

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Modelos Determinísticos de Investigação Operacional

Eduardo Barbosa (a83344) Filipe Monteiro (a80229) Bárbara Cardoso (a80453) Bruno Martins (a80410) Márcio Sousa (a82400)

9 de Dezembro de 2018

Conteúdo

1	Questão 1				
	1.1 a)				
	1.2 c)				
	1.3 d)				
2	Questão 2				
	2.1 a)				
	2.2 b)				
	2.1 a)				
3	Questão 3				
	Questão 3 3.1 a)				
	3.2 b)				
	3.3 c)				

1 Questão 1

Considere-se um grafo, G, que representa a rede de propagação de um incêndio florestal, sendo que A é o conjunto de arestas de G e V é o conjunto dos nodos. A cardinalidade de V, o número de nodos, é n. Cada um dos vértices corresponde a uma área que é possível ser atingida pelo fogo.

1.1 a)

Seja c_{ij} , $\forall (i,j) \in A$, o custo da aresta (i,j) e x_z , $\forall z \in V$, o tempo que o fogo demorou a chegar ao nodo z, um modelo possivel é:

Função objectivo:

$$\text{Max } \mathbf{z} = \sum x_i, \forall i \in V$$

Sujeito a:

$$x_j \le x_i + c_{ij}, j > i$$

 $x_i \ge 0$
 $(i, j) \in A$

Traduzindo o modelo apresentado no enunciado para um grafo orientado com diferentes pesos associados a cada aresta, foi definida uma variável de decisão x_i que representa o tempo que o fogo demora a propagar-se desde o nodo 1 até um nodo i que varia entre 1 e 49. Desta forma, é possível deduzir que o tempo do fogo chegar a um determinado nodo i do grafo, corresponde à soma do tempo que demora a chegar a um nodo adjacente j com o tempo que demora a chegar de j a i.

b) Para determinar o dual correspondente ao problema em questão baseamo-nos no modelo primal da alinea a. Para isso seguimos um conjunto de passos para executar a conversão do qual resultou o seguinte modelo:

$$c_{ij} := \text{Custo da aresta (i,j)}$$

 $x_{ij} := \text{Numero de caminhos que usam a aresta (i,j)}$

Função objectivo:

$$\operatorname{Min} \mathbf{z} = \sum c_{ij} * x_{ij}, \forall (i, j) \in A$$

Sujeito a:

$$\sum a_{ik} - a_{kj} \ge 1, (i, k) \in A \land (k, j) \in A$$
$$c_{ij} \ge 0$$

1.2 c)

Modelo primal no OPL:

```
// Nº de nodos
int n = ...;

//Nº de arcos
int n_arcos = ...;

//Set de
{int} Nodos = asSet(1..n);

tuple Arco{
   int i;
   int j;
}

{Arco} Arcos with i in Nodos, j in Nodos = ...;

// Tempo que demorou a chegar ao nodo i
int c_total[Arcos] = ...;

// Variável de Decisão
dvar int x[Nodos];

// Minimizar o tempo do fogo chegar a todos os nodos
//maximize max(i in R) x[i];
maximize sum (i in 1..n) x[i];

subject to {

forall (<i,j> in Arcos) x[j] <= x[i] + c_total[<i,j>];
   x[1] == 0;
}
```

Solução do primal (nodo, tempo):

1	0		
2	5		
3	11		
4	16		
5	20		
6	24		
7	28		
8	4		
9	10		
10	16		
11	18		
12	11		
13	15		
14	21		
15	10		
16	14		
17	19		
18	22		
19	17		
20	19		
21	25		
22	16		
23	20		
24	24		
25	28		
26 27	22		
	24		
28	29		
29	21		
30	26		
31	30		
32	32		
33	26		
34	30		
35	34		
36	26		
37	30		
38	34		
39	37		
40	32		
41	36		
42	38		
43	32		
44	36		
45	38		
46 47	41		
	36		
48	40		
49	44		

1.3 d)

Modelo dual no OPL:

```
// Nº de nodos
int n = ...;

//Set de
{int} Nodos = asSet(1..n);

tuple Arco{
   int i;
   int j;
}

{Arco} Arcos with i in Nodos, j in Nodos = ...;

// Tempo que demorou a chegar ao nodo i
   int c_total[Arcos] = ...;

// Variável de Decisão
   dvar int y[Nodos][Nodos];

// Minimizar o tempo do fogo chegar a todos os nodos
   minimize sum (<i,j> in Arcos) c_total[<i,j>]*y[i][j];

subject to {
   forall (<i,j> in Arcos) sum(<i,k> in Arcos) y[i][k] - sum(<k,j> in Arcos) y[k][j] >= 1;
   forall(i,j in Nodos) y[i][j] >= 0;
}
```

O resultado obtido foi um erro relativo à versão utilizada que não suportava a quantidade de variáveis produzidas pelo modelo.

2 Questão 2

Para um grafo, igual ao da questão 1, pretende-se agora que o instante de chegada de um fogo a uma determinada célula seja o mais tarde possível aplicando recursos limitados a outras células retardando assim o incêndio.

2.1 a)

Seja $y_i, \forall i \in V$, a utilização de recurso na célula i, Δ a taxa de retardamento quando um recurso é aplicado a um nodo, x_i o custo de chegar a um nodo i desde o nodo de ignição, x_j o custo de chegar ao nodo j a partir de um nodo de ignição e $c_{ij} \ \forall (i,j) \in A$ o custo da aresta (i,j), um modelo possível é:

Função objectivo:

Max $z = x_p, p := \text{nodo escolhido}$

Sujeito a:

$$x_{j} \leq x_{i} + (\Delta * y_{i}) + c_{ij}, j > i$$

$$x_{i} \geq 0$$

$$y_{i} = \{0, 1\}$$

$$y_{i} \leq b$$

$$(i, j) \in A$$

Traduzindo o modelo apresentado anteriormente, observamos que o custo de chegada ao nodo destino é a soma de chegar ao nodo anterior i com o custo de ir de i para j. Quado a variável y_i é igual a 1 significa que vai ser aplicado um retardamento na célula i e que o custo de chegar ao nodo j vai aumentar. Visto que a função é de maximização, garantimos que retardamos o máximo possível a chegada do fogo ao nodo p. Em conjunto com as restrições é garantido que o custo de chegar a qualquer nodo não é negativo e que só é utilizado um recurso por célula e que os recursos utilizados não excedem os existentes.

2.2 b)

A passagem do modelo descrito na alínea anterior para o software de modelação OPL resultou no seguinte:

```
// № de nodos
   // Nº de nodos
int n = ...;
// Nº de arcos
int n_arcos = ...;
// Nº de recusos máximo a poder alocar
   int b = ...;
// Constante de retardação
int delta = ...;
   // Nodo a proteger o máximo possível
int p = ...;
// Nodo de ignição
   int inicio = ...;
   {int} Nodos = asSet(1..n);
⊖ tuple Arco{
        int i;
        int j;
   {Arco} Arcos with i in Nodos, j in Nodos = ...; // Tempo que demorou a chegar ao nodo i int c_total[Arcos] = ...;
   dvar boolean y[1..n];
dvar int x[Nodos];
   maximize x[p];
subject to {
  forall (<i,j> in Arcos) x[j] <= x[i] + (y[i]*delta) + c_total[<i,j>];
        sum (i in Nodos) y[i] <= b;</pre>
        forall (i in Nodos) x[i]>= 0;
        x[inicio] == 0;
   }
```

Figura 1: Modelo representado no OPL

A execução deste modelo num grafo de 49 nodos com ignição no nodo no 1 e a proteção do nodo no 49 resultou no seguinte:

×	Valores	Υ	Valores
1	0	1	1
2	13	2	1
3	27	3	0
4	32	4	0
5	36	5	0
6	42	6	0
7	46	7	0
8	12	8	1
9	26	9	0
10	32	10	0
11	33	11	0
12	27	12	1
13	39	13	1
14	47	14	0
15	26	15	0
16	30	16	0
17	35	17	0
	-		0
18	38	18	_
19	41	19	0
20	47	20	0
21	53	21	0
22	32	22	0
23	36	23	0
24	40	24	0
25	44	25	0
26	40	26	1
27	52	27	0
28	57	28	0
29	36	29	0
30	42	30	0
31	46	31	0
32	49	32	0
33	52	33	0
34	56	34	0
35	60	35	0
36	41	36	0
37	45	37	0
38	50	38	0
39	54	39	0
40	58	40	0
41			0
	62	41	
42	64	42	1
43	42	43	0
44	47	44	0
45	52	45	0
46	58	46	0
47	62	47	0
48	66	48	1
49	78	49	0

Figura 2: Tabela resultante da execução

Podemos retirar da tabela Y os nodos em que foram utilizados recursos, 1, 2, 8, 12, 13, 28, 42, 48, e da tabela X retiramos os custos de chegar a cada nodo após a utilização dos recursos.

2.3 c)

Como podemos observar no gráfico, a utilização de recursos não é linear, logo a utilização de recursos em diferentes nodos tem como resultado retardamentos diferentes, nem sempre muito grandes.

3 Questão 3

Para um grafo igual ao da questão 1 e 2, sabendo que existem recursos para o combate ao incêndio, pretende-se agora localizar esses recursos de forma a que a área ardida seja minimizada.

3.1 a)

Seja T_i o tempo de chegada do fogo ao nodo i, R_i se o recurso é usado em i, F_i se o fogo chegou antes do tempo ao nodo i, P_i que representa a probabilidade do nodo i arder e c_{ij} que representa o custo de chegar de i a j. A partir destas variáveis surge o modelo:

Função objectivo:

$$\operatorname{Max} z = \sum_{i=0}^{n} P_i * F_i$$

Sujeito a:

$$T_0 = 0$$

$$\sum_{i=0}^n R_i = b$$

$$T_j \le T_i + (\Delta * R_i) + c_{ij}, j > i$$

$$T_i * P_i \le k \text{ , k = tempo}$$

Observando o modelo atentamente vemos que vamos maximizar o nº de nodos que nao arderam, sabendo que o tempo de chegada ao nodo de ignição é zero, o nº de recursos usados tem que ser menor que b, o tempo que o fogo demora a chegar a j é o tempo de chegar a i somado ao custo de chegar de i a j retardado ou não se é usado recurso. Os nodos também não ardem se o k for maior que zero.

3.2 b)

A tradução do modelo anteriormente descrito para o OPL resulta no seguinte:

```
* OPL 12.8.0.0 Model
* Author: Filipe Monteiro
     * Creation Date: Dec 7, 2018 at 1:03:03 PM
     // № de nodos
     int n = ...;
// Nº de recursos disponíveis
     int b = ...;
11
      // Intervalo de tempo
     float t = ...;
// Probabilidade de i arder
12
13
      float prb[1..n]=...;
15
16
     int delta = ...;
17
     {int} Nodos = asSet(1..n);
18
19
20⊖ tuple Arco{
         int i;
int j;
21
22
23
24
     {Arco} Arcos with i in Nodos, j in Nodos = ...;
// Tempo que demorou a chegar ao nodo i
25
27
     int c_total[Arcos] = ...;
28
30
     // Usar recurso no nodo i ou não
     dvar boolean y[1..n];
// Se nodo i ardeu antes do tempo
31
32
33
34
     dvar boolean z[1..n];
// Tempo de chegada ao nodo i
35
     dvar int x[1..n];
36
37
     maximize sum(i in 1..n) prb[i]* (sum (j in 1..n) z[i]);
38
39⊝
     subject to{
40
41
          forall(<i,j> in Arcos) x[j] <= x[i] + (delta*y[i]) + c_total(<i,j>];
42
         forall(i in Nodos) x[i] <= t;
         x[1] == 0;
sum (i in Nodos) y[i] <= b;
43
45
          forall(i in Nodos) x[i] >= 0;
     }
46
```

Figura 3: Modelo representado no OPL

Visto que este modelo não dá resultados que aparentem estar corretos assumimos que o modelo está errado mas fica a tentativa da modelação.

Figura 4: Resultado do OPL

X representa o tempo.

Y representa o uso do recurso.

Z representa se o nodo ardeu antes do tempo.

3.3 c)

Como na alínea anterior foi obtido um resultado errado não foi possível representar o gráfico.