Risk Management: T-Exercise 09 Solution

By positive homogeneity and translation invariance of the expected short fall we get: $ES_{\alpha}(L) = -s(ES_{\alpha}(e^X) - 1)$, with $L = -s(e^X - 1)$.

Since $X \sim N(\mu, \sigma)$ we can replace it by $\mu + \sigma Y$, where $Y \sim N(0, 1)$ has standard normal law. Thus, we are interested in $ES_{\alpha}(e^{\mu+\sigma Y})$.

$$ES_{\alpha}(e^{\mu+\sigma Y}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(F_{Y})}^{\infty} e^{(\mu+\sigma y)} \phi(y) dy$$

$$= \frac{1}{1-\alpha} e^{\mu} \int_{q_{\alpha}(F_{Y})}^{\infty} e^{(\sigma y)} \frac{1}{\sqrt{2\pi}} exp\left(-\frac{y^{2}}{2}\right) dy$$

$$= \frac{1}{1-\alpha} e^{\mu} \int_{q_{\alpha}(F_{Y})}^{\infty} \frac{1}{\sqrt{2\pi}} exp\left(-\frac{y^{2}-\sigma y+\sigma^{2}}{2}+\frac{\sigma^{2}}{2}\right) dy$$

$$= \frac{1}{1-\alpha} e^{(\mu+\frac{\sigma^{2}}{2})} \int_{q_{\alpha}(F_{Y})}^{\infty} \frac{1}{\sqrt{2\pi}} exp\left(-\frac{(y-\sigma)^{2}}{2}\right) dy$$

$$= \frac{1}{1-\alpha} e^{(\mu+\frac{\sigma^{2}}{2})} \int_{q_{\alpha}(F_{Y})}^{\infty} \phi(y+\sigma) dy$$

$$= \frac{1}{1-\alpha} e^{(\mu+\frac{\sigma^{2}}{2})} \int_{q_{\alpha}(F_{Y})+\sigma}^{\infty} \phi(w) dw$$

$$= \frac{e^{(\mu+\frac{\sigma^{2}}{2})}}{1-\alpha} \Phi(-\Phi^{-1}(\alpha)-\sigma)$$
Bounds

$$ES_{\alpha}(L) = -s \left(\frac{e^{(\mu + \frac{\sigma^2}{2})}}{1 - \alpha} \Phi(-\Phi^{-1}(\alpha) - \sigma) - 1 \right)$$

$$w = y + \sigma$$

$$\frac{dw}{dy} = 1$$

$$dy = dw$$

Bounds

Since standard distribution is symmetric, hence:
$$\Phi^{-1}(1-\alpha) = -\Phi^{-1}(\alpha)$$
 $\begin{cases} y_u = \infty \\ y_l = q_\alpha(F_Y) \\ w = y + \sigma \end{cases}$ Therefore, for $ES_\alpha(L) = -s(ES_\alpha(e^X) - 1)$ we get: $w_l = q_\alpha(F_Y) + \sigma$