第10章 重积分(题库)

一、选择题

I.(10-1)函数 $fig(x,yig)$ 在有界闭区域 D 上连续	是二重积分 $\iint f(x,y) d\sigma$ 存在的() 条件.
	D	

- A. 充分不必要

- B. 必要不充分 C. 充要 D. 既不充分也不必要

2. (10-1) 已知
$$I_1 = \iint_D (x+y) d\sigma$$
, $I_2 = \iint_D (x+y)^2 d\sigma$, 其中积分区域 D 是由 x 轴、 y 轴与直线 $x+y=1$ 所围成,

- 则 I_1,I_2 的大小顺序为().

- A. $I_1 \ge I_2$ B. $I_1 \le I_2$ C. $I_1 = I_2$ D. 无法判定

3. (10-1)已知
$$I_1 = \iint_D \ln(x+y) d\sigma$$
 与 $I_2 = \iint_D \left[\ln(x+y)\right]^2 d\sigma$, 其中 D 是三角形闭区域, 三顶点分别为 $A(1,0)$ 、

- B(1,1)、C(2,0),则 I_1,I_2 的大小顺序为().
 - A. $I_1 \geq I_2$

- B. $I_1 \leq I_2$ C. $I_1 = I_2$ D. 无法判定

4. (10-1) 估计二重积分
$$I = \iint_D xy(x+y)\mathrm{d}\sigma$$
 的值为(),其中积分区域 $D = \left\{ \left(x,y\right) \middle| \ 0 \le x \le 1, 0 \le y \le 1 \right\}$.

- A. $1 \le I \le 2$ B. $2 \le I \le 4$ C. $0 \le I \le 2$ D. $0 \le I \le 1$

5. (10-1) 设积分区域
$$D = \{(x,y) | 0 \le y \le \sqrt{a^2 - x^2}, 0 \le x \le a \}$$
, 根据二重积分的几何意义可知
$$\iint_D \sqrt{a^2 - x^2 - y^2} dx dy = () .$$

- A. $\frac{\pi a^3}{2}$ B. $\frac{\pi a^3}{2}$ C. $\frac{\pi a^3}{6}$ D. $\frac{\pi a^3}{9}$

6. (10-1) 设积分区域
$$D = \{(x,y) | x^2 + y^2 \le 1\}$$
 ,根据二重积分的几何意义可知 $\iint_D \sqrt{1-x^2-y^2} dxdy = ($).

- A. $\frac{4\pi}{2}$
- B. $\frac{2\pi}{3}$ C. $\frac{\pi}{3}$

7. (10-1)设平面薄片所占的闭区域
$$D = \{(x,y) | x^2 + y^2 \le a^2\}$$
 $(a > 0)$,它的面密度函数为 $\rho(x,y) = 1$,则该薄片的质量为().

- A. πa^2 B. $2\pi a^2$ C. $3\pi a^2$ D. $4\pi a^2$

8. (10-2) 设
$$f(x,y)$$
 是连续函数,则二次积分 $\int_0^1 dx \int_0^{1-x} f(x,y) dy$ 交换积分次序后为().

A.
$$\int_0^{1-x} dy \int_0^1 f(x,y) dx$$

B.
$$\int_0^1 dy \int_0^{1-x} f(x,y) dx$$

C.
$$\int_0^1 dy \int_0^1 f(x, y) dx$$

D.
$$\int_0^1 dy \int_0^{1-y} f(x,y) dx$$

- 9. (10-2) 设 f(x,y) 是连续函数,则二次积分 $\int_0^1 dx \int_0^{x^2} f(x,y) dy$ 交换积分次序后为().
 - A. $\int_{0}^{1} dy \int_{0}^{\sqrt{y}} f(x, y) dx$
- B. $\int_{0}^{x^{2}} dy \int_{0}^{1} f(x, y) dx$
- C. $\int_0^1 dy \int_{\sqrt{y}}^1 f(x,y) dx$
- D. $\int_0^1 dy \int_0^{x^2} f(x, y) dx$
- 10. (10-2) 设f(x,y)是连续函数,则二次积分 $\int_{y}^{4} dy \int_{y}^{4} f(x,y) dx$ 交换积分次序后为 ().
 - A. $\int_{a}^{4} dy \int_{a}^{x} f(x, y) dx$
- B. $\int_{2}^{4} dx \int_{2}^{2} f(x, y) dy$
- C. $\int_{2}^{4} dx \int_{2}^{x} f(x, y) dy$
- D. $\int_{2}^{4} dy \int_{x}^{2} f(x, y) dx$
- 11. (10-2) 设f(x,y)是连续函数,则二次积分 $\int_0^1 dy \int_0^y f(x,y) dx$ 交换积分次序后为().
 - A. $\int_{0}^{1} dy \int_{1}^{x} f(x, y) dx$

B. $\int_{0}^{1} dx \int_{0}^{1} f(x, y) dy$

C. $\int_0^1 dx \int_1^x f(x, y) dy$

- D. $\int_0^1 dy \int_0^1 f(x,y) dx$
- 12. (10-2) 把二重积分 $\iint_{\Sigma} f(x,y) dxdy$, 其中积分区域 $D = \{(x,y) | 1 \le x^2 + y^2 \le 4\}$ 表示为极坐标形式的二次积分为
- ().
 - A. $\int_0^{\pi} d\theta \int_1^2 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- B. $\int_{0}^{2\pi} d\theta \int_{1}^{2} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- C. $\int_0^{2\pi} d\theta \int_0^2 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ D. $\int_0^{\pi} d\theta \int_0^1 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- 13. (10-2) 把二重积分 $\iint_D f(x,y) dxdy$, 其中积分区域 $D = \{(x,y) | 4 \le x^2 + y^2 \le 9\}$ 表示为极坐标形式的二次积分为
 - A. $\int_0^{\pi} d\theta \int_1^2 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ B. $\int_0^{2\pi} d\theta \int_1^3 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- - C. $\int_{0}^{\pi} d\theta \int_{0}^{2} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ D. $\int_{0}^{2\pi} d\theta \int_{0}^{3} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- 14. (10-2) 把二重积分 $\iint_{\mathcal{D}} f(x,y) dxdy$, 其中积分区域 $D = \{(x,y) | x^2 + y^2 \le a^2\} (a > 0)$ 表示为极坐标形式的二

次积分为().

- A. $\int_{0}^{2\pi} d\theta \int_{0}^{a} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ B. $\int_{0}^{2\pi} d\theta \int_{a}^{0} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- C. $\int_0^{\pi} d\theta \int_0^a f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ D. $\int_0^{\pi} d\theta \int_0^0 f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$
- 15. (10-2) 设闭区域 $D: 0 \le x \le 1, 0 \le y \le 1$,则二重积分 $\iint_D xy dx dy = ($).
 - A. 1

B. $\frac{1}{2}$

- C. $\frac{1}{8}$ D. $\frac{1}{4}$

第10章 重积分(题库)

- 16. (10-2) 设闭区域 $D: 0 \le x \le 1, 0 \le y \le 1$, 则二重积分 $\iint xy^2 dxdy = ($).
 - A. 0

17. (10-3) 设空间闭区域 $\Omega = \{(x, y, z) | 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$,则三重积分 $\iiint xyz dV = ($).

A. $\frac{1}{8}$

D. 1

18. (10-3) 设空间闭区域 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9\}$,则三重积分 $\iint_{\Omega} dV = (x, y, z) | x^2 + y^2 + z^2 \le 9$

- A. 36π
- B. 144π
- C. 81π
- D. π

19. (10-4) 平面 3x + 2y + z = 1 被柱面 $2x^2 + y^2 = 1$ 所割下部分的平面面积为 (

- A. $\sqrt{14}\pi$
- B. $\sqrt{7}\pi$
- C. $2\sqrt{7}\pi$
- D. $3\sqrt{7}\pi$

20. (10-4) 锥面 $x^2 + y^2 = z^2$ 被柱面 $y^2 + x^2 = 2x$ 所割下部分的曲面面积为().

Α. π

- B. $\sqrt{2}\pi$
- C. $2\sqrt{2}\pi$ D. $3\sqrt{2}\pi$

二、填空题

1. (10-1) 设闭区域 $D = \{(x, y) | x^2 + y^2 \le 1\}$, 则 $\frac{1}{\pi} \iint_{\Omega} dx dy = \underline{\qquad}$.

3. (10-1) 设闭区域 $D = \left\{ (x, y) \middle| \frac{x^2}{4} + \frac{y^2}{9} \le 1 \right\}$,则 $\iint_{\Sigma} d\sigma =$ ______.

4. (10-1) 设平面薄片所占的闭区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$, 它的面密度为 $\rho(x,y) = 1$, 则该薄片的质量为

5. (10-4) 半径是 1 的球面的面积为_____

解答题

6. (10-2) 计算二重积分 $\iint xy^2 dxdy$, 其中 D 是由 y = x, xy = 1, x = 2 所围成的闭区域.

7. (10-2) 计算二重积分 $\iint_D \frac{x^2}{y^2} d\sigma$, 其中 D 是由直线 x = 2, y = x 及曲线 xy = 1 所围成的闭区域.

8. (10-2) 利用极坐标计算二重积分 $\iint_{D} \sqrt{x^2 + y^2} d\sigma$, 其中 D 是圆环形闭区域 $\{(x,y) | 1 \le x^2 + y^2 \le 4\}$.

9. (10-2) 利用极坐标计算二重积分 $\iint_{D} \sqrt{x^2 + y^2} \, dx \, dy$,其中 D 是圆环形闭区域 $\{(x,y) | 4 \le x^2 + y^2 \le 9\}$.

10. (10-2) 利用极坐标计算二重积分 $\iint_D e^{x^2+y^2} dxdy$, 其中 D 是圆环形闭区域 $\{(x,y) | 1 \le x^2 + y^2 \le 4\}$.

第10章 重积分(题库)

11. (10-2) 利用极坐标计算二重积分 $\iint_D (x+y) d\sigma$,其中 D 是由圆周 $x^2+y^2=1$ 所围成的位于第一象限的闭区域.

12. (10-2) 利用极坐标计算二重积分 $\iint_D \left(x^2+y^2\right) \mathrm{d}\sigma$, 其中D是由 $x^2+y^2=4$ 所围成的闭区域.