Remember from last week:

Fact: A linear system has either

- exactly one solution
- infinitely many solutions
- no solutions

We gave an algebraic proof via row reduction, but the picture, although not a proof, is useful for understanding this fact.

EXAMPLE Two equations in two variables:

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 1 of 35

This week and next week, we will think more geometrically about linear systems.

§1.3-1.4 Span - related to existence of solutions

- $\S1.5$ A geometric view of solution sets (a detour)
- 31.3 A geometric view of solution sets (a detour) \$1.7 Linear independence - related to uniqueness of solutions

We are aiming to understand the two key concepts in three ways:

- The related computations: to solve problems about a specific linear system with numbers (Week 2 p10, Week 3 p8-9).
- The rigorous definition: to prove statements about an abstract linear system (Week 2 p15, Week 3 p11).
- The conceptual idea: to guess whether statements are true, to develop a plan for a proof or counterexample, and to help you remember the main theorems (Week 2 p13-14, Week 3 p3-5).

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 2 of 35

§1.3: Vector Equations

A column vector is a matrix with only one column.

Until Chapter 4, we will say "vector" to mean "column vector".

A vector
$${f u}$$
 is in ${\Bbb R}^n$ if it has n rows, i.e. ${f u}=egin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$

Example: $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ are vectors in \mathbb{R}^2 .

Vectors in \mathbb{R}^2 and \mathbb{R}^3 have a geometric meaning: think of $\begin{bmatrix} x \\ y \end{bmatrix}$ as the point (x,y) in the plane.

III tile plane.

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 3 of 35

There are two operations we can do on vectors:

addition: if
$$\mathbf{u}=\begin{bmatrix}u_1\\u_2\\\vdots\\u_n\end{bmatrix}$$
 and $\mathbf{v}=\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}$, then $\mathbf{u}+\mathbf{v}=\begin{bmatrix}u_1+v_1\\u_2+v_2\\\vdots\\u_n+v_n\end{bmatrix}$.

scalar multiplication: if
$${f u}=egin{array}{c} u_1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}$$
 and c is a number (a scalar), then $c{f u}=$

 cu_1 cu_2

These satisfy the usual rules for arithmetic of numbers, e.g.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
, $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$, $0\mathbf{u} = \mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Semester 1 2017, Week 2, Page 4 of 35

EXAMPLE: Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Express \mathbf{u} , $2\mathbf{u}$, and $\frac{-3}{2}\mathbf{u}$ on a graph.

Parallelogram rule for addition of two vectors:

If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{0}$, \mathbf{u} and \mathbf{v} . (Note that $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.)

EXAMPLE: Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Combining the operations of addition and scalar multiplication:

Definition: Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and scalars c_1, c_2, \dots, c_p , the vector

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p$$

is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ with weights c_1, c_2, \dots, c_p .

Example:
$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Some linear combinations of \mathbf{u} and \mathbf{v} are:

$$3\mathbf{u} + 2\mathbf{v} = \begin{bmatrix} 7\\11 \end{bmatrix}. \qquad \qquad \frac{1}{3}\mathbf{u} - \frac{1}{3}\mathbf{u}$$

$$\frac{1}{3}\mathbf{u} + 0\mathbf{v} = \begin{bmatrix} 1/3 \\ 1 \end{bmatrix}.$$

$$\mathbf{0} = 0\mathbf{u} + 0\mathbf{v} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

 $\mathbf{u} - 3\mathbf{v} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}.$ (i.e. $\mathbf{u} + (-3)\mathbf{v}$)

HKBU Math 2207 Linear Algebra

means. You should also make your Study tip: an "example" after a definition does NOT mean a calculation example. These more (vectors, in this case) that satisfy theoretical examples are objects understand what the definition own examples when you see a the definition, to help you

Semester 1 2017, Week 2, Page 7 of 35

Geometric interpretation of linear combinations: all the points you can go to if you are only allowed to move in the directions of $\mathbf{v}_1,\dots,\mathbf{v}_p.$

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Express each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \mathbf{d} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$

When we don't have the grid paper:

EXAMPLE: Let
$$\mathbf{a}_1 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}$. Express \mathbf{b} as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .

Solution: Vector **b** is a linear combination of **a**₁ and **a**₂ if

Vector equation:

Corresponding linear system:

Corresponding augmented matrix:

Reduced echelon form:

Exercise: Use this algebraic method on the examples on the previous page and check that you get the same answer

What we learned from the previous example:

1. Writing ${\bf b}$ as a linear combination of ${\bf a}_1,\dots,{\bf a}_p$ is the same as solving the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_p\mathbf{a}_p = \mathbf{b};$$

2. This vector equation has the same solution set as the linear system whose augmented matrix is

$$egin{bmatrix} \mathbf{a}_1 & -\mathbf{a}_2 & -\mathbf{b}_2 \\ -\mathbf{a}_1 & \mathbf{a}_2 & -\mathbf{b}_2 \\ -\mathbf{a}_2 & -\mathbf{b}_2 \end{bmatrix}.$$

In particular, it is not always possible to write **b** as a linear combination of given vectors: in fact, **b** is a linear combination of $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_p}$ if and only if there is

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 11 of 35

Definition: Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbb{R}^n . The *span* of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, written

$$\mathsf{Span}\left\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_p\right\},$$

is the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p.$

In other words, Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is the set of all vectors which can be written as $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p$ for any choice of weights x_1, x_2, \dots, x_p .

In set notation:

 $\mathsf{DEFINITION} \colon \mathbf{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \right\} = \left\{ x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_p \mathbf{v}_p \, \middle| \, x_1, \dots, x_p \in \mathbb{R} \right\}$

EXAMPLE: Span of one vector in \mathbb{R}^3 :

When p=1, the definition says $\mathrm{Span}\ \{\mathbf{v}_1\}=\{x_1\mathbf{v}_1\ |\ x_1\in\mathbb{R}\},$

i.e. $\mathrm{Span}\left\{\mathbf{v}_{1}\right\}$ is all scalar multiples of $\mathbf{v}_{1}.$

- $\operatorname{Span} \{0\} = \{0\}$, because $x_1 0 = 0$ for all scalars x_1 .
- \bullet If \mathbf{v}_1 is not the zero vector, then $\mathrm{Span}\,\{\mathbf{v}_1\}$ is _

Example: Span of two vectors in \mathbb{R}^3 : When p=2, the definition says Span $\{\mathbf{v}_1,\mathbf{v}_2\}=\{x_1\mathbf{v}_1+x_2\mathbf{v}_2\mid x_1,x_2\in\mathbb{R}\}$.

, $\mathbf{v}_2 =$

[2 1 3]

(line through the origin) HKBU Math 2207 Linear Algebra

spanned by $\{\mathbf{v}_1, \mathbf{v}_2\}$. This is the plane $\textbf{Span}\{\textbf{v}_1,\textbf{v}_2\}$ =plane through the origin v₂ is not a multiple of v₁

Semester 1 2017, Week 2, Page 14 of 35

How to write proofs involving spans:

EXAMPLE: Prove that, if \mathbf{u} is in $\mathrm{Span}\left\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\right\}$, then $2\mathbf{u}$ is in $\mathrm{Span}\left\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\right\}$

METHOD:

Step 1: Rewrite the mathematical terms in the question as formulas:

What we know (first line of the proof): $u \text{ is in } \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} \text{ means } _$

What we want to show (last line of the proof): $2u \text{ is in } \mathrm{Span}\left\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\right\} \text{ means } --------$

(Be careful to choose dierent letters for the weights in the different statements, because the weights in different statements will in general be different.)

Step 2: Decide how to fill in the missing steps by rearranging vector equations

Step 3: Once you have your whole proof planned, write out your answer

Recall from page 10 that writing ${f b}$ as a linear combination of ${f a}_1,\dots,{f a}_p$ is equivalent to solving the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_p\mathbf{a}_p = \mathbf{b},$$

and this has the same solution set as the linear system whose augmented matrix is

In particular, ${f b}$ is in Span $\{{f a}_1,{f a}_2,\ldots,{f a}_p\})$ if and only if the above linear system is consistent.

We now develop a different way to write this linear system.

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 16 of 35

$\S1.4$: The Matrix Equation $A\mathbf{x} = \mathbf{b}$

We can think of the weights x_1, x_2, \dots, x_p as a vector.

$$p$$
 rows, p columns

The product of an $m \times p$ matrix A and a vector ${\bf x}$ in \mathbb{R}^p is the linear combination of the columns of A using the entries of ${\bf x}$ as weights:

$$A\mathbf{x} = \begin{bmatrix} | & | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_p \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_p\mathbf{a}_p.$$

Example:
$$\begin{bmatrix} 4 & 3 \\ 2 & 6 \\ 14 & 10 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = -2 \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}.$$

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 17 of 35

Example:
$$\begin{bmatrix} 4 & 3 \\ 2 & 6 \\ 14 & 10 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = -2 \begin{bmatrix} 4 \\ 14 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}.$$
 There is another, faster way to compute $A\mathbf{x}$, one row of A at a time:
$$\begin{bmatrix} 4 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4(-2) + 3(2) \\ 2(-2) + 6(2) \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}.$$

:xample:
$$\begin{bmatrix} 4 & 3 \\ 2 & 6 \\ 14 & 10 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4(-2) + 3(2) \\ 2(-2) + 6(2) \\ 14(-2) + 10(2) \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}$$

It is easy to check that $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ and $A(c\mathbf{u}) = cA\mathbf{u}$.

the number of rows of x. The number of rows of $A\mathbf{x}$ is the number of rows of A**Warning**: The product $A\mathbf{x}$ is only defined if the number of columns of A equals

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 18 of 35

We have three ways of viewing the same problem:

- 1. The system of linear equations with augmented matrix $[A|\mathbf{b}]$, 2. The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_p\mathbf{a}_p = \mathbf{b}$, 3. The matrix equation $A\mathbf{x} = \mathbf{b}$.

These three problems have the same solution set, so the following three things are the same (they are simply different ways to say "the above problem has a solution"):

- 1. The system of linear equations with augmented matrix $[A|\mathbf{b}]$ has a solution, 2. b is a linear combination of the columns of A (or b is in the span of the
 - columns of A),
 - The matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution.

Another way of saying this: The span of the columns of A is the set of vectors ${\bf b}$ for which $A{\bf x}={\bf b}$ has a solution.

The span of the columns of A is the set of vectors b for which Ax = b has a solution.

Example: If
$$A=\begin{bmatrix} 3&1\\1&4 \end{bmatrix}$$
 , then the relevant vectors are ${\bf v}_1=\begin{bmatrix} 3\\2 \end{bmatrix}$, ${\bf v}_2=\begin{bmatrix} 1\\1 \end{bmatrix}$.

so
$$A\mathbf{x} = \mathbf{b}$$
 does not the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 , so $A\mathbf{x} = \mathbf{b}$ does not have a solution. The echelon form of $[A|\mathbf{b}]$ is $\begin{bmatrix} \mathbf{0} & \mathbf{n} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ 0 \end{bmatrix}$ where $a \neq 0$.

This \mathbf{b} is on the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 , so $A\mathbf{x} = \mathbf{b}$ has a solution. The echelon form of $[A|\mathbf{b}]$ is $\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ 0 \end{bmatrix}$.

HKBU Math 2207 Linear Algebra

emester 1 2017, Week 2, Page 20 of 35

Warning: If A is an m imes n matrix, then the pictures on the previous page are for Week 1, and also in p28-30 later this week). In this example, we cannot draw the the right hand side $\mathbf{b} \in \mathbb{R}^m$, not for the solution $\mathbf{x} \in \mathbb{R}^n$ (as we were drawing in solution sets on the same picture, because the solutions ${f x}$ are in ${\Bbb R}^2$, but our picture is in \mathbb{R}^3 .

So these three things are the same:

- 1. The system of linear equations with augmented matrix $[A|\mathbf{b}]$ has a solution,
 - 2. ${\bf b}$ is a linear combination of the columns of A (or ${\bf b}$ is in the span of the columns of A),
- 3. The matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution.

vectors ${f b}$ in \mathbb{R}^m ? i.e. when is $A{f x}={f b}$ consistent for all right hand sides ${f b}$, and One question of particular interest: when are the above statements true for all

when is Span
$$\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_p\}=\mathbb{R}^m$$
?
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e}_3=\begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$
 Then Span $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}=\mathbb{R}^3,$ because $\begin{bmatrix} x\\y\\z \end{bmatrix}=x\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}+y\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$. But for a more complicated set of vectors, the weights will be more complicated

Semester 1 2017, Week 2, Page 22 of 35 functions of x,y,z. So we want a better way to answer this question. HKBU Math 2207 Linear Algebra

A, the following statements are logically equivalent (i.e. for any particular matrix Theorem 4: Existence of solutions to linear systems: For an $m \times n$ matrix they are all true or all false):

- a. For each b in \mathbb{R}^m , the equation $A\mathbf{x}=\mathbf{b}$ has a solution. b. Each b in \mathbb{R}^m is a linear combination of the columns of A.
- The columns of A span \mathbb{R}^m (i.e. Span $\{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_p\}=\mathbb{R}^m)$ c. The columns of A span \mathbb{R}^m (1.e. d. rref(A) has a pivot in every row.

Warning: the theorem says nothing about the uniqueness of the solution.

equivalent. So, to finish the proof, we only need to show that (a) and (d) are **Proof**: (outline): By the previous discussion, (a), (b) and (c) are logically logically equivalent, i.e. we need to show that,

- if (d) is true, then (a) is true;if (d) is false, then (a) is false.

- a. For each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
 - d. $\operatorname{rref}(A)$ has a pivot in every row.

Proof: (continued)

row-reduces to $[\operatorname{rref}(A)|\mathbf{d}]$ for some \mathbf{d} in \mathbb{R}^m . This does not have a row of the Suppose (d) is true. Then, for every ${f b}$ in ${\mathbb R}^m$, the augmented matrix $[A|{f b}]$ form $[0 \dots 0|*]$, so, by the Existence of Solutions Theorem (Week 1 p 25), 4x = b is consistent. So (a) is true. Suppose (d) is false. We want to find a counterexample to (a): i.e. we want to find a vector \mathbf{b} in \mathbb{R}^m such that $A\mathbf{x} = \mathbf{b}$ has no solution.

something you are expected to think of by yourself. But you should try to (This last part of the proof, written on the next page, is hard, and is not understand the part of the proof on this page.)

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 24 of 35

a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.

d. rref(A) has a pivot in every row.

Proof: (continued) Suppose (d) is false. We want to find a counterexample to (a): i.e. we want to find a vector $\mathbf b$ in $\mathbb R^m$ such that $A\mathbf x=\mathbf b$ has no solution.

 $\mathsf{rref}(A)$ does not have a pivot in every row, so its last row is $[0\ldots 0]$.

Now we apply the row operations in reverse to get an equivalent linear system $[A|\mathbf{b}]$ that is inconsistent. Then the linear system with augmented matrix $[\operatorname{rref}(A)|\mathbf{d}]$ is inconsistent.

Example:
$$\begin{bmatrix} 1 & -3 & 1 \\ -2 & 6 & -1 \end{bmatrix} \xrightarrow{R_2 \to R_2 + 2R_1} \begin{bmatrix} 1 & -3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 23 of 35

Theorem 4: Existence of solutions to linear systems: For an m imes n matrix

- A, the following statements are logically equivalent (i.e. for any particular matrix
 - A, they are all true or all false):
- a. For each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each b in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m (i.e. Span $\{\mathbf{a}_1,\mathbf{a}_2,\dots,\mathbf{a}_p\}=\mathbb{R}^m)$
 - d. $\operatorname{rref}(A)$ has a pivot in every row.

We will add more statements to this theorem throughout the course.

Observe that $\operatorname{rref}(A)$ has at most one pivot per column (condition 5 of a reduced echelon form, or think about how we perform row-reduction). So if A has more rows than columns (a "tall" matrix), then $\operatorname{rref}(A)$ cannot have a pivot in every row, so the statements above are all false.

In particular, a set of fewer than m vectors cannot span \mathbb{R}^m

Warning/Exercise: It is **not** true that any set of m or more vectors span \mathbb{R}^m :

can you think of an example? HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 26 of 35

§1.5: Solution Sets of Linear Systems

Goal: use vector notation to give geometric descriptions of solution sets to compare the solution sets of $A\mathbf{x} = \mathbf{b}$ and of $A\mathbf{x} = \mathbf{0}$.

Definition: A linear system is *homogeneous* if the right hand side is the zero vector, i.e.

$$A\mathbf{x} = \mathbf{0}$$
.

When we row-reduce $[A|\mathbf{0}]$, the right hand side stays $\mathbf{0}$, so the reduced echelon form does not have a row of the form $[0\dots0]*]$ with $*\neq0$.

So a homogeneous system is always consistent.

In fact, ${\bf x}={\bf 0}$ is always a solution, because $A{\bf 0}={\bf 0}.$ The solution ${\bf x}={\bf 0}$ called the trivial solution.

A non-trivial solution ${\bf x}$ is a solution where at least one x_i is non-zero.

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 27 of 35

If there are non-trivial solutions, what does the solution set look like?

EXAMPLE:

$$2x_1 + 4x_2 - 6x_3 = 0$$

$$4x_1 + 8x_2 - 10x_3 = 0$$

Corresponding augmented matrix:

Corresponding reduced echelon form:

Solution set:

Geometric representation:

EXAMPLE: (same left hand side as before)

$$2x_1 + 4x_2 - 6x_3 = 0$$

$$4x_1 + 8x_2 - 10x_3 = 4$$

Corresponding augmented matrix:

$$\begin{bmatrix} 2 & 4 & -6 & 0 \\ 4 & 8 & -10 & 4 \end{bmatrix}$$

Corresponding reduced echelon form:

$$\begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Solution set:

Geometric representation:

EXAMPLE: Compare the solution sets of:

$$x_1 - 2x_2 - 2x_3 = 0$$

$$x_1 - 2x_2 - 2x_3 = 3$$

Corresponding augmented matrices:

$$\left[\begin{array}{cc|c} 1 & -2 & -2 & 0 \end{array}\right]$$

 $\left[\begin{array}{cc|c} 1 & -2 & -2 & 3 \end{array}\right]$

These are already in reduced echelon form. Solution sets:

Geometric representation:

Parallel Solution Sets of Ax = 0 and Ax = b

In our first example:

- ullet The solution set of $A\mathbf{x} = \mathbf{0}$ is a line through the origin parallel to \mathbf{v} .
 - The solution set of $A\mathbf{x} = \mathbf{b}$ is a line through \mathbf{p} parallel to \mathbf{v} .

In our second example:

- The solution set of $A\mathbf{x} = \mathbf{0}$ is a plane through the origin parallel to \mathbf{u} and \mathbf{v} .
 - ullet The solution set of $A\mathbf{x} = \mathbf{b}$ is a plane through \mathbf{p} parallel to \mathbf{u} and \mathbf{v} .

In both cases: to get the solution set of $A\mathbf{x} = \mathbf{b}$, start with the solution set of $A\mathbf{x} = \mathbf{0}$ and translate it by \mathbf{p} .

 ${f p}$ is called a particular solution (one solution out of many).

In general:

to $A\mathbf{x} = \mathbf{b}$. Then the solution set to $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form Theorem 6: Solutions and homogeneous equations: Suppose p is a solution $w=p+v_h,$ where v_h is any solution of the homogeneous equation $\mathit{Ax}=0.$

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 31 of 35

to $A\mathbf{x} = \mathbf{b}$. Then the solution set to $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form Theorem 6: Solutions and homogeneous equations: Suppose p is a solution ${\bf w}={\bf p}+{\bf v_h}$, where ${\bf v_h}$ is any solution of the homogeneous equation $A{\bf x}={\bf 0}$.

Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$.

HKBU Math 2207 Linear Algebra Semester 1 2017, Week 2, Page 32 of 35

Theorem 6: Solutions and homogeneous equations: Suppose p is a solution to Ax = b. Then the solution set to Ax = b is the set of all vectors of the form $w=p+v_h,$ where v_h is any solution of the homogeneous equation $\mathit{Ax}=0.$

 $\begin{array}{l} \textbf{Proof} \colon (\mathsf{outline}) \\ \mathsf{We} \ \mathsf{show} \ \mathsf{that} \ \mathbf{w} = \mathbf{p} + \mathbf{v_h} \ \mathsf{is} \ \mathsf{a} \ \mathsf{solution} . \end{array}$

$$A(\mathbf{p} + \mathbf{v_h})$$

$$= A\mathbf{p} + A\mathbf{v_h}$$

$$= \mathbf{b} + \mathbf{0}$$

We also need to show that all solutions are of the form ${\bf w}={\bf p}+{\bf v}_{\bf h}$ - see q25 in Section 1.5 of the textbook.

HKBU Math 2207 Linear Algebra

Semester 1 2017, Week 2, Page 33 of 35

In Q2a, you found that the solution set to $A\mathbf{x} = \mathbf{0}$ is $\begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} r + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} t$, where

r,s,t can take any value.

In Q2b, you want to solve
$$A\mathbf{x} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
. Now $\begin{bmatrix} 3 \\ 6 \end{bmatrix} = 0\mathbf{a}_1 + 1\mathbf{a}_2 + 0\mathbf{a}_3 + 0\mathbf{a}_4 = A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so

emester 1 2017, Week 2, Page 34 of 35

Notice that this solution looks different from the solution obtained from row-reduction;

$$\operatorname{rref}\left(\begin{bmatrix}1 & 3 & 0 & -4 & |3\\ 2 & 6 & 0 & -8 & |6\end{bmatrix}\right) = \begin{bmatrix}1 & 3 & 0 & -4 & |3\\ 0 & 0 & 0 & |0\end{bmatrix}, \text{ which gives a different particular solution} \begin{bmatrix}0 & 0 & 0 & |0|\\ 0 & 0 & 0 & |0|\end{bmatrix}$$

But the solution sets are the same:

$$\begin{bmatrix} 3 \\ 0 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} t = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} (r-1) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} s + \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} s + \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} t$$
 and r, s, t taking any value is equivalent to $r-1, s, t$ taking any value.