Auto Scout24 Data mining

Maria Vallarelli Simone Zambetti Giorgio Martelli 10/30/2020

Business target

Quale autoveicoli a KM0 sono soggetti ad un maggiore sconto?

- Dal punto di vista di un possibile acquirente, vogliamo individuare modelli e caratteristiche di autoveicoli in pronta consegna per le quali vi sia una maggiore convenienza.
- Ad oggi, alcuni portali di annunci di autoveicoli (in questo progetto vedremo autoscout24.it) già offrono modelli per la classificazione di annunci (come in immagine) ma solo per veicoli usati.

Valutazione del prezzo

La valutazione del prezzo è disabilitata per i veicoli nuovi e a km 0

In che modo avviene il confronto?

La valutazione AutoScout24 confronta ciascun veicolo con offerte simili di privati e rivenditori attualmente presenti su AutoScout24 o inserite in passato. Tra i criteri di confronto rientrano per esempio la marca, il modello, l'anno di immatricolazione, la potenza, il cambio, il chilometraggio e le dotazioni.

Quali tecnologie si impiegano?

Il calcolo si avvale dei più recenti algoritmi dinamici di apprendimento automatico e di oltre 5 milioni di set dati nonché delle conoscenze specifiche dei nostri esperti. Il margine di prezzo così risultante consente di esprimere un giudizio affidabile sul rapporto qualità-prezzo.

Scraping

- Abbiamo formato il dataset scaricando gli annunci direttamente dal portale Autoscout24 (leader di mercato in italia):
- In fase di scraping abbiamo filtrato gli annunci più recenti pubblicati solo in provincia di milano e dintorni (100 km di raggio)
- Siccome autoscout fornisce solo i primi 400 risultati per query, abbiamo utilizzato una combinazione di filtri come carrozzeria, alimentazione, tipo veicolo (KM0 e nuovo) per comporre il dataset di circa 7000 osservazioni.

Pagina di ricerca annunci

Dettaglio annuncio

enimento / Media
pradio
pradio
plateri di bordo
proce

Extra

Cerci

Airbag passeggero
Airbag passeggero
Chiusura centralizzata
Controllo automatico trazione
ESP
Fendinebbia

Abbiamo cercato di considerare tutte le possibili variabili presenti negli annunci, scartando però equipaggiamenti inseriti opzionalmente dall'utente (i cosidetti «optional»)

€ 13.400,- 12

Preprocessing I Refine

- Una volta scaricati i dati, abbiamo effettuato un'estensiva pulizia tramite OpenRefine. Ad esempio, sono stati risolti i seguenti problemi:
 - Trasformati i valori missing per veicoli elettrici dei campi numero di marce cilindrata ed emissioni
 - Uniformate le codifiche di alimentazione
 - Esclusi outlier nei prezzi (ad esempio annunci ad 1€)
 - Esclusi errori di annunci senza marca o modello (prettamente errori dello scraper)
 - Sistemazione formato dati (numerico, stringa, etc)
 - Uniformato consumo carburante
 - ... altri campi mancanti sempre tramite approccio deterministico
- · Questo ci ha consentito di familiarizzare meglio con il dataset e le varibili in gioco

In generale, abbiamo cercato di ridurre i missing tramite approcci deterministici il più possibile visto che nel nostro caso non rappresentano informazioni aggiuntive ma puramente mancanze da parte di chi ha pubblicato gli annunci

Preprocessing II

- Individuazione variable target: avendo scaricato gli annunci di veicoli nuovi e preimmatricolati abbiamo effettuato una inner join per mantere solo i modelli presenti in entrambe le tipologie.
- Abbiamo dunque calcolato il prezzo mediano per modello di autoveicolo nuovo come baseline, e calcolato lo sconto per ogni singola osservazione a KMO. Dunque abbiamo calcolato le % di sconto sul prezzo nuovo per singola osservazione a KMO, le quali sono distribuite nel dataset come segue:

Dunque la variabile dipendente è stata dicotomizzata in base alla soglia del 10%. Vi è un duplice motivo di business per questa scelta: abbiamo reputato che 10% sia una soglia accettabile di sconto, in più è lo sconto minimo necessario per accedere a incentivi della RL del decreto rilancio

Overall diagram Ssas

• Il dataset è stato dunque importato su SAS come xlsx e salvato come dataset di sas

• Le seguenti sono le variabili e target presenti nel dataset:

Nome	Ruolo	Livello
Alimentazione	Input	Nominale
Anno	Input	Nominale
Carrozzeria	Input	Nominale
Cilindrata	Input	Continuo
Cilindri	Input	Nominale
Classe emissioni	Input	Nominale
Colore esterno	Input	Nominale
Consumo Carburante Totale	Input	Continuo
Emissioni di CO2	Input	Continuo
Marca	Input	Nominale
Marce	Input	Nominale
Modello	Input	Nominale
Per neopatentati	Input	Binario
Peso a vuoto	Input	Continuo
Porte	Input	Nominale
Posti a sedere	Input	Nominale
Tagliandi certificati	Input	Binario
Tipo di cambio	Input	Nominale
Tipo di unita	Input	Nominale
Tipo di vernice	Input	Nominale
Usato Garantito	Input	Binario
Veicolo per non fumatori	Rifiutata	Binario
conditional on price	Rifiutata	Nominale
price	Input	Continuo
target10	Target	Binario
target20	Rifiutata	Binario
target 35	Rifiutata	Binario
target 5	Rifiutata	Binario
vehicle user desc	Rifiutata	Nominale

Esplorative

Tramite il nodo di statistiche esplorative abbiamo effettuato un test X^2 di associazione X-Y:

massimo 500 osservazioni s	tampate)		
tuolo dei dati=TRAIN Target	=target10		
	Chi-		
input	quadrato	Df	Prob
[odello	3355.4279	232	<.0001
larca	1577.2164	39	<.0001
osti_a_sedere	571.1949	8	<.0001
'eso_a_vuoto	513.9707	5	<.0001
arrozzeria	509.0237	7	<.0001
Alimentazione	440.9962	5	<.0001
er_neopatentati	334.0258	1	<.0001
larce	268.3107	7	<.0001
missioni_di_CO2	204.5847	5	<.0001
ilindri	175.6754	8	<.0001
orte	168.4790	2	<.0001
nno	163.3468	1	<.0001
Colore_esterno	134.9968	14	<.0001
'ipo_di_unita	111.6917	3	<.0001
Cilindrata	92.8011	5	<.0001
rice	64.7145	4	<.0001
ipo_di_cambio	64.2160	3	<.0001
Classe_emissioni	24.3085	7	0.0010
ipo_di_vernice	15.1526	3	0.0017
agliandi_certificati	12.5810	1	0.0004
Consumo_Carburante_Totale	9.1097	3	0.0279
Jsato_Garantito	7.2533	1	0.0071

- Abbiamo dunque accettato l'ipotesi nulla (ovvero mancanza di dipendenza) per le covariate conditional_on_price e veicolo_per_non_fumatori, questo ha senso anche dal punto di vista del business.
- Inoltre, la covariabile marca è stata rifiutata, perché ridondante rispetto a Modello, visto che ad ogni modello corrisponde una ed una sola marca, e non vi sono problemi di missing o qualità di input.

 Tramite il nodo di codice SAS «correlation» abbiamo effettuato una proc corr per individuare eventuali correlazioni tra le variabili ma il coefficiente di correlazione non supera 0.60

							Coeffic	lenti di con Num. di o	relazione (sservazioni	I .								
	Porte	Marce	Cilindrata	Cilindri	conditional_ on_price	price	target_35	target_5	target10	target20	Posti_a_ sedere	Emissioni_ di_CO2	Peso_a_ vuoto	Usato_ Garantito	Per_neopatentati	Veicolo_ per_non_ fumatori	Consumo_ Carburante_ Totale	Tagliandi_ certificati
Porte	1.00000	0.10465	0.22147	0.20094	0.03098	0.20565	0.09545	0.16897	0.15931	0.12474	0.62478	0.25107	0.51104	-0.02139	-0.38840	0.02316	0.12185	0.02574
Porte	6489	6105	6419	6254	6489	6489	6489	6489	6489	6489	6377	5932	3783	6489	6489	6489	5915	6489
Marce	0.10465	1.00000	0.42700	0.37903	0.05875	0.52282	0.00671	0.12503	0.12716	0.05210	0.20259	0.30015	0.51708	0.06010	-0.24878	-0.01630	0.05055	0.06912
Marce	6105	6124	6104	6030	6124	6124	6124	6124	6124	6124	6085	5641	3729	6124	6124	6124	5678	6124
Cilindrata	0.22147	0.42700	1.00000	0.59661	0.07314	0.49043	-0.08021	0.13994	0.12514	0.07454	0.24580	0.36428	0.43124	0.10661	-0.17250	0.13316	0.05620	0.42409
Cilindrata	6419	6104	6679	6272	6679	6679	6679	6679	6679	6679	6448	5898	3788	6679	6679	6679	5927	6679
Cilindri	0.20094	0.37903	0.59661	1.00000	0.05170	0.34861	-0.07866	0.15164	0.10819	0.03076	0.23616	0.59681	0.39742	0.02037	-0.11787	0.04320	0.16304	0.05449
Cilindri	6254	6030	6272	6287	6287	6287	6287	6287	6287	6287	6215	5774	3785	6287	6287	6287	5804	6287
conditional on price	0.03098	0.05875	0.07314	0.05170	1.00000	0.04937	-0.02854	0.00932	-0.01932	-0.02854	0.02573	0.03665	0.07944	0.09327	-0.00848	0.04233	0.07831	0.01400
conditional_on_price	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
price	0.20565	0.52282	0.49043	0.34861	0.04937	1.00000	-0.01513	0.00055	0.00539	0.00990	0.25425	0.18567	0.74555	-0.02650	-0.33452	0.00224	0.01205	0.04680
price	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
target 35	0.09545	0.00671	-0.08021	-0.07866	-0.02854	-0.01513	1.00000	0.21792	0.27856	0.45997	0.04847	0.09739	0.05064	-0.02634	-0.11327	-0.00011	0.03553	-0.02783
target_35	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
target 5	0.16897	0.12503	0.13994	0.15164	0.00932	0.00055	0.21792	1.00000	0.78228	0.47376	0.13416	0.19135	0.24765	0.04541	-0.20375	0.00411	0.04099	0.04496
target_5	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
target10	0.15931	0.12716	0.12514	0.10819	-0.01932	0.00539	0.27856	0.78228	1.00000	0.60562	0.10557	0.16970	0.23474	0.03271	-0.22199	-0.01109	0.03935	0.04308
target10	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
torget20	0.12474	0.05210	0.07454	0.03076	-0.02854	0.00990	0.45997	0.47376	0.60562	1.00000	0.03223	0.13265	0.17095	0.00902	-0.19822	0.00667	0.02847	0.03645
target20 target20	6489	6124	6679	6287	6778	6778	6778	6778	6778	6778	6469	5948	3788	6778	6778	6778	5930	6778
Danti a nadawa	0.60470	0.20259	0.24580	0 22616	0.02573	0 25425	0.04847	0 12416	0 10557	0 00000	1 00000	0.21.406	0 51050	0 02002	0.20121	0.03622	0.04202	0.01405
Posti_a_sedere	0.62478 6377	6085	0.24560 6448	0.23616 6215	0.02573 6469	0.25425 6469	0.04647 6469	0.13416 6469	0.10557 6469	0.03223 6469	1.00000 6469	0.21486 5885	0.51259 3768	-0.02892 6469	-0.30131 6469	6469	0.04392 5916	0.01435 6469
Poissoniani di COO	0.05105	0 00015	0.06400	0 50501	0.00555	0.10569	0 00700	0 10105	0.16070	0 10065	0.01406	1 00000	0.05060	0 00400	0.10050	0 00000	0 41 455	0.04074
Emissioni_di_CO2	0.25107 5932	0.30015 5641	0.36428 5898	0.59681 5774	0.03665 5948	0.18567 5948	0.09739 5948	0.19135 5948	0.16970 5948	0.13265 5948	0.21486 5885	1.00000 5948	0.35062 3695	-0.03439 5948	-0.12350 5948	0.03392 5948	0.41455 5869	0.04074 5948
Peso_a_vuoto	0.51104 3783	0.51708 3729	0.43124 3788	0.39742 3785	0.07944 3788	0.74555 3788	0.05064 3788	0.24765 3788	0.23474 3788	0.17095 3788	0.51259 3768	0.35062 3695	1.00000 3788	-0.00316 3788	-0.58067 3788	-0.02833 3788	0.07922 3694	0.02043 3788
Usato_Garantito	-0.02139 6489	0.06010 6124	0.10661 6679	0.02037 6287	0.09327 6778	-0.02650 6778	-0.02634 6778	0.04541 6778	0.03271 6778	0.00902 6778	-0.02892 6469	-0.03439 5948	-0.00316 3788	1.00000 6778	0.17645 6778	0.22129 6778	-0.04461 5930	0.21220 6778
Per_neopatentati	-0.38840 6489	-0.24878 6124	-0.17250 6679	-0.11787 6287	-0.00848 6778	-0.33452 6778	-0.11327 6778	-0.20375 6778	-0.22199 6778	-0.19822 6778	-0.30131 6469	-0.12350 5948	-0.58067 3788	0.17645 6778	1.00000 6778	0.10649 6778	-0.01583 5930	0.05063 6778

 Dopo aver partizionato il dataset utilizzando una external holdout 70-30, è stata effettuata una sostituzione solo per le variabili categoriche missing. Non si è ritenuto opportuno sostituire le continue prevedendo di fare un'imputazione prima di applicare i modelli che non gestiscono i valori missing.

K Editor delle sos	stituzioni-WORK.OUTCL	ASS					>	×
Variabile	Valore formattato	Valore di sostituzione	Conteggio di frequenza	Tipo	Valore alfanumerico non formattato	Valore numerico		
Carrozzeria	Monovolume		552C		Monovolume			-
Carrozzeria	Cabrio		166C		Cabrio			
Carrozzeria	Coupé	Coupe	66C		Coupé			
Carrozzeria	_UNKNOWN_	_DEFAULT	C					
Cilindri	4		2926N				4	
Cilindri	3		1246N				3	
Cilindri			335N					
Cilindri	2		102N				2	
Cilindri	0		60N				0	
Cilindri	6		38N				6	
Cilindri	1		27N				1	
Cilindri	8		8N				8	
Cilindri	5		1 N				5	
Cilindri	_UNKNOWN_	_DEFAULT	. N					
Classe_emissioni	Euro 6		2610C		Euro 6			
Classe_emissioni	Furo 6d-TFMP		1289C		Euro 6d-TEMP			
Classe_emissioni		_MISSING_	653C					
Classe_emissioni	Euro 6d		128C		Euro 6d			
Classe_emissioni	Elettrica		57C		Elettrica			
Classe_emissioni	Euro 6c		3C		Euro 6c			
Classe_emissioni	Euro 5		2C		Euro 5			
Classe_emissioni	Euro 4		1C		Euro 4			
Classe_emissioni	_UNKNOWN_	_DEFAULT	C					
Colore_esterno	Grigio		1304C		Grigio			
Colore_esterno	Bianco		1297C		Bianco			
Colore_esterno	Nero		810C		Nero			
Colore_esterno	Blu/Azzurro		465C		Blu/Azzurro			
Colore_esterno	Argento		371C		Argento			
Colore_esterno	Rosso		200C		Rosso			
Colore_esterno	Verde		91C		Verde			
Colore_esterno		_MISSING_	84C				\	V

Alberi decisionali e gradient boosting

- 2 tipi di alberi decisionali, uno con pruning automatico ed un gradient boosting
- Massima profondità di 6 e una misura di foglia minima di 10
- Non abbiamo trattato i missing visto che questi modelli li supportano

Imputazione e transformazione

- Prima delle regressioni logistiche sui dataset, sono state imputate le covariate categoriche tramite alberi decisionali surrogati e le continue tramite mediana
- La trasformazione delle variabili è stata puoi effettuata per redistribuire l'asimmetria della covariata «prezzo» ed abbiamo raggrupato pesi, emissioni, consumi che erano distribuiti più uniformemente, alcuni con una curtosi alta

Statistiche di riepilogo delle variabili continue

(massimo 500 osservazioni stampate)

(nessuno) V not Uguale	·										
Colonne: Etichetta	M	Mining									
Nome	Metodo ⊽	Numero di raggruppamenti	Ruolo	Livello							
MP Emissioni di CO2	Raggruppamento ottimale	4	Input	Continuo							
MP Cilindrata	Raggruppamento ottimale	4	Input	Continuo							
MP Peso a vuoto	Raggruppamento ottimale	4	Input	Continuo							
rice	Log 10	4	Input	Continuo							
anno	Predefinito	4	Input	Nominale							
MP Cilindri	Predefinito	4	Input	Nominale							
limentazione	Predefinito	4	Input	Nominale							
Classe emissioni	Predefinito	4	Rifiutata	Nominale							
Colore esterno	Predefinito	4	Rifiutata	Nominale							
MP Consumo Carburante Totale	Predefinito	4	Input	Continuo							
MP Porte	Predefinito	4	Input	Nominale							
MP Marce	Predefinito	4	Input	Nominale							
MP REP Classe emissioni	Predefinito	4	Input	Nominale							
Carrozzeria	Predefinito	4	Rifiutata	Nominale							
MP Posti a sedere	Predefinito	4	Input	Nominale							
MP REP Tipo di cambio	Predefinito	4	Input	Nominale							
1odello	Predefinito	4	Input	Nominale							
MP REP Tipo di unita	Predefinito	4	Input	Nominale							
MP REP Colore esterno	Predefinito	4	Input	Nominale							
MP REP Tipo di vernice	Predefinito	4	Input	Nominale							
Marca	Predefinito	4	Input	Nominale							
Per neopatentati	Predefinito	4	Input	Binario							
agliandi certificati	Predefinito	4	Input	Binario							
Jsato Garantito	Predefinito	4	Input	Binario							
Tipo di cambio	Predefinito	4	Rifiutata	Nominale							
REP Carrozzeria	Predefinito	4	Input	Nominale							
ripo di unita	Predefinito	4	Rifiutata	Nominale							
Tipo di vernice	Predefinito	4	Rifiutata	Nominale							
target10	Predefinito	4	Target	Binario							

Regressioni e rete

- Sono stati dunque creati vari nodi di regressione backward e stepwise
- Sono state anche selezionate le variabili per il ridurne il numero in import alla rete neurale

Confronto tra modelli

- Durante l'assessment, abbiamo scelto come metodo di selezione la ROC, visto che vogliamo massimizzare TPR e minimizzare FPR
- Il modello ad albero decisionale performa meglio su tutte le soglie, massimizzando AUC sempre
- ROC ed anche ASE sono consistenti tra train e validation per tutti i modelli

Statistic	che di stir	na																			
Modello	Nodo	Nodo	Descrizi	Variabile	Etichetta	Criterio	Train:	Train:	Train:	Train:	Train:	rain:	Train:	Train:	Valid:	Valid:	Valid:	Valid:	Valid:	Valid:	Valid: 1
se Model	lo selezio	nato	one del	target	target	di	Somma	Errore	Errore	Somma	Average	Root	Divisore	Gradi di	Somma	Errore	Errore	Somma	Average	Root	Divisore 5
ato	ssore	modello	modello			selezion	di	di				Average	per ASE		di	di	assoluto				per c
							frequenz		massim			Square		totali	frequenz	classific	massim			Square	VASE r
						Indice	е	azione	0	quadrati		Error			е	azione	0	quadrati		Error	I
						ROC				CI								CI			J
Y	Tree2	Tree2		target10		0.971	4743	0.0824	0.99827	598.58	0.0631	0.2512		4743		0.0859			0.0669		4070
	Reg2 Boost	Reg2 Boost		target10 target10			4743 4743	0.13852	0.9991	959 72	0.0977 (0.1011 (.3127 3180	9486 9486	4743 4743		0.15774 0.1538			0.1129 0.1069		4070 4070
	Neural	Neural	Rete n	target10	target10	0.922	4743	0.1640	0.99747	1050.8	0.1107	.3328	9486	4743	2035	0.1941	. 0.9942	524.69	0.1289	0.3590	₁ ⊢ 4070
	Req3	Req3	Regres	target10	target10	0.905	4743	0.1773	0.9948	1153.8	0.1216 (.3487	9486	4743	2035	0.1847	. 0.9999	. 525.95	0.1292	0.3594	L5 4070

Scelta del cutoff

- Non avendo una matrice dei costi/profitti, è stato individuata la soglia in base al criterio statistico sul dataset di validation
- Nel nostro caso abbiamo voluto massimizzare la precision e sensitivity (ossia F)

 Abbiamo impostato presion = recall nel nodo di cutoff in SAS, ed esportato i dati di output delle soglie plottando le statistiche di classificazione al variare della soglia di cutoff comprendendo anche F ed error rate.

Scoring

- Il dataset di scoring è stato scaricato tramite scraping due/tre settimane più tardi del dataset iniziale
- Abbiamo fatto preprocessing fuori da sas con le esatte stesse modalità del dataset di training/validation
- Abbiamo dunque scritto del codice sas per applicare il cutoff sul dataset di scoring, come riportato negli screenshot accanto
- Decisione rappresenta la classificazione di scoring, questo dato è stato esportato da sas e salvato come xls nel dataset di partenza (dimostrazione). Questo ci consente di inviarlo ad utenti con il link all'annuncio per conttattare il venditore


```
Codice di training
  🖃 DATA goodcars;
       SET &EM_IMPORT_SCORE;
                                   obsnum=_N_;
       IF P_targetl01 >0.69 THEN decisione=1; else decisione=0;
 PROC PRINT data= goodcars;
    VAR obsnum P_target101 decisione;
       LABEL P target101='Predicted*target101=Cheap*========';
       TITLE "KMO Cheap Cars";
     run:
   data em_goodcars ;
    set work.goodcars;
             KMO Cheap Cars
                    obsnum
                              P_target101
                                            decisione
                                0.00173
                                1.00000
                                1.00000
                                1.00000
                                0.00173
                                0.00173
                                0.00173
                                0.00173
                                0.00173
                                0.00173
                                0.97066
                                0.00173
                                0.00173
                                0.12963
              15
                                0.97066
              16
                       16
                                0.97066
                                0.97066
                                0.97066
                       19
              19
                                0.97066
                       20
                                0.12963
                       21
                                0.02146
                                0.00000
                                0.97066
                                0.12963
                       24
                                0.97066
                                0.15789
                       27
                                0.80000
              28
                       28
                                0.00173
                                                                      17
              29
                                0.12963
                                                0
```

0.02146