Algèbre Linéaire 1

PLANCHE D'EXERCICES N°4.1

1 Applications linéaires

Exercice 1 *

- 1. Déterminer parmi les applications suivantes, définies de $\mathbb{R}^2 \to \mathbb{R}$, celles qui sont linéaires :
 - 1. $p_1(x,y) = x$, $p_2(x,y) = y$,
 - 2. $f_1(x,y) = xy$, $f_2(x,y) = x + y$, $f_3(x,y) = x + y + 1$, $f_4(x,y) = x^2 y^2$,
 - 3. $f_5(x,y) = |x+y|$, $f_6(x,y) = \sin x$, $f_7(x,y) = x 3y$.
- 2. Déterminer parmi les applications suivantes, définies de $\mathbb{R}^2 \to \mathbb{R}^2$, celles qui sont linéaires :

$$g_1(x,y) = (y,x), g_2(x,y) = (x,y^2), g_3(x,y) = (1,x).$$

Exercice 2 Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} = (v_1, \dots, v_n)$ une base de E. Montrer que l'application

$$\varphi_{\mathcal{B}}: \quad \mathbb{K}^n \quad \longrightarrow \quad E \\ (\lambda_1, \dots, \lambda_n) \quad \mapsto \quad \lambda_1 v_1 + \dots + \lambda_n v_n, \quad \forall \lambda_1, \dots, \lambda_n \in \mathbb{K}$$

est un isomorphisme de \mathbb{K}^n dans E.

Exercice 3 Soit E un espace vectoriel et $v_0 \in E$. Montrer que l'application translation t_{v_0} définie par

$$\begin{array}{cccc} t_{v_0} : & E & \longrightarrow & E \\ & v & \mapsto & v + v_0 \end{array}$$

est un endomorphisme de E si et seulement si $v_0 = 0$.

Exercice 4 * Soient E et F deux espaces vectoriels sur le corps \mathbb{K} et $f: E \to F$ une application linéaire. Soient $u_1, \ldots, u_n \in E$ et $v_i = f(u_i)$, pour $i = 1, \ldots, n$. Montrer que si la famille (u_1, \ldots, u_n) est liée alors (v_1, \ldots, v_n) est liée. Quelle est la contraposée de cette proposition? La réciproque de cette proposition, est-elle vraie?

Exercice 5 Soit (v_1, v_2, v_3, v_4) une base de \mathbb{R}^4 . Montrer qu'il n'existe aucune application linéaire $f : \mathbb{R}^4 \to \mathbb{R}^4$ telle que :

$$f(v_1 + v_3) = v_1$$
, $f(v_2 + v_4) = v_2$, $f(v_1 + v_2) = v_3$, $f(v_3 + v_4) = v_4$.