MathE project

Limit for real functions of several variables

1 The $\varepsilon - \delta$ characterization

Let $E \subseteq \mathbb{R}^k$ be a nonemty set, let a be a cluster point for E and let us consider a real function $f: E \to \mathbb{R}$.

Definition 1.1 (with neighbourhoods) One says that $\ell \in \mathbb{R}$ is the limit of f at the point a if for any $U \in \mathcal{V}(\ell)$ from \mathbb{R} , there exists $V \in \mathcal{V}(a)$ from \mathbb{R}^k , such that for any $x \in V \cap E$ with $x \neq a$, we have $f(x) \in U$. We denote this by

$$\ell = \lim_{x \to a} f(x).$$

Proposition 1.1 (with $\varepsilon - \delta$)

- (i) Let $\ell \in \mathbb{R}$. The limit of f at the point a is ℓ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $x \in E$ with $x \neq a$ and $||x a|| < \delta$ we have $|f(x) \ell| < \varepsilon$.
- (ii) The limit of f at the point a is $+\infty$ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $x \in E$ with $x \neq a$ and $||x a|| < \delta$ we have $f(x) > \varepsilon$.
- (iii) The limit of f at the point a is $-\infty$ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $x \in E$ with $x \neq a$ and $||x a|| < \delta$ we have $f(x) < -\varepsilon$.

For a two-variables function $f: E \subseteq \mathbb{R}^2 \to \mathbb{R}, f = f(x,y)$ we obtain:

Proposition 1.2 (with $\varepsilon - \delta$)

- (i) Let $\ell \in \mathbb{R}$. The limit of f at the point (a,b) is ℓ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $(x,y) \in E$, $(x,y) \neq (a,b)$ with $|x-a| < \delta$ and $|y-b| < \delta$ we have $|f(x) \ell| < \varepsilon$.
- (ii) The limit of f at the point (a, b) is $+\infty$ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $(x, y) \in E$, $(x, y) \neq (a, b)$ with $|x a| < \delta$ and $|y b| < \delta$ we have $f(x) > \varepsilon$.
- (iii) The limit of f at the point a is $-\infty$ if and only if for any $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that for $(x,y) \in E$, $(x,y) \neq (a,b)$ with $|x-a| < \delta$ and $|y-b| < \delta$ we have $f(x) < -\varepsilon$.

Example 1.1 Using the $\varepsilon - \delta$ criterion of the limit, show that

$$\lim_{(x,y)\to(3,1)} (2x - y) = 5.$$

Solution. Consider $\varepsilon > 0$, there is $\delta = \delta(\varepsilon) > 0$ such that for any $(x, y) \in \mathbb{R}^2$ with $(x, y) \neq (3, 1)$, $|x - 3| < \delta$ and $|y - 1| < \delta$ we have $|2x - y - 5| < \varepsilon$. Indeed, we can write

$$|2x - y - 5| = |2(x - 3) - (y - 1)| \le 2|x - 3| + |y - 1| < 4\delta$$

and for $\delta \leq \frac{\varepsilon}{4}$ the inequality is fulfilled.

Example 1.2 Using the $\varepsilon - \delta$ criterion of the limit, show that

$$\lim_{(x,y)\to(4,+\infty)} \frac{xy-1}{y+2} = 4.$$

Solution. Consider $\varepsilon > 0$, there is $\delta = \delta(\varepsilon) > 0$ such that for any $(x,y) \in \mathbb{R}^2$ with $|x-4| < \delta$ and $y > \frac{1}{\delta}$ we have

$$\left| \frac{xy - 1}{y + 2} - 4 \right| < \varepsilon.$$

Indeed, we can write

$$\left| \frac{xy - 1}{y + 2} - 4 \right| = \left| \frac{(x - 4)y - 9}{y + 2} \right| \le |x - 4| \cdot \frac{y}{y + 2} + 9 \cdot \frac{1}{y} < \delta + 9\delta = 10\delta$$

and for $\delta \leq \frac{\varepsilon}{10}$ the inequality is fulfilled.

$$a)$$
 $\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y}$

Example 1.3 Find the limit of the following functions:
a)
$$\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y}$$
 b) $\lim_{(x,y)\to(+\infty,2)} \left(1+\frac{y^2}{x}\right)^{xy}$

c)
$$\lim_{(x,y)\to(+\infty,+\infty)} \left(\frac{xy}{x^2+y^2}\right)^{y^2} \quad d) \quad \lim_{(x,y)\to(+\infty,+\infty)} \frac{x+y}{x^2-xy+y^2}$$

$$\overline{a} \text{ Since } \lim_{t \to 0} \frac{\sin t}{t}, \text{ we have } \lim_{(x,y) \to (2,0)} \frac{\sin(xy)}{y} = \lim_{(x,y) \to (2,0)} \frac{\sin(xy)}{xy} \cdot x = 2.$$

b) Using the fundamental limit $\lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$, we deduce

$$\lim_{(x,y)\to(+\infty,2)} \left(1 + \frac{y^2}{x}\right)^{xy} = \lim_{(x,y)\to(+\infty,2)} \left[\left(1 + \frac{y^2}{x}\right)^{\frac{x}{y^2}} \right]^{y^3} = e^{\lim_{y\to 2} y^3} = e^8.$$

c) We have
$$0 < \left(\frac{xy}{x^2 + y^2}\right)^{y^2} \le \left(\frac{1}{2}\right)^{y^2}$$
 for each $x, y > 0$, so we get

$$0 \le \lim_{(x,y)\to(+\infty,+\infty)} \left(\frac{xy}{x^2+y^2}\right)^{y^2} \le \lim_{(x,y)\to(+\infty,+\infty)} \left(\frac{1}{2}\right)^{y^2} = 0$$
, thus

$$\lim_{(x,y)\to(+\infty,+\infty)} \left(\frac{xy}{x^2+y^2}\right)^{y^2} = 0.$$

d) Since

$$\frac{x+y}{x^2 - xy + y^2} \le \frac{1}{x} + \frac{1}{y}$$

for each x, y > 0, and

$$\lim_{(x,y)\to (+\infty,+\infty)} \left(\frac{1}{x} + \frac{1}{y}\right) = 0$$

it follows

$$\lim_{(x,y)\to(+\infty,+\infty)} \frac{x+y}{x^2 - xy + y^2} = 0.$$