Number Theory

Ikhan Choi

May 27, 2022

Contents

I	Quadratic reciprocity	2
1	Quadratic residue1.1 Legendre symbol1.2 Gauss sum	3 3
2	Binary quadratic forms 2.1 Representation problems	4 4
3	Class groups	5
II	Multiplicative number theory	6
4	Arithmetic functions	7
5	Dirichlet's theorem	8
6	Prime number theorem	9
IIJ	Quadratic Diophantine equations	10
7	Pell's equation 7.1 Continued fraction	11 11
8	<i>p</i>-adic numbers8.1 Hensel lemma	12 12
9	Local-global principle 9.1 Hasse-Minkowski theorem	13
IV	Elliptic curves	14
10	Elliptic curves over $\mathbb C$	15
11	Elliptic curves over \mathbb{Q} 11.1 Finitely generatedness	16 16 16
12	Elliptic curves over \mathbb{F}_p	17

Part I Quadratic reciprocity

Quadratic residue

- 1.1 Legendre symbol
- 1.2 Gauss sum

Exercises

- **1.1.** There is no integral solution of the equation $x^7 + 7 = y^2$.
- **1.2.** If $\frac{x^2+y^2+z^2}{xy+yz+zx}$ is an integer, then it is not divided by 3.
- **1.3.** There is no non-trivial integral solution of $x^4 y^4 = z^2$.

Binary quadratic forms

2.1 Representation problems

Class groups

Exercises

- **3.1** (Mordell equation with no solutions). (a) $y^2 = x^3 + 7$ has no integral solutions.
- **3.2** (Mordell equation with solutions). (a) $y^2 = x^3 2$ has only two solutions.

Part II Multiplicative number theory

Arithmetic functions

Dirichlet's theorem

Prime number theorem

Part III Quadratic Diophantine equations

Pell's equation

7.1 Continued fraction

Diophantine approximation, Thue theorem

p-adic numbers

8.1 Hensel lemma

Local-global principle

9.1 Hasse-Minkowski theorem

Part IV Elliptic curves

Elliptic curves over $\ensuremath{\mathbb{C}}$

Elliptic curves over $\mathbb Q$

11.1 Finitely generatedness

Mordell-Weil, Mazur torsion

11.2 Integral solutions

Nagell-Lutz, Siegel, Baker's bound

Elliptic curves over \mathbb{F}_p