(c) [1 point] $n(n+1)/2 \in \Theta(n^2)$

Midterm Exam 1: Mar. 21, 2017 (5:00-6:30 PM).

Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page.

Please, don't use pencils.

Stı	udent Name: Student ID:
Sec	ction:
	This exam has 4 questions, for a total of 20 points.
	ion 1
(8	a) [1 point] $n(n+1)/2 \in O(n^2)$
(l	$\text{o) [1 point] } n(n+1)/2 \in \Omega(n^2)$

(d) [1 point] $n(n+1)/2 \in o(n^2)$	
Question 2	
(b) [2 points] $f(n) = 2n \log(n+2)^2 + (n+2)^2 \log(\frac{n}{2})$	
(c) [2 points] $f(n) = \sqrt{10n^2 + 7n + 3}$	
Question 3	ts

```
Algorithm 1 Unknown(A[0..n-1])
                                               \triangleright Input: An array A[0..n-1] of n real numbers
 1: minval \leftarrow A[0]
 2: maxval \leftarrow A[0]
 3: for i \leftarrow 1, n-1 do
        if A[i] < minval then
           minval \leftarrow A[i]
 5:
 6:
        end if
        if A[i] > maxval then
 7:
           maxval \leftarrow A[i]
 8:
        end if
 9:
10: end for
11: \mathbf{return} \ maxval - minval
     (a) [1 point] What does this algorithm compute?
     (b) [1 point] What is its basic operation?
     (c) [2 points] Give the best-case and worst-case running times of this algorithm in
         asymptotic notation.
```

 the best-case and worst-case running times of your algorithm in asymptotic notation.