BUNDESREPUBLIK DEUTSCHLAND

EP 99/7055

Bescheinigung

Herr Hassan Jomaa in Gießen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Gene des 1-Desoxy-D-xylulose-Biosynthesewegs"

am 21. Mai 1999 beim Deutschen Patent- und Markenamt eingereicht und erklärt, daß er dafür die Innere Priorität der Anmeldung in der Bundesrepublik Deutschland vom 22. September 1998, Aktenzeichen 198 43 279.8, in Anspruch nimmt.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 K, C 12 N und C 12 Q der Internationalen Patentklassifikation erhalten.

München, den 2. November 1999

Deutsches Patent- und Markenamt

Der Präsident

Sieck

Aktenzeichen: <u>199 23 567.8</u>

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161 06.90 11/98

Gene des 1-Desoxy-D-xylulose-Biosynthesewegs

Die vorliegende Erfindung betrifft DNA-Sequenzen, die bei Integration in das Genom von Viren, Eukaryonten und Prokaryonten die Isoprenoid-Biosynthese verändern sowie gentechnologische Verfahren zur Herstellung dieser transgenen Viren, Eukaryonten und Prokaryonten. Außerdem betrifft sie Verfahren zur Identifiziereung von Stoffen mit herbizider, antimikrobieller, antiparasitärer, antiviraler, fungizider, bakterizider Wirkung bei Pflanzen und antimikrobieller, antiparasitärer, antimykotischer, antibakterieller und antiviraler Wirkung bei Mensch und Tier.

Der Biosyntheseweg zur Bildung von Isoprenoiden über den klassischen Acetat/ Mevalonat-Weg und einen alternativen, Mevalonat-unabhängigen Biosyntheseweg, den Desoxy-D-xylulose-Phosphat-Weg, ist bereits bekannt (Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. (1993): Biochem. J. 295: 517-524).

Es ist aber nicht bekannt, wie und über welche Wege in Viren, Eukaryonten und Prokaryonten eine Änderung der Isoprenoidkonzentration über den Desoxy-D-xylulose-Phoshat-Weg erreicht werden kann. In Fig. 1 ist dieser Biosyntheseweg dargestellt.

Es werden daher DNA-Sequenzen zur Verfügung gestellt, die für die 1-Desoxy-D-xylulose-5-phosphat-Synthase (DOXP-Synthase),: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase(DOXP-Reduktoisomerase) oder das essentielle gcpE-Protein kodieren. Alle drei Gene und Enzyme sind an der Isoprenoid-Biosynthese beteiligt.

Das gcpE-Protein hat zusätzlich noch eine Kinasefunktion und katalysiert die Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-phosphat, insbesondere 2-C-Methyl-D-

- 2 -

erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose-4-erythrose-phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat. In der Vorstufe der Isoprenoidsynthese katalysiert phosphat. In der Vorstufe der Phosphorylierung der folgendas gcpE-Protein insbesondere die Phosphorylierung der folgenden Substanzen:

 $\begin{array}{l} \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_3\right) = \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_3\right) = \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2\left(\text{OH}\right) - \text{CH}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2\left(\text{OH}\right) - \text{CH}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{OH}, \\ \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CO} - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2 = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{CH}_2\right) - \text{C}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CHO} - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CHO} - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{O} - \text{PO}\left(\text{OH}\right)_2, \quad \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{OH}\right) \left(\text{CH}_3\right) - \text{CH} = \text{CH} - \text{OH}, \\ \text{CH}_2\left(\text{OH}\right) - \text{C}\left(\text{OH}\right) \left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}, \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OPO}\left(\text{OH}\right)_2, \quad \text{CH}\left(\text{OH}\right) = \text{C}\left(\text{CH}_3\right) - \text{CH}\left(\text{OH}\right) - \text{CH}_2 - \text{OH}. \\ \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right) - \text{CH}\left(\text{CH}_3\right)$

Die DOXP-Synthase katalysiert die Kondensation von Pyruvat und Glyceraldehyd-3-phosphat zu 1-Deoxy-D-xylulose-5-phosphat und die DOXP-Reduktoisomerase katalysiert die Umwandlung von 1-Deoxy-D-xylulose-5-phosphat zu 2-C-Methyl-D-erythritol-4-phosphat. (siehe Fig. 1).

Die Erfindung betrifft die folgenden DNA-Sequenzen:
DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:2
dargestellten Aminosäuresequenz codieren oder für ein Analoges
oder Derivat des Polypeptids gemäß SEQ ID NO:2, worin eine oder
mehrere Aminosäuren deletiert, hinzugefügt oder durch andere
Aminosäuren substituiert worden sind, ohne die enzymatische
Virkung des Polypeptids wesentlich zu reduzieren,

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren,

sowie DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO:6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch

andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

Die Gene und ihre Genprodukte (Polypeptide) sind im Sequenzprotokoll mit ihrer Primärstruktur aufgeführt und haben folgende Zuordnung:

SEQ ID NO:1: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase-Gen

SEQ ID NO:2: 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase

SEQ ID NO:3: 1-Desoxy-D-xylulose-5-phosphat-Synthase-Gen

SEQ ID NO:4: 1-Desoxy-D-xylulose-5-phosphat-Synthase

SEQ ID NO:5: gcpE-Gen

SEQ ID NO:6: gcpE-Protein.

Die DNA-Sequenzen stammen alle aus Plasmodium falciparum.

Außer den im Sequenzprotokoll genannten DNA-Sequenzen sind auch solche geeignet, die infolge der Degeneration des genetischen Codes eine andere DNA-Sequenz besitzen, jedoch für das gleiche Polypeptid oder für ein Analoges oder Derivat des Polypeptids gemäß, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

Die erfindungsgemäßen Sequenzen eignen sich für die Expression von Genen in Viren, Eukaryonten und Prokaryonten, die für die Isoprenoid-Biosynthese des 1-Desoxy-D-xylulose-Wegs verantwortlich sind.

Erfindungsgemäß gehören zu den Eukaryonten oder eukaryontischen Zellen tierischen Zellen, Pflanzenzellen, Algen, Hefen, Pilze und zu den Prokaryonten oder prokaryontischen Bakterien Archaebakterien und Eubakterien.

Bei Integration einer DNA-Sequenz in ein Genom, auf der eine der oben angegebenen DNA-Sequenzen lokalisiert ist, wird die Expression der oben beschriebenen Gene in Viren, Eukaryonten und Prokaryonten ermöglicht. Die erfindungsgemäß transformierten Viren, Eukaryonten und Prokaryonten werden in an sich be-

kannter Weise gezüchtet und das währenddessen gebildete Isoprenoid isoliert und gegebenenfalls gereinigt. Nicht alle Isoprenoide müssen isoliert werden, da die Isoprenoide in einigen Fällen direkt in die Raumluft abgegeben werden.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung von transgenen Viren, Eukaryonten und Prokaryonten zur Veränderung des Isoprenoid-Gehaltes, das die folgenden Schritte enthält.

- a) Herstellung einer DNA-Sequenz mit folgenden Teilsequenzen
 - i) Promotor, der in Viren, Eukaryonten und Prokaryonten aktiv ist und die Bildung einer RNA im vorgesehenen Zielgewebe oder den Zielzellen sicherstellt,
 - ii) DNA-Sequenz, die für ein Polypeptid mit der in SEQ ID NO:2,4 oder 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:2,4 oder 6,
 - iii) 3'-nichttranslatierte Sequenz, die in Viren, Eukaryonten und Prokaryonten zur Addition von Poly-A Resten an das 3'-Ende der RNA führt,
- b) Transfer und Einbau der DNA-Sequenz in das Genom von Viren, prokaryontischen oder eukaryontischen Zellen mit oder ohne Verwendung eines Vektors (z.B. Plasmid, virale DNA).

Aus Ben transformierten Pflanzenzellen können die intakten ganzen Pflanzen regeneriert werden.

Die für die Proteine kodierenden Sequenzen der Proteine mit den Nukleotidabfolgen Seq ID NO:1, Seq ID NO:3 und Seq ID NO: 5 können mit einem die Transkription in bestimmten Organen oder Zellen sicherstelleneden Promotor versehen werden, der in sense-Orientierung (3`-Ende des Promotors zum 5`-Ende der kodierenden Sequenz) an die Sequenz, die das zu bildende Protein kodiert, gekoppelt ist. An das 3`-Ende der kodierenden Sequenz wird ein die Termination der mRNA-Synthese bestimmendes Terminationssignal angehängt. Um das zu exprimierende Protein in bestimmte subzelluläre Kompartimente, wie Chloroplasten, Amyloplasten, Mitochondrien, Vakuole, Cytosol oder Interzellularräume zu dirigieren, kann zwischen den Promotor und die ko-

dierende Sequenz noch eine für eine sogenannte Signalsequenz oder ein Transitpeptid kodierende Sequenz gesetzt werden. die Sequenz muß im gleichen Leserahmen wie die kodierende Sequenz des Proteins sein. Zur Vorbereitung der Einführung der erfindungsgemäßen DNA-Sequenzen in höhere Pflanzen sind eine große Anzahl von Klonierungsvektoren verfügbar, die ein Replikationssignal für E.coli und einen Marker beinhalten, der eine Selektion der transformierten Zellen erlaubt. Beispiele für Vektoren sind pBR 322, pUC-Serien, M13mp-Serien, pACYC 184, EMBL 3 usw. Je nach Einführungsmethode gewünschter Gene in die Pflanze können weitere DNA-Sequenzen erforderlich sein. Werden zum Beispiel für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens eine rechte Begrenzung, aufig jedoch die rechte und die linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich den einzuführenden Genen eingefügt werden. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekama, in: The Binary Plant Vector System, Offset-drukkerij Kanters B.V. Alblasserdam (1985), Chapter V; Fraley et al., Crit.Rev.Plant Sci. 4,1-46 und An et al. (1985) EMBO J. 4, 277-287 beschrieben worden. Ist die eingeführte DNA einmal im Genom integriert, so ist sie in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zellen erhalten. Sie erhält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum, wie Kanamycin, G 418, leomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuell verwendete Marker sollte daher die selektion transformierter Zellen gegenüber Zellen, denen die eingefügte DNA fehlt, gestatten.

Für die Einführung von DNA in eine Pflanze stehen viele Techniken zur Verfügung. Diese Techniken umfassen die Transformation mit Hilfe von Agrobakterien, z.B. Agrobacterium tumefaciens, die Fusion von Protoplasten, die Mikroinjektion von DNA, die Elekroporation, sowie ballistische Methoden und die Virusinfektion. Aus dem transformierten Pflanzenmaterial können dann im geeigneten Medium, welches Antibiotika oder Biozide zur Selektion enthalten kann, wieder ganze Pflanzen regeneriert werden.

Bei der Injektion und Elektroporation sind an sich keine speziellen Anforderungen an die Plasmide gestellt. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig. Die transformierten Zellen wachsen innerhalb der Pflanzen in der üblichen Weise (McCormick et al. (1986), Plant Cell Reports 5, 81-84). Die Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen haben, gekreuzt werden. Die daraus entstehenden Individuen haben die entsprechenden phänotypischen Eigenschaften.

Weiterhin sind Gegenstand der Erfindung Expressionsvektoren, die eine oder mehrere der erfindungsgemäßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungsgemäßen DNA-Sequenzen mit geeigneten funktionellen Regulationssignalen versieht. Solche Regulationssignale sind DNA-Sequenzen, die für die Expression verantwortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt werden.

Gegebenenfalls können noch weitere Regulationssignale, die beispielsweise Replikation oder Rekombination der rekombinanten DNA im Wirtsorganismus steuern, Bestandteil des Expressionsvektors sein.

Ebenso gehören die mit den erfindungsgemäßen DNA-Sequenzen oder Expressionsvektoren transformierten Wirtsorganismen zum Gegenstand der Erfindung.

Für die Expression der erfindungsgemäßen Enzyme eignen sich besonders solche Wirtszellen und Organismen, die keine intrinsischen Enzyme mit der Funktion der DOXP-Synthase, der DOXP-Reduktoisomerase oder des gcpE-Proteins aufweisen. Dies trifft für Archaebacterien, Tiere, Pilze, Schleimpilze und einige Eubakterien zu. Durch das Fehlen dieser intrinsischen Enzymaktivitäten wird die Detektion und Aufreinigung der rekombinanten Enzyme wesentlich erleichtert. Auch wird es erst dadurch mög-

lich, mit geringem Aufwand die Aktivität und insbesondere die Hemmung der Aktivität der erfindungsgemäßen rekombinanten Enzyme durch verschiedenen Chemikalien und Pharmaka in Rohextrakten aus den Wirtszellen zu messen.

Die Expression der erfindungsgemäßen Enzyme erfolgt vorteilhafterweise dann in eukaryontischen Zellen, wenn posttranslatorische Modifikationen und eine native Faltung der Polypeptidkette erreicht werden soll. Außerdem wird in Abhängigkeit vom Expressionssystem bei der Expression genomischer DNA-Sequenzen erreicht, daß Introns durch Spleißen der DNA beseitigt und die Enzyme in der für die Parasiten charakteristischen Polypeptidsequenz produziert werden. Für Introns codierende Sequenzen können auch durch rekombinante DNA-Technologie aus den zu exprimierenden DNA-Sequenzen beseitigt oder experimentell eingefügt werden.

Die Isolierung des Proteins kann aus der Wirtszelle oder dem Kulturüberstand der Wirtszelle nach dem Fachmann bekannten Verfahren erfolgen. Es kann auch eine in vitro Reaktivierung der Enzyme erforderlich sein.

Zur Erleichterung der Aufreinigung können die erfindungsgemäßen Inzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit verschiedenen Peptidketten exprimiert werden. Dazu eigenen sich besonders Oligo-Histidin-Sequenzen und Sequenzen, die von der Glutathion-S-Transferase, Thioredoxin oder Calmodulin-bindenden Peptiden abgeleitet sind. Fusionen mit Thioredoxin-abgeleiteten Sequenzen eignen sich besonders für prokaryontische Expression, da dadurch die Löslichkeit der rekombinanten Enzyme erhöht wird.

Weiterhin können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit solchen, dem Fachmann bekannten, Peptidketten exprimiert werden, daß die rekombinanten Enzyme in das extrazelluläre Millieu oder in bestimmte Kompartimente der Wirtszellen transportiert werden. Dadurch kann sowohl die Aufreinigung, als auch die Untersuchung der biologischen Aktivität der Enzyme erleichtert werden.

Bei der Expression der erfindungsgemäßen Enzyme kann es sich als zweckmäßig erweisen, einzelne Codone zu verändern. Dabei ist der gezielte Austausch von Basen in der kodierenden Region auch sinnvoll, wenn die genutzten Codone in den Parasiten abweichend sind von der Codonnutzung im heterologen Expressionssystem, um eine optimale Synthese des Proteins zu gewährleisten. Zudem sind oft Deletionen von nicht-translatierten 5'bzw. '-Abschnitten sinnvoll, beispielsweise wenn mehrere destabilisierende Sequenzmotive ATTTA im 3'-Bereich der DNA vorliegen. Dann sollten diese bei der bevorzugen Expression in Eukaryonten deletiert werden. Veränderungen dieser Art sind Deletionen, Additionen oder Austausch von Basen und ebenfalls Gegenstand der vorliegenden Erfindung.

Weiterhin können die erfindungsgemäßen Enzyme unter standardisierten Bedingungen durch dem Fachmann bekannte Techniken durch in vitro-Translation gewonnen werden. Dafür geeignete Systeme sind Kaninchen-Reticulozyten- und Weizenkeimextrakte und Bakteienlysate. Auch kann in vitro transskribierte mRNA in Xenopus-Oocyten translatiert werden.

Durch chemische Synthese können Oligo- und Polypeptide hergestellt werden, der Sequenzen aus der Peptidsequenz der erfindungsgemäßen Enzyme abgeleitet sind. Bei geeigneter Wahl der Sequenzen besitzen derartige Peptide Eigenschaften, die für die vollständigen erfindungsgemäßen Enzyme charakteristisch sind. Derartige Peptide können in großen Mengen hergestellt werden und eignen sich besonders für Studien über die Kinetik der Enzymaktivität, die Regulation der Enzymaktivität, die dreidimensionale Struktur der Enzyme, die Hemmung der Enzymaktivität

durch verschiedenen Chemikalien und Pharmaka und die Bindungsgeometrie und Bindugnsaffinität verschiedener Liganden.

Vorzugsweise wird zur rekombinanten Herstellung der erfindungsgemäßen Enzyme eine DNA mit den Nukleotiden aus den Sequenzen SEQ ID NO: 1, 3 und 5 verwendet.

Wie in dem dieser Anmeldung zugrundeliegenden Prioritätsdokument beschrieben, hat sich herausgestellt, daß in vielen Parasiten, Bakterien, Viren und Pilzen dieser der Desoxy-D-xylulose-Phosphat-Stoffwechselweg ebenfalls vorliegt.

Die Erfindung umfaßt daher außerdem ein Verfahren zum Screening einer Verbindung. Gemäß diesem Verfahren wird ein Wirtsorganismus, der einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1, SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Homologe dieser aufweist, und außerdem eine Verbindung, von der vermutet wird, daß sie eine antimikrobielle, antiparasitäre, antibakterielle, antivirale und antimykotische Wirkung bei Mensch und Tier oder eine antimikrobielle, antivirale, bakterizide, herbizide oder fungizide Wirkung bei Pflanzen hat, bereitgestellt. Anschließend wird der Wirtsorganismus mit der Verbindung in Kontakt gebracht und die Wirksamkeit der Verbindung bestimmt.

Ein weiterer Gegenstand dieser Erfindung sind Methoden zur Bestimmung der enzymatische Aktivität des gcpE-Proteins. Diese kann nach den bekannten Anleitungen bestimmt werden. Hierbei wird die Phosphorylierung eines Zuckers oder eines Phosphorzukkers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose-4-phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat, detektiert. Ein weiterer Gegenstand dieser Erfindung ist die Verwendung dieser Meßverfahren zur Ermittlung von Stoffen, die die Aktivität der jeweiligen Enzyme inhibieren.

Analog erfolgt die Bestimmung der Aktivitäten von DOXP-Synthase und DOXP-Reduktoisomerase. Für die Bestimmung der DOXP-Synthase-Aktivität eignen sich auch fluorimetrische Verfahren, wie von Querol et al. beschrieben (Querol et al. Abstracts 4th european symposium on plant isoprenoids, Barcelona 21-23 April 1999).

Sequenzprotokoll

Anzahl der Sequenzen: 6

(1) ANGABEN ZU SEQUENZ ID NO: 1
Plasmodium falciparum 1-Desoxy-D-xylulose-5-phosphatreduktoisomerase(dxr)gen

- (i) SEQUENZKENNZEICHEN:
- (A) LÄNGE: 1467 BASENPAARE
- (B) ART: Nukleotidsequenz
- (C) STAMM: HB3
- ii) ART DES MOLEKÜLS: DNA
- (iv) URSPRÜNGLICHE HERKUNFT:
- (A) ORGANISMUS: Plasmodium falciparum
- (ix) MERKMAL
- (A) NAME/SCHLÜSSEL: mRNA
- (B) LAGE:1...1467

GEN=dxr

PRODUKT=1-Desoxy-D-xylulose-5-phosphatreduktoisomerase MERKMAL

- (A) NAME/SCHLÜSSEL: Gen
- (B) LAGE:1...1467 GEN=dxr
- (ix) MERKMAL
- A) NAME/SCHLÜSSEL: CDS
- (B) LAGE:1...1467

GEN=dxr

FUNKTION: bei der Isopentenyldiphosphatbiosynthese betei-

ligt

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO:1

	•	•	• •		• •		•	•		• •		• •	
		•	•	• •			• •	• •		•	•	•	•
	• •		•			_	•	•		•	•	•	•
_	•12	•	•	• •	•		•	•	•	• •	•		•
	• T Z	•	•	• •			•	•			•		•
	•	•			• • 1								

				•											_	
GAT	AAT	AAA	ATA	ACA	AAG	AGT	AGA	AGA	TGT	AAA	AGA	ATA	AAG	TTA	TGC	192
Asp	Asn	Lys	Ile	Thr	Lys	Ser 55	Arg	Arg	Cys	Lys	Arg 60	Ile	Lys	Leu	Cys	
ΔΔΔ	50	СДТ	тта	АТА	GAT		GGT	GCA	ATA	AAG		CCA	ATT	AAT	GTA	240
Lys	Lys	Asp	Leu	Ile	Asp	Ile	Glu	Ala	Ile	Lys 75	Lys	Pro	Ile	Asn	Val 80	
65	3.00	mmm	CCB	AGT	70°	CCT	ΔСΤ	מידמ	GGT	_	ААТ	GCT	TTA	AAT		288
GCA Ala	ATT	Dhe	GUA	Ser	Thr	Glu	Ser	Ile	Glu	Thr	Asn	Ala	Leu	Asn	Ile	
				85					90					95		336
ATA	AGG	GAG	TGT	AAT	AAA	ATT	GAA	AAT	Unl	Dha	AAI	U a l	LVS	Δla	Leu	330
Ile	Arg	GIu	100	Asn	Lys	TIE	Gru	105	vai	FILE	ASII	vai	110	7124		
ТАТ	GTG	ААТ	AAG	AGT											TTT	384
Tyr	Val	Asn	Lys	Ser	Val	Asn	Glu	Leu	Tyr	Glu	Gln	Ala	Arg	Glu	Phe	
		115					120					125				122
TTA	CCA	GAA	TAT	TTG	TGT	ATA	CAT	GAT	AAA	AGT	GTA	TAT	GAA	Clu	TTA	432
	130			Leu		135					140					400
AAA	GAA	CTG	GTA	AAA	AAT	ATA	AAA	GAT	TAT	AAA	CCT	ATA	ATA	TTG	TGT	480
Lys 145	Glu	Leu	Val	Lys	Asn 150	Ile	Lys	Asp	Tyr	Lуs 155	Pro	TTE	ile	ьeu	160	
GGT	GAT	GAA	GGG	ATG	AAA	GAA	ATA	TGT	AGT	AGT	AAT	AGT	ATA	GAT	AAA	528
Glu	Asp	Glu	Glu	Met	Lys	Glu	Ile	Cys	Ser	Ser	Asn	Ser	Ile	Asp	Lys	
				165					170					175		-76
ATA	GTT	ATT	GGT	ATT	GAT	TCT	TTT	CAA	GGA	TTA	TAT	TCT	ACT	ATG	TAT	576
			180	Ile				185					190			
GCA	ATT	ATG	AAT	AAT	AAA	ATA	GTT	GCG	TTA	GCT	AAT	AAA	GAA	TCC	ATT	624
		195		Asn			200					205				
GTC	TCT	GCT	GGT	TTC	TTT	TTA	AAG	AAA	TTA	TTA	AAT	ATT	CAT	AAA	AAT	672
	210			Phe		215					220					
GCA	AAG	ATA	ATA	CCT	GTT	GAT	TCA	GAA	CAT	AGT	GCT	ATA	TTT	CAA	TGT	720
225				Pro	230					235					240	
TTA	GAT	AAT	AAT	AAG	GTA	TTA	AAA	ACA	AAA	TGT	TTA	CAA	GAC	AAT	TTT	768
1				Lys 245					250					255		
TCT	AAA	ATT	AAC	AAT	ATA	AAT	AAA	ATA	TTT	TTA	TGT	TCA	TCT	GGA	GGT	816
			260	Asn				265					270			
CCA	TTT	CAA	AAT	TTA	ACT	ATG	GAC	GAA	TTA	AAA	AAT	GTA	ACA	TCA	GAA	864
Pro	Phe	Gln 275	Asn	Leu	Thr	Met	Asp 280	Glu	Leu	Lys	Asn	Val 285	Thr	Ser	Glu	
AAT	GCT	TTA	AAG	CAT	CCT	AAA	TGG	AAA	ATG	GGT	AAG	AAA	ATA	ACT	ATA	912
	290			His		295					300					
GAT	TCT	GCA	ACT	ATG	ATG	AAT	AAA	GGT	TTA	GAG	GTT	ATA	GAA	ACC	CAT	960
Asp	Ser	Ala	Thr	Met	Met	Asn	Lys	Glu	Leu	Glu	Val	Ile	Glu	Thr	His	
305			6	~ =-	310	m = m	2 2 2	C N M	מחת	315	Cutu	<u>አ</u> ሞአ	CTD	ሮልጥ	320	1008
TTT	TTA	TTT	GAT	GTA Val	GAT Ass	TAT	AAT	Den	AIA	GAA	Val	Ile	Val	His	AAA Lvs	1000
				325					330					335		1056
GAA	TGC	ATT	ATA	CAT	TCT	TGT	GTT	GAA	TTT	ATA	GAC	AAA	TCA	GTA V=1	ATA	1056
Glu	Cys	Ile	Ile 340	His	ser	cys	val	345	rne	тте	ASP	гåа	350	val	TTC	

4 .	
• •	•
•13	•
•	•

					_	_								•			
																TTA	1104
S	er	Gln	Met 355	Tyr	Tyr	Pro	Asp	Met 360	Gln	Ile	Pro	Ile	Leu 365	Tyr	Ser	Leu	
Α	CA	TGG	CCT	GAT	AGA	ATA	AAA	ACA	AAT	TTA	AAA	CCT	TTA	GAT	TTG	GCT	1152
T	hr	Trp 370	Pro	Asp	Arg	Ile	Lys 375	Thr	Asn	Leu	Lys	Pro 380	Leu	Asp	Leu	Ala	
С	AG	GTT	TCA	ACT	CTT	ACA	TTT	CAT	AAA	CCT	TCT	TTA	GAA	CAT	TTC	CCG	1200
	1n 85	Val	Ser	Thr	Leu	Thr 390	Phe	His	Lys	Pro	Ser 395	Leu	Glu	His	Phe	Pro 400	
T	GT	ATT	AAA	TTA	GCT	TAT	CAA	GCA	GGT	ATA	AAA	GGA	AAC	TTT	TAT	CCA	1248
С	ys	Ile	Lys	Leu		Tyr			Glu		Lys		Asn	Phe	Tyr 415		
A	CT	GTA	СТА	AAT					АТА				TTA	ттт		AAT	1296
		Val															
				420					425					430			
		AAA															1344
A	.sn	Lys	Ile 435	Lys	Tyr	Phe	Asp	Ile 440	Ser	Ser	Ile	Ile	Ser 445	Gln	Val	Leu	
G	AA	TCT	TTC	AAT	TCT	CAA	AAG	GTT	TCG	GAA	AAT	AGT	GAA	GAT	TTA	ATG	1392
	lu	Ser 450	Phe	Asn	Ser	Gln	Lys 455	Val	Ser	Glu	Asn	Ser 460	Glu	Asp	Leu	Met	
A	AG	CAA	ATT	CTA	CAA	ATA	CAT	TCT	TGG	GCC	AAA	GAT	AAA	GCT	ACC	GAT	1440
	ys 65	Gln	Ile	Leu	Gln	Ile 470	His	Ser	Trp	Ala	Lys 475	Asp	Lys	Ala	Thr	Asp 480	
		TAC							TAG								1467
Ι	le	Tyr	Asn	Lys	His 485	Asn	Ser	Ser									

- (2) Angaben zu Sequenz ID No: 2
- (i) Sequenzkennzeichen:
 - (A) Länge: 488 Aminosäuren
 - (B) Art: Aminosäure
- (ii) Art des Moleküls: Protein
- iii) Ursprüngliche Herkunft:
 - (A) ORGANISMUS: Plasmodium falciparum; (Apicomplexa) STAMM: HB3
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO:2

 Met Lys Lys Tyr Ile Tyr Ile Tyr Phe Phe Phe Phe Ile Thr Ile Thr Ile

 1
 5
 10
 15

 Asn Asp Leu Val Ile Asn Asn Thr Ser Lys Cys Val Ser Ile Glu Arg
 20
 25
 30

 Arg Lys Asn Asn Ala Tyr Ile Asn Tyr Gly Ile Gly Tyr Asn Gly Pro
 35
 40
 45

 Asp Asn Lys Ile Thr Lys Ser Arg Arg Cys Lys Arg Ile Lys Leu Cys
 50
 60

 Lys Lys Asp Leu Ile Asp Ile Gly Ala Ile Lys Lys Pro Ile Asn Val
 70
 75
 80

Ala Ile Phe Gly Ser Thr Gly Ser Ile Gly Thr Asn Ala Leu Asn Ile 85 Ile Arg Glu Cys Asn Lys Ile Glu Asn Val Phe Asn Val Lys Ala Leu Tyr Val Asn Lys Ser Val Asn Glu Leu Tyr Glu Gln Ala Arg Glu Phe Leu Pro Glu Tyr Leu Cys Ile His Asp Lys Ser Val Tyr Glu Glu Leu 135 Lys Glu Leu Val Lys Asn Ile Lys Asp Tyr Lys Pro Ile Ile Leu Cys 150 Gly Asp Glu Gly Met Lys Glu Ile Cys Ser Ser Asn Ser Ile Asp Lys Ile Val Ile Gly Ile Asp Ser Phe Gln Gly Leu Tyr Ser Thr Met Tyr Ala Ile Met Asn Asn Lys Ile Val Ala Leu Ala Asn Lys Glu Ser Ile Val Ser Ala Gly Phe Phe Leu Lys Lys Leu Leu Asn Ile His Lys Asn la Lys Ile Ile Pro Val Asp Ser Glu His Ser Ala Ile Phe Gln Cys Leu Asp Asn Asn Lys Val Leu Lys Thr Lys Cys Leu Gln Asp Asn Phe Ser Lys Ile Asn Asn Ile Asn Lys Ile Phe Leu Cys Ser Ser Gly Gly Pro Phe Gln Asn Leu Thr Met Asp Glu Leu Lys Asn Val Thr Ser Glu Asn Ala Leu Lys His Pro Lys Trp Lys Met Gly Lys Lys Ile Thr Ile Asp Ser Ala Thr Met Met Asn Lys Gly Leu Glu Val Ile Glu Thr His Phe Leu Phe Asp Val Asp Tyr Asn Asp Ile Glu Val Ile Val His Lys Glu Cys Ile Ile His Ser Cys Val Glu Phe Ile Asp Lys Ser Val Ile Ser Gln Met Tyr Tyr Pro Asp Met Gln Ile Pro Ile Leu Tyr Ser Leu Thr Trp Pro Asp Arg Ile Lys Thr Asn Leu Lys Pro Leu Asp Leu Ala Gln Val Ser Thr Leu Thr Phe His Lys Pro Ser Leu Glu His Phe Pro Cys Ile Lys Leu Ala Tyr Gln Ala Gly Ile Lys Gly Asn Phe Tyr Pro Thr Val Leu Asn Ala Ser Asn Glu Ile Ala Asn Asn Leu Phe Leu Asn Asn Lys Ile Lys Tyr Phe Asp Ile Ser Ser Ile Ile Ser Gln Val Leu Glu Ser Phe Asn Ser Gln Lys Val Ser Glu Asn Ser Glu Asp Leu Met Lys Gln Ile Leu Gln Ile His Ser Trp Ala Lys Asp Lys Ala Thr Asp Ile Tyr Asn Lys His Asn Ser Ser

phos (iii (A) (B)	ANGABEN ZU SEQUENZ ID NR: 3 smodium Falciparum 1-Desoxy-D-Xylulose-5- sphatsynthase(dxs)gen L) SEQUENZKENNZEICHEN: LÄNGE: 3872 BASENPAARE ART: Nukleotidsequenz STAMM: HB3
(iv)	ART DES MOLEKÜLS: DNA
(v)	URSPRÜNGLICHE HERKUNFT:
(A)	ORGANISMUS: Plasmodium falciparum
(ix)	MERKMAL
(A)	NAME/SCHLÜSSEL: mRNA
	GEN=dxs
	PRODUKT=1-Desoxy-D-xylulose-5-phosphatsynthase
(ix)	MERKMAL
(A)	NAME/SCHLÜSSEL: Gen
(B)	LAGE:13872
	GEN=dxs
(ix)	MERKMAL
(A)	NAME/SCHLÜSSEL: CDS
	GEN=dxs
	FUNKTION: bei der Isopentenyldiphosphatbiosynthese betei-
	ligt
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO:3
GTA	ATATAC GTATAATATA TATATAATAT ATTCTTACGT ATGTATCATT TATGAATCAT 60
AATA	ATATTC TAAATTTACC TTCCGTTTTT GCTCGATCTT CTCATTTTCG TTTCAGCTTT 120
TATC	A ATG ATT TTT AAT TAT GTG TTT TTT AAG AAC TTT GTA CCA GTT GTT 170 Met Ile Phe Asn Tyr Val Phe Phe Lys Asn Phe Val Pro Val Val 1 5 10 15
	FAC ATT CTC CTT ATA ATA TAT ATT AAC TTA AAT GGC ATG AAT AAT 218
Leu 1	Tyr Ile Leu Leu Ile Ile Tyr Ile Asn Leu Asn Gly Met Asn Asn 20 25 30
	AAT CAA ATA AAA ACA GAA AAA ATT TAT ATA AAG AAA TTG AAT AGG 266
пуз г	Asn Gln Ile Lys Thr Glu Lys Ile Tyr Ile Lys Lys Leu Asn Arg 35 40 45
	FCA AGG AAA AAT TCG TTA TGT AGT TCT AAA AAT AAA ATA GCA TGC 314
nen 5	Ser Arg Lys Asn Ser Leu Cys Ser Ser Lys Asn Lys Ile Ala Cys 50 55 60
	TTC GAT ATA GGA AAT GAT GAT AAT AGA AAT ACG ACA TAT GGC TAT 362
rea F	Phe Asp Ile Gly Asn Asp Asp Asn Arg Asn Thr Thr Tyr Gly Tyr 65 70 75

	•	•	• •	• •	•	•		* *	• •
			• •		• •	• •		• •	• •
	• •	•	• •	•••	•	•		• •	• •
-	96				•	•	•	• • •	• • •
	•	•		•	•	•		•	•
	•	•	••		•••	•••		• •	• •

AAT	GTG	AAT	GTT	AAA	AAT	GAT	GAT	ATT	AAT	TCC	TTA	CTA	AAA	AAT	AAT	410
Asn	Val	Asn	Val	Lys	Asn	Asp	Asp	Ile	Asn	Ser	Leu	Leu	Lys	Asn	Asn	
80				-	85	_				90					95	
	AGT															458
Tyr	Ser	Asn	Lys	Leu	Tyr	Met	Asp	Lys	Arg	Lys	Asn	Ile	Asn	Asn	Val	
				100					105					110		
	AGT															506
Ile	Ser	Thr	Asn	Lys	Ile	Ser	Gly		Ile	Ser	Asn	Ile		Ser	Arg	
			115					120					125			
	CAA															554
Asn	Gln								Asn	Lys	Gln			Leu	Thr	
												140				600
	TGT															602
Gln	Cys	His	Thr	Tyr	Asn		Ser	His	Glu	Gln		Lys	Leu	Ala	Asn	
	145					150				220	155	mm x	mmm	2012	חתת	650
GAT	AAT	AAT	AGG	AAT	AAT	AAA	AAG	AAT	TTT	AAT	TTA	TTA	Dha	AIA	WWI	630
_	Asn	Asn	Arg	Asn		гаг	rAz	ASII	Pile	170	rea	Leu	File	116	175	
160	TTT	* * *	mmc	***	165	אשכ	***	ידיתת	тст		СТА	חממ	מממ	GAC		698
TAT	Phe	AAT	TOU	AAA	7×4	Mot	Luc	yen	Sar	LAII	Len	yen	T.vs	Asn	Asn	0,50
AT	Pile	MSII	reu	180	ALG	Met	цуз	Maii	185	пец	neu	ASII	Bys	190	11011	
ተተር	TTT	ТАС	тст		GAA	AAA	AAA	TTG		ттт	CTG	CAT	AAG		TAT	746
Phe	Phe	Tur	Cvs	Lvs	Glu	Lvs	Lvs	Leu	Ser	Phe	Leu	His	Lvs	Ala	Tyr	
1110		- 1 -	195	2,0	010	-10	-1-	200					205		•	
AAA	AAA	AAA		TGC	ACT	TTT	CAA		TAT	AGT	TTA	AAA		AAA	TCT	794
	Lys															
-1-	-1-	210		- 1 -			215		•			220	_	-		
AAT	CGT	GAT	TCA	CAT	AAA	TTG	TTT	TCT	GGA	GAA	TTT	GAC	GAT	TAT	ACA	842
Asn	Arg	Asp	Ser	His	Lys	Leu	Phe	Ser	Gly	Glu	Phe	Asp	Asp	Tyr	Thr	
	225					230					235					
AAT	AAT	AAT	GCT	TTA	TAT	GAA	TCC	GAA	AAA	AAA	GAA	TAC	ATT	ACA	CTA	890
Asn	Asn	Asn	Ala	Leu		Glu	Ser	Glu	Lys		Glu	Tyr	Ile	Thr	Leu	
240					245					250					255	0.20
AAT	AAT	AAT	AAT	AAA	AAT	AAT	AAT	AAT	AAA	AAT	AAT	GAT	AAT	AAA	AAT	938
Asn	Asn	Asn	Asn		Asn	Asn	Asn	Asn		Asn	Asn	Asp	Asn		Asn	
				260					265	3 CM	mcm	חתת	ייית ה	270	CCA	986
AAT	GAT	AAT	AAT	GAT	TAT	AAT	AAT	AAT	WAI	AGI	Core	WWI	WWI	TIM	Glv	200
sn	Asp	Asn		Asp	Tyr	ASI	ASII	280	ASII	Ser	Cys	ASII	285	Leu	GIY	
CAC	AGA	mcc	275	СУП	ידמיד	СУТ	ד ממ		GGT	GGA	CAT	ААТ		ААТ	CCA	1034
GAG	Arg	Sor	Val	Hig	ቢላኤ ተህተ	Asn	Agn	Tur	Glv	Glv	Asp	Asn	Asn	Asn	Pro	
GIU	ALG	290	HOII	urs	TYL	Nap	295	- 1 -	013			300				
тст	AAT	AAT	ААТ	ААТ	GAC	AAA		GAT	ATA	GGA	AAA		TTC	AAA	CAG	1082
Cvs	Asn	Asn	Asn	Asn	Asp	Lvs	Tvr	Asp	Ile	Gly	Lys	Tyr	Phe	Lys	Gln	
0,70	305					310	- 4 -			•	315	•		•		
ATT	AAT	ACC	TTT	ATT	AAT		GAT	GAA	TAT	AAA	ACT	ATA	TAT	GGT	GAT	1130
Ile	Asn	Thr	Phe	Ile	Asn	Ile	Asp	Glu	Tyr	Lys	Thr	Ile	Tyr	Gly	Asp	
320					325					330					335	
GAA	ATA	TAT	AAA	GAA	ATA	TAT	GAA	CTA	TAT	GTA	GAA	AGA	AAT	ATT	CCT	1178
Glu	Ile	Tyr	Lys	Glu	Ile	Tyr	Glu	Leu	Tyr	Val	Glu	Arg	Asn	Ile	Pro	
		-	_	340					345					350		
GAA	TAT	TAT	GAA	CGA	AAA	TAT	TTT	TCA	GAA	GAT	ATT	AAA	AAG	AGT	GTC	1226
Glu	Tyr	Tyr	Glu	Arg	Lys	Tyr	Phe		Glu	Asp	Ile	Lys	Lys	Ser	Val	
			355					360					365			1074
CTA	TTT	GAT	ATA	GAT	AAA	TAT	AAT	GAT	GTC	GAA	TTT	GAA	AAA	GCT	ATA	1274
Leu	Phe		Ile	Asp	Lys	Tyr		Asp	Val	Glu	Phe	GLu	гля	Ата	тте	
		370					375					380				

		• •		•	•			• •
			•	• •		•	•	• •
•			• • •	•	•	•	•	
- • 1	/ +		•	•	•	•		
					•			
•	•	• •		•••	• • •			
								_

								•	·	• •	•		• • • • • • • • • • • • • • • • • • • •	• • •	•	•••
AAA	GAA	GAA	TTT	АТА	AAT	AAT	GGA	GTT	TAT	ATT	AAT	AAT	ATA	GAT	AAT	1322
	Glu 385															
ACA	TAT	TAT	AAA	AAA	GAA		ATT	TTA	ATA	ATG		AAG	ATA	TTA	CAT	1370
	Tyr															
400	-	•	•	•	405					410	-	_			415	
TAT	TTC	CCA	TTA	TTA	AAA	TTA	ATT	AAT	AAT	CCA	TCA	GAT	TTA	AAA	AAG	1418
Tyr	Phe	Pro	Leu	Leu 420	Lys	Leu	Ile	Asn	Asn 425	Pro	Ser	Asp	Leu	Lys 430	Lys	
	AAA															1466
Leu	Lys												Lys 445		Phe	
	TTT															1514
	Phe	450					455	_	_			460				
	TCT															1562
	Ser 465					470					475					
	GAT															1610
480	Asp			4	185	-		_		490		_			495	
	TTG															1658
	Leu		-	500	_				505			-		510	_	
	ATT															1706
	Ile		515					520				-	525			1254
	GCT															1754
_	Ala	530					535					540	-			1000
	GCC															1802
	Ala 545		-			550		_		_	555	_		-	_	1050
	GAA															1850
560	Glu			_	565					570					575	1000
	AAA															1898
	Lys	_		580		_			585					590		1046
	AAT Asn															1946
			595				_	600					605			1004
	CCA Pro															1994
		610		_		_	615				_	620				2042
	ATT Ile															2042
	625		_		_	630			_		635					2000
	AAT															2090
640	Asn	_			645					650					655	2120
	AAC															2138
_	Asn	_		660					665	-				670	_	2106
	AGA															2186
ASI	Arg	PEO	675	стλ	ser	тте	ser	680	uis	ren	urs	TÀL	685	val	ser	

- 18

					•				•	•	• •	• •		•••	•••	•	••
	AAT	ATA	GAA	GCA	AAT	GCT	GGT	GAT	AAT	AAA	TTA	TCG	AAA	AAT	GCA	AAA	2234
	Asn	Ile	Glu 690	Ala	Asn	Ala	Gly	Asp 695	Asn	Lys	Leu	Ser	Lys 700	Asn	Ala	Lys	
	GAG	AAT	AAC	ATT	TTT	GAA	AAT	TTG	AAT	TAT	GAT	TAT	ATT	GGT	GTT	GTG	2282
	Glu	Asn 705	Asn	Ile	Phe	Glu	Asn 710	Leu	Asn	Tyr	Asp	Tyr 715	Ile	Gly	Val	Val	
	AAT	GGT	AAT	AAT	ACA	GAA	GAG	CTC	TTT	AAA	GTA	TTA	AAT	AAT	ATA	AAA	2330
	Asn	Gly	Asn	Asn	Thr	Glu	Glu	Leu	Phe	Lys	Val	Leu	Asn	Asn	Ile		
	720					725					730					735	0070
	GAA	AAT	AAA	TTA	AAA	AGA	GCT	ACT	GTT	CTT	CAT	GTA	CGT	ACA	AAA	AAA	2378
	Glu	Asn	Lys	Leu	Lys 740	Arg	Ala	Thr		ьеи -745		vai	Arg	Thr	750	гÀЗ	- 1000
	TCG	AAT	GAT	TTT	ATA	AAT	TCA	AAG	AGT	CCA	ATA	AGT	ATA	TTG	CAC	TCT	2426
			_	755					760					Leu 765			
	ATA	AAG	AAA	AAT	GAG	ATT	TTC	CCT	TTC	GAT	ACC	ACT	ATA	TTA	AAT	GGA	2474
			770					775					780	Leu			2522
														GTG			2522
		785					790					795		Val			2570
														AAT			2570
	Ser 800	Thr	гуз	Tyr	Asp	805	Asn	Asn	гАг	ASII	810	гуs	ASII	Asn	ΑSĎ	815	
		GAA	ΔΤΤ	АТА	AAA		GAA	GAT	ATG	TTT		AAA	GAG	ACG	TTC		2618
														Thr			
	GAT	ATA	TAT	ACA		GAA	ATG	TTA	AAA	TAT	TTA	AAG	AAA	GAT	AGA	AAT	2666
	_		-	835					840					Asp 845			
														TTG			2714
			850					855					860	Leu			27.50
														ATA			2762
		865					870					875		Ile			0010
_														AAG			2810
	80					885					890			Lys		895	0050
	AAA	ATA	CAA	TTA	TGT	ATA	TAT	TCG	ACC	TTT	TTA	CAA	AGA	GCA	TAT	GAT	2858
	_				900					905				Ala	910		2026
														AAG			2906
				915	_				920					Lys 925			2054
														CAT			2954
		_	930		_			935					940	His			3003
														TAT			3002
		945					950					955		Tyr			3050
	TCT	CCA	AGT	AAT	CAA	GTT	GAT	TTG	AAA	AGA	GCT'	CTT	AGG Ara	TTT	GCT Δ1 =	TAT	3050
	960					965					970			Phe		975	2000
	TTA	GAT	AAG	GAC	CAT	TCT	GTG	TAT	ATA	CGT	ATA	CCC	AGA	ATG	AAC	AIA	3098
	Leu	Asp	гÀг	Asp	His 980	ser	val	Tyr	тте	985	TTE	LIO	arg	Met	990	116	

TTA	AGT	GAT	AAG	TAC	ATG	AAA	GGA	TAT	TTG	AAC	ATT	CAT	ATG	AAA	AAT	3146
Leu	Ser	Asp	Lys	Tyr	Met	Lys	Gly	Tyr	Leu	Asn	Ile	His	Met	Lys	Asn	
		_	995	-		-	_	1000					1005	_		
GAG	AGC	AAA	AAT	ATC	GAT	GTA	AAC	GTG	GAT	ATA	AAC	GAT	GAT	GTA	GAT	3194
					Asp											
		1010					1015					1020				
AAA	TAT	AGT	GAA	GAA	TAT			GAT	GAT	AAT			AAA	TCG	ттт	3242
					Tyr											
	1025				_	1030					1035		-1-	002		
		AAA	тст	AGA	ATT		AAA	ATG	GAT			ААТ	ААТ	ААТ	ACA	3290
					Ile											3230
 1040	_														1055	
		CAT													AAA	3338
					Ser											
			_	1060	001	9	017	_	1065	· · · ·		-,-	_	1070	2,0	
GTT	TGT	ATC			ATG	GGT	AGT			ттт	AAT	GTA	-		GCT	3386
					Met											
	-1-		1075			1		1080					1085			
АТА	AAA			GAA	AAA	GAA			АТТ	TCA	САТ			тст	ттт	3434
					Lys											
	-	1090		014	_,0		1095	-1-		001		1100	-1-	001		
TCA			GAT	ATG	ATA			AAT	CCT	тта			AAT	ATG	ATA	3482
					Ile											3.00
	1105					1110					1115	-10				
		GTA	АТА	AAA	CAA		AAA	CAT	CAA			АТТ	ACT	тат	GAA	3530
					Gln											
1120				-	1125		2.70			130	204			_	1135	
		ACT	АТА		GGT	ттт	тст	ACA			ААТ	ААТ	ТАТ			3578
					Gly											
				140	011		-		1145				_	150		
GAA	ААТ	AAT			ACA	AAA	САТ			тат	GTT	САТ			тат	3626
					Thr											3000
014			155	110	****	- 175		1160	عبد	- 1 -	· · · ·		165	110	-] -	
тта	тст			CCA	ATT	GAA			тст	ттт	AAG			CAA	GAA	3674
					Ile											
		170					175				-	180	· · · ·	 -		
GTC			ATG	GAT	AAA			CTT	GTC	AAT			AAA	AAT	TAT	3722
					Lys											• • • • •
	185	-,0				190					1195		y -		-3-	
		ААТ	ддт	ССТ	ACA		ТСТ	AGAT	אבי			יים יים	מממי	יביד	•	3773
	Lys					-		~	1						-	.
1200	-	-1011			205											
	•			_												

TTTTTTTTA TACTTTAATG TGTACAATAA AATATATC TAAATATATT TTATTTGTAC3833

GCTTTTTTT TTTTTTTTT AATTGTTATT TTTGTATAT

3872

- (4) ANGABEN ZU SEQUENZ ID NR: 4
- (i) Sequenzkennzeichen:
 - (A) LÄNGE: 1205 Aminosäuren
 - (B) ART: Aminosäure
- (ii) Art des Moleküls: PROTEIN
- (xi) Sequenzbeschreibung: SEQ ID NO 4:

Met Ile Phe Asn Tyr Val Phe Phe Lys Asn Phe Val Pro Val Val Leu Tyr Ile Leu Leu Ile Ile Tyr Ile Asn Leu Asn Gly Met Asn Asn Lys Asn Gln Ile Lys Thr Glu Lys Ile Tyr Ile Lys Lys Leu Asn Arg Leu Ser Arg Lys Asn Ser Leu Cys Ser Ser Lys Asn Lys Ile Ala Cys Leu Phe Asp Ile Gly Asn Asp Asp Asn Arg Asn Thr Thr Tyr Gly Tyr Asn Val Asn Val Lys Asn Asp Asp Ile Asn Ser Leu Leu Lys Asn Asn Tyr er Asn Lys Leu Tyr Met Asp Lys Arg Lys Asn Ile Asn Asn Val Ile Ser Thr Asn Lys Ile Ser Gly Ser Ile Ser Asn Ile Cys Ser Arg Asn Gln Lys Glu Asn Glu Gln Lys Arg Asn Lys Gln Arg Cys Leu Thr Gln Cys His Thr Tyr Asn Met Ser His Glu Gln Asp Lys Leu Ala Asn Asp Asn Asn Arg Asn Asn Lys Lys Asn Phe Asn Leu Leu Phe Ile Asn Tyr Phe Asn Leu Lys Arg Met Lys Asn Ser Leu Leu Asn Lys Asp Asn Phe Phe Tyr Cys Lys Glu Lys Lys Leu Ser Phe Leu His Lys Ala Tyr Lys Lys Lys Asn Cys Thr Phe Gln Asn Tyr Ser Leu Lys Arg Lys Ser Asn Arg Asp Ser His Lys Leu Phe Ser Gly Glu Phe Asp Asp Tyr Thr Asn Asn Asn Ala Leu Tyr Glu Ser Glu Lys Lys Glu Tyr Ile Thr Leu Asn Asn Asn Asn Lys Asn Asn Asn Lys Asn Asn Asp Asn Lys Asn Asn Asp Asn Asn Asp Tyr Asn Asn Asn Ser Cys Asn Asn Leu Gly Glu Arg Ser Asn His Tyr Asp Asn Tyr Gly Gly Asp Asn Asn Pro Cys

Asn Asn Asn Asp Lys Tyr Asp Ile Gly Lys Tyr Phe Lys Gln Ile Asn Thr Phe Ile Asn Ile Asp Glu Tyr Lys Thr Ile Tyr Gly Asp Glu Ile Tyr Lys Glu Ile Tyr Glu Leu Tyr Val Glu Arg Asn Ile Pro Glu Tyr Tyr Glu Arg Lys Tyr Phe Ser Glu Asp Ile Lys Lys Ser Val Leu Phe Asp Ile Asp Lys Tyr Asn Asp Val Glu Phe Glu Lys Ala Ile Lys Glu Glu Phe Ile Asn Asn Gly Val Tyr Ile Asn Asn Ile Asp Asn Thr Tyr Tyr Lys Lys Glu Asn Ile Leu Ile Met Lys Lys Ile Leu His Tyr Phe Pro Leu Lys Leu Ile Asn Asn Pro Ser Asp Leu Lys Lys Leu Lys Lys Gln Tyr Leu Pro Leu Leu Ala His Glu Leu Lys Ile Phe Leu Phe Phe Ile Val Asn Ile Thr Gly Gly His Phe Ser Ser Val Leu Ser Ser Leu Glu Ile Gln Leu Leu Leu Tyr Ile Phe Asn Gln Pro Tyr Asp Asn Val Ile Tyr Asp Ile Gly His Gln Ala Tyr Val His Lys Ile Leu Thr Gly Arg Lys Leu Leu Phe Leu Ser Leu Arg Asn Lys Lys Gly le Ser Gly Phe Leu Asn Ile Phe Glu Ser Ile Tyr Asp Lys Phe Gly Ala Gly His Ser Ser Thr Ser Leu Ser Ala Ile Gln Gly Tyr Tyr Glu Ala Glu Trp Gln Val Lys Asn Lys Glu Lys Tyr Gly Asn Gly Asp Ile Glu Ile Ser Asp Asn Ala Asn Val Thr Asn Asn Glu Arg Ile Phe Gln Lys Gly Ile His Asn Asp Asn Asn Ile Asn Asn Ile Asn Asn Asn Asn Tyr Ile Asn Pro Ser Asp Val Val Gly Arg Glu Asn Thr Asn Val Pro Asn Val Arg Asn Asp Asn His Asn Val Asp Lys Val His Ile Ala

Ile Ile Gly Asp Gly Gly Leu Thr Gly Gly Met Ala Leu Glu Ala Leu Asn Tyr Ile Ser Phe Leu Asn Ser Lys Ile Leu Ile Ile Tyr Asn Asp Asn Gly Gln Val Ser Leu Pro Thr Asn Ala Val Ser Ile Ser Gly Asn Arg Pro Ile Gly Ser Ile Ser Asp His Leu His Tyr Phe Val Ser Asn Ile Glu Ala Asn Ala Gly Asp Asn Lys Leu Ser Lys Asn Ala Lys Glu Asn Asn Ile Phe Glu Asn Leu Asn Tyr Asp Tyr Ile Gly Val Val Asn ly Asn Asn Thr Glu Glu Leu Phe Lys Val Leu Asn Asn Ile Lys Glu Asn Lys Leu Lys Arg Ala Thr Val Leu His Val Arg Thr Lys Lys Ser Asn Asp Phe Ile Asn Ser Lys Ser Pro Ile Ser Ile Leu His Ser Ile Lys Lys Asn Glu Ile Phe Pro Phe Asp Thr Thr Ile Leu Asn Gly Asn Ile His Lys Glu Asn Lys Ile Glu Glu Glu Lys Asn Val Ser Ser Ser Thr Lys Tyr Asp Val Asn Asn Lys Asn Asn Lys Asn Asn Asp Asn Ser Glu Ile Ile Lys Tyr Glu Asp Met Phe Ser Lys Glu Thr Phe Thr Asp Ile Tyr Thr Asn Glu Met Leu Lys Tyr Leu Lys Lys Asp Arg Asn Ile Ile Phe Leu Ser Pro Ala Met Leu Gly Gly Ser Gly Leu Val Lys Ile Ser Glu Arg Tyr Pro Asn Asn Val Tyr Asp Val Gly Ile Ala Glu Gln His Ser Val Thr Phe Ala Ala Ala Met Ala Met Asn Lys Lys Leu Lys Ile Gln Leu Cys Ile Tyr Ser Thr Phe Leu Gln Arg Ala Tyr Asp Gln Ile Ile His Asp Leu Asn Leu Gln Asn Ile Pro Leu Lys Val Ile Ile

Gly Arg Ser Gly Leu Val Gly Glu Asp Gly Ala Thr His Gln Gly Ile Tyr Asp Leu Ser Tyr Leu Gly Thr Leu Asn Asn Ala Tyr Ile Ile Ser Pro Ser Asn Gln Val Asp Leu Lys Arg Ala Leu Arg Phe Ala Tyr Leu Asp Lys Asp His Ser Val Tyr Ile Arg Ile Pro Arg Met Asn Ile Leu Ser Asp Lys Tyr Met Lys Gly Tyr Leu Asn Ile His Met Lys Asn Glu Ser Lys Asn Ile Asp Val Asn Val Asp Ile Asn Asp Asp Val Asp Lys Tyr Ser Glu Glu Tyr Met Asp Asp Asp Asn Phe Ile Lys Ser Phe Ile Gly Lys Ser Arg Ile Ile Lys Met Asp Asn Glu Asn Asn Asn Thr Asn Glu His Tyr Ser Ser Arg Gly Asp Thr Gln Thr Lys Lys Lys Val Cys Ile Phe Asn Met Gly Ser Met Leu Phe Asn Val Ile Asn Ala Ile Lys Glu Ile Glu Lys Glu Gln Tyr Ile Ser His Asn Tyr Ser Phe Ser Ile Val Asp Met Ile Phe Leu Asn Pro Leu Asp Lys Asn Met Ile Asp His Val Ile Lys Gln Asn Lys His Gln Tyr Leu Ile Thr Tyr Glu Asp sn Thr Ile Gly Gly Phe Ser Thr His Phe Asn Asn Tyr Leu Ile Glu Asn Asn Tyr Ile Thr Lys His Asn Leu Tyr Val His Asn Ile Tyr Leu Ser Asn Glu Pro Ile Glu His Ala Ser Phe Lys Asp Gln Glu Val Val Lys Met Asp Lys Cys Ser Leu Val Asn Arg Ile Lys Asn Tyr Leu Lys Asn Asn Pro Thr

(5) ANGABEN ZU SEQUENZ ID NO: 5

Plasmodium falciparum gcpE-Gen

- (i) SEQUENZKENNZEICHEN:
- (D) LÄNGE: 2109 BASENPAARE
- (E) ART: genomische Sequenz
- (ii) ART DES MOLEKÜLS: DNA
- (iii) URSPRÜNGLICHE HERKUNFT:
- (B) ORGANISMUS: Plasmodium falciparum

FUNKTION: essentielles Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO:5

ataaaatcttatttaggtataggatctttattatatgatggtataggagataccattcgt I K S Y L G I G S L L Y D G I G D T I R atateettaaeagaagateettqqqaaqaqttaaeteettqtaaaaaattaqttqaaaat SLTEDPWEELTPCKKLVEN LKKRIFYNENFKEDNELKNN gaaatggataccaaaaatctattaaattttgaagaaaattatcgaaattttaataatata EMDTKNLLNFEENYRNFNNI aaaaaaaqaaatqtaqaaaaaaataataatgtattacatgaaqagtgcactataggtaat K K R N V E K N N N V L H E E C T I G N gtagtaaccataaaagagttagaagattctctgcaaatttttaaagatttaaatttagaa V V T I K E L E D S L Q I F K D L N L E gtagattcaaatggaaatttgaaaaagggagccaaaacaactgatatggttattataaat V D S N G N L K K G A K T T D M V I I N qattttcataatataacaaatttaqqaaaaaaactqtqqataaattaatqcaaqtqqqa D F H N I T N L G K K T V D K L M Q V G attaatataqtaqttcaatatqaaccacataatataqaatttataqaaaaaatggaacca NIVVQYEPHNIEFIEKMEP N D N N N N N N N I L F Y V D I K aatattatqaacaqttcaqaaaaaatattaaattaaqtaattctaaaqqatatqqatta I M N S S E K N I K L S N S K G Y G L attttaaacqqaaaqaaqatatacaaaccataaaaaaaataaaaqaattaaatcqtcqt I L N G K E D I Q T I K K I K E L N R R cctttattcattctattaaaatcagataacatatatgaacatgtattaataaccagaaga PLFILLKSDNIYEHVLITRR attaatgaacttttacaatccttaaatataaatataccttatatacattatgttgatatt INELLQSLNINIPYIHYVDI aattcaaataattatgatgatatattagttaattcaacattatatgcaggaagttgtttg N S N N Y D D I L V N S T L Y A G S C L atggatttaatgggggatggtcttattgttaacgtaactaatgatgttcttacaaataaa M D L M G D G L I V N V T N D V L T N K aaagggtag K G -

(6) SEQ ID NO: 6

(i) Sequenzkennzeichen:

(A) Länge: 679 Aminosäuren

(B) Art: Aminosäure

(ii) Art des Moleküls: Protein

(iv) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Plasmodium falciparum

1 MSYIKRLILF MLLFYSHVKI KKLFIKISNV NIFFAEAKKN GKKEFFLFLL

51 NIKKNSQQKK TYHITKRNTI NKSDFLYSLL NEEGNSSKKE YKNLKDEEKY

101 NIIQNIKKYC ECTKKYKRLP TREVVIGNVK IGGNNKIAIQ TMASCDTRNV

151 EECVYQIRKC KDLGADIVRL TVQGVQEAQA SYHIKEKLLS ENVNIPLVTD

		• •		•	•			••
• •	• •	• •	•	• •	• •		• •	•
• •			•••	•	•		• •	•
- 36		: :	•	•	-16	•	• • •	• •
- 20	•	• •	•		•		•	
•	•	• •	•	• • •	•••		• •	• •

201	IHFNPKIALM	AADVFEKIRV	NPGNYVDGRK	KWIDKVYKTK	EEFDEGKLFI
251	KEKFVPLIEK	CKRLNRAIRI	GTNHGFLSSR	VLSYYGDTPL	ALVESAMRFS
301	DLCNENNFNN	LVFSMKASNA	YVMIQSYRLL	VSKQYERNMM	FPIHLGVTEA
351	GFGDNGRIKS	YLGIGSLLYD	GIGDTIRISL	TEDPWEELTP	CKKLVENLKK
401	RIFYNENFKE	DNELKNNEMD	TKNLLNFEEN	YRNFNNIKKR	NVEKNNNVLH
451	EECTIGNVVT				
501	NITNLGKKTV				
551	LFYVDIKNIM				
601	ILLKSDNIYE	HVLITRRINE	LLQSLNINIP	YIHYVDINSN	NYDDILVNST
651	LYAGSCLMDL	MGDGLIVNVT	NDVLTNKKG-		

Patentansprüche

- 1. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 2. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 3. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO:6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 4. DNA-Sequenz gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie außerdem funktionelle Regulationssignale, insbesondere Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, aufweist.
- 5. DNA-Sequenz mit folgenden Teilsequenzen
 - i) Promotor, der in Viren, Eukaryonten und Prokaryonten aktiv ist und die Bildung einer RNA im vorgesehenen Zielgewebe oder den Zielzellen sicherstellt,
 - ii) DNA-Sequenzen gemäß einem der Ansprüche 1 bis 3,

- iii) 3'-nichttranslatierte Sequenz, die in Viren, Eukaryonten und Prokaryonten zur Addition von Poly-A Resten an das 3'-Ende der RNA führt.
- 6. Verfahren zur Herstellung von transgenen Viren, Eukaryonten und Prokaryonten zur Veränderung des Isoprenoid-Gehaltes, dadurch gekennzeichnet, daß eine DNA-Sequenz gemäß Anspruch 4 oder 5 in das Genom von Viren, eukaryontischen und prokaryontischen Zellen mit oder ohne Verwendung eines Plasmids transferiert und eingebaut wird.
- 7. Expressionsvektor, enthaltend eine oder mehrere DNA-Sequenzen gemäß Anspruch 1 bis 3.
- 8. Protein, welches am 1-Deoxy-D-Xylulose-5-PhosphatStoffwechselweges beteiligt ist und a) codiert wird von der
 in DNA-Sequenz SEQ ID NO: 1,3,5 oder b) codiert wird von
 DNA-Sequenzen, die mit den DNA-Sequenzen SEQ ID NO: 1,3,5
 oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der
 für das reife Protein codiert, hybridisieren.
- 9. Protein nach den Anspruch 8, erhältlich aus den Kulturüberständen von Parasiten oder aus den aufgeschlossenen Pårasiten und Aufreinigung über chromatographische und elektrophoretische Techniken.
- 10. Protein nach einem der Ansprüche 8 und 9, dadurch gekennzeichnet, daß es a) das Produkt einer viralen, prokaryontischen oder eukaryontischen Expression einer exogenen DNA ist, b) codiert wird von den Sequenzen SEQ ID NO: 1, 3 oder 5 oder codiert wird von DNA-Sequenzen, die mit den in den DNA-Sequenzen SEQ ID NO: 1, 3 oder 5 oder Fragmenten dieser DNA-Sequenzen im DNA-Bereich, der für das reife Protein kodiert, hybridisieren, oder c) codiert wird von DNA-Sequenzen, die ohne Degeneration des genetischen Codes mit den in b) definierten Sequenzen hybridisieren würden und

für ein Polypeptid mit entsprechender Aminosäure-Sequenz kodieren.

- 11. Protein gemäß einem der vorangehenden Ansprüchen, welches aus den Aminosäuren von Sequenz SEQ ID NO: 2, 4 und 6 besteht.
- 12. Verfahren zur Bestimmung der enzymatische Aktivität des gcpE-Proteins, dadurch gekennzeichnet, daß Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D-erythritol-erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrosephosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat, und der Phosphat- und Alkoholvorstufen, detektiert wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Phosphorylierung der folgenden Phosphate oder Alkohole detektiert wird:

 $CH_2 (OH) - C (CH_3) = C (OH) - CH_2 - O - PO (OH)_2$

 $CH_2 (OH) - C (CH_3) = C (OH) - CH_2 - OH$,

 CH_2 (OH) -CH (CH₃) $-CO-CH_2-O-PO$ (OH) $_2$, CH_2 (OH) -CH (CH₃) $-CO-CH_2-OH$

 $CH_2=C(CH_3)-CO-CH_2-O-PO(OH)_2$, $CH_2=C(CH_3)-CO-CH_2-OH$,

 $CH_2=C (CH_3) - CH (OH) - CH_2 - O - PO (OH)_2$, $CH_2=C (CH_3) - CH (OH) - CH_2 - OH$,

 CH_2 (OH) -C (= CH_2) -C (OH) $-CH_2$ -O-PO (OH) $_2$,

 CH_2 (OH) -C (= CH_2) -C (OH) - CH_2 -OH

CHO-CH (CH₃) -CH (OH) -CH₂-O-PO (OH) $_2$, CHO-CH (CH₃) -CH (OH) -CH₂-OH,

 CH_2 (OH) -C (OH) (CH₃) -CH=CH-O-PO (OH) ₂,

 CH_2 (OH) -C (OH) (CH₃) -CH=CH-OH

 $CH(OH) = C(CH_3) - CH(OH) - CH_2 - O - PO(OH)_2$

 $CH(OH) = C(CH_3) - CH(OH) - CH_2 - OH$

- 14. Verfahren zum Screening einer Verbindung, wobei das Verfahren umfaßt:
 - a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1,

SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Analoga dieser aufweist, und außerdem eine Verbindung, von der vermutet wird, daß sie eine antimykotische, antibiotische, antiparasitäre oder antivirale Wirkung bei Mensch und Tier hat,

- b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
- c) Bestimmung der antimikrobiellen, antimykotischen, antibiotischen, antiparasitären oder antiviralen Wirksamkeit der Verbindung.
- 15. Verfahren zum Screening einer Verbindung, wobei das Verfahren umfaßt:
 - a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz gemäß SEQ ID NO:1, SEQ ID NO: 3 oder SEQ ID NO: 5 oder Varianten oder Analoga dieser aufweist, und außerdem eine Verbindung, von der vermutet wird, daß sie eine antimikrobielle, antivirale, antiparasitäre, bakterizide, fungizide oder herbizide Wirkung bei Pflanzen hat,
 - b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
 - c) Bestimmung der antimikrobiellen, antiviralen, antiparasitären, bakteriziden, fungiziden oder herbiziden Wirksamkeit.der Verbindung.

Klassischer Acetat/ Alternativer DOX-P Mevalonat-Pathway Pathway 11-13Cl Glucose [1-13C] Glucose [3-13C] Triosephosphat [3-13C] Glycerinaldehyd-3phosphat 3x [2-13C] Acetyl-CoA [3-13C] pyruvat DOXP-Synthase OH HOOC O-SCoA HO-HMG-CoA 1-Deoxyxylulose-5-P (DOX-P) OH HOOC DOXP-Reduktoisomerase OH Mevalonat (MVA) ÓН 2-C-Methylerythose-4-phosphat HOOC ÒН Mevalonat-5-diphosphat OH 2-C-Methylerythritol-4-phosphat **IPP** gcpE-**IPP** höhere Pflanzen (Cytoplasmen), Tiere, Pilze; Eubakterien höhere Pflanzen (Plastide), Fig. 4 Grünalgen, viele Eubakterien