

Apprentissage non supervisé

Laboratoire d'InfoRmatique en Image et Systèmes d'information

Pôle Data Science, Equipe DM2L

Haytham Elghazel

Contexte: Apprentissage non supervisé

Consiste à inférer des connaissances sur les données

- Sur la seule base des échantillons d'apprentissage
- Pas de cible (pas le temps ni l'argent, pas de spécialistes), recherche de structures naturelles dans les données

Contexte: Apprentissage non supervisé

Différentes tâches sont associées à l'apprentissage non supervisé

- Réduction de dimensions : une nouvelle projection de des données dans un nouvel espace de représentation réduit qui permet de synthétiser l'information
- Custering (segmentation, regroupement): construire des classes automatiquement en fonction des exemples disponibles

Problématique : Réduction de dimensions

- A chaque individu, on peut associer un point dans R^p.
- A chaque variable de la base est associé un axe de R^p
- Pourquoi veut-on réduite les dimensions?
 - Pour synthétiser l'information
 - Analyser les proximités entre les individus.
 - Une visualisation des données (le nuage des individus)

- Quelles sont les véhicules qui se ressemblent ?
- · Sur quelles variables sont fondées les similarités / différences ?
- Quelles sont les relations entre les variables ?

- Si on prend en compte deux variables CYL et PUISS
- Ces deux variables sont liées (corrélées)
- On remarque que :
 - o l'Opel Reckord et la Ford Taunus 2000 ont le même profil
 - o la Renault 30 et la Toyota Corolla ont des profils opposés

Modele	CYL 🗸	PUISS
Toyota Corolla	1166	55
Citroen GS Club	1222	59
Simca 1300	1294	68
Lada 1300	1294	68
Lancia Beta	1297	82
Alfasud TI	1350	79
Rancho	1442	80
Renault 16 TL	1565	55
Alfetta 1.66	1570	109
Fiat 132	1585	98
Audi 100	1588	85
Mazda 9295	1769	83
Peugeot 504	1796	79
Princess 1800	1798	82
Opel Rekord	1979	100
Taunus 2000	1993	98
Datsun 200L	1998	115
Renault 30	2664	128

- Si on prend en compte la totalité des 6 variables
 - Très difficile de surveiller différents cadrans en même temps.
 - Peut être utilisé pour déceler des points atypiques (outliers, anomalies, ...)
 - Exemple : la Renault 30

Solution:

 Construire un système de représentation de dimension réduite (q << p) qui préserve les distances entre les individus.

$$d^{2}(i,i') = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^{2}$$

 On peut la voir comme une compression avec perte contrôlée de l'information.

• Un point clé:

- · La distance entre l'ensemble des individus deux à deux,
 - Dite aussi l'inertie du nuage de points dans l'espace original. Elle traduit la quantité d'information disponible.

$$I_p = \frac{1}{2n^2} \sum_{i=1}^n \sum_{i'=1}^n d^2(i,i')$$

$$I_p = \frac{1}{n} \sum_{i=1}^{n} d^2(i, G)$$

 L'inertie indique la dispersion autour du centre de gravité : c'est une variance multidimensionnelle (calculée sur toutes les dimensions)

Il faut préserver au mieux cette inertie (variance) sur le nouvelle espace à créer

La solution proposée : ACP

Analyse en composantes principales (ACP):

 Outil puissant pour analyser les corrélations entre plusieurs variables.

 $r_{jm} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})(x_{im} - \overline{x}_{m})}{s_{j} \times s_{m}}$

- L'idée : Les corrélations entre les variables originales sont aspirées par les nouvelles dimensions crées : La compression
- Permet d'obtenir de nouvelles variables non corrélées à forte variance (i.e. à fort pouvoir informatif) par combinaison linéaire des p variables initiales.
- Ces variables seront appelées «composantes principales», les axes qu'elles déterminent : « axes principaux »

- Données centrées réduites : ACP normée
- On prend l'exemple des variables CYL et PUISS
 - Inertie totale $I_p = p = 2$
 - Après résolution du problème algébrique $\det(R \lambda \times I) = 0$, deux valeurs propres obtenues $\lambda 1 = 1.79662$ et $\lambda 2 = 0.20337$ sachant que $\lambda 1 + \lambda 2 = 2$ dans le cas d'une ACP normée
 - Part d'inertie expliquée par l'axe 1 : $\frac{\lambda 1}{I_p} = \frac{1.79662}{2} = 89.83\%$
 - Part d'inertie expliquée par l'axe $2:\frac{\lambda 2}{I_p}=\frac{0.20337}{2}=10.17\%$

	Modele	CYL	PUISS
1	Toyota Corolla	-1.2814	-1.4953
2	Citroen GS Club	-1.1273	-1.2933
3	Simca 1300	-0.9292	-0.8389
4	Lada 1300	-0.9292	-0.8389
5	Lancia Beta	-0.9209	-0.1319
6	Alfasud TI	-0.7751	-0.2834
7	Rancho	-0.5219	-0.2329
8	Renault 16 TL	-0.1835	-1.4953
9	Alfetta 1.66	-0.1697	1.2316
10	Fiat 132	-0.1284	0.6761
11	Audi 100	-0.1202	0.0196
12	Mazda 9295	0.3779	-0.0814
13	Peugeot 504	0.4522	-0.2834
14	Princess 1800	0.4577	-0.1319
15	Opel Rekord	0.9558	0.7771
16	Taunus 2000	0.9943	0.6761
17	Datsun 200L	1.0081	1.5346
18	Renault 30	2.8408	2.1911

	Modele	F1 (89.83%)	F2 (10.17%)
1	Toyota Corolla	1.9635	0.1513
2	Citroen GS Club	1.7117	0.1174
3	Simca 1300	1.2502	-0.0639
4	Lada 1300	1.2502	-0.0639
5	Lancia Beta	0.7444	-0.5580
6	Alfasud TI	0.7484	-0.3477
7	Rancho	0.5337	-0.2044
8	Renault 16 TL	1.1871	0.9276
9	Alfetta 1.66	-0.7509	-0.9909
10	Fiat 132	-0.3873	-0.5689
11	Audi 100	0.0711	-0.0989
12	Mazda 9295	-0.2097	0.3248
13	Peugeot 504	-0.1194	0.5201
14	Princess 1800	-0.2304	0.4169
15	Opel Rekord	-1.2254	0.1263
16	Taunus 2000	-1.1812	0.2250
17	Datsun 200L	-1.7980	-0.3723
18	Renault 30	-3.5581	0.4594

$$d^{2}(1,2) = (-1.2814 - (-1.1273))^{2} + (-1.4953 - (-1.2933))^{2}$$

$$= 0.06455$$

$$d^{2}(2,6) = 1.14415$$

$$d^{2}(1,6) = 1.72529$$

$$d^{2}_{\{F_{1},F_{2}\}}(1,2) = (1.9635 - 1.7117)^{2} + (0.1513 - 0.1174)^{2}$$

$$= 0.06455$$

$$d^{2}_{\{F_{1},F_{2}\}}(2,6) = 1.14415$$

$$d^{2}_{\{F_{1},F_{2}\}}(1,6) = 1.72529$$

$$d^{2}_{\{F_{1},F_{2}\}}(1,2) = (1.9635 - 1.7117)^{2} + (0.1513 - 0.1174)^{2}$$

$$= 0.06455$$

$$d^{2}_{\{F_{1},F_{2}\}}(2,6) = 1.14415$$

$$d^{2}_{\{F_{1},F_{2}\}}(1,6) = 1.72529$$

 Si on tient compte que du premier axe factoriel les proximités sont bien respectées

$$d^{2}_{\{F_{1}\}}(1,2) = (1.9335 - 1.7117)^{2}$$
$$= 0.06340$$
$$d^{2}_{\{F_{1}\}}(2,6) = 0.92783$$
$$d^{2}_{\{F_{1}\}}(1,6) = 1.147632$$

ACP: plusieurs variables

· Analyse de la relation entre les variables : Matrice de

corrélation R

CORR	CYL	PUISS	LONG	LARG	POIDS	V.MAX
CYL	1	0.797	0.701	0.630	0.789	0.665
PUISS		1	0.641	0.521	0.765	0.844
LONG			1	0.849	0.868	0.476
LARG				1	0.717	0.473
POIDS					1	0.478
V.MAX				ĺ		1

• ACP $det(R - \lambda \times I) = 0$

Axis	Eigen value	Proportion (%)	Cumulative (%)
1	4.421	73.68%	73.68%
2	0.856	14.27%	87.95%
3	0.373	6.22%	94.17%
4	0.214	3.57%	97.73%
5	0.093	1.55%	99.28%
6	0.043	0.72%	100.00%
Tot.	6	-	-

Les principales questions ici

- Comment choisir le nombre d'axes ?
 - Il faut obtenir une approximation suffisamment satisfaisante
- Comment interpréter les nouveaux axes ?

Problématique : Clustering

 Les techniques de clustering cherchent à décomposer un ensemble d'individus en plusieurs sous ensembles les plus homogènes possibles

- Les méthodes sont très nombreuses
 - Méthodes de partitionnement : k-means
 - Méthodes hiérarchiques : CAH

Problématique : Clustering

Défis du clustering

On ne connaît pas la classe des exemples : nombre, forme, taille

Principe de base

- Regrouper tout ce qui se ressemble,
- Eloigner tout ce qui est franchement différent
- Le point clé est le critère de similarité (fonction de distance)

Problématique : Clustering

- On cherche à minimiser l'inertie intra-classe et à maximiser l'inertie inter-classe
 - inertie intraclasse définie par la somme des distances des centres de gravités aux points de leurs classes
 - inertie interclasse définie par la somme des distances entre les centres de gravités des classes et le centre de gravité de la population totale

 \bar{x}_k moyenne de x_k , \bar{x}_{ak} moyenne de x_k dans la classe q

$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_k)^2 = \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_{qk})^2 + \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I} (\bar{x}_{qk} - \bar{x}_k)^2$$
Inertie totale

Inertie intra

- Algorithme en deux étapes
 Affecter chaque point à un cluster en fonction des centres de gravité.
 Ré-estimer le centre gravité de chaque cluster en fonction de la nouvelle répartition
 - ☐ Et boucler jusqu'à convergence.

- Algorithme glouton
 - Fusionner les instances les plus similaires dans un même cluster
 - Construire incrémentalement des clusters plus larges en fusionnant les 2 clusters les plus proches
 - S'arrêter lorsqu'il n'y a plus qu'un cluster.

⇒ Construit un arbre de partitionnement un dendrogramme.

- Algorithme glouton
 - Fusionner les instances les plus similaires dans un même cluster
 - Construire incrémentalement des clusters plus larges en fusionnant les 2 clusters les plus proches
 - S'arrêter lorsqu'il n'y a plus qu'un cluster.

Les principales questions ici

- Comment définir la similarité ?
- Combien de clusters ?
- Quelle méthode de clustering choisir ?
- Peut-on interpréter les clusters obtenus ?

