St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI – 119

St.JOSEPH'S INSTITUTE OF TECHNOLOGY, CHENNAI – 119

SUB NAME & CODE: MA 6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

ASSIGNMENT – I

UNIT – II FOURIER SERIES

PART - A

- 1. State Dirichlet's conditions for the existence of Fourier series of f(x) in the interval $(0, 2\pi)$.
- 2. Find the value of the Fourier series for $f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2, & 1 < x < 2 \end{cases}$ at x=1.
- 3. Find the constant term in the expression of $\cos^2 x$ as a Fourier series in the interval $(-\pi, \pi)$.
- **4.** Determine the value of a_n & a_0 in the Fourier series expansion of $f(x) = x^3$ in $-\pi < x < \pi$
- 5. Find the Fourier constant b_n for $x \sin x$ in $-\pi < x < \pi$, when expressed as a Fourier series.
- **6.** Find the root mean square value of the function f(x) = x in (0, l).
- 7. To which value, the half range sine series corresponding to $f(x) = x^2$ expressed in the interval (0, 5) converges at x = 5?
- **8.** What you meant by Harmonic analysis?

PART – B

1. a) If
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in $0 < x < 2\pi$. Hence show that

(i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
. (ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.

- **b)** Find the Fourier series for $f(x) = |\sin x|$ in $-\pi < x < \pi$.
- 2. a) Obtain the Fourier series to represent the function f(x) = |x| is $-\pi < x < \pi$ and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
 - b) Find the first two harmonic of the Fourier series of f(x) given by

X	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

- 3. a) Find the complex form of the Fourier series of $f(x) = e^{-x}$ in $-1 \le x \le 1$
 - **b)** Find the half range Fourier sine series for $f(x) = x(\pi x)$ in the interval $(0, \pi)$ and deduce that $\frac{1}{1^3} + \frac{1}{3^3} + \frac{1}{5^3} + \frac{1}{7^3} + ... \infty$
- **4.** a) Find the Fourier series expansion for the function $f(x) = 2x x^2$ in the interval (0,2)
 - b) The following table gives the variations of a periodic function over a period T

x	0	T/6	T/3	T/2	2 <i>T</i> /3	5 <i>T</i> /6	T
f(x)	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98

find f(x) upto first harmonic.