## МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Н.Э.БАУМАНА

Голубев А.Г., Калугин В.Т., Луценко А.Ю., Столярова Е.Г.

# ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПОГРАНИЧНОГО СЛОЯ НА ПЛОСКОЙ ПЛАСТИНЕ

**Цель работы**: экспериментально определить профиль скорости и толщину пограничного слоя на плоской пластине, обтекаемой дозвуковым потоком, рассчитать толщины вытеснения и потери импульса, а также коэффициенты трения на поверхности пластины; провести сравнительный анализ экспериментальных данных с результатами теоретических расчетов.

#### **ВВЕДЕНИЕ**

Движение реального газа существенным образом отличается от течения идеальной среды наличием вязкостных сил (сил внутреннего трения), обусловленных перераспределением количества движения и возникающих как реакции газа на изменение его формы, происходящее в процессе движения. Величина этих сил зависит от кинематических условий процесса и может меняться в широких пределах в зависимости от рода среды и ее термодинамического состояния (в основном, температуры) [1].

Непрерывное изменение скорости сохраняется вплоть до обтекаемой поверхности, причем частицы среды, непосредственно примыкающие к ней, неподвижны, т.е. на обтекаемой поверхности обращаются в ноль не только нормальная (условия непроницаемости поверхности), но и тангенциальная составляющая скорости (так называемое условие прилипания вязкой среды). По мере удаления от поверхности тела скорость непрерывно возрастает от значения, равного нулю, до значений, соответствующих представлению о свободно двигающемся газе. Следует отметить, что скорость увеличивается весьма интенсивно и уже на небольшом расстоянии от поверхности достигает своего конечного значения. В этой области, области резкого изменения скорости, существенное влияние на течение оказывают вязкостные силы.

Согласно закону Ньютона, напряжение трения в вязкой среде (например, для ламинарного режима течения)

$$\tau = \mu \frac{\partial V_x}{\partial y}$$
,

где  $\mu$  - динамическая вязкость среды;  ${\partial V_x}/{\partial y}$  - градиент продольной скорости в направлении, перпендикулярном рассматриваемой площадке.

Следовательно, при резком изменении скорости в направлении, нормальном к обтекаемой поверхности, т.е. при больших значениях  $\frac{\partial V_x}{\partial y'}$  могут возникнуть значительные силы трения даже в газах, обладающих малой вязкостью.

Если сопоставить реальную картину течения с ее идеализированной схемой, то можно заметить, что различия между ними, обусловленные особенностями представления о невязкой среде, сосредоточены в очень узкой (при больших числах Рейнольдса) области, непосредственно прилегающей к поверхности обтекаемого тела. Вне этой области идеализация свойств газа не вызывает искажений действительных условий процесса, и упрощенная схема течения находится в хорошем соответствии со своим сложным прообразом.

В соответствии с изложенным, вся область течения рассматривается как совокупность некоторого пограничного слоя и внешнего потока (рис. 1).



Рис. 1. Схема пограничного слоя

I - пограничный слой; II - внешнее течение;

III - граница пограничного слоя; IV - обтекаемая поверхность

Пограничным слоем называют зону течения вблизи поверхности тела, которая характеризуется высокой степенью неоднородности параметров потока (в частности, скорости), а следовательно, значительной интенсивностью вязкостных сил. В пределах этой зоны инерционные и вязкостные силы должны рассматриваться как величины одного порядка.

При исследовании течения газа в пограничном слое используется следующая система координат: ось Ох направлена вдоль поверхности тела, ось Оу — по нормали к этой поверхности. Толщина пограничного слоя δ измеряется по нормали к обтекаемой поверхности и представляет собой расстояние от стенки до границы пограничного слоя.

Внешний поток — это остальная область течения (рис. 1), в пределах которого можно пренебречь вязкостными силами (вследствие малости  $\frac{\partial V_x}{\partial y}$ ) и воспользоваться при определении параметров потока в этой области системой уравнений идеальной среды.

В пределах пограничного слоя по мере удаления от поверхности влияние внутреннего трения ослабевает, соответственно изменяется и распределение скорости и совершается плавный переход к условиям, характерным для внешнего потока.

Задача по исследованию обтекания тела сводится к рассмотрению двух самостоятельных задач (о движении реальной среды в пограничном слое и идеальной — во внешнем потоке), которые объединяются в одно целое тем, что полученные решения должны быть согласованы таким образом, чтобы на границе пограничного слоя они плавно переходили одно в другое.

Отметим, что движение во внешнем потоке исследуется с использованием упрощенной системы уравнений, не содержащих вязкостных сил. Полные уравнения привлекаются лишь для исследования

течения газа в пограничном слое, т.е. в пределах области малой протяженности, что является основой для существенных упрощений.

#### 1. Уравнения пограничного слоя

Рассмотрим плоское течение несжимаемой среды вдоль поверхности малой кривизны. В этом случае система уравнений движения и неразрывности имеет следующий вид:

$$\frac{\partial V_{x}}{\partial t} + V_{x} \frac{\partial V_{x}}{\partial x} + V_{y} \frac{\partial V_{x}}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left( \frac{\partial^{2} V_{x}}{\partial x^{2}} + \frac{\partial^{2} V_{x}}{\partial y^{2}} \right), 
\frac{\partial V_{y}}{\partial t} + V_{x} \frac{\partial V_{y}}{\partial x} + V_{y} \frac{\partial V_{y}}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left( \frac{\partial^{2} V_{y}}{\partial x^{2}} + \frac{\partial^{2} V_{y}}{\partial y^{2}} \right), 
\frac{\partial V_{x}}{\partial x} + \frac{\partial V_{y}}{\partial y} = 0.$$
(1)

В дальнейшем будем оценивать порядки величин членов, входящих в уравнения (1), поэтому целесообразно привести эти уравнения к безразмерной форме, так как в безразмерном представлении возможно количественное сопоставление различных величин вне зависимости от их физической природы.

Масштабы отнесения координат и скоростей для приведения их к безразмерному виду заданы условиями задачи в виде характерного размера L и скорости невозмущенного потока  $V_{\infty}$ . Для времени и давления характерными величинами являются соответственно комплексы  $L/V_{\infty}$ ,  $\rho V_{\infty}^2$ ,

имеющие эквивалентные рассматриваемым величинам размерности.

Итак, безразмерные переменные представляются в виде

$$x'=x'/L$$
;  $y'=y'/L$ ;  $V_x'=V_x/V_{\infty}$ ;  $V_y'=V_x/V_{\infty}$ ;

$$t = t / (L/V_{\infty}); p' = p / (\rho V_{\infty}^2).$$

Подставим в уравнения выражения для переменных и будем оценивать порядок их величин на основании следующих правил.

Если изменение некоторой переменной x ограничено интервалом  $(0,x_0)$ , то говорят, что переменная x определена как величина порядка  $x_0$ , что записывается в виде  $O(x)=x_0$ , где O (латинское ordo – порядок) – символ порядка значения данной величины.

Порядок произвольной величины определяется следующим образом:

$$O\left(\frac{d^m y}{dx^m}\right) = \frac{y_0}{x_0^m}.$$

После проведения оценки порядка каждого члена уравнений движения и неразрывности и сравнения их порядков можно сделать следующие В пределах пограничного выводы: слоя продольные протяженности и скорости представляют собой величины, существенно большие поперечных, и течение в пограничном слое с хорошим приближением воспроизводится движением, определяемым составляющей скорости  $V_{x}$ ; толщина пограничного слоя является величиной малой по сравнению с размерами тела только в случае больших чисел Рейнольдса; в пограничного слоя распределение статического пределах подчиняется следующей зависимости  $\frac{\partial p}{\partial y} = 0$ , что указывает на то, что в пределах любого сечения пограничного слоя давление постоянно и является внешний поток. При этом внешнее течение можно описывать функцией лишь продольной координаты x и времени t, т.е. p = f(x, t).

В окончательном виде полученную систему уравнений динамического пограничного слоя можно записать в следующем виде:

$$\frac{\partial V_x}{\partial t} + V_x \frac{\partial V_x}{\partial x} + V_y \frac{\partial V_x}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 V_x}{\partial y^2};$$

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0.$$
(2)

Система уравнений (2) содержит три неизвестных величины  $(V_{x,},V_{y},p)$  и является незамкнутой. Эта неопределенность устраняется следующим образом. Поскольку толщина пограничного слоя очень мала и смещение линий тока, происходящее вследствие вязкости среды, в направлении, перпендикулярном обтекаемой поверхности, весьма незначительно, можно считать в большинстве случаев справедливой гипотезу об отсутствии обратного влияния пограничного слоя на внешний поток. При этом внешнее течение можно отожествлять с движением идеальной среды вдоль рассматриваемой поверхности, что позволяет находить параметры невязкого потока на стенке (y=0), которые принимаются в дальнейшем равными параметрам на границе пограничного слоя. Следовательно, давление можно считать известной функцией, что допустимо лишь при отсутствии обратного влияния пограничного слоя.

Давление р оказывается связанным простой зависимостью со скоростью  $V_{\delta}$  на границе пограничного слоя, т.е. со скоростью невязкого потока. Действительно, записав первое уравнение системы (2) для условий идеальной среды, найдем:

$$\frac{\partial V_{\delta}}{\partial t} + V_{\delta} \frac{\partial V_{\delta}}{\partial x} = -\frac{1}{\rho} \frac{\partial p}{\partial x},$$

где  $V_{\delta}$  скорость среды во внешнем потоке.

В соответствии с этим систему уравнений (2) можно записать в следующем виде:

$$\frac{\partial V_x}{\partial t} + V_x \frac{\partial V_x}{\partial x} + V_y \frac{\partial V_x}{\partial y} = \frac{\partial V_\delta}{\partial t} + V_\delta \frac{\partial V_\delta}{\partial x} + v \frac{\partial^2 V_x}{\partial y^2};$$

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0.$$
(3)

Система уравнений (3) является замкнутой, т.к. содержит лишь две неизвестные величины  $V_x, V_y$ , она должна быть дополнена граничными и начальными условиями.

Граничные условия должны выражать условие «прилипания» жидкости к поверхности, а также удовлетворять требованию плавного перехода продольной составляющей скорости  $V_x$  в скорость внешнего потока, т.е

$$V_x = V_y = 0$$
 при  $y = 0$ ;  $V_x \to V_\delta$  при  $y \to \infty$ . (4)

Начальные условия, имеющие смысл только для неустановившихся течений, должны быть заданы в виде распределения скоростей  $V_x, V_y$  в начальный момент. Для стационарных течений система уравнений (3) приводится к виду:

$$V_{x} \frac{\partial V_{x}}{\partial x} + V_{y} \frac{\partial V_{x}}{\partial y} = V_{\delta} \frac{\partial V_{\delta}}{\partial x} + v \frac{\partial^{2} V_{x}}{\partial y^{2}};$$

$$\frac{\partial V_{x}}{\partial x} + \frac{\partial V_{y}}{\partial y} = 0.$$

Интегрирование этой системы с граничными условиями (4) затруднительно, и довести решение до конечного результата удается лишь для некоторых частных случаев распределение скорости во внешнем потоке. В соответствии с этим в теории пограничного слоя широкое распространение получили приближенные методы, основанные на использовании интегральных соотношений.

Следует заметить, что общая теория пограничного слоя включает в себя наряду с учением о движении среды в «чистом» виде (рассмотренный

выше процесс внешнего обмена количеством движения) также учение о теплообмене и массообмене. В зависимости от физической природы процесса различают динамический, тепловой и диффузионный пограничные слои.

#### 2. Интегральное соотношение пограничного слоя

Интегральное соотношение имеет важное практическое значение в приближенной теории пограничного слоя. Для вывода этого соотношения поступим следующим образом.

Выделим в пограничном слое бесконечно малый элемент слоя *ABCD* единичной ширины, ограниченный твердой поверхностью *AD*, внешней границей пограничного слоя *BC* и отрезками *AB* и *CD*, нормальными к обтекаемой поверхности (рис. 2).



Рис. 2 Контрольный объём пограничного слоя

Рассмотрим установившееся течение и в основу вывода положим теорему об изменении количества движения (уравнение движения).

Количество движения среды, вносимое в контрольный объем в единицу времени через элементарную площадку единичной ширины и высотой dy, равно  $\rho V_x^2 dy$ . Следовательно, потоки количества движения, проходящие в единицу времени через грани AB и CD элемента пограничного слоя, определяются соответственно следующими соотношениями:

$$\int_0^\delta \rho V_x^2 dy \text{ in } \int_0^\delta \rho V_x^2 dy + \frac{\partial}{\partial x} \left( \int_0^\delta \rho V_x^2 dy \right) dx.$$

Для вычисления количества движения газа, вносимого в контрольный объем через внешнюю границу пограничного слоя, необходимо предварительно определить его массу, которая поступает в указанный объем через эту границу. Эта масса газа находится как разность потоков массы, проходящей через грани СО и АВ в единицу времени, т.е.

$$\int_0^\delta \rho V_x \, dy + \frac{\partial}{\partial x} \left( \int_0^\delta \rho V_x \, dy \right) dx - \int_0^\delta \rho V_x \, dy = \frac{\partial}{\partial x} \left( \int_0^\delta \rho V_x \, dy \right) dx.$$

В соответствии с этим количество движения, вносимое в элемент пограничного слоя *BC*, определяется выражением

$$V_{\delta} \frac{\partial}{\partial x} \left( \int_{0}^{\delta} \rho V_{x} \, dy \right) dx.$$

Согласно классической механике изменение количества движения газа, протекающего через выделенный элемент пограничного слоя, должно быть равно импульсу сил, действующих по граням этого элемента в направлении оси х.

Эти импульсы сил соответственно для граней AB, BC, CD, AD вычисляются в виде  $p\delta$ ;  $pd\delta$ ;  $p\delta+\left.^{\partial}\right/_{\partial x}(p\delta)dx$ ;  $\tau_{\rm cT}dx$ .

Итак найдем:

$$\int_{0}^{\delta} \rho V_{x}^{2} dy + \frac{\partial}{\partial x} \left( \int_{0}^{\delta} \rho V_{x}^{2} dy \right) dx -$$

$$- \int_{0}^{\delta} \rho V_{x}^{2} dy - V_{\delta} \frac{\partial}{\partial x} \left( \int_{0}^{\delta} \rho V_{x} dy \right) dx =$$

$$= p\delta + \delta d\delta - \left[ p\delta + \frac{\partial}{\partial x} (p\delta) dx \right] - \tau_{\text{CT}} dx$$

или после элементарных преобразований для рассматриваемых условий получаем

$$\frac{d}{dx} \int_0^\delta \rho V_x^2 dy - V_\delta \frac{d}{dx} \int_0^\delta \rho V_x dy = -\tau_{\rm CT} - \delta \frac{dp}{dx}.$$
 (5)

Это и есть одна из форм записи интегрального соотношения импульсов для пограничного слоя.

Для несжимаемого газа (ho = const) соотношение (5) записывается в виде:

$$\frac{d}{dx} \int_0^\delta V_x^2 dy - V_\delta \frac{d}{dx} \int_0^\delta V_x dy = -\frac{\tau_{\text{CT}}}{\rho} - \frac{\delta}{\rho} \frac{dp}{dx}.$$
 (6)

Это уравнение содержит три неизвестные величины ( $\delta$ ;  $\tau_{\rm cr}$ ;  $V_x(y)$ ) и для его решения необходимо привлечь дополнительные соотношения.

#### 3. Условные толщины пограничного слоя

После несложных преобразований интегрального соотношения (5) можно выделить два интеграла:  $\int_0^\delta (
ho_\delta V_\delta - 
ho V_x) dy$ ,  $\int_0^\delta 
ho (V_\delta V_x - V_x^2) dy$ .

Величина  $\int_0^\delta \rho_\delta V_\delta \ dy = \rho_\delta V_\delta \delta$  представляет собой расход газа в единицу времени через сечение пограничного слоя, подсчитанный по параметрам внешнего (невязкого) потока;  $\int_0^\delta (\rho V_x) dy$  характеризует действительный расход газа через то же сечение пограничного слоя  $\delta$ .

Следовательно,  $\int_0^\delta (
ho_\delta V_\delta - 
ho V_x) dy$  представляет собой уменьшение (по сравнению с невязким потоком) расхода газа через сечение пограничного слоя, обусловленное вязкостью среды.

Составим следующее выражение

$$\delta^* = \frac{\int_0^{\delta} (\rho_{\delta} V_{\delta} - \rho V_x) dy}{\rho_{\delta} V_{\delta}} = \int_0^{\delta} \left( 1 - \frac{\rho V_x}{\rho_{\delta} V_{\delta}} \right) dy.$$

Величина  $\delta^*$ , имеющая линейную размерность, называется в соответствии с ее физическим смыслом, *толщиной вытеснения* и представляет собой площадку, через которую в невязком потоке протекает количество среды, равное потере расхода через пограничный слой из-за торможения газа в реальном течении.

Для несжимаемого газа

$$\delta^* = \int_0^{\delta} \left(1 - \frac{V_x}{V_{\delta}}\right) dy.$$

Толщина вытеснения  $\delta^*$  характеризует смещение линий тока в направлении, перпендикулярном обтекаемой поверхности.

Рассмотрим второй представленный интеграл. Аналогично рассуждая, можно установить, что этот интеграл характеризует уменьшение количества движения газа, протекающего через сечение пограничного слоя:

$$\delta^{**} = \frac{\int_0^{\delta} \rho(V_{\delta}V_x - V_x^2) dy}{\rho_{\delta}V_{\delta}^2} = \int_0^{\delta} \frac{\rho V_x}{\rho_{\delta}V_{\delta}} \left(1 - \frac{V_x}{V_{\delta}}\right) dy.$$

Величина  $\delta^{**}$  представляет высоту площадки, через которую в условиях течения идеальной среды в единицу времени переносится количество движения, равное количеству движения, потерянному вследствие торможения среды в пограничном слое. В соответствии с этим  $\delta^{**}$  называется *толщиной потери импульса*. Для несжимаемой среды  $\delta^{**}$  (р = const) получим

$$\delta^{**} = \int_0^\delta \frac{V_x}{V_\delta} \left( 1 - \frac{V_x}{V_\delta} \right) dy.$$

#### 4. Приближенные методы расчета пограничного слоя

Приближенные методы расчета пограничного слоя основаны на использовании интегрального соотношения импульсов. Сущность этих методов состоит в том, что распределение скорости по сечениям пограничного слоя представляется функциями, которые задаются, а не получаются как результат интегрирования дифференциальных уравнений пограничного слоя. Выбор функций обусловлен соответствующими соображениями, порой достаточно тонкими и сложными.

Ламинарный пограничный слой. При течении вдоль плоской пластины профиль скорости и давление не зависят от координаты х ( $^{dp}/_{dx}=0$ );  $^{dV_{\delta}}/_{dx}=0$ ). Примем, что на пластине существует однородный пограничный слой – ламинарный, и он начинается с носка пластины.

Тогда интегральное соотношение выглядит следующим образом:

$$\frac{d}{dx} \int_0^\delta (V_x V_\delta - V_x^2) dy = \frac{\tau_{\text{CT}}}{\rho}.$$
 (7)

Функцию, аппоксимирующую распределение скорости по толщине пограничного слоя, можно представить в виде полинома третьей степени:

$$V_x = a + by + cy^2 + dy^3.$$

Коэффициенты *a, b, c, d* определяются из граничных условий:

1. 
$$y = 0 \rightarrow V_x = V_y = 0;$$

2. 
$$y = 0 \rightarrow \frac{\partial^{2}V_{x}}{\partial y^{2}} = 0; \quad (V_{x} \frac{\partial V_{x}}{\partial x} + V_{y} \frac{\partial V_{x}}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + V_{y} \frac{\partial^{2}V_{x}}{\partial y^{2}}; \quad V_{x} = V_{y} = 0; \quad \frac{\partial p}{\partial x} = 0)$$
3.  $y = \delta \rightarrow \tau_{\text{CT}} = \mu \frac{\partial V_{x}}{\partial y} = 0; \quad \rightarrow \frac{\partial V_{x}}{\partial y} = 0;$ 
4.  $y = \delta \rightarrow V_{x} = V_{\delta}.$ 

Профиль скорости в безразмерном виде имеет следующий вид:

$$\frac{V_x}{V_\delta} = \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta}\right)^3.$$

Решая интегральное соотношение (7), получаем следующие зависимости [1]:

$$\delta^{\scriptscriptstyle \Pi} = 4,64 \; \frac{x}{\sqrt{Re_x}} \; ; \; \; \tau_{\scriptscriptstyle \mathrm{CT}} = \frac{0,323 \; \rho V_\delta^2}{\sqrt{Re_x}} \; ; \; \; c_{f_x}^{\scriptscriptstyle \Pi} = \frac{0,646}{\sqrt{Re_x}} \; ; \; \; c_f^{\scriptscriptstyle \Pi} = \frac{1,3}{\sqrt{Re_L}} \; .$$

(L – характерный линейный размер).

Турбулентный пограничный слой. Считаем, что на пластине, начиная с передней кромки, развивается турбулентный пограничный слой. При расчете параметров турбулентного пограничного слоя может быть использован степенной закон распределения скорости по толщине слоя:

$$\frac{V_x}{V_\delta} = \left(\frac{y}{\delta}\right)^{\frac{1}{k}},$$

где  $\bar{k}=7$ , а связь между  $au_{\rm ct}$ ,  $\delta$ ,  $V_{\infty}$  ( $V_{\delta}$ ) взята из данных о движении жидкости по круглой трубе:

$$\tau_{\rm ct} = 0.0225 \, \rho V_{\delta}^2 \, \left[ \frac{v}{V_{\delta} \delta} \right]^{\frac{1}{4}}.$$

В результате решения интегрального соотношения типа (7) находим:

$$\delta^{\text{\tiny T}} = \frac{0.37x}{\sqrt[5]{Re_x}}; \ \ c_{fx}^{\text{\tiny T}} = \frac{0.0578}{\sqrt[5]{Re_x}}; \ \ c_f^{\text{\tiny T}} = \frac{0.074}{\sqrt[5]{Re_L}}.$$

Сравнение зависимостей для ламинарного и турбулентных слоев на плоской пластине показывает, что в турбулентном слое:

- эпюра продольных скоростей является более наполненной;
- толщина слоя по длине пластины возрастает интенсивнее;
- сопротивление трения значительно больше, чем в ламинарном.

Смешанный пограничный слой. Приступая к расчету пограничного слоя, необходимо прежде всего проанализировать характер этого слоя на обтекаемой поверхности, который зависит от режима обтекания, определяемого числом Рейнольдса [1]. В носовой части тела образуется ламинарный пограничный слой, затем следует некоторая область перехода ламинарного слоя в турбулентный и, наконец, полностью развитый турбулентный пограничный слой.

Часто при решении практических задач можно исходить из того, что ламинарный пограничный слой отделен от турбулентного областью перехода с бесконечно малыми размерами. Иными словами, можно считать, что переход одной формы течения в другую происходит мгновенно при  $x_{\rm KP} = x_{\rm II}$  (рис. 3).



Рис. 3. Схема перехода ламинарного пограничного слоя в турбулентный:

- 1- ламинарный пограничный слой;
- 2- фиктивный участок турбулентного пограничного слоя;
- 3- турбулентный пограничный слой за точкой перехода

Координата этой точки перехода определяется по *критическому числу Рейнольдса Re*<sub>кр</sub>, которое зависит от многих факторов (числа Маха  $M_{\infty}$ , температурного фактора  $T_{\text{CT}}/T_{\delta}$ , шероховатости поверхности, начальной степени турбулентности потока, градиента давления и т.п.). В приближенных расчетах в случае обтекания плоской пластины при дозвуковых скоростях потока принимают  $Re_{\text{кp}}=4.5\cdot 10^5$ , а при сверхзвуковых -  $Re_{\text{кp}}=(2\dots 5)\cdot 10^6$ .

Расчет смешанного пограничного слоя проводится следующим образом. На участке пластины от передней кромки до точки П (рис. 3) параметры вязкого обтекания (толщина слоя, коэффициент трения и др.) рассчитываются по соотношениям ламинарного пограничного слоя.

Для расчета турбулентного течения, начинающегося за точкой П, нельзя непосредственно применять приведенные ранее зависимости для турбулентного пограничного слоя, так как этой слой начинается не с нулевой

толщины, а с какого-то конечного значения. Эти зависимости можно использовать, если входящую в них координату x отсчитывать от условного начала турбулентного пограничного слоя (точка 0 на рис. 3)).

Согласно одной из схем определения положения точки 0' принимается, что расстояние  $\Delta x=0'\Pi$ , равное длине условной пластины с турбулентным пограничным слоем, должно быть таким, чтобы обеспечить толщину турбулентного пограничного слоя  $\delta_{\mathrm{T}}$  в точке перехода, равную толщине ламинарного слоя  $\delta_{\mathrm{R}}$  в точке с координатой  $x_{\mathrm{KD}}=x_{\mathrm{R}}$ , т.е.

$$\delta_{\pi,\chi_{KD}} = \delta_{T,\Delta\chi}. \tag{8}$$

Толщины пограничных слоев рассчитываются по соответствующим формулам для ламинарного и турбулентного течений.

Таким образом, условие (8) позволяет рассчитать величину  $\Delta x$ , найти положение точки  $O^{'}$  и определить все необходимые параметры турбулентного пограничного слоя.

#### 5. Экспериментальное исследование параметров пограничного слоя

Методика измерений в пограничном слое. Теория движения невязкого газа дает удовлетворительную картину обтекания какой—либо поверхности только в идеальном потоке, расположенном за пределами пограничного слоя, непосредственно примыкающего к этой поверхности, где существенное значение приобретают силы вязкого трения.

На рис. 4 приведена схема такого пограничного слоя на плоской пластине, обтекаемой в продольном направлении. Поскольку изменение скорости пограничного слоя до ее значения во внешнем свободном потоке происходит асимптотически, то определение толщины пограничного слоя δ в известной степени произвольно. Условно за внешнюю границу пограничного

слоя принимают линию, на которой скорость течения отличается от скорости в свободном потоке на 1%.



Рис. 4. Схема эксперимента

Изучение пограничного слоя связано с определением распределения по его толщине и длине продольных скоростей  $V_{\!x\prime}$  а также толщины слоя  $\delta$  , условных толщин вытеснения и потери импульса, соответственно,  $\delta^*$ ,  $\delta^{**}$  и коэффициентов трения. Давление в различных точках сечения пограничного слоя практически постоянно  $\left(\frac{\partial p}{\partial y} = 0\right)$ , и его можно принять равным давлению  $p_{\delta}$  на внешней границе этого слоя, что справедливо при условии, если толщина пограничного слоя мала по сравнению с поперечными размерами обтекаемого тела. Статическое давление  $p_{\delta}$  равно его значению набегающем невозмущенном потоке. При экспериментальных исследованиях пограничного слоя микронасадок полного напора ( трубку Пито) закрепляют на координатнике, снабженном микрометрическим винтом, позволяющим измерять расстояние с точностью до 0,02 мм. Необходимо зафиксировать момент соприкосновения насадка полного давления с поверхностью пластины. Минимальное расстояние от этой

поверхности до точки замера составляет половину поперечного размера приемного отверстия трубки Пито. При измерении в пограничном слое трубку полного напора перемещают при помощи координатника до тех пор, пока она не окажется в свободном потоке, т.е. за пределами пограничного слоя, о чем судят по прекращению изменений показаний микроманометра.

Распределение скорости по толщине пограничного слоя  $V_x = f(y)$  при фиксированном  $x_i$  может быть найдено по измеренному в нем полному давлению  $p_0^{'} = f(y)$ . С этой целью воспользуемся уравнением Бернулли для элементарной струйки несжимаемой среды, из которого скорость  $V_x$  находится, как:

$$V_{x} = \sqrt{2 \cdot \frac{\left(p_{0}^{'} - p_{\infty}\right)}{\rho_{\infty}}}.$$

На основании экспериментальных зависимостей  $V_x = f(y)$  можно определить толщину пограничного слоя  $\delta$ , условные толщины вытеснения и потери импульса  $\delta^*$ ,  $\delta^{**}$ . При этом толщина  $\delta$  находится по эпюре скоростей  $V_x = f(y)$ , на которой отыскивается координата  $y = \delta$ , соответствующей значению  $V_x = 0.99V_{\infty}$ . Условные толщины  $\delta^*$ ,  $\delta^{**}$  определяются по известным формулам путем численного интегрирования:

$$\delta^* = \int_0^\infty \left(1 - \frac{V_x}{V_\delta}\right) dy; \qquad \delta^{**} = \int_0^\infty \frac{V_x}{V_\delta} \cdot \left(1 - \frac{V_x}{V_\delta}\right) dy.$$

*Методика проведения испытаний.* Экспериментальная установка для измерения полного давления в потоке аэродинамической трубы приведена на рис. 5.



Рис 5. Экспериментальная установка с моделью и измерительным оборудованием

- 1 сопло аэродинамической трубы;
- 2 диффузор аэродинамической трубы;
- 3 модель плоской пластины с боковыми шайбами;
- 4 координатник для точного позиционирования измерительных насадков;
  - 5 трубка Пито, установленная на координатнике;
  - 6 чашечный микроманометр.

Над поверхностью плоской пластины установлен насадок полного давления, при помощи которого определяется разность давлений  $(p_0^{'}-p^{\infty})$ . Избыточное давление определяют в соответствии с показаниями дифференциального манометра по формуле:

$$p_0' - p_\infty = k_{\rm T} \Delta h \gamma \sin \beta$$
,

где  $\Delta h$  - показания манометра в текущем сечении; у — удельный вес жидкости, используемой в манометре;  $\beta$  — угол наклона плоскости манометрической трубки;  $k_{\scriptscriptstyle \mathrm{T}}$  - тарировочный коэффициент.

#### 6. Порядок проведения работы

- 1. Ознакомиться со схемой аэродинамической дозвуковой установки и необходимой аппаратурой, предназначенной для проведения работы.
- 2. Установить модель плоской пластины в рабочей части аэродинамической трубы.
- 3. Выбрать сечения  $x_i$  по длине пластины, в которых будут проводиться измерения.
- 4. Расположить насадок полного давления, установленный на координатнике в конкретном сечении  $\mathbf{x}_i$  над поверхностью пластины и

вращением микровинта перемещать его в вертикальном направлении с заданным шагом.

- 5. Для каждого фиксированного положения насадка зарегистрировать соответствующие показания манометра  $\Delta h$ ;
- 6. Рассчитать по формулам значения  $V_x = f(y,x); \; \delta = f(x); \; c_{f_x} = f(x); \; c_f; \; \delta^* = f(x); \; \delta^{**} = f(x)$  и занести результаты в таблицу.
- 7. Построить графические зависимости рассчитанных параметров пограничного слоя от координат у, х.

#### Предлагаемый вариант таблиц.

Таблица 1.

| N | У | $\Delta h$ | $V_{x}$ | $\frac{V_x}{V_\delta}$ | $1 - \frac{V_x}{V_\delta}$ |
|---|---|------------|---------|------------------------|----------------------------|
|   |   |            |         |                        |                            |
|   |   |            |         |                        |                            |
|   |   |            |         |                        |                            |

Таблица 2.

| $x_i$ | δ | $\delta^*$ | $\delta^{**}$ | $c_{f_x}$ |
|-------|---|------------|---------------|-----------|
|       |   |            |               |           |

### Список рекомендованной литературы:

1. Аэродинамика: учеб. пособие / [А.Г. Голубев и др.]; под ред. В.Т.Калугина. – М.: Изд-во МГТУ им. Н.Э.Баумана, 2010. – 687с.