Spark SQL概述

SparkSQL概念: Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。

Hive and SparkSQL

SparkSQL 的前身是 Shark, 给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。

Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程 消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop的效率,大量的 SQL-on-Hadoop 工具开始产生,其 中表现较为突出的是:

- Drill
- Impala
- Shark
- 其中 Shark 是伯克利实验室 Spark 生态环境的组件之一,是基于 Hive 所开发的工具,它修改了下图所示的右下 角的内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。

Hive Architecture

Shark Architecture

CU

IDBC

Cache Mgr.

Physical Plan

Execution

SparkSQL 特点

易整合

■ 无缝的整合了 SQL 查询和 Spark 编程

统一的数据访问

■ 使用相同的方式连接不同的数据源

兼容 Hive

■ 在已有的仓库上直接运行 SQL 或者 HiveQL

标准数据连接

■ 通过 JDBC 或者 ODBC 来连接

DataFrame 概念

DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要更加友好,门槛更低。

Person	
Person	
Person	
Person	
1 013011	
Person	

Name	Age	Height		
String	Int	Double		
String	Int	Double		
String	Int	Double		
String Int Double				
String	Int	Double		
String	Int	Double		
Sulfig	IIIL	Double		

RDD[Person]

DataFrame

DataFrame 和 RDD 的区别:

左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型 各是什么。

DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待。

DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化。

DataSet 概念

DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 SparkSQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map, flatMap, filter等等)。

- DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象
 - 用户友好的 API 风格, 既具有类型安全检查也具有 DataFrame 的查询优化特性;
 - 用样例类来对 DataSet 中定义数据的结构信息, 样例类中每个属性的名称直接映射到
- DataSet 中的字段名称;
 - DataSet 是强类型的。比如可以有 DataSet[Car], DataSet[Person]。
 - DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将
 - DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序

SparkSQL 核心编程

Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 Spark Context,Spark SQL 其实可以理解为对 Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark自己提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext的组合,所以在 SQLContext 和 HiveContext 上可用的 API 在 SparkSession 上同样是可以使用的。SparkSession 内部封装了 SparkContext,所以计算实际上是由 sparkContext 完成的。当使用 spark-shell 的时候,spark 框架会自动的创建一个名称叫做 spark 的 SparkSession 对象,就像以前可以自动获取到一个 sc 来表示 SparkContext 对象一样。

DataFrame

Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者 生成 SQL 表达式。DataFrame API 既有 transformation 操作也有 action 操作。

创建 DataFrame

在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame 有三种方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查询返回

从 Spark 数据源进行创建 查看 Spark 支持创建文件的数据源格式

```
scala> spark.read.

csv format jdbc json load option options orc parquet schema table text textFile
```

在 spark 的 bin/data 目录中创建 user.json 文件

```
{"username":"zhangsan","age":20}
```

读取 json 文件创建 DataFrame

```
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
```

注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和 Long 类型转换,但是和 Int 不能进行转换

展示结果

- 2. 从 RDD 进行转换
- 3. 从 Hive Table 进行查询返回

SQL 语法

SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要 有临时视图或者全局视图来辅助

1. 读取 JSON 文件创建 DataFrame

```
2. scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
```

对 DataFrame 创建一个临时表

```
scala> df.createOrReplaceTempView("people")
```

3. 通过 SQL 语句实现查询全表

```
scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
```

```
scala> sqlDF.show
+---+-----+
|age|username|
+---+-----+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+----------+
```

注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使 用全局临时表时需要全路径访问,如:global_temp.people

5. 对于 DataFrame 创建一个全局表

```
scala> df.createGlobalTempView("people")
```

6. 通过 SQL 语句实现查询全表

DSL 语法

DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。 可以在 Scala, Java, Python 和 R 中使用 DSL, 使用 DSL 语法风格不必去创建临时视图了

1. 创建一个 DataFrame

```
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
```

2. 查看 DataFrame 的 Schema 信息

```
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)
```

3. 只查看"username"列数据,

```
scala> df.select("username").show()
+-----+
|username|
+-----+
|zhangsan|
| lisi|
| wangwu|
+-----+
```

4. 查看"username"列数据以及"age+1"数据

注意:涉及到运算的时候,每列都必须使用\$,或者采用引号表达式:单引号+字段名

```
scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+-----+
|username|(age + 1)|
+-----+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+-----+
```

5. 查看"age"大于"30"的数据

6. 按照"age"分组, 查看数据条数

```
scala> df.groupBy("age").count.show
+---+
|age|count|
+---+---+
| 20| 1|
| 30| 1|
| 40| 1|
+---+----+
```

RDD 转换为 DataFrame

在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入 import spark.implicits._ 这里的 spark 不是 Scala 中的包名,而是创建的 sparkSession 对象的变量名称,所以必 须先创建 SparkSession 对象再导入。 这里的 spark 对象不能使用 var 声明,因为 Scala 只支持 val 修饰的对象的引入。 spark-shell 中无需导入,自动完成此操作。

```
scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
```

```
| id|
| 1|
| 2|
3
4
+---+
// 实际开发中,一般通过样例类将 RDD 转换为 DataFrame
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1,
t._2)).toDF.show
+----+
name age
+----+
|zhangsan| 30|
lisi 40
+----+
```

DataFrame 转换为 RDD

DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD

```
scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val rdd = df.rdd
rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[46]
at rdd at <console>:25
scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

// 注意: 此时得到的 RDD 存储类型为 Row

scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan
```

DataSet

DataSet 是具有强类型的数据集合,需要提供对应的类型信息。

创建 DataSet

1) 使用样例类序列创建 DataSet

```
scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+-----+
| name|age|
+-----+
| zhangsan| 2|
+-----+
```

2) 使用基本类型的序列创建 DataSet

注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet

RDD 转换为 DataSet

SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet, case 类定义了 table 的结 构, case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结 构。

```
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
```

DataFrame 和 DataSet 转换

DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。

DataFrame 转换为 DataSet

```
scala> case class User(name:String, age:Int)
defined class User
scala> val df = sc.makeRDD(List(("zhangsan",30),
    ("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
```

```
// DataSet 转换为 DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
```

RDD、DataFrame、DataSet 三者的关系

在 Spark SQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和 RDD 有什么区别呢?首先从版本的产生上来看:

- Spark1.0 => RDD
- Spark1.3 => DataFrame
- Spark1.6 => Dataset

如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。

三者的共性

- RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利;
- 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到Action 如 foreach 时,三者 才会开始遍历运算;
- 三者有许多共同的函数,如 filter,排序等;
- 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._ (在创建好 SparkSession 对象 后尽量直接导入)
- 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
- 三者都有 partition 的概念
- DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型

三者的区别

1. RDD

- RDD 一般和 spark mllib 同时使用
- RDD 不支持 sparksql 操作

2. DataFrame

- 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
- DataFrame 与 DataSet 一般不与 spark mllib 同时使用
- DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select, groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
- DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头

3. DataSet

- Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。
- DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
- DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息

用户自定义函数

用户可以通过 spark.udf 功能添加自定义函数,实现自定义功能。

1. 创建 DataFrame

```
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
```

注册 UDF

```
scala> spark.udf.register("addName",(x:String)=> "Name:"+x)
res9: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
```

3. 创建临时表

```
scala> df.createOrReplaceTempView("people")
```

4. 应用 UDF

```
scala> spark.sql("Select addName(name),age from people").show()
```

UDAF

强类型的 Dataset 和弱类型的 DataFrame 都提供了相关的聚合函数,如 count(), countDistinct(), avg(), max(), min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承 UserDefinedAggregateFunction 来实现用户自定义弱类型聚合函数。从 Spark3.0 版本后,UserDefinedAggregateFunction 已经不推荐使用了。可以统一采用强类型聚合函数Aggregator

需求: 计算平均工资 一个需求可以采用很多种不同的方法实现需求

1. 实现方式 - RDD

```
val conf: SparkConf = new SparkConf().setAppName("app").setMaster("local[*]")
val sc: SparkContext = new SparkContext(conf)
val res: (Int, Int) = sc.makeRDD(List(("zhangsan", 20), ("lisi", 30), ("wangw",
40))).map {
    case (name, age) => {
        (age, 1)
        }
    }.reduce {
        (t1, t2) => {
        (tt._1 + t2._1, t1._2 + t2._2)
        }
    println(res._1/res._2)
    // 关闭连接
    sc.stop()
```

2. 实现方式 - 累加器

```
class MyAC extends AccumulatorV2[Int,Int]{
  var sum:Int = 0
  var count:Int = 0
  override def isZero: Boolean = {
  return sum ==0 && count == 0
  }
```

```
override def copy(): AccumulatorV2[Int, Int] = {
    val newMyAc = new MyAC
    newMyAc.sum = this.sum
    newMyAc.count = this.count
    newMyAc
    override def reset(): Unit = {
    sum = 0
    count = 0
    override def add(v: Int): Unit = {
    sum += v
    count += 1
    override def merge(other: AccumulatorV2[Int, Int]): Unit = {
    other match {
    case o:MyAC=>{
    sum += o.sum
    count += o.count
    }
    case _=>
    }
    }
    override def value: Int = sum/count
3)
```

实现方式 - UDAF - 弱类型

```
定义类继承 UserDefinedAggregateFunction, 并重写其中方法
class MyAveragUDAF extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型
def inputSchema: StructType =
StructType(Array(StructField("age",IntegerType)))
// 聚合函数缓冲区中值的数据类型(age,count)
def bufferSchema: StructType = {
StructType(Array(StructField("sum",LongType),StructField("count",LongType)))
// 函数返回值的数据类型
def dataType: DataType = DoubleType
// 稳定性:对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 函数缓冲区初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {
// 存年龄的总和
buffer(0) = 0L
// 存年龄的个数
buffer(1) = 0L
// 更新缓冲区中的数据
def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
if (!input.isNullAt(0)) {
```

```
buffer(0) = buffer.getLong(0) + input.getInt(0)
 buffer(1) = buffer.getLong(1) + 1
 }
 // 合并缓冲区
 def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {
 buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
 buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
 }
 // 计算最终结果
 def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble /
buffer.getLong(1)
}
//创建聚合函数
var myAverage = new MyAveragUDAF
//在 spark 中注册聚合函数
spark.udf.register("avgAge",myAverage)
spark.sql("select avgAge(age) from user").show()
```

4. 实现方式 - UDAF - 强类型

```
//输入数据类型
case class User01(username:String,age:Long)
case class AgeBuffer(var sum:Long,var count:Long)
 * 定义类继承 org.apache.spark.sql.expressions.Aggregator
 * 重写类中的方法
  */
  class MyAveragUDAF1 extends Aggregator[User01,AgeBuffer,Double]{
   override def zero: AgeBuffer = {
   AgeBuffer(0L,0L)
   }
   override def reduce(b: AgeBuffer, a: User01): AgeBuffer = {
  b.sum = b.sum + a.age
   b.count = b.count + 1
    }
    override def merge(b1: AgeBuffer, b2: AgeBuffer): AgeBuffer = {
    b1.sum = b1.sum + b2.sum
    b1.count = b1.count + b2.count
    override def finish(buff: AgeBuffer): Double = {
    buff.sum.toDouble/buff.count
    //DataSet 默认额编解码器,用于序列化,固定写法
    //自定义类型就是 product 自带类型根据类型选择
    override def bufferEncoder: Encoder[AgeBuffer] = {
    Encoders.product
    override def outputEncoder: Encoder[Double] = {
    Encoders.scalaDouble
    }
  }
  //封装为 DataSet
  val ds: Dataset[User01] = df.as[User01]
```

```
//创建聚合函数
var myAgeUdaf1 = new MyAveragUDAF1
//将聚合函数转换为查询的列
val col: TypedColumn[User01, Double] = myAgeUdaf1.toColumn
//查询
ds.select(col).show()
```

Spark3.0 版本可以采用强类型的 Aggregator 方式代替 UserDefinedAggregateFunction

```
// TODO 创建 UDAF 函数
val udaf = new MyAvgAgeUDAF
// TODO 注册到 SparkSQL 中
spark.udf.register("avgAge", functions.udaf(udaf))
// TODO 在 SQL 中使用聚合函数
// 定义用户的自定义聚合函数
spark.sql("select avgAge(age) from user").show
case class Buff( var sum:Long, var cnt:Long )
// totalage, count
class MyAvgAgeUDAF extends Aggregator[Long, Buff, Double]{
override def zero: Buff = Buff(0,0)
override def reduce(b: Buff, a: Long): Buff = {
b.sum += a
b.cnt += 1
 }
override def merge(b1: Buff, b2: Buff): Buff = {
b1.sum += b2.sum
b1.cnt += b2.cnt
 b1
override def finish(reduction: Buff): Double = {
 reduction.sum.toDouble/reduction.cnt
override def bufferEncoder: Encoder[Buff] = Encoders.product
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
```

数据的加载和保存

通用的加载和保存方式

SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的 API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式 为 parquet

1. 加载数据

spark.read.load 是加载数据的通用方法

```
scala> spark.read.
csv format jdbc json load option options orc parquet schema
table text textFile
```

如果读取不同格式的数据,可以对不同的数据格式进行设定

```
scala> spark.read.format("...")[.option("...")].load("...")
```

format("..."): 指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"。

load("..."): 在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载数据的路径。

option("..."): 在"jdbc"格式下需要传入 JDBC 相应参数, url、user、password 和 dbtable 使用 read API 先把文件加载到 DataFrame 然后再查询,其实,也可以直接在文件上进行查询:文件格式.文件路径

scala>spark.sql("select * from json.`/opt/module/data/user.json`").show

2. 保存数据

df.write.save 是保存数据的通用方法

scala>df.write.
csv jdbc json orc parquet textFile... ...

如果保存不同格式的数据,可以对不同的数据格式进行设定

```
scala>df.write.format("...")[.option("...")].save("...")
```

format("..."): 指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和 "textFile"。

save ("..."): 在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。

option("..."): 在"jdbc"格式下需要传入 JDBC 相应参数, url、user、password 和 dbtable,保存操作可以使用 SaveMode,用来指明如何处理数据,使用 mode()方法来设置。有一点很重要: 这些 SaveMode 都是没有加锁的,也不是原子操作。SaveMode 是一个枚举类,其中的常量包括:

Scala/Java	Any Language	Meaning
SaveMode.ErrorIfExists(default)	"error"(default)	如果文件已经存在则抛出异常
SaveMode.Append	"append"	如果文件已经存在则追加
SaveMode.Overwrite	"overwrite"	如果文件已经存在则覆盖
SaveMode.Ignore	"ignore"	如果文件已经存在则忽略

Parquet

Spark SQL 的默认数据源为 Parquet 格式。Parquet 是一种能够有效存储嵌套数据的列式存储格式。

数据源为 Parquet 文件时,Spark SQL 可以方便的执行所有的操作,不需要使用 format。 修改配置项 spark.sql.sources.default,可修改默认数据源格式。

1. 加载数据

```
scala> val df = spark.read.load("examples/src/main/resources/users.parquet")
scala> df.show
```

2. 保存数据

```
scala> var df = spark.read.json("/opt/module/data/input/people.json")
//保存为 parquet 格式
scala> df.write.mode("append").save("/opt/module/data/output")
```

JSON

Spark SQL 能够自动推测 JSON 数据集的结构,并将它加载为一个 Dataset[Row]. 可以通过 SparkSession.read.json()去加载 JSON 文件。

注意: Spark 读取的 JSON 文件不是传统的 JSON 文件,每一行都应该是一个 JSON 串。格式如下:

```
{"name":"Michael"}
{"name":"Andy", "age":30}
[{"name":"Justin", "age":19},{"name":"Justin", "age":19}]
```

1) 导入隐式转换

```
import spark.implicits._
```

2) 加载 JSON 文件

```
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
```

3) 创建临时表

```
peopleDF.createOrReplaceTempView("people")
```

4) 数据查询

```
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
+----+
| name|
+----+
|Justin|
+----+
```

CSV

Spark SQL 可以配置 CSV 文件的列表信息,读取 CSV 文件,CSV 文件的第一行设置为 数据列

```
spark.read.format("csv").option("sep", ";").option("inferSchema",
"true").option("header", "true").load("data/user.csv")
```

MySQL

Spark SQL 可以通过 JDBC 从关系型数据库中读取数据的方式创建 DataFrame,

通过对 DataFrame 一系列的计算后,还可以将数据再写回关系型数据库中。

如果使用 spark-shell 操 作,可在启动 shell 时指定相关的数据库驱动路径或者将相关的数据库驱动放到 spark 的类路径下。

```
bin/spark-shell
--jars mysql-connector-java-5.1.27-bin.jar
```

演示在 Idea 中通过 JDBC 对 Mysql 进行操作

1) 导入依赖

```
<dependency>
  <groupId>mysql</groupId>
  <artifactId>mysql-connector-java</artifactId>
  <version>5.1.27</version>
  </dependency>
```

2) 读取数据

```
val conf: SparkConf = new
SparkConf().setMaster("local[*]").setAppName("SparkSQL")
//创建 SparkSession 对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//方式 1: 通用的 load 方法读取
spark.read.format("jdbc")
 .option("url", "jdbc:mysql://linux1:3306/spark-sql")
 .option("driver", "com.mysql.jdbc.Driver")
.option("user", "root")
 .option("password", "123123")
 .option("dbtable", "user")
 .load().show
//方式 2:通用的 load 方法读取 参数另一种形式
spark.read.format("jdbc")
.options(Map("url"->"jdbc:mysql://linux1:3306/spark-sql?user=root&password=
123123",
"dbtable"->"user", "driver"->"com.mysql.jdbc.Driver")).load().show
//方式 3:使用 jdbc 方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://linux1:3306/spark-sql",
"user", props)
df.show
//释放资源
spark.stop()
```

3) 写入数据

```
case class User2(name: String, age: Long)

val conf: SparkConf = new
SparkConf().setMaster("local[*]").setAppName("SparkSQL")

//创建 SparkSession 对象
```

```
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits.
val rdd: RDD[User2] = spark.sparkContext.makeRDD(List(User2("lisi", 20),
User2("zs", 30)))
val ds: Dataset[User2] = rdd.toDS
//方式 1: 通用的方式 format 指定写出类型
ds.write
 .format("jdbc")
 .option("url", "jdbc:mysql://linux1:3306/spark-sql")
 .option("user", "root")
 .option("password", "123123")
 .option("dbtable", "user")
 .mode(SaveMode.Append)
 .save()
//方式 2: 通过 jdbc 方法
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://linux1:3306/spark-sql",
"user", props)
//释放资源
spark.stop()
```

Hive

Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark 的配置文件目录中(\$SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行。需要注意的是,如果你没有部署好 Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。

spark-shell 默认是 Hive 支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。

1) 内嵌的 HIVE

如果使用 Spark 内嵌的 Hive,则什么都不用做, 直接使用即可. Hive 的元数据存储在 derby 中,默认仓库地址:\$SPARK_HOME/spark-warehouse

```
scala> spark.sql("show tables").show

. . .

+-----+
|database|tableName|isTemporary|
+-----+
scala> spark.sql("create table aa(id int)")

. . .

scala> spark.sql("show tables").show
+-----+
```

```
|database|tableName|isTemporary|
+-----+
| default| aa| false|
+-----+
```

向表加载本地数据

在实际使用中, 几乎没有任何人会使用内置的 Hive

2) 外部的 HIVE

如果想连接外部已经部署好的 Hive, 需要通过以下几个步骤:

Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下 把 Mysql 的驱动 copy 到 jars/目录下 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下 重启 spark-shell

3) 运行 Spark SQL CLI

Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似一 Hive 窗口

```
bin/spark-sql
```

4) 运行 Spark beeline

Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore进行交互,获取到 hive 的元数据。

如果想连接 Thrift Server, 需要通过以下几个步骤:

Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下 把 Mysql 的驱动 copy 到 jars/目录下 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下 启动 Thrift Server

```
sbin/start-thriftserver.sh
```

使用 beeline 连接 Thrift Server

```
bin/beeline -u jdbc:hive2://linux1:10000 -n root
```

- 5) 代码操作 Hive
- 1) 导入依赖

```
<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-hive_2.12</artifactId>
  <version>3.0.0</version>
  </dependency>
  <dependency>
  <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>1.2.1</version>
  </dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <dependency>
  <groupId>mysql</groupId>
  <artifactId>mysql-connector-java</artifactId>
  <version>5.1.27</version>
  </dependency>
  </dependency></dependency></dependency></dependency>
```

2) 将 hive-site.xml 文件拷贝到项目的 resources 目录中,代码实现

```
//创建 SparkSession
val spark: SparkSession = SparkSession
.builder()
.enableHiveSupport()
.master("local[*]")
.appName("sq1")
.getOrCreate()
```

注意: 在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址:

config("spark.sql.warehouse.dir", "hdfs://linux1:8020/user/hive/warehouse")

如果在执行操作时, 出现如下错误:

```
ty. AccessControlException): Permission denied: user=18801, access=WRITE, inode="/user/hive/warehouse/userid":re
```

可以代码最前面增加如下代码解决:

System.setProperty("HADOOP_USER_NAME", "root")

此处的 root 改为自己的 hadoop 用户名称