Untitled

November 26, 2020

1 Grupos

1.1 Lei de composição

Definição: Uma *Lei de Composição* sobre S é uma função $F: S \times S \longrightarrow S$.

Definição: Para $a,b,c \in S$, uma Lei de Composição é dita

- *lei associativa* se F(F(a,b),c) = F(a,F(b,c));
- *lei comutativa* se F(a,b) = F(b,a).

Usaremos a notação F(a,b) = ab, para simplificar a escrita de propriedades.

Proposição: Seja uma lei associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos $a_1, \ldots, a_n \in S$ (diremos $[a_1 \cdots a_n]$) com as seguintes propriedades:

- 1. o produto $[a_1]$ de um elemento é o próprio elemento;
- 2. o produto $[a_1a_2]$ de dois elementos é dado pela lei de composição;
- 3. para todo inteiro $1 \le i \le n$, $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$.

A demonstração dessa proposição é feita por indução em n.

Definição: Dizemos que $e \in S$ é *identidade* para uma lei de composição se ea = ae = a para todo $a \in S$.

Se e, e' são identidades então, desde que e' é identidade, ee' = e', e desde que e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única. Usaremos 1 para representar a identidade multiplicativa e 0 para denotar a aditiva (não são os números, apenas uma notação).

Definição: Seja uma lei de composição que possua uma identidade. Um elemento $a \in S$ é chamado *invertível* se há um outro elemento $b \in S$ tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por a^{-1} e a chamaremos *inversa de a*.

Se $a,b\in S$ possuem inversa, então a composição $(ab)^{-1}=b^{-1}a^{-1}.$

Usaremos as seguintes notações: - $a^n = a^{n-1}a$ é a composição de $a \cdots a$ n vezes; - $a^0 = 1$ - a^{-n} é a inversa de a^n

Com isso, tem-se que $a^{r+s}=a^ra^s$ e $(a^r)^s=a^{rs}$. (Isso não induz uma notação de fração $\frac{b}{a}$ a menos que seja uma lei comutativa, visto que ba^{-1} pode ser diferente de $a^{-1}b$). Para falar de uma lei de composição aditiva, usaremos -a no lugar de a^{-1} e na no lugar de a^n .

1.2 Grupo

Definição: Um *Grupo* é um conjunto *G* onde uma lei de composição associativa é dada sobre *G*, tal que exista uma identidade e todo elemento possua uma inversa.

É comum abusar da notação e chamar um grupo *G* e o conjunto *G* de seus elementos pelo mesmo simbolo.

Definição: Um *grupo abeliano* é um grupo com uma lei de composição comutativa. Costuma-se usar a notação aditiva para grupos abelianos.

Proposição (lei do cancelamento): Seja a, b, c elementos de um grupo G. Se ab = ac, então b = c.

1.3 Subgrupos

Definição: Um subconjunto *H* de um grupo *G* é chamado de *subgrupo* de *G* se possuir as seguintes propriedades:

- 1. Fechado: Se $a, b \in H$, então $ab \in H$;
- 2. Identidade: $1 \in H$.
- 3. Inversível: Se $a \in H$, então $a^{-1} \in H$.

Veja que a propriedade 1. necessita de uma lei de composição. Usamos a lei de composição de *G* para definir uma lei de composição de *H*, chamada *lei de composição induzida*. Essas propriedades garantem que *H* é um grupo com respeito a sua lei induzida.

Todo grupo G possui dois subgrupos triviais: O subgrupo formado por todos os elementos de G e o subgrupo $\{1\}$, formado pela identidade de G. Diz-se que um subgrupo é um *subgrupo apropriado* se for diferente desses dois.

Exemplo: Utilizando da notação multiplicativa, define-se o *subgrupo cíclico H* gerados por um elemento arbitrário x de um grupo G como o conjunto de todas as potências de x: $H = \{..., x^{-2}, x^{-1}, 1, x, x^2, ...\}$.

Definição: Chama-se *ordem* de um grupo G o número |G| de elementos de G.

Também pode-se definir um subgrupo de um grupo G gerado por um subconjunto $U \subset G$. Esse é o menor subgrupo de G que contém U e consiste de todos os elementos de G que podem ser espressos como um produto de uma cadeia de elementos de U e seus inversos.

Exemplo: O *grupo de quaternions* H é o menor subgrupo do conjunto de matrizes 2×2 complexas invertíveis que não é cíclico. Isso consiste nas oito matrizes

$$H = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\},\$$

onde

$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{i} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$.

Os dois elementos \mathbf{i} , \mathbf{j} geram H, e o calculo leva as formulas

$$\mathbf{i}^4 = 1$$
, $\mathbf{i}^2 = \mathbf{j}^2$, $\mathbf{j}\mathbf{i} = \mathbf{i}^3\mathbf{j}$.

1.4 Isomorfismos

Se dois grupos G e G' estão relacionados por uma *correspondência biunívoca* entre seus elementos, compatível com suas leis de composição, isto é, uma correspondência

 $G \longleftrightarrow G'$

tendo a seguinte propriedade: Se $a,b \in G$ corresponde respectivamente a $a',b' \in G'$, então o produto $ab \in G$ corresponde ao produto $a'b' \in G'$. Quando isso acontece, então dizemos que todas as propriedades da estrutura de um grupo se mantém no outro.

Comumente escreve-se a correspondência acima de forma assimietrica como uma função, ou um mapeamento $\varphi: G \longrightarrow G'$. Assim, um isomorfismo G para G' é um mapeamento bijetivo que é compatível com as leis de composição:

$$\varphi(ab) = \varphi(a)\varphi(b) \Rightarrow (ab)' = a'b'$$
, para todo $a, b \in G$.

Definição: Dois grupos $G \in G'$ são ditos *isomórfos* se há uma relação de isomorfismo $\varphi : G \longleftrightarrow G'$. Também usa-se a notação \approx :

$$G \approx G'$$

Definição: Diz-se que o conjunto de grupos isomórfos a um dado grupo *G* é a *classe de isomorfismo* de G. Qualquer dois grupos em uma mesma classe de isomorfismo também são isomorfos entre

Também, dada uma relação de isomorfismo $\varphi: G \longleftrightarrow G$ de um grupo G para ele mesmo, chamamos esse tipo de isomorfismo de automorfismo de G.

Exemplo: Seja $b \in G$ um elemento fixo. Então, a *conjugação de G por b* é o mapeamento φ de Gpara ele mesmo definido por

$$\varphi(x) = bxb^{-1}.$$

Esse é um automorfismo porque: - é compatível com a multiplicação no grupo:

$$\varphi(xy) = bxyb^{-1} = bxb^{-1}byb^{-1} = \varphi(x)\varphi(y);$$

- é um mapa bijetivo desde que possui uma função inversa (chamada conjugação por b^{-1}).

Se o grupo é abeliano, a conjugação é o mapa identidade: $bab^{-1} = abb^{-1} = a$. Porém, qualquer grupo não comutativo tem alguma conjugação não trivial, logo possui também um automorfismo não trivial. O elemento bab^{-1} é chamado *conjugado de a por b*. Dois elementos $a, a' \in G$ são ditos *conjugados* se existe $b \in G$ tal que $a' = bab^{-1}$.

O conjugado tem uma interpretação muito útil: Se escrevermos bab^{-1} como a', então

$$ba = a'b$$
.

Ou seja, pode-se pensar na conjugação como a mudança em a que resulta de mover b de um lado para o outro na equação.

1.5 Homomorfismos

Definição: Sejam G e G' dois grupos. Um *homomorfismo* $\varphi: G \longrightarrow G'$ é um mapeamento tal que

$$\varphi(ab) = \varphi(a)\varphi(b), \forall a, b \in G.$$

Ou seja, é a mesma condição do isomorfismo, porém, agora não há mais a necessidade de sobrejetividade.

Exemplo: Seja H o subgrupo de um grupo G. O homomorfismo $i:H\longrightarrow G$ é dito *inclusão* de Hem G, definido por i(x) = x.

Proposição: Um homomorfismo $\varphi: G \longrightarrow G'$ leva a identidade à identidade e inversas às inversas. Isto é, $\varphi(1)=1$ e $\varphi(a^{-1})=\varphi(a)^{-1}$. **Definição:** A *imagem* de um homomorfismo $\varphi:G\longrightarrow G'$ é o subgrupo de G'sas. Isto é, $\varphi(1) = 1$ e $\varphi(a^{-1}) = \varphi(a)^{-1}$.

im
$$\varphi = \{x \in G \mid x = \varphi(a), \text{ para algum } a \in G\} = \varphi(G).$$

Definição: O núcleo de φ é o subconjunto de G formado pelos elementos que são mapeados pela identidade em G':

nu
$$\varphi = \{ a \in G \mid \varphi(a) = 1 \} = \varphi^{-1}(1).$$

Proposição: Se $a \in \text{nu } \varphi$ e b é qualquer elemento do grupo G, então o conjugado $bab^{-1} \in \text{nu } \varphi$.

Definição: Um subgrupo N de um grupo G é chamado subgrupo normal se para cada $a \in N$ e $b \in G$, o conjugado $bab^{-1} \in N$.

Fica claro que o núcleo de um homomorfismo é um subgrupo normal. Além disso, todo subgrupo de um grupo abeliano também é um subgrupo normal (se G é abeliano, então $bab^{-1} = a$). Mas isso não é necessáriamente verdade em subgrupos de grupos não abelianos.

Definição: O centro Z(G) de um grupo G é o conjunto de elementos que comutam com todo elemento de G:

$$Z(G) = \{z \in G \mid zx = xz \text{ para todo } x \in G\}.$$

Proposição: O centro de todo grupo é um subgrupo normal do grupo.

1.6 Relações de Equivalência e Partições

Definição: Seja *S* um conjunto. Uma *particão P* de *S* é uma subdivisão de *S* em subconjuntos não vazios e não sobrepostos, isto é, uma união de conjuntos disjuntos.

Exemplo: Pode-se particionar o conjunto dos números inteiros \mathbb{Z} na união de disjuntos $P \cup I$, onde $P = \{z \in \mathbb{Z} \mid z \text{ é par}\}$ e $I = \{z \in \mathbb{Z} \mid z \text{ é impar}\}$.

Definição: Uma *relação de equivalência* sobre um conjunto S é uma relação que se mantém sobre um subconjunto de elementos de S. Escreve-se $a \sim b$ para representar a equivalência de $a, b \in S$, que precisa respeitar as seguintes propriedades:

- 1. Transitividade: Se $a \sim b$ e $b \sim c$, então $a \sim c$;
- 2. Simétrica: Se $a \sim b$, então $b \sim a$;
- 3. Reflexiva: $a \sim a$.

A noção de partição em S e a relação de equivalência em S são lógicamente equivalentes: Dada uma partição P sobre S, pode-se definir uma relação de equivalência R tal que, se a e b estão no mesmo subconjunto partição, então $a \sim b$ e, dada uma relação de equivalência R, podemos definir uma partição P tal que o subconjunto que contêm a é o conjunto de todos os elementos b onde $a \sim b$. Esse subconjunto é chamado de classe de equivalência de a

$$C_a = \{b \in S \mid a \sim b\}$$

e *S* é particionado em classes de equivalência.

Proposição: Sejam C_a e C_b duas classes de equivalência do conjunto S. Se existe d tal que $d \in C_a$ e $d \in C_b$, então $C_a = C_b$.

Seja um conjunto S. Suponha que exista uma relação de equivalência ou uma partição sobre S. Então, pode-se construir um novo conjunto \bar{S} formado pelas classes de equivalência ou os subconjuntos partições de S. Essa construção induz uma notação muito útil: para $a \in S$, a classe de equivalência de S0 ou o subconjunto partição que contém S1 serão denotados como o elemento S2. Desta forma, a notação S3 is significa que S4 e chamamos S5 de S6 representantes das respectivas classes de equivalência S6.

Definição: Seja um mapeamento $\varphi: S \longrightarrow T$. Chama-se de *relação de equivalência determinada por* φ a relação dada por $\varphi(a) = \varphi(b) \Rightarrow a \sim b$. Além disso, para um elemento $t \in T$, o subconjunto de $\varphi^{-1}(t) = \{s \in S \mid \varphi(s) = t\}$ é dito *imagem inversa de t por* φ .

Proposição: Seja um mapeamento $\varphi: S \longrightarrow T$ e $t \in T$ um elemento qualquer de T. Se a imagem inversa $\varphi^{-1}(t)$ é não vazia, então $t \in \text{im } \varphi$ e $\varphi^{-1}(t)$ forma uma classe de equivalência $\bar{\varphi} \in \bar{S}$ através da relação determinada por φ .

Definição: Seja $\varphi: G \longrightarrow G'$ um homomorfismo. A relação de equivalência definida por φ é usualmente denotada por \equiv ao invés de \sim e a chamamos de *congruência*:

$$\varphi(a) = \varphi(b) \Rightarrow a \equiv b$$
, para $a, b \in G$.

Proposição: Seja $\varphi: G \longrightarrow G'$ um homomorfismo e $a,b \in G$. Então as seguintes afirmações são equivalentes:

- $\varphi(a) = \varphi(b)$
- b = an, para algum $n \in nu \varphi$
- $a^{-1}b \in \text{nu } \varphi$.

Definição: Seja $\varphi: G \longrightarrow G'$ um homomorfismo, $a \in G$ e $n \in nu \varphi$. O conjunto

$$a$$
 nu $\varphi = \{g \in G \mid g = an, \text{ para algum } n \in \text{nu } \varphi\}$

é dito coclasse de nu φ em G.

Pode-se particionar o grupo G em *classes de congruência*, formadas pelas coclasses a nu φ . Estas são imagens inversas do mapeamento φ .

Proposição: O homomorfismo de grupo $\varphi: G \longrightarrow G'$ é injetivo se, e somente se, seu núcleo é o subgrupo trivial $\{1\}$.

Esse resultado da uma forma de verificar se um homomorfismo φ é também um isomorfismo: Se nu $\varphi = \{1\}$ e im $\varphi = G'$, então φ é, pelos respectivos motivos, injetiva e sobrejetiva. Então é um isomorfismo.

1.7 Coclasses

Definimos coclasse somente em relação ao núcleo de um homomorfismo mas, na verdade, pode-se definir uma coclasse para qualquer subgrupo H de um grupo G.

Definição: Seja um subgrupo *H* de um grupo *G*. O subconjunto da forma

$$aH = \{ah \mid h \in H\}$$

é dito coclasse a esquerda de H em G.

Proposição: A coclasse é uma classe de equivalência para a relação de congruência

$$b = ah \Rightarrow a \equiv b$$
, para algum $h \in H$.

Daí segue que, como classes de equivalência particionam um grupo, coclasses a esquerda de um subgrupo particionam o grupo.

Definição: O número de coclasses a esquerda de um subgrupo H em um grupo G chama-se *índice* $de\ H\ em\ G\ e\ é\ denotado\ como\ [G:H].$

Como há uma bijeção do subgrupo H para a coclasse aH, a cardinalidade de aH tem de ser a mesma de H. Isto é, as coclasses de H particionam G em partes de mesma ordem, o que nos permite enunciar o seguinte resultado:

Proposição: Seja aH a coclasse do subgrupo H no grupo G. Então, a ordem |G| do grupo G é dada por

$$|G| = |H|[G:H].$$

Proposição (Teorema de Lagrange): Seja *G* um grupo finito e *H* um subgrupo de *G*. A ordem de *H* divide a ordem de *G*.

Definição: Seja G um grupo. A *ordem de um elemento a* \in G é a ordem do grupo cíclico gerado por a.

Proposição: Seja um grupo G com p elementos tal que p é primo e $a \in G$ diferente da identidade. Então G é o grupo cíclico $\{1, a, \dots, a^{p-1}\}$ gerado por a.

Também podemos obter uma expressão para calcular a ordem de um grupo de homomorfismo. Seja $\varphi: G \longrightarrow G'$ um homomorfismo. Como as coclasses a esquerda do núcleo de φ são as imagens inversas φ^{-1} , elas estão em uma correspondência biunívoca com a imagem. Daí segue que

$$[G: \operatorname{nu} \varphi] = |\operatorname{im} \varphi|.$$

Proposição: Seja $\varphi: G \longrightarrow G'$ um homomorfismo onde G e G' são finitos. Então

$$|G| = |\operatorname{nu} \varphi| \cdot |\operatorname{im} \varphi|.$$

Definição: Os conjuntos da forma

$$Ha = \{ha \mid h \in H\}$$

chamam-se *coclasses a direita de um subgrupo H*. Esses são classes de equivalência para a relação de congruência a direita

$$b = ha \Rightarrow a \equiv b$$
, para algum $h \in H$.

Proposição: Seja um subgrupo *H* de um grupo *G*. As seguintes afirmações são equivalentes:

- *H* é subgrupo normal,
- aH = Ha para todo $a \in G$.

1.8 Restrição de um Homomorfismo para um Subgrupo

O objetivo aqui é apresentar ferramentas para analisar um subgrupo H do grupo G a fim de garantir propriedades do grupo G. No geral, os subgrupos são mais específicos e menos complexos de se trabalhar.

Proposição: Sejam K e H dois subgrupos do grupo G tal que a interseção $K \cap H$ é um subgrupo de H. Se K é um subgrupo normal de G, então $K \cap H$ é um subgrupo normal de H.

Com esse resultado, por exemplo, se G é finito pode-se utilizar o Teorema de Lagrange para obter informações sobre a interseção dos dois subgrupos: a interseção divide |H| e |K|. Se |H| e |K| não tem o mesmo fator de divisão, então $K \cap H = \{1\}$.

Definição: Sejam o homomorfismo $\varphi: G \longrightarrow G'$ e H um subgrupo de G. Uma *restrição de \varphi para o subgrupo H* é o homomorfismo $\varphi|_H: H \longrightarrow G'$ definido como

$$\varphi|_H(h) = \varphi(h)$$
, para todo $h \in H$.

Proposição: Sejam o homomorfismo $\varphi: G \longrightarrow G'$ e H um subgrupo de G. O núcleo de uma restrição $\varphi|_H$ é a interseção do núcleo de φ e H.

Proposição: Sejam $\varphi: G \longrightarrow G'$ um homomorfismo, H' um subgrupo de G' e $\varphi^{-1}(H') = \{x \in G \mid \varphi(x) \in H'\}$ a imagem inversa de H'. Então

- $\varphi^{-1}(H')$ é um subgrupo de G.
- Se H' é um subgrupo normal de G', então $\varphi^{-1}(H')$ é um subgrupo normal de G.
- $\varphi^{-1}(H')$ contém o núcleo de φ
- A restrição de φ para $\varphi^{-1}(H')$ define um homomorfismo $\varphi^{-1}(H') \longrightarrow H'$, de forma que o núcleo desse homomorfismo é o núcleo de φ .

1.9 Produto de Grupos

Definição: Seja G, G' dois grupos. O *produto* $G \times G'$ é um grupo formado pelo produto das componentes dos grupos G e G', isso é, pela regra

$$(a,a'),(b,b') \rightsquigarrow (ab,a'b'),$$

onde $a, b \in G$ e $a', b' \in G'$. O par (1,1) é uma identidade e $(a,a')^{-1} = (a^{-1},a'^{-1})$. A propriedade associativa é preservada em $G \times G'$ pois também é em $G \in G'$.

Proposição: A ordem de $G \times G'$ é o produto das ordens de G e G'.

O produto de grupos é composto pelos homomorfismos:

$$i: G \longrightarrow G \times G', \quad i': G' \longrightarrow G \times G', \quad p: G \times G' \longrightarrow G, \quad p': G \times G' \longrightarrow G',$$

definidos como

$$i(x) = (x, 1), \quad i'(x') = (1, x'), \quad p(x, x') = x, \quad p'(x, x') = x'.$$

Os mapeamentos i, i' são injetivos, já os mapeamentos p, p' são sobrejetivos, onde nu $p = 1 \times G'$ e nu $p' = G \times 1$. Esses mapeamentos são chamados de *projeções*. Desde que são núcleos, $G \times 1$ e $1 \times G'$ são subgrupos normais de $G \times G'$.

Proposição (Propriedades de Mapeamento dos Produtos): Seja H um grupo qualquer. O homomorfismo $\Phi: H \longrightarrow G \times G'$ tem correspondência biunívoca com o par (φ, φ') de homomorfismos

$$\varphi: H \longrightarrow G$$
, $\varphi': H \longrightarrow G'$.

O núcleo de Φ é a interseção (nu ϕ) \cap (nu ϕ').

É extremamente desejável encontrar uma relação isomorfa entre um grupo G e um produto de outros dois grupos $H \times H'$. Quando isso acontece, e infelizmente não são muitas as vezes, trabalhar com os grupos H e H' costumam ser mais simples que G.

Proposição: Sejam $r,s \in \mathbb{Z}$ não divisíveis entre si. Um grupo cíclico de ordem rs é isomorfo ao produto dos grupos cíclicos de ordem r e s.

Em contra partida, um grupo cíclico de ordem par 4, por exemplo, não é isomorfo ao produto de dois grupos cíclicos de ordem 2. Também não podemos afirmar nada com base no resultado anterior sobre grupos não cíclicos.

Definição: Sejam dois subgrupos *A*, *B* de um grupo *G*. Chamamos o conjunto de produtos de de elementos de *A* e *B* por

$$AB = \{x \in G \mid x = ab \text{ para algum } a \in A \text{ e } b \in B\}.$$

Proposição: Sejam H e K os subgrupos de um grupo G. - Se $H \cap K = \{1\}$, o mapeamento de produto $p: H \times K \longrightarrow G$ definido por p(h,k) = hk é injetivo e sua imagem é o subconjunto HK. - Se um dos subgrupos H ou K é um subgrupo normal de G, então os conjuntos de produtos HK e KH são iguais e HK é subgrupo de G. - Se ambos H e K são subgrupos normais, $H \cap K = \{1\}$ e HK = G, então G é isomorfo ao grupo de produto $H \times K$.

1.10 Aritmética Modular

Definição: Seja $n \in \mathbb{N}$. Dizemos que dois inteiros a, b são congruentes modulo n, e escrevemos

$$a \equiv b \pmod{n}$$
,

se n divide b-a, ou se b=a+nk para algum inteiro k. Chamamos as classes de equivalência definidas por essa relação de classes de equivalência módulo n, ou classes de resíduo módulo n.

Exemplo: A classe de congruência de 0 é o subgrupo $\bar{0}$ de todos os múltiplos de n

$$\bar{0} = n\mathbb{Z} = \{\ldots, -n, 0, n, 2n, \ldots\}.$$

Proposição: Há n classes de congruência módulo n (denotamos esse conjunto por $\mathbb{Z}/n\mathbb{Z}$), isto é, o índice $[\mathbb{Z}:n\mathbb{Z}]$ é n. São elas

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

Definição: Seja \bar{a} e \bar{b} as classes de congruência representadas pelos inteiros a e b. Define-se a *soma* como a classe de congruência de a+b e o *produto* pela classe de congruência ab, isto é,

$$\bar{a} + \bar{b} = \overline{a + b}$$
 e $\bar{a}\bar{b} = \overline{ab}$.

Proposição: Se $a' \equiv b' \pmod{n}$ e $b' \equiv b \pmod{n}$, então $a' + b' \equiv a + b \pmod{n}$ e $a'b' \equiv ab \pmod{n}$.

Além disso, a soma e produto também continuam respeitando as propriedades associativas, comutativas e distributivas, desde que o mesmo se mantém para soma e multiplicação de inteiros.

Exemplo: Seja n = 13, então

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{12}\}.$$

Com isso,

$$(\bar{7}+\bar{9})(\bar{11}+\bar{6}) = \bar{3}\cdot\bar{4} = \bar{12}.$$

1.11 Grupos de Quociente

Definição: Seja *N* um subgrupo normal de um grupo *G*. Então, o produto de duas coclasses *aN*, *bN* também é uma coclasse

$$(aN)(bN) = abN.$$

Definição: Assim como usado na seção anterior, é conveniente denotar o *conjunto de coclasses de um subconjunto normal N de um grupo G* pela simbologia

$$G/N =$$
conjunto de coclasses de $N =$ em G .

Também pode-se usar a notação em barra $G/N = \bar{G}$ e $aN = \bar{a}$, tomando o cuidado para diferenciar que \bar{a} denota a coclasse que contém a.

Proposição: Seja o mapeamento $\pi: G \longrightarrow \bar{G} = G/N$, da forma $a \leadsto \bar{a} = aN$, isto é, \bar{G} é um grupo e o mapeamento π é um homomorfismo com núcleo N. Então a ordem de G/N é o índice [G:N].

Proposição: Todo subgrupo normal de um grupo *G* é o núcleo de um homomorfismo.

Proposição: Sejam G um grupo e S um conjunto qualquer com uma lei de composição. Seja também $\varphi: G \longrightarrow S$ um mapeamento sobrejetivo tal que $\varphi(a)\varphi(b) = \varphi(ab)$ para todo $a,b \in G$. Então S é um grupo.

O construção do conceito de *grupo de quociente* é relacionado ao homomorfismo geral de grupo $\varphi: G \longrightarrow G'$, como segue:

Proposição (Primeiro Teorema do Isomorfismo): Sejam $\varphi: G \longrightarrow G'$ um homomorfismo de grupo sobrejetivo e N o núcleo de φ . Então G/N é isomórfico a G' pelo mapeamento $\bar{\varphi}$ que transporta a coclasse $\bar{a}=aN$ para $\varphi(a)$:

$$\bar{\varphi}(\bar{a}) = \varphi(a).$$

Esse é o método fundamental para identificar grupos de quocientes.