실해석학 스터디 4주차

JEAWON NA

교재: Walter Rudin - Real and Complex Analysis-McGraw-Hill Education (1986) 범위: CHAPER TWO, "POSITIVE BOREL MEASURES": The Riesz Representation Theorem

The Riesz Representation Theorem

2.14

Let X be a locally compact Hausdorff space, and let Λ be a positive linear functional on $C_c(X)$.

Then there exists a σ -algebra \mathfrak{M} in X which contains all Borel sets in X, and there exists a unique positive measure μ on \mathfrak{M} which represents Λ in the sense that

- (a) $\Lambda f = \int_X f d\mu$ for every $f \in C_c(X)$, and which has the following additional properties:
- (b) $\mu(K) < \infty$ for every compact set $K \subset X$.
- (c) For every $E \in \mathfrak{M}$, we have

$$\mu(E) = \inf{\{\mu(V) : E \subset V, V \text{ open}\}}.$$

(d) The relation

$$\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact} \}$$

holds for every open set E, and for every $E \in \mathfrak{M}$ with $\mu(E) < \infty$.

(e) If $E \in \mathfrak{M}$, $A \subset E$, and $\mu(E) = 0$, then $A \in \mathfrak{M}$.

Riesz 표현 정리는 positive linear functional과 measure를 1대1 대응시켜주는 정리이다. 여기서 positive linear functional은 다음과 같이 정의된다.

 Λ is assumed to be a linear functional on the complex vector space $C_c(X)$, with the additional property that Λf is a nonnegative real number for every f whose range consists of nonnegative real numbers. Briefly, if $f(X) \subset [0, \infty)$ then $\Lambda f \in [0, \infty)$.

range가 0 이상의 finite한 실수에 놓이는 함수 f를 넣었을 때, 그 결과가 항상 0 이상의 finite 한 실수가 나오는 linear functional Λ 를 positive linear functional이라고 한다.

Date: 2025. 6. 3.

Riesz 표현 정리에 의하면 임의의 positive linear functional에 대해서 적분 표현으로 이어 지는 unique한 measure를 찾아낼 수 있다. 이전 시간에 measure는 하나의 linear functional 로 이해할 수 있다는 것을 확인했기 때문에, Riesz 표현 정리에 의해 둘의 관계가 완전한 1 대1 대응이라는 사실을 확인할 수 있다.

Riesz 표현 정리의 핵심은 (a)에 있다. 그리고 이 Theorem의 증명과정으로부터, (b) (e)가 만족한다는 사실을 밝혀낼 수 있다.

(b)와 (c)는 positive linear functional 로부터 얻은 measure가 가지는 중요한 특징들인데, E의 measure가 open set에 의해 위에서부터 근사될 수 있고, compact set에 의해 아래에서 부터 근사될 수 있다는 것을 보여준다.

증명을 시작하기에 앞서, 만약 (a) (e)를 모두 만족하는 \mathfrak{M} 과 μ 가 있다고 가정하면, 그러한 μ 는 unique함을 보일 수 있다.

⟨ proof ⟩

(a)부터 (e)까지를 모두 만족하는 σ -algebra \mathfrak{M} 과 measure μ_1 , μ_2 가 있다고 치자. 만약 모든 compact한 $K \in \mathfrak{M}$ 에 대해 $\mu_1(K) = \mu_2(K)$ 이면, (d)에 의해 모든 open set V에 대해 $\mu_1(V) = \mu_2(V)$ 가 된다. 그리고 다시 (c)에 의해, 모든 $E \in \mathfrak{M}$ 에 대해 $\mu_1(E) = \mu_2(E)$ 가 된다. 그러므로 $\mu_1 \equiv \mu_2$, 즉 $\mu_1(E) = \mu_2(E)$ $\forall E \in \mathfrak{M}$ 을 보이기 위해서는 $\mu_1(K) = \mu_2(K)$ $\forall K \in \mathfrak{M}$, K: compact 를 보이는 것으로 충분하다.

Let $\epsilon > 0$. By (c), $\exists V_0$ such that $\mu_2(E) \leq \mu_2(V_0) < \mu_2(E) + \epsilon$. By Uryshon's lemma, $\exists f$ such that $K \prec f \prec V$, hence

$$\mu_1(K) = \int_X \chi_K d\mu_1 \quad (\because \text{ the definition of Lebesgue integral})$$

$$\leq \int_X f d\mu_1 = \Lambda f = \int_X f d\mu_2 \quad (\because \text{ (a)})$$

$$\leq \int_X \chi_V d\mu_2 = \mu_2(V) < \mu_2(K) + \epsilon.$$

따라서 $\mu_1(K) \leq \mu_2(K)$. μ_1 과 μ_2 의 자리를 바꾸어서 동일한 과정을 진행하면, $\mu_2(K) \leq \mu_1(K)$ 를 얻는다. 따라서 $\mu_1(K) = \mu_2(K)$ for every $K \in \mathfrak{M}$.

그리고, 만약 positive linear functional Λ 에 대해 (a)가 참이라면 (b)가 참임을 증명할 수 있다.

 $\langle \text{ proof } \rangle$

Let K: cpt in X. By Uryshon's lemma, $\exists f$ such that $K \prec f \prec X$. (a)에 의해, $\Lambda f = \int_X f d\mu$. Since $f \prec X$, $f(X) \subset [0,1]$, and since Λ is a positive linear functional, $\Lambda f \in [0,\infty)$.

 $\therefore \Lambda f < \infty$

 $\therefore \mu(K) = \int_X \chi_K d\mu \le \int_X f d\mu = \Lambda f < \infty.$

Construction of μ and \mathfrak{M}

이 Lemma의 증명은 일단 \mathfrak{M} 랑 μ 를 열심히 정의한 다음, 이게 조건을 만족하는 σ -algebra이고 measure이다 라는 사실을 밝히는 식으로 진행된다. 그래서, 아래와 같이 μ 와 \mathfrak{M} 을 정의해보자.

우선 μ 를 정의하자. 아직 μ 는 measure이 아니다.

For every open set V in X, define

$$\mu(V) = \sup\{\Lambda f : f \prec V\}. \tag{1}$$

일단 open set에 대해서 $\mu(V)$ 를 정의한다. $f \prec V$ 의 Λ 값을 이용해 V를 안에서부터 채우며 V의 크기를 근사하려는 정의로 이해할 수 있다. 나중에 Λ 가 적분의 역할을 하게 될 (a)번의 아이디어를 빌리면 직관적으로 이해하는데 도움이 된다.

Uryshon's lemma에 의해 locally compact Hausdorff space에서 $f \prec V$ 인 f는 반드시 존재한다. (: \emptyset is compact) 그래서 최소한 $\{\Lambda f: f \prec V\}$ 가 공집합은 아니므로, 위와 같이 정의하면 잘 정의됨을 알 수 있다.

만약 $V_1 \subset V_2$ 이면, $\mu(V_1) \leq \mu(V_2)$ 이다. 왜냐하면 $V_1 \subset V_2$ 이면, f가 $f \prec V_1$ 이면 $f \prec V_2$ 도 만족하게 되므로, $\mu(V_1)$ 에서 sup 후보들은 $\mu(V_2)$ 에서도 후보가 된다. 즉, $\mu(V_2)$ 가 sup을 취할 후보를 더 많이 데리고 있으므로, $\mu(V_1) \leq \mu(V_2)$ 가 된다. 그러니까 위와 같이 정의한 μ 는 open set에 대해 monotone 성질을 가지고 있다고 말할 수 있다.

그리고 $E \subset X$ 인 모든 E에 대하여, $\mu(E)$ 를 다음과 같이 정의한다.

$$\mu(E) = \inf\{\mu(V) : E \subset V, V \text{ open}\}$$
 (2)

- 이 정의도 잘 정의된다. 왜냐하면 모든 $E\subset X$ 에 대해, 최소한 전체집합 X는 $E\subset X, X$ open 이기 때문이다.
- 이 때 이 정의는 open set V에 대해서는 앞서 정의했던 것과 일치한다. open set V에 대해, $V \subset V$ 이고, $V \subset W$ 인 W에 대해 $\mu(V) \leq \mu(W)$ 임을 앞서 확인했으므로 inf의 결과는

그대로 $\mu(V)$ 가 나오게 된다.

4

이렇게 정의한 μ 는 measure가 아니다. 이 μ 는 추후에 정의할 σ -algebra \mathfrak{M} 에 대해서만 countable additivity가 성립하게 된다. 즉, 이 μ 의 domain을 \mathfrak{M} 으로 제한했을 때, 비로소 measure 가 된다.

 $A\subset B$ 이면, 앞서 open에서와 유사한 논리로 $\mu(A)\leq \mu(B)$ 임을 증명할 수 있다. 즉, μ 는 monotone이다.

그리고 Λ 도 monotone이다. $f \leq g$ 이면 $\Lambda g = \Lambda f + \Lambda (g-f)$ 이고 $g-f \geq 0$ 에서 Λ 의 positive 성질에 의해 $\Lambda (g-f) \geq 0$ 이고 따라서 $\Lambda f \leq \Lambda g$. $\therefore \Lambda f \leq \Lambda g$ if $f \leq g$.

이번엔 ∭에 대해 정의하자.

Let \mathfrak{M}_F be the class of all $E \subset X$ which satisfy two conditions: $\mu(E) < \infty$, and

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}. \tag{3}$$

Finally, let \mathfrak{M} be the class of all $E \subset X$ such that $E \cap K \in \mathfrak{M}_F$ for every compact K.

뭔지 모르겠어도, 일단 \mathfrak{M}_F 가 앞서 Theorem의 (d)번에서 언급한, \sup 을 이용해 아래에서부터 μ 를 근사할 수 있는 집합들을 모아둔 것으로 이해할 수 있다.

참고로 어떤 집합 $E \subset X$ 에 대해, $\mu(E) = 0$ 이면 $E \in \mathfrak{M}_F$ and $E \in \mathfrak{M}$ 이다.

⟨ proof ⟩

We have to check if E satisfies (3). Since μ is monotone, $\mu(K) \leq \mu(E) = 0$ for all $K \subset E$. $\Rightarrow \mu(K) = 0$ for all $K \subset E \Rightarrow \sup\{\mu(K) : K \subset E, K \text{ compact}\} = 0 = \mu(E)$. $\therefore E \in \mathfrak{M}_F$.

For all compact set K, $\mu(K \cap E) = 0$ since $E \cap K \subset E$ and $\mu(E) = 0$. Since all $E \subset X$ such that $\mu(E) = 0$ is in \mathfrak{M}_F , $K \cap E \in \mathfrak{M}_F$ for all compact set K. $\therefore E \in \mathfrak{M}$.

이제 본격적으로 증명을 시작해보자. 총 10단계로 나누어 증명을 진행할 예정이다.

If E_1, E_2, E_3, \ldots are arbitrary subsets of X, then

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \le \sum_{i=1}^{\infty} \mu(E_i). \tag{4}$$

임의의 집합들이 있을 때, 합쳐놓고 μ 를 계산한 것보다 따로 계산한 뒤에 합한게 더 크다는 뜻이다. 만약 μ 가 measure이라면, 이는 직관적으로 이해가 가능하다. 두 집합을 일부가 겹치도록 배치한 다음, 각각의 크기를 잰 뒤 합한 것보다 집합을 합쳐놓은 다음 크기를 잰 것이 더 작아질 것이다.

⟨ proof ⟩

우선 두 open set에 대해서 성립하는지를 살펴보자. 즉, V_1 , V_2 가 open일 때

$$\mu(V_1 \cup V_2) \le \mu(V_1) + \mu(V_2). \tag{5}$$

인지 확인해보자.

 $V_1 \cup V_2$ 도 open이므로, $g \prec V_1 \cup V_2$ 인 함수 g가 존재한다. 이 때, \prec 의 정의에 의해 g의 support 는 compact이다. Theorem 2.13에 의해, $h_1 \prec V_1$ 이고 $h_2 \prec V_2$ 이면서 $h_1(x) + h_2(x) = 1$ for all x in the support of g인 h_1 , h_2 를 찾을 수 있다. 그러면 $h_i g \prec V_i$ for i=1,2이다. 왜냐하면 $h_i \prec V_i$ 에서 h_i 는 V_i 를 나가기 전에 0이 되고 $h_i(x) = 0$ 이면 $h_i(x)g(x) = 0$ 이니까.

이 때 우리가 앞서 open set V에 대해 μ 를 (1)번 식과 같이 정의했었다. 그래서, 다음이 성립한다.

$$\Lambda g = \Lambda(h_1 g) + \Lambda(h_2 g) \le \mu(V_1) + \mu(V_2). \tag{6}$$

(Note that $\mu(V) \geq \Lambda f$ for all $f \prec V$, since (1)).

모든 $g \prec V_1 \cap V_2$ 인 g에 대해 (6)번 식이 성립하므로, $\sup\{\Lambda g: g \prec V_1 \cup V_2\}$ 또한 $\mu(V_1) + \mu(V_2)$ 보다 작거나 같다.

$$\therefore \mu(V_1 \cup V_2) = \sup \{ \Lambda g : g \prec V_1 \cup V_2 \} \le \mu(V_1) + \mu(V_2).$$

이제 원래 증명하고자 했던 것을 다시 보자. 만약 E_i 중에 $\mu(E_i)=\infty$ 인 것이 있었다면, 앞서 증명했던 μ 의 monotone 성질 때문에 (4)번 식의 좌면이 ∞ 가 된다. 우변 또한 $\mu(E_i)\geq 0$ 이므로, 그 중 하나가 ∞ 라면 합한 결과도 ∞ 가 된다. 즉, $\mu(E_i)=\infty$ for some i이면 (4)번 식이 성립한다.

그래서, 모든 i에 대해 $\mu(E_i) < \infty$ 를 가정하자. 임의의 $\epsilon > 0$ 에 대해, (2)번 식으로부터 다음을 알 수 있다.

$$\exists V_i \supset E_i \text{ such that } \mu(E_i) \leq \mu(V_i) < \mu(E_i) + 2^{-i}\epsilon.$$

for all $i = 1, 2, 3, \dots$

 $V=igcup_{i=1}^{\infty}V_i$ 로 정의하자. V_i 들이 open이므로, V 또한 open이다. 그래서 $f\prec V$ 인 f를 잡을 수 있다. $f\in C_c(X)$ 이므로 f의 support는 compact이고, $f\prec V=igcup_{i=1}^{\infty}V_i$ 에서 V_i 들은 f의 support의 open cover이다. 그래서 이 중 finite open subcover를 찾을 수 있다. 즉, $f\prec V_1\cup\cdots\cup V_n$ for some n. (5)번에 의해,

$$\Lambda f \le \mu(V_1 \cup \dots \cup V_n) \le \mu(V_1) + \dots + \mu(V_n)$$

$$\le \sum_{i=1}^{\infty} \left[\mu(E_i) + 2^{-i} \epsilon \right] = \sum_{i=1}^{\infty} \mu(E_i) + \epsilon.$$

((5)번 식은 최대 countable개에서만 성립한다. 그러므로, f를 찾아내는 과정이 필수적이다.)

따라서
$$\Lambda f \leq \sum_{i=1}^{\infty} \mu(E_i) + \epsilon$$
 for all $f \prec V$.

$$\therefore \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \inf\left\{\mu(W) : \bigcup_{i=1}^{\infty} E_i \subset W, W \text{ open}\right\}$$

and we know that

$$\mu(V) = \sup\{\Lambda f : f \prec V\} \le \sum_{i=1}^{\infty} \mu(E_i) + \epsilon$$

for some V, hence

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \inf\left\{\mu(W) : \bigcup_{i=1}^{\infty} E_i \subset W, W \text{ open}\right\}$$
$$\leq \mu(V) = \sup\{\Lambda f : f \prec V\} \leq \sum_{i=1}^{\infty} \mu(E_i) + \epsilon$$

$$\therefore \mu\left(\bigcup_{i=1}^{\infty} E_i\right) \le \sum_{i=1}^{\infty} \mu(E_i),$$

since ϵ was arbitrary.

open에 대해 우선 증명한 다음, 일반적인 경우에도 open의 도움을 받아서(그리고 open의 도움을 받기 위해 함수 f를 찾아서) 증명하고 있다.

If K is compact, then $K \in \mathfrak{M}_F$ and

$$\mu(K) = \inf\{\Lambda f : K \prec f\}. \tag{7}$$

This implies assertion (b) of the theorem.

앞서 μ 랑 \mathfrak{M} 를 잘 정의해둔 상황에서, compact한 집합의 역할이 무엇인지에 대해 이해하기 위한 단계라고 볼 수 있다.

⟨ proof ⟩

우선 $\mu(K) < \infty$ 이면 $K \in \mathfrak{M}_F$ 이다. 왜냐하면, K가 compact하면 sup의 대상에 $\mu(K)$ 가 포함되고, μ 의 monotone한 성질에 의해 $K' \subset K$, K' compact 이면 $\mu(K') \leq \mu(K)$. 따라서 $\mu(K) = \sup\{\mu(K') : K' \subset K, K' \text{ compact}\}$ 가 성립하고, $K \in \mathfrak{M}_F$.

따라서 $\mu(K) < \infty$ 를 증명해보자.

임의의 compact한 집합 K에 대해, Uryshon's lemma에 의해 $K \prec f$ 인 f를 하나 찾을 수 있다. 그리고 $0 < \alpha < 1$ 인 α 에 대해, $V_{\alpha} = \{x: f(x) > \alpha\}$ 라 하면 $x \in K$ 에서 f(x) = 1이므로 $K \subset V_{\alpha}$ 이다.

 $g \prec V_{\alpha}$ 인 g에 대해(Uryshon's lemma에 의해 이러한 g가 반드시 하나는 존재한다) $\alpha g \leq f$ 이다. $(x \in V_{\alpha})$ 에서는 $\alpha g(x) \leq \alpha < f(x)$ 이고, 나머지에서는 g(x) = 0.) 그리고 Λ 의 monotone 성질에 의해 $\alpha \Lambda g \leq \Lambda f$, $\Lambda g \leq \alpha^{-1} \Lambda f$ for every $g \prec V_{\alpha}$. 따라서

$$\mu(K) \le \mu(V_{\alpha}) = \sup\{\Lambda g : g \prec V_{\alpha}\} \le \alpha^{-1}\Lambda f.$$

 $\alpha^{-1}\Lambda f \le \sup\{\alpha^{-1}\Lambda f : \alpha \in (0,1)\} = \Lambda f$ 에서

$$\mu(K) \le \Lambda f. \tag{8}$$

따라서 $f \prec K$ 에서 $f(X) \subset [0,1]$ 이고 $\Lambda f \in [0,\infty)$, 즉 $\mu(K) < \infty$ 임을 알 수 있다. 그리고 이를 통해 지금까지 설계한 μ 가 Theorem의 (b)번을 만족한다는 사실도 알 수 있다.

임의의 $\epsilon>0$ 에 대해, (2)번 식에 의해 $\mu(K)\leq \mu(V)<\mu(K)+\epsilon$ 인 V가 존재한다. By Uryshon's lemma, $\exists f$ such that $K\prec f\prec V$. Thus

$$\Lambda f \le \mu(V) < \mu(K) + \epsilon.$$

(8)번 식에서, $\mu(K)$ 는 $\{\Lambda f: K \prec f\}$ 의 lower bound임을 알 수 있다. 그리고 위 식에 의해, $\mu(K)$ 보다 조금이라도 큰 값에 대해서, 그 값보다 작은 Λf 가 존재하므로, 해당 값은 $\{\Lambda f: K \prec f\}$ 의 lower bound가 될 수 없다. 따라서, inf의 정의에 의해 (7)번 식이 성립함을 알 수 있다.

STEP II의 결과로, 우리는 다음을 알 수 있다. 임의의 compact set K에 대해,

$$\mu(K) < \Lambda f$$

for all $K \prec f$. 그리고 앞서 (1)번 식에 의해 다음이 성립함을 확인한 바 있다.

$$\mu(V) \ge \Lambda f$$

for all $V \prec f$. open set에 대해서, 우리는 $\mu(V)$ 를 V를 위에서부터 감싸는 f를 통해 근 사했었다. 그래서 Λf 는 $\mu(V)$ 보다 크다. 반대로, compact set에 대해 우리는 $\mu(K)$ 를 K를 아래에서부터 채우는 f를 통해 근사한다. 그래서 Λf 는 $\mu(K)$ 보다 작다. 결과적으로 Λ 가 적분 역할을 하게 될 (a)번의 직관을 빌리면, 이와 같은 결과를 쉽게 받아들일 수 있다.

STEP III

Every open set satisfies (3). Hence \mathfrak{M}_F contains every open set V with $\mu(V) < \infty$.

⟨ proof ⟩

어떤 open set V가 있다고 하자. $\mu(V)=\sup\{\Lambda f: f\prec V\}$ 에서 임의의 $\epsilon>0$ 에 대해 $\alpha=\mu(V)-\epsilon$ 라 하면 $\exists f$ such that $\alpha<\Lambda f\leq \mu(V)$. f의 support를 K라 하면 $K\subset V$ 이고, $f\in C_c(X)$ 이므로 K는 compact이다.

 $K \subset W$ 인 모든 open set W에 대해, $f \prec W$ 이고 $\Lambda f \leq \mu(W)$ 이다. (Since $\Lambda f \leq \mu(E)$ for all E such that $f \prec E$.) 이 때 $\mu(K) = \inf\{\mu(W) : K \subset W, W \text{ open}\}$ 인데 Λf 가 $\{\mu(W) : K \subset W, W \text{ open}\}$ 의 lower bound이므로 $\Lambda f \leq \mu(K)$. 따라서 $\alpha < \Lambda f \leq \mu(K)$

따라서 임의의 open set V에 대해, \exists compact set K such that $K \subset V$, $\alpha < \mu(K)$.

- $\Rightarrow \alpha < \mu(K) \leq \sup{\{\mu(K) : K \subset V, K \text{ compact}\}}.$
- $\Rightarrow \mu(V) \epsilon = \alpha < \sup{\{\mu(K) : K \subset V, K \text{ compact}\}} \text{ for all } \epsilon > 0.$
- $\Rightarrow \mu(V) \leq \sup \{\mu(K) : K \subset V, K \text{ compact}\}\$

 $K \subset V$ 라 하면, μ 의 monotone 성질에 의해 $\mu(V) \geq \mu(K)$ 이고, $\mu(V) \geq \sup\{\mu(K) : K \subset V, K \text{ compact}\}$ 임을 쉽게 알 수 있다.

따라서, $\Rightarrow \mu(V) = \sup\{\mu(K) : K \subset V, K \text{ compact}\}.$

Suppose $E = \bigcup_{i=1}^{\infty} E_i$, where E_1, E_2, E_3, \ldots are pairwise disjoint members of \mathfrak{M}_F .

Then

$$\mu(E) = \sum_{i=1}^{\infty} \mu(E_i). \tag{9}$$

If, in addition, $\mu(E) < \infty$, then also $E \in \mathfrak{M}_F$.

앞서 임의의 $E_i \subset X$ 들에 대해서는 부등식이 성립함을 증명했었는데, $E_i \in \mathfrak{M}_F$ 이면 pairwise disjoint일 때 등호가 성립한다는 사실까지 보이려고 한다.

⟨ proof ⟩

우선 disjoint compact sets K_1, K_2 에 대해서 성립하는지를 확인해 보자.

We first show that

$$\mu(K_1 \cup K_2) = \mu(K_1) + \mu(K_2) \tag{10}$$

if K_1 and K_2 are disjoint compact sets.

locally compact Hausdorff space에서, compact이면 closed이다. 즉, $(K_2)^c$ 는 open이다. 그 리고 K_1 과 K_2 는 disjoint 이므로 $K_1 \subset (K_2)^c$. 그래서 Uryshon's lemma에 의해 $K_1 \prec f \prec (K_2)^c$ 인 f를 찾을 수 있다. 즉, $f \in C_c(X)$ such that f(x) = 1 on K_1 , f(x) = 0 on K_2 , $0 \leq f \leq 1$ 인 f를 찾을 수 있다.

 $K_1 \cup K_2$ 는 compact이다. 따라서 STEP 2에 의해 $\mu(K_1 \cup K_2) = \inf\{\Lambda f: K \prec f\}$ 이 고, $\epsilon > 0$ 에 대해 $\Lambda g < \mu(K_1 \cup K_2) + \epsilon$, $K_1 \cup K_2 \prec g$ 인 g가 존재한다. f(x)g(x) = 1 on K_1 이고 (1-f(x))g(x) = 1 on K_2 이다. 따라서 $K_1 \prec fg \Rightarrow \mu(K_1) \leq \Lambda fg$ 이고 $K_2 \prec (1-f)g \Rightarrow \mu(K_2) \leq \Lambda(1-f)g$ 이므로

$$\mu(K_1) + \mu(K_2) \le \Lambda(fg) + \Lambda(1 - f)g = \Lambda g < \mu(K_1 \cup K_2) + \epsilon.$$

모든 $\epsilon > 0$ 에 대해 성립하므로, $\mu(K_1) + \mu(K_2) \le \mu(K_1 \cup K_2)$. 따라서 두 compact set에 대해서는 Theorem이 성립함을 보였다.

이제, pairwise disjoint members of \mathfrak{M}_F 에 대해서도 성립하는지를 확인해보자. 만약 $\mu(E_i)$ 중에 하나라도 ∞ 인 것이 있다면, (9)번 식의 좌변은 μ 의 monotone 성질에 의해 ∞ , 우 변은 $\mu(E_i) \geq 0$ 이므로 ∞ 가 된다. 그러므로 (9)번 식은 자명하게 성립한다. 그래서, 모든 $\mu(E_i) < \infty$ 인 경우에 대해 살펴보자.

 $\epsilon > 0$ 에 대해, $E_i \in \mathfrak{M}_F$ 이므로, compact sets $H_i \subset E_i$ with

$$\mu(H_i) > \mu(E_i) - 2^{-i}\epsilon \tag{11}$$

for $i=1,2,3,\ldots$ 인 H_i 들이 존재한다. $K_n=H_1\cup\cdots\cup H_n$ 으로 정의하면, $K_n\subset E$ 이므로

$$\mu(E) \ge \mu(K_n) = \sum_{i=1}^n \mu(H_i) > \sum_{i=1}^n \left[\mu(E_i) - 2^{-i} \epsilon \right] > \sum_{i=1}^n \mu(E_i) - \epsilon$$
 (12)

위 식이 임의의 $\epsilon > 0$ 과 모든 n에 대해 성립하므로, $\mu(E) \geq \sum_{i=1}^{\infty} \mu(E_i)$ 가 성립한다. 그리고 STEP I에 의해, $\mu(E) \leq \sum_{i=1}^{\infty} \mu(E_i)$. 따라서 $\mu(E) = \sum_{i=1}^{\infty} \mu(E_i)$. (9)번 식이 성립함을 증명할 수 있다.

다음과 같이 쓸 수도 있다.

$$\sum_{i=1}^{n} \mu(E_i) \to \mu(E) \text{ as } n \to \infty$$

$$\Rightarrow \exists N \text{ such that } \left| \sum_{i=1}^{n} \mu(E_i) - \mu(E) \right| < \epsilon \text{ for all } n \ge N.$$

 $\mu(E_i) \geq 0$ 에서, $\sum_{i=1}^n \mu(E_i)$ 가 증가하면서 수렴하므로

$$\mu(E) < \sum_{i=1}^{n} \mu(E_i) + \epsilon \tag{13}$$

인 N이 존재한다. 그리고 (12)번 식에 의해 $\mu(K_N) > \sum_{i=1}^N \mu(E_i) - \epsilon$, (13)번 식에 의해 $\sum_{i=1}^N \mu(E_i) - \epsilon \geq \mu(E) - 2\epsilon$ 이 성립하여, 임의의 $\epsilon > 0$ 에 대해 $\mu(E) - 2\epsilon \leq \mu(K_N)$ 인 K_N 을 찾을 수 있다.

이제, $\mu(E) = \sum \{\mu(K) : K \subset E, K \text{ compact}\}$ 임을 증명해보자. 우선, $K \subset E$ 이므로, $\mu(E)$ 는 반드시 $\{\mu(K) : K \subset E, K \text{ compact}\}$ 의 upper bound이다. 그런데, 임의의 $\epsilon > 0$ 에 대해 $\mu(E) - 2\epsilon \leq \mu(K_N)$ 인 K_N 을 찾을 수 있었으므로, $\mu(E)$ 보다 조금이라도 작으면 $\{\mu(K) : K \subset E, K \text{ compact}\}$ 의 upper bound가 될 수 없다. 즉, $\mu(E)$ 는 $\{\mu(K) : K \subset E, K \text{ compact}\}$ 의 sup이다.

나머지 증명은 다음에 이어서 진행하겠다.