

Automnales October 2017 ■

■ Probability for Geostatistics

■ Why probability?

Probability theory

⇔ mathematical analysis of random experiments

Random experiment

Trial that produces different outcomes when repeated indefinitely under the same controllable conditions

Randomness ≈ the uncontrolled, unexplained, unknown

■ Why probability?

Probability theory ⇔ mathematical analysis of random experiments

Random experiment

Trial that produces different outcomes when repeated indefinitely under the same controllable conditions

Randomness ≈ the uncontrolled, unexplained, unknown

In practice:

■ Two examples

Dice roll

Random: resulting number

Archery

 $\mathsf{Random}: \pmb{R} \ \mathsf{and} \ \theta$

■ Two examples

Dice roll

Random: resulting number

Archery

Random : R and θ

Goal: measure the chance of realization of all sets of possible outcomes

Outline

1. Measuring the uncertain

- How to construct a probability measure
- Getting started with probability : basic rules
- Getting to the point : random variables

2. How to depict distributions of random variables

- Cumulative distribution functions (cdf)
- Probability density and mass functions (pdf, pmf)
- Dealing with dependence

3. Momentous moments

- Expected value
- Variance and covariance
- Conditional moments

MEASURING THE UNCERTAIN

■ What to we need to measure the uncertain?

in? ■■

Goal Build a function **P** that associates a grade to each type of outcome of a random experiment

$$\mathbf{P}(type\ of\ outcome) = grade$$

The higher the grade, the more likely the type of outcome

To build this mathematical function we need

- To list all possible outcomes of the experiment
- To specify **which** types of outcomes we want to grade (measure)
- To decide **how** we want to grade (quantify) them

Prerequisites - Rudiments of set theory

- $A \cup B := \{x \in \Omega : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B := \{x \in \Omega : x \in A \text{ and } x \in B\}$
- Relative complement: $A \setminus B := \{x \in \Omega : x \in A \text{ but } x \notin B\}$
- Absolute complement: $A^c := \Omega \setminus A$
- Symmetric difference: $A\Delta B := (A \cup B) \setminus (A \cap B)$

 $A \cup B$

 $A \cap B$

 $A \setminus B$

 $A\Delta B$

■ Inventory all outcomes - Universe

Universe

The universe (or sample space) is the set made of all theoretically possible outcomes of the studied random experiment; it is denoted by Ω

■ Inventory all outcomes - Universe

Universe

The universe (or sample space) is the set made of all theoretically possible outcomes of the studied random experiment; it is denoted by Ω

Dice roll

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

■ Inventory all outcomes - Universe

Universe

The universe (or sample space) is the set made of all theoretically possible outcomes of the studied random experiment; it is denoted by Ω

Dice roll

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Archery

$$\Omega = [0, 122] \times [-\pi, \pi)$$

Ω

Set A made of all that can be measured on Ω ?

Ω

Set A made of all that can be measured on Ω ?

(i) (Something happens) $\Omega \in \mathcal{A}$

Ω

Set A made of all that can be measured on Ω ?

(i) (Something happens) $\Omega \in A$

(ii) (This or that happens) A closed under countable unions :

$$\left\{\forall\,n\in\mathbb{N}\,:\,A_n\in\mathcal{A}\right\}\quad\Rightarrow\quad\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$$

Ω

Set A made of all that can be measured on Ω ?

(i) (Something happens) $\Omega \in A$

(ii) (This or that happens) A closed under countable unions :

$$\left\{\forall\,n\in\mathbb{N}\,:\,A_n\in\mathcal{A}\right\}\quad\Rightarrow\quad\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$$

(iii) (This does not happen) A closed under complementation:

$$A \in \mathcal{A} \quad \Rightarrow \quad A^c \in \mathcal{A}$$

σ -algebra

Any set $A \subset \mathcal{P}(\Omega)$ (power set of Ω) that fulfills conditions (i) – (iii) is called a σ -algebra or a σ -field ("tribu" in French)

 (Ω, \mathcal{A}) called a measure space

σ -algebra

Any set $A \subset \mathcal{P}(\Omega)$ (power set of Ω) that fulfills conditions (i) – (iii) is called a σ -algebra or a σ -field ("tribu" in French)

 (Ω, \mathcal{A}) called a measure space

Event

Let (Ω, A) be a measure space, then $A \in A$ is called an event

- **Ex.** \emptyset : impossible event Ω : sure event $\omega \in \Omega$: elementary/atomic event
- \bigstar A made of subsets of $\Omega: A \in \mathcal{A} \Rightarrow A \subset \Omega$

■ Choose how to quantify - Probability

Probability measure

A probability measure on the measure space (Ω, A) is an application

$$\mathbf{P}: \begin{array}{ccc} A & \longrightarrow & [0,1] \\ A & \longmapsto & \mathbf{P}(A) \end{array}$$

such that (i) $P(\Omega) = 1$ and

(ii) for all sequences $(A_n)_{n\in\mathbb{N}}$ of pairwise disjoint (incompatible) events,

$$\mathbf{P}\left(\bigcup_{n\in\mathbb{N}}A_{n}\right) = \sum_{n\in\mathbb{N}}\mathbf{P}\left(A_{n}\right) \qquad (\sigma\text{-additivity})$$

 $(\Omega, \mathcal{A}, \mathbf{P})$ called a probability space

Probability measures cannot be defined on any measure space!

■ Choose how to quantify - Examples

Dice roll

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\quad \blacksquare \quad \mathcal{A} = \mathcal{P}(\Omega)$

■ Choose how to quantify - Examples

Dice roll

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{A} = \mathcal{P}(\Omega)$

Archery

- $\Omega = [0, 122] \times [-\pi, \pi)$
- lacksquare $\mathcal{A} = \mathcal{B}(\Omega)$ (Borel algebra)

■ Measuring the uncertain - Summary

We needed

- A list of all possible outcomes \blacktriangleright *universe* Ω
- The types of outcomes to grade ightharpoonup events listed in the σ -algebra $\mathcal A$
- A function to grade the types of outcomes → probability measure **P**

We have decided that

- Grades shall be a number between 0 and 1
- There is always something happening: $\mathbf{P}(\Omega) = 1$
- For two *incompatible events A* and *B*, the probability that either one of them happens is the sum of their probabilities

Given this setting, what else can we say about probability measures?

■ Getting started - Basic properties

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space

 $A, B \in \mathcal{A}$ events

- Inclusion : $B \subset A \Rightarrow P(B) \leq P(A)$
- Intersection : $P(A \cap B) \leq P(A) \wedge P(B)$
- Mutual exclusivity : $A \cap B = \emptyset$ \Rightarrow $P(A \cap B) = 0$
- Absolute complement : $\mathbf{P}(A^c) = 1 \mathbf{P}(A)$
- Union: $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$

 $P(B) \leq P(A)$

 $P(A \cap B)$

 $\mathbf{P}(A^c)$

 $\boldsymbol{P}(B) \quad \boldsymbol{P}(A)$

■ Getting started - (In)dependence

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space

events $\in \mathcal{A}$

Independent events

Two events A and B are said to be independent iff

$$\mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B)$$

A and B independent

- \Leftrightarrow B has no influence on A and vice versa

■ Getting started - (In)dependence

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in \mathcal{A}$

Independent events

Two events A and B are said to be independent iff

$$\mathbf{P}\left(A\cap B\right)=\mathbf{P}\left(A\right)\,\mathbf{P}\left(B\right)$$

A and B independent

 \Leftrightarrow B has no influence on A and vice versa

Exercise

Consider a deck of 52 cards.

- Pick one card at random, put it back, shuffle and pick a second one.
 - 1^o What would be an adequate probability space for this experiment?
 - 2° Are getting a jack and a queen independent events?
- How would you answer these questions if both cards were picked simultaneously?

■ Getting started - Conditioning

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in \mathcal{A}$

Conditioning on an event

The conditional probability of an event A given that an event B with non-null probability has occurred is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

■ Getting started - Conditioning

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in \mathcal{A}$

Conditioning on an event

The conditional probability of an event A given that an event B with non-null probability has occurred is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

 $A \in \mathcal{A} \mapsto \mathbf{P}(A \mid B) \in [0, 1]$ probability measure

extension to $P(A \mid B)$ when P(B) = 0: disintegration theorem

A and B independent \Rightarrow $\mathbf{P}(A \mid B) = \mathbf{P}(A)$ and $\mathbf{P}(B \mid A) = \mathbf{P}(B)$ if $\mathbf{P}(A), \mathbf{P}(B) \neq 0$

■ Getting started - Two major theorems

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space

events $\in A$

Law of total probability

Let $(B_n)_{n\in\mathbb{N}}$ be a partition of Ω .

For any event A $\mathbf{P}(A) = \sum_{n \in \mathbb{N}} \mathbf{P}(A \cap B_n)$

If in addition
$$P(B_n) \neq 0$$
 for all $n \in \mathbb{N}$, then $P(A) = \sum_{n \in \mathbb{N}} P(A \mid B_n) P(B_n)$

■ Getting started - Two major theorems

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in A$

Law of total probability

Let
$$(B_n)_{n\in\mathbb{N}}$$
 be a partition of Ω . For any event A $\mathbf{P}(A) = \sum_{n\in\mathbb{N}} \mathbf{P}(A \cap B_n)$

If in addition
$$P(B_n) \neq 0$$
 for all $n \in \mathbb{N}$, then $P(A) = \sum_{n \in \mathbb{N}} P(A \mid B_n) P(B_n)$

Bayes' theorem

For any two events A and B such that $P(A) \neq 0$ and $P(B) \neq 0$:

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in \mathcal{A}$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \boldsymbol{P})$ explicit \Rightarrow **Assume** its existence and focus on the quantities of interest

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in A$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \boldsymbol{P})$ explicit \Rightarrow **Assume** its existence and focus on the quantities of interest

Random element (RE) - Intuition

Basically, a random element is an object with a priori unpredictable characteristics, e.g.

- the shape, size and location of a potatoe drawn with closed eyes on a piece of paper,
- the color of a future baby cat,
- the total number rolled with 2 dices, etc.

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in A$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \boldsymbol{P})$ explicit \Rightarrow **Assume** its existence and focus on the quantities of interest

Random element (RE) - Intuition

Basically, a random element is an object with a priori unpredictable characteristics, e.g.

- the shape, size and location of a potatoe drawn with closed eyes on a piece of paper,
- the color of a future baby cat,
- the total number rolled with 2 dices, etc.

Mathematically, random elements can be viewed as functions from a complex probability space to a more interesting or convenient one

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

events $\in \mathcal{A}$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \mathbf{P})$ explicit ⇒ **Assume** its existence and focus on the quantities of interest

Random element (RE) - Formal definition

Let $(\mathcal{X}, \mathcal{B})$ be a measure space. A random element is an application $X: \Omega \to \mathcal{X}$

such that $\forall B \in \mathcal{B}$ $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}$ is an event $(\in A)$

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space

events $\in \mathcal{A}$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \mathbf{P})$ explicit ⇒ **Assume** its existence and focus on the quantities of interest

Random element (RE) - Formal definition

Let $(\mathcal{X}, \mathcal{B})$ be a measure space. A random element is an application $X: \Omega \to \mathcal{X}$

such that $\forall B \in \mathcal{B}$ $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}$ is an event $(\in A)$

- $\mathcal{X} \subset \mathbb{R}$ countable (ex. $\{0,1\}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}\}$): X discrete random variable (RV)
- $\mathcal{X} \subseteq \mathbb{R}$ uncountable : X real-valued RV
- $\mathcal{X} \subset \mathbb{R}^d$ uncountable : X random vector (RVec)

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space

events $\in \mathcal{A}$

The experiment is often too complex to make $(\Omega, \mathcal{A}, \mathbf{P})$ explicit ⇒ **Assume** its existence and focus on the quantities of interest

Random element (RE) - Formal definition

Let $(\mathcal{X}, \mathcal{B})$ be a measure space. A random element is an application $X: \Omega \to \mathcal{X}$

such that $\forall B \in \mathcal{B}$ $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}$ is an event $(\in A)$

- $\mathbb{Z} \subset \mathbb{R}$ countable (ex. $\{0,1\}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}\}$): X discrete random variable (RV)
- $\mathcal{X} \subseteq \mathbb{R}$ uncountable : X real-valued RV
- $\mathcal{X} \subset \mathbb{R}^d$ uncountable : X random vector (RVec)

Random elements extract the desired information from $(\Omega, \mathcal{A}, \mathbf{P})$

■ Main focus - Distribution of a RE

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

 $RF \Omega \to \mathcal{X}$

Distribution of a random element

The distribution \mathbf{P}_{X} of a random element X is the application

$$\mathbf{P}_X: \begin{array}{ccc} \mathcal{B} & \longrightarrow & [0,1] \\ \mathcal{B} & \longmapsto & \mathbf{P}\left(X^{-1}(\mathcal{B})\right) \end{array}$$

 \mathbf{P}_{Y} also called the pushforward measure of \mathbf{P} by X

 $(\mathcal{X}, \mathcal{B}, \mathbf{P}_{\mathbf{Y}})$ probability space

Notation shortcut: $P(X \in B) := P(X^{-1}(B)) = P_X(B)$

■ Main focus - Pushforward measure

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

 $(\mathcal{X}, \mathcal{B})$ measure space

 $\mathsf{RE}\:\Omega\to\mathcal{X}$

■ Main focus - Pushforward measure

 $(\Omega, \mathcal{A}, \boldsymbol{P})$ probability space

 $(\mathcal{X},\mathcal{B})$ measure space

 $\mathsf{RE}\ \Omega o \mathcal{X}$

Exercise

Let X be the random variable that gives the total number rolled with 2 dices. What is the probability that X equals 8?

How to depict distributions of random variables

■ Cdf - Random variables

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Cumulative distribution function (cdf)

The cdf of a random variable X is the application F_X :

■ Cdf - Random variables

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Cumulative distribution function (cdf)

The cdf of a random variable X is the application F_X :

- lacksquare F_X non-decreasing and càdlàg ("continue à droite, limite à gauche")
- $F_X(x) \xrightarrow[x \to -\infty]{} 0$ and $F_X(x) \xrightarrow[x \to +\infty]{} 1$

■ Cdf - Random variables

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Cumulative distribution function (cdf)

The cdf of a random variable
$$X$$
 is the application F_X : $\mathbb{R} \longrightarrow [0,1]$ $x \longmapsto \mathbf{P}(X \leq x)$

- $\mathbf{F}_{\mathbf{Y}}$ non-decreasing and càdlàg ("continue à droite, limite à gauche")
- $F_X(x) \xrightarrow[x \to -\infty]{} 0$ and $F_X(x) \xrightarrow[x \to +\infty]{} 1$

Exercise

Let *X* be the random variable that gives the total number rolled with 2 dices. What is its cdf?

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Let
$$X = (X_1, \dots, X_d)$$
 be a RVec $(d \in \mathbb{N}^*)$

- \blacksquare P_X joint distribution
- $\mathbf{P}_{X_1}, \dots, \mathbf{P}_{X_d}$ 1-d marginal distributions

Notation: $P(X_1 \in B_1, ..., X_d \in B_d)$ $= \mathbf{P} (X_1 \in B_1 \text{ and } \dots \text{ and } X_d \in B_d)$ $= \mathbf{P}(X_1^{-1}(B_1) \cap \cdots \cap X_d^{-1}(B_d))$ $= \mathbf{P}(X \in B) = \mathbf{P}_{Y}(B)$

with $B = \{x_1 \in B_1 \text{ and } \dots \text{ and } x_d \in B_d\}$

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space Random vector $\Omega \to \mathcal{X}$

Cumulative distribution function

The cdf of a RVec $X = (X_1, ..., X_d)$ is the application

$$F_X: \begin{array}{ccc} \mathbb{R}^d & \longrightarrow & [0,1] \\ x = (x_1, \dots, x_d) & \longmapsto & \textbf{P}\left(X_1 \leq x_1, \dots, X_d \leq x_d\right) \end{array}$$

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space Random vector $\Omega \to \mathcal{X}$

Cumulative distribution function

The cdf of a RVec $X = (X_1, ..., X_d)$ is the application

$$F_X: \begin{array}{ccc} \mathbb{R}^d & \longrightarrow & [0,1] \\ x = (x_1, \dots, x_d) & \longmapsto & \boldsymbol{P}\left(X_1 \leq x_1, \dots, X_d \leq x_d\right) \end{array}$$

- $lacksquare F_{\mathbf{Y}}$ non-decreasing and càdlàg for each of its variables
- $\forall j \in [1, d]: F_X(x) \xrightarrow[x_j \to -\infty]{} 0 \quad \text{and} \quad F_X(x) \xrightarrow[x_1, \dots, x_d \to +\infty]{} 1$
- \blacksquare F_{X_1}, \dots, F_{X_d} marginal cdfs

 $F_X(x_1,x_2)$

■ Cdf - Examples

Dice roll

If *X* is the result of a roll then $\forall x \in \mathbb{R}$:

$$F_X(x) = \sum_{k=1}^6 \frac{1}{6} \, \mathbf{1} \{ k \le x \}$$

■ Cdf - Examples

Dice roll

If *X* is the result of a roll then $\forall x \in \mathbb{R}$:

$$F_X(x) = \sum_{k=1}^6 \frac{1}{6} \, \mathbf{1} \{ k \le x \}$$

Archery

If *X* is the angle of a blind shot, then $\forall x \in \mathbb{R}$:

$$F_X(x) = \frac{x + \pi}{2 \pi} \, \mathbf{1} \{ -\pi \le x < \pi \} + \mathbf{1} \{ x \ge \pi \}$$

■ Pdf/Pmf - Discrete univariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability mass function

The probability mass function (pmf) of a discrete RV X is the application

$$p_X: x \in \mathbb{R} \mapsto \begin{cases} \boldsymbol{P}(X=x) & \text{if } x \in \mathcal{B}, \\ 0 & \text{if } x \notin \mathcal{B}. \end{cases}$$

■ Pdf/Pmf - Discrete univariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability mass function

The probability mass function (pmf) of a discrete RV X is the application

$$p_X: x \in \mathbb{R} \mapsto \begin{cases} \mathbf{P}(X=x) & \text{if } x \in \mathcal{B}, \\ 0 & \text{if } x \notin \mathcal{B}. \end{cases}$$

■ Pdf/Pmf - Discrete multivariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability mass function

The pmf of a discrete RVec $X = (X_1, ..., X_d)$ is the application

$$p_X: (x_1,\ldots,x_d) \in \mathbb{R}^d \mapsto \begin{cases} \boldsymbol{P}\left(X_1 = x_1,\ldots,X_d = x_d\right) & if (x_1,\ldots,x_d) \in \mathcal{B}, \\ 0 & if (x_1,\ldots,x_d) \notin \mathcal{B}. \end{cases}$$

■ Pdf/Pmf - Discrete multivariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability mass function

The pmf of a discrete RVec $X = (X_1, ..., X_d)$ is the application

$$p_X: (x_1, \dots, x_d) \in \mathbb{R}^d \mapsto \begin{cases} \boldsymbol{P}\left(X_1 = x_1, \dots, X_d = x_d\right) & if (x_1, \dots, x_d) \in \mathcal{B}, \\ 0 & if (x_1, \dots, x_d) \notin \mathcal{B}. \end{cases}$$

- $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d : \qquad F_X(x) = \sum_{u \in \mathbb{D}^d} p_X(u) \mathbf{1} \left\{ u_1 \le x_1, \dots, u_d \le x_d \right\}$
- **p**_X exists \Rightarrow its marginals exist and for all $j \in [1, d]$, $\forall x \in \mathbb{R}$:

$$p_{X_j}(x) = \sum_{u \in \mathbb{R}^{d-1}} p_X(u_1, \dots, u_{j-1}, x, u_{j+1}, \dots, u_d)$$

■ Pdf/Pmf - Continuous univariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability density function

A RV X has a probability density function (pdf) f_X if for all $B \in \mathcal{B}$ we can write.

$$\mathbf{P}_X(B) = \int_B f_X(x) \, dx$$

■ Pdf/Pmf - Continuous univariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability density function

A RV X has a probability density function (pdf) f_X if for all $B \in \mathcal{B}$ we can write.

$$\boldsymbol{P}_X(B) = \int_B f_X(x) \, dx$$

- $f_X(x)$ gives the marginal weight of the value $x \in \mathbb{R}$ with respect to P_X
- $\forall x \in \mathbb{R}: F_X(x) = \int_{-\infty}^{x} f_X(u) du \text{ and } f_X(x) = F_X'(x)$

■ Pdf/Pmf - Continuous multivariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability density function

A RVec $X = (X_1, \dots, X_d)$ has a (joint) pdf f_X if for all $B \in \mathcal{B}$ we can write

$$\mathbf{P}_X(B) = \int_B f_X(x) \, dx$$

■ Pdf/Pmf - Continuous multivariate case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Probability density function

A RVec $X = (X_1, ..., X_d)$ has a (joint) pdf f_X if for all $B \in \mathcal{B}$ we can write

$$\boldsymbol{P}_X(B) = \int_B f_X(x) \, dx$$

- $\forall x = (x_1, \dots, x_d) \in \mathbb{R}^d : \qquad F_X(x) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} f_X(u_1, \dots, u_d) du_d \dots du_1$
- f_X exists \Rightarrow its marginals exist and for all $j \in [1, d]$, $\forall x \in \mathbb{R}$:

$$f_{X_j}(x) = \int_{\mathbb{R}^{d-1}} f_X(u_1, \dots, u_{j-1}, x, u_{j+1}, \dots, u_d) du_d \dots du_{j+1} du_{j-1} \dots du_1$$

Dice roll

If *X* is the result of a roll then $\forall x \in \mathbb{R}$:

$$p_X(x) = \mathbf{P}(X = x) = \frac{1}{6} \mathbf{1} \{ x \in \{1, \dots, 6\} \}$$

Dice roll

If *X* is the result of a roll then $\forall x \in \mathbb{R}$:

$$p_X(x) = \mathbf{P}(X = x) = \frac{1}{6} \mathbf{1} \{ x \in \{1, \dots, 6\} \}$$

Archery

If *X* is the angle of a blind shot, then $\forall x \in \mathbb{R}$:

$$f_X(x) = \frac{1}{2\pi} \mathbf{1} \{ -\pi \le x < \pi \}$$

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Conditional pdf

Assume that the RVec (X,Y) has joint pdf $f_{X,Y}$ with marginals f_X and f_Y .

The conditional pdf of X given that Y equals $y \in \mathbb{R}$ with $f_Y(y) \neq 0$ is defined for all $x \in \mathbb{R}$ as

$$f_{X|Y=y}(x) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

In the discrete case, replace pdfs by pmfs

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Conditional pdf

Assume that the RVec (X,Y) has joint pdf $f_{X,Y}$ with marginals f_X and f_Y .

The conditional pdf of X given that Y equals $y \in \mathbb{R}$ with $f_Y(y) \neq 0$ is defined for all $x \in \mathbb{R}$ as

$$f_{X|Y=y}(x) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

In the discrete case, replace pdfs by pmfs

$$\bigstar X, Y \text{ independent} \Leftrightarrow \forall (x, y) \in \mathbb{R}^2 : f_{X,Y}(x, y) = f_X(x) f_Y(y)$$

$$\Rightarrow$$
 when $f_X(x), f_Y(y) \neq 0$: $f_{X|Y=y}(x) = f_X(x)$ and $f_{Y|X=x}(y) = f_Y(y)$

■ Conditional distribution - Discrete case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Law of total probability

$$P(X = x) = \sum_{y \in \mathbb{R}} P(X = x, Y = y)$$
 for all $x \in \mathbb{R}$.

If in addition Y is valued in $\mathcal{Y} \subset \mathbb{R}$ and $\textbf{\textit{P}}(Y = y) > 0$ for all $y \in \mathcal{Y}$:

$$\mathbf{P}(X = x) = \sum_{y \in \mathcal{V}} \mathbf{P}(X = x \mid Y = y) \; \mathbf{P}(Y = y)$$

■ Conditional distribution - Discrete case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Law of total probability

Let X,Y be discrete RVs:
$$\mathbf{P}(X=x) = \sum_{y \in \mathbb{R}} \mathbf{P}(X=x,Y=y)$$
 for all $x \in \mathbb{R}$.

If in addition Y is valued in $\mathcal{Y} \subset \mathbb{R}$ and $\mathbf{P}(Y = y) > 0$ for all $y \in \mathcal{Y}$:

$$\mathbf{P}(X = x) = \sum_{y \in \mathcal{V}} \mathbf{P}(X = x \mid Y = y) \; \mathbf{P}(Y = y)$$

Bayes' theorem

Let X,Y be discrete RVs. For all $(x, y) \in \mathbb{R}^2$ such that $\mathbf{P}(X = x)$, $\mathbf{P}(Y = y) \neq 0$:

$$P(Y = y \mid X = x) = \frac{P(X = x \mid Y = y) P(Y = y)}{P(X = x)}$$

■ Conditional distribution - Continuous case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Law of total probability

Let (X,Y) be a RVec with joint pdf $f_{X,Y}: f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, dy \quad \forall x \in \mathbb{R}.$ If in addition Y is valued in $\mathcal{Y} \subset \mathbb{R}_+$ and $f_{\mathcal{Y}}(y) > 0$ for all $y \in \mathcal{Y}$:

$$f_X(x) = \int_{\mathcal{Y}} f_{X|Y=y}(x) f_Y(y) dy$$

■ Conditional distribution - Continuous case

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Law of total probability

Let (X,Y) be a RVec with joint pdf $f_{X,Y}: f_X(x) = \int_{\mathbb{D}} f_{X,Y}(x,y) \, dy \quad \forall \, x \in \mathbb{R}.$ If in addition Y is valued in $\mathcal{Y} \subset \mathbb{R}_+$ and $f_{\mathcal{Y}}(y) > 0$ for all $y \in \mathcal{Y}$:

$$f_X(x) = \int_{\mathcal{V}} f_{X|Y=y}(x) f_Y(y) dy$$

Bayes' theorem

Let (X,Y) be a RVec with joint pdf $f_{X,Y}$. For all $(x,y) \in \mathbb{R}^2$ such that

$$f_X(x), f_Y(y) \neq 0 : f_{Y|X=x}(y) = \frac{f_{X|Y=y}(x) f_Y(y)}{f_X(x)}$$

MOMENTOUS MOMENTS

■ Moments - Expectation

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Expectation

The expectation of a RV X is $\boldsymbol{E}(X) = \int_{\mathbb{D}} x \, \boldsymbol{P}_X(dx) \in \mathbb{R}$ when the integral is absolutely convergent

Expectation \approx average behavior of X

■ Moments - Expectation

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Expectation

The expectation of a RV X is $\mathbf{E}(X) = \int_{\mathbb{R}} x \, \mathbf{P}_X(dx) \in \mathbb{R}$ when the integral is absolutely convergent

Expectation \approx average behavior of X

- **I** X has pdf f_X : $\mathbf{E}(X) = \int_{\mathbb{D}} x f_X(x) dx$
- $\blacksquare \ \, X \text{ has pmf } p_X: \quad \pmb{E}\left(X\right) = \sum x \, p_X(x)$
- $\forall B \in \mathcal{B}(\mathbb{R}) : \mathbf{E} [\mathbf{1} \{X \in B\}] = \mathbf{P}_X(B) = \mathbf{P}(X \in B)$
- $X \in \mathbb{R}^d \implies E(X) = (E(X_1), \dots, E(X_d)) \in \mathbb{R}^d$

■ Moments - Expectation

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Properties: for any random variables X, Y with existing expectations

(linearity)

■
$$X$$
 and Y independent \Rightarrow $E(XY) = E(X) E(Y)$ (\not)

g
$$(X)$$
 valued in a measure space \Rightarrow $E(g(X)) = \int_{\mathbb{R}} g(x) P_X(dx)$

- ϕ convex function on $\mathbb{R} \Rightarrow \phi(E(X)) \leq E(\phi(X))$ (Jensen's inequality)
- **X** nonnegative, a > 0 \Rightarrow $P(X \ge a) \le \frac{E(X)}{a}$ (Markov's inequality)

■ Moments - Variance

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Variance

The variance of a RV X is
$$V(X) = E\left(\left(X - E(X)\right)^2\right)$$
 when the expectations exist (we can also write $Var(X)$)

Variance \approx average deviation to the average behavior of *X*

$$\sigma(X) := \sqrt{V(X)}$$
 standard deviation of X

■ Moments - Variance

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

Variance

The variance of a RV X is
$$V(X) = E\left(\left(X - E(X)\right)^2\right)$$
 when the expectations exist (we can also write $Var(X)$)

Variance \approx average deviation to the average behavior of *X*

 $\sigma(X) := \sqrt{V(X)}$ standard deviation of X

- **V** $(X) = E(X^2) E(X)^2$
- $\forall \alpha, \beta \in \mathbb{R} : \boldsymbol{V} (\alpha X + \beta) = \alpha^2 \boldsymbol{V} (X)$
- $\forall a > 0: \quad P(|X E(X)| \ge a) \le \frac{V(X)}{a^2}$

(Chebyshev's inequality)

■ Moments - Covariance

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Covariance

The covariance of a RVec $X = (X_1, \dots, X_d)$ is defined as the $d \times d$ matrix

$$\Sigma^{X} := \boldsymbol{E}\left(\left(X - \boldsymbol{E}\left(X\right)\right) \, \left(X - \boldsymbol{E}\left(X\right)\right)^{T}\right)$$

when the expectations exist

Covariance \approx average deviation to independence of X

RVs
$$X$$
 and Y independent $\Rightarrow Cov(X,Y) = 0$

■ Moments - Covariance

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random vector $\Omega \to \mathcal{X}$

Covariance

The covariance of a RVec $X = (X_1, \dots, X_d)$ is defined as the $d \times d$ matrix

$$\Sigma^{X} := \boldsymbol{E}\left(\left(X - \boldsymbol{E}\left(X\right)\right) \, \left(X - \boldsymbol{E}\left(X\right)\right)^{T}\right)$$

when the expectations exist

Covariance \approx average deviation to independence of X

RVs X and Y independent $\Rightarrow Cov(X,Y) = 0$

- Σ^X positive, semi-definite, symmetric

■ Conditional moments

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

X, Y RVs with joint pdf $f_{X,Y}$ plus finite expectations and variances $y \in \mathbb{R}$ such that $f_{V}(y) \neq 0$

Conditional moments

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

X, Y RVs with joint pdf $f_{X,Y}$ plus finite expectations and variances $y \in \mathbb{R}$ such that $f_{V}(y) \neq 0$

Conditional expectation:
$$E(X | Y = y) = \int_{\mathbb{R}} x f_{X|Y=y}(x) dx$$

- **E** $(X \mid Y) : (\Omega, A) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ real-valued RV
- $\mathbf{E}(X) = \mathbf{E}(\mathbf{E}(X \mid Y))$

(law of total expectation)

■ Conditional moments

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

X, Y RVs with joint pdf $f_{X,Y}$ plus finite expectations and variances $y \in \mathbb{R}$ such that $f_{Y}(y) \neq 0$

Conditional expectation:
$$E(X | Y = y) = \int_{\mathbb{R}} x f_{X|Y=y}(x) dx$$

- **E** $(X \mid Y) : (\Omega, A) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ real-valued RV
- $\mathbf{E}(X) = \mathbf{E}(\mathbf{E}(X \mid Y))$

(law of total expectation)

Conditional variance:
$$V(X \mid Y = y) = E((X - E(X \mid Y = y))^2 \mid Y = y)$$

- $V(X \mid Y) : (\Omega, A) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ real-valued RV
- $V(X) = E(V(X \mid Y)) + V(E(X \mid Y))$

(law of total variance)

Conditional moments

 $(\Omega, \mathcal{A}, \mathbf{P})$ probability space $(\mathcal{X}, \mathcal{B})$ measure space

Random variable $\Omega \to \mathcal{X}$

X, Y, Z RVs with joint pdf $f_{X,Y,Z}$ plus finite expectations and variances $z \in \mathbb{R}$ such that $f_{Z}(z) \neq 0$

Conditional covariance:

$$Cov\left(X,Y\mid Z=z\right)=\boldsymbol{E}\left(\left(X-\boldsymbol{E}\left(X\mid Z=z\right)\right)\,\left(Y-\boldsymbol{E}\left(Y\mid Z=z\right)\right)\,\Big|\,\,Z=z\right)$$

- $Cov(X,Y \mid Z) : (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ real-valued RV
- $Cov(X,Y) = \mathbf{E} \left(Cov(X,Y \mid Z) \right) + Cov \left(\mathbf{E} \left(X \mid Z \right), \mathbf{E} \left(Y \mid Z \right) \right)$ (law of total covariance)

Appendix

COMMON DISTRIBUTIONS

- Binomial distribution
- Poisson distribution
- Uniform distribution
- Exponential distribution
- Gaussian distribution
- Multivariate Gaussian distribution

Common distributions - Binomial

$$X \sim \mathcal{B}(n,p)$$

$$(n,p) \in \mathbb{N}^* \times [0,1]$$

$$(n,p) \in \mathbb{N}^* \times [0,1]$$
 $X : (\Omega, \mathcal{A}) \to (\llbracket 0, n \rrbracket, \mathcal{P}(\llbracket 0, n \rrbracket))$

$$\forall x \in \mathbb{R}: \quad F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1-p)^{n-k} \mathbf{1} \{ x \in [0,n) \} + \mathbf{1} \{ x \ge n \}$$

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \mathbf{1} \left\{ x \in [0, n] \right\}$$

$$\boldsymbol{E}(X) = n p$$

$$\boldsymbol{V}(X) = n \, p \, (1 - p)$$

$$n = 1 \implies X \sim \mathcal{B}(p)$$
 Bernoulli distribution

■ Common distributions - Binomial

$$X \sim \mathcal{B}(5, p)$$

$$p = 0.1 - p = 0.5 - p = 0.9$$

•
$$p = 0.1$$
 • $p = 0.5$ • $p = 0.9$

■ Common distributions - Poisson

$$X \sim \mathcal{P}(\lambda)$$

$$\lambda \in \mathbb{R}_+^*$$

$$X: (\Omega, \mathcal{A}) \to (\mathbb{N}, \mathcal{P}(\mathbb{N}))$$

$$\forall x \in \mathbb{R}: \quad F_X(x) = \frac{\Gamma(\lfloor x+1 \rfloor, \lambda)}{\lfloor x \rfloor!} \mathbf{1} \{x \ge 0\}$$

$$p_X(x) = \frac{e^{-\lambda} \lambda^x}{x!} \mathbf{1} \left\{ x \in \llbracket 0, n \rrbracket \right\}$$

$$\boldsymbol{E}(X) = \lambda$$

$$V(X) = \lambda$$

■ Common distributions - Poisson

$$X \sim \mathcal{P}(\lambda)$$

$$\lambda = 1 - \lambda = 5 \cdots \lambda = 10$$

$$\bullet \lambda = 1 \bullet \lambda = 5 \bullet \lambda = 10$$

■ Common distributions - Uniform

$$X \sim \mathcal{U}_{[a,b]}$$

$$(a, b) \in \mathbb{R}^2$$
, $a < b$

$$X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$$

$$\forall x \in \mathbb{R}: \ F_X(x) = \frac{x - a}{b - a} \mathbf{1} \{ x \in [a, b] \} + \mathbf{1} \{ x > b \}$$

$$f_X(x) = \frac{1}{b-a} \mathbf{1} \{ x \in [a,b] \}$$

$$\boldsymbol{E}\left(X\right) = \frac{a+b}{2}$$

$$\boldsymbol{V}(X) = \frac{(b-a)^2}{12}$$

■ Common distributions - Uniform

$$X \sim \mathcal{U}_{[a,b]}$$

■ Common distributions - Exponential

$$X \sim \mathcal{E}(\lambda)$$

$$\lambda \in \mathbb{R}_+^*$$

$$X\,:\,(\Omega,\mathcal{A})\to(\mathbb{R}_+,\mathcal{B}(\mathbb{R}_+))$$

$$\forall x \in \mathbb{R}: \quad F_X(x) = 1 - e^{-\lambda x} \mathbf{1} \{ x \ge 0 \}$$
$$f_Y(x) = \lambda e^{-\lambda x} \mathbf{1} \{ x > 0 \}$$

$$\boldsymbol{E}(X) = \frac{1}{\lambda}$$

$$\boldsymbol{V}\left(X\right) = \frac{1}{\lambda^2}$$

■ Common distributions - Exponential

$$X \sim \mathcal{E}(\lambda)$$

■ Common distributions - Gaussian

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*$$

$$X: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

$$\forall x \in \mathbb{R}: \quad F_X(x) = \frac{1}{2} \left(1 + \operatorname{erf} \frac{x - \mu}{\sigma \sqrt{2}} \right)$$
$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{ \frac{-(x - \mu)^2}{2\sigma^2} \right\}$$

$$\boldsymbol{E}(X) = \mu$$

$$V(X) = \sigma^2$$

■ Common distributions - Gaussian

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

■ Common distributions - Multi. Gaussian

$$X \sim \mathcal{N}(\mu, \Sigma) \qquad (\mu, \Sigma) \in \mathbb{R}^d \times \mathcal{M}_{d \times d}(\mathbb{R}_+^*), d \in \mathbb{N}^* \qquad X : (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$$

$$\forall \, x \in \mathbb{R}^d: \quad f_X(x) = \frac{1}{|\Sigma|^{1/2} \; (2 \, \pi)^{d/2}} \, \exp \left\{ \frac{1}{2} \, (x - \mu)^T \, \Sigma^{-1} \, (x - \mu) \right\}$$

$$\boldsymbol{E}(X) = \mu$$

$$V(X) = \Sigma$$

■ Common distributions - Multi. Gaussian

$$X \sim \mathcal{N}\left(\binom{1}{2}, \binom{0.25 \quad 0.3}{0.3 \quad 2}\right)$$

