A Team-Based Organizational Model for Adaptive Multi-Agent Systems

Afsaneh Fatemi, Kamran Zamanifar, Naser Nemat bakhsh, Omid Askari

Department of Computer Engineering, University of Isfahan, Isfahan, Iran

Afsaneh Fatemi@hotmail.com, zamanifar@eng.ui.ac.ir, Nemat@eng.ui.ac.ir, Omid as1988@yahoo.com

Keywords: Team-Based Organization Model, Rescue System, Adaptive Multi-Agent System, Capability-Based Task

Allocation

Abstract:

Our everyday lives and specially our social transactions require various types of coordination that incorporate decision making process within a dynamic uncertain environment under multiple constraints. Cooperation between members is an important coordination task which aims to maximize the overall utility. Rescue systems are good examples of these systems that their utility is a function of the rate of successful task handling and the average task performing time. Multi-agent organizations are good selections to model and probe the complex behaviours in such cooperative systems. Proper organizational modelling to gain the best utility is a challenging issue in this area. In this paper, we propose a team-based multi-agent organizational model, based on the Schwaninger's model of intelligent human organizations. It provides an integrative framework to rapid task handling, the main effectiveness requirement in many applications. Adaptation via reorganization makes the model suitable for dynamic, uncertain environments. Fast initial team formation, greedy capability-based coalition formation, and using the nearest neighbours' resources cause utility improvements compared to the identified hierarchical organizational models.

1 INTRODUCTION

Our everyday lives and specially our social transactions require various types of coordination that incorporate decision making process within a dynamic uncertain environment under multiple constraints. Cooperation between members is an important coordination task which aims to maximize the overall utility. Multi-agent systems (MASs) have been widely used to model and probe the complex behaviors in such cooperative systems.

In a MAS, agents' cooperation plays a significant role in helping system reach its predetermined goals. The main feature of MASs is that their intelligent agents may coordinate and cooperate with each other so as to perform optimally the tasks that they cannot perform individually.

Using organization theory, behavior of individual agents can be described by the roles they adopt and behavior of MAS may be predicted as the result of their overall actions.

Organizational models defined for MASs are mainly adopted from analogue models in human communities (Boella and Van Der Torre, 2006). The

intelligent nature of agents and purposefulness of entire system, result in high similarities between behaviors of agents in these organizations and human agents present in real communities. In addition, as in human organizations, the best model to design an agent organization depends directly on its operating environment, tasks to be performed, properties and goals.

Mintzberg (1993) showed that adaptive organizations have a better prospect of good operation compared with static organizations; a prospect that led into many researches on adaptive MASs. Efficiency and effectiveness of adaptive MAS are the most challenging issues in this area. In more detail, using a proper organization model to form a MAS, cause the organization members to effectively themselves to changing environment parameters. Such an organizational model should be able to improve the efficiency of the system, decrease agents' interactions, and reduce their computational effort.

In real world, we may face emergency systems which need very fast task handling. This rapidity is the main effectiveness requirement of the system.

Rescue in emergency situations is an example of such systems, where cooperative humans tend to use their maximum capabilities to rapidly perform the tasks. In other words, they may prefer to act out of their role-specific responsibilities in occasional situations.

In this paper, we propose a team-based Multi-Agent organizational model, based on the Schwaninger's model of intelligent human organizations (Schwaninger, 2009). It provides an integrative framework to rapid task handling.

In remainder of the paper, section 2 discusses some background theory and existing related works. Then, section 3 introduces the proposed organizational model. Section 4 shows some experimental results, and section 5 concludes and gives some suggestions to future works.

2 THEORY AND RELATED WORK

As mentioned in (Carley and Gasser, 1999), (Horling and Lesser, 2005) and (Dignum, Dignum, and Sonenberg, 2004), a task is an activity that should be performed by one or more agents to achieve a goal or make a certain affect on the environment. The tasks may be primitive or decomposable. In this paper we assume that the tasks need not to be decomposed and should be accomplished by a team of cooperative agents. Each task requires a set of capabilities and resources to be performed completely. A team of agents, which their aggregated capabilities and resources satisfy the task's needs, may be a candidate for performing it.

A MAS organization is a group of distributed agents, following a common goal. The interactions between the agents, the relationships between the agent roles, and their coordination style make the organizational design. Thus as one or more of these aspects change, the reorganization occurs. We assume that occurring new tasks and entering or exiting any agents to/from the environment, trigger the reorganization.

Several organizational Structures for modeling MASs are introduced in literature (Deloach and Matson, 2004), (Horling and Lesser, 2005), (Kolp, Giorgini, Mylopolos, 2006). In addition, a variety of adaptation methods for different organizations have been proposed yet (Carley, 1997), (Dignum et al., 2004), (Ghijsen, Jansweijer, and Wielinga, 2009), (Ghijsen, Jansweijer, and Wielinga, 2008), (Kirn and Gasser, 1998), (Kota, Gibbins, Jennings, 2009), (Martin and Barak, 2006), (Rosenfeld, Kaminka, Kraus, Shehory, 2008), (Zheng-guang and Xiao-hui, 2006). All of these methods attempt to enhance the

system effectiveness using adaptation. These methods can be classified as following:

- 1. Organization Reconfiguration, in which Organizational Structure is inalterable, but features of agents participating in the structure changes with time
- 2. Organization Restructuring, in which the structure changes with time.

(Ghijsen et al., 2009) and (Kota et al., 2009) are among the latest works performed in this field. In (Kota et al, 2009) a Decentralized Structural Adaptation is proposed in which agents forge and dissolve relations based on their interactions with other agents. In this method, agents need to reevaluate all their relations in each time step which results in decreasing efficiency regarding increasing computation. Furthermore, the possibility of entrance and exit of agents into/from environment has not been considered.

In (Ghijsen et al., 2009), tasks are broken into sub-tasks and these sub-tasks are distributed among agents in lower levels of hierarchy to be performed by them. However, in many applications, tasks need not to be broken but to be performed by groups of agents. Furthermore, improving organization efficiency should be mentioned as one of the main goals.

In the next section, we focus on collaboration that is achieved by adaptive team-based MAS organizations. We introduce a team-based organizational model which is able to change its structure upon occurring new tasks and with respect to entrance or exit of agents into/from environment, handling the occurred events effectively.

3 ORGANIZATIONAL MODEL

As mentioned in (Dignum et al. ,2004), (Horling and Lesser, 2005) and (Mintzberg, 1993), most of proposed models for multi-agent organizations is driven from similar models in human communities. It is because of the MAS's ideal goal of having fully human-like intelligent agents. Such a MAS would be able to autonomous decision making towards reaching organizational goals.

From sociological point of view, since most people have a general idea of organization concept, there is no common definition for this word but in most literature, organization is known as an entity including agents doing some actions in a given structure to meet a set of goals. Thus, organization model is a model that defines the structure, roles and

interaction pattern of constituting agents, and the goal(s) of organization (Mintzberg, 1993).

Schwaninger (2009)has presented comprehensive organization model for intelligent human organizations. According to this model, an intelligent organization is one that is capable of changing to adapt with varying environment, mutual effect on the environment, and viability in the environment of its comprehending organizations. In this model, design, control and development are main components in known as systemic management that gradually need to be considered in the shade of attention to system identity structure. According to this, a framework including five aspects of activity, structure, behavior, ethos identity vision, and time seems appropriate to model an organization.

In this research, adopting Schwaninger's proposed model, an organizational model is presented for cooperating MAS. Based on this model, in order to introduce a multi-agent organization we try to define structural model (that shows organization designing), activity model (that shows the entire functionality of organization) and behavior model (that shows cooperation process of organization components).

3.1 Task Model

We assume each task as a discrete event that may occur with a given statistical distribution all around the context area and in every point of time. For simplicity, in this work we suppose that the spatial and temporal distribution of tasks' occurrence is random.

A task is a tuple of two spatial attributes, which describe the center of event occurrence, and a vector of required capabilities and the minimal needed resources according to each capability to be performed completely. The capabilities are selected from a definite set of all existing capabilities in the system. We assume that all these features are received by task occurrence sensing agents.

Hence, if $C = \{c_1, c_2, ..., c_n\}$ denotes all the n capabilities available for agents, then $T = \{(x, y), (c_1, v_1), (c_2, v_2), ..., (c_n, v_n)\}$ describes the task occurring in a point with dimensions x and y, requiring capabilities $c_1, c_2, ..., c_n$ with at least $v_1, v_2, ..., v_n$ necessary resource values of each. It should be noted that we assume that these values belong to a range between 0 and 100 and there is one needed resource according each capability.

When a task event occurs, a coalition of agents is formed to handle it. If the handling was successful, then the task gets completed after a given time (here, a time step) and is omitted automatically from the tasks queue. Otherwise, it is added to waiting tasks priority queue.

3.2 Agent Model

In this paper, we supposed that the agents are homogeneous in potential capabilities, but different in the power to use each capability. This power is related to resources that agent have at the time. Besides, we assumed only two possible roles for agents: Supervision role, and Operation role. Hence, if we have an agent set $A = \{a_1, a_2, ..., a_p\}$ in the context (p is the number of agents), each agent $a_i \in A$ may contain a tuple of attributes as follows:

$$\{(x, y), (c_1, v_1), (c_2, v_2), ... (c_n, v_n)\}$$

$$\forall x : 1..n, v_x \in [0,100]$$
(1)

For example, if the capability set C contains three items c_1 , c_2 and c_3 , then four agents a_1 , a_2 , a_3 and a_4 , which table 1 shows their properties, are potentially homogeneous but different in capabilities and roles.

Table 1: Some examples of possible agents.

	X	у	C1	C2	C3	Role
a1	100	200	80	0	0	Operation
a2	50	130	0	10	90	Supervision
a3	250	75	15	45	40	Operation
a4	20	376	80	0	0	Supervision

It is assumed that agents have not complete information about the whole environment, but they can sense around in a given radius. The type of information, communication and actions of each agent is related to its role. We will discuss more about these aspects in next sections.

3.3 Structure Model

Organizational structure defines informational, controlling, communicational patterns (in Highest Abstraction Level), and features of task environment including distribution of tasks, resources, agents, and their capabilities (Ghijsen et al., 2008), (Kota et. al, 2009), (Schwaninger, 2009).

According to this, our proposed organization in this research is a team-based organization whose initial structure forms once the system begins to work and reorganizes during the system operation, along with occurrence of reorganization triggers. System context is a two dimensional grid space in which a number of agents have been distributed following a statistical distribution pattern. In this paper we assumed for simplicity that the agents are distributed randomly around the physical environment, but their distribution can also be based on a given map in our implemented application.

Hence, agents have position attribute that means the proposed framework supports moving agents.

As mentioned earlier, in cooperative MAS agents tend to coordinate in the best way so as for system to reach its goals with most efficiency. In emergency applications such as rescue systems, the speed of task handling, the rate of task completion, and the usage of resources are the most important efficiency factors. In other words, the cooperative agents try to response to the largest number of tasks as fast as possible, trying minimum usage of resources.

On the other hand, in human organizations it is observed that in such situations agents while trying to use optimally their main skills and professions, in given cases they also use their non-professional resources to help system act more effectively. For example in an earthquake, if there is not any fire to extinguish, the fire-brigade agent could participate in civilians' rescue, if he has enough capability.

Based on this, in our proposed model, concept of role is restricted to key roles of Supervision and Operation. Instead, it is supposed that in the whole system a limited set of capabilities can be detected and each agent may possess each capability for a certain amount. Thus, appropriate agent or agents are selected to perform a task, based on the capabilities the task needs to be completed.

Figure 1 shows the proposed structure model.

Supervisor AgentOperator Agent

: Supervisors Communication

Supervisor and Agent Communication

Figure 1: Organizational Structure

In proposed model, the initial teams form based on the establishment place of agent in the environment to minimize cost of initial team formation. In other words, the context is partitioned to some segments and all agents placed in each segment form the team related to that area. The number of segments is varying as one of the system parameters. For example, in Figure.1 the context is divided to 3 times 4 (equal 12) segments. 3 and 4 are the system variable parameters.

Since similar to the human organizations presence of a director seems useful in a cooperative organization (Mintzberg, 1993), a supervisor is chosen to manage each team. The way a supervisor is chosen may be affected by capabilities of team members, agents' experiences, and other factors. In this research we assumed that the manager of each team will be the eldest agent among all team members. Thus, it avoids any cost to system for this task as well as the experience factor has been implicitly regarded for selection of supervisor. We bear in mind that the eldest agent is the most experienced one among his co-teams who would be a suitable case for management.

The inter-team communications is limited only to each agent and its related team supervisor, and in intra-team aspect, only supervisors of adjacent teams can communicate. This limitation significantly reduces the communications and saves time and resources as well as supporting functionality in unreliable and unpredictable environments.

3.4 Behaviour Model

Behavior model of proposed organization indicates the way system transforms from a state to another upon occurrence of a given trigger in the environment. As mentioned before, in this research occurrence of a new task event, entrance of a new agent to the system, and exit of the agent from the system form such triggers.

All components of a cooperative MAS should be controlled by a coordination mechanism. In the proposed model, it will occur through decentralized reorganization. In this way the organization behavior upon receiving transformation triggers is as follows:

• A task occurs in a segment

In this case, for each capability required for performing the task, the total available potential is measured. In the case that the potential capability is sufficient, a minimal coalition (temporary sub-team) is chosen and designated for handling the task, and the remaining agents mark as free to be available to help in handling other tasks. Otherwise, by seeking

help from 4-nearest adjacent teams, the appropriate coalition will form to perform the task.

• A new agent enters into a point at a given segment

In this case, the agent simply joins to team related to that segment. If there is no agent at the segment, a new team is formed and the new agent is marked as the supervisor of the one-member team, otherwise, the segment's team supervisor detects the new member, sends his address to it, and saves its information for next communications.

• An agent goes out of the system

In this case, the agent is simply deleted from the related team. If the related team has only one member, the team is destroyed, otherwise the agent's information is deleted from the supervisor's memory.

It should be mentioned that coalition formation algorithm used to select sub-teams from present teams and if needed, selection of accommodator agents taking from adjacent teams, seems to be very significant in organization efficiency. In this research, the simple greedy algorithm is used.

3.5 Activity Model

As Schwaninger (2009) defines, the activity model describes the overall intended operations of or actions taken by the organization. The emphasis of change is on revising principles, goals and rules that control and affect on the behavior of the organization. Our proposed reorganization method, affects only on organizational structure.

The organizational goal specification is one of the most important aspects of activity model. The entire goal of a cooperative organization is maximizing the system's utility function. In our experiments, we defined the utility as the rate of completed tasks divided to the mean task accomplishment time .

Utility= TaskCompletionRate / MeanTaskCompletionTime (2)

The time dimension of schwaninger's model is inherently purposed in all structure, behavior, and activity models. It should be noted that the time scale is different in each of the three dimensions: Strategies can often be changed quickly, but structure can be transformed taking more time, and the behavioral variables react more slowly.

The fifth dimension of the model includes ethos, identity, and vision. It is the center of paradigmatic change, which hardly affects on all three domains: Structure, behavior and activity. We will pay more attention to this dimension in our future works.

4 EXPERIMENTAL RESULTS

Our experiments consist of two parts. First we compare the proposed team-based model and the hierarchical one introduced in (Ghijsen et al., 2009) against the rate of successful task handling. A second series of experiments show the effect of problem-size on system efficiency.

4.1 Task Distribution

The type of task allocation along with coordination mechanism used in an organization can cause an unbalance in workload of the agents. It means that some agents may be still working on their tasks while others are idle because of early-finishing their allocated tasks.

We compare the impact of workload distribution in team-based and hierarchical organizational models using RoboCupRescue simulator.

In (Ghijsen et al., 2009), the performance of organization is measured under two conditions. In the first, civilians (tasks) are distributed randomly in the environment to show a homogeneous task distribution. In the second they are distributed as clusters to form a heterogeneous workload. We run some simulations on the Kobe map, creating 5 homogeneous and different 5 different heterogeneous task distributions, as Ghijsen et al. (2009) performed. Each distribution contains 9 agents (ambulances to rescue civilians) and 20 tasks (civilians). Each simulation finishes after 300 time steps. Figure 2 shows the results. Direct Supervision, Standardization, and Adaptive hierarchy are three coordination methods which are introduced, implemented, and compared in (Ghijsen et al., 2009). More information about these methods exists in related reference.

Figure 2: Average number of tasks successfully performed using four models (Performance)

As figure 2 shows, team-based method causes better performance than hierarchical ones. It is because of rapid initial team formation and proper load distribution between agents as teams. In homogeneous task distribution, this is done better because the tasks are almost uniformly distributed between agents. In heteregeneous distribution, the tasks are distributed as clusters and the agents near that clusters are mostly involved in task handling. So, the team-based model doesn't improve the performance as in homogeneous one.

4.2 Problem Size

Scalability is an important quality factor for multi agent systems. In critical MAS, the system is expected to preserve its acceptable response time with growing problem size. In a rescue system, the main goal is rescuing the most civilians in the least time.

In hierarchical organizational models, the organizational tree is expanded horizontaly and vertically while the size of MAS increases. The bigger tree makes the adaptation process more complicated and time-consuming. So, these models aren't suitable for large-scale critical MAS.

In proposed team-based model, the agents initially form some teams due to their location. These teams are potential candidates for perfrorming tasks occuring in a limited area. A greedy coalition formation algorithm tries to find minimal coalitions, if the candidate team is't strong enough to complete the task. This strategy is intended to cause a better task accomplishment in a near-time-efficient and near-resource-efficient manner, better than hierarchical ones. In addition, it is intended that

work load be distributed almost monotony between the agent groups and system runs with more scalablity.

We performed the previous experiments in RoboCupRescue simulation environment. This is a identified environment to develop and benchmark the multi-agent techniques. simulator has some inconsistencies with our problem definition that encourage us to develop a more suitable simulation environment. Lack of control over the simulation environment, hardness of its manipulation, special communication infrastructures which restrict some types of communication, limitating the agent types to only three main agent types, and existence of some central agent types in contrast to our distributed decision making idea, are some of theses problems. Hence, we begin implementing a simulation environment, to test the proposed organizational model, in JADE. We implemented our team-based model along with a simple greedy team-formation algorithm introduced in previous sections, and performed several experiments in order to evaluate the scalability and effectiveness of it. It should be noted that the number of agents and total number of tasks vary as system parameters. We considered only some values from the infinite set of possible values for our experiments. Table 2 shows the summary of parameters and results. Results for the mean rate of successful task handling and mean time for handling each task, are computed after 20 runs for each input

Table 2: Some experimental results.

Number of Agents	Number of Tasks	Mean Rate of Successful Task Handling	Mean Time to Complete a Task (ms)	Utility
10	5,10,20	0.95	9.8	0.097
20	10,20,40	1	8.5	0.118
50	25,50,75	0.8	10.1	0.079
75	50,75,100	0.75	13.2	0.057
100	50,100,150	0.73	12.7	0.057
150	75,150,200	0.77	11.8	0.065
200	100,200,250	0.8	14.7	0.054
250	100,200,250	0.69	14	0.049
300	100,200,250	0.87	12.74	0.068

We compare the hierarchical and team-based models against the rate of successful task handling.

For small numbers of agents, the models are comparable and their effectiveness is in the same range. But for agents more than 50, the team-based model had much better results. The results show smooth changes in utility function when increasing the problem size. It shows that the proposed team-based model is scalable enough to be used in medium-scaled multi-agent environments.

Figure 2 shows the changes of utility function with increasing problem size. It seems that fast team formation, proper load distribution between agents, and team-based task handling cause the system to perform effectively.

Figure 3: Utility of team-based model in different problem sizes

5 CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of decentralized adaptation with proposing a teambased organizational model. More specifically, we formulated a simplified organizational model based on schwaninger's model of intelligent organizations. The main reason for this selection was the importance of changeability for organizations acting in open, dynamic and uncertain environments. We coordinated the agents through reorganization via fast coalition formation, and developed a simple greedy task allocation method based on using the resources of the nearest teams.

Experiments show the better effectiveness of our team-based model against the hierarchical one. Adaptation via reorganization makes the model to be usable and scalable in dynamic environments. Fast initial team formation, greedy capability-based coalition formation, and using the nearest neighbors'

resources, cause utility improvements compared to the standard hierarchical organizational models.

Future work will initially involve proposing better coalition formation algorithms and testing the effect of task and environment varying factors on system efficiency. To do so, we are going to develop a more effective simulation environment to be able to support the open, dynamic, and uncertain environment's properties. Varying agent capabilities, different types of tasks, variable number of segments, changeable agents' sights, and controllable output information are some features to be added to developed tool as soon.

REFERENCES

- Boella, G. and Van Der Torre, L. (2006). Coordination and Organization: Definitions, Examples and Future Research Directions. *Electronic Notes in Theoretical Computer Science*, 3-20.
- Carley, K. M. (1997). Organizational Adaptation. Annals of Operations Research, 75, 25-47.
- Carley, K.and Gasser, L.(1999). Computational organization theory. In Weiss, G.(Ed.), *Multi-Agent Systems, A Modern Approach to Distributed Artificial Intelligence* (pp. 200-330): MIT-press.
- DeLoach, S., and Matson. E. (2004). An Organizational Model for Designing Adaptive Multiagent Systems. In *Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-04)*. San Jose, CA.: AAAI Press.
- Dignum, V. (2004). A Model for Organizational Interaction: Based on Agents, Founded in Logic. PhD diss., Dept. of Computer Science, Utrecht Univ., Netherlands.
- Dignum, V., Dignum, F., and Sonenberg L. (2004). Towards dynamic reorganization of agent societies. In *Proceedings of Workshop on Coordination in Emergent Agent Societies* (pp. 22-27).
- Ghijsen, M.; Jansweijer, W.N.H., and Wielinga. B.J. (2009). Adaptive Hierarchical Multi-Agent Organizations. In Babuska, R. and Groen, F.C.A.(Eds.) Interactive Collaborative Information Systems, in press.
- Ghijsen, M.; Jansweijer, W.; and Wielinga, B. J. (2008).
 Towards a Framework for Agent Coordination and Reorganization, AgentCoRe. In Sichman, J. S., Padget, J., Ossowski, S., and Noriega, P. (Eds.) Coordination, Organizations, Institutions, and Norms in Agent Systems III. (pp. 1-14). Berlin Heidelberg: Springer-Verlag.
- Horling, B. and Lesser, V. (2005). A Survey of Multi-Agent Organizational Paradigms. The Knowledge Engineering Review, 19(4), 281-316.
- Kirn, S. and Gasser, L. (1998). Organizational Approaches to Coordination in Multi-Agent Systems, Technical report, Ilmenau Technical University, Germany.

- Kolp, M., Giorgini, P., and Mylopolos, J. (2006). Multi-Agent Architectures as Organizational Structures. Autonomous Agents and Multi-Agent Systems, 13(1), 3-25
- Kota, R., Gibbins, N., and Jennings, N. (2009). Decentralized Structured Adaptation in Agent Organizations. In: Organized Adaptation in Multi-Agent Systems. Lecture Notes in Computer Science, 5368, 54-71.
- Martin, C. and Barber, K. S. (2006). Adaptive Decision Making Frameworks for Dynamic Multi-Agent Organizational Change. Autonomous Agents and Multiagent Systems, 13, 391-428.
- Mintzberg, H. (1993). Structures in Five: Designing Effective Organizations. Engelwood Cliffs, N.J.:Prentice Hall.
- Rosenfeld, A., Kaminka, G., Kraus, S., and Shehory, O. (2008). A Study of Mechanisms for Improving Robotic Group Performance. *Artificial Intelligence*, 172, 633-655.
- Schwaninger, M. (2009). *Intelligent Organizations:* Powerful Models for Systemic Management (2nd ed.): Springer.
- Zheng-guang, W.; Xiao-hui. L. (2006). A Graph Based Simulation of Reorganization in Multi-agent Systems. In proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'06). (pp. 129-132).