Funktionalanalysis - Übungsblatt 5

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 24. November 2023, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 5.1 4 Punkte

Sei X ein normierter \mathbb{K} -Vektorraum.

- (a) Zeigen Sie die Äquivalenz der beiden folgenden Aussagen:
 - (i) X ist separabel.
 - (ii) Es gibt eine abzählbare Menge $A \subset X$ mit $X = \overline{\langle A \rangle} = \overline{\operatorname{Spann}(A)}$.
- (b) Untersuchen Sie nun die Folgenräume ℓ_p für $1 \le p < \infty$ auf Separabilität.

Aufgabe 5.2 4 Punkte

(a) Sei $(X, \|\cdot\|)$ ein normierter \mathbb{K} -Vektorraum. Zeigen Sie, dass $(X, \|\cdot\|)$ genau dann ein Banachraum ist, wenn alle absolut konvergenten Reihen konvergieren, d.h.

$$\sum_{k \in \mathbb{N}} \|x_k\| < \infty \qquad \Rightarrow \qquad \sum_{k \in \mathbb{N}} x_k \quad \text{konvergiert.}$$

(b) Zeigen Sie, dass eine Folge $a=(a_n)_{n\in\mathbb{N}}$ in \mathbb{K} genau dann ℓ_1 ist, wenn für jede Nullfolge $b=(b_n)_{n\in\mathbb{N}}\in c_0$ die Reihe $\sum_{n\in\mathbb{N}}a_nb_n$ in \mathbb{K} konvergent ist .

Aufgabe 5.3 4 Punkte

Sei $(V, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $S = \{e_n\}_{n \in \mathbb{N}}$ ein höchstens abzählbar unendliches Orthonormalsystem.

- (a) Zeigen Sie, dass die Abbildung $P: H \ni x \mapsto \sum_{n=1}^{\infty} \langle e_n, x \rangle e_n$ die eindeutige Orthogonalprojektion auf $\overline{\langle S \rangle}$ ist (vgl. Aufgabe 4.3).
- (b) Eine Folge $(x_n)_{n\in\mathbb{N}}\subset V$ heißt schwach konvergent gegen $x\in V$, falls für alle $f\in V'$

$$f(x_n) \to f(x) \qquad (n \to \infty).$$

Zeigen Sie, dass die Folge $(e_n)_{n\in\mathbb{N}}$ schwach gegen Null konvergiert.

Aufgabe 5.4 4 Punkte

Betrachten Sie die Legendre-Polynome $(P_n)_{n\in\mathbb{N}_0}$ aus Aufgabe 3.4 in dem Prähilbertraum $(C([-1,1]),\langle\cdot,\cdot\rangle)$ und die Unterräume $U_n:=<\{P_k\mid 0\leq k\leq n\}>.$

(a) Zeigen Sie, dass es für jedes $n \in \mathbb{N}_0$ genau eine Abbildung $\tilde{P}_n : C([-1,1]) \to U_n$ gibt mit

$$||x - \tilde{P}_n(x)|| = \inf_{y \in U_n} ||x - y||$$

und geben Sie eine Darstellung von $\tilde{P}_n(x)$ an. Hinweis: Aufgabe 5.3.

- (b) Berechnen Sie für $f(x)=\mathrm{e}^x$ die Projektionen $\tilde{P}_0(f), \tilde{P}_1(f)$ sowie $\tilde{P}_2(f).$
- (c) Setzen Sie $U := \bigcup_{n \in \mathbb{N}_0} U_n$ und entscheiden Sie, ob $(U, \langle \cdot, \cdot \rangle)$ ein Hilbertraum ist. Hinweis: Aufgabe 5.2 könnte hilfreich sein.