加密

- 什麼是資料加密?
 - 為使資料僅被合法的人得知, unexpected 的人無法 看出端昵
- 資料為什麼要加密?
 - 電腦、網路、科技設備發達,資料都在公開的網路上傳遞,資料需經過加密才能確保安全
- 密碼學是一種藝術
 - 加密 + 解密
 - 加密→ 容易
 - 解密→ 難如登天

- 保密技術的價值
 - 保密程度 → 越高越好
 - 金鑰大小 → 越小越好
 - 加解密運算的複雜度 → 越簡單越好
 - 錯誤傳播 → 越少越好
 - 明文擴充 → 越少越好
- 測試加密系統的方式
 - 密文攻擊 (Chiper text attack)
 - 明文攻擊
 - 選擇明文攻擊

- 解密
 - 將加密後的訊息反打亂變成可閱讀的訊息
- 加解密系統
 - 收送雙方須先溝通好加解密方式
 - 使用者即使知道加密協定,在其不知道金鑰的情況下在有限時間內無法解得正確訊息
- 加密的基本型態
 - 換位 (Transposition)
 - 替换 (Substitution)

Yung-Chen Chou

• 反轉換位法

• 明文: MEET ME MONDAY MORNING

• 密文: GNINROM YADNOM EM TEEM

• 幾合圖形換位

• 明文: CONCEAL ALL MESSAGES

• 密文: CLOMNECSESAALGAELS

LS

明文: CONCEAL ALL MESSAGES

CL CON
OM CEA
NE LAL
CS LME
ES SSA
AA GES
LG

AE Yung-Chen Chou

• 循路徑換位法

• 明文: SEND HELP SOON

• 密文: SNHLSOEDEPON

- 代換法
 - 明文: M=RENAISSANCE
 - 密文:E_K(M)=XKNAUGGANSK
- Affine 轉換
 - ·密文: 同回上回上 山回回回山山回 依照下列取代法則取代而成

A·	B.	C·	K:	L:	M:	T	Ц	V
D.	E.	F			P:	W	X	Y
	The second second	I·J·	a :			Z		

- 凱撒加密法 (Caesa Cipher)
 - 换位加密
 - ADOG
 - 位移 1 位 → B EPH
 - 位移 2 位 → C FQI
 - 位移 -1位 → ZCNF
 - 容易被破解
 - 利用統計分析的技巧
 - 分析一般文章中最常出現的字母
 - 分析一份密文出現最多的字母
 - 比較兩者即有可能被破解

| a b c d e f g h i j k l m n o p q r s t u v w x y z | a | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

- 替換符號系統 (Substitution alphabet)
 - 每一個字母都找另一個字母替代
 - Ex. 獵殺 U-571 裡的密碼機
 - 不同於換位加密
- 多字母替換法 (Multi-alphabetic)
 - 一次可以選多個位移字母
 - Ex: 位移 1, 2, -1
 - A DOG ==> B FNH
- 舊方法已存在多年,如今已不安全

- 二進制的基本運算
 - AND $\frac{1101}{1001}$
 - OR $\frac{1101}{1001}$
 - XOR 1101 1001 0100
- 這三種運算的差別在哪?

只有 XOR 是可 以反轉的運算

- 以 XOR 加密
 - 將明文轉換成 ASCII 碼
 - A DOG ==> 065 032 068 079 071
 - 將 ASCII 碼轉成二進制
 - 0100 0001, 0100 0100, 0100 1111, 0100 0111

A D O G

• 以加密金鑰 (1111 0111) 進行 XOR 加密運算

01000001 01000100 01001111 01000111 11110111 11110111 11110111 11110111 10110110 10110011 10111000 10110000

- 以 XOR 解密
 - 以解密金鑰 (1111 0111) 進行 XOR 解密運算

- 將二進制轉成 ASCII 碼
 - 0100 0001, 0100 0100, 0100 1111, 0100 0111

A D G

現代的加密技術

• 對稱式加密

Blowfish

- Bruce Schneier (1993 年提出)
- 將64位元明文區段加密成64位元的密文區段,屬於區塊加密法
- 以訊息的『區塊』做為加解密單位
- 金鑰長度可變,其長度範圍為32~448位元
- 特性:
 - 快速:以32位元的電腦加密一個位元只需18時脈
 - 小巧:記憶體需求為 5K 以下
 - 架構簡單易於實作
 - 可變的安全性

- 資料加密標準 (Data Encryption Standard, DES)
 - 1973 年美國國家標準局公開徵求加密系統, IBM 的 Lucifer 被選中
 - 對稱式加密,每次加密 64 位元資料
 - 作法:
 - 將資料打亂
 - 把一半的資料 (i.e. 32 位元) 經由 F-function 加密,加密後的結果再與另外一半的 32 位元資料進行 XOR 運算
 - 進行 16 回合類似的運作,再將最後結果打亂
 - 輸出加密後的64位元密文

- DES 使用 56 位元的 Key
 - $2^{56} \approx 10^{17}$
 - 若查對速率為 10⁶ key/sec≈3×10¹³ key/yr
 - 使用暴力攻擊法要 3000 年
- 優點:
 - 運算速度相對於非對稱式加密快
 - 演算法設計得宜,加密強度很高
 - 相關工具容易取得,且大多免費
 - 軟、硬體建置容易

重複16圈 最終排列 (FP)

64位元原文

初始排列 (IP)

Yung-Chen Chou

• 缺點:

- 加解密使用同一把 key, 傳送 Key 有風險
- 金鑰管理的複雜性
 - 每兩個人通訊便要用一把 key, 當有 n 個人時便要管理 n(n-1)/2 把 key
- 對稱式加密可對文件加密,但文件的『來源證明』無法同時保證,必須靠非對稱式加密
- 對稱式金鑰加密法的最大問題
 - · 如何傳送 Key 給解密端?

公開金鑰加密法(非對稱式加密)解決了傳送 Key的問題

- 公開金鑰加密法
 - 與大質數、因數分解、數論 ... 等有關
 - 是目前最被廣泛討論與使用的技術
 - 特性:
 - 改進傳統加密系統的缺點
 - 公開加密金鑰也不會造成洩密問題
 - 加密金鑰以(e, m)表示,解密金鑰表示為 d
 - d控制的運算必須可從 (e, m) 加密的密語中解出明文

- RSA (Rivest, Shamir, Adleman, 1978)
 - 選擇兩個質數分別為 p 跟 q
 - 找一個 e 滿足 (e, (p-1)(q-1))=1, 即 e 與 (p-1)*(q-1) 互 質
 - 令 m = p * q 且 0 < M < m, 其中 M 為明文
 - 則對應於 M 的密文 C 可由 E(M) = M^e mod m
 - 令 d 為解密金鑰且滿足 e×d≡1(mod (p-1)(q-1))
 - 解密時可經由計算 $M = D(C) = C^d \mod m$

• 例子

- 設取 p = 5, q = 11 則 (p-1)(q-1) = 4*10 = 40
- β m = p*q = 5 * 11 = 55
- 取 e = 3, 且明文 M = 7
- 則明文經加密運算 M^e mod m = 7³ mod 55 = 13
- 又d 必須滿足 e*d ≡ 1 (mod 40), 即 3*d ≡ 1(mod 40)
- 於是 d=27
- 解密時 C^d mod m = 13²⁷ mod 55 = 7

• 優點:

- 保護機密性隱私性
 - 文件需要接收方的私密金鑰才能解開
- 可被應用於存取控制
 - 私密金鑰只有一位使用者持有
- 可做到來源證明
 - 傳送方以其擁有的私密金鑰對文件加密,接收方以傳送方的公開金鑰解密,因此,如果文件可正確解得則傳送方無法否認傳送此文件

- 若欲分解 m = p*q
 - 假設 m 為 200 位元
 - 電腦 10⁶ 指令 /sec
 - 需要約 10⁶ 年才能求得
- 保密性高,不需傳遞金鑰
- 缺點:
 - 複雜性大,運算速度慢(DES 比 RSA 快 1000 倍)
 - 尋找大質數、因式分解、 mod 等非線性運算
 - 易造成嚴重傳播錯誤:分段加密

- 雜湊函數 (Hash function)
 - 將任意長度的訊息字串轉化成固定長度的輸出字串, 這個輸出字串稱之為『雜湊值』
 - 雜湊值是訊息原文的『濃縮』,任一訊息的雜湊值都要有一定程度的獨特性
 - 雜湊函數應為單向函數 (one-way function), 意即我們應該無法從雜湊值反推求得訊息原文
 - 不同的雜湊值間不該存在任何線性關係
 - 把兩個雜湊值合併(如相加或者 XOR)後得到的新值,不 應該等於訊息原文做同樣處理後雜湊出來的結果

- 一個訊息產生雜湊值後,應該無法以數學方法找到另外一個訊息也能產生相同雜湊值(情況並非不存在,但應沒有方法可以找到)
- 訊息原文只要稍有變動,雜湊值會有巨大改變
- 目前常用的雜湊函數:
 - MD2, MD4, MD5, SHA-1, SHA-256 等

• 數位憑證

- 是個體(如持卡人、企業、銀行等)在網路上進行資訊交流及商務活動之身份證明
- 憑證是一個經憑證管理中心製作的數位簽章文件,其中包含擁有者資訊及其公開金鑰資訊
- 依用途區分
 - 簽章憑證:對訊息進行數位簽章,保證認息的不可否認性
 - 加密憑證:對訊息加密,保證認息的真實性及正確性
- · 格式及內容遵循 X.509 標準

• X.509

版本 (version)	V3	X.509 版本編號		
序號 (serial number)	18 da de 91	CA指派給憑證的唯一序號		
簽章算法(signature algorithm)	sha1RSA	CA用來數位簽署憑證的雜湊演算 法		
發行者 (issuer)	VeriSign Class 3 Public Primary CA	關於CA的資訊		
有效期自 (valid from)	2006/11/8	憑證有效期間的開始日期		
有效期至 (valid to)	2036/7/1	憑證有效期間的最後日期		
主體 (subject)	Bank of ABC	發給憑證的目標個人、電腦、裝 置或憑證授權單位名稱		
公開金鑰 (public key)	RSA (2048) 2a 14 5c 70	與憑證相關的公開金鑰類型及長 度,與金鑰數據		
延展資訊 (extension)	V3 定義的諸多延伸欄位			
CA 簽章 (CA signature)	使用CA私密金鑰,透過憑證演算法識別項欄位中所指定的演算法,所做出的實際數位簽章			

- 數位簽章 (Digital signature)
 - 效力等同於親筆簽名
 - 數位簽章無法被偽造
 - 數位簽章由簽章者之私密金鑰產生
 - 驗證者以簽章者之公開金鑰驗證
 - 簽章上有時間戳記,以維其有效期間
 - 受簽章保護之文件內容只要一經修改,則簽章驗證就 會失敗

金鑰管理

- 金鑰管理 (Key management)
 - 指處理金鑰的流程
 - 金鑰的產生 (Key generation)
 - 金鑰的儲存及配送 (Key storage and distribution)
 - 金鑰託管 (Key escrow)
 - 金鑰過期 (Key expiration)
 - 金鑰收回 (Key revocation)
 - 金鑰中止 (Key suspension)
 - 金鑰復原與歸檔 (Key recovery and achival)
 - 金鑰更新 (Key renewal)
 - 金鑰銷毀 (Key destruction)