SKILLCRAFT EXPLANATORY DATA ANALYSIS 스킬크래프트 탐색적 자료 분석

S N U 4 차 산 업 혁 명 아 카 데 미 빅 데 이 터 애 널 리 틱 스 양 서 윤

데이터 개요와 분석 목적

- 데이터 개요: RTS 멀티플레이 온라인 게임인 스타크래프트의 유저 활동 정보를 담은 Skillcraft 데이터. ID와 나이와 같은 개별 정보부터 핫키, 미니맵, 유닛 수 등 게임에서 가능한 여러 동작들에 관한 수치가 저장되어 있다. 특히, 유저의 등급이 기록되어 있어 등급별로 게임 활동의 특징을 분석하기 용이하다.
- 데이터 변수 설명 : 총 8개의 레벨 중 플레이어의 등급을 나타내는 변수 LeagueIndex를 비롯하여 유저의 나이, 게임 시간, 핫키 사용 수, 유닛 수 등 총 20개의 변수로 구성되어 있다.
- 분석 목적: 해당 데이터는 19개의 서로 다른 변수들의 등급 별 영향 유무와 그 강도에 대한 정보를 담고 있다. 특히 본 과제에서는 통계량과 분포의 형태를 통해 등급들과 선형 관계를 보이는 변수들, 즉 유저가 해당 변수 값을 키우면 등급도 비례해서 높아질 수 있는 변수들을 중심으로 데이터 분석 및 추론을 하는 것을 목적으로 삼았다.
- 데이터 출처: http://archive.ics.uci.edu/ml/datasets/skillcraft1+master+table+dataset

데이터 불러오기 및 전처리

- Skillcraft 데이터 파일이 저장된 디렉토리를 세팅하고, read.csv 함수로 데이터를 불러왔다.
- 탐색적 자료 분석에 필요한 라이브러리들(dplyr, RColorBrewer)을 불러왔다.
- 데이터 내의 결측값을 확인하고, 결측값들의 처리를 용이하게 하기 위해 NA로 변환했다.
- 데이터는 총 3395개 행과 20개 열(변수)로 구성되어 있으며, summary 함수로 변수 별 통계량을 확인한다.

등급 별 데이터 분류

```
LeagueIndex
# 등급 지정, 등급 별 데이터 분류
level.name = c('Bronze', 'Silver', 'Gold', 'Platinum',
                                                                                                                        Bronze
               'Diamond', 'Master', 'GrandMaster', 'Pro')
                                                                                                                        Silver
level1 = skill[skill$LeagueIndex == 1, ]
                                                                0.25
                                                                                                                        Platinum
level2 = skill[skill$LeagueIndex == 2, ]
                                                                                                                        Diamond
level3 = skill[skill$LeagueIndex == 3, ]
level4 = skill[skill$LeagueIndex == 4, ]
                                                                                                                       GrandMaster
                                                                0.20
level5 = skill[skill$LeagueIndex == 5, ]
                                                                                                                     Pro
level6 = skill[skill$LeagueIndex == 6, ]
level7 = skill[skill$LeagueIndex == 7, ]
level8 = skill[skill$LeagueIndex == 8, ]
# 등급 8개의 색상 지정
mycol = brewer.pal(8, 'Blues')
# 등급 분포 시각화
counts = table(skill$LeagueIndex) # 레벨 별 반도수
                                                                0.05
freq = counts/sum(counts) # 레벨 별 상대도수
barplot(freq, main = "LeagueIndex", xlab = "LeagueIndex",
        ylab = "freq", ylim = c(0,0.3),
        names.arg=level.name, col=mycol)
                                                                8
legend("topright", level.name, col=mycol, pch=15)
                                                                       Bronze
                                                                               Silver
                                                                                       Gold
                                                                                                       Diamond
                                                                                                  LeagueIndex
```

- 등급 별 분포를 확인하기 위해 데이터프레임의 인덱싱을 사용해 각 레벨에 해당하는 데이터를 추출하여 각각 새로운 변수에 저장하고, barplot을 이용하여 등급 별 상대빈도를 시각화 했다.
- 상식적으로 최고 수준의 플레이어 수가 그보다 낮은 등급의 플레이어 수보다 많지 않아 데이터가 위와 같이 형성되어 있다고 말할 수 있으나, 등급 별로 데이터 수의 차이가 꽤 있으므로 정확한 분석은 어려울 것으로 생각된다(특히 높은 등급인 그랜드마스터와 프로의 경우 다른 등급에 비해 데이터 수가 현저하게 적다).

- 유저의 명령 입력과 연관된 변수들인 APM(분당 입력한 명령 수), SelectbyHotkeys(단축키 사용 평균 횟수), AssignToHotkeys(핫키에 할당된 건물, 유닛 수)는 대략 레벨에 비례하여 상승하는 추세를 보인다.
- APM과 AssignToHotkeys는 1등급부터 7등급까지 데이터 값이 고르게 증가하고 있으며, 등급이 높아질수록 유저들 사이의 차이는 커지는 즉 분산이 커지는 공통점을 가지고 있다.
- APM과 SelectbyHotkeys는 최고 등급인 8등급에서 값이 급상승하는 모습을 보인다. 두 변수는 7등급과 8등급의 차를 극명하게 보여주기 때문에, 8등급으로 레벨이 상승하는 데 중요한 요인으로 추측할 수 있다.

등급비례변수 – 2

- boxplot과 density plot으로 대략적인 분포를 살펴본 결과, 특정 유닛을 클릭한 후 명령을 완료하는 동작인 PAC(Perception-Action-Cycles)도 등급과 일종의 비례 관계를 형성하는 데이터 분포를 보였다.
- PAC의 수를 나타내는 NumberOfPACs는 1에서 6등급까지 거의 비슷한 정도로 증가하다가 6, 7등급 사이에서 두드러진 상승세를 보인다. 미세한 차이이긴 하나, 각각의 밀도 함수도 평균이 조금씩 커지고 분산이 높아지는 경향을 보인다.
- 특별히 명령을 빠르게 여러 번 내리는 동작에 관한 두 변수 GapBetweenPACs와 ActionLatency는 등급과 음의 상관관계를 보인다. 등급이 올라갈수록 평균은 작아지고 분산은 작아지는 형태를 보인다.

등급비례변수-3

- 위 변수들은 레벨에 따라 그 값이 소폭 상승하는 추이를 보이나, 앞서 살펴본 변수들에 비해서는 레벨 간의 차이가 극명하지 않다. 레벨을 결정짓는 중요한 요인으로 작용하지는 않을 것이다.
- MinimapAttacks, MinimapRightClicks는 게임 화면 내 미니맵을 활용하는 정도를 나타낸다. 두 변수 모두 Boxplot의 이상치가 비교적 많은 것과 밀도 함수에서 모든 레벨 평균이 0과 0.0001 사이에 위치하며 분포가 서로 크게 다르지 않은 것으로 보아 뚜렷한 선형 관계를 찾기 어려울 것으로 생각된다.
- TotalHours는 등급이 높아질수록 그 값이 조금씩 증가하는 형태를 보인다.

등급 비례 변수 제외 예시

• 등급 비례 변수로 선정되지 못한 10개 변수 그래프의 일부다. UniqueUnitsMade, Age의 밀도 그래프와 같이 등급이 상승해도 그 평균과 분포가 비슷하거나, 세번째 WorkersMade와 같이 등급에 따라 상승하는 패턴을 보이다가 값이 갑자기 떨어지고 높아지는 모습을 보이는 변수는 전반적인 등급 상승의 주요 요인이라 하기에 불규칙하여 제외시켰다.

등급 비례 변수와 등급의 상관계수

- 상관계수는 두 변수 사이의 선형관계의 유무와 강도를 나타내는 측도다. 9개의 등급 비례 변수와 등급 사이의 상관계수를 각각 계산한 결과, ActionLatency > APM > NumberOfPACs > GapBetweenPAC > AssignToHotkeys > SelectByHotkeys > TotalHours > MinimapAttacks > MinimapRightClicks 순으로 상관관계가 높은 것으로 나타났다. 음의 상관관계를 보이는 변수가 있기 때문에, 상관계수에 절댓값을 적용하여 비교했다.
- 상관계수가 높은 상위 4개 변수는 모두 유저가 얼마나 빠른 시간 내에 많은 명령을 내리는지를 나타내는 변수들이다. 즉, 스타크래프트에서는 상황에 따라 명령을 즉시 생각해낼 수 있는 두뇌 회전과 빠른 손놀림이 등급 상승에 전반적으로 중요한 조건이라고 할 수 있다.
- 전체 등급에 비례하여 증가하는 변수만을 선택했기 때문에, 등급 별로 상승에 결정적인 영향을 미치는 변수는 알지 못하는 데에 한계가 있다. 이는 R에서 랜덤포레스트 학습 방법을 사용하면 구할 수 있다.