STAT120C Assignment 1

Due: April 8th by 5pm in the STAT120C (Pluta) Dropbox in DBH

Problem 1. Suppose X_1, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$.

- (a) Compute $E[\bar{X}]$ and $Var[\bar{X}]$, where \bar{X} is defined as $\frac{1}{n}\sum_{i=1}^{n}X_{i}$
- (b) What is the distribution of $X_i \mu$? What is the distribution of $(X_i \mu)/\sigma$? What is the distribution of $\bar{X} \mu$?
- (c) If μ and σ^2 are known, how can you construct a χ^2 -distributed random variable using X_1, \dots, X_n ? Provide the degrees of freedom.
- (d) How can you construct a t-distributed random variable using X_1, \dots, X_n ? Provide the degrees of freedom for your constructed random variable.

Problem 2. Suppose X_1, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$, with both mean μ and variance σ^2 unknown.

- (a) Find the maximum likelihood estimates of μ and σ^2 .
- (b) Derive and simplify the likelihood ratio Λ for $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.
- (c) What distribution does $-2log(\Lambda)$ follow under the null hypothesis?

Problem 3. (a) Show that the MLE $\hat{\sigma}^2$ derived in 2(a) is biased for σ^2 . Does the MLE overestimate or underestimate σ^2 on average?

(b) What effect might this bias have on testing results when $\hat{\sigma}^2$ is used? Will the test reject or fail to reject H_0 more often than if an unbiased estimate is used?

Problem 4. Suppose X_1, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$. To test the null hypothesis $H_0: \mu = \mu_0$, the t-test is often used:

$$t = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$$

Under H_0 , t follows a t distribution with n-1 df. The null hypothesis is rejected when t^2 is large. Show that in the likelihood ratio test, the null hypothesis is also rejected for large values of t^2 .

Hints:

- (a) You might want to use results you obtain from **Problem 2** (b).
- (b) The following equation is also helpful. Prove it before you use it (it is not very difficult).

$$\sum_{i=1}^{n} (X_i - \mu_0)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{i=1}^{n} (\bar{X} - \mu_0)^2$$

1

Problem 5. (a) Write the definition of a *P*-value in the Null Hypothesis Significance Testing framework (NHST).

(b) Carefully explain why the P-value is **not** the "probability that H_0 is true".

Problem 6. Suppose X_1, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$, and that we want to test the null hypothesis $H_0: \mu = 0$.

- (a) Write the formula for the test statistic for a one-sample t-test from this sample.
- (b) What is the reference distribution for the statistic in (a)? Draw a picture or produce a plot of the reference distribution and shade the region corresponding to the P-value for a right-tailed test.
- (c) How will the *P*-values compare for the two possible alternative hypotheses $H_1: \mu = 1$, and $H_1: \mu = 100$? Explain your answer.
- (d) How will the P-values compare for a left-tailed, right-tailed, and two-tailed test?