Notazione: $\sqrt[-]{x} := \frac{1}{\sqrt{x}}$ Basi generalizzate $|x\rangle = \xi_x(x) = \delta(x - x_0) \qquad \langle x_0 | x_0' \rangle = \delta(x_0 - x_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ $|p\rangle = v_p(x) = \sqrt[7]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad$

Roba di Ehrenfest $[X, f(X, P)] = i\hbar \frac{\partial f}{\partial P}$ $[P, f(X, P)] = -i\hbar \frac{\partial f}{\partial X}$ d_k degenerazione

Matrici di Pauli

 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$

Trasformazione unitaria

Per trovare una base di autovettori comuni (sapendo già che gli operatori commutano, e se entrambi hanno degenerazioni):

- 1. Trovo autovalori e autovettori di $A \in B$;
- 2. Autovettori associati ad autovalori non degeneri sono automaticamente autovettori comuni;
- 3. Per autovettori associati ad autovalori degeneri, faccio la prova (applico B a un autovettore degenere di A);
- 4. Se è anche autovettore di B, sono a posto (è autovettore comune);
- 5. Se non lo è:
 - (a) Definisco un nuovo vettore come combinazione lineare degli autovettori della base dell'autospazio degenere in questione;
 - (b) Impongo che questo nuovo vettore sia autovettore di B;
 - (c) Risolvo il sistema di equazioni trovando i coefficienti della combinazione lineare;
 - (d) Per come è stato definito, questo vettore è autovettore sia di A che di B.

Per capire se un insieme di osservabili compatibili costituisce un ICOC:

- 1. Se gli osservabili sono compatibili, esiste una base comune di autovettori;

 $A' = UAU^{\dagger}$ 2. A ogni autovettore, associo una label costituita da una lista dei corrispondenti autovalori per ogni osservabile;

3. Se ogni <i>label</i> è un	ica, l'insieme è un ICOC.				
Equazione di Schrödinger	Visuale di Schrödinger	Equazione di Heisenberg	Visuale di Heisenberg		Sistema conservativo
$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \psi(t)\rangle = H(t) \psi(t)\rangle$	$\begin{cases} \psi(t)\rangle_S = U(\Delta t) \psi(t_0)\rangle_S \\ A_S(t) = A_S(t_0) \end{cases}$	$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} A_H(t) = [A_H, H_H]$		$(\Delta t)A_H(t_0)U(\Delta t)$	$U(t,t_0) = e^{-\frac{i}{\hbar}H(t-t_0)}$
Matrice densità	Stato puro	Stato misto	Proprietà generali		$N\ket{n}=n\ket{n}$
$ \rho(t) = \psi(t)\rangle \langle \psi(t) $	$\rho^2(t) = \rho(t)$	$\rho(t) = \sum_{k} p_k \rho_k(t)$	$\rho^{\dagger}(t) = \rho(t)$	$\langle A \rangle_{\psi}(t) = Tr(\rho(t)A)$	$a\left n\right\rangle = \sqrt{n}\left n-1\right\rangle$
$ \rho_{pn}(t) = \langle u_p \rho(t) u_n \rangle = \bar{c}_n(t) c_p(t) $		Oscillatore armonico	$Tr(\rho(t)) = 1$	$i\hbar \frac{\mathrm{d}\rho(t)}{\mathrm{d}t} = [H(t), \rho(t)]$	$a^{\dagger} n \rangle = \sqrt{n+1} n+1 \rangle$
Condizioni al contorno buche di potenziale		$H = \hbar\omega \left(N + \frac{1}{2} \right)$	$\hat{X} := \sqrt{\frac{m\omega}{\hbar}} X$	$a = \sqrt[7]{2}(\hat{X} + i\hat{P})$	$[a,a^{\dagger}]=1$
Continuità di ψ nelle	Continuità di ψ' nelle	$N = a^{\dagger}a$	$\hat{P} := \sqrt[4]{m\hbar\omega}P$	$a^{\dagger} = \sqrt[-]{2}(\hat{X} - i\hat{P})$	$[N,a^{\dagger}]=a^{\dagger}$
discontinuità di V	discontinuità finite di ${\bf V}$		$\left(\frac{\hbar}{m\omega}\right)^n\right]^{\frac{1}{2}}\left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}\left[$	$\left[\frac{m\omega}{\hbar}x - \frac{\mathrm{d}}{\mathrm{d}x}\right]^n e^{-\frac{m\omega}{\hbar}\frac{x^2}{2}}$	[N,a] = -a
Soluzioni buche di potenziale $(A, B \in \mathbb{C})$		Metodo perturbativo	(1)		$/k(0) \hat{W} _{n}(0)$
E > V:	E = V	E < V	$E_n^{(1)} = \langle n^{(0)} \hat{W}$	$\left n^{(0)}\right\rangle;\ \left n^{(1)}\right\rangle = -\sum_{k\neq 0}$	$\frac{1}{2n} \frac{\sqrt{k^{-1}} \sqrt{k^{-1}}}{\sqrt{n^{-1}}} k^{(0)}\rangle$
$\psi(x) = Ae^{ikx} + Be^{-ikx}$	$\psi(x) = A + Bx$	$\psi(x) = Ae^{\rho x} + Be^{-\rho x}$			**
$k := \sqrt{rac{2m(E-V)}{\hbar^2}}$	$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$	$ ho := \sqrt{rac{2m(V-E)}{\hbar^2}}$	$E_n^{(2)} = \langle n^{(0)} \hat{W} n^{(1)} \rangle = -\sum_{k \neq n} \frac{\left \langle k^{(0)} \hat{W} n^{(0)} \rangle \right ^2}{E_k^{(0)} - E_n^{(0)}}$		
Momento angolare $J_{\pm} k j m\rangle = N_{\pm} k j m \pm 1\rangle$; $N_{\pm}(j, m) = \hbar \sqrt{j(j+1) - m(m \pm 1)}$			Caso degenere: diagonalizzare $W_{ij} = \left\langle n_i^{(0)} \middle W \middle n_j^{(0)} \right\rangle$ (dà le correzioni		
$J_{\pm}J_{\mp} = J^2 - J_z(J_z \mp \hbar) \qquad J_zJ_{\pm} = J_{\pm}(J_z \pm \hbar)$			al primo ordine del'autovalore degenere)		

Meccanica classica

Equazioni di Lagrange — Equazioni di Hamilton $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$ $\dot{q}_i = \frac{\partial H}{\partial p_i}; \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$

Roba matematica

Error function $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ Polinomi di Hermite $H_n(z) = (-)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$	Integrale di Seno $(n \in I_n(a))$ $I_n(a) = \int_0^\infty x^n e^{-ax^2} dx = \begin{cases} \frac{(n-1)!}{2^{\frac{n}{2}}} \\ \frac{(n-1)!}{2a^{\frac{n-1}{2}}} \end{cases}$	o $(n \in \mathbb{N} \setminus \{0\})$ $ \begin{cases} \frac{(n-1)!!}{2\frac{n}{2}} \sqrt{\frac{\pi}{a^{n+1}}} & \text{n pari } \\ \frac{(n-1)!}{2\frac{n}{2}} & \frac{(n-1)!}{2} \end{cases} $ n dispari	Commutatori cancri $[A,BC] = [A,B]C + B[A,C]$ $[AB,C] = A[B,C] + [A,C]B$ $[AB,CD] = A[B,C]D + AC[B,D] +$	Prodotto misto $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$ $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$ $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{b}(\vec{c} \cdot \vec{a}) - \vec{a}(\vec{b} \cdot \vec{c})$
$= \left(2z - \frac{d}{dz}\right) H_{n-1}(z)$,	X 2a 2	+[A,C]DB+C[A,D]B	Goniometria marastoniana
Formule Eulero	Integrale di D'Eramo	Integrale	$\sin^2 \theta = \frac{1-\cos 2\theta}{2}$	
$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$	$\int_{\mathbb{R}} \mathrm{d}x e^{-\alpha x^2 + \beta x} = \frac{\sqrt{\pi}}{\alpha} e^{\frac{\beta^2}{4\alpha}}$	$\int_0^1 \mathrm{d}z \sin^2(n\pi z)$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$	
$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$	-			-