MapReduce

MapReduce

- MapReduce [OSDI'04] provides
 - Automatic parallelization, distribution
 - I/O scheduling
 - Load balancing
 - Network and data transfer optimization
 - Fault tolerance
 - Handling of machine failures
- Need more power: Scale out, not up!
 - Large number of commodity servers as opposed to some high end specialized servers

Apache Hadoop:

Open source implementation of MapReduce

MapReduce workflow

Map

extract something you care about from each record

Reduce

aggregate, summarize, filter, or transform

Example: Word Count

Input Files

Apple Orange Mango Orange Grapes Plum

Apple Plum Mango Apple Apple Plum

MapReduce

Google File System (GFS) Hadoop Distributed File System (HDFS)

Split data and store 3 replica on commodity servers

Failure in MapReduce

- Failures are norm in commodity hardware
- Worker failure
 - Detect failure via periodic heartbeats
 - Re-execute in-progress map/reduce tasks
- Master failure
 - Single point of failure; Resume from Execution Log
- Robust
 - Google's experience: lost 1600 of 1800 machines once!, but finished fine

```
public class WordCount {
public static class Map extends Mapper < Long Writable, Text, Text, Int Writable > {
                                                                                             Mapper
   private final static IntWritable one = new IntWritable(1);
   private Text word = new Text();
   public void map (LongWritable key, Text value, Context context) throws IOException, InterruptedException {
       String line = value.toString();
       StringTokenizer tokenizer = new StringTokenizer(line);
       while (tokenizer.hasMoreTokens()) {
           word.set(tokenizer.nextToken());
           context.write(word, one);
 111
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
   public void reduce (Text key, Iterable < IntWritable > values, Context context)
     throws IOException, InterruptedException {
                                                                                            Reducer
       int sum = 0;
       for (IntWritable val : values) {
           sum += val.qet();
       context.write(key, new IntWritable(sum));
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
       Job job = new Job (conf, "wordcount");
   job.setOutputKeyClass(Text.class);
   job.setOutputValueClass(IntWritable.class);
   job.setMapperClass(Map.class);
   job.setReducerClass(Reduce.class);
   job.setInputFormatClass(TextInputFormat.class);
   job.setOutputFormatClass(TextOutputFormat.class);
                                                                        Run this program as
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
                                                                           a MapReduce job
   job.waitForCompletion(true);
```

}}

Contents

- Motivation
- Design overview
 - Write Example
 - Record Append
- Fault Tolerance & Replica Management
- Conclusions

Motivation: Large Scale Data Storage

- Manipulate large (Peta Scale) sets of data
- Large number of machine with commodity hardware
- Component failure is the norm

 Goal: Scalable, high performance, fault tolerant distributed file system

Why a new file system?

- None designed for their failure model
- Few scale as highly or dynamically and easily
- Lack of special primitives for large distributed computation

What should expect from GFS

- Designed for Google's application
 - Control of both file system and application
 - Applications use a few specific access patterns
 - Append to larges files
 - Large streaming reads
 - Not a good fit for
 - low-latency data access
 - lots of small files, multiple writers, arbitrary file modifications

Specific operations: RecordAppend

Contents

- Motivation
- Design overview
 - Write Example
 - Record Append
- Fault Tolerance & Replica Management
- Conclusions

Components

Master (NameNode)

- Manages metadata (namespace)
- Not involved in data transfer
- Controls allocation, placement, replication

Chunkserver (DataNode)

- Stores chunks of data
- No knowledge of GFS file system structure
- Built on local linux file system

www.cse.buffalo.edu/~okennedy/courses/cs e704fa2012/2.2-HDFS.pptx

GFS Architecture

Write(filename, offset, data)

RecordAppend(filename, data)

- Significant use in distributed apps. For example at Google production cluster:
 - 21% of bytes written
 - 28% of write operations
- Guaranteed: All data appended at least once as a single consecutive byte range
- Same basic structure as write
 - Client obtains information from master
 - Client sends data to data nodes (chunkservers)
 - Client sends "append-commit"
 - Lease holder serializes append
- Advantage: Large number of concurrent writers with minimal coordination

RecordAppend (2)

- Record size is limited by chunk size
- When a record does not fit into available space,
 - chunk is padded to end
 - and client retries request.

Contents

- Motivation
- Design overview
 - Write Example
 - Record Append
- Fault Tolerance & Replica Management
- Conclusions

Fault tolerance

- Replication
 - High availability for reads
 - User controllable, default 3 (non-RAID)
 - Provides read/seek bandwidth
 - Master is responsible for directing re-replication if a data node dies
- Online checksumming in data nodes
 - Verified on reads

Replica Management

- Bias towards topological spreading
 - Rack, data center
- Rebalancing
 - Move chunks around to balance disk fullness
 - Gently fixes imbalances due to:
 - Adding/removing data nodes

Replica Management (Cloning)

- Chunk replica lost or corrupt
- Goal: minimize app disruption and data loss
 - Approximately in priority order
 - More replica missing-> priority boost
 - Deleted file-> priority decrease
 - Client blocking on a write-> large priority boost
 - Master directs copying of data
- Performance on a production cluster
 - Single failure, full recovery (600GB): 23.2 min
 - Double failure, restored 2x replication: 2min

Garbage Collection

- Master does **not** need to have a strong knowledge of what is stored on each data node
 - Master regularly scans namespace
 - After GC interval, deleted files are removed from the namespace
 - Data node periodically polls Master about each chunk it knows of.
 - If a chunk is forgotten, the master tells data node to delete it.

Limitations

- Master is a central point of failure
- Master can be a scalability bottleneck
- Latency when opening/stating thousands of files
- Security model is weak

Conclusion

- Inexpensive commodity components can be the basis of a large scale reliable system
- Adjusting the API, e.g. RecordAppend, can enable large distributed apps
- Fault tolerant
- Useful for many similar apps