Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе №1

Дисциплина: Низкоуровневое программирование

Тема: Машина Тьюринга-Поста

Вариант: 2

Выполнил студент группы 35309	901/00002	А.Г. Антонов
	(подпись)	
Принял преподаватель	(подпись)	Д.С. Степанов
	(подпись)	
	« »	2021г.

Санкт-Петербург

Задача

Построить машину Тьюринга, которая выполняет вычитание чисел в десятичном коде (уменьшаемое>=вычитаемому)

Алфавит

0,1,2,3,4,5,6,7,8,9

Начальное и конечное состояния

Числа должны быть записаны через пробел. Первое число – уменьшаемое, второе- вычитаемое.

Головка должна находиться на разряде единиц второго числа.

После остановки машины головка должна находиться справа от места, где находилось второе число.

Алгоритм

Разряд единиц уменьшается на 1. Если разряд единиц равен 0, то он за меняется на 9, а из следующий разряд уменьшается на 1. Головка двигается в лево, пока не дойдёт до пробела. Разряд единиц уменьшается на 1. Если он равен 0, то он за меняется на 9, а из следующий разряд уменьшается на 1. Головка двигается в право. Всё повторяется до тех пор, пока следующий разряд у вычитаемого числа не равен пробелу. Головка двигается вправо, заменяя все цифры на пробел.

Диаграмма состояний

На диаграмме пробел обозначен буквой «В», а буквой «S» обозначен момент, когда символ на ленте перезаписывается, головка не двигается, и работа программы завершается.

Описание работы

Машина начинает работу в состоянии Q1. Уменьшает число на 1 и переходит в состояние Q2. Если число равно «0», то число заменяется на 9 и машина остаётся в текущем состоянии. Если пробел, то машина переходит в состояние Q7

Состояние Q2 осуществляет движение головки влево, пока она не найдёт пустой символ. Тогда машина переходит в состояние Q3.

Состояние Q3 осуществляет уменьшение разряда единиц у уменьшаемого и переходит в состояние Q4. Если число равно 0, то число заменяется на 9 и машина переходит в состояние Q6.

Состояние Q4 осуществляет движение головки вправо, пока она не найдёт пустой символ. Тогда машина переходит в состояние Q5.

Состояние Q5 осуществляет движение головки вправо, пока она не найдёт пустой символ. Тогда машина переходит в состояние Q1.

Состояние Q6 осуществляет уменьшение следующего разряда у уменьшаемого. Затем машина переходит в состояние Q4.

Состояние Q7 осуществляет движение вправо, стирая все символы, пока не дойдёт до пробела. А после осуществляется выход.

Пример выполнения программы на симуляторе

Выполняем выражение 1019-276

Рис. 1 Начальные условия

Рис. 2 Результат работы машины

Вывод

В данной работе я познакомился с принципом работы машины Тьюринга и общими правилами реализации алгоритмов на ней на примере вычитания в десятичном коде.