TEMAS:

4.2.3: PROTOCOLO HTTP

4.2.4 PROTOCOLO SMTP

4.2.5 PROTOCOLO SNMP

EQUIPO 2

- Gómez Cano Daniel Aarón
- Guzmán Jiménez Alejandra
- Rodríguez Torres Miguel Angel

INTRODUCCIÓN

CADA UNO DE ESTOS PROTOCOLOS SIRVE A UN PROPÓSITO ESPECÍFICO, FACILITANDO DESDE LA NAVEGACIÓN WEB, HASTA LA GESTIÓN DE CORREOS ELECTRÓNICOS Y EL MONITOREO DE DISPOSITIVOS DE RED.

AUNQUE HTTP, SMTP Y SNMP SIRVEN A DIFERENTES PROPÓSITOS, CUANDO HABLAMOS DE REDES, ESTÁN VINCULADOS. ESTOS FACILITAN LA COMUNICACIÓN ENTRE USUARIOS, SERVIDORES Y DISPOSITIVOS DE RED. HTTP PERMITE A LOS USUARIOS ACCEDER Y CONSUMIR INFORMACIÓN EN LA WEB,

PROTOCOLO HTTP

Figura 7-18. Arquitectura de la web.

El protocolo utilizado para transferir toda esta información entre servidores web y clientes: HTTP (Protocolo de transferencia de hipertexto), tal y como se especifica en RFC 2616.

CONEXIONES DEL PROTOCOLO HTTP

Figura 7-36. HTTP con (a) varias conexiones y solicitudes secuenciales. (b) Una conexión persistente y solicitudes secuenciales. (c) Una conexión persistente y solicitudes canalizadas.

Úselos para establecer una conexión TCP, enviar una solicitud y obtener una respuesta, y luego enviar otras solicitudes y obtener otras respuestas. Esta estrategia también se denomina reutilización de conexiones.

MÉTODOS DEL PROTOCOLO HTTP

Método	Descripción	
GET	Leer una página web.	
HEAD	Leer el encabezado de una página web.	
POST	Adjuntar a una página web.	
PUT	Almacenar una página web.	
DELETE	Eliminar la página web.	
TRACE	Repetir la solicitud entrante	
CONNECT	Conectarse a través de un proxy	
OPTIONS	Consultar las opciones para una página	

Figura 7-37. Los métodos de solicitud HTTP integrados.

HTTP fue diseñado para su uso en la Web, se hizo más general de lo que requeriría el uso futuro orientado a objetos. Por lo tanto, además de la operación de solicitar una página web, se admiten operaciones adicionales llamadas métodos.

CÓDIGOS DE ESTADO PROTOCOLO HTTP

Código	Significado	Ejemplos
1xx	Información	100 = el servidor acepta manejar la solicitud del cliente.
2xx	Éxito	200 = la solicitud es exitosa; 204 = no hay contenido.
3xx	Redirección	301 = se movió la página; 304 = la página en caché aún es válida.
4xx	Error del cliente	403 = página prohibida; 404 = no se encontró la página.
5xx	Error del servidor	500 = error interno del servidor; 503 = intentar más tarde.

Figura 7-38. Los grupos de respuesta del código de estado.

Cada solicitud obtiene una respuesta que consiste en una línea de estado, y posiblemente de información adicional (por ejemplo, toda o parte de una página web). La línea de estado contiene un código de estado de tres dígitos que indica si se atendió la solicitud, y si no, por qué.

ALMACENAMIENTO CACHÉ PROTOCOLO HTTP

Figura 7-40. Almacenamiento en caché en HTTP.

Al proceso de guardar y ocultar las páginas que se obtienen para usarlas después se le conoce como almacenamiento en caché. La ventaja es que, cuando se puede reutilizar una página en caché, no es necesario repetir la transferencia. HTTP tiene soporte integrado para ayudar a los clientes a identificar cuándo pueden reutilizar

PROTOCOLO SMTP

Hoy en día, la mayoría de los sitios de Internet utilizan el protocolo SMTP para enviar y recibir mensajes de correo.

Flujo de mensajes por internet

Componentes del correo electrónico.

(MUA) -> Agente de Usuario de Correo

(MTA) -> Agente de Transferencia de

Correo

(MDA) -> Agente de Entrega de Correo

A CÓDIGOS DE REPUESTA SMTP

Un cliente se conecta a un servidor SMTP, y este inicia una conversación que consiste en una serie de comandos y respuestas, incluyendo la transmisión del mensaje.

Los códigos de respuesta SMTP indican el estado de cada comando:

CONVERSACIÓN SMTP CON REGLAS DE CLIENTES

Postfix proporciona las siguientes reglas que asignan restricciones basadas en la información del cliente:

smtpd_client_restrictions
smtpd_helo_restrictions
smtpd_sender_restrictions
smtpd_recipient_restrictions
smtpd_data_restrictions

Cada una corresponde a un paso de la transacción SMTP

EQUÉ ES EL PROTOCOLO 11 SNMP?

- CONJUNTO SIMPLE DE INSTRUCCIONES
- SENSIBLE A SENSORES
- SENSIBLE AL FUNCIONAMIENTO DE DIVERSOS DISPOSITIVOS

SNMP V2 -> SNMP V3

MAYOR SEGURIDAD SNMP V1 Y V2

ENVIABAN LA

CONTRASEÑA

MEDIANTE UNA

CADENA DE TEXTO

LA NUEVA VERSIÓN LA CONTRASEÑA SE

ENVIADA CIFRADA

COMPATIBILIDAD COMPLETA

SNMP V3

MAS CONJUNTOS DE

- GEN**erstrucceo**achsandos
- RESPONDEDOR DE COMANDOS
- GENEADOR DE NOTIFICACIONES
- RECEPTOR DE NOTIFICACIONES
- REENVIOS MEDIANTE PROXY

14

USAR?

ROUTERS
PARA COMUNICAR LA

VELOCIDAD A LA QUE

FUNCIONA UNA RED

IMPRESORAS
COLAS DE IMPRESION

A CONCLUSIONES

Las redes existen gran variedad de protocolos que facilitan muchas de las tareas que se ejecutan día a día, gracias a estas los diversos desarrolladores y programadores se pueden dedicar a solucionar problemas y rehusar las infraestructuras ya hechas, aumentando la productividad y la eficiencia

REFERENCIAS

Tanenbaum, A. S., & Wetherall, D. J. (2012). Redes de Computadoras (Quinta ed.). (L. M. Castillo, Ed., & A. V. Elizondo, Trad.) México: PEARSON EDUCACIÓN. Recuperado el 16 de 05 de 2024 (Págs. 557-594)

Harold, E. R. (2013). Java Network Programming (4ta ed.). Sebastopol, USA: O'Reilly Media, Inc [P247 - P359]

Mauro, D., Mauro, D. R., & Schmidt, K. (2005). Essential SNMP. «O'Reilly Media, Inc.»

Dent, K. D. (2003). Postfix: The Definitive Guide. O'Reilly. [pp. 11, 14-15, 28-29, 165]

