Assignment # 1

Question 1:

Let's use the dataset TeleCustomers.xlsx, copyright © IBM Academic Initiative Program. The dataset contains the following fields describing the customers.

ID	Customer reference number
Sex	Gender
Status	Marital status
Children	Number of Children
Est_Income	Estimated income
Car_Owner	Car owner
Usage	Time spent on calls in total per month
Age	Age
RatePlan	Chosen rate plan (1, 2,)
LongDistance	Time spent on long distance calls per month
International	Time spent on international calls per month
Local	Time spent on local calls per month
Dropped	Number of dropped calls
Payment	Payment method of the monthly telephone bill
LocalBillType	Tariff for locally based calls
LongDistanceBillType	Tariff for long distance calls
CHURNED	Current vs. Cancelled

Assume that you are a data scientist or a manger overseeing the marketing department in this telecommunications company.

1. (20 points) Try your best to answer the proposed questions below by filling in the form.

	Descriptive Analytics	Predictive Analytics	Prescriptive Analytics
	What HAS happened?	What COULD happen?	What SHOULD happen?
What do you	Decrease the customer	Predict if the	Using customer
need to DO	churn rate and hence	customers are in risk of	segment targeted
(goal-driven	customer retention.	churning or not	campaigns, we decrease
tasks)			the probability of
			customer churning.
			Thus increasing the
			revenue and
			profitability of the

			company. (Cluster based
			targeting)
What do you	Why the customers	How to anticipate why	How to decrease the
need to	have churned, the	the customer's churn.	churn ratio.
KNOW	number of churns based	How to determine	Which cluster-based
(insights that	on description of other	features to decrease	customer targeting will
help you get	features (example churn	customer churn ration	provide the highest
the tasks	by sex, age, usage, etc.)		customer retention
done well)			ratio.

2. (20 points) What other data you will need to help you complete "What do you need to KNOW"? Please lists them based on types of analytics.

Other data that might be useful is knowing how long the customer is a user of the services (tenure), if they have multiple lines and if they have other subscriptions as well.

	Descriptive Analytics	Predictive Analytics	Prescriptive Analytics
	What HAS happened?	What COULD happen?	What SHOULD happen?
What do	Relation between the	Need to know how to	How to target
you need	customer churn vs their	anticipate why	customers with
to KNOW	tenure (subscription	customers churn with	different tenure values
(insights	time)	different tenure bins.	for retention.
that help		(For example,	
you get the		customers with lower	
tasks done		tenure might me more	
well)		probable to churn,	
		hence given tenure	
		value of a customer	
		with other features you	
		need to know if they	
		could churn or not)	

Question 2:

(20 points) Define your own functions in R to calculate mean, variance, and standard deviation. (**DO NOT** USE IN-BUILT R FUNCTIONS)

Load data

```
In [3]: library("readx1")
In [4]: data <- read_excel("TeleCustomers Spreadsheet.xlsx")</pre>
```

Manual Mean calculation function (Without in-built function)

```
In [7]: mean_manual <- function(x)</pre>
           1 \leftarrow length(x)
           sum <- 0
          for (i in 1:1)
             sum <- sum + x[i]
           return(sum/1)
In [8]: variance manual=function(x)
             sum <- 0
             1 \leftarrow length(x)
             for (i in 1:1)
             sum <-
                       sum+((x[i]-mean_manual(x))^2)
             return(sum/(1-1))
In [9]: std manual=function(x){
             return((variance manual(x))^0.5)
         }
```

Question 3:

(20 points) Use your own functions (in question 2) to calculate mean, variance, and standard deviation for "Estimated income" in the provided dataset.

```
mean_m <- formattable(mean_manual(data$Est_Income), digits = 2, format = "f")
var_m <- formattable(variance_manual(data$Est_Income), digits = 2, format = "f")
std_m <- formattable(std_manual(data$Est_Income), digits = 2, format = "f")

print(paste("mean without function",mean_m))

print(paste("variance without function",var_m))

print(paste("std without function",std_m))

[1] "mean without function 51464.26"
[1] "variance without function 948435534.13"
[1] "std without function 30796.68"</pre>
```

Function calculation

```
In [16]: #instalt.packages("formattable")

In [17]: library(formattable)

In [18]: mean_m <- formattable(mean_manual(data$Est_Income), digits = 2, format = "f")
    var_m <- formattable(variance_manual(data$Est_Income), digits = 2, format = "f")
    std_m <- formattable(std_manual(data$Est_Income), digits = 2, format = "f")
    mean <- formattable(mean(data$Est_Income), digits = 2, format = "f")
    var <- formattable(var(data$Est_Income), digits = 2, format = "f")
    std <- formattable(sd(data$Est_Income), digits = 2, format = "f")</pre>
```

Comparing with function and without function values

```
In [19]: help(min)
In [20]: ?var

In [22]: print(paste("mean without function",mean_m))
    print(paste("mean with function",mean))
    print(paste("variance without function",var_m))
    print(paste("variance with function",var))
    print(paste("std without function",std_m))
    print(paste("std with function",std))

[1] "mean without function 51464.26"
[1] "wariance without function 948435534.13"
[1] "variance with function 94835534.13"
[1] "std without function 30796.68"
[1] "std with function 30796.68"
```

Question 4:

(20 points) Consider *iris* data set (It is available in your R workspace). Take a new sample vector {4.8, 2.9, 3.7, 1.7} as values of { "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width" } respectively.

Now find out the Euclidean distances between the new sample and all the rows of "iris" (exclude the Species column).

Sort the distances in an ascending order.

Loading the Iris dataset

```
library(datasets)
data("iris")
iris
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

Creating custom samples and giving names

```
custom_vector <- c(4.8, 2.9, 3.7, 1.7)
names(custom_vector) <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
custom_vector</pre>
```

Sepal.Length 4.8 Sepal.Width 2.9 Petal.Length 3.7 Petal.Width 1.7

Removing the Species column

```
iris_nospecies <- iris[1:4]
iris_nospecies</pre>
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
F 0	0.0	4.4	0.0

Creating function for Euclidean distance

Calculating and sorting in ascending order the eucidian dist of created sample and each row in iris dataset

```
In [28]: ?apply()
In [29]: distances <- apply(iris_nospecies,1,function(x) eucl_dist_manual(x,custom_vector))</pre>
                        distances <- sort(distances)
                       distances
                       1.04403065089105 1.04880884817015 1.04880884817015 1.05356537528527 1.06770782520313 1.09544511501033 1.10453610171873
                        1.10905365064094 \quad 1.14891252930761 \quad 1.14891252930761 \quad 1.15325625946708 \quad 1.15325625946708 \quad 1.17473401244707 \quad 1.19582607431014 \quad 1.195826074014014 \quad 1.195826074014 \quad 1.195826074014 \quad 1.195826074014 \quad 1.195826074014 \quad 1.195826074014 \quad 1
                        1.71755640373177 1.74355957741627 1.74355957741627 1.75499287747842 1.76918060129541 1.77482393492988 1.78605710994918
                        1.78605710994918 \quad 1.80554700852678 \quad 1.82482875908947 \quad 1.84932420089069 \quad 1.85741756210067 \quad 1.86010752377383 \quad 1.9131126469709 \quad 1.86010752377383 \quad 1.9131126469709 \quad 1.913126469709 \quad 1.9131126469709 \quad 1.91
                        2.06397674405503 2.16564078277077 2.24276614920058 2.28035085019828 2.28910462845192 2.30434372436058 2.30434372436058
                        2.42280828791714 2.43515913237718 2.45356882927706 2.45356882927706 2.47991935352745 2.49599679486974 2.51793566240283
                        2.52784493195291 2.53574446662119 2.56904651573303 2.58843582110896 2.59036676939772 2.6 2.60192236625154
                        2.61916017074176 2.62868788561898 2.65518360947035 2.67207784317748 2.67207784317748 2.67768556779918 2.6944387170615
                        2.6944387170615 2.71661554144123 2.72213151776324 2.7258026340878 2.72946881279124 2.73861278752583 2.7459060435492
                        2.7495454169735 2.7495454169735 2.7495454169735 2.75317997958724 2.75862284482674 2.76947648482525 2.77488738510232
                        2.77488738510232 2.77488738510232 2.78208554864871 2.78388218141501 2.80356915377524 2.81602556806574 2.81957443597434
                        2.82488937836511 2.82665880502051 2.84077454226836 2.84429253066558 2.84780617317963 2.849561369755 2.85832118559129
                        2.86006992921502 2.86181760425084 2.87402157263998 2.88790581563873 2.88963665535998 2.9 2.93768616431368
                        2.96816441593117 2.97657521322744 2.97657521322744 3 3.04795013082563 3.09515750810843 3.0967725134404 3.11769145362398
                        3.17332633052449 3.19217793990247 3.20936130717624 3.27261363439071 3.3391615714128 3.54541958024717 3.55668384875575
```