CENG 216 – Numerical Computation Midterm Exam

2019–20 Spring Semester May 12, 2020

- This exam contains 4 questions on 2 pages.
- \bullet The exam duration is $\bf 60$ minutes.
- Use your **own handriting**, no typesetting is allowed.
- Make sure to write your name/student ID on each page you submit.
- \bullet Make sure to \mathbf{sign} each page.
- Good Luck!

Question	Q1	Q2	Q3	Q4	Total
Points	25	25	25	25	100
Grade					

CENG 216 Midterm 2019–20 Spring

Q1 (25 points) Floating-Point Representation

IEEE double-precision floating numbers are 64 bits each, 1 bit for the sign bit, 11 bits for the exponent, and 52 bits for the mantissa.

Take the last four digits of your Student Id, interpret it as a number X. For example, if your student ID is 123456789, then X = 6789. Set $Y = \frac{X}{100} + 0.003$, Y would be 67.893 in our example.

- i. Write down the value of Y that you have obtained in decimal.
- ii. Write down Y as a binary number.
- iii. Write down the 52 bits of the significand/mantissa part of Y' = float(Y) in binary, the possibly rounded value stored in your computer as an IEEE double precision number using the round to nearest even rule.

Q2 (25 points) Fixed-Point Iterations

We want to find the roots of the parabola $P(x) = (x - r_1)(x - r_2)$ using fixed point iterations. We will do so by converting P(x) = 0 into f(x) = x.

- i. Write down the equation for f(x).
- ii. Write down the formulas for the first derivative of f(x) evaluated at the roots r_1 and r_2 .
- iii. Write down the condition on the roots so that the fixed point iterations will converge towards r_1 but it will diverge from r_2 .

Q3 (25 points) Linear Systems of Equations

Assume that your Student ID has the digits "ABCDEFGHI" (If your ID is 123456789, then A = 1, B = 2, E = 5, and I = 9). You are given the following linear system of equations

$$\begin{bmatrix} A & D & G \\ B & (E+0.5) & H \\ C & F & I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \\ 18 \end{bmatrix}$$

Note the (0.5 + E) in the middle.

- i. Write down the linear system that you obtain as explained above.
- ii. Find the solution to this system using LU decomposition, write down the two pivots p_0 and p_1 and the solution vector \mathbf{x} as your final answer. In every step, you can write down the four digits after the decimal dot.
- iii. For the approximate solution $\mathbf{x}_a = [1.0, 1.0, 1.0]^{\top}$, calculate and write down the relative forward, backward errors, and the error magnification factor.

Q4 (25 points) Interpolation

Assume that your Student ID has the digits "ABCDEFGHI" (If your ID is 123456789, then A = 1, B = 2, E = 5, and I = 9).

- i. Write down the coordinates of the points $P_0 = (A, B)$, $P_1 = (H, I)$, and $P_2 = (C, D)$.
- ii. Write down the coefficients a_0, a_1 , and a_2 of the second degree polynomial interpolating the points P_0, P_1 , and P_2 using a method of your choice.
- iii. If we set the end points as P_0 and P_1 , and set both control points as the mid-point in the line segment $[P_0, P_1]$, what will be the shape of the resulting Bézier Curve? Why?