Crash course in Machine Learning Teaching computers to help us teach language

Robert Reynolds

Office of Digital Humanities Brigham Young University

> CALICO 31 May 2018

ML crash course

Robert Reynolds

Introduction

Crash course in MI

- corpus
- Extract features
- Apply to unseen

Real-world

application

Outline

- ► Crash course in machine learning (using example of automatic second-language readability classification)
 - Collect gold-standard corpus
 - Extract "features"
 - Train and evaluate a model
 - ► Apply model to real-world texts
- ► Example application of a machine-learning model
 - ► Web search for language learning/teaching

ML crash course

Robert Reynolds

Introduction

Crash course in ML

- Gold-standa
- Extract features - Train model
- Apply to unseen data

eal-world

application

Collect gold-standard corpus

- Lots of examples of human performance of the target task
- For readability: given a text, I want to output a difficulty score
 - ► CEFR levels: A1, A2, B1, B2, C1, C2
 - Get examples from all levels (even distribution is best)
- ▶ "There's no data like more data."

ML crash course

Robert Reynolds

Introdu

Crash course in ML

- Gold-standard corpus
- Extract features
- Apply to unseen data

Real-world

application
- FLAIR web

L2 readability corpora

	Total	A1	A2	B1	B2	C1	C2
CIE	145	28	57	60	_	_	_
news	50	_	-	_	_	_	50
LingQ	3481	323	653	716	832	609	348
RK	99	40	18	17	18	6	_
TORFL	168	31	36	36	26	28	11
Zlat.	746	_	66	553	127	_	-
Comb.	4689	422	830	1382	1003	643	409

Table: Distribution of documents per level for each corpus

ML crash course

Robert Reynolds

Introduc

Crash course in M**L**

- Gold-standard corpus
- Extract features - Train model
- Apply to unseen data

eal-world

Text complexity features

- Lexical variability
 - e.g., how often are words repeated?
- Lexical complexity
 - e.g., avg word length in letters/morphemes/syllables.
- Lexical frequency
 - based on a relevant corpus
- Morphology
 - based on automatic part-of-speech tagging
- Syntax
 - based on automatically generated sentence diagrams/trees
- etc.

ML crash course

Robert Reynolds

Introduction

Crash course

Gold-standard

- Extract features

- Train model
 Apply to unseen
- data

Real-world

Text complexity features

► ID	label	doc_len	avg_word_len	type-t
▶ 01	A1	106	4.7	
▶ 02	A1	101	4.5	
▶ 03	A2	245	5.1	
▶ 04	A2	151	5.0	
▶ 05	B1	230	5.3	
▶ 06	B1	272	5.2	
▶ 07	B2	225	5.7	
▶ 08	B2	401	5.4	
▶ 09	C1	643	9.4	
▶ 10	C1	530	7.4	
1 1	C2	476	8.7	
1 2	C2	760	9.8	

ML crash course

Robert Reynolds

Introduction

Cold-standard

corpus
- Extract features

- Train model

- Apply to unseen data

Real-world

- FLAIR web search

- Gold-standard
- Extract features
- Apply to unseen data

application
- FLAIR web

- Set aside part of your data for evaluation (test/validation)
- ► Feed the remaining data into a machine-learning algorithm (training/development)
 - You don't have to know how these work to use them (but it helps!)
 - Your favorite programming language probably has multiple free libraries with many off-the-shelf algorithms included.
- Use the resulting model to predict labels from the test data.
- Compare the actual labels in your test data to your models predictions.

Random Forest classifier

Classifier	Precision	Recall	F-score
ZeroR	0.097	0.312	0.149
OneR	0.487	0.497	0.471
RandomForest	0.690	0.677	0.671

Table: Baseline and RandomForest results with Combined corpus

ML crash course

Robert Reynolds

Introduction

Crash course

- corpus
- Extract features - Train model
- Apply to unseen data

Real-world

Combined corpus Random Forest confusion matrix

ı	M	L	cr	as	h	СО	ur	se	

Robert Reynolds

Introduction

rash course in 1L

- corpus
 Extract features
- Train model
- Apply to unseen data

Real-world application

- FLAIR web

	A1	A2	B1	B2	C1	C2	<- classified as
A1	234	120	48	0	0	0	
A2	41	553	192	17	0	0	
B1	16	76	1130	90	5	5	
B2	1	57	311	478	83	4	
C1	1	20	66	98	394	6	
C2	0	3	40	58	9	78	

Table: Confusion matrix for RandomForest, all features, Combined corpus

Adjacent accuracy: 0.919

Use your model in real-world applications

- For each new text...
 - Extract features just like you did with the gold-standard corpus
 - Your model can make a prediction based on those features

ML crash course

Robert Reynolds

Introduction

Crash course in

- Gold-standar

- Extract features

- Apply to unseen data

application
- FLAIR web

Web search for language learners and teachers

- ▶ While preparing lessons and tests, how many hours have you spent looking for the perfect text?
 - ▶ right length
 - right reading level
 - target grammar topic
 - ▶ ...but NOT that other confusing grammar topic

ML crash course

Robert Reynolds

Introduction

Crash course in ML

- · Gold-standaı corpus
- Extract features
- Apply to unseen data

Real-world

Web search for language learners and teachers

- ▶ While preparing lessons and tests, how many hours have you spent looking for the perfect text?
 - ▶ right length
 - right reading level
 - target grammar topic
 - ...but NOT that other confusing grammar topic
- ▶ http://sifnos.sfs.uni-tuebingen.de/FLAIR/
 - ► Chinkina & Meurers, 2016

ML crash course

Robert Reynolds

Introduction

Crash course in

- Gold-stand
- Extract features
- Apply to unseen data

Real-world

ML crash course

Today's panel

- ▶ Rob Reynolds: readability of Russian authentic texts
- ▶ Sowmya Vajjala: readability of English authentic texts
- ▶ Elena Cotos: automated writing evaluation
- ► Haiyang Ai: correcting verb-noun miscollocations

ML crash course

Robert Reynolds

Introduction

Crash course in ML

- corpus
- Extract features
- Apply to unseen

Real-world

- FLAIR web