출처가 명시되지 않은 모든 자료(이미지 등)는 조성현 강사님 블로그 및 강의 자료 기반.

<< 머신러닝 - 연관 분석 >>

# [Apriori]

# 1. 연관분석

데이터 집합 간 숨겨진 규칙을 찾아내기 위한 분석 방법이다. 구매성향 분석 등에 자주 사용된다.

예컨대 다음과 같은 장바구니 데이터가 있다고 하자.

[ 표-1] 장비구니 트랜잭션 예시

| TID | Items                      |
|-----|----------------------------|
| 1   | Bread, Milk                |
| 2   | Bread, Diapers, Beer, Eggs |
| 3   | Milk, Diapers, Beer, Cola  |
| 4   | Bread, Milk, Diapers, Beer |
| 5   | Bread, Milk, Diapers, Cola |

\* 예시 출처 : Introduction to Data Mining (데이터 마이닝), p 320 ~, (by 용환승, 나연묵, 박종수 등)

위의 장바구니 데이터로부터 의미 있는 상품 간 관계를 찾아내고 싶다. 이를 위해 장바구니 데이터를 이진 행렬로 변환한다. 이진행렬에서 행은 트랜잭션 ID, 열은 상품 목록이 된다. 수량, 가격 등은 무시하고, 구매했는지의 여부만을 1과 0으로 나타내자.

[표-1] 장비구니 트랜잭션 예시

| TID | ltems                      |
|-----|----------------------------|
| 1   | Bread, Milk                |
| 2   | Bread, Diapers, Beer, Eggs |
| 3   | Milk, Diapers, Beer, Cola  |
| 4   | Bread, Milk, Diapers, Beer |
| 5   | Bread, Milk, Diapers, Cola |



[표–2] 이진 목록 행렬 (Item Matrx in sparse format)

| TID | Bread | Milk | Diapers | Beer | Eggs | Cola |
|-----|-------|------|---------|------|------|------|
| 1   | 1     | 1    | 0       | 0    | 0    | 0    |
| 2   | 1     | 0    | 1       | 1    | 1    | 0    |
| 3   | 0     | 1    | 1       | 1    | 0    | 1    |
| 4   | 1     | 1    | 1       | 1    | 0    | 0    |
| 5   | 1     | 1    | 1       | 0    | 0    | 1    |

이렇게 변환된 이진 행렬은 Sparse Matrix 이다. 일단은 대부분이 0이고, 가끔씩 1이 아닌 값이 등장하는 행렬이라고 이해하고 넘어가도록 하자.

이제 각 상품 데이터 간 연관 규칙을 찾아내기 위한 척도를 알아 보자.

#### 1. 지지도(Support)

특정 (상품) 데이터를 포함하는 트랜잭션의 개수를 **지지도 카운트**라고 한다. 이 떄, **지지도**는 전체 트랜잭션의 개수 대비 지지도 카운트로 정의된다.

지지도 (Support) : 
$$s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$$
  $\to$  이 규칙이 주어진 데이터 집합에서 얼마나 자주 발생하는지를 측정함.

예컨대, 위의 예에서 Milk와 Diapers를 사는 사람이 Cola도 같이 사는 경향이 있다는 규칙을 찾아내려한다고 하자.

- X = {Milk, Diapers}
- $Y = \{Cola\}$
- 찾아내고자 하는 규칙: s(x → y) = x 를 구매하는 사람이 y 도 구매하는가?

이 때 X의 지지도 카운트는 2, 전체 트랜잭션의 개수 N은 5가 되기 때문에, s(X →Y) 는 0.4가 된다.

지지도는 한 연관규칙이 주어진 데이터 집합에서 얼마나 자주 나타나는지를 결정한다. 지지도가 낮을 수록 *우연하게* 같이 등장했을 확률이 높기 때문에, **유용하지 않은 규칙**을 제거하는 데에 사용된다.

## 2. 신뢰도(confidence)

지지도는 두 상품의 합집합이 같을 때 그 수치가 모두 같게 나타난다. 따라서 x 조합 이후 y가 오는지, y 조합 이후 x가 오는지를 판단하기에는 적절하지 않은 지표이다.  $x \cup y$  가 같다면 지지도는 모두 동일하기 때문이다.

따라서 신뢰도라는 규칙을 도입한다. X를 포함하는 항목 중 Y와 함께 나타나는 항목이 얼마나 되는지, 그 조건부 확률을 측정한다.

신뢰도 (Confidence) : 
$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$
  $\to$  X에 속한 항목들 중에 Y가 얼마나 빈번히 발생하는지에 대한 척도

Milk, Diapers, Beer의 예시에서 신뢰도를 계산하면 P(X)=3,  $p(X \cup Y)=2$  가 되기 때문에 이 때 X의 지지도 카운트는 2, 전체 트랜잭션의 개수 N은 5가 되기 때문에,  $S(X \rightarrow Y)$ 는 0.4가 된다.

지지도는 한 연관규칙이 주어진 데이터 집합에서 얼마나 자주 나타나는지를 결정한다. 지지도가 낮을 수록 *우연하게* 같이 등장했을 확률이 높기 때문에, **유용하지 않은 규칙**을 제거하는 데에 사용된다.

#### 3. 향상도(lift)

신뢰도에도 문제가 없는 것은 아니다. 만약 어떠한 데이터에 Y를 포함하고 있는 데이터가 매우 많다면, X에 어떠한 데이터를 포함하더라도 신뢰도는 높게 측정된다. 따라서 Y에 대한 영향이 무시되는 측면이 있다.

$$Lift(X o Y)=rac{c(X o Y)}{s(Y)}=rac{s(X\cup Y)}{s(X)\cdot s(Y)}$$
교재 오타 숙정

이러한 문제점을 보완하기 위해 **향상도**를 사용한다. 향상도는 신뢰도를 Y 발생 비율로 나눈 척도이다. Y가 많이 발생할수록 향상도 척도가 낮아진다.

향상도 척도는 두 데이터 집합이 어떠한 상관성을 갖는지를 판단하는 데 주로 활용된다.

만약 향상도가 1이라고 하자. 그렇다면 다음의 식이 성립한다.

$$s(X \cup Y) = s(X) \cdot s(Y)$$

X와 Y의 지지도가 X와 Y의 지지도의 곱과 같아진다. X와 Y를 함께 구매하는 게 X를 구매하고 Y를 구매하는 각각의 건수의 곱과 같다면, 두 사건은 독립이란 말이 된다.

강사님의 가르침

$$C(X \to Y) = \underbrace{D(X \cup Y)}_{D(X)} \times \underbrace{D(Y)}_{D(X)}$$

$$Lift(X \to Y) = \underbrace{1}_{D(X,Y)} + s(X \to Y) = \underline{s(X)} \cdot \underline{s(Y)}_{D(X)}$$

$$X = \underbrace{1}_{C(X,Y)} + \underbrace{1}_{D(X,Y)} + \underbrace{1}_{D(X,Y)} + \underbrace{1}_{D(X,Y)}_{D(X,Y)} = \underbrace{1}_{D(X,Y)}_{D(X,Y)} + \underbrace{1}_{D(X,Y)}_{D(X,Y)}$$

두 사건이 동시에 발생할 때의 확률과 같다. 원래 두 사건이 독립이면 확률은 각각의 곱과 같지만, 독립이 아니라면 뒤에 공분산이 붙는다.

같은 원리로, 향상도가 1보다 크면 두 사건은 양의 상관성을, 1보다 작으면 음의 상관성을 가진다. 양의 상관성을 가질수록 의미가 있기 때문에 향상도가 1보다 클수록 규칙의 의미가 커진다.

## [참고] 인과관계 여부 주의

위의 연관규칙에 의해 만들어진 규칙은 인과관계에 해당하지는 않는다. 다만, 둘 간의 관계가 동시에 발생하는 것이라는 점을 나타낸다.

앞에서 말한  $x \rightarrow y$  의 규칙을 나타내고자 할 때, x를 antecedent, y를 consequent라고 한다. 연관 규칙은 antecedent와 consequent가 동시에 발생하고 있음을 나타낼 뿐이다.

# 2. Apriori 알고리즘

위에서 살펴 본 세 가지 규칙은 저마다 다른 효용성을 지니기 때문에, 세 지표 모두가 좋아야 효과적인 규칙이라고 할 수 있다.

데이터에서 연관 규칙을 찾고자 하는 알고리즘이다.

연관 규칙을 찾고자 할 때, 가장 쉬운 방법은 Brute Force 방식으로 모든 데이터 조합에 대해 지지도, 신뢰도 등 모든 규칙을 계산하는 것이다. 그러나 이와 같은 방식으로는 수많은 조합에 대해 수많은 연관 규칙을 모두 계산할 수 없다. 물론 할 수는 있지만, 그 비용이 어마어마하다.

무수히 많은 조합, 그리고 그 규칙을 줄이기 위해 Apriori 알고리즘이 사용된다. 다음과 같은 방식을 따른다.

• 지지도 기준의 임계치를 설정한다. 조합을 줄인다.



BCD를 포함하는 집합이 빈발하면, 그것의 부분집합도 모두 빈발하다. 반면, AB를 포함하는 집합이 빈발하지 않다면, 그것을 포함하는 모든 조합도 모두 빈발하지 않다.

○ 지지도는 XUY에만 의존하므로 그 합집합만 같으면 모두 동일하다.

- o 지지도가 낮다는 말은 결국 해당 데이터 조합이 빈번하지 않다는 의미이므로, 지지도가 낮은 조합에 대해 *굳이* 신뢰도를 계산할 필요가 없다.
- o 가지치기의 단계라고도 볼 수 있다.(Support based Pruning)
- 조합의 개수를 줄인 후, 연관규칙 점수를 계산한다.

#### 실습 1. mlxtend 패키지

• mlxtend.preprocessing.TransactionEncoder: 트랜잭션 데이터를 이진 행렬로 변환해 준다.

```
# 변환 전 데이터
dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
         ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
         ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
          ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
          ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
# TransactionEncoder 변환
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
# 변환 후 데이터
print(te_ary)
[[False False False True False True True True False True]
 [False False True False True False True False True]
 [ True False False True False False False False False]
 [False True False False False True True]
 [False True False True True False False True False False]]
```

• confidence 최소 임계치 설정: min\_support

### 실습 2. 장바구니 데이터

위의 실습에서와 달리 데이터 크지가 커지면서, min\_support 를 더 낮췄다.

|      | 0             | 1                 | <br>18      | 19        |
|------|---------------|-------------------|-------------|-----------|
| 0    | shrimp        | almonds           | <br>spinach | olive oil |
| 1    | burgers       | meatballs         | <br>NaN     | NaN       |
| 2    | chutney       | NaN               | <br>NaN     | NaN       |
| 3    | turkey        | avocado           | <br>NaN     | NaN       |
| 4    | mineral water | milk              | <br>NaN     | NaN       |
|      |               |                   |             |           |
| 7496 | butter        | light mayo        | <br>NaN     | NaN       |
| 7497 | burgers       | frozen vegetables | <br>NaN     | NaN       |
| 7498 | chicken       | NaN               | <br>NaN     | NaN       |
| 7499 | escalope      | green tea         | <br>NaN     | NaN       |
| 7500 | eggs          | frozen smoothie   | <br>NaN     | NaN       |

원래 데이터 생김새는 위와 같다.

• df.iterrow() : pandas DataFrame의 row를 iterate하면서 row의 index와 data를 반환한다. (약간 enumerate 의 row 버전 느낌인가?)

```
# 데이터 구조
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7501 entries, 0 to 7500
Data columns (total 20 columns):
 # Column Non-Null Count Dtype
--- ----- ------ ----
 0 0 7501 non-null object
          5747 non-null object
 1 1
          4389 non-null object
 2 2
. . .
19 19 1 non-null object
dtypes: object(20)
memory usage: 1.1+ MB
# iterrow() 메소드 수행
for i, row in df.iterrows():
   print(i, row)
4107 0
            chocolate
1
  french fries
2
3
             NaN
4
             NaN
5
             NaN
6
             NaN
7
             NaN
8
             NaN
9
             NaN
10
             NaN
11
             Nan
12
             NaN
13
             NaN
14
             NaN
15
             NaN
16
             NaN
```

```
17
              NaN
18
              NaN
19
              NaN
Name: 4107, dtype: object
4108 0
              burgers
1
          shrimp
2
       spaghetti
3
       olive oil
4
           salmon
5
     cooking oil
6
         escalope
7
    tomato juice
8
              NaN
9
              Nan
10
              NaN
11
              Nan
12
              Nan
13
              NaN
14
              NaN
15
              Nan
16
              NaN
17
              NaN
18
              NaN
19
              NaN
Name: 4108, dtype: object
```

• 결측값 제거 : str 으로 변환 후 nan 이면 제거했다.

```
dataset = []
for i, row in df.iterrows():
   dataset.append([x for x in list(row) if str(x) != 'nan'])
```

왜 dropna() 하지 않고 for문 사용해서 문자열 비교 후 제거했을까?

• applymap: DataFrame 객체에 함수 매핑 및 적용.

```
rules[cols] = rules[cols].applymap(lambda x : tuple(X))
```

결과

| tuple                          |                                 |                    |                    |               |                 |                            |               | frozenset                                 |                                                  |                                           |               |                            |            |
|--------------------------------|---------------------------------|--------------------|--------------------|---------------|-----------------|----------------------------|---------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------|----------------------------|------------|
| antecedents                    | consequents                     | antecedent support | consequent support | support       | confidence lift | loverage                   | conviction    | entecodents                               | consequents                                      | antecedent supp consequent supp support   | onfidence     | in loverage                | conviction |
|                                | (ground beef.)                  | 0.04946007199      | 0.09825356619      | 0.01599789886 | 0.3234501348    | 3 291993841 0 0111382384   |               | frozenset/Therb & pepper*()               | frozenset("ground beeff))                        |                                           | 0.3234501348  | 3.291993841 0.01113823849  | 1.332990   |
|                                | (het) & peoper(.)               | 0.09625359619      | 0.04945007199      | 0.01599789886 | 0.1628222524    | 3 291993841 0 0111382384   |               | frozonset/[ground beef])                  | frozenset/(horb & peoper(i)                      | 0.09825356619 0.04946007199 0.01599786695 | 0.1628222524  | 3.291993841 0.01113823849  | 1.13540    |
| "specheti", "mineral water")   | (ground beef.)                  | 0.05972539995      | 0.09825356619      | 0.01705439141 | 0.2857142857    | 2.907927893 0.01119619083  | 1,262445007   | frozenseti/[ground beef])                 | frozenseti/'speahett/, 'mineral water'))         | 0.09825356619 0.05672536965 0.01706439141 | 0.1736770992  | 2.907927893 0.01119616082  | 1.137902   |
| 'ground beef'.)                | ('spagheti', 'mineral water')   | 0.09625359619      | 0.05972536995      | 0.01706439141 | 0.1736770992    | 2.907927893 0.01119619083  | 1.137902138   | frozenset(['spaghett', 'mineral water'))  | frozenset(('ground beef))                        | 0.05972536995 0.06625359619 0.01706438141 | 0.2857142857  | 2.907927863 0.01119616082  | 1.262445   |
| Tolive off.)                   | ('spaghett', 'mineral water')   | 0.06585788562      | 0.05972536995      | 0.01026529796 | 0.1558704453    | 2.609795184 0.006331911371 | 1.113898483   | frozenset(Folive oiF())                   | frozenseti/'speahett/, 'mineral water'))         | 0.06585788592 0.05672539995 0.01026529796 | 0.1558704453  | 2.609786184 0.006331911378 | 1,113998   |
| 'speghetti', 'mineral water')  | (olive oif.)                    | 0.05672530995      | 0.00585788562      | 0.01026529796 | 0.171875        | 2.609795184 0.006331911371 | 1.128020999   | frozenseti['spaghett', 'mineral water'))  | frozenset(folive oil'))                          | 0.05972536995 0.06585788562 0.01026529796 | 0.171875      | 2.609786184 0.006331911378 | 1.129020   |
| Trozen vegetables',)           | ('tomatoes',)                   | 0.09532052392      | 0.00839068122      | 0.01613118251 | 0.1662307692    | 2.474463938 0.00961212104  | 1 1.121381347 | frozenseti[formatoes'])                   | frozenset('frozen vegetables'))                  | 0.06836068122 0.06532062362 0.01613118251 | 0.2358674454  | 2.474493938 0.00961212104  | 1.183929   |
| flomatoes',)                   | (frozen vegetables',)           | 0.06639088122      | 0.09532062392      | 0.01613118251 | 0.2358674464    | 2.474463938 0.00961212104  | 1 1.183629698 | frozenset([frozen wegetables])            | frozenset((tomatoes'))                           | 0.09532062392 0.06839088122 0.01613118251 | 0.1662307692  | 2.474493938 0.00961212104  | 1.121381   |
| (shring))                      | (frozen vegetables',)           | 0.07145713905      | 0.09532062392      | 0.01666444474 | 0.2332089552    | 2.446573948 0.00985310506  | 3 1.179625172 | frozenset([shrimp*))                      | frozenset/(frozen vegetables'))                  | 0.07145713905 0.06532062362 0.01695444474 | 0.2332089552  | 2.446573848 0.009853105660 | 3 1.179825 |
| Trozen vegetables',)           | (shrimp',)                      | 0.09532002392      | 0.07145713905      | 0.01666444474 | 0.1748251748    | 2.446573948 0.00985310506  | 3 1.125268043 | frozenset([frozen wegetables])            | frozenset((shrimp1))                             | 0.09532062392 0.07145713905 0.01996444474 | 0.1748251748  | 2.446573848 0.009853105660 | 3 1.125269 |
| (milk', 'mineral water')       | (frozen vegetables',)           | 0.04799300085      | 0.09532062392      | 0.01106519131 | 0.230555556     | 2.418737374 0.00549041133  | 1.17575659    | frozonsot(['mineral water', 'milk'))      | frozenset/(frozen vegetables'))                  | 0.04796360085 0.06532062362 0.01106519131 | 0.230655556   | 2.418737374 0.00649041133  | 1.17575    |
| Trozen vegetables',)           | (milk', 'mineral water')        | 0.09532052392      | 0.04799360085      | 0.01106519131 | 0.1160839161    | 2.418737374 0.00549041133  | 1.077032556   | frozenset([frozen wegetables])            | frozenseti('minoral water', 'milk'))             | 0.09532062392 0.04799390085 0.01106519131 | 0.1160639161  | 2.418737374 0.00649041133  | 1.077032   |
| 'ground beef', 'mineral water' | (spaghet/,)                     | 0.04092787028      | 0.1741101187       | 0.01705439141 | 0.4169381107    | 2.394590527 0.00993843401  | 9 1.416470355 | frozonsot(('spagheti'))                   | frezenset((ground beef, 'mineral water())        | 0.1741101187 0.04092787628 0.01706439141  | 0.09600918836 | 2.394980527 0.009938434019 | 9 1.063283 |
| 'speghetti'.)                  | (ground beef, 'mineral water')  | 0.1741101187       | 0.04092787628      | 0.01705439141 | 0.09600918836   | 2.394590527 0.00993843401  | 9 1.063283696 | frozonsot([ground beef, 'mineral water')) | frozenseti("spaghotti"))                         | 0.04092787628 0.1741101187 0.01706439141  | 0.4169381107  | 2.394980527 0.009938434019 | 9 1.416470 |
|                                | (frozen vegetables', 'mineral s | 0.1295827223       | 0.03572856952      | 0.01106519131 | 0.0653909495    | 2.389990533 0.00643538600  |               |                                           | frozenset((mikf))                                | 0.03572856952 0.1295827223 0.01106519131  | 0.3067014925  | 2.389990633 0.00643538600  |            |
| Trazen vegetables', 'mineral v | (mik',)                         | 0.03572856952      | 0.1295827223       | 0.01106519131 | 0.3097014925    | 2.389990533 0.00643538600  |               | frozenset(['mik'])                        | frozenset((frozen vegetables', 'mineral water')) | 0.1295827223 0.03572859952 0.01108519131  | 0.0853909455  | 2.389990633 0.00643538600  |            |
| 'ground beef',)                | (milk', 'mineral water')        | 0.09625359619      | 0.04799360085      | 0.01106519131 | 0.1126187245    | 2.346536258 0.00634964883  |               | frozenset([ground beef])                  | frozenset(('minoral water', 'milk'))             | 0.09825356619 0.04799390085 0.01106519131 | 0.1126187246  | 2.346536258 0.00634964887  |            |
|                                | (ground beef,)                  | 0.04799300085      | 0.09825356619      | 0.01106519131 | 0.230555556     | 2.346536258 0.00634964883  |               | frozenset(('mineral water', 'milk'))      | frozenset(('ground beef'))                       | 0.04796360085 0.06625359619 0.01106519131 | 0.230555556   | 2.349536258 0.00634964887  |            |
| (soup!,)                       | (mik',)                         | 0.05052659645      | 0.1295827223       | 0.0151979736  | 0.3007915567    | 2.321231962 0.00865059968  |               | frozenset([soup])                         | frozenset((mikf))                                | 0.05052650645 0.1295827223 0.0151979736   | 0.3007915567  | 2.321231962 0.000950599688 |            |
| (mikt)                         | ('soup'.)                       | 0.1295827223       | 0.05052659645      | 0.0151979736  | 0.1172839505    | 2.321231962 0.00865059968  |               | frozenset(['mik'])                        | frozenset(('soup'))                              |                                           | 0.1172839506  | 2.321231962 0.000950599688 |            |
| (shrimp',)                     | (fornations',)                  | 0.07145713905      | 0.05839068122      | 0.01119850687 | 0.1567164179    | 2.291481191 0.00031149015  |               | frozenset([tomatoes'])                    | frozenset(('shrimp'))                            | 0.09836068122 0.07145713905 0.01119850687 | 0.1637426901  | 2:291481191 0:006311490157 |            |
| Tomatoes',)                    | (shrimp!)                       | 0.06839088122      | 0.07145713905      | 0.01119850687 | 0.1637426901    | 2.291481191 0.00031149015  |               | frozenset(('shrimp'))                     | frozenset((tomatoes'))                           | 0.07145713905 0.06839088122 0.01119850687 | 0.1567164179  | 2:291481191 0:006311490157 |            |
| (speghetti')                   | (ground beef,)                  | 0.1741101187       | 0.09825356619      | 0.03919477403 | 0.2251148545    | 2.291162176 0.02208783396  |               | frozenset(('spaghett'))                   | frozenset(('ground beef'))                       | 0.1741101187 0.09625359619 0.03919477403  | 0.2251148545  | 2:291162176 0:02208783396  | 1.1637162  |
| 'ground beef'.)                | (spaghetf.)                     | 0.09025359519      | 0.1741101187       | 0.03919477403 | 0.3669145183    | 2.291162176 0.02208783396  | 1.373697387   | frozenseti/[ground beef])                 | frozenset/"spechett/1)                           | 0.09825356619 0.1741101187 0.03919477403  | 0.3969145183  | 2.291162176 0.02208783396  | 1.373997   |