HOMEWORK 1

JACKSON VAN DYKE

Exercise 1 (Chapter 0, 2; Hatcher). Construct an explicit retraction of $\mathbb{R}^{n+1} \setminus \{0\}$ to S^n .

Exercise 2 (Chapter 0, 11; Hatcher). Show that $f: X \to Y$ is a homotopy equivalence if there exist maps $g, h: Y \to X$ $fg \simeq \mathrm{id}_Y$ and $hf = \mathrm{id}_X$. More generally, show that f is a homotopy equivalence if fg and hf are homotopy equivalences.

Exercise 3. Let $f: S^1 \to S^1$ be a map that is not homotopic to id_{S^1} . Show that there exists $x \in S^1$ such that f(x) = -x.

Exercise 4. Let X, Y be closed subsets of $X \cup Y$. Let $f: X \to Z$ and $g: Y \to Z$ be maps such that $f|_{X \cap Y} = g|_{X \cap Y}$. Show that $f \cup g: X \cup Y \to Z$ is continuous.

Exercise 5. Let $f: X \to Y$ be a map and W a space. Define

$$f_*: [W, X] \rightarrow [W, Y]$$

by $f_*([h]) = [fh]$. Show

- (i) f_8 is well-define
- (ii) if $f: X \to Y$, $g: Y \to Z$ are maps and W a space then

$$(fg)_* = f_*g_* : [W, X] \to [W, Z]$$

- (iii) $(\mathrm{id}_X)_* = \mathrm{id}_{[W,X]}$.
- (iv) if $f: X \to Y$ is a homotopy equivalence then f_* is a bijection.

(Corresponding dual properties hold for

$$f^*[Y,W] \to [X,W]$$

defined by $f^*([h]) = [hf]$.)

Exercise 6. Recall that a space X has the fixed point property (FPP) if for every map $f: X \to X$ there exists $x \in X$ such that f(x) = x.

- (i) Suppose $X \simeq Y$ and X has the FPP. Does Y have the FPP?
- (ii) If A is a retract of X and X has the FPP does A have the FPP?
- (iii) If A is a retract of X and A has the FPP does X have the FPP?

Exercise 7. Use path-connectedness to show that there is no continuous injection from \mathbb{R}^n to \mathbb{R}^1 for n > 1.

Date: September 5, 2019.