

- Objectifs
- 2 Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- Vérification du modèle
- 6 Mesures
- Réferences

La Démarche

Le problème

Comment prévoir, anticiper et minimiser les conséquences de mouvements de foule dans différentes conditions extrêmes (non réalisables en pratique) pour un bâtiment donné?

Le défi

Construire une simulation réaliste des mouvements de foule dans un bâtiment donné.

- Récolte d'informations : accumuler des données sur le comportement réel des foules d'après des articles scientifiques
- Construction du modèle : Inclure ces informations sur le comportement dans une simulation numérique
- Estimer : en mesurant et observant les résultats de la simulation
- Conclure : quand à la sécurité du bâtiment

- Objectifs
- Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- Vérification du modèle
- 6 Mesures
- Réferences

Exemple d'informations récoltées

La lecture d'articles scientifiques permet d'obtenir des donnés chiffrées, par exemple :

Figure: Exemple d'étude réalisée sur les couloirs en T

- Il existe une vitesse idéale pour la fluidité du mouvement, vers laquelle tendent les vitesses des piétons après une perturbation
- Ralentissement de 34% lors de la rencontre de deux flux de piétons dans un "T"
- Différences de comportement en état normal ou état de stress

- Objectifs
- 2 Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- Vérification du modèle
- 6 Mesures
- Réferences

Restrictions

- On utilise des bâtiments simples, rectangulaires (et à murs perpendiculaires)
- On ne considère qu'un seul étage à la fois

Hypothèses du modèle

Différents moteurs physiques à essayer

- Obstacle : Je m'arrête
- Obstacle : Je me décale
- Obstacle : Si trop de pression derrière, je bouscule

L'idée : phénomène d'emportement

$$\mathrm{mouvement} = \frac{\left(\alpha.\mathrm{volont\'e} \ \mathrm{du} \ \mathrm{pi\'eton} + \left(1-\alpha\right) \ \mathrm{volont\'e} \ \mathrm{de} \ \mathrm{la} \ \mathrm{foule}\right)}{2}$$

 α varie selon l'humeur et l'état de stress du piéton.

- Objectifs
- 2 Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- Vérification du modèle
- 6 Mesures
- Réferences

Modèle de bâtiment

On utilise des plans d'étage avec des murs en noir sur fond blanc comme support d'entrée.

Un ou plusieurs accès par bâtiment sont possibles.

Modélisation:

- Attributs de dimensions (fixes)
- Grille booléenne de 0 (pas de mur) ou 1 (mur)
- Liste de piétons présents à l'intérieur

Figure: Image d'entrée modélisant un étage.

Modéliser un étage avec la théorie des Graphes

La topographie intérieure peut se modéliser comme une succession de nœuds (points de rencontre, croisements) et segments (couloirs).

Assigner chaque zone à un nœud :

MAIS On souhaite conserver la largeur $! \Rightarrow$ Associer une zone à un nœud "rectangulaire".

Chaque rectangle est un nœud en relation avec \leq 4 autres.

Modèle d'individu

Les piétons existent à des coordonnées flottantes, et ne sont pas limités à un "case".

⇒ une **densité** de population est donc définie sur chaque case.

Modélisation:

- Attributs de position flottants, aléatoires ou non (x et y)
- Rayon de la personne, aléatoire (La place qu'elle occupe)
- Vecteur vitesse et vecteur accélération
- Liste ordonnée de points (la trajectoire que le piéton souhaite suivre)
- Attribut d'humeur, pour varier le comportement (état de stress)

Modèle de population

La population représente la tendance moyenne du groupe de piétons.

Modélisation:

- Vecteur vitesse et vecteur accélération
 - ⇒ Moyenne des directions unitaires
 - ⇒ Médiane des normes (Moins sensible aux extrêmes)
- Seuil de densité limite (à partir duquel il y a des morts ou des piétinés)

- Objectifs
- Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- 6 Vérification du modèle
- 6 Mesures
- Réferences

Régression?

Il faudrait comparer des données réelles aux mesures numériques pour valider le modèle.

- Objectifs
- Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- Vérification du modèle
- 6 Mesures
- Réferences

Mise à l'épreuve d'un bâtiment réel

On peut ainsi soumettre les plans du nouveau bâtiment de Génie Mécanique de l'INSA à notre simulation.

En fonction des résultats, on pourra conclure quand à la validité des normes européennes, ou, à défaut, démolir le nouveau bâtiment de l'INSA.

- Objectifs
- Exemple d'informations récoltées
- Choix
 - Restrictions
 - Hypothèses du modèle
- 4 Le Modèle
 - Le bâtiment
 - L'individu
 - La population
- 5 Vérification du modèle
- 6 Mesures
- Réferences

Références I

A. Autor.

Introduction to Giving Presentations.

Klein-Verlag, 1990.

S. Jemand.

On this and that.

Journal of This and That, 2(1):50-100, 2000.

