Formation DS-IML PROJET 3: SEATTLE ENERGY BENCHMARKING

Cadastre

Conso. énergétique

Rejets CO2

MISSION

Modélisation conso. énergétique

Modélisation rejets GHG

Discussion *Energy Star Score*

SOMMAIRE

- 1 Data: Exploration Analyse Transformation
- 2 1ère Modélisation : Explications détaillées Démarche - Etapes - Résultats
- 3 Survol de la 2nde Modélisation
- 4 Conclusion, Bilan & Pistes d'Améliorations

1 - RÉUNION DES DATASETS

$$DATA = 2015 + 2016$$

- a) Renommer des colonnes
- b) Ventiler certaines données (adresses...)

n = 6624

2 - GESTION DES DOUBLONS

seulement 3340 obs. uniques

PB de COHÉRENCE des données

1er choix compliqué permettant de garder une faible quantité de données.

2nd choix plus simple, de bon sens consistant à garder les data récentes

n = 3340

Très vite...

- Corrections
- Éliminations var. non pertinentes : méta, géo, etc.

sauf "Neighborhood"

- Création de "DecadeBuilt" à partir de "YearBuilt"

Groupe var. quantitatives

Points significatifs

Distribution commune "étalée à droite"

Transformation LOG

Création var. binaire "Outlier"

B) Transformations sur variables "GFA"

GFATotal = GFABuilding + GFAParking

BGFARate = GFABuilding / GFA Total

L_PUTGFA = LargestPropertyUseTypeGFA / PropertyGFATotal

x 3

Groupe var. qualitatives

Points significatifs

VARIABLE	NB de CATÉGORIES
BuildingType	7
PrimaryPropertyType	31
LargestPropertyUseType	57
SecondLargestPropertyUseType	51
ThirdLargestPropertyUseType	44

Travail nécessaire sur la "profondeur" de ces variables

Cas de ListOfAllPropertyUse et de ses 475 catégories

inutilisable!

- **→** Imputations sur val. manquantes
- Création var. quantitative NumberOfPropertyUse

Groupe var. "cibles"

Points significatifs

15 var. quantitatives relatives aux mesures de conso & d'émissions GHG

Conso. & émis.:

brutes

norm. météo

par unité de surface

Var. EnergyStarScore ajoutée aux var.indépendantes

conso. particulières:

Steam

Natural Gas

Other

Création 3 var. binaires Steam / NaturalGas / Other

Smart Data avant modélisation

Int6	4Index: 3303 entries, 0 to 333	9	
Data	columns (total 20 columns):		
#	Column	Non-Null Count	Dtype
0	NumberOfPropertyUse	3303 non-null	int64
1	NumberofBuildings	3303 non-null	float64
2	NumberofFloors	3303 non-null	float64
3	PropertyGFATotal	3303 non-null	int64
4	PropertyBuildingGFARate	3303 non-null	float64
5	L_PUTGFA	3303 non-null	float64
6	S_PUTGFA	3303 non-null	float64
7	T_PUTGFA	3303 non-null	float64
8	ENERGYSTARScore	2498 non-null	float64
9	Neighborhood	3303 non-null	category
10	BuildingType	3303 non-null	category
11	PrimaryPropertyType	3303 non-null	category
12	LargestPropertyUseType	3303 non-null	category
13	SecondLargestPropertyUseType	3303 non-null	category
14	ThirdLargestPropertyUseType	3303 non-null	category
15	DecadeBuilt	3303 non-null	category
16	Steam	3303 non-null	category
17	NaturalGas	3303 non-null	category
18	Other	3303 non-null	category
19	Outlier	3303 non-null	category

3303 observations

20 variables

9 numériques

11 catégorielles

dont

4 binaires

SOMMAIRE

- 1 Data: Exploration Analyse Transformation
- 2 1ère Modélisation : Explications détaillées Démarche - Etapes - Résultats
- 3 Survol de la 2nde Modélisation
- 4 Conclusion, Bilan & Pistes d'Améliorations

Démarche suivie

machine learning supervisé

régression

Pool d'estimateurs

lequel va matcher avec les données?

Encodage

test & choix entre 3 type d'encodages

Sélection des meilleurs modèles

Var. Catégorielles

optimisation de leur profondeur

Feature Selection

élimination de variables pénalisantes

Hyper-Paramétrage

optimisation des paramètres des modèles

Sélection DU meilleur modèle

Métriques utilisées :

3 indicateurs différents de performance

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

$$RMSLE = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (log(\hat{y}_i + 1) - log(y_i + 1))^2$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y}_{i})^{2}}$$

métrique "empirique"

Pre processing des données numériques

Transformation logarithmique

Standardisation

Échantillonnage Train/Test

Pris en charge par la validation croisée

LES ALGORITHMES

Régression Linéaire

Variantes Ridge et Lasso

- Moyen de contrôler l'overfitting d'une RL
- Il s'agit de RL dont on "pénalise" les apprentissages

Augmentation du BIAIS pour diminuer la VARIANCE

Régression à vecteur de support : SVR

Algorithme "black box"

Hyperplan de régression au centre d'un "cylindre" dont on définit la largeur, et qui contiendrait un maximum des points.

Hyperplans non linéaires

Arbre de décision

Par le calcul, est déterminée pour chaque "node" la condition de partition des observations apportant le "meilleur score RSS" à une modélisation hypothétique ayant comme prédictions les moyennes du G1 et du G2.

On répète le processus, qui crée une arborescence de conditions, jusqu'à atteindre des limites fixées par des paramètres faisant en sorte que les "nodes" en bout de chaine sont des "feuilles" qui porte les valeurs de prédictions possibles.

Algo. ensemblistes parallèles : Bagging

Faire travailler N "apprenant faible" et mettre leurs résultats en commun

Bagging Regressor

N arbres de décisions "un peu" différents puisque entraînés sur des échantillons "bootstrapés" du dataset.

Random Forest Regressor

Même principe, mais en plus, chaque arbre ne prend en compte qu'une partie des variables définissant les observations.

Algo. ensemblistes séquentiels : Boosting

Adaboost

Enchaînement de "stumps" dont les résultats déterminent :

- un poids en vue du vote final
- les données sur lesquelles travailleront les arbres suivants

Gradient Boosting

Minimisation à "petit pas" d'une fonction d'erreur née d'une prédiction arbitraire

- Principe totalement différent
- Chaque apprenant contribue à faire "converger" le modèle vers les valeurs à prédire.

Pourquoi encoder?

Label Encoding

 Cat
 Dog
 Turtle

 Cat
 1
 0
 0

 Dog
 0
 1
 0

 Turtle
 0
 0
 1

color
red
green
blue

color

1
2

Fish Cat

Quarté gagnant

- ridge + OHE
- SVR + OHE
- Random Forest + TE
- Gradient Boosting + TE

Target Encoding

One Hot Encoding

On remplace une catégorie par la moyenne des valeurs de la cible pour chaque observation en faisant partie.

Fish

0

0

0

VARIABLE	NB de CATÉGORIES
BuildingType	7
PrimaryPropertyType	31
LargestPropertyUseType	57
SecondLargestPropertyUseType	51
ThirdLargestPropertyUseType	44

X["BuildingType"].valu	e_counts()
NonResidential	1449
Multifamily LR (1-4)	1020
Multifamily MR (5-9)	553
Multifamily HR (10+)	107
SPS-District K-12	84
Nonresidential COS	67
Campus	23

Utilisation d'une fonction "maison" qui...

- En prenant les variable dans le sens décroissant de leur nombre de catégories
- Et après avoir classé les catégories dans le sens décroissant de leur fréquence

Va vérifier si se passer de N catégories améliore la modélisation, et le cas échéant supprime ces catégories.

Diminution sensible de la complexité du modèle...

Recours à deux fonction de FEATURES SELECTION

RFECV

SelectPercentile

Diminution sensible de la complexité du modèle...

Recherche des meilleurs "hyper-paramètres"

10 000 modélisations à effectuer!

- 1 Recherche randomisée
- 2 Recherche précise

	Model	Fit_Time	Score_time	MAE	Std MAE	RMSLE	Std RMSLE	R2	Std R2
0	best_ridge	0.033002	0.010000	0.326486	±0.0175	0.031402	±0.0029	0.822575	±0.0247
1	best_SVR	3.911224	0.698040	0.310002	±0.0187	0.031113	±0.0033	0.822234	±0.0270
2	best_RF	18.097035	0.303018	0.319439	±0.0144	0.031271	±0.0030	0.821934	±0.0257
3	best_GB	4.475256	0.019001	0.299881	±0.0132	0.028999	±0.0024	0.848079	±0.0201

SOMMAIRE

- 1 Data: Exploration Analyse Transformation
- 2 1ère Modélisation : Explications détaillées Démarche - Etapes - Résultats
- 3 Survol de la 2nde Modélisation
- 4 Conclusion, Bilan & Pistes d'Améliorations

Importance d'une variable dans un modèle

1- Feature Importance

ESScore: 6%

2- Modélisation sans...

-0.05 R2 Score

Courbe d'apprentissage du modèle

La rareté est facteur d'erreur

L'erreur globale est majoritairement constituée d'une accumulation de "petites erreurs".

MAIS...

Si on compare:

 \sum Prédictions

avec

 \sum Valeurs Cibles

10 % d'erreur!

Prédictions individuelles difficilement utilisables

Prédiction collective valable

En l'état, on dispose d'un modèle à utiliser avec précaution.

On peut le peaufiner à la marge en utilisant différents moyens techniques.

Pour vraiment l'améliorer, il faut avant tout plus de données!