

HAEE: Low-Resource Event Detection with Hierarchy-Aware Event Graph Embeddings

Guoxuan Ding^{1,2}, Xiaobo Guo^{1(□₀)}, Gaode Chen^{1,2}, Lei Wang¹, and Daren Zha¹

¹ Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

² School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

I

2

- Background
- HAEE Model
- Experiments
- Conclusion

Background

- 2 HAEE Model
- 3 Experiments
- 4 Conclusion

➤ More abstract connections:

Event relations connect individual events together to form a logical group of events.

Maven-ere: A unified large-scale dataset for event coreference, temporal, causal, and subevent relation extraction. (2022)

Different Direction in Event Detection

LLM: Events are connected and dynamic

Document

[E1] The Cherry Valley <u>massacre</u> was an attack by ... [E2] During the raid, the Seneca in particular <u>targeted</u> noncombatants, and ... [E3] The Seneca <u>were angered</u> by accusations that they had committed atrocities at the Battle of Wyoming ...

Events with relations

Event identification

The Cherry Valley massacre

Top down

Sentence

The Cherry Valley <u>massacre</u> was an attack by British and Iroquois forces on a fort and ...

Trigger identification

massacre

Event classification

Conflict.Killing

Bottom up

missing event relations?

➤ Before LLM: Events are isolated and static

- 1 Background
- 2 HAEE Model
- 3 Experiments
- 4 Conclusion

Embedding with Rotation and Modulus

> Polar coordinates consisting of rotation and modulus

Embeddings are divided into **Rotaion** part and **Modulus** part

Rotation part presents cause relation and Modulus part presents subevent relation

The Calculation of Rotation and Modulus

- > Rotation Part rotation-based approach
 - \triangleright The event pairs are set at **opposite positions** on the circle: $(v v_c) \mod 2\pi = \pi$.
 - The distance between events: $D(e_h, e_t) = ||sin((\mathbf{v}_h \mathbf{v}_t + \pi)/2)||_1$
 - The rotation loss: $\mathcal{L}_r = \sum_{e_c \in \mathcal{E}_c} -log\sigma(\lambda D(e, e_c))$

- > Modulus Part contrastive learning
 - The distance **between child events** is as close as possible compare to the distance **from child events to their parents**
 - \triangleright The distance between events: $D(e_h, e_t) = \| \boldsymbol{v}_h \boldsymbol{v}_t \|_2$
 - The modulus loss: $\mathcal{L}_m = \sum_{(e,e_i)\in\mathcal{P}_d} \sum_{(e_i,e_j)\in\mathcal{P}_s} max(D(e,e_i) D(e_i,e_j) + \gamma, 0).$

Embedding Convolution

> Enhance the representation of events

further and hierarchical relation knowledge between events can be learned

Event Detection

> Event probability:
$$P(y = e_k) = \frac{exp(-||\boldsymbol{X}_i - \boldsymbol{v}_k||)}{\sum_{j=1}^{|\mathcal{E}|} exp(-||\boldsymbol{X}_i - \boldsymbol{v}_j||)}$$

Fivent detection loss: $\mathcal{L}_e = -\sum_{k=1}^{|\mathcal{E}|} ylogP(y = e_q)$

> Uncertainty to Weigh Losses multi-task optimization strategy (UWL)

Combine three loss function

$$\mathcal{L} = \frac{1}{2\sigma_1^2} \mathcal{L}_e + \frac{1}{2\sigma_2^2} \mathcal{L}_r + \frac{1}{2\sigma_3^2} \mathcal{L}_m + \log\sigma_1\sigma_2\sigma_3$$

Event loss

Modulus loss

- 1 Background
- 2 HAEE Model
- 3 Experiments
- 4 Conclusion

> Datasets

➤ OntoEvent

> MAVEN-Few

Dataset	#Doc	#Train	#Valid	#Test	#Class	#Caus-Rel	#Sub-Rel
OntoEvent [5]	4115	48436	6055	6055	100	9	-
MAVEN-Few	-	4416	552	551	71	277	83

-Selected from MAVEN datasets according to event types in OntoEvent.

> Baselines

- > Event Classification: AD-DMBERT, OneIE, PathLM, OntoED
- ➤ Low-resource event classification: OntoED

Model	Precision	Recall	F1 Score
$AD-DMBERT^{\dagger}$ [25]	0.6735	0.7346	0.7189
$OneIE^{\dagger}$ [15]	0.7194	0.6852	0.7177
PathLM † [13]	0.7351	0.6874	0.7283
\rightarrow OntoED [‡] [5]	0.7756	0.7844	0.78
HAEE	0.8882	0.8868	0.8875

Use event relations as ontology learning

Model	OntoEvent				MAVEN-Few			
	Full	50%	25%	10%	Full	50%	25%	10%
OntoED [5]	0.78	0.7154	0.6198	0.4989	0.7725	0.6034	0.5195	0.2534
HAEE	0.8875	0.8747	0.8634	0.831	0.8722	0.8577	0.8165	0.5993

Hierarchy of Rotation

Table 4: The average rotation distance from each event to different groups. (p.g. positive group, b.g. blank control group, n.g.negative group. The bold numbers represent groups with a greater distance.)

Positive Events	Distance			Negative Events	Distance		
1 OSITIVE LIVERUS	p.g	b.g	n.g	riegative Events	p.g	b.g	n.g
come_together	0.45	0.55	0.59	destroying	0.34	0.23	0.24
elect	0.34	0.42	0.47	kidnapping	0.30	0.22	0.23
committing_crime	0.19	0.21	0.28	violence	0.28	0.21	0.22
employment	0.19	0.19	0.23	theft	0.45	0.32	0.33
award	0.27	0.20	0.21	robbery	0.18	0.19	0.24
arriving	0.31	0.38	0.44	hostile_encounter	0.18	0.20	0.26
contact	0.51	0.36	0.35	killing	0.23	0.29	0.37
recovering	0.21	0.19	0.22	terrorism	0.28	0.37	0.45
commerce_sell	0.28	0.34	0.40	conquering	0.26	0.20	0.22
exchange	0.19	0.20	0.26	arrest	0.19	0.19	0.23
marry	0.37	0.46	0.51	divorce	0.18	0.19	0.25

The clustering effect of events is more significant

Tend to away from negative events

Hierarchy of Modulus

100 dimension. (b) 500 dimension.

- 1 Background
- 2 HAEE Model
- 3 Experiments
- Conclusion

Conclusion

> Summary

- ➤ We propose a new hierarchy-aware model HAEE, allowing knowledge to flow from high-resource events into the low-resource events.
- Experimental results demonstrate that HAEE model can achieve better performance in low-resource ED task.

> Outlook

- Exploring better graph embedding methods to introduce more event relations into event graphs
- ➤ Applying event relations to other fields such as sentiment analysis and event reasoning.

Thank You

Speaker: Guoxuan DING

Contact: dingguoxuan@iie.ac.cn

Project: https://github.com/cdmelon/HAEE

