

Wen-Chin Huang_{1,2}, Chia-Hua Wu₂, Shang-Bao Luo₂, Kuan-Yu Chen₃, Hsin-Min Wang₂, Tomoki Toda₁

1Nagoya University, Japan ₂Academia Sinica, Taiwan ₃National Taiwan University of Science and Technology, Taiwan

Overview

- A simple method for automatic speech recognition (ASR) by fine-tuning BERT
- BERT-ASR, formulates ASR as a classification problem, where the objective is to correctly classify the next word given the acoustic speech signals and the history words.

BERT

- Bidirectional Encoder Represent ations from Transformers
- A language model (LM) trained on large-scale unlabeled text data and can generate rich contextual representations
- Learns language by using 2 main methods: MLM (Masked Language Model) & NSP (Next Sentence Prediction)
- Adopts a multi-layer Transformer encoder architecture

BERT-LM

$$(y_1,...,y_T) \rightarrow \begin{cases} ([CLS]) \\ ([CLS],y_1) \\ ([CLS],y_1,y_2) \\ ... \\ ([CLS],y_1,...,y_{r-1}) \end{cases}$$

- A probabilistic Language Model (LM) using BERT
- Exhaustively enumerate all possible training samples
- Training becomes simply minimizing cross-entropy objective

$$\mathcal{L}_{\text{LM}} = -\sum_{i=1}^{N} \sum_{t=1}^{T} P(y_t^{(i)}| ext{[CLS]}, y_1^{(i)}, \dots, y_{t-1}^{(i)}).$$

BERT-ASR Training and Fine-Tuning

- Acoustic frames can be segmented into T groups (T is # of tokens in transcript)
- Acoustic embeddings concatenated with original BERT inputs fed into model.
- This way we augment the BERT-LM into BERT-ASR

Acoustic Encoder

- Converts raw acoustic feature segments (Fi) into acoustic embeddings
- Authors experimented with the
 - > Average Encoder and
 - Conv1d-Resnet Encoder (takes temporal relationship between segments into account)

AISHELL-1 datset Training Data with 120k Kaldi Toolkit to extract (has 170 hrs of utterances (1.7M after 80-dim Mel-filter bank Mandarin speech) exhaustive ennumeration) classic BERT (MLM) forced alignment with BERT model trained on HMM/DMM model trained Chinese Wikipedia updated BERT (Whole on same dataset Word Masking)

oracle decoding (alignment

accessible)

Table 1: Results on the AISHELL-1 dataset. "Orac." and "Prac." denote the oracle decoding and practical decoding, respectively. "Conv1d resnet X" denotes the conv1d resnet encoder with X resnet blocks. Best performance of the BERT-ASR are shown in bold.

Decoding

practical decoding (equal

length acoustics frames)

Model	Acoustic encoder	Perplexity		CER (Orac.)		CER (Prac.)		SER (Orac.)		SER (Prac.)	
		Dev	Test	Dev	Test	Dev	Test	Dev	Test	Dev	Test
Trigram-LM		133.32	127.88			-		-			
LSTM-LM		79.97	78.80	-						-	
BERT-LM	-	39.74	41.72			-					
BERT-ASR	Average	5.88	9.02	65.8	68.9	96.4	105.8	60.3	63.5	91.5	100.3
	Conv1d resnet 1	4.91	7.63	55.8	59.0	89.6	99.6	50.0	53.8	84.4	94.1
	Conv1d resnet 2	4.77	6.94	54.6	58.8	89.7	99.1	49.5	53.6	84.6	93.5
	Conv1d resnet 3	4.83	7.41	54.8	58.9	89.8	99.4	49.6	53.6	84.6	93.9
	Conv1d-resnet 4	4.78	7.29	54.6	59.0	89.5	99.3	49.4	53.9	84.4	93.8
GMM-HMM						10.4	12.2	-			
DNN-HMM				-		7.2	8.4	-		-	

References

- [4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," 2019
- [5] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, "Improving language understanding by generative pre-training," 2018.
- [8] A.Vaswani, N.Shazeer, N.Parmar, J.Uszkoreit, L.Jones, A.N Gomez, L. Kaiser, and I. Polosukhin, "Attention is All you Need." NeruIPS. 2017.
- [17] J. Shin, Y. Lee, and K. Jung, "Effective sentence scoring method using BERT for speech recognition," 2019
- [18] J.Salazar, D.Liang, T.Q.Nguyen, and K.Kirchhoff, "Masked language model scoring," 2020
- [19] H. Futami, H. Inaguma, S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, "Distilling the knowledge of bert for sequence- to-sequence asr," 2020.
- [20] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, "Aishell-1: An open-source mandarin speech corpus and a speech recognition baseline," 2017
- [21] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely, "The kaldi speech recognition toolkit," Dec. 2011.
- [23] T.Wolf, L.Debut, V.Sanh, J.Chaumond, C.Delangue, A.Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al., "Hugging-face's transformers: State-of-the-art natural language processing," 2019.