MAT 260 LINEAR ALGEBRA LECTURE 38

WING HONG TONY WONG

4.4 — Basis and coordinates

Let V be a vector space.

Definition 1. $S \subseteq V$ is a basis of V if

- S is linearly independent, and
- $\operatorname{span}(S) = V$.

Note that a basis of a vector space is not unique in general.

Definition 2. V is **finite-dimensional** if V has a basis of finite size. Otherwise, V is **infinite-dimensional**.

Example 3. In \mathbb{R}^n , the set of standard unit vectors, $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ forms a basis. This is called the standard basis of \mathbb{R}^n . In \mathbb{R}^3 , the set $\{(1, 1, 1), (1, 2, 4), (1, 3, 9)\}$ also forms a basis.

Example 4. In P_n , the set of standard unit vectors, $\{1, x, x^2, \dots, x^n\}$ forms a basis. This is called the standard basis of P_n . In P_2 , the set $\{1, 1 + x, 1 + x + x^2\}$ also forms a basis.

Example 5. In \mathbb{R}^{∞} , the set of standard unit vectors, $\{\mathbf{e}_1, \mathbf{e}_2, \dots\}$ does not form a basis. However, in P_{∞} , the set of standard unit vectors $\{1, x, x^2, \dots\}$ forms a basis. In these two vector spaces, it is easy to see they are both infinite-dimensional.

Example 6. In $M_{mn}(\mathbb{R})$, let A_{ij} the matrix with 1 at the ij-th entry and 0 everywhere else. Then the set of all A_{ij} forms a basis of $M_{mn}(\mathbb{R})$, and it is called the standard basis of $M_{mn}(\mathbb{R})$.

Theorem 7. If S is a basis of V, then every nonzero vector $\mathbf{v} \in V$ can be expressed uniquely in the form $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n$ for some $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in S$.

Let V be a finite-dimensional vector space, and let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis of V. By Theorem 7, there is a map $V \to \mathbb{R}^n$ defined by

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n \mapsto (\mathbf{v})_S = (a_1, a_2, \dots, a_n).$$

 $(\mathbf{v})_S$ is called the **coordinate vector of v relative to** S.

Date: Wednesday, April 26, 2023.

Example 8. In P_2 , if $S = \{1, x, x^2\}$, then $(1 - x^2)_S = (1, 0, -1)$. If we take $S' = \{1, 1 + x, 1 + x + x^2\}$ instead, then $(1 - x^2)_{S'} = (1, 1, -1)$.

Example 9. In \mathbb{R}^3 , if $S = \{(1, 1, 1), (1, 0, 1), (1, 0, -1)\}$, then $(3, 2, 1)_S = (2, 0, 1)$.