Braid Group Cryptography

Liam Hardiman

March 3, 2019

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

• *S* is a set of symbols called **generators**.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

- *S* is a set of symbols called **generators**.
- R is a set of words in S called **relators**. A **word** in S is a finite string consisting of symbols in S and the symbols x_i^{-1} , where $x_i \in S$. The empty string, e, is also a word.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

- *S* is a set of symbols called **generators**.
- R is a set of words in S called **relators**. A **word** in S is a finite string consisting of symbols in S and the symbols x_i^{-1} , where $x_i \in S$. The empty string, e, is also a word.
- We form a group by taking all possible words in S. The inverse of a word w is formed by writing the symbols in w in reverse order and replacing each x_j appearing in w by x_j^{-1} . The group operation is concatenation of words.

We form G from S and R by taking all equivalence classes of words in S. Two words v and w are equivalent if v can be transformed into w by a finite sequence of these operations.

• Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e

- **1** Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- 2 Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position

- Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- 2 Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- \odot Replacing r_j with e

- Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- ② Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- **3** Replacing r_j with e
- \bullet Inserting r_j at any position

We form G from S and R by taking all equivalence classes of words in S. Two words v and w are equivalent if v can be transformed into w by a finite sequence of these operations.

- Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- ② Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- **3** Replacing r_j with e
- \bullet Inserting r_i at any position

Equivalently, G is the quotient of the free group on S by the normal closure of R. We say G is **finitely presented** if S and R are finite sets.

Some examples of finitely presented groups include...

• Finite groups

- Finite groups
- The free group F_n on n generators

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

ullet Any group with infinitely many generators, e.g. $\mathbb{Z}^{\oplus \mathbb{Z}}$

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

- Any group with infinitely many generators, e.g. $\mathbb{Z}^{\oplus \mathbb{Z}}$
- There are finitely generated groups that are not finitely related, e.g. the wreath product of $\mathbb Z$ with itself.

Say we have a finitely presented group G.

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses.

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses.

Given $v = aa^{-1}bba$ and $w = babb^{-1}a^{-1}ba$, we have

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses.

Given
$$v = aa^{-1}bba$$
 and $w = babb^{-1}a^{-1}ba$, we have

$$aa^{-1}bba = bba$$

$$babb^{-1}a^{-1}ba = bba.$$

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: yes if v is equivalent to w. no otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses. Given $v = aa^{-1}bba$ and $w = babb^{-1}a^{-1}ba$, we have

$$aa^{-1}bba = bba$$

 $babb^{-1}a^{-1}ba = bba$.

Output yes.

In 1955 Pyotr Novikov showed that there are finitely presented groups in which the word problem is **undecidable** - it is provably impossible to construct an algorithm that always outputs the correct answer.

Let G be a group.

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

This is analogous to the discrete logarithm problem in a finite abelian group H.

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

This is analogous to the discrete logarithm problem in a finite abelian group H.

Discrete Logarithm Problem in H

input: Elements g, h of H such that $h \in \langle g \rangle$

output: An integer k such that $g^k = h$

Definition

The braid group on n strands, B_n is defined by the presentation

$$B_n = \langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, |i - j| = 1;$$

$$\sigma_i \sigma_j = \sigma_i \sigma_i, |i - j| > 1 \rangle.$$

Definition

The braid group on n strands, B_n is defined by the presentation

$$B_n = \langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, \mid i - j \mid = 1;$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \mid i - j \mid > 1 \rangle.$$

There is, however, a more geometric understanding of the braid group.

 Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the *i*-th item on the left to the i+1st on the right and the i+1st on the left to the *i*-th on the right with the latter string passing over the former.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the i-th item on the left to the i+1st on the right and the i+1st on the left to the i-th on the right with the latter string passing over the former.
- Two connections that can be made to look the same by tightening the strings are considered the same braid.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the i-th item on the left to the i+1st on the right and the i+1st on the left to the i-th on the right with the latter string passing over the former.
- Two connections that can be made to look the same by tightening the strings are considered the same braid.
- Composing two braids consists of drawing them next to one another, gluing the points in the middle, and connecting the strands.