Sanitchis Theorem (Walter Sanitch - 1970)

Theorem: For f: N > R+, f(n) > logn, NSPACE (f(n)) C DSPACE ((f(n))2)

- * If we can square the space usage, then we can give up on nondeterminism.
- * As seen in previous lectures, simulating a space bounded NTM can be accomplished by reaching for a path from Cetast to Caccept in the confiex graph.

 Assume wieger Caccept.

Let A & NSPACE (f(n)). Let N be the O(f(n))

space NTM that decides A. There are 2 O(f(n))

= 2 df(n) configurations for N. We need to decide

if there is a path from Cytost to Caccept that

were at most 2 df(n) vertices.

Calast 10 Cample

PATH (v., v2, t)

If t=1, ACCEPT if $V_1=V_2$ or if $V_1 \rightarrow V_2$ is an edge.

Else for all vertices ω ,

Run PATH (v_1, w_1, t_2)

Run PATH (w_1, v_2, t_2)

ACCEPT if both ACCEPT.

REJECT if not accepted yet.

Basic idea: There is a path from V, to V2 using at most t votices if there is a western when that

 V_1 V_2 V_2

The correctness is evident from the above. What is the space usage?

We need log t levels? Vi=Cotat, Vi=Couc
The initial call has t= 2df(m) t/2
For each recursine call,
we need to store Vi, Vz, t, w
in the stack.

* Each of v., vz, t, requires log 2 df(n) = df(n)
bits. So space usage is 4.df(n) per recursive
all. No.of levels \(\) df(n). (= log t)

* So total space \(\) 4.df(n)^2

= O(f(n))^2.

Finally, the simulating machine can do this without knowing f(n) as well. The simulating machine can try out f(n) = 1, 2, 3, ... till it finds a decision. If accept is reachable, we accept. If no config of bigger length is reachable, we reject. Else we more to the next value of f(n).

Consequences

- 1. NL C DSPACE (log2 n)
- 2. NSPACE(N) C DSPACE(NZ)
- 3. Non deterministie polynomial space, NPSPACE.

NPSPACE = \mathbb{Q} NSPACE (n^k) $= \mathbb{Q}$ DSPACE (n^k) $= \mathbb{Q}$ DSPACE (n^k) $= \mathbb{Q}$ DSPACE (n^k)

Thesem: NPSPACE = PSPACE.

NPTEL