专业: 电气工程及其自动化

姓名:潘谷雨

学号: 3220102382

地点: 紫金港东三 406

浙江大学实验报告

一. 实验目的

- 1.掌握组合集成电路元件的功能检查方法。
- 2.熟悉全加器和奇偶位判断电路的工作原理。
- 3.掌握组合逻辑电路的功能测试方法及设计方法。

二. 实验仪器

实验箱电源与数字模块,74LS00与非门芯片,74LS55或非门芯片。

三. 实验内容

- 1.测试与非门 74LS00 和与或非门 74LS55 的逻辑功能。
- 2.用与非门 74LS00 和与或非门 74LS55 设计一个全加器电路,并进行功能测试。
- 3.用与非门 74LS00 和与或非门 74LS55 设计四位数奇偶位判断电路,并进行功能测试。

四. 实验步骤及结果

- 1. 一位全加器
- (1) 搭建电路

输入 A、B、Ci,要实现一位全加器,则输出满足: $S_i = AB + \overline{AB} = A \oplus B$, $S = \overline{S_i C_{l-1} + \overline{S_i} \overline{C_{l-1}}}$, $Ci = \overline{AB} + \overline{C_{l-1}} \overline{S_i}$ 。如图 1.1 搭建电路,74LS00 与非门芯片、74LS55 或非门芯片的 14 脚 Vcc 接 5V 高电平,7 脚接地。

图 1.1 一位全加器电路图

(2) 显示结果

将输出 Ci、S 接至 LED 灯, 真值表如图 1.2 所示。

A	В	Ci-1	Ci	S
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	0	1
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

图 1.2 一位全加器真值表

(3) 瞬态分析设置

设置瞬态分析(Time Domain(Transient)),参数为 Run To Time =10s。

(4) 运行仿真分析程序

(5) 查看仿真结果

在 Probe 程序中输入与输出波形,结果如图 1.3 所示。

图 1.3 一位全加器波形图

实验名称: ____全加器和奇偶判断 ___姓名: _____潘谷雨 ___学号: _____3220102382

2.数码奇偶位判断电路

(1) 搭建电路

输入 A、B、C、D,要实现数码奇偶位判断,则输出满足: $Z=A\oplus B\oplus C\oplus D$ 。如图 2.1 搭建电路,74LS00 与非门芯片、74LS55 或非门芯片的 14 脚 Vcc 接 5V 高电平,7 脚接地。

图 2.1 数码奇偶位判断电路图

(2) 显示结果

将输出 Z 接至 LED 灯, 真值表如图 2.2 所示。

A	В	С	D	Z
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	0	0
0	0	1	0	1
1	0	1	0	0
0	1	1	0	0
1	1	1	0	1
0	0	0	1	1
1	0	0	1	0
0	1	0	1	0
1	1	0	1	1
0	0	1	1	0
1	0	1	1	1
0	1	1	1	1
1	1	1	1	0

图 2.2 数码奇偶位判断路真值表

(3) 瞬态分析设置

设置瞬态分析(Time Domain(Transient)),参数为 Run To Time =20s。

Simulation Settings - odd_ev	ven			;
General Analysis Configuration Files Options Data Collection Probe Window	Analysis Type: Time Domain (Transient) Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Save Check Point Restart Simulation	Run To Time : Start saving data after : Transient options: Maximum Step Size Skip initial transient b	20s 0 sias point calculation (S	seconds (TSTOP) seconds seconds KIPBP) Output File Options
		OK	Cancel Ap	Reset Help

(4) 运行仿真分析程序

(5) 查看仿真结果

在 Probe 程序中输入与输出波形,结果如图 2.3 所示。

图 2.3 一位全加器波形图

实验体会:

全加器与奇偶判断均有较多异或逻辑,在做第二个实验时不用全部拆线,只需要在第一个实验的输出 Si 基础上与新输入 D 作异或即可,这样能够大大缩减实验电路搭建时间。实验中没有出现故障,通过遍历不同输入,观察输出结果,可以直观验证其正确性,这个过程有助于巩固对二进制加法原理的理解,同时也提高了对电路测试方法的掌握。