第二讲 信息系统分类描述 (基本系统原理)

第一部分 物流业信息化及信息系统

概述: 企业物流供应链

概述:物流信息化与信息系统

一、物流快照

1. 企业的利润源

第一利润源:降低物耗

第二利润源:提高劳动生产力

第三利润源:现代物流

二、 采购与供应商管理技术与系统

- 1. 采购的概念
 - a) 概念企业从供应市场获取产品和服务
 - b) 规范的采购流程

c) 更深刻地理解采购 《采购内幕》 采和购各负责什么?

- 2. 采购业务流程分析
 - a) 采购涉及生产部,仓库,采购部和财务部
 - b) 合格的采购计划流程

c) 合格的供应商管理流程 有一个寻找供应商,审核,中间合作,年季度评审的过程

合格供应商管理流程

- d) 其他流程:生产物流采购流程,外协品采购流程,采购付款流程,采购预付款流程,原材料入库流程,原材料出库流程,成品(含外协品)入库流程,成品出库流程,滞料管理系统
- e) 外协品定义:外协产品字面意思就是外部单位协助生产的产品,指的是某产品本来应该由你单位承担生产任务,但由于种种原因你单位委托指定的外部单位来生产,然后当作自己的产品交给客户,你既是客户又是供应商。

3. 供应商管理技术

a) 供应商管理的八字方针

分类: 把供应商分类

减少:减少供应商的数目

开发: 开发有潜力的新供应商

扶持: 扶持优秀的供应商

b) 供应商经典分类法

c) 与供应商商之间的关系

类别: 战略关系, 优选关系, 选择关系

对应采购策略:

筛选, 候选评分, 目标一致, 相互承诺, 联合行动方案, 表现评估, 奖励

战略性供应商的绩效考评 d)

□战略指标:

✓战略性供应商采购金額的百分比 ✓工厂与最终客户投诉数

□成本指标:

- ✓与其他供应商的价格比较
- ✓再设计的成本降低
- ✓实际成本与目标成本的比较

□财务指标:

- ✓付款30天,60天,90天的百分比 □关系指标
- ✓供应商管理库存的金额

□质量指标

- - ✓投诉与拒收的质量成本
 - ✓部件与批次的缺陷数
- □供应交货指标
 - ✓标准交货时间的完成率
 - ✓订单确认的交货百分比
- - ✓供应商年满意度
 - ✓XX电子年满意度

4. 采购管理系统功能分析

- a) 功能: 采购业务的全部过程都能得到有效控制, 可以把采购人员从繁琐额 事务作业中解脱出来
- b) 传统采购与 ERP 模式的区别 ERP 是企业资源管理计划(Enterprise resource planning) 传统采购重视价格最低,ERP 模式标准有质量,交货期,价格,信息共享
 - 传统采购的重点放在与供应商进行商业交易的活动,特 点是比较重视交易过程的供应商的价格比较,通过供应 商多家竞争,从中选择价格最低的作为合作者
 - ERP模式下的采购及其特点是需求拉动模式。从采购管 理向外部资源管理转变,从一般买卖关系向战略伙伴关 系转变。ERP模式下的准时采购和传统采购方式有很多 不同之处,主要有以下几个方面:
 - —1、采用较少的供应商。长期合作。甚至单源供应
 - —2、对供应商的选择标准是质量、交货期、价格
 - —3、准时采购的核心就是交货准时
 - —4、供应与需求双方信息高度共享
 - —5、采购批量是小批量、送货频次高
- c) 采购管理系统的功能点

- 2、可由物品中长期采购计划直接生成请购单
- 3、MRP计划任务直接生成请购单
- 4、支持库存订货点采购申请处理

三、库存管理技术与系统

- 1. 库存管理的概念
 - a) 概念: 广义的库存是指任何有经济价值的物品的停滞和储藏
 - b) 库存管理的内容包含仓储管理和库存控制两个部分: 仓储管理指库存物料的科学保管,减少损耗,方便存取 库存控制是要求控制在合理的库存水平
 - c) 指标: 库存周转率
- 仓储管理操作实务 大型连锁超市配送中心案例
- 3. 库存控制技术
 - a) 库存周转率 ITO (inventory turn over) 定义: 衡量材料流动速度快慢的标准 计算方法: 库存周转率等于销售的物料成本除以平均库存
 - 一如某制造公司在2016年一季度的销售物料成本为200万元,其季度初的库存价值为30万元,该季度底的库存价值为50万元,那么其库存周转率为200/[(30+50)/2]=5次。相当于该企业用平均40万的现金在一个季度里面周转了5次,赚了5次利润。照此计算,如果每季度平均销售物料成本不变,每季度底库存平均值也不变,那么该企业的年库存周转率就变为200*4/40=20次。就相当与该企业一年用40万的现金转了20次利润
 - b) 库存计划模型

库存管理的核心思想是:成本,啥时订货?订多少货? 订货点法:根据消费的快慢来决定什么库存的时候订货

i. 影响库存水平的主要因素 周期库存是指"订货或补货周期内的库存需求" 安全库存是指"防止断货而准备的最低的库存"

ii. 库存计划的四个关键模型 经济订货批量

术语:再订货点 (ROP),前置时间 (LT),订货量 (Q),需求量 (D) s 再订货点,S 订足目标,R 计划间隔时间,Q 订货量

传统库存计划模型 1:

- ●再订货点(s, Q)模型

 - Q: 固定的 ROP (s) =LT×D+SS

传统库存计划模型 2:

- ●固定周期模型 (R, S)
 - $-Q=D\times (T+LT) +SS-IO$
 - ROP: 固定的时间点

关键模型 1: Q 模型

关键模型 2: P模型 关键模型 3: (s, S) 模型

(s, S) 库存计划模型

●如果当前库存(OH)≤s,则 订货至库存水准S

s=ROP S=ROP+EOQ

● (s,S) 模型其实是一种再订货点模型 (s,Q) 的变种,也叫最大一最小模型或选择性补货系统

关键模型 4: (R, s, s) 模型

(R, s, S) 库存计划模型

- (s,S) 又可以发展为 (R,s,S) 或 (R,s,S,C) 系统
- ●每间隔时间R,对库存进行 观测和计划,如届时库存(OH)≤s,则订货至库存水准 S,否则不订货
- (**R,s,S**) 模型是 (**s,S**) 和 (**R,S**) 模型的融合

s=ROP
S=ROP+EOQ
Q=S-IO-transit

iii. 订货批量计算的五种经典算法

简单算法:固定期间需求 (FPD),周期性订货 (POQ),批量对批量

(lot for lot)

启发式计算: EOQ, SM 优化算法: wagner-within

实际上都在决定: 几周订一次货这个问题

FPD:

订货量计算的方法—固定期间内需求

Fixed Period Demand (FPD) e.g.period=2

_					9.5	011	<u> </u>	_				
	周	1	2	3	4	5	6	7	8	9	10	Tota I
	需求	77	42	38	21	26	112	45	14	76	38	489
١	补足量	119		59		138		59		114		489
	期末库存	42	0	21	0	112	0	14	0	38	0	227
l	订货成本	132		132		132		132		132		660
	持有成本	25.2		13		67		8		23		136
	成本合计	157		145		199		140		155		796

FPD的一个变种,订货批量为固定期间段内的需求总量 订货间隔时间(Time Between Order)

$$TBO = \frac{EOQ}{\bar{D}} = \frac{147}{48.9} = 3$$

期末库存=期初库存+补足量-需求 持有成本=期末库存累计量*×周单位库存持有成本

订货时间间隔是 经济订货批量/平均需求量

SM 方法

c) 库存管理模式发展

四、运输管理技术与系统(TMS)

- 1. 基本业务流程 接受订单-配载调度-现场装货-车辆回归-收入结算
- 2. TMS 的目标

优化调度,全面掌握,降低成本,提升服务

3. 装载指示表

五、配送管理技术与系统

1. 设施选址问题

方案一: 重心法 运输量重心法

假设在市区建一配送中心,给位于东、西、南、北、中五区的商场配送,各商场的位置及配送量如表所示:

区别	位置	配送量 (吨)
东	10, 4	4000
西	2, 3	8000
南	7, 0	10000
北	5, 8	8000
中	6, 4	20000

$$\overline{X} = \frac{4,000 \times 10 + 8,000 \times 2 + 10,000 \times 7 + 8,000 \times 5 + 20,000 \times 6}{4,000 + 8,000 + 10,000 + 8,000 + 20,000} = 5.72$$

$$\overline{Y} = \frac{4,000 \times 4 + 8,000 \times 3 + 10,000 \times 0 + 8,000 \times 8 + 20,000 \times 4}{4,000 + 8,000 + 10,000 + 8,000 + 20,000} = 3.68$$

运输量-运输距离-运输费率-重心法

运输量-运输距离-运输费率-重心法

假设现在要建一座配送中心以向 n 个零售商供货,令 n 个零售商在平面上的坐标为 (X_1,Y_1) , (X_2,Y_2) , ..., (X_n,Y_n) ,各零售商的装运量分别为 Q_1 , Q_2 , ..., Q_n ,配送中心到各零售商的运输距离分别为 Q_1 , Q_2 , ..., Q_n ,配送中心到各零售商的运输费率分别为 Q_1 , Q_2 , ..., Q_n ,则配送中心的位置坐标(Q_n ,可以通过下面一组方程确定

$$MinTC = \sum_{i=1}^{n} Q_{i}R_{i}D_{i} \qquad X = \frac{\sum_{i} Q_{i}R_{i}X_{i}/D_{i}}{\sum_{i} Q_{i}R_{i}/D_{i}}$$

$$Y = \frac{\sum_{i} Q_{i}R_{i}Y_{i}/D_{i}}{\sum_{i} Q_{i}R_{i}/D_{i}}$$

$$D_{i} = [(X_{i} - X)^{2} + (Y_{i} - Y)^{2}]^{1/2}$$

- 2. (分销)物流/供应链网络设计
 - a) 前端定性分析 中端定量分析模型 后端定性分析
 - b) 三种启发式算法的比较

算法	功能和适用性	优点	缺点
神经网络	有明显的输入输出值的一 般性的问题,利于建立专 家库,尤其是有大量历史 对比数据的问题,如:安 全库存设置	自学习,存储	收敛速度慢 拓扑结构参数难以确定 ,影响可靠性 对大数据集合容易出现 训练过度 时间、空间复杂度过高
粒子群算法	能够将问题建立编码的随 机性问题,如:网络优化 实数编码	算法速度快,解质量高 无过多的参数需要调整	早熟收敛 粒子位置和速度不易表 达 提出的时间相对较晚, 尚不够完善和成熟
遗传算法	能够将问题建立二进制编码的随机性问题,如:网络优化二进制编码	目标函数不要求连续 目标函数不要求可微 全局优化算法	早熟收敛 编码困难 对不完全信息适应性差

- (分销)物流/供应链网络管理 武烟案例
- 4. 运输管理
 - a) 节约法

六、 物流基本概念与一流物流企业特征

- 1. 物流科学的产生和发展
 - a) 物流: 物品从供应地向需求地的实体流动过程
 - b) 商流:对象所有权转移的活动,或者成为贸易和交易
 - c) 物流与商流分离:进行商品交易活动的地点,往往不是商品实物流通的最 佳路线必经之处
 - d) 物流和储运:

	物流	储运
活动内容	运输、保管、配送、包装 、装卸、流通加工及相关 信息	运输、保管、包装、 装卸、流通加工等
活动的基 本点	内容全面	储存和运输
侧重点	系统化的整体优化	达到存货、运货的目 的
概念	物流是一个系统化、集成 、学科交叉的概念,它依 托相关的学科发展而发展 的	储运是一个十分古老 的、传统的概念

- 2. 物流分类
- 3. 物流系统组成
 - **▶物流系统:** 有效达成以低物流成本向顾客提供优质物流服务之目的的机制。
 - ▶ 物流系统的目的: 7R(在合适的时间、地点和合适的条件下,将合适的产品以合适的方式和合适的成本提供给合适的消费者)。
 - ▶<mark>物流系统的要素:</mark> 一般要素、功能要素、支撑要素 和物质基础要素。
- 4. 一流物流企业特征

现代物流的服务理念——PIPES 主动的服务(Proactive Service) 集成的服务(Integrated Service) 贴切的服务(Proper Service) 有效的服务(Effective Service)

无缝的服务(Seamless Service)

物流企业的三六九等

第二部分 制造业信息化及信息系统

一、概述

- 1. 制造业设计的技术: 制造技术, 自动化技术, 现代管理技术, 信息技术
- 2. 分类: 离散制造业和连续流程制造业

比较因素	离散制造过程	流程生产过程		
产品生产	大批量/小批量/单件	以大批量为主		
物料流	离散	连续		
加工线路	灵活、动态可变	工艺线路单一,基本不变		
上下游工序关系	松弛	相当强的耦合、关联、制约		
产品加工种类	多变	稳定		
产品设计	根据要求经常进行	投产后几乎没有		
产品加工时间	可变	装置投产后,同样处理量情况下,不 变		
加工过程	一般为物理过程	伴随着化学、物理变化,机理复杂		
生产柔性	强	以刚性系统为主		
环境问题	轻	排污问题严重,需要全面治理		

比较因素	离散制造过程	流程生产过程
操作工况		通常在高温、高圧、低温、真空、易燃、易爆、 有毒的恶劣工况下
缓冲单元	生产线存在某些缓冲单元	一般没有中间缓冲单元,设备启停、正常操作 和紧急处理步骤复杂
操作监控要求	一般	很强的实时性要求
操作参数	一般为物理几何参数,状态可以由人工观测	以热工参数、组分参数为主,状态不能直接观 测,操作参数量很大
操作经济目标	缩短供货周期,提高设备利用率	强调操作整体性,实现均衡、安全、长周期、 高效、低能耗生产,保证产品质量
产品设计	生产重要环节,通过并行工程,在生产过程中 进行	比重很小,通常与生产过程分离,单独进行
控制方式	递阶分层管理与控制	集中管理/分散控制
操作干扰	强度低	随机的、不确定的干扰情况普遍存在
优化手段	调整生产计划,分配负荷,优化排序	调整工艺参数,达到最优工况
柔性操作代价	一般通过选择不同的加工设备及夹具进行柔性 操作,主要以时间为代价,时间较短代价低	流程切换后需进行设备及管线的清洗、再次开车周期较长,生产在稳定未达标前,原料、能量存在浪费,柔性切换操作时间较长,切换成本大

比较因素	离散制造过程	流程生产过程	
自动化程度	普遍实现了单机自动化,中小企业处于 机械化阶段,少数大企业处于生产自动 化阶段	DCS系统普遍应用于生产过程中完成 生产过程的监控、管理工作,部分企 业完成计算机信息管理系统工作,自 动化孤岛现象普遍存在,自动化基础 水平好	
自动化基础技术	CAD、CAM、FMS、数控加工设备	DCS、PLC、控制仪表、现场总线	
数据库	工程数据库,集中分布式数据库	实时数据库、发布式数据库、海量存 储数据库	
计算机网络	开放异构网络互连,递阶结构	开放异构网络互连、实时性、可靠性 要求很高	

CIMS 是英文 Computer/contemporary Integrated Manufacturing Systems 的英文缩写,直译就是计算机/现代集成制造系统。

CIMS 观点 1: 企业生产的各个环节,是一个不可分割的整体

CIMS 观点 2:整个经营过程实质是一个数据的采集,传递和加工处理的过程,最后形成的产品可以看做是数据的物质表现

CIMS 的组成

CIMS 集成工作的三个阶段

- 1. 物理系统的集成:将制造自动化设备和数据处理设施用通信网络连接起来,将自动化岛沟通起来,使之能够互相交换数据和信息
- 2. 应用集成:整个系统内各部分的应用软件及其用户之间的集成,包括任何及其之间的控制和信息的集成
- 3. 经营集成

CIMS 的功能集成

□ 工程设计分系统
■ CAD子系统
■ CAMP子系统
■ CAMP子系统
■ 公营管理分系统
□ 经营管理分系统
■ MRP/MRPII/ERP/SCM
□ 制造自动化分系统
□ 质量保证分系统
□ 丁撑系统
■ 计算机网络
■ 数据库系统

1. MRP(Material Requirement Planning)

- > 物料需求计划,出现于60年代
- 2. MRPII Manufacturing Resource Planning
- ▶ 制造资源计划,出现于80年代
- 3. ERP (Enterprise Resources Planning)
- ▶ 企业资源计划,出现于90年代
- ▶ ERP作为企业管理哲学,它是一种新型的管理模式
- ▶ ERP作为一种管理工具,它同时又是一套先进的计算机管理系统
- 4. SCM (Supply Chain Management)
- ▶ 发端于1996年
- 1. 物料需求计划 MRP

2. 闭环 MRP

- 3. 制造资源计划 MRPII
- 4. 企业资源计划 ERP
- 5. 供应链管理 SCM

三、CAD/CAPP/CAM(甩图版)

计算机辅助设计

(Computer Aided Design, CAD)

指工程技术人员在人和计算机组成的系统中以计算机为工具,辅助人类完成产品的设计、分析、绘图等工作,并达到提高产品设计质量、缩短产品开发周期、降低产品成本的目的的这一过程的各项工作。包括设计、工程分析、仿真、绘图、编撰技术文档...

完备的CAD系统包括: 图形系统、科学计算 和工程数据库...

计算机辅助工艺过程设计

(Computer Aided Process Planning, CAPP)

指工艺人员借助计算机,根据产品设计结果和产品制造工艺要求,人机交互或自动地完成产品加工方法选择和工艺过程的设计。包括毛坯选择、加工方法选择、工序设计、工艺路线制定...

KMCAPP

计算机辅助制造

(Computer Aided Manufacturing, CAM)

计算机辅助制造有广义和狭义两种定义:

- □ 广义CAM 指借助计算机完成从生产准备到产品制造出来的过程中的各项活动,包括工艺过程设计(CAPP)、工装设计、计算机辅助数控加工编程、生产作业计划、制造过程控制、质量检测与分析...
- □ 狭义CAM 通常指NC (Numerical Controll数控)程序编制,包括刀具路径规划、刀位文件生成、刀具轨迹仿真、后置处理及NC代码生成...

四、工业 4.0 与中国制造 2025