

Concours d'entrée 2009-2010

Mathématiques

Durée : 3 heures 11 juillet 2009

La distribution des notes est sur 25

I- (5 pts) A- On donne le tableau de variations d'une fonction continue g définie sur]0; $+\infty[$ par

$$g(x) = m + n \frac{\ell n x}{x}.$$

- 1-a) Montrer que m=1 et n=-2.
 - b) Montrer que, pour tout x dans]0; $+\infty[$, $\ell nx \le \frac{x}{e}$.
- 2- a) Montrer que la courbe représentative de toute primitive de g sur]0; $+\infty[$ admet un point d'inflexion I.
 - b) Déterminer la primitive G de g pour laquelle le point I appartient à la droite d'équation y = x.

B- Soit *F* la fonction telle que
$$F(x) = \frac{x}{x - \ell n x}$$
.

- 1- a) En utilisant la partie A , justifier que F est définie sur]0 ; $+\infty[$.
 - b) Montrer que F est prolongeable par continuité en 0 et définir le prolongement f de F.
 - c) Montrer que f est dérivable en 0 .
- 2- On considère la suite (U_n) définie pour $n \in IN$, par $U_n = \left(\frac{\ell n a}{a}\right)^n$ où a un réel donné de $]1; +\infty[$.
 - a) Montrer que (U_n) est une suite géométrique strictement décroissante .
 - b) Soit S_n la somme définie par $S_n = U_0 + U_1 + U_2 + U_3 + \cdots + U_n$. Calculer S_n en fonction de n et a, puis montrer que $\lim_{n \to +\infty} S_n = f(a)$.

(3 pts) Le personnel d'un hôpital est réparti en trois catégories : Médecins (M), Soignants (S) et Techniciens (T). 20 % sont des médecins et 50 % sont des soignants.

75 % des médecins sont des hommes et 80 % des soignants sont des femmes.

On interroge au hasard un membre du personnel.

- 1- Calculer la probabilité que la personne interrogée soit :
 - a) un technicien ; b) une femme sachant qu'elle est médecin ; c) un homme sachant qu'il est un soignant .
- 2- Calculer la probabilité que la personne interrogée soit :
 - a) une femme médecin ; b) une femme soignante .

- 3- Sachant que 51 % du personnel sont des femmes :
 - a) Calculer la probabilité que la personne interrogée soit une femme technicienne.
 - b) En déduire la probabilité que la personne interrogée soit une femme sachant qu'elle est technicienne.
- III- (6 pts) A- 1- Résoudre l'équation différentielle (I): y' + 2xy = 0 et montrer que sa solution générale peut s'écrire sous la forme $y = Ce^{-x^2}$ où C est une constante arbitraire.
- 2- On considère l'équation différentielle (II): $xy' + 2(x^2 1)y = 0$.

On pose $y = x^2 z$ où z est une fonction dérivable définie sur IR^* .

- a) Déterminer une équation différentielle dont la solution générale est la fonction z.
- b) Déterminer la fonction z et déduire la solution générale de l'équation (II).
- **B-** On considère les fonctions f et g définie sur IR par $f(x) = e^{-x^2}$ et $g(x) = x^2 e^{-x^2}$.

On désigne par (C) la courbe représentative de f et par (C') celle de g.

- 1- Montrer que f est une fonction paire et dresser son tableau de variations.
- 2- Montrer que g est une fonction paire et dresser son tableau de variations.
- 3- a) Déterminer les points d'intersection de (C) et (C').
 - b) Tracer (C) et (C') dans un même repère orthonormé $(O; \vec{i}, \vec{j})$ (unité graphique : 3 cm).
 - 4- Soit F la primitive de f sur IR telle que F(0)=0 et G la fonction définie sur IR par

 $G(x) = \frac{1}{2} \left[F(x) - xe^{-x^2} \right]$. Montrer que G est la primitive de g sur IR telle que G(0) = 0.

- 5- On donne F(1) = 0.75.
 - a) Calculer l'aire A du domaine limité par (C), l'axe des abscisses et les droites d'équations x = -1 et x = 1.
 - b) Calculer l'aire A' du domaine limité par (C), (C') et les droites d'équations x = -1 et x = 1.
- 6- Soit S l'aire du domaine limité par (C) et les demi droites [Ox) et [Oy), et S' l'aire du domaine limité par (C') et les demi droites [Ox) et [Oy). Montrer que S=2S'.
- IV (5 pts) On considère dans le plan orienté un triangle rectangle \overrightarrow{AOB} tel que $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{2}$ (2 π).

Soit (Δ) une droite variable passant par O.

H et K sont les projetés orthogonaux de A et B sur (Δ) .

Soit S la similitude telle que S(O) = A et S(B) = O.

- 1- Déterminer l'angle de S.
- 2- Montrer que le centre I de S appartient aux cercles de diamètres [OA] et [OB]. En déduire que I est le projeté orthogonal de O sur [AB].
- 3- a) Déterminer l'image par S de chacune des droites (BK) et (Δ) . En déduire que S(K)=H .

- b) Montrer que, quand (Δ) varie, le cercle (γ) de diamètre [HK] passe par un point fixe que l'on déterminera.
- 4- On considère l'homothétie h de centre B et de rapport 2.
 - Soit M le milieu de [OB]; O' et B' les points symétriques respectifs de O et B par rapport à I.
 - a) Montrer que S(B') = O' et déterminer $S \circ h(M)$ et $S \circ h(I)$.
 - b) En déduire que la médiane (IM) du triangle IOB est une hauteur du triangle IAO'.
- **V-** (6 pts) Dans le plan rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$ on considère la parabole (P) d'équation $y^2 = 4(x+1)$.
- 1- a) Déterminer le foyer, la directrice (d) et le sommet V de (P).
 - b) Tracer (P) et la tangente (Δ) à (P) en V.
- 2- Soit A un point de (P) d'ordonnée a $(a \neq 0)$, A' le projeté orthogonal de A sur (Δ) et
 - (D) la perpendiculaire à (VA) passant par A'.
 - a) Ecrire une équation de (D) et montrer que, quand A varie sur (P), (D) passe par un point fixe L à déterminer.
 - b) (D) coupe (VA) en E. Montrer que, quand A varie sur (P), E varie sur un cercle fixe à déterminer.
- 3- La droite (OA) recoupe la parabole (P) en B. Soit I le milieu de [AB].
 - On désigne par C, D et J les projetés orthogonaux respectifs de A, B et I sur (d).
 - a) Calculer IJ en fonction de AC et BD.
 - b) Montrer que, quand A varie sur (P), le cercle (γ) de diamètre [AB] reste tangent à (d).
- 4- a) Soit b l'ordonnée de B. Montrer que ab = -4.
 - b) La normale en A à (P) et la normale en B à (P) se coupent en N. Montrer que N appartient à (γ)

Concours d'entrée 2009 - 2010

Solution de Mathematique

Durée: 3 heures July 11, 2009

I- A- 1- Le fonction g est définie par]0; $+\infty[$ par $g(x) = m + n \frac{\ln x}{x}$.

a)
$$\lim_{x \to +\infty} g(x) = m = 1$$
 et $g(e) = m + \frac{n}{e} = 1 + \frac{n}{e} = 1 - \frac{2}{e}$ donc $n = -2$.

Finalement, $g(x) = 1 - 2 \frac{\ell n x}{x}$.

b) Le tableau présent, pour tout x dans $]0; +\infty[, 1-2\frac{\ell n x}{x} \ge 1-\frac{2}{e}; \ell n x \le \frac{x}{e}]$ (x > 0).

2- a) G'(x) = g(x) et G''(x) = g'(x).

Le signe de g'(x) change au e; donc, la concavité de la courbe de G change au point I d'abscisse e donc, (C) a un point d'inflexion I(e; G(e)).

b)
$$G(x) = \int g(x) dx = \int [1 - 2\frac{\ell n x}{x}] dx = x - \ell n^2 x + C$$
.

I appartient à la droite d'équation y = x si et seulement si G(e) = e; C = 1. Alors $G(x) = x + 1 - \ell n^2 x$.

B- 1- a) pour tout x de l'intervalle]0; $+\infty[$, $\ell nx \le \frac{x}{e} < x$. donc $x - \ell nx \ne 0$ et F est définie sur]0; $+\infty[$.

b) • Le fonction $x \to x - \ell n x$ est continue dans $]0; +\infty[$; alors F est continue dans $]0; +\infty[$.

$$\lim_{x \to 0^+} [x - \ell n \, x] = + \infty \; ; \operatorname{donc} \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} \frac{x}{x - \ell n \, x} = 0 \; (\operatorname{limite finie}).$$

F admet une extension par la continuité à 0.

La fonction d'extension f est définie sur $[0; +\infty[$ par $\begin{cases} f(0) = 0 \\ f(x) = \frac{x}{x - \ell n x} \end{cases}$ pour $x \neq 0$

c) $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{1}{x - \ln x} = 0$ (limite finie). f est différentiable en 0 et f'(0) = 0.

2- a) • $U_{n+1} = \left(\frac{\ell n a}{a}\right)^{n+1} = \left(\frac{\ell n a}{a}\right)^n \times \left(\frac{\ell n a}{a}\right) = U_n \times \left(\frac{\ell n a}{a}\right)$; (U_n) est une suite géométrique de

rapport commun $r = \frac{\ell n a}{a}$ et de premier terme $U_0 = 1$.

$$\bullet \ U_{n+1} - U_n = \left(\frac{\ell n \, a}{a}\right)^{n+1} - \left(\frac{\ell n \, a}{a}\right)^n = \left(\frac{\ell n \, a}{a}\right)^n \times \left(\frac{\ell n \, a}{a} - 1\right) \text{ ou } \frac{\ell n \, a}{a} > 0 \text{ et } \frac{\ell n \, a}{a} \le \frac{1}{e} < 1 \ .$$

Donc, $U_{n+1} - U_n < 0$ et (U_n) est strictement décroissant.

b) (U_n) est une suite géométrique et S_n est la somme du terme consécutive n+1, alors

$$S_n = U_0 + U_1 + U_2 + U_3 + \dots + U_n = U_0 \times \frac{1 - r^{n+1}}{1 - r} = \frac{1 - \left(\frac{\ell n a}{a}\right)^{n+1}}{1 - \frac{\ell n a}{a}}.$$

Alors
$$0 < \frac{\ell n a}{a} < 1$$
, $\lim_{n \to +\infty} \left(\frac{\ell n a}{a} \right)^{n+1} = 0$; donc $\lim_{n \to +\infty} S_n = \frac{1}{1 - \frac{\ell n a}{a}} = \frac{a}{a - \ell n a} = f(a)$

- **II-** 1- Quand un membre du personnel est choisi par hasard, il y a trois possibilités: un docteur (D), une nurse (N) ou un Technicien (T).
 - a) il est donné que p(D) = 0.2, p(N) = 0.5 alors p(T) = 1 0.2 0.5 = 0.3.
 - b) Pour un de trois catégories, ils ont trois possibilités: homme (M) ou femme (W). il est donné que p(M/D) = 0.75 alors, $p(W/D) = p(\overline{M}/D) = 1 0.75 = 0.25$.
 - c) il est donné que p(W/N) = 0.8 alors, $p(M/N) = p(\overline{W}/N) = 1 0.8 = 0.2$.
 - 2- a) The event "the person is a woman doctor" can be represented by $D \cap W$; its probability is $p(D \cap W) = p(D) \times p(W/D) = 0.2 \times 0.25 = 0.05$.
 - b) The event "the person is a woman nurse" can be represented by $N \cap W$; its probability is $p(N \cap W) = p(N) \times p(W/N) = 0.5 \times 0.8 = 0.4$.
 - 3- a) L'évènement " la personne est une femme technicienne " peut représenter par $T \cap W$. La formula de probabilité totale est : $p(W) = p(D \cap W) + p(N \cap W) + p(T \cap W)$, donc $p(T \cap W) = p(W) p(D \cap W) p(N \cap W)$ Si 51 % du personnel sont des femmes alors p(W) = 0.51. $p(T \cap W) = 0.51 - 0.05 - 0.4 = 0.06$.
 - b) La probabilité que la personne a demandé une femme en sachant qu'elle est une technicienne est égale a:

$$p(W/T) = \frac{p(W \cap T)}{p(T)} = \frac{0.06}{0.3} = 0.2$$
.

III - A- 1- (I): y' + 2xy = 0.

- Le fonction y = 0 est la solution particulière de (I).
- Les autres solutions sont ceux de l'équation $\frac{y'}{y} = -2x$ alors, $\ell n |y| = -x^2 + K$; $K \in IR$.

$$|y| = e^K \times e^{-x^2}; \quad |y| = ae^{-x^2} \text{ ou } a \in]0 + \infty[; y = \lambda e^{-x^2} \text{ donc } \lambda \in IR^*.$$

La solution générale de (I) est
$$\begin{cases} y = 0 & et \\ y = \lambda e^{-x^2} & \text{ou } \lambda \in IR^* \end{cases}$$
 qui est $y = Ce^{-x^2}$

Ou $C \in IR$.

- 2- Considère l'équation differential (II): $xy' + 2(x^2 1)y = 0$.
 - a) If $y = x^2 z$ alors, $y' = 2xz + x^2 z'$.

Par substitution dans l'équation (II) nous obtenons $2x^2z + x^3z' + 2(x^2-1)x^2z = 0$; alors z' + 2xz = 0.

- b) Selon la partie 1), La solution générale de l'équation z' + 2xz = 0 est $z = Ce^{-x^2}$. Donc la solution générale de l'équation (II) est $y = Cx^2e^{-x^2}$ ou $C \in IR$
- **B-** 1- L'ensemble IR est centré sur 0 et , pour tout x dans IR , f(-x) = f(x) ; donc le fonction f est paire .

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0 ;$$

$$f'(x) = -2xe^{-x^2}.$$

2- L'ensemble IR est centré sur 0 et , pour tout x dans IR , g(-x) = g(x); donc le fonction g est paire.

$$\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x) = \lim_{t \to +\infty} \frac{t}{e^t} = 0.$$

$$g'(x) = 2xe^{-x^2} - 2x^3e^{-x^2} = 2x(1-x^2)e^{-x^2}$$
.

3- a) Les abscisses des points d'intersection de (C) et (C') sont les racines de l'équation f(x) = g(x); $x^2 - 1 = 0$; x = -1 or x = 1.

Les points d'intersections de (C) et (C') sont $(-1; e^{-1})$ et $(1; e^{-1})$.

b) Tracer (*C*) et (*C*').

4- La fonction F est définie sur IR qui satisfait $F'(x) = f(x) = e^{-x^2}$ et F(0) = 0.

G est la fonction définie sur IR par $G(x) = \frac{1}{2} \left[F(x) - xe^{-x^2} \right]$.

•
$$G'(x) = \frac{1}{2} \Big[F'(x) - e^{-x^2} + 2x^2 e^{-x^2} \Big] = \frac{1}{2} \Big[e^{-x^2} - e^{-x^2} + 2x^2 e^{-x^2} \Big] = x^2 e^{-x^2} = g(x).$$

•
$$G(0) = \frac{1}{2} [F(0) - 0] = 0$$
.

G est la primitive de g sur IR qui satisfait G(0) = 0.

5- a) La courbe (C) situe au-dessus de l'axe des abscisses, la surface demandée est $A = \int_{-1}^{1} f(x) dx$

La fonction est paire :

$$\int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx = 2 [F(x)]_{0}^{1} = 2 [F(1) - F(0)] = 2 [0.75 - 0] = 1.5.$$

A = 1.5 unité de surface tel que $A = 1.5 \times 3^2 = 13.5$ cm².

b) L'intervalle [-1;1], (C) situe au-dessus de (C') alors, la surface demandée est :

$$A' = \int_{0}^{1} [f(x) - g(x)] dx \text{ unit\'e de surface}$$

$$A' = \int_{-1}^{1} [f(x) - g(x)] dx \text{ unit\'e de surface.}$$

$$\int_{-1}^{1} [f(x) - g(x)] dx = 2 \int_{0}^{1} [f(x) - g(x)] dx = 2 [F(x) - G(x)]_{0}^{1} = [F(x) + xe^{-x^{2}}]_{0}^{1} = F(1) + e^{-1} = 0.75 + e^{-1}$$

 $A' = 0.75 + e^{-1}$ unité de surface; tel que $A = 6.75 + 9e^{-1}$ cm².

6- Soit *m* est un nombre strictement positif.

Dans l'intervalle [0; m], (C) situe au-dessus de l'axe des abscisses puis la surface du domaine est limitée par (C), x'x, y'y et la droite de l'équation x = m est égale au I(m) unité de surface.

$$I(m) = \int_{0}^{m} f(x) dx = F(m) - F(0) = F(m).$$

Donc $S = \lim_{m \to +\infty} I(m) = \lim_{m \to +\infty} F(m) = \lim_{x \to +\infty} F(x)$ unité de surface.

De même, $S' = \lim_{x \to +\infty} G(x)$ unité de surface.

$$G(x) = \frac{1}{2} \left[F(x) - xe^{-x^2} \right]; \text{ alors } \lim_{x \to +\infty} G(x) = \frac{1}{2} \lim_{x \to +\infty} F(x) \text{ Ainsi, } \lim_{x \to +\infty} xe^{-x^2} = 0.$$

Donc $S' = \frac{1}{2}S$; tel que S = 2S'.

IV- 1- La similitude S est tel que S(O) = A et S(B) = O.

L'angle de S est $(\overrightarrow{OB}; \overrightarrow{AO}) = \pi + (\overrightarrow{OB}; \overrightarrow{OA}) = \pi - \frac{\pi}{2} = \frac{\pi}{2}$

- 2- I est le centre de S .
- S(O) = A; alors $(\overrightarrow{IO}; \overrightarrow{IA}) = \frac{\pi}{2}$ et I appartient au cercle de diamètre [OA].
- S(B) = O; alors $(\overrightarrow{IB}; \overrightarrow{IO}) = \frac{\pi}{2}$ et I appartient au cercle de diamètre [OB].

Le point commun, autre que O, pour les deux cercles est la projection orthogonale de O

sur [AB], alors le centre I de est la projection orthogonale de O à [AB].

3- a) L'angle de S est $\frac{\pi}{2}$; alors toute la droite et leur image de S est perpendiculaire.

- S(B) = O; l'image de S dans le (BK) est perpendiculaire a (BK) en passant par O qui est la droite (Δ) .
- S(O) = A; l'image du S dans la (Δ) est la perpendiculaire de (Δ) passant par O qui est la droite (AH)
- K est le point d'intersection de (BK) et (Δ) ; l'image de K par S est le point d'intersection de (Δ) et (AH); alors S(K) = H.
- b) S(K) = H; $(\overrightarrow{IK}; \overrightarrow{IH}) = \frac{\pi}{2}$ quand (Δ) varies, le cercle (γ) de diamètre [HK] passe par le point fixe I.

4- a) • O'et B' sont les symétriques de O et B par rapport au I; alors $\overrightarrow{IO}' = -\overrightarrow{IO}$ et $\overrightarrow{IB}' = -\overrightarrow{IB}$ $S(B) = O \text{ ; alors }, IO = \lambda IB \text{ (} \lambda \text{ est le rapport de } S \text{) et } (\overrightarrow{IB}; \overrightarrow{IO}) = \frac{\pi}{2}; \text{ donc}$

$$IO' = \lambda IB' \text{ et } (\overrightarrow{IB}'; \overrightarrow{IO}') = \frac{\pi}{2}$$
. Par consequent, $S(B') = O'$.

- M est le milieu de [OB]; alors $\overrightarrow{BO} = 2 \overrightarrow{BM}$ et h(M) = O.
- $S \circ h(M) = S(h(M)) = S(O) = A$ et $S \circ h(I) = S(h(I)) = S(B') = O'$.
- b) $S \circ h(M) = A$ et $S \circ h(I) = O'$. L'image de la médiane (*IM*) dans le triangle *IOB* est la droite (AO').

mais h est la dilatation positive, alors $S \circ h$ est la similitude de même angle $\frac{\pi}{2}$; la droite (IM) et leur image (AO') par S est perpendiculaire.

La médiane (IM) dans le triangle IOB est une hauteur du triangle IAO'.

V- 1-a) (P): $y^2 = 4(x+1)$.

Le paramètre de (P) est p=2, le sommet est V(-1;0), le focus est O(0;0) et la directrice est la droite (d) de l'équation x=-2.

- b) (Δ) : x = -1Drawing (P) and (Δ) .
- 2- $A(\frac{a^2}{4}-1;a)$; A'(-1;a).
 - a) (D) est la perpendiculaire de (VA) par A';

 $\overrightarrow{VA}(\frac{a^2}{4}; a)$ est un vecteur normal de (D).

(D):
$$\frac{a^2}{4}(x+1) + a(y-a) = 0$$
; $a(x-3) + 4y = 0$.

Quand A varie sur (P), a trace \mathbb{R}^* et (D) passes par le point fixe L(3;0).

b) $L\hat{E}V = 90^{\circ}$ ou L et V sont fixes.

Quand A varie sur (P), E

varie sur le cercle fixe de diamètre [LV].

- 3- Le rayon de cercle du diamètre [AB] est $r = \frac{1}{2}AB$.
 - a) La distance du I a (d) est égale à $IJ = \frac{1}{2}(AC + BD)$.
 - b) A et B sont sur la parabole (P) alors AC = AO et BD = BO; La distance de I ă (d) est $IJ = \frac{1}{2}(AO + BO) = \frac{1}{2}AB = r$.

Quand A varie sur (P), le cercle de diamètre [AB] reste tangente a(d).

4-
$$A(\frac{a^2}{4}-1; a)$$
 et $B(\frac{b^2}{4}-1; b)$.

• A, O et B sont colinéaire; Donc det $(\overrightarrow{OA}; \overrightarrow{OB}) = 0$.

$$\frac{a^2b}{4} - b - \frac{b^2a}{4} + a = 0 \quad ; \quad (\frac{ab}{4} + 1)(a - b) = 0 .$$

$$\frac{ab}{4} + 1 = 0 \quad \text{et} \quad ab = -4$$

La pente de la tangente à A est $y'_A = \frac{2}{a}$

La pente de la normal à A est $-\frac{a}{2}$ et le normal à B est $-\frac{b}{2}$

 $\left(-\frac{a}{2}\right) \times \left(-\frac{b}{2}\right) = \frac{ab}{4} = -1$; Les deux lignes sont perpendiculaires et $A\hat{N}B = 90^{\circ}$.

