Fondamenti di Comunicazioni ed Internet

Lezione 4: correlazione, convoluzione, filtri

Tiziana Cattai email: tiziana.cattai@uniroma1.it

Valore medio di un segnale e di una sequenza

Segnale a durata finita

Il valore medio di un segnale continuo x(t) è calcolato come l'integrale del segnale diviso per la sua durata totale T=b-a:

•
$$\mu_x^I = \frac{1}{T} \int_a^b x(t) dt$$

Definizione analoga per una sequenza:

•
$$\mu_x^I = \frac{1}{N} \sum_{n=0}^{N-1} x_n$$

Segnale a durata infinita

•
$$\mu_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

- Definizione analoga per una sequenza
- $\mu_{x} = \lim_{N \to \infty} \frac{1}{2N} \sum_{-N}^{N} x_{n}$

Energia di un segnale

• Definizione:
$$\mathcal{E}_{\chi} = \int_{-\infty}^{+\infty} |x(t)|^2 dt \ge 0$$
 $\varepsilon_{\chi} = \sum |x_n|^2$

$$\varepsilon_{x} = \sum_{n} |x_{n}|^{2}$$

Segnale di energia Definizione

$$0 < \mathcal{E}_{x} < +\infty$$

Definizione: Segnale impulsivo

$$\int_{-\infty}^{+\infty} |x(t)| dt < +\infty$$

Potenza di un segnale

$$P_{x} = \lim_{\Delta t \to +\infty} \frac{1}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \left| x(t) \right|^{2} dt \ge 0$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N} |x_{n}|^{2}$$

✓ Def: Segnale di potenza $0 < P_x < +\infty$

Esempio: segnale costante x(t) = c

$$P_{x} = \lim_{\Delta t \to +\infty} \frac{1}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \left| c \right|^{2} dt = \left| c \right|^{2} \lim_{\Delta t \to +\infty} \frac{1}{\Delta t} \Delta t = \left| c \right|^{2}$$

Segnale periodico

✓ Potenza di un segnale periodico

$$P_{x} = \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^{2} dt$$

✓ Un segnale periodico è un segnale di potenza

Segnali periodici

Treno di "impulsi" rettangolari:

$$x(t) = \sum_{n=-\infty}^{n=+\infty} rect_{\tau}(t - nT)$$

$$\tau/T \equiv \text{"duty cycle"} \le 1$$

$$P_x$$
?

Segnali periodici

Treno di "impulsi" rettangolari:

$$x(t) = \sum_{n=-\infty}^{n=+\infty} rect_{\tau}(t - nT)$$

$$\tau/T \equiv \text{"duty cycle"} \le 1$$

$$P_{x} = \frac{1}{T} \int_{-T/2}^{T/2} \left[rect_{\tau}(t - nT) \right]^{2} dt = \frac{1}{T} \int_{-\tau/2}^{\tau/2} 1^{2} dt = \frac{1}{T} \left(\frac{\tau}{2} + \frac{\tau}{2} \right) = \frac{\tau}{T}$$

Impulso matematico

✓ E' un segnale di durata brevissima (al limite, zero) e di ampiezza elevatissima (al limite, infinita) con integrale unitario in un intervallo comprendente l'origine unitario

$$\delta(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \operatorname{rect}_{\Delta t}(t)$$

$$\delta(t) = \begin{cases} +\infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

Proprietà dell'impulso matematico

$$\checkmark \int_{t_0 + \varepsilon}^{+\infty} \delta(t) dt = 1 \qquad \text{(l'impulso matematico ha area unitaria)}$$

$$\checkmark \int_{t_0 + \varepsilon}^{+\infty} \delta(t - t_0) dt = 1, \qquad \text{per ogni } \varepsilon > 0$$

$$\checkmark \int_{t_0 - \varepsilon}^{+\infty} x(t) \delta(t - t_0) dt = x(t_0) \qquad \text{(proprietà di campionamento)}$$

Convoluzione: Definizione e calcolo

$$\varphi_n = \sum x_k y_{n-k}$$

- 1. Graficare i due segnali x(.) e y(.) come funzioni di τ ottenendo così $x(\tau)$ ed $y(\tau)$
- 2. Ribaltare il segnale $y(\tau)$ rispetto all'asse delle ordinate ottenendo $y(-\tau)$
- 3. Traslare $y(-\tau)$ della quantità t lungo l'asse τ . Quando t > 0 allora $y(t-\tau)$ va traslato di t verso destra. Quando invece t < 0, $h(-\tau)$ va traslata di t verso sinistra
- 4. Per ogni valore di $\tau \in (-\infty, +\infty)$ si calcola il prodotto $x(\tau)y(t-\tau)$
- 5. Si integra rispetto a τ la funzione $x(\tau)y(t-\tau)$ e cioè si calcola l'area sottesa dalla funzione $x(\tau)y(t-\tau)$. La suddetta area è proprio il valore z(t) assunto dalla convoluzione all'istante t.

Convoluzione: Esempio di calcolo

Convoluzione: Proprietà

✓ L'operazione di convoluzione è commutativa, ossia

$$x(t) * y(t) = y(t) * x(t)$$

✓ L'operazione di convoluzione è associativa, cioè

$$[x(t) * y(t)] * z(t) = x(t) * [y(t) * z(t)]$$

- ✓ L'operazione di convoluzione è distributiva rispetto alla somma di segnali [x(t)+z(t)]* y(t) = [x(t)*y(t)] + [y(t)*z(t)]
- ✓ La convoluzione di x(t) con $\delta(t-t_0)$ trasla x(t) di t_0 , ossia

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

V Dati due segnali x(t), y(t) di durata Δ_x e Δ_y , la convoluzione dei due segnali ha durata

$$\Delta_x + \Delta_y$$

Attraversamento di un sistema tempo-continuo da parte di un segnale analogico

✓ Un sistema S è un blocco che trasforma un segnale di ingresso: x(t) in uno di uscita: y(t) = f(x(t))

$$x(t) \longrightarrow S \longrightarrow y(t) = f(x(t))$$

✓ Sistema Lineare:

$$\begin{array}{c} x_1(t) \to y_1(t) \\ x_2(t) \to y_2(t) \end{array} \Longrightarrow \begin{array}{c} ax_1(t) + bx_2(t) \to ay_1(t) + by_2(t) \\ \text{(sovrapposizione degli effetti)} \end{array}$$

✓ Sistema Permanente:

$$x(t) \rightarrow y(t) \Rightarrow x(t-\tau) \rightarrow y(t-\tau)$$
 (invarianza nel tempo)

✓ Un sistema lineare e permanente (LP) è detto "filtro"

Risposta impulsiva di un sistema lineare e permanente

✓ La risposta impulsiva h(t) di un sistema lineare e permanente (filtro) è definita come l'uscita y(t) del sistema quando all'ingresso è applicato un impulso matematico $x(t)=\delta(t)$

Proprietà elementari di h(t)

- \checkmark Permanenza $x(t) = \delta(t t_0) \rightarrow y(t) = h(t t_0)$
- ✓ Linearità $x(t) = a\delta(t_0) + b\delta(t_0) \rightarrow y(t) = ah(t) + bh(t)$

Uscita di un Sistema LP

✓ Se il sistema è LP con risposta impulsiva h(t), allora l'uscita y(t) corrispondente ad un generico segnale di ingresso x(t) è pari a

$$y(t) = \int_{\tau = -\infty}^{\tau = +\infty} x(\tau)h(t - \tau)d\tau = x(t) * h(t), \quad -\infty < t < +\infty$$

✓ L'uscita è data dall'integrale di convoluzione tra l'ingresso x(t) e la risposta impulsiva h(t) del filtro.

Trasformazione istantanee (senza memoria)

Un filtro, tramite la sua h(t), fa dipendere l'uscita da un tratto significativo del segnale di ingresso (da tutto il segnale se h(t) è illimitata nel tempo) e non solo dal valore che la x(t) assume in un certo istante.

Esiste poi una categoria di trasformazioni istantanee (senza memoria) in cui il valore dell'uscita all'istante t dipende solo dal valore dell'ingresso x(t) allo stesso istante.

$$y(t) = T\{x(\tau)\}\$$

✓ Ritardo

$$x(t) \rightarrow y(t) = x(t - t_0)$$
 è LP con $h(t) = \delta(t - t_0)$

✓ Moltiplicazione per costante

$$x(t) \rightarrow \bigotimes_{c} \rightarrow y(t) = cx(t)$$
 è LP con $h(t) = c\delta(t)$

✓ Quadratore

$$y(t) = x^2(t)$$

✓ Lineare

$$y(t) = ax(t)$$

✓ Segno

$$y(t) = \text{sign}[x(t)] = \begin{cases} +1, \text{ se } x(t) \ge 0 \\ -1, \text{ se } x(t) \le 0 \end{cases}$$
 no L, sì P

Convoluzione e Correlazione (segnali di energia)

Convoluzione:

$$\varphi_{xy}(t) = \int_{\tau = -\infty}^{\tau = +\infty} x(\tau) \cdot y(t - \tau) d\tau = x(t) * y(t)$$

Correlazione:

$$r_{xy}(t) = \int_{\tau = -\infty}^{\tau = +\infty} x^*(\tau) \cdot y(t + \tau) d\tau = x(t) \circledast y(t)$$

La correlazione si può esprimere come un'opportuna convoluzione:

$$\begin{aligned}
\xi &= -\tau \\
r_{xy}(t) &= \int_{\tau = -\infty}^{\tau = +\infty} x^*(\tau) \cdot y(t+\tau) d\tau = \int_{\xi = +\infty}^{\xi = -\infty} x^*(-\xi) \cdot y(t-\xi) d(-\xi) = \\
&= \int_{\xi = -\infty}^{\xi = +\infty} x^*(-\xi) \cdot y(t-\xi) d\xi = x^*(-t) \cdot y(t)
\end{aligned}$$

Correlazione (segnali di energia)

Correlazione:

$$r_{xy}(t) = \int_{\tau = -\infty}^{\tau = +\infty} x^*(\tau) \cdot y(t + \tau) d\tau = x(t) \circledast y(t)$$

Teorema: $r_{xy}(t) = r_{yx}^*(t)$ (non gode della proprietà commutativa)

Autocorrelazione:

$$r_{xx}(t) = \int_{\tau = -\infty}^{\tau = +\infty} x^*(\tau) \cdot x(t + \tau) d\tau$$

Proprietà di simmetria coniugata: $r_{xx}(t) = r_{xx}^*(-t)$

Se x(t) è un segnale reale: $r_{xx}(t) = r_{xx}(-t)$

Una proprietà importante si ottiene calcolando l'autocorrelazione di un segnale per t=0:

$$r_{xx}(0) = \int_{-\infty}^{+\infty} x^*(\tau) \cdot x(\tau) d\tau = \int_{-\infty}^{+\infty} |x(\tau)|^2 = \varepsilon_x$$

L'autocorrelazione calcolata nell'origine è pari all'energia del segnale

Disuguaglianza di Schwartz:

$$\left| \int_{-\infty}^{+\infty} x^*(\tau) \cdot y(\tau) d\tau \right|^2 \leq \int_{-\infty}^{+\infty} |x(\tau)|^2 d\tau \cdot \int_{-\infty}^{+\infty} |y(\tau)|^2 d\tau$$
Per $x(t) = c \cdot y(t)$

Calcoliamo il modulo quadro della <u>crosscorrelazione</u> dei due segnali:

$$|r_{xy}(t)|^2 = \left| \int_{-\infty}^{+\infty} x^*(\tau) \cdot y(t+\tau) \right|^2 \le \int_{-\infty}^{+\infty} |x(\tau)|^2 d\tau \cdot \int_{-\infty}^{+\infty} |y(\tau)|^2 d\tau =$$

$$= \varepsilon_x \ \varepsilon_y \ \rightarrow \text{(essendo l'energia di un segnale pari all'autocorrelazione calcolata nell'origine)} \ \left| r_{xy}(t) \right|^2 \le r_{xx}(0) \cdot r_{yy}(0)$$

In modo analogo, per <u>l'autocorrelazione</u> possiamo scrivere:

$$|r_{\chi\chi}(t)|^2 = \left| \int_{-\infty}^{+\infty} x^*(\tau) \cdot x(t+\tau) \right|^2$$

$$\leq \int_{-\infty}^{+\infty} |x(\tau)|^2 d\tau \cdot \int_{-\infty}^{+\infty} |x(\tau)|^2 d\tau = \varepsilon_{\chi} \varepsilon_{\chi}$$

Dato che $\varepsilon_x \geq 0$, possiamo togliere i quadrati e scrivere:

$$|R_{\chi\chi}(t)| \le |R_{\chi\chi}(0)|$$

Questo significa che il modulo dell'autocorrelazione di un segnale è limitato superiormente dal valore che l'autocorrelazione assume nell'origine

Definiamo l'**energia incrociata** di due segnali la seguente quantità:

$$\varepsilon_{xy} = \int_{-\infty}^{+\infty} x^*(\tau) \cdot y(\tau) d\tau = R_{xy}(0)$$

Da questa grandezza ricaviamo il coefficiente di crosscorrelazione tra due segnali x e y:

$$\rho_{xy} = \frac{\varepsilon_{xy}}{\sqrt{\varepsilon_x \cdot \varepsilon_y}} = \frac{R_{xy}(0)}{\sqrt{\varepsilon_x \cdot \varepsilon_y}}$$

È una misura di somiglianza tra i segnali x(t) e y(t) nel tempo

 ρ_{xy} è compreso tra -1 e +1

 $\rho_{xy} = 0 \rightarrow \text{segnali ortogonali}$

 $\rho_{xy} = -1 \rightarrow \text{segnali antipodali}$

Esempio: calcolare il coefficiente di correlazione tra i due segnali x(t) e y(t) così definiti:

$$x(t) = rect(t)$$

$$y(t) = -rect(t)$$

$$\varepsilon_{xy} = \int_{-\infty}^{+\infty} rect(t) \cdot (-rect(t)) dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} -1 dt = -1$$

$$\varepsilon_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} 1 dt = 1$$

$$\varepsilon_{y} = \int_{-\infty}^{+\infty} |y(t)|^{2} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} 1 dt = 1$$

$$\rho_{xy} = \frac{-1}{\sqrt{1 \cdot 1}} = -1$$

Correlazione (segnali di potenza)

Finora abbiamo visto la deifnizione di crosscorrelazione e autocorrelazione per segnali di energia. Possiamo estendere al caso di segnali di potenza:

$$R_{xy}(t) = \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{-\frac{\Delta t}{2}}^{\frac{\Delta t}{2}} x^*(t) \cdot y(t+\tau) d\tau = x(t) \circledast y(t)$$

Anche in questo caso possiamo definire le relazioni fondamentali viste precedentemente

Coefficiente di correlazione:

$$\rho_{xy} = \frac{R_{xy}(0)}{\sqrt{P_x \cdot P_y}}$$