POWER PROFILE

Power consumption for a node

Global Constants

Power required to turn on mcu, sensor and to change between rx and tx of radio

$$(P_{off \rightarrow on})_{mcu}, (P_{off \rightarrow on})_{sensor}, (P_{rx \rightarrow tx})_{radio} (P_{tx \rightarrow rx})_{radio}$$

Power in idle state for mcu, sensors and the idle and receive state for radio $(P_{idle})_{mcu}$, $(P_{idle})_{sensor}$, $(P_{idle})_{radio}$, $(P_{rx})_{radio}$

Power for different modes and switching between them $(P_{on \to sleep})_{mcu}, (P_{sleep})_{mcu}, (P_{sleep \to on})_{mcu}, (P_{on \to sleep})_{radio}, (P_{sleep \to on})_{radio}$

Power for procssing packet, sending packet and reading sensor P_{procss_packet} , P_{send_packet} , P_{read_sensor}

An array of total Power of the node over time and the time at which the power changes P_{total} , timex

The following modes P_{mode} have been used

- SENSE_SEND = 7
- ON = 6
- TX = 5
- RECIEVE = 4
- IDLE = 3
- SLEEP = 2
- OFF = 0

Functions/Equations

Turn On Node
$$(P_{on})_{node} = (P_{off \rightarrow on})_{mcu}$$

Idle State
$$P_{idle_state} = P_{mcu_state} + P_{radio_state} + P_{sensor_state}$$

$$MCU P_{mcu_state} = (P_{idle})_{mcu}$$

Radio
$$P_{radio_state} = RX * (P_{rx})_{radio} + (1 - RX) * (P_{idle})_{radio}$$

RX = Whether Radio in Recieve state or idle state

Sleep Node $P_{sleep} = P_{mcu_state} + P_{radio_state} + P_{sensor_state}$

$$MCU P_{mcu_state} = (P_{on \rightarrow sleep})_{mcu}$$

Radio
$$P_{radio_state} = (P_{on \rightarrow sleep})_{radio}$$

Sensor
$$P_{sensor_state} = 0$$

Wakeup Node $P_{wakeup} = P_{mcu_state} + P_{radio_state} + P_{sensor_state}$

$$MCU P_{mcu_state} = (P_{sleep \to on})_{mcu}$$

Radio
$$P_{radio_state} = (P_{sleep \rightarrow on})_{radio}$$

Sensor
$$P_{sensor_state} = 0$$

Sense Send Message $P_{message} = P_{mcu_state} + P_{radio_state} + P_{sensor_state}$

$$\mathbf{MCU}\ P_{mcu_state} = P_{procss_packet}$$

Radio
$$P_{radio_state} = P_{send_packet}$$

Sensor
$$P_{sensor_state} = (P_{off \rightarrow on})_{sensor} + P_{read_sensor}$$

Switch TX RX
$$P_{switch} = \text{MODE} * (P_{tx \to rx})_{radio} + (1 - \text{MODE}) * (P_{rx \to tx})_{radio}$$

 $\text{MODE} = 0(RX \to TX)/1(TX \to RX)$

$$\mathbf{Update\ Power\ }P_{total_{i}+1}=P_{total_{i}}+P_{consumed}$$