CSE 5370: Bioinformatics

Jacob M. Luber, Ph.D.

Lecture 5: Genome Sequencing

February 2nd, 2022

HW1 & Quiz 1

- Quiz1
 - Average 85
 - Standard Deviation 20
 - Median 83
- HW1
 - Average 91
 - Standard Deviation 23
 - Median 102.5

HW1 Thoughts

- Average was very high, but the distribution was very bi-modal
- If you received <70, please schedule an office hours appointment as coding will only get more challenging
 - Starting HW early and coming to office hours
- Assignment took an average of 6-7 hours; longer than designed but you all did well!
- HW2 is being adjusted so less time will be spent on installing packages
- Non-deterministic output of Megahit

HW2

- Will be released in next few days after adjustments are made
- First assignment that can be put in a github portfolio for job applications (all of the remaining assignments will be this way)
- We will write a simplified genome assembler:
 - 1. Write a brute force approach (team)
 - 2. Speed up brute force approach with graph algorithms (team)
 - 3. Compare with megahit (individual)
- Two weeks to complete

Graph Algorithms For Strings

- -Bridges and Landmasses in Königsberg, Russia: Can we walk to each landmass crossing each bridge only once?
- -Solved by mathematician Leonhard Euler in 1735: Eulerian Cycle -landmass as nodes, bridges as edges
- -Can be applied to genome assembly with overlaps

READS: ATCATG ATGCGC Assembly: ATCATG ATGCGC

-Genomes as *strings*

Why Study Bioinformatics?

Sanger sequencing

P³² labelled ddNTPs

Lack of OH-group at 3' position of deoxyribose

Fluorescent dye terminators

Max fragment length – 750 bp

Sequencing genomes using Sanger's method

- Extract & purify genomic DNA
- Fragmentation
- Make a clone library
- Sequence clones
- Align sequencies (-> contigs -> scaffolds)
- Close the gaps

Cost/Mb=1000 \$, and it takes TIME

At the very beginning of genome sequencing era...

• First genome: virus φ X 174 - 5 368 bp (1977)

• First organism: Haemophilus influenzae - 1.5 Mb (1995)

• First eukaryote: Saccharomyces cerevisiae - 12.4 Mb (1996)

• First multicellular organism: Cenorhabditis elegans - 100 MB (1998-2002)

• First plant: Arabidopsis thaliana - 157 Mb (2000)

Just an interesting comparison:

- Human genome project, 2007
 - Genome of Craig Venter costs \$70M
 - Sanger's sequencing

- Genome of James Watson costs \$2M
 - 454 pyrosequencing
- Today: 1000 \$ / individual

Paradigm Change

- From single genes to complete genomes
- From single transcripts to whole transcriptomes
- From single organisms to complex metagenomic pools
- From model organisms to anything

NGS technologies

Company	Platform	Amplification	Sequencing method
Roche	454**	emPCR	Pyrosequencing
Illumina	HiSeq MiSeq	Bridge PCR	Synthesis
LifeTech	SOLiD**	emPCR/ Wildfire	Ligation
LifeTech	Ion Torrent Ion Proton	emPCR	Synthesis (pH)
Pacific Bioscience	RSII	None	Synthesis
Complete genomics	Nanoballs	None	Ligation
Oxford Nanopore*	GridION	None	Flow

RIP technologies: Helicos, Polonator, etc.

In development: Tunneling currents, nanopores, etc.

Differences between platforms

- Technology: chemistry + signal detection
- Run times vary from hours to days
- Production range from Mb to Gb
- Read length from <100 bp to > 20 Kbp
- Accuracy per base from 0.1% to 15%
- Cost per base varies

Illumina

Instrument	Yield and run time	Read Length	Error rate	Error type
Upgrade HiSeq2500	120 GB in 27h or standard run	100x100	0.1%	Subst
MiSeq	540 Mb – 15 Gb (4 – 48 hours)	Upp to 350x350	0.1%	Subst

Main applications

- Whole genome, exome and targeted reseq
- Transcriptome analyses
- Methylome and ChiPSeq
- Rapid targeted resequencing (MiSeq)

Illumina

1. PREPARE GENOMIC DNA SAMPLE

Bind single-stranded fragments randomly to and ligate adapters to both ends of the the inside surface of the flow cell channels.

2. ATTACH DNA TO SURFACE

Add unlabeled nudeotides and enzyme to initiate solid-phase bridge amplification.

7. DETERMINE FIRST BASE

First chemistry cycle: to initiate the first sequencing cycle, add all four labeled reversible terminators, primers and DNA polymerase enzyme to the flow cell.

8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each duster on the flow cell. Record the identity of the first base for each duster.

9. DETERMINE SECOND BASE

Second chemistry cycle: to initiate the next sequencing cycle, add all four labeled reversible terminators and enzyme to the flow cell.

4. FRAGMENTS BECOME DOUBLE STRANDED

fragments.

Attached

terminus

phase substrate.

The enzyme incorporates nucleotides to

build double-stranded bridges on the solid-

Denaturation leaves single-stranded templates anchored to the substrate.

6. COMPLETE AMPLIFICATION

3. BRIDGE AMPLIFICATION

After laser excitation, collect the image data Repeat cycles of sequencing to determine as before. Record the identity of the second base for each duster.

10. IMAGE SECOND CHEMISTRY CYCLE 11. SEQUENCE READS OVER MULTIPLE 12. ALIGN DATA CHEMISTRY CYCLES

the sequence of bases in a given fragment a single base at time.

Align data, compare to a reference, and identify sequence differences.

5. DENATURE THE DOUBLE-STRANDED

Several million dense dusters of doublestranded DNA are generated in each channel of the flow cell.

Pacific Bioscience

Instrument	Yield and run time	Read Length	Error rate	Error type
RS II	500 MB/180 min SMRTCell	250 bp – 20 000 bp (35 000 bp)	15% (on a single passage!)	Insertions , random

Single-Molecule, Real-Time DNA sequencing

Oxford Nanopore Technologies

- » Protein nanopores on silicon chip
- » DNA measured as it's pulled through
- » 125 Gb / day (8K)
- » 50–100,000 base reads
- » 4% error rate
- » As low as \$10/Gb (20 x 8K)

	Illumina HiSeq	Illumina MiSeq	SOLiD Wildfire	Ion Torrent	Ion Proton	PacBio
Read length	100 + 100 bp (150+150 bp)	250 + 250 bp (350+350 bp)	75 bp	200 bp 400 bp (500 bp)	150 bp 200 bp	1 – 20 Kbp
WGS: - human - small	++++	+++	(+) (+)	++++	+	(+) ++++
De novo	+++	++		+++	++	+++++
RNA-seq miRNA	+++		+++		+++	+++*
ChIP	+++		++++			
Amplicon	++	+++		+++	+++	+++
Metylation	+++					++++*
Target re- seq	++	+++	(+)		+++	+++
Exome	+++		(+)		++++	(+)

Exam Question Hint

• Given a sequencing problem, which platform would we want to use

Sequence assembly

Sequence assembly

Phred

Four approaches to assembly

- Naïve approach
- Greedy approach
- Overlap / Layout / Consensus
- de Bruijn Graphs

Naïve approach

- Compare every sequence to every other sequence
- Find stretches that are the same
- Need to account for phred scores what if a base is wrong?
- How long of a sequence do you need to be unique?

Sequence composition

- 4 bases
- 4ⁿ chance of finding a sequence if all evenly used (they are not)
- 3 bp: $4^3 = 64$
- 8 bp: $4^8 = 65,336$
- 20 bp: $4^{20} = 1,099,511,627,776$

Greedy approaches

Start with a sequence

 Keep extending it while another sequence matches the end

When can not be extended further, mark as a contig

Assembly is a "graph" problem

- Overlap/Layout/Consensus
- de Bruijn Graph
- Greedy graphs

A graph is nodes + edges

Assemble these two sequences!

AACCGGT CCGGTTA

Consensus: AACCGGTTA

AACCGGT as graphs

Node = K-mers; edges = nodes that overlap by K-1 bases.

Here K = 4, but in reality K = 19 to 31

Join the two graphs

Differences between overlap graphs and de Bruijn graphs for assembly.

(a) Overlap, Layout, Consensus assembly

(b) De Bruijn graph assembly

(ii) Layout reads

(iii) Build consensus

CGATTCTA
TTCTAAGT
GATTGTAA
CGATTCTAAGT

(i) Make kmers

(ii) Build graph

(iii) Walk graph and output contigs

CGATTCTAAGT

HW2

- Will be released in next few days after adjustments are made
- First assignment that can be put in a github portfolio for job applications (all of the remaining assignments will be this way)
- We will write a simplified genome assembler:
 - 1. Write a brute force approach (team)
 - 2. Speed up brute force approach with graph algorithms (team)
 - 3. Compare with megahit (individual)
- Two weeks to complete

Next Class

• I will be coding, working on the document scanner on assembly problems