LIMITES ET CONTINUITE (Partie 2)

I. Limite d'une fonction composée

Exemple: Soit la fonction f définie sur $\frac{1}{2}$; $+\infty$ par $f(x) = \sqrt{2 - \frac{1}{x}}$.

On souhaite calculer la limite de la fonction f en $+\infty$.

On considère les fonctions u et v définie par : $u(x) = 2 - \frac{1}{x}$ et $v(x) = \sqrt{x}$.

Alors : f(x) = v(u(x)). On dit alors que f est la <u>composée</u> de la fonction u par la fonction v.

Or,
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 donc $\lim_{x \to +\infty} u(x) = 2$.

Donc
$$\lim_{x \to +\infty} \sqrt{2 - \frac{1}{x}} = \lim_{x \to +\infty} \sqrt{u(x)} = \lim_{X \to 2} \sqrt{X} = \sqrt{2}$$
.

D'où
$$\lim_{x\to+\infty} f(x) = \sqrt{2}$$
.

Théorème:

A, B, C peuvent désigner $+\infty$, $-\infty$ ou un nombre réel.

Si $\lim_{x \to A} u(x) = B$ et $\lim_{x \to B} v(x) = C$ alors $\lim_{x \to A} v(u(x)) = C$.

- Admis -

Méthode : Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3li76k

Calculer
$$\lim_{x \to +\infty} \sqrt{\frac{4x-1}{2x+3}}$$

- On commence par calculer la limite de la fonction $x \mapsto \frac{4x-1}{2x+3}$ lorsque x tend vers $+\infty$.

Il s'agit d'une forme indéterminée du type " $\frac{\infty}{\infty}$ ".

Levons l'indétermination :

$$\frac{4x-1}{2x+3} = \frac{x}{x} \times \frac{4-\frac{1}{x}}{2+\frac{3}{x}} = \frac{4-\frac{1}{x}}{2+\frac{3}{x}}$$

Or
$$\lim_{x \to +\infty} \left(4 - \frac{1}{x} \right) = 4$$
 et $\lim_{x \to +\infty} \left(2 + \frac{3}{x} \right) = 2$ donc $\lim_{x \to +\infty} \frac{4 - \frac{1}{x}}{2 + \frac{3}{x}} = \frac{4}{2} = 2$

Et donc $\lim_{x\to +\infty} \frac{4x-1}{2x+3} = 2$.

- Par ailleurs, $\lim_{X\to 2} \sqrt{X} = \sqrt{2}$.
- Comme limite de fonctions composées, on a $\lim_{x\to +\infty} \sqrt{\frac{4x-1}{2x+3}} = \sqrt{2}$.

II. Limites et comparaisons

1) Théorème de comparaison

<u>Théorème</u>: Soit f et g deux fonctions définies sur un intervalle $a;+\infty$, a réel, telles que pour tout x > a, on a $f(x) \le g(x)$.

- Si $\lim f(x) = +\infty$ alors $\lim g(x) = +\infty$ (figure 1)
- Si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$ (figure 2)
- Si $\lim_{x \to \infty} f(x) = +\infty$ alors $\lim_{x \to \infty} g(x) = +\infty$ (figure 3)
- Si $\lim_{x \to \infty} g(x) = -\infty$ alors $\lim_{x \to \infty} f(x) = -\infty$ (figure 4)

Par abus de langage, on pourrait dire que la fonction f pousse la fonction g vers $+\infty$ pour des valeurs de x suffisamment grandes.

Figure 2

3

Démonstration dans le cas de la figure 1 :

 $\lim_{x \to +\infty} f(x) = +\infty$ donc tout intervalle $m; +\infty[$, m réel, contient toutes les valeurs de f(x)

dès que x est suffisamment grand, soit : $f(x) \ge m$.

Or, dès que x est suffisamment grand, on a $f(x) \le g(x)$.

Donc dès que x est suffisamment grand, on a : $g(x) \ge m$.

Et donc $\lim_{x \to +\infty} g(x) = +\infty$

2) Théorème d'encadrement

Si $\lim_{x \to +\infty} f(x) = L$ et $\lim_{x \to +\infty} h(x) = L$ alors $\lim_{x \to +\infty} g(x) = L$.

Remarque : On obtient un théorème analogue en $-\infty$.

Par abus de langage, on pourrait dire que les fonctions f et h (les gendarmes) se resserrent autour de la fonction g pour des valeurs de x suffisamment grandes pour la faire tendre vers la même limite.

Ce théorème est également appelé le théorème du sandwich.

Méthode : Utiliser les théorèmes de comparaison et d'encadrement

Vidéo https://youtu.be/OAtkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

Calculer: 1) $\lim_{x \to +\infty} (x + \sin x)$ 2) $\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$

$$2) \lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$$

1) $\lim \sin x$ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \sin x$ donc $x-1 \le x + \sin x$.

Or $\lim_{x \to +\infty} (x-1) = +\infty$ donc d'après le théorème de comparaison, $\lim_{x \to +\infty} (x + \sin x) = +\infty$

2) $\lim \cos x$ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \cos x \le 1$ donc $-x \le x \cos x \le x$, car x > 0.

Et donc
$$-\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1}$$

Ou encore
$$-\frac{x}{x^2} \le -\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1} \le \frac{x}{x^2}$$

$$\operatorname{Soit} -\frac{1}{x} \le \frac{x \cos x}{x^2 + 1} \le \frac{1}{x} \,.$$

Or
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = \lim_{x \to +\infty} \frac{1}{x} = 0$$
.

D'après le théorème des gendarmes, on a $\lim_{x\to +\infty} \frac{x\cos x}{x^2+1} = 0$.

III. Continuité et théorème des valeurs intermédiaires

Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite et de continuité d'une fonction.

1) Continuité

Vidéo https://youtu.be/XpjKserte6o

Exemples et contre-exemples :

La courbe représentative d'une fonction continue se trace sans lever le crayon.

Définition : Soit une fonction f définie sur un intervalle I contenant un réel a.

- f est continue en \underline{a} si $\lim_{x \to a} f(x) = f(a)$.

- f est continue sur I si f est continue en tout point de I.

Exemples:

- Les fonctions $x \mapsto |x|$, $x \mapsto x^n$ ($n \in \mathbb{N}$) et plus généralement les fonctions polynômes sont continues sur \mathbb{R} .
- Les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ sont continues sur \mathbb{R} .
- La fonction $x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$.
- La fonction $x \mapsto \frac{1}{x}$ est continue sur $]-\infty;0[$ et sur $]0;+\infty[$.

Remarque:

Les flèches obliques d'un tableau de variation traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.

Théorème : Une fonction dérivable sur un intervalle I est continue sur cet intervalle.

Méthode : Etudier la continuité d'une fonction

Vidéo https://youtu.be/03WMLyc7rLE

On considère la fonction f définie sur $\mathbb R$ par $\begin{cases} f(x) = -x+2 & pour \ x < 3 \\ f(x) = x-4 & pour \ 3 \le x < 5 \\ f(x) = -2x+13 & pour \ x \ge 5 \end{cases}$

La fonction f est-elle continue sur \mathbb{R} ?

Les fonctions $x \mapsto -x+2$, $x \mapsto x-4$ et $x \mapsto -2x+13$ sont des fonctions polynômes donc continues sur \mathbb{R} .

Ainsi la fonction f est continue sur $]-\infty;3[$, sur [3;5[et sur $[5;+\infty[$.

Etudions alors la continuité de f en 3 et en 5 :

$$-\lim_{\substack{x\to 3\\x<3}} f(x) = \lim_{\substack{x\to 3\\x<3}} (-x+2) = -3+2 = -1$$

$$\lim_{\substack{x \to 3 \\ x > 3}} f(x) = \lim_{\substack{x \to 3 \\ x > 3}} (x - 4) = 3 - 4 = -1$$

 $\lim_{\substack{x\to 3\\x<3}} f(x) = \lim_{\substack{x\to 3\\x>3}} f(x) = f(3) \text{ donc la fonction } f \text{ est continue en 3.}$

$$-\lim_{\substack{x\to 5\\x<5}} f(x) = \lim_{\substack{x\to 5\\x<5}} (x-4) = 5-4 = 1$$

$$\lim_{\substack{x \to 5 \\ x > 5}} f(x) = \lim_{\substack{x \to 5 \\ x > 5}} (-2x+13) = -2 \times 5 + 13 = 3$$

La limite de f en 5 n'existe pas. On parle de limite à gauche de 5 et de limite à droite de 5.

La fonction *f* n'est donc pas continue en 5.

La fonction f est continue sur $]-\infty;5[$ et sur $[5;+\infty[$.

2) Valeurs intermédiaires

Théorème des valeurs intermédiaires :

On considère la fonction f définie et continue sur un intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

- Admis -

Conséquence:

Dans ces conditions, l'équation f(x) = k admet au moins une solution dans l'intervalle [a; b].

Cas particuliers:

- Dans le cas où la fonction f est strictement monotone sur l'intervalle $[a \; ; \; b]$ alors le réel c est unique.
- Dans le cas où f(a) et f(b) sont de signes contraires alors il existe au moins un réel c compris entre a et b tel que f(c) = 0.

Méthode : Résolution approchée d'une équation

Vidéo https://youtu.be/fkd7c3lAc3Y

Vidéo https://youtu.be/UmGQf7gkvLg

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + 2$.

- 1) Démontrer que l'équation f(x) = 0 admet exactement une solution sur l'intervalle $[2;+\infty]$.
- 2) À l'aide de la calculatrice, donner un encadrement au centième de la solution.

1) - Existence :
$$f(2) = 2^3 - 3 \times 2^2 + 2 = -2$$

et
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 \times \left(1 - \frac{3}{x} + \frac{2}{x^3}\right) = +\infty$$
.

La fonction f est continue sur l'intervalle $\left[2;+\infty\right[$ et elle change de signe. Donc, d'après le théorème des valeurs intermédiaires, il existe au moins un réel c tel que f(c)=0.

- <u>Unicité</u>: $f'(x) = 3x^2 - 6x = 3x(x-2)$

Donc, pour tout x de $]2;+\infty[$, f'(x)>0.

La fonction f est strictement croissante sur l'intervalle $2;+\infty$.

Vidéo Casio https://youtu.be/XEZ5D19FpDQ

X	[Y1]
0 1 2 3 4 5 6	2 0 2 18 52 110

La solution est comprise entre 2 et 3.

X	[Y1]
	-2 -1.969 -1.872 -1.703 -1.456 -1.125 704

La solution est supérieure à 2,6

La solution est comprise entre 2,7 et 2,8

La solution est comprise entre 2,73 et 2,74.

On en déduit que 2,73 < c < 2,74.

Remarque : Une autre méthode consiste à déterminer un encadrement par dichotomie.

TP Algorithmique "Dichotomie" :

http://www.maths-et-tiques.fr/telech/Algo SolEqua.pdf

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales

| Www.maths-et-tiques.fr/index.php/mentions-legales**