Лекція 5

Пема 2. Множини, функції, відношення

План лекції

- Поняття множини і кортежу. Декартів добуток
- Булева алгебра множин
- **Розбиття множини**
- Доведення рівностей з множинами
- Комп'ютерне подання множин
- Функції
- Зростання функції. Оцінки складності алгоритмів

Об'єкти, які утворюють *множину*, називають її *елементами*. Про множину говорять, що вона *містить* ці елементи. Якщо об'єкт $a \in A$ е елементом множини A, то пишуть $a \in A$; а ні, то $a \notin A$. Синоніми: *сукупність*, *система*, *набір*.

Для часто використовуваних множин ϵ спеціальні позначення:

```
\emptyset – порожня множина, яка не містить жодного елемента;
```

```
Z – множина цілих чисел, Z={..., -2, -1, 0, 1, 2, ...};
```

R – множина дійсних чисел;

N – множина *натуральних чисел*, N={1, 2, ...};

 N_0 – множина натуральних чисел із числом $0, N_0 = \{0, 1, 2, ...\}$.

Задати множину можна, зазначивши спільну властивість усіх її елементів. Тоді множину A задають за допомогою позначення $A = \{x \mid P(x)\}$, яке читають так: «A — це множина об'єктів x, які мають властивість P(x)». Наприклад, $A = \{x \mid x \in N_0, x < 7\}$ — це множина $\{0, 1, 2, 3, 4, 5, 6\}$.

Дві множини A та B називають pівними, якщо вони складаються з одних і тих самих елементів. Рівність множин A та B записують як A=B.

Множину A називають *підмножиною* множини B, якщо кожний елемент множини A належить множині B. У такому разі пишуть $A \subset B$, причому це не виключає, що A = B. Якщо A = B або $A = \emptyset$, то A називають *невласною* підмножиною множини B. Якщо $A \neq B$ і $A \neq \emptyset$, то A називають *власною* підмножиною множини A правдиве включення $\emptyset \subset A$.

Зазначимо, що в літературі іноді використовують позначення $A \subseteq B$; тоді позначення $A \subseteq B$ резервують для випадку, коли $A \subseteq B$ і $A \neq B$.

Часто всі розглядувані в певній ситуації множини являють собою підмножини якоїсь множини, яку називають *універсальною множиною* або *універсумом*. Універсальну множину позначають як U.

Для заданої множини A можна розглянути множину всіх її підмножин, включно з порожньою множиною \varnothing і самою множиною A. Цю множину позначають 2^A чи P(A) й називають *множиною-степенем*, або *булеаном* множини A. Для скінченної множини A множина 2^A містить $2^{|A|}$ елементів.

Приклад. Нехай $A=\{0, 1, 2\}$. Тоді $2^A=\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$. Ця множина містить $2^3=8$ елементів.

Кортеж – це впорядкований набір елементів. Сказане не слід розглядати як означення кортежу, оскільки тоді потрібно дати пояснення з приводу його синоніма «впорядкований набір». Поняття «кортеж» (синоніми – вектор, рядок, ланцюжок, слово) уважатимемо, як і поняття множини, первісним, тобто неозначуваним. Елементи, що утворюють кортеж, називають його компонентами. Компоненти нумерують, кількість компонент називають довжиною або розмірністю кортежу. Нескінченні кортежі не розглядатимемо.

<u>На відміну від елементів множини, компоненти кортежу можуть повторюватись.</u> Кортеж записують у круглих дужках, наприклад (a, b, c, a, d) – кортеж довжиною 5. Іноді дужки й навіть коми не пишуть, наприклад кортеж 011001. Кортежі довжиною 2 часто називають *парами*, довжиною 3 – *трійками*. Кортежі довжиною n іноді називають n-ками («енками»).

Два кортежі рівні, якщо вони мають однакову довжину та відповідні їх компоненти рівні. Іншими словами, кортежі $(a_1, ..., a_m)$ та $(b_1, ..., b_n)$ рівні, якщо m = n та $a_1 = b_1$, $a_2 = b_2$, ..., $a_m = b_n$.

Декартовим добутком множин A та B (позначають $A \times B$) називають множину всіх пар (a, b) таких, що $a \in A$, $b \in B$. Зокрема, якщо A = B, то обидві компоненти належать A. Такий добуток позначають як A^2 та називають декартовим квадратом множини A. Аналогічно, декартовим добутком n множин A_1 , ..., A_n (позначають $A_1 \times ... \times A_n$) називають множину всіх кортежів $(a_1, ..., a_n)$ довжиною n таких, що $a_1 \in A_1$, ..., $a_n \in A_n$. Частковий випадок $a \times ... \times A_n$ позначають як $a \times A_n$ і називають $a \times A_n$ назива

Приклад Нехай $A=\{1, 2\}$, $B=\{a, b, c\}$. Тоді $A\times B=\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$, $B\times A=\{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$. Зрозуміло, що загалом $A\times B\neq B\times A$.

Для скінченних множин потужність (кількість елементів) декартового добутку дорівнює добутку потужностей цих множин: $|A \times B| = |A| \cdot |B|$.

Приклад Нехай $A=\{1,2\}, B=\{a,b,c\}, C=\{x,y\}.$ Тоді $A\times B\times C=\{(1,a,x), (1,a,y), (1,b,x), (1,b,y), (1,c,x), (1,c,y), (2,a,x), (2,a,y), (2,b,x), (2,b,y), (2,c,x), (2,c,y)\}.$

Зауваження. Якщо A, B і C — множини, то множина $(A \times B) \times C$ — НЕ ТЕ САМЕ, ЩО множина $A \times B \times C$. За означенням елементом множини $A \times B \times C$ є (a, b, c) (тобто трійка), де $a \in A$, $b \in B$, $c \in C$, а елементом множини $(A \times B) \times C$ є ((a, b), c). Тобто елементом множини $(A \times B) \times C$ є пара (p, c), де $p \in A \times B$, p = (a, b). Звичайно трійки і пари — це різні креатури, навіть якщо трійки та пари **у цьому випадку** несуть точно одну й ту саму інформацію. Більш точно, існує цілком природне взаємно-однозначне відображення (бієкція) між множинами $A \times B \times C$ та $(A \times B) \times C$, яку задають так: $(a, b, c) \leftrightarrow ((a, b), c)$.

Булева алгебра множин

Будемо вважати, що всі розглядувані множини — підмножинами деякого універсума U. Для довільних множин A та B можна побудувати нові множини за допомогою *теоретико-множиних операцій*:

```
об'єднанням множин A та B називають множину A \cup B = \{ x \mid (x \in A) \text{ або } (x \in B) \}; перетином множин A та B називають множину A \cap B = \{ x \mid (x \in A) \text{ i } (x \in B) \}; різницею множин A та B називають множину A \setminus B = \{ x \mid (x \in A) \text{ i } (x \notin B) \}; доповненням множини A називають множину \overline{A} = U \setminus A, де U — універсальна множина.
```

Як можна побачити, всі підмножини універсальної множини утворюють булеву алгебру відносно операцій перетину, об'єднання та доповнення, роль одиниці відіграє універсальна множина, а нуля – порожня. Наведемо основні закони для операцій з множинами.

 $A \cap B$

 $A \setminus B$

 \overline{A}

Основні закони для операцій з множинами

	Назва закону	Формулювання закону
1	Закони комутативності	$a) A \cup B = B \cup A$
1	Закони комутативності	$\delta A \cap B = B \cap A$
2	Закони асоціативності	$a) A \cup (B \cup C) = (A \cup B) \cup C$
		$6) A \cap (B \cap C) = (A \cap B) \cap C$
3	Закони дистрибутивності	$a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
5	Закони дистриоутивності	$6) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
4	Закон подвійного доповнення	$\overline{(A)} = A$
5 Закони ідемпотентно	Parayyy i yayyyayyayya	$a) A \cap A = A$
3	Закони ідемпотентності	$\delta A \cup A = A$
6	Закони де Моргана	$a) \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
0		$\overline{\delta}) \ \overline{A \cap B} = \overline{A} \cup \overline{B}$
7	Закони поглинання	$a) A \cap (A \cup B) = A$
/	Закони поглинання	δ) $A \cup (A \cap B) = A$
8	Закони тотожності	$a) A \cup \emptyset = A$
0	закони тотожності	δ) $A \cap U = A$
9	Закони домінування	$a) A \cup U = U$
<i>y</i>		$\delta A \cap \emptyset = \emptyset$
10	Закони доповнення	$a) A \cup \overline{A} = U$
10	Эакони доповноппл	δ) $A \cap \overline{A} = \emptyset$

Розбиття множини

Систему $S=\{A_i\}$ ($i\in I$, де I – множина індексів) підмножин множини A називають розбиттям множини A якщо:

- 1) A_i ≠ Ø для всіх i∈ I;
- 2) $A_i \cap A_j = \emptyset$, $i \neq j$;

$$3) \bigcup_{i \in I} A_i = A.$$

Приклад. $A = \{a, b, c\}$. Ось (всі) різні розбиття множини A.

$$S_1 = \{\{a\}, \{b\}, \{c\}\},\$$

$$S_2 = \{\{a,b\}, \{c\}\},\$$

$$S_3 = \{\{a\}, \{b, c\}\},\$$

$$S_4 = \{\{a,c\},\{b\}\},\$$

$$S_5 = \{\{a,b,c\}\}.$$

Доведення рівностей з множинами

Спосіб 1. Цей спосіб ґрунтується на такій теоремі.

Теорема. Множини A і B рівні тоді й лише тоді, коли $A \subset B$ та $B \subset A$.

Приклад. Доведемо рівність множин, яка являє собою формулювання закону де Моргана $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Припустимо, що $x \in \overline{A \cap B}$. Тоді $x \notin A \cap B$, звідки випливає, що $x \notin A$ або $x \notin B$. Отже $x \in \overline{A}$ або $x \in \overline{B}$, а це означає, що $x \in \overline{A} \cup \overline{B}$. Ми довели, що $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$. Навпаки, нехай $x \in \overline{A} \cup \overline{B}$. Тоді $x \in \overline{A}$ або $x \in \overline{B}$, звідки випливає, що $x \notin A$ або $x \notin B$. Це означає, що $x \notin A \cap B$, тобто $x \in \overline{A \cap B}$. Отже $\overline{A \cap B} \subset \overline{A \cap B}$.

Спосіб 2. Доведення рівності множин за допомогою *таблиць належності*. Ці таблиці містять усі можливі комбінації належності елементів множинам (1 - елемент належить множині, 0 - не належить).

Приклад. Доведемо цим способом рівність $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Доведення подано в таблиці.

A	В	$A \cap B$	$\overline{A \cap B}$	\overline{A}	\overline{B}	$\overline{A} \cup \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Стовпчики, які у таблиці позначено $\overline{A \cap B}$ та $\overline{A} \cup \overline{B}$, однакові, отже $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Спосіб 3. Доведення рівності множин з використанням основних законів, яким задовольняють теоретико-множинні операції (див таблицю).

Приклад. Довести тотожність $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$. Використовуючи закони де Моргана та комутативності, можна записати таку послідовність рівних множин:

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)} =$$
 за законом де Моргана 6 a
 $= \overline{A} \cap (\overline{B} \cup \overline{C}) =$ за законом де Моргана 6 \overline{b}
 $= (\overline{B} \cup \overline{C}) \cap \overline{A} =$ за законом комутативності 1 \overline{b}
 $= (\overline{C} \cup \overline{B}) \cap \overline{A}$ за законом комутативності 1 a .

Комп'ютерне подання множин

Комп'ютерні операції над бітами відповідають булевим операціям \lor , \land та \oplus , над бітами. Ми будемо також використовувати нотацію OR, AND і XOR (eXclusive OR), відповідно для операцій \lor , \land та \oplus , як це зроблено в багатьох мовах програмування. Значення операцій OR, AND і XOR над бітами наведено в таблиці

\mathcal{X}	y	OR	AND	XOR
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Приклад. Знайдемо результати операцій порозрядного OR, порозрядного AND і порозрядного XOR бітових рядків 10 1100 0011 та 11 0101 0101. У результаті одержимо

10 1100 0011

11 0101 0101

11 1101 0111 – порозрядне OR,

10 0100 0001 – порозрядне AND,

01 1001 0110 – порозрядне XOR.

Один із найпоширеніших і найпростіших способів — подання множин за допомогою бітових рядків. Упорядкуємо довільним способом елементи універсальної множини. Нехай універсальна множина U містить n елементів, тоді $U=\{a_1, a_2, a_3, ..., a_{n-1}, a_n\}$.

Множину $A \subset U$ подають у комп'ютері рядком із 0 та 1 довжиною n так: якщо $a_i \in A$, то i-й біт дорівнює 1, а ні, то 0.

Приклад. Нехай $U=\{a, b, c, d, e, f, m, n, p, q\}$, $A=\{b, m, n, q\}$, $B=\{a, b, f, m, q\}$. Тоді множину A подають рядком 01 0000 1101, а множину B – рядком 11 0001 1001.

Приклад. Використаємо бітові рядки, які зображають множини A та B з попереднього прикладу. Бітовий рядок, який відповідає об'єднанню цих множин $A \cup B = \{a, b, f, m, n, q\}$ знаходимо як результат виконання операції порозрядного OR:

01 0000 1101

11 0001 1001

11 0001 1101.

Бітовий рядок, який відповідає перетину множин $A \cap B = \{b, m, q\}$ знаходимо як результат виконання операції порозрядного AND:

01 0000 1101

<u>11 0001 1001</u>

01 0000 1001.

Якщо універсальна множина U має велику потужність, а її підмножини не дуже потужні, то подання за допомогою бітових рядків неефективне щодо витрат пам'яті. У такому разі для зображення множин доцільно використовувати інші структури даних.

Функції

Наведена відповідність – приклад функції.

Нехай A та B – множини. Φ ункція f з A в B – це відповідність кожному елементу множини A певного одного елемента множини B.

Пишуть f(a) = b якщо b є той єдиний елемент з B, який відповідає елементу a із множини A. Якщо f – функція з A в B, то це записують як f : $A \rightarrow B$.

Іноді замість функцій говорять про відображення, резервуючи термін "функція" для відображень із числовими множинами A та B. Ми не будемо строго притримуватись таких відмінностей, використовуючи терміни "функція" та "відображення" як синоніми.

Функції задають різними способами. Іноді явно формулюють відповідність, як у щойно наведеному прикладі. Дуже часто функцію подають формулою, як, наприклад f(x) = x + 1. Іншим разом для подання функції використовують комп'ютерну програму.

Якщо f – функція з A в B, то A називають областю визначення f. Якщо f(a) = b, то b називають образом a, у свою чергу a називають прообразом b.

Множину $\{b \mid b = f(a), a \in A\}$ образів усіх елементів множини A називають *область* значень функції f. Очевидно, область значень є підмножиною множини B.

Якщо f – функція з A в B, то говорять, що f відображає A в B.

Повернемось до прикладу з оцінюванням студентів групи. Нехай g — функція, яка присвоює кожному студенту групи, яка вивчає дискретну математику, буквену оцінку. Область визначення — множина {Гнатів, Зінько, Михайлович, Петренко, Тарасюк}. Функція g відображає цю множину на множину {A, B, C, D, E}, а область значень функції g — множина {A, B, C, E}, бо студенти одержали всі оцінки, окрім D.

Приклад. Нехай f — функція з множини всіх бітових рядків довжиною два або більше в цю ж множину, яка виділяє в рядку останні два біта. Отже, область визначення f — множина всіх бітових рядків довжиною не менше двох, а множина значень — $\{00, 01, 10, 11\}$.

Приклад. Нехай f – функція з Z у Z, яка кожному цілому числу ставить у відповідність його квадрат. Отже, $f(x) = x^2$, область визначення – множина всіх цілих чисел, а область значень – множина точних квадратів, тобто $\{0, 1, 4, 9, 16, 25, 36, ...\}$.

Приклад. Для функції $f: A \to B$ множини A та B часто *визначають* у мовах програмування. Наприклад, на мові Паскаль оператор

function *floor* (*x*: real): integer

задає множину A (область визначення) функції floor як множину дійсних чисел, а множину B – як множину цілих чисел.

Нехай f — функція з A в B і нехай множина $S \subset A$. Образ S — це підмножина множини B, яка складається з образів усіх елементів множини S. Образ множини S позначають як f(S), отже

$$f(S) = \{b \mid b = f(a), a \in S\}.$$

Приклад. Нехай $A = \{a,b,c,d,e\}$, $B = \{1,2,3,4\}$ і нехай f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1 та f(e) = 1. Тоді образ множини $S = \{b,c,d\}$ – це множина $f(S) = \{1,4\}$.

Деякі функції мають різні образи для різних елементів своєї області визначення.

Функцію $f: A \to B$ називають *ін'єктивною* (*англ. one-to-one*), або *ін'єкцією*, якщо вона відображає різні елементи в різні, тобто якщо $f(a_1) \neq f(a_2)$ при $a_1 \neq a_2$. Рис. 2 ілюструє поняття ін'єктивної функції.

Для деяких функцій область їхніх значень співпадає із множиною В.

Функцію $f: A \to B$ називають *сюр'єктивною* (*англ. onto*), або *сюр'єкцією*, якщо область її значень — уся множина B. Інакше кажучи, функція сюр'єктивна, якщо й тільки якщо для кожного елемента $b \in B$ існує такий елемент $a \in A$, що f(a) = b. Іноді сюр'єктивні функції називають відображеннями *на* B. Приклад сюр'єктивної функції подано на рис. 3.

Зазначимо, що функція на рис. 2 – не сюр'єктивна, а функція на рис. 3 – не ін'єктивна.

Функцію (відображення) $f: A \to B$, яка водночас є ін'єкцією й сюр'єкцією, називають бієкцією (бієктивним відображенням), або взаємно однозначною відповідністю (англ. one-to-one correspondence).

Якщо f – бієкція, то існує *обернена функція* f^{-1} , для якої $f^{-1}(b) = a$ тоді й тільки тоді, коли f(a) = b.

Приклад. Нехай f — функція з $\{1, 2, 3, 4\}$ на $\{a, b, c, d\}$ така, що f(1) = d, f(2) = b, f(3) = c, f(4) = a. Функція f — бієкція, і тому має обернену функцію f^{-1} , причому $f^{-1}(a) = 4$, $f^{-1}(b) = 2$, $f^{-1}(c) = 3$, $f^{-1}(d) = 1$. Рис. 4 ілюструє цей приклад.

Приклад. Нехай f – функція з Z у Z, $f(x) = x^2$. Оскільки f(-1) = f(1) = 1, то ця функція **не** ін'єктивна. Якщо б визначити обернену функцію, то елементу 1 потрібно поставити у відповідність два елемента. Отже, оберненої для f функції не існує.

Композицією двох функцій $f: A \to B$ і $g: B \to C$ називають функцію $h: A \to C$, визначену співвідношенням h(a) = g(f(a)).

Композицію функцій позначають як $g \circ f$ (ми, як і в більшості книг, пишемо справа функцію, застосовану першою):

$$(g \circ f)(a) = g(f(a)).$$

Зазначимо, композиція $g \circ f$ невизначена, якщо область значень f не ϵ підмножиною області визначення g.

Приклад. Нехай функція f відображає множину $\{a,b,c\}$ в себе й визначена так: f(a)=b, f(b)=c і f(c)=a. Нехай g — функція з множини $\{a,b,c\}$ в множину $\{1,2,3\}$, g(a)=3, g(b)=2, g(c)=1. Тоді композицію $g\circ f$ визначимо як $(g\circ f)(a)=g(f(a))=g(b)=2$, $(g\circ f)(b)=g(f(b))=g(c)=1$, $(g\circ f)(c)=g(f(c))=g(a)=3$.

Нехай $f: A \to B$. Графіком функції f називають множину впорядкованих пар $\{(a,b)|a\in A, f(a)=b\}$.

Рис. 5

Приклад. Розглянемо функцію $f(x) = x^2$ із множини Z в множину Z (Z – множина цілих чисел). Її графік зображено на рис. 5; він складається із впорядкованих пар вигляду $(x, f(x)) = (x, x^2)$, де x – ціле число.

Уведемо дві важливі в дискретній математиці функції, які відображають множину дійсних чисел R у множину цілих чисел Z. (Нині в літературі їх часто називають «підлога» і «стеля».) Перша — це функція $\lfloor x \rfloor$ — найбільше ціле, яке не більше ніж x (ціла частина числа x). Графік цієї функції подано на рис. 6 а. (Підлога.)

Друга функція — її позначають як $\lceil x \rceil$ — найменше ціле, яке не менше ніж x; графік цієї функції подано на рис. 6б. (Стеля.)

Приклад.
$$\lfloor 0.5 \rfloor = 0$$
, $\lceil 0.5 \rceil = 1$, $\lfloor -0.5 \rfloor = -1$, $\lceil -0.5 \rceil = 0$, $\lfloor 3.1 \rfloor = 3$, $\lceil 3.1 \rceil = 4$, $\lfloor -3.1 \rfloor = -4$, $\lceil -3.1 \rceil = -3$.

Рис. 6. Підлога і стеля

У курсі дискретної математики використовуються й інші типи функцій — поліноми, логарифмічні та експоненціальні функції, які відображають R в R.

Зростання функцій. Оцінки складності алгоритмів

Характеристики зростання функцій використовують у комп'ютерних науках для оцінювання часової складності алгоритмів.

Як синонім терміну «вхідні дані» часто використовують термін «входи». Означимо часову складність (у подальшому — складність) алгоритму як функцію f, яка ставить у відповідність кожному невід'ємному цілому числу n час роботи f(n) алгоритму в найгіршому випадку на входах довжиною n. Іншими словами, f(n) — максимальний час роботи алгоритму по всіх входах довжиною n. Довжина входу, як уже було сказано, характеризує розмір задачі. Час роботи алгоритму вимірюють у кроках (операціях), що виконуються на ідеалізованому комп'ютері.

Аналіз ефективності алгоритмів полягає в з'ясуванні питання: як швидко зростає функція f(n) зі збільшенням n? Для порівняння швидкості зростання двох функцій f(n) та g(n) використовують таке поняття.

Нехай f та g — функції з множини Z цілих чисел або з множини R дійсних чисел в множину R дійсних чисел. Говорять, що f(x) = O(g(x)) якщо існують константи C і k такі, що

$$|f(x)| \le C|g(x)|$$

для всіх x > k. Говорять також, що $f(x) \in O(g(x))$ (читають «О-велике від g(x)» і називають O-велике оцінкою).

У разі використання нотації O(g(x)) функцію g у співвідношенні f(x) = O(g(x)) вибирають настільки малою, наскільки це можливо (здебільшого із множини функцій, які вважають еталонними, як, наприклад, x^m , де m – додатне ціле, чи $\log x$).

У подальших докладних обговореннях ми майже завжди матимемо справу з функціями, які набувають лише додатні значення. Всі позначення абсолютних величин в оцінках для таких функцій можна усунути.

Рис. 7 ілюструє співвідношення f(x) = O(g(x)).

Приклад. Знайдемо оцінку для функцій f(n) = n! та $f(n) = \log n!$ Послідовно маємо:

$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \le n \cdot n \cdot n \cdot \ldots \cdot n \le n^n$$
.

Ця нерівність доводить, що $n! = O(n^n)$. Беручи логарифм від обох частин цієї нерівності, дістанемо

$$\log n! \leq \log n^n$$
,

звідки $\log n! = O(n \log n)$.

Поліноми часто використовують для оцінок зростання функцій. Наведемо результат, який завжди може бути використаний для оцінки зростання полінома.

Теорема. Нехай $p(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$, де a_m , a_{m-1} , ..., a_1 , a_0 — дійсні числа. Тоді $p(x) = O(x^m)$.

Вираз "складність алгоритму є (дорівнює, складає) O(g(n))" означає, що функція f(n), яка визначає складність алгоритму, є O(g(n)). Тут n – довжина входу. Як еталони для оцінок складності алгоритмів використовують такі функції (записані в порядку зростання складності):

1,
$$\log n$$
, n , $n \log n$, n^2 , n^3 , n^4 , 2^n , $n!$.

Зокрема, складність O(1) означає, що час роботи відповідного алгоритму *не залежить* від довжини входу. Алгоритм зі складністю O(n) називають *лінійним*. Такий алгоритм для переважної більшості задач є найліпшим (за порядком) щодо складності.

Алгоритм, складність якого дорівнює O(p(n)), де p(n) – деякий поліном, називають *поліноміальним*. Часто замість O(p(n)) пишуть $O(n^m)$, де m – константа (наприклад, m = 2,3 або 4). Особливу роль поліноміальні алгоритми відіграватимуть при вивченні теми «Моделі обчислень». Тут лише зазначимо, що всі задачі дискретної математики, *які вважають важкими для алгоритмічного розв'язування*, нині не мають поліноміальних алгоритмів. Крім того, поняття «поліноміальний алгоритм» зараз є найпоширенішою формалізацією поняття «ефективний алгоритм».

Алгоритми, часова складність яких не піддається подібній оцінці, називають експоненціальними. Більшість експоненціальних алгоритмів — це просто варіанти «повного перебору», тоді як поліноміальні алгоритми здебільшого можна побудувати лише тоді, коли вдається заглибитись в суть задачі.

Задачу називають важкорозв'язною, якщо для її розв'язування не існує поліноміального алгоритму.

У цій таблиці наведено загальну термінологію , яку використовують для опису (часової) складності алгоритмів.

Commonly Used Terminology for the Complexity of Algorithms.					
Complexity Terminology					
<i>O</i> (1)	constant complexity				
$O(\log n)$	logarithmic complexity				
O(n)	linear complexity				
$O(n \log n)$	$n \log n$ complexity				
$O(n^b)$	polynomial complexity				
$O(b^n)$, where $b > 1$	exponential complexity				
O(n!)	factorial complexity				

У цій таблиці подано час, необхідний для розв'язування задач різних розмірів алгоритмами із зазначеною кількістю бітових операцій. Час, більший 10^{100} , позначено зірочкою. Ця таблиця побудована із розрахунку, що бітова операція займає 10^{-9} сек., що відповідало найшвидшим комп'ютерам 1988 року.

The Computer Time Used by Algorithms.							
Problem Size	Bit Operations Used						
n	log n	n	n log n	n^2	2^n	n!	
10	$3 \times 10^{-9} \text{ sec}$	10 ⁻⁸ sec	$3 \times 10^{-8} \text{ sec}$	10 ⁻⁷ sec	$10^{-6} { m sec}$	$3 \times 10^{-3} \text{ sec}$	
10^{2}	$7 \times 10^{-9} \text{sec}$	$10^{-7} \sec$	$7 \times 10^{-7} \text{ sec}$	$10^{-5} {\rm sec}$	$4 \times 10^{13} \text{ yr}$	*	
10^{3}	$1.0 \times 10^{-8} \text{ sec}$	$10^{-6} \sec$	$1 \times 10^{-5} \text{ sec}$	$10^{-3} \sec$	*	*	
104	$1.3 \times 10^{-8} \text{ sec}$	$10^{-5} { m sec}$	$1 \times 10^{-4} \text{ sec}$	$10^{-1} \sec$	*	*	
105	$1.7 \times 10^{-8} \text{ sec}$	$10^{-4} \sec$	$2 \times 10^{-3} \text{ sec}$	10 sec	*	*	
106	$2 \times 10^{-8} \text{ sec}$	$10^{-3} { m sec}$	$2 \times 10^{-2} \text{ sec}$	17 min	*	*	

Ця сама таблиця, побудована із розрахунку, що бітова операція займає 10^{-11} сек., що відповідало найшвидшим комп'ютерам 2012 року. Як можна побачити, для важкорозв'язних задач за чверть століття нічого не змінилося!

Problem Size	Bit Operations Used					
n	log n	n	$n \log n$	n^2	2 ⁿ	n!
10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	3×10^{-7}
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$4 \times 10^{11} \text{ yr}$	*
10^{3}	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*
10^{4}	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*
10 ⁵	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s	*	*
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*	*