Taxi Fleet Management using Clustering

Kahan Sheth, Nhat Pham, Vignesh Sankar

Dataset

- **1.6M taxi trips** in Chicago (September-November 2023)
- Queried from GBQ, provided by the City of Chicago
- Features: pick-up & drop-off time, location, fare, payment
- Data prep: derive time attributes, outlier removal, meter error flags, area naming

trip_id	start_time	end_time	period_start	duration	distance	pickup_area	dropoff_area	fare	tips	pickup_lat	pickup_lon	dropoff_lat	dropoff_lon	is_error
f8b933d75	2023-10-06 09:30:00	2023-10-06 09:30:00	Morning Rush	639.0	1.41	Near North Side	Near North Side	8.00	0.00	41.909496	-87.630964	41.895033	-87.619711	False
1f5599cc5	2023-10-20 11:30:00	2023-10-20 11:30:00	Midday	509.0	1.66	Near North Side	Loop	7.75	2.00	41.900221	-87.629105	41.880994	-87.632746	False

• Limitations: geospatial data restricted to centroids of neighborhoods, no data for areas outside city boundaries, no data on cash tips

Problem Statement

As head of a taxi company in Chicago, we want to **optimize fleet distribution and taxi performance** to boost efficiency and profitability

Challenge 1: Align fleet deployment with citywide demand

- Cluster on spatial and temporal trip data to identify high-demand hotspots and patterns
- Enable strategic fleet positioning, reduce response times, enhance customer satisfaction

Challenge 2: Evaluate and improve efficiency of the fleet

- Cluster taxis based on performance metrics to distinguish efficiency profiles
- Enable interventions for low performers and adoption of best practices, enhance service quality and optimize costs

EDA

Two dominant hotspots: Downtown and O'Hare airport

Total trip count by pickup area

EDA

Central and Far North regions are busiest during business hours

Higher median fares in early mornings, late nights, and Sundays

Median Number of Trips by Time Period and Region per Day

	·icaiaii i	varriber (or mps b	y minc i	Cilou aii	a ricgion	per buy
Central -	240	1088	1410	1632	1938	1086	506
Far North -	131	536	808	1084	1009	1128	514
Far South -	31	53	73	64	48	31	20
Far Southwest -	10	20	32	24	18	12	6
North -	68	200	176	168	164	108	99
Northwest -	8	16	29	28	15	10	7
South -	34	118	172	174	126	61	36
Southwest -	14	102	164	168	162	134	134
West & Near West -	70	524	370	322	359	198	158
€3	arly Morning	oming Rush	Midday	Afternoon	vening Rush	Evening	Night

Median Fare per Trip by Hour and Day of Week

- 1750 - 1500 - 1250

- 1000 - 750

- 500

- 250

- 40 - 35

- 30 - 25

- 20

Trip Pattern Clustering

Key Features

- Pickup and dropoff coordinates: capture the exact locations of service usage,
 crucial for understanding spatial patterns
- **Period Start:** provides insights into the temporal patterns of trips
- **Is Weekend:** distinguishes between weekdays and weekends, helping to understand variations in demand
- **Trip Total:** helps analyze fare-based patterns, which can be indicative of trip length, route popularity, or time of travel.

Data Processing and Model Selection

- Geospatial data points were not scaled in order to maintain their original representation.
- Categorical features were one hot encoded
- Gaussian Mixture Model (GMM) and KMeans were chosen over HDBSCAN and hierarchical clustering due to their superior computational efficiency.
- Baseline model: K-means with k=3. However, this model resulted in indistinct clusters, unbalanced clusters.

Gaussian mixture model (GMM)

- Optimal k = 5 (BIC & testing), tested different initializations
- Noticeable variation of fare patterns can be seen across different clusters

Cluster 0: Central City Routes

- Exclusive downtown pickups and dropoffs
- Peak activity during office hours
- Uniformly lower fare => Short trips

- Offer subscription services
- Optimize taxi availability
- Targeted advertising, special offers, and loyalty programs

Cluster 1: Off-peak Urban and Airport Trips

- City-wide coverage, urban routes and airport commutes
- Off-peak hours: early morning & late night
- Wide fare range, high median => diverse trip lengths

- Collaborate with businesses such as hotels, airlines, and night venues.
- Potential for dynamic pricing.

Cluster 2: Non-commute Urban Travel Cluster 3: Mixed Airport and Urban Trips

- Common routes to and from downtown, short trips (low fare)
- Midday and evening hours

- Likely non-commute travel (leisure or errands)
- Targeted ads for urban activities (shopping/ leisure outings)

- Mixed distance trips
 - Common routes between **downtown** & **airports** (O'Hare, Garfield Ridge)
- Afternoon and rush hours

- Explore Midway airport as an underserved market
- Offer competitive pricing for airport trips

Cluster 4: O'hare to City Trips

- Exclusive Ohare pickups to mainly downtown
- Higher fare => Longer trips
- High demand in afternoon and evening rush hour

- Ensure availability during peak times
- Offer competitive flat rates to compete with ride-sharing services

Taxi Performance Clustering

Data aggregation

- Aggregated trip data into profiles for 2,864 taxis
- Derived taxi attributes
 - Performance: (median) Idle Time, Daily Use Rate, Trips per Day, Average Speed
 - Profitability: (median) Daily Revenue, Tips Proportion
 - Distribution of trips by pickup area, time of day, and payment type

taxi_id	idle_time	daily_use_rate	trips_per_day	daily_payment	avg_speed	pay_cash	pay_mobile	morning_rush	midday	afternoon	pickup_north	pickup_central	ca_ohare
24da0b	4500.0	0.270	4.0	186.5	21.224	0.149	0.194	0.050	0.139	0.154	0.035	0.299	0.592
c505f0a	2700.0	0.295	4.0	200.7	17.255	0.357	0.200	0.139	0.164	0.197	0.114	0.410	0.395
96a6dd	1800.0	0.348	2.5	68.7	10.595	0.399	0.246	0.162	0.105	0.162	0.026	0.579	0.123

EDA

Baseline model

- RobustScaler() for feature scaling due to outliers
- GMM with k = 4 based on silhouette score, BIC score, and testing
- Challenges: imbalanced clusters, feature with little variance

Final model

Removed outliers, StandardScaler() for feature scaling

Final model

- Removed outliers, StandardScaler() for feature scaling
- Assess clustering methods
 - Test different parameters and initializations
 - o Imbalance in cluster sizes with KMeans, HDBSCAN, hierarchical
 - GMM shows the most distinct clusters, optimal k = 4

Cluster 0 : The High Performers

- Top earner, high efficiency, steady demand
- Broad coverage beyond typical hotspots
- High usage of non-standard payment methods

- Market wide coverage to attract diverse riders
- Explore 'other' payments for new revenue channels
- Adopt best practices to increase efficiency in other fleet

Cluster 1: Urban Cabs

- Short trips but slower speeds, steady service demand in downtown
- Active during rush/ business hours

- **Better route optimization** to avoid congested areas
- Offer perks for trips during less busy hours
- **Expand coverage** to other high-demand city areas

Cluster 2 : Airport Cabs

- Primarily airport trips with peak evening activity, explains longer routes and fast speeds
- Low trip count, high idle time suggest downtime issues
- Preference for credit card payments

- Adjust taxi scheduling to match flight arrival times to target peak airport demand
- Add courier services during downtime
- Partner with hotels/ airlines for airport pick-ups

Cluster 3 : Low Performers

- Balance airport and city trips but fail to optimize either
- => high idle time and low earnings
- Effective service but poor demand capture
- => infrequent trips

W

- **Demand analysis:** understand reasons for low trip counts
- **Adopt high-performance practices** to reduce idle times, especially at O'Hare, while streamlining city operations

Thank You!