

L3 TDSI 2017-2018

M. Cissé

Université Cheikh Anta Diop de Dakar Faculté des Sciences et Techniques Département de Mathématiques et Informatique

TD 1 : Espaces Métriques

Exercice 1

Vérifier que les exemples suivants définissent bien des distances.

- 1 $E = \mathbb{R}, d(x, y) = |x y|$.
- 2 $E = \mathbb{R}^n$, $d_1(x, y) = \sum |x_i y_i|$ avec $x = (x_1, x_2, \dots, x_n \text{ et } y = (y_1, y_2, \dots, y_n)$.
- 3 En étudiant le signe de $\sum_{i=1}^n (\lambda |x_i| + |y_i|)^2$, montrer que $\sum |x_i| |y_i| \le \sqrt{\sum x_i^2 \sum y_i^2}$. En déduire que sur $E = \mathbb{R}^n$, $d_2(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2}$.
- $4 E = \mathbb{R}^n, d_{\infty}(x, y) = \max |x_i y_i|.$
- 5 $E =]0, +\infty[, d(x, y) = |\ln(x) \ln(y)|]$

Exercice 2

Montrer que dans un espace métrique, la relation $d(x,y) \ge |d(x,z) - d(y,z)|$ est toujours satisfaite (deuxième inégalité triangulaire). Montrer aussi que $d(x,y) \ge 0$.

Exercice 3

Soit \mathbb{R} muni de la distance valeur absolue, montrer que les boules ouvertes sont exactement les intervalles ouverts bornés.

Exercice 4

Tracer dans \mathbb{R}^2 les boules ouvertes de centre 0 et de rayon 1 pour les distances d_1, d_2, d_{∞} de \mathbb{R}^2 .

Exercice 5

Trouver les frontières des boules ouvertes de centre 0 et de rayon 1 pour les distances d_1, d_2, d_{∞} de \mathbb{R}^2 .

Exercice 6

- 1. Vérifier qu'une boule ouverte est un ouvert et qu'une boule fermée est un fermé.
- 2. Vérifier d'un point est un fermé dans tout espace métrique.
- 3. Vérifier qu'une réunion finie de points est un fermé dans tout espace métrique.

Exercice 7

Soit $V \subset E$. Montrer que V est ouvert si et seulement si $Fr(V) \cap V = \emptyset$.

Exercice 8

1. Monter que P d'équation $y > x^2$ est ouvert tandis que Q d'équation $Y \ge x^2$ est fermé.

Exercice 9

Soit $p \in [1, +\infty]$ et pour tout $x \in \mathbb{R}^n$, on pose $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$. On veut montrer que $||\cdot||_p$ est une norme sur \mathbb{R}^n .

1. Montrer que si a et b sont des réels positifs ou nuls et si p et q sont des réels strictement supérieurs à tels que $\frac{1}{p} + \frac{1}{q} = 1$ alors $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$. Indication, utiliser la convexité de l'exponentiel : Si a+b=1 alors $\exp(ax+by) \leq a \exp(x) + b \exp(y)$.

- 2. En déduire que si a_1, a_2, \ldots, a_n et b_1, b_2, \ldots, b_n sont des réels positifs ou nuls et si p et q sont des réels strictement supérieurs à tels que $\frac{1}{p} + \frac{1}{q} = 1$ alors $\sum_{i=1}^n a_i b_i \leq (\sum_{i=1}^n a_i^p)^{1/p} \cdot (\sum_{i=1}^n b_i^q)^{1/q}$ (Inégalité de Hölder).
- 3. En déduire que si a_1, a_2, \ldots, a_n et b_1, b_2, \ldots, b_n sont des réels positifs ou nuls et si p > 1 alors $(\sum_{i=1}^n (a_i + b_i)^p)^{1/p} \le (\sum_{i=1}^n a_i^p)^{1/p} + (\sum_{i=1}^n b_i^p)^{1/p}$ (Inégalité de Minkowski).
- 4. En déduire que $\|\|_p$ est une norme sur \mathbb{R}^n .

Exercice 10

On munit $C([0,1],\mathbb{R})$ de la norme $\|\|_{\infty}$.

- 1. Montrer que l'ensemble L_k des fonctions k-lipschitziennes est un fermé de $C([0,1],\mathbb{R})$.
- 2. La fonction $f:[0,1] \to \mathbb{R}$ définie par $f(x) = \sqrt{x}$ est-elle k-lipschitzienne?

Exercice 11

Soit E et F deux espaces métriques et $f: E \to F$ une application.

- 1. Montrer que si f est continue, alors son graphe $\Gamma = \{(x, f(x), x \in E)\}$ est fermé dans $E \times F$. La réciproque est-elle vraie?
- 2. Montrer que si f est continue, alors son graphe Γ est homéomorphe à E.