

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : H01L 21/20	A1	(11) International Publication Number: WO 89/12318 (43) International Publication Date: 14 December 1989 (14.12.89)
(21) International Application Number: PCT/US89/01685		(74) Agents: DURAISWAMY, Vijayalakshmi, D. et al.; Hughes Aircraft Company, P.O. Box 45066, Bldg. C1, MS A126, Los Angeles, CA 90045-0066 (US).
(22) International Filing Date: 24 April 1989 (24.04.89)		
(30) Priority data: 201,809 2 June 1988 (02.06.88) US		(81) Designated States: DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, NL (European patent).
(71) Applicant: HUGHES AIRCRAFT COMPANY [US/US]; 7200 Hughes Terrace, Los Angeles, CA 90045-0066 (US).		
(72) Inventors: WELKOWSKY, Murray, S. ; 19730 Romar Street, Chatsworth, CA 91311 (US). VASUDEV, P.K. ; 290 Autumnwood Street, Thousand Oaks, CA 91360 (US). REIF, Philip, G. ; 22346 Mayall Street, Chatsworth, CA 91311 (US). GOODWIN, Norman, W. ; 5086 Gaynor Avenue, Encino, CA 91436 (US).		

(54) Title: OPTICALLY FLAT SURFACES ON PROCESSED SILICON WAFERS

(57) Abstract

A method for producing optically flat thin semiconductor wafers (12) bonded to a substrate (16). The wafer (12) is bonded without touching the top surface of the wafer (12). Also, the bond is created without the use of pressure. Electrostatic bonding, or contact bonding or both may be employed. After the wafer (12) is bonded it is then polished to a desired thickness and flatness. After contact bonding and polishing the wafer (12) may then be removed for further processing. The wafer may then be contact bonded to a final substrate (34) or electrostatically bonded to a final substrate (42). The contact bonding technique may also be employed as a means for holding the wafer (12) during precise photolithography. The optical flatness achieved permits improved yields over conventional means for securing wafers during photolithography. The electrostatic bonding technique permits extremely thin optically flat silicon wafers to be produced.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Malí
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Fasso	HU	Hungary	NO	Norway
BG	Bulgaria	IT	Italy	RO	Romania
BI	Benin	JP	Japan	SD	Sudan
BR	Brazil	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	LI	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LU	Luxembourg	TG	Togo
DE	Germany, Federal Republic of	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		
ES	Spain				

-1-

OPTICALLY FLAT SURFACES ON PROCESSED SILICON WAFERS

1 CROSS-REFERENCE TO RELATED APPLICATIONS

The invention described herein has subject matter which is related to the application entitled "Planarization of Fiber Optic Faceplates," by James 5 Hayden, which is assigned to the same assignee as the present invention.

BACKGROUND OF THE INVENTION

10 1. Field of the Invention

The present invention pertains generally to semiconductor wafers and in particular to a method for producing and bonding optically flat silicon wafers.

15 2. Description of the Related Art

Semiconductor material such as silicon is used in several types of optical devices. Silicon, whether in wafer or chip form, is utilized most frequently for its electrical properties. In some devices, however, both the electrical and optical properties of the silicon material are important. An example of such a device is a silicon liquid crystal light valve, such as the one described in U. S. Patent No. 3,824,002 to Terry D. Beard, entitled "Alternating Current Liquid Crystal Light Valve" and assigned to the same assignee as the present invention. Such a device utilizes a very thin silicon wafer, about five mils thick and about two inches in diameter. It is important that a silicon wafer in a liquid crystal light valve have good optical flatness

-2-

1 such as one quarter wavelength or better. It has been
found that because the wafer is very thin and somewhat
flexible and because of the limitations in polishing
techniques, the resulting flatness of the wafers has been
5 less than ideal. Specifically, peak-to-valley deviations
are typically on the order of five microns on each side.
Because the flatness deviations on one side are
independent of those on the other side of the wafer, the
thickness variations may be as much as ten microns. In a
10 liquid crystal light valve, it is preferred that the
surface of the wafer should be flat to within one micron.

One improved method of producing optically flat
silicon wafers is described in U. S. Patent No. 4,470,856
issued to Little et al. and assigned to the same assignee
15 as the present invention. U. S. Patent No. 4,470,856
teaches a method for hydrostatically flattening a silicon
wafer by pressing the silicon wafer with an optical flat
onto a flat baseplate and utilizing a fluid adhesive to
secure the wafer to the baseplate. While this method
20 does produce a bonded wafer with acceptable optical
flatness, it has some drawbacks. When used in a liquid
crystal light valve, the silicon wafer may have a
dielectric mirror deposited on its top surface. If the
mirror is deposited on the wafer before the hydrostatic
25 flattening operation, contact of the optical flat with
the mirror can produce defects in the mirror. If the
mirror is deposited after the hydrostatic flattening
operation, the fluid adhesive generally cannot withstand
the high temperatures necessary for subsequent deposition
30 of the mirror. Also, the layer of glue may distort the
resulting image in a liquid crystal light valve if it is
not completely uniform in thickness.

In addition, if the wafer has been processed in
other ways such as gate oxidation, before bonding to a
35 baseplate, the uneven surface on the wafer caused by such

-3-

1 processing will cause the wafer to deform when it is
pressed by the optical flat. As a result, any means of
attaching the processed wafer to a base plate involving
the application of non-uniform pressure is likely to
5 cause unacceptable deformities or defects in the wafer.
Thus, it would be desirable to provide a method of
producing an optically flat silicon wafer and bonding the
wafer without an adhesive or the application of
non-uniform pressure or contact with the top surface of
10 the wafer.

Applicant has found that certain advantages result when a technique known as electrostatic bonding is used in the production of optically flat silicon wafers. The technique of electrostatic bonding is described, for example, in U. S. Patent No. 4,680,243 issued to Shimkunas et al. on July 14, 1987 and the article by P. R. Younger, "Hermetic Glass Sealing By Electrostatic Bonding", Journal of Non-Crystalline Solids, 38 and 39, North-Holland Publishing Company, (1980), 904-914. As discussed in the Younger article, electrostatic bonding is a field assisted sealing technique which requires high temperature to produce ionic conductivity within the glass and high voltage to promote ion migration which allows bond formation to take place. While the exact mechanism of the resulting bond is not well understood, it is believed that an ion exchange occurs during the bonding process. Prior uses of electrostatic bonding have been directed to addressing problems other than the optical flatness of the resulting surface. For example, see U.S. Patent No. 4,294,602, issued to Horne, which describes a method of electrostatically bonding a borosilicate glass to silicon to protect solar cells from damage due to ultraviolet light. See also the article by M.B. Spitzer et al., "Development of an Electrostatically Bonded Fiber Optic Connection Technique", IEEE Journal of Quantum Electronics, QE18, IEEE (1982), 1584-1588, the

-4-

1 article by G. Wallis et al., "Field Assisted Glass-Metal
Sealing", Journal of Applied Physics, 10 (1969)
3946-3949, and the article by R.C. Frye, et al., "A
field-Assisted Bonding Process for Silicon Dielectric
Isolation", J. Electrochem. Soc.: Solid-State Science
5 and Technology, 133 (1986) 1673-1677.

In addition to the above examples, optical flatness is a problem with thin semiconductor wafers even where the device produced only utilizes the electrical properties of the wafer and the final optical characteristics are not critical. For example, in producing many semiconductor devices, precise photolithography techniques are required. Currently, such techniques utilize a vacuum chuck to hold the wafer during the photolithography process. However, it is known that vacuum chucks deform the surface of the wafers in the area where the vacuum is pulling on it. Consequently, during precise photolithography where geometries of three microns or under may be achieved, deviations from flatness caused by the vacuum chuck can cause defects in the devices produced. This is because, for example, when using a production system with a low depth of field, photomasks may not make a good contact over the entire surface of the wafer. Thus, in a four-inch wafer containing a large number of individual circuits, a circuit formed in the area where there is a depression in the wafer will likely be defective. As a result, conventional methods of mounting a thin semiconductor wafer during photolithography limits the size of the individual defect-free circuit which can be produced. This limitation is also a barrier to the goal of achieving wafer scale integration on thin wafers.

Thus, it would be desirable to have a method for temporarily securing a thin flexible semiconductor wafer in a manner which maintains optical flatness during

-5-

1 precision photolithography. Such a method would also be useful in any process which requires a semiconductor wafer to be optically flat and which also requires the wafer to be removed without damaging it.

5.

SUMMARY OF THE INVENTION

In the present invention, a thin flexible semiconductor wafer is attached to a baseplate in a manner which maintains optical flatness without the need for applying pressure. The bottom surface of the wafer and the top surface of the baseplate are first cleaned so that they are free of particles. The bottom surface of the wafer is brought into direct intimate contact with the top surface of the baseplate without the application 10 of pressure. Also, the top surface of the wafer is not touched. Finally, the top surface of the wafer can then be ground and polished or processed in a desired manner 15 without deforming or otherwise damaging the wafer.

In one embodiment of the invention, the semiconductor wafer is bonded to a glass substrate using 20 an electrostatic bonding technique. This technique involves the application of heat and voltage to the semiconductor wafer and the glass substrate. The co-efficient of thermal expansion of the glass substrate must be well matched to that of the wafer over a 25 temperature range up to and including the highest processing temperature encountered during wafer processing. The semiconductor wafer used is relatively thick, approximately ten to fifteen mils. The increased thickness decreases the chance of wafer breakage during 30 handling. Also, all bottom side processing is completed prior to the bonding process. Once the electrostatic bonding procedure is complete, the top side of the wafer may then be ground and polished to whatever thickness is

-6-

1 desired. An important advantage is that the resulting thickness can now be determined by performance criteria rather than by mechanical handling restraints. Finally,
5 the wafer may then be processed on the front side using such high-temperature techniques as mirror deposition or gate oxidation. The electrostatic bonding technique permits higher temperature processing than those bonding techniques involving adhesives because adhesives may soften at higher temperatures. In addition, in bonding
10 techniques which involve the application of adhesives, the layer of adhesive may distort the resulting image in a device such as a liquid crystal light valve. Also, because the technique need not involve the application of pressure or direct contact with the top surface, there
15 will be less likelihood of damage to a wafer from such mechanical handling or non-uniform, defect-producing pressure.

20 In a second embodiment of the present invention, a technique called contact bonding is utilized to produce optically flat processed semiconductor wafers. Like electrostatic bonding, contact bonding does not use pressure or adhesives. Another advantage of contact bonding is that the two surfaces bonded by contact bonding may be separated. This permits the use of
25 contact bonding during an intermediate step in the production of optically flat silicon wafers.

30 In accordance with the second embodiment of the present invention, a thin semiconductor wafer in an unprocessed state is provided with a smooth surface finish, free of orange peel or artifacts. An optically flat carrier substrate, also with a smooth surface finish, is provided. The top surface of the carrier substrate and the bottom surface of the semiconductor wafer are then cleaned so that there are no particles on
35 the surfaces. These two surfaces are then brought together with very light pressure until spontaneous

-7-

1 contact bonding occurs. The two surfaces, in effect, are
attracted to each other by surface molecular forces. The
result is a relatively strong bond with no air gap
between the two surfaces. Once the wafer is contact
bonded to the substrate, it may then be polished and
5 ground to the required thickness and flatness.

Next, the wafer may be removed from the
substrate by simply peeling it off. The loose wafer can
then be processed by using a variety of techniques,
including high-temperature processes such as mirror
10 deposition, boron diffusion, drive-in temperature
cycling, etc. Then, the wafer may be contact bonded to
the final substrate. The flexible semiconductor wafer
will now stick to the substrate and will conform to that
substrate and will also maintain the top surface which
15 was achieved when it was polished while bonded to the
first substrate. Thus, if the wafer was originally
polished to a one quarter wavelength finish while bonded
to the first substrate, it will have a quarter wavelength
finish when bonded to the final substrate. At any stage
20 in the above processes, the wafer may have critical
photolithography done after contact bonding the wafer
again to a flat substrate.

The result is an optically flat, thin
semiconductor wafer which is bonded to a substrate
25 without the use of an adhesive, and without the
application of extreme temperatures or pressures. The
contact bond is strong enough to be used as a permanent
bond in a final optical device, such as a liquid crystal
light valve. A further advantage is that the
30 semiconductor wafer may be removed from the substrate in
the device at a later time for eventual re-use or repair.

In a third embodiment of the present invention,
after the wafer is fully processed as in the second
embodiment, but before the final contact bonding step,

-8-

1 one face of the wafer which has been coated with oxide is
contact bonded to a suitably finished carrier baseplate.
This may be an optical flat baseplate. The unattached
5 face of the wafer is then bonded to the final substrate
with an optically clear adhesive. The carrier baseplate
is then removed from the wafer, and a surface such as a
mirror is applied to the wafer. While there may be some
loss of resolution due to the input light spreading in
the adhesive and also due to imprecise focusing through
10 the adhesive when the adhesive thickness is not uniform,
there are some applications wherein the resolution
requirements are not stringent and can be adequately met
with an adhesive bond. The loss of resolution has to be
balanced with the advantages of this embodiment. For
15 example, in the second embodiment, where contact bonding
is employed in a liquid crystal light valve, the wafer
thickness will dictate the uniformity of the liquid
crystal layer. However, this limitation is overcome in
the third embodiment by the adhesive layer which can
20 compensate for variations in wafer thickness.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

FIG. 1 is a cross-sectional view of an
25 apparatus for electrostatically bonding a silicon wafer
to a glass substrate in accordance with the first
embodiment of the present invention.

FIG. 2 is a cross-sectional view of a second
embodiment of the present invention showing a silicon
30 wafer and a glass substrate before and after the wafer is
contact bonded to the carrier substrate.

FIG. 3 is a cross-sectional view of the silicon
wafer bonded to the carrier substrate after the top
surface of the wafer has been ground and polished in
35 accordance with the second embodiment.

-9-

1 FIG. 4 is a cross-sectional view of the silicon
wafer after it has been removed from the carrier
substrate for further processing in accordance with the
second embodiment.

5 FIG. 5 is a cross-sectional view of the silicon
wafer and the final substrate before and after they have
been contact bonded together in accordance with the
second embodiment.

10 FIG. 6 is a cross-sectional view of a silicon
wafer contact bonded to a carrier and bonded with an
adhesive to a baseplate in accordance with the third
embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

15 Referring now to the drawings in more detail,
FIG. 1 is a cross-sectional view of an apparatus 10 for
electrostatically bonding a wafer of semiconductor
material, such as silicon, to a glass substrate and
producing an optically flat surface on the wafer. In
20 accordance with the first embodiment of the present
invention, a wafer 12 of silicon or other suitable
material in a relatively thick state is processed on its
bottom side 14 only. For example, a silicon wafer 12
with a thickness of 10 mils or greater can be used.
25 Because of the thickness of the wafer 12, there is a
reduced likelihood of the wafer 12 being broken during
handling. Prior to processing, the wafer 12 is optically
polished on the bottom side 14. A glass substrate 16 is
provided. The glass substrate is composed of a glass
30 which has a coefficient of thermal expansion as close as
possible to that of the wafer 12 over the temperature
range to which the wafer 12 and glass 16 combination will
be exposed. For example, when the wafer 12 is made of
silicon, a suitable glass would be Corning Code 1729.
35 Conventional thermal oxide processing is preferably

-10-

1 avoided because such processing typically requires
temperatures of 900 - 1000°C for reasonable growth rates,
and at these temperatures, the wafer can easily become
distorted. "Distortion" is used herein to denote lack of
5 optical flatness. For typical optical processing
applications, a high degree of flatness is typically
required. As discussed later, surface flatness
requirements vary and can be as stringent as one tenth of
a wavelength (/10). The highest temperature employed is
10 typically for the anneal step for implant activation.
Annealing temperatures are generally about 600°C to
700°C, depending on the level of activation required. If
PECVD or anodic oxide processing is used instead of
conventional thermal oxide processing, lower oxide
15 processing temperatures on the order of 450°C will be
typically used.

In any event, the substrate and wafer must have
good coefficient of thermal expansion matching, not only
at room temperature and temperatures encountered during
20 the bonding process, but also at least up to the highest
processing temperatures. Corning glass, Code 1729, is
mentioned here only as an example. In practice, other
suitable materials which meet the coefficient matching
criteria may be used. Further, for optical processing
25 applications, in, for example, a LCLV, the substrate has
to be transparent and therefore, glass is identified here
as an example.

The glass substrate 16 has a thickness which is
chosen on the basis of the overall rigidity requirements
30 for the finished product. In the case of a liquid
crystal light valve, this thickness may be about 100
mils. Further considerations in choosing the glass
include that the melting point must be high enough to
permit later high-temperature processing steps. For
35 example, these later processing steps may include

-11-

1 processing at temperatures up to 700°C. The melting
point of Corning Code 1729 glass is sufficiently higher
than 700°C to permit such processing. It has been found
that a flatness of one half wavelength can be maintained
5 with processing up to 700°C. Limiting the processing to
600°C will result in flatness from one quarter to one
tenth wavelength depending on the initial polishing.

Before placing the wafer 12 on the glass
substrate 16, it may be desirable to deposit a layer of
10 SiO₂ on the wafer bottom surface 14. This is because
electrostatic bonding depends on bonding of oxygen atoms.
Thus, because the glass is essentially SiO₂, a better
bond will result between two SiO₂ surfaces. It is
possible, however, to electrostatically bond the silicon
15 wafer 12 to the glass substrate 16 without first coating
the wafer bottom surface 14 with SiO₂. This is because
even after cleaning, the silicon wafer 12 will almost
immediately form a very thin native oxide layer which
provides the oxygen atoms necessary to bond to the glass
20 substrate 16. Nevertheless, it is preferable to use the
silicon oxide layer to produce a better bond.

In some applications, an additional coating of
a nitride barrier layer may be necessary. This is
because the electrostatic bonding process will cause
25 sodium atoms in the glass substrate 16 to migrate through
to the silicon. The migrating sodium atoms can
drastically alter the conductivity of the silicon.
Therefore, in applications such as in integrated circuits
where such alteration of the conductivity of the silicon
30 has to be avoided, a barrier layer may be used to prevent
sodium atoms from entering the silicon wafer 16. In
liquid crystal light valves, the conductive requirements
of the silicon layer are less stringent and the barrier
layer may not be necessary. Thus, the nitride barrier
35 may be employed if needed for a particular application.

-12-

1 The nitride barrier layer may be applied to either the wafer 12 or the glass substrate 16. It has been found that it is more conveniently applied to the wafer 12.

5 A further consideration when using the nitride barrier layer is that this layer cannot be electrostatically bonded to another surface. For electrostatic bonding, it must be coated with an oxide layer such as SiO_2 . This is because the nitride layer is very dense and will not permit the transfer of oxygen atoms necessary for electrostatic bonding.

10 Once the required layers are applied, the wafer 12 may then be placed on top of the glass substrate 16. No pressure is required. The glass substrate 16 is then placed on a plate 18 made of metal or other electrically conductive material. Heat is then applied to the wafer 12, the glass 16 and the plate 18 until the temperature stabilizes near the annealing point of the glass 16. This may be about 500 to 600°C. The positive terminal of a DC voltage source 20 is then connected by means of conductor 22 to the wafer 12, and the negative terminal is attached by means of conductor 24 to the metal plate 18. A voltage roughly with a magnitude in the range of 600 - 1200 volts, and preferably about 1000 volts is applied. The preferred voltage magnitude will depend on factors such as the type of glass used, the resistance of the contacts, and bonding temperature. While holding the voltage constant, it will be observed that the current level will drop and then begin to stabilize in about 15 minutes. This current drop is evidence of the ion exchange between the two surfaces. After about 15 minutes, the voltage source may be removed and the wafer 12 and glass substrate 16 allowed to cool.

35 The bond thus created between the wafer and the glass substrate 16 is very strong and is permanent. In tests, it has been found that the glass substrate 16 will

-13-

1 fracture before the wafer 12 separates from it. Because
of the strength of this bond, the wafer 12 can now be
polished down to a very small thickness, such as 30
5 microns or smaller. The force generated during polishing
will not destroy the bond. This is desirable in devices
such as a liquid crystal light valve because resolution
can be improved by using thinner silicon wafers. A
thickness on the order of 30 microns will optimize
resolution without sacrificing contrast. However,
10 various thicknesses can be used, depending on specific
performance requirements.

In polishing the wafer 12 to achieve the
desired thickness, the wafer 12 can also be polished to
the desired flatness. Using the above techniques, a
15 surface flatness of one tenth wavelength, measured with
light of a wavelength of .632 microns, has been achieved
over most of the active area of the silicon wafer 12.
For example, this area extends to within 0.15 inches of
the wafer edge. As used in the present application, the
20 measure of optical flatness is in relationship to
measurements made with a He-Ne laser having a wavelength
of 0.632 microns.

The top surface of the wafer 12 may now be
processed in any manner desired. This may include the
25 use of high-temperature processes up to 700°C. Depending
on the device, this processing may include, for example,
guard ring, microdiodes, gate oxide or mirror deposition.
One advantage of this embodiment is that the wafer is not
handled in a thin state but instead all processing steps
30 are accomplished either when the wafer is thick, before
bonding, or while attached to the glass substrate 16.
Thus, the likelihood of breaking the wafer 12 is greatly
reduced. During handling of thin wafers, for example, 5
mils thick, due to breakage, typical yields are on the
35 order of 30 - 40%. However, with wafers electrostatically

-14-

1 bonded to a thick glass support, yields as high as 90%
and greater can be achieved. Another advantage is that
the final thickness is not restricted by the ability to
handle the thin wafer 12. Also, since no adhesive is
5 used, the wafer can be processed at extremely high
temperatures. If an adhesive is used, processing at high
temperatures could result in problems due to softening of
the adhesive. Further, there is no layer of adhesive to
affect the resulting optical quality. By means of the
10 method of the present invention, it has been found that
electrostatic bonding may be successfully employed to
produce silicon wafers with superior optical
characteristics, specifically optical flatness. Optical
flatness is important because it directly determines the
15 uniformity of an optical image. In liquid crystal light
valves it has been found that the above electrostatic
bonding technique has permitted either an increased
aperture size or a decrease in thickness to improve
resolution.

20 While the electrostatic bond in the above
embodiment is virtually indestructible, in some cases it
is desirable to be able to remove the wafer once it is
attached. Thus, in accordance with the second embodiment
25 of the present invention, there is a method for providing
an optically flat silicon wafer which employs a bonding
technique that permits the wafer to be easily removed.
This technique is called contact bonding. Referring now
to FIG. 2a there is shown an unprocessed silicon wafer 26
which may have, for example, a thickness of .010 inches.
30 A carrier substrate 28 is also shown which is composed of
a glass which preferably has a coefficient of thermal
expansion which is matched to that of the silicon wafer
26. The top surface 30 of the carrier substrate 28 is
polished to be optically flat, for example, to within one
35 quarter wavelength. It is important that both the top

-15-

1 surface of the carrier substrate 30 and the bottom of the
wafer 26 have good surface finishes free of orange peel
or artifacts.

5 The top surface 30 of the glass substrate 28
and the bottom surface of the wafer 26 are cleaned so
that they are free of particles. To achieve the desired
degree of cleanliness, cleaning should be done in a clean
room atmosphere. The wafer 26 is then brought into
contact with the carrier substrate 28. Once contact is
10 made at a single point, molecular forces of attraction
will cause the two surfaces to attach without any air
gaps between them. The result is shown in FIG. 2b.
While the bottom surface of the wafer 26 will conform to
the flat top surface 30 of the carrier substrate 28, it
15 can be seen that the top surface 32 of the wafer 26 is
not smooth but instead is wavy. This is because the
silicon wafer is thin and flexible and non-uniform in
thickness and conforms to the top surface 30 of the
carrier substrate 28.

20 The wafer 26 is then polished in a conventional
manner to the desired thickness and optical flatness.
For example, the wafer 26 may be polished until a
thickness of .005 inches and a flatness of one quarter
wavelength is achieved. The polishing must be performed
25 carefully to ensure that forces on the wafer 26 do not
break the bond between it and the carrier substrate 28.
The wafer 26 and carrier substrate 28 are shown after
polishing in FIG. 2. It can be seen that the top surface
32 is now flat.

30 The wafer 26 is now ready for processing. Some
processing steps may be performed while the wafer is
still attached to the substrate 28. For example,
precise photolithography may be successfully performed.
Since the top surface 32 of the wafer 26 is optically
35 flat, photolithography employing geometries below 3
microns, for example, may be successfully performed.

-16-

1 Yields should be relatively high when compared with conventional methods of holding thin wafers during photolithography, for example the vacuum chuck method. This is because vacuum chucks distort the surface of a
5 thin wafer and cause the photomask image to be distorted.

As shown in FIG. 4, the wafer 26 may next be removed from the carrier substrate 28 by simply peeling off the wafer 26. The wafer 26 may then have various processing steps performed. These may include, for
10 example, mirror deposition, boron diffusion and drive-in temperature cycling. These processing steps may be employed at temperatures as high as 1,000°C without damaging the wafer 26. It is notable that since the wafer 26 is unbonded, higher processing temperatures are
15 permissible than would be possible if the wafer were bonded with conventional techniques or with the techniques employed in the first embodiment of this invention.

Referring now to FIG. 5a, once all the
20 processing steps are complete, the wafer 26 may be cleaned and attached to the final substrate 34 by the same contact bonding technique as discussed in connection with FIG. 2. The final substrate 34 must have a good surface finish, must be free of particles and may consist
25 of the original carrier substrate 28 or another optically flat or other suitable substrate, such as a fiber optic face plate. If the final substrate 34 is a fiber optic faceplate, it is preferable to have the surface of the fiber optic faceplate planarized. A planarization
30 technique for fiber optic faceplates is described in a commonly assigned patent application entitled "Planarization of Fiber Optic Faceplates" by James W. Hayden, filed concurrently herewith, Serial No. (Attorney Docket No. PD 87051). As shown in FIG. 5b, once the
35 wafer 26 is contact bonded to the final substrate 34, the

1 flexible wafer will conform itself to the surface of the
final substrate 34. Alternatively, the wafer 26 may be
electrostatically bonded to the substrate 34. Because of
the prior processing steps, the top surface 32 of the
5 wafer 26 will now conform to the original flat contour
that it had after the polishing steps discussed in
connection with FIG. 3. Thus, it is an advantage that no
further steps are necessary to restore the prior
flatness. Also, no contact or pressure is now required
10 to achieve a bond. This is an advantage because the top
surface 32 might now have a mirror or other surface which
would be distorted or damaged by direct contact or by the
application of pressure. Where the wafer is to be used
in a liquid crystal light valve, it is important that the
15 thickness of the wafer be very uniform after polishing.
This is because the wafer thickness will dictate the
uniformity of the liquid crystal layer.

An additional advantage is that no adhesive is
used. Use of adhesives can reduce the optical quality
20 and resolution of the final product. The bond thus
created between the wafer 26 and the final substrate 34
is strong enough to be used permanently, for example in a
liquid crystal light valve. The contact bonding
technique has the further advantage of permitting the
25 wafer 26 to be removed at a later time for recycling or
repair.

Previously, the phenomena of contact bonding
has been used, for example, to attach a rigid optical
device, such as a prism, to a larger tool to hold the
30 device during polishing. However, by using the method of
the present invention, it has been found that thin,
flexible optically flat semiconductor wafers can now be
produced. This is because the thin wafer conforms to the
substrate surface when contact bonded to it, and after

-18-

1 polishing and removal, it conforms to the original
polished surface when re-contact bonded to a substrate.

Referring now to FIGS. 6A through 6C, a third embodiment of the present invention is shown. This embodiment incorporates contact bonding as in the second embodiment, but also utilizes an adhesive for the final bond. In FIG. 6A, a thin semiconductor wafer 36 is shown after it has been fully processed. These processes may include traditional processing methods, including high-temperature thermal oxide. The oxide coated face of the processed wafer 36 is then contact bonded to a suitably finished carrier baseplate 38. This baseplate 38 is preferably an optical flat. Referring now to FIG. 6B, the unattached face of the wafer 36 is then bonded 10 using a layer of adhesive 40 to a final substrate 42. The adhesive 40 may comprise an optically clear adhesive such as certain epoxies. The final substrate 42 may be a glass baseplate or a fiber optic faceplate. Once the adhesive layer 40 is fully cured, the carrier baseplate 15 38 may be removed. Removal is best accomplished by applying slow, steadily increasing pressure with a fixture, to avoid tangential slippage that might damage the wafer surface. To further prevent damage, a very thin layer of photoresist or other suitable material may 20 be first applied to the wafer 36 by spinning or other means to ensure uniformity. Once the carrier baseplate 38 is removed from the wafer 36, a dielectric mirror surface 44 may be applied to the wafer 36. The mirror surface 44 must be applied using a deposition temperature 25 which remains below the distortion temperature of the adhesive. It has been found that temperatures of 200°C are suitable for the epoxies used, and a flatness of one quarter wavelength has been maintained using these 30 temperatures. One advantage of this embodiment is that 35 when a fiber optic faceplate is used for the final

-19-

1 substrate 42 it does not have to be planarized before an
adequate bond can be achieved. Further, this technique
overcomes one limitation of contact bonding, namely, that
the thickness of the wafer has to be very uniform after
5 polishing. This is because the wafer will dictate the
uniformity of the liquid crystal layer when the wafer is
used in a liquid crystal light valve. Wafer uniformity
is not as critical in the third embodiment because the
adhesive layer 40 compensates for differences in wafer
10 thickness.

Other variations of the above embodiments may
be successfully employed depending on the final device to
be produced. For example, where a stronger final bond is
required, the final step of bonding in the second
15 embodiment may employ electrostatic bonding instead of
contact bonding. In addition, the wafer 26 shown in FIG.
5 may be flipped over before final bonding to produce the
desired finish and processing steps on both sides of the
wafer 26. Also, it may be desired to produce a device
20 having a silicon wafer with a curved rather than a flat
contour. In this case, all of the above embodiments may
be successfully employed to produce a curved surface with
surface contours that are very uniform to within, for
example, one quarter wavelength. Those skilled in the
art will come to appreciate that other advantages and
25 modifications of the particular examples set forth herein
are attainable without departing from the spirit of the
invention as defined in the following claims:

-20-

CLAIMS

Claimed is:

1. A method of bonding a bottom surface of a conductor wafer to a top surface of a substrate, said comprising:

cleaning the bottom surface of the wafer top surface of the substrate;

bringing the bottom surface of the wafer into intimate contact with the top surface of the substrate until bonding occurs between the two surfaces, avoiding contact with the top surface of the wafer;

polishing the top surface of the wafer for optical flatness so that the optical characteristics of the wafer are not distorted and the flatness is retained after further processing of the wafer.

2. The method of Claim 1 further comprising:

removing the wafer from the substrate after step of polishing the top surface of the wafer;

performing desired high-temperature annealing to the wafer; and

10 bringing the bottom surface of the wafer to the top surface of the substrate together until they are at least at a point and spontaneous contact bonding occurs between the surfaces, such that the top surface of the wafer remains optically flat.

-21-

1 3. The method of Claim 2 further comprising:
 providing a second substrate;
 bonding the second substrate to the top
 surface of the wafer using an optically transparent
5 adhesive; and

 removing the first substrate from the
bottom surface of the wafer.

1 4. The method of Claim 1 wherein the
 substrate is a glass substrate and the semiconductor
 wafer is a silicon wafer, and the glass and silicon have
 coefficient of thermal expansion matching during the
5 steps of bonding and further processing and wherein the
 step of bringing the wafer into intimate contact with the
 substrate further comprises the steps of:

 heating the wafer and the substrate;
 applying a direct current voltage to the
10 wafer and to the substrate until the current therethrough
 stabilizes; and

 removing the heat and the voltage, whereby
 an electrostatic bond is created between said wafer and
 said substrate.

1 5. The method of Claim 4 wherein after the
 electrostatic bond is created, the silicon wafer is
 ground to a thickness of about .010 inches or less.

1 6. The method of Claim 4 wherein the step of
 applying a direct current voltage comprises applying a
 voltage of about 1,000 volts for about 15 minutes, and
 the step of heating the wafer and the substrate further
5 comprises the step of heating the wafer and the substrate
 to a temperature that is near the annealing point of the
 substrate material.

-22-

- 1 7. A method for providing a thin optically
flat processed silicon wafer comprising:
 providing an optically flat substrate;
 cleaning the bottom surface of the silicon
5 wafer;
 cleaning the top surface of the optically
flat substrate;
 placing the bottom surface of the silicon
wafer onto the top surface of the optically flat
10 substrate with light pressure until spontaneous contact
bonding occurs between the two surfaces;
 polishing the top surface of the silicon
wafer until the silicon wafer has a thickness of about
.010 inches or less and an optical flatness of about
15 one wavelength or better;
 removing the silicon wafer from the
substrate;
 performing a desired processing to the
loose silicon wafer;
20 providing a final substrate having an
optically flat top surface; and
 placing the bottom surface of the silicon
wafer onto the top surface of the final substrate with
light pressure until spontaneous contact bonding occurs
25 between the two surfaces, whereby the top surface of the
silicon wafer conforms to the desired optical flatness.
- 1 8. The method of Claim 7 wherein the desired
processing comprises depositing a dielectric mirror
surface on the top surface of the silicon wafer.

-23-

1 9. A method for providing a thin optically
flat processed silicon wafer comprising:
 providing an optically flat substrate;
 cleaning the bottom surface of the silicon
5 wafer;
 cleaning the top surface of the optically
flat substrate;
 placing the bottom surface of the silicon
wafer onto the top surface of the optically flat
10 substrate with light pressure until spontaneous contact
bonding occurs between the two surfaces;
 polishing the top surface of the silicon
wafer until the silicon wafer is about .010 inches thick
or less and has an optical flatness in the range of a
15 wavelength to one-tenth of a wavelength or better;
 removing the silicon wafer from the
substrate;
 performing desired processing to the loose
silicon wafer;
20 providing a final substrate having an
optically flat top surface; and
 placing the bottom surface of the silicon
wafer onto the top surface of the final substrate; and
 heating the silicon wafer and the
25 substrate while applying a direct current voltage across
the wafer and the substrate, whereby an electrostatic
bond is created between the wafer and the substrate.

-24-

1 10. A method of producing a device having an
optically flat thin silicon wafer bonded to a glass
substrate having a coefficient of thermal expansion which
is matched to that of the silicon wafer, said method
5 comprising:

coating the silicon wafer on its bottom surface
with SiO_2 ;

10 bringing the bottom surface of the silicon
wafer into intimate contact with the substrate without
direct contact with the top surface of the silicon wafer;

heating the silicon wafer and the substrate to
a temperature which is near the annealing point of the
glass substrate;

15 applying a direct current voltage of about
1,000 volts across the wafer and the substrate until the
current thereby produced lowers and stabilizes, whereby
an electrostatic bond is created between the wafer and
the substrate; and

20 polishing the silicon wafer to the desired
optical flatness.

-25-

- 1 11. A method for providing a thin optically
flat processed silicon wafer for use in a liquid crystal
light valve comprising:
- 5 providing an optically flat substrate;
 cleaning the bottom surface of the silicon
wafer;
 cleaning the top surface of the optically flat
substrate;
 placing the bottom surface of the silicon wafer
onto the top surface of the optically flat substrate with
10 light pressure until spontaneous contact bonding occurs
between the two surfaces;
- 15 polishing the top surface of the silicon wafer
until the silicon wafer is a desired thickness and
desired optical flatness;
- removing the silicon wafer from the substrate;
 performing at least one desired processing step
to the loose silicon wafer;
- providing a final substrate having an optically
flat top surface; and
- 20 placing the bottom surface of the silicon wafer
onto the top surface of the final substrate with light
pressure until spontaneous contact bonding occurs between
the two surfaces whereby the top surface of the silicon
wafer conforms to the desired optical flatness.

1/3

FIG. 1.FIG. 2A.FIG. 2B.FIG. 3.

2/3

4.

3/3

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 89/01685

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC⁴: H 01 L 21/20

II. FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols
IPC ⁴	H 01 L

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	I.E.E.E. Electron Device Letters, vol. EDL-8, no. 4, April 1987, IEEE, (New York, US), L.J. SPANGLER et al.: "A technology for high-performance single-crystal silicon-on-insulator transistors", pages 137-139 see pages 137,138, section II: "Device Fabrication" -----	1,7,10
A	US, A, 4285714 (A.R. KIRKPATRICK) 25 August 1981 -----	

- * Special categories of cited documents: ¹⁰
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
12th July 1989

Date of Mailing of this International Search Report

31.07.89

International Searching Authority

Signature of Authorized Officer

EUROPEAN PATENT OFFICE

P.C.G. VAN DER PUTTEN

ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. US 8901685
SA 28171

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 21/07/89
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 4285714	25-08-81	None	