Train an SSD network in a self-driving car application

1. Import Required Libraries

Load essential libraries like torch, torchvision, PIL, cv2, numpy, and requests for deep learning, image processing, and I/O.

2. Define COCO Class Labels

Specify class names from the COCO dataset, which the SSD model uses for labeling detected objects.

3. Load Pretrained SSD300 VGG16 Model

Load the pretrained ssd300_vgg16 model from torchvision and switch it to evaluation mode (model.eval()).

4. Prepare Image Transformations

Define a transformation pipeline using torchvision.transforms to resize and convert the image to tensor format expected by the model.

5. Load Image from URL or Local Path

Attempt to load the image using requests from a URL. If it fails, fallback to a local image path using PIL.Image.open.

6. Preprocess Image for SSD Input

Resize the image to 300x300, convert it to a tensor, and add a batch dimension before passing it to the model.

7. Run Inference with the Model

Use torch.no_grad() for inference and get predictions like bounding boxes, labels, and confidence scores.

8. Filter and Rescale Detections

Filter predictions by confidence threshold (>0.5) and rescale bounding boxes from model input size to original image dimensions.

9. Draw Bounding Boxes and Labels

For each detected object (e.g., car, person), draw a bounding box and add the label with confidence score on the original image using cv2.

10. Display the Result

Convert the image back to RGB and display it using matplotlib.pyplot without axes.