

CASA0006

- 1 Introduction to Databases
- 2 Introduction to SQL
- 3 Advanced SQL
- 4 Data Munging
- 5 Advanced Clustering

- 6 Advanced Regression
- 7 Classification
 - 8 Dimension Reduction
- **9** Unstructured Data
- **10** Analysis Workflow

Recap What we already know

We can handle and clean data

Database, SQL, Python Pandas/Sklearn

We can do clustering analysis

Kmeans, DBSCAN, hierarchical clustering

We can do regression analysis

Linear regression, VIF, Lasso, decision tree, random forest

Today we extend our skills in data analysis, exploring the use of classification methods for analysing data

Data Analysis

Picking an Approach

The approach to take towards analyzing your data depends on what you want to understand from it

Method		Output
Clustering	\longrightarrow	Creation of Groupings
Regression	\longrightarrow	Identify Data Relationships
Classification	\longrightarrow	Identify Discrete Class
Dimensionality Reduction	\longrightarrow	Understand Influential Factors
Association Rule Mining		Identify Dependencies
Anomaly Detection		Identify Outliers
	Clustering Regression Classification Dimensionality Reduction Association Rule Mining	Clustering Regression Classification Dimensionality Reduction Association Rule Mining

Unsupervised: no ground truth **Supervised: with ground truth**

15

14

Unsupervised Learning

Supervised Learning

1600

1400

1000

800 600 400

11

Regression:

Classification: [SVM on 2 classes of the Wine dataset]

alocohol [% ABV]

Today's topic

No labels

Continuous Y as labels

Discrete Y as labels

Outline

- 1. Classification and Prediction
- 2. Supervised Classification
- 3. Classification Methods
 - a. K Nearest Neighbours
 - b. Logistic Regression
 - c. Artificial Neural Networks
 - d. Decision Trees
 - e. Random Forests
- 4. Validation

Supervised Classification

What is it?

We train a classifier with a **labelled** sample of data, and it figures out how to create a relationship between a feature's attributes and its label

Establishing this relationship allows us to predict future datasets

Example: travel mode detection

Classification

Examples

Digit Recognition

Spam Filtering

<u>Transport Mode Detection</u> (from GPS data)

Classification Methods

Nearest Neighbours
Logistic Regression
Artificial Neural Networks
Decision Trees
Random Forests

Nearest Neighbours k-NN

Considers **neighbouring points** and their classifications, and then classifies a point according to majority vote

Need to tune k

ClassifierTrue label

Method

Choose *k* neighbours to consider; choose whether to weight neighbours by distance; classify using known points.

Hyperparameter

k

Pros

Simple; easy to understand; used widely

Cons

Sensitive to local patterns in the data, rather than accounting for wider trends; lack of interpretability

https://scikit-

learn.org/stable/auto examples/neighbors/plot classification.html

Logistic Regression (or logit regression)

Use a logistic function to model a binary response variable. Applications include predicting risk of developing disease and discrete choice models in economics.

Logistic function:
$$y = \frac{exp(\sum_{i=0}^{n} \beta_i x_i)}{1 + exp(\sum_{i=0}^{n} \beta_i x_i)}$$

Pros

Simple; easy to understand; used widely

Cons

Subject to variable selection (like linear regression)

Types

- Binomial: fail vs pass
- Multinomial (more than two classes): bus vs car vs cycling
- Ordinal (ordered multiple categories): fail vs pass vs merit vs distinction

pe predefined)

Artificial Neural NetworksANN

Informal: you can think of ANN as a multilayer logistic regression

ANNs link combinations of attributes to the activation of an artificial neuron

logistic function

Method

Combine weighted attribute values to form hidden layer. Combine weighted hidden functions to generate response. Class selected if response is strong enough.

Pros

Easy to understand, used widely, and easy to implement, integrated with image and graphs (unstructured data)

Cons

Hard to understand association between inputs and outputs (non-linear function and many layers)

Decision Trees

Single Trees

Creates a tree of **probabilities** or **value ranges** linking attribute values to classes or outcomes

Method

Different methods (CART, ID3, C4.5). The common idea is to iteratively split a node based on some criteria.

Pros

Easy to understand and interpret; able to extract structure; able to handle numerical and categorical data; limits influence of poor predictors

Cons

Prone to overfitting (complex trees)

Decision Trees

Example of CART

- CART (Classification and Regression Trees)
- Choose the best split that maximises the purity of the two new groups, or minimises the *Gini impurity*
- *Gini impurity:* measures the impurity of a group containing different classes (where p_i is the probability of a class)

$$I_G(p) = \sum_{i=1}^{J} p_i (1 - p_i)$$

Gini = 0. (if and only if only one class in the set)

• Gini = 0.5*(1-0.5) + 0.25*(1-0.25) + 0.25*(1-0.25) = 0.625

≜UCL

Decision Trees

Example of CART

x1	x2	у
2	3	Yellow
3	4	Yellow
3	4	Green
5	3	Blue

Gini score

$$I_G(p) = \sum_{i=1}^{J} p_i (1 - p_i)$$

Splitting a node to minimise the Gini score by comparing all splits

The output of a decision tree can be the predicted class or a probability over all classes

Example: given the input of (x1=2.5, x2=4000)

- Predicted class: yellow
- Predicted probability (in the left leaf):
 - yellow = 2/3
 - green = 1/3
 - blue = 0

Random Forest

Creating many trees and combining their response

- A single tree may be overfitting and does not perform well on new datasets.
- A good solution is to randomly grow a bunch of random and different trees.

 Given an input, the response is a combination (e.g. maximum mean probability) of the output of all trees.

Amended from source image:

Cheng, L., Chen, X., De Vos, J., Lai, X., and Witlox, F. (2019)
Applying a random forest method approach to model travel mode choice behavior. *Travel Behaviour and Society*

Random Forest

Growing a different tree

- Each tree is grown by a random subset of data
 - Resampling training data with replacement
 - Sampling a random selection of predictors
- This guarantees that each tree is different.

Index	x1	x2	х3
1	2	1.0	2
2	3	1.5	3
3	5	2.0	4
4	4	2.6	6

Sampling: 2 features, 7 samples

Index	x1	х3
1	2	2
2	3	3
3	5	4
4	4	6
2	3	3
4	4	6
2	3	3

Random Forest

Combining response

- Combining response from many trees into one output (sklearn package)
 - predict(X): the predicted class is the one with highest mean probability estimate across the trees
 - predict_proba(X): the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf.
 - Note that other packages may differ on the calculation of output class/probability of a random forest

class	Tree_1	Tree_2	output_ proba	output_cl ass
Yellow	2/3	1/4	11/24	Green
Green	1/3	3/4	13/24	

Validation and Testing

Types of Error Metrics

Hyperparamter & parameter

- We limit the discussion to machine learning.
- A hyperparameter is a parameter whose value is used to control the learning process. It should be predefined before model training. Many algorithms provide default value of hyperparameters.
- The values of other parameters (typically node weights) are derived via training.

 3-class classification (k = 15, weights = 'uniform')
- Example of KNN
 - Hyperparameters: k
 - Parameters: the class of each sub-areas.
- Another example of random forest
 - Hyperparameters: n_estimator (number of trees), max_depth (maximum depth of a tree), etc.
 - Parameters: the splits.

Data split (training & testing)

 Fair validation of model performance should be based on training/testing split. Don't touch the test set until the model is finalised.

 If you need to tune the hyperparameters in the model, you would need to use training/validation/test split. Validation set is used to determine the hyperparameters.

Cross Validation

A more complicated validation process

Cross Validation executes model training and validating on multiple subsets of the data

- -- To test the model's ability to predict new data that was not used in training it
- -- To avoid problems of overfitting or selection bias

K-Fold Cross Validation

Extreme case (K = #Training data)

Leave-one-out cross-validation

Accuracy = Mean(Split 1, Split 2, etc.)

Model hyperparameters = Best fitting (e.g. Split 5)

Note: K is a hyperparameter.

Validation Measures

Classification (suitable for two-class and multi-class)

Classification measures compares predicted against observed classes

		Actual Values		
		Positive (1)	Negative (0)	
Predicted Values	Positive (1)	TP	FP	
Predicte	Negative (0)	FN	TN	

Confusion Matrix

Classification Accuracy

Proportion correctly classified. Not the be-all metric!

$$\frac{Correct}{Correct + Incorrect} = \frac{tp + tn}{tp + tn + fp + fn}$$

Precision

How many positive predictions are correctly classified?

$$\frac{tp}{tp + fp}$$
 tp = true positive (yay)
fp = false positive (incorrectly flagged)

Recall

How many positive classes are correctly classified?

$$\frac{tp}{tp + fn}$$
 tp = true positive (woo hoo) fn = false negative (missed result)

F1

A balance between precision and recall, takes beta attribute which weights precision or recall

$$(1+\beta^2)\frac{precision * recall}{\beta^2 precision + recall}$$

L

An exercise

		Predicted/Classified		
		Negative	Positive	
Actual	Negative	998	0	
	Positive	1	1	

• Accuracy =
$$\frac{tp+tn}{ALL} = \frac{999}{1000}$$

• Precision =
$$\frac{tp}{tp+fp} = \frac{1}{1+0} = 1$$

• Recall =
$$\frac{tp}{tp+fn} = \frac{1}{1+1} = \frac{1}{2}$$

•
$$(\beta = 1)$$
: F1 = $(1 + 1^2) \frac{1*0.5}{1^2*1+0.5} = \frac{2}{3}$

The precision and recall can be related to Type I and Type II error in statistics.

Type I error (false positive)

Type II error (false negative)

Figure 3.1 Type I and Type II errors

Workshop Classification

- In this workshop you will extend your skills in data mining by learning to implement data classifiers
- Once again you'll be using the Python sklearn library, which has a range of easy-to-implement methods for creating data classifiers
- Again, you're not expected to understand all of the maths and computation, only the usefulness and application of these approaches.
- Download this week's Jupyter Notebook from Moodle, open it in Anaconda and work through