18PYB103J- Semiconductor Physics Model Practical Questions MCQ

* Required

18PYB103J- Semiconductor Physics Model Practical Exam

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Ramapuram Campus
DEPARTMENT OF PHYSICS
MODEL PRACTICAL EXAMINATION QUESTION PAPER

Subject Code and Title : 18PYB103J- Semiconductor Physics Time: 45 Minutes

Marks: 25

Applications of Hall effect (I) The probes are often used as magnetometers, 1 point i.e. to measure magnetic fields, or inspect materials (such as tubing or pipelines) using the principles of magnetic flux leakage. These devices produce a very low signal level and thus require amplification. (II) This converts mechanical energy into electrical energy, which is why it's useful during a power outage. This is when a current flows through a coil on a stovetop, which produces a magnetic field. (III) These sensors are used to time the speed of wheels and shafts. These are used to detect the position of permanent magnet in brushless electric DC motors. The sensors are embedded in digital electronic devices along with linear transducers. (IV) This can be used to solve complex electrostatic problems involving unique symmetries like cylindrical, spherical or planar symmetry. This can be used to simplify evaluation of electric field. *

- Both III and IV are correct
- Both I and III are correct
- All the four correct
- Both II and III are correct

The capacitance of a reverse biased PN junction *	1 point
 Increases as reverse bias is increased Decreases as reverse bias is increased Increases as reverse bias is decreased Is insignificantly low 	
For a PN junction diode, the current in reverse bias may be*	1 point
Few miliamperes	
Between 0.2 A and 15 A	
Few amperes	
Few micro or nano amperes	
The lattice parameter "a" for a cubic crystal *	1 point
λ /2sinθ (h2+k2+l2)1/2 Å	
\(\lambda\) /sin\(\theta\) (h2+k2+l2)1/2 \(\theta\)	
\(\lambda\) /2sinθ (h2+k2+l2) Å	
○ λ /2 (h2+k2+l2)1/2 Å	

An iPhone light shines at 40 watts from 6 meters away. What is the intensity of light at 2 meters away? *

1 point

- 120 watts
- 160 watts
- 360 watts
- 720 watts

The interplanar distance "d" for a cubic crystal is ----- *

1 point

The interplanar distance "d" for a cubic crystal

- a) $a/(h^2+k^2+l^2)^{1/2} Å$
- b) $a^2/(h^2+k^2+l^2)^{1/2}$ Å
- c) $\underline{a} / (h^2 + k^2 + l^2)^{1/2} \mathring{A}$
- d) $a / (h^2 + k^2 + l^2) Å$
- Option A
- Option B
- Option C
- Option D

Merit of four point probe method of determining resistivity is that *	1 point
It needs very small current	
It gives the average resistivity of the sample	
It gives the resistivity at a localized region of the sample	
It injects excess minority carriers	

The formula for Numerical aperture is*

1 point

- a) $W/\sqrt{2}L^2+W^2$
- b). W/v4L²+W²
- c). $W/\sqrt{4+}W^2$
- d). $W/\sqrt{4L^2+3}$
- Option A
- Option B
- Option C
- Option D

Which one of the following is not used as apparatus in particle size apparatus: 1 p	oint
Grating	
Glass plate	
C Laser	
Screen	
Maximum Power of the solar Cell is calculated as*	oint
Pmax = Maximum power = Imp / Vmp	
Pmax = Maximum power = Vmp / Imp	
Pmax = Maximum power =(Imp) 2x Vmp	
Pmax = Maximum power = Imp x Vmp	
The energy gap of the semiconductor is given by* 1 p	oint
\bullet E = 2k(2.303 log R)/(1/T)	
$E = 2k(2.303 \log R)/T$	
E = 2kT(2.303 log R)	
E = 2k(2.303 log T)/(1/R)	

Efficiency of solar cell is calculated as *	1 point
η = [Pmax A/Io] x 100	
η = [Pmax/Alo] x 100	
η = [Pmax Alo] x 100	
η = [Pmax Io/A] x 100	
As a PN junction is forward biased *	1 point
Holes as well as electrons tend to drift away from the junction	
The depletion region decreases	
The barrier tends to breakdown	
The depletion region increases	
For a P-N diode, the number of minority carriers crossing the junction	1 point
depends on *	Тропп
Forward bias voltage	
O Potential barrier	
Rate of thermal generation of electron hole pairs	
Reverse bias voltage	

Solar cells are energy sources *	1 point
Renewable	
O Non-renewable	
Conventional	
O Depleted	
In particle size determination formula, the term D refers*	1 point
The distance between the screen and the glass plate	
The distance between the source and the glass plate	
The distance between the screen and the source	
The distance between the screen and the wall	
A requirement of four point probe method of determining resistivity is *	1 point
The current must be low	
The current must be high	
Cross-section along the sample must be constant	
Current source is connected to two inner probes	

To convert the Celsius into Kelvin temperature the factor to be added to the Celsius degree is*	1 point
O 373	
O 173	
273	
O 473	
The Inverse Square Law does not work for which of these? *	1 point
Sound	
Light	
Laser beams	
C Electrical force	
Gravity	
An electron in the conduction band *	1 point
Has higher energy than the electron in the valence band	
Has lower energy than the electron in the valence band	
Coses its charge easily	
Jumps to the top of the crystal	

Numerical aperture refers to the angle at which the light incident on the fiber *	1 point
Minimum	
○ Wide	
Narrow	
Maximum	
In the four point probe method of determining resistivity *	1 point
One probe point must inject minority carriers	
Current flow in only a small area of the sample	
Ourrent source is connected to the two inner probes	
The sample must be extrinsic	
A PN junction *	1 point
Has low resistance in forward as well as reverse directions	
Has high resistance in forward as well as reverse directions	
Conducts in forward direction only	
Conducts in reverse direction only	

When a PN junction is reverse-biased *	1 point
Holes and electrons tend to concentrate towards the junction	
The barrier tends to break down	
Holes and electrons tend to move away from the junction	
Holes and electrons are equal	
The Hall coefficient of sample (A) of a semiconductor is measured at room temperature. The hall coefficient of (A) at room temperature is 4x10-4 m3	1 point
coulomb-1. The carrier concentration in sample A at room temperature is *	
coulomb-1. The carrier concentration in sample A at room temperature is * • 1021 m-3	

Page 2 of 2

Back

Submit

~ 1022 m-3

~ 1023 m-3

Never submit passwords through Google Forms.

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms