Cockoba: EAИ October 5, 2010

1.1.4 Pumping лема (лема за покачването)

Aко L регулярен език

$$\longrightarrow \exists n \in \mathbb{N} : \forall w \in L : |w| > n$$
$$\longrightarrow \exists u, v, x : w = uvx \land$$

- 1. $|v| \geq 1 \wedge$
- $|uv| \leq n \wedge$
- 3. $\forall k \in \mathbb{N}_0 : uv^k x \in L$

С думи:

Достатъчно дългите думи на един регулярен език имат непразна поддума която можем да "pump"ваме (итерираме) без да напускаме езика.

Д-во на Pumping лемата

L регулярен $\longrightarrow \exists n \in \mathbb{N} : \forall w \in L : |w| > n \longrightarrow \exists u, v, x :$

 $w = uvx \land |v| \ge 1 \land |uv| \le n \land \forall k \in \mathbb{N}_0 : uv^k x \in L$

Д-во: Нека $A = (Q, \Sigma, \delta, q_0, F)$ DFA и L(A) = L.

Нека n = |Q| и $w \in L$ с $|w| = m \ge n$ (произволна).

Нека q_0, \ldots, q_m състояния.

 $(\exists i < j \le n : q_i = q_j) \longrightarrow |v| \ge 1, \ |uv| \le n, \ uv^k x$ са също в езика

Д-во на Pumping лемата

 $w = w_{1} \dots w_{m}; \ u = w_{1} \dots w_{i}; \ v = w_{i+1} \dots w_{j}; \ x = w_{j+1} \dots w_{m}$ $(q_{0}, w) \vdash^{*} (q_{i}, w_{i+1} \dots w_{j} \dots w_{m}) \vdash^{*} (q_{j}, w_{j+1} \dots w_{m}) \Rightarrow$ $(q_{0}, w_{1} \dots w_{i}) \vdash^{*} (q_{i}, \varepsilon) \& (q_{i}, w_{i+1} \dots w_{j}) \vdash^{*} (q_{j}, \varepsilon) \& q_{i} = q_{j}$ $\Rightarrow (q_{0}, w_{1} \dots w_{i} w_{j+1} \dots w_{m}) \vdash^{*} (q_{m}, \varepsilon) \Rightarrow (q_{0}, ux) \vdash^{*} (q_{m}, \varepsilon)$ $\& (q_{0}, uv^{k}x) \vdash^{*} (q_{i}, v^{k}x) \vdash^{*} (q_{j}, v^{k-1}x) \vdash^{*} \dots \vdash^{*} (q_{j}, vx) \vdash^{*$

Cockoba: EAM October 5, 2010

Пример:
$$L = \{a^k b^k : k \in \mathbb{N}\}$$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата и нека $w=a^nb^n=uvx$ в съответствие с Pumping лемата, тогава $ux\in L.$

$$|uv| \le n, |v| \ge 1 \longrightarrow v = a^{\ell}$$
 sa $\ell \ge 1$.
 $ux = a^{n-\ell}b^n \in L$.

Противоречие.

Cockoba: EAИ october 5, 2010

Пример: Балансирани скоби $L_{()}$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L и да разгледаме $w=\binom{n}{n}=uvx$ съгласно Pumping лемата $ux\in L_{()}$ и |v|>1 и $|uv|\leq n$.

Тогава $\mathbf{v} = (i, i \neq 0)$

и $ux = \binom{n-i}{n} \notin L_{()}$ Противоречие.

$L = \{0^p : p \text{ is a prime number}\}$

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L.

Нека $p \ge n+2$ е просто число.(\exists безкрайно много прости числа) $\longrightarrow 0^p \in L = uvw, \ |v| \ge 1, \ |uw| \ge 2.$

Pumping-лема: $uv^{|uw|}w \in L$.

 $\longrightarrow |uw| + |uw| \cdot |v| = |uw|(1+|v|)$ е просто число.

Два нетривиални делителя $|uw| \ge 2$ и $(1+|v|) \ge 2$.

Противоречие.

Да допуснем, че L е регулярен.

Нека n е числото от Pumping лемата за L.

Нека
$$\longrightarrow 0^{n^2} \in L = uvw, |v| \ge 1, |uv| \le n.$$

Pumping-лема: $uv^2w \in L$.

$$\longrightarrow n^2 < |uv^2w| \le n^2 + n < (n+1)^2.$$

Противоречие.

Pumping-лемата

не е достатъчно условие за регулярност

Пример: $L = \{c^m a^\ell b^\ell : m, \ell \ge 0\} \cup \{a,b\}^*$ не е регулярен, но

ако $n \ge 1$ е произволно и $x \in L$ с $|x| \ge n$.

1. $x \in a^*b^*$:

$$x = \underbrace{\varepsilon}_{u} \underbrace{a}_{v} \underbrace{a^{m}b^{n-m-1}}_{w}$$

1.
$$|v| = 1 \ge 1$$

2.
$$|uv| = 1 \le n$$

3.
$$uv^i w = a^i a^m b^{n-m-1} \in a^* b^* \subseteq L$$

Pumping-лемата

не е достатъчно условие за регулярност

Пример: $L = \{c^m a^\ell b^\ell : m, \ell \ge 0\} \cup \{a,b\}^*$ не е регулярен, Нека n е произволно, $w \in L$ произволно с $|w| \ge n$.

- 1. Ако $w \in a^*b^*$: го видяхме.
- 2. Ako $w = c^m a^{\ell} b^{\ell}, m \ge 1$:

Разгледайте
$$w = \underbrace{\varepsilon}_{u} \underbrace{c}_{v} \underbrace{c^{m-1}a^{\ell}b^{\ell}}_{x}$$

1.
$$|v| = 1 \ge 1$$

2.
$$|uv| = 1 \le n$$

3.
$$uv^{i}x = c^{m-1+i}a^{\ell}b^{\ell} \in L$$