=

L27 ANSWER 1 OF 3 WPIDS (C) 2003 THOMSON DERWENT ACCESSION NUMBER: 2002-706397 [76] WPIDS

DOC. NO. CPI:

C2002-200258

TITLE:

Compositions for wound healing comprising

antibacterial and antifungal agents together with zinc

oxide and at least two fat soluble vitamins.

DERWENT CLASS:

B05 C03 D22 PESHOFF, M L

INVENTOR(S):
PATENT ASSIGNEE(S):

(PESH-I) PESHOFF M L

COUNTRY COUNT:

1

PATENT INFORMATION:

PAT	TENT	NO	KIND	DATE	WEEK	LA	PG
US	2002	211484	17 A1	20020822	(200276)*		23

APPLICATION DETAILS:

PATENT- NO - KIND	ĀPPLICATION	DATE
US 2002114847 A1 CIP of	US 2000-689087	20001012

PRIORITY APPLN. INFO: US 2002-125165 20020418; US 2000-689087

20001012 WPIDS

AN 2002-706397 [76]

AB US2002114847 A UPAB: 20021125

NOVELTY - New wound healing composition comprises antibacterial and antifungal agents and a wound healing composition comprising zinc oxide and at least two fat soluble vitamins.

 ${\tt DETAILED}$ <code>DESCRIPTION</code> - An <code>INDEPENDENT</code> <code>CLAIM</code> is also included for a tissue healing composition.

ACTIVITY - Vulnerary.

MECHANISM OF ACTION - The compositions increase the proliferation and resuscitation rate of cells. They also suppress reactive oxygen-linked tissue injury.

USE - The compositions are useful for wound healing, reducing the size, duration and severity of infected and non-infected wounds.

L27 ANSWER 2 OF 3 WPIDS (C) 2003 THOMSON DERWENT

ACCESSION NUMBER:

2002-470221 [50] WPIDS

CROSS REFERENCE:

1996-384199 [38]; 1996-402032 [40]; 1997-192522 [17];

2002-453107 [48]

DOC. NO. CPI:

C2002-133667

TITLE:

Treating Helicobacter pylori infection by chewing antibiotic and antibacterial compound with bismuth

compound in topical chewing gum.

DERWENT CLASS:

B05 B07

INVENTOR(S):

ATHANIKAR, N

PATENT ASSIGNEE(S):

(JOSM-N) JOSMAN LAB INC

COUNTRY COUNT:

1

PATENT INFORMATION:

PAT	CENT	NO	KIND	DATE	WEEK	LA	PG
US	6379	9651	В1	20020430	(200250) *		16

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
US 6379651	B1 CIP of Cont of Cont of CIP of	US 1995-385060 US 1995-518971 US 1997-827566 US 1998-50643 US 1999-364613	19950207 19950824 19970328 19980330 19990729

FILING DETAILS:

PATENT NO	KIND	PATENT NO
US 6379651	B1 CIP of	US 5972267

PRIORITY APPLN. INFO: US 1999-364613 19990729; US 1995-385060 19950207; US 1995-518971 19950824; US

1997-827566 19970328; US 1998-50643 19980330

AN 2002-470221 [50] WPIDS

CR 1996-384199 [38]; 1996-402032 [40]; 1997-192522 [17]; 2002-453107 [48]

AB US 6379651 B UPAB: 20020807

NOVELTY - Treating an infection of Helicobacter pylori (A) comprises administering and ingesting peroral tablets of an antibiotic and antibacterial compound with a bismuth compound which are concomitantly administered and chewed within the oral cavity. The antibiotic and antibacterial compound and the bismuth compound are in a topical chewing gum dosage form.

DETAILED DESCRIPTION - Treating of infection of Helicobacter pylori (A) by administering and ingesting peroral tablets of an antibiotic and antibacterial compound with a bismuth compound, involves concomitantly administering and chewing within the oral cavity, the antibiotic and antibacterial compound with the bismuth compound in a topical chewing gum dosage form.

The bismuth compound comprises colloidal bismuth subcitrate, bismuth subcitrate, bismuth citrate, bismuth salicylate, bismuth subnitrate, bismuth subcarbonate, bismuth tartrate, bismuth subgallate, tripotassium dicitrato bismuthate, bismuth aluminate, bismuth polysulfate complexes, bismuth polyhydroxy complexes, alpha -D-glucopyranoside bismuth complex, beta -D-fructofuranosyl-oktakis (hydrogen sulfate) bismuth complex, or L-dihydro ascorbyl-tetrakis(hydrogen sulfate) bismuth complex. The antibiotic and antibacterial compound comprises Nicin-peptide, Nicin-related peptide, tetracycline, amoxycillin, ampicillin, doxycycline, erythromycin, clarithromycin, metronidazole, tinidazole, ciproflaxazin, oflaxacin, norflaxacin, furazolidine or nitrofurantoin.

ACTIVITY - Antibacterial; Vulnerary; Antiinflammatory; Antiulcer. An open label, placebo-controlled pilot clinical study in 10 patients with initial positive response for Helicobacter pylori (A) in the dental plaque was initiated. Six patients were treated with a chewing gum having colloidal bismuth subcitrate (CBS) (50 mg) and two patients were treated with placebo chewing gum. The dental plaque samples were collected before treatment, day 7 and day 15 after treatment and tested by microbiological culture and CLO test.

Results showed that the test group patients exhibited mean CLO

response time of 4.125 hours and the placebo group exhibited a mean CLO response time of 2 hours on day 15. The longer CLO test response time for CBS gum compared to the placebo gum indicated reduction in (A) density in oral cavity.

MECHANISM OF ACTION - None given in the source material. USE - Used for treating Helicobacter pylori infection (claimed) and for treating peptic ulcers and other gastrointestinal diseases. The bismuth compound is useful for wound healing e.g. ocular and dermal wound healing. The compounds are also effective against Campylobacter rectus and Trepenoma denticola which cause halitosis.

ADVANTAGE - The topical chewing gum dosage form releases the antibiotic and antibacterial compound into the oral cavity to reduce or eliminate (A) in the oral cavity. The chewing $\operatorname{\mathsf{gum}}$ delivery system enables sustained contact of the antibacterial agents with the entire oral cavity and enhances bactericidal and bacteriostatic efficacy. The peroral dosage form eradicates Helicobacter pylori from its niches both in the dental plaque and in the gastric mucosa in order to improve the ulcer cure rate and prevent ulcer relapse. Dwg.0/2

L27-ANSWER 3-OF-3-JICST-EPlus COPYRIGHT 2003 JST

ACCESSION NUMBER:

870511254 JICST-EPlus

TITLE:

. . .

Studies on the antimicrobial susceptibility and

tetracycline, leucomycin and clindamycin resistance of

Clostridium ramosum.

AUTHOR:

KESADO TADATAKA

CORPORATE SOURCE:

Gifudai I Kenkiseikinjikkenshisetsu

SOURCE:

Gifu Daigaku Igakubu Kiyo (Acta Scholae Medicinalis

Universitatis in Gifu), (1987) vol. 35, no. 2, pp. 355-367.

Journal Code: F0639A (Fig. 2, Tbl. 8, Ref. 35)

CODEN: GDIKAN; ISSN: 0072-4521

PUB. COUNTRY:

Japan

DOCUMENT TYPE:

Journal; Article

LANGUAGE:

Japanese

STATUS:

New

A total of 18 Clostridium ramosum isolates obtained from female patients with genital tract infections was tested for their susceptibility to 21 antimicrobial compounds. All of the 18 isolates were inhibited by concentrations of less than 32.MU.g/ml of metronidazole, tinidazole, chloramphenicol, ofloxacin and all of penicillin and cephalosporin compounds. The isolates were highly resistant to rifampicin, amikacin, nalidixic acid and pipemidic acid, and slightly susceptible to norfloxacin. Wide distributions were found in the susceptibility of C. ramosum isolates to leucomycin, clindamycin and tetracycline. Ten strains were tetracyclin resistant and of those 6 were constitutively resistant to tetracycline as well as to leucomycin and clindamycin. The full expression of tetracycline resistance in the other 4 strains was induced by subinhibitory concentration of the antibiotic. Interspecies transfer of tetracycline resistance was achieved by the filter mating procedure with 3 inducible strains at a frequency of 0.7-2.9*10-8 transconjugants per donor cell. The susceptibility of the 3 transconjugants to tetracycline was increased 2-8 fold by pre-treatment with tetracycline as well as parent strains. No transfer was, however, achieved in the 6 constitutive strains. Although elimination of leucomycin and clindamycin resistance in all of the constitutive strains was undoubtedly observed by ethidium bromide-treatment, that of tetracycline resistance could not be in all of C. ramosum isolates tested. In constitutive strains the elimination frequency of leucomycin and clidamycin was 0.1-9.4%.(author abst.)