Heuristic Analysis: Isolation

Esteban Rodríguez Betancourt

April 23, 2018

Strategy 1

This strategy tries to maximize both the number of moves available and the difference between moves available to the player and its opponent. The formula is simple to calculate:

$$p^2 - o^3$$

where p is the number of available moves to the player, and o is the number of moves available to the opponent.

This was implemented as custom_score.

The performance of this strategy is shown in the table below:

Opponent	AB_Improved		AB_Custom	
Opponent	Won	Lost	Won	Lost
Random	9	1	10	0
AB_Improved	6	4	6	4
AB_Custom	4	6	8	2
AB_Custom_2	3	7	7	3
AB_Custom_3	5	5	7	3
AB_Open	5	5	4	6
AB_Center	4	6	9	1
MM_Improved	7	3	9	1
MM_Custom	8	2	6	4
MM_Custom_2	6	4	9	1
MM_Custom_3	8	2	6	4
MM_Open	10	0	7	3
MM_Center	9	1	8	2
Win Rate:	64.6%		73.8%	
No self vs self	65.0%		73.33%	

Strategy 2

This strategy just tries to maximize the number of available moves to the player, using the formula:

$$p^2$$

To me it makes sense to test it, as more moves makes less probable to loss.

This was implemented as custom_score_2.

The performance of this strategy is shown in the table below:

Onnanant	AB_Improved		AB_Custom_2	
Opponent	Won	Lost	Won	Lost
Random	8	2	10	0
AB_Improved	4	6	5	5
AB_Custom	4	6	7	3
AB_Custom_2	6	4	5	5
AB_Custom_3	6	4	6	4
AB_Open	5	5	5	5
AB_Center	6	4	5	5
MM_Improved	8	2	6	4
MM_Custom	8	2	8	2
MM_Custom_2	7	3	7	3
MM_Custom_3	8	2	10	0
MM_Open	6	4	4	6
MM_Center	8	2	9	1
Win Rate:	64.6%		66.9%	
No self vs self	66.67%		68.33%	

Strategy 3

This strategy just tries to minimize the number of available moves to the opponent, using the formula:

 $-o^2$

Like in strategy 2, the idea was to make more probable to the opponent to lose, by forcing less and less available moves.

This was implemented as custom_score_3.

The performance of this strategy is shown in the table below:

Onnonont	AB_Improved		AB_Custom_3	
Opponent	Won	Lost	Won	Lost
Random	10	0	10	0
AB_Improved	4	6	1	9
AB_Custom	4	6	4	6
AB_Custom_2	3	7	6	4
AB_Custom_3	6	4	6	4
AB_Open	5	5	5	5
AB_Center	6	4	6	4
$MM_{Improved}$	8	2	7	3
MM_Custom	9	1	7	3
MM_Custom_2	8	2	6	4
MM_Custom_3	6	4	10	0
MM_Open	7	3	5	5
MM_Center	10	0	8	2
Win Rate:	66.2%		62.3%	
No self vs self	68.33%		62.50%	

Results Analysis

After testing Improved, Custom, Custom_2 and Custom_3 (the four in AB pruning version) against everyone (Improved, Custom, Custom2 and Custom3. both alphabeta pruning and minimax) the first obvious result is that alphabeta pruning performs better than minimax.

The winning rate of AB pruning algorithms vs minimax algorithms was 79.29% which makes sense, as AB pruning is capable of exploring wider than minimax.

Also, the win rate of the scoring functions is:

Scoring Function	Win Rate		
AB_Improved	66.67%		
AB_Custom	73.33%		
AB_Custom_2	68.33%		
AB_Custom_3	62.50%		

So AB_Custom and AB_Custom_2 have higher winning rate than AB_Improved.

As a curious fact, AB_Custom and AB_Custom played 20 against each other, and each won 10 games each. This could be caused as Custom is a more complex score function, in fact it do twice the work done by Custom_2. In that case, Custom may be a better score function, but Custom_2 is capable to analyse a bit more branches.