Compito del Corso di Architettura degli Elaboratori

Anno Accademico 2011/2012 Esempio di soluzione esercizi II parte

esercizio rappresentazione numeri

Convertire il numero -30,375 in formato a virgola mobile IEEE 754.

Soluzione

```
-30.375 = (-11110.011)_{binario}
= (-1.1110011)_{binario} \times 2^4
= (-1)1 \times (1 + 0.1110011) \times 2^{(131-127)}
Ricordando che il formato IEEE 754 utilizza il seguente schema di rappresentazione  (-1)segno \times (1 + frazione) \times 2^{(esponente-127)}
Abbiamo:
segno = 1
esponente = 131 = (10000011)_{binario}
frazione = (1110011000000000000000)_{binario}
e quindi:  (-30.375)10 = (1 \ 10000011 \ 1110011000000000000000)_{binario}
```

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 80($0)
ADD $2, $0, $0
LB $1, 800($2)
ADDI $1, $1, 3
ADDI $2, $2, 4
SB $1, 108($2)
SUB $4, $3, $2
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, senza possibilità di data-forwarding, ma con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

	CICLI CLOCK
istruzione	1 2 3 4 5 6 7 8 9 10 11 12 13 14
LB \$3, 80(\$0)	IF ID EX ME WB
ADD \$2, \$0, \$0	IF ID EX ME WB
LB \$1, 800(\$2)	
ADDI \$1, \$1, 3	
ADDI \$2, \$2, 4	
SB \$1, 108(\$2)	
SUB \$4, \$3, \$2	

CICLI CLOCK

istruzio	ne	15 16 17	١
			 I
LB \$3,	100(\$0)	iii	i
ADD \$2,	\$0, \$0	1 1 1	-
LB \$1,	108(\$2)		- 1
ADDI \$1,	\$1, 3	1 1 1	-
ADDI \$2,	\$2, 4	1 1 1	-
SB \$1,	108(\$2)	ME WB	١
SUB \$4,	\$3, \$2	EX ME WB	-

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 30($0)
ADD $2, $0, $0
LB $1, 845($2)
ADDI $1, $1, 4
ADDI $2, $2, 3
SB $1, 82($2)
SUB $4, $3, $2
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

	CICLI CLOCK	commenti
istruzione	1 2 3 4 5 6 7 8 9 10 11 12 13	
LB \$3, 30(\$0)	IF ID EX ME WB	
ADD \$2, \$0, \$0	IF ID EX ME WB	fw out-ALU -> in-ALU
LB \$1, 845(\$2)	IF ID EX ME WB	fw MEM/WB.LMD -> in-ALU
ADDI \$1, \$1, 4		stallo
ADDI \$2, \$2, 3		fw MEM/WB.LMD -> in-ALU
SB \$1, 82(\$2)		stallo
SUB \$4, \$3, \$2		

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 450($0)
ADD $2, $0, $0
LB $1, 558($2)
ADDI $2, $2, 5
SUB $4, $3, $2
ADDI $1, $1, 7
SB $1, 58($2)
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, senza possibilità di data-forwarding, ma con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

	CICLI CLOCK	
istruzione	1 2 3 4 5 6 7 8 9 10 11 12 13 14 :	15 16 17
LB \$3, 450(\$0)	IF ID EX ME WB	
ADD \$2, \$0, \$0	IF ID EX ME WB	
LB \$1, 558(\$2)		
ADDI \$2, \$2, 5		1 1 1
SUB \$4, \$3, \$2		1 1 1
ADDI \$1, \$1, 7		1 1 1
SB \$1, 58(\$2)		EX ME WB

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 450($0)
ADD $2, $0, $0
LB $1, 558($2)
ADDI $2, $2, 5
SUB $4, $3, $2
ADDI $1, $1, 7
SB $1, 58($2)
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

									С	Ι	CI	. :	I		C	L	0 C	K										commenti
istruzion	е	ī	1	ī	2	 I	3	1	4	 	5	Ī	6	1	7	 I	8	Ī	9	ī	10	 I	11	1	12	 I	13	
		1		 		 I		 		 I		1		 I		 I		 I		 		 I		 I		 		-
LB \$3,	450(\$0)	i	IF	i	ID	i	EX	i	ME	i	WB	i		i		i		i		i		i		i		i	i	
ADD \$2,	\$0, \$0	-		1	IF	1	ID	1	EX	1	ME	1	WB	1		-		-		-		-		1		1		fw out-ALU -> in-ALU
LB \$1,	558(\$2)	-		1		1	IF	1	ID	1	EX	1	ME	1	WB	-		-		-		-		1		1	- 1	fw MEM/WB.ALUOut -> in-ALU
ADDI \$2,	\$2,5	-		1		1		1	IF	Ι	ID	1	EX	1	ME	-	WB	-		-		-		1		1		fw out-ALU -> in-ALU
SUB \$4,	\$3, \$2	-		1		1		1		1	IF	1	ID	1	EX	-	ME	-	WB	-		-		1		1		
ADDI \$1,	\$1, 7	-		1		1		1		1		1	IF	1	ID	-	EX	-	ME	-	WB	-		1		1		
SB \$1,	58(\$2)	-		1		1		1		1		1		1	IF	-	ID	1	ID	-	ID	-	EX	1	ME	1	WB	stallo
		_																										-