Introduction to Numerical Analysis for Engineers

Systems of Linear Equations	Mathews
- Cramer's Rule	
- Gaussian Elimination	3.3-3.5
 Numerical implementation 3.3-3.4 	
 Numerical stability 	
 Partial Pivoting 	
 Equilibration 	
 Full Pivoting 	
 Multiple right hand sides 	
 Computation count 	
 LU factorization 	3.5
 Error Analysis for Linear Systems 	3.4
 Condition Number 	
 Special Matrices 	
 Iterative Methods 	3.6
 Jacobi's method 	
 Gauss-Seidel iteration 	
 Convergence 	

Linear Systems of Equations **Iterative Methods**

Sparse, Full-bandwidth Systems

Rewrite Equations

$$\overline{\overline{\mathbf{A}}}\overline{\mathbf{x}} = \overline{\mathbf{b}} \Leftrightarrow \sum_{j=1}^{n} a_{ij}x_j = b_i$$

$$a_{ii} \neq 0 \Rightarrow x_i = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} x_j}{a_{ii}}, i = 1, \dots n$$

Iterative. Recursive Methods

Jacobi's Method

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, \ i = 1, \dots n$$

Gauss-Seidels's Method

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}, \ i = 1, \dots n$$

Linear Systems of Equations Iterative Methods

Convergence

$$\left|\left|\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}\right|\right| \to 0 \ \text{ for } \ k \to \infty$$

Iteration – Matrix form

$$\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}}\overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}} , k = 0, \dots$$

Decompose Coefficient Matrix

$$\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{D}}} \left(\overline{\overline{\mathbf{L}}} + \overline{\overline{\mathbf{I}}} + \overline{\overline{\mathbf{U}}}
ight)$$
 with

$$\overline{\overline{\mathbf{D}}} = \operatorname{diag} a_{ii}$$

$$\overline{\overline{\mathbf{L}}} = \begin{cases} a_{ij}/a_{ii} , & i > j \\ 0, & i \le j \end{cases}$$

$$\overline{\overline{\mathbf{U}}} = \begin{cases} a_{ij}/a_{ii} , & i < j \\ 0, & i \ge j \end{cases}$$

Jacobi's Method

$$\overline{\mathbf{x}}^{(k+1)} = -\left(\overline{\overline{\mathbf{L}}} + \overline{\overline{\mathbf{U}}}\right)\overline{\mathbf{x}}^{(k)} + \overline{\overline{\mathbf{D}}}^{-1}\overline{\mathbf{b}}$$

Iteration Matrix form

$$\overline{\overline{\mathbf{B}}} = -\left(\overline{\overline{\mathbf{L}}} + \overline{\overline{\mathbf{U}}}\right)$$

$$\overline{\mathbf{c}} = \overline{\overline{\mathbf{D}}}^{-1} \overline{\mathbf{b}}$$

Convergence Analysis

$$\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}$$

$$\overline{x} \ = \ \overline{\overline{B}} \overline{x} + \overline{c}$$

$$\overline{\overline{\mathbf{x}}^{(k+1)}} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right)$$
$$= \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}} \right)$$

$$= \overline{\overline{\mathbf{B}}}^{k+1} \left(\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}} \right)$$

$$\left|\left|\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}\right|\right| \le \left|\left|\overline{\overline{\mathbf{B}}}^{k+1}\right|\right| \left|\left|\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}\right|\right| \le \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|^{k+1} \left|\left|\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}\right|\right|$$

Sufficient Convergence Condition

Linear Systems of Equations Iterative Methods

Sufficient Convergence Condition

$$\left| \left| \overline{\overline{\mathbf{B}}} \right| \right| < 1$$

Jacobi's Method

$$b_{ij} = -\frac{a_{ij}}{a_{ii}} \; , \; i \neq j$$

$$\left\| \overline{\overline{\mathbf{B}}} \right\|_{\infty} = \max_{i} \sum_{j=1, j \neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|}$$

Sufficient Convergence Condition

$$\sum_{j=1, j\neq i}^{n} |a_{ij}| < |a_{ii}|$$

Diagonal Dominance

Stop Criterion for Iteration

$$\begin{aligned} \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} &= \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}} \right) & \overline{\overline{\mathbf{B}}} \, \overline{\mathbf{x}}^{(k)} \\ &= -\overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)} \right) + \overline{\overline{\mathbf{B}}} \left(\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right) \end{aligned}$$

$$\left|\left|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}\right|\right| \le \left|\left|\overline{\overline{\mathbf{B}}}\right|\right| \left|\left|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)}\right|\right| + \left|\left|\overline{\overline{\mathbf{B}}}\right|\right| \left|\left|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}\right|\right|$$

$$\left|\left|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}\right|\right| \le \frac{\left|\left|\overline{\overline{\mathbf{B}}}\right|\right|}{1 - \left|\left|\overline{\overline{\mathbf{B}}}\right|\right|} \left|\left|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)}\right|\right|$$

$$\left\| \overline{\overline{\mathbf{B}}} \right\| < 1/2 \Rightarrow \left\| \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right\| \le \left\| \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)} \right\|$$

vib_string.m

```
n=99;
   L=1.0;
   h=L/(n+1);
   k=2*pi;
    kh=k*h
    x=[h:h:L-h]';
    a=zeros(n,n);
    f=zeros(n,1);

    Off-diagonal values

    a(1,1) = kh^2 - 2;
    a(1,2)=0;
    for i=2:n-1
        a(i,i) = a(1,1);
        a(i, i-1) = 0;
        a(i, i+1) = o;
    end
    a(n,n) = a(1,1);
    a(n, n-1) = 0;
    nf=round((n+1)/3);
    nw=round((n+1)/6);
    nw=min(min(nw,nf-1),n-nf);
    figure(1)
    hold off
    nw1=nf-nw;
    nw2=nf+nw;
    f(nw1:nw2) = h^2*hanning(nw2-nw1+1);
    subplot(2,1,1); plot(x,f,'r');
    % exact solution
    y=inv(a)*f;
    subplot(2,1,2); plot(x,y,'b');
13.002
```

```
% Iterative solution using Jacobi and Gauss-Seidel
b=-a;
c=zeros(n,1);
for i=1:n
    b(i,i)=0;
    for j=1:n
        b(i,j)=b(i,j)/a(i,i);
        c(i) = f(i) / a(i,i);
    end
    end
nj=100;
xj=f;
xqs=f;
figure(2)
nc=6
col=['r' 'g' 'b' 'c' 'm' 'y']
hold off
for j=1:nj
    xj=b*xj+c;
    xgs(1) = b(1,2:n) *xgs(2:n) + c(1);
    for i=2:n-1
        xgs(i) = b(i, 1:i-1) *xgs(1:i-1) + b(i, i+1:n) *xgs(i+1:n) +c(i);
    end
    xgs(n) = b(n,1:n-1)*xgs(1:n-1) +c(n);
    cc=col(mod(j-1,nc)+1);
    subplot(2,1,1); plot(x,xj,cc); hold on;
    subplot(2,1,2); plot(x,xqs,cc); hold on;
    hold on
end
```


vib_string.m o = 1.0

Exact Solution

Iterative Solutions

$vib_string.m$ o = 0.5

Exact Solution

Iterative Solutions

