Sección 3.1 Funciones polinómicas de grado mayor que 2

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

1 Propiedades de gráficas de monomios

2 Propiedades de gráficas de polinomios

Función polinómica de grado n

Una $\it función\ polinómica$ de grado $\it n$ en la variable $\it x$ es una función que puede ser escrita en la forma:

$$f(x) = (a_n x^n) + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + (a_0)$$

donde n es un entero no negativo $a_n \neq 0$ y los coeficientes $a_n, a_{n-1}, \cdots, a_2, a_1$ y a_0 pueden ser cualquier número real.

Al monomio con el mayor exponente para x (es decir, a_nx^n) se le denomina **término líder** y al coeficiente de dicho término (a_n) se le denomina **coeficiente líder**. Al término a_0 se le llama **término constante**.

En el Capítulo 2, se estudiaron las gráficas de las funciones mostradas en la siguiente tabla, las cuales son casos particulares de funciones polinómicas.

	Forma de $f(x)$	Gráfica de $f(x)$
0	$f(x) = a_0$	Recta horizontal con intercepto en y igual a $\underline{a_0}$.
1)	$f(x) = \overline{a_1}x + \overline{a_0}$ $\forall x \neq b$	Recta con pendiente a_1 e intercepto en y igual a a_0 .
2	$f(x) = a_2 x^2 + a_1 x + a_0$	Una parábola con eje de simetría $x=-\dfrac{a_1}{2a_2}.$

Los polinomios pueden ser clasificados de acuerdo a su *grado*. Es costumbre escribir el polinomio de tal forma que los grados de sus términos estén en orden descendente. Cuando está escrito en esta forma se dice que está en **forma estándar**.

Ejemplo

Determine si cada una de las siguientes funciones son polinomios. Si es así escriba el mismo en su forma estándar e identifique el término líder.

$$\sqrt{(a)} f(x) = 3x - 5x^3 + 8$$

$$(b) g(x) = -x^4 + 5\sqrt{x} + 6$$

$$\sqrt{(c)} \ F(x) = \frac{3}{5}x + \sqrt{3}x^2 - 2x^5 = \sqrt{2} \sqrt{5} + \sqrt{5} \times \sqrt{1 + \frac{3}{5}} \times \sqrt{5}$$

$$\chi$$
(d) $G(x) = 2x^3 + 8x - \sqrt{\frac{2}{x}} = 2 \times^3 + 8 \times - 2 \times^{-1}$

Propiedades de gráficas de monomios

Un **monomio** es un polinomio de la forma ax^n , donde a es cualquier número real distinto de cero y n es un entero no negativo. Una función polinómica descrita por un monomio, tiene la forma $f(x) = ax^n$. Este tipo de funciones ya fueron estudiadas cuando a = 1, pues coinciden con las funciones de potencia, cuyas propiedades principales se resumen a continuación

Propiedades de la función $f(x) = x^n$ cuando n es par

- lacksquare La gráfica de f es simétrica respecto al eje y.
- ② El dominio de f es el conjunto de todos los números reales, es decir, $(-\infty,\infty)$. El rango es el conjunto de todos los números reales no-negativos, es decir, $[0,\infty)$.
- **3** La gráfica siempre contiene los puntos (-1,1), (0,0) y (1,1).
- La función es decreciente en $(-\infty,0]$ y creciente en $[0,\infty]$.
- Mientras mayor sea el exponente n, más inclinada está la gráfica en los intervalos ($-\infty$, -1] y $[1,\infty)$, y más plana se ve la gráfica cerca del origen.

Propiedades de la función $f(x) = x^n$ cuando n es impar

- lacktriangle La gráfica de f es simétrica con respecto al origen.
- ② El dominio y el rango de f es el conjunto de los números reales, es decir, $(-\infty,\infty)$.
- **3** La gráfica de f siempre contiene los puntos (-1, -1), (0, 0) y (1, 1).
- **1** La función es creciente en todo su dominio $(-\infty, \infty)$.
- Mientras mayor sea el exponente n, más inclinada está la gráfica en los intervalos ($-\infty$, -1] y $[1,\infty)$, y más plana se ve la gráfica cerca del origen.

Propiedades de gráficas de polinomios

De acuerdo a lo que se ha observado de las gráficas de monomios, se pueden deducir tres rasgos o propiedades de las funciones polinómicas que merecen ser enfatizadas.

1. Dominio

El dominio de cualquier función polinómica es el conjunto de los números reales. La gráfica continúa indefinidamente a la derecha del cero y a la izquierda del cero y no tiene ningún hueco o salto. Se dice en este caso que la función es *continua*. Informalmente, se dice que la gráfica "se puede dibujar sin levantar el lápiz del papel".

2. Forma general

La gráfica es una curva suaye, y es de forma ondulada. No tiene vértices agudos ni cambios bruscos. Además, en los extremos se levanta o cae indefinidamente, es decir, la salida "tiende a infinito" (positivo o negativo) cuando la entrada "tiende a infinito" (positivo o negativo).

3. Comportamiento general cuando $x \to \infty$ y cuando $x \to -\infty$

Existen 4 posibles *comportamientos* de la función $f(x) = ax^n$ $(n \ge 1 \text{ y } a \ne 0)$, cuando $x \to \infty$ o $x \to -\infty$. Estos se describen a continuación:

Casos	Entrada	Salida
a > 0 y n par	$x \to \infty$	$f(x) \to \infty$
a > 0 y n pai	$x \to -\infty$	$\int (x) \to \infty$
a > 0 y n impar	$x \to \infty$	$f(x) \to \infty$
	$x \to -\infty$	$f(x) \to -\infty$
a < 0 y n par	$x \to \infty$	$f(x) \to -\infty$
a < 0 y n par	$x \to -\infty$	
a < 0 y n impar	$x \to \infty$	$f(x) \to -\infty$
$\alpha < 0$ y n impar	$x \to -\infty$	$f(x) \to \infty$

La tercera propiedad hace referencia a polinomios de la forma $f(x) = ax^n$, sin embargo, se puede generalizar a cualquier tipo de polinomios y es de mucha utilidad para graficar funciones polinómicas.

Comportamiento en los extremos de funciones polinómicas

La gráfica de la función polinómica

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

se comporta como la gráfica de $y=a_nx^n$ cuando $x\to\infty$ y cuando $x\to-\infty$.

El teorema anterior también se refiere a la concavidad de la gráfica en los extremos. Es decir, cualquier polinomio f(x) de grado n, tiene la misma concavidad en sus extremos que la función determinada por su término líder $a_n x^n$.

Ejemplo

Determine el comportamiento en los extremos de la función, es decir, el comportamiento de la función cuando $x \to \infty$ y cuando $x \to -\infty$.

(a)
$$y = x^3 + 5x^2 + 2$$
 — y . Let $y = f$ be $y = x^3 + 5x^2 + 2$ — y . Let $y = f$ be $y = x^3 + 5x^2 + 2$ — y . Let $y = f$ be $y = x^3 + 5x^2 + 2$ — y . Let $y = f$ be $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — y . Let $y = x^3 + 5x^2 + 2$ — $y = x^3 + 5x^3 + 2$ — $y = x^3 + 2$

(d)
$$y = 2x^3 + \boxed{x^4} + 1$$

