Potencia y Eficiencia

Profesores:

Carlos Andrés Flórez Acosta – Grupo 4

Harrison Salazar Tamayo – Grupo 23

2024-II

Transferencia de Energía: Trabajo

El trabajo (W) es un mecanismo de transferencia de energía.

El trabajo representa la energía que se le proporciona a un cuerpo cuando se le aplica una fuerza.

$$W = Fd\cos\theta$$
 Formas de $W_{+} = \frac{1}{2}mV_{f}^{2} - \frac{1}{2}mV_{o}^{2}$ Formas de Calcular el Trabajo

Ley Cero de la Termodinámica

Dos cuerpos a diferentes temperaturas se ponen en contacto térmico.

Ley Cero de la Termodinámica:

Si dos o más cuerpos a diferentes temperaturas permanecen en contacto térmico durante un tiempo prolongado entonces todos los cuerpos alcanzan la misma temperatura (Equilibrio Térmico).

Transferencia de Energía: Calor

El calor se transfiere desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura.

El cuerpo 1 pierde calor (\mathbb{Q}_1) , es decir, pierde energía. El cuerpo 2 gana calor (\mathbb{Q}_2) , es decir, gana energía.

Conservación de la Energía: El calor que pierde el cuerpo 1 es igual al calor que gana el cuerpo 2.

T X T

Calor (Q): El calor es un mecanismo de transferencia de energía que aparece cuando hay diferencias de temperatura.

$$T_1 > T > T_2$$
 Q>0 => Gana Calor => Qana energía
 $T = \text{temperatura de equilibrio}$ Q<0 => Pierde calor => Pierde energía

Mecanismos de Transferencia de Energía

Mecanismos de transferencia de energía: Trabajo (W) y Calor (Q)

Puedo suministrar energía a un cuerpo aplicando fuerzas en la dirección de movimiento.

TI>TZ

Puedo suministrar energía a un cuerpo poniéndolo en contacto térmico con otro cuerpo a mayor temperatura.

Pregunta: Temperatura vs Calor

Considere los conceptos de temperatura y calor.

- a) Temperatura y calor son propiedades físicas de los cuerpos.
- b) Sólo la temperatura es una propiedad física de los cuerpos.
- c) Sólo el calor es una propiedad física de los cuerpos.
- d) Ni la temperatura ni el calor son propiedades físicas de los cuerpos.

Pregunta: Temperatura vs Calor

- Considere los conceptos de temperatura y calor.
- a) Temperatura y calor son propiedades físicas de los cuerpos.
- b) Sólo la temperatura es una propiedad física de los cuerpos.
- c) Sólo el calor es una propiedad física de los cuerpos.
- d) Ni la temperatura ni el calor son propiedades físicas de los cuerpos.

Tipos de Sistemas Termodinámicos

Sistema Abierto: Permite la transferencia de energía y masa.

Sistema Cerrado:

Permite sólo la transferencia de energía.

Sistema Aislado: No permite la transferencia de energía ni de masa.

Primera Ley de la Termodinámica

Previamente hemos discutido que es posible suministrar (extraer) energía de un sistema a través de los mecanismos de transferencia de energía:

Trabajo (W) y Calor (Q).

Consideremos que el sistema inicialmente tiene una energía interna U₁.

Al suministrar (extraer) energía es lógico que la energía interna del sistema debe cambiar.

¿Cómo calculamos este cambio en la energía interna del sistema?

Primera Ley de la Termodinámica

(W) suministrado (extraído).

Primera Ley de la Termodinámica:

$$\Delta U = Q - W$$

La primera ley indica que la energía interna de un sistema cambia debido al calor o al trabajo.

Generalmente la primera ley se utiliza para calcular el cambio de la energía interna y no las energías internas de forma individual.

¿Cuál es el cambio en la energía interna de un sistema termodinámico aislado?

a)
$$\Delta U = Q + W$$

b)
$$\Delta U = Q - W$$

c)
$$\nabla \Omega = M - \emptyset$$

d)
$$\Delta U = 0$$

¿Cuál es el cambio en la energía interna de un sistema termodinámico aislado?

a)
$$\Delta U = Q + W$$

b)
$$\Delta U = Q - W$$

c)
$$\Delta U = W - Q$$

d)
$$\Delta U = 0$$

En un sistema termodinámico aislado la energía interna se conserva.

Un gas contenido en un cilindro recibe 1500 J de calor y realiza un trabajo de - 600 J. ¿Cuál es el cambio en la energía interna del gas?

- a) 900 J
- b) -900 J
- c) 2100 J
- d) -2100 J

Un gas contenido en un cilindro recibe 1500 J de calor y realiza un trabajo de - 600 J. ¿Cuál es el cambio en la energía interna del gas?

- a) 900 J
- b) -900 J
- c) 2100 J
- d) -2100 J

Recordando: Transformación de la Energía

- 1. No hay perdida de energía (fricción).
- 2. La energía cinética se transforma en energía potencial gravitacional y viceversa.
- 3. La energía mecánica es constante.

El trabajo puede convertirse en calor (Experimento de Joule). ¿Será posible que el calor se convierta en trabajo?.

Máquinas Térmicas

Las máquinas térmicas son utilizadas para realizar diferentes tareas. De forma general consisten en máquinas que utilizan el calor para realizar trabajo

trabajo.

https://www.youtube.com/watch?v=9mhYnQGZJuM

Máquinas Térmicas

Las máquinas térmicas son utilizadas para realizar diferentes tareas. De forma general consisten en máquinas que utilizan el calor para realizar trabajo.

Titanic: Barco de Vapor

Fuente de Calor : Carbon

Central Nuclear

Fuente de calor: Material Radiactivo

Automóviles Fuente de calor: Derivados Petróleo

Máquinas Térmicas

Una máquina térmica absorbe calor (Qh) de una fuente de calor a temperatura Th. Transforma parte de este calor en trabajo (W). El resto del calor (Qc) se libera al ambiente que está a una temperatura Tc.

Esemplo:

Qh=100 J

W=20 J

Qc=80J

Eficiencia Térmica

Lo ideal sería que la máquina térmica convirtiera todo el calor Qh en trabajo W. Sin embargo:

- No todo el calor absorbido Qh se transforma en trabajo W.
- 2. Siempre hay perdida de energía en forma de calor Qc.

Definimos la eficiencia (n) de una máquina térmica:

$$N = \frac{W}{Qh} = 1 - \frac{Qc}{Qh} \implies \begin{array}{c} 0 \leq N < 1 \\ Qh > W \\ Qh > Qc \end{array}$$