It's a Beautiful Day in the Malware Neighborhood

Matt Maisel

Manager of Security Data Science @ Cylance

DEF CON Al Village, August 2018

Motivation

- Search and retrieval of similar malware samples provides context to analysts and systems
 - 1. Relate previously analyzed samples with unknowns
 - 2. Prioritize outliers for manual analysis and reverse engineering
 - Process samples in incoming alerts and route to other workflows
- Indexing samples by cryptographic or fuzzy hash is standard approach

Problem Statement

- Malware similarity is performed through comparison of raw bytes or extracted static and dynamic features that distill semantic characteristics
- Represent samples in a n-dimensional feature space

Please won't you be my neighbor?

- Nearest Neighbor (NN) Search: Given a set of n samples X, return the k nearest neighbors for query sample x_q according to a distance function $d(x_q, x_n)$.
- Approximate variant allows some error threshold ϵ that satisfies: $d(x_n, x_n) \leq (1 + \epsilon)d(x_n, x_n)$

Figure 1: K = 3

Theory and Literature Review

Methods

- ► Tree
- ▶ Hashing
- ► Graph

NN Methods

Figure 2: NYTimes @ $k = 100(ANN Benchmarks)^1$

¹https://github.com/erikbern/ann-benchmarks

Hierarchical Navigable Small World (HNSW)

- Fu et al. (2017) use a multi-layer graph and greedily identifies candidate samples for comparison
 - Construct graph during an offline phase
 - Query candidate neighbors via traversal mechanism
 - Iteratively search neighboring nodes until stopping criteria

Figure 3: Sketch of query from top to bottom layers (Fu et al. (2017))

Prioritized Dynamic Continuous Indexing (PDCI)

- ► Li and Malik (2017) design an exact randomized algorithm that avoids partitioning samples by vector space
 - Construct multiple indices that order samples along random directions
 - 2. Visit samples in index in order of distance from query
 - 3. If sample retrieved from all indices, add to candidate set for distance comparison

Related Malware Similarity Systems

- VirusTotal (2018) offers similarity search based feature hashing structural data
- ► Wallace (2015) provides an implementation of indexed ssdeep² and Abrahamy (2017) extends to use Elasticsearch³
- ▶ BitShred by Jang et al. (2011) perform pairwise Jaccard similarity in hadoop
- Upchurch and Zhou (2016) use MinHash in the Malware
 Provenance system which uses a sliding window hash on n-gram features from blocks of a disassembled sample

²https://github.com/bwall/ssdc

³https://github.com/intezer/ssdeep-elastic

Related Malware Similarity Systems

- ▶ Rieck et al (2011) released Malheur⁴ which uses a sequence representation of behavior extracted from sandbox reports to identify prototypes
- ► SARVAM⁵ indexes raw bytes as gray-scale images and compares the distance of computer vision features

Figure 4: Malheur Prototype Selection

Figure 5: SARVAM image

⁴http://www.mlsec.org/malheur/

⁵http://sarvam.ece.ucsb.edu

System Design

- 1. Extract and store sample metadata and raw feature data
- 2. Transform data via feature vectorization pipeline
- Fit indexes for NN methods on feature matrices
- 4. **Query** index with an input sample and return k-nearest neighbors along with relevant contextual features

System Design

Experiments

Figure 6: Results on vtcluster-jan2018 dataset, n = 27000, 15 classes

$$\begin{aligned} \textit{Precision@k} &= \frac{\text{relevant } \cap \text{ retrieved}}{k} \\ \textit{Recall@k} &= \frac{\text{relevant } \cap \text{ retrieved}}{\text{total relevant}} \end{aligned}$$

Remarks and Future Work

Feature Engineering

- Add support for more file type vectorizers beyond PE
- Extract multiple modalities, e.g. dynamic
- ► Feature selection and learning representations

Experiments

- Large-scale parameter Optimization
- Additional Benchmarks
- Evaluation of difference distance metrics

Use Cases

- Indexing of benign samples?
- Partial Fit

Questions?

- https://github.com/cylance/rogers
- ► Pull request are welcome!
- mmaisel@cylance[.]com

Appendix A - Feature Engineering

Modality	Variable Type	Examples
Raw Bytes	Continuous	entropy of byte ngrams, similarity hash digest (e.g. ssdeep, tlsh)
Static	Continuous	file size, PE image size, code size, # of sections, compile timestamp
Static	Categorical	import symbols, import dlls, exported symbols, opcodes
Dynamic	Categorical	system API calls, spawned processes, network activity
Dynamic	Continuous	# of registry operations, $#$ of file system operations, $#$ of network operations
Contextual	Categorical	AV and Yara detection names, observed host-names, file path names , user account

Table 1: Examples of Feature by Modality and Type

Appendix B - Protocol Buffers

```
message Feature {
 message Variable {
     enum Type {
 message Modality {
     enum Type {
 Variable.Type type = 1;
 Modality.Type mode = 2;
 Value value
```

Figure 7: Protocol buffer message definition for Feature