Дискретная математика. Лекция 06.05.

С. В. Ткаченко

06.05.2022

Простой (первичной) импликантой (минималью) функции $Y = F(x_1, \dots, x_n)$ называется импликанта, которая не склеивается с никакой другой и не поглощается никакой другой импликантой данной функции Y.

Пример.

$$Y(x_1, x_2, x_3) = \bar{x}_1 x_2 \bar{x}_3 \vee x_2 \bar{x}_3$$

 $y_1(x_1,x_2,x_3)=\bar{x}_1x_2\bar{x}_3$ - импликанта функции $Y,\,y_2(x_1,x_2,x_3)=x_2\bar{x}_3$ - простая импликанта функции $Y,\,$ т.к. она поглощает импликанту y_1 :

$$\bar{x}_1 x_2 \bar{x}_3 \vee x_2 \bar{x}_3 = x_2 \bar{x}_3 \vee (x_2 \bar{x}_3 \wedge \bar{x}_1) = x_2 \bar{x}_3$$

Сокращенная ДНФ (СкДНФ) - это ДНФ функции в виде дизъюнкции всех ее простых импликант. СкДНФ в общем случае избыточна, некоторые из составляющих ее простых импликант могут быть исключены при сохранении эквивалентности формул.

Тупиковая ДНФ (ТДНФ) - это ДНФ, из которой нельзя исключить не одной простой импликанты без потери эквивалентности формулы.

 ${\it Минимальная}$ ДНФ (МДНФ) - это ТДНФ, содержащая минимальное число символов среди возможных ТДНФ функции.

Одной из важнейших интерпретаций булевых алгебр является *булева алгебра переключательных функций*. Первоначально этот математический аппарат был применен для анализа и синтеза множества релейно-контактных схем с операциями последовательного (конъюнкции) и параллельного (дизъюнкция) соединения контактов и операцией дополнения. 1 - проводник, 0 - разрыв.

Множество всех переключательных функций (ПФ) обозначают P2. Алгебра ($P2, \land, \lor, \lnot$) называется булевой алгеброй переключательных функций.

Импликантой переключательной функции $Y = F(x_1, \ldots, x_n)$ называется функция $v = f(x_1, \ldots, x_n)$, которая обращается в 1 на некотором подмножестве единичных наборов функции Y.

Πp имеp.

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Импликанты данной функции: $\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3$, $\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3$, $x_1 \wedge \bar{x}_2 \wedge x_3$, $x_1 \wedge \bar{x}_2 \wedge x_3$ - элементарные конъюнкции.

Также импликантами являются конъюнкции, полученные в результате склеивания (формулы расщепления) или поглощения одних конъюнкций другими.

$\Pi puмep.$

 $((\bar{x}_1 \wedge \bar{x}_2) \wedge \bar{x}_3) \vee ((\bar{x}_1 \wedge \bar{x}_2) \wedge x_3) = \bar{x}_1 \wedge \bar{x}_2.$

Метод Квайна - Мак-Класки состоит из двух этапов:

- 1. Получение всех простых имликант $\Pi\Phi$ (построение СкДН Φ).
- 2. Поиск всех ТДНФ по импликантной таблице покрытий и выбор их них МДНФ.

Исходная функция должна быть представлена в СДНФ.

Каждная элементарная конъюнкция может быть представлена двоичным числом.

Каждой конъюнкции присваивается undexc - число единиц в двоичном представлении конъюнкции.

x_1	x_2	x_3	x_4	число	индекс	x_1	x_2	x_3	x_4	число	индекс
0	0	0	0	0	0	1	0	0	0	8	I
0	0	0	1	1	I	1	0	0	1	9	II
0	0	1	0	2	I	1	0	1	0	10	II
0	0	1	1	3	II	1	0	1	1	11	III
0	1	0	0	4	I	1	1	0	0	12	II
0	1	0	1	5	II	1	1	0	1	13	III
0	1	1	0	6	II	1	1	1	0	14	III
0	1	1	1	7	III	1	1	1	1	15	IV

Одна и та же конъюнкция может быть склеена с другими несколько раз. При этом компонента, меняющая свое значение, заменяется «-».

Πp имеp.

При склеивании 0011 и 0111 получаем 0-11.

Пример.

$$\begin{split} f(x,y,z,t) &= \bar{x}\bar{y}\bar{z}\bar{t} \ \lor \ \bar{x}\bar{y}\bar{z}t \ \lor \ \bar{x}\bar{y}z\bar{t} \ \lor \ \bar{x}y\bar{z}t \ \lor \ \\ &0000(0,0) \ \ 0001(1,1) \ \ 0010(2,1) \ \ 0101(5,II) \end{split}$$

$$\lor \ \bar{x}yzt \ \lor \ x\bar{y}\bar{z}\bar{t} \ \lor \ x\bar{y}z\bar{t} \ \lor \ xyzt \ \\ 0111(7,III) \ \ 1000(8,1) \ \ 1010(10,II) \ \ 1110(14,III) \ \ 1111(15,IV) \end{split}$$

Индекс	Конъюнкі	ша	Результат склеивания						
ипдекс	KORBIORKI	ции	1 шаг			2 шаг			
			0 и 1	000- (a)	×	b и f	-0-0		
0	0000 (0)	✓	0 и 2	00-0 (b)	\checkmark		(-0-0)	×	
			0 и 8	-000 (c)	✓	сие	(-0-0)		
	0001 (1)	\	1 и 5	0-01 (d)					
I	0001 (1)	'	1 и 10	-	×				
1	0010 (2)	√	2 и 5	-	√				
	0010 (2)	*	2 и 10	-010 (e)	V				
	1000 (8)	1	8 и 5	-	√				
	1000 (8)	*	8 и 10	10-0 (f)	V				
	0101 (5)	√	5 и 7	01-1 (g)	×				
II	0101 (3)	*	5 и 14	-	_ ^				
	1010 (10)	√	10 и 7	-	×				
	1010 (10)	*	10 и 14	1-10 (h)	_ ^				
III	0111 (7)	√	7 и 15	-111 (i)	×				
111	1110 (14)	√	14 и 15	111- (j)	×				
IV	1111 (15)	√							

СкДНФ:

$$f(x,y,z,t) = \bar{x}\bar{y}\bar{z} \vee \bar{x}\bar{z}t \vee \bar{x}yt \vee xz\bar{t} \vee yzt \vee xyz \vee \bar{y}\bar{t}$$

Второй этап заключается в построении ТДНФ (МДНФ) по импликантной таблице покрытий.

Импликантная таблица. Строки таблицы отмечаются простыми импликантами (полученными на первом этапе, табл. 1), столбцы - элементарными конъюнкциями (ЭК) из СДНФ (первоначальные). На пересечении i – й строки и j – го столбца ставится 1 или любой другой символ, если i – я импликанта покрывает (формула поглощения) j – ю ЭК из СДНФ.

Правила

- $\Pi 1$. Если есть столбец, который покрывается только одной импликантой y_i , то y_i обязательная импликанта, которая включается в ТДНФ. Строку y_i и столбцы, покрываемые y_i , удалить из таблицы.
- $\Pi 2$. Если импликанта y_i покрывает подмножество столбцов V_i, y_k покрывает подмножество столбцов V_k , при этом $V_i \leqslant V_k$, тогда i ю строку исключить из таблицы.
- ПЗ. Если j й столбец покрывается подмножеством строк Y_i, m й столбец подмножеством строк $Y_m,$ при этом $Y_i \leqslant Y_m,$ тогда m й столбец исключить из таблицы.

2 этап

		A	Б	В	Γ	Д	Е	Ж	3	И
		0000	0001	0010	0101	0111	1000	1010	1110	1111
1	000-	*	*							
2	0-01		*		*					
3	01-1				*	*				
4	1-10							*	*	
5	-111					*				*
6	111-								*	*
7	-0-0	*		*			*	*		

П1. Столбцы В и Е покрываются только одной строкой 7. Следовательно, импликанта -0-0 является **обязательной**, она включается в МДН Φ . Удаляем строку 7 и столбцы, которые она покрывает: A, B, E, Ж.

		Б	Γ	Д	3	И
		0001	0101	0111	1110	1111
1	000-	*				
2	0-01	*	*			
3	01-1		*	*		
4	1-10				*	
5	-111			*		*
6	111-					*

П2. Строка 1 покрывает столбец Б, строка 2 покрывает столбцы Б и Γ . Следовательно, удаляем строк 1. Аналогично, строка 4 покрывает столбец 3, строка 6 покрывает столбцы 3 и И. Удаляем строку 4.

		Б	Γ	Д	3	И
		0001	0101	0111	1110	1111
2	0-01	*	*			
3	01-1		*	*		
5	-111			*		*
6	111-				*	*

ПЗ. Столбец Б покрыт строкой 2, столбец Γ покрыт строками 2 и 3, следовательно, удалим столбец Γ . Аналогично, столбец 3 покрыт строкой 6, столбец И покрыт строками 5 и 6, следовательно, удалим столбец И.

		Б	Д	3
		0001	0111	1110
2	0-01	*		
3	01-1		*	
5	-111		*	
6	111-			*

 $\Pi4$. Столбец B покрыт только строкой B, столбец B покрыт только строкой B, поэтому импликанты B-01 и B-11- являются **обязательными**. Удалим строки B-2, B-6, столбцы B-3.

		Д
		0111
3	01-1	*
5	-111	*

В итоге получаем 2 ТДН Φ

$$f_1(x, y, z, t) = \bar{y}\bar{t} \vee \bar{x}\bar{z}t \vee xyz \vee \bar{x}yt$$

$$f_2(x, y, z, t) = \bar{y}\bar{t} \vee \bar{x}\bar{z}t \vee xyz \vee yzt$$

Минимальной является та, которая содержит наименьшее количество символов.