39.60. IDENTIFY: For circular motion, L = mvr and $a = \frac{v^2}{r}$. Newton's law of gravitation is $F_g = G \frac{mM}{r^2}$,

with $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.

SET UP: The period T is 2.00 h = 7200 s.

EXECUTE: (a) $mvr = n\frac{h}{2\pi}$. $n = \frac{2\pi mvr}{h}$. $v = \frac{2\pi r}{T}$ So

$$n = \frac{(2\pi r)^2 m}{hT} = \frac{(2\pi)^2 (8.06 \times 10^6 \text{ m})^2 (20.0 \text{ kg})}{(6.63 \times 10^{-34} \text{ J. s})(7200 \text{ s})} = 1.08 \times 10^{46}.$$

(b)
$$F = ma$$
 gives $G\frac{mm_E}{r^2} = m\frac{v^2}{r} \cdot \frac{Gm_E}{r} = v^2$. The Bohr postulate says $v = \frac{nh}{2\pi mr}$ so $\frac{Gm_E}{r} = \frac{n^2h^2}{4\pi^2m^2r^2}$

$$r = \left(\frac{h^2}{4\pi^2 G m_{\rm E} m^2}\right) n^2$$
. This is in the form $r = kn^2$, with

$$k = \frac{h^2}{4\pi^2 G m_{\rm E} m^2} = \frac{(6.63 \times 10^{-34} \text{ J.s})^2}{4\pi^2 (6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)(5.97 \times 10^{24} \text{ kg})^2} = 7.0 \times 10^{-86} \text{ m}$$

(c)
$$\Delta r = r_{n+1} - r_n = k([n+1]^2 - n^2) = (2n+1)k = (2[1.08 \times 10^{46}] + 1)(7.0 \times 10^{-86} \text{ m}) = 1.5 \times 10^{-39} \text{ m}$$

EVALUATE: (d) Δr is exceedingly small, so the separation of adjacent orbits is not observable.

- (e) There is no measurable difference between quantized and classical orbits for this satellite; either method of calculation is totally acceptable.
- **39.81.** (a) IDENTIFY and SET UP: $\Delta x \Delta p_x \ge \hbar/2$. Estimate Δx as $\Delta x \approx 5.0 \times 10^{-15}$ m.

EXECUTE: Then the minimum allowed Δp_x is $\Delta p_x \approx \frac{\hbar}{2\Delta x} = \frac{1.055 \times 10^{-34} \text{ J} \cdot \text{s}}{2(5.0 \times 10^{-15} \text{ m})} = 1.1 \times 10^{-20} \text{ kg} \cdot \text{m/s}.$

(b) IDENTIFY and **SET UP:** Assume $p \approx 1.1 \times 10^{-20}$ kg·m/s. Use Eq. (37.39) to calculate E, and then $K = E - mc^2$.

EXECUTE: $E = \sqrt{(mc^2)^2 + (pc)^2}$. $mc^2 = (9.109 \times 10^{-31} \text{ kg})(2.998 \times 10^8 \text{ m/s})^2 = 8.187 \times 10^{-14} \text{ J.}$

$$pc = (1.1 \times 10^{-20} \text{ kg} \cdot \text{m/s})(2.998 \times 10^8 \text{ m/s}) = 3.165 \times 10^{-12} \text{ J}.$$

$$E = \sqrt{(8.187 \times 10^{-14} \text{ J})^2 + (3.165 \times 10^{-12} \text{ J})^2} = 3.166 \times 10^{-12} \text{ J}.$$

$$K = E - mc^2 = 3.166 \times 10^{-12} \text{ J} - 8.187 \times 10^{-14} \text{ J} = 3.084 \times 10^{-12} \text{ J} \times (1 \text{ eV}/1.602 \times 10^{-19} \text{ J}) = 19 \text{ MeV}.$$

(c) IDENTIFY and SET UP: The Coulomb potential energy for a pair of point charges is given by Eq. (23.9). The proton has charge +e and the electron has charge -e.

EXECUTE:
$$U = -\frac{ke^2}{r} = -\frac{(8.988 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(1.602 \times 10^{-19} \text{ C})^2}{5.0 \times 10^{-15} \text{ m}} = -4.6 \times 10^{-14} \text{ J} = -0.29 \text{ MeV}.$$

EVALUATE: The kinetic energy of the electron required by the uncertainty principle would be much larger than the magnitude of the negative Coulomb potential energy. The total energy of the electron would be large and positive and the electron could not be bound within the nucleus.