How to Get the Most Out of Mobile VR in Unity

ARM

Roberto Lopez Mendez Senior Engineer

Vision VR/AR Summit 2017 05/01/2017

© ARM 2017

Agenda

- New mobile VR features in Unity 5.6
 - Daydream and Google Cardboard native integration
 - Single-pass stereo rendering (multiview)
- Mali Graphics Debugger integration in Unity
 - Live demo
- Mobile VR best practice
 - MSAA, ASTC, optimized rendering techniques based on local cubemaps
- Expected benefits from Vulkan in VR

Daydream native integration

Daydream native integration

∜unity VR

VR Plugin support limitations:

- Each VR device has a different plugin
- Plugins may conflict with each other
- Each release of newer VR SDKs / Runtimes can break older games
- Lower level engine optimizations are not possible with plugin approach of two separate cameras

Unity 5.6

Daydream Native Support

Simpler, easier, more efficient and performant

Porting your app to Daydream

Single-pass stereo rendering

Multi-pass vs single-pass stereo rendering

Traditional multi-pass pipeline for rendering stereo images

Single-pass (multiview) pipeline for rendering stereo images

Vertex shader with single-pass (multiview)

```
#version 300 es
#extension GL_OVR_multiview2 : enable
precision highp float;
layout(num_views = 2) in;
in vec3 vertexPosition;
in vec2 UVCoordinates;
out vec2 texCoord:
uniform mat4 MVP[2];
void main(){
      gl_Position = MVP[gl_ViewID_OVR] * vec4(vertexPosition, I.0f);
      texCoord = UVCoordinates:
```

← This line is executed N view times

Multi-pass vs single-pass CPU-GPU timeline

Single-pass (multiview): CPU load

Single pass (multiview): GPU vertex load

Multi-pass vs single-pass (Ice Cave VR MGD stats)

Multi-pass

10550 322 vertices, 6624 draws, 6304 instances...

- ▼ Process 0 (com.arm.icecavevr) 10550322 vertices, 6624 draws, 6304 instances, 0 instanced vertices, 10550322 indices, 2362619 unique indices, 281 render passes
 - Frame 01 render pass
- ► Frame 1 262938 vertices, 165 draws, 157 instances, 0 instanced vertices, 262938 indices, 58777 unique indices, 7 render passes
- ► Frame 2 282372 vertices, 169 draws, 161 instances, 0 instanced vertices, 282372 indices, 62857 unique indices, 7 render passes

Single-pass

6064536 vertices, 3560 draws, 3350 instances...

- ▼ Process 0 (com.arm.icecavevr) 6064536 vertices, 3560 draws, 3350 instances, 0 instanced vertices, 6064536 indices, 1339197 unique indices, 176 render passes
- Frame 01 render pass
- ▶ Frame 1 178494 vertices, 110 draws, 104 instances, 0 instanced vertices, 178494 indices, 39587 unique indices, 5 render passes
- Frame 2 178038 vertices, 102 draws, 96 instances, 0 instanced vertices, 178038 indices, 39327 unique indices, 5 render passes

Single-pass stereo rendering: stereo reflections

Single-pass stereo rendering: stereo reflections

Enable single-pass stereo rendering!

Mali Graphics Debugger (MGD) integration in Unity

Mali Graphics Debugger (MGD)

Draw-call by Draw-call stepping

To identify draw call related issues, redundant draw calls and other opportunities to optimize

Texture View

Visualize an application's texture usage, to identify opportunities to compress textures or change formats.

Shader Statistics

Understand which vertex and fragment shaders are the most expensive with cycle count reporting

Vertex Attribute / Uniform View

See vertex data and index buffers

State View

Full visibility of graphics state and tracking of state changes

Dynamic Optimization Advice

Highlighting of common API misusage and dynamic performance improvement advice

Mali Graphics Debugger

Mobile VR best practice

Mobile VR best practice

Enable 4 x Multisampling Anti Aliasing

Virtually for free in ARM Mali GPUs

Use texture compression

ASTC provides wide range of choices

Use optimized rendering techniques

Allow better performance with less use of resources

Optimized rendering techniques based on local cubemaps

Rendering techniques based on local cubemaps

Technique	Cubemap	Local Correction to
Dynamic soft shadows *	Renders the transparency of scene's boundaries to alpha channel	Vector from fragment to light
Reflection **	Renders scene to RGB channels	Reflection vector
Refraction ***	Renders scene to RGB channels	Refraction vector

^{*} Unity Asset Store: https://www.assetstore.unity3d.com/en/#!/content/61640

^{**} https://community.arm.com/groups/arm-mali-graphics/blog/2016/03/10/combined-reflections-stereo-reflections-in-vr

^{*** &}lt;a href="http://community.arm.com/groups/arm-mali-graphics/blog/2015/04/13/refraction-based-on-local-cubemaps">http://community.arm.com/groups/arm-mali-graphics/blog/2015/04/13/refraction-based-on-local-cubemaps

Dynamic soft shadows based on local cubemaps

Runtime stage

- Create a vertex to light source L vector in the vertex shader.
- Pass this vector to the fragment shader to obtain the vector from the pixel to the light position p_iL.
- Find the intersection of the vector p_iL with the bounding box.
- Build the vector CP from the cubemap position C to the intersection point P.
- Use the new vector CP to fetch the texture from the cubemap.
 float texShadow = texCUBE(CubeShadows, CP).a;

Dynamic soft shadows based on local cubemaps

Reflections based on local cubemap

Blurred Reflections at the Taiwan Intern. Airport

Blurred reflections based on local cubemaps

Why use rendering techniques based on LC?

Advantages over runtime rendering techniques

- 1. Up to 1.5 2.8 times faster
- Resource saving. Bandwidth halved as only read operations
- 3. Higher quality. No pixel flickering
- 4. Allow implementing nice effects: soft shadow, blurred reflections and refractions

When possible use rendering techniques based on LC

When combined with runtime rendering it helps improving quality at low cost

What next in VR?

Vulkan benefits also expected in VR

APPLICATION

Memory management
Thread management
Multi-threaded command
buffers
SPIR-V shader precompilation

Lower overall power consumption

ARM Mali GPU

VULKAN BENEFITS

- Portability across multiple platforms
- Native thread friendly
- Efficient utilization of multiprocessor architecture
- Lower CPU load
- Reduced energy consumption
- Extra benefits for mobile platform and tiling architectures such as ARM Mali GPUs
- Pixel access to result of previous sub-pass
- Data contained on fast on-chip memory
- Memory bandwidth saving
- Loadable validation and debug layers

Mali Graphics Debugger

Vulkan vs OpenGL ES

ARM

Click on the image to watch the video.

Wrap up

- Update to Unity 5.6 to benefit from:
 - Native support for Daydream and Google Cardboard
 - MGD integration in Unity easier and faster
 - Single pass stereo rendering less CPU and vertex processing load
- Some recommendations to improve VR performance and quality
 - 4x MSAA virtually for free in ARM Mali GPUs
 - ASTC wide range of compression ratios, support for 3D textures
 - Shadows, refraction and reflections based on local cubemaps faster, resource saving and better quality
- Vulkan coming to mobile VR
 - Performance and energy consumption improvement expected

Thank you

ARM

Questions

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2015 ARM Limited

To find out more....

• Find out more info about the topics of this talk at:

- https://www.youtube.com/watch?v=mb98QOIZ8ZE
- https://community.arm.com/graphics/b/blog/posts/optimizing-virtual-reality-understanding-multiview
- https://community.arm.com/graphics/b/blog/posts/mgd-integration-in-unity
- https://community.arm.com/graphics/b/blog/posts/intro-to-astc-as-presented-at-cgdc-2013
- http://malideveloper.arm.com/armunityguide
- https://community.arm.com/groups/arm-mali-graphics/blog/2016/03/10/combined-reflections-stereo-reflections-in-vr
- https://community.arm.com/groups/arm-mali-graphics/blog/2016/04/20/achieving-high-quality-mobile-vr-games
- http://community.arm.com/groups/arm-mali-graphics/blog/2015/04/13/dynamic-soft-shadows-based-on-local-cubemap
- http://community.arm.com/groups/arm-mali-graphics/blog/2014/08/07/reflections-based-on-local-cubemaps
- http://community.arm.com/groups/arm-mali-graphics/blog/2015/04/13/refraction-based-on-local-cubemaps
- http://community.arm.com/groups/arm-mali-graphics/blog/2015/05/21/the-power-of-local-cubemaps-at-unite-apac-and-thetaoyuan-effect
- https://www.youtube.com/watch?v=WI7nXq8oozw
- https://www.assetstore.unity3d.com/en/#!/content/61640

