Równania różniczkowe liniowe drugiego rzędu

Zachariasz Jażdżewski

28 listopada 2023

1 Definicja

Równanie różniczkowe drugiego rzędu, które można zapisać w postaci

$$y'' + p(x) \cdot y' + q(x) \cdot y = f(x)$$

nazywamy równaniem liniowym.

Funkcje p(x), q(x) nazywamy współczynnikami, a funkcję f(x) nazywamy wyrazem wolnym tego równania

- Jeżeli wyraz wolny jest tożsamościowo równy zero $f(x) \equiv 0$, to równanie nazywamy równaniem jednorodnym
- W przeciwnym przypadku nazywamy je równaniem niejednorodnym

2 Istnienie i jednoznaczność rozwiązań

Jeżeli funkcje p(x), q(x) i f(x) są ciągłe na przedziale (a,b) oraz jeżeli $x_0 \in (a,b)$ oraz $y_0,y_1 \in \mathbb{R}$, to zagadnienie początkowe

$$\begin{cases} y'' + p(x) \cdot y' + q(x) \cdot y = f(x) \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \end{cases}$$

ma dokładnie jedno rozwiązanie określone na przedziale (a, b)

3 Rozwiązania równania różniczkowego liniowego drugiego rzędu

3.1 Fakt

Jeżeli funkcje $\phi(x)$ i $\psi(x)$ są na pewnym przedziale rozwiązaniami równania liniowego jednorodnego, to ich dowolna kombinacja liniowa

$$y(x) = \alpha \cdot \phi(x) + \beta \cdot \psi(x)$$

jest również rozwiązaniem równania

4 Układ fundamentalny

Parę rozwiązań $y_1(x), y_2(x)$ równania liniowego jednorodnego, określonych na przedziale (a,b) nazywamy układem fundamentalnym równania na tym przedziale, jeżeli Wronskian funkcji $y_1(x)$ i $y_2(x)$ jest różny od zera

$$W(y_1, y_2) = \det \begin{bmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{bmatrix} \neq 0$$

4.1 Fakt

Jeżeli funkcje $y_1(x), y_2(x)$ tworzą układ fundamentalny równania liniowego jednorodnego, wtedy dla każdego rozwiązania y(x) tego równania istnieją jednoznacznie określone stałe rzeczywiste C_1, C_2 takie, że

$$y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$$

4.2 Rozwiązanie ogólne równania jednorodnego

Liniową kombinację funkcji układu fundamentalnego, podaną powyżej, nazywamy rozwiązaniem ogólnym (całką ogólną) równania jednorodnego

5 Równanie jednorodne o stałych współczynnikach

Równanie jednorodne o stałych współczynnikach jest postaci

$$ay'' + by' + cy = 0$$

5.1 Równanie charakterystyczne

Równanie postaci

$$ar^2 + br + c = 0$$

nazywamy równaniem charakterystycznym równania różniczkowego

5.2 Wielomian charakterystyczny

Wielomian postaci

$$w(r) = ar^2 + br + c$$

nazywamy wielomianem charakterystycznym tego równania, a jego pierwiastki nazywamy pierwiastkami charakterystycznymi

6 Równanie niejednorodne

6.1 Rozwiązanie ogólne

Rozwiązaniem ogólnym równania niejednorodnego nazywamy sumę

$$y(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x) + \phi(x)$$

$$(CORN = CORJ + CSRN)$$

gdzie $y_1(x), y_2(x)$ tworzą układ fundamentalny równania jednorodnego, a $\phi(x)$ jest dowolnym rozwiązaniem równania niejednorodnego