

Listado 3 Relaciones

Recordar que $A \times B := \{(a, b) : a \in A \ y \ b \in B\}.$

- 1. (P) Sean los conjuntos $A = \{1, 2\}$ y $B = \{5, 7\}$. Hallar y mostrar gráficamente los siguientes conjuntos
 - $a) A \times B$
 - b) $B \times A$

¿Se cumple $A \times B = B \times A$?

- 2. Sean los conjuntos $E=\{a,b,c\}$ y $F=\{1,3\}$. Hallar y mostrar gráficamente los siguientes conjuntos
 - a) $E \times F$
 - b) $F \times E$
- 3. Determinar
 - a) Sean $A = \{5, 8, 11\}$ y $B = \{4, 7, 10\}$. Hallar $\mathcal{R} = \{(a, b) \in A \times B : a < b\}$.
 - b) (P) Sean $P = \{3, 5, 7, 9\}$ y $Q = \{1, 2, 3, 4\}$. Hallar $\mathcal{R} = \{(a, b) \in P \times Q : a + b > 9\}$.
- 4. Considere los conjuntos $A = \{x \in \mathbb{N} : x < 7\}$ y $B = \{-1, 0, 1\}$. Indicar la veracidad o falsedad de las siguientes sentencias
 - a) $(-1,0) \in A \times B$

d) $(1,-1) \in A \times B$

- $b) (5,0) \in A \times B$
- c) **(P)** $(0,6) \in A \times B$

- e) (P) $A \times B \subset [0,7] \times [-2,2]$
- 5. **(P)** Para la siguiente relación binaria interna, verifique si se cumple la reflexividad, simetría, transitivadad y antisimetría y muestre gráficamente esta relación. Justifique sus afirmaciones.

$$L = \{(2, 2), (1, 1), (1, 3)\}$$
 como relación de $B = \{1, 2, 3\}$ en sí mismo.

6. Para las siguientes relaciones, determine si son de equivalencia, de orden, o ninguna, demuestre sus afirmaciones. En caso de ser de equivalencia, describa una de sus clases de equivalencia.

a)
$$C = \{1, 2, 3, 4, 5\}$$
 y $R = \{(1, 1), (1, 3), (4, 2), (5, 5)(2, 4), (3, 3), (3, 1), (2, 2), (4, 4)\}$ en C .

- b) (P) $E = \{(a, b) \in \mathbb{R} \times \mathbb{R} : a b \in \mathbb{Z}\}$
- c) $N = \{(C, D) \in \mathcal{P}(\mathbb{Z}) : C \cup D \neq \emptyset\}$
- d) $Eq = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \exists k \in \mathbb{Z}, x y = 2k\pi \}$
- e) $B = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a b \text{ es par}\}$
- f) $S = \{((x,y),(a,b)) \in (\mathbb{R} \setminus \{0\})^2 \times (\mathbb{R} \setminus \{0\})^2 : xb = ay\}$
- g) (P) $L = \{((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2 : x_1 \le y_1 \land x_2 \le y_2\}$
- h) T en el conjunto de las personas, definida por a T b si y solo si a tiene menor o igual estatura que b.
- 7. Dado un conjunto F y $K\subseteq F$ fijo, definimos la relación binaria interna \mathcal{R}_K en $\mathcal{P}(F)$ por

$$\mathcal{R}_K = \{ (A, B) \in \mathcal{P}(F) \times \mathcal{P}(F) : B \cap K \subset A \}.$$

- a) Pruebe que \mathcal{R}_K es refleja y transitiva.
- b) Dé condiciones sobre el conjunto K para que \mathcal{R}_K sea antisimétrica.