DIGITAL SYSTEM

PRACTICUM REPORT 9: DECODER

NIM : L2001842220

NAME : MOTWKEL MHMOUD M . A

INFORMATION TECHNOLOGY FACULTY OF COMMUNICATION AND INFORMATICS MUHAMMADIYAH UNIVERSITY OF SURAKARTA

2019

exercise 1

a) Make a simple decoder

b) Truth table

A	В	C	D	F
0	0	0	0	0
1	0	0	0	0
0	1	0	0	0
1	1	0	0	1

0	0	1	0	0
1	0	1	0	0
0	1	1	0	0
1	1	1	0	0
0	0	0	1	0
1	0	0	1	0
0	1	0	1	0
1	1	0	1	0
0	0	1	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	0

c) Decoder (F) just working (ON) when : A = 1 B = 1 C = 0 D = 0

d) Decoder that have output

$$F = 1$$

 $A = 0$ $B = 1$ $C = 1$ $D = 1$ ($F = A$ 'BCD)

exercise 2

a) Make a combination of logic gate

b) Truth table

In	put	Output LED							
SW1	SW2	D1	D2	D3	D4				
0	0	0	0	0	1				
0	1	0	1	0	0				
1	0	0	0	1	0				
1	1	1	0	0	0				

c) Each diode (LED) shows the output of a combination circuit:

$$D1 = SW1 . SW2$$

$$\mathbf{D2} = SW1 \cdot SW2$$

$$\mathbf{D3} = SW1 \cdot SW2$$

$$\mathbf{D4} = \overline{SW1} \cdot \overline{SW2}$$

exercise 3

a) Make a combination of logic gate

b) Truth table

In	put	Output LED							
SW1	SW2	D1	D2	D3	D4				
0	0	1	1	1	0				
0	1	1	0	1	1				
1	0	1	1	0	1				
1	1	0	1	1	1				

c) Each diode (LED) shows the output of a combination circuit:

$$D1 = SW1 . SW2$$

$$\mathbf{D2} = \overline{SW1} \cdot SW2$$

$$\mathbf{D3} = SW1 \cdot \overline{SW2}$$

$$\mathbf{D4} = \overline{SW1} \cdot \overline{SW2}$$

d) Conclusion

- Exercise 2 use AND gate
- Exercise 3 use NAND gate

→ NOT affects the output of the LED.

the output of the LED using NOT will be inversely proportional to the output of the LED that does not use NOT

exercise 4

a) Circuit

> Anode LED circuit

> Cathode LED circuit

b) Truth table

> Anode LED circuit

	Input					Output								
SW4	SW3	SW2	SW1	0	1	2	3	4	5	6	7	8	9	
0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	1	0	1	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	1	0	0	0	0	0	0	0	
0	0	1	1	0	0	0	1	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	1	0	0	0	0	0	
0	1	0	1	0	0	0	0	0	1	0	0	0	0	
0	1	1	0	0	0	0	0	0	0	1	0	0	0	
0	1	1	1	0	0	0	0	0	0	0	1	0	0	

1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0

> Cathode LED circuit

		Output											
SW4	SW3	SW2	SW1	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
1	0	1	0	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

additional assignment

- All Outputs Are High for Invalid Input Conditions
- Also for Application as
 4-Line-to-16-Line Decoders
 3-Line-to-8-Line Decoders
- Diode-Clamped Inputs

	TYPICAL	TYPICAL
TYPES	POWER	PROPAGATION
	DISSIPATION	DELAYS
'42A	140 mW	17 ns
'LS42	35 mW	17 ns

description

These monolithic BCD-to-decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.

The '42A and 'LS42 feature inputs and outputs that are compatible for use with most TTL and other saturated low-level logic circuits. DC noise margins are typically one volt.

The SN5442A and SN54LS42 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN7442A and SN74LS42 are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

SN5442A, SN54LS42...J OR W PACKAGE SN7442A...N PACKAGE SN74LS42...D OR N PACKAGE (TOP VIEW)

SN54LS42 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

FUNCTION TABLE

AIO.		BCD I	NPUT					DECI	MAL (OUTPU	Т			
NO.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	Ĺ	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	н
3	L	L	Н	Н	н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	Н	Н	H	Н	L	H	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	Ĺ	Н	Н	L	н	Н	Н	н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	L	Н	Н
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
9	Н	L	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	н	L	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
=	н	Н	L	L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
INVALID	н	Н	L	Н	н	Н	н	Н	Н	Н	Н	Н	Н	Н
=	н	Н	н	L	н	Н	Н	Н	Н	Н	н	Н	Н	Н
	Н	Н	Н	н	Н	Н	.H	Н	Н	Н_	Н	Н	Н	Н

H = high level, L = low level

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage: '42A	5.5 V
'LS42	7 V
Operating free-air temperature range: SN5442A, SN54LS42	-55°C to 125°C
SN7442A, SN74LS42	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.