4. PARAMETRIC EQUATIONS

4.1 CARTESIAN FORM AND PARAMETRIC FORM

The equation of a curve can be expressed in two forms – Cartesian form and Parametric form.

In Cartesian form, the equation is expressed in terms of the x and y variables.

The equation of a curve can also be expressed in parametric form, where the x and y coordinates are expressed in terms of a variable t, thus

$$x = g(t), \qquad y = h(t)$$

The third variable *t* is known as the Parameter of the equations.

E.g. The Cartesian equation $y = \frac{x^2}{4}$ and the parametric equations

$$x = 2t$$
, $y = t^2$ both represent the same curve.

EXAMPLE 1

Fill in the tables and sketch the curves expressed in the

- (a) Cartesian equation $y = \frac{x^2}{4}$
- (b) Parametric equation x = 2t, $y = t^2$

· /	1 7 7 7				
X	-4	-2	0	2	4
$y = \frac{x^2}{4}$					

t	-2	-1	0	1	2
x = 2t					
$y = t^2$					

4.2 CONVERTING: PARAMETRIC TO CARTESIAN

There is no exact method for converting parametric equations for a curve to an equation in x and y only. If we can solve for t in terms of either x or y, we can substitute this for the value of t in one of the equations to get an equation in x and y only.

EXAMPLE 2

Convert the following parametric equation to an equation relating x and y.

(a)
$$x = 2t$$
, $y = t^2$

(b)
$$x = 2\sin(t)$$
, $y = \cos(t) - 1$

4.3 DERIVATIVES AND PARAMETRIC EQUATIONS

To find $\frac{dy}{dx}$ for a pair of parametric equations

$$x = g(t), \qquad y = h(t).$$

We need to apply the chain rule such that

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{h'(t)}{g'(t)}$$

EXAMPLE 3

Find the $\frac{dy}{dx}$ of the following parametric equations.

(a)
$$x = 2t$$
, $y = t^2$

(a)
$$x = 2t$$
, $y = t^2$ (b) $x = \frac{2-3t}{1+t}$, $y = \frac{3+2t}{1+t}$.

EXAMPLE 4

The parametric equations of a curve are $x = t^2 + 1$, y = 6t - 1.

- (i) The line 2x + y = 9 meets the curve at points A and B. Find the coordinates of A and of B.
- (ii) Obtain an expression for $\frac{dy}{dx}$ in terms of t.
- (iii) Find the equation of the tangent to the curve at the point (2, -7).
- (iv) Obtain the Cartesian equation of the curve.

TUTORIAL 4 PARAMETRIC EQUATIONS

1 A curve is defined parametrically by the equations $x = \frac{3}{(1+t)^2}$, $y = \frac{2-t}{1+t}$, where

$$t \neq -1$$
.

- (a) Show that $\frac{dy}{dx} = \frac{1+t}{2}$.
- (b) Find the equation of the tangent to the curve at the point where the curve crosses the x-axis.
- (c) Find the values of t at a point of the intersection of the curve with the line 4x + 3y = 0.
- 2 (a) The parametric equations of the curve are $x = t + \frac{1}{t}$ and $y = t^2 2t$ (for $t \ne 0$).

Show that $\frac{dy}{dx} = \frac{2t^2}{1+t}$. Find the co-ordinates of the points at which the tangents to the curve are parallel to the line y = x - 1.

(Note: When 2 lines are parallel, they have the same gradient)

- (b) A curve has parametric equations $x = 2\cos\theta + 1$ and $y = 6\sin\theta$ for $0 \le \theta \le \pi$.
 - (i) Find the equation of the normal to the curve at the point where $\theta = \frac{\pi}{3}$.
 - (ii) Obtain the Cartesian equation of the curve.
- 3 A curve is represented parametrically by the equations $x = \frac{4}{(2+t)^2}$, $y = \frac{10}{2+t}$.

Find

- (i) the equation of the chord joining the points P and Q with parameters -1 and 0 respectively,
- (ii) $\frac{dy}{dx}$ in terms of t,
- (iii) the equation of the tangent to the curve at the point y = 1, and
- (iv) the Cartesian equation of the curve.

4 The parametric equations of a curve are

$$x = t^2 + 1$$
, $y = 3t^2 - 2t$.

- (a) Obtain an expression for $\frac{dy}{dx}$ in terms of t.
- (b) Find the coordinates of the turning point of the curve. Hence find the equation of the normal to the curve at this point.
- (c) Show that the equation of the normal to the curve at the point t = 2 is 5y + 2x = 50.

Find the value of *t* at the point where the normal intersect the curve again.

(d) Show that the Cartesian equation of the curve can be expressed in the form $4(x-m) = (3x-y-3)^n$,

where m and n are constants.

Miscellaneous Exercises

- 1 A curve is given parametrically by the equations $x = (1+t)^2$, $y = (1-t)^2$. Find the equation of the tangent to the curve at the point where x = y. (MA1301 0809)
- 2. Given that $x = \sin t + \cos t$, $y = \ln(\cos t) + t$ $0 < t < \frac{\pi}{2}$, prove that $\frac{dy}{dx} = \sec t.$ (MA1301 1112)
- 3. The parametric equations of a curve are $x = a(\ln t + t)$, $y = a(1 + t \ln t)$ where a is a constant and t > 0.
 - (i) Find the equation of the normal to the curve at the point where t = 1
 - (ii) Obtain and simplify an expression for $\frac{d^2y}{dx^2}$. (MA1301 1213)

Note:

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

$$= \frac{d}{dt} \left(\frac{dy}{dx} \right) \cdot \frac{dt}{dx} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}}$$

ANSWERS

1 (b)
$$2y = 3x - 1$$
 (c) $t = 3$ or -2

(c)
$$t = 3$$
 or -2

2 (a)
$$(-2\frac{1}{2}, 1\frac{1}{4})$$
 and $(2,-1)$

(b) (i)
$$\sqrt{3}y = x + 7$$

(b) (i)
$$\sqrt{3}y = x + 7$$
 b(ii) $9x^2 + y^2 - 18x - 27 = 0$

3 (i)
$$3y = 5x + 10$$
 (ii) $\frac{dy}{dx} = \frac{5}{4}(2+t)$ (iii) $y = \frac{25}{2}x + \frac{1}{2}$

(ii)
$$\frac{dy}{dx} = \frac{5}{4}(2+t)$$

(iii)
$$y = \frac{25}{2}x + \frac{1}{2}$$

(iv)
$$y^2 = 25x$$

4 (a)
$$3 - \frac{1}{t}$$

4 (a)
$$3 - \frac{1}{t}$$
 (b) $(1\frac{1}{9}, -\frac{1}{3})$, equation of normal is $x = 1\frac{1}{9}$

(c)
$$-1\frac{7}{17}$$

(c)
$$-1\frac{7}{17}$$
 (d) $4(x-1) = (3x-y-3)^2$

Miscellaneous Exercises

$$1 y = -x + 2$$

3 (i)
$$y = -2x + 3a$$

3 (i)
$$y = -2x + 3a$$
 (ii) $\frac{d^2y}{dx^2} = \frac{t(2 + \ln t + t)}{a(1+t)^3}$