

Model Development Phase Template

Date	11 March 2025
Team ID	740052
Project Title	AI-Based Intelligent Insight Extractor
Maximum Marks	6 Marks

Model Selection Report:

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

			Performance
Model	Description		Metric (e.g.,
		Hyperparameters	Accuracy, F1
			Score)
Spacy	spaCy is a powerful natural language	-	Accuracy score
Pipeline	processing library that can assist in extractive text summarization by		= 75%
	providing robust linguistic features.		
	Although it doesn't offer built-in		
	summarization models, it is commonly		
	used for preprocessing tasks like sentence segmentation, tokenization, stop word		
	removal, and lemmatization.		
Word	Word tokenization is the process of	-	Accuracy score
Tokenisation	splitting text into individual words or		= 67%
	tokens. It is a key step in natural language processing, helping computers		
	understand and analyze language. For		
	example, the sentence."		
Sentence	Sentence tokenization is the process of	-	Accuracy score
Tokenisation	dividing a block of text into individual		= 66%
	sentences. It helps in understanding the		

	structure of the text and is often the first		
	step in many NLP tasks. For example, the		
	paragraph "I love coding. It is fun and		
	creative." would be split into two		
	sentences: ["I love coding.", "It is fun and		
	creative."].		
HeapQ	The heapq module in Python provides an	-	Accuracy score
	efficient way to implement heaps, which		= 70%
	are special tree-based data structures		
	commonly used for priority queues. It		
	supports a min-heap by default, where the		
	smallest element is always at the root.		