(2) Markor Inequality

$$u(x) = |x|^r$$
 and consider c^r in (1)

$$P[|x|^r \ge c^r] \le E[|x|^r]$$

$$P[|X| \ge C] \le E[|X|]$$

(3) Chelm Sher inequality
$$P[|X-\mu| \ge K\sigma] \le \frac{1}{K^2}$$

$$U(x) = (x - \mu)^2$$
, $C = k^2 \delta^2$

Now
$$P[|X-\mu| < E] \ge |1-\frac{2}{\sqrt{E^2}n} \xrightarrow{as}$$

and $P[|X-\mu| < K\delta] \ge |1-\frac{1}{\sqrt{E^2}}$ weak LLN

$$P[|x-\mu| < E] \ge |-\frac{6^2}{K^2} \le 0 P[|x-\mu| \ge E] = \frac{6^2}{E^2}$$