Rotation Curve of M33 Explained by Dark Matter Disc

aka

Rotation Curve of Pizza

Toshio FUKUSHIMA (NAOJ) (2016) MNRAS, 456, 3702

ResearchGate Fukushima Click

Xvrot: Fortran 90 software

Pizza in Space

Spiral Galaxy M33

- Triangulum Galaxy = NGC598
 - 3rd Largest Member of Local Group
 - Companion to M31 (Andromeda Galaxy)
 - Size: 10 kpc radius
 - Mass: [6 (stars) + 3 (gas)] x 10⁹ M_{sun}
 - Spiral with No Core/Bulge
 - Rising? Rotation Curve

Rotation Curve: M33

Cartesian Doubt

Descarte's Doubt Method

- Descarte (1641)
- 4 Steps Method
- 1. Accept Only Info You Know to be True
- 2. Break Down Truths into Smaller Units
- 3. Solve Simplest Problems First
- 4. Make Complete List of Other Problems

Application to Rotation Curve of M33

- 1. Accept Only Info You Know to be True
- Rotation Curve, Luminosity Profile
 - 2. Break Down Truths into Smaller Units
- Inner, and Outer Parts of Rotation Curve
 - 3. Solve Simplest Problems First
- Only Disc Mass Component
 - 4. Make Complete List of Other Problems
- Non-Axisymmetric Feature, ...

Standard Approach

- Deconvolution Method
 - M33: Corbelli et al. (2014)
 - Milky Way: Sofue (2015)
- 1. Compute V(R) of Stars and Gas
- 2. Subtract them from Rotation Curve
- 3. Fit Spherically-Symmetric Model of Dark Matter Distribution to Residuals
 - Navarro, Frenk, & White (NFW) (1996)

Rotation Curve of M33

Stars Disc of M33

- 2 parts
- Power
 - & Exp
- Exp.

Stars Disc of M33

- 2 parts
- Power
 - & Exp
- Exp.

Gas Disc of M33

- 2 parts
- DoublePower
- SinglePower

Gas Disc of M33

- 2 parts
- DoublePower
- Single
 - Power

4

Piecewise Density F.

- No Existing Formulation is Applicable
 - (Infinite) Exponential Disc Model
 - (Infinite) Power-Law Disc Model, ...
- Demand for Gravitational Field Computation of General Thin Disc
 - Arbitrary Size and Shape (Finite, Hole, ...)
 - Arbitrary Density F. (Double-Power, ...)
 - @ Arbitrary Point

The Force is AWays With YOU, Potenta

New Method of Grav. Field Computation

- Assumptions
 - Axisymmetric, Infinitely-Thin, Piecewise
- Strategy
 - Potential: Numerical Integration of Ring P.
 - Acceleration: Numerical Differentiation
- Integral Expression

$$\Phi(R,z) = \sum_{j=1}^{J} \Phi_{j}(R,z)$$

$$\Phi(R,z) = \sum_{j=1}^{J} \Phi_{j}(R,z) \quad \Phi_{j}(R,z) = \int_{R_{j-1}}^{R_{j}} \Psi(R';R,z) dR'$$

Integrand Expression

Ring Potential (Kellogg 1929)

$$\Psi(R';R,z) = \frac{-4G\Sigma(R')K(m(R';R,z))R'}{P(R';R,z)}$$

$$m(R';R,z) \equiv \frac{4RR'}{\left[P(R';R,z)\right]^2} \qquad P(R';R,z) \equiv \sqrt{(R'+R)^2 + z^2}$$

- K(m): Complete Elliptic Integral of 1st Kind
 - Fukushima (2015): Precise and Fast Comp.

Complete Elliptic Integrals

Five Complete Elliptic Integrals

Singularity Problem

- Blow-Up Logarithmic Singularity of K(m)
- Integrable in Principle, but ...
- Happens if m=1
 - When R=R' & z=0: Somewhere inside Disc
- Troublesome Even if m~1
 - Sharp Peak of Integrand

Split Quadrature

Splitting Integration Interval at Peak

$$\Phi_{j}(R,z) = \int_{R_{j-1}}^{R} \Psi(R';R,z) dR' + \int_{R}^{R_{j}} \Psi(R';R,z) dR'$$

- Double Exponential Quadrature Rule
 - Takahashi & Mori (1973)
 - Program: intde & intdei (Ooura 2006)
- Simple but Works
 - Fukushima (2014)

Acceleration Vector

Definition

$$\mathbf{A} = A_R \mathbf{e}_R + A_z \mathbf{e}_z$$

$$\mathbf{A} = A_R \mathbf{e}_R + A_z \mathbf{e}_z$$

$$A_R = -\left(\frac{\partial \Phi(R, z)}{\partial R}\right), A_z = -\left(\frac{\partial \Phi(R, z)}{\partial z}\right)$$

- Numerical Differentiation
 - Primitive but Works
 - Somewhat Costly and Inaccurate
- Ridder's Method (Ridder 1982)
 - Program: dfridr (Numerical Recipe in F77)

Numerical Tools

- Complete Elliptic Integral, K(m): ceik
 - Fukushima (2015)
 - https://www.researchgate.net/profile/Toshio_Fukushima/
- Numerical Quadrature: intde
 - Ooura (2006)
 - http://www.kurims.kyoto-u.ac.jp/ooura/intde.html
- Numerical Differentiation: dfridr
 - Press et al. (1992, Sect. 5.7)
 - http://apps.nrbook.com/fortran/index.html

Check, Check, Check

Validation

- Test 1: Finite Uniform Disc
 - Durand (1953), Fukushima (2010)
 - Complete Elliptic Integrals of All Three Kind
- Test 2: Infinite Exponential Disc
 - Freeman (1970)
 - Modified Bessel Functions
- Check: Rotation Curve Computation
- Confirmed 11-12 Digits Accuracy

Rotation Curve: Finite Uniform Disc

Rotation Curve Error: Finite Uniform Disc

Rotation Curve Error: Exponential Disc

It's Show Time

Case 1: Finite Power-Law Disc

Power-Law Density **Profile** Results **Almost** Power-Law Rotation Curve

Power-Law Index Relation

Power-Law Exponent of Rotation Curve

Only Approximate Relation

Size Dependence of Truncated Mestel Disc

Hole Effect

Hole Effect in Accretion Disc

Edge Softening of Density Function

Edge-Softening of Truncated Mestel Disc

Edge Softened Rotation Curve

Case 2: Double Power-Law Disc

 Hinted from Generalized Three-Dimensional Volume Mass Density Model (Zhao, 1996, MNRAS)

$$\Sigma(R) \equiv \Sigma_0 (R/R_S)^{-c} \left[1 + (R/R_S)^{1/a} \right]^{(c-b)a}$$

- Inner Power-Law Index: c
- Outer Power-Law Index: b
- Curvature of Transition Zone: 1/a

Inner Power-Law Index Dependence

Rotation Curve: Double Power-Law Disc

Outer Power-Law Index Dependence

Rotation Curve: Double Power-Law Disc

Curvature Index Dependence

Case 3: Exponentially-Damped Power-Law

Exponentially-Damped Power-Law Disc

Case 4: Sine-Modulated Exponential Disc

Sinusoidally-Modulated Exponential Disk

Stars & Gas Density Models: M33

- Two-Piece Models for Stars and Gas
- Stars
 - Inner

Gas

- Inner
- Outer

$$\Sigma(R) = \Sigma_A (R/R_A)^{-1/3} \exp(-R/R_A)$$

• Outer
$$\Sigma(R) = \Sigma_B \exp(-R/R_B)$$

$$\Sigma(R) = \Sigma_C (R/R_C)^{-c} \left[1 + (R/R_C)^{1/a} \right]^{(c-b)a}$$

$$\Sigma(R) = \Sigma_D (R/R_C)^{-3}$$

Separation Radius: R_D

Determined Model Parameters: M33

Stars Component

- $\Sigma_{A} = 169 \text{ M}_{sun} \text{pc}^{-2}, \ \Sigma_{B} = 5 \text{ M}_{sun} \text{pc}^{-2}$
- $R_A = 2.2 \text{ kpc}, R_B = 6.3 \text{ kpc}$

Gas Component

- $\Sigma_{\rm C} = 6 \, \rm M_{\rm sun} pc^{-2}, \, \Sigma_{\rm D} = 2.5 \, \rm M_{\rm sun} pc^{-2}$
- $R_{\rm C} = 7.2 \; {\rm kpc}$
- a = 0.05, b = 5.5, c = 0.05

Separation Radius

$$R_D = 10.18 \text{ kpc}$$

Determined Stars Disc Model of M33

Determined Stars Disc Model of M33

M33 Surface Mass Density: Stars

Determined Gas Disc Model of M33

M33 Surface Mass Density: Gas

Determined Gas Disc Model of M33

M33 Surface Mass Density: Gas

Determined Rotation
Curve of Stars and Gas

Deconvolved Rotation Curve of M33

Rotation Curve of M33

Deconvolved Rotation Curve of M33

Rotation Curve of M33

The Force Awakens

Trial Explanation by Disc Mass Model

- Unsatisfactory Result of Deconvolution
 - Hump near R = 3-8 kpc
- Assumption: Disc Mass Only
 - Unknown Surface Mass Density Profile
- Hints from Rotation Curve Itself
 - Double-Power-Law-like Feature

$$V(R) = V_0 (R/R_V)^{-\gamma} \left[1 + (R/R_V)^{1/\alpha} \right]^{(\gamma - \beta)\alpha}$$

Rotation Curve Model

Rotation Curve Model

Approximation of M33 Rotation Curve

Double Power-Law Disc Mass Model

- Natural Expectation
- Double Power-Law Rotation Curve from Double Power-Law Surface Mass Density

$$\Sigma(R) = \Sigma_S (R/R_S)^{-c} \left[1 + (R/R_S)^{1/a} \right]^{(c-b)a}$$

- Determined Model Parameters
 - $\Sigma_{\rm S} = 1480 \; \rm M_{\rm sun} pc^{-2}, \; R_{\rm S} = 2 \; \rm kpc$
 - a=0.2, b=0.9, c=0.4

-

Model Rotation Curve

Rotation Curve of M33

Model Rotation Curve

Rotation Curve of M33

Determined Disc Mass

Surface Mass Density: M33

Determined Disc Mass

Surface Mass Density: M33

Conclusion

- New Method to Compute Gravitational Field of Infinitely-Thin Disc
- Split Quadrature + Numerical Diff.
- Precise and Fast
- Test Computation of Various Discs
- Application to M33 Rotation Curve
 - Better Fit by Disc Dark Matter

References

- Corbelli et al., 2014, A&A, 572, A23
- Descarte, 1641, Meditationes de Prima Philosophia
- Durand, 1953, Electrostatique et Magnetostatique, Masson et Cie
- Freeman, 1970, ApJ, 160, 811
- Fukushima, 2010, Cele. Mech. Dyn. Astron., 108, 339
- Fukushima, 2014, Appl. Math. Comp., 238, 485
- Fukushima, 2015, J. Comp. Appl. Math., 63, 17
- Kellogg, 1929, Foundations of Potential Theory, Springer
- Navvaro, Frenk, and White, 1996, ApJ, 462, 563
- Press et al., 1992, Numerical Recipes in F77, Cambridge Univ. Press
- Sofue, 2015, PASJ, 67, 75
- Takahashi and Mori, 1973, Numer. Math., 21, 206
- Zhao, 1996, MNRAS, 278, 488

