Regressions- och tidsserieanalys Föreläsning 3 - Regression som sannolikhetsmodell

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Regression som sannolikhetsmodell
- Konfidensintervall
- Hypotestest
- Prediktionsintervall

Repetition sannolikhetsmodeller

Underliggande populationsmodell:

$$X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} N(\mu, \sigma^2), \quad \sigma^2 \text{ känd}$$

Medelvärdet

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

är en **estimator** för μ .

Väntevärdesriktig (rätt i genomsnitt över alla möjliga stickprov)

$$\mathbb{E}(\bar{X}) = \mu$$

Samplingfördelningen (hur medelvärdet varierar från stickprov till stickprov):

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Regression som sannolikhetsmodell

Underliggande populationsmodell för regression:

$$y = \alpha + \beta x + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

Regression är en modell för den betingade fördelningen

$$y|x \sim N\left(\mu_{y|x}, \sigma_{\varepsilon}^2\right)$$

där det betingade väntevärdet för y nu beror på x genom regressionen

$$\mu_{y|x} = \alpha + \beta x$$

- lacksquare lpha är interceptet i den underliggande populationen.
- β är lutningen på regressionslinjen i den underliggande populationen.

Regression som sannolikhetsmodell

Stickprov/datamaterial med n observationspar

$$(y_1, x_1), \ldots, (y_n, x_n)$$

Vanligt att anta oberoende feltermer ε för alla observationer:

$$\varepsilon_1, \ldots, \varepsilon_n \stackrel{\text{ober}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

- Antar oftast också samma varians
- Modell för hela stickprovet

$$y_i = \alpha + \beta x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ober}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

Regression som sannolikhetsmodell

Regression som modell för betingad fördelning

$$y|x \sim N\left(\mu_{y|x}, \sigma_{\varepsilon}^2\right)$$

$$\mu_{y|x} = \alpha + \beta x$$
 8000
$$\mu_{y|x} = \alpha + \beta x$$

$$\mu_{y|x=0.75}$$

$$\mu_{y$$

Simulera data

- \blacksquare Simulera regressionsdata med stickprovstorlek n:
 - ightharpoonup Bestäm populationens parametrar lpha, eta och $\sigma_{arepsilon}^2$.
 - ▶ Bestäm $x_1,...,x_n$ (som antas vara icke-slumpmässiga)
 - ▶ Simulera feltermer $\varepsilon_1, \ldots, \varepsilon_n$ från $N(0, \sigma_{\varepsilon}^2)$.
 - ▶ Beräkna $y_i = \alpha + \beta x_i + \varepsilon_i$ för varje observation.

Samplingfördelning - minstakvadratskattningen

Minstakvadratestimatorerna

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Väntevärdesriktiga

$$\mathbb{E}(b) = \beta$$
$$\mathbb{E}(a) = \alpha$$

$$\mathbb{E}(s_e^2) = \sigma_{\varepsilon}^2$$

Samplingfördelning för b

Estimatorn för lutningskoefficienten

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

har samplingvarians (hur mycket varierar b över olika stickprov?)

$$\sigma_b^2 = \frac{\sigma_\varepsilon^2}{\sum (x_i - \bar{x})^2}$$

lacksquare En estimator av den teoretiska samplingvariansen σ_b^2 är

$$s_b^2 = \frac{s_e^2}{\sum (x_i - \bar{x})^2}$$

- Se AJÅ för en motsvarande formel för att skatta samplingvariansen för a.
- Hälsobudgetdata

$$s_b^2 = \frac{4.467}{52.861} = 0.085$$
 $s_b \approx \sqrt{0.085} \approx 0.291$

Approximativt konfidensintervall för b

Approximativt 95% konfidensintervall för β i stora stickprov ($n \ge 30$)

$$[b - 1.96 \cdot s_b, b + 1.96 \cdot s_b]$$

- I 95% av alla stickprov från populationen täcker intervallet $[b-1.96 \cdot s_b, b+1.96 \cdot s_b]$ den sanna lutningen β .
- Hälsobudgetdata

$$[1.038 - 1.96 \cdot 0.291, 1.038 + 1.96 \cdot 0.291] = [0.468, 1.608]$$

Intervallet [0.468, 1.608] täcker eller täcker inte det sanna värdet β . Vi vet inte vilket.

Exakt konfidensintervall för b - student t

- För små n är normalapproximationen inte tillräckligt bra.
- **E**stimatorn *b* följer en *t*-**fördelning** med n-2 **frihetsgrader**:

$$\frac{b-\beta}{s_b} \sim t(n-2)$$

- lacksquare För $n o\infty$ blir t-fördelningen alltmer lik normalfördelningen.
- lacktriangleq t-fördelningen konvergerar mot normalfördelningen när $n o \infty$.

Exakt konfidensintervall för b - student t

Exakt 95% konfidensintervall för eta

$$[b - t_{0.975}(n-2) \cdot s_b, b + t_{0.975}(n-2) \cdot s_b]$$

t-fördelningen med n-2 frihetsgrader har 0.975 (97.5%) sannolikhetsmassa till vänster om värdet $t_{0.975}(n-2)$.

- Hälsobudgetdata: n = 28, och $t_{0.975}(28) = 2.0484$ från tabell.
- Exakt 95% konfidensintervall för b

$$[1.038 - 2.0484 \cdot 0.291, 1.038 + 2.0484 \cdot 0.291] = [0.442, 1.634]$$

Mattias Villani

Hypotesttest för β

Hypotestest för lutningen i regressionen

$$H_0: \beta = 0$$
$$H_1: \beta \neq 0$$

Teststatistiska

$$t = \left| \frac{b - 0}{s_b} \right|$$

lacksquare Vi förkastar nollhypotesten på signifikansnivån lpha=0.05 om

$$t_{\rm obs} > t_{\rm crit}$$

där det kritiska värdet t_{crit} hämtas från tabell:

$$t_{\rm crit} = t_{0.975}(n-2)$$

- P-värde = sannolikheten att observera t_{obs} eller något ännu mer extremt givet att H_0 är sann.
- Under H_0 har vi att $t \sim t(n-2)$.

Hypotesttest för eta - hälsobudgetdata

n = 30, så n - 2 = 28, och $t_{crit} = t_{0.975}(28) = 2.0484$.

$$t_{\rm obs} = \left| \frac{1.038 - 0}{0.291} \right| = 3.567$$

- Eftersom $t_{\rm obs} > t_{\rm crit}$ så förkastar vi nollhypotesen på 5% signifikansnivå.
- Vi förkastar nollhypotesen att hälsobudgetens storlek inte är korrelerad med livslängd.
- Testets p-värde

$$p = 0.0013237$$

vilket visar att vi t o m skulle ha förkastat på 1% nivån.

Hypotesttest för β - hälsobudgetdata

Hälsobudget - regression

The REG Procedure Model: MODEL1 Dependent Variable: lifespan

Number of Observations Read 30 Number of Observations Used 30

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	1	56.90723	56.90723	12.74	0.0013				
Error	28	125.08244	4.46723						
Corrected Total	29	181.98967							

Root MSE	2.11358	R-Square	0.3127
Dependent Mean	79.13667	Adj R-Sq	0.2881
Coeff Var	2.67080		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	76.03502	0.95084	79.97	<.0001				
spending	1	1.03757	0.29071	3.57	0.0013				

Mattias Villani

ST1230

Terminologi

- Målvariabel (y) kallas ofta beroende variabel. Även responsvariabel.
- Förklarande variabel (x) kallas ofta kovariat. Även prediktor eller feature.
- MSE = s_e^2 . Residual varians.
- Root MSE = $\sqrt{\text{MSE}}$, dvs s_e . Residualstandardavvikelse.
- Sum of Squares Regression (SSR) heter Sum of Squares Model (SSM) i SAS.

Konfidensintervall för regressionslinjen

Regressionslinjen i populationen är

$$\mu_{y|x} = \alpha + \beta x$$

som skattas med minsta kvadratmetoden genom formeln

$$\hat{\mu}_{y|x} = a + bx$$

Standardavvikelsen för skattningen av regressionslinjen vid ett givet x-värde $x = x_0$ kan skattas med

$$s_{\hat{\mu}_{y|x_0}} = s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

95% konfidensintervall för regressionlinjen $\hat{\mu}_{y|x} = a + bx$

$$\hat{\mu}_{y|x_0} \pm t_{0.975}(n-2) \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Mattias Villani

Konfidensintervall för regressionslinjen

Mattias Villani

ST1230

Prediktionsintervall

- Antag att vi gjort en prognos vid punkten $x = x_0$.
- Prognosen är

$$\hat{y}(x_0) = \hat{\mu}_{y|x_0} = a + bx_0$$

- Prognosintervall för $\hat{y}(x_0)$ två källor av osäkerhet:
 - ightharpoonup De okända parametrarna α och β, dvs osäkerhet om $μ_{y|x}$.
 - Variationen i de enskilda y-värdena kring regressionlinjen $\mu_{y|x}$. Alla observationer "träffas av ett ε " som har varians σ_{ε}^2 .
- Prognosvariansen:

$$\sigma_{\hat{y}(x_0)}^2 = \sigma_{\hat{\mu}_{y|x_0}}^2 + \sigma_{\varepsilon}^2$$

 \blacksquare 95%-igt prognosintervall för en enskild observation vid $x=x_0$

$$\hat{y}(x_0) \pm t_{0.975}(n-2) \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Prediktionsintervall

Mattias Villani

ST1230