PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 98/45707 (11) International Publication Number: A1 G01N 33/566, 33/68 (43) International Publication Date: 15 October 1998 (15.10.98) PCT/US98/06774 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, 6 April 1998 (06.04.98) (22) International Filing Date: LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (30) Priority Data: (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent US 7 April 1997 (07.04.97) 08/833,488 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, (71) Applicant: HESKA CORPORATION [US/US]; 1825 Sharp CM, GA, GN, ML, MR, NE, SN, TD, TG). Point Drive, Fort Collins, CO 80525 (US). (72) Inventors: FRANK, Glenn, Robert; 10317 North County Road 13, Wellington, CO 80549 (US). RUSHLOW, Keith, E.; **Published** With international search report. 1600 Dogwood Court, Fort Collins, CO 80525 (US). (74) Agents: HANLEY, Elizabeth, A. et al.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 (US).

(54) Title: METHOD TO DETECT CANINE IgE

(57) Abstract

The present invention includes a method to detect canine IgE using a canine Fc epsilon receptor (FceR) to detect canine IgE antibodies in a biological sample from a canid. The present invention also relates to kits to perform such methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho .	ŠI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT .	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE.	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	•	** 1.5 · · · · · · · · · · · · · · · · · · ·
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							

10

15

20

25

METHOD TO DETECT CANINE IgE

Field of the Invention

The present invention relates to a novel method to detect canine epsilon immunoglobulin (IgE). The present invention also includes novel kits to detect canine IgE as well as methods to produce the detection reagent.

Background of the Invention

Diagnosis of disease and determination of treatment efficacy are important tools in medicine. In particular, detection of IgE production in an animal can be indicative of disease. Such diseases include, for example, allergy, atopic disease, hyper IgE syndrome, internal parasite infections and B cell neoplasia. In addition, detection of IgE production in an animal following a treatment is indicative of the efficacy of the treatment, such as when using treatments intended to disrupt IgE production.

Until the discovery of the present invention, detection of IgE in samples obtained from non-human animals has been hindered by the absence of suitable reagents for detection of IgE. Various compounds have been used to detect IgE in IgE-containing compositions. In particular, antibodies that bind selectively to epsilon idiotype antibodies (i.e., anti-IgE antibodies) have been used to detect IgE. These anti-IgE antibodies, however, can cross-react with other antibody idiotypes, such as gamma isotype antibodies. The discovery of the present invention includes the use of a canine Fc epsilon receptor ($Fc_{\epsilon}R$) molecule to detect the presence of IgE in a putative IgE-containing composition. Canine high affinity $Fc_{\epsilon}R$ consists of three protein chains, alpha, beta and gamma. Hayashi et al. have disclosed the nucleic acid sequence for the alpha chain (GenBank Accession No. D16413, submitted June 8, 1993). A canine $Fc_{\epsilon}R$ molecule provides an advantage over, for example anti-IgE antibodies, to detect IgE because a canine $Fc_{\epsilon}R$ molecule can bind to a canine IgE with more specificity (i.e., less idiotype cross-reactivity) and more sensitivity (i.e., affinity) than anti-IgE binding antibodies.

Thus, methods and kits are needed in the art that will provide specific detection of canine IgE using canine $Fc_{\epsilon}R$.

Summary of the Invention

The present invention includes detection methods and kits that detect canine IgE. One embodiment of the present invention is a method to detect canine IgE comprising: (a) contacting an isolated canine Fc_{ϵ} receptor ($Fc_{\epsilon}R$) molecule with a putative canine IgE-containing composition under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule:IgE complex; and (b) determining the presence of IgE by detecting the $Fc_{\epsilon}R$ molecule:IgE complex, the presence of the $Fc_{\epsilon}R$ molecule:IgE complex indicating the presence of IgE. In particular, the canine $Fc_{\epsilon}R$ molecule comprises at least a portion of a $Fc_{\epsilon}R$ alpha chain that binds to canine IgE.

5

10

15

20

25

30

Another embodiment of the present invention is a method to detect canine flea allergy dermatitis comprising: (a) immobilizing a flea allergen on a substrate; (b) contacting the flea allergen with a putative canine IgE-containing composition under conditions suitable for formation of an antigen:IgE complex bound to the substrate; (c) removing non-bound material from the substrate under conditions that retain antigen:IgE complex binding to the substrate; and (d) detecting the presence of the antigen:IgE complex by contacting antigen:IgE complex with a canine $Fc_{\epsilon}R$ molecule. In particular, the flea allergen is a flea saliva antigen.

The present invention also includes a kit for performing methods of the present invention. One embodiment is a kit for detecting IgE comprising a canine Fc_{ϵ} receptor $(Fc_{\epsilon}R)$ molecule and a means for detecting canine IgE. Another embodiment is a kit for detecting flea allergy dermatitis comprising a canine Fc_{ϵ} receptor $(Fc_{\epsilon}R)$ molecule and a flea allergen.

Detailed Description of the Invention

The present invention relates to the discovery that purified high affinity canine Fc epsilon receptor (i.e., $Fc_{\epsilon}RI$; referred to herein as $Fc_{\epsilon}R$) can be used in canine epsilon immunoglobulin (referred to herein as IgE or IgE antibody)-based detection (e.g., diagnostic, screening) methods and kits. The use of canine $Fc_{\epsilon}R$ in diagnostic methods and kits is unexpected because the use of canine $Fc_{\epsilon}R$ avoids complications presented by use of antibodies that bind to IgE (i.e., anti-IgE antibodies). Such complications include, for example, non-specific binding of anti-IgE antibodies to other classes of immunoglobulin such as gamma immunoglobulin (i.e., IgG).

One embodiment of the present invention is a method to detect a canine IgE using an isolated canine Fc_eR molecule. It is to be noted that the term "a" entity or "an" entity refers to one or more of that entity; for example, a protein refers to one or more proteins or at least one protein. As such, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably. Furthermore, a compound "selected from the group consisting of" refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds.

5

10

15

20

25

According to the present invention, an isolated, or biologically pure, $Fc_{\varepsilon}R$ molecule, is a molecule that has been removed from its natural milieu. As such, "isolated" and "biologically pure" do not necessarily reflect the extent to which the molecule has been purified. An isolated canine $Fc_{\varepsilon}R$ molecule of the present invention can be obtained from its natural source (e.g., from a canine mast cell), can be produced using recombinant DNA technology or can be produced by chemical synthesis.

A $Fc_{\epsilon}R$ molecule (also referred to herein as $Fc_{\epsilon}R$ or $Fc_{\epsilon}R$ protein) of the present invention can be a full-length protein, a portion of a full-length protein or any homolog of such a protein, wherein the $Fc_{\epsilon}R$ molecule is capable of binding specifically to IgE. As used herein, a protein can be a polypeptide or a peptide. A $Fc_{\epsilon}R$ molecule of the present invention can comprise a complete $Fc_{\epsilon}R$ (i.e., alpha, beta and gamma $Fc_{\epsilon}R$ chains), an alpha $Fc_{\epsilon}R$ chain (also referred to herein as $Fc_{\epsilon}R$ α chain) or portions thereof. Preferably, a $Fc_{\epsilon}R$ molecule comprises at least a portion of a $Fc_{\epsilon}R$ α chain that binds to IgE, i.e., that is capable of forming an immunocomplex with an IgE constant region.

An isolated canine $Fc_{\epsilon}R$ molecule of the present invention, including a homolog, can be identified in a straight-forward manner by the $Fc_{\epsilon}R$ molecule's ability to form an immunocomplex with a canine IgE. Examples of $Fc_{\epsilon}R$ homologs include $Fc_{\epsilon}R$ proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitoylation, amidation and/or addition of glycerophosphatidyl inositol) such that the homolog includes at least one epitope capable of forming an immunocomplex with an IgE.

15

20

25

30

 $Fc_{\varepsilon}R$ homologs can be the result of natural allelic variation or natural mutation. $Fc_{\varepsilon}R$ homologs of the present invention can also be produced using techniques known in the art including, but not limited to, direct modifications to the protein or modifications to the gene encoding the protein using, for example, classic or recombinant DNA techniques to effect random or targeted mutagenesis.

According to the present invention, a preferred canine $Fc_{\varepsilon}R$ α chain of the present invention is encoded by at least a portion of the nucleic acid sequence of the coding strand of a cDNA encoding a full-length $Fc_{\varepsilon}R$ α chain protein represented herein as SEQ ID NO:19, the portion at least encoding the IgE binding site of the $Fc_{\epsilon}R$ α chain protein. Other suitable canine $Fc_{\varepsilon}R$ α chains useful in the present invention include those described herein in the Examples section. The double-stranded nucleic acid molecule including both the coding strand having SEQ ID NO:19 and the complementary non-coding strand (the nucleic acid sequence of which can be readily determined by one skilled in the art and is shown herein as SEQ ID NO:21) is referred to herein as $Fc_{\varepsilon}R$ nucleic acid molecule $ncFc_{\varepsilon}R\alpha 4_{991}$. Translation of SEQ ID NO:19 suggests that nucleic acid molecule $ncFc_{\epsilon}R\alpha 4_{991}$ encodes a full-length $Fc_{\epsilon}R$ α chain protein of about 253 amino acids, referred to herein as PcFc_εRα4₂₅₃, represented by SEQ ID NO:20, assuming an open reading frame having an initiation (start) codon spanning from about nucleotide 35 through about nucleotide 37 of SEQ ID NO:19 and the termination codon spans from about nucleotide 793 through about nucleotide 795 of SEQ ID NO:19. The coding region encoding PcFc_εRα4₂₅₃, excluding the stop codon, is represented by nucleic acid molecule ncFc_εRα4₇₅₉, having a coding strand with the nucleic acid-sequence represented by SEQ ID NO:22 and a complementary strand with nucleic acid sequence SEQ ID NO:23. SEQ ID NO:19 encodes a signal peptide spanning from about amino acid 1 through about amino acid 24, as well as a mature protein of about 229 amino acids, denoted herein as PcFc_εRα4₂₂₉, the amino acid sequence of which is represented herein as SEQ ID NO:24. The nucleic acid molecule encoding the apparent mature protein is referred to as ncFc_εRα4₆₈₇, the nucleic acid sequence of the coding strand of which is denoted herein as SEQ ID NO:30. SEQ ID NO:19 also encodes a hydrophobic transmembrane domain which extends from about amino acid 172 to about amino acid 228 of SEQ ID NO:24. Knowledge of these nucleic acid and amino acid sequences allows one skilled in the art to make modifications to the respective nucleic acid molecules and proteins to, for example, develop a canine $Fc_{\epsilon}R$ α chain protein with increased solubility and/or a truncated protein capable of detecting canine IgE, e.g., $PcFc_{\epsilon}R\alpha 4_{197}$, spanning from about amino acid 1 to about amino acid 197 of SEQ ID NO:20, and having SEQ ID NO:28; or $PcFc_{\epsilon}R\alpha 4_{173}$, spanning from about amino acid 25 to about amino acid 197 of SEQ ID NO:20, and having SEQ ID NO:31.

Preferred Fc_εR molecules include PcFc_εRα4₂₅₃, PcFc_εRα4₂₂₉, PcFc_εRα4₁₉₇,
PcFc_εRα4₁₇₃ and allelic variants thereof, as well as PcFc_εRα1₁₉₇, PcFc_εRα2₁₉₇,
PcFc_εRα3₁₉₉ (which are disclosed in the Examples section) and allelic variants thereof.

Preferred nucleic acid molecules to encode a Fc_εR molecules include ncFc_εRα4₅₉₁,
ncFc_εRα4₆₈₇, ncFc_εRα4₉₉₁, ncFc_εRα4₇₅₉ and allelic variants thereof, as well as
ncFc_εRα1₆₀₉, ncFc_εRα1₅₉₁, ncFc_εRα2₆₀₉, ncFc_εRα2₅₉₁, ncFc_εRα3₆₁₇, ncFc_εRα3₅₉₇ (which
are disclosed in the Examples section) and allelic variants thereof. A preferred nucleic
acid sequence encoding a canine Fc_εR molecule includes SEQ ID NO:3, SEQ ID NO:6,
SEQ ID NO:8, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ
ID NO:22, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, and/or a nucleic acid
molecule comprising an allelic variant of a nucleic acid molecule comprising any of said
nucleic acid sequences.

An isolated canine Fc_eR molecule protein of the present invention can be 20 produced by culturing a cell capable of expressing the protein under conditions effective to produce the protein, and recovering the protein. A preferred cell to culture is a recombinant cell that is capable of expressing the protein, the recombinant cell being produced by transforming a host cell with one or more nucleic acid molecules of the present invention. Transformation of a nucleic acid molecule into a cell can be 25 accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection. electroporation, microinjection, lipofection, adsorption, and protoplast fusion. A recombinant cell may remain unicellular or may grow into a tissue, organ or a multicellular organism. Transformed nucleic acid molecules of the present invention 30 can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transformed (i.e., recombinant) cell in such a manner that their

-6-

ability to be expressed is retained. Suitable and preferred nucleic acid molecules with which to transform a cell are as disclosed herein for suitable and preferred $Fc_{\epsilon}R$ nucleic acid molecules per se. Particularly preferred nucleic acid molecules to include in recombinant cells of the present invention include $ncFc_{\epsilon}R\alpha 1_{609}$, $ncFc_{\epsilon}R\alpha 1_{591}$, $ncFc_{\epsilon}R\alpha 2_{609}$, $ncFc_{\epsilon}R\alpha 2_{591}$, $ncFc_{\epsilon}R\alpha 3_{597}$, $ncFc_{\epsilon}R\alpha 4_{591}$, $ncFc_{\epsilon}R\alpha 4_{687}$, $ncFc_{\epsilon}R\alpha 4_{991}$ and/or $ncFc_{\epsilon}R\alpha 4_{759}$.

5

10

15

20

25

30

Suitable host cells to transform include any cell that can be transformed with a nucleic acid molecule of the present invention. Host cells can be either untransformed cells or cells that are already transformed with at least one nucleic acid molecule. Host cells of the present invention either can be endogenously (i.e., naturally) capable of producing a canine Fc_eR molecule protein of the present invention or can be capable of producing such proteins after being transformed with at least one nucleic acid molecule of the present invention. Host cells of the present invention can be any cell capable of producing at least one protein of the present invention, and include bacterial, fungal (including yeast), parasite (including protozoa and ectoparasite), insect, other animal and plant cells.

Preferably, a recombinant cell is transfected with a recombinant molecule of the present invention. A recombinant molecule of the present invention includes at least one of any nucleic acid molecules heretofore described operatively linked to at least one of any transcription control sequence capable of effectively regulating expression of the nucleic acid molecule(s) in the cell to be transformed, examples of which are disclosed herein. Particularly preferred recombinant molecules include pVL-ncFc_εRα4₅₉₁, pVL-ncFc_εRα1₆₀₉, pVL-ncFc_εRα2₆₀₉, and pVL-ncFc_εRα3₆₁₇. Details regarding the production of Fc_εR molecule nucleic acid molecule-containing recombinant molecules are disclosed herein. Particularly preferred recombinant cells of the present invention include *S. frugiperda*:pVL-ncFc_εRα4₅₉₁, *Trichoplusia ni*:BV-ncFc_εRα4₅₉₁, *S. frugiperda*:pVL-ncFc_εRα3₆₀₈, *Trichoplusia ni*:BV-ncFc_εRα2₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉, *Trichoplusia ni*:BV-ncFc_εRα3₆₀₉, and *Trichoplusia ni*:BV-ncFc_εRα3₆₁₇.

A $Fc_{\varepsilon}R$ molecule of the present invention can include chimeric molecules comprising a portion of a $Fc_{\varepsilon}R$ molecule that binds to an IgE and a second molecule that

-7-

enables the chimeric molecule to be bound to a substrate in such a manner that the $Fc_{\epsilon}R$ portion binds to IgE in essentially the same manner as a $Fc_{\epsilon}R$ molecule that is not bound to a substrate. An example of a suitable second molecule includes a portion of an immunoglobulin molecule.

5

10

15

20

25

30

A canine $Fc_{\epsilon}R$ molecule of the present invention can be contained in a formulation, herein referred to as a $Fc_{\epsilon}R$ formulation. For example, a canine $Fc_{\epsilon}R$ molecule can be combined with a buffer in which the $Fc_{\epsilon}R$ is solubilized, and/or with a carrier. Suitable buffers and carriers are known to those skilled in the art. Examples of suitable buffers include any buffer in which a $Fc_{\epsilon}R$ can function to selectively bind to IgE, such as, but not limited to, phosphate buffered saline, water, saline, phosphate buffer, bicarbonate buffer, HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffered saline), TES buffer (Tris-EDTA buffered saline), Tris buffer and TAE buffer (Tris-acetate-EDTA). Examples of carriers include, but are not limited to, polymeric matrices, toxoids, and serum albumins, such as bovine serum albumin. Carriers can be combined with $Fc_{\epsilon}R$ or conjugated (i.e., attached) to $Fc_{\epsilon}R$ in such a manner as to not substantially interfere with the ability of the $Fc_{\epsilon}R$ to selectively bind to IgE.

A canine Fc_εR molecule of the present invention can be bound to the surface of a cell expressing the Fc_εR. A preferred Fc_εR-bearing cell includes a recombinant cell expressing a nucleic acid molecule encoding a canine Fc_εR alpha chain of the present invention. A more preferred recombinant cell of the present invention expresses a nucleic acid molecule that encodes at least one of the following proteins: PcFc_εRα1₁₉₇, PcFc_εRα2₁₉₇, PcFc_εRα3₁₉₉, PcFc_εRα4₂₅₃, PcFc_εRα4₂₂₉, PcFc_εRα4₁₉₇ and PcFc_εRα4₁₇₃. An even more preferred recombinant cell expresses a nucleic acid molecule including ncFc_εRα1₆₀₉, ncFc_εRα1₅₉₁, ncFc_εRα2₆₀₉, ncFc_εRα2₅₉₁, ncFc_εRα3₆₁₇, ncFc_εRα3₅₉₇, ncFc_εRα4₅₉₁, ncFc_εRα4₆₈₇, ncFc_εRα4₆₉₉₁ and ncFc_εRα4₇₅₉, or allelic "ariants thereof, with a recombinant cell expressing a nucleic acid molecule comprising a nucleic acid sequence SEQ ID NO:3, SEQ ID NO:8, SEQ ID NO:13 or SEQ ID NO:27, or a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising SEQ ID NO:3, SEQ ID NO:8, SEQ ID NO:13 or SEQ ID NO:27, being even more preferred.

10

15

20

25

30

In addition, a Fc_eR formulation of the present invention can include not only a $Fc_{\varepsilon}R$ but also one or more additional antigens or antibodies useful in detecting IgE. As used herein, an antigen refers to any molecule capable of being selectively bound by an antibody. As used herein, specific binding of a first molecule to a second molecule refers to the ability of the first molecule to preferentially bind to (e.g., have higher affinity higher avidity for) the second molecule when compared to the ability of a first molecule to bind to a third molecule. The first molecule need not necessarily be the natural ligand of the second molecule. Examples of antibodies used in the present invention include, but are not limited to, antibodies that bind selectively to the constant region of an IgE heavy chain (i.e., anti-IgE isotype antibodies) or antibodies that bind selectively to an IgE having a specific antigen specificity (i.e., anti-IgE idiotypic antibodies). Examples of antigens used in the present invention include any antigen known to induce the production of IgE. Preferred antigens include allergens and parasite antigens. Allergens of the present invention are preferably derived from fungi, trees, weeds, shrubs, grasses, wheat, corn, soybeans, rice, eggs, milk, cheese, bovines (or cattle), poultry, swine, sheep, yeast, fleas, flies, mosquitos, mites, midges, biting gnats, lice, bees, wasps, ants, true bugs or ticks. A suitable flea allergen includes an allergen derived from a flea, and in particular a flea saliva antigen. Preferred flea saliva antigens include antigens such as those disclosed in PCT Patent Publication No. WO 96/11271, published April 18, 1996, by Frank et al. (this publication is incorporated by reference herein in its entirety), U.S. Patent Application Serial Nos. 08/319,590 (filed Oct. 7, 1994), 08/487,001 (filed June 7, 1995), 08/487,608 (filed June 7, 1995) and 08/630,822 (filed April 10, 1996), with flea saliva products and flea saliva proteins being particularly preferred. According to the present invention, a flea saliva protein includes a protein produced by recombinant DNA methods, as well as proteins isolated by other methods disclosed in PCT Patent Publication No. WO 96/11271, U.S. Patent Application Serial Nos. 08/319,590 (filed Oct. 7, 1994), 08/487,001 (filed June 7, 1995), 08/487,608 (filed June 7, 1995) and 08/630,822 (filed April 10, 1996).

Preferred general allergens include those derived from grass, Meadow Fescue, Curly Dock, plantain, Mexican Firebush, Lamb's Quarters, pigweed, ragweed, sage, elm, cocklebur, Box Elder, walnut, cottonwood, ash, birch, cedar, oak, mulberry, cockroach,

15

20

Dermataphagoides, Alternaria, Aspergillus, Cladosporium, Fusarium, Helminthosporium, Mucor, Penicillium, Pullularia, Rhizopus and/or Tricophyton. More preferred general allergens include those derived from Johnson Grass, Kentucky Blue Grass, Meadow Fescue, Orchard Grass, Perennial Rye Grass, Redtop Grass, Timothy Grass, Bermuda Grass, Brome Grass, Curly Dock, English Plantain, Mexican Firebush, Lamb's Quarters, Rough Pigweed Short Ragweed, Wormwood Sage, American Elm, Common Cocklebur, Box Elder, Black Walnut, Eastern Cottonwood, Green Ash, River Birch, Red Cedar, Red Oak, Red Mulberry, Cockroach, Dermataphagoides farinae, Alternaria alternata, Aspergillus fumigatus, Cladosporium herbarum, Fusarium vasinfectum, Helminthosporium sativum, Mucor recemosus, Penicillium notatum, Pullularia pullulans, Rhizopus nigricans and/or Tricophyton spp. Preferred parasite antigens include, but are not limited to, helminth antigens, in particular heartworm antigens, such as Di33 (described in U.S. Patent Application Serial No. 08/715,628, filed September 18, 1996, to Grieve et al.; this publication is incorporated by reference herein in its entirety). The term "derived from" refers to a natural allergen of such plants or organisms (i.e., an allergen directly isolated from such plants or organisms), as well as non-natural allergens of such plants or organisms that possess at least one epitope capable of eliciting an immune response against an allergen (e.g., produced using recombinant DNA technology or by chemical synthesis).

The present invention also includes canine Fc_eR mimetopes and use thereof to detect IgE. In accordance with the present invention, a "mimetope" refers to any compound that is able to mimic the ability of a canine Fc_eR molecule to bind to canine IgE. A mimetope can be a peptide that has been modified to decrease its susceptibility to degradation but that still retains IgE-binding activity. Other examples of mimetopes 25 include, but are not limited to, carbohydrate-based compounds, lipid-based compounds, nucleic acid-based compounds, natural organic compounds, synthetically derived organic compounds, anti-idiotypic antibodies and/or catalytic antibodies, or fragments thereof. A mimetope can be obtained by, for example, screening libraries of synthetic compounds for compounds capable of binding to IgE. A mimetope can also be obtained 30 by, for example, rational drug design. In a rational drug design procedure, the threedimensional structure of a compound of the present invention can be analyzed by, for

example, nuclear magnetic resonance (NMR) or x-ray crystallography. The three-dimensional structure can then be used to predict structures of potential mimetopes by, for example, computer modeling. The predicted mimetope structures can then be produced by, for example, chemical synthesis, recombinant DNA technology, or by isolating a mimetope from a natural source. Specific examples of Fc_eR mimetopes include anti-idiotypic antibodies, oligonucleotides produced using Selex® technology, peptides identified by random screening of peptide libraries and proteins identified by phage display technology.

One embodiment of the present invention is a method to detect canine IgE which includes the steps of: (a) contacting an isolated canine Fc_{ϵ} receptor ($Fc_{\epsilon}R$) molecule with 10 a putative canine IgE-containing composition under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule:IgE complex; and (b) detecting levels of IgE by detecting said $Fc_{\epsilon}R$ molecule:IgE complex. Presence of such a Fc_eR molecule:IgE complex indicates that the canine is producing IgE. The present method can further include the step of determining whether a canine IgE complexed with a canine Fc_eR molecule is heat labile. 15 Certain classes of IgE are heat labile when incubated at about 56°C for about 4 hours. Without being bound by theory, Applicants believe that heat labile forms of IgE bind to certain allergens and non-heat labile forms of IgE bind to other types of allergens. As such, detection of heat labile IgE compared with non-heat labile IgE can be used to discriminate between allergen sensitivities. For example, Applicants believe that canine 20 IgE antibodies that bind to certain flea allergens and heartworm allergens are heat labile while canine IgE antibodies that bind to certain plant allergens are not heat labile. Thus, the presence of non-heat labile IgE can indicate that-an-animal-is sensitive to certain plant allergens but not to certain flea or heartworm allergens. Moreover, Applicants believe that identification of heat labile IgE and non-heat labile IgE using a canine Fc_eR 25 suggests the presence of different sub-populations of IgE that may or may not have substantially similar structures to known IgE. As such, a Fc_eR molecule of the present invention may be useful for detecting molecules bound by the Fc_eR molecule that are not identical to a known IgE.

As used herein, canine refers to any member of the dog family, including domestic dogs, wild dogs and zoo dogs. Examples of dogs include, but are not limited to, domestic dogs, wild dogs, foxes, wolves, jackals and coyotes.

5

10

15

20

25

30

As used herein, the term "contacting" refers to combining or mixing, in this case a putative IgE-containing composition with a canine $Fc_{\epsilon}R$ molecule. Formation of a complex between a canine $Fc_{\epsilon}R$ and a canine IgE refers to the ability of the $Fc_{\epsilon}R$ to selectively bind to the IgE in order to form a stable complex that can be measured (i.e., detected). As used herein, the term selectively binds to an IgE refers to the ability of a $Fc_{\epsilon}R$ of the present invention to preferentially bind to IgE, without being able to substantially bind to other antibody isotypes. Binding between a $Fc_{\epsilon}R$ and an IgE is effected under conditions suitable to form a complex; such conditions (e.g., appropriate concentrations, buffers, temperatures, reaction times) as well as methods to optimize such conditions are known to those skilled in the art, and examples are disclosed herein. Examples of complex formation conditions are also disclosed in, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989; the reference Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety.

As used herein, the term "detecting complex formation" refers to determining if any complex is formed, i.e., assaying for the presence (i.e., existence) of a complex. If complexes are formed, the amount of complexes formed can, but need not be, determined. Complex formation, or selective binding, between canine Fc_cR and canine IgE in the composition can be measured (i.e., detected, determined) using a variety of methods standard in the art (see, for example, Sambrook et al. *ibid.*), examples of which are disclosed herein.

In one embodiment, a putative canine IgE-containing composition of the present method includes a biological sample from a canine. A suitable biological sample includes, but is not limited to, a bodily fluid composition or a cellular composition. A bodily fluid refers to any fluid that can be collected (i.e., obtained) from an animal, examples of which include, but are not limited to, blood, serum, plasma, urine, tears, aqueous humor, central nervous system fluid (CNF), saliva, lymph, nasal secretions, milk and feces. Such a composition of the present method can, but need not be,

pretreated to remove at least some of the non-IgE isotypes of immunoglobulin and/or other proteins, such as albumin, present in the fluid. Such removal can include, but is not limited to, contacting the bodily fluid with a material, such as Protein G, to remove IgG antibodies and/or affinity purifying IgE antibodies from other components of the body fluid by exposing the fluid to, for example, Concanavalin A. In another embodiment, a composition includes collected bodily fluid that is pretreated to concentrate immunoglobulin contained in the fluid. For example, immunoglobulin contained in a bodily fluid can be precipitated from other proteins using ammonium sulfate. A preferred composition of the present method is serum.

5

10

15

20

25

30

In another embodiment, a composition of the present method includes an IgE-producing cell. Such a cell can have IgE bound to the surface of the cell and/or can secrete IgE. Examples of such cells include basophil cells and myeloma cells. IgE can be bound to the surface of a cell, for example by being either bound directly to the membrane of a cells or bound to a molecule (e.g., an antigen) bound to the surface of the cell.

A complex can be detected in a variety of ways including, but not limited to, use of one or more of the following assays: an enzyme-linked immunoassay, a radioimmunoassay, a fluorescence immunoassay, a chemiluminescent assay, a lateral flow assay, an agglutination assay, a particulate-based assay (e.g., using particulates such as, but not limited to, magnetic particles or plastic polymers, such as latex or polystyrene beads), an immunoprecipitation assay, a BioCoreTM assay (e.g., using colloidal gold) and an immunoblotting assay (e.g., a western blot). Such assays are well known to those skilled in the art. Assays can be used to give qualitative or quantitative results depending on how they are used. Some assays, such as agglutination, particulate separation, and immunoprecipitation, can be observed visually (e.g., either by eye or by a machine, such as a densite meter or spectrophotometer) without the need for a detectable marker. In other assays, conjugation (i.e., attachment) of a detectable marker to the Fc_eR or to a reagent that selectively binds to the Fc_eR or to the IgE being detected (described in more detail below) aids in detecting complex formation. Examples of detectable markers include, but are not limited to, a radioactive label, a fluorescent label, a chemiluminescent label, a chromophoric label or a ligand. A ligand refers to a molecule

that binds selectively to another molecule. Preferred detectable markers include, but are not limited to, fluorescein, a radioisotope, a phosphatase (e.g., alkaline phosphatase), biotin, avidin, a peroxidase (e.g., horseradish peroxidase) and biotin-related compounds or avidin-related compounds (e.g., streptavidin or ImmunoPure® NeutrAvidin®). Preferably, biotin is conjugated to an alpha chain of a Fc_eR. Preferably a carbohydrate group of the Fc_eR alpha chain is conjugated to biotin.

In one embodiment, a complex is detected by contacting a putative IgE-containing composition with a canine $Fc_{\epsilon}R$ molecule that is conjugated to a detectable marker. A suitable detectable marker to conjugate to a $Fc_{\epsilon}R$ molecule includes, but is not limited to, a radioactive label, a fluorescent label, a chemiluminescent label or a chromophoric label. A detectable marker is conjugated to a $Fc_{\epsilon}R$ molecule or a reagent in such a manner as not to block the ability of the $Fc_{\epsilon}R$ or reagent to bind to the IgE being detected. Preferably, a carbohydrate group of a $Fc_{\epsilon}R$ is conjugated to biotin.

10

15

20

25

30

In another embodiment, a Fc_eR molecule: IgE complex is detected by contacting a putative IgE-containing composition with a Fc_eR molecule and then contacting the complex with an indicator molecule. Suitable indicator molecules of the present invention include molecules that can bind to either the Fc_eR molecule or to the IgE antibody. As such, an indicator molecule can comprise, for example, a Fc_eR molecule, an antigen, an antibody and a lectin, depending upon which portion of the Fc_eR molecule: IgE complex is being detected. Preferred identifying labeled compounds that are antibodies include, for example, anti-IgE antibodies and anti-Fc_eR antibodies. Preferred lectins include those lectins that bind to high-mannose groups. More preferred lectins bind to high-mannose groups present on a Fc_eR molecule of the present invention produced in insect cells. An indicator molecule itself can be attached to a detectable marker of the present invention. For example, an antibody can be conjugated to biotin, horseradish peroxidase, alkaline phosphatase or fluorescein.

In one preferred embodiment, a $Fc_{\epsilon}R$ molecule: IgE complex is detected by contacting the complex with a reagent that selectively binds to a $Fc_{\epsilon}R$ molecule of the present invention. Examples of such a reagent include, but are not limited to, an antibody that selectively binds to a $Fc_{\epsilon}R$ molecule (referred to herein as an anti- $Fc_{\epsilon}R$ antibody) or a compound that selectively binds to a detectable marker conjugated to a

10

15

20

25

30

 $Fc_{\epsilon}R$ molecule. $Fc_{\epsilon}R$ molecules conjugated to biotin are preferably detected using streptavidin, more preferably using ImmunoPure® NeutrAvidin® (available from Pierce, Rockford, IL).

In another preferred embodiment, a Fc_eR molecule:IgE complex is detected by contacting the complex with a reagent that selectively binds to an IgE antibody (referred to herein as an anti-IgE reagent). Examples of such an anti-IgE reagent include, but are not limited to, a secondary antibody that is an anti-isotype antibody (e.g., an antibody that selectively binds to the constant region of an IgE), an antibody-binding bacterial surface protein (e.g., Protein A or Protein G), an antibody-binding cell (e.g., a B cell, a T cell, a natural killer cell, a polymorphonuclear leukocyte cell, a monocyte cell or a macrophage cell), an antibody-binding eukaryotic cell surface protein (e.g., an Fc receptor), and an antibody-binding complement protein. Preferred anti-IgE reagents include, but are not limited to, D9 (provided by Doug DeBoer, University of Wisconsin), and CMI antibody #9, CMI antibody #19, CMI antibody #59 and CMI antibody #71 (available from Custom Monoclonal International, West Sacramento, CA). In particular, as used herein, an anti-IgE antibody includes not only a complete antibody but also any subunit or portion thereof that is capable of selectively binding to an IgE heavy chain constant region. For example, a portion of an anti-IgE reagent can include an Fab fragment or a F(ab')2 fragment, which are described in detail in Janeway et al., in Immunobiology, the Immune System in Health and Disease, Garland Publishing, Inc., NY, 1996 (which is incorporated herein by this reference in its entirety).

In one embodiment a complex can be formed and detected in solution. In another-embodiment, a complex can be formed in which one or more members of the complex are immobilized on (e.g., coated onto) a substrate. Immobilization techniques are known to those skilled in the art. Suitable substrate materials include, but are not limited to, plastic, glass, gel, celluloid, paper, PVDF (poly-vinylidene-fluoride), nylon, nitrocellulose, and particulate materials such as latex, polystyrene, nylon, nitrocellulose, agarose and magnetic resin. Suitable shapes for substrate material include, but are not limited to, a well (e.g., microtiter dish well), a plate, a dipstick, a bead, a lateral flow apparatus, a membrane, a filter, a tube, a dish, a celluloid-type matrix, a magnetic particle, and other particulates. A particularly preferred substrate comprises an ELISA

plate, a dipstick, a radioimmunoassay plate, agarose beads, plastic beads, latex beads, immunoblot membranes and immunoblot papers. In one embodiment, a substrate, such as a particulate, can include a detectable marker.

5

10

15

20

25

30

A preferred method to detect canine IgE is an immunosorbent assay. An immunoabsorbent assay of the present invention comprises a capture molecule and an indicator molecule. A capture molecule of the present invention binds to an IgE in such a manner that the IgE is immobilized to a substrate. As such, a capture molecule is preferably immobilized to a substrate of the present invention prior to exposure of the capture molecule to a putative IgE-containing composition. An indicator molecule of the present invention detects the presence of an IgE bound to a capture molecule. As such, an indicator molecule preferably is not immobilized to the same substrate as a capture molecule prior to exposure of the capture molecule to a putative IgE-containing composition.

A preferred immunoabsorbent assay method includes a step of either: (a) binding a canine $Fc_{\epsilon}R$ molecule to a substrate prior to contacting a canine $Fc_{\epsilon}R$ molecule with a putative IgE-containing composition to form a canine $Fc_{\epsilon}R$ molecule-coated substrate; or (b) binding a putative canine IgE-containing composition to a substrate prior to contacting a canine $Fc_{\epsilon}R$ molecule with a putative IgE-containing composition to form a putative IgE-containing composition-coated substrate. Preferably, the substrate is a non-coated substrate, an antigen-coated substrate or an anti-IgE antibody-coated substrate.

Both a capture molecule and an indicator molecule of the present invention are capable of binding to an IgE. Preferably, a capture molecule binds to a different region of an IgE than an indicator molecule, thereby allowing a capture molecule to be bound to an IgE at the same time as an indicator molecule. The use of a reagent as a capture molecule or an indicator molecule depends upon whether the molecule is immobilized to a substrate when the molecule is exposed to an IgE. For example, a canine $Fc_{\epsilon}R$ molecule of the present invention is used as a capture molecule when the $Fc_{\epsilon}R$ molecule is bound to a substrate. Alternatively, a canine $Fc_{\epsilon}R$ molecule is used as an indicator molecule when the $Fc_{\epsilon}R$ molecule is not bound to a substrate. Suitable molecules for use as capture molecules or indicator molecules include, but are not limited to, a canine

-16-

 $Fc_{\epsilon}R$ molecule of the present invention, an antigen reagent or an anti-IgE antibody reagent of the present invention.

5

10

15

20

25

30

An immunoabsorbent assay of the present invention can further comprise one or more layers and/or types of secondary molecules or other binding molecules capable of detecting the presence of an indicator molecule. For example, an untagged (i.e., not conjugated to a detectable marker) secondary antibody that selectively binds to an indicator molecule can be bound to a tagged (i.e., conjugated to a detectable marker) tertiary antibody that selectively binds to the secondary antibody. Suitable secondary antibodies, tertiary antibodies and other secondary or tertiary molecules can be selected by those of skill in the art. Preferred secondary molecules of the present invention include an antigen, an anti-IgE idiotypic antibody and an anti-IgE isotypic antibody. Preferred tertiary molecules can be selected by a skilled artisan based upon the characteristics of the secondary molecule. The same strategy is applied for subsequent layers.

In one embodiment, a desired antigen is used as a capture molecule by being immobilized on a substrate, such as a microtiter dish well or a dipstick. Preferred antigens include those disclosed herein. A biological sample collected from an animal is applied to the substrate and incubated under conditions suitable (i.e., sufficient) to allow for antigen: IgE complex formation bound to the substrate (i.e., IgE in a sample binds to an antigen immobilized on a substrate). Excess non-bound material (i.e., material from the biological sample that has not bound to the antigen), if any, is removed from the substrate under conditions that retain antigen:IgE complex binding to the substrate. Preferred conditions are described generally in Sambrook et al, ibid. An indicator molecule that can selectively bind to an IgE bound to the antigen is added to the substrate and incubated to allow formation of a complex between the indicator molecule and the antigen IgE complex. The indicator molecule can be conjugated to a detectable marker (preferably to an enzyme label, to a colorimetric label, to a fluorescent label, to a radioisotope, or to a ligand such as of the biotin or avidin family). Excess indicator molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis. A preferred indicator molecule for this

embodiment is a canine $Fc_{\epsilon}R$ molecule, preferably conjugated to biotin, to a fluorescent label or to an enzyme label.

In one embodiment, a canine $Fc_{\epsilon}R$ molecule is used as a capture molecule by being immobilized on a substrate, such as a microtiter dish well or a dipstick. A biological sample collected from an animal is applied to the substrate and incubated under conditions suitable to allow for $Fc_{\varepsilon}R$ molecule:IgE complex formation bound to the substrate. Excess non-bound material, if any, is removed from the substrate under conditions that retain $Fc_{\varepsilon}R$ molecule:IgE complex binding to the substrate. An indicator molecule that can selectively bind to an IgE bound to the $Fc_{\varepsilon}R$ is added to the substrate and incubated to allow formation of a complex between the indicator molecule and the Fc_eR molecule:IgE complex. Preferably, the indicator molecule is conjugated to a detectable marker, preferably to an enzyme label, to a colorimetric label, to a fluorescent label, to a radioisotope, or to a ligand such as of the biotin or avidin family. Excess indicator molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis. A preferred indicator molecule for this embodiment is an antigen that will bind to IgE in the biological sample or an anti-IgE isotype or idiotype antibody, either preferably being conjugated to fluorescein, an enzyme or biotin.

10

15

20

25

30

In one embodiment, an anti-IgE antibody (e.g., isotype- or idiotype-specific antibody) is used as a capture molecule by being immobilized on a substrate, such as a microtiter dish well or a dipstick. A biological sample collected from a canine is applied to the substrate and incubated under conditions suitable to allow for anti-IgE antibody:IgE complex formation bound to the substrate. Excess non-bound material, if any, is removed from the substrate under conditions that retain anti-IgE antibody:IgE complex binding to the substrate. A canine $Fc_{\epsilon}R$ molecule is added to the substrate and incubated to allow formation of a complex between the canine $Fc_{\epsilon}R$ molecule and the anti-IgE antibody:IgE complex. Preferably, the canine $Fc_{\epsilon}R$ molecule is conjugated to a detectable marker (preferably to biotin, an enzyme label or a fluorescent label). Excess $Fc_{\epsilon}R$ molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis.

In one embodiment, an immunosorbent assay of the present invention does not utilize a capture molecule. In this embodiment, a biological sample collected from a canine is applied to a substrate, such as a microtiter dish well or a dipstick, and incubated under conditions suitable to allow for IgE binding to the substrate. Any IgE present in the bodily fluid is immobilized on the substrate. Excess non-bound material, if any, is removed from the substrate under conditions that retain IgE binding to the substrate. A canine $Fc_{\epsilon}R$ molecule is added to the substrate and incubated to allow formation of a complex between the canine $Fc_{\epsilon}R$ molecule and canine IgE. Preferably, the $Fc_{\epsilon}R$ molecule is conjugated to a detectable marker (preferably to biotin, an enzyme label or a fluorescent label). Excess $Fc_{\epsilon}R$ molecule is removed, a developing agent is added if required, and the substrate is submitted to a detection device for analysis.

10

15

20

25

30

Another preferred method to detect canine IgE is a lateral flow assay, examples of which are disclosed in U.S. Patent No. 5,424,193, issued June 13, 1995, by Pronovost et al.; U.S. Patent No. 5,415,994, issued May 16, 1995, by Imrich et al; WO 94/29696, published December 22, 1994, by Miller et al.; and WO 94/01775, published January 20, 1994, by Pawlak et al.; each of these patent publications is incorporated by reference herein in its entirety. In one embodiment, a biological sample is placed in a lateral flow apparatus that includes the following components: (a) a support structure defining a flow path; (b) a labeling reagent comprising a bead conjugated to an antigen, the labeling reagent being impregnated within the support structure in a labeling zone; and (c) a capture reagent comprising a canine IgE-binding composition. Preferred antigens include those disclosed herein. The capture reagent is located downstream of the labeling reagent-within a capture zone fluidly connected to the labeling zone in such a manner that the labeling reagent can flow from the labeling zone into the capture zone. The support structure comprises a material that does not impede the flow of the beads. from the labeling zone to the capture zone. Suitable materials for use as a support structure include ionic (i.e., anionic or cationic) material. Examples of such a material include, but are not limited to, nitrocellulose (NC), PVDF and carboxymethylcellulose (CM). The support structure defines a flow path that is lateral and is divided into zones, namely a labeling zone and a capture zone. The apparatus can further comprise a sample receiving zone located along the flow path, more preferably upstream of the labeling

reagent. The flow path in the support structure is created by contacting a portion of the support structure downstream of the capture zone, preferably at the end of the flow path, to an absorbent capable of absorbing excess liquid from the labeling and capture zones.

5

10

15

20

25

30

In this embodiment, the biological sample is applied to the sample receiving zone which includes a portion of the support structure. The labeling zone receives the sample from the sample receiving zone which is directed downstream by the flow path. The labeling zone comprises the labeling reagent that binds to IgE. A preferred labeling reagent is an antigen conjugated, either directly or through a linker, to a plastic bead substrate, such as to a latex bead. The substrate also includes a detectable marker, preferably a colorimetric marker. Typically, the labeling reagent is impregnated to the support structure by drying or lyophilization. The sample structure also comprises a capture zone downstream of the labeling zone. The capture zone receives labeling reagent from the labeling zone which is directed downstream by the flow path. The capture zone contains the capture reagent, preferably a canine Fc_eR molecule of the present invention that immobilizes canine IgE complexed to the antigen in the capture zone. The capture reagent is preferably fixed to the support structure by drying or lyophilization. The labeling reagent accumulates in the capture zone and the accumulation is assessed visually or by an optical detection device.

In another embodiment, a lateral flow apparatus used to detect canine IgE includes: (a) a support structure defining a flow path; (b) a labeling reagent comprising a canine Fc_eR molecule of the present invention, the labeling reagent impregnated within the support structure in a labeling zone; and (c) a capture reagent comprising an antigen, the capture reagent being located downstream of the labeling reagent within a capture zone fluidly connected to the labeling zone in such a manner that the labeling reagent can flow from the labeling zone into the capture zone. The apparatus preferably also includes a sample receiving zone located along the flow path, preferably upstream of the labeling reagent. The apparatus preferably also includes an absorbent located at the end of the flow path.

One embodiment of the present invention is an inhibition assay in which the presence of canine IgE in a putative canine IgE-containing composition is determined by adding such composition to a canine Fc_eR molecule of the present invention and an

isolated canine IgE known to bind to the $Fc_{\varepsilon}R$ molecule. The absence of binding of the $Fc_{\varepsilon}R$ molecule to the known IgE indicating the presence of IgE in the putative IgE-containing composition.

5

10

15

20

25

30

The present invention also includes kits to detect canine IgE based, for example, on the disclosed detection methods. One embodiment is a kit to detect canine IgE comprising a canine Fc_{ϵ} receptor ($Fc_{\epsilon}R$) molecule and a means for detecting a canine IgE. Suitable and preferred canine $Fc_{\epsilon}R$ molecules are disclosed herein. Suitable means of detection include compounds disclosed herein that bind to either the canine $Fc_{\epsilon}R$ molecule or to a canine IgE. A preferred kit of the present invention further comprises a detection means including one or more antigens such as those disclosed herein, an antibody capable of selectively binding to canine IgE such as those disclosed herein and/or a compound capable of binding to a detectable marker conjugated to a canine $Fc_{\epsilon}R$ molecule (e.g., avidin, streptavidin and ImmunoPure® NeutrAvidin when the detectable marker is biotin).

A preferred embodiment of a kit of the present invention is a flea allergen kit comprising a flea allergen such as those disclosed herein. A particularly preferred flea allergen for use with a flea allergen kit includes a flea saliva product or a flea saliva protein.

Another preferred kit of the present invention is a general allergen kit comprising an allergen common to all regions of the United States and a canine Fc_eR molecule of the present invention. As used herein, a "general allergen" kit refers to a kit comprising allergens that are found substantially throughout the United States (i.e., essentially not limited to certain regions of the United States). A general allergen kit provides an advantage over regional allergen kits because a single kit can be used to test a canid from any geographical location in the United States. Suitable and preferred general allergens for use with a general allergen kit of the present invention include those general allergens disclosed herein.

Another preferred kit of the present invention is a food allergen kit comprising (a) a food allergen such as beef, chicken, pork, a mixture of fish, such as cod, halibut or and tuna, egg, milk, Brewer's yeast, whole wheat, corn, soybean, cheese and/or rice, and

10

15

2Ò

25

30

(b) a canine Fc∈R molecule of the present invention. Preferably, the beef, chicken, pork, fish, corn and rice, are cooked.

A preferred kit of the present invention is one in which the allergen is immobilized to a substrate. If a kit comprises two or more antigens, the kit can comprise one or more compositions, each composition comprising one antigen. As such, each antigen can be tested separately. A kit can also contain two or more diagnostic reagents for detecting canine IgE, additional isolated canine IgE antigens and/or antibodies as disclosed herein. Particularly preferred are kits used in a lateral flow assay format. It is within the scope of the present invention that a lateral flow assay kit can include one or more lateral flow assay apparatuses. Multiple lateral flow apparatuses can be attached to each other at one end of each apparatus, thereby creating a fan-like structure.

In particular, a method and kit of the present invention are useful for diagnosing abnormal conditions in animals that are associated with changing levels of canine IgE. Particularly preferred conditions to diagnose include allergies, parasitic infections and neoplasia. For example, a method and kit of the present invention are particularly useful for detecting flea allergy dermatitis (FAD), when such method or kit includes the use of a flea saliva antigen. FAD is defined as a hypersensitive response to fleabites. Preferably, a putative IgE-containing composition is obtained from an animal suspected of having FAD. In addition, methods and kits of the present invention are particularly useful for detecting helminth infection, in particular heartworm infection, when such methods or kits include the use of a helminth antigen, such as Di33. Preferably, a putative canine IgE-containing composition is obtained from a canine suspected of having a helminth infection.

The following examples are provided for the purposes of illustration and are not intended to limit the scope of the present invention.

EXAMPLES

It is to be noted that the Examples include a number of molecular biology, microbiology, immunology and biochemistry techniques considered to be known to those skilled in the art. Disclosure of such techniques can be found, for example, in Sambrook et al., *ibid.*, and related references.

Example 1

5

10

15

20

25

30

This example describes the construction of recombinant baculoviruses expressing a truncated portion of the α chain of canine Fc_{ϵ} receptor.

Recombinant molecules pVL-ncFc $_{\varepsilon}R\alpha 1_{609}$, pVL-ncFc $_{\varepsilon}R\alpha 2_{609}$, and pVL- $\text{ncFc}_{\epsilon}R\alpha 3_{617}$, each containing nucleic acid molecules encoding the extracellular domain of the canine Fc_εR α chain, operatively linked to baculovirus polyhedron transcription control sequences were produced in the following manner. Three different canine Fc_eR α chain extracellular domain nucleic acid molecule-containing fragments, each of about 608 to about 609 nucleotides were amplified by polymerase chain reaction (PCR) from either a canine splenic mononuclear cell cDNA library or a canine lymph node mononuclear cell cDNA library, each library produced using standard techniques, using a forward primer CIERMet containing a BamHI site, having the nucleic acid sequence 5'-TGC GGA TCC AAT ATG CCT GCT TCC ATG GGA G-3' (denoted SEQ ID NO:1) and a reverse primer CIERSec containing an EcoRI site, having the nucleic acid sequence 5'-TTG GAA TTC TTA CTC TTT TTT CAC AAT AAT GTT G-3' (denoted herein as SEQ ID NO:2). The resulting PCR products were digested with BamHI and EcoRI to produce the following nucleic acid molecules: ncFc_εRα1609 (also denoted $ncFc_{\varepsilon}R\alpha LN4_{609}),\,ncFc_{\varepsilon}R\alpha 2_{609}\,(also\,denoted\,ncFc_{\varepsilon}R\alpha SPL6_{609})\,\,and\,\,ncFc_{\varepsilon}R\alpha 3_{617}\,(also\,denoted\,ncFc_{\varepsilon}R\alpha SPL6_{609})$ denoted $ncFc_{\epsilon}R\alpha SPL3R_{617}$). Nucleic acid molecule $ncFc_{\epsilon}R\alpha 1_{609}$ was obtained from the PCR reaction derived from the canine lymph node mononuclear cell cDNA library. Nucleic acid molecules $ncFc_{\varepsilon}R\alpha 2_{609}$ and $ncFc_{\varepsilon}R\alpha 3_{617}$ were obtained from the PCR reaction derived from the canine splenic mononuclear cell cDNA library. Nucleic acid molecules-ncFc_εRα1₆₀₉, ncFc_εRα2₆₀₉, and ncFc_εRα3₆₁₇ each were sequenced by the Sanger dideoxy chain termination method, using the PRISMTM Ready Dye Terminator Cycle Sequencing Kit with Ampli Taq DNA Polymerase, FS (available from the Perkin-Elmer Corporation, Norwalk, CT). Nucleic acid molecules ncFc_εRα1₆₀₉, ncFc_εRα2₆₀₉, and $ncFc_{\varepsilon}R\alpha 3_{617}$ each contained an about 608 to an about 609 nucleotide fragment encoding the extracellular domain of the canine Fc_εR α chain, the coding strands of which have nucleic acid sequences denoted SEQ ID NO:3, SEQ ID NO:8, and SEQ ID NO:13, respectively. The complement of SEQ ID NO:3 is represented herein by SEQ

15

20

25

30

ID NO:5. The complement of SEQ ID NO:8 is represented herein by SEQ ID NO:10. The complement of SEQ ID NO:13 is represented herein by SEQ ID NO:15.

Translation of SEQ ID NO:3 indicates that nucleic acid molecule $ncFc_{\epsilon}R\alpha 1_{609}$ encodes a $Fc_{\epsilon}R$ protein of about 197 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 1_{197}$, having amino acid sequence SEQ ID NO:4, assuming an open reading frame having a start codon spanning from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:3 and a stop codon spanning from about nucleotide 601 through about nucleotide 603 of SEQ ID NO:3. This open reading frame, excluding the stop codon, comprises nucleic acid molecule $ncFc_{\epsilon}R\alpha 1_{591}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:6. The complement of SEQ ID NO:6 is represented herein by SEQ ID NO:7.

Translation of SEQ ID NO:8 indicates that nucleic acid molecule $ncFc_{\epsilon}R\alpha 2_{609}$ encodes a $Fc_{\epsilon}R$ protein of about 197 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 2_{197}$, having amino acid sequence SEQ ID NO:9, assuming an open reading frame having a start codon spanning from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:8 and a stop codon spanning from about nucleotide 601 through about nucleotide 603 of SEQ ID NO:8. This open reading frame, excluding the stop codon, comprises nucleic acid molecule $ncFc_{\epsilon}R\alpha 2_{591}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:11. The complement of SEQ ID NO:11 is represented herein by SEQ ID NO:12.

Translation of SEQ ID NO:13 indicates that nucleic acid molecule $ncFc_{\epsilon}R\alpha 3_{617}$ encodes a $Fc_{\epsilon}R$ protein of about 199 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 3_{199}$, having amino acid sequence SEQ ID NO:14, assuming that the initiation codon spans from about nucleotide 10 through about nucleotide 12 of SEQ ID NO:13 and the last codon spans from about nucleotide 595 through about nucleotide 597 of SEQ ID NO:13. This open reading frame comprises nucleic acid molecule $ncFc_{\epsilon}R\alpha 3_{597}$ of the present invention, the nucleic acid sequence of which is represented herein by SEQ ID NO:16. The complement of SEQ ID NO:16 is represented herein by SEQ ID NO:17.

In order to produce baculovirus recombinant molecules capable of directing the production of $PcFc_{\epsilon}R\alpha 1_{197}$, $PcFc_{\epsilon}R\alpha 2_{197}$, and $PcFc_{\epsilon}R\alpha 3_{199}$, nucleic acid molecules $ncFc_{\epsilon}R\alpha 1_{609}$, $ncFc_{\epsilon}R\alpha 2_{609}$, and $ncFc_{\epsilon}R\alpha 3_{617}$ were subcloned into unique BamHI and

15

20

25

30

EcoRI sites of pVL1393 baculovirus shuttle plasmid (available from Pharmingen, San Diego, CA) to produce recombinant molecules referred to herein as pVL-ncFc_eR α 1₆₀₉, pVL-ncFc_eR α 2₆₀₉, and pVL-ncFc_eR α 3₆₁₇, respectively. The resultant recombinant molecules pVL-ncFc_eR α 1₆₀₉, pVL-ncFc_eR α 2₆₀₉, and pVL-ncFc_eR α 3₆₁₇ were verified for proper insert orientation by restriction mapping.

Recombinant molecules pVL-ncFc_εRα1₆₀₉, pVL-ncFc_εRα2₆₀₉, and pVL-ncFc_εRα3₆₁₇ were co-transfected with a linear BaculogoldTM baculovirus DNA (available from Pharmingen) into *S. frugiperda* Sf9 cells (available from Invitrogen Corp., San Diego, CA) using methods prescribed by the manufacturer to form recombinant cells *S. frugiperda*:pVL-ncFc_εRα1₆₀₉, *S. frugiperda*:pVL-ncFc_εRα2₆₀₉, and *S. frugiperda*:pVL-ncFc_εRα3₆₁₇. Recombinant baculoviruses were plaque purified and amplified from each transfection by methods well known to those skilled in the art, to produce recombinant baculoviruses BV-ncFc_εRα1₆₀₉, BV-ncFc_εRα2₆₀₉, and BV-ncFc_εRα3₆₁₇, respectively. Example 2

This example describes the production of $PcFc_{\epsilon}R\alpha 1_{197}$, $PcFc_{\epsilon}R\alpha 2_{197}$, and $PcFc_{\epsilon}R\alpha 3_{199}$ canine $Fc_{\epsilon}R$ α chain proteins.

About 1.5 liter cultures of serum-free ex-Cell Medium (available from Invitrogen) were seeded with about 1 x 10⁶ Trichoplusia ni cells (High FiveTM cells; available from Invitrogen) per milliliters (ml) of medium. The cell cultures were inoculated with recombinant baculoviruses BV-ncFc_εRα1₆₀₉, BV-ncFc_εRα2₆₀₉, and BV-ncFc_εRα3₆₁₇, respectively, at multiplicities of infection (MOI) of about 2 to about 5 plaque forming units (pfu) per cell to produce recombinant cells Trichoplusia ni-BV-ncFc_εRα1₆₀₉, Trichoplusia ni-BV-ncFc_εRα2₆₀₉, and Trichoplusia ni-BV-ncFc_εRα3₆₁₇. The infections were allowed to proceed at a controlled temperature of 27°C for 48 hours, to produce recombinant proteins of PcFc_εRα1₁₉₇, PcFc_εRα2₁₉₇, and PcFc_εRα3₁₉₉. Following infection, cells were separated from the medium by centrifugation, and the medium was frozen at -70°C.

Example 3

This example describes the binding of $PcFc_{\epsilon}R\alpha 1_{197}$, $PcFc_{\epsilon}R\alpha 2_{197}$, or $PcFc_{\epsilon}R\alpha 3_{199}$ protein to canine IgE.

About 4.5 ml of the culture media described immediately above containing PcFc_eRα1₁₉₇, PcFc_eRα2₁₉₇, or PcFc_eRα3₁₉₉, respectively, were loaded onto columns comprising a canine IgE monoclonal antibody (a gift from Chris Grant, Custom Monoclonals International, West Sacramento, CA) linked to sepharose 4B. Each column was washed with about 4 ml of carbonate buffer (0.1 M NaHCO₃, pH 8.3 and 0.5 M NaCl). Protein bound to the IgE on each column was eluted from the column using about 3 ml of 0.1 M glycine-HCl, pH 2.8. Each column was further washed with about 1 ml of carbonate buffer and then with about 4 ml of buffer comprising 0.1 M NaHCO₃, pH 8.3. The elution samples and wash samples from a given column were combined and concentrated to a volume of about 0.35 ml. The eluted protein from each column was resolved on separate 14% Tris-glycine polyacrylamide-SDS gels. The gels were then stained with coomassie stain. A diffused band was observed at about 31 kilodaltons (kD).

Amino (N-) terminal amino acid sequencing analysis was performed on protein contained in the diffused band using standard procedures known to those in the art (see, for example, Geisow et al., 1989, in *Protein Sequencing: A Practical Approach*, JBC Findlay and MJ Geisow (eds.), IRL Press, Oxford, England, pp. 85-98; Hewick et al., 1981, *J. Biol. Chem.*, Vol. 256, pp. 7990-7997). The N-terminal partial amino acid sequence of a protein contained in the band was determined to be S D T L K P T V X M N P P X N L I (as represented in standard single letter code, and denoted herein as SEQ ID NO:18; "X" represents any amino acid). Comparison of SEQ ID NO:18 and the amino acid sequence of the canine Fc_eR alpha chain reported in Hayashi et al., *ibid.*, indicated that PcFc_eRa1₁₉₇, PcFc_eRa2₁₉₇, and PcFc_eRa3₁₉₉, expressed in baculovirus, each bound to canine IgE antibodies.

25 Example 4

10

15

20

30

This example describes the isolation, by DNA hybridization, and sequencing of a nucleic acid molecule encoding the $Fc_{\epsilon}R$ α chain from *Canis canis*.

A. <u>Isolation of nucleic acid molecule ncFc_εRα4₉₉₁</u>

A nucleic acid molecule was isolated from a canine mast cell cDNA library by the molecule's ability to hybridize with a ³²P-labeled probe derived from a PCR clone encoding the canine Fc_εR α chain. The canine mast cell cDNA library was prepared

10

15

20

25

30

using standard techniques. Using a modification of the protocol described in the cDNA Synthesis Kit, the mast cell cDNA library was screened, using duplicate plaque lifts, with a 32 P-labeled probe comprising ncFc_eR α 1₆₀₉ (SEQ ID NO:3). A plaque purified clone containing a canine nucleic acid molecule encoding the Fc_eR α chain was converted into a double stranded recombinant molecule, using the ExAssistTM helper phage and SOLRTM *E. coli* according to the *in vivo* excision protocol described in the ZAP-cDNA Synthesis Kit (available from Stratagene). Double-stranded plasmid DNA was prepared using an alkaline lysis protocol, such as that described in Sambrook et al., *ibid*. The plasmid comprised a canine Fc_eR α 4991.

B. <u>Sequence analysis of nucleic acid molecule ncFc_eRα4₉₉₁</u>

The nucleic acid molecule $ncFc_cR\alpha 4_{991}$ was sequenced by standard Sanger dideoxy chain termination sequencing techniques (see, for example, Sambrook et al, *ibid.*). DNA sequence analysis, including the compilation of sequences and the determination of open reading frames, were performed using the MacVector TM program (available from the Eastman Kodak Company, New Haven, CT), or the DNAsis TM program (available from Hitachi Software, San Bruno, CA). Protein sequence analysis, including the determination of molecular weight and isoelectric point (pI) was performed using the MacVector TM program.

The nucleic acid sequence of the coding strand of $ncFc_{\epsilon}R\alpha 4_{991}$ is denoted herein as SEQ ID NO:19. Translation of SEQ ID NO:19 suggests that nucleic acid molecule $ncFc_{\epsilon}R\alpha 4_{991}$ encodes a full-length canine $Fc_{\epsilon}R$ α chain protein of about 253 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 4_{253}$, having amino acid-sequence-SEQ ID NO:20, assuming an open reading frame in which the initiation codon spans from about nucleotide 35 through about nucleotide 37 of SEQ ID NO:19 and the termination codon spans from about nucleotide 794 through about nucleotide 796 of SEQ ID NO:19. The complement of SEQ ID NO:20 is represented herein by SEQ ID NO:21. The coding region encoding $PcFc_{\epsilon}R\alpha 4_{253}$, is represented by nucleic acid molecule $ncFc_{\epsilon}R\alpha 4_{759}$, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:22 and a complementary strand with nucleic acid sequence SEQ ID NO:23. The amino acid

sequence of $PcFc_{\epsilon}R\alpha_{253}$ (i.e., SEQ ID NO:21) predicts that $PcFc_{\epsilon}R\alpha_{253}$ has an estimated molecular weight of about 28.5 kD and an estimated pI of about 9.62.

Analysis of SEQ ID NO: 20 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 24. The proposed mature protein, denoted herein as PcFc_εRα4₂₂₉, contains about 229 amino acids, the sequence of which is shown as SEQ ID NO:24. The coding strand encoding PcFc_εRα4₂₂₉ is represented herein as SEQ ID NO:30. The amino acid sequence of PcFc_εRα4₂₂₉ (i.e., SEQ ID NO:24) predicts that PcFc_εRα4₂₂₉ has an estimated molecular weight of about 26 kD, an estimated pI of about 9.65 and five predicted asparagine-linked glycosylation sites extending from about amino acids 29-31, 42-44, 71-73, 135-137 and 148-150, respectively.

Comparison of amino acid sequence SEQ ID NO:20 with amino acid sequences reported in GenBank indicates that SEQ ID NO:20 showed the most homology, i.e., about 100% identity between SEQ ID NO:20 and a *Canis canis* Fc_εR α chain protein (GenBank accession number D16413). Comparison of amino acid sequence SEQ ID NO:22 with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:22 showed the most homology, i.e., about 100% identity between SEQ ID NO:22 and a canine mRNA for Fc_εR α chain (GenBank accession D16413).

Example 5

10

15

20

· 25

30

This Example demonstrates the production of secreted canine $Fc \in \mathbb{R}$ α chain protein in eukaryotic cells.

To produce a secreted form of a canine Fc_εR α chain, recombinant molecule pVL-ncFc_εRα4₅₉₁, containing a canine Fc_εR α chain nucleic acid molecule encoding a secreted form of canine Fc_εR α chain spanning nucleotides from about 35 through about 625 of SEQ ID NO:19 operatively linked to baculovirus polyhedron transcription control sequences, was produced in the following manner. A canine Fc_εR α chain nucleic acid molecule of about 591 nucleotides was PCR amplified from ncFc_εRα4₉₉₁ DNA using a sense primer canIgEr FWD having the nucleic acid sequence 5' GCG AAG ATC TAT AAA TAT GCC TGC TTC CAT GGG- 3' (SEQ ID NO:25; *BglII* site shown in bold) and an antisense primer canIgEr REV having the nucleic acid sequence 5' GCA GGA ATT CTT ACT CTT TTT TCA CAA TAA TGT -3' (SEQ ID NO:26; *EcoRI* site shown

in bold). The N-terminal primer was designed from the pol h sequence of baculovirus with modifications to enhance expression in the baculovirus system.

The about 591 base pair PCR product (referred to as $ncFc_{\epsilon}R\alpha 4_{591}$) has a coding strand nucleic acid sequence denoted herein as SEQ ID NO:27. The complement of SEQ ID NO:27 is represented herein by SEQ ID NO:29. Translation of SEQ ID NO:27 indicates that nucleic acid molecule $ncFc_{\epsilon}R\alpha 4_{591}$ encodes a $Fc_{\epsilon}R$ α chain protein of about 197 amino acids, referred to herein as $PcFc_{\epsilon}R\alpha 4_{197}$, having amino acid sequence SEQ ID NO:28. Nucleic acid molecule $ncFc_{\epsilon}R\alpha 5_{91}$ encodes a secretable form of the canine $Fc_{\epsilon}R$ α chain. The processed protein product encoded by $ncFc_{\epsilon}R\alpha 4_{591}$ does not possess a leader sequence or transmembrane domain, and is referred to herein as $PcFc_{\epsilon}R\alpha 4_{173}$, represented herein by SEQ ID NO:31.

5

10

15

20

25

30

Nucleic acid molecule Bv-ncFc_eR α_{591} was digested with BgIII and EcoRI and subcloned into the unique BgIII and EcoRI sites of baculovirus shuttle plasmid pVL1392 (available from Pharmingen, San Diego, CA) to produce the recombinant molecule referred to herein as pVL-ncFc_eR α_{591} . The resultant recombinant molecule, pVL-ncFc_eR α_{591} , was verified for proper insert orientation by restriction mapping. The recombinant molecule pVL-ncFc_eR α_{591} was co-transfected with a BaculogoldTM baculovirus DNA into S. frugiperda Sf9 cells (available from Invitrogen) to form recombinant cells denoted S. frugiperda:pVL-ncFc_eR α_{591} . Recombinant baculovirus was plaque purified and amplified from each transfection by methods well known to those skilled in the art, to produce recombinant baculovirus BV-ncFc_eR α_{591} .

S. frugiperda: pVL-ncFc_eR α_{591} cells were cultured in order to produce a secreted canine Fc_eR α chain protein, PcFc_eR α_{197} in the following manner. An about 1.5 liter cultures of serum-free ex-Cell Medium was seeded with about 1 x 10⁶ Trichoplusia ni cells (High FiveTM cells) per ml of medium. The cell culture was inoculated with recombinant baculovirus BV-ncFc_eR α_{591} at a multiplicity of infection (MOI) of about 2 to about 5 plaque forming units (pfu) per cell to produce recombinant cell Trichoplusia ni:BV-ncFc_eR α_{591} . The infection was allowed to proceed at a controlled temperature of 27°C for 48 hours, to produce recombinant protein of PcFc_eR α_{197} . Following infection, cells were separated from the medium by centrifugation, and the medium was frozen at 70°C.

-29-

SEQUENCE LISTING

(1) GENERAL INFORMATION: APPLICANT: (i) (A) NAME: Heska Corporation 5 STREET: 1825 Sharp Point Drive CITY: Fort Collins STATE: CO (C) (D) COUNTRY: US (E) POSTAL CODE (ZIP): 80525 (F) 10 (G) TELEPHONE: (970) 493-7272 TELEFAX: (970) 484-9505 (H) (ii) TITLE OF INVENTION: METHOD TO DETECT CANINE IGE (iii) NUMBER OF SEQUENCES: 31 (iv) CORRESPONDENCE ADDRESS: 15 ADDRESSEE: LAHIVE & COCKFIELD, LLP STREET: 28 STATE STREET (B) CITY: BOSTON STATE: MA (C) (D) COUNTRY: US (E) 20 ZIP: 02109 (F) (v) COMPUTER READABLE FORM: MEDIUM TYPE: Floppy disk (A) COMPUTER: IBM PC compatible OPERATING SYSTEM: Windows 95 (B) (C) 25 SOFTWARE: ASCII DOS TEXT (D) (vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: FILING DATE: (B) CLASSIFICATION: (C) 30 (vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/833,488
(B) FILING DATE: 07-APR-1997 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Rothenberger, Scott D. 35 (B) REGISTRATION NUMBER: 41,277 REFERENCE/DOCKET NUMBER: TELECOMMUNICATION INFORMATION: (ix) (A) TELEPHONE: (617) 227-7400 TELEFAX: (617) 742-4214 (B) 40 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides TYPE: nucleic acid (B) STRANDEDNESS: single (C) 45 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: primer SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGCGGATCCA ATATGCCTGC TTCCATGGGA

	(2)	INFO	ORMA	TION	FOR	SEQ	ID	NO:2	:						
5		(i)		(A) (B)	LEN TYP STR	GTH: E: ANDE	34 nucl DNES	ERIS l nuc leic SS: line	leot acid sing	ides	;				
		(ii))	MOLE	CULE	TYP	E:	prim	er						
		(xi))	SEQU	ENCE	DES	CRIE	MOITS	i: S	EQ I	D NC	:2:			
	TTGG	AATT(CT T	ACTC	TTTT	T TC	ACA!	raat <i>i</i>	GTI	'G					34
10	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:3	:						
15		(i)		(A) (B)	LEN TYP STR	GTH: E: ANDE	60 nucl DNES	ERIS 9 nu leic SS: line	cled acid	tide l	es				
		(ii)	MOLE	CULE	TYE	E:	cDNA							
		(ix)	FEAT (A) (B)		E/KE			603						
20		(ix)	FEAT (A) (B)	NAM			R = 187	A or	G					
25		(ix)	FEAT (A) (B)	NAM				= ur	ıknov	vn ar	nino	ació	i	
	(xi))	SEQUENCE DESCRIPTION: SEQ ID NO:3:											
	GGA	'CCAA	T AT Me	rg co et Pr 1	T GC	CT TO La Se	CC A	TG GC et Gl 5	GA GO	SC CC Ly Pi	CT GC	la Le	rg ca eu Le lo	rg eu	42
30	TGG Trp	CTA Leu	GCG Ala	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	. 84
35	GAT Asp	ACC Thr	TTG Leu	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	126
	ACA Thr 40	ATA Ile	TTG Leu	AAG Lys	GAT Asp	GAC Asp 45	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG Gly	168
40	/ ¾C Asn	AAC Asn 55	TCC Ser	CTT Leu	GAA Glu	GTC Val	GRC Xaa 60	TCT Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn	210
	AAC Asn	ACT Thr	ACT Thr 70	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr	Ser	CGT Arg	TTG Leu	GAC Asp	ATC Ile	Asn	252

		GCC Ala													294
5		AGA Arg												TTC Phe	336
		GAG Glu													378
10		GGT Gly 125													420
15		AGG Arg													462
		AGG Arg													504
20		ACA Thr													546
		CAG Gln													588
25		AAA Lys 195			TAA	GAA'	PTC								609
	(2)	. INI	FORM	ATIO	N FO	R SE	Q ID	NO:	4 :						
30		(i))	SEQI (A) (B) (D)	LEI TY:	E CHI NGTH PE: POLO	: 1 nuc	97 _, ai	mino aci	aci	ds				
		(i:	i)	MOL	ECUL	Е ТҮ	PE:	pro	tein						,•
35		(i:	x)	FEA (A) (B)		S: ME/K CATI		Xaa 60	= u	nkno	wn a	mino	aci	d	
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:4:			•
	Met 1		Ala	Ser	Met 5	_	Gly	Pro	Ala	Leu 10		Trp	Leu	Ala	
40	Leu 15		Leu	Ser	Ser	Pro 20		Val	Met	Ser	Ser 25		Thr	Leu	
	Lys	Pro 30		Val	Ser	Met	Asn 35		Pro	Trp) Asn	Thr 40		Leu	
45	Lys	Asp	Asp 45		Val	Thr	Leu	Thr 50		Thr	Gly	Asn	Asn 55	Ser	

	Leu	Glu	Val	Xaa 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70	
	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asp	Ile 80	Asn	Lys	Ala	Gln	
5	Ile 85	Gln	Asp	Ser	Gly	Glu 90	Tyr	Arg	Cys	Arg	Glu 95	Asn	Arg	Ser	
	Ile	Leu 100	Ser	Asp	Pro	Val	Tyr 105	Leu	Thr	Val	Phe	Thr 110	Glu	Trp	
10	Leu	Ile	Leu 115	Gln	Ala	Ser	Ala	Asn 120	Val	Val	Met	Glu	Gly 125	Glu	
	Ser	Phe	Leu	Ile 130	Arg	Cys	His	Ser	Trp 135	Lys	Asn	Leu	Arg	Leu 140	
	Thr	Lys	Val	Thr	Туг 145	Tyr	Lys	Asp	Gly	Ile 150	Pro	Ile	Arg	Tyr	
15	Trp 155	Tyr	Glu	Asn	Phe	Asn 160	Ile	Ser	Ile	Ser	Asn 165	Val	Thr	Thr	
	Lys	Asn 170	Ser	Gly	Asn	Tyr	Ser 175	Cys	Ser	Gly	Gln	Ile 180	Gln	Gln	
20	Lys Glu	Gly	Tyr 185	Thr	Ser	Lys	Val	Leu 190	Asn	Ile	Ile	Val	Lys 195	Lys	
	(2)	IN	FORM	ATIO	N FO	R SEG	O ID	NO:	5:						
25	(2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 609 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
		(i	i)	MOLECULE TYPE: CDNA											
30		(i:	x)	FEATURES: (A) NAME/KEY: Y = G or T (B) LOCATION: 422											
		(×	i)	SEQ	UENC	E DE	SCRI	PTIO	V: :	SEQ :	ID N	0:5:			
35	GTT GTG. GAT TAT GCT	TCTG ACGT GCCA GGCA TGAA	CTG TGC TCC CCT GGA	TCAG	TGGC GGAG AGTA AGGA CCAC	CT G. AT G' GG T' AG C' TC T'	AGCA TTGA CACC TCTC. GTGA	GGAA' AGTT(TTTG' ACCC' AGAC'	r ag' C TC F GA F CC F GT'	TTGC(GTAC(GCCT(ATCA(TAGG(CGCT CAGT CAAA CCAC TACA	GTT ACC TTC GTT CAG	TTTG(TGAT(TTCC, GGCA(GATC,	GTT GGG AAC GAG ACT	50 100 150 200 250 300
40 45	GCTTGAAGGA TCAGCCACTC TGTGAAGACT GTTAGGTACA CAGGATCACT CAGGATGGAT CTATTTTCCC GACACCTGTA CTCCCCACTG TCCTGGATTT GGGCTTTATT GATGTCCAAA CGTGAAGTCG TCTCTTGCL. AGTAGTGTTG TTGTGGAGCC ACACAGCAGA GYCGACTTCA AGGGAGTTGT TCCCAGTACA TGTAAGAGTC ACACTGTCAT CCTTCAATAT TGTATTCCAT GGCGGGTTCA TGGACACTGT AGGTTTCAAG GTATCTGATG ACATGACACC TGGAGAGGAG AGCAGCAGCG CTAGCCACAG CAGGGCAGGG CCTCCCATGG AAGCAGGCAT										350 400 450 500 550 600 609				

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 6	:						
5		(i)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH : E :	59 nucl DNES	1 nu eic	TICS cleo acid sing ar	tide	s				
		(ii)	MOLE	CULE	TYP	E:	CDNA							٠
10		(ix)	FEAT (A) (B)	NAM	: E/KE ATIC		CDS 15	91						
	(ix)			FEAT (A) (B)	NAM	: E/KE ATIC		R = A or G 179							
15		(ix	:)	FEAT (A) (B)	MAK	: E/KE ATIO		Xaa 60	= un	know	m an	nino	acid	1	
		(xi	.)	SEQU	ENCE	DES	CRIE	10IT	1: S	EQ I	D NO	6:6:			
20				TCC Ser											42
				TCC Ser											84
25				GTG Val											126
	AAG . Lys			AGT Ser											168
30				GRC Xaa 60											210
35														CAA Gln	25Ź
				AGT Ser			Tyr							TCC Ser	294
40			Ser					Leu						TGG Trp	336
				Gln					Val					GAG Glu	378
45					Arg					Lys				CTC Leu	420

			TAC TAC Tyr Tyr 145							462			
5			TTC AAC h Phe Asn 160	Ile Se			ı Val			504			
			C AAC TAT y Asn Tyr							546			
10			TCT AAA r Ser Lys		u Asn					588			
	GAG Glu									591			
15	(2) INFORMATION FOR SEQ ID NO:7:												
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 591 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear												
	(ii) MOLECULE TYPE: cDNA												
	(ix) FEATURES: (A) NAME/KEY: Y = C or T (B) LOCATION: 413												
25	(x	i) SE	QUENCE D	ESCRIPTI	ON:	SEQ ID	NO:7:						
30	GGATCTG CTAATGG CTTGTAG TGATGAG ATCAGCC TCTATTT TGATGTC CACACAG	GCC TGA GAGA TGT GTAG GTC GAA GCT CACT CTC CTCC CGA CCAA ACC GCAG AGY	ATAATGT GCAGGAA TGAAGTT ACCTTTG CTCACCC TGAAGAC CACCTGT TGAAGAC CTGAAGTC	PAGTTGCC CTCGTACC TGAGCCTC TCCATCAC TGTTAGGT ACTCCCCA GTCTCTTC AAGGGAGGAGGAGGAGT	GC TG' AG TAC AA AT' CA CG' AC AC. CT GT' CA AA	TTTTTGG CCTGATG TCTTCCA TTGGCAG AGGATCA CCTGGAT GTAGTGT CCCAGTA	T TGI G GGA A CTA A GGC C TCA T TGG T GTI C ATG	GACG TGCC TGCC TTGA GGAT GGTGC TAAC	TTG ATC ACC AGG GGA TAT BAGC	50 100 150 200 250 300 350 400 450			
35	TAGGTTT	CAA GGI	TTCAATA ATCTGAT	GACATGAC	AC CT	GGAGAGG	A GAG	CAGO	CAGC	500 550			
	GCTAGCC	CACA GCA	GGGCAGG	GCCTCCC	TG GA	AGCAGGC	АТ			591			
	(2) II	1FORMAT	ON FOR S	EQ ID NO	9:8:					,			
40	i)	(<i>I</i> (I	EQUENCE CA) LENGT B) TYPE: C) STRAN C) TOPOL	H: 609 nucle: DEDNESS	nucle c aci	otiđes d							
	(:	ii) Mo	DLECULE T	YPE: cl	ANC					++ \$*			
45	(:	. (2	EATURES: A) NAME/ B) LOCAT		os 0604	i							

		(ix	:)	FEAT (A) (B)	MAM	E/KE		Хаа 60,				ino	acid	l	
5		(ix	.)	FEAT (A) (B)		E/KE		K = 187	G or	T					
		(ix		FEAT (A) (B)	MAM	E/KE		N = 592,				.eoti	.de		
10		(xi	.)	SEQU	ENCE	DES	CRIE	OITS	J: S	SEQ I	D NC	8:			
	GGAT	CCAA		rg cc et Pr 1								a Le			42
15	TGG Trp														84
	GAT Asp														126
20	ACA Thr 40			AAG Lys											168
25				CTT Leu											210
				TTG Leu											252
30				ATC Ile 85											294
				ATC Ile											336
35				CTG Leu											378
40				AGC Ser				Arg							420
				ACA Thr					Tyr						41.2
45				TGG Trp	Tyr					Ile				AAC Asn	504

	GTC Val	ACA Thr	ACC Thr	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	546
5	ATC Ile 180	CAG Gln	CAG Gln	AAA Lys	GGC Gly	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	588
		NAA Xaa 195			TAA	GAAT	TTC								609
10	(2)	INF	ORM	OITA	1 FOF	R SEC	OI O	NO: 9):				•		
		(i)	ı	SEQU (A) (B) (D)	TY	IGTH :	: 19		nino cids		is				
15		(ii	L)	MOLI	ECULI	E TYI	?E:	prot	cein						
		(i)	c)	FEAT (A) (B)		S: ME/KI CATIO			= ur 195			mino	acio	i.	
		(x :	L)	SEQ	JENCI	E DES	SCRI	OITS	N: 5	SEQ :	ID NO	0:9:			
20	Met 1	Pro	Ala	Ser	Met 5	Gly	Gly	Pro	Ala	Leu 10	Leu	Trp	Leu	Ala	
	Leu 15	Leu	Leu	Ser	Ser	Pro 20	Gly	Val	Met	Ser	Ser 25	Asp	Thr	Leu	
25	Lys	Pro 30	Thr	Val	Ser	Met	Asn 35	Pro	Pro	Trp	Asn	Thr 40	Ile	Leu	
	Lys	Asp	Asp 45	Ser	Val	Thr	Leu	Thr 50	Cys	Thr	Gly	Asn	Asn 55	Ser	
	Leu	Glu	Val	Xaa 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70	
30	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asp	Ile 80	Asn	Lys	Ala	Gln	
	Ile 85	Gln	Asp	Ser	Gly	Glu 90	Tyr		Cys	Arg	Glu 95	Asn	Arg	Ser	
35	Ile	Leu 100	Ser	Asp	Pro	Val	Туг 105	Leu	Thr	Val	Phe	Thr 110		Trp	•
	Leu	Ile	Leu 115	Gln	Ala	Ser	Ala	Asn 120	Val	Val	Met	Glu	Gly 125	Glu	
	Ser	Phe	Leu	Ile 130	Arg	Cys	His	Ser	T> 135	Lys	Asn	Leu	Arg	Leu 140	
40	Thr	Lys	Val	Thr	Туг 145	Tyr	Lys	Asp	Gly	Ile 150	Pro	Ile	Arg	Tyr	·· \$1.
	Trp 155	Tyr	Glu	Asn	Phe	Asn 160	Ile	Ser	-Ile	Ser	Asn 165	Val	Thr	Thr	

Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Xaa Xaa . 185 190 5 Glu INFORMATION FOR SEO ID NO:10: (2) (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 609 nucleotides TYPE: nucleic acid (B) 10 STRANDEDNESS: single (C) TOPOLOGY: linear (D) (ii) MOLECULE TYPE: cDNA (ix) FEATURES: (A) NAME/KEY: N = any nucleotide 15 LOCATION: 14, 15, 18 (B) FEATURES: (ix) (A) NAME/KEY: M = A or C(B) LOCATION: 422 SEQUENCE DESCRIPTION: SEQ ID NO:10:-GAATTCTTAC TCTNNTTNCA CAATAATGTT GAGGACTTTA GAGGTGTAGC CTTTCTGCTG GATCTGGCCT GAGCAGGAAT AGTTGCCGCT GTTTTTGGTT 20 50 100 GTGACGTTGC TAATGGAGAT GTTGAAGTTC TCGTACCAGT ACCTGATGGG 150 GATGCCATCC TTGTAGTAGG TCACCTTTGT GAGCCTCAAA TTCTTCCAAC 200 TATGGCACCT GATGAGGAAG CTCTCACCCT CCATCACCAC GTTGGCAGAG 250 GCTTGAAGGA TCAGCCACTC TGTGAAGACT GTTAGGTACA CAGGATCACT CAGGATGGAT CTATTTTCCC GACACCTGTA CTCCCCACTG TCCTGGATTT 300 350 GGGCTTTATT GATGTCCAAA CGTGAAGTCG TCTCTTGCAA AGTAGTGTTG 400 TTGTGGAGCC ACACAGCAGA GMCGACTTCA AGGGAGTTGT TCCCAGTACA 450 TGTAAGAGTC ACACTGTCAT CCTTCAATAT TGTATTCCAT GGCGGGTTCA 500 30 TGGACACTGT AGGTTTCAAG GTATCTGATG ACATGACACC TGGAGAGGAG 550 AGCAGCAGCG CTAGCCACAG CAGGGCAGGG CCTCCCATGG AAGCAGGCAT 600 ATTGGATCC 609 INFORMATION FOR SEQ ID NO:11: (2) (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 591 nucleotides TYPE: nucleic acid STRANDEDNESS: single (C) (D) TOPOLOGY: linear MOLECULE TYPE: cDNA (ii) 40 (ix) FEATURES: (A) NAME/KEY: Xaa = unknown amino acid LOCATION: 60, 195, 196 (ix) FEATURES: (A) NAME/KEY: K = G or T45 (B) LOCATION: 17.9 (ix) FEATURES: (A) NAME/KEY: N = unknown nucleotide

(B) LOCATION: 583, 586, 587

(ix)

FEATURES:

(A) NAME/KEY: CDS LOCATION: 1..591 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: ATG CCT GCT TCC ATG GGA GGC CCT GCC CTG CTG TGG CTA GCG 42 Met Pro Ala Ser Met Gly Gly Pro Ala Leu Leu Trp Leu Ala CTG CTG CTC TCC TCT CCA GGT GTC ATG TCA TCA GAT ACC TTG 84 Leu Leu Ser Ser Pro Gly Val Met Ser Ser Asp Thr Leu 10 AAA CCT ACA GTG TCC ATG AAC CCG CCA TGG AAT ACA ATA TTG 126 Lys Pro Thr Val Ser Met Asn Pro Pro Trp Asn Thr Ile Leu 35 AAG GAT GAC AGT GTG ACT CTT ACA TGT ACT GGG AAC AAC TCC 168 15 Lys Asp Asp Ser Val Thr Leu Thr Cys Thr Gly Asn Asn Ser CTT GAA GTC GKC TCT GCT GTG TGG CTC CAC AAC AAC ACT ACT 210 Leu Glu Val Xaa Ser Ala Val Trp Leu His Asn Asn Thr Thr 65 20 TTG CAA GAG ACG ACT TCA CGT TTG GAC ATC AAT AAA GCC CAA 252 Leu Gln Glu Thr Thr Ser Arg Leu Asp Ile Asn Lys Ala Gln ATC CAG GAC AGT GGG GAG TAC AGG TGT CGG GAA AAT AGA TCC 294 Ile Gln Asp Ser Gly Glu Tyr Arg Cys Arg Glu Asn Arg Ser 25 ATC CTG AGT GAT CCT GTG TAC CTA ACA GTC TTC ACA GAG TGG 336 Ile Leu Ser Asp Pro Val Tyr Leu Thr Val Phe Thr Glu Trp CTG ATC CTT CAA GCC TCT GCC AAC GTG GTG ATG GAG GGT GAG 378 30 Leu Ile Leu Gln Ala Ser Ala Asn Val Val Met Glu Gly Glu AGC TTC CTC ATC AGG TGC CAT AGT TGG AAG AAT TTG AGG CTC 420 Ser Phe Leu Ile Arg Cys His Ser Trp Lys Asn Leu Arg Leu 135 ACA AAG GTG ACC TAC TAC AAG GAT GGC ATC CCC ATC AGG TAC 462 Thr Lys Val Thr Tyr Tyr Lys Asp Gly Ile Pro Ile Arg-Tyr TGG TAC GAG AAC TTC AAC ATC TCC ATT AGC AAC GTC ACA ACC Trp Tyr Glu Asn Phe Asn Ile Ser Ile Ser Asn Val Thr Thr 504 40 155 160 AAA AAC AGC GGC AAC TAT TCC TGC TCA GGC CAG ATC CAG CAG Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln 546 175 AAA GGC TAC ACC TCT AAA GTC CTC AAC ATT ATT GTG NAA NNA 588 Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Xaa Xaa 185 190 -GAG 591 Glu

	(2) INFORMATION FOR SEQ ID NO:12:		
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 591 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
10	<pre>(ix) FEATURES: (A) NAME/KEY: N = any nucleotide (B) LOCATION: 5, 6, 9</pre>		
	<pre>(ix) FEATURES: (A) NAME/KEY: M = A or C (B) LOCATION: 413</pre>		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:		
15	CTCTNNTTNC ACAATAATGT TGAGGACTTT AGAGGTGTAG CCTT GGATCTGGCC TGAGCAGGAA TAGTTGCCGC TGTTTTTGGT TGTG CTAATGGAGA TGTTGAAGTT CTCGTACCAG TACCTGATGG GGAT CTTGTAGTAG GTCACCTTTG TGAGCCTCAA ATTCTTCCAA CTAT	ACGTTG GCCATC	50 100 150 200
20	TGATGAGGAA GCTCTCACCC TCCATCACCA CGTTGGCAGA GGCT	TGAAGG GATGGA CTTTAT	250 300 350 400
25	CACACAGCAG AGMCGACTTC AAGGGAGTTG TTCCCAGTAC ATGT CACACTGTCA TCCTTCAATA TTGTATTCCA TGGCGGGTTC ATGG	AAGAGT ACACTG	450 500 550 591
	(2) INFORMATION FOR SEQ ID NO:13:		
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 617 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
35	(ix) FEATURES: (A) NAME/KEY: CDS (B) LOCATION: 10606		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	:	,
40	GGATCCAAT ATG CCT GCT TCC ATG GGA GGC CCT GCC CT Met Pro Ala Ser Met Gly Gly Pro Ala Le 1 5 5		42
	TGG CTA GCG CTG CTG CTC TCC TCT CCA GGT GTC GTG Trp Leu Ala Leu Leu Ser Ser Pro Gly Val Val 15 20		84
45	GAT ACC TTG AAA CCT ACA GTG TCC ATG AAC CCG CCA Asp Thr Leu Lys Pro Thr Val Ser Met Asn Pro Pro 30 35		. 126
	ACA ATA TTG AAG GAT GAC AGT GTG ACT CTT ACA TGT Thr lle Leu Lys Asp Asp Ser Val Thr Leu Thr Cys		168

		AAC Asn 55													210
5	AAC Asn	ACT Thr	ACT Thr 70	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	CGT Arg	TTG Leu	AAC Asn	ATC Ile 80	AAT Asn	252
	AAA Lys	GCC Ala	CAA Gln	ATC Ile 85	CAG Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	294
10	AAT Asn	AGA Arg	TCC Ser	ATC Ile	CTG Leu 100	AGT Ser	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	336
15	ACA Thr 110	GAG Glu	TGG Trp	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	378
	GAG Glu	GGT Gly 125	GAG Glu	AGC Ser	TTC Phe	CTC Leu	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	420
20	TTG Leu	AGG Arg	CTC Leu 140	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	462
	ATC Ile	AGG Arg	TAC Tyr	TGG Trp 155	TAC Tyr	GAG Glu	AAC Asn	TTC Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT Ile	AGC Ser	AAC Asn 165	504
25	GTC Val	ACA Thr	ACC Thr	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	546
30	ATC Ile 180	CAG Gln	CAG Gln	AAA Lýs	GGC Gly	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	588
		AAA Lys 195					TCT	AAGA	ATT (C					617
	(2)	IN	FORM	OITA	N FO	R SE	Q ID	NO:	14:	•	*				
35		(i	-		LEI		:1: ami:	TERI: 99-ai no a lin	mino cid		ds	· —	···		·
		(i:	i)	MOL	ECUL	E TY	PE:	pro	tein						
40		(x	i)	SEQ	UENC	E DE	SCRI	TTIO:	N:	SEQ	ID N	0:14	:		
	1	Pro			5					10					
	Leu 15	Leu	Leu	Ser	Ser	Pro 20	Gly	Val	Val	Ser	Ser 25	Asp	Thr	Leu	
45	Lys	Pro 30	Thr	Val	Ser	Met	Asn 35	Pro	Pro	Trp	Asn	Thr 40	Ile	Leu	

	Lys	Asp	Asp 45	Ser	Val	Thr	Leu	Thr 50	Cys	Thr	Gly	Asn	Asn 55	Ser	
	Leu	Glu	Val	Asp 60	Ser	Ala	Val	Trp	Leu 65	His	Asn	Asn	Thr	Thr 70	
5	Leu	Gln	Glu	Thr	Thr 75	Ser	Arg	Leu	Asn	Ile 80	Asn	Lys	Ala	Gln	
	Ile 85	Gln	Asp	Ser	Gly	Glu 90	Tyr	Arg	Cys	Arg	Glu 95	Asn	Arg	Ser	
10	Ile	Leu 100	Ser	Asp	Pro	Val	Tyr 105	Leu	Thr	Val	Phe	Thr 110	Glu	Trp	
	Leu	Ile	Leu 115	Gln	Ala	Ser	Ala	Asn 120	Val	Val	Met	Glu	Gly 125	Glu	
	Ser	Phe	Leu	Ile 130	Arg	Cys	His	Ser	Trp 135	Lys	Asn	Leu	Arg	Leu 140	
15	Thr	Lys	Val	Thr	Tyr 145	Tyr	Lys	Asp	Gly	Ile 150	Pro	Ile	Arg	Tyr	
	Trp 155	Tyr	Glu	Asn	Phe	Asn 160	Ile	Ser	Ile	Ser	Asn 165	Val	Thr	Thr	
20	Lys	Asn 170	Ser	Gly	Asn	Tyr	Ser 175	Cys	Ser	Gly	Gln	Ile 180	Gln	Gln	
	Lys	Gly	Tyr 185	Thr	Ser	Lys	Val	Leu 190	Asn	Ile	Ilė	Val	Lys 195	Lys	
	Ser	Lys	Asn												
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	15:						
25		(i)	SEQ (A) (B) (C) (D)	LE TY ST	NGTH PE:	nuc EDNE	17 n leic	ucle aci sin	otid d	es	٠.			
30	•	(i	i)	MOL	ECUL	Е ТҮ	PE:	CDN	A						٠.٠
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:15	:		
				AATT											50
				TTCT GACG											100 150
35				TGCC											200 250
				TTGA											300
				GGAT											350
40				GCTT											400 450
				TAAG											500
				GACA											. 550
				CAGC		CT A	AGCCA	CAGC	:A GG	GCAC	-GGCC	TCC	CATO	GAA	600 617

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	.6						
5		(i)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH:	59 nucl DNES	ERIS 7 nu .eic SS: line	cleo acid sing	tide l	es				
		(ii	.)	MOLE	CULE	TYF	E:	CDNA	Δ.						
10		(ix	:)	FEAT (A) (B)		: IE/KE CATIO		CDS	597						
		(xi	.)	SEQU	ENCE	DES	CRI	OITS	J: S	SEQ 1	D NO	:16:			
	ATG Met 1	CCT Pro	GCT Ala	TCC	ATG Met 5	GGA Gly	GGC Gly	CCT Pro	GCC Ala	CTG Leu 10	CTG Leu	TGG Trp	CTA Leu	GCG Ala	42
15				TCC Ser											84
20	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ATA Ile	TTG Leu	126
				AGT Ser											168
25				GAC Asp 60											210
				ACG Thr											252
30				AGT Ser											294
35	ATC Ile	CTG Leu 100	Ser	GAT Asp	Pro	Val	Tyr	Leu	Thr	Val	TTC Phe	Thr	Glu	TGG Trp	336
	CTG Leu	ATC Ile	CTT Leu 115	CAA Gln	GCC Ala	TCT Ser	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	GAG Glu	GGT Gly 125	GAG Glu	37'8
40	AGC Ser	TTC Phe	CTC Leu	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	TAA LsA	TTG Leu	AGG Arg	CTC Leu 140	420
	ACA Thr	AAG Lys	GTG Val	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	ATC Ile	AGG Arg	TAC Tyr	462
45	TGG Trp 155	Tyr	GAG Glu	AAC Asn	TTC Phe	AAC Asn	Ile	TCC Ser	ATT Ile	AGC Ser	AAC Asn	Val	ACA Thr	ACC Thr	504

	AAA AAC AGC GGC AAC TAT TCC TGC TCA GGC CAG ATC CAG CAG Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln 170 175 180	546
5	AAA GGC TAC ACC TCT AAA GTC CTC AAC ATT ATT GTG AAA AAG Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Lys Lys 185 190 195	588
	AGT AAG AAT Ser Lys Asn	597
	(2) INFORMATION FOR SEQ ID NO:17:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 597 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
20	ATTCTTACTC TTTTTCACAA TAATGTTGAG GACTTTAGAG GTGTAGCCTT TCTGCTGGAT CTGGCCTGAG CAGGAATAGT TGCCGCTGTT TTTGGTTGTG ACGTTGCTAA TGGAGATGTT GAAGTTCTCG TACCAGTACC TGATGGGGAT GCCATCCTTG TAGTAGGTCA CCTTTGTGAG CCTCAAATTC TTCCAACTAT GGCACCTGAT GAGGAAGCTC TCACCCTCCA TCACCACGTT GGCAGAGGCT TGAAGGATCA GCCACTCTGT GAAGACTGTT AGGTACACAG GATCACTCAG GATGGATCTA TTTTCCCGAC ACCTGTACTC CCCACTGTCC TGGATTTGGG	50 100 150 200 250 300 350
25	CTTTATTGAT GTTCAAACGT GAAGTCGTCT CTTGCAAAGT AGTGTTGTTG TGGAGCCACA CAGCAGAGTC GACTTCAAGG GAGTTGTTCC CAGTACATGT AAGAGTCACA CTGTCATCCT TCAATATTGT ATTCCATGGC GGGTTCATGG ACACTGTAGG TTTCAAGGTA TCTGATGACA CGACACCTGG AGAGGAGAGC AGCAGCGCTA GCCACAGCAG GGCAGGGCCT CCCATGGAAG CAGGCAT	400 450 500 550 597
	(2) INFORMATION FOR SEQ ID NO:18:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 17 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	,
35	<pre>(ix) FEATURES: (A) NAME/KEY: Xaa = any amino acid (B) LOCATION: 9, 14</pre>	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	•
40	Ser Asp Thr Leu Lys Pro Thr Val Xaa Met Asn Pro Pro Xaa 1 5 10	
	Asn Leu Ile 15	
	(2) INFORMATION FOR SEQ ID NO:19:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

-44-

		(ii	L)	MOLE	CULI	TYI	PE:	CDNA	¥						
		(i)	c)	FEAT (A) (B)		S: ME/KI CATIO		CDS 35.	796						
5		(xi	L) `	SEQU	JENCI	E DES	CRI	OITS	1: 5	SEQ I	D NO	0:19:	:		
	CTCC	CAGTO	CCA (TCGT	PACGI	rg go	GGC	CACGA	A GG#			CT GO			43
10	TCC Ser	ATG Met 5	GGA Gly	GGC Gly	CCT Pro	GCC Ala	CTG Leu 10	CTG Leu	TGG Trp	CTA Leu	GCG Ala	CTG Leu 15	CTG Leu	CTC Leu	85
	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	GAT Asp	ACC Thr	TTG Leu	AAA Lys	CCT Pro 30	ACA Thr	127
15	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ATA Ile	TTG Leu	AAG Lys	GAT Asp	GAC Asp 45	169
20	AGT Ser	GTG Val	ACT Thr	CTT Leu	ACA Thr 50	TGT Cys	ACT Thr	GGG Gly	AAC Asn	AAC Asn 55	TCC Ser	CTT Leu	GAA Glu	GTC Val	211
	GAC Asp 60	TCT Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn	AAC Asn	ACT Thr	ACT Thr 70	TTG Leu	CAA Gln	GAG Glu	253
25	ACG Thr	ACT Thr 75	TCA Ser	CGT Arg	TTG Leu	GAC Asp	ATC Ile 80	AAT Asn	AAA Lys	GCC Ala	CAA Gln	ATC Ile 85	CAG Gln	GAC Asp	295
e ^m	AGT Ser	GGG Gly	GAG Glu 90	TAC Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu 95	AAT Asn	AGA Arg	TCC Ser	ATC Ile	CTG Leu 100	AGT Ser	337
30	GAT Asp	CCT Pro	GTG Val	TAC Tyr 105	CTA Leu	ACA Thr	GTC Val	TTC Phe	ACA Thr 110	GAG Glu	TGG Trp	CTG Leu	ATC Ile	Leu	379
35	CAA Gln	GCC Ala	TCT	GCC Ala	AAC Asn 120	GTG Val	GTG Val	ATG Met	GAG Glu	GGT Gly 125	GAG Glu	AGC Ser	TTC Phe	CTC Leu	421
	ATC Ile 130	AGG Arg	TGC Cys	CAT His	AGT Ser	TGG Trp 135	AAG Lys	AAT Asn	TTG Leu	AGG Arg	CTC Leu 140	ACA Thr	AAG Lys	GTG Val	463
40	ACC Thr	TAC Tyr 145	TAC Tyr	AAG Lys	GAT Asp	GGC Gly	ATC Ile 150	CCC Pro	ATC Ile	AGG Arg	TAC Tyr	TGG Trp 155	TAC Tyr	GAG Glu	505
	AAC Asn	TTC Phe	AAC Asn 160	ATC Ile	TCC Ser	ATT Ile	AGC Ser	AAC Asn 165	GTC Val	ACA Thr	ACC Thr	AAA Lys	AAC Asn 170	AGC Ser	437
45	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	ATC Ile 180	CAG Gln	CAG Gln	AAA Lys	GGC Gly	TAC Tyr 185	589

				GTC Val											631
5				AAG Lys											673
				ATT Ile											715
10				CAG Gln											751
15				AAC Asn 245									TGA		790
	ACGC CTGC	AGC1	CA C	TAAGA CGATO CAACO CGGCA	CAC	AC GO	GAAC ACTO	GTC1	GCA A AGT	AGTC <i>I</i> rggc <i>i</i>	ATGG ATGT	CTTT GATA	GCAC	SAA	840 890 940 991
20	(2)	INE	ORM	ATION	FOF	R SE	DI C	NO: 2	20:						
	•	(i)	•	SEQU (A) (B) (D)	TY	IGTH:	: 25 amir	TERIS 53 am no ao line	nino cid		is				
25		(ii	L)	MOLE	CULI	E TY	PE:	prot	cein						
		(x:	i)	SEQU	JENCI	E DE	SCRII	PTIO	1 : :	SEQ :	ID N	0:20	:		
	Met 1	Pro	·Ala	Ser	Met 5	Gly	Gly	Pro	Ala	Leu 10	Leu	Trp	Leu	Ala	
30	Leu 15	Leu	Leu	Ser	Ser	Pro 20	Gly	Val	Met	Ser	Ser 25	Asp	Thr	Leu	
	Lys	Pro. 30	Thr	Val	Ser	Met	Asn 35	Pro	Pro	Trp	Asn	Thr 40	Ile	Leu	
	Lys	Asp	Asp 45	Ser	Val	Thr	Leu	Thr 50	Cys	Thr	Gly	Asn	Asn 55	Ser	
35	Leu	Glu	Val	Asp 60	Ser	Ala	Val	Trp	Leu 65		Asn	Asn	Thr	Thr 70	•
	Leu	Gln	Glu	Thr	Thr 75		Arg	Leu	Asp	Ile 80		Lys	Ala	Gln	
40	Ile 85		Asp	Ser	Gly	Glu 90		Arg	Cys	Arg	Glu 95		Arg	Ser	
	Ile	Leu 100		Asp	Pro	Val	Tyr 105		Thr	Val	Phe	Thr 110		Trp	٠
	Leu	Ile	Leu 115		Ala	Ser	Ala	Asn 120		Val	Met	Glu	Gly 125	Glu	

Ser Phe Leu Ile Arg Cys His Ser Trp Lys Asn Leu Arg Leu 130 135 Thr Lys Val Thr Tyr Tyr Lys Asp Gly Ile Pro Ile Arg Tyr Trp Tyr Glu Asn Phe Asn Ile Ser Ile Ser Asn Val Thr Thr Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly Gln Ile Gln Gln 170 175 Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile Ile Val Lys Lys 10 Glu Pro Thr Lys Gln Asn Lys Tyr Ser Gly Leu Gln Phe Leu 205 Ile Pro Leu Val Val Ile Leu Phe Ala Val Asp Thr Gly 15 Leu Phe Ile Ser Thr Lys Gln Gln Leu Thr Val Leu Leu Gln Ile Lys Arg Thr Arg Lys Asn Lys Lys Pro Glu Pro Gly Lys 245 Asn 20 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 991 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: TTTTTTTTT TTTTTTTA TTTATCTAAC TGCCGTTTAT TGAGCACCTA 50 CTATCACATG CCACTTAATC AGTTTGAGTT GGTTGAATGA AGCAGTTCTG 100 30 CAAAGCCATG ACTGCAGACC TTCCCGTGTG CATCGTGAGC TGCGTCTGAC 150 GATGGAGAG CGATTGCTGA TGCTGATGTT TCTTAAGCAG CGGCATCAGT 200 TCTTTCCGGG TTCTGGCTTT TTGTTCTTCC TGGTCCTCTT AATCTGCAAG 250 AGCACTGTCA ACTGCTGCTT GGTCGAGATA AACAGTCCTG TGTCCACAGC 300 -AAACAGAATC-ACCACCACCA - ACGGGATCAG-GAATTGTAGC - CCGGAGTACT 350 35 TGTTTTGCTT GGTGGGCTCT TTTTTCACAA TAATGTTGAG GACTTTAGAG 400 GTGTAGCCTT TCTGCTGGAT CTGGCCTGAG CAGGAATAGT TGCCGCTGTT 450 TTTGGTTGTG ACGTTGCTAA TGGAGATGTT GAAGTTCTCG TACCAGTACC 500 TGATGGGGAT GCCATCCTTG TAGTAGGTCA CCTTTGTGAG CCTCAAATTC TTCCAACTAT GGCACCTGAT GAGGAAGCTC TCACCCTCCA TCACCACGTT 550 600 40 GGCAGAGGCT TGAAGGATCA GCCACTCTGT GAAGACTGTT AGGTACACAG 650 GATCACTCAG GATGGATCTA TTTTCCCGA CCCTGTACTC CCCACTGTCC 700 TGGATTTGGG CTTTATTGAT GTCCAAACGT GAAGTCGTCT CTTGCAAAGT 750 AGTGTTGTTG TGGAGCCACA CAGCAGAGTC GACTTCAAGG GAGTTGTTCC CAGTACATGT AAGAGTCACA CTGTCATCCT TCAATATTGT ATTCCATGGC 800 850 45 GGGTTCATGG ACACTGTAGG TTTCAAGGTA TCTGATGACA TGACACCTGG 900 AGAGGAGAC AGCAGCGCTA GCCACAGCAG GGCAGGGCCT CCCATGGAAG 950

-47-

	(2)	INF	ORMA	TION	I FOR	SEÇ	D	NO: 2	2:					
5		(i)		SEQU (A) (B) (C) (D)	LEN TYF STR	IGTH : PE : LANDE	75 nucl DNES	9 nu eic	TICS acleo acid sing	tide 	s			
		(ii	L)	MOLE	CULE	TYP	E:	CDNA	1					
10		(i)	c)	FEAT (A) (B)		: IE/KE ATIC		CDS 17	159					
		(xi	L)	SEQU	JENCE	DES	CRIE	OIT	J: S	EQ I	D NC	:22:		
			GCT Ala											42
15			CTC Leu										_	84
20			ACA Thr											126
			GAC Asp 45											168
25			GTC Val											210
			GAG Glu											252
30			GAC Asp											294
35			AGT Ser											336
			CTT Leu 115											378
40			CTC Leu		Arg					Lys			CTC Leu 140	420
			GTG Val			Tyr					Pro			462
45		Tyr					Ile					Val	ACC Thr	504

	AAA Lys	AAC Asn 170	AGC Ser	GGC Gly	AAC Asn	TAT Tyr	TCC Ser 175	TGC Cys	TCA Ser	GGC Gly	CAG Gln	ATC Ile 180	CAG Gln	CAG Gln		546
5	AAA Lys	GGC Gly	TAC Tyr 185	ACC Thr	TCT Ser	AAA Lys	GTC Val	CTC Leu 190	AAC Asn	ATT Ile	ATT Ile	GTG Val	AAA Lys 195	AAA Lys		588
	GAG Glu	CCC Pro	ACC Thr	AAG Lys 200	CAA Gln	AAC Asn	AAG Lys	TAC Tyr	TCC Ser 205	GGG Gly	CTA Leu	CAA Gln	TTC Phe	CTG Leu 210		630
10	ATC Ile	CCG Pro	TTG Leu	GTG Val	GTG Val 215	GTG Val	ATT Ile	CTG Leu	TTT Phe	GCT Ala 220	GTG Val	GAC Asp	ACA Thr	GGA Gly		672
15				TCG Ser												714
				ACC Thr												756
20	AAC Asn			•												759
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	23:							
25	AAC Asn															
		(i	i)	,												
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:23	:			
30	AGA GCA CTT AGG	GCAC AACA GTTT TGTA	TGT GAA TGC GCC	GGTT CAAC TCAC TTGG TTTC	TGCT CACC TGGG TGCT	GC T AC C CT C GG A	TGGT AACG TTTT TCTG	CGAG GGAT TTCA GCCT	A TA C AG C AA G AG	AACA GAAT TAAT CAGG	GTCC TGTA GTTG AATA	TGT GCC AGG GTT	GTCC CGGA ACTT GCCG	ACA GTA TAG CTG		50 100 150 200 250
35	CCT	GATG	GGG	TGAC ATGC ATGG	CATC	CT T	GTAG	TAGG	T CA	CCTT	TGTG	AGC	CTCA	AAT		300
m 10 pm	- TTG AGG	GCAG ATCA	AGG- CTC	CTTG AGGA	AAGG TGGA	AT-C TC T	AGCC ATTT	ACTC	T GT G AC	GAAG ACCT	ACTG GTAC	TTA	GGTA	CAC		400 -450 500
40	GTA CCC GCG GGA	GTGT AGTA GGTT	TGT CAT CAT AGA	GGCT TGTG GTAA GGAC GCAG	GAGC GAGT ACTG	CA C CA C TA G	ACAG ACTG GTTT	CAGA TCAT 'CAAG	G TC C CT G TA	GACT TCAA TCTG	TCAA TATT ATGA	GGG GTA CAT	AGTT TTCC GACA	ATG CCT		550 600 650 700 750 759
45	(2)	IN	FORM	IATIO	N FC	R SE	Q II	NO:	24:							
		(i	.)	SEQ (A) (B) (D)	LE TY	NGTH	: 2 ami	TERI 29 a no a lin	mino		.ds					

(ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
- Ser Asp Thr Leu Lys Pro Thr Val Ser Met Asn Pro Pro Trp
 1 5 10
- Asn Thr Ile Leu Lys Asp Asp Ser Val Thr Leu Thr Cys Thr 5 15 20 25
 - Gly Asn Asn Ser Leu Glu Val Asp Ser Ala Val Trp Leu His 30 35 40
 - Asn Asn Thr Thr Leu Gln Glu Thr Thr Ser Arg Leu Asp Ile 45 50 55
- 10 Asn Lys Ala Gln Ile Gln Asp Ser Gly Glu Tyr Arg Cys Arg
 60 65 70
 - Glu Asn Arg Ser Ile Leu Ser Asp Pro Val Tyr Leu Thr Val
- Phe Thr Glu Trp Leu Ile Leu Gln Ala Ser Ala Asn Val Val 85 90 95
 - Met Glu Gly Glu Ser Phe Léu Ile Arg Cys His Ser Trp Lys 100 105 110
 - Asn Leu Arg Leu Thr Lys Val Thr Tyr Tyr Lys Asp Gly Ile 115 120 125
- 20 Pro Ile Arg Tyr Trp Tyr Glu Asn Phe Asn Ile Ser Ile Ser 130 135 140
 - Asn Val Thr Thr Lys Asn Ser Gly Asn Tyr Ser Cys Ser Gly 145
- Gln Ile Gln Gln Lys Gly Tyr Thr Ser Lys Val Leu Asn Ile 155 160 165
 - Ile Val Lys Lys Glu Pro Thr Lys Gln Asn Lys Tyr Ser Gly 170 175 180
 - Leu Gln Phe Leu Ile Pro Leu Val Val Val Ile Leu Phe Ala 185 190 195
- 30 Val Asp Thr Gly Leu Phe Ile Ser Thr Lys Gln Gln Leu Thr 200 205 210
 - Val Leu Leu Gln Ile Lys Arg Thr Arg Lys Asn Lys Lys Pro
- Glu Pro Gly Lys Asn 225

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 nucleotides
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: primer

		(xi)	SEQU	ENCE	DES	CRIP	TION	: S	EQ I	D NO	:25:			
	GCGA	AGAT	CT A	TAAA	TATG	с ст	GCTT	CCAT	GGG	}					33
	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:2	6:						
5		(i)		SEQU (A) (B) (C) (D)	LEN TYP STR	GTH: E:	33 nucl DNES	nuc eic	leot acid sing	ides l					
		(ii	.)	MOLE	CULE	TYP	E:	prim	er						
10		(xi	.)	SEQU	ENCE	DES	CRIP	TION	i: S	EQ I	D NC	:26:			
	GCAG	GAAT	TC T	TACT	CTTT	TT T	CACA	ATAA	TGT	,					33
	(2)	INF	ORMA	NOIT	FOR	SEÇ] ID	NO:2	:7:						
15		(i)		(A) (B) (C)	JENCE LEN TYP STR TOP	IGTH : PE : LANDE	59 nucl DNES	1 nu eic S:	ació sing	tide 1	es				
		(ii	L) .	MOLE	CULE	TYE	E:	cDNA	Y						
20		(i>	c)		URES NAM LOC	IE/KE		CDS	591						
		(xi	L)	SEQU	JENCE	DES	CRIE	10IT	1: 5	SEQ I	D NO	0:27:	:		
25			GCT Ala												42
	CTG Leu 15	CTG Leu	CTC Leu	TCC Ser	TCT Ser	CCA Pro 20	GGT Gly	GTC Val	ATG Met	TCA Ser	TCA Ser 25	GAT Asp	ACC Thr	TTG Leu	84
30	AAA Lys	CCT Pro 30	ACA Thr	GTG Val	TCC Ser	ATG Met	AAC Asn 35	CCG Pro	CCA Pro	TGG Trp	AAT Asn	ACA Thr 40	ATA Ile	TTG Leu	126
			GAC												168
	_ Буѕ	-Asp	45	Ser-	-va-1-	-rnr-	-rea	50	Cys-	- Thr-	-GTA	ASN-	Asn 55	-Ser-	
35	CTT Leu	GAA Glu	GTC Val	GAC Asp 60	TCT Ser	GCT Ala	GTG Val	TGG Trp	CTC Leu 65	CAC His	AAC Asn	AAC Asn	ACT Thr	ACT Thr 70	210
40	TTG Leu	CAA Gln	GAG Glu	ACG Thr	ACT Thr 75	TCA Ser	C IT Arg	TTG Leu	GAC Asp	ATC Ile 80	AAT Asn	AAA Lys	GCC Ala	CAA Gln	252
	ATC Ile 85	Gln	GAC Asp	AGT Ser	GGG Gly	GAG Glu	Tyr	AGG Arg	TGT Cys	CGG Arg	GAA Glu	Asn	AGA Arg	TCC Ser	294

				GAT Asp											336
5	Leu			CAA Gln											378
				ATC Ile 130											420
10				ACC Thr											462
15				AAC Asn											504
				GGC Gly											546
20				ACC Thr											588
	GAG Glu														591
	(2)	IN	FORM	OITA	v FO	R SE	Q ID	NO:	28:						
25		(i)	SEQI (A) (B) (D)	LEI TY:	NGTH PE:	: 1: ami:	reri: 96 ai no a lin	mino cid		ds		٠		
	•	(i	i)	MOL	ECUL	Е ТҮ	PE:	pro	tein						
30		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:28	:		
	Met 1	Pro	Ala	Ser	Met	Gly 5	Gly	Pro	Ala	Leu	Leu 10	Trp	Leu	Ala	
	Leu	Leu 15		Ser	Ser	Pro	Gly 20		Met	Ser	Ser	Asp 25		Leu	
35	Lys	Pro	Thr 30		Ser	Met	Asn	Pro 35		Trp	Asn	Thr	Ile 40	Leu	•
	Lys	Asp	Asp	Ser 45		Thr	Leu	Thr	Cys 50		Gly	Asn	Asn	Ser 55	
40	• eu	Glu	Val	Asp	Ser 60		. Val	Trp	Leu	His 65		Asn	Thr	Thr	
	Leu 70		Glu	Thr	Thr	Ser 75	-	Leu	Asp	Ile	Asn 80	_	a Ala	Gln	
	Ile	Gln 85	_	Ser	Gly	Glu	туг 90	_	ı. Cys	Arg	, Glu	Asr 95		Ser	

	Ile	Leu	Ser 100	Asp	Pro	Val	Tyr	Leu 105	Thr	Val	Phe	Thr	Glu 110	Trp	
	Leu	Ile	Leu	Gln 115	Ala	Ser	Ala	Asn	Val 120	Val	Met	Glu	Gly	Glu 125	
5	Ser	Phe	Leu	Ile	Arg 130	Cys	His	Ser	Trp	Lys 135	Asn	Leu	Arg	Leu	
	Thr 140	Lys	Val	Thr	Tyr	Tyr 145	Lys	Asp	Gly	Ile	Pro 150	Ile	Arg	Tyr	
10	Trp	Туг 155	Glu	Asn	Phe	Asn	Ile 160	Ser	Ile	Ser	Asn	Val 165		Thr	•
	Lys	Asn	Ser 170	Gly	Asn	Tyr	Ser	Cys 175	Ser	Gly	Gln	Ile	Gln 180	Gln	
	Lys	Gly	Tyr	Thr 185	Ser	Lys	Val	Leu	Asn 190	Ile	Ile	Val	Lys	Lys 195	
15	Glu														
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	29:						
20		(i)	SEQ: (A) (B) (C) (D)	LE TY ST	E CH NGTH PE: RAND POLO	: 5 nuc EDNE		ucle aci sin	otid d	es				
		(i	i)	MOL	ECUL	Е ТҮ	PE:	cDN.	A						
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:29	:		
25	GGA CTA CTT	TCTG ATGG GTAG	GCC AGA TAG	ACAA TGAG TGTT GTCA	CAGG GAAG CCTT	AA T TT C TG T	AGTT TCGT GAGC	GCCG ACCA CTCA	C TG G TA A AT	TTTT CCTG TCTT	TGGT ATGG CCAA	TGT GGA CTA	GACG TGCC TGGC	TTG ATC ACC	50 100 150 200
30	TCT. TGA	AGCC ATTT TGTC ACAG	ACT TCC CAA CAG	GCTC CTGT CGAC ACGT AGTC	GAAG ACCT GAAG GACT	AC T GT A TC G TC A	GTTA CTCC TCTC AGGG	GGTA CCAC TTGC AGTT	C AC T GT A AA G TT	AGGA CCTG GTAG CCCA	TCAC GATT TGTT GTAC	TCA TGG GTT ATG	GGAT GCTT GTGG TAAG	GGA TAT AGC AGT	250 300 350 400 450
35	TAG	GTTT	'CAA	TCCT GGTA GCAG	TCTG	AT G	ACAT	'GACA	C CT	GGAG	AGGA	GAG	GACA CAGC	CTG AGC	500 550 591
	(2)	IN	FORM	OITAL	N FC	R SE	QID	NO:	30:						
40		(i	.)	(A) (B)	LE TY SI		nuc EDNE		ucle aci	otid	les			٠	
		(i	.i)	MOL	ECUI	Е ТҮ	PE:	cDN	IA						
		(i	. x)	FEA	TURE	S:									
45				(A) (B)		ME/K		CDS							

	(xi	.)	SEQU	ENCE	DES	CRIE	MOIT	i: S	EQ I	D NC	: 30:			
												CCA Pro		42
5												TGT Cys		84
10												CTC Leu		126
												GAC Asp 55		168
15												TGT Cys		210
												ACA Thr	GTC Val	252
20												GTG Val		294
25												TGG Trp		336
	Leu											GGC Gly 125		378
30												ATT Ile		420
												TCA Ser		462
35												AAC Asn		504
40		Lys					Lys					TCC Ser		546
			Leu									TTT Phe 195		588
45				Leu					Lys				ACA Thr 210	630

	GTG Val	CTC Leu	TTG Leu	CAG Gln	ATT Ile 215	AAG Lys	AGG Arg	ACC Thr	AGG Arg	AAG Lys 220	AAC Asn	AAA Lys	AAG Lys	CCA Pro	672
5			GGA Gly												687
	(2)	INE	FORM	ATION	1 FOF	R SEC	OID	NO:3	31:						
10		(i)		SEQU (A) (B) (D)	LEN TYI	IGTH:	: 17 amir	rERIS 73 am no ac line	nino Sid		ls.				
		(i i	L)	MOLE	ECULE	E TYI	PE:	prot	ein						
		(xi	Ĺ)	SEQU	JENCE	E DES	CRI	MOITS	J: 5	SEQ I	D NO	31:	:		
15	Ser 1	Asp	Thr	Leu	Lys 5	Pro	Thr	Val	Ser	Met 10	Asn	Pro	Pro	Trp	
	Asn 15	Thr	Ile	Leu	Lys	Asp 20	Asp	șer	Val	Thr	Leu 25	Thr	Cys	Thr	
	Gly	Asn 30	Asn	Ser	Leu	Glu	Val 35	Asp	Ser	Ala	Val	Trp 40	Leu	His	
20	Asn	Asn	Thr 45	Thr	Leu	Gln	Glu	Thr 50	Thr	Ser	Arg	Leu	Asp 55	Ile	
	Asn	Lys	Ala	Gln 60	Ile	Gln	Asp	Ser	Gly 65	Glu	Tyr	Arg	Cys	Arg 70	
25	Glu	Asn	Arg	Ser	Ile 75	Leu	Ser	Asp	Pro	Val 80	Tyr	Leu	Thr	Val	
	Phe 85	Thr	Glu	Trp	Leu	Ile 90	Leu	Gln	Ala	Ser	Ala 95	Asn	Val	Vāī	
		100	Gly				105					110			
30	Asn	Leu	Arg 115	Leu	Thr	Lys	Val	Thr 120	Tyr	Tyr	Lys	Asp	Gly 125	Ile	<i>,</i> •
	Pro	Ile	Arg	Tyr 130	Trp	Tyr	Glu	Asn	Phe 135	Asn	Ile	Ser	Ile	Ser 140	
35	Asn	Val	Thr	Thr	Lys 145	Asn	Ser	Gly	Asn	Туг 150	Ser	Cys	Ser	Gly	,
	Gln 155	Ile	Gln	Gln	Lys	Gly 160	Tyr	Thr	Ser	Lys	Val 165	Leu	Asn	Ile	
	Ile	Val 170	Lys	Lys	Glu										

WO 98/45707 PCT/US98/06774

-55-

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims.

15

30

What is claimed is:

- 1. A method to detect canine IgE comprising:
- (a) contacting an isolated canine Fc_{ϵ} receptor ($Fc_{\epsilon}R$) molecule with a putative canine IgE-containing composition under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule:IgE complex; and
- (b) determining the presence of IgE by detecting said $Fc_{\epsilon}R$ molecule:IgE complex, the presence of said $Fc_{\epsilon}R$ molecule:IgE complex indicating the presence of IgE.
- 2. A kit for detecting IgE comprising a canine $Fc_{\epsilon}R$ molecule and a means 10 for detecting canine IgE.
 - 3. A method to detect canine flea allergy dermatitis comprising:
 - (a) immobilizing a flea allergen on a substrate;
 - (b) contacting said flea allergen with a putative canine IgE-containing composition under conditions suitable for formation of an antigen: IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antigen: IgE complex binding to said substrate; and
 - (d) detecting the presence of said antigen: IgE complex by contacting said antigen: IgE complex with a canine $Fc_{\epsilon}R$ molecule.
- 4. A kit for detecting flea allergy dermatitis comprising a canine Fc_{ϵ} receptor molecule and a flea allergen.
 - 5. The invention of Claims 1, 2, 3 or 4, wherein said $Fc_{\epsilon}R$ molecule comprises at least a portion of a $Fc_{\epsilon}R$ alpha chain that binds to canine IgE.
- The invention of Claims 1, 2, 3 or 4, wherein said Fc_εR molecule
 comprises a protein selected from the group consisting of PcFc_εRα1₁₉₇, PcFc_εRα2₁₉₇, PcFc_εRα3₁₉₉, PcFc_εRα4₂₅₃, PcFc_εRα4₂₂₉, PcFc_εRα4₁₇₃ and PcFc_εRα4₁₉₇.
 - 7. The invention of Claims 1, 2, 3 or 4, wherein said $Fc_{\epsilon}R$ molecule is encoded by a nucleic acid molecule selected from the group consisting of $ncFc_{\epsilon}R\alpha 1_{609}$, $ncFc_{\epsilon}R\alpha 1_{591}$, $ncFc_{\epsilon}R\alpha 2_{609}$, $ncFc_{\epsilon}R\alpha 2_{591}$, $ncFc_{\epsilon}R\alpha 3_{617}$, $ncFc_{\epsilon}R\alpha 3_{597}$, $ncFc_{\epsilon}R\alpha 4_{591}$, $ncFc_{\epsilon}R\alpha 4_{687}$, $ncFc_{\epsilon}R\alpha 4_{991}$ and $ncFc_{\epsilon}R\alpha 4_{759}$.

PCT/US98/06774

5

10

15

- 8. The invention of Claims 1, 2, 3 or 4, wherein said Fc_cR molecule is encoded by a nucleic acid molecule selected from the group consisting of: a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:27 and SEQ ID NO:30, and a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising any of said nucleic acid sequences.
- 9. The invention of Claims 1, 2, 3 or 4, wherein said $Fc_{\epsilon}R$ molecule is conjugated to a detectable marker.
- 10. The invention of Claims 1, 2, 3 or 4, wherein said Fc_€R molecule is conjugated to a detectable marker selected from the group consisting of a radioactive label, a fluorescent label, a chemiluminescent label, a chromophoric label and a ligand.
- 11. The invention of Claims 1 or 3, wherein said putative canine IgE-containing composition comprises a bodily fluid selected from the group consisting of serum, blood and plasma.
- 12. The method of Claim 1 further comprising the step selected from the group consisting of: binding said canine $Fc_{\epsilon}R$ molecule to a substrate prior to performing step (a) to form a $Fc_{\epsilon}R$ molecule-coated substrate; and binding said putative IgE-containing composition to a substrate prior to performing step (a) to form a putative IgE-containing composition-coated substrate, wherein said substrate to be bound to said composition is selected from the group consisting of a non-coated substrate, an antigen-coated substrate and an anti-IgE antibody-coated substrate.
- 13. The method of Claim 12, wherein said antigen is selected from the group consisting of an allergen and a parasitic antigen.
- 14. The invention of Claims 13 or 30, wherein said allergen is derived from material selected from the group consisting of fungi, trees, weeds, shrubs, grasses, wheat, corn, soybean, rice, eggs, milk, cheese, bovine, poultry, swine, sheep, yeast, fleas, flies, mosquitos, mites, midges, biting gnats, lice, bees, wasps, ants, true bugs and ticks.
- 15. The invention of Claims 3 or 4, wherein said flea allergen is a flea saliva antigen.

15

- 16. The invention of Claims 3 or 4, wherein said flea allergen is selected from the group consisting of flea saliva products and flea saliva proteins.
- 17. The method of Claim 12, further comprising removing non-bound material from said antigen-coated substrate or said antibody-coated substrate under conditions that retain antigen or antibody binding to said substrate.
- 18. The method of Claim 12 or 33, wherein said substrate comprises an ELISA plate, a dipstick, a radioimmunoassay plate, agarose beads, plastic beads, latex beads, immunoblot membranes and immunoblot papers.
 - 19. The invention of Claims 12 or 32, wherein said substrate is latex beads.
- 10 20. The method of Claim 1, wherein said step of detecting comprises performing assays selected from the group consisting of enzyme-linked immunoassays, radioimmunoassays, immunoprecipitations, fluorescence immunoassays, chemiluminescent assay, immunoblot assays, lateral flow assays, agglutination assays and particulate-based assays.
 - 21. The method of Claim 1, wherein said step of detecting comprises:
 - (a) contacting said canine $Fc_{\epsilon}R$ molecule: IgE complex with an indicator molecule that binds selectively to said $Fc_{\epsilon}R$ molecule: IgE complex;
 - (b) removing substantially all of said indicator molecule that does not selectively bind to Fc_eR molecule:IgE complex; and
- 20 (c) detecting said indicator molecule, wherein presence of said indicator molecule is indicative of the presence of IgE.
 - 22. The method of Claim 21, wherein said indicator molecule comprises a compound selected from the group consisting of a $Fc_{\epsilon}R$ molecule, an antigen, an antibody and a lectin.
 - 23. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing said canine $Fc_{\epsilon}R$ molecule on a substrate;
 - (b) contacting said canine $Fc_{\epsilon}R$ molecule with said putative IgE-containing composition under conditions suitable for formation of a $Fc_{\epsilon}R$ molecule:IgE complex bound to said substrate;
- 30 (c) removing non-bound material from said substrate under conditions that retain Fc_εR molecule:IgE complex binding to said substrate; and

- (d) detecting the presence of said Fc_€R molecule:IgE complex.
- 24. The method of Claim 23, wherein the presence of said $Fc_{\epsilon}R$ molecule:IgE complex is detected by contacting said $Fc_{\epsilon}R$ molecule:IgE complex with a compound selected from the group consisting of an antigen and an antibody that binds selectively to IgE.
- 25. The method of Claim 24, wherein said compound comprises a detectable marker.
 - 26. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing a desired antigen on a substrate;
- 10 (b) contacting said antigen with said putative IgE-containing composition under conditions suitable for formation of an antigen: IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antigen: IgE complex binding to said substrate; and
 - (d) detecting the presence of said antigen: IgE complex by contacting said antigen: IgE complex with said canine Fc_eR molecule.
 - 27. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing an antibody that binds selectively to IgE on a substrate;
- 20 (b) contacting said antibody with said putative IgE-containing composition under conditions suitable for formation of an antibody:IgE complex bound to said substrate;
 - (c) removing non-bound material from said substrate under conditions that retain antibody: IgE complex binding to said substrate; and .
- 25 (d) detecting the presence of said antibody:IgE complex by contacting said antibody:IgE complex with said canine Fc_eR molecule.
 - 28. The method of Claim 1, said method comprising the steps of:
 - (a) immobilizing said putative IgE-containing composition on a substrate;

- (b) contacting said composition with said canine $\mathbf{Fc}_{\epsilon}\mathbf{R}$ molecule under conditions suitable for formation of a $\mathbf{Fc}_{\epsilon}\mathbf{R}$ molecule: IgE complex bound to said substrate;
- (c) removing non-bound material from said substrate under conditions that retain Fc_eR molecule:IgE complex binding to said substrate; and
 - (d) detecting the presence of said $Fc_{\epsilon}R$ molecule: IgE complex.
 - 29. The method of Claim 28, wherein said canine $Fc_{\epsilon}R$ molecule comprises a detectable marker.
- 30. The kit of Claim 2, wherein said detection means further comprises an antigen selected from the group consisting of an allergen and a parasite antigen, wherein said antigen induces IgE antibody production in canids.
 - 31. The kit of Claim 2, wherein said detection means comprises an antibody that selectively binds to canine IgE.
- 32. The kit of Claim 2, wherein said detection means detects said canine 15 $Fc_{\epsilon}R$ molecule.
 - 33. The kit of Claim 30, wherein said antigen is immobilized on a substrate.
 - 34. The kit of Claim 30, wherein said parasite antigen is a heartworm antigen.
 - 35. The kit of Claim 2 further comprising an apparatus comprising:
 - (a) a support structure defining a flow path;
- 20 (b) a labeling reagent comprising a bead conjugated to said antigen, wherein said labeling reagent is impregnated within the support structure in a labeling zone; and
 - (c) a capture reagent comprising said $Fc_{\epsilon}R$ molecule, wherein said capture reagent is located downstream of said labeling reagent within a capture zone fluidly connected to said labeling zone in such a manner that said labeling reagent can flow from said labeling zone into said capture zone.
 - 36. The kit of Claim 35, wherein said apparatus further comprises a sample receiving zone located along said flow path.
- 37. The kit of Claim 35, wherein said apparatus further comprises an30 absorbent located at the end of said flow path.

- 38. The kit of Claim 36, wherein said sample receiving zone is located upstream of said labeling reagent.
 - 39. The kit of Claim 35, wherein said bead comprises a latex bead.

INTERNATIONAL SEARCH REPORT

nter onal Application No PCT/US 98/06774

A. CLA	ASSIFIC	CATION OF SUBJEC	T MATTER ,
IPC	6	CATION OF SUBJECT G01N33/566	G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Р,Х	WO 97 20859 A (IDEXX LAB INC) 12 June 1997 see claims 6,7,10-14,16-27,29,30 see page 1, line 13 - line 21 see page 6, line 15 - line 16 see page 15, line 3 - line 16 see page 29, line 12 - line 25	1-39
X	WO 95 16203 A (GENENTECH INC ;TAI WAI FEI DAVID (US); LOWE JOHN (US); JARDIEU PAU) 15 June 1995 see claims 1,8,14-16 see page 4, line 18 - page 6, line 9 see page 12, line 25 - page 13, line 5 see page 13, line 14 - line 19 see page 23, line 9 - page 24, line 38	1-39

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of theinternational search	Date of mailing of the international search report
14 July 1998	28/07/1998
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Routledge, B

INTERNATIONAL SEARCH REPORT

Inter and Application No PCT/US 98/06774

otion) DOCUMENTS CONSIDERED TO BE DELEVANT	PCT/US 98/06774
Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
WO 94 29696 A (QUIDEL CORP) 22 December	20-39
cited in the application see claims	
	,
·	
	·
	WO 94 29696 A (QUIDEL CORP) 22 December 1994

INTERNATIONAL SEARCH REPORT

information on patent family members

pcT/US 98/06774

Patent document cited in search rep		Publication date	l	Patent family member(s)	Publication date
WO 9720859	Α	12-06-1997	AU	1146897 A	27-06-1997
WO 9516203	Α	15-06-1995	AT	157455 T	15-09-1997
			CA	2176811 A	15-06-1995
			DE	69405251 D	02-10-1997
			DE	69405251 T	05-02-1998
			DK	7332 07 T	20-04-1998
			EP	07332 07 A	25-09-1996
		•	ES	2108 566 T	16-12-1997
			JP	9506435 T	24-06-1997
			US	5714338 A	03-02-1998
WO 9429696	Α	22-12-1994	EP	0705426 A	10-04-1996
		•	JP	8511621 T	03-12-1996