Contextual Models for Tree Disambiguation

Maximilian Ludvigsson Oscar Kalldal

Chalmers University of Technology

Presentation, November 2017

Outline

Problem

Tree Disambiguation

Probabilistic Parsing

Estimation

Model

Example

Expanding to syntactic bigram

Evaluation

Conclusion

Problem

Why?

- ► The GF parser fails: "I work at the bank"
- Reranking to disambiguate

How?

- Language independent
- Easy to extend

Problem

Ambiguity

Two kinds of ambiguity

- Syntactic
- Lexical

Syntactic Ambiguity

"I eat the food in the kitchen"

(2)

food N

Sentence

VerbPhrase

TransitiveVerb

Pronoun

I_PRON

(1) chufang chi fan wo zai [at loc.] kitchen eat food. 'I eat the food in the kitchen'

wo chi zai chufang de fan eat [at loc.] kitchen [attr.] food 'I eat the food in the kitchen'

AtLocationAttr

kitchen N

Lexical Ambiguity

"I like bass"

(3) Jag gillar aborre I like bass 'I like bass' (4) Jag gillar bas I like bass 'I like bass'

Tree probabilities

Higher probability

Lower probability

Tree Probabilities

High probability

Very low probability

Context-Free Model

Log-probability score for each node

Lower probability!

Higher probability!

Context-Aware Model

Probability scores accounts for potentially long range interactions, eating fish is probable but eating instruments is not!

This is what we want!

Finding Relevant Interactions

- ► (eat, bass) carries strong signal
- ▶ (I, bass) intuitively carries much weaker signal
- How do we find the right interactions?
- Solution: lexicalize on head in UD tree

UD and GF2UD

- Universal Dependencies language independent dependency grammars
- ► Deterministic mapping from AST to *Abstract Dependency Tree* in UD style
- ► Finds a new tree over only the constant functions
- ► Lexicalization: condition probability score on parent in ADT

Assigning the correct probabilities

- ▶ Estimate frequencies from corpora or treebanks
- ► Many UD-resources, gold-treebanks, high quality parsers
- ▶ These resources are still lexically ambiguous!
- ► Solution: estimate probabilities from resources in multiple languages and use expectation maximization

Toy problem

```
Languages English, Swedish
English Vocabulary play, gamble
Swedish Vocabulary leka, spela
       Latent Space child_play, instrument_play, gamble
                             Dictionary:
                              play = \{1, 2\}
                          gamble = \{3\}
                            spela = \{2, 3\}
                              \mathsf{leka} = \{ \mathbf{1} \}
```

Corpus

Latent Space child_play, instrument_play, gamble 1 2 3

English Corpus play play play gamble Swedish Corpus spela spela leka leka

Example Gold

Latent Space child_play, instrument_play, gamble

1 2 3

It would be easy if we knew the underlying meaning (maximum likelihood)

English Corpus play play play gamble

1 1 2 3

Swedish Corpus leka leka spela spela
1 1 2 3

$$P(1) = 0.5$$

$$P(\mathbf{2}) = 0.25$$

$$P(3) = 0.25$$

Algorithm

Assuming unique linearizations

Expectation step:

$$\hat{c}_{sij}^{t} = \frac{c_{si}\pi_{j}^{t-1}}{\sum_{k:y_{k} \in D_{si}} \pi_{k}^{t-1}}$$

Maximization step:

$$\pi_j^t = \sum_{s,i} \frac{\hat{c}_{sij}^t}{N}$$

First iteration

- ▶ Initial guess: $P_0(1) = P_0(2) = P_0(3) = 0.33$
- Expectation:

$$c_1 = 1.5 + 2 = 3.5$$

 $c_2 = 1.5 + 1 = 2.5$
 $c_3 = 1 + 1 = 2$

Maximization:

$$P_1(\mathbf{1}) = c_1/c_{\mathsf{total}} = 3.5/8 \approx 0.44$$

 $P_1(\mathbf{2}) = c_2/c_{\mathsf{total}} = 2.5/8 \approx 0.31$
 $P_1(\mathbf{3}) = c_3/c_{\mathsf{total}} = 2/8 \approx 0.25$

Second iteration

English Corpus play play play gamble
$$\{1,2\}$$
 $\{1,2\}$ $\{1,2\}$ 3 Swedish Corpus spela spela leka leka $\{2,3\}$ $\{2,3\}$ 1 1

Expectation:

$$c_1 = 1.8 + 2 = 3.8$$

 $c_2 = 1.2 + 1.1 = 2.3$
 $c_3 = 1 + 0.9 = 1.9$

Maximization:

$$P_2(\mathbf{1}) = c_1/c_{\mathsf{total}} = 3.8/8 \approx 0.48$$

 $P_2(\mathbf{2}) = c_2/c_{\mathsf{total}} = 2.3/8 \approx 0.29$
 $P_2(\mathbf{3}) = c_3/c_{\mathsf{total}} = 1.9/8 \approx 0.24$

10th iteration

A few more iterations:

$$P_{10}(\mathbf{1}) \approx 0.497$$

 $P_{10}(\mathbf{2}) \approx 0.256$
 $P_{10}(\mathbf{3}) \approx 0.247$

Expanding to bigram

Latent Space
$$\{play_1, play_2\} \times \{ball, flute\}$$
1 2 3 4

$$\begin{aligned} \text{(play, ball)} &= \{ (\mathbf{1},\mathbf{3}), (\mathbf{2},\mathbf{3}) \} \\ \text{(play, flute)} &= \{ (\mathbf{1},\mathbf{4}), (\mathbf{2},\mathbf{4}) \} \end{aligned}$$

Expanding to bigram

$$(\mathsf{play},\,\mathsf{game}) = \{(\textbf{1},\textbf{3}),(\textbf{2},\textbf{3}),(\textbf{1},\textbf{4}),(\textbf{2},\textbf{4})\}$$

Wordnet dictionaries

- Over 117 000 synsets, 150 000 words in english wordnet
- Not all synsets have unique linearization
- Requires us to store both possible linearizations for every synset as well ass possible synsets for each word
- Requires a lot of memory for bigrams
- Just the Noun-Verb pairs takes more memory than our computers can handle

Evaluation

Qualitative Performance on a set of hand-crafted test sentences.

Quantitative WSD performance on a large set of annotated sentences.

Evaluation

Qualitative

"He works at the bank"

GF parser	Rerank	Interpretation
26.398	16.542	he labors at the bank institution
26.398	45.383	he functions at the bank institution
29.458	16.802	he labors at the river bank
29.458	37.562	he functions at the river bank

Evaluation

Quantitative

Trainomatic data					
Model	Success rate	OOV			
7 languages	75%	-			
No English	49%	65%			
Only English	67%	12%			
Ambiguous sentences	55 114				
Total # of sentences	834 468				

Wordnet examples				
Model	Success rate	OOV		
7 languages	72%	-		
No English	42%	33%		
Only English	66%	8%		
Ambiguous sentences	739			
Total # of sentences	48 247			

Real World Challenges

Parameter Space

- ▶ 46 000 GF unigrams
- ▶ 120 000 Wordnet unigrams
- ▶ 17 000 000 GF bigrams
- 225 000 000 Wordnet bigrams

Data

- CoNLL 2017 Shared Task
- ho pprox 140 GB gzipped data
- ▶ more than 10⁹ sentences
- ► English, Dutch, Bulgarian, Finnish, French, Swedish, Hindi

Summary

Strengths

- Identifies simple relations
- Generalizes across languages
- Explainable

Weaknesses

- ► Large parameter space
- ▶ 00V
- Dependent on a good dictionary

Summary and Outlook

We have...

- Implemented the EM-algorithm
- Formalized the underlying mathematical model
- Gotten it to work with large scale data sources
- Adapted the model to Wordnet (non-unique linearization)

Outlook

- Smoothing (Kneser-Ney)
- N-gram composition
- Higher order models
- Wordnet-graph based reduction of parameters

Thanks

Special thanks to...

- Prasanth
- Krasimir

Links

```
Code http://github.com/okalldal/gf-exjobb
Blog http://github.com/okalldal/gf-exjobb/wiki/Journal
```