

Input data formats for gammapy

DL3 and beyond

gammapy user call October 26, 2020

The data flow concept

Data reduction in gammapy

Data Reduction

DL4Reduced datasets

DataStore

Datasets

	EventList
tion	EffectiveArea
erva	EnergyDispersion
Obse	PSF
	GTI

Filters

spatial/time selection

Geometry

- · Energy bins
- WCS

Data modeling & fitting in gammapy

The DL3 format for IACT data

- For now gammapy follows the definitions provided by the gamma-ray astronomy data format initiative:
 - https://gamma-astro-data-formats.readthedocs.io/en/ latest/
 - Started after PyGamma 2015 workshop in MPI-K
 - This will evolve once CTA specifications are defined
- If you want to contribute
 - https://github.com/open-gamma-ray-astro/gammaastro-data-formats

The DL3 format

- Based on FITS standard
- Follow FITS conventions for <u>time</u> and <u>coordinates</u>
- Information stored in the form binary tables in specific HDUs (Header Data Unit):
 - EVENTS
 - GTI
 - POINTING
 - RESPONSE

Manipulation in gammapy in <u>CTA</u> and <u>HESS</u> tutorials

EVENTS HDU

- Definition here
- Mandatory columns follow OGIP standard:
 - EVENT_ID, TIME, RA, DEC, ENERGY
- Optional columns
 - EVENT_CLASS, ALT, AZ, etc.
- Mandatory keywords:
 - OBS_ID, ONTIME, DEADC, LIVETIME, ORIGIN, TELESCOP etc.
- Handled in gammapy by the <u>EventList</u> object

GTI HDU

- Definition <u>here</u>
 - Interval of time validity of IRF response associated to events
- Table of START and STOP times in sec
- Reference time defined in header

Handled by <u>GTI</u> object in gammapy

POINTING HDU

- Preliminary definition <u>here</u>
- Table of pointing coordinates with time:
 - TIME, RA_PNT, DEC_PNT
- Keywords: Earth Location, etc.
- Handled in gammapy with PointingInfo object
- Not mandatory. For fixed pointing, read the information from the EVENTS header.
 - Handled in gammapy with FixedPointingInfo object

RESPONSE: IRFs in DL3 format

- IRFs meant to perform model forward-folding:
 - compute predicted number of counts in detector

$$N(p, E) \mathrm{d}p \mathrm{d}E = t_{\mathrm{obs}} \int_{E_{\mathrm{true}}} \mathrm{d}E_{\mathrm{true}} \int_{p_{\mathrm{true}}} \mathrm{d}p_{\mathrm{true}} \ R(p, E | p_{\mathrm{true}}, E_{\mathrm{true}}) \times \Phi(p_{\mathrm{true}}, E_{\mathrm{true}})$$

Hypothesis: response can be factored:

$$R(p, E|p_{\text{true}}, E_{\text{true}}) = A_{\text{eff}}(p_{\text{true}}, E_{\text{true}}) \times PSF(p|p_{\text{true}}, E_{\text{true}}) \times E_{\text{disp}}(E|p_{\text{true}}, E_{\text{true}}),$$

 All IRFs are functions of true photon energy (except background)

RESPONSE: IRFs in DL3 format

- 4 main components:
 - AEFF, EDISP, PSF and BACKGROUND
 - Binary tables with energy, FoV coordinate and IRF columns
- 2 main types of IRFs:
 - Full enclosure IRFs
 - For extended sources and 3D analyses
 - For now, a number of
 - Pointlike IRFs
 - obtained after cut in offset w.r.t. expected source position (RAD_MAX) e.g. for events within a ON integration region.

Effective area

- For now, <u>AEFF2D</u> assumes radially symmetric response over the FoV.
- It contains 3 columns:
 - ENERGY_LO, ENERG_HI in TeV
 - THETA_LO, THETA_HI in deg
 - EFFAREA in m²

- Validity thresholds can be exported to header keywords
- In gammapy, handled with <u>EffectiveAreaTable2D</u>

Energy dispersion

- pdf of migration E/E_{true} as a function of true energy and FoV position
- EDISP_2D assumes radially symmetric response over FoV
- It contains 4 columns:
 - ENERGY_LO, ENERG_HI in TeV
 - MIGRA_LO, MIGRA_HI dimensionless
 - THETA_LO, THETA_HI in deg
 - EFFAREA in m²

Handling in gammapy with <u>EnergyDispersion2D</u>

PSF

- For now, only isotropic PSF with radially symmetric response over the FoV are defined.
- Stored either in the form of a table or of predefined functional forms.
 - PSF TABLE
 - PSF 3GAUSS
 - PSF_KING
- In gammapy, handling with <u>PSF3D</u>,
 EnergyDependentMultiGaussPSF, <u>PSFKing</u>
 - Internally rely only on PSF3D

Background

- Provides the differential background flux brightness as a function of reconstructed energy and FoV coordinates.
 - in TeV⁻¹ s⁻¹ sr⁻¹
 - multiplied by ON time (not dead time corrected)
- Required for most analyses in gammapy
- Defined here:
 - Radially symmetric: BKG_2D
 - As a function of DET_X, DET_Y: BKG_3D
- Handling in gammapy with <u>Background2D</u>, <u>Background3D</u>

Data storage: Index files

- Each EVENTS HDU is connected to the relevants HDUs with an index file
 - HDU index table. Proposed definition <u>here</u>.
 - Provides location of each HDU from base directory

OBS_ID	HDU_TYPE	HDU_CLASS	FILE_DIR	FILE_NAME	HDU_NAME	SIZE
int64	bytes6	bytes9	bytes4	bytes34	bytes6	int64
20136	aeff	aeff_2d	data	hess_dl3_dr1_obs_id_020136.fits.gz	aeff	11520
20136	bkg	bkg_3d	data	hess_dl3_dr1_obs_id_020136.fits.gz	bkg	207360
20136	edisp	edisp_2d	data	hess_dl3_dr1_obs_id_020136.fits.gz	edisp	377280
20136	events	events	data	hess_dl3_dr1_obs_id_020136.fits.gz	events	414720
20136	gti	gti	data	hess_dl3_dr1_obs_id_020136.fits.gz	gti	5760
20136	psf	psf_table	data	hess_dl3_dr1_obs_id_020136.fits.gz	psf	118080
20137	aeff	aeff_2d	data	hess_dl3_dr1_obs_id_020137.fits.gz	aeff	11520
20137	bkg	bkg_3d	data	hess_dl3_dr1_obs_id_020137.fits.gz	bkg	207360
20137	edisp	edisp_2d	data	hess_dl3_dr1_obs_id_020137.fits.gz	edisp	377280
20137	events	events	data	hess_dl3_dr1_obs_id_020137.fits.gz	events	216000

Handled with <u>HDUIndexTable</u> object

Data storage: index files

 The observation index provides information of meta data about each observation run: e.g. pointing in the sky, duration, number of events, etc

OBS_ID	RA_PNT	DEC_PNT	GLON_PNT	GLAT_PNT	ZEN_PNT	ALT_PNT	AZ_PNT	OBJECT	RA_OBJ	DEC_OBJ	OFFSET_OBJ
	deg	deg	deg	deg	deg	deg	deg		deg	deg	deg
int64	float32	float32	float32	float32	float32	float32	float32	bytes18	float32	float32	float32
20136	228.6125	-58.771667	320.56754	-0.8857012	38.512962	51.487038	195.73102	MSH15- 52	228.6125	-59.271667	0.5
20137	228.6125	-59.771667	320.04724	-1.7397733	40.21616	49.78384	199.6482	MSH15- 52	228.6125	-59.271667	0.5
20151	228.6125	-58.771667	320.56754	-0.8857012	37.164658	52.835342	190.97171	custom	228.6125	-59.271667	0.5
20275	187.27792	2.552389	289.7155	64.849686	36.18243	53.81757	49.144917	3C 273	187.27792	2.052389	0.5
20282	228.6125	-58.771667	320.56754	-0.8857012	37.13134	52.86866	169.21602	MSH 15-5-02	228.6125	-59.271667	0.5
20283	228.6125	-59.771667	320.04724	-1.7397733	36.221436	53.778564	175.77263	MSH 15-5-02	228.6125	-59.271667	0.5

Handled with <u>ObservationTable</u> object

Importing data at DL4

- DL3 format might be relevant in all cases
- Data reduction might be performed by instrument specific software and gammapy can be used for modeling and fitting
- No definition of DL4 format so far.

- gammapy uses the Dataset concept for modeling/fitting of reduced data and IRFs
 - Based on the SkyMap data format of gadf (see <u>here</u>)
 - I/O possible with <u>OGIP standard</u> for 1D spectra

Importing data at DL4: Dataset

- SpectrumDataset contains 1D structures for:
 - counts
 - background model
 - exposure
 - energy dispersion
- MapDataset contains 3D structures for:
 - counts
 - background model
 - exposure
 - energy dispersion
 - PSF
- ON/OFF versions exist as well.

Importing data at DL4


```
counts = Map.read(
   "$GAMMAPY DATA/fermi-3fhl-qc/fermi-3fhl-qc-counts-cube.fits.qz"
background = Map.read(
    "$GAMMAPY_DATA/fermi-3fhl-qc/fermi-3fhl-qc-background-cube.fits.qz"
background = BackgroundModel(background, datasets_names=["fermi-3fhl-qc"])
exposure = Map.read(
    "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-exposure-cube.fits.gz"
# unit is not properly stored on the file. We add it manually
exposure.unit = "cm2s"
psf = EnergyDependentTablePSF.read(
   "$GAMMAPY_DATA/fermi-3fhl-qc/fermi-3fhl-qc-psf-cube.fits.qz"
psfmap = PSFMap.from_energy_dependent_table_psf(psf)
edisp = EDispKernelMap.from_diagonal_response(
   energy axis=counts.geom.axes["energy"],
   energy_axis_true=exposure.geom.axes["energy_true"],
dataset = MapDataset(
   counts=counts,
                                           Example from source
   models=[background],
   exposure=exposure,
                                           detection tutorial
   psf=psfmap,
   name="fermi-3fhl-qc",
   edisp=edisp,
```

Conclusions

- DL3 format provides a convenient open description of gamma-like data
 - An evolving format
 - Specifications given in gamma-astro-data-format are supported in gammapy
- Reduced data and IRF can also be imported to perform modeling and fitting with gammapy.
 - see tutorial on joint fitting of HESS, Fermi and HAWC