Bayesian Poisson Regression on Football Match Data: MCMC & Laplace

Muhammad Ali¹

Abstract

This report covers a two-part Bayesian analysis of football matches. Part 1 fits a Poisson GLM using MCMC (PyMC/NUTS), inspects coefficient posteriors, and applies diagnostics (traceplots, autocorrelation, ESS, R). Part 2 implements a Laplace Approximation—hand-deriving the gradient and Hessian—to approximate the same posterior with a Gaussian; we validate it against MCMC and generate point predictions (MSE, MAE, exact-count) on 100 held-out matches. All derivations and code are presented concisely.

Poisson GLM, Bayesian Inference, Laplace Approximation, MCMC Diagnostics, Predictive Loss

¹ ma76193@student.uni-lj.si

Part 1: Bayesian Poisson GLM & MCMC Diagnostics

Data & Preprocessing. The dataset (football.csv) has 1 850 matches; eight predictors describe home (H) and away (A) teams pre-match:

- X_ScoreRateH/A: goals scored per game.
- X_ConcedeRateH/A: goals conceded per game.
- X_CornerRatioH/A: proportion of corners.
- X_FoulRatioH/A: proportion of fouls committed.

GoalsScored (target) is total goals by both teams. Exactly 100 rows lack GoalsScored (test set). We standardize each predictor (zero mean, unit variance) across 1 750 training rows, add an intercept column, yielding $\mathbf{X} \in \mathbb{R}^{1750 \times 9}$ and response $\mathbf{y} \in \mathbb{Z}_{\geq 0}^{1750}$.

Model. Assume

$$y_i \sim \text{Poisson}(\lambda_i), \quad \lambda_i = \exp(\eta_i), \quad \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta},$$

with prior $\beta_j \sim \mathcal{N}(0, 10^2)$. The log-posterior (up to constant) is

$$\ell(\beta) = \sum_{i=1}^{1750} \left[y_i(\mathbf{x}_i^{\top} \beta) - e^{\mathbf{x}_i^{\top} \beta} \right] - \frac{1}{2 \cdot 10^2} \sum_{i=0}^{8} \beta_j^2.$$

We sample via PyMC/NUTS (4 chains×1 000 tune+2 000 draws, no divergences).

MCMC Diagnostics.

- *Trace mixing:* All four chains overlap with no stickiness, indicating good mixing.
- Autocorrelation: Lag-1 autocorrelations for each β_j fall below 0.05, suggesting near-independent draws.
- *Effective Sample Size:* ess_bulk, ess_tail > 6000 for every β_i , far above the 1000-sample threshold.

Gelman–Rubin R: Exactly 1.00 for all coefficients, confirming convergence.

Posterior Summary. Table 1 lists posterior means, standard deviations, 94% HDIs, ESS, and R for β_j , j = 0,...,8. Notably:

- β_0 (intercept) 1.00 (CI [0.97, 1.03]) \rightarrow baseline rate $\approx e^{1.00} = 2.72$ goals, matching the sample mean of 2.75. - β_1 (X_ScoreRateH) 0.08 (CI [0.05, 0.11]) implies an 8% increase in expected total goals per one-SD increase in home scoring rate. - All other predictors' 94% HDIs include 0, indicating no strong evidence of impact once scoring rates are accounted for.

Table 1. MCMC Posterior Summary for β .

					,		
Param	mean	sd	hdi_3%	hdi_97%	ess_bulk	ess_tail	Ŕ
Intercept	1.00	0.01	0.97	1.03	14268	6174	1.00
X_ScoreRateH	0.08	0.02	0.05	0.11	7416	6679	1.00
X_ScoreRateA	0.03	0.02	0.00	0.07	8445	7165	1.00
X_ConcedeRateH	-0.05	0.02	-0.08	-0.02	12056	6700	1.00
$X_{-}ConcedeRateA$	0.01	0.02	-0.02	0.04	10602	6240	1.00
X_CornerRatioH	0.02	0.02	-0.02	0.05	8784	6823	1.00
X_CornerRatioA	0.00	0.02	-0.03	0.03	9310	6627	1.00
X_FoulRatioH	-0.05	0.02	-0.08	-0.02	8063	5970	1.00
X_FoulRatioA	-0.02	0.02	-0.05	0.01	10484	6577	1.00

Part 2: Laplace Approximation & Predictive Losses

Objective. Approximate the posterior $p(\beta \mid y)$ by a Gaussian centered at the MAP, then use it for fast prediction.

Gradient & Hessian (Hand-derived). For the log-posterior

$$\ell(\beta) = \sum_{i=1}^{1750} \left[y_i(\mathbf{x}_i^{\top} \beta) - e^{\mathbf{x}_i^{\top} \beta} \right] - \frac{1}{2\sigma^2} \sum_{j=0}^{8} \beta_j^2, \quad \sigma = 10,$$

we have:

$$\nabla \ell(\beta) = X^{\top}(y - \lambda) - \frac{1}{\sigma^2}\beta, \quad \lambda = e^{X\beta},$$

$$\nabla^2 \ell(\boldsymbol{\beta}) = -X^{\top} \operatorname{diag}(\lambda) X - \frac{1}{\sigma^2} I_9.$$

Efficient coding: let $\sqrt{\lambda} = \sqrt{e^{X\beta}}$, then

$$X_{\text{scaled}} = X \odot \sqrt{\lambda}, \quad \nabla^2 \ell(\beta) = -X_{\text{scaled}}^{\top} X_{\text{scaled}} - \frac{1}{\sigma^2} I_9.$$

Finding β_{MAP} . Minimize

$$f(\boldsymbol{\beta}) = -\ell(\boldsymbol{\beta})$$

with $\nabla f=-\nabla \ell, \ \nabla^2 f=-\nabla^2 \ell$ via scipy.optimize. minimize (method='trust-constr'). The optimum is

$$\beta_{\text{MAP}} = \begin{bmatrix} 1.00002, \ 0.08258, \ 0.03387, \\ -0.04918, \ 0.01101, \ 0.01520, \\ 0.00028, \ -0.05167, \ -0.01926 \end{bmatrix}.$$

Compute $H_{\text{MAP}} = \nabla^2 \ell(\beta_{\text{MAP}})$. Then:

$$\begin{split} \Sigma_{Laplace} &= \left[-H_{MAP} \right]^{-1}, \\ stds &= \sqrt{diag(\Sigma_{Laplace})} \, \approx \, \left[\, 0.01458, \, 0.01677, \, 0.01787, \, 0.01703, \, \right. \\ & \left. 0.01616, \, 0.01701, \, 0.01730, \, 0.01598, \, 0.01607 \right]. \end{split}$$

Validation vs. MCMC. Table 2 compares MCMC posterior stats (mean, sd) to Laplace (mean = β_{MAP} , sd from $\Sigma_{Laplace}$). All entries match within ± 0.003 in means and ± 0.004 in sds, confirming the Gaussian approximation is extremely accurate.

Table 2. MCMC vs. Laplace Approximation for β .

Param	MCMC Mean	MCMC SD	Laplace Mean	Laplace SD
Intercept	1.00	0.01	1.00002	0.01458
X_ScoreRateH	0.08	0.02	0.08258	0.01677
X_ScoreRateA	0.03	0.02	0.03387	0.01787
X_ConcedeRateH	-0.05	0.02	-0.04918	0.01703
X_ConcedeRateA	0.01	0.02	0.01101	0.01616
X_CornerRatioH	0.02	0.02	0.01520	0.01701
X_CornerRatioA	0.00	0.02	0.00028	0.01730
X_FoulRatioH	-0.05	0.02	-0.05167	0.01598
X_FoulRatioA	-0.02	0.02	-0.01926	0.01607

Predictive Inference. Draw S = 5000 samples $\beta^{(s)} \sim \mathcal{N}(\beta_{\text{MAP}}, \Sigma_{\text{Laplace}})$. For each test match i, compute $\lambda_i^{(s)} = \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta}^{(s)})$. Define an (5000×100) matrix Λ . Then:

- Squared-Error (MSE): $\hat{y}_{i,\text{MSE}} = \frac{1}{S} \sum_{s=1}^{S} \lambda_i^{(s)}$.
- Absolute-Error (MAE): $\hat{y}_{i,\text{MAE}} = \text{median}(\{\lambda_i^{(s)}\}_{s=1}^S)$.

• **0–1 Accuracy (Exact-Count)**: For k = 0, ..., 10, $\widehat{P}(Y_i = k) \approx \frac{1}{S} \sum_{s=1}^{S} \text{PoisPMF}(k; \lambda_i^{(s)})$, then $\widehat{y}_{i,\text{mode}} = \arg \max_k \widehat{P}(Y_i = k)$.

Table 3. First 10 Predictions on 100 Test Matches

Match ID	MSE_pred	MAE_pred	$Mode_pred$
0	2.746	2.743	2
1	2.603	2.602	2
2	2.428	2.426	2
3	2.921	2.919	2
4	2.684	2.681	2
5	3.474	3.474	3
6	2.426	2.423	2
7	2.553	2.551	2
8	2.603	2.602	2
9	2.757	2.754	2

Remarks. Predictions hover around 2-3 goals. MSE and MAE differ by at most 0.003, reflecting slight skew. The integer mode is usually 2, occasionally 3, consistent with the Poisson predictive distributions.

Discussion & Conclusion

This assignment demonstrates a complete Bayesian workflow on the football dataset:

- 1. **MCMC (Part 1):** PyMC's NUTS sampler yields high-fidelity posterior draws. Diagnostics (traceplot mixing, autocorrelation, ESS, \hat{R}) all indicate excellent convergence. The home team's scoring rate is the strongest predictor of total goals.
- 2. **Laplace Approximation (Part 2):** By hand-deriving gradient and Hessian, we approximate the posterior by $\mathcal{N}(\beta_{\text{MAP}}, \Sigma_{\text{Laplace}})$. Comparison to MCMC shows near-perfect agreement (means ± 0.003 , sds ± 0.004), confirming that the Gaussian "bowl" captures essentially all posterior uncertainty.
- 3. **Predictive Efficiency:** Laplace-drawn predictions match MCMC to within numerical noise but require only a single optimization plus a multivariate-Normal draw—vastly faster than MCMC for repeated inference.

Future Work. Investigate non-Gaussian priors (e.g., Horseshoe) for potential sparsity; extend to hierarchical Poisson models (team-level random effects); once actual GoalsScored on the held-out 100 matches become available, assess calibration and sharpness of predictive distributions.