Démonstration de la proposition 44 — Pour tous $i, j \in [1, n]$, on définit la matrice $E_{i,j}$ comme dans la preuve de la proposition 21. Considérons à présent une matrice

$$A = \left(C_1 \middle| \cdots \middle| C_n \right) = \left(\underbrace{\begin{array}{c} L_1 \\ \hline \\ L_m \end{array}} \right),$$

fixons $i, j \in [1, n]$ et étudions l'effet sur A de la multiplication par $E_{i,j}$. Un simple calcul permet de voir que

$$E_{i,j}A = \begin{pmatrix} \frac{0}{\ddots \ddots} \\ \hline 0 \\ \hline L_j \\ \hline 0 \\ \hline \ddots \\ \hline 0 \end{pmatrix} \leftarrow i^{\text{\`eme}} \text{ position}$$

et que

Ainsi:

• Si $\lambda \in \mathbb{R}$ et $i \neq j$, la matrice

$$(I_n + \lambda E_{i,j})A = A + \lambda E_{i,j}A$$

est la matrice obtenue en ajoutant à la ligne d'indice i de A la ligne λL_j . La multiplication à gauche par $I_n + \lambda E_{i,j}$ est donc l'opération élémentaire de transvection $L_i \leftarrow L_i + \lambda L_j$.

• Si $\lambda \in \mathbb{R}$ et $i \neq j$, la matrice

$$A(I_n + \lambda E_{i,j}) = A + A\lambda E_{i,j}$$

est la matrice obtenue en ajoutant à la colonne j de A la colonne λC_i . La multiplication à droite par $I_n + \lambda E_{i,j}$ est donc l'opération élémentaire de transvection $C_j \leftarrow C_j + \lambda C_i$. La proposition reste vraie si A n'est pas une matrice carrée mais est de taille $m \times n$ (cadre que nous envisagerons dans un chapitre ultérieur); les matrices d'opérations élémentaires sur les lignes de A sont alors de taille $m \times m$ et celles des opérations élémentaires sur ses colonnes sont de taille $n \times n$.

Par exemple, l'opération élémentaire $L_1 \leftarrow L_1 + 3L_2$ sur une matrice de $\mathcal{M}_3(\mathbb{R})$ revient à la multiplier à gauche par

$$\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

La multiplication à droite par cette matrice applique l'opération $C_2 \leftarrow C_2 + 3C_1$.

• La matrice

$$(I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i})A = A - E_{i,i}A - E_{j,j}A + E_{i,j}A + E_{j,i}A$$

est la matrice obtenue en retirant à A ses lignes d'indices i et j et en les remplaçant respectivement par L_j et L_i . La multiplication à gauche par $I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$ est donc l'opération élémentaire de permutation $L_i \leftrightarrow L_j$.

La matrice

$$A(I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}) = A - AE_{i,i} - AE_{j,j} + AE_{i,j} + AE_{j,i}$$

est la matrice obtenue en retirant à A ses colonnes i et j et en les remplaçant respectivement par C_j et C_i . La multiplication à droite par $I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$ est donc l'opération élémentaire de permutation $C_i \leftrightarrow C_j$.

• Si $\lambda \in \mathbb{R}^*$, la matrice

$$(I_n + (\lambda - 1)E_{i,i})A = A + (\lambda - 1)E_{i,i}A$$

est la matrice obtenue en remplaçant la *i*-ième ligne de A par λL_i . La multiplication à gauche par $I_n + (\lambda - 1)E_{i,i}$ est donc l'opération élémentaire de dilatation $L_i \leftarrow \lambda L_i$.

• Si $\lambda \in \mathbb{R}^*$, la matrice

$$A(I_n + (\lambda - 1)E_{i,i}) = A + (\lambda - 1)AE_{i,i}$$

est la matrice obtenue en remplaçant la i-ième colonne de A par λC_i . La multiplication à droite par $I_n + (\lambda - 1)E_{i,i}$ est donc l'opération élémentaire de dilatation $C_i \leftarrow \lambda C_i$.

Il reste à montrer que les matrices correspondant aux opérations élémentaires ainsi définies sont bien inversibles. Pour cela, on remarque d'abord que si $i,j,k,\ell \in [\![1,n]\!]$ alors

$$E_{i,j}E_{k,\ell} = \begin{cases} E_{i,\ell} & \text{si } j = k \\ 0_n & \text{sinon.} \end{cases}$$

Ainsi, si $i \neq j$, la matrice $I_n + \lambda E_{i,j}$, qui est associée à la transvection $L_i \leftarrow L_i + \lambda L_j$, admet pour inverse $I_n - \lambda E_{i,j}$ car

$$(I_n + \lambda E_{i,j})(I_n - \lambda E_{i,j}) = I_n + \lambda E_{i,j}I_n - \lambda E_{i,j}I_n - \lambda^2 E_{i,j}^2 = I_n$$

Par exemple, l'opération élémentaire $L_2 \leftrightarrow L_3$ sur une matrice de $\mathcal{M}_3(\mathbb{R})$ revient à la multiplier à gauche par

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

La multiplication à droite par cette matrice applique l'opération $C_2 \leftrightarrow C_3$.

Par exemple, l'opération élémentaire $L_3 \leftrightarrow 5L_3$ sur une matrice de $\mathcal{M}_3(\mathbb{R})$ revient à la multiplier à gauche par

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

La multiplication à droite par cette matrice applique l'opération $C_3 \leftrightarrow 5C_3$.

puisque $i \neq j$. Ce fait n'est guère étonnant puisque nous avions remarqué avant l'énoncé de la proposition que la transvection $L_i \leftarrow L_i + \lambda L_j$ peut être « annulée » par la transvection réciproque $L_i \leftarrow L_i - \lambda L_j$.

On montre de même que $I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$ est sa propre inverse, et que si $\lambda \neq 0$ alors $I_n + (\lambda - 1)E_{i,i}$ admet $I_n + \left(\frac{1}{\lambda} - 1\right)E_{i,i}$ pour inverse, ce qui clôt la preuve. \Box

La vérification de ces affirmations à l'aide de produits matriciels est laissée au lecteur.