

Aug 16 2019

Generating chemically competent (E. coli) cells V.2

Su Yin Phua¹, Nay Chi Khin¹, Estee Tee¹, Diep R. Ganguly¹, Kai Xun Chan¹, Veronica Albrecht-Borth¹, Barry J Pogson¹

¹The Australian National University

Pogson Genomics Group

ABSTRACT

Protocol for generating chemically compotent (ie. for heat shock transformation) E. coli cells for transformation (e.g. heterologous protein expression, cloning).

GUIDELINES

Make sure to use asceptic technique to avoid contamination. Check for any growth conditions required for E. coli strain being grown. Prepare autoclaved 2x1 L Luria broth (25 g/L). Solutions A and B can be made prior to starting (ie. with overnight culture) or can be done in parallel with bacterial growth with Mg²⁺. Make sure eppies and -80°C storage box and space is organised.

MATERIALS

NAME V	CATALOG #	VENDOR V
MOPS	View	P212121
Luria-Bertani (LB) broth, makes 1L	K488	Amresco
Magnesium Chloride	AC223210010	Fisher Scientific
37°C Incubator		
100 Assay Cuvettes, 1.0ml	786-009A	G-Biosciences
Refrigerated centrifuge for conical tubes 50 ml		
Glycerol	GB0232.SIZE.500ml	Bio Basic Inc.
BL21(DE3) or BL21-Star(DE3) or Rosetta2(DE3) or etc for protein purification		
Falcon® Conical Tubes, 50 mL 500 Tubes	38010	Stemcell Technologies
8-10 sterile 50 mL conical tubes		
Sodium hydroxide	1064981000	Merck Millipore
EMD Millipore™ Stericup™ Sterile Vacuum Filter Units	SCGPU05RE	Fisher Scientific
UV/Vis spectrophotometer	View	

BEFORE STARTING

Plate out desired E. coli strain (e.g. DH5 α , BL21 star, Top10) to have colonies for an initial culture.

Prepare so	lutions	Α	and	В
------------	---------	---	-----	---

- 1 In a beaker, prepare 250 ml of Solution A:
 - 100 mM MgCl₂ (5.08g)
 - 10 mM MOPS (0.52g)
 - Up to \sim 250 mL H₂0

Adjust to pH 7 using 1 M NaOH (slowly; \sim 900 μ L)

Transfer to measuring cylinder and ensure final volume = 250 mL

- In a beaker, prepare 300 ml of Solution B
 - 10 mM MgCl₂ (0.61g)
 - 10 mM MOPS (6.78g)
 - 50 mM CaCl₂ (2.21g)
 - Fill to \sim 300 ml with H₂O

Adjust to pH 6.5 with 1 M NaOH (~6.8 ml)

Transfer to measuring cylinder and ensure final volume = 250 mL

3 Filter sterilize (stericup) both solutions and store @ 4°C.

Generate compotent cells

- 4 Culture bacteria at 37°C overnight in 5 mL LB media
- 5 Innoculate 500 mL LB media (using an aliquot or entire 5 mL overnight culture) + 10 mM MgSO₄ (make sure to add after autoclaving media). Grow to $OD_{600} = 0.4 0.5$ (do not exceed 0.6). This should take between 1 4 hrs depending on volumne of starter culture used (ie. 5 mL starter culture \sim 1 hr to reach $OD_{600} \sim 0.5$).
- 6 Cool on ice for 10 mins (make sure centrifuge is ready)
- 7 Pellet at 4°C for 10 mins @ ~4200 rcf
- Remove supernatant and resuspend cells in cold solution A (~250 mL; this can be adjusted to minimize the volume required for centrifugation but to adequately resuspend colonies). Split this equally across centrifuge bottles or falcon tubes.
- Q Incubate 10 20 minutes at 4°C.
- 10 Pellet at 4° C for 10 mins @ \sim 4200 rcf
- $11 \qquad \text{Remove supernatant and resuspend cells in cold solution B (see comment for solution A)}.$
- 12 Incubate 30 minutes at 4°C.

- 13 Pellet at 4°C for 10 mins @ ~4200 rcf
- 14 Remove supernatant and resuspend cells in 4.3 mL of cold Solution B + 700 μ L glycerol (pipette slowly).
- 15 $\,$ Make aliquots of 50 and/or 200 $\mu L.$ Freeze in liquid N_2 before storing in -80°C freezer.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited