Reading Quiz Section 7.4

- 1. Which of the following are true and which false?
 - (a) [28] = [5] in \mathbb{Z}_6 .
 - (b) [24] + ([3] + [17]) = [-10] in \mathbb{Z}_9 .
 - (c) $[2]^3 + [3]^3 = [4]^3$ in \mathbb{Z}_{29} .
- 2. Is the following True or False?

In
$$\mathbb{Z}_n$$
, $[x] + [y] = [z] \iff x + y = z$

- 3. Let \sim be an equivalence relation on X. What does it mean for a function $f: X/_{\sim} \to B$ to be well-defined?
 - (a) *f* is injective.
 - (b) [x] = [y] if and only if f([x]) = f([y]).
 - (c) *f* is surjective.
 - (d) $x \sim y$ implies f([x]) = f([y]).
- 4. True or False: the rule $[x] \mapsto x : \mathbb{Z}_n \to \mathbb{Z}$ is well-defined.

Practice Problems Section 7.4

1. Working in \mathbb{Z}_n , use Bézout's identity to prove that

$$(\exists b \text{ such that } [a] \cdot [b] = [1]) \iff \gcd(a, n) = 1$$

2. Let k be a constant integer. If $f([x]_5) = [kx]_{18}$ is a well-defined function $f: \mathbb{Z}_5 \to \mathbb{Z}_{18}$, what can you say about the sequence of values

$$f([0]_5), f([1]_5), f([2]_5), \dots$$
?

That is, when must they start repeating themselves?

3. In Exercise 7.4.13 show that F is surjective if and only if f is a bijection.