mas541 homework

20208209 오재민

2020년 9월 8일

Problem (1).

$$1 - \left| \frac{z - w}{1 - z\overline{w}} \right|^2 = 1 - \frac{(z - w)(\overline{z} - \overline{w})}{(1 - z\overline{w})(1 - \overline{z}w)}$$

$$= \frac{1 - \overline{z}w - z\overline{w} + |z|^2|w|^2 - |z|^2 - |w|^2 + z\overline{w} + \overline{z}w}{|1 - \overline{z}w|^2}$$

$$= \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \overline{z}w|^2}$$

Problem (2).

Let f = u + iv. $\partial f = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (u + iv)$. Then $\overline{\partial f} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (u - iv) = \overline{\partial f}$.

Problem (3).

If f is constant, then |f| is also constant. On the other hand, assume f = u + iv and $|f|^2 = u^2 + v^2$ is positive real number. (if it is zero, then f must be zero)

$$u^2 + v^2 = R > 0$$

Differentiate both sides of the equation above with x and y respectively, we can get $uu_x + vv_x = 0$, $uu_y + vv_y = 0$, $u_x = v_y$ and $u_y = -v_x$. By simple calculation we can get $u_x = u_y = v_x = v_y = 0$. Therefore u, v are constant.

Problem (4).

Note that $\int_{0}^{2\pi} e^{ik\theta} d\theta = \int_{0}^{2\pi} (\cos k\theta + i \sin k\theta) d\theta = 0$ for positive integer k. Therefore $\frac{1}{2\pi} \int_{0}^{2\pi} (z_0 + re^{i\theta})^j d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{k=0}^{j} {j \choose k} z_0^k (re^{i\theta})^{j-k} d\theta = z_0^j$. Similarly, we can get $\frac{1}{2\pi} \int_{0}^{2\pi} \overline{(z_0 + re^{i\theta})^j} d\theta = \bar{z_0}^j$.

Since u is polynomial, we can write it as $\sum_{l,k} a_{l,k} z^l \bar{z}^k$. By direct computation, we can get $\frac{1}{2\pi} \int_0^{2\pi} u \left(z_0 + re^{i\theta}\right) d\theta = \sum_{l,k} a_{l,k} z_0^l \bar{z}_0^{\ k} = u(z_0)$.

Problem (5).

Let
$$f = u + iv$$
. $(g \circ f)_x = g_u u_x + g_v v_x$. Then

$$(g \circ f)_{xx} = (g_{uu}u_x + g_{uv}v_x) u_x + g_uu_{xx} + (g_{vu}u_x + g_{vv}v_x) v_x + g_vv_{xx}$$
$$(g \circ f)_{yy} = (g_{uu}u_y + g_{uv}v_y) u_y + g_uu_{yy} + (g_{vu}u_y + g_{vv}v_y) v_y + g_vv_{yy}$$

But we have Cauchy-Riemann equation and $g_{uu} + g_{vv} = 0$ and $g_{vu} = g_{uv}$. Using these equations, we can check that $(g \circ f)_{xx} + (g \circ f)_{yy} = 0$. Hence $(g \circ f)$ is a harmonic function.