CS 225: Assignment #2

Due on Thursday, Jaunary 28, 2016 $\label{eq:prof.} Prof. \ \ Wim \ van \ Dam$

Chad Spensky

In this question we are given that $\sum_{i=1}^{m} 2^{-l_i} = 1 - \delta$, and asked to prove something interesting about L(C) - H(p) in terms of δ . Trivially, we can say that L(C) - H(p) > 0, by the definition given in class and Kraft's. Note that δ is essentially dictating the depth of our binary tree, the greater δ is, the larger our lengths, and thus, the deeper our tree is. In fact, δ is the fraction of the tree, or "bottom line" of this tree/carpet, that we are **not** using, thus restricting our possible encodings. A similar proof the original, Kraft's proof, to show that the optimal encoding is produced by $l_i = -\log(\frac{p_i - \delta}{m})$.

We can re-write summation as

$$\sum_{i=1}^{m} (2^{-l_i} + \delta/m) = 1$$

and confirm that the equality still holds.

Thus, our difference is:

$$L(C) - H(p) \ge \sum_{i=1}^{m} [p_i - \log(\frac{-p_i \delta}{m}) + p_i \log(p_i)] = \sum_{i=1}^{m} [-p_i (\log(\frac{p_i - \delta}{m}) + \log(p_i))]$$

$$= \sum_{i=1}^{m} [-p_i \log(\frac{p_i (p_i - \delta)}{m})]$$

$$= E_p[-\log(\frac{p_i (p_i - \delta)}{m})]$$

$$= H(\frac{p_i (p_i - \delta)}{m})$$

The best encoding, 2^{-l_i} must be at least $\frac{1-\delta}{m}$.

This question asked us to find the Huffman Coding of X^3 where $\mathcal{X} = \{a,b\}, p(a) = .25, p(b) = .75$. First, we need to know the probability of every string happening. For example, $p(aaa) = p(a) * p(a) * p(a) = .25^3 = 0.015625$ and $p(aab) = p(a) * p(a) * p(b) = .25^2 * .75 = 0.046875$.

The table below outlines all of these probabilities:

$x \in \mathcal{X}^3$	Pr(x)
aaa	0.015625
aab	0.046875
aba	0.046875
baa	0.046875
abb	0.140625
bab	0.140625
bba	0.140625
bbb	0.421875
aaa aab	0.0625
aba baa	0.09375
aaa aab aba baa	0.15625
abb bab	0.28125
aaa aab aba baa bba	0.296875
aaa aab aba baa bba abb bab	0.578125

The tree of the Huffman code can be seen below:

The expected code length per letter is thus:

$$L(C) = \sum_{x \in \mathcal{X}} p(x)l(x)$$
= 0.015625 * 5 + 3(0.046875 * 5) + 3(0.140625 * 3) + 0.421875 * 1
= 2.46875 bits

This question asks for the Shannon? Fano? Elias coding of the same data presented in Question 2. First, we must compute $\bar{F}(x), \forall x \in X^3$. Recall that:

$$\bar{F}(x) = \sum_{x_i < x} p(x_i) + \frac{1}{2}p(x)$$

We present the result for each element in X^3 below, with their respective binary representation.

$x\in\mathcal{X}^3$	Pr(x)	$\bar{F}(x)$	binary($\bar{F}(x)$)	$\lceil -\log_2 p(x) \rceil$	c(x)
aaa	0.015625	0.0078125	0.000001	6	000000
aab	0.046875	0.0390625	0. 00001 01	5	00001
aba	0.046875	0.0859375	0. 00010 11	5	00010
baa	0.046875	0.1328125	0. 00100 01	5	00100
abb	0.140625	0.2265625	0. 001 1101	3	001
bab	0.140625	0.3671875	0. 010 1111	3	010
bba	0.140625	0.5078125	0. 100 0001	3	100
bbb	0.421875	0.7890625	0. 11 00101	2	11

Figure 1: Table outlining the SFE coding of the given alphabet.

The expected code length per letter is thus:

$$L(C) = \sum_{x \in \mathcal{X}} p(x)l(x)$$
 = 0.015625 * 6 + 3(0.046875 * 5) + 3(0.140625 * 3) + 0.421875 * 2 = 2.90625 bits

In this question we are asked to provide the tightest upper-bound of the Lempel-Ziv compression algorithm, i.e. given a string of length n, what is the maximum length of it's encoded bit string?

For an upper bound, we must assume the worse-case scenario for the encoding scheme. In this case, is that every possible combination of bits appears for a each given encoded length (i.e. both 1 and 0 are used to encode the patterns of length 1, 11, 10, 00, 01 all appear for the patterns of length 2 that are encoded, etc.).

For a 2 bit string, the maximum would be 01 or (0,0) (0,1), the length of the indices would be 1 bit, thus the length of the LV string would be 2*(1+1)=4 bits.

For a 4 bit string, a maximum would be 0100 or (0,0) (0,1) (0,0), the length of the indices would be 2 bit, thus the length of the LV string would be 3*(2+1) = 9) bits.

We will now try to construct the worst-case string. As stated previously, it would ideally enumerate every possible encoded value at every length. Thus, we will construct the string using binary counting as follows: Note that the LZ

$$\lambda$$
 0 1 00 01 10 11 000 001 010 011 100 101 110 111 0 1 0 1 0 1 2 3 0 1 2 3 4 5 6 7 8

dictionary words and encoding are then simply:

Note that the length of the string is 34 bits, the minimum length needed to encode the indices is $\lceil \log_2(6) \rceil = 3$, and the LV length is 14 * (3 + 1) = 56.

Notice that in our worst case scenario, we are simply enumerating a complete binary tree, and to enumerate the number of nodes, i.e. LV dictionaries. The number of bits that can be encoded by a complete binary tree of depth d (we ignore depth 0, as this is implicit in LV) is:

$$\sum_{i=1}^{d} 2^{2d-1} = \sum_{i=1}^{d} 4 \cdot 2^{d} \cdot \frac{1}{2} = 2 \cdot (2^{d+1} - 1) - 2^{0} = 2^{d+2} - 2 = n$$

since the numbers of nodes at each depth is 2^d and the number of bits per node at that level is 2^{d-1} . Thus, the size of the tree, as a function of n is

$$d = \log_2(n+2) - 2$$

the numbers of nodes in a binary tree, i.e. number of LV dictionaries, of depth d is $\sum_{i=1}^{d} 2^{d} = 2^{d+1} - 2$, thus the number of dictionaries is:

$$(2^{\log_2(n+2)-1}-2) = \frac{1}{2}(n+2)-2) = \frac{n}{2}-1$$

Note that the indices at each level of the tree, all point to previous level, thus the maximum index value required is the number of nodes of a tree of depth d-1, thus when we multiply the number of bits required to encode this number, by the number of dictionaries, we get our bound:

$$\begin{split} &(\log_2(n+2)-2-2^{\log_2(n+2)-2})*(\frac{n}{2}-1)\\ &=\ (\log_2(n+2)-2-\frac{1}{4}(n+2))*(\frac{n}{2}-1)\\ &=\ (\log_2(n+2)-\frac{5}{2}-\frac{1}{4}n)*(\frac{n}{2}-1) \end{split}$$

Thus our worst-case is roughly bound by $O(n^2)$. This bound could be reduced by accounting for the fact not every dictionary on the bottom level of the tree will be utilized, however the overall bound of n^2 would still apply.