形式语言与自动机理论

正则表达式

王春宇

计算机科学与技术学院 哈尔滨工业大学

正则表达式

- 正则表达式
 - 正则表达式的递归定义
 - 正则表达式示例
- 自动机和正则表达式
- 正则表达式的代数定律

正则表达式

- 有穷自动机
 - 通过机器装置描述正则语言
 - 用计算机编写相应算法, 易于实现
- 正则表达式
 - 通过表达式描述正则语言,代数表示方法,使用方便
 - 应用广泛
 - grep 工具 (Global Regular Expression and Print)
 - Emacs / Vim 文本编辑器
 - lex / flex 词法分析器
 - 各种程序设计语言 Python / Perl / Haskull / ···

语言的运算

设L和M是两个语言,那么

并
$$L\cup M=\{w\mid w\in L\ \c x\ w\in M\}$$

连接 $L\cdot M=\{w\mid w=xy,\ x\in L\ \c L\ y\in M\}$
幂 $L^0=\{\varepsilon\}$
 $L^1=L$
 $L^n=L^{n-1}\cdot L$
克林闭包 $L^*=\bigcup_{i=1}^\infty L^i$

例 1. 若有语言
$$L=\{0,11\}$$
 和 $M=\{\varepsilon,001\}$,那么 $L\cup M=$ $L^0=$ $LM=$ $L^1=$ $ML=$ $L^2=$

$$ML=$$

 $\forall n \geq 1, \quad \emptyset^n =$

四则运算表达式的递归定义: ● 任何数都是四则运算表达式:

都是四则运算表达式。

② 如果 a 和 b 是四则运算表达式, 那么

a+b, a-b, $a \times b$, $a \div b \not\sim (a)$

正则表达式的递归定义

定义

如果 Σ 为字母表, 则 Σ 上的正则表达式递归定义为:

- Ø 是一个正则表达式,表示空语言;
- 2ε 是一个正则表达式,表示语言 $\{\varepsilon\}$;
- **③** $\forall a \in \Sigma$, **a** 是一个正则表达式, 表示语言 $\{a\}$;
- lack 如果正则表达式 f r 和 f s 分别表示语言 R 和 S, 那么

$$\mathbf{r} + \mathbf{s}, \ \mathbf{r}\mathbf{s}, \ \mathbf{r}^* \not \sim (\mathbf{r})$$

都是正则表达式,分别表示语言

 $R \cup S$, $R \cdot S$, $R^* \not\vdash R$.

运算符的优先级

正则表达式中三种运算以及括号的优先级:

- 首先, "括号"优先级最高;
- ❷ 其次, "星"运算: r*;
- ❸ 然后, "连接"运算: rs, r·s;
- f 4 最后, "加"最低: r+s, $r \cup s$;

例3.

$$egin{aligned} \mathbf{1} + \mathbf{0} \mathbf{1}^* &= \mathbf{1} + (\mathbf{0} (\mathbf{1}^*)) \\ &
eq \mathbf{1} + (\mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0}) \mathbf{1}^* \end{aligned}$$

正则表达式示例

例 4.

E	$\mathbf{L}(E)$
$\mathbf{a} + \mathbf{b}$	$\mathbf{L}(\mathbf{a}) \cup \mathbf{L}(\mathbf{b}) = \{a\} \cup \{b\} = \{a, b\}$
bb	$\mathbf{L}(\mathbf{b}) \cdot \mathbf{L}(\mathbf{b}) = \{b\} \cdot \{b\} = \{bb\}$
$(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b})$	$\{a,b\}\{a,b\}=\{aa,ab,ba,bb\}$
$(\mathbf{a}+\mathbf{b})^*(\mathbf{a}+\mathbf{b}\mathbf{b})$	$\{a,b\}^*\{a,bb\} = \{a,b\}^*\{a\} \cup \{a,b\}^*\{bb\} = \{w \in \{a,b\}^* \mid w \ Q \ Q \ a \ g \ bb 结尾.\}$
${f 1} + ({f 01})^*$	$\{1, \varepsilon, 01, 0101, 010101, \dots\}$
$(0+1)^*01(0+1)^*$	$\{x01y\mid x,y\in\{0,1\}^*\}$

例 5. 给出正则表达式 $(aa)^*(bb)^*b$ 定义的语言.

$$\mathbf{L}((\mathbf{a}\mathbf{a})^*(\mathbf{b}\mathbf{b})^*\mathbf{b}) = \mathbf{L}((\mathbf{a}\mathbf{a})^*) \cdot \mathbf{L}((\mathbf{b}\mathbf{b})^*) \cdot \mathbf{L}(\mathbf{b})$$

$$= (\{a\}\{a\})^*(\{b\}\{b\})^*\{b\}$$

$$= \{a^2\}^*\{b^2\}^*\{b\}$$

$$= \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}$$

例 6. Design regular expression for $L=\{w\mid w \text{ consists of 0's and 1's, and the third symbol from the right end is 1.}\}$

$$(0+1)^*1(0+1)(0+1)$$

例 7. Design regular expression for

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no pair of consecutive 0's.} \}$

$$1^*(011^*)^*(0+\varepsilon)$$
 或 $(1+01)^*(0+\varepsilon)$