Isometric Operators

Definition: Isometric

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. To say that T is an *isometric* operator means $\forall \vec{x} \in H$:

$$||T\vec{x}|| = ||\vec{x}||$$

An isometric operator preserves the norm.

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$:

$$T$$
 is isometric $\iff T^*T = I$

Proof

Assume $\vec{x} \in H$.

$$||T\vec{x}|| = ||\vec{x}||$$

 \implies Assume T is isometric.

$$\begin{aligned} & \left\| T\vec{x} \right\|^2 &= & \left\| \vec{x} \right\|^2 \\ & \left\langle T\vec{x}, T\vec{x} \right\rangle &= & \left\langle \vec{x}, \vec{x} \right\rangle \\ & \left\langle T^*T\vec{x}, \vec{x} \right\rangle &= & \left\langle \vec{x}, \vec{x} \right\rangle \end{aligned}$$

$$T^*T = I$$

 \iff Assume $T^*T = I$.

$$||T\vec{x}||^2 = \langle T\vec{x}, T\vec{x} \rangle$$

$$= \langle T^*T\vec{x}, \vec{x} \rangle$$

$$= \langle I\vec{x}, \vec{x} \rangle$$

$$= \langle \vec{x}, \vec{x} \rangle$$

$$= ||\vec{x}||^2$$

$$||T\vec{x}|| = ||\vec{x}||$$

Therefore T is isometric.

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be isometric. $\forall \vec{x}, \vec{y} \in H$:

$$\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$$

In other words, an isometric operator preserves the inner product.

Proof

Assume $\vec{x}, \vec{x} \in H$.

$$\langle T\vec{x}, T\vec{y} \rangle = \langle T^*T\vec{x}, \vec{y} \rangle = \langle I\vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$$

Corollary

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be isometric. $\forall \vec{x}, \vec{y} \in H$:

$$\vec{x} \perp \vec{y} \iff T\vec{x} \perp T\vec{y}$$

Proof

Assume $\vec{x}, \vec{y} \in H$.

$$\vec{x} \perp \vec{y} \iff \langle \vec{x}, \vec{y} \rangle = 0 \iff \langle T\vec{x}, T\vec{y} \rangle = 0 \iff T\vec{x} \perp T\vec{y}$$

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ be isometric:

T is a Hilbert space isomorphism between H and $\mathcal{R}(T)$.

Proof

$$T\vec{x} = 0 \iff ||T\vec{x}|| = 0 \iff ||\vec{x}|| = 0 \iff \vec{x} = \vec{0}$$

Thus, the kernel is trivial and T is one-to-one.

By definition, T is onto $\mathcal{R}(T)$

Therefore, T is bijective.

Also by definition: $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$.

Therefore T is a Hilbert space isomorphism between H and $\mathcal{R}(T)$.

Note that although isometric ${\cal T}$ is necessarily one-to-one, it need not be onto.

Example

Let
$$H = \ell^2$$
 and $T(z_1, z_2, z_3, ...) = (0, z_1, z_2, z_3, ...)$.

T is isometric; however, it is not onto.