MARTHEY Autoine am4665 COMS 4903 Howework 2 Cortificate Program

Problem 1:

2) Dorive T

$$\sum_{i=1}^{n} \ln p(y_i|\pi) = \sum_{i=1}^{n} \ln \left(\pi y_i \left(1 - \pi \right)^{(n-y_i)} \right)$$

$$= \sum_{i=1}^{n} y_i \ln \pi + \sum_{i=1}^{n} \left(1 - y_i \right) \ln \left(1 - \pi \right)$$

$$= \lim_{i \to \infty} \left(\sum_{i=1}^{n} y_i \right) + \ln \left(1 - \pi \right) \cdot \left(\sum_{i=1}^{n} \left(1 - y_i \right) \right)$$

So to find a naximum, we need to derive this expression and equal it to 0:

So to find a maximum, we reconstitute of the O:

$$\frac{1}{1+\sqrt{n}} y_i + \frac{1}{1-\sqrt{n}} = 0$$
The solution of the

So
$$\frac{\sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} y_i}$$

$$\hat{Q}_{y}^{(n)} = \underbrace{\sum_{i=1}^{n} \chi_{i,n}}_{n}$$

c) With the same idea, we have:

$$\sum_{i=1}^{N} ln \left(\theta_{y}^{(2)}(x_{i+2})^{-(\theta_{y}^{(2)}+1)} \right) = \sum_{i=1}^{N} ln \theta_{y}^{(2)} + \sum_{i=1}^{N} \left(-(\theta_{y}^{(2)}+1) ln(x_{i+2}) \right)$$

80
$$\frac{\sum_{i=1}^{n} 1}{\widehat{\Theta}_{y}^{(2)}} = \sum_{i=1}^{n} \ln(x_{i,2}) = 0.$$

So
$$\frac{\partial^{(2)}}{\partial y} = \frac{1}{\sum_{i=1}^{n} l_n(x_{i,2})}$$

Problem 2:

2) See code.

Solution:

	0	١
0	54	5
- (2	32

The accuracy is equal to (32+54) 193 = 92,47%.

Observation:

We can conclude that those two features are really likely to be found in a span (y=1). Since their $\theta_1 \gg \theta_0$ it recans that the probability (linked to a Bernovilli distribution) of apperance in a spour is high.

- c) See fijse 2. See code.
- d) See figsre 3 See code.
- e) See figne 4 See codo.

Accoracy for the newton's method is:

Figure 1

Figure 2

Figure 3

Figure 4