ATOM, MOLECULES AND SUBATOMIC PARTICLES

- MATTER MADE FROM ELEMENTS.
- ELEMENTS CONSIST OF ATOMS. THE ATOMS OF A
 GIVEN ELEMENT IS THE SMALLEST PARTICLE OF AN
 ELEMENT THAT CAN EXIST AND STILL HAVE THE
 PROPERTIES OF THE ELEMENT
- COMPOUNDS ARE COMBINATIONS OF ATOMS. THE PROPERTIES OF COMPOUNDS ARE VERY DIFFERENT FROM THOSE OF ATOMS.

ATOMIC THEORY OF MATTER

- ALL MATTER IS MADE OF ATOMS.
 118 DIFFERENT TYPES OF ATOMS KNOWN.
- 2. ALL ATOMS OF A GIVEN TYPE WILL BE SIMILAR TO ONE ANOTHER AND DIFFERENT FROM ALL OTHERS.
- 3. RELATIVE NUMBER AND ARRANGEMENT OF DIFFERENT TYPES OF ATOMS IN A PURE SUBSTANCE DETERMINE ITS IDENTITY.
- 4. CHEMICAL CHANGE IS A UNION, SEPARATION OR REARRANGEMENT OF ATOMS TO GIVE NEW SUBSTANCES.
- 5. ONLY WHOLE ATOMS CAN PARTICIPATE IN OR RESULT FROM ANY CHEMICAL CHANGE. FOR OUR PURPOSES ATOMS ARE CONSIDERED INDESTRUCTIBLE DURING SUCH CHANGES.

MOLECULES

- MOLECULES ARE MADE FROM 2 OR MORE ATOMS <u>COVALENTLY BOUND TOGETHER</u> WHICH FUNCTION AS A SINGLE ENTITY.
 - THESE ARE CALLED MOLECULAR COMPOUNDS.
 - THE RELATIVE NUMBER AND ARRANGEMENT OF DIFFERENT TYPES OF ATOMS CONTAINED IN A PURE SUBSTANCE DETERMINE ITS IDENTITY.
 - THE MOLECULE IS THE LIMIT OF PHYSICAL SUBDIVISION.
 - THE ATOM IS THE LIMIT OF CHEMICAL SUBDIVISION.

MOLECULES

- MOLECULE MUST CONTAIN TWO OR MORE ATOMS.
- DIATOMIC MOLECULE: A MOLECULE THAT CONTAINS TWO ATOMS.
- POLYATOMIC MOLECULE: A MOLECULE THAT CONTAINS MORE THAN TWO ATOMS.
- HOMOATOMIC MOLECULE: THE ATOMS IN THE MOLECULES ARE THE SAME KIND.
- HETEROATOMIC MOLECULE: THE ATOMS IN THE MOLECULES ARE OF TWO OR MORE DIFFERENT KINDS.
- THERE ARE 7 ELEMENTS THAT EXIST DIATOMIC MOLECULES H₂, N₂, O₂, F₂, CL₂, Br₂, I₂
- PHOSPHORUS IS A QUAD SULFUR IS AN OCTET

- MOLECULES CONTAINING CARBON ARE CALLED "ORGANIC."
- MOLECULES CONTAINING JUST CARBON, HYDROGEN AND OXYGEN ARE CALLED CARBOHYDRATES.
- THOSE WITH JUST CARBON AND HYDROGEN ARE HYDROCARBONS.

MOLECULES

- THERE IS ONLY ONE KIND OF MOLECULE FOR ANY GIVEN MOLECULAR SUBSTANCE.
- MOLECULES HAVE THEIR OWN PROPERTIES WHICH WILL BE DIFFERENT FROM THOSE OF THE INDIVIDUAL ATOMS.

 MILLIONS OF MOLECULES EXIST – BOTH NATURALLY AND MAN-MADE (SYNTHETIC).

ATOMS

- ATOMS ARE NEUTRAL
 - ATOMS WILL HAVE THE SAME NUMBER OF PROTONS AND ELECTRONS. A BALANCED CHARGE MEANS THEY ARE NEUTRAL.
 - IONS ARE NOT NEUTRAL.
- ATOMS MAKE UP *ELEMENTS AND COMPOUNDS;* <u>ELEMENTS</u> ARE PURE SUBSTANCES
 WITH ALL THE SAME ATOMIC NUMBER.
- <u>COMPOUNDS</u> CHEMICAL ARE COMBINATIONS OF ATOMS.

ATOMS

- SIZE OF ATOMS
 - NOT EASILY DEFINED.
 - SMALLER THAN THE WAVELENGTH OF LIGHT SO CAN'T BE SEEN WITH OPTICAL MICROSCOPE.
 - MASS OF ATOM IS IN THE NUCLEUS; NUCLEUS IS SMALL COMPARED TO ELECTRON CLOUD. ELECTRON CLOUD IS MAJOR CONTRIBUTOR TO ATOMIC SIZE.
 - THE RATIO OF THE SIZE OF THE HYDROGEN ATOM TO ITS NUCLEUS IS ABOUT 100,000:1. IF AN ATOM WERE THE SIZE OF A <u>STADIUM</u>, THE NUCLEUS WOULD BE THE SIZE OF A <u>MARBLE</u>.

ATOMS

• THIS MODEL OF A LITHIUM ATOM SHOWS THE ELECTRONS (BLUE), THE PROTONS (RED), AND THE NEUTRONS (YELLOW).

SUBATOMIC PARTICLES

- ATOMS ARE MADE UP OF SMALLER FUNDAMENTAL PARTICLES CALLED SUBATOMIC PARTICLES.
- SUBATOMIC PARTICLES: BUILDING BLOCKS FOR ATOMS.
 - PROTONS: A SUBATOMIC PARTICLE WITH A POSITIVE CHARGE; WEIGHS SLIGHTLY LESS THAN A NEUTRON
 - NEUTRONS: A SUBATOMIC PARTICLE THAT IS NEUTRAL; NO CHARGE; HEAVIEST OF SUBATOMIC PARTICLES
 - **ELECTRONS**: A SUBATOMIC PARTICLE WITH A NEGATIVE CHARGE. SMALLEST OF SUBATOMIC PARTICLES. ABOUT 1800 TIMES LIGHTER THAN PROTON OR NEUTRON.

SUBATOMIC PARTICLES

NUCLEUS:

- SMALL, DENSE CENTER OF THE ATOM;
- CONTAINS PROTONS AND NEUTRONS;
- ALWAYS CARRIES A POSITIVE CHARGE.

NUCLEON:

 ANY SUBATOMIC PARTICLE IN THE NUCLEUS. FOR THIS CLASS THAT MEANS PROTONS AND NEUTRONS.

SUBATOMIC PARTICLES

ELECTRON CLOUD:

- OUTER REGION OF AN ATOM WHERE ELECTRONS MOVE RAPIDLY AROUND THE NUCLEUS.
- LARGE AREA COMPARED TO SIZE OF NUCLEUS.
- HAS NO FIRMLY DEFINED AREA.
- CONTAINS SHELL LEVELS, WHICH HAVE SUBSHELL LEVELS WHICH CONTAIN ORBITALS FOR THE ELECTRONS.
- CARRIES A NEGATIVE CHARGE.

- ATOMIC NUMBER: THE NUMBER OF PROTONS IN THE NUCLEUS OF AN ATOM.
 - ATOMS ARE DEFINED BY THEIR NUMBER OF PROTONS.
 - #1-92 (EXCEPT Tc AND Pm) ARE NATURALLY OCCURRING, REST ARE SYNTHETIC (MAN-MADE).
 - NUMBER OF ELECTRONS WILL EQUAL THE ATOMIC NUMBER IN AN ATOM. THIS GIVES A NEUTRAL ATOM.
 - ATOMIC NUMBER IS DENOTED BY Z

MASS NUMBER:

- SUM OF THE PROTONS AND NEUTRONS IN THE NUCLEUS OF AN ATOM.
- THIS NUMBER IS A COUNT NOT AN ATOMIC MASS.

EXAMPLE: ALUMINUM HAS 13 PROTONS AND 14 NEUTRONS SO THE MASS NUMBER IS 27.

- NUCLEAR NOTATION: USED TO INDICATE THE ATOMIC NUMBER AND MASS NUMBER OF AN ATOM OR ISOTOPE
 - NUCLEAR NOTATION IS FORMED BY WRITING AN ELEMENTAL SYMBOL PRECEDED BY A SUBSCRIPT INDICATING ITS ATOMIC NUMBER (Z) AND A SUPERSCRIPT INDICATING ITS MASS NUMBER (A).

NUCLIDE:

 AN ATOM WITH A SPECIFIC ATOMIC NUMBER AND A SPECIFIC MASS NUMBER.

ISOTOPES

- ISOTOPES ARE ATOMS OF AN ELEMENT THAT HAVE SAME NUMBER OF PROTONS AND ELECTRONS BUT DIFFERENT NUMBER OF NEUTRONS.
 - TYPE OF ELEMENT DETERMINED BY SAME NUMBER OF PROTONS.
 - NUCLEUS CAN HAVE DIFFERENT NUMBERS OF NEUTRONS.
 - DIFFERENT NUMBER OF NEUTRONS MEANS A DIFFERENT MASS NUMBER; NOT A DIFFERENT ATOMIC NUMBER.
 - CAN HAVE SLIGHTLY DIFFERENT PHYSICAL PROPERTIES.
 - SIMILAR CHEMICAL PROPERTIES

ISOTOPES

- WE OFTEN REFER TO AN ISOTOPE BY STATING THE NAME OF THE ELEMENT FOLLOWED BY THE MASS NUMBER.
 - COBALT-60 IS
 - CARBON-14 IS
- HOW MANY PROTONS AND NEUTRONS DOES AN ATOM OF LEAD-206 HAVE?
 - THE ATOMIC NUMBER OF Pb IS 82, SO IT HAS 82 PROTONS.
 - Pb-206 HAS MASS NUMBER 206 SO,

Mass number - Atomic Number = Number of Neutrons.

CALCULATE MASS NUMBER OF AN ELEMENT WITH 14 ELECTRONS AND 14 NEUTRONS ?

 CALCULATE THE NUMBER OF NEUTRONS OF ELEMENT WITH 9 PROTONS AND 19 MASS NUMBER ? EXAMPLES OF ISOTOPES

1 Hydrogen			Helium	3	Lithium		
¹ ₁ H ² ₁ H ³ ₁ H	1.008 amu 99.985% 2.014 amu 0.015% 3.016 amu trace	0.7	3.016 amu trace 4.003 amu 100%		i 6.015 amu 7.42% i 7.016 amu 92.58%		
4	Beryllium	5	Boron	6	Carbon		
9 4 Be	9.012 amu 100%	10 B 11 B	10.013 amu 19.6% 11.009 amu 80.4%	¹² C 12.000 amu 98.89% ¹³ C 13.003 amu 1.11% ¹⁴ C 14.003 amu trace			
7	Nitrogen	8	Oxygen	9	Fluorine		
	14.003 amu 99.63% 15.000 amu 0.37%	¹⁷ ₈ O	15.995 amu 99.759% 16.999 amu 0.037% 17.999 amu 0.204%	¹⁹ F	18.998 amu 100%		
10	Neon	11	Sodium	12	Magnesium		
	19.992 amu 90.92%			²⁴ Mg 23.985 amu 78.70% ²⁵ Mg 24.986 amu 10.13% ²⁶ Mg 25.983 amu 11.17%			

ISOBARS

ISOBARS:

ISOBARS ARE ATOMS (NUCLIDES) OF DIFFERENT CHEMICAL ELEMENTS THAT HAVE THE SAME NUMBER OF NUCLEONS.

- ATOMS THAT HAVE THE SAME MASS NUMBER.
- THEY WILL HAVE DIFFERENT ATOMIC NUMBERS.

EXAMPLES-

⁵⁸ ₂₆ Fe	⁵⁸ Ni
⁴⁰ ₂₀ Ca	⁴⁰ ₁₈ Ar

Using the information below, indicate if the pairs of atoms are isotopes, isobars or neither.

	Protons	Neutro ns	Electron s
Atom A	9	10	9
Atom B	10	9	10
Atom C	10	10	10
Atom D	9 Atom B	9 Atom	A and Atom

Atom C and Atom D

Atom C and Atom D

Atom A and Atom D

Atom'A and Atom'C

Atom C and Atom B

Atom B and Atom D

MASS NUMBER AND ATOMIC MASS

- MASS NUMBER = SUM OF PROTONS AND NEUTRONS
- ATOMIC MASS = WEIGHTED AVERAGE MASS THAT ACCOUNTS FOR:
 - THE NUMBER OF ISOTOPES FOR THE ELEMENT.
 - PERCENT ABUNDANCE OF EACH ISOTOPE.
 - THE RELATIVE MASS OF EACH ISOTOPE USING CARBON -12 AS THE REFERENCE POINT.

															18 8A
0				K	(ey				,	13 3A	14 4A	15 5A	16 6A	17 7A	Heli dm 4.00
			11· Na Sodiu	Ele	mic numb ment sym ment nam	bol	5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18			
3	4 4B	5 5B	6 6B	7 7B	erage aton	nic mass* 9 8B	10	11 1 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30,97	16 S Sulfur 32.07	17 Cl Chlorine 35,45	18 Ar Argon 39.95
D lium	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65,39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
,m	40 Zr Zirconium	Nb	42 Mo Molybdenum	43 Tc	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver	48 Cd Cadmium	49 In Indium	50 Sn	51 Sb Antimony	52 Te Tellurium	53 lodine	54 Xe Xenon
1	91.22 72 Hf Hathium	92.91 73 Ta Tentelum	95.94 74 W	75 Re	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	80 Hg	81 TI Thellium	118.71 82 Pb	121.76 83 Bi Bismuth	127.60 84 Po Polonium	126.90 85 At Astatine	86 Rn Radon
91)	178.49 104 Rf	180.95 105 Db	Tungsten 183.84 106 Sg	186.21 107 Bh	190.23 108 Hs	192.22 109 Mt	195.08	196.97	Mercury 200.59	204.38	207.2	208.98	(209)	(210)	(222)
ium 7)	Rutherfordium (261)	Dubnium (262)	Seaborgium (266)		Hassium (269)	Meitnerium (268)									

es, t	nen
f the	

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
Cerium	Praseodymium					Gadolinium		Dysprosium	100000000000000000000000000000000000000	Erbium	Thulium	Ytterbium	Lutetium
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	38	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Bakelium	Calify rnium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrenciun
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)