安徽大学 2022—2023 学年第一学期

《概率论与数理统计 A》期末考试(A卷)参考答案及

评分标准

· · · · · · · · · · · · · · · · · · ·
一. 选择题 (每小题 3 分, 共 15 分) 1. B 2. A 3. D 4. B 5. C 二. 填空题 (每小题 3 分, 共 15 分)
6. 0.28 7. $\frac{4}{5}$ 8. $\frac{1}{4}$ 9. 25 10. $\frac{7}{16}$
三. 计算题 (每小 12 分, 共 60 分)
11. 【解】(1) $\frac{1}{3} + a + \frac{1}{6} + 2a + \frac{1}{4} = 1$, $a = \frac{1}{12}$
·················(6分) (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
P_k 1/12 1/2 1/6 1/4
(12 分)
12. 【解】 (1) $\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} (a - x) dx = \frac{1}{2} + a - \frac{3}{2} = 1,$ 所以 $a = 2$.
(6分)
(2) $EX = \int_{-\infty}^{+\infty} xf(x)dx = \int_{0}^{1} x \cdot xdx + \int_{1}^{2} x \cdot (2-x)dx = 1$.
·····································
13. 【解 】 <i>X</i> , <i>Y</i> 的边缘分布分别为
$\frac{X}{P} \left \begin{array}{ccc} 0 & 1 \\ \hline \frac{3}{4} & \frac{1}{4} \end{array} \right , \frac{Y}{P} \left \begin{array}{ccc} 0 & 1 \\ \hline \frac{5}{6} & \frac{1}{6} \end{array} \right ,$
则 $EX = \frac{1}{4}, EY = \frac{1}{6}, DX = \frac{3}{16}, DY = \frac{5}{36}, E(XY) = \frac{1}{12},$
故 $Cov(X,Y) = E(XY) - EXEY = \frac{1}{24}$,从而
$\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{DX \cdot DY}} = \frac{1}{\sqrt{15}} = \frac{\sqrt{15}}{15}$
(12 分)
14. 【解】(1) $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x \frac{1}{x} dy, & 0 < x < 1 \\ 0, & \text{其他} \end{cases} = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$
(6分)

(2)
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

15. 【解】设 $x_1, x_2, \cdots x_n$ 是样本 $X_1, X_2, \cdots X_n$ 的一组样本值,似然函数

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{x_i}{\theta}} = \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i}$$

取对数有
$$LnL(\theta) = (-n)Ln\theta - \frac{1}{\theta}\sum_{i=1}^{n}x_i$$
 , $\Rightarrow \frac{\partial LnL(\theta)}{\partial \theta} = \frac{(-n)}{\theta} + \frac{1}{\theta^2}\sum_{i=1}^{n}x_i = 0$

得 θ 的最大似然估计量为: $\hat{\theta}_L = \overline{X}$

.....(12分)

四.应用题(每小题5分,共5分)

16. 【解】假设 $H_0: \mu = 70$ $H_1: \mu \neq 70$

依题意: n = 36 x = 66.5 s = 15 $\alpha = 0.05$

故接受 H_0 ,即可认为这次考试全体考生的平时成绩为70分

.....(5分)

五.证明题(每小题5分,共5分)

17. 【证明】

当
$$z > 0$$
 时, $F_Z(z) = P\{Z \le z\} = P(\min\{X,Y) \le z\} = 1 - P\{\min(X,Y) > z\}$ $= 1 - P\{X > z, Y > z\} = 1 - P(X > z) \cdot P\{Y > z\}$

=1-[1-
$$P(X \le z)$$
]·[1- $P{Y \le z}$] =1-[1- $F_X(z)$]·[1- $F_Y(z)$] =1- e^{-2z} ,
 $\stackrel{\text{\tiny \perp}}{=}$ z ≤ 0 $\stackrel{\text{\tiny \uparrow}}{=}$, $F_Z(z)$ = 0 ,

所以 $Z = \min(X, Y)$ 的概率密度函数为

$$f_Z(x) = F_Z'(z) = \begin{cases} 2e^{-2z}, & z > 0 \\ 0, & z \le 0 \end{cases}$$

故 $Z = \min(X, Y)$ 服从指数分布

.....(5分)