

ПРОГНОЗИРОВАНИЕ УРОВНЯ ПРЕСТУПНОСТИ И АНАЛИЗ ФАКТОРОВ ВЛИЯНИЯ

Абдыкаримов Амир Даменова Дана

ДАТАСЕТ

Crimes in US Communities Dataset

- 1) Датасет предоставлен за 2018 год
- 2) Датасет описывает демографические данные и количетсво преступления в разных сообществах США
- 3) Демографические данные включают в себя: популяцию, возраст, расу, доход, образование, бедность, иммиграцию, полицию, структуру семьи.
- 4) Данные о преступлениях включают в себя: вид преступления и количество преступлений в данном сообществе

ПРОПУЩЕННЫЕ ЗНАЧЕНИЯ

```
In [3]: df_crime.isna().sum().sort_values(ascending=False)
Out[3]: PctPolicBlack
                                1872
        PolicAveOTWorked
                                1872
        PolicOperBudg
                                1872
        LemasPctPolicOnPatr
                                1872
        LemasGangUnitDeploy
                                1872
        PctWorkMomYoungKids
        PctWorkMom
        NumKidsBornNeverMar
        PctKidsBornNeverMar
        PctHousLess3BR
        Length: 146, dtype: int64
```

- Есть колонны, в которых пропущено 84.5% данных
- Для восполнения, используем mean imputing для численных значений (вводим среднее значение по штату)
- Удаляем колонны с низкой предиктивной способностью (communityCode, communityName)
- С полученным датасетом будет проведена дальнейшая работа для всех моделей

ПОДГОТОВКА ДАННЫХ ДЛЯ РЕГРЕССИИ

1 Удаление колонн

Удаляем колонны, содержащие преступления, отличные от таргета (интересующей колонны), чтобы основываться только на демографических и социальных данных

3 Таргет Энкодинг

Классовые колонны по типу штата, округа, не могут быть считаны моделью, потому применяется target encoding - метод, присваивающий классу среднее значение таргета (например, если в штате Вирджиния в среднем 3.5 убийства, "Вирджиния" принимает значение 3.5)

2 Удаление выбросных данных

Удаление аутлаеров внутри таргета используя IQR, чтобы выбросные значения не искажали данные

```
def train models for targets(data, targets):
   results = {}
   cols_to_drop = [
       "murders", "murdPerPop", "rapes", "rapesPerPop", "robberies", "robbbPerPop",
       "assaults", "assaultPerPop", "burglaries", "burglPerPop", "larcenies",
       "larcPerPop", "autoTheft", "autoTheftPerPop", "arsons", "arsonsPerPop",
       "ViolentCrimesPerPop", "nonViolPerPop", "communityName
   for target in targets:
       print(f"Processing target: {target}")
       X = data.drop(columns=cols_to_drop + [target], errors='ignore')
       y = data[target]
       # Удаление аутлауеров / выбросов
       Q1 = y.quantile(0.25)
       Q3 = y.quantile(0.75)
       data filtered = data[(y >= Q1 - 1.5 * IQR) & (y <= Q3 + 1.5 * IQR)]
       y_filtered = data_filtered[target]
       X = X.loc[data_filtered.index]
       # Таргет энкодинг / преобразование классов в численные значения для модели
       categorical_columns = ["state", "countyCode"]
       # вычисление средних значений по штатам и округам для преобразования (таргет энкодинга)
       state_target_encoding = data_filtered.groupby('state')[target].mean()
       county_target_encoding = data_filtered.groupby('countyCode')[target].mean()
```

ПОДГОТОВКА ДАННЫХ ДЛЯ РЕГРЕССИИ

4 Выбор приоритетных колонн

Применение random forest selector для определения 20 приоритетных колонн

```
# деление на тренировочные и тестовые данные
X_train, X_test, y_train, y_test = train_test_split(X, y_filtered, test_size=0.2, random_state=42)
# Выбираем приоритетные колонны, топ-20, используя случайный лес / random forest
selector = RandomForestRegressor(random state=42)
selector.fit(X_train, y_train)
importances = selector.feature_importances
top features idx = np.argsort(importances)[-20:]
top_features = X.columns[top_features_idx]
X_train = X_train[top_features]
X_test = X_test[top_features]
# Сохраним информацию о приоритетных колоннах в csv
feature_weights = pd.DataFrame({"Feature": top_features, "Importance": importances[top_features_idx]})
feature_weights.sort_values(by="Importance", ascending=False, inplace=True)
feature_weights.to_csv(f"feature_weights/{target}.csv", index=False)
# Сохраним также в качестве графика для визуализации на сайте
plt.figure(figsize=(10, 6))
plt.barh(feature_weights["Feature"], feature_weights["Importance"], color="skyblue")
plt.xlabel("Importance")
plt.ylabel("Feature")
plt.title(f"Feature Importance for {target}")
plt.savefig(f"images/{target}.jpg")
plt.close()
# Тренировка моделей
models = {
    "RandomForest": RandomForestRegressor(random_state=42),
    "KNN": KNeighborsRegressor(),
    "XGBoost": XGBRegressor(random state=42),
    "DecisionTree": DecisionTreeRegressor(random_state=42)
```

5 Тренировка моделей

Тренировка на 20 выбранных колоннах моделей Linear regression, KNN regressor, Random Forest, XGBoost.

Причина выбора - малое кол-во данных, задача регрессии. Модель с наименьшим RMSE выбирается и экспортируется используя joblib

```
for model_name, model in models.items():
       model.fit(X train, y train)
       y_pred = model.predict(X_test)
       # Вычисление метрик
       rmse = root_mean_squared_error(y_test, y_pred)
       mae = mean_absolute_error(y_test, y_pred)
       r2 = r2_score(y_test, y_pred)
       metrics[model_name] = {"RMSE": rmse, "R2": r2, "MAE": mae}
   print(X train.columns)
    # Выбираем лучшую модель основываясь на самом низком RMSE
   best_model_name = min(metrics, key=lambda m: metrics[m]["RMSE"])
   best_model = models[best_model_name]
   print(f"Best model for {target}: {best_model_name} with RMSE {metrics[best_model_name]['RMSE']}")
   # Сохраняем модель в расширении pkl чтобы подключить к бэкенди
   joblib.dump(best_model, f"models/{target}.pkl")
   # Добавляем полученные результаты в json файл
   results[target] = {
       "BestModel": best model name
        "Mean": y.mean(),
        **metrics[best_model_name]
results_path = "results.json"
with open(results_path, "w") as f:
   json.dump(results, f, indent=4)
print(f"Results saved to {results_path}")
```

ОТЛИЧИЯ ДЛЯ КЛАССИФИКАЦИИ И РЕГРЕССИИ С ПРЕСТУПЛЕНИЯМИ

Регрессия с преступлениями

Учитываются другие виды преступления при предсказании таргета для повышения точности в случаях, если пользователю известны преступления иного типа (например, известны кражи, но предсказываются убийства)

Классификация

Вместо регрессии предсказывается Высокая/Низкая степень преступлений (1/0). Для этого мы использовали нормализацию данных по колоннам преступлений (чтобы придать равный вес всем преступлениям) и сложили их. Топ-30% по полученныму показателями были присвоены High crime (1), остальным Low crime (0). Исходя из этого была натренирована модель.

```
X = data.drop(columns= [target,
   "murdPerPop",
   "rapesPerPop",
   "robbbPerPop",
   "assaultPerPop",
   "burglPerPop",
   "larcPerPop",
   "autoTheftPerPop",
   "arsonsPerPop",
   "violentCrimesPerPop",
   "nonViolPerPop", 'communityName'], errors='ignore')
```

```
In [3]: import pandas as pd
from sklearn.preprocessing import MinMaxScaler

crime_columns = [
    "murders", "rapes", "robberies", "assaults",
    "burglaries", "larcenies", "autoTheft", "arsons"
]

scaler = MinMaxScaler()
df_crimes[crime_columns] = scaler.fit_transform(df_crimes[crime_columns])

df_crimes["Normalized Crime Score"] = df_crimes[crime_columns].sum(axis=1)

threshold = df_crimes["Normalized Crime Score"].quantile(0.7)

def classify_crime(score):
    if score < threshold:
        return 0
    else:
        return 1

df_crimes["High_Crime_Level"] = df_crimes["Normalized Crime Score"].apply(classify_crime)</pre>
```

РЕЗУЛЬТАТЫ

Лучшая модель - Random forest для всех задач регрессии с отклонением 5-13% к среднему (МАЕ/среднее *100%)

Лучшая модель - Random forest для всех задач регрессии с преступлениями с отклонением 3.7-13% к среднему (МАЕ/среднее *100%)

Results	†rom	the	JSON	tile:
		_		

	${\sf BestModel}$	Mean	RMSE	R2	MAE
murders	RandomForest	7.764786	1.100679	0.505892	0.764936
rapes	RandomForest	29.491831	6.785442	0.7242	4.156959
robberies	RandomForest	237.915598	15.914334	0.825593	9.906997
assaults	RandomForest	326.027948	55.422811	0.616442	34.878019
burglaries	RandomForest	761.645189	93.969862	0.864305	60.734057
larcenies	RandomForest	2138.107175	333.45514	0.799749	230.372267
autoTheft	RandomForest	516.405406	54.631456	0.770797	35.390071
arsons	RandomForest	32.832695	6.407274	0.484433	4.578442

Model Comparison Results:

	Model	Accuracy	Precision	Recall	F1-Score
3	XGBoost	0.918736	0.918586	0.918736	0.917589
2	Random Forest	0.911964	0.912444	0.911964	0.910210
Ø	Logistic Regression	0.869074	0.869815	0.869074	0.864590
1	KNN Classifier	0.860045	0.862150	0.860045	0.854022

92% Точность для классификации Высокой/Низкой степени преступности Лучшая модель - XGBoost