UTFPR - Universidade Tecnológica Federal do Parná Pato Branco

Engenharias

Lista de Exercícios

WRONSKIANO E Solução geral e particularde ED lineares com coef. Constantes

- 1) Determine, para cada item abaixo, se o conjunto de funções é linearmente dependente ou independente.
 - a) $\{x, 1, 2x 7\}$

- b) $\{x+1, x-1\}$ d) $\{x^2, x\}$
- c) $\{x+1, x^2+x, 2x^2-x-3\}$

- 2) Calcule o Wronskiano de:
 - a) $\{e^{2x}, e^{-2x}\}$
 - c) $\{x, 1, 2x 7\}$
 - e) $\{x+1, x^2+x, 2x^2-x-3\}$
 - g) $\{ sen x, 2 sen x, 3 sen x + cos x \}$
- b) $\{e^{\lambda_1 x}, e^{\lambda_2 x}\}, \lambda_1 \neq \lambda_2$
- d) $\{x+1, x-1\}$
- f) $\{x^2, x\}$
- h) $\{e^x, e^{-x}, e^{2x}\}$
- 3) Determine g(t) se:
 - a) $W(f,q) = 3e^{4t}$ e $f(t) = e^{2t}$
- b) $W(f,q) = t^2 e^t e^t f(t) = t$
- 4) Determine a solução geral de $y'' y = 2 \operatorname{sen} x$, sabendo que $y_p = -\operatorname{sen} x$ é uma solução particular e que e^x , e^{-x} são soluções da equação diferencial homogênea associada.
- 5) Determine a solução geral de $y'' 2y' + y = x^2$, sabendo que $y_p = x^2 + 4x + 6$ é uma solução particular e que e^x , xe^x são soluções da equação diferencial homogênea associada.
- 6) Determine a solução geral de $y'' + y = x^2$, sabendo que $y_p = x^2 2$ é uma solução particular e que sen x, cos x são soluções da equação diferencial homogênea associada.
- 7) Determine a solução geral de $y'' y = x^2$, sabendo que $y_p = -x^2 2$ é uma solução particular e que e^x , $3e^x$ são soluções da equação diferencial homogênea associada.
- 8) Determine a solução geral de y''' y'' y + 1 = 5, sabendo que $y_p = -4$ é uma solução particular e que e^x , xe^x e e^{-x} são soluções da equação diferencial homogênea associada.
- 9) Dado que $y = c_1 e^{4x} + c_2 e^{-x}$, é uma familia de soluções de y'' 3y' 4y = 0 em um intervalo $(-\infty, \infty)$, encontre um membro da familia que satisfaz as condições iniciais y(0) = 1 y'(0) = 2
- 10) Determine se as funções são linearmente independentes ou dependentes $(-\infty, \infty)$:
 - a) $f_1(x) = x, f_2(x) = x^2, f_3(x) = 4x 3x^2$
 - b) $f_1(x) = 0, f_2(x) = x, f_3(x) = e^x$
 - c) $f_1(x) = x$, $f_2(x) = x 1$, $f_3(x) = x + 3$
- 11) Verifique se as funções $y_1 = e^{3x} y_2 = e^{-3x}$ são soluções da equação homogenea y'' 9y = 0. Por wronskiano determine se as soluções são LI ou LD.Determine a solução geral.