Potencial electrostático

Note the $\frac{|\Gamma - \Gamma_i|_3}{|\Gamma - \Gamma_i|_3} = -\sum_{\Gamma} \left(\frac{|\Gamma - \Gamma_i|}{1}\right) = \sum_{\Gamma} \left(\frac{|\Gamma - \Gamma_i|}{1}\right)$

luego podemos escribir

$$E(\underline{\Gamma}) = -\int \rho(\underline{\Gamma}') \, \underline{\nabla}_{\underline{\Gamma}} \left(\frac{1}{|\underline{\Gamma} - \underline{\Gamma}'|} \right) \, d^{3}\underline{\Gamma}' = -\underline{\nabla}_{\underline{\Gamma}} \left(\int \frac{\rho(\underline{\Gamma}')}{|\underline{\Gamma} - \underline{\Gamma}'|} \, dV' \right)$$

$$\Rightarrow E(\underline{\Gamma}) = -\underline{\nabla} \rho \otimes con \quad \rho(\underline{\Gamma}) = \int \frac{\rho(\underline{\Gamma}')}{|\underline{\Gamma} - \underline{\Gamma}'|} \, dV' + cte.$$

Usando la ley de Gauss:

$$\nabla \cdot (-\nabla \varphi) = 4\pi \rho$$
 \Rightarrow $\nabla^2 \varphi = -4\pi \rho$ Ec. de Poisson

El potencial electrostático tiene además una interpretación física bien definida. Calculemos el trabajo para llevar una carpa q de un pto. 1 a 2 contra la faza. electrostática

$$W = -\int_{1}^{2} q E \cdot dL = q \int_{1}^{2} \nabla \varphi \cdot dL =$$

$$= q \left(\varphi(2) - \varphi(1) \right)$$

independiente del comino.

Deserrollo multipolar de q

consideremos una distribución de carpa localizada en una repión de loup. d, y miremos el potencial para III >> d. Por Taylor alrededor de I'=0

$$\frac{1}{|\underline{\Gamma} - \underline{\Gamma}'|} = \frac{1}{|\underline{\Gamma}|} + \frac{\partial_{i}'}{|\underline{\Gamma} - \underline{\Gamma}'|} \Big|_{\underline{\Gamma}' = 0} \cdot \underline{\Gamma}'_{i} + \frac{1}{2} \frac{\partial_{i}'}{\partial_{j}'} \Big(\frac{1}{|\underline{\Gamma} - \underline{\Gamma}'|} \Big)_{\underline{\Gamma}' = 0} \cdot \underline{\Gamma}'_{i} + \dots$$

$$= \frac{2 \operatorname{L}_{!} \operatorname{L}_{2}}{3 \operatorname{L}_{!} \operatorname{L}_{2}} = \frac{\operatorname{L}_{2}}{3 \operatorname{L}_{!} \operatorname{L}_{2}} = \frac{\operatorname{L}_{2}}{3 \operatorname{L}_{!} \operatorname{L}_{2}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{1} \operatorname{L}_{1}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{1}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{2}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{2}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{2}} = \frac{\operatorname{L}_{2} \operatorname{L}_{1}}{\operatorname{L}_{2}} = \frac{\operatorname{L}_{2} \operatorname{L}_{2}}{\operatorname{L}_{2}} = \frac{$$

$$\varphi(\underline{\Gamma}) = \int dV' \, \rho(\underline{\Gamma}') \, \left\{ \frac{1}{\Gamma} + \frac{\Gamma_i \, \Gamma_i'}{\Gamma^3} + \frac{1}{2} \frac{3 \Gamma_i \, \Gamma_i - \delta_{ij} \, \Gamma^2}{\Gamma^5} \, \Gamma_i' \, \Gamma_j' + \ldots \right\}$$

$$= \varphi^{(o)}(\underline{\Gamma}) + \varphi^{(i)}(\underline{\Gamma}) + \varphi^{(2)}(\underline{\Gamma}) + \ldots$$

1) Término monopola:

$$\phi_{(0)}(\bar{c}) = \frac{c}{d} \qquad con \quad d = \frac{1}{2} \delta(\bar{c}_i) \, d A_i$$

Una distribución de carpa con $Q \neq 0$ se ve como una carpa puntual si Γ es lo suficientemente prende $\phi^{(0)}$ es isótropo γ $\phi = 1/r$ si $Q \neq 0$

2) Término dipolar:

Consideremos dos dist. de carpa $P = P_{+}R_{+} + P_{-}R_{-} = P_{+}(R_{+}-R_{-})$ $5i|P_{+}|=|Q_{-}|$

Tousudo cambio de origen

$$P' = P_{+} (P_{+} - \overline{2}) + P_{-} (P_{-} - \overline{2}) = 0$$

$$= P - (Q + + Q -) = 0$$

Si Q=0 => P=P' y el momento es indep. del origen.

 $\frac{1}{2}$ = $\frac{1}{2}$ =

Pueremos

$$\phi(\bar{c}) = \frac{L_3}{G} + \frac{L_3}{\bar{c} \cdot \sqrt{b(\bar{c})} \bar{c} \cdot q \Lambda_1} +$$

Pedimos Q=0 y

$$\frac{1}{\varphi} = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} - \frac{1}{\varphi} \right) = \frac{1}{\varphi} \left(\frac{1}{\varphi} - \frac{1}{\varphi} -$$

$$\frac{\partial}{\partial r} \delta(\underline{r} - \underline{r}') = \lim_{\substack{q \to \infty \\ q \to 0}} \frac{\partial}{\partial r} \delta(\underline{r} - \underline{r}' + \varepsilon \hat{\rho}) - \varepsilon \hat{\rho} \delta(\underline{r} - \underline{r}') = \lim_{\substack{q \to 0 \\ q \to 0}} \frac{\partial}{\partial r} \delta(\underline{r} - \underline{r}' + \varepsilon \hat{\rho}) - \varepsilon \hat{\rho} \delta(\underline{r} - \underline{r}') = 0$$

$$\implies b^{\mathbf{G}}(\mathbf{c}) = (\bar{b} \cdot \bar{\Delta}_{i}) \ \mathbf{g}(\bar{\mathbf{c}} - \bar{\mathbf{c}}_{i}) = -(\bar{b} \cdot \bar{\Delta}) \, \mathbf{g}(\bar{\mathbf{c}} - \bar{\mathbf{c}}_{i})$$

Podemos introducir un dipolo puntual como

$$\bar{b}(\bar{c}) = \bar{b} \, g(\bar{c} - \bar{c}_i) \implies b(\bar{c}) = -\bar{\Delta} \cdot \bar{b}$$

3) Término cuadrupolar:

$$\phi^{(2)}(\underline{\Gamma}) = \frac{1}{2} \left(\frac{3r_i r_j - \delta_{ij} r^2}{r^2} \right) C_{ij} \quad \text{con } C_{ij} = \int \rho(\underline{\Gamma}) r_i' r_j' dV$$

Podemos escribir

$$\left(\frac{3r_{i}r_{j} - \delta_{ij}r^{2}}{-\delta_{ij}r_{k}} \right) \stackrel{c}{\subset}_{ij} = \left(\frac{3r_{i}r_{j} - \delta_{ij}r_{k}r_{k}}{\delta_{k\ell}} \right) \stackrel{c}{\subset}_{ij} =$$

$$= \left(\frac{3r_{i}r_{j} - \delta_{k\ell}\delta_{ij}r_{k}r_{k}}{\delta_{ij}r_{k}r_{k}} \right) \stackrel{c}{\subset}_{ij} = r_{i}r_{j} \left(\frac{3c_{ij} - c_{\ell\ell}\delta_{ij}}{\delta_{ij}\delta_{k\ell}} \right) \stackrel{c}{\subset}_{ij} = r_{i}r_{j} \left(\frac{3c_{ij} - c_{\ell\ell}\delta_{ij}}{\delta_{ij}\delta_{k\ell}} \right) \stackrel{c}{\subset}_{ij} = r_{i}r_{j} \left(\frac{3c_{ij} - c_{\ell\ell}\delta_{ij}}{\delta_{ij}\delta_{k\ell}} \right) \stackrel{c}{\subset}_{ij} = r_{i}r_{j} \stackrel{c}{\subset}_{ij} \stackrel{c}{\subset}_{ij} = r_{i}r_{j} \stackrel{c}{$$

y tourndo
$$Q_{ij} = 3C_{ij} - C_{ee} S_{ij}$$
 (tensor mamento $Q_{ij} = \int \rho(\underline{r}) (3r_i'r_j' - S_{ij'}r'^2) dV'$

Noter que tra = Qii = O y a simétrico. Se puede disponsizor y obtener ejer posses. Me mide cuento se sporta de una dist. espérica de corpa.

Compo electrostático en medios moteriales

En un medio material, las carpas pueden desplazarse

como respueste el compo eplicado. En un conductor, pueden desplezarse distancias macroscópicas y acumularse en los contornos, generando densidad superficial o y E=0 en el interior.

En un dieléctrico el reordensmiento es microscópico y el execto dominante es el de polarización:

Vesmos la relación entre P y E (relación constitutiva del medio): podemos desarrollar

$$P(E) = P(0) + \frac{\partial P}{\partial E_i} \Big|_{E=0} E_i + \frac{\partial^2 P}{\partial E_i E_j} \Big|_{E=0} E_i E_j + \dots$$

Caracterizan el medio material

Si P(0) + 0 tienen polorización permanente (electretes). Si P(0) = 0 y E débil tenemos respuesta lineal

$$P_i = \chi_{ij} E_j$$
 con $\chi_{ij} = \frac{\partial P_i}{\partial E_j}\Big|_{E=0}$
tensor de susceptibilidad eléctrica

Si el medio es isótropo P= XE $P = X E \Rightarrow D = (1 + 4\pi X) E = E E$ tensor de permitividad eléctrica Condiciones de contorno pora el compo E en interpaces Tenemos & D.dS = 4TT Que P20 8-0 $\oint \underline{D} \cdot d\underline{s} = \left(\underline{D}_2 - \underline{D}_1\right) \cdot \hat{N} S$ E1, D, Ademas 4TT \ pd3r = 4TT p 8 \$ = 4TT 08 $\Rightarrow \left[\left(\underline{D}_{2} - \underline{D}_{1} \right) \cdot \hat{N} = 4\pi\sigma \right]$ €= 1 => (E2-E1) · n = 4 1T 0 $\gamma \left(-\frac{\partial \varphi_2}{\partial n} + \frac{\partial \varphi_1}{\partial n} \right) = 4\pi\sigma$ pero o continuo: Tomemos shors. $\phi \in dl = 0$ $\Rightarrow (E_{x_1} - E_{x_2}) \Delta + (E_y^3 - E_y^5) \delta = 0$ y pare 8→0 Ex1 = Ex2 $\hat{N} \times (E_2 - E_1) = 0$ $y | \varphi_2 - \varphi_1 = 0 = \int E \cdot dl$

Magnetostática:

La fuerza que siente un circuito Λ por el que circula una corriente I_1 debida a un circuito 2 con corriente I_2 es

$$\frac{I_1}{\Gamma_1} = \frac{1}{C^2} \oint I_1 dl_1 \times \oint \frac{I_2 dl_2 \times (\underline{\Gamma}_1 - \underline{\Gamma}_2)}{|\underline{\Gamma}_1 - \underline{\Gamma}_2|^3}$$
(Ley de Ampêre)

Noter que, à diferencia de la ley de Coulomb, es una expresion plobal y que no está escrita para

cada elemento diferencial (Idl no es equivalente a g: en el segmento dl, la corriente debe venir de alpún lado para satisfacer continuidad) Notar que de continuidad

La expresión satisface acción y reacción:

$$\begin{aligned}
& = \frac{1}{C^2} \oint \int I_1 d\underline{l}_1 \times \left(I_2 d\underline{l}_2 \times \frac{\Gamma_1 - \Gamma_2}{|\Gamma_1 - \Gamma_2|^3} \right) = A \times B \times C = -B \times A \times C \\
& = -\frac{1}{C^2} \oint \int I_2 d\underline{l}_2 \times \left(I_1 d\underline{l}_1 \times \frac{\Gamma_1 - \Gamma_2}{|\Gamma_1 - \Gamma_2|^3} \right) = -F_{21}
\end{aligned}$$

Puedo introducir un campo magnetico, tomando $F_1 = \frac{1}{C} \oint I_1 dl_1 \times B_2(I_1)$

$$\underline{B}_{2}\left(\underline{\Gamma}_{1}\right) = \frac{1}{C} \oint \frac{\underline{I}_{2} d\underline{I}_{2} \times \left(\underline{\Gamma}_{1} - \underline{\Gamma}_{2}\right)}{\left|\underline{\Gamma}_{1} - \underline{\Gamma}_{2}\right|^{3}}$$

y en general

$$B(\overline{L}) = \overline{I} \left\{ \frac{|\overline{L} - \overline{L}_i|_3}{\overline{4(\overline{L}_i)} \times (\overline{L} - \overline{L}_i)} - \overline{q} \Lambda_i \right\}$$