*** INDUCTION

Base Case

Prove $S(n_0)$

Inductive Hypothesis

Assume S(n) holds for an arbitrary $n \ge n_0$

Inductive Step

Given S(n), prove S(n+1)

AXIOM OF COMPLETENESS

If S has an upper bound, then it has a *least* upper bound, namely the supremum of S.

Likewise if S has a lower bound, then it has a *greatest* lower bound, namely the infimum of S.

*** ARCHIMEDEAN PRINCIPLE

If c is any positive number, then there is an integer n > c, equivalently

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } n > x$

Additionally, if c is any positive number, then there is an integer n with $0 < \frac{1}{n} < c$, equivalently

 $\forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ such that } \frac{1}{n} < \varepsilon$

TRIANGLE INEQUALITY

$$|a+b| \le |a| + |b|$$

for all $a,b\in\mathbb{R}.$ The following can also be proven from the Triangle Inequality.

$$|a| - |b| \le |a + b|$$

 $||a| - |b|| \le |a - b|$
 $|a| - |b| \le |a - b|$

MISC BINOMIAL FORMULAS

$$a^{n} - b^{n} = (a - b) \left(\sum_{i=1}^{n} a^{n-i} b^{i-1} \right)$$
$$= (a - b) \left(a^{n-1} + a^{n-2} b + \dots + a b^{n-2} + b^{n-1} \right)$$

for all $a, b \in \mathbb{R}$ with n > 2.

Factoring $a^n + b^n$

This is only possible if n is **odd**.

Factoring $1 - r^n$

$$1 - r^{n} = (1 - r) \left(\sum_{k=0}^{n-1} r^{k} \right)$$
$$= (1 - r) \left(1 + r + r^{2} + \dots + r^{n-1} \right)$$

If $r \neq 1$, then this is a **geometric sum** and the following is true

$$\sum_{k=0}^{n-1} r^k = \frac{1 - r^k}{1 - r}$$

Binomial Formula

Recall

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for 0 < k < n.

Now

$$(a+b)^n$$

$$= \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$= \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n$$

Consequence

Let $\frac{p}{q} \in \mathbb{Q}$ be a solution to

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

with $a_i \in \mathbb{Z}$ for all $0 \le i \le n$. Then $p|a_0$ and $q|a_n$

Proof

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \left(\frac{p}{q}\right) + a_0 = 0$$

Multiplying by q^n , we get

MATH410 Cheatsheet Gaetan Almela

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0$$

With some manipulation, we get

$$a_n p^n = -(a_{n-1}p^{n-1}q + \dots + a_0q^n)$$

= $-q(a_{n-1}p^{n-1} + \dots + a_0q^{n-1})$

so $q|a_np^n$ and thus $q|a_n$.

A similar manipulation from (1) can be done with a_0q^n to obtain

$$a_0 q^n = -(a_n p^n + \dots + a_1 p q^{n-1})$$

= $-p (a_{n-1} p^{n-1} + \dots + a_0 p^{n-1} q^{n-1})$

so $p|a_0q^n$ and thus $p|a_0$.

Application

Does $2x^2 - 5x - 3 = 0$ have a rational solution $\frac{p}{q}$?

If so, p|-3 so $p=\pm 1$ or $p=\pm 3$ and q|2 so $q=\pm 1$ or $q=\pm 2$.

*** MONOTONE CONVERGENCE THEOREM

Let $\{a_n\}_{n=1}^{\infty}$ be monotone.

 $\{a_n\}_{n=1}^{\infty}$ converges **if and only if** it is bounded.

** Nested Interval Theorem

Let $I_n = [a_n, b_n]$ with $I_n \subseteq I_{n+1}$ for $n \ge 1$.

If $\lim_{n\to\infty} (b_n - a_n) = 0$.

 \langle We need this condition to ensure the interval converges to a point, and not a sub-interval \rangle

Then there is a unique x^* in $\bigcap_{n=1}^{\infty} I_n = \{x : x \in I_n \text{ for all } n \}$

 \langle There is a unique point x^* that is inside all intervals $I_n \rangle$

and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x^*$.

 $\langle a_n \text{ and } b_n \text{ converge to the same value: } x^* \rangle$

TODO Boundedness, Sum Rule, Product Rule, Quotient Rule, Convergence...

Subsequences

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and let $\{n_k\}_{k=1}^{\infty}$ be a sequence of positive integers. Then, $\{a_{n_k}\}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$.

Note: A subsequence is infinite.

PEAK INDEX

A peak index n_* for a sequence $\{a_n\}_{n=1}^{\infty}$ is such that $n_* \geq 1$ with $a_m \leq a_{n_*}$ for all $m \geq n_*$.

 \langle All values that come **after** value n_* are less than or equal to it. \rangle

EVERY SEQUENCE HAS A MONOTONE SUBSEQUENCE

1. If $\{a_n\}$ has infinitely many peak indices,

 $\langle \text{ for example } \{\frac{1}{n}\} \rangle$

then the subsequence $\{a_{n_k}\}$ with $\{n_k\}_{k=1}^{\infty}$ is a decreasing subsequence.

2. If $\{a_n\}$ has finitely many peak indices,

 \langle for example $\{n\} \rangle$

then there is a subsequence that is strictly increasing.

** Corollary 2.33

Every bounded sequence $\{a_n\}$ has a convergent monotone subsequence.

- 1. If $\{a_n\}$ has infinitely many peak indices, the subsequence is decreasing.
- 2. If $\{a_n\}$ has finitely many peak indices, the subsequence is also decreasing.

Then, you can use the Monotone Convergence Theorem so show that this subsequence converges.

SEQUENTIAL COMPACTNESS

Let $S \subseteq \mathbb{R}$ be a set. S is sequentially compact if every sequence has a subsequence that converges.

Any set $[a, b] \subseteq \mathbb{R}$ is sequentially compact.

Density in \mathbb{R}

A set S is dense in \mathbb{R} if and only if for each $x \in \mathbb{R}$, there is a sequence $\{a_n\}_{n=1}^{\infty} \subseteq S$ with $a_n \to x$

SEQUENTIAL CONTINUITY

Let $f: D \to \mathbb{R}$ be a function. f is continuous at $x_0 \in D$ if, for any sequence $\{x_n\}_{n=1}^{\infty} \subseteq D$ with $x_n \to x_0$, then $f(x_n) \to f(x_0)$.

 $\langle f \text{ is continuous at } x_0 \text{ if, for all sequences subset of the domain that converge to } x_0,$ applying the f to the sequence converges to $f(x_0)$

MATH410 Cheatsheet Gaetan Almela

Rules of Continuity

Let f, g be continuous functions at $x_0 \in D$.

- f + g is continuous at x_0
- $f \cdot g$ is continuous at x_0
- If $g(x_0) \neq 0$, then $\frac{f}{g}$ is continuous at x_0

Maximum Value

 $f: D \to \mathbb{R}$ has a maximum value $f(x_0)$ if $x_0 \in D$ and $f(x) \leq f(x_0)$ for all $x \in D$. There is only ever **at most one** maximum value.

MINIMUM VALUE

 $f: D \to \mathbb{R}$ has a minimum value $f(x_0)$ if $x_0 \in D$ and $f(x) \ge f(x_0)$ for all $x \in D$. There is only ever **at most one** minimum value.

Extreme Values

Extreme values are the maximum and minimum values of f

Maximizer

 x_0 is a maximizer of f if $f(x_0)$ is the maximum value of f. There can be **infinitely many** maximizers.

Example

Let f(x) = sin(x). Then $\frac{\pi}{2} + 2\pi n$ are all the maximizers of f, and the maximum value is 1.

Minimizer

 x_0 is a minimizer of f if $f(x_0)$ is the minimum value of f. There can be **infinitely many** minimizers.

Example

Let $f(x) = \sin(x)$. Then $-\frac{\pi}{2} + 2\pi n$ are all the minimizers of f, and the minimum value is -1.

Example

Let f(x) = x with 0 < x < 1. Then f has no maximum nor minimum values.

** Lemma 3.10

If $f:[a,b]\to\mathbb{R}$ is continuous, then it is bounded.

*** EXTREME VALUE THEOREM

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then, f has a maximum value, and a minimum value.

*** INTERMEDIATE VALUE THEOREM

Let $f:[a,b]\to\mathbb{R}$ be continuous. Let $c\in[f(a),f(b)]$ be arbitrary, with f(a)< c< f(b).

Then there is an $x_0 \in [a, b]$ such that $f(x_0) = c$.

Note: If f is a polynomial of odd degree, then the range of f is $(-\infty, \infty)$.

BISECTION METHOD

This is used to approximate the zeroes of a function f that is continuous on [a, b], with f(a)f(b) < 0.

Let $c_1 = \frac{a+b}{2}$ be the midpoint of [a, b]. If $f(c_1) = 0$, then we are done.

If $f(c_1)f(a) > 0$, let $c_2 = \frac{a+c_1}{2}$, and repeat.

If $f(c_1)f(b) > 0$, let $c_2 = \frac{c_1+b}{2}$, and repeat.

If b-a=1, then c_n is within $\frac{b-a}{2^n}$ of a zero of f.

*** UNIFORM CONTINUITY

The function $f: D \to \mathbb{R}$ is uniformly continuous on D if, whenever $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ are sequences in D such that $|u_n - v_n| \to 0$ as $n \to \infty$, then $|f(u_n) - f(v_n)| \to 0$ as $n \to \infty$.

Note: If f is uniformly continuous on D, then it is continuous on D.

Note: Neither $\{u_n\}_{n=1}^{\infty}$ nor $\{v_n\}_{n=1}^{\infty}$ need to be convergent, or even bounded.

** Theorem 3.17

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then f is uniformly continuous.

$\varepsilon - \delta$ Continuity

For all $\varepsilon > 0$, there exists $\delta > 0$ such that, if $0 < |x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.

This definition is equivalent to the sequential definition of continuity.

THEOREM 3.20

The sequence definition of continuity is equivalent to the $\varepsilon - \delta$ definition.

MONOTONE FUNCTIONS

 $f: D \to \mathbb{R}$ is monotonically increasing if for any $x, z \in D$, $x < z \Rightarrow f(x) \leq f(z)$.

 $f: D \to \mathbb{R}$ is strictly monotonically increasing if for any $x, z \in D, x < z \Rightarrow f(x) < f(z)$.

 $f: D \to \mathbb{R}$ is monotonically decreasing if for any $x, z \in D$, $x < z \Rightarrow f(x) \ge f(z)$.

 $f: D \to \mathbb{R}$ is strictly monotonically decreasing if for any $x, z \in D, x < z \Rightarrow f(x) > f(z)$.

Тнм 3.23

Let f be monotone and f(D) is an **interval** \langle no unions, must be a contiguous interval \rangle . Then f is continuous.

INJECTIVE FUNCTIONS

 $f:D\to\mathbb{R}$ is **injective** \langle one to one \rangle if for any $x,z\in D,$ $x\neq z\Rightarrow f(x)\neq f(z).$

SURJECTIVE FUNCTIONS

 $f: D \to \mathbb{R}$ is **surjective** \langle onto \rangle if for all $y \in \mathbb{R}$, there exists $x \in D$ such that f(x) = y. \langle Note that x may not be unique. \rangle

INVERSE FUNCTIONS

Let $f: D \to \mathbb{R}$ be one to one. Then f has an inverse f^{-1} , defined by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y$$

LIMIT POINTS

If $D \subseteq \mathbb{R}$, then x_0 is a **limit point** of D if there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq D$ with $\{x_n\} \to x_0$ and $x_n \neq x_0$ for any n. \langle The sequence approaches x_0 , but is never x_0 . \rangle

LIMITS

Let $f: D \to \mathbb{R}$ and x_0 be a limit point of D. Then $\lim_{x \to x_0} f(x) = L$ if for each $\{x_n\} \subseteq D$ with $x_n \neq x_0$ for all n, then $x_n \to x_0$ implies that $f(x_n) \to L$. \langle The limit of all sequences $\{x_n\}$ must converge \rangle

Composition of Limits

Let $f: D \to \mathbb{R}$ and $g: U \to \mathbb{R}$ with $f(D) \subseteq U$. Suppose that x_0 is a limit point of D, $\lim_{x \to x_0} f(x) = y_0$, and $\lim_{y \to y_0} g(y) = L$. Then $\lim_{x \to x_0} (g \circ f)(x) = L$.

TODO Quotient Rule, Product Rule, Sum Rule of limits.

Chapter 4

NEIGHBORHOODS

If $x_0 \in I = (a, b)$, then I is a **neighborhood** of x_0 .

The Derivative

Let $f: D \to \mathbb{R}$, $x_0 \in D$ and D contains a neighborhood of x_0 . If $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists, then it is the **derivative** of f at x_0 ; it is denoted as $f'(x_0)$.

We say that f is differentiable at x_0 . \langle Likewise, if this is true of all points on an interval I, we say that f is differentiable on I. \rangle

** Proposition 4.5

If f'(a) exists, then f is continuous at a.

** Sum Rule

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

** Product Rule

$$(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$$

** Quotient Rule

If $g(x_0) \neq 0$, then

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

** Chain Rule

Let $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$ with $f(I) \subseteq J$. Additionally, assume that $f'(x_0), g'(f(x_0))$ exist. Then,

$$(f \circ g)'(x_0) = [g'(f(x_0))]f'(x_0)$$

Rolle's Theorem

Let $f: A \to B$ be continuous on [A, B] and differentiable on (A, B). Further assume that f(a) = f(b). Then, there exists an $x_0 \in (a, b)$ with $f'(x_0) = 0$.

TODO check this definition

*** MEAN VALUE THEOREM

Let $f:[a,b]\to\mathbb{R}$ be continuous, and be such that f' exists on (a,b). Then, there is an $x_0\in(a,b)$ with

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

 \langle There is a point in (a, b) such that the tangent line at that point is parallel to a line from $(a, f(a)), (b, f(b)) \rangle$

 \langle This is a generalization of Rolle's Theorem \rangle

Lemma 4.19

TODO Makes no sense in my notes

** Identity Criterion

Let I be an open interval, and $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$. Then, f' = g' on I if and only if there is a constant c with f(x) = g(x) + c, for all $x \in I$.

2^{nd} Derivative Test

Let I be an open interval, let $x_0 \in I$, and let $f: I \to \mathbb{R}$ be such that f' and f'' exist on I, with the additional property that $f'(x_0) = 0$. Then

- $f''(x_0) < 0 \Rightarrow x_0$ is a local maximizer
- $f''(x_0) > 0 \Rightarrow x_0$ is a local minimizer

CAUCHY MEAN VALUE THEOREM

Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b), with $g'(x) \neq 0$ for all x and $g(b) \neq g(x)$. Then there is $x_0 \in (a,b)$ within

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x_0)}{g'(x_0)}$$

THEOREM 4.24

Let I be open, $n \neq 1$, $f: I \to \mathbb{R}$ with n^{nt} derivative of f existing on I. If $f^{(k)}(x_0) = 0$ for some $x_0 \in I$, $0 \leq k < n$, then for all $x \in I$ there is z_x between x and x_0 with

$$f(x) = \frac{f^{(n)}(z_n)}{n!} (x - x_0)^n$$

L'HÔPITAL'S RULE

Let f, g be continuous on (a, b), f', g' exist on (a, b) assume Let $f : [a, b] \in \mathbb{R}$ be bounded, then $g(x) \neq 0$, also g'(x) = 0 for $x \in (a, b)$. Then,

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$

If
$$f(a) = g(a) = 0$$

Darboux Sums

Let $f:[a,b]\to\mathbb{R}$ be bounded and $P=\{a_1=x_1,...,x_n=b\}$ be a partition on [a, b]

Lower Sum

$$L(f, P) = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$$

Upper Sum

$$U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$$

Where $M_i = \sup(x), m_i = \inf(x)$ for $x \in (x_{i-1}, x_i)$.

PARTITION REFINMENT

A partition P^* is a refinment of P on [a, b] if

$$P \subseteq P^* \subset [a, b]$$

Note

If P^* is a refinment of P on [a, b], then for f bounded on [a, b], $L(f, P) \leq L(f, P^*)$ and $U(f, P) \geq U(f, P^*)$.

Note

If $f:[a,b]\to\mathbb{R}$ is continuous and P, Q are partitions on [a,b], then

$$L(f, P) \leq U(f, Q)$$

Lemma 6.3

Let $f:[a,b]\to\mathbb{R}$ be bounded. Let P,Q be partitions on [a,b]. Then

$$L(f, P) \leq U(f, Q)$$

Upper and Lower Integrals

$$\int_{-a}^{b} f = \sup(L(f, P)) \qquad \qquad \int_{a}^{-b} f = \sup(L(f, P))$$

For a partition P

f is integrable on [a, b] if

$$\int_{-a}^{b} f = \int_{a}^{-b} f$$

*** ARCHIMEDES RIEMANN THEOREM

Let $f:[a,b]\to\mathbb{R}$ be bounded. f is integrable if and only if there exists a sequence of partitions $\{P_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) = 0$$

 \langle The difference of the upper and lower Darboux sums converges.

PARTITION GAPS

The gap of a partition on [a, b] is the largest subinterval $[x_{i-1}, x_i]$ of P.

REGULAR PARTITIONS

A partition P on [a, b] is regular if all subuintervals have the same length

$$h = \frac{b-a}{n} = x_i - x_{i-1}$$

with h as the gap size.

Note

$$\int_{b}^{a} f := -\int_{a}^{b} f$$

** Integrability Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous. Let $G(x)\int_a^x f(t)dt$ for $x\in[a,b]$. Then

$$G'(x) = f(x)$$

for
$$x \in (a, b)$$

Def

G is the **antiderivative** of g if G' = g

*** FUNDAMENTAL THM OF CALCULUS I

Let $F:[a,b]\to\mathbb{R}$ be continuous and let f=F' on (a,b) with f continuous and bounded on the open interval. Then

$$\int_a^b f(t)dt = \int_a^b F'(t)dt = F(b) - F(a)$$

*** FUNDAMENTAL THM OF CALCULUS II

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

for $x \in (a, b)$

Corollary

Let I, J be open intervals, let $f: I \to \mathbb{R}$, $\phi: J \to \mathbb{R}$ with $\phi(J) \subseteq I$. Assume that ϕ is differentiable and f is continuous. Then

$$\frac{d}{dx} \int_{a}^{\phi(x)} f(t)dt = [f(\phi(x))]\phi'(x)$$

MEAN VALUE THM FOR INTEGRALS

Let $f:[a,b]\to\mathbb{R}$ be continuous. Then, there is an $x_0\in[a,b]$ with

$$\frac{1}{b-a} \int_{a}^{b} f(t)dt = f(x_0)$$

or equivalently,

$$\int_{a}^{b} f(t)dt = f(x_0)(b-a)$$

 \langle You can turn the area into a rectangle. \rangle

Order of Contact

Let I be an open interval. Let $x_0 \in I$, and let $f: I \to \mathbb{R}, g: I \to \mathbb{R}$. Then f, g have **contact of order** n at x_0 if

$$f^{(k)}(x_0) = g^{(k)}(x_0)$$
 for $k = 0, ..., n$

TAYLOR POLYNOMIALS

Let $x_0 \in I$ with I open, and $f: I \to \mathbb{R}$ with derivatives at x_0 . Then there is a unique polynomial P_n with degree $P_n \leq n$ such that contact order with f at x_0 is n. P_n is called **the** n^{th} **Taylor Polynomial of** f **at** x_0 , and

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

*** LAGRANGE REMAINDER FORMULA

Let $f^{(n+1)}$ exist on an open neighborhood I for x_0 . Then

$$f(x) = P_n(x) + R_n(x)$$

$$= \left[\sum_{k=0}^n \frac{f^{(n)(x_0)}}{k!} (x - x_0)^k \right] + \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1}$$

Where R_n is the remainder, and $c_x \in (x, x_0)$

THM 8.4

Let $f: I \to \mathbb{R}$ with I open, let $x_0 \in I$, and assume that $f^{(n)}(x_0)$ exists for all n. If there are r > 0 and $M < \infty$ so that $|x - x_0| < r$, then $|f^{(n)}(x)| \le M^n$ for all $n \ge 0$, and $x \in I$. Then $\lim_{n \to \infty} R_n(x) = 0$ for such x some

$$f(x) = \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

CAUCHY SEQUENCE

A sequence is Cauchy if, for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that, for any $n, m \in \mathbb{N}$, if n, m > N, then $|a_m - a_n| < \varepsilon$.

Thm 9.4: A sequence converges if and only if it is Cauchy.

Convergence Tests

 k^{th} term test

If $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{n\to\infty} a_k = 0$. \langle Note that **the converse is not always true**, i.e. Harmonic series. \rangle

Comparison Test

If $\sum_{k=1}^{\infty} b_k$ converges and $b_k \geq a_k$, then $\sum_{k=1}^{\infty} a_k$ converges.

Geometric Series

Let $c \neq 0$, if $0 \leq r < 1$, then

$$\sum_{k=0}^{\infty}r^k=\frac{1}{1-r},$$
 and $\sum_{k=m}^{\infty}r^k=r^m\sum_{k=1}^{\infty}r^k=\frac{r^m}{1-r}$

$$\sum_{k=1}^{\infty} cr^k = \frac{cr^m}{1-r} \text{ if } |r| < 1.$$

Ratio Test

Let $a_k > 0$ for all $k \ge 1$. Assume that $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = L$. If $0 \ge L < 1$, then $\sum_{k=1}^{\infty} a_k$ converges. If L > 1, $\sum_{k=1}^{\infty} a_k$ diverges. If L = 1 either could happen.

Integral Test

Let $\{a_k\}_{k=1}^{\infty}$ be a strictly decreasing sequence, and $\lim_{k\to\infty} a_k = 0$. Let $f: [1,\infty) \to \mathbb{R}$ be continuous and decreasing, with $f(k) = a_k$ for all $k \geq 1$. Then

 $\sum_{k=1}^{\infty} a_k$ converges if and only if $\int_1^{\infty} f(x)dx$ converges.

p Test

 $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if and only if p > 1 with $p \in \mathbb{R}$

Alternating Convergence Test

 $\sum_{k=1}^{\infty} (-1)^k a_k$ is alternating if $a_k \geq 0$ for all k. If a_k is strictly decreasing, then the alternating series converges.

Root Test

Consider $\sum_{k=1}^{\infty} a_k$ with $a_k \geq 0$ for all k. Assume that $\lim_{k\to\infty} (a_k)^{1/k} = L$

- If $0 \ge L < 1$, then the series converges
- If L > 1, then the series diverges
- If L=1, then the root test doesn't tell us anything

Pointwise Convergence

 $(\forall x \in D)(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})[n > N \Rightarrow f_n(x) \in (f(x) - \varepsilon, f(x) + \varepsilon)]$

Pick any x in your domain, then pick any margin $\varepsilon > 0$ around your domain, then you can go far enough out in your sequence of functions (specifically at least N far) so that every n larger than N guarantees that the f_n function at point x lives inside the ε margin around the true function f at point x.

Uniform Convergence

Uniform convergence is stronger. Everything that converges uniformly converges pointwise, but the converse is not necessarily true.

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall x \in D)(\forall n \in \mathbb{N})[n > N \Rightarrow f_n(x) \in (f(x) - \varepsilon, f(x) + \varepsilon)]$$

Pick any ε margin, if you go far enough out in your sequence of functions (specifically N far) and then pick any x in your domain, then for all numbers n larger N it is guaranteed that the f_n function at point x lives inside the ε margin around the true function f at point x.

The distinction is that by picking a margin for the whole interval first, and then picking a point x in your domain, your entire function has to live in this ε margin in order to converge uniformly.

On the other hand, for pointwise convergence, the ability to pick a distinct N that satisfies the ε margin for each point x in our domain makes it "easier" for the function f to converge. Note that this ε margin is the same at every point, but the N value might differ at every point.