COMP4901K/Math4824B Machine Learning for Natural Language Processing

Lecture 15: Sequence to Sequence Learning Instructor: Yangqiu Song

Sequence to Sequence

Speech recognition

http://nlp.stanford.edu/courses/lsa352/

Sequence to Sequence

Question answering

Sequence to Sequence

Machine translation

Welcome to the deep learning class

7 billion people, 7000 languages

Machine Translation

Machine Translation (MT) is the task of translating a sentence x
from one language (the source language) to a sentence y in
another language (the target language).

1950s: Early Machine Translation

- Mostly Russian → English (motivated by the Cold War!)
- Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts

Source: https://youtu.be/K-HfpsHPmvw

1990s-2010s: Statistical Machine Translation

- Core idea: Learn a probabilistic model from data
- Suppose we're translating Language X → English.
- We want to find best English sentence y, given Language X sentence x $\operatorname{argmax}_y P(y|x)$
- Use Bayes Rule to break this down into two components to be learnt separately:

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

Models how words and phrases
should be translated.

Learnt from parallel data.

Language Model
Models how to write good English.
Learnt from monolingual data.

- Translation model
- Input is Segmented in Phrases
- Each Phrase is Translated into English
- Phrases are Reordered

Language Model

```
Goal of the Language Model: Detect good English
```

For Example: Trigram Model

```
Mary did not slap the green witch

Mary => p(Mary)

Mary did => p(did|Mary)

Mary did not => p(not|Mary did)

did not slap => p(slap|did not)

not slap the => p(the|not slap)

slap the green => p(green|slap the)

the green witch => p(witch|the green)
```

1990s-2010s: Statistical Machine Translation

$$\operatorname{argmax}_{y} P(x|y) P(y)$$

Question:
How to compute this argmax?

Translation Model

Language Model

 We could enumerate every possible y and calculate the probability? → Too expensive!

 Answer: Use a heuristic search algorithm to gradually build up the translation, discarding hypotheses that are too low probability

Decoding

Decoding

- Global solution: Dynamic programming
- Approximate solutions: Beam inference
 - At each position keep the top k complete sequences
 - Extend each sequence in each local way
 - The extensions compete for the k slots at the next position

- (a) Greedy
- (b) Beam Search

- Advantages
 - Fast; beam sizes of 3-5 are almost as good as exact inference in many cases
 - Easy to implement (no dynamic programming required)
- Disadvantage
 - Inexact: the globally best sequence can fall off the beam

Decoding

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not did not	give	aa	slap	to	the	witch green	green witch
	no	•			to the			
	did_not_give			the				
	slap				the witch			

```
e:
f: -----
p: 1
```

Decoding

Decoding

Decoding

Decoding

1990s-2010s: Statistical Machine Translation

- SMT is a huge research field
- The best systems are extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems have many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

 Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network

 The neural network architecture is called sequence-tosequence (aka seq2seq) and it involves two RNNs.

Sutskever et al., 2014

Sequence to Sequence Learning with Neural Networks

Model

Model

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a Conditional Language Model.
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x)

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given

- Question: How to train a NMT system? target words so far and source sentence x
- Answer: Get a big parallel corpus...

Model

Model- encoder

Model- encoder

Model- encoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Model- decoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

• Model- decoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Model- decoder

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Training a Neural Machine Translation system

Seq2seq is optimized as a **single system**. Backpropagation operates "end to end".

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

Evaluation (Machine Translation)

- BLEU (bilingual evaluation understudy) (Papineni et al. (2002))
 - BLEU compares the <u>machine-written translation</u> to <u>one or</u> several <u>human-written translation</u>(s), and computes a similarity score based on:
 - n-gram precision (usually up to 3 or 4-grams)
 - Penalty for too-short system translations
 - BLEUs output is always a number between 0 and 1
 - 1 means identical to the reference translations

BLEU is useful but imperfect

 BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics

There are many valid ways to translate a sentence

 So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation L

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09 sennrich.pdf

NMT Analysis

Model Analysis

NMT Analysis

Long sentences

NMT: the biggest success story of NLP Deep Learning

- Neural Machine Translation went from a fringe research activity in 2014 to the leading standard method in 2016
 - 2014: First seq2seq paper published
 - 2016: Google Translate switches from SMT to NMT

- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

So is Machine Translation solved?

Nope!

- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs
- (Old) Bad Examples
 - http://languagelog.ldc.upenn.edu/nll/?p=35120#more-35120
 - https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

NMT research continues

- NMT is the flagship task for NLP Deep Learning
 - NMT research has pioneered many of the recent innovations of NLP Deep Learning

- In 2018: NMT research continues to thrive
 - Researchers have found many, many improvements to the "vanilla" seq2seq NMT system we've presented today