Summary

The $\chi_h(3P)$ states can be resolved with more statistics!

 $\chi_b(3P)$ mass measurement using $\chi_b(3P) \to \Upsilon(1S)\gamma_{\to ee}$:

- $m(\chi_{b1}(3P))=10509.5\pm3.0(stat)^{+5.3}_{-2.9}$ (syst) MeV/c²
- ATLAS measured χ_{b1} and χ_{b2} mass barycenter for Δ m=12 and r_{12} =1 : $m(\chi_b(3P)) = 10530 \pm 5(stat) \pm 9(syst)$ MeV/c²

 \Rightarrow difference with this result~ 1.3 σ

• D0: $m(\chi_b(3P)) = 10551 \pm 14(stat) \pm 17(syst) MeV/c^2$

 $\chi_b(1P)$ mass splitting:

 Δm_{12} = 18.6 \pm 0.7(stat) \pm 0.2 (syst) MeV/c² In agreement with PDG value: Δm_{12} =19.4 \pm 0.6 (?) MeV/c²

 $\chi_{b1,2}(1P)$ relative production cross section: in agreement with χ_c and theory but statistically limited

