Time-domain audio features

Valerio Velardo

Join the community!

thesoundofai.slack.com

Time-domain features

- Amplitude envelope (AE)
- Root-mean-square energy (RMS)
- Zero-crossing rate (ZCR)
- ...

$$AE_t = \max_{k=t \cdot K}^{(t+1) \cdot K - 1} s(k)$$

$$AE_t = \max_{t} (t+1) \cdot K - 1 \\ \max_{k=t \cdot K} s(k)$$
Amplitude envelope at frame t

$$AE_t = \max_{\substack{k \in \mathcal{K} \\ \text{Amplitude envelope} \\ \text{at frame } t}} (t+1) \cdot K - 1 \\ \max_{k=t \cdot K} s(k)$$

$$AE_t = \max_{t} \frac{(t+1)\cdot K-1}{s(k)}$$
Amplitude of kth sample t

$$k=t\cdot K$$
Amplitude of kth sample t

$$s(k)$$

$$s(k)$$
Frame size

Max amplitude value of all samples in a frame

$$AE_t = \max_{k=t \cdot K}^{(t+1) \cdot K - 1} s(k)$$

Calculate AE for all the frames

- Max amplitude value of all samples in a frame
- Gives rough idea of loudness

- Max amplitude value of all samples in a frame
- Gives rough idea of loudness
- Sensitive to outliers

- Max amplitude value of all samples in a frame
- Gives rough idea of loudness
- Sensitive to outliers
- Onset detection, music genre classification

RMS of all samples in a frame

RMS of all samples in a frame

$$RMS_t = \sqrt{\frac{1}{K} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} s(k)^2}$$

RMS of all samples in a frame

$$RMS_t = \sqrt{\frac{1}{K} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} sample} \text{Energy of } k\text{th sample}$$

RMS of all samples in a frame

$$RMS_t = \sqrt{\frac{1}{K} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} s(k)^2}$$

Sum of energy for all samples in frame *t*

RMS of all samples in a frame

$$RMS_t = \sqrt{\frac{1}{K} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} s(k)^2}$$

Mean of sum of energy

- RMS of all samples in a frame
- Indicator of loudness

- RMS of all samples in a frame
- Indicator of loudness
- Less sensitive to outliers than AE

- RMS of all samples in a frame
- Indicator of loudness
- Less sensitive to outliers than AE
- Audio segmentation, music genre classification

Zero crossing rate

Number of times a signal crosses the horizontal axis

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=1}^{(t+1)\cdot K-1} |sgn(s(k)) - sgn(s(k+1))|$$

Number of times a signal crosses the horizontal axis

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} | \underbrace{sgn(s(k))}_{\text{Sign function:}} - sgn(s(k+1)) |$$

 $s(k) > 0 \to +1$

• $s(k) < 0 \rightarrow -1$ • $s(k) = 0 \rightarrow 0$

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=1}^{(t+1)\cdot K-1} |sgn(s(k))| - sgn(s(k+1))|$$

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=1}^{(t+1)\cdot K-1} |sgn(s(k)) - sgn(s(k+1))|$$

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=t}^{(t+1)\cdot K-1} |sgn(s(k)) - sgn(s(k+1))|$$

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} \left| \frac{1}{sgn(s(k))} - \frac{1}{sgn(s(k+1))} \right|$$

$$ZCR_t = \frac{1}{2} \cdot \sum_{k=t}^{(t+1)\cdot K-1} |sgn(s(k)) - sgn(s(k+1))|$$

$$ZCR_{t} = \frac{1}{2} \cdot \sum_{k=t \cdot K}^{(t+1) \cdot K - 1} \left| \frac{1}{sgn(s(k))} - \frac{1}{sgn(s(k+1))} \right|$$

Zero crossing rate applications

Recognition of percussive vs pitched sounds

Zero crossing rate applications

- Recognition of percussive vs pitched sounds
- Monophonic pitch estimation

Zero crossing rate applications

- Recognition of percussive vs pitched sounds
- Monophonic pitch estimation
- Voice/unvoiced decision for speech signals

What's up next?

- Implement amplitude envelope
- Visualise amplitude envelope for different music genres