			Ans	wen (a	γ: -	or 1.	4 7	, 977
Line,	T281	E is	of	the .	form	:- (3	b i) Ac = 0
	τ	τ2 φ +	2m.	ψ(ν-3)	= 0	· - /w.3) r. I	4
							= 1	
				determine de !-		ie Laps		Openator
	·:	Y =	osino.	sin \$				
							1	
• • • •	ξ2 3	x2+y2	+ 2 2) · (A) 1	(2) (1)	(h - 8 -	1 1.	-: Y	,
4	tan 0 =							
			100000000000000000000000000000000000000		1 (1)	(1)		Acres 1
Thu	Schro					Coo	xdihale	15%
T V ²	- 9 (-82	18) 4	Serino T) 90)	1 1	ηφ ₅	(#4/
		Le se	16-37	constant	15	i. 18	6	. r
	+	2m	(e-v)	Ψ = 0		4	Ù.	JWJ
10		f ²				-		
Th	is le	Sif	ridingen	equh	in	spheric	w	coordinate

Page No.

2020 Phy1216

٠ ! (ط)

Now taking the radial part we get:

 $\frac{1}{R} \frac{J}{Jx} \left(\frac{x^2}{dx} \frac{JR}{dx} \right) + \frac{2m^2}{R^2} \left(\frac{E-V}{2} \right) = \frac{1}{2} \left(\frac{(l+1)}{2} \right)$

Since, 200

 $\frac{1}{R} \frac{d}{d\theta} \left(\frac{g^2}{g^2} \frac{dR}{d\theta} \right) + \frac{2mi^2}{f^2} \left(E - V \right) = 0 \qquad - \Re$

Now, Bulling R= K

: dk , dk .91 - k

5 1171-

912

 $\frac{f}{dn}\left(\frac{n^2}{dn}\right) = \frac{2n}{dn} \frac{dR}{dn} + \frac{r^2}{dr^2} \frac{d^2R}{dr^2}$

 $\frac{d}{dn}\left(\frac{n^2dR}{dn}\right), \quad \frac{2dk}{dn} - \frac{2k}{n} + \frac{\gamma^2}{dn^2} - \frac{(2)}{n}$

(1)

Differentiating (1) again w.r.t v:-

[d2 2 1 d2 k - 2 dk + 2k] - 3

Diffe soft

3-44-3

Page No.

2000 Phylills

Put 3 in 2:-

[d (x2 dR) 3 x d2k]

Put this in (+):-

 $\frac{7^2}{k} \frac{d^2k}{dx^2} \frac{2mx^2}{k^2} \left(\xi - v \right) \Rightarrow 0$

 $\frac{67}{k} \frac{8^2}{d8^2} \frac{d^2k}{d8^2} - \frac{2m8^2}{k^2} (8-8)^2 0$

multiplying both sides by - R2
2mx 2

 $\frac{1}{2m} \frac{\int -k^2}{dx^2} + Vk^2 = Ek$

Now, making & dimensionless:

:. 82 Eq.

where, as is Bilis Tadius

-: 90 = RK2 me2

then, V(1): -e2 e-8/a

KY

= -e² . me², e-8/4

Page No. Date: / 2020 Phy124 722 & 292 . . pantiga = E2 R2 R4 m2e4 £2 then m2e4 2mg² 2 mx 2 R284 me 4 282 k2 f 2 Pulling this in above equation we get 4(&) e4 e-8/4 = E K 124(8) 082 2 R2 K2 k(&) + 2k(&) .e- Ylq - EK(&) 2 危2 展 2 (k(&)] + 2 k(&) .e-814 92 = e k(&) - E x 2 la 2 k 2 where, e is dimensionless quantity with term being the ground state -me4 energy. 2ktf2

8	equation	becomes	4 J ;	B , '1	
[d2 d 2 2		+ 2k .	e - & (901a	.) = e h	८ (६)
,		žai v	- <u>- </u>		n À
			T and		,

1 Discussion

1. Here I am plotting the Radial wavefunction for different value of ratio given in the assignment for l=0. We can conclude from the graph that as the ratio terms increases the decaying nature of the graph become more sharp.

Figure 1:

2. This is the plot for the change in eigen values of the ground state with change in the ratio . We can clearly see that as the ratio increases the eigen value of the ground state approaches to the correct value i.e. 1

Figure 2:

3. This plot shows Probability Density of the waveform plotted above.

Figure 3:

4. Here I am plotting the Potential that we obtained in our case and the coulomb potential.

Figure 4:

5. This table have the values of the ground state eigen value with corresponding ratio.

Figure 5:

B.Sc.(Hons.) Physics 32221501 Teacher: Mamta S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 12 Screened Coulamb Potential

Due Date and Time: 16.10.2022, 11:59PM Max. Marks: 20

This assignment is based on the Problem 2 of the syllabus.

1. (6 marks) Theory

(a) The electron in an atom is subjected to the screened Coulomb Potential given by

$$V(r) = -\frac{e^2}{4\pi\epsilon_0 r}e^{-r/a} = V_c e^{-r/a}$$

 $V_{\rm c}$ being the Coulamb potential.

Write down the Schrödinger Equation in spherical polar coordinates. Use separation of variables to obtain the radial part of the Schrödinger Equation for a given value of ℓ .

- (b) Now consider the radial equation for $\ell=0$ and convert it into dimensionless form by redefining $r=\xi a_0, a_0$ being the Bohr radius.
- (c) Plot the Coulamb potential V_c (in dimensionless form) and on the same graph, plot the potential $V(\xi) = V_c e^{-\xi/\alpha}$ as a function of ξ for different values of $\alpha = \frac{a}{a_0}$, say $\alpha = 2, 5, 10, 20, 100$. Discuss what do you expect for the bound state eigen values.
- 2. (12 marks) **Programming** Write a Python code to solve the s-wave ($\ell = 0$) Schrödinger Equation for an atom (in dimensionless form) for the screened Coulamb Potential

$$V(\xi) = V_{\text{coul}} e^{-\xi/\alpha}$$

The code should

- (a) obtain the bound state energy eigen values. Is the number of bound state finite?
- (b) obtain the the energy (in eV) of the ground state of the atom to an accuracy of three significant digits for the values of α mentioned above. Take $e=3.795(eV\mathring{A})^{1/2},\ m=0.511\ {\rm MeV/c^2}.$ In these units $\hbar c=1973(eV\mathring{A})$.
- (c) plot the corresponding normalised wavefunctions. Also plot the wavefunctions for the Coulamb potential on the same graph.
- (d) plot the probability densities
- (e) plot the ground state energy as a function of α

3. (2 marks) Discussion

Read the article shared with you. Interpret and discuss your results.