

HR ANALYTICS JOB BY CLASSIFICATION ALGORITHMS

Presented by:

Annal Ali Albeeshi

OUTLINE

01

OUR COMPAN

03 METHODOLOGY

02

DATASET DESCRIBING

04

RESULT

OUR COMPANY

A company who provided Data Science training is in need of Data Scientist for their own company and the HR department decided to make new enhancement in the process of recruitment from candidates who sign up their training.

Business Question

How to predict the probability of a candidate to look for a new job or will work for the company, as well as interpreting affected factors on employee decision?

02

DATASET DESCRIBING

DATASET DESCRIBING

Kaggle.

Our Dataset we get it from Kaggle.

Contains

19158 Row &14 Columns.

METHODOLOGY

- 01 Pre_processing
- **02** EDA Analysis.
- **03** Algorithms.

Methodology ... EDA Analysis

Methodology ... EDA Analysis

Methodology ... Algorithms

Logistic Regression Classifier

Decision Tree Classifier

K-Nearest Neighbor(KNN) Classifier

Random Forest Classifier

HANDLE IMBALANCED DATASETS

01

The dataset is imbalanced

Under-sampling
0: stay on the job
50.00%
1: find a new job

- **❖** To deal with this problem, three methods were used:
 - 1. Random Undersampling:
 - 2. Random Oversampling
 - 3. SMOTE

Algorithms Result with SMOTE

	Training	Test set	Precision	Recall	F1
Logistic Regression	80	73	44	25	32
Decision Tree	83	68	39	47	44
Random Forest	81	73	46	52	49
K-Nearest Neighbor	83	73	43	25	32

Visualization

Logistic Regression

Random Forest

K-Nearest Neighbor

Thanks!

DO YOU HAVE ANY QUESTIONS?

