Burnside's Lemma

Joel Sleeba University of Houston joelsleeba1@gmail.com

December 8, 2024

Theorem 0.1. Let G be a group, and $G \curvearrowright A$. If we denote the collection of all the orbits of A under the action of G by A/G, and the elements of A which are fixed by a $g \in G$ by A^g , then

$$|A/G| = \frac{1}{|G|} \sum_{g \in G} |A^g|$$

Proof. Notice that

$$\bigcup_{a \in A} G_a \times a = \{(g, a) \in G \times A : g \cdot a = a\} = \bigcup_{g \in G} g \times A^g$$

Thus $\sum_{a\in A} |G_a| = \sum_{g\in G} |A^g|$. Moreover, notice that if ga = b, then $G_b = gG_ag^{-1}$. Thus $|G_a| = |G_b|$ if a and b are in the same orbits. Also, by the orbit-stabilizer theorem, we know that there are $|G:G_a|$ elements in the orbit of a. Thus for each representative r from the distinct orbits of A, we see that

$$\sum_{g \in G} |A^g| = \sum_{r \in A/G} |G_r||G : G_r| = \sum_{r \in A/G} |G| = |G||A/G|$$

Hence the theorem follows.