Topología

Definición de espacio topológico @definición	:
a Definición de homeomorfismo @definición, homeomorfismo	4
a 1 Proyección estereográfica @homeomorfismo explícito, proyección estereográfica	
b Definición de topología de identificación @generación, definición	(
b1 Más fina para continuidad @comparación	•
b2 Caracterización de identificaciones @caracterización, identificación	8
b3 Propiedades de las identificaciones @propiedades, composición, identificación	10
b4 Criterio para identificaciones @criterio, sección	1
b5 Producto de identificaciones @producto, abierta, identificación	1:
b6 Criterio para identificaciones @criterio, abierta, identificación	1:
b7 Identificación es casi homeomorfismo @homeomorfismo, identificación	14
b8 Restricción de identificaciones @restricción, identificación, criterio	1.5
b9 Propiedad universal de las identificaciones @propiedad universal, identificación	10
b10 Definición de espacio cociente @cociente, topología	17
b10a Propiedades de saturación @definición, saturación, identificación	18

1b10b Espacios cocientes Hausdorff @espacio cociente, Hausdorff, T2	19
1b11 Homeomorfismo inducido por una identificación	20
1b12 Caracterización de identificaciones @caracterización, compatibilidad, identificación	21
1b13 Criterio para identificaciones @compacto, Hausdorff, identificación	22

Definición de espacio topológico

I

DEFINICIÓN 1. Sea X un conjunto. Una **topología** sobre X es una familia \mathcal{T} de subconjuntos de X con las siguientes propiedades:

definición

- (I) $\emptyset, X \in \mathcal{T}$.
- (II) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ entonces $\bigcup_{i\in I} U_i \in \mathcal{T}$.

(III) Si $\{U_i\}_{i\in I} \subset \mathcal{T}$ y I es finito, entonces $\bigcap_{i\in I} U_i \in \mathcal{T}$.

A la pareja (X, \mathcal{T}) se le llama **espacio topológico**.

Definición de homeomorfismo

1a

DEFINICIÓN 2. Un **homeomorfismo** es una función $f: X \longrightarrow Y$ continua y biyectiva, cuya inversa también es continua. En este caso, se dice que los espacios X y Y son **homeomorfos**.

definición, homeomorfismo

Proyección estereográfica

TEOREMA 1. La función

$$p: S^{n} - \{N\} \longrightarrow \mathbb{R}^{n}$$

$$(x_{1}, \dots, x_{n+1}) \longmapsto \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

donde N = (0, ..., 0, 1), es un homeomorfismo con las topologías usuales y su inversa está dada por

$$p^{-1}: \mathbb{R}^n \longrightarrow S^n - \{N\}$$

$$y = (y_1, \dots, y_n) \longmapsto \left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}, \frac{|y|^2 - 1}{|y|^2 + 1}\right).$$

A este homeomorfismo se le llama proyección estereográfica.

Demostración. Es rutinario verificar que $p \circ p^{-1} = \mathrm{id}_{\mathbb{R}^n}$ y que $p^{-1} \circ p = \mathrm{id}_{S^n - \{N\}}$. Además, p es continua por ser sus componentes funciones racionales en las variables x_1, \dots, x_{n+1} tales que su denominador no se anula. De forma similar, p^{-1} es continua por ser sus funciones componentes productos de las variables y_1, \ldots, y_n , con la función $1/(|y|^2+1)$, la cuál es continua pues el denominador no se anula y la función norma |y| es continua.

homeomorfismo explícito, provección estereográfica DEFINICIÓN 3. Dados un espacio topológico X, un conjunto Y y una función $f: X \longrightarrow Y$, se puede dotar a Y con una topología, a saber, $\{U \subset Y \mid f^{-1}(U) \text{ es abierto en } X\}$. A esta topología se le llamará **topología de identificación** o **topología coinducida** en Y por X a través de f.

generación, definición

DEFINICIÓN 4. Si X y Y son espacios topológicos y $f: X \longrightarrow Y$ es una función, se dice que f es una **identificación** si la topología de Y es la topología coinducida por f.

Más fina para continuidad

Proposición 1. Sea X un espacio topológico $y f: X \longrightarrow Y$ una función. La topología de identificación en Y coinducida por f hace continua a f. Más aún, de entre todas las topologías que hacen continua a f, esta es la más fina.

comparación

Demostración. Sea \mathcal{T}_f la topología de identificación en Y. Si $U \in \mathcal{T}$, entonces $f^{-1}(U)$ es abierto en X, por definición. Como U fue arbitrario, entonces f debe ser continua, por definición de continuidad.

Sea \mathcal{T} una topología que hace continua a f. Si $U \in \mathcal{T}$, entonces $U \subset Y$ y $f^{-1}(U)$ es abierto en X por definición de continuidad, pero esto implica que $U \in \mathcal{T}_f$ por definición de \mathcal{T}_f . Como U fue arbitrario, entonces $\mathcal{T} \subset \mathcal{T}_f$, y a su vez como \mathcal{T} fue una topología arbitraria que hace continua a f, entonces \mathcal{T}_f debe ser la más fina entre ellas. \square

caracterización, identificación

Caracterización de identificaciones

Teorema 2. Si $f: X \longrightarrow Y$ es una función, son equivalentes

- (I) f es identificación.
- (II) U es abierto en Y si y sólo si $f^{-1}(U)$ es abierto en X.
- (III) F es cerrado en Y si y sólo si $f^{-1}(F)$ es cerrado en X.

Demostración. (I) \Longrightarrow (II). Si f es identificación entonces f es, en particular, continua, y por tanto U abierto en Y implica $f^{-1}(U)$ abierto en X. Supogase ahora que $f^{-1}(U)$ es abierto en X con $U \subset Y$. Entonces U es abierto en X por definición de topología de identificación. Como U fue arbitrario se tiene el resultado.

 $(II) \implies (III)$. Se tiene que

$$F$$
 es cerrado en $Y \iff X - F$ es abierto en $Y \iff f^{-1}(X - F) = Y - f^{-1}(F)$ es abierto en X , por hipótesis $\iff f^{-1}(F)$ es cerrado en X .

- $(III) \implies (II)$. Es similar al punto anterior.
- (II) \Longrightarrow (I). Sea $\mathcal T$ la topología de Y. Si se verifica (II), entonces la $\mathcal T$ hace continua a f. Más aún, si hay otra topología $\mathcal T'$ que hace continua a f, entonces $U \in \mathcal T$ implica que $f^{-1}(U)$ es abierto en X, y por tanto $U \in \mathcal T$ por

identificación. Luego, $\mathcal T$ es la topología de identificación coinducida por f, es decir, f es una identificación. \Box

hipótesis. Luego $\mathcal{T}' \subset \mathcal{T}$ y como \mathcal{T}' fue arbitraria, entonces \mathcal{T} es de hecho más fina en Y que cualquier otra que haga continua a f. Es fácil verificar que sólo existe una topología sobre Y con esta propiedad y es la topología de

propiedades, composición, identificación

Proposición 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones. Se verifican las siguientes afirmaciones

- (I) $id_X: X \longrightarrow X$ es identificación.
- (II) Si f y g son identificaciones, entonces $g \circ f$ es identificación.
- (III) $Si\ f\ y\ g\circ f$ son identificaciones, necesariamente g es identificación.

Demostración. (I) Se sigue de que U es abierto en X si y sólo si $\mathrm{id}_X(U) = U$ es abierto en X.

(II) Como f y g son identificaciones, entonces, por 1b2,

$$U$$
 es abierto en $Z \iff g^{-1}(U)$ es abierto en Y $\iff f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ es abierto en X .

Luego $g \circ f$ es identificación.

(III) Se tiene que

$$U$$
 es abierto en $Z \iff (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ es abierto en $X \iff g^{-1}(U)$ es abierto en Y ,

luego g es identificación.

TEOREMA 3. Sea $p: X \longrightarrow Y$ continua. Si existe una función continua $s: Y \longrightarrow X$ tal que $p \circ s = \mathrm{id}_Y$, entonces p es una identificación.

criterio, sección

Demostración. Si $U \subset Y$ es tal que $p^{-1}(U)$ es abierto en X, entonces $s^{-1}(p^{-1}(U)) = (p \circ s)^{-1}(U) = \mathrm{id}_Y(U) = U$ es abierto, por ser s continua. Como p es también continua por hipótesis, se tiene que U es abierto en Y si Y sólo si $P^{-1}(U)$ es abierto en Y, luego P es identificación.

Definición 5. A $s: Y \longrightarrow X$ en el teorema anterior se le llama **sección** de p.

Producto de identificaciones

1b5

Proposición 3. Si $f_1: X_1 \longrightarrow Y_1$ y $f_2: X_2 \longrightarrow Y_2$ son identificaciones, suprayectivas y abiertas, entonces $f_1 \times f_2: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ definida como $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ es identificación.

producto, abierta, identificación

Criterio para identificaciones

. /

Proposición 4. Si $f: X \longrightarrow Y$ es continua, suprayectiva y abierta o cerrada, entonces f es identificación.

criterio, abierta, identificación

1b6

Demostración. Pendiente.

Identificación es casi homeomorfismo

Proposición 5. Sea $f: X \longrightarrow Y$ una función biyectiva. Entonces f es identificación si y sólo si f es homeomorfismo.

Demostración. Pendiente.

1b7

homeomorfismo,

identificación

Restricción de identificaciones

1b8

TEOREMA 4. Si $f: X \longrightarrow Y$ es identificación, B es abierto o cerrado en Y y $A = f^{-1}(B)$, entonces $f|_A: A \longrightarrow B$ es identificación.

restricción, identificación, criterio

Demostración. Pendiente.

Propiedad universal de las identificaciones

1b9

Teorema 5. Sea $f: X \longrightarrow Y$ una función. Entonces f es identificación si y sólo si se cumplen las siguientes condiciones:

propiedad universal, identificación

- (I) f es continua.
- (II) Una función $g: Y \longrightarrow Z$ es continua si y sólo si $g \circ f$ es continua.

Demostración. Pendiente.

Definición 6. Si X es un espacio topológico y \sim es una relación de equivalencia en X, se le llamará **espacio cociente** a X/\sim con la topología de identificación coinducida por la proyección canónica $p:X\longrightarrow X/\sim$. Se dirá que X/\sim tiene la **topología cociente**.

cociente, topología

Definición 7. A la proyección canónica $p: X \longrightarrow X/\sim$ vista como identificación se le llamará **aplicación cociente**.

Propiedades de saturación

1b10a

DEFINICIÓN 8. Si $p: X \longrightarrow X/\sim$ es una aplicación cociente y $A \subset X$, se define la **saturación** de A como el conjunto $p^{-1}(p(A))$, que contiene a todos los puntos de A y a todos los puntos en X equivalentes a algún punto de A. Se dice que A es **saturado** si $A = p^{-1}(p(A))$.

definición, saturación, identificación

Proposición 6. Si $A \subset X$ es abierto o cerrado y saturado respecto a una relación $\sim y$ p es la respectiva aplicación cociente, entonces $p|_A: A \longrightarrow p(A)$ es una identificación.

Demostración. Corolario de 1b8.

Proposición 7. Si $A \subset X$ es saturado respecto a una relación \sim , $p: X \longrightarrow X/\sim$ es la respectiva aplicación cociente y p es una aplicación abierta o cerrada, entonces $p|_A: A \longrightarrow p(A)$ es una identificación.

Demostración. Pendiente.

Espacios cocientes Hausdorff

1b10b

Teorema 6. Si X es un espacio de Hausdorff, $p: X \longrightarrow X/\sim$ es una aplicación cociente y cada elemento de X/\sim es cerrado en X, entonces X/\sim es un espacio de Hausdorff.

espacio cociente, Hausdorff, T2

Demostración. Pendiente.

Proposición 8. Sea $f: X \longrightarrow Y$ una identificación y suprayectiva. Si se define en X la relación de equivalencia $x_1 \sim x_2$ si y sólo si $f(x_1) = f(x_2)$, entonces X/\sim es homeomorfo a Y.

Demostración. Pendiente.

Observación. Si $x \in X$, entonces $p^{-1}(\{x\}) = [x]$.

Caracterización de identificaciones

Definición 9. Dada una función $p:X\longrightarrow \overline{X}$, se dice que otra función $f:X\longrightarrow Y$ es compatible con p si p(x)=p(x') implica que f(x)=f(x'), para cada $x,x'\in X$.

caracterización, compatibilidad, identificación

Teorema 7. Sea $p: X \longrightarrow \overline{X}$ continua y suprayectiva. Entonces p es identificación si y sólo si para cada función continua $f: X \longrightarrow Y$ compatible con p, existe una única función continua $\overline{f}: \overline{X} \longrightarrow Y$ tal que $\overline{f} \circ p = f$.

Definición 10. En la definición anterior, se dice que \overline{f} es el resultado de pasar f al cociente.

Criterio para identificaciones

1b13

Teorema 8. Si X es un espacio compacto, Y es un espacio de Hausdorff y $f: X \longrightarrow Y$ es continua y suprayectiva, entonces f es identificación.

compacto, Hausdorff, identificación

Demostración. Pendiente.