The topology of Hilbert schemes of points on orbifolds

Paul Johnson

Colorado State University (from Columbia via Imperial) johnson@math.colostate.edu

June 7, 2013

Outline

Goal:

Understand Betti numbers of $\operatorname{Hilb}^n([\mathbb{C}^2/G])$

- 1. Betti numbers of $\mathrm{Hilb}^n(\mathbb{C}^2)$
 - Ellingsrud and Strømme
- 2. Betti numbers of $\mathrm{Hilb}^n([\mathbb{C}^2/G])$ with $G \subset SL_2$
 - Gusein-Zade, Luengo, Melle-Hernández
- 3. Betti numbers of general case
 - Me (some conjectures, some theorems)

Basics of the Hilbert scheme of points on \mathbb{C}^2

Let
$$R = \mathbb{C}[x, y]$$
. Then:

$$\operatorname{Hilb}^n(\mathbb{C}^2) := \{ \operatorname{ideals} \mathcal{I} \subset R | \dim R / \mathcal{I} = n \}$$

- ▶ $\operatorname{Hilb}^n(\mathbb{C}^2)$ is smooth and connected of dimension 2n.
- ▶ Generically, \mathcal{I} will be the ideal sheaf of n distinct points in \mathbb{C}^2 , so dim $\mathrm{Hilb}^n(\mathbb{C}^2) = 2n$.
- When two or more points collide they become a "fat point" that remembers some information about how they collided.

Warm-up: Euler-characteristic of $\mathrm{Hilb}^n(\mathbb{C}^2)$

Before we find the Betti numbers let's find $\chi(\operatorname{Hilb}^n(\mathbb{C}^2))$:

- ▶ The action of $(\mathbb{C}^*)^2$ on \mathbb{C}^2 induces a $(\mathbb{C}^*)^2$ action on $\mathrm{Hilb}^n(\mathbb{C}^2)$
- ▶ The fixed points of the $(\mathbb{C}^*)^2$ action are the monomial ideals
- ▶ Since $\chi(\mathbb{C}^*) = \chi((\mathbb{C}^*)^2) = 0$, the non-fixed orbits contribute nothing to the euler characteristic

So $\chi(\mathrm{Hilb}^n(\mathbb{C}^2))$ is the number of monomial ideals of length n.

How many monomial ideals of length n are there?

Bijection between monomial ideals and partitions

Monomials not in $\mathcal I$ are the cells of the partition. Exterior corners of the partition are the generators of the monomial ideal.

So
$$\chi(\operatorname{Hilb}^n(\mathbb{C}^2)) = p(n)$$
.

Main motivating theorem

Packaged into generating functions:

Theorem (Warm-up)

$$\sum_{n\geq 0} \chi(\mathit{Hilb}^n(\mathbb{C}^2)) q^n = \sum_{n\geq 0} p(n) q^n = \prod_{\ell\geq 1} \frac{1}{1-q^\ell}$$

Theorem (Ellingsrud and Strømme, 1987)

$$\sum_{k,n\geq 0}b_k(\mathit{Hilb}^n(\mathbb{C}^2))t^kq^n=\prod_{\ell=1}^\infty\frac{1}{1-t^{2\ell-2}q^\ell}$$

Proof

Main tool is the Białynicki-Birula decomposition

Białynicki-Birula decomposition \approx Morse theory

Suppose X has a \mathbb{C}^* action so that

- 1. $\lim_{\lambda \to 0} \lambda x$ exists for all $x \in X$
- 2. There are isolated fixed points

Then we can compute the homology of X by thinking of $x \mapsto \lambda x$ as $\lambda \to 0$ as a Morse flow, with the fixed points p acting as the critical points.

What's the Morse index of a fixed point *p*?

Morse index = $2 \dim T_p^- X$

At each fixed point p, T_pX is a \mathbb{C}^* representation, and so splits into eigenspaces where $\lambda v = \lambda^a v$

- a = 0 Can't occur since fixed points are isolated
- a > 0 Flowing toward p
- a < 0 Flowing away from p

 $T_p^- X$ is the subspace where a < 0.

Theorem

Białynicki-Birula

$$P_t(X) = \sum_{p \text{ fixed}} t^{index(p)}$$

Proof.

The differential is zero since all fixed points have even index.

Tangent spaces at fixed points

Lemma (Ellingsrud and Strømme, Cheah)

$$\mathcal{T}_{\lambda} \mathit{Hilb}^{n}(\mathbb{C}^{2}) = \sum_{\square \in \lambda} \left(x^{-\ell(\square)} y^{a(\square)+1} + x^{\ell(\square)+1} y^{-a(\square)} \right)$$

Here $a(\square)$ and $\ell(\square)$ are the arm and leg of the square:

$$a(\square) = \# \clubsuit = 1$$

$$\ell(\Box) = \# \heartsuit = 2$$

Tangent spaces at fixed points

Lemma (Ellingsrud and Strømme, Cheah)

$$\mathcal{T}_{\lambda} \mathit{Hilb}^{n}(\mathbb{C}^{2}) = \sum_{\square \in \lambda} \left(x^{-\ell(\square)} y^{a(\square)+1} + x^{\ell(\square)+1} y^{-a(\square)} \right)$$

Here $a(\square)$ and $\ell(\square)$ are the arm and leg of the square:

Putting everything together

Pick a $\mathbb{C}^* \subset (\mathbb{C}^*)^2$

Use the \mathbb{C}^* acting by

$$\lambda \cdot (x, y) = (\lambda^{\epsilon} x, \lambda y)$$

With $0 < \epsilon << 1$.

- $x^{-\ell(\Box)}y^{a(\Box)+1}\mapsto \lambda^{1+a(\Box)-\epsilon\ell(\Box)}$ is always positive
- $x^{\ell(\square)+1}y^{-a(\square)} \mapsto \lambda^{-a(\square)+\epsilon(1+\ell(\square))}$ negative when $a(\square) > 0$.

Morse index = 2 # red boxes

Putting everything together

Morse index = 2 # red boxes

A column of height h contributes $q^h t^{2h-2}$

$$\sum_{k,n\geq 0} b_k(\mathrm{Hilb}^n(\mathbb{C}^2)) t^k q^n = \prod_{\ell=1}^\infty \frac{1}{1-t^{2\ell-2}q^\ell} \quad \Box$$

Building on Ellingsrud-Strømme

Theorem (Göttsche, 1990)

Let S be a smooth quasi-projective surface with Betti numbers b_i . Let $S^{(n)} = Hilb^n(S)$. Then

$$\sum b_k(S^{(n)})t^kq^n=\prod_{\ell\geq 1}rac{(1+t^{2\ell-1}q^\ell)^{b_1}(1+t^{2\ell+1}q^\ell)^{b_3}}{(1-t^{2\ell-2}q^\ell)^{b_0}(1-t^{2\ell}q^\ell)^{b_2}(1-t^{2\ell+2}q^\ell)^{b_4}}$$

Proof.

Ellingsrud and Strømme + Weil Conjectures

Theorem (Nakajima, Grojnowski)

 $\bigoplus H_k(\operatorname{Hilb}^n(S))$ is a highest weight representation for a Heisenberg algebra generated by $H^*(S)$.

Orbifold Hilbert Schemes are fixed point sets

$$\text{Hilb}^{n}([\mathbb{C}^{2}/G]) := \{G\text{-equivariant ideals } \mathcal{I} \subset R\}$$

$$= \text{Hilb}^{n}(\mathbb{C}^{2})^{G} \subset \text{Hilb}^{n}(\mathbb{C}^{2})$$

- As a fixed point set in a smooth variety, we see $\operatorname{Hilb}^n([\mathbb{C}^2/G])$ is smooth.
- Not connected. One discrete invariant: R/\mathcal{I} isn't just a vector space, it's a representation of G.

For $v \in K_0(G)$, let Hilb_G^v denote the component where $R/\mathcal{I} = v$.

Colo(u)red boxes

Restrict to $G = \mathbb{Z}/r\mathbb{Z}$, with action $(\exp(2\pi i/r), \exp(2\pi im/r))$. For a monomial ideal, keeping track of $K_0(G)$ class is counting colored boxes:

$$(1/5,-1/5)$$

Special McKay Correspondence

When S is smooth, $\mathrm{Hilb}^1(S)=S$, but $\mathrm{Hilb}^1([\mathbb{C}^2/G])=\mathrm{point}$. The ideal sheaf of a smooth point on $[\mathbb{C}^2/G]$ corresponds to the regular representation of G.

Theorem

 $Hilb_G^G([\mathbb{C}^2/G])$ is the minimal resolution of \mathbb{C}^2/G .

- ▶ The minimal resolution of \mathbb{C}^2/G is a chain of c rational curves
- ▶ When $G \subset SL_2, c = |G| 1$, and so $\chi(\mathrm{Hilb}_G^G([\mathbb{C}^2/G]) = |G|$
- ▶ Otherwise, c < |G| 1, and $\mathrm{Hilb}_G^{\mathcal{G}}([\mathbb{C}^2/G])$ only sees some of $\mathcal{K}_0(G)$

Generating series for orbifold Hilbert schemes

Restrict to $G = \mathbb{Z}/r\mathbb{Z}$, with action $(\exp(2\pi i/r), \exp(2\pi im/r))$.

Disconnected generating series

$$\mathcal{DH}_{m/r}:=\sum_{n,k\geq 0}b_k(\mathrm{Hilb}^n([\mathbb{C}^2/G]))t^kq^n$$

Call an element $\delta \in K_0(G)$ small if Hilb_G^{δ} is nonempty but compact; equivalently, if it is nonempty but $\mathrm{Hilb}_G^{\delta-G}$ is empty.

Connected generating series

For $\delta \in K_0(G)$ small, define

$$\mathcal{CH}_{m/r}^{\delta}:=\sum_{n,k\geq 0}b_k(\mathrm{Hilb}^{\delta+nG}([\mathbb{C}^2/G]))t^kq^n$$

How to calculate these Betti numbers?

Follow proof of Ellingsrud-Strømme, but the index of each partition will change:

Lemma (Ellingsrud and Strømme, Cheah)

$$\mathcal{T}_{\lambda}\mathit{Hilb}^{n}(\mathbb{C}^{2}) = \sum_{\square \in \lambda} \left(x^{-\ell(\square)} y^{a(\square)+1} + x^{\ell(\square)+1} y^{-a(\square)} \right)$$

A tangent direction only contributes to $T_{\lambda}\mathrm{Hilb}^n([\mathbb{C}^2/G])$ if it is G-invariant.

Example (Balanced \mathbb{Z}_r action)

A generator acts as (-1/r,1/r), so we need $\ell(\Box)+a(\Box)+1$ to be divisible by r

Theorem (Gusein-Zade, Luengo, Melle-Hernández)

$$egin{aligned} \mathcal{H}^0_{-1/r} &= \prod_{\ell \geq 1} rac{1}{1 - t^{2\ell - 2} q^\ell} rac{1}{(1 - t^{2\ell} q^\ell)^{r - 1}} \ \mathcal{H}_{-1/r} &= \prod_{\ell \geq 1} rac{(1 - q^{r\ell})^r}{1 - q^\ell} rac{1}{1 - t^{2\ell - 2} q^{r\ell}} rac{1}{(1 - t^{2\ell} q^{r\ell})^{r - 1}} \end{aligned}$$

Proof.

Cores and quotients of partitions.

 ${
m Hilb}_{-1/r}^{\delta+nG}$ are Nakajima quiver varieties, and are all diffeomorphic to ${
m Hilb}_{-1/r}^{nG}$.

What about the unbalanced case?

Start of unbalanced case

Recall $(a; x)_{\infty} := \prod_{\ell \geq 0} (1 - ax^{\ell}).$

Example (Göttsche)

$$\sum_{n\geq 0} b_k(\mathrm{Hilb}^n(S))t^kq^n = \frac{1}{(q;qt^2)_{\infty}^{b_0}} \frac{1}{(qt^2;qt^2)_{\infty}^{b_2}} \frac{1}{(qt^4;qt^2)_{\infty}^{b_4}}$$

Conjecture (Gusein-Zade, Luengo, Melle-Hernández)]

$$\mathcal{H}_{1/3} = rac{1}{(q;t^2q^3)_{\infty}} rac{1}{(q^2t^2;t^2q^3)_{\infty}} rac{1}{(q^3;t^2q^3)_{\infty}}$$

Why stop there?

Main conjecture on disconnected series

It seems if $G \cap SL_2 = \emptyset$ then

$$\mathcal{H}_G = \prod_{h=1}^r rac{1}{(q^h t^{\epsilon(h)}; q^r t^2)_{\infty}}$$

with $\epsilon(h)$ either 2 or 0.

Conjecture (Johnson)

If $g \in G$ acts on \mathbb{C}^2 as $(\exp(2\pi i a/r), \exp(2\pi i b/r))$, let AF(g) and AI(g) denote the fractional and integral parts of a/r + b/r. Let $k = |G \cap SL_2|$.

$$\mathcal{H}_G(q,t) = \frac{(q^k;q^k)_{\infty}^k}{(q,q)_{\infty}} \prod_{g \in G} \frac{1}{q^{r(1-AF(g)}t^{2AI(g)},q^rt^2)_{\infty}}$$

Results on connected Hilbert schemes

Theorem (Johnson)

$$P_t(Hilb_G^{\delta+nG})$$
 stabilizes to $1/(t,t)_{\infty}^{|G|}$

Note that the right hand side is independent of m and δ .

Conjecture (Johnson)

Let c be the number of rational curves in the minimal resolution of \mathbb{C}^2/G . Then

$$\mathcal{H}_{G}^{\delta}\cdot(q,qt^{2})_{\infty}\cdot(qt^{2},qt^{2})_{\infty}^{c}$$

has positive coefficients.

Though total homology sees all of $K_0(G)$, only get a Heisenberg action for the minimal resolution.