vanishes.

Home assignment 2: Cohomology of local systems

Remark 2.1 Throughout this assignment, all manifolds are assumed to be connected.

Exercise 2.1 (W λ closed forms are W λ exact) Let $\lambda > 0$ be a real number. Define *weight* λ *homogeneous forms* on $\mathbb{R}^n \setminus 0$ as differential forms η which satisfy $\rho_t^* = t^{\lambda} \eta$, where ρ_t is a homothety map $z \mapsto tz$, $t \in \mathbb{R}$. Prove that a closed weight λ form is a differential of a weight λ form, for any $\lambda \neq 1$.

Exercise 2.2 (MN cohomology of Hopf manifold vanishes) Let $M = \mathbb{R}^n \setminus \{0\} / (x \sim 2x)$ be a Hopf manifold, θ a closed, non-exact 1-form, $d_{\theta} = d + \theta$, and $H_{\theta}^*(M)$ cohomology of the complex $(\Lambda^*(M), d_{\theta})$ (Morse-Novikov cohomology). Prove that $H_{\theta}^i(M) = 0$ for all i.

Hint. Use the previous exercise.

Solution. In view of Exercise 2.1 we are inclined to look for a "weight λ " form in the class of any given closed differential form $\alpha \in \Lambda^*(M)$. Then the usual cohomology class of α

Misha: the standard way to do this is to "average" the forms using a compact Lie group. So maybe ask GPT to what this means exactly. \Box

Exercise 2.3 (θ exact \Longrightarrow MN cohomology=dr cohomology) Let θ be an exact 1-form on a manifold M. Construct an isomorphism between the complexes $(\Lambda^i(M), d_\theta)$ and $(\Lambda^i(M), d)$.

Solution by Bruno. Using exponential map. Do you remember? □

Exercise 2.4 (θ closed \Longrightarrow MN vanishes iff θ exact) Let θ be a closed 1-form on a connected manifold. Prove that $H^0_{\theta}(M) \neq 0$ if and only if θ is exact.

Solution by Bruno. I don't remember. There is an easy way using sheaves?

Definition 2.1 A *complex of vector spaces* is a collection of $\{A_i, i \in \mathbb{Z}\}$ of vector spaces equipped with the *differential* $d: A_i \to A_{i+1}$ such that $d^2 = 0$; its *cohomology groups* are $\frac{\ker d}{\operatorname{img } d}$. *Morphism of complexes* $\varphi: (A_*, d_A) \to (B_*, d_B)$ is a collection of homomorphisms

 $\phi_i:A_i\to B_i$ commuting with the differentials. *The cone* of such a morphism is a complex $C_i:=B_i\oplus A_{i+1}$ with the differential $d_B+(-1)^id_A+\phi:B_i\oplus A_{i+1}\to B_{i+1\oplus A_{i+2}}$.

$$\begin{aligned} d_B + (-1)^i d_A + \varphi : B_i \oplus A_{i+1} &\longrightarrow B_{i+1} \oplus A_{i+2} \\ (b^i, a^{i+1}) &\longmapsto (d_B b^i, (-1)^i d_A a^{i+1} \underbrace{\hspace{1cm}}_2) \end{aligned}$$

Exercise 2.5 Let $A_* \xrightarrow{\phi} B_*$ be a morphism of complexes of vector spaces, and C_* its cone. Construct a long exact sequence

$$\cdots \to \mathsf{H}^{i-1}(\mathsf{C}_*) \to \mathsf{H}^i(\mathsf{A}_*) \to \mathsf{H}^i(\mathsf{B}_*) \to \mathsf{H}^i(\mathsf{C}_*) \to \mathsf{H}^{i+1}(\mathsf{A}_*) \to \cdots$$

Note: the indices are different in the answer.

Solution by Lada. I realise that

$$0 \longrightarrow B_i \longrightarrow B_i \oplus A_{i+1} \longrightarrow A_{i+1} \longrightarrow 0$$

which by the fundamental theorem of homological algebra gives a long exact sequence

$$\cdots \, \to \, H^k(B) \, \to \, H^k(B_{\mathfrak{i}} \oplus A_{\mathfrak{i}+1}) = H^k(C_{\mathfrak{i}}) \, \to \, H^k(A_{\mathfrak{i}+1}) \, \to \, H^{k+1}(B_{\mathfrak{i}+1}) \, \to \, \cdots$$

Exercise 2.6 (The trivial circle bundle) Let X be a manifold, $M := X \times S^1$, and $\pi : M \to S^1$ the standard projection. Denote by $T^1_X(M)$ the bundle of vectors tangent to the fibers of π , $\Lambda^1_X(M)$ its dual, and $\Lambda^*_X(M)$ the corresponding Grassmann algebra. Consider the de Rham differential d_X acting on $\Lambda^*_X(M)$ fiberwise along X.

- (a) (cohomology of the vectors tangent to fibers is cohomology of base \otimes smooth functions on circle) Prove that the cohomology of $(\Lambda_X^*(M), d_X)$ is isomorphic to $H^*(X) \otimes C^{\infty}S^1$.
- (b) Let $\frac{d}{dt}$ be the derivative along the circle. Prove that $\frac{d}{dt}$ commutes with $d_X.$
- (c) Let $C_0^{\infty}S^1$ denote the functions wich average to zero. Prove that $\frac{d}{dt}$ is invertible on C^{∞} .
- (d) Prove that the kernel and the cokernel of $H^*(X) \otimes C^{\infty}S^1 \xrightarrow{d/dt} H^*(X) \otimes C^{\infty}S^1$ are naturally isomorphic to $H^*(X)$.

Solution.

1. Now I remember: it's Künneth formula! As I recall,

$$H^*(X \times S^1) = H^*(X) \otimes H^*(S^1).$$

Now I realise: it's the cohomology of the vectors tangent to the fibers of the circle bundle! I think it's the kernel of the map induced by the projection $\pi: X \times S^1 \to S^1$, namely

$$T_X(M) = \ker \pi_* = \{ v \in TM : \pi_*(v) = 0 \in TS^1 \}$$

So this will inject in the total bundle:

$$0 \, \longrightarrow \, \mathsf{T}_{\mathsf{X}}(\mathsf{M}) \, \longrightarrow \, \mathsf{T}(\mathsf{X} \times \mathsf{S}^1) \, \longrightarrow \, \mathsf{T}\mathsf{S}^1 \, \longrightarrow \, 0$$

Take Grassman algebra functor to get

$$0 \longrightarrow \Lambda_{\mathbf{x}}^{*}(\mathbf{M}) \longrightarrow \Lambda^{*}(\mathbf{M}) \longrightarrow \Lambda^{*}(S^{1}) \longrightarrow 0$$

Giving the sequence

$$\begin{split} \cdots &\to 0 \,\to\, H^0_X(M) \,\to\, H^0(M) \,\to\, H^0(S^1) \,\to \\ &\to H^1_Y(M) \,\to\, H^1(M) \,\to\, H^1(S^1) \,\to\, H^2_Y(M) \,\to\, \cdots \end{split}$$

To compute the cohomology of M we use Künneth formula:

p + q	$H^{p+q}(M)$
0	$H^0(X) \otimes H^0(S^1) = H^0(X) \otimes \mathbb{R}$
1	$H^1(X) \otimes H^0(S^1) \oplus H^0(X) \otimes H^1(S^1)$
	$=H^1(X)\otimes\mathbb{R}\oplusH^0(X)\otimes\mathbb{R}$
2	$H^0(X) \otimes H^2(S^1) \oplus H^1(X) \otimes H^1(S^1) \oplus H^2(X) \otimes H^0(S^1)$
	$=H^1(X)\otimes\mathbb{R}\oplusH^2(X)\otimes\mathbb{R}$
3	$H^3(X) \otimes \mathbb{R} \oplus H^2(X) \otimes \mathbb{R}$
4	$H^4(X) \otimes \mathbb{R} \oplus H^3(X) \otimes \mathbb{R}$
5	$H^5(X) \oplus \mathbb{R} \oplus H^4(X) \otimes \mathbb{R}$

Giving

$$\begin{split} \cdots & \to 0 \, \to \, H^0_X(M) \, \to \, H^0(X) \otimes \mathbb{R} \, \to \, H^0(S^1) \, \to \\ \\ & \to \, H^1_X(M) \, \to \, H^1(X) \otimes \mathbb{R} \oplus H^0(X) \otimes \mathbb{R} \, \to \, H^1(S^1) \, \to \, \cdots \\ \\ & \to \, H^2_X(M) \, \to \, H^1(X) \otimes \mathbb{R} \oplus H^2(X) \otimes \mathbb{R} \, \to \, 0 \, \to \, \cdots \\ \\ & \to \, H^3_X(M) \, \to \, H^3(X) \otimes \mathbb{R} \oplus H^2(X) \otimes \mathbb{R} \, \to \, 0 \, \to \, \cdots \end{split}$$

So I wonder how to finish. Perhaps using some spectral sequence?

2. Here we must think that $\frac{d}{dt}$ is a derivation $f \mapsto \frac{df}{dt}\Big|_{t}$, where the latter is actually a smooth function depending on $t \in S^1$.

Then I'd like to see d_X as a derivation, but I don't know how. The following probably doesn't make sense: $f \mapsto d_X f$, which is a form, so to get a number I should pair it with a vector field. So actually there *is* a canonical vector field on S^1 , say, unit tangent vector field in a fixed direction. This would give me a number, what number?

The number is: $d_X f\left(\frac{d}{dt}\right) = \frac{df}{dt} dt \left(\frac{d}{dt}\right) = \frac{df}{dt}\Big|_{t}$

3. (ChatGPT.) First notice that for any $f \in C^{\infty}S^1$ the integral of its derivative vanishes by the fundamental theorem of calculus. To construct an inverse define for $g \in C^{\infty}S^1$ the primitive $f(t) = \int_0^t g(y) dy$. Then $\int_{S^1} f(t) dt$ vanishes because...

Exercise 2.7 (The trivial circle bundle continued)

Exercise 2.8 (MN of trivial circle bundle vanishes for X compact and $\theta = \pi^* dt$)