Conic Section Type 3: Ellipse

<u>Definition</u>: An <u>ellipse</u> is the set of all points P in a plane that the <u>sum</u> of the distances from P to two fixed points (called the **foci**) is constant. The midpoint of the segment connecting the foci is the **centre** of the ellipse.

Take point B which lies on the ellipse. Then

$$BF_1 + BF_2 = BF_1 + AF_1$$

= AB
= $2a$

 \triangleright Let F_1 and F_2 be the two foci (the plural of focus).

Furthermore, let AC = CB = a. Then AB = 2a.

For any point P on the ellipse, $PF_1 + PF_2$ is a constant, which is equal to 2a. That is,

$$PF_1 + PF_2 = 2a.$$

Dr. Emily Chan

Page 41

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Equation of ellipse

The equation of an ellipse with foci at the points $F_1(-c,0)$ and $F_2(c,0)$, where c>0, is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

This is the standard form of the equation of an ellipse centered at the origin. Note that:

- $\Rightarrow a > b > 0$, $c^2 = a^2 b^2 \not \propto (bigger^2 smaller^2)$
- \triangleright The *centre* of this ellipse is at the origin O(0,0).
- This ellipse is symmetrical about the *x*-axis and *y*-axis.
- The points (a,0), (-a,0), (0,b) and (0,-b) are called the **vertices** of the ellipse.
- minor axis b "fat" ellipse P(x,y) $F_2(c,0)$ a x
- The line segment joining the vertices (a,0) and (-a,0) is called the *major axis*, and the line segment joining the vertices (0,b) and (0,-b) is called the *minor axis*. The two foci are always on the major axis.

Dr. Emily Chan

- \triangleright The sum of the distances from any point on the ellipse to the two foci is 2a, which is the length of the major axis.
- If a=b, the equation of the ellipse becomes $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 \implies x^2 + y^2 = a^2$, which is the equation of a circle.

<u>Proof of the equation</u> $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b):

Let P(x,y) be any point on the ellipse, which has foci at $F_1(-c,0)$ and $F_2(c,0)$, where c>0. According to the definition of ellipse, we have

$$PF_1 + PF_2 = 2a$$

$$\Rightarrow \sqrt{(x - (-c))^2 + (y - 0)^2} + \sqrt{(x - c)^2 + (y - 0)^2} = 2a$$

$$\Rightarrow \sqrt{(x + c)^2 + y^2} + \sqrt{(x - c)^2 + y^2} = 2a$$

 $\Rightarrow \sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$

Dr. Emily Chan

Page 43

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Squaring both sides gives

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$\Rightarrow x^2 + 2cx + c^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2cx + c^2 + y^2$$

$$\Rightarrow a\sqrt{(x-c)^2 + y^2} = a^2 - cx$$

Squaring both sides again gives

$$a^{2}[(x-c)^{2} + y^{2}] = a^{4} - 2a^{2}cx + c^{2}x^{2}$$

$$\Rightarrow a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$

$$\Rightarrow (a^{2}-c^{2})x^{2} + a^{2}y^{2} = a^{2}(a^{2}-c^{2})$$

By the triangle inequality,

$$PF_1 + PF_2 > F_1F_2 \implies 2a > 2c \implies a > c.$$

Thus,
$$a^2 > c^2 \implies a^2 - c^2 > 0$$
. Let $b^2 = a^2 - c^2 > 0$.

Then we have

$$b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2} \implies \frac{b^{2}x^{2}}{a^{2}b^{2}} + \frac{a^{2}y^{2}}{a^{2}b^{2}} = \frac{a^{2}b^{2}}{a^{2}b^{2}} \implies \boxed{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1}$$

Other type of ellipse (with centre at the origin):

Consider an ellipse with foci at the points $F_1(0,-c)$ and $F_2(0,c)$. Note that both foci lie on the y-axis (instead of the x-axis) and the centre of this ellipse is at the origin. This ellipse has the equation $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$, where a > b > 0 and $c^2 = a^2 - b^2$. The sum of the distances from any point on the ellipse to the two foci is 2a.

Dr. Emily Chan

Page 45

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

The results of the two types of ellipses are summarized in the following table:

Equation of	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$
ellipse	(a > b > 0)	(a > b > 0)
Centre	C(0,0)	C(0,0)
Foci	$F_1(-c,0)$ and $F_2(c,0)$,	$F_1(0,-c)$ and $F_2(0,c)$,
	where $c^2 = a^2 - b^2$	where $c^2 = a^2 - b^2$
Vertices	(a,0), (-a,0), (0,b) and (0,-b)	(b,0), (-b,0), (0,a) and (0,-a)
Major axis	Line segment joining	Line segment joining
	(a,0) and $(-a,0)$ on the x-axis	(0,a) and $(0,-a)$ on the y-axis
Minor axis	Line segment joining	Line segment joining
	(0,b) and $(0,-b)$ on the y-axis	(b,0) and $(-b,0)$ on the x -axis
Shape	"Fat"	(Thin"

Remarks: (For ellipses)

a = distance between the centre & a vertex on major axis.

distance between the centre & a vertex on minor axis.

c = distance between the centre & a focus.

$$C = \sqrt{a^2 - b^2} > 0$$

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Example 11

For each of the following ellipses, find the coordinates of the vertices and the foci, and sketch

its graph: (a) $4x^2 + 9y^2 = 36$ (b) $8x^2 + y^2 = 8$

Solution

(a) Idea: Rearrange the equation into the standard form first. Then decide whether it is a "fat" or "thin" ellipse.

$$4x^2 + 9y^2 = 36 \implies \frac{4x^2}{36} + \frac{9y^2}{36} = \frac{36}{36} \implies \frac{x^2}{9} + \frac{y^2}{4} = 1 \implies \frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$

(Since 3 > 2, the ellipse is a "fat" one.) Take a=3 and b=2.

 \therefore The vertices of the ellipse are at (3,0), (-3,0), (0,2) and (0,-2).

$$c^2 = a^2 - b^2 = 3^2 - 2^2 = 5 \implies c = \pm \sqrt{5}$$
. Take $c = \sqrt{5}$ (since $c > 0$).

 \therefore The foci of the ellipse are at $F_1(-\sqrt{5},0)$ and $F_2(\sqrt{5},0)$.

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Sketch:

(b)
$$8x^2 + y^2 = 8 \implies \frac{8x^2}{8} + \frac{y^2}{8} = \frac{8}{8} \implies \frac{x^2}{1} + \frac{y^2}{8} = 1 \implies \frac{x^2}{1^2} + \frac{y^2}{(2\sqrt{2})^2} = 1$$

(Since $1 < 2\sqrt{2}$, the ellipse is a "thin" one.)

Take $a = 2\sqrt{2}$ and b = 1.

 \therefore The vertices of the ellipse are at (1,0), (-1,0), $(0,2\sqrt{2})$ and $(0,-2\sqrt{2})$.

$$c^2 = a^2 - b^2 = (2\sqrt{2})^2 - 1^2 = 7 \implies c = \pm \sqrt{7}$$
. Take $c = \sqrt{7}$ (since $c > 0$).

 \therefore The foci of the ellipse are at $F_1(0, -\sqrt{7})$ and $F_2(0, \sqrt{7})$.

Sketch:

Dr. Emily Chan

Page 48

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Example 12

Find the equation of the ellipse whose centre is the origin and the ellipse passes through the points $(2\sqrt{2},0)$ and $(-2,\sqrt{3})$.

Solution

An ellipse whose centre is at the origin has an equation of the form $\frac{x^2}{p^2} + \frac{y^2}{q^2} = 1$, where p,q>0. Since the ellipse passes through the point $(2\sqrt{2},0)$, we substitute $x=2\sqrt{2}$ and y=0 into the above equation and get $\frac{(2\sqrt{2})^2}{p^2} + \frac{0^2}{q^2} = 1 \implies p^2 = (2\sqrt{2})^2$.

Moreover, the ellipse also passes through the point $(-2,\sqrt{3})$, so we substitute x=-2 and $y=\sqrt{3}$ into the above equation and get $\frac{(-2)^2}{p^2}+\frac{(\sqrt{3})^2}{q^2}=1$

$$\Rightarrow \frac{(-2)^2}{(2\sqrt{2})^2} + \frac{(\sqrt{3})^2}{g^2} = 1 \Rightarrow \frac{4}{8} + \frac{3}{g^2} = 1 \Rightarrow \frac{3}{g^2} = \frac{1}{2} \Rightarrow q^2 = 6 = (\sqrt{6})^2.$$

 \therefore The equation of the ellipse is $\frac{x^2}{(2\sqrt{2})^2} + \frac{y^2}{(\sqrt{6})^2} = 1$.

$$\frac{\chi^{2}}{(2\sqrt{5})^{2}} + \frac{y^{2}}{(\sqrt{6})^{2}} = |$$

$$C = \sqrt{(2\sqrt{2})^2 - (\sqrt{6})^2} = \sqrt{2}$$

- : 252 > 56
- : It's a fat ellipse.
- : Foci: $F_1(-5,0)$ and $F_2(5,0)$ \leftarrow on x-axis.

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Translation of ellipse

If the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is translated h units to the right and k units upward, then we get an ellipse with centre at C(h, k), and the equation of the new ellipse becomes

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

That is, we replace "x" with "x - h", and "y" with "y - k".

Consider the translation of a "fat" ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0):

Translate $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ h units to the right and k units upward

	Before translation		After translation	
Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Translate	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$	
Centre	C(0,0)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	C'(h,k)	
Foci	$F_1(-c,0)$ and $F_2(c,0)$, where $c^2 = a^2 - b^2$	$a^2 b^2$ h units to the right and k units upward	$F_1'(-c+h,k)$ and $F_2'(c+h,k),$ where $c^2=a^2-b^2$	
Vertices	(a,0), (-a,0), (0,b) and $(0,-b)$	Lance upward	(a + h, k), (-a + h, k), (h, b + k) and $(h, -b + k)$	

Remark: Similar method could be used to translate "thin" ellipses in horizontal/vertical directions.

* For equations, replace x with x-h, y with y-k.

** For points, +h to x-coordinate, +k to y-coordinate.

Dr. Emíly Chan Page 51

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Example 13

Consider the equation $4y^2 + 25x^2 - 24y + 200x + 336 = 0$.

- (a) Show that this equation represents an ellipse by rewriting the equation into the standard form of an ellipse.
- (b) Find the coordinates of the centre, vertices and foci of this ellipse.
- (c) Sketch the graph of this ellipse with the centre, vertices and foci clearly shown.

Solution

(a) Idea: Rewrite the equation into the standard form by "completing the square" first.

$$4y^{2} + 25x^{2} - 24y + 200x + 336 = 0$$

$$\Rightarrow 4(y^{2} - 6y) + 25(x^{2} + 8x) + 336 = 0$$

$$\Rightarrow 4[(y - 3)^{2} - 3^{2}] + 25[(x + 4)^{2} - 4^{2}] + 336 = 0$$

$$\Rightarrow 4(y - 3)^{2} - 36 + 25(x + 4)^{2} - 400 + 336 = 0$$

$$\Rightarrow 4(y - 3)^{2} + 25(x + 4)^{2} = 100$$

Dr. Emily Chan

$$\Rightarrow \frac{4(y-3)^2}{100} + \frac{25(x+4)^2}{100} = \frac{100}{100}$$

$$\Rightarrow \frac{(y-3)^2}{25} + \frac{(x+4)^2}{4} = 1$$

$$\Rightarrow \frac{(y-3)^2}{5^2} + \frac{(x-(-4))^2}{2^2} = 1,$$

which represents an ellipse.

(b) Idea: Consider the coordinates of the centre, vertices and foci for the ellipse $\frac{y^2}{5^2} + \frac{x^2}{2^2} = 1$. Then apply appropriate translations to obtain the required ellipse.

Take a = 5, b = 2. Then $c = \sqrt{a^2 - b^2} = \sqrt{5^2 - 2^2} = \sqrt{21}$.

For the ellipse $\frac{y^2}{5^2} + \frac{x^2}{2^2} = 1$, its centre is at (0,0);

its vertices are at (-2,0), (2,0), (0,-5) and (0,5); and its foci are at $(0,-\sqrt{21})$ and $(0,\sqrt{21})$.

5 > 2 : Thin ellipse. : Foci on y-axis. $\frac{y^2}{5^2} + \frac{x^2}{2^2}$

Dr. Emily Chan

Page 53

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

The graph of the ellipse $\frac{(y-3)^2}{5^2} + \frac{(x-(-4))^2}{2^2} = 1$ is obtained by translating the graph of $\frac{y^2}{5^2} + \frac{x^2}{2^2} = 1$ to the left by 4 units and upward by 3 units.

:. For the ellipse $\frac{(y-3)^2}{5^2} + \frac{(x-(-4))^2}{2^2} = 1$:

- its centre is at (-4,3).
- its **vertices** are at (-2 4, 0 + 3), (2 4, 0 + 3), (0 4, -5 + 3) and (0 4, 5 + 3), i.e. (-6, 3), (-2, 3), (-4, -2) and (-4, 8).

• its **foci** are at $(0-4, -\sqrt{21}+3)$ and $(0-4, \sqrt{21}+3)$, i.e. $(-4, 3-\sqrt{21})$ and $(-4, 3+\sqrt{21})$.

(c) The graph of the ellipse $\frac{(y-3)^2}{5^2} + \frac{(x-(-4))^2}{2^2} = 1$ is shown on the right.

Conic Section Type 4: Hyperbola

<u>Definition</u>: A <u>hyperbola</u> is the set of all points P in a plane that the <u>difference</u> of the distances from P to two fixed points (the **foci**) is a constant.

Take the point B.

Then BFi-BFz is a constant.

NOW BFi-BFz

= (AFi+AB) - AFi

= AB

= 2a

 \triangleright Let F_1 and F_2 be the two foci.

Furthermore, let AC = CB = a. Then AB = 2a.

For any point P on the hyperbola, $|PF_1 - PF_2|$ is a constant, which is equal to 2a. That is,

$$|PF_1 - PF_2| = 2a.$$

Dr. Emily Chan

Page 55

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Equation of hyperbola

The equation of a hyperbola with foci at the points $F_1(-c,0)$ and $F_2(c,0)$, where c>0, is

$$a^2$$
 is in the first term,
 b^2 is in the second term.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ .$$

This is the standard form of the equation of a hyperbola centered at the origin. Note that:

- $> a, b > 0, \quad \boxed{c^2 = a^2 + b^2}$
- This hyperbola is symmetrical about the x-axis and y-axis.
- The points (a, 0) and (-a, 0) are called the **vertices** of the hyperbola.
- The *centre* of this hyperbola (the midpoint of two foci) is the origin O(0,0).
- $y = -\frac{b}{a}x$ $y = \frac{b}{a}x$ $F_1(-c,0) \quad (-a,0) \quad (a,0) \quad F_2(c,0)$ transverse axis
- > The line segment joining the two vertices is called the transverse axis. <- length = 2a
- \triangleright As x gets further away from the origin O, the two branches of the graph approach a pair

Dr. Emily Chan

of intersecting straight lines $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$, which are called the **asymptotes** of the hyperbola.

the hyperbola.

Solve $\frac{\chi^2}{a^2} - \frac{y^2}{b^3} = 0$ to get

The difference of the distances from any point on the hyperbola to the two foci is 2a, which is the distance between the two vertices.

Proof of the equation
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
:

 $\frac{x^2}{\alpha^2} - \frac{y^2}{b^2} = 1 \Rightarrow y = \pm \sqrt{b^2 \left(\frac{x^2}{\alpha^2} - 1\right)} \approx \pm \frac{b}{\alpha} x$ when x is large positive or large negative or large negative

Let P(x,y) be any point on the hyperbola, which has foci at $F_1(-c,0)$ and $F_2(c,0)$, where c>0. According to the definition of hyperbola, we have

$$|PF_1 - PF_2| = 2a$$

$$\Rightarrow |\sqrt{(x-(-c))^2 + (y-0)^2} - \sqrt{(x-c)^2 + (y-0)^2}| = 2a$$

$$\Rightarrow |\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2}| = 2a$$

Squaring both sides gives

$$(x+c)^2 + y^2 - 2\sqrt{(x+c)^2 + y^2}\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2 = 4a^2$$

After some calculations, we get $(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2)$.

Dr. Emíly Chan Page 57

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Clearly from the graph, a < c. Thus, $a^2 < c^2 \implies c^2 - a^2 > 0$.

Let $b^2 = c^2 - a^2 > 0$. Then we have

$$b^2x^2 - a^2y^2 = a^2b^2 \implies \frac{b^2x^2}{a^2b^2} - \frac{a^2y^2}{a^2b^2} = \frac{a^2b^2}{a^2b^2} \implies \boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1}$$

Other type of hyperbola (with centre at the origin):

Consider a hyperbola with foci at the points $F_1(0,-c)$ and $F_2(0,c)$. Note that both foci lie on the y-axis (instead of the x-axis) and the centre of this hyperbola is at the origin. This hyperbola has the equation $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$, where a,b>0 and $c^2=a^2+b^2$. The difference of the distances from any point on the hyperbola to the two foci is 2a.

: "North-South openings" hyperbola

The two types of hyperbolae are summarized in the following table:

Equation of hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	
Centre	C(0,0)	C(0,0)	
Foci	$F_1(-c,0)$ and $F_2(c,0)$, \leftarrow on x-axis where $c^2=a^2+b^2$	$F_1(0,-c)$ and $F_2(0,c)$, $\leftarrow \infty$ where $c^2=a^2+b^2$	
Vertices	(a,0) and $(-a,0)$	(0,a) and $(0,-a)$	
Asymptotes	$\frac{x^2}{\alpha^2} - \frac{y^2}{b^2} = 0 \Rightarrow y = \pm \frac{b}{a}x$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 0 \Rightarrow y = \pm \frac{a}{b}x$	
Shape	"East-West openings"	"North-South openings"	

The centre, foci and vertices are lying on the same straight line.

Dr. Emily Chan Page 59

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Example 14

Arrange the equation $9x^2 - 4y^2 = 144$ into the standard form of hyperbola. Find the coordinates of the centre, vertices and foci of this hyperbola, and sketch its graph.

Solution

$$9x^2 - 4y^2 = 144$$
 $\Rightarrow \frac{9x^2}{144} - \frac{4y^2}{144} = \frac{144}{144}$ $\Rightarrow \frac{x^2}{16} - \frac{y^2}{36} = 1$ $\Rightarrow \frac{x^2}{4^2} - \frac{y^2}{6^2} = 1$

This is a hyperbola with "East-West openings" and is centred at the origin (0,0). Its vertices are at (4,0) and (-4,0). The first term is the x^2 term

$$c^2 = a^2 + b^2 = 4^2 + 6^2 = 52 \implies c = \sqrt{52} = 2\sqrt{13}$$
 (Take positive value of c .)

 \therefore The foci of this hyperbola are at $(-2\sqrt{13},0)$ and $(2\sqrt{13},0)$.

Sketch:

Solve
$$\frac{\chi^2}{4^2} - \frac{y^2}{6^2} = 0$$

 $\Rightarrow y = \pm \frac{4}{5}x = \pm \frac{3}{5}x$

.. The asymptotes are $y=\pm \frac{3}{2}x$.

Translation of Hyperbola

Consider the translation of the hyperbola with "East-West openings" $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$:

If the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is translated h units to the right and k units upward, then we get a **hyperbola with centre at** C(h, k), and the equation of the new hyperbola becomes

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

That is, we replace "x" with "x - h", and "y" with "y - k".

Dr. Emíly Chan Page 61

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

	Before translation		After translation
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Translate	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1.$
Centre	C(0,0)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	C'(h,k)
Foci	$F_1(-c,0)$ and $F_2(c,0)$, where $c^2 = a^2 + b^2$	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$ h units to the right and	$F_1'(-c+h,k)$ and $F_2'(c+h,k),$ where $c^2=a^2+b^2$
Vertices	(a,0), (-a,0)	k units upward	(a+h,k), $(-a+h,k)$
Asymptotes	$y = \pm \frac{b}{a}x$		$(y-k) = \pm \frac{b}{a}(x-k)$

<u>Remark:</u> Similar method could be done to translate hyperbola with "North-South openings" in horizontal/vertical directions. The equation of the new hyperbola becomes

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.$$

Dr. Emíly Chan Page 62

Remark: (For hyperbola)

a = distance between vertex & centre.

C = distance between focus & centre.

b>0 is the value such that $C^2 = a^2 + b^2$.

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 1

Example 15

Consider the equation $16x^2 - 9y^2 - 160x - 18y + 247 = 0$.

- (a) Show that this equation describes a hyperbola by writing the equation into the standard form of hyperbola.
- (b) Find the coordinates of the centre, vertices and foci of this hyperbola.
- (c) Sketch the graph of this hyperbola with the centre, vertices and foci clearly shown.

Solution

Dr. Emily Chan Page 63

Dr. Emily Chan Page 64

Solution:

(a)
$$16x^{2} - 9y^{2} - 160x - 18y + 247 = 0$$

$$\Rightarrow 16(x^{2} - 10x) - 9(y^{2} + 2y) + 247 = 0$$

$$\Rightarrow 16[(x - 5)^{2} - 25] - 9[(y + 1)^{2} - 1] + 247 = 0$$

$$\Rightarrow 16(x - 5)^{2} - 9(y + 1)^{2} = 144$$

$$\Rightarrow \frac{(x - 5)^{2}}{9} - \frac{(y + 1)^{2}}{16} = 1$$

$$\Rightarrow \frac{(x - 5)^{2}}{3^{2}} - \frac{[y - (-1)]^{2}}{4^{2}} = 1$$

$$\Rightarrow \frac{(x - 5)^{2}}{3^{2}} - \frac{[y - (-1)]^{2}}{4^{2}} = 1$$

which represents a hyperbola, centred at (5,-1).

Note:
$$\frac{(x-5)^2}{3^2}$$
 is the first term

: East-west openings) (

(b) For the hyperbola
$$\frac{(\chi-5)^2}{3^2} - \frac{[y-(-1)]^2}{4^2} = 1,$$
its centre is at $(0+5, 0+(-1)) = (5, -1),$
its vertices are at $(-3+5, 0-1) = (2, -1)$
and $(3+5, 0-1) = (8, -1).$

C=
$$\sqrt{a^2+b^2} = \sqrt{3^2+4^2} = 5$$
.
Its foci are at $(-5+5, 0-1) = (0,-1)$
and $(5+5, 0-1) = (10,-1)$.

