

SECTION 4.7

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- ▶ minimum spanning trees
- ▶ Prim, Kruskal, Boruvka
- ▶ single-link clustering
- ▶ min-cost arborescences

Clustering

Goal. Given a set U of n objects labeled $p_1, ..., p_n$, partition into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- · Routing in mobile ad-hoc networks.
- · Document categorization for web search.
- · Similarity searching in medical image databases
- · Cluster celestial objects into stars, quasars, galaxies.
- · ...

Clustering of maximum spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

• $d(p_i, p_i) = 0$ iff $p_i = p_i$ [identity of indiscernibles]

• $d(p_i, p_j) \ge 0$ [non-negativity]

• $d(p_i, p_i) = d(p_i, p_i)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

Greedy clustering algorithm

"Well-known" algorithm in science literature for single-linkage k-clustering:

- Form a graph on the node set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n-k times (until there are exactly k clusters).

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

64

Greedy clustering algorithm: analysis

Theorem. Let C^* denote the clustering $C_1^*, ..., C_k^*$ formed by deleting the k-1 longest edges of an MST. Then, C^* is a k-clustering of max spacing. Pf.

- Let C denote any other clustering $C_1, ..., C_k$.
- Let p_i and p_j be in the same cluster in C^* , say C_r^* , but different clusters in C, say C_s and C_r .
- Some edge (p,q) on $p_i p_i$ path in C_r^* spans two different clusters in C.
- Spacing of $C^* = \text{length } d^*$ of the $(k-1)^{\text{st}}$ longest edge in MST.
- Edge (p, q) has length $\leq d^*$ since it was added by Kruskal.
- Spacing of C is $\leq d^*$ since p and q are in different clusters. •

this is the edge Kruskal would have added next had we not stopped it

Minimum spanning trees: quiz 5

number of objects n

can be very large

Which MST algorithm should you use for single-link clustering?

- **A.** Kruskal (stop when there are k components).
- **B.** Prim (delete k-1 longest edges).
- C. Either A or B.
- D. Neither A nor B.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

6