Sylowの定理

黒木 玄

2007年10月16日

定義 1 G は有限群であり, p は素数であり, G の位数が p^em (m は p で割り切れない) と表わされてるとする. このとき G の位数 p^e の部分群を G の Sylow p 部分群と呼ぶ.

例 2 体 K の元を成分に持つ n 次上三角行列で対角成分がすべて 1 であるもの全体のなす $GL_n(K)$ の部分群を $U_n(K)$ と書くことにする. 素数 p に対して $GL_n(\mathbb{F}_p)$ の位数は $(p^n-1)(p^n-p)(p^n-p^2)\cdots(p^n-p^{n-1})$ である. よって $GL_n(\mathbb{F}_p)$ は p でちょうど $1+2+\cdots+(n-1)$ 回割り切れる. 一方 $U_n(\mathbb{F}_p)$ の位数は $p^{1+2+\cdots+(n-1)}$ に等しい. よって $U_n(\mathbb{F}_p)$ は $GL_n(\mathbb{F}_p)$ の Sylow p 部分群である.

補題 3 有限群 G の $\operatorname{Sylow} p$ 部分群 S と G の部分群 H に対して, ある $g \in G$ が存在して $H \cap gSg^{-1}$ が H の $\operatorname{Sylow} p$ 部分群になる.

証明、H の G/S への自然な左作用を考える。G/S の元の個数は p で割り切れないので、ある H 軌道 H(gS) で元の個数が p で割り切れないものが存在する。gS における H の等方部分群は $H\cap gSg^{-1}$ に等しい。よって H 集合として自然な同型 $H/H\cap gSg^{-1}\cong H(gS)$ が成立する。これより $H/H\cap gSg^{-1}$ も p で割り切れない。すなわち $H\cap gSg^{-1}$ は H の Sylow p 部分群である。 \square

定理 4 (Sylow の定理) 有限群 G と素数 p に対して, G の Sylow p 部分群が存在して, G の Sylow p 部分群たちは互いに共役である.

証明. G の位数を n とする. G 上の \mathbb{F}_p に値を持つ函数全体は \mathbb{F}_p 上の n 次元ベクトル空間 \mathbb{F}_p^n と同一視できる. G の G への右作用は \mathbb{F}_p^n への左作用を自然に誘導する. これによって G は $GL_n(\mathbb{F}_p)$ の部分群とみなせる. 上の例より $S=U_n(\mathbb{F}_p)$ は $GL_n(\mathbb{F}_p)$ の Sylow p 部分群である. 上の補題よりある $g\in GL_n(\mathbb{F}_p)$ が存在して $G\cap gSg^{-1}$ は G の Sylow p 部分群になる.

上の補題を H が S とは別の G の $\mathrm{Sylow}\ p$ 部分群である場合に適用することによって、 G の $\mathrm{Sylow}\ p$ 部分群たちが互いに共役であることがわかる. \square

注意 5 以上の議論は鈴木通夫『群論 上』岩波書店(1977)による.

筆者はこの証明を http://d.hatena.ne.jp/yoshitake-h/20071016 で知った.

一般に群 G の集合 X への作用は X 上の函数空間への G の作用を誘導する. これは群の集合への作用の量子化である. 上の議論は群の作用の量子化による Sylow の定理の証明であるとみなせる. 対称群よりも一般線形群の方が分かり易い場合がある. \square