CS2214 - Assignment 1

Ali Al-Musawi

22/01/2020

Question 1

Part (i)

We show that the proposition $s = (p \land q \land \neg r) \lor (\neg p \land q \land r)$ satisfies the given requirement.

p	q	r	$p \wedge q \wedge \neg r$	$\neg p \land q \land r$	$(p \land q \land \neg r) \lor (\neg p \land q \land r)$	s
Т	Т	Т	F	F	F	F
Т	Т	F	Т	F	T	Т
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	F	T	T	Т
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Table 1: Truth Table for $(p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r)$

Part (ii)

We show that the proposition $(p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land \neg r)$ satisfies the given requirements:

p	q	r	$p \wedge \neg q \wedge \neg r$	$\neg p \wedge q \wedge \neg r$	$\neg p \wedge \neg q \wedge r$	$(p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land \neg r)$	s
T	Т	Т	F	F	F	F	F
T	Т	F	F	F	F	F	F
Т	F	Т	F	F	F	F	F
Т	F	F	T	F	F	Т	Т
F	Т	Т	F	F	F	F	F
F	Т	F	F	Т	F	Т	Т
F	F	Т	F	F	T	Т	Т
F	F	F	F	F	F	F	F

Table 2: Truth Table for $(p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land \neg r)$

Question 2

Part (i)

We construct a truth table for this proposition. Since all of its rows show T, we conclude it is a tautaology.

p	q	r	$p \wedge q \wedge r$	$p \wedge q$	$(p \wedge q) \vee r$	$(p \land q \land r) \to ((p \land q) \lor r)$
T	Т	Т	T	Т	T	Т
Т	Т	F	F	Т	T	T
Т	F	Т	F	F	T	T
Т	F	F	F	F	F	Т
F	Т	Т	F	F	Т	T
F	Т	F	F	F	F	Т
F	F	Т	F	F	T	Т
F	F	F	F	F	F	T

Table 3: Truth Table for $(p \wedge q \wedge r) \to ((p \wedge q) \vee r)$

Part (ii)

This proposition is not a tautology, but it is satisfiable as seen in the table below.

p	$\neg p$	$p o \neg p$
Т	F	F
F	Т	Т

Table 4: Truth Table for $p \to \neg p$

Part (iii)

This proposition is not a tautology, but it is satisfiable as seen in the table below.

p	q	$p \rightarrow q$	$(p \to q) \land q$	$((p \to q) \land q) \to p$
Т	Т	Τ	T	T
Т	F	F	F	T
F	Т	Т	T	F
F	F	Т	F	T

Table 5: Truth Table for $((p \to q) \land q) \to p$

Question 3

Let the following propositions be labelled as follows: f = "Gail scored a 100 in the final." a = "Gail scored 80% in the assignments." c = "Gail will get an A in the course."

As such, we can write (i) and (ii) using the labels above as:

- (i): $(f \wedge a) \rightarrow c$
- (ii): $f \to (\neg a \lor c)$

Note if (i) and (ii) were equivalent, one can arrive from one to the other. We claim that in fact both are equivalent to each other.

Proof.

$$\begin{split} &(f \wedge a) \to c \\ &\equiv \neg \neg ((f \wedge a) \to c) \text{ (Double Negation Law)} \\ &\equiv \neg ((f \wedge a) \wedge \neg c) \text{ (Negation of Implication)} \\ &\equiv \neg (f \wedge (a \wedge \neg c)) \text{ (Associativity of AND)} \\ &\equiv (\neg f \vee (\neg a \vee c)) \text{ (DeMorgan's Law)} \\ &\equiv f \to (\neg a \vee c) \text{ (Implication Equivalence*)} \end{split}$$

This proof is bi-directional, so it proves the equivalence both (i) and (ii) to each other, as claimed. Finally, the last (starred) justification refers to the following:

 $(p \to q) \equiv (\neg p \lor q)$

Question 4

Let the following predicates be labelled as follows, in which the domain $U = \{x : x \text{ is a family member of a large family}\}$.

- T(x) = "x eats Tuna".
- M(x) = "x eats Salmon".
- S(x) = "x eats Shrimp".

The argument provided in notation form goes as follows:

```
A. \ \forall x \in U, T(x) \to M(x)
```

 $B. \exists x \in U, S(x)$

 $C. \ \forall x \in U, \neg(M(x) \land S(x))$

```
\exists x \in U, \neg T(x)
```

We claim the argument above is valid, and we shall prove it using rules of inference. Before that, however, we shall re-write the premises A and C so that we have:

A'. $\forall x \in U, \neg T(x) \lor M(x)$ (Implication Equivalence Identity)

C'. $\forall x \in U, \neg M(x) \vee \neg S(x)$ (DeMorgan's Law)

Now we proceed to the proof.

Proof.

- 1. $\forall x \in U, \neg M(x) \vee \neg S(x)$ (Premise C')
- 2. $\exists x \in U, S(x)$ (Premise B)
- 3. $(\forall x \in U, \neg M(x) \lor \neg S(x)) \land (\exists x \in U, S(x))$ (Conjunction from 1 and 2)
- 4. $(\exists c \in U, \neg M(c) \lor \neg S(c)) \land (\exists c \in U, S(c))$ (Universal Instantation and Existential Instantiation for a particular c from 3)
- 5. $\exists c \in U, (\neg M(c) \land S(c)) \lor (\neg S(c) \land S(c)) (\land \text{ Distributivity from 4})$
- 6. $\exists c \in U, (\neg M(c) \land S(c)) \lor F$ (Domination Law from 5)
- 7. $\exists c \in U, \neg M(c) \land S(c)$ (Domination Law from 6)
- 8. $\exists c \in U, \neg M(c)$ (Simplification from 7)
- 9. $\forall x \in U, T(x) \to M(x)$ (Premise A)
- 10. $\exists c \in U, T(c) \to M(c)$ (Universal Instantiation for a particular c from 9)
- 11. $\exists c \in U, \neg T(c)$ (Modus Tollens from 8 and 10)
- 12. $\exists x \in U, \neg T(x)$ (Existential Generalization from 11)