Antiresonance Phase shift in strongly coupled cavity QED

C. Sames et al., PRL **112**, 043601 (2014).

Myounggyu Hwang Quantum field laser laboratory

Group summary

Experiments with single photons and individual atoms

Quantum Dynamics Division,

Prof. Gerhard Rempe

- 1 director
- 4 scientists
- 1 postdoc
- 5 technicians
- 3 assistants
- 16 doctoral candidates
- 4 master student

Cavity Quantum Electrodynamics

QuantumInformationProcessing

Cold Polar Molecules

Anti-resonance of coupled oscillators

- At anti-resonance frequency, one oscillators has a minimum in the aplitude and large shift in oscillation phase.
- Anti-resonances are caused by destructive interference between an external driving force and an interaction with another oscillator.

Anti-resonance of coupled oscillators

$$\begin{cases} \ddot{x_1} + 2\gamma_1 \dot{x_1} + \omega_1^2 x_1 - 2g\omega_1 x_2 = 2F\cos\omega t \\ \ddot{x_2} + 2\gamma_2 \dot{x_2} + \omega_2^2 x_2 - 2g\omega_2 x_1 = 0 \end{cases}$$

$$\begin{cases} \alpha_1 = \omega_1 x_1 + i p_1/m_1 \\ \alpha_2 = \omega_2 x_2 + i p_2/m_1 \\ \Delta_i = \omega - \omega_i \end{cases}$$

In rotating frame of ω , with r.w.a.,

$$\begin{aligned} \dot{\alpha}_1 &= i(\Delta_1 + i\gamma_1)\alpha_1 - ig\left(\frac{\omega_1}{\omega_2}\right)\alpha_2 + iF \\ \dot{\alpha}_2 &= i(\Delta_2 + i\gamma_2)\alpha_2 - ig\left(\frac{\omega_2}{\omega_1}\right)\alpha_1 \end{aligned}$$

Steady state solution is

$$\alpha_{1,SS} = \frac{-F(\Delta_2 + i\gamma_2)}{(\Delta_1 + i\gamma_1)(\Delta_2 + i\gamma_2) - g^2}$$

$$\alpha_{2,SS} = \frac{\omega_2}{\omega_1} \frac{-Fg}{(\Delta_1 + i\gamma_1)(\Delta_2 + i\gamma_2) - g^2}$$

Anti-resonance of atom-cavity system

$$\langle \hat{a} \rangle = \frac{\eta(\Delta_{\text{pa}} + i\gamma)}{(\Delta_{\text{pa}} + i\gamma)(\Delta_{\text{pc}} + i\kappa) - g^2}$$

$$\begin{cases} \Delta_{pa} = \omega - \omega_{atom} \\ \Delta_{pc} = \omega - \omega_{cavity} \end{cases}$$

3. Experimental setup

- Single 85Rb in intra-cavity dipole trap (785nm)
- Heterodyne measurement
- Strong coupling: $(g_0, \gamma, \kappa)/2\pi = (16, 3.0, 1.5)$ MHz
- ω_{atom} is controllable by ac Stark shift

4. Result: Δ_{pc} vs. phase shift

- Anti-resonant frequency is at $\Delta_{pa}=0$. i.e. $\Delta_{pc}=\Delta_{ac}=-3MHz$
- Negative slope occurs at anti-resonant frequency.

$$\langle \hat{a} \rangle = \frac{\eta(\Delta_{\mathrm{pa}} + i\gamma)}{(\Delta_{\mathrm{pa}} + i\gamma)(\Delta_{\mathrm{pc}} + i\kappa) - g^2}$$

5. Result: Δ_{pc} vs. phase shift, varying Δ_{ac}

•
$$\Delta_{ac} = (-14, -5, 12)MHz$$

 Netagive slope is at antiresonant frequency.

$$\langle \hat{a} \rangle = \frac{\eta(\Delta_{\text{pa}} + i\gamma)}{(\Delta_{\text{pa}} + i\gamma)(\Delta_{\text{pc}} + i\kappa) - g^2}$$

5. Result: Δ_{pa} vs. phase shift

- $\Delta_{pc} = 0MHz$.
- $\Delta_{pa} = \Delta_{ca}$ is controlled by dipole trap power.
- 140 degree of phase shift is largest yet observed from a single emitter.

$$\langle \hat{a} \rangle = \frac{\eta(\Delta_{\text{pa}} + i\gamma)}{(\Delta_{\text{pa}} + i\gamma)(\Delta_{\text{pc}} + i\kappa) - g^2}$$