

Os desafios do Planejamento Energético

24 a 26 de agosto de 2022

Modelo para seleção de locais para a implantação de usinas hidrelétricas reversíveis: uma abordagem que combina algoritmo de geoprocessamento com engenharia

Autores: Luiz Rodolpho S. C. de Albuquerque (1,2), Rodrigo F. Calili (2), Rafael Kelman (1), Marcelo Metello (1), Tainá Martins Cunha (1)

Instituição: (1) PSR, (2) PUC-Rio

Introdução

Contexto:

- Forte expansão de fontes renováveis para geração de energia elétrica:
 - Preocupação com mudanças climáticas e impactos ao meio ambiente;
 - Controle de custos operativos e tarifas aos consumidores.
- Disponibilidade de recursos naturais, como o vento e a irradiação solar, tem natureza intermitente e sazonal, podendo impactar a operação do Sistema Interligado Nacional (SIN).

Justificativa:

- O armazenamento da energia é uma alternativa para equilibrar oferta e demanda no SIN.
- Usinas hidrelétricas reversíveis (UHR):
 - A tecnologia de larga escala mais utilizada no mundo;
 - Uma tecnologia madura, com boa competitividade, bom tempo de resposta e longa vida útil.

Introdução

Antecedentes:

- Estudos recentes deixam de considerar um ou mais dos seguintes aspectos: critérios ambientais além de restrições, características geológicas e custos.
- Esses temas foram integrados no modelo para seleção de locais de usinas hidrelétricas reversíveis (UHR) apresentado por Albuquerque (2021).
- Este estudo vem sendo realizado no âmbito de um projeto de Pesquisa e Desenvolvimento (P&D) em execução sobre o tema para a ANEEL (PSR, 2021).

Objetivos:

- Detalhar as formulações propostas no modelo mencionado, em especial as equações das obras civis
- Aprofundar a discussão dos resultados obtidos, comparando-os a análises de inserção de UHR no Sistema Interligado Nacional (SIN).

Modelo para seleção de UHR baseado em SIG

Conceito de geomorphons para triagem de locais candidatos:

- Identificação de formas no relevo que minimizem a necessidade de fechamento de selas topográficas para a formação dos reservatórios.
- Elaboração de curvas de cota, volume e custo.
- Determinação de menu de alternativas de acordo com as necessidades de armazenamento.

Modelo para seleção de UHR baseado em SIG

Formulações matemáticas específicas:

• Componentes de custo para implantação de uma UHR (Andrade et al., 2022):

$$CT = SA + OC + EQ + IE + OT$$

• Detalhamento do componente de Obras Civis (OC):

CT (custo total)
SA (custos socioambientais)
OC (custos de obras civis)
EQ (custos de equipamentos)
IE (custos de infraestrutura)

OT (outros custos)

ddQ +

$$OC = K_{oc} \left\{ \begin{cases} 10 \int_0^{L_{hid}} [4 + 2.5h(x)]h(x)dx + (30 + 0.21H)L_{hid}Q + \\ (300 + 120 \times K_{xc}) \times (K_{cf} \times 485 \times e^{0.123 \times Q^{0.5}}) \end{cases} \right\}$$

Definição:

• O modelo proposto busca minimizar os custos de construção de uma UHR a partir de formulações matemáticas, utilizando ferramentas do SIG.

Ambiente computacional:

• Modelo aplicado no ambiente computacional HERA (PSR, 2021), em sua versão desenvolvimento para inclusão de projetos de UHR, dentro do contexto do mencionado projeto de P&D.

Base de dados:

• Camadas de informação, classificações dos impactos socioambientais e da qualidade da rocha de utilizadas por Albuquerque et al. (2022) em torno do reservatório da UHE Sobradinho.

Aplicação do modelo:

- Objetivo: encontrar um reservatório superior para formar uma UHR com o lago existente.
- Desenvolvimento em duas etapas:
 - Identificação de locais alternativos em torno de todo o reservatório;
 - Escolha dos melhores projetos em área selecionada.

Resultados da primeira etapa:

- Limitação a alternativas com tempo de geração da ordem de 24h, ou inferiores, ditada pelas características topográficas;
- Seleção da área 1, conhecida como Saco do Arara: maior quantidade de círculos brancos (menor custo).

Resultados da segunda etapa:

- Melhores projetos da Área 1 para alternativas variadas de armazenamento;
- Área A localizada em depressão natural do terreno
- Área B, em elevações mais altas em região montanhosa.

Resultados da segunda etapa:

• Componentes de custos para alternativa de 500MW

Δt	ос	EQ	IE	SA	ОТ	CT	CI	CA
4	66,16	157,46	23,17	8,11	101,96	356,9	714	178
8	87,73	155,91	25,18	8,13	110,78	387,7	775	97
16	59,78	196,81	13,30	9,33	111,69	390,9	782	49
24	65,79	200,34	13,78	9,44	115,73	405,1	810	34
48	87,96	195,89	14,66	9,36	123,15	431,0	862	18

OC (custos de obras civis)

EQ (custos de equipamentos)

IE (custos de infraestrutura)

SA (custos socioambientais)

OT (outros custos)

CT (custo total)

CA (custos unitários de armazenamento)

CI (custos de instalação)

Análise de resultados:

• Custos do reservatório superior

Δt	Área	S (MWh)	Volume Útil – <i>VU</i> (hm³)	RS (USD milhões)	RS/VU (USD mi/hm³)
4	В	2.000	2,96	20,23	6,83
8	В	4.000	5,80	42,65	7,35
16	Α	8.000	19,35	29,36	1,52
24	Α	12.000	30,65	33,32	1,09
48	Α	24.000	58,63	57,49	0,98

S (capacidade de armazenamento) RS (reservatório superior)

• Custos dos equipamentos e casa de força

Δt	Área	<i>H</i> (m)	<i>L</i> (m)	<i>EQ</i> (USD milhões)	<i>CF</i> (USD milhões)	CH (USD milhões)
4	В	297	1,9	157,46	2,61	43,32
8	В	303	1,9	155,91	2,57	42,51
16	Α	181	1,3	196,81	3,94	26,48
24	Α	172	1,2	200,34	4,10	28,37
48	Α	180	1,3	195,89	3,90	26,57

H (queda bruta)
L (extensão do circuito)
EQ (custos dos equipamentos)
CF (custos civis da casa de força)
CH (custos do circuito hidráulico)

Discussão de resultados:

- As tendências de comportamento dos custos de cada componente analisado se mostram coerentes com as características físicas e energéticas dos locais selecionados.
- Os custos de implantação (CI) das alternativas de UHR para a potência de 100 MW, entre USD 978/kW e USD 1.035/kW, são inferiores àqueles identificados pelo IHA (2021) para baterias de íonlítio 4h (USD 1.541/kW) e 8h (USD 3.565/kW).
- Em análises sobre a inserção de UHR no SIN para um horizonte de planejamento de 20 anos, no contexto do P&D mencionado, o modelo de otimização (PSR, 2022) tendeu a selecionar para a expansão, com os custos de investimento ora obtidos, usinas entre 4h e 24h de armazenamento.

Conclusões e recomendações

Conclusões:

- O modelo proposto atende ao objetivo estabelecido.
- O detalhamento do componente de obras civis propiciou uma análise mais detalhada da relação entre as características físicas e energéticas dos locais escolhidos e os custos obtidos pelo modelo.
- Os resultados obtidos em torno da UHE Sobradinho indicam vantagens na opção pela UHR em relação a outras tecnologias e parecem oferecer potenciais para atender às necessidades do SIN.

Recomendações:

- O modelo deve ser testado em outros arranjos (por exemplo, UHR em ciclo fechado) e em terrenos com condições geomorfológicas distintas.
- As funções de cada componente podem ser aprimoradas com pesquisas específicas, por exemplo, sobre os preços de equipamentos, dada a falta de experiencia de projetos desse tipo no Brasil.

Referências

Dissertação de mestrado

• "Modelo para seleção de locais para a implantação de usinas hidrelétricas reversíveis: uma abordagem baseada em sistema de informação geográfica", apresentada por Luiz Rodolpho S. C. de Albuquerque ao Programa de Pós-Graduação em Engenharia Urbana e Ambiental da PUC-Rio com orientação do Prof. Rodrigo Flora Calili (https://bit.ly/3Kf9Acr).

Artigos

- "An integer programming model for the selection of pumped-hydro storage projects", publicada na Water Resources Research, número 58, em 2022, por Tiago Andrade e os autores desta apresentação (https://doi.org/10.1029/2020WR028625).
- "Identificação de locais para a construção de usinas hidrelétricas reversíveis", apresentada no Informe Técnico CGH-091 no XVII SNPTEE, 2022 (https://xxvisnptee.com.br/its-aprovados/).

Obrigado

+55 21 98866 7762 luizrodolpho@74@gmail.com www.psr-inc.com

