Cálculo Diferencial e Integral II

Ficha de trabalho 5

(Derivadas de Ordem Superior. Extremos)

- 1. Calcule o gradiente e a matriz Hessiana de cada uma das funções seguintes:
 - a) $f(x,y) = x \arctan y$
 - b) $f(x, y, z) = \ln x + \ln y + e^z$
- 2. Mostre que a função $V(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}$ verifica a equação de Laplace:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0 \; ; \quad (x,y,z) \neq (0,0,0)$$

3. Seja w(x,y)=f(y-x,x+y), em que $f:\mathbb{R}^2\to\mathbb{R}$ é uma função de classe $C^2.$ Mostre que se tem

$$4\frac{\partial^2 f}{\partial u \partial v} = \frac{\partial^2 w}{\partial u^2} - \frac{\partial^2 w}{\partial x^2},$$

em que u = y - x e v = x + y.

4. Determine e classifique os pontos de estacionaridade de cada uma das funções seguintes:

a)
$$f(x,y) = x^2 - y^2 + xy$$

b)
$$f(x,y) = x^2 + y^2 - \frac{x^3}{3}$$

c)
$$f(x,y) = e^{1+xy}$$

d)
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{2} + \frac{1}{x} + \frac{1}{y}$$

e)
$$f(x, y, z) = xz - x^2 - y^2$$

f)
$$f(x,y) = x^3 - y^4$$

g)
$$f(x,y) = x^3 - y^2$$

h)
$$f(x,y) = \frac{y^2}{2} + xy + x^4$$