Milestone Review Flysheet 2017-2018

Institution Oregon State University

Milestone	CDR
-----------	-----

Vehicle Properties	
Total Length (in)	118
Diameter (in)	5.3
Gross Lift Off Weigh (lb.)	37.5 lb
Airframe Material(s)	Carbon Fiber/Fiber Glass
Fin Material and Thickness (in)	Carbon Fiber, .25"
Coupler Length/Shoulder Length(s) (in)	8" total, 5.3" extended

Stability Analysis		
Center of Pressure (in from nose)	75.18"	
Center of Gravity (in from nose)	61.6"	
Static Stability Margin (on pad)	2.56	
Static Stability Margin (at rail exit)	2.62	
Thrust-to-Weight Ratio	6.05	
Rail Size/Type and Length (in)	1515 / 12ft	
Rail Exit Velocity (ft/s)	65 ft/s	

Recovery System Properties				
Drogue Parachute				
М	anufacturer/Mo	del	Top Flight X-Type	
Size	e/Diameter (in o	r ft)	1.5 ft, 2.0 ft	
Altitu	ıde at Deployme	nt (ft)	5680 ft AGL (apogee)	
Veloci	ty at Deploymen	t (ft/s)	0 f	t/s
Ter	minal Velocity (f	t/s)	76.9 ft/s, 80.4 ft/s	
Recovery Harness Material		Tubular Nylon		
Recovery Harness Size/Thickness (in)		1 in		
Recovery Harness Length (ft)		23.3 ft, 20.8 ft		
Welded Eyebolts; Sewn Loops in Bridle; 30 Harness/Airframe Interfaces swivels between bridle and shrouds attac on butterfly loop		rouds attached		
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- lbs)	403	1,376	1,495	N/A

Recovery Electronics		
Altimeter(s)/Timer(s) (Make/Model)	Missile Works RRC3; Stratologger CF Jolly Logic Chute Release	
Redundancy Plan and Backup Deployment Settings	2 Altimeters for each section; separate batteries for each altimeter; separate charges for each altimeter; 2 Chute Releases per main	
Pad Stay Time (Launch Configuration)	Altimeters: 8+ hours Tracking Unit: 3 hours	

Motor Properties		
Motor Brand/Designation	Aerotech L850W	
Max/Average Thrust (lb.)	266.4 lb./ 176.8 lb.	
Total Impulse (lbf-s)	830.7	
Mass Before/After Burn (lb.)	8.10 lb / 3.55 lb	
Liftoff Thrust (lb.)	227.0 lb	
Motor Retention Method	Threaded Retainer	

Ascent Analysis		
Maximum Velocity (ft/s)	576 ft/s	
Maximum Mach Number	0.52	
Maximum Acceleration (ft/s^2)	202	
Predicted Apogee (From Sim.) (ft)	5199	

Recovery System Properties				
	Main Parachute			
Ma	nufacturer/Mo	del	Fruity Chutes Iris	
Size	/Diameter (in o	rft)	7.0 ft, 8.0 ft	
Altitu	de at Deployme	ent (ft)	800 ft. AGL	
Velocit	y at Deploymer	nt (ft/s)	76.9 ft/s, 80.4 ft/s	
Terminal Velocity (ft/s)		14.5 ft/s, 14.9 ft/s		
Recovery Harness Material		Tubular Nylon		
Recovery Harness Size/Thickness (in)		1 in		
Recovery Harness Length (ft)		gth (ft)	23.3 ft, 20.8 ft	
Welded Eyebolts; Sewn Loops in Brid 3000# swivels between bridle and shro attached on butterfly loop			e and shrouds	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft- lbs)	13.66	46.57	49.38	N/A

Recovery Electronics			
Rocket Locators (Make/Model)		X-Bee Pro 900HP; Sparkfun Venus GPS	
Transmitting Frequencies (all - vehicle and payload)		902-928 MHz	
Ejection System Ener	getics	Black Powder	
Energetics Mass - Drogue	Primary	1.56 g	
Chute (grams)	Backup	2.64 g	
Energetics Mass - Main Chute	Primary	N/A	
(grams)	Backup	N/A	
Energetics Masses - Other	Primary	6.0 g	
(grams) - If Applicable	Backup	100g	

Milestone Review Flysheet 2017-2018

Institution	Oregon State University	Milestone	CDR

	Payload
	Overview
Payload 1 (official payload)	The payload will be a deployable, autonomous rover. A servo-actuated solar array will be mounted on the top surface of the rover. The rover will be housed in the payload bay of the launch vehicle, fully enclosed, during launch and descent. After landing the rover will exit the open end of the payload bay. The rover will drive at least five feet away from all parts of the airframe, navigating away from the launch vehicle and around other obstacles by using data from its sensors. Once the rover has reached a sufficiently clear location, the solar array will open, completing the mission.
	Overview
Payload 2 (non-scored payload)	N/A

	Test Plans, Status, and Results
Ejection Charge Tests	Full-Scale Test Plan: After final launch vehicle assembly with bulkheads and recovery system, a remote ignition system will be used to ensure proper seperation and parachute ejection with selected amount of black powder Status: Testing will occur between 1/16/18 and 2/8/18 Results: N/A
	Sub-Scale Test Plan: After final launch vehicle assembly with bulkheads and recovery system, a remote ignition system will be used to ensure proper seperation and parachute ejection with selected amount of black powder Status: Completed - 1/6/2017 Results: Successful - complete seperation
Sub-scale Test Flights	Test Plan: Construct sub-scale rocket with same stability margin as final launch vehicle; sub-scale will contain the same ejection controllers as the final assembly Status: Complete - 1/6/2017 Results: Successful launch, rocket safely recovered
Full-scale Test Flights	Test Plan: The full-scale rocket will representive of final design; final recovery and ejection system will be onboard full-scale planned for 2/17/17. The final rover payload will be onboard a second full-scacle launch planned for 3/3/17 Status: Preliminary design completed, will be amended as rocket deisgn changes Results: N/A

Milestone Review Flysheet 2017-2018

Institution	Oregon State University		Milestone	CDR
Additional Comments				
		None		