Generative time series decoding models

Summary

- Рассмотрены статьи для работы с многомерными данными. Многие из них не используют пространство как связность признаков, основываясь на временной части. Но есть интересные идеи по сокращению пространства, то есть снижение размерности, но в разных проекциях

- Стек статей основан на рассмотрении гауссовских процессов, но кажется, что эти методы больше первое приближение задачи, плюс проблема с памятью и временем

- Интересные работы используют трансформер и сверточные сетки, которые можно использовать для работы с огромными размерностями. Также есть временные сверточные сети для работы с временной шкалой по признакам, и графа, строящиеся для связи признаков в пространстве

Название / Год	Задача / Область	Описание решения
[1]Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis 2023	Работа с высоко размерными данными	Суть метода заключается в работе с процессами многомерных наблюдений. Здесь данные переводятся в латентное пространство. D4(модель декодера) может включать любую информацию из истории наблюдаемых данных в различных временных масштабах при вычислении оценки этого процесса состояния. D4 принципиально отличается от SSMS, где информация только в двух временных масштабах: a) быстрая, которая переносится наблюдением, и б) медленная, определяемая процессом состояния, объединяется при оценке процесса состояния.
[2] Decoding Hidden Cognitive States From Behavior and Physiology Using a Bayesian Approach 2019	Работа с высоко размерными данными	Теоретическая статья. Нет практической составляющей. Интересные идеи, на основе энкодеров и декодеров, вроде бы используют как временную, так и пространственную составляющую, но как это применить к нашим данным большой вопрос.
[3] A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data 2022	Работа с данными FMRI	Модель основанная на двух блоках. Первый - это сверточная временная сетка для работы с временной компонентой данных. Вторая - это граф для связи признаков, которые распределены в пространстве, то есть учет пространственной компоненты.
[4] Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis 2019	Работа с данными FMRI	Тут в работе рассматриваются подходы, которые помогают работать с сигналами, которые могут быть нам неинтересны. Предложена глубокая нейронная генеративная модель на данных fmri в состоянии покоя. Предлагаемая модель обусловлена предположением о состоянии субъекта и оценивает апостериорную вероятность состояния субъекта с учетом данных визуализации, используя теорему Байеса.

Название / Год	Задача / Область	Описание решения
[5] Parametric Gaussian Process Regressors 2020	Решается задача регрессии с оценкой неопределенности прогнозирования.	Используется вариационный вывод к FITC (Fully Independent Training Conditional)
[6] Deep Generative Analysis for Task-Based Functional MRI Experiments 2022	Рассматриваются подходы к решению задач, связанных с анализом временных рядов трехмерных изображений мозга.	Используется гибридный подход, объединяющий глубокие порождающие модели (пространственная компонента) с гауссовскими процессами (ковариации) в обобщенной аддитивной модели (GAM).
[7] Deep Latent State Space Models for Time-Series Generation 2023	Предложена модель LS4 — генеративная модель для последовательностей со скрытыми переменными. Однако работают со скалярами в каждый момент времени.	В LS4 последовательность скрытых переменных представлена в виде решения линейных уравнений пространства состояний.
[8] Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models	Быстрая генерация нейроповедения по скрытым переменным	Авторы предложили использовать смесь гауссиан для моделирования отклика каждой клетки FMRI, тем самым сократив время вычислений до приемлемого на практике.

Название / Год	Задача / Область	Описание решения
[9] The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion, 2021	Генерация fMRI по видео	В этом соревновании необходимо было предсказывать fMRI мозга по 3 секундному видео. Был представлен датасет (сейчас недоступен, но наверное можно попросить) из 102 видео и fMRI 10 людей реагирующих на них Было представлено много разных решений.
[10] Effective Ensemble of Deep Neural Networks Predicts Neural Responses to Naturalistic Videos, 2021	Генерация fMRI по видео	Решение победителей соревнования. Используется ансамбль энкодер-декодеров, каждый из которых отвечает за разные области: пространственно-временная информация, движение, контуры, статичные картинки, аудио. Их независимые предсказания учитываются с разным весом.
[11] Self-Supervised Transformers for fMRI representation, 2021	Трансформер для fMRI	В работе представлен трансформер для анализа fMRI. Его обучение производится в 2 этапа.1)Заполнение пропусков в fMRI 2) Fine-tuning под конкретные задачи:предсказание пола, возраста и т.п.Данный трансформер представляется полезным для нашей задачи.
 [12] An Intuitive Tutorial to Gaussian Processes Regression by J. Wang, 2021 + A Tutorial on Gaussian Processes by Z. Ghahramani, 2010 	Регрессия гауссовских процессов	В этих работах туториалах была рассмотрена регрессия гауссовских процессов. К сожалению, её работа занимает O(N^3) по времени и O(N^2) по памяти, что не подойдет для нашей задачи. Однако, возможно рассмотреть разреженные гауссовские процессы.
[13] Deep Direct DiscriminativeDecoder-D4+[14] Bayesian Decoder Models with a Discriminative Observation Process	Генерация нейро поведения при воздействии внешних факторов	Использование байесовских метод для генерации и моделирование распределения вероятностей поведения и марковских цепей для учета временных зависимостей.

[15] Variational Auto-encoded Deep Gaussian Processes 2016	Модель Variational Auto-Encoded deep Gaussian process (VAE-DGP). Решаются	Модель состоит из нескольких слоев скрытых переменных и использует гауссовские процессы для отображения между последовательными слоями.
	задачи по типу генерации чисел MNIST.	

Описание решения

Задача / Область

Название / Год

Некоторые идеи

Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis

Предлагается новая формулировка SSM для процессов многомерных наблюдений. D4 привносит выразительность и масштабируемость глубоких нейронных сетей в формулировку SSM, позволяя создать новое решение, которое эффективно оценивает процессы, лежащие в основе состояния, с помощью многомерного сигнала наблюдения.

D4 - это вариант SSMs, в котором условное распределение наблюдаемых сигналов заменяется процессом распознавания. D4 может включать любую информацию из истории наблюдаемых данных в различных временных масштабах при вычислении оценки этого процесса состояния.

Decoding Hidden Cognitive States From Behavior and Physiology Using a Bayesian Approach

- Фреймворк моделирования пространства состояний, behavioral decoder, чтобы сформулировать взаимосвязь между объективными поведенческими показаниями (например, временем отклика) и когнитивным состоянием
- Использование энкодера, предполагает использование обобщенной линейной модели (GLM) для определения взаимосвязи между когнитивным состоянием и нейронными сигналами
- Используется модель нейронного энкодера и байесовский фильтр для оценки когнитивного состояния с использованием нейронных данных для генерации с помощью декодера

$$\underbrace{y_k} \xrightarrow{x_k | y_{1\cdots k}} \underbrace{x_k} \xrightarrow{z_k | x_k} \underbrace{z_k} \underbrace{z_k}$$

A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data

- Работа с данными FMRI
- Есть практическая реализация метода, что является большим плюсом
- Также тут описана работа с пространственной составляющей данных с помощью построения графа зависимости признаков, временная составляющая учитывается через применение сверточной сети Network Block

Deep Neural Generative Model of Functional MRI Images for Psychiatric Disorder Diagnosis

- Работа с данными FMRI
- Предлагается использование байесовского подхода для оценки апостериорной вероятности состояния объекта
- Идея понятна, но нет практической реализации для проверки результатов, что позволяет усомниться в методе

Variational Auto-encoded Deep Gaussian Processes

Основной вклад заключается в следующем:

- Представлена модель Variational Auto-Encoded deep Gaussian process (VAE-DGP)
- Представлена работа на датасетах: MNIST, Yale Face

Общее описание модели

 Модель состоит из нескольких слоев скрытых переменных и использует гауссовские процессы для отображения между последовательными слоями.

Итог

• В данной реализации маловероятно использование результатов данной работы, так как в нашей задаче ведется работа над данными более высокой размерности. Поэтому алгоритм неприменим с вычислительной точки зрения. Однако стоит заметить, что общая идея интересна и, возможно, будет использована далее в том или ином проявлении.

Figure 1: A deep Gaussian process with two hidden layers.

Figure 2:The learned 2D latent space of one layer DGP and one layer VAE-DGP from the same initialization on a subset of MNIST with noisy background.

Основной вклад заключается в следующем:

- В случае регрессии часто прогнозируемая дисперсия преобладает над шумом во входных данных. Кроме того, оценки неопределенности, практически не используют неопределенность функции, зависящей от входных данных.
- Предложены методы GP регрессии, которые решают эту проблему и, таким образом, дают существенно улучшенные неопределенности прогнозирования.

Общее описание модели

• Используется вариационный вывод к FITC (Fully Independent Training Conditional).

Итог

• Пока что сложно представить, где бы могли быть применимы результаты данной работы в нашей задаче.

Figure 1. We depict GP regressors fit to a heteroscedastic dataset using two different inference algorithms. Solid lines depict mean predictions and $2-\sigma$ uncertainty bands are in blue. In the lower panel, fit with the PPGPR approach described in Sec. 3.2, significant use is made of input-dependent function uncertainty (dark blue), while in the upper panel, fit with variational inference (see Sec. 2.3.1), the predictive uncertainty is dominated by the observation noise $\sigma_{\rm obs}^2$ (light blue) and the kernel scale σ_k is smaller.

Deep Generative Analysis for Task-Based Functional MRI Experiments

Общее описание

 Используется гибридный подход, объединяющий глубокие порождающие модели (пространственная компонента) с гауссовскими процессами (ковариации) в обобщенной аддитивной модели (GAM).

Figure 6: Neural Network Architecture.

Deep Latent State Space Models for Time-Series Generation

Общее описание

- Методы, основанные на обыкновенных дифференциальных уравнениях (ОДУ), широко используются для построения порождающих моделей временных рядов. Но есть проблема — вычислительная сложность.
- Предложена модель LS4 генеративная модель для последовательностей со скрытыми переменными, эволюционирующими в соответствии с пространством состояний ОДУ.
- Показано, что LS4 значительно превосходит предыдущие генеративные модели временных рядов с точки зрения маргинального распределения, классификации и прогнозных оценок на реальных наборах данных, а также способна моделировать стохастические данные.
- Можно сказать, что LS4 SOTA для латентных порождающих моделей временных рядов.

Минус

• Работают с одномерными данными

3.1. State Space Models (SSM)

A single-input single-output (SISO) linear state space model is defined by the following differential equation

$$\frac{d}{dt}\mathbf{h}_t = \mathbf{A}\mathbf{h}_t + \mathbf{B}x_t$$

$$y_t = \mathbf{C}\mathbf{h}_t + \mathbf{D}x_t$$
(1)

with scalar input $x_t \in \mathbb{R}$, state $h_t \in \mathbb{R}^N$ and scalar output $y_t \in \mathbb{R}$. The system is fully characterized by the matrices $A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times 1}, C \in \mathbb{R}^{1 \times N}, D \in \mathbb{R}^{1 \times 1}$. Let

$$h_{t_{k+1}} = \bar{A}h_{t_k} + \bar{B}x_{t_k}$$

$$y_{t_k} = Ch_{t_k} + Dx_{t_k}$$
(2)

where $\bar{A}=e^{A\Delta}$, $\bar{B}=A^{-1}(e^{A\Delta}-I)B$ with the assumption that signals are constant during the sampling interval.

Among many approaches to efficiently computing $e^{A\Delta}$, Gu et al. (2021) use a bilinear transform to estimate $e^{A\Delta} \approx (I - \frac{1}{2}A\Delta)^{-1}(I + \frac{1}{2}A\Delta)$.

This recurrence equation can be used to iteratively solve for the next hidden state $h_{t_{k+1}}$, allowing the states to be calculated like an RNN or a Neural ODE (Chen et al., 2018;

The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion

- Соревнование по предсказанию fMRI мозга (1 картинка) по 3 секундному видео. Был представлен датасет (сейчас недоступен, но наверное можно попросить) из 102 видео и fMRI 10 людей.
- Было представлено 2 категории мини и полная. В мини необходимо было предсказывать лишь некоторые интересующие зоны, в полной весь мозг (что является почти нашей задачей за исключением того, что мы должны предсказывать видео, а не картинку)
- На странице соревнования есть таблица с результатами, репортами, а кое-где и кодом участников.
- Есть тулкит, включающий в себя визуализацию fMRI и простенький бейзлайн

Effective Ensemble of Deep Neural Networks Predicts Neural Responses to Naturalistic Videos

Решение победителей соревнования. Используется ансамбль энкодер-декодеров, каждый из которых отвечает за разные области: пространственно-временная информация, движение, контуры, статичные картинки, аудио. Есть гитхаб и реализация, но та же самая проблема с датасетом, что и у всего соревнования.

Self-Supervised Transformers for fMRI representation

Трансформер для анализа fMRI: TFF (a Transformer framework for the analysis of functional Magnetic Resonance Imaging)

Уже есть предобученный со всеми весами, возможно использовать его декодер для нашей задачи.

An Intuitive Tutorial to Gaussian Processes Regression by J. Wang

Регрессия гауссовских процессов.

К сожалению, её работа занимает O(N^3) по времени и O(N^2) по памяти, что не подойдет для нашей задачи. Однако, возможно стоит рассмотреть разреженные гауссовские процессы.

Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Bayesian Decoder Models with a Discriminative Observation Process

Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models

Высокое время обработки видео и FMRI. Авторы предложили использовать смесь гауссиан для моделирования отклика каждой клетки FMRI, тем самым сократив время вычислений до приемлемого на практике. Для обучения использовался принцип максимизации вариационной нижней оценки ELBO. Однако в статье рассматривались только низкоразмерные данные без пространственной составляющей, что является плохим приближением FMRI.

$$p(X_k|X_{k-1}) \sim N(A_{k-1}|X_{k-1} + B_{k-1}, \Sigma_Q)$$

