Algorithm Design, Analysis & Complexity Lecture 5 - Graph Algorithms

Koushik Pal

University of Toronto

June 1, 2021

Shortest Path on Weighted Graph

Definition

Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$.

Let $P = \langle v_0, v_1, \dots, v_k \rangle$ be a path. The weight of P is defined as

$$w(P) := \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$$

The shortest path weight $\delta(u,v)$ from u to v is defined as

$$\delta(u,v) := \left\{ \begin{array}{ll} \min\{w(P) \mid P \text{ is a path from } u \text{ to } v\} & \text{if such a path exists} \\ \infty & \text{otherwise.} \end{array} \right.$$

Shortest Path Problem

Problem

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, compute a shortest path from a source node s to a destination node t.

Optimal substructure of a shortest path

Let $P = \langle v_0, \dots, v_k \rangle$ be a shortest path from v_0 to v_k . Then $\langle v_i, \dots, v_j \rangle$ is a shortest path from v_i to v_j for any $0 \le i < j \le k$.

Variations

The shortest path problem has a few variants.

- 1. Single source shortest path
- 2. Single destination shortest path
- 3. All pairs shortest path
- 4. Negative weights

Single source shortest path on nonnegative weights

```
1: procedure Dijkstra(G = (V, E, w), s)
        Define array d of size |V|
 2:
        Set d[v] = \infty for all v \in V
 3:
       Set d[s] = 0
 4:
       Define array \Pi of size |V|
 5:
        Set \Pi[v] = NIL for all v \in V
 6:
        Let Q be a priority queue initialized with (v, d[v]) for v \in V
 7:
        S := \emptyset
 8:
        while Q \neq \emptyset do
 9:
            u = \mathsf{Extract-Min}(Q)
10:
            S = S \cup \{u\}
11:
            for each vertex v \in Adj[u] do
12:
                if d[v] > d[u] + w[u, v] then
13:
                    d[v] = d[u] + w[u, v]
14:
                    \Pi[v] = u
15:
                    Decrease-Key(Q, v)
16:
```

Proof of correctness

Theorem

After the Dijkstra algorithm terminates, we get

$$d[v] = \delta(s, v)$$
 for all $v \in V$.

Proof.

By mathematical induction on the size of S.

Base Case. When |S| = 1, then $s \in S$ and $\delta(s, s) = 0 = d[s]$.

Ind. Hyp. Assume $\delta(s,x)=d[x]$ for all $x\in S$ when |S|=i.

Ind. Step. Show $\delta(s, u) = d[u]$, where u is the $(i + 1)^{th}$ element added to S.

Note that for u to be added to S, it has to be removed from Q, which means at this stage it has the minimum d value, i.e.,

$$d[u] \leq d[z]$$
 for all $z \notin S$.

Proof of correctness

Assume, for a contradiction, that there is a shortest path P from s to u of length $\delta(s,u) < d[u]$. Let e = (x,y) be the edge where P crosses the boundary of S for the first time.

Observe the following:

- 1. $\delta(s,x) = d[x]$, since $x \in S$ (by Ind. Hyp.)
- 2. $d[u] \leq d[y]$ (by the algorithm)
- 3. $d[y] \le d[x] + w[x, y]$ (by the algorithm)

By combining all these inequalities, we get

$$\delta(s, u) < d[u] \le d[y] \le d[x] + w[x, y] = \delta(s, x) + w[x, y] \le \delta(s, u)$$

(the last inequality is because of nonnegative weights), which yields the necessary contradiction.

Hence,
$$d[u] = \delta(s, u)$$
.

Complexity

- ▶ The Extract-Min operation runs n times, and takes $\Theta(n \lg n)$ computations.
- ▶ The Decrease-Key operation runs m times, and takes $\Theta(m \lg n)$ computations, if implemented with a binary heap.

Thus, total time complexity if Q is implemented via a binary heap is $\Theta(m \lg n)$.

But if Q is implemented using Fibonacci heap, then the amortized cost of running all the Decrease-Key operations drops to $\Theta(n \lg n)$. The inside loop still runs m times across all runs of the outer loop, giving a total complexity of $\Theta(m+n \lg n)$.

Single-destination shortest path on negative weights

Unfortunately, $\mathrm{DIJKSTRA}$ doesn't work when the weights are allowed to be negative. Having the weights to be nonnegative is a crucial part in the proof of $\mathrm{DIJKSTRA}$.

When weights are allowed to be negative, there can be more complications. For example, if there is a negative weight cycle (all edges on the cycle have negative weights), then the shortest path weight between two vertices on the cycle is $-\infty$, i.e., there is no "shortest" path between those two vertices.

Fortunately, that's the only hindrance to having a shortest path!

Why?

Lemma

If G = (V, E) has no negative cycle and t is reachable from s, then there is a shortest path from s to t that is simple (i.e., does not repeat nodes), and hence has at most |V|-1 edges.

Proof.

Since every cycle has nonnegative weight, the shortest path P from s to t with the fewest number of edges does not repeat any vertex v.

For if P did repeat a vertex v, the portion of P between consecutive visits to v can be removed, resulting in a path of no greater cost.

DP Solution

We will use DP to solve the shortest path problem on weighted graphs with negative weights.

Define OPT(i, v) to be the shortest path weight from v to t using at most i edges. By Lemma 2, our goal is to compute the value of OPT(n-1, s).

Let P be an optimal path representing OPT(i, v). Now, two things can happen:

- 1. P uses at most i-1 edges. In this case, OPT(i,v) = OPT(i-1,v).
- 2. P uses i edges with the first edge being (v, u). In this case, OPT(i, v) = w(v, u) + OPT(i-1, u).

This gives the following recursive formula: if i > 0, then

$$OPT(i, v) = \min\{OPT(i-1, v), \min_{u \in V}\{OPT(i-1, u) + w(v, u)\}\}.$$

DP Solution

Define an array M such that M[i, v] denotes OPT(i, v). Now, we write a bottom-up iterative algorithm to compute M.

```
1: procedure ShortestPath(G = (V, E, w), t)
       Let n := |V|, m := |E|
 2:
       Define 2-D array M[0,\ldots,n-1,v_0,\ldots,v_{n-1}]
 3:
       M[0,t] = 0 and M[0,v] = \infty for all v \in V \setminus \{t\}
 4:
     for i=1,\ldots,n-1 do
 5:
           for v \in V do
 6:
               M[i,v] = M[i-1,v]
 7:
               for u \in Adj[v] do
 8:
                   if M[i,v] > M[i-1,u] + w[v,u] then
 9:
                      M[i, v] = M[i-1, u] + w[v, u]
10:
       return M
11:
```

Complexity: $\Theta(n \sum_{v \in V} n_v) = \Theta(nm)$.

Here n_v is the degree of node v (number of edges going out of v).

Space Complexity

Space complexity: $\Theta(n^2)$.

But a close look at the algorithm shows that we don't need to store M[i,v] for all values of i. We just need the values at stage i-1 to compute the values for stage i.

Hence, we can use a 1-D array, and rewrite the above algorithm as follows.

Bellman-Ford Algorithm

```
1: procedure Bellman-Ford(G = (V, E, w), t)
 2:
       Let n := |V|, m = |E|
       Define 1-D array M[v_0,\ldots,v_{n-1}]
 3:
       M[t] = 0 and M[v] = \infty for all v \in V \setminus \{t\}
 4:
    for i = 1, ..., n-1 do
 5:
           for v \in V do
 6:
               for u \in Adi[v] do
 7:
                   if M[v] > M[u] + w[v, u] then
 8:
                      M[v] = M[u] + w[v, u]
 9:
       for each edge (v, u) \in E do
10:
           if M[v] > M[u] + w[v, u] then
11:
               return Nill
12:
       return M
13:
```

Time Complexity: $\Theta(nm)$. Space Complexity: $\Theta(n)$.

Bellman-Ford Analysis

Bellman-Ford not only computes M for a graph with negative weights, but it also returns whether the graph has a negative cycle or not. If there is a negative cycle, it returns Nil ; otherwise, it returns the computed array M.

Claim

If there is a negative weight cycle in G that can reach t, Bellman-Ford returns Nil.

Proof.

Assume G contains a negative weight cycle that can reach t. Let this cycle be $c = \langle v_0, v_1, \dots, v_k \rangle$ where $v_0 = v_k$. Then

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

Assume for a contradiction that Bellman-Ford does not return Nil. Thus, $M[v_{i-1}] \leq M[v_i] + w(v_{i-1}, v_i)$ for i = 1, ..., k.

Bellman-Ford Analysis

Proof (cont.)

Summing the inequalities around the cycle c gives

$$\sum_{i=1}^{k} M[v_{i-1}] \leq \sum_{i=1}^{k} \left(M[v_i] + w(v_{i-1}, v_i) \right)
= \sum_{i=1}^{k} M[v_i] + \sum_{i=1}^{k} w(v_{i-1}, v_i)
= \sum_{i=1}^{k} M[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i) \text{ (since } v_0 = v_k).$$

This implies $\sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0$, a contradiction. Hence, Bellman-Ford returns NIL.

Exercise: Modify Bellman-Ford to find an actual shortest path from any vertex v to t.

All-pairs shortest path

Let G=(V,E) be a weighted directed graph with |V|=n and |E|=m. The goal now is to find a shortest path from *any* vertex to *any* other vertex in G.

An obvious thing to do is to run a single source shortest path algorithm from every vertex in the graph.

On non-negative weighted graph, we can apply DIJKSTRA from each vertex. This has a complexity of $\Theta(n^2 \lg n + nm)$.

On a graph with negative weights but no negative cycle, we can apply Bellman-Ford from each vertex. This has a complexity of $\Theta(n^2m)$.

Question: Can we do any better?

Generalization of Bellman-Ford

Define $\ell_{ij}^{(m)} :=$ shortest path weight from vertex v_i to vertex v_j that contains at most m edges. Then

$$\ell_{ij}^{(o)} = \begin{cases} o & \text{if } i = j \\ \infty & \text{if } i \neq j, \end{cases}$$

and for m > 1,

$$\begin{array}{lcl} \ell_{ij}^{(m)} & = & \min \left\{ \ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n, k \neq j} \{ \ell_{ik}^{(m-1)} + w(k,j) \} \right\} \\ & = & \min_{1 \leq k \leq n} \{ \ell_{ik}^{(m-1)} + w(k,j) \} \quad \text{(since } w(j,j) = o \text{)} \end{array}$$

We now use this recurrence to compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where $L^{(k)} = (\ell_{ij}^{(k)})$, starting with $L^{(1)} = W = (w(i,j))$ and ending with $L^{(n-1)}$ which contains the actual shortest path weights.

Generalization of Bellman-Ford

```
1: procedure SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

2: n:= number of rows of W

3: L^{(1)}:=W

4: for k=2,\ldots,n-1 do

5: L^{(k)}= EXTEND-SHORTEST-PATHS (L^{(k-1)},W)

6: return L^{(n-1)}
```

Generalization of Bellman-Ford

```
1: procedure Extend-Shortest-Paths(L, W)
        n := \text{number of rows of } L
 2:
       Let L' be a new n \times n matrix
 3:
       for i = 1, \ldots, n do
 4:
            for j = 1, \ldots, n do
 5:
               L'[i,j] = \infty
 6:
               for k = 1, \ldots, n do
 7:
                   if L'[i, j] > L[i, k] + W[k, j] then
 8:
                       L'[i,j] = L[i,k] + W[k,j]
 9:
        return L'
10:
```

Complexity

The complexity of the EXTEND-SHORTEST-PATHS is $\Theta(n^3)$.

Thus, the complexity of Slow-All-Pairs-Shortest-Paths is $\Theta(n^4)$.

Unfortunately, this is no better than running $\operatorname{BELLMAN-FORD}$ from every vertex.

However, the complexity can be improved to $\Theta(n^3 \lg n)$ by computing $L^{(n-1)}$ as follows:

$$L^{(1)} = W$$

$$L^{(2)} = W \cdot W = W^{2}$$

$$L^{(4)} = W^{2} \cdot W^{2} = W^{4}$$

$$L^{(8)} = W^{4} \cdot W^{4} = W^{8}$$

$$\vdots$$

$$L^{(2\lceil \lg(n-1)\rceil)} = W^{2\lceil \lg(n-1)\rceil}$$

A different DP solution

Redefining the DP subproblems in a different way gives us a better algorithm.

Let
$$G = (V, E)$$
 with $V = \{1, 2, ..., n\}$.

Define $d_{ij}^{(k)} :=$ shortest path weight from vertex i to vertex j for which all intermediate vertices are in the set $\{1,\ldots,k\}$. (An intermediate vertex on a path from i to j is any vertex on the path other than i or j.)

For k = 0, we have $d_{ij}^{(0)} = w(i, j)$ (direct edges).

Now, consider a shortest path P from i to j where all the intermediate vertices are in the set $\{1, \ldots, k\}$. Then two things can happen:

- 1. k is not an intermediate vertex on P: in this case, $d_{ij}^{(k)} = d_{ij}^{(k-1)}$.
- 2. k is an intermediate vertex on P: in this case, $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

A different DP solution

all intermediate vertices in $\{1, 2, ..., k-1\}$ all intermediate vertices in $\{1, 2, ..., k-1\}$ $p: \text{ all intermediate vertices in } \{1, 2, ..., k\}$

Consequently, we obtain the following recurrence:

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}.$$

We now use this recurrence to compute a series of matrices $D^{(o)}, D^{(1)}, \ldots, D^{(n)}$, where $D^{(k)} = (d_{ij}^{(k)})$, starting with $D^{(o)} = W = (w(i,j))$ and ending with $D^{(n)}$ which contains the actual shortest path weights.

Floyd-Warshall Algorithm

```
1: procedure FLOYD-WARSHALL(W)
        n := \text{number of rows of } W
 2:
        D^{(0)} := W
 3.
        for k = 1, \ldots, n do
 4.
            Let D^{(k)} be a new n \times n matrix
 5:
            for i = 1, \ldots, n do
 6.
                 for j = 1, \ldots, n do
 7:
                     if D^{(k-1)}[i,j] > D^{(k-1)}[i,k] + D^{(k-1)}[k,j] then
 8:
                         D^{(k)}[i, j] = D^{(k-1)}[i, k] + D^{(k-1)}[k, j]
 9:
                     else
10:
                         D^{(k)}[i,j] = D^{(k-1)}[i,j]
11:
        return D^{(n)}
12:
```

Complexity: $\Theta(n^3)$.

Exercise: Modify FLOYD-WARSHALL to find an actual shortest path from any vertex i to any vertex j.

Johnson's algorithm for sparse graphs

If we have a graph with negative weights, then one might hope to somehow re-weight the edges to nonnegative weights such that the shortest paths do not change. The following lemma gives one such way.

Lemma

Given a weighted directed graph G=(V,E) with weight function $w:E\to\mathbb{R}$, let $h:V\to\mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u,v)\in E$, define

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v).$$

Let $P = \langle v_0, v_1, \dots, v_k \rangle$ be any path from v_0 to v_k . Then P is a shortest path from v_0 to v_k with weight function w if and only if it is a shortest path with weight function \hat{w} .

Furthermore, G has a negative weight cycle using w if and only if G has a negative weight cycle using \hat{w} .

Proof of lemma

Proof.

$$\hat{w}(P) = \sum_{i=1}^{k} \hat{w}(v_{i-1}, v_i)$$

$$= \sum_{i=1}^{k} \left(w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i) \right)$$

$$= \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_0) - h(v_k)$$

Thus, the new weight of any path P depends on the old weight of P and the values of the function h at the starting and the ending vertices. Since all path weights between two given vertices change by a constant amount, the shortest paths do not change under the new weight function \hat{w} .

 $= w(P) + h(v_0) - h(v_k).$

If P is a cycle, then $v_0 = v_k$, and hence $w(P) = \hat{w}(P)$. This proves the second statement of the claim.

How to define h?

The big question now is: how to come up with a function h so that all negative weights under w become nonnegative under \hat{w} ?

The following idea works!

Given a graph G=(V,E,w), introduce a new vertex s and make a new graph G'=(V',E',w'), where

$$V' = V \cup \{s\}$$

$$E' = E \cup \{(s, v) \mid v \in V\}$$

$$w'(s, v) = \text{ o for all } v \in V.$$

Assume G and G' have no negative-weight cycles.

Define $h(v) = \delta(s, v)$ for all $v \in V'$ (where $\delta(s, v)$ stands for the shortest path weight from s to v).

By triangle inequality of shortest path weights, it follows that $h(v) \leq h(u) + w(u, v)$ for all $(u, v) \in E'$.

Thus, $w'(u, v) := w(u, v) + h(u) - h(v) \ge 0$ for all $(u, v) \in E'$.

Johnson's Algorithm

```
1: procedure JOHNSON(G, w)
        Define G' where V' = V \cup \{s\}, E' = E \cup \{(s, v) \mid v \in V\}
 2:
        Set w(s, v) = 0 for all v \in V
 3:
        if Bellman-Ford(G', w, s) == Nil then
 4:
            return Nil
 5:
        else
 6:
            for v \in V do
 7:
                Set h(v) := \delta(s, v) as computed by Bellman-Ford
 8:
            for (u,v) \in E do
 9:
                Set \hat{w}(u, v) := w(u, v) + h(u) - h(v)
10:
            Let D = (d_{uv}) be a new n \times n matrix
11:
            for u \in V do
12:
                Run Dijkstra(G, \hat{w}, u) to compute \hat{\delta}(u, v) \ \forall v \in V
13:
                for v \in V do
14:
                    D[u,v] = \hat{\delta}(u,v) - (h(u) - h(v))
15:
16:
            return D
```

Complexity

Note that we run Bellman-Ford only once from the vertex s. We use that to compute h, and consequently, \hat{w} .

After that we run DIJKSTRA n times, since all the weights $\hat{w}(u,v)$ are now nonnegative.

Hence, the total complexity of JOHNSON is $\Theta(n^2 \lg n + nm)$.

For sparse graphs (where $m \ll n^2$), this is better than $\Theta(n^3)$.