第4章 超越梯度下降

第3章介绍了梯度下降法。梯度下降法基于函数局部一阶特性。一阶近似是粗糙的,这种粗糙带来了一些问题。本章将介绍函数在局部的二阶特性。基于二阶特性分析函数在局部的性质。

本章首先回顾一些矩阵的相关知识,之后介绍如何在局部对函数进行二阶近似。有了函数的二阶近似就可以确定驻点的类型:极小点、极大点或者鞍点。之后本章介绍对原始梯度下降法的一些改进,这些改进有助于提高收敛速度,防止震荡或发散,规避局部极小。

最后,本章介绍两个基于函数二阶特性的优化算法:牛顿法和共轭方向法。然后介绍用牛顿 法训练逻辑回归模型。二阶算法虽然不常用在神经网络和深度学习的训练中。阅读完本章, 读者应该对函数的局部形态有更深刻的理解。

4.1 矩阵

首先回顾一下矩阵。这不是一个关于矩阵的全面介绍,例如行列式这个概念就没有出现。本节只介绍一下后文讨论中用得上的相关知识。

4.1.1 矩阵基础

矩阵是实数构成的 2 维阵列。以一个3×3矩阵为例:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{*1} & \mathbf{a}_{*2} & \mathbf{a}_{*3} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{1*}^{\mathsf{T}} \\ \mathbf{a}_{2*}^{\mathsf{T}} \\ \mathbf{a}_{3*}^{\mathsf{T}} \end{pmatrix}$$
(4.1)

式(4.1)囊括了本书用到的对矩阵的各种表示。本书用大写粗斜体字母表示矩阵,例如A。 a_{ii} 是实数,是矩阵A的第i行、第j列元素。 a_{*i} 是矩阵的第j列,它是一个列向量:

$$\boldsymbol{a}_{*j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ a_{3j} \end{pmatrix} \tag{4.2}$$

 a_{i*} 是矩阵的第i行,它是一个列向量:

$$\boldsymbol{a}_{i*} = \begin{pmatrix} a_{i1} \\ a_{i2} \\ a_{i3} \end{pmatrix} \tag{4.3}$$

式(4.1)中对 \mathbf{a}_{i*} 进行了转置,以表示一行。矩阵的行数和列数不一定相等,可以是 $\mathbf{m} \times \mathbf{n}$, $\mathbf{m} \neq \mathbf{n}$ 。表示成:

$$\mathbf{A}_{m \times n} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \tag{4.4}$$

一般可省略下标 $m \times n$ 。两个相同形状的矩阵可以相加:

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$
(4.5)

矩阵相加就是把相应元素相加。可以用实数(标量)乘一个矩阵:

$$k\mathbf{A} = \begin{pmatrix} ka_{11} & \cdots & ka_{1n} \\ \vdots & \ddots & \vdots \\ ka_{m1} & \cdots & ka_{mn} \end{pmatrix} \tag{4.6}$$

-A就是(-1)A。显然有A - A = A + (-A) = O。O是所有元素都为 0 的矩阵——零矩阵。矩阵A的转置定义为:

$$\boldsymbol{A}^{\mathrm{T}} = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} = (\boldsymbol{a}_{1*} \quad \boldsymbol{a}_{2*} \quad \boldsymbol{a}_{3*}) = \begin{pmatrix} \boldsymbol{a}_{*1}^{\mathrm{T}} \\ \boldsymbol{a}_{*2}^{\mathrm{T}} \\ \boldsymbol{a}_{*3}^{\mathrm{T}} \end{pmatrix}$$
(4.7)

 A^{T} 把A的行当做列,列当做行。如果A是 $m \times n$ 的,那么 A^{T} 就是 $n \times m$ 的。

如果矩阵A是 $m \times n$ 的,它可以与一个n维向量x相乘:

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \, \mathbf{a}_{*j} \tag{4.8}$$

矩阵A乘向量x,使用x的元素对矩阵的列进行线性组合。所以A的列数和x的维数必须相同。得到的结果是一个m维向量。容易看出Ax的第i个元素是 $\sum_{j=1}^{n} x_{j} a_{ij} = a_{i*}^{T} x$,即A的第i行与x的内积。

有了矩阵和向量相乘的定义,就可以定义矩阵与矩阵相乘:

$$\mathbf{AB} = (\mathbf{Ab}_{*1} \quad \mathbf{Ab}_{*2} \quad \cdots \quad \mathbf{Ab}_{*k}) \tag{4.9}$$

A与B的乘积是矩阵AB。AB的第j列是A与B的第j列 b_{*j} 的乘积。如果A是 $m \times n$ 的,那么 b_{*j} 必须是n维向量,即B必须为n行。B的列数任意,例如k。所以要能够与 $m \times n$ 的A相乘,B的形状必须是 $n \times k$,k任意。结果AB的形状是 $m \times k$ 。AB的第i行、第i列元素是:

$$\mathbf{a}_{i*}^{\mathrm{T}} \mathbf{b}_{*i} = \sum_{s=1}^{n} a_{is} b_{si} \tag{4.10}$$

仅从形状上看B与A不一定能够相乘,因为k不一定等于m。就算k = m,BA也不一定等于AB。即矩阵乘法不满足交换律。一个反例就可以证明这一点。这里不再赘述。

矩阵的乘法满足结合率:

$$(\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}(\mathbf{B}\mathbf{C}) \tag{4.11}$$

矩阵乘法对加法满足结合律:

$$A(B+C) = AB + AC, (A+B)C = AC + BC$$
 (4.12)

矩阵乘法对数乘有:

$$\mathbf{A}(k\mathbf{B}) = (k\mathbf{A})\mathbf{B} = k(\mathbf{A}\mathbf{B}) \tag{4.13}$$

矩阵的数乘满足分配率:

$$k(A + B) = kA + kB, (k + h)A = kA + hA$$
 (4.14)

矩阵乘积的转置是:

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T \tag{4.15}$$

上述几个结论的证明很简单,只需要检查一下矩阵元素的表达式。向量 \mathbf{x} 的转置 \mathbf{x}^T 可以乘一个矩阵 \mathbf{A} :

$$\mathbf{x}^{\mathrm{T}}\mathbf{A} = (\mathbf{A}^{\mathrm{T}}\mathbf{x})^{\mathrm{T}} \tag{4.16}$$

行数和列数相同的矩阵是方阵。方阵A的对角线元素之和称为它的迹(trace):

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} \tag{4.17}$$

方阵A和B的乘积AB的迹等于BA的迹:

$$tr(\mathbf{AB}) = \sum_{i=1}^{n} \mathbf{a}_{i*} \mathbf{b}_{*i} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ji} a_{ij} = \sum_{i=1}^{n} \mathbf{b}_{j*} \mathbf{a}_{*j} = tr(\mathbf{BA})$$
(4.18)

如果一个 $n \times n$ 的方阵的对角线元素为 1,其余元素都是 0,那么它是单位阵:

$$I_{n \times n} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \tag{4.19}$$

容易验证对于任何矩阵 $A_{m\times n}$, $I_{m\times m}A_{m\times n}=A_{m\times n}I_{n\times n}=A_{m\times n}$ 。在上下文很清晰时一般省略I的下标。

4.1.2 矩阵的逆

令A是 $n \times n$ 方阵,如果存在 $n \times n$ 方阵 A^{-1} 满足:

$$AA^{-1} = A^{-1}A = I \tag{4.20}$$

则称A是可逆的。 A^{-1} 是A的逆矩阵。A的逆矩阵是唯一的。因为假如任何一个矩阵B是A的逆矩阵,根据定义有:

$$\mathbf{B} = \mathbf{I}\mathbf{B} = \mathbf{A}^{-1}\mathbf{A}\mathbf{B} = \mathbf{A}^{-1} \tag{4.21}$$

如果A可逆则A的列线性独立。因为假如 $a_{*j=1...n}$ 线性相关,则存在一组不全为 0 的系数 w_1, w_2, \cdots, w_n ,使得 $\sum_{i=1}^n w_i a_{*i} = \mathbf{0}$ 。即存在向量 $\mathbf{w} = (w_1 \cdots w_n)^T \neq \mathbf{0}$ 使:

$$\mathbf{A}\mathbf{w} = \mathbf{0} \tag{4.22}$$

因为A可逆,存在 A^{-1} :

$$\mathbf{w} = \mathbf{A}^{-1} \mathbf{A} \mathbf{w} = \mathbf{0} \tag{4.23}$$

这与 $w \neq \mathbf{0}$ 矛盾。所以可逆矩阵A的列 $a_{*j=1...n}$ 一定线性独立。如果方阵A的逆矩阵是 A^{T} ,则称A为正交矩阵:

$$\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I} \tag{4.24}$$

从(4.24)可以看出A的列 $a_{*i=1...n}$ 是单位向量且两两正交:

$$\begin{cases} \mathbf{a}_{*i}^{T} \mathbf{a}_{*j} = 0, \ i \neq j \\ \mathbf{a}_{*i}^{T} \mathbf{a}_{*j} = 1, \ i = j \end{cases}$$
 (4.25)

也就是说,正交矩阵A的列都是单位向量, $\|a_{*j=1...n}\|=1$,。任意两列是正交的(夹角为 $\pi/2$)。因为A可逆,所以 $a_{*j=1...n}$ 线性独立,是n维线性空间 \mathbb{R}^n 的一组基。因为 $a_{*j=1...n}$ 两两正交,还是单位向量,所以它们被称为 \mathbb{R}^n 的一组标准正交基。

如果一组向量 $\mathbf{x}_{i=1...n}$ 是线性独立的,可以通过施密特正交化过程构造一组正交的向量 $\mathbf{x}'_{i=1...n}$ 。构造过程是:

首先令 $x'_1 = x_1$ 。然后令:

$$\mathbf{x'}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2}^{\mathsf{T}} \mathbf{x'}_{1}}{\mathbf{x'}_{1}^{\mathsf{T}} \mathbf{x'}_{1}} \mathbf{x'}_{1} = \mathbf{x}_{2} - \frac{\|\mathbf{x}_{2}\| \cdot \cos \theta_{21}}{\|\mathbf{x'}_{1}\|} \mathbf{x'}_{1}$$
(4.26)

 θ_{21} 是 x_2 与 x_1' 的夹角。 x_2' 是 x_2 减去 x_2 向 x_1' 的投影。 x_2 与 $x_1' = x_1$ 线性独立,它不是 x_1' 的数乘,所以 x_2' 不是零向量。而且容易验证 x_2' 与 x_1' 正交。再令:

$$\mathbf{x'}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3}^{\mathsf{T}} \mathbf{x'}_{1}}{\mathbf{x'}_{1}^{\mathsf{T}} \mathbf{x'}_{1}} \mathbf{x'}_{1} - \frac{\mathbf{x}_{3}^{\mathsf{T}} \mathbf{x'}_{2}}{\mathbf{x'}_{2}^{\mathsf{T}} \mathbf{x'}_{2}} \mathbf{x'}_{2} = \mathbf{x}_{3} - \frac{\|\mathbf{x}_{3}\| \cdot \cos \theta_{31}}{\|\mathbf{x'}_{1}\|} \mathbf{x'}_{1} - \frac{\|\mathbf{x}_{3}\| \cdot \cos \theta_{32}}{\|\mathbf{x'}_{2}\|} \mathbf{x'}_{2}$$

$$(4.27)$$

 θ_{31} 是 x_3 与 x_1' 的夹角, θ_{32} 是 x_3 与 x_2' 的夹角。 x_3' 是 x_3 减去 x_3 向 x_1' , x_2' 张成空间的投影。如果 $x_3' = 0$,那么 x_3 可以被 x_1' , x_2' 线性表出,也就可以被 x_1 , x_2 线性表出,这与 $x_{i=1...n}$ 线性独立 矛盾。故 $x_3' \neq 0$ 。容易验证 x_3' 正交于 x_1' , x_2' 。此过程继续下去,最终可构造一组正交向量 $x_{i=1...n}'$ 。这就是施密特正交化过程。将 $x_{i=1...n}'$ 的每一个向量除以各自的模,缩放到长度为 1,就得到了一组正交的单位向量。

4.1.3 特征值与特征向量

特征值和特征向量的概念不局限于方阵,但本书主要关注方阵。用方阵A乘向量x是在 \mathbb{R}^n 中进行一个变换,将x变换成Ax。例如矩阵:

$$\mathbf{R} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \tag{4.28}$$

用**R**乘向量**x**等于将**x**逆时针旋转θ度。这可以自行验证。任何方阵**A**也改变不了零向量**0**,因为**A0** \equiv **0**。如果对于某非零向量**v** \neq **0**,**A**只能改变**v**的长度而不能改变其方向,即存在某个标量(可以为 0) λ ,有:

$$Av = \lambda v \tag{4.29}$$

则称 λ 是A的特征值,v是A的对于 λ 的特征向量。同一个特征向量不可能对应两个特征值。假如 $\lambda_1 \neq \lambda_2$ 都有v是其特征向量:

$$(\lambda_1 - \lambda_2)v = \lambda_1 v - \lambda_2 v = Av - Av = \mathbf{0}$$
(4.30)

 $\lambda_1 - \lambda_2 \neq 0$ 且 $\boldsymbol{v} \neq \boldsymbol{0}$,所以式(4.30)是不可能的。但是同一个特征值可以对应多个特征向量。如果 \boldsymbol{v} 是 λ 对应的特征向量,容易验证 $\boldsymbol{k}\boldsymbol{v}$ 也是 λ 对应的特征向量。线性独立的两个向量也有可能是同一个特征值对应的特征向量。

假如 λ 对应的特征向量v和w是线性独立的,即谁也不是另一个的数乘。那么kv+lw也是 λ 对应的特征向量。这也很容易验证。如果特征值 λ 共有k个线性独立的特征向量,由它们线性组合而得的向量也是 λ 的特征向量。这k个线性独立的特征向量张成的k维线性空间称为 λ 对应的特征空间,其中所有向量都是 λ 的特征向量。

将式(4.29)变形。如果 λ 是**A**的特征值,它必须满足对某个 $\nu \neq 0$,有:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0} \tag{4.31}$$

因为 $v \neq 0$,所以 $A - \lambda I$ 的列线性相关。求A的特征值和特征向量,就是求满足方程(4.31)的 $\lambda n v$ 。若要 $A - \lambda I$ 的列线性相关,则 $A - \lambda I$ 的行列式| $A - \lambda I$ |等于 0。本书没有涉及行列式,因为行列式与本书主线关系不大,加进来会影响流畅性。读者可以查阅任何一种线性代数教材。| $A - \lambda I$ | = 0是 λ 的n次方程。它有n个根(包括重根和复数根)。即A有n个特征值(包括重复的以及复特征值)。求得了 λ ,就可以再求它对应的特征向量。

矩阵A属于不同特征值的特征向量是线性独立的。现在证明这一点。 v_1, v_2, \cdots, v_k 是k个不同特征值 $\lambda_1, \lambda_2, \cdots, \lambda_k$ 对应的特征向量。如果它们线性相关,则其中某一个 v_s 可以被其他 $v_{i \neq s}$ 线性表出:

$$\mathbf{v}_{s} = \sum_{i \neq s} a_{i} \, \mathbf{v}_{i} \tag{4.32}$$

因为 v_s 是**A**的特征向量,所以它不是零向量。那么 $a_{i\neq s}$ 一定不全为 0。另外根据特征值和特征向量的定义:

$$\lambda_{s} \boldsymbol{v}_{s} = A \boldsymbol{v}_{s} = \sum_{i \neq s} a_{i} A \boldsymbol{v}_{i} = \sum_{i \neq s} a_{i} \lambda_{i} \boldsymbol{v}_{i}$$
 (4.33)

如果 $\lambda_s = 0$,那么 $\lambda_{i \neq s} \neq 0$ 。再加上 $a_{i \neq s}$ 不全为 0,说明 $v_{i \neq s}$ 线性相关。在 $\lambda_s = 0$ 情况下我们将问题规模减小了 1。如果 $\lambda_s \neq 0$,有:

$$\boldsymbol{v}_{s} = \sum_{i \neq s} a_{i} \frac{\lambda_{i}}{\lambda_{s}} \boldsymbol{v}_{i} \tag{4.34}$$

于是式 (4.34) 等于式 (4.32), 所以有:

$$\sum_{i \neq s} \left(a_i \frac{\lambda_i}{\lambda_s} \boldsymbol{v}_i - a_i \boldsymbol{v}_i \right) = \sum_{i \neq s} a_i \left(\frac{\lambda_i}{\lambda_s} - 1 \right) \boldsymbol{v}_i = \mathbf{0}$$
 (4.35)

因为都是不同的特征值,所以 $\lambda_{i\neq s}/\lambda_s-1\neq 0$ 。再加上 $a_{i\neq s}$ 不全为 0,说明 $v_{i\neq s}$ 线性相关。在 $\lambda_s\neq 0$ 情况下我们也将问题规模减小了 1。这个过程持续下去,最终将只剩下两个向量 v_i 和 v_j 。他们分属不同的特征值 λ_i 和 λ_j 。且 v_i 和 v_j 线性相关,其中一个是另一个的数乘。不妨假设 $v_i=kv_j$,则 v_i 也是 λ_j 的特征向量。之前已经证明,一个向量不可能同时属于两个不同特征值。这就推翻了最早的假设,证明了 v_1,v_2,\cdots,v_k 线性独立。

4.1.4 对称矩阵的谱分解

如果方阵**A**满足:

$$\mathbf{A} = \mathbf{A}^{\mathrm{T}} \tag{4.36}$$

如果**A**的元素都是实数,则它是一个实矩阵。实矩阵的特征值都是实数,特征向量是实向量。 为了证明这个结论,我们需要暂时离开实数域。

复数 $\lambda = \alpha + bi$ 的共轭是 $\bar{\lambda} = \alpha - bi$ 。

$$\lambda \bar{\lambda} = (a + bi)(a - bi) = a^2 + b^2 \ge 0$$
 (4.37)

只有当a=b=0,即 $\lambda=0$ 时,才有 $\lambda\bar{\lambda}=0$ 。否则 $\lambda\bar{\lambda}>0$ 。对于两个复数 $\lambda=a+bi$ 和 $\xi=c+di$,有:

$$\lambda \xi = (ac - bd) + (bc + ad)i = \bar{\lambda}\bar{\xi}$$
 (4.38)

把复矩阵A的元素全都取共轭就得到A的共轭 \overline{A} 。如果(复数) λ 和(复向量)v是A的特征值及对应特征向量,由式(4.38)容易看出: $\overline{\lambda}$ 和 \overline{v} 是 \overline{A} 的特征值及对应特征向量。

$$\overline{A}\overline{v} = Av = \lambda v = \overline{\lambda}\overline{v} \tag{4.39}$$

因为A是实对称矩阵,有 $A = \overline{A} = A^{T} = \overline{A}^{T}$,所以有:

$$\lambda \overline{\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{v} = \overline{\boldsymbol{v}}^{\mathrm{T}} \lambda \boldsymbol{v} = \overline{\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v} = \overline{\boldsymbol{v}}^{\mathrm{T}} \overline{\boldsymbol{A}}^{\mathrm{T}} \boldsymbol{v} = (\overline{\boldsymbol{A}} \overline{\boldsymbol{v}})^{\mathrm{T}} \boldsymbol{v} = (\bar{\lambda} \overline{\boldsymbol{v}})^{\mathrm{T}} \boldsymbol{v} = \bar{\lambda} \overline{\boldsymbol{v}}^{\mathrm{T}} \boldsymbol{v}$$
(4.40)

因为 $x \neq 0$,根据式(4.37) $\bar{v}^T v > 0$ 。所以 $\lambda = \bar{\lambda}$,即 λ 是实数。A是实矩阵, λ 是实数,所以v一定是实向量。这就证明了实对称矩阵的特征值都是实数,特征向量是实向量。后文谈到矩阵都是实矩阵。

所以实对称矩阵A有n个实特征值(可重复)。有一个结论我们不加证明:如果 λ 是A的k重特征值(方程 $|A-\lambda I|=0$ 的k重根),则 λ 对应的特征空间是k维,即对于 λ 能找到k个线性独立的特征向量。