Opis Projektu i Produktu

Nazwa produktu

Shopper - twój asystent podczas zakupów

Opis produktu bazowego

Celem naszego projektu jest rozwinięcie naszej aplikacji mobilnej, która będzie wspomagała robienie zakupów w sklepach wielkopowierzchniowych. Użytkownik wybiera produkty tworząc listę zakupów, a następnie aplikacja wyznacza najkrótszą trasę od wejścia aż do kas, prowadząc przez miejsca, gdzie znajdują się wybrane produkty.

Opis rozwinięcia aplikacji w ramach projektu inżynierskiego

Asystent AI

Obsługa klienta: Asystent AI może odpowiadać na często zadawane pytania użytkowników aplikacji, udzielać wskazówek dotyczących korzystania z funkcji aplikacji oraz rozwiązywać proste problemy techniczne.

Wsparcie w tworzeniu listy zakupów: Asystent może proponować użytkownikowi produkty na podstawie wcześniejszych zakupów, preferencji oraz aktualnych promocji w sklepach.

Obsługa użytkowników niewidomych

Nawigacja po sklepie: Aplikacja pomaga użytkownikom niewidomym w znalezieniu poszukiwanych produktów oraz odszukaniu odpowiednich działów i regałów na różnych piętrach sklepu.

Informacje o produktach: Aplikacja odczytuje etykiety produktów za pomocą kamery smartfona i informuje użytkowników niewidomych o ich cenach, opisach oraz dostępności.

Szybkie rozliczenie przy wyjściu

Ta funkcjonalność umożliwia użytkownikom samodzielne dokonywanie płatności za zakupy. Ponadto, pozwala to na szybkie i sprawniejsze opuszczenie sklepu po zakończeniu zakupów, co jest szczególnie istotne w przypadku osób niewidomych, które mogą odczuwać dyskomfort w zatłoczonych miejscach.

Wybór sklepu na podstawie mapy GPS

Ta funkcjonalność jest przydatna, ponieważ umożliwia wyświetlenie wybranej sieci sklepów na mapie GPS, na podstawie położenia użytkownika. Dzięki temu mogą szybko i sprawnie dotrzeć do sklepu, aby zrealizować swoje zakupy.

Adresowany problem oraz grupa docelowa (rynek)

Ułatwienie procesu robienia zakupów w sklepach wielkopowierzchniowych, szczególnie dla osób regularnie robiących zakupy oraz niewidomych i niedowidzących.

Obszar zastosowania

Aplikacja mobilna dla użytkowników smartfonów, którzy chcą ułatwić sobie robienie zakupów w sklepach wielkopowierzchniowych.

Użytkownicy i ich potrzeby

- Osoby chcące szybko i łatwo znaleźć poszukiwane produkty w sklepie.
- Osoby niewidome i niedowidzące, które potrzebują pomocy w nawigacji po sklepie i informacji o produktach.
- Osoby chcące skorzystać z promocji i zniżek w sklepie.
- Osoby, które chcą szybko i sprawnie opuścić sklep po zakończeniu zakupów.

Ograniczenia

- Konieczność posiadania smartfona z dostępem do internetu.
- Konieczność udostępnienia aplikacji informacji o lokalizacji użytkownika.
- Konieczność współpracy ze sklepami wielkopowierzchniowymi w celu uzyskania informacji o lokalizacji produktów i promocjach.

Inne współpracujące systemy

- Systemy GPS do lokalizacji sklepów i nadajniki BLE nawigacji po sklepie.
- Systemy płatności mobilnych do szybkiego rozliczenia przy wyjściu.
- Systemy sklepów wielkopowierzchniowych do uzyskania informacji o lokalizacji produktów i promocjach.

Termin

Realizacja projektu zaplanowana jest na okres 12 miesięcy.

Główne etapy projektu

- 1. Analiza rynku i potrzeb użytkowników.
- 2. Projektowanie interfejsu użytkownika i architektury aplikacji.
- 3. Implementacja podstawowych funkcji aplikacji.
- 4. Implementacja funkcji asystenta Al.
- 5. Implementacja funkcji wsparcia dla osób niewidomych i niedowidzących.
- 6. Implementacja funkcji szybkiego rozliczenia przy wyjściu.
- 7. Implementacja funkcji wyboru sklepu na podstawie mapy GPS.
- 8. Testowanie i debugowanie aplikacji.
- 9. Wdrożenie, monitorowanie i aktualizacja aplikacji na bieżąco.

Interesariusze i użytkownicy

Opis interesariuszy i użytkowników projektu "Shopper":

Klient (dr hab. inż. Rafał Lech):

- Jest zleceniodawcą projektu.
- Interesuje go efektywne wsparcie podczas zakupów w dużych sklepach.
- Oczekuje, że aplikacja będzie intuicyjna i ułatwi mu planowanie oraz realizację zakupów.

Promotor projektu (dr hab. inż. Grzegorz Fotyga):

- Nadzoruje cały projekt.
- Oczekuje, że projekt będzie realizowany zgodnie z założeniami i terminami.
- Zapewnia wsparcie merytoryczne i doradcze dla zespołu projektowego.

Członkowie zespołu projektowego (Michał Jaskulski, Maciej Danielewicz, Julian Janicki:

- Są bezpośrednimi wykonawcami projektu.
- Ich zadaniem jest realizacja określonych zadań zgodnie z harmonogramem i założeniami projektu.
- Oczekują sprawnego współdziałania w zespole oraz efektywnej komunikacji.

Zespół

W ramach realizacji projektu informatycznego powołany został zespół składający się z trzech osób, każda z nich posiada konkretne umiejętności i obszary odpowiedzialności, które są niezbędne do pomyślnego zakończenia projektu.

Skład zespołu

Maciej Danielewicz

Kierownik projektu, Backend, BLE Kontakt: s188555@student.pg.edu.pl

Posiada doświadczenie w zakresie programowania i zarządzania projektami informatycznymi. Jest odpowiedzialny za koordynację prac zespołu, przydzielanie zadań, kontrolę terminów i jakości wykonania, a także za rozwój backendu.

Michał Jaskulski

Frontend

Kontakt: s184309@student.pg.edu.pl

Posiada umiejętności w zakresie programowania frontendowego, w szczególności w technologiach React i Angular. Jest odpowiedzialny za rozwój części frontendowej aplikacji, w tym za implementację projektu UX/UI i integrację z częścią backendową.

Julian Janicki

Backend, BLE

Kontakt: s184643@student.pg.edu.pl

Posiada umiejętności w zakresie programowania backendowego, w szczególności w języku Java oraz Javascript. Jest odpowiedzialny za rozwój części backendowej aplikacji, w tym za implementację bazy danych i logiki biznesowej oraz konfiguracje nadajników BLE we współpracy z Maciejem.

Zespół pracuje w rozproszeniu, ale dzięki narzędziom komunikacji online, takim jak Discord, Google Docs i GitHub, jest w stanie efektywnie współpracować i koordynować pracę. Każdy członek zespołu ma określony zakres odpowiedzialności i jest zobowiązany do spełniania terminów i wymagań projektu.

Komunikacja w zespole i z interesariuszami

Sposoby komunikacji wewnątrz zespołu

Platformy do komunikacji

Główną platformą komunikacji zdalnej jest Discord. Oprócz tego komunikacja odbywa się na dedykowanej grupie na messengerze. Najwięcej spotkań jest jednak realizowane stacjonarnie.

Częstotliwość spotkań

Spotkania organizacyjne odbywają się co tydzień. Oprócz tego co 2 tygodnie organizowane jest spotkanie retro gdzie podsumowujemy ostatnie 2 tygodnie i przygotowujemy plany na kolejne dwa.

Sposoby komunikacji z interesariuszami

Platformy do komunikacji

Głównymi platformami komunikacji z interesariuszami są Discord i e-mail. Na potrzeby interesariuszy jesteśmy gotowi wprowadzić kolejny kanał komunikacji.

Częstotliwość spotkań

Co dwa tygodnie interesariusze otrzymują podsumowanie ze spotkania retro. W razie potrzeby możliwe jest umówienie terminu regularnych spotkań.

Współdzielenie dokumentów i kodu

W ramach projektu "Shopper" wykorzystujemy platformę GitHub do współdzielenia dokumentów i kodu. Projekt jest prywatny, co zapewnia kontrolę dostępu do repozytorium tylko dla członków zespołu. Za konfigurację i utrzymanie repozytorium odpowiada Michał Jaskulski.

Sposób wymiany dokumentów i kodu

- Dokumenty i kod są wymieniane poprzez repozytorium na GitHubie.
- Adres repozytorium: [https://github.com/RicottaM/shopper].
- Dostęp do repozytorium jest udzielany tylko członkom zespołu.

Osoba odpowiedzialna za konfigurację i utrzymanie repozytorium

 Michał Jaskulski jest odpowiedzialny za konfigurację i utrzymanie repozytorium na GitHubie.

Osoba odpowiedzialna za porządek w dokumentacji

 Maciej Danielewicz prowadzi porządek w dokumentacji, zapewniając, że wszystkie dokumenty są aktualne, uporządkowane i łatwo dostępne dla członków zespołu.

Schemat nazewnictwa dokumentów/plików

 Dokumenty są nazwane według schematu: NAZWA_DOKUMENTU_wer.x.xx, gdzie "x.xx" oznacza numer wersji dokumentu.

Schemat plików według lower_snake_case

• Pliki są nazwane według schematu lower_snake_case, co oznacza, że nazwy są zapisane małymi literami, a spacje zastąpione są znakiem podkreślenia.

Szablon dokumentu projektu

 Dla zachowania jednolitości w dokumentacji, używamy ustalonego szablonu dokumentu projektu, który zawiera niezbędne sekcje i informacje.

Sposób wersjonowania dokumentacji

 Wersjonowanie dokumentów odbywa się ręcznie poprzez zmianę nazwy dokumentu lub poprzez oznaczenie numerem wersji w treści dokumentu.

Narzędzia

Tworzenie dokumentów

Korzystamy z aplikacji Google, takich jak Google Docs i Google Slides, do tworzenia dokumentów i prezentacji, co umożliwia łatwą współpracę nad treściami w czasie rzeczywistym.

Komunikacja w zespole i z interesariuszami

Do dzielenia się dokumentami oraz komunikacji w zespole używamy platform Messenger oraz Discord.

W celu tworzenia własnych dokumentów korzystamy z aplikacji Google, takich jak Google Docs, Google Slides itp.

Podczas spotkań stosujemy metodologię QuadCharts w Metro Retro, co umożliwia szybkie podsumowanie postępów, identyfikację problemów oraz planowanie działań na kolejne etapy projektu.

Współdzielenie dokumentów i kodu

Kod aplikacji jest dzielony za pomocą platformy GitHub.

Wytwarzanie i testowanie systemu

Do wytwarzania aplikacji mobilnej korzystamy z narzędzi takich jak Visual Studio Code, Android Studio oraz Xcode.

Testowanie systemu odbywa się za pomocą aplikacji Postman.