Class 12 Chemistry Test
TS21.C12N.CT5

(A) 335 pm

Consolidated Test-5 Solid State and Solutions 2021-22

www.AhaGuru.com

Evvie Chockalingam

10-10-2021

Name:

Write your answer in the boxes provided.

Test Duration: **3hrs**

Mobile No:

1.	In a compound, atoroccupy 2/3rd of tet						
	(A) X_4Y_3		(C) X ₂ Y	(D) X ₃ Y ₄			
2.	2. If AgI crystallises in zinc blende structure with $ I^- $ ions at lattice points, what fraction of tetrahedral voids is occupied by $ Ag^+ $ ions?						
	(A) 25%	(B) 50%	(C) 100%	(D) 75%			
3.	Total volume of ator (r is atomic radius)						
	(A) $\frac{16}{3} \pi r^3$	(B) $\frac{20}{3} \pi r^3$	(C) $\frac{24}{3} \pi r^3$	(D) $\frac{12}{3} \pi r^3$			
4.	The edge lengths of fcc, bcc and simple of						
	(A) $2\sqrt{2} r, \frac{4r}{\sqrt{3}}, 2r$	(В	(1) $\frac{4r}{\sqrt{3}}$, $2\sqrt{2}r$, $2r$ (2) $2r$, $\frac{4r}{\sqrt{3}}$, $2\sqrt{2}r$				
	(C) $2r, 2\sqrt{2} r, \frac{4r}{\sqrt{3}}$	(D	2) $2r, \frac{4r}{\sqrt{3}}, 2\sqrt{2}r$				

5. AB crystallises in a body centred cubic lattice with edge length a equal to 387 pm. The distance between two oppositely charged ions in the lattice is

(C) 200 pm

(D) 300 pm

(B) 250 pm

TS21.C12N.CT5

6. CsBr crystal has bcc structure. It has an edge length of 4.3A. The shortest interionic distance between Cs⁺ and Br⁻ ions is

- (A) 1.86 Å
- (B) 2.86 Å
- (C) 3.72 Å
- (D) 4.72 Å

7. If a is the length of the side of a cube, the distance between the body centred atom and one corner atom in the cube will be

- (A) $\frac{2}{\sqrt{3}}$ a

- (B) $\frac{4}{\sqrt{3}}$ a (C) $\frac{\sqrt{3}}{4}$ a (D) $\frac{\sqrt{3}}{2}$ a

8. A given metal crystallises out with a cubic structure having edge length of 361 pm. If there are four metal atoms in one unit cell, what is the radius of one atom?

- (A) 40 pm
- (B) 127 pm
- (C) 80 pm
- (D) 108 pm

9. In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion (Ca²⁺) and fluoride ion (F-) are _____ respectively.

- (A) 4 and 2
- (B) 6 and 6
- (C) 8 and 4
- (D) 4 and 8

10. The Ca²⁺ and F⁻ are located in CaF₂ crystal respectively at body centred cubic lattice points and in

- (A) tetrahedral voids
- (B) half tetrahedral voids

(C) octahedral

(D) half of octahedral voids

11. The ionic radii of Rb^+ and I^- are 1.46 Å and 2.16 Å. The most probable type of structure exhibited by it is

- (A) CsCl type
- (B) ZnS type
- (C) NaCl type
- (D) CaF, type

Class 12 Chemistry Test

www.AhaGuru.com

component A in liquid mixture is χ_2 (p_A^o = vapour pressure of pure A; p_B^o = vapour pressure of pure B), then total vapour pressure of the liquid mixture is

(B) $\frac{p_A^o \chi_1}{\chi_2}$ (C) $\frac{p_B^o \chi_1}{\chi_2}$

dissolving 68.5 g of sucrose in 1000 g s of water. The freezing point of the

(C) + 0.372°C

30. A solution of sucrose (molar mass = 342 g mol^{-1}) has been prepared by

(B) -0.520°C

(D) $\frac{p_B^o \chi_2}{\chi_1}$

(D) -0.570°C

(A) $\frac{p_A^o \chi_2}{\chi_1}$

(A) -0.372°C

solution obtained will

be (K_f for water =1.86K kg mol⁻¹)

	12 Chemistry Test C12N.CT5				Evvie Chockalingam
31.	Of the following freezing point de				
	(A) KCl	(B) $C_6H_{12}O_6$	(C) $Al_2(SO_4)_3$	(D) K ₂ SO ₄	
32.	A solution of ure pressure. If K _f a the above solution				
	(A) - 6.54°C	(B) 6.54°C	(C) 0.654°C	(D) - 0.654°C	
33.	Which one of th (A) Raoult's law				
	where, M is t	quation $\pi = MRT$, us solution of each			
	(D) Two sucrose have the sam				
34.	A 5% solution of an unknown s				
	(A) 136.2	(B) 171.2	(C) 68.4	(D) 34.2	
35.	The van't Hoff fa				
	(A) less than one				
	(B) greater than				
	(C) greater than				
	(D) less than one	e and greater than or	ne		

www.AhaGuru.com

TS21.C12N.CT5

36. At temperature 327°C and concentration C, osmotic pressure of a solution is p, the same solutions at concentration C/2 at 427°C shows osmotic pressure 2 atm, value of p will be

- (A) $\frac{12}{7}$
- (B) $\frac{24}{7}$
- (C) $\frac{6}{5}$
- (D) $\frac{5}{6}$

37. Water and chlorobenzene are immiscible liquids. Their mixture boils at 90° C under a reduced pressure of 7.82×10^4 Pa. The vapour pressure of pure water at 90° C is 7.03×10^4 Pa. On weight per cent basis, chlorobenzene in the distillate is equal to (molecular weight of chlorobenzene is 112.5 g mol^{-1})

- (A) 50
- (B) 60
- (C)70
- (D) 80

38. Relative decrease in vapour pressure of an aqueous solution containing 2 moles of $\left[\text{Cu}\left(\text{NH}_3\right)_2\text{Cl}\right]\text{Cl}$ in 3 moles of H_2O is 0.50. On reaction with AgNO_3 this solution will form

- (A) 1 mol AgCl
- (B) 0.25 mol AgCl
- (C) 2 mol AgCl
- (D) 0.40 mol AgCl

39. The boiling point of water is 100°C . The vapour pressure of water at 25°C is 23 mm Hg and enthalpy of 18 vaporisation is 40.650 kJ mol $^{-1}$. What will be the temperature at which water will be boil, if atmospheric pressure become 23 mm Hg?

- (A) 12.5 K
- (B) 51.6K
- (C) 298 K
- (D) 250 K

40. Ratio of $\Delta T_b / K_b$ of 6% A_2B and 9% A_2B (AB_2 and A_2B both are non-electrolytes) is 1 mol/kg in both cases. Hence, atomic masses of A and B are respectively.

- (A) 60, 90
- (B) 40, 40
- (C) 40, 10
- (D) 10, 40

TS21.C12N.CT5

41. A complex of iron and cyanide ions is 100% ionised at 1 m (molal). If its elevation in boiling point is 2.08K. $\left(K_b=0.52~K~mol^{-1}~kg\right)$ then the complex is

(A) $K_3[Fe(CN)_6]$

(B) $Fe(CN)_2$

(C) K_4 [Fe(CN)₆]

(D) $Fe(CN)_4$

42. 25 mL of an aqueous solution of KCl was found to 20 mL of 1 M $\,{\rm AgNO_3}$ solution when titrated using $\,{\rm K_2CrO_4}$ as indicator. Depression in freezing point of KCl solution with 100 % ionisation will be $\,(\,{\rm K_f}=2.0^\circ\,{\rm mol^{-1}}\,{\rm kg}\,$ and molarity = molality)

- (A) 5.0° C
- (B) 3.2° C
- (C) 1.6° C
- (D) 0.8° C

43. Human blood gives rise to an osmotic pressure of approximately 7.65 atm at the body temperature 37° C. Hence, molarity of an intravenous glucose solution to have the same osmotic pressure as blood should be

- (A) 0.30 M
- (B) 0.20 M
- (C) 0.10 M
- (D) 0.50 M

44. The freezing point of an aqueous solution of urea is -0.52° C. If the molarity and molarity are same and K_f , for H_2O is equal to 1.86 K molality⁻¹, the osmotic pressure of solution would be

- (A) 0.686 atm
- (B) 6.886 atm
- (C) 68.86 atm
- (D) 688.6 atm

45. Consider the following cases

- I. 2M CH_3COOH solution in benzene at 27°C where there is dimer formation to the efficient of 100%
- II. 0.5 M KCl aq. solution at 27°C which ionises 100% which of the above is are true statements (s)?

Choose the correct option

- (A) Both are isotonic
- (B) ll is hypertonic
- (C) l is hypertonic
- (D) None of these

partial pressure of gas?

- (A) 4.2 bar
- (B) 7.6 bar
- (C) 8.9 bar
- (D) 9.8 bar

49. An aqueous solution is 1.00 molal of KI. Which change will cause the vapour pressure of the solution to increase?

- (A) Addition of NaCl
- (B) Addition of Na₂SO₄
- (C) Addition of 1.00 molal Kl
- (D) Addition of water

50. $K_{\rm H}$ value for Ar, CO_2 , HCHO and CH_4 are $40.39, 1.67, 1.83 \times 10^{-5}$ and 0.413respectively. Arrange these gases in the order of their increasing solubility.

- (A) $HCHO < CH_4 < CO_2 < Ar$
- (B) $HCHO < CO_2 < CH_4 < Ar$
- (C) $Ar < CO_2 < CH_4 < HCHO$
- (D) $Ar < CH_4 < CO_7 < HCHO$