LaPIS Diagnostic Test Workbook - Mathematics

Name : Likitha R

Class: 7

Section : A

School : AKV Public School

Login ID : AKV126

Likitha R's Performance Report

Score: 29/40 Percentage: 72.5%

Likitha R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
LCM	Finding LCM	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Data handling

Topics to be Improved		
Range Finding the range		
Chance of probability Sample space in probability		

Hi, here in this video you will learn Range

Question:	4

Range of the data = _____

Answer:

The difference between highest value and lowest value is _____

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 5

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

.....

.....

.....

......

$$\frac{51+20}{2}$$

Answer:

 $Range = _$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 6

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

Impossible events

4					
A	n	si	1) (${m r}$	•

Probability is the measure of (chance /number) of an events happenings.
Sample space consists of (possible/ impossible) outcomes.
Sure events always (occurs/don't occurs).
mpossible events (occurs/ don't occurs).
Therefore, contains list of possible outcomes.
$\it Question:~8$

Write the possible outcomes while spinning the given wheel.

\boldsymbol{A}	n	on	.,,	om	
\boldsymbol{H}	T U	SU	D)	21	

11/10/00/07/			
Outcomes are (po The possible outcomes while spinr	, ,	•	
Question: 9			
A bag contains three balss of color are taken out.	ur blue, green and red. Write th	ne possible outcomes is	f two balls
Answer:			
A bag contains, _	and	balls.	
If one of the ball is blue in colour,	then other ball can be	or	
If one of the ball is green in colour	r, then other ball can be	or	
If one of the ball is red in colour, t	then other ball can be $___$	or	·
Therefore, if two balls are taken or	ut then possible outcomes are b	lue +	. ,
1	1		

. . .

Geometry

Topics to be Improved		
Transversal angle made by transversal Basics of Transversal angle		
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Basics of Transversal angle

Question: 10

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 11

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g , \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 12

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Pythagoras property

Question: 13

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for $___$ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

.....

Pythagoras theorem states that _____

Question: 14

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the $___$ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, diagonal of the rectangle is

Number system

Topics to be Improved		
Positive and negative rational numbers	Identification of positive rational numbers	
Operations on rational numbers	Subtraction of rational numbers	

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 16

Segregate positive and negative rational number.

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

.....

Question: 17

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = $ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
<u>Question: 18</u>
The product of a positive rational number and a negative rational number is rational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Operation on rational numbers
<u>Question: 19</u>
Solve: $\frac{-3}{3} + \frac{1}{3}$
Answer:
Fractions with same denominators are called (like/ unlike) fractions. Fraction can be added only if they are (like/ unlike) fractions.
$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$
Question: 20

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$.

www.learnbasics.fun

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 21

Find the missing values in the given figure.

$$= \begin{array}{c} & & \\ & \\ \end{array}$$

$$1L \qquad (700 \text{ ml}) \frac{7}{10} \qquad (_\text{ml}) \frac{1}{2}$$

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, 1 ____ $\frac{7}{10} =$ ____ Therefore, result is _____.

$\boldsymbol{\cap}$	•	$\mathbf{\Omega}$, • , •
Comi	oaring	(J11)	antities
~ ~	~~	~ ~ ~	CLII C I C I C C

Hi, here in this video you Question: 22 2% can be written as Answer: Percentages are numerators of fi	will le	with der	sics of I				
Question: 22		with der	$\frac{1}{1}$				
Question: 22		with der	$\frac{1}{1}$				
2% can be written as Answer:		with der	$ \begin{array}{c} $				
$\underline{Answer:}$	ractions						
	ractions						
Percentages are numerators of f.	ractions						
Question: 23							
Arun attended the LaPIS test for Arun?	or 100 m	narks and	l got 75%	marks. V	What is	the marl	scored by
$\underline{Answer:}$							
Arun attended LaPIS test for _		m	arks. He g	got		mark	S.
75~% can be written in fraction	form -				Г		
Then the mark scored by Arun	= Tota	al mark	× 75% =	=	_ × <u>_</u>	=	=
Question: 24							
There are 25 apples in a basket apples.	in which	h 10 of th	nem are ro	otten. Fir	nd the p	ercentag	e of rotten
$\underline{Answer:}$							
There are apples in a backward Number of rotten apples are							

Fraction form of rotten apples in a basket =	=
Convert it into a percent= x	% =

Algebra

Topics to be Improved		
subtraction of algebraic expressions	subtraction of algebraic expressions	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Basics of simple equation	Solving of simple equation	

	IN ALCOUNT
Question: 25	
Find the sum of two expressions $a + b + c$ and $b + c + d$	
Answer:	
The given two expressions are and	
The two terms will get added only if they are(Like/ Unlike) terms.	

Hi, here in this video you will learn Subtraction on expression

Question: 26

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____

The sum of two expressions = $_$ + $_$.

The answer is _____

(iii) How many more teachers are there in school B than school A? _____

Answer:

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$ $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 27

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

 $\operatorname{Hi},$ here in this video you will learn \mathbf{Types} of $\mathbf{expression}$

Question: 28

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 29

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- $3. \ 7xy + 4m$

Answer:

1. The terms in expression $8x^2 + 0$ are _____.

Here, expression has ______ term and it is a _____

- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 30

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____.

Here, the expression has ______ terms and it is called a _____ expression.

......

......

Hi, here in this video you will learn Solving an equation

Question: 31

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression = $5(\underline{}) + 5 = \underline{} + \underline{} = \underline{}$.

Question: 32

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \cap +3 = -4$$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

 $\underline{Question: \ 33} \qquad \dots \dots$

Arrange the terms in the descending order when the value of x is 2.

$$2x$$
 $5x \times 1$ $x + 3$ $2x - 4$ $\frac{1}{2}$

$\underline{Answer:}$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, _____.