HAI804I – Codage et compression multimédia

Fabien Caballero

February 13, 2023

Contents

Introduction		2	
1	Con	npression d'une image pgm avec une transformée en ondelettes	2
	1.1	4 sous bande, une itération	2
	1.2	Reconstruction à partir des 4 sous bandes, une itération	3
	1.3	Quantification avec Q avec chaque coefficient variant	4
	1.4	Transformée en ondelettes avec un nombre décomposition variant	6
	1.5	Codage sans perte pour chacune des sous bandes	9
	1.6	Courbes débit/distorsion	9

Figure 1: Image d'origine utilisée tout le long du TP

Introduction

Le but de ce TP est d'appliquer une transformée en ondelettes sur une image afin de la compresser.

1 Compression d'une image pgm avec une transformée en ondelettes

1.1 4 sous bande, une itération

Figure 2: 4 sous bandes de Haar (BF Haut gauche, HF Haut droite, HBF Bas gauche, BHF Bas droite)

1.2 Reconstruction à partir des 4 sous bandes, une itération

Figure 3: Image reconstruite (512x512) avec les 4 sous bandes d'une itération On obtient un PSNR de $28.6401\,$

1.3 Quantification avec Q avec chaque coefficient variant

Figure 4: Quantification des sous bandes avec QBF=1, QMFh=4, QMFv=4, QHF=16 On obtient un PSNR de 28.229

Figure 5: Quantification des sous bandes avec QBF=2, QMFh=8, QMFv=8, QHF=64 On obtient un PSNR de $25.0547\,$

Figure 6: Quantification des sous bandes avec QBF=4, QMFh=16, QMFv=16, QHF=256 On obtient un PSNR de 17.5512

1.4 Transformée en ondelettes avec un nombre décomposition variant

Figure 7: Pour 2 itérations sous bandes et image reconstruite (256x256) à droite On obtient un PSNR de 29.4865

Figure 8: Pour 3 itérations sous bandes et image reconstruite (128x128) à droite On obtient un PSNR de 28.9968

Figure 9: Pour 4 itérations sous bandes et image reconstruite (64x64) à droite On obtient un PSNR de 26.1428

Figure 10: Pour 5 itérations sous bandes et image reconstruite (32x32) à droite On obtient un PSNR de $23.1367\,$

Figure 11: Pour 6 itérations sous bandes et image reconstruite (16x16) à droite On obtient un PSNR de 19.1217

1.5 Codage sans perte pour chacune des sous bandes

On peut utiliser un codage d'Huffman, et/ou un codage par plage.

1.6 Courbes débit/distorsion

En utilisant Huffman on obtient la courbe débit distorsion suivante Le résultat ne me semble pas correct. Je

Figure 12: Courbe de débit

ne pense pas avoir compris comment générer la courbe.