Föreläsning 2 - Variabelselektion och regularisering

Josef Wilzen

2021-08-24

Outline

Modelval

2 Generaliserade linjära modeller

Modelval för linjär regression

Bias, varians, brus

$$y = f(x) + \varepsilon$$
 $E[\varepsilon] = 0$ $V[\varepsilon] = \sigma^2$ $\hat{y} = \hat{f}(x_{test})$

Förväntad test MSE:

$$E\left[y_{test} - \hat{f}\left(x_{test}\right)\right]^{2} = V\left[\varepsilon\right] + V\left[\hat{f}\left(x_{test}\right)\right] + Bias\left[\hat{f}\left(x_{test}\right)\right]^{2}$$

- Brusvarians $V[\varepsilon]$: irreducibel brus
- Modellens varians $V\left[\hat{f}\left(x_{test}\right)\right]$: Hur mycket kommer \hat{f} att ändras när vi byter dataset
- Modellens skewhet $Bias\left[\hat{f}\left(x_{test}\right)\right]$: Sytematisk skewhet eller modelleringsfel i modellen

Bias, varians, brus

Bias-variance-trade-off

- Vi fill ha
 - Lågt bias
 - Låg varians

Modellval

- Vi vill ha bra generalisering hos modellen
- Komplexa modeller överanpassar lätt
- "Komplexitet" betyder olika saker f\u00f6r olika modeller
 - Linjära modeller: fler variabler, interaktioner, transformationer av variabler
 - Neurala nätverk: bred och djup
 - Trädmodeller: djup

Regularisering

- Metoder för att undvika överanpassning
 - Hindra modellerna att bli för komplexa
 - Detta ger f\u00f6rhoppningsvis b\u00e4ttre generliseringsfel
 - Mycket viktigt tema inom maskininlärning
 - Betyder olika saker f
 ör olika metoder

Regression och klassificering

- Regression: y är kontinuerlig, bruset ε :
 - Antas ofta vara normalfördelat
 - ► Alt: t, gamma
- klassificering: y är kategorisk med 2 eller fler utfall
 - ► Binär: logistik/probit regression
 - ► Fler klasser: multinomial logistik/probit regression
 - Fler metoder senare i kursen

Förväxlingsmatris

		Predikterad klass	
		Class = 1	Class = 0
Sann klass	Class = 1	f_{11}	f_{10}
	Class = 0	f_{01}	f_{00}

• Precision:

$$P = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Felkvot (error rate):

$$E = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Specificitet och sensitivitet

		Predikterad klass	
		Class = 1	Class = 0
Sann klass	Class = 1	f_{11}	f_{10}
	Class = 0	f_{01}	f_{00}

Sensitivitet:

$$=\frac{f_{11}}{f_{11}+f_{01}}$$

• Specificitet:

$$=\frac{f_{00}}{f_{10}+f_{00}}$$

• Dessa mått är klasspecifika. Dessa formler betecknar klass 1.

Specificitet och sensitivitet

 By FeanDoe. Modified version from Walber's Precision and Recall https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

Generaliserade linjära modeller

Generaliserade linjära modeller (GLM):

- $y_1, y_2, \dots y_n$: oberoende från sannolikhetsfördelning från exponentialfamiljen
- Linjär prediktor: $X\beta$
- ullet Länkfunktion som kopplar den linjära prediktorn till medelvärdet μ

$$g(\mu) = X\beta$$

Generaliserade linjära modeller

- Generaliserar linjär regression till andra reponsvariabler
 - Andra likelihoodfunktioner
- Reponsvariabler
 - Kontinuerlig: normal
 - Binär: Logistisk regression
 - Nomiell: Multinomiell logistisk regession
 - Frekvensdata: Poission regression

Linjär regression

- Likelihood: Normal
- Länkfunktion: identitetsfunktionen
- Skattas med genom att minimera:

$$RSS = \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{i,j} \right)^{2}$$

Logistisk regression

- Anta binär y. p = P(y = 1)
- Odds: $0 \le \frac{p}{1-p} < \infty$, Log odds = logit: $-\infty < log\left(\frac{p}{1-p}\right) < \infty$
- Logistisk regression antar att log oddset för P(y=1) beror linjärt på de förklarande variablerna

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \Leftrightarrow$$

$$p = \frac{1}{1 + \exp\left(-\left(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p\right)\right)}$$

$$= \frac{\exp\left(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p\right)}{1 + \exp\left(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p\right)}$$

Logistisk regression

Logistiska funktionen:

$$p = \frac{1}{1 + exp\left(-\left(\beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p\right)\right)}$$

- Prediktion: Om $P(y=1|X_{test},\beta) > 0.5 \rightarrow \text{klass } 1$
- ullet Skattas med maximum likelihood (ML), hitta eta som maximerar:

$$I(\beta) = \prod_{i:y_i=1} P(y_i = 1|X_i, \beta) \prod_{i':y_{i'}=0} (1 - P(y_{i'} = 1|X_{i'}, \beta))$$

Multinomiell regression

- Anta att y kan anta K olika värden
- Multinomiell logistisk regression använder länkfunktionen:

$$P(y_i = k) = \frac{exp(\beta_{0,k} + \beta_k^T x)}{\sum_{l=1}^{K} exp(\beta_{0,l} + \beta_l^T x)}$$

- Kallas för softmaxfunktionen
- Notera att vi har: $\beta_{0,I} + \beta_I^T x$ för varje klass *I*. β är en matris med storlek $p \times K$
- Skattas med ML.

Modelval för linjär regression

Utgå från: y kontiuerlig med normal likelihood Vi har ett antal förklarande variabler $X = (x_1, \dots x_p)$. Vill vill hitta den delmängd som ger minst generaliseringsfel på testdata. Två alternativ:

- Välj ut en delmängd av variablerna och skatta med OLS
 - Best subset, Forward selection, Backward selection
- Behåll alla variablerna med sätt begränsningar på variablernas parameterrum (support) \rightarrow det ger mindre flexibilitet \rightarrow minskar risken för överanpassning
 - Ridge, lasso

Best subset

Notera det finns 2^p modeller att undersöka! Ex: $2^{20} = 1048576$

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Forward selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie. Robert Tibshirani

Backward selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Utväderingsmått

- Indirekt skatta testfelet
 - Utgår från träningsmängden
 - ► Försöker minska den bias som uppstår när vi bara använder oss av träningsmängden och inte "all data"
- Direkt skatta testfelet
 - valideringsdata
 - korsvalidering

Indirekt skatta testfelet

$$C_p = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right)$$

 $\hat{\sigma}^2$: skattas ofta från den fulla modellen

Straffar med: $2d\hat{\sigma}^2$

Litet $C_p \rightarrow$ litet testfel

adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

Stort adjusted $R^2 \rightarrow$ litet testfel

Indirekt skatta testfelet

AIC,BIC och HQIC: based on ML skattning av modeller. Låt $log\left(\hat{L}\right)$ vara värdet på log-likelihoodfunktionen för optimla parametervärden.

$$AIC = 2k - 2log(\hat{L})$$

$$BIC = k \cdot log(n) - 2log(\hat{L})$$

$$HQIC = k \cdot log(log(n)) - 2log(\hat{L})$$

Låga värden \rightarrow litet testfel

Indirekt skatta testfelet

För linjär regression

$$AIC = \frac{1}{n\hat{\sigma}^{2}} \left(RSS + 2d\hat{\sigma}^{2} \right)$$

$$BIC = \frac{1}{n\hat{\sigma}^{2}} \left(RSS + \log(n) d\hat{\sigma}^{2} \right)$$

$$HQIC = \frac{1}{n\hat{\sigma}^{2}} \left(RSS + \log(\log(n)) d\hat{\sigma}^{2} \right)$$

Linjär regression: $C_p \propto AIC$

Hur hög kostnad för fler parametrar?

•
$$n = 8$$

• n = 2000

 BIC och HQIC väljer mindre antal parameterar generellt. För stora datamängder så tenderar AIC att välja för stora modeller.

Shrinkage

Shrinkage (krympning)

- Hindra parameterarna från att bli "för stora"
 - Sätta begränsningar på parameterrummet
 - Ändra deras support (värdemängd)

Vanligaste metoderna:

- Ridge: I²-norm (Euclidean norm)
- LASSO: I1-norm
- Standardisera era förklarande variabler först!

Ridge regession

Vanlig regression minimerar konstandsfunktionen

$$f(\beta) = RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2$$

• Ridge= OLS + I^2 -norm på β :

$$\underset{\beta}{\operatorname{arg \, min} \, f}\left(\beta\right) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j}\right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \qquad \lambda \geq 0$$

- λ är en hyperparameter.
- $\lambda \sum_{j=1}^{p} \beta_{j}^{2} = \text{shrinkage penalty.}$ Absolut stora värden på β "kostar mer". Hur mycket mer beror på λ (tänk prissättningen)
- Vad händer när $\lambda \to 0$? eller $\lambda \to \infty$?
- ullet Notera att eta_0 inte påverkas av konstandsfunktionen

Ridge regession

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$.

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Ridge regession

- $\lambda \to 0$, $\hat{eta}_{ridge} \to \hat{eta}_{OLS}$
- ullet $\lambda o \infty$, $\hat{eta}_{ridge} o 0$
- $\sum_{i=1}^{p} \beta_i^2 = ||\beta||_2^2$: kvadrerad l^2 -norm
- $\sum_{i=1}^{p} \beta_{i}^{2}$: definerar en hypersfär i det p-dimensionella rummet.
 - p = 2: cirkel, p = 3: sfär
- Krymper: "alla lika mycket"
 - två korrelerade variabler: tar med båda, men krymper effektstorleken

Lasso regression

Vanlig regression minimerar konstandsfunktionen

$$f(\beta) = RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2$$

• lasso= OLS + I^1 -norm på β :

$$arg \min_{eta} f(eta) = \sum_{i=1}^{n} \left(y_i - eta_0 - \sum_{j=1}^{p} eta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |eta_j| \qquad \lambda \geq 0$$

- λ är en hyperparameter.
- $\lambda \sum_{j=1}^p \beta_j^2 = \text{shrinkage penalty}$. Absolut stora värden på β "kostar mer".
- lasso = least absolute shrinkage and selection operator

Lasso regression

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\|\hat{\beta}_{\lambda}^{L}\|_{1}/\|\hat{\beta}\|_{1}$.

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie. Robert Tibshirani

Lasso regression

- $\lambda o 0$, $\hat{eta}_{lasso} o \hat{eta}_{OLS}$
- $\lambda \to \infty$, $\hat{eta}_{lasso} \to 0$
- $\sum_{j=1}^{p} |\beta_j| = ||\beta||_1$: I^1 -norm
- $\sum_{i=1}^{p} |\beta_i|$: definerar en polytop i det p-dimensionella rummet.
 - ▶ p = 2: diamant, p = 3: polyeder
- ullet Lasso: kan tvinga vissa eta av bli 0 o variabelselektion, glesa (sparse) lösningar
 - ightharpoonup ex: Låt p=100, Då kan lasso göra att endast 20 eta-koefficienter är eq 0
- Två korrelerade variabler:
 - lacktriangle "tar en och kastar bort den andra" ightarrow kan ge hög varians för testdata

Ridge och lasso

Kan formuleras om:

- Minimmera RSS med vilkoret
 - ▶ Ridge: $\sum_{i=1}^{p} \beta_i^2 \le s$
 - ▶ Lasso: $\sum_{j=1}^{p} |\beta_j| \le s$
 - Varje λ motsvarar ett s

Ridge och lasso

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

Från "An Introduction to Statistical Learning with Applications in R" av Gareth James, Daniela Witten, Trevor Hastie. Robert Tibshirani

Rigde vs lasso

- Båda skattas enkelt med glmnet() eller cv.glmnet().
- Vilken som är "bäst" beror på kontexten
- Ridge passar för när y beror på de flesta förklarande variablerna
 - Många variabler och ungefär samma effektstorlek
- Lasso passar för när y beror på de ett fåtal förklarande variabler
 - Fåtal variabler med hög effektstorlek, resten nära 0
- Lasso kan ofta vara lättre att tolka
- Lättre att göra inferens för parametrarna för ridge
- Ofta får frågan avgöras empiriskt för specifika dataset

Elasticnet regression

- Elasticnet kombinerar ridge och lasso
- ullet Två hyperparametrar: λ och lpha

$$f(\beta) = RSS + \lambda \left[(1 - \alpha) \sum_{j=1}^{p} \beta_j^2 + \alpha \sum_{j=1}^{p} |\beta_j| \right] \qquad \lambda \ge 0, 0 \le \alpha \le 1$$

- λ: generella styrkan på kostnaden
- α : relativa vikten på lasso och ridge, $\alpha=1$ ger lasso.

Elasticnet regression

- ullet Kan tvinga vissa eta av bli 0 o variabelselektion, dock inte lika mycket som lasso
- Klarar av korrelerade/grupper av variabler bättre än lasso
- Nackdel: två hyperparameterar att specificera

Regularisering

- Överanpassning är stort problem inom maskininlärning
- Regularisering:
 - ▶ Förekommer mycket ofta
 - Kan se olika ut beroende på modellklassen
- Ridge och Lasso
 - $\sum_{i=1}^p \beta_i^2 = ||\beta||_2^2$: kvadrerad l^2 -norm
 - $\sum_{i=1}^{p} |\beta_{i}| = ||\beta||_{1}$: I^{1} -norm
 - Förekommer i många olika varianter

Avslut

- Frågor? Kommentarer?
- Kurshemsidan
- Labben