

Projet Openxum

C.Ghyselinck

Introduction

Description Jeux

Jeux Neutreeko

Hnefatafl

Dakapo

Pourquoi co

jeux ?

IA

Algorithme Min-Max Elagage Alpha-Beta MCTS

Conclusion

Projet Openxum

Présentation orale 1

Joseph Delaeter et Corentin Ghyselinck

9 novembre 2018

Plan du cours

Projet Openxum

C.Ghyselinck

Descriptio

Jeux Neutreeko Hnefatafl Dakapo Kamisado

Pourquoi ce eux ?

Algorithme Min-M Elagage Alpha-Bet MCTS

Conclusio

- Introduction
- Descriptions Jeux
 - Neutreeko
 - Hnefatafl
 - Dakapo
 - Kamisado
- 3 Pourquoi ces jeux?
- **4** IA
 - Algorithme Min-Max
 - Elagage Alpha-Beta
 - MCTS
- Conclusion

Introduction

Projet Openxum

J.Delaete C.Ghyselin

Introduction

Jeux

Neutreeko

Hnefatafl

Dakapo

Pourquoi ces

IΑ

Algorithme Min-Ma Elagage Alpha-Beta MCTS

Conclusion

Support

Plateforme Openxum

Jeux choisis

- Neutreeko
- Hnefatafl
- Dapako
- Kamisado

Objectif

Créer une IA générique de jeux abstraits

Neutreeko

Projet Openxum

C.Ghyselinck

Description
Jeux
Neutreeko
Hnefatafl
Dakapo
Kamisado

Pourquoi co jeux ?

Algorithme Min-Mi Elagage Alpha-Bet

Conclusion

Plateau

Règles

- La couleur Noire commence
- Une pièce se déplace dans toutes les directions
- Un pion s'arrête si il rencontre un autre pion ou le bord du plateau
- Ni prise,ni saut
- Le but est d'aligner ses trois pièces en continu
- Egalité si la même position arrive 3 fois

Hnefatafl

Projet Openxum

J.Delaeter C.Ghyselinck

Description Jeux

Neutreeko Hnefatafl

Hnefatafl Dakapo

Pourquoi ce

jeux?

Algorithme Min-Ma Elagage Alpha-Beta

Conclusion

But du jeu

- joueur blanc :Amener le roi dans une forteresse
- joueur noir :Prendre le roi adverse grâce à un encerclement du roi

Hnefatafl

Projet Openxum

J.Delaeter C.Ghyselinck

Description Jeux

Jeux Neutreeko

Hnefatafl Dakapo

Pourquoi ce

IA
Algorithme Min-Ma
Elagage Alpha-Beta

Conclusion

Situations

Conditions d'éliminations d'un pion adverse

- prise en tenaille d'un pion adverse
- prise en tenaille entre le roi et un pion adverse
- prise en tenaille par un adversaire et une forteresse

Exception

Un déplacement entre deux pions adverses n'élimine pas le pion

Dakapo

Projet Openxum

C.Ghyselinck

Introduction
Description
Jeux

Jeux Neutreeko Hnefatafl Dakapo Kamisado

Pourquoi c jeux?

IA
Algorithme Min-M
Elagage Alpha-Be

Conclusion

Plateau

Règles

- Le premier joueur joue une couleur
- Un joueur ne peut pas jouer la couleur qui vient d'être jouer
- Les joueurs sont obligé de jouer sur une case adjacente à une case déjà occupée
- deux pièces de la même couleur ne peuvent pas être adjacente

Kamisado

Projet Openxum

J.Delaete

Introduction

Description

Jeux

Hnefatal

Dakapo

Kamisado

Pourquoi d

. .

Algorithme Min-Ma Elagage Alpha-Beta MCTS

Conclusion

Kamisado

Projet Openxum

C.Ghyselinck

Descriptio

Jeux

Neutreeko Hnefatafl

Kamisado

Pourquoi ces

ΙA

Algorithme Min-Ma: Elagage Alpha-Beta MCTS

Conclusion

Modes de jeu

- Tour unique
- Standard
- Long
- Marathon

Autres règles

- Obligation de jouer
- Sinon le joueur passe son tour
- Impossible de passer à travers les pions, sauf en diagonale
- Si impossibilité de jouer, le dernier joueur à avoir jouer perd

Pourquoi ces 4 jeux?

Projet Openxum

C.Ghyselinck

Introduction

Jeux
Neutreeko
Hnefatafl
Dakapo

Pourquoi ces jeux?

IA Algorithme Min-N Elagage Alpha-Be

Conclusion

Forme

Grille classique et carré

Placement initial

Toujours au moins une base de pions

Espace de recherche

Déplacements et placements avec contrainte -> espace de recherche raisonnable

Algorithme min-max

Projet Openxum

J.Delaeter C.Ghyselind

Introduction

Description

Jeux

Neutreek

Hnefatal

Dakapo

_

jeux ?

IA

Algorithme Min-Max Elagage Alpha-Beta MCTS

Conclusion

Elagage Alpha-Beta

Projet Openxum

J.Delaeter C.Ghyseling

Introduction

Description Jeux Neutreeko Hnefatafl

Pourquoi ces

Algorithme Min-Max Elagage Alpha-Beta

Conclusion

Effets de l'élagage

- Réduire le nombre de nœuds évalués par MinMax
- Parcours de l'arbre plus efficace
- Augmentation de la profondeur de l'arbre à puissance de calcul équivalent

Conséquence de l'élagage

Meilleure performance de l'algorithme min-max

MCTS

Projet Openxum

C.Ghyselinck

Description Jeux

Neutreeko Hnefatafl Dakapo Kamisado

Pourquoi ces

Algorithme Min-I

Conclusion

- Sélection (Exploitation Exploration)
- Si état non final -> Expansion
- Simulation
- Backpropagation : Maj score

MCTS

Projet Openxum

J.Delaeter C.Ghyselind

Introduction

Description Jeux

Neutreeko Hnefatafl Dakapo Kamisado

Pourquoi ces

Algorithme Min

Elagage Alpha-Beta

Conclusion

Avantages

- généralité
- calibrage

Limites

- coûteux
- non adapté aux jeux avec grand espace de recherche
- améliorations potentiellement non efficace

Conclusion

Projet Openxum

J.Delaeter C.Ghyselinc

Introduction

Description

Jeux

Neutreek

Hnefataf

Dakapo

Kamie

Pourquoi c

IΑ

Algorithme Min-Ma Elagage Alpha-Beta MCTS

Conclusion

Merci, vous avez des questions?