Accuracy, repeatability, and reproducibility of *R*₁ in 12 small-animal MRI systems. JC Waterton^{a,b}, CDG Hines^c, PD Hockings^{d,e}, I Laitinen^f, S Ziemian^g, S Campbell^h, M Gottschalkⁱ, C Green^g, M Haase^h, K Hoffmann^f, H-P Juretschke ^{f,1}, S Koehler^j, W Lloyd^b, Y Luo^k, I Mahmutovic Perssonⁱ, JPB O'Connor^b, LE Olssonⁱ, GJM Parker^{a,b}, K Pindoria^h, JE Schneider^l, D Steinmann^f, K Strobel^j, I Teh^l, A Veltien^M, X Zhang^k, G Schütz^g

^aBioxydyn, ^bU. of Manchester, ^cMerck, ^dAntaros, ^eChalmers U. of Technology, ^fSanofi-Aventis, ^gBayer, ^hGSK, ⁱLund U., ^jBruker, ^kAbbvie, ^lU. of Leeds, ^mRadboud U. (¹former) on behalf of the TRISTAN consortium www.imi-tristan.eu

Background: Many translational MR biomarkers derive from measurements of the longitudinal relaxation rate R_1 , but evidence for between-site reproducibility of R_1 in small-animal MRI is lacking.

Objective: To assess R_1 repeatability and multi-site reproducibility in phantoms for preclinical MRI.

Methods: R_1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1-13 days. R_1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation were calculated. Relaxivities were calculated.

Results: Day-to-day repeatability (N=180 regions of interest) was 2.3%. Between-centre reproducibility (N=9 centres) was 1.4%. The relaxivity of aqueous Ni²⁺ in 2% agarose varied between 0.66 s⁻¹mM⁻¹ at 3T and 0.94 s⁻¹mM⁻¹ at 11.7T.

Figures. Left: R_1 measurements (log axis) for each of centres A-L. Each centre made measurements on five 2% agarose phantoms with different Ni²⁺ concentrations. The 30 horizontal lines represent R_1 values calculated from the field-dependent relaxivities. There are two groups of three data points for each phantom at each centre representing, respectively, days 1 and 2, and Rols at three spatial locations. Open symbols: data points with fit error >5%. **Right**: [Ni²⁺] relaxivities in 2% agarose against B₀. Circles: this work. Other symbols: -, parameter c_1 in [1]. +, figure 1 in [2]. ×, figure 4 in [3]. \diamondsuit , figure 2 in [4].

References: [1] Captur G, et al. *J Cardiovasc Magn Reson* 2016;**18**:1–20. [2] Christoffersson J O, et al. *Acta Radiol* 1991;**32**:426–31.[3] Kraft KA, et al. *Magn Reson Med* 1987;**5**:555–62. [4] Howe FA. *Magn Reson Imaging* 1988;**6**:263–70. **Acknowledgements**: funding from the Innovative Medicines Initiatives 2 Joint Undertaking under grant agreement No 116106 (IB4SD-TRISTAN).