

Università degli Studi di Cagliari

DICAAR

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA TRIENNALE IN INGEGNERIA ELETTRICA INDUSTRIALE

ANALISI MATEMATICA 2

edited by

NICOLA FERRU

 $Un of \!\!\! ficial \ Version$

2022 - 2023

Indice

	0.1	0.1 Premesse							
	0.2	Simbo	di	8					
1	Intr	troduzione							
	1.1 tipologia in R								
		1.1.1	Distanza	9					
	1.2	Intorn		9					
		1.2.1	Insieme chiuso	10					
		1.2.2	Insieme connesso	11					
		1.2.3	Insieme convesso	11					
		1.2.4	Coordinate Polari	11					
		1.2.5	Limiti e continuità	11					
		1.2.6	Continuità	11					
		1.2.7	Esistenza del limite	11					
		1.2.8	Teorema di esistenza dei valori intermedi	12					
		1.2.9	Teorema di Weierstrass	12					
2	Derivate Parziali								
	2.1	Deriva	ate parziali di primo grado	13					
		2.1.1	Significato geometrico	13					
	2.2	.2 Derivata parziale seconde							
		2.2.1	Teorema di Schwarz (Dell'invertibilità dell'ordine di derivazione)	14					
	2.3	mi e minimi relativi	14						
		2.3.1	Teorema di Fermat	15					
		2.3.2	Differenziabilità	15					
		2.3.3	Tutte le funzioni differenziali sono continue	16					
		2.3.4	Tutte le funzioni differenziali sono derivabili	16					

Elenco delle figure

0.1 Premesse...

In questo repository, inoltre, sono disponibili le dimostrazioni grafiche realizzate con Geogebra; consiglio a tutte le persone che usufruiranno di questo lavoro, di dare un occhiata alle dimostrazioni grafiche e stare attenti, in quanto nel tempo potranno essere presenti delle modifiche, cosi da apportare miglioramenti al contenuto degli stessi appunti. Solitamente il lavoro di revisione viene fatto tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che essendo un progetto volontario ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure essere presenti degli errori. Chiedo pertanto la cortesia a voi lettori di contattarmi per apportare eventuali correzioni . Tengo a precisare che tutto il progetto è puramente open source, pertanto vengono resi disponibili i sorgenti dei file LaTex insieme ai PDF compilati.

Cordiali saluti

0.2 Simboli

Simbolo	Nome	Simbolo	Nome
\in	Appartiene	∋:	Tale che
∉	Non appartiene	<u> </u>	Minore o uguale
3	Esiste	<u>></u>	Maggiore o uguale
∃!	Esiste unico	α	alfa
\subset	Contenuto strettamente	β	beta
\subseteq	Contenuto	γ, Γ	gamma
\supset	Contenuto strettamente	δ, Δ	delta
\supseteq	Contiene	ϵ	epsilon
\Rightarrow	Implica	σ, Σ	sigma
\iff	Se e solo se	ρ	${f rho}$
\neq	Diverso		
\forall	Per ogni		

Capitolo 1

Introduzione

1.1 tipologia in R

1.1.1 Distanza

- $R: d(x_1, x_2) = |x_1 x_2|$
- \mathbb{R}^2 : Siano $P_1(x_1, y_1)$ e $P_2(x_2, y_2)$, la loro distanza è $d(P_1, P_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- \mathbb{R}^3 : Siano $Q_1(x_2, y_2, z_2)$, la loro distanza è $d(Q_1, Q_2) = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- R^4 : Siano $x = (x_1, x_2, x_3, \dots, x_n) \in R^n$ e $y = (y_1, y_2, y_3, \dots, y_n) \in R^n$

$$d(x,y) = \sqrt{\sum_{a=1}^{D} (x_a y_a)^2}$$

La distanza è un'applicazione $R^n*R^n \to R^+ \vee \{0\}$ (ha come immagine al più nullo)

Proprietà 1. questi sono vincolati dalle sequenti proprietà

- $d(x,y) \le 0$ $d(x,y) = 0 \Leftrightarrow x \equiv y$ la distanza è nulla se i due punti coincidono
- ullet d(x,y)=d(y,x) la distanza tra x e y uguale alla distanza da y a x
- $d(x,y) \ge d(x,y) + d(z,y)$ disuguaglianza triangolare.

1.2 Intorno

Definizione 1. Insieme dei punti che distano da un punto P_0 meno di un δ

• R Intervallo $]x_0 - \delta, x_0 + \delta[$, P(x) generico punto $d(P_0, P) < \delta$

$$|x-x_0|<\delta$$

 \bullet R^2

$$P_{0}(x_{0}, y_{0})$$

$$P(x, y)$$

$$d(P_{0}, P) < \delta$$

$$\sqrt{(x - x_{0})^{2} + (y - y_{0})^{2}} < \delta$$

Cerchio di cerntro P_0 e di perimetro δ privato della circonferenza

 R^3

$$\begin{aligned} Q_0(x_0,y_0,z_0) \\ Q(x,y,z) \\ d(Q,Q_0) &< \delta \\ \sqrt{(x-x_0)^2 + (x-y_0)^2 + (z-z_0)^2} &< \delta \end{aligned}$$

Sfera di centro Q_0 e raggio δ privata della sua superficie.

Punto interno P_0 è interno all'insieme D se:

$$\exists I_{P_0,\delta} \subset D \tag{1.1}$$

Esiste un interno di P_0 di ampiezza δ incluso nell'insieme D, cioè l'interno contiene tutti i punti dell'insieme.

Punto esterno P_0 è esterno all'insieme D se è interno al complementare di D, CD

$$\exists I_{P_0,\delta} \subset CD \tag{1.2}$$

esiste un interno di P_0 di ampiezza δ incluso nel complementare dell'interno D

Punto di frontiera P_0 è un un punto di frontiera se

$$P_0 \in F_D \to \text{frontiera dell'insieme D}$$
 (1.3)

 $\forall I_{F_D}$ in esso cadono punti di D e pinti di CD qualunque interno, in esso cadono punti dell'insieme D e del suo complementare.

Punto di accumulazione P_0 è un punto di accumulazione se $\forall I_{P_0}$ cade in un punto $\in D$, se cade un punto di D in I_{p_0} , allora ne cadono infiniti.

Punto isolato P_0 è un punto isolato se $\exists I_{P_0,\delta}$ in cui non cade nessun punto dell'insieme.

Insieme Aperto

Definizione 2. A si dice aperto se $\forall P \in A \exists I_p \subset A$ per qualunque punto di A esiste un interno incluso in A, cioè ogni intorno di P è formato da punti dell'insieme aperto è formato da punti interni $a:b[x^2+y^2< r^2 \text{ cerchio senza circonferenza:}$

$$\begin{cases} y < 1 - x \\ y > 0 & triangolo \ senza \ lati \\ 0 < x < 1 \end{cases}$$
 (1.4)

1.2.1 Insieme chiuso

Definizione 3. A si dice chiuso se coincide con il suo insieme chiususura, che è formato dall'insieme tesso più gli eventuali punti di accumunlazione che non gli appartengono. Un insieme è chiuso quando contiene i suoi punti di accumulazione. [a:b]; $x^2 + y^2 \le r^2$ cerchio più circonferenza:

$$\begin{cases} y \le 1 - x \\ y \ge 0 & tringolo \ con \ lati \\ 0 \le x \le 1 \end{cases}$$
 (1.5)

1.2. INTORNO 11

1.2.2 Insieme connesso

Definizione 4. un insieme A si dice connesso se e solo se $\forall P_1, P_2 \subset A \ \exists \Gamma i(P_1, P_2) \subset A$. A è connesso se per qualunque P_1, P_2 di A esiste una spezzata inclusa in in A

A si dice semplicemente connessa se qualunque chiusa inclusa in A è frontiera dell'insieme.

1.2.3 Insieme convesso

Definizione 5. un insieme A si dice convesso se per ogni coppia di $x, y \in A$ il segmento \bar{xy} è contenuto in A

Insiemi Limitati In R:A è limitato se $\forall x \in A:$ Insieme illimitato In $R:[2;+\infty[$ illimitato $x \leq M$

$$[-1;1]$$
 limitato

$$InR^2: illimitato \begin{cases} x \ge 0 \\ y \ge 0 \end{cases}$$
 (1.7)

In \mathbb{R}^2 : A è limitato se è contenuto in un intorno circolare dell'origine

$$\exists M > 0 : \sqrt{x^2 + y^2} \le M$$
 (1.6)

1.2.4 Coordinate Polari

Definizione 6. in molti casi è utile utilizzare una funzione in coordinate polari, sia P(x, y) un punto nel piano; esso è individuato univocamente da una coppia di valori: le coordinate cartesiano X e y oppure le coordinate polari ρ e θ .

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

per capire, facciamo un esempio

$$f(x,y) = \frac{x^3}{x^2 + y^2} \equiv f(\rho,\theta) = e^3 \frac{\cos^2 \theta}{e^2}$$
 (1.8)

1.2.5 Limiti e continuità

Definizione 7. f(x,y) una funzione definito in D e siano (x_0,y_0) punto di accumulazione per D

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \quad \forall \xi > 0 \ \exists \delta_{(E)} > 0 : \forall I_{(x_0,y_0),\delta}/\{(x_0,y_0)\}, \forall (x,y) \in I | f(x,y)$$
(1.9)

Per qualunque $\xi > 0$ esiste un $\delta(\xi) > 0$ per cui qualunque intorno di (x_0, y_0) al più x_0, y_0 e per qualunque (x_0, y_0) di quast'intorno la funzione dista da i meno di ξ .

1.2.6 Continuità

Definizione 8. Sia f(x,y) definita in D, f(x,y) si definisce continuo in $(x_0,y_0) \in D$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0) \tag{1.10}$$

1.2.7 Esistenza del limite

Definizione 9. Calcolando il limite con f in forma polare esiste se non dipende da θ . È possibile calcolare il limite di f in forma cartesiano nel segmento nodo. Anziché considerare tutti i punti dell'interno, si

considerino queli si ina generica retta.

$$y = y_0 + m(x - x_0) (1.11)$$

- Se il limite dipende da m esso non siste.
- Se non dipende da m esite.

1.2.8 Teorema di esistenza dei valori intermedi

Teorema 1. Sie f(x,y) definita in un insieme chiuso e limitato. Allora f(x,y) assume tutti i valori campresi fra il massimo ed il minimo di f(x,y) su D

1.2.9 Teorema di Weierstrass

Teorema 2. Una funzione continua in un intervallo chiuso e limitato, che ammette massimo e minimo assoluto.

Sia f(x,y) una funzione continua in D e sia D un insieme chiuso e limitato. Allora f(x,y) ha massimo e minimo assoluto in D.

Capitolo 2

Derivate Parziali

2.1 Derivate parziali di primo grado

Definizione 10. Sia f(x,y) una funzione di due variabili definita in un punto interno ad A Consideriamo un interno circolare di $P(x_0,y_0), I(x_0,y_0), \delta$, in netto sulla retta $y=y_0$ e incrementa la x_0 passante da x_0 a $x_0 + h$. Ho così un punto $P(x_0 + h, y_0) \in A$.

Definisco il rapporto di f(x,y) nella sola x

$$\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.1}$$

f(x,y) si definisce derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

$$\frac{\partial f}{\partial x} = fx = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \tag{2.2}$$

Analogamente, considero un interno di $P(x_0, y_0), I(x_0, y_0), \delta$. Mi ruoto sulla retta $x = x_0$ e incremento la y_0 passando da y_0 a $y_0 + k$. Ho così un punto $P(x_0, y_0 + h) \in A$.

Definisco il rapporto ingrementale di f(x,y) nella sola y

$$\frac{f(x_0 + k, y_0) - f(x_0, y_0)}{k}$$

derivabile parzialmente se $\exists \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} = l \in R$ reale e finito.

Se in un punto (x,y) esistono entrambi le derivate parziale si dice che la funzione è derivabile in (x,y) inoltre se f è derivabile in ogni punto $(x,y) \in A$, si dice che f è derivabile in A.

2.1.1 Significato geometrico

- Lo derivata prima par parziale in P è $fx(x_0, y_0)$, è la tangente alla curva che si crea intersecando f(x, y) con il piano $y = y_0$
- La derivata prima parziale in P, $fy(x_0, y_0)$ è la tangente alla curva che si crea intersecando f(x, y) con il piano $x = x_0$

Se esistono entrambe allora le due rette tangenti alle sezioni della funzione individuano il piano tangente al solido nel punto $P(x_0, y_0, z)$

2.2 Derivata parziale seconde

Definizione 11. Sia f(x,y) una derivabile e siano definite in un deminio le due derivate parziali

$$f_x(x,y)$$
 $f_y(x,y)$

Tali funzioni passano a loro volta essere derivabili e si ottengono così le derivate seconde parziali di f(x,y)

$$f_{x}(x,y) \qquad f_{y}(x,y)$$

$$f_{xx}(x,y) \qquad f_{xy}(x,y) \qquad f_{yx}(x,y) \qquad f_{yy}(x,y)$$

$$f_{yx}(x,y) \qquad \text{derivata seconde pure} \qquad f_{yx} \qquad \text{derivata seconde resto}$$

$$f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y) \qquad f_{yx}(x,y)$$

 $f_{yx}(x,y) \label{eq:fyx}$ derivata prima rispetto a

y poi rispetto a rispetto a x

con n variabili si hanno n^2 derivate seconde parziali – Spesso le derivate seconde sono disposte in una matrice quadrata, detta hessiana, con il sinbolo D^2

$$D^{2}f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$
n variabili $\rightarrow n * n$ (2.3)

Se esistono le quanto derivate di f, nel punto (x,y), si dice che f è dirivabile due volte in (x,y). Se ciò accade $\forall (x,y) \in A$, f è derivabile due volte nell'insieme A.

2.2.1 Teorema di Schwarz (Dell'invertibilità dell'ordine di derivazione)

Teorema 3. Sia f(x,y) definita in D e derivabile due volte $\forall (x,y) \in D$. Se le derivate seconde in (x_0,y_0) $f_{xy}(x_0,y_0)$ e $f_{yx}(x_0,y_0)$ sono continue in (x_0,y_0) allora risulta $f_{xy}(x_0,y_0) = f_{yx}(x_0,y_0)$.

In generale se vale il teorema di Schwarz, la matrice Hessiana può essere scritta come

$$H = D^2 f = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = \begin{bmatrix} f_{xx} & f_{yx} \\ f_{yx} & f_{yy} \end{bmatrix}$$

$$detH = f_{xx} * f_{yy} - (f_{xy})^2 = f_{xx} * f_{yy} - (f_{yx})^2$$

2.3 Massimi e minimi relativi

Definizione 12. Sia f(x,y) una funzione definita in un insieme D, un punto $p_0(x_0,y_0) \in D$, si dice di massimo relativo per la funzione se esiste intorno circolare di P_0 per cui il valore assunto della funzione nei punti dell'interno è minore o uguale a quello assunto in P_0 .

Analogamente un punto $P_0(x_0, y_0)$ si dice di minimo relativo per la funzione se esiste un interno circolare di P_0 per cui il valore assunto dalla funzione nei punti dell'intorno è maggiore o uguale.

$$\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \ge f(x,y) \quad \text{Massimo relativo}$$

$$\exists I_{(x,y),\delta} : \forall (x,y) \in I_{(x,y),\delta} \quad f(x_0,y_0) \le f(x,y) \quad \text{Minimo relativo}$$

2.3.1 Teorema di Fermat

Teorema 4. Sia f(x,y) derinita in D e derivabile in un punto $P_0(x_0,y_0)$

Se in $P_0(x_0, y_0)$ f(x, y) ha un massimo o un minimo relativo, allora le derivate prime parziali si annullano $(\nabla f = 0 \text{ gradiente nullo})$. La pendenza della tangente è zaro un massimo o minimo.

Gradiente

Sia f(x,y) una funzione derivabile in un punto (x,y), cioè esistano in (x,y) le due derivate parziali f_x e f_y .

Si definisce gradiente di f(x,y) nel punto (x,y): i vettore ∇f le cui componenti sono le derivate parziali di f(x,y).

$$\nabla f(x,y) \equiv (f_x(x,y); f_y(x,y)) \tag{2.4}$$

Massimi e minimi – condizione necessaria

Definizione 13. Se $P_0(x_0, y_0)$ è un punto di massimo/minimo relativo il gradiente è nullo. Così di massimo o minimo relativo interni al dominio della funzione f vanno ricercati tra i punti che annullano la funzione f. Pertanto un punto critico per una funzione derivabile e un punto in cui si annulla il gradiente della funzione.

2.3.2 Differenziabilità

Definizione 14. Sia f(x,y) definita in D e $P_0(x_0,y_0) \in D$. In $P_0, z = f(x_0,y_0)$, incremento la x_0 di un h e la y_0 di un k.

Così passo da $P_0(x_0, y_0)$ a $P(x_0 + h, y_0 + k)$. La funzione avrà avuto un certo incremento

$$f(x+h,y_0,y_0+k)-f(x_0,y_0)$$

Si definisce differenziale in $P_0(x_0, y_0)$ se $\exists A, B \in R : f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$, cioè se esistono due costanti reali A e B per cui l'increm, ento di f(x, y) che si ha passando da P_0 a P si può riscrivere come somma di una parte lineare Ah + Bk e di un infinitesimo di ordine superiore a $\sqrt{h^2 + k^2}$ (distanza di P_0 da P).

Se f(x,y) ammette derivate prime parziali le due costanti A e B sono:

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

e il differenziale diventa

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = f(x_0, y_0)h + f(x_0, y_0)k + o(\sqrt{h^2 + k^2})$$
(2.5)

Esempio 1. verificare che z = xy è differenziale $\forall (x_0; y_0) \in R^2$, se z è differenziale $\rightarrow f(x_0 + h, y_0 + k) - f(x_0, y_0) = fx(x_0, y_0)h + fy(x_0, y_0)k + o(\sqrt{h^2 + k^2})$ dove

$$\begin{cases} A = fx(x_0, y_0) \\ B = fy(x_0, y_0) \end{cases}$$

|se z è derivabile in (x_0, y_0) .

$$f(x_0 + h, y_0 + k) = \underbrace{(x_0 + h)(y_0 + k)}_{Sostituisco} = x_0 y_0 + x_0 k + y_0 h + hk$$

$$f_x = y \ fx(x_0, y_0) = y_0$$
 $f_y = x$ $f_y(x_0, y_0) = x_0$ $f \ \dot{e} \ derivabile \ in \ (x_0, y_0)$ $A = y_0$ $D = x_0$

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

$$\cancel{x}_0 y_0 + \cancel{x}_0 k + hk - \cancel{x}_0 y_0 = \cancel{y}_0 h + \cancel{x}_0 k + o(\sqrt{h^2 + k^2})$$

$$hk = o(\sqrt{h^2 + k^2})$$

detto quindi dimostrare che $\lim_{h\to 0k\to 0} \frac{hk}{\sqrt{h^2+k^2}} = 0$ e poi passo alle coordinate polari:

$$\begin{aligned} h &= \rho \cos \theta \\ k &= \rho \sin \theta \qquad \lim_{\rho \to 0} \frac{\phi' \cos \theta * \phi' \sin \theta}{\phi^2} \quad z = xy \ defferenziale \ \forall (x_0, y_0) \in R^2 \\ e^2 &= h^2 + k^2 \\ h &\to 0, k \to 0, \rho \to 0 \end{aligned}$$

2.3.3 Tutte le funzioni differenziali sono continue

Sia f(x,y) differenziabile (x_0,y_0) , allora f(x,y) è continua in (x_0,y_0)

Ip: Th: f(x,y) differenziabile in (x_0,y_0) f(x,y) è continua in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

Se $f(x_0, y_0)$ è continua in (x_0, y_0)

$$\lim_{h \to 0} \int_{k \to 0} f(x_0 + h, y_0 + k) - f(x_0, y_0) = 0$$

Calcolo il limite a destra per $h \to 0$ $k \to 0$

$$\lim_{h\to 0}\underbrace{Ah}_{k\to 0}+\underbrace{Bk}_{0}+o\underbrace{(\sqrt{h^2+k^2})}_{0}=0 \text{ per cui } f(x,y) \text{ è continua in } (x_o,y_0)$$

2.3.4 Tutte le funzioni differenziali sono derivabili

Sia f(x,y) differenziabile in un punto (x_0,y_0) . Allora f(x,y) è derivabile in (x_0,y_0)

Ip: Th: f(x,y) differenziabile in (x_0,y_0) f(x,y) è derivabile in (x_0,y_0)

Dimostrazione. Poiché f(x,y) è differenziabile in (x_0,y_0) vale la relazione

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = Ah + Bk + o(\sqrt{h^2 + k^2})$$

divido entrambi per h e calcolo il limite per $h \to 0$

$$\lim_{h \to 0} \underbrace{\frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}}_{\frac{\partial f}{\partial x}(x_0, y_0) = fx} = \underbrace{\frac{Ah + o(\sqrt{h^2})}{h}}_{A}$$

2.3. MASSIMI E MINIMI RELATIVI	17	

