

Tehnička dokumentacija

- temelj razvoja, proizvodnje, prodaje, primjene i održavanja uređaja
- sveobuhvatna, točna, dosljedna i pregledna
- dokumentacija se može podijeliti na:
 - proizvodnu
 - korisničku (prodajnu)
 - servisnu
- mora sadržavati naziv i zaštitni znak proizvođača te vrstu i naziv uređaja

Struktura tehničke dokumentacije uređaja

Proizvodna dokumentacija

- omogućuje proizvodnju i daljnji razvoj elektroničkog uređaja
- ne postoje opća pravila ili zakonske obveze za njezinu izradu
- za cijeli uređaj:
 - električke sheme (način električkog povezivanja dijelova sustava)
 - sastavnica:
 - tablični opis elektroničkih, elektromehaničkih, elektrotermičkih i mehaničkih komponenata, na temelju kojeg se nabavljaju komponente
 - ugradbeni nacrt (položaj tiskanih pločica i drugih sastavnih dijelova uređaja u kućištu)
 - tehnički crtež otvorenog kućišta uređaja u perspektivi, nacrti prednje i stražnje ploče
 - priključne tablice (opis ožičenja između dijelova uređaja)
 - uputstvo za ispitivanje i umjeravanje (svojstva ispitnih signala i način njihova priključivanja, svojstva odzivnih signala na ispitnim točkama, način i redoslijed umjeravanja)

Proizvodna dokumentacija

- za svaku pojedinu tiskanu pločicu proizvodna dokumentacija mora sadržavati:
 - električku shemu
 - sastavnicu
 - položajni nacrt komponenata (tlocrt smještaja komponenata na tiskanoj pločici)
 - nacrt tiskanih veza svih vodljivih slojeva (maske za realizaciju vodljivih likova)
 - plan bušenja (s ucrtanim oznakama konačnih promjera rupa na tiskanoj pločici)
 - uputstva za ispitivanje i umjeravanje

Korisnička dokumentacija

- opisuje uređaj i način njegove primjene
- treba biti prilagođena i korisnicima bez stručnog znanja i iskustva (osim u posebnim slučajevima)
- sastoji se od:
 - opisa uređaja
 - uputstva za uporabu
 - jamstvenog lista
- opis uređaja:
 - okvirni uvid u namjenu i način rada uređaja:
 - područje primjene i namjena uređaja
 - opis dodatnih dijelova uređaja
 - blok shema
 - zajamčeni i informativni tehnički podaci

Korisnička dokumentacija

- tehnički podaci
 - zajamčeni tehnički podaci brojevno iskazane i obvezujuće temeljne električke, mehaničke i toplinske značajke uređaja:
 - npr. mjerna nesigurnost, ulazni otpor i sl.
 - opis izvora napajanja (baterija, akumulator, elektroenergetska mreža)
 - svi signalni ulazi i izlazi dostupni korisniku (priključci izvedeni na kućište) moraju biti potpuno električki opisani
 - temperaturno područje rada
 - stupanj zaštite kućišta od prodora čestica krutih tvari i tekućine
 - druge značajke ovisne o namjeni uređaja (primjerice otpornost na protresanje i ubrzavanje za prijenosne uređaje).
 - informativni tehnički podaci opisuju posebne značajke (dimenzije, masa, izgled, ergonomičnost) uređaja nebitne za njegov rad, ali često vrlo važne pri izboru uređaja.

Tehnički podaci - radni uvjeti

- raspon radnih temperatura (komponente):
 - komercijalni (COM): 0 70 °C
 - industrijski (IND): -40 85 °C
 - automobilski (AUT): -40 − 125 °C
 - vojni (MIL): -55 125 °C
- vlaga
- utjecaj elektromagnetskih smetnji (electromagnetic interference, EMI)
 - elektromagnetska kompatibilnost
- ostalo: atmosferski tlak, mehanički utjecaji (ubrzanje, vibracije, udarci itd.), ionizirajuće zračenje itd.

Tehnički podaci – stupanj zaštite od prodora čvrstih tvari i tekućina

- standardni način označavnja IPXX (IP = Ingress Protection)
- npr. IP67, značenje:

IP – Ingress Protection ratings							
First number		Second number					
0	0 - No protection (Sometimes X)	0	0 - No protection (Sometimes X)				
1	1 - Protected against solid objects up to 50mm³	1	Protection against vertically falling drops of water (e.g. condensation)				
2	2 - Protected against solid objects up to 12mm³	2	2 - Protection against direct sprays of water up to 15 degrees from vertical				
3	3 - Protected against solid objects up to 2.5mm³	3	3 - Protection against direct sprays of water up to 60 degrees from vertical				
4	4 - Protected against solid objects up to 1mm³	4	4 - Protection against water sprayed from all directions - limited ingress permitted				
5	5 - Protected against dust, limited ingress (no harmful deposit)	5	5 - Protected against low pressure jets of water from all directions - limited ingress permitted				
6	6 - Totally protected against dust	6	6 - Protected against low pressure jets of water, limited ingress permitted (e.g. ship deck)				
		7	7 - Protected against the effect of immersion between 15cm and 1m				
		8	8 - Protected against long periods of immersion under pressure				

Korisnička dokumentacija - uputstva za uporabu

- sadrži sve bitne podatke potrebne za ispravnu i potpunu primjenu uređaja:
 - priprema uređaja
 - priključivanje napajanja, spajanje vanjskih priključaka, zagrijavanje itd.
 - uputstvo za rukovanje
 - način primjene uređaja za ostvarenje njegove namjene
 - sigurnosne mjere: štite korisnika tjelesno, a proizvođača pravno
 - uputstvo za održavanje
 - uputstvo za umjeravanje
 - rijetko je sastavni dio korisničke dokumentacije, češće se isporučuje u sklopu servisne dokumentacije

Korisnička dokumentacija – pravni momenti

- dijelovi korisničke dokumentacije (osobito tehnički podaci) smatraju se ugovornom obvezom proizvođača potvrđenom jamstvenim listom
- uputstvo za uporabu (posebice opis sigurnosnih mjera) pravno štite proizvođača u slučaju nepravilne primjene uređaja
- "obrambeni dizajn" (defensive design) minimizacija rizika
- s gledišta sigurnosti, proizvođač je odgovoran za:
 - pružanje pogrešnih informacija o sigurnosti uređaja
 - stavljanje u promet neispravno proizvedenog uređaja
 - nepostavljanje znakova upozorenja na uređaj
 - nepružanje uputa za sigurno rukovanje uređajem
 - pogreške u samom dizajnu uređaja s gledišta sigurnosti uporabe

Servisna dokumentacija

- koristi se za:
 - redovito održavanje uređaja
 - otklanjanje kvarova
 - dogradnju itd.
- za izradu servisne dokumentacije, kao i za proizvodnu, ne postoje opća pravila ili zakonske obveze
- sadržaj određen namjenom, a najčešće uključuje cjelokupnu korisničku i dijelove proizvodne dokumentacije, te dodatke poput popisa kvarova i preporučenih postupaka za njihovo otklanjanje.

Upute za izradu programa

Program - izrada tehničke dokumentacije elektroničkog uređaja

- cilj programa: upoznavanje studenata s cjelokupnim postupkom projektiranja elektroničkog uređaja i izrade tehničke dokumentacije
- program obuhvaća:
 - djelomično projektiranje elektroničkog uređaja:
 - analiza specifikacija, crtanje blok sheme, crtanje električke sheme, projektiranje tiskane pločice
 - izradu djelomične tehničke dokumentacije:
 - područje primjene i namjena sklopovlja, opis rada, tehnički podaci, uputstvo za uporabu, sastavnica, položajni nacrt komponenata, nacrt tiskanih veza, plan bušenja
- tehnička dokumentacija uređaja nije "činovnički" posao! (usko povezana s procesom projektiranja)

Zadaci za program

- programi će biti zadani nepotpunim električkim shemama, koje će potrebno nadopuniti prema naputcima
- dobiveni zadaci predstavljat će korisničku specifikaciju
- zašto "djelomično" projektiranje?
 - izrađuje se samo tiskana pločica (funkcijski ključni dio cjelokupnog elektroničkog uređaja) i prateća dokumentacija
 - neće se projektirati npr. izvori napajanja, zaštite, prednje ploče, kućišta za smještaj tiskanih pločice i dr. što čini kompletni uređaj
- zašto "djelomična" tehnička dokumentacija?
 - jer se ne radi kompletna proizvodna, korisnička i servisna dokumentacija, već samo najbitniji dijelovi
 - u realnim primjenama rade se i dijelovi dokumentacije koji neće biti obuhvaćeni programom

Poglavlja projektne dokumentacije

- program obuhvaća sljedeća poglavlja:
 - 1. Područje primjene i namjena sklopovlja,
 - 2. Blok shema,
 - 3. Električka shema,
 - 4. Opis rada,
 - 5. Tehnički podaci,
 - 6. Uputstvo za uporabu,
 - 7. Sastavnica,
 - 8. Položajni nacrt komponenata,
 - 9. Nacrt(i) tiskanih veza i
 - 10. Plan bušenja.
- raspored rada na programu kroz semestar:

Računalom podržano projektiranje elektroničkih uređaja

Upute za izradu programa

- program se predaje:
 - u tiskanom obliku cjelokupna dokumentacija u formi seminara (*.doc predložak nalazit će se na web-u)
 - u elektroničkom obliku sve izvorne datoteke postupka projektiranja (električke sheme (*.sch), biblioteke komponenata (*.schlib, *.pcblib, *.intlib), tiskane veze (*.pcb))
- kod formatiranja tekstualne dokumentacije pridržavati se pravila iz predloška

Upute za izradu programa

- za svaki dio programa bit će prezentirane neke najbitnije opće napomene
- posebno će se detaljno razraditi:
 - projektiranje električke sheme
 - projektiranje tiskane pločice

konzultacije:

- petak 12 h
- četvrtak 13 h (za RI kada su predavanja petkom prijepodne)
- demonstratori: četvrtak 10 h/16 h

0. Opće napomene

- na web stranicama predmeta bit će postavljen template Word dokumenta
- naslovna stranica: ime, prezime, JMBAG, naziv programa, datum predaje
- sadržaj
- svako poglavlje započeti na novoj stranici

1. Područje primjene i namjena sklopovlja

- kratki i jezgroviti tehnički opis čemu uređaj služi i gdje se primjenjuje (nekoliko rečenica)
- koristiti tehnički način izražavanja
- ne navoditi tehničke podatke (osim eventualno najbitnijih elementarnih)
- koristiti se hrvatskim književnim jezikom u svim dijelovima projekta:
 - izbjegavati buffer, latch, trigger, pin, tastatura itd.
 - preferiraju se hrvatski termini: odvojno pojačalo, zaporni sklop, okidni signal, izvod, tipkovnica itd.
 - kada ne postoji odgovarajući hrvatski prijevod engleske termine navoditi u italicu

2. Blok shema

- kompleksnost pojedinog bloka ovisi o strukturi cjelokupnog sklopovlja
- blokova ne smije biti previše, niti premalo
- docrtati blokove koji nisu dio samog električkog sustava, a važni su za obavljanje njegove funkcije (crtkano označiti što je dio zadane električke sheme):

 funkcijska blok shema (služi korisnicima i serviserima) – nazivlje blokova treba oslikavati njihovu funkciju! (blok se ne može nazvati bilo kako (npr. "ulazni stupanj", "međustupanj" i sl.), već prema funkciji (npr. "ulazni stupanj za prilagodbu signala")

3. Električka shema

- sklop je zadan <u>nepotpunom</u> električkom shemom (iako će najveći dio sheme bit zadan)
- za cjelovitost električke sheme potrebno je voditi računa o tome da se sklop fizički realizira na tiskanoj pločici
- električku shemu bit će potrebno nadopuniti s npr.:
 - blokadnim kondenzatorima
 - elektrotermičkim komponenatama (hladila na komponentama koje disipiraju snagu)
 - elektromehaničkim komponentama (konektori, ispite točke, podnožja i sl.)
 - obavezno dovesti napajanje na tiskanu pločicu
- označavanje komponenata treba provesti u skladu s IEC preporukama

Računalom podržano projektiranje elektroničkih uređaja

OZNAKA	VRSTA KOMPONENATA				
A	analogni integrirani sklopovi				
В	pretvornici neelektričnih veličina u električne				
С	kondenzatori i promjenljivi kondenzatori				
D	digitalni integrirani sklopovi				
E	komponente za rasvjetu i grijanje				
F	komponente za zaštitu (osigurači, VDR-otpornici)				
G	izvori (generatori)				
Н	komponente za svjetlosnu i zvučnu signalizaciju (svjetleće diode, zvučnici, zvonca, zujala)				
K	releji				
L	induktivne komponente, zavojnice				
M	motori				
P	mjerni uređaji (instrumenti, brojila, satovi)				
Q	kristali i kristalni filtri				
R	otpornici, promjenjljivi otpornici (trimeri i potenciometri), otporničke mreže				
S	sklopke, preklopke, tipkala				
Т	transformatori				
U	modulatori				
V	diskretne poluvodičke komponente				
W	prijenosni putovi (žice, sabirnice, antene, kratkospojnici)				
X	priključne komponente (konektori, utičnice, stezaljke, ispitni šiljci)				

R	OTPORNIK	<u>v</u>	DIODA	<u>H</u>	ZVONCE
R	PROMJENJLJIVI OTPORNIK (TRIMER)	v_	SCHOTTKY DIODA	H	ZUJALO
R	PROMJENJLJIVI OTPORNIK (POTENCIOMETAR)	H (V)	SVJETLEĆA DIODA	<u>H</u> <u>(E)</u>	ŽARULJA
c_ 	KONDENZATOR	<u>V</u>	ZENER DIODA	<u>x</u>	UTIČNICA UTIKAČ
C+	ELEKTROLITSKI KONDENZATOR	¥	TRANZISTOR NPN I PNP	x \(\times \)	BNC
C 14	PROMJENJLJIVI KONDENZATOR	\	SPOJNI FET N I P KANALNI	X 1 0	REDNI
L	ZAVOJNICA	Y	MOSFET N I P KANALNI	3 0	KONEKTOR
Q -	OSIGURAČ KRISTAL	V +	TIRISTOR	X ————————————————————————————————————	DVOREDNI
G ₊ T	BATERIJA (AKUMULATOR)	V	TRIJAK		KONEKTOR
S	TIPKALO	<u>\$</u>	_ SKLOPKA	<u>s</u>	PREKLOPKA
				l ▲	radni kontakt
	DVOSTRUKA PREKLOPKA	S	- VIŠEIZVODNA - PREKLOPKA	K K	RELEJ mirni kontakt
S	Računalom	podržano pr	ojektiranje elektronič	ćkih uređaja	`preklopni kontakt

Posebni simboli u električkim shemama

Električka shema

- električka shema mora biti pregledna i razumljiva na prvi pogled
- izbjegavati pretjerano dugačke signalne vodove i nepotrebna križanja među njima
- posebni simboli koji povećavaju preglednost električke sheme:
 - imenski povezane mreže (net labels)
 - mreže napajanja i uzemljenja (power ports)
 - logički grupirane skupine signalnih vodova (sabirnice)
 (bus)
 - ulazni/izlazni signali s električke sheme (ports)

Povezivanje komponenata na električkoj shemi

Hijerarhijske električke sheme

 povećanje preglednosti električke sheme podjelom na manje logičke cjeline

cjelokupna hijerarhija

Serial.sch

CPUCLK.sch

CPU.sch

Označavanje komponenata

- navesti oznaku komponente (Designator) i nazivnu/svojstvenu vrijednost (Comment)
- primjeri označavanja pasivnih komponenata:

- za otpornike vrijedi:
 - umjesto 10 Ω , 1 k Ω , 2.7 k Ω , 10 M Ω na shemi se piše 10R (ili samo 10), 1k, 2k7 i 10M
- za kondenzatore vrijedi:
 - umjesto 10 pF, 100 nF, 10 μF na shemi se piše 10p, 100n i 10u
- svojstvena veličina navodi se ako je bitna (npr. nazivna snaga ne navodi se za 0.25 W-tne otpornike, ali se za elektrolitske kondenzatore obavezno navodi najveći radni napon)

Crtanje izvoda napajanja analognih i digitalnih sklopova

 izvodi napajanja analognih i digitalnih sklopova često se ne crtaju radi preglednosti (hidden pins)

Multipart komponente

- *multipart* komponente – dvije ili više samostalnih komponenata smještenih u istom kućištu

Neiskorišteni izvodi komponenata

- pravilo: svi izvodi komponenata moraju biti vidljivi na električkoj shemi! (uključivo i izvodi koji se ne koriste za ostvarenje električke funkcionalnost sklopa)
- što s neiskorištenim izvodima komponenata?
 - ulazni izvodi spojiti izravno na neku od mreža napajanja (VCC, VDD, GND) ili korištenjem zaključnog otpornika (neiskorišteni ulazi moraju se spojiti na čvrsti potencijal)
 - izlazni izvodi ostaju nespojeni

Zaključenje neiskorištenih ulaza - primjer

neispravno

ispravno

Neiskorišteni izvodi komponenata

- floating input pins ERC error (ERC electrical rule check)
- primjer: na električkoj shemi koriste se samo vrata {1A,1B} i {3A,3B}; logička vrata {2A,2B} i {4A,4B} također treba prikazati i eksplicitno spojiti ulaze na definirani potencijal
- nezaključeni ulazi ponašaju se kao antene za prijem smetnji iz okoline (poglavito za kapacitivno spregnute smetnje)
- problemi: izlaz logičkog sklopa ponaša se kao nekontrolirani oscilator!
- oscilacije mogu čak i uništiti osjetljive CMOS integrirane sklopove!

74HC00

- zašto blokadni kondenzatori?
- vodljivi likovi na tiskanoj pločici nisu idealni vodiči:
 - konačni otpor, induktivitet i kapacitet prema masi

- CMOS digitalni sklopovi u statičkim prilikama ne disipiraju snagu, ali troše struju izvora napajanje prilikom promjene logičkog stanja
- TTL sklopovi imaju određenu potrošnju i u statičkim uvjetima

 u digitalnim sklopovima izlazi invertora kapacitivno su opterećeni ulazima sljedećih stupnjeva

 izlaz invertora opterećen je s N ulaza invertora sljedećeg stupanja (N_{max} = faktor grananja, fan-out)

- u stacionarnom stanju u ulaze invertora sljedećeg stupnja praktički ne teče struja (zbog vel. $R_{IJI} \sim M\Omega$ 100 $M\Omega$)
- promjene logičkog stanja u digitalnom sklopu sinkronizirana je na signal vremenskog vođenja (npr. '0' → '1'):

 ulazni kapacitet invertora je malenog iznosa (tipično ~ pF) – kratki strujni šiljak za nabijanje ili izbijanje kapaciteta C_{ιιι}

problem: kratki strujni "šiljak" I_{A,max} u trenutku promjene logičkog stanja na izlazu invertora

$$I_{A,\text{max}} = \frac{U_{cc}}{R_{iz}}, \quad R_{iz} <<$$

- trajanje impulsa je kratko i određeno vremenskom konstantom $\tau = R_{iz}C_{UL} (\tau <<)$
- u integriranom sklopu tipično postoji veliki broj kapacitivno opterećih invertora

'1'

'0'

Parazitni parametri

- kratkotrajni pad napona napajanja na priključku integriranog sklopa može dovesti do neispravnog rada, jer se ne može osigurati dovoljno naboja za promjenu logičkog stanja za vrijeme prijelazne pojave
- tranzijentni pad napona napajanja također može biti veći od dozvoljenih granica smetnji:

- u stacionarnom stanju na blokadnom kondenzatoru C prikuplja se naboj Q_C
- za promjenu logičkog stanja potreban mali naboj Q_{cc.} ali vrlo brzo (dl/dt >>)
- induktivitet vodova između blokadnog kondenzatora i priključka napajanja je zanemariv

- osiguravaju zalihu naboja za brze strujne "šiljke"
- kako odabrati i postaviti blokadne kondenzatore?
- iskustveno pravilo:
 - na svaki IC postaviti jedan keramički kondenzator od 100 nF
 - na približno svakih 5 IC postaviti jedan tantalov elektrolitski kondenzator od 10 μF
- na tiskanoj pločici blokadne kondenzatore postaviti što bliže integriranom sklopu
- vrlo važno: minimizirati duljinu vodljivih veza između kondenzatora i izvoda napajanja integriranog sklopa (minimizacija parazitnog induktiviteta ~ nH)
- kondenzatori s izvodima (through-hole) imaju veći induktivitet priključaka od SMD kondenzatora
- na digitalne sklopove i unipolarne analogne IC ide jedan blok. kondenzator (između GND i V_{CC}), dok na bipolarne analogne IC idu dva (između GND i V_{CC} i između GND i V_{FF})

- čemu služe blokadni kondenzatori kod analognih sklopova?
 - nema problema s pojavom strujnih šiljaka kao kod digitalnih sklopova jer se ne mijenjaju logička stanja
 - osim toga, analogni sklopovi (tipično pojačala) imaju ograničeno radno frekvencijsko područje
 - kod analognih sklopova blokadni kondenzatori pomažu u potiskivanju smetnji nastalih na vodovima napajanja, poglavito zbog opisanog utjecaja digitalnih sklopova

- koju vrstu kondenzatora odabrati?
- nadomjesna shema realnog kondenzatora:

- C kapacitet kondenzatora
- R_{iz} izolacijski otpor (dielektrika)
- R_s serijski otpor (izvoda)
- L_s serijski induktivitet (izvoda)

 frekvencijska karakteristika realnog (keramičkog) kondenzatora:

- najčešće korištene vrste kondenzatora:
 - keramički mali kapacitet, dobra VF svojstva
 - folijski odlična stabilnost, slaba VF svojstva (zbog parazitnog induktiviteta)
 - elektrolitski (aluminijski, tantalovi) visoki kapacitet, loša VF svojstva (tantalovi imaju bolja VF svojstva)
- za blokadu napajanja integriranih sklopova koriste se keramički i tantalovi elektrolitski kondenzatori
- za više frekvencije bolji su keramički kondenzatori manjeg nazivnog kapaciteta
- brzi strujni "šiljak" dominantan spektar u VF području

 primjer raspoređivanja blokadnih kondenzatora na tiskanoj pločici:

crtanje blokadnih kondenzatora na električkoj shemi:

Napajanje tiskane pločice

- u programu će se projektirati funkcionalni dio uređaja, u načelu bez projektiranja izvora napajanja
- napajanje na pločicu potrebno je dovesti preko konektora (redne stezaljke, screw terminals)
- na konektor napajanja obavezno spojiti vod mase! (također i na sve U/I signalne konektore)

Blokada izvora napajanja

- drugačija problematika od blokade napajanja integriranih sklopova
- ako se napajanje na tiskanu pločicu dovodi iz vanjskog stabiliziranog izvora, uz konektor napajanja se u pravilu postavlja kondenzator koji služi za filtriranje valovitosti napona napajanja
- engl. bulk capacitor (kondenzatori za blokadu napajanja ICova nazivaju se engl. decoupling i bypassing capacitors)
- u pravilu se postavlja Al elektrolitski kondenzator 100 μF
- Al elektrolitski kondenzator radi dobro radi za frekvencijsko područje napona valovitosti poluvalno ili punovalno ispravljenog mrežnog napona
- bitno je da je kapacitet što veći (razlog zašto se koriste elektrolitski kondenzatori)

Blokada izvora napajanja

- Ta elektrolitski kondenzatori manje se koriste kao bulk kondenzatori jer lošije podnose strujne šiljke (iako imaju bolje VF karakteristike od Al elektrolitskih kondenzatora)
- obratiti pažnju na nazivni napon što je veći kapacitet, to je nazivni napon manji! (uži dielektrik formiran oksidacijom aluminija)
- unipolarno napajanje blokira se jednim kondenzatorom, a bipolarno s dva (kao i kod analognih IC)
- paziti na polaritet! (elektrolitski kondenzatori su polarizirani, za razliku od keramičkih ili folijskih)

Konektori za napajanje i signale

- kod jednostavnijih uređaja za napajanje i signale najčešće se koriste sljedeći tipovi konektora:
 - redne stezaljke (screw terminal)
 - konektor za trakasti (*flat*) kabel (*header*) (dvoredni konektor)
 - jednoredni konektor
- tipični razmak između izvoda: 2.54 mm (0.1 inch)

4. Opis rada

- jezgrovit tehnički opis kako zadani sklop radi
- pozvati se na dijelove električke i blok sheme
- u programu bit će dovoljno opisati principe rada sklopa na 1-2 stranice, bez detaljnog proračuna (osim minimalno potrebnog za razumijevanje rada sklopa)
- prilikom analize rada sklopa važno je procijeniti potrošnju kako bi se na ispravan način mogao odabrati prikladan izvor napajanja, procijeniti autonomija rada baterijski napajanog uređaja i sl.

- zajamčeni i informativni tehnički podaci
- zajamčeni tehnički podaci npr. digitalni voltmetar:
 - mjerno razlučivanje (broj podjeljaka, broj binarnih znamenaka (bita), broj dekadskih znamenaka (digita))
 - granična mjerna pogreška (relativna, apsolutna)
 - mjerni opseg
 - učestalost mjerenja (broj mjerenja u jedinici vremena)
- ključna stvar: potpuno električki opisati sve ulaze i izlaze!
 - točno značenje svih priključaka konektora:
 - X1-1 napajanje, X1-2 masa,
 - X2-1 ulazni signal, X2-2 masa itd.
- ulaz:
 - mjerna područja, ulazna impedancija, frekvencijska karakteristika...
 - u ulaze spadaju ne samo mjerni ulazi, već i tipke, tipkovnice, potenciometri, preklopke i sl. (sve što je dostupno korisniku i što se unosi u sustav)

- izlaz:
 - potpuni električki opis signalnih izlaza (ako ih ima), npr:
 - relej jednostruki preklopni kontakt, 250V~/10A,
 - struja 4-20 mA
 - napon 0 10 V
 - itd.
 - u izlaze spada sve što je izvana dostupno korisniku (iznosi se iz sustava), npr.:
 - signalni izlazi
 - prikazne jedinice (LED 7-SEGx4, LCD 16x2 itd.)
 - registracijske jedinice (pisači)
 - i sl.

- napajanje:
 - nazivni napon, struja i eventualno snaga (frekvencija za izmjenično), tolerancija napona
 - izmjenično:
 - 220 VAC +10% -15%/ 50 Hz ±1%/100 mA/22 VA
 - navesti osigurač, ako postoji
 - istosmjerno:
 - 24 VDC ±20%/50 mA
 - stabilizirano ili ne
 - simetrično ili ne (±V)
 - baterijsko (navesti tip baterije)
- kućište:
 - stupanj zaštite (IPxx), ugradnja, dimenzije, masa
- opis svih priključaka (napajanje, signali i ostalo) (poželjno definirati i pretpostavljene razine, frekvencije i sl., kada je moguće)

- temperaturno područje rada:
 - ovisi u ugrađenim komponentama npr:
 - komercijalni (COM): 0 − 70 °C
 - industrijski (IND): -40 85 °C
 - automobilski (AUT): -40 125 °C
 - vojni (MIL): -55 125 °C
- za digitalne sklopove navesti: logičke razine, logičku porodicu, vrijeme porasta (ako je bitno kod bržih sklopova) i sl.

6. Uputstvo za uporabu

- sadrži bitne podatke za primjenu uređaja:
 - priprema uređaja (za neke programe to će biti samo priključak na napajanje)
 - uputstvo za rukovanje
 - uputstvo za održavanje (čišćenje, zamjena baterija i sl.)
 - uputstvo za umjeravanje
- (detaljnije je opisano u skripti)

7. Sastavnica

- tablični opis svih komponenata na temelju kojeg se komponente nabavljaju:
 - električke (pasivne, aktivne, integrirani sklopovi i sl.)
 - elektromehaničke (konektori, tipkala i sl.)
 - elektrotermičke (hladila)
 - mehaničke (kutije, vijci, odstojnici itd.)
- komponente se u sastavnici grupiraju:
 - prema vrsti (prema ranije navedenog slijedu)
 - unutar grupe prema složenosti, počevši od najsloženijih (integrirani sklopovi, diskretne aktivne komponente, pasivne komponente)

Sastavnica

format sastavnice:

Redni broj	Oznake komponenata	Opis komponente	Kućište	Proizvođač	Katalog dobavljača	Kataloški broj	Količina
1	D1, D2	74HCT244 osmerostruko sabirničko odvojno pojačalo	DIP-20	-	Farnell	382267	2
2	V1, V7-V10, V13	NPN tranzistor BC546B	TO-92	-	Farnell	1467868	6
3	R4	Kovinoslojni otpornik, 22k/0.25W,1%	AXIAL0.4	-	Farnell	9341544	1

- uz svaku komponentu treba staviti kratki opis (naziv integriranog sklopa, opis funkcije, nazivne i utjecajne vrijednosti komponenata i sl.)
- proizvođač se najčešće ne navodi uz "generičke" komponente, već u slučajevima kada je to bitno za nabavu komponente (npr. kod preklopki, jer se svaka fizički izvodi na nešto drugačiji način)

Projektiranje tiskanih veza

Projektiranje tiskanih veza

- završni dio procesa električkog, mehaničkog i toplinskog projektiranja sklopovlja jedne zasebne cjeline elektroničkog uređaja
- položajni nacrt komponenata, nacrt(i) tiskanih veza i plan bušenja izlazni su rezultati postupka projektiranja tiskanih veza
- električko i mehaničko povezivanje elektroničkih komponenata tiskanom pločicom nije puko smještanje komponenata na što manjoj površini i međusobno spajanje njihovih izvoda tiskanim vezama
- tiskana pločica skup električkih vodova s prostorno raspodijeljenim parametrima, međusobno povezanih elektromagnetskim putem
- tiskana pločica, iako nevidljiva u električkoj shemi sklopa, u njoj je sveprisutna, unoseći RLC dvopol u svaki čvor (spoj dvije ili više komponenata) te CMG dvopol između čvorova svih parova čvorova
- vrijednosti svojstvenih veličina nadomjesnih dvopola, koji opisuju svaki tiskani vod na pločici, funkcije su geometrije vodljivih likova, čije određivanje stoga nije puko crtanje već projektiranje

Parazitni električki parametri tiskanih vodova

Parazitni električki parametri tiskanih vodova

Električki otpor tiskanih veza

- tiskani vodovi imaju konačni otpor
- primjer:

T = 25 °C,
$$\rho_{Cu}$$
 = 1.724 x 10⁻⁸ Ωm, h = 38 μm,
I = 100 mm, w = 1 mm, S = 0.038 mm²

ako kroz tiskani vod teče struja I, tada će ona uzrokovati pad napona ∆U:

Ι	ΔU		
2.2 mA	100 μV		
22 mA	1 mV		
220 mA	10 mV		
2.2 A	0.1 V		

$$R = \rho \frac{l}{S}$$

Električki otpor tiskanih veza

- primjer: tenzometarski most
- struja koja teče u senzor:

$$I_0 = \frac{V_{REF}}{R_b} = \frac{5 \text{ V}}{120 \Omega} = 42 \text{ mA}$$

pad napona na tiskanom vodu:

$$\Delta U = R \cdot I_0 = 18.9 \text{ mV}$$

 ∆U će uzrokovati postotnu pogrešku mjerenja naprezanja:

$$\frac{\Delta U}{V_{REF}} = \frac{18.9 \text{ mV}}{5 \text{ V}} \cdot 100\% = 0.38 \%$$
 ako se utjecaj pada napona ΔU pravilno ne kompenzira u postupku kalibracije

Specifični otpor tiskanih veza

Ovisnost specifičnog linijskog otpora **R*** ravnoga tiskanog voda o njegovoj širini **w**, za različite debljine **h** bakrenog sloja

Zagrijavanje tiskanih vodova

zbog konačnog otpora tiskani vodovi mogu se zagrijavati uslijed protjecanja struje:

$$P = I^2 \cdot R_{PCB}$$

- to je razlog, između ostalog, zašto su vodovi napajanja (i ostali kroz koje teku veće struje) deblji
- odvođenje topline:
 - mehanizmi:
 - kondukcija slabo (podloga je dobar izolator)
 - konveksija razmjena topline s okolnim zrakom
 - za procjenu učinkovitosti razmjene topline važno je znati vanjsku radnu temperaturu
 - također je bitno da li se koristi maska zaustavnog laka ili ne, Sn/Pb itd.
 - u slučaju prevelike disipacije postoji mogućnost odvajanja tiskanih veza od podloge!

Zagrijavanje tiskanih vodova

Dopuštena jakost struje kroz tiskani vod debljine ${\bf h}$ u ovisnosti o njegovoj širini ${\bf w}$, za različite vrijednosti njegove nadtemperature $\Delta {\bf T}$

Zagrijavanje tiskanih vodova

- preporuka: nadtemperatura vodova uslijed protjecanja struje ne bi smjela biti veća od 10 °C
- poželjno predvidjeti podopterećenje u odnosu na preporuke (derating)
- npr. podopterećenja prema vojnoj normi MIL-STD-275C:
 - 30%, ako se na vodove nanosi zaštitni sloj kositar-olova,
 - 15% ako se na pločicu nanosi zaustavni (zaštitni) lak,
 - 15% ako je debljina t nosive izolacijske podloge manja ili jednaka 0,8mm
 - 15% ako je debljina h bakrenog sloja veća ili jednaka 105μm
 - to daje ukupni faktor strujnog podopterećenja:

$$\frac{1}{1-0.3} \cdot \frac{1}{1-0.15} \cdot \frac{1}{1-0.15} \cdot \frac{1}{1-0.15} = 2.33$$

u odnosu na slučaj nadtemperature 10 °C

Električki otpor tiskanih veza – skin efekt

- dodatni problem: skin-efekt na visokim frekvencijama (slabo prodiranje struje u unutrašnjost vodiča)
- dubina prodiranja struje u unutrašnjost vodiča δ definira se kao udaljenost od površine vodiča kod koje gustoća struje padne na vrijednost 1/e u odnosu na površinu:

$$\delta = \sqrt{\frac{\rho}{\pi \cdot \mu \cdot f}}$$

gdje je μ magnetska permeabilnost, a ρ specifični otpor vodiča (formula vrijedi samo ako je dubina prodiranja δ manja od debljine vodiča)

- posljedica skin efekta: manji efektivni presjek vodiča (veći otpor)
- dubina prodiranja za bakar: $\delta_{Cu} \approx 66/f^{\frac{1}{2}} \, \mathrm{mm}$

(oko 0.066 mm za 1 MHz, odnosno 0.020 mm za 10 MHz) (za 10 MHz za vodljivi lik h = 35 μm efektivni presjek 2x manji i otpor 2x veći)

- najmanji dopušteni razmak d između dvaju električki odvojenih elemenata vodljivih likova funkcija je dielektričke čvrstoće izolacijskog sloja između njih
- dielektrička čvrstoća ovisi o:
 - tehnologiji (primjeni zaštitnog laka, dielektričkoj čvrstoći i debljini tiskane pločice, masama za zaštitu od vanjskih utjecaja (conformal coating) itd.)
 - okolnim uvjetima rada (tlak, vlaga, temperatura, prašina)
- u slučaju prevelike razlike potencijala između vodljivih likova može doći do proboja dielektrika ili do izboja (kroz zrak)
- sigurnosne preporuke za tiskane pločice koje su galvanski povezane s mrežnim naponom (IEC-348):
 - min 3 mm za napone do 250V_{RMS} između pojedinih dijelova uređaja
 - min 2 mm za napone do 250V_{RMS} između samih tiskanih vodova (preporuča se da taj razmak bude min. 3 mm kada je god moguće)

Potrebni razmak **d** između električki odvojenih elemenata vodljivih likova u ovisnosti o naponu **U** (podrazumijeva se vršna vrijednost ako je napon vremenski promjenjiv) između njih u laboratorijskim uvjetima po MIL-STD-275C za **a**) pločicu sa zaštitnim lakom, **b**) pločicu bez zaštitnog laka do 3000m nadmorske visine i **c**) pločicu bez zaštitnog laka iznad 3000m nadmorske visine

Potrebni razmak d između električki odvojenih elemenata vodljivih likova u ovisnosti o naponu **U** (podrazumijeva se vršna vrijednost ako je napon vremenski promjenjiv) između njih po MIL-STD-275B za **a**) pločicu bez zaštitnog laka u laboratorijskim uvjetima i **b**) pločicu bez zaštitnog laka u prljavoj i prašnjavoj okolini, oboje do 3000m nadmorske visine

Potrebni razmak **d** između električki odvojenih elemenata vodljivih likova u ovisnosti o naponu **U** (podrazumijeva se vršna vrijednost ako je napon vremenski promjenjiv) između njih u laboratorijskim uvjetima po IEC-28 preporuci

• prema IPC (Institute for Interconnecting and Packaging Electronic Circuits) preporukama:

U _{DC} [V]	d [mm]	d [mil = 1/1000 inch]
0 – 30	0.1	4
30 – 150	0.65	25
150 – 300	1.27	50
300 – 500	2.54	100
500 – 1000	5.08	200
> 1000	0.005 po V	0.2 po V

- za vodove na površini tiskane pločice, bez zaustavnog laka, do 3000 m nadmorske visine
- preporuke vrijede za tiskane veze koje su tijekom rada galvanski odvojene od elektroenergetske mreže

Kapacitet tiskanih veza

- ovisan o geometrijskom obliku vodljivih likova i njihovom međusobnom položaju
- za jednostavnije oblike može se jednostavno izračunati, iako su stvarni oblici likova redovito složeni i nepravilni
- kapacitet između dvaju usporednih ravnih vodova na istoj strani tiskane pločice:

$$C^* = \frac{C}{1} = 0,000122 \cdot \frac{h}{d} + 0,0905 \cdot \left(1 + \varepsilon_r\right) \cdot \log\left(1 + \frac{2 \cdot w}{d} + 2 \cdot \sqrt{\frac{w}{d}} + \frac{w^2}{200}\right)$$

$$C^*$$
 [pF / cm]; l[cm]; d, w[mm]; h[µm]

 ε_r je relativna dielektrička konstanta nosive podloge tiskane pločice (ε_r = 4,7 za FR-4)

Kapacitet tiskanih veza

 kapacitet ravnog tiskanog voda prema bakrenom sloju na suprotnoj strani tiskane pločice:

$$C^* = \frac{C}{1} = 0,0886 \cdot \varepsilon_r \cdot \frac{w}{t};$$

Specifični linijski kapacitet εr = 5,4 h = 35μm

Ovisnost specifičnog linijskog kapaciteta **C*** između dvaju usporednih ravnih tiskanih vodova na istoj strani tiskane pločice o njihovoj širini **w** i međusobnom razmaku **d**, uz debljinu bakrenog sloja **h** i nosivu podlogu relativne dielektričke konstante ε**r**

Specifični linijski kapacitet

Ovisnost specifičnog linijskog kapaciteta \mathbf{C}^* ravnog tiskanog voda prema bakrenom sloju na suprotnoj strani tiskane pločice o njegovoj širini \mathbf{w} i debljini \mathbf{t} nosive podloge relativne dielektričke konstante $\epsilon_{\mathbf{r}}$

Problem preslušavanja (crosstalk)

 parazitni kapacitet između dviju susjednih tiskanih veza ponaša se kao CR-član

električka shema

tiskana pločica

pojednostavljena analiza:

$$\Delta U = R \cdot i_c = R \cdot C \frac{du(t)}{dt}$$

gdje je ∆U visina naponskog "šiljka", R zaključni otpor prijemnog voda, C kapacitet između vodova, du/dt brzina porasta naponskog impulsa

- iako pojednostavljena aproksimacija CR-članom daje približni uvid u fenomen preslušavanja, egzaktnu analizu potrebno je provesti korištenjem teorije linija (transmission lines)
- preslušavanje se može minimizirati:
 - povećanjem razmaka među vodovima (npr. primjenom 3W pravila)
 - korištenjem guard i shunt vodova
 - niskoomskim zaključenjem osjetljivih vodova

 3W pravilo: razmak između vodova širine W mora biti 3W, mjereno od sredine svakog voda

- korištenje guard i shunt vodova (uzemljenih vodljivih likova oko kritičnog signala, npr. signala vremenskog vođenja (clock)):
- Faradeyev oklop

 općenito, osjetljivost signalnih vodova može se smanjiti "zalijevanjem u masu" (tj. ostavljanjem bakra na neizjetkanim dijelovima vodljivog sloja i spajanjem na masu – objekt polygon u Altium Designeru):

Induktivitet tiskanog voda

- induktivitet ovisi o geometriji tiskanog voda (odstupanje od pravca povećava induktivitet)
- induktivitet ravnog tiskanog voda:

$$L^* = \frac{L}{1} = 2 \cdot \left[\ln \left(\frac{20 \cdot 1}{w + 0,001 \cdot h} \right) + 0,02235 \cdot \left(\frac{w + 0,001 \cdot h}{1} \right) + 0,5 \right]$$

$$L^*$$
 [nH / cm]; l[cm]; w[mm]; h [μ m]

 neravni tiskani vod između krajeva zatvara površinu kroz koju se zatvaraju silnice vanjskih magnetskih polja i magnetskih polja prouzročenim protjecanjem struja kroz ostale vodove na tiskanoj pločici

Induktivitet tiskanog voda

Ovisnost induktiviteta **L** ravnog tiskanog voda o njegovoj širini **w** i duljini **I**, uz debljinu **h** bakrenog sloja

Specifični linijski induktivtet

Ovisnost specifičnog linijskog induktiviteta **L*** ravnog tiskanog voda o njegovoj širini **w** i duljini **I**, uz debljinu **h** bakrenog sloja

Induktivitet tiskanog voda

 primjer (neprikladno postavljen blokadni kondenzator C1):

$$I_{pcb}$$
 = 150 mm, L \approx 150 nH npr. dI/dt = 50 mA / 5 ns

$$\Delta U_{cc}(D1) = L \cdot dI/dt = 1.5 V!$$

- izvodi through-hole kondenzatora imaju induktivitet od približno 1 nH/mm duljine izvoda!
- SMD kondenzatori imaju značajno manji induktivitet izvoda

Induktivna sprega između vodova

Inducirani napon **U** na krajevima tiskanog voda neravnog kao posljedica protjecanja vremenski promjenjljivog magnetskog polja B (prouzročenog protjecanjem struje I susjednim tiskanim vodom) kroz površinu koju zatvara između svojih krajeva

$$U = \mu_0 \cdot \frac{1 \cdot c}{2 \cdot \pi \cdot \left(d + \frac{c}{2}\right)} \cdot \frac{\Delta I}{\Delta t} \quad ; \quad za: d << \frac{c}{2} \Rightarrow \frac{\frac{U}{1}}{\frac{\Delta I}{\Delta t}} = 4 \text{ nH / cm}$$

Induktivna sprega između vodova

Preporučene debljine tiskanih vodova

• inčni raster (imperial units):

Tip voda	Preporuč	ena širina	Specifični otpor R* [mΩ/cm]	Specifični kapacitet C* [pF/cm]	Specifični induktivitet L* [nH/cm]
	mil	mm			
signalni (tipično)	8 – 16 (12)	0.2 - 0.4 (0.3)	10	1	10
napajanje (tipično)	40 – 200 (40)	1 – 5 (1)	1	1	10
masa (tipično)	40 – 200 (60)	1-5 (1,5)	1	1	10

• linijski efekti (*transmission lines*):

- digitalni sklopovi:
$$1 < t_r, t_f ; 1[cm]; t_r, t_f[ns]$$

- analogni sklopovi:
$$1 < \frac{300}{f_g}$$
; $1[cm]$; $f_g = f_{-3dB}$ [MHz]

8. Položajni nacrt komponenata

- projektiranje tiskane pločice iterativni proces:
 - 1. smještanje komponenti (placement)
 - 2. povezivanje komponenti (routing)
- proces je završen kada su realizirane sve tiskane veze u skladu s električkom shemom (spojna lista - netlist) i zahtjevima postupka projektiranja (električki, mehanički, termički i dr.)
- na kraju provjera ispravnosti povezivanja (Design Rule Check – DRC)
- rezultat: nacrti maski za selektivne zahvate na tiskanoj pločici tijekom tehnološkog procesa njene izrade
- sve se crta u mjerilu, gledano sa strane komponenata, po rasteriziranoj površini

Položajni nacrt komponenata

- predloženi postupak smještanja komponenata:
 - proučiti električke, mehaničke i toplinske zahtjeve
 - odrediti dimenzije pločice i način učvršćenja
 - komponente predodređene mehaničkom konstrukcijom
 - komponente za podešavanje (trimeri, promjenjivi kondenzatori i sl.)
 - disipativne komponente
 - podjela komponenata na analogni i digitalni dio
 - podjela komponenata prema radnoj frekvenciji
 - najprije smjestiti najosjetljvije komponente, a zatim preostale
 - od složenijih prema jednostavnijim
 - pratiti put signala
- nastojati ravnomjerno iskoristiti cijelu površinu tiskane pločice, uz maksimizaciju efektivne gustoće komponenti

Položajni nacrt komponenata

smještanje komponenti:

- ručno
- poluautomatski (alati za poravnavanje i jednostavne algoritme raspoređivanja komponenti)
- automatski (autoplacement)

maske za tehnološko procesiranje

- oznake komponenata otiskuju se tehnikom sitotiska na zaustavnom laku (silkscreen layers)
- top overlay komponentna strana pločice
- bottom overlay lemna strana pločice (vidi se zrcaljeno!)

Preporuke za smještanje komponenata

- koristiti grublju rasterizaciju (50 100 mils)
- komponente pravokutnog tlocrta orijentirati usporedo s rubovima pločice:

 komponente s osnim izvodima (axial) predvidjeti za vodoravnu ugradnju:

Preporuke za smještanje komponenata

- razmaknuti komponente 2 mm od ruba pločice i 1 mm međusobno
- komponente se **ne smiju** međusobno preklapati
- istovrsne komponente (npr. DIL, *dual-inline* kućišta) postaviti u istom smjeru s istom orijentacijom:

Preporuke za smještanje komponenata

- ucrtati obrise rubova pločice (Mech1), rubove (silkscreen), tekstualnu oznaku za ispravnu orijentaciju maske
- predvidjeti vijke za pričvršćivanje (Φ = 3.2 mm)

položajni nacrt komponenata (samo *top silkscreen*!)

Najčešće korištena kućišta komponenata

9. Nacrt(i) tiskanih veza

- projektiranje maski za tehnološko procesiranje vodljivih slojeva na tiskanoj pločici
- u programima će se raditi isključivo:
 - jednostrane pločice (s kratkospojnicima)
 - dvostrane pločice (uz korištenje prospoja (via))
 - koristiti through-hole komponente
- voditi računa o:
 - vrijednostima parazitnih parametara
 - strujno-naponskim odnosima
 - toplinskim svojstvima lemnih mjesta
- minimalne ostvarive dimenzije vodljivih likova funkcija proizvodnog procesa:
 - izražava se kao odnos min. debljine vodljivog lika/min. razmak (npr. 6 mil/6 mil)

Preporučene debljine tiskanih vodova

- naprije se postavljaju vodovi mase i napajanja, zatim kritični vodovi (osjetljivi analogni, brzi digitalni i sl.), a na kraju svi preostali vodovi
- u programima se preporučuju sljedeće vrijednosti:
 - signalni vodovi: 12 mila
 - napajanje: 40 mila
 - masa: 60 mila
 - razmak između vodova: 12 mila
- proračunati U/I prilike i prilagoditi navedene mjere u slučaju potrebe

Razvođenje napajanja

jednostrana tiskana pločica:

Računalom podržano projektiranje elektroničkih uređaja

Razvođenje napajanja

 jednostrana tiskana pločica - loše rješenje (velika površina strujnih petlji)

Računalom podržano projektiranje elektroničkih uređaja

Razvođenje napajanja

• ispuna masom (polygon plane):

Razvođenje napajanja

• dvostrana tiskana pločica:

- tiskani vodovi imaju konačnu impedanciju
- poseban problem predstavlja impedancija mase, jer se sve struje zatvaraju kroz vodove mase
- primjer:

Zajednička impedancija segmenta A-B

 utjecaj smetnji zajedničke impendancije na mjerenje ulaznog napona

- $u_{UL}(t)$ ulazni (mjereni) napon
- $u_{sml}(t)$ napon smetnje uslijed impulsnih struja nabijanja kondenzatora na segmentu A B
- $u_{UL,AD}(t)$ napon na ulazu A/D pretvornika

Zajednička impedancija segmenta A-B

valni oblik napona smetnje u_{sm1}(t) na segmentu A-B uslijed impuslnih struja nabijanja kondenzatora

Zajednička impedancija segmenta B-C

 utjecaj razlike potencijala referentnih točaka čipova na iznos referentnog napona A/D pretvornika

Ispravna topologija

Analogna i digitalna masa

 zbog smetnji zajedničke impedancije razdvojiti analognu i digitalnu masu i spojiti ih u jednoj točki (masa izvora napajanja, A/D pretvornika ili mixed-signal MCU-a)

Križanje vodova

• jednostrane pločice – kratkospojnici:

• dvostrane pločice – prospoji (vias):

Ravnomjerno raspoređivanje vodova

 kod postavljanja vodljivih veza nastojati maksimalno iskoristiti površinu pločice:

Izbjegavati velike lemne površine

mogućnost nastanka hladnog lema:

loše dobro

Izbjegavati šiljke i prave kutove

loše

dobro

Provlačenje vodova između izvoda DIL (dual in-line) kućišta

X-Y bias

Nacrt tiskanih veza

- svi slojevi crtaju se gledano s komponentne strane pločice
- kod izrade maski uz sloj s vodljivim likovima (top, bottom) uključiti i multilayer

Nacrt tiskanih veza

komponentna strana (*top*)

lemna strana (bottom)

- oznaka dimenzija pločice – ne po cijelom rubu, jer će to smetati kod rezanja (bakar)!

Prilagodba lemnih točaka

- promjer izvoda komponente d_I
- jednoliko odvođenje topline prilikom lemljenja oko lemne rupe

Računalom podržano projektiranje elektroničkih uređaja

Lemne točke kod izrade maske vodljivih slojeva

- kod ručnog bušenja na maski za izradu vodljivih likova treba ostaviti rupe (radi lakšeg ručnog pozicioniranja vrha svrdla)
- za strojno bušenje lemne točke ostavljaju se zapunjene (kako ne bi došlo do savijanja i pucanja svrdla)

10. Plan bušenja

- nacrt položaja i promjera svih rupa na tiskanoj pločici
- primjer jednostavne tiskane pločice:

10. Plan bušenja

 na planu bušenja sve rupe istog promjera moraju biti označene istim simbolom (svrdla obavezno u [mm], ne u [mils] ili [inch]!) :

minimizirati broj svrdala različitih promjera (poželjno do 3, maks. 4-5)!

10. Plan bušenja

 zrcaljeni plan bušenja olakšava ručno bušenje rupa kod jednostranih tiskanih pločica:

Pretraživanje kataloga dobavljača

korisni linkovi:

- www.farnell.com
- www.rs-components.com
- www.burklin.de
- www.digikey.com
- www.mouser.com
- www.chipoteka.hr
- www.kronos.hr