# foundations of data science for everyone

VI: Logistic Regression

AUTHOR AND LECTURER: Farid Qamar

this slide deck: https://slides.com/faridqamar/fdfse\_6



recall:

what is a model?

in the ML context:

a model is a low dimensional representation of a higher dimensionality dataset

## what is a machine learning?

ML: Any model with parameters learned from the data



### what is a machine learning?

ML: Any model with parameters learned from the data

ML models are a parameterized representation of "reality" where the parameters are learned from finite sets (samples) of realizations of that reality (population)



### how do we model?

Choose the model:

a mathematical formula to represent the behavior in the data

parameters

example: line model y = ax + b

### how do we model?

Choose the model:

a mathematical formula to represent the behavior in the data

### **Choose the hyperparameters:**

parameters chosen **before** the learning process, which govern the model and training process

parameters

example: line model y = ax + b

example: the *degree N* of the polynomial  $y = \sum_{i=0}^N c_i x^i$ 

### how do we model?

# **Choose an objective function:**

in order to find the "best" parameters of the model: we need to "optimize" a function.

We need something to be either

**MINIMIZED** or **MAXIMIZED** 



objective function: sum of residual squared (least square fit method)

$$SSE = \sum (y_{i,observed} - y_{i,predicted})^2 \ SSE = \sum (y_{i,observed} - (ax_i + b))^2$$

we want to **minimize** *SSE* as much as possible

### Optimizing the Objective Function

assume a simpler line model y = ax(b = 0) so we only need to find the "best" parameter a



### Optimizing the Objective Function

assume a simpler line model y = ax(b = 0) so we only need to find the "best" parameter a



### Optimizing the Objective Function

assume a simpler line model y = ax(b = 0) so we only need to find the "best" parameter a

Minimum (optimal) SSE

a = 4

ow do we find the

How do we find the minimum if we do not know beforehand how the SSE curve looks like?





# General purpose for ML

- to understand the structure of feature space
- regression: to predict unknown values based on known examples
- classification: to identify unknown classes based on known examples
- feature importance: to understand which features are important for the success of the model

# **Linear Regression**

find the optimal parameters
(slope/coefficients and intercept)
of a linear model that best
combine the features
(independent variables) to
describe the target (dependent
variable)

# **Linear Regression**

find the optimal parameters
(slope/coefficients and intercept)
of a linear model that best
combine the features
(independent variables) to
describe the target (dependent
variable)

**World Bank:** Life expectancy at birth in the US

|    | year | leb       |
|----|------|-----------|
| 0  | 1960 | 69.770732 |
| 1  | 1961 | 70.270732 |
| 2  | 1962 | 70.119512 |
| 3  | 1963 | 69.917073 |
| 4  | 1964 | 70.165854 |
| 5  | 1965 | 70.214634 |
| 6  | 1966 | 70.212195 |
|    |      | •         |
| 54 | 2014 | 78.841463 |
| 55 | 2015 | 78.690244 |
| 56 | 2016 | 78.539024 |
| 57 | 2017 | 78.539024 |
| 58 | 2018 | 78.639024 |
| 59 | 2019 | 78.787805 |

# **Linear Regression**

find the optimal parameters
(slope/coefficients and intercept)
of a linear model that best
combine the features
(independent variables) to
describe the target (dependent
variable)



# **Linear Regression**

find the optimal parameters
(slope/coefficients and intercept)
of a linear model that best
combine the features
(independent variables) to
describe the target (dependent
variable)

line model y = ax + b



# **Linear Regression**

find the optimal parameters
(slope/coefficients and intercept)
of a linear model that best
combine the features
(independent variables) to
describe the target (dependent
variable)

### line model y = ax + b



|    | year | 75+ |
|----|------|-----|
| 0  | 1960 | 0   |
| 1  | 1961 | 0   |
| 2  | 1962 | 0   |
| 3  | 1963 | 0   |
| 4  | 1964 | 0   |
| 5  | 1965 | 0   |
| 6  | 1966 | 0   |
|    | •    |     |
| 54 | 2014 | 1   |
| 55 | 2015 | 1   |
| 56 | 2016 | 1   |
| 57 | 2017 | 1   |
| 58 | 2018 | 1   |
| 59 | 2019 | 1   |
|    |      |     |











try fitting a linear model...



try fitting a linear model...



try fitting a linear model...





$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)

### **Objective Function:**

Log-likelihood  $\log(\mathscr{L}) = \sum (y_i \log(f) + (1-y_i) \log(1-f))$ 

$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)

### **Objective Function:**

Log-likelihood

$$\log(\mathscr{L}) = \sum (y_i \log(f) + (1 - y_i) \log(1 - f))$$



$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)

### **Objective Function:**

Log-likelihood

$$\log(\mathscr{L}) = \sum (y_i \log(f) + (1 - y_i) \log(1 - f))$$



$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)

### **Objective Function:**

Log-likelihood

$$\log(\mathscr{L}) = \sum (y_i \log(f) + (1 - y_i) \log(1 - f))$$



$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)



$$f(x)=rac{1}{1+e^{-z}}$$
 ;  $z=ax+b$ 

interpreted as the probability that the target is True (= 1)





#### **Confusion Matrix**

indicates the model's "confusion" between classification outcomes

smaller off-diagonal elements & larger diagonal elements

=

model more effective at correctly labeling classes



#### **Confusion Matrix**

indicates the model's "confusion" between classification outcomes

smaller off-diagonal elements & larger diagonal elements

model more effective at correctly labeling classes



#### **Confusion Matrix**

indicates the model's "confusion" between classification outcomes

smaller off-diagonal elements & larger diagonal elements

=

model more effective at correctly labeling classes

for example...
model predicting 500 objects:



### True/False Positives/Negatives

#### Classification outcomes:

```
true positives (TP): "+" correctly labeled as "+"
true negatives (TN): "-" correctly labeled as "-"
false positives (FP): "-" incorrectly labeled as "+"
false negatives (FN): "+" incorrectly labeled as "-"
```



#### Accuracy

#### Classification outcomes:

true positives (TP): "+" correctly labeled as "+"

true negatives (TN): "-" correctly labeled as "-"

false positives (FP): "-" incorrectly labeled as "+"

false negatives (FN): "+" incorrectly labeled as "-"





#### **Precision and Recall**

#### Classification outcomes:

```
true positives (TP): "+" correctly labeled as "+"
```

## precision: $\frac{TP}{TP+FP}$

recall: 
$$\frac{TP}{TP+FN}$$



#### **Precision and Recall**

precision: (or specificity)

$$rac{TP}{TP+FP}$$
 Fraction of objects you think are positive that actually are positive

recall: (or sensitivity)

$$rac{TP}{TP{+}FN}$$
 Fraction of positive objects

F1-score:  $\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$ 



https://en.wikipedia.org/wiki/Precision\_and\_recall

Current classifier accuracy: 50%

Precision?

Recall?

Specificity?

Sensitivity?



https://en.wikipedia.org/wiki/Precision\_and\_recall

#### Current classifier accuracy: 50%

Precision = 
$$4/6 = 0.7$$

Recall = 
$$4/8 = 0.5$$

Sensitivity = 0.5



https://en.wikipedia.org/wiki/Precision\_and\_recall



# encoding categorical variables

| spicies | age | weight |
|---------|-----|--------|
| dog     | 7   | 32.3   |
| bird    | 1   | 0.3    |
| cat     | 3   | 8.1    |

| spicies | age | weight |            |
|---------|-----|--------|------------|
| dog     | 7   | 32.3   |            |
| bird    | 1   | 0.3    |            |
| cat     | 3   | 8.1    | continuous |





### numerical encoding

change categorical to (integer) numerical

| spicies | age | weight |  |
|---------|-----|--------|--|
| 1       | 7   | 32.3   |  |
| 2       | 1   | 0.3    |  |
| 3       | 3   | 8.1    |  |

### one-hot encoding

change each category to a binary

| cat | bird | dog | age | weight |
|-----|------|-----|-----|--------|
| 0   | 0    | 1   | 7   | 32.3   |
| 0   | 1    | 0   | 1   | 0.3    |
| 1   | 0    | 0   | 3   | 8.1    |

## implies an order that does not exist

## numerical encoding

change categorical to (integer) numerical

| spicies | age | weight |
|---------|-----|--------|
| 1       | 7   | 32.3   |
| 2       | 1   | 0.3    |
| 3       | 3   | 8.1    |

dog=1, bird=2, cat=3
...dog < bird < cat... ??</pre>

# ignores covariance between features increases the dimensionality

problematic if you are interested in feature importance

#### one-hot encoding

change each category to a binary

| cat | bird | dog | age | weight |
|-----|------|-----|-----|--------|
| 0   | 0    | 1   | 7   | 32.3   |
| 0   | 1    | 0   | 1   | 0.3    |
| 1   | 0    | 0   | 3   | 8.1    |

## implies an order that does not exist

## numerical encoding

change categorical to (integer) numerical

| spicies | age | weight |
|---------|-----|--------|
| 1       | 7   | 32.3   |
| 2       | 1   | 0.3    |
| 3       | 3   | 8.1    |

## Definitely Preferred!

ignores covariance between features

increases the dimensionality problematic if you are interested in feature

atic if you are interested in feat ↑ importance

#### one-hot encoding

change each category to a binary

| cat | bird | dog | age | weight |
|-----|------|-----|-----|--------|
| 0   | 0    | 1   | 7   | 32.3   |
| 0   | 1    | 0   | 1   | 0.3    |
| 1   | 0    | 0   | 3   | 8.1    |

# normalization

COVARIANCE = correlation / variance

| Clicca qui Meteo Italia oggi mercoledì 18 sett | tembre |
|------------------------------------------------|--------|
|------------------------------------------------|--------|

| 02:00 | 100 |     |    | UMIDITĂ(%) | VENTO(KM/H) | RAFFICHE(KM/H) |
|-------|-----|-----|----|------------|-------------|----------------|
|       |     | -   | 21 | 57         | 7)          | 20             |
| 05:00 | 4   | ~   | 20 | 57         | 7)          | 16             |
| 08:00 | 2   | -   | 20 | 61         | (5)         | 14             |
| 11:00 | -   | -   | 23 | 55         | 7,          | 16             |
| 14:00 |     | 50% | 26 | 58         | (7)         | 20             |
| 17:00 | 4   | 50% | 22 | 62         | 1 22        | 50             |
| 20:00 |     | 10% | 18 | 77         | 1 16        | 45             |
| 23:00 | -   | -   | 17 | 75         | 1 12        | (32)           |

Bacheca – Parma domani mercoledì 18 settembre – meteoweek.com

axis 1 -> features

#### US spending on science, space, and technology

correlates with

#### Suicides by hanging, strangulation and suffocation



https://www.tylervigen.com/spurious-correlations

Pearson's correlation (linear correlation)

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$





### **Generic preprocessing... WHY??**

Worldbank Happyness Dataset https://github.com/fedhere/MLPNS\_FBianco/blob/main/clustering/happiness\_solution.ipynb

|   | Country     | Region            | Happiness<br>Score | Standard<br>Error | Economy (GDP per Capita) | Family  | Health (Life<br>Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dy<br>Re |
|---|-------------|-------------------|--------------------|-------------------|--------------------------|---------|-----------------------------|---------|-------------------------------|------------|----------|
| 0 | Switzerland | Western<br>Europe | 7.587              | 0.03411           | 1.39651                  | 1.34951 | 0.94143                     | 0.66557 | 0.41978                       | 0.29678    | 2        |
| 1 | Iceland     | Western<br>Europe | 7.561              | 0.04884           | 1.30232                  | 1.40223 | 0.94784                     | 0.62877 | 0.14145                       | 0.43630    | 2        |
| 2 | Denmark     | Western<br>Europe | 7.527              | 0.03328           | 1.32548                  | 1.36058 | 0.87464                     | 0.64938 | 0.48357                       | 0.34139    | 2.       |



|       | ness15.descri      | De()              |                             |            |                             |            |                                  |            |                      |            |
|-------|--------------------|-------------------|-----------------------------|------------|-----------------------------|------------|----------------------------------|------------|----------------------|------------|
|       | Happiness<br>Score | Standard<br>Error | Economy (GDP per<br>Capita) | Family     | Health (Life<br>Expectancy) | Freedom    | Trust (Government<br>Corruption) | Generosity | Dystopia<br>Residual | yea        |
| count | 160.000000         | 158.000000        | 160.000000                  | 158.000000 | 160.000000                  | 160.000000 | 160.000000                       | 160.000000 | 158.000000           | 160.00000  |
| mean  | 5.365756           | 0.047885          | 0.842979                    | 0.991046   | 0.628037                    | 0.428151   | 0.143023                         | 0.236448   | 2.098977             | 2015.05000 |
| std   | 1.141280           | 0.017146          | 0.402840                    | 0.272369   | 0.246332                    | 0.149803   | 0.119492                         | 0.126605   | 0.553550             | 0.44580    |
| min   | 2.839000           | 0.018480          | 0.000000                    | 0.000000   | 0.000000                    | 0.000000   | 0.000000                         | 0.000000   | 0.328580             | 2015.00000 |
| 25%   | 4.517750           | 0.037268          | 0.539453                    | 0.856823   | <del>0.43</del> 7897        | 0.328630   | 0.061067                         | 0.148800   | 1.759410             | 2015.00000 |
| 50%   | 5.203000           | 0.043940          | 0.901085                    | 1.029510   | 0.695745                    | 0.434635   | 0.107220                         | 0.216130   | 2.095415             | 2015.00000 |
| 75%   | 6.193250           | 0.052300          | 1.155523                    | 1.214405   | 0.809837                    | 0.547057   | 0.179565                         | 0.307547   | 2.462415             | 2015.00000 |
| max   | 7.587000           | 0.136930          | 1.690420                    | 1.402230   | 1.025250                    | 0.669730   | 0.551910                         | 0.795880   | 3.602140             | 2019.00000 |

### **Generic preprocessing... WHY??**

Worldbank Happyness Dataset https://github.com/fedhere/MLPNS\_FBianco/blob/main/clustering/happiness\_solution.ipynb

|   | Country     | Region            | Happiness<br>Score | Standard<br>Error | Economy (GDP per Capita) | Family  | Health (Life<br>Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dy<br>Re |
|---|-------------|-------------------|--------------------|-------------------|--------------------------|---------|-----------------------------|---------|-------------------------------|------------|----------|
| 0 | Switzerland | Western<br>Europe | 7.587              | 0.03411           | 1.39651                  | 1.34951 | 0.94143                     | 0.66557 | 0.41978                       | 0.29678    | 2        |
| 1 | Iceland     | Western<br>Europe | 7.561              | 0.04884           | 1.30232                  | 1.40223 | 0.94784                     | 0.62877 | 0.14145                       | 0.43630    | 2        |
| 2 | Denmark     | Western<br>Europe | 7.527              | 0.03328           | 1.32548                  | 1.36058 | 0.87464                     | 0.64938 | 0.48357                       | 0.34139    | 2.       |



|       | ppiness15.describe() |                   |                             |            |                             |            |                                  |            |                      |            |  |  |  |  |
|-------|----------------------|-------------------|-----------------------------|------------|-----------------------------|------------|----------------------------------|------------|----------------------|------------|--|--|--|--|
|       | Happiness<br>Score   | Standard<br>Error | Economy (GDP per<br>Capita) | Family     | Health (Life<br>Expectancy) | Freedom    | Trust (Government<br>Corruption) | Generosity | Dystopia<br>Residual | yea        |  |  |  |  |
| count | 160.000000           | 158.000000        | 160.000000                  | 158.000000 | 160.000000                  | 160.000000 | 160.000000                       | 160.000000 | 158.000000           | 160.00000  |  |  |  |  |
| mean  | 5.365756             | 0.047885          | 0.842979                    | 0.991046   | 0.628037                    | 0.428151   | 0.143023                         | 0.236448   | 2.098977             | 2015.05000 |  |  |  |  |
| std   | 1.141280             | 0.017146          | 0.402840                    | 0.272369   | 0.246332                    | 0.149803   | 0.119492                         | 0.126605   | 0.553550             | 0.44580    |  |  |  |  |
| min   | 2.839000             | 0.018480          | 0.000000                    | 0.000000   | 0.000000                    | 0.000000   | 9.996000                         | 0.000000   | 0.328580             | 2015.00000 |  |  |  |  |
| 25%   | 4.517750             | 0.037268          | 0.539453                    | 0.856823   | <del>0.43</del> 7897        | 0.328630   | 0.061067                         | 0.148800   | 1.759410             | 2015.00000 |  |  |  |  |
| 50%   | 5.203000             | 0.043940          | 0.901085                    | 1.029510   | 0.695745                    | 0.434635   | 0.107220                         | 0.216130   | 2.095415             | 2015.00000 |  |  |  |  |
| 75%   | 6.193250             | 0.052300          | 1.155523                    | 1.214405   | 0.809837                    | 0.547057   | 0.179565                         | 0.307547   | 2.462415             | 2015.00000 |  |  |  |  |
| max   | 7.587000             | 0.136930          | 1.690420                    | 1.402230   | 1.025250                    | 0.669730   | 0.551910                         | 0.795880   | 3.602140             | 2019.00000 |  |  |  |  |

## unsupervised vs supervised learning

#### **Unsupervised learning**

- understanding structure
- anomaly detection
- dimensionality reduction



Clustering

#### Supervised learning

- classification
- prediction
- feature selection



## **Generic preprocessing**

Data can have covariance (and it almost always does!)

ORIGINAL DATA



STANDARDIZED DATA

Data that is not correlated appear as a sphere in the Ndimensional feature space

## **Generic preprocessing... WHY??**

#### Worldbank Happyness Dataset

|   | Country     | Region            | Happiness<br>Score | Standard<br>Error | Economy (GDP per Capita) | Family  | Health (Life<br>Expectancy) | Freedom | Trust (Government Corruption) | Generosity | [ |
|---|-------------|-------------------|--------------------|-------------------|--------------------------|---------|-----------------------------|---------|-------------------------------|------------|---|
| 0 | Switzerland | Western<br>Europe | 7.587              | 0.03411           | 1.39651                  | 1.34951 | 0.94143                     | 0.66557 | 0.41978                       | 0.29678    |   |
| 1 | Iceland     | Western<br>Europe | 7.561              | 0.04884           | 1.30232                  | 1.40223 | 0.94784                     | 0.62877 | 0.14145                       | 0.43630    |   |
| 2 | Denmark     | Western<br>Europe | 7.527              | 0.03328           | 1.32548                  | 1.36058 | 0.87464                     | 0.64938 | 0.48357                       | 0.34139    |   |





## **Generic preprocessing... WHY??**

#### Worldbank Happyness Dataset

|   | Country     | Region            | Happiness<br>Score | Standard<br>Error | Economy (GDP per Capita) | Family  | Health (Life<br>Expectancy) | Freedom | Trust (Government Corruption) | Generosity | [ |
|---|-------------|-------------------|--------------------|-------------------|--------------------------|---------|-----------------------------|---------|-------------------------------|------------|---|
| 0 | Switzerland | Western<br>Europe | 7.587              | 0.03411           | 1.39651                  | 1.34951 | 0.94143                     | 0.66557 | 0.41978                       | 0.29678    |   |
| 1 | Iceland     | Western<br>Europe | 7.561              | 0.04884           | 1.30232                  | 1.40223 | 0.94784                     | 0.62877 | 0.14145                       | 0.43630    |   |
| 2 | Denmark     | Western<br>Europe | 7.527              | 0.03328           | 1.32548                  | 1.36058 | 0.87464                     | 0.64938 | 0.48357                       | 0.34139    |   |





## **Generic preprocessing**

Data can have covariance (and it almost always does!)

ORIGINAL DATA



STANDARDIZED DATA

Data that is not correlated appear as a sphere in the Ndimensional feature space

## Generic preprocessing: most commo will just correct for the spread and c

for each feature: divide by standard deviation and subtract mean

```
X = preprocessing.scale(X, axis=0)
Last executed 2018-12-12 09:35:39 in 46ms
 X.mean(axis=0)
Last executed 2018-12-12 09:35:40 in 13ms
array([ 3.85590369e-16, -6.93196168e-17, -5.90549813e-16, -5.95882091e-16,
       -8.49165306e-16, -1.57568821e-15, -8.00508267e-16,
                                                             5.55890004e-16,
       -5.16564452e-16, 1.09378357e-15, 3.46598084e-16, 2.31954102e-16,
        2.78611537e-16, -2.51283611e-16, 8.66495210e-18, 3.03939858e-16,
       -3.66594127e-17, -9.27149875e-16, -6.39873386e-16,
                                                             2.93275302e-17,
        9.19817992e-17, 6.33208038e-18, -1.99960433e-17,
                                                             9.55144336e-16,
       -2.20623011e-16, 6.93196168e-17, -9.46479383e-17, 2.26621824e-16,
        6.93196168e-17, 2.32953905e-161)
 X.std(axis=0)
Last executed 2018-12-12 09:36:28 in 19ms
```

# whitening

The term "whitening" refers to white noise, i.e. noise with the same power at all frequencies"

PLUTO Manhattan data (42,000 x 15) correlation matrix

$$\Sigma = \begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}.$$

axis 1 -> features

PLUTO Manhattan data (42,000 x 15) correlation matrix

A covariance matrix is diagonal if the data has no correlation

## Full On Whitening

: remove covariance by dia transforming the data with diagonalizes the covaria

## find the matrix W that diagonalized $\Sigma$

```
from zca import ZCA
import numpy as np
X = np.random.random((10000, 15)) # data
array
trf = ZCA().fit(X)
X whitened = trf.transform(X)
X reconstructed =
trf.inverse transform(X whitened)
```

## Generic preprocessing: other common

for image processing (e.g. segmentation) often you need to mimmax preprocess

```
from sklearn import preprocessing

Nopscaled = preprocessing.minmax_scale(image_pixels.astype(float), axis=1)
```



Xopscaled.reshape(op.shape)[200, 700]



#### https://www.nature.com/articles/nmeth.3812.pdf

#### POINTS OF SIGNIFICANCE

# Analyzing outliers: influential or nuisance?

Some outliers influence the regression fit more than others.



Figure 2 | The leverage, residual and Cook's distance of an observation are used to assess the robustness of the fit. (a) The leverage of an observation tells us about its potential to influence the fit and increases as the square

# https://github.com/fedhere/FDSFE\_FBianco/blob/main/HW5/Multiple\_Linear\_Regression.ipynb







assume a simpler line model y = ax(b = 0) so we only need to find the "best" parameter a

1. choose initial value for a



- 1. choose initial value for *a*
- 2. calculate the SSE



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE



- 1. choose initial value for  $\alpha$
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



- 1. choose initial value for  $\alpha$
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



- 1. choose initial value for *a*
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



for a line model y = ax + bwe need to find the "best" parameters a and b

- 1. choose initial value for a & b
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat



for a line model y = ax + bwe need to find the "best" parameters a and b

- 1. choose initial value for a & b
- 2. calculate the SSE
- 3. calculate best direction to go to decrease the SSE
- 4. step in that direction
- 5. go back to step 2 and repeat





#### Things to consider:

- local vs. global minima



- local vs. global minima
- initialization: choosing starting spot?



- local vs. global minima
- initialization: choosing starting spot?
- learning rate: how far to step?



- local vs. global minima
- initialization: choosing starting spot?
- learning rate: how far to step?
- stopping criterion: when to stop?



#### Things to consider:

- local vs. global minima
- initialization: choosing starting spot?
- learning rate: how far to step?
- stopping criterion: when to stop?



<u>Stochastic</u> Gradient Descent (SGD): use a different (random) sub-sample of the data at each iteration





|    | year | leb                    |  |  |
|----|------|------------------------|--|--|
| 0  | 1960 | 69.770732              |  |  |
| 1  | 1961 | 70.270732<br>70.119512 |  |  |
| 2  | 1962 |                        |  |  |
| 3  | 1963 | 69.917073              |  |  |
| 4  | 1964 | 70.165854              |  |  |
| 5  | 1965 | 70.214634              |  |  |
| 6  | 1966 | 70.212195              |  |  |
|    |      | •                      |  |  |
| 54 | 2014 | 78.841463              |  |  |
| 55 | 2015 | 78.690244              |  |  |
| 56 | 2016 | 78.539024              |  |  |
| 57 | 2017 | 78.539024              |  |  |
| 58 | 2018 | 78.639024              |  |  |
| 59 | 2019 | 78.787805              |  |  |



| year | leb                                                                                          |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|
| 1960 | 69.770732                                                                                    |  |  |
| 1961 | 70.270732<br>70.119512                                                                       |  |  |
| 1962 |                                                                                              |  |  |
| 1963 | 69.917073                                                                                    |  |  |
| 1964 | 70.165854                                                                                    |  |  |
| 1965 | 70.214634                                                                                    |  |  |
| 1966 | 70.212195                                                                                    |  |  |
|      | •                                                                                            |  |  |
| 2014 | 78.841463                                                                                    |  |  |
| 2015 | 78.690244                                                                                    |  |  |
| 2016 | 78.539024                                                                                    |  |  |
| 2017 | 78.539024                                                                                    |  |  |
| 2018 | 78.639024                                                                                    |  |  |
| 2019 | 78.787805                                                                                    |  |  |
|      | 1960<br>1961<br>1962<br>1963<br>1964<br>1965<br>1966<br>2014<br>2015<br>2016<br>2017<br>2018 |  |  |



|    | year       | leb       |  |  |
|----|------------|-----------|--|--|
| 0  | 1960       | 69.770732 |  |  |
| 1  | 1961       | 70.270732 |  |  |
| 2  | 1962       | 70.119512 |  |  |
| 3  | 1963       | 69.917073 |  |  |
| 4  | 1964       | 70.165854 |  |  |
| 5  | 1965 70.21 | 70.214634 |  |  |
| 6  | 1966       | 70.212195 |  |  |
|    |            | •         |  |  |
| 54 | 2014       | 78.841463 |  |  |
| 55 | 2015       | 78.690244 |  |  |
| 56 | 2016       | 78.539024 |  |  |
| 57 | 2017       | 78.539024 |  |  |
| 58 | 2018       | 78.639024 |  |  |
| 59 | 2019       | 78.787805 |  |  |



|    | year | leb       |  |  |
|----|------|-----------|--|--|
| 0  | 1960 | 69.770732 |  |  |
| 1  | 1961 | 70.270732 |  |  |
| 2  | 1962 | 70.119512 |  |  |
| 3  | 1963 | 69.917073 |  |  |
| 4  | 1964 | 70.165854 |  |  |
| 5  | 1965 | 70.214634 |  |  |
| 6  | 1966 | 70.212195 |  |  |
|    |      | •         |  |  |
| 54 | 2014 | 78.841463 |  |  |
| 55 | 2015 | 78.690244 |  |  |
| 56 | 2016 | 78.539024 |  |  |
| 57 | 2017 | 78.539024 |  |  |
| 58 | 2018 | 78.639024 |  |  |
| 59 | 2019 | 78.787805 |  |  |



|    | year | leb                    |  |  |
|----|------|------------------------|--|--|
| 0  | 1960 | 69.770732              |  |  |
| 1  | 1961 | 70.270732              |  |  |
| 2  | 1962 | 70.119512              |  |  |
| 3  | 1963 | 69.917073              |  |  |
| 4  | 1964 | 70.165854              |  |  |
| 5  | 1965 | 70.214634              |  |  |
| 6  | 1966 | 70.212195              |  |  |
|    |      | •                      |  |  |
| 54 | 2014 | 78.841463              |  |  |
| 55 | 2015 | 78.690244<br>78.539024 |  |  |
| 56 | 2016 |                        |  |  |
| 57 | 2017 | 78.539024              |  |  |
| 58 | 2018 | 78.639024<br>78.787805 |  |  |
| 59 | 2019 |                        |  |  |



|    | year | leb                    |  |  |
|----|------|------------------------|--|--|
| 0  | 1960 | 69.770732<br>70.270732 |  |  |
| 1  | 1961 |                        |  |  |
| 2  | 1962 | 70.119512              |  |  |
| 3  | 1963 | 69.917073              |  |  |
| 4  | 1964 | 70.165854              |  |  |
| 5  | 1965 | 70.214634              |  |  |
| 6  | 1966 | 70.212195              |  |  |
|    |      | •                      |  |  |
| 54 | 2014 | 78.841463              |  |  |
| 55 | 2015 | 78.690244              |  |  |
| 56 | 2016 | 78.539024              |  |  |
| 57 | 2017 | 78.539024              |  |  |
| 58 | 2018 | 78.639024              |  |  |
| 59 | 2019 | 78.787805              |  |  |



|        | Ī   | features         |           |                              | target             |                       |
|--------|-----|------------------|-----------|------------------------------|--------------------|-----------------------|
| bjects |     | transaction_date | house_age | distance_nearest_MRT_station | convenience_stores | house_price_unit_area |
|        | 0   | 2012.917         | 32.0      | 84.87882                     | 10                 | 37.9                  |
|        | 1   | 2012.917         | 19.5      | 306.59470                    | 9                  | 42.2                  |
|        | 2   | 2013.583         | 13.3      | 561.98450                    | 5                  | 47.3                  |
|        | 3   | 2013.500         | 13.3      | 561.98450                    | 5                  | 54.8                  |
|        | 4   | 2012.833         | 5.0       | 390.56840                    | 5                  | 43.1                  |
|        |     |                  |           |                              |                    |                       |
| 0      | 409 | 2013.000         | 13.7      | 4082.01500                   | 0                  | 15.4                  |
|        | 410 | 2012.667         | 5.6       | 90.45606                     | 9                  | 50.0                  |
|        | 411 | 2013.250         | 18.8      | 390.96960                    | 7                  | 40.6                  |
|        | 412 | 2013.000         | 8.1       | 104.81010                    | 5                  | 52.5                  |
|        | 413 | 2013.500         | 6.5       | 90.45606                     | 9                  | 63.9                  |

1 feature

$$y = ax + b$$

- 1 target
- 2 parameters

- 1 feature
- 1 target
- 2 parameters

- y = ax + b
- $y=\beta_0+\beta_1x_1$

- 1 feature
- y = ax + b

- 1 target
- 2 parameters

 $y=eta_0+eta_1x_1$ 

# Multiple Linear Regression

- *n* features
- 1 target

- 1 feature
- 1 target
- 2 parameters

$$y = ax + b$$

 $y=\beta_0+\beta_1x_1$ 

# Multiple Linear Regression

- *n* features
- 1 target
- *n*+1 parameters
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n$

- 1 feature
- 1 target
- 2 parameters

$$y = ax + b$$

 $y=eta_0+eta_1x_1$ 

# Multiple Linear Regression

- *n* features
- 1 target
- *n*+1 parameters

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n$$

$$y=\sum_{i=0}^n eta_i x_i$$
 ;  $x_0=ec{1}$