Life Cycle Dynamic Programming with Marital Status, Children and Savings

This is the example vignette for function: **snw_vfi_main_bisec_vec** from the **PrjOptiSNW Package.** This function solves for policy function with vectorized bisection. Value function during COVIDless year.

Test SNW_VFI_MAIN_BISECT_VEC Defaults

Call the function with defaults.

```
mp_param = snw_mp_param('default_docdense');
[V_VFI,ap_VFI,cons_VFI] = snw_vfi_main_bisec_vec(mp_param);
```

```
SNW VFI MAIN BISEC VEC: Finished Age Group:83 of 82, time-this-age:9.6616
SNW VFI MAIN BISEC VEC: Finished Age Group: 82 of 82, time-this-age: 6.0665
SNW VFI MAIN BISEC VEC: Finished Age Group:81 of 82, time-this-age:6.0938
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:80 of 82, time-this-age:6.1322
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:79 of 82, time-this-age:5.731
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:78 of 82, time-this-age:5.9587
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:77 of 82, time-this-age:6.0286
SNW VFI MAIN BISEC VEC: Finished Age Group:76 of 82, time-this-age:6.0378
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:75 of 82, time-this-age:5.7227
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:74 of 82, time-this-age:6.0347
SNW VFI MAIN BISEC VEC: Finished Age Group:73 of 82, time-this-age:6.0197
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:72 of 82, time-this-age:6.0294
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:71 of 82, time-this-age:5.7663
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:70 of 82, time-this-age:5.7878
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:69 of 82, time-this-age:5.9087
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:68 of 82, time-this-age:5.9625
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:67 of 82, time-this-age:5.9427
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:66 of 82, time-this-age:5.526
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:65 of 82, time-this-age:5.9574
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:64 of 82, time-this-age:5.9754
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:63 of 82, time-this-age:5.9528
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:62 of 82, time-this-age:5.7483
SNW VFI MAIN BISEC VEC: Finished Age Group:61 of 82, time-this-age:6.0225
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:60 of 82, time-this-age:6.091
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:59 of 82, time-this-age:6.0448
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:58 of 82, time-this-age:6.0445
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:57 of 82, time-this-age:5.5331
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:56 of 82, time-this-age:6.0133
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:55 of 82, time-this-age:5.9281
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:54 of 82, time-this-age:5.9348
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:53 of 82, time-this-age:5.576
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:52 of 82, time-this-age:5.9723
SNW VFI MAIN BISEC VEC: Finished Age Group:51 of 82, time-this-age:6.1292
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:50 of 82, time-this-age:5.983
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:49 of 82, time-this-age:5.8518
SNW VFI MAIN BISEC VEC: Finished Age Group: 48 of 82, time-this-age: 5.6741
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:47 of 82, time-this-age:6.0199
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:46 of 82, time-this-age:6.0128
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:45 of 82, time-this-age:6.2299
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:44 of 82, time-this-age:5.8858
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:43 of 82, time-this-age:6.0074
SNW VFI MAIN_BISEC_VEC: Finished Age Group:42 of 82, time-this-age:6.1082
SNW VFI MAIN BISEC VEC: Finished Age Group:41 of 82, time-this-age:6.1896
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:40 of 82, time-this-age:5.9484
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:39 of 82, time-this-age:5.7184
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:38 of 82, time-this-age:6.0237
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:37 of 82, time-this-age:6.0886
```

```
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:36 of 82, time-this-age:5.9999
SNW VFI MAIN_BISEC_VEC: Finished Age Group:35 of 82, time-this-age:5.8859
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:34 of 82, time-this-age:6.089
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:33 of 82, time-this-age:6.0487
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:32 of 82, time-this-age:5.972
SNW VFI MAIN BISEC VEC: Finished Age Group:31 of 82, time-this-age:6.0053
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:30 of 82, time-this-age:5.671
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:29 of 82, time-this-age:5.8975
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:28 of 82, time-this-age:6.0471
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:27 of 82, time-this-age:6.0284
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:26 of 82, time-this-age:6.03
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:25 of 82, time-this-age:6.0227
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:24 of 82, time-this-age:5.9344
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:23 of 82, time-this-age:6.0962
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:22 of 82, time-this-age:6.1112
SNW VFI MAIN BISEC VEC: Finished Age Group:21 of 82, time-this-age:5.6128
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:20 of 82, time-this-age:6.0994
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:19 of 82, time-this-age:5.9906
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:18 of 82, time-this-age:5.9374
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:17 of 82, time-this-age:5.9326
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:16 of 82, time-this-age:5.6032
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:15 of 82, time-this-age:6.0086
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:14 of 82, time-this-age:6.0024
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:13 of 82, time-this-age:6.0767
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:12 of 82, time-this-age:5.8031
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:11 of 82, time-this-age:6.012
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:10 of 82, time-this-age:6.0142
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:9 of 82, time-this-age:5.9887
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:8 of 82, time-this-age:6.0433
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:7 of 82, time-this-age:5.5764
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:6 of 82, time-this-age:5.9101
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:5 of 82, time-this-age:5.9695
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:4 of 82, time-this-age:5.9063
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:3 of 82, time-this-age:5.7645
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:2 of 82, time-this-age:5.8967
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:1 of 82, time-this-age:6.0414
Completed SNW_VFI_MAIN_BISEC_VEC; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_base; time=497.621
```

Define Parameters

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'wz=du_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
```

```
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
xxx MEAN(VAL(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
                          mean_eta_1
    group
             savings
                                        mean_eta_2
                                                      mean_eta_3
                                                                    mean_eta_4
                                                                                  mean_eta_5
                                                                                                mean_eta_6
                                                                                                              mean_
     1
                           -121.95
                                         -119.04
                                                       -115.79
                                                                     -112.34
                                                                                   -108.82
                                                                                                 -105.33
                                                                                                               -101
      2
            0.00051498
                            -121.79
                                          -118.9
                                                       -115.66
                                                                     -112.23
                                                                                   -108.72
                                                                                                 -105.24
                                                                                                               -101
      3
              0.0041199
                            -120.77
                                          -117.99
                                                       -114.85
                                                                     -111.49
                                                                                   -108.07
                                                                                                 -104.65
                                                                                                               -101
      4
              0.013905
                            -118.46
                                          -115.89
                                                       -112.94
                                                                     -109.77
                                                                                    -106.5
                                                                                                 -103.24
                                                                                                               -100
      5
              0.032959
                            -115.01
                                          -112.69
                                                          -110
                                                                     -107.08
                                                                                   -104.04
                                                                                                 -100.99
                                                                                                               -97
              0.064373
                            -110.86
                                          -108.8
                                                       -106.37
                                                                     -103.71
                                                                                   -100.93
                                                                                                 -98.126
                                                                                                               -95
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
xxx MEAN(AP(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
    group
              savings
                          mean_eta_1
                                        mean_eta_2
                                                      mean_eta_3
                                                                    mean_eta_4
                                                                                  mean_eta_5
                                                                                                mean_eta_6
                                                                                                              mean_
     1
                                                 0
                                                                                                              6.646
            0.00051498
                                                                    3.2355e-07
                                                                                  8.8303e-07
     2
                                   0
                                                 0
                                                               0
                                                                                                1.3402e-06
                                                                                                              1.685
     3
             0.0041199
                          2.3328e-05
                                        4.6809e-05
                                                      7.1592e-05
                                                                    8.2019e-05
                                                                                  8.3298e-05
                                                                                                 7.997e-05
                                                                                                              7.448
     4
              0.013905
                           0.0013551
                                         0.0014087
                                                       0.0014521
                                                                     0.0014783
                                                                                   0.0014876
                                                                                                 0.0014875
                                                                                                               0.00
     5
                                         0.0058797
                                                                                                               0.00
              0.032959
                           0.0056972
                                                       0.0060165
                                                                     0.0060906
                                                                                   0.0061057
                                                                                                 0.0060871
      6
              0.064373
                                          0.015941
                                                        0.016146
                                                                      0.016236
                                                                                    0.016247
                                                                                                  0.016208
                                                                                                                0.6
                              0.0156
```

```
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
group
           savings
                     mean_eta_1
                                mean eta 2
                                           mean_eta_3
                                                      mean_eta_4
                                                                 mean_eta_5
                                                                             mean_eta_6
                                                                                        mean_
    1
                      0.13344
                                 0.13578
                                            0.13828
                                                       0.14094
                                                                  0.14377
                                                                             0.14679
```

2	0.00051498	0.13397	0.13632	0.13881	0.14147	0.1443	0.14732	0.1
3	0.0041199	0.13768	0.14	0.14247	0.14512	0.14795	0.15097	0.1
4	0.013905	0.14648	0.14877	0.15122	0.15385	0.15667	0.15969	0.1
5	0.032959	0.16186	0.16402	0.16638	0.16896	0.17178	0.17481	0.1
6	0.064373	0.18448	0.18648	0.18877	0.19133	0.19415	0.1972	0.20

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
    'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(KM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc, a
group
          kids
                                    mean_age_19
                                                 mean_age_20
                                                             mean_age_21
                                                                         mean_age_22
                                                                                     mean_age_23
                 marry
                        mean_age_18
                                      -36.95
    1
           1
                  0
                          -38.153
                                                  -35.802
                                                              -34.709
                                                                           -33.718
                                                                                       -32.818
    2
           2
                  0
                          -45.736
                                      -44.24
                                                  -42.778
                                                              -41.355
                                                                           -40.041
                                                                                       -38.825
    3
           3
                  0
                          -49.467
                                      -47.957
                                                  -46.467
                                                                          -43.644
                                                              -45.003
                                                                                       -42.382
    4
           4
                 0
                         -53.322
                                      -51.806
                                                  -50.292
                                                              -48.787
                                                                           -47.384
                                                                                       -46.072
    5
           5
                 0
                         -56.129
                                     -54.692
                                                  -53.245
                                                              -51.795
                                                                           -50.441
                                                                                       -49.173
    6
           1
                 1
                         -26.282
                                     -25.268
                                                  -24.319
                                                              -23.425
                                                                           -22.612
                                                                                       -21.872
    7
           2
                 1
                         -30.883
                                     -29.746
                                                   -28.66
                                                              -27.617
                                                                           -26.65
                                                                                       -25.755
    8
           3
                 1
                         -33.096
                                     -31.952
                                                  -30.853
                                                               -29.79
                                                                           -28.803
                                                                                       -27.886
    9
                 1
                         -35.694
                                     -34.564
                                                  -33.469
                                                              -32.399
                                                                           -31.401
                                                                                       -30.469
    10
                          -37.748
                                                  -35.641
                                                                                       -32.788
                 1
                                      -36.679
                                                              -34.621
                                                                           -33.672
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
```

xxx MEAN(AP(KM,J		P(KM,J))	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
	group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
	1	1	0	34.497	34.459	34.419	34.455	34.493	34.531
	2	2	0	34.303	34.259	34.213	34.242	34.272	34.302
	3	3	0	34.149	34.105	34.058	34.086	34.115	34.143
	4	4	0	34.057	34.013	33.967	33.996	34.024	34.053
	5	5	0	33.974	33.933	33.889	33.919	33.95	33.981

6	1	1	35.212	35.25	35.288	35.417	35.549	35.682
7	2	1	34.954	34.979	35.003	35.113	35.226	35.339
8	3	1	34.711	34.728	34.743	34.842	34.943	35.045
9	4	1	34.51	34.519	34.527	34.617	34.708	34.801
10	5	1	34.225	34.221	34.216	34.29	34.367	34.444

% Consumption Choices tb_az_c = ff_summ_nd_array("MEAN(C(KM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,

XXX	<pre>MEAN(C(KM,J))</pre>		XXXXXXXX	XXXXXXXXXXXXXX	XXXX				
	group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
	1	1	0	2.0602	2.0988	2.1385	2.1805	2.2207	2.2589
	2	2	0	2.2548	2.2985	2.3445	2.3938	2.4417	2.4882
	3	3	0	2.4085	2.4527	2.4992	2.5498	2.5989	2.6467
	4	4	0	2.5011	2.5444	2.5902	2.6404	2.6895	2.7373
	5	5	0	2.5841	2.625	2.6684	2.7166	2.7635	2.809
	6	1	1	2.6152	2.6754	2.7367	2.8014	2.8634	2.9226
	7	2	1	2.678	2.7363	2.7967	2.8619	2.9253	2.9868
	8	3	1	2.7864	2.8428	2.9018	2.966	3.0285	3.0891
	9	4	1	2.8495	2.9021	2.9575	3.0183	3.0775	3.135
	10	5	1	2.9142	2.9626	3.0136	3.0698	3.124	3.1763

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

4

1

1

2.9143

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar permute = [2,3,6,1,4,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_18
                                      mean_age_19
                                                   mean_age_20
                                                                mean_age_21
                                                                             mean_age_22
                                                                                          mean_age_23
     1
            0
                   0
                           -51.853
                                        -50.513
                                                     -49.192
                                                                  -47.891
                                                                               -46.665
                                                                                            -45.509
     2
            1
                   0
                           -45.27
                                        -43.745
                                                     -42.242
                                                                  -40.768
                                                                               -39.426
                                                                                            -38.199
     3
                                                     -32.905
                   1
                           -35.075
                                        -33.966
                                                                  -31.884
                                                                               -30.931
                                                                                            -30.041
                           -30.407
                                        -29.317
                                                     -28.272
                                                                  -27.257
                                                                               -26.324
                                                                                            -25.467
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(EKM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
                 marry
                         mean_age_18
                                      mean_age_19
                                                   mean_age_20
                                                                mean_age_21
                                                                             mean_age_22
                                                                                          mean_age_23
     1
            0
                   0
                           34.297
                                        34.264
                                                      34.23
                                                                  34.24
                                                                               34.251
                                                                                            34.261
     2
            1
                   0
                                        34.043
                                                     33.989
                                                                  34.039
                                                                               34.091
                                                                                            34.143
                           34,094
     3
                           34.773
                                        34.793
                                                                  34.883
                                                                               34.955
            0
                   1
                                                     34.812
                                                                                            35,027
     4
            1
                                       34.686
                                                     34.698
                                                                  34.828
                                                                               34.962
                                                                                            35.098
                   1
                           34.672
% Consumption Choices
tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           edu
                 marry
                         mean_age_18
                                      mean_age_19
                                                   mean_age_20
                                                                mean_age_21
                                                                             mean_age_22
                                                                                          mean_age_23
     1
            0
                   0
                           2.2603
                                       2.2935
                                                     2.3281
                                                                  2.3646
                                                                               2.4003
                                                                                            2.4353
                                                                                            2.7407
     2
            1
                   0
                           2.4632
                                        2.5143
                                                     2.5682
                                                                  2.6279
                                                                               2.6854
     3
            0
                   1
                           2.623
                                       2.6679
                                                      2.714
                                                                  2.7624
                                                                               2.8096
                                                                                            2.8557
```

3.0485

3.1246

3.1978

3.2682

2.9798

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


