Post Quantum Secure OT Extension

Xiaoye Wu Tim Fischer

Supervised by Gowri R Chandran

Table of Contents

1. Introduction

- a. What is OT?
- b. Related Work
- c. The Goal

2. The Protocol in a Nutshell

- a. Overview
- b. Phase 1
- c. Phase 2
- d. Phase 3

3. Implementation Details

- a. Environment
- b. Data Type
- c. Transposition
- d. Algorithms

4. Benchmark

- a. Environment
- b. Performance

5. Conclusion

- a. Result
- b. Issues
- 6. Demo
- 7. Q & A
- 8. References

What is an OT? \rightarrow Related Work \rightarrow The Goal

1. Introduction

What is an Oblivious Transfer?

What is an OT? \rightarrow Related Work \rightarrow The Goal

Related Work

OT

- Base OT
- Extended OT

Post Quantum Secure OT

- Base OT
- Extended OT

What is an OT? \rightarrow Related Work \rightarrow The Goal

The Goal

Implement

- Only the extension
- Semi-honest adversaries

Benchmark

Compare to base OT

What is an OT? \rightarrow Related Work \rightarrow The Goal

Overview \rightarrow Phase 1 \rightarrow Phase 2 \rightarrow Phase 3

2. The Protocol in a Nutshell

Overview

Phase 1 - Preparation

Connection channel

Exchange

- Parameters
- Algorithms

Define values

Phase 2 - Base OT

Role Switch

- Alice = Receiver
- Bob = Sender

Execution

- Random values
- Exchange Parameters

Phase 3 - Extended OT

Steps

- B Calculate U
- A Calculate Q
- A Transposes Q
- A Obfuscate origin to y0, y1
- <u>B</u> Select yr
- **B** Unveil yr

 $\mathsf{Environment} \to \mathsf{Data} \ \mathsf{Type} \to \mathsf{Transposition} \to \mathsf{Algorithms}$

3. Implementation Details

Environment

Language

• C++

Base

PQ-MPC [4]

Libraries

- GNU Multiple Precision
 Arithmetic Library (GMP)
- OpenSSL cryptographic library

 $\textbf{Environment} \rightarrow \mathsf{Data} \; \mathsf{Type} \rightarrow \mathsf{Transposition} \rightarrow \mathsf{Algorithms}$

Data Type

mpz_t

- Arbitrary precision
- Performant
- Flexible

Matrices

• 2d Integer Array

Lists

Integer

 $\mathsf{Environment} \to \textbf{Data Type} \to \mathsf{Transposition} \to \mathsf{Algorithms}$

Transposition

Transposition

Simple

Eklundh's Transposition [3]

- based on ALSZ17 and Ekl72
 - To-swap indices computation
 - Square Matrices
 - Non-Square Matrices

 $\mathsf{Environment} \to \mathsf{Data}\; \mathsf{Type} \to \textbf{Transposition} \to \mathsf{Algorithms}$

Algorithms

Correlation Robust Function

SHA-256

PRG

AES-CTR

 $\mathsf{Environment} \to \mathsf{Data} \ \mathsf{type} \to \mathsf{Transposition} \to \textbf{Algorithms}$

Environment → Performance

4. Benchmark

Environment

Specs

- CPU: 2x Intel Xeon Gold 6144 @ 3.5 GHz (8 physical cores, 24.75 MB L3 Cache each)
- RAM: 16 x 32GB DDR4 ECC @ 2666 MHz (= 512GB)
- SSD: 6 x 1TB Intel NVMe U.2
- Single threaded

Fundamentals

- OT Count: 2¹⁰ ~ 2²³
- Base OT Count = PRG security parameter = 128
- Data length = SHA-256 output = 256

Performance

	Base OT		OT Extension			
# OT(2 ⁿ)	Time(s)	Comm.(KiB)	Naive Ma	trix Transposition	Eklundh's Matrix Transposition	
			Time(s)	Comm.(KiB)	Time(s)	Comm.(KiB)
10	2.97	640.3	0.02	209.7	0.07	209.7
11	4.11	640.3	0.03	418.3	0.14	418.3
12	4.21	640.3	0.05	835.5	0.28	835.5
13	4.02	640.3	0.10	1670.0	0.56	1670.0
14	6.24	640.3	0.20	3338.9	1.15	3338.9
15	3.08	640.3	0.41	6676.7	2.34	6676.7
16	3.92	640.3	0.80	11352.3	4.85	11352.3
17	3.42	640.3	1.64	26703.7	9.76	26703.7
18	5.83	640.3	3.41	53406.1	19.5	53406.1
19	3.49	640.3	6.93	106810.6	39.76	106810.6
20	3.34	640.3	14.42	213621.1	79.76	213621.1
21	3.99	640.3	29.94	427240.1	161.19	427240.1
22	4.74	640.3	62.71	854479	322.48	854479
23	3.13	640.3	133.18	1708959	-	-

 $\mathsf{Environment} \to \textbf{Performance}$

Results → Issues

5. Conclusion

Results

Time Consumption

≈ Base OT (< 2¹⁹)

Executable OTs

Local machine: 2²⁰

Virtualization server: 2²³

Results → Issues

Issues

Eklundh's Transposition

mpz_t performance

Hard to Debug

mpz_t bit order

Results → Issues

6. Demo

7. Q & A

References - Sources

- [ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer extensions, 2017.
- 2. [BDK+20] Niklas Büscher, Daniel Demmler, Nikolaos P. Karvelas, Stefan Katzenbeisser, Juliane Krämer, Deevashwer Rathee, T. Schneider, and Patrick Struck. Secure two-party computation in a quantum world, 2020.
- 3. [Ekl72] J.O. Eklundh. A fast computer method for matrix transposing. IEEE Transactions on Computers, C-21(7):801–803, 1972.
- 4. https://github.com/encryptogroup/PQ-MPC
- 5. [MI81] Rabin, Michael. (1981). How To Exchange Secrets with Oblivious Transfer

References - Images

- 1. https://www.flaticon.com/free-icons/lock
- 2. https://www.flaticon.com/free-icons/man
- 3. https://www.flaticon.com/free-icons/woman
- 4. https://www.flaticon.com/free-icons/machine-learning
- 5. https://www.flaticon.com/free-icons/algorithm
- 6. https://www.flaticon.com/free-icons/goal
- 7. https://www.flaticon.com/free-icons/hand
- 8. https://www.flaticon.com/free-icons/firework

THE END

Special thanks to Gowri and Jens for the support

Thanks for your Attention

