NASA Technical Paper 2721

July 1987

Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle With Thrust Vectoring

E. Ann Bare and David E. Reubush

NASA Technical Paper 2721

1987

Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle With Thrust Vectoring

E. Ann Bare and David E. Reubush

Langley Research Center Hampton, Virginia

Scientific and Technical Information Office

CONTENTS

	SUMMARY	1
	INTRODUCTION	1
	SYMBOLS AND ABBREVIATIONS	2
	APPARATUS AND METHODS	3
	Static Test Facility	3
	Single-Engine Propulsion-Simulation System	3
	Nozzle Design and Models	4
	Nozzle concept	4
	Nozzle models	4
,	Instrumentation	4
ŀ	Data Reduction	5
		J
i	PRESENTATION OF RESULTS	5
1	RESULTS AND DISCUSSION	6
	Flap Angle	6
	Flap Length	7
	Sidewall Containment	8
1	Throat Approach Angle	8
	Throat Geometry	9
ļ	•	_
	CONCLUSIONS	9
	REFERENCES	11
	TABLE	13
į		
	FIGURES	15
!	APPENDIX A - INTERNAL GEOMETRY OF LOWER AND UPPER FLAPS	56
	ADDITION D. TIMEDINAL CONTROL DESCRIPTION FOR ALL CONTROL TO A CONTROL	
ŀ	APPENDIX B - INTERNAL STATIC PRESSURES FOR ALL CONFIGURATIONS TESTED	70

PRECEDING PAGE BLANK NOT FILMED

SUMMARY

A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60° to 23.00°. The nozzle pressure ratio was varied up to 10 for all configurations.

The results show that the nozzle discharge coefficient was insensitive to changes in geometry downstream of the throat for a constant geometric vector angle. The effect on internal performance of cutting back the sidewalls was in effect the same as decreasing the nozzle expansion ratio. Radiusing the lower flap throat improved the nozzle performance.

INTRODUCTION

The next generation of fighter airplanes will be both versatile and highly maneuverable. One approach for providing these characteristics consists of using the propulsion system to enhance maneuverability and attitude control. Several studies have been conducted using nonaxisymmetric nozzles to vector thrust in order to generate other forces and moments (refs. 1 to 7). One type of nonaxisymmetric nozzle that has been successfully adapted for pitch thrust vectoring is the two-dimensional convergent-divergent (2D-CD) nozzle (refs. 8 to 12). Most of these investigations addressed specific 2D-CD nozzle designs with only limited nozzle component variations. There are limited static-performance data available on the effects of parametrically varying the nozzle internal geometry, for example, data on the expansion ratio, flap length, sidewall length, and flap divergence angle (ref. 13). Another investigation (ref. 14) studied the effects of throat contouring. Other investigations included thrust-vectoring effects (refs. 14, 15, and 16).

The present paper presents static internal performance data for 2D-CD nozzles of constant throat area and aspect ratio having geometric variations of upper flap angle, lower flap angle, divergent flap length, and throat approach angle in combinations to achieve pitch thrust vectoring. Upper flap divergence angle varied from -20.4° to 1.4°, lower flap divergence angle varied from 11.6° to 25.0°, divergent flap length varied from 1.0 to 2.7 in., and throat approach angle varied from 5.0° to 30.0°. The effects of sidewall containment and throat radius were also studied for selected configurations. All nozzles were tested at nozzle pressure ratios of 1.7 to 10.0. Nozzle internal performance data were obtained from force balance and flow measurements. All upper and lower nozzle flaps were instrumented with internal surface static pressure orifices. This investigation was conducted in the static test facility adjacent to the Langley 16-Foot Transonic Tunnel.

SYMBOLS AND ABBREVIATIONS

 $^{\mathrm{A}}\mathrm{e}$ geometric nozzle exit area computed at trailing edge of nozzle flaps, in² geometric nozzle throat area at x = 3.0 in., in² $^{\rm A}{
m t}$ A_e/A_t geometric nozzle expansion ratio F measured thrust along body axis, lbf $w_{p} \left\{ RT_{t,j} \frac{2\gamma}{\gamma - 1} \left| 1 - \left(\frac{p_{a}}{p_{t,j}} \right)^{\frac{\gamma - 1}{\gamma}} \right| \right\}^{1/2}$, lbf ideal isentropic gross thrust, F_i resultant gross thrust, $(F^2 + N^2)^{1/2}$, lbf Fr nominal nozzle throat height of 1.0 in. (see fig. 2) h_{t,n} Z length of divergent flap (see fig. 2), in. M_{Y} measured pitching moment about point on model centerline at station 29.39, in-1b N measured normal force, lbf nozzle pressure ratio, p_{t.j}/p_a NPR local static pressure, psi р ambient pressure, psi p_a jet total pressure, psi Pt.i R gas constant, 53.364 ft-lb/lb-°R for air T_{t,j} jet total temperature ideal mass-flow rate Wi measured mass-flow rate, slugs/sec $q^{\mathbf{W}}$ axial coordinate measured from nozzle connect station (Sta. 41.13), х positive downstream, in. vertical coordinate measured from horizontal model centerline, positive upward, in. lower flap angle measured from horizontal reference line (see fig. 2), deg 0.7 upper flap angle measured from horizontal reference line (see fig. 2), deg α_{11} β throat approach angle measured from horizontal reference line (see fig. 2),

```
resultant thrust vector angle, tan-1 (N/F), deg
          geometric thrust vector angle, (\alpha_1 - \alpha_1)/2.0, deg
Abbreviations:
Sta.
          model station
2D-CD
          two-dimensional convergent-divergent
First character in nozzle configuration designation (see fig. 3):
          sidewall pair 301, 302
          sidewall pair 303, 304
          sidewall pair 305, 306
C
          sidewall pair 307, 308
          sidewall pair 309, 310
Number in nozzle configuration designation (see table AII):
01 to 27 upper flap
Last character(s) in nozzle configuration designation (see table AI):
F to AA
          lower flap
```

ratio of specific heats, 1.3997 for air

APPARATUS AND METHODS

Static Test Facility

This investigation was conducted in the static test facility (ref. 17) of the Langley 16-Foot Transonic Tunnel. All tests were conducted with the jet exhausting to the atmosphere. This facility utilizes the same clean, dry air supply and a similar air-control system as that used in the 16-Foot Transonic Tunnel, including valving, filters, and a heat exchanger (to operate the jet flow at constant stagnation temperature).

Single-Engine Propulsion-Simulation System

A sketch of the single-engine air-powered nacelle model (described in ref. 17) on which the various nozzles were mounted is presented in figure 1 with a typical vectored 2D-CD nozzle configuration attached. An external high-pressure air system provided a continuous flow of clean, dry air at a controlled temperature of about 530°R (measured at the instrumentation section). This high-pressure air was brought through a dolly-mounted support strut by six tubes that connect to a high-pressure plenum chamber. In order to minimize any forces imposed by the transfer of axial

momentum as the air is passed from the nonmetric high-pressure plenum to the metric low-pressure plenum (attached to the force balance), the air was discharged radially into the model low-pressure plenum through eight multiholed sonic nozzles equally spaced around the high-pressure plenum, as shown in figure 1. Two flexible metal bellows were used as seals and served to eliminate the transfer of forces caused by pressurization.

The air was then passed from the model low-pressure plenum through a transition section that provided a smooth flow path for the airflow from the round low-pressure plenum to the rectangular choke plate and instrumentation section. The transition section, choke plate, and instrumentation section were common for all 2D-CD nozzles tested. The instrumentation section had a flow path width-to-height ratio of 1.437. All nozzle configurations were attached to the instrumentation section at model station 41.13.

Nozzle Design and Models

Nozzle concept.— The basic nozzle components of the two-dimensional convergent-divergent (2D-CD) nozzle are upper and lower flaps that regulate the internal contraction and expansion process which takes place in the vertical plane, and flat sidewalls that contain the flow laterally. The two-dimensional nature of the flaps and sidewalls of this nozzle makes it readily adaptable to the incorporation of thrust-vectoring capabilities. This is achieved by varying the geometry of both the upper and lower flaps aft of the throat in order to direct the flow from the axial direction.

Nozzle models.- The nozzle models of the present investigation were attached to the propulsion simulation system at station 41.13 (see fig. 1) and had a nominally constant throat height of 1.0 in. and width of 4.0 in. Interchangeable upper and lower nozzle flaps and sidewalls were combined to vary the nozzle geometry. Figure 2(a) presents a sketch showing typical nozzle upper and lower flaps having sharp throats (a radius equal to 0.0). Figure 2(b) presents a sketch of a radiused lower flap (a radius equal to 1.0 in.). Six configurations utilizing a radiused lower flap were tested to determine the effect of throat geometry on static performance. Table I shows the geometry of each configuration along with the geometric thrust vector angle and nozzle expansion ratio. The effect of sidewall cutback was examined for selected configurations. Sidewall geometry is shown in figure 3.

The flaps and sidewalls used to assemble each nozzle may be determined from the configuration notation described in the "Symbols and Abbreviations" section. The internal geometry of all upper and lower flaps is presented in appendix A.

Instrumentation

A six-component strain-gauge balance was used to measure the forces and moments on the model downstream of station 20.50 in. (See fig. 1.) Jet total pressure was measured by means of a four-probe rake through the upper surface, a three-probe rake through the side, and a three-probe rake through the corner of the rectangular instrumentation section (fig. 1). Jet total temperature was measured by a shielded thermocouple probe also located in the instrumentation section. Mass-flow rate of the high-pressure air was measured by a calibrated choked venturi. All upper and lower flaps were instrumented with internal static pressure orifices located on the

planview centerline. The internal static pressures for all the configurations tested are presented in appendix B. Axial location of the static pressure orifices for each configuration are given in tables BI and BII.

Data Reduction

All data were recorded on magnetic tape with 50 frames of data averaged over 5 sec at each data point for use in the computations. With the exception of resultant thrust F_r , data for the force and resultant thrust vector angle are referenced to the model centerline. Nominal throat height $h_{t,n}$ was selected arbitrarily as a nondimensionalizing length.

Data are presented in basic performance parameters of internal thrust ratio, resultant thrust ratio, resultant thrust vector angle, nondimensionalized pitching moment, and nozzle discharge coefficient (ratio of measured mass-flow rate to ideal mass-flow rate). The balance measurements are corrected for model weight tares and balance interactions. Although the bellows arrangement previously described was designed to eliminate pressure and momentum interactions with the balance, small bellows tares still exist on all balance components. When the bellows are pressurized there are small differences in the forward and aft spring constants; there are also small differences in the pressure between the ends of the bellows at high internal velocities. These differences result in the bellows tares. In order to determine the bellows tares, calibration nozzles were run over a range of expected normal force and pitching moments, and the balance data were corrected in a manner similar to that discussed in reference 15. Although six balance components were computed, none of the nozzle configurations produced any significant levels of lateral forces or moments, and as a result none are presented. External pressure measurements on previous models (see ref. 13) showed no base pressure effects. Therefore, no external pressure measurements were made on this model.

To ensure the integrity of the system, one of the nozzle configurations was tested several times throughout the investigation and repeat data were found to be within balance accuracy. The corrected balance data are then used to determine the basic performance parameters. The ideal gross thrust is computed based on measured mass-flow rate, jet total pressure, and jet total temperature. The pitching moment that results from vectored thrust is presented as a ratio to ideal thrust multiplied by throat height to give a nondimensionalized quantity. The computed ideal mass-flow rate is based on jet total pressure, jet total temperature, and measured nozzle throat area. Nozzle throat area was measured for each nozzle tested. Nozzle discharge coefficient is the ratio of the measured mass-flow rate to the ideal mass-flow rate and is the measure of the ability of a nozzle to pass mass flow. The internal nozzle static pressures are presented as a ratio to jet total pressure.

PRESENTATION OF RESULTS

The basic internal nozzle performance data and pitching-moment-ratio data for all configurations and the pressure data for selected configurations are presented graphically in figures 4 to 18. The pitching-moment data are presented for information purposes and will not be discussed in that the results noted for the resultant thrust vector angle are the same as would be noted for the pitching-moment-ratio data. The local static pressure data for all the configurations are presented in ratio form as a function of NPR and the x-location in appendix B. All data were

machine plotted and the curves were faired with a spline curve fit. The results of this investigation are plotted in the following figures:

•	rigure
Nozzle performance parameters and pitching moment:	
Effect of geometric thrust vector angle	4
Effect of upper flap angle	5
Effect of divergent flap length with $\beta = 7.60^{\circ}$	7
	,
Effect of divergent flap length with $\beta = 17.50^{\circ}$	8
Effect of divergent flap length with $\beta = 27.40^{\circ}$	9
Effect of sidewall containment	11
Effect of throat approach angle with $l/h_{t,n} = 1.0$	13
Effect of throat approach angle with l/h . = 1.75	14
Effect of threat approach angle with 1/h = 2.50	15
Effect of throat approach angle with 7/1t,n	17
Effect of throat geometry	1 /
Upper and lower flap static pressure distributions:	
Effect of upper flap angle	6
Effect of divergent flap length	10
Effect of sidewall containment	12
Effect of throat approach angle	16
Effect of throat geometry	18
Effect of mitoat decometry	

RESULTS AND DISCUSSION

There are a number of different ways to vector the thrust from a 2D-CD nozzle. One example would be to gimbal the entire nozzle. Although this method would not affect the internal nozzle performance in that the flow path would be unchanged, the necessary actuators and gimbal hardware would add extra weight to the configuration. Also, as the thrust vector angle of this concept varies, the change in the nozzle external geometry has the potential for significantly increasing drag as was reported in reference 6. The method of vectoring thrust studied in the current investigation is the independent deflection of the upper and lower divergent flaps which could be accomplished by using the existing actuators and hardware necessary for changing nozzle power setting and expansion ratio. This method eliminates the need for the extra actuators necessary for gimballing the entire nozzle, but it leaves the throat orientation essentially unchanged as compared with that of the forward thrust mode. This in effect means that the supersonic flow downstream of the nozzle throat must be turned by the nozzle divergent flaps. There is a potential for thrust losses when this is done, as previous studies have indicated (refs. 6 and 15).

Flap Angle

The geometric thrust vector angle can be increased by decreasing the upper flap angle α_u while the lower flap angle $\alpha_{\tilde{l}}$ is held constant, or by increasing $\alpha_{\tilde{l}}$ while α_u is held constant; however, this would also change the nozzle expansion ratio. In order to maintain the same expansion ratio, the upper and lower divergent flap angles are varied simultaneously. Figure 4 shows the effect of increasing the thrust vector angle. There were no discernible changes in the shape of the internal performance curves, but there was only an incremental decrease in gross thrust ratio and discharge coefficient attributable to the increase in geometric thrust vector

angle. The increase of 7.5° in geometric thrust vector angle produced an approximate 8.0° incremental increase in resultant thrust vector angle.

Previous studies (ref. 13) have shown that nozzle expansion ratio is the predominant parameter affecting nozzle internal performance. Because of this, it is difficult to separate effects due to changes in upper flap divergence angle from effects due to expansion ratio change. Figure 5 shows the effect of changing the upper flap angle and, consequently, the geometric thrust vector angle and expansion ratio while holding other parameters constant. The resultant thrust ratio shows effects due to expansion ratio variation that are similar to those observed in reference 13. That is, the peak performance occurs at an NPR near the design NPR and then drops with increasing NPR, with the lowest expansion ratio configuration showing the largest performance loss as a result of nozzle underexpansion losses. Discharge coefficient shows a decrease with increasing geometric vector angle similar to that previously discussed for figure 4. The thrust vector angle is influenced by both expansion ratio and geometric vector angle; it is difficult to separate the two effects. Figure 6 shows the static pressure data for configurations C19P and C20P. The pressure on the last two-thirds of the lower flap of C19P is much higher than that on the upper flap. This difference tends to reduce significantly the normal force and thus the resultant thrust vector angle. The pressures also indicate a highly inclined throat, thus making the nozzle effectively an inverted singleexpansion-ramp nozzle. This tends to produce large resultant thrust vector angles at low NPR and low values of resultant thrust vector angle at high NPR (see ref. 18), as can be seen for configuration C19P in figure 5. The pressures for configuration C20P indicate a fairly vertical nozzle throat with the upper flap having a higher pressure than the lower flap over most of the flap length. This condition tends to produce the lower values of resultant thrust vector angles at low NPR as indicated in figure 5 for configuration C20P. It is apparent that increasing the geometric vector angle by decreasing only the upper flap divergent angle does not provide efficient thrust vectoring.

Flap Length

Figures 7 to 9 show data at different divergent flap lengths (and consequently different nozzle expansion ratios) with all other parameters held constant. Figures 7(b) and 9(b) show comparisons between data at values of $l/h_{t,n}$ of 1.00 and 2.50 with only small differences in expansion ratio. There are only small effects of flap length on the performance data of configurations having almost the same expansion ratio. This result was also indicated by the data in reference 13. Figures 7(a) and 9(a) show the same comparison in flap length but with the increase in expansion ratio being four times larger. The changes in the thrust ratios are also much larger. These differences are similar to those shown in figure 5 and are believed to be primarily due to differences in expansion ratio. It is apparent that any effect of flap length on internal performance is far less than the effect of changing the expansion ratio.

Differences in expansion ratio also influence the ability of the configuration to vector the thrust. The higher expansion ratio nozzles (longer flaps) produced resultant thrust vector angles that peaked at a value nearly double that of the lower expansion ratio nozzles, and then these angles rapidly dropped with increasing NPR to a value approximately one-half that of the lower expansion ratio nozzles (figs. 7(a) and 9(a)). That is, thrust vectoring is most effective and least erratic for nozzles having a low expansion ratio. This result might be expected since the

high expansion ratio nozzles are operating overexpanded at the low NPR's and the internal flow separation characteristics would be expected to vary greatly with varying NPR.

Figure 8 presents data for the configurations with minimum to maximum flap lengths tested (low to high expansion ratio). Except for the magnitude of peak resultant thrust vector angle, these data indicate results similar to those discussed for figures 7 and 9. Figure 10 presents the internal static pressure distributions for the configurations shown in figure 8. There is no effect of changing flap length on the pressure data. The data indicate an inclined throat and higher pressure on the lower flap over the last two-thirds of the longer flaps. This pressure distribution has the same effect on the resultant thrust vector angles shown in figure 9 as was previously discussed. (See the section entitled "Flap Angle.") The shorter nozzle flaps do not provide a long expansion surface, and thereby the reduction in normal force and the consequent reduction in resultant thrust vector angle do not occur.

Sidewall Containment

Figure 11 shows the effect of cutting back the nozzle sidewalls on the internal performance of configurations at three different vector angles and expansion ratios. Tests were made with the sidewalls cut back 30 and 60 percent from full containment. In general, the effect of cutting back the sidewall on thrust ratio and resultant thrust vector angle was small, as previously documented in references 16 and 19. Cutting back the sidewall appears to cause a decrease in the effective nozzle expansion ratio. Figure 11(b) shows the configuration that has the highest expansion ratio. This configuration, which shows the largest result of the effective decrease in expansion ratio with the 60-percent-cutback sidewall, displays a larger gross thrust ratio at low NPR and a lower gross thrust ratio at high NPR. These same results were also found in references 16 and 19.

Sidewall cutback was referenced to the nozzle throat; that is, a 100-percent cutback would mean that the sidewalls would end at the nozzle throat. Since all nozzle sidewalls tested extended downstream of the nozzle throat, the discharge coefficient showed essentially no change with sidewall containment. Figure 12 shows the internal static pressure distribution for the configurations shown in figure 11(a). Lower flap pressure distributions show no influence of sidewall cutback. There are some slight differences in the upper flap pressure distribution with varying sidewall cutback. A small change in the magnitude of the shock, which is positioned very near the end of the 30-percent-cutback sidewall (x/h_{t,n} = 4.50), can be seen at NPR \approx 4.0 and also, though to a lesser degree, at NPR \approx 10.0.

Throat Approach Angle

The effect of changing throat approach angle on nozzle internal performance and resultant thrust vector angle is shown in figures 13 to 15. There are only slight changes in the thrust ratios and the resultant thrust vector angle with increasing throat approach angle. The magnitude of the increment due to a change in throat approach angle was dependent on the values of geometric thrust vector angle and nozzle expansion ratio, thus making it difficult to quantify the effect. However, it can be generally stated that an increase in the throat approach angle decreased the resultant thrust ratio while increasing the resultant thrust vector angle. The discharge coefficient is most sensitive to varying the throat approach angle, with more

than a 6-percent decrease with increasing β in the worst case (fig. 13(b)). Similar effects were noted for conical nozzles as was reported in reference 20.

Figure 16 shows the internal static pressure distributions for two of the configurations presented in figure 14(a). The primary change in the lower flap flow is an increase in the magnitude of the shock with increasing throat approach angle. Throat approach angle had little effect on the upper flap static pressure distributions.

Throat Geometry

Three lower flaps (U, V, and W) were constructed with a throat of 1.0-in. radius (see table AI), and these radiused flaps had the same throat approach angle as three sharp-corner-throat flaps (H, M, and P). That is, a configuration in which the sharp-corner-throat lower flap was replaced by a radiused lower flap would still have the same throat approach angle and geometric expansion ratio. Six configurations with a radiused lower flap were tested (two different upper flaps with each radiused lower flap). The lower flap angle and, consequently, the geometric vector angle differed slightly between the configurations with the sharp-corner throat and the configuration with the radiused throat. (See table I.) Figure 17 shows the basic internal performance data for these configurations. In general, changing the lower flap throat geometry from a sharp corner to a radiused throat increased the resultant thrust ratios. The differences in performance are greater at the higher throat approach angles and/or the low nozzle expansion ratios. This result would be expected since the radiused throat provided a much smoother flow path than the sharp corner throat, particularly at the large throat approach angles. The influence of expansion ratio on the effect of throat geometry is also obvious by comparing parts (a) and (b), (c) and (d), and (e) and (f) of figure 17. The largest effect of throat geometry was on the discharge coefficient, which has been shown to be basically insensitive to changes in geometry downstream of the nozzle throat for a constant geometric vector angle and is affected only by changes that occur upstream of the throat and, in this case, in the throat. Figure 17(f) shows the largest increase in the discharge coefficient. Similar results of the effect of throat radiusing on the discharge coefficient are reported in reference 14. It is obvious that the radiused throat is a more efficient configuration not only because of its internal performance but even more so because of its ability to pass mass flow.

Figure 18 shows the internal static pressure distributions for the configurations shown in figure 17(f). The radiused flap caused the throat (where $p/p_{t,j} = 0.528$) to move downstream not only on the lower flap but also on the upper flap which was the same hardware for both configurations. There was also a decrease in the severity of the shock on both the upper and lower flaps when a radius was added to the throat on the lower flap.

CONCLUSIONS

A parametric investigation of two-dimensional convergent-divergent nozzles with thrust vectoring has given the following conclusions:

1. The effect of expansion ratio on nozzle internal performance is predominant over any effect caused by changes in divergent flap angle.

- 2. Because of reduced internal flow separation at low nozzle pressure ratios, thrust vectoring is most effective for nozzles having a low expansion ratio.
- 3. Reduced sidewall containment (cutting back the nozzle sidewalls) results in a decrease in effective nozzle expansion ratio, but the effect on nozzle performance is small.
- 4. Discharge coefficient is insensitive to changes in geometry downstream of the throat for a constant geometric vector angle. Increasing throat approach angle, however, results in reduced values of discharge coefficient.
- 5. Changing throat geometry from a sharp corner to a radius on the lower flap produces configurations more efficient in internal performance and with a better ability to pass mass flow, particularly for the configurations with low expansion ratios and/or large throat approach angles.

NASA Langley Research Center Hampton, VA 23665-5225 June 1, 1987

REFERENCES

- 1. Sedgwick, T. A.: Investigation of Non-Symmetric Two-Dimensional Nozzles
 Installed in Twin-Engine Tactical Aircraft. AIAA Paper No. 75-1319, Sept.-Oct.
 1975.
- 2. Stevens, H. L.: F-15/Nonaxisymmetric Nozzle System Integration Study Support Program. NASA CR-135252, 1978.
- F-15 2-D Nozzle System Integration Study. Volume I Technical Report. NASA CR-145295, 1978.
- 4. Bergman, D.; Mace, J. L.; and Thayer, E. B.: Non-Axisymmetric Nozzle Concepts for an F-111 Test Bed. AIAA Paper No. 77-841, July 1977.
- 5. Hiley, P. E.; Wallace, H. W.; and Booz, D. E.: Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft. J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.
- 6. Berrier, B. L.; and Re, R. J.: A Review of Thrust-Vectoring Schemes for Fighter Aircraft. AIAA Paper No. 78-1023, July 1978.
- 7. Goetz, G. F.; Petit, J. E.; and Sussman, M. B.: Non-Axisymmetric Nozzle Design and Evaluation for F-111 Flight Demonstration. AIAA Paper 78-1025, July 1978.
- 8. Stevens, H. L.; Thayer, E. B.; and Fullerton, J. F.: Development of the Multi-Function 2-D/C-D Nozzle. AIAA-81-1491, July 1981.
- 9. Capone, Francis J.; and Berrier, Bobby L.: Investigation of Axisymmetric and Nonaxisymmetric Nozzles Installed on a 0.10-Scale F-18 Prototype Airplane Model. NASA TP-1638, 1980.
- 10. Capone, Francis J.; and Reubush, David E.: Effects of Varying Podded Nacelle-Nozzle Installations on Transonic Aeropropulsive Characteristics of a Supersonic Fighter Aircraft. NASA TP-2120, 1983.
- 11. Hiley, P. E.; and Bowers, D. L.: Advanced Nozzle Integration for Supersonic Strike Fighter Application. AIAA-81-1441, July 1981.
- 12. Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program An Overview. AIAA Paper 77-1225, Aug. 1977.
- 13. Berrier, Bobby L.; and Re, Richard J.: Effect of Several Geometric Parameters on the Static Internal Performance of Three Nonaxisymmetric Nozzle Concepts. NASA TP-1468, 1979.
- 14. Mason, Mary L.; Putnam, Lawrence E.; and Re, Richard J.: The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions. NASA TP-1704, 1980.
- 15. Capone, Francis J.: Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles With Vectoring and Reversing Capability. NASA TP-1224, 1978.

- 16. Re, Richard J.; and Leavitt, Laurence D.: Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles. NASA TP-2253, 1984.
- 17. Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981.
- 18. Re, Richard J.; and Leavitt, Laurence D.: Static Internal Performance of Single-Expansion-Ramp Nozzles With Various Combinations of Internal Geometric Parameters. NASA TM-86270, 1984.
- 19. Yetter, Jeffery A.; and Leavitt, Laurence D.: Effects of Sidewall Geometry on the Installed Performance of Nonaxisymmetric Convergent-Divergent Exhaust Nozzles. NASA TP-1771, 1980.
- 20. Grey, Ralph E., Jr.; and Wilsted, H. Dean: Performance of Conical Jet Nozzles in Terms of Flow and Velocity Coefficients. NACA TN 1757, 1948.

TABLE I.- NOZZLE PARAMETERS

Configuration	α_{l} , deg	$\alpha_{\mathbf{u}}$, deg	l/h _{t,n}	β, deg	$\delta_{ m v}$, deg	A _e /A _t	Design NPR
AO1F	11.60	-8.60	1.00	7.60	10.10	1.05	2.6
A02G	23.40	-20.40	İ		21.90	1.05	2.6
A03F	11.60	1.40			5.10	1.23	4.1
A04G	23.40	-10.40	↓		16.90	1.22	4.0
в05н	11.60	-8.60	2.50		10.10	1.13	3.3
B06I	23.40	-20.40			21.90	1.12	3.2
в07н	11.60	1.40			5.10	1.56	6.7
B08I	23.40	-10.40		1	16.90	1.55	6.7
A09J	11.60	-8.60	1.00	27.40	10.10	1.05	2.6
Alok	23.40	-20.40			21.90	1.05	2.6
AllJ	11.60	1.40			5.10	1.23	4.1
Al2K	23.40	-10.40	+		16.90	1.22	4.0
B13L	11.60	-8.60	2.50		10.10	1.13	3.3
Bl4M	23.40	-20.40			21.90	1.12	3.2
B15L	11.60	1.40			5.10	1.56	6.7
B16M	23.40	-10.40	\	₩	16.90	1.55	6.7
C17N	10.00	-2.00	1.75	17.50	6.00	1.24	4.1
C180	25.00	-17.00			21.00	1.23	4.1
C19P	17.50	-15.80			16.65	1.05	2.6
C20P		-3.20	₩		10.35	1.43	5.6
D21Q		-9.50	.80		13.50	1.11	3.1
E22R			2.70	↓		1.37	5.2
C23S			1.75	5.00		1.24	4.1
C24T	1	\	1.75	30.00	<u> </u>	1.24	4.1

TABLE I.- Concluded

Configuration	α_{l} , deg	$\alpha_{ m u}$, deg	l/h _{t,n}	β, deg	$\delta_{f v}$, deg	A _e /A _t	Design NPR
C25P	17.50	-9.50	1.75	17.50	13.50	1.24	4.1
A05H	11.60	-8.60	2.50	7.60	10.10	1.13	3.3
СО 5Н	11.60	-8.60	1		10.10	1.13	3.3
A06I	23.40	-20.40			21.90	1.12	3.2
C06I		-20.40			21.90	1.12	3.2
AO8I		-10.40			16.90	1.55	6.7
C08I	₩	-10.40			16.90	1.55	6.7
в050	12.10	-8.60			10.35	1.13	3.3
B07U	12.10	1.40			5.35	1.56	6.7
B14V	25.60	-20.40		27.40	23.00	1.10	3.1
B16V	25.60	-10.40	↓	27.40	18.00	1.53	6.4
C19W	19.30	-15.80	1.75	17.50	17.55	1.04	2.5
C20W	19.30	-3.20		17.50	11.25	1.42	5.6
C26X	20.00	-10.00		45.00	15.00	1.30	4.7
C27Y	20.00	-10.00		55.00	15.00	1.30	4.7
C26Z	15.00	-10.00		45.00	12.50	1.15	3.5
C27AA	15.00	-10.00	•	55.00	12.50	1.15	3.5

Figure 1.- Sketch of air-powered nacelle model with typical nozzle configuration installed. Linear dimensions are in inches.

Figure 2.- Sketch of typical nozzle flaps defining flap parameters. All dimensions are in inches unless otherwise noted.

Figure 3.- Sketch of typical sidewall showing sidewall geometry. All dimensions are in inches.

Figure 4.- Effect of geometric thrust vector angle on nozzle performance parameters and pitching moment.

ORIGINAL PAGE IS OF POOR QUALITY

O C17N

☐ C25P

(b) Pitching moment.

Figure 4.- Concluded.

(a) Nozzle performance.

Figure 5.- Effect of upper flap angle on nozzle performance parameters and pitching moment.

- O C19P
- ☐ C25P

(b) Pitching moment.

Figure 5.- Concluded.

Figure 6.- Effect of upper flap angle on internal static pressure distributions for configurations Cl9P and C2OP. Dashed lines indicate lower flap.

Figure 7.- Effect of divergent flap length on nozzle performance parameters and pitching moment with $~\beta =$ 7.60°.

(b) Nozzle performance with $\delta_{\rm v} = 10.10^{\circ}$.

Figure 7.- Continued.

96.

F/F.

88

ORIGINAL PAGE IS OF POOR QUALITY

(c) Pitching moment.

Figure 7.- Concluded.

Figure 8.- Effect of divergent flap length on nozzle performance parameters and pitching moment with $\beta = 17.50^{\circ}$.

- O D21Q
- ☐ C25P

(b) Pitching moment.

Figure 8.- Concluded.

O A11J

Figure 9.- Effect of divergent flap length on nozzle performance parameters and pitching moment with $\beta = 27.40^{\circ}$.

(a) Nozzle performance with

88

96.

88.

ORIGINAL PAGE IS OF POOR QUALITY

1.00 .95 .92 .92 .93 .93 .93 .94 .95 .95 .96 .96 .97 .97 .98

(b) Nozzle performance with $\delta_{\rm v} = 10.10^{\circ}$.

(c) Pitching moment.

Figure 9.- Concluded.

Figure 10.- Effect of divergent flap length on internal static pressure distributions for configurations D21Q and E22R. Dashed lines indicate lower flap.

Configuration Cutback, percent

8 %

0

B05H C05H

○ □ ◇

. 00

96.

Figure 11.- Effect of sidewall containment on nozzle performance parameters and pitching moment.

Figure 11.- Continued.

F/F_i .92

96.

88.

8

(c) Nozzle performance with $\delta_{\mathbf{v}} = 21.90^{\circ}$.

Figure 11.- Continued.

35

Figure 11.- Concluded.

Figure 12.- Effect of sidewall containment on internal static pressure distributions for configurations BO5H, CO5H, and AO5H. Dashed lines indicate lower flap.

Figure 13. - Effect of throat approach angle on nozzle performance parameters and pitching moment with $l/h_{t,n} = 1.0$.

8

96.

(b) Nozzle performance with $\delta_{\rm v} = 21.90^{\circ}$.

NPR

88.

Figure 13.- Continued.

(c) Pitching moment.

Figure 13.- Concluded.

(a) Nozzle performance with $\delta_{\rm v} = 13.50^{\circ}$.

Figure 14.- Effect of throat approach angle on nozzle performance parameters and pitching moment with $l/h_{t,n} = 1.75$.

(c) Nozzle performance with $\delta_{\mathbf{v}} = 12.50^{\circ}$

Figure 14.- Continued.

42

Figure 15.- Effect of throat approach angle on nozzle performance parameters and pitching moment with $l/h_{t,n} = 2.50$.

Figure 15.- Continued.

(c) Pitching moment.

Figure 15.- Concluded.

Figure 16.- Effect of throat approach angle on internal static pressure distributions for configurations C23S and C24T. Dashed lines indicate lower flap.

Figure 17.- Effect of throat geometry on nozzle performance parameters and pitching moment.

(b) $A_e/A_t = 1.13$.

Figure 17.- Continued.

(c) $A_e/A_t = 1.43$.

Figure 17.- Continued.

96.

.92

88

(d) $A_e/A_t = 1.05$.

Figure 17.- Continued.

Figure 17.- Continued.

52

Figure 17.- Continued.

(g) Pitching moment.
Figure 17.- Concluded.

Figure 18.- Effect of throat geometry on internal static pressure distributions for configurations Bl4M and Bl4V. Dashed lines indicate lower flap.

APPENDIX A

INTERNAL GEOMETRY OF LOWER AND UPPER FLAPS

The internal geometry is presented in table AI for all lower flaps tested and in table AII for all upper flaps tested. Values of x and y are measured in inches.

TABLE AI.- INTERNAL GEOMETRY OF LOWER FLAPS

1 1	Lower Flap F		
	×	 y	
1	0.0000	-1.3900	
:	0.4574	-1.3900	
:	0.8110	 -1.2436	
:	1.2125	-0.8421	
:	1.5000	-0.7001	
1	3.0000	! -0.5000	
; ;	3.9796	-0.7011 	

Lower	Flap G
×	y
0.0000	-1.3900
0.4574	-1.3900
0.8110	-1.2436
1.2125	0.8421 0.8421
	0.7001
	-0.5000
 3.9178 	 -0.8971

+ +	Lower Flap H		
	.× .	y !	
1	0.0000	1 -1.3900	
1	0.4574	-1.3900	
!	0.8110	-1.2436	
1	1.2125	-0.8421	
!	1.5000	-0.7001	
1	3.0000	-0.5000	
1	5.4489	t -1.0027	

	Lower	- Flap I	1
- 	×	y	1
: !_			ł
1	0.0000	 -1.3900	1
! !	0.4574	-1.3900 	1 1 1
1	0.8110	-1.2436 	1
 	1.2125	-0.8421	1
: :	1.5000	-0.7001	1
!	3.0000	-0.5000	1
	5.2944	-1.4929 	1

TABLE AI. - Continued

 Lower	Flap J
 ×	y
0.0000	 -1.3900
1.1611	-1.3900
1.3912	-1.3339
3.0000	-0.5000
3.9796 	-0.7011

i !	Lower	 - Flap K
 	×	
'. 	0.0000	-1.3900
i - -	1.1611	: -1.3900
:	1.3912	-1.3339
:	3.0000	-0.5000
1	3.9178	-0.8971

1	Lower	Flap L :
1	×	y
	0.0000	-1.3900 ¦
!	1.1611	-1.3900
;	1.3912	-1.3339
1	3.0000	-0.5000
1 1	5.4489	-1.0027

1	Lower	Flap M
1	×	y
1	0.0000	-1.3900
!	1.1611	-1.3900
:	1.3912	-1.3339
1	3.0000	-0.5000
i 	5.2944	-1.4929
١.		· 1

TABLE AI .- Continued

Lower Flap N		
 y 		
-1.3900		
-1.2436		
1 -1.0962		
-0.9729		
: : -0.5000		
: -0.8039 ;		

Lower Flap O	
×	y
0.0000	-1.3900 ¦
0.8058	-1.3900
1.1694	-1.2436
1.2968	-1.0962
1.5000	-0.9729 ¦
3.0000	-0.5000 ¦
4.5860 ¦ 	-1.2396

Lower	Flap P
× ×	y
! ! 0.0000	-1.3900
0.8058	-1.3900
1.1694	≁1.2436
1.2968	1 -1.0962
1.5000	-0.9729
3.0000	-0.5000
4.6690	 -1.0262

Lower	-Flap Q ¦
×	 y
0.0000	-1.3900
	-1.3900
1.1694	-1.2436
	 -1.0962
1.5000	-0.9729
	 -0.5000
3.7630	 -0.7406

TABLE AI. - Continued

 Lower	r Flap R
 × 	 y
1 0.0000	 -1.3900
0.8058	1.3900
i ! 1.1694 !	-1.2436 -1.2436
1.2968	-1.0962
1 1.5000	-0.9729 -0.9729
3.0000	-0.5000
 5.5750 	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

Lower	r Flap S
×	 y
0.0000	-1.3900
0.3685	 -1.3900
0.7221	-1.2436
1.1900	0.7757
1.5000	-0.6312
3.0000	 -0.5000
4.6690	 -1.0262

	Lowe	r Flap T
	×	
1 1	0.0000	-1.3900 -1.3900
1	1.3245	1 -1.3900
!	1.5745	1 -1.3230
!	3.0000	-0.5000
! !	4.6690	 -1.0262

_		
	Lower	·Flap U :
1 1	× ¦	y !
	0.0000 :	-1.3900
1	0.4486	-1.3900
!	0.8022	-1.2436
!	1.2125	-0.8333
!	1.5000	-0.6913
:	2.8677	-0.5088
:	3.0000	-0.5000
!	3.2096	-0.5222
	5.4445	-1.0013

TABLE AI. - Continued

1	Lower	r Flap V
1	×	
1	0.0000	-1.3900 -1.3900
1	0.9174	1 -1.3900
1	1.1475	-1.3339
!	2.5398	-0.6122
	3.0000	-0.5000
1	3.4321	-0.5982
í !	5.2546	i -1.4714 i

Lower	Flap W
 × 	y
0.0000	1 -1.3900
0.7473	-1.3900
: : 1.1009	-1.2436
1.2968	-1.0477
1.5000	-0.9244
2.6933	-0.5463
: 3.0000	-0.5000
: : 3.3305	-0.5562
i 4.6517 	 -1.0189

1 ! !	Lowe	er	Flap X	- - - - -
1	×	1	У	- - - - - 1
:	0.0000	- 	-1.3900	- - - - -
1	1.9028	1	-1.3900	1
1	2.2564	1	-1.2436	1
1	3.0000	-	-0.5000	1
1	4.6445	 -	-1.0985	 -

 - -
i
i
_
;
ł
ì
¦
¦
į
ł
ł
;
1
_1

TABLE AI.- Concluded

_				
¦ ;	Lowe	er	Flap Z	1
1				-
1		1		1
ţ	×	ł	У	1
1		_ _		- 1
ł		ł		1
1	0.0000	į	-1.3900	1
ł		į		1
1	1.9028	1	-1.3900	1
ł		ŧ		}
1	2.2564	1	-1.2436	1
1		1		1
!	3.0000	1	-0.5000	1
1		1		-
1	4.6904	•	-0.9529	1
١.		١.	·····	١.

 _	Lowe	er	Flap AA	
! ! ! _	×	1	У	1
 	0.0000	1 1	-1.3900	1
	2.1165	1	-1.3900	 !
:	2.5261	!	-1.1768	1
	3.0000		-0.5000	1
 	4.6904	; ; -!-	-0.9529	; ;

TABLE AII.- INTERNAL GEOMETRY OF UPPER FLAPS

1	Upper	Flap 01
1	×	y y
1	0.0000	
1	0.4574	1.3900
1	0.8110	1 1.2436
!	1.2125	0.8421
1	1.5000	0.7001 !
1	3.0000	0.5000
1	3.9888	0.3505

	Upper	Flap 02
- - -	×	y
1	0.0000	
! !	0.4574	1.3900 1
1	0.8110	1.2436
1	1.2125	0.8421
1	1.5000	: 0.7001 ; ! !
:	3.0000	1 0.5000 1
1	3.9373	0.1514

 Upper 	 Flap 03
 × 	y
 0.0000	
0.4574	 1.3900
0.8110 	1.2436
1 1.2125 	0.8421
1	0.7001
3.0000 3.9997	0.5000
3.3337	0.3244

1	Upper	Flap 04	1 1
- 	×	y	1
 !	0.0000	1.3900	1
1	0.4574	1.3900	!
1	0.8110	1.2436	1
1	1.2125	0.8421	1
	1.5000	0.7001	;
	3.0000	0.5000	1
i 	3.9836	0.3195	1
١.		¹ 	•

TABLE AII. - Continued

 Upper 	
 × 	 y
0.0000	 1.3900
0.4574	i i 1.3900 i
0.8110 	1.2436
1.2125	0.8421 0.8421
1.5000 	0.7001 0.7001
3.0000	0.5000
5.4719	0. 1262

Upper Flap 06	
 × 	 y
! ! 0.0000 !	 1.3900 !
0.4574	1.3900
0.8110	1.2436
1.2125	0.8421
1.5000	0.7001
: : 3.0000	0.5000
 5.3432 	 -0.3714

 Upper 	Flap 07 ;
 × 	 y
 0.0000 !	 1.3900
0.4574	1.3900
0.8110	1.2436
1.2125	0.8421
1.5000	0.7001 1
3.0000	 0.5000
; 5.4993 !	; 0.5611 ;

l Upper 	 Flap 08
 × 	l y l ll
 0.0000 	 1.3900
0.4574	1.3900
0.8110	1.2436
1.2125	0.8421
1.5000	0.7001
3.0000	0.5000 i
5.4589 	0.0487

TABLE AII. - Continued

	Upper	 Flap 09
!	×	l y
1	0.0000	 1.3900
1	1.1611	1.3900
1	1.3912	1.3339
!	3.0000	0.5000
1 1.	3.9888	 0.3505

Upper	 Flap 10
×	y y
0.0000	1.3900
1.1611	1.3900
1.3912	1 1.3339
: : 3.0000	0.5000
 3.9373 	 0.1514

			-
1	Upper	Flap 11	1 1
1	×	l y 	1 1
1	0.0000	l l 1.3900	
;	1.1611	1.3900	1
i !	1.3912	1 1 1.3339 1	1
	3.0000	0.5000	1
! :	3.9997	0.5244	1
•		ì	

Upper	Flap 12
×	
0.0000	1.3900
1.1611	1.3900
1.3912	1.3339
3.0000	 0.5000
 3.9836 	 0.3195

TABLE AII.- Continued

 Upper 	 Flap 13
 × 	y
0.0000	1.3900
1 1.1611	1.3900
1.3912	1.3339
3.0000	0.5000
 5.4719 	0.1262

! !	Upper	Flap 14
 	×	y I
! Ø	.0000	1.3900
1 1	.1611	1.3900
, 1 !	.3912	1.3339
: 3	.0000	0.5000
; ; 5	.3432	-0.3714

 Upper 	Flap 15
 × 	y
0.0000	1.3900
1.1611	1.3900
1.3912	1.3339
3.0000	0.5000
 5.4993 	0.5611

	Upper	 Flap 16
-	×	
1	0.0000	1 1.3900 1
	1.1611	1.3900
1	1.3912	 1.3339
1	3.0000	. 0.5000 !
i !	5.4589	0.0487
1		1

TABLE AII. - Continued

 Upper 	 Flap 17
 × 	y
0.0000	1.3900
0.8058	1.3900
1.1694	1.2436
1.2968	1.0962
1.5000	0.9729
3.0000	0.5000
4.7489	0.4389

	1
l Upper !	Flap 18 !
l x	у
'	
0.0000	1.3900
: 0.8058	: : 1.3900 :
1.1694 !	1.2436
1.2968	1.0962
	1 2 2 2 2 2 2
1.5000 	0.9729
3.0000	0.5000
 4.6735	 -0.0117
 +. 0/35 	-0.0117

: : Upper Flap 19 :		
 × 	y 	
 0.0000 !	! 1.3900 ! ! !	
0.8058	1.3900	
1.1694	1.2436	
1.2968	1.0962	
: 1.5000	0.9729	
: 3.0000	0.5000	
! 4. 6839 !	0.0235	

Upper	 Flap 20
×	y
0.0000	1.3900
0.8058	1.3900 :
1.1694	1.2436
1.2968	1.0962
1.5000	
3.0000	0.5000
4.7473	i 0.4023

TABLE AII.- Continued

 Upper 	Upper Flap 21			
 × 				
0.0000	1 1.3900			
0.8058	1.3900			
1.1694	1.2436			
1.2968	1.0962			
1.5000	0.9729			
3.0000	0.5000			
3.7890 	0. 3680 			

 U 	Jpper Flap 22	
 x 	 y 	
0.00)00 1.3900 	
0.80	1.3900	; ;
1.16	1.2436	
1.29	1.0962	1 1
1.50	000 0.9729	i
3.00	000 0.5000	i
 5.66 	630 0.0544 _	

 Upper 	 Flap 23
 × 	l y l ll
0.0000	1.3900 1
0.3685	1.3900
0.7221	1.2436
1.1900	0.7757
1.5000	0.6312
3.0000	0.5000
: 4.7260 	

1	Upper	- Flap 24
1	×	 y
	0.0000	1.3900
!	1.3245	1 1.3900
!	1.5745	1.3230
!	3.0000	! 0.5000 !
1	⁻ 4.7260	0.2112

TABLE AII. - Concluded

Upper	 - Flap 25 -
 × 	y !
0.0000	1.3900
0.8058	1.3900
1.1694	1.2436
1.2968	1.0962
1.5000	0.9729
3.0000	0.5000
4.7260	0. 2112

	Uppe	r	Flap 26	
-	×	1 1	У	
-	0.0000	1	1.3900	-
!	1.9028	!	1.3900	;
:	2.2564	1	1.2436	1
1	3.0000	1	0.5000	1
1	4.7234	-! -!.	0.1961	 -

	Upper Flap 27 	
:	×	
1	0.0000	1 1.3900 1
1	2.1165	1.3900
1	2.5261	1.1768
i	3.0000	0.5000
1 1	4.7234	 0.1961

APPENDIX B

INTERNAL STATIC PRESSURES FOR ALL CONFIGURATIONS TESTED

The internal static pressures are presented in table BI for configurations A01F to A05H and in table BII for configurations C05H to C27AA. The ratio of local static pressure to jet total pressure is presented as a function of nozzle pressure ratio and axial location.

TABLE BI.- RATIO OF INTERNAL UPPER AND LOWER FLAP STATIC PRESSURE TO JET TOTAL PRESSURE FOR CONFIGURATIONS A01F TO A05H

(a) Configuration A01F

upper flap pressures, $p/p_{t,j}$

				x/h _{t, n}			
NPR	2.775	2.925	3.075	3.225	3.375	3.625	3.900
						367	8.18
	724	707.	.674	•628	27.2		
1.03		704	429	.627	.574	6/4	
2.011	. (33	2		424	.572	.471	.376
2.527	.733	. 703			123	.470	.375
	734	.703	.671	670	1		275
766.7		202	. 673	• 626	2/6.	7	
2.506	. (33			424	.570	694.	.375
2.996	.732	• 702	100		12.4	099	.375
	732	. 702	• 672	• • • • •	41.0		275
3.007			670	.624	. 269		
3.997	. 732	10.		424	. 569	994.	.375
5.003	.732	107.	2		944	.465	.375
	721	. 701	. 670	170.			275
27.0	1010		670	.624	.569	. 402	
7.490	.732	30/•	•	367	. 570	994.	.375
F07	732	202	9			777	375
	7.23	.703	.671	•629	0)60	•	
020.01	. 33						

lower flap pressures, p/p_{t,j}

				⋜	X/II, n			
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
5	717	650	.765	.315	.354	.399	.527	.584
3;	7.6	044	266	.313	.353	936	. 433	•436
1:	17.	4 4 4	243	310	.352	394	.432	. 429
12	67.		646	910	352	394	.431	. 429
2.532	• / 13	9	26.2	310	.352	394	.432	.430
9	11.	940	646	908	.351	.393	.431	.428
9 !	51.		2070	000	152	.393	.431	. 428
9	617.		707.		186	392	429	.426
-	• 1.	•	101		251	106	.428	.425
60	•714	160.	200	•		301	428	. 425
*	•11.	0	007	•		100	427	425
06	·11*	840.	107.	• 300	200	•		
10	717	879	.261	308	.350	.391	124.	.462
	4.4	944	.261	.308	.350	.391	.427	.425

TABLE BI. - Continued

(b) Configuration A02G

upper flap pressures, $p/p_{t,j}$

				x/h _{t, n}			
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850
1.698	.817	.830	.822	765	107		:
1.992	.812	.823	41.8	242	160.		706.
2.516	.611	.822	418	743	100		200
3.009	.811	.822	*18*	742	949	744	404
4.008	.811	.822	.814	742	899	24.5	664
5.010	.811	.823	.814	.742	999.		76.40
5.986	.811	.823	.814	.742	.668	.564	430
7.501	.611	.825	.815	.743	699.	.565	429
100.8	.812	•856	.815	.743	699•	• 566	429
9.987	.812	.827	.816	.744	.670	.567	428
0.041	.812	.827	.816	• 744	. 670	.567	.427

lower flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},\,\mathfrak{j}}$

1.698 .765 .682 .394 .403 .429 .474 .525 1.6992 .760 .676 .161 .223 .295 .373 .489 2.516 .674 .161 .222 .293 .373 .489 3.009 .758 .674 .160 .222 .293 .369 .421 4.008 .759 .673 .159 .221 .293 .369 .418 5.010 .759 .673 .157 .221 .291 .367 .418 7.501 .759 .673 .157 .219 .291 .366 .416 7.501 .759 .673 .158 .218 .290 .366 .416 9.601 .759 .673 .157 .218 .290 .365 .416 9.611 .759 .673 .157 .218 .289 .365 .416 9.611 .759 .673 .157 .218 .289 .365 .416 9.611 .759 .673 .157 .218 .289 .365 .416 9.611 .759 .673 .157 .218 .289 .365 <td< th=""><th></th><th></th><th></th><th></th><th>/x</th><th>x/h_{t, n}</th><th></th><th></th><th></th></td<>					/x	x/h _{t, n}			
765 .682 .394 .403 .429 .474 760 .676 .161 .223 .295 .373 758 .674 .160 .222 .292 .369 759 .673 .159 .221 .291 .367 750 .673 .159 .220 .291 .367 750 .673 .159 .220 .291 .365 759 .673 .156 .218 .290 .365 759 .673 .156 .218 .290 .365 759 .673 .157 .218 .289 .365 759 .673 .157 .218 .289 .365	NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
760 676 161 223 293 373 775 674 160 222 299 377 759 674 160 222 299 378 368 759 673 159 221 291 367 759 673 159 220 291 367 759 673 159 220 291 367 759 673 158 218 290 365 759 673 157 218 290 365 759 673 157 218 289 365 759 673 157 218 289 365 365 759 673 157 218 289 365	1.698	.765	2882	702	109	7.20	72.7	363	
758 .674 .160 .222 .293 .369 759 .674 .160 .222 .292 .368 758 .673 .159 .221 .291 .367 760 .673 .159 .220 .291 .367 760 .673 .157 .219 .291 .365 759 .673 .158 .218 .290 .365 759 .673 .157 .218 .289 .365 759 .673 .157 .218 .289 .365	1.992	.760	929	191	223	206	272	626.	
759 .674 .160 .222 .292 .368 758 .673 .159 .221 .291 .367 760 .673 .157 .219 .291 .367 759 .673 .158 .218 .290 .365 759 .673 .158 .218 .290 .365 759 .673 .157 .218 .289 .365 759 .673 .157 .218 .289 .365	2.516	.758	429	160	. 222	203	046	404	346.
759	3.009	.759	.674	160	.222	202	846	171	474.
759 .673 .159 .220 .291 .367 .750 .750 .673 .157 .219 .291 .366 .759 .673 .158 .218 .290 .366 .759 .673 .158 .218 .290 .365 .365 .759 .673 .157 .218 .299 .365 .365 .359 .365 .365 .365 .365 .365 .365 .365 .365	4.008	.758	.673	159	.221	202	242	017	76.7
760 673 157 219 291 366 366 759 673 158 218 290 366 366 759 673 158 218 290 365 365 365 365 365 365 365 365 365 365	5.010	.750	. 673	150	220	201			
759 673 158 218 290 365 759 673 158 218 290 365 365 759 673 157 218 289 365 365 365 365 365 365 365 365 365 365	5.986	.760	673	157	270	201	996	71.7	
. 759 . 673 . 156 . 218 . 290 . 365	7.501	.759	673	85	218	200	996	954	
. 759 . 673 . 157 . 218 . 289 . 365	9.601	.759	.673	.156	218	240		414	767
.259 .673 .157 .218 .289 .365	786.6	.759	.673	.157	.218	.289	365	914	127
	140-0	159	.673	.157	.218	.289	365	414	424

TABLE BI.- Continued

(c) Configuration A03F

upper flap pressures, $p^\prime p_{t,\,j}$

				x/h _{t, n}			,
NPR	2.775	2.925	3.075	3.225	3.375	3.625	3.900
		90,	418	464	.463	.455	.573
1.694	200	•	9 (4	444	. 461	.391	.423
1.993	• • • • •	•	4 7	465	459	.388	.311
2.502	.683	00.	11.	444	829	.386	.311
3.006	190.	000	•	677	447	386.	.311
4.025	.683	909•	6 T &			700	310
7 000	.683	909.	.413	. 463	• 420		
100		404	.412	.463	.456	• 383	.310
5.013	500.	•	217	699	.456	.383	.310
6.006	289.	900		277	757	.382	.310
7.512	*682	• 607	114.	70.			210
414.8	.683	.607	.411	794.	00.	700	•
	604	608	.410	. 462	•420	.363	.311

lower flap pressures, $p/p_{t,j}$

				×	x/h _{t, n}	•		
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
			9	847	70.4	-514	.535	. 559
1.694	6699	160.		273	284	348	944.	.472
1.993	6600	000	676	272	282	282	.266	.331
2.502	969.	679.	017.	9 . 9			376	24.2
3.004	404	629	.247	.271	197.	797.		
		100	246	. 270	.281	.281	.265	. 241
4.025	060.	470				080	266	.241
4.002	.695	• 629	•540	.07	107.	201		
	404	429	. 245	.270	192.	.280	•97•	147.
510.0				270	186.	. 279	.264	.240
900.9	*69*	470.					776	220
7.812	. 695	.630	.246	•270	927.	6.73	107	
1		430	246	596	.280	•279	• 564	• 239
9.010	***	• • • •					3776	220
0.031	969	.631	.245	.269	007		53	

TABLE BI.- Continued

(d) Configuration A04G

upper flap pressures, $\, p/p_{t,\,j} \,$

		3.900	673.	470	373	373	372	371	144	100	3.2	200	370	
		3.625	1623	.553	4.85	485	4.83	.481	.481	680	084	184	.461	
		3.375	799.	.619	. 582	.582	.581	.578	.578	. 577	577	578	.578	
	x/h _{t, n}	3.225	.704	.668	• 644	.644	.643	• 642	.643	.643	. 642	643	.643	
		3.075	.736	.708	1691	.691	069.	689.	689.	.686	.688	688	.688	
		2. 925	.762	.740	.727	.727	•726	.725	.726	•726	•726	.727	.728	
		2.775	.776	.757	.747	.747	.747	•746	• 746	.746	.746	.746	.747	
_	·	NPR	1.697	5.009	2.487	2.501	3.007	4.007	5.021	000.9	7.504	8.592	10.013	

lower flap pressures, p/p_{t,j}

UPR 2.775 2.925 3.075 3.225 3.375 3.525 697 .752 .681 .563 .562 .560 .559 709 .734 .655 .472 .470 .469 .468 501 .724 .646 .143 .174 .201 .228 507 .727 .644 .142 .172 .199 .227 507 .725 .644 .142 .171 .199 .222 507 .725 .643 .141 .170 .197 .224 504 .725 .643 .141 .170 .197 .222 504 .724 .643 .141 .170 .197 .222 504 .724 .643 .139 .169 .195 .222 502 .723 .643 .139 .169 .195 .222 503 .723 .643 .139 .169 .195					/x	x/h t, n			
.752 .681 .563 .562 .560 .734 .655 .472 .470 .469 .726 .645 .143 .174 .201 .727 .644 .142 .173 .200 .725 .644 .142 .171 .198 .725 .643 .141 .170 .197 .725 .643 .139 .170 .197 .724 .643 .139 .169 .195	NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
009 .734 .655 .472 .470 .469 487 .728 .646 .143 .174 .201 607 .726 .645 .142 .173 .201 007 .727 .644 .142 .172 .199 001 .725 .643 .141 .171 .197 504 .726 .643 .141 .170 .197 504 .727 .643 .139 .170 .195 501 .723 .643 .139 .169 .195 6013 .723 .643 .139 .169 .195	169.	.752	.681	.563	.562	.560	.559	.563	075.
487 .728 .646 .143 .174 .201 501 .726 .645 .142 .173 .200 007 .727 .644 .142 .173 .200 007 .725 .644 .142 .171 .198 000 .725 .643 .141 .171 .197 504 .725 .643 .139 .170 .197 502 .723 .643 .139 .169 .195 013 .723 .643 .139 .169 .195	•000	.734	.655	.472	0440	. 469	.468	.470	64.4
501 .726 .645 .143 .173 .200 .007 .727 .644 .142 .172 .199 .007 .725 .644 .142 .171 .199 .007 .725 .643 .141 .171 .197 .196 .000 .725 .643 .141 .170 .197 .196 .196 .197 .198 .199 .199 .199 .199 .199 .199 .199	.487	.728	. 646	.143	.174	.201	.228	.246	.317
007 .727 .644 .142 .172 .199 .190 .007 .725 .644 .142 .171 .198 .198 .000 .725 .643 .141 .171 .198 .198 .000 .724 .643 .139 .170 .195 .195 .196 .196 .196 .196 .196 .196 .196 .196	.501	.726	.645	.143	.173	• 200	.228	.246	.310
007 .725 .644 .142 .171 .198 .1000 .725 .643 .141 .171 .197 .197 .197 .197 .197 .197 .19	.007	.727	.644	.142	.172	.199	.227	.245	.263
.725 .643 .141 .171 .197 .725 .643 .141 .170 .197 .724 .643 .139 .170 .196 .723 .643 .139 .169 .195 .723 .643 .139 .169 .195	100	.725	.644	.142	.171	198	.225	.245	.261
.725 .643 .141 .170 .197 .196 .724 .643 .139 .16 .196 .196 .195 .723 .643 .139 .169 .195 .195	.021	.725	.643	.141	.171	197	.224	.244	.260
.724 .643 .139 .170 .196 .723 .643 .139 .169 .195 .723 .643 .139 .169 .195	000	.725	.643	.141	.170	.197	.223	.244	.260
. 723 . 643 . 139 . 169 . 195	. 504	.724	.643	.139	.170	.196	.222	.243	.259
,723 .643 .139 .169 .195	.592	.723	.643	.139	.169	.195	.222	.242	.259
	.013	.723	.643	.139	.169	.195	.222	.242	.259

TABLE BI.- Continued

(e) Configuration B05H

upper flap pressures, $p/p_{t,j}$

	·····					×	x/ht, n					
NPR	2.775	2.925	3.075	3.225	3.375	3,600	3.850	4. 150	4.450	4.750	5.050	5.365
		į	,	767	.566	.483	388	.289	.293	.365	.516	.573
1.701	.726	. 106	2013		2.5	.481	.387	.289	.293	.359	.367	.457
1.980	.732	104	670.	6063	36.	479	.387	.268	.293	.359	.366	.350
6650	.745	.703	679	220.	4	874.	.387	.288	.293	.358	.365	.349
3.002	.726	. 703	673	770+		.677	386	287	292	.357	.363	946
3,999	.731	.702	270.	270.	26.2	.477	386	.287	.289	.356	.362	.350
4.991	.731	. 702	2/9.	770.	36.2	477	386	.287	. 284	.355	.362	.350
5.986	.726	. 702	• 672	779.	100	477	386	.287	.276	.354	360	.349
499	.733	. 703	2/9.	770.		47	386	287	.270	.353	.359	.349
8.624	.732	.703	270.	629	563	479	.386	.287	.263	.352	.358	.349
0.025	.727	• 07 •	7/00									

lower flap pressures, p/p_{t, j}

								x/ht, n						
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4. 150	4.350	4.600	4.850	5.100
											!	!		i
-	ř	677	1961	312	.359	.400	.429	•436	.420	.394	.365	.337	664.	.534
102.	91)		1076	210	25.5	300	.429	484	.419	•393	•364	• 330	•546	. 45
086	.718	740.	007.	•	400	307	428	.431	417	.392	•364	.328	. 294	.262
6640	.719	1,0.	623	• • • •	946	304	427	430	417	391	.364	.327	.294	.26
3.002	.716	.641	662.	900		906	424	428	416	390	.363	.327	. 293	.26
666*	.715	.640	.299	000			121	.427	619	390	.362	.326	.293	.26
. 991	.719	. 640	462.	200			424	426	415	390	.362	.326	.293	.25
986.5	.719	149.	652.	900	496	406	424	.426	415	.389	.362	.326	.293	•22
664.	.716	149.	662.		7 10 0	203	424	.426	.415	380	.362	.326	.293	.25
8.624	.715	159.	. 258	307	. 350	393	424	.426	.415	.389	.362	.326	.293	.25

TABLE BI.- Continued

(f) Configuration B06I

upper flap pressures, $p/p_{t,\,j}$

						x/h _{t, n}				
NPR	2.775	2.925	3.075	3.225	3.375	3.700	4.000	4.300	4.600	4.900
1.692	.823	.828	.822	.754	.685	.523	.375	.396	.451	.512
1.994	908.	.827	.821	.753	• 683	.522	.374	•265	.197	.355
15.491	.817	•824	.616	. 750	679	.517	.373	.265	.197	.347
2.993	.809	.823	.817	.748	.678	.515	.372	. 265	.196	.345
000.	.812	.823	.817	.747	.676	.513	.371	•264	.196	.344
4.987	.805	.824	.816	.747	.676	.512	.371	.264	•196	.342
600.9	.802	.824	.816	.746	929.	.511	.371	.264	.196	.340
7.510	• 605	. 625	.816	.746	929.	.512	.372	• 264	.196	.338
8.584	,604	.826	.817	.746	.677	.513	.372	.264	.196	.337
9.990	•806	.828	.817	.746	.677	.513	.373	.265	.196	.336

lower flap pressures, p/p_{t, j}

							x/h	-						
NPR	2.775	2.925	3.075	3.325	3.375	3,525	3.675	3.825	3.975	4.200	4.450	4.700	4.950	5.200
1.692	.764	.688	.162	.230	•303	.378	.424	. 438	456	064	.530	.562	486.	579
1.994	.763	.687	.161	.220	101	376	423	667	967					
107 6) (7	9	12	6 3 (3	355.	6630	104.	
764.7	70/•	• 063	001.	922.	.301	.373	. 421	.430	.413	.374	.331	. 292	.254	.374
2.993	.760	. 684	.160	.224	.299	.371	.420	8 C 7 T	412	173	123	201	286	228
000	.759	.684	150	. 222	207	046	0.7				1 .	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2
7001							01.	074	114.	216.	.331	067.	. 233	112.
		* 60*	.15	222.	• 546	.368	.417	• 425	.410	.371	• 330	.290	.252	.216
6000	• 159	• 683	.157	.221	. 295	.367	.416	474.	410	171	320	288	25.2	31.6
7.510	.759	.683	.157	.220	. 295	.366	414	424			220	900	7 6 6	717
702 0	780				. () (1	-	7	7.0.	. 254	*07*	767.	077*
		• 000	• 120	077*	162.	.365	•15	+24.	604.	.371	•329	.289	.253	.215
9.990	.758	.683	.156	.219	•294	.365	414.	474.	604	175	320	2 A B	253	215

TABLE BI.- Continued

(g) Configuration B07H

upper flap pressures, p/p_{t, j}

3.225 3.375	3.075 3.225 3.375
	894.
	804.
_	94.
	944
	244
	40
468 451	
_	694
	894
	844

lower flap presssures, $p/p_{t,j}$

								x/h _{t, n}						
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4, 150	4,350	4.600	4.850	5.100
1.693	2695	.625	.246	.273	.287	.285	.293	.418	.441	.465	.501	.549	.581	.593
2007	5695	. 624	.245	.272	.285	.284	.268	.255	.240	.356	.412	.450	. 504	.532
2.407	404	.623	244	.271	.284	.283	.268	.252	.238	.250	.244	.228	.213	.349
2.002	504	623	.243	.270	.283	.282	.267	. 251	.237	.249	.243	.227	.210	.196
7.007	404	622	245	.268	.282	.279	.266	.249	•236	.247	.242	.226	.209	.195
700 7	404	622	.242	268	.281	.279	• 266	.248	•236	.246	.241	•256	• 209	.194
6.002	604	629	245	.268	.281	.279	.266	.248	.235	.245	.241	•225	.208	.194
700.1	40.4	624	242	.268	.281	.278	.267	.247	.234	.245	.241	.225	.207	.192
	764	623	242	2,58	280	.278	.267	.247	.234	.244	.241	.225	.207	161.
6.00	663	.623	242	.267	.280	.278	.267	.247	.233	. 244	.240	.225	.207	.191

TABLE BI.- Continued

(h) Configuration BO8I

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},j}$

						/x	x/ht, n				
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.450	4.750	5.050
1.708	.724	738	716	044	767	073					
2.005	444	727	202	900			0104		016.	1	200
					0 7 7 2		101	106.	?	•	•
2.503	T+) •	92/•	. 700	•637	.591	.487	.401	.298	.233	.380	.383
3.004	•728	.725	.700	•636	.589	.485	-401	.298	.218	.276	.315
3.994	.731	.725	669.	•636	.588	.483	104.	. 298	.217	.165	.132
5.004	.740	. 725	869.	.635	.587	.482	.401	.298	.217	.165	132
5.998	.735	.725	869.	.635	.588	.482	.401	.298	.217	.166	132
7.484	•736	.726	869.	.635	.588	.482	7,00	.298	712	165	132
8.596	.739	• 726	869.	.635	. 588	.482	004	.298	.217	165	132
10.020	.738	.727	669.	.635	.588	.483	• 400	•539	.217	.165	132

lower flap pressures, p/p_{t,j}

							x/ht, n	u.						
NPR	2.775	2.925	3.075	3.325	3.375	3.525	3.675	3.825	3.975	4.200	4.450	4.700	4.950	5.200
	į	,	1											
1.708	•732	199.	.467	994.	.467	•475	+84	.492	864.	.508	.520	. 533	.548	.553
2.005	.725	.653	.141	.174	.203	•230	.246	. 264	.349	.430	424.	.528	. 543	505
2.503	.726	•652	.141	.173	• 202	•228	.246	. 262	.267	. 259	.240	360	.411	844
3.004	.724	.652	.140	.172	.201	.227	.245	280	246	25.8	2 30	218	701	
3.994	.724	.652	041.	171.	100	226	776		346					
400.5	. 723	653	071								000	177	6 T •	6/1:
				7 .	0 1	677.	• • • •	1621	107	• 520	• 238	.217	•193	.174
2.448	42/	269.	•140	.170	.198	• 55 4	. 243	• 256	•264	.255	.237	•216	.192	173
7.484	.725	• 652	.140	.170	.197	.224	.243	.256	•263	.255	.237	•216	. 192	173
8.596	.724	.652	.140	.170	.196	.223	.242	. 255	.263	. 255	233	216	102	172
10.020	.724	.653	.140	.169	•196	. 223	.242	255	263	. 255	237	212	102	172

TABLE BI.- Continued

(i) Configuration A09J

upper flap pressures, $\mathfrak{p}'\mathfrak{p}_{\mathfrak{t},\, \mathfrak{j}}$

			^	x/h, n			
NPR	2.775	2.925	3.075	3.225	3.375	3, 625	3.900
1.776	948	.761	•633	•644	609.	.519	.454
000	29.67	.755	.622	.630	.589	.482	.380
201.7	1.76	753	.620	.628	.587	.480	.377
200	278	753	620	.628	587	. 480	.377
770.7	270	752	619	628	587	.478	.378
215	1 7 8	. 751	.617	.628	.586	.476	.377
200	1 0	751	-617	.628	.586	.476	.377
4.328		751	.617	.629	.587	.476	.378
4.25	0,48	.751	.617	629	.587	.476	.378
7.942	196	.752	.617	.629	. 588	.477	.379
25.0	1.78	753	.617	.629	.588	.477	.379
110		.752	.617	•659	.588	.477	.379
10.592	842	.754	.617	.630	. 589	645	.380

lower flap pressures, p/p_{t, j}

				×	x/ht, n			
1 . !	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
	.850	.752	.356	.365	.401	.450	.507	.560
	.851	.748	.132	.222	•320	.385	.425	. 433
	8.66	747	130	.221	.318	.382	.424	.426
		747	130	.221	.319	.383	.424	. 426
		746	130	.221	.317	.381	.423	.425
	847	146	.129	.221	.314	.380	.421	.423
	847	746	.129	.222	.312	.379	.420	.423
_	848	746	130	.222	.310	.379	.420	.423
	878	746	.130	.222	.310	.379	.420	.423
_	8.48	.746	130	.223	.308	.378	.419	.422
	9.46	747	130	.223	. 307	.378	.419	.422
	946	746	130	.223	.307	.377	.419	.422
_	946	747	.130	.222	.305	.377	.419	.423

TABLE BI.- Continued

(j) Configuration AlOK

upper flap pressures, p/ $p_{t,j}$

				x/h _{t, n}			
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850
1.787	.887	.853	. 805	.778	733	169.	779
2.097	.879	.837	.783	.751	969	405	400
2.646	.875	.833	177.	.743	60.0	.571	45.5
2.619	.875	.832	777.	742	6.69	571	451
3.153	.875	. 832	111.	742	682	27.5	100
4.214	.874	.832	.776	742	184	4	0644
5.304	*44	.832	777.	742	.681	8	•
5.279	.874	.832	111.	742	189		
6.349	.874	.833	.777	742	683	9	
7.925	.874	.834	.777	.742	.682	570	077
9.099	.874	835	777.	.742	682	2.5	944
10.638	.876	.836	.778	.743	.683	.571	44

lower flap pressures, p/p_{t, j}

				×	x/ n t, n			
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
1.787	.874	.776	.467	094.	.463	481	500	.546
197	•866	.759	. 290	.287	.298	340	300	4.5
9.	•865	.755	.077	.155	.262	.352	416	430
19	.865	.755	.077	.155	.262	.351	.415	429
53	.865	.754	•076	.155	.261	.350	.415	42B
1,4	.865	.753	•075	.154	.259	.348	414	426
*	.864	.753	.075	.154	.258	.347	.413	426
2	.864	.753	.075	.154	.258	.347	.413	424
\$.865	.753	.075	.153	.257	.346	.413	426
52	.864	.753	.075	.152	.256	.345	.412	424
66	.863	.753	.075	.152	.256	.345	.411	425
38	.863	,754	.075	.151	. 255	344	114	424

TABLE BI. - Continued

(k) Configuration AllJ

upper flap pressures, $\mathsf{p}/\mathsf{p}_{\mathsf{t,j}}$

				x/h _{t, n}			
NPR	2.775	2.925	3.075	3.225	3.375	3.625	3.900
706	02.8	708	.253	.525	.589	.573	.580
+ B / • T		100	. 243	.384	.479	.428	•348
F01.2	700	100	242	.381	144.	.415	.317
02002	070		. 241	382	694.	.414	.317
3.158	979.		230	188	468	.412	.317
4.215	*79.	9040	238	382	468	.412	.316
5.278	. 252	9040	22.0	1 60	468	.412	.316
6.350	529.		227	181	794.	.412	.316
7.926	.822	• • • •			444	.613	.317
9.095	.825	56.0	1630			617	217
10.614	.826	. 700	.237	.303	004.	27.	

lower flap pressures, p/p_{t, j}

				×	x/ht, n			
APR	2.775	2.925	3.075	3.225	3.375	3.525	3.700	3.900
		.,,	86.7	632	.453	.505	.555	.572
1.784	9.		900	200	1357	.375	2447	.472
103	# : # : # :				258	287	.268	.321
929.	***					200	792	.238
.158	248.	• (39	. 77.	100		786	247	. 237
.215	.841	.739	•124	102.	6679	***	476	224
278	68.	. 739	.124	.201	162.	• 5 0 3	007.	
		130	126	202	.250	.283	• 266	. 233
320	2.5			202	249	. 282	.266	.235
926	148*	. (34			076	282	266	. 235
-095	•830	. 739	126	707*	643	302	27.	325
414	1961	. 740	.126	202	6.2.	*585	0070	6.20

TABLE BI.- Continued

(1) Configuration Al2K

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},\,\mathfrak{j}}$

				$x/h_{t, n}$			
NPR	2.775	2.925	3.075	3.225	3.375	3.625	3.900
1.768	.871	.801	.722	.724	.697	. 643	.581
2.104	.856	.781	.687	989	.650	570	506
2.638	948.	.768	.663	.661	.617	. 530	0440
3.160	948.	.762	.651	.647	.596	495	384
4.228	.845	.761	.650	.647	. 595	767	.384
5.297	. 845	.762	649.	.647	. 595	764	383
6.354	.846	.762	649.	.648	• 596	495	.383
7.970	.846	.763	649	.648	.596	495	.383
160.6	.847	. 764	649.	649.	.597	964	.383
9.084	.847	.763	649.	649.	. 597	964.	.383
9.119	.847	.763	649.	.648	.597	969.	.383
10.627	.847	.765	649	649.	.598	497	.383

lower flap pressures, $p/p_{t,j}$

				×	x/h _{t, n}			
NPR	2.775	2 925	3.075	3.225	3.375	3.525	3.700	3.900
1.768	.865	277.	.567	.566	.564	.562	.562	.562
2.104	.855	.750	470	. 468	.465	.462	.463	466
2.638	.847	.738	.359	.355	.353	.350	.351	365
3.160	.847	.734	•066	.115	.171	.212	.240	. 259
1.228	648	.733	.065	.113	.170	.211	.239	. 258
5.297	.847	.733	•065	.113	.169	.210	.239	257
5.354	.849	. 733	•065	.113	.169	•209	.239	.256
0.65	.849	.733	.064	.112	.168	.209	•238	.256
160.6	.850	.734	.065	.112	.168	.209	.238	.256
.084	648	.733	.065	.112	.168	• 208	.238	.256
9.119	648.	.733	.065	.112	.168	• 209	.238	.256
7.627	648.	.734	.065	.112	.167	• 208	•238	.256

TABLE BI.- Continued

(m) Configuration Bl3L

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},\,\mathfrak{j}}$

						*	x/ht, n					
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.450	4.750	5.050	5.365
132	184	717	A1A.	.617	.568	.478	.379	.291	.443	994.	.503	.557
127	2				2 4 4	478	378	288	.217	.343	.368	.451
001	167.	• 112	010	•			278	280	217	363	368	***
024	• 730	.717	• • • • •	610	000					000	346	240
580	969•	. 707	.611	.611	.561	.472	976	/07•	017		000	•
874	804	707	.611	.611	1961	.473	.376	.287	• 516	.340	.367	.338
				119	195	673	.376	.287	.216	.340	• 366	.338
766	0.00	- 1	110		1.74	473	376	. 286	.216	.336	.364	.332
990	080	. (0)	010	110.	100			700	2.0	123	243	111
107	.654	• 702	909.	.610	.004	?	3100	007		300	3	
127	079	,700	\$09.	609.	.558	694.	.371	.285	.215	.328	.300	. 331
		200	405	9	558	694.	.370	.285	.215	.325	.359	.330
101	000	•					270	285	218	320	. 155	. 332
737	.621	• 100	•00•	910	.226	•	2					
878	919	.700	+09	• 610	.558	.471	•370	• 285	.215	.31/	. 333	1326
4	613	100	603	619	.550	.471	.370	. 286	.215	.313	.351	.351

lower flap pressures, $p/p_{t,j}$

								ر ا ×/ ام							
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.600	4.850	5. 100	5.350
										3	.00	:			373
1.721	.821	.739	.133	.225	.315	.373	.408	.427	.417	366.	196.	116.	C+C.	000	.00.
		100	00.1	221	.312	370	404.	.424	• 414	.391	.363	.331	262.	.451	084.
2.001	AT 9.		000	400	212	240	40.5	673	414	.390	.363	.330	.290	6443	44.
2.024	/18.	* 6.	007.	22.	1000		204	420	[17	388	.361	.328	.289	.256	.338
2.580	.814	167	971.	177		1000	707	420		280	198	328	289	.256	.340
2.574	.816	.731	971.	177	•		704	224		8	361	3.78	289	.256	.347
2.552	.815	.731	128	177				977			360	3.28	290	752	219
3.066	.817	.730	.128	.217	. 304	• 30	70**					,,,,		25.6	217
4.107	.818	.728	.127	.217	.307	*362	00	CT .		000		976	200	0000	1120
K.127	810	727.	.127	.216	906	.361	.398	.414	.408	.380	. 328	• 35•	4970	667.	017*
		727	127	716	305	.360	.398	.413	. 407	.386	.357	.324	• 290	.255	•516
101.0	A 100			716	406	350	197	412	.407	.386	.357	.323	•290	• 255	.216
1.137	670.	171	77				207	412	407	386	358	.323	.290	.256	.216
8.878	• 820	.727	171.	0170										364	316
0.316	.820	.727	.127	.216	.303	.358	946	.411	000	• 300	1250	3250	2630	0620	0770

TABLE BI.- Continued

(n) Configuration B14M

upper flap pressures, $\mathsf{p/p_{t,j}}$

					x/h	t, n					
NPR	2.775	2.925	3.075	3.225	3.375	3.700	4.000	4.300	4.600	4.900	5.250
.729	.922	.826	177.	.738	.682	.531	.399	.393	.461	.503	.554
.047	.935	.822	.767	.734	.676	.519	.374	.265	004.	.414	194.
528	256	. 818	.763	.731	.673	.515	.372	.264	.188	.301	•336
544	.947	. 818	.764	.731	.673	.515	.373	• 264	.188	.301	•334
.073	926	.815	192.	. 728	.671	.512	.371	.263	.187	.297	.320
101	896	.814	759	.727	699	.509	.369	. 262	.186	.292	.317
148	426.	.613	. 758	.726	.668	.508	.369	.261	.186	.287	.315
155	626	.813	.757	.725	.668	.507	.368	.261	.186	.283	.314
729	2885	.613	.756	.724	.668	.507	.367	192.	.186	.278	.313
. 858	.985	.813	.756	.724	.668	.508	.367	.261	.186	.274	.312
0.350	986*	.814	.755	.724	.668	.508	.367	.261	.186	.270	.312

lower flap pressures, p/p_{t,j}

							x/h	x/h _{t, n}						
NPR	2.775	2.925	3.075	3.325	3.375	3.525	3.675	3.825	3.975	4. 200	4. 450	4.700	4.950	5.200
720	.846	.728	1112.	.222	.264	.329	.385	.428	.453	.485	.523	.556	.570	.574
047	842	.724	620	.158	.256	.348	404.	.429	.410	.372	.350	. 477	.509	.487
52R	6.40	. 721	.078	.157	. 254	.345	.401	• 426	.407	.370	.327	.287	.248	•366
144	8.41	.721	.078	.157	.254	.345	.401	• 456	.408	.370	.327	.287	.249	.362
073	837	719	. 077	.156	. 252	.342	999	.423	904.	.368	.325	•286	. 248	•216
[0]	50.00	912	920	154	.250	•339	398	.420	* 0 * •	.367	.324	.284	.247	. 209
1.68	48.84	.715	.075	.152	.248	.338	.393	.416	.403	.366	.323	.284	.246	*208
1.55	60.00	717	.075	.152	.247	.336	.392	.417	.402	.365	.323	.283	.246	.207
720	.831	. 713	.075	.150	.245	• 334	.390	.416	104.	.365	.322	.282	.246	-207
858	.830	.713	•076	.150	.244	.333	.389	.416	.401	•365	.322	.282	.246	-207
.350	.829	. 713	.076	.149	. 243	.332	.388	.415	• 400	.365	.322	.282	.247	•506
		The second secon												

TABLE BI.- Continued

(o) Configuration B15L

					eddn	upper flap pressures,	ssures, p/p _{t, j}	<u>:-</u> : تىم				
						x/h	_ c,					
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4. 450	4.750	5.050	5.365
1.724	757,	.715	.252	.443	. 532	.520	464.	.514	.533	.543	.559	.569
2.034	•22	.708	.227	.365	.457	.420	.333	.445	.466	1940	694.	475
2.548	.700	.703	.225	.363	.434	.415	.331	.246	.361	.375	.376	.377
3.085	•678	.701	.224	.362	.452	.412	.330	.246	.188	.298	306	.312
4.104	4694	969.	.223	.362	844.	.408	.329	.245	.187	.141	•187	.231
5.125	.640	969•	.223	.360	.447	• 406	.329	.245	.186	•140	.117	.166
6.174	.631	• 695	.222	.360	.443	.405	.328	.244	.186	.140	.116	160.
7.732	.621	.695	.221	.359	***.	+0+	.328	.244	•186	.140	.116	680
8.845	.616	.695	.221	.358	.443	*0*	.328	.244	.186	.140	.116	080
10.319	.612	969.	.221	.357	.442	404.	.328	.244	.186	140	911.	0.0

lower flap pressures, $p/p_{t,j}$

								x/h _{t, n}							
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.600	4.850	5. 100	5.350
1.724	.837	.742	5445	.451	.455	194.	.473	.483	164.	. 501	.509	.522	.534	.547	.552
2.034	.832	.732	.128	• 206	.264	.282	•569	.250	.229	.366	.378	+0+	.451	407	90.00
2.548	.829	.728	.126	.203	.262	.279	•266	•246	.220	.191	.161	.228	.310	365	800
3.085	.826	.727	.125	*205	• 260	.278	.264	•244	•219	.190	160	.226	208	701	207
4.104	.823	.724	.123	•166	.259	.275	.263	242	.217	.188	159	224	202	102	174
5.125	.822	. 723	.123	.198	.258	.274	.262	.241	.216	.187	158	.223	204	101	
6.174	.821	. 722	.122	.197	.257	.273	.262	.240	.215	.186	157	.223	206	100	17.
7.732	.820	.722	.122	.197	•256	.273	.262	.240	.215	.186	.157	.222	202	061	172
8.645	619	.722	.122	.197	.256	.272	.261	•240	.215	•186	157	.222	202	081	172
10,319	.818	.722	.122	.197	.255	.272	.261	•240	.215	.186	.157	.221	• 204	.189	171

TABLE BI.- Continued

(p) Configuration B16M

upper flap pressures, $p'p_{t,j}$

						x/h _t ,						
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.450	4.750	5.050	5.365
1.727	768.	+77.	969.	669.	. 664	.613	.562	.530	.529	.543	.550	.569
2.011	968.	.754	.665	999.	.622	.556	.487	.424	.381	.388	.517	864.
2.028	968.	.753	• 664	• 664	.620	.553	.483	.419	.375	.376	.509	-502
2.558	006.	.737	•636	.633	.577	065.	.394	.291	.231	.372	.376	.370
3.070	806	. 735	• 634	.631	.575	.487	•393	. 291	.216	.269	.309	•309
4.134	.920	.732	.631	.629	.572	.485	.391	.290	.215	.163	.128	.229
4.110	.920	.732	.631	.630	.572	.485	.391	. 290	.215	.163	.128	.231
5.142	.926	.731	.629	.629	.571	484.	.391	.289	.215	.162	.128	.159
6.166	.931	.730	•628	•628	.570	.483	.391	.289	.214	.162	.127	101.
7.724	.934	• 730	.627	•628	.569	.483	.390	. 289	.214	.162	.127	101.
8.863	• 936	. 730	•626	.628	.569	.483	.391	.289	.214	.162	.127	100
10.336	.938	.730	• 626	.627	.569	.484	•390	•289	.214	.162	.127	.100

lower flap pressures, p/p_{t, j}

-	0 5.200	1 .547	•	•	•	•	•	•	•	•	•	•	•
	4.950	.55	. 47	.46	.42	.19	61.	.19	.193	.19	.19	.19	•10
	4.700	.541	.460	.456	.371	.215	.214	.214	.213	.213	.212	.212	.212
	4.450	.533	.452	144.	.236	.235	.233	.233	.233	.232	.232	.231	.231
	4.200	.525	.441	•436	.254	.253	.251	.251	.250	.249	.248	.248	.248
	3.975	.520	.432	.427	•260	.259	.257	.257	.256	.255	.254	.254	•254
٠, ۳ ر, ۱	3.825	.516	.425	.420	.256	.254	.251	.251	.250	.249	.248	.247	.247
3	3.675	.515	. 421	•416	.232	.230	.229	.229	.228	.227	, 225	.225	.224
	3.525	.515	.421	.416	•503	.207	•205	.205	.204	.203	.202	.201	.200
	3.375	.518	.429	.420	.167	.166	.163	.164	.162	•162	.161	.160	.159
	3.325	.522	.429	.424	.116	.116	.115	.115	.114	.113	.112	.111	.111
	3.075	.527	.434	.428	690.	.069	.068	.068	.067	.067	.067	.067	.067
	2.925	.734	.714	.713	669.	969.	. 695	.695	•69•	.693	* 695	.692	269*
	2.775	.845	.834	.833	.824	.821	.819	.819	.817	.816	.814	.813	.813
	NPR	1.727	2.011	2.028	2.558	3.070	4.134	4.110	5.142	6.166	7.724	8.863	10.336

TABLE BI.- Continued

(q) Configuration Cl7N

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},j}$

					x/h _{t, n}				
1	2.775	2.925	3.075	3.325	3.375	3.700	4.000	4.300	4,650
+-	.510	.542	.559	.578	.578	.578	.773	.674	.383
	524	.550	.569	.589	.589	.589	.772	+19.	.383
	308	.478	164.	.506	. 506	• 506	.772	.672	.380
	.307	470	.483	864.	864.	864.	.772	.672	.379
	306	.232	.384	.397	.397	.397	.772	.670	.376
	306	. 231	.308	.333	.333	.333	177.	. 668	.374
	306	.230	.169	.250	•249	.250	.771	.668	.374
	306	.230	.170	• 200	• 200	.200	.771	.667	.375
_	306	. 230	.170	•166	.166	.167	.771	.667	.375
	305	.229	.170	.133	.133	.134	.771	899.	.375
_	306	•229	.170	.116	.116	.116	.771	.668	.375
	306	.229	.170	100	.100	.100	.771	699.	.375

lower flap pressures, p/p_{t, j}

	4.600	065.	.599	.530	.518	.285	.283	.283	.282	.282	.281	.281	.282
	4.400	.589	.599	. 493	0440	• 306	.305	.304	.304	.303	.303	.304	.304
	4.200	.553	.564	.343	•325	.323	.322	.321	.321	.321	.321	.321	.321
	3.975	.485	.500	.338	• 338	.336	.335	.334	.333	•332	.332	.332	.332
	3.825	.353	.403	.339	.338	.336	.335	.333	.331	.330	.330	.330	.330
-	3.675	.324	.324	.323	.323	.322	.321	.320	.319	.319	.318	.318	.318
x/h _{t, n}	3.525	.315	.315	.314	.313	.311	.309	•309	.308	.306	• 308	.307	.307
	3.375	.301	.302	• 300	300	.299	•298	.297	.297	• 296	.296	.295	.295
	3.325	.267	.267	• 266	• 266	.264	.263	.261	.261	•262	.261	.261	.261
	3.075	.214	.213	.213	.213	.213	.212	.212	.212	.213	.213	.213	.213
	2.925	.685	.685	.684	-684	.683	.682	.682	.682	.682	.682	.683	.683
	2.775	.783	.785	.782	. 782	.781	.782	.782	782	.782	.781	.780	.780
	NPR	1.731	1.697	1.976	2.008	2.518	3.006	4.008	5.005	6.013	7.503	8.608	10.039

TABLE BI.- Continued

(r) Configuration C180

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{t,j}$

		·			x/h _{t, n}				
NPR	2.775	2.925	3.075	3.225	3.375	3.650	3.950	4.250	4.570
1.695	.847	.819	.785	.748	• 706	.610	.530	.505	.548
2.006	.832	.801	.762	.715	.660	.528	.397	.378	.483
2.502	.833	. 799	.760	.714	.658	.525	.396	.287	.377
2.987	.834	.798	.759	.713	.658	.524	.396	.287	.259
4.001	.833	.799	.758	.714	.657	.523	.395	. 287	.190
4.987	.834	. 199	.758	.713	.657	.522	.395	.287	.189
6.010	.833	.799	.758	.713	.657	.523	.394	.287	.189
7.499	.833	• 800	.758	.713	.658	.524	.394	.287	.188
8.598	.833	.801	. 758	.714	. 658	.525	.394	.287	.188
10.03	.833	.802	.758	.714	.659	.525	.394	.287	.168

lower flap pressures, $\mathsf{p/p_{t,j}}$

						x/h	x/h _{t, n}					
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4. 150	4.300	4.500
1.695	.822	.725	.481	924.	.473	174.	.487	.502	.518	.535	.550	.568
2.006	.611	.707	960.	.152	.213	.273	.312	.340	.401	.513	.547	.535
2.502	.811	.705	960.	.151	.212	.271	.310	.338	.337	.321	•304	.280
2.987	.811	.704	• 005	.150	.211	.270	.310	.337	.336	.321	.303	.275
4.001	.811	104	.095	.148	.210	.268	.309	.335	•334	.320	.303	.273
4.987	.811	.703	• 0 9 5	.147	.209	.267	.308	•334	.333	.319	.302	.273
6.010	.811	.703	• 095	.147	. 208	•266	.307	.333	.333	.319	.302	.272
7.499	.810	.703	•005	.146	.207	•566	.307	.333	.333	.318	.301	.272
8.598	.810	. 704	• 095	.146	.207	.265	.307	.333	• 333	.318	.301	172.
10.01	.810	• 104	• 002	.146	.207	• 565	• 306	• 333	.334	.318	.301	.271

TABLE BI.- Continued

(s) Configuration C19P

upper flap pressures, $p/p_{t,\,j}$

lower flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},\, \mathfrak{j}}$

						x/x	x/h _{t, n}					
NPR	2.775	2.925	3.075	3.225	3.375	3, 525	3.675	3.825	3.975	4.150	4.350	4.550
	ć	101	781	726	21.8	.401	794.	.519	.544	.574	.590	.587
560	078			223	316	906	454	.468	644.	.423	486	.530
100	10.	•		220	316	304	.451	.465	2440	•419	.384	.345
334	1100	•	271	228	713	303	450	494.	.447	.419	.385	.346
480	619			366	112	101	044	.462	.445	. 417	.384	.346
600	119.	969	791	223	000	380	446	.459	***	.415	.382	.343
900	000	969	151	222	300	60	6449	.458	***	.415	.382	.342
910	000		107.	221	806	.387	445	.458	***	.414	.381	.342
266		4042	271	220	307	387	***	.458	***	.414	.381	. 342
100	000		671	220	306	386	***	4.98	***.	.415	.382	.342
6.013	208	404	141	.219	306	.386	***	. 458	***	.414	.381	.341

TABLE BI.- Continued

(t) Configuration C20P

upper flap pressures, $\mathfrak{p}'\mathfrak{p}_{t,\,j}$

-					x/h _{t, n}				
NPR	2.775	2.925	3.075	3.325	3.375	3.700	4.000	4.300	4.650
697	.796	.701	+09.	.645	.615	.575	.561	.563	.538
.003	2779	.682	.550	.598	.553	.463	*394	. 400	.427
501	.773	.677	.526	.585	.531	.414	.312	.234	.385
037	.769	.674	. 526	.582	.528	604.	.311	.233	.295
.001	.769	.674	.526	.581	.528	404	.311	.234	.304
989	.768	.672	.528	.580	.525	905.	.310	.234	.151
003	.767	129	.526	.579	.523	*04.	.310	• 234	.150
200	•766	.672	. 525	.578	.523	*04	•309	•234	.150
506	4766	. 672	.522	.578	. 522	.403	•309	.234	.150
104	766	. 672	.521	.578	. 522	.403	• 309	.233	.150
978	797	.673	.520	.578	.522	.403	•309	. 234	.150
060-01	.767	.673	.520	.578	. 523	.403	• 309	.233	.150

lower flap pressures, p/p_{t,j}

NPR 2.	2 775						ر"					
	2	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.550
1.697	.812	. 703	.552	.554	.547	.545	.543	.547	.550	.558	. 565	.563
2,003	.797	.680	.393	.397	.397	.399	.407	.428	044.	. 453	.468	.473
2.501	.789	.674	.142	.178	.211	.234	.241	.251	.254	.252	.241	.372
3.037	.784	.672	.138	.175	.210	.231	.241	• 248	.252	• 548	.239	.227
3.001	.782	.672	.138	.174	• 508	.231	.241	.248	.252	.249	• 238	.227
3.989	.781	.670	.135	.172	.208	.229	.240	.246	.251	.247	.237	.225
5.003	.779	699.	.133	.170	.207	.228	.239	-244	.249	.246	.236	.223
2.997	.778	699*	.132	.170	• 506	.227	.238	•244	.249	.246	.236	.223
7.506	.778	.668	.131	.169	.505	.226	.237	.243	.249	. 245	.235	.222
8.601	.777	.668	.130	.169	. 205	.226	.237	.243	.249	.245	.235	.222
9.65	.776	999.	.129	.168	. 204	.226	•236	.242	.248	.245	.234	.221
10.090	.776	999.	.129	.168	. 204	• 556	.237	.242	.248	.245	.234	.221

TABLE BI.- Continued

(u) Configuration D21Q

upper flap pressures, p/p_{t, j}

			x/	x/ht, n			
NPR	2.775	2.925	3.075	3.225	3.375	3.550	3.700
_	.819	.761	.704	.691	299.	.622	.582
_	.808	.743	.677	.659	.621	.566	.511
_	.801	. 732	•629	.637	. 588	.514	.451
_	.801	.731	.658	.635	.586	.513	.450
_	.801	.730	.657	•636	.585	.511	.450
_	.801	.730	• 656	•636	.584	.511	644.
•	.801	• 730	•656	•636	.585	.511	.449
_	.800	.731	.655	.636	.585	.511	.449
_	.800	.731	.655	•636	.585	.511	.448
10.032	.800	.732	.655	.636	.586	.512	.448

lower flap pressures, p/ $\mathfrak{p}_{t,j}$

925 3.075 3.225 3.375 3.525 3.675 720				x/r	x/h _{t, n}			
.533 .530 .530 .540 .464 .462 .463 .453 .140 .196 .249 .291 .140 .194 .246 .289 .139 .192 .247 .287 .139 .191 .246 .286 .138 .191 .246 .286 .137 .191 .246 .286	2.775 2.	2	2.925	3.075	3.225	3.375	3.525	3.675
.464 .462 .463 .453 .453 .453 .453 .453 .453 .291 .291 .291 .291 .291 .291 .291 .291		•	720	. 533	.530	.530	.540	.560
.140 .196 .249 .291 .140 .194 .249 .289 .150 .193 .248 .288 .139 .191 .246 .287 .138 .191 .246 .286 .137 .191 .246 .286	. 797	•	702	***.	.442	.443	.453	424.
.140 .194 .249 .289 .140 .193 .248 .288 .139 .192 .247 .287 .139 .191 .246 .286 .138 .191 .246 .286 .137 .191 .245 .286	•	•	594	.140	•196	.249	.291	.316
.140 .193 .248 .288 .288 .139 .192 .247 .287 .191 .246 .287 .191 .246 .286 .191 .245 .286 .191 .245 .286 .191 .245 .286	•	•	63	.140	.194	.249	.289	.315
.139 .192 .247 .287 .287 .139 .191 .246 .287 .138 .191 .246 .286 .138 .191 .245 .286 .137 .191 .245 .286	•	•	26	•140	.193	.248	.288	.315
.139 .191 .246 .287 .138 .191 .246 .286 .286 .138 .191 .246 .286 .137 .191 .245 .286	•	ě	92	.139	.192	.247	.287	.314
.138 .191 .246 .286 .138 .191 .246 .286 .137 .191 .245 .286	•	•	26	.139	161.	.246	.287	.314
.138 .191 .246 .286 .137 .191 .245 .286	•	÷	26	.138	.191	•246	.286	.314
.137 .191 .245 .286	•	٠	26	.138	.191	.246	.286	.313
	•	•	26	.137	.191	.245	.286	.313

TABLE BI.- Continued

(v) Configuration E22R

upper flap pressures, $p/\mathfrak{p}_{\mathfrak{t},j}$

						x/h _t ,	t, n					
NPR	2.775	2.925	3.075	3.225	3.375	3.700	4,000	4.300	4.600	4.900	5.200	5.550
1 300	708	757.	.654	.643	. 593	.458	.410	.470	964.	.512	. 523	.551
		7.28	48.4	244	.591	456	.345	.424	.453	.456	.463	645
1.969		724		144	08.5	454	344	. 255	.352	.367	.369	.379
4.00.4				9.4	0 60	4.53	344	.255	.194	.254	.283	.308
3.01	06.70		2 4		787	1691	344	.254	194	.145	.119	.223
		100	9 4	044	88.5	451	344	.254	194	144	.119	.222
210.6			244	144	8 6 6	16.3	344	254	194	.144	.118	.222
810.0		000		177		4.52	346	254	194	.144	.118	.221
1.520	66/0	***		100		16.4	344	25.4	104	144	811	. 220
8.599	.795	.734	040.	140.	. 266	704.	•					
10.019	.794	.735	949.	.641	.589	.453	.344	+52*	•193	.144	9119	077

lower flap pressures, $p/p_{t,j}$

			-												-
								x/ht, n							
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.225	4.475	4.725	4.975	5.225	5.475
1 700	790	484	.150	.200	.251	.309	.381	.427	.457	. 495	•524	.548	.567	.578	.581
080	790	582	150	.199	.249	.291	.316	.337	.342	.412	.495	.531	.521	• 506	.497
	100	089	150	197	.247	.289	•314	.334	.337	.318	.293	.264	.280	.417	.410
2017	280	629	149	196	.247	.287	.314	• 333	.335	.317	262.	.263	.236	.214	.271
10.0	100	67.4	041	194	.246	•286	.313	.331	•334	.316	162.	.262	•236	.212	.193
	200	678	148	193	.246	•286	.313	.330	.334	.316	.291	• 262	• 236	.211	.192
310.7	200	67.4	148	193	.245	.285	.313	.330	•333	.316	.290	.261	.235	.211	161.
900	262	87.9	148	192	.245	.285	.313	.330	.333	.315	. 290	.261	•235	.210	.191
200	200	678	148	.192	.245	.284	.313	• 330	.333	.315	.290	.261	.235	.210	.191
10.019	24	.678	. 148	.192	.245	.284	.313	•330	•333	.315	•290	.261	.235	•505	.191

TABLE BI.- Continued

(w) Configuration C23S

upper flap pressures, $\mathsf{p/p_{t,j}}$

					x/h _{t, n}				
NPR	2.775	2.925	3.075	3.325	3.375	3.700	4.000	4.300	4.650
1.688	.718	.711	\$69.	.635	.583	.452	.420	.548	.574
1.997	.717	.710	669.	.634	.582	.451	•338	. 467	.486
2.514	.716	.709	*69 *	•633	.580	.448	•338	•256	.384
2,997	.717	.707	.693	.632	.579	244.	.338	.255	.287
4.003	.717	.707	. 693	.631	.579	.445	.338	.256	.187
2.000	.717	.707	.693	.631	.579	***	.338	.255	.185
2.996	.717	.707	•69•	.631	.579	***	.337	.255	.185
7.515	.716	.708	*69*	.631	.579	***	.338	• 256	.185
8.583	.716	.709	•69•	.631	.580	***	.338	.256	.185
10.01	.716	.710	• 692	• 631	.580	.445	.338	.256	.185

lower flap pressures, $\mathsf{p}/\mathsf{p}_{\mathsf{t,\,j}}$

						×	x/ht, n					
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.550
1.688	.681	.619	.219	.246	.275	.300	.350	.478	.519	.567	.603	.402
1.997	.680	.618	.219	.245	.273	.299	.323	.341	.338	.357	764	.528
2.514	.680	.617	.218	.243	.272	.297	.323	339	338	324	306	2.0
2.997	679.	.617	.217	.242	.272	.296	.322	.338	.336	.323	304	. 281
4.003	.678	.617	.216	.241	.270	.294	. 322	.336	.335	.322	.303	280
5.000	.677	.617	.215	.240	.269	.294	.322	.335	.334	.322	305	.279
5.996	.677	.617	•112	.240	.269	.293	.322	•334	.334	.321	.302	.280
7.515	949.	.617	.215	.240	• 269	.293	.322	334	.334	.321	302	270
8.583	929*	.618	.214	.240	.268	.292	.322	334	334	.321	305	270
10.087	929	•618	.214	•239	.268	.292	.321	.335	.334	.321	.302	279

TABLE BI.- Continued

(x) Configuration C24T

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{t,j}$

					x/h _{t, n}			
NPR	2.775	2.925	3.075	3.325	3.375	3.700	4.000	4.300
1 703	249	14.2	044	. 84	644	846	787	517
2000		743	632	1,99	200	453	336	465
2.511	. 853	741	.630	689	587	164.	.335	.253
7.99R	. 853	042	628	699	586	644.	.334	.252
4.010	.852	739	.627	639	.585	1440	.333	.252
5.003	.852	. 738	.626	.639	.584	944.	.332	,252
6.002	.852	.739	.625	.639	.584	944.	.332	.252
74506	852	.740	.625	699	. 585	2447	.331	.252
8.601	.851	.740	. 625	699	.585	744.	.331	.252
10.054	.851	.741	.625	•639	.586	.447	.331	.252

lower flap pressures, p/p_{t, j}

			-	_	_	_	_	_	_	_	-
	4.550	.564	. 540	.285	.284	.283	.283	.283	.283	.283	.283
	4.350	.545	.529	.306	.305	.304	• 304	.304	.303	•303	• 303
	4. 150	.526	.457	.327	.325	.324	,324	,324	.324	.324	,324
	3.975	.509	.337	.336	.335	.333	.332	.332	.332	•332	1332
	3.825	464.	.332	.329	.328	.326	.325	.325	.325	.324	.324
_	3.675	624.	.310	.309	.308	.307	• 306	•306	•306	•306	.305
x/h/ ,t	3.525	894.	.281	.279	.278	.276	•276	.275	.274	.274	.273
	3.375	*9 **	.230	.228	.228	.227	.226	. 225	.225	.224	•224
	3.225	794.	.157	.156	.155	.153	.152	.152	.151	.150	.150
	3.075	474.	.088	.088	.088	.087	.087	.087	.086	980.	980.
	2.925	.773	.759	.758	.758	.757	.757	.757	.758	.758	.763
	2.775	2865	926	.855	.855	.853	.854	.853	.853	.853	.852
	NPR	1.702	2.006	2.511	2.998	4.010	5.003	6.002	7.506	8.601	10.054

TABLE BI.- Continued

(y) Configuration C25P

4,300 4.000 3.700 3.375 α x/ht.n upper flap pressures, $\, p \! /_{p_{t,\,j}} \,$ 3.325 3.075 2.925 2.775 NPR

4.350 4.150 3.975 8 3.675 x/ht.n lower flap pressures, p/p_{t,j} 3.525 3.225 3.075 925 2.775 NPR 44864469446 4466469469446 4466469468446

C-5

TABLE BI. - Concluded

(z) Configuration A05H

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},j}$

3.850 4.150 4.450 .388 .481 .558 .387 .289 .372 .387 .289 .285 .387 .288 .285 .387 .288 .278 .387 .287 .278 .387 .287 .287							.,						
2.775 2.925 3.075 3.225 3.375 3.600 3.850 4.150 4.450 4. .748 .706 .675 .625 .566 .482 .388 .481 .558 .724 .703 .673 .624 .564 .479 .387 .289 .372 .734 .703 .673 .624 .564 .479 .388 .289 .385 .734 .703 .672 .624 .563 .477 .387 .288 .285 .726 .702 .672 .623 .563 .477 .387 .288 .285 .726 .703 .672 .623 .563 .477 .387 .288 .285 .726 .703 .672 .623 .563 .478 .387 .287 .271 .728 .672 .623 .563 .479 .387 .287 .267 .728 .672 .623 .563 .479 .387 .287 .267 .728 .677 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>χ/h τ</th><th>c</th><th></th><th></th><th></th><th></th><th></th></t<>							χ/h τ	c					
.748 .706 .675 .625 .566 .483 .388 .481 .558 .724 .705 .674 .625 .566 .482 .388 .481 .558 .372 .372 .289 .703 .673 .624 .565 .479 .387 .289 .285 .724 .702 .673 .624 .563 .477 .387 .288 .285 .285 .728 .702 .623 .563 .477 .387 .288 .285 .285 .728 .703 .672 .623 .563 .477 .387 .288 .285 .285 .728 .703 .672 .623 .563 .478 .387 .288 .271 .73 .704 .672 .623 .563 .479 .387 .287 .271 .276 .778 .704 .672 .623 .563 .479 .387 .287 .271 .276 .778 .704 .672 .623 .563 .479 .387 .287 .271 .270	NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.450	4.750	5.050	5.365
724 .705 .674 .625 .566 .482 .388 .289 .372 .372 .373 .624 .479 .387 .289 .372 .383 .289 .372 .383 .289 .372 .383 .623 .624 .479 .387 .288 .285 .285 .285 .472 .387 .288 .285 .285 .472 .387 .288 .285 .285 .472 .387 .288 .285 .285 .372 .372 .372 .372 .372 .473 .387 .288 .287 .287 .287 .287 .287 .287 .2	1.707	.748	.706	679.	.625	.366	.483	.388	184.	.558	009	004	402
.739 .703 .673 .624 .564 .479 .387 .289 .285 .724 .702 .673 .624 .563 .477 .388 .286 .285 .728 .702 .672 .623 .563 .477 .387 .288 .284 .726 .703 .672 .623 .563 .478 .387 .288 .278 .731 .703 .672 .623 .563 .478 .387 .288 .278 .733 .704 .672 .623 .563 .479 .387 .287 .267	2.004	.724	. 705	.674	•625	.566	.482	.388	.289	.372	484	800	A C R
.724 .703 .673 .623 .479 .388 .288 .285 .733 .702 .672 .624 .563 .477 .387 .288 .284 .285 .728 .702 .672 .623 .563 .477 .387 .288 .285 .285 .726 .703 .672 .623 .563 .478 .387 .288 .278 .78 .704 .672 .623 .563 .479 .387 .287 .257 .267 .733 .705 .672 .623 .563 .479 .387 .287 .267	2.508	.739	.703	.673	• 624	.564	644.	.387	.289	.285	. 25.0	376	276
. 733 . 702 . 672 . 624 . 563 . 477 . 387 . 288 . 284 . 728 . 728 . 728 . 728 . 728 . 728 . 728 . 702 . 672 . 623 . 477 . 387 . 288 . 278 . 728 . 703 . 672 . 623 . 563 . 478 . 387 . 287 . 278 . 728 . 703 . 672 . 623 . 563 . 479 . 387 . 287 . 271 . 728 . 704 . 672 . 623 . 564 . 479 . 387 . 287 . 267 . 271 . 267 . 271	2.998	.724	. 703	.673	.623	. 563	64.	.388	.286	. 285	35.0	9	
.726 .702 .672 .623 .563 .477 .387 .288 .282 .725 .703 .672 .623 .563 .478 .387 .288 .278 .731 .703 .672 .623 .563 .478 .387 .287 .278 .271 .278 .704 .672 .623 .564 .479 .387 .287 .267 .267 .267 .267	4.015	.733	.702	.672	• 624	.563	.477	.387	.288	.284	.357	367	0.00
.726 .703 .672 .623 .563 .478 .387 .288 .278 .731 .703 .672 .623 .563 .478 .387 .287 .271 .278 .728 .704 .672 .623 .563 .479 .387 .287 .267 .267 .733 .705 .672 .623 .564 .479 .387 .267	5.007	.728	. 702	.672	.623	. 563	.477	.387	.288	.282	357	99	250
.731 .703 .672 .623 .563 .478 .387 .287 .271 .728 .704 .672 .623 .563 .479 .387 .287 .267 .273 .733 .705 .672 .623 .564 .479 .387 .267	6.012	.726	.703	.672	.623	.563	844.	.387	.288	.278	356	366	150
.728 .704 .672 .623 .563 .479 .387 .287 .267 .733 .705 .672 .623 .564 .479 .387 .287 .260	7.504	.731	.703	.672	.623	.563	.478	.387	.287	. 271	.355	3.65	946
.733 .705 .672 .623 .564 .479 .387 .260	8.605	.728	. 704	.672	.623	.563	64.	.387	.287	.267	354	496	94
	0.020	.733	.705	.672	.623	.564	64.	.387	.287	.260	.353	.363	340

lower flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},j}$

	т —	
	5. 100	. 593 . 264 . 264 . 263 . 261 . 261 . 261
	4.850	.594 .295 .295 .294 .294 .294 .294
	4.600	.596 .454 .329 .328 .327 .327 .327
	4.350	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	4.150	396 397 391 391 390 390 390
	3.975	.527 .419 .418 .417 .416 .415 .415 .415
x/h, n	3.825	4440 434 432 432 427 427 427 426
	3.675	424 424 424 424 424 424 424 424
	3.525	
	3.375	
	3.225	.312 .311 .308 .308 .308 .308 .307
	3.075	.261 .260 .259 .259 .258 .259 .259 .259
	2.925	643 642 642 642 641 641 641
	2.775	.718 .719 .719 .718 .718 .719 .719 .715
	NPR	1.707 2.004 2.508 2.998 4.015 5.007 7.504 8.605

TABLE BII.- RATIO OF INTERNAL UPPER AND LOWER FLAP STATIC PRESSURE TO JET TOTAL PRESSURE FOR CONFIGURATIONS CO5H TO C27AA

(a) Configuration CO5H

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{t,j}$

								x/h t.n				
NPR	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.450	4.750	5.050	5.365
1.696	.744	.705	.673	.626	.565	.482	.389	290	\$44.	864.	.542	.580
2.007	.728	.705	.673	626	.565	.481	.389	.289	.262	.346	.362	. 440
2.502	.733	. 703	.672	.625	.564	645	388	.289	.262	.345	.362	.343
2.998	.722	.703	.671	.625	.563	.478	.389	- 289	.261	.344	.362	.340
3.999	.735	• 702	.671	.629	.563	477	.387	.288	.261	.343	.361	.341
5.002	.730	. 703	.671	•625	.563	.477	.387	.288	.259	.341	1981	.342
5.999	.725	.703	.671	.625	.563	.478	.388	.287	.258	.340	.361	.344
7.497	.728	.704	.671	.625	.563	.478	.388	.287	.253	.339	.360	.344
8.567	.733	.705	.671	.625	.564	.479	.388	.287	.251	.338	.360	.345
6.594	.733	.705	.671	.625	.564	.479	.388	.287	.250	.338	.359	.346
900.0	.727	• 706	.672	.625	.564	.480	.387	.287	.245	.337	.359	.347

lower flap pressures, $p/p_{t,j}$

				t, n						
3.225	3.375	3.525	3.675	3.825	3.975	4. 150	4.350	4.600	4.850	5.100
.311	.355		.427	.434	.420	395	.370	.542	.578	.588
•309	.354	•	.427	. 432	.419	.394	.365	.332	.296	.439
.307	.353	_	.426	.430	.418	.392	.364	.330	. 295	.264
•306	.354	•	.425	.429	.417	.391	.363	.330	.295	264
.305	.354	•	.424	.427	.416	•390	.363	.329	. 294	.262
•305	.353	.393	. 423	.426	.415	930	.362	.328	.294	.261
• 306	.354	•	.423	•426	.415	.390	.362	.328	.294	.261
•306	.353		.423	.425	.415	9380	.362	.329	.294	.261
• 306	.353	٠	.423	. 425	.415	• 389	.362	.329	.294	.261
306	.353	-	.423	. 425	.415	.389	.362	.329	.294	.261
.306	151		.423	• 426	.415	.389	.362	.329	295	.261

TABLE BII. - Continued

(b) Configuration A06I

upper flap pressures, $p/p_{\mathfrak{t},\, \mathfrak{j}}$

						x/h t, n				
NPR	2.775	2.925	3.075	3.225	3.375	3.700	4.000	4.300	4.600	4.900
						:				
1.706	.815	.829	.821	101	• 683	•25•	.377	.543	. 605	• 604
2.002	.786	.827	.820	.752	.681	.522	.375	. 268	. 426	494.
2.491	.794	.824	.817	.749	.678	.517	.374	• 266	.197	.362
5.989	.793	.824	.817	.749	.678	.516	.373	.265	197	.349
3,997	.811	.824	.817	.748	.678	.514	.372	.265	.197	.344
966.4	.802	.824	.817	.747	.677	.513	.372	.265	.196	.342
5.993	908.	.825	.816	.747	.677	.513	.372	.264	.196	.343
7.497	.803	.826	.816	.747	.677	.512	.372	.264	.196	.341
8.628	.807	.827	.817	.747	.678	.513	.373	.264	.196	.340
8.609	608*	.827	.817	.746	.677	.513	.372	.264	•196	.339
10.010	908.	.828	.818	.746	.678	.513	.373	. 265	.196	.338

lower flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},j}$

NPR 2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5.200 1.706													
2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4. .763 .689 .160 .232 .303 .432 .538 .582 .600 .604 .604 .598 .760 .685 .158 .228 .299 .371 .420 .429 .413 .377 .332 .292 .291 .760 .685 .158 .225 .298 .371 .420 .429 .413 .374 .332 .291 .761 .685 .158 .225 .298 .371 .420 .429 .413 .374 .332 .291 .761 .685 .156 .225 .298 .377 .426 .419 .372 .331 .291 .760 .684 .155 .225 .298 .377 .426 .411 .372 .331 .290 .290 .770 .684 .155 .222 .295 .367 .416 .425 .411 .372 .331 .290 .290 .770 .685 .155 .222 .295 .367 .416 .425 .410 .372 .331 .290 .290 .776 .685 .155 .222 .295 .367 .416 .425 .410 .372 .331 .290 .290 .776 .685 .155 .222 .295 .365 .416 .425 .410 .372 .331 .290 .290 .776 .685 .155 .221 .294 .415 .425 .410 .371 .330 .290 .290		5.200	.582	.495	.379	.229	.220	•219	.217	.217	.217	.217	.217
2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4. -763 .689 .160 .232 .303 .432 .422 .424 .416 .377 .332 .334 .760 .685 .158 .226 .299 .373 .421 .413 .377 .332 .760 .685 .158 .226 .299 .373 .420 .429 .413 .374 .332 .761 .685 .158 .225 .299 .371 .420 .429 .413 .374 .332 .331 .760 .684 .155 .225 .299 .377 .426 .419 .372 .330 .760 .684 .155 .225 .299 .377 .426 .411 .372 .330 .760 .684 .155 .222 .295 .367 .416 .425 .411 .372 .330 .776 .684 .155 .222 .295 .367 .416 .425 .411 .372 .330 .776 .684 .155 .222 .295 .365 .416 .425 .410 .372 .331 .330 .758 .685 .155 .221 .295 .365 .415 .425 .410 .371 .330		4.950	.599	.520	.256	.254	.254	.253	.252	.252	.253	.252	.252
2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4. -763 .689 .160 .232 .303 .432 .422 .434 .416 .377 .760 .685 .158 .226 .299 .373 .421 .419 .377 .422 .434 .416 .377 .760 .685 .158 .226 .299 .373 .420 .429 .413 .374 .760 .685 .158 .225 .299 .371 .420 .429 .413 .374 .760 .685 .156 .225 .299 .371 .420 .429 .413 .372 .760 .684 .155 .225 .297 .369 .417 .426 .411 .372 .760 .684 .155 .222 .297 .369 .417 .426 .411 .372 .776 .685 .155 .222 .295 .367 .416 .425 .411 .372 .776 .685 .155 .222 .295 .367 .416 .425 .410 .372 .776 .685 .155 .222 .295 .367 .416 .425 .410 .371 .372 .776 .685 .155 .222 .295 .366 .415 .425 .410 .371 .372 .776 .685 .155 .222 .295 .366 .415 .425 .410 .371 .372 .776 .685 .155 .222 .295 .366 .415 .425 .410 .371 .372 .776 .426 .415 .425 .410 .371 .776 .426 .415 .425 .410 .371 .776 .426 .415 .425 .410 .371 .776 .426 .415 .425 .410 .371 .776 .426 .415 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .425 .410 .371 .776 .426 .426 .426 .426 .426 .426 .426 .42		4. 700	865.	.529	.292	.291	.291	.289	.290	.290	.290	.290	.290
2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4, 2.753 .689 .160 .232 .303 .432 .432 .434 .416 .760 .685 .158 .226 .299 .371 .422 .424 .418 .415 .761 .685 .158 .226 .299 .371 .420 .429 .413 .415 .761 .685 .158 .225 .298 .371 .420 .429 .413 .415 .761 .685 .158 .225 .298 .371 .420 .429 .413 .415 .761 .685 .155 .225 .298 .370 .420 .426 .412 .426 .412 .761 .685 .155 .225 .297 .369 .417 .426 .412 .426 .415 .426 .416 .426 .411 .426 .415 .426 .411 .426 .415 .426 .411 .426 .412 .426 .415 .426 .410 .426 .416 .425 .410 .426 .426 .420 .420 .420 .420 .420 .420 .42		4.450	,60¢	.539	.332	. 332	.331	•330	•330	.331	.331	.330	.330
2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.75 5.2925 3.075 3.325 3.375 3.525 3.675 3.825 3.675 3.825 3.675 3.825 3.675 3.825 3.675 3.825 3.675 3.825 3.683 3.684 3.158 3.228 3.294 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.71 3.420 3.428 3.72 3.825 3.82		4.200	• 604	.377	.374	.374	.373	.372	•372	•372	.372	.371	.371
2.775 2.925 3.075 3.325 3.375 3.525 3.675 -763 .689 .160 .232 .303 .432 .538 -760 .685 .158 .229 .301 .376 .422 -760 .685 .158 .226 .299 .373 .422 -761 .685 .158 .225 .298 .371 .420 -761 .685 .158 .225 .298 .370 .420 -761 .685 .155 .225 .298 .370 .420 -760 .684 .155 .225 .297 .369 .416 -759 .684 .155 .222 .295 .367 .416 -759 .684 .155 .222 .295 .365 .416 -759 .684 .155 .222 .295 .365 .416 -759 .685 .155 .221 .295 .365 .415		3.975	009•	.416	.415	.413	.413	.412	.411	.411	.410	.410	.410
2.775 2.925 3.075 3.325 3.375 3.525 3.6 -763 .689 .160 .232 .303 .432 .555 .56 .760 .685 .158 .229 .299 .371 .42 .42 .760 .685 .158 .225 .299 .371 .42 .42 .760 .685 .158 .225 .297 .370 .42 .760 .684 .155 .224 .296 .369 .41 .760 .684 .155 .224 .296 .368 .41 .760 .684 .155 .224 .295 .367 .41 .760 .684 .155 .224 .295 .367 .41 .760 .684 .155 .222 .295 .367 .41 .760 .885 .155 .222 .295 .367 .41 .760 .885 .155 .222 .295 .366 .41 .760 .885 .155 .222 .295 .366 .41	۳,	3.825	.582	.434	.431	.429	.428	.426	.426	.425	.425	.425	.425
2.775 2.925 3.075 3.325 3.375 .763 .689 .160 .232 .303 .763 .685 .158 .229 .391 .760 .685 .158 .226 .299 .761 .685 .156 .225 .298 .761 .685 .156 .225 .298 .761 .685 .156 .225 .298 .760 .684 .155 .222 .295 .759 .684 .155 .222 .295 .759 .685 .155 .222 .295 .759 .685 .155 .222 .295	x/h	3.675	.538	.422	.421	.420	.420	.418	.417	.416	.416	914.	.415
2.775 2.925 3.075 3.325 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		3.525	.432	.376	.373	.371	•370	•369	.368	.367	.367	•366	•365
2.775 2.925 3.075 3. .763 .689 .160 .763 .686 .158 .760 .685 .158 .761 .685 .158 .761 .685 .155 .760 .684 .155 .759 .684 .155 .759 .684 .155 .759 .685 .155		3.375	•303	.301	• 2 9 9	.298	• 298	. 297	• 296	.295	.295	• 295	•564
2.775 2.925 .763 .689 .763 .689 .760 .685 .761 .685 .761 .685 .761 .685 .761 .685 .761 .685 .761 .685		3.325	.232	.229	.228	.226	.225	.225	.224	.223	.222	.222	.221
2.775 2 .763 .763 .760 .760 .761 .761 .760 .759		3.075	.160	.158	.158	.158	.158	.156	.155	.154	.155	.155	.155
5.		2.925	689.	• 686	.685	•685	.685	. 685	• 684	•684	.685	•684	.685
NPR 1,706 2,491 2,494 4,995 5,993 7,497 8,609		2.775	.763	.763	.760	.760	.761	.761	.760	.759	.760	.759	.758
		NPR	1.706	2.002	2.491	5.989	3.997	4.996	5.993	7.497	8.628	8.609	10.010

TABLE BII. - Continued

(c) Configuration CO6I

upper flap pressures, $\mathfrak{p}/\mathfrak{p}_{\mathfrak{t},\,\mathfrak{j}}$

NPR 2.775 2.925 3.075 3.225 3.375 3.700 4.000 4.300 4.600 4.900 4								;			
833 .825 3.075 3.225 3.375 3.700 4.000 4.300 4.600 4 833 .826 .824 .749 .683 .524 .378 .408 .475 822 .828 .825 .820 .745 .680 .516 .374 .266 .197 812 .824 .819 .745 .679 .516 .374 .266 .197 813 .825 .826 .820 .744 .678 .514 .372 .265 .197 805 .826 .827 .741 .678 .514 .372 .265 .197 805 .828 .821 .742 .679 .514 .372 .265 .197 805 .828 .821 .742 .679 .514 .372 .265 .197 805 .828 .821 .742 .679 .514 .372 .265 .197 806 .829 .821 .742 .678 .514 .372 .265 .197							x/ht.n				
.833 .828 .824 .749 .683 .524 .378 .408 .475 .822 .823 .823 .823 .748 .682 .522 .376 .267 .314 .824 .825 .820 .748 .682 .522 .376 .267 .314 .824 .825 .820 .745 .680 .518 .375 .266 .197 .815 .824 .820 .744 .678 .514 .372 .265 .197 .812 .825 .820 .744 .678 .514 .372 .265 .197 .805 .826 .820 .744 .678 .514 .372 .265 .197 .805 .827 .821 .743 .678 .514 .372 .264 .197 .805 .828 .821 .743 .678 .514 .372 .265 .197 .808 .829 .821 .742 .679 .514 .373 .265 .197	NPR	2.775	2.925	3.075	3.225	3.375	3,700	4.000	4.300	4.600	4.900
. 822828823748682522376267314824825820745680518375266197815824819745679516374266197812825820744678514372265197805826820744678514372265197805826821744678514372264197805828821743678514372264197805828821743678514373264197908821743679514373265197	1.692	.833	.828	.824	674.	.683	.524	.378	804.	674.	.518
.815 .825 .820 .745 .680 .518 .375 .266 .197 .815 .815 .824 .819 .745 .689 .516 .375 .266 .197 .815 .824 .819 .745 .679 .516 .374 .265 .197 .812 .825 .820 .744 .678 .514 .372 .265 .197 .805 .826 .820 .744 .678 .514 .372 .265 .197 .805 .827 .821 .743 .678 .514 .372 .264 .197 .805 .828 .821 .743 .678 .514 .372 .264 .197 .805 .821 .743 .678 .514 .373 .265 .197 .808 .821 .742 .679 .514 .373 .265 .197	1.995	.822	.828	.823	. 748	•682	.522	.376	.267	.314	404
.815 .824 .819 .745 .679 .516 .374 .266 .197 .812 .824 .820 .744 .678 .514 .373 .265 .197 .812 .825 .820 .744 .678 .514 .372 .265 .197 .805 .826 .820 .744 .678 .514 .372 .264 .197 .805 .827 .821 .743 .678 .514 .372 .264 .197 .805 .828 .821 .743 .679 .514 .373 .265 .197 .808 .829 .821 .742 .679 .514 .373 .265 .197	2.495	.824	.825	.820	.745	.680	.518	.375	• 266	.197	.353
.812 .824 .820 .744 .678 .514 .373 .265 .197 .812 .825 .820 .744 .678 .514 .372 .265 .197 .805 .826 .820 .744 .678 .514 .372 .264 .197 .805 .826 .821 .743 .678 .514 .372 .264 .197 .805 .828 .821 .743 .679 .514 .373 .265 .197 .808 .829 .821 .742 .679 .514 .373 .265 .196	2.992	.815	.824	.819	.745	.679	.516	.374	• 266	.197	.351
.012 .025 .020 .744 .678 .514 .372 .265 .197 .065 .025 .025 .197 .025 .026 .026 .026 .026 .026 .026 .026 .027 .027 .027 .027 .027 .027 .027 .027	3.999	.812	.824	.820	144.	.678	.514	.373	.265	.197	.348
.805 .826 .820 .744 .678 .514 .372 .264 .197 .805 .827 .821 .743 .678 .514 .372 .264 .197 .197 .805 .828 .821 .743 .679 .514 .373 .265 .197 .808 .829 .821 .742 .679 .514 .373 .265 .197	2.000	.612	.825	.820	.744	.678	.514	.372	.265	.197	.346
.805 .827 .821 .743 .678 .514 .372 .264 .197 .805 .828 .821 .743 .679 .514 .373 .265 .197 .9808 .829 .821 .742 .679 .514 .373 .265 .196	5.984	.805	.826	.820	.744	.678	.514	.372	.264	197	.344
.805 .828 .821 .743 .679 .514 .373 .265 .197 .808 .829 .821 .742 .679 .514 .373 .265 .196	7.485	.805	.827	.821	.743	.678	.514	.372	.264	.197	.342
.808 .829 .821 .742 .679 .514 .373 .265 .196	8.614	.805	.828	.821	.743	.679	.514	.373	.265	197	.341
	0.019	.908	.829	.821	.742	629.	.514	.373	.265	.196	.339

lower flap pressures, $p/p_{t,j}$

NPR 2.775	2.925	2 075					ר, ם						
		2.00	3.325	3.375	3.525	3.675	3.825	3.975	4.200	4. 450	4.700	4. 950	5.200
1.692 .761	.688	.160	.228	.300	.378	.423	.435	.418	.542	.565	.571	.585	.580
_	.687	.159	.228	.301	.376	.422	. 433	.416	.377	.334	.370	.493	.512
_	989.	.158	•226	•588	.373	.421	.430	.414	.376	.334	.293	.254	.374
_	.685	.158	•225	•530	.372	.420	. 428	.413	.375	.334	.292	.253	.229
_	• 685	.157	•224	.297	.370	.418	.426	.412	.374	•333	.291	.252	.219
_	.685	.157	.224	• 296	.370	.418	.426	.411	.373	.333	.291	.252	.219
_	.685	.157	•524	• 296	.369	.417	. 425	.411	.373	.332	.291	.253	.219
_	.685	.157	.223	.295	.368	.417	.425	.411	.372	.332	.291	.252	.218
_	.685	.157	.222	.295	.367	-417	.429	.411	.372	.332	.290	.253	.218
_	•685	.156	•220	.294	.367	.416	.425	.410	.372	.332	.291	.252	.217

TABLE BII. - Continued

(d) Configuration A08I

upper flap pressures, $\mathfrak{p}/\mathfrak{b}_{\mathfrak{t},\,\mathfrak{j}}$

						×	x/h,				
P.R	2.775	2.925	3.075	3.225	3.375	3.600	3.850	4.150	4.459	4.750	5.050
702	.743	787.	217.	469.	.610	.530	.485	.429	.550	.557	.569
000	735	731	106	649	. 597	.495	404	.298	.443	.446	.458
503	748	.729	104	643	.595	.491	.402	.298	.224	.373	.379
000	.738	.728	.702	.641	. 593	.488	.402	.298	.218	.270	.314
908	740	.726	700	699	.590	485	.401	.298	.218	.166	.132
007	747	.726	200	.637	.589	.483	004.	• 298	.218	.165	.132
080	7.38	.726	669	.636	586	.482	004.	.298	.218	.166	.132
707	744	727	069	.636	589	.482	004.	.298	.217	•166	.133
501	744	727	669	.635	686	.482	004	.298	.217	.165	.132
1 7 7 7	177	728	004	.635	589	.482	.400	.299	.217	.165	.133

lower flap pressures, $\mathsf{p}/\mathsf{p}_{\mathsf{t},\,\mathsf{j}}$

									_		
	5.200	.583	.508	•434	.312	.178	.176	.175	.175	.174	.174
	4.950	.569	.511	.442	.198	.196	.195	.194	.194	.193	.193
	4.700	.551	.500	.419	.222	.219	.218	.218	.217	.217	.216
	4.450	.534	.481	.372	.244	.241	.240	. 239	.238	.238	.238
	4.200	.515	.453	.263	.263	.260	.257	. 257	.256	.256	.256
	3.975	964.	.421	.271	.270	.267	•266	•265	•265	.264	.264
U 1	3.825	.483	966.	.265	.264	•260	.259	.258	.257	.257	.257
x/h	3.675	994.	.294	.249	.248	.247	.245	.245	.244	.244	.243
	3.525	.455	.233	.231	.230	.227	•226	.225	.224	•22•	•223
	3.375	.435	.207	.205	.204	.201	.200	.199	.198	.197	.197
	3.325	.389	.180	.179	.178	.175	.173	.172	.172	.171	.170
	3.075	.374	.145	.144	144	.142	.141	.141	.141	.141	.141
;	2.925	.659	.657	.656	.655	.654	.653	.653	.653	.653	.653
	2.775	.735	.733	. 732	732	.728	.725	.725	.725	.725	.724
	NPR	1.702	2,009	2.503	2,999	3,998	4.997	5.989	7.494	8.591	10.064
	u*tu/x	x/h _{t,n} 2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950	x/h _{t,n} 2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5.	λ/h _{t,n} 2.775 2.925 3.075 3.325 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5. 3.735 .659 .374 .389 .435 .455 .466 .483 .496 .513 .534 .551 .569 .311 .33 .657 .145 .180 .207 .233 .294 .396 .421 .453 .481 .500 .511	2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5.	2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5. 2.775 2.925 3.075 3.325 3.375 3.525 3.675 4.200 4.450 4.700 4.950 5. 2.775 2.925 3.374 3.389 4.35 4.450 4.700 4.950 5. 2.735 6.55 3.374 3.389 4.35 3.246 3.204 3.203 3.244 3.203 3.244 3.225 3.395 3.244 3.225 3.395 3.244 3.225 3.395 3.244 3.225 3.294 3.204 3.205 3.245 3.245 3.2	2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5. 2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 5. 2.735 .659 .374 .389 .435 .455 .466 .483 .496 .515 .534 .551 .569 .713 .655 .144 .179 .205 .231 .249 .264 .371 .263 .372 .419 .442 .472 .472 .472 .472 .472 .472 .472	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 2.775 2.925 3.075 3.325 3.375 3.525 3.675 3.825 3.975 4.200 4.450 4.700 4.950 2.735 .659 .374 .389 .435 .455 .466 .483 .496 .515 .534 .551 .569 2.732 .655 .144 .179 .205 .231 .249 .265 .271 .263 .372 .419 .442 2.732 .655 .144 .175 .201 .227 .247 .260 .267 .263 .241 .219 .496 2.723 .654 .141 .172 .199 .225 .245 .256 .257 .240 .218 .195 2.725 .653 .141 .172 .196 .224 .244 .257 .265 .253 .217 .194 2.725 .653 .141 .172 .196 .224 .244 .257 .265 .253 .217 .193

TABLE BII. - Continued

(e) Configuration CO8I

upper flap pressures, p/p_{t.i}

г		T											
		5.050	1964	.467	.382	.314	.132	.132	.132	.133	.133	.133	.133
		4.750	08.5	466	.378	.272	.165	.165	.165	.166	.165	.165	.165
		4.450	.623	094	.231	.219	.218	.218	.218	.218	.218	.218	.218
		4. 150	077	298	.298	.297	.298	.298	.298	.298	.298	. 298	. 298
	t, n	3.850	487	.403	101	.401	.401	•400	. 400	• 400	• 400	.399	•399
	χh	3.600	.533	664.	.491	.488	484.	.482	.482	.482	.482	.482	.481
		3.375	414.	966	.594	. 593	. 589	.589	. 586	.586	. 588	.588	.588
		3.225	084	249	.642	.640	.638	•636	.635	.635	.635	.635	.634
		3.075	417.	706	. 703	.701	.700	669.	669.	869	969.	869.	869.
		2.925	730	731	.729	.727	.726	.725	• 725	.726	•726	.727	.727
		2.775	. 733	733	.739	.736	-746	.744	.734	740	.743	.739	.743
		NPR	1.714	2.003	2.497	2.993	3.990	5.003	0000	7.462	7.480	8.585	10.010

lower flap pressures, p/p_{t.j}

·	,										_	
	5.200	.569	.514	.437	.315	.178	.176	.176	.175	.175	.175	.174
	4.950	. 556	. 522	.434	.198	.197	.195	.194	.194	.194	.193	.193
	4.700	.539	664.	999	.220	.219	.218	.218	.217	.217	.217	.216
	4. 450	.527	694.	.267	-242	.240	• 539	.238	.238	.238	.237	.237
	4.200	.513	.442	.262	.261	•258	.257	• 256	•256	.256	.256	.255
[5]	3.975	964.	.408	.270	•268	.266	•265	•564	•504	.264	.264	.264
١,	3.825	.485	.302	.265	.262	• 260	.258	.257	.256	.257	. 256	.256
x/h _t	3.675	.466	.250	.250	.248	.247	.245	.244	.243	.244	.243	.243
	3.525	.450	.233	.230	.228	•226	.225	.224	.223	.223	.223	.222
	3.375	.431	.208	•504	. 203	.201	.199	.198	.197	.197	197	.196
	3.325	.399	.181	.177	.176	.173	.172	.171	.170	.171	.170	.169
	3.075	196.	.146	.145	.144	.143	.141	.141	.141	.141	141	.140
	2.925	299*	.658	.656	.655	.653	.653	•652	.652	.652	.653	.652
	2.775	0,740	.735	.731	.729	.727	.725	.725	.724	.725	.724	.723
	NPR	1.716	2.003	2.497	2.993	3.990	5.003	0000	7.462	7.480	8.585	10.010

TABLE BII.- Continued

(f) Configuration B05U

upper flap pressures, $\mathsf{p}'\mathsf{p}_{\mathsf{L},\mathsf{i}}$

	4.450 4.750 5.050 5.365	.355 .512	.348 .342	.331 .346 .341 .342	. 345 . 340	.344 .338	. 343 . 338	.342 .337	, 342 , 336	.341 .335	
	4. 150	.329	.328	.327	.327	.326	.326	.325	.325	.325	
x/h _{t, n}	3.850	.417	.417	.417	.416	415	.415	415	416	416	
ν/h	3.600	.500	498	164.	664.	464.	.493	764.	764.	.495	
	3.375	.575	.573	.572	.571	.570	.569	.570	.570	.570	
	3.225	.629	.627	.627	• 626	.625	.625	.625	•626	•626	
	3.075	.672	.670	0.49	699.	699.	699.	699.	.670	.669	<.
	2.925	.704	. 701	. 701	.700	669.	• 700	.700	. 701	.701	6
	2.775	.720	.743	• 738	.719	.730	.720	.721	.722	.724	•••
	NPR	1.711	1.997	2.505	3.006	100.4	466.4	6.001	466	8.609	-

lower flap pressures, $p/p_{t,j}$

								x/ht, n					:		
PR	2.775	2.925	3.075	3,225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.600	4.850	5. 100	5.350
711	1690	.592	.429	.336	.374	.397	.414	.424	.410	.396	.367	.335	.478	.528	.569
266	•695	.590	.427	.335	.372	966.	.413	. 421	.407	.394	.366	•334	• 306	.443	.482
505	269.	.589	.426	•334	.372	968.	.411	.419	.405	.394	.365	.333	.305	.275	.303
900	669.	.589	. 426	.333	.371	.394	.411	.418	*0*	.393	.365	.332	.304	.275	.288
001	•695	.588	.425	.332	.370	.393	.409	.416	.403	.392	.364	.331	.304	.273	.283
766	•695	.589	. 425	.331	.369	.392	.408	.415	.402	392	.364	, 331	.304	.272	.281
100	•695	.589	.424	, 331	.369	.391	.408	.414	.402	.392	.364	.330	•305	.271	.278
664	469.	.589	.424	.330	.368	.391	.407	.413	•402	• 392	.364	•330	. 305	.271	.278
609	.692	.590	.424	.329	.368	.390	.407	.413	.401	.391	.364	• 330	•304	.271	.276
001	*69 *	.590	+24.	.329	.368	.389	• 406	.412	.401	.391	.364	.329	.305	.271	.273

TABLE BII. - Continued

(g) Configuration B07U

						x/h	رب					
VP.R	2.775	2.925	3.074	3.225	3.375	3.600	3.850	4. 150	4.450	4.750	5.050	5.365
404	2695	.593	.420	.450	.445	.403	.337	.383	094.	.516	.566	.587
10	899	. 592	.420	.451	***.	704.	.337	. 429	694.	.472	.473	.477
474	0690	587	.417	.450	.442	•366	.337	.268	.300	.377	.381	.386
407	679	290	.418	.451	2445	•366	.337	.268	.271	.372	.377	.383
0 0 0	585	886	.417	.450	044.	.398	.337	. 268	•214	.181	• 306	.318
980	*29	-586	.416	644.	• 439	966.	•337	.267	.213	.176	.152	.149
700	089	.588	.416	644.	.438	.396	.337	.267	.213	.175	.152	.147
700	.681	588	.416	0440	.438	.396	.337	.267	.213	.176	.151	.147
480	675	.588	.415	644.	.437	966.	.337	.267	.214	.176	.151	.146
6.88	.681	.588	.416	644.	.437	.396	.337	.267	.214	.176	.151	.146
A1A	67.9	2000	.415	644.	.437	•396	.337	.267	.214	.176	.151	.146
740	.681	.588	.419	644.	.437	.397	.337	.267	.214	.176	.151	.146
966	679	. 588	.415	.448	.437	.397	.337	.267	.214	.176	.151	.146

lower flap pressures, p/p_{t i}

		4.850 5.100 5.350	5.100 5.	5.100 5.	5.100 5.	5.100 5. 2.556 11.4699 13.361	5.100 5.	5. 100 5. 100 5. 111 499 361 190 189 .	5.100 5.100 5.100 5.100 5.100 5.100	5.100 5.100	5.100 5.100 5.100 5.100 5.100 5.10000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000 5.1000	5.100 5.100	5.100 5.100	5.100 5. 11	5.100
	4. 600	.527	804.	•220	.220	.218	.217	.217	.216	.215	.215	.215	.215	.215	
	4.350	.510	.379	.235	.235	.234	.233	.232	.232	• 232	.231	.231	.231	.231	
	4.150	164.	.242	.238	.238	+237	.235	.235	.234	•234	•534	. 234	.234	• 233	
	3.975	994.	.227	.225	.225	.224	.223	•222	.222	.221	.221	.221	.220	.220	
x/ht, n	3.825	.442	.247	.245	.245	.243	.241	.240	•239	.238	.238	• 238	.238	.236	
	3.675	.408	.264	.263	.263	.262	.261	.260	.260	.259	.259	.259	.259	.259	
	3.525	.292	.282	.280	.281	.280	.277	.277	.276	.276	.276	.275	.275	.275	
	3.375	. 295	.293	.291	. 292	.291	. 289	.288	.288	.288	.288	.288	.288	• 208	
	3.225	.285	.283	.281	•282	182.	.280	.279	.279	.278	.278	.277	.277	.277	
	3.075	.393	.393	.392	• 392	.391	.391	166.	.391	168.	168.	166.	.391	.391	
	2.925	. 569	.568	.567	.567	.567	.567	.567	.567	.567	. 567	.568	. 568	.568	
	2.775	.673	.671	670	.671	•672	699.	•669	.668	.668	.668	.668	699.	199.	
	NPR	1.696	2.011	2.474	2.497	2.989	3.989	4.004	5.994	7.480	7.488	8.618	9.974	966.6	

TABLE BII. - Continued

(h) Configuration B14V

		-	_				_						
		4.900	413	206	200		107.		280	278	277	3.4	274
		4.600	484	. 271	271	2,00	0.70	25.0	267	.266	266	26.5	.265
		4.300	.351	350	340	348	347	346	345	344	346	346	343
is, p/p _{t. i}	1	4.000	844.	445	6443	1443	[44]	.439	.437	.436	.435	454	.433
upper flap pressures,	x/ht, n	3.700	.576	.572	.568	.568	565	.562	.561	.560	.560	.560	.560
upper fla		3.375	.693	069.	.687	.687	489	.682	.681	189.	.681	.681	.691
		3.225	.738	.734	.731	.731	.729	.727	.726	.725	.724	.724	.723
		3.075	.762	.760	.757	.756	.754	.752	.751	.749	. 749	.749	.748
		2.925	.814	.811	.808	.807	. 805	.803	- 802	• 802	. 802	-802	.803
		2.775	.910	.921	.936	• 936	946.	.956	.963	.968	.973	.974	.976
		NPR	1.720	2.043	2.569	2.535	3.080	660.4	5.139	6.158	7.706	8.831	10.334

lower flap pressures, p/p_{t.j}

									(',		į			
							x/h _{t, n}	<u>_</u>						
NPR	2.775	2.925	3.075	3.325	3.375	3.525	3.675	3.825	3.975	4.175	4. 400	4.650	4.900	5.150
1.720	.730	.644	.561	.430	.347	.342	.365	.384	.383	348	703			
2.043	.727	.641	. 559	.427	.345	.340	.364	.381	.381	346	244	, ,	CBC+	.585
2.569	.725	•639	.556	.425	. 343	.337	.363	379	370	946	0000	205.	000	+94.
2.535	.727	.638	.556	.425	.342	.337	.363	370	378		• • • • • • • • • • • • • • • • • • • •	300	192.	*307
3.080	.725	•636	.554	. 423	.341	.335	.361	.376	376	606	• • • •	005.	792.	•356
660.4	.722	.634	.552	.420	939	.333	359	.376	376	300	256.	967*	• 265	•539
5.139	.721	.633	.551	.419	.338	.331	358	.372	373		400	967.	. 264	•237
6.158	.721	.632	.551	.418	.337	330	.357	372	272	96	•	6676	£92•	•536
7.706	.720	1691	.550	.417	.336	.329	.357	.371	372	28.7		• • • •	292.	.235
8.831	.719	.631	. 550	.416	. 33%	.329	.356	175	272		070	67.	292.	•534
10.334	.718	.630	.540	. 415	336	A 2 K	256		2 .		• 3/0	. 293	.262	•534
								2	7) (278	200		

TABLE BII. - Continued

(i) Configuration Bl6V

5.365 .556 476 .380 .170 .170 .1169 5.050 4.750 212 4.450 242 212 272 272 271 270 270 270 270 upper flap pressures, p/p_{t, j} 4444444444 4444444444 0887744444444 3.850 x/h, 515 510 510 500 500 500 500 500 500 500 3.600 5776 5776 5776 5778 5778 5778 5778 3.375 .620 .619 .618 .617 .617 .617 .617 3.225 6000 6000 6000 6000 6000 6000 6000 075 724 722 719 718 716 716 717 716 717 716 717 717 7116 7117 925 .820 .820 .820 .820 .819 .818

2.017 2.017 3.005 5.003 5.000 6.000 6.000 7.503

505 382 382 178 176 176 175 5.150 .600 .461 .361 .192 .190 .190 8 205 206 206 206 206 206 206 206 650 222 223 223 223 222 222 222 222 4.400 2230 233 233 233 230 223 230 223 222334 3.975 lower flap pressures, p/p_{t.j} 8 χ/h t, n 234 233 233 231 231 230 229 3.675 .233 .233 .233 .224 .226 .225 .225 525 3.375 3.325 471 471 469 469 469 469 469 3.075 .583 .582 .582 .580 .580 .580 22 2.775 NPR 1.707 2.6107 3.6490 5.003 5.003 6.593 9.593

TABLE BII. - Continued

(j) Configuration Cl9W

upper flap pressures, $p/p_{t,j}$

					x/ht, n	: :			
œ	2.775	2.925	3.075	3.225	3.375	3.650	3.950	4.250	4.570
98	.623	.783	.742	669.	.653	.547	5445	.352	.559
40	.814	. 784	.744	.701	.653	.546	.445	.341	.424
26	.817	.782	.743	.700	.653	. 545	***	.340	.323
66	.815	. 780	.741	669.	.651	.543	.443	.339	.321
07	.814	.780	.741	669.	.651	.541	2445	.338	.319
93	.815	.781	.741	669.	.651	.540	.441	.338	.317
23	.815	. 782	.741	669.	.651	.539	.441	.337	,315
10	.814	. 782	.741	869	.651	.539	.441	.337	,315
13	.815	.782	.742	669.	.651	.539	0440	.337	.313
32	.814	.783	.742	9699	.651	.539	.440	.337	.311
93	.615	. 783	.742	969.	.651	.539	044.	.337	.311
00	.815	.784	.742	004	.652	540	099	444	300

lower flap pressures, $p/p_{t,j}$

						x/ht, n	L,					
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4. 150	4.350	4.550
1.698	.717	.602	. 502	.386	.347	.379	407	.421	.418	.471	.581	.585
2.004	.718	.603	.503	. 388	.347	.379	.	.421	.418	•399	.370	.378
2.497	.719	.602	.503	.388	.345	.378	• 404	.418	.417	• 366	.369	.340
5.999	.720	. 601	.502	.387	.344	.377	.407	.416	.416	.398	. 369	.341
4.007	.719	109.	.501	.385	.343	.375	407	.415	.415	.397	.367	.339
4.993	.720	.601	.502	.386	.343	.375	• 406	.414	.415	.397	.367	.339
6.023	.718	. 601	.502	.385	.343	.374	904.	.414	.415	.397	.367	. 339
6.001	.718	009•	.502	.385	.342	.374	• 406	.414	.415	.397	• 366	338
7.513	.717	.601	.502	.385	.342	.374	904.	.413	.415	.397	.367	338
8.632	.717	.601	.502	.385	.342	.373	904.	.413	.415	.397	.366	.336
8.593	.717	109.	.502	.385	.342	.373	904.	.413	.415	.397	.367	.338
10.000	.717	109*	. 502	.385	.342	.373	•406	.413	.415	.397	.366	.337

TABLE BII. - Continued

(k) Configuration C20W

4.650 4.300 4.000 3.700 upper flap pressures, p/p_t x/h, n 3.375 3.325 3.075 2.925 2.775 NPR 11.000 12.000 13.000 13.000 14.000 17.000 17.000 10.000 10.000 10.000 10.000

lower flap pressures, p/p. ;

$\begin{array}{cccccccccccccccccccccccccccccccccccc$									<u>.</u>				
. 682 . 538 . 418 . 315 . 430 . 450 . 468 . 440 . 509 . 530 . 549 . 459 . 682 . 538 . 418 . 300 . 253 . 378 . 396 . 412 . 422 . 228 . 228 . 237 . 363 . 459 . 410 . 297 . 231 . 222 . 229 . 228 . 223 . 226 . 225 . 226 . 229 . 672 . 534 . 415 . 299 . 229 . 219 . 221 . 224 . 229 . 219 . 201 . 219 . 221							x/h t.n						
.682 .538 .418 .315 .450 .450 .468 .490 .509 .599 .549 .549 .459 .549 .459 .459 .45	NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4. 150	4.350	4.550
.682 .537 .418 .300 .253 .378 .396 .412 .426 .443 .459 .459 .467 .536 .537 .418 .300 .253 .222 .204 .225 .228 .237 .363 .363 .474 .535 .416 .296 .231 .220 .203 .223 .226 .227 .216 .206 .534 .416 .296 .231 .220 .203 .223 .226 .225 .216 .206 .672 .534 .416 .296 .231 .220 .203 .223 .226 .227 .216 .672 .534 .414 .293 .228 .218 .202 .211 .224 .223 .214 .207 .533 .413 .292 .227 .216 .200 .218 .222 .223 .214 .206 .532 .413 .292 .227 .216 .200 .218 .222 .223 .216 .216 .206 .218 .222 .223 .216 .216 .206 .218 .222 .223 .216 .216 .206 .218 .222 .223 .216 .216 .206 .218 .222 .226 .218 .217 .221 .219 .212 .216 .206 .218 .207 .217 .221 .219 .212 .216 .206 .218 .207 .212 .219 .212 .216 .206 .218 .207 .212 .212 .214 .226 .226 .215 .200 .216 .221 .220 .213 .200 .218 .200 .213 .200 .213 .200 .213	1.704	•682	.538	.418	.315	.430	.450	.468	.490	.509	.530	.549	.564
. 676 . 536 . 417 . 297 . 232 . 220 . 204 . 225 . 228 . 237 . 363 . 267 . 678 . 535 . 416 . 296 . 231 . 220 . 203 . 225 . 226 . 227 . 226 . 227	2.002	.682	.537	.418	.300	.253	.378	•396	.412	.426	6443	.459	174.
.674 .535 .416 .296 .231 .220 .203 .223 .226 .225 .216 .216 .677 .535 .416 .296 .231 .220 .203 .223 .226 .225 .216 .216 .203 .225 .226 .226 .226 .226 .226 .226 .226	2.506	929.	.536	.417	.297	.232	.222	.204	.225	.228	.237	.363	.382
.674 .535 .416 .296 .231 .220 .203 .223 .226 .225 .216 .216 .672 .534 .415 .295 .239 .229 .223 .225 .225 .215 .216 .672 .534 .415 .293 .229 .218 .202 .221 .224 .213 .214 .670 .533 .413 .292 .227 .216 .200 .218 .222 .223 .214 .216 .609 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212 .216 .669 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212 .216 .669 .532 .413 .291 .226 .215 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .213	3.036	\$29.	. 535	.416	.296	.231	•220	• 203	.223	•226	.225	.216	.230
.672 .534 .415 .295 .230 .219 .203 .222 .225 .225 .215 .216 .672 .534 .415 .294 .229 .218 .202 .212 .224 .214 .202 .214 .203 .229 .211 .201 .219 .224 .214 .214 .203 .228 .217 .201 .219 .222 .214 .205 .227 .226 .215 .109 .217 .221 .212 .216 .206 .332 .413 .291 .226 .215 .199 .217 .221 .219 .212 .206 .332 .413 .291 .226 .215 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .218 .200 .216 .221 .220 .213	3.024	*29.	.535	.416	•296	.231	.220	.203	.223	.226	.225	.216	.234
.672 .534 .415 .294 .229 .218 .202 .221 .224 .223 .214 .264 .267 .268 .217 .214 .293 .224 .214 .293 .214 .292 .223 .214 .292 .223 .214 .292 .223 .214 .292 .223 .214 .292 .252 .214 .292 .252 .214 .292 .252 .214 .292 .291 .226 .215 .199 .217 .221 .219 .212 .219 .212 .202 .333 .413 .291 .226 .215 .399 .217 .221 .219 .212 .212 .212 .212 .213 .291 .226 .215 .200 .216 .221 .220 .213 .292 .413 .292 .226 .215 .200 .216 .221 .220 .213 .291	2,991	.672	.534	.415	.295	.230	.219	.203	.222	.225	.224	.215	.246
.671 .534 .414 .293 .228 .217 .201 .219 .223 .221 .214 .204 .653 .413 .292 .227 .216 .200 .218 .222 .220 .213 .204 .332 .413 .291 .226 .215 .199 .217 .221 .212 .212 .205 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212 .205 .532 .413 .291 .226 .215 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213 .200 .216 .221 .220 .213	4.002	.672	.534	.415	.294	. 229	.218	.202	. 221	.224	.223	.214	•206
.670 .533 .413 .292 .227 .216 .200 .218 .222 .220 .213669 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212669 .532 .413 .291 .226 .215 .200 .216 .221 .220 .213670 .532 .413 .292 .226 .215 .200 .216 .221 .220 .213	5.006	.671	. 534	.414	.293	.228	.217	.201	.219	.223	.221	.214	.206
.669 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212 .212 .212 .212 .212 .212	5.996	0.40	.533	.413	.292	.227	.216	• 200	.218	•222	.220	. 213	.205
.669 .532 .413 .291 .226 .215 .199 .217 .221 .219 .212 .212 .212 .215 .669 .532 .413 .291 .226 .215 .200 .216 .221 .220 .213 .200 .670 .532 .413 .292 .226 .215 .200 .216 .221 .220 .213 .	7.491	699•	. 532	.413	.291	. 226	.215	.199	.217	.221	.219	•212	.204
.669 .532 .413 .291 .226 .215 .200 .216 .221 .220 .213 .200 .670 .532 .413 .292 .226 .215 .200 .216 .221 .220 .213 .	7.529	699.	.532	.413	.291	•226	.215	.199	.217	.221	.219	.212	.204
. 670 .532 .413 .292 .226 .215 .200 .216 .221 .220 .213 .	8.594	699.	.532	.413	.291	.226	.215	• 200	.216	.221	.220	.213	.204
	0.00	.670	. 532	.413	.292	• 526	.215	.200	.216	.221	.220	.213	.204

TABLE BII. - Continued

(1) Configuration C26X

NPR 2.775 2.925 3.075 3.325 3.375 3.700 4.000 4.300 1.697 .928 .838 .606 .719 .697 .620 .572 .354 2.509 .916 .811 .460 .432 .606 .467 .349 .252 4.002 .915 .809 .471 .634 .605 .466 .350 .252 6.010 .915 .809 .471 .634 .605 .463 .350 .252 6.010 .915 .809 .471 .634 .605 .463 .350 .252 6.010 .915 .809 .471 .634 .605 .463 .350 .252 6.010 .915 .809 .471 .634 .605 .463 .350 .251 6.006 .914 .811 .479 .639 .602 .464 .349 .251 .0058 .914 .812 .481 .638 .601 .464 .349 .251 .

lower flap pressures, p/p_{t, j}

						x/h					
NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350
1.697	.932	.836	.544	.537	.532	.531	.533	.536	.544	.555	. 556
1.994	.926	.820	.430	.421	•416	.419	.426	• 436	644.	.465	.473
2.509	.918	.807	•039	.148	.231	•564	.283	• 300	.296	.283	.292
3.016	.919	108	•036	.148	•230	•262	.283	. 299	.295	•283	.262
4.002	.919	.805	•033	.148	.229	.261	.282	.297	.293	•282	.262
5.014	.919	.805	.032	.148	•22•	.261	-282	• 296	.293	•282	.262
6.010	.919	.805	.031	.147	.229	.261	.282	962.	•292	.282	.261
7.507	.919	908.	.031	.147	.229	.261	.282	. 295	.292	.281	.261
8.606	.919	909.	.030	.146	•22•	.261	•282	.295	.292	.281	.261
10.058	.918	.807	.030	.146	•22•	.261	.282	• 295	.291	.281	.261

TABLE BII. - Continued

(m) Configuration C27Y

upper flap pressures p/p_{t,j}

				x/h _{t, n}				
1	2.925	3.075	3.325	3.375	3.700	4.000	4.300	4.650
1	.892	.568	869.	.715	.631	.581	.559	.558
	.880	.502	.640	.667	.552	.473	. 412	.392
	986	.435	.568	•616	•466	.350	.257	.376
	969	435	. 567	.615	.465	.351	.256	.382
	800	454	.568	.615	.464	.350	.256	.284
	.867	.431	.573	.613	.461	•349	.256	.174
	898	429	. 579	•612	.460	.349	.256	.174
	848	.427	.583	.611	.458	.348	•256	.174
	098	.427	.586	.610	.459	.348	.255	.173
	970	427	.586	• 609	.458	.348	•255	.173
	.871	.427	.586	609.	.459	.348	.255	.173

lower flap pressures, p/p, ;

NPR 2.775 2.925 3.075 3.225 3.375 3.525 3.675 3.825 3.975 4.150 4.350 4.20 4.350 4.3							•		(,				
2,775 2,925 3,075 3,525 3,525 3,675 3,675 3,975 4,150 4,350 9,955 .884 .834 .847 .544 .542 .542 .537 .534 .553 .576 .555 .955 .884 .430 .425 .421 .421 .427 .434 .446 .461 .556 .955 .874 .031 .057 .170 .221 .245 .272 .292 .293 .289 .953 .874 .031 .056 .170 .221 .245 .272 .292 .293 .289 .953 .874 .031 .056 .170 .219 .246 .271 .291 .292 .293 .289 .953 .872 .024 .169 .218 .216 .289 .289 .276 .952 .872 .024 .072 .168 .216 .269 .289 .289 .278							/x						
961 897 .551 .544 .564 .546 .538 .537 .538 .544 .955 .884 .436 .430 .425 .421 .421 .427 .434 .446 .955 .874 .031 .056 .170 .221 .245 .272 .292 .293 .953 .874 .031 .056 .170 .221 .245 .272 .292 .293 .953 .872 .028 .060 .169 .219 .244 .271 .291 .293 .953 .872 .024 .072 .168 .218 .244 .269 .291 .291 .952 .872 .024 .072 .168 .218 .244 .269 .289 .281 .952 .872 .060 .070 .133 .208 .245 .269 .281 .288 .953 .873 .060 .070 .130 .20	NPR	2.775	2.925	3.075	3.225	3.375	3.525	3.675	3.825	3.975	4.150	4.350	4.550
955 884 436 436 429 421 421 427 434 446 955 874 031 0056 170 221 245 272 292 293 953 874 031 0056 170 221 245 272 292 293 953 872 028 0060 169 219 244 271 291 291 952 872 024 007 168 218 244 269 291 291 952 872 026 072 168 218 246 269 289 952 872 060 070 133 208 246 269 281 288 953 873 060 070 131 209 246 269 287 288 951 874 057 066 130 209 246 269 287 287	1.698	.961	168.	.551	.547	.544	.540	.538	.537	.538	.544	.555	.551
.955 .874 .031 .057 .170 .221 .245 .272 .292 .293 .953 .874 .031 .056 .170 .221 .245 .272 .292 .293 .953 .872 .028 .060 .169 .219 .244 .251 .292 .292 .953 .872 .024 .067 .168 .216 .244 .269 .291 .292 .952 .872 .024 .072 .168 .216 .245 .269 .288 .289 .953 .873 .060 .070 .131 .208 .245 .269 .287 .288 .953 .873 .057 .066 .130 .210 .246 .269 .287 .287 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287	2.007	. 955	.884	.436	.430	.425	.421	.421	.427	.434	944.	.461	.467
953 .874 .031 .056 .170 .221 .245 .272 .292 .293 .953 .872 .028 .060 .169 .219 .244 .291 .292 .952 .872 .024 .067 .168 .218 .244 .269 .291 .292 .952 .872 .024 .072 .168 .218 .245 .269 .281 .281 .953 .872 .060 .070 .133 .208 .245 .269 .287 .288 .953 .873 .060 .070 .131 .209 .246 .269 .287 .288 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287	2.534	955	.874	.031	.057	.170	.221	•245	.272	262.	.293	.279	.284
953 .073 .028 .060 .169 .219 .244 .271 .291 .292 .953 .0872 .024 .007 .168 .218 .244 .269 .291 .291 .952 .872 .024 .072 .168 .218 .245 .269 .291 .291 .952 .872 .026 .070 .133 .208 .245 .269 .287 .288 .953 .873 .060 .067 .131 .209 .246 .287 .287 .288 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287	2,496	.953	.874	.031	.056	.170	.221	. 245	.272	.292	.293	.280	.299
953 872 .024 .067 .168 .218 .244 .269 .291 .291 .952 .872 .024 .072 .168 .216 .245 .269 .289 .289 .952 .872 .060 .070 .133 .208 .245 .287 .288 .953 .873 .060 .089 .131 .209 .246 .287 .287 .951 .873 .059 .067 .130 .210 .246 .269 .287 .287 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287	3.013	. 953	.873	.028	090•	.169	.219	.244	.271	.291	.292	.279	.261
.952 .872 .024 .072 .168 .216 .245 .269 .288 .289 .289 .289 .952 .872 .060 .070 .133 .208 .245 .269 .287 .288 .953 .873 .060 .070 .131 .209 .246 .270 .287 .288 .951 .873 .059 .067 .130 .209 .246 .269 .287 .287 .287 .951 .874 .057 .066 .130 .210 .246 .269 .287 .287	3.989	.953	.872	•024	.067	.168	•218	.244	• 269	.291	.291	.278	.261
.952 .872 .060 .070 .133 .208 .245 .269 .287 .288 .953 .873 .060 .069 .131 .209 .246 .270 .287 .288 .981 .981 .981 .059 .067 .130 .209 .246 .269 .287 .287 .287 .981 .981 .981 .981 .987 .066 .130 .210 .246 .269 .287 .287 .	5.007	.952	.872	.024	.072	.168	.216	.245	.269	.288	.289	.277	.260
. 953 . 873 . 060 . 069 . 131 . 209 . 246 . 270 . 287 . 288 951 . 873 . 059 . 067 . 130 . 209 . 246 . 269 . 287 . 287 . 957 . 951 . 874 . 057 . 066 . 130 . 210 . 246 . 269 . 287 . 287 .	5.996	.952	.872	090.	.070	.133	*208	.245	.269	.287	. 288	.276	.259
. 951 . 873 . 059 . 067 . 130 . 209 . 246 . 269 . 287 . 287 287 391 391 397 387 .	7.489	.953	.873	090	690.	.131	.209	.246	.270	.287	•288	.276	.258
. 991 .874 .057 .066 .130 .210 .246 .269 .287 .287 .	8.598	.951	.873	.059	.067	.130	• 500	•246	.269	.287	.287	.275	.258
	10.029	.951	.874	.057	• 066	.130	.210	.246	•569	.287	.287	.275	.257

TABLE BII. - Continued

(n) Configuration C26Z

upper flap pressures, p/p_{t, j}

	4.300	.411	.424	. 253	.253	.253	.252	.252	.252	•252	•252	.252
	4.000	644.	.350	.350	.351	.350	.350	.350	.350	.350	.350	.350
	3.700	.539	.472	.470	.469	.467	.467	994.	994.	•466	.466	.467
x/ht, n	3.375	949.	909	.607	909.	• 604	.603	.603	.602	.602	. 601	109.
	3.325	.673	.632	.631	•632	•634	.637	.638	.637	.637	•634	.635
	3.075	.531	7.480	.478	474.	694	466	.467	.472	.472	.481	.484
	2.925	.824	.813	.810	.809	808	808	608	. 810	800	.810	.811
	2.775	1267	918	.917	.917	-017	.917	916	.916	.916	916	.916
	NPR	1.7.1	2.019	2.501	2.999	4.001	5.003	900.9	7.495	7.520	8.614	10.022

lower flap pressures, $p^\prime p_{t,\,j}$

						x/ht,	ربی				
NPR	2.775	2.925	3.075	3.325	3.375	3.525	3.675	3.825	3.975	4,200	4.400
1.711	.922	.840	.407	968.	.411	.433	.458	484	.518	.544	.567
2.019	.919	. 831	• 00	.218	.310	.349	.378	.384	.433	.543	.534
2.501	616.	.830	.059	.216	.308	.346	.376	.382	.365	.339	.316
2.999	.920	.830	.056	•216	• 306	.344	.376	.381	.365	•339	.316
4.001	.919	.630	.052	.216	.305	.343	.374	.379	.364	.339	.316
5.003	.918	.830	.051	.216	.305	.343	.374	.378	.363	.338	.315
900.9	.918	.830	.050	.215	.305	.344	.374	.377	.363	.338	.315
7.495	.918	.830	.049	.215	.305	.344	.374	.377	.362	.338	.316
7.520	.917	.630	640.	.215	.305	.344	.374	.377	.362	.337	.316
8.614	.917	.831	640.	.214	.305	.344	.374	.377	.362	.337	.315
10.022	.918	.831	.048	.214	.305	.344	.374	.377	.362	.337	.316

TABLE BII.- Concluded

(o) Configuration C27AA

upper flap pressures, $\mathfrak{p}'\mathfrak{p}_{t,j}$

					x/h _{t, n}				
NPR	2.775	2.925	3.075	3.325	3.375	3.700	4.000	4.300	4.650
				077	673	.565	064.	.506	.564
869	656	. 862	616			. 473	.351	404	. 481
400	966.	.871	.438	276	910	844	1351	.257	.378
525	.955	.869	.437	1/6.	010.		251	257	.382
503	.955	.869	.437	076.	010.	444	2 2 2 2	257	.287
600	.954	.868	.436	.570	.012		252	263	184
	0.67	868	. 433	. 574	.617	704			
070	101		4.23	. 574	.615	.463	.353	. 203	•
995	266.	• 900			414	.462	.352	. 263	.183
800	.935	.868	264.		110	194	3.5	.262	.183
000	.930	698.	.430	796.	170	•		240	181
	800	. 870	.429	.584	.613	00+	0000	203	
200			4 2 9	588	.611	094.	.349	• 260	181
615	.931	2			117	440	360	. 258	.180
717	.928	.872	.428	. 240	110.	•			

lower flap pressures, p/p_{t, j}

						м/х	1					
							1		-	000		V 400
	2.775	2.925	3.075	3.325	3.375	3.525	3.675	3.825	3.975	4. 200	4.400	3
T						1	0.8.3	478	404	.525	.547	.569
-	.958	.863	.455	.447	. 443	•	200		282	472	545	.529
	. 953	.851	.049	.114	• 236	962.					.341	.314
	953	. 851	040.	.119	.234	.295	266.			846	340	.314
	. 952	.851	.041	.119	•534	.295	+66.	***	•	946	330	.312
_	061	852	.037	.121	• 233	• 5 6 2	+16.		200.	966	227	1111
	070	9.52	101	.117	.192	.279	.460	.336	0.50	000	766	111
_		2 2 2	101	1117	.192	.279	.461	.356	370	000		
	064.	200			081	280	.428	.356	.371	.360	. 33	210
	• 950	.833	001.	011.			414	356	.371	.360	.335	.304
	676	.852	960.	.113	997.	1070		440	370	350	.335	.308
	870	.854	•003	.110	189	507	0 0 0	0.00		250	335	.308
	270	956	060	101	190	.285	. 382	• 320			325	207
			0.085	104	.194	.287	.378	•326	• 3 / 1	. 324		

Standard Bibliographic Page

		0 1		
1. Report No.	2. Governm	ent Accession No.	3. Recipient's Ca	talog No.
NASA TP-2721 4. Title and Subtitle	L		* D . D .	
			5. Report Date July 1987	
Static Internal Performance of Convergent-Divergent Nozzle Wit		ł	6. Performing Or	
		Vectoring	0. 1 errer	5-11-20-1-1
7. Author(s) E. Ann Bare and David E. Reubus	sh		8. Performing Or L-16240	ganization Report No.
9. Performing Organization Name and Address			10. Work Unit No 505-68-91	
NASA Langley Research Center Hampton, VA 23665-5225			11. Contract or C	Frant No.
12. Sponsoring Agency Name and Address			13. Type of Repo Technical	rt and Period Covered Paper
National Aeronautics and Space Washington, DC 20546-0001	Administr	cation	14. Sponsoring A	gency Code
15. Supplementary Notes				
A parametric investigation of the two-dimensional convergent—divergent facility of the Langley 16-Foot throat area and aspect ratio. divergent flap length, throat a geometry were determined. All that varied from 5.60° to 23.00 to 10 for all configurations.	ergent noz Transon The effect approach a nozzles v	zzles has been mic Tunnel. All cts of upper and angle, sidewall were tested at a	nade in the nozzles had lower flap containment thrust vec	static test a constant angles, , and throat tor angle
		Lio Burn III o		
17. Key Words (Suggested by Authors(s))		18. Distribution Statem		. a
Nonaxisymmetric nozzles Static internal performance		Unclassified	ı - Unlimite	eu
Two-dimensional convergent-dive	ergent			
nozzles				
Thrust vectoring			Subject Ca	tegory 02
19. Security Classif.(of this report) Unclassified		Classif.(of this page)	21. No. of Pages 114	22. Price A06