Homework 1

Shashank Singh sss1@andrew.cmu.edu

В

January 25, 2012

Review

(a) Note that, \forall non-zero $x \in (-1, 1)$,

$$\sum_{k=0}^{\infty} (k+1)x^k = \sum_{k=0}^{\infty} \frac{d}{dx} \left(x^{k+1} \right)$$

$$= \frac{d}{dx} \sum_{k=0}^{\infty} \left(x^{k+1} \right)$$

$$= \frac{d}{dx} \left(\left(\sum_{k=0}^{\infty} x^k \right) - 1 \right)$$

$$= \frac{d}{dx} \left(\frac{1}{1-x} - 1 \right)$$

$$= (1-x)^{-2}$$

Letting $x = \frac{1}{2}$ in the above identity gives

$$\sum_{k=0}^{\infty} \frac{k+1}{2^k} = \left(1 - \frac{1}{2}\right)^{-2} = \boxed{4.}$$

(b) $\forall n \in \mathbb{N}$,

$$\sum_{k=0}^{n} 2^{k+1} = \sum_{k=1}^{n+1} 2^k = \left(\sum_{k=0}^{n+1} 2^k\right) - 1 = \boxed{2^{n+2} - 2}.$$

Asymptotic Notations

(a) i. $2n^3 + 25n^2 + \log n \in \Theta(n^3)$.

ii.
$$\log_4(n^3) \in \Theta(\log n)$$
.

iii.
$$4^{\log_8 n} \in \Theta(n^{2/3})$$
.

iv.
$$\log_{2n}(n^{3n}) \in \Theta(n)$$
.

(b) i. For $f(n) = n^2$, $g(n) = 4n^2 + 3n \log n$, $f \in \Theta(g)$.

ii. For
$$f(n) = n^{15}$$
, $g(n) = 3^n$, $f \in o(g)$.

iii. For
$$f(n) = \log(\sqrt{n})$$
, $g(n) = \log(n^{12})$, $f \in \Theta(g)$.

iv. For
$$f(n) = 2^{\log_3 n}$$
, $g(n) = 3^{\log_5 n}$, $f \in o(g)$.

Solving Recurrence Equations

- (a) For a = b = 3, $\log_b a = 1 > 0$. Thus, by the master method (in the case where the leaves outweigh the root), $T(n) \in \Theta(n^{\log_b a}) = \Theta(n)$.
- (b) For a = 3, b = 2, $\log_b a > 1.58 > 0$. Thus, by the master method (in the case where the leaves outweigh the root), $T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$.
- (c) The recurrence tree appears as follows:

Thus, for $i \in \{0, 1, ..., \log_3 n\}$, the sum of the terms in the i^{th} level of the tree is $(5/6)^i n$. For $i \in \{(\log_3 n) + 1, ..., \log_2 n\}$, the sum of the terms in the i^{th} level of the tree is less than $(5/6)^i n$ (as the tree continues to grow on the left but not on the right). Thus, for large n, since $\lim_{n\to\infty} \log_2 n = \infty$,

$$T(n) \le \sum_{i=0}^{\log_2 n} \left(\frac{5}{6}\right)^i n = n \left(\frac{1 - \left(\frac{5}{6}\right)^{\log_3 n}}{1 - \frac{5}{6}}\right) \approx n \left(\frac{1 - 0}{1 - \frac{5}{6}}\right) = 6n \in O(n).$$

Therefore, $T(n) \in O(n)$.

Clearly, since the root of the tree alone is $n, T(n) \ge n \in \Omega(n)$, so that $T(n) \in \Omega(n)$.

It follows, then, that $T(n) \in \Theta(n)$.

Strassen's Algorithm

(a) $\forall n \in \mathbb{N} \setminus \{0\}$, let T(n) denote the number of elementary additions and subtractions required to multiply two $n \times n$ matrices using Strassen's Algorithm. Each call requires 7 recursive calls to problems of size $\frac{n}{2}$, and 18 additions of matrices with $\frac{n^2}{4}$ elements, giving the recurrence

$$T(1) = 1, T(n) = 7T\left(\frac{n}{2}\right) + 18\left(\frac{n^2}{4}\right).$$

Thus, for $i \in \{1, 2, \dots, \log_2(n)\}$, the i^{th} level of recursion consists of 7^i calls to Strassen's algorithm, each doing $\frac{9}{2}\left(\frac{n^2}{4^i}\right)$ non-recursive work. Therefore,

$$T(n) = \sum_{i=0}^{\log_2 n} \frac{9}{2} n^2 \left(\frac{7}{4}\right)^i = \frac{9}{2} n^2 \left(\frac{\left(\frac{7}{4}\right)^{(\log_2 n) + 1} - 1}{\frac{7}{4} - 1}\right) = 6n^2 \left(\frac{7}{4} \left(\frac{7}{4}\right)^{(\log_2(7/4))} - 1\right)$$
$$= \left[\frac{21}{2} n^{2.81} - 6n^2\right]$$

(b) Let k be the time taken in computing a single elementwise multiplication. The time taken by Strassen's Algorithm is given by the recurrence

$$S(1) = 1; S(n) = 8S\left(\frac{n}{2}\right) + \frac{9}{2}k,$$

the solution to which is $S(n) = 6k(n^{2.81} - n^2)$. The time taken by the naive algorithm is given by the recurrence

$$T(1) = 1; T(n) = 7T\left(\frac{n}{2}\right) + k,$$

the solution to which is $T(n) = k(n^3 - n^2)$. Finding the solutions to S(n) = T(n) (0 and 1) shows that Strassen's Algorithm has fewer multiplications and thus better runtime for all non-trivial matrices.

Karatsuba's Algorithm

 $\forall n \in \mathbb{N}\setminus\{0\}$, let T(n) denote the number of addition and subtraction operations required to multiply two n-bit numbers using Karatsuba's Algorithm. Each call requires 3 recursive calls to problems of size $\frac{n}{2}$, 6 additions of $\frac{n}{2}$ -bit numbers, and 2 additions of n-bit numbers, giving the recurrence

$$T(1) = 1$$
, $T(n) = 3T\left(\frac{n}{2}\right) + 4n$.

Thus, for $i \in \{1, 2, ..., \log_2(n)\}$, the i^{th} level of recursion consists of 3^i calls to Karatsuba's algorithm, each doing $4\left(\frac{n}{2^i}\right)$ non-recursive work. Therefore,

$$T(n) = \sum_{i=1}^{\log_2 n} 4n \left(\frac{3}{2}\right)^i = 4n \left(\frac{\left(\frac{3}{2}\right)^{\log_2(n)+1} - 1}{\frac{3}{2} - 1}\right) = 8n \left(\left(\frac{3}{2}\right)^{\log_2(n)+1} - 1\right).$$