Problem Statement - Part II

Q1. What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans:

Optiomal Value of alpha for out housing model came out to be:

Ridge Regression - 10

Lasso Regression-100

On doubling the value of alpha

Ridge Regression

```
-3.51445489e+02
  7.79151198e+02 -1.01848077e+03 0.00000000e+00
-1.57250234e+03
  1.27546034e+03 -2.06269301e+03 2.09080278e+03
5.42352546e+03
  1.80669058e+03
                 5.87395371e+02 1.47464768e+02
0.00000000e+00
  2.50849358e+02
                 0.00000000e+00 0.0000000e+00
5.08917370e+02
-4.49242463e+02 6.01820658e+03 2.25742312e+03
3.46820623e+03
 -2.97650068e+03 -6.08528492e+02 -6.20169559e+03
1.44113219e+02
  5.79765044e+03 -3.93301192e+03 -1.59645707e+03
2.19449477e+03
  2.86270602e+02 2.38863337e+01 1.78149802e+03
4.96430549e+03
 -5.14521020e+03 1.56102198e+04 -1.34144517e+04
-3.22135574e+03
 -3.65250916e+02 -2.63560877e+03 -1.15211500e+04
-1.08290014e+04
  2.37354756e+03 -9.02170427e+03 1.44871162e+04
1.45935883e+04
 -7.27361118e+03 -1.77305939e+03 -9.17686935e+03
-3.79913744e+03
  1.13614918e+04
                  1.07938913e+04 2.61430716e+03
4.21431061e+03
                  3.43064686e+03 -9.61052771e+02
  2.07171990e+03
2.50030618e+02
 -2.59403669e+03
                 1.18650919e+03 3.43456703e+03
-1.82801420e+01
  4.05134468e+03 -1.26990144e+03  4.08860436e+03
-1.32635286e+03
 -8.96274735e+02 -2.34257993e+03 1.20852219e+04
-6.38301118e+02
  1.01014718e+02 -2.43599460e+03 -3.20949781e+02
-1.72439188e+03
-3.85400059e+02
                  5.14206573e+02 6.87931696e+01
2.17225854e+02
 -6.66408798e+03
                  2.53828884e+03 -8.96274735e+02
-3.84715366e+02
  4.42071164e+03 -6.38301118e+02 5.08029073e+03
-2.39102715e+03
 -4.03819631e+03 1.28315632e+03 0.00000000e+00
```

```
-5.19031916e+03
  1.16637946e+03 -1.19815058e+03 2.18879366e+02
4.91348314e+03
 -5.33626363e+03 3.03048898e+03 2.16496303e+03
1.01846063e+03
-1.75781029e+03 9.47513821e+02 -3.58274063e+03
2.69017825e+03
  2.90870420e+03 -5.91916394e+01 1.61443982e+03
-9.04733830e+02
-4.55037597e+03 -1.15043360e+04 -4.30519075e+03
-8.87510558e+03
  6.50725147e+03 -1.42913764e+03 -4.75762804e+03
1.74286515e+03
  2.99777249e+03 -3.99967020e+03 -4.30519075e+03
-4.23508900e+03
 -1.61726941e+03 8.31851721e+02 -2.16749687e+03
-1.62858691e+03
 -1.80576455e+03 -7.58514504e+03 -7.48129587e+03
-8.32710438e+03
 -1.90225370e+03 2.33671199e+03 -2.77134058e+03
-1.18679183e+03
 -1.16859426e+02 3.90811629e+03 1.60104893e+03
4.49770068e+03
 -8.17320467e+03 4.00032276e+02 7.55457491e+02
7.55457491e+02
 -3.65280882e+03 -3.39438782e+031
alpha = 20
ridge = Ridge(alpha=alpha)
# Fit the model on Training data
ridge.fit(X train, y train)
print(ridge.coef )
     0.
                 -4914.08467287
                                    403.17836556
4009.98181375
  12894.2615192 6153.41445271 6791.91984316
3179.74639508
   1921.74427117 1588.73182569 -1337.91213154
-3378.59877441
  11643.27534811
                  245.60935152
                                 5799.57899193
0.
                  1948.74583919 -621.67199658
  16594.57325059
-293.90757445
```

1147.39394358	-1242.02937421	0.
-1122.07994488 1894.40404915	-1948.20625782	2446.82856036
5231.41469271 1856.5674806	749.32881123	184.22139294
0.		
304.21181269	0.	0.
548.89220111 -472.28145049	4895.617778	907.27515848
2027.9676853	4093.017770	907.27313040
-4122.42540462	-272.02365427	-3923.46807225
-254.05894491		
5060.57960197	-2876.86984255	-732.04821896
2076.24390514		
150.49210764	-68.28183354	1929.5924664
4001.26144917	11001 05505465	10404 20014060
-4709.86862668	11901.07585467	-10434.32914069
-3130.81343133 258.44180174	-721.73739301	-7972.07138823
-8314.17685276	-/21./3/39301	-/9/2.0/130023
1526.07533089	-6608.4077176	9926.80413744
11282.7602589		
-5414.15901218	-644.11684809	-6354.14081521
-3223.59112749		
8273.52295142	6252.72338419	1764.53325677
2915.86423538		
1085.00475095	2021.35633947	-169.13170862
-292.81083308 -1509.17011134	-181.96639237	1581.34972433
-335.87302036	-101.90039237	1301.349/2433
1955.51395471	-976.91835142	1689.71452228
-579.81182609	3,003100011	100317110110
-479.88813236	-1148.48643654	8865.99987668
-288.12794514		
	-2873.0262769	-131.52450844
-784.05478974		
-1422.80199209	468.3807758	-536.25244308
313.15389605 -4597.81349083	1375.87360694	-479.88813236
-48.01073698	13/3.0/300094	-4/9.00013230
3825.97691441	-288.12794514	3712.93440635
-1722.11654544	_ = = = - , ,	
-2145.60461647	756.94319435	0.
-3954.83814482		

891.66988831	-1072.50881763	63.87120095
2802.12029221		
-3700.95495147	1560.56547362	1975.16124905
332.1207147		
-1542.02835419	1096.61883011	-4432.10870901
1253.18122424		
2579.86401845	-206.36585356	661.25793438
-526.29427002		
-2430.50839095	-9073.56738963	-1898.22037322
-6538.88200461		
5854.79102608	-1386.69724119	-4806.78520424
1626.32382942		4000 0000
3369.28076618	-2615.78054487	-1898.22037322
-3508.21133999	504 00546050	1000 55505050
-1176.77704195	534.88716373	-1889.57507252
-628.96908952	4511 51506000	E C O O E 1 O O E O 7 O
-1850.77980821	-4511.51506022	-5680.51005079
-6387.05357526	2520 51422014	2440 40255500
-1559.25142667 -1441.96852752	2528.51433014	-2449.48355598
-596.87482258	2546.88807409	676.25084883
3527.38779046	2540.00007409	0/0.23004003
-5232.91118369	-693.46784002	573.57909684
x573.57909684	-093.40/04002	313.31303004
-3450.97529523	-3189.38197681]	
3430.71327323	3107.3017/001]	

- Coeff decreased for Ridge Regression - In Ridge regression coeff are shrined towards zero. By shrinking the Coefficient towards zero, the model's variance will reduce leading to less complex model but could result in more biased data.

The most important variable after the changes has been implemented for ridge regression are as follows:-

- 1. MSZoning_FV
- 2. MSZoning_RL
- 3. Neighborhood_Crawfor
- 4. MSZoning_RH

- 5. MSZoning_RM
- 6. SaleCondition Partial
- 7. Neighborhood_StoneBr
- 8. GrLivArea
- 9. SaleCondition Normal
- 10. Exterior1st BrkFace

Lasso Regression

The value of alpha in Lasso regression is a hyperparameter that determines the strength of the regularization term in the model. A higher value of alpha means a stronger regularization term, which can lead to more parameters being set to zero and a simpler model. A lower value of alpha means a weaker regularization term, which can allow more parameters to be non-zero and result in a more complex model.

R2 score with alpha - 100

.9210212714443634

R2 score with alpha -200

.9141304509285384

-> R2 score value decreased - This means that model becomes more constrained and less able to explain the variance

Those 5 most important predictor variables that will be excluded are :-

- 1. GrLivArea
- 2. OverallQual
- 3. OverallCond
- 4. TotalBsmtSF
- 5. GarageArea

Q2. You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

- The model we will choose to apply will depend on the use case.
- If we have too many variables and one of our primary goal is feature selection, then we will use **Lasso**.
- If we don't want to get too large coefficients and reduction of

coefficient magnitude is one of our prime goals, then we will use **Ridge Regression**.

Q3. After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans:

Predictors with high coefficients or trait importance values are considered to be with most important predictors.

After dropping the important predictors cols from the data set and reach

Question 4¶

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans

- Use large dataset so that we can have large train data and test data to train and model our data set to ensure its not overfitting the data.
- Handle Missing values effectively
- Validate the R2, VIF of the regression model.
- Regularize the model so that coefficients could be shrined towards zero and prevent he model from becoming too complex.
- If we look at it from the prespective of Accuracy, a too complex model will have a very high accuracy. So, to make our model more robust and generalizable, we will have to decrease variance which will lead to some bias. Addition of bias means that accuracy will decrease.