Godin Daniel Note: 17/20 (score total : 62.8/72)

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):		
Godin Daniel			
0			
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.			
Q.2 Soit L un langage sur l'alphabet Σ . Si $\overline{L} = \emptyset$ alors	3		
$\Box L = \emptyset \qquad \Box L$	$= \{ \varepsilon \}$ \blacksquare $L = \Sigma^*$		
Q.3 Que vaut $L \cdot \{\varepsilon\}$?	., _ = =		
	Π 0 Π ε		
_ = _ (;)			
Q.4 L'ensemble des programmes écrits en langage J			
☐ récursivement énumérable mais pas récursif ☐ ni récurs	☐ récursif mais pas récursivement énumérable sivement énumérable ni récursif		
Q.5 Que vaut <i>Fact</i> (<i>L</i>) (l'ensemble des facteurs):			
\square Suff(Suff(L)) \square Pref(Pref(L)) \square Pref			
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$			
	$\{\varepsilon\} \cup \{a\}\{a\}\{a\}^*$ $[a,b]^*\{b\}\{a,b\}^*$		
Q.7 Pour toute expression rationnelle e , on a $\varepsilon e \equiv e\varepsilon$	$\equiv \varepsilon$.		
□ vrai	faux		
Q.8 Il est possible de tester si une expression ration	nelle engendre un langage vide.		
■ Toujours vrai ☐ Toujours faux			
Q.9 Pour $e = (ab)^*$, $f = a^*b^*$:			
$\Box L(e) = L(f) \qquad \Box L(e) \subseteq L(f)$	$\Box L(e) \supseteq L(f) \qquad \qquad \blacksquare \qquad L(e) \stackrel{\not\subseteq}{\not\supseteq} L(f)$		
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L \subseteq \Sigma^*$, on	$a \{a\}.L = \{a\}.M \implies L = M.$		
☐ faux	vrai vrai		
O.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*	[-+]*[0-9A-F]+' n'engendre pas :		

2/2	$□$ n'est pas nécessairement dénombrable $□$ peut avoir une intersection non vide avec son complémentaire \blacksquare est toujours inclus ($⊆$) dans un langage rationnel \blacksquare Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $Σ = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):				
2/2	$\frac{n(n+1)}{2}$ $n+1$ n' II n'existe pas. $n+1$ n'				
2/2	 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? Thompson, déterminisation, élimination des transitions spontanées, évaluation. Thompson, déterminisation, Brzozowski-McCluskey. Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. Thompson, déterminimisation, évaluation. 				
	Q.21 Déterminiser cet automate.				
2/2					
2,2	$\square \longrightarrow 0$ 0 0 0 0 0 0 0 0 0				
	Q.22 Quelle(s) opération(s) préserve(nt) la rationnalité?				
1.2/2	✓ Intersection ✓ Union ✓ Différence ✓ Complémentaire ✓ Différence symétrique ☐ Aucune de ces réponses n'est correcte.				
	Q.23 Quelle(s) opération(s) préserve(nt) la rationnalité?				
1.6/2	Fact Pref 🖸 Sous – mot 🔯 Suff 🔣 Transpose 🗆 Aucune de ces réponses n'est correcte.				
	Q.24 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.				
2/2	\square Rec \subseteq Rat \square Rec \supseteq Rat \square Rec \supseteq Rat				
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il				
2/2	accepte le mot vide a des transitions spontanées est déterministe accepte un langage infini				
	Q.26 Si L_1 , L_2 sont rationnels, alors:				
2/2					

Q.27	On peut tester si un automate nondéterministe reconnaît un langage non vide.
~	0 0

Q.28	Que	l mot
b		b
Q.	a	<u>Q</u>

☐ rarement [
--------------	--

jamais	\boxtimes	oui, toujours
--------	-------------	---------------

2/2

Q.28 Quel mot reconnait le produit de ces automates?

Q.29 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.

2/2

0/2

X	vrai	en	temps	fini
4 3 6 6	VIGI	CIL	temps	, m u

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

$$\Box$$
 $(a+b+c)^*$

$$\Box$$
 $a^* + b^* + c^*$

Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

- 1 avec 2
- ☐ 1 avec 3
- ☐ 0 avec 1 et avec 2
- 3 avec 4
- ☐ 2 avec 4
- ☐ Aucune de ces réponses n'est correcte.

Q.34

34 Sur $\{a, b\}$, quel est le complémentaire de

2/2

Q.35

a, b

2/2

2/2

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0? $(ab^* + (a + b)^*)a(a + b)^*$ $(ab^* + a + b^*)a(a + b)^*$ $(ab^* + a + b^*)(a(a + b^+))^*$

Q.36 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de

Fin de l'épreuve.