Análisis Futbol

2024-02-14

Tabla de contenidos

Preface		3
1	Introduction	4
2	Formulación	5
3	Dinámica del modelo	6
4	Descripción y Justificación de la recompensa	12
5	Justificación de las acciones	13
References		14

Preface

1 Introduction

This is a book created from markdown and executable code.

See Van Roy et al. (2021) for additional discussion of literate programming.

2 Formulación

El Proceso de Decisión de Markov se compone de los siguientes elementos:

- El conjunto de estados estará conformado por las 3 divisiones del campo c_1, c_2, c_3 , además se agregan tres estados absorbentes:
 - -lp =pérdida de posesión del balón.
 - -ng = realizar un tiro y que no termine en gol.
 - g=realizar un tiro y que termine en gol. De esta forma el conjunto de estados ${\cal S}$ queda como

$$S = \{c_1, c_2, c_3, lp, ng, g\}$$

- El conjunto de acciones admisibles se considerarán 3 acciones que serán
 - -t = tiro
 - -p = pase
 - -r = regate

De esta forma el conjunto de acciones queda como

$$\mathcal{A} = \{t, p, r\}$$

• Para las de transiciones haremos uso de las probabilidades de transición definidas de la siguiente forma:

$$P: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$$

Que se interpreta como la probabilidad de estar en un estado s_i realizar una acción a_k y terminar en un estado s_j . Notemos que se aceptan los casos cuando i=j y más adelante se mostrará que algunas probabilidades serán 0.

• La función de recompensa $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ será

$$R(s_i, a_k, s_j) = \begin{cases} 1 & \text{si} \quad s_j = g \\ 0 & o.c. \end{cases}$$

3 Dinámica del modelo

En el contexto del fútbol llamamos *jugada* a una sucesión de acciones donde el balón se traslada desde un punto inicial donde el equipo A tiene el balón hasta un punto final que puede ser: perder el balón, tirar a puerta y no anotar gol o tirar y anotar gol.

Ejemplo: El balón comienza en el saque de meta del portero, el portero da un pase a un defensa que se encuentra en el primer tercio, que esté da un pase a un delantero que se encuentra en el tercer tercio y al intentar un regate pierde el balón.

En nuestro contexto se verá como el hecho de iniciar la sucesión de acciones desde alguna sección c_i y terminar en alguno de los 3 estados absorbentes. Ejemplo

$$C_1 \xrightarrow{p} C_1 \xrightarrow{p} C_3 \xrightarrow{r} L_p$$
.

Para movernos de un estado S_i a un estado S_j mediante una acción a_k haremos uso de las probabilidades de transición, estas probabilidades las estimaremos utilizando datos extraídos de FBREF para 4 clubes particulares: Chivas, América, Cruz Azul y Pumas.

Primero vamos a interpretar las probabilidades de transición con la finalidad de descartar aquellas transciones que no serán posibles con nuestro modelo y con la naturaleza de un partido.

- Fijamos el estado C_1 .
 - Consideramos la acción p:

 $P(C_1, p, C_1) = \text{La probabilidad de estar en la zona } C_1 \text{ dar un } pase \text{ y terminar en la zona } C_1.$

 $P(C_1, p, C_2) = \text{La probabilidad de estar en la zona } C_1 \text{ dar un } pase \text{ y terminar en la zona } C_2.$

 $P(C_1, p, C_3) = \text{La probabilidad de estar en la zona } C_1 \text{ dar un } pase \text{ y terminar en la zona } C_2.$

 $P(C_1, p, L_p)$ = La probabilidad de estar en la zona C_1 dar un pase y perder el balón

 $P(C_1, p, nG) = \text{La probabilidad de estar en la zona } C_1 \text{ dar un } pase y no anotar gol.}$

 $P(C_1, p, G) = \text{La probabilidad de estar en la zona } C_1 \text{ dar un } pase \text{ y anotar gol.}$

De esta lista de probabilidades para la acción p notemos que $P(C_1, p, nG) = P(C_1, p, G) = 0$ esto pues la única acción admisible para terminar en los estados $\{nG, G\}$ es t.

- Consideramos la acción r:

 $P(C_1, r, C_1) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } regate \text{ y terminar en la zona } C_1.$

 $P(C_1, r, C_2) =$ La probabilidad de estar en la zona C_1 hacer un regate y terminar en la zona C_2 .

 $P(C_1, r, C_3) =$ La probabilidad de estar en la zona C_1 hacer un regate y terminar en la zona C_3 .

 $P(C_1, r, L_p)$ = La probabilidad de estar en la zona C_1 hacer un regate y perder el balón

 $P(C_1, r, nG) =$ La probabilidad de estar en la zona C_1 hacer un regate y no anotar gol.

 $P(C_1, r, G) = \text{La probabilidad de estar en la zona } C_1$ hacer un regate y anotar gol.

De esta lista de probabilidades para la acción r notemos que $P(C_1, r, nG) = P(C_1, r, nG) = 0$ esto pues la única acción admisible para terminar en los estados nG, G es t.

Además $P(C_1, r, C_3) = 0$, pues al realizar un regate solo tenemos dos opciones: nos mantenemos en la zona C_1 o avanzamos a la zona siguiente C_2 .

- Consideramos la acción t:

En este caso tendremos que $P(C_1, t, C_1) = P(C_1, t, C_2) = P(C_1, t, C_3) = P(C_1, t, L_p) = 0$ pues después de realizar un tiro solo tendremos dos estados posibles $\{nG, G\}$.

 $P(C_1, t, nG) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } tiro \text{ y no anotar gol.}$

 $P(C_1, t, G) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } tiro \text{ y anotar gol.}$

Sin embargo, como suponemos que las acciones que toman las futbolistas son razonables, no tiene sentido realizar un tiro desde la zona C_1 , pues la distancia hacia la porteria contaría es muy lejana y la probabilidad de anotar un gol es prácticamente nula. Por tanto

$$P(C_1, t, S) = 0, \quad \forall S \in \mathcal{S}.$$

• Fijamos el estado C_2 .

- Consideramos la acción p:

 $P(C_2, p, C_1) = \text{La probabilidad de estar en la zona } C_2 \text{ dar un } pase \text{ y terminar en la zona } C_1.$

 $P(C_2, p, C_2) =$ La probabilidad de estar en la zona C_2 dar un pase y terminar en la zona C_2 .

 $P(C_2, p, C_3) = \text{La probabilidad de estar en la zona } C_2 \text{ dar un } pase \text{ y terminar en la zona } C_3.$

 $P(C_2, p, L_p) =$ La probabilidad de estar en la zona C_2 dar un pase y perder el balón

 $P(C_2, p, nG) =$ La probabilidad de estar en la zona C_2 dar un pase y no tirar a gol.

 $P(C_2, p, G) = \text{La probabilidad de estar en la zona } C_2 \text{ dar un } pase \text{ y terminar en gol.}$

De esta lista de probabilidades para la acción p notemos que $P(C_2, p, nG) = P(C_2, p, nG) = 0$ esto pues la única acción admisible para terminar en los estados $\{nG, G\}$ es t.

- Consideramos la acción r:

 $P(C_2, r, C_1) =$ La probabilidad de estar en la zona C_2 hacer un regate y terminar en la zona C_1 .

 $P(C_2, r, C_2) =$ La probabilidad de estar en la zona C_2 hacer un regate y terminar en la zona C_2 .

 $P(C_2, r, C_3) =$ La probabilidad de estar en la zona C_2 hacer un regate y terminar en la zona C_3 .

 $P(C_2, r, L_p)$ = La probabilidad de estar en la zona C_2 hacer un regate y perder el balón.

 $P(C_2, r, nG) = \text{La probabilidad de estar en la zona } C_2 \text{ hacer un } regate \text{ y no anotar gol.}$

 $P(C_2, r, G) =$ La probabilidad de estar en la zona C_2 hacer un regate y anotar gol.

De esta lista de probabilidades para la acción r notemos que $P(C_2, r, nG) = P(C_2, r, G) = 0$ esto pues la única acción admisible para terminar en los estados $\{nG, G\}$ es t.

Consideramos la acción t:

En este caso tendremos que $P(C_2, t, C_1) = P(C_2, t, C_2) = P(C_2, t, C_3) = P(C_2, t, L_p) = 0$ pues después de realizar un *tiro* solo tendremos dos estados posibles $\{nG, G\}$.

 $P(C_2, t, nG) = \text{La probabilidad de estar en la zona } C_1$ hacer un tiro y no anotar gol.

 $P(C_2, t, G) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } tiro \text{ y anotar gol.}$

• Fijamos el estado C_3

Consideramos la acción p:

 $P(C_3, p, C_1) =$ La probabilidad de estar en la zona C_3 dar un pase y terminar en la zona C_1 .

 $P(C_3, p, C_2) =$ La probabilidad de estar en la zona C_3 dar un pase y terminar en la zona C_2 .

 $P(C_3, p, C_3) =$ La probabilidad de estar en la zona C_3 dar un pase y terminar en la zona C_3 .

 $P(C_3, p, L_p) =$ La probabilidad de estar en la zona C_3 dar un pase y perder el balón.

 $P(C_3, p, nG) =$ La probabilidad de estar en la zona C_3 dar un pase y no tirar a gol.

 $P(C_3, p, G) = \text{La probabilidad de estar en la zona } C_3$ dar un pase y terminar en gol.

De esta lista de probabilidades para la acción p notemos que $P(C_3, p, nG) = P(C_2, p, G) = 0$ esto pues la única acción admisible para terminar en los estados $\{nG, G\}$ es t.

- Consideramos la acción r:

 $P(C_3, r, C_1) =$ La probabilidad de estar en la zona C_3 hacer un regate y terminar en la zona C_1 .

 $P(C_3, r, C_2) =$ La probabilidad de estar en la zona C_3 hacer un regate y terminar en la zona C_2 .

 $P(C_3, r, C_3) =$ La probabilidad de estar en la zona C_3 hacer un *regate* y terminar en la zona C_3 .

 $P(C_3, r, L_p)$ = La probabilidad de estar en la zona C_3 hacer un regate y perder el balón.

 $P(C_3, r, nG) = \text{La probabilidad de estar en la zona } C_3 \text{ hacer un } regate \text{ y no anotar gol.}$

 $P(C_3, r, G) = \text{La probabilidad de estar en la zona } C_3 \text{ hacer un } regate \text{ y anotar gol.}$

De esta lista de probabilidades para la acción r notemos que $P(C_3, r, nG) = P(C_3, r, G) = 0$ esto pues la única acción admisible para terminar en los estados $\{nG, G\}$ es t.

Además $P(C_3, r, C_1) = 0$, pues al realizar un *regate* solo tenemos dos opciones o nos mantenemos en la zona C_3 o retrocedemos a la zona anterior C_2 .

Consideramos la acción t:

En este caso tendremos que $P(C_3, t, C_1) = P(C_3, t, C_2) = P(C_3, t, C_3) = P(C_3, t, L_p) = 0$ pues después de realizar un *tiro* solo tendremos dos estados posibles $\{nG, G\}$.

 $P(C_3, t, nG) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } tiro \text{ y no anotar gol.}$

 $P(C_3, t, G) = \text{La probabilidad de estar en la zona } C_1 \text{ hacer un } tiro \text{ y anotar gol.}$

• Por último como $\{L_p, nG, G\}$ son estados absorbentes, entonces $\forall a \in A$.

$$P(L_p, a, S) = \begin{cases} 1 & \text{si} \quad S = L_p \\ 0 & o.c. \end{cases}$$

$$P(nG, a, S) = \begin{cases} 1 & \text{si} \quad S = nG \\ 0 & o.c. \end{cases}$$

$$P(G, a, S) = \begin{cases} 1 & \text{si} \quad S = G \\ 0 & o.c. \end{cases}$$

Tabla 3.1: Fruit prices

Probabilidades	Parámetros
$P(C_1, p, C_1)$	α_1
$P(C_1, p, C_2)$	$lpha_2$
$P(C_1, p, C_3)$	$\overline{lpha_3}$
$P(C_1, p, L_p)$ $P(C_1, r, C_1)$	$rac{lpha_4}{ heta_1}$
$P(C_1, r, C_2)$	$\overline{ heta_2}$
$P(C_1, r, L_p)$	$ heta_4$

Probabilidades	Parámetros
$\overline{P(C_2, p, C_1)}$	β_1
$P(C_2, p, C_2)$	eta_2
$P(C_2, p, C_3)$	eta_3
$P(C_2, p, L_p)$	eta_4
$P(C_2, r, C_1)$	μ_1

Probabilidades	Parámetros
$\overline{P(C_2, r, C_2)}$	μ_2
$P(C_2, r, C_3)$	μ_3
$P(C_2, r, L_p)$	μ_4
$P(C_2, t, nG)$	$ u_1$
$P(C_2, t, G)$	$ u_2$

Probabilidades	Parámetros
$P(C_3, p, C_1)$	γ_1
$P(C_3, p, C_2)$	γ_2
$P(C_3, p, C_3)$	γ_3
$P(C_3, p, L_p)$	γ_4
$P(C_3, r, C_2)$	η_1
$P(C_3, r, C_3)$	η_2
$P(C_3, r, L_p)$	η_3
$P(C_3, t, nG)$	ξ_1
$P(C_3, t, G)$	ξ_2

4 Descripción y Justificación de la recompensa

En un partido de fútbol gana el equipo que anota más goles, en caso de anotar los mismos goles se considera empate y no existe desempate de ningún tipo. Por lo que la recompensa será la de anotar un gol R=1, pues es lo único que puede hacer que un equipo gane un partido. No existe penalización porque los goles válidos anotados no pueden ser descontandos.

 $^{^1\}mathrm{No}$ se consideran los partidos de eliminación directa donde existe el desempate por penales.

5 Justificación de las acciones

Las acciones que puede realizar un equipo durante un partido son limitadas y se pueden enlistar. Sin embargo para nuestro modelo vamos a seleccionar las 3 más importantes que son el pase, tiroy regate.

- tiro: Es la acción que nos permite anotar goles.
- pase: Ayuda a un equipo a mover el balón por el campo sin necesidad de desplazarse o dejar rivales atrás.
- regate: Permite que podamos trasladar el balón de un lugar a otro y dejar a rivales atrás.

References

Van Roy, Maaike, Wen-Chi Yang, Luc De Raedt, y Jesse Davis. 2021. "Analyzing learned markov decision processes using model checking for providing tactical advice in professional soccer". En AI for Sports Analytics (AISA) Workshop at IJCAI 2021.