Monads and other abstractions

John Wiegley

22 Jul 2014

Workshop overview

- Basic math definitions
- Algebras and laws
- Working with proofs
- Category theory & Functors
- Monads

Mathematics

Meaning

There isn't any.

Abstraction

Structures, and relationships between structures.

"Stuff"

"Stuff"

Sets of sets

Extensional

Can be defined by stating its elements.

{ True, False }

Intensional

Or by describing them.

```
\{ x \mid x \in \mathbb{N}, even(x) \}
```

Programmatic

Can be modeled programmatically.

```
type Set a = a -> Bool
import Data.Set as S
type Set a = S.Set a
```


Exercise

Using the functional definition of sets, define union and intersection.

```
type Set a = a -> Bool
union :: Set a -> Set a -> Set a
inter :: Set a -> Set a -> Set a
```

Deceptively simple

With a basic definition and seven axioms (we've seen two!), you can generate a good deal of mathematics.

Functions

Domain, co-domain, range

Injective

Every **x** maps to a distinct **y**

Injective

$$f: A \rightarrow B$$

$$\forall x, y \in A$$

$$f x = f y \rightarrow x = y$$

Injective

Examples of injective things:

- Data constructors
- Type constructors
- But not type synonyms...

Exercise

- Write an injective function on Integer, and one that is not injective.
- How do you test it in both cases?

Surjective

At least one **x** maps to every **y**

Surjective

$$f: A \rightarrow B$$

$$\forall y \in B, \exists x \in A$$

$$f x = y$$

Surjective

A function is surjective if the codomain and range are equal. Example:

- even is surjective
- times2 is not

Bijective

Higher-order functions

Definition (Identity)

id x = x

Higher-order functions

Definition (Identity)

id x = x

Definition (Composition)

$$(f\circ g)\ x=f(g(x))$$

Properties of functions

 $f: dom \rightarrow cod$

Properties of functions

$$f: dom \rightarrow cod$$

Definition (Idempotent)

$$f \circ f = f$$

Properties of functions

$$f: dom \rightarrow cod$$

Definition (Idempotent)

$$f \circ f = f$$

Definition (Involutive)

$$f \circ f = id$$

More properties

Definition (Section)

$$f \circ s = id$$

Definition (Retract)

$$r \circ f = id$$

Exercise

For the set of integers, show examples of:

- idempotency
- involution
- section
- 4 retraction

Isomorphism

An isomorphism is a pair of functions satisfying two equations:

$$f \circ g = id_{cod(f)}$$
 $g \circ f = id_{cod(g)}$

Isomorphism

In terms of the types involved:

$$A \cong B$$

$$g:A\rightarrow B$$

$$f: B \rightarrow A$$

Laws

Imposed structure

In the absence of meaning, laws create structure.

Principled restriction

Laws restrict how functions and values relate to each other.

Principled restriction

Laws restrict how functions and values relate to each other.

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
```


Associativity

$$X \bullet (Y \bullet Z) = (X \bullet Y) \bullet Z$$

Commutativity

$$X \bullet y = Y \bullet X$$

Transitivity

$$X \bullet Y \rightarrow Y \bullet Z \rightarrow X \bullet Z$$

Lawless!

Behold, the face of evil:

```
class Pointed a where
  point :: a
```

[Questions?]

Algebras

Sets with structure

Algebras are basically:

- a set (called the carrier)
- functions closed over the set
- laws to govern these functions

Named structures

Some structures recur often enough that it's useful to name them, but the names are arbitrary.

Magma

$$(S, s \rightarrow s \rightarrow s)$$

The set of laws is empty!

Magma

```
class Magma a where
  binop :: a -> a -> a

instance Magma Integer where
  binop = (+)
```

Semigroup

Laws:

associativity

Semigroup

```
class Semigroup a where
  (<>) :: a -> a -> a
```

Semigroup

```
class Semigroup a where
  (<>) :: a -> a -> a
```

Semigroup law

$$a \oplus (b \oplus c) = (a \oplus b) \oplus c$$

Monoid

$$(S, \varepsilon, s \rightarrow s \rightarrow s)$$

Laws:

- left identity
- right identity
- associativity

Monoid

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
```

Monoid

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
```

Monoid laws

$$arepsilon \oplus a = a$$
 $a \oplus arepsilon = a$
 $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Group

$$(\mathcal{S}, \varepsilon, \mathbf{s}
ightarrow \mathbf{s}
ightarrow \mathbf{s}, \mathbf{s}
ightarrow \mathbf{s})$$

Laws:

- left identity
- right identity
- associativity
- inverse elements

Group

Group laws

$$arepsilon \oplus a = a$$
 $a \oplus arepsilon = a$
 $a \oplus (b \oplus c) = (a \oplus b) \oplus c$
 $a \oplus a^{-1} = arepsilon$

Homomorphism

"Structure preserving."

```
floor :: Float -> Int
```

Free objects

What if our monoid, instead of *doing* something, only constructed values?

Free objects

Building trees

$$(a \oplus b) \oplus c \oplus (d \oplus e)$$

```
(Var a 'MAppend' Var b)
    'MAppend'
Var c
    'MAppend'
(Var d 'MAppend' Var e)
```

Due to the law of associativity, calls to mappend can always be re-associated:

$$a \oplus (b \oplus (c \oplus (d \oplus e)))$$

This changes the expression into something linear, rather than a tree:

```
Var a 'MAppend'
(Var b 'MAppend'
  (Var c 'MAppend'
   (Var d 'MAppend'
   (Var e 'MAppend' MEmpty))))
```


Relying on this law, we can simplify the data type:

Let's rename the constructors to something more familiar:

Data structures

Free objects of an algebra become data structures in programming.

Folding

Choosing operations for an algebra is equivalent to folding over its free object.

Evaluators

The two essential aspects of an algebra are:

- Forming expressions
- Evaluating these expressions

Free functors

Every free object is trivially a functor, called a free functor.

F-algebras

We can encode other algebras using functions and free functors:

```
type Algebra f a = f a -> a

sum :: Algebra List Int
sum Nil = 0
sum (Cons x xs) = x + sum xs
```

Recursion schemes

We won't cover it, but the recursion can be abstracted away for even more generality:

```
https://www.fpcomplete.com/user/
bartosz/understanding-algebras
```


Computational structures

Every free functor can be modeled as a computation rather than a data type:

List
$$a \cong \forall r, r \rightarrow (a \rightarrow r \rightarrow r) \rightarrow r$$

Proving isomorphism

Proof of an isomorphism requires four things:

- Write a to function.
- 2 Write a from function.
- Show: $\forall x$, to (from x) = x.
- Show: $\forall y$, from (to y) = y.

QuickCheck

In lieu of real proofs, we can sometimes just pick types and use QuickCheck.

Exercise

Prove the following isomorphisms:

Identity
$$a \cong \forall r, (a \rightarrow r) \rightarrow r$$

Maybe $a \cong \forall r, r \rightarrow (a \rightarrow r) \rightarrow r$

Either $ab \cong \forall r, (a \rightarrow r) \rightarrow (b \rightarrow r) \rightarrow r$
 $(a,b) \cong \forall r, (a \rightarrow b \rightarrow r) \rightarrow r$

List $a \cong \forall r, r \rightarrow (a \rightarrow r \rightarrow r) \rightarrow r$

Computational Identity

Computational Maybe

Computational Either

```
{-# LANGUAGE RankNTypes #-}
data Either a b = Left a | Right b
fromEither :: Either a b
           -> (a -> r) -> (b -> r) -> r
  toEither :: (forall r.
                  (a -> r) -> (b -> r)
                 -> r)
           -> Identity a
```

Computational Tuple

Computational List

Exercise

Easy:

■ Write head for both forms of list.

```
head :: List a -> a
head :: [a] -> a
```

Hard:

Write tail for both forms of list.

```
tail :: List a -> List a
tail :: [a] -> [a]
```

Types are algebras too

$$a+b=$$
 Either ab

$$= Foo a | Bar b$$
 $a*b=(a,b)$

$$= Foo a b$$
 $b^a=a \rightarrow b$
 $1 = Foo$
 $0 = Void$

Which algebra is it?

A near-semiring structure over the set *S* of types.

- (S, +, 0) is a monoid
- (S,*) is a semigroup
- $\forall a, b, c \in S, (a+b) * c = a * c + b * c$
- **4** \forall *a* ∈ *S*, 0 * *a* = 0

Example: currying

$$(c^b)^a = c^{ba}$$

$$a \rightarrow b \rightarrow c \iff (a, b) \rightarrow c$$

Example: lists

$$L(a) = 1 + a \cdot L(a)$$

$$= 1 + a \cdot (1 + a \cdot L(a))$$

$$= 1 + a + a^{2} \cdot (1 + a \cdot L(a))$$

$$= 1 + a + a^{2} + a^{3} \cdot (1 + a \cdot L(a))$$

$$= \cdots$$

$$= 1 + a + a^{2} + a^{3} + a^{4} + a^{5} + \cdots$$

Example: lists

$$CL(a) = \forall r, r \to (a \to r \to r) \to r$$

$$= \forall r, (r^{(a \to r \to r)})^r$$

$$= \forall r, (r^{((r^r)^a)})^r$$

$$= \forall r, r^{(r \bullet r^{(r \bullet a)})}$$

$$= \forall r, r^{r^{(1+a \bullet r)}}$$

[Break]

Equational Reasoning

Working with proofs

Equational reasoning gives us a way to reason about pure computations.

Basic format

$$egin{array}{ll} x = y & & & & \\ = y' & & & & \\ = y'' & & & & \\ = x & & & & \\ \end{array}$$

Example

$$f \circ (g \circ h) = (f \circ g) \circ h$$

 $= (\lambda x \to f (g x)) \circ h$ unfold \circ
 $= \lambda y \to (\lambda x \to f (g x)) (h y)$ unfold \circ
 $= \lambda y \to f (g (h y))$ β -reduction
 $= \lambda y \to f ((g \circ h) y)$ fold \circ
 $= \lambda y \to (f \circ (g \circ h)) y$ fold \circ
 $= f \circ (g \circ h)$ η -contraction

Quantification

Existential

 $\exists x, P x$

Universal

 $\forall x, P x$

Universal

True?

$$\forall x, \exists y \rightarrow x = y$$

Universal

True?

 $\forall x, \exists y \rightarrow x \neq y$

Existential

True?

 $\exists y \rightarrow \forall x, x = y$

True?

 $\exists y \rightarrow \forall x, x \neq y$

Relationship

$$\exists x, \varphi(x) \equiv \neg \forall x, \neg \varphi(x)$$

As a game

You can think of quantification like a game between two players, the caller and the callee:

- means the caller gets to decide the object
- ∃ means the callee gets to decide

As a game

When we prove, or a write a function, we are the callee. When we call a function or apply a lemma, we are the caller.

Switching roles

It's possible to switch roles inside a function:

$$\forall x, (\forall y, y \rightarrow r) \rightarrow x \rightarrow r$$

Parametricity

Theorems for free!

What does the following type imply (assuming no \perp)?

Example (filter)

```
filter :: (a -> Bool) -> [a] -> [a] filter f xs = _
```


Theorems for free!

Theorem (filter)

```
orall g: a 
ightarrow b
orall p: a 
ightarrow Bool
orall q: b 
ightarrow Bool
orall x, p x = q (g x) 
ightarrow map g (filter p xs) = filter q (map g xs)
```

Why is it free?

It's not just that the type implies the theorem: Writing such a function is a proof of that theorem.

Free theorem generator

Automatically generate free theorems for sub-languages of Haskell:

```
http://www-ps.iai.uni-bonn.de/
cgi-bin/free-theorems-webui.cgi
```


Further reading

"Theorems for free!"

```
http://ttic.uchicago.edu/~dreyer/
```

course/papers/wadler.pdf

Curry-Howard Isomorphism

Types	Theorems
Values	Proofs

Category Theory

Category

Not all sets

Instead of sets with elements and functions, we have categories with objects and morphisms.

All sets are categories, but not vice-versa.

Example: Any set

Objects Set elements

Morphisms Just the identities (a

discrete category)

Example: Posets

Objects Set elements

Morphisms Identities and ≤ between some elements

Composition $(y \le z) \circ (x \le y) = (x \le z)$

Example: Graphs

```
Objects Vertices

Morphisms Edges and self-edges
(bidirectional if
undirected)

Composition In the "obvious" way
```

Example: Set

Objects Sets
Morphisms Functions
Composition As functions do

Example: Mon

Objects Sets with monoid structure

Morphisms Monoid homomorphisms

Composition As functions do

Example: Cat

Objects Categories

Morphisms Functors

Composition As functions do

Example: Fun(C,D)

Objects Functors $C \rightarrow D$ Morphisms Natural transformations Composition As polymorphic functions

Many categories

Any book on category theory will have many more examples of categories than these few.

Some books

- Lawvere, Conceptual Mathematics: A First Introduction to Categories
- Awodey, Category Theory
- Mac Lane, Categories for the Working Mathematician

Other resources

Catster's videos:

```
http://byorgey.wordpress.com/
catsters-quide-2
```

- Awodey's presentation on Category Theory at OPLSS 2013
- ##categorytheory on IRC

Concepts transfer

One of the profound concepts in category theory is how ideas transfer.

Functors

Categorical model

Unit mapping

Definition in code

```
class Functor f where
  fmap :: (a -> b) -> (f a -> f b)
```

Functor laws

Definition (1. Identity law)

fmap id = id

Functor laws

Definition (1. Identity law)

fmap id = id

Definition (2. Composition law)

 $fmap (f \circ g) = fmap f \circ fmap g$

Not containers!

A Functor can sometimes map to:

- a container
- a computation
- ... but a Functor per se is neither.

As Context

F a

Don't be fooled

Functors are humble, but powerful.

Origins

Their [Eilenberg and Mac Lane's] goal was to understand natural transformations; in order to do that, functors had to be defined, which required categories.

- Wikipedia

Identity

```
data Identity a = Identity a
instance Functor Identity where
fmap f (Identity x) = ?
```


Identity

Proving Identity Law

$$id x = fmap id x$$

```
id (Identity x') = fmap id (Identity x') unfold x'
= Identity (id x') 	 defn. fmap
Identity <math>x' = Identity x' 	 defn. id
```

Proving Composition

```
\begin{array}{ll} \textit{fmap} \; (f \circ g) \; \texttt{x} \\ = \textit{fmap} \; (f \circ g) \; (\texttt{Identity} \; \texttt{x}') & \textbf{unfold} \; \texttt{x} \\ = \texttt{Identity} \; ((f \circ g) \; \texttt{x}') & \textbf{defn.} \; \texttt{fmap} \\ = \texttt{Identity} \; (f(g(\texttt{x}'))) & \textbf{defn.} \; \texttt{o} \\ = \textit{fmap} \; f \; (\texttt{Identity}(g(\texttt{x}'))) & \textbf{defn.} \; \texttt{fmap} \\ = \textit{fmap} \; f \; (\textit{fmap} \; g \; (\texttt{Identity} \; \texttt{x}')) & \textbf{defn.} \; \texttt{fmap} \\ = \textit{fmap} \; f \; (\textit{fmap} \; g \; \texttt{x}) & \textbf{fold} \; \texttt{x} \end{array}
```

Maybe

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
  fmap f Nothing = ?
  fmap f (Just x) = ?
```

Maybe

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
  fmap f Nothing = Nothing
  fmap f (Just x) = Just (f x)
```

Either

data Left e a = Left e | Right a

Tuple

```
data Pair p a = Pair p a
```

Const

data Const c a = Const c

Exercise

Remember how free functors were encoded as functions? This extends to any functor:

$$f a \cong \forall r, (a \rightarrow r) \rightarrow f r$$

Exercise

```
lower :: (\forall r. (a \rightarrow r) \rightarrow f \ r) \rightarrow f \ a
lift :: Functor f \Rightarrow f \ a \rightarrow (a \rightarrow r) \rightarrow f \ r
```

Yoneda lemma

You just proved the Yoneda lemma in a functional language!

Exercise

A Yoneda embedding is itself a Functor:

fmap optimization

One thing Yoneda buys us (among others) is optimization of repeated calls to fmap.

Concepts lift

A lot of what we know about values can be lifted to functors.

Lifted Identity

Lifted Maybe

```
data Maybe a
    = Nothing | Just a

data MaybeF f a
    = NothingF a | Just (f a)
```

Lifted Either

Lifted Tuple

Lifted List

```
data List a
    = Nil
    | Cons a (List a)

data ListF f a
    = NilF a
    | ConsF (f (ListF f a))
```

Free Monad

We could rename the constructors of our lifted list:

F a

Return a

[F, F, F] a

```
Join
(f (Join
(f (Join
(f (Return a))))))
```


Famous quote

"A monad is just a monoid in the category of endofunctors, what's the problem?"

Saunders Mac Lane

Likewise, our free monad is just a free monoid over functors.

[Break]

Applicatives

Definition in code

```
class Functor f
    => Applicative f where
   pure :: f a
   (<*>) :: f (a -> b) -> f a -> f b
```

Important

One aspect of Applicative gives a clue to its power:

The <*> operator takes two functorial arguments.

Definition (1. Identity law)

pure $id \otimes v = v$

Definition (1. Identity law)

pure
$$id \otimes v = v$$

Definition (2. Composition law)

$$pure (\circ) \otimes u \otimes v \otimes w = u \otimes (v \otimes w)$$

Definition (1. Identity law)

pure id
$$\otimes$$
 $v = v$

Definition (2. Composition law)

$$pure (\circ) \otimes u \otimes v \otimes w = u \otimes (v \otimes w)$$

Definition (3. Homomorphism law)

pure $f \otimes pure \ x = pure \ (f(x))$

Definition (4. Interchange law)

$$u \otimes pure \ y = pure \ (\$ \ y) \otimes u$$

Definition (4. Interchange law)

$$u \otimes pure \ y = pure \ (\$ \ y) \otimes u$$

Definition (5. Functor relation law)

pure
$$f \otimes x = fmap f x$$

Identity

```
data Identity a = Identity a
instance Applicative Identity where
  pure x = Identity x
  Identity f <*> Identity x = ?
```

Identity

Proving Identity

```
pure id \otimes v
= pure id \otimes Identity v \qquad unfold v
= Identity id \otimes Identity v \qquad defn. pure
= Identity (id v) \qquad defn. \otimes defn. id
= v \qquad fold v
```

Proving Homomorphism

```
pure f \otimes pure x
= Identity f \otimes Identity x defn. pure
= Identity (f(x)) defn. \otimes
= pure (f(x)) defn. pure
```

Maybe

```
data Maybe a = Nothing | Just a
instance Applicative Maybe where
  pure x = ?
  Nothing <*> Nothing = ?
  Just f <*> Nothing = ?
  Nothing <*> Just x = ?
  Just f \langle * \rangle Just x = ?
```

Maybe

Either

data Left e a = Left e | Right a

Tuple

```
data Pair p a = Pair p a
```

Const

Const requires a trickier instance.

```
data Const c a = Const c
instance Monoid c
    => Applicative (Const c) where
   pure x = ?
   Const a <*> Const b = ?
```

Analysis

Applicatives allow for expression analysis.

Example: Minimizing expensive key lookups.

Composition

Another useful trait is that applicatives compose well.

```
http://comonad.com/reader/2012/
abstracting-with-applicatives
```

Monads

Definition in code

Definition in code (join)

```
class Monad m where
  return :: m a
  join :: m (m a) -> m a
```

Bind in terms of join

```
m >>= f = join (fmap f m)
```

How bind works

```
m :: m a
f :: a -> m b
fmap f :: m a -> m (m b)
fmap f m :: m (m b)
join (fmap f m) :: m b
```

Not fmap

Bind differs from fmap in that a new m was created.

Monad laws

Definition (1. Left identity law)

return
$$a \gg = f = f a$$

Monad laws

Definition (1. Left identity law)

return
$$a \gg = f = f a$$

Definition (2. Right identity Law)

$$m \gg = \text{return} = m$$

Monad laws

Definition (1. Left identity law)

return
$$a \gg = f = f a$$

Definition (2. Right identity Law)

$$m \gg = \text{return} = m$$

Definition (3. Associativity Law)

$$(m \gg = f) \gg = g = m \gg = \lambda x \rightarrow f x \gg = g$$

Monadic composition

```
f >=> g = \x -> f x >>= g
g <=< f = \x -> g =<< f x
```

Monad laws (form 2)

Definition (1. Left identity law (alt))

```
return >=> f = f
```


Monad laws (form 2)

Definition (1. Left identity law (alt))

return >=> f = f

Definition (2. Right identity Law (alt))

$$f >=> return = f$$

Monad laws (form 2)

Definition (1. Left identity law (alt))

return >=> f = f

Definition (2. Right identity Law (alt))

f >=> return = f

Definition (3. Associativity Law (alt))

$$(f >=> g) >=> h = f >=> (g >=> h)$$

Chaining

Monads allow us to chain computations.

```
x >>= f >>= g >>= >= h
```

Chaining

Haskell has a special notation for this:

```
do a <- x
  b <- f a
  c <- g b
  h c</pre>
```

Desugared

Which is just sugar for:

```
(x >>= \a ->
f a >>= \b ->
g b >>= \c ->
h c)
```

Thinking about join

When implementing a new Monad, ask yourself: What does it mean to "multiply" two contexts?

Identity

```
data Identity a = Identity a
instance Functor Identity where
  Identity m >>= f = ?
```


Identity

```
data Identity a = Identity a
instance Functor Identity where
  Identity m >>= f = f m
```

Proving Left Identity

```
return a >>= f
= Identity a >>= f defn. return
= f a defn. >=
```

Proving Right Identity

Proving Associativity

```
(m>>=f)>>=g
=(\text{Identity m}'>>=f)>>=g unfold m
=f\text{ m}'>>=g defn. \Rightarrow=
=(\lambda x \to f \ x>>=g) m' \eta-expansion
= \text{Identity m}'>>=(\lambda x \to f \ x>>=g) defn. \Rightarrow=
=m>>=(\lambda x \to f \ x>>=g) fold m
```

Maybe

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
  Nothing >>= f = ?
  Just x >>= f = ?
```

Maybe

```
data Maybe a = Nothing | Just a
instance Functor Maybe where
  Nothing >>= f = Nothing
  Just x >>= f = Just (f x)
```

Maybe

Maybe gives us a way of short-circuiting computations.

Either

data Left e a = Left e | Right a

Either

Either lets us short-circuit with an alternate result.

Tuple

What additional constraint is needed to make this a Monad, and why?

```
data Pair w a = Pair w a
```

Tuple

Tuples form the Writer monad, if we write one more function:

```
tell :: Monoid w => w -> Pair w () tell w = ?
```

Exercise: Const

Why can't it be a monad?

```
data Const c a = Const c
instance Monoid c
    => Monad (Const c) where
    return = pure
    Const c >>= f = ?
```


Reader

Functions are functors, applicatives and monads too. As a monad, it's often called Reader.

```
instance Monad ((->) a) where
  return x = ?
  k >>= f = ?
```

State

State is another classic monad.

State

State is made useful by two more functions, get and put.

```
get :: State s s
get = ?

put :: s -> State s ()
put s = ?
```

Silly example

Free Monads

With free monads, we can defer the choice of return and bind, allowing us to model computations.

