Artificial Intelligence 1

Prof. Dr. Frank Hopfgartner Dr. Matthias Horbach

Institute for Web Science and Technologies (WeST)
University of Koblenz

Overview

- 1 Introduction
- 2 Classical logics and Prolog
- 3 Search and automatic planning
- 4 Knowledge representation and reasoning
 - Default logic
 - Answer set programming
 - Argumentation
- 5 Agents and multi agent systems
- 6 Summary and conclusion

Knowledge representation and reasoning

- ▶ Definition: Knowledge representation and reasoning (KR) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition. [Wikipedia]
- Goal: Formalisation of beliefs (knowledge) and automatic reasoning
- But we already looked at propositional and first-order logic, isn't that enough?

Recall: logics

Every logic (=formal system) has the following components:

- 1. Syntax: What are the possible statements?
 - 1.1 Signature: What symbols are allowed? $(S = \{Anna, human, student\})$
 - 1.2 Grammar: how can symbols be combined in order to obtain complex statements? (student \Rightarrow human)
- 2. Semantics: Which are the "true" statements? What is the relationship between true statements?
 - 2.1 Interpretations: Which symbol represents which concrete object? (Anna = "Anna Schmidt")
 - 2.2 Models: Which statement is true in a given constellation of objects?
 - 2.3 Reasoning: How can we infer new information?
- 3. Calculus: How can "reasoning" be implemented?

Limitations of classical logic 1/4

Classical logic is monotonic:

If
$$\alpha \vdash \beta$$
 then $\alpha \land \gamma \vdash \beta$

for every formula γ .

- In other words: inferences are never retracted when new information is received
- Classical logic is binary:

$$\alpha \wedge (\alpha \Rightarrow \beta) \vdash \beta$$

is always true without exception.

- Central concept in knowledge representation are rules
- Rules always have exceptions (and there are also exceptions for that)

Limitations of classical logic 2/4

Example

Let us model our knowledge about some animals:

- birds are animals
- penguins are birds
- birds usually fly
- penguins do not fly

Naive formalisation:

$$\forall X : (bird(X) \Rightarrow animal(X))$$

 $\forall X : (penguin(X) \Rightarrow bird(X))$
 $\forall X : (bird(X) \Rightarrow flies(X))$
 $\forall X : (penguin(X) \Rightarrow \neg flies(X))$
 $penguin(tweety)$

What is the problem?

Limitations of classical logic 3/4

Example

Knowledge base in propositional logic (simpler)

$$\phi = (\textit{bird} \Rightarrow \textit{animal}) \land (\textit{penguin} \Rightarrow \textit{bird}) \land (\textit{bird} \Rightarrow \textit{flies}) \\ \land (\textit{penguin} \Rightarrow \neg \textit{flies}) \land \textit{penguin}$$

Observation:

- ▶ Knowledge base is inconsistent: $\phi \vdash flies$ and $\phi \vdash \neg flies$
- The "rule" bird ⇒ flies is not a classical implication, it is not universally valid
- ► What now?
- Model exceptions explicitly: bird ⇒ flies → bird ∧ ¬penguin ⇒ flies
- ▶ What about emus, dodos, ostriches, ...?

Limitations of classical logic 4/4

- Explicit enumeration of exceptions is not feasible (hard to maintain, . . .)
- How do we humans do it?
- When encountering a new bird for the first time, we make the default assumption that it can fly
- Only when obtaining explicit information that the bird does not fly, we will revise our inference

Overview

- Introduction
- 2 Classical logics and Prolog
- Search and automatic planning
- 4 Knowledge representation and reasoning
 - Default logic
 - Answer set programming
 - Argumentation
- 5 Agents and multi agent systems
- 6 Summary and conclusion

Overview

 Default logics are logics that allow for non-monotonic reasoning

Even if
$$\alpha \vdash \beta$$
 it may be that $\alpha \land \gamma \not\vdash \beta$

- ► In the following, we consider the prototype of a default logic: Reiter's default logic.
 - R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

Some additional notation for first-order logic 1/2

Let $\Sigma = (U, P, F)$ be a first-order signature, V a set of variables, and $\mathcal{L}(\Sigma, V)$ the corresponding first-order language.

Definition

A variable $X \in V$ is *free* in formula ϕ if there is an occurrence of X in ϕ which is not quantified. A variable $X \in V$ is *bound* in ϕ if it occurs in a sub-formula of the type $\forall X: \phi'$ or $\exists X: \phi'$.

A formula $\phi \in \mathcal{L}(\Sigma, V)$ is *closed* if every appearing variable is bound.

Example

The following two formulas are closed:

$$\forall X: (a(X) \land \forall Y: b(X,Y))$$
 $r(s,t) \lor \exists Y: a(Y)$

The following formulas are not closed

$$(\forall X : a(X)) \land b(X)$$
 $r(s, Y) \lor \exists X : a(X)$

Some additional notation for first-order logic 2/2

A set of first-order formulas is usually seen as equivalent with the conjunction of its elements

$$\{\phi_1, \phi_2, \phi_3\} \vdash \psi \iff \phi_1 \land \phi_2 \land \phi_3 \vdash \psi$$

Definition

The *deductive closure* of a set of first-order formulas $\Psi \subseteq \mathcal{L}(\Sigma, V)$ is defined via $Cn(\Psi) = \{\phi \mid \Psi \vdash \phi\}$.

Observe that $\Psi \subseteq Cn(\Psi)$ is always the case.

Definition

A set of first-order formulas $\Psi \subseteq \mathcal{L}(\Sigma, V)$ is deductively closed if $Cn(\Psi) = \Psi$.

Default rules

Definition

Let $\phi, \psi_1, \dots, \psi_n, \chi \in \mathcal{L}(\Sigma, V)$ be closed first-order formulas (or propositional formulas).

Then

$$\delta = \frac{\phi : \psi_1, \dots, \psi_n}{\chi}$$

is called a default rule (or just default).

Meaning: If ϕ is known and ψ_1, \ldots, ψ_n can be consistently assumed, then conclude χ .

$$\begin{array}{ll} \phi = \mathit{pre}(\delta) & \text{(default) precondition} \\ \chi = \mathit{cons}(\delta) & \text{(default) conclusion} \\ \{\psi_1, \dots, \psi_n\} = \mathit{just}(\delta) & \text{(default) justifications} \end{array}$$

Default rules - example

► Rules with exceptions:

► Rules that are typically true:

Rules that hold unless the opposite can be shown:

$$\frac{\textit{accused}: \textit{innocent}}{\textit{innocent}}$$

Default schema

A default

$$\delta = \frac{\phi : \psi_1, \dots, \psi_n}{\chi}$$

with *open* formulas $\phi, \psi_1, \dots, \psi_n, \chi$ is interpreted as a schema, i. e., as its set of grounded defaults (over the given universe).

Default schema - example

The default rule

$$\frac{\mathit{friend}(X,Y) \land \mathit{friend}(Y,Z) : \mathit{friend}(X,Z)}{\mathit{friend}(X,Z)}$$

is a shorthand for (given $U = \{tom, bob, sally, tina\}$)

$$\frac{friend(tom, bob) \land friend(bob, sally) : friend(tom, sally)}{friend(tom, sally)}$$
$$\frac{friend(tom, bob) \land friend(bob, tina) : friend(tom, tina)}{friend(tom, tina)}$$

. . .

Default theory (syntax of default logic)

Definition

A default theory T is a tuple $T = (W, \Delta)$ with

- ▶ $W \subseteq \mathcal{L}(\Sigma, V)$ (facts)
- \triangleright \triangle set of default rules

Main idea of default reasoning (semantics)

- apply defaults on W to extend the knowledge with plausible additional information
- apply defaults as long as no further information can be added

The resulting set of classical formulas is called *extension* and represents a plausible "belief state" of the default theory.

Main challenges

$$\delta = \frac{\phi : \psi_1, \dots, \psi_n}{\chi}$$

Meaning: If ϕ is known and ψ_1, \dots, ψ_n can be consistently assumed, then conclude χ .

When is such a default δ applicable, i. e.

- ▶ When is ϕ known?
- ▶ When can ψ_1, \ldots, ψ_n be consistently assumed?

Approach: use a (at first unknown) extension E to check these conditions:

- \blacktriangleright ϕ is known iff $\phi \in E$;
- ψ_1, \ldots, ψ_n can be consistently assumed iff $\neg \psi_i \notin E$, $1 \le i \le n$.

Semantics of default logic: extensions 1/3

An extension $E \subseteq \mathcal{L}(\Sigma, V)$ is characterised by the following properties:

- ightharpoonup E contains all facts: $W \subseteq E$
- ightharpoonup E is deductively closed: Cn(E) = E
- ▶ *E* is closed under default application, i. e. if $\delta = \frac{\phi:\psi_1,...,\psi_n}{\chi} \in \Delta$ is applicable in *E* then $\chi \in E$ where:

$$\delta$$
 is applicable in E iff $\phi \in E$ and $\neg \psi_1 \notin E, \dots, \neg \psi_n \notin E$

Semantics of default logic: extensions 2/3

More general:

- Let F be a deductively closed set of formulas
- ► Let *K* be a set of formulas (the context)

A default
$$\delta = \frac{\phi:\psi_1,\dots,\psi_n}{\chi}$$
 is applicable in F wrt. K iff

$$\phi \in F$$
 and $\neg \psi_1 \notin K, \dots, \neg \psi_n \notin K$

Semantics of default logic: extensions 3/3

Let $T = (W, \Delta)$ be a default theory and S a set of formulas.

Define $\Lambda_T(S)$ to be the smallest set of formulas with

- $\triangleright \Lambda_T(S)$ is deductively closed
- \blacktriangleright $W \subseteq \Lambda_T(S)$
- ▶ $\Lambda_T(S)$ is closed under default application wrt. the context S, i. e. for all $\delta = \frac{\phi:\psi_1,...,\psi_n}{\chi} \in \Delta$, if $\phi \in \Lambda_T(S)$ and $\neg \psi_1 \notin S,...$, $\neg \psi_n \notin S$, then $\chi \in \Lambda_T(S)$.

Definition

E is an extension of $T = (W, \Delta)$ iff $\Lambda_T(E) = E$.

Remark: conceptually, extensions of default theories correspond to models of a classical logic formula.

Example

$$T = (\{aquatic_creature\}, \{\frac{aquatic_creature : \mathit{fish}}{\mathit{fish}}\})$$

 $E = Cn(\{aquatic_creature, fish\})$ is an extension of T,

 $E' = Cn(\{aquatic_creature, \neg fish\})$ is *not* an extension of T, despite the fact that

- ightharpoonup {aquatic_creature} $\subseteq E'$
- ▶ E' is deductively closed
- ► E' is closed under default application

but
$$\Lambda_T(E') = Cn(\{aquatic_creature\}) \neq E'$$

More examples

Example

$$T = (\{p\}, \{\frac{p:q}{q}, \frac{q:r}{r}\})$$

$$\blacktriangleright E = Cn(\{p, q, r\})$$

Example

$$T = (\{p\}, \{\frac{p:q}{q}, \frac{p:\neg q}{\neg q}\})$$

►
$$E_1 = Cn(\{p, q\})$$

$$\blacktriangleright E_2 = Cn(\{p, \neg q\})$$

Example

$$T = \left(\{p\}, \{\tfrac{p:r}{s}\} \right)$$

$$ightharpoonup E = Cn(\{p,s\})$$

A characterisation of extensions

Theorem (Reiter, 1980)

Let E be a set of closed formulas and let $T = (W, \Delta)$ be a default theory. Define a sequence of sets of formulas E_i , $i \ge 0$ via

- $ightharpoonup E_0 = W$
- $E_{i+1} = Cn(E_i) \cup \{\chi \mid \frac{\phi: \psi_1, \dots, \psi_n}{\chi} \in \Delta, \phi \in E_i, \\
 \neg \psi_1 \notin E, \dots, \neg \psi_n \notin E\}$

Then E is an extension of T iff

$$E = \bigcup_{i=0}^{\infty} E_i$$

Computing extensions

Task: given $T = (W, \Delta)$, enumerate all extensions E of T

- ► We discuss an algorithm to explicitly enumerate all extensions using *default processes* and *process trees*
- ▶ Idea: apply defaults successively
 - as long as possible
 - use backtracking if inconsistency occurs

Let $T = (W, \Delta)$ be a fixed default theory.

Default sequences

 $\Pi = (\delta_0, \dots, \delta_m)$ sequence of defaults from Δ (finite, no repetitions)

 $\Pi[k] = (\delta_0, \dots, \delta_{k-1})$ sub-sequence of the first k elements

Definition

Let Π be a default sequence, define

$$In(\Pi) = Cn(W \cup \{cons(\delta) \mid \delta \in \Pi\})$$
$$Out(\Pi) = \{\neg \psi \mid \psi \in just(\delta), \delta \in \Pi\}$$

- ▶ $In(\Pi)$ collects formulas that are concluded by applying defaults from Π ; represents the current belief state after processing Π
- $ightharpoonup Out(\Pi)$ collects formulas that should be not be proven true later

Default sequences - example

$$T = (W, \Delta)$$
 with

$$W = \{a\}$$
 $\Delta = \{\delta_1 = \frac{a : \neg b}{\neg b}, \delta_2 = \frac{a : c}{c}\}$

Let $\Pi_1 = (\delta_1)$, $\Pi_2 = (\delta_2, \delta_1)$.

$$In(\Pi_1) = Cn(\{a, \neg b\})$$
 $Out(\Pi_1) = \{b\}$
$$In(\Pi_2) = Cn(\{a, c, \neg b\})$$
 $Out(\Pi_2) = \{\neg c, b\}$

Note: $In(\Pi)$, $Out(\Pi)$ are independent of the actual order of defaults in Π

Default processes and extensions 1/3

Definition

 $\Pi = (\delta_0, \dots, \delta_m)$ is a *process* iff every δ_k is applicable in $In(\Pi[k])$. In particular, δ_0 must be applicable in In(()) = Cn(W).

A process Π is called

- ▶ successful iff $In(\Pi) \cap Out(\Pi) = \emptyset$;
- ▶ not successful (or has failed) iff $In(\Pi) \cap Out(\Pi) \neq \emptyset$;
- ▶ closed iff every δ ∈ Δ that is applicable in In(Π) appears in Π.

Theorem

E is an extension of T iff there is a closed and successful process Π with $E = In(\Pi)$.

Default processes and extensions 2/3

Proof.

 \Leftarrow :

Let Π be a closed and successful process of T with $E = In(\Pi)$. We have to show $\Lambda_T(E) = E$:

- ▶ $\Lambda_T(E) \subseteq E$: E is deductively closed and $W \subseteq E$; as Π is closed, E is closed wrt. default application. $\Lambda_T(E)$ is defined to be the smallest such set, so $\Lambda_T(E) \subseteq E$.
- ► $E \subseteq \Lambda_T(E)$: By induction $In(\Pi[k]) \subseteq \Lambda_T(E)$ for all k. It follows $E \subseteq \Lambda_T(E)$.

Default processes and extensions 3/3

 \Rightarrow :

Let $E = \Lambda_T(E)$ be an extension of T. Let $\Delta = \{\delta_0, \dots, \delta_n\}$ finite, arbitrary. Construct process Π of T with $In(\Pi[k]) \subseteq E$ and $Out(\Pi[k]) \cap E = \emptyset$ as follows:

- \blacksquare $\Pi[0] = ();$
- Let $\Pi[k]$ be constructed. If every default $\delta \in \Delta$ that is applicable in $In(\Pi[k])$ wrt. E is already in $\Pi[k]$, define $\Pi = \Pi[k]$ and halt. Otherwise select any default δ that is applicable in $In(\Pi[k])$ wrt. E and define $\Pi[k+1] = (\Pi[k], \delta)$.

In the end, $E = In(\Pi)$.

Processes - examples

$$T = (W, \Delta)$$
 with

$$W = \{a\}$$

$$\Delta = \{\delta_1 = \frac{a : \neg b}{\neg b}, \delta_2 = \frac{\top : c}{b}\}$$

- ▶ the process $\Pi_1 = (\delta_1)$
 - ▶ is successful: $In(\Pi_1) \cap Out(\Pi_1) = Cn(\{a, \neg b\}) \cap \{b\} = \emptyset$
 - ▶ is not closed as δ_2 is applicable in $In(\Pi_1)$
- the process $\Pi_2 = (\delta_1, \delta_2)$
 - is not successful:

$$\mathit{In}(\Pi_2) \cap \mathit{Out}(\Pi_2) = \mathit{Cn}(\{a, \neg b, b\}) \cap \{b, \neg c\} = \{b\} \neq \emptyset$$

- is closed
- the process $\Pi_3 = (\delta_2)$
 - ▶ is successful: $In(\Pi_3) \cap Out(\Pi_3) = Cn(\{a,b\}) \cap \{\neg c\} = \emptyset$
 - is closed
 - $ightharpoonup E = In(\Pi_3) = Cn(\{a,b\})$ is extension of T

Process trees

Process trees give an overview on all possible processes of a default theory $T = (W, \Delta)$:

- every node represents a process Π and is annotated with two labels: $In(\Pi)$ and $Out(\Pi)$;
- ▶ the root represents the empty process $\Pi = ()$ with In(()) = Cn(W) and $Out(()) = \emptyset$;
- every application of a default induces a branch in the tree
- every leaf represents either
 - a failed process or
 - a closed and successful process

Construction of process trees

- 1. Construct a tree with a root N_0 and $In(N_0) = Cn(W)$ and $Out(N_0) = \emptyset$
- 2. As long as there is a leaf node *N* that is not marked with "failure" or "closed and successful", repeat
 - ▶ If $In(N) \cap Out(N) \neq \emptyset$: mark node with "failure"
 - ► $In(N) \cap Out(N) = \emptyset$
 - for every applicable default $\delta = \frac{\phi:\psi_1,\dots,\psi_n}{\chi} \in \Delta$ that has not yet been considered in the process, add a child node $N(\delta)$ to N with

$$In(N(\delta)) = Cn(In(N) \cup \{\chi\})$$
$$Out(N(\delta)) = Out(N) \cup \{\neg \psi_1, \dots, \neg \psi_n\}$$

Is there no further applicable default that has not yet been considered, mark N "closed and successful"; In(N) is then an extension

Process tree

$$\delta = \frac{\varphi : \psi_1, \dots, \psi_n}{\chi}$$

Process tree - example 1

$$T: \qquad W = \emptyset \qquad \Delta = \{\delta_1 = \frac{\top : p}{\neg q}, \delta_2 = \frac{\top : q}{r}\}$$

$$Cn(\emptyset) \bullet \emptyset$$

$$\delta_1 \qquad \delta_2$$

$$Cn(\{\neg q\}) \bullet \{\neg p\} \qquad Cn(\{r\}) \bullet \{\neg q\}$$

$$\text{closed and successful} \qquad \delta_1$$

$$Cn(\{\neg q, r\}) \bullet \{\neg q, \neg p\}$$

$$\text{failure}$$

Process tree - example 2

$$\begin{split} \textit{T}: & \textit{W}_0 = \{\textit{penguin} \Rightarrow \textit{bird}, \textit{penguin} \Rightarrow \neg \textit{flies}, \textit{bird}\} \\ \Delta = \{\delta_1 = \frac{\textit{bird}: \textit{flies}}{\textit{flies}}\} \end{split}$$

$$Cn(W_0)$$
 \bullet \emptyset
$$Cn(W_0 \cup \{flies\})$$
 \bullet $\{\neg flies\}$ closed and successful

For $W_1 = W_0 \cup \{penguin\}$ note: $Cn(W_1)$ is the only extension of $T_1 = (W_1, \Delta)$ as $\neg flies \in Cn(W_1)$.

Properties of default logic 1/2

Theorem (Minimality of extensions)

Let E, E' be extensions of a default theory T with $E \subseteq E'$. Then E = E'.

Theorem (Uniqueness of extensions)

Let $T = (W, \Delta)$ be a default theory a let

$$W \cup \{\psi_1 \wedge \ldots \psi_n \wedge \chi \mid \frac{\phi : \psi_1, \ldots, \psi_n}{\chi} \in \Delta\}$$

be classically consistent. Then T has exactly one extension.

Properties of default logic 2/2

Theorem (Inconsistency 1)

A default theory $T=(W,\Delta)$ has an inconsistent extension iff W is already inconsistent.

Theorem (Inconsistency 2)

If T has an inconsistent extension E then E is the only extension of T.

Semi-Monotony 1/2

$$T: \qquad W = \emptyset \qquad \qquad \Delta = \{\delta_0 = \frac{\top : a}{a}\}$$

T has exactly one extension $E = Cn(\{a\})$.

Add defaults to T:

- lacksquare $\Delta_1 = \{\delta_0, \delta_1 = rac{\top : b}{\lnot b}\}.$ $T_1 = (W, \Delta_1)$ has no extensions
- ▶ $\Delta_2 = \{\delta_0, \delta_2 = \frac{b \cdot c}{c}\}$. $T_2 = (W, \Delta_2)$ has still exactly one extension E
- ▶ $\Delta_3 = \{\delta_0, \delta_3 = \frac{\top : \neg a}{\neg a}\}$. $T_3 = (W, \Delta_3)$ has two extensions E and $Cn(\{\neg a\})$.
- ▶ $\Delta_4 = \{\delta_0, \delta_4 = \frac{a:b}{b}\}$. $T_4 = (W, \Delta_4)$ has the extension $Cn(\{a,b\})$ which is a superset of E.

Semi-Monotony 2/2

Extending a set of defaults (or the facts) can therefore

- remove extensions
- modify extensions
- create new extensions

Remember: this was the main motivation for default logic.

However, sometimes this behaviour may be to unpredictable.

Definition

Let $T=(W,\Delta)$ and $T'=(W,\Delta')$ default theories with the same set of facts and defaults $\Delta\subseteq\Delta'$. If every extension of T is contained in some extension of T', then T' is called a *semi-monotone* extension of T.

In general, we can also not expect a semi-monotonic behaviour in default logic.

Normal defaults

Definition

A default δ is called *normal* if $just(\delta) = cons(\delta)$, so δ is of the form

$$\delta = \frac{\phi : \psi}{\psi}$$

Example

$$\frac{\textit{bird}: \textit{flies}}{\textit{flies}}$$

Using a normal default we can conclude a formula ψ if ψ is consistent with the current beliefs.

Processes of normal default theories

Let $T = (W, \Delta)$ be a normal default theory (=contains only normal defaults) with a consistent set of facts W.

Let $\Pi = (\delta_0, \dots, \delta_n)$ be a process of T with $\delta_i = \frac{\phi_i : \psi_i}{\psi_i}$.

Remember:

$$In(\Pi) = Cn(W \cup \{\psi_i\}_{i \ge 0})$$
$$Out(\Pi) = \{\neg \psi_i\}_{i \ge 0}$$

Can Π be a failure?

Every default δ_i was applicable, so $\neg \psi_i \notin In(\Pi)$. It follows $In(\Pi) \cap Out(\Pi) = \emptyset$ and therefore:

Theorem

Every process of a normal default theory is successful.

Extensions of normal default theories

Theorem

A normal default theory always possesses at least one extension. Every finite process can be extended to a closed and successful process.

Theorem

Normal default theories are semi-monoton (adding another normal default extends previous extensions or preserves them completely).

Chapter 4.1: Default logic

Summary

Chapter 4.1: Summary

Default rules of the form

$$\delta = \frac{\phi : \psi_1, \dots, \psi_n}{\chi}$$

represent plausible (but not necessarily generally valid) rules

- Extensions: deductively closed, include facts, closed under default application
- ► Fix point characterisation of extensions
- Computing extensions with process trees
- Normal default theories and semi-monotony

Overview

- Introduction
- 2 Classical logics and Prolog
- 3 Search and automatic planning
- 4 Knowledge representation and reasoning
 - Default logic
 - Answer set programming
 - Argumentation
- 5 Agents and multi agent systems
- 6 Summary and conclusion

Default logic and Prolog

- Default logic
 - ▶ ...is an expressive formalism for non-monotonic reasoning
 - ... is very formal and complex
 - therefore not very suitable for "practical knowledge representation"
- ► Recall Prolog
 - Practical programming language
 - Negation-as-failure not: similar to non-monotonic reasoning (if something cannot be proven, it is assumed to be false)
 - But there is no "logical negation" in Prolog
 - Termination is not guaranteed
- Combine advantages of default logic and Prolog: Answer set programming (ASP)

Recall: some notation from first-order logic

- $ightharpoonup \Sigma = (U, P, F)$ first-order signature, V set of variables
- ▶ In the following we consider only $F = \emptyset$
- A *literal* is an atom $p(t_1, ..., t_k)$ or the negation of an atom $\neg p(t_1, ..., t_k)$
- \blacktriangleright A literal ϕ is called *ground* if it mentions no variables

Extended logic programs: syntax 1/2

Let $\Sigma = (U, P, \emptyset)$ be a first-order signature and V a set of variables.

Definition

An extended logic program P is a (finite) set of rules of the form

$$r: H \leftarrow A_1, \ldots, A_n, \text{not } B_1, \ldots, \text{not } B_m.$$

with literals $H, A_1, \ldots, A_n, B_1, \ldots, B_m$ from $\mathcal{L}(\Sigma, V)$.

- ▶ not is called *default negation*
- $head(r) = \{H\}$ is called head of the rule r
- ▶ $pos(r) = \{A_1, ..., A_n\}$ positive body literals
- ▶ $neg(r) = \{B_1, ..., B_m\}$ negative body literals

Negation-as-failure vs. classical negation

Why do we need two kinds of negation?

Compare

 $cross_tracks \leftarrow not train_is_coming.$

"We can cross the tracks when we don't know that a train is coming"

 $cross_tracks \leftarrow \neg train_is_coming$.

"We can cross the tracks when we know that a train is not coming" and

 $call_doctor \leftarrow accident, not simulating.$

"We should call a doctor when there is an accident and we don't know that the person is simulating his injury"

 $call_doctor \leftarrow accident, \neg simulating.$

"We should call a doctor when there is an accident and we know that the person is not simulating his injury"

Extended logic programs: syntax 2/2

General rule

$$r: H \leftarrow A_1, \dots, A_n, \text{not } B_1, \dots, \text{not } B_m.$$

Special cases:

ightharpoonup n=m=0: Rule with empty body (=fact)

$$H \leftarrow$$
 . or simply H .

- ▶ All literals are atoms: normal logic rule
- ▶ Empty head literal ($head(r) = \emptyset$): constraint

$$\leftarrow A_1, \ldots, A_n, \text{not } B_1, \ldots, \text{not } B_m.$$

Example

```
bird(X) \leftarrow penguin(X).

flies(X) \leftarrow bird(X), not \neg flies(X).

\neg flies(X) \leftarrow penguin(X).

flies(X) \leftarrow bat(X).

\leftarrow bird(X), bat(X).

penguin(tweety).

bat(batman).
```

Grounding of extended logic programs

- An extended logic program with variables is always interpreted as a schema for its instances
- Grounding a program means substituting all variables by constants in all combinations

Example

For $U = \{a, b\}$ the program $P = \{p(X) \leftarrow t(X, Y), \text{not } r(Y), r(a)\}$ is a shorthand for ground(P):

$$p(a) \leftarrow t(a, a), \text{not } r(a).$$

 $p(b) \leftarrow t(b, b), \text{not } r(b).$
 $p(a) \leftarrow t(a, b), \text{not } r(b).$
 $p(b) \leftarrow t(b, a), \text{not } r(a).$
 $r(a).$

 \rightarrow it suffices to consider only propositional literals.

States 1/2

- ▶ Literals p and $\neg p$ are called *complementary*
- ▶ For a literal I, the complementary literal is denoted \bar{I}
- ▶ So $\overline{a} = \neg a$ and $\overline{\neg a} = a$ for an atom a
- ► A set of ground literals *S* is called *consistent* iff it contains no pair of complementary literals

Definition

A state is a consistent set of ground literals.

Conceptually, states of extended logic programs correspond to classical interpretations of classical formulas.

States 2/2

Example

Consider the extended logic program *P*:

$$p \leftarrow q, \text{not } r.$$
 $q \leftarrow \text{not } s.$
 $s.$

Some states for P are:

- $\triangleright Z_1 = \{p, q, \neg r\}$
- ► $Z_2 = \{ \neg p, s \}$
- ► $Z_3 = \{s, q, p\}$

Question: When does a state describe a program "in a meaningful way"?

Closed states

Let P be an extended logic program without default negation. Let S be a state.

Definition

S is *closed* under *P* iff for every rule $r \in P$, if $pos(r) \subseteq S$ then $head(r) \cap S \neq \emptyset$.

- For rules of the form $r: H \leftarrow A_1, \dots, A_n$ this means: If $\{A_1, \dots, A_n\} \subset S$ then $H \in S$.
- For constraints of the form $r : \leftarrow A_1, \dots, A_n$ this means: As $head(r) = \emptyset$ it has to hold $head(r) \cap S = \emptyset$; therefore $\{A_1, \dots, A_n\} \subseteq S$ must not be true.
- For facts $r: H \leftarrow$ this means: As $pos(r) = \emptyset$ we always have $pos(r) \subseteq S$; every closed state must contain all facts.

Example

Consider the extended logic program P (without default negation):

$$p \leftarrow q, r.$$
 $q \leftarrow \neg s.$
 $\neg s.$

The following states are not closed:

- $ightharpoonup Z_1 = \emptyset$
- ► $Z_2 = \{ \neg s \}$
- ► $Z_3 = \{r, p\}$

The following states are closed:

- ► $Z_4 = \{ \neg s, q \}$
- $ightharpoonup Z_6 = \{ \neg s, q, p, r \}$

Question: are Z_5 and Z_6 meaningful?

Minimal models

Let P be an extended logic program without default negation. Let S be a state.

Definition

S is a *minimal model* of P iff S is closed and for every closed state S' for P, $S \subseteq S'$.

Example

Consider again P:

$$p \leftarrow q, r.$$
 $q \leftarrow \neg s.$
 $\neg s.$

Here $Z_4 = \{\neg s, q\}$ is the (only) minimal model of P.

Existence and uniqueness of minimal models 1/2

Let P be an extended logic program without default negation.

Definition

P is called *consistent* iff there is a closed state of P.

- ▶ $P_1 = \{s., \neg s.\}$ is not consistent (every closed state S would contain both s and $\neg s$; but a set containing complementary literals is not a state)
- ▶ $P_2 = \{s., \neg r \leftarrow s., r \leftarrow s.\}$ is not consistent.

Theorem

Let P be a consistent extended logic program without default negation. Then P has exactly one minimal model.

Existence and uniqueness of minimal models 2/2

Proof.

We have to show that there is at least one minimal model and at most one minimal model

- \triangleright > 1: As P is consistent, there is a closed state S. If S is minimal: finished. If not, there is a another closed set $S' \subset S$. As P is finite there is a finite number of states and this sequence must end in a minimal model.
- \triangleright < 1: Assume there are two different minimal models M_1, M_2 . Then $M_1 \not\subset M_2$ and $M_2 \not\subset M_1$ (otherwise one of them would not be minimal). We now show that $M_3 = M_1 \cap M_2$ is also closed:
 - Let $r \in P$ with head(r) = H (analogous for constraints). If $pos(r) \subseteq M_3$ then $pos(r) \subseteq M_1$ and $pos(r) \subseteq M_2$. As M_1 and M_2 are closed, $H \in M_1$ and $H \in M_2$. Therefore $H \in M_3$.

AI1

As M_3 is closed, neither M_1 nor M_2 can be minimal (as $M_3 \subset M_1$ and $M_3 \subset M_2$).

Characterisation of minimal models 1/5

Let P be an extended logic program without default negation.

Definition

For a set X of ground literals define

$$\Lambda_P(X) = \{ head(r) \mid r \in P, pos(r) \subseteq X \}$$

Example

Consider again $P = \{p \leftarrow q, r., q \leftarrow \neg s., \neg s.\}$. Then

Define also $\Lambda_P^1(X) = \Lambda_P(X)$ and $\Lambda_P^{n+1}(X) = \Lambda_P(\Lambda_P^n(X))$.

Characterisation of minimal models 2/5

Theorem

Let P be a consistent extended logic program without default negation. A state S is closed under P iff $S \supseteq \Lambda_P(S)$.

Proof.

Let S be a state. If S is closed, there are no rule in P that can be applied. Therefore, all head literals H of all rules applicable in S are already in S. This is equivalent to $S \supseteq \Lambda_P(S)$.

Characterisation of minimal models 3/5

Theorem

Let P be a consistent extended logic program without default negation. Then there is a finite $k \ge 0$ with

$$\emptyset \subseteq \Lambda_P^1(\emptyset) \subseteq \Lambda_P^2(\emptyset) \subseteq \ldots \subseteq \Lambda_P^k(\emptyset) = \Lambda_P^{k+1}(\emptyset) = \ldots$$
 (1)

and $\Lambda_P^k(\emptyset)$ is the minimal model of P.

Proof.

We first show (1):

We show this by induction.

► The base case $\emptyset \subseteq \Lambda^1_P(\emptyset)$ is obviously true.

Characterisation of minimal models 4/5

Assume $\emptyset \subseteq \Lambda_P^1(\emptyset) \subseteq \Lambda_P^2(\emptyset) \subseteq \ldots \subseteq \Lambda_P^i(\emptyset)$. We have to show that $\Lambda_P^i(\emptyset) \subseteq \Lambda_P^{i+1}(\emptyset)$: Let $H \in \Lambda_P^i(\emptyset)$. Then there is $I \leq i$ such that $H \in \Lambda_P^i(\emptyset)$ but $H \notin \Lambda_P^{i-1}(\emptyset)$. Let $r: H \leftarrow A_1, \ldots, A_n \in P$ be a rule that caused $H \in \Lambda_P^i(\emptyset)$. Therefore $\{A_1, \ldots, A_n\} \subseteq \Lambda_P^{i-1}(\emptyset)$. As $\Lambda_P^{i-1}(\emptyset) \subseteq \Lambda_P^i(\emptyset)$ we also have $\{A_1, \ldots, A_n\} \in \Lambda_P^i(\emptyset)$. So we can apply r in calculating $\Lambda_P^{i+1}(\emptyset)$ and therefore $H \in \Lambda_P^{i+1}(\emptyset)$. Hence we get $\Lambda_P^i(\emptyset) \subseteq \Lambda_P^{i+1}(\emptyset)$.

It is also clear that this chain must end in a fixed point (the set of literals is finite), i. e., $\Lambda_P^k(\emptyset) = \Lambda_P^{k+1}(\emptyset)$.

Characterisation of minimal models 5/5

We show now that $\Lambda_P^k(\emptyset)$ is a minimal model:

First, $M = \Lambda_P^k(\emptyset)$ is closed (as $M \supseteq \Lambda_P(M)$). Assume there is $M' \subset M$ such that M' is closed. Let $i \ge 0$ be the smallest index with

$$\Lambda_P^i(\emptyset) \subseteq M'$$
 und $\Lambda_P^{i+1}(\emptyset) \nsubseteq M'$

Then there is $H \in \Lambda_P^{i+1}(\emptyset) \setminus M'$ such that there is a $r: H \leftarrow A_1, \ldots, A_n \in P$ that was applicable when calculating $\Lambda_P^{i+1}(\emptyset)$, so $\{A_1, \ldots, A_n\} \subseteq \Lambda_P^i(\emptyset)$. Therefore $\{A_1, \ldots, A_n\} \subseteq M'$ as well and as $H \notin M'$, M' cannot be closed.

Gelfond-Lifschitz-Reduct 1/3

 \dots back to the general case of extended logic programs P with default negation.

- ightharpoonup Idea: Simplify P to a program P' without default negation
- Compute the minimal model M of P' and call M answer set of P
- More specifically:
 - 1. "Guess" a state S that could be an answer set
 - 2. Simplify *P* using *S*
 - 3. Compute the minimal model of the simpler program; if this turns out to be S again then S is an answer set

Gelfond-Lifschitz-Reduct 2/3

Definition

Let P be an extended logic program (with default negation) and S a state. The *reduct* P^S of P wrt. S is a logic program defined as

$$P^{S} = \{ H \leftarrow A_{1}, \dots, A_{n}. \mid \\ H \leftarrow A_{1}, \dots, A_{n}, \text{not } B_{1}, \dots, \text{not } B_{m}. \in P, \\ \{B_{1}, \dots, B_{m}\} \cap S = \emptyset \}$$

The reduct P^S is constructed from P in two steps:

- 1. All rules that contain some not B with $B \in S$ in their body are removed.
- 2. For the remaining rules, all negative body literals are removed.

Gelfond-Lifschitz-Reduct 3/3

Observations:

- $\triangleright P^S$ looks different, depending on S
- \triangleright P^S is an extended logic program without default negation
- P^S always contains
 - ► All facts from P
 - ► All rules without default negation

Remark: the reduct is also called the Gelfond-Lifschitz-Reduct after

Michael Gelfond, Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. In New Generation Computing 9:365–385, 1991.

Example

Consider the following program P

$$p \leftarrow \text{not } r.$$
 $r \leftarrow \neg q, \text{not } b.$
 $\neg q \leftarrow b.$
 $b.$

and states S_1 and S_2

$$S_1 = \{r\}$$
 $S_2 = \{b, \neg q, p\}$

Then

$$P^{S_1} = \{r \leftarrow \neg q. , \neg q \leftarrow b. , b.\}$$

$$P^{S_2} = \{p. , \neg q \leftarrow b. , b.\}$$

Answer sets

Definition

Let P be an extended logic program. A state S is an *answer set* of P iff S is the minimal model of P^S .

Example

As before:

$$P = \{p \leftarrow \text{not } r. \ r \leftarrow \neg q, \text{not } b. \ \neg q \leftarrow b. \ b.\}$$
 $S_1 = \{r\}$
 $S_2 = \{b, \neg q, p\}$
 $P^{S_1} = \{r \leftarrow \neg q., \neg q \leftarrow b., b.\}$
 $P^{S_2} = \{p., \neg q \leftarrow b., b.\}$

- ▶ Minimal model of P^{S_1} is $\{b, \neg q, r\} \neq S_1$.
- ▶ Minimal model of P^{S_2} is $\{b, \neg q, p\} = S_2$, hence S_2 is an answer set of P.

Another example 1/3

Consider the extended logic program *P*:

$$p(X) \leftarrow \text{not } q(X).$$

 $q(X) \leftarrow r(X), \text{not } p(X).$
 $r(a).$

Let $U = \{a, b\}$. Grounding $P_g = ground(P)$ of P:

$$p(a) \leftarrow \text{not } q(a).$$

 $p(b) \leftarrow \text{not } q(b).$
 $q(a) \leftarrow r(a), \text{not } p(a).$
 $q(b) \leftarrow r(b), \text{not } p(b).$
 $r(a).$

Another example 2/3

$$P_g: p(a) \leftarrow \text{not } q(a).$$
 $p(b) \leftarrow \text{not } q(b).$
 $q(a) \leftarrow r(a), \text{not } p(a).$
 $q(b) \leftarrow r(b), \text{not } p(b).$
 $r(a).$

Assumption: $S_1 = \{r(a), q(a), p(b)\}$ is answer set. Compute reduct:

$$P_g^{S_1}:p(b).$$
 $q(a) \leftarrow r(a).$ $r(a).$

Minimal model of $P_g^{S_1}$ is $S_1 \longrightarrow$ answer set.

Another example 3/3

$$P_g: p(a) \leftarrow \operatorname{not} q(a).$$
 $p(b) \leftarrow \operatorname{not} q(b).$
 $q(a) \leftarrow r(a), \operatorname{not} p(a).$
 $q(b) \leftarrow r(b), \operatorname{not} p(b).$
 $r(a).$

Assumption: $S_2 = \{r(a), p(a), p(b)\}$ is answer set. Compute reduct:

$$P_g^{S_2}:p(a).$$
 $p(b).$
 $r(a).$

Minimal model of $P_g^{S_2}$ is $S_2 \longrightarrow$ answer set.

Answer sets and default extensions

Let P be an extended logic program.

For every rule $r: H \leftarrow A_1, \dots, A_n, \text{not } B_1, \dots, \text{not } B_m$ define the default

$$def(r) = \frac{A_1 \wedge \ldots \wedge A_n : \overline{B_1}, \ldots, \overline{B_m}}{H}$$

and $def(P) = (\emptyset, \{def(r) \mid r \in P\})$ as default theory wrt. P.

Theorem (Gelfond, Lifschitz, 1991)

If S is answer set of P then Cn(S) is an extension of def(P). If E is an extension of def(P) then there is an answer set S von P with E = Cn(S).

Chapter 4.2: Answer set programming

Summary

Chapter 4.2: Summary

extended logic programs contain rules of the form

$$r: H \leftarrow A_1, \ldots, A_n, \text{not } B_1, \ldots, \text{not } B_m.$$

- grounding of first-order rules
- states, closed states
- minimal models of programs without default negation
- Gelfond-Lifschitz-Reduct and answer sets
- Answer sets and default extensions