Sorting, greedy y búsqueda binaria

Sorting (ordenamiento)


```
vector \langle int \rangle a = \{5, 2, 6, 2, 1, 8\};
sort(a.begin(), a.end());
// a queda como {1, 2, 2, 5, 6, 8}
```



```
vector <int> a = {5, 2, 6, 2, 1, 8};
sort(a.begin(), a.end());
// a queda como {1, 2, 2, 5, 6, 8}
```

Complejidad temporal $O(n \log n)$ si |a| = n


```
vector <int> a = {5, 2, 6, 2, 1, 8};
sort(a.begin(), a.end());
// a queda como {1, 2, 2, 5, 6, 8}
```

Complejidad temporal
$$O(n \log n)$$
 si $|a| = n$

¿qué son a.begin() y a.end()?

Función de comparación

Podemos cambiar la **función de comparación** para ordenar de la forma que queramos. Por ejemplo, para ordenar de mayor a menor:

```
bool es_mayor(int a, int b){
   // La función de comparación debe retornar true
   // cuando "a" va antes que "b" en nuestro ordenamiento
   return a > b;
}
```

```
sort(a.begin(), a.end(), es_mayor);
```

La librería estándar trae greater<T> que funciona como es_mayor

```
sort(a.begin(), a.end(), greater<int>());
```

Función de comparación

La librería estándar trae greater<T> que funciona como es_mayor

```
sort(a.begin(), a.end(), greater<int>());
```

También podemos usar funciones anónimas o lambdas:

```
sort(a.begin(), a.end(), [](int a, int b){
  return a > b;
});
```

Algoritmos greedy

Programando eventos

Dadas n películas en un cine con sus tiempos de inicio y fin, encuentra un horario que permita ver la mayor cantidad de películas:

- Solo se puede ver una a la vez.
- No se puede ver una película parcialmente.

película	tiempo inicio	tiempo fin
\overline{A}	1	3
B	2	5
C	3	9
D	6	8

Idea greedy: los escogemos del más pequeño al más grande

Idea greedy: los escogemos del más pequeño al más grande

Idea greedy: los escogemos del más pequeño al más grande

Tampoco funciona 😌 😌

A

B

C

Tampoco funciona 😌 😌

A

B

C

Funciona **siempre**

• Toma siempre la "mejor" decisión **local**, con la esperanza de construir una solución óptima **global**.

- Toma siempre la "mejor" decisión **local**, con la esperanza de construir una solución óptima **global**.
- No es un algoritmo específico, si no una estrategia o forma de pensar.

- Toma siempre la "mejor" decisión **local**, con la esperanza de construir una solución óptima **global**.
- No es un algoritmo específico, si no una estrategia o forma de pensar.
- Son peligrosos, porque es fácil convencerse de que funciona cuando no.

- Toma siempre la "mejor" decisión **local**, con la esperanza de construir una solución óptima **global**.
- No es un algoritmo específico, si no una estrategia o forma de pensar.
- Son peligrosos, porque es fácil convencerse de que funciona cuando no.
- Experiencia, intuición, jugársela

Tenemos n dragones y m caballeros. Los dragones tienen fuerzas $a_1,a_2,...,a_n$ y los caballeros tienen fuerzas $b_1,b_2,...,b_m$. Un caballero puede pelear con un solo dragón y le gana si tiene igual o más fuerza.

¿Escogiendo las peleas, es posible derrotar a todos los dragones?

Tenemos n dragones y m caballeros. Los dragones tienen fuerzas $a_1,a_2,...,a_n$ y los caballeros tienen fuerzas $b_1,b_2,...,b_m$. Un caballero puede pelear con un solo dragón y le gana si tiene igual o más fuerza.

¿Escogiendo las peleas, es posible derrotar a todos los dragones?

Entrada

Salida

2 3

5 4

7 8 4

YES

Tenemos n dragones y m caballeros. Los dragones tienen fuerzas $a_1, a_2, ..., a_n$ y los caballeros tienen fuerzas $b_1, b_2, ..., b_m$. Un caballero puede pelear con un solo dragón y le gana si tiene igual o más fuerza.

¿Escogiendo las peleas, es posible derrotar a todos los dragones?

Salida Entrada 2 1

5 5

10

NO

Tenemos dos secuencias a y b de n bits. Queremos convertir a en b usando la siguiente operación:

• Escoger un substring de a e invertir todos los bits en él.

¿Cuál es la menor cantidad de operaciones para convertir a en b?

Tenemos dos secuencias a y b de n bits. Queremos convertir a en b usando la siguiente operación:

• Escoger un substring de a e invertir todos los bits en él.

¿Cuál es la menor cantidad de operaciones para convertir a en b?

Búsqueda binaria

Buscar un número en un arreglo ordenado

Buscamos el 2 en este arreglo **ordenado**

-5	0	1	2	3	3	5	5	7	9	10	15	
----	---	---	---	---	---	---	---	---	---	----	----	--

El algoritmo

• Inicializamos nuestro espacio de búsqueda [l, r].

El algoritmo

- Inicializamos nuestro espacio de búsqueda [l, r].
- En cada iteración, consultamos el elemento al medio del espacio de búsqueda $\lfloor \frac{l+r}{2} \rfloor$ y descartamos una de las mitades, achicando nuestro espacio de búsqueda.

El algoritmo

- Inicializamos nuestro espacio de búsqueda [l, r].
- En cada iteración, consultamos el elemento al medio del espacio de búsqueda $\lfloor \frac{l+r}{2} \rfloor$ y descartamos una de las mitades, achicando nuestro espacio de búsqueda.
- Cantidad de iteraciones hasta que nuestro espacio de búsqueda tenga tamaño 1:

- Inicializamos nuestro espacio de búsqueda [l, r].
- En cada iteración, consultamos el elemento al medio del espacio de búsqueda $\lfloor \frac{l+r}{2} \rfloor$ y descartamos una de las mitades, achicando nuestro espacio de búsqueda.
- Cantidad de iteraciones hasta que nuestro espacio de búsqueda tenga tamaño 1:

 $O(\log n)$

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTTFFFFFFF

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTT

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTTT es monótona

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTTT es monótona

FFFFFFFFFFFFFFF

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTTT es monótona

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTTT es monótona

FFFFTTTTTFFFFFFF

Para generalizarla, necesitamos dos conceptos:

Función binaria: Es una función f que retorna true o false.

Función monótona: Una función binaria es *monótona* si toma un valor hasta cierto punto en donde cambia al otro valor y se mantiene en ese otro valor.

TTTTTTTTTFFFFFFF es monótona

FFTTTTTTTTTT es monótona

FFFFTTTTTFFFFFFF no es monótona

Buscamos el 2 en este arreglo **ordenado**

-5	0	1	2	3	3	5	5	7	9	10	15

Buscamos el 2 en este arreglo **ordenado**

-5	0	1 2	3	3	5	5	7	9	10	15
----	---	-----	---	---	---	---	---	---	----	----

Función binaria:

Buscamos el 2 en este arreglo ordenado

-5	0	1 2	3	3	5	5	7	9	10	15
----	---	-----	---	---	---	---	---	---	----	----

Función binaria: $f(x) = (x \ge 2)$

Buscamos el 2 en este arreglo **ordenado**

-5 0 1 2	3 3	5 5 7	7 9 10 15
----------	-----	-------	-----------

Función binaria: $f(x) = (x \ge 2)$

¿Es monótona?

Buscamos el 2 en este arreglo **ordenado**

-5 0 1 2	3 3	5 5 7	7 9 10 15
----------	-----	-------	-----------

Función binaria:
$$f(x) = (x \ge 2)$$

¿Es monótona? Sí, porque el arreglo está ordenado

Buscamos el 2 en este arreglo ordenado

Función binaria:
$$f(x) = (x \ge 2)$$

¿Es monótona? Sí, porque el arreglo está ordenado

Implementación

Dado un entero n calcula

$$\lfloor \sqrt{n} \rfloor$$

Dado un entero n calcula

$$\lfloor \sqrt{n} \rfloor$$

3

Entrada Salida

9

Dado un entero n calcula

$$\lfloor \sqrt{n} \rfloor$$

Entrada Salida

15

Suma de cuadrados

Dado un entero c ($0 \le c \le 2^{31} - 1$) di si existen dos enteros a y b tal que $a^2 + 1$ $b^2 = c$.

Suma de cuadrados

Dado un entero c $(0 \le c \le 2^{31} - 1)$ di si existen dos enteros a y b tal que $a^2 + b^2 = c$.

Entrada

Salida

5

YES

Suma de cuadrados

Dado un entero c $(0 \le c \le 2^{31} - 1)$ di si existen dos enteros a y b tal que $a^2 + b^2 = c$.

Entrada

Salida

3

NO

Fábrica de figuritas

Tienes n impresoras 3D, la i-ésima de ellas tarda a_i segundos en imprimir una figurita. ($1 \le n \le 2 \cdot 10^5$, $1 \le a_i \le 10^9$)

¿Cuánto es el tiempo mínimo requerido para imprimir k figuritas? $(1 \le k \le 10^9)$

Fábrica de figuritas

Tienes n impresoras 3D, la i-ésima de ellas tarda a_i segundos en imprimir una figurita. ($1 \le n \le 2 \cdot 10^5$, $1 \le a_i \le 10^9$)

¿Cuánto es el tiempo mínimo requerido para imprimir k figuritas? $(1 \le k \le 10^9)$

Entrada

n k

a1 a2 a3

Salida

tiempo_minimo

Fábrica de figuritas

Tienes n impresoras 3D, la i-ésima de ellas tarda a_i segundos en imprimir una figurita. ($1 \le n \le 2 \cdot 10^5$, $1 \le a_i \le 10^9$)

¿Cuánto es el tiempo mínimo requerido para imprimir k figuritas? $(1 \le k \le 10^9)$

Entrada

Salida

3 7

3 2 5

8