TYPE YOUR NAME HERE

HW 20: 4.1 - 4.6 M328K April 5th, 2012

4.1 Exercise. For i = 0, 1, 2, 3, 4, 5, and 6, find the number in the canonical complete residue system to which 2^i is congruent modulo 7. In other words, compute $2^0 \pmod{7}, 2^1 \pmod{7}, 2^2 \pmod{7}, \ldots, 2^6 \pmod{7}$.

Solution. Type your solution here! \Box
4.2 Theorem. Let a and n be natural numbers with $(a, n) = 1$. Then $(a^j, n) = 1$ for any natural number j .
Proof. Type your proof here!
4.3 Theorem. Let a , b , and n be integers with $n > 0$ and $(a, n) = 1$. If $a \equiv b \pmod{n}$, then $(b, n) = 1$.
Proof. Type your proof here!
4.4 Theorem. Let a and n be natural numbers. Then there exist natural numbers if and j, with $i \neq j$, such that $a^i \equiv a^j \pmod{n}$.
Proof. Type your proof here!
4.5 Theorem. Let $a, b, c,$ and n be integers with $n > 0$. If $ac \equiv bc \pmod{n}$ and $(c, n) = 1$, then $a \equiv b \pmod{n}$.
Proof. Type your proof here!
4.6 Theorem. Let a and n be natural numbers with $(a, n) = 1$. Then there exists a

Proof. Type your proof here! □

natural number k such that $a^k \equiv 1 \pmod{n}$.