

GRENOBLE INP - ENSIMAG, UGA

M2 CySec - Advanced Cryptography

Elliptic curves lab session

Contributors :
Anthony Martinez

Supervisors : Emmanuel Peyre

Lab Session Martinez – Viollet

Contents

1	Part	: 1 : function over E(F)	2
	1.1	Question 1	2
	1.2	Question 2	2
	1.3	Question 3	2
	1.4	Question 4	2
	1.5	Question 5	2
	1.6	Quesiton 6	2
2	Part	. 7	3
_	ıaıı		_
	2.1	Quesiton 7	3
	2.2	Quesiton 8	3
	2.3	Quesiton 9	3
	2.4	Quesiton 10	3
	2.5	Quesiton 11	_

Lab Session Martinez – Viollet

1 Part 1: function over E(F)

We consider the following equation for the curve E:

$$Y^2 = X^3 + aX + b$$

And F denote the field Z/pZ. For the compilation and execution I used python3.8.

1.1 Question 1

The function to cumpute the inverse element over P is **inverse_element**.

1.2 Question 2

The function to test if an element is on the curve is **is_on_curve**. We have defined the InfinityPoint by the point of coordinates (0,0).

1.3 Question 3

To compute the map P -> 2P we have to use the function **doubling**.

1.4 Question 4

To compute the addition over the elliptic curve we used $_add_$. For example if P and Q are two point the program instruction P + Q will compute the addition of the two points over E(F).

1.5 Question 5

To compute the multiplication over the elliptic curve we used **__rmul__**. For example if P is a point and n a scaler the program instruction n * P will compute the multiplication over E(F).

1.6 Quesiton 6

The small program that perform the Diffie-Hellman key exchange works as follow: With A and B the two party who want to exchange a secret:

Given two scalars a and b (choose randomly for A and B with a only known by A and b only known by B) and a public point G.

A send X = aG to B (over E(F))

B send Y = bG to A (over E(F))

A compute aX = secret_key

B compute aY = secret_key

The algorithm is compute by the function **diffie_hellman**.

Lab Session Martinez – Viollet

2 Part 2

For this section we take the following value :

a = 0

b = 7

x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

2.1 Quesiton 7

We compute the following point P = (x,y) and we see that is belong to the curve. Test with the assertion **assert G.is_on_curve() == True**.

2.2 Quesiton 8

2.3 Quesiton 9

We have used this website https://www.dcode.fr/primality-test to check if o is prime. And we get that o is prime.

2.4 Quesiton 10

With the last question we can conclude that the order of P is o. Because a point on the curve multiplied by the scalar o give the neutral point Infinity and o divide p-1.

2.5 Quesiton 11

For this question we have change the Diffie Helllman protocol to choose the secret keys of A and B randomly. The new function is **diffie_hellman_subgroup**.