Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа № 6.1

(Общая физика: квантовая физика)

Эффект Мессбауэра

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: С помощью метода доплеровского сдвига мессбауэровской линии поглощения исследовать резонансное поглощение γ -лучей, испускаемых ядрами олова ¹¹⁹ Sn в соединении $BaSnO_3$ при комнатной температуре. Определить положение максимума резонансного поглощения, его величина, а также экспериментальная ширина линии $\Gamma_{\rm экc}$. Оценить время жизни возбуждённого состояния ядра ¹¹⁹Sn .

Оборудование:

1. Теоретическое введение

1.1 Испускание и поглощение в свободных атомах

Рис. 1: Энергетическое распределение, характеризующее возбужденное состояние ядра (а), и сдвиг линий испускания и поглощения из-за отдачи при свободных ядрах (б)

Нуклоны (нейтроны и протоны) в атомном ядре, как и электроны в атоме, могут находиться в различных дискретных энергетических состояниях, или, как говорят, на различных энергетических уровнях. Самый низкий из уровней называется основным, остальные носят название возбужденных. Ядра, находящиеся в возбужденных состояниях, могут переходить на более низкие энергетические уровни, в том числе и на основной уровень. Такие переходы происходят самопроизвольно (спонтанно). Освобождающаяся энергия уносится фотоном. Так возникает γ -излучение.

Ядра атомов могут не только испускать, но и поглощать фотоны. Если попадающий в атомное ядро фотон имеет энергию, равную разности энергий между основным и каким-либо возбужденным состояниями, то ядро может поглотить фотон и перейти в соответствующее возбужденное состояние. Этот процесс возможен лишь для γ -лучей определенных энергий и носит, таким образом, резонансный характер.

На первый взгляд резонансное поглощение γ -лучей должно представлять собой распространенное и легко на-

блюдаемое явление. Казалось бы, для его обнаружения достаточно пропустить поток γ -лучей, испущенных радиоактивным источником, через поглотитель, содержащий те же ядра в невозбужденном состоянии. На самом деле это не так. Дело в том, что энергия E_{γ} , уносимая γ -квантом, оказывается меньше энергии E_0 перехода между уровнями. Небольшая, но вполне заметная доля энергии уносится ядром, которое вследствие отдачи начинает двигаться в сторону, противоположную направлению вылета γ -кванта.

При испускании фотона ядро приобретает энергию отдачи

$$R = \frac{p^2}{2M} = \frac{E_{\gamma}^2}{2Mc^2} \tag{1}$$

Для ядра 119 Sn, который используется в работе, $E_0 \simeq E_\gamma = 23.8$ кэВ, $R \simeq 2.5 \cdot 10^{-3}$ эВ $\gg \Gamma/2 \simeq 3 \cdot 10^{-8}$ эВ, где Γ — естественная ширина линии. Из-за такой разницы в порядках величин получается, что при смещении на величину $\pm R$ не перекрываются. Однако, это можно компенсировать эффектом Доплера, который возникает из-за теплового движения ядер. Для этого ядра должны двигаться относительно друг друга со скоростью

$$V = c \frac{2R}{E_{\gamma}} \tag{2}$$

Это примерно 60 м/с для $^{119}{\rm Sn}.$ Из термодинамических соображений оценим скорость движения ядра v:

$$\frac{Mv^2}{2} = \frac{kT}{2} \implies v = \sqrt{\frac{kT}{M}}$$

Тогда величину D доплеровского «уширения» линии с учетом (1) можно оценить как

$$D = \frac{v}{c}E_{\gamma} = \sqrt{2RkT}$$

При комнатной температуре для 119 Sn эта величина будет примерно равна $1,5 \cdot 10^{-2}$ эВ, что на порядок больше R. Происходит перекрытие линий испускания и поглощения вследствие доплеровского уширения. Это обеспечивает возможность резонансного поглощения гамма-лучей.

1.2 Испускание и поглощение в твердых телах

Совсем иначе обстоит дело в твердых телах — в тех веществах с кристаллической решеткой, у которых энергия связи .между атомами в решетке больше энергии отдачи. В таком случае при испускании/поглощении импульс в том или ином виде передается всем атомам в решетке, что часто вызвает ее колебания. Можно также сказать, что создаются кванты звуковых колебаний — фононы.

В данной работе изучается эффект Мессбауэра — испускание и поглощение γ -квантов без создания фононов (звуковых колебаний). Его вероятность выражается формулой

$$f = \exp\left\{-\frac{4\pi\langle u^2\rangle}{\lambda^2}\right\}$$

где $\langle u^2 \rangle$ — среднеквадратичное смещение ядер в процессе тепловых колебаний решетки (в направлении вылета γ -кванта), λ — длина волны γ -излучения. Таким образом, вероятность упругого испускания (и поглощения) γ -квантов уменьшается с температурой (с ростом $\langle u^2 \rangle$) и с ростом энергии перехода (с уменьшением длины волны λ).

Расчеты показывают, что для наблюдения эффекта энергия фотонов должна быть порядка 200 кэВ. Температурный порог может быть разным; в изучаемых нами ядрах олова 119 Sn в соединении $BaSnO_3$ это возможно и при комнатной температуре. Для наблюдения эффекта гамма-излучение сначала пропускается через резонансный поглотитель со стабильными ядрами 119 Sn. Пройдя через него, излучение регистрируется сцинтилляционным спектрометром.

Наблюдение резонансного поглощения основано на методе доплеровского сдвига линий испускания и поглощения. Для этого поглотителю придается небольшая скорость, рассчитанная по формуле (2), где вместо R подставлена Γ . Мессбауэровская линия очень узка, и для наблюдения резонанса хватает скорости порядка миллиметра в секунду.

Рис. 2: Спектр упругого резонансного поглощения γ -квантов. Источник и поглотитель находятся в идентичных кристаллических решетках. Неупругое поглощение обусловлено главным образом взаимодействием γ -лучей с атомными электронами

Вообще говоря, при идентичных кристаллических решетках, линия испускания полностью перекрывается с линией поглощения, и максимальное поглощение наблюдается при нулевой скорости (рис. 2). Однако в химических сплавах (как наш BaSnO₃) из-за влияния электростатических сил происходит смещение максимума поглощения, и его можно «поймать» при отличной от нуля скорости. Такое смещение называется химическим сдвигом. Его можно рассчитать по формуле

$$v_p = \frac{\Delta E}{E_0} c$$

Для подсчета «амплитуды» эффекта Мессбауэра обычно определяется безразмерная величина

$$\varepsilon(v) = \frac{N(\inf) - N(v)}{N(\inf - N_{\Phi})}$$

где N(v) — скорость счета квантов, прошедших через поглотитель при некоторой скорости $v, N(\inf)$ — скорость счета квантов при достаточно большой скорости, когда резонансное поглощение отсутствует, N_{Φ} — скорость счета радиоактивного фона.

Измеряемая на опыте ширина резонансной линии $\Gamma_{\rm экс}$ — результат наложения линий источника и поглотителя. При тонких поглотителях и источниках и при отсутствии вибраций ширина линии равна удвоенной естественной ширине 2Γ (см. рис. 2).

2. Экспериментальная установка

TODO

3. Выполнение работы

TODO

4. Вывод

TODO