Билет 16

Автор1, ..., АвторN

20 июня 2020 г.

Содержание

0.1 Билет 16: Свойства замыкания. Предельные точки. Связь с замыканием множества. $\;\;1\;$

Билет 16 СОДЕРЖАНИЕ

0.1. Билет 16: Свойства замыкания. Предельные точки. Связь с замыкания множества. $Cl A = X \setminus Int (X \setminus A)$

Свойства.

- 1. $A \subset \operatorname{Cl} A$
- $2. \ \mathrm{Cl}\,A$ замкнутое множество

Доказательство.

По определению, ClA - пересечение замкнутых множетв.

3. $\operatorname{Cl} A = A \iff A$ замкнуто

Доказательство.

$$A = \operatorname{Cl} A \iff X \setminus A = X \setminus \operatorname{Cl} A$$
 $\iff X \setminus A = \operatorname{Int}(X \setminus A)$
 $\iff X \setminus A$ открыто
 $\iff A$ замкнуто

4. $A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B$

Доказательство.

$$\begin{array}{ccc} A \subset B \implies (X \setminus B) \subset (X \setminus A) \\ & \Longrightarrow \operatorname{Int}(X \setminus B) \subset \operatorname{Int}(X \setminus A) \\ & \Longrightarrow X \setminus \operatorname{Int}(X \setminus A) \subset X \setminus \operatorname{Int}(X \setminus B) \\ & \Longrightarrow \operatorname{Cl} A \subset \operatorname{Cl} B \end{array}$$

5. $Cl(A \cup B) = Cl A \cup Cl B$

Доказательство.

$$Cl(A \cup B) = X \setminus Int(X \setminus (A \cup B))$$

$$= X \setminus Int((X \setminus A) \cap (X \setminus B))$$

$$= X \setminus (Int(X \setminus A) \cap Int(X \setminus B))$$

$$= (X \setminus Int(X \setminus A)) \cup (X \setminus Int(X \setminus B))$$

$$= Cl A \cup Cl B$$

6. Cl(Cl A) = Cl A

Доказательство.

Cl A замкнуто по свойству 2, равенство следует из свойства 3.

Билет 16 СОДЕРЖАНИЕ

Теорема 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_r(a) \cap A \neq \varnothing.$$

Доказательство.

Hеобходимость (\Longrightarrow):

Предположим что $\exists r > 0 \quad B_r(a) \cap A = \varnothing$.

Тогда $a \notin A$ и $B_r(a) \subset X \setminus A$, значит $a \in \operatorname{Int}(X \setminus A) \implies a \notin X \setminus \operatorname{Int}(X \setminus A) \implies a \notin \operatorname{Cl} A$.

Достаточность (\iff):

Пусть $a \not\in \operatorname{Cl} A$, тогда $\exists F$ - замкнутое надмножество A, такое, что $a \not\in F \implies a \in X \setminus F$. При этом, $X \setminus F$ открыто.

Тогда $\exists r > 0 \quad B_r(a) \subset X \setminus F \subset X \setminus A$.

Ho тогда $B_r(a) \cap A = \emptyset$.

Следствие.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$, а $U \subset X$ - открытое множетсво. При этом $A \cap U = \varnothing$.

Тогда $\operatorname{Cl} A \cap U = \emptyset$

Доказательство.

$$x \in \operatorname{Cl} A \cap U \implies x \in U$$

$$\implies \exists r > 0 \quad B_r(x) \subset U$$

$$\implies B_r(x) \cap A \subset U \cap A = \varnothing$$

$$\implies x \notin \operatorname{Cl} A$$

$$\implies x \notin \operatorname{Cl} A \cap U$$

Получили противоречие, значит таких x не существует.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

Проколотой окрестностью радиуса $r \in \mathbb{R}_{>0}$ с центров в $a \in X$ называется $\mathring{B}_r(a) := B_r(a) \setminus \{a\} = \{x \in X \mid 0 < \rho(x,a) < r\}.$

Определение 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

 $a \in A$ называется предельной точкой, если $\forall r > 0 \quad \dot{B}_r(a) \cap A \neq \varnothing$.

Множества предельных точек множества A обозначается A'.

Свойства.

1. $\operatorname{Cl} A = A \cup A'$

Доказательство.

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_a(a) \cap A \neq \emptyset$$

$$\iff \begin{bmatrix} a \in A \\ \mathring{B}_r(a) \cap A \neq \emptyset \end{bmatrix}$$

$$\iff \begin{bmatrix} a \in A \\ a \in A' \end{bmatrix}$$

2. $A \subset B \implies A' \subset B'$

Доказательство.

$$a \in A' \implies \forall r \quad \mathring{B}_r(a) \cap A \neq \varnothing$$

 $\implies \mathring{B}_r(a) \cap B \neq \varnothing$
 $\implies a \in B'$

3. $(A \cup B)' = A' \cup B'$

Доказательство.

see Anna :, A - F

$$A \subset A \cup B \implies A' \subset (A \cup B)'$$

$$B \subset A \cup B \implies B' \subset (A \cup B)'$$

$$\implies A' \cup B' \subset (A \cup B)'$$

Покажем другое включение: возьмём $x \in (A \cup B)'$.

Пусть $x \notin A'$: Тогда $\exists R > 0 \quad \mathring{B}_R(x) \cap A = \varnothing$.

Заметим, что $\forall 0 < r \leqslant R \quad \mathring{B}_r(x) \cap A \subset B_R(x) \cap A = \varnothing$, значит $\forall r > 0 \quad \exists 0 < R_r < r \quad B_{R_r}(x) \cap A = \varnothing$.

Так-как $\mathring{B}_{R_r}(x) \cap (A \cup B) \neq \emptyset$, значит $\mathring{B}_{R_r}(x) \cap B \neq \emptyset$. Тогда

$$\forall r > 0 \quad \mathring{B}_r(x) \cap B \supset \mathring{B}_{R_r}(x) \cap B \neq \varnothing.$$

Значит, $x \in B'$

4. $A' \subset A \iff A$ - замкнутое

Доказательство.

$$A$$
 - замкнутое $\iff A = \operatorname{Cl} A$ $\iff A = A \cup A'$ $\iff A' \subset A$

Теорема 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $A \subset X$.

 $a \in A' \iff \forall r > 0$ $B_r(a) \cap A$ содержит бесконечно много точек.

Билет 16 COДЕРЖАНИЕ

Доказательство.

, , , : : => => A'

Hеобходимость (\Longrightarrow) :

Знаем, что $\mathring{B}_r(a) \cap A \neq \varnothing$, возьмём точку $x_1 \in \mathring{B}_r(a) \cap A$, возьмём $r_2 = \rho(x_1, a)$, знаем, что $\mathring{B}_r(a) \cap A \neq \varnothing$, можем взять точку оттуда, и вообще повторять бесконечное число раз.

Достаточность (\leqslant): $B_r(a) \cap A$ содержит бесконечно много точек $\implies \mathring{B}_r(a) \cap A$ содержит бесконечно много точек $\implies \mathring{B}_r(a) \cap A \neq \varnothing \implies a \in A'$.