CONTACT CURVE BASED SIMULATION OF SIDE CHANS FROM TWO AMINO ACIDS IN A PROTEIN MOLECULE

SANGHUN JEONG
SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
KYUNGPOOK NATIONAL UNIVERSITY, KOREA

연구동기

다른 학부 연구실과 함께 단백질 분자모형 시뮬레이션을 제작하고 있었습니다. 단백질 분자모형 시뮬레이션을 만드는데 있어서 하나 의 문제가 생겼습니다. 현실에 존재하는 단백질 분자모델은 물리적 으로 겹칠 수 없는데 반해 컴퓨터로 계산한 시뮬레이션은 충돌이 일 어나도 그냥 그리기만 할 뿐 따로 경고나 오류 메시지를 내보내지 않 습니다. 그래서 우리는 그런 비현실적인 상황이 발생 했을 때 감지 및 처리를 할 수 있는 것을 만들기로 하였습니다.

단백질 분자는 여러 개의 아미노산으로 이루어져 있습니다.

각 아미노산은 메인체인과 사이드체인으로 구성되어 있습니다.

아미노산의 메인체인은 고정되어 있지만 메인체인에 연결되어 있는 사이드체인은 각각의 축을 따라 회전할 수 있습니다.

사이드체인들이 각각의 축을 따라 회전하다 보면 다른 아미노산의 사이드체인과 충돌이 발생하는 경우가 생기게 됩니다.

그렇기 때문에 우리는 그런 상황을 처리하기 위한 알고리즘을 만들 었습니다.

단백질 분자는 연속적인 아미노산들로 이루어져 있으며 이 아미노 산들은 아톰으로 구성되어 있습니다.

단백질 분자의 기하학적 표현은 van der waals (반 데르 발스) 반지름을 갖는 구로 구성되어 있습니다.

2개의 원자가 서로 공유결함을 갖는 경우 서로 겹쳐있으며 를 이용하여 표시해 두었습니다.

단백질 분자의 아미노산은 main chain(주황) 과 side chain(청록)으로 나누어진 2개의 원자그룹이 있습니다.

아미노산의 side chain은 main chain의 carbon alpha와 side chain의 carbon beta를 축으로 회전하게 됩니다.

시뮬레이션 상에서 각 아미노산의 side chain이 회전을 하다 보면 다른 아미노산의 side chain과 충돌을 일으킬 수 있습니다.

하지만 충돌이 일어나도 한 단백질 분자 안에 아미노산들이 매우 많기 때문에 사람의 눈으로 확인할 방법이 거의 없습니다. 그렇기 때문에 우리는 충돌이 일어나는 상황을 미리 체크하여 벗어나기 위해 이논문에서 소개하는 알고리즘을 만들었습니다.

입출력

우리는 pdb파일에 미리 정의되어 있는 복합아미노산 구조 중 2개의 아미노산 3차원 좌 표만을 이용하여 3차원 아미노산 운동 시뮬레이션과 2차원 충돌범위 그래프를 제작하였습니다.

Table 1. Input PHE and TRP information.

ATOM 1 N PHE A 1 21.320 22.197 64.569 1.00 10.94 ATOM 2 CA PHE A 1 19.900 22.372 64.205 1.00 11.49 ATOM 3 C PHEA 1 19.058 22.732 65.374 1.00 12.09 ATOM 4 O PHE A 1 17.939 23.205 65.206 1.00 12.13 ATOM 5 CB PHE A 1 19.317 21.042 63.629 1.00 12.11 ATOM 6 CG PHE A 1 20.330 20.438 62.718 1.00 8.33 ATOM 7 CD1 PHE A 1 20.663 21.045 61.540 1.00 8.88 ATOM 8 CD2 PHE A 1 21.011 19.291 63.124 1.00 7.80 ATOM 9 CE1 PHE A 1 21.691 20.538 60.771 1.00 10.46 ATOM 10 CE2 PHE A 1 22.046 18.812 62.377 1.00 9.63 ATOM 11 CZ PHE A 1 22.389 19.443 61.204 1.00 8.54 ATOM 12 N TRP A 2 19.533 22.544 66.617 1.00 10.96 ATOM 13 CA TRP A 2 18.829 22.870 67.838 1.00 10.24 ATOM 14 C TRP A 2 19.950 23.033 68.928 1.00 11.45 ATOM 15 O TRPA 2 20.112 22.121 69.741 1.00 11.40 ATOM 16 CB TRP A 2 17.870 21.716 68.159 1.00 9.36 ATOM 17 CG TRP A 2 16.866 22.129 69.200 1.00 8.64 ATOM 18 CD1 TRP A 2 16.781 21.770 70.478 1.00 9.52 ATOM 19 CD2 TRP A 2 15.749 23.012 68.983 1.00 13.34 ATOM 20 NE1 TRP A 2 15.725 22.368 71.102 1.00 11.57 ATOM 21 CE2 TRP A 2 15.072 23.163 70.204 1.00 14.95 ATOM 22 CE3 TRP A 2 15.299 23.744 67.862 1.00 19.41 ATOM 23 CZ2 TRP A 2 13.925 23.970 70.310 1.00 16.89 ATOM 24 CZ3 TRPA 2 14.170 24.536 67.988 1.00 18.89 ATOM 25 CH2 TRP A 2 13.524 24.639 69.209 1.00 15.29

그래프 알고리즘 설명

우측에 보이는 알고리즘을 이용하여 A, B 아미노산들의 사이드체인이 각 각 360도 회전 할 동안 충돌이 있는 지를 체크해 냅니다.

충돌이 있으면 충돌이 있는 부분을 검게 만들고 충돌이 없는 부분은 흰 색으로 놔둡니다.

검사가 끝나게 되면 아래와 같은 360X360 그래프가 생성됩니다.


```
Algorithm 1: Collision Area Computation
Input: \delta // the step size
     A_i(s), 0 \le i \le N_A // Atoms in side chain A
     B_i(t), 0 \le i \le N_B // Atoms in side chain B
     BEGIN
        for (s = 0; s < 2\pi; s += \delta) BEGIN
          for ( t = 0 ; t < 2\pi ; t += \delta ) BEGIN
             M[s][t] = FALSE;
             for (i = 0; i < N_A; i ++) BEGIN
               for (j = 0; j < N_B; j++)
                  if (A_i(s) \cap B_i(t) \neq \emptyset) BEGIN
                     Set TRUE to M[s][t];
9
                     Break:
                  END
10
11
             END
          END
12
13
       END
14 END
```

그래프 설명

위 알고리즘을 이용하여 생성된 그래프 중 입니다.

좌측 그래프는 각 아미노산에서 특정한 원자 한 개 씩만 회전에 따라 충돌하는지 추출한 것이고 그렇게 생성된 그래프들을 모두 합치면 가운데 그래프와 같은 모양이 됩니다.

가운데와 같은 그래프들을 모두 모우면 우측 그래프 모양이 됩니다.

그래프 설명

다음 그림들은 왼쪽 amino의 회 전 각에 따른 그래프와 시뮬레이 션의 변화입니다.

그림 a 에서는 겹치는 구간이 없는 그림입니다

그림 b 는 최초의 contact 상태이며

그림 c 에서는 완전히 intersection된 상태입니다.

옆의 그림을 보면 우측 side chain 은 고정되어 있고 좌측 side chain만 움직이므로 그래프에서도 붉은 점이 세로방향으로만 움직이는 것을 알 수 있습니다.

그래프 설명

결과

위에서 생성된 그래프를 가지고 시뮬레이션 다시 하였습니다.

이번에는 사이드체인이 회전을 하다가 충돌하는 영역에 들어가면 회전하는 아미노산과 부딪히는 아미노산의 사이드체인을 충돌 하지 않는 영역이 나올 때 까지 밀도록 하였으며 만약 모든 구간이 충돌인 경우에 기존 아미노산의 회전을 멈추도록 하였습니다.

결과

향후계획

앞으로 더 많은 아미노산들을 그릴 때 아미노산들의 충돌 여부를 더 빠르게 계산하고 더 적은 수의 그래프에 더 많은 아미노산 충돌정보를 쉽게 볼 수 있도록 만들 계획입니다.

THANK YOU

tkdgns3042@naver.com