Lecture 8

February 13, 2019

Anders Sundheim asundheim@wisc.edu

Line Integrals

 C^1 and piecewise C^1 paths

Defintion

 $\alpha:[a,b]\to\mathbb{R}^n$ is a path

And if α is continuous on [a,b] we say it is a continuous path If α is a continuous path and $\alpha'(t)$ is continuous in (a,b) then we say α is a C^1 path

If α is continuous and we can find $a_0 = a < a_1 < \cdots < a_k$ and $a_k < b = a_{k+1}$ such that

 $\alpha'(t)$ is continuous in (a_i, a_{i+1}) for all $0 \le i \le k$, then we say that α is a piecewise C^1 path

Definition of path integrals

① Let $\alpha:[a,b]\to\mathbb{R}^n$ be a C^1 path Let $f:\mathbb{R}^n\to\mathbb{R}^n$ be a continuous vector field

Define
$$\int f \cdot dx = \int_a^b f(\alpha(t)) \cdot \alpha'(t) dt$$

In a more explicit way,

$$\alpha(t) = (\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t))$$

$$f(x) = (f_1(x), f_2(x), \dots, f_n(x))$$

$$\Rightarrow \int f \cdot dx = \int_a^b f(\alpha(t)) \cdot \alpha'(t) dt = \int_a^b \sum_{k=1}^n f_k(\alpha(t)) \alpha'_k(t) dt$$

(2) If α is a piecewise C^1 , then we define

$$\int f \cdot dx = \int_{a_0}^{a_1} f(\alpha(t)) \cdot \alpha'(t) dt + \dots + \int_{a_k}^{a_{k+1}} f \cdot dt$$

(3) If α is a closed curve, that is $\alpha(a) = \alpha(b)$, then we also write

$$\int f \cdot d\alpha = \oint f d\alpha$$

Note that there are many ways to parameterize a path/curve in \mathbb{R}^n

Concern

Do all parameterizations of the same path yield some line integral?

$$\int f \cdot d\alpha = \int f \cdot d\beta$$

Proof

Proof. Let $\alpha:[a,b]\to\mathbb{R}^n$ is $C^1,\,t\mapsto\alpha(t)\in\mathbb{R}^n$ Let $\beta:[c,d]\to\mathbb{R}^n$ such that $s\mapsto\beta(s)=\alpha(u(s))$ for $c\le s\le d$ Where $u:[c,d]\to[a,b]$ is C^1 , is increasing, and u(c)=a,u(d)=b $\int f\cdot d\beta=\int_c^d f(\beta(s))\cdot\beta'(s)ds=\int_c^d f(\beta(s))\cdot\alpha'(u(s))u'(s)ds$ Let $t=u(s)\Rightarrow dt=u'(s)ds\to=\int_a^b f(\alpha(t))\cdot\alpha'(t)dt$