Taller Longitud de Arco

Presentado por:

Oscar Alejandro Gonzalez Soto – 20231578120 Maira Alejandra Orejuela Andrade – 20222578109

Presentado a:

Elsy Carolina Cipaguata Lara

Curso: 578 – 303

Universidad Distrital Francisco José de Caldas (Facultad tecnológica)

Calculo Integral

Noviembre 2023

Bogotá DC

PARTE I:

. Cala	br b	1 10	ngita	9 9	-1-	arco	5	d	la	0	orvi	2	da	da	5	tre	10	V	abr	5-	99	ebs	
.30	× 43 -	- 13	7	(5		A					7		3 =		27	1,0	2)		1				
y ³ (3	x =		+ >	12	>	× "	(3)	0) 1	\ Y	B 3	+ 4	5)		×	4	1 2) ³	+	30					
dx =	(* 2y³	1	y5 30 ,			(1)	1(2	y3 (;) - 2y ²) (=	, y3	11	+	to to	50	42						
= -	4 Y 6	+	y4 6		y24 6	1	3	3		d	2 4	=	(×	24	101	3.)	2 =	36	3 _	2	\$.	3	+
= 7,	8 -	1 2	+ 0	L ys	, 1	ony.	tud	del	a	700	0			7-	+ (:	y ⁸ 36	2	+	4	y8)	1	17	
= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y* +	1 2	+ 1		dy	drade peta	2	T(-)	2.	+ = 2	3)		17	7	16	2 7 x	⁴ d	y +	3 2		7	dy	
= 4	(45)	+	8) a	1-8		2	=]	<u>y</u>	5		7 2 y3	12	-	1	30		1	213)-	(3)	5	26	工工工
= 32		16		30		1 2	=	Co fee	30		I IG	+	1	=		37	+	7 6	1)	4	96	+2.	ZC
70, 480			240	30	nido	des	,														*		

N2 + 1 = / - 1 2 Arcton 3. Y= In (ex+1): 0 x x b;0,x>0 $dy = \frac{1}{(c^{x}+1)(c^{x}-1)-(c^{x}+1)(c^{x}-1)^{1}})ex$ = ext (cx (ex-1) - (ex + x) ex) dx $= \underbrace{e^{*}}_{C^{*}+1} \underbrace{(e^{*}-1)}_{(e^{*}-1)} + \underbrace{e^{*}+1}_{(e^{*}-1)} \underbrace{d_{x} = e^{*}}_{C^{*}+1} + \underbrace{e^{*}}_{(e^{*}-1)} \underbrace{d_{x}}_{(e^{*}-1)}$ = (2x - cx - c2x - cx) = 1 (- 2cx) = 4 c2x -2x - x (c2x - x) = ((c2x-1)2=c+x-22x+1 Longitud de Arco = $\int \frac{1}{|x|^{2}} \frac{1}{|x|^{2}} \frac{1}{|x|^{2}} = \int \frac{1}{|x|^{2}} \frac{1}{|x|$ $= \int_{0}^{1} \frac{(2x-1)^{2}+4c^{2x}}{(2x-1)^{2}+4c^{2x}} dx = \int_{0}^{1} \frac{(2x-2c^{2x}+1)+4c^{2x}}{(2x-1)^{2}+4c^{2x}} dx$ = / (c1x + 22x + I)dx = / (c2x + I) dx

6.
$$e_{y} = x^{3} + 2x^{-3}$$
, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x \le 2$
 $y = x^{3} + 2x^{-3}$, $t \le x^{3} + 2x^{-3}$, $t \le x^{3} + 2x^{-3}$, $t \le x^{3}$
 $y = x^{3} + 2x^{-3}$, $t \le x^{3} + 2x^{-3}$, $t \le x^{3} + 2x^{-3}$, $t \le x^{3}$, t

PARTE II:

$$Sec \theta = \sqrt{u^2 + x^2}$$

$$\Rightarrow Sec \left(\sqrt{u^2 + x^2} + \ln \left(u + \sqrt{u^2 + x^2} \right) \right) \Big|_{1}^{2}$$

$$= 30 \left(\sqrt{2} + \ln |x + \sqrt{2}| + \sqrt{2} + \ln |\sqrt{2} - x| \right) = 30 \left(2\sqrt{2} + \ln \left| \frac{x + \sqrt{2}}{\sqrt{2} - x} \right| \right)$$

$$\approx 237,78523m \rightarrow P = \frac{m}{L} \Rightarrow m = PL \rightarrow m = 14 kg (137,73523 \%)$$

R1= 1928,29 kg

7.
$$y = \sqrt{50 - (x-50)^2} \rightarrow dy = -\frac{2(x-50)}{40} = -\frac{x}{40} + \frac{5}{20} dx$$

$$= \frac{5-x}{40} dx$$

$$\frac{dy^2 + t}{d^2x} = \left(\frac{5 - \frac{x}{20}}{20}\right)^2 + t = \left(\frac{25}{4} - \frac{1}{4} + \frac{x^2}{400}\right) + 1$$

$$\int \int \frac{180}{\sqrt{\left(\frac{5}{2} - \frac{x}{20}\right)^2 + 1}} \, dx \Rightarrow \int \frac{5}{2} - \frac{x}{20} = \frac{180}{2} = -\frac{13}{2}$$

$$du = -\frac{13}{20} = \frac{1}{2} = 0$$

$$dx = -20du$$

$$dx = -20du$$

$$dx = -20du$$

$$dx = -20du$$

$$du = -20du$$

$$70 \int \tan^{2}\theta + 1 \sec^{2}\theta d\theta = 20 \int \sec^{2}\theta d\theta = 20 \cot^{2}\theta d\theta d\theta = 20 \cot^{2}\theta$$