Langages et Compilation

Analyse descendante prédictive

Grammaires LL(1)

Une famille de grammaires analysables de façon efficace.

Caractéristiques de l'analyse LL(1)

• analyse descendante

Construction de l'arbre de dérivation selon l'ordre préfixé : on part de la racine (l'axiome) et on descend vers les feuilles (les terminaux) en développant le nœud interne (une variable) le plus à gauche.

analyse prédictive

Pour développer le nœud, on choisit la règle à appliquer en prévisualisant le symbole courant du mot analysé.

Exemple $S \rightarrow +SS \mid *SS \mid a$

Les chaînes dérivées de ${\cal S}$ commencent toutes par un terminal distinct

→ À partir du terminal courant du mot analysé, on sait déterminer la bonne règle.

		+	*	a]
	S	<i>S</i> → + <i>SS</i>	S o *SS	$S \rightarrow a$	
Analys	se du	mot * a + a a	*	* *	* \$\sigma_{a} \sigma_{b} \sigma_{a} \sigma_{b} \sigma_{a} \sigma_{

Exemple $S o aSbS \mid \varepsilon$

Le choix devient plus délicat lorsque la grammaire comprend des ε -productions. Quel critère doit-on prendre en compte pour choisir entre la règle $S \to aSbS$ et la règle $S \to \varepsilon$?

On est amené à considérer les terminaux qui peuvent suivre S.

Convention pratique, on introduit un terminal particulier \$ pour marquer la fin du mot à analyser.

\$ et b (mais pas a) peuvent se retrouver à droite de S. \leadsto On sait alors déterminer la règle à appliquer au vu du terminal courant.

	\$	a	b
S	$oldsymbol{\mathcal{S}} ightarrow arepsilon$	S o aSbS	${\mathcal S} o arepsilon$

Exemple $S o aSbS \mid \varepsilon$

sa table d'analyse

	\$	a	b
S	S oarepsilon	S o aSbS	S ightarrow arepsilon

Analyse du mot ab\$

Condition pour une analyse LL(1) à chaque étape, pour la variable X à développer et le terminal courant c en entrée, le choix de la dérivation à appliquer doit être déterministe.

- L lecture de l'entrée de la gauche vers la droite (Left to right scanning)
- L construction d'une dérivation gauche (Left derivation)
- 1 symbole de l'entrée pour prédire la bonne règle

L'analyse LL(1) se base sur une table qui indique, pour la variable X et le terminal c, la règle correcte à appliquer.

Pour construire cette table d'analyse, on détermine au préalable :

- 1. les variables effaçables
- 2. les ensembles Premier
- 3. les ensembles Suivant

Les variables effaçables

Une chaîne $\alpha \in N^*$ est dite effaçable si le mot vide se dérive de $\alpha : \alpha \xrightarrow{*} \varepsilon$

Calcul des variables effaçables

On construit par récurrence sur i, l'ensemble Eff_i des variables A.

$$Eff_0 = \{ A \in \mathbb{N} \colon A \to \varepsilon \in P \}$$

$$Eff_{i+1} = \{ A \in \mathbb{N} \colon A \to \alpha \in P \text{ et } \alpha \in Eff_i^* \}$$

Arrêt lorsque $Eff_{i+1} = Eff_i$ (au bout d'au plus |N| étapes)

Exemple

Les ensembles Premier

Soit α une chaîne de $(\Sigma \cup N)^*$. Premier (α) est l'ensemble des terminaux qui débutent les chaînes dérivées de lpha :

$$\left\{a\in\mathbf{\Sigma}\colonlpha\stackrel{*}{
ightarrow}aeta$$
 où $eta\in(\mathbf{\Sigma}\cup extsf{N})^*
ight\}$

Calcul des ensembles Premier

Pour un terminal a :

$$Premier(a\beta) = \{a\}$$

Pour une variable X:

$$\operatorname{Premier}(X) = \bigcup_{X \to \beta \in P} \operatorname{Premier}(\beta)$$

$$Premier(X\beta) =$$

$$\begin{cases} \operatorname{Premier}(X) & \textit{si X n'est pas effaçable} \\ \operatorname{Premier}(X) \cup \operatorname{Premier}(\beta) & \textit{sinon} \end{cases}$$

Les ensembles Premier

Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Calcul des ensembles Premier pour les variables :

$$\begin{array}{lll} \mathbf{Premier}(\mathbf{S}) &=& \mathrm{Premier}(XY) & & S \to XY \\ &=& \mathrm{Premier}(X) \cup \mathrm{Premier}(Y) & X \text{ effaçable} \\ \mathbf{Premier}(\mathbf{X}) &=& \mathrm{Premier}(aXb) & X \to aXb \mid \varepsilon \\ &=& \{a\} \\ \mathbf{Premier}(\mathbf{Y}) &=& \mathrm{Premier}(cZ) \cup \mathrm{Premier}(Ze) & Y \to cZ \mid Ze \\ &=& \{c\} \cup \mathrm{Premier}(Z) \cup \{e\} & Z \text{ effaçable} \\ \mathbf{Premier}(\mathbf{Z}) &=& \mathrm{Premier}(dcZ) & Z \to dcZ \mid \varepsilon \\ &=& \{d\} \end{array}$$

Les ensembles Suivant

i.e.

Soit X une variable. Suivant(X) est l'ensemble des terminaux qui peuvent apparaître après X dans une dérivation :

$$\left\{ a \in \mathbf{\Sigma} \colon \mathbf{S} \stackrel{*}{ o} lpha \mathsf{X} aeta \ \mathrm{où} \ lpha, eta \in (\mathbf{\Sigma} \cup \mathsf{N})^*
ight\}$$

$$\operatorname{Suivant}(X) = \bigcup_{Y \to \alpha X \beta \in P} \operatorname{Premier}(\beta \operatorname{Suivant}(Y))$$

Calcul des ensembles Suivant

Mettre \$ dans Suivant(S) (où S est l'axiome)

Pour chaque variable X, examiner chaque production $Y \to \alpha X \beta$ où X est à droite :

- Si $\beta \neq \varepsilon$, ajouter les éléments de Premier(β) à Suivant(X)
- Si β ^{*}→ ε, ajouter les éléments de Suivant(Y)
 à Suivant(X)

Les ensembles Suivant

```
Exemple
```

```
 \left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.
```

Calcul des ensembles Suivant :

```
Suivant(S) contient $
```

Suivant(X)

$$S \to XY \longrightarrow \operatorname{Premier}(Y \operatorname{Suivant}(S)) \subseteq \operatorname{Suivant}(X)$$

 $\longrightarrow \operatorname{Premier}(Y) \subseteq \operatorname{Suivant}(X)$ (Y non effaçable)

$$X \to aXb \rightsquigarrow b \in \mathrm{Suivant}(X)$$

Suivant(Y)

$$S \to XY \rightsquigarrow \operatorname{Suivant}(S) \subseteq \operatorname{Suivant}(Y)$$

Suivant(Z)

$$Y \to cZ \rightsquigarrow \operatorname{Suivant}(Y) \subseteq \operatorname{Suivant}(Z)$$

$$Y \to Ze \leadsto e \in \operatorname{Suivant}(Z)$$

$$Z \to dcZ \sim Suivant(Z) \subseteq Suivant(Z)$$

Les variables Effaçables et les ensembles Premier et Suivant Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Bilan des calculs :

	Effaçable	Premier			Suivant				
S	non	а	С	d	e	\$			
Χ	oui	а				Ь	С	d	e
Y	non	С	d	e		\$			
Z	oui	d				\$	e		

Construction de la table d'analyse

Table à deux dimensions indexée par les variables et les terminaux

Pour toute production $X \to \alpha$:

- Ajouter $X \to \alpha$ à l'entrée T[X, a] pour tout terminal a dans $\operatorname{Premier}(\alpha)$
- Si α est effaçable, ajouter $X \to \alpha$ dans la case T[X, a] pour tout terminal a dans Suivant(X)

	\$	а	Ь	С	d	e
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \rightarrow \varepsilon$				Z o dcZ	$Z o \varepsilon$

Définition

Une grammaire est LL(1) s'il existe au plus une production par entrée dans la table.

Proposition

Une grammaire est LL(1) si pour toute paire de productions $A \to \alpha$ et $A \to \beta$, on a :

 $\operatorname{Premier}(\alpha \operatorname{Suivant}(A)) \cap \operatorname{Premier}(\beta \operatorname{Suivant}(A)) = \emptyset$

Ainsi une grammaire ne sera pas LL(1) s'il on a :

- soit un conflit Premier/Premier, i.e., deux règles
 A → α | β telles que : Premier(α) ∩ Premier(β) ≠ ∅
- soit un conflit Premier/Suivant, i.e., deux règles $A \to \alpha \mid \beta$ avec $\beta \stackrel{*}{\to} \varepsilon$ telles que : Premier(α) \cap Suivant(A) $\neq \emptyset$

Exemple

$$\begin{cases} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{cases}$$
 est une grammaire $LL(1)$

Sa table d'analyse comprend au plus une alternative par case.

 \sim Le choix de la règle à appliquer se fait de façon déterministe.

	\$	а	Ь	С	d	e
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	$Y \rightarrow Ze$	Y o Ze
Z	$Z \rightarrow \varepsilon$				Z o dcZ	$Z o \varepsilon$

Exemple

$$\begin{cases} S & \rightarrow & XY \mid Z \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & bX \\ Z & \rightarrow & bZc \mid c \end{cases} \text{ n'est pas une grammaire $LL(1)$}$$

Il existe un conflit Premier/Premier pour les règles S o XY et S o Z

$$\operatorname{Premier}(XY) = \operatorname{Premier}(X) \cup \operatorname{Premier}(Y) = \{a, b\}$$
 X effaçable $\operatorname{Premier}(Z) = \{b, c\}$

$$\rightarrow$$
 Premier(XY) \cap Premier(Z) = {b} $\neq \emptyset$

	\$ Ь	
S	$S \to XY$ $S \to Z$	

Exemple

$$\left\{\begin{array}{ccc} S & \rightarrow & aXb \\ X & \rightarrow & bX \mid \varepsilon \end{array}\right. \text{ n'est pas une grammaire } \mathit{LL}(1)$$

Il existe un conflit Premier/Suivant pour les règles $X \to bX$ et $X \to \varepsilon$

Premier
$$(bX) = \{b\}$$

Suivant $(X) = \{b\}$

$$\rightarrow$$
 Premier(X) \cap Suivant(X) = {b} $\neq \emptyset$

	\$ Ь	• • •
V	X o bX	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$X \to \varepsilon$	

Pour examiner un mot, l'analyseur LL(1) utilise la table d'analyse précédemment construite et une pile.

Initialement, la pile contient le marqueur de fin de mot \$ et l'axiome.

A chaque étape, on examine le terminal courant c du mot analysé et le sommet de la pile (premier symbole non traité de l'arbre en construction).

- Soit le sommet de la pile est un terminal a :
 - si a ≠ c,
 l'analyse s'arrête et retourne ÉCHEC
 - si a = c = \$, l'analyse s'arrête et retourne SUCCÈS
 - si a = c ≠ \$,
 a est dépilé et on avance dans la lecture du mot analysé
- Soit le sommet de la pile est une variable X :
 - si l'entrée T[X, c] est vide,
 l'analyse s'arrête et retourne ÉCHEC
 - si l'entrée T[X, c] contient une règle X → α,
 X est dépilé et α est empilé en partant de la droite (par exemple, si X → YzT, T est empilé, puis z, puis Y).

	\$	а	Ь	С	d	e
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	$Y \rightarrow Ze$
Z	$Z \to \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		
abdce\$	<i>5</i> \$	$S \rightarrow XY$	
a bdce\$	<i>XY</i> \$	extstyle X ightarrow a extstyle X b	X Y S Y
abdce\$	aXbY\$	assortiment	a X b

Mot analysé	Pile		
a b dce\$	X bY \$	X o arepsilon	<u> </u>
			X Y
			a X b
a b dce\$	b Y\$	assortiment	$oldsymbol{arepsilon}$
ab d ce\$	Y \$	Y o Ze	S
			X Y a X b Z e
ab d ce\$	Z e\$	Z o dcZ	e S
			a X b Z e
ab d ce\$	d c Z e\$	assortiment	ε d c Z

Mot analysé	Pile		
abd c e\$	cZe\$	assortiment	
abdc e \$	Z e\$	Z ightarrowarepsilon	, S _
			x y a X b Z e ε d C Z
abdc e \$	<i>e</i> \$	assortiment	2
abdce\$	\$	SUCCES	

Le coût de l'analyse du mot est linéaire en la taille de l'arbre.

	\$	а	Ь	С	d	e
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X o \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \to \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		start
abbab\$	<i>5</i> \$	$S \rightarrow XY$	
abbab\$	X Y\$	X o aXb	s <eof></eof>
a bbab\$	aXbY\$	assortiment	
a b bab\$	X bY\$	imes arepsilon o arepsilon	× ×
a b bab\$	b Y\$	assortiment	
ab b ab\$	Y \$	ECHEC	a x b b a b

Proposition

```
Une grammaire ne peut pas être LL(1) si elle est : soit ambiguë, soit récursive gauche, soit n'est pas factorisée à gauche.
```

On peut modifier la grammaire pour tenter de la rendre LL(1) mais le résultat n'est pas garanti.

Proposition

Il existe des grammaires non ambiguës, non récursives gauche et factorisées à gauche qui ne sont pas LL(1).

Par élimination de la récursivité gauche

Exemple

$$\left\{ \begin{array}{ll} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid nb \end{array} \right. \text{ n'est pas } \textit{LL}(1) \text{ car récursive gauche}$$

Il existe un conflit Premier/Premier pour les règles E o E + T et E o T à cause de la récursivité gauche de E

et un conflit Premier/Premier pour les règles $T \to T * F$ et $T \to F$ à cause de la récursivité gauche de T

	\$ (nb)	+	*
F	$E \rightarrow E + T$	$E \rightarrow E + T$			
-	E o T	E o T			
_	$T \rightarrow T * F$	$T \to T * F$			
'	$T \rightarrow F$	$T \rightarrow F$			
F	$F \rightarrow (E)$	F o nb			

Par élimination de la récursivité gauche

Supprimer la récursivité gauche rend cette grammaire LL(1)

$$\begin{cases}
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow (E) \mid nb
\end{cases}
\longrightarrow
\begin{cases}
E \rightarrow TY \\
Y \rightarrow +TY \mid \varepsilon \\
T \rightarrow FZ \\
Z \rightarrow * FZ \mid \varepsilon \\
F \rightarrow (E) \mid nb
\end{cases}$$

Par élimination de la récursivité gauche

	\$	(nb)	+	*
Ε		$E \rightarrow TY$	E o TY			
Y	$Y \rightarrow \varepsilon$			$Y \to \varepsilon$	$Y \rightarrow +TY$	
T		T o FZ	T o FZ			
Z	$Z \rightarrow \varepsilon$			$Z o \varepsilon$	Z o arepsilon	$Z \rightarrow *FZ$
F		$F \rightarrow (E)$	extstyle F o nb			

Par substitution et factorisation

Exemple

$$\begin{cases} E & \rightarrow & TR \\ T & \rightarrow & id \mid (E) \mid A \\ R & \rightarrow & +E \mid \varepsilon \\ A & \rightarrow & id \mid [E] \end{cases}$$
 n'est pas $LL(1)$

Il existe un conflit Premier/Premier pour les règles T o id et T o A

	\$ id	• • •
Т	T o id $T o A$	

Par substitution et factorisation

On effectue une substitution avant de factoriser à gauche.

$$\begin{vmatrix} E & \rightarrow & TR \\ T & \rightarrow & id \mid (E) \mid A \\ R & \rightarrow & +E \mid \varepsilon \\ A & \rightarrow & id[E]$$

• Factorisation à gauche

$$E \rightarrow TR$$

$$T \rightarrow id X \mid (E)$$

$$X \rightarrow [E] \mid \varepsilon$$

$$R \rightarrow +E \mid \varepsilon$$

Par substitution et factorisation

On obtient une grammaire LL(1)

$$\left\{ \begin{array}{ll} E & \rightarrow & TR \\ T & \rightarrow & id \ X \mid (E) \\ X & \rightarrow & [E] \mid \varepsilon \\ R & \rightarrow & +E \mid \varepsilon \end{array} \right. \quad \left. \begin{array}{ll} & \text{Effaçable} & \text{Premier} & \text{Suivant} \\ \hline E & \text{non} & id \ \left(& \$ \ \right) \ \right] \\ T & \text{non} & id \ \left(& \$ \ \right) \ \right] + \\ X & \text{oui} & \left[& \$ \ \right) \ \right] + \\ R & \text{oui} & \left[+ & \$ \ \right) \ \right]$$

	\$	+	id	()	[]
E			E o TR	$E \rightarrow TR$			
T			$T \rightarrow id X$	$T \rightarrow (E)$			
X	$X \to \varepsilon$	$X \to \varepsilon$		$X \to \varepsilon$		$X \rightarrow [E]$	$X \to \varepsilon$
R	$R \to \varepsilon$	$R \rightarrow +E$			$R o \varepsilon$		$R o \varepsilon$

ou rendre l'analyse déterministe

La grammaire des instructions de branchements conditionnels

$$\left\{\begin{array}{ll} I & \rightarrow & \textit{si E alors I sinon I} \mid \textit{si E alors I} \mid \textit{a} \\ E & \rightarrow & \textit{b} \end{array}\right.$$

même factorisée

$$\left\{ \begin{array}{ll} I & \rightarrow & \textit{si E alors I J} \mid \textit{a} \\ J & \rightarrow & \textit{sinon I} \mid \varepsilon \\ E & \rightarrow & b \end{array} \right.$$

n'est pas LL(1) car ambiguë.

le mot si b alors si b alors a sinon a admet deux arbres d'analyse

ou rendre l'analyse déterministe

L'ambiguïté engendre un conflit Premier/Suivant pour les règles $J \to sinon~I$ et $J \to \varepsilon$

	\$	sinon	
,	1 \ c	J o sinon I	
J	$J o \varepsilon$	J oarepsilon	

Avec la convention usuelle d'associer le sinon avec le si le plus proche, on peut rendre l'analyseur déterministe et le forcer à produire l'arbre voulu en privilégiant la règle $J \to sinon\ I$ au détriment de la règle $J \to \varepsilon$.

Généralisation de l'analyse LL(1) avec prévisualisation non pas juste d'un symbole mais d'un nombre fixé k de symboles. Une grammaire est LL(k) si l'analyseur peut choisir de façon déterministe la règle à appliquer en examinant les k symboles courants de l'entrée.

On note:

- $\mathbf{w}|_{k} = \begin{cases} w & \text{si } w \text{ est de longueur au plus } k \\ \text{le préfixe de longueur } k \text{ de } w \text{ sinon} \end{cases}$
- Premier_k(α) = { $w|_k : \alpha \stackrel{*}{\rightarrow} w$ }
- Suivant_k(A) = { $w: \exists \beta, \gamma \text{ t.q. } S \to \beta A \gamma \text{ et } w \in \text{Premier}_k(\gamma)$ }

Proposition

Une grammaire est LL(k) si pour toute paire de productions $A \to \alpha$ et $A \to \beta$, on a :

$$\operatorname{Premier}_{k}(\alpha \operatorname{Suivant}_{k}(A)) \cap \operatorname{Premier}_{k}(\beta \operatorname{Suivant}_{k}(A)) = \emptyset$$

Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & abX \mid \varepsilon \\ X & \rightarrow & Saa \mid b \end{array} \right. \quad \text{n'est pas une grammaire $LL(1)$}$$

	Effaçable	Premier	Suivant
S	oui	а	\$ a
Χ	non	a b	\$ a

Conflit Premier/Suivant : $Premier(abX) \cap Suivant(S) \neq \emptyset$

	\$	а	b
S	C \c	$\mathcal{S} o abX$	
3	$S \to \varepsilon$	$\mathcal{S} ightarrow arepsilon$	
X		X o Saa	$X \rightarrow b$

$$\left\{ \begin{array}{ll} S & \rightarrow & abX \mid \varepsilon \\ X & \rightarrow & Saa \mid b \end{array} \right. \quad \text{est une grammaire $LL(2)$}$$

	Effaçable	Pre	mier	2	Sι	ıivant ₂
S	oui	ab			\$	aa
Χ	non	aa	ab	Ь	\$	aa

En prévisualisant deux lettres, il n'y a plus de conflit : $\operatorname{Premier}_2(abX) \cap \operatorname{Suivant}_2(S) = \emptyset$

	\$	aa	ab	Ь
S	$S \rightarrow \varepsilon$	$S o \varepsilon$	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

	\$	aa	ab	Ь
S	$S \to \varepsilon$	S o arepsilon	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

Mot analysé	Pile	
abaa\$	<i>5</i> \$	S o abX
<mark>ab</mark> aa\$	abX\$	assortiment
a ba a\$	<i>bX</i> \$	assortiment
ab aa \$	X \$	$ extbf{X} ightarrow extbf{S}aa$
ab aa \$	S aa\$	${\mathcal S} o arepsilon$
ab aa \$	a a\$	assortiment
aba a \$	a \$	assortiment
abaa\$	\$	SUCCES

Fait

Il existe des grammaires ni ambiguës, ni récursives gauche qui ne sont LL(k) pour aucun k.

Exemple

$$\begin{cases}
S \rightarrow A \mid B \\
A \rightarrow aAb \mid c \\
B \rightarrow aBbb \mid d
\end{cases}$$

 $a^k \in \operatorname{Premier}_k(A) \cap \operatorname{Premier}_k(B)$ pour tout k

 \sim Conflit Premier/Premier pour tout k

Exemple

$$\{ \ \ \mathcal{S} \ \
ightarrow \ \ \mathit{aSb} \ | \ \mathit{bSa} \ | \ arepsilon$$

 $\operatorname{Premier}_k(aSb) \cap \operatorname{Suivant}_k(S) = \{a\}\{a,b\}^{k-2}\{b\} \text{ pour tout } k$

 \sim Conflit Premier/Suivant pour tout k

Analyse syntaxique avec ANTLR

ANTLR4 met en œuvre une analyse descendante prédictive qui a les caractéristiques suivantes

- factorisation à gauche de la grammaire automatique
- suppression automatique des récursivités gauches immédiates (mais pas des récursivités gauches indirectes, e.g.

$$A \rightarrow B\alpha, B \rightarrow A\beta$$
)

- résolution de certaines ambiguïtés
 - en jouant sur l'ordre des productions pour lever celles liées aux priorités des opérateurs
 - pour les ambiguïtés dues à l'associativité, par défaut l'association s'effectue à gauche ou de façon explicite à droite, e.g. l'exponentielle, expr: expr '^' (assoc = right) expr
- basé sur une stratégie LL(k)
- enrichi d'un mécanisme additionnel qui permet de traiter plus que les grammaires LL(k) mais qui induit alors un surcoût en temps