Minitab Output for the same problem

Regression Analysis: usage versus temperature

The regression equation is usage = -6.60 + 9.18 temperature

Predictor	Coef	SE Coef	${\mathtt T}$	P
Constant	-6.604	4.920	-1.34	0.198
temperature	9.1820	0.1015	90.45	0.000
S = 6.27546	R-Sq =	99.8%	R-Sq(ad)	j) = 99.8%

Analysis of Variance

		_			
Source	DF	SS	MS	F	P
Regression	1	322156	322156	8180.42	0.000
Residual Error	16	630	39		
Total	17	322786			

Section 7.3:Uncertainties in the Least-Squares Coefficients

Recall the formal model:

$$Y = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where β_0 and β_1 are unknown and $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ for i=1,...,n.

Here the assumptions are:

- i) The errors $\varepsilon_1,...,\varepsilon_n$ are independent random variables.
- ii) The errors have the same mean 0.
- iii) The errors have the same variance σ^2
- iv) The errors are normally distributed

We don't know the value of σ^2 . So we estimate σ^2 by

$$s^{2} = \frac{1}{n-2} \sum (y_{i} - \hat{y}_{i})^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{SSE}{n-2}$$

 s^2 is measure of the spread of the points of the residuals around the line.

The denominator (n-2) is the degrees of freedom (df)

Recall: $\hat{\beta}_0$, $\hat{\beta}_1$ are the least-squares estimates of the **unknown** regression coefficients β_0 and β_1 respectively

Inferences on the Slope

- β_1 is the true change in the mean of y with an increase of one unit in the value of x
- $\hat{\beta}_1$ estimates the true population slope β_1

- $\hat{\beta}_1$ is normally distributed r.v. with mean β_1
- Test: We often want to see if β_1 is significantly different from 0. If β_1 is significantly different from zero, then x is considered a good predictor of y.

How do you test this?

- CI for β_1
- Significance test for β_1
- ANOVA F test (we will discuss this later)

Confidence Intervals and Hypothesis Test for Slope, β_1

- Keep in mind $\hat{\beta}_1$ is a statistic, not exactly equal to true slope β_1 . Every sample will have a different $\hat{\beta}_1$.
- The sampling distribution of $\hat{\beta}_{_{1}}$ is

$$N\left(\beta_{1,}\frac{\sigma^2}{\sum (x_i - \overline{x})^2}\right)$$

• We estimate σ^2 with s^2

$$\bullet \qquad \sqrt{\left(\frac{s^2}{\sum (x_i - \overline{x})^2}\right)} = s_{\hat{\beta}_1}$$

Note: Notice that the spread of the x values effect the value of $s_{\hat{\beta}_1}$. You want to have as much spread in your x values as possible as long as you don't go beyond the range where the linear model holds.

Parameter	Statistic	Std. Error	Sampling Distribution
		$\sqrt{\left(\frac{s^2}{\sum (x_i - \overline{x})^2}\right)} = s_{\hat{\beta}_1}$	t(n-2)

Confidence Interval for β_1

Hypothesis Test for	<u> </u>
Но:	H ₁ :
Test Statistic: $\frac{\hat{\beta}_1}{s_{\hat{\beta}_1}} \sim t_r$	under H ₀

(since s estimates σ and df for s is (n-2))

• You can follow standard t-procedure for the test

Note: You can also test that the Ho: $\beta_1 = \#$ versus Ha: $\beta_1 \neq \#$, this test to see if y changes by # for every one unit increase in x.

Ex:Refer to the previous example

Regression Analysis: usage versus temperature

The regression equation is usage = -6.60 + 9.18 temperature

Predictor Coef SE Coef T P Constant
$$-6.604$$
 4.920 -1.34 0.198 temperature 9.1820 0.1015 90.45 0.000 $S = 6.27546$ $R-Sq = 99.8%$ $R-Sq(adj) = 99.8%$

The Analysis of Variance (ANOVA) Table

Source	df	SS	MS	F	p-
					valu
					e
Model	1	SSR	MSR=	MSR/	
			SSR / 1	MSE	
Error	n-2	SSE	MSE=		
			SSE /(n-2)		
Total	n-1	SST			

Recall the ANOVA identity: SST=SSR+SSE

- MSE variability of points around line
- $s^2 = MSE = estimate of \sigma^2$
- $s = \sqrt{MSE}$

F Test for Slope

Ho:
$$\beta_1 = 0$$
 vs $H_1: \beta_1 \neq 0$

Test Statistic:
$$F = \frac{MSR}{MSE} \sim F(1,n-2)$$

What is the F distribution?

$$f(x) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)\left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} x^{\left(\frac{v_1}{2} - 1\right)}}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)\left(1 + \frac{v_1 x}{v_2}\right)^{\left(\frac{v_1 + v_2}{2}\right)}}, \quad X > 0$$

 v_1 and v_2 are the degrees of freedom for the F distribution

If X is said to have an F distribution with df v_1 and v_2 , it can be denoted as $F(v_1,v_2)$.

The cdf Q of the F distribution follows the relationship: $Q_{\nu_1,\nu_2}(p) = \frac{1}{Q_{\nu_2,\nu_1(1-p)}}$

F distribution is used to compare two variances