Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 07.10.2011

Arbeitszeit: 120 min

Name:								
Vorname(n):								
Matrikelnumme	r:							Note:
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	10	10	10	10	40		
	erreichte Punkte							
		I		I		1		
Bitte								
tragon Sic	Nama Vornama und	Matril	zolnum r	nor out	dom F)oolshla:	tt oin	
tragen sie	Name, Vorname und	Matrik	emum	ner aur	dem 1	eckola	tt em,	
rechnen S	ie die Aufgaben auf se	eparatei	n Blätte	ern, ni e	c ht auf	dem A	ngabeblatt	',
heginnen	Sie für eine neue Aufg	ahe im	mer an	ch eine	nelle S	Seite		
beginnen	ole fur eme nege Huig	abe iiii	inci au	cii ciiic	neue c	croc,		
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,	
begründer	n Sie Ihre Antworten a	ausführ	lich und	-1				
segrander		asi aiii	iidii dii					
	ie hier an, an welcher ntreten können:	n der fo	olgende	n Term	nine Sie	nicht	zur mündl	ichen
	Fr., 14.10.2011	□ Mo	, 17.10.	2011		Di., 18	3.10.2011	

1. In einer abgeschlossenen Kammer befindet sich Gas mit einer Masse m, siehe Abbildung 1a. Die Kammer wird durch eine Wand mit der Dicke d_w isoliert, an der Innenseite der Wand (z=0) herrscht die Temperatur $T_{wi}(t)$ und an der Außenseite $(z=d_w)$ die konstante Temperatur T_{wo} , siehe Abbildung 1b. In die Kammer ragt eine Heizspirale, sie besteht aus Kupfer und lässt sich durch einen Widerstand R repräsentieren. Die Spirale hat einen spezifischen Widerstand r, eine Länge l und einen Durchmesser d.

Abbildung 1: Prinzipskizzen der Kammer.

Die Leistungsbilanz für die Kammer lautet:

$$\frac{\mathrm{d}}{\mathrm{d}t}U = P + Q_g \tag{1}$$

 $U=mc_VT_g$ ist die innere Energie, wobei $c_V>0$ ist. P ist die elektrische bzw. mechanische Leistung und

$$Q_g = -Q_w = A\sigma(T_{wi}^4 - T_g^4)$$

der Wärmestrom in das Gas zufolge der Strahlung. Es gilt $A,\sigma>0$. Es handelt sich um ein ideales Gas, daher ist die ideale Gasgleichung $m\bar{R}T_g=pV$ gültig, mit den Konstanten $\bar{R},V>0$, p repräsentiert den Druck in der Kammer. Das System verfügt über einen Drucksensor.

Zur Repräsentation der Wanddynamik wird die Energieerhaltung

$$\dot{\mathcal{W}} + \mathcal{Q} = 0, \tag{2}$$

verwendet. Es gilt weiters

$$\dot{\mathcal{W}} = A\rho_w c_w \int_0^{d_w} \frac{\partial T_w(t, z)}{\partial t} dz,$$

$$\mathcal{Q} = -A\lambda_w \left. \frac{\partial T_w(t, z)}{\partial z} \right|_{z=d_w} - Q_w.$$

mit den Konstanten $\rho_w, c_w, \lambda_w > 0$.

- a) Bestimmen Sie den Widerstand R, sowie die elektrische Leistung der Heizspi- 1 P.| rale als Funktion des Stromes i(t).
- b) Gesucht sind die Modellgleichung mit dem Zustandsvektor $\mathbf{x} = [T_g, T_{wi}]^T$ und 7 P.| dem Eingang u = i.
 - \bullet Geben Sie die zeitliche Änderung der Gastemperatur $T_g(t)$ an.
 - ullet Es wird vorausgesetzt, dass die Wandtemperatur $T_w(t,z)$ einem linearen Temperaturverlauf genügt

$$T_w(t,z) = \frac{d_w - z}{d_w} T_{wi}(t) + \frac{z}{d_w} T_{wo} \quad \text{mit} \quad 0 \le z \le d_w.$$
 (3)

Geben Sie mithilfe der Gleichung (3) die zeitliche Änderung der inneren Wandtemperatur $T_{wi}(t)$ an.

- Gesucht ist die Ausgangsgleichung $y = h(\mathbf{x})$.
- c) Gegeben ist das folgende nichtlineare System mit dem Zustandsvektor $\mathbf{x}=2\,\mathrm{P.}|$ $\left[\alpha,\dot{\alpha},\beta,\dot{\beta}\right]^T$ und dem Eingang u=M

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\alpha} \\ \frac{k}{J_1} (\beta R - \alpha r)^3 r + \frac{M}{J_1} \\ \dot{\beta} \\ \frac{1}{J_2} \left(-k (\beta R - \alpha r)^3 R + GL\cos(\beta) \right) \end{bmatrix},$$

$$y = L\sin(\beta).$$

Linearisieren Sie das System um eine allgemeine Ruhelage (\mathbf{x}_R, u_R) und geben Sie es in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an.

Hinweis: Aufgabe c) ist unabhängig von den anderen Teilaufgaben zu lösen.

Abbildung 2: Strukturschaltbild des Regelkreises.

2. Gegeben ist der in Abbildung 2 dargestellte Regelkreis mit

$$G(s) = \frac{400\sqrt{3}}{(s+2\sqrt{3})(s+2)}$$

a) Skizzieren Sie das Bode-Diagramm von G(s) anhand der Asymptoten. Verwenden Sie dafür die beiliegende Vorlage.

Hinweis: Achten Sie auf eine qualitativ richtige Darstellung der wesentlichen Einzelheiten. Die genauen Zahlenwerte spielen nur eine untergeordnete Rolle.

- b) Entwerfen Sie für die Strecke G(s) einen PI Regler R(s), sodass die Sprung- 5 P. antwort des geschlossenen Regelkreises die nachfolgenden Spezifikationen erfüllt:
 - Anstiegszeit $t_r = 0.75 \,\mathrm{s}$,
 - prozentuales Überschwingen ü= 10% und
 - $e_{\infty}|_{r(t)=\sigma(t)}=0.$

c) Es soll nun die folgende Übertragungsfunktion

$$G(s) = \frac{1}{s-3}$$

3 P.

untersucht werden. Abbildung 2 zeigt die relevante Regelkreisstruktur, dabei soll der geschlossene Regelkreis mit den Reglern i) bis iii) auf interne Stabilität untersucht werden. Begründen Sie ihre Aussage.

i)
$$R(s) = \frac{s-3}{s+1}$$

$$R(s) = s + 10$$

$$R(s) = \frac{7s+4}{s}$$

Hinweis: Aufgabe c) ist unabhängig von den anderen Teilaufgaben zu lösen.

Abbildung 3: Bode-Diagramm der Strecke G(s) zu Aufgabe 2.a).

- 3. Bearbeiten Sie die nachfolgenden voneinander unabhängigen Aufgabenstellungen.
 - a) Gegeben ist das autonome System

$$\dot{x} = -x^2 \qquad t > 0$$

mit $x(0) = x_0 > 0$.

- i. Bestimmen Sie das zugehörige Abtastsystem mit der Abtastzeit T_a . 2 P.| Hinweis: Verwenden Sie **kein** numerisches Näherungsverfahren, wie etwa das Eulerverfahren.
- ii. Zeigen Sie mittels vollständiger Induktion, dass für $T_a=1$ und $x_0=1$ 2 P.

$$x_k = \frac{1}{1+k} \qquad k \ge 0$$

gilt.

b) Bei der Bestimmung der z-Übertragungsfunktion eines LTI-Systems mit der Übertragungsfunktion G(s) wird üblicherweise von einer Struktur mit Halteglied H und Abtaster A wie in Abb. 4.a dargestellt ausgegangen. Die z-Übertragungsfunktion lautet dann

$$G(z) = \frac{y_z(z)}{u_z(z)} = \frac{z-1}{z} \mathbf{Z} \left(\frac{G(s)}{s}\right)$$

mit der Transformationsvorschrift

$$g_z(z) = \mathbf{Z}(\hat{g}(s)) = \mathcal{Z}(\mathcal{L}^{-1}(\hat{g}(s))|_{t=kT_a})$$

für ein Signal $\hat{g}(s)$. Um diese Beziehung herzuleiten, kann das in Abb. 4.b gezeigte Testsignal $u(t) = \sigma(t) - \sigma(t - T_a)$ mit der Impulsfolge $(u_k) = (\delta_k) = (1, 0, 0, \ldots)$ verwendet werden.

Abbildung 4: Abtastsystem.

Wird die Eingangsfolge nicht mit einem Halteglied H in ein treppenförmiges Signal umgewandelt, sondern mit einem linearen Interpolator H in ein stetiges, stückweise lineares Signal, so ergibt sich die Transformationsvorschrift

$$G(z) = \frac{y_z(z)}{u_z(z)} = \frac{(z-1)^2}{T_a z} \mathbf{Z} \left(\frac{G(s)}{s^2}\right). \tag{4}$$

Beweisen Sie (4).

Hinweis: Sie können dabei als Testsignal u(t) die verschobene Dreiecksfunktion gemäß Abb. 4.c samt deren verschobener Impulsfolge $(u_k) = (\delta_{k-1}) = (0, 1, 0, 0, \ldots)$ verwenden.

4. Gegeben ist das Abtastsystem

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & 1/2 \\ -1/2 & 0 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u_k \tag{5a}$$

$$y_k = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x}_k \tag{5b}$$

mit dem Messausgang y_k .

- a) Zeigen Sie, dass es nicht vollständig beobachtbar ist. 1 P.|
- b) Für das System (5) soll der Beobachter

$$\hat{\mathbf{x}}_{k+1} = \begin{bmatrix} 1 & 1/2 \\ -1/2 & 0 \end{bmatrix} \hat{\mathbf{x}}_k + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u_k + \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} (\hat{y}_k - y_k)$$
 (6a)

$$\hat{y}_k = \begin{bmatrix} 1 & 1 \end{bmatrix} \hat{\mathbf{x}}_k \tag{6b}$$

verwendet werden. In welchem Wertebereich müssen $k_1 \in \mathbb{R}$ und $k_2 \in \mathbb{R}$ 7P.| liegen, damit der Beobachtungsfehler asymptotisch abnimmt? Geben Sie die entsprechenden Ungleichungen für k_1 und k_2 an. Zeichnen Sie den zulässigen Wertebereich in nachfolgender Abbildung ein.

Abbildung 5: Zulässiger Wertebereich der Beobachterverstärkung.

Hinweis: Sie können zur Bestimmung des zulässigen Wertebereiches z. B. das Verfahren von Jury oder nach Anwendung der Tustin-Transformation auch das Verfahren von Routh-Hurwitz verwenden.

c) Kann der Beobachter (6) als Dead-Beat Beobachter ausgeführt werden? Be- 2 P. gründen Sie ihre Antwort.