_{_2}$, \ldots ont toutes la même loi μ supposée différente de δ_{0} .

On note v la loi de X_0 et on pose pour tout $n \in \mathbb{N}$,

$$S_n = \sum_{i=0}^n X_i$$

On désigne d'autre part pour tout réel t>0, par N_t la variable aléatoire à valeurs dans $\overline{\mathbb{N}}$, définie par

$$N_t = \sum_{n \ge 0} 1_{[0, t]} \circ S_n \qquad \text{(nombre des } S_n \in [0, t]\text{)}$$

- 1° a. Montrer qu'il existe $\varepsilon > 0$ tel que $P\left(\bigcap_{n \geq 0} \bigcup_{i \geq n} \{X_i \geq \varepsilon\}\right) = 1$.
 - b. En déduire que pour tout t > 0, $P(N_t = +\infty) = 0$.
 - c. Montrer de plus que

$$P\left(\bigcap_{t>0}\,\left\{\,N_t\!<\,+\,\infty\,\right\}\right)=1\quad\text{alors que }\left\{\lim_{t\,\rightarrow\,+\,\infty}\,N_t\!=\,+\,\infty\,\right\}=\Omega\,.$$

On suppose dans la suite que $0 < \int x \mu (dx) = m < + \infty$.

- 2° Montrer que $\frac{N_t}{t}$ converge presque-sûrement vers $\frac{1}{m}$, quand $t \to +\infty$ (on remarquera que $S_{N_t-1} \leqslant t < S_{N_t}$)
- 3º On suppose dans cette question, que $\nu = \delta_0$ et que μ est la loi de Bernoulli de paramètre p (0 < p < 1) :

$$\mu(\{1\}) = p$$
, $\mu(\{0\}) = 1 - p = q$.

- a. Calculer $P(N_t = k)$ pour k entier ≥ 1 .
- b. Calculer $E(N_t)$ puis étudier $\frac{E(N_t)}{t}$ quand $t \to +\infty$.
- c. Calculer $\mathrm{E}(\mathrm{N}_t^2)$ puis en déduire que $\sup_{t\,>\,1}\, \frac{\mathrm{E}(\mathrm{N}_t^2)}{t^2} < +\, \infty$.
- 4º On revient au cas général.
 - a. Utiliser 3° pour démontrer que N_t admet des moments de tous les ordres et que

$$\sup_{t\geq 1}\frac{\mathrm{E}\left(\mathrm{N}_{t}^{2}\right)}{t^{2}}<+\infty.$$

- b. Déduire de ce qui précède et de 2°, que $\frac{\mathrm{E}(\mathrm{N}_t)}{t} o \frac{1}{m}$ quand $t o + \infty$.
- c. Qu'arrive-t-il si $\int x \mu (dx) = + \infty$?

5°

- a. Montrer que f définie par $f(t) = \frac{\mu(t) t + \infty}{m} \mathbf{1}_{[0, +\infty[}(t))$ est une densité de probabilité sur \mathbb{R} . Quelles sont les probabilités μ pour lesquelles la probabilité de densité f coı̈ncide avec μ ?
- b. Démontrer que si v est la probabilité de densité f, alors

$$E(N_t) = \frac{t}{m}$$
 quel que soit $t > 0$.

(On pourra, soit effectuer un calcul direct, par exemple en utilisant la densité de $\nu * \mu_n$ (μ_n puissance $n^{\text{ième}}$ de convolution de μ), soit utiliser la transformée de Laplace).

Nous admettrons, ce qui pourra être utile pour la question suivante, que pour μ fixée, la probabilité de densité est la seule loi ν telle que $E(N_t) = \frac{t}{m}$, quel que soit t > 0. (Ce résultat est obtenu facilement lorsque l'on utilis la deuxième méthode dans la question ci-dessus.)

6° On désigne par T une v.a.r. positive ou nulle indépendante de la suite $\underline{X}=(X_n \; ; n \in \mathbb{N})$ et on pose

$$\alpha_{\mathbf{T}} = \operatorname{Inf} \left\{ n \in \mathbb{N} : S_n > T \right\}$$

(avec la convention usuelle que $\alpha_T = + \infty$ si $S_n \leq T$ quel que soit $n \in \mathbb{N}$, convention qui sera encore utilisée dans la suite).

On pose également pour tout $n \in \mathbb{N}$

$$S_n^T = S_{\alpha_m + n} - T$$

(avec la convention $S_{+\infty} = +\infty$).

- a. Montrer que $\alpha_{\mathbf{T}}$ est une variable aléatoire à valeurs dans $\mathbb N$ telle que $\mathrm{P}(\alpha_{\mathbf{T}}=+\infty)=0$ e $\{\alpha_{\mathbf{T}}=k\}\in\mathfrak{G}(\mathrm{X}_0^{},\mathrm{X}_1^{},\ldots,\mathrm{X}_k^{},\mathrm{T})$ quel que soit $k\in\mathbb N$.
- b. Montrer que pour tout $n \in \mathbb{N}$, S_n^T est une variable aléatoire positive.
- c. En étudiant pour tout $n \in \mathbb{N}$, la loi conjointe de S_0^T , $S_1^T S_0^T$, $S_2^T S_1^T$, ..., $S_{n+1}^T S_n^T$, démontrer que la suite $(S_0^T, S_1^T S_0^T, \ldots, S_{n+1}^T S_n^T, \ldots)$ est une suite indépendante de v.a.r. et que pour tout $n \in \mathbb{N}$, $S_{n+1}^T S_n^T$ a la loi μ .
- d. Démontrer que si ν est la probabilité de densité f définie en 5° , a, alors S_0^T a pour densité de probabilité f.

7° Le but de la partie III est d'établir que pour une certaine classe de probàbilités μ , on a pour tout réel h>0

$$\frac{\mathrm{E}\left(\mathrm{N}_{t+h}-\mathrm{N}_{t}\right)}{h}\rightarrow\frac{1}{m}\qquad \text{quand }t\rightarrow+\infty.$$

- a. Montrer que si pour h>0, la limite quand $t\to +\infty$ de $\frac{\mathrm{E}\,(\mathrm{N}_{t+h}-\mathrm{N}_t)}{h}$ existe, elle est nécessairement égale à $\frac{1}{m}$.
- b. Montrer qu'il suffit d'établir l'existence de $\lim_{t\to +\infty} \frac{\mathrm{E}\left(\mathrm{N}_{t+h}-\mathrm{N}_{t}\right)}{h}$, pour $\mathrm{v}=\delta_{\mathrm{o}}$.

PARTIE II

(Cette partie est indépendante de la partie I.)

On désigne par Σ_n (n entier $\geqslant 1$) l'ensemble des permutations de $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ qui laissent invariants les entiers k tels que k > n. Et on pose $\Sigma = \bigcup_{n \geqslant 1} \Sigma_n$, ensemble des permutations finies de \mathbb{N}^* .

Soit $X = (X_n ; n \ge 1)$ une suite indépendante de v.a.r. ayant toutes la même loi. Pour $\sigma \in \Sigma$, on note X_{σ} la suite $(X_{\sigma(n)} ; n \ge 1)$.

Un événement $A \in \mathcal{C}(X)$ est dit symétrique relativement à X, si pour tout $\sigma \in \Sigma$, il existe $B \in \mathcal{C}_{\infty}$ tel que

$$A = \{ X \in B \} = \{ X_{\sigma} \in B \}.$$

- 1° a. Comparer $P_{\mathbf{X}}$ et $P_{\mathbf{X}_{\sigma}}$ pour $\sigma \in \Sigma$.
 - b. Soit A_n un événement de la forme $A_n = \{ (X_1, \ldots, X_n) \in B_n \}$ avec $B_n \in \mathfrak{G}_n$. Démontrer que si $A'_n = \{ (X_{2n}, \ldots, X_{n+1}) \in B_n \}$, alors $P(A_n \cap A'_n) = (P(A_n))^2$.
 - c. Démontrer alors que pour tout événement A ∈ C (X), symétrique relativement à X, on a P (A) = 0 ou 1.

2º Comparer le résultat précédent avec la loi du tout ou rien de Kolmogorov qui concerne les événements asymptotiques, c'est-à-dire appartenant à $\bigcap_{n\geqslant 1} \mathfrak{F}(X_k;k\geqslant n)$. Donner un exemple d'un événement symétrique qui n'est pas asymptotique.

3° Soit X_o une v.a.r. indépendante de la suite $X=(X_n; n\geqslant 1)$. On note \underline{X} la suite $(X_n; n\geqslant 0)$ et on désigne par Σ' l'ensemble des permutations finies de $\mathbb N$ qui laissent invariant 0.

Soit A un événement appartenant à $\mathfrak{G}(\underline{X})$ qui est symétrique relativement à X, c'est-à-dire tel que pour tout $\sigma \in \Sigma'$, il existe $B \in \mathfrak{G}_{\infty}$ avec $A = \{ \underline{X} \in B \} = \{ \underline{X}_{\sigma} \in B \}$.

Adapter ce qui a été fait en 1° pour montrer que E (1_A/X_o) ne prend presque-sûrement que les valeurs 0 ou 1.

PARTIE III

On rappelle que le support d'une probabilité μ borélienne sur $\mathbb R$ est le plus petit fermé F qui porte μ , c'est-à-dire tel que μ (F) = 1; on le note supp μ . D'autre part on appelle symétrisée de μ , la loi μ^s de la différence de deux v.a.r. indépendantes de loi μ .

Soient $X = (X_n; n \in \mathbb{N})$ et $\underline{X}' = (X'_n; n \in \mathbb{N})$ deux suites de v.a.r. positives ou nulles. On suppose que

- a. la tribu $\mathscr{C}(X)$ est indépendante de la tribu $\mathscr{C}(\underline{X}')$.
- b. la suite $(\mathfrak{T}(X_n); n \in \mathbb{N})$ est une suite indépendante de sous-tribus de \mathfrak{F} , de même que la suite $(\mathfrak{T}(X_n); n \in \mathbb{N})$.
- c. toutes les X_n et X'_n pour $n \ge 1$, ont la même loi μ ayant une espérance mathématique m telle que $0 < \int x \, \mu \, (dx) = m < + \infty$.
- d. l'ensemble $\bigcup_{n\geq 1}$ supp μ_n^s est dense dans \mathbb{R} , où μ_n^s désigne la puissance $n^{\text{lème}}$ de convolution de μ^s symétrisée de μ (condition qui est remplie s'il n'existe pas de réel $d\geqslant 0$ tel que $\{nd:n\in\mathbb{Z}\}$ porte μ^s).
- e. $X_0 = 0$ alors que X'_0 a pour densité f définie en I, 5°.

On pose pour $n \in \mathbb{N}$, $S_n = \sum_{i=0}^n X_i$ et $S'_n = \sum_{i=0}^n X'_i$ et pour tout t > 0, $N_t = \sum_{n \ge 0} 1_{[0, t]} \circ S_n$ et $N'_t = \sum_{n \ge 0} 1_{[0, t]} \circ S'_n$.

Pour $j \in \mathbb{N}$, soit g_j la fonction définie sur les couples de suites croissantes de réels par : si $\underline{s} = (s_n ; n \in \mathbb{N})$ et $s' = (s'_n ; n \in \mathbb{N})$

$$g_{j}(\underline{s},\underline{s}') = \text{Inf} \{ s'_{n} - s_{j} : n \in \mathbb{N}, s'_{n} - s_{j} > 0 \}$$

On considère les variables aléatoires Z_j définies par $Z_j = g_j(\underline{S},\underline{S}')$ où $j \in \mathbb{N}, \underline{S} = (S_n; n \in \mathbb{N})$ et $S' = (S'_n; n \in \mathbb{N})$.

Soit un réel $\delta > 0$ fixé. On pose pour $i \geq 0$,

$$A_i = \bigcup_{j \ge i} \{Z_j < \delta\}$$

1º Soit $i \in \mathbb{N}$. Posons comme dans I. 6º $\alpha_{S_i} = \inf\{n \in \mathbb{N} : S'_n - S_i > 0\}$, et pour $n \in \mathbb{N}$, $S_n^{S_i} = S_{n+1} - S_i$ et $S_n^{'S_i} = S'_{\alpha_{S_i}+n} - S_i$.

Vérifier que pour i et $k \in \mathbb{N}$, on a

$$Z_{i+k} = g_k (\underline{S}^{S_i}, \underline{S'}^{S_i})$$

et en déduire que

$$P(A_0) = P(A_t) = P(A_\infty)$$
 où $A_\infty = \bigcap_{i=0}^{+\infty} A_i$

- 2° a. En considérant la suite X'_0 , X_1 , X'_1 , X_2 , X'_2 , ... que l'on désignera par $(Y_n; n \in \mathbb{N})$, démontrer que $E(1_{A_{\infty}}/X'_0)$ ne prend presque-sûrement que les valeurs 0 ou 1.
 - b. Démontrer que $E(1_{A_1}/X'_0)$ est presque-sûrement strictement positif (pour cela on pourra comparer A_1 avec $\bigcup_{n\geq 1} \{0 < S'_n S_n < \delta\}$).
 - c. Déduire de ce qui précède, la valeur commune des P(A_t).
- 3° On considère les variables aléatoires presque-sûrement finies, définies par

$$K = Inf \{ i \in \mathbb{N} : Z_i < \delta \}, \qquad K' = Inf \{ j \in \mathbb{N} : S'_j > S_K \}.$$

a. Montrer que, quels que soient k et $k' \in \mathbb{N}$,

$$\{K = k\} \cap \{K' = k'\} \in \mathcal{C}(X_0, \ldots, X_k, X'_0, \ldots, X'_{k'}).$$
 Puis établir que les variables aléatoires $(S_K; S_{K+n} - S_K)$ et $(S_K; S'_{K'+n} - S'_{K'})$ ont même loi $(n \text{ entier } \ge 1)$.

b. Démontrer alors que pour tous réels t > 0 et $h > \delta$

$$\mathbb{E}\left(\sum_{n>0} \mathbf{1}_{1t+\delta, t+h1} \circ S'_{K'+n}\right) \leqslant \mathbb{E}\left(\sum_{n>0} \mathbf{1}_{1t, t+h1} \circ S_{K+n}\right) \leqslant \mathbb{E}\left(\sum_{n>0} \mathbf{1}_{1t, t+h+\delta1} \circ S'_{K'+n}\right)$$

- 4° Soient t et h réels > 0.
 - a. Montrer que $N'_{t+h} N'_t$ et N'_h ont même loi puis démontrer que

$$E\left(\sum_{k \leq K'} 1_{1t, t+h_1} \circ S'_k\right) \to 0 \qquad \text{quand} \quad t \to +\infty$$

- b. Montrer que pour tout $n \in \mathbb{N}$, on a $P(N_{t+h} N_t > n) \leq P(N_h > n)$. En déduire le comportement quand $t \to +\infty$ de $E\left(\sum_{k \leq K} 1_{1t, t+h1} \circ S_k\right)$.
- 5° Déduire de tout ce qui précède que pour tout réel h > 0

$$\frac{\mathrm{E}\left(\mathrm{N}_{t+h}-\mathrm{N}_{t}\right)}{h}\to\frac{1}{m}\qquad \text{quand}\quad t\to+\infty$$

- 6° On suppose maintenant que $\int x\mu(dx) = +\infty$ et que le support de μ est $[0, +\infty[$. On désigne par λ la mesure borélienne sur $[0, +\infty[$ telle que $\lambda([0, t]) = E(N_t)$ quel que soit t > 0.
 - a. Soient $\beta = \limsup_{t \to +\infty} \mathbb{E}(N_{t+1} N_t) = \limsup_{t \to +\infty} \lambda(]t, t+1]$ et (t_k) une suite tendant vers l'infini telle que $\lim_{k \to +\infty} \lambda(]t_k, t_k+1]) = \beta.$

En étudiant
$$\int_{[0, t+1]} \lambda(]t - y, t+1-y] \mu(dy) - \beta$$
, montrer que pour tout j entier ≥ 1 , $\lim \inf \lambda(]t_k - j, t_k - j + 2]) \geq \beta$.

b. En étudiant alors l'intégrale $\int_{[0, t_k]} \mu(]t_k - y, + \infty[) \lambda(dy)$ et en tenant compte de la nature de la série $\sum_{i=1}^{+\infty} \mu(]2i, + \infty[)$, démontrer que $\beta = 0$ et donc que pour tout réel h > 0, $\lim_{t \to +\infty} E(N_{t+h} - N_t) = 0$.