MATH1061 Tutorial Week 2

Michael Kasumagic, s4430266

Question 1: 1.1

- (i) Suppose you know that $(\sim p \land q) \lor p$ is false. What can you conclude about the truth values of each of the two variables?
- (ii) Suppose you know that $(p \lor q) \land \sim r$ is true. What can you conclude about the truth values of each of the three variables?
- (iii) Suppose you know that $(\sim p \land \sim q) \land r$ is false. What can you conclude about the truth values of each of the three variables?

Solution: (i)

$$(\sim p \land q) \lor p \equiv \text{False}$$

 $\Rightarrow \sim p \land q \equiv \text{False}$
 $\land p \equiv \text{False}$
 $\Rightarrow \sim p \equiv \text{True}$
 $\Rightarrow q \equiv \text{False}$

 $p \equiv \text{False and } q \equiv \text{False}.$

Solution: (ii)

$$(p \lor q) \land \neg r \equiv \text{True}$$

$$\Rightarrow \neg r \equiv \text{True}$$

$$\Rightarrow r \equiv \text{False}$$

$$\Rightarrow p \lor q \equiv \text{True}$$
 Case $1 \Rightarrow p \equiv \text{True} \lor q \equiv \text{False}$ Case $2 \Rightarrow p \equiv \text{False} \lor q \equiv \text{True}$ Case $3 \Rightarrow p \equiv \text{True} \lor q \equiv \text{True}$

 \therefore $(p,q,r) \in \{(\text{True}, \text{False}, \text{False}), (\text{False}, \text{True}, \text{False}), (\text{True}, \text{True}, \text{False})\}$

Solution: (iii)

If
$$(\sim p \land \sim q) \land r \equiv \text{True}$$

 $\Rightarrow r \equiv \text{True}$
 $\sim p \equiv \text{True} \Rightarrow p \equiv \text{False}$
 $\sim q \equiv \text{True} \Rightarrow q \equiv \text{False}$

```
\therefore (\sim p \land \sim q) \land r \equiv \text{True} \iff (p,q,r) \in \{(\text{False}, \text{False}, \text{True})\}.
\therefore (\sim p \land \sim q) \land r \equiv \text{False} \iff (p,q,r) \notin \{(\text{False}, \text{False}, \text{True})\}.
\therefore (\sim p \land \sim q) \land r \equiv \text{False} \iff (p,q,r) \in U \setminus \{(\text{False}, \text{False}, \text{True})\}.
```

Question 2: 1.2

For each of the following, write down a truth table for the statement, and determine whether the statement is a tautology, a contradiction, or neither.

(i)
$$((p \wedge q) \vee (q \wedge r)) \vee \sim q$$

(ii)
$$(\sim p \lor q) \lor (p \land \sim q)$$

Solution: (i)

p	\overline{q}	r	$p \wedge q$	$q \wedge r$	$(p \land q) \lor (q \land r)$	$\sim q$	$((p \land q) \lor (q \land r)) \lor \sim q$
Т	Τ	Т	Т	Т	Т	F	Т
T	Τ	F	T	F	T	\mathbf{F}	T
T	F	T	F	F	F	Т	${ m T}$
T	F	F	F	F	F	Т	${ m T}$
F	Τ	\mathbf{T}	F	$_{\mathrm{T}}$	T	\mathbf{F}	${f T}$
F	\mathbf{T}	F	F	F	F	F	F
F	\mathbf{F}	Т	F	\mathbf{F}	F	$_{\rm T}$	T
F	\mathbf{F}	F	F	\mathbf{F}	F	\mathbf{T}	T

The statement is neither a contradiction nor a tautology.

Solution: (ii)

p	q	$\sim p$	$\sim p \vee q$	$\sim q$	$p \wedge \sim q$	$(\sim p \vee q) \vee (p \wedge \sim q)$
T	T	F	Τ	F	F	T
\mathbf{T}	F	F	F	Γ	${ m T}$	T
F	$_{\rm T}$	T	${ m T}$	F	\mathbf{F}	T
F	F	T	T	T	\mathbf{F}	T

Since the statement is always true, it is a tautology.

Question 3: 1.3

- (i) Use a truth table to show that $(p \lor q) \land \sim p \equiv q \land \sim p$.
- (ii) Use a truth table to show that $(p \oplus q) \wedge r \equiv (p \wedge r) \oplus (q \wedge r)$.
- (iii) Use the laws of logical equivalence and the fact that $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$, to show that $(p \oplus q) \land r \equiv (p \land r) \oplus (q \land r)$.

Solution: (i)

p	q	$ \sim p $	$p \lor q$	$(p \lor q) \land \sim p$	$q \wedge {\sim} p$
T	T	F	Т	F	F
T	F	F	T	F	\mathbf{F}
F	\mathbf{T}	$\mid T \mid$	T	T	${ m T}$
F	F	$\mid T \mid$	F	F	F

Solution: (ii)

p	q	r	$p\oplus q$	$p \wedge r$	$q \wedge r$	$(p \oplus q) \wedge r$	$(p \wedge r) \oplus (q \wedge r)$
Т	Т	Т	F	Т	Τ	F	F
T	\mathbf{T}	F	F	F	F	F	\mathbf{F}
T	\mathbf{F}	Τ	T	T	F	T	${ m T}$
T	\mathbf{F}	F	T	F	F	F	\mathbf{F}
F	${ m T}$	Τ	T	F	${ m T}$	T	${ m T}$
F	${ m T}$	F	T	F	F	F	\mathbf{F}
F	\mathbf{F}	Τ	F	F	\mathbf{F}	F	\mathbf{F}
F	\mathbf{F}	F	F	F	F	F	\mathbf{F}

Solution: (iii)

$$(p \oplus q) \wedge r \equiv ((p \vee q) \wedge \sim (p \wedge q)) \wedge r$$

$$\equiv (p \vee q) \wedge (\sim p \vee \sim q) \wedge r$$

$$\equiv ((r \wedge p) \vee (r \wedge q)) \wedge (\sim p \vee \sim q)$$

$$\equiv (((r \wedge p) \vee (r \wedge q)) \wedge \sim p) \vee (((r \wedge p) \vee (r \wedge q)) \wedge \sim q)$$

$$\equiv (r \wedge p \wedge \sim p) \vee (r \wedge q \wedge \sim p) \vee (r \wedge p \wedge \sim q) \vee (r \wedge q \wedge \sim q)$$

$$\equiv \bot \vee (r \wedge q \wedge \sim p) \vee (r \wedge p \wedge \sim q) \vee \bot$$

$$\equiv r \wedge ((q \wedge \sim p) \vee (p \wedge \sim q))$$

$$\equiv r \wedge ((q \wedge \sim p) \vee p) \wedge ((q \wedge \sim p) \vee \sim q)$$

$$GOAL \equiv ((p \wedge r) \vee (q \wedge r)) \wedge \sim ((p \wedge r) \wedge (q \wedge r))$$

$$\equiv ((p \wedge r) \vee (q \wedge r)) \wedge \sim (p \wedge q \wedge r)$$

$$\equiv (r \wedge (p \vee q)) \wedge \sim (p \wedge q \wedge r)$$

$$\equiv r \wedge (p \vee q) \wedge (\sim p \vee \sim q \vee \sim r)$$

AHHHHHHHHHHHHHHHHHHHHHHHH THIS IS HARD.

Question 4: 1.4

- (i) Use the laws of logical equivalence to show that $p \wedge q \equiv \sim (\sim p \vee \sim q)$.
- (ii) Use the laws of logical equivalence to show that $\sim (p \vee \sim q) \vee (\sim p \wedge \sim q) \equiv \sim p$.

Solution: (i)

$$p \land q \equiv \sim (\sim (p \land q))$$
$$\equiv \sim (\sim p \lor \sim q)$$

Solution: (ii)

$$\begin{split} \sim &(p \vee \sim q) \vee (\sim p \wedge \sim q) \equiv (\sim p \wedge q) \vee (\sim p \wedge \sim q) \\ &= \sim p \wedge (q \vee \sim q) \\ &= \sim p \wedge \top \\ &= \sim p \end{split}$$

Question 5: 1.5

Using De Morgan's Law, rewrite these sentences retaining equivalence.

- (i) t is not true that I am studying Computer Science and I am studying Engineering.
- (ii) I am not going to the movies this weekend or I am not going swimming this weekend.

Solution: (i) It is not true that I am studying Computer Science and I am studying Engineering. $\equiv \sim (p \land q) \equiv \sim p \lor \sim q \equiv I$ am not studying CS or I am not studying engineering.

Solution: (ii) I am not going to the movies this weekend or I am not going swimming this weekend. $\equiv \sim p \vee \sim q \equiv \sim (p \wedge q) \equiv I$ am not going to the movies and swimming this weekend.

Question 6: 1.6

For each of the following, write down a truth table for the statement, and determine whether the statement is a tautology, a contradiction, or neither.

(i)
$$(\sim p \land (p \to q)) \to \sim q$$

(ii)
$$(p \to (q \lor r)) \leftrightarrow ((p \land \sim q) \to r)$$

Solution: (i) For fun and practice I will prove this by logical equivalence.

$$(\sim p \land (p \to q)) \to \sim q \equiv (\sim p \land (\sim p \lor q)) \to \sim q$$

$$\equiv \sim (\sim p \land (\sim p \lor q)) \lor \sim q$$

$$\equiv \sim (\sim p \land (\sim p \lor q) \land q)$$

$$\equiv \sim ((\sim p \land q) \land (\sim p \lor q))$$

$$\equiv \sim ((\sim p \land q \land \sim p) \lor (\sim p \land q \land q))$$

$$\equiv \sim ((\sim p \land q) \lor (\sim p \land q))$$

$$\equiv \sim (\sim p \land (q \lor q))$$

$$\equiv \sim (\sim p \land q)$$

$$\equiv p \lor \sim q$$

Which is not a contradiction nor a tautology. Now we will answer the question.

p	q	$\sim p$	$\sim q$	$p \rightarrow q$	$\sim p \land (p \to q)$	
T	T	F	F	T	F	T
T	F	\mathbf{F}	T	F	F	T
F	T	Τ	F	T	T	F
F	\mathbf{F}	Τ	T	T	T	T

Solution: (ii)

p	\overline{q}	r	$\sim q$	$q \lor r$	$p \wedge \sim q$	$p \to (q \lor r)$	\leftrightarrow	$(p \land \sim q) \to r$
T	Ť	Т	F	Т	F	T	Т	T
Т	T	F	F	Γ	F	${ m T}$	${ m T}$	$_{ m T}$
Т	F	$_{\mathrm{T}}$	Γ	Γ	$_{\mathrm{T}}$	${ m T}$	${ m T}$	${ m T}$
Т	F	F	Γ	F	$_{\mathrm{T}}$	F	${ m T}$	F
F	${\rm T}$	Т	F	T	F	${ m T}$	${ m T}$	${ m T}$
F	${\rm T}$	F	F	Γ	F	${ m T}$	${ m T}$	$_{ m T}$
F	\mathbf{F}	Т	Γ	Γ	F	${ m T}$	${ m T}$	$_{ m T}$
F	\mathbf{F}	F	T	F	F	T	${ m T}$	${ m T}$

Therefore the statement in question is a tautology.

Question 7: 1.7

Write each of the following statements in the form "if.. then...".

- (i) A sufficient condition for the warranty to be good is that you bought the computer less than a year ago.
- (ii) Jane gets seasick whenever she is on a boat.

Now negate the following two statements.

- (iii) If it rains, then Sue takes her umbrella.
- (iv) The cakes burn if the oven temperature is too high.

Solution: (i) If you bought the computer less then the warranty is good.

Solution: (ii) If Jane is on a boat, then she gets seasick.

Solution: (iii) It rains, and Sue does not take her umbrella.

Solution: (iv) The oven temperture is too high, and the cake does not burn.