1. Аналіз похибок заокруглення

1.1. Види похибок

Нехай необхідно розв'язати рівняння

$$Au = f. (1)$$

За рахунок неточно заданих вхідних даних насправді ми маємо рівняння

$$\tilde{A}\tilde{u} = \tilde{f}$$
 . (2)

Означення: Назвемо $\delta_1=u- ilde{u}$ неусувною похибкою.

Застосування методу розв'язання (2) приводить до рівняння

$$\tilde{A}_h \tilde{u}_h = \tilde{f}_h, \tag{3}$$

де h>0 — малий параметр.

Означення: Назвемо $\delta_2 = ilde{u} - ilde{u}_h$ похибкою методу.

Реалізація методу на ЕОМ приводить до рівняння

$$\tilde{A}_h^{\star} \tilde{u}_h^{\star} = \tilde{f}_h^{\star}. \tag{4}$$

Означення: Назвемо $\delta_3 = ilde{u}_h - ilde{u}_h^\star$ похибкою заокруглення.

Означення: Тоді *повна похибка* $\delta = u - ilde{u}_h^\star = \delta_1 + \delta_2 + \delta_3.$

Означення: кажуть, що задача (1) коректна, якщо

- $\forall f \in F$: $\exists ! u \in U$;
- ullet Задача (1) *стійка*, тобто orall arepsilon > 0: $\exists \delta > 0$:

$$|A - \tilde{A}| < \delta, |f - \tilde{f}| < \delta \implies |u - \tilde{u}| < \varepsilon.$$
 (5)

Якщо задача (1) некоректна, то або розв'язок її не існує, або він неєдиний, або він нестійкий, тобто $\exists \varepsilon > 0$: $\forall \delta > 0$:

$$|A - \tilde{A}| < \delta, |f - \tilde{f}| < \delta \implies |u - \tilde{u}| > \varepsilon.$$
 (6)

Означення: Абсолютна похибка $\Delta x \leq |x-x^\star|$.

Означення: *Відносна похибка* $\delta x \leq \Delta x/|x|$, або $\Delta x/|x^{\star}|$.

Означення: *Значущими цифрами* називаються всі цифри, починаючи з першої ненульової зліва.

Означення: *Вірна цифра* — це значуща, якщо абсолютна похибка за рахунок відкидання всіх молодших розрядів не перевищує одиниці розряду цієї цифри.

Тобто, якщо $x^\star=\alpha_n\dots\alpha_0$. $\alpha_{-1}\dots\alpha_{-p}\dots$, то α_{-p} вірна, якщо $\Delta x\leq 10^{-p}$ (інколи $\Delta x\leq w\cdot 10^{-p}$, де $1/2\leq w<1$ наприклад, w=0.55).

1.2. Підрахунок похибок в ЕОМ

Підрахуємо відносну похибку заокруглення числа x на ЕОМ з плаваючою комою. В β -ічній системі числення число представляється у вигляді

$$x = \pm (\alpha_1 \beta^{-1} + \alpha_2 \beta^{-2} + \ldots + \alpha_t \beta^{-t} + \ldots) \cdot \beta^p, \tag{7}$$

де $0 \leq lpha_k < eta$, $lpha_1
eq 0$, $k = 1, 2, \ldots$

Якщо в ЕОМ t розрядів, то при відкиданні молодших розрядів ми оперуємо з наближеним значенням

$$x^* = \pm (\alpha_1 \beta^{-1} + \alpha_2 \beta^{-2} + \ldots + \alpha_t \beta^{-t}) \cdot \beta^p \tag{8}$$

і відповідно похибка заокруглення

$$x - x^* = \pm \beta^p \cdot (\alpha_{t+1}\beta^{-t-1} + \ldots). \tag{9}$$

Тоді її можна оцінити так

$$|x-x^\star| \leq eta^{p-t-1} \cdot (eta-1) \cdot (1+eta^{-1}+\ldots) \leq eta^{p-t-1} \cdot (eta-1) \cdot rac{1}{1-eta^{-1}} = eta^{p-t}. \quad (10)$$

Якщо в представлені (7) взяти $lpha_1=1$, то $|x|\geq eta^p\cdoteta^{-1}$. Звідси остаточно

$$\delta x \le \frac{\beta^{p-t}}{\beta^{p-1}} = \beta^{-t+1}. \tag{11}$$

При більш точних способах заокруглення можна отримати оцінку $\delta x \leq \frac{1}{2} \cdot \beta^{-t+1} = \varepsilon$. Число ε називається «машинним іпсилон». Наприклад, для $\beta=2$, t=24, $\varepsilon=2^{-24}\approx 10^{-7}$.

1.3. Підрахунок похибок обчислення значення функції

Нехай задана функція $y=f(x_1,\ldots,x_n)\in C^1(\Omega)$. Необхідно обчислити її значення при наближеному значенні аргументів $\vec{x}^\star=(x_1^\star,\ldots,x_n^\star)$, де $|x_i-x_i^\star|\leq \Delta x_i$ та оцінити похибку обчислення значення функції $y^\star=f(x_1^\star,\ldots,x_n^\star)$. Маємо

$$\left| \left| y - y^\star \right| = \left| f\left(ec{x}
ight) - f\left(ec{x}^\star
ight)
ight| = \left| \sum_{i=1}^n rac{\partial f}{\partial x_i} ig(ec{\xi} ig) \cdot \left(x_i - x_i^\star
ight)
ight| \leq \sum_{i=1}^n B_i \cdot \Delta x_i, \qquad (12)$$

де
$$B_u = \max_{ec{x} \in U} igg| rac{\partial f}{\partial x_i}(ec{x}) igg|.$$

Тут

$$U = \left\{ \vec{x} = (x_1, \dots, x_n) : |x_i - x_i^{\star}| \le \Delta x_i \right\} \subset \Omega, \tag{13}$$

для $i=\overline{1,n}$. Отже з точністю до величин першого порядку малості по

$$\Delta x = \max_{i} \Delta x_{i},\tag{14}$$

$$\Delta y = |y - y^{\star}| \prec \sum_{i=1}^{n} b_i \cdot \Delta x_i, \tag{15}$$

де $b_i = \left| rac{\partial f}{\partial x_i} (ec{x}^\star)
ight|$ та « \prec » означає приблизно менше.

Розглянемо похибки арифметичних операцій.

• Сума: $y = x_1 + x_2$, $x_1, x_2 > 0$:

$$\Delta y \le \Delta x_1 + \Delta x_2,\tag{16}$$

$$\delta y \leq rac{\Delta x_1 + \Delta x_2}{x_1 + x_2} \leq \max(\delta x_1, \delta x_2).$$
 (17)

ullet Різниця: $y=x_1-x_2$, $x_1>x_2>0$:

$$\Delta y \le \Delta x_1 + \Delta x_2,\tag{18}$$

$$\delta y \le \frac{x_2 \delta x_1 + x_1 \delta x_2}{x_1 - x_2}.\tag{19}$$

При близьких x_1 , x_2 зростає відносна похибка (за рахунок втрати вірних цифр).

• Добуток: $y = x_1 \cdot x_2$, $x_1, x_2 > 0$:

$$\Delta y \prec x_2 \Delta x_1 + x_1 \Delta x_2,\tag{20}$$

$$\delta y \le \delta x_1 + \delta x_2. \tag{21}$$

• Частка $y=x_1/x_2$, $x_1,x_2>0$:

$$\Delta y \prec \frac{x_2 \Delta x_1 + x_1 \Delta x_2}{x_2^2},\tag{22}$$

$$\delta y \le \delta x_1 + \delta x_2. \tag{23}$$

При малих x_2 зростає абсолютна похибка (за рахунок зростання результату ділення).

Означення: *Пряма задача* аналізу похибок: обчислення Δy , δy по заданих Δx_i , $i=\overline{1,n}$.

Означення: *Обернена задача*: знаходження Δx_i , $i=\overline{1,n}$ по заданих Δy , δy . Якщо n>1, маємо одну умову

$$\sum_{i=1}^{n} b_i \cdot \Delta x_i < \varepsilon \tag{24}$$

для багатьох невідомих Δx_i .

Вибирають їх із однієї з умов:

$$\forall i: b_i \cdot \Delta x_i < \frac{\varepsilon}{n} \tag{25}$$

або

$$\Delta x_i < \frac{\varepsilon}{\sum_{i=1}^n b_i}.$$
 (26)

2. Методи розв'язання нелінійних рівнянь

Постановка задачі. Нехай маємо рівняння f(x)=0, ar x — його розв'язок, тобто f(ar x)=0.

Задача розв'язання цього рівняння розпадається на етапи:

- Існування та кількість коренів.
- Відділення коренів, тобто розбиття числової вісі на інтервали, де знаходиться один корінь.
- Обчислення кореня із заданою точністю ε .

Для розв'язання перших двох задач використовуються методи математичного аналізу та алгебри, а також графічний метод. Далі розглядаються методи розв'язання третього етапу.

2.1. Метод ділення навпіл

Припустимо на $\left[a,b\right]$ знаходиться лише один корінь рівняння

$$f(x) = 0 (1)$$

для $f(x) \in C[a,b]$, який необхідно визначити. Нехай $f(a) \cdot f(b) < 0$.

Припустимо, що f(a)>0, f(b)<0. Покладемо $x_1=\frac{a+b}{2}$ і підрахуємо $f(x_1)$. Якщо $f(x_1)<0$, тоді шуканий корінь $\bar x$ знаходиться на інтервалі (a,x_1) . Якщо ж $f(x_1)>0$, то $\bar x\in(x_1,b)$. Далі з двох інтервалів (a,x_1) і (x_1,b) вибираємо той, на границях якого функція f(x) має різні знаки, знаходимо точку x_2 — середину вибраного інтервалу, підраховуємо $f(x_2)$ і повторюємо вказаний процес.

В результаті отримаємо послідовність інтервалів, що містять шуканий корінь \bar{x} , причому довжина кожного послідуючого інтервалу вдвічі менше попереднього.

Цей процес продовжується до тих пір, поки довжина отриманого інтервалу (a_n,b_n) не стане меншою за $b_n-a_n<2arepsilon$. Тоді x_{n+1} , як середина інтервалу (a_n,b_n) , пов'язане з ar x нерівністю

$$|x_{n+1} - \bar{x}| < \varepsilon. \tag{2}$$

Ця умова для деякого n буде виконуватись за теоремою Больцано-Коші. Оскільки

$$|b_{k+1} - a_{k+1} = \frac{|b_k - a_k|}{2},\tag{3}$$

TO

$$|x_{n+1} - \bar{x}| \le \frac{b-a}{2^{n+1}} < \varepsilon. \tag{4}$$

Звідси отримаємо нерівність для обчислення кількості ітерацій n для виконання умови (2):

$$n = n(\varepsilon) \ge \left[\log\left(\frac{b-a}{\varepsilon}\right)\right] + 1.$$
 (5)

Степінь збіжності — лінійна, тобто геометричної прогресії з знаменником q=1/2.

• Переваги методу: простота, надійність.

• Недоліки методу: низька швидкість збіжності; метод не узагальнюється на системи.

2.2. Метод простої ітерації

Спочатку рівняння

$$f(x) = 0 (6)$$

замінюється еквівалентним

$$x = \varphi(x). \tag{7}$$

Ітераційний процес має вигляд

$$x_{n+1} = \varphi(x_n), \quad n = 0, 1, \dots$$
 (8)

Початкове наближення x_0 задається.

Для збіжності велике значення має вибір функції $\varphi(x)$. Перший спосіб заміни рівняння полягає в відділенні змінної з якогось члена рівняння. Більш продуктивним є перехід від рівняння (6) до (7) з функцією $\varphi(x)=x+ au(x)\cdot f(x)$, де au(x)— знакостала функція на тому відрізку, де шукаємо корінь.

Означення: Кажуть, що ітераційний метод збігається, якщо $\lim_{k o\infty}x_k=ar{x}.$

Далі $U_r = \{x: |x-a| \leq r\}$ відрізок довжини 2r з серединою в точці a.

З'ясуємо умови, при яких збігається метод простої ітерації.

Теорема 1: Якщо

$$\max_{x \in [a,b]=U_r} |\varphi'(x)| \le q < 1 \tag{9}$$

то метод простої ітерації збігається і має місце оцінка

$$|x_n - \bar{x}| \le \frac{q_n}{1 - q} \cdot |x_0 - x_1| \le \frac{q^n}{1 - q} \cdot (b - a).$$
 (10)

 $\emph{Доведення:}$ Нехай $x_{k+1}, x_k \in U_r$. Тоді

$$|x_{k} - x_{k-1}| = |\varphi(x_{k}) - \varphi(x_{k-1})| = |\varphi'(\xi_{k}) \cdot (x_{k} - x_{k-1})| \le |\varphi'(\xi_{k})| \cdot |x_{k} - x_{k-1}| \le \le q \cdot |x_{k} - x_{k-1}| = \dots = q^{k} \cdot |x_{1} - x_{0}|,$$
(11)

де $\xi_k = x_k + heta_k \cdot (x_{k+1} - x_k)$, а у свою чергу $0 < heta_k < 1$. Далі

$$|x_{k+p} - x_k| = |x_{k+p} - x_{k+p-1} + \ldots + x_{k+1} - x_k| = |x_{k+p} - x_{k+p-1}| + \ldots + |x_{k+1} - x_k| \le$$

$$\le \left(q^{k+p-1} + q^{k+p-2} + \ldots + q^k\right) \cdot |x_1 - x_0| = \frac{q^k - q^{k+p-1}}{1 - q} \cdot |x_1 - x_0| \xrightarrow[k \to \infty]{} 0. \quad (12)$$

Бачимо що $\{x_k\}$ — фундаментальна послідовність. Значить вона збіжна. При $p o\infty$ в (12) отримуємо (10). \square

Визначимо кількість ітерацій для досягнення точності ε . З оцінки в теоремі 1 отримаємо

$$|x_n - \bar{x}| \le \frac{q^n}{1 - q} \cdot (b - a) < \varepsilon, \tag{13}$$

звідки безпосередньо маємо

$$n(arepsilon) = n \geq \left\lceil rac{\ln\left(rac{arepsilon(1-q)}{b-a}
ight)}{\ln q}
ight
ceil + 1.$$
 (14)

Практично ітераційний процес зупиняємо при: $|x_n-x_{n-1}|<arepsilon$. Але ця умова не завжди гарантує, що $|x_n-ar{x}|<arepsilon$.

Зауваження: Умова збіжності методу може бути замінена на умову Ліпшиця

$$|\varphi(x) - \varphi(y)| \le q \cdot |x - y|, \quad 0 < q < 1. \tag{15}$$

- **Переваги методу:** простота; при q < 1/2 швидше збігається ніж метод ділення навпіл; метод узагальнюється на системи.
- **Недоліки методу:** при q>1/2 збігається повільніше ніж метод ділення навпіл; виникають труднощі при зведенні f(x)=0 до x=arphi(x).

2.3. Метод релаксації

Якщо в методі простої ітерації для рівняння $x=x+ au\cdot f(x)\equiv \varphi(x)$ вибрати $au(x)= au=\mathrm{const}$, то ітераційний процес приймає вигляд

$$x_{n+1} = x_n + \tau \cdot f(x_n), \tag{16}$$

де $k=0,1,2,3\ldots$, а x_0 — задано. Метод можна записати у вигляді

$$\frac{x_{k+1} - x_k}{\tau} = f(x_k), \quad k = 0, 1, \dots$$
 (17)

Оскільки $arphi'(x) = 1 + au \cdot f'(x)$, то метод збігається при умові

$$|\varphi'(x)| = |1 + \tau \cdot f'(x)| \le q < 1.$$
 (18)

Нехай f'(x) < 0, тоді (8) запишеться у вигляді: $-q \leq 1 + au \cdot f'(x) \leq q < 1$. Звідси

$$f'(x) \le 1 + q < 2k\tau, \tag{19}$$

i

$$0<\tau<\frac{2}{|f'(x)|}. \tag{20}$$

Поставимо задачу знаходження au, для якого $q=q(au) o \min$. Для того, щоб вибрати оптимальний параметр au, розглянемо рівняння для похибки $z_k=x_k-ar x$.

Підставивши $x_k = x + z_k$ в (16), отримаємо

$$z_{k+1} = z_k + \tau \cdot f(x + z_k). \tag{21}$$

В припущені $f(x) \in C^1([a,b])$ з теореми про середнє маємо

$$f(\bar{x}+z_k)=f(\bar{x})+z_k\cdot f'(\bar{x}+\theta\cdot z_k)=z_k\cdot f'(\bar{x}+\theta\cdot z_k)=z_k\cdot f'(\xi_k), \tag{22}$$

тобто

$$z_{k+1} = z_k + \tau \cdot f'(\xi_k) \cdot z_k. \tag{23}$$

Звідси

$$|z_{k+1}| \leq |1 + \tau \cdot f'(\xi_k)| \cdot |z_k| \leq \max_{U} |1 + \tau \cdot f'(\xi_k)| \cdot |z_k|.$$
 (24)

А тому

$$|z_{k+1}| \le \max\{|1 - \tau M_1|, |1 - \tau m_1|\} \cdot |z_k|,\tag{25}$$

де

$$m_1 = \min_{[a,b]} |f'(x)|, \quad M_1 = \max_{[a,b]} |f'(x)|$$
 (26)

Таким чином, задача вибору оптимального параметра зводиться до знаходження au, для якого функція

$$q(\tau) = \max\{|1 - \tau M_1|, |1 - \tau m_1|\}$$
(27)

приймає мінімальне значення: $q(au) o \min$.

3 графіка видно, що точка мінімуму визначається умовою $|1- au M_1|=|1- au m_1|$. Тому

$$1 - \tau_0 m_1 = \tau_0 M_1 - 1 \implies \tau_0 = \frac{2}{M_1 - m_1} < \frac{2}{|f'(x)|}.$$
 (28)

При цьому значенні au маємо

$$q(\tau_0) = \rho_0 = \frac{M_1 - m_1}{M_1 + m_1}. (29)$$

Тоді для похибки вірна оцінка

$$|x_n-ar{x}| \leq rac{
ho_0^n}{1-
ho_0} \cdot (b-a) < arepsilon.$$
 (30)

Кількість ітерацій

$$n=n(arepsilon)\geq \left\lceilrac{\ln(arepsilon(1-
ho_0))}{b-a}
ight
ceil+1.$$

Задача 1: Дати геометричну інтерпретацію методу простої ітерації для випадків:

$$0 < \varphi'(x) < 1; \quad -1 < \varphi'(x) < 0; \quad \varphi'(x) < -1; \quad \varphi'(x) > 1.$$
 (32)

Задача 2: Знайти оптимальне $au= au_0$ для методу релаксації при f'(x)>0.

2.4. Метод Ньютона (метод дотичних)

Припустимо, що рівняння f(x)=0 має простий дійсний корінь ar x, тобто f(ar x)=0, f'(x)
eq 0. Нехай виконуються умови: $f(x)\in C^1([a,b])$, $f(a)\cdot f(b)<0$. Тоді

$$0 = f(\bar{x}) = f(x_k + \bar{x} - x_k) = f(x_k) + f'(\xi_k) \cdot (x - x_k), \tag{33}$$

де $\xi_k=x_k+ heta_k\cdot(ar x-x_k)$, $0< heta_k<1$, $\xi_kpprox x_k$. Тому наступне наближення виберемо з рівняння

$$f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k) = 0. (34)$$

Звідси маємо ітераційний процес

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$
 (35)

де $k=0,1,2,\ldots$; x_0 — задане.

Метод Ньютона ще називають методом лінеаризації або методом дотичних.

Задача 3: Дати геометричну інтерпретацію методу Ньютона.

Метод Ньютона можна інтерпретувати як метод простої ітерації з

$$\varphi(x) = x - \frac{f(x)}{f'(x)},\tag{36}$$

тобто

$$\tau(x) = -\frac{1}{f'(x)}. (37)$$

Тому

$$\varphi'(x) = 1 - \frac{f'(x) \cdot f'(x) - f(x) \cdot f''(x)}{(f'(x))^2} = \frac{f(x) \cdot f''(x)}{(f'(x))^2}.$$
 (38)

Якщо ar x — корінь f(x), то arphi'(x)=1. знайдеться окіл кореня, \end{equation}

$$|\varphi'(x)| = \left| \frac{f(x) \cdot f''(x)}{(f'(x))^2} \right| < 1. \tag{39}$$

Це означає, що збіжність методу Ньютона залежить від вибору x_0 .

Недолік методу Ньютона: необхідність обчислювати на кожній ітерації не тільки значення функції, а й похідної.

Модифікований метод Ньютона позбавлений цього недоліку і має вигляд:

$$x_{k+1} = x_k - rac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, 2, \dots$$
 (40)

Цей метод має лише лінійну збіжність: $|x_{k+1} - x = O(|x_k - \bar{x}|)$.

Задача 4: Дати геометричну інтерпретацію модифікованого методу Ньютона.

В методі Ньютона, для якого $f'(x_k)$ замінюється на

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \tag{41}$$

дає метод січних:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \cdot f(x_k),$$
 (42)

де $k=1,2,...,x_0,x_1$ — задані.

Задача 5: Дати геометричну інтерпретацію методу січних.

2.5. Збіжність методу Ньютона

Теорема 1: Нехай $f(x) \in C^2([a,b])$; $ar{x}$ простий дійсний корінь рівняння

$$f(x) = 0. (43)$$

і f'(x)
eq 0 при $x \in U_r = \{x : |x - ar{x}| < r\}$. Якщо

$$q = \frac{M_2 \cdot |x_0 - \bar{x}|}{2m_1} < 1, \tag{44}$$

де

$$m_1 = \min_{U_r} |f'(x)|, \quad M_2 = \max_{U_r} |f''(x)|,$$
 (45)

то для $x_0 \in U_r$ метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{46}$$

збігається і має місце оцінка

$$|x_n - \bar{x}| \le q^{2^n - 1} \cdot |x_0 - \bar{x}|. \tag{47}$$

3 (46) маємо

$$x_{k+1} - \bar{x} = x_k - \frac{f(x_k)}{f'(x_k)} - \bar{x} = \frac{(x_k - \bar{x}) \cdot f'(x_k) - f(x_k)}{f'(x_k)} = \frac{F(x_k)}{f'(x_k)},\tag{48}$$

де $F(x)=(x-ar{x})f'(x)-f(x)$, така, що

•
$$F(\bar{x}) = 0$$
;

$$\bullet \ F'(x) = (x - \bar{x}) \cdot f''(x).$$

Тоді

$$F(x_k) = F(\bar{x}) + \int_x^{x_k} F'(t) dt = \int_x^{x_k} (t - \bar{x}) \cdot f''(t) dt.$$
 (49)

Так як $(t-ar{x})$ не міняє знак на відрізку інтегрування, то скористаємося теоремою про середнє значення:

$$F(x_k) = f''(\xi_k) \int_{x}^{x_k} (t - \bar{x}) dt = \frac{(x_k - x)^2}{2} \cdot f''(\xi_k), \tag{50}$$

де $\xi_k = ar{x} + heta_k \cdot (x_k - ar{x})$, де $0 < heta_k < 1$. З (48), (50) маємо

$$x_{k+1} - \bar{x} = \frac{(x_k - \bar{x})^2}{2f'(x_k)} \cdot f''(\xi_k). \tag{51}$$

Доведемо оцінку (46) за індукцією. Так як $x_0 \in U_r$, то

$$|\xi_0 - \bar{x}| = |\theta_0 \cdot (x_0 - \bar{x})| < |\theta_0| \cdot |x_0 - \bar{x}| < r \tag{52}$$

звідси випливає $\xi_0 \in U_r$.

Тоді $f''(\xi_0) \leq M_2$, тому

$$|x_1 - \bar{x}| \le \frac{(x_0 - \bar{x})^2 \cdot M_2}{2m_1} = \frac{M_2 \cdot |x_0 - \bar{x}|}{2m_1} \cdot |x_0 - \bar{x}| = q \cdot |x_0 - \bar{x}| < r, \tag{53}$$

тобто $x_1 \in U_r$.

Ми довели твердження (47) при n=1. Нехай воно справджується при n=k

$$|x_k - \bar{x}| \le q^{2^k - 1} \cdot |x_0 - \bar{x}| < r,\tag{54}$$

$$|\xi_k - \bar{x}| = |\theta_k \cdot (x_k - \bar{x})| < r. \tag{55}$$

Тоді $x_k, \xi_k \in U_r$.

Доведемо (47) для n=k+1. З (51) маємо

$$|x_{k+1} - \bar{x}| \le \frac{|x_k - \bar{x}|^2 \cdot M_2}{2m_1} \le \left(q^{2^k - 1}\right)^2 \cdot \frac{|x_0 - \bar{x}|^2 \cdot M_2}{2m_1} =$$

$$= q^{2^{k+1} - 2} \cdot \frac{|x_0 - \bar{x}| \cdot M_2}{2m_1} \cdot |x_0 - \bar{x}| = q^{2^{k+1} - 1} \cdot |x_0 - \bar{x}|.$$
(56)

Таким чином (47) справджується для n=k+1. Значить (47) виконується і для довільного n. Таким чином $x_n \xrightarrow[n \to \infty]{} x$. \square

З (47) маємо оцінку кількості ітерацій для досягнення точності arepsilon

$$n \ge \left[\log_2\left(1 + \frac{\ln\left(rac{arepsilon}{b-a}
ight)}{\ln q}
ight] + 1.$$
 (57)

Кажуть, що ітераційний метод має *степінь збіжності* m, якщо

$$|x_{k+1} - \bar{x}| = O(|x_k - \bar{x}|^m). (58)$$

Для методу Ньютона

$$|x_{k+1} - \bar{x}| = \frac{|x_k - \bar{x}|^2 |\cdot f''(\xi_k)|}{2|f'(x_k)|}.$$
 (59)

Звідси випливає, що

$$|x_{k+1} - \bar{x}| = O\left(|x_k - \bar{x}|^2\right). \tag{60}$$

Значить степінь збіжності методу Ньютона m=2. Для методу простої ітерації і ділення навпіл m=1.

Теорема 2: Нехай $f(x) \in C^2([a,b])$ та x простий корінь рівняння f(x) = 0 ($f'(x) \neq 0$). Якщо $f'(x) \cdot f''(x) > 0$ ($f'(x) \cdot f''(x) < 0$) то для методу Ньютона при $x_0 = b$ послідовність наближень $\{x_k\}$ монотонно спадає (монотонно зростає при $x_0 = a$).

Задача 6: Довести теорему 2 при

- $f'(x) \cdot f''(x) > 0$;
- $f'(x) \cdot f''(x) < 0$.

Задача 7: Знайти степінь збіжності методу січних [Калиткин Н.Н., Численные методы, с. 145–146]

Якщо $f(a)\cdot f''(a)>0$ та f''(x) не міняє знак, то потрібно вибирати $x_0=a$; при цьому $\{x_k\}\uparrow \bar x$.

Якщо $f(b)\cdot f''(b)>0$, то $x_0=b$; маємо $\{x_k\}\downarrow ar x$. Пояснення на рисунку 2:

Зауваження 1: Якщо $\bar{x} - p$ -кратний корінь тобто

$$f^{(m)}(\bar{x}) = 0, \quad m = 0, 1, \dots, p - 1; \quad f^{(p)}(x) \neq 0,$$
 (61)

то в методі Ньютона необхідна наступна модифікація

$$x_{k+1} - x_k - p \cdot \frac{f(x_k)}{f'(x_k)} \tag{62}$$

 $q = \frac{M_{p+1} \cdot |x_0 - \bar{x}|}{m_p \cdot p \cdot (p+1)} < 1. \tag{63}$

Зауваження 2: Метод Ньютона можна застосовувати і для обчислення комплексного кореня

$$z_{k+1} = z_k - rac{f(z_k)}{f'(z_k)}$$
 (64)

В теоремі про збіжність

$$q = \frac{|x_0 - \bar{x}|M_2}{2m_1},\tag{65}$$

де

$$m_1 = \min_{U_r} |f'(z)|, \quad M_2 = \max_{U_r} f''(z)|.$$
 (66)

Тут |z| — модуль комплексного числа.

Переваги методу Ньютона:

- висока швидкість збіжності;
- узагальнюється на системи рівнянь;
- узагальнюється на комплексні корені.

Недоліки методу Ньютона:

- на кожній ітерації обчислюється не тільки $f(x_k)$, а і похідна $f'(x_k)$;
- ullet збіжність залежить від початкового наближення x_0 , оскільки від нього залежить умова збіжності

$$q = \frac{M_2|x_0 - \bar{x}|}{2m_1} < 1; (67)$$

ullet потрібно, щоб $f(x) \in C^2([a,b]).$

3. Методи розв'язання систем лінійних алгебраїчних рівнянь (СЛАР)

Методи розв'язування СЛАР поділяються на *прямі* та *ітераційні*. При умові точного виконання обчислень прямі методи за скінчену кількість операцій в результаті дають точний розв'язок. Використовуються вони для невеликих та середніх СЛАР $n=10^2-10^4$. Ітераційні методи використовуються для великих СЛАР $n>10^5$, як правило розріджених. В результаті отримуємо послідовність наближень, яка збігається до розв'язку.

3.1. Метод Гауса

Розглянемо задачу розв'язання СЛАР

$$A\vec{x} = \vec{b},\tag{1}$$

причому $A=(a_{ij})_{i,j=1}^n$, $\det A \neq 0$, $\vec x=(x_i)_{i=1}^n$, $\vec b=(b_j)_{j=1}^n$. Метод Крамера з обчисленням визначників для такої системи має складність $Q=O(n!\cdot n)$.

Запишемо СЛАР у вигляді

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n = b_1 \equiv a_{1,n+1}, \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n = b_2 \equiv a_{2,n+1}, \\ \ldots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n = b_n \equiv a_{n,n+1}. \end{cases}$$

$$(2)$$

Якщо $a_{1,1} \neq 0$, то ділимо перше рівняння на нього і виключаємо x_1 з інших рівнянь:

$$\begin{cases}
 x_1 + a_{1,2}^{(1)} x_2 + \dots + a_{1,n}^{(1)} x_n = a_{1,n+1}^{(1)}, \\
 a_{2,2}^{(1)} x_2 + \dots + a_{2,n}^{(1)} x_n = a_{2,n+1}^{(1)}, \\
 \vdots \\
 a_{n,2} x_2^{(1)} + \dots + a_{n,n}^{(1)} x_n = a_{n,n+1}^{(1)}.
\end{cases}$$
(3)

Процес повторюємо для x_2, \ldots, x_n . В результаті отримуємо систему з трикутною матрицею

$$\begin{cases} x_1 + a_{1,2}^{(1)} x_2 + \ldots + a_{1,n}^{(1)} x_n = a_{1,n+1}^{(1)}, \\ x_2 + \ldots + a_{2,n}^{(2)} x_n = a_{2,n+1}^{(2)}, \\ & \cdots \\ x_n = a_{n,n+1}^{(n)}. \end{cases}$$

$$(4)$$

Тобто

$$A^{(n)}\vec{x} = \vec{a}^{(n)}. (5)$$

Це прямий хід методу Гауса. Формули прямого ходу

```
for k in range(1, n):
    for j in range(k + 1, n + 2):
        a[k, j][k] = a[k, j][k - 1] / a[k, k][k - 1]
        for i in range(k + 1, n + 1):
        a[i, j][k] = a[i, j][k - 1] - \
              a[i, j][k - 1] * a[k, j][k]
```

Звідси

$$x_n = a_{n,n+1}^{(n)}, \quad x_i = a_{i,n+1}^{(i)} - \sum_{j=i+1}^n a_{i,j}^{(n)} x_j,$$
 (6)

для $i=\overline{n-1,1}$. Це формули оберненого ходу.

Складність, тобто кількість операцій, яку необхідно виконати для реалізації методу: $Q_f=2/3n^2+O(n^2)$ для прямого ходу, $Q_b=n^2+O(n)$ для оберненого ходу.

Умова

$$a_{k,k}^{(k-1)} \neq 0 \tag{7}$$

не суттєва, оскільки знайдеться m, для якого

$$\left| a_{m,k}^{(k-1)} \right| = \max_{i} \left| a_{i,k}^{(k-1)} \right| \neq 0$$
 (8)

(оскільки $\det A
eq 0$). Тоді міняємо місцями рядки номерів k і m.

Означення: Елемент

$$a_{k,k}^{(k-1)} \neq 0 (9)$$

називається *ведучим*.

Введемо матриці

$$M_{k} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & m_{k,k} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & m_{n,k} & \cdots & 1 \end{pmatrix}$$

$$(10)$$

елементи якої обчислюється так:

$$m_{k,k} = \frac{1}{a_{k,k}^{(k-1)}}, \quad m_{k,k} = -\frac{a_{i,k}^{(k-1)}}{a_{k,k}^{(k-1)}}.$$
 (11)

Нехай на k-му кроці $A_{k-1}\vec{x}=\vec{b}_{k-1}$. Множимо цю СЛАР зліва на M_k : $M_kA_{k-1}\vec{x}=M_K\vec{b}_{k-1}$. Позначимо $A_k=M_kA_{k-1}$; $A_0=A$. Тоді прямий хід методу Гауса можна записати у вигляді

$$M_n M_{n-1} \dots M_1 A \vec{x} = M_n M_{n-1} \dots M_1 \vec{b}.$$
 (12)

Позначимо останню систему, яка співпадає з (5), так

$$U\vec{x} = \vec{c}, \quad U = (u_{i,j})_{i,j=1}^n,$$
 (13)

причому

$$\begin{cases}
 u_{i,i} = 1, \\
 u_{i,j} = 0, \quad i > j.
\end{cases}$$
(14)

Таким чином $U=M_nM_{n-1}\dots M_1A$. Введемо матриці

$$L_{k} = M_{k}^{-1} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{k,k}^{(k-1)} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{n,k}^{(k-1)} & \cdots & 1 \end{pmatrix}$$

$$(15)$$

Тоді

$$A = L_1 \dots L_n U = LU; \quad L = L_1 \dots L_n, \tag{16}$$

де L — нижня трикутня матриця, U — верхня трикутня матриця. Таким чином метод Гауса можна трактувати, як розклад матриці A в добуток двох трикутних матриць — LU-розклад.

Введемо матрицю перестановок на k-му кроці (це матриця, отримана з одиничної матриці перестановкою k-того і m-того рядка). Тоді при множені на неї матриці A_{k-1} робимо ведучим елементом максимальний за модулем.

$$P_{k} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

$$(17)$$

За допомогою цих матриць перехід до трикутної системи (13) тепер має вигляд:

$$M_n M_{n-1} P_{n-1} \dots M_1 P_1 A \vec{x} = M_n M_{n-1} P_{n-1} \dots M_1 P_1 \vec{b}. \tag{18}$$

Твердження: Знайдеться така матриця P перестановок, що PA = LU — розклад матриці на нижню трикутну з ненульовими діагональними елементами і верхню трикутну матрицю з одиницями на діагоналі.

Висновки про переваги трикутного розкладу:

- Розділення прямого і оберненого ходів дає змогу економно розв'язувати декілька систем з одноковою матрицею та різними правими частинами.
- ullet Зберігання M, або L та U на місці A.
- Обчислюючи ℓ кількість перестановок, можна встановити знак визначника.

3.2. Метод квадратних коренів

Цей метод призначений для розв'язання систем рівнянь із симетричною матрицею

$$A\vec{x} = \vec{b}, \quad A^{\mathsf{T}} = A.$$
 (19)

Він оснований на розкладі матриці A в добуток:

$$A = S^{\mathsf{T}} D S, \tag{20}$$

де S — верхня трикутна матриця, S^{\intercal} — нижня трикутна матриця, D — діагональна матриця.

Виникає питання: як обчислити S, D по матриці A? Маємо

$$DS_{i,j} = \begin{cases} d_{i,i}s_{i,j}, & i \leq j, \\ 0, & i > j. \end{cases}$$

$$(21)$$

Далі

$$S^{\intercal}DS_{i,j} = \sum_{l=1}^{n} s_{i,l}^{\intercal}d_{l,l}s_{l,j} = \sum_{l=1}^{i-1} s_{l,i}^{\intercal}s_{l,j}d_{l,l} + s_{i,i}s_{i,j}d_{i,i} + \underbrace{s_{l,i}^{\intercal}\sum_{l=i+1}^{n} s_{l,i}^{\intercal}s_{l,j}d_{l,l}}_{=0} = a_{i,j}, \qquad (22)$$

для $i,j=\overline{1,n}$.

Якщо i=j, то

$$|s_{i,i}^2|d_{i,i} = a_{i,i} - \sum_{l=1}^{i-1} |s_{l,i}^2|d_{l,l} \equiv p_i.$$
 (23)

Тому

$$d_{i,i} = \operatorname{sign}(p_i), \quad s_{i,i} = \sqrt{|p_i|}.$$

Якщо i < j, то

$$s_{i,j} = \left(a_{i,j} - \sum_{l=1}^{i-1} s_{l,i}^{\intercal} d_{l,l} s_{l,j}\right) / (s_{i,i} d_{i,i}),$$
 (25)

де $i=\overline{1,n}$, а $j=\overline{i+1,n}$.

Якщо A>0 (тобто головні мінори матриці A додатні), то всі $d_{i,i}=+1.$

Знайдемо розв'язок рівняння (19). Враховуючи (20), маємо:

$$S^{\mathsf{T}}D\vec{y} = \vec{b} \tag{26}$$

i

$$S\vec{x} = \vec{y} \tag{27}$$

Оскільки S — верхня трикутна матриця, а $S^{\mathsf{T}}D$ — нижня трикутна матриця, то

$$y_{i} = \frac{b_{i} - \sum_{j=1}^{i-1} s_{j,i} d_{j,j} y_{j}}{s_{i,i} d_{i,i}},$$
(28)

для i=1,n і

$$x_{i} = \frac{y_{i} - \sum_{j=1}^{i-1} s_{i,j} x_{j}}{s_{i,i}},$$
(29)

для $i=\overline{n-1,1}$, де $x_n=y_n/s_{n,n}.$

Метод застосовується лише для симетричних матриць. Його складність $Q=n^3/3+O(n^2)$.

Переваги цього методу:

- ullet він витрачає в 2 рази менше пам'яті ніж метод Гауса для зберігання $A^{\mathsf{T}}=A$ (необхідний об'єм пам'яті $n(n+1)/2\sim n^2/2$;
- метод однорідний, без перестановок;
- ullet якщо матриця A має багато нульових елементів, то і матриця S також.

Остання властивість дає економію в пам'яті та кількості арифметичних операцій. Наприклад, якщо A має m ненульових стрічок по діагоналі (m-діагональна), то $Q=O(m^2n)$.

3.3. Обчислення визначника та оберненої матриці

Кількість операцій обчислення детермінанту за означенням — $Q_{
m det}=n!$. В методі Гауса — PA=LU. Тому

$$\det P \det A = \det L \det U \tag{30}$$

звідки

$$\det A = (-1)^{\ell} \det L \det U = (-1)^{\ell} \prod_{k=1}^{n} a_{k,k}^{(k)}, \tag{31}$$

де ℓ — кількість перестановок. Ясно, що за методом Гауса

$$Q_{\text{det}} = \frac{2}{3} \cdot n^3 + O(n^2) \tag{32}$$

В методі квадратного кореня $A=S^\intercal DS$. Тому

$$\det A = \det S^{\intercal} \det D \det S = \prod_{k=1}^{n} d_{k,k} \prod_{k=1}^{n} s_{k,k}^{2}. \tag{33}$$

Тепер $Q_{\mathrm{det}}=n^3/3+O(n^2)$.

За означенням

$$AA^{-1} = E, (34)$$

де A^{-1} обернена до матриці A. Позначимо

$$A^{-1} = (\alpha_{i,j})_{i,j=1}^{n}. (35)$$

Тоді $ec{lpha}_j = (lpha_{i,j})_{i=1}^n$ — вектор-стовпчик оберненої матриці. З (34) маємо

$$A\vec{lpha}_j = \vec{e}_j, \quad j = \overline{1,n}.$$
 (36)

де $ec{e}_j$ — стовпчики одиничної матриці: $ec{e}_j = (\delta_{i,j})_{i=1}^n$

$$\delta_{i,j} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

$$(37)$$

Для знаходження A^{-1} необхідно розв'язати n систем. Для знаходження A^{-1} методом Гауса необхідна кількість операцій $Q=2n^3+O(n^2)$.

3.4. Метод прогонки

Це економний метод для розв'язання СЛАР з три діагональною матрицею:

$$\begin{cases}
-c_0 y_0 + b_0 y_1 = -f_0, \\
a_i y_{i-1} - c_i y_i + b_i y_{i+1} = -f_i, \\
a_N y_{N-1} - c_N y_N = -f_N.
\end{cases}$$
(38)

Матриця системи

$$A = \begin{pmatrix} -c_0 & b_1 & 0 \\ a_0 & \ddots & \ddots & \\ & \ddots & \ddots & b_N \\ 0 & a_N & -c_N \end{pmatrix}$$
 (39)

тридіагональна.

Розв'язок представимо у вигляді

$$y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, \quad i = \overline{0, N-1}.$$
 (40)

Замінимо в (40) і $i\mapsto i-1$ і підставимо в (33), тоді

$$(a_i\alpha_i - c_i) \cdot y_i + b_i y_{i+1} = -f_i - a_i\beta_i \tag{41}$$

Звідси

$$y_i = \frac{b_i}{c_i - a_i \alpha_i} \cdot y_{i+1} + \frac{f_i + a_i \beta_i}{c_i - a_i \alpha_i}. \tag{42}$$

Тому з (36)

$$lpha_{i+1} = rac{b_i}{c_i - a_i lpha_i}, \quad eta_{i+1} = rac{f_i + a_i eta_i}{c_i - a_i lpha_i}, \quad i = \overline{1, N-1}.$$

Умова розв'язності $(38)-c_i-a_ilpha_i
eq 0.$

Щоб знайти всі α_i , β_i , треба задати перші значення. З (38):

$$\alpha_1 = \frac{b_0}{c_0}, \quad \beta_1 = \frac{f_0}{c_0}.$$
(44)

Після знаходження всіх $lpha_i$, eta_i обчислюємо y_N з системи

$$\begin{cases}
 a_N y_N - c_N y_N = -f_N, \\
 y_{N-1} = \alpha_N y_N + \beta_N.
\end{cases}$$
(45)

Звідси

$$y_N = \frac{f_N + a_N \beta_N}{c_N - a_N \alpha_N}. (46)$$

Алгоритм:

```
alpha[1], beta[1] = b[0] / c[0], f[0] / c[0]

for i in range(1, N):
    z[i] = c[i] - a[i] * alpha[i]
    alpha[i + 1], beta[i + 1] = b[i] / z[i], \
        (f[i] + a[i] * beta[i]) / z[i]

y[N] = (f[N] + a[N] * beta[N]) / \
    (c[N] - a[N] * alpha[N])

for i in range(N - 1, -1, -1):
    y[i] = alpha[i + 1] * y[i + 1] + beta[i + 1]
```

Складність алгоритму Q=8N-2.

Метод можна застосовувати, коли $c_i - a_i \alpha_i \neq 0$, $\forall i: |\alpha_i| \leq 1$. Якщо $|\alpha_i| \geq q > 1$ то $\Delta y_0 \geq q^N \Delta y_N$ (тут Δy_i абсолютна похибка обчислення y_i), а це приводить до експоненціального накопичення похибок заокруглення, тобто нестійкості алгоритму прогонки.

Теорема (*про достатні умови стійкості метода прогонки*): Нехай $a_i,b_i
eq 0$, та

$$|c_i| \ge |a_i| + |b_i|, \quad \forall i, \quad a_0 = b_N = 0,$$
 (47)

та хоча би одна нерівність строга. Тоді $|lpha_i| \leq 1$ та

$$z_i = c_i - a_i \alpha_i \neq 0, \quad i = \overline{1, N}. \tag{48}$$

Задача 8: Довести теорему про стійкість методу прогонки.

3.5. Обумовленість систем лінійних алгебраїчних рівнянь

Нехай задано СЛАР

$$A\vec{x} = \vec{b}. \tag{49}$$

Припустимо, що матриця і права частина системи задані неточно і фактично розв'язуємо систему

$$B\vec{y} = \vec{h},\tag{50}$$

де
$$B=A+C$$
, $\vec{h}=\vec{b}+\vec{\eta}$, $\vec{y}=\vec{x}+\vec{z}$.

Малість детермінанту $\det A \ll 1$ не є необхідною умовою різкого збільшення похибки. Це ілюструє наступний приклад:

$$A = \operatorname{diag}(\varepsilon), \quad a_{i,j} = \varepsilon \delta_{i,j}.$$
 (51)

Тоді $\det A=arepsilon^n\ll 1$, але $x_i=b_i/arepsilon$. Тому $\Delta x_i=\Delta b_i/arepsilon\gg 1$.

Оцінимо похибку розв'язку. Підставивши значення B, $ec{h}$, та $ec{z} = ec{y} - ec{x}$, отримаємо:

$$(A+C)(\vec{x}+\vec{z}) = \vec{b}+\vec{\eta}.$$
 (52)

Віднімемо від цієї рівності (49) у вигляді $Aec{z}+Cec{x}+Cec{z}=ec{\eta}$. Тоді

$$A\vec{z} = \vec{\eta} - C\vec{x} - C\vec{z}, \quad \vec{z} = A^{-1}(\vec{\eta} - C\vec{x} - C\vec{z}).$$
 (53)

Означення: Введемо *норми векторів*: $\|\vec{z}\|$:

$$|\vec{z}|_1 = \sum_{i=1}^n |z_i|,\tag{54}$$

$$|\vec{z}|_2 = \left(\sum_{i=1}^n |z_i|^2\right)^{1/2},$$
 (55)

$$|\vec{z}|_{\infty} = \max_{i} |z_{i}|. \tag{56}$$

Означення: Норми матриці_, що відповідають нормам вектора, тобто

$$|A|_m = \sup_{|\vec{x}|_m \neq 0} \frac{|A\vec{x}|_m}{|\vec{x}|_m}, \quad m = 1, 2, \infty.$$
 (57)

такі:

$$|A|_1 = \max_j \sum_{i=1}^n |a_{i,j}|,\tag{58}$$

$$|A|_2 = \max_i \sqrt{\lambda_i(A^{\mathsf{T}}A)},\tag{59}$$

$$|A|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{i,j}|,$$
 (60)

де $\lambda_i(B)$ — власні значення матриці B.

Позначимо $\delta(\vec{x}) = \|\vec{z}\|/\|\vec{x}\|$, $\delta(\vec{b}) = \|\vec{\eta}\|/\|\vec{b}\|$, $\delta(A) = \|C\|/\|A\|$ — відносні похибки \vec{x} , \vec{b} , A, де $\|\cdot\|_k$ — одна з введених вище норм.

Для характеристики зв'язку між похибками правої частини та розв'язку вводять поняття обумовленості матриці системи.

Означення: Число обумовленості матриці $A - \operatorname{cond}(A) = \|A\| \cdot \|A^{-1}\|$.

Теорема: Якщо $\exists A^{-1}$ та $\|A^{-1}\|\cdot\|C\|<1$, то

$$\delta(\vec{x}) \le \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \cdot \delta(A)} (\delta(A) + \delta(\vec{b})), \tag{61}$$

де $\operatorname{cond}\left(A\right)$ — число обумовленості.

Доведення:

$$A \vec{z} = \vec{\eta} - C \vec{x} - C \vec{z}, \quad \vec{z} = A^{-1} \vec{\eta} - A^{-1} C \vec{x} - A^{-1} C \vec{z}$$
 (62)

$$|\vec{z}| \leq |A^{-1}\vec{\eta}| + |A^{-1}C\vec{x}| + |A^{-1}C\vec{z}| \leq |A^{-1}| \cdot |\vec{\eta}| + |A^{-1}| \cdot |C| \cdot |\vec{x}| + |A^{-1}| \cdot |C| \cdot |\vec{z}|. \quad (63)$$

$$|\vec{z}| \le \frac{|A^{-1}| \cdot (|\vec{\eta}| + |C| \cdot |\vec{x}|)}{1 - |A^{-1}| \cdot |C|}$$
 (64)

Оцінка похибки

$$\delta(\vec{x}) \leq \frac{|A^{-1}|}{1 - |A^{-1}| \cdot |C|} \left(\frac{|\vec{\eta}|}{|\vec{x}|} + |C| \right) = \frac{|A^{-1}| \cdot |A|}{1 - |A^{-1}| \cdot |A| \cdot \frac{|C|}{|A|}} \left(\frac{|\vec{\eta}|}{|A| \cdot |\vec{x}|} + \delta(A) \right) \leq \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \cdot \delta(A)} \left(\frac{|\vec{\eta}|}{|\vec{x}|} + \delta(A) \right). \quad \Box$$
(65)

Наслідок: Якщо $C\equiv 0$, то $\delta(ec{x})\leq {
m cond}\,(A)\cdot \delta(ec{b}).$

Властивості $\operatorname{cond}\left(A\right)$:

- $\operatorname{cond}(A) \geq 1$;
- $\operatorname{cond}(A) \ge \max_i |\lambda_i(A)| / \min_i |\lambda_i(A)|$;
- $\operatorname{cond}(AB) \leq \operatorname{cond}(A) \cdot \operatorname{cond}(B)$;
- $\bullet \ \ A^\intercal = A^{-1} \implies \operatorname{cond}\left(A\right) = 1.$

Друга властивість має місце оскільки довільна норма матриці не менше її найбільшого за модулем власного значення. Значить $\|A\| \geq \max |\lambda_A|$. Оскільки власні значення матриць A^{-1} та A взаємно обернені, то

$$|A^{-1}| \ge \max \frac{1}{|\lambda_A|} = \frac{1}{\min |\lambda_A|}.$$

$$(66)$$

Якщо $1 \ll \operatorname{cond}(A)$, то система називається *погано обумовленою*.

Оцінка впливу похибок заокруглення при обчисленні розв'язку СЛАР така (Дж. Уілкінсон): $\delta(A) = O(n\beta^{-t}), \, \delta(\vec{b}) = O(\beta^{-t}), \, \text{де }\beta - \text{розрядність ЕОМ, }t - \text{кількість розрядів, що відводиться під мантису числа. З оцінки (61) витікає: }\delta(\vec{x}) = \text{cond }(A) \cdot O(n\beta^{-t}).$ Висновок: найпростіший спосіб підвищити точність обчислення розв'язку погано обумовленої СЛАР — збільшити розрядність ЕОМ при обчисленнях. Інші способи пов'язані з розглядом цієї СЛАР як некоректної задачі із застосуванням відповідних методів її розв'язання.

Приклад погано обумовленої системи — системи з матрицею Гільберта

$$H_n = \left(\frac{1}{i+j-1}\right)_{i,j=1}^n, (67)$$

наприклад $\mathrm{cond}\left(H_{8}\right)pprox10^{9}.$