CAPÍTULO 3 (primera parte)

Cuando no se especifica lo contrario, el producto interno en \mathbb{R}^n es x^Ty y el espacio vectorial \mathbb{R}^n se considera con suma y producto por escalares habituales.

Un conjunto de vectores $\{u^1,\ldots,u^n\}$ es un *conjunto ortogonal* si sus vectores son ortogonales dos a dos, es decir, $\langle u^i,u^j\rangle=0$ cuando $i\neq j$. Diremos que el conjunto dado es un *conjunto ortonormal* si es un conjunto ortogonal y todos sus vectores tiene norma igual a 1, es decir, es un conjunto ortogonal y $\|u^i\|=\sqrt{\langle u^i,u^i\rangle}=1$ para todo $i\in\{1,\ldots,n\}$.

- 1. Determinar en cada caso si el producto definido es un producto interno en \mathbb{R}^n . En caso de no serlo, indicar qué axioma no se verifica.
 - a) $u \times v = \sum_{i=1}^{n} u_i |v_i|$.
 - b) $u \times v = \left| \sum_{i=1}^{n} u_i v_i \right|$.
 - c) $u \times v = \sum_{i=1}^{n} u_i \sum_{i=1}^{n} v_i$.
 - d) $u \times v = \left(\sum_{i=1}^{n} u_i^2 v_i^2\right)^{\frac{1}{2}}$.
- 2. a) Sean $A = (a_{ij})$ y $B = (b_{ij})$ matrices reales de tamaño $n \times n$. Verificar que:

$$\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij},$$

es un producto interno en el espacio de las matrices reales $n \times n$ (conocido como producto de Frobenius).

b) Probar que $\langle A, B \rangle = tr(AB^T) = tr(BA^T)$.

La traza de una matriz cuadrada A de tamaño $n \times n$ está definida como la suma de los elementos de la diagonal principal de A. Es decir, $tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$.

- 3. Verificar que $\langle f,g\rangle=\int_1^e\log(x)f(x)g(x)dx$ es un producto interno en $\mathcal{C}([1,e])$, espacio de las funciones continuas a valores reales en el intervalo [1,e].
- 4. Dados $u, v \in V$ espacio vectorial con producto interno, probar que u = v si y solo si $\langle u, w \rangle = \langle v, w \rangle$ para todo $w \in V$.
- 5. Dar un ejemplo en \mathbb{R}^2 de dos vectores linealmente independientes que no sean ortogonales y un ejemplo de dos vectores ortogonales que no sean linealmente independientes.
- 6. Dados los vectores $v_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$ y $v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, determinar qué par de vectores son ortogonales.
- 7. *a*) Verificar que los vectores $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ y $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ de \mathbb{R}^3 son ortogonales.
 - b) Determinar una base ortonormal de \mathbb{R}^3 donde dos de sus vectores son paralelos a los dados en el apartado anterior.
- 8. Dada la matriz

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix},$$

calcular:

- a) Un vector x ortogonal al espacio fila de A.
- b) Un vector y ortogonal al espacio columna de A.
- c) Un vector z ortogonal al espacio nulo de A.
- 9. Sea $\mathcal{C}([1,e])$, con el producto interno definido en el ejercicio 3.
 - a) Calcular ||f|| para $f(x) = \sqrt{2}$.
 - b) Hallar un polinomio de grado uno que sea ortogonal a g(x) = 1.

10. Sea
$$u = \left(\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{5}{6}\right)^T$$
 y sea $P = uu^T$.

- a) Probar que Pu = u.
- b) Probar que si v es ortogonal a u entonces Pv = 0.
- c) ¿Cuál es la dimensión de N(P)?. Encontrar una base para N(P).
- 11. Sea V un espacio vectorial sobre $\mathbb R$ con producto interno $\langle \cdot, \cdot \rangle$ y $||x|| = \langle x, x \rangle^{\frac{1}{2}}$. Si dim(V) = n y $\{v^1, \dots, v^n\}$ es un conjunto ortogonal de V, probar que:
 - a) $\{v^1, \ldots, v^n\}$ es una base de V.

b) Si
$$||v^i|| = 1$$
 para $i \in \{1, ..., n\}, ||x||^2 = \sum_{i=1}^n |\langle x, v^i \rangle|^2 \quad \forall x \in V.$

- 12. Sea $W = \langle \{v^1, \dots, v^p\} \rangle$. Mostrar que si x es ortogonal a todo v^j , para $j \in \{1, \dots, p\}$, luego x es ortogonal a todo vector en W.
- 13. En cada caso, mostrar que $\{u^1, u^2\}$ o $\{u^1, u^2, u^3\}$ es una base ortogonal para \mathbb{R}^2 o \mathbb{R}^3 respectivamente, y luego expresar a x como combinación lineal de la base correspondiente.

a)
$$u^1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $u^2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$.

b)
$$u^1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $u^2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$, $u^3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $x = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$.

14. Dados $u=(u_1,u_2), v=(v_1,v_2)\in\mathbb{R}^2$ definimos el producto interno:

$$\langle u, v \rangle = u_1 v_1 - u_2 v_1 - u_1 v_2 + 4u_2 v_2.$$

- a) Calcular $||e^1|| \ y ||e^1||$.
- b) Determinar el ángulo formado por los vectores e^1 y e^2 .
- c) Verificar la desigualdad de Cauchy-Swartz para $u = (u_1, u_2)$ y $v = e^1$.