Design and Analysis of Algorithms Part II: Dynamic Programming Lecture 13: Longest Common Substrings

盛浩

shenghao@buaa.edu.cn

北京航空航天大学 计算机学院

北航《算法设计与分析》

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

动态规划篇概述

- 在算法课程第二部分"动态规划"主题中,我们将主要聚焦于如下 经典问题:
 - 0-1 Knapsack (0-1背包问题)
 - Maximum Contiguous Subarray II (最大连续子数组 II)
 - Longest Common Subsequences (最长公共子序列)
 - Longest Common Substrings (最长公共子串)
 - Minimum Edit Distance (最小编辑距离)
 - Rod-Cutting (钢条切割)
 - Chain Matrix Multiplication (矩阵链乘法)

- 子序列
 - 将给定序列中零个或多个元素(如字符)去掉后所得结果

- 示例
 - 给定序列X

- 子序列
 - 将给定序列中零个或多个元素(如字符)去掉后所得结果

- 示例
 - 给定序列X

X的子序列

X_{seq}	A C	' B	В
-----------	-----	-----	---

- 子序列
 - 将给定序列中零个或多个元素(如字符)去掉后所得结果
- 子串
 - 给定序列中零个或多个连续的元素(如字符)组成的子序列
- 示例
 - 给定序列X

X	A	В	С	В	D	A	B
---	---	---	---	---	---	---	---

X的子序列

X _{seq} A C B B	
--------------------------	--

- 子序列
 - 将给定序列中零个或多个元素(如字符)去掉后所得结果
- 子串
 - 给定序列中零个或多个连续的元素(如字符)组成的子序列
- 示例
 - 给定序列X

X的子序列

X的子串

- 子序列
 - 将给定序列中零个或多个元素(如字符)去掉后所得结果
- 子串
 - 给定序列中零个或多个连续的元素(如字符)组成的子序列
- 示例
 - 给定序列X

X的子序列

X的子串

X_{seq}	A	С	В	В	X_{str}	В	С	В
-----------	---	---	---	---	-----------	---	---	---

• 给定两个序列X和Y

• 给定两个序列X和Y

• 给定两个序列X和Y

• 给定两个序列 X 和 Y

X	\boldsymbol{A}	B	C	A	D	B	B		Y	B	C	E	D	B	B
			_								_				

• 给定两个序列X和Y

X A B C A D B B Y B C E D B B

• 公共子串示例

问题:如何求两个给定序列的最长公共子串?

问题定义

• 形式化定义

最长公共子串问题

Longest Common Substring Problem

输入

• 序列 $X = \langle x_1, x_2, ..., x_n \rangle$ 和序列 $Y = \langle y_1, y_2, ..., y_m \rangle$

问题定义

• 形式化定义

最长公共子串问题

Longest Common Substring Problem

输入

• 序列 $X=<x_1,x_2,...,x_n>$ 和序列 $Y=<y_1,y_2,...,y_m>$

输出

• 求解一个公共子串 $\mathbf{Z} = \langle \mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_l \rangle$,令

• 形式化定义

最长公共子串问题

Longest Common Substring Problem

输入

• 序列 $X = \langle x_1, x_2, ..., x_n \rangle$ 和序列 $Y = \langle y_1, y_2, ..., y_m \rangle$

输出

• 求解一个公共子串 $Z = \langle z_1, z_2, ..., z_l \rangle$, 令

$$\max |Z|$$

$$s. t. Z = \langle x_i, x_{i+1}, ..., x_{i+l-1} \rangle = \langle y_j, y_{j+1}, ..., y_{j+l-1} \rangle$$

 $(1 \le i \le n - l + 1; 1 \le j \le m - l + 1)$

• 形式化定义

最长公共子串问题

Longest Common Substring Problem

输入

• 序列 $X = \langle x_1, x_2, ..., x_n \rangle$ 和序列 $Y = \langle y_1, y_2, ..., y_m \rangle$

输出

• 求解一个公共子串 $Z = \langle z_1, z_2, ..., z_l \rangle$, 令

$$\max |Z|$$

优化目标

$$s. t. Z = \langle x_i, x_{i+1}, ..., x_{i+l-1} \rangle = \langle y_j, y_{j+1}, ..., y_{j+l-1} \rangle$$

 $(1 \le i \le n - l + 1; 1 \le j \le m - l + 1)$

• 形式化定义

最长公共子串问题

Longest Common Substring Problem

输入

• 序列 $X = \langle x_1, x_2, ..., x_n \rangle$ 和序列 $Y = \langle y_1, y_2, ..., y_m \rangle$

输出

• 求解一个公共子串 $Z = \langle z_1, z_2, ..., z_l \rangle$, 令

$$\max |Z|$$

优化目标

$$s.t.Z = \langle x_i, x_{i+1}, ..., x_{i+l-1} \rangle = \langle y_j, y_{j+1}, ..., y_{j+l-1} \rangle$$

 $(1 \le i \le n-l+1; 1 \le j \le m-l+1)$

约束条件

• 序列X和序列Y各选择一个位置X[i]和Y[j]

• 序列X和序列Y各选择一个位置X[7]和Y[6]

- 序列X和序列Y各选择一个位置X[7]和Y[6]
- 依次检查元素是否匹配

- 序列X和序列Y各选择一个位置X[7]和Y[6]
- 依次检查元素是否匹配
 - 元素相等继续匹配

- 序列X和序列Y各选择一个位置X[7]和Y[6]
- 依次检查元素是否匹配
 - 元素相等继续匹配

- 序列X和序列Y各选择一个位置X[7]和Y[6]
- 依次检查元素是否匹配
 - 元素相等继续匹配

- 序列X和序列Y各选择一个位置X[7]和Y[6]
- 依次检查元素是否匹配
 - 元素相等继续匹配
 - 元素不等(或某序列已达端点)匹配终止

- 枚举所有的X[i],Y[j]
- 求以其为结尾的尽可能长的公共子串

最长公共子串长度为3

- 枚举所有的X[i],Y[j]
- 求以其为结尾的尽可能长的公共子串
- 记录最长公共子串长度

X	A	B	C	A	D	B	B
	Y	B	С	E	D	B	B

X	A	B	C	A	D	B	B
	Y	В	<i>C</i>	E	D	B	B
Y	A	R			ת	D	D
	А			A	D	D	D

X	A	B	C	A	D	B	B
	Y	B	C	E	D	B	B
X	A	В	<i>C</i>	A	D	В	B
	Y	В	С	E	D	В	В
X	A	В	<i>C</i>	A	D	В	В
	Y	B	С	E	D	B	B

X	A	B	С	A	D	B	B
	Y	В	C	E	D	B	В
X	A	B	C	A	D	B	B
	Y	B	<i>C</i>	E	D	В	B
X	A	B	C	A	D	B	B
	Y	B	C	E	D	B	B

• 可能存在最优子结构和重叠子问题

问题:如何利用动态规划求解?

问题结构分析

- 给出问题表示
 - C[i,j]
 - 。 X[1..i]和Y[1..j]中,以 x_i 和 y_j 结尾的最长公共子串Z[1..l]的长度

问题结构分析

X_i	x_1	x_2	 x_{i-1}	x_i
Y_j	<i>y</i> ₁	y ₂	 y_{j-1}	y_j

Z_l	z_1		z_{l-1}	z_l
-------	-------	--	-----------	-------

递推关系建立

问题结构分析

- 给出问题表示
 - C[i,j]
 - 。X[1..i]和Y[1..j]中,以 x_i 和 y_j 结尾的最长公共子串Z[1..l]的长度

X_i	x_1	<i>x</i> ₂	 x_{i-1}	x_i
Y_j	<i>y</i> ₁	<i>y</i> ₂	 y_{j-1}	y_j

问题结构分析

递推关系建立

自底向上计算

问题结构分析

- 给出问题表示
 - C[i,j]
 - 。X[1..i]和Y[1..j]中, $以x_i$ 和 y_j 结尾的最长公共子串Z[1..l]的长度

X_i	x_1	x_2	 x_{i-1}	x_i
Y_j	y_1	<i>y</i> ₂	 y_{j-1}	y_j

- 明确原始问题
 - $p_{max} = \max_{1 \leq i \leq n, 1 \leq j \leq m} \{C[i, j]\}$
 - 。X[1..n]和Y[1..m]中最长公共子串的长度

问题结构分析

递推关系建立

自底向上计算

递推关系建立:分析最优(子)结构

• 情况 $1: x_7 \neq y_6$

• 情况 $2: x_7 = y_6$

问题结构分析

递推关系建立

自底向上计算

• 情况 $1: x_7 \neq y_6$

C[7,6]

X	A	B	C	A	D	B	B
	Y	B	C	E	D	B	A

问题结构分析

递推关系建立

自底向上计算

• 情况 $1: x_7 \neq y_6$

• 情况 $1: x_7 \neq y_6$

• 情况 $1: x_i \neq y_j$

$$C[i,j]=0$$

X	x_1	x_2	 x_{i-1}	x_i
Y	<i>y</i> ₁	y_2	 y_{j-1}	y_j

问题结构分析

递推关系建立

自底向上计算

• 情况 $1: x_i \neq y_j$

$$C[i,j]=0$$

X	x_1	x_2	 x_{i-1}	x_i
Y	<i>y</i> ₁	y ₂	 y_{j-1}	y_j

无子问题

问题结构分析

递推关系建立

自底向上计算

• 情况 $2: x_7 = y_6$

C[7, 6]

X	A	B	С	A	D	B	B
	Y	В	C	E	D	В	B

问题结构分析

递推关系建立

自底向上计算

• 情况 $2: x_7 = y_6$

C[7,6]

存在以其结尾的公共子串

• 情况 $2: x_7 = y_6$

问题结构分析

存在以其结尾的公共子串

$$C[7,6] = C[7-1,6-1] + 1$$

递推关系建立

自底向上计算

• 情况 $2: x_i = y_j$

C[i,j]

X	x_1	x_2	 x_{i-1}	x_i
Y	<i>y</i> ₁	y_2	 y_{j-1}	y_j

问题结构分析

递推关系建立

自底向上计算

• 情况 $2: x_i = y_i$

问题结构分析

递推关系建立

自底向上计算

• 情况 $2: x_i = y_i$

•
$$C[i,j] = C[i-1,j-1] + 1$$
 最优子结构

问题结构分析

递推关系建立

自底向上计算

递推关系建立:构造递推公式

问题结构分析

递推关系建立

自底向上计算

自底向上计算:确定计算顺序

- 初始化
 - C[i, 0] = C[0, j] = 0
 - 。 某序列长度为0时,最长公共子串为0

自底向上计算:确定计算顺序

- 初始化
 - C[i, 0] = C[0, j] = 0
 - 。 某序列长度为0时,最长公共子串为0

C[i,j]	j = 0	<i>j</i> = 1	j=2		j=m	初始化
i = 0	0	0	0	0	0	
i = 1	0					•
i = 2	0					
•••	0					
i = n	0					

问题结构分析

递推关系建立

自底向上计算

自底向上计算:确定计算顺序

- 初始化
 - C[i, 0] = C[0, j] = 0
 - 。 某序列长度为0时, 最长公共子串为0
- 递推公式

•
$$C[i,j] = \begin{cases} 0 & , x_i \neq y_j \\ C[i-1,j-1] + 1 & , x_i = y_j \end{cases}$$

C[i,j]	j = 0	j = 1	j=2		j=m
i = 0	0	0	0	0	0
i = 1	0				
i = 2	0				
	0			C[i,j]	
i = n	0				

问题结构分析

递推关系建立

自底向上计算

自底向上计算:依次求解问题

- 初始化
 - C[i, 0] = C[0, j] = 0
 - 。 某序列长度为0时, 最长公共子串为0
- 递推公式

•
$$C[i,j] = \begin{cases} 0 & , x_i \neq y_j \\ C[i-1,j-1] + 1 & , x_i = y_j \end{cases}$$

	(, t		
C[i,j]	j = 0	j = 1	<i>j</i> = 2		j = m	
i = 0	0	0	0	0	自	底向上计算
i = 1	0					
i = 2	0	+				
	0	<u>+</u>				
i = n	0	+				

问题结构分析

递推关系建立

自底向上计算

自底向上计算:依次求解问题

- 初始化
 - C[i, 0] = C[0, j] = 0
 - 。 某序列长度为0时,最长公共子串为0
- 原始问题
 - $p_{max} = \max_{1 \le i \le n, 1 \le j \le m} \{C[i, j]\}$

C[i,j]	j = 0	j = 1	j=2		j = m
i = 0	0	0	0	0	0
i = 1	0				
i = 2	0		*_		
•••	0			最优解	
i = n	0				

问题结构分析

递推关系建立

自底向上计算

- 记录决策过程
 - 最长公共子串末尾位置为 p_{max}
 - 最长公共子串长度为 l_{max}

最优方案追踪

- 记录决策过程
 - 最长公共子串末尾位置为 p_{max}
 - 最长公共子串长度为 l_{max}

• 输出最优方案

• 最长公共子串< $x_{p_{max}-l+1}, x_{p_{max}-l+2}, \dots, x_{p_{max}} >$

问题结构分析

递推关系建立

自底向上计算

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_{j}	В	C	E	D	В	В	

	1	2	3	4	5	6	7
X_i	A	B	C	A	D	B	В
Y_j	В	C	E	D	В	В	

C .	Γ	•
U	ı	

j	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							
7							

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	B	В
Y_j	В	C	E	D	В	В	

L	L	
•	\	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0		÷π±/>/	Le			
2	0		初始化	匕			
3	0						
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_{j}	В	λ	$x_i \neq y_j$	j	В	В	

C []	- J		$x_i \neq$	$= y_j$	В	D		
	j	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
	1	0						
	2	0						
	3	0						
	4	0						
	5	0						
	6	0						
	7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_{j}	В	$x_i \neq y_j$			В	В	

\boldsymbol{C}	l	
	Ī	Ī

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0					
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

				4			
X_i	A	В	C	A	D	В	В
Y_j		С	E	D	В	B	

	Γ	
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0				
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

			3				
X_i	A	В	C	A	D	В	В
Y_j	B	C	E	D	В	В	

	Γ	
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0			
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0		
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

					5		
X_i	A	В	C	A	D	В	В
Y_{j}	B	C	E	D	В	В	

C	Γ	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

				4			
X_i	A	В	C	A	D	В	B
Y_j	B	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	С	x_i =	$= y_j$	3	В	

	Г	Ī
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1		0	0	0	0	0	0
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7	位置 $p_{max}=2$
X_i	A	В	C	A	D	В	В	长度 $l_{max} = 1$
Y_j	В	C	x_i =	$= y_j$	3	В		

C[]

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1		0	0	0	0	0	0
2	0	1					
3	0						
4	0						
5	0						
6	0						
7	0						

				4			
				A		B	В
Y_j	В	С	E	D	В	В	

	Γ	
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0				
3	0						
4	0						
5	0						
6	0						
7	0						

			3				
X_i	A	В	C	A	D	B	В
	В	C	$\begin{bmatrix} E \end{bmatrix}$	D	В	B	

	Γ	
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0			
3	0						
4	0						
5	0						
6	0						
7	0						

					5		
X_i	A	В	C	A	D	В	B
Y_j	В	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0		
3	0						
4	0						
5	0						
6	0						
7	0						

					5		
X_i	A	В	C	A	D	B	В
Y_j	В	С	E	D	В	В	

$\boldsymbol{\Gamma}$	Γ	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	
3	0						
4	0						
5	0						
6	0						
7	0						

				4			
X_i	A	В	C	A	D	B	B
Y_j	В	C	E	D	B	В	

C .	Γ	•
U	ı	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0_	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0						
4	0						
5	0						
6	0						
7	0						

	1		3				
X_i	A	В	С	A	D	В	В
Y_j	$\begin{bmatrix} B \end{bmatrix}$	C	E	D	В	В	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0					
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	С	A	D	В	B
Y_j	В	С	E	D	В	В	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2				
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	B	С	A	D	B	В
	В	C	E	D	В	В	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0			
4	0						
5	0						
6	0						
7	0						

			3				
X_i	A	В	С	A	D	B	В
Y_j	В	C	E	D	В	В	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0		
4	0						
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	B	С	A	D	B	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	Г	Ī
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	
4	0						
5	0						
6	0						
7	0						

	1		3				
X_i	A	B	С	A	D	В	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	Г	
L	ı	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0						
5	0						
6	0						
7	0						

				4			7
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D		B	

	Γ	
U	l	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0					
5	0						
6	0						
7	0						

				4			
X_i	A	В	C	A	D	B	В
Y_j				D		B	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0				
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	B	В
		C	E	D	B	В	

$\boldsymbol{\Gamma}$	Г	Ī
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0			
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	B	В
	В	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0		
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	B	В
Y_j	В	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	
5	0						
6	0						
7	0						

							7
X_i	A	B	C	A	D	В	B
Y_j	В	C	E	D	B	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0						
6	0						
7	0						

	1	2	3	4	5	6	7
X_i	A	B	C	A	D	B	В
Y_j	В	С	E	D	В	В	

C .	Γ	•
U	ı	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0					
6	0						
7	0						

		2					
X_i	A	B	C	A	D	B	В
Y_j	B	С	E	D	В	B	

$\boldsymbol{\Gamma}$	Г	Ī
C	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0				
6	0						
7	0						

			3				
X_i	A	B	C	A	D	В	В
Y_j	В	C	E	D	В	B	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0			
6	0						
7	0						

					5		
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D	В	B	

$\boldsymbol{\Gamma}$	Г	Ī
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1		
6	0						
7	0						

				4			
X_i	A	B	C	A	D	В	В
Y_j	В	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	
6	0						
7	0						

					5		
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	ı	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0						
7	0						

			3				
	A					В	В
Y_j	lacksquare	<i>C</i>	E	D	В	В	

$\boldsymbol{\Gamma}$	Г	Ī
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1					
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	$\begin{bmatrix} c \end{bmatrix}$	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0				
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
			E			В	

位置 $p_{max}=3$ 长度 $l_{max}=2$

C[]

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0			
7	0						

	1	2	3	4	5	6	7
X_i	A	B	C	A	D	В	В
Y_{j}	В	C	E	D	В	В	В

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0		
7	0						

				4			
X_i	A	В	C	A	D	В	В
Y_j	A B	C	E	D	В	В	

C	
---	--

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	
7	0						

							7
X_i	A	B	C	A	D	В	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	Г	Ī
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0						

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	<i>C</i>	E	D	В	В	

$\boldsymbol{\Gamma}$	ı	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1					

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	$\begin{bmatrix} c \end{bmatrix}$	E	D	В	В	

$\boldsymbol{\Gamma}$	Γ	
L	ı	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1	0				

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
				D		В	

$\boldsymbol{\Gamma}$	ı	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1	0	0			

					5		
X_i	A	В	C	A	D	В	В
	В						

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1	0	0	0		

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D	В	В	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	$\begin{bmatrix} 0 \end{bmatrix}$	2	1
7	0	1	0	0	0	1	

							7
X_i	A	B	C	A	D	В	В
Y_j	В	C	E	D	В	В	

位置 $p_{max} = 7$ 长度 $l_{max} = 3$

$\boldsymbol{\Gamma}$	ı	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1	0	0	0	1	3

	1	2	3	4	5	6	7
X_i	A	B	C	A	D	B	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	ı	
U	L	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	^	1	^	0
6	0	1	0	最长公共子串长度			1
7	0	1	0	0	0	1	3

	1	2	3	4	5	6	7
X_i	A	В	C	A	D	В	В
Y_j	В	C	E	D	В	В	

$\boldsymbol{\Gamma}$	Γ	
L	ı	

j	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
2	0	1	0	0	0	1	1
3	0	0	2	0	0	0	0
4	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0
6	0	1	0	0	0	2	1
7	0	1	0	0	0	1	3


```
输入: 两个字符串X, Y
 输出: X和Y的最长公共子串
//初始化
n \leftarrow \operatorname{length}(X)
                                                                  序列长度
Im \leftarrow length(Y)
新建二维数组C[\overline{0..n}, 0..m]
l_{max} \leftarrow 0
p_{max} \leftarrow 0
for i \leftarrow 0 to n do
 C[i,0] \leftarrow 0
end
for j \leftarrow 0 to m do
 C[0,j] \leftarrow 0
 end
```



```
输入: 两个字符串X, Y
输出: X和Y的最长公共子串
//初始化
n \leftarrow \operatorname{length}(X)
m \leftarrow \operatorname{length}(Y)
新建二维数组C[0..n,0..m]
                                                   初始化最优解
l_{max} \leftarrow 0
p_{max} \leftarrow 0
for i \leftarrow 0 to n do
C[i,0] \leftarrow 0
end
for j \leftarrow 0 to m do
C[0,j] \leftarrow 0
\end
```



```
//动态规划
for i \leftarrow 1 to n do
                                                      依次计算子问题
    for j \leftarrow 1 to m do
        if X_i \neq Y_i then
         C[i,j] \leftarrow 0
        end
        else
            C[i,j] \leftarrow C[i-1,j-1] + 1
            if C[i,j] > l_{max} then
                l_{max} \leftarrow C[i,j]
               p_{max} \leftarrow i
            end
        end
    end
end
return l_{max}, p_{max}
```



```
//动态规划
for i \leftarrow 1 to n do
    for j \leftarrow 1 to m_{do}
      if X_i \neq Y_j then
                                                            末尾不等
      C[i,j] \leftarrow 0
       \underline{\mathrm{end}}
        else
            C[i,j] \leftarrow C[i-1,j-1] + 1
            if C[i,j] > l_{max} then
                l_{max} \leftarrow C[i,j]
               p_{max} \leftarrow i
            end
        end
    end
end
return l_{max}, p_{max}
```


Longest-Common-Substring(X, Y)

```
//动态规划
for i \leftarrow 1 to n do
    for j \leftarrow 1 to m do
        if X_i \neq Y_j then
         C[i,j] \leftarrow 0
      end
       else
                                                           末尾相等
        C[i,j] \leftarrow C[i-1,j-1] + 1
       -| if C[i,j] > \overline{l_{max}} then
               l_{max} \leftarrow C[i,j]
               p_{max} \leftarrow i
            end
        end
    end
end
return l_{max}, p_{max}
```


Longest-Common-Substring(X, Y)

```
//动态规划
for i \leftarrow 1 to n do
    for j \leftarrow 1 to m do
         if X_i \neq Y_j then
          C[i,j] \leftarrow 0
         end
         else
           | C[i,j] \leftarrow C[i-1,j-1] + 1 
 | if C[i,j] > l_{max} \text{ then} 
                                                           记录最长公共子串
           l_{max} \leftarrow C[i,j]
             p_{max} \leftarrow i
             \mathbf{end}
         end
    end
end
return l_{max}, p_{max}
```


• Print-LCS(X, l_{max} , p_{max})

```
输入: 字符串 X, l_{max}, p_{max}
输出: X 和 Y的最长公共子串
if l_{max}=0 then
| return NULL
end
for i \leftarrow (p_{max}-l_{max}+1) to p_{max} do
| print X_i
end
```


• Print-LCS(X, l_{max} , p_{max})

```
输入: 字符串 X, l_{max}, p_{max} 输出: X 和 Y的最长公共子串 if l_{max}=0 then -1 return NULL end -1 for i\leftarrow (p_{max}-l_{max}+1) to p_{max} do 追踪最优解 end
```

时间复杂度分析

Longest-Common-Substring(X, Y)

```
//动态规划
for i \leftarrow 1 to n do
    for j \leftarrow 1 to m do
        if X_i \neq Y_j then
         C[i,j] \leftarrow 0
        end
        else
            C[i,j] \leftarrow C[i-1,j-1] + 1
            if C[i,j] > l_{max} then
                l_{max} \leftarrow C[i,j]
              p_{max} \leftarrow i
            end
        end
    end
end
                                                        时间复杂度:O(n \cdot m)
return l_{max}, p_{max}
```


X	D	B	D	A	B
Y	C	A	B	B	

X	D	B	D	A	B
Y	C	A	B	B	

X	D	В	D	A	B
Y	С	A	B	B	

最长公共子串

X	D	В	D	A	B
Y	C	A	В	В	

情况 $2: x_5 = y_4$

X	D	B	D	A	B
Y	С	A	B	B	

X	D	B	D	A	B
Y	C	A	B	B	

最长公共子串

情况 $1: x_4 \neq y_3$

