Data Communications

-Analog Transmission-

Digital Data — Analog Signal analog — ranalog rale (AM.FM)

2024. 10. 24

Young Deok Park (박영덕)

Digital Data to Analog Signal

디지털을 아날로그 신호로

- Main usage
 - PC 통신 (9번대)
 - Wireless communications
 - Wi-Fi, Zigbee, LTE (4G), NR (5G), etc.

Bitrate and Baud Rate

- Bit rate, N, is the number of bits per second (bps)
- Baud rate is the number of signal elements per second (bauds)

 † া প্ৰাণ্ড মুন্দ্ৰ পূৰ্ব পূৰ
- bit rate yet as fact rate is less than or equal to the bit rate

- Where is the number of data bits per signal element.
- Example

bit rate 35 194 An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate.

$$S = N \times \frac{1}{r}$$
 or $N = S \times r = 1000 \times 4 = 4000 \text{ bps}$

Digital Data to Analog Signal

- Amplitude Shift Keying (ASK/OOK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
- Quadrature Amplitude Modulation (QAM)

Amplitude Shift Keying (ASK) (On-off keying, OOK)

■ ASK is implemented by changing the amplitude of a <u>carrier</u> <u>signal</u> to reflect amplitude levels in the digital signal প্ৰায় প্ৰথ

A digital "1" could not affect the signal, whereas a digital "0" would, by making it zero

Frequency Shift Keying (FSK)

- The digital data stream changes the frequency of the carrier signal, f
- Example

 - a "1" could be represented by f₁=f_c+Δf
 a "0" could be represented by f₂=f_c-Δf

Phase Shift Keying (PSK)

장거리

- We can vary the phase shift of the carrier signal to represent digital data
- PSK is much more robust than ASK as it is not that vulnerable to noise, which changes amplitude of the signal

Analog (1) A

Quadrature PSK (QPSK)

To increase the bit rate, we can code two or more bits onto one signal element

One carrier frequency is phase shifted 90° from the other

Constellation Diagrams

A constellation diagram helps us to define the amplitude and phase of a signal bit error that 4

Quadrature Amplitude Modulation (QAM)

- QAM is a combination of ASK and PSK
- Logical extension of QPSK

phase \neq amplitude

단거리

Modulation Schemes in Wi-Fi (802.11n)

राष्ट्राप गर MIMO

न्ययम भ्यक्ता

노이즈취약

-							
MCS Index	Spatial Streams	Modulation Type	Coding Rate	Data Rate Mb/s			
				20 MHz 채널		40 MHz 채널	
				800ns GI	400ns GI	800ns GI	400ns GI
0	1	BPSK	1/2	6.50	7.20	13.50	15.00
1	1	QPSK	1/2	13.00	14.40	27.00	30.00
2	1	QPSK	3/4	19.50	21.70	40.50	45.00
3	1	16-QAM	1/2	26.00	28.90	54.00	60.00
4	1	16-QAM	3/4	39.00	43.30	81.00	90.00
5	1	64-QAM	2/3	52.00	57.80	108.00	120.00
6	1	64-QAM	3/4	58.50	65.00	121.50	135.00
7	1	64-QAM	5/6	65.00	72.20	135.00	150.00
8	2	BPSK	1/2	13.00	14.40	27.00	30.00
9	2	QPSK	1/2	26.00	28.90	54.00	60.00
10	2	QPSK	3/4	39.00	43.30	81.00	90.00
11	2	16-QAM	1/2	52.00	57.80	108.00	120.00
12	2	16-QAM	3/4	78.00	86.70	162.00	180.00
13	2	64-QAM	2/3	104.00	115.60	216.00	240.00
14	2	64-QAM	3/4	117.00	130.00	243.00	270.00
15	2	64-QAM	5/6	130.00	144.40	270.00	300.00
	3						
23	3	64-QAM	5/6	195.00	216.60	405.00	450.00
	4						
31	4	64-QAM	5/6	260.00	288.90	540.00	600.00

Amplitude

Nata rate Adaptation

