Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2021

PRÁCTICO 7: TEORÍA DE GRUPOS - CONCEPTOS BÁSICOS.

Ejercicio 1. Investigar si los siguientes conjuntos con las respectivas operaciones que se definen son grupos:

- **a.** El conjunto $M_{n\times n}(\mathbb{R})$ con la operación el producto usual de matrices: A*B=AB.
- **b.** El conjunto $M_{n\times n}(\mathbb{R})$ con la operación: A*B=AB+BA.
- **c**. El conjunto \mathbb{R}^2 con la operación: $(x_1, x_2) * (y_1, y_2) = (x_1y_1, x_2y_1 + y_2)$.
- **d.** $G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$ y * el producto matricial.

- **g**. El conjunto $\mathbb Z$ con la operación \otimes definida por : $a\otimes b=ab-2(a+b)+6.$

Ejercicio 2. Sea $G = \{e, a, b, c, d, f\}$ tal que (G, \cdot) es un grupo. Completar la tabla de Cayley si se tiene la información parcial siguiente:

•	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а		е			
b	b			f		d
С	С				b	а
d	d					b
f	f			b		

Ejercicio 3. Sea (G,\cdot) un grupo con neutro e. Probar las siguientes afirmaciones:

- **a.** $(ab)^{-1} = b^{-1}a^{-1}$ para todo $a, b \in G$.
- **b.** $(a^n)^{-1} = (a^{-1})^n$ para todo $a \in G$, $n \in \mathbb{N}$.
- **c.** Si xg = xh o gx = hx para algún $x \in G$ entonces g = h.
- $\mathbf{d}. \ \mathrm{Si} \ gh = e \ \mathrm{o} \ hg = e \ \mathrm{entonces} \ h = g^{-1}.$
- **e**. Si $(ab)^3 = e$ entonces $(ba)^3 = e$.

- **f**. $(ab)^{-1} = a^{-1}b^{-1}$ para todo $a, b \in G \Leftrightarrow G$ es abeliano.
- **g**. $(ab)^2 = a^2b^2$ para todo $a, b \in G \Leftrightarrow G$ es abeliano.

Ejercicio 4. Pruebe que la composición en el grupo de permutaciones S_n verifica la propiedad asociativa.

Ejercicio 5. Para cada uno de los grupos G, investigar si H es un subgrupo de G:

- **a.** $G = (\mathbb{Z}, +)$ y $H = n\mathbb{Z}$ el conjunto de los enteros múltiplos de n (para $n \in \mathbb{Z}$ dado).
- **b**. $G = \mathbb{R} \setminus \{0\}$ con el producto y $H = \mathbb{R}^+$ el conjunto de los reales positivos.
- c. $G = GL_2(\mathbb{R})$ (matrices invertibles 2×2 con coeficientes reales) con el producto usual de matrices y $H = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) : ac \neq 0 \right\}$.
- **d**. $G = GL_2(\mathbb{R})$ y $H = \{M \in G : \det(M) = 1\}$.
- **e**. $G = \mathbb{Q}^+$ con el producto y $H = \left\{ \frac{a}{b} \in \mathbb{Q} : a \equiv 0 \pmod{7}, \mod(b,7) = 1 \right\}.$
- **f.** $G = D_3 = \{ id, r, r^2, s, sr, sr^2 \}$ el grupo dihedral (donde $r^3 = s^2 = id$ y $rs = sr^2$) y $H = \{ id, r, r^2s, s \}$.
- **g.** $G = S_3$ el grupo de permutaciones y $H = \{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}\}$.

Ejercicio 6. Sean H_1 y H_2 dos subgrupos de un grupo G.

- **a**. Probar que $H_1 \cap H_2$ es un subgrupo de G.
- **b**. Probar que si $H_1 \cup H_2$ es un subgrupo de G entonces $H_1 \subseteq H_2$ o $H_2 \subseteq H_1$ (en general la unión de subgrupos **no** es un subgrupo).

Ejercicio 7. Sea G un grupo **abeliano**. Pruebe que H es un subgrupo de G para los siguientes casos:

- **a**. $H = \{a \in G : a^2 = e_G\}.$
- $\mathbf{b}. \ H = \{a^n : a \in G\} \ \mathrm{donde} \ n \ \mathrm{es} \ \mathrm{un} \ \mathrm{entero} \ \mathrm{positivo} \ \mathrm{dado}.$

Ejercicio 8. Sea G un grupo con neutro e. Supongamos que existan elementos $a,b\in G$ tales que: $a\neq e$, $b\neq e$, $a^7=e$, $b^3=e$ y $ab=ba^2$.

- **a**. Probar que G no es conmutativo.
- **b**. Probar que $(ab)^2 = b^2 a^6$.
- **c**. Probar que $(ab)^3 = e$.