INDEX 2193

Schatten p-norm, 749	shrinkage operator, 1898
Schauder bases, see total orthogonal family	signal compression, 141
Schmidt, 740	compressed signal, 142
Schur, 1529	reconstruction, 142
complement, 1529, 1530	signed volume, 219
Schur complement, 283	similar matrix, 130
Schur norm, see Frobenius norm	similarity, 943
Schur product, 1917	similarity structure, 943
Schur's lemma, 564	definition, 941
Schur's trick, 1532	simple graph, 702, 704
screw motion, 976	simplex
SDR, see system of distinct representatives	n-simplex, 817
second-countable	simplex algorithm, 1569, 1578
definition, 1364	computational efficiency, 1598
second-order derivative, 1438	Hirsch conjecture, 1598
self-adjoint linear map, 612, 622, 624	cycling, 1569, 1583
definition, 456	eta factorization, 1588
self-concordant	eta matrix, 1588
(partial) convex function, 1704	full tableaux, 1589
self-concordant function	pivot element, 1589
on \mathbb{R} , 1704	iteration step, 1586
semilinear map, 516	Phase I, 1585
seminorm, 326, 524	Phase II, 1585
sending objects to infinity, 909	pivot rules, 1582
sequence, 64, 1367	Bland's rule, 1583
normed vector space, 362	lexicographic rule, 1583
convergent, 362, 376	random edge, 1584
series	steepest edge, 1584
absolutely convergent	pivot step, 1581
rearrangement property, 364	pivoting step, 1572, 1578
normed vector space, 363	reduced cost, 1589
absolutely convergent, 363	strong duality, 1614
convergent, 363	singular decomposition, 56
rearrangement, 364	pseudo-inverse, 56
sesquilinear form	singular value decomposition, 356, 479, 733,
definition, 516	747
sesquilinear map	case of a rectangular matrix, 745
continuous, 1660	definition, 742
(n, s)-set, 951	singular value, 356
set of lines through the origin, 861	square matrices, 742
shear, 820, 821	square matrix, 740
short exact sequence, 834	singular values, 56