¿Cómo resolver ecuaciones de recurrencia homogéneas y no homogéneas paso a paso?

Jesús Rodríguez Heras 15 de febrero de 2017

Índice

I	Homogéneas	3
1.	Escribimos la ecuación dada en su forma general:	3
2.	Obtenemos la ecuación característica de la ecuación dada:	3
3.	La solución general de la ecuación característica es la sucesión $\{a_n\}$, tal que:	3
4.	Obtenemos la solución única de la ecuación propuesta mediante las condiciones iniciales dadas:	3
5.	Por lo tanto, la solución única a la ecuación propuesta es la sucesión $\{a_n\}$, tal que:	4
II	No homogéneas	5
1.	Escribimos la ecuación dada en su forma general:	5
2.	Obtenemos la ecuación homogénea asociada a la ecuación propuesta:	5
3.	Obtenemos la ecuación característica de la ecuación homogénea asociada:	5
4.	La solución general de la ecuación homogénea asociada será la sucesión $\{a_n^{(h)}\}$, tal que:	5
5.	Obtenemos la solución particular de la ecuación propuesta usando el método de los coeficientes indeterminados: 5.1. r no es raíz de la ecuación característica de la homogénea asociada: 5.2. r sí es raíz de la ecuación característica de la homogénea asociada:	6 6
6.	Sustituyendo en la ecuación dada obtendremos su solución particular:	6
7.	La solución particular de la ecuación propuesta es la sucesión $\{a_n^{(p)}\}$, tal que:	6
8.	La solución general de la ecuación propuesta es la sucesión $\{a_n\}$, tal que:	7
9.	Obtendremos la solución única de la ecuación propuesta mediante las condiciones iniciales dadas:	7
10.	Por lo tanto, la solución única a la ecuación propuesta es la sucesión $\{a_n\}$, tal que:	7

Parte I

Homogéneas

Utilizaremos el ejemplo siguiente (sacado de los apuntes) para ver los pasos de la resolución de una ecuación de recurrencia homogénea:

Resolver la ecuación de recurrencia:

$$a_{n+2} + 2a_{n+1} - 3a_n = 0, n \ge 1$$

con las condiciones iniciales, $a_1 = 0$ y $a_2 = -12$.

1. Escribimos la ecuación dada en su forma general:

$$a_1 = 0$$

$$a_2 = -12$$

$$a_{n+2} + 2a_{n+1} - 3a_n = 0$$

2. Obtenemos la ecuación característica de la ecuación dada:

$$\lambda^2 + 2\lambda - 3 = 0$$

Resolviendo dicha ecuación característica obtenemos:

$$\lambda = 1 \text{ o } \lambda = -3$$

3. La solución general de la ecuación característica es la sucesión $\{a_n\}$, tal que:

$$a_n = n^q \cdot \lambda^n$$
, $0 \le q \le m - 1$

Por lo tanto, siguiendo el ejemplo, nuestro a_n será: $a_n = \alpha_1 + \alpha_2 \cdot (-3)^n$, $n \le 1$ y $\alpha_1, \alpha_2 \in \mathbb{R}$

4. Obtenemos la solución única de la ecuación propuesta mediante las condiciones iniciales dadas:

$$a_1 = 0 \Rightarrow \alpha_1 - 3\alpha_2 = 0 \Rightarrow -\alpha_1 + 3\alpha_2 = 0$$

 $a_2 = -12 \Rightarrow \alpha_1 + 9\alpha_2 = -12 \Rightarrow \alpha_1 + 9\alpha_2 = -12$

Despejando α_1 tenemos: $\alpha_2 = -1$.

Sustituyendo y despejando tenemos: $\alpha_1 = -3$.

5. Por lo tanto, la solución única a la ecuación propuesta es la sucesión $\{a_n\}$, tal que:

$$a_n = -3 - 1(-3)^n, n \ge 1$$

Parte II

No homogéneas

Utilizaremos el ejemplo siguiente (sacado de los apuntes) para ver los pasos de la resolución de una ecuación de recurrencia no homogénea:

Resolver la ecuación de recurrencia:

$$a_{n+2} - 2a_{n+1} + a_n = 1, n \ge 1$$

con las condiciones iniciales, $a_1 = 1$ y $a_2 = 0$.

1. Escribimos la ecuación dada en su forma general:

$$a_1 = 1$$

$$a_2 = 0$$

$$a_{n+2} - 2a_{n+1} + a_n = 1$$

2. Obtenemos la ecuación homogénea asociada a la ecuación propuesta:

$$a_{n+2} - 2a_{n+1} + a_n = 0$$

3. Obtenemos la ecuación característica de la ecuación homogénea asociada:

$$\lambda^2 - 2\lambda + 1 = 0$$

Resolviendo dicha ecuación característica obtenemos:

$$\lambda = 1 \text{ o } \lambda = 1$$

Es decir, $\lambda = 1$ com multiplicidad m = 2.

4. La solución general de la ecuación homogénea asociada será la sucesión $\{a_n^{(h)}\}$, tal que:

$$a_n^{(h)} = n^q \cdot \lambda^n, 0 < q < m-1$$

5

Por lo tanto, siguiendo el ejemplo, nuestro $a_n^{(h)}$ será: $a_n^{(h)}=\alpha_1+\alpha_2\cdot n,\,n\leq 1$ y $\alpha_1,\alpha_2\in\mathbb{R}$

5. Obtenemos la solución particular de la ecuación propuesta usando el método de los coeficientes indeterminados:

Usando el término h(n) de la ecuación dada, tenemos:

$$h(n) = r^n \cdot p_0$$

$$h(n) = 1 \Rightarrow h(n) = 1^n \cdot 1$$

Luego, r = 1.

Llegados a este punto se nos presentan dos casos:

5.1. r no es raíz de la ecuación característica de la homogénea asociada:

Si se da este caso, ontinuaremos de la siguiente forma:

$$a_n^{(p)} = r^n (A_0 + A_1 n + A_2 n^2 + A_3 n^3 + \dots + A_t n^t)$$

Este caso no se da en este ejemplo pero se continuaría igual con el punto 6 en adelante.

5.2. r sí es raíz de la ecuación característica de la homogénea asociada:

Si se da este caso, ontinuaremos de la siguiente forma:

$$a_n^{(p)} = n^m \cdot r^n (A_0 + A_1 n + A_2 n^2 + A_3 n^3 + ... + A_t n^t)$$
, siendo m la multiplicidad.

Este es el caso que nos plantea este ejercicio ya que $r = \lambda$, por lo tanto:

$$a_n^{(p)} = n^2 \cdot 1^n (A_0) \Rightarrow a_n^{(p)} = n^2 \cdot A_0$$

6. Sustituyendo en la ecuación dada obtendremos su solución particular:

$$\begin{aligned} a_{n+2}^{(p)} - 2a_{n+1}^{(p)} + a_n^{(p)} &= 1 \Rightarrow (n+2)^2 A_0 - 2(n+1)^2 A_0 + n^2 A_0 = 1 \Rightarrow \\ &\Rightarrow (n^2 + 4n + 4) A_0 - 2(n^2 + 2n + 1) A_0 + n^2 A - 0 = 1 \Rightarrow \\ &\Rightarrow n^2 A_0 + 4n A_0 + 4A_0 - 2n^2 A_0 - 4n A_0 - 2A_0 - n^2 A_0 = 1 \Rightarrow \\ &\Rightarrow 2A_0 = 1 \Rightarrow \\ &\Rightarrow A_0 = \frac{1}{2} \end{aligned}$$

7. La solución particular de la ecuación propuesta es la sucesión $\{a_n^{(p)}\}$, tal que:

$$a_n^{(p)} = \frac{1}{2} \cdot n^2, n \ge 1$$

6

8. La solución general de la ecuación propuesta es la sucesión $\{a_n\}$, tal que:

$$a_n = a_n^{(h)} + a_n^{(p)} \Longrightarrow a_n = \alpha_1 + \alpha_2 n + \frac{1}{2}n^2, n \ge 1$$

9. Obtendremos la solución única de la ecuación propuesta mediante las condiciones iniciales dadas:

$$a_1=1\Rightarrow \alpha_1+\alpha_2+\frac{1}{2}=1\Longrightarrow \alpha_1+\alpha_2+\frac{1}{2}=1$$
 $a_2=0\Rightarrow \alpha_1+2\alpha_2+2^2\cdot\frac{1}{2}=0\Rightarrow -\alpha_1-2\alpha_2-2=0$ Despejando α_1 tenemos: $\alpha_2=-\frac{5}{2}$. Sustituyendo y despejando tenemos: $\alpha_1=3$.

10. Por lo tanto, la solución única a la ecuación propuesta es la sucesión $\{a_n\}$, tal que:

$$a_n = 3 - \frac{5}{2}n + \frac{1}{2}n^2, n \ge 1$$