Question:1

Verify by substitution that:

$$i \times 4 = 4$$
 is the root of $3x - 5 = 7$

$$ii x = 3$$
 is the root of $5 + 3x = 14$

$$iii x = 2$$
 is the root of $3x - 2 = 8x - 12$

$$iv x = 4$$
 is the root of $\frac{3x}{2} = 6$

$$v y = 2$$
 is the root of $y - 3 = 2y - 5$

$$vi \ x = 8$$
 is the root of $\frac{1}{2} x + 7 = 11$

Solution:

$$i x = 4$$
 is the root of $3x - 5 = 7$.

Now, substituting x = 4 in place of 'x' in the given equation 3x - 5 = 7,

$$34 - 5 = 7$$

$$12 - 5 = 7$$

$$7 = 7$$

Hence, x = 4 is the root of 3x - 5 = 7.

ii x = 3 is the root of 5 + 3x = 14.

Now, substituting x = 3 in place of 'x' in the given equation 5 + 3x = 14,

$$5 + 33 = 14$$

$$5 + 9 = 14$$

$$14 = 14$$

Hence, x = 3 is the root of 5 + 3x = 14.

iii x = 2 is the root of <math>3x - 2 = 8x - 12.

Now, substituting x = 2 in place of 'x' in the given equation 3x - 2 = 8x - 12,

$$32 - 2 = 82 - 12$$

$$6 - 2 = 16 - 12$$

$$4 = 4$$

Hence, x = 2 is the root of 3x - 2 = 8x - 12.

 $iv \times = 4$ is the root of $\frac{3x}{2} = 6$.

Now, substituting x = 4 in place of 'x' in the given equation $\frac{3x}{2} = 6$,

$$\frac{3\times4}{2} = 6$$
 $\frac{12}{2} = 6$ $6 = 6$

Hence,
$$x = 4$$
 is the root of $\frac{3x}{2} = 6$.

v y = 2 is the root of y - 3 = 2y - 5.

Now, substituting y = 2 in place of 'y' in the given equation y - 3 = 2y - 5,

$$2 - 3 = 22 - 5$$

$$-1 = 4 - 5$$

$$-1 = -1$$

LHS = RHS

Hence, y = 2 is the root of y - 3 = 2y - 5.

 $vi \ x = 8$ is the root of $\frac{1}{2}x + 7 = 11$.

Now, substituting x = 8 in place of 'x' in the given equation $\frac{1}{2}x + 7 = 11$,

$$\frac{1}{2} \times 8 + 7 = 11$$

$$4 + 7 = 11$$

$$11 = 11$$

LHS = RHS

Hence, x = 8 is the root of $\frac{1}{2}x + 7 = 11$.

Question:2

Solve each of the following equations by trial-and-error method:

$$i x + 3 = 12$$

$$ii x - 7 = 10$$

$$iii 4x = 28$$

$$iv \frac{x}{2} + 7 = 11$$

$$v 2x + 4 = 3x$$

$$vi \frac{x}{4} = 12$$

$$vii \frac{15}{x} = 3$$

$$viii \frac{x}{18} = 20$$

Solution:

$$i x + 3 = 12$$

Here, LHS = x + 3 and RHS = 12.

х	LHS	RHS	Is LHS = RHS?
1	1+3=4	12	No
2	2+3=5	12	No
3	3+3=6	12	No
4	4+3=7	12	No
5	5+3=8	12	No
6	6+3=9	12	No
7	7+3=10	12	No

8	8+3=11	12	No
9	9+3=12	12	Yes

Therefore, if x = 9, LHS = RHS.

Hence, x = 9 is the solution to this equation.

$$ii x - 7 = 10$$

Here, LHS = x - 7 and RHS = 10.

Х	LHS	RHS	Is LHS = RHS?
9	9–7 = 2	10	No
10	10-7 = 3	10	No
11	11-7=4	10	No
12	12–7=5	10	No
13	13–7=6	10	No
14	14-7=7	10	No
15	15–7=8	10	No
16	16-7=9	10	No
17	17–7=10	10	Yes

Therefore, if x = 17, LHS = RHS.

Hence, x = 17 is the solution to this equation.

$$iii 4x = 28$$

Here, LHS = 4x and RHS = 28.

x	LHS	RHS	Is LHS = RHS?
1	4×1=4	28	No
2	4×2=8	28	No
3	4×3=12	28	No
4	4×4=16	28	No
5	4×5=20	28	No
6	4×6=24	28	No
7	4×7=28	28	Yes

Therefore, if x = 7, LHS = RHS.

Hence, x = 7 is the solution to this equation.

$$iv\,\tfrac{x}{2}+\,7\,=\,11$$

Here, LHS = $\frac{x}{2}$ + 7 and RHS = 11.

Since RHS is a natural number, $\frac{x}{2}$ must also be a natural number, so we must substitute values of x that are multiples of 2.

х	LHS	RHS	Is LHS = RHS?
2	$\frac{2}{2}$ +7=8	11	No
4	$\frac{4}{2}$ +7=9	11	No
6	$\frac{6}{2}$ +7=10	11	No
8	$\frac{8}{2}$ +7=11	11	Yes

Therefore, if x = 8, LHS = RHS.

Hence, x = 8 is the solution to this equation.

$$v 2x + 4 = 3x$$

Here, LHS = 2x + 4 and RHS = 3x.

x	LHS	RHS	Is LHS = RHS?
1	21+4=6	31=3	No
2	22+4=8	32=6	No
3	23+4=10	33=9	No
4	24+4=12	34=12	Yes

Therefore, if x = 4, LHS = RHS.

Hence, x = 4 is the solution to this equation.

$$vi \frac{x}{4} = 12$$

Here, LHS = $\frac{x}{4}$ and RHS = 12.

Since RHS is a natural number, $\frac{x}{4}$ must also be a natural number, so we must substitute values of x that are multiples of 4.

-			
х	LHS	RHS	ls LHS = RHS?
16	$\frac{16}{4}$ =4	12	No
20	$\frac{20}{4} = 5$	12	No
24	$\frac{24}{4} = 6$	12	No
28	$\frac{28}{4} = 7$	12	No
32	$\frac{32}{4}$ = 8	12	No
36	$\frac{36}{4} = 9$	12	No
40	$\frac{40}{4}$ = 10	12	No

44	$\frac{44}{4}$ = 11	12	No
48	$\frac{48}{4}$ =12	12	Yes

Therefore, if x = 48, LHS = RHS.

Hence, x = 48 is the solution to this equation.

$$vii \frac{15}{x} = 3$$

Here, LHS = $\frac{15}{x}$ and RHS = 3.

Since RHS is a natural number, $\frac{15}{x}$ must also be a natural number, so we must substitute values of x that are factors of 15.

x	LHS	RHS	Is LHS = RHS?
1	$\frac{15}{1}$ =15	3	No
3	$\frac{15}{3}$ =5	3	No
5	$\frac{15}{5}$ = 3	3	Yes

Therefore, if x = 5, LHS = RHS.

Hence, x = 5 is the solution to this equation.

$$viii \frac{x}{18} = 20$$

Here, LHS = $\frac{x}{18}$ and RHS = 20.

Since RHS is a natural number, $\frac{x}{18}$ must also be a natural number, so we must substitute values of x that are multiples of 18.

X	LHS	RHS	Is LHS = RHS?
324	$\frac{324}{18}$ =18	20	No
342	$\frac{342}{18}$ =19	20	No
360	$\frac{360}{18}$ =20	20	Yes

Therefore, if x = 360, LHS = RHS.

Hence, x = 360 is the solution to this equation.

Question:3

Solve each of the following equations and check your answers:

$$x - 3 = 5$$

Solution:

$$x - 3 = 5$$

Adding 3 to both sides, we get

$$\Rightarrow x - 3 + 3 = 5 + 3$$

$$\Rightarrow x = 8$$

Verification:

Substituting x= 8 in LHS, we get

LHS =
$$x - 3$$
 and RHS = 5

$$LHS = 8 - 3 = 5$$
 and $RHS = 5$

Hence, verified.

Question:4

Solution:

$$x + 9 = 13$$

Subtracting 9 from both sides, we get

$$=> x + 9 - 9 = 13 - 9$$

$$=> x = 4$$

Verification:

Substituting x = 4 on LHS, we get

$$LHS = 4 + 9 = 13 = RHS$$

Hence, verified.

Question:5

Solve each of the following equations and check your answers:

$$x - \frac{3}{5} = \frac{7}{5}$$

Solution:

$$X - \frac{3}{5} = \frac{7}{5}$$

Adding $\frac{3}{5}$ to both sides, we get

=>
$$X - \frac{3}{5} + \frac{3}{5} = \frac{7}{5} + \frac{3}{5}$$

=> $X = \frac{7+3}{5}$

$$=> X = \frac{7+3}{5}$$

$$=> X = \frac{10}{5}$$

$$\Rightarrow x = 2$$

Verification:

Substituting x = 2 in LHS, we get

LHS =
$$2 - \frac{3}{5} = \frac{10 - 3}{5} = \frac{7}{5}$$
, and RHS = $\frac{7}{5}$

Hence, verified.

Question:6

Solve each of the following equations and check your answers:

$$3x = 0$$

Solution:

$$3x = 0$$

Dividing both sides by 3, we get

$$\Rightarrow \frac{3x}{3} = \frac{0}{3}$$

$$\Rightarrow x = 0$$

Verification:

Substituting x = 0 in LHS = 3x, we get

LHS =
$$3 \times 0 = 0$$
 and RHS = 0

Hence, verified.

Question:7

Solve each of the following equations and check your answes:

$$\frac{x}{2} = 0$$

Solution:

$$\frac{x}{2} = 0$$

Multiplying both sides by 2, we get

$$\Rightarrow \frac{x}{2} \times 2 = 0 \times 2$$

$$\Rightarrow x = 0$$

Verification:

Substituting x=0 in LHS, we get

LHS =
$$\frac{0}{2}$$
= 0 and RHS = 0

$$LHS = 0$$
 and $RHS = 0$

Hence, verified.

Question:8

Solve each of the following equations and check your answers:

$$x - \frac{1}{3} = \frac{2}{3}$$

Solution:

$$X - \frac{1}{3} = \frac{2}{3}$$

 \Rightarrow Adding $\frac{1}{3}$ to both sides, we get

$$\Rightarrow \mathbf{X} - \frac{1}{3} + \frac{1}{3} = \frac{2}{3} + \frac{1}{3}$$

$$=> X = \frac{2+1}{3}$$

$$=> X = \frac{3}{3}$$

$$\Rightarrow x = 1$$

Verification:

Substituting x = 1 in LHS, we get

LHS =
$$1 - \frac{1}{3} = \frac{3-1}{3} = \frac{2}{3}$$
, and RHS = $\frac{2}{3}$

Hence, verified.

Question:9

Solve each of the following equations and check your answers:

$$x + \frac{1}{2} = \frac{7}{2}$$

Solution:

$$X + \frac{1}{2} = \frac{7}{2}$$

 \Rightarrow Subtracting $\frac{1}{2}$ from both sides, we get

$$\Rightarrow X + \frac{1}{2} - \frac{1}{2} = \frac{7}{2} - \frac{1}{2}$$
$$\Rightarrow X = \frac{7 - 1}{2} = \frac{6}{2}$$

$$\Rightarrow x = 3$$

Verification:

Substituting x = 3 in LHS, we get

LHS =
$$3 + \frac{1}{2} = \frac{6+1}{2} = \frac{7}{2}$$
, and RHS = $\frac{7}{2}$

Hence, verified.

Question:10

Solve each of the following equations and check your answers:

$$10 - y = 6$$

Solution:

$$10 - y = 6$$

Subtracting 10 from both sides, we get

$$\Rightarrow$$
 10 - y - 10 = 6 - 10

$$\Rightarrow$$
 -y = -4.

 \Rightarrow Multiplying both sides by -1, we get

$$\Rightarrow$$
 -y \times -1 = -4 \times -1

$$\Rightarrow$$
 y = 4

Verification:

Substituting y = 4 in LHS, we get

LHS =
$$10 - y = 10 - 4 = 6$$
 and RHS = 6

Hence, verified.

Question:11

Solve each of the following equations and check your answers:

$$7 + 4y = -5$$

Solution:

$$7 + 4y = -5$$

Subtracting 7 from both sides, we get

$$\Rightarrow$$
 7 + 4 y - 7 = -5 - 7

$$\Rightarrow 4y = -12$$

Dividing both sides by 4, we get

$$\Rightarrow$$
 y= $\frac{-12}{4}$

$$\Rightarrow y = -3$$

Verification:

Substituting y = -3 in LHS, we get

LHS =
$$7 + 4y = 7 + 4 - 3 = 7 - 12 = -5$$
, and RHS = -5

$$LHS = RHS$$

Hence, verified.

Question:12

Solve each of the following equations and check your answers:

$$\frac{4}{5} - x = \frac{3}{5}$$

Solution:

$$\frac{4}{5} - \mathsf{X} = \frac{3}{5}$$

Subtracting $\frac{4}{5}$ from both sides, we get

$$\Rightarrow \frac{4}{5} - X - \frac{4}{5} = \frac{3}{5} - \frac{4}{5}$$

$$\Rightarrow$$
 $-X = \frac{3-4}{5}$

$$\Rightarrow -X = \frac{3-4}{5}$$
$$\Rightarrow -X = \frac{-1}{5}$$

Multiplying both sides by -1, we get

$$\Rightarrow$$
 -x \times -1 = $-\frac{1}{5}$ \times -1

$$\Rightarrow x = \frac{1}{5}$$

Verification:

Substituting $x = \frac{1}{5}$ in LHS, we get

LHS =
$$\frac{4}{5} - \frac{1}{5} = \frac{4-1}{5} = \frac{3}{5}$$
, and RHS = $\frac{3}{5}$

Hence, verified.

Question:13

Solve each of the following equations and check your answers:

$$2y - \frac{1}{2} = -\frac{1}{3}$$

Solution:

$$2y - \frac{1}{2} = -\frac{1}{3}$$

Adding $\frac{1}{2}$ to both sides, we get

$$\Rightarrow$$
 2y $-\frac{1}{2} + \frac{1}{2} = -\frac{1}{3} + \frac{1}{2}$

$$\Rightarrow 2y = \frac{-2+3}{6}$$

$$\Rightarrow$$
 2y = $\frac{1}{6}$

Dividing both sides by 2, we get

$$\Rightarrow \frac{2y}{2} = \frac{1}{6 \times 2}$$

$$\Rightarrow$$
 y = $\frac{1}{12}$

Verification:

Substituting $y = \frac{1}{12}$ in LHS, we get

LHS =
$$2 \times \left(\frac{1}{12}\right)^{1/2} - \frac{1}{2} = \frac{1}{6} - \frac{1}{2} = \frac{1-3}{6} = \frac{-2}{6} = -\frac{1}{3}$$
, and RHS = $-\frac{1}{3}$

Hence, verified.

Question:14

Solve each of the following equations and check your answers:

$$14 = \frac{7x}{10} - 8$$

Solution:

$$14 = \frac{7x}{10} - 8$$

Adding 8 to both sides, we get

$$\Rightarrow 14 + 8 = \frac{7x}{10} - 8 + 8$$

$$\Rightarrow$$
 22 = $\frac{7x}{10}$

Multiplying both sides by 10, we get

$$\Rightarrow$$
 22 \times 10 = $\frac{7x}{10} \times$ 10

$$\Rightarrow$$
 220 = 7x

Dividing both sides by 7, we get

$$\Rightarrow \frac{220}{7} = \frac{7x}{7}$$

$$\Rightarrow X = \frac{220}{7}$$

Verification:

Substituting $x = \frac{220}{7}$ in RHS, we get

LHS = 14, and RHS =
$$\frac{7(\frac{220}{7})}{10} - 8 = \frac{220}{10} - 8 = 22 - 8 = 14$$

LHS = RHS

Hence, verified.

Question:15

Solve each of the following equations and check your answers:

$$3(x+2) = 15$$

Solution:

$$3(x+2) = 15$$

Dividing both sides by 3, we get

$$\Rightarrow \frac{3(x+2)}{3} = \frac{15}{3}$$

$$\Rightarrow$$
 $(x + 2) = 5$

Subtracting 2 from both sides, we get

$$\Rightarrow x + 2 - 2 = 5 - 2$$

$$\Rightarrow x = 3$$

Verification:

Substituting x = 3 in LHS, we get

LHS = 3
$$(x + 2)$$
 = 3 3 + 2 = 3×5 = 15, and RHS = 15

LHS = RHS

Hence, verified.

Question:16

Solve each of the following equations and check your answers:

$$\frac{x}{4} = \frac{7}{8}$$

Solution:

$$\frac{x}{4} = \frac{7}{8}$$

Multiplying both sides by 4, we get

$$\Rightarrow \frac{x}{4} \times 4 = \frac{7}{8} \times 4$$

$$\Rightarrow X = \frac{7}{2}$$

Verification:

Substituting $x = \frac{7}{2}$ in LHS, we get

LHS =
$$\frac{7}{2\times4}$$
 = $\frac{7}{8}$, and RHS = $\frac{7}{8}$

Hence, verified.

Question:17

Solve each of the following equations and check your answers:

$$\frac{1}{3} - 2x = 0$$

Solution:

$$\frac{1}{3}-2x=0$$

Subtracting $\frac{1}{3}$ from both sides, we get

$$\Rightarrow \frac{1}{3} - 2x - \frac{1}{3} = 0 - \frac{1}{3}$$

$$\Rightarrow -2x = -\frac{1}{3}$$

Multiplying both sides by -1, we get

$$\Rightarrow -2x \times \left(-1\right) = -\frac{1}{3} \times \left(-1\right)$$

$$\Rightarrow 2x = \frac{1}{3}$$

Dividing both sides by 2, we get

$$\Rightarrow \frac{2x}{2} = \frac{1}{3 \times 2}$$

$$\Rightarrow X = \frac{1}{6}$$

Verification:

Substituting $x = \frac{1}{6}$ in LHS, we get

LHS =
$$\frac{1}{3} - \left(2 \times \frac{1}{6}\right) = \frac{1}{3} - \frac{1}{3} = 0$$
, and RHS = 0

Hence, verified.

Question:18

Solve each of the following equations and check your answers:

$$3(x+6) = 24$$

Solution:

$$3(x+6) = 24$$

Dividing both sides by 3, we get

$$\Rightarrow \frac{3(x+6)}{3} = \frac{24}{3}$$

$$\Rightarrow (x+6)=8$$

Subtracting 6 from both sides, we get

$$\Rightarrow x + 6 - 6 = 8 - 6$$

$$\Rightarrow x = 2$$

Verification:

Substituting x = 2 in LHS, we get

LHS =
$$3(x+6) = 32+6 = 3 \times 8 = 24$$
, and RHS = 24

Hence, verified.

Question:19

Solve each of the following equations and check your answers:

$$3(x+2) - 2(x-1) = 7$$

Solution:

$$3(x+2)-2(x-1)=7$$

On expanding the brackets, we get

$$\Rightarrow$$
 (3 × x) + (3 × 2) - (2 × x) + (2 × 1) = 7

$$\Rightarrow$$
 3x + 6 - 2x + 2 = 7

$$\Rightarrow$$
 3x - 2x + 6 + 2 = 7

$$\Rightarrow$$
 x + 8 = 7

Subtracting 8 from both sides, we get

$$\Rightarrow x + 8 - 8 = 7 - 8$$

$$\Rightarrow x = -1$$

Verification:

Substituting x = -1 in LHS, we get

LHS =
$$3(x + 2) - 2(x - 1)$$
, and RHS = 7

LHS =
$$3(-1+2)-2(-1-1)=(3\times1)-(2\times-2)=3+4=7$$
, and RHS = 7

Hence, verified.

Question:20

Solve each of the following equations and check your answers:

$$8(2x-5)-6(3x-7)=1$$

Solution:

$$8(2x-5)-6(3x-7)=1$$

On expanding the brackets, we get

$$\Rightarrow$$
 (8×2x) - (8 × 5) - (6 × 3x) + (-6)×(-7) = 1

$$\Rightarrow 16x - 40 - 18x + 42 = 1$$

$$\Rightarrow 16x - 18x + 42 - 40 = 1$$

$$\Rightarrow$$
 $-2x + 2 = 1$

Subtracting 2 from both sides, we get

$$\Rightarrow$$
 -2x + 2 - 2 = 1 - 2

$$\Rightarrow$$
 $-2x = -1$

Multiplying both sides by -1, we get

$$\Rightarrow$$
 $-2x \times (-1) = -1 \times (-1)$

$$\Rightarrow 2x = 1$$

Dividing both sides by 2, we get

$$\Rightarrow \frac{2x}{2} = \frac{1}{2}$$

$$\Rightarrow X = \frac{1}{2}$$

Verification:

Substituting $x = \frac{1}{2}$ in LHS, we get

$$=8(2\times\frac{1}{2}-5)-6(3\times\frac{1}{2}-7)$$

$$= 81 - 5 - 6(\frac{3}{2} - 7)$$

$$= 8 \times -4 - (6 \times \frac{3}{2}) + (6 \times 7)$$

$$= -32 - 9 + 42 = -41 + 42 = 1 = RHS$$

Hence, verified.

Question:21

Solve each of the following equations and check your answers:

$$6(1-4x) + 7(2+5x) = 53$$

Solution:

$$6(1-4x)+7(2+5x)=53$$

On expanding the brackets, we get

$$\Rightarrow$$
 (6×1) - (6 × 4x) + (7 ×2) + (7×5x) = 53

$$\Rightarrow$$
 6 - 24x + 14 + 35x = 53

$$\Rightarrow$$
 6 + 14 + 35x - 24x = 53

$$\Rightarrow 20 + 11x = 53$$

Subtracting 20 from both sides, we get

$$\Rightarrow$$
 20 + 11x - 20 = 53 - 20

$$\Rightarrow 11x = 33$$

$$\Rightarrow \frac{11x}{11} = \frac{33}{11}$$

$$\Rightarrow x = 3$$

Verification:

Substituting x = 3 in LHS, we get

$$= 6(1 - 4 \times 3) + 7(2 + 5 \times 3)$$

$$=61-12+72+15$$

$$=6-11+717$$

$$= -66 + 119 = 53 = RHS$$

Hence, verified.

Question:22

Solve each of the following equations and check your answers:

$$5(2-3x)-17(2x-5)=16$$

Solution:

$$5(2-3x)-17(2x-5)=16$$

On expanding the brackets, we get

$$\Rightarrow$$
 (5×2) - (5 × 3x) - (17 × 2x) + (17×5) = 16

$$\Rightarrow$$
 10 - 15x - 34x + 85 = 16

$$\Rightarrow$$
 10 + 85 - 34x - 15x = 16

$$\Rightarrow$$
 95 - 49x = 16

Subtracting 95 from both sides, we get

$$\Rightarrow$$
 - 49x + 95 - 95 = 16 - 95

$$\Rightarrow$$
 - 49x = -79

Dividing both sides by -49, we get

$$\Rightarrow \frac{-49x}{-49} = \frac{-79}{-49}$$

$$\Rightarrow X = \frac{79}{49}$$

Verification:

Substituting $x = \frac{79}{49}$ in LHS, we get

$$=5(2-3\times\frac{79}{49})-17(2\times\frac{79}{49}-5)$$

$$= (5 \times 2) - (5 \times 3 \times \frac{79}{49}) - (17 \times 2 \times \frac{79}{49}) + (17 \times 5)$$

$$=10-\frac{1185}{49}-\frac{2686}{49}+85$$

$$= 10 - \frac{1185}{49} - \frac{2686}{49} + 85$$
$$= \frac{490 - 1185 - 2686 + 4165}{49}$$

$$=\frac{784}{40}$$

Hence, verified.

Question:23

Solve each of the following equations and check your answers:

$$\frac{x-3}{5} - 2 = -1$$

Solution:

$$\frac{x-3}{5} - 2 = -1$$

Adding 2 to both sides, we get

$$\Rightarrow \frac{x-3}{5} - 2 + 2 = -1 + 2$$

$$\Rightarrow \frac{x-3}{5} = 1$$

Multiplying both sides by 5, we get

$$\Rightarrow \left(\frac{x-3}{5}\right) \times 5 = 1 \times 5$$

$$\Rightarrow$$
 x $-$ 3 = 5

Adding 3 to both sides, we get

$$\Rightarrow x - 3 + 3 = 5 + 3$$

$$\Rightarrow x = 8$$

Verification:

Substituting x = 8 in LHS, we get

$$=\frac{8-3}{5}-2$$

$$=\frac{5}{5}$$
 - 2

$$= 1 - 2$$

$$= -1$$

Hence, verified.

Question:24

Solve each of the following equations and check your answers:

$$5(x-2) + 3(x+1) = 25$$

Solution:

$$5(x-2) + 3(x+1) = 25$$

On expanding the brackets, we get

$$\Rightarrow$$
 (5 × x) - (5 × 2) + (3 × x) + (3×1) = 25

$$\Rightarrow 5x - 10 + 3x + 3 = 25$$

$$\Rightarrow 5x + 3x - 10 + 3 = 25$$

$$\Rightarrow 8x - 7 = 25$$

Adding 7 to both sides, we get

$$\Rightarrow 8x - 7 + 7 = 25 + 7$$

$$\Rightarrow 8x = 32$$

Dividing both sides by 8, we get

$$\Rightarrow \frac{8x}{8} = \frac{32}{8}$$

$$\Rightarrow x = 4$$

Verification:

Substituting x = 4 in LHS, we get

$$=5(4-2)+34+1$$

$$=52 + 35$$

LHS = RHS

Hence, verified.

Question:25

Solve each of the following equations. Also, verify the result in each case.

$$6x + 5 = 2x + 17$$

Solution:

We have

$$\Rightarrow$$
 6x + 5 = 2x + 17

Transposing 2x to LHS and 5 to RHS, we get

$$\Rightarrow$$
 6x - 2x = 17 - 5

$$\Rightarrow$$
 4x = 12

Dividing both sides by 4, we get

$$\Rightarrow \frac{4x}{4} = \frac{12}{4}$$

$$\Rightarrow x = 3$$

Verification:

Substituting x = 3 in the given equation, we get

$$6 \times 3 + 5 = 2 \times 3 + 17$$

$$18 + 5 = 6 + 17$$

$$23 = 23$$

LHS = RHS

Hence, verified.

Question:26

Solve each of the following equations. Also, verify the result in each case.

$$2(5x-3) - 3(2x-1) = 9$$

Solution:

We have

$$\Rightarrow$$
2(5 x – 3) – 3(2 x – 1) = 9

Expanding the brackets, we get

$$\Rightarrow 2 \times 5x - 2 \times 3 - 3 \times 2x + 3 \times 1 = 9$$

$$\Rightarrow$$
 10x - 6 - 6x + 3 = 9

$$\Rightarrow$$
 10x - 6x - 6 + 3 = 9

$$\Rightarrow$$
 4x $-3 = 9$

Adding 3 to both sides, we get

$$\Rightarrow$$
 4x - 3 + 3 = 9 + 3

$$\Rightarrow$$
 4x = 12

Dividing both sides by 4, we get

$$\Rightarrow \frac{4x}{4} = \frac{12}{4}$$

$$\Rightarrow$$
 Thus, $x = 3$.

Verification:

Substituting x = 3 in LHS, we get

$$=2(5\times3-3)-3(2\times3-1)$$

$$=2\times12-3\times5$$

LHS = RHS

Hence, verified.

Question:27

Solve each of the following equations. Also, verify the result in each case.

$$\frac{x}{2} = \frac{x}{3} + 1$$

Solution:

$$\frac{x}{2} = \frac{x}{3} + 1$$

Transposing $\frac{x}{3}$ to LHS, we get

$$\Rightarrow \frac{x}{2} - \frac{x}{3} = 1 \Rightarrow \frac{3x - 2x}{6} = 1$$

$$\Rightarrow \frac{x}{6} = 1$$

Multiplying both sides by 6, we get

$$\Rightarrow \frac{x}{6} \times 6 = 1 \times 6$$

$$\Rightarrow$$
 x = 6

Verification:

Substituting x = 6 in the given equation, we get

$$\frac{6}{2} = \frac{6}{3} + 1$$

$$3 = 2 + 1$$

$$3 = 3$$

Hence, verified.

Question:28

Solve each of the following equations. Also, verify the result in each case.

$$\frac{x}{2} + \frac{3}{2} = \frac{2x}{5} - 1$$

Solution:

$$\frac{x}{2} + \frac{3}{2} = \frac{2x}{5} - 1$$

Transposing $\frac{2x}{5}$ to LHS and $\frac{3}{2}$ to RHS, we get

$$\Rightarrow \frac{x}{2} - \frac{2x}{5} = -1 - \frac{3}{2}$$

$$=> \frac{5x-4x}{10} = \frac{-2-3}{2}$$

$$\Rightarrow \frac{x}{10} = \frac{-5}{2}$$

Multiplying both sides by 10, we get

$$\Rightarrow \frac{x}{10} \times 10 = \frac{-5}{2} \times 10$$

$$=> x = -25$$

Verification:

Substituting x = -25 in the given equation, we get

$$rac{-25}{rac{2}{2}} + rac{3}{2} = rac{2 imes (-25)}{5} - 1 \ rac{-22}{2} = -10 - 1 \ -11 = -11$$

Hence, verified.

Question:29

Solve each of the following equations. Also, verify the result in each case.

$$\frac{3}{4}\left(x-1\right) = x-3$$

Solution:

$$\frac{3}{4}(x-1) = x-3$$

On expanding the brackets on both sides, we get

$$=>\frac{3}{4}x-\frac{3}{4}=x-3$$

Transposing $\frac{3}{4}x$ to RHS and 3 to LHS, we get

- =>
- =>
- =>

Multiplying both sides by 4, we get

$$=> x = 9$$

Verification:

Substituting x = 9 on both sides, we get

$$6 = 6$$

Hence, verified.

Solve each of the following equations. Also, verify the result in each case.

$$3(x-3) = 5(2x+1)$$

Solution:

6.
$$3(x-3) = 5(2x+1)$$

On expanding the brackets on both sides, we get

=>

$$=> 3x 9 = 10x + 5$$

Transposing 10x to LHS and 9 to RHS, we get

$$=> 3x 10x = 9 + 5$$

$$=> 7x = 14$$

Dividing both sides by 7, we get

=>

$$=> x = 2$$

Verification:

Substituting x = 2 on both sides, we get

15 = 15

LHS = RHS

Hence, verified.

Question:31

Solve each of the following equations. Also, verify the result in each case.

$$3x - 2(2x - 5) = 2(x + 3) - 8$$

Solution:

$$3x - 2(2x - 5) = 2(x + 3) - 8$$

On expanding the brackets on both sides, we get

=>

=>

=>

Transposing x to RHS and 2 to LHS, we get

$$=> 10 + 2 = 2x + x$$

$$=> 3x = 12$$

Dividing both sides by 3, we get

=>

$$=> x = 4$$

Verification:

Substituting x = 4 on both sides, we get

=>
=> 15x + 1 = 6
Transposing 1 to RHS, we get
=> 15x = 61
=> 15x = 5
Dividing both sides by 15, we get
=>

=>

=> X =

Verification:

Substituting x = on both sides, we get

LHS = RHS

Hence, verified.

Question:34

Solve each of the following equations. Also, verify the result in each case.

Solution:

=>

=>

=>

=>

Transposing m/3 to LHS and 1/2 to RHS, we get

=>

=>

Multiplying both sides by 6, we get

=>

$$=>5m=7$$

Dividing both sides by 5, we get

=>

Verification:

Substituting m = on both sides, we get

LHS = RHS

Hence, verified.

Question:35

Solve each of the following equations. Also, verify the result in each case.

Solution:

Multiplying both sides by 3, we get

=> 3x + 1 = 3

Subtracting 1 from both sides, we get

=> 3x + 11 = 31

=> 3x = 2

Dividing both sides by 3, we get

=>

=> X =

Verification:

Substituting x = in LHS, we get

LHS = RHS

Hence, verified.

Question:36

Solve each of the following equations. Also, verify the result in each case.

Solution:

Transposing 0.28x to LHS and 4/5 to RHS, we get

$$=> 0.6 \times 0.28 \times = 1.16$$

$$=> 0.32x = 1.160.8$$

$$=> 0.32x = 0.36$$

Dividing both sides by 0.32, we get

=>

=> X =

Verification:

Substituting x = on both sides, we get

LHS = RHS

Hence, verified.

Question:37

Solve ech of the following question. Also, verify the result in each case.

Solution:

Transposing x/4 to LHS, we get

Multiplying both sides by 12, we get

=>

$$=> 7x = 84$$

Dividing both sides by 7, we get

=>

Verification:

Substituting x = 12 on both sides, we get

$$6 + 4 = 3 + 7$$

LHS =RHS

Hence, verified.

Question:38

If 5 is subtracted from three times a number, the result is 16. Find the number.

Solution:

Let the required number be 'x'. Then, 5 subtracted from 3 times x = 3x 5.

$$\Rightarrow$$
 3x 5 = 16

Adding 5 to both sides, we get

$$\Rightarrow$$
 3x 5 + 5 = 16 + 5

$$\Rightarrow$$
 3x= 21

Dividing both sides by 3, we get

 \Rightarrow

$$\Rightarrow x = 7$$

Thus, the required number is 7.

Question:39

Find the number which when multiplied by 7 is increased by 78.

Solution:

Let the required number be 'x'. Thus, when multiplied by 7, it gives 7x, and x increases by 78.

$$\Rightarrow$$
 7x = x + 78

Transposing x to LHS, we get

$$\Rightarrow$$
 7x x = 78

$$\Rightarrow$$
 6x = 78

Dividing both sides by 6, we get

⇒

$$\Rightarrow$$
 x = 13

Thus, the required number is 13.

Question:40

Find three consecutive natural numbers such that the sum of the first and second is 15 more than the third.

Solution:

Let the first number be 'x'. Hence, the second number = x + 1 and the third number = x + 2.

 \Rightarrow Sum of first and second numbers = x + x + 1.

ATQ:

$$\Rightarrow$$
 x + x + 1 = 15 + x + 2

$$\Rightarrow$$
 2x + 1 = 17 + x

Transposing x to LHS and 1 to RHS, we get

$$\Rightarrow$$
 2x x = 17 1

$$\Rightarrow x = 16$$

So, first number = x = 16

Second number = x + 1 = 16 + 1 = 17

Third number = x + 2 = 16 + 2 = 18

Thus, the required consecutive natural numbers are 16, 17 and 18.

Question:41

The difference between two numbers is 7. Six times the smaller plus the larger is 77. Find the numbers.

Solution:

Let the smaller number be 'x'. So, the larger number = x + 7.

ATQ:

$$\Rightarrow$$
 6x + x + 7 = 77

$$\Rightarrow$$
 6x + x + 7 = 77

$$\Rightarrow$$
 7x + 7 = 77

Subtracting 7 from both sides, we get

$$\Rightarrow$$
 7x + 77 = 777

$$\Rightarrow$$
 7x = 70

Dividing both sides by 7, we get

=

$$x = 10$$

Thus, the smaller number = x = 10, and the larger number = x + 7 = 10 + 7 = 17.

The two required numbers are 10 and 17.

Question:42

A man says, "I am thinking of a number. When I divide it by 3 and then add 5, my answer is twice the number I thought of". Find the number.

Solution:

Let the number thought of by the man be 'x'.

So, ATQ:

 \Rightarrow

Transposing x/3 to RHS, we get

⇒ 5 =

⇒ 5 =

⇒ 5 =

Multiplying both sides by 3, we get

 \Rightarrow

$$\Rightarrow$$
 15 = 5x

Dividing both sides by 5, we get

 \Rightarrow

$$\Rightarrow x = 3$$

Thus, the number thought of by the man is 3.

Question:43

If a number is tripled and the result is increased by 5, we get 50. Find the number.

Solution:

Let the required number be 'x'.

So, ATQ:

$$\Rightarrow$$
 3x + 5 = 50

Subtracting 5 from both sides, we get

$$\Rightarrow$$
 3x + 5 5 = 50 5

$$\Rightarrow$$
 3x = 45

Dividing both sides by 3, we get

 \Rightarrow

$$\Rightarrow$$
 x = 15

Thus, the required number is 15.

Question:44

Shikha is 3 years younger to her brother Ravish. If the sum of their ages is 37 years, what are their present ages?

Solution:

Let the present age of Shikha = 'x' years.

So, the present age of Shikha's brother Ravish = x + 3 years.

So, sum of their ages = x + x + 3

$$\Rightarrow$$
 x + x + 3 = 37

$$\Rightarrow$$
 2x + 3 = 37

Subtracting 3 from both sides, we get

$$\Rightarrow$$
 2x + 33 = 373

$$\Rightarrow$$
 2x = 34

Dividing both sides by 2, we get

⇒

$$\Rightarrow x = 17$$

So, the present age of Shikha = 17 years, and the present age of Ravish = x + 3 = 17 + 3 = 20 years.

Question:45

Mrs. Jain is 27 years older than her daughter Nilu. After 8 years she will be twice as old as Nilu. Find their present ages.

Solution:

Let the present age of Nilu = 'x' years.

Therefore, the present age of Nilu's mother, Mrs. Jain = x + 27 years.

So, after 8 years,

Nilu's age = x + 8, and Mrs. Jain's age = x + 27 + 8 = x + 35 years

$$\Rightarrow$$
 x + 35 = 2x + 8

Expanding the brackets, we get

$$\Rightarrow$$
 x + 35 = 2x + 16

Transposing x to RHS and 16 to LHS, we get

$$\Rightarrow$$
 35 16 = 2x x

$$\Rightarrow$$
 x = 19

So, the present age of Nilu = x = 19 years, and the present age of Nilu's mother = x + 27 = 19 + 27 = 46 years.

Question:46

A man is 4 times as old as his son. After 16 years, he will be only twice as old as his son. Find the their present ages.

Solution:

Let the present age of the son = 'x' years.

Therefore, the present age of his father = '4x' years.

So, after 16 years,

Son's age = x + 16 and father's age = 4x + 16 years

ATQ:

$$\Rightarrow$$
 4x + 16 = 2x + 16

$$\Rightarrow$$
 4x + 16 = 2x + 32

Transposing 2x to LHS and 16 to RHS, we get

$$\Rightarrow 4x - 2x = 32 - 16$$

$$\Rightarrow$$
 2x = 16

Dividing both sides by 2, we get

 \Rightarrow

$$\Rightarrow x = 8$$

So, the present age of the son = x = 8 years, and the present age of the father = 4x = 48 = 32 years.

Question:47

The difference in age between a girl and her younger sister is 4 years. The younger sister in turn is 4 years older than her brother. The sum of the ages of the younger sister and her brother is 16. How old are the three children?

Solution:

Let the age of the girl = 'x' years.

So, the age of her younger sister = (x 4) years.

Thus, the age of the brother = (x 4 4) years = (x 8) years.

ATQ:

$$\Rightarrow$$
 (x 4) + (x 8) = 16

$$\Rightarrow$$
 x + x 4 8 = 16

$$\Rightarrow$$
 2x 12 = 16

Adding 12 to both sides, we get

$$\Rightarrow$$
 2x 12 + 12 = 16 + 12

$$\Rightarrow$$
 2x = 28

Dividing both sides by 2, we get

 \Rightarrow

$$\Rightarrow$$
 x = 14

Thus, the age of the girl = x = 14 years, the age of the younger sister = x = 14 4 = 10 years, and the age of the younger brother = x = 14 8 = 6 years.

Question:48

One day, during their vacation at a beach resort, Shella found twice as many sea shells as Anita and Anita found 5 shells more than sandy. Together sandy and Shella found 16 sea shells. How many did each of them find?

Solution:

Let the number of sea shells found by Sandy = 'x'.

So, the number of sea shells found by Anita = x + 5.

The number of sea shells found by Shella = $2 \times + 5$.

According to the question,

$$\Rightarrow$$
 x + 2 x + 5 = 16

$$\Rightarrow$$
 x + 2x + 10 = 16

$$\Rightarrow$$
 3x + 10 = 16

Subtracting 10 from both sides, we get

$$\Rightarrow$$
 3x + 10 10 = 16 10

$$\Rightarrow$$
 3x = 6

Dividing both sides by 3, we get

 \Rightarrow

$$\Rightarrow x = 2$$

Thus, the number of sea shells found by Sandy = x = 2, the number of sea shells found by Anita = x + 5 = 2 + 5 = 7,

and the number of sea shells found by Shella = 2x + 5 = 22 + 5 = 27 = 14.

Question:49

Andy has twice as many marbles as Pandy, and Sandy has half as many has Andy and Pandy put together. Andy has 110 marbles which is 115 marbles less than Sandy. How many does each of them have?

Solution:

Let the number of marbles with Pandy = 'x'.

So, the number of marbles with Andy = '2x'.

Thus, the number of marbles with Sandy = = ...

According to the question,

$$115 = 110$$

Adding 115 to both sides, we get

$$115 + 115 = 110 + 115$$

$$= 225$$

Multiplying both sides by 2, we get

$$3x = 450$$

Dividing both sides by 3, we get

$$x = 150$$

So, Pandy has 150 marbles, Andy has 2x = 2150 = 300 marbles, and Sandy has = 225 marbles.

Question:50

A bag contains 25 paise and 50 paise coins whose total value is Rs 30. If the number of 25 paise coins is four times that of 50 paise coins, find the number of each type of coins.

Solution:

Let the number of 50 paise coins = 'x'.

So, the money value contribution of 50 paise coins = 0.5x.

The number of 25 paise coins = '4x'.

The money value contribution of 25 paise coins = 0.254x = x.

According to the question,

$$\Rightarrow$$
 0.5x + x = 30

$$\Rightarrow 1.5x = 30$$

Dividing both sides by 1.5, we get

 \Rightarrow

$$\Rightarrow$$
 x = 20

Thus, the number of 50 paise coins = 'x' = 20, and the number of 25 paise coins = '4x' = 420 = 80.

Question:51

The length of a rectangular field is twice its breadth. If the perimeter of the field is 228 metres, find the dimensions of the field.

Solution:

Let the breadth of the rectangle = 'x' metres.

According to the question,

Length of the rectangle = '2x' metres

Perimeter of a rectangle = 2 length + breadth

So,
$$22x + x = 228$$

$$=> 23x = 228$$

$$=> 6x = 228$$

Dividing both sides by 6, we get

So, the breadth of the rectangle = x = 38 metres, and the length of the rectangle = 2x = 238 = 76 metres.

Question:52

There are only 25 paise coins in a purse. The value of money in the purse is Rs 17.50. Find the number of coins in the purse.

Solution:

Let the number of 25-paise coins in the purse be 'x'.

So, the value of money in the purse = 0.25x.

But 0.25x = 17.5.

Dividing both sides by 0.25, we get

Thus, the number of 25-paise coins in the purse = 70.

Question:53

In a hostel mess, 50 kg rice are consumed everyday. If each student gets 400 gm of rice per day, find the number of students who take meals in the hostel mess.

Solution:

Let the number of students in the hostel be 'x'.

Quantity of rice consumed by each student = 400 gm.

So, daily rice consumption in the hostel mess = 400x.

But, daily rice consumption = 50 kg = 50 1000 = 50000 gm since 1 kg = 1000 gm.

According to the question,

$$400x = 50000$$

Dividing both sides by 400, we get

Thus, 125 students have their meals in the hostel mess.

Question:54

Mark the correct alternative in the following question:

The zero of 3x + 2 is

Solution:
So, the zero of $3x + 2$ is .
Note: A zero is that number, when put in place of the variable, makes the expression equal to zero
Hence, the correct alternative is option c.
Question:55 Mark the correct alternative in the following question:
Solution:
Hence, the correct alternative is option b.
Question:56 Mark the correct alternative in the following question:
Solution:
Hence, the correct alternative is option c.
Question:57 Mark the correct alternative in the following question:
Solution:
Hence, the correct alternative is option a.
Question:58

Mark the correct alternative in the following question:

Solution:			
Hence, the correct alte	rnative is option c.		
Question:59 Mark the correct alternations	ative in the following qu	uestion:	
Solution:			
Hence, the correct alte	rnative is option d.		
Question:60 Mark the correct alternations	ative in the following qu	uestion:	
Solution:			
Hence, the correct alte	rnative is option d.		
Question:61 Mark the correct alternation	ative in the following qu	estion:	
Solution:			
Hence, the correct alte	rnative is option a.		
Question:62 Mark the correct alternations	ative in the following qu	uestion:	
The sum of two consec	cutive whole numbers is	s 43. The smaller numb	oer is
a 21	b 22	c 23	d 24

Solution.			
So, the smaller number	er is 21.		
Hence, the correct alte	ernative is option a.		
Question:63 Mark the correct altern	ative in the following q	uestion:	
The sum of two consec	cutive odd numbers is	36. The larger number is	
a 17 Solution:	b 15	c 19	d 21
So, the larger number	is 19.		
Hence, the correct alte	ernative is option c.		
Question:64 Mark the correct altern	ative in the following q	uestion:	
Twice a number when	increased by 7 gives 2	25. The number is	
a 7 Solution:	b 9	c 10	d 8
So, the number is 9.			
Hence, the correct alte	ernative is option b.		
Question:65			
Mark the correct alternative in the following question:			

The length of a rectangle is three times its width and its perimeter 56 m. The length is

a 7 m	b 14 m	c 21 m	d 28 m
Solution:			
Hence, the correct	ct alternative is optio	n c.	
Question:66			
Mark the correct a	alternative in the follo	owing question:	
Two-third of a nu	mber is greater than	one-third of the number	r by 5. The number is
a 10	b 5	c 15	d 12
Solution:			
So, the number is	s 15.		
Hence, the correc	ct alternative is optio	n c.	
O			
Question:67	altaractive in the fall	ovina avestion.	
Mark the correct a	alternative in the follo	owing question:	
If the cum of a nu	mbor and its two fifth	n is 70. The number is	
ii tile suili di a liu	mber and its two-inti	ris 70. The number is	
a 70	b 50	c 60	d 90
Solution:	5 30	0.00	d 30
Coldion.			
So, the number is	s 50.		
,			
Hence, the correct	ct alternative is optio	n b.	
-	·		
Question:68			
Mark the correct a	alternative in the follo	owing question:	
of a number is less than the original number by 20. The number is			

a 30 Solution:	b 40	c 50	d 60
So, the number i	s 60.		
Hence, the corre	ect alternative is option	d.	
Question:69 Mark the correct	alternative in the follow	ving question:	
A number is as r	much greater than 31 as	s it is less than 81. The n	umber is
a 46 Solution:	b 56	c 66	d 76
So, the number i	s 56.		
Hence, the corre	ect alternative is option	b.	
Question:70 Mark the correct	alternative in the follow	ving question:	
Two complemer	ntary angles differ by 20	o. The smaller angle is	
a 55° Solution:	b 25°	c 65°	d 35°
So, the smaller a	angle is 35°.		
Hence, the corre	ect alternative is option	d.	

Question:71

Mark the correct alternative in the following question:

Two supplementa	ary angles differ by 40°	?. The measure of the larg	er angle is
a 70°	b 80°	c 110°	d 100°
Solution:			
So, the measure	of the larger angle is 1	10°.	
Hence, the correc	ct alternative is option	o.	
Question:72 Mark the correct a	alternative in the follow	ing question:	
The sum of three	consecutive odd numb	pers is 81. The middle nun	nber is
a 25	b 27	c 31	d 29
Solution:			
So, the middle nu	umber is 27.		
Hence, the correc	ct alternative is option	o.	
Question:73 If $2(2n + 5) = 3(3n + 5)$	n 10), then <i>n</i> =		
a 5	b 3	c 7	d 8
Solution:			
Hence the correc	ct alternative is option (4	

Typesetting math: 58%