My formalization project

Metin Ersin Arıcan

August 14, 2024

Chapter 1

Vectors

1.1

Basic Definitions and Lemmas

Lemma 1.1.1. For any vector $v : \text{Fin } 2 \to X$, we have v = ![v(0), v(1)]. **Lemma 1.1.2.** For any function $f: X \to Y$ and elements $x_1, x_2 \in X$, we have $f \circ ![x_1, x_2] =$ $![f(x_1), f(x_2)].$ Proof. Theories 1.2 **Lemma 1.2.1.** Models of the theory of dense linear orders realize the reflexivity sentence. Proof. Lemma 1.2.2. Models of the theory of dense linear orders realize the transitivity sentence. **Lemma 1.2.3.** Models of the theory of dense linear orders realize the antisymmetry sentence. **Lemma 1.2.4.** Models of the theory of dense linear orders realize the totality sentence. Proof. **Lemma 1.2.5.** Models of the theory of dense linear orders realize the densely ordered sentence. Proof. **Lemma 1.2.6.** Models of the theory of dense linear orders realize no minimum sentence. **Lemma 1.2.7.** Models of the theory of dense linear orders realize no maximum sentence. Proof.

Chapter 2

Model Theory and The Rest of Mathlib

2.1 Instances

Definition 2.1.1. Any structure of the language of orders is an ordered set.

Lemma 2.1.2. The structure induced from \leq which is induced from another structure is equal to the original structure.

Proof. \Box

Definition 2.1.3. *Models of the theory of dense linear orders are preorders.*

Definition 2.1.4. Models of the theory of dense linear orders are linear orders.

2.2 Homomorphisms

Lemma 2.2.1. A function which is an order embedding is also an embedding in the model theoretic sense.

Proof.

Lemma 2.2.2. A function which is an order isomorphism is also an isomorphism in the model theoretic sense.

Proof.

Chapter 3

Main Result

Theorem 3.0.1. The theory of dense linear orders without endpoints is \aleph_0 -categorical. Proof.