## LUNDS TEKNISKA HÖGSKOLA MATEMATIK

## TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B1 2015 - 10 - 29 kl 08 - 13

INGA HJÄLPMEDEL. För att bli godkänd krävs minst 0.8 av 1.0 poäng på uppgift 1 samt minst 3.0 poäng på skrivningen totalt. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar.

| 1. | ïll nedanstående 10 deluppgifter skall endast svar anges.                                              | (0.1 /styck)   |
|----|--------------------------------------------------------------------------------------------------------|----------------|
| •  | ) Beräkna $\left(\frac{5}{2}\right)^3 \cdot 2^{10} \cdot 5^4 \cdot 10^{-7}$ .<br>Svar:                 | _              |
| 1  | Ange det exakta värdet för $\sin 135^\circ$ .  Svar:                                                   | _              |
| •  | ) Lös olikheten $(x+2)(x+4) \le -1$ .<br>Svar:                                                         |                |
| •  | Lös ekvationen $\ln(2x+1) - \ln x = \ln 3$ .<br>Svar:                                                  | _              |
| •  | ) Förenkla $\frac{x-\frac{1}{x}}{1+\frac{1}{x}}$ .<br>Svar:                                            |                |
| 1  | Faktorisera polynomet $x^2 - 3x + 2$ .  Svar:                                                          | _              |
| \$ | ) Lös ekvationen $\sqrt{x^2 - x - 1} = -1$ .<br>Svar:                                                  | _              |
| ]  | Låt $l$ vara linjen som går genom punkterna (0,1) och (2,5). Ange en e på formen $y = kx + m$ .  Svar: | ekvation för l |
| i  | Lös olikheten $x - \frac{1}{x} < 0$ . Svar:                                                            | _              |
| j  | Lös ekvationen $4^x - 2^x - 12 = 0$ .<br>Svar:                                                         | _              |
|    | Namn:                                                                                                  | V.g. vänd!     |
|    | Porconnummer                                                                                           |                |

2. a) Beräkna gränsvärdena

$$(0.3 / \text{styck})$$

$$\lim_{x \to \infty} \frac{2^x + 3\ln x}{\sqrt{x} + e^x} \qquad \text{och} \qquad \lim_{x \to 0^+} (\ln x) \ln(1+x).$$

- **b)** Visa att gränsvärdet  $\lim_{x\to 0} \frac{\sin|x|}{x}$  inte existerar. (0.4)
- 3. a) Lös ekvationen

$$|x-1| + 2x = |2x-1|. (0.5)$$

**b)** Visa att x = 6 är en lösning till ekvationen

$$3 \cdot {}^{4}\log x - 2 \cdot {}^{4}\log(x-3) = 1 + {}^{4}\log 6,$$

och lös ekvationen fullständigt.

(0.5)

- **4. a)** Finn den konstanta termen i utvecklingen av  $(1+4x^2)\left(2-\frac{1}{x}\right)^{20}$ . (0.5)
  - b) Radien av cirkelsektorn i figuren är 1. Bestäm avståndet mellan punkterna A och B så att cirkelsektorns area är  $\frac{\pi}{8}$ . (0.5)



- **5. a)** Visa att om f'(x) = 0 för alla -1 < x < 1, så är funktionen f konstant på intervallet ]-1,1[. (0.3)
  - b) Visa, med hjälp av derivata, att likheten

$$\arctan\left(\frac{x}{\sqrt{1-x^2}}\right) = \arcsin x$$

gäller för alla x i intervallet ]-1,1[.

(0.4)

c) Bestäm en ekvation för tangenten till kurvan

$$x + y^2 + y \sin x = y^3 + \frac{\pi}{2}$$

i punkten  $(\frac{\pi}{2}, 0)$ . (0.3)

- **6. a)** Visa att likheten  $\ln(b^a) = a \ln b$  gäller för alla reella tal a och alla positiva tal b. (0.3)
  - b) En triangel är begränsad av x-axeln och de två linjerna y=kx och  $y=\frac{1}{k}x+k$ , där k>1. Bestäm den minsta möjliga arean av en sådan triangel. (0.7)

## LYCKA TILL!