Technika bezdrátové komunikace **B2B17TBK**

Cást 6 - Radiové bezdrátové systémy

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

hudecp@fel.cvut.cz

verze 3/2020

Obsah

- Architektura radiových tras
- Vícenásobný přístup
- VF a mikrovlnné vysílače
- VF a mikrovlnné přijímače
- Transceivery
- Praktické příklady

Architektura radiových tras

- Bezdrátové radiové trasy přenášejí informace mezi 2 nebo více body
- Body mohou být stacionární nebo mobilní
- Téměř vždy je nutné propojit více uživatelů v jednom čase
- Mezi hlavní součásti radiových tras patří:
 - Radiové vysílače ("transmitters" = TXs)
 - Radiové přijímače ("receivers" = RXs)
 - Antény
- Základní rozdělení může být provedeno podle:
 - Směrovosti ("directionality")
 - Topologie
 - Typu vícenásobného přístupu ("multiple access")
- Směrovost → definuje směry přenosu dat:
 - o Simplexní
 - Poloduplexní

Plně duplexní

Přenosy simplexní, poloduplexní

- Simplexní → radiové trasy přenášejí informaci jen v 1 směru:
 - Může být "point-to-point" (PTP) nebo "point-to-multipoint" (PTM)
 - Radiové terminály obsahují jen TX nebo RX
 - o Příklady: DVB-T, VKV FM rádio, bezdrátová telemetrie, ...

- Poloduplex → radiové trasy přenáší informace v obou směrech,
 - o ale v 1 časovém úseku je v terminálu aktivní jen TX nebo jen RX.
 - Jedná se o časové přepínání "time-division duplexing" (TDD).
 - Rychlé TDD se může chovat jako plný duplex → ale s nižší datovou rychlostí.
 - o Příklady: Jednodušší osobní vysílačky, WLAN, ...

Plný duplex

- Plný duplex → v 1 čase mohou uživatelé současně vysílat i přijímat:
 - Bez zásadních omezení
 - Jedná se o provoz typu "frequency-division duplexing" (FDD) → vysílání a příjem jsou prováděny na rozdílných frekvencích
 - Frekvence musí být dostatečně vzdálené → pro sloučení TX a RX do 1 antény se používají diplexery = slučovací filtry (v části Komponenty)
 - o Příklady: Vysokorychlostní datové trasy, mobilní komunikace, ...
 - Široce používané

Topologie

Point-to-point

- "Point-to-point" (PTP)
- "Point-to-multipoint" (PTM)
- "Broadcast" = vysílání
- "Cellular" = buňkové sítě

- Používají se směrové antény (parabolické)
- Obvykle na vyšších GHz frekvencích (>10GHz)
- Aplikace:
 - Nahrazení metalických nebo optických spojení
 - Vysokorychlostní páteřní radiové trasy
 - Propojení základnových stanic (BS) mobilních sítí i WLAN
 - Satelitní trasy

Topologie

"Point-to multipoint":

- o Master slave
- Všesměrová ("omni-directional") anténa u "master"
- Často směrovější antény u "slaves"
- Terminály mohou být stacionární i mobilní
- Aplikace: WLANs, mobilní buňkové sítě, senzorové sítě, ...

"Broadcast":

- o Jako "point-to-multipoint",
- o ale jen simplexní provoz.
- Aplikace: VKV FM rádio, DVB-T, DAB, ...

Broadcast

Topologie

· "Cellular":

- Systém více speciálních "point-tomultipoint" buněk
- Stacionární základnové stanice (BS)
- Mobilní terminály (MT)
- Zaručené automatické předávání ("hand-over") z jedné buňky do druhé
- Často také "broadcast" vrstvy
- Velmi složité řízení ve frekvenční i časové oblasti
- o Podrobnosti např. B2B32TSI

Vícenásobný přístup

- Používané metody jak obsloužit více uživatelů v 1 čase
- Možnosti:
 - FDMA = "frequency-division multiple access"
 - TDMA = "time-division multiple access"
 - CDMA = "code-division multiple access"

FDMA

- Jednotliví uživatelé komunikují v různých frekvenčních kanálech
- Dělení uživatelů ve spektru
- Každý uživatel komunikuje 100% času, ale má k dispozici jen omezené spektrum
- o Příklady: VKV FM rádio, GSM, ...

TDMA

Jednotliví uživatelé komunikují v různých časových "slotech"

- Dělení uživatelů v čase
- Každý uživatel má k dispozici
 100% spektra, ale jen v
 omezeném čase
- Příklady: WLAN, GSM, ...

Vícenásobný přístup

CDMA:

- Speciální technika původně používaná ve vojenské oblasti
- Každý uživatel komunikuje 100%
 času a má k dispozici 100% spektra,
- o ale spektrum (pásmo) musí být
 velmi široké → "spread-spectrum".
- Dělení uživatelů je provedeno přídavnou modulací s použitím individuálních kódů
- Jsou použity ortogonální kódy s 0 vzájemnými korelacemi
- V RX se přijatý signál koreluje s oním individuálním kódem daného terminálu
- Korelací se šířka pásma zúží na původní hodnotu potlačí se velmi
 efektivně všechny ostatní nekorelované kanály

- Stejné frekvenční pásmo široké
 B může být tedy sdíleno
 vysokým počtem uživatelů,
- ale pásmo musí být široké a není úplně efektivně využito.
- o Příklady: WLAN, UMTS, ...
- V současné době již méně popularní

VF a mikrovlnné vysílače

- VF a mikrovlnné vysílače:
 - Představují 1 ze základních komponent všech radiových tras
 - \circ Provádějí digitální modulaci nosné f_0 (obvykle 10²MHz až 10²GHz)
 - Výhody použití vysokých frekvencí:
 - Menší antény
 - Nižší interference
 - Široká frekvenční pásma →vysoké přenosové rychlosti
 - Modulace → amplitudy, frekvence, fáze (nebo kombinace)
- Frekvenční stabilizace nosné:
 - f₀ musí být extrémně stabilní
 - Jinak hrozí problémy s interferencemi a kvalitou příjmu
 - Nejčastěji používané techniky:
 - Fázový závěs = "phase-lock loop" (PLL)
 - Přímá digitální syntéza = "direct digital synthesis" (DDS)

PLL

"Phase-lock loop":

- Skládá se z VCO, výstupní vazby, děliček frekvence, fázového detektoru, referenčního oscilátoru (např. OCXO) a NF filtru
- OCXO = "oven-controlled crystal oscillator", extrémně stabilní, ale jen fixní nízká frekvence (typ. ≤100MHz)
- Část signálu z VCO je přivedena na vstup nastavitelných děliček
- Výstupní frekvence VCO vydělená
 N₁N₂ se musí rovnat f_{ref}
- Fázový detektor měří frekvenční a fázové rozdíly
- Pokud je to potřeba, tak přes NF filtr typu DP řídí smyčka VCO tak, aby rozdíly byly 0

Výstupní frekvence

$$f_{out} = f_{ref} N_1 N_2$$

- o N_2 může být zlomek \longrightarrow "fractional-N synthesis"
- PLL také významně potlačuje fázový šum VCO
- Příklad: ADF4356 (analog.com), PLL 53 - 6800MHz, s integrovaným VCO 3400-6800MHz

DDS

"Direct digital synthesis":

- Přesný generátor hodinového signálu (např. OCXO) inkrementuje fázový akumulátor
- Pokud je nastaven krok 1º, tak se po
 360 krocích akumulátor vrátí zpět na 0
- Akumulátor adresuje mapu funkce sinus, která je uložena v ROM
- Řada výsledných čísel je konvertována do analogové oblasti
- Filtr typu DP potlačuje nežádoucí produkty (aliasing)
- Výstupní frekvence je definována f_{CLK}
 a nastaveným krokem akumulátoru
- Výhody:
 - Přesné a velmi rychlé nastavení výstupní frekvence

Fázová koherence během přepínání

- 2-kanálové DDS mohou zaručit naprosto přesný fázový posuv 90º (ideální pro IQ zpracování)
- Ale mají omezené horní pásmo
 ~1,4GHz (stav 2017) a vysoký DC
 příkon
- Příklad: AD9914 (analog.com)
- V praxi zatím převažují PLL

TX s přímou IQ modulaci

Výstupní signál:

$$s_{TX}(t) = v_I(t)\cos(\omega_0 t) + v_Q(t)\sin(\omega_0 t)$$

- FIL1 → potlačuje parazitní IM produkty modulátoru
- PA → určuje výstupní výkon
- o FIL2 → potlačuje IM produkty PA

Výhody přímé modulace:

- Moderní jednoduchá struktura
- Umožňuje širokopásmové přeladění
- 1xPLL, malé rozměry, nízký DC příkon
- Vstupní signály jsou v BB → malé nároky na DAC

Široce používané v mobilních komunikacích i jinde

- Kvadraturní chyby na vyšších GHz frekvencích
- Složité
 potlačení
 LO →
 parazitní
 vyzařování
 do antény

TX s frekvenční konverzí

Vysílače s konverzí:

- Modulace je prováděna na relativně nízké IF ("intermediate frequency" = mezifrekvence)
- Použitím up-konvertoru je modulovaný signál konvertován na cílovou nosnou ω_0 $\omega_0 = \omega_{IF} + \omega_{LO}$

Výhody:

- Řeší problémy přímé modulace
- Na nízkých frekvencích jsou nižší kvadraturní chyby
- Lze dokonale potlačit vyzařování LO do výstupního signálu a do antény

Zajišťuje lepší linearitu modulátoru

- o Složitější struktura
- o 2x LO
- Větší rozměry, DC příkon, cena

TX s frekvenční konverzí

Verze s digitální IF:

- Moderní radiové struktury stále posunují hranici analog-digitál směrem k více digitálním verzím
- o Modulace je prováděna v DSP a pomocí DAC konvertována do analogové formy na ω_{IF}
- FIL3 řeší aliasing
- o Pomocí up-konvertoru je signál z ω_{IF} konvertován na nosnou ω_0

Výhody:

- Více digitální verze
- Modulaci Ize měnit změnou SW

- o Jsou nutné rychlé DSP a DAC
- Vyšší DC příkon, někdy cena

Výkonové zesilovače

- Určují výstupní výkon TX P_{out}
 rozhodující pro dosah radiové trasy
 → Friisův vztah (později v kurzu)
- Ale také definují řadu důležitých parametrů TX:
 - Účinnost → v mobilních komunikacích jeden z nejdůležitějších parametrů
 - o Komprese P_{-1dB}
 - o IM parametry → interference, rozšiřování spektra
 - Účinnost a linearita jsou většinou protichůdné požadavky
- Linearita PA:
 - Saturace ovlivňuje krajní stavy x-QAM
 - Důsledkem může být zvýšení BER

Linearita

- Nedostatečná linearita PA:
 - Zvyšuje produkty IM3
 - Důsledkem jsou rozšiřování spektra a vnitřní kanálové interference
 - Obojí musí být v TX pod kontrolou
 - Výstupní spektrum je omezeno přísnými normami
 - Jinak by mohlo dojít k rušení sousedních kanálů
 - ∨elmi citlivé jsou modulace s
 velkými změnami amplitudy (obálky)
 → x-QAM, OFDM, ...
 - Méně citlivé jsou modulace s konstantní obálkou → FM, x-PSK, ...

PA třídy A

- PA s vysokou linearitou:
 - ALE s nízkou účinností
 - Klidové předpětí:

• Napájecí napětí
$$V_{DS0} = V_{DS \max} / 2$$

$$I_{DS0} = I_{DS \max} / 2$$

- Tranzistor je otevřen 100% času
- DC příkon

$$P_{DC} = I_{DS0} V_{DS0}$$

- Optimální zátěž $R_{opt} = V_{DS0} / I_{DS0}$
- Max. VF výkon do R_{opt}

$$P_{VF \max} = \frac{V_{DS0}}{\sqrt{2}} \frac{I_{DS0}}{\sqrt{2}} = 50\% P_{DC}$$

V praxi je účinnost často významně nižší

Obr. 4.8.4. Převodní charakteristika výkonového FE tranzistoru.

Ohr. 4.8.5. Výstunní charakteristiky výkonového FE tranzistoru.

Další třídy zesilovačů

Třída B:

- o Úhel otevření 180º
- Tranzistor je otevřený 50% času

Třída C:

- o Úhel otevření <180⁰</p>
- Jen úzké sinusové pulsy

Třída D:

- Téměř pravoúhlé signály
- Výkonový DAC

• Třída E:

- Pomocí filtrů jsou vyšší harmonické vraceny do zesilovače
- Podrobnosti v B2B37ROZ

Obr. 4.8.13. Časový průběh gate napětí a proudu drainem.

- Podstatně vyšší účinnost
- Ale podstatně nižší linearita
- Použitelné většinou jen pro modulace s konstantní obálkou

Linearizace

- Většina moderních modulací vyžaduje lineární zesilovače s vysokou účinností (mobilní komunikace)
- Řešení → linearizace jednodušších PA
- Možnosti:
 - "Pre-distortion" (PD)
 - "Digital pre-distortion" (DPD)
 - "Envelope tracking" (ET)
 - "Feed-forward"
 - "Doherty"

elmad.org

- Všeobecné vlastnosti:
 - Kromě PA jsou nutné další komponenty

Často dosti složité obvody

- Výhody:
 - Moderní stále více používaná řešení
 - Lze současně zajistit linearitu i účinnost
 - Menší rozměry menší chladiče
 - Často s digitálním zpracováním
 - Několik příkladů ↓

PD, DPD

- "Pre-distortion":
 - Oblíbená technika
 - Používá PA s mírnou nelinearitou
 - Vstupní signál je upraven tak, aby výstupní signál nebyl nelinearitou ovlivněn
 - Ke vstupnímu signálu je nutné přičíst kubickou složku s vhodnou amplitudou a fází
- Moderní komunikační zařízení často používají "digital predistortion":
 - DPD je realizována v DSP a BB
 - A následně konvertována na f_o
 - Výhody:
 - Přesnější linearizace
 - Menší rozměry
 - Příklad vlivu DPD →

 $sin(\omega_{LO}t)$

"Envelope tracking"

Účinnost PA:

elmaq.org

- Je nejvyšší poblíž saturace
- o Teoreticky: A \rightarrow 50%, B \rightarrow 78%
- ALE rychle klesá s amplitudou
- Problém v případě signálů s vysokým poměrem "peak-to-average power ratio" (PAPR)
- o x-QAM, OFDM, ...
- Principy "envelope tracking" (ET):
 - Detektor obálky měří okamžitou amplitudu signálu
 - Řízený spínaný regulátor nastavuje
 DC napájecí napětí na hodnotu těsně nad potřebnou saturační úrovní
 - PA tak pracuje stále poblíž saturace
 - Princip je velmi jednoduchý, praktická realizace je dost složitá

Obr. 4.8.7. Účinnost a PAE v závislosti na vstupním výkonu.

- Musí být navrženo jako celý systém
- Často se používá s DPD
- Široce používaný v mobilních komunikacích

VF a mikrovlnné přijímače

- Zpracovávají signály z antén
- Signály jsou modulované a mohou mít velmi nízké úrovně → důvody:
 - Často nízké vysílané výkony (e.g.10dBm)
 - Vysoké útlumy FSL
- Signály jsou na vhodné nosné s frekvencí _{@ a} zabírají modulační pásmo B_m
- V okolí mohou existovat:
 - Další kanály FDMA (více paralelně komunikujících uživatelů)
 - Další bezdrátové služby
 - Rušivé signály
 - Šum vždy
- Náročné požadavky na příjem

<i>R</i> [m]	1	10	100	1000	10 km
FSL [dB]	32,4	52,4	72,4	92,4	112,4

f=100 GHz

<i>R</i> [m]	1	10	100	1000	10 km
FSL [dB]	72,4	92,4	112,4	132,4	152,4

VF a mikrovlnné přijímače

Všeobecné požadavky:

- Příjem i velmi slabých signálů
- o Při dostatečných hodnotách SNR nebo E_b/N_0
- Ale také kvalitní příjem signálů s vysokými úrovněmi (např. MT blízko BS)
- Snadno přeladitelné v celém pásmu pracovních frekvencí
- Selektivní příjem 1 požadovaného kanálu
- Velmi účinné potlačení jak blízkých tak vzdálených signálů
- Často také → malé rozměry, nízký DC příkon, cena, ...

Používané komponenty:

 Filtry, LO, zesilovače, děliče výkonu, demodulátory, ...

Některé RX mohou být složité

"Digitální rádio":

- "Software defined radio" (SDR) = moderní struktura RX
- Minimální rozsah VF analogových obvodů
- Maximum funkcí je prováděno digitálními obvody
- Obsahují rychlé ADC a DSP
- Výhody → Ize je jednoduše adaptovat na nové přenosové formáty

VF přímo laděné přijímače

- Přímo laděné RX:
 - Výběr pracovního kanálu je prováděn pevným / přeladitelným filtrem
 - Vstupní LNA zvyšuje SNR

Problémy:

- Přeladitelné filtry:
 - Vykazují horší selektivitu (strmost hran)
 - Poskytují horší výběr kanálů a potlačení interferencí
 - Širší šumové pásmo
 - Varikapy (varaktorové diody) umožňují typ. frekvenční přeladění jen 1:2
- o Konverze A/D je prováděna na ∅₀:
 - Drahé ADC, horší parametry
 - Na vysokých GHz → ADC neexistují
 - Stabilita → RX mohou mít jen nízký zisk
 - Mohou být problémy s demodulací

Výhody:

- Velmi jednoduchá struktura
- Mohou být velmi levné

Aplikace:

- Jen nejjednodušší zařízení s nízkou cílovou cenou
- Na fixních nízkých frekvencích
- o Dálková ovládání, senzory, ...

RX typu superhet

- Řeší většinu problémů přímo laditelných RX:
 - Pásmo přeladění může být velmi široké (např. 1MHz - 3GHz)
 - Může vykazovat téměř dokonalou selektivitu
 - Filtry mohou mít téměř ideální pravoúhlé frekvenční průběhy (SAW)
 - Filtry mohou být velmi úzké → e.g.
 B=1kHz @30GHz
 - O A/D konverze a demodulace může být prováděna na nízkých frekvencích → lepší parametry, nižší cena , ...
 - Menší problémy se stabilitou → RX mohou mít vyšší zisk
- ALE → přinášejí nové problémy:
 - Zrcadlový příjem
 Maií alažitžiží atmuldu

Mají složitější strukturu

- Použití:
 - Určitě nejpoužívanější typ RX
 - Možná 99% všech RX
 - Také např. v měřicích přístrojích
 - Patent Armstrong 1918 → princip se od té doby nezměnil
 - Jeden z největších vynálezů,
 - ale kupodivu ne tak slavný

Struktura RX s 1 konverzí

- Komponenty:
 - o LNA
 - Mixer
 - Přeladitelný LO (VCO + PLL)
 - Pevný IF filtr
- Založeno na vlastnostech směšovačů:
 - Mixer = analogová násobička
 - o Vstupní signály $v_{LO}(t)$ a $v_{RF}(t)$
 - Nové frekvence na výstupu

$$\omega_{\scriptscriptstyle IF}=\omega_{\scriptscriptstyle LO}\pm\omega_{\scriptscriptstyle RF}$$

V RX se používají rozdílové produkty

$$\omega_{IF} = \omega_{LO} - \omega_{RF}$$

 S použitím přeladitelného LO lze vstupní VF signály konvertovat na pevnou relativně nízkou ω_{IF} frekvenci

- $\begin{aligned} u_{IF}(t) &= k_2 V_{LO} \cos(\omega_{LO} t + \psi_1) V_{RF} \cos(\omega_{RF} t + \psi_2) = \\ &= \frac{1}{2} k_2 V_{LO} V_{RF} \begin{bmatrix} \cos(\omega_{LO} t + \psi_1 + \omega_{RF} t + \psi_2) \\ + \cos(\omega_{LO} t + \psi_1 \omega_{RF} t \psi_2) \end{bmatrix} \end{aligned}$
 - Přijímané signály na $\omega_0 = \omega_{RF}$ lze velmi jednoduše vybírat = ladit změnou ω_{LO}
 - Pro konst. V_{LO} je V_{IF} přímo úměrné V_{BF} = pseudolineární režim

Struktura RX s 1 konverzí

- Do IF filtru s šířkou pásma B_{IF} konvertuje RX signály z B_{IF} širokého pásma v okolí ω_{RF}
- IF filtr:
 - Pracuje na pevné a relativně nízké frekvenci
 - Nemusí být laditelný
 - Může mít proto téměř ideální tvar (SAW)
 - Může zabezpečit téměř ideální potlačení sousedních kanálů, rušení, šumu, ...
 - Může být analogový i digitální
 - o Může být doplněn IF zesilovači → RX může mít dostatečně vysoký zisk
- Nový PROBLÉM:
 - Zrcadlový příjem ("mirror reception")

$$\omega_{IF} = \omega_{LO} - \omega_{RF}$$

Zrcadlový příjem

Vyplývá z

$$\cos(\alpha) = \cos(-\alpha)$$

Proto

$$\cos(\omega_{LO}t - \omega_{RF}t) = \cos(\omega_{RF}t - \omega_{LO}t)$$

Konvertované frekvence $\omega_{RF} = \omega_{LO} \pm \omega_{IF}$

$$\omega_{RF} = \omega_{LO} \pm \omega_{IF}$$

- Do IF filtru jsou vždy konvertována 2 pásma široká B_{IF} :
 - o DSB konverze LSB / USB
 - Se stejnou účinností
 - o Jedno postranní pásmo ("sideband") je užitečné, druhé je parazitní:
 - Může obsahovat jiný signál nebo interference
 - Vždy obsahuje šum

Vždy musí být potlačeno

Potlačení zrcadlového příjmu

Možnosti:

- o Preselektor
- Vícenásobné směšování
- Potlačení typ. >60dB

Preselektor:

- Filtr před směšovačem
- Často přeladitelný
- Ladí se paralelně s LO
- $\circ \;\; \omega_{LO}$ an ω_{RF} se liší o ω_{IF}
- Nevýhody:
 - Relativně úzkopásmové
 - Pásmo přeladění max. 1:2
 - Složitá synchronizace ladění preselektoru a LO

- Použití: např. VKV FM rádio
- V moderních RX strukturách nejsou preselektory oblíbené

Vícenásobné směšování

Princip funkce:

- Používá se vysoká frekvence 1. IF filtru \(\omega_{IF1}\)
- Zrcadlové pásmo je potom vzdálené a dá se dobře filtrovat
- Lze použít jednoduchý filtr na fixní frekvenci
- ALE další zpracování na vysoké \(\omega_{IF1}\) frekvenci je neefektivní
- Horší parametry demodulátoru, vyšší nároky na ADC, ...
- Proto se obvykle používá
 přídavný směšovací stupeň

Výhody:

- Umožňuje širokopásmový příjem (např. 1 3000 MHz)
- Vyjma 1 LO nevyžaduje žádný ladicí prvek
- Téměř ideální potlačení zrcadlového příjmu
- Často používané

- Složitější struktura → 2 směšovače, 2 LO, přídavné filtry, ...
- Vyšší DC příkon (zejména PLL), větší rozměry, vyšší cena

Příklad: Vícenásobné směšování

Přijímač:

- Vstupní frekvenční rozsah950 1050MHz
- \circ B_{RX} =5MHz
- 1. směšování:
 f_{IF1}=250MHz, B_{IF1}>5MHz
- Šířka B_{IF1} není kritická, nezajišťuje selektivitu
- Rozsah přeladění LO1
 700 800MHz
- 2. směšování: LO2 pevná frekvence 240MHz
- f_{IF2}=10MHz, B_{IF2}=5MHz
 (Hlavní selektivní filtr)

- Zrcadlové pásmo:
 - Střední frekvence 500MHz
 - Relativně jednoduchá PP (945 1055MHz) nebo HP (>945MHz) zabezpečí dokonalé potlačení zrcadlového příjmu

RX s přímou konverzí

- Moderní široce používaná struktura
- $\omega_{LO} = \omega_0 = \omega_{RF}$
- Přímá konverze do BB:
 - o Od 0 do $B_m/2 = B_{IF}/2$
 - ALE musí se také řešit zrcadlový příjem
- Zrcadlový příjem:
 - Hlavní a zrcadlové signály leží ve stejném frekvenčním pásmu
 - Oddělení je možné provést při IQ zpracování
 - V IQ rovině rotují signály opačnými směry

Projevují se jako kladné a záporné frekvence

Přímá konverze - vlastnosti

Výhody:

- Širokopásmový příjem → malá HW omezení
- Relativně jednoduché, malé rozměry, nízký DC příkon, cena, ...
- ADC pracují na nízkých frekvencích → výhodné parametry, cena
- Demodulace je prováděna v digitální doméně → odpovídá koncepci SDR, lze jednoduše modifikovat
- o Lze měnit i B_m=B_{IF}
- Moderní široce používaná struktura

- LO může pronikat do antény, nelze filtrovat
- IQ chyby mohou ovlivňovat potlačení zrcadlového příjmu a BER

IQ chyby

- Možné IQ chyby:
 - "Amplitude imbalance"
 - "Phase imbalance"
 - "DC offset"
- Možná řešení:
 - Kalibrace známým signálem a analogová / digitální korekce
 - ALE → kalibrační-korekční proces může významně zvýšit složitost obvodů, výslednou cenu, příkon
 - Přes výše uvedené problémy jsou RX s přímou konverzí velmi oblíbené

Obvody AGC

- V případě VF a mikrovlnných RX je nutné také řešit problémy s příliš silnými signály
- Je nutné je řešit se stejnou naléhavostí jako příliš slabé signály a šum:
 - Například v případech, kdy je MT velmi blízko BS
 - Příliš silné signály mohou způsobit:
 - Saturaci zesilovačů v RX
 - Generaci IM produktů
 - Přetečení ADC
- Řešení = obvody "automatic gain-control" (AGC)

Obvody AGC

- Podrobnější popis funkce:
 - AGC obsahují vazbu, obvod měřící VF výkon (power detector = PD), a zesilovače s
 proměnným ziskem ("variable-gain amplifiers" = VGAs)
 - VGAs se skládají z zesilovačů s konstantním ziskem a analogově nebo digitálně řízených atenuátorů
 - Smyčka AGC řídí zisk VGA podle okamžitého výkonu přijímaného signálu
 - Lze řídit zisk RF, IF nebo BB zesilovačů, a to v rozsahu až několika10¹ dB
 - V případě velmi silných vstupních signálů lze vypnout LNA
 - Obvody AGC pracují s určitou časovou konstantou, která musí odpovídat předpokládaným časovým změnám přijímaných signálů (podrobnosti později v části "Šíření")

Transceivery

- V zařízeních pro přenosy poloduplex a plný duplex je nutné sloučit TX a RX do 1 antény
- Slučovače = "duplexery"
- Požadavky:
 - Vysoké oddělení TX a RX
 - Odpovídající výkonové zatížení
 - o Co nejnižší IL
- Použití standardního slučovače:
 - \circ Vykazuje útlum \sim 4dB, zvyšuje F a snižuje P_{out}
 - Oddělení TX a RX jen ~20dB
 - Nemůže zvládnout vyšší Pout
 - o Je nevhodné
- Možná řešení:

elmag.org

o TDD = "time division duplexing"

Duplexery

- TDD:
 - Použití VF přepínačů (FET, PIN)
 - Jednoduché a efektivní řešení
 - ALE omezená přenosová rychlost
- FDD:
 - Použití diplexerů = slučovacích filtrů
 - TX a RX musí pracovat na dostatečně vzdálených frekvencích → příklad UMTS:
 - Uplink 1920 1980 MHz
 - Downlink 2110 2180MHz
 - Lze dosáhnout velmi nízká IL
 - RX a TX pracují 100% času = plný duplex
- Diplexery:

elmad.org

- Např. kombinace DP a HP
- Nebo 2 PP s rozdílnými propustnými pásmy
 na ω_{TX} a ω_{RX}

- PP na ω_{TX} musí mít ∞ impedanci na ω_{BX} a obráceně
- Lze transformovat pomocí TL
- Pro vyšší výkony (v BS) se používají koaxiální dutiny (velmi drahé)
- V MTs se používají diplexery SAW

Shrnutí - Systémy 1

- Zařízení pro bezdrátové radiové přenosy se skládají z vysílačů, přijímačů a antén.
- Směrovost přenosů může být typu simplex, polo-duplex nebo plný duplex.
- Obecné rozdělení podle topologie je PTP, PTM, "broadcast" a "cellular".
- Vícenásobný přístup více uživatel může být zajištěn technikami TDMA, FDMA nebo CDMA.
- Frekvenčně velmi stabilní nosné jsou generovány obvody PLL nebo DDS.
- Radiové vysílače používají přímou modulaci nosné nebo modulaci s frekvenční konverzí.
- Výkonové zesilovače PA zajišťují dostatečný výstupní výkon, linearitu a účinnost TX. Zesilovače s vysokým výkonem a linearitou mohou mít složitou strukturu.
- VF a mikrovlnné přijímače musí zajistit vysokou selektivitu příjmu velmi slabých i velmi silných signálů.

Shrnutí - Systémy 2

- Přímozesilující RX vykazují špatnou selektivitu i rozsah přeladění.
- RX typu superhet řeší většinu problémů příjmu i za velmi náročných podmínek.
 Na druhé straně přináší problémy se zrcadlovým příjmem.
- Moderní RX pro digitální komunikace používají často strukturu s přímou konverzí do BB.
- Obvody AGC přispívají k efektivnímu příjmu slabých i silných signálů.
- Transceivery používají různé duplexery pro sloučení TX a RX do jedné antény.
- Jako duplexery pro TDD se používají VF přepínače.
- Jako duplexery pro FDD se používají diplexery = speciální slučovací filtry.

