Advanced Probabilistic Machine Learning and Applications

Caterina De Bacco and Isabel Valera

1 Tutorial 1: Introduction to probabilistic ML

Exercise 1: Multivariate Gaussian

Given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}^{\top}$ in which the observations $\{\mathbf{x}_n\}$ are assumed to be drawn independently from a multivariate Gaussian distribution, i.e., $\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x)$:

- 1. Estimate the mean and covariance parameters i. e., μ_x and Σ_x , by maximum likelihood.
- 2. Assume the covariance matrix Σ_x to be known and a Gaussian prior over the mean parameter μ_x with mean μ_0 and identity covariance matrix, i.e., $\mathcal{N}(\mu_x|\mu_0, \mathbf{I})$. Compute the distribution a posteriori of the mean parameter μ_x given the observe data \mathbf{X} , i.e., $p(\mu_x|\mathbf{X},\mu_0,\Sigma_x)$, and its *Maximum a posteriori* (MAP) solution.

Exercise 2: Categorical distribution

Given a data set $\mathbf{X} = \{x_1, \dots, x_N\}^{\top}$ in which the observations $x_n \in \{1, \dots, k\}$ are assumed to be drawn independently from a Categorical distribution, i.e., $x_1, \dots, x_N \sim Categorical(x | \pi_1, \dots, \pi_k)$:

- 1. Estimate the parameters, i.e., the category probabilities $\{\pi_k\}$ by maximum likelihood.
- 2. Assume a Dirichlet prior over the category probabilities $\{\pi_k\}$ with hyperparameter α , i.e., $\pi_1, \ldots, \pi_k \sim Dirichlet(\pi_1, \ldots, \pi_k | \alpha)$. Compute the distribution a posteriori of the category probabilities $\{\pi_k\}$ given the observe data \mathbf{X} , i.e., $p(\pi_1, \ldots, \pi_k | \mathbf{X}, \alpha)$.

Exercise 3: Graphical models and corresponding joint distribution

1. Given the following generative model:

$$p(\{x_n, z_n\}_{n=1}^N, \{\pi_k, \mu_k\}_{k=1}^K) = \prod_n p(x_n | z_n, \{\mu_k\}_{k=1}^K, \sigma_x) p(z_n | \pi_1, \dots, \pi_k), p(\pi_1, \dots, \pi_k | \alpha),$$

where $\{x_n\}$ are the observed variables, draw the corresponding graphical model.

2. Given the graphical model in Figure 1, write the generative model.

Figure 1: Graphical model for Exercise 3.1