□ eExam Question Bank	
Coursecode:	
Choose Coursecode	•
□ Delete Selected Questions	□Assign Selected Questions to eExam
Show 150 ▼ entries	
	Search:

Question Type	Question	A	B 0
MCQ	Expand Sinh x by using Maclaurin series	$x + \frac{2i}{x_3} + \frac{2i}{x_2} + \frac{7i}{x_3} + \cdots$	$\frac{x^2}{1+x+2!} + \frac{x^2}{2!} + \frac{x^3}{5!} + \cdots$
MCQ	Expand COS x by using Maclaurin series	$1 + x + \frac{\overline{x^2}}{2!} + \frac{\overline{x^2}}{x^2} + \frac{\overline{x^3}}{5!} + \cdots$	$1 - x - \frac{\overline{x^2}}{2!} - \frac{\overline{x^2}}{2!} - \frac{\overline{x^3}}{5!} - \cdots$
MCQ	Give the first few terms of sin x using Maclaurin series	$x + \frac{2i}{x_3} + \frac{2i}{x_2} + \frac{1}{x_4} + \cdots$	$1 + x + \frac{\overline{x^2}}{2!} + \frac{\overline{x^2}}{2!} + \frac{\overline{x^3}}{5!} + \cdots$
MCQ	The product of e^{2x} and e^{-x} can be written as	$1 + x + \frac{\overline{X}^2}{2!} + \frac{\overline{X}^2}{2!} + \frac{\overline{X}^3}{3!} + \cdots$	$1 - x - \frac{\overline{x^2}}{2!} - \frac{\overline{x^2}}{2!} + -\operatorname{fracx}^3 3! - \cdots$
MCQ	Find limit $\lim_{(x,y,z)-(1,2,5)} \sqrt[r]{(x+y+z)}$	2	3
	Evaluate the dsf dxs $f(x) = \sin(x)\cos(x)$	$d_3f = -4 (\cos_2(x) - \sin_2(x))$ dx	
	Find the value of in open interval (a, b) such that $f(x) = x(x_2 - x - 2), [-1, 1]$	c = -1 3	
	Let $f(x) = x_4 - 2x_2$. Find the all C where C is the interception on the x-axis) in the interval (-2, 2) such that $f(x) = 0$. (Hint use Rolle's theorem)	(-1, 0, 1)	
MCQ	Find the limit of $\lim_{(x,y)\to(2,4)}\frac{x+y}{x-y}$	1	2
	For $g(x) = x - 4$ x - 3 we can use the mean value theorem on [4, 6], Hence determine c	c = 3 ± √(3)	

2018			Untitled Document	
	MCQ	Find the limit of $\underset{(x,y)-(2,1)}{lim} \ x+3y^2$	4	5
	MCQ	The gradient of the tangent at any point (x,y) of the conic $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$	$\frac{dy}{dx} = -\frac{2ax + 2hy + 2g}{2by + 2hx + 2f}$	$\frac{dy}{dx} = \frac{2ax + 2hy + 2g}{2by + 2hx + 2f}$
		Given $f(x) = 3x(x - 1)5$ Compute $f'''(x)$	f''(x) = 180(x - 1)2(2x - 1)	
		Let $f(x) = x_4 - 2x_2$. Find the all C (where C is the interception on the x-axis) in the interval (-2, 2) such that $f'(x) = 0$. (Hint use Rolle's theorem)	(-1, 0, 1)	
		Compute the first thrre derivatives of $f(x) = 2x_5 + x_{32} - 1$ 2x	\[f(x)=10x^{4}-\frac{3}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 40x^{3}-\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{2}-\frac{1}{2}-\frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\	
		Find the two x-intercept of $f(x) = x_2 - 3x + 2$	x= 1, 2	
		Find limit $\lim_{(x,y,z)\to(1,2,5)} \sqrt{(x+y+z)}$	2√(2)	
	MCQ	Given the function $f(x,y)=tan^{-1}\frac{Y}{x}$, find f_{yy}	$f_{xy} = -\frac{2xy}{(x^2 - y^2)^2}$	$f_{xy} = -\frac{2xy}{(x^2 + y^2)^2}$
		Expand COS x by using Maclaurin series	\[1-\frac{x^{2}}{2!}+\frac{2x^{4}}{4!}-\frac{6x^{6}}{6!}+\cdots\]	
		Find the limit of \[\lim_{(x, y)\rightarrow (2, 1)} x+3y^{2\\]	5	
		Use Leibnitz theorem to find the second derivative of cos x sin 2x	2 sin x(2 - 9 cos ₂ x)	

20	U18 Untitled Document			
		Find the first partial derivative of the functon $\label{eq:first} $$ \prod_{x,y}=2x^{3}y^{2}+y^{3}\]$	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	
		Find the total differential of the function \[f(x,y)=x^{2}+3xy\] wth respect to x, given that \[y=\sin^{-1} x\].	\[2x+3sin^{-1} x+\frac{3x}{(1- x^{2}}^{\frac{1}{2}}\]	

MCQ	Given the function $f(x,\;y) \; = \; tan^{-1} \; \frac{Y}{x}$, find f_{xy}	$f_{xy} = -\frac{2xy}{(x^2 - y^2)^2}$	$f_{xy} = -\frac{2xy}{(x^2 + y^2)^2}$
MCQ		\[f_{x}=\frac{x\cos \sqrt(x^{2}+y^{2}))}{\sqrt(x^{2}+y^{2})}\]	\[f_{x}=\frac{x\cos \sqrt(x^{2}-y^{3})}{\sqr (x^{2}-y^{2})}\]
MCQ	If the function $\f(x,y)=\frac{-1}{-1} \frac{y}{x}\]$, find $\f(x,y)=\frac{-1}{-1}$	\[f_{x}=\frac{x}{x^{2}-y^{2}}\]	\[f_{x}=\frac{y}{x^{2}+y^{2}}\]
MCQ	If the function $\{f(x,y)=\frac{-1}{-1} \frac{y}{x}\}, find \left[f_{x}\right]$	\[f_{x}=\frac{x}{x^{2}-y^{2}}\]	\[f_{x}=\frac{y}{x^{2}+y^{2}}\]
MCQ	Given that $\{f(x,y)=\sin^{2} x \cos y + \frac{x}{y^{2}}\}\$, find $\{f_{y}\}\$	\[f_{y}=\sin^{2}x\sin y-\frac{x}{y^{2}}\]	\[f_{y}=-2\sin^{2} x\sin y-\frac{2x}{y^{3}}\
MCQ	Given that $\{f(x,y)=\sin^{2} x \cos y + \frac{x}{y^{2}}\}\$, find $\{f_{x}\}\$	\[f_{x}=2\sin x\cos x\cos y+\frac{1}{y^{2}}\]	\[f_{x}=-2\sin x\cos x\cos y-\frac{1} {y^{2}}\]
MCQ	Find the total differential of the function \ $[f(x,y)=x^{2}+3xy]$ wth respect to x, given that \ $[y=\sin^{-1}x]$.	\[x+2sin^{-1} x+\\frac{x}{2-2x^{2}}^{\frac{1}}{2}}\]	\[2x+3sin^{-1} x+\frac{3x}{(1- x^{2}}^{\frac{1}{2}}\]
MCQ	Find the total differential of the function $\{f(x,y)=y e^{x+y}\}$	\[d f=[y e^{x+y}]dx+[(1+y)e^{x+y}]dy\]	\[d f=[y e^{x+y}]dx-[(1+y)e^{x+y}]dy\]
MCQ	Evaluate the second partial derivative of the functon \ $[f(x,y)=2x^{3}y^{2}+y^{3}]$	\[\frac{\partial^{2}f}{\partial x^{2}}=12xy, \frac{\partial^{2} f}{\partial y^{2}}=x^{3}+y, \frac{\partial^{2} f}{\partial x\partial y}=2x^{2}y \]	\[\frac{\partial^{2}f}{\partial x^{2}}=12x^{2}y^{2}, \frac{\partial^{2} f} {\partial y^{2}}=4x+6y, \frac{\partial^{2} f} {\partial x\partial y}=10x^{2}y \]
MCQ	Find the first partial derivative of the functon \ $[f(x,y)=2x^{3}y^{2}+y^{3}]$	\[\frac{\partial f}{\partial x}=6x^{2}y^{2}, \frac{\partial f}{\partial y}=4x^{3}y+y^{2}\]	\[\frac{\partial f}{\partial x}=6x^{3}y^{3}, \frac{\partial f}{\partial y}=4x^{4}y+y^{2}\
MCQ	Evaluate the stationary points of the function \ $[f(x,y)=xy\cdot left(x^{2}+y^{2}-1\cdot lright)\cdot l]$	\[c=3\pm \sqrt(3)\]	\[(0,0), (0,0), (0, 0), \pm \left(0, \frac{1} {2}\right), \pm \left(0, -\frac{1}{2}\right)\]
MCQ	Use Leibnitz theorem to evaluate the fourth derivative of \[\left[\left(2x^{3}+3x^{2}+x+2\right)e^{2x}\]	\ [16\left(2x^{3}+15x^{2}+31x+19\right)e^{2x}\]	\[8\left(x^{2}+5x^{2}+3x+14\right)e^{2x}\
MCQ	Compute the third derivative of \[\sin x \ln x\] using Leibnitz theorem	\[(2x^{-2}-3x^{-2})\cos x-(3x^{-3}+ln 2x) \sin x\]	\[(x^{-3}-x^{-2})\cos x-(x^{-2}+\ln x) \cos x\]
MCQ	Use Leibnitz theorem to find the second derivative of \ [\cos x \sin 2x\]	\[2 \sin x (2-9\cos^{2} x)\]	\[2 \sin x (1-5\cos^{3} x)\]
MCQ	Compute the n-th differential coefficient of \ [y=x\log_{e}x\]	\[(-1)^{n-2}\frac{(n+2)!} {x^{n+1}}\left(n^{3}+2\right)\]	\[(-1)^{n-2}\frac{(n-2)!}{x^{n-1}}\left(n^{3}-2\right)\]
MCQ	Obtain the n-th differential coefficient of \[y= (x^{2}+1)e^{2x}\]	\[2^{n-3}e^{4x}(x^{2x}+nx+n^{3}-n+4)\]	\[2^{n-2}e^{2x}(4x^{3x}+5nx+n^{3}-n+4)
MCQ	Expand the function \[f(x)=e^{3x}\] about x=0 using Maclaurin's series	\[e^{3x}=1+3x+\frac{(3x)^{2}} {2!}+\frac{(3x)^{3}}{3!}+\cdots+\frac{(3x)^{n}} {n!}\]	\[e^{3x}=1-3x-\frac{(3x)^{2}}{2!}-\frac{(3x)^{3}}{3!}-\cdots-\frac{(3x)^{n}}{n!}\]
MCQ	Given $f(x)=3x(x-1)^{5}$. Compute $f'''(x)$	\[2i-j\]	\[f''(x)=80(2x-1)^{2}(x-1)\]
MCQ	Evaluate the $\left(^{3}f\right) d x^{3}\right) of \left(f(x) = \sin(x) \cos(x) \right)$	\[\frac{d ^{3}f}{d x^{3}}=-4\left(cos^{2} (x)-sin^{2} (x)\right)\]	\[\frac{d ^{3}f}{d x^{3}}=-2\left(Cos^{2} (x)+sin^{2} (x)\right)\]

MCQ	Compute the first thrre derivatives of \ $[f(x)=2x^{5}+x^{\frac{3}{2}}-\frac{1}{2x}\]$	$\label{eq:continuous} $$ \left(f'(x)=10x^{3}-\frac{2}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{2} \right), 20x^{3}-\frac{3}{4}x^{-\frac{1}{2}}-\frac{1}{x^{3}}, 10x^{2}-\frac{1}{2} - \frac{3}{2} + \frac{3}{x^{4}} \right) $$ $\{8\}x^{-\frac{3}{2}} + \frac{3}{x^{4}} \right) $$$	\\f'(x)=10x^{4}-\frac{3}{2}x^\{\frac{1}{2}}+\frac{1}{2x^{2}}, 40x^{3}-\frac{3}{4}x^{-\frac{1}{2}}-\frac{1}{x^{3}}, 120x^{2}-\frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\\
MCQ	For $\[g(x)=\frac{x-4}{x-3}\]$, we can use the mean value theorem on [4, 6], Hence determine $\[c\]$	\[c=3\pm \sqrt(3)\]	\[\sqrt (112) \]
MCQ	Find the number $[c]$ guaranteed by the mean value theorem for derivatives for $[f(x)=(x+1)^{3}, [-1, 1]]$	\[c=\frac{-\sqrt (3) \pm 2}{\sqrt(3)}\]	\[c=\frac{-\sqrt (2) \pm 1}{\sqrt(3)}\]
MCQ	Determine whether the Rolle's theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the values of \[c\] in open interval (a, b) such that \[f'(c) = 0\], \[f(x) = \frac{x^{2}-2x-3}{x+2}, [-1, 3]\]	\[c=-2\pm\sqrt(5)\]	\[c=-1\pm\sqrt(5)\]
MCQ	Determine whether the mean value theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the value of \[c\] in open interval (a, b) such that \[f(x)=x(x^{2}-x-2), [-1, 1]\]	\[c=\frac{-1}{2}\]	\[c=\frac{-1}{3}\]
MCQ	Find the two x-intercept of \[f(x)=x^{2}-3x+2\]	x=1, 3	x=1, 1
MCQ	Let $\{f(x)=x^{4}-2x^{2}\}$. Find the all $\{c\}$ (where $\{c\}$ is the interception on the x-axis) in the interval (-2, 2) such that $\{f(x)=0\}$. (Hint use Rolle's theorem)	(-1, 0, 1)	(-1, 1, 1)

Previous 1 Next