Indian Institute of Technology, Jodhpur

Lab Manual

Sensors and IoT

LAB - 6

Date: 21 Oct, 2024

Lab Objective

To store real-time sensor data in an InfluxDB database and visualize it using Grafana. The objective includes setting up data pipelines from sensors to InfluxDB and configuring Grafana dashboards for effective monitoring.

Part 1: Installation of Influxdb

- Open a terminal window on Raspberry Pi
- Update all the packages installed on Raspberry Pi and execute :-

sudo apt update
sudo apt upgrade

• Adding the InfluxDB Repository

curl https://repos.influxdata.com/influxdata-archive.key | gpg --dearmor | sudo tee /usr/share/keyrings/influxdb-archive-keyring.gpg >/dev/null

echo "deb [signed-by=/usr/share/keyrings/influxdb-archive-keyring.gpg]
https://repos.influxdata.com/debian \$(lsb_release -cs) stable"
| sudo tee /etc/apt/sources.list.d/influxdb.list

• Refresh the available packages

sudo apt update

• Install InfluxDB

sudo apt install influxdb

• Start the InfluxDB server

sudo systemctl unmask influxdb
sudo systemctl enable influxdb
sudo systemctl start influxdb

• Start influxDB by running

influx

• Create a database

CREATE DATABASE <YOUR_DATABASE_NAME>
USE <YOUR_DATABASE_NAME>

• Insert data into the table

```
INSERT temperature, location=living_room value=20 INSERT temperature, location=living_room value=10 INSERT temperature, location=bedroom value=34 INSERT temperature, location=bedroom value=23
```

• Check the inserted data

SELECT * FROM temperature

```
> select * from temperature
name: temperature
time location value
1729511111183600222 living_room 20
1729511111313269684 living_room 10
1729511111324151526 bedroom 34
1729511111984215313 bedroom 23
```

Figure 1: output for select query

- Fetching data for specific conditions using WHERE conditions

 SELECT value FROM temperature WHERE location='bedroom'
- Fetching data for specific conditions using WHERE conditions

 SELECT value FROM temperature WHERE location='bedroom'

Part 2: Installation of grafana

- Open a terminal window on Raspberry Pi
- Add the APT key used to authenticate packages:

```
sudo mkdir -p /etc/apt/keyrings/
```

```
wget -q -0 - https://apt.grafana.com/gpg.key | gpg --dearmor |
sudo tee /etc/apt/keyrings/grafana.gpg > /dev/null
```

- Add the Grafana APT repository:

```
echo "deb [signed-by=/etc/apt/keyrings/grafana.gpg]
https://apt.grafana.com stable main" |
sudo tee /etc/apt/sources.list.d/grafana.list
```

- Install Grafana:

```
sudo apt-get update
sudo apt-get install -y grafana
```

- Open localhost:3000 in Raspberry pi and use admin as username and password

Figure 2: Grafana Login

- Goto datasources

Figure 3: Add Datasource

- Select InfluxDB

Figure 4: Select InflixDB datasource

- Configure Grafana to access influxDB

Figure 5: Set netowrk configuration

Figure 6: Set Database name and save it

- Goto dashboard and create a new dashboard

Figure 7: Add Grafana dashboard

Figure 8: Add Visualiztaion

Figure 9: Select InflixDB datasource

Figure 10: Select datasource

Part 3: Writing using python

- * Open a new terminal
- * activate virtal environment "IOT_LAB"
- * install influxDB library python3 -m pip install influxdb
- * use the provided python file to write to the database.

Assignment : Show Lidar data on Grafana dashboard

- * Use the provided python file to write to a database
- * The Table name should be your respective roll number
- * show the graph of the data on graphana