Introduction

E-----i- D-ti---i-

Hydrogen Certificates

..,

Blockchain Patt

Hyperledger Fabr

F1 : D : .

Summary

Methodolo

Overvieu

Architecture

Methodology

Extensible Contract

Timeline

Current Situation

Research Timeline

Blockchain-based payment for supply chains

Oscar Golding
Supervised by: Sherry Xu, Qinghua Lu

Thesis A: UNSW

April 22, 2021

Introduction

Economic Rationale Hydrogen Certificate

Energy Domain Blockchain Patter

Hyperledger Fab

Summary

Methodol

Architecture Methodology

Extensible Contrac

Current Situation

Outline

1 Introduction

2 Background

Economic Rationale

Hydrogen Certificates

Existing Work in Energy Domain

Blockchain Patterns

Hyperledger Fabric

Fabric Projects

Summary

3 Methodology

Overview

Architecture Methodology

Extensible Contracts

4 Timeline

Current Situation Research Timeline

Introduction

Hydrogen Certificates

Problem

- Hydrogen is a part of the Australian government's pivot towards clean energy.
 - 1 \$540 million pledge for "clean" hydrogen.
 - Global market worth USD155 billion by 2022.
- To accelerate Australia's move towards a hydrogen market, can a blockchain solution be used to deliver trust into the renewable energy market?

Introduction

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns Hyperledger Fabric Fabric Projects

Methodology

Overview

Methodology Extensible Co

Timeline

Current Situation

Hydrogen Energy

- Hydrogen is a clean fuel that produces only water when consumed.
- Harvested from sources of renewable energy: solar and wind.
- Commonly harvested through natural gas reforming and a technique referred to as *electrolysis*.

Introduction

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns Hyperledger Fabric Fabric Projects

Methodology

Methodology Extensible Co

Timeline

Current Situation

- Is there a usable blockchain solution that will develop 'trust' in the hydrogen market.
- Why? Because customers are wary of the reliability and quality of hydrogen energy.
- How? Using a permissioned blockchain to help develop trust without a centralised authority.

Oscar Golding

Introduction

Economic Rationale

Hydrogen Certificates

Energy Domain

Blockchain Pattern:

Hyperledger Fabric

Summary

Methodolo

Overview Architecture Methodology

Extensible Contract

Current Situation

General Theory

- The level of output is determined by the level of effective demand.
 - 1 Effective demand is made volatile by the presence of investment spending and *expectations* in the market.
- A change in aggregate industrial wide income Y is impacted by a multiplier with investment and savings (I and S).
- The government can play a role in spurring *effective* demand using fiscal tools in the hydrogen market.

¹Keynes, John Maynard. 2021. *The General Theory Of Employment, Interest And Money*. London: Palgrave Macmillan.

Economic Rationale

Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns

Fabric Projects

Methodolog Overview

Architecture Methodology Extensible Contract

Timeline

Current Situation

- The use of smart contracts can 'nudge' consumers of hydrogen to use cleaner hydrogen.
 - 1 A 'carbon tax' enforced by a player in the system.
- Punishing non-clean sources of energy through smart contracts can accelerate the removal of negative externalities.
 - 1 Rapidly adjust to 'cleaner' equilibria inside a market.

Б. 1

Hydrogen Certificates

Existing Work in Energy Domain

Hyperledger Fabri

Fabric Projects

Summary

Methodolog

Overview Architecture

Methodology Extensible Co

Timeline

Current Situation

Hydrogen Certificates

- An approach for formally attesting the level of cleanness in a produced unit of hydrogen.
 - 1 Shared across the supply chain.
 - 2 Can attest to standards related to Hydrogen safety and quality.
- An agent in the blockchain can act as the certification body.

Oscar Golding

Existing Work in Energy Domain

Distributed Energy System

• Li et al., (2019) developed a blockchain architecture for the energy market using smart contracts with non-cooperative game theory.

¹Li, Yinan, Wentao Yang, Ping He, Chang Chen, and Xiaonan Wang. 2019. "Design And Management Of A Distributed Hybrid Energy System Through Smart Contract And Blockchain". Applied Energy 248: 390-405. doi:10.1016/j.apenergy.2019.04.132. 4 D > 4 P > 4 E > 4 E >

Oscar Golding

Introductio

Economic Rationale Hydrogen Certificates

Existing Work in Energy Domain

Hyperledger Fal Fabric Projects

Summary

Overview
Architecture
Methodology

Timeline

Current Situation

CertifHy

- A European certification scheme for clean hydrogen.
- 75,000 digital certificates issued.
- Software system.
- Allows for registration, issuing and transfer of certificates.

Oscar Golding

Introduction

Economic Rational Hydrogen Certific

Existing Work in Energy Domain

Blockchain Patterns

Hyperledger Fabric Fabric Projects

Junnary

Methodolog

Overview

Methodology

Timeline

Current Situation

Patterns

- Token template pattern
- Token registry pattern
- Escrow

¹Lu, Qinghua, Xiwei Xu, Dilum Bandara, Shiping Chen, and Liming Zhu. 2021.
"Design Patterns For Blockchain-Based Payment Applications". ACM. doi:10.1145/1122445.1122456.

Oscar Golding

Introduction

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain

Hyperledger Fabric

Fabric Projects

Methodole

Overview
Architecture

Methodology Extensible Contra

Timeline

Current Situation

Fabric

- A modular and extensible open-source system for developing blockchain applications.
- Pluggable consensus algorithms.
- Chaincode in general programming languages.
- Channels for enterprise confidentiality.

¹Androulaki, Eli, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018. "Hyperledger Fabric: A Distributed Operating System For Permissioned Blockchains".

4 □ → 4 ② → 4 ③ → 4 ② → 4 ② → 4 ③ → 4 ④ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ④ → 4

Oscar Golding

Introduction

Economic Rationale

Hydrogen Certificate

Blockchain Patte

Hyperledger Fabric

Fabric Projec

Summary

Ouoniou

Architecture

Extensible Contra

Timeline

Current Situation

Fabric Architecture

- Novel execute-order-validate architecture supporting high throughput transactions.
- Dedicated ordering nodes.
- Support for up to 3560 TPS (lab environment).

¹Androulaki, Eli, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018. "Hyperledger Fabric: A Distributed Operating System For Permissioned Blockchains".

4 □ → 4 ② → 4 ③ → 4 ② → 4 ② → 4 ③ → 4 ④ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ③ → 4 ④ → 4

Oscar Golding

Hydrogen Certificates

Fabric Projects

Fabric Projects

- GoDirect Trade introducing trust into the supply chain for used aeroplane parts.
- OrgBook British Columbia helping small businesses find critical information about business partners.
- A permissioned blockchain as a 'trust machine' for organisations.

^{1 &}quot;Orgbook Case Study – Hyperledger". 2021. Hyperledger. https://www.hyperledger.org/learn/publications/orgbook-case-study.

² 'Case Study: Honeywell Aerospace Creates Online Parts Marketplace With Hyperledger Fabric'. 2021. Blog. Case Studies. Accessed April 14. 4 □ > 4 □ > 4 □ > 4 □ >

Methodology

Architecture

Extensible Co

Timeline

Current Situation Research Timelin

Summary

- The government can use the blockchain to deliver trust and growth in hydrogen energy.
- Smart contracts can be applied for verification of hydrogen quality.
- Previous blockchain energy solutions rely on centralised parties or use the blockchain to act as an 'auction house'.

Overview

Oscar Golding

.....

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns Hyperledger Fabric

Hyperledger Fal Fabric Projects Summary

IVICEIIOGOIO

Overview

Methodology

Timeline

Current Situation

- 1 Establish requirements for actors in the system.
- 2 Formalise authorities in the Hydrogen market as nodes in Fabric.
- 3 Express business logic for actors as 'chaincode'.
- Oevelop a user interface for actors to interact with the blockchain.

.

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns Hyperledger Fabric

Summary

Methodolo

Architecture Methodology

Extensible Con

Current Situation

Architecture Details

- Crash Fault Tolerant consensus algorithm: Raft.
 - Ensures high throughput transactions.
- Utilise Fabric channels to keep pricing information related to Hydrogen suppliers confidential.
- API endpoints to interface with the blockchain.
- Web application for users to query and modify the blockchain.

Solidity Example

Oscar Golding

Introduction

Economic Rationale Hydrogen Certificates Existing Work in Energy Domain Blockchain Patterns

Hyperledger Fabric Fabric Projects Summary

Methodolog

Architecture Methodology

Extensible Contracts

Current Situation Research Timeline

```
pragma solidity >=0.8.3;
2
   contract Certificate {
     function purity() constant returns (uint256) {
4
          return ...:
6
8
   contract CarbonIntensity is Certificate {
9
     function purity() constant returns (uint256) {
10
          return ...;
11
12
       function intensity() constant returns (
           uint256) {
13
            return ...;
14
       }
15
```

Packerous

Economic Rationale
Hydrogen Certificates
Existing Work in
Energy Domain
Blockchain Patterns
Hyperledger Fabric
Fabric Projects

Methodolog

Overview Architecture

Extensible C

Timeline

Current Situation

Current Progress

- 1 Problem has been defined.
- ② Deep-dive on Hyperledger.
- 3 Learning about smart contracts and Fabric's novel approach using 'chaincode'.
- 4 Literature review on previous blockchain solutions in the energy market and supply chains employing Hyperledger.

Introduction

5 congruent

Economic Rationale Hydrogen Certificates

Energy Domain

Diseased and Cale

Cabala Davissas

Summary

Methodolo

.....

Architecture

Wethodology

Timelin

Current Situation

Research Timeline

Research Timeline

