M 328K: Lecture 6

Katherine Ho

September 12, 2024

1 From Last Time

Solve $ax \equiv b \pmod{n}$.

It's possible for there to be no solutions OR a single solution OR multiple incongruent solutions.

Theorem 1.1. 1. $a \equiv a \pmod{n}$

- 2. if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- 3. if $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Example 1.1.1. $20 \equiv 1 \pmod{19}$

$$20 \equiv 1 \pmod{19}$$

$$20x \equiv x \pmod{19}$$

$$20x \equiv 15 \pmod{19}$$

$$x \equiv 20x \pmod{19}$$

$$x \equiv 15 \pmod{19}$$

$$x \equiv 15 \pmod{19}$$

$$By (2)$$

$$By (3)$$

2 Solving stuff

WARNING: If $ac \equiv bc \pmod{n}$, we can't conclude $a \equiv b \pmod{n}$.

Theorem 2.1. If gcd(c, n) = 1, then $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

Proof. By definition, we have

$$n \mid (a-b)c$$

By Euclid's Lemma, since gcd(n, c) = 1, we have $n \mid (a - b)$, hence $a \equiv b \pmod{n}$.

Proposition 2.1. Let $d = \gcd(a, b)$ for some $a, b \in \mathbb{Z}$. Then $\gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof. By Bezout, there exist integers x and y such that ax + by = d. Then,

$$(\frac{a}{d}x + \frac{b}{d}y) = 1$$

So $\frac{a}{d}$, $\frac{b}{d}$ are relatively prime.

Theorem 2.2. Consider $ac \equiv bc \pmod{n}$ and let $d = \gcd(c, n)$. Then $a \equiv b \pmod{\frac{n}{d}}$. Note: If d = 1, this is the same statement as before.

Proof. $n \mid (a-b)c$ as before. So there exists $k \in \mathbb{Z}$ such that (a-b)c = nk. Then,

$$(a-b)\frac{c}{d} = \frac{n}{d}k$$

So,

$$\frac{n}{d} \mid (a-b)\frac{c}{d}$$

By Proposition 2.1, $\gcd(\frac{n}{d}, \frac{c}{d}) = 1$, so Euclid's Lemma says

$$\frac{n}{d} \mid (a-b)$$
, ie. $a \equiv b \pmod{\frac{n}{d}}$

Example 2.2.1.

$$2 \cdot 3 \equiv 2 \cdot 0 \pmod{6}$$
 $\gcd(2,6) = 2$ $3 \equiv 0 \pmod{3}$

Theorem 2.3 (Build-a-theorem). Let $a, b, n \in \mathbb{Z}$ with n > 1, let $d = \gcd(a, n)$. Then the linear congruence $ax \equiv b \pmod{n}$.

- has no solution if $d \nmid b$
- has exactly d incongruent solutions \pmod{n} if $d \mid b$

In particular, if x_0 is a solution, then

$$x_0, x_0 + \frac{n}{d}, x_0 + 2\frac{n}{d}, \dots, x_0 + (d-1)\frac{n}{d}$$

is a complete set of solutions \pmod{n} , ie. if x is a solution, then x is congruent modulo n to exactly one of

$$x_0 + t(\frac{n}{d})$$
 for $0 \le t \le d - 1$

Study $ax \equiv b \pmod{n}$. If this has a solution x, then $n \mid (ax - b)$. Then there exists $y \in \mathbb{Z}$ such that

$$ax - b = ny$$

So,

$$ax - ny = b$$

This linear diophantine equation has a solution exactly when $gcd(a, n) = d \mid b$.

<u>Recall</u>: $6x \equiv 15 \pmod{512}$. $\gcd(6,512) = (1,2,3, or 6)$. Note $3 \nmid 512$ since 3 + (5+1+2). But $2 \nmid 15$, so there are no solutions.

Example 2.3.1. Solve

$$9x \equiv 21 \pmod{30}$$

 $d = \gcd(9, 30) = 3 \mid 21$ Either write down

$$9x - 30y = 21$$

dividing,

$$3x - 10y = 7$$

OR apply Theorem 2.2 to yield

$$3x \equiv 7 \pmod{10}$$

leading to

$$3x - 10y = 7$$

Extended Euclidean algorithm

$$10 = 3 \cdot 3 + 1$$

$$10 - 3 \cdot 3 = 1$$

$$10 \cdot 7 - 3 \cdot 21 = 7$$

$$-10(-7) + 3(-21) = 7$$

$$\boxed{x = -21, y = -7}$$

But $x \equiv (-21) + 30 \pmod{30}$. $x \equiv 9 \pmod{30}$. So we have found one solution (up to congruence). Note: x = 9 is a solution to $3x \equiv 7 \pmod{10}$. So, x = 19 and x = 29 are also solutions to $3x \equiv 7 \pmod{10}$ that are distrinct $\pmod{30}$.

Example 2.3.2. Solve

$$18x \equiv 8 \pmod{22}$$

 $d = \gcd(18, 22) = 2$. First find a solution to

$$9x \equiv 4 \pmod{11}$$

Solve

$$9x - 11y = 4$$

this has a solution x = -2, y = -22. Choose x = -2 + 11 = 9 is one solution. The other distinct solution (mod 22) is

$$x = 9 + 11 = 20$$

x = 9,20 is a complete set of solutions up to congruence (mod 22).