m

Markov Decision Processes

Last Time

What does "Markov" mean in "Markov Process"?

$$S_{t+1} \perp S_{t-1}, ..., S_{0} \mid S_{t}$$
 (also $-S_{i} \perp S_{t-1}, ..., S_{0} \mid S_{t}$ $\forall i > t$)
$$P(S_{t+1} \mid S_{t}, ..., S_{0}) = P(S_{t+1} \mid S_{t})$$

• What is a **Markov decision process**?

- What is a **Markov decision process**?
- What is a **policy**?

- What is a **Markov decision process**?
- What is a **policy**?
- How do we **evaluate** policies?

Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

Decision node

Utility node

MDP Dynamic Decision Network

Decision Network

MDP Dynamic Decision Network

Decision Network

Decision node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=\mathbf{0}}^{\infty} r_t
ight]$$

Decision Network

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight] \qquad \mathsf{Not well formulated!}$$

Decision Network

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight] \qquad ext{Not well formulated!}$$

1. Finite time

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

discount $\gamma \in [0,1)$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,} \ \mathsf{0.95,} \ \mathsf{0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{array}{l} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{array}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \hspace{0.5cm} \mathsf{discount} \ \gamma \in [0,1)$$
 typically 0.9, 0.95, 0.99

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

 (S, A, T, R, γ)

 (S, A, T, R, γ) (and b in some contexts)

 (S, A, T, R, γ) (and b in some contexts)

• *S* (state space) - set of all possible states

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

 $\{1, 2, 3\}$

```
(S, A, T, R, \gamma) (and b in some contexts)
```

ullet S (state space) - set of all possible states

$$\{1, 2, 3\}$$

{healthy, pre-cancer, cancer}

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\}$$
 \mathbb{R}^2 {healthy, pre-cancer, cancer}

$$(S, A, T, R, \gamma)$$
 (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\}$$
 \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^4$

 $\{\text{healthy}, \text{pre-cancer}, \text{cancer}\}$

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \left\{0,1
ight\} imes \mathbb{R}^4$$

{healthy, pre-cancer, cancer}

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\} \hspace{0.1in} (x,y) \in \mathbb{R}^2 \hspace{0.1in} \{0,1\} imes \mathbb{R}^4$$
 {healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- ullet A (action space) set of all possible actions

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4$$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- A (action space) set of all possible actions $\{1,2,3\}$

 $\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4$

 $\{ ext{healthy, pre-cancer, cancer}\} \qquad (s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- A (action space) set of all possible actions $\{1,2,3\}$

{healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \left\{0,1
ight\} imes \mathbb{R}^4$$

{healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- *A* (action space) set of all possible actions

$$\{1,2,3\} \hspace{0.1in} (x,y) \in \mathbb{R}^2 \hspace{0.1in} \{0,1\} imes \mathbb{R}^4$$
 {healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$

 (S, A, T, R, γ) (and b in some contexts)

• S (state space) - set of all possible states $\begin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 \quad \{0,1\} \times \mathbb{R}^4 \\ \{\text{healthy, pre-cancer, cancer}\} & (s,i,r) \in \mathbb{N}^3 \end{cases}$ • A (action space) - set of all possible actions $\{1,2,3\} \qquad \mathbb{R}^2 \qquad \{0,1\} \times \mathbb{R}^2$

{test, wait, treat}

• *T* (transition distribution) - explicit or implicit ("generative") model of how the state changes

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $\{1,2,3\} \quad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4 \ \{ ext{healthy, pre-cancer, cancer} \} \quad (s,i,r) \in \mathbb{N}^3$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes

 (S, A, T, R, γ) (and b in some contexts)

• S (state space) - set of all possible states $\begin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 \quad \{0,1\} \times \mathbb{R}^4 \\ \{\text{healthy, pre-cancer, cancer}\} & (s,i,r) \in \mathbb{N}^3 \end{cases}$ • A (action space) - set of all possible actions $\{1,2,3\} \qquad \mathbb{R}^2 \qquad \{0,1\} \times \mathbb{R}^2$

{test, wait, treat}

- ullet T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- \bullet R (reward function) maps each state and action to a reward

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $\{1,2,3\} \quad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4 \ \{ ext{healthy, pre-cancer, cancer} \} \quad (s,i,r) \in \mathbb{N}^3$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward R(s,a) or R(s,a,s')

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{\mathrm{healthy, pre-cancer, cancer}\} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- ullet T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$? model of how the state changes
- ullet R (reward function) maps each state and action to a reward

$$R(s,a)$$
 or $R(s,a,s^\prime)$

$$s',r=G(s,a)$$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{ \mathrm{healthy, pre-cancer, cancer} \} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward

• γ : discount factor

$$s^\prime, r = G(s,a)$$

R(s,a) or

R(s, a, s')

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{ \mathrm{healthy, pre-cancer, cancer} \} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- ullet T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward
- γ : discount factor

 $s^\prime, r = G(s,a)$

• b: initial state distribution

R(s,a) or

R(s, a, s')

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

• If you drive, you will have to pay \$15 for parking; biking is free.

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

- If you drive, you will have to pay \$15 for parking; biking is free.
- On 1% of cold days, the ground is covered in ice and you will crash if you bike, but you can't discover this until you start riding. After your crash, you limp home with pain equivalent to losing \$100.

Policies and Simulation

Policies and Simulation

- A *policy*, denoted with π , as in $a_t = \pi(s_t)$ is a function mapping every state to an action.
- When a policy is combined with a Markov decision process, it becomes a Markov stochastic process with

$$P(s'\mid s) = \underbrace{T(s'\mid s, \underline{\pi(s)})}$$

Simulate

Input:
$$(S,A,T,R,y,b)$$
, π

Output: $\hat{\alpha}$ (accumulated reward)

 $S \leftarrow sample(b)$
 $\hat{\alpha} \leftarrow 0$

for t in $0...T-1$
 $\alpha \leftarrow \pi(s)$
 $S', r \leftarrow G(s,a)$
 $\hat{\alpha} \leftarrow \hat{\alpha} + r^{\dagger}r$
 $S \leftarrow s'$

return $\hat{\alpha}$

Break

Suggest a policy that you think is optimal for the icy day problem

bike:
$$0.99 \cdot 0 + 0.01(-100 + -15)$$

= -1.15

$$\pi(s) = \begin{cases} \frac{bike}{drive} & \text{if } s = home \\ \frac{drive}{drive} & \text{if } s = injured \end{cases}$$

Policy Evaluation

$$U(\pi) = E \left[\sum_{t=0}^{\infty} y^{t} r_{t} \middle| a_{t} = \pi(s_{t}) \right] \qquad r_{t} = R(s_{t}, a_{t})$$

$$Naive:$$

$$U(\pi) = \sum_{t=0}^{\infty} y^{t} \sum_{s_{t} \in S} P^{\pi}(s_{t}) R(s_{t}, \pi(s_{t}))$$

$$P^{\pi}(s_{t}) = \sum_{s_{t+1}} T(s_{t+1}, \pi(s_{t+1})) P^{\pi}(s_{t+1})$$

$$P^{\pi}(s_{0}) = b(s_{0})$$

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let
$$au = (s_0, a_0, r_0, s_1, \dots, s_T)$$
 be a *trajectory* of the MDP

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \ldots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

where $\hat{u}^{(i)}$ is generated by a rollout simulation

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $\tau = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi) pprox rac{1}{m} \sum_{i=1}^m R(au^{(i)})$$
 $\qquad \qquad \bigvee_{lpha} (\chi) = \mathbb{E}[\chi - \mu]^z] = \sigma^z \qquad \sigma^z \sin^2 \theta$ How can ψ

$$U(\pi)pprox ar{u}_m=rac{1}{m}\sum_{i=1}^m \hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

 $U(\pi)$

$$Var(\bar{u}_{m}) = Var(\bar{u}_{m} \geq \hat{u}_{i})$$

$$= \frac{1}{m^{2}} Var(\bar{u}_{i})$$

$$= \frac{1}{m^{2}} Var(\hat{u}_{i})$$

$$= \frac{1}{m^{2}} \sum_{i=1}^{m} Var(\hat{u}_{i})$$

$$= \frac{1}{m^$$

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pprox ar{u}_m=rac{1}{m}\sum_{i=1}^m \hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pprox ar{u}_m=rac{1}{m}\sum_{i=1}^m \hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

Value Function-Based Policy Evaluation

Discrete MDPs only!

$$U^{2}(s) = E\left[\sum_{t=0}^{\infty} y^{t} r_{t} \mid S_{o} = S, \alpha_{t} = \pi\left(S_{t}\right)\right]$$

$$= E\left[\sum_{t=0}^{\infty} y^{t} r_{t} \mid S_{o} = S, \alpha_{o} = \pi\left(S_{t}\right)\right] + E\left[\sum_{t=1}^{\infty} y^{t} r_{t} \mid S_{o} = S, \alpha_{t} = \pi\left(S_{t}\right)\right]$$

$$= R(s, \pi(s)) + \sum_{s' \in S} T(s'|s, a) E \left[\sum_{t=1}^{8} x^{t} + |s|^{2s}, s' = s', a_{t} = \pi(s_{t}) \right]$$

$$= R(s, \pi(s)) + \sum_{s' \in S} T(s'|s, a) = \sum_{t=1}^{8} x^{t} + |s|^{2s}, s' = s', a_{t} = \pi(s_{t})$$

$$P(s, \pi(s)) + \sum_{s=0}^{\infty} T(s'|s, \alpha) = P(s, \alpha) = P(s, \alpha) = P(s, \alpha)$$

$$\int_{S' \in S} \mathcal{T}(s') = \mathcal{R}(s, \pi(s)) + \gamma \sum_{s' \in S} \mathcal{T}(s'|s, a) \cup \mathcal{T}(s')$$

Bellman Expectation Eq.

Markov

$$\vec{\mathbf{U}}_{i,j}^{\mathcal{R}} = \vec{\mathbf{U}}_{i,j}^{\mathcal{R}} = \vec{\mathbf{R}}^{\mathcal{R}} + \gamma T^{\mathcal{R}} \vec{\mathbf{U}}^{\mathcal{R}}
\vec{\mathbf{R}}^{\mathcal{R}} = \mathbf{R}(i,\pi(i))
T_{i,j}^{\mathcal{R}} = \mathbf{T}(j|i,\pi(i))
(I - \gamma T^{\mathcal{R}}) \vec{\mathbf{U}}^{\mathcal{R}} = \vec{\mathbf{R}}^{\mathcal{R}}$$

$$(I-\gamma T^{\pi})\vec{U}^{\pi} = \vec{R}^{\pi}$$

$$(\vec{J}^{\pi} = (I-\gamma T^{\pi})^{-1}\vec{R}^{\pi}$$

• What is a **Markov decision process**?

- What is a **Markov decision process**?
- What is a **policy**?

- What is a **Markov decision process**?
- What is a **policy**?
- How do we **evaluate** policies?