MATH 285: Stochastic Processes

math-old.ucsd.edu/~ynemish/teaching/285

Today: Periodic, aperiodic, reducible, irreducible Markov chains

Homework 2 is due on Friday, January 21 11:59 PM

First step analysis Let (Xn) be a MC with state space S and transition matrix P.

Let ACS, TA = min {n > 0 ! Xn & A}, and denote

Let
$$ACS_1$$
 $L_A = min\{n \ge 0: \land n \in A\}$, and denote $h^{\bullet}(i) := P_i[T_A < \infty]$ (as in lecture 3 with $B = \emptyset$, so that $T_B = \infty$)

Then (lecture 2) ha(i) satisfies the system of linear equations

$$\begin{cases} h^{A}(i) = 1 & \text{if } i \in A \\ h^{A}(i) = \sum_{j \in S} p(i,j) h^{A}(j) & \text{if } i \notin A \end{cases}$$

The solution may be not unique.

Theorem 7.0 The vector of hitting probabilities (h^(i), ie S)
is the

(Minimal: if (x(i), ies) satisfies (*) and x(i) ≥ 0 \(\frac{1}{2}\), then x(i) \(\frac{1}{2}\)h^(ii)

First step analysis

Proof of minimality: Let
$$(x(i), i \in S)$$
 be a nonnegative

solution to $(*)$. Then $x(i) = 1$ for all $i \in A$ (so $x(i) \ge h^A(i)$)

For all $i \notin A$
 $x(i) = \sum_{j \in S} P(i,j)x_j = j$
 $= \sum_{j \in S} \forall i \notin A \quad x(i) \ge P_i(T_A \le h) \Rightarrow$

First step analysis Denote q'(i) = Ei[TA] (mean hitting /absorption time) Theorem 7.0' The vector of mean hitting times (q^(i), ies) to the system of is the the linear equations $\int g(i) = 1 + \sum_{j \in S} p(i,j) g(j) \quad \text{if} \quad i \notin A$ if ieA (q(i)=0 Proof . Exercise .

Stationary distribution Stationary distribution $\pi = \pi P$ Q1: Existence of the stationary distribution

Q 2 ! Uniqueness of the stationary distribution

Q3: Convergence to the stationary distribution

General Markov chain with finite state space Let (X_n) be a MC with finite state space S. Suppose that $\pi = P\pi$, $P = QDQ^T$ such that

$$Q = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Enough to have the following: (use Jordan normal form)

1) 1 is a simple eigenvalue (1 is always an eigenvalue

Since $(P1)_i = \sum_j p(i,j) = 1$, so P1 = 1, $1 = \binom{i}{j}$ is an e.7.) 2) There is a left eigenvector of 1 with all nonnegative entries

3) If λ is an eigenvalue of P and $\lambda = 1$, then $|\lambda| < 1$

Perron-Frobenius theorem Theorem 6.5 Let M be an N×N matrix all of whose entries are strictly positive. Then Moreover, eigenspace contains a vector with · Finally, Proof. No proof Let P be a stochastic matrix with all strictly positive entries Then, therefore I is the PF eigenvalue: If (Xn) is with (left) eigenvector IT with a MC with transition matrix P, then

Perron - Frobenius Theorem Enough if 3 no >0 s.t. all entries of Pro are strictly positive. Corollary 6.6 Let P be a stochastic matrix s.t. there exists no EN for which Then there exists a unique stationary distribution and for any distribution . Proof. Use the fact that if $\vec{V}P = \lambda \vec{V}$, then so P'has the same eigenvectors as P, and eigenvalues are n-th powers of eigenvalues of P. By PF thm, 1 is ev of P" with evs II and 1, therefore If λ is evof P and $\lambda \neq 1$, . By PF therefore We conclude that P satisfies

Stationary distribution and long-run behavior Prop. 7.1 Let (Xn) be a MC with finite state space S. Suppose that there exists no e M s.t [P]; >0 for all i,je S Then for each j, T(j) is equal to the $\frac{\text{Proof.}}{\mathbb{E}\left[\frac{1}{n+1}\sum_{k=0}^{n}\mathbb{1}_{\left\{X_{k}=j\right\}}\right]}=$ for all jes and To.

[if an +a, n +00, then \(\frac{1}{n} \sum_{k=1}^{2} a_k \rightarrow a \] By Cor. 6.6, Therefore,

Stationary distribution and expected return times

Recall that Ti,k denotes the time of the k-th visit to state i.

 $y_{k} = \frac{1}{2} \sum_{k=1}^{\infty} y_{k} = \frac{1}{2} \sum_{k=1}^{\infty}$

$$y_k \sim$$
. Notice that $\sum_{k=1}^m y_k = \sum_{k=1}^m T_{i,k+1} - T_{i,k} = \sum_{k=1}^m T_{i,m+1} = \sum_{k=1}^m T_{i,m+1} \approx \sum_{k=1}^m T_{i,m$

Take m large, and let $n = m E(T_i)$. Then

so $\sum_{k=0}^{n} \mathbb{1}_{\{X_k=i\}}$. Then $\frac{m+1}{n} \approx$

Periodic and aperiodic chains Let (Xn) be a MC with state space 5 and transition probability p(iij). Def For ies, denote Ji := We call d(i):= De (0,1) $J_1 =$ d(1)= d(1) = 9(1)= Def If d(i)=1 for all i ∈ S, then (Xn) is called

Periodic and aperiodic chains Lemma 7.2 If P is the transition matrix for an irredusible Markov chain, then for all states i.j. Proof Fix ies. (1) If mine Ji, then (2) Let d=d(i). Then (definition of d(i)) Take j + i. (3) Pirreducible => 3 m,n s.t. pm (i,j)>0, pn (j,i)>0. $\Rightarrow P_{m+n}(i,i)>0 \Rightarrow \Rightarrow \Rightarrow$ (4) If le J; then pe(j,j)>0 and thus => dis a common divisor of J; => (5) Swap i and j: ∃ q2 € N s.t. d(i) = q2 d(j) ⇒ d(i) = d(j)

RW on bipartite graphs

Example 7.3 Let G=(V,E) be finite connected graph.

- · SRW on G is irreducible (all vertices have the same period) - we call the common period the period of MC
- For any i~; P(i,j)>0, P(j,i)>0, so P2(i,i)>0, 2 € Ji

⇒ d(i) ≤ 2

$$V = V_1 \coprod V_2$$
, $E \subset (V_1 \times V_2 \cup V_2 \times V_1)$

V2 = odd numbers

Irreducible aperiodic Markov chains Theorem 7.4 Let P be a transition matrix for a finite-state, irreducible, aperiodic Markov chain. Then there exists a unique stationary distribution II, II = IT P, and for any initial probability distribution) $\lim_{n\to\infty} \mathcal{P}^n = 11$ Proof (1) By PF theorem, enough to show that there exists no>o s.t. \ cij \ Fix i,j \ Es (2) d(i) = 1 (aperiodic) => 3 Mi s.t. Ji contains all nz Mi (3) irreducible => 3 mij s.t. Pmij (i,j)>0 (2)+(3): Take no = max (Mi + mij) =>

Reducible Markov chains Not irreducible MC = reducible MC Def 7.5 Let (Xn) be a MC with state space 5. We say that states i and i , denoted if there exists nime Nulo) s.t. and DE(0,1) Lemma 7.6 Relation \leftrightarrow on S is an equivalence relation. (reflexivity, i +i) po(i,i)=1, so i +i (symmetry, i + j + j+i) Follows from Def 7.5 (transitivity, i +) j + k => i + k) i + j: pn(i,j)>0, pm (j,i)>0 j + k: pn(j,k)>0, pm(k,j)>0. Then

Communication classes Equivalence relation \(\to \) splits the state space into communication classes (sets of states that communicate with each other). DE(011) {1}, {2} MC is irreducible iff it consists of one communication class Class properties: - transience or recurrence: either all states in one class are transient (class) or all are recurrent (class) - periodicity: all states in one class have the same period

Communication classes Suppose i and j belong to different classes.

- If p(i,j) > 0, then for all $n \in \mathbb{N}$ (otherwise $i \leftrightarrow j$.

 If p(i,j) > 0 and p(j,i) = 0 for all $n \in \mathbb{N}$, then
- Pi[Xn = i for infinitely many n] ≤ , and thus i is transient
- Therefore, if i and j belong to different classes and i is recurrent, then (once in a

recurrent class, MC stays there forever)

If we split the state space into communication classes,

with Re denoting recurrent classes, then the transition matrix has the following form

Communication classes

Pi submatrix for the recurrent class Ri

Pi is a stochastic matrix,

we can consider it as a

Markov chain on Ri