

The IBM POWER9 Scale Up Processor

Jeff Stuecheli William Starke

POWER Systems, IBM Systems

POWER Processor Technology Roadmap

POWER7 45 nm

Enterprise

- 8 Cores
- SMT4
- eDRAM L3 Cache

POWER7+ 32 nm

Enterprise

- 2.5x Larger L3 cache

2H12

- On-die acceleration
- Zero-power core idle state

POWER8 Family 22nm

Enterprise & Big Data Optimized

- Up to 12 Cores
- SMT8
- CAPI Acceleration
- High Bandwidth GPU Attach

1H14 – 2H16

POWER9 Family 14nm

Built for the Cognitive Era

- Enhanced Core and Chip Architecture Optimized for Emerging Workloads
- Processor Family with Scale-Up and Scale-Out Optimized Silicon
- Premier Platform for Accelerated Computing

2H17 - 2H18+

1H10

© 2018 IBM Corporation

POWER9 Processor – Common Features

New Core Microarchitecture

- Stronger thread performance
- Efficient agile pipeline
- POWER ISA v3.0

Enhanced Cache Hierarchy

- 120MB NUCA L3 architecture
- 12 x 20-way associative regions
- Advanced replacement policies
- Fed by 7 TB/s on-chip bandwidth

Cloud + Virtualization Innovation

- Quality of service assists
- New interrupt architecture
- Workload optimized frequency
- Hardware enforced trusted execution

14nm finFET Semiconductor Process

- Improved device performance and reduced energy
- 17 layer metal stack and eDRAM
- 8.0 billion transistors

Leadership Hardware Acceleration Platform

- Enhanced on-chip acceleration
- Nvidia NVLink 2.0: High bandwidth and advanced new features (25G)
- CAPI 2.0: Coherent accelerator and storage attach (PCIe G4)
- OpenCAPI: Improved latency and bandwidth, open interface (25G)

State of the Art I/O Subsystem

PCle Gen4 – 48 lanes

High Bandwidth Signaling Technology

- 16 Gb/s interface
 - Local SMP
- PowerAXON 25 GT/sec Link interface
 - Accelerator, remote SMP

POWER9 – Dual Memory Subsystems

Scale Out **Direct Attach Memory**

8 Direct DDR4 Ports

- Up to 150 GB/s of sustained bandwidth
- Low latency access
- Commodity packaging form factor
- Adaptive 64B / 128B reads

8 Buffered Channels

- Up to 230GB/s of sustained bandwidth
- Extreme capacity up to 8TB / socket
- Superior RAS with chip kill and lane sparing
- Compatible with POWER8 system memory
- Agnostic interface for alternate memory innovations

PowerAXON → High-speed 25 GT/s Signaling

© 2018 IBM Corporation 5

Scale Out

Direct Attach Memory 2 Socket SMP

Scale Up Buffered Memory 16 Socket SMP

Scale Up Chipset Block Diagram

Four Socket Server Topology

Sixteen Socket Server Topology

Power E980 Server

- ✓ Modular, Scalable POWER9 server
 - 1 to 4 x 5U CEC drawers + 2U Control Unit
- ✓ POWER9 Enterprise processor
- ✓ Up to 192 cores in a single system.
- ✓ Up to 64 TB DDR4 memory
- ✓ Up to 32 PCIe Gen4 slots
- ✓ PowerAXON 25Gb/s ports
 - Used for SMP cabling between nodes - 4x bandwidth improvement
 - Enabled for OpenCAPI accelerators

GPU on PowerAXON

Storage Class Memory on PowerAXON

13

Future Evolution of System Architecture

CPU/Accelerator Bandwidth

System bottleneck

OpenCAPI Memory

- Signaling → AXON @25.6GHz vs DDR4 @ 3200 MHz
 - 4 times the bandwidth per IO
- Idle latency over traditional DDR
 - POWER8/9 Centaur design ~10 ns
 - OpenCAPI target of ~5 ns
- Centaur → One proprietary design
- OpenCAPI → Open

Proposed POWER Processor Technology and I/O Roadmap

Todays talk

	POWER7 Architecture		POWER8 Architecture		POWER9 Architecture			POWER10
	2010 POWER7 8 cores 45nm	2012 POWER7+ 8 cores 32nm	2014 POWER8 12 cores 22nm	2016 POWER8 w/ NVLink 12 cores 22nm	2017 P9 SO 12/24 cores 14nm	2018 P9 SU 12/24 cores 14nm	2019 P9 w/ Adv. I/O 12/24 cores	2020+ P10 TBA cores
	New Micro- Architecture	Enhanced Micro- Architecture	New Micro- Architecture	Enhanced Micro- Architecture With NVLink	New Micro- Architecture Direct attach memory	Enhanced Micro- Architecture Buffered	14nm Enhanced Micro- Architecture	New Micro- Architecture
	New Process Technology	New Process Technology	New Process Technology		New Process Technology	Memory	New Memory Subsystem	New Technology
Sustained Memory Bandwidth	65 GB/s	65 GB/s	210 GB/s	210 GB/s	150 GB/s	210 GB/s	350+ GB/s	435+ GB/s
Standard I/O Interconnect	PCle Gen2	PCle Gen2	PCle Gen3	PCle Gen3	PCIe Gen4 x48	PCIe Gen4 x48	PCIe Gen4 x48	PCle Gen5
Advanced I/O Signaling	N/A	N/A	N/A	20-GT /s 160GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	32 & 50 GT/s
Advanced I/O Architecture	N/A	N/A	CAPI 1.0	CAPI 1.0 , NVLink 1.0	OpenCAPI3.0, NVLink2.0	CAPI 2:0, OpenCAPI3:0, NVLink2:0	OpenCAPI4.0, NVLink3.0	ТВА

Thanks

Questions?