MA 523: Homework 7

Carlos Salinas

October 31, 2016

Problem 7.1

Solve the Dirichlet problem for the Laplace equation in \mathbb{R}^2

$$\begin{cases} \Delta u = 0 & \text{in } 1 < |x| < 2, \\ u = x_1 & \text{on } |x| = 1, \\ u = 1 + x_1 x_2 & \text{on } |x| = 2. \end{cases}$$

(Hint: Use Laurent series.)

SOLUTION. First, let us make the change of variables $(x_1, x_2) \mapsto r e^{i\theta}$ to the Dirichlet problem in question:

$$\begin{cases} \Delta u = 0 & \text{in } 1 < r < 2, \\ u = \frac{1}{2} (e^{i\theta} + e^{-i\theta}) & \text{on } r = 1, \\ u = 1 + \frac{1}{i} (e^{i2\theta} - e^{-i2\theta}) & \text{on } r = 2. \end{cases}$$
(7.1)

Now, suppose u is a solution, of the form

$$u(re^{i\theta}) = b \ln r + \sum_{n \in \mathbb{Z}} (a_n r^n + \overline{a_{-n}} r^{-n}) e^{in\theta},$$

to the problem (7.1). It is easy to see that u is in fact harmonic:

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

$$= -br^{-2} + br^{-2} + \sum_{n \in \mathbb{Z}} \left[(n(n-1) + n - n^2)a_n r^n + (n(n-1) + n - n^2)\overline{a_{-n}}r^{-n} \right] e^{in\theta}$$

$$= 0.$$

Next we use the boundary data to compute the coefficients a_n , $n \in \mathbb{Z}$. Using the data (7.1) on r = 1, we have

$$\frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \sum_{n \in \mathbb{Z}} (a_n + \overline{a_{-n}})e^{in\theta}$$
(7.2)

and on r=2,

$$1 + \frac{1}{i}(e^{i2\theta} - e^{-i2\theta}) = b \ln 2 + \sum_{n \in \mathbb{Z}} (2^n a_n + 2^{-n} a_{-n})e^{in\theta}.$$
 (7.3)

These equations immediately tell us that $b = 1/\ln 2$. Moreover, the following relations on the coefficients hold

$$\begin{cases} \frac{1}{2} = a_1 + \overline{a_{-1}} & \frac{1}{2} = a_{-1} + \overline{a_1}, \\ \frac{1}{i} = 2^2 a_2 + 2^{-2} \overline{a_{-2}}, & -\frac{1}{i} = 2^2 a_{-2} + 2^{-2} \overline{a_2}, \\ 0 = a_n + \overline{a_{-n}} & \text{for } n \neq \pm 1, \\ 0 = 2^n a_n + 2^{-n} \overline{a_{-n}} & \text{for } n \neq \pm 2. \end{cases}$$

MA 523: Homework 7

A little calculation shows that

$$\begin{cases} a_1 = -\frac{1}{6}, & a_{-1} = \frac{2}{3}, \\ a_2 = -\frac{4i}{15}, & a_{-2} = -\frac{4i}{15}, \\ a_n = 0 & \text{for } n \neq \pm 1, \pm 2. \end{cases}$$

Thus,

$$\begin{split} u(r\mathrm{e}^{\mathrm{i}\theta}) &= \tfrac{1}{\ln 2} \ln r + \left(-\tfrac{4\mathrm{i}}{15} r^{-2} + \tfrac{4\mathrm{i}}{15} r^2 \right) \mathrm{e}^{-\mathrm{i}2\theta} + \left(\tfrac{2}{3} r^{-1} - \tfrac{1}{6} r \right) \mathrm{e}^{-\mathrm{i}\theta} \\ &\quad + \left(-\tfrac{1}{6} r + \tfrac{2}{3} r^{-1} \right) \mathrm{e}^{\mathrm{i}\theta} + \left(-\tfrac{4\mathrm{i}}{15} r^2 + \tfrac{4\mathrm{i}}{15} r^{-2} \right) \mathrm{e}^{\mathrm{i}2\theta} \\ &= \tfrac{1}{\ln 2} \ln r - \tfrac{8}{15} r^{-4} \left(\frac{r^2 \mathrm{e}^{\mathrm{i}2\theta} - r^2 \mathrm{e}^{-\mathrm{i}2\theta}}{2\mathrm{i}} \right) + \tfrac{8}{15} \left(\frac{r^2 \mathrm{e}^{\mathrm{i}2\theta} - r^2 \mathrm{e}^{-\mathrm{i}2\theta}}{2\mathrm{i}} \right) \\ &\quad + \tfrac{4}{3} r^{-2} \left(\frac{r \mathrm{e}^{\mathrm{i}\theta} + r \mathrm{e}^{-\mathrm{i}\theta}}{2} \right) - \tfrac{1}{3} r \left(\frac{r \mathrm{e}^{\mathrm{i}\theta} + r \mathrm{e}^{-\mathrm{i}\theta}}{2} \right). \end{split}$$

Substituting back, we have

$$u(x_1, x_2) = \frac{1}{\ln 2} \ln(x_1^2 + x_2^2) - \frac{16x_1x_2}{15(x_1^2 + x_2^2)^2} + \frac{16x_1x_2}{15} + \frac{4x_1}{3(x_1^2 + x_2^2)} - \frac{(x_1^2 + x_2^2)^{\frac{1}{2}}x_1}{3}.$$

Problem 7.2

Let Ω be a bounded domain with a C^1 boundary, $g \in C^2(\partial \Omega)$ and $f \in C(\bar{\Omega})$. Consider the so called Neumann problem

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega,
\end{cases}$$
(*)

where ν is the outer normal on $\partial\Omega$. Show that the solution of (*) in $C^2(\Omega) \cap C^1(\bar{\Omega})$ is unique up to a constant; i.e., if u_1 and u_2 are both solutions of (*), then $u_2 = u_1 + \text{const.}$ in Ω . (*Hint:* Look at the proof of the uniqueness for the Dirichlet problem by energy methods [E, 2.2.5a].)

SOLUTION. Suppose u_1 and u_2 are solutions to the Neumann problem (*). Define $v := u_1 - u_2$. Then v is harmonic in Ω and $\partial v/\partial \nu = 0$ on $\partial \Omega$. Consider the energy functional

$$E[v] = \frac{1}{2} \int_{\Omega} |Dv|^2 dx.$$

By Green's formula version (ii),

$$E[v] = \frac{1}{2} \int_{\Omega} |Dv|^2 dx$$
$$= -\frac{1}{2} \int_{\Omega} v \Delta v \, dx + \int_{\partial U} \frac{\partial v}{\partial \nu} v \, dS(x)$$
$$= 0$$

This implies that $|Dv|^2 = Dv \cdot Dv = 0$ which, since the standard inner product on \mathbb{R}^n is positive-definite, implies that $Dw \equiv 0$. It follows that $u_1 = u_2 + \text{const}$, i.e., the solution u to (*) is unique up to a constant.

Problem 7.3

Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = g & \text{on } \mathbb{R}^n \times \{ t = 0 \}, \end{cases}$$

where $c \in \mathbb{R}$.

(*Hint:* Rewrite the problem in terms of $v(x,t) := e^{ct}u(x,t)$.)

SOLUTION.