Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського» Інститут прикладного системного аналізу

Курсова робота

з дисципліни «Теорія керування»

Виконав: студент 4 курсу

групи КА-81

Галганов Олексій

Прийняв: професор

Романенко Віктор Демидович

3MICT

ІЛ 1 Вступ	2
Теоретичні дані	2
Завдання курсової роботи	3
Значення коефіцієнтів та сталих	4
ІП 2 Розпахунок пискретних перепаточних функцій	4
Теоретичні дані	5
Випадок $W_O(S) = \frac{k}{T_1 + 1}$	5
Випадок $W_O(S) = \frac{k}{(T_1s+1)(T_2s+1)}$	6
Випадок $W_O(S) = \frac{ke^{\frac{1}{C_{7s}}s^{\frac{1}{1}(\sqrt{2s+1})}}}{T_1s+1}$	7
Випадок $W_O(S) = \frac{10 + \frac{1}{k}e^{-\tau s}}{(T_1s+1)(T_2s+1)}$	7
I	Завдання курсової роботи

РОЗДІЛ 1

ВСТУП

1.1. Теоретичні дані

Розглядається одноконтурна система автоматичного цифрового керування (ЦК) з наступною структурною схемою:

Рисунок 1.1 – Структурна схема типового контура ЦК

Тут $W_O(s)$ – передаточна функція об'єкта керування по керуючому діянню, G(s) і u(s) – відповідно задаюче і керуюче діяння в формі перетворення Лапласа, $W_p^*(s)$ – передаточна функція цифрового регулятора (ЦАП) у формі дискретного перетворення Лапласа, $W_E(s)$ – передаточна функція цифро-аналогового регулятора, $E^*(s)$, $u^*(s)$, $y^*(s)$ – відповідно помилка керування, керуюче діяння та вихідна керована координата у формі дискретного перетворення Лапласа. Передаточні функції об'єкта для окремих задач мають вигляд

$$W_O(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)(T_3s+1)}$$
(1.1)

$$W_O(s) = \frac{k(T_1s+1)}{(T_2s+1)(T_3s+1)}$$
(1.2)

де k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

Регулятор ЦК, представлений в різницевій формі на основі позиційного алгоритма пропорційно-інтегрально-диференціального (ПІД) закону керування записується таким чином:

$$u(nT_0) = K_p \left(e(nT_0) + \frac{T_0}{T_I} \sum_{i=1}^n e(iT_0) + \frac{T_D}{T_0} \left[e(nT_0) - e((n-1)T_0) \right] \right)$$
(1.3)

Тут $u(nT_0)$ та $e(nT_0)$ – відповідно керуюче діяння і помилка керування в n-тий період квантування, K_p – коефіцієнт передачі регулятора, T_I та T_D – відповідно сталі часу інтегрування та диференціювання в секундах, T_0 – період квантування в секундах.

Відповідно до (1.3), дискретна передаточна функція ПІД-регулятора має вигляд

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} + \frac{T_D (1 - z^{-1})}{T_0} \right)$$
 (1.4)

Якщо час диференціювання $T_D=0$, то для цифрового ПІ-регулятора матимемо дискретну передаточну функцію

$$W_p(z) = K_p \left(1 + \frac{T_0}{T_I (1 - z^{-1})} \right)$$
 (1.5)

де $z=e^{sT_0}$ — оператор z-перетворення.

1.2. Завдання курсової роботи

1. Розрахувати дискретну передаточну функцію замкненого контура цифрового керування, попередньо розрахувавши дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта

$$W_{\pi}(z) = z \{ W_E(s) \cdot W_O(s) \}$$
 (1.6)

для наступних варіантів передаточної функції об'єкта: $W_O(S)=\frac{k}{T_1s+1}, W_O(S)=\frac{k}{(T_1s+1)(T_2s+1)}, W_O(S)=\frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}.$

2. Розрахувати періоди квантування в системі цифрового керування для об'єктів

$$W_{O_1}(s) = \frac{ke^{-\tau s}}{T_1 s + 1} \tag{1.7}$$

$$W_{O_2}(s) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$$
(1.8)

а також для об'єкта (1.2), передаточна функція якого має динаміку в чисельнику.

3. На основі методу «прямого» синтезу визначити структуру і оптимальні настройки регуляторів цифрового керування і неперервного регулятора для управління об'єктами, передаточні функції яких мають вигляд (1.7), (1.8). При цьому приймається період квантування T_0 , розрахований у пункті 2 на основі умови забезпечення необхідної точності керування. Значення коефіцієнта підсилення регулятора $K_{P_{\text{опт}}}$ необхідно визначити при таких параметрах настройки λ : а) $\lambda = \frac{1}{T_1}$; б) $\lambda = \frac{1}{1.5T_1}$; в) $\lambda = \frac{1}{2T_1}$; г) $\lambda = \frac{1}{3T_1}$.

Для вказаного набору параметрів настройки λ шляхом цифрового моделюван-

- ня побудувати перехідні процеси в замкненому контурі цифрового керування.
- 4. Розрахувати оптимальні параметри ПІ-регулятора цифрового керування і періоду квантування резонансним методом для об'єкта керування (1.1), (1.8). На основі цифрового моделювання побудувати перехідні процеси вихідної координати y в замкненому контурі при подачі імпульсних тестів на задаюче діяння цифрового регулятора.
- 5. Виконати синтез лінійно-квадратичного регулятора стану і виконати цифрове моделювання замкненої системи з регулятором стану.
- 6. Дослідити стійкість контура цифрового керування, розрахованої за пунктом 3. При цьому використовувати відомі критерії стійкості.
- 7. Сформувати позиційний і швидкісний алгоритм цифрового керування в формі, зручній для програмування для регуляторів цифрового керування відповідно до пунктів 3, 4.

1.3. Значення коефіцієнтів та сталих

k	T_1	T_2	T_3	au
9.32	35	19	11	14

k – коефіцієнт передачі об'єкта керування, T_1, T_2, T_3 – сталі часу в секундах, τ – час запізнення в секундах.

РОЗДІЛ 2

РОЗРАХУНОК ДИСКРЕТНИХ ПЕРЕДАТОЧНИХ ФУНКЦІЙ

2.1. Теоретичні дані

Дискретну передаточну функцію приведеної неперервної частини (ПНЧ) об'єкта має вигляд

$$W_{\Pi}(z) = z \left\{ W_{E}(s) \cdot W_{O}(s) \right\} = z \left\{ \frac{1 - e^{-sT_{0}}}{s} \cdot W_{O}(S) \right\} =$$

$$= z \left\{ \left(1 - e^{-sT_{0}} \right) \cdot \frac{W_{O}(s)}{s} \right\} = \left(1 - z^{-1} \right) \cdot z \left\{ \frac{W_{O}(s)}{s} \right\}$$
(2.1)

Дискретна передаточна функція замкненого контуру цифрового керування має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)}$$
(2.2)

де $W_p(z)$ — дискретна передаточна функція регулятора, що для ПІД-регулятора має вигляд (1.3), а для ПІ-регулятора — вигляд (1.5). Далі за текстом термін «дискретна передаточна функція» буде скорочено до ДПФ.

2.2. Випадок $W_O(S) = \frac{k}{T_1 s + 1}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)}=\frac{k}{s}-\frac{kT_1}{T_1s+1}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = \frac{kz}{z-1} - \frac{kz}{z - e^{T_0/T_1}} = \frac{k\left(1 - e^{-T_0/T_1}\right)z}{(z-1)\left(z - e^{-T_0/T_1}\right)}$$
(2.3)

Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} = \frac{z - 1}{z} \cdot \frac{k \left(1 - e^{-T_0/T_1} \right) z}{(z - 1) \left(z - e^{-T_0/T_1} \right)} = \frac{k \left(1 - e^{-T_0/T_1} \right)}{z - e^{-T_0/T_1}}$$
(2.4)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} = \frac{\frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{1 + \frac{k(1 - e^{-T_{0}/T_{1}})}{z - e^{-T_{0}/T_{1}}} \cdot K_{p} \left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)}{\left(z - e^{-T_{0}/T_{1}}\right) + k\left(1 - e^{-T_{0}/T_{1}}\right) \cdot K_{p}\left(1 + \frac{T_{0}}{T_{I}(1 - z^{-1})} + \frac{T_{D}(1 - z^{-1})}{T_{0}}\right)} = \frac{kK_{p}(z - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)}{\left(z - e^{-T_{0}/T_{1}}\right)T_{0}T_{I}(1 - z^{-1}) + kK_{p}(z - e^{-T_{0}/T_{1}})\left(T_{0}T_{I}(1 - z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1 - z^{-1})^{2}\right)}$$

$$(2.5)$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(z-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})}{(z-e^{-T_{0}/T_{1}})T_{0}T_{1}(1-z^{-1})+kK_{p}(z-e^{-T_{0}/T_{1}})(T_{0}T_{1}(1-z^{-1})+T_{0}^{2})} = \frac{kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})}{(z-e^{-T_{0}/T_{1}})T_{1}(1-z^{-1})+kK_{p}(z-e^{-T_{0}/T_{1}})(T_{1}(1-z^{-1})+T_{0})}$$

$$(2.6)$$

2.3. Випадок $W_O(S) = \frac{k}{(T_1s+1)(T_2s+1)}$

Обчислимо z-перетворення для $\frac{W_O(S)}{s}=\frac{k}{s(T_1s+1)(T_2s+1)}=\frac{k}{s}-\frac{kT_1^2}{(T_1-T_2)(T_1s+1)}+\frac{kT_2^2}{(T_1-T_2)(T_2s+1)}.$ За таблицею z-перетворення отримаємо

$$z\left\{\frac{W_O(s)}{s}\right\} = k\left(\frac{z}{z-1} - \frac{az}{T_1(z-d_1)} + \frac{bz}{T_2(z-d_2)}\right)$$
(2.7)

де $a=\frac{T_1^2}{T_1-T_2},$ $b=\frac{T_2^2}{T_1-T_2},$ $d_1=e^{-T_0/T_1},$ $d_2=e^{-T_0/T_2}.$ Тому ДПФ ПНЧ має вигляд

$$W_{\Pi}(z) = (1 - z^{-1}) \cdot z \left\{ \frac{W_O(s)}{s} \right\} =$$

$$= \frac{z - 1}{z} \cdot k \left(\frac{z}{z - 1} - \frac{az}{T_1(z - d_1)} + \frac{bz}{T_2(z - d_2)} \right) =$$

$$= k \left(1 - \frac{a(z - 1)}{T_1(z - d_1)} + \frac{b(z - 1)}{T_2(z - d_2)} \right)$$
(2.8)

Отже, ДПФ замкненого контуру цифрового керування з ПІД-регулятором має вигляд

$$W_{3}(z) = \frac{W_{\Pi}(z) \cdot W_{p}(z)}{1 + W_{\Pi}(z) \cdot W_{p}(z)} =$$

$$= \frac{k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)}{1 + k\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) K_{p}\left(1 + \frac{T_{0}}{T_{I}(1-z^{-1})} + \frac{T_{D}(1-z^{-1})}{T_{0}}\right)} =$$

$$= \frac{kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}(1-z^{-1}) + kK_{p}\left(1 - \frac{a(z-1)}{T_{1}(z-d_{1})} + \frac{b(z-1)}{T_{2}(z-d_{2})}\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)} =$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1})) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1})\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1}) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1})\right) \left(T_{0}T_{I}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{1})\right) \left(T_{0}T_{1}(1-z^{-1}) + T_{0}^{2} + T_{I}T_{D}(1-z^{-1})^{2}\right)}{T_{0}T_{1}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) + kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-1)(z-d_{2})\right) \left(T_{0}T_{1}(1-z^{-1}) + T_{0}^{2} + T_{1}T_{D}(1-z^{-1})^{2}\right)}$$

$$= \frac{kK_{p}(T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}(z-d_{1})(z-d_{2})\right) \left(T_{1}T_{1}(1-z^{-1}) + T_{1}T_{2}(1-z^{-1}) + T_{1}T_{2}(1-z^{-1})\right)}{T_{1}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2}) - aT_{2}(z-1)(z-d_{2}) + bT_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{1})\right) \left(T_{1}T_{1}(1-z^{-1}) + T_{1}T_{2}(1-z^{-1})\right)}{T_{1$$

Відповідно, з ПІ-регулятором ($T_D = 0$):

$$W_{3}(z) = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}\left(1-z^{-1}\right)+T_{0}^{2}\right)}{T_{0}T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{0}T_{I}(1-z^{-1})+T_{0}^{2}\right)} = \frac{kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))\left(T_{I}\left(1-z^{-1}\right)+T_{0}\right)}{T_{I}T_{1}T_{2}(1-z^{-1})(z-d_{1})(z-d_{2})+kK_{p}(T_{1}T_{2}(z-d_{1})(z-d_{2})-aT_{2}(z-1)(z-d_{2})+bT_{1}(z-1)(z-d_{1}))(T_{I}(1-z^{-1})+T_{0})}$$
 (2.10)

- **2.4.** Випадок $W_O(S) = \frac{ke^{-\tau s}}{T_1 s + 1}$
- **2.5.** Випадок $W_O(S) = \frac{ke^{-\tau s}}{(T_1s+1)(T_2s+1)}$