Angewandte Statistik II

Dr. Uli Wannek

Skript erstellt von Alina Renz

Sommersemester 2018

Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Wilhelm-Schickard-Institut für Informatik

Inhaltsverzeichnis

T	Lille	are iviouelle	4
	1.1		4
	1.2	Einfaches Lineares Modell	4
	1.3	Additives und Interaktives Lineares Modell	7
	1.4	Kennwerte Linearer Modelle	8
	1.5	Generalisierte Lineare Modelle	9
	1.6		LC
	1.7	Lösung der Aufgabe	
	1.8	Praktische Lösung mittels Python statsmodels	
	1.9	Ergebnis lineare Modelle in Python	
		Bestes Modell?	
		Modell-Vergleich	
		Deviance	
	1.12	Deviance	
2	Gene	eralisierte Lineare Modelle - GLM 2	24
	2.1	Motivation Generalisiertes Lineares Modell	24
	2.2	Generalisierte Lineare Modelle	28
	2.3	Exponentialfamilie	29
	2.4	•	36
	2.5		38
	2.6	Logistische Regression	
	2.7	Toleranzverteilung	
	2.8	Beispiele	
		•	
3	Prin	· F. · · · · · · · · · · · · · · · · · ·	4
	3.1	Lineare Abhängigkeit	j4
	3.2	Multivariate Verteilung	5
	3.3	Datenreduktion	30
	3.4	Kovarianzmatrix $Cov(X_i, X_k)$;1
	3.5	Singularwertzerlegung	32
	3.6	Hauptkomponenten	32
	3.7	Pipeline PCA	3
	3.8	Beispiele	54
	3.9	Komponenten	6
	3.10	Separation und Interpretation	6
	3.11		37
	3.12	Python sklearn PCA	38
			39
			3 9
4		•	1
	4.1	Cocktailparty Stimm-Separation	71

Inhaltsverzeichnis

	4.2	PCA nicht geeignet	 72
	4.3	Frage: Entmischung	 72
	4.4	Zentraler Grenzwertsatz	 73
	4.5	Projection Pursuit	 76
	4.6	ICA	 78
	4.7	Python sklearn FastICA	
	4.8	Unabhängige Verteilung	
	4.9	Zusammenfassung ICA	
	4.10	Anwendungen	 85
5	Baye	es-Statistik	87
	5.1	Satz von Bayes & Schlussfolgerung	 87
	5.2	Bayes Statistik	 89
	5.3	Dichotome Daten	 91
	5.4	Einflüsse der Beiträge	 93
	5.5	Parameter	 94
	5.6	Beta-Verteilung	 95
	5.7	Vorwissen und Prior	 96
	5.8	Grenzen der Methode conjugate priors	 99
	5.9	MCMC	 100
		Gibbs Sampling	
		Hamilton HMC	
	5.12	NUTS	 109
	5.13	Ziele eines guten Samples	 109
	5.14	Stan	 111
	5.15	PyStan-Beispiele	 112
	5.16	Hierarchische Modelle	 117
		Modellvergleich	
		Vergleich zu frequentistischer Statistik	
		Versuchs-Intention	
	5.20	Entscheidung mit Bayes-Statistik	 137
	5.21	Tests	 142
	5.22	'Take home'-Messages	 145
	5.23	Generalisierte Lineare Modelle mit Bayes	 146
6	Lite	ratur	156

1 Lineare Modelle

1.1 Zufallsvariable Y

- Verteilung, Erwartungswert, Varianz, Form (Schiefe, Kurtosis,...)
- Parameter der Verteilung $(\mu, \sigma), (\lambda), \dots$
 - Punktschätzer $(\hat{\mu}), (\hat{\theta}), \dots$
 - Konfidenzintervall
- Zusätzlich abhängig von einer Variablen X:

$$\mathcal{E}(Y_i) = \mu_i$$
$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- mit der linearen Abhängigkeit

$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

- Ausprägungen
 - nominal, z.B. rot/grün/blau; f/m; Städte
 - ordinal, z.B. kein/etwas/viel; Schulabschluss
 - kardinal/metrisch, z.B. Dosis, Stimulusintensität, -Abstand, -Anzahl
 - speziell dichotom, z.B. ja/nein; klein/groß; 0/1

1.2 Einfaches Lineares Modell

$$Y = \beta_0 + \beta_1 X$$

- \bullet abhängige Variable: Zufallsvariable Y
 - (mehrfache) Messung/Realisierung, ergibt Wert y_i
 - response
 - fehlerbehaftet
- \bullet unabhängige Variable X
 - mit Wert x_i , vom Experimentator vorgegeben, 'control'
 - mit Wert x_i , fest, mitgemessen, 'covariate'
 - Vorhersageparameter 'predictor'

- Linearer Zusammenhang
 - -kausale Abhängigkeit Y von X
 - Proportionalitätsfaktor β_1
 - y-Achsenabschnitt β_0 'intercept'
- Streuung zulassen

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

• Konventionen

Schrift	Bedeutung	Beispiel
Großbuchstaben	Zufallsvariable	\overline{Y}
Kleinbuchstaben	Realisierung einer Zufallsvariale, Messwert	x_i, y
\mathbf{fett}	Vektor oder Matrix	$\mathbf{X},\mathbf{y},\boldsymbol{\epsilon}$
Griechisch	Parameter	eta,μ
Hut $\hat{\ }$	Schätzer	$eta, \mu \ \widehat{eta}_0$
Index i	Index für Werte	x_i
$ \begin{array}{c} \operatorname{Index} \ _{j} \\ \operatorname{Index} \ ^{(m)} \end{array} $	Index für Parameter	β_j $h^{(m+1)}$
$\operatorname{Index}^{(m)}$	Index für Iteration	$b^{(m+1)}$

- Lineares Modell Matrix Schreibweise
 - Seien Y_i i.i.d. Zufallsvariablen mit normalverteilter Streuung ϵ

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\mathcal{E}(Y_i) = \mu_i = \beta_0 + \beta_1 X_i \qquad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- n-malige unabhängige, identische Wiederholung des Versuchs
 - * Messtupel (X_i, Y_i) mit $i \in [1 \dots n]$
 - * Erlaubte Streuung in Y_i
- Abhängige Variable Y

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$

- Parametervektor β

$$\boldsymbol{eta} = egin{bmatrix} eta_0 \\ eta_1 \end{bmatrix}$$

- * bestimmt die Modell-Abhängigkeit $y_i \sim x_i$
- unabhängige Variable X
 - * Vektor $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$
 - * erweitert um den y-Achsenabschnitt intercept

· Vektor
$$\mathbf{1} = [1, 1, \dots, 1]^T$$

 $- \Rightarrow Designmatrix X$

$$\mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$$

- * unabhängige Variablen in Spalten
- * Indikator- (Pseudo-) Variable für unabhängige Kategorien
- \Rightarrow Lineares Modell

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X} \quad \boldsymbol{\beta}$$

$$\mathcal{E}(Y_i) = 1 \cdot \beta_0 + X_i \cdot \beta_1$$

- $-\epsilon$ Streuungen in y
 - * Messfehler
 - * Ungenauigkeiten
 - * Residuen: Abweichungen vom Modell

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \epsilon$$

$$\mathcal{E}(\mathbf{y}) = \mathbf{X} \boldsymbol{\beta}$$

- Gesucht: Parameter des Modells $\boldsymbol{\beta}$
- Lösung dieser Aufgabe:

mittels Anpassen der Parameter durch iterative Anwendung von Matrixinversion aus Maximum-Likelihood-Prinzip / Kleinste-Quadrate-Schätzung

- Ergebnis: Parametervektor β
 - * Punktschätzer $\hat{\beta}$ mit Konfidenzintervall
 - $* \ \mathit{Signifikanz}$

1.3 Additives und Interaktives Lineares Modell

- Additives Lineares Modell
 - kunabhängige Variablen X_j als Spalten der Länge n in die ${\bf Designmatrix}$ einfügen

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \vdots & & \ddots & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}$$

- den **Parametervektor** erweitern zu

$$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_k \end{bmatrix}$$

- ergibt das additive Lineare Modell

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$

- Interaktives Lineares Modell
 - -sind die unabhängigen Variablen X_l und X_m untereinander unabhängig, dann ist

$$x_{io} = x_{il} \cdot x_{im}$$

eine neue unabhängige Variable und kann als Spalte der Designmatrix hinzugefügt werden

- Interaktion: Beeinflussung von X_l auf X_m
- Designmatrix mit zusätzlichem Interaktions-Term

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} & x_{1,k+1} = x_{1,l} \cdot x_{1,m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,k} & x_{n,k+1} = x_{n,l} \cdot x_{n,m} \end{bmatrix}$$

Schätzung der Parameter analog

$$\widehat{\boldsymbol{\beta}} = [\widehat{\beta}_0, \ \widehat{\beta}_1, \dots \widehat{\beta}_k, \ \widehat{\beta}_{lm}]^T$$

- Formelbeschreibung in patsy beispielweise
 - * 'y \sim x1: x2': beinhaltet eine Spalte mit Term x1*x2 in Designmatrix
 - * 'y ~ x1 * x2 + x3': Abkürzung für: Spalte mit Termen 1, x1, x2, x1*x2 und x3

1.4 Kennwerte Linearer Modelle

• Einzelne Messwerte

$$Y_i = 1\beta_0 + X_{i1}\beta_1 + \dots + X_{ik}\beta_k + \epsilon_i$$

- mit Zufall/Streuung/Rauschen ("Homoskedastizitätsannahme", (Residuen-) Varianzhomogenität)

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Dann

$$\mathcal{E}(Y_i) = \beta_0 + X_{i1}\beta_1 + \dots + X_{ik}\beta_k$$
$$Var(Y_i) = \sigma^2$$

- vektoriell
 - Erwartungswert

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$$

- Varianz-Kovarianz-Matrix

$$\mathbf{V}_{jk} = \mathcal{E}((Y_j - \mu_j) \cdot (Y_k - \mu_k))$$

* im unabhängigen Fall

$$Var(Y_j) = V_{jj} = \sigma_j^2$$

$$Cov(Y_j, Y_k) = V_{jk} = 0 \quad \text{für } k \neq j$$

* im i.i.d.-Fall

$$Var(Y_j) = V_{jj} = \sigma^2$$

* Definition:

$$Cov(Y_j, Y_k) = \mathcal{E}\Big((Y_j - \mathcal{E}(Y_j)) \cdot (Y_k - \mathcal{E}(Y_k))\Big)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \cdot (x - \mathcal{E}(X)) \cdot (y - \mathcal{E}(Y)) \, dy \, dx$$

* daraus folgt im unabhängigen Fall (siehe oben):

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_X(x) \cdot f_Y(y) \cdot (x - \mathcal{E}(X)) \cdot (y - \mathcal{E}(Y)) \, dy \, dx = 0 \quad q.e.d.$$

1.5 Generalisierte Lineare Modelle

• Lineares Modell

$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \epsilon$$

$$\mathcal{E}(\mathbf{y}) = \mathbf{X} \boldsymbol{\beta}$$

• Generalisiertes Lineares Modell mit Link-Funktion g

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\mu}$$
$$g(\boldsymbol{\mu}) = \boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$$

- insbesondere hilfreich mit
 - * kategorialer abhängiger Variable
 - * dichotomer abhängiger Variable
- Spezialfall
 - Link-Funktion Identität

$$\eta = g(\mu) = \mu$$

- Streuung Normalverteilung

$$f(\mathbf{Y}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^2}{2\sigma^2}\right)$$

- Dann ergibt sich

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$
$$Var(\mathbf{Y}) = \sigma^2$$

... das (einfache) Lineare Modell

- Fragestellungen
 - Das Modell ist festgelegt
 - * Theorie
 - * Erfahrung
 - * Vorversuch
 - Die Modell-Parameter
 - * sind unbekannt
 - * oder dienen der Überprüfung einer Theorie
 - * gilt es, aus Messungen von X_i und Y_i zu bestimmen
 - Schlussfolgerung
 - * Ist Y von X abhängig? (Signifikanz)
 - * Ist die Abhängigkeit stärker unter Versuchsbedingung A als unter B? (Vergleich)

1.6 Fragestellung

- Ziel: Parameter β
- Anpassung (fit) des Linearen Modells, so dass die Residuen minimiert werden.
- Erinnerung: Homoskedastizitätsannahme der Normalverteilten Residuen.
 - Summe der Abweichungsbeträge L_1

$$S_1(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^n |y_i - \widehat{y}_i|$$

-Element der maximalen Aweichung L_{∞}

$$S_{\infty}(\mathbf{y}, \widehat{\mathbf{y}}) = max_i(|y_i - \widehat{y}_i|)$$

- Euklidische Abstandsquadratsumme ${\cal L}_2$

$$S_2(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Euklidische Norm: $||\mathbf{z}|| = \sqrt{S_2(\mathbf{z}, \mathbf{0})} = \sqrt{\mathbf{z}^T \mathbf{z}} = \sqrt{\sum_{i=1}^n z_i^2}$
- Quadratfehlersumme

$$RSS = S_2(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- * Wird verwendet, wenn Gauß'sche Fehler vorhanden sind
- Gauß-Markov-Theorem
 - L_2 liefert die kleinste Varianz zu einem erwartungstreuen (unbiased)linearen Schätzer
 - Voraussetzung:
 - * unabhängige Parameter
 - * Fehler i.i.d. (independently identically distributed)
 - Nicht zwingend hier:
 - * Normalverteilung

1.7 Lösung der Aufgabe

Lösung 1: Kleinste Quadrate Schätzer

• Für das Lineare Modell

$$\hat{\mathbf{y}} = \mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$

• Speziell: Ausgleichsgerade

$$\hat{\mathbf{y}} = \mathcal{E}(\mathbf{Y}) = \beta_0 + \beta_1 \mathbf{x}$$

- Ansatz

$$S_2(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{i=1}^n r_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i))^2 \stackrel{!}{=} min_{\beta_0, \beta_1}$$

- führt dank einfacher Rechnung zu

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

- Residuenvarianz (bereits zwei Werte geschätzt, reduziert Freiheitsgrade)

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \widehat{\epsilon}_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

Lösung 2: Matrix-Ansatz

$$y = X\beta + \epsilon$$

• Minimieren der Fehlerquadratsumme

$$S_2(\mathbf{y}, \widehat{\mathbf{y}}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \stackrel{!}{=} min_{\boldsymbol{\beta}}$$

- führt zu

$$\mathbf{X}^T \mathbf{v} = \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$$

– mit Lösung

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \ \mathbf{X})^{-1} \mathbf{X}^T \ \mathbf{y}$$

- Mit Gewichtung
 - Minimieren der Fehlerquadratsumme mit reziprok gewichteten Varianzen

$$S_2(\mathbf{y}, \widehat{\mathbf{y}}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \stackrel{!}{=} min_{\boldsymbol{\beta}}$$

— (Varianz-Kovarianz-Matrix $\mathbf{V}; \ \mathbf{V}_{jk} = Cov(Y_j, Y_k)$) führt zu

$$\mathbf{X}^T \mathbf{V}^{-1} \mathbf{y} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \boldsymbol{\beta}$$

- mit Lösung

$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

- Gilt für beliebige Dimensionen
 - hier mit 2x2 Matrix einfach
- Höherdimensional möglich, nur technisch schwer.
 - Dann iterativ zu bestimmen
- Numerisch instabil mit Kovarianzen
- Unlösbar oder stark fehlerbehaftet durch Gleitkommafehler
 - wenn unterbestimmt durch unglückliche Verteilung der Fehler
 - zu wenig Freiheitsgrade
- Implementiert in Python statsmodels.ols:
 - pinv: Moore-Penrose pseudoinverse
 - qr: Q-R-Zerlegung

Lösung 3: Maximum Likelihood Schätzer

• Ansatz über Verbund-Wahrscheinlichkeitsverteilung $f_{\theta}(\mathbf{y}) = \text{Likelihood } L_{\mathbf{y}}(\boldsymbol{\theta})$

$$L(\boldsymbol{\theta}|\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}) = \prod_{i=1}^{N} f(y_i|\boldsymbol{\theta})$$

- Daraus Log-Likelihood

$$l(\boldsymbol{\theta}|\mathbf{y}) := \log L(\boldsymbol{\theta}|\mathbf{y}) = \sum_{i=1}^{N} \log f(y_i|\boldsymbol{\theta})$$

- zu maximieren

$$l(\widehat{\boldsymbol{\theta}}) \stackrel{!}{=} max_{\boldsymbol{\theta}}$$

• Beispiel Normalverteilung

- Lineares Modell $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ $\boldsymbol{\mu} = \mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$

- Normalverteilung $f(y_i|\mu_i,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i-\mu_i)^2}{2\sigma^2}\right)$

- Parametervektor $\boldsymbol{\theta} = [\beta_0, \beta_1, \sigma]^T$

– Log-Likelihood:

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log f(y_i | \boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}\right)$$

$$= -\frac{n}{2} \log 2\pi - n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$$

- Maximieren der Log-Likelihood führt zum Parametervektor-Schätzer $\hat{\boldsymbol{\theta}} = [\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}]^T$

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

Vergleich der Lösungen

- Kleinste-Quadrate-Methode
 - Minimieren S_2 der Residuen
 - Findet Kleinste-Quadrate-Schätzer (least square, LSE) für Parameter
- Max-Likelihood-Methode
 - Maximiert Log-Likelihood
 - Findet Max-Likelihood-Schätzer (MLE) für Parameter
- Meist das selbe Ergenis
 - Bei Normalverteilung identisch

Anwendungsbeispiel: log(Gehirnmasse) ∼ log(Körpermasse)

- Designmatrix
 - Zeilen:
 - * Daten der einzelnen Tiere (i)
 - Spalten:
 - * unabhängige Variable 'Körpergewicht'
 - * Konstante für den y-Achsenabschnitt (intercept) β_0
- Designmatrix mit numpy: np.vstack((np.ones(len(x1)), x1)).T
- Berechne den Punktschätzer des Parametervektors aus Designmatrix und Datenvektor

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \ \mathbf{X})^{-1} \mathbf{X}^T \ \mathbf{y}$$

1.8 Praktische Lösung mittels Python statsmodels

- Homepage: http://www.statsmodels.org/stable/
- Beschreibung
 - GLS = Generalized least squares regression
 - OLS = Ordinary least square regression
 - GLM = Generalized linear models
 - * $\mathrm{fit} = \mathrm{smf.glm}(\mathrm{formula='log_BrainWt} \sim \mathrm{log_BodyWt'}, \; \mathrm{data=animalsdata}).\mathrm{fit}()$
 - * Ergebnis/Ausgabe:
 - · Parametervektorschätzer
 - · Standardabweichung
 - · z-Wert der Gauß-Statistik
 - · p-Wert dazu
 - · 95%-Konfidenzintervall
- Daten interpolieren, extrapolieren
 - Modell an die Daten anpassen (fit) ergibt den Parameter-Schätzer

 $\hat{oldsymbol{eta}}$

- Der vorhergesagte Wert $\hat{\mathbf{y}}$ ist

$$\hat{\mathbf{y}} = \mathbf{X} \hat{\boldsymbol{\beta}}$$

$$\hat{y}_i = (\mathbf{X}\hat{\boldsymbol{\beta}})_i = \sum_{j=0}^m x_{ij}\beta_j = 1\beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{im}\beta_m$$

1.8.1 Python statsmodels

- statsmodels.formula.glm.fit() beschreibt ein lineares Datenmodell
 - Eingabe Datensatz data =
 - * pandas.DataFrame mit Variablennamen
 - * unabhängige Variablen bzw. Designmatrix
 - * abhängigen Variablen
 - Eingabe Modell formula=
 - * patsy-Formel mit abhängiger Variable \sim unabhängiger Variablen
 - * 'y \sim x1 + x2 + x3'
 - * berücksichtigt bereits die Konstantenspalte der Designmatrix intercept

- · \Rightarrow explizit ausschließen ' \sim -1'
- statsmodels.GLM.fit()
 - Eingabe Daten
 - * exog: unabhängige Variablen in Spalten der Designmatrix X
 - · zusätzlich Konstante intercept anfügen sm.add constant(X)
 - · Bei Interaktion sind zusätzliche Spalten zu berechnen
 - * endog: abhängige Variable, gemessene Daten y
- statsmodels.___.fit()
 - Ausgabe Parametervektor
 - * Punktschätzer
 - · Standardabweichung
 - · Vertrauensintervall
 - · Z-Wert der Gauß-Statistik
 - · p-Wert
 - Ausgabe Statistiken und Kennzahlen
 - * ...
 - Ausgabe Fit-Werte
 - * fittedvalues: (als pandas-Daten-Series)
 - * resid_response: verbleibende Fehler (Series)
 - * predict(x): Zwischenwerte vorhersagen/extrapolieren
 - · x als DataFrame mit passend benannten Spalten

1.8.2 Python Pandas

- Python Pandas für Umgang mit Daten
 - Homepage: http://pandas.pydata.org/pandas-docs/stable/overview.html
 - Daten aus Datei einlesen read csv()
 - Variable vom Typ DataFrame
 - * Auswahl der in Spalten enthaltenen Variablen durch Namensstring
 - * Auswahl nach Kriterien, Index, Eigenschaften, ...
 - * Umfangreiche Methoden
 - · sortieren sort()
 - Beispiel: Abhängigkeit von Körpergewicht und Hirngewicht

- * Lösung? Zufällige Abweichungen zwischen Messung y_i und Modell-Vorhersage \hat{y}_i
- * Residuen

$$r_i = y_i - \widehat{y}_i$$

1.8.3 Python Patsy

- Designmatrix mit patsy
 - Homepage: http://patsy.readthedocs.io/en/latest/overview.html
 - Patsy erlaubt Formulierung
 - * des Modells
 - * der zu benutzenden Daten
 - Eingabe:
 - * y, X = patsy.dmatrices('yvar \sim xvar1 + xvar2', df)
 - * verwendet pandas DataFrame df
 - Ausgabe
 - * Designmatrix x als patsy.design_info.DesignMatrix, N*K Array, mit y-Achsenabschnittskonstante
 - * Gemessene Daten y als patsy.design_info.DesignMatrix, N*1 Array
 - Generelle Form: Innerhalb eines Strings $y \sim x$
 - * links der Tilde die abhängige Variable
 - * rechts die unabhängige Variablen
 - Anschaulich lassen sich die Namen der Datenfelder aus dem DataFrame benutzen

1.9 Ergebnis lineare Modelle in Python

- Daten lassen sich in DataFrames komfortabel bearbeiten
- lassen sich durch Patsy-Formel beschreiben
- Schätzer für Parameter lassen sich durch statsmodels.glm berechnen
- Rückgabewerte:
 - Kennzahlen
 - Statistik
 - Punktschätzer für Parameter (Steigung und Achsenabschnitt) und deren
 - Intervallschätzer
 - **–** ...

1.10 Bestes Modell?

- Ein perfekt passendes Modell muss nicht das beste sein
- Gleiche Versuchsbedingung, identische Zeile in Designmatrix: Streuung in $\mu_{i_1} = \mu_{i_2} = \dots$
- \Rightarrow Fehler zulassen

$$\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

- Theorie
- Ockham's razor

Verdichtung der Information

- Nicht von Interesse: alle einzelnen μ_i der abhängigen Variablen Y
- Von Interesse:
 - Einfluss der unabhängigen Variablen (erklärende Variablen, Pediktoren) X
 - * kategorial
 - * kontinuierlich
 - * Versuchsbedingungen $i \quad i \in [1 \dots n]$
 - zugehörige Parameter
 - * modellieren X, Gewichtung der Einflüsse
 - * Parameter $\beta_j \quad j \in [1 \dots k] \quad k \ll n$
- = das Modell

Ergebnis

- Modell = Entscheidung für Vereinfachung
- Es verbleiben Residuen

Residuen

• Verteilung der Residuen

$$Y_i = \mathbf{X}_i^T \boldsymbol{\beta} + \epsilon_i \qquad \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

$$\mathcal{E}(Y_i) = \mu_i = \mathbf{X}_i^T \boldsymbol{\beta} \qquad \qquad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- Anforderung an Residuen
 - Modell soll gut abbilden, 'in der Mitte' $\Rightarrow \mathcal{E}(R) = 0$
 - Streuung in Verteilung hat dieselben Ursachen
 - * Lineares Modell, Gauß- Verteilung: $\Rightarrow Var(R) = const.$
 - * Gemäß Verteilung
 - Gutes Modell erklärt Messdaten
 - * Keine (wenig) Information in den Residuen:
 - \Rightarrow unabhängig, homoskedastisch
- Homoskedastizität und Unabhängigkeit
 - Systematische Abweichungen? \Rightarrow Auf den Grund gehen!

1.11 Modell-Vergleich

• Quadratfehlersumme, sum of squared residua, RSS

$$RSS = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - (\mathbf{X}\widehat{\boldsymbol{\beta}})_i)^2$$

- Ist eine charakteristische Kennzahl
 - * Für Gauß-Verteilungen: standardisierte Quadratfehlersumme $\tilde{S} = \frac{RSS}{\sigma^2}$
 - * $\tilde{S} \sim \chi^2(n-p)$
- Abhängigkeit nur von
 - * n Werten der abhängigen Variablen
 - * n Werten der unabhängigen Variablen
 - * p geschätzte Parameterwerte
- je kleiner RSS, desto näher liegt das Modell an den Daten
- Schätzer für β
 - $\hat{\boldsymbol{\beta}}$ aus Max-Likelihood oder Kleinste-Quadtrate (k Komponenten)
- Schätzer für μ
 - $-\widehat{\mu}_i = \mathbf{X}_i^T \widehat{\boldsymbol{\beta}}$ aus dem linearen Modell
- Schätzer für $St\"{o}rparameter$ σ^2
 - Seien y_i Normalverteilt (mindestens näherungsweise; Zentraler Grenzwertsatz) dann ist mit

$$RSS = \sum_{i=1}^{N} r_i^2 = \sum_{i=1}^{N} (y_i - (\mathbf{X}\widehat{\boldsymbol{\beta}})_i)^2$$
$$\widehat{\sigma}^2 = \frac{1}{N-p} RSS$$

-ein erwartungstreuer Schätzer der Varian
z σ^2 für das Lineare Modell

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$$
 $Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$

$$\hat{\sigma}^2 = \frac{1}{N-p} \sum_{i=1}^{N} r_i^2 = \frac{1}{N-p} \sum_{i=1}^{N} (y_i - (\mathbf{X}\hat{\boldsymbol{\beta}})_i)^2$$

• Verteilung der standardisierten Fehlerquadratsumme

$$\frac{RSS}{\sigma^2} \sim \chi^2(N-p)$$

– Die Verteilung der Zufallsvariable Schätzer der Residuen-Varianz $\hat{\sigma}^2$ ist dann skaliert:

$$\hat{\sigma}^2 \sim \chi^2(ext{df} = N - p, ext{ scale} = rac{\sigma^2}{N})$$

- ... unter der Nullhypothese, dass das Modell korrekt ist!
- Problem 1: Woher kennen wir das wahre σ^2 ?
- Problem 2: Was ergibt die Berechnung mit dem Schätzer?
- Vergleich der beiden Modelle
 - Voraussetzung: Modelle bauen aufeinander auf, Modell B ist eine Erweiterung/Verallgemeinerung des einfacheren Modells A
 - Ist Modell B (hier $p_B = 3$ Parameter) angemessen?
 - * Nein \Rightarrow beide Modelle verwerfen
 - * Ja \Rightarrow vergleiche mit Modell A
 - Ist Modell A (hier $p_A = 2$ Parameter) angemessen?
 - * Nein \Rightarrow wähle Modell B
 - * Ja \Rightarrow Vergleich mit Modell B ergibt ...

Wiederholung Tests

- 1. Formulierung des Problems
- 2. Modellannahme
 - Welcher Art sind die Daten
 - Welche Verteilung wird erwartet
- 3. Aufstellen der Nullhypothese und der Alternativhypothese
 - Ziel soll es sein, die Nullhypothese ablehnen zu können
 - einseitiger Test
 - zweiseitiger Test
- 4. Festlegen des Signifikanzniveaus
 - zulässige Irrtumswahrscheinlichkeit α
- 5. Teststatistik / Prüfgröße aussuchen
 - verdichtet Information aus der Stichprobe
 - Verteilung unter H_A sollte sich deutlich von der unter H_0 unterscheiden
- 6. Verteilungsfunktion F bestimmen
 - theoretisch bestimmbar
 - asymptotisch bestimmbar
 - Simulation
- 7. Verwerfungsbereich
 - Statistik: Verteilung der Prüfgröße

- Hypothese: Richtung einseitig/zweiseitig
- Signifikanzniveau: Irrtumswahrscheinlichkeit α
- a) Verwerfungsbereich bestimmen
 - $\bullet\,$ Wert für t der Teststatistik T aus Daten bestimmen
 - Tabelle oder berechnen
- oder

- b) p-Wert bestimmen
 - Tabelle oder berechnen
- 8. Entscheidung fällen
 - \bullet t im Verwerfungsbereich: Verwerfen der Nullhypothese
 - p außerhalb α : Verwerfen der Nullhypothese
 - sonst: H_0 nicht verwerfbar

Gauß-Test / t-Test

- Neue Differenz in Kategorien = Zusätzlicher Parameter
 - Modellannahme
 - Nullhypothese: Parameter IsMonkey ist nicht nötig, Einfluss $\beta_1 = 0$
 - Alternativhypotehse: Parameter IsMonkey ist relevant, Einfluss $\beta_1 \neq 0$
 - Teststatistik standardisierte Differenz $Gau\beta$ -Test für $\beta_{IsMonkey}$

$$Z = \frac{\overline{X_a} - \overline{X_b}}{\sqrt{S_a^2/n_a + S_b^2/n_b}} \sim \mathcal{N}(0, 1) = \varphi$$

- Verwerfungsbereich festlegen und bestimmen
 - * Zur Irrtumswahrscheinlichkeit $\alpha = 0.1\%$
- Wert der Statistik berechnen, p-Wert
- Ergebnis und Entscheidung
- Problem: kumulierter α -Fehler

F-Tests

• F-Test: Vergleich des Varianzenverhältnisses

$$F = \frac{SQE/(n_c - 1)}{SQR/(n - n_c)} \sim \mathcal{F}(n_c - 1, n - n_c)$$

• Siehe Varianzanalyse (ANOVA)

Vergleich der Likelihood

- Verhältnis der Likelihood $=\frac{L_A}{L_B}$
- Differenz der Log-Likelihood $log(L_A) log(L_B) = l_A l_B$
- Maximal mögliche Likelihood?
 - Vollständiges Modell $\hat{y}_i \equiv y_i$ mit Likelihood L_V
- Deviance
 - (Doppelter) Unterschied zur Log-Likelihood des vollständigen Modells

$$D := 2(l_V - l_A)$$

1.12 Deviance

Verallgemeinert die Quadratfehlersumme von Normalverteilten Modellen.

- Anwendung: Modellvergleich
 - Voraussetzung: Modelle bauen aufeinander auf (nested models)
- Definition

$$D(\widehat{\boldsymbol{\theta}}; \mathbf{y}) := 2(l(\widetilde{\boldsymbol{\theta}}; \mathbf{y}) - l(\widehat{\boldsymbol{\theta}}; \mathbf{y}))$$

- y Werte der abhängigen Variable
- $\hat{\boldsymbol{\theta}}$ Schätzer der Parameter
- $\tilde{\pmb{\theta}}$ Schätzer der Parameter eines vollständigen Modells $\hat{y}_i \equiv y_i$
- Beispiel Lineares Modell mit Normalverteilung(en)

$$l(\boldsymbol{\mu}; \mathbf{y}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2 - n \log(\sigma \sqrt{2\pi})$$

$$D = 2(l(\tilde{\boldsymbol{\mu}}; \mathbf{y}) - l(\hat{\boldsymbol{\mu}}; \mathbf{y}))$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \hat{\mu}_i)^2$$

- entspricht damit Pearsons standardisierter Quadratfehlersumme, also

$$D \sim \chi^2(n-k)$$

- Begründung: Abhängigkeiten der $\mu = \mathbf{X}\boldsymbol{\beta}$, es verbleiben k Komponenten, Freiheitsgrade in $\boldsymbol{\beta}$
- Verteilung $\sim \chi^2(k)$ mit Anzahl der zusätzlichen Parameter k zum erweiterten Modell
- auch für andere Verteilungen
 - näherungsweise χ^2 -verteilt

Scaled Deviance

Streuung σ ist unbekannt

• Die angegebene scaled Deviance ist aus den Daten berechenbar

$$D' = \sigma^2 D = \sum_{i=1}^{n} (y_i - \mu_i)^2$$

Unterscheidung

Unterscheiden sich die beiden Modelle?

• Unterschied in Deviance ΔD :

$$\Delta D(\widehat{\boldsymbol{\theta}}_A, \widehat{\boldsymbol{\theta}}_B; \mathbf{y}) = D(\widehat{\boldsymbol{\theta}}_A; \mathbf{y}) - D(\widehat{\boldsymbol{\theta}}_B; \mathbf{y}) = 2l(\widehat{\boldsymbol{\theta}}_B; \mathbf{y}) - 2l(\widehat{\boldsymbol{\theta}}_A; \mathbf{y}) > 0$$

- y Werte der abhängigen Variable
- $-\widehat{\boldsymbol{\theta}}_A$ Schätzer der Parameter (k_A Stk.) des einfachen Modells
- $-\hat{\boldsymbol{\theta}}_B$ Schätzer der Parameter (k_B Stk.) des erweiterten Modells
- $-\Delta D \ge 0$
- Verteilung

$$\Delta D \sim \chi^2 (k_B - k_A)$$

- Fisher \mathcal{F} -Test für Deviance
 - Betrachte das Verhältnis

$$F = \frac{D_0 - D_1}{k - q} / \frac{D_1}{n - k} \sim \mathcal{F}(k - q, n - k)$$

- Unterschied?
 - * Nullhypothese: Modell A (alle Säugetiere) ist ebenso gut wie das bessere Modell B(Affen getrennt)
 - * Alternativhypothese: Modell B beschreibt den linearen Zusammenhang besser

Ergebnis

- Im Beispiel ist der Unterschied höchst signifikant ($\alpha = 0.1\%$)
 - t-Test/Gauß-Test für Parameter β_{IsMonkey}
 - Varianzanalyse für Residuen zwischen beiden Modellen
 - F-Test der Deviance zwischen beiden Modellen
- Unterschied in Deviance
 - in guter Näherung χ^2 -verteilt
- Die Deviance ist eine sinnvolle Erweiterung der Pearson Quadratfehlersumme
- Konzept der Deviance gilt auch für andere Verteilungen der Exponentialfamilie

2 Generalisierte Lineare Modelle - GLM

2.1 Motivation Generalisiertes Lineares Modell

- Problemstellung
 - Jet-Piloten erfahren unter besonderes hohen Beschleunigungskräften (bezogen auf die Erdbeschleunigung g) Blackouts
- Versuch
 - Glaister und Miller (1990) erzeugten ähnliche Symptome, indem sie den Körper der Versuchspersonen einem Luftunterdruck aussetzten
- Fragestellung
 - Hängt die Ohnmacht vom Alter ab?
- Ansatz
 - Linearer fit 'symptoms \sim age'
 - Problem: Linearer fit nicht aussagekräftig hier
- Lösung: Logit-Link
 - Wahrscheinlichkeit des Bernoulli-Ereignisses $\pi \in [0...1]$
 - Linearer Term $\eta = X\beta$
 - Link-Funktion **logit**

$$\mathcal{E}(\mathbf{Y}) = \boldsymbol{\pi}$$
 $g(\boldsymbol{\pi}) = \boldsymbol{\eta} = \mathbf{X}\boldsymbol{\beta}$ $\mathcal{E}(\mathbf{Y}) = \boldsymbol{\pi} = g^{-1}(\mathbf{X}\boldsymbol{\beta})$

* logit-Funktion

$$g^{-1}(\eta) = \text{logit}(\eta) = \frac{1}{1 + e^{-\eta}}$$

* Umkehrfunktion: logarithmisches Chancenverhältnis log-odds-ratio

$$\eta = g(\pi) = \ln \frac{\pi}{1 - \pi}$$

- Bernoulliverteilung
 - Wahrscheinlichkeitsverteilung des Ereignisses $y \in [0, 1]$

$$f(y|\pi) = \pi^y (1-\pi)^{1-y}$$
$$\mathcal{E}(y) = \pi$$

- Binomialverteilung
 - Wahrscheinlichkeitsverteilung der y = Anzahl der Erfolge mehrerer Bernoulli-Ereignisse

$$P(y|N,\pi) = \binom{N}{y} \pi^y (1-\pi)^{(N-y)} \qquad y \in \{0 \dots n\}$$
$$\mathcal{E}(y) = N\pi$$

- Ergebnis Link-Funktion: Eine Link Funktion $g(\mu)$
 - kann Anforderungen an Randbedingungen von Zufallsvariablen erfüllen
 - * ∞ -Problem \checkmark
 - * Verteilung der Streuung berücksichtigen \checkmark
 - erweitert das Lineare Modell
 - * verbindet lineare Vorhersage $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$
 - * und zentralen Parameter der Wahrscheinlichkeitsverteilung μ_i
- Ergebnis 'Generalisiertes Lineares Modell'

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{eta}$$
 $\mathcal{E}(Y_i) = \mu_i = g^{-1}(\mathbf{x}_i^T \boldsymbol{eta})$ $Y_i \sim f(\mu_i, \sigma^2, \dots)$

2.1.1 Kategoriale Variable und Residuen

- Beispieldaten: Allison, Cicchetti (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732-734
 - Lineares Modell des Gehirn-Gewichts gegen das Körpergewicht
 - Interessant: Abweichungen vom Modell
 - * systematisch?
 - * Zufall (wie im Modell vorgesehen)?
- Ergebnis Residuen-Analyse
 - Systematische Abweichungen
 - * Ausreißer, Auffälligkeit
 - * Affen haben positive Residuen: eher kein Zufall
 - **Zufällige** Abweichungen
 - * Verteilung gemäß Modell: Streuung
- Erweitertes Modell
 - Affen als eigene Kategorie

- * Kategoriale Variable ['IsMonkey']
- * Anpassen der Designmatrix
- * Indikatorvariable c für Kategorie Affe ['IsMonkey']='no' = 0 und ['IsMonkey']='yes' = $1 \Rightarrow \beta_1$

$$\mathcal{E}(\mathbf{Y}) = \mathbf{X} \quad \boldsymbol{\beta}$$

$$\mathcal{E}(Y_i) = 1 \cdot \beta_0 + c_i \cdot \boldsymbol{\beta}_1 + X_i \cdot \beta_2$$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_a \\ Y_{a+1} \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & X_1 \\ \vdots & \vdots & \vdots \\ 1 & 0 & X_a \\ 1 & 1 & X_{a+1} \\ \vdots & \vdots & \vdots \\ 1 & 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix}$$

- Ergebnis Kategoriale Variable
 - wirkt als Schalter
 - * Wert $X_{ij} \in [0, 1]$
 - * für Parameter β_i
 - Kategorien werden von Patsy automatisch erkannt (z.B. wenn String)
 - * erzwingen mit 'C(variable)'
 - fügt sich formal in Lineares Modell ein
 - erweiterbar auf mehrere Ausprägungen
 - * mehrere Spalten
 - * nicht Zahlen!

2.1.2 Modellvergleich

- Residuen der beiden Modelle
 - Modell A: $r_{Ai} = y_i \hat{\mu}_{Ai} = y_i (\mathbf{X}_A \hat{\boldsymbol{\beta}}_A)_i$
 - Modell B: $r_{Bi} = y_i \hat{\mu}_{Bi} = y_i (\mathbf{X}_B \hat{\boldsymbol{\beta}}_B)_i$
- Residuen gehören zu einem Modell
- Minimieren
 - Kleinste-Quadrate
 - Matrix Zerlegung
 - Maximum-Log-Likelihood
- Überprüfen, ob Modellvoraussetzungen erfüllt sind

- Scatter-Plot
- Histogramm

2.1.3 Verdichtung der Information

- Nicht von Interesse: alle einzelnen μ_i
- Von Interesse:
 - -Einfluss der unabhängigen Variablen ($\operatorname{\it erkl\"{a}\it rende}$ Variablen, Pediktoren) X
 - * kategorial
 - * kontinuierlich
 - * Versuchsbedingungen $i \quad i \in [1 \dots n]$
 - zugehörige Parameter
 - * modellieren X, Gewichtung der Einflüsse
 - * Parameter $\beta_j \quad j \in [1 \dots k] \quad k \ll n$

2.2 Generalisierte Lineare Modelle

Link-Funktion g

verbindet additiven Einfluss (η_i) der unabhängigen Variablen \mathbf{x}_i auf die (erwünschte) Verteilung der abhängigen Y_i um (μ_i)

 $g(\mu_i) = \eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$

Beispiel Bernoulli-Verteilung

• Exponentiell abfallende Abhängigkeit

$$P(Y_i = 1) = e^{-\lambda t} = \pi$$

 $P(Y_i = 0) = 1 - e^{-\lambda t} = 1 - \pi$

• führt unter Verwendung der Link-Funktion

$$g(\pi) = \log(\pi) = -\lambda t$$

• auf eine lineare Abhängigkeit

$$g(E(Y)) = -\lambda t$$

• mit

$$\mathbf{x}_i = [t] \quad \boldsymbol{\beta} = [-\lambda]$$

• zum Generalisierten Linearen Modell

$$E(Y) = g^{-1}(x\beta)$$

Anwendung

- Biologie: Genetischer Stammbaum
- Linguistik: Abspaltung von Sprachen zum Zeitpunkt t mit gemeinsamem Wortschatz (=1) in unterschiedliche Entwicklung von Worten (=0)
- Physik: Spannung bei Kondensatorentladung über konstanten Widerstand

Modell und Fragestellung

- Gesucht sind die Parameter des Modells β
 - Verdichtung der Information
 - Signifikanz einer Teil-Abhängigkeit, Parameter β_i
 - Unterschiedliche Abhängigkeit bei anderen Daten
 - Unterschiedliche Modelle

2.3 Exponentialfamilie

Exponentialfamilie für Wahrscheinlichkeitsdichteverteilungen

$$f(y;\theta) = \exp(a(y)b(\theta) + c(\theta) + d(y))$$

Einige wichtige bekannte Verteilungen sind Mitglied der Exponentialfamilie

- Normalverteilung
 - Parameter θ ist μ
- Binomialverteilung
 - Der einzige interessierende Parameter bei gegebenem n ist π
 - $-y \in \{0 \dots n\}$
- Poissonverteilung
 - Der einzige interessierende Parameter ist λ .
 - $-y \in \mathbb{N}$

Sie haben

- Gemeinsame Eigenschaften
- Gemeinsame Methoden
- und lassen sich mittels GLM-Formalismus lösen

Implementiert in statsmodels glm

- Binomial ()
- Gamma ()
- Gaussian ()
- InverseGaussian ()
- NegativeBinomial ()
- Poisson ()

2.3.1 Allgemeine Eigenschaften der Exponentialfamilie

• Erwartungswert

$$\mathcal{E}(a(Y)) = -\frac{c'(\theta)}{b'(\theta)}$$

• Varianz

$$Var\left(a(Y)\right) = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$

2.3.2 Log-Likelihood-Funktion

• Exponentialfamilie

$$l(\theta; y) = \log(f_Y) = a(y) \cdot b(\theta) + c(\theta) + d(y)$$

Score Statistik ${\cal U}$

• Ableiten der Log-Likelihood-Funktion nach θ ergibt die score statistic U, als Funktion von Y eine Zufallsvariable

$$U(\theta; y) := \frac{\mathrm{d}l(\theta; y)}{\mathrm{d}\theta} = a(y) \cdot b'(\theta) + c'(\theta)$$

• mit Erwartungswert

$$\mathcal{E}(U) = 0$$

Information \mathcal{I}

• Varianz von U oder Information \mathcal{I}

$$\mathcal{I} := \operatorname{Var}(U) = (b'(\theta))^2 \cdot \operatorname{Var}(a(y)) = \frac{b''(\theta)c'(\theta)}{b'(\theta)} - c''(\theta)$$

• Aus dem Verschiebungssatz folgt mit $\mathcal{E}(U) = 0$

$$Var(U) = \mathcal{E}(U^2)$$

• Des Weiteren gilt

$$\mathcal{E}(U') = -\text{Var}(U)$$

• \Rightarrow Information

$$\mathcal{I} := \operatorname{Var}(U) = -\mathcal{E}(U')$$

2.3.3 Kanonische Verteilung

Verteilungen mit

$$a(Y) = Y$$

nennt man kanonisch

- Normalverteilung, Poissonverteilung, Binomialverteilung sind kanonisch
- Erwartungswert und Varianz für y haben eine einfache Form
- Der Parameter im zugehörigen Term $b(\theta)$ heißt natürlicher Parameter

Verteilung	natürlicher Parameter $b(\theta)$	Funktion $c(\theta)$	Funktion $d(y)$
Normal	$\frac{\mu}{\sigma^2}$	$-\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)$	$-\frac{y^2}{2\sigma^2}$
Binomial	$\ln(\frac{\pi}{1-\pi})$	$n\ln(1-\pi)$	$\ln \binom{n}{y}$
Poisson	$\ln \lambda$	$-\lambda$	$-\ln y!$

Natürlicher Parameter

$$f(Y;\theta) = \exp(Y \cdot b(\theta) + c(\theta) + d(Y))$$

• Wählt man $b(\theta) = \theta$, dann heißt θ selbst der natürliche Parameter der Verteilung

$$f(Y;\theta) = \exp(Y\theta + c(\theta) + d(Y))$$

• Möchte man diesen natürlichen Parameter selbst linear vorhersagen

$$\theta = \mathbf{X}\boldsymbol{\beta}$$

• so wird aus der allgemeinen Link-Funktion g:

$$g(\mu) = \mathbf{X}\boldsymbol{\beta}$$

• die natürliche Link-Funktion

$$\theta = g(\mu)$$

Verteilung	natürlicher Param. $\theta = b(\theta)$	Erwartungswert	oder $\mu = g^{-1}(\theta)$
Normal	$\theta = \frac{\mu}{\sigma^2}$	$\mu = \mu$	$\mu = \sigma^2 \theta$
Binomial	$\theta = \ln(\frac{\pi}{1-\pi})$	$\mu = n\pi$	$\pi = \frac{e^{\theta}}{1+e^{\theta}}$
Poisson	$\theta = \ln \lambda$	$\mu = \lambda$	$\lambda = e^{\dot{\theta}}$

Vereinfachungen

• Für kanonische Verteilung a(Y) = Y und natürlichen Parameter $b(\theta) = \theta$ ergibt sich

$$f(Y;\theta) = \exp(Y\theta + c(\theta) + d(Y))$$

• Erwartungswert

$$\mathcal{E}(a(Y)) = -\frac{c'(\theta)}{b'(\theta)}$$
$$\mathcal{E}(Y) = -c'(\theta)$$

• Varianz

$$\operatorname{Var}(a(Y)) = \frac{b''(\theta)c'(\theta) - c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$
$$\operatorname{Var}(Y) = -c''(\theta)$$

Verteilung	natürlicher Param. $b(\theta)$	С	c'	c"
Normal	$\theta = \frac{\mu}{\sigma^2}$	$-\frac{\sigma^2\theta^2}{2} - \frac{1}{2}\ln(2\pi\sigma^2)$	$-\sigma^2\theta$	$-\sigma^2$
Binomial	$\theta = \ln(\frac{\pi}{1-\pi})$	$-n\ln(1+e^{\theta})$	$-\frac{e^{\theta}}{1+e^{\theta}}$	$-n\frac{e^{\theta}}{(1+e^{\theta})^2}$
Poisson	$\theta = \ln \lambda$	$-e^{\theta}$	$-e^{\dot{\theta}}$	$-e^{\theta}$

Natürlicher Parameter und kanonischer Link

• ... ist in GLM immer für die passende Verteilung implementiert

$$\mathcal{E}(Y) = -c'(\theta)$$

- Normal-, Poisson- und Binomialverteilung haben passende Parameter
- Andere Link-Funktionen sind ebenso gut möglich

2.3.4 Zusammengesetzte Wahrscheinlichkeitsverteilung - Skalarer Parameter θ

- Ein Satz unabhängiger, identisch verteilter (i.i.d.) Zufallsvariabler $\mathbf{Y} = [Y_1 \dots Y_N]^T$
- $\bullet\,$ mit Wahrscheinlichkeitsverteilung $f(y_i,\theta)$ aus der kanonischen Exponentialfamilie
- hat eine gemeinsame Wahrscheinlichkeitsverteilung

$$f(\mathbf{Y}, \theta) = \prod_{i=0}^{n} \exp(y_i b(\theta) + c(\theta) + d(y_i))$$
$$= \exp(\sum_{i=0}^{n} y_i b(\theta) + \sum_{i=0}^{n} c(\theta) + \sum_{i=0}^{n} d(y_i))$$

• mit

$$\mathcal{E}(Y_i) = (\dots) = \mu$$

wobei

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

• als auch

$$\theta_i = fkt(\mathbf{x}_i^T \boldsymbol{\beta})$$

• mit unabhängigen β_j ; $j \in [1 ... k]$; $k \ll n$

Maximum-Likelihood-Schätzung

• Für kanonische Verteilungen mit a(y) = y gilt

$$\mathcal{E}(Y_i) = \mu_i \qquad g(\mu_i) = \eta_i$$

• Gesucht: Parameter θ

• Ansatz: Max-Log-Likelihood

$$l_i(\theta, y_i) = y_i \cdot b(\theta) + c(\theta) + d(y_i)$$
$$l(\theta, \mathbf{y}) = \sum_{i=0}^n l_i = \sum_{i=0}^n y_i b(\theta) + \sum_{i=0}^n c(\theta) + \sum_{i=0}^n d(y_i)$$
$$U = \frac{\mathrm{d}l}{\mathrm{d}\theta} \stackrel{!}{=} 0$$

- Ziel:
 - Parameter $\hat{\theta}$
 - Maximum der Log-Likelihood $l_{max} = l(\widehat{\theta})$
- Numerische Lösung mittels Iteration nach Newton-Raphson (siehe Folien)
 - Für Mitglieder der Exponentialfamilie wird eine gute Näherung U^\prime durch dessen Erwartungswert ersetzt

$$U' \leftarrow \mathcal{E}(U') = -\mathcal{I} = -\text{Var}(U)$$

- Damit iterative Lösung nach Newton-Raphson

$$\alpha^{(m)} = \alpha^{(m-1)} + \frac{U(\alpha^{(m-1)})}{\mathcal{I}(\alpha^{(m-1)})}$$

- Beispiel Ausfallwahrscheinlichkeit
 - Weibull-Verteilung

$$f(y, \lambda, \theta) = \frac{\lambda y^{\lambda - 1}}{\theta^{\lambda}} \exp\left(-\left(\frac{y}{\theta}\right)^{\lambda}\right)$$

- mit
 - * y > 0 Zeit bis zum Ausfall
 - * Parameter λ Form der Verteilung, hier $\lambda = 2$
 - · $\lambda=1$ wäre Exponentialverteilung mit konstanter Ausfallrate
 - · Rayleigh-Verteilung; für gedächtnisbehaftete Lebensdauerverteilung
 - * Parameter θ Skalierung. \Rightarrow Diesen gilt es zu schätzen.
- Darstellung als Exponentialfamilienmitglied:
 - * $a(y) = y^{\lambda}$ (nicht kanonisch für $\lambda \neq 1$; wir benutzen $\lambda = 2$)

$$* b(\theta) = -\theta^{-\lambda}$$

$$* c(\theta) = \log \lambda - \lambda \log \theta$$

$$* d(y) = (\lambda - 1) \log y$$

- * mit einem $St\"{o}rparameter \lambda$
- Log-Likelihood
 - * damit kann U berechnet werden
 - * \mathcal{I} als Näherung $U' \leftarrow \mathcal{E}(U')$
 - · im Falle der Weibull-Verteilung geschlossen lösbar
 - * Damit Scoring Methode
- Ergebnis der Score Methode
 - Für die Verteilung aus der Exponentialfamilie

$$f_Y(y|\theta) = \exp(a(y)b(\theta) + c(\theta) + d(y))$$

-führt die iterative Anpassung des Verteilungsparameters θ durch die scoring Methode

$$\theta^{(m)} = \theta^{(m-1)} + \frac{U^{(m-1)}}{\mathcal{I}^{(m-1)}}$$

- mit der Score Statistik U (erste Ableitung des Log-Likelihood)

$$U(\theta, y) := \frac{\mathrm{d}l}{\mathrm{d}\theta} = a(y) \cdot b'(\theta) + c'(\theta)$$

- und der Information Information \mathcal{I} (genäherte zweite Ableitung)

$$\mathcal{I} := \operatorname{Var}(U) = \mathcal{E}(U') = \frac{b''(\theta)c'(\theta)}{b'(\theta)} - c''(\theta)$$

- in wenigen Schritten zum Ergebnis
- Die Methode lässt sich auf mehrdimensionale Parametervektoren $\boldsymbol{\theta}$ erweitern.

2.3.5 Zusammengesetzte Wahrscheinlichkeitsverteilung - Parametervektor β

• Mehrdimensional: Scoring Methode iterative Lösung

$$oldsymbol{eta}^{(m)} = oldsymbol{eta}^{(m-1)} + \left(\mathcal{I}(oldsymbol{eta}^{(m-1)})
ight)^{-1} \mathbf{U}(oldsymbol{eta}^{(m-1)})$$

- Parameter $\alpha \Rightarrow$ Parametervektor β
- Score-Funktion $U \Rightarrow$ Score-Vektor **U**
 - * Gradientenvektor der Log-Likelihood $\mathbf{U} := \nabla l$

- * mit $U_j = \frac{\partial l}{\partial \beta_i}$
- Information $\mathcal{I} \Rightarrow$ Informations-Matrix \mathcal{I}
- Modell-Parameter
 - Datentupel y_i, X_{ij} , Erwartungswerte μ_i und Verteilungs-Parameter θ_i mit $i \in [1 \dots n]$
 - Verdichtete Information in Parametervektor $\boldsymbol{\beta}$
 - Komponenten β_j mit $j \in [1 \dots p]$ mit i.A. $p \ll n$
- Ableitung für Max-Log-Likelihood-Schätzer
 - Berechnung unter Verwendung des Erwartungswerts
 - Umkehrfunktion
 - Kettenregel
 - $\Rightarrow 1$. Teilergebnis:
 - * Damit ergibt sich die vektorielle score-Funktion

$$U_{j} = \sum_{i=1}^{n} \left(\frac{y_{i} - \mu_{i}}{\operatorname{Var}(Y_{i})} x_{ij} \frac{\partial \mu_{i}}{\partial \eta_{i}} \right)$$

ausgedrückt durch zugängliche Größen

• Information

$$\mathcal{I} := \operatorname{Var}(U) = -\mathcal{E}(U')$$

– Im mehrdimensionalen Fall ist die
 die Information ${\mathcal I}$ die Varianz-Kovarianz-Matrix der Score-Funktion U

$$\mathcal{I}_{jk} = \mathcal{E}(U_j \ U_k)$$

- $\Rightarrow 2$. Teilergebnis:
 - * Damit ergibt sich die Informationsmatrix

$$\mathcal{I}_{jk} = \sum_{i=1}^{n} \frac{x_{ij} x_{ik}}{\operatorname{Var}(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

- Zwischenergebnis
 - Für die **Scoring Methode** ergibt sich

$$\mathbf{b}^{(m)} = \mathbf{b}^{(m-1)} + (\mathcal{I}^{(m-1)})^{-1} \mathbf{U}^{(m-1)}$$

- mit dem Schätzer für den Parametervektor

$$\mathbf{b} = [\beta_1, \dots, \beta_k]^T$$

- der Inversen Informationsmatrix

$$\mathcal{I}^{-1}$$

- und dem *score*-Vektor

 \mathbf{U}

• Erweiterung

$$\mathcal{I}^{(m-1)}\mathbf{b}^{(m)} = \mathcal{I}^{(m-1)}\mathbf{b}^{(m-1)} + \mathbf{U}^{(m-1)}$$

2.4 IRLS

Zu lösendes Gleichungssystem

$$\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$$

hat die selbe Form, wie die Normalengleichungen für ein lineares Modell

$$\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

- Vergleiche: Kleinste Quadrate Methode
- Designmatrix X
- Gewichtungsmatrix $\mathbf{W}^{(m-1)}$
- Zielvektor $\mathbf{z}^{(m-1)}$
- Lösung muss iterativ gewonnen werden
 - Sowohl **z**
 - als auch W
 - hängen über μ und $Var(Y_i)$ von $\mathbf{b}^{(m-1)}$ ab

2.4.1 iterative reweighted least squares, IRLS

• wird in GLM der Python statsmodels verwendet

Algorithmus

- 1. Finde einen Startwert $\mathbf{b}^{(0)}$
- 2. Berechne damit \mathbf{z} und \mathbf{W}
- 3. Löse $\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$

$$\mathbf{b}^{(m)} = \left(\mathbf{X}^T \mathbf{W} \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{W} \mathbf{z}$$

- und wiederhole 2. und 3. bis
- 4. Abbruch bei Konvergenz

Ergebnis IRLS

$$\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}$$

• mit mehrdimensionaler Iterative Reweighted Least Squares-Methode lösbar

$$\mathbf{b}^{(m)} = \left(\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}$$

- konvergiert in wenigen Schritten zum Schätzer $\mathbf{b} = \hat{\boldsymbol{\beta}}$

2.4.2 Implementierung Python statsmodels GLM

- kann Generalized Linear Models mit verschiedenen Verteilungsfamilien aus der Exponentialfamilie
- benutzt IRLS um den Parametervektor β des Modells zu bestimmen
- liefert Ergebnis
 - .predict
 - .fittedvalues
 - .params
- Verwendung der Likelihood
 - Wahrscheinlichkeitsverteilung der Daten aus Sicht der Parameter
- Log-Likelihood
 - für Punkt-Schätzung von Parametern mittels Maximierung
 - für Intervall-Schätzung bei genäherter Verteilungsstatistik
 - Score Statistik **U** und
 - Informationsmatrix \mathcal{I}
 - * IRLS

2.5 Parameter-Intervallschätzer

2.5.1 χ^2 Verteilung SSR

Beispiel: Lineares Modell mit Normalverteilung

$$E(Y_i) = \mu_i$$
 $g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$ $Y \sim \mathcal{N}(\mu_i, \sigma^2)$

• Mit der Link-Funktion *Identität*

$$g(\mu_i) = \mu_i$$

• können alle Mittelwerte abgespalten werden:

$$Y = X\beta + \epsilon$$

• mit unabhängigen $i = 1 \dots n$ Zufallsvariablen

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

= verbleibender additiver Zufall/Fehler/Rauschen mit bekannter Verteilung

Statistische Verteilung

Ist die Zufallsvariable X Normal-verteilt mit Erwartungswert μ und Standardabweichung σ

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

dann ist die standardisierte Zufallsvariable Standard-Normalverteilt:

$$\frac{X - \mathcal{E}(X)}{\operatorname{std}(X)} \sim \mathcal{N}(0, 1)$$

Gleichbedeutend mit

$$\frac{\left(X - \mathcal{E}(X)\right)^2}{\operatorname{Var}(X)} \sim \chi^2(1)$$

- Näherungsweise (Zentraler Grenzwertsatz) wenn eine große Anzahl n an Daten beitragen zu $X = \sum_{i=1}^n X_i$
- Sind mehrere Zufallsvariablen X_i , $i \in [1 ... k]$, zusammengefasst im Vektor \mathbf{X} ,
 - dann schreibt sich die standardisierte Quadratfehlersumme als

$$(\mathbf{X} - \mathcal{E}(\mathbf{X}))^T \mathbf{V}^{-1} (\mathbf{X} - \mathcal{E}(\mathbf{X})) \sim \chi^2(k)$$

- mit der (nicht singulären, umkehrbaren) Varianz-Kovarianz-Matrix V
- Insbesondere für i.i.d. Zufallsvariable mit $V_{i,i} = Var(X); V_{j,i\neq j} = 0$:

$$\frac{1}{\operatorname{Var}(X)} \sum_{i=1}^{k} (X_i - \mathcal{E}(X_i))^2 \sim \chi^2(k)$$

2.5.2 χ^2 Verteilung Score-Statistik

Max-Likelihood-Schätzer für β

• GLM

$$\mathcal{E}(Y_i) = \mu_i$$
 $g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} = \eta_i$

- mit k Parametern β_j gewonnen per IRLS
- Vektorielle **score**-Statistik

$$U_{j} = \frac{\partial l}{\partial \beta_{j}} = \sum_{i=1}^{n} \left(\frac{y_{i} - \mu_{i}}{\operatorname{Var}(Y_{i})} \ x_{ij} \ \frac{\partial \mu_{i}}{\partial \eta_{i}} \right)$$

- Da $\mathcal{E}(Y_i) = \mu_i \ \forall i$, ist

$$\mathcal{E}(U_i) = 0 \quad \forall j$$

wie bekannt

• Die Varianz-Kovarianz-Matrix für U ist

$$\mathcal{I}_{jk} = \mathcal{E}(U_j \ U_k)$$

- mit

$$\mathcal{I}_{jk} = \mathcal{E}\left(\sum_{i=1}^{n} \left(\frac{y_i - \mu_i}{\operatorname{Var}(Y_i)} x_{ij} \frac{\partial \mu_i}{\partial \eta_i}\right) \sum_{i=1}^{n} \left(\frac{y_i - \mu_i}{\operatorname{Var}(Y_i)} x_{ik} \frac{\partial \mu_i}{\partial \eta_i}\right)\right)$$
$$= \sum_{i=1}^{n} \frac{\mathcal{E}\left((Y_i - \mu_i)^2\right) x_{ij} x_{ik}}{\left(\operatorname{Var}(Y_i)\right)^2} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

• Damit hat die Standardisierte Quadratfehlersumme für den Score-Vektor U, mit Erwartungswert $\mathcal{E}(U_j) = 0$ die Verteilung

$$\mathbf{U}^T\mathcal{I}^{-1}\,\mathbf{U} \sim \chi^2(k)$$

-exakt für Normalverteilte ${\cal Y},$ näherungsweise für große Stichproben.

Beispiel 1: Normalverteilung

• Seien Y_i i.i.d. normalverteilte Zufallsvariablen $y_i \sim \mathcal{N}(\mu, \sigma^2)$ mit bekannter Varianz σ^2 und gesuchtem Parameter μ .

$$l = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2 - n \log (\sigma \sqrt{2\pi})$$

• Die score-Statistik ist

$$U = \frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \mu) = \frac{n}{\sigma^2} (\overline{Y} - \mu)$$

• woraus man den Punktschätzer erhält

$$\widehat{\mu} = \overline{Y}$$

• Dann

$$\mathcal{E}(U) = \frac{1}{\sigma^2} \sum_{i=1}^n \left(\mathcal{E}(Y_i) - \mu \right) = 0$$
$$Var(U) = \mathcal{I} = \frac{1}{\sigma^4} \sum_{i=1}^n Var(Y_i) = \frac{n}{\sigma^2}$$

• Damit ist

$$\mathbf{U}^T \mathcal{I}^{-1} \mathbf{U} \sim \chi^2(p) = \frac{U^2}{\mathcal{I}} = \frac{(\overline{Y} - \mu)^2}{\sigma^2/n} \sim \chi^2(1)$$

ein exaktes Ergebnis für $\widehat{\mu}$.

• Also liegt auch das 95%-Konfidenzintervall für $\hat{\mu}$ fest:

$$\overline{y} \pm \Phi_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$$

- Ergebnis
 - Mit der Generalized Linear Models Methode lässt sich das Konfidenzintervall für den Schätzer $\hat{\mu}$ genauso bestimmen, wie mit klassischer Verteilungsannahme.

Beispiel 2: Binomialverteilung

• Seien Y_i i.i.d. binomialverteilte Zufallsvariablen $y_i \sim \mathcal{B}(n,\pi)$

$$l(\pi; y) = y \ln \pi + (n - y) \ln(1 - \pi) + ln(\binom{n}{y})$$

• Die score-Statistik ist

$$U = \frac{\partial l}{\partial \pi} = \frac{Y}{\pi} - \frac{n - Y}{1 - \pi} = \frac{Y - n\pi}{\pi (1 - \pi)}$$

• Mit $\mathcal{E}(Y) = n\pi$ ergibt sich wieder

$$\mathcal{E}(U) = 0$$

• Mit $Var(Y) = n\pi(1-\pi)$ ergibt sich

$$Var(U) = \mathcal{I} = \frac{1}{\pi^2 (1 - \pi)^2} Var(Y) = \frac{n}{\pi (1 - \pi)}$$

• Damit ist

$$\frac{\mathbf{U}}{\sqrt{\mathcal{I}}} = \frac{Y - n\pi}{\sqrt{n\pi(1 - \pi)}} \sim \mathcal{N}(0, 1)$$

näherungsweise und die bekannte Normal-Näherung für binomialverteilte Zufallsvariablen

2.5.3 Allgemeine Intervallschätzung

Taylor Entwicklung

• Jede glatte Funktion f(x) läßt sich nach Taylor als Reihe ihrer Ableitungen um eine Stelle x_0 entwickeln

$$f(x) = f(x_0) + (x - x_0) \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} + \frac{1}{2}(x - x_0)^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}\Big|_{x=x_0} + \dots$$

- Taylor Entwicklung Log-Likelihood
 - (erste drei Terme) der Log-Likelihood für einen **skalaren** Parameter β um die Stelle $\beta=b$

$$l(\beta) = l(b) + (\beta - b)U(b) + \frac{1}{2}(\beta - b)^{2}U'(b) + \dots$$
$$\approx l(b) + (\beta - b)U(b) - \frac{1}{2}(\beta - b)^{2}\mathcal{I}(b)$$

- und für einen Parameter**vektor** β

$$l(\boldsymbol{\beta}) \approx l(\mathbf{b}) + (\boldsymbol{\beta} - \mathbf{b})U(\mathbf{b}) - \frac{1}{2}(\boldsymbol{\beta} - \mathbf{b})^T \mathcal{I}(\mathbf{b})(\boldsymbol{\beta} - \mathbf{b})$$

- Taylor-Entwicklung (erste zwei Terme) der *Score*-Statistik

$$U(\beta) \approx U(b) - I(b) (\beta - b)$$

Parameter β - Verteilung für ML-Schätzer

- Der Schätzer $\mathbf{b} = \hat{\boldsymbol{\beta}}$ maximiert $l(\boldsymbol{\beta})$ mit $\mathbf{U}(\mathbf{b}) = 0$.
- Damit

$$\mathbf{U}(\boldsymbol{\beta}) = -\mathcal{I}(\mathbf{b}) (\boldsymbol{\beta} - \mathbf{b})$$

• bzw.

$$(\mathbf{b} - \boldsymbol{\beta}) = \mathcal{I}^{-1}\mathbf{U}(\boldsymbol{\beta})$$

• Sieht man \mathcal{I} als konstant an, dann ist wegen $\mathcal{E}(\mathbf{U}) = 0$ auch

$$\mathcal{E}(\mathbf{b}) = \boldsymbol{\beta}$$

- also ${\bf b}$ ein (asymptotisch) erwartungstreuer Schätzer für ${\boldsymbol \beta}$
- Die Varianz-Kovarianz-Matrix für **b** ist damit

$$\mathcal{E}\left((\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})^T\right) = \mathcal{I}^{-1}\mathcal{E}(\mathbf{U}\mathbf{U}^T)\mathcal{I}^{-1} = \mathcal{I}^{-1}$$
 - wegen $\mathcal{I} = \mathcal{E}(\mathbf{U}\mathbf{U}^T)$ und $(\mathcal{I}^{-1})^T = \mathcal{I}^{-1}$ (Symmetrie)

• Mit dieser Varianz-Kovarianz-Matrix $\mathbf{V} = \mathcal{I}^{-1}$ ergibt sich für die standardisierte Quadratfehlersumme (asymptotisch)

$$(\mathbf{b} - \boldsymbol{\beta})^T \mathcal{I}(\mathbf{b})(\mathbf{b} - \boldsymbol{\beta}) \sim \chi^2(p)$$

- die **Wald**-Statistik
- in der eindimensionalen Form die bekannte

$$b \sim \mathcal{N}(\beta, \mathcal{I}^{-1})$$

- Ergebnis:
 - Der Punktschätzer $\hat{\boldsymbol{\beta}}$ des Parameters $\boldsymbol{\beta}$ ist (näherungsweise) verteilt

$$\widehat{\boldsymbol{\beta}} \sim \mathcal{N}(\beta, \mathcal{I}^{-1})$$

- mit der Informationsmatrix (Fischer Information) \mathcal{I}

$$\mathcal{I}_{jk} = \mathcal{E}(U_j \ U_k)$$

$$= \sum_{i=1}^n \frac{\mathcal{E}((Y_i - \mu_i)^2) x_{ij} x_{ik}}{(\operatorname{Var}(Y_i))^2} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

Beispiel Normalverteilung

$$\mathcal{E}(Y_i) = \mu_i = \mathbf{x}_i^T \boldsymbol{\beta} ; \quad Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

• Die Information hat (Link: Identität, $Var(Y_i) = \sigma^2$) die einfache Form

$$\mathcal{I}_{jk} = \sum_{i=1}^{n} \frac{x_{ij} x_{ik}}{\sigma^2}$$

oder

$$\mathcal{I} = \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}$$

• Für die rechte Seite von $\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$ war

$$z_i = \sum_{k=1}^{p} x_{ik} b_k^{(m-1)} + (y_i - \mu_i)$$

• Da $\mu_i \Big|_{b^{(m-1)}} = \mathbf{x}_i^T \mathbf{b}^{(m-1)} = \sum_{k=1}^p x_{ik} b_k^{(m-1)}$ verbleibt

$$z_i = y_i$$

• Damit wird das zu lösende LGS $\mathbf{X}^T \mathbf{W} \mathbf{X} \mathbf{b}^{(m)} = \mathbf{X}^T \mathbf{W} \mathbf{z}$ zu

$$\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X} \mathbf{b} = \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{y}$$

also

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- -der aus \mathtt{OLS} bekannte Maximum-Likelihood-Schätzer für den Parametervektor $\pmb{\beta}$
- Punktschätzer
 - Mit $\mathbf{y} \sim mv \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbb{H})$
 - wird der Erwartungswert

$$\mathcal{E}(\mathbf{b}) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \boldsymbol{\beta}$$

- und ${\bf b}$ ein erwartungstreuer Schätzer für ${m eta}$

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Intervallschätzer
 - Mit

$$(\mathbf{b} - \boldsymbol{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} - \boldsymbol{\beta}$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$

-folgt die Varianz-Kovarianz-Matrix für ${\bf b}$

$$\mathcal{E}((\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})^{T}) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathcal{E}((\mathbf{y} - \mathbf{X}\boldsymbol{\beta})(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T})\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

$$= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}(\mathrm{Var}(\mathbf{y}))\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

$$= \mathcal{I}^{-1}$$

* wie bereits bekannt

Vergleich klassische Statistik

 \bullet Sind die Messwerte ${\bf y}$ normalverteilt, sind es auch die Schätzer für die Parameter des linearen Modells, also

$$\mathbf{b} \sim \mathcal{N}(\boldsymbol{\beta}, \mathcal{I}^{-1})$$

• oder für die standardisierte Quadratfehlersumme

$$(\mathbf{b} - \boldsymbol{\beta})^T \mathcal{I} (\mathbf{b} - \boldsymbol{\beta}) \sim \chi^2(k)$$

- wie aus der klassischen Statistik bekannt.
- Der GLM-Formalismus reproduziert die von der Normalverteilung bekannten Ergebnisse
 - Diese sind näherungsweise für andere Verteilungen anwendbar
 - Methoden sind implementiert in statsmodels GLM

2.6 Logistische Regression

Bernoulli-Experiment

• Ereignis A tritt ein oder tritt nicht ein $\Omega = \{A, \bar{A}\}\$

- Binäre Zufallsvariable Z'Indikatorvariable' kann nur Werte $\omega \in \{0,1\}$ annehmen

$$Z = \begin{cases} 1 & \text{wenn A zutrifft} \\ 0 & \text{wenn A nicht zutrifft} \end{cases}$$

• Beispiele

– Münzwurf: Kopf / Zahl

- Produktion: innerhalb Toleranz / Ausschuss

- Geburten: Mädchen / Jungen

- Psychophysik: gesehen / nicht-gesehen

Bernoulli-Verteilung

• Die Wahrscheinlichkeit für A sei π

$$P(A) = P(Z=1) = \pi$$

 $P(\bar{A}) = P(Z=0) = 1 - \pi$

• Schreibweise

$$P(Z) = \pi^{Z} (1 - \pi)^{1 - Z}$$

• n unabhängige Zufallsvariablen $Z_1 \dots Z_n$ mit Einzel-Wahrscheinlichkeiten $P(Z_i) = \pi_i$ haben eine gemeinsame Verbund-Wahrscheinlichkeitsverteilung

$$\prod \pi_j^{Z_j} (1 - \pi_j)^{(1 - Z_j)} = \exp\left[\sum_{j=1}^n Z_j \log\left(\frac{\pi_j}{1 - \pi_j}\right) + \sum_{j=1}^n \log\left(1 - \pi_j\right)\right]$$

- welche Mitglied der kanonischen Exponentialfamilie ist

• Im 1. Spezialfall gleicher Wahrscheinlichkeiten

$$\pi_i = \pi$$

- ergibt sich für die Zufallsvariable Anzahl der Erfolge

$$Y = \sum_{i=1}^{n} Z_i$$

Die Binomialverteilung

$$P(Y=y) = \binom{n}{y} \pi^y (1-\pi)^{n-y}$$

- wobei $y \in [0 \dots n]$
- Die Log-Likelihood ist

$$l(\pi; y) = y \ln\left(\frac{\pi}{1-\pi}\right) + n \ln\left(1-\pi\right) + \ln\binom{n}{y}$$

- \bullet im 2. allgemeineren Fall mit N Kategorien
 - Bei Nkategorial unterschiedlichen Wahrscheinlichkeiten summiert sich die Log-Likelihood

$$l(\pi_1, \dots, \pi_N; y_1, \dots, y_N) = \sum_{j=1}^N \left(y_j \ln\left(\frac{\pi_j}{1 - \pi_j}\right) + n_j \ln\left(1 - \pi_j\right) + \ln\left(\frac{n_j}{y_j}\right) \right)$$

- mit in jeder Kategorie j
 - * y_j Erfolge
 - * $n_j y_j$ Misserfolge

2.7 Toleranzverteilung

- Beschreiben der Erfolgsrate als Generalisiertes Lineares Modell
 - Zufallsvariable $P_j = \frac{Y_j}{n_j}$
 - mit Erwartungswert $\mathcal{E}(Y_j) = n_j \pi_j \quad \Rightarrow \quad \mathcal{E}(P_j) = \pi_j$
 - sei abhängig von erklärenden Variablen/Kategorien.

$$g(\pi_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

2.7.1 Lineares Modell

$$\pi_j = \mathbf{x}_i^T \boldsymbol{\beta}$$

- unangemessen (Siehe Beispiel Piloten-Ohnmacht: Grenzwertüberschreitung, Seite 24)
- Begrenzung: Beschränken auf eine Verteilungsfunktion (cdf)

$$\pi = F(t) = \int_{-\infty}^{t} f(s) ds$$

- $-f(s) \ge 0$ nicht-negative Wahrscheinlichkeit
- $-\int_{-\infty}^{\infty} = 1$ Normierung
- Toleranzverteilung

2.7.2 Beschränkt-Lineares Modell / Rechteckverteilung

• Wählt man als Toleranzverteilung die Rechteckverteilung

$$f(s) = \begin{cases} \frac{1}{c_2 - c_1} & \text{wenn } c_1 \le s \le c_2\\ 0 & \text{sonst} \end{cases}$$

• dann ist π kummulativ in x

$$\pi = \int_{c_1}^{x} f(s) ds = \frac{x - c_1}{c_2 - c_1}$$
 für $c_1 \le s \le c_2$

• bzw.

$$\pi = \beta_0 + \beta_1 x$$

- mit $\beta_0 = \frac{-c_1}{c_2 c_1}$ und $\beta_1 = \frac{1}{c_2 c_1}$
- wird selten benutzt

2.7.3 **Probit**

• Wählt man als Toleranzverteilung die Normalverteilung

$$f(s) = \mathcal{N}(\mu, \sigma^2)$$

• erhält man

$$\pi = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

 \bullet Damit erhält man die gewünschte lineare Abhängigkeit von x

$$g(\pi) = \Phi^{-1}(\pi) = \beta_0 + \beta_1 x$$

- mit $\beta_0 = \frac{-\mu}{\sigma}$ und $\beta_1 = \frac{1}{\sigma}$
- Dieses Modell kommt häufig in Biologie und Sozialwissenschaften vor
- Interpretation: versteckte Variable

2.7.4 Logistisches Modell / Logit

• Wählt man als Toleranzverteilung

$$f(s) = \frac{\beta_1 \exp(\beta_0 + \beta_1 s)}{\left(1 + \exp(\beta_0 + \beta_1 s)\right)^2}$$

• womit

$$\pi = \int_{-\infty}^{x} f(s) ds = \frac{\beta_1 \exp(\beta_0 + \beta_1 s)}{1 + \exp(\beta_0 + \beta_1 s)}$$

 \bullet dann erhält man die gewünschte lineare Abhängigkeit von x mittels Logit-Funktion

$$g(\pi) = \ln \frac{\pi}{1 - \pi} = \beta_0 + \beta_1 x$$

- welche als logarithmisches Chancenverhältnis 'Log-odds-ratio' interpretiert werden kann
- Wird oft benutzt, vor allem für Binomial-verteilte Daten, deren natürliche Link-Funktion

2.7.5 Extremwertverteilung / c-log-log

• Wählt man als Toleranzverteilung die Extremwertverteilung

$$f(s) = \beta_1 \exp\left((\beta_0 + \beta_1 s) - \exp(\beta_0 + \beta_1 s)\right)$$

• damit

$$\pi = 1 - \exp(-\exp(\beta_0 + \beta_1 t))$$

• Mit der komplementären Log-Log-Funktion erhält man die gewünschte lineare Abhängigkeit

$$g(\pi) = \log(-\log(1-\pi)) = \beta_0 + \beta_1 x$$

- Dies ist die $komplement\"{a}re\text{-}Log\text{-}Log\text{-}Funktion$

2.8 Beispiele

2.8.1 LD50

Käfer wurden einem Gift ausgesetzt, woran sie in Abhängigkeit von Konzentration $\log_{10} \frac{mg}{l}$ starben [Bliss, 1935]

Fragestellung: Was ist die 50%-Lethaldosis LD50

• Ab welcher Dosis sterben mehr als die Hälfte der Käfer?

Lösung mittels Logit-Link

• Ergebnis: Der Max-Likelihood-Parameter-Vektor-Schätzer ist

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} -60.7 \\ 34.3 \end{bmatrix}$$
 $\hat{\boldsymbol{\beta}}_{95\%CI} = \begin{bmatrix} -70.9 \cdots - 50.6 \\ 28.6 \cdots 40.0 \end{bmatrix}$

• \Rightarrow LD50 kann nun aus dem Modell ausgegeben werden

Frage: Vertrauensbereich der LD50?

- Wie verlässlich ist die LD50-Angabe?
- Lösung: Suche das 95% Konfidenzintervall
- Für normalverteilte Werte gilt das Gauß'sche Fehlerfortpflanzungsgesetz
 - Hier nicht
- Ausweg: 'worst case'

Diskrepanz zwischen Daten und Modell

- Grund: Parameter korrelieren
- Ursache:
 - Lineare Vorhersage für η geht vom Ursprung aus: Konzentration log(dose) = 0
 - * Eine kleine Änderung in der Steigung bewirkt eine große Änderung von η
 - * Eine Änderung im Achsenabschnitt bewirkt eine Verschiebung
 - * Fit benötigt Variation beider
 - · breite Randverteilung
- Abhilfe
 - Modellparametrisierung entkoppeln durch Zentrieren
 - Im Mittelpunkt der Datenwolke sind Steigung und Achsenabschnitt unabhängig

$$x \to x - x_0$$

• Ergebnis Zentrierung

- Der Achsenabschnitt verschwindet wie erwartet
 - * sein 95%-Konfidenzintervall ist deutlich enger
 - * er ist nicht signifikant
- -Einziger linearer Parameter β_1 behält seinen ursprünglichen Wert
 - * ebenso sein 95%-Konfidenzintervall
- Interpretation als Verdünnungsreihe
 - Ausgangskonzentration eines Gifts ρ_0
 - Unabhängige Variable: Verdünnungsfaktor zB. halbieren je Schritt x:

$$\rho_x = \rho_0 \frac{1}{2^x}$$

- Logarithmieren linearisiert die Abhängigkeit von x

$$\ln(\rho_x) = \ln(\rho_0) - x \ln(2)$$

Zwischenergebnis

- Parameterschätzer und Konfidenzintervall durch GLM bestimmen
- Konfidenzintervall für Daten
 - wenn bekannt: bei Normalverteilung t-verteilt
 - wenn unbekannt:
 - * simulieren
 - * 'worst case' Abschätzung durch unabhängige Parametrisierung
 - Logit-Modell beschreibt Dosisabhängigkeit gut
 - * logarithmische Abhängigkeit sorgt für Linearität in der Verdünnungsreihe

Andere Link-Funktion

- Probit
- Extremwertverteilung (komplementäre-log-log)
- Kein direkter Vergleich der drei Modelle möglich!
 - Siehe Kapitel Modellvergleich und Deviance (ab Seite 19)
 - Die Entscheidung für ein Modell muss aus der Theorie kommen
 - * Ob das Modell dann angemessen ist, das kann getestet werden

2.8.2 Wahrnehmungsexperiment Wahrnehmungsschwelle

- Kategoriale abhängige Variable
 - Dichotome Variable
 - * Ja / Nein Experiment
 - * Merkmal liegt vor / liegt nicht vor
- Experimente zur Wahrnehmungsschwelle
 - Gabor-Muster
 - Kontrast $\in \{0...1\}$

[100%, 20%, 4%, 0.8%]

- Streifenbreite spatial frequency: x cpd
- Durchführung
 - 12 Kontraste
 - 20 Wiederholungen jeweils
- Gesucht: Wahrnehmungsschwelle
 - Festgelegte Schwelle z.B. 75%
- Sinnvolle Darstellung der dichotomen Daten
 - Anteil der korrekten Antworten in Prozent
- Was ist die Wahrnehmungsschwelle?
 - Zufall: Rauschen, Zwinkern, Aufmerksamkeit, Müdigkeit
 - Kein Zufall: Adaption, Individualität (Genetik?), ...
 - Modell
 - Anpassen
 - Auswerten

Generalisiertes Lineares Modell

- Unabhängige Variable:
 - Kontrast
 - individuelle Versuchsperson
 - Umgebungshelligkeit
 - Streifenmuster (Breite, Winkel,...)
 - **-** ..
- Abhängige Variable

- Binomialverteilung 0/1
- Anteil Antwort 'percent correct'
- Modellparameter
 - y-Achsenabschnitt
 - Abhängigkeit vom Kontrast
 - Logit-Link
- Gesucht
 - Wahrnehmungsschwelle

2.8.3 Wahrnehmungsexperiment Rezeptive Felder

- ja / nein Experiment
 - Signalentdeckungstheorie
- Erzwungene Alternative
 - Bei mehreren Auswahlmöglichkeiten geht die Antwort-Wahrscheinlichkeit nicht auf Null, sondern startet von einem 'Zufalls'-Niveau $\frac{1}{N_c}$
 - Solch ein Modell muss gesondert erstellt werden
 - * Beispielweise Psignifit
- Beispiel-Experiment: Drei Versuchspersonen sollen Störungen erkennen
 - Störungen bestehen aus helligkeitsgleichen grob gefilterten Strukturen
 - Fixation auf Bildmitte
 - Störung hat verschiedene Durchmesser
 - Abstand der Störung zur Bildmitte variiert, 'Exzentrizität'
 - Störung wird an vier möglichen Positionen gezeigt
- Daten
 - Spalten
 - * Versuchspersonenkürzel, Versuchsnummer, innerhalb Versuchs-Block Nummer, Bildausrichtung
 - \ast Exzentrizität in ° vom Fixationspunkt
 - * Durchmesser der Störung in log 10 Pixel
 - * Ort, an dem Störung gezeigt wurde und Antwort der Versuchsperson
 - * correct, wenn richtig
 - Zeilen
 - *jeweils ein Versuch \sim Designmatrix

• Daten und Modell

- abhängige Variable: Antworten
 - * Dichotom 'richtig' / 'falsch'
- unabhängige Variablen:
 - * Exzentrizität
 - * Größe 'patch size'
 - * Versuchsperson
- Generalisiertes Lineares Modell
 - * Binomialverteilung
 - * Logistische Linkfunktion logit
 - * keine Beeinflussung (Interaktion) zwischen den unabhängigen Variablen

• Ergebnis

- Einfluss der Stimulusgröße
 - * Je größer ein Stimulus (bei gleicher Exzentrizität), desto besser wird er erkannt
 - * Je-desto ist nicht linear, sondern vermittels Link-Funktion logit
- Einfluss der Exzentrizität
 - * Je weiter in der Peripherie ein Stimulus (gleiche Größe) gezeigt wird, desto schlechter wird er erkannt

3 Principal Components Analysis - PCA

Ziele der Hauptkomponentenanalyse - PCA

- Wichtigste Informationen aus Daten extrahieren
- Unwichtige Daten verwerfen
- Beschreibung der Daten vereinfachen
- Struktur in den Daten erkennen

3.1 Lineare Abhängigkeit

Lineares Modell

$$\mathcal{E}(Y) = \mathbf{X}\boldsymbol{\beta}$$

- unabhängige Variable X, vorhersagende Variable
 - Designmatrix X
- \bullet abhängige Variable Y, gemessene Größe
 - Erwartungswert abhängig von vorhersagenden Variablen, Streuung, Messfehler, Zufall (modellabhängig)

Beispiel: Testat-Punkte und Klausur-Punkte

- Lineare Abhängigkeit $y \sim x \neq x \sim y$
- Ergebnis: ein lineares Modell ist angemessen, wenn
 - Kausale Abhängigkeit bekannt
 - Fehler *nur* in abhängiger Variable

Problem:

- Absolute Benotung?
- Reihenfolge: Wenn beide Zufallsvariablen gleichberechtigt sind...
 - welche Reihenfolge würden wir dann annehmen?
 - und wie diese sinnvoll bestimmen?

3.2 Multivariate Verteilung

von (zwei) gleichberechtigten Zufallsvariablen

3.2.1 Projektion

auf eine (neue, bestmögliche) Zufallsvariable

- Projektionen beispielsweise auf
 - x-Achse (1:0)
 - y-Achse (0:1)
 - 45° Diagonale (1:1)
 - 60° Diagonale
- Zwischenergebnis Pojektion
 - Skalarprodukt Vektor \mathbf{x} mit Vektor \mathbf{e} ergibt Koordinate x' in Bezug auf Vektor \mathbf{e}
 - Koordinate $x' \cdot \mathbf{e}$ beschreibt Projektion von \mathbf{x} auf \mathbf{e}
 - Information über zu e senkrechte Richtung wird ignoriert
- Python: Matrix-Multiplikation mit x-y-Koordinaten
 - np.vstack((x, y)).T
 - np.dot()

3.2.2 Varianz

- Kennzahl für Streuung einer Variablen
- Empirische Varianz für einen Datensatz X_i mit $i \in [1 \dots n]$

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

• Varianz einer Zufallsvariablen

$$Var(X) = \mathcal{E}((X - \mathcal{E}(X))^2)$$

• Schätzer der Varianz

$$-S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 für die Stichprobenvarianz $Var(X) = \sigma^2$

–
$$\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
 für die empirische Varianz $Var(X) = \sigma^2$

• Zwei Variable X und Y

$$- \operatorname{Var}(X), \operatorname{Var}(Y).$$

3.2.3 Kovarianz

• Die Kovarianz zweier verbundener Zufallsvariablen X_1 und X_2 mit gemeinsamer Verteilung $f(x_1, x_2)$ ist

$$Cov(X_1, X_2) = \mathcal{E}\Big(\Big(X_1 - \mathcal{E}(X_1)\Big)\Big(X_2 - \mathcal{E}(X_2)\Big)\Big)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \cdot (x - \mathcal{E}(X)) \cdot (y - \mathcal{E}(Y)) \, dy \, dx$$

- \Rightarrow Kennzahl für linearen Zusammenhang $X_1 \sim X_2$
- 'je-desto'
- Gewichtung in Quadranten
- Schätzer der Kovarianz, empirische Kovarianz

$$\widehat{C}_{X_1, X_2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\left(X_1 - \overline{X}_1 \right) \left(X_2 - \overline{X}_2 \right) \right)$$

Eigenschaften der Kovarianz

• Verschiebungssatz

$$Cov(X_1, X_2) = \mathcal{E}(X_1 \cdot X_2) - \mathcal{E}(X_1) \cdot \mathcal{E}(X_2)$$

• Symmetrie

$$Cov(X_1, X_2) = Cov(X_2, X_1)$$

• Varianzen

$$Var(X_i) = Cov(X_i, X_i)$$

- ⇒ Varianzen sind Diagonalelemente der Kovarianzmatrix
- Kovarianz-Matrix von n-dimensionaler Zufallsvariable ${\bf X}$ und ihrem Erwartungswert ${m \mu}$

$$\operatorname{Cov}(\mathbf{X}) = \mathcal{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_1, X_2) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_1, X_n) & \operatorname{Cov}(X_2, X_n) & \dots & \operatorname{Var}(X_n) \end{pmatrix}$$

• Unter linearer Transformation $X_1' = a_1 X_1 + b_1$ und $X_2' = a_2 X_2 + b_2$

$$Cov(X_1', X_2') = a_1 \cdot a_2 \cdot Cov(X_1, X_2)$$

Linearkombination

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

• Dann ist der Erwartungswert

$$\mathcal{E}(Y) = a_1 \mathcal{E}(X_1) + a_2 \mathcal{E}(X_2) + \dots + a_n \mathcal{E}(X_n)$$
$$= \sum_{i=1}^n a_i \mathcal{E}(X_i)$$

• und die Varianz

$$Var(Y) = \mathcal{E}\left(\left(Y - \mathcal{E}(Y)\right)^{2}\right)$$

$$= a_{1}^{2}Var(X_{1}) + a_{2}^{2}Var(X_{2}) + \dots + a_{n}^{2}Var(X_{n})$$

$$+ 2a_{1}a_{2}Cov(X_{1}, X_{2}) + 2a_{1}a_{3}Cov(X_{1}, X_{3}) + \dots$$

$$= \sum_{i=1}^{n} a_{i}^{2}Var(X_{i}) + 2\sum_{j=1}^{n} \sum_{i=1}^{j-1} a_{i}a_{j}Cov(X_{i}, X_{j})$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} a_{i}a_{j}Cov(X_{i}, X_{j})$$

• Erinnerung:

Bei unabhängigen Zufallsvariablen haben sich die Varianzen addiert

Ergebnis

- Kovarianz beschreibt einen linearen Zusammenhang
- Kein linearer Zusammenhang \Rightarrow Kovarianz (nahe) 0

3.2.4 Anwendung Reduktion der Dimension

Ein linearer Zusammenhang erlaubt

- Datenreduktion durch Ersetzung
- bei (geringem) Informationsverlust

Fragestellung: Welcher Zusammenhang?

Lösungsansatz

• Suche Linearkombination aus X und Y, sodass restliche Fehler/ Informationsverlust minimal werden

Ziel

- maximale Varianz gewünscht
- minimale Varianz ausblenden

3.2.5 Korrelation

Voraussetzung: Gleichberechtigte Variablen

- Gemeinsame Variation: Kovarianz
- Linearer Zusammenhang

Empirischer Korrelationskoeffizient

$$r_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 (Y_i - \bar{Y})^2}}$$

Korrelationskoeffizient zweier Zufallsvariablen

$$\rho = \rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

• invariant unter Skalierung

3.2.6 Korrelationstest

Seien (X_i, Y_i) $i \in \{1 \dots n\}$ unabhänge, gemeinsam normalverteilte Zufallsvariablen

Nullhypothese unabhängig, unkorreliert

- (a) $H_0: \rho_{XY} = 0$ $H_1: \rho_{XY} \neq 0$ (b) $H_0: \rho_{XY} = 0$ $H_1: \rho_{XY} < 0$ (c) $H_0: \rho_{XY} = 0$ $H_1: \rho_{XY} > 0$
- - Teststatistik

$$T = \frac{r_{XY}}{\sqrt{1 - r_{XY}^2}} \sqrt{n - 2}$$

• Verteilung unter $H_0: \rho_{XY} = 0$

$$T \sim t(n-2)$$

- Ablehnungsbereich
 - (a) $|T| > t_{1-\alpha/2(n-2)}$
 - (b) $T < -t_{1-\alpha(n-2)}$
 - (c) $T > t_{1-\alpha(n-2)}$

Allgemeine Nullhypothese

(a) $H_0: \rho_{XY} = \rho_0 H_1: \rho_{XY} \neq \rho_0$ (b) $H_0: \rho_{XY} \geq \rho_0 H_1: \rho_{XY} < \rho_0$ (c) $H_0: \rho_{XY} \leq \rho_0 H_1: \rho_{XY} > \rho_0$

Teststatistik

$$Z = \frac{1}{2} \left(\ln \frac{1 + r_{XY}}{1 - r_{XY}} - \ln \frac{1 + \rho_0}{1 - \rho_0} \right) \sqrt{n - 3}$$

• Verteilung unter $H_0: \rho_{XY} = \rho_0$ approximativ (n > 25)

$$Z \sim \mathcal{N}(0,1)$$

• Ablehnungsbereich

(a)
$$|Z| > z_{1-\alpha/2}$$

(b)
$$Z < -z_{1-\alpha}$$

(c)
$$Z > z_{1-\alpha}$$

3.2.7 Zweidimensionale Normalverteilung

Mit den Parametern

•
$$\mu_x = \mathcal{E}(X)$$

•
$$\mu_{n} = \mathcal{E}(Y)$$

•
$$\sigma_x^2 = Var(X)$$

$$\bullet \qquad \quad \sigma_y^2 = Var(Y)$$

$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_x \sigma_y}$$

ergibt sich

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\{\arg\}$$

mit

$$\arg = -\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_x}{\sigma_x} \right)^2 + 2\rho \frac{x-\mu_x}{\sigma_x} \frac{y-\mu_y}{\sigma_y} + \left(\frac{y-\mu_y}{\sigma_y} \right)^2 \right]$$

3.2.8 (lineare) Unabhängigkeit

Für gemeinsam **normal**verteilte Zufallsvariablen X und Y gilt:

• X und Y sind unabhängig \Leftrightarrow unkorreliert C=0

Für beliebig verteilte Zufallsvariablen X und Y gilt:

- X und Y sind unabhängig \Rightarrow Korrelation C=0
- X und Y sind linear unabhängig \Leftrightarrow Korrelation C=0

Höherdimensionale Normalverteilung

Analog mittels Kovarianzmatrix, jedoch unanschaulich

3.3 Datenreduktion

3.3.1 Beispiel: Gewichte von Säugetieren

- Gleichberechtigte Variablen X_1 log-Körpergewicht und X_2 log-Gehirnmasse
- Statistik
 - Grundgesamtheit: data.describe()
- Abhängigkeit der Gewichte: body vs. brain
 - Eine Variable?
 - Größte Varianz
 - Mischung von zwei Variablen

$$Y = a \cdot X_1 + b \cdot X_2$$

mit X_1 : log(BodyWt) und X_2 : log(BrainWt)

- = Projektion auf Unterraum Y
 - * eindimensional
- maximale Varianz?

$$Var(Y) = \mathcal{E}\left(\left(Y - \mathcal{E}(Y)\right)^{2}\right)$$
... = $a^{2}Var(X_{1}) + b^{2}Var(X_{2}) + 2 \cdot a \cdot b \cdot Cov(X_{1}, X_{2})$

3.3.2 Datenreduktion auf eine Dimension 'allgemeines Gewicht'

$$y_{i} = d_{1} \cdot x_{i1} + d_{2} \cdot x_{i2} = \mathbf{d} \cdot \mathbf{x}_{i}$$

$$\begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \left(d_{1} \ d_{2} \right) \begin{pmatrix} x_{11} \ x_{12} \dots x_{1n} \\ x_{21} \ x_{22} \dots x_{2n} \end{pmatrix}$$

• mit der (hier) 1×2 Projektionsmatrix $\mathbf{D} = (\mathbf{d}^T)$, allgemein:

$$\mathbf{Y} = \mathbf{D} \mathbf{X}$$

- Unterraum (hier eine Dimension) erlaubt Datenreduktion
- Bester Unterraum enthält maximale Varianz
 - Richtungsvektor
- Projektion in Unterraum
 - auf Richtungsvektor
 - hier: 2D \rightarrow 1D

- Rekonstruktion mittels Umkehrprojektion
 - aus Richtungsvektor
- Mittelwertskorrektur für direkten Vergleich

3.3.3 Datenreduktion - weitere Dimension(en)

- Beispiel: Schlafdauer
 - Nun drei Variablen: Gehirngewicht, Körpergewicht und Schlafdauer
 - Maximale Varianz?
- Verschiebung: Zentrieren

$$\mathbf{a} := \mathbf{v} - \overline{\mathbf{v}}$$

- originale Daten \mathbf{v}
- zentrierte Daten a
- Löst Mittelwert-Problem von vorhin
- Vereinfacht Berechnungen

$$A := V - \overline{v}$$

3.4 Kovarianzmatrix $Cov(X_i, X_k)$

$$C_{ik} = \frac{1}{m} \sum_{i=1}^{m} (v_{ij} - \overline{v}_i)(v_{kj} - \overline{v}_k) = \frac{1}{m} \sum_{i=1}^{m} a_{ij} a_{kj}$$

Mittels Datenmatrix **A** aus Spalten \mathbf{a}_i , so dass

$$\mathbf{C} = \frac{1}{m} \mathbf{A} \mathbf{A}^T$$

Projektion

aller Daten v auf beliebige Richtung w ergibt

$$\mathcal{E}(\mathbf{w} \cdot \mathbf{v}) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{w} \cdot \mathbf{v}_{i} = \mathbf{w} \cdot \sum_{i=1}^{m} \frac{1}{m} \mathbf{v}_{i} = \mathbf{w} \cdot \overline{\mathbf{v}}$$

und

$$\operatorname{Var}(\mathbf{w} \cdot \mathbf{v}) = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{w} \cdot \mathbf{v}_{j} - \mathbf{w} \cdot \overline{\mathbf{v}})^{2} = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{w} \cdot (\mathbf{v}_{j} - \overline{\mathbf{v}}))^{2}$$
$$= \frac{1}{m} \sum_{j=1}^{m} (\mathbf{w} \cdot \mathbf{a}_{j})^{2} = \frac{1}{m} \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{n} w_{i} a_{ij} a_{kj} w_{k}$$
$$= \frac{1}{m} \mathbf{w} \cdot \mathbf{A} \mathbf{A}^{T} \mathbf{w} = \mathbf{w} \cdot \mathbf{C} \mathbf{w}$$

3.5 Singularwertzerlegung

singular value decomposition, SVD

Daten

- $m \times n$ (hier im Bsp. Tiere × Variablen)
- Unterraum K < M mit Hauptkomponenten $i \in [1 ... K]$
 - Meist $K \ll n$
- Aber nicht nur sortiert sondern auch noch gedreht
- Finde Unterraum mit größter Varianz!

Diagonalisieren der Kovarianzmatrix C

• Wegen Symmetrie existiert

$$C = U\Lambda U^T$$

- mit orthonormaler Matrix ${\bf U}$ und Diagonalmatrix ${\bf \Lambda}$
- Dabei sind Eigenvektoren \mathbf{u}_i von \mathbf{C} in den Spalten von \mathbf{U} :

$$\mathbf{C}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• und Eigenwerte λ_i mit

$$\sigma_i^2 = Var(\mathbf{u}_i \cdot \mathbf{v}) = \mathbf{u}_i \cdot \mathbf{C} \mathbf{u}_i = \mathbf{u}_i \cdot \lambda_i \mathbf{u}_i = \lambda_i$$

- \Rightarrow Die Diagonalmatrix $\pmb{\Lambda}$ enthält als Eigenwerte die projizierten Varianzen

3.6 Hauptkomponenten

Erste Hauptkomponente

Unterraum mit

$$\max(\text{Var}) = \max(\mathbf{w} \cdot \mathbf{Cw})$$

hat größte Varianz

- in Richtung des (normierten) Eigenvektors $\mathbf{u}_{(1)}$
- zum größten Eigenwert $\lambda_{(1)} = \max(\lambda_i)$
- \Rightarrow Erste Hauptkomponente, 1st principal component

Beschränkung

- Auf Unterraum orthogonal zur ersten Hauptkomponente
- Wird von restlichen Eigenvektoren aufgespannt (Orthogonalsystem, Symmetrie von C)

Zweite Hauptkomponente

Im Unterraum **ohne** die erste Hauptkomponente entspricht dann die verbleibende maximale Varianz dem

- zweitgrößten Eigenwert $\lambda_{(2)} = \max(\lambda_{i \neq (1)})$
- in Richtung des zugehörigen Eigenvektors $\mathbf{u_{(2)}}$

Und so weiter ...

- Praktischerweise Abschneiden ab $\lambda_{(r)} <$ Schwelle
- Verbleibender Unterraum hat kaum Beitrag zur Varianz
- Abbruchkriterium beispielsweise durch Test auf Signifikanz

3.7 Pipeline PCA

• Daten in Datenmatrix $n \times m$

$$\mathbf{v} = (v_{ij})$$

• Mittelwerte der Variablen $\bar{\mathbf{v}} = \frac{1}{m} \sum_{j=1}^{m} \mathbf{v}_{j}$ abziehen

$$\mathbf{a} = \mathbf{v} - \mathbf{\bar{v}}$$

• Dann Varianz in den zentrierten Variablen i

$$Var_i = \frac{1}{m} \sum_{j=1}^m a_{ij}^2$$

• Kovarianzmatrix C aus Datenmatrix A bestimmen

$$\mathbf{C} = \frac{1}{m} \mathbf{A} \mathbf{A}^T$$

• Diagonalisieren

$$C = U\Lambda U^T$$

- Sortiere Eigenvektoren \mathbf{u}_i der Größe der Eigenwerte λ_i nach

$$\lambda_{(1)} \ge \lambda_{(2)} \ge \dots$$

- Abschneiden nach Unterschreiten einer Schwelle für Eigenwerte
- \bullet Erste Eigenvektoren spannen Unterraum \mathbf{U}' mit jeweils größtmöglicher Varianz auf
- Hauptkomponenten aus Projektion in \mathbf{U}'

$$\alpha = U'a$$

- Grenzen der PCA
 - Faktoren \rightarrow Korrelation
 - de-korreliert \rightarrow nicht unabhängig

3.8 Beispiele

3.8.1 Beispiel Säugetiere

- Daten
 - -m = 58 Tiere j: Elefant, ...
 - -n=3 Variablen i: BodyWt, BrainWt, SleepTime
- Daten zentrieren: Mittelwerte der Variablen abziehen
- Dann Varianz in den zentrierten Variablen i

$$Var_i = \frac{1}{m} \sum_{j=1}^m a_{ij}^2$$

• Kovarianzmatrix

$$\mathbf{C} = \frac{1}{m} \mathbf{A} \mathbf{A}^T$$

– Erinnerung: Variable i gegen Variable k über alle Tiere $j = 1 \dots m$

$$C_{ik} = \frac{1}{m} \sum_{j=1}^{m} (v_{ij} - \overline{v}_i)(v_{kj} - \overline{v}_k) = \frac{1}{m} \sum_{j=1}^{m} a_{ij} a_{kj}$$

- Diagonalisieren
- Sortieren
- Unterraum U' mit zwei größten Eigenwerten in Spalten

3.8.2 Beispiel Bilder

- Bilder als Vektoren
 - Bildvektor $\mathbf{v}=(v_1,v_2,\ldots,v_n)^T\in\mathbb{R}^n$ Pixel für Pixel in einer langen Zeile $1\ldots n$
 - Mehrere m Bilder \mathbf{v}_i
 - Damit Bilderdatenbank
 - * $m \times n$ Daten-Array, z.B. $(m = 20 \text{ Bilder}) \times (n = 256 \cdot 256 = 64K \text{ Pixel})$
 - * = 1280K Werte v_{ij}
- Projektion
 - Erwartungswert:

$$\mathcal{E}(\mathbf{w} \cdot \mathbf{v}) = \mathbf{w} \cdot \overline{\mathbf{v}}$$

- Mittelwertsbild:

$$\overline{\mathbf{v}} = \frac{1}{m} \sum_{j=1}^{m} \mathbf{v}_j$$

- Differenzbilder 'Karrikaturen':

$$\mathbf{a}_j = \mathbf{v}_j - \mathbf{\bar{v}}$$

- Varianz in einem Pixel i:

$$Var_i = \frac{1}{m} \sum_{j=1}^m a_i^2$$

- Varianz unter Projektion

$$Var(\mathbf{w} \cdot \mathbf{v}_j) = \mathbf{w} \cdot \mathbf{C}\mathbf{w}$$

- Kovarianzmatrix
 - Pixel i vs. Pixel k über alle Bilder $j = 1 \dots m$

$$C_{ik} = \frac{1}{m} \sum_{j=1}^{m} (v_{ij} - \overline{v}_i)(v_{kj} - \overline{v}_k) = \frac{1}{m} \sum_{j=1}^{m} a_{ij} a_{kj}$$

- Kann dargestellt werden mittels Datenmatrix **A** aus Spalten \mathbf{a}_i , so dass

$$\mathbf{C} = \frac{1}{m} \mathbf{A} \mathbf{A}^T$$

- Aufgabe: Finde Unterraum mit größter Varianz
- Lösung: Diagonalisieren der Kovarianzmatrix C
- Diagonalisieren
 - Daten M = 30 Bilder $\times N = 9$ Pixel.
 - Unterraum K < M, N mit Hauptkomponenten $i = 1 \dots K$
- Sortieren

- Sortiere Eigenwerte (Varianzen) der Größe nach

$$\sigma_1 > \sigma_2 > \dots$$

- Dann ist
 - * \mathbf{u}_1 die Richtung größter Variation
 - * \mathbf{u}_2 die Richtung größter Variation im dazu orthogonalen Unterraum
 - * ...
 - * $\sigma_m = 0$ (nur wenn Daten zentriert: Verlust eines Freiheitsgrades)
- Abschneiden nach h Dimensionen
 - Das sind die Hauptkomponenten
 - Sie spannen einen Unterraum (Hyperebene) in den Daten auf
 - Beispiel h = 5
- Ergebnis Rekonstruktion
 - Aus den wichtigsten Hauptkomponenten lassen sich die Bilder wiederherstellen

3.9 Komponenten

• Projektion auf Unterraum aus Hauptkomponentenvektoren \mathbf{u}_i :

$$\alpha = U'a$$

- Gewichtung der Hauptkomponenten(vektoren) im Bild a
- Koordinaten des Bildes im Unterraum U'
- Dimension h

3.10 Separation und Interpretation

- Daten sehen nach der PCA separiert aus
- Interpretation: Verschiedene Pixel in den beiden ersten Hauptkomponenten
- PCA-Ergebnisse
 - Im Unterraum der Hauptkomponenten
 - Für $\mathbf{v} = \overline{\mathbf{v}} + \sum_{i=1}^{m-1} \alpha_i \mathbf{u}_i$ gilt

$$\mathcal{E}(\alpha_i) = 0$$

$$\operatorname{Var}(\alpha_i) = \sigma_i^2$$

$$\operatorname{Cov}(\alpha_i, \alpha_i) = 0 \qquad i \neq j$$

Whitening

Standardisieren in mehreren Dimensionen.

Erinnerung: Momente von Wahrscheinlichkeitsverteilungen

- Nulltes Moment = 1 (Normierung)
- Erstes Moment = 0 (Erwartungswert)
- Zweites Moment = 1 (Varianz)

3.11 Korrelationskoeffizientenmatrix

Anstatt der Kovarianz wird die Korrelation verwendet

- ⇒ Skalierungsinvariantes Problem
- \Rightarrow SVD de-korreliert

SVD auf C anwenden

- Hohe Dimension n
- Eigenwerte sind sehr unterschiedlich
- Rang der Matrix ist < min(m, n)
- \Rightarrow SVD auf **A** anwenden

$$\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$$

$$\mathbf{C} = \frac{1}{m} \mathbf{A} \mathbf{A}^T = \frac{1}{m} \mathbf{U} \mathbf{W} \mathbf{V}^T \mathbf{V} \mathbf{W} \mathbf{U}^T = \frac{1}{m} \mathbf{U} \mathbf{W}^2 \mathbf{U}^T$$

- Dann sind die Spalten von U Eigenvektoren u_i
- und $\sigma_i = \frac{1}{\sqrt{m}} w_i$
- Für eine symmetrische Matrix sind die Eigenvektoren orthogonal

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0 \quad \forall \ i \neq j$$

$$|\mathbf{u}_i| = 1$$

• Sortiere Eigenwerte (Varianzen) der Größe nach

$$\sigma_1 > \sigma_2 > \dots$$

- $-\mathbf{u_1}$ die Richtung größter Variation
- $\mathbf{u_2}$ die Richtung größter Variation im dazu orthogonalen Unterraum
- _
- $-\sigma_m = 0$ (nur wenn Daten zentriert: Verlust eines Freiheitsgrades)
- Abschneiden nach h Dimensionen

- Hauptkomponenten spannen einen Unterraum (Hyperebene) in den Daten auf

$$\mathbf{v} = \overline{\mathbf{v}} + \sum_{i=1}^{h} \alpha_i \mathbf{u}_i$$

 $\min h < m-1$

- mit den Projektionen

$$\alpha_i = \mathbf{u_i} \cdot \mathbf{a} = \mathbf{u_i} \cdot (\mathbf{v} - \overline{\mathbf{v}})$$

Kumulierte Varianz

$$\sigma_{\text{accumulated}}^2 = Var(|\mathbf{v} - \overline{\mathbf{v}}|^2) = \sum_{i=1}^h \sigma_i^2$$

• Optimum!

3.12 Python sklearn PCA

- Scipy toolkit for machine learning
 - http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
 PCA.html
- Methoden:

```
fit(X[, y])
                        Fit the model with X.
fit_transform(X,[, y]) Fit the model with X and apply the dimensionality
                        reduction on X.
get covariance
                        Compute data covariance with the generative model.
get_params([deep])
                        Get parameters for this estimator.
get precision()
                        Compute data precision matrix with the generative
                        model.
inverse transform(X)
                        Transform data back to its original space, i.e.,
score(X[, y])
                        Return the average log-likelihood of all samples
set_params(**params)
                        Set the parameters of this estimator
transform(X)
                        Apply the dimensionality reduction on X
```

- Daten:
 - Dimension so wählen, wie sie co-variieren sollen
 - Parameters: X: array-like, shape (n_samples, n_features)
- PCA:

```
from sklearn.decomposition import PCA
X = np.array(v.T)
pca = PCA(n_components=6)
pca.fit(v.T)
```

Formalitäten

- Transponieren
 - * RuntimeError: we assume data in a is organized with numrows>numcols
 - $* \Rightarrow$ Daten gegebenenfalls transponieren
 - * Ergebnis ist fast gleich
 - * Rücktransformation mittels PCA auch transponieren
- Daten übergeben:

DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.

3.13 Bildanalyse Natürlicher Bilder

- Auswertung von vielen 32x32 Pixel Bild-Ausschnitten
 - $-PC_0$: gleichmäßige Fläche hell/dunkel (Mittelwert)
 - $-PC_1$: oben hell, unten dunkel ('Himmel')
 - $-PC_2$: links dunkel, rechts hell (z.B.)
 - $-PC_3$: oben rechts, unten links hell, sonst dunkel
 - ...
 - $-PC_{m-1}$: Rauschen hoher räumlicher Frequenz
- Literatur: Hyvärinen, Hurri, Hoyer: Natural Image Statistics A Probabilistic Approach to Early Computational Vision. Springer 2009

3.14 Gesichtserkennung und Rekonstruktion

- Anwendung Gesichter
 - Gesichts-Bilder als Trainings-Datensatz
 - Berechnung eines 'Durchschnitts-Gesichts'
 - Sogar ein teilweise überdecktes Gesicht kann wiederhergestellt werden
 - Literatur: Turk, Pentland: Eigenfaces for Recognition **JCogNeurosci Vol3**.1 1991
- 3D Gesichtserkennung
 - Datenbank von 3D-Scans
 - Gesichtsmodell
 - Anpassung
 - Probe

- Identität
- Literatur:
 - * Blanz, Vetter: IEEE Transactions on Pattern Analysis and Machine Intelligence ${f 25, \ 9 \ 2003}$
 - * Blanz, Vetter: A Morphable Model for the Synthesis of 3D Faces. T. SIG-GRAPH'99 Conference Proceedings

4 Independent Components Analysis - ICA

4.1 Cocktailparty Stimm-Separation

4.1.1 Menschen und Computer

- Gesichter auseinanderhalten
 - unterschiedliche Blickwinkel
 - unterschiedliche Beleuchtungssituationen
 - unterschiedliche Gesichtsausdrücke
 - Komponentenzerlegung
 - Speichern und vergleichen
 - Lernfähig, erweiterbar
- Stimmung ablesen
 - Lachen, Trauer, Wut, ...
 - unabhängig von der Person
 - andere Komponente im Gesichts-Raum

4.1.2 Geräusche - Cocktailparty Problem

- Menschen können einzelne Stimmen auseinanderhalten
 - weil sie klassifizieren können
- Andere Lösung
 - Mathematik LGS: so viele Variablen bestimmen, wie (unabhängige) Gleichungen
 - Ein Mikrophon im Raum reicht also nicht
 - Aber zwei für 2 Geräusche usw...
- Mehrere Quellsignale und Mischungen daraus
 - Können wir diese trennen?
 - Suche unabhängige Komponenten \rightarrow 'independent component analysis'

4.2 PCA nicht geeignet

- Originalquellen erscheinen unabhängig, Mischungen allerdings nicht
 - Wir haben nur die Mischungen
 - Wie trennen wir diese?
 - PCA Hauptkomponenten?
- PCA
 - Varianz ist maximiert
 - Kovarianzmatrix ist diagonal
 - Durch PCA gefundene Signale sind dekorreliert
- Keine Lösung!
 - Ursprüngliche Quellsignale nicht gefunden
- unkorreliert \neq unabhängig
 - Nur unkorreliert: PCA funktioniert nicht

4.3 Frage: Entmischung

- Beispiel: Zwei Stimmen und zwei Mikrofone
- Abhängigkeit: Die beiden Mischungen sind abhängig
- Statistik: Verteilungen sehen ähnlich aus
- Ziel: Entmischung
 - Unabhängigkeit
 - Komplexität
 - Nicht-Normalverteilt
 - Erinnerung: Zentraler Grenzwertsatz

4.4 Zentraler Grenzwertsatz

- Quell-Daten
 - I Quellsignal-Vektoren \mathbf{s}_i der Länge N:

$$\mathbf{s}_i = (s_{i1}, s_{i2}, \dots, s_{iN})$$

- zusammen in der Datenmatrix

$$\mathbf{S} = egin{pmatrix} \mathbf{s}_1 \ \mathbf{s}_2 \ dots \ \mathbf{s}_I \end{pmatrix}$$

- Mischungs-Daten
 - J Mischungsvektoren \mathbf{x}_j der Länge N:

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_J \end{pmatrix}$$

- entstanden aus den Quellsignalen

$$\mathbf{x}_j = \mathbf{a}_j \cdot \mathbf{S} = a_{j1}\mathbf{s}_1 + a_{j2}\mathbf{s}_2 + a_{j3}\mathbf{s}_3 + \dots$$

- mit den Mischungskoeffizienten $\mathbf{a}_j = (a_1, a_2, a_3, ...)$
- Hier im Bsp.:

$$\mathbf{x}_1 = a_{11} \cdot \mathbf{s}_1 + a_{12} \cdot \mathbf{s}_2$$

$$\mathbf{x}_2 = a_{21} \cdot \mathbf{s}_1 + a_{22} \cdot \mathbf{s}_2$$

• Matrix-Schreibweise

$$X = A \cdot S$$

- Dabei hat **A** die Dimension $J \times I$
- -die IQuelldaten ${\bf S}$ die Dimension $I\times N$
- und die J Mischdaten \mathbf{X} die Dimension $J \times N$
- Unser Beispiel

$$\mathbf{A} = \begin{pmatrix} 0.4 & 0.9 \\ 0.7 & 0.5 \end{pmatrix}$$

- Problem
 - A ist leider unbekannt
 - $\mathbf{S_i}$ sind unbekannt: gesucht!

- Lösung?
 - Wüssten wir die Mischungsmatrix \mathbf{A} , könnten wir die Entmischungs-Matrix für den Fall I=J berechnen

 \mathbf{A}^{-1}

- Wüssten wir die Quelldaten, könnten wir die Entmischungs-Matrix für den Fall I=J berechnen (überbestimmt)
- Anzahl Komponenten / Datensätze
 - Problem bei J < I
 - * Weniger Mischungs-Datensätze als Quell-Signale lassen sich normalerweise nicht trennen
 - * Im Bsp. also: Anzahl der Mikrofone \geq Anzahl der zu extrahierenden Stimmen
 - Praxis: mehr Datensätze J > I
 - * z.B: im EEG > 10 Elektroden und < 5 Signale
 - -I bekannt
 - * mittels PCA vorfiltern, um Dimension auf J zu reduzieren
 - I unbekannt
 - * Es verbleiben eventuell restliche Dimensionen, die nur noch Rauschen enthalten
 - * Lösung:
 - · Festlegen einer Schwelle
 - · Vorverarbeiten mittels PCA
 - Lösung: Quellsignale erscheinen im Mischungsgraphen als Orientierung (gemeinsame Ursache)
 - * Die Richtungen der Quellen s_i sind in der Grafik angedeutet
- Entmischen

$$S = WX$$

- mit den Datenreihen der Mischungen \mathbf{X}_i und den (rekonstruierten) Quellen \mathbf{S}_i
- Die Entmischungsmatrix ${\bf W}$ hat die Dimension $I \times J$ und enthält die Gewichtung der I Quellsignale in den J Mischdaten
- Mischung war

$$X = AS$$

- Ansatz: *Un*-Normal-Verteilung
 - Da Mischungen Normal-verteilt(er) sind, suche nach Entmischungen mit
 - * möglichst nicht-gauß-förmigen Verteilungen ${f s}$
 - * unterschiedlichen höheren Momenten

Einschub: Momente einer Verteilung

- Die Zufallsvariable X habe die Wahrscheinlichkeitsdichte $f_x(x)$ und sei o.b.d.A. zentriert $\mu = 0$
- Normierung

$$\int_{x=-\infty}^{\infty} f_x(x) \, \mathrm{d}x = 1$$

• erstes Moment: Erwartungswert $\mathcal{E}(X)$

$$\mu = \mathcal{E}{X} = \int_{x=-\infty}^{\infty} x \cdot f_x(x) \, \mathrm{d}x = 0$$

• zweites Moment: Varianz $\mathcal{E}\left((X-\mu)^2\right)$

$$\sigma^2 = \mathcal{E}\{X^2\} = \int_{x = -\infty}^{\infty} x^2 \cdot f_x(x) \, \mathrm{d}x$$

• drittes Moment: Schiefe (Skewness) $\mathcal{E}\left(\frac{(X-\mu)^3}{\sigma^3}\right)$

$$\mathcal{E}\{X^3\} = \int_{x=-\infty}^{\infty} x^3 \cdot f_x(x) \, \mathrm{d}x$$

- beschreibt die Asymmetrie der Verteilung von X
- viertes Moment (zentriert):

$$\mathcal{E}{X^4} = \int_{-\infty}^{\infty} (x)^4 \cdot f(x) \, \mathrm{d}x = m_4$$

- ergibt die (allgemeine) Kurtosis

$$K(X) = \mathcal{E}\left(\frac{(X-\mu)^4}{(\sigma^2)^2}\right) - 3$$

- beschreibt, wie spitz oder flach die Verteilung verläuft
- Normalverteilung hat Kurtosis K = 0
- spitzere Verteilungen 'super Gauß' K > 0
- Momente einer gemeinsamen Verteilung
 - Das Signal x hat die Verteilung $f_x(x)$, das Signal y hat die Verteilung $f_y(y)$
 - Sind x und y stochastisch unabhängig
 - * dann (und nur dann) zerfällt die gemeinsame Verteilung (joint distribution) in das Produkt aus den einzelnen Randverteilungen (marginal distributions):

$$f_{xy}(x,y) = f_x(x) \cdot f_y(y)$$

- Kovarianz:

* beschreibt lineare Abhängigkeit der beiden Verteilungen

$$Cov(x,y) = \mathcal{E}(x \cdot y) = \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_x(x) \cdot f_y(y) \cdot x \cdot y \, dx \, dy$$

- Unabhängigkeit
 - * Allgemein sind zwei Verteilungen unabhängig, wenn alle Momente faktorisieren:

$$\mathcal{E}(x^p \cdot y^q) = \int_{x = -\infty}^{\infty} \int_{y = -\infty}^{\infty} f_x(x) \cdot f_y(y) \cdot x^p \cdot y^q \, dx \, dy = \mathcal{E}(x^p) \cdot \mathcal{E}(y^q)$$

- Kurtosis als Beispiel
 - * Signal y der Länge N

$$K = \frac{\frac{1}{N} \sum_{t=1}^{N} (y_t - \bar{y})^4}{\left(\frac{1}{N} \sum_{t=1}^{N} (y_t - \bar{y})^2\right)^2} - 3$$

$$\mathcal{E}(x^4) \cdot \mathcal{E}(y^4) = \mathcal{E}((a_{11}s + a_{12}t)^4) \cdot \mathcal{E}((a_{21}s + a_{22}t)^4)$$

= $c_1 \cdot \mathcal{E}(s^4) \cdot \mathcal{E}(t^4) + c_2 \cdot f(a_i, s, t)$

4.5 Projection Pursuit

- Suche Maximum der Kurtosis innerhalb der Mischung
- Durchprobieren aller möglichen Entmischungen
- Stimmt der gefundene Vektor mit der Richtung aus der (uns unbekannten) Mischungsmatrix überein?
 - Erste Richtung gefunden
- Wie weiter?
 - Bestimme unabhängigen Unterraum davon
 - Suche nächstes Maximum der Kurtosis
 - usw.
- Mathematik:
 - Gram Schmidt Orthogonalisierung
- Senkrechter Unterraum
 - Senkrecht = (Kovarianz = 0)
- Ergebnis:
 - Damit wären die Quellsignale $\mathbf{y_1} \sim \mathbf{s_2}$ und $\mathbf{y_2} \sim \mathbf{s_1}$ aus den Mischungen $(\mathbf{x_1}, \mathbf{x_2})$ extrahiert
- Weiteres Vorgehen bei mehreren Dimensionen

- Beschränken auf Unterraum senkrecht zur ersten Komponente
- Finde darin nächste (=zweite) unabhängige Komponente
- Beschränken auf Unterraum senkrecht zur ersten und zweiten Komponente
- Finde darin nächste unabhängige Komponente

— …

4.5.1 Zusammenfassung der unabhängigen Komponenten

- Erstelle Raum der Mischsignale
- Suche Projektionsrichtung in den Mischungen, die die Unabhängigkeit maximiert
 - das ist nach dem Zentralen Grenzwertsatz die am wenigsten Normal-verteilte
 - dafür eignet sich die Kurtosis
 - Rückprojektion entspricht der ersten unabhängigen Komponente
- Rekursiv durch Unterräume
 - findet weitere unabhängige Komponenten
 - Abbruch
 - * wenn genug Komponenten (Dimension)
 - * wenn Schwelle für Kurtosis unterschritten
- Ergebnis: unabhängige Komponenten (extremer) Kurtosis
 - jedoch nicht deren ursprüngliches Verhältnis
- blind source separation
 - Separation: zerlegen in ursprüngliche Bestandteile
 - Quellen: Vermutung, dass unabhängige Bestandteile die Quelle bzw. Ursache der Mischungen sind
 - blind: Keine Information über die zugrundeliegenden Quelldaten bekannt
 - * Stimmlange
 - * Statistische Verteilung
 - * parameterfrei

4.6 ICA

4.6.1 Unabhängigkeit

- Die *Independent Component Analysis* berechnet im Gegensatz zur *Projection Pursuit* alle Dimensionen parallel
 - Vorteil: robuster
- Unabhängigkeit
 - Die Quellsignale s_i sollen unabhängig sein
 - Alle Quellsignale s_i sollen dieselbe Wahrscheinlichkeitsverteilung $p_s(s)$ haben
 - Innerhalb der Signale sollen die Einzelwerte unabhängig sein
 - * (ungeordnet in t, keine versteckte Abhängigkeit)
- Gemeinsam Normal-verteilte Variablen
 - ... sind uninteressant für die ICA!
 - Haben nur zweite Momente
 - * keine höheren, wie Kurtosis
 - Können maximal ko-variant sein
 - * per Whitening reduzierbar
- Was ist unabhängig?
 - Zufallsvariablen
 - Keine Struktur in der gemeinsamen Wahrscheinlichkeitsverteilungsdichte
 - Bedingte Verteilung = Randverteilung

$$p_X(X=x|Y=y_1) = p_X(X=x)$$

- gemeinsame Wahrscheinlichkeitsdichte zerfällt in Produkt der einzelnen

$$p_{XY}(X=x,Y=y) = p_X(X=x) \cdot p_Y(Y=y)$$

- Alle Momente zerfallen

$$\mathcal{E}(x^p \cdot y^q) = \int_{x = -\infty}^{\infty} \int_{y = -\infty}^{\infty} f_x(x) \cdot f_y(y) \cdot x^p \cdot y^q \, dx \, dy = \mathcal{E}(x^p) \cdot \mathcal{E}(y^q)$$

- Gegenbeispiel:
 - Zwei Sinuswellen unterschiedlicher Phase
 - * Zerfallen **nicht** in ihre Momente
 - Zwei Sinuswellen unterschiedlicher Frequenz
 - * Zerfallen in ihre Momente

4.6.2 Fragestellung der ICA

- Quellsignale S:
 - unabhängig!
 - unbekannt, gesucht
- Mischungsmatrix **A**:
 - unbekannt, gesucht
 - Mischungsmatrix ${\bf A}$ hat aus Quellsignalen
s Mischungen erzeugt ${\bf s} \stackrel{A}{\to} {\bf x}:$

$$\mathbf{x} = \mathbf{A}\mathbf{s}$$

- Mischsignale \mathbf{x}
 - als einzige bekannt
- \bullet Entmischungsmatrix ${f W}$

$$s = W^*x$$

- wäre $\mathbf{W}^* = \mathbf{A}^{-1}$ bekannt, ließen sich Quellsignale berechnen
- unbekannt, gesucht
- Mischung
 - Entstehung der Mischungen ${\bf x}$ aus den Quellen ${\bf s}$:

$$x = As$$

- Gesucht: Umkehrung

$$\mathbf{s} = \mathbf{W}^*\mathbf{x}$$

- Wahrscheinlichkeitsdichteverteilung von s ist

$$p_s(\mathbf{x})$$

- daraus die der Mischungen

$$p_x(\mathbf{x}) = p_s(\mathbf{s}) \left| \frac{\partial \mathbf{s}}{\partial \mathbf{x}} \right| = p_s(\mathbf{s}) |\mathbf{W}^*|$$

– Für nicht-optimale Entmischungsmatrix ${\bf W}$ ist die nicht-optimale Lösung ${\bf y}={\bf W}{\bf x}$ und

$$p_x(\mathbf{x}) = p_s(\mathbf{W}\mathbf{x}) |\mathbf{W}|$$

- Wenn unabhängig...
 - dann Gesamtwahrscheinlichkeitsverteilung

$$p_s(\mathbf{s}) = \prod_{t=1}^{N} \prod_{i=1}^{I} p_s(s_i(t))$$

4.6.3 Maximum Likelihood

$$p_x(\mathbf{x}) = p_s(\mathbf{W}\mathbf{x}) |\mathbf{W}| =: L(\mathbf{W})$$

• Likelihoodfunktion L, die es zu maximieren gilt:

$$L(\mathbf{W}) = \prod_{i=1}^{M} p_s(\mathbf{w}_i^T \mathbf{x}) |\mathbf{W}|$$

• mit unabhängigen Quellsignalen

$$L(\mathbf{W}) = \prod_{i=1}^{M} \prod_{t=1}^{N} p_s(\mathbf{w}_i^T \mathbf{x}^t) |\mathbf{W}|$$

• Log-Likelihood zerfällt in Summe

$$l(\mathbf{W}) := \ln L(\mathbf{W}) = \sum_{i=1}^{M} \sum_{t=1}^{N} \ln p_s(\mathbf{w}_i^T \mathbf{x}^t) + N \ln |\mathbf{W}|$$

- Aufgabe:
 - Maximiere l

$$f(\mathbf{W}, p_s, \mathbf{x})$$

- Lösung:
 - 'Modell'-Verteilung: pdf p_s
 - Gradientenmethode: maximieren

4.6.4 Modellvergleich 'cdf matching'

- Wähle Verteilung p_s
- 'cdf-matching'
 - Durch Anwendung erhält man eine Gleichverteilung
 - * maximale Unabhängigkeit
 - * maximale Komplexität
 - * maximale 'Entropie'
- Beispiele
 - Bilder mit hellen Flecken: schiefe Verteilung
 - Sprachsignale: spitze Verteilung
 - Spitze super-Gaussian Verteilung ist $p_s = 1 \tanh^2(\mathbf{s})$.

4.6.5 Gradientenmethode

- Finde Entmischungsmatrix \mathbf{W} , welche Log-Likelihood $l(\mathbf{W}, \mathbf{x})$ unter gegebenen Daten \mathbf{x} maximiert
 - brute force
 - * Siehe Beispiel zuvor
- Passend gewählte Verteilungsfunktion
 - pattern matching
 - Rechen-Vereinfachung
- Dann ist der Gradient bestimmbar aus
 - Daten-Matrix ${\bf x}$
 - (testweiser) Entmischungs-Matrix **W**
- $\bullet\,$ Und das Optimum der Entmischungsmatrix ${\bf W}$ kann mit der Gradientenmethode schrittweise angenähert werden
- Gradientenmethode

$$\frac{1}{N} l = \frac{1}{N} \sum_{i=1}^{M} \sum_{t=1}^{N} \ln p_s(w_i^T x^t) + \ln |\mathbf{W}|$$

- Dazu benötigen wir die Gradientenmatrix mit den Einträgen

$$\frac{\partial l}{N \partial \mathbf{W}_{ij}} = \mathcal{E}\left(\sum_{i=1}^{M} \frac{\partial \ln g'(y_i)}{\partial \mathbf{W}_{ij}}\right) + \frac{\partial \ln |\mathbf{W}|}{\partial \mathbf{W}_{ij}}$$
(4.1)

- cdf

g

- pdf

$$p_s = g'$$

- testweise Entmischung

$$\mathbf{y}_i = \mathbf{w}_i^T \mathbf{x}$$

- erster Term
 - * Kettenregel

$$\frac{\partial \ln g'(y_i)}{\partial \mathbf{W}_{ij}} = \frac{1}{g'(y_i)} \frac{\partial g'(y_i)}{\partial \mathbf{W}_{ij}}$$

 $* \mathbf{y} = \mathbf{W}\mathbf{x}$

$$\frac{\partial g'(y_i)}{\partial \mathbf{W}_{ij}} = \frac{\partial g'(y_i)}{\partial y_i} \frac{\partial y_i}{\partial \mathbf{W}_{ij}} = g''(y_i) \cdot x_j$$

 $* \Rightarrow$

$$\mathcal{E}\left(\sum_{i=1}^{M} \frac{\partial \ln g'(y_i)}{\partial \mathbf{W}_{ij}}\right) = \mathcal{E}\left(\sum_{i=1}^{M} \frac{g''(y_i)}{g'(y_i)} x_j\right)$$

- zweiter Term
 - * Es gilt

$$\frac{\partial \ln |\mathbf{W}|}{\partial \mathbf{W}_{ij}} = (\mathbf{W}^T)^{-1}_{ij}$$

- Beide Terme eingesetzt in (4.1)
 - * Abkürzung $\Psi(y_i) := \frac{g''(y_i)}{g'(y_i)}$

$$\frac{\partial l}{N \partial \mathbf{W}_{ij}} = \mathcal{E}\left(\sum_{i=1}^{M} \Psi(y_i) x_j\right) + (\mathbf{W}^T)^{-1}_{ij}$$

* Vektorschreibweise: Jakobi/Gradientenmatrix (Dimension $M \times M$)

$$\nabla \frac{l}{N} = (\mathbf{W}^T)^{-1} + \mathcal{E}\Big(\Psi(\mathbf{y}^t)[x^t]^T\Big)$$

* Erwartungswert

$$\mathcal{E}\Big(\Psi(\mathbf{y}^t)[x^t]^T\Big) = \frac{1}{N} \sum_{t=1}^N \Psi(\mathbf{W}\mathbf{x}^t)[x^t]^T$$

- Gradientenmethode

$$\begin{aligned} \mathbf{W}_{neu} &= & \mathbf{W}_{alt} + \eta \nabla l \\ &= & \mathbf{W}_{alt} + \eta \left((\mathbf{W_{alt}}^T)^{-1} + \frac{1}{N} \sum_{t=1}^{N} \Psi(\mathbf{W_{alt}} \mathbf{x^t})[x^t]^T \right) \end{aligned}$$

- * mit passend gewählter Schrittweite η .
- Modellverteilung Beispiel

$$p_s = 1 - \tanh^2(\mathbf{s})$$

- cdf

$$g(\mathbf{y}^t) = \tanh(\mathbf{y}^t)$$

 $-g'=1-\tanh^2$ und $g''=-2\tanh g'$

$$\Psi(\mathbf{W}\mathbf{x}^t) = \frac{g''}{g'} = -2\tanh(\mathbf{W}\mathbf{x}^t)$$

4.6.6 fastICA

- Implementiert eine Art Newton Iteration
- Dekorrelieren des neuen angenäherten Unterraums in jedem Schritt
 - Konvergiert quadratisch (oft kubisch)
 - * im Vergleich zur Gradientenmethode (=linear)
 - keine Schrittweitenanpassung nötig
 - Verteilungsfunktion g unkritisch

- Literatur: Hyvarinen, Oja: Independent Component Analysis: Algorithms and Applications. Neural Networks, **13(4-5)**, 2000 (pp. 411-430)
- Die Methode fast-ICA ist implementiert in http://scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_ source_separation.html

4.7 Python sklearn FastICA

- Scipy toolkit for machine learning
- FastICA

• Optimale Argumente zu FastICA:

- FastICA-Ergebnisse
 - Parameter:

```
components_ : array, shape (n_components, n_features) The unmixing matrix. mixing_ : array, shape (n_features, n_components) The mixing matrix.
```

- Funktionen:

```
transform(X, y=None, copy=True)
   Recover the sources from X (apply the unmixing matrix)
   X : array-like, shape(n_samples, n_features) Input Data to transform copy : bool (optional)
```

 ${\tt X_new}$: array-like, shape (n_samples, n_components) Return value found sources

- Liste der Mölichkeiten per Autovervollständig ica.
- Hilfe
 ica.mixing_?

4.8 Unabhängige Verteilung

- Ergebnis:
 - W enthält Entmischungsvektoren \mathbf{w}_i

$$\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots)^T$$

 $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{s}$

- Problem-Anpassung
 - Bei komplexen Signalen spielt es durchaus eine wichtige Rolle, welche Verteilung p_s man annimmt
 - Man kann p_s aus Trainings-Daten punktuell schätzen
 - * z.B. durch die mittlere Entfernung der nächsten Nachbarn
- Verteilung
 - Randverteilung der Misch- und Quellsignale
 - Verbundwahrscheinlichkeitsverteilung der Mischungen und Quellsignale
 - * joint probability density function

4.9 Zusammenfassung ICA

• ICA findet unabhängige Signale s in Daten x, die durch A linear gemischt wurden

$$x = As$$

• erlaubt die Zerlegung in unabhängige Quellsignale

$$\mathbf{v} = \mathbf{W}^* \mathbf{x}$$

- (maximiert die Entropie)
- Modellverteilung der Quellsignale cdf-matching
 - funktioniert auch mit ähnlichen Verteilungen
 - Beispiel high curtotic cdf = tanh(x)

- Entmischungsmatrix z.B. per Gradientenmethode
- Zeitlicher Verlauf in den Daten (Sortierung) spielt keine Rolle
- blind source separation
 - keine Einschränkung der Daten
 - keine Modellvorgabe außer cdf-matching
 - kann aus Trainings-Daten gelernt werden
- Einschränkungen
 - ICA hat größeren Rechenaufwand als PCA
 - * Vor allem bei hohen Dimensionen
 - Signale dürfen nicht normalverteilt sein
 - * keinerlei auswertbare Information nach Dekorrelation (PCA)
 - Entmischungsmatrix muss invertierbar sein $N\times N$
 - * Ausweg: Pseudo-Inverse
 - * Ausweg: Dimensionsreduzierung durch Vorbehandlung der PCA
 - Skalierung und Vorzeichen der Quellsignale bleiben unbestimmt

4.10 Anwendungen

Bilder zu den Anwendungen in den Folien zu PCA

zeitliche und räumliche ICA

- zeitlich = tICA
 - -M gemischte Signale \mathbf{x}_i der Länge N
 - $-\mathbf{x}_{i}(t)$ Filmbilder mit i=Pixel-Nummer
- $r\ddot{a}umlich = sICA$
 - Bildersammlung \mathbf{x}^T
- zeitlich und räumlich = stICA
 - Kombiniert sICA und tICA

Magnetocardiographie

• Literatur: Stone; Independent Component Analysis; MIT press 2004

EEG

- Ausschneiden von Blinzelartefakten und Rauschen
- Zeitlicher Verlauf der Komponenten
- Literatur: Tzyy-Ping Jung & Scott Makeig auf https://sccn.ucsd.edu/~jung/Site/ EEG_artifact_removal.html

Funktionelle Magnetresonanztomographie (fMRT)

- Vorabscans
- Funktionelle Analyse
- Literatur: Stone; Independent Component Analysis; MIT press 2004

Gesichtserkennung

• Literatur: Draper, Back, Bartlett, Beveridgea; Recognizing Faces with PCA and ICA; 2003

Natürliche Bilder

• Literatur: Hyvärinen, Hurri, Hoyer; Natural Image Statistics; Springer 2009

5 Bayes-Statistik

5.1 Satz von Bayes & Schlussfolgerung

Beispiel WG

- Mitbewohner
 - Ludger ist penibel
 - Erik ist gutmütig
 - Michael lässt seine Sachen herumliegen, drückt sich um das Müllruntertragen
- Sie kommen nach Hause, die Küche ist ein Saustall \Rightarrow Wer wars?
- Kalendereintrag
 - Michael ist seit 2 Wochen im Urlaub \Rightarrow Wer wars?
- Kühlschrank-Notiz
 - von Ludger: 'Sorry, musste dringend weg, mache später sauber' ⇒ Wer wars?

Satz von Bayes

• Thomas Bayes (1702 - 1761)

$$p(A \mid B) = \frac{p(B \mid A) p(A)}{p(B)}$$

- verknüpft bedingte Wahrscheinlichkeit p(A|B) zweier Zufallsvariablen A und B
- mit bedingter Wahrscheinlichkeit p(B|A)
- Verbundwahrscheinlichkeiten p(A,B) = p(A|B)p(B) und p(A,B) = p(B|A)p(A)

	krank	gesund	Summe	
Test +	99	4.995	5.094	$\Rightarrow 99/5.094 = 1.9\%$
Test -	1	94.905	94.906	
Summe	100	99.900	100.000	

Beispiel Bluttest

- Treffer-Rate von 99% bei vorliegender Krankheit
- Fehler-Rate von 5% für gesunde Person
- Die Krankheit ist relativ selten in der Bevölkerung: 0, 1%
- Wie wahrscheinlich ist es, dass man bei positivem Test die Krankheit hat?
- Mathematisch mit der Regel von Bayes

$$p(\text{Krank} = \text{ja}|\text{Test} = \text{pos}) = \frac{p(\text{Test} = \text{pos}|\text{Krank} = \text{ja})p(\text{Krank} = \text{ja})}{p(\text{Test} = \text{pos})}$$

$$= \frac{p(\text{Test} = \text{pos}|\text{Krank} = \text{ja})p(\text{Krank} = \text{ja})}{p(\text{Test} = \text{pos}, \text{Krank} = \text{ja}) + p(\text{Test} = \text{pos}, \text{Krank} = \text{nein})}$$

$$= \frac{p(\text{Test} = \text{pos}|\text{Krank} = \text{ja})p(\text{Krank} = \text{ja})}{p(\text{Test} = \text{pos}|\text{Krank} = \text{ja})p(\text{Krank} = \text{nein})p(\text{Krank} = \text{nein})}$$

$$= \frac{p(\text{Krank} = \text{ja})p(\text{Krank} = \text{ja})p(\text{Krank} = \text{ja})p(\text{Krank} = \text{nein})p(\text{Krank} = \text{nein})}{p(\text{Krank} = \text{ja}|\text{Test} = \text{pos})} = \frac{99\% \cdot 0.1\%}{99\% \cdot 0.1\% + 5\% \cdot 99.9\%}$$

$$= \frac{0.00099}{0.00099 + 0.04995} = 1.9\%$$

- Ergebnis
 - Reihenuntersuchung
 - bei Vorhandensein von Symptomen √
- Wiederholung des Tests
 - Sie haben ein positives Testergebnis erhalten, wissen jedoch nun, dass sie dennoch nur zu 1.9% krank sind
 - Sie wiederholen den Test und erhalten ein negatives Ergebnis
 - 1. Wie sehr beruhigt sie das?
 - 2. Was wäre im Falle eines (zweiten) positiven Ergebnisses?

Beispiel Haarfarbe & Augenfarbe

- Bedingte Wahrscheinlichkeit: Augenfarbe je Haarfarbe
 - Satz von Bayes:

$$p(H|A) = \frac{p(A|H)p(H)}{p(A)}$$

• Bedingte Wahrscheinlichkeit: Haarfarbe je Augenfarbe

%	schwarz	brünett	rot	blond	Randverteilung
braun	11	20	4	1	37
blau	3	14	3	16	36
nuss	3	9	3	$2 \stackrel{!}{\cdot}$	16
grün	1	5	2	3^{+}	11
Randverteilung	18	48	12^{-1}	$\bar{2}1$	100
%	schwarz	brünett	rot	blond	
blau	17	30	25	76	
	$\frac{1}{100}$	100	$-\frac{25}{100}$	$-\frac{76}{100}$	
%	schwarz	brünett	rot	blond	
blau	8	39	8	45 $^{\circ}$	100

Bayes'sches Schlussfolgern

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$
$$= \frac{p(A|B)p(B)}{\sum_{B'} p(A|B')p(B')}$$

5.2 Bayes Statistik

Was nennt man Bayes Statistik?

- Nicht (nur) Satz von Bayes
- Statistische Behandlung von Parametern

Frequentistische Statistik

- Wahrer Parameter θ
- Streuung, Rauschen, Zufall
- Gesetz der großen Zahl, Hauptsatz der Statistik
- Schätzer $\hat{\theta},$ Vertrauensbereich, Konfidenzintervall
- Nullhypothesen-Signifikanztest (NHST)

– z.B.
$$T = \frac{\hat{X} - \mu_0}{\hat{S}_X} \sqrt{n} \sim t(n-1)$$
 unter H_0

Bayes Statistik

- Wahrer Parameter θ
- Wissen über den wahren Parameter (als Verteilung $p(\theta)$)

$$p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)}$$

Bezeichnungen

$$posterior = \frac{likelihood \cdot prior}{evidence}$$

• mit Normierung im Nenner

$$p(D) = \sum_{\theta'} p(D \mid \theta') p(\theta')$$

bzw.

$$p(D) = \int_{\theta' = -\infty}^{\infty} p(D \mid \theta') p(\theta') d\theta' = \mathcal{E}(p(D \mid \theta') p(\theta'))$$

Prinzipielles Vorgehen

• Vorwissen, Prior $p(\theta)$

• Messung: Daten D

• Posterior: $p(\theta|D)$

• \Rightarrow neues, verbessertes **Wissen** $p(\theta)$

5.2.1 Reihenfolge der Datenerhebung

- Messungen D_1 und D_2
- Spielt die Reihenfolge eine Rolle?

$$-p(\theta|D_1,D_2)$$
 und $p(\theta|D_2,D_1)$

- Voraussetzung: Unabhängigkeit der Messungen
 - Likelihood $p(D_1, D_2|\theta) = p(D_1|\theta) \cdot p(D_2|\theta)$
 - * \Rightarrow Reihenfolge spielt keine Rolle für Likelihood
 - Posterior

$$p(\theta|D_1, D_2) = \frac{p(D_1, D_2|\theta)p(\theta)}{\sum_{\theta'} p(D_1, D_2|\theta')p(\theta')} = \frac{p(D_1|\theta)p(D_2|\theta)p(\theta)}{\sum_{\theta'} p(D_1|\theta')p(D_2|\theta)p(\theta')}$$
$$= \frac{p(D_2|\theta)p(D_1|\theta)p(\theta)}{\sum_{\theta'} p(D_2|\theta')p(D_1|\theta)p(\theta')}$$
$$= p(\theta|D_2, D_1)$$

 $*\,\Rightarrow$ Reihenfolge spielt keine Rolle für Posterior

5.3 Dichotome Daten

Exakte mathematische Behandlung am Beispiel dichotomer Daten

• Münzwurf steht stellvertretend für alle Bernoulli-Experimente

- Sozialwissenschaften: Umfrage ja/nein

- Biologie: Merkmal vorhanden/nicht vorhanden, Mädchengeburten

- Physik: Spin up/down

- Psychophysik: Reiz gesehen/nicht gesehen

- Medizin: Behandlung wirkt/wirkt nicht

• Eigenschaften

– genau 2 Möglichkeiten

- schließen sich gegensätzlich aus

- benötigen keine Metrik ('größer', 'Abstand')

- interessierende Größe: jeweilige Häufigkeit

* Parameter θ

5.3.1 Bernoulli-Experimente

$$Y = \begin{cases} 1 & \text{für Ergebnis 'Kopf'} \\ 0 & \text{für Ergebnis 'nicht Kopf'} = \text{'Zahl'} \end{cases}$$

Wahrscheinlichkeit

$$p(Y) = \begin{cases} \theta & \text{für Ergebnis 'Kopf', y=1} \\ 1 - \theta & \text{für Ergebnis 'Zahl', y=0} \end{cases}$$

Bernoulli-Verteilung

$$p(y|\theta) = \theta^y \cdot (1-\theta)^{1-y}$$

Mehrere Würfe

- i.i.d.
- N Wiederholungen
- darunter z mal Kopf

$$p(y_i|\theta) = \theta^{y_i} \cdot (1-\theta)^{1-y_i}$$

• Für ein erhaltenes Ereignis $\mathbf{y} = (y_1, y_2, \dots, y_N)^T$ unabhängiger Einzelereignisse y_i , darunter die Anzahl z positiver Einzelereignisse, multiplizieren sich die Wahrscheinlichkeiten zur

Binomial-Verteilung

$$p(\mathbf{y}|\theta) = \prod_{i=1}^{N} p(y_i|\theta)$$
$$= \prod_{i=1}^{N} \theta^{y_i} (1-\theta)^{(1-y_i)}$$
$$= \theta^{\sum_i y_i} (1-\theta)^{\sum_i (1-y_i)}$$
$$= \theta^z (1-\theta)^{N-z}$$

Ein Münz-Beispiel

mit 11 diskreten unterschiedlichen Münzen

• mit 11 unterschiedlichen Wahrscheinlichkeiten für Kopf:

$$\theta_j \in [0.0, 0.1, \dots 1.0]$$

- Wir haben eine Münze davon, wissen nicht welche
- Experiment: einmaliger Münzwurf
 - Ergebnis: Kopf $y_{i=1} = 1$
- Bei angenommen eher fairem Prior ist das Ergebnis für den Posterior:

Kontinuierliche Auswahl an Münzen

• Gibt ähnliches Bild wie diskrete Münzen

5.4 Einflüsse der Beiträge

5.4.1 Einfluss des Stichprobenumfangs (data)

Zwei verschiedene Stichproben-Umfänge (siehe Abbildung 5.1)

- 4 vs. 40 Münzwürfe
- jeweils 25% mal Kopf

Abbildung 5.1: Einfluss des Stichprobenumfangs

5.4.2 Einfluss des Vorwissens (prior)

Zwei verschiedene Prior-Verteilungen (siehe Abbildung 5.2)

• spitz und flach

5.4.3 Schlussfolgerung

- Prior & Daten \Rightarrow Posterior
- Prior
 - Vorwissen über den Parameter
 - je schärfer/besser das Vorwissen desto größer sein Einfluss
 - Ausschließen von Möglichkeiten durch Nullsetzen
- Likelihood
 - Daten aus Versuchen unter der Annahme eines Parameters
 - je mehr Daten/schärfere Likelihood, desto größer deren Einfluss

Abbildung 5.2: Einfluss des Vorwissens

- Posterior
 - Neujustierung der Erkenntnis über die Verteilung des Parameters
 - damit über Punktschätzer, Intervallschätzer, ...
 - Kreislauf möglich (Unabhängigkeit der Reihenfolge)

5.5 Parameter

- Theoretische Verteilung des Parameters θ
 - $-p(D|\theta)$
 - $-p(\theta)$
 - $-p(\theta|D)$
- Likelihood = Wahrscheinlichkeit $p(D|\theta)$ für einen Daten-Vektor von N Bernoulli-Experimenten
- Bernoulli-Likelihood

$$p(z|\theta) = \theta^z \cdot (1-\theta)^{1-z}$$

- Modell für Parameter
 - Bereich $\theta \in [0, 1]$
 - Ziel: vor und nach Anwendung der Bayes Schlussfolgerung sollte ähnliche Form von Formel herauskommen
 - * 'conjugate prior'
 - $\Rightarrow \text{Potenzen von } \theta \text{ und } (1 \theta)$
- konjugierte Priors erlauben
 - geschlossene Formel

- exakte Berechnung
- Einbeziehung der Daten (Anzahl)
- unabhängig von der Datenerfassung (Reihenfolge)
- Interpretation des Priors als Vorversuche
- lassen nicht jedes Modell zu; für komplexe Modelle ungeeignet
- Anderes Beispiel für konjugierte Priors: Gauß-Verteilung

5.6 Beta-Verteilung

$$p(\theta|a,b) = \text{beta}(\theta|a,b) = \theta^{a-1}(1-\theta)^{b-1}/B(a,b)$$

• mit Normierungsfaktor Beta-Funktion B

$$B(a,b) = \int_0^1 \theta^{a-1} (1-\theta)^{b-1} d\theta$$

- $-a, b \in \mathbb{R} > 0$
- Beta-Verteilung ist in Python stats vordefiniert
- Prior
 - -aus Tabelle gewünschte Vorauswahl für θ aussuchen
 - Beispielweise
 - * (4,4) für relativ faire Münze
 - * (0.1, 2) für Zahl-lastige Münze
 - * (1, 1) komplettes *nicht*-Wissen
 - \ast (0.5, 0.5) wenn Ränder wahrscheinlicher als fair sind: Münze aus dem Zauberladen

5.6.1 Eigenschaften

• Erwartungswert

$$\mu = \frac{a}{a+b}$$

- Modus
 - nur möglich für a > 1 und b > 1

$$\omega = \frac{a-1}{a+b-2}$$

- Streuung
 - nur sinnvoll für a > 1 und b > 1

$$\sigma = \sqrt{\mu(1-\mu)/(a+b+1)}$$

5.7 Vorwissen und Prior

5.7.1 Festlegen eines Priors gemäß Vorwissen

• Beispielweise aus μ und σ

$$a = \mu \left(\frac{\mu(1-\mu)}{\sigma^2} - 1 \right)$$
$$b = (1-\mu) \left(\frac{\mu(1-\mu)}{\sigma^2} - 1 \right)$$

- Beta-Posterior
 - Anwendung der Bayes-Regel mit Prior und Versuchsergebnis

$$\begin{split} p(\theta \,|\, z, N) &= \frac{p(z, N \,|\, \theta) p(\theta)}{p(z, N)} \\ &= \theta^z (1 - \theta)^{N - z} \theta^{a - 1} (1 - \theta)^{b - 1} \Big/ B(a, b) p(z, N) \\ &= \theta^{z + a - 1} (1 - \theta)^{N - z + b - 1} \Big/ B(a, b) p(z, N) \\ &= \theta^{z + a - 1} (1 - \theta)^{N - z + b - 1} \Big/ B(z + a, N - z + b) \end{split}$$

• Ergebnis Posterior

$$p(\theta \mid z, N) = \frac{\theta^{z+a-1} (1-\theta)^{N-z+b-1}}{B(z+a, N-z+b)}$$

- Geschlossene Formel
- Beta-Ansatz (conjugate prior) erhält Form
 - * beliebig erweiterbar: Beta-Verteilung bleibt erhalten
- Interpretation a, b als vorherige Würfe:
 - * Prior mit $a \times \text{Kopf}$ und $b \times \text{Zahl}$
- Eigenschaften
 - Posterior-Formparameter bestehen aus Summe aus Prior(a, b) und Daten(z, N z)
 - besonders praktisch, wenn immer weiter
 - Ergebnis für größere N sofort abschätzbar, nicht sukzessiv nötig
 - Reihenfolge der Ergebnisse spielt keine Rolle

5.7.2 Erwartungswert

1. Prior

$$\mu_{\text{Prior}} = \mathcal{E}(\theta) = \frac{a}{a+b}$$

2. Likelihood-Daten

$$\mu_{\mathrm{Daten}} = \frac{z}{N}$$

3. Posterior

$$\mu_{\text{Posterior}} = \frac{z+a}{N+a+b}$$

$$= \frac{z}{N} \frac{N}{N+a+b} + \frac{a}{a+b} \frac{a+b}{N+a+b}$$

$$= \mu_{\text{Daten}} \frac{N}{N+a+b} + \mu_{\text{Prior}} \frac{a+b}{N+a+b}$$

Ergebnis Erwartungswert

$$\mu_{\text{Posterior}} \in \left[\mu_{\text{Daten}} \dots \mu_{\text{Prior}}\right]$$

- gewichtet mit den relativen Mengen-Verhältnissen
 - mehr Daten (N): geringeres Gewicht des Priors
 - stärkerer Prior (a+b): geringeres Gewicht der Daten
- a und b des Priors repräsentieren den Ausgang und die Anzahl der Vorversuche

5.7.3 Koordinatentransformation

- Treffer/Gesamtzahl
 - z als Anzahl von N:

$$a = z + 1 \qquad b = N - z + 1$$

- z' als Anteil von N:

$$a = Nz' + 1$$
 $b = N(1 - z') + 1$

- Verhältnis / Standardabweichung
 - mit der Standardabweichung (sinnvoll für s > 0.289 bzw. $a, b \ge 1$)

$$a = \mu(\frac{\mu(1-\mu)}{s^2} - 1)$$

$$b = (1 - \mu)(\frac{\mu(1 - \mu)}{s^2} - 1)$$

5.7.4 Vorwissen im Prior

- 1. Kein Vorwissen
 - Keine Vorversuche N=0 und z=0: $p(\theta|a,b)=\mathrm{beta}(\theta|a,b)=\theta^{a-1}(1-\theta)^{b-1}/B(a,b)$
 - -a=1, b=1
 - flache Wahrscheinlichkeitsverteilung $p(\theta) = 1$
 - Versuchsergebnis (Daten) bestimmen alleine den Posterior
- 2. Starkes Vorwissen
 - Münze ist neu, direkt aus der Prägeanstalt
 - $-\theta = 0, 5$ also bereits 100 mal geworfen: a = 51, b = 51
- 3. Schwaches Vorwissen
 - Münze ist zweifelhaft
 - $-\theta = 0.75$ breite Verteilung: a = 3, b = 7 (2 von 8)

Abbildung 5.3: Vorwissen im Prior

5.8 Grenzen der Methode conjugate priors

bisher:

- geschlossen lösbar
- Lösung sofort zugänglich
- reichhaltige Auswahl an Priors

Speziell: Prior mono-modal/bi-modal (aufgrund Beta-Verteilung)

- Es gibt nur einen zentralen Peak
- oder zwei fest am Rand an 0 und 1

5.8.1 Beispiel: zwei Trick-Münzen aus der Spiegelgasse

- Entweder Kopf zu 25%
- oder Zahl zu 25%

Damit Posterior

• mehr Wahrscheinlichkeit Richtung 75%

Das ist jedoch eine unrealistische Lösung:

- 50% häufiger als 25%?
- Tal bei 30% und 70%
- entspricht nicht dem Modell

5.9 MCMC

5.9.1 Einleitung

Posterior-Zufallsstichproben am Beispiel dichotomer Daten

Ziel

- Stichproben aus dem Posterior gewinnen
- Statistik: Punktschätzer, Intervallschätzer

Problem

- Mathematisch geschlossene Lösung
 - nicht immer anwendbar
- Numerische Gitter-Berechnung
 - Bayes Schlussfolgern erlaubt Berechnung des Posteriors
 - Benötigt jedoch das Integral evidence über alle Parameterkombinationen bei numerischer Berechnung mit hinreichend vielen Stützstellen
 - für komplexe Modelle nicht in endlicher Zeit berechenbar (z.B. 100¹⁰⁰)

Lösung

- Markov Chain Monte Carlo Methode MCMC
 - Stichproben aus Posterior-Verteilung in einer Markov-Kette
 - Daraus Erwartungswert und Credible Interval schätzen

Markov Chain Monte Carlo Methode

Vorgehensweise

- (zufällige aber zielgerichtete und repräsentative) Stichprobe (nicht das vollständige Gitter)
 - 'Monte Carlo'
 - gemäß der Posterior-Verteilung(!)

Voraussetzungen MCMC

- Berechenbarkeit des Priors $p(\theta)$
 - für jeden Parameter $\theta \in \mathbb{R}$
- Berechenbarkeit der Likelihood $p(D|\theta)$
 - für jedes Datum D und jeden Parameter θ

Vorteil

• Dafür kann die evidence (Normierung, Skalierungsfaktor) übergangen werden

Ergebnis

- Posterior $p(\theta|D)$ Stichproben
- Daraus Abschätzen
 - Erwartungswert Mean Posterior
 - Modus Maximal A Posterior (MAP)
 - Credibility-Intervall (CI) oder Highest Density Interval (HDI)
- Beachten
 - Keine p sollten exakt Null sein, sonst Zu-/Durchgang schwierig
- Beweis
 - Transformationsmatrix ist unter der Ziel-Verteilung stabil

5.9.2 Vereinfachter Metropolis-Algorithmus

Eigenschaften

- diskrete Möglichkeiten
- eine Dimension für Parameter θ
- konstante Schrittweite: 1

Beispiel: Ein Versicherungsvertreter möchte auf einer Kette von Inseln Kunden gleich häufig besuchen

- Jede Insel hat einen Bevölkerungsanteil θ_i
- Per Blick ist abends abzuschätzen, wie viel höher der Bevölkerungsanteil auf einer der beiden Nachbarinseln (i-1 bzw. i+1) ist
- Am Morgen wird (wenn lohnenswert) eine Nachbarinsel besucht
- 1. Richtungsentscheidung
 - Wähle zufällig mit p=0.50 rechte oder linke Insel / kleineren oder größeren Index des Parametervektors θ aus
 - \Rightarrow Dies liefert den Kandidaten

$$\theta_{\mathrm{Kandidat}} = \begin{cases} \theta[i_{\mathrm{aktuell}} - 1] \\ \theta[i_{\mathrm{aktuell}} + 1] \end{cases}$$

- 2. Sprung-Wahrscheinlichkeit
 - a) Wenn $p(\theta_{\text{Kandidat}}) > p(\theta_{\text{aktuell}})$ dann gehe zu Kandidat

$$q_{Sprung} = 1$$

b) Wenn $p(\theta_{\text{aktuell}}) \ge p(\theta_{\text{Kandidat}})$ dann gehe proportional zum Wahrscheinlichkeits(dichte)-Verhältnis zum Kandidaten

$$q_{Sprung} = \frac{p(\theta_{\text{Kandidat}})}{p(\theta_{\text{aktuell}})}$$

c) sonst bleibe

$$q_{Sprung} = 1 - \frac{p(\theta_{\text{Kandidat}})}{p(\theta_{\text{aktuell}})}$$

3. Keine Berechnung der evidence nötig

Ergebnis:

- Kette von Sprüngen 'Markov Chain'
- Wahrscheinlichkeit des Aufenthaltes ≡ Wahrscheinlichkeit der Punkte
- funktioniert
 - Es gibt einen stabilen Zustand
 - Dieser stabile Zustand repräsentiert die Verteilung
- Stichprobe aus der Posterior-Verteilung
 - -für den Parameter θ
 - (nicht für Daten!)
- Auswerten der Posterior-Verteilung
 - Erwartungswert Mean Posterior
 - * Mittelwert
 - Modus Maximum A Posteriority (MAP)
 - * Histogramm
 - * KDE
 - * Modell-Anpassung
 - Credible Interval (CI)

$$p(\theta \in CI) >= 1 - \alpha$$

Vergleich NHST

- Verteilung von Daten unter Parameter
- Likelihood
- Punktschätzer: Maximum Likelihood Estimator (MLE)
- Intervallschätzer: Konfidenzintervall

$$\hat{\mu} - t_{1-\alpha/2}(n-1)\frac{\hat{\sigma}}{\sqrt{n}} \le \mu \le \hat{\mu} + t_{1-\alpha/2}(n-1)\frac{\hat{\sigma}}{\sqrt{n}}$$

- -überdeckt zu $1-\alpha$ den wahren Parameter
- Voraussetzung: Normalverteilte Stichprobe
 - * Punktschätzer Erwartungswert

$$\hat{\mu} = \overline{x}$$

* Punktschätzer Varianz

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

5.9.3 Kontinuierlicher Metropolis-Algorithmus

Metropolis-Algorithmus (nach Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 1953)

Metropolis	vereinfachter	kontinuierlicher	
Dimension	\mathbb{R}	\mathbb{R}	
Ziele	$\theta_i; i \in \mathbb{N}$	$\theta \in \mathbb{R}$	
Schrittweite	$\Delta i \in [-1, 0, +1]$	$d \sim \mathcal{N}(0, \sigma^2) \in \mathbb{R}$	

Voraussetzung

- Verteilung $p(\theta)$
 - berechenbar $\forall \theta_i$
 - keine Bereiche mit $p \equiv 0$

Durchführung

1. Sprungweite und -richtung

$$\Delta \theta \sim \mathcal{N}(\mu = 0, \sigma^2)$$

$$\theta_{\text{new}} = \theta_{\text{cur}} + \Delta \theta$$

2. Wahrscheinlichkeit dafür

$$\begin{split} p_{\text{move}} &= \min \left(1, \frac{P(\theta_{\text{new}})}{P(\theta_{\text{cur}})} \right) \\ &= \min \left(1, \frac{p(D|\theta_{\text{new}})p(\theta_{\text{new}})}{p(D|\theta_{\text{cur}})p(\theta_{\text{cur}})} \right) \end{split}$$

- und $p_{\text{move}} = 0$ wenn außerhalb des erlaubten Parameter-Bereichs
- 3. Verteilung
 - beispielsweise

$$p(D \mid \theta_{x}) = \text{Bernoulli}(z, N \mid \theta_{x})$$

 $p(\theta_{x}) = \text{beta}(\theta_{x} \mid a, b)$

- 4. Abbruch-Kriterium
 - Wenn genügend unabhängige Samples vorliegen

Verschiedene Sprungweitenverteilungen

- $\sigma \in [0.02; 0.2; 2.0]$
- unwissender Prior beta $(\theta|1,1)$
- Daten N = 20, z = 14

Ergebnis

- Metropolis Algorithmus funktioniert meistens
- Schrittweite ist manchmal kritisch
 - z.B. Verteilung mit einem schmalen und einem breiten Peak
- Näherung an Posterior gut
 - immer noch nicht perfekt; mit 50.000 Grid-Berechnungen wäre die Genauigkeit viel besser gewesen
- im N-dimensionalen sieht das ganz anders aus

5.9.4 Mehrdimensionaler Metropolis-Algorithmus

Fragestellung

- Medizin: zwei Gruppen Patienten, eine bekommt Plazebo, eine ein neues Medikament
 - Wirkt das Medikament
- Verhaltensforschung: zwei Gruppen Versuchspersonen, eine spielt Ballspiele, eine spielt Tetris
 - Auswirkung auf Konzentrationstest gelöst/nicht gelöst?
- Münzwurf: zwei verschiedene Münzen mit θ_1 und θ_2

Voraussetzungen

- Unabhängigkeit der Daten (wie bisher)
- Unabhängigkeit der Parameter θ_1 und θ_2

Metropolis	vereinfachter	verallgemeinerter
Dimension	\mathbb{R}^1	\mathbb{R}^N
Ziele	$\theta_i; i \in \mathbb{N}$	$\theta \in \mathbb{R}^N$
Schrittweite	$\Delta i \in [-1, 0, +1]$	$\mathbf{d} \sim mv \mathcal{N}(0, \boldsymbol{\sigma}^2) \in \mathbb{R}^N$

Gemeinsame Verteilung

• Aus Unabhängigkeit folgt

$$p(\theta_1, \theta_2) = p(\theta_1)p(\theta_2)$$

Normierung

$$\int_{\theta_1} \int_{\theta_2} p(\theta_1, \theta_2) d\theta_2 d\theta_1 = 1$$

Daten

- Tupel gemeinsamer Merkmale (2 Münzen, 2 Gruppen,...)
 - je Versuchsdurchführung
 - z.B. 32/48 und 24/52

- (Nicht unbedingt paarweise erhoben
 - zwei Münzen gleichzeitig geworfen
 - Erinnerung: t-Test unabhängig oder gepaart)
- Unabhängigkeit bedeutet:

$$- p(y_1 | \theta_1, \theta_2) = p(y_1 | \theta_1) \text{ und } p(y_2 | \theta_1, \theta_2) = p(y_2 | \theta_2)$$

• Mehrfache Durchführung

$$-z_1 = \sum_{i=1}^{N_1} y_{1i}$$
 und $z_2 = \sum_{i=1}^{N_2} y_{2i}$

• Datensatz

$$-D = \{z_1, N_1, z_2, N_2\}$$

• Likelihood

$$p(D \mid \theta_1, \theta_2) = \prod_{y_{1i} \in D_1} p(y_{1i} \mid \theta_1, \theta_2) \prod_{y_{2j} \in D_2} p(y_{2j} \mid \theta_1, \theta_2)$$
$$= \theta_1^{z_1} (1 - \theta_1)^{N_1 - z_1} \theta_2^{z_2} (1 - \theta_2)^{N_2 - z_2}$$

Bayes Schlussfolgerung

Posterior

$$p(\theta_1, \theta_2 \mid D) = p(D \mid \theta_1, \theta_2) p(\theta_1, \theta_2) / p(D)$$

$$= p(D \mid \theta_1, \theta_2) p(\theta_1, \theta_2) / \int_{\theta_1'} \int_{\theta_2'} p(D \mid \theta_1', \theta_2') p(\theta_1', \theta_2') d\theta_1' d\theta_2'$$

Exakte Lösung unter conjugate Prior Beta-Verteilung

Posterior

$$p(\theta_1, \theta_2 \mid D) = p(D \mid \theta_1, \theta_2) p(\theta_1, \theta_2) / p(D)$$

$$= \frac{\theta_1^{z_1} (1 - \theta_1)^{N_1 - z_1} \theta_2^{z_2} (1 - \theta_2)^{N_2 - z_2} \theta_1^{a_1 - 1} (1 - \theta_1)^{b_1 - 1} \theta_2^{a_2 - 1} (1 - \theta_2)^{b_2 - 1}}{p(D) B(a_1, b_1) B(a_2, b_2)}$$

• mit, wegen Normierung

$$p(D) B(a_1, b_1)B(a_2, b_2) = B(z_1 + a_1, N_1 - z_1 + b_1)B(z_2 + a_2, N_2 - z_2 + b_2)$$

• also für den Posterior wieder eine Beta-Verteilung

Ergebnis

• Analog zum eindimensionalen Fall

5.10 Gibbs Sampling

Metropolis Algorithmus 2D

- analog zum eindimensionalen Fall
 - bivariate Normalverteilung zur Sprungvorhersage
 - kann Kovarianz haben, wenn Daten korreliert
- Problem
 - Enge Verteilungen werden schlecht erreicht

Gibbs Sampling

- Autoren: Geman & Geman 1984
- Bekannt nach dem Physiker J. W. Gibbs: Statistische Mechanik und Thermodynamik
- Spezialfall des Metropolis-Hastings-Algorithmus

Gemeinsamkeiten

- Random Walk
- Markov Chain (unabhängige Vorgeschichte)

Unterschied

- Jeder Schritt nur entlang eines Parameters, anderer fest; meist zyklisch
 - Bedingte Wahrscheinlichkeitsverteilung $p(\theta_i | \{\theta_{i \neq i}\}, D)$
 - Form bekannt \Rightarrow direkte Zufallsauswahl
 - Anspringen (es entfällt kein Schritt)

Vorteil

- Anwendbar, wenn gesamte Verbundwahrscheinlichkeit nicht bestimmt werden kann $p(\{\theta_i\}|D)$,
 - lediglich die bedingte Wahrscheinlichkeit $p(\theta_i|\{\theta_{j\neq i}\},D)$
 - diese dafür bekannt
- effektiver, da (fast) alle Schritte zählen
- gleiches Ergebnis im Limes

Einschränkung

- nicht anwendbar, wenn bedingte Wahrscheinlichkeit nicht bestimmbar
- oder keine Zufallszahlen daraus gezogen werden können

Nachteile Metropolis/Gibbs

- Ausgehend von aktuellem Parametervektor mit symmetrischer Sprungvorhersage
 - Multimodale Verteilung ineffektiv abgetastet
 - Korrelierte Parameter ineffektiv erreichbar

- Schwänze der Verteilung beibehalten
- Schlechte Konvergenz
 - Parameter dürfen nicht zu sehr korrelieren
 - * sonst zu kleine Schritte, nicht in Diagonalrichtung möglich

Literatur

- Gelfand & Smith 1990
- McGrayne 2011
- Bolstad 2009
 - Mathematik zum Metropolis-Hastings Algorithmus

5.10.1 BUGS

- Bayesian-inference Using Gibbs Sampling
- Erste weit verbreitete Implementierung
 - Winbugs 1997
- Heute openBUGS: http://www.openbugs.net/w/FrontPage

5.10.2 JAGS

- Just Another Gibbs Sampler
- Auch für Mac, Linux, Unix, ...
- 2003

5.10.3 emcee

- pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler
- http://dan.iel.fm/emcee/current/

5.11 Hamilton HMC

Adaptiert an Form der Verteilung

- Sprungziel-Wahrscheinlichkeit in Richtung des Modus erhöht: Gradient
- Weite der Sprünge an Breite/Höhe der Verteilung angepasst

Sprungziel

- Anleihe aus der Physik: Hamilton-Operator
 - Potential -log(posterior)
 - Impuls
 - Bewegung
 - Stopp nach bestimmter Zeit

Sprung-Entscheidung

$$p_{\text{accept}} = \min\left(1, \frac{p(\theta_{\text{proposed}}|D)p(\phi_{\text{proposed}})}{p(\theta_{\text{current}}|D)p(\phi_{\text{current}})}\right)$$

- ähnlich wie Metropolis-Algorithmus, jedoch gewichtet gemäß dem Impuls phi
 - erwartet wird (Energieerhaltungssatz) ein Verhältnis von $p_{\text{accept}} = 1$
 - zufällige Abweichungen durch Diskretisierung des Bewegungswegs

Ergebnis

- HMC bildet eine Makrov-Kette
 - Kleine Schrittweite $phi \Rightarrow$ gute Näherung
 - Große Schrittweite \Rightarrow grobe Annäherung
- Anpassen an Posterior
 - Schrittweite ϵ und Schrittanzahl
- Anpassen an Statistik
 - -65% Akzeptanz-Rate hat sich empirisch als sinnvoll herausgestellt
 - Burn in-Schritt zu Beginn der Adaption

Problem

• Wenn Schrittlänge zu lang ist

5.12 NUTS

- No U-Turn Sampler
- Nachteil aller random walks
 - Um Entfernung D zurückzulegen braucht es D^2 Schritte
 - Am Ende eines Bereichs
 - * viele Samples
 - * dreht um, also negativer Fortschritt (Wiederholung)
- Also
 - definiere Umkehrpunkt als einen iterativen Schritt mit Komponente auf Start zu \rightarrow Stop
- Literatur
 - Hoffman, Gelman: https://arxiv.org/abs/1111.4246
 - https://www.youtube.com/watch?v=oMNXRYRNj_M
- Implementierung: Stan
 - Siehe Kapitel 5.14 auf Seite 111

5.13 Ziele eines guten Samples

- 1. Repräsentative Samples
 - Dafür gibt es keinen 100% Test
 - Pfad der Kette anschauen trace plot
 - Abhängigkeit vom Startwert?
 - Verwaiste Pfade?
 - Nebenmaxima?
 - gleiche Konvergenz mit anderen Zufallszahlen?
 - Burn in abschneiden
 - Gut sind
 - im trace plot überlappende Pfade ohne Abzweige
 - * Konvergenz \rightarrow Überlapp \Rightarrow Überlapp \rightarrow Konvergenz
 - Überlappender density plot (zur Glättung) in allen späteren Teilpfaden
 - ANOVA unterschiedlicher Ketten
 - * shrink factor (Gelman Ruby factor) kleiner als 1,1
- 2. Ausreichende Länge

- Genauigkeit und Stabilität für MLE und HDI
- Messen der Klumpenbildung durch Autokorrelation
 - große Werte nahe 1 für kleine Lags bedeuten Klumpenbildung
 - Schritte sind nicht unabhängig, effektive Kettenlänge kürzer als Gesamtlänge
 - effective sample size (ESS) bewertet Autokorrelation
 - ESS muss nicht so hoch sein für Mean/MAP
 - ESS muss hoch sein für HDI, da an der Grenze ja per Definition selten samples sind
 - \ast Daumenregel: 10.000 effektive Samples für das 95% HDI
 - Monte Carlo Standard Error (MSCE) analog zum Mittelwertsfehler

$$MCSE = \frac{SD}{\sqrt{ESS}}$$

3. Effizienz

- in endlicher Zeit berechenbar
 - wir haben z.B. eine ganze Woche Rechenzeit für Priors auf Cluster mit 4 cuda-Karten
- Hinweise:
 - Parallelisierung auf CPU-Kerne
 - Gibbs statt Metropolis Sampler (wenn angemessen)
 - Hamiltonian (wenn angemessen)
 - Umparametrisieren des Modells zur Korrelationsvermeidung
 - * Beispiel: unabhängige μ und δ anstatt $\alpha = \mu + \delta$ und $\beta = \mu \delta$

5.14 Stan

Ziel:

- Stichprobe aus dem Posterior gewinnen
- Daraus Statistik
 - Punktschätzer
 - Intervallschätzer

Vorgehensweise:

- Markov Chain Monte Carlo Methode MCMC: Hamiltonian Monte Carlo
 - no U-Turn sampler (NUTS)
- effektive Stichproben aus Posterior-Verteilung
 - umgeht Problem der Ineffektivität (Korrelation, Schwänze der Verteilung, Mehrfachberechnung)
 - adaptiert an Verteilung (unterschiedliche Form)

Der Name Stan

- Benannt nach Stanislaw Ulam, einem der Entwickler der Monte Carlo Methode in den 1940ern
- 'Sampling Through Adaptive Neighborhoods'

Link und Literatur

- http://mc-stan.org/
- http://mc-stan.org/users/documentation/index.html

5.14.1 PyStan

Webseiten

- https://pystan.readthedocs.io/en/latest/
- http://mc-stan.org/users/interfaces/pystan.html
- https://pypi.python.org/pypi/pystan

Voraussetzungen:

- Compiler (Betriebssystem): gcc, gcc-c++
- C für Python (conda): cython-0.25.2

Verwendung

• import pystan

Modell-String bildet kompletten Modellaufbau ab

- data; optional transposed data
- parameters; optional transposed parameters
- model

Daten

- als dictionary
- Skalar, Vektor, Matrix

Initialisieren und Kompilieren

• stanmodel = pystan.StanModel(model_code=..., ...)

Berechnen der Posterior-Markovkette

• fit = stanmodel.sampling(data=..., iter=..., warmup=..., chains=..., n_jobs=..., ...)

Ergebnis Posterior aller Parameter

- Statistik mit print(fit)
- Graphiken mit fit.plot(['param1', 'param2', ...])
- Numerisch mit fit.extract()

usw.

- fit.<TAB>
- help(fit)

5.15 PyStan-Beispiele

5.15.1 Eine Münze

Modell

Prior-Verteilung $p(\theta)$

• Beta-Verteilung

$$\theta \sim \text{Beta}(a,b)$$

• mit normalisierender Beta-Funktion

$$p(\theta \mid a, b) = \theta^{a-1} (1 - \theta)^{b-1} / B(a, b)$$

Daten:

z, N

Likelihood-Funktion:

$$p(D|\theta)$$

• Bernoulli

$$y_i \sim \text{Bernoulli}(\theta)$$

 $p(\mathbf{y} \mid \theta) = \theta^z (1 - \theta)^{N-z}$

Graphische Modellbeschreibung

Abbildung 5.4: Im Beispiel hängt das Ergebnis des Münzwurfs vom Bernoulli-Parameter θ ab, dieser entstamme einer Beta-Verteilung

Modell als String

wird durch (Py)Stan interpretiert:

```
mycoinmodel = """
data {
        int<lower=0> Ntotal;
                                        // number of tosses
        int y[Ntotal];
                                        // data 0=tails, 1=heads;
                                           has to be supplied
parameters {
        real<lower=0, upper=1> theta; // the (restricted)
                                           parameter of interest
model {
        theta ~ beta( 0.5, 0.5 );
                                        // prior for parameter;
                                           a more tricky one
        y ~ bernoulli( theta );
                                        // vectorized likelihood for data
                                           built-in bernoulli
              11 11 11
}
```

Optional im String

• transformed parameters

- transformed data
- generated quantities

Implementierte Verteilungen

Tabelle 5.1: Vorinstallierte Verteilungen in PyStan

bernoulli	bernoulli_logit	beta	beta_binomial
binomial	binomial_logit	cauchy	chi_square
exponential	gamma	logistic	multinomial
${\tt multi_normal}$	normal	pareto	student_t
uniform			

Prior

• a und b der Beta-Verteilung

Daten und Likelihood

- z.B. aus pandas dataframes
- Daten in einem dictionary
 - Namen müssen wie im Modell-String sein

Daten

als dictionary

- Namen gemäß Modell-String
- Werte: Array, Skalar

PyStan Aufruf

- fit1 = pystan.stan(model_code=mycoinmodel, data=mydata, iter=1000, chains=4)
- Kompilieren \rightarrow Berechnung \rightarrow Auswertung
 - print(fit1):

```
Inference for Stan model: anon_model_472cfc0b457697b5a983d1c.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
        mean se_mean
                         sd
                               2.5%
                                       50%
                                            97.5%
                                                   n_eff
                                                            Rhat
                               0.19
theta
        0.3
              2.6e - 3
                       0.07
                                       0.3
                                             0.45
                                                      678
                                                             1.0
                       0.74 -34.12 -31.59 -31.32
lp__
Samples were drawn using NUTS at Thu Feb 15 12:09:04 2018.
For each parameter, n_eff is a crude measure of effective sample
size, and Rhat is the potential scale reduction factor on split
chains (at convergence, Rhat=1).
```

Auswertung

- Graphische Darstellung
 - myplot = fit.plot()
- Extrahieren der Ketten
 - myresult = fit1.extract(permuted=False)
 - Ketten können einzeln geplottet oder als Histogramm (flattened) dargestellt werden
- Erneutes fitten mit anderen Optionen möglich
 - fit2 = pystan.stan(fit=fit1, data=mydata, iter=100+wup, chains=6, warmup=wup)

Zzusammenfassung PyStan

- Eingabe
 - Modell-String
 - * Prior
 - * Datenverteilung (⇒ Likelihood)
 - $* \Rightarrow Posterior$
 - Daten
- Ausgabe
 - Posterior Markov-Kette(n)
 - $\Rightarrow Auswertung$
- Ausführungs-Varianten help(pystan.stan)

5.15.2 Zwei Münzen

Kommen zwei Münzen aus unterschiedlichen Prägeanstalten?

Unterscheiden sich zwei Kategorien dichotomer Daten?

- N1 und N2
- θ_1 für N1 und θ_2 für N2
- y1 und y2 (Verteilungen)
- Modell wird wieder als String übergeben
- Zusatzfrage: unabhängig?

Ergebnis: gemeinsamer Münzwurf

- Gemeinsame Verteilung günstiger Posterior-Stichproben
- HDI als 95% Credible Interval für die Differenz
 - beinhaltet die Nullhypothese $\Delta \theta = 0$
- \Rightarrow Kein Unterschied
 - $-\,$ Mehr Daten ...

5.16 Hierarchische Modelle

5.16.1 Einleitung

- Mehrere Modellparameter
- Gemeinsame Grundlage
- Gegenseitige Abhängigkeit
 - Kopplung zwischen Hierarchie-Ebenen
 - Kopplung innerhalb Hierarchie-Ebene
- Beispiel: Heilungserfolg im Krankenhaus
 - Krankenhäuser: Heilungschance ω_i
 - * Ausstattung: Motivation der Belegschaft, Ausbildungsniveau, ...
 - Ärzte-Teams: Erfolgsrate θ_i
 - * Erfahrung, individuelle Ausbildung, eingespielt, ...
 - Patient: wird geheilt y_j mit Wahrscheinlichkeit θ_i
- Beispiel: Psychophysischer Effekt
 - Versuchsbedingung (z.B. Stimuluskontrast) ω beeinflusst Leistung der Versuchspersonen
 - Versuchspersonen haben Antwortwahrscheinlichkeit θ_i
 - Antwortverhalten y_{ij} bei mehrfacher Wiederholung
 - $-\to$ Interesse liegt nicht auf den individuellen Leistungen $\theta,$ sondern auf der Beeinflussung ω

Beispiel: Münzprägeanstalt

- Prägeanstalt produziert Münzen mit Parameter ω
- Jede Münze hat eine Wahrscheinlichkeit θ_i für Kopf, abhängig von Prägemethode (ω)
- Bernoulli-Zufallsexperiment mit Wahrscheinlichkeit $p_{Kopf} = \theta_i$
- Siehe Abbildung 5.5

Abbildung 5.5: Münzwurf wie zuvor; die Parameter a und b für die Beta-Verteilung für θ entstammen über einen weiteren Parameter ω einer zusätzlichen Hierarchie-Ebene, ebenfalls einer Beta-Verteilung (nach: Kruschke: Doing Bayesian Data Analysis, 2nd. AP (2015) Fig. 9.1)

Gemeinsamer Parameterraum 'joint parameter space'

- D: Daten Versuchsergebnis
- θ : Parameter für Verteilung der Daten
 - $-\theta_i$ für verschiedene Münzen
- ω : Parameter für Verteilung der θ_i
- Gemeinsame Verteilung $p(\theta, \omega, D)$
- Der Posterior ergibt sich nach Bayes zu

$$\begin{split} p(\theta, \omega \mid D) &= \frac{p(D \mid \theta, \omega) \, p(\theta, \omega)}{p(D)} \\ &= \frac{p(D \mid \theta) \, p(\theta \mid \omega) \, p(\omega)}{p(D)} \end{split}$$

Take home: Hierarchische Modelle

- übergeordnete Parameter
- ohne direkten Einfluss auf die gemessene Zufallsvariable

5.16.2 Abhängigkeit

Beispiel: Münze aus Münzprägeanstalt

Likelihood

$$y_i \sim \text{Bernoulli}(\theta)$$

Prior für θ

$$\theta \sim \text{beta}(a, b)$$

- Hängt ab von Parametrisierung a, b
 - anstatt a und b könnte auch
 - Erwartungswert μ und Standardabweichung σ oder
 - Modus $\omega = \frac{a-1}{a+b-2}$ und Konzentration $\kappa = a+b$ gewählt werden:

$$\theta \sim \text{beta}(\omega(\kappa-2)+1, (1-\omega)(\kappa-2)+1)$$

Prior für ω

$$p(\omega) = \text{beta}(\omega | A_{\omega}, B_{\omega})$$

- mit Konstanten A_{ω} und B_{ω}
- Der Modus für ω liegt dann bei $\frac{A_{\omega}-1}{A_{\omega}+B_{\omega}-2}$

(Prior für κ)

• Konstante $\kappa = 100$

Damit von oben

$$p(\theta, \omega \mid D) = \frac{p(D \mid \theta, \omega) p(\theta, \omega)}{p(D)}$$

$$= \frac{p(D \mid \theta) p(\theta \mid \omega) p(\omega)}{p(D)}$$
Hierarchie

Lösung

- Nicht mathematisch geschlossen lösbar
- Numerisch per Gitter-Näherung

Schwache Abhängigkeit

- Sei ω unbekannt, etwas eingeschränkt um 0.5
- Sei θ nur schwach von ω abhängig
 - aber breit verteilt

Starke Abhängigkeit

- Sei ω unbekannt, breit verteilt
- Sei θ stark von ω abhängig
 - Münze einer Prägemethode untereinander ziemlich ähnlich
 - Münze unterschiedlicher Prägemethode unterscheiden sich

Ausgangssituation

- Gleiche Daten, gleiche Likelihood
- Prior stark gekoppelt/ schwach gekoppelt
 - breiter/schmaler
 - Bedingte Wahrscheinlichkeitsverteilung unterschiedlich, schmal/ähnlich, breit

Gemeinsamkeiten

• breite Prior-Randverteilung über $\theta \Rightarrow$ Posterior-Randverteilung über θ ähnlich

Unterschiede

- Bedingte Posterior Verteilung $p(\theta|\omega)$:
 - passt sich an Likelihood an
 - wird vom Prior bestimmt
- Posterior Randverteilung $p(\omega)$ deutlich/kaum beeinflusst
 - obwohl Posterior im gekoppelten Fall breiter bleibt

'Take home': Abhängigkeit

- Abhängigkeit zwischen Parametern unterschiedlicher Hierarchie-Ebenen
 - erlaubt Rückschlüsse auf sonst unzugänglichen Parameter der oberen Ebene

5.16.3 Kopplung

Hierarchisches Modell am Beispiel zweier Münzen aus einer Prägeanstalt

- Zusätzliche Dimension: mehrere θ s
- Unterschiedliche Daten: Likelihood
- Mehrere Posteriors für θ s
- einen gemeinsamen Posterior für ω

Schwache Kopplung

• θ_s sind von ω weitgehend unabhängig.

Starke Kopplung

• θ_s hängen stark von ω ab.

Abbildung 5.6: Beispiel mehrerer Münzen, nach Kruschke

Ergebnis

Kopplung durch 'Konzentration'-Parameter κ der Beta-Verteilung (äquivalent Anzahl der Daten im Vorwissen)

$$\kappa = a + b$$

erzwingt gemeinsame Betrachtung der Datensätze

Vergleich

- Kopplung erzwingt gemeinsame Posterior-Verteilung
- Kopplung erlaubt Aussage über obere Hierarchie-Ebene ω

'Take home': Kopplung

- Mehrere Parameter aus derselben unteren Hierarchie-Ebene können über die übergeordnete Ebene gekoppelt sein
- erlaubt Rückschlüsse
 - Posterior untere Stufe $p(\theta_i)$ beeinflusst durch Likelihood/Kopplung
 - Posterior obere Stufe $p(\omega)$
 - Abhängigkeit

5.16.4 Berechnung mit Markov Chain Monte Carlo Methode

Probleme mit Numerik bei Näherungsrechnung mit Gitter-Methode

- Graphiken entstanden mit 50 Stützstellen je Parameter
- Drei Parameter benötigen $50^3 = 125.000$ Berechnungen
- Vier Parameter schon 6 Millionen;
- Fünf Parameter gehen mit 312 Millionen schon nicht mehr zu berechnen
- ⇒ daher andere Methode: random walk Markov Chain Monte Carlo

Beispiel: Eine Münze aus der Prägeanstalt - starke Abhängigkeit

- Modell als String
- Ergebnis der Gitter-Näherungslösung wurde bestätigt

Überprüfen des Priors

- sinnvoll zur Überprüfung abhängiger Priors
 - Zwischenebenen in Hierarchie
 - abgeleitete Parameter
 - Differenzen

Ergebnis

- Modell mit enger Bindung von θ an ω reproduziert
- Prior, obwohl breite Randverteilung, beschreibt Abhängigkeit
- Posterior für θ von Daten (Likelihood) verschoben
- Posterior für ω durch Kopplung verschoben

Beispiele der schwachen und starken Kopplung

- schwache Kopplung: $\kappa = 5$
- starke Kopplung: $\kappa = 75$

Literatur:

- J. K. Kruschke: "Doing Bayesian Data Analysis, 2nd. A Tutorial with R, JAGS and Stan". Academic Press (2015)
- Bilder freundlicherweise zur Verfügung gestellt von J. K. Kruschke https://sites.google.com/site/doingbayesiandataanalysis/figures
- Graphiken selbst erstellen https://github.com/tinu-schneider/DBDA_hierach_diagram/blob/master/README. md

'Take home': Hierarchische Modelle mit MCMC

- Interpretation 'folgt aus'
- keine direkte Abhängigkeit der y von Meta Parametern ω
- Abhängigkeit θ von ω spielt wichtige Rolle für Ergebnis
- einfacher und schneller zu berechnen als vollständig verknüpfte Modellformulierung

5.17 Modellvergleich

5.17.1 Einleitung

Fragestellung:

Sie haben zwei Modelle zur Auswahl und Daten gemessen: welches Modell beschreibt die Daten besser?

Beispiele:

- Temperaturabhängigkeit des elektrischen Widerstands einer Kohleschicht
 - Linear?
 - Polynom?
 - Exponentiell?
- Lineares Modell
 - mit oder ohne Gruppenunterteilung
- Münzprägeanstalten
 - Münze aus Prägeanstalt A oder B
 - Modell-1: aus A oder Modell-2: aus B

Hierarchisches Modell

- Daten y
- Parameter θ
- Modellauswahl m # jetzt neu und verbessert
- Likelihood
 - Wahrscheinlichkeit für das Auftreten der Daten

$$p_m(y|\theta_m,m)$$

- Prior innerhalb eines Modells
 - Wahrscheinlichkeit für das Auftreten der Parameter

$$p_m(\theta_m|m)$$

• Prior zur Auswahl des Modells

Bayes Regel

$$p(\theta_1, \theta_2, \theta_3, \dots, m | D) = \frac{p(D|\theta_1, \theta_2, \theta_3, \dots, m) p(\theta_1, \theta_2, \theta_3, \dots, m)}{\sum_m \int p(D|\theta_1, \theta_2, \theta_3, \dots, m) p(\theta_1, \theta_2, \theta_3, \dots, m) d\theta_m}$$
$$= \frac{\prod_m p(D|\theta_1, \theta_2, \theta_3, \dots, m) p_m(\theta_m | m) p(m)}{\sum_m \int \prod_m p(D|\theta_1, \theta_2, \theta_3, \dots, m) p_m(\theta_m | m) p(m) d\theta_m}$$

Hierarchisches Modell

- 1. Modellauswahl m
- 2. Für jedes Modell Prior-Parameterverteilung
- 3. Für jedes Modell Prior-Datenverteilung
- 4. Daten

Modellauswahl m

Randverteilung (Marginal) von m sagt etwas darüber aus, wie wahrscheinlich welches Modell ist

- m ist diskret
- p(m) die Wahrscheinlichkeit jedes Modells

$$p(m|D) = \frac{p(D|m) p(m)}{\sum_{m} p(D|m) p(m)}$$

• Das ist gefragt

Likelihood unter Modellauswahl $\it m$

• marginalisiert über alle Parameter θ

$$p(D|m) = \int p_m(D|\theta_m, m) p_m(\theta_m|m) d\theta_m$$

- Diese Likleihood enthält den
 - Prior der Parameter innerhalb dieses Modells
 - Likelihood der Daten unter dem Modell
- ausintegriert (marginalisiert) als Randverteilung des ganzen Modells
- ... daher kann das gesamte Modell stak von den gewählten Priors der Modellparameter abhängen

5.17.2 Bayes-Faktor

Vergleich zweier Modelle

$$\frac{p(m\!=\!1|D)}{p(m\!=\!2|D)} = \frac{p(D|m\!=\!1)}{p(D|m\!=\!2)} \frac{p(m\!=\!1)}{p(m\!=\!2)} \frac{/\sum_m p(D|m)\,p(m)}{/\sum_m p(D|m)\,p(m)}$$

• Kürzen

$$\frac{\sum_{m} p(D|m) p(m)}{\sum_{m} p(D|m) p(m)} = 1$$

• Vorwissen Modell-Prior

$$\frac{p(m=1)}{p(m=2)}$$

Bayes-Faktor (BF)

$$BF := \frac{p(D|m=1)}{p(D|m=2)}$$

- verschiebt die a-priori Wahrscheinlichkeit für die Modelle $\frac{p(m=1)}{p(m=2)}$
- durch Vergleich der Modell-Likelihoods
- Daumenregel zur Auswertung

BF > 3 bzw. $BF < \frac{1}{3}$ gelten nach Harold Jeffreys als 'substantiell':

BF	Strength of evidence
$ \begin{array}{c} <10^{0} \\ 10^{0} \cdot \cdot \cdot \cdot 10^{1/2} \\ 10^{1/2} \cdot \cdot \cdot \cdot 10^{1} \\ 10^{1} \cdot \cdot \cdot \cdot 10^{3/2} \\ 10^{3/2} \cdot \cdot \cdot \cdot 10^{2} \end{array} $	negative barely worth mentioning substantial strong very strong
$> 10^2$	decisive

• Literatur:

H. Jeffreys: The Theory of Probability (3 ed.). Oxford. p. 432 (1961)

5.17.3 (stellvertretendes) Beispiel: Münze aus zwei Prägeanstalten

- Modell-1: Münze aus Anstalt #1 haben $\omega = 0.25$
- Modell-2: Münze aus Anstalt #2 haben $\omega = 0.75$

Frage

Woher stammt eine vorliegende Münze?

Daten

• Nach N = 9 Würfen kommt z = 6x Kopf

Prior

- ω_m siehe oben
- $\kappa = 12$
- gleichbedeutend mit

$$-\theta_1 \sim \text{beta}(3.5, 8.5) \text{ und } \theta_2 \sim \text{beta}(8.5, 3.5)$$

Posterior m?

5.17.4 Lösung 1: formal

Mathematisch geschlossen lösbar (siehe conjugate priors in Kapitel 5.5 auf Seite 94)

• mit Beta-Funktion B (nicht beta-Verteilung beta)

$$p(D|m) = p(z, N) = \frac{B(z + a, N - z + b)}{B(a, b)}$$
 (*)

• Bayes-Faktor

$$BF = \frac{0.000499}{0.002339} = 0.213 < \frac{1}{3}$$

• Unter der Annahme des Unwissens $p(m=1) = p(m=2) = \frac{1}{2}$ ergibt sich daraus

$$BF = \frac{p(m=1|D)}{p(m=2|D)} = \frac{p(m=1|D)}{1 - p(m=1|D)} \quad \Rightarrow \quad p(m=1|D) = 0.176 \,, \quad p(m=2|D) = 0.824 \,.$$

Ergebnis:

- Die Münze kommt sehr wahrscheinlich aus der Anstalt #2,
- beschrieben durch Modell #2

Posterior?

- ... für m je nach Prior für m
- ... für θ haben wir damit noch nicht

'Take home': Lösung 1

Der Bayes Faktor

$$\frac{p(m\!=\!1|D)}{p(m\!=\!2|D)}$$

• kann direkt mathematisch geschlossen gelöst werden über konjugierte Funktionen

$$p(D|m) = p(z, N) = \frac{\text{beta}(z + a, N - z + b)}{\text{beta}(a, b)}$$

• erspart das Integral

$$p(D|m) = \int p_m(D|\theta_m, m) p_m(\theta_m|m) d\theta_m$$

- sagt nichts über die Posterior-Verteilung für θ aus
 - θ wurde marginalisiert

5.17.5 Lösung 2: vollständige Gitter-Näherung

 ω kann auch als kontinuierlicher Parameter angesehen werden

• erlaubt sind beide Werte der Prägeanstalten $[\omega_1, \omega_2]$

Prior

- Randverteilung 'marginal' über ω hat zwei Spitzen
 - bei den beiden möglichen Werten
- Randverteilung 'marginal' über θ hat zwei Höcker
 - um die beiden möglichen Werte ω_i
- Verbundwahrscheinlichkeit aus 1:1 Modell-Prior

Likelihood

- Daten **nur** in direkter Abhängigkeit von θ
- nicht direkt abhängig vom Modell mit Modell-Parameter ω

Posterior

- verschiebt Gewichte des Modellparameters ω
 - Verhältnis der Höhe = Bayes-Faktor
- Je nach Modell Verteilung der Parameter θ
- Insgesamt deren Randverteilung
 - wenn nur nach θ gefragt ist, unabhängig vom Modell(!)

5.17.6 Lösung 3a: diskrete MCMCs auf die beiden einzelnen Modelle

• Schritt 1: Integral = gewichteter Durchschnitt

$$\int f(\theta)p(\theta) d\theta \approx \frac{1}{N} \sum_{\theta_i \sim p(\theta)} f(\theta_i)$$

- da Häufigkeit \sim Dichte
- Schritt 2: Modell-Likelihood

$$p(D) = \int p(D|\theta)p(\theta) d\theta$$
$$\approx \frac{1}{N} \sum_{\theta_i \sim p(\theta)} p(D|\theta_i)$$

- Also Werte aus dem *Prior* ziehen und die Wahrscheinlichkeiten aufsummieren
- Lösung
 - Dafür ist die Markov-Kette gut: Stichprobe aus Posterior-Verteilung
 - Likelihood berechnen und aufsummieren
- Problem
 - Wahrscheinlichkeiten sind meist sehr klein
 - Genauigkeit der Computer beim Aufsummieren nicht ausreichend

Mathematischer Trick

Satz von Bayes

$$p(\theta|D) = \frac{p(D|\theta) p(\theta)}{p(D)}$$

Daraus

$$\frac{1}{p(D)} = \frac{p(\theta|D)}{p(D|\theta) p(\theta)}$$

Mit einer (vorerst) beliebigen, normierten Wahrscheinlichkeitsverteilung $h(\theta)$ ergibt sich

$$\frac{1}{p(D)} = \frac{p(\theta|D)}{p(D|\theta) p(\theta)} \int h(\theta) d\theta$$

Weil die evidence p(D) nicht von θ abhängt (!) und damit 1.) eine Konstante ist, 2.) der Bruch für alle θ gilt (Trick Teil I):

$$\frac{1}{p(D)} = \int \frac{h(\theta)}{p(D|\theta) p(\theta)} p(\theta|D) d\theta$$

Damit näherungsweise

$$\frac{1}{p(D)} \approx \frac{1}{N} \sum_{\theta_i \sim p(\theta|D)} \frac{h(\theta_i)}{p(D|\theta_i) \, p(\theta_i)}$$

Wähle h so, dass es der zu erwartenden Posterior-Verteilung entspricht (Trick Teil II)

- Ähnliche Werte in Zähler und Nenner entschärfen das Problem der Genauigkeit
- beta-Verteilung für Bernoulli-Experimente
- Wähle Parameter der Verteilung h gemäß der Erwartung der θ des Posteriors
 - Mittelwert und Streuung
 - Posterior gegebenenfalls vorab aus repräsentativem Datensatz bestimmen
 - (nicht sehr kritisch)
- Kann dann vollständig MCMC-Methode ausnutzen: weniger, wenn nicht dicht, aber sinnvoll gewichtet

Ergebnis MCMC Modellvergleich

Die Likelihood für Versuchsergebnis-Daten z = 6x Kopf in N = 9 Würfen beträgt (wie theoretisch berechnet)

- für Modell-1 ($\theta_1 = 0.25$): p(D|m=1) = 0.002338
- für Modell-2 ($\theta_2 = 0.75$): p(D|m=2) = 0.000499

Daraus errechnet sich der Bayes-Faktor zu

• $BF = \frac{0.002338}{0.000499} = 4.7$

womit sich die posterior Wahrscheinlichkeit der Modelle (nach prior 50%-50%) ergibt zu

- Modell-1: 83%
- Modell-2: 17%

'Take home': diskrete MCMCs

- wähle Vergleichsverteilung h so ähnlich wie möglich zur erwartenden Posterior-Verteilung
 - z.B. aus Trainings-Datensatz
- Löse obige Summe und invertiere
- \Rightarrow Likelihood für das Modell
- Weiter für Posterior $p(\theta)$ wie bisher: MCMC darauf anwenden

5.17.7 Lösung 3b: MCMC auf das gesamte hierarchische Modell

Zu vergleichende Modelle als oberste Hierarchie einbauen in ein Gesamt-Modell

- Prior für Modellauswahl-Parameter m
- Prior für Parameterverteilungen ω je Modell
- Prior für Datenverteilung θ je Modell
- Berechne gesamtes Modell
- Werte Parameter m aus

Prior-Abhängigkeit

- uninformativer Prior für die Modelle
- Lernen durch Anpassung an Teile der Daten
- Auswerten mit Rest der Daten

ABER kein *int* Parameter in *Stan*

5.17.8 Vorhersage treffen mit alternativen Modellen

- A) bestes Modell
 - das beste Modell suchen
 - dessen Vorhersage bestimmen
- B) alle Modelle
 - alle Modelle gleichberechtigt
 - gewichten gemäß Wahrscheinlichkeit / Modell-Posterior
 - Vorhersagen mitteln

5.17.9 Komplexität

Zwei Prägeanstalten: A produziert faire Münzen, B alle möglichen

- Versuch: eine Münze wählen und werfen
 - -N = 20
- Ergebnis 1)
 - $-z_1=11$
 - Berechnet man m, so ist $m_A >> m_B$
- Ergebnis 2)
 - $-z_2 = 15$
 - Berechnet man m, so ist $m_A \ll m_B$

Warum?

• ... wo doch 50%-50% bei beiden Prägeanstalten möglich ist?

Ergebnis

- B zahlt den Preis der höheren Komplexität durch weit verstreute Priors
- Gute Vergleiche mit ähnlich-informierten Priors für alternative Modelle

5.17.10 Abhängigkeit vom Prior

Posterior Parameter je nach Parameter-Prior

Beispiel: Drei Prägeanstalten A, B, C

A produziert faire, B und C allerhand Münzen

• 'Fairer' Prior für A

$$\theta_A \sim \mathbf{beta}(500, 500)$$

• 'Allerhand' Priors: 'gleich' für B und 'Haldane' für C

$$\theta_B \sim \mathbf{beta}(1,1)$$
 $\theta_C \sim \mathbf{beta}(0.01, 0.01)$

Das Versuchsergebnis sei

$$z = 65 \text{ von } N = 100$$

Auswertung

• Posterior

$$\theta_B \sim \mathbf{beta}(66, 36)$$
 $\theta_C \sim \mathbf{beta}(65.01, 35.01)$

• 95%-HDI

$$[0.554, 0.738]$$
 $[0.556, 0.742]$

• \Rightarrow sehr ähnlich

Ergebnis

Posterior Modell nach Bayes-Faktor je nach Parameter-Prior

$$BF_{AB} = 5.728$$
 $BF_{AC} = 0.125$

 \Rightarrow Kontrovers!

Ausweg

Generiere einen Zwischen-Prior mit einem Teil der Daten

Gleiches Beispiel wie oben:

• Versuchsergebnis

$$z = 65 \text{ von } N = 100$$

• Erster Teil der Daten

$$z = 6$$
 von $N = 10$

• Prior

$$\theta_B' \sim \mathbf{beta}(7,5)$$
 $\theta_C' \sim \mathbf{beta}(6.01, 4.01)$

• Zweiter Teil der Daten

$$z = 59 \text{ von } N = 90$$

• Ergebnis

$$BF_{AB'} = 0.0557$$
 $BF_{AC'} = 0.0575$

• \Rightarrow plausibel

5.17.11 'Take home': MCMC eines gesamten hierarchischen Modells

- Mischung von Modellen
 - universeller Posterior zur Vorhersage
- Komplexität
 - Modellvergleich gut nur bei ähnlich-informativen Priors
- Prior-Abhängigkeit
 - entschärfen durch Anlernen mit Teil-Daten
- Bemerkung: Beta-Verteilung ist nicht immer passend bei Bernoulli-Experimenten
 - aber lehrreich, da Vergleich Geschlossene Lösung (Lösung 1) / Gitter Näherungslösung (Lösung 2) / MCMC (Lösung 3a und 3b) möglich

5.18 Vergleich zu frequentistischer Statistik

Experimente: Wieder stellvertretend für alle Ja/Nein Experimente der Münzwurf

- 1. Experiment: 24x Werfen
 - 7x Kopf von 24 Würfen
 - Verwerfungsbereich (mit Irrtumswahrscheinlichkeit): z < 7 oder z > 17
 - p-Wert: $0.064 \Rightarrow$ Nullhypothese wird nicht verworfen
- 2. Experiment: Werfen bis 7x Kopf
 - Verwerfungsbereich (mit Irrtumswahrscheinlichkeit): N < 8 oder N > 20
 - p-Wert: $0.017 \Rightarrow$ Nullhypothese wird verworfen
- 3. Experiment: 2 Minuten werfen
 - Abstand zweier Würfe sei Poisson-verteilt mit $\lambda=5$

Vergleich zwischen Versuch 1) und Versuch 2) mit unterschiedlicher Intention

- gleiche Versuchsdaten: N = 24 Würfe, davon z = 7 Köpfe
- Versuch 1)
 - Intention: feste Anzahl werfen, wie viele Erfolge darunter?
 - \Rightarrow Nullhypothese: 'Münze ist fair' wird **nicht verworfen**
- Versuch 2)
 - Intention: werfen, bis feste Anzahl Erfolge, wie oft insgesamt geworfen?
 - ⇒ Nullhypothese 'Münze ist fair' wird **verworfen**

Frequentistische Statistik Das Beispiel (z = 7, N = 24) hat

Punktschätzer

$$\hat{\theta} = \frac{z}{N} = 0.2917$$

• Vertrauensintervalle

$$\theta_{N=24} \in [0.126, 0.511]$$
 auf $\alpha = 5\%$
 $\theta_{z=7} \in [0.126, 0.484]$ auf $\alpha = 5\%$
 $\theta_{t=2min} \in [0.135, 0.497]$ auf $\alpha = 5\%$

• p-Werte unter Nullhypothese $\theta = \frac{1}{2}$

$$p-val_{N=24} = 0.064$$
 auf $\alpha = 5\%$
 $p-val_{z=7} = 0.025$ auf $\alpha = 5\%$
 $p-val_{t=2min} = 0.049$ auf $\alpha = 5\%$

5.19 Versuchs-Intention

Frequentistische Statistik

- Obwohl das Versuchsergebnis das Selbe ist, ist die Schlussfolgerung abhängig von der Intention des Versuchs
- Relevanz für Praktiker
 - Situation entschärft für große N
 - Problem bleibt bestehen für kleine N
 - Problem kann für bestimmte Verteilungen dramatisch sein

Bayes-Statistik

- Bayes Schlussfolgerung hängt nicht von Intention ab, sondern von der Likelihood
- Diese ist für alle Versuchsintentionen die Selbe
- Mit der mathematisch geschlossenen Lösung für den Posterior θ ergibt sich
 - HDI [0.125, 0.474]
 - enthält Nullhypothese $\theta_0 = \frac{1}{2}$ nicht
- mit PyStan MCMC ergibt sich
 - HDI [0.126, 0.468]
- Ergebnis
 - gleiche Versuchsdaten wie oben
 - * N = 24 Würfe
 - *z = 7 Köpfe
 - von Intention unabhängig
 - * Posterior kann mit jedem Einzelergebnis erneuert werden
 - Versuchsauswertung
 - * Posterior direkt interpretierbar als Verlässlichkeit von θ : durch $p(\theta|D)$
 - * Posterior HDI enthält den Parameter der Nullhypothese nicht
 - $* \Rightarrow$ Nullhypothese 'Münze ist fair wird **verworfen**
- MAP und HDI hängen vom Prior ab
 - maximum-a-posterior als Punktschätzer
 - credible interval HDI
 - Vorteil: man kann sein Vorwissen im Prior weiterverwenden

Prior

Ominöser Prior?

- Man muss such auf Prior einigen
 - Theorie (Verteilungen ...)
 - Vorwissen durch andere Veröffentlichungen
 - Vorversuche
- Selbst wenn 'agree to disagree'
 - dann kann man beide Varianten berechnen
- Ähnliches Problem bei NHST
 - welche Verteilung ist angemessen?

Unwissender Prior?

- indifferent Prior
 - $-p(\theta) = const.$
 - Bernoulli-Experiment: $p(\theta) = 1 = beta(1, 1)$
- Jeffreys Prior
 - invariant unter Koordinatentransformation
 - Bernoulli-Experiment: $p(\theta) = \text{beta}(\frac{1}{2}, \frac{1}{2})$
- Haldane Prior
 - als ob keinerlei Vorwissen
 - Bernoulli-Experiment: $p(\theta) = \text{beta}(\epsilon, \epsilon)$

Literatur:

- Jeffreys: An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 186 (1007): 453–461. JSTOR 97883 (1946)
 - (http://rspa.royalsocietypublishing.org/content/186/1007/453)
- Haldane: A note on inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society. 28: 55–61 (1932)
 - (https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/note-on-inverse-probability/1BC33DBEA96916D0A31998DCI

5.20 Entscheidung mit Bayes-Statistik

HDI

• Fällt der zu testende Parameter-Wert θ_x in das credible interval, den Bereich der höchsten Dichte HDI? $\theta_x \in HDI$

Bayes Faktor

- beschreibt der gesuchte Parameter θ_x die Daten besser als andere?
- Vergleich mit einem weiten Bereich von möglichen Parametern

5.20.1 HDI und ROPE

ROPE = 'Region of Practical Equivalence' definiert denjenigen Bereich an Parametern

- der für die Anwendung relevant ist
- ob Unterschiede in θ sich auf das Verhalten auswirken

Beispiel: Münze für Fußballanstoß darf ROPE = [0.45...0.55] haben

• Definition: Nullhypothese

Sind die Daten mit der ROPE vereinbar?

• Irrtumswahrscheinlichkeit α z.B. $\alpha = 5\%$

Verwerfen

- Verwerfen der Nullhypothese genau dann, wenn $(1-\alpha)$ -HDI und ROPE keinen Überlapp zeigen

Akzeptieren

• Akzeptiere die Nullhypothese genau dann, wenn gesamtes $(1-\alpha)$ -HDI innerhalb der ROPE

Graubereich

- ROPE innerhalb breitem HDI
 - zu ambitionierte Vorgabe
 - zu wenig Daten

sub-optimal

- HDI liegt innerhalb ROPE, aber HDI enthält θ_0 selbst nicht
 - ROPE zu weit
 - Modell könnte besser sein (Prior)

Entscheidung

• Jede Entscheidung reduziert die vorliegenden Daten/Berechnungen auf einen binären Wert

- beispielsweise die Posterior-Verteilung auf verwerfen/nicht-verwerfen
- In der Posterior-Verteilung steckt jedoch mehr Information
 - Damit kann jeder seine Entscheidung fällen
- Äquivalent aus den Statistik-Grundlagen 'Frequentistische Statistik'
 - Punkt (Ort, Schätzer)
 - Intervall (Breite)
 - Verteilung (Form)
- Wenn insbesondere Stichproben erhoben werden (z.B. durch MCMC)
 - spielt die Grenze der Intervalle eine Rolle
 - variiert selbst
- Beispielsweise MCMC
 - 10.000 effective sample size
 - \Rightarrow SD des HDI ist $\sim 5\%$ der SD des Posteriors (bei Normalverteilung)

5.20.2 HDI und ETI

Equally Tailed Interval = ETI

- 95%-ETI schneidet auf beiden Seiten 2,5% der Wahrscheinlichkeit ab
- andere Gewichtung: absolute Wahrscheinlichkeit
- ETI lässt sich leichter berechnen ('ppf')
- ETI ist invariant unter Transformation
 - Für HDI sinnvolle Bedeutung der Parameter wählen

HDI einer (angepassten) theoretischen Verteilung

- gemäß Modell an Posterior Samples anfitten
- daraus HDI berechnen

5.20.3 Weitere Entscheidungen

Parameter-Relation: z.B. Differenz

 Aus den Randverteilungen lassen sich keine Schlüsse ziehen, aus dem Gesamt-Modell durchaus

Mehrfach-Vergleiche

- Kumulierte α -Fehler sind problematisch (Erinnerung Angewandte Statistik I)
- Bayes-Statistik beschreibt ein (Gesamt-) Modell
- \Rightarrow unproblematisch

Posterior Vorhersage

- Bayes-Statistik bestimmt die relative Verteilung der Parameter
- Guter Schätzer?
 - Ob der MAP-Schätzer ein guter Schätzer ist, muss getestet werden
 - Beispiel: Wir gehen von einer 1% oder 99% Trick-Münze aus
 - * Ergebnis ist 30/40
 - * Beide Modelle sind schlecht
 - * Das 99%-Modell ist jedoch viel weniger schlecht als das 1%-Modell
 - Sehen Daten aus dem geschätzten Modell den gemessenen ähnlich?
 - $* \Rightarrow$ Dann ist das Modell angemessen

5.20.4 Entscheidung durch Modell-Vergleich

Eine andere Art der Fragestellung: Ist ein Modell mit einem spezifischen Prior (*Nullhypothese*) besser als eines mit einem uninformativen Prior?

• Dann wird die Nullhypothese nicht verworfen

Obiges Beispiel (z = 7, N = 24)

• Nullhypothese $H_0: \theta_0 = \frac{1}{2}$

$$p(z, N|M_0) = \theta_0^z (1 - \theta_0)^{N-z}$$

• Alternativhypothese H_A :

$$p(z, N|M_A) = B(z + a_A, N - z + b_A) / B(a_A, b_A)$$

Bayes-Faktor

$$\frac{p(z, N|M_A)}{p(z, N|M_0)} = \frac{B(z + A_A, N - z + b_A) / B(a_A, b_A)}{\theta_0^z (1 - \theta_0)^{N - z}}$$

$$\frac{p(z,N|M_{alt})}{p(z,N|M_{null})} = \begin{cases} 3.7227 & \text{for } a_{alt} = 2, \ b_{alt} = 4\\ 1.9390 & \text{for } a_{alt} = b_{alt} = 1.000\\ 0.4211 & \text{for } a_{alt} = b_{alt} = 0.100\\ 0.0481 & \text{for } a_{alt} = b_{alt} = 0.010\\ 0.0049 & \text{for } a_{alt} = b_{alt} = 0.001 \end{cases}$$

Entscheidungen treffen

- 1. Bayes-Faktor
 - Der Bayes-Faktor ändert sich stark mit dem Prior
 - nicht verwerfen von H_0 für (a, b) mit a = b < 0.01
 - verwerfen von H_0 für (a=2,b=4)
- 2. Posterior
 - Sieht man sich die Posterior-Verteilung und die HDIs an, so unterscheiden die sich gar nicht so sehr
 - alle würden die Nullhypothese verwerfen
- 3. Übergeordnetes Gesamt-Modell: Ein Hierarchisches Modell
 - Modell-Vergleich
 - übergeordneter Modell-Parameter
 - entschiedet sich für/gegen das Null-Modell
 - Bayes-Faktor
 - Parameter-Schätzung
 - vergleicht Null-Parameter mit unvoreingenommenem Prior
 - zeigt Posterior
 - HDI \in ROPE?
 - Beide Varianten des einen Modells können ausgewertet werden
 - müssen nicht übereinstimmen
 - Anwendungsabhängig, was bevorzugen
 - Null-Parameter muss Bedeutung haben (Theorie, Literatur, Entscheidung, ...)
 - Meist ist Posterior (Parameter-Schätzung) aussagekräftiger
 - Einschränkungen
 - ROPE
 - * muss eng sein

- * muss angemessen gewählt werden (Genauigkeit)
- Prior und Posterior Verteilung sollten glatt sein im Bereich
- Näherung \Leftrightarrow exakt = @Punkt

'Savage-Dickey Methode'

Verschachtelte Modelle (nested models)

- 0) Einfaches Modell mit Parameter $\theta = \theta_0$ (Nullhypothese)
- A) Erweitertes Modell mit freiem Parameter θ (Alternative Hypothese $\theta \neq \theta_0$)

Gesucht: Bayes-Faktor

Die Savage-Dickey Methode

$$BF_{0A} = \frac{p(D|H_0)}{p(D|H_A)} = \frac{p(\theta = \theta_0|D, H_A)}{p(\theta = \theta_0|H_A)}$$

vergleicht nur im das erweiterten Modell A) den Posterior mit dem Prior für den interessierenden Parameterwert $\theta = \theta_0$

- BF findet einen Widerspruch zum (scharfen) Vorwissen (Nullhypothese)
- BF bestätigt Nullhypothese (Nähe Likelihood)

Beweis:

 $Mit p(D|H_0) =: p_0(D)$

$$p_{0}(D) = \int p_{0}(D|\Psi)p_{0}(\Psi)d\Psi$$

$$p_{0}(D) = \int p_{A}(D|\Psi, \phi = \phi_{0})p_{A}(\Psi|\phi = \phi_{0})d\Psi = p_{A}(D|\phi = \phi_{0})$$

$$p_{0}(D) = \frac{p_{A}(\phi = \phi_{0}|D)p_{A}(D)}{p_{A}(\phi = \phi_{0})}$$

und damit

$$BF_{0A} = \frac{p_0(D)}{p_A(D)} = \frac{p_A(\phi = \phi_0|D)}{p_A(\phi = \phi_0)}$$

Literatur

• Wagenmakers, Lodewyckx, Kuriyal, Grasman: Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. (2010)

5.21 Tests

5.21.1 Trennschärfe

- Macht (power) eines Tests: kann das Ziel erreicht werden
- Ziele
 - Verwerfen der Nullhypothese
 - * ROPE außerhalb 95% HDI
 - Akzeptieren der Nullhypothese
 - * 95% HDI innerhalb ROPE
 - Präzision
 - *~95% HDI schmaler als geforderte Genauigkeit
- Problematik
 - Wie in der klassischen Statistik verbleibt eine Irrtumswahrscheinlichkeit von 5%
 - Daten sind Zufallsvariablen und können auch zufällig
 - * 24 von 30 mal Kopf zeigen, obwohl die Münze fair ist
 - * Placebo wirkungsvoller als Medikament in getesteter Gruppe
 - * ...
- Vorsichtsmaßnahmen
 - Rauschen weitestgehend vermeiden
 - * Zufall einhalten
 - * Einflüsse ausschließen (Magnetfeld, Kontrollgruppe an Patienten angleichen)
 - * Effekt verstärken (Labor)
- Anzahl Messdaten
 - Störeinflüsse mitteln sich heraus
 - Mittelwertsfehler

5.21.2 Simulation

- Parameter
 - aus Gesamtraum
 - aus Theorie
 - aus Vorexperimenten
- Mögliche Daten simulieren
 - 'Ziehen' aus Verteilungen (Parameter)
 - Entsprechend nachher der Versuchsdurchführung
- Bayes-Statistik anwenden
 - Posterior
 - Schätzer
 - HDI
- Ergebnis des simulierten Posteriors wie benötigt?
 - ROPE & HDI
- oft wiederholen
 - Ziel meist erreicht?
 - Bayes-Statistik darauf anwenden
- Entscheidung
 - Nein?
 - * Stichprobenumfang erhöhen
 - Ja?
 - * Versuch genau so durchführen
 - * Messen und auf Daten anwenden

5.21.3 Stichprobenumfang

- Klassische Statistik
 - Varianz wird mit steigender Datenanzahl kleiner ('Gesetz der großen Zahlen')
- Bayes Statistik
 - Posterior wird mit steigender Datenanzahl schmaler und überstimmt jeden Prior
 - Bayes-Faktor im Modellvergleich soll bestimmte Höhe erreichen

5.21.4 Abbruch-Kriterium

- \bullet Daten sammeln bis zum Abbruchkriterium N ist Standard
- Daten sammeln bis zum Abbruchkriterium 'Nullhypothese verwerfen' = p < 0.05
 - führt zu Ablehnung der Nullhypothese in 100% der Fälle(!)
 - Grund: es finden sich selbst wenn die Nullhypothese zutrifft in 5% der Fälle Ausnahmen, die ein Verwerfen rechtfertigen würden
 - MCMC Ergebnisse sind immer 'biased' zu einem Schwanz der Verteilung hin
 - * da Anhäufungen von Extremwerten bevorzugt werden
 - * und die entgegengesetzen Extremwerte nach dem Abbruch keine Chance mehr bekommen
- Ausweg
 - NHST
 - * Festlegen des Stichprobenumfangs nach vorheriger Bestimmung der Macht des Tests
 - * Registrieren des Versuchs
 - Bayes
 - * Festlegen des Stichprobenumfangs anhand geforderter Genauigkeit
 - * Genauigkeit ist nicht vom Wert beeinflusst
 - · Ausnahmen: Poisson-Statistik, Beta-Verteilung (nur leicht, daher Ergebnis trotzdem anwendbar)

5.21.5 Daten-Modell-Vergleich

- Posterior liefert Parameter
- Simuliere Daten mit diesen Parametern
- Sehen diese simulierten Daten so aus wie die gemessenen?
 - Ja
 - * Modell ist angemessen
 - * Parameter verwendbar
 - Nein
 - * Modell ist unangemessen
 - * Parameter sinnlos

5.22 'Take home'-Messages

credible intervals, HDI

- die Posterior-Verteilung $p(\theta|D)$ ist die interessante Größe
- das Posterior 95%-HDI enthält zu 95% den wahren Wert θ_0
 - kann eine Nullhypothese ausschließen
 - kann durch Vergleich mit ROPE die Nullhypothese für praktische Belange akzeptieren
- verlangt Prior / erlaubt Vorwissen
 - Einfluss auf Breite und Lage des HDI
 - jeder nach seiner Fasson

Konfidenzintervale der Frequentistischen Statistik

- können eine Nullhypothese verwerfen
- können nicht die Nullhypothese akzeptieren
- sagen nichts über Wahrscheinlichkeit des wahren Parameters aus
 - schon gar nicht über eine Verteilung des wahren Parameters
- setzen Normalverteilung voraus (bei t-Test)
- hängen ab von der Intention, Datenerhebungsstrategie
- erlauben keine Abschätzung der Macht des Tests

Bayes-Faktor

- Kann zu Entscheidung verwendet werden
 - vergleicht Likelihoods unter Nullhypothese mit Alternativ-Modell
- Starke Abhängigkeit von Prior-Auswahl
 - Prior sinnvoll zur Fragestellung wählen
- Überprüfen, ob Ziel erreicht
 - Liegt die Nullhypothese in der Nähe des Posterior HDI?
- Oft ist Kriterium HDI vs. ROPE sinnvoller

5.23 Generalisierte Lineare Modelle mit Bayes

5.23.1 Eine kontinuierliche Variable - Beispiel Intelligenztest IQ

Daten - Zufallsvariable Y

- natürliche Streuung, Abweichungen, Rauschen, Messfehler, ...
- Wahrscheinlichkeitsverteilung

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mathcal{E}(Y) = \mu$$

Modell mit Modellparametern

• Beispielsweise Normalverteilung der IQ-Messwerte in der Bevölkerung

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Likelihood für Datensatz

- Versuche/Messwiederholungen sind voneinander unabhängig i.i.d.
- $D = \{y_i\}$

$$L = p(D|\mu, \sigma) = \prod_{i=1}^{N} p(y_i|\mu, \sigma)$$

Satz von Bayes

$$p(\mu, \sigma | D) = \frac{p(D | \mu, \sigma) p(\mu, \sigma)}{\int_{\mu} \int_{\sigma} p(D | \mu, \sigma) p(\mu, \sigma) d\sigma d\mu}$$

Prior

- Vorwissen, Theorie, allgemein akzeptiert, ... Beispielsweise:
 - $-\mu$: Mittelwert bei 100 (Definition!); streut zwischen 0 und 200

*
$$\mu \sim \mathcal{N}(100, 100)$$

 $-\sigma$: aus langjähriger Erfahrung schwankend, vielleicht 10; kann aber nahe 0 bis 100 sein

*
$$\sigma \sim U(1/100; 100)$$

Posterior

- Mathematisch geschlossene Lösung für μ
 - Annahme: $\sigma = const. = \sigma_L$
 - Konjugierte Prior für Gauß-Verteilung: wieder Gauß-Verteilung
 - * Beweis per Produkt zweier Gauß-Verteilungen ist eine Gauß-Verteilung

- Likelihood

$$p(D|\mu,\sigma) = \prod_{i=1}^{N} p(y_i|\mu,\sigma)$$

* mit

$$p(y_i|\mu,\sigma) = \mathcal{N}(\mu,\sigma_L^2)$$

- Prior:

$$p(\mu) = \mathcal{N}(\mu_{prior}, \sigma_{prior}^2)$$

- Ergebnis Posterior

$$\mu_{posterior} = \frac{1/\sigma_L^2}{1/\sigma_L^2 + 1/\sigma_{prior}^2} \mu_{'L'} + \frac{1/\sigma_{prior}^2}{1/\sigma_L^2 + 1/\sigma_{prior}^2} \mu_{prior}$$

$$\sigma_{posterior} = \frac{1}{1/\sigma_L + 1/\sigma_{prior}}$$

- Mathematisch geschlossene Lösung für σ
 - Annahme: $\mu = const. = \mu_L$
 - konjugierte Prior: Gamma-Verteilung für $1/\sigma$

Zutaten für Bayes

- Datenvektor y_i (Länge N)
- Mittelwert y (Schätzer \overline{y})
- Standardabweichung y (Störparameter, Schätzer s)
- robuste Schätzung (akzeptiert Ausreißer)
 - Student t (statt Normalverteilung)
 - -mit zusätzlichem Parameter Freiheitsgrade ν
- \Rightarrow Parameter μ, σ, ν

Daraus Modell für PyStan

- als String
- MCMC mit PyStan

Ergebnis MCMC Posteriors:

- Posterior μ
- Posterior ν
- Posterior σ

Ergebnis: Eine Verteilung

- Posterior beschreibt passende Verteilung an Daten
 - Modell ist angemessen

- Ausreißer werden durch t-Verteilung beschrieben
 - Abweichung von Normalverteilung mit Freiheitsgrade-Parameter $\nu = 5.6$ (Median)
- Erwartungswert der Verteilung 'smart drug' über dem Durchschnitt 'ohne'
 - Punktschätzer für $\mu = 107$
 - Breite der Verteilung μ : Mittelwertsfehler innerhalb 95%-HDI [101.7, 112.6]
 - Breite der Verteilung der Daten: Parameter $\sigma = 20$ mit $[t_{0.025} = 58, t_{0.975} = 157]$

5.23.2 Kategoriales Modell - Beispiel Intelligenztest IQ

Vergleich zweier Gruppen/Kategorien: Plazebo vs. 'smart drug'

Kategorien können mit einem Modell angepasst werden

- Gruppierte Daten y_{ij}
- Indikator-Variable 'category' mit Inhalt j
- Parametervektor $\boldsymbol{\mu} = [\mu_i]$

Posterior liegt als Verbundverteilung für gesamten Parametervektor vor und erlaubt daher einen direkten Vergleich durch die Differenz beider Ketten

- Die Differenz $\Delta \mu = \mu_{smart\ drug} \mu_{Placebo}$ ist positiv und von Null verschieden
- das 95%-HDI für $\Delta\,\mu$ liegt außerhalb einer ROPE von 0 ± 1

5.23.3 Lineares Modell

Siehe Kapitel 1 ab Seite 4

Erweiterung der Kategorien auf beliebig viele: Abhängigkeit von einem (oder mehreren) unabhängigen (Vorhersage-) Variablen X

Beispiel:

- 1. Intelligenztest: IQ-Messung
 - Verteilung
- 2. Intelligenztest: IQ-Vergleich zweier Bedingungen
 - zwei Verteilungen
 - zwei Kategorien 'placebo' und 'smart drug'
- 3. Intelligenztest: IQ in Abhängigkeit von der Konzentration eines Dopings
 - kontinuierlicher Vorhersage-Parameter
 - Verteilung für IQ ändert sich kausal

Wahrscheinlichkeitsverteilung der abhängigen Zufallsvariablen Y

• Ursache: Streuung, Rauschen, Messfehler, $\dots = Zufall$

$$\mathcal{E}(Y_i) = \mu_i$$
$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

- mit der Linearen Abhängigkeit von unabhängigen Variablen X_j

$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta} = \sum_{j=1}^{N_j} \beta_j x_{ji}$$

• mit der Generalisierten Linearen Abhängigkeit

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

Mathematisches Modell: Designmatrix und Parametervektor

• **Designmatrix** mit k unabhängigen Variablen X_j in Spalten der Länge n (Anzahl der Messwerte)

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \vdots & & \ddots & & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}$$

• Parametervektor

$$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_k \end{bmatrix}$$

• Generalisiertes Lineares Modell

$$g(\mathcal{E}(\mathbf{Y})) = g(\boldsymbol{\mu}) = \mathbf{X}\boldsymbol{\beta}$$
$$Y_i \sim f(y_i; \boldsymbol{\theta}_i) \quad \text{z.B.} \quad \mathcal{N}(\mu_i, \sigma_i^2)$$

Varianten unabhängiger Variablen

- Nominal, eine Kategorie mit Faktor β_0
- Nominal, mehrere Kategorien mit Faktoren β_i $i \in \mathbb{N}^+$ und Indikatorvariablen in Designmatrix
- Eine metrische Variable $\beta_0 + \beta_1 x$
- Mehrere metrische Variablen $\beta_0 + \sum_j \beta_j x_j$
- mit Interaktion $\beta_0 + \sum_j \beta_j x_j + \sum_{jk} \beta_{jk} x_j x_k [+...]$
- Ordinale Variable(n) (\rightarrow nominal; aber Reihenfolge spielt Rolle)

Beispiel Link-Funktion g

$$g(\eta) = \text{logistic}(\eta) = \frac{1}{1 + e^{-\eta}}$$

 \bullet ausgedrückt durch unabhängige Variable X

$$g(x; \beta_0, \beta_1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

• umparametrisiert mittels gain γ und threshold θ :

$$g(x; \gamma, \theta) = \frac{1}{1 + e^{-\gamma(x-\theta)}}$$

Anwendung Tierdaten: Gehirngewicht

• Zum Vergleich mit frequentistischer Statistik, siehe GLM (Kapitel 2, ab Seite 24)

Wie mit Bayes-Statistik?

$$p(\beta_0, \beta_1, \sigma, \nu | D) = \frac{p(D | \beta_0, \beta_1, \sigma, \nu) p(\beta_0, \beta_1, \sigma, \nu)}{\int \int \int \int p(D | \beta_0, \beta_1, \sigma, \nu) p(\beta_0, \beta_1, \sigma, \nu) d\beta_0 d\beta_1 d\sigma d\nu}$$

Wie mit MCMC aus PyStan?

Abbildung 5.7: Model mit Abhängigkeit für robuste lineare Regression, nach: Kruschke: Doing Bayesian Data Analysis, 2nd. AP (2015)

- Parameter von Interesse:
 - Parametervektor β
 - * besteht ein linearer Zusammenhang zwischen X und Y? \Rightarrow gain $\beta_1 \neq 0$
 - * ist der lineare Zusammenhang proportional? \Rightarrow intercept $\beta_0 = 0$
 - Streuung der Daten σ
 - Abweichung von Normalverteilung (robust gegen Ausreißer)

- Üblicherweise **nicht** μ_i (wird von β und X vorhergesagt)
- Vorgabe für konstante Prior-Parameter M_i , S_i , K, L, H.

Ergebnis und Vergleich mit GLM: Parametervektor β

- Bayes-Posterior mittels PyStan
- GLM Fit-Ergebnis für Parameter
- ⇒ Sehr gute Übereinstimmung

Ergebnis Störparameter

- Abweichung von der Normalverteilung
- Mittelwert von $\nu=33.47$ mit Standardabweichung $s_{\nu}=28.54$
 - → die Abweichung von der Normalverteilung spielt keine Rolle und kann vernachlässigt werden.
- Streuung
 - Mittelwert von $\sigma = 0.29$ mit Standardabweichung $s_{\sigma} = 0.03$
 - $-\Rightarrow$ die Daten (Gehirngewicht) streuen um den lineare vorhergesagten Erwartungswert (≙ Faktor 2)

Ergebnis Lineares Modell

- Datenverteilung wird sehr gut beschrieben
- Vergleich mit KQ/IRLS Linearem Modell
 - Werte für Parametervektor stimmen überein
 - Streuung der Parameter stimmt mit Konfidenzintervall überein
 - Streuung der Daten stimmt mit Konfidenzintervall überein

5.23.4 Lineares Modell mit Kategorien

- Modell-String
- Ergebnis
 - PyStan
 - Vergleich mit GLM
 - $\Rightarrow \text{sehr gute Übereinstimmung}$

Abbildung 5.8: Lineares Modell mit Kategorien, nach: Kruschke: Doing Bayesian Data Analysis, 2nd. AP (2015)

5.23.5 Hierarchisches Lineares Modell mit Kategorien

Ergebnis

- Parametervektor
 - Die Parameter werden durch den Posterior gut geschätzt
 - Abstand zwischen $\beta_{0,i}$
 - Steigung (war bereits ähnlich)
 - Streuung $\sigma_{0,j}$ nähert sich an
- Effekt durch Hierarchie
 - Einschränkung von $\beta_{0,monkey}$
- Kopplung
 - Kaum Kopplung zwischen den Ebenen
 - Große Streuung in zbetamu
 - * große Freiheit für beta in jeder Kategorie
 - Dennoch leichte Kopplung:
 - * Einengung $\beta_{1,\text{monkey}}$
- Problem

Abbildung 5.9: Hierarchisches Lineares Modell mit Kategorien, nach: Kruschke: Doing Bayesian Data Analysis, 2nd. AP (2015)

- Es steckt kaum Information in den **nur 2** Kategorien
- die obere Hierarchieebene wird gar nicht ausgenutzt
 - * zu viele Freiheitsgrade
- $-\ \beta_{0,\sigma}$ und $\beta_{1,\sigma}$ sind daher beliebig
- $-\ \beta_{0,\mu}$ und $\beta_{1,\mu}$ sind ebenfalls sehr breit verteilt
- Folge
 - Hamiltonian MCMC Posterior-Spaziergang stößt an Rand der Verteilung
 - * Gradient nicht mehr stetig
 - * Ablehnung von Sprüngen
 - $\Rightarrow Warnmeldung$
- Lösung des Problems
 - Mehr Daten nötig
 - * Anzahl der Kategorien \geq Anzahl Parameter in oberster Hierarchieebene
 - * Elefanten, Affen, Nagetiere, Katzen, ...

Mehrere Kategorien mit Hierarchischem Modell

• Anderes Beispiel: Gruppe von Versuchspersonen

- Versuchspersonen als (ähnliche, aber leicht unterschiedliche) Individuen (j)
- individuelle Einzelergebnisse (i)
- Ergebnis
 - Individuen zeigen ähnliches Verhalten
 - * erlaubt sind (hier im Beispiel) individuelle Steigerung und individuelles Level
 - Hierarchisches Modell verbindet Individuen als Mitglieder der Gruppenpopulation
 - * Summe der Individuen erlaubt Rückschlüsse auf Eigenschaften der Gruppe an sich
 - * Gruppeneigenschaften erlauben Rückschlüsse auf einzelne Individuen
 - Obacht
 - * Anpassung nur möglich, wenn ausreichend Daten (hier Kategorien) verfügbar

5.23.6 *Generalisierte* Lineare Modelle

Bereits gesehen in GLM (Kapitel 2, ab Seite 24)

- Link Funktion in GLM
- Anwendung einer Link-Funktion mit Bayes-Statistik
 - Psychometrische Daten logistische Regression: Psignifit

Funktionen in Stan

- Link-Funktionen
 - logit(x)
 - inv_logit(x)
 - inv_cloglog(x)
- Verteilungen
 - y $\,$ bernoulli logit(alpha + beta * x)
 - y bernoulli(inv_logit(alpha + beta * x[n]))
 - \ast # equivalent, but less efficient and less arithmetically stable

5.23.7 'Take-Home': GLM und Bayes-Statistik

- PyStan-MCMC und GLM-IRLS-Ergebnisse stimmen sehr gut überein
- Methode der Wahl hängt von Zweck der Auswertung ab
- Vorteile durch Bayes-Statistik können ausgenutzt werden
 - Posterior-Verteilung der Zufallsvariablen des Parametervektors
 - Vergleich von Parametern
 - Zugriff auf übergeordnete Gruppenvariablen in hierarchischem Modell
 - Einblick in Verteilungen
- flexiblere Modelle möglich
- Berechnung aufwändiger

6 Literatur

(Links unterlegt)

6.0.1 (Frequentistische) Statistik

- Fahrmeir, Künstler, Pigeot, Tutz: Statistik. Springer-Verlag Berlin Heidelberg, 6. Auflage (2007)
- Stahel: Statistische Datenanalyse. Vieweg&Sohn, 5. Auflage (2008)

6.0.2 Python und Notebooks

- A Crash Course in Python for Scientists
- zu matplotlib
- zu Pandas

6.0.3 Generalized Linear Models

- GLM statistics course by Tom Wallis
- Dobson, Barnett: An Introduction to Generalized Linear Models. Chapman&Hall/CRC, 3rd ed. (2008)
- McCullagh, Nelder: Generalized Linear Models. Chapman&Hall/CRC, 2nd ed. (1989)

6.0.4 PCA

- Hyvärinen, Hurri, Hoyer: Natural Image Statistics A Probabilistic Approach to Early Computational Vision. Springer (2009)
- Abdi, Williams: Principal component analysis. Wiley (2010)
- Novembre et.al.: Genes mirror geography within Europe. Nature 456(7218) 98–101 (2008). doi:10.1038/nature07331
- Turk, Pentland: Eigenfaces for Recognition; JCogNeurosci Vol3.1 (1991)
- Blanz, Vetter: Face recognition based on fitting a 3D morphable model; IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 9 (2003)
- Blanz, Vetter: A Morphable Model for the Synthesis of 3D Faces. T. SIGGRAPH' (1999) Conference Proceedings

6.0.5 ICA

- Stone: Independent Component Analysis, MIT press (2004)
- Hyvärinen, Hurri, Hoyer: Natural Image Statistics, Springer (2009)
- Hyvärinen, Oja: Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4-5) 411-430 (2000)
- Hyvärinen Homepage

6.0.6 Bayes

- J. K. Kruschke: Doing Bayesian Data Analysis, 2nd. A Tutorial with R, JAGS and Stan. Academic Press (2015)
- Beispielprogramme zum Kruschke-Buch
- Stan documentation
- PyStan documentation
- Stan's source-code repository
- über die Wahl von Priors

Psignifit

- Schütt, Harmeling, Macke and Wichmann: Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision research, 122:105–123 (2016)
- Software: https://github.com/wichmann-lab/psignifit
- Kontsevich and Tyler: Bayesian Adaptive Estimation of Psychometric Slope and Threshold. Vision Research, 39(16):2729–2737 (1999)
- Cavagnaro, Pitt and Myung: Model discrimination through adaptive experimentation. Psychonomic Bulletin & Review, 18(1):204–210 (2011)
- Shen and Richards: An updated maximum-likelihood procedure: Thresholds, slopes, and lapses of attention. Journal of the accoustical society of america, 132(2):957–967 (2012)
- Watson and Pelli: Quest: A bayesian adaptive psychometric method. Perception & psychophysics, 33(2):113–120 (1983)
- Prins: The psi-marginal adaptive method: How to give nuisanceparameters the attention they deserve (no more, no less). Journal of Vision, 13(7):3–3 (2013)
- Lesmes, Lu, Baek and Albrigh: Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method. Journal of Vision, 10(3):17–17 (2010)
- Watson: QUEST+: A general multidimensional Bayesian adaptive psychometric method-Watson. Journal of Vision, 17(3):10–10 (2017)

• Stefanie Otto: Vergleichende Simulation adaptiver, psychometrischer Verfahren zur Schätzung von Wahrnehmungsschwellen. Magisterarbeit (2009)

6.0.7 Kausalität

• Peters, Janzing, Schölkopf: Elements of Causal Inference. MIT press (2017)