بسمه تعالى

یادگیری ماشین نیمسال اول ۱۴۰۲–۱۴۰۱ امتحان میان ترم وقت آزمون: ۱۵۰ دقیقه

توجه: استفاده از کتاب، جزوه، اسلایدهای درس، اینترنت و مشورت در حین امتحان غیر مجاز است و تقلب محسوب می شود. در صورت تشخیص تقلب، نمره کل امتحان **صفر** منظور خواهد شد.

توجه: امتحان از ۱۱۰ نمره است و برای کامل شدن باید ۱۰۰ نمره کسب شود.

سوال ۱ سوالات پاسخ کوتاه (۲۴ نمره)

در هر یک از موارد زیر درست یا غلط بودن آن را مشخص کنید و حداکثر در ۲ جمله به صورت مختصر علت را توضیح دهید. (هر مورد ۴ نمره)

الف) معمولا مدلهای غیرپارامتریک مفروضات کمتری نسبت به مدلهای پارامتریک در نظر می گیرند.

ب) اگر در یک مسأله رگرسیون رابطهی بین $x = [x_1 \ x_2 \ x_3]^T$ و y را به صورت $y = \alpha_1 x_1^2 x_2 + \alpha_2 x_3 + \alpha_2 x_3$ را بدست آورد.

ج) خطای طبقهبند نزدیک ترین همسایه (۱-NN) روی دادههای آموزشی (در صورت سازگاری دادهها) همواره صفر است.

د) اگر در یک مسأله رگرسیون رابطهی بین $x = [x_1 \ x_2 \ x_3]^T$ و $y = (x_1 x_2)^{\alpha_1} + x_3^{\alpha_2}$ در نظر بگیریم. میتوان با استفاده از $x = [x_1 \ x_2 \ x_3]^T$ را بدست آورد.

ه) اضافه کردن منظمساز نرم ۱ به مجموع مجذور خطا (SSE) در یک مسأله رگرسیون خطی $y=w^Tx$ ، معمولا باعث تنک (sparse) شدن بردار w می شود. با رسم شکل توضیح دهید.

و) از روش پنجره پارزن نمی توان برای طبقه بندی استفاده کرد.

سوال ۲ رگرسیون خطی (۱۶ نمره)

در یک مسأله رگرسیون خطی، مجموعه داده ی \mathbf{v} و \mathbf{v} را به صورت زیر $D=\{(x_1,y_1),\dots,(x_n,y_n)\}$ و \mathbf{v} را به صورت زیر در نظر می گیریم:

$$y_i = wx_i + \epsilon_i$$

$$\epsilon_i = \mathcal{N}(0,1)$$

که در آن ${f w}$ پارامتر مدل و ϵ_i یک نویز گاوسی با میانگین صفر و واریانس ۱ است.

الف) با فرض .i.i.d بودن دادهها، تابع log-likelihood را تشکیل دهید و نشان دهید که بیشینه کردن تابع log-likelihood روی پارامتر w معادل است با کمینه کردن مجموع مجذور خطا. به عبارت دیگر نشان دهید:

$$\arg\max_{w} \log P(D|w) = \arg\min_{w} \sum_{i=1}^{n} (y_i - wx_i)^2$$

ب) اگر بخواهیم از دیدگاه بیز به این مسأله نگاه کنیم، باید پارامتر w را یک متغیر تصادفی در نظر بگیریم و برای آن یک توزیع احتمال پیشین داشته باشیم. حال فرض کنید توزیع احتمال پیشین زیر را برای w داشته باشیم:

$$P(w) = N(0, \sigma^2)$$

نشان دهید که تخمین گر MAP برای w معادل است با کمینه کردن SSE با یک ترم منظمساز درجه ۲:

$$\arg\max_{w} \log P(w|D) = \arg\min_{w} \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda w^2$$

ثریب λ چه رابطهای با σ^2 دارد؟

سوال ۳ طبقه بند بیز ساده (۱۰ نمره)

Naïve) مجموعه داده ی زیر را در نظر بگیرید که در آن متغیر y برچسب است و متغیرهای A,B,C ویژگیهای باینری هستند. طبقه بند بیز ساده (Bayes)، نمونههای (0,0,1) و (1,1,1) را به چگونه دسته بندی می کند؟ (در حالت تساوی احتمال، برچسب صفر ارجح است).

Α	В	С	у
0	0	1	0
0	1	0	0
1	1	0	0
0	0	1	1
1	1	1	1
1	0	0	1
1	1	0	1

سوال ۴ Discriminant function نمره)

یک طبقه بند بیز که در آن احتمال پیشین دو کلاس برابر است را در نظر بگیرید. احتمال دو کلاس به صورت زیر است:

$$P(x|y = 0) = \frac{2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \qquad x \ge 0$$
$$P(x|y = 1) = e^{-x} \qquad x \ge 0$$

 $\ln rac{2}{\sqrt{2\pi}}\cong -0.1$ بازهی ناحیه کلاس اول و دوم را بدست آورید.

سوال ۵ درخت تصمیم (۲۰ نمره)

میخواهیم با استفاده از دادههای زیر، یک درخت تصمیم برای دستهبندی دانشجویان به دو دستهی تنبل (L) و زرنگ (D) استفاده کنیم.

Feature1	Feature2	Feature3	Output
Ν	Α	2	L
Ν	V	2	L
Ν	V	2	L
U	V	3	L
U	V	3	L
U	Α	4	D
Ν	Α	4	D
Ν	V	4	D
U	Α	3	D
U	Α	3	D

مقادیر زیر می تواند در محاسبات به شما کمک کند:

$$\log_2 0.1 = -3.32$$
, $\log_2 0.2 = -2.32$, $\log_2 0.3 = -1.73$, $\log_2 0.4 = -1.32$, $\log_2 0.5 = -1$

توجه: حق استفاده از ماشین حساب را ندارید!

الف) (feature2|feature1=N را محاسبه کنید. H(feature2|feature1=N)

ب) (λ نمره) در الگوریتم ID3، کدام ویژگی به عنوان ریشهی درخت انتخاب میشود؟

ج) (۵ نمره) درخت تصمیم کامل را بدست آورید.

د) (۳ نمره) مقادیر recall و accuracy این درخت تصمیم روی دادههای آموزشی چقدر است؟

سوال ۶ شبکههای عصبی (۱۵ نمره)

شبکه عصبی زیر را در نظر بگیرید. در نورونهایی که با شمارههای ۱ تا ۳ مشخص شدهاند باید تابع فعالیت (Activation Function) قرار گیرد. میخواهیم از دو تابع فعالیت زیر استفاده کنیم:

- S: signed sigmoid function $S(a) = sign(\sigma(a) 0.5) = sign\left(\frac{1}{1 + e^{-a}} 0.5\right)$
- L: Linear function L(a) = c a

. است. $a=\sum_i w_i X_i$ است

الف) (۷ نمره) اگر بخواهیم شبکهی بالا معادل یک رگرسیون خطی عمل کند، یعنی $Y = \beta_1 X_1 + \beta_2 X_2$ ، تابع فعالیت مناسب (S یا L) برای هر یک از نورونهای ۱ تا ۳ چه خواهد بود؟

 \cdot بنمره) اگر بخواهیم شبکه ی بالا معادل یک طبقه بند لاجستیک رگرشن عمل کند، یعنی:

$$P(Y = 1|X) = \frac{1}{1 + \exp(-\beta_1 X_1 - \beta_2 X_2)}$$

تابع فعالیت مناسب برای نورونهای ۱ تا ۳ چیست؟

سوال ۷ (۱۰ نمره)

مصالحهی بایاس-واریانس را توضیح دهید.