Contents

1	Prerequisites			2
	1.1	Topological Spaces		
		1.1.1	Continuous maps	2
		1.1.2	Neighbourhoods and Haudorff spaces	2
		1.1.3	Closed sets	3
		1.1.4	Compactness	3
		1.1.5	Connectedness	3
		1.1.6	Homeomorphisms	3

Chapter 1

Prerequisites

1.1 Topological Spaces

Definion 1.1.1. Let X be a set and $\mathcal{T} = \{U_i | i \in I, U_i \in X\}$. (X, \mathcal{T}) is a **topological space** if

```
1. \phi, X \in \mathcal{T}
```

2. $\forall J \subset I, \bigcup_{j \in J} U_j \in \mathcal{T}$ 3. $\forall K \subset I, K \text{ finite, } \bigcap_{k \in K} U_k \in \mathcal{T}$

(X is the topological space, \mathcal{T} its topology, U_i the open sets)

Example 1.1.2.

- (a) X is a set and \mathcal{T} the collection of all subset of X This is called the *Discrete Topology*.
- (b) X is a set and $\mathcal{T} = \{\phi, X\}$. This is called the *Trivial Topology*.
- (c) $X = \mathbb{R}$, \mathcal{T} all open intervals and their unions (the usual topology). Notice that $\bigcap_{\substack{a<-1\\b>+1}} (a,b) = [-1,+1]$ so we have an example of infinite intersection of open sets that does not give an open.
- (d) X is set, $d: X \times X \to \mathbb{R}$ a metric, that is, $\forall x, y \in X$:
 - (a) d(x, y) = d(y, x)
 - (b) $d(x,y) \ge 0$ with $d(x,y) = 0 \Leftrightarrow x = y$
 - (c) $d(x,y) + d(y,x) \ge d(x,z)$

 \mathcal{T} open discs $U_{\varepsilon}(x) = \{y \in X | d(x,y) < \varepsilon\}$ and unions. This is called the *Metric Topology*.

(e) $(X, \mathcal{T}), (Y, \mathcal{T}')$ topological spaces

 $X \times Y, \mathcal{T}$ " = {unions of $U \times V | U \in \mathcal{T}, V \in \mathcal{T}'$ }

This is called the *Product Topology*

Continuous maps 1.1.1

Definion 1.1.3. X,Y topological spaces. $f:X\to Y$ is **continuous** if $\forall V \subset Y$, $f^{-1}(V) \subset X$.

Remark 1.1.4. Previous definition doesn't work with direct images U and f(U). For example take $f(x) = x^2$, then U = (-1, +1) is open but f(U) = [0, 1) doesn't. Nevertheless f is a continuous function.

Neighbourhoods and Haudorff spaces

Definion 1.1.5. (X, \mathcal{T}) topological space. $N \subset X$ is a **neighbourhood** of $x \in X$ if $\exists U \in \mathcal{T}$ such that $x \in U \subset N$

Example 1.1.6. $X = \mathbb{R}$ with the usual topology. [-1, +1] is a neighbourhood of $0 \in \mathbb{R}$.

Definion 1.1.7. (X, \mathcal{T}) topological space is **Hausdorff** if $\forall x, y \in X$ such that $x \neq y \exists N_1$ neighbourhood of x, $\exists N_2$ neighbourhood of y, such that $N_1 \cap N_2 = \emptyset$.

Exercise 1.1.8. $X = \{\text{John, Paul, Ringo, George}\}, U_0 = \emptyset, U_1 = \{\text{John}\}, U_2 = \{\text{John, Paul}\}, U_3 = \{\text{John, Paul, Ringo, George}\}.$ Show $\mathcal{T} = \{U_0, U_1, U_2, U_3\}$ is a topology and that (X, \mathcal{T}) is not Hausdorff

Exercise 1.1.9. Show \mathbb{R}^n is Hausdorff. Show any metric space is Hausdorff.

We will always assume all our topological spaces to be Hausdorff.

1.1.3 Closed sets

Definion 1.1.10. (X, \mathcal{T}) topologocal space. $A \in X$ is **closed** iff $X \setminus A$ is open.

Example 1.1.11. \emptyset , X are both open and closed

Definion 1.1.12. The **closure** \overline{A} of any subset $A \in X$ is the smallest closed set containing A. The **interior** A^0 of any subset $A \in X$ is the largest open subset of A. The **boundary** b(A) or ∂A of any subset $A \in X$ is $\overline{A} \setminus A^0 =: b(A)$

1.1.4 Compactness

Definion 1.1.13. (X, \mathcal{T}) topological space. A family $\{A_i\}_{i \in I}$ is called a **covering** of X if $\bigcup_{i \in I} A_i = X$. If all of the $A_i \ \forall i \in I$ are open, $\{A_i\}_{i \in I}$ is an **open covering**

Definion 1.1.14. (X, \mathcal{T}) topological space. X is **compact** if \forall open covering $\{A_i\}_{i \in I} \exists J \subset I$ finite such that $\{A_j\}_{j \in J}$ is also an open covering

Theorem 1.1.15. $X \subset \mathbb{R}^n$ is compact if and only if X is closed and bounded.

Exercise 1.1.16. (a) A point is compact.

- (b) Let $(a,b) \subset \mathbb{R}$ and the open covering $U_n = (a,b-\frac{1}{n}), n \in \mathbb{N}$. Indeed $\bigcup_{n \in \mathbb{N}} U_n = (a,b)$. If no finite subfamilies of $\{U_n\}_{n \in \mathbb{N}}$ is a covering then (a,b) is not compact.
- (c) $S^n = \{x_1^2 + \dots x_n^2 = 1 | (x_1, \dots, x_n) \in \mathbb{R}^n \}$ is compact since it is closed and bounded.

1.1.5 Connectedness

Definion 1.1.17. (a) X topological space is **connected** if it cannot be written as $X = X_1 \cup X_2$ where X_1, X_2 are open and $X_1 \cap X_2 = \emptyset$. Otherwise X is called **disconnected**.

- (b) X is arcwise connected if, $\forall x, y \in X, \exists f : [0,1] \to X$ continuous with f(0) = x, f(1) = y.
- (c) A **loop** in a topological space is a continuous map $f:[0,1] \to X$ with f(0)=f(1). X is **simply connected** if, for any loop $f:[0,1] \to X$, there exists a continuous map $g:[0,1] \times [0,1] \to X$ such that

$$g(0,t) = g(1,t)$$
 (i.e. $g(\cdot,t) =: f_t(\cdot)$ is a family of loops)
 $g(s,0) = f(s)$
 $g(s,1) = \bar{x} \in X$ (f_t shrikes $f_0 = f$ to a point $f_1 = \bar{x}$)

Example 1.1.18. (a) \mathbb{R} is arwise connected while $\mathbb{R} \setminus \{0\}$ is not. \mathbb{R}^n and $\mathbb{R}^n \setminus \{0\}$, $n \geq 2$, are both arwise connected.

- (b) S^n is arwise connected $\forall n \geq 1$ but simply connected only for $n \geq 2$.
- (c) $T^n := \underbrace{S^1 \times \cdots \times S^1}_{n\text{-times}}$ is arcwise but not simply connected
- (d) $\mathbb{R}^2 \setminus \mathbb{R}$ is not arcwise connected. $\mathbb{R}^2 \setminus \{0\}$ is arcwise but not simply connected. $\mathbb{R}^3 \setminus \{0\}$ is both arcwise and simply connected.

1.1.6 Homeomorphisms