Seattle Car Accident Severity Analysis Report

Michael Sheppler 11/1/2020

1. Introduction/Business Problem

The World Health Organization estimates that 1.35 million people die each year because of road traffic crashes. It is the first cause of death among children aged 5-14 and among young adults aged 15-29. An additional 20-50 million suffer non-fatal injuries, often resulting in long-term disabilities. By using machine learning (ML) predictive modelling, I will measure the influence of independent variables on the severity of accidents.

Several factors contribute to road crashes and resulting deaths and severity of injuries. By understanding these factors, accidents could be prevented, and insights gained which can be shared with the respective drivers of the vehicles so that they can make informed road safety decisions. They are the target audience of this report using Machine Learning (ML) predictive modelling.

2. Data

The data were downloaded from the Example Dataset from the Coursera Applied Data Science Capstone Project. The data are a subset derived from the Seattle Accident Traffic Records Department. The URL is https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv. The data consists of 38 independent variables and 194,673 rows.

The dependent variable, "SEVERITYCODE", contains data that correspond to different levels of severity. This data is a broader categorization of the data found in the Metadata file that accompanies the dataset.

Attribute	Description	
SEVERITYCODE	A code that corresponds to the severity of the	
	collision: • 1—property damage • 2—injury	

The data collection also includes attributes which include **unsafe road user behaviors**, such as whether the driver was speeding or under the influence of drugs or alcohol and **environmental attributes** such as the weather, road conditions and the light conditions reported at the time of the accident. I have selected the following environmental attributes to accurately build a model to prevent future accidents or reduce their severity.

Attribute	Description	
WEATHER	A description of the weather conditions during the	
	time of the collision.	
ROADCOND	The condition of the road during the collision.	
LIGHTCOND	The light conditions during the collision	

This dataset will be used to analyze WEATHER, ROADCOND and LIGHCOND to determine whether they have any relationship on the Severity of the accident.

3. Methodology

3.1 Data / Preparation

Data columns not needed for data analysis were dropped from the dataset.

Dropped columns	Kept columns
'OBJECTID', 'SEVERITYCODE.1',	'SEVERITYCODE', 'WEATHER',
'REPORTNO', 'INCKEY',	'ROADCOND', 'LIGHTCOND',
'COLDETKEY',	,
'X', 'Y', 'STATUS','ADDRTYPE',	
'INTKEY', 'LOCATION',	
'EXCEPTRSNCODE',	
'EXCEPTRSNDESC',	
'SEVERITYDESC', 'INCDATE',	
'INCDTTM', 'JUNCTIONTYPE',	
'SDOT_COLCODE',	
'SDOT_COLDESC',	
'PEDROWNOTGRNT',	
'SDOTCOLNUM',	
'ST_COLCODE', 'ST_COLDESC',	
'SEGLANEKEY',	
'CROSSWALKKEY',	
'HITPARKEDCAR', 'PEDCOUNT',	
'PEDCYLCOUNT',	
'PERSONCOUNT', 'VEHCOUNT',	
'COLLISIONTYPE',	
'SPEEDING', 'UNDERINFL',	
'INATTENTIONIND'	

The remaining columns were then converted to categories and variables assigned for model analysis.

	SEVERITYCODE	WEATHER	ROADCOND	LIGHTCOND	WEATHER_CAT	ROADCOND_CAT	LIGHTCOND_CAT
0	2	Overcast	Wet	Daylight	4	8	5
1	1	Raining	Wet	Dark - Street Lights On	6	8	2
2	1	Overcast	Dry	Daylight	4	0	5
3	1	Clear	Dry	Daylight	1	0	5
4	2	Raining	Wet	Daylight	6	8	5

3.2 Data / Exploration

I created a histogram of the SEVERITYCODE values.

Bar 1 property damage Bar 2 Injury

I also examined the value counts for the "WEATHER", " ROADCOND" and "LIGHCOND" columns. They are as follows:

WEATHER	
Clear	111135
Raining	33145
Overcast	27714
Unknown	15091
Snowing	907
Other	832
Fog/Smog/Smoke	569
Sleet/Hail/Freezing Rain	113
Blowing Sand/Dirt	56
Severe Crosswind	25
Partly Cloudy	5

ROADCOND

Dry	124510
Wet	47474
Unknown	15078
Ice	1209
Snow/Slush	1004
Other	132
Standing Water	115
Sand/Mud/Dirt	75
Oil	64

LIGHTCOND

Daylight	116137
Dark - Street Lights On	48507
Unknown	13473
Dusk	5902
Dawn	2502
Dark - No Street Lights	1537
Dark - Street Lights Off	1199
Other	235
Dark - Unknown Lighting	11

3.2 Data / Standardization

Because the dependent variable, Severity, was unbalanced and would cause problems with the modeling, I resampled the data to produce a balance data set.

```
2    58188
1    58188
Name: SEVERITYCODE, dtype: int64
```

I defined the two variables X (WEATHER, ROADCOND and LIGHCOND) and Y (SEVERITYCODE). I then normalized the dataset and initiated a Train/Test Split.

3.3 Data / Predictive Modeling

I used 3 machine learning models for my project.

- KNN will be used to predict the severity of an outcome by finding the most similar data point within k distance.
- Decision Tree will give us an outcome of environmental conditions on the severity of the accident.
- Logistic Regression will be used to predict severity outcomes.

4. Results

The following chart represents the accuracy of the models.

Algorithm	Jaccard	F1 - Score	Log Loss
KNN	0.55	0.53	NA
Decision Tree	0.55	0.47	NA
Logistic Regression	0.52	0.51	0.68

Based on the accuracy percentages, we can see that by having median values, the environmental attributes (weather, road conditions and light conditions) have some, but not an overwhelming influence, on the severity of the accidents.

5. Discussion

Given my understanding of the data, I would further analyze other combinations of the data, such as spatial data, time data and unsafe road user behaviors to create a better understanding of the factors that contribute to accidents in the Seattle area. I would recommend providing that information to the public to promote a safer driving experience.

6. Conclusion

I followed the CRISP-DM process model for my Seattle Car Accident Severity Analysis Report. The initial phase began with stating the object of the project which was to predict the severity of accidents in the Seattle by analyzing the environment data found in the database example provided for the Capstone Project. I extracted the dataset and took the following steps.

- a) determined what attributes were needed to train my machine learning models
- b) dropped superfluous data that were not relevant to the project's objective

- c) converted the remaining environmental attributes to categories
- d) assigned variables to the categories
- e) balanced the severity data set
- f) transformed the data for ingestion into the ML predictive models
- g) ran the models
- h) created a chart to illustrate the accuracy of the models using the data

This is my first project in which I have utilized the principles and procedures I learned from my Coursera classes for the IBM Data Science professional certificate. I realize it is an introduction to the field, and I hope with more experience, I will gain a deeper understanding of the principles of data science.