Derivation of a_c = v^2/r

The rate at which an object rotates is often stated in *rpm* or *revolutions per minute*.

In one revolution, the object passes through 360° or 2π radians.

Units of the form *angle per second* could be used to measure rate of rotation.

The "natural" unit for angle is *radians* and these will be used throughout the following.

Therefore, units of *radians per second* will be used to measure rate of rotation.

The rate of rotation, given in *radians per second*, is a rate of change of angle.

It is called angular velocity for which the symbol is ω (the lowercase Greek letter omega). $\omega = \Delta\theta / \Delta t$

Radians per second is the mathematically preferred unit for measuring angular velocity.

If an object revolves about a point at a radius of r and a speed of v, then one complete revolution will take T seconds where T is called the period of revolution.

In one revolution, the object will travel a distance of $2\pi r$ so $v=2\pi r/T$

The object will have an angular velocity $\omega = 2\pi/T$ radians per second.

Combining $\omega = \Delta\theta / \Delta t$ and $v = 2\pi r / T$ and $\omega = 2\pi / T$ gives $\omega = v / r = \Delta\theta / \Delta t$

If an object in circular motion about C travels from Point A to Point B, it will have a change of velocity of $\Delta \mathbf{v}$ where $\Delta \mathbf{v}$ is as sketched below.

If $\Delta\theta$ is small and as \mathbf{v}_0 and $\mathbf{v}_{\Delta t}$ are of equal length, \mathbf{v} , the magnitude of $\Delta\mathbf{v}$ will be the length of the arc between them.

Another consequence of a small $\Delta\theta$ is that

 $\begin{array}{c} \mathbf{v}_0 \text{ and } \mathbf{v}_{\Delta t} \text{ are parallel and } \Delta \mathbf{v} \text{ will be} \\ \text{perpendicular to-Mem both.} \\ \mathbf{v}_{\Delta t} \\ \end{array} \Delta \theta$

(an arc length is equal to $r \times \theta$)

The magnitude of $\Delta \mathbf{v}$ will be the arc length sketched above. The direction of $\Delta \mathbf{v}$ will be parallel to the radius and towards the centre of the orbit.

 $\mathbf{a} = |\Delta \mathbf{v}| / \Delta t$

 $= v \times \Delta\theta / \Delta t$

 $= v x \omega$

= v x v / r

= v^2/r toward the centre of the orbit