The 2DG Code version 4.0

1 Data Structures

1.1 The mesh data structure

We will describe the mesh data structure with the help of the following (coarse) triangular mesh for the unit circle:

Figure 1: Example of a triangular mesh

The mesh data structure contains the following information:

• The triangular linear mesh. This mesh consists of np vertices and nt triangles. For the example in figure 1 we have np = 9 and nt = 9.

```
mesh.p[np,2]: x and y coordinates of vertices in triangulation for simplicial mesh
>> mesh.p
ans =
   -0.8941
               0.4479
   -0.8858
              -0.4641
   -0.2922
   -0.2113
              -0.9774
   -0.2087
               0.9780
    0.2769
              -0.0665
    0.6029
    0.6113
              -0.7914
    0.9997
               0.0243
mesh.t[nt,3]: Element vertices for simplicial mesh (numbered counterclockwise)
>> mesh.t
ans =
            6
            6
            3
                  5
            3
            3
            3
            6
                  9
```

• Face and element connectivity information. Here, nf is the number of faces (or edges in 2D) and can be calculated as nf = (3*nt + nb)/2, where nb is the number of boundary edges. For our example nb = 7, so nf = 17. We introduce two arrays: mesh.f[nf,4] and mesh.t2f[nt,3].

Figure 2: Definition of an interior face if (left), and a boundary face if on boundary ib.

A face is defined as the segment joining two vertices in the triangular mesh. mesh.f(:,1:2) are the indices of the two vertices in the mesh. mesh.f(:,3) is the index of the triangle to the left of the edge (when walking from mesh.f(:,1) to mesh.f(:,2)). For interior edges mesh.f(:,4) is the index of the triangle to the right of the edge. In addition, interior edges are always oriented so that mesh.f(:,1) < mesh.f(:,2). For boundary edges mesh.f(:,4)

is the *negative* of the boundary indicator. For the case of the circle we only have one boundary type and hence for these edges mesh.f(:,4) = -1. Note that this convention implies that all the boundary edges are oriented counterclockwise. Finally, for computational efficiency, the edges are ordered so that all interior edges are placed first and the boundary edges are last in the edge list.

```
mesh.f[nf,4]: mesh.f(:,1:2) are the indices of the two vertices in the mesh.
mesh.f(:,3) is the index of the triangle to the left of the edge
      (when walking from mesh.f(:,1) to mesh.f(:,2)). Note that
    all boundary edges are last and that for all the interior edges
      mesh.f(:,1) < mesh.f(:,2).</pre>
```

```
>> mesh.f

ans =

3     6     5     1
3     4     1     7
4     6     1     3
6     8     2     3
6     9     8     2
3     5     4     5
1     3     4     6
5     6     9     5
2     3     6     7
6     7     9     8
8     9     2     -1
4     8     3     -1
5     1     4     -1
1     2     6     -1
2     4     7     -1
9     7     8     -1
7     5     9     -1
```

For this example there is only one geometric boundary ib = -1.

mesh.t2f[nt,3]: Triangle to face connectivity. mesh.t2f[it,in] contains the face number in element it which is opposite node in of element it. If the face orientation matches the element counterclockwise orientation then the face number is stored, otherwise the negative of the face number is stored.

• Geometry information

• Master Element information

6

9

8 9

8

5

mesh.porder: Order of the complete polynomial used for approximation inside each element. >> mesh.porder 3 mesh.plocal[npl,3]: Parametric coordinates of the nodes in the master element. Note that mesh.plocal(:,1) = 1-mesh.plocal(:,2)-mesh.plocal(:,3). Also, npl = (mesh.porder+1)*(mesh.porder+2)/2. The order of the nodes is that shown in figure 3. >> mesh.plocal ans = 1.0000 0 0.6667 0.3333 0.3333 0.6667 0 1.0000 0 0.6667 0.3333 0.3333 0 0.6667 0.3333 0 0.3333 0.6667 0 1.0000 mesh.tlocal[nt1,3]: Element vertices for local auxiliary mesh. The element ordering is arbitrary. (Used for refinement and plotting). >> mesh.tlocal ans = 4 7 6 5 7 6

Figure 3: Node positions in master element and local auxiliary mesh connectivity.

• FEM node locations

mesh.dgnodes[npl,2,nt]:

mesh.dgnodes[ipl,1:2,it] are the x and y coordinates of the ipl local node in element it. Note that the nodes that lie on a curved boundary must be placed on the actual geometry as shown in figure 4.

Figure 4: DG node placement for curved geometries.

1.2 The master data structure

The master data structure contains master element pre-computed information such as the parameters required for numerical integration, the value of the shape functions and their derivatives as well as connectivity information required for efficient assembly.

• Master Element information

The variable master.porder = mesh.porder and the array master.plocal = mesh.plocal are duplicated for convenience.

Figure 5: Local node numbering for a cubic triangular element.

• Node Templates

• Numerical Integration

master.gpts[ng,2]: Parametric coordinates $\{(\xi,\eta) \mid \xi \geq 0, \ \eta \geq 0, \ 1-\xi-\eta \geq 0\}$ of the integration

points in 2d. Here, ng is the number of 2D integration points.

master.gwgh[ng]: Integration weights in 2D.

master.gpld[ngld]: Parametric coordinates $\{\xi \mid \xi \geq 0, \xi \leq 1\}$ of the integration points in 1d.

Here, ng is the number of 1D integration points.

master.gwld[ngld]: Integration weights in 1D.

• Shape Functions

master.shap[npl,3,ng]: Value of the 2D cardinal (or nodal) shape functions and their

derivatives evaluated at the integration points. Here,

master.shap[npl,1,ng] contains the value of the shape function and master.shap[npl,2:3,ng] contains the values of the derivatives

of the shape functions with respect to ξ and η .

master.shld[nplld,2,ngld]: Value of the 1D cardinal (or nodal) shape functions and their

derivatives evaluated at the integration points. Here,

master.shld[nplld,1,ngld] contains the value of the shape function and master.shld[nplld,2,ngld] contains the values of

the derivatives of the shape functions with respec to ξ .

• Pre-computed Element Matrices

Mass matrix in 2D. The entry master.mass[i,j] corresponds master.mass[npl,npl]:

to $\int_{K'} \phi_i \phi_j dK'$, where K' is the master element

Convection matrices in 2D. The entry master.conv[i,j,1] master.conv[npl,npl,2]:

corresponds to $\int_{K'} \phi_i \phi_{j,\xi} \, dK'$, whereas master.conv[i,j,2] corresponds to $\int_{K'} \phi_i \phi_{j,\eta} \, dK'$.

Mass matrix in 1D. The entry master.mald[i,j] corresponds master.ma1d[npl1d,npl1d]:

to $\int_{K'_{1d}} \phi_i \phi_j dK'_{1d}$, where K'_{1d} is the 1D master element.