Établissement du courant dans un circuit comportant une bobine

Définition de l'inductance L Relation flux magnétique-intensité

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot d\vec{S} = L \times i$$

Définition de l'inductance L Relation flux magnétique-intensité

$$iggl| \Phi = \iint ec{B} \cdot \mathrm{d} ec{S} = L imes i iggr| \qquad \mathrm{et} \qquad e = -rac{\mathrm{d} \Phi}{\mathrm{d} t}$$

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot d\vec{S} = L \times i$$
 et $e = -\frac{d\Phi}{dt}$

Relation intensité-tension

Définition de l'inductance L Relation flux magnétique-intensité

$$\left| \Phi = \iint ec{B} \cdot ec{\mathrm{d}S} = L imes i
ight| \qquad \mathrm{et} \qquad e = -i$$

Relation intensité-tension

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot \vec{\mathrm{dS}} = L \times i$$
 et $e = -i$

Relation intensité-tension

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Comportement en régime permanent

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot d\vec{S} = L \times i$$
 et $e = -\frac{d\Phi}{dt}$

Relation intensité-tension $u = L \frac{\mathrm{d}i}{\mathrm{d}t}$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Comportement en régime permanent

$$\frac{\mathrm{d}}{\mathrm{d}t} = 0 \Longrightarrow u = 0$$

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot d\vec{S} = L \times i$$
 et $e = -\frac{d\Phi}{dt}$

Relation intensité-tension $u = L \frac{di}{dt}$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Comportement en régime permanent

$$\frac{\mathrm{d}}{\mathrm{d}t} = 0 \Longrightarrow u = 0$$
 (bobine = interrupteur fermé)

Définition de l'inductance L Relation flux magnétique-intensité

$$\Phi = \iint \vec{B} \cdot d\vec{S} = L \times i$$
 et $e = -\frac{d\Phi}{dt}$

Relation intensité-tension $u = L \frac{di}{dt}$

$$u = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Comportement en régime permanent

$$\frac{\mathrm{d}}{\mathrm{d}t} = 0 \Longrightarrow u = 0$$
 (bobine = interrupteur fermé)

La bobine n'est "intéressante" qu'en régime variable.

Loi des mailles

Loi des mailles

$$E = u(t) + Ri(t)$$

Loi des mailles

$$E = u(t) + Ri(t)$$

$$\implies E = L \frac{di(t)}{dt} + Ri(t)$$

Loi des mailles

$$E = u(t) + Ri(t)$$

$$\implies E = L \frac{di(t)}{dt} + Ri(t)$$

Posons $\tau = L/R$ et réorganisons :

Loi des mailles

$$E = u(t) + Ri(t)$$

$$\implies E = L \frac{di(t)}{dt} + Ri(t)$$

Posons $\tau = L/R$ et réorganisons :

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{L}$$

Loi des mailles

$$E = u(t) + Ri(t)$$

$$\implies E = L \frac{di(t)}{dt} + Ri(t)$$

Posons $\tau = L/R$ et réorganisons :

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{L}$$

Équation différentielle du premier ordre avec second membre.

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{I}$$

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{L}$$

Solution
$$i(t) = i_h + i_p \Longrightarrow i(t) = Ae^{-\frac{t}{\tau}} + \frac{E}{R}$$

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{L}$$

Solution
$$i(t) = i_h + i_p \Longrightarrow i(t) = Ae^{-\frac{t}{\tau}} + \frac{E}{R}$$

CI à
$$t = 0$$
, $i(t) = 0 \Longrightarrow A = -E/R$

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{i}{\tau} = \frac{E}{L}$$

Solution
$$i(t) = i_{\rm h} + i_{\rm p} \Longrightarrow i(t) = A e^{-\frac{t}{\tau}} + \frac{E}{R}$$

CI à
$$t = 0$$
, $i(t) = 0 \Longrightarrow A = -E/R$

$$i(t) = \frac{E}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$i(t) = rac{E}{R} \left(1 - e^{-rac{t}{ au}}
ight)$$

$$i(t) = \frac{E}{R} \left(1 - e^{-\frac{t}{\tau}}\right)$$

Détermination de au

- Pour $t = \tau$, i(t) = 0.63 E/R;
- $t \bullet La$ tangente en t = 0 à la courbe coupe l'asymptote i = E/R en $t = \tau$.