Lab 06. Deep Learning

Introduction to Computer Vision, Lab 06.

Today

- Introduction to Pytorch
- Image classification
- ResNet
- Recognition

Introdution to Pytorch

Please refer to slides from cs231n Lecture 06.

Image classification

- We will show you an example of fullyconnected network on cifar-10.
- What you should do:
 - Build a CNN, train it and test it.
 - Add BN to your model, train it and test it.
 - Do some experiments and answer the questions.
 - Provide the results and curves. (Also with you implementation)
 - Some analysis. (just 1~3 sentences are enough.)

ResNet

Implement BasicBlock and Bottleneck

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

ResNet

• Build ResNet-50.

layer name output size 18-layer 34-layer conv1 112×112	50-layer 101-layer 152-layer 7×7, 64, stride 2 3×3 max pool, stride 2
conv1 112×112	
	3×3 max pool, stride 2
conv2_x $\begin{bmatrix} 56 \times 56 \\ 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2 \begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix}$	$ \times 3 \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x 28×28 $\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$ $\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix}$	$\times 4 \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	$\times 6 \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x 7×7 $\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 2$ $\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix}$	$\times 3 \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
1×1	average pool, 1000-d fc, softmax
FLOPs 1.8×10 ⁹ 3.6×10 ⁹	3.8×10^9 7.6×10^9 11.3×10^9

ResNet

- Parameters and FLOPs
- You should implement this instead of calculating mannuly...

Recognition

- MMSegmentation
 - Running the demo
 - Use your image with another model provided by this toolbox

Recognition

- MMDetection
 - Running the demo
 - Use your image with another model provided by this toolbox

At last

- If you did not use Pytorch before, these might be a little bit difficult. But good luck!
- Pytorch is just a toolbox, you should use it rather than research it.
- Feel free to ask TAs, since you have 4 TAs.

Questions?