

Введение в экономико-математическое моделирование

Лекция 16. Выборочный метод

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru

Генеральная совокупность

Совокупность всех подлежащих изучению объектов или возможных результатов всех мыслимых наблюдений, производимых в неизменных условиях над одним объектом, называется генеральной совокупностью.

Определение

Генеральная совокупность — это случайная величина X, заданная на пространстве элементарных событий с выделенным в нем классом событий, для которых указаны их вероятности.

N — объем генеральной совокупности

Выборка — совокупность объектов, отобранных случайным образом из генеральной совокупности. *п* — объем выборки.

Определение

Выборка — это последовательность X_1, X_2, \ldots, X_n независимых одинаково распределенных с.в., распределение каждой из которых совпадает с распределением генеральной случайной величины.

Метод статистического исследования, состоящий в том, что на основе изучения выборочной совокупности делается заключение о всей генеральной совокупности, называется выборочным.

Выборочный метод

- Существенно экономит затраты ресурсов.
- Дает возможность проведения углубленного исследования за счет расширения программы исследования.
- Является единственно возможным в случаях, когда:
 - генеральная совокупность бесконечна;
 - исследование связано с уничтожением наблюдаемых объектов.
- Позволяет снизить ошибки регистрации расхождения между истинным и зарегистрированным значениями признака.

Основное свойство выборки

Репрезентативность — свойство выборки достаточно полно представлять изучаемые признаки генеральной совокупности.

<u> Чсловие о</u>беспечения репрезентативности

Все объекты генеральной совокупности должны иметь равные вероятности попасть в выборку.

Типы выборки

- Повторная выборка отобранный объект возвращается в генеральную совокупность перед извлечением следующего;
- ▶ Бесповторная выборка объект не возвращается.

Если объем выборки значительно меньше объема генеральной совокупности, то различие между повторной и бесповторной выборками очень мало.

На практике чаще используется бесповторная выборка.

Способы отбора

- простой из генеральной совокупности извлекают последовательно по одному объекту;
- типический генеральную совокупность делят на "типы" и отбор осуществляется из каждой части
- механический каждый *t*-й объект генеральной совокупности.
- серийный объекты из генеральной совокупности отбираются "сериями", которые подвергаются сплошному обследованию.

На практике пользуются сочетанием вышеупомянутых способов отбора.

Обработка наблюдений

Алгоритм

- 1. Формирование выборки: $X_1, X_2, ..., X_n$.
- 2. Исследование выборки: Получение значений признака

$$X_1 = x_1, \quad X_2 = x_2, \quad \dots, \quad X_n = x_n$$

Получается набор (x_1, x_2, \dots, x_n) — реализация выборки. x_i — значение признака.

- 3. Ранжирование вариант расположениие значений x_1, \ldots, x_n по неубыванию.
- 4. Группировка объединение значений опытных данных в группы так, чтобы в каждой группе признак принимал одно и то же значение.

Связанные понятия

- Конкретные значения x₁, x₂, ..., x_k элементов выборки выборки, полученные в результате наблюдений (испытаний) называются вариантами.
- Вариационный ряд последовательность вариант x_1, \ldots, x_k , расположенных в возрастающем порядке

$$x_1 \leqslant x_2 \leqslant \ldots \leqslant x_k$$
.

► Статистический ряд — упорядоченная последовательность групп вариант с соответствующими частотами или относительными частотами принадлежности значений группе.

Дискретный статистический ряд

Дискретный статистический ряд — упорядоченная последовательность вариант с соответствующими частотами n_i или относительными частотами v_i .

Дискретный ряд частот

$$\frac{x_i}{n_i} \begin{vmatrix} x_1 & x_2 & \cdots & x_k \\ n_1 & n_1 & n_2 & \cdots & n_k \end{vmatrix}$$
 где $n_1 + n_2 + \ldots + n_k = n$

Дискретный ряд частостей (относительных частот) $v_i = \frac{n_i}{n}$

В результате тестирования группа студентов в тестированию по математике абитуриентов набрала баллы:

Записать полученную выборку в виде статистического ряда.

- Проранжируем выборку: 5, 6, 6, 7, 8, 9, 9, 10, 10, 10
- Подсчитаем частоту и частость вариант

Xi	5	6	7	8	9	10	Σ
ni	1	2	1	1	2	3	10
ω_i	0.1	0.2	0.1	0.1	0.2	0.3	1

Изображение статистического ряда

Дискретный Вариационный ряд изображается в виде полигона частот (или частостей)

Полигоном частот называют ломаную, отрезки которой соединяют точки с координатами (x_i, n_i) ,

Полигоном частостей — ломаную, отрезки которой соединяют точки с координатами с координатами (x_i, ω_i)

Варианты x_i откладываются на оси абсцисс, а частоты n_i (частости ω_i) — на оси ординат.

Пример

Xi	5	6	7	8	9	10	Σ
ni	1	2	1	1	2	3	10
ω_i	0.1	0.2	0.1	0.1	0.2	0.3	1

Статистическое распределение

Статистический ряд частостей задает статистическое распределение — оценку неизвестного распределения *X* на генеральной совокупности.

При больших объемах выборки n статистическое распределение мало отличается от истинного распределения.

Интервальный статистический ряд

Интервальный статистический ряд — упорядоченная совокупность интервалов значений случайной величины с соответствующими частотами или относительными частотами попаданий значений величины в каждый из них

$$\frac{x_i \ (x_0, x_1] \ (x_1, x_2] \ \cdots \ (x_{k-1}, x_k]}{n_i \ n_1 \ n_2 \ \cdots \ n_k}$$
 где $n_1 + n_2 + \ldots + n_k = n$

Характеристики интервалов

Число интервалов определяется по формуле Стерджеса

$$k = 1 + [3.322 \lg n]$$

Arr Длина интервала: $h = x_1 - x_0 = x_2 - x_1 = \ldots = x_k - x_{k-1}$ вычисляется как

$$h = \left[\frac{x_{\text{max}} - x_{\text{min}}}{3.322 \lg n} \right]$$

Левая граница первого интервала:

$$x_0 = x_{\min} - \frac{h}{2}$$

Измерили рост (с точностью до см) 30 наудачу отобранных студентов:

153, 154, 155, 155, 156, 157, 158, 159, 160, 163, 164, 165, 166, 167, 167, 169, 170, 171, 171, 172, 173, 173, 175, 175, 178, 179, 182, 183, 186.

Построить интервальный статистический ряд.

- ➤ X рост студента непрерывная с. в.
- Данные ранжированы,

$$n = 30$$
, $x_{\min} = 153$, $x_{\max} = 186$

Пример II

Вычислим количество интервалов:

$$k = 1 + [3.322 \lg 30] = 6$$

▶ Находим длину частичного интервала

$$h = \left[\frac{x_{\text{max}} - x_{\text{min}}}{3.322 \lg n}\right] = \left[\frac{186 - 153}{5}\right] = 6$$

Находим левую границу:

$$x_0 = x_{\min} - \frac{h}{2} = 153 - \frac{6}{2} = 150$$

Строим интервальный ряд:

Xi	[150; 156)	[156; 162)	[162; 168)	[168; 174)	[174; 180)	[180; 186)	Σ
X_i^*	153	159	165	171	177	183	
ni	4	5	6	7	5	3	30
ω_i	0, 13	0, 17	0, 20	0, 23	0, 17	0, 10	1

Д.В. Чупраков

Гистограмма

Определение

Гистограмма частостей — ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы $(x_{i-1}; x_i]$ длиною h, а высоты равны отношению $\frac{\omega_i}{h}$ — плотности частостей.

S=1

Д.В. Чупраков

Пример

Xi	[150; 156)	[156; 162)	[162; 168)	[168; 174)	[174; 180)	[180; 186)	Σ
x_i^*	153	159	165	171	177	183	
n _i	4	5	6	7	5	3	30
ω_i	0.13	0.17	0.20	0.23	0.17	0.10	1
$\frac{\omega_i}{h}$	0.022	0.033	0.038	0, 23	0.028	0.017	

Числовые характеристики

- Средние величины
 - ightharpoonup Среднее выборочное $\bar{x}_{\text{в}} = \sum_{i=1}^{k} \omega_{i} x_{i}$
 - ▶ Мода Мо_в значение с наибольшей частотой.
 - Медиана Мев значение признака, приходящееся на середину вариационного ряда.
- Показатели вариации
 - ightharpoonup Размах вариации называется число $R = x_{\text{max}} x_{\text{min}}$
 - ▶ Среднее линейное отклонение: $\bar{x}_{\scriptscriptstyle B} = \sum_{i=1}^n \omega_i |x_i \bar{x}_{\scriptscriptstyle B}|$
 - ightharpoonup Выборочная дисперсия $s_{\scriptscriptstyle B}^2 = \sum_{i=1}^{\kappa} \omega_i (x_i \bar{x}_{\scriptscriptstyle B})^2$
 - ightharpoonup Среднее квадратическое отклонение $s_{\!\scriptscriptstyle
 m B}=\sqrt{s_{\scriptscriptstyle
 m B}^2}$

Дополнительне характеристики

- ightharpoonup Начальный момент k-порядка: $ilde{v}_k = \sum_{i=1}^k \omega_i x_i^k$
- \blacktriangleright Центральный момент k-порядка: $\tilde{\mu}_k = \sum_{i=1}^{\kappa} \omega_i (x_i \bar{x})^k$
- ► Коэффициент ассимметрии: $\tilde{A} = \frac{\mu_3}{s^3}$ Если $\tilde{A} = 0$ то распределение симметрично.
- Эксцесс: ỹ = ^{µ4}/_{s⁴} 3 показывает насколько крут вариационный ряд по сравнению с нормальным распределением.
 Для нормально распределенной величины эксцесс равен 0.

Чтобы вычислить характеристики выборочного распределения, заданного интервальным рядом берут представителя каждого интервала —— значеине, расположенное в его середине.