Determining penguin phenology from a very large force sensor data set

Philipp Boersch-Supan British Trust for Ornithology Helen Peat & Phil Trathan British Antarctic Survey @pboesu

Study system: Macaroni penguin Eudyptes chrysolophus

The penguin weighbridge of the British Antarctic Survey

Measurement principle

- (I) RFID read identifies individual
- (2) Integrate force over time to get penguin mass
- (3) Difference between outbound and inbound mass = meal mass

accurate mass requires high-frequency sampling:

50,000-80,000 crossings/season = 40 - 60 million raw data points/season

Big data challenge at processing stage

and, penguins don't play by the rules...

- Multiple crossings account for c. 30% of crossing birds
- Doesn't interfere with tag detection per se, but limits detection of directionality, calculation of weights, assignment of weights to individuals

Step I: The penguin annotator (shiny + RPostgres)

- Easy manual classification and enumeration of penguins
- but 50k+ files/yr prohibitively time intensive
- Simple decision trees failed (drastic changes in body mass during season)
- Need a classifier that has 'time-series shape recognition'

Step 2: Dynamic Time Warping

Similar, but out of phase peaks ...

... produce a large Euclidean distance.

However this can be corrected by DTWs nonlinear alignment.

Rakthanmanon et al. 2012, Proc SIGKDD

- very good accuracy >90%
- too costly (~ I min) to compute & compare full warping path for each crossing

Ultrafast Dynamic Time Warping to the rescue!

- 'best match' search, exploits early abandoning on multiple levels
- 2-3 orders of magnitude faster than naïve DTW comparisons
- Open C++ source available from Rakthanmanon et al. 2012

- R bindings now implemented in install.packages("rucrdtw")
- Could be of interest to accelerometer/acoustic data?!
- A single season of penguin crossings can now be classified in <1 hr
 - i.e. counts, directions for statistical modelling

Quantifying event timing from daily counts

Inference approach:

Gaussian mixture model expressed as hierarchical non-linear regression Bayesian estimation w/ informative priors

Phenological curves allow for missing data, overlap of events

Linden et al. 2017, J Avian Biol Boersch-Supan et al. in prep

Inter-annual variation in breeding/moult timing

Timing of breeding events less variable among years than timing of moult/post-moult events

Linking post-moult movement to prey abundance

- When pre-moult feeding is good, more birds delay migration for longer
- Krill abundance during brood-guard was not an informative predictor of post-moult activity
- Central place foraging may have energetic (thermoregulation) and/or social benefits

Workflow overview

One of several results: (1) rush hour!

Penguins modulate post-breeding phenology, but not breeding phenology in response to local prey availability.

Bad news for breeding success if summer krill peak shifts permanently?

Software paper in JOSS

Submit Papers About

Sign in

rucrdtw: Fast time series subsequence search in R

Philipp H Boersch-Supan

Article details

- · View review »
- · Download paper »
- · Software repository »
- · Software archive »

Submitted: 23 October 2016 Accepted: 07 November 2016

Cite as:

Boersch-Supan, (2016), rucrdtw: Fast time series subsequence search in R, Journal of Open Source Software, 1(7), 100, doi:10.21105/joss.00100

Status badge

JOSS 10.21105/joss.00100

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

- Great experience: Fast, constructive, friendly, transparent
- Would recommend!

