Write your answers in the answer blank (or circle them). Show all necessary work for full credit. Answers are to be exact values unless stated otherwise.

- 1. Let $\mathbf{r}(t) = \sqrt{2-t} \ \mathbf{i} + \frac{e^t-1}{t} \ \mathbf{j} + \ln(t+1) \ \mathbf{k}$
 - (a) Determine the domain of $\vec{r}(t)$

1a. _____

(b) $\lim_{t\to 0} \mathbf{r}(t)$

1b. _____

2. Determine the curve of intersection, **r**, of $x^2 + y^2 = 16$ and x + z = 5

- 3. Let $\mathbf{r}(t) = \langle t^2, t \cos \pi t, \sin \pi t \rangle$, determine the following. (a) $\vec{v}(t) =$
 - (b) $\vec{a}(t) =$
 - (c) $\int_0^1 \mathbf{r}(t)dt =$
 - (d) The parametric and symmetric equations of the tangent line to the curve, when $t = \frac{9}{4}$,

Determine the length of $\vec{r}(t) = \left\langle 2t^{3/2}, \cos 2t, \sin 2t \right\rangle, 0 \le t \le 1.$
Given $\mathbf{r}(t) = \langle \sin^3 t, \cos^3 t, \sin^2 t \rangle$ determine the following: (a) T
(b) N
(c) B
(d) the curvature κ
Given $y = x^4$ determine the curvature κ