Sorting Algorithms

The Sorting Problem

• Input:

– A sequence of **n** numbers a_1, a_2, \ldots, a_n

• Output:

– A permutation (reordering) a_1 , a_2 , . . . , a_n of

input sequence such that $a_1' \le a_2' \le \cdots \le a_n'$

Some Definitions

Internal Sort

 The data to be sorted is all stored in the computer's main memory.

External Sort

 Some of the data to be sorted might be stored in some external, slower, device.

In Place Sort

- The amount of **extra space** required to sort the data is **constant with the input size**.

- Idea: sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - **compare** it with each of the cards already in the hand, **from right to left**
 - The cards held in the left hand are sorted

To insert 12, we need to make room for it by moving first 36 and then 24.


```
in place
void insertionsort( int x[], int n )
   int temp, k, i;
   for(j = 2; j < = n; j ++)
                               temp holds the value to be inserted
        temp = x[i];
                               in the sorted array x [1..j-1]
        for(i = j-1; i >= 1 && temp < x[i]; i--)
                                   Shift the elements larger
                 x[i+1]=x[i];
                                   than temp to the right
        x[i+1]=temp;
```

Sorts the elements

Best case

- Array is already sorted
- Outer loop executes n-1 times
- Complexity T(n) = O(n)

Worst case

- Array is in reverse order
- $-T(n) = 1 + 2 + + (n-1) = O(n^2)$

Average case

- The probability that k^{th} insertion requiring 1, 2, .., k number of comparisons is same = 1/k.
- The expected number of comparisons for k^{th} insertion =1/k + 2/k +.....+ k/k = (k+1)/2 T(n)=2/2 + 3/2 + 4/2 +....+ n/2= $O(n^2)$

Selection Sort

• Idea:

- Find the smallest element in the array
- Swap it with the element in the first position
- Find the second smallest element and swap it with the element in the second position
- Continue until the array is sorted

Selection Sort

```
void selectionsort ( int a [], int n )
{
   int i, j, index;
   for (i = 0; i < n; i ++)
   {
         index=i;
         for (j = i + 1; j < n; j++)
          {
                   if (a[j] < a[index])
                             index = j;
         swap ( &a[i] , &a[index] );
                                                                           6
```

Selection Sort

- Irrespective of the order of the element, you have to find out the minimum element in every iteration.
- Number of comparisons required to find out the minimum element in *i*th iteration is n-i.

$$T(n)=(n-1) + (n-2) + \dots + 3 + 2 + 1$$

=O(n²)

Bubble Sort

• Idea:

- Repeatedly pass through the array
- Swaps adjacent elements that are out of order

Bubble Sort

8 4 6 9 2 3 1	1 8 4 6 9 2	3
i = 1	i = 2	j
8 4 6 9 2 1 3	1 2 8 4 6 9	3
i = 1	i = 3	j
8 4 6 9 1 2 3	1 2 3 8 4 6	9
i = 1 ◆ j	i = 4	j
8 4 6 1 9 2 3	1 2 3 4 8 6	9
i = 1 ◆ j	i = 5	j
8 4 1 6 9 2 3	1 2 3 4 6 8	9
i = 1 ◆ j	i = 6	j
8 1 4 6 9 2 3	1 2 3 4 6 8	9
i = 1 j	i	= 7
1 8 4 6 9 2 3		j
i = 1 j		

Bubble Sort

Complexity = $O(n^2)$

- Example of Divide and Conquer algorithm
- Two phases
 - Partition phase
 - Divides the work into half
 - Sort phase
 - Conquers the halves!

Partition

- Choose a pivot
- Find the position for the pivot so that
 - all elements to the left are less
 - all elements to the right are greater

Conquer

Apply the same algorithm to each half


```
quicksort( void *a, int low, int high )
  int pivot;
  if (high > low)
       pivot = partition( a, low, high );
      quicksort( a, low, pivot-1);
       quicksort( a, pivot+1, high );
```

```
int partition(int *a, int low, int high)
{
   int left, right, pivot_item;
   pivot_item = a[low];
   left = low + 1;
   right = high;
   while (left < right)
   {
         while( a[left] < pivot_item ) left++;</pre>
         while(a[right] > pivot item) right--;
         if ( left < right ) SWAP(a, left, right);</pre>
   }
   a[low] = a[right];
   a[right] = pivot_item;
   return right;
```

```
int partition(int *a, int low, int high)
{
   int left, right, pivot_item;
   pivot_item = a[low];
                               Any item will do as the pivot,
   left = low + 1;
                                  choose the leftmost one!
   right = high;
   while (left < right)
   {
        while( a[left] < pivot_item ) left++;</pre>
   }
   a[low] = a[right];
   a[right]
             himat item;
                                                         high
   return i low
```

```
int partition( int *a, int low, int high )
{
   int left, right, pivot_item;
   pivot_item = a[low];
   left = low + 1;
                                  Set left and right markers
   right = high;
   while (left < right)
   {
        whileft eft] < pivot_item ) left++;
                                                    right
        whitewalright] > pivot_item ) right--;
        if (left < right) SWAP(a, left, right):
   a[right] = pivot_item:
                                                    high
   ret OW ht;
                        pivot: 23
```

```
int partition( int *a, int low, int high )
{
   int left, right, pivot_item;
   pivot_item = a[low];
   left = low + 1;
                                           Move the markers
   right = high;
   while (left < right)
                                         until they cross over
   {
        while( a[left] < pivot_item ) left++;
        while(a[right] > pivot item) right--;
        if (left < right) left P(a, left, right);
                                                               right
   }
                                                          29
                                   38
                                              18
                                                    36
                                                                27
   a[low] = a[rig 23]
   a[right] = pivoc_hem,
   return right;
                                                               high
                                  pivot:
                  low
```

```
Move the left pointer while
int partition(int *a, int low, int high)
                                           it points to items <= pivot
{
                                right
   int left, right, pive in:
                                                           Move right
   nivot item – allowl
                                                             similarly
                      38
                                 18
   ng<mark>in – mgn,</mark>
          left < righ
                                                  high
                     pivot:
        while(a[left] < pivot item) left++;
        while(a[right] > pivot item) right--;
        if ( left < right ) SWAP(a, left, right);</pre>
   }
   a[low] = a[right];
   a[right] = pivot_item;
   return right;
```

```
int partition( int *a, int low, int hig
                                           Swap the two items
{
                                   on the wrong side of the pivot
   int left, right, pivot_item;
   pivot_item = a[lo left
                                right
   left = low + 1;
    iaht _ biah
                     38
                                       36
    23
                                                             pivot:
    low hile( a[left] < pivot_item ) left++;
                                                  high
         while( a[right] > pivot item ) right--;
        if ( left < right ) SWAP(a, left, right);</pre>
   }
   a[low] = a[right];
   a[right] = pivot_item;
   return right;
```

```
int partition( int *a, int low, int high )
{
   int left, right, pivot_item;
   pivot_item = a[low];
   left = low + 1;
   right = high;
                                           left and right
   while (left < right)
                                         have swapped over,
   {
                                                 so stop
        while(al right iv left n) left+-
        while( a[rigin] | piv | right--;
                                    36
    23
              15
                    18
                               38
                                          29
   a[low] = a[right];
    low ] = pivot_i pivot: 23
                                              high
   return right;
```

```
int partition( int *a, int low, int high )
{
   int left, right, pivot_item;
   pivot item = allowl.
   left = low right
                       left
     ignt = mgn,
         while(alleftl < nivot_item ) left++;
low
         while pivot: 23 item ) right high
         if (left < right) SWAP(a, left, right);
                                            Finally, swap the pivot
   a[low] = a[right];
                                                    and right
   a[right] = pivot_item;
   return right;
```

```
int partition( int *a, int low, int high )
{
    int left, right, pivot_item;
    pivot_item = a[low];
    left = low + 1:
    right = hig right
    while (left < right)
                                                        pivot: 23
                                        29
                            38
                                  36
         while( a[right] > pivot_item ) right---
low
         if (left < right) SWAP(a, left, right) high
    a[low] = a[right];
                            Return the position
    a[right] = pivot item;
   return right;
                                  of the pivot
```


- Partition
 - Check every item once O(n)
- Conquer
 - Divide data in half O(log₂n)
- Total
 - Product $O(n \log n)$
- But there's a catch

- What happens if we use quicksort on data that's already sorted (or nearly sorted)
- We'd certainly expect it to perform well!!!!

- Each partition produces
 - a problem of size 0
 - and one of size n-1!
- Number of partitions?
 - -n each needing time O(n)
 - Total nO(n)or $O(n^2)$

? Quicksort is as bad as bubble or insertion sort

Merge Sort

- To sort an array A[p..r]:
 - Divide
 - Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
 - Conquer
 - Sort the subsequences recursively using merge sort
 - When the size of the sequences is 1 there is nothing more to
 do
 - Combine
 - Merge the two sorted subsequences

Merge Sort

```
void mergesort (int A [], int p, int r)
  int q;
  if (p < r)
             q = (p + r) / 2; Divide
             mergesort (A, p, q);
                                        Conquer
             mergesort (A, q+1, r);
             merge (A, p, q, r); Combine
```

```
void merge( int A [], int p, int q, int r)
{
    int B [100], i, j, k;
    i = p; j=q+1; k = 0;
    while (i \le q \&\& j \le r)
           if (A[i] < A[j])
                      B[k++] = A[i++];
           else
                      B[k++] = A[i++];
    while (i \le q)
           B[k++] = A[i++];
    while (j \le r)
            B[k++] = A[i++];
```


- Running time *T (n)* of Merge Sort:
 - Divide: computing the middle takes O(1)
 - Conquer: solving 2 sub-problems takes 2T(n/2)
 - Combine: merging n elements takes O(n)
 - Total:

$$T(n) = 2T(n/2) + O(n)$$

$$\Rightarrow T(n) = O(n \log n)$$

Consider applications

- Ordering CPU jobs
- Printing Jobs
- Emergency room admission processing

Problems?

- short jobs should go first
- Hold jobs for a printer in order of length
- most urgent cases should go first

- Priority Queue property:
 - For two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

- Priority Queue operations
 - Create
 - Destroy
 - Insert
 - Delete Min / Delete Max
 - Is_empty

- Unordered linked list
 - Insert : **O**(1)
 - Delete Min/Max : O(n)
- Ordered linked list
 - **Insert** : **O**(n)
 - Delete Min/Max : O(1)
- Ordered array
 - Insert: O(n)
 - Delete Min/Max : O(1)
- Balanced BST
 - Insert : O(log n)
 - Delete Min/Max : O(log n)

- A heap is a binary tree with two properties:
 - Structure property
 - A complete binary tree
 - Height of a complete binary tree with n elements is log n
 - Heap-order property
 - Parent's key is smaller (greater) than children's keys in Min Heap (Max Heap)
 - Result: Minimum (maximum) is always at the root

- Given element at position i in the array
 - Left child(i) = at position 2i
 - Right child(i) = at position 2i + 1
 - Parent(i) = at position i/2

- Insertion in a Heap
 - Basic Idea:
 - 1. Put element at "next" leaf position
 - 2. Restore heap property by repeated exchange starting from inserted element until no longer needed


```
void insert (int element)
   Pqueue [++n] = element;
   RestoreHeapUp (n);
void RestoreHeapUp (int pos)
   int element = Pqueue [pos];
   while (Pqueue [pos/2] >= element)
         Pqueue [pos ] = Pqueue [pos/2];
         pos = pos/2;
   Pqueue [pos] = element;
```

Complexity = O (log n)

Deletion from a Heap

- Basic Idea:
 - 1. Remove **root** (that is always the min!)
 - 2. Put "last" leaf node at root
 - 3. Restore heap property by repeated exchange starting from deleted element until no longer needed

Heap construction

12	5	11	3	10	6	9	4	8	1	7	2

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property!


```
void BuildHeap ()
{
    int i;
    for (i = n/2; i > 0; i --)
        RestoreHeapDown (i);
}
```


Heap Sort

- Given BuildHeap(), an in-place sorting algorithm is easily constructed:
 - Smallest element is at A[1]
 - Discard by swapping with element at A[n]
 - Decrement Heap_size
 - Restore heap property at A[1] by calling RestoreHeapDown()
 - Repeat, always swapping A[1] with A[heap_size]

Heap Sort

```
Heapsort(A)
     BuildHeap(A);
     for (i = length(A) downto 2)
           Swap(A[1], A[i]);
           heap_size(A) -= 1;
           RestoreHeapDown(A, 1);
```

Heap Sort

- The call to **BuildHeap()** takes O(n) time
- Each of the n 1 calls to RestoreHeapDown() takes O(log n) time
- Thus the total time taken by HeapSort()

```
= O(n) + (n-1) O(\log n)
```

$$= O(n) + O(n \log n)$$

$$= O(n \log n)$$

Any Doubt?

 Please feel free to write to me:

bhaskargit@yahoo.co.in

