SFDC Topic Modeling and Sentiment

Ken Brooks

June 3, 2015

Adapted from Ted Kwartler (Ted@sportsanalytics.org (mailto:Ted@sportsanalytics.org)), Open Data Science Conference Workshop: Intro to Text Mining using R, 5-30-2015, v7.0 Topic Modeling and simple sentiment

```
#Set the working directory and import libraries
#setwd("~/Google Drive KB/Open Source Conf")
dataDir <- if(interactive()) 'data' else '../data'</pre>
#libraries
library(tm)
## Loading required package: NLP
library(topicmodels)
#install.packages('topicmodels')
library(portfolio)
## Loading required package: grid
## Loading required package: lattice
## Loading required package: nlme
#install.packages("portfolio")
#library(ggplot2)
#library(ggthemes)
library(plyr)
library(stringr)
library(dplyr)
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:plyr':
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
## The following object is masked from 'package:nlme':
##
##
       collapse
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

Set options and defined functions

```
#options, functions
options(stringsAsFactors = FALSE)
Sys.setlocale('LC_ALL','C')
```

```
## [1] "C/C/C/C/en_US.UTF-8"
```

```
#try to lower function
tryTolower <- function(x){</pre>
  # return NA when there is an error
  y = NA
  # tryCatch error
  try error = tryCatch(tolower(x), error = function(e) e)
  # if not an error
  if (!inherits(try error, 'error'))
    y = tolower(x)
  return(y)
}
clean.corpus<-function(corpus){</pre>
  corpus <- tm_map(corpus, removePunctuation)</pre>
  corpus <- tm_map(corpus, stripWhitespace)</pre>
  corpus <- tm map(corpus, removeNumbers)</pre>
  corpus <- tm_map(corpus, content_transformer(tryTolower))</pre>
  corpus <- tm_map(corpus, removeWords, custom.stopwords)</pre>
  return(corpus)
}
#Bigram token maker
bigram.tokenizer <-function(x)</pre>
  unlist(lapply(ngrams(words(x), 2), paste, collapse = " "), use.names = FALSE)
#Bring in subjective lexicons
pos <- readLines("positive words.txt")</pre>
neg <- readLines("negative_words.txt")</pre>
#Simple sentiment subject word counter function, poached online
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
  scores = laply(sentences, function(sentence, pos.words, neg.words) {
    word.list = str split(sentence, '\\s+')
    words = unlist(word.list)
    # compare our words to the dictionaries of positive & negative terms
    pos.matches = match(words, pos.words)
    neg.matches = match(words, neg.words)
    pos.matches = !is.na(pos.matches)
    neg.matches = !is.na(neg.matches)
    #TRUE/FALSE will be treated as 1/0 by sum():
    score = sum(pos.matches) - sum(neg.matches)
    return(score)
  }, pos.words, neg.words, .progress=.progress )
  scores.df = data.frame(score=scores, text=sentences)
  return(scores.df)
}
```

Create custom stop words

```
#Create custom stop words
custom.stopwords <- c(stopwords('english'), 'lol', 'smh', 'learning curve', 'learn
ing curves')</pre>
```

Import and clean text, build dtm

```
#bring in some text
#text <-read.csv (file.path dataDir, 'SFDC Survey.csv', header=TRUE)</pre>
text <-readxl::read_excel('LP Spring 2016 Instructor Survey- 3_Free Responses.xls
x')
#Create a clean corpus
# Instructor:
col1 = "What do you like most about LaunchPad?"
# col1 = "How can LaunchPad be improved? Tell us one feature or function that coul
d be added or improved to make your experience of LaunchPad better."
#Student:
# col1 = "How can LaunchPad be improved? Tell us one feature or function that coul
d be added or improved to make your LaunchPad experience better."
corpus <- Corpus(DataframeSource(data.frame(text[[col1]])))</pre>
corpus <- clean.corpus(corpus)</pre>
#Make a DTM
dtm<-DocumentTermMatrix(corpus, control=list(tokenize=bigram.tokenizer))</pre>
```

Perform topic modeling

```
#In Topic Modeling, remove any docs with all zeros after removing stopwords
rowTotals <- apply(dtm , 1, sum)</pre>
          <- dtm[rowTotals> 0, ]
dtm.new
#In Sentiment, to ensure the number of rows in the dtm.new and the sentiment data
frame equal
text <-cbind(text,rowTotals)</pre>
text <- text[rowTotals> 0, ]
#Begin Topic Modeling; can use CTM or LDA
topic.model <- LDA(dtm.new, control = list(alpha = 0.1), k = 5)
#Topic Extraction
topics<-get_terms(topic.model, 5)</pre>
colnames(topics)<-c("topic1","topic2","topic3","topic4","topic5")</pre>
topics<-as.data.frame(topics)</pre>
t1<-paste(topics$topic1,collapse=' ')
t2<-paste(topics$topic2,collapse=' ')
t3<-paste(topics$topic3,collapse=' ')
t4<-paste(topics$topic4,collapse=' ')
t5<-paste(topics$topic5,collapse=' ')
topics
```

```
##
          topic1
                              topic2
                                                topic3
                                           really like
## 1
        easy use
                            ease use
## 2 students use
                       students like
                                         user friendly
## 3 use students classes traditional activities videos
## 4
       also like
                                           also really
                            easy use
## 5
      can assign encourage students
                                          case studies
##
                      topic4
                                        topic5
## 1
                students can
                                      ease use
## 2
                                  ability give
                auto grading
## 3
                                   able assign
                    easy set
## 4
                   like idea adaptive learning
## 5 powerpoint presentations
                                ebook quizzing
```

Assign documents to topics

```
#Score each tweet's probability for the topic models then add the topic words to t
he df as headers
scoring<-posterior(topic.model)
scores<-scoring$topics
scores<-as.data.frame(scores)
colnames(scores)<-c(t1,t2,t3,t4,t5)

#The max probability of each tweet classifies the tweet document
topics.text<-as.data.frame(cbind(row.names(scores),apply(scores,1,function(x) name
s(scores)[which(x==max(x))])))</pre>
```

Perform sentiment scoring

##			
 			0%
 			1%
 	=		1%
 			2%
 	==		3%
 	==		48
 	===		48
 	===		5%
 	====		6%
 	====		7%
 	====		7%
 -	====		8%
i I	=====		9%
 	=====		10%
 	=====		10%
 	=====		11%
	======		12%
	======		12%
	======		13%
	=======		13%
	=======		14%
	=======		15%
 	=======	•	15%
 	=======		16%

U	SFDC Topic Wodering and Sentiment	
	======== 	16%
	 ======== 	17%
	 ========= 	18%
	 ========= 	19%
	 ========== 	19%
	 ========== 	20%
	 ========== 	21%
	 =========== 	21%
	 ========== 	22%
	! ============== !	22%
	 ===================================	23%
	 ===================================	24%
	 ===================================	24%
	! ====================================	25%
	 ===================================	26%
	 ===================================	27%
	 ===================================	27%
	 ===================================	28%
	 ===================================	29%
	! ====================================	30%
	 ===================================	30%
	 ===================================	31%
	 ===================================	32%
	 ===================================	33%
	 ===================================	33%
	 ===================================	34%

 		35%
 =================================		35%
 =================================	1	36%
 -===================================	· 	36%
 -===================================	1	37%
 ===================================	1	38%
 ===================================		38%
 ===================================		39%
 ===================================		39%
 ===================================		40%
 ====================================		41%
 ===================================		41%
 ===================================		42%
 ===================================		42%
 ===================================		43%
 ===================================		44%
 ===================================		44%
 ===================================		45%
 ===================================		46%
 ===================================		47%
 ===================================		47%
 ===================================		48%
 ===================================		49%
 ===================================		50%
 ===================================		50%

,	======================================	1	51%
	 ===================================		52%
	 ===================================		53%
	 ===================================		53%
	 ===================================		54%
	 ===================================		55%
	 ===================================		56%
	 ======= 		56%
	 ======= 		57%
	 ======== 		58%
	 ======== 		58%
	 ===================================		59%
	 ===================================		59%
	 ======== 		60%
	 ======== 		61%
	ı ======== 		61%
	ı ======== 		62%
	ı ======== 		62%
	ı ======== 		63%
	ı ======== 		64%
	 ======== 		64%
	 ======== 		65%
	 ===================================		65%
	 ===================================		66%
	 ===================================		67%
	 ===================================		67%

 ===================================		68%
 ===================================		69%
 ===================================		70%
 ===================================		70%
 ===================================		71%
ı ====================================		72%
 ===================================		73%
 ===================================		73%
 ===================================		74%
 ===================================		75%
 ===================================		76%
 ===================================		76%
 ===================================		77%
 ===================================		78%
 ===================================		78%
 ===================================		79%
 ===================================		79%
 ===================================		80%
 		81%
		81%
=====================================		82%
 		83%
 		84%
		84%
		85%

SFDC Topic Modeling and Sendment		
		85%
		86%
 ===================================		87%
 		87%
		888
		888
		89%
 		90%
		90%
		91%
		92%
		93%
		93%
		94%
		95%
		96%
	:	96%
	:	97%
	=	98%
	=	99%
	==	99%
	==	100%

Sort comments with most negative on top and print them

histogram(all\$sentiment)


```
sent.limit = -5

all %>% filter(sentiment <= sent.limit) %>% arrange(desc(sentiment)) %>% select(te
xt)
```

```
## [1] text
## <0 rows> (or 0-length row.names)
```

Plot sentiment over time

- · Make sure data frame is in date order
- · aggregate by week?
- · plot time series
- add a loess trend line