Problème 4450

Maxime Muller

March 27, 2025

Montrons que $\forall n \in \mathbb{N}, P_n : a_n \leq \frac{1}{n(n+1)}$

Pour n = 1: $a_1 = \frac{1}{2} \le \frac{1}{2}$

Pour n=2: $a_2=\frac{1}{2}\cdot\frac{2\cdot2-3}{2\cdot2}\leq\frac{1}{2\cdot3}$ Pour $n\geq3$, On procède par récurrence, l'initialisation étant

Soit $n \in \mathbb{N}$ tq P_{n-1} . Montrons que P_n

$$a_n \le \frac{1}{n(n+1)} \Leftrightarrow a_{n-1} \cdot \frac{2n-3}{2n} \le 1$$

$$\Leftrightarrow \frac{n(n+1)(2n-3)}{2n} \cdot a_{n-1} \le 1$$

$$\Leftrightarrow \frac{(n+1)(2n-3)}{2} a_{n-1} \le 1$$

$$\Leftrightarrow a_{n-1} \le \frac{2}{(n+1)(2n-3)}$$

Etudions le signe de $\frac{1}{n(n-1)} - \frac{2}{(n+1)(2n-3)}$.

$$\frac{1}{n(n-1)} - \frac{2}{(n+1)(2n-3)} = \frac{(n+1)(2n-3) - 2n(n-1)}{n(n-1)(2n-3)(n+1)}$$
$$= \frac{n-3}{n(n-1)(2n-3)(n+1)}$$

Or : $\forall n \in \mathbb{N}, n \geq 3, n(n-1)(2n-3)(n+1) \geq 0$ et $n-3 \geq 0$ D'où : $a_{n-1} \leq \frac{1}{n(n-1)} \Leftrightarrow a_n \leq \frac{1}{n(n+1)}$ Donc par récurrence, $\forall n \in \mathbb{N}^*, a_n \leq \frac{1}{n(n+1)}$

On a:
$$\sum_{k=1}^{n} \frac{1}{n(n+1)} = \sum_{k=1}^{n} \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$
 D'où $\sum_{k=1}^{n} a_n \le \sum_{k=1}^{n} \frac{1}{n(n+1)}$ $\Leftrightarrow \sum_{k=1}^{n} a_n \le 1 - \frac{1}{n+1} < 1$