Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 9: Dimensionality Reduction, Principled Component Analysis (PCA) November 23, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Did you learn?

Logistic regression (machine learning)

- 1) Understanding of how logistic regression can be adapted to a classification framework
- 2) Understanding the idea of a Support Vector Machine
- 3) Getting acquainted with how Support Vector Machines can solve non-linear problems

SUPPORT VECTOR MACHINES Recapitulation

(p. 69: Raschka, 2015)

$$\phi(x_1, x_2) = (z_1, z_2, z_3) = (x_1, x_2, x_1^2 + x_2^2)$$

Creating the higher dimensions can be computationally expensive

Kernel (k) function

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^{T} \phi(\mathbf{x}^{(j)})$$
$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = e^{(-y \|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^{2})}$$
$$(y = \frac{1}{2\sigma^{2}}, \text{ also called the precision})$$

Non-linear decision boundaries

(p. 78: Raschka, 2015)

Low γ - soft boundary

(p. 79: Raschka, 2015)

High γ - tight boundary

(p. 80: Raschka, 2015)

Live coding

RECAPITULATION_SUPPORT_VECTOR_MACHINE.ipynb

Available online on The Royal Library

Learning goals

Dimensionality reduction

- 1) Learning how we can extract the features that explain the most variance
- 2) Understanding how that can improve classification
- 3) Get acquainted with the concept of a eigenvector

The curse of dimensionality

```
import numpy as np
import matplotlib.pyplot as plt
from os.path import join
path = '/home/lau/Skrivebord/class subject'
data = np.load(join(path, 'megmag data.npy'))
print('Shape: ' + str(data.shape))
print('n measurements: ' + str(np.prod(data.shape)))
print('n observations: ' + str(data.shape[0]))
print('n features: ' + str(np.prod(data.shape[1:])))
Shape: (682, 102, 251)
n measurements: 17460564
n observations: 682
n features: 25602
```

Principled components

FINDING THE DIRECTIONS OF MOST VARIANCE

(p. 128: Raschka, 2015)

Principled components

FINDING THE DIRECTIONS OF MOST VARIANCE

PC1 has the most variance

(p. 128: Raschka, 2015)

This can be **generalized** to as many dimensions as you like

A dataset (wine)

(p. 118: Raschka, 2015)

```
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
print(X.shape)
print(np.unique(y))

(178, 13)
[1 2 3]
```

AIM: for **x**: find **W** such that:

$$\mathbf{x} = [x_1, x_2, ..., x_d], \mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{v} = [x_1, x_2, ..., x_d], \mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{z} = [z_1, z_2, ..., z_k], \mathbf{z} \in \mathbb{R}^k$$

Approach

PRINCIPLED COMPONENT ANALYSIS

- 1) Standardize the *d*-dimensional dataset
- 2) Construct the covariance matrix
- 3) Decompose the covariance matrix into its eigenvectors and eigenvalues
- 4) Select k eigenvectors that correspond to the k largest eigenvalues where k is the dimensionality of the new feature subspace ($k \le d$)
- 5) Construct a projection matrix W from the "top" k eigenvectors
- 6) Transform the d-dimensional input dataset X using the projection matrix W to obtain the new k-dimensional feature subspace

(p. 129: Raschka, 2015)

Standardize the dataset (1)

FINDING THE DIRECTIONS OF MOST VARIANCE

```
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.3, random_state=0)

sc = StandardScaler()
X_train_std = sc.fit_transform(X_train)
X_test_std = sc.fit_transform(X_test)
X_std = sc.fit_transform(X)
```

Question: why do we need to standardize?

Compare the variance of a measurement made in millimetres to one made in kilometres!

Data

Construct the covariance matrix (2)

FINDING THE DIRECTIONS OF MOST VARIANCE

$$\sigma_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{j}^{(i)} - \mu_{j})(x_{k}^{(i)} - \mu_{k})$$

$$\Sigma = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2} \end{bmatrix}$$

Question: what will be the size of the covariance matrix in the *Wine* dataset?

COVARIANCE MATRIX

1.00

0.75

- 0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Find the eigenvectors and eigenvalues (3) FINDING THE DIRECTIONS OF MOST VARIANCE

$$\Sigma \mathbf{v} = \lambda \mathbf{v}$$

v: eigenvector

 λ : eigenvalue

 Σ : covariance matrix

Link to Chris Mathys's lecture from Methods II

Link to 3blue1brown's video of the same matter

Remember: matrix multiplication of a vector can be seen as a **transformation** of the vector

$$T(x) = Ax$$

A: transformation matrix

x: column vector

T: transformed column vector

Identity Transformation


```
## plot vector (2, 4)
v = (2, 4)
plot_vector(v, 'Original vector')
```

```
Identity transform
 10
  5
  0
 -5
-10
            -5
                                        10
   A = np.identity(2)
```

```
A = np.identity(2)
print('A = \n' + str(A))
plot_vector(A @ v, 'Identity transform')

A =
[[1. 0.]
[0. 1.]]
```

27

Scaling Transformation

[0. 2.]]

Rotation Transformation

Random Transformation


```
In [142]: ## eigenvalues and eigenvectors
    eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
    print(eigen_vals.shape)
    print(eigen_vecs.shape)

(13,)
    (13, 13)
```

```
In [17]: # checking whether the equation holds
        evec 0 = eigen vecs[:, 0]
        eval 0 = eigen vals[0]
        mat trans = cov mat @ evec 0 ## A times x
        scalar trans = eval 0 * evec 0 # lambda times x
        print(mat trans)
        print(scalar trans)
        print(np.isclose(mat trans, scalar trans)) ## instead of using "==", due to rounding error
        [ 0.7176924 -1.18513985 -0.14644842 -1.24846827  0.5909797
                                                               1.90479358
          2.07074217 -1.49875647 1.49568723 -0.48283127 1.46928422 1.80140436
          1.43147537
        [ 0.7176924 -1.18513985 -0.14644842 -1.24846827 0.5909797
                                                               1.90479358
         2.07074217 -1.49875647 1.49568723 -0.48283127 1.46928422 1.80140436
          1.431475371
        Truel
```

Eigenvectors (black), scaled by eigenvalues (red)

$\Sigma \mathbf{v} = \lambda \mathbf{v}$

Eigenvalues:

[0.92015307 1.09610709]

Eigenvectors:

[[-0.70710678 -0.70710678]

0.70710678 -0.70710678]]

Covariance matrix:

[[1.00813008 0.08797701]

[0.08797701 1.00813008]]

Applying a transformation

For comparison

In the case where k=d...

- 4) Select k eigenvectors that correspond to the k largest eigenvalues where k is the dimensionality of the new feature subspace ($k \le d$)
- 5) Construct a projection matrix **W** from the "top" *k* eigenvectors
- 6) Transform the d-dimensional input dataset x using the projection matrix w to obtain the new k-dimensional feature subspace

... applying steps 4, 5 & 6 result in:

this is **not** feature reduction, however...

"reducing" to a new subspace (k=d) (4)

Eigenvalues for the **full** covariance matrix

```
## going back to the full feature matrix
print(eigen_vals)
[4.8923083    2.46635032    1.42809973    1.01233462    0.84906459    0.60181514
   0.52251546    0.08414846    0.33051429    0.29595018    0.16831254    0.21432212
   0.2399553 ]
```

Variance explained ratio

$$\frac{\lambda_j}{\sum_{j=1}^d \lambda_j}$$

$$\lambda_1 = \max(\lambda_j)$$
$$\lambda_7 = \min(\lambda_j)$$

$$\frac{\lambda_1}{\sum_{j=1}^d \lambda_j} = 37\%$$

$$\frac{\lambda_7}{\sum_{j=1}^d \lambda_j} = 0.64\%$$

Sorted explained variance

(p. 132: Raschka, 2015)

Setting k = 2

Construct a projection matrix W from the "top" k eigenvectors (5)

```
print('Weight matrix:\n', W)
Weight matrix:
 [[ 0.14669811  0.50417079]
 [-0.24224554 0.24216889]
 [-0.02993442 0.28698484]
 [-0.25519002 -0.06468718]
 [ 0.12079772  0.22995385]
 [ 0.38934455  0.09363991]
 [ 0.42326486  0.01088622]
 [-0.30634956 0.01870216]
 [ 0.30572219  0.03040352]
 [-0.09869191 0.54527081]
 [ 0.30032535 -0.27924322]
 [ 0.36821154 -0.174365
 [ 0.29259713  0.36315461]]
```

Transform the *d*-dimensional input dataset *X* using the projection matrix *W* to obtain the new *k*-dimensional feature subspace (6)

$$\mathbf{x} = [x_1, x_2, ..., x_d], \mathbf{x} \in \mathbb{R}^d$$

$$\mathbf{v} = [x_1, x_2, ..., x_k], \mathbf{v} \in \mathbb{R}^d$$

$$\mathbf{z} = [z_1, z_2, ..., z_k], \mathbf{z} \in \mathbb{R}^k$$

$$Z = XW$$

Reduced space

We can now do logistic regression in this space

Logistic regression on reduced space (k = 2)

(p. 136: Raschka, 2015)

Did you learn?

Dimensionality reduction

- 1) Learning how we can extract the features that explain the most variance
- 2) Understanding how that can improve classification
- 3) Get acquainted with the concept of a eigenvector

(OPTIONAL) Live coding WEEK_09.ipynb

(OPTIONAL) Live coding NUMPY.ipynb

References

- Abe, S., 2010. Support Vector Machines for Pattern Classification. Springer, London.
- Raschka, S., 2015. Python Machine Learning.
 Packt Publishing Ltd.