Задачи по топологическому анализу данных

Листок 3

- **Задача 1.** Докажите, что симплициальный комплекс размерности k можно вложить в \mathbb{R}^{2k+1} без самопересечений.
- **Задача 2.** Докажите, что в графе dim Im ∂_1 (= rk D_1) = #вершин #связн.компонент.
- Задача 3. Докажите, что в симплициальном комплексе K выполнено равенство $\beta_1(K) = \# \mathrm{pe6ep} \mathrm{rk} \, D_1 \mathrm{rk} \, D_2$, где D_i матрицы симплициальных дифференциалов (D_1 матрица инцидентности ребер и вершин, а D_2 матрица инцидентности треугольников и ребер).
- **Задача 4.** Докажите, что для симплициальных дифференциалов выполнено $\partial_i \circ \partial_{i+1} = 0$.
- **Задача 5.** Докажите, что для любого симплициального комплекса $\beta_0(K)$ равно числу компонент связности комплекса K.
- **Задача 6.** Докажите, что $\beta_j(K) = \#j$ -мерн.симплексов-rk D_j -rk D_{j+1} , где D_j матрица симплициального дифференциала ∂_j в стандартном базисе из симплексов.
- Задача 7. Предполагая известной гомотопическую инвариантность симплициальных гомологий, вычислите гомологии сферы $S^{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}.$
- **Задача 8.** Докажите, что $P(X \sqcup Y; t) = P(X; t) + P(Y; t)$.

Следующие задачи предполагают программирование. Выберите и решите в Python или Sage любую из них по своему выбору. Коэффициенты берите какие вам больше нравятся. Теоретические решения допускаются, но в этом случае надо написать решения всех трех задач.

- Задача 9. Задайте явно какую-нибудь триангуляцию бутылки Клейна и вычислите все ее гомологии.
- **Задача 10.** Вычислите все пространства гомологий $H_j(K; \mathbb{Z}_2)$ для комплекса K, являющегося 2-остовом 4-мерного симплекса (т.е. K это симплициальный комплекс на множестве вершин $[5] = \{1, 2, 3, 4, 5\}$, состоящий из всех подмножеств мощности ≤ 3).
- Задача 11. Рассмотрим симплициальный комплекс U_3 , множество вершин которого это все ненулевые векторы конечного пространства \mathbb{Z}_2^3 (всего 7 вершин), а симплексы это те подмножества, которые соответствуют линейно независимым векторам. Вычислите $\beta_i(U_3; \mathbb{Z}_2)$.