Koło 21.12.23r. - Od osi potęgowych do twierdzenia Ponceleta

- 1. Punkty P i Q leżą wewnątrz okręgu ω . Przez każdy punkt $A \in \omega$ prowadzimy cięciwę AB przechodzącą przez punkt P. Niech γ_A oznacza okrąg opisany na trójkącie AQB. Udowodnić, że wszystkie tak otrzymane okręgi γ_A przechodzą przez dwa ustalone punkty.
- 2. Dane są dwa różne punkty P,Q. Pokaż, że dla $\lambda > 0, \lambda \neq 1$ zbiór

$$\omega_{\lambda} := \{X : PX = \lambda \cdot QX\}$$

jest okręgiem. Załóżmy teraz, że $\lambda \neq \mu$. Pokaż, że osią potęgową okręgów $\omega_{\lambda}, \omega_{\mu}$ jest symetralna odcinka PQ. Dalej, załóżmy, że KL jest cięciwą okręgu ω_{λ} styczną do okręgu ω_{μ} w punkcie B, a prosta KL przecina symetralną PQ w punkcie S. Pokaż, że SB = SQ.

3. Cięciwy A_0A_1 , B_0B_1 okręgu Ω przecinają się w punkcie wewnętrznym E i są styczne do okręgu ω leżącego całkowicie wewnątrz okręgu Ω odpowiednio w punktach R i Q. Proste A_0B_0 , A_1B_1 nie są równoległe. Udowodnij, że trójkąt utworzony przez proste A_0B_0 , A_1B_1 , QR jest równoramienny.

Dwa ambitne zadania:

- 4. ABCDE jest takim pięciokątem wypukłym, że BC = DE. Wewnątrz niego istnieje punkt T spełniający TB = TD, TC = TE oraz $\triangleleft TBA = \triangleleft AET$. Proste CD i CT przecinają prostą AB odpowiednio w punktach P i Q, a proste CD i DT przecinają prostą AE odpowiednio w punktach R, S. Proste P, B, A, Q leżą na jednej prostej w tej właśnie kolejności, tak jak i punkty R, E, A, S. Udowodnij, że na okręgu P, S, Q, R da się opisać okrąg.
- 5. W trójkącie ABC punkt I to środek okręgu wpisanego. Niech prosta l będzie styczną do okręgu wpisanego różną od jego boków. Na prostej l obieramy punkty X,Y,Z takie, że $\triangleleft AIX = \triangleleft BIY = \triangleleft CIZ = 90^\circ$ Udowodnić, że proste AX,BY i CZ przecinają się w jednym punkcie.