Lambda FIX II Library

INSTRUCTION MANUAL

BN #936001-11 Revision A

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

United States and Canada

Agilent Technologies
Stratagene Products Division

11011 North Torrey Pines Road

La Jolla, CA 92037

 Telephone
 (858) 373-6300

 Order Toll Free
 (800) 424-5444

 Technical Services
 (800) 894-1304

Internettechservices@agilent.comWorld Wide Webwww.stratagene.com

Europe

Location	Telephone	Fax	Technical Services
Austria	0800 292 499	0800 292 496	0800 292 498
Belgium	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 15775	0800 15740	0800 15720
France	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 919 288	0800 919 287	0800 919 289
Germany	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 182 8232	0800 182 8231	0800 182 8234
Netherlands	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 023 0446	+31 (0)20 312 5700	0800 023 0448
Switzerland	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 563 080	0800 563 082	0800 563 081
United Kingdom	00800 7000 7000	00800 7001 7001	00800 7400 7400
	0800 917 3282	0800 917 3283	0800 917 3281

All Other Countries

Please contact your local distributor. A complete list of distributors is available at www.stratagene.com.

Lambda FIX II Library

CONTENTS

Materials Provided	1
Storage Conditions	1
Introduction	2
Preparing the Host Strains	3
Host Strain Genotypes	3
Growing and Maintaining the Host Strains	3
Preparing a –80°C Bacterial Glycerol Stock	4
Preparing the Plating Cultures	4
Day 1	4
Day 2	4
Titering Procedure	5
Amplifying the Library	5
Day 1	5
Day 2	5
Day 3	6
Performing Plaque Lifts	7
Hybridizing and Screening	8
Rapid Restriction Mapping	8
Preparation of Media and Reagents	9
References	10
Endnotes	10
MSDS Information	10

Lambda FIX II Library

MATERIALS PROVIDED

Materials provided	Quantity
Amplified premade library constructed in the Lambda FIX II vector ^a	1 ml
XL1-Blue MRA host strain ^b	0.5-ml bacterial glycerol stock
XL1-Blue MRA (P2) host strain ^b	0.5-ml bacterial glycerol stock

^a Shipped as a liquid in 7% (v/v) DMSO. On arrival, store the library at –80°C. Do not pass through more than two freeze—thaw cycles.

STORAGE CONDITIONS

Premade Library: –80°C

Bacterial Glycerol Stocks: -80°C

Revision A

© Agilent Technologies, Inc. 2009.

^b For host strain shipping and storage conditions, please see *Preparing the Host Strains*.

The Lambda FIX II vector is a replacement vector used for cloning large fragments of genomic DNA (see Figures 1 and 2). The Lambda FIX II system takes advantage of spi (sensitive to P2 inhibition) selection. Lambda phages containing active red and gam genes are unable to grow on host strains that contain P2 phage lysogens. Lambda phages without these genes are able to grow on strains lysogenic for P2 such as XL1-Blue MRA (P2), a P2 lysogen of XL1-Blue MRA. The red and gam genes in the Lambda FIX II DNA are located on the stuffer fragment; therefore, the wild-type Lambda FIX II phage cannot grow on XL1-Blue MRA (P2). When the stuffer fragment is replaced by an insert, the recombinant Lambda FIX II vector becomes Red-/Gam-, and the phage is able to grow on the P2 lysogenic strain. Therefore, by plating the library on the XL1-Blue MRA (P2) strain, only recombinant phages are allowed to grow. The strain XL1-Blue MRA is also provided as a control strain and later for growth of the recombinant when the selection is no longer necessary. The unique arrangement of the polylinker for the Lambda FIX II vector permits the isolation of the insert and flanking T3 and T7 bacteriophage promoters as an intact cassette by digestion with Not I. T3 and T7 promoters flanking the insertion sites can be used to generate end-specific RNA probes for use in chromosomal walking and restriction mapping.

Figure 1 Map of the Lambda FIX II replacement vector.

Figure 2 Multiple cloning site sequence of the Lambda FIX II replacement vector.

Preparing the Host Strains

Host Strain Genotypes

Host strain	Genotype
XL1-Blue MRA strain	Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 gyrA96 relA1 lac
XL1-Blue MRA (P2) strain	XL1-Blue MRA (P2 lysogen)

Growing and Maintaining the Host Strains

The bacterial host strains are shipped as bacterial glycerol stocks. For the appropriate media, please refer to the following table:

Host strain	Agar plates for bacterial streak [§]	Medium for bacterial glycerol stock§	Medium for bacterial cultures for titering phage (final concentration)
XL1-Blue MRA strain ^a	LB	LB	LB with 0.2% (w/v) maltose— 10 mM MgSO ₄
XL1-Blue MRA (P2) strain ^a	LB	LB	LB with 0.2% (w/v) maltose— 10 mM MgSO ₄
VCS257 strain ^b	LB	LB	LB with 0.2% (w/v) maltose— 10 mM MgSO ₄

The XL1-Blue MRA and XL1-Blue MRA (P2) host strains are modified to enhance the stability of clones containing methylated DNA; in addition, these strains enhance the stability of nonstandard DNA structures.

On arrival, prepare the following from the bacterial glycerol stock using the appropriate media as indicated in the previous table:

Note The host strains may thaw during shipment. The vials should be stored immediately at -20° or -80° C, but most strains remain viable longer if stored at -80° C. It is also best to avoid repeated thawing of the host strains in order to maintain extended viability.

- 1. Revive the stored cells by scraping off splinters of solid ice with a sterile wire loop.
- 2. Streak the splinters onto an LB agar§. Incubate the plate overnight at 37° C.
- 4. Seal the plate with Parafilm® laboratory film and store the plate at 4°C for up to 1 week.
- 5. Restreak the cells onto a fresh plate every week.

^b For use with Gigapack III packaging extract and wild-type control only. Supplied with Gigapack III packaging extract.

[§]See Preparation of Media and Reagents

Preparing a -80°C Bacterial Glycerol Stock

- 1. In a sterile 50-ml conical tube, inoculate 10 ml of appropriate liquid medium with one colony from the plate. Grow the cells to late log phase.
- 2. Add 4.5 ml of a sterile glycerol-liquid medium solution (5 ml of glycerol + 5 ml of appropriate medium) to the bacterial culture from step 1. Mix well. Aliquot into sterile centrifuge tubes (1 ml/tube).

This preparation may be stored at -20°C for 1-2 years or at -80°C for more than 2 years.

PREPARING THE PLATING CULTURES

Day 1

- 1. Inoculate 50 ml of LB broth supplemented with 0.2% maltose and 10 mM MgSO₄ in a sterile flask with a single colony of the appropriate bacterial host.
- 2. Grow overnight with shaking at 30°C. This temperature ensures that the cells will not overgrow. Phage can adhere to dead cells as well as to live ones and can lower the titer.

Day 2

- 3. Spin the cells down in a sterile conical tube for 10 minutes at 2000 rpm.
- 4. Carefully decant the media off the cell pellet and **gently** resuspend the pellet in ~15 ml of 10 mM MgSO₄. (Do <u>not</u> vortex.)
- 5. Dilute the cells to $OD_{600} = 0.5$ with 10 mM MgSO₄. Approximately 600 μ l of $OD_{600} = 0.5$ cells are needed for each 150-mm plate and 200 μ l of $OD_{600} = 0.5$ cells for each 100-mm plate.
- 6. The cells may be stored for 2-3 days at 4° C.

§See Preparation of Media and Reagents

TITERING PROCEDURE

- 1. Prepare the host bacteria as outlined in *Preparing the Plating Cultures*.
- 2. Make dilutions of the lambda phage in SM§ buffer.
- 3. Add 1 μ l of the lambda phage to 200 μ l of host cells diluted in 10 mM MgSO₄ to OD₆₀₀ = 0.5. If desired, also add 1 μ l of a 1:10 dilution of the packaged material in SM buffer to 200 μ l of host cells.
- 4. Incubate the phage and bacteria for 15 minutes at 37°C to allow the phage to attach to the cells. (Best results are obtained with gentle shaking.)
- 5. Add 2.5–3 ml of NZY§ top agar (48°C) and plate on NZY plates.
- 6. Invert the plates and incubate overnight at 37°C.
- 7. Count the plaques and determine the plaque-forming units per milliliter (pfu/ml) concentration of the library.

AMPLIFYING THE LIBRARY

It is usually desirable to amplify libraries prepared in lambda vectors to make a large, stable quantity of a high-titer stock of the library. However, more than one round of amplification is not recommended, since slower growing clones may be significantly underrepresented.

Note *The premade library has been through one round of amplification.*

Day 1

1. Prepare the host strains as outlined in *Preparing the Host Strains*.

Day 2

- 2. Dilute the cells to an OD_{600} of 0.5 in 10 mM MgSO₄. Use 600 μ l of cells at an OD_{600} of 0.5/150-mm plate.
- 3. Combine aliquots of the packaged mixture or library suspension containing $\sim 5 \times 10^4$ pfu of bacteriophage with 600 µl of host cells at an OD₆₀₀ of 0.5 in 14-ml BD Falcon polypropylene round bottom tubes. To amplify 1×10^6 plaques, use a total of 20 aliquots (each aliquot contains 5×10^4 plaques/150-mm plate).

Note Do not add more than 300 µl of phage/600 µl of cells.

§See Preparation of Media and Reagents

- 4. Incubate the tubes containing the phage and host cells for 15 minutes at 37°C.
- 5. Mix 6.5 ml of NZY top agar, melted and cooled to ~48°C, with each aliquot of infected bacteria and spread evenly onto a freshly poured 150-mm NZY bottom agar plate.
- 6. Incubate the plates at 37°C for 6–8 hours. Do not allow the plaques to get larger than 1–2 mm. On completion, the plaques should be touching.
- 7. Overlay the plates with ~8–10 ml of SM buffer. Store the plates at 4°C overnight (with *gentle* rocking if possible). This allows the phage to diffuse into the SM buffer.

Day 3

- 8. Recover the bacteriophage suspension from each plate and pool it into a sterile polypropylene container. Rinse the plates with an additional 2 ml of SM buffer and pool. Add chloroform to a 5% (v/v) final concentration. Mix well and incubate for 15 minutes at room temperature.
- 9. Remove the cell debris by centrifugation for 10 minutes at $500 \times g$.
- 10. Recover the supernatant and transfer it to a sterile polypropylene container. If the supernatant appears cloudy or has a high amount of cell debris, repeat steps 8 and 9. If the supernatant is clear, add chloroform to a 0.3% (v/v) final concentration and store at 4°C. We recommend storing aliquots of the amplified library in 7% (v/v) DMSO at –80°C.
- 11. Check the titer of the amplified library using host cells and serial dilutions of the library. (Assume $\sim 10^9 10^{11}$ pfu/ml.)

PERFORMING PLAQUE LIFTS

- 1. Titer the library to determine the concentration (prepare fresh host cells to use in titering and in screening).
- 2. Plate on large 150-mm NZY agar plates (≥ 2 -day-old) to 50,000 pfu/plate with 600 μ l of host cells at an OD₆₀₀ of 0.5/plate and 6.5 ml of NZY top agar/plate. (Use 20 plates to screen 1 \times 10⁶.)
- 3. Incubate the plates at 37°C for ~8 hours.
- 4. Chill the plates for 2 hours at 4°C to prevent the top agar from sticking to the nitrocellulose membrane.

Note *Use forceps and wear gloves for the following steps.*

5. Transfer the plaques onto a nitrocellulose membrane for 2 minutes. Use a needle to prick through the agar for orientation. (If desired, waterproof ink in a syringe needle may be used.)

Notes If making duplicate nitrocellulose membranes, allow the second membrane to transfer for ~4 minutes.

Pyrex® dishes are convenient for the following steps. All solutions should be at room temperature.

a. Denature the nitrocellulose membrane after lifting by submerging the membrane in a 1.5 M NaCl and 0.5 M NaOH denaturation solution for 2 minutes.

Note If using charged nylon, wash with gloved fingertips to remove the excess top agar.

- b. Neutralize the nitrocellulose membrane for 5 minutes by submerging the membrane in a 1.5 M NaCl and 0.5 M Tris-HCl (pH 8.0) neutralization solution.
- c. Rinse the nitrocellulose membrane for no more than 30 seconds by submerging the membrane in a 0.2 M Tris-HCl (pH 7.5) and 2× SSC§ buffer solution.

[§]See Preparation of Media and Reagents

- 6. Blot briefly on a Whatman® 3MM paper.
- 7. Crosslink the DNA to the membranes using the autocrosslink setting on the Stratalinker UV crosslinker (120,000 μJ of UV energy) for ~30 seconds. Alternatively, oven bake at 80°C for ~1.5–2 hours.
- 8. Store the stock agar plates of the transfers at 4°C to use after screening.

HYBRIDIZING AND SCREENING

Following the preparation of the membranes for hybridization, perform prehybridization, probe preparation, hybridization, and washes for either oligonucleotide probes or double-stranded probes and then expose the membranes to film as outlined in standard methodology texts. Following these procedures, perform secondary and tertiary screenings also as outlined in the standard methodology texts. ^{1,2} After an isolate is obtained, refer to Sambrook *et al.* ¹ for suggested phage miniprep and maxiprep procedures.

RAPID RESTRICTION MAPPING

The insertion sites of the Lambda FIX II vector are flanked by T3 and T7 promoters, which permit the generation of end-specific hybridization probes. End-specific probes can be made once a recombinant clone containing an insert is isolated. In addition, the Lambda FIX II vector has unique *Not* I sites flanking the RNA promoters, which permits the excision from the lambda vector of insert DNA with the T3 and T7 promoter sequences as an intact fragment.

PREPARATION OF MEDIA AND REAGENTS

Note All media must be autoclaved before use.

LB Agar (per Liter) 10 g of NaCl 10 g of tryptone 5 g of yeast extract 20 g of agar Add deionized H ₂ O to a final volume of 1 liter Adjust pH to 7.0 with 5 N NaOH Autoclave Pour into petri dishes (~25 ml/100-mm plate)	LB Broth (per Liter) 10 g of NaCl 10 g of tryptone 5 g of yeast extract Add deionized H ₂ O to a final volume of 1 liter Adjust to pH 7.0 with 5 N NaOH Autoclave
NZY Agar (per Liter) 5 g of NaCl 2 g of MgSO ₄ · 7H ₂ O 5 g of yeast extract 10 g of NZ amine (casein hydrolysate) 15 g of agar Add deionized H ₂ O to a final volume of 1 liter Adjust the pH to 7.5 with NaOH Autoclave Pour into petri dishes (~80 ml/150-mm plate)	NZY Broth (per Liter) 5 g of NaCl 2 g of MgSO ₄ · 7H ₂ O 5 g of yeast extract 10 g of NZ amine (casein hydrolysate) Add deionized H ₂ O to a final volume of 1 liter Adjust the pH to 7.5 with NaOH Autoclave
NZY Top Agar (per Liter) Prepare 1 liter of NZY broth Add 0.7% (w/v) agarose Autoclave	SM Buffer (per Liter) 5.8 g of NaCl 2.0 g of MgSO ₄ · 7H ₂ O 50.0 ml of 1 M Tris-HCl (pH 7.5) 5.0 ml of 2% (w/v) gelatin Add deionized H ₂ O to a final volume of 1 liter Autoclave
20× SSC Buffer (per Liter) 175.3 g of NaCl 88.2 g of sodium citrate 800.0 ml of deionized H ₂ O Adjust to pH 7.0 with a few drops of 10 N NaOH Add deionized H ₂ O to a final volume of 1 liter	TE Buffer 10 mM Tris-HCl (pH 7.5) 1 mM EDTA

REFERENCES

- 1. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- 2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. *et al.* (1987). *Current Protocols in Molecular Biology*. John Wiley and Sons, New York.

ENDNOTES

Parafilm® is a registered trademark of American Can Company. Pyrex® is a registered trademark of Corning Glass Works. Whatman® is a registered trademark of Whatman Ltd. BD Falcon is a trademark of BD Biosciences.

MSDS INFORMATION

The Material Safety Data Sheet (MSDS) information for Stratagene products is provided on the web at http://www.stratagene.com/MSDS/. Simply enter the catalog number to retrieve any associated MSDS's in a print-ready format. MSDS documents are not included with product shipments.