"Sparknotes" for Algebra by MacLane and Birkhoff

Muthu Chidambaram

Last Updated: May 21, 2019

Contents

1	Sets	s, Functions, and Integers	3
	1.1	Sets	3
	1.2	Functions	3

Preface

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Algebra* by MacLane and Birkhoff. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes from mathematicians of past generations in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 Sets, Functions, and Integers

1.1 Sets

Exercise 5

When constructing a subset, each element in the set can either be in or out (2 choices). Hence, 2^n .

Exercise 6

There are n choices for the first element, n-1 choices for the second element, and so on up to n-m, hence dividing n! by (n-m)!. The order of these m selected elements doesn't matter, hence the division by m!.

1.2 Functions

Exercise 2

 $h_g \circ h_f$, where h corresponds to left-inverse.

Exercise 3

Let $f: A \to B$ and $g: B \to C$ be surjections. Then $g \circ f$ is surjective since $\exists x \in B$ such that $g(x) = y \quad \forall y \in C$, and $\exists x' \in A$ such that $f(x') = x \quad \forall x \in B$ (from the surjectivity of f and g). Proving injectivity follows similarly.

Exercise 4

The reverse direction follows from Exercise 3. If $f \circ g$ is injective and g is not, we could choose two elements from the domain of g that map to the same element in the domain of f (contradiction). Surjectivity is a similar argument.