Distributed Storage

ENGR689 (Sprint)

Parallel Access to Data

Replication

Partitioning

Network Issues

- Network latency (100ms+) > Local DRAM latency (10-30ns)
- Network will always fail:
 - 50% chance the interval between inter-data-center network failures is less than 5 minutes
 - 10% chance network repairment can take more than 1 hour or even 1 week

Source: Microsoft 2011 SIGCOMM paper

Partition Tolerance

6

Consistency

CAP Theorem

- <u>Trade-offs</u> of three properties in a distributed system
- Consistency:

All nodes see the same states

Availability:

If one node fails, other nodes can still operate

Partition tolerance:

The system can be partitioned by network

By Eric Brewer in PODC 2000 Keynote

Think about Amazon

Consistency

• Each copy can only be sold once

Availability

• If North America server failed, Asia server can still sell the book.

Partition Tolerance

• If interconnection temporarily fails, the system can still work (but with some trade-offs)

Impossibility in CAP Theorem

Any distributed system cannot achieve all three

Consistency + Partition Tolerance

Requirement: only one book to sell, but may lose interconnection

Consistency + Partition Tolerance

Availability + Partition Tolerance

 Requirement: everyone needs to get answered, even without interconnection.

Availability + Partition Tolerance

Solution: distributed states

Consistency + Availability

 Requirement: only one book to sell, and everyone gets answered immediately

Consistency + Availability

Solution: centralized server

Consistency + Availability

• Solution: centralized server

You Can't Have Consistency + Availability Only

Network failures cannot be prevented, so you must have P.

Availability

Partition Tolerance

How to Trade Off CAP Theorem

- Example: DNS
 - Highly partitioned: Multiple servers, world-wide service
 - <u>High availability</u>: client needs to get response immediately
 - Eventual consistency:

 If a domain name is changed,
 takes hours to update

Criticism on CAP Theorem

- "CAP Twelve Years Later: How the "Rules" Have
 Changed" by Eric Brewer himself (2012)
- "A Critique of the CAP Theorem" by Martin Kleppmann (2015)

CAP Theorem is Misleading

 C, A, and P should be <u>continuous</u> properties instead of <u>binary</u> properties

	Strong Consistency	Weak Consistency
Consistency:		
	Highly available	Loosely available
Availability:		
Partition Tolerance:	Can tolerate eternal partition	Can tolerate temporary partition

Strong & Weak Consistency

Strong consistency

(All nodes see the same states)

Weak consistency

(Some nodes may see different states temporarily)

Availability As Responsiveness

 Availability are often defined as "responsiveness" of the system

Availability As Responsiveness

Example:
Amazon
Dynamo

From receiving a client request to generating a response:

99.9% of requests receive responses within 300ms

→ Service Level
Agreement (SLA)

Tolerance for Network Failure

Define P as the tolerance for network failure

Network latency:

How faster do you require the network packet to arrive? Seconds? Minutes? Hours?

Packet lost:

How reliable do you expect the network to send your packets? 100%? 95%? 50%?

Complete vs partial disconnection:

Do you expect a part to be complete cut off from the system? Or some node can still be connected?