Homework 9

1. Exploratory Data Analysis

Figure 1.1 Scatter Matrix for Q and X1-X9 with histogram on the diagonal

By examining the scatterplot data, it looks like there are multiple possible correlations in the data. Q seems to correlate with X1, X2, X3, X4, X5, and X7. X1 appears to correlate with X2, X4, X5 and X7. X2 appears to correlate with X4 and X7. X4 appears to correlate with X5 and X7. X8 appears to correlate with X9. The others are too difficult to tell by only looking at the scatterplot. Looking at the histogram gives the impression that a couple of the variables seem

to have a right skew: Q, X1, X2, X3, and X5. The other variables don't seem to have too noticeable of a skew.

Figure 1.2 Boxplot for Q (1st row left), X1 (1st row center), X2 (1st row right), X3 (2nd row left), X4 (2nd row center), X5 (2nd row right), X6 (3rd row left), X7 (3rd row center), X8 (3rd row right), X9 (4th row center)

The boxplots appear to reinforce the skewness that the histograms showed except for X5 and X7. X5 does not appear to be very skewed and X7 has a right skew.

2. Correlation Analysis on Numerical Features

			Spe	arman Co Prob		Coefficien r H0: Rho=				
	Q	X1	X2	Х3	X4	X5	X6	Х7	X8	X9
Q	1.00000	0.87753 <.0001	0.79751 <.0001	0.48664 0.0064	0.88503 <.0001	-0.69406 <.0001	0.03113 0.8703	0.52995 0.0026	0.31407 0.0910	0.20064 0.2877
X1	0.87753 <.0001	1.00000	0.88004 <.0001	0.37592 0.0406	0.99689 <.0001	-0.87039 <.0001	0.09495 0.6177	0.63751 0.0002	0.13998 0.4607	0.15678 0.4080
X2	0.79751 <.0001	0.88004 <.0001	1.00000	0.15782 0.4049	0.86426 <.0001	-0.65750 <.0001	-0.06272 0.7420	0.65643 <.0001	0.12186 0.5212	0.12855 0.4984
Х3	0.48664 0.0064	0.37592 0.0406	0.15782 0.4049	1.00000	0.40905 0.0248	-0.43693 0.0158	-0.03247 0.8648	-0.26928 0.1502	0.01115 0.9534	-0.07374 0.6986
X4	0.88503 <.0001	0.99689 <.0001	0.86426 <.0001	0.40905 0.0248	1.00000	-0.85453 <.0001	0.06350 0.7389	0.62696 0.0002	0.14859 0.4332	0.16757 0.3761
X5	-0.69406 <.0001	-0.87039 <.0001	-0.65750 <.0001	-0.43693 0.0158	-0.85453 <.0001	1.00000	-0.31456 0.0905	-0.43171 0.0172	-0.02870 0.8803	-0.02824 0.8822
Х6	0.03113 0.8703	0.09495 0.6177	-0.06272 0.7420	-0.03247 0.8648	0.06350 0.7389	-0.31456 0.0905	1.00000	0.17517 0.3545	0.09003 0.6361	-0.02791 0.8836
Х7	0.52995 0.0026	0.63751 0.0002	0.65643 <.0001	-0.26928 0.1502	0.62696 0.0002	-0.43171 0.0172	0.17517 0.3545	1.00000	0.14667 0.4393	0.21047 0.2643
X8	0.31407 0.0910	0.13998 0.4607	0.12186 0.5212	0.01115 0.9534	0.14859 0.4332	-0.02870 0.8803	0.09003 0.6361	0.14667 0.4393	1.00000	0.87802 <.0001
Х9	0.20064 0.2877	0.15678 0.4080	0.12855 0.4984	-0.07374 0.6986	0.16757 0.3761	-0.02824 0.8822	-0.02791 0.8836	0.21047 0.2643	0.87802 <.0001	1.00000

Figures 2.1 Correlation Analysis Data for Q and X1-X9

After reviewing the correlation data, it confirms all my initial predictions for correlations with the variable Q. Q and X1, X2, X3, X4, X5, and X7 all have a p-value < 0.05, so a correlation is likely. There appears to be a couple other correlations as well, but I will not be focusing on these going forward: X1 and X2, X3, X4, X5, X7; X2 and X4, X5, and X7; X3 and X4, and X5; X4 and X5, and X7; X5 and X7; X8 and X9.

Variable	DF	Parameter Estimate
Intercept	1	3.40226
X1	1	-0.01353
X2	1	-1.02366
Х3	1	0.17797
X4	1	0.10879
X5	1	-0.00962
X6	1	-0.38947
Х7	1	4.23348
X8	1	0.63007
X9	1	-0.46228

Figure 2.2 Projected values of model if to be implemented

3. Regression Analysis

Analysis of Variance											
Sou	ırce	DF	Sum of Squares			F Value		Pr	> F		
Mod	del	9	34143008	37	93668	10	0.22	<.0001			
Erro	or	20	7425127	3	371256						
Cor	rected Total	29	41568135								
	Root MSE		609.30	811	R-Sq	uare	0.82	214			
	Dependent	Mea	n 1291.23	333	Adj R	l-Sq	0.74	110			
Coeff Var			47.18	307							

Figure 3.1 ANOVA Table for model

The F-test in the table shows a significant value of <.0001 returned. This is below .05, which suggests that the full model should be considered. The Adjusted R-Sq value is 0.7410.

		Par	ameter Estin	nates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	292.56090	4428.61753	0.07	0.9480	0
X1	1	-203.14370	410.26785	-0.50	0.6259	101.85971
X2	1	1055.78221	9833.70009	0.11	0.9156	7.52471
Х3	1	-49.23964	156.20014	-0.32	0.7558	31.44639
X4	1	209.76225	162.04557	1.29	0.2103	105.75471
X5	1	-10.19673	51.08770	-0.20	0.8438	9.67828
X6	1	-24.55815	303.52900	-0.08	0.9363	2.30786
Х7	1	142.77797	3288.44271	0.04	0.9658	20.53505
X8	1	511.71277	209.74144	2.44	0.0241	5.50498
Х9	1	-301.87185	171.99595	-1.76	0.0945	5.75225

	Collinearity Diagnostics													
Condition Proportion of Variation														
Number	Eigenvalue	Index	Intercept	X1	X2	Х3	X4	X5	X6	X7	X8	X9		
1	8.30837	1.00000	0.00000846	0.00005329	0.00063552	0.00007602	0.00004150	0.00001418	0.00081097	0.00010661	0.00036879	0.00041520		
2	0.91465	3.01391	0.00003728	0.00195	0.01170	0.00057391	0.00046516	0.00010818	0.00355	0.00018172	0.00147	0.00118		
3	0.31571	5.12998	0.00000696	0.00001602	0.00008258	0.00974	0.00047815	6.076062E-9	0.00818	0.00029280	0.01758	0.02918		
4	0.20278	6.40097	0.00011636	0.00036917	0.02265	0.00699	0.00203	0.00042073	0.05941	0.00373	0.01108	0.01969		
5	0.12835	8.04550	0.00017558	0.00521	0.09237	0.00098186	0.00006328	0.00076041	0.26928	0.00069137	0.00072462	0.00032617		
6	0.08392	9.95002	0.00086533	0.00582	0.27683	0.00265	0.00171	0.00168	0.07217	0.00402	0.01666	0.00599		
7	0.02446	18.43115	0.00123	0.03945	0.05574	0.00074067	0.00793	0.00333	0.00491	0.14851	0.09954	0.09952		
8	0.01726	21.93742	0.00065755	0.00743	0.04086	0.00035541	0.00494	0.00023643	0.00987	0.03848	0.75719	0.74893		
9	0.00415	44.71890	0.00706	0.15914	0.04939	0.17580	0.34454	0.03964	0.37942	0.24699	0.01936	0.00552		
10	0.00033833	156.70609	0.98984	0.78056	0.44974	0.80209	0.63780	0.95381	0.19240	0.55700	0.07603	0.08924		

Figure 3.2 Parameter Estimates and Eigenvalue for full model

Looking at the Variance Inflation field, you can see multiple values >10, which raises flags for multicollinearity. In addition, the Condition Index gets to very high values >30 so we must consider a fix.

Durbin-Watson D	2.090
Pr < DW	0.1823
Pr > DW	0.8177
Number of Observations	30
1st Order Autocorrelation	-0.155

Tests for Normality										
Test Statistic p Val										
Shapiro-Wilk	W	0.931552	Pr < W	0.0540						
Kolmogorov-Smirnov	D	0.15683	Pr > D	0.0587						
Cramer-von Mises	W-Sq	0.115689	Pr > W-Sq	0.0691						
Anderson-Darling	A-Sq	0.736679	Pr > A-Sq	0.0490						

```
D'AGOSTINO TEST OF NORMALITY FOR VARIABLE D, N=30

G1=-0.29738 SQRTB1=-0.28230 Z=-0.73161 P=0.4644

G2=2.97529 B2=5.30847 Z= 2.38594 P=0.0170

K**2=CHISQ(2 DF)= 6.22794 P=0.0444
```

Figure 3.3 Model Diagnostic Tests

From the figures above, there seems to be some evidence of heteroscedasticity violation since the data points in the top 2 scatterplot seem to slope downwards. There seems to be no autoregressive effects (Pr < DW and Pr > DW are both greater than .05). Looking at the normality charts, some of the values seem to be below .05, so there may be a violation to normality.

	Analysis of Variance											
Source		DF	Sum of Squares			Mean Square		Value	Pr > F			
Model		9	67.63526		7	7.51503		40.00	<.0001			
Error		20	3.	75729	().18786						
Correct	ed Total	29	71.	39255								
			0.43343		3 R-Squa		0.9474					
	nt Mean 6		6.3667	7	Adj R-S	q	0.9237					
	Coeff Var			6.8077	5							

Figure 3.4 log(Q) ANOVA Table for model

The F-test in the table shows a significant value of <.0001 returned. This is below .05, which suggests that the full model should be considered. The Adjusted R-Sq value is 0.9237.

		Para	meter Estir	nates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	3.40226	3.15031	1.08	0.2930	0
X1	1	-0.01353	0.29185	-0.05	0.9635	101.85971
X2	1	-1.02366	6.99524	-0.15	0.8851	7.52471
Х3	1	0.17797	0.11111	1.60	0.1249	31.44639
X4	1	0.10879	0.11527	0.94	0.3566	105.75471
X5	1	-0.00962	0.03634	-0.26	0.7939	9.67828
X6	1	-0.38947	0.21592	-1.80	0.0863	2.30786
Х7	1	4.23348	2.33924	1.81	0.0854	20.53505
X8	1	0.63007	0.14920	4.22	0.0004	5.50498
Х9	1	-0.46228	0.12235	-3.78	0.0012	5.75225

					Col	linearity Dia	gnostics						
	Condition Proportion of Variation												
Number	Eigenvalue	Index	Intercept	X1	X2	Х3	X4	X5	X6	X7	X8	X9	
1	8.30837	1.00000	0.00000846	0.00005329	0.00063552	0.00007602	0.00004150	0.00001418	0.00081097	0.00010661	0.00036879	0.00041520	
2	0.91465	3.01391	0.00003728	0.00195	0.01170	0.00057391	0.00046516	0.00010818	0.00355	0.00018172	0.00147	0.00118	
3	0.31571	5.12998	0.00000696	0.00001602	0.00008258	0.00974	0.00047815	6.076062E-9	0.00818	0.00029280	0.01758	0.02918	
4	0.20278	6.40097	0.00011636	0.00036917	0.02265	0.00699	0.00203	0.00042073	0.05941	0.00373	0.01108	0.01969	
5	0.12835	8.04550	0.00017558	0.00521	0.09237	0.00098186	0.00006328	0.00076041	0.26928	0.00069137	0.00072462	0.00032617	
6	0.08392	9.95002	0.00086533	0.00582	0.27683	0.00265	0.00171	0.00168	0.07217	0.00402	0.01666	0.00599	
7	0.02446	18.43115	0.00123	0.03945	0.05574	0.00074067	0.00793	0.00333	0.00491	0.14851	0.09954	0.09952	
8	0.01726	21.93742	0.00065755	0.00743	0.04086	0.00035541	0.00494	0.00023643	0.00987	0.03848	0.75719	0.74893	
9	0.00415	44.71890	0.00706	0.15914	0.04939	0.17580	0.34454	0.03964	0.37942	0.24699	0.01936	0.00552	
10	0.00033833	156.70609	0.98984	0.78056	0.44974	0.80209	0.63780	0.95381	0.19240	0.55700	0.07603	0.08924	

Figure 3.5 Log(Q) Parameter Estimates and Eigenvalue for full model

Looking at the Variance Inflation field, you can see multiple values >10, which raises flags for multicollinearity. In addition, the Condition Index gets to very high values >30 so we must look into it.

From the figures above, there seems to be no more evidence of heteroscedasticity since the data points in the scatterplot seem to be evenly distributed within the constraints. There seems to be no autoregressive effects (Pr < DW and Pr > DW are both greater than .05). Looking at the normality charts, all values appear to be above .05 so there are no major violations there. Overall, the log model seems like a better fit.

There does still appear to be multicollinearity, so we will try centering first.

		Para	meter Estir	nates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	6.36677	0.07913	80.46	<.0001	0
X1	1	-0.01353	0.29185	-0.05	0.9635	101.85971
X2	1	-1.02366	6.99524	-0.15	0.8851	7.52471
Х3	1	0.17797	0.11111	1.60	0.1249	31.44639
X4	1	0.10879	0.11527	0.94	0.3566	105.75471
X5	1	-0.00962	0.03634	-0.26	0.7939	9.67828
X6	1	-0.38947	0.21592	-1.80	0.0863	2.30786
Х7	1	4.23348	2.33924	1.81	0.0854	20.53505
X8	1	0.63007	0.14920	4.22	0.0004	5.50498
Х9	1	-0.46228	0.12235	-3.78	0.0012	5.75225

Figure 3.7 Centering the Regressors

Looking at the results of centering, the Variance inflation value still appears to be >>10. For this reason, we must continue to look for another option.

Figure 3.8 Ridge Regression Analysis

Looking at the Ridge Regression Analysis, we choose to delete X6 and X9 (yellow and green lines) because they happen to be the closest plots to zero.

	Parameter Estimates											
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation						
Intercept	1	1.97737	3.60999	0.55	0.5894	0						
X1	1	-0.07273	0.28059	-0.26	0.7979	55.31273						
X2	1	2.63273	8.12017	0.32	0.7488	5.95660						
Х3	1	0.15650	0.10200	1.53	0.1392	15.56745						
X4	1	0.15194	0.10245	1.48	0.1522	49.07425						
X5	1	0.00962	0.04251	0.23	0.8231	7.78127						
X7	1	2.66582	2.30117	1.16	0.2591	11.67415						
X8	1	0.11076	0.08592	1.29	0.2108	1.07250						

Figure 3.9 Deleted X6 and X9

The variance inflation is a lot closer to 10 this time, so it had a definite improvement.

Parameter	Estimates	Parameter Estimates				
Parameter	arameter Estimate		DF	Estimate		
Intercept	2.901367	Intercept	1	2.883875		
Х3	0.166821	Х3	1	0.168245		
X4	0.118523	X4	1	0.117723		
X6	-0.265762	X6	1	-0.274126		
Х7	3.347102	X7	1	3.408643		
X8	0.447638	X8	1	0.460938		
X9	-0.314800	X9	1	-0.325568		

Figure 3.10 LASSO (Left) and Elastic Net (Right) Selection Summary

So the Model Selected by Lasso and Elastic Net is: y = 2.9 + 0.17(X3) + 0.12(X4) - 0.27(X6) + 3.4(X7) + 0.45(X8) - 0.32(X9)

Obs	_MODEL_	_TYPE_	_DEPVAR_	_RIDGE_	_PCOMIT_	_RMSE_	Intercept	X1	X2	Х3	X4	X5	X6	Х7	X8	X9	Υ
3	MODEL1	RIDGE	Υ	0.4		0.66834	5.79184	0.068243	6.48625	0.11888	0.062631	-0.027995	-0.17984	1.49190	0.15686	-0.068354	-1

Figure 3.11 Ridge Regression

The estimated model is Y = 5.79 + 0.07(X1) + 6.49(X2) + 0.12(X3) + 0.06(X4) - 0.03(X5) - 0.18(X6) + 1.49(X7) + 0.16(X8) - 0.07(X9)

Figure 3.12 Principal Component Regression Results

For the Principal Component, I chose 4 as the principal component because it appears right before the elbow. The estimated model is therefore: Y = 5.11 + 0.05(X1) + 15.94(X2) + 0.17(X3) + 0.06(X4) - 0.02(X5) - 0.27(X6) + 0.79(X7) + 0.09(X8) + 0.015(X9)

In conclusion, I am picking the GroupLasso model and will drop X1, X2, X5

Analysis of Variance									
Source		DF	_	um of uares		Mean Square	F Value		Pr > F
Model		6	67.59120		1	11.26520		68.16	<.0001
Error		23	3.80135		1	0.16528			
Corre	Corrected Total		71.39255						
Root MSE				0.4065	54	R-Squa	are	0.946	8
	Dependent Mean			6.36677 Ad		Adj R-S	Sq	0.932	9
	Coeff Var			6.3853	37				

Figure 3.13 ANOVA Table for final model

The F-test in the table shows a significant value of <.0001 returned. This is below .05, which suggests that the full model should be considered. The Adjusted R-Sq value is 0.9329.

	Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation					
Intercept	1	2.69180	0.44521	6.05	<.0001	0					
Х3	1	0.18384	0.03227	5.70	<.0001	3.01431					
X4	1	0.10905	0.02569	4.24	0.0003	5.97259					
X6	1	-0.36752	0.14552	-2.53	0.0189	1.19160					
X7	1	4.08497	1.21317	3.37	0.0027	6.27802					
X8	1	0.61161	0.13256	4.61	0.0001	4.93953					
X9	1	-0.44764	0.10826	-4.13	0.0004	5.11936					

Collinearity Diagnostics										
	Condition Proportion of Variation									
Number	Eigenvalue	Index	Intercept	Х3	X4	X6	Х7	X8	X9	
1	6.06604	1.00000	0.00071470	0.00158	0.00129	0.00305	0.00062554	0.00080150	0.00090662	
2	0.33835	4.23420	0.00256	0.00579	0.10406	0.02244	0.01173	0.00840	0.00657	
3	0.31443	4.39227	0.00078277	0.11754	0.00058539	0.02635	0.00325	0.01523	0.02814	
4	0.18092	5.79041	0.00432	0.08724	0.01712	0.30810	0.01884	0.00996	0.01855	
5	0.07065	9.26602	0.17673	0.00301	0.07178	0.54827	0.04521	0.01144	0.00899	
6	0.01847	18.12129	0.00014492	0.00896	0.00534	0.03065	0.00000748	0.94564	0.93663	
7	0.01114	23.33683	0.81475	0.77588	0.79982	0.06115	0.92034	0.00853	0.00020729	

Figure 3.14 Parameter Estimates for final model

It would appear from these two tables that all Variance Inflation is now below 10 and the Condition Index is all below 30, so there are no more violations to multicollinearity.

Durbin-Watson D	2.035
Pr < DW	0.3226
Pr > DW	0.6774
Number of Observations	30
1st Order Autocorrelation	-0.022

Tests for Normality								
Test	Sta	atistic	p Value					
Shapiro-Wilk	W	0.963115	Pr < W	0.3711				
Kolmogorov-Smirnov	D	0.103326	Pr > D	>0.1500				
Cramer-von Mises	W-Sq	0.053107	Pr > W-Sq	>0.2500				
Anderson-Darling	A-Sq	0.384493	Pr > A-Sq	>0.2500				

D'AGOSTINO TEST OF NORMALITY FOR VARIABLE D, N=30 G1=-0.19046 SQRTB1=-0.18080 Z=-0.47141 P=0.6374 G2=1.38692 B2=3.97276 Z= 1.53432 P=0.1250 K**2=CHISQ(2 DF)= 2.57637 P=0.2758

Figure 3.15 Final Model Diagnostic Tests

From the figures above, there seems to be no evidence of serious heteroscedasticity since the data points in the scatterplot are evenly and randomly distributed within the constraints. There seems to be no autoregressive effects (Pr < DW and Pr > DW are both greater than .05). Looking at the normality charts, all values appear to be above .05 so there are no major violations there. Overall, this final model looks like a really good fit.

Based on the numbers that this new model provided it appears that I no longer need to deal with the multicollinearity because the problem variables have all been dropped.

SAS Code:

```
%MACRO NORMTEST(VAR, DATA);
/* Macro NORMTEST is revised from the code in D'Agostino's paper.
/* "A Suggestion for Using Powerful and Informative Tests of Normality"
/* Author(s): Ralph B. D'Agostino, Albert Belanger, and Ralph B. D'Agostino Jr. */
/* Source: The American Statistician, Vol. 44, No. 4 (Nov., 1990), pp. 316-321 */
/* It provides five hypothesis tests
/* (1) Shapiro-Wilk test
/* (2) Kolmogorov-Smirnov test
/* (3) Cramer-von Mises test
/* (4) Anderson-Darling
/* (5) D'Agostino's K^2
/* For details about the first four tests, users are referred to SAS online doc */
/* under UNIVARIATE procedure. As for D'Agostino's test, please refer to the art.*/
/* mentioned above.
/* Revised by Ping-Shi Wu Dec. 2015 @ Lehigh University
 ODS NOPROCTITLE;
ODS GRAPHICS /BORDER=OFF;
 ODS SELECT Moments Histogram QQPlot CDFPlot;
 TITLE "NORMAL-TEST":
 PROC UNIVARIATE DATA=&DATA NORMAL;
  VAR &VAR
         HISTOGRAM &VAR/NORMAL(MU=EST SIGMA=EST) KERNEL;
  QQPLOT &VAR/NORMAL(MU=EST SIGMA=EST);
  CDFPLOT &VAR/NORMAL(MU=EST SIGMA=EST);
  OUTPUT OUT=XXSTAT N=N MEAN=XBAR STD=S SKEWNESS=G1 KURTOSIS=G2:
 ODS SELECT TestsForNormality;
 PROC UNIVARIATE DATA=&DATA NORMAL;
  VAR &VAR;
 RUN;
 TITLE;
 OPTIONS LS=80;
DATA _NULL_;
  SET XXSTAT;
  SQRTB1=(N-2)/SQRT(N*(N-1))*G1;
  Y=SQRTB1*SQRT((N+1)*(N+3)/(6*(N-2)));
  BETA2=3*(N*N+27*N-70)*(N+1)*(N+3)/((N-2)*(N+5)*(N+7)*(N+9));
  W=SQRT(-1+SQRT(2*(BETA2-1)));
  DELTA=1/SQRT(LOG(W));
  ALPHA=SQRT(2/(W*W-1));
         Z_B1=DELTA*LOG(Y/ALPHA+SQRT((Y/ALPHA)**2+1));
  B2=3*(N-1)/(N+1)+(N-2)*(N-3)/((N+1)*(N-1))*G2;
  MEANB2=3*(N-1)/(N+1);
  VARB2 = 24*N*(N-2)*(N-3)/((N+1)*(N+1)*(N+3)*(N+5));
  X=(B2-MEANB2)/SQRT(VARB2);
  MOMENT=6*(N*N-5*N+2)/((N+7)*(N+9))*SQRT(6*(N+3)*(N+5)/(N*(N-2)*(N-3)));
  A=6+8/MOMENT*(2/MOMENT+SQRT(1+4/(MOMENT**2)));
  Z_B2=(1-2/(9*A)-((1-2/A)/(1+X*SQRT(2/(A-4))))**(1/3))/SQRT(2/(9*A));
  PRZB1=2*(1-PROBNORM(ABS(Z B1)));
  PRZB2=2*(1-PROBNORM(ABS(Z_B2)));
  CHITEST=Z_B1*Z_B1 + Z_B2*Z_B2;
```

```
PRCHI=1-PROBCHI(CHITEST,2);
  FILE PRINT;
  PUT @22 "D'AGOSTINO TEST OF NORMALITY FOR VARIABLE &VAR, "
  N = /@20 G1=8.5 @33 SQRTB1 =8.5 @50 "Z=" Z_B1 8.5 @65 "P=" PRZB1 6.4
    /@20 G2=8.5 @33 B2=8.5 @50 "Z=" Z_B2 8.5 @65 "P=" PRZB2 6.4
    /@20 "K**2=CHISQ(2 DF)=" CHITEST 8.5 @65 "P=" PRCHI 6.4;
 RUN;
 TITLE;
%MEND NORMTEST;
DATA FLOW;
INPUT X1 X2 X3 X4 X5 X6 X7 X8 X9 Q ;
 Y=LOG(Q);
DATALINES:
.03 .006 3.0 1 70 1.5 .25 1.75 2.0 46
.03 .006 3.0 1 70 1.5 .25 2.25 3.7 28
.03 .006 3.0 1 70 1.5 .25 4.00 4.2 54
.03 .021 3.0 1 80 1.0 .25 1.60 1.5 70
.03 .021 3.0 1 80 1.0 .25 3.10 4.0 47
.03 .021 3.0 1 80 1.0 .25 3.60 2.4 112
.13 .005 6.5 2 65 2.0 .35 1.25 .7 398
.13 .005 6.5 2 65 2.0 .35 2.30 3.5 98
.13 .005 6.5 2 65 2.0 .35 4.25 4.0 191
.13 .008 6.5 2 68 .5 .15 1.45 2.0 171
.13 .008 6.5 2 68 .5 .15 2.60 4.0 150
.13 .008 6.5 2 68 .5 .15 3.90 3.0 331
1.00 .023 15.0 10 60 1.0 .20 .75 1.0 772
1.00 .023 15.0 10 60 1.0 .20 1.75 1.5 1268
1.00 .023 15.0 10 60 1.0 .20 3.25 4.0 849
1.00 .023 15.0 10 65 2.0 .20 1.80 1.0 2294
1.00 .023 15.0 10 65 2.0 .20 3.10 2.0 1984
1.00 .023 15.0 10 65 2.0 .20 4.75 6.0 900
3.00 .039 7.0 15 67 .5 .50 1.75 2.0 2181
3.00 .039 7.0 15 67 .5 .50 3.25 4.0 2484
3.00 .039 7.0 15 67 .5 .50 5.00 6.5 2450
5.00 .109 6.0 15 62 1.5 .60 1.50 1.5 1794
5.00 .109 6.0 15 62 1.5 .60 2.75 3.0 2067
5.00 .109 6.0 15 62 1.5 .60 4.20 5.0 2586
7.00 .055 6.5 19 56 2.0 .50 1.80 2.0 2410
7.00 .055 6.5 19 56 2.0 .50 3.25 4.0 1808
7.00 .055 6.5 19 56 2.0 .50 5.25 6.0 3024
7.00 .063 6.5 19 56 1.0 .50 1.25 2.0 710
7.00 .063 6.5 19 56 1.0 .50 2.90 3.4 3181
7.00 .063 6.5 19 56 1.0 .50 4.76 5.0 4279
PROC SGSCATTER DATA = FLOW;
MATRIX Q X1-X9
         / ellipse
          diagonal = (histogram normal);
RUN;
/*Boxplots*/
PROC SGPLOT DATA=FLOW;
 VBOX Q;
RUN:
PROC SGPLOT DATA=FLOW;
 VBOX X1;
RUN;
PROC SGPLOT DATA=FLOW;
 VBOX X2;
RUN;
PROC SGPLOT DATA=FLOW;
 VBOX X3;
RUN;
PROC SGPLOT DATA=FLOW;
 VBOX X4;
RUN:
PROC SGPLOT DATA=FLOW;
 VBOX X5;
RUN:
PROC SGPLOT DATA=FLOW;
```

```
VBOX X6;
RUN:
PROC SGPLOT DATA=FLOW;
VBOX X7;
RUN:
PROC SGPLOT DATA=FLOW;
VBOX X8;
RUN:
PROC SGPLOT DATA=FLOW;
VBOX X9;
RUN:
/*Correlation Analysis*/
PROC CORR DATA=FLOW SPEARMAN FISHER(BIASADJ=NO);
VAR Q X1-X9;
RUN:
QUIT;
/*Full Model Fit w/ model doagnostics*/
PROC REG DATA=FLOW;
MODEL Q = X1-X9/DWPROB VIF COLLIN;
OUTPUT OUT=SFM_FIT RSTUDENT=D;
RUN:
QUIT;
%NORMTEST(D,SFM_FIT)
/*Full Model Fit w/ model doagnostics*/
PROC REG DATA=FLOW;
MODEL Y = X1-X9/DWPROB VIF COLLIN;
OUTPUT OUT=SFM_FIT RSTUDENT=D;
RUN:
QUIT
%NORMTEST(D,SFM FIT)
/*TRY CENTERING FIRST*/
PROC STDIZE DATA=FLOW OUT=FLOW2 METHOD=MEAN;
VAR X1-X9;
RUN:
PROC REG DATA=FLOW2 PLOTS=NONE;
MODEL Y=X1-X9/COLLIN VIF;
RUN:
QUIT
/*COLLINEAR STILL*/
/*TRY RIDGE TRACE NEXT TO SEE IF DELETION OF INSIGNIFICANT VARIABLE CAN HELP */
PROC REG DATA=FLOW OUTEST=EST_RIDGE RIDGE=0.01 TO 1 BY 0.005 OUTVIF;
MODEL Y= X1-X9;
RUN;
QUIT:
/*TRY DELETING X3*/
PROC REG DATA=FLOW PLOTS=NONE;
MODEL Y= X1-X5 X7 X8/VIF COLLIN;
RUN:
QUIT;
PROC GLMSELECT DATA=FLOW PLOTS=ALL;
 MODEL Y=X1-X9/SELECTION=GROUPLASSO(CHOOSE=SBC STOP=NONE) CVMETHOD=RANDOM(10);
RUN:
PROC GLMSELECT DATA=FLOW;
 MODEL Y=X1-X9/SELECTION=ELASTICNET(CHOOSE=SBC STOP=NONE) CVMETHOD=RANDOM(10);
PROC REG DATA=FLOW OUTEST=EST_RIDGE RIDGE=0.4 OUTVIF;
MODEL Y= X1-X9;
QUIT:
PROC PRINT DATA=EST_RIDGE;
```

```
WHERE _TYPE_='RIDGE';
RUN;
^{\prime}(2-A2) PC REGRESSION IF NO SELECTION OF FEATURES IS INTENDED*/
/*PCA TO DECIDE HOW MANY COMPONENTS*/
PROC PRINCOMP DATA=FLOW;
VAR X1-X9;
RUN;
PROC REG DATA=FLOW OUTEST=EST_PCR PCOMIT=4;
MODEL Y= X1-X9;
RUN;
QUIT:
PROC PRINT DATA=EST_PCR;
WHERE _TYPE_='IPC';
RUN;
PROC REG DATA=FLOW;
MODEL Y = X3 X4 X6-X9/DWPROB VIF COLLIN;
OUTPUT OUT=SFM_FIT RSTUDENT=D;
RUN;
QUIT;
%NORMTEST(D,SFM_FIT)
```