UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Discussion 10

Fall 2023

1. Poisson Process Arrival Times

Consider a Poisson process $(N_t)_{t\geq 0}$ with rate 1. Let T_k be the time of the kth arrival, $k\geq 1$.

- a. Find $\mathbb{E}(T_3 | N_1 = 2)$.
- b. Given $T_3 = s$, where s > 0, find the joint distribution of T_1 and T_2 .
- c. Find $\mathbb{E}(T_2 \mid T_3 = s)$.

2. Poisson Process Practice

Let $(N_t)_{t\geq 0}$ be a Poisson process with rate λ . Let T_k , $k\geq 1$ denote the time of the kth arrival. Given $0\leq s< t$, we write N(s,t):=N(t)-N(s). Compute the following:

- a. $\mathbb{P}(N(1) + N(2,4) + N(3,5) = 0)$.
- b. $\mathbb{E}(N(1,3) \mid N(1,2) = 3)$.
- c. $\mathbb{E}(T_2 \mid N(2) = 1)$.

3. Poisson Process Warmup

Give an interpretation of the following fact in terms of a Poisson process with rate λ . If N is Geometric with parameter p and $(X_k)_{k\in\mathbb{N}}$ are i.i.d. Exponential(λ), then $X_1+\cdots+X_N$ has an Exponential distribution with parameter λp .