Package 'statr'

June 7, 2018
Type Package
Title Matt Galloway Personal R Package
Version 0.1.0
Description This is a personal R package. It contains a number of various R functions for organization and convenience purposes.
<pre>URL https://github.com/MGallow/statr</pre>
BugReports https://github.com/MGallow/statr/issues
License GPL (>= 2)
ByteCompile TRUE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Imports dplyr, ggplot2, magrittr, formatR, grid, devtools, ADMMsigma
Suggests testthat, knitr, rmarkdown, pkgdown
SystemRequirements GNU make
VignetteBuilder knitr
R topics documented:
bsearch compound data_gen dense denseQR derivative

2 bsearch

diagnostic	 													 					
dsearch	 																 		
LDA	 																 		
$multiplot \ . \ . \ .$	 													 			 		
predict_QDA	 																 		
\ensuremath{QDA}	 																 		
scatter \dots	 													 			 		
tidy	 																 		
$time it \ \dots \ .$	 													 			 		
tridiag	 													 			 		

10

Bisection search

Description

bsearch

Index

Minimizes a univariate strictly pseudoconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
bsearch(dg, a, b, L = 1e-07, quiet = FALSE)
```

Arguments

dg	the derivative of the function to minimize, where $dg(u, \ldots)$ is the function evaluated at u .
a	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
quiet	should the function stay quiet?
	additional argument specifications for dg

Value

returns the midpoint of the final interval of uncertainty.

compound 3

com	ıodı	und

Generate compound symmetric matrices

Description

Generate a p-dimensional compound symmetric matrix.

Usage

```
compound(p = 8, n = NULL)
```

Arguments

p desired dimension

n option to generate n observations from covariance matrix S

Examples

```
compound(p = 10, n = 100)
```

data_gen

Normal Linear Data Generator

Description

True beta values are generated from p independent draws from N(0, 1/p) distribution. X_{-1} are n independent draws from (p - 1) multivariate normal N(0, Sigma) where Sigma has (j, k) entry theta^abs(j - k).

Y is then generated using the $X = (1, X_{-1})$ and true beta values with an iid error term that follows distribution N(0, var). We can specify the desired number of replications (reps).

Usage

```
data_gen(n, p, theta, var = 0.5, reps = 200)
```

Arguments

n desired sample size
p desired dimension

theta parameter used to generate covariance matrix

var variance of generated y values

reps number of replications

Value

generated design matrix (X), response values (Y)(matrix if reps > 1), true beta values

4 denseQR

dense

Generate dense matrices

Description

Generate p-dimensional matrices so that its inverse is dense.

Usage

```
dense(p = 8, base = 0.9, n = NULL)
```

Arguments

p desired dimension base base multiplier

n option to generate n observations from covariance matrix S

Examples

```
dense(p = 10, base = 0.9)
```

denseQR

Generate dense matrices (via spectral decomposition)

Description

Generate p-dimensional matrices so that its inverse is dense. The matrix will be generated so its first 'num' eigen values are 1000 and the remaining are 1. The orthogonal basis is generated via QR decomposition of

Usage

```
denseQR(p = 8, num = 5, n = NULL)
```

Arguments

p desired dimension

num number of 'large' eigen values. Note num must be less than p
n option to generate n observations from covariance matrix S

```
denseQR(p = 10, num = 10)
```

derivative 5

derivative	Derivative
------------	------------

Description

Takes the approximate derivative for a given function

Usage

```
derivative(g, x, delta = 1e-07)
```

Arguments

g	the derivative of the function to minimize, where dg(u,) is the function evalu-
	ated at u.

x value to evaluate the derivative at

delta defaults to 10e-8

Description

This function simply streamlines the process of creating diagnostic plots with ggplot

Usage

```
diagnostic(data., x., y.)
```

Arguments

```
data. data frame
x. x-axis
y. y-axis
```

Value

```
a residual plot and QQ plot
```

```
diagnostic(iris, Sepal.Length, Sepal.Width)
```

6 LDA

|--|

Description

Minimizes a univariate strictly quasiconvex function over the interval [a, b]. This is augmented code from Adam Rothman's STAT 8054 course (2017).

Usage

```
dsearch(g, a, b, L = 1e-07, eps = (L/2.1), quiet = FALSE)
```

Arguments

g	the function to minimize, where $g(u,)$ is the function evaluated at u .
a	left endpoint of the initial interval of uncertainty.
b	right endpoint of the initial interval of uncertainty.
L	the maximum length of the final interval of uncertainty.
eps	search parameter, must be less than L/2
quiet	should the function stay quiet?
	additional argument specifications for g

Value

returns the midpoint of the final interval of uncertainty.

LDA	Linear Discriminant Analysis	

Description

this function fit the LDA model

Usage

```
LDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

Χ	n x p matrix where the ith row is the values of the predictor for the ith case
У	n entry response vector where the ith entry is the response category in $1,, C$ for the ith case
method	estimation method
lam	optional tuning parameter specification

Value

returns a list with the parameter estimates

multiplot 7

multiplot

Multiple Plot

Description

Taken from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

Arguments

... object can be passed in

plotlist plotlist

cols number of columns in layout

layout a matrix specify the layout. If present, 'cols' is ignored

Value

plots

predict_QDA

Predict QDA

Description

this function classifies test data using a fitted QDA model

Usage

```
predict_QDA(fit, Xtest)
```

Arguments

fit this is a list with elements pi.hats, mu.hats, and Sigma.hats where pi.hats is a list

of C response category sample proportions, mu.hats is a list of C p-dimensional sample mean proportions, Sigma.hats is a list of C p by p Sample covariance

matrices

Xtest this is a matrix with ntest rows and p column, each row is a test case

Value

returns a vector of ntest entries, where the ith entry is the estimated response category (some value in 1, ..., C) for the ith test case.

8 scatter

QDA

Quadratic Discriminant Analysis

Description

this function fit the QDA model

Usage

```
QDA(X, y, method = c("MLE", "diagonal", "ridge"), lam = NULL)
```

Arguments

x n x p matrix where the ith row is the values of the predictor for the ith case

y n entry response vector where the ith entry is the response category in 1, ..., C

for the ith case

method estimation method

lam optional tuning parameter specification

Value

returns a list with the parameter estimates

scatter Scatter

Description

This function simply streamlines the process of creating a scatterplot with ggplot

Usage

```
scatter(data., x., y.)
```

Arguments

data frame
x. x-axis
y. y-axis

Value

a scatterplot

```
scatter(iris, Sepal.Length, Sepal.Width)
```

tidy 9

tidy Tidy

Description

tidys package R code and updates package documentation. Directly uses Yihui Xie's 'formatR' package.

Usage

tidy()

timeit

Time-It

Description

Simple function that prints the computation time of a function

Usage

```
timeit(f)
```

Arguments

f

the function to time

Value

returns the elapsed time

tridiag

Generate tri-diagonal matrices

Description

Generate p-dimensional matrices so that its inverse is tri-diagonal.

Usage

```
tridiag(p = 8, base = 0.7, n = NULL)
```

Arguments

p desired dimensionbase base multiplier

n option to generate n observations from covariance matrix S

```
tridiag(p = 10, base = 0.7)
```

Index

```
bsearch, 2
compound, 3
data_gen, 3
dense, 4
denseQR, 4
{\tt derivative}, {\tt 5}
{\tt diagnostic}, {\tt 5}
dsearch, 6
LDA, 6
{\tt multiplot}, \textcolor{red}{7}
predict_QDA, 7
QDA, 8
scatter, 8
tidy, 9
timeit, 9
\texttt{tridiag}, \textcolor{red}{9}
```