Data Corrections

A unique observation

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4
                  v readr
                              2.1.5
v forcats 1.0.0 v stringr
                              1.5.2
v ggplot2 4.0.0 v tibble 3.3.0
                              1.3.1
v lubridate 1.9.4
                   v tidyr
v purrr
         1.1.0
-- Conflicts ------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
results <- read_csv('../_data/stat218fall2025.csv')</pre>
Rows: 4856 Columns: 31
-- Column specification ------
Delimiter: ","
chr (11): set, media, user_id, user_larger, stage, user_age, user_gender, us...
dbl (17): pair_id, user_set_order, user_trial_order, user_slider, slider_sta...
lgl (3): is_218_student, data_consent, q1_correct
```

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

i Use `spec()` to retrieve the full column specification for this data.

```
solutions <- readRDS('../../data/solutions.rda')</pre>
```

An interesting result occurs when observing Stimuli Pair 5 – when participants correctly identified that the values were the same, three understandings of the task emerge.

- 1. Task as assigned
- 2. True value estimation
- 3. Difference of stimuli

```
results %>%
  filter(pair_id == 5) %>%
  ggplot(mapping = aes(x = user_slider, y = q1_correct)) +
  geom_point(position = position_jitter(width = 0, height = 1/4)) +
  labs(x = 'User slider response', y = 'Correct Q1 Response')
```


This observation is not as obvious for the other stimuli pairs.

Participant tasks

If the task is consistent per participant, we should be able to correct the values. Looking at the correct proportion of correct responses for question 1 by participants, it appears that most participants were not nefarious is their submissions.

```
results %>%
  group_by(user_id) %>%
  summarize(prop_correct = mean(q1_correct)) %>%
  arrange(prop_correct) %>%
  ggplot(mapping = aes(x = prop_correct, y = '')) +
  geom_point(position = position_jitter(width = 0, height = 1/6)) +
  labs(x = 'Proportion of correct responses', y = '') +
  theme_minimal()
```


For a consistent task nomenclature, refer to the following descriptions:

- Task Ratio: this is the actual task assigned, where participants estimate the size of the smaller value with respect to the larger value
- Task Size: this is an estimation of the value with respect to the chart
- Task Difference: this is where participants estimated the difference

A reasonable approach to figuring out which task was most likely to have occurred is to take the average difference between

Joining with `by = join_by(pair_id)`

```
likely_task <- tasks %>%
group_by(user_id) %>%
```



```
tasks %>%
  left_join(likely_task) %>%
  mutate(q2 = case_when(
    likely_task == 'task_diff' ~ task_diff,
    likely_task == 'task_size' ~ task_size,
    likely_task == 'task_ratio' ~ task_ratio
)) %>%
  filter(q1_correct) %>%
  pivot_longer(c(task_ratio, q2), names_to = 'response', values_to = 'y') %>%
```

```
ggplot(mapping = aes(x = y, color = response)) +
geom_density(alpha = 1/2) +
facet_wrap(~round(true_ratio,2)+pair_id, scales = 'free')
```

Joining with `by = join_by(user_id)`

Joining with `by = join_by(user_id)`

Joining with `by = join_by(user_id)`

