University of Minnesota Math Refresher

SUMMER 2015

Problem Set 2

- 1. Show that $\frac{1}{n} \cdot ||x||_1 \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$, for $x \in \Re^n$.
- 2. Let $b, c, p \in \Re$ such that 0 < b < 1, p > 0 and c > 0. Show that:
 - $b^n \to 0$ (Bartle, exercise 14.H).
 - $nb^n \to 0$.
 - $c^{\frac{1}{n}} \rightarrow 1$.
 - \bullet $\frac{1}{n^p} \to 0$.
 - $\sqrt[n]{p} \to 1$.

Hint: see section 14.8 in Bartle's and 3.20 in Rudin's. Use the same strategy.

- 3. Suppose $\{f_n\}$ is a equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K. (Exercise 16, section 7, Rudin's).
- 4. Define f_n on \Re by: $f_n(x) = \frac{nx}{1 + (nx)^2}$

Show that f_n converges pointwise. Is the convergence uniform in \Re ? (Exercise 17.D, Bartle's).

- 5. Show Proposition 5.2 in the Handouts.
- 6. Show Remark 5.1 in the Handouts.
- 7. Show the following statements:
 - A set $A \in \mathbb{R}^n$ is open iff it is the countable union of a collection of open balls in \mathbb{R}^n .
 - Show that if a set $A \in \mathbb{R}^n$ is closed then it is the countable intersection of a collection of open sets in \mathbb{R}^n .
- 8. Show that the set I = [0, 1] is connected.
- 9. Classify the following sets (open, closed, connected, compact (without using Heine-Borel) or none). Show your answer.

1

 $\bullet \ \ A = \{(x,y) \in \Re^2 : x^2 + y^2 = 1\}$

Math Refresher Problem Set 2

- $B = \{(x, y, z) \in \Re^3 : x^2 + y^2 = 1\}$
- $C = \{(x, y, z) \in \Re^3 : x^2 + y^2 + z^2 > 1\}$

10. Let f be a bounded and continuous function from \Re^n to \Re such that $f(x_0) > 0$. Show that f is strictly positive in a neighborhood of x_0 .

- 11. If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then $\bigcap K_{\alpha}$ is nonempty.
- 12. Use the previous result to show that if $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$, for n = 1, 2, 3..., then $\bigcap_{1}^{\infty} K_n$ is nonempty.
- 13. Show the Nearest Point Theorem: Let F be a nonempty subset of \Re^n and let $x \in \Re$ be a point outside F. Then there exists at least one point $y \in F$ such that $||z-x|| \ge ||y-x||$ for all $z \in F$. Hint: define the distance from x to F as $d = \inf\{||x-z|| : z \in F\}$ and consider the sets $F_k = \{z \in F : ||x-z|| \le d + \frac{1}{k}\}$, then use the previous exercise.
- 14. Replace the word "compact" in Theorem 5.2 in the Handouts by "closed" and then by "bounded" and show (with a counterexample) that in those cases the theorem doesn't hold.
- 15. Show Theorem 1.76 (Inverse Function Theorem) from Sundaram's.
- 16. Prove that $D \arcsin y = \frac{1}{\sqrt{1-y^2}}$ for $y \in (-1,1)$.