Exploratory Data Analysis (EDA) on Retail Data

Overview

This project involves the analysis of three datasets—customers, products, and transactions—to extract valuable insights into customer behavior, sales trends, and product performance. Below is a breakdown of the steps and tasks performed.

1. Data Loading and Libraries Setup

- Imported essential Python libraries:
 - numpy and pandas for data manipulation.
 - matplotlib and seaborn for data visualization.
- Loaded datasets:
 - Customers: customers.csv
 - **Products**: products.csv
 - Transactions: transactions.csv

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [3]: plt.style.available

```
Out[3]: ['Solarize_Light2',
          '_classic_test_patch',
          _mpl-gallery',
          '_mpl-gallery-nogrid',
          'bmh',
          'classic',
          'dark_background',
          'fast',
          'fivethirtyeight',
          'ggplot',
          'grayscale',
          'petroff10',
          'seaborn-v0_8',
          'seaborn-v0_8-bright',
          'seaborn-v0_8-colorblind',
          'seaborn-v0_8-dark',
          'seaborn-v0_8-dark-palette',
          'seaborn-v0_8-darkgrid',
          'seaborn-v0_8-deep',
          'seaborn-v0_8-muted',
          'seaborn-v0_8-notebook',
          'seaborn-v0_8-paper',
          'seaborn-v0_8-pastel',
          'seaborn-v0_8-poster',
          'seaborn-v0_8-talk',
          'seaborn-v0_8-ticks',
          'seaborn-v0_8-white',
          'seaborn-v0_8-whitegrid',
          'tableau-colorblind10']
In [8]: sns.set_style("darkgrid")
In [9]: # Load the datasets
        customers = pd.read_csv("Desktop/Customers.csv")
        products = pd.read_csv("Desktop/Products.csv")
        transactions = pd.read_csv("Desktop/Transactions.csv")
```

```
Customers Dataset:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- -----
                -----
   CustomerID 200 non-null object
a
   CustomerName 200 non-null object
1
2
   Region 200 non-null object
    SignupDate
               200 non-null
                              object
dtypes: object(4)
memory usage: 6.4+ KB
None
Products Dataset:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- -----
              -----
  ProductID 100 non-null object
0
1
   ProductName 100 non-null object
  Category 100 non-null object
2
              100 non-null
   Price
                             float64
dtypes: float64(1), object(3)
memory usage: 3.2+ KB
None
Transactions Dataset:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):
# Column
              Non-Null Count Dtype
--- -----
                  -----
a
1
```

0 TransactionID 1000 non-null object
1 CustomerID 1000 non-null object
2 ProductID 1000 non-null object
3 TransactionDate 1000 non-null object
4 Quantity 1000 non-null int64
5 TotalValue 1000 non-null float64
6 Price 1000 non-null float64

dtypes: float64(2), int64(1), object(4)

memory usage: 54.8+ KB

None

2. Data Exploration

- Displayed dataset structures using .info():
 - Customers: 200 entries, 4 columns (CustomerID, CustomerName, Region, SignupDate).
 - **Products**: 100 entries, 4 columns (ProductID, ProductName, Category, Price).
 - **Transactions**: 1000 entries, 7 columns (TransactionID, CustomerID, ProductID, TransactionDate, Quantity, TotalValue, Price).
- Verified missing values:

- No missing data in any dataset.
- Checked for duplicate entries:
 - Removed duplicates from all datasets.

```
In [33]: # Display basic information
        print("Customers Dataset:")
        print(customers.info(), "\n")
        print("Products Dataset:")
        print(products.info(), "\n")
        print("Transactions Dataset:")
        print(transactions.info(), "\n")
       Customers Dataset:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 200 entries, 0 to 199
       Data columns (total 4 columns):
                       Non-Null Count Dtype
        # Column
           -----
                        -----
        0 CustomerID 200 non-null object
           CustomerName 200 non-null object
        1
                        200 non-null object
           Region 200 non-null object
SignupDate 200 non-null datetime64[ns]
        2
        3
       dtypes: datetime64[ns](1), object(3)
       memory usage: 6.4+ KB
       None
       Products Dataset:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 100 entries, 0 to 99
       Data columns (total 4 columns):
        # Column
                      Non-Null Count Dtype
                       -----
       ___
          ProductID 100 non-null object
        0
           ProductName 100 non-null object
                       100 non-null
        2
           Category
                                      object
                     100 non-null
            Price
                                      float64
       dtypes: float64(1), object(3)
       memory usage: 3.2+ KB
       None
       Transactions Dataset:
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1000 entries, 0 to 999
       Data columns (total 7 columns):
        # Column
                           Non-Null Count Dtype
       --- -----
                           -----
           TransactionID
        0
                           1000 non-null object
        1
           CustomerID
                          1000 non-null object
        2 ProductID 1000 non-null object
           TransactionDate 1000 non-null datetime64[ns]
        3
            Quantity
                           1000 non-null int64
        5
           TotalValue
                           1000 non-null float64
            Price
                           1000 non-null float64
       dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
       memory usage: 54.8+ KB
       None
```

3. Data Cleaning

- Converted SignupDate and TransactionDate columns to datetime format for analysis.
- Verified dataset consistency after cleaning:
 - All data types aligned with expected values.

```
In [10]: # Check for missing values
         print("Missing Values:\n")
         print("Customers:\n", customers.isnull().sum(), "\n")
         print("Products:\n", products.isnull().sum(), "\n")
         print("Transactions:\n", transactions.isnull().sum(), "\n")
         # Convert date columns to datetime
         customers['SignupDate'] = pd.to_datetime(customers['SignupDate'])
         transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate']
         # Remove duplicates if any
         customers.drop duplicates(inplace=True)
         products.drop_duplicates(inplace=True)
         transactions.drop_duplicates(inplace=True)
         # Confirm data cleaning
         print("Cleaned Data:")
         print(customers.info(), "\n")
         print(products.info(), "\n")
         print(transactions.info(), "\n")
         # customers.info(),products.info(),transactions.info()
```

```
Missing Values:
```

```
Customers:
CustomerID
               0
CustomerName
              0
Region
              0
SignupDate
               0
dtype: int64
Products:
ProductID
              0
ProductName
              0
Category
              0
Price
              0
dtype: int64
Transactions:
TransactionID
CustomerID
                 a
ProductID
                 0
TransactionDate
                 0
Quantity
                 0
TotalValue
                 0
Price
                 0
dtype: int64
Cleaned Data:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
# Column
                 Non-Null Count Dtype
___
                 _____
0
   CustomerID
                 200 non-null
                              object
    CustomerName 200 non-null
                                object
1
                 200 non-null
                                object
2
    Region
    SignupDate
                 200 non-null
                                datetime64[ns]
dtypes: datetime64[ns](1), object(3)
memory usage: 6.4+ KB
None
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 4 columns):
# Column
               Non-Null Count Dtype
--- -----
                -----
0 ProductID 100 non-null
                               object
    ProductName 100 non-null
                               object
2
    Category 100 non-null
                               object
    Price
                100 non-null
                               float64
dtypes: float64(1), object(3)
memory usage: 3.2+ KB
None
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):
# Column
                    Non-Null Count Dtype
---
    ----
                    -----
0
    TransactionID
                    1000 non-null
                                   object
```

1

CustomerID

1000 non-null

object

```
2 ProductID
                  1000 non-null object
   TransactionDate 1000 non-null datetime64[ns]
3
4
   Quantity
                  1000 non-null int64
                  1000 non-null float64
   TotalValue
                  1000 non-null float64
dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
memory usage: 54.8+ KB
```

4. Data Integration

- Merged the three datasets into a single unified dataset using the following keys:
 - Customers merged with Transactions using CustomerID.
 - **Products** merged with the result using **ProductID**.
- Renamed columns and removed redundant ones (e.g., duplicate Price columns after merging).

```
In [11]: # Merge datasets
         merged_data = transactions.merge(customers, on='CustomerID', how='left')
         merged_data = merged_data.merge(products, on='ProductID', how='left')
         # Display the merged dataset
         # print("Merged Data Sample:\n", merged_data.head())
         merged data.head()
```

	mer ged_data*neda()							
Out[11]:		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price_
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68
	3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	300.68
	4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	300.68
	4							>
In [12]:	mer	<pre>merged_data['Price_x']==merged_data['Price_y']</pre>						

```
Out[12]: 0
                True
                 True
          2
                 True
                 True
                 True
          995
                 True
          996
                 True
          997
                True
          998
                True
          999
                 True
          Length: 1000, dtype: bool
In [13]: merged_data.drop(columns="Price_x",inplace=True)
         merged_data.rename(columns={"Price_y":"Price"},inplace=True)
In [14]: !mkdir Desktop/tushar
        mkdir: Desktop/tushar: File exists
        merged_data.to_csv(open("Desktop/tushar/final.csv",'wb'))
In [15]:
```

5. Exploratory Data Analysis

A. Descriptive Analysis

- Customer Distribution by Region:
 - Created a bar chart showing the number of customers in each region.
- Signup Trends Over Time:
 - Plotted customer signup trends over the years using a line chart.

B. Product Analysis

- Sales by Product Category:
 - Plotted a horizontal bar chart of total sales by category.
- Top and Bottom Performing Products:
 - Identified top 5 and bottom 5 products based on total sales and visualized using bar charts.

C. Customer Segmentation

- Spending Segments:
 - Segmented customers into:
 - Low Spenders, Medium Spenders, High Spenders, Premium Spenders.
 - Visualized segment distribution using a bar chart.
- Churn Analysis:
 - Defined churned customers as those inactive for more than 90 days.
 - Analyzed churn distribution using a pie chart.

D. Temporal Analysis

• Peak Transaction Times:

- Analyzed transactions by:
 - Hour of the day (line chart).
 - Day of the week (bar chart).
 - o Month (bar chart).
- Monthly Sales Trend:
 - Created a line chart to show total sales over months.

E. Transaction Insights

- Average Transaction Value:
 - Calculated the average transaction value as \$690.00.
 - Visualized transaction value distribution using a histogram.

Customers by region

```
In [16]: # Customers by region
    region_counts = customers['Region'].value_counts()
    region_counts.plot(kind='bar', color='skyblue', title='Customers by Region')
    plt.xlabel('Region')
    plt.ylabel('Number of Customers')
    plt.show()

# Customer signups over time

customers['SignupDate'].dt.year.value_counts().sort_index().plot(kind='line', maplt.xlabel('Year')
    plt.ylabel('Number of Signups')
    plt.show()
```


Year

Top Selling Categories

In [18]: category_sales = merged_data.groupby('Category')['TotalValue'].sum().sort_values
 category_sales.plot(kind='barh', title='Total Sales by Product Category')
 plt.ylabel('Category')
 plt.xlabel('Total Sales (USD)')
 plt.show()

In [21]:	<pre>merged_data.head()</pre>							
Out[21]:		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Custor
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	Andr€
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	Britta
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	Kathry
	3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	Travis
	4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	Timo
	4							+

```
In [22]: # Calculate total spending and transaction count for each customer
    customer_summary = merged_data.groupby('CustomerID').agg({
        'TotalValue': 'sum', # Total spending
        'TransactionID': 'count' # Number of transactions
}).rename(columns={'TotalValue': 'TotalSpending', 'TransactionID': 'TransactionC

# Segmentation based on spending Levels
    customer_summary['SpendingCategory'] = pd.cut(
        customer_summary['TotalSpending'],
        bins=[0, 500, 2000, 5000, float('inf')],
        labels=['Low Spenders', 'Medium Spenders', 'High Spenders', 'Premium Spender)

# View top customers
    customer_summary.head()
```

Out[22]:

TotalSpending TransactionCount SpendingCategory

CustomerID

C0001	3354.52	5 High Spenders
C0002	1862.74	4 Medium Spenders
C0003	2725.38	4 High Spenders
C0004	5354.88	8 Premium Spenders
C0005	2034.24	3 High Spenders

```
In [23]: # Plot the spending categories
    customer_summary['SpendingCategory'].value_counts().plot(kind='barh', title='Cus
    plt.ylabel('Spending Category')
    plt.xlabel('Number of Customers')
    plt.show()
```


As we can see there are some customer's which spends more

```
In [24]: # Calculate the most recent transaction date for each customer
last_transaction = merged_data.groupby('CustomerID')['TransactionDate'].max()

# Define the reference date (e.g., today's date)
import datetime
reference_date = datetime.datetime.now()

# Calculate days since last transaction
last_transaction = last_transaction.reset_index()
last_transaction['DaysSinceLastPurchase'] = (reference_date - last_transaction['

# Define churned customers as those who haven't purchased in the last 90 days (a
last_transaction['ChurnStatus'] = last_transaction['DaysSinceLastPurchase'].appl
    lambda x: 'Churned' if x > 90 else 'Active'
)

# View churn analysis
last_transaction.head()
```

Out[24]: TransactionDate DaysSinceLastPurchase ChurnStatus CustomerID 0 C0001 2024-11-02 17:04:16 Active 81 1 C0002 2024-12-03 01:41:41 51 Active 2 C0003 2024-08-24 18:54:04 151 Churned 3 C0004 2024-12-23 14:13:52 31 Active 4 C0005 2024-11-04 00:30:22 80 Active

Customer Churn Status

Customers are declining

Top Performing products

```
In [26]: # Top 5 products by total sales
    top_products = merged_data.groupby('ProductName')['TotalValue'].sum().sort_value

# Plot top 5 products
    top_products.plot(kind='barh', color='purple', title='Top 5 Products by Total Sa
    plt.ylabel('Product Name')
    plt.xlabel('Total Sales (USD)')
    plt.show()
```


Low Performing Products

```
In [27]: # Bottom 5 products by total sales
low_products = merged_data.groupby('ProductName')['TotalValue'].sum().sort_value

# Plot bottom 5 products
low_products.plot(kind='barh', title='Bottom 5 Products by Total Sales')
plt.ylabel('Product Name')
plt.xlabel('Total Sales (USD)')
plt.show()
```


Category Analysis

```
In [28]: # Analyze sales by product category
    category_sales = merged_data.groupby('Category')['TotalValue'].sum().sort_values

# Plot sales by category
    category_sales.plot(kind='barh', title='Sales by Product Category')
    plt.ylabel('Category')
    plt.xlabel('Total Sales (USD)')
    plt.show()
```


Peak Time

```
In [29]: # Extract date-related features
    merged_data['TransactionDate'] = pd.to_datetime(merged_data['TransactionDate'])
    merged_data['Hour'] = merged_data['TransactionDate'].dt.hour
    merged_data['Day'] = merged_data['TransactionDate'].dt.day_name()
    merged_data['Month'] = merged_data['TransactionDate'].dt.month_name()

# Transactions by hour
    hourly_transactions = merged_data.groupby('Hour')['TransactionID'].count()

# Plot hourly transactions
hourly_transactions.plot(kind='line', marker='o', color='blue', title='Transaction transaction transaction transaction transaction transactions')
    plt.ylabel('Hour of the Day')
    plt.ylabel('Number of Transactions')
    plt.grid(True)
    plt.show()

# Transactions by day of the week
```

```
daily_transactions = merged_data.groupby('Day')['TransactionID'].count().reindex
        ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday')

# Plot daily transactions
daily_transactions.plot(kind='bar', color='green', title='Transactions by Day of
plt.xlabel('Day of the Week')
plt.ylabel('Number of Transactions')
plt.show()

# Transactions by month
monthly_transactions = merged_data.groupby('Month')['TransactionID'].count()

# Plot monthly transactions
monthly_transactions.plot(kind='bar', color='orange', title='Transactions by Mon
plt.xlabel('Month')
plt.ylabel('Number of Transactions')
plt.show()
```


Average Transection Value

```
In [30]: # Calculate total and average transaction value
    transaction_summary = merged_data.groupby('TransactionID')['TotalValue'].sum()
    average_transaction_value = transaction_summary.mean()

print(f"Average Transaction Value: $ {average_transaction_value:.2f}")

# Plot the distribution of transaction values
    transaction_summary.plot(kind='hist', bins=30, color='purple', title='Distributi
    plt.xlabel('Transaction Value (USD)')
    plt.ylabel('Frequency')
    plt.show()
```

Average Transaction Value: \$ 690.00

Distribution of Transaction Values

Monthly Sales

```
In [31]: # Group data by month and calculate total revenue
    monthly_sales = merged_data.groupby(merged_data['TransactionDate'].dt.to_period(
    monthly_sales.index = monthly_sales.index.to_timestamp() # Convert to timestamp

# Plot monthly sales trend
    monthly_sales.plot(kind='line', marker='o', color='blue', title='Monthly Sales T
    plt.xlabel('Month')
    plt.ylabel('Total Sales (USD)')
    plt.grid()
    plt.show()
```


6. Summary of Insights

• Customer Behavior:

 High spenders dominate specific regions, while churn rates indicate declining engagement in certain segments.

• Product Insights:

 Electronics outperform other categories; some low-performing products may require promotions.

• Sales Trends:

 Transactions peak during specific times and days, offering opportunities for targeted marketing.

• Retention Opportunities:

• Re-engagement campaigns are crucial to activate churned customers.

7. Deliverables

- Final cleaned and merged dataset saved as final.csv.
- Plots and visualizations for the following:
 - Customer distribution by region.
 - Signup trends over time.
 - Sales trends by category and product.
 - Customer segmentation and churn analysis.
 - Temporal sales trends (hourly, daily, monthly).

■ Transaction value distribution.

Conclusion

This EDA project highlights actionable insights to improve customer retention, optimize product performance, and maximize sales. These findings can guide data-driven decisions for enhanced business outcomes.

In []: