

Musculoskeletal Modelling in **Physical Rehabilitation**

Lauren Kark (lauren.kark@unsw.edu.au)

Never Stand Still

Faculty of Engineering Graduate School of Biomedical Engineering

Aims and Objectives

This lecture aims to:

Introduce musculoskeletal modelling in physical rehabilitation

Following this lecture you should be able to:

- Describe the anatomy of the ankle
- Discuss the biomechanics of the ankle
- Describe the ways in which the ankle can be injured
- List current methods for preventing ankle injuries
- Develop design criteria for an optimal ankle brace
- Discuss how musculoskeletal modelling can be used to assess the efficacy of new designs of medical technology associated with human movement

Today

- 1. Anatomy
- 2. Injuries
- 3. Mechanics of Injuries
- 4. Prevention
- 5. Musculoskeletal modelling

Injury	
	Injury Graduate School of Biomedical Engi

Ankle Sprains (I)

Statistics

- Account for nearly half of all sports injuries
- 25,000 people per day in US alone (9 million per year)
- > 80% of ankle sprains are a result of inversion
- 41% of ankle sprains related to basketball
- History of ankle injury makes re-injury 5 times more likely

http://anklerollguard.com/ankle-sprain-stats--info.html

Graduate School of Biomedical Engineering

Ankle Sprains (II) Grades

http://chicagofootcareclinic.com/footproblems/ankleproblems.htm

UNSW THE LAWREST TO THE MOLITH WALES

Ankle Sprains (IV) Mechanical Properties: Stress, Strain and Young's

Ankle Sprains (V) Mechanical Properties: Stress-Strain Diagram

Graduate School of Biomedical Engineering

Example (I)

The ATFL has an original cross-sectional area of 10mm² and an original length of 15mm (made up numbers!). For each of the groups shown in the stress-strain diagram on the right, calculate:

- Young's modulus
- Length at yield

Ankle Sprains (IV)

Risk Factors

- Previous or existing ankle injury (biggest factor)
- Lack of strength and stability in the ankle
- Lack of, or extreme, flexibility in the ankle
- Poor balance
- Acceleration or deceleration (sudden change in direction)
- Increasing age

http://sma.org.au/wp-content/uploads/2011/01/719-SMA-InjuryBrochure-ankle_web.pdf

UNSW THE LAWREST TO THE MOLITH WALES

Ankle Sprains (V)

Prevention

- Balance training
- Ankle strengthening
- Flexibility
- Adequate preparation
- Taping and bracing

Graduate School of Biomedical Engineering

Taping and Braces

Taping		Braces	
Pros	Cons	Pros	Cons
Customisable	Cost	Reusable	
Less bulky	Qualified person	Cost	
Proprioception	Lost effectiveness*	Easy to apply	
		ROM restriction	
		Better prevention	

 * Taping support declines by 40 – 50% within 5 – 20 minutes of activity (Paris et al., 1995)

Musculoskeletal Modelling (VI)

- Your job in the tutorial next week is to design the optimal ankle brace!
- Two types of braces: passive and active (challenge)
- Minimum passive design requirements:
 - Prevent ankle injury (inversion angle<25°)
 - Minimal stiffness, for maximal comfort
- Minimum active design requirements:
 - As for passive, but also:
 - Smallest torque required for smallest motor
 - Minimal active time for maximal battery life
- Don't forget to include any other design criteria you think important.

Good luck! Have fun!

