K-Map Analysis

Michael Brodskiy

Professor: S. Shazli

February 6, 2023

- Three-Variable K-Map
 - The following truth table:

a	b	\mathbf{c}	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Would be converted to the following K-Map:

a \bc	(0,0)	(0,1)	(1,1)	(1,0)
0	0	1	1	0
1	0	1	1	0

- By grouping 2^n adjacent ones, the boolean expression becomes: f(a,b,c)=c
- Converting to K-Maps from boolean expressions

$$- f(a,b,c) = a'b'c' + ab'c' + abc' + ab'$$

$$- f(a,b,c) = a'b' + a'c' + bc' + ab + b'c$$

- K-Maps with Don't Cares ("x")
 - The following is an example K-Map with don't cares

AB \CD	00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	X
10	1	1	1	1

- Don't cares can be assigned either a 0 or 1
- It is necessary to create groups as big as possible
- The above K-Map becomes the expression $f(a,b,c) = A + \bar{B}\bar{D} + C$