Kelompok 3 C2 1. 2101310 AKMAL ZULKIFLI 2. 2205297 NABILLA ASSYFA RAMADHANI 3. 2205410 RADITYA ADHA RAHMAN 4. 2106330 WILDAN MAULI DAROJAT 5. 2201017 ILHAM AKBAR Data NPL untuk mendeteksi nasabah yang kreditnya akan macet. Field yang akan diprediksi adalah "flag_kredit_macet". **IMPORT LIBRARY** In [1]: # display %matplotlib inline # numerik import numpy as np # analisis import pandas as pd # plot import matplotlib.pyplot as plt # visualisasi import seaborn as sns import warnings warnings.filterwarnings("ignore") from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from xgboost import XGBClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB READ FILE data=pd.read_csv("npl_train.txt") data.head(3) tagihan total_pemakaian_tunai total_pemakaian_retail sisa_tagihan_tidak_terbayar kode_cabang rasio_pembayaran ... flag_kredit_macet jumlah_tahun_ X jumlah_kartu outstanding limit_kredit Out[2]: 0 1 36158 7000000.0 23437.0 94.0 26323.0 102.19 ... 0 1012.0 **1** 2 268691 10000000.0 254564.0 0.0 0.0 0.00 ... 0 **2** 3 6769149 28000000.0 4159779.0 0.0 0.0 0.0 Α 100.00 ... 0 3 rows × 24 columns In [3]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 15493 entries, 0 to 15492 Data columns (total 24 columns): # Column Non-Null Count Dtype 0 Χ 15493 non-null int64 jumlah_kartu 15493 non-null int64 1 15493 non-null int64 outstanding limit_kredit 3 15493 non-null float64 tagihan 15493 non-null float64 total_pemakaian_tunai 15493 non-null float64 5 total_pemakaian_retail 15493 non-null float64 7 sisa_tagihan_tidak_terbayar 15493 non-null float64 15393 non-null 8 kode_cabang object rasio_pembayaran 15493 non-null float64 persentasi_overlimit 15493 non-null float64 rasio_pembayaran_3bulan 15493 non-null float64 12 rasio_pembayaran_6bulan 15493 non-null float64 13 skor_delikuensi 15493 non-null int64 14 flag_kredit_macet 15493 non-null int64 15 jumlah_tahun_sejak_pembukaan_kredit 15493 non-null float64 16 total_pemakaian 15493 non-null float64 17 sisa_tagihan_per_jumlah_kartu 15493 non-null float64 15493 non-null float64 sisa_tagihan_per_limit 18 15493 non-null float64 total_pemakaian_per_limit 19 pemakaian_3bln_per_limit 15493 non-null float64 pemakaian_6bln_per_limit 15493 non-null float64 22 utilisasi_3bulan 15493 non-null float64 23 utilisasi_6bulan 15493 non-null float64 dtypes: float64(18), int64(5), object(1) memory usage: 2.8+ MB Menghapus Kode Cabang kode cabang dan X dihapus karena tidak memiliki kaitan dengan hasil akhir. data = data.drop(["kode_cabang", "X"], axis=1) data["flag_kredit_macet"].value_counts() 0 14134 Out[5]: 1359 Name: flag_kredit_macet, dtype: int64 SPLIT DATA from sklearn.model_selection import train_test_split data_train, data_test=train_test_split(data, test_size=0.4, random_state=1) data_train.head(5) In [8]: jumlah_kartu outstanding limit_kredit tagihan total_pemakaian_tunai total_pemakaian_retail sisa_tagihan_tidak_terbayar rasio_pembayaran persentasi_overlimit rasio_pembayaran_3bulan Out[8]: 10502 24962677 23000000.0 22575840.0 0.0 2957908.0 25136225.0 8.62 0.0 7.88 14010 7474329 7000000.0 2981653.0 0.0 0.0 2133750.0 60.9 2.07 83.90 5089 3 596113 44000000.0 530033.0 0.0 0.0 0.0 0.0 0.00 18.10 0.0 1130000.0 4746073.0 7683 3 4851906 10000000.0 4748881.0 23.1 0.00 30.50 5692 76966 80000000.0 78000.0 0.0 196.0 0.0 0.0 0.00 2 25.20 5 rows × 22 columns data_test=data_test.drop("flag_kredit_macet", 1) In [10]: data_train.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 9295 entries, 10502 to 13349 Data columns (total 22 columns): # Column Non-Null Count Dtype 0 jumlah_kartu 9295 non-null int64 outstanding 9295 non-null int64 1 limit_kredit 9295 non-null float64 tagihan 9295 non-null float64 3 total_pemakaian_tunai 9295 non-null float64 float64 total_pemakaian_retail 9295 non-null 5 sisa_tagihan_tidak_terbayar float64 9295 non-null float64 rasio_pembayaran 9295 non-null 8 persentasi_overlimit 9295 non-null float64 float64 rasio_pembayaran_3bulan 9295 non-null rasio_pembayaran_6bulan float64 9295 non-null 10 9295 non-null skor_delikuensi int64 flag_kredit_macet 9295 non-null int64 13 jumlah_tahun_sejak_pembukaan_kredit 9295 non-null float64 9295 non-null 14 total_pemakaian float64 15 sisa_tagihan_per_jumlah_kartu 9295 non-null float64 16 sisa_tagihan_per_limit 9295 non-null float64 17 total_pemakaian_per_limit 9295 non-null float64 pemakaian_3bln_per_limit 9295 non-null float64 18 pemakaian_6bln_per_limit 9295 non-null float64 19 9295 non-null float64 20 utilisasi_3bulan 21 utilisasi_6bulan 9295 non-null float64 dtypes: float64(18), int64(4) memory usage: 1.6 MB Kelas Target In [11]: X=data_train.drop("flag_kredit_macet",1) In [12]: X.head(5) Out[12]: jumlah_kartu outstanding limit_kredit tagihan total_pemakaian_tunai total_pemakaian_retail sisa_tagihan_tidak_terbayar rasio_pembayaran persentasi_overlimit rasio_pembayaran_3bulan 10502 24962677 23000000.0 22575840.0 25136225.0 0.0 2957908.0 0.0 8.62 7.88 7000000.0 2981653.0 2133750.0 14010 7474329 0.0 0.0 60.9 2.07 83.90 5089 3 596113 44000000.0 530033.0 0.0 0.0 0.0 0.0 0.00 18.10 7683 4851906 10000000.0 4748881.0 0.0 1130000.0 4746073.0 23.1 0.00 30.50 76966 80000000.0 5692 2 78000.0 0.0 196.0 0.0 0.0 0.00 25.20 5 rows × 21 columns In [13]: y=data_train[["flag_kredit_macet"]] In [14]: y.head(5) Out[14]: flag_kredit_macet 10502 0 14010 0 1 5089 7683 5692 1 DATA IMBALANCE In [15]: plt.figure(figsize=(15,8)) plt.subplot(1,2,1)y.value_counts().plot.pie(autopct='%1.1f%%') centre=plt.Circle((0,0),0.7,fc='white') fig=plt.gcf() fig.gca().add_artist(centre) <matplotlib.patches.Circle at 0x230ef80c110> Out[15]: (0,)91.4% 8.6% (1,)In [16]: from imblearn.over_sampling import SMOTE over=SMOTE() X,y=over.fit_resample(X,y) In [17]: x_train, x_cv, y_train, y_cv=train_test_split(X, y, test_size=0.2, random_state=1) In [18]: plt.figure(figsize=(15,8)) plt.subplot(1,2,1)y.value_counts().plot.pie(autopct='%1.1f%%') centre=plt.Circle((0,0),0.7,fc='white') fig=plt.gcf() fig.gca().add_artist(centre) <matplotlib.patches.Circle at 0x230f0a14110> Out[18]: (0,) 50.0% 50.0% (1,)METODE NAIVE BAYES In [19]: nb_model = GaussianNB() nb_model.fit(x_train, y_train) Y_pred = nb_model.predict(x_cv) acc = accuracy_score(y_cv, Y_pred)*100 print("Akurasi {}".format(acc)) print(classification_report(y_cv, Y_pred)) Akurasi 54.81023830538394 recall f1-score support precision 0 0.82 0.11 0.19 1680 1 0.53 0.98 0.69 1719 0.55 accuracy 3399 macro avg 0.68 0.54 0.44 3399 weighted avg 0.67 0.55 0.44 3399 METODE DECISION TREE In [20]: tree_model = DecisionTreeClassifier(random_state=1) tree_model.fit(x_train,y_train) pred_cv_tree=tree_model.predict(x_cv) score_tree =accuracy_score(pred_cv_tree, y_cv)*100 print("akurasi:", score_tree) print(classification_report(y_cv, pred_cv_tree)) akurasi: 86.70197116799059 support recall f1-score precision 0 0.85 0.86 0.87 1680 1 0.88 0.87 1719 0.86 0.87 3399 accuracy 0.87 0.87 0.87 3399 macro avg weighted avg 0.87 3399 0.87 0.87 METODE RANDOM FOREST forest_model = RandomForestClassifier(random_state=1, max_depth=10, n_estimators=50) In [21]: forest_model.fit(x_train,y_train) pred_cv_forest=forest_model.predict(x_cv) score_forest = accuracy_score(pred_cv_forest,y_cv)*100 print("akurasi:", score_forest) print(classification_report(y_cv, pred_cv_forest)) akurasi: 89.14386584289497 recall f1-score precision support 0 0.92 0.86 0.89 1680 1 0.87 0.92 0.90 1719 accuracy 0.89 3399 macro avg 0.89 0.89 0.89 3399 weighted avg 0.89 0.89 0.89 3399 **METODE XGBoost** xgb_model = XGBClassifier(n_estimators=50, max_depth=7) xgb_model.fit(x_train,y_train) pred_xgb=xgb_model.predict(x_cv) score_xgb = accuracy_score(pred_xgb,y_cv)*100 print("Akurasi : ", score_xgb) print(classification_report(y_cv, pred_xgb)) Akurasi : 93.14504265960576 precision recall f1-score support 0.95 0.93 0.92 0.93 0.95 1719 accuracy 0.93 3399 0.93 0.93 0.93 3399 macro avg 3399 weighted avg 0.93 0.93 0.93 pred_xgb_test=xgb_model.predict(data_test) In [23]: pred_xgb_test array([0, 0, 0, ..., 0, 0, 1]) Out[23]: df_pred_result=data_test In [24]: df_pred_result["Prediksi_kredit"]=pred_xgb_test df_pred_result In [25]: Out[25]: jumlah_kartu outstanding limit_kredit tagihan total_pemakaian_tunai total_pemakaian_retail sisa_tagihan_tidak_terbayar rasio_pembayaran persentasi_overlimit rasio_pembayaran_3bulan 3576 2 0.000008 4073734.0 0.0 1901025.0 5213854.0 8096704 65.5 1.24 37.90 0.0 538655.0 100.0 0.00 8564 684568 8000000.0 47263.0 0.0 100.00 13670 3 11000000.0 1933276.0 0.0 586000.0 3155317.0 100.0 0.00 100.00 3617686 3007042.0 0.0 100000.0 3097253.0 10.1 3.84 12.40 13243 3110979 3000000.0 804 2 4000000.0 148961.0 0.0 0.0 0.0 0.0 0.00 39.46 139723 8367 4732242 4000000.0 4505282.0 0.0 165000.0 4766229.0 46.7 18.90 17.10 4 1925453.0 5691 2 2294072 4000000.0 1115000.0 0.0 848587.0 81.7 0.00 98.80 5995 6 22629584 18000000.0 20208542.0 0.0 3927461.0 22643270.0 40.1 11.90 58.00 12277 8153311 8000000.0 3644008.0 0.0 946400.0 7961240.0 0.0 1.24 97.00 12844 2 8520816.0 0.0 0.0 8464004.0 0.0 21.70 45.50 8479101 7000000.0 6198 rows × 22 columns In [26]: **from** sklearn.metrics **import** confusion_matrix confusion_matrix(pred_xgb,y_cv) array([[1528, 81], Out[26]: [152, 1638]], dtype=int64)