# La statistica descrittiva

(Parte II: Le variabili numeriche)

## Obiettivi di apprendimento

- Riassumere i dati numerici utilizzando misure di centralità, dispersione e correlazione
- Riassumere i dati numerici utilizzando rappresentazioni grafiche
- Interpretare tabelle e figure in articoli scientifici

## Le fasi della ricerca



# Misure di centralità e dispersione



## Misure di centralità: la moda

© L'elemento più frequente

|  | 5 | 18 | 20 | 22 | 24 | 25 | 25 | 26 | 26 | 26 | 27 | 27 | 28 | 29 | 30 |  |
|--|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|
|--|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|

moda = 26

#### Esercizio #1

Qual è la moda dei seguenti insiemi?

$$x = \{1, 1, 1, 3, 4, 4, 4, 7, 8, 8, 9, 9\}$$
  
 $\text{moda}(x) = ?$ 

$$y = \{1, 3, 4, 7, 8, 9, 11, 17, 21, 42\}$$
  
 $\text{moda}(y) = ?$ 

### Esercizio #1 -- Soluzione

Qual è la moda dei seguenti insiemi?

$$x = \{1, 1, 1, 3, 4, 4, 4, 7, 8, 8, 9, 9\}$$
  
 $\text{moda}(x) = 1 \text{ e } 4$ 

$$y = \{1, 3, 4, 7, 8, 9, 11, 17, 21, 42\}$$
  
moda $(y) =$ Non esiste

### Misure di centralità: la mediana

Il valore "in mezzo"



I dati devono essere ordinati!

### Esercizio #2

Quali sono le mediane di questi insiemi?

$$x = \{40, 6, 75, 55, 34\}$$
  
mediana $(x) = ?$ 

$$y = \{40, 6, 175, 55, 34\}$$
  
mediana $(y) = ?$ 

#### Esercizio #2 -- Soluzione

Quali sono le mediane di questi insiemi?

$$x = \{40, 6, 75, 55, 34\} 
ightarrow x' = \{6, 34, 40, 55, 75\} \ \mathrm{mediana}(x) = x_3 = 40$$

$$y = \{40, 6, 175, 55, 34\}$$
  
mediana $(y) = ?$ 

I dati devono essere ordinati!

#### Esercizio #2 -- Soluzione

Quali sono le mediane di questi insiemi?

$$x = \{40, 6, 75, 55, 34\} 
ightarrow x' = \{6, 34, 40, 55, 75\} \ \mathrm{mediana}(x) = x_3 = 40$$

$$y = \{40, 6, 175, 55, 34\} \rightarrow y' = \{6, 34, 40, 55, 175\}$$
  
mediana $(y) = y_3 = 40$ 

I dati devono essere ordinati!

## Mediana e valori estremi



## Quartili



🚺 I dati devono essere ordinati!

## Percentili





### Esercizio #3

? Maria ha ricevuto un punteggio di 70 a un esame, posizionandosi nel  $45^o$  percentile.

L'esame è andato...

- a) bene: ha ricevuto un voto superiore a più di metà delle persone che hanno dato quell'esame
- b) non benissimo: ha ricevuto un voto inferiore a più di metà delle persone che hanno dato quell'esame
- c) non ho abbastanza elementi per decidere

### Esercizio #3 -- Soluzione

? Maria ha ricevuto un punteggio di 70 a un esame, posizionandosi nel  $45^o$  percentile.

L'esame è andato...

- a) bene: ha ricevuto un voto superiore a più di metà delle persone che hanno dato quell'esame
- b) non benissimo: ha ricevuto un voto inferiore a più di metà delle persone che hanno dato quell'esame
- c) non ho abbastanza elementi per decidere

## Misure di centralità: la media

Media (aritmetica)

$$ar{x}=rac{1}{n}\left(\sum_{i=1}^n x_i
ight)=rac{x_1+x_2+\cdots+x_n}{n}$$

$$ar{x} = rac{5+18+20+22+24+25+25+26+26+26+27+27+28+29+30}{15} = 23.9$$

### Esercizio #4

Quali sono le medie di questi insiemi?

#### Esercizio #4 -- Soluzione

Quali sono le medie di questi insiemi?

$$egin{aligned} x &= \{40,6,75,55,34\} \ ar{x} &= rac{1}{n} \left(\sum_{i=1}^n x_i
ight) = rac{40+6+75+55+34}{5} = 42 \ y &= \{40,6,175,55,34\} \ ar{y} &= rac{1}{n} \left(\sum_{i=1}^n y_i
ight) = rac{40+6+175+55+34}{5} = 62 \end{aligned}$$

## Media e valori estremi



## La forma delle distribuzioni



# La forma delle distribuzioni



# La forma delle distribuzioni



#### Esercizio #5

? Nei risultati di uno studio è riportata la seguente frase:

The mean length of stay was 22.4 days (median: 14 days).

La distribuzione empirica ha una forma...

- a) simmetrica
- b) asimmetrica a destra
- c) asimmetrica a sinistra
- d) nessuna delle precedenti

### Esercizio 5 -- Soluzione

? Nei risultati di uno studio è riportata la seguente frase:

The mean length of stay was 22.4 days (median: 14 days).

La distribuzione empirica ha una forma...

- a) simmetrica
- b) asimmetrica a destra



- c) asimmetrica a sinistra
- d) nessuna delle precedenti



<sup>\*</sup> Wisdom of Crowds o Saggezza della Folla

- Competizione presso la "Mostra del Pollame e del Bestiame da Macello, Plymounth", 1907
- Obiettivo: indovinare il peso "lavorato" della carne macellata
- Costo: 6 penny
- Partecipanti: 787
- Vincita: premio non specificato



<sup>\*</sup> Wisdom of Crowds o Saggezza della Folla

- Giudizio non influenzato da passioni personali e/o proselitismo vario
- Burloni evitati dal costo di ingresso
- Premio incita a fare del proprio meglio
- Partecipano soprattutto "esperti"



<sup>\*</sup> Wisdom of Crowds o Saggezza della Folla

- Mediana dei 787 tentativi: 1207 lb (547 kg)
- Peso "lavorato": 1198 lb (543 kg)
- Differenza: 9 lb (4kg, 0.8%)



<sup>\*</sup> Wisdom of Crowds o Saggezza della Folla

# Misure di dispersione



# Misure di dispersione



## Misure di dispersione: range

o rai

range = max - min

| 5 | 18 | 20 | 22 | 24 | 25 | 25 | 26 | 26 | 26 | 27 | 27 | 28 | 29 | 30 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

range = 
$$30 - 5 = 25$$

# Misure di dispersione: range interquantile

$$\bigcirc$$
 IQR = Q1 - Q3



$$IQR = 22 - 27$$

# Misure di dispersione: varianza



## Misure di dispersione: varianza

$$extbf{6}$$
  $s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2$  dove  $ar{x}=rac{1}{n}\left(\sum_{i=1}^nx_i
ight)^n$ 

$$ar{x} = rac{1}{n} \left( \sum_{i=1}^n x_i 
ight)$$

$$ar{x}=23.9 \ s^2=rac{(5-23.9)^2+(18-23.9)^2+(20-23.9)^2+\ldots+(28-23.9)^2+(29-23.9)^2+(30-23.9)^2}{(15-1)}=37.6$$

# Misure di dispersione: deviazione standard

$$oldsymbol{6}$$
  $s=\sqrt{s^2}=\sqrt{rac{1}{n-1}\sum_{i=1}^n(x_i-ar{x})^2}$  dove  $ar{x}=rac{1}{n}\left(\sum_{i=1}^nx_i
ight)$ 

$$ar{x} = rac{1}{n} \left( \sum_{i=1}^n x_i 
ight)$$

$$\bar{x} = 23.9$$

$$s = \sqrt{rac{(5-23.9)^2 + (18-23.9)^2 + \dots + (29-23.9)^2 + (30-23.9)^2}{(15-1)}} = \sqrt{37.6} = 6.1$$

- Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero
   b) Falso
- La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero
   b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard a) Vero b) Falso

- Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero
   b) Falso
- La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero
   b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard
   a) Vero
   b) Falso

- ? Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero
   b) Falso
- La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero
   b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard
   a) Vero
   b) Falso

- Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero b) Falso
- La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero
   b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard
   a) Vero
   b) Falso

- Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero b) Falso
- La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero
   b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard
   a) Vero
   b) Falso

- Il range è sensibile alla posizione centrale della distribuzione empirica
   a) Vero b) Falso
- La mediana si calcola sommando i valori e dividendoli per il loro numero
   a) Vero
   b) Falso
- La mediana è il valore che ha metà dei dati inferiori e metà superiori a esso
   a) Vero b) Falso
- ? La mediana, rispetto alla media, è più sensibile ai valori estremi
   a) Vero b) Falso
- Due distribuzioni con la stessa media hanno la stessa deviazione standard
   a) Vero
   b) Falso

# I valori estremi

| TABLE 3. Length of In-Patient Stay, by Surgical Procedure |                   |                   |                 |
|-----------------------------------------------------------|-------------------|-------------------|-----------------|
|                                                           |                   | Length of stay, d |                 |
| Procedure                                                 | No. of procedures | Mean ± SD         | Median<br>(IQR) |
| Breast surgery                                            | 1,338             | $3.3 \pm 4.4$     | 3 (0-5)         |
| Coronary artery bypass graft                              | 570               | $9.6 \pm 15.2$    | 8 (7-9)         |
| Cesarean section                                          | 4,831             | $4.9 \pm 6.4$     | 4 (3-5)         |
| Repair of fractured neck of femur                         | 2,303             | $13.8 \pm 12.2$   | 10 (7-17)       |
| Hip replacement                                           | 6,432             | $8.7 \pm 5.9$     | 7 (6-9)         |
| Abdominal hysterectomy                                    | 1,484             | $5.4 \pm 4.0$     | 5 (4-6)         |
| Knee replacement                                          | 4,483             | $8.2 \pm 5.0$     | 7 (6-9)         |
| Major vascular surgery                                    | 269               | $22.4 \pm 23.1$   | 14 (8-30)       |
| Overall                                                   | 21,710            | $7.8 \pm 8.0$     | 6 (4- 9)        |

The mean length of stay was 7.8 days but was greatly influenced by 2 patients with lengths of stay of almost 1 year. The median length of stay was 6 days, with 90% of patients discharged within 14 days after the procedure. Table 3 displays measures of central tendency (mean and median values) and dispersion (SDs and interquartile ranges) for the length of stay for each type of surgical procedure.

Reilly, J. et al.. Procedure-Specific Surgical Site Infection Rates and Postdischarge Surveillance in Scotland, Infection Control and Hospital Epidemiology, 2006, doi:10.1086/509839

? Nei risultati di uno studio è riportata la seguente frase:

The density of calcification in the coronary artery averaged  $68.9\pm244.2$  (range 0 to 1526) in patients and  $8.8\pm41.8$  (range 0 to 243.4) in controls.

Come descrivereste in Table 1 questa variabile?

- a) con media e deviazione standard
- b) con mediana e interquantile range
- c) con mediana e deviazione standard
- d) non ho abbastanza elementi per decidere

Nei risultati di uno studio è riportata la seguente frase:

The density of calcification in the coronary artery averaged  $68.9\pm244.2$  (range 0 to 1526) in patients and  $8.8\pm41.8$  (range 0 to 243.4) in controls.

Come descrivereste in Table 1 questa variabile?

- a) con media e deviazione standard
- b) con mediana e interquantile range
- c) con mediana e deviazione standard
- d) non ho abbastanza elementi per decidere

| Table 1. Demographic Characteristics of the Participants |                             |                      |  |
|----------------------------------------------------------|-----------------------------|----------------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                      |  |
|                                                          | Oxytocin (N=139)            | Placebo<br>(N = 138) |  |
| Age                                                      |                             |                      |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0             |  |
| Distribution — no. (%)                                   |                             |                      |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)              |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)              |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)              |  |
| Sex — no. (%)                                            |                             |                      |  |
| Male                                                     | 122 (88)                    | 120 (87)             |  |
| Female                                                   | 17 (12)                     | 18 (13)              |  |

- Qual è la percentuale femmine nel gruppo di intervento?
  - a) 13%
  - b) 12%
  - c) 18%
  - d) 17%
  - e) Non è possibile capirlo dalla tabella

Sikich, L. et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder, NEJM, 2021

| Table 1. Demographic Characteristics of the Participants |                             |                      |  |
|----------------------------------------------------------|-----------------------------|----------------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                      |  |
|                                                          | Oxytocin (N=139)            | Placebo<br>(N = 138) |  |
| Age                                                      |                             |                      |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0             |  |
| Distribution — no. (%)                                   |                             |                      |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)              |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)              |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)              |  |
| Sex — no. (%)                                            |                             |                      |  |
| Male                                                     | 122 (88)                    | 120 (87)             |  |
| Female                                                   | 17 (12)                     | 18 (13)              |  |

Qual è la percentuale femmine nel gruppo di intervento?

- a) 13%
- b) 12%
- c) 18%
- d) 17%
- e) Non è possibile capirlo dalla tabella

Sikich, L. et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder, NEJM, 2021

| Table 1. Demographic Characteristics of the Participants |                             |                    |  |
|----------------------------------------------------------|-----------------------------|--------------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                    |  |
|                                                          | Oxytocin (N=139)            | Placebo<br>(N=138) |  |
| Age                                                      |                             |                    |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0           |  |
| Distribution — no. (%                                    | <b>6</b> )                  |                    |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)            |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)            |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)            |  |
| Sex — no. (%)                                            |                             |                    |  |
| Male                                                     | 122 (88)                    | 120 (87)           |  |
| Female                                                   | 17 (12)                     | 18 (13)            |  |

- ? In questo studio, l'età è stata raccolta come una variabile...
  - a) categorica
  - b) ordinale
  - c) numerica
  - d) non è possibile dirlo

| Table 1. Demographic Characteristics of the Participants |                             |                      |  |
|----------------------------------------------------------|-----------------------------|----------------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                      |  |
|                                                          | Oxytocin (N=139)            | Placebo<br>(N = 138) |  |
| Age                                                      |                             |                      |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0             |  |
| Distribution — no. (%)                                   |                             |                      |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)              |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)              |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)              |  |
| Sex — no. (%)                                            |                             |                      |  |
| Male                                                     | 122 (88)                    | 120 (87)             |  |
| Female                                                   | 17 (12)                     | 18 (13)              |  |

In questo studio, l'età è stata raccolta come una variabile...

- a) categorica
- b) ordinale
- c) numerica
- d) non è possibile dirlo

Sikich, L. et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder, NEJM, 2021

| Table 1. Demographic Characteristics of the Participants |                             |                 |  |
|----------------------------------------------------------|-----------------------------|-----------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                 |  |
|                                                          | Oxytocin (N=139)            | Placebo (N=138) |  |
| Age                                                      |                             |                 |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0        |  |
| Distribution — no. (%)                                   |                             |                 |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)         |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)         |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)         |  |
| Sex — no. (%)                                            |                             |                 |  |
| Male                                                     | 122 (88)                    | 120 (87)        |  |
| Female                                                   | 17 (12)                     | 18 (13)         |  |

- Qual è l'età media nel gruppo di controllo?
  - a) 10.4
  - b) 4.1
  - c) 4.0
  - d) Non è possibile capirlo dalla tabella

Sikich, L. et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder, NEJM, 2021

| Table 1. Demographic Characteristics of the Participants |                             |                 |  |
|----------------------------------------------------------|-----------------------------|-----------------|--|
| Characteristic                                           | All Participants<br>(N=277) |                 |  |
|                                                          | Oxytocin (N=139)            | Placebo (N=138) |  |
| Age                                                      |                             |                 |  |
| Mean — yr                                                | 10.4±4.1                    | 10.4±4.0        |  |
| Distribution — no. (%                                    | 6)                          |                 |  |
| 3–6 yr                                                   | 34 (24)                     | 35 (25)         |  |
| 7–11 yr                                                  | 54 (39)                     | 53 (38)         |  |
| 12–17 yr                                                 | 51 (37)                     | 50 (36)         |  |
| Sex — no. (%)                                            |                             |                 |  |
| Male                                                     | 122 (88)                    | 120 (87)        |  |
| Female                                                   | 17 (12)                     | 18 (13)         |  |

Qual è l'età media nel gruppo di controllo?

- a) 10.4
- b) 4.1
- c) 4.0
- d) Non è possibile capirlo dalla tabella

Sikich, L. et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder, NEJM, 2021

# La visualizzazione dei dati numerici

# Istogramma



# Istogramma



# Istogramma



# Poligono di frequenza



# Miami plot/Mirror histogram













Questi dati sono stati raccolti intervistando 89 studenti universitari fuori sede

- a) La media perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica
- b) La mediana perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica
- c) La moda perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica



Questi dati sono stati raccolti intervistando 89 studenti universitari fuori sede

- a) La media perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica
- b) La mediana perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica
- c) La moda perché i dati sono numerici discreti e la distribuzione è abbastanza simmetrica



Questi dati sono stati raccolti intervistando 22 automobilisti

- a) La media perché i dati sono numerici discreti e la distribuzione è molto asimmetrica
- b) La mediana perché i dati sono numerici discreti e la distribuzione è molto asimmetrica
- c) La moda perché i dati sono numerici discreti e la distribuzione è molto asimmetrica



? Questi dati sono stati raccolti intervistando 22 automobilisti

- a) La media perché i dati sono numerici discreti e la distribuzione è molto asimmetrica
- b) La mediana perché i dati sono numerici discreti e la distribuzione è molto asimmetrica
- c) La moda perché i dati sono numerici discreti e la distribuzione è molto asimmetrica



Questi dati sono stati raccolti intervistando 870 psicologi

- a) La media perché i dati sono categorici e la distribuzione è asimmetrica
- b) La mediana perché i dati sono categorici e la distribuzione è asimmetrica
- c) La moda perché i dati sono categorici



Questi dati sono stati raccolti intervistando 870 psicologi

- a) La media perché i dati sono categorici e la distribuzione è asimmetrica
- b) La mediana perché i dati sono categorici e la distribuzione è asimmetrica
- c) La moda perché i dati sono categorici 🗸



Questi dati sono stati raccolti intervistando 870 psicologi

La rappresentazione usata è corretta?

- a) Sì
- b) No

Quale rappresentazione grafica è corretta?







Questi dati sono stati raccolti intervistando 870 psicologi

La rappresentazione usata è corretta?

- a) Sì
- b) No



? Questi dati sono stati raccolti intervistando 41 genitori in un parco giochi.

- a) Gli intervistati spendono tra le 0 e le 9 ore in palestra, con una media di 3.4  $\pm$  3.4 ore (mediana: 5 ore; moda: 0 ore).
- b) Circa la metà degli intervistati ha riportato di non essere andata in palestra. I rimanenti spendono in palestra tra le 5 e le 9 ore, con una media di  $6.6\pm1.1$  ore (mediana: 7 ore)



? Questi dati sono stati raccolti intervistando 41 genitori in un parco giochi.

- a) Gli intervistati spendono tra le 0 e le 9 ore in palestra, con una media di 3.4  $\pm$  3.4 ore (mediana: 5 ore; moda: 0 ore).
- b) Circa la metà degli intervistati ha riportato di non essere andata in palestra. I rimanenti spendono in palestra tra le 5 e le 9 ore, con una media di  $6.6 \pm 1.1$  ore (mediana: 7 ore)

Quanti partner (etero)sessuali le persone in Gran Bretagna riferiscono di aver avuto nella loro vita?

Quanti partner (etero)sessuali le persone in Gran Bretagna riferiscono di aver avuto nella loro vita?

? Cosa ci dicono queste statistiche?

|         | Uomini 35-44 | <b>Donne 35-44</b> |
|---------|--------------|--------------------|
| Moda    | 1            | 1                  |
| Range   | 0-500        | 0-550              |
| Media   | 14.3         | 8.5                |
| SD      | 24.2         | 19.7               |
| Mediana | 8            | 5                  |
| IQR     | 4-18         | 3-10               |

Pensa (Think)

01:00

Quanti partner (etero)sessuali le persone in Gran Bretagna riferiscono di aver avuto nella loro vita?

? Cosa ci dicono queste statistiche?

|         | Uomini 35-44 | <b>Donne 35-44</b> |
|---------|--------------|--------------------|
| Moda    | 1            | 1                  |
| Range   | 0-500        | 0-550              |
| Media   | 14.3         | 8.5                |
| SD      | 24.2         | 19.7               |
| Mediana | 8            | 5                  |
| IQR     | 4-18         | 3-10               |

Scambia (Pair)

02:00

Quanti partner (etero)sessuali le persone in Gran Bretagna riferiscono di aver avuto nella loro vita?

? Cosa ci dicono queste statistiche?

|         | Uomini 35-44 | <b>Donne 35-44</b> |
|---------|--------------|--------------------|
| Moda    | 1            | 1                  |
| Range   | 0-500        | 0-550              |
| Media   | 14.3         | 8.5                |
| SD      | 24.2         | 19.7               |
| Mediana | 8            | 5                  |
| IQR     | 4-18         | 3-10               |

Condividi (Share)

05:00

## Esercizio #16 (bis)

Il grafico della distribuzione conferma quello che abbiamo detto? Aggiunge informazione?



## La relazione (lineare) tra due variabili numeriche

Cosa è successo ai bambini sottoposti a interventi cardiochirugici in alcuni ospedali britannici tra il 1991 e il 1995?

| Ospedale        | Interventi | Sopravvissuti (N) | Morti (N) | Sopravvissuti (%) | Morti (%) |
|-----------------|------------|-------------------|-----------|-------------------|-----------|
| Bristol         | 143        | 102               | 41        | 71.3              | 28.7      |
| Leicester       | 187        | 162               | 25        | 86.6              | 13.4      |
| Leeds           | 323        | 299               | 24        | 92.6              | 7.4       |
| Oxford          | 122        | 99                | 23        | 81.1              | 18.9      |
| Guys            | 164        | 139               | 25        | 84.8              | 15.2      |
| Liverpool       | 405        | 363               | 42        | 89.6              | 10.4      |
| Southampton     | 239        | 215               | 24        | 90.0              | 10.0      |
| Great Ormond St | 482        | 429               | 53        | 89.0              | 11.0      |
| Newcastle       | 195        | 169               | 26        | 86.7              | 13.3      |
| Harefield       | 177        | 152               | 25        | 85.9              | 14.1      |
| Birmingham      | 581        | 523               | 58        | 90.0              | 10.0      |
| Brompton        | 301        | 270               | 31        | 89.7              | 10.3      |

D.J. Spiegelhalter et al., Commissioned Analysis of Surgical Performance Using Routine Data: Lessons from the Bristol Inquiry, 2002, Journal of the Royal Statistical Society Series A: Statistics in Society

## Visualizziamo i dati



## Visualizziamo i dati





## La relazione (lineare) tra due variabili numeriche



## La relazione (lineare) tra due variabili numeriche

Indice di correlazione<sup>1</sup>

• 
$$r = 0.82$$

•  $r_{
m no\ Bristol}=0.93$ 



<sup>&</sup>lt;sup>1</sup> In questo caso di Pearson (ma formulato da Galton). Un altro indice di correlazione è quello di Spearman

#### Indici di correlazione

- Non indicano causalità
- ullet Hanno un valore compreso tra -1 e 1
- Il segno indica la direzione della relazione lineare
- $r^2 imes 100=R^2$  (o coefficiente di determinazione) indica la percentuale di variabilità di una variabile che è predetta dalla variabilità dell'altra variabile  $R^2=r^2 imes 100=0.82^2 imes 100=0.67 imes 100 
  ightarrow 67\%$  della variabilità

| r         | Interpretazione             |
|-----------|-----------------------------|
| 0-0.25    | nessuna o poca correlazione |
| 0.25-0.50 | discreta correlazione       |
| 0.50-0.75 | buona correlazione          |
| 0.75-0.99 | eccellente correlazione     |
| 1         | perfetta correlazione       |

- ? Una correlazione r=-0.7 indica che al crescere del valore di una variabile, il valore dell'altra variabile...
  - a) cresce
  - b) decresce
  - c) rimane costante
  - d) dipende dalle variabili

? Una correlazione r=-0.7 indica che al crescere del valore di una variabile, il valore dell'altra variabile...

- a) cresce
- b) decresce
- c) rimane costante
- d) dipende dalle variabili

 $\ref{Quale}$  Quale dei seguenti valori di r indica la correlazione più forte?

- a) -0.2
- b) + 0.4
- c) -0.7
- d) + 1.1

 $\red ?$  Quale dei seguenti valori di r indica la correlazione più forte?

- a) -0.2
- b) +0.4
- c) -0.7
- d) + 1.1



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r=+0.9$$

c) 
$$r=-0.9$$



Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r=+0.9$$

c) 
$$r = -0.9$$



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r = +0.9$$

c) 
$$r=-0.9$$



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r=+0.9$$

c) 
$$r=-0.9$$



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r=+0.9$$

c) 
$$r=-0.9$$



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r=+0.1$$

b) 
$$r=+0.9$$

c) 
$$r=-0.9$$



Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

- a) r = +0.1
- b) r = +0.9
- c) r = -0.9
- d) Non è calcolabile



? Osservando lo scatterplot, quale tra questi potrebbe essere un valore plausibile per l'indice di correlazione di Pearson tra le due variabili mostrate?

a) 
$$r = +0.1$$

b) 
$$r=+0.9$$

c) 
$$r = -0.9$$



? Uno studio ha indivuduato una correlazione lineare r=-0.7 tra le ore di sonno e un indice di irritabilità (scala 0-100; 0: poco irritabile, 100: molto irritabile).

Come interpreto questo valore?

- a) All'aumentare delle ore di sonno aumenta l'irritabilità
- b) All'aumentare delle ore di sonno dinuisce l'irritabilità
- c) La mancanza di sonno causa un aumento dell'irritabilità
- d) La mancanza di sonno causa una diminuzione dell'irritabilità
- e) Nessuna delle precendenti

? Uno studio ha indivuduato una correlazione lineare r=-0.7 tra le ore di sonno e un indice di irritabilità (scala 0-100; 0: poco irritabile, 100: molto irritabile).

Come interpreto questo valore?

- a) All'aumentare delle ore di sonno aumenta l'irritabilità
- b) All'aumentare delle ore di sonno dinuisce l'irritabilità
- c) La mancanza di sonno causa un aumento dell'irritabilità
- d) La mancanza di sonno causa una diminuzione dell'irritabilità
- e) Nessuna delle precendenti

- Posso calcolare la correlazione tra...
  - a) L'indice di irritabilità e le ore dormite Vero Falso
  - b) L'indice di irritabilità del primo e del secondo figlio Vero Falso
  - c) L'indice di irritabilità prima e dopo un'attività Vero Falso
  - d) L'indice di irritabilità in uomini e donne Vero Falso

- Posso calcolare la correlazione tra...

  - b) L'indice di irritabilità del primo e del secondo figlio Vero Falso
  - c) L'indice di irritabilità prima e dopo un'attività Vero Falso
  - d) L'indice di irritabilità in uomini e donne Vero Falso

- Posso calcolare la correlazione tra...

  - b) L'indice di irritabilità del primo e del secondo figlio Vero Falso
  - c) L'indice di irritabilità prima e dopo un'attività Vero Falso
  - d) L'indice di irritabilità in uomini e donne Vero Falso

- Posso calcolare la correlazione tra...

  - b) L'indice di irritabilità del primo e del secondo figlio Vero Falso

  - d) L'indice di irritabilità in uomini e donne Vero Falso

- Posso calcolare la correlazione tra...

  - b) L'indice di irritabilità del primo e del secondo figlio Vero Falso

  - d) L'indice di irritabilità in uomini e donne Vero Falso

## Correlazione & valori estremi

Altezza (cm) e numero di canestri

• 
$$r = 0.72$$

### Correlazione & valori estremi

Altezza (cm) e numero di canestri

• 
$$r = 0.72$$





### Correlazione & valori estremi

Altezza (cm) e numero di canestri

- r = 0.72
- $r_{
  m no~outliers}=0.07$



## Dalla correlazione alla regressione lineare

$$y = \alpha + \beta x$$

 $Morti = 14 + 0.07 \times Interventi$ 



## Dalla correlazione alla regressione lineare

$$y = \alpha + \beta x$$

 $Morti = 14 + 0.07 \times Interventi$ 

Interventi = 500  $Morti = 14 + 0.07 \times 500 = 49$ 



## Regressione: interpolare ed estrapolare

Quante bambine di nome Emma sono nate nel 2004, 2010, 2015 e 2020?



## Regressione: interpolare ed estrapolare

Quante bambine di nome Emma sono nate nel 2004, 2010, 2015 e 2020?



## Regressione: interpolare ed estrapolare

Quante bambine di nome Emma sono nate nel 2004, 2010, 2015 e 2020?



# La regressione verso la media

## La regressione verso la media



F. Galton, Regression Towards Mediocrity in Hereditary Stature, The Journal of the Anthropological Institute of Great Britain and Ireland, 1886, <a href="https://doi.org/10.2307/2841583">https://doi.org/10.2307/2841583</a>

#### Perché visualizzare i dati?



**Datasaurus Dozen**, Matejka, J &; Fitzmaurice, G. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3025453.3025912

## Parametri vs statistiche

|                     | Parametro | Statistica |
|---------------------|-----------|------------|
| Numerosità          | N         | n          |
| Media               | $\mu$     | $ar{x}$    |
| Deviazione Standard | $\sigma$  | s          |
| Proporzione         | $\pi$     | p          |
| Correlazione        | $\rho$    | r          |

? La media nella popolazione viene indicata con...

- a) M
- b) m
- c)  $\mu$
- d)  $ar{x}$

La media nella popolazione viene indicata con...

- a) M
- b) m
- c)  $\mu$
- d)  $ar{x}$

## Cosa abbiamo imparato?

- Le variabili numeriche possono essere rappresentate con misure di centralità, dispersione e correlazione (statistiche)
- Alcune statistiche possono risultare fuorvianti quando le distribuzioni empiriche sono asimmetriche, rischiando di nascondere informazioni importanti sui dati
- Le variabili numeriche possono essere rappresentate graficamente in diversi modi, ma alcune possono celare importanti dettagli delle distribuzioni empiriche
- Visualizzare i dati è importante per interpretarli
- Le statistiche rappresentano il campione, i parametri la popolazione