Polytech'Lille GIS 4° Année 2016-2017

Examen janvier 2017

1 Questions de cours

1. Sous quelles conditions les régles de décisions d'une analyse factorielle discriminante et d'une analyse discriminante linéaire sont-elles les mêmes?

2. Quelle est la signification de l'expression "winsoriser une variable"? Quelles sont les variables ciblées par cette opération?

2 Exercice

Une enquête a été réalisée sur les résultats d'un concours il y a quelques années. Cette étude avait pour objectif de rechercher des facteurs de 'risque' ou des facteurs 'protecteurs' pour l'échec à ce concours.

Les caractéristiques suivantes ont été relevées pour 8555 candidats à ce concours :

NATIONALITE: France ou autre

BOURSE : O = oui, N = non

NBRINSP1 = nombre d'inscription(s) au concours (1, 2= redouble ou 3 = triple)

BAC = section S ou autre MENTION : TB, B, AB ou P

SEXE = F (fille) M (garçon)

PROFPAR (profession des parents):

- agri = agriculteur
- autr= autre profession
- cadr= cadres
- empl= employés
- interm= artisans, professions intermédiaires

SITFAM (situation familiale du candidat)

- seul
- coupenf : couple avec enfant
- couplSE : couple sans enfant

RESULTAT : ADM (admis), AJ (ajourné=échec)

Des analyses bivariées ont été réalisées entre la variable "résultats" et chacune des autres variables. Ensuite, une analyse statistique utilisant le modèle de régression logistique a été réalisée pour expliquer l'échec au concours (Y=1 si RESULTAT=AJ).

- 1. Quel est l'intérêt de réaliser des analyses bivariées avant le modèle de régression logistique?
- 2. On a utilisé un test du χ^2 pour tester la liaison entre NATIONALITE et RESULTAT. Comment justifiez-vous ce choix? Quelle est l'hypothèse nulle du test choisi? On obtient une p-value $< 10^{-6}$. Comment interprétez-vous cette valeur?
- 3. Expliquez en quelques mots pourquoi la régression logistique peut répondre à l'objectif de l'étude. Quelle fonction utiliseriez-vous en R pour lancer ce modèle? On appelle model1 le modèle complet.

On obtient la sortie suivante :

```
Pr(>|z|)
                    Estimate Std. Error
                                           z value
(Intercept)
                   4,6692357 0,58855120
                                          7,933440
                                                    2,131572e-15
nationalitefrance -1,0806833 0,27957801
                                         -3,865409
                                                    1,109033e-04
bourse0
                   0,3554768 0,08232768
                                          4,317828
                                                    1,575722e-05
nbrinsp1
                  -2,2173473 0,06650147 -33,342831 9,253867e-244
                  -1,2389109 0,29732431
bacS
                                         -4,166867
                                                    3,088145e-05
mentionB
                  -1,3659765 0,08153160 -16,753952
                                                    5,298619e-63
mentionP
                   1,1790927 0,08319787
                                         14,172149
                                                    1,362650e-45
mentionTB
                  -2,7200549 0,12079565 -22,517822 2,776816e-112
sexeM
                  -0,2884984 0,06442539
                                         -4,478024
                                                    7,533719e-06
                   1,0520769 0,32203645
profparautr
                                          3,266950
                                                    1,087130e-03
                   0,4173471 0,31468266
profparcadr
                                          1,326247
                                                    1,847577e-01
                   0,7654281 0,32555535
profparempl
                                          2,351146
                                                    1,871570e-02
profparinterm
                   0,6159180 0,31565450
                                          1,951241
                                                    5,102837e-02
sitfamcouplSE
                   0,5246656 0,40451658
                                          1,297019
                                                    1,946247e-01
sitfam seul
                   1,6246615 0,37018085
                                          4,388832
                                                    1,139612e-05
```

- 4. En prenant l'exemple de la variable PROFPAR, expliquez comment sont gérées les variables qualitatives dans cette analyse.
- 5. Donnez l'odd-ratio associé à la variable bourse et interprétez sa valeur.
- 6. On lance la commande model2=step(model1). Expliquez à quoi sert cette commande de manière générale. Ici, quelles variables pensez-vous retrouver dans model2 (justifiez votre réponse)?
- 7. En lançant ensuite exp(cbind(OR=coef(model2), confint(model2))), on obtient:

OR	2,5 %	97,5 %
106,61622797	34,27514729	345,00560478
0,33936356	0,19174434	0,57550232
1,42686077	1,21484812	1,67766310
0,10889760	0,09547068	0,12390984
0,28969956	0,15649930	0,50433219
0,25513141	0,21728458	0,29912618
3,25142286	2,76456086	3,83087435
0,06587113	0,05188487	0,08332105
0,74938799	0,66039515	0,85015545
2,86359237	1,50846231	5,34569314
1,51792927	0,81075420	2,79203349
2,14991457	1,12504377	4,04208691
1,85135541	0,98705838	3,41206707
1,68989371	0,76846016	3,76367113
5,07670006	2,47252614	10,59289998
	106,61622797 0,33936356 1,42686077 0,10889760 0,28969956 0,25513141 3,25142286 0,06587113 0,74938799 2,86359237 1,51792927 2,14991457 1,85135541 1,68989371	106,61622797 34,27514729 0,33936356 0,19174434 1,42686077 1,21484812 0,10889760 0,09547068 0,28969956 0,15649930 0,25513141 0,21728458 3,25142286 2,76456086 0,06587113 0,05188487 0,74938799 0,66039515 2,86359237 1,50846231 1,51792927 0,81075420 2,14991457 1,12504377 1,85135541 0,98705838 1,68989371 0,76846016

Quels sont les facteurs protecteurs? Quels sont les facteurs de risque? Justifiez vos réponses.

8. On lance les commandes suivantes:

```
pi_hat=predict(model1, resultat, type="response")
Y_hat=as.factor(ifelse(pi_hat>0.5, "echec", "admis"))
```

MatConf=table(Y_hat, resultat) MatConf

```
resultat
Y_hat ADM AJ
admis 1104 532
echec 955 5964
```

Commentez ces lignes de code et donnez le taux de bon classement.

- 9. On remarque que l'aire sous la courbe ROC est de 0.87 et que le test de Hosmer-Lemeshow donne une p-value de 0.32. Commentez ces valeurs.
- 10. Quelle approche proposeriez-vous pour obtenir le meilleur compromis entre sensibilité et spécificité? (Décrivez la méthode sans chercher à mettre en oeuvre les calculs).

Dans la suite de l'exercice, on s'intéresse à un étudiant qui présente les caractéristiques suivantes :

- profession parents = intermédiaire
- mention $\overrightarrow{BAC} = \overrightarrow{TB}$
- situation familiale = seul
- sexe = homme
- -- bourse = oui
- BAC = S
- nationalité = autre
- 11. Quelle est la valeur du score prédictif $\ln\left(\frac{\pi}{1-\pi}\right)$? (indiquez le mode de calcul)
- 12. Quelle est la valeur de la probabilité d'échec prédite?