UNCLASSIFIED

AD NUMBER ADB007015 **LIMITATION CHANGES** TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; DEC 1973. Other requests shall be referred to Air Force Armament Lab., Eglin AFB, FL 32542. AUTHORITY AFATL ltr 13 Oct 1976

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFATL-TR-73-245

CODING FOR FREQUENCY-SHIFT-KEYED (FSK) COMMUNICATION SYSTEM

ELECTRICAL ENGINEERING DEPARTMENT UNIVERSITY OF MISSOURI

TECHNICAL REPORT AFATL-TR-73-245
DECEMBER 1973

Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied <u>December 1973</u>. Other requests for this document must be referred to the Air Force Armament Laboratory (OLMT), Eglin Air Force Base, Florida 32542.

AIR FORCE ARMAMENT LABORATORY

AIR FORCE SYSTEMS COMMAND . UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

AGE DESIGN for HTTS White Section II UBALLE JHOED JUSTIFICATION DISTRIBUTION/AVAILABILITY 880ES Dist. AVAIL PLACE SE CHAL

Coding For Frequency-Shift-Keyed (FSK) Communication System

Dr. John J. Komo

Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied December 1973. Other requests for this document must be referred to the Air Force Armament Laboratory (DLMT), Eglin Air Force Base, Florida 32542.

FOREWORD

This report documents work performed during the period from January 1973 through December 1973 by the Electrical Engineering Department, University of Missouri, Columbia, Missouri, under Contract No. F08635-73-C-0078 with the Air Force Armament Laboratory, Eglin Air Force Base, Florida. Captain John A. Carnaghie (DLT) initiated the program, and Captain Charles W. Baker (DLMT) managed the program for the Armament Laboratory.

A note of thanks is extended to Captain Donald L. Steanson and Lieutenant Michael T. Corye, Air Force Institute of Technology, Civilian Institutions Division students at the University of Missouri for their assistance in coding analysis and circuit design and fabrication. A special acknowledgment is extended to Dr. James E. Ratke who provided leadership and assistance in the development and fabrication of the circuits.

This technical report has been reviewed and is approved.

OHN W JOHNSON

Couty Chief, Guided Weapons Division

ABSTRACT

Coding schemes for the correction of random errors or burst errors for fixed block length digital data words are presented in this report. The word format considered is a 48-bit word with six 8-bit subwords, and the codes developed are for the correction of errors in two subwords with a third subword for the parity bits. Several codes are considered and analyzed for their error correcting capability. Also, computer simulations were carried out on several of these codes, and a burst length 5-error correcting coding system was mechanized. Performance gains based on comparisons with uncoded, coherent frequency-shift-keyed system are examined.

Distribution limited to U.S. Government agencies only; this report documents test and evaluation; distribution limitation applied December 1973. Other requests for this document must be referred to the Air Force Armament Laboratory (DLMT), Eglin Air Force Base, Florida 32542.

TABLE OF CONTENTS

Section		
	, Pag	je
I	INTRODUCTION	1
ΙΙ	FREQUENCY-SHIFT-KEYED COMMUNICATION SYSTEM	3
111	CYCLIC CODES	1
IA	RANDOM ERROR-CORRECTING CODES	
٧	BURST ERROR-CORRECTING CODES	
VI	(24,14) BURST CODE CONSTRUCTION	
VII		2
V 1 1	NON-CYCLIC BLOCK CODES	2

LIST OF FIGURES

Figu	ire	Title	Page
	1.	Coherent Detection of FSK, O Transmitted	4
	2.	Coherent Versus Noncoherent FSK Comparison	6
	3.	Coded Versus Uncoded Comparison $(E_b^c = \frac{k}{n}E_b)$	9
	4.	Coded Versus Uncoded Comparison $(E_b^c = E_b)$	10
	5.	Binary Multiplication of $d(X)$ by $f(X)$	16
	6.	Modulo 2 Multiplication of $d(X)$ by $f(X)$	17
	7.	Modulo 2 Division of $d(X)$ by $f(X)$	18
	8.	$(1+X+X^5)d(X)$ Divided by $1+X^3+X^4+X^5+X^6$	19
	9.	General Cyclic Encoder	21
	10.	General Cyclic Decoder	22
	11.	General Single Error-Trapping Decoder	27
	12.	Modified Single Error-Trapping Decoder	30
	13.	Single Error-Trapping Decoder for Shortened Cyclic Code .	32
	14.	Decoder for (12,6) Shortened Cyclic Code	33
	15.	Encoder for (15,7) Cyclic Code	35
	16.	Circle Representation of Bits for (15,7) Cyclic Code	36
•	17.	Decoder for (15,7) Double Error-Correcting Code	37
	18.	Circle Representation of Bits for (21,12) Cyclic Code	41
	19.	Decoder for (21,12) Double Error-Correcting Code	43
	20.	Encoder for (48,40) Shortened Cyclic Single Error- Correcting Code	47
	21.	Decoder for (48,40) Shortened Cyclic Single Error- Correcting Code	49
	22.	Encoder for (24,14) Double Error-Correcting Code	50
	23	Decoder for (24.14) Double Error-Correcting Code	52

LIST OF FIGURES (CONCLUDED)

Figure	Title				Page
24.	Burst Error-Trapping Decoder				97
25.	Encoder for (48,40) Shortened Cyclic Burst 3 Error-Correcting Code	•			99
26.	Decoder for (48,40) Shortened Cyclic Burst 3 Error- Correcting Code		•		101
27.	Encoder for (24,14) Burst 5 Error-Correcting Code .				102
28.	Decoder for (24,14) Burst 5 Error-Correcting Code .				103
29.	Real Time Decoding with a One-Word Delay		•		111
30.	Encoder Circuit Diagram 1		•		113
31.	Encoder Circuit Diagram 2				114
32.	Encoder Printed Circuit Board 1				115
33.	Encoder Printed Circuit Board 2				116
34.	Decoder Circuit Diagram				118
35.	Decoder Printed Circuit Board				119
36.	Simulator Printed Circuit Boards	,			120
37.	Display Printed Circuit Boards		•		121
38.	Encoder for (24,14) Noncyclic Block Burst 5 Error-Correcting Code	•		•	124
39.	Decoder for (24,14) Noncyclic Block Burst 5 Error-Correcting Code	•	•		125
40.	10-Line to 1024-Line Logic Decoder			•	126
41.	Encoder for (24,17) Noncyclic Block Burst 3 Error-Correcting Code				128
42.	Decoder for (24,17) Noncyclic Block Burst 3 Error- Correcting Code				129
43.	7-Line to 128-Line Logic Decoder				130

LIST OF TABLES

Tab1e	Title	Page
I.	$GF(2^4)$ for $f(X)=X^4+X^3+1$	1:
II.	$GF(2^4)$ for $f(x)=x^4+x^3+x^2+x+1$	1:
III.	$(1+\chi+\chi^5)d(\chi)$ Divided by $1+\chi^3+\chi^4+\chi^5+\chi^6$	1!
IV.	Random Error-Correcting Codes	20
٧.	Processing of $r(X)=X^4+X^6+X^7$ with (15,7) Decoder	39
VI.	Processing of $r(x)=1+x^4+x^5+x^7+x^8+x^9+x^{14}$ with (21,12) Decoder	45
VII.	Processing of $r(x)=x^3+x^5+x^8+x^9+x^{10}$ with (24,14) Decoder	53
VIII.	Processing of $r(X)=X^3+X^5+X^6+X^8+X^{10}$ with (24,14) Decoder	56
IX.	Processing of $r(x)=x^3+x^5+x^6+x^8+x^9+x^{10}+x^{18}$ with (24,14) Decoder	59
Х.	Computer-Generated Burst Error-Correcting Codes	63
XI.	Fire Codes	65
XII.	Burton Codes	67
XIII.	Interlaced Hamming Burst Error-Correcting Codes	67
XIV.	(63,55) l=3 Computer-Generated Code	69
XV.	(35,27) l=3 Fire Code	71
XVI.	(85,75) l=4 Computer-Generated Code	73
XVII.	(27,17) l=5 Computer-Generated Code	78
XVIII.	(42,30) l=4 Burton Code	84
XIX.	(28,16) L=4 Interlaced Hamming Code	91
XX.	Processing of $r(X)=1+\chi^2+\chi^3+\chi^4+\chi^6+\chi^9+\chi^{10}+\chi^{11}+\chi^{12}+\chi^{13}+\chi^{14}+\chi^{15}+\chi^{16}+\chi^{17}+\chi^{18}$ with (24,14) Burst Decoder	
XXI.	Processing of $r(X)=X^{7}+X^{23}$ with (24,14) Burst Decoder	105 106

LIST OF TABLES (CONCLUDED)

Table	Title	Page
XXII.	Processing of $r(X)=1+X+X^2+X^3+X^4+X^5+X^7+X^8+X^9+X^{10}+X^{11}+X^{12}+X^{13}+X^{14}$ with (24,14) Burst Decoder	
	With (24,14) Burst Decoder	107
XXIII.	Processing of $r(x)=1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18}+x^{19}+x^{20}+x^{21}+x^{22}+x^{23}$ with	
	(24,14) Burst Decoder	108
XXIV.	Processing of $r(x)=x^3+x^4+x^5+x^7+x^8+x^{10}$ with (24,14)	
	Burst Decoder	109
XXV.	Processing of $r(X)=1+X^3+X^4+X^5+X^7+X^8+X^{10}$ with (24,14)	
	Burst Decoder	110

SECTION I

INTRODUCTION

In recent years the application of the theoretical aspects of coding theory has enhanced the attractiveness of digital communication systems. By using error control encoding and decoding, it is possible to achieve significant improvements in overall system performance, i.e., obtaining the same error performance as the uncoded system with less transmitter power or obtaining better error performance than the uncoded system with the same transmitter power. Noncyclic and cyclic type block codes are considered in this report. The amount of coding gain that is realizable for block codes depends on the particular code that is chosen.

A block code of length n bits with k information bits is denoted a (n,k) code; thus, the difference n-k is the number of parity bits. For random error-correcting codes the important consideration is the number of errors that can be corrected, and a code is classified as a t error-correcting code if it can correct all error patterns of t or fewer errors. For burst error-correcting codes the important consideration is the length of burst that can be corrected, and a code is classified as an ℓ burst error-correcting if it can correct all burst of errors of length ℓ or less. A burst of length ℓ is considered as being a group of bits of length ℓ , of which at least the first and the ℓ bit are in error.

For a (48, 40) block code the best random error-correcting code that was obtained was a single error-correcting code, and the burst error-correcting code that was obtained was a burst 3 error-correcting code. It is possible in many cases to find shorter length codes with better error-correcting capabilities than longer codes with the same number of parity bits. Another consideration here was in obtaining better error control on 3 of the 8-bit subwords with a third for parity, leaving 3 of the subwords without any error protection. This leaves the form of the desirable code to be a (24, 16) code. For this format the best random error-correcting code that was obtained was a single error-correcting and double error-detecting code (in fact, this can be obtained with 2 more information bits,

i.e., (24,18) code) and the best burst error-correcting code that was obtained was a burst 3 error-correcting code which can be obtained with one more information bit, i.e., (24,17) code.

The actual format decided upon was the correction of 2 of the 8-bit subwords with a third subword along with 1 bit from each of the information subwords for parity or a (24,14) code format. This format enabled us to obtain a double error-correcting code and a burst 5 error-correcting code. Coding gains for the double error-correcting (24,14) code and the single error-correcting (48,40) code compared to the uncoded, coherent frequency-shift-keyed (FSK) system performance are presented. The (24,14) burst 5 error-correcting code has been mechanized in a cyclic code configuration with encoder, decoder, and simulator circuitry for demonstration and feasibility illustration of its error-correcting capabilities. The cyclic code configuration was chosen for its simpler parts and smaller number of connections as opposed to the general block code configuration.

SECTION II

FREQUENCY-SHIFT-KEYED COMMUNICATION SYSTEM

The simplest form of frequency-shift keying (FSK) is one with rectangular frequency modulation and constant carrier amplitude. $^{(1)}$ This may be ideally described as transmitting signal pulses of the form

$$S(t) = \begin{cases} A \cos 2\pi f_1 t, & \text{for a } 0 \\ 0 \le t < T \end{cases}$$

$$A \cos 2\pi f_2 t, & \text{for a } 1$$

$$C \cos 2\pi f_2 t, & \text{for a } 1$$

$$C \cos 2\pi f_2 t, & \text{for a } 1$$

where f_1 and f_2 are constant over a single information pulse. The most common method of transmitting the FSK signals for coherent detection is the selective gating of one of a pair of locked oscillators with frequency and phase stability. The coherent detection of the binary FSK signals is shown in Figure 1.

After the conerent detector multiplies by $\cos 2\pi f_1 t$ and $\cos 2\pi f_2 t$ and lowpass filters, the output of the first lowpass filter is the sum of the signal amplitude. A and the lowpass noise $x_1(t)$ and the second lowpass filter output is just the lowpass noise $x_2(t)$. The channel noise n(t) can equivalently be written as either of the two bandpass representations.

$$n(t) = x_1(t) \cos 2\pi f_1 t - y_2(t) \sin 2\pi f_1 t$$

$$= x_2(t) \cos 2\pi f_2 t - y_2(t) \sin 2\pi f_2 t$$
(2)

where $x_1(t)$, $y_1(t)$, $x_2(t)$, and $y_2(t)$ are all lowpass processes. Thus, a correct decision is made when A + $x_1(t)$ is greater than $x_2(t)$ or, equivalently, an error is made when A + $x_1(t)$ is less than $x_2(t)$. The normal assumption on n(t) is that it is a zero mean Gaussian random process with variance N which implies that $x_1(t)$ and $x_2(t)$ are zero mean Gaussian random processes with variance N. The probability of bit error is then given by

Figure 1. Coherent Detection of FSK, O Transmitted

$$P_{b} = \text{Prob} (A + x_{1} < x_{2}) = \text{Prob} (x_{2} - x_{1} > A)$$

$$= \int_{A}^{\infty} \frac{1}{\sqrt{2\pi(2N)}} \exp[-\frac{u^{2}}{2(2N)}] du = Q(\frac{A}{\sqrt{2N}})$$
(3)

where x_1 and x_2 are the samples of $x_1(t)$ and $x_2(t)$ at t=T and $Q(\alpha)$ is the integral from α to ∞ of a zero mean unit variance Gaussian random variables. Similarly, for the noncoherent detection the probability of error is given as

$$P_b = \frac{1}{2} \exp \left[-A^2 / 4N \right]$$
 (4)

As shown in Figure 2, there is very little difference in performance for large signal-to-noise ratio ${\rm A}^2/2{\rm N}$.

This signal-to-noise ratio is also conveniently written as $\rm E_b/N_0$ where $\rm E_b$ is the energy per bit and $\rm N_0$ is the noise spectral density.

To show the advantages of coding, it is desirable to compare the uncoded FSK system to several coded FSK systems. The system considered from now on will be the coherent FSK system. An uncoded FSK system is now compared, on a probability of information bit error basis, to an (n,k) to random error correcting code.

If there is a constraint on equal energy per information bit, then the energy per bit for the coded system becomes

$$E_b^C = \frac{k}{n} E_b \tag{5}$$

but if the energy is already available

$$E_b^C = E_b \tag{6}$$

The probability of bit error for the coded system is given by

$$P_b^1 = Q(\sqrt{E_b^c/N_0})$$
 (7)

For the uncoded system a word error is made when 1 or more bits are in error, and the probability of word error is

Figure 2. Coherent Versus Noncoherent FSK Comparison

$$P_W$$
 = Prob (At least 1 bit error)
= 1-Prob (No bit errors)
= 1 - $(1-P_h)^k$ (8)

For the $t_{\rm C}$ error-correcting code a word error is not made unless $t_{\rm C}$ + 1 or more bits are in error. The probability of word error for the coded system is

$$P_{W}^{C}$$
 = Prob (At least t_{C} + 1 bit errors)
= 1-Prob (t_{C} or less bit errors)

$$= 1 - \left[\sum_{i=0}^{t_c} {n \choose i} (P_b^1)^i (1 - P_b^1)^{n-i}\right]$$
 (9)

This word error can also be written as a function of the information bit error for the coded system as

$$P_{W}^{C} = 1 - (1 - P_{b}^{C})^{k}$$
 (10)

The desired relationship for P_b^C can now be obtained as

$$P_{b}^{c} = 1 - \left[\sum_{i=0}^{c} \binom{n}{i} \left(P_{b}^{1}\right)^{i} \left(1 - P_{b}^{1}\right)^{n-i}\right]^{1/k}$$
(11)

Because of their different structure two random error-correcting codes were considered in detail. These were the (48,40) single error-correcting code and the (24,14) double error-correcting code. For the (48,40) code

$$P_{b}^{c} = 1 - \left[(1 - P_{b}^{1})^{48} + 48P_{b}^{1} (1 - P_{b}^{1})^{47} \right]^{1/40}$$
 (12)

and for the (24,14) code

$$P_{b}^{c} = 1 - \left[(1 - P_{b}^{1})^{24} + 24P_{b}^{1} (1 - P_{b}^{1})^{23} + 276(P_{b}^{1})^{2} (1 - P_{b}^{1})^{22} \right]^{1/14}$$
(13)

Normally, the most meaningful comparison between an uncoded and a coded system is obtained using an equal energy per information bit

constraint [Equation (5)] . This is true since there is usually kE_h energy allocated for k information bits, and when the extra parity bits are added there is a total energy, kE_h , allocated now for n bits. Using this equal energy per information bit constraint, the uncoded, (48,40) coded, and (24,14) coded system performance is compared in Figure 3. Both coded systems perform better than the uncoded system, and the (24,14) code, as would be expected (2 more parity bits), performs better than the (48,40) code. As indicated in Figure 3, if it is desired to operate the system with a bit error probability of 10^{-6} , this can be done with 1.7 dB less power for the (48,40) coded system than the uncoded system and an additional 1.1 dB or a total of 2.8 dB less power is required for the (24,14) coded system over the coded system. Another comparison that should be made is that if a signal-to-noise ratio (SNR) of, for example, 10 dB is available to all 3 systems, the probability of bit error for the uncoded, the (48,40) coded, and the (24,14) coded systems are 7.8×10^{-4} , 1.0×10^{-4} , and 9.2×10^{-6} respectively. There is almost 2 orders of magnitude improvement in the bit error probability of the (24,14) coded system over the uncoded system at 10 dB SNR.

Even though the equal energy per information bit constraint comparison is normally the most meaningful, for the case at hand the structure of the word is such that the energy is available for the parity bits even if they are not used. This results in an additional gain of 0.8 dB [$10 \cdot \log(48/40)$] for the (48,40) coded system and 1.6 dB [$10 \cdot \log(24/14)$] for the (24,14) coded system. This comparison is shown in Figure 4. To achieve a bit error probability of 10^{-6} requires 2.5 dB and 4.4 dB less for the (48,40) coded and (24,14) coded systems, respectively, over the uncoded system. Also, if a SNR of 9 dB is present in all three systems, the probability of bit error for the uncoded, the (48,40) coded, and the (24,14) coded systems are 2.4×10^{-3} , 1.5×10^{-4} , and 1.8×10^{-6} , respectively. There is more than three orders of magnitude improvement in the bit error probability of the (24,14) coded system over the uncoded system at a SNR of 9 dB.

Figure 3. Coded Versus Uncoded Comparison $(E_b^c = \frac{k}{n}E_b)$

Figure 4. Coded Versus Uncoded Comparison $(E_b^c = E_b)$

SECTION III

CYCLIC CODES

For an (n,k) code, there are 2^k possible information messages. Corresponding to these information messages, 2^k of the total of 2^n n-tuples can be assigned as code words (encoding). There are 2^n-2^k non-zero errors that can be corrected, and since for each error pattern there are 2^k possible errors, the number of correctable non-zero error patterns are $2^{n-k}-1$. This set of 2^k code words is called a block code. A linear block code is a block code whose 2^k code words are a subspace of the vector space of all n-tuples; i.e., the all-zero vector is a code word and the sum of any two code words is also a code word.

Most of the recent research on linear block codes has been concentrated on a subclass known as cyclic codes. When referring to linear block codes which are not cyclic codes, they will be called non-cyclic block codes. Some non-cyclic block codes will be considered in Section VII.

Cyclic codes are attractive for two reasons:

- (1) Encoding and syndrome (parity) calculations of a cyclic code can be implemented easily by employing simple shift registers with feedback connections.
- (2) Since they have considerable inherent algebraic structure, it is possible to find various simple and efficient decoding methods.

An (n,k) linear block code C is called a cyclic code if it has the following property: If an n-tuple $v=(v_0,v_1,v_2,\ldots,v_{n-1})$ is a code vector of C, the n-tuple $v^{(1)}=(v_{n-1},v_0,v_1,\ldots,v_{n-2})$ obtained by shifting v cyclically one place to the right is also a code vector of C. Because of this cyclic nature, it is more convenient to represent the vector as a polynomial.

$$v = (v_0, v_1, v_2, ..., v_{n-1}) \Leftrightarrow v(X) = v_0 + v_1 X = v_2 X^2 + ... + v_{n-1} X^{n-1}$$
 (14)

The terms code vector and code polynomial are used interchangeably. With polynomial representation, it is possible to develop some important properties for a cyclic code which make the simple implementation of encoding and syndrome calculation possible.

The components of the vector v and, likewise, the coefficients of the polynomial v(X), for consideration here, are taken to be 0 or 1. The symbols, 0 and 1, together with modulo 2 addition and normal multiplication, are known as a field of 2 elements (binary field or Galois field of 2 elements), and this field is denoted GF(2). The Galois field of 2^m elements, $GF(2^m)$, is obtained by starting with an irreducible polynomial f(X) of degree m with binary coefficients (not divisible by any polynomial of degree less than m and greater than zero). With 0, 1, α , α^2 ,..., α^{2m-2} denoting the 2^m elements, $f(\alpha)$ is set equal to 0 in a similar fashion to modulo 2 addition where 2 = 0. Using $f(\alpha)$ = 0, all of the α^1 can be represented as binary m-tuples. Tables I and II give $GF(2^4)$ for $f(X) = X^4 + X^3 + 1$ and $f(X) = X^4 + X^3 + X^2 + X + 1$, respectively. For example, from Table I, α^{11} is obtained as $\alpha^{11} = \alpha(\alpha^{10}) = \alpha(\alpha + \alpha^3) = \alpha^2 + \alpha^4 = \alpha^2 + 1 + \alpha^3 = 1 + \alpha^2 + \alpha^3$. An irreducible polynomial f(X) of degree m that gives a complete table with 2^m distinct m-tuples, as in Table I, is called a primitive polynomial.

In an (n,k) cyclic code, there exists one and only one code polynomial, g(X), of degree n-k,

$$g(X) = 1 + g_1 X + g_2 X^2 + \ldots + g_{n-k-1} X^{n-k-1} + X^{n-k}$$
 (15)

Also, every code polynomial v(X) is a multiple of g(X), and every polynomial of degree n-1 or less which is a multiple of g(X) must be a code polynomial.

This allows a code polynomial to be expressed as:

$$v(X) = m(X) g(X) = (m_0 + m_1 X + ... + m_{k-1} X^{k-1}) g(X)$$
 (16)

and the encoding of a message m(X) is equivalent to multiplying the message by g(X). An (n,k) cyclic code is completely specified by g(X), and g(X) is appropriately called the generator polynomial of the cyclic code. The degree n-k of g(X) is equal to the number of parity check digits of the code.

The generator polynomial, g(X), of an (n,k) cyclic code is a factor of $X^n + 1$, i.e.,

$$X^{n} + 1 = g(X) h(X)$$
 (17)

where h(X) is called the parity check polynomial of the code, and if g(X) is

TABLE I. $GF(2^4)$ FOR $f(x) = x^4 + x^3 + 1$

	α^{0}	α^1	α^2	α^3				α^{0}	α^1	_α 2	α^3
0	0	0	0	0			α^7	1	1	1	0
1	1	0	0	0			α^8	0	1	1	1
α	0	1	0	0			α 9	1	0	1	0
α^2	0	0	1	0			α^{10}	0	1	0	1
α^3	0	0	0	1			α^{11}	1	0	1	1
4	1	0	0	1			α^{12}	1	1	0	0
α^{5}	1	1	0	1		25		0	1	1	0
_α 6	1	1	1	1)	α^{14}	0	0	1	1
							α^{15}	1	0	0	0

TABLE II. $GF(2^4)$ FOR $f(X) = X^4 + X^3 + X^2 + X + 1$

	α^{0}	α^1	α^2	α^3				α^{0}	α^1	α^2	α^3
0	0	0	0	0			α^7	0	0	1	0
1	1	0	0	0			α^8	0	0	0	1
α	0	1	0	0			_α 9	1	1	1	1
α^2	0	0	1	0			α^{10}	1	0	0	0
α^3	0	0	0	1			α^{11}	0	1	0	0
4	1	1	1	1			α^{12}	0	0	1	0
α ⁵	1	0	0	0			α^{13}	0	0	0	1
α6	0	1	0	0	3		α^{14}	1	1	1	1
							α^{15}	1	0	0	0

a polynomial of degree n-k and is a factor of $X^n + 1$, then $g(\tilde{x})$ generates an (n,k) cyclic code. This result enables generating polynomials of cyclic codes to be obtained by factoring $X^n + 1$.

The form of v(X) in Equation (16) is acceptable, but it has the message bits intermixed with the parity bits, i.e.,

$$v(X) = m_0 + (m_0 g_1 + m_1)X + (m_0 g_2 + m_1 g_1 + m_2)X^2 + \dots + (m_{k-1} g_{n-1} + m_{k-2})X^{n-2} + m_{k-1} X^{n-1}$$
(18)

It is desirable to have the message bits segregated from the parity bits in the code polynomial (systematic form). Dividing $X^{n-k}m(X)$ by g(X) yields

$$X^{n-k} m(X) = g(X) q(X) + p(X)$$
 (19)

where p(X) is of degree n-k-1 or less. Thus,

$$v(X) = g(X) \ q(X) = p(X) + X^{n-k} \ m(X)$$

$$= p_0 + p_1 X + ... + p_{n-k-1} X^{n-k-1} + m_0 X^{n-k} + m_1 X^{n-k+1} + ...$$

$$+ m_{k-1} X^{n-1}$$
(20)

and the message bits have been segregated to the higher order positions. The realization of an encoder [Equation (20)] then requires a circuit to multiply the message by X^{n-k} and a circuit to divide this product by g(X) and retain the remainder.

Since in this system all of the addition is modulo 2 there are no carries from lower order bits to higher order bits. A normal binary adder is implemented by adding the multiplicand (if the least significant digit of the multiplier is 1) to the multiplicand shifted one digit (if the next digit of the multiplier is 1) to etc. until the most significant digit of the multiplier is used. This can be accomplished in a serial manner by serially feeding the multiplicand into a shift register through binary adders at points along the register where ones occur in the multiplier. For example, consider the multiplication of $d_0 + d_1 X + \ldots + d_i X^i$ by $f_0 + f_1 X + \ldots + f_i X^j$

which is shown in Figure 5. The d's are serially fed into the shift register starting with d_i . The circles represent a connection if f_k = 1 or no connection if $f_k = 0$. This is not well suited for binary multiplication because of the forward carries, but for this case there are no carries because of the modulo 2 addition and the binary adders can be replaced by exclusive or gates. This multiplication for modulo 2 arithmetic is given in Figure 6. The output of the highest order flip-flop is the coefficient of χ^{j+k} when d_k is on the input. For binary division, the adders of Figure 5 would be replaced by subtractors and the d's fed into the first flip-flop through an additional subtractor. The output of the highest order flip-flop (which is a 1 when the shifted part of the dividend is greater than or equal to j) is fed back to the f's for subtraction. After all the d's are serially fed in, the contents of the flip-flops is the remainder and the quotient is the portion that has been shifted out of the flip-flops. For modulo 2, arithmetic subtraction is identical to addition, and this division for dividing d(X) by f(X) is shown in Figure 7. A circuit for simultaneously multiplying by 1 + X + X^5 and dividing by 1 + X^3 + X^4 + X^5 + X^6 is given in Figure 8. Table III shows the contents of the 6-bit register of Figure 8 for $d(X) = 1 + x^2 + x^4 + x^6$. It can be observed from Table III that the

TABLE III. $(1 + X + X^5)d(X)$ DIVIDED BY $1 + X^3 + X^4 + X^5 + X^6$

	d(X)		6-	bit r	egist	er	
χ ⁶	Ī	1	1	O	0	0	\cap
χ ⁵	0	1	1	1	1	1	11
х4	1	0	0	1	0	0	1
х3	0	1	0	0	0	1	1 ← quotient
x ²	1	0	0	0	1	1	1
Х	0	1	0	0	1	0	
1	1	1	0	0	0	1	remainder

quotient from the division (previous outputs from the register) is $X+\chi^2+\chi^3+\chi^4+\chi^5$, and the remainder (contents of the register is $1+\chi^4+\chi^5$.

Figure 5. Binary Multiplication of d(X) by f(X)

Figure 6. Modulo 2 Multiplication of d(X) by f(X)

Figure 7. Modulo 2 Division of d(X) by f(X)

The encoder [multiply m(X) by X^{n-k} and divide by g(X)] then takes the form shown in Figure 9. With the Gate on and the switch in the lower position, all k information bits are simultaneously fed to the output and fed back to the parity generator. After the k bits are clocked in, the Gate is turned off and the switch is moved to the upper position. The contents (n-k bits) of the parity register are then serially shifted to the output.

In the decoder, if there are no errors made, the remainder from dividing r(X) (the received signal) by g(X) should be zero, since v(X) is a multiple of g(X). When there are errors, the remainder (syndrome) is nonzero, and an association can be made between the syndrome and the error pattern. The syndrome is obtained from r(X) as

$$r(X) = g(X)q(X) + S(X)$$
 (21)

Thus, to obtain the syndrome, all that is needed is a circuit to divide by g(X), which makes the syndrome calculation of the decoder identical to the encoder. The decoder takes the form shown in Figure 10. After the syndrome calculation, all that the decoder is left to do is make the association of the syndrome with the correct error pattern. This association is called the error pattern calculation, and it can be realized with a combinatorial logic circuit. The easiest way to obtain the error pattern calculation for single random, burst, and some multiple random error-correcting codes is to use an error-trapping technique.

The fact that if a cyclic decoder can decode the highest order bit in a word correctly for all correctable error patterns, then the entire word can be decoded with the same circuitry gives rise to the simplicity of cyclic decoding. Thus, for an error-trapping decoder, the objective is to trap the error patterns in the syndrome register. For a single random error-correcting code the error-trapping decoder tests for an error in the highest order syndrome bit by testing for all zeros in the other bits, and for a burst length ℓ error-correcting code the error-trapping decoder test for an error pattern in the ℓ highest order syndrome bits by testing for all zeros in the other bits. For a multiple random error-correcting code the error-trapping decoder, in general, has to test for some of the errors

Figure 9. General Cyclic Encoder

Figure 10. General Cyclic Decoder

trapped in the syndrome register and others trapped at specific locations outside the syndrome register. The complexity of an error-trapping decoder for multiple random errors is a function of the specific code, and a decision on the selection of an error-trapping decoder or some other decoder has to be made on an individual code basis.

Error trapping decoders for random errors are considered in more detail in Section IV, and error-trapping decoders for burst errors are considered in Section V.

SECTION IV

RANDOM ERROR-CORRECTING CODES

If transmission errors occur independently, i.e., if each transmitted symbol is affected independently by noise, they are classified as random errors. For random errors the probability of having i errors is less than the probability of having i-l errors. Because of this fact, for random error-correcting codes it is desirable to be able to correct all single error patterns, then all double error patterns, etc., in a progressively increasing manner. This leads to the classification of a t error-correcting code as a code that corrects all error patterns of t or fewer errors. A t error-correcting (n,k) code is called a perfect code if it satisfies

$$\sum_{i=0}^{t} \binom{n}{i} = 2^{n-k}$$
(22)

and a quasi-perfect code if it satisfies

$$\sum_{i=0}^{t} {n \choose i} + N_{t+1} = 2^{n-k}$$
 (23)

where

$$0 < N_{t+1} < \binom{n}{t+1}$$
 (24)

For an (n, k) code the total number of correctable error patterns (including the zero error pattern) is 2^{n-k} , and the number of error patterns containing i errors is $\binom{n}{i}$. Thus, for random error-correcting codes it is desirable to obtain perfect or quasi-perfect codes when they exist, and, in general, to obtain a t as large as possible for a given n and k.

A (n, k) cyclic Hamming code is a code whose generator polynomial is a primitive polynomial of degree n-k, and n-k can be any positive integer. A Hamming code is a single error-correcting code and n equals $2^{n-k}-1$ since the generator polynomial is a primitive polynomial. This length

satisfies Equation (22) with t=1; thus, the Hamming codes are perfect codes. The only known multiple error-correcting binary perfect code is the Golay (23, 12) triple error correcting code.

Since in this report the interest was in finding codes with the highest error-correcting capability for a fixed number of parity bits (fixed n-k), Table IV lists codes for n-k equal to 6 through 10 along with their minimum distance, d, error-correcting capability, t_c , and error-detecting capability, t_d . t_c plus t_d can be expressed as d-l. The codes of Table IV are derived from Peterson Table (2), but, could be developed directly from factoring $X^n + l$. The code lengths between the one given in Table IV can be filled in by using the fact that a shortened (n- η , k- η) code with the same error-correcting capabilities can be obtained from a (n,k) code by eliminating the m high order information bits. This (n- η , k- η) code is called a shortened cyclic code. For example, with 8 bits available for parity, it is seen that if the desired length of the code is greater than 17 only a single error-correcting code can be obtained, but if the desired length is 17 or less, a double error-correcting code can be obtained.

The encoding for random error-correcting codes is accomplished with the general cyclic encoder of Figure 9. The decoding is accomplished with the general cyclic decoder of Figure 10 with the error-trapping calculation left to be determined. The error-trapping calculation necessary for the decoding of single errors and the calculation necessary for the decoding of multiple errors will now be obtained.

Error-Trapping Decoding for Single Errors

Error-decoding consists of cyclic shifting of the received vector until the errors are confined to the n-k parity positions (syndrome registers) of the (n,k) cyclic code. If a cyclic decoder can decode the first (highest order) symbol in a word correctly for all correctable error patterns, then the entire word can be decoded with the same circuitry. The form of the decoder is given in Figure 11. The connections to the AND gates are determined by finding the syndrome corresponding to an error in the higest bit position.

TABLE IV. RANDOM ERROR-CORRECTING CODES

	Code				Conceptor Religion
n-k	/m 10)	8			Generator Polynomial
11-K	(n,k)	d	^t c	t _d	$x^{10} \dots x^{5} \dots x^{0}$
6	(9,3)	3	1	1	1001001
	(15,9)	4	10	2	1011101
	(21,15)	4	1	2	1100101
	(31,25)	4	1	2	1101111
	(63,57)	3	1	1	10000
7	(15,8)	4	1	2	11100111
	(21,14)	4	1	2	11111001
	(35,28)	4	1	2	
	(63,56)	4	1	2	11011001
8	(15,7)	5	2	2	
	(17,9)	5	2	2	
	(21,13)	4	ן	2	10111
	(35, 27)	4	1	2	101101
	(51,43)	3	7	ו	
	(63,55)	3	1	1	
9	(15,6)	6	2	3	10011
	(17,8)	6	2	3	1001110011
	(21,12)	5	2	2	
	(51,42)	4	1	2	1110110011
	(63,54)	4	1	2	1000010101
10	(15,5)	7	3	3	10100110
	(21,11)	6	2	3	
	(31,21)	5	2	2	
	(33,23)	3	1	1	
	(35,25)	4	1	2	
	(45,35)	4	1	2	
	(51,41)	4	7	2	1000100101
	(63,53)	4	1	2	10100100101 1001111101

Figure 11. General Single Error-Trapping Decoder

$$e_{1}(X) = X^{n-1} \tag{25}$$

When this syndrome is detected, the next bit out of the register will be corrected. The syndrome $S_1(X)$ is determined as the remainder of dividing e(X) by g(X) or

$$e_1(X) = g(X) q(X) + S_1(X)$$
 (26)

Since the remainder of dividing X^n by g(X) is 1, g(X) plus a single shift on $S_1(X)$ must equal 1 or

$$g(X) + X S_1(X) = 1$$
 (27)

Thus, in general form, for

$$g(X) = 1 + g_1 X + g_2 X^2 + g_3 X^3 + \dots + g_{n-k-1} X^{n-k-1} + X^{n-k}$$
 (28)

the syndrome equals

$$S_1(X) = g_1 + g_2 X + g_3 X^2 + \dots + g_{n-k-1} X^{n-k-2} + X^{n-k-1}$$
 (29)

The input to the AND gate test, for the presence of $S_1(X)$ from the $i^{\frac{th}{2}}$ syndrome register, is S_i if g_{i+1} equals 1 or \overline{S}_i if g_{i+1} equals 0 or

$$g_{i+1} S_i + \overline{g}_{i+1} S_i + 1 \tag{30}$$

From the above analysis, it is obvious that the connections to the AND gate change with different g(X).

It would be desirable to have the same connections to the AND gate for all possible g(X). The connections can, in fact, be made independent of g(X).

For $e_1(X)$ given in Equation (25) look at

$$X^{n-k}e_1(X) = X^{n-k} X^{n-1} = X^{n-k-1} (X^{n+1}) + X^{n-k-1}$$
 (31)

Dividing by g(X) yields

$$X^{n-k}e_{1}(X) = [X^{n-k-1}h(X)] g(X) + X^{n-k-1}$$
(32)

and the remainder is

$$S(X) = \chi^{n-k-1} \tag{33}$$

Now when a 1 in S_{n-k-1} and 0 in all the other S's is detected, the next bit out of the register will be corrected. To obtain the error to be trapped in the highest syndrome position, multiply the input by χ^{n-k} which is equivalent to connecting the input to the high end of the syndrome register. The decoder now takes the form shown in Figure 12. The decoding procedure for this single error trapping decoder can be described in the following steps:

- 1. Gate 1 is turned on, and Gate 2 is turned off. The syndrome S(X) is formed by shifting all n bits of the received signal r(X) into the syndrome register. At the same time the n bits of the word are stored into the buffer register.
- 2. Gate 1 is turned off, and Gate 2 is turned on. With the input cut off, the word read in during Step 1 is now processed. The n bits stored in the buffer register are shifted while searching for a correctable error pattern. As soon as the highest order bit of the syndrome register is one and all the rest of the bits are zero, the single error is trapped in the highest order syndrome bit. The correction is then made since the output of the AND is high, by adding a one modulo 2

Figure 12. Modified Single Error-Trapping Decoder

to the present output of the buffer register. When the error is corrected, the feedback from the high end of the syndrome register should be eliminated as the syndrome register should contain all zeros. This is accomplished by adding the output of the AND modulo 2 to the output of the highest order syndrome bit.

3. When Step 2 is completed, the decoder is ready for the next word and Step 1 is repeated.

When a shortened cyclic rather than a cyclic code is used, the decoder of Figure 12 and the decoding algorithm for this decoder are still applicable with only the input connection changed for the appropriate shortening. The encoder of Figure 9 is unchanged for a shortened cyclic code. For a cyclic code the input to the syndrome register is X^{n-k} times the input or $X^{n-k}(X)$ which makes r(X) fed into the X^{n-k} position of the syndrome register. For a shortened cyclic code that is shortened by η bits, $(n-\eta, k-\eta)$ code, from a (n,k) cyclic code, the input to the syndrome register is multiplied by X^{η} (to shift the η deleted bits) or the input is $X^{n-k-\eta}r(X)$. Thus, r(X) if fed into the positions of the syndrome register determined by C(X), the remainder from dividing $X^{n-k+\eta}$ by g(X), i.e.,

$$x^{n-k+\eta} = g(x)q(x) + C(x)$$
 (34)

For shortened cyclic codes the decoder takes the form shown in Figure 13. As an example, consider the (12,6) code shortened from the (15,9) single error-correcting code (η =3) of Table IV with generator polynomial

$$g(X) = 1 + \chi^2 + \chi^3 + \chi^4 + \chi^6$$
 (35)

The connection polynomial is determined as

$$C(X) = 1 + X + X^2 + X^3 \tag{36}$$

The decoder for the (12,6) shortened cyclic code is shown in Figure 14. Error-trapping decoding for multiple errors is now considered.

Figure 13. Single Error-Trapping Decoder for Shortened Cyclic Code

Figure 14. Decoder for (12,6) Shortened Cyclic Code

Error-Trapping Decoding for Multiple Errors

Error-trapping consists of trapping the error patterns in the parity bit positions (in the syndrome bits). For single error-correction this is easily accomplished since a single error can always be trapped in the n-k parity bit positions. With double error-correcting codes there is essentially no further complexity in designing error-trapping decoders as long as all of the possible error can be trapped in the n-k parity positions. This is always possible if

$$n-k \le k+1 \text{ or } k \le \frac{n-1}{2}$$
 (37)

which can be observed by taking the two errors to be in position x^i and x^{i+j} . If j is less than or equal to k, the errors are less than or equal to k digits apart and can be put in less than or equal to k+1, which is less than or equal to n-k positions or trapped in the n-k parity positions. Also for

$$k+1 \le j \le n-k \tag{38}$$

the errors are less than or equal to n-k-I (modulo n) digits apart and can be put in less than or equal to n-k positions or likewise be trapped in the n-k parity positions. Since the distance that these errors are apart are modulo n, these distances can be observed on a circle of n bit positions. For example, consider the (15,7) cyclic code with

$$g(x) = (x^4 + x^3 + x^2 + x + 1) (x^4 + x + 1) =$$

$$x^8 + x^7 + x^6 + x^4 + 1$$
(39)

This encoder is given in the standard manner as illustrated in Figure 15.

Figure 15. Encoder for (15,7) Cyclic Code

Now for the design of the decoder. Observing our circle representation (Figure 16) of the 15-bit positions where the O's are the parity positions

Figure 16. Circle Representation of Bits for (15,7) Cyclic Code

and the X's are the information positions, it can be observed that all double error patterns can be shifted into the 0's (parity positions). Thus, a test for Σ S_i less than or equal to 2 is needed out of our syndrome register in the decoder. When this test passes, the double error pattern, will be corrected and the decoder takes the form in Figure 17. The decoding procedure for this error-trapping decoder for multiple errors is described in the following steps:

- G1 (Gate 1) is turned on, G2 is turned on, G3 is turned off, G4 is turned off, and G5 is turned off. The syndrome S(X) is formed by shifting all n bits of the received signal r(X) into the syndrome register. At the same time the n bits of the word are stored into the buffer register.
- 2. G1 is turned off, G2 remains on, G3 is turned on, G4 remains off, and G5 remains off. With the input cut off the word read in during Step 1 is now processed. For each bit shifted, the syndrome register contents are checked for two or fewer ones. Simultaneously, the bit shifted out of the buffer register is fed back to the low end of the buffer register. When two or fewer ones are found in the syndrome register (T₀ = 1), the errors are trapped in the syndrome register and Step 3, for the correction process, is performed.

Figure 17. Decoder for (15,7) Double Error-Correcting Code

- 3. G1 remains off, G2 is turned off, G3 remains on, G4 is turned on, and G5 remains off. The correction is made by feeding the contents of the syndrome register out and adding modulo 2 to the output of the buffer register. The feedback from the high end of the syndrome register is eliminated, as it should be once the errors are located, since G2 is turned off. After there are a total of n shifts in both Steps 2 and 3, the buffer is ready to output the highest order bit and Step 4 is performed.
- 4. G1 remains off, G2 remains off, G3 is turned off, G4 remains on, and G5 is turned on. The bits are now shifted from the buffer register to the output. It is still possible for some of these bits to be corrected as they are shifted out of the buffer register. If all the errors have been corrected, the output of G4 is zero, no correction made, since the syndrome register will contain all zeros. This step requires n shifts.
- 5. When Step 4 is completed, the decoder is ready for the next word and Step 1 is repeated.

Table V illustrates how the decoder of Figure 17 processes a given r(X),

$$r(X) = X^4 + X^6 + X^7 \tag{40}$$

For double error-correcting codes for which n-k is less than or equal to k, it is not possible to fit all error patterns in the n-k parity positions. This is also true for higher error-correcting codes. The ideas of error-trapping can still be used by trapping most of the errors in the n-k parity positions and using another test to determine the remaining errors that cannot be trapped in the parity positions. The position outside of the parity positions that will determine the presence of an error is indicated by what is called a covering polynomial $\phi(X)$

$$\phi(X) = X^{\hat{J}} \tag{41}$$

TABLE V. PROCESSING OF $r(x)=x^4+x^6+x^7$ WITH (15,7) DECODER

r(X)	s(X)	^T 0	Σ_{0}	Buffer	V*(X)	- 1000 EN
x 14	0	00000000			δ		
x ¹⁰	0 0 0 0 0	0000000 0000000 0000000 0000000 0000000			00 000 0000 00000 000000 0000000		
x ⁵	1 0 1 0	10001011 01000101 10101001 01010100 00101010			100000000 1100000000 01100000000 1011000000		= 3
x ⁰	0 0 0	00010101 10000001 11001011	0	5	001011000000 <u>0</u> 0001011000000 <u>0</u> <u>0</u> 0001011000000 <u>0</u>		
		11101110 01110111 10110000 01011000 00101100 00001011 10001110 01000111 10101000 01010100 00101010 00010101 1000000	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	6 6 3 3 3 3 4 4 3 3 3 3 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000001011000000 000000101100000 000000010110000 00000000	0 x ¹⁴ 0 0 0 0 0 x ¹⁰ 0 1 1 0 x ⁵ 1 0 0	Bit 0 Corrected Bit 8 Corrected

where j+1 indicates the number of positions from the highest order parity bit. Letting $e_p(X)$ and $e_I(X)$ be the error patterns in the parity and information bits, respectively, the syndrome for each covering polynomial can be written as

$$S(X) = \rho_{i}(X) + e_{p}(X)$$
 (42)

where $\rho_i(X)$ is the remainder from dividing the $i\frac{th}{}$ error position outside the parity positions, $X^{n-k}\phi_i(X)$, by g(X). Once this syndrome has been detected, the error pattern in the error bits, $e_p(X)$, is obtained as the modulo 2 sum of S(X) and $\rho_i(X)$, and non-parity errors are fed into the low end of the syndrome register after passing through a (k-j-1) bit delay.

Consider the (21, 12) double error-correcting cyclic code with

$$g(X) = (X^{6} + X^{4} + X^{2} + X + 1) (X^{3} + X^{2} + 1) =$$

$$X^{9} + X^{8} + X^{7} + X^{5} + X^{4} + X + 1$$
(43)

Letting d_0 be the separation of the two errors, for d_0 less than or equal to 8, these errors can be trapped in the parity positions, and $\varphi_0(X)$ and $\rho_0(X)$ equals 0. For d_0 equals to 9, 10, as shown in Figure 18, it is not possible to trap the errors in the parity positions, and thus a $\varphi_1(X)$ not equal to 0 is needed. $\varphi_1(X)$ equal to 1 will cover d_0 equal to 9 but not d_0 equal to 10. Now $\varphi_1(X)$ equal to X will cover d_0 equal to 9, 10 (in fact, $\varphi_1(X)$ equal to X^1 , X^2 ,, X^{10} will cover d_0 equal to 9, 10). For $\varphi_1(X)$ equal to X, $\rho_1(X)$ equals $1+X^2+X^4+X^6+X^7$ and the test for an error covered by $\varphi_1(X)$ and the other error in the parity bits is to test $S(X)+\rho_1(X)$ for 0 or 1 nonzero terms, i.e., the error pattern is covered by $\varphi_1(X)$ and trapped in the parity bits if the sum $\overline{S}_0+S_1+\overline{S}_2+S_3+\overline{S}_4+S_5+\overline{S}_6+\overline{S}_7+S_8$ is less than or equal to 1. Upon detecting this error pattern, $\varphi_1(X)$ is added to S(X) to obtain the error in the parity positions and a 1 is introduced through a 10-bit delay to S_0 to correct the error covered by $\varphi_1(X)$.

Figure 18. Circle Representation of Bits for (21,12) Cyclic Code

For the code at hand $\varphi_1(X)$ can be picked to give the minimum connections for $\rho_1(X)$ or $\varphi_1(X)$ equal to X^{10} can be picked for a minimum number of delay bits for correcting the error covered by $\varphi_1(X)$. Picking for illustration,

$$\phi_1(X) = X^{10} \tag{44}$$

then

$$\rho_1(X) = 1 + X^2 + X^4 + X^5 + X^8 \tag{45}$$

and the error trapping decoder is obtained as shown in Figure 19. The decoding procedure for this error-trapping decoder for multiple errors is described in the following steps:

- 1. GI and G2 are turned on and G3, G4 and G5 are turned off. The syndrome S(X) is formed by shifting all n bits of the received signal r(X) into the syndrome register. At the same time the n bits of the word are stored into the buffer register.
- 2. G2 and G3 are turned on, and G1, G4 and G5 are turned off. With the input cut off, the word of n bits read in during Step I is now processed. For each bit snifted, the bit coming out of the buffer register is fed back to the low end of the buffer register. The syndrome is tested for correctable error patterns as follows:
 - (a) If $\sum_{j=0}^{8} S_{j} \le 2 T_{0} = 1$ and the errors are trapped in the 9-bit syndrome register. Step 3, for the correction process, is then performed
 - (b) If Σ ($S_i + \rho_i$) $\leq T_i = 1$ and one error is trapped in the syndrome register and the other error occurs at two bits before the lowest order syndrome bit. To obtain the error pattern $\rho(X)$ is added to S(X) (T_i is added to the appropriate registers) and Step 3, for the correction process, is performed.

Figure 19. Decoder for (21,12) Double Error-Correcting Code

- Step 2 is continued until either a or b is satisfied.
- 3. G3 and G4 are turned on, and G1, G2 and G5 are turned off. The correction is made by feeding the contents of the syndrome register out and adding modulo 2 to the output of the buffer register. The feedback from the high end of the syndrome register is eliminated since G2 is turned off. After there are a total of n shifts ir both Steps 2 and 3, the buffer is ready to output the highest order bit and Step 4 is performed.
- 4. G4 and G5 are turned on, and G1, G2 and G3 are turned off. The corrected bits are now shifted from the buffer register to the output. It is still possible for some bits to be corrected, but if all the errors have been corrected, the output of G4 is zero (syndrome register contains all zeros) and no correction is made. This step requires n shifts.
- 5. When Step 4 is completed, the decoder is ready for the next word and Step 1 is repeated.

Table VI illustrates how the decoder of Figure 19 processes a given r(X).

$$r(X) = 1 + \chi^4 + \chi^5 + \chi^7 + \chi^8 + \chi^9 + \chi^{14}$$
 (46)

Specific random error-correcting codes for the word formats of interest in this report are now considered. The first format of interest has a 48-bit word with 8 parity bits or a (48,40) code is desired. Searching Table IV with n-k equal to 8 and a length greater than or equal to 48, for the largest $t_{\rm C}$, it is seen that either the (51,43) or the (63,55) code fits the specification. Choosing the (63,55) code the generator polynomial is given as

$$g(X) = 1 + X^3 + X^6 + X^7 + X^8$$
 (47)

and the encoder for the shortened (48,40) code, which is the same as the (63,55) code is shown in Figure 20. This is a single error-correcting code.

12) DECODER					1	
14 WITH (21,12)	V*(X)					
× + 6× +				. 10 0		
$+ x^5 + x^7 + x^8$	Buf1	ام ا	001000000 00010000000 000010000000 100001000000	00001000000 100001000000 1100001000000 011100001000000	00000	0000110110000 0000110111000 0000000000
1 + x ⁴		0 000 0000 00000 0000000 1 0000000 010000000	0001000000 000010000000000000000000000	01110 11011 110110 01100	0001000110 00001000110 000001000110 000000	0100000010 00100000010 001000000000 00001000000
0F r(X) =	Σ,			ស ស ទ	+ O 12 C 10 O	0 4 tv tv to
1 0F r	ָר ,	2		000	00000	0000
PROCESSING	ο ₂ (441	· / 9 9 9 t	7665
PROCE	T ₀			000	00000	0000
TABLE VI.	s(X)	00000000 000000000 000000000 000000000	0011100111 000111001 000011100 000011100 001110011	100010001 100000011 100011010 100010110 010001011	111101110 001101111 011011110 110111100	011010011 11110010 011111001 1111001111
	r(X)	000000-000				

T	7
7	ń
ام	u
Continu	3
ē	=
	_
	_
4	د
-	_
-	-
C	2
ī	•
. `	•
_	•
_	4
-	
_	•
٠.	1
-	4
$\overline{\sim}$	5
3	֖֡֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡
ARI	֚֓֡֜֜
TARI	
TARIF	

			Bit 1 Corrected			Bit 14 Corrected						
	(x)*/			0 x x 0 0	0 0 2	? ×	000	0 × 0		2×	. 0 0	- L - C - C - C - C - C - C - C - C - C
TABLE VI. (continued)	Buffer	0000	$\begin{array}{c} 0.011011000010000010\\ 100110111000010000$	100	11001101110000100	110011011100001	1100110011	11001101111 1100110111	100110011 0110011 110011	11001	110	
TAI	Σ	w∠ w \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n 0 4	944	9 9	4 տ տ	വവ	വവ	വ വ		വവ	വ വ
	1	00000-00	000	000	000	000	000	00	000	000	00	00
	Σ_0	444400-0	7		,	-00	000	00	000	000	00	00
	To	00000										
	s(X)	010110100 01011010 0001011010 00011010 101010101 10101000000	010000000	000100000 000010000 000001000	000000100	000000000	00000000	000000000	00000000	000000000	000000000	000000000
	r(X)					,						

Figure 20. Encoder for (48,40) Shortened Cyclic Single Error-Correcting Code

The (48,40) code has to be shortened 15 bits (η =15) from the (63,55) code and thus the connection polynomial is obtained from

$$\chi^{n-k+\eta} = \chi^{8+15} = g(\chi) q(\chi) + c(\chi)$$
 (48)

as

$$c(X) = 1 + x^3 + x^5 (49)$$

The decoder is shown in Figure 21. For the (24,16) code format no additional error-correcting capability can be achieved. This is also true for the (43,38) code format. But for the (24,14) code format the (31,21) double error-correcting code listed in Table IV under 10 parity bits can be shortened. The generator polynomial is given as

$$g(X) = 1 + X^3 + X^5 + X^6 + X^8 + X^9 + X^{10}$$
 (50)

and the encoder for this shortened (24,14) code is given in Figure 22. With η equal to 7 here, the connection polynomial is obtained as

$$c(X) = 1 + X^2 + X^3 + X^4 + X^7 + X^9$$
 (51)

In addition to the errors trapped in the parity positions, which are covered by $\varphi_0(X)$ equal to 0, choosing

$$\phi_1(x) = x^{6+\eta} = x^{13}$$
 (52)

will cover all the errors that cannot be trapped in the parity positions; $\rho_{1}(X)$ is then obtained from

$$x^{n-k}\phi_1(x) = x^{23} = g(x) q(x) + \rho_1(x)$$
 (53)

as

$$\rho_1(x) = 1 + x^4 + x^6 + x^7 \tag{54}$$

Decoder for (48,40) Shortened Cyclic Single Error-Correcting Code Figure 21.

Figure 22. Encoder for (24,14) Double Error-Correcting Code

The decoder is shown in Figure 23 where

$$\Sigma_0 = \sum_{i=0}^9 S_i \tag{55}$$

and

$$\Sigma_{1} = \sum_{i=0}^{9} (S_{i} + \rho_{i}) =$$

$$\overline{S}_{0} + S_{1} + S_{2} + S_{3} + \overline{S}_{4} + S_{5} + \overline{S}_{6} + \overline{S}_{7} + S_{8} + S_{9}$$
(56)

Tables VII, VIII, and IX illustrate how this (24,14) decoder processes three different received signals. Table VII illustrates the processing of r(X), where

$$r(\chi) = \chi^3 + \chi^5 + \chi^8 + \chi^9 + \chi^{10}$$
 (57)

and the test Σ_0 is satisfied. Table VIII illustrates the processing of

$$r(x) = x^3 + x^5 + x^6 + x^8 + x^{10}$$
 (58)

and the test $\boldsymbol{\Sigma_{\text{J}}}$ is satisifed. Table IX illustrates the processing of

$$r(x) = x^3 + x^5 + x^6 + x^8 + x^9 + x^{10} + x^{18}$$
 (59)

and the test Σ_1 is satisfied. Table IX also illustrates the fact that a 7-bit advance has to be inserted as the step from χ^0 to χ^{23} is performed, because this code has been shortened by 7 bits.

Figure 23. Decoder for (24,14) Double Error-Correcting Code

x ⁹ + x ¹⁰ with (24,14) DECODER	v*(x)																							
Н (2	>																							
$= x^3 + x^5 + x^8 + x^9 + x^{10}$ WIT	Buffer) y	<u>00</u>	000 <u>0</u>	00000	0000000	0000000	00000000	0000000000	000000000000000000000000000000000000000	10000000000000	1100000000000 <u>0</u>	12	0011100000000000000000000000000000000	111	0.001110000000000000000000000000000000		٦ -	7	$00\overline{0}00010100111000000000$	0000000010100111000000000	000000001010011100000000	0000000000101000000000000000000000000	$0000000\overline{0}0001010011100000$
r(X)	Σ_1																	+ ^	3 ↔	0	m	10.10	စ ဖ	10
PROCESSING OF r(X)	T_1																						00	
CESS	20				S												<	+ 1	- m	m	က	ر در ح	4	വ
PR	T ₀																c	o c	0	0	0	00	00	0
VII.																								
TABLE	s(X)		0000000000	0000000000	0000000000	0000000000	0000000000	0000000000	0000000000	0000000000	10111100101	01110011100	1101011010	0110101101 0000 000110101000	0000110100	1100100100	0110010010	1000111111	1101000100	0110100010	0011010001	1000110011	0110100001	1010001011
•	(X)			00	00	0	2	0	0				0			-0	00	>						
	5	23	×	x ²⁰			x_1	:			x ₁₀			× ₅			9	<						

_	_
(Ponditan)	〜 ゴリカニー・ニシン・
TARIE VII	ב הרוב
TAR	

		Bit 6 Corrected	Bit O Corrected
	۸*(x)		$\begin{array}{c} x^{23} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$
ABLE VII, (CONTINUED)	Buffer	$\begin{array}{c} 000000000000000000000000000000000000$	$\begin{array}{c} 1001011100000000000000000000000000000$
2	Σ_{1}	4 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	- 1	000000000000000000000000000000000000000	00000000000000000
	Σ_0	99999999999	10000000000000000
	Τ0	000000000000000	
	r(X) s(X)	1100011110 01100011111 1010011110 01010011110 00101001111 100001000 010000010 0000100000 0000010000 0000010000 000000	00000000000 00000000000 00000000000 0000

	٧*(x)	1 x ⁵ 0 0 0	0 0
TABLE VII, (continued)	Buffer	100101 10010 1001 100 100	1
TABLE VII,	$\Sigma_{f 1}$	44444	4 4
	T ₁	00000	00
	Σ0	00000	0
	T_0		
	(X)s	000000000000000000000000000000000000000	0000000000
	X		

DECODER		
ТН (24,14)	(x)*	
$+ x^8 + x^{10}$ WITH (24,14) DECODER	ر د	50000000000000000000000000000000000000
$x^5 + x^6 + y$	Buffer	
$X) = X^{\frac{3}{2}} +$	$\Sigma_{f 1}$	
PROCESSING OF r(X)	Σ_0 Γ_1	0000100000
PROCESS1	T ₀	00000000000000000000000000000000000000
TABLE VIII	s(X)	000000000 0000000000 0000000000 0000000
	r(X)	x x x x x x x x x x x x x x x x x x x

		φ · · · · · · · · · · · · · · · · · · ·	Bit O Corrected
	v*(x)		0 x ²³ 0 x ²⁰ 0 x ¹⁵ 0 x ¹⁵ 0 0 x ¹⁵ 1 x ¹⁰
: ViII. (continued)	Buffer	$\begin{array}{c} 000000000000000000000000000000000000$	
TABLE	1 Σ_1	ოო ი 4 ი ი ი ი ი ი ი ი ი 4	444444444444444
	—	000000000000	000000000000000000
	Σ_0		000000000000000000
	_T 0		
	s(X)	380000001000 280000000100 180000000010 1000000000 0010000000 0001000000	00000000000000000000000000000000000000
	r(X)		

	v*(X)	0 0 1 0 0 .
(continued)	Buffer	1010 100 10
TABLE VIII.	Σ_1	4444
	$^{\Sigma}_0$ $^{\Gamma}_1$	00000
	T ₀	ппппп
	s(X)	0000000000 00000000000 00000000000 00000
	7	

) DECODER											
TABLE IX. PROCESSING OF $r(x) = x^3 + x^5 + x^6 + x^8 + x^9 + x^{10} + x^{18}$ WITH (24,14) DECODER	(x)*\										
	Buffer	0	000 <u>0</u> 0000 <u>0</u> 0000 <u>0</u>	0100000 01000000 001000000 0001000000	0000010000 <u>0</u> 00000010000 <u>0</u> 000000010000 <u>0</u> 100000010000 <u>0</u>	1100000001@00 <u>0</u> 111000000010000 <u>0</u> 0111000000010000 <u>0</u>	000 00 00 00 00 00 00 00 00 00 00 00 00	$101. \odot 0000000100000$ $01011 \circ 110000000100000$ 00101101110000000100000	000010110111000000010000 <u>0</u> 000010110111000000010000	000000101101110000001000 000000010110111000000	1011010
	Σ1								247	494	9 %
	7								000	000	00
	Σ_{0}								2 9 7	. 9 9 9	9 8
	$_{0}^{T}$								000	000	00
	s(X)	0000000000	000000000000000000000000000000000000000	11001010011 1111001111 11110111100	001101100 1000101100 010001010	0100001111 01100001100 0110000110	1000100110 111111110 011111110	0001000011 1001111010 0100111101	1010001101 11001110011 11100011111	0011101100 00111011100 0011101110	0001110111 1001100000
	Ξ	00	0000	-0000	000-	0	0,	-00	0		
	-	x ²³	x ²⁰	x15	or x		x ₂	c) ×		

(continued)
IX.
TABLE

	(x) ^*	8	0 x ²³ 0	0 x ²⁰	000	0 x 15 0 0	0 0 1 x ¹⁰
TABLE IX. (continued)	Buffer	$\begin{array}{c} 00100000\overline{0}00101111011100000\\ 0001000000001011111110000\\ 0000100000000$	10010110111000000010000	100101101110000000100 10010110111000000010 1001011011100000001	100101101110000000 10010110111000000 1001011011100000	100101101110000 10010110111100 100101101	100101101110 10010110111 1001011011
	Σ_1	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	440	, വവ	444	4444	44
	1	000000000000000000000000000000000000000	000	000	000	0000	000
	Σ^{0}	mmmmm44700001111100	00-		000	000	00
	T ₀	0000000000		-			
	s(X)	0100110000 0010011000 0001001100 00001001	180000000000 10000000000	0100000000	000000000	000000000 0000000000 0000000000	0000000000
	1						

Bit 18 Corrected

Bit O Corrected

(continued)	
TABLE IX.	

*	×	0
>	4-04-0-0	00-
Buffer	100101101 10010110 1001011 100101 10010 1001	1
Σ,	4444444	4 4
1	0000000	000
Σ0	0000000	000
T ₀		·
s(X)	0000000000 0000000000 0000000000 000000	0000000000

SECTION V

BURST ERROR-CORRECTING CODES

Since, in general, all errors do not occur independently and in some cases one error will cause several errors in succession to be made, the correction of several errors in a row, a burst of errors, should be considered. A burst of length ℓ is defined as a group of bits of length ℓ of which at least the first and the ℓ bit are in error. A code which is capable of correcting all bursts of errors of length ℓ or less but not all bursts of length ℓ +1 is classified as an ℓ burst error-correcting code. The burst-correcting ability is the important parameter for burst error-correcting codes. A necessary condition for an (n,k) ℓ burst error-correcting code is that the number of parity check digits be at least 2ℓ , i.e.,

$$n - k \ge 2\ell \tag{60}$$

Codes that satisfy this bound with equality are said to be optimal in that they have the largest burst error-correcting capability. This is not the only parameter that should be considered, however, since it is possible to have an optimal code in the above sense and still have a code with a low rate (ratio of information bits to total bits).

Some best cyclic and shortened cyclic codes for burst error-correction have been found by Kasami $^{(3)}$ by computer searching. These are best in the sense that they have the maximum number of information digits among all shortened cyclic burst ℓ error-correcting codes with a given number of check digits n-k. A list of these codes is presented in Table X. The only disadvantage to these codes is that there are very few in number.

The (n,k) cyclic code generated by (4)

$$g(X) = p(X) (1 + X^{2k-1})$$
 (61)

has burst error-correcting capability ℓ and is classified as a "Fire code". Here

$$n = LCM(e, 2\ell-1)$$
 (62)

TABLE X. COMPUTER-GENERATED BURST ERROR-CORRECTING CODES

	Code								(Ger	ner	rat	tir	ng	Po	,1,	/nc	mi	iai					
n-k-2l	(n,k)	l		x ²⁰				>	(1!	5	• •)	¹⁰)	•)	ς ⁵			1		x ⁰
0	(7,3)	2																		1	0	1	1	1
	(15,9)	3																1	0	0	1	1	1	1
	(19,11)	4				1										1	1	0	0	1	0	1	0	1
	(27,17)	5												1	0	1	1	0	1	1	1	0	0	1
	(34,22)	6										1	1	0	1	0	0	1	1	1	1	0	1	1
	(38,24)	7								1	0	1	0	0	1	1	1	0	1	1	0	1	0	1
	(50,34)	8						1	0	0	1	0	1	0	0	1	0	1	0	1	1	0	0	1
	(56,38)	9				1	1	0	1	0	0	0	1	0	1	1	1	1	1	1	1	0	1	1
	(59,39)	10		1	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	1	0	0	1
1	(15,10)	2																	1	0	1	0	1	1
	(27,20)	3															1	0	0	1	0	0	1	1
	(38,29)	4													1	0	0	1	0	1	1	0	0	1
	(48,37)	5											1	0	0	0	0	0	1	0	1	0	0	1
	(67,54)	6									1	0	1	0	1	1	1	1	0	0	1	1	1	1
	(103,88)	7							1	0	0	0	1	1	1	1	0	0	0	1	1	0	0	1
	(96,79)	8	ı				1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1
2	(31,25)	2																1	0	0	0	1	1	1
	(63,55)	3														1	0	0	1	0	0	1	1	1
	(85,75)	4												1	0	0	1	0	1	0	1	1	0	1
	(131,119)	5										1	1	0	0	1	1	1	0	0	1	0	1	1
	(169,155)	6								1	0	1	0	1	0	1	1	1	1	0	1	1	0	1
3	(63,56)	2															1	0	1	1	0	1	1	1
	(121,112)	3													1	0	0	1	0	0	0	0	1	1
	(164,153)	4											1	0	1	1	0	1	0	1	0	0	1	1
	(290,277)	5									1	0	0	1	0	0	1	1	1	0	0	1	0	1
4	(511,499)	4										1	0	0	0	1	0	0	1	0	1	0	0	1
5	(1023,1010)	4									1	0	0	1	0	0	1	1	1	1	0	1	0	1

where LCM means "least common multiple" and e is the exponent of p(X) [e is the smallest positive integer such that $X^e + 1$ is divisible by p(X) or equivalently e is the length of the Galois field generated by p(X)] p(X) is an irreducible polynomial of degree m greater than or equal to ℓ . If p(X) is a primitive polynomial, e equals $2^m - 1$. The parity checks associated with the factor $1 + \chi^{2\ell-1}$ are $2\ell-1$ interlaced and evenly spaced, each of which will be affected by no more than one error in any burst of length $2\ell-1$ or less. Any burst of length b or less will leave at least b-1 successive parity checks unaffected, which determines the symbol at the beginning of the burst. Thus, the factor $1 + \chi^{2\ell-1}$ is sufficient to determine completely the error pattern for bursts of length no greater than b. The location of the burst is then provided by the factor p(X).

The number of parity bits of the Fire codes are

$$n-k = m \div 2\ell - 1 \tag{63}$$

and the inefficiency factor is given as

$$n-k-2\ell=m-1 \tag{64}$$

For comparison with the computer-generated burst error-correcting codes, some comparable Fire codes are presented in Table XI.

The (n,k) cyclic code generated by

$$g(X) = p(X^{\lambda})(1 + X^{\lambda m})$$
 (65)

has burst error capability

$$\ell = (\lambda - 1)m + 1 \tag{66}$$

and is classified as a "Burton code". The length is given as

$$n = \lambda \cdot LCM (e,m) = \lambda \sigma m$$
 (67)

where e is the exponent of p(X), an irreducible polynomial of degree m, and is the interlacing parameter. If p(X) is primitive and e and m do not have any common factors, σ equals e which equals 2^{m}-1 . For the Burton code the number of parity bits is

$$n - k = 2\lambda m \tag{68}$$

TABLE XI. FIRE CODES

	Code										(ien	ıer	at	in	g	Po	ılv	'no	mi	a]	ı			
n-k-2ℓ	(n,k)	L		Y	20				v	15				Х							u ,				Λ
2				٨			• •	•	^			• •	•	Х		٠	• •		Х		•	• •		X	U
2	(21,15)	2																1	0	1	. 0	0	1	1	
	(35,27)	3														1	0	1	1	0	1	0	. 1	1	
3	(15,8)	2															1	n	Ω	n	1	0	1	1	
	(15,6)	3											1		1	Ω						0			
	(105,94)	4											1	0								0			
4	(93,85)	2																							
	(155,145)	3												1	Λ							1			
	(217,205)	4										1	Λ									1			
	(279,265)	5								1	0					0							0		
5	(63,54)	2											-												
	(315,304)	3											1	Λ		0							1		
	(63,50)	4									1	Λ				0							1	_	
	(63,48)	5							1	0													1	_	
Y	(693,676)	6					1 (0	0														1	_	
6	(381,371)	2																				0			
	(635,623)	3										1										0			
	(889,875)	4								1 (0			0 (
	(1143,1127)	5					1	L														0 (_	
	(1397,1379)	6			1	. 0			0													0 (
	(1651,1631)	7	1	١ 0				_ (0 (-		
7	(255,244)	2																				1 (
	(255,242)	3								1	(1 (
	(1785,1770)	4						1	1 0													10			
	(765,748)	5				1	0															10			
	(2805,2786)	6		1	0	0	0	1	1	. 1	. () 1	. 0	0	1	. 0	0	0	1			10	1		
8	(1533, 1521)	2																				0			
	(2555,2541)	3							1	0												0			
	(511,493)	4					1	0														0			
	(4599,4581)	5			1	0																0			
	(5621,5601)	6	1	0	0	0	0	1	0	0	0	1	n	1	n	0	0	0	1	0	0	0	1		
								_		-	_	_	0	_	J	J	J	U	T	U	U	U	Ţ		

and the inefficiency factor is

$$n - k - 2\ell = 2(m-1)$$
 (69)

For comparison with the computer-generated and Fire burst error-correcting codes, some comparable Burton codes are presented in Table XII.

Another possibility for cyclic burst error-correction is the interlacing of the best single error-correcting codes, Hamming codes. The (n,k) burst ℓ error-correcting code has generated polynomial

$$g(X) = g_h(X^{\ell}) \tag{70}$$

where $g_{\boldsymbol{h}}(\boldsymbol{X})$ is an $m^{\underline{\underline{\boldsymbol{th}}}}$ order primitive polynomial. For this interlaced Hamming code

$$n = \ell(2^{m}-1) \tag{71}$$

$$n - k = \ell m \tag{72}$$

and

$$n - k - 2\ell = \ell(m-2) \tag{73}$$

The interlaced Hamming codes are given in Table XIII.

The objective in this project was to obtain the best burst error-correcting capabilities for a fixed word length and fixed number of parity bits. The word lengths considered are 48 and 24 bits, which is a fairly short code, with 8 and 10 bits of parity. Searching Tables X to XIII for the (48,40) code with the longest burst error-correcting capability, it is observed that the computer-generated (63,55), which can be shortened to the proper length, can correct bursts of length 3. The best Fire code that meets these specifications is the (93,85) burst 2 error-correcting code. Neither the Burton or the interlaced Hamming have any codes that meet these specifications. For a (24,16) code the computer code yields the same (63,55) & equals 3 code, the Fire code the (35,27) & equals 3 code, the interlaced Hamming the (30,22) & equals 2 code, and still no Burton code. For a (48,38) code the computer code yields the (85,75) & equals 4 code, the Fire code the (155,145) & equals 3, the interlaced Hamming the (62,52) & equals 2 code, and no Burton code. Finally, for a (24,14) code the

TABLE XII, BURTON CODES

Code						Generating Polynomial																				
n-k-2l	(n,k)	l			X	20				X	15				X	10		• 0		X!	5				XC)
2	(12,4)	3															1	0	1	0	0	0	1	0	1	
	(18,6)	5											1	0	0	1	0	0	0	0	0	1	0	0	1	
	(24,8)	7							1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	
4	(42,30)	4											1	0	0	0	1	0	0	0	0	0	1	0	1	
	(63,45)	7					1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	
6	(120,104)	5							1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	
6	(310,290)	6			1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	

TABLE XIII. INTERLACED HAMMING BURST ERROR-CORRECTING CODES

Code						Generating Polynomial																			
n-k-2l	(n,k)	l			x ²⁰				X	15				X	10				X	5				χ^0)
2	(14,8)	2																1	0	0	0	1	0	1	
3	(21,12)	3													1	0	0	0	0	0	1	0	0	1	
4	(30,22)	2														1	0	0	0	0	0	1	0	1	
	(28,16)	4										1	0	0	0	0	0	0	0	1	0	0	0	1	
5	(35,20)	5							1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	
6	(62,52)	2												1	0	0	0	0	0	1	0	0	0	1	
	(45,33)	3			0							1	0	0	0	0	0	0	0	0	1	0	0	1	
	(42,24)	6				1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
8	(60,44)	4						1	0	0	0	0	0	0	0	0	Û	0	0	1	0	0	0	1	

computer code yields the (27,17) ℓ equals 5 code, the Fire code the (155,145) ℓ equals 3 code, the interlaced Hamming the (62,52) ℓ equals 2 code, and no Burton code. The computer-generated codes in all cases were as good as, or better than, the other codes, as would be expected. It was hoped that the noncomputer-generated codes would have been as good as the computer-generated ones since the noncomputer-generated codes are easier to obtain. The only case where they had the same burst error-correcting capability was the (24,16) computer-generated code and the corresponding Fire code with ℓ equals 3. It should be noted that the Burton and the interlaced Hamming codes were not even close to the performance of the computer-generated codes for the short code lengths considered here. Also, in some instances the Fire codes were close to the performance of the computer-generated codes.

To illustrate the correctable error patterns of these burst error-correcting codes, the correspondence between the observed syndromes and the correctable errors for six of these codes have been tabulated in Tables XIV to XIX.

Tables XIV and XV show burst 3 error-correcting codes. The computergenerated code is longer and thus uses more of the available correctable error patterns. The computer-generated code uses 63.4 = 252 of the correctable error patterns while the Fire code uses 35.4 = 140 out of the possible 255 correctable error patterns. As illustrated in Table XIV, the syndrome patterns have been broken into the corresponding burst patterns of length one, 1, length two, 11, and length three, 101 and 111. Each entry is a syndrome. The last syndrome in each division of the table is the burst pattern, e.g., syndrome 63 is the burst pattern of length one, and syndrome 126 is the burst pattern of length two. Similarly, in Table XV for the Fire code, syndrome 35 is the burst pattern of length one and syndrome 70 is the burst pattern of length two. These patterns also correspond to correcting that particular burst at the high end of the word. Working backwards in the same division corrects the same burst at less significant digits in the word, and the first entry in the division corrects this burst at the first bit in the word. For example, in Table XV, syndrome 184 corresponds to the error pattern $\chi^{55} + \chi^{57}$, and syndrome 129 corresponds to the error pattern $1 + \chi^2$.

TABLE XIV. (63,55) &=3 COMPUTER GENERATED CODE

1 1100100	IG=111001001			
2 01110010			101 001001011	
3 00111001				
4 11111000 54 01011011 104 1101001 154 0110100 5 01111100 5 10101010 155 10101010				152 01011001
4 1111000		53 10110110	103 01111011	153 11001000
S 01111100	4 11111000	54 01011011		
6 00111110 56 10000000 106 01000100 155 00011001 7 00011011 57 01000000 107 00100010 157 11101000 9 10010001 59 00010000 108 00010001 158 0111010 10 10 1010100 60 00001000 110 0110101 160 00011101 11 0101010 60 00000100 111 0110110 160 00011101 12 0010101 62 00000010 112 11111001 162 01110101 13 11110001 63 00000001 112 11111001 162 01110101 14 10011100 64 11100101 113 1011001 164 0110101 115 0110101 165 1010101 115 0010110 164 0110111 15 0100111 65 1001011 165 1001011 115 0010110 165 1010011 115 0010011 166 0100001 117 1110101 167 1010 101 17 1110111 167 1100001 17 1111011 168 1000010 118 1001010 168 0101001 19 1010101 169 0100001 120 1010000 170 0100001 120 11000000 170 0100001 120 11000000 170 0110010 122 0101110 72 01111010 122 00110000 170 0110010 122 0101110 72 0111010 122 0010000 173 1001101 123 0001110 174 1111011 175 0110110 122 0000110 174 0110101 125 1001010 175 0110101 125 0000011 176 0110010 177 01100101 120 1010101 175 0110101 175 0110110 125 0000011 176 0110010 177 0110101 125 1010101 177 0110101 127 0110101 128 1010101 177 0110101 129 0110101 177 0110101 120 011010 177 0110101 120 011010 177 0110101 120 011010 177 0110101 177 0110101 120 010101 177 0110101 120 010101 177 0110101 177 0110101 120 010000 170 0110101 177 0110101 120 010000 170 0110000 170 0110101 177 0110101 120 010000 170 010000 170 010000 170 010000 170 010000 170 010000 170 010000 170 010000 170 0100000 170 010000 170 010000 170 010000 170 010000 170 010000 170 0100000 170 010000 170 010000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 0100000 170 01000000 170 010000000 170 0100000 170 01000000 170 01000000 170 01000000 170 0100000000	5 01111100			
No. No.				
8 1101011				
10010001				
10 10 10 10 10 10 10 10				
11 0101010				159 00111010
12 0010101				160 00011101
12 00101011 62 00000010 112 11111001 162 01110101 13 11110001 63 00000001 113 10011000 163 11011101 14 10011100 64 11100101 114 01001100 164 01101111 15 01001110 65 10010110 115 00100110 165 11010011 166 0100111 166 01001011 166 1000*001 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011011 167 10100*101 181 10011001 169 110011001 19 11001001 170 01100010 120 11000000 170 01100110 121 101100000 171 10110101 122 001110000 172 1111101 123 00011000 173 10011010 124 1111001 173 10011010 124 1111001 174 1111010 124 00001100 173 10011010 174 1111010 125 10001100 175 11000010 175 11000010 170 1100101 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1101010 170 1100101 170 1101010 170 1101010 170 1100101 170 1100101 170 1100101 170 1101010 170 1100101 170 1100101 170 1100101 170 1101010 170			111 00111011	161 11101010
11110001			112 11111001	162 01110101
14 10011100	13 11110001	63 00000001	113 10011000	
15 01001110	14 10011100	64 111001017		
16 00100111 66 01001011 116 00010011 167 10100011 17 11110111 67 11000001 117 11101101 167 10100010 118 10010101 168 01010001 19 01010111 68 0000100 118 10010010 169 11001100 101 10011001 101 10011001	15 01001110			
17 11110111 67 11000001 117 11101101 167 1010, 310 19 10101011 68 10000100 118 10010010 168 01010001 19 10101001 69 01000001 119 01001000 170 01100100 170 01100010 170 01100010 170 01100100 170 01100100 170 01100110 121 10110000 170 01100110 171 11111010 122 10110000 171 10110011 171 10110011 171 10110011 171 10110011 173 00111101 174 11111010 174 11111010 174 173 10011010 174 1000010 174 10101101 175 1000010 174 1000010 175 1000000 175 1000000 175 1000000 175 1000000 175 100000000000000000000000000000000000				
18 10011111 68 10000100 118 10010010 168 010100010 19 10101011 69 01000010 119 01001001 169 11001100 120 11000000 170 011001100 121 01111100 121 011000000 170 011001101 122 01101110 122 01111101 123 0101111 73 01111101 123 00011000 173 10011010 124 11110011 174 11111010 124 00001100 173 10011010 125 1001101 175 1011101 125 00000110 175 11000001 176 11000001 177 11001010 126 1010101 177 11010100 127 11001010 127 11001010 127 11001010 128 1100111 179 01101010 129 1011101 179 00110101 129 1011101 129 1011101 129 1011101 129 1011101 129 1011101 130 11010111 130 1101010 130 11010111 130 1010000 130 1000010 130 1010111 130 10100				
19 10101011 69 01000010 119 01001001 169 11001001 20 10110001 70 00100001 120 11000000 170 01100110 21 10111100 72 01111010 121 01100000 171 001100110 22 01011110 72 01111010 122 00110000 172 11111101 23 00101111 73 0011101 123 00011000 173 10011010 24 11110011 74 11111010 124 00001100 174 01001101 25 10011101 75 01111101 125 00000110 175 11000010 176 11010010 176 1101010 126 00000011 176 1100001 177 11010100 127 1100110 177 11010100 128 11001110 177 11010100 128 1100111 179 01101010 128 01110011 179 01101010 129 11011101 179 01101010 130 1000101 180 1111110 131 1000111 181 01101000 132 11000110 180 1111111 132 10100011 182 00110100 133 11000101 181 1111111 133 10110101 134 10110101 135 10100101 136 10101010 137 1000001 137 1000001 138 10101010 137 1000001 138 10101000 137 1000001 138 10101000 137 1000001 138 10101000 137 1000001 138 10100100 139 10101010 139 10101010 139 10100101 140 10110111				
20				
10111100				
22 01011110				170 01100110
23 00101111				171 00110011
23 00101111 73 00111101 123 00011000 173 10011010 10011010 10011010 10011010 10011010 10011010 10011010 10011010 10011010 100101010 100101010 100101010 100101010 100101010 100101010 100101010 100101010 1001010 100101010 100101010 100101010 100101010 1001010 100101010 100101010 100101010 100101010 100101010 10010101 10010101			122 00110000	172 11111101
24 11110011 74 11111010 124 00001100 174 01001101 25 10011101 75 01111101 125 00000110 175 11000010 26 10101010 76 11011010 126 00000011 176 01100001 27 01010101 77 01101101 127 11100110 177 1100100 28 11001110 78 11010010 128 01110011 178 01101010 29 01100111 79 01101001 129 11011101 179 00110101 30 11010111 80 11010000 130 10001010 180 1111111 31 10000111 81 01101000 131 01000101 181 0111111 32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 1011110 84 00001101 134 11010101 185 01010000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 137 11000111 186 00101000 37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 0110111 139 1010011 189 00000101 <		73 00111101	123 00011000	
25 10011101	24 11110011	74 11111010		
26 10101010 76 11011010 126 00000011 176 01100001 27 01010101 77 01101101 127 11100110 177 11010100 28 11001110 78 11010010 128 01110011 178 01101010 29 01100111 79 01101000 130 1000101 179 00110101 30 11010111 81 01101000 130 10000101 180 1111111 31 10000111 81 01101000 132 11000101 181 0111111 32 10100011 82 00110100 132 11000101 182 1101101 34 1011110 84 00001101 134 11010101 184 10100001 35 0101111 85 11100010 135 10001110 185 01010000 36 1100101 86 01101001 137 11000111 186 00101000	25 10011101	75 01111101		
27 01010101 77 01101101 127 11100110 177 11010100 28 11001110 78 11010010 128 01110011 177 11010100 29 01100111 79 01101001 129 11011101 179 00110101 30 1101011 80 11010000 130 1000101 180 1111111 31 1000111 81 01101000 131 01000101 181 0111111 32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 1011110 84 00001101 133 01100011 184 10100000 35 01011111 85 11100010 135 1000110 185 0100000 36 11001011 86 01110001 135 1000110 185 01010000 37 10000001 87 11011100 137 11000111 186 00101000 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 1010011 189 00000101 40 00101001 90 11111111 140 1011011 190 11100111 41 1110000 91 10011001 142 10111001 193 101100111	26 10101010			
28 11001110 78 11010010 128 01110011 178 01101010 29 01100111 79 01101001 129 11011101 179 00110101 30 11010111 80 11010000 130 1000101 180 1111111 31 10001111 81 01101000 131 01000101 181 0111111 32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 1011110 84 00001101 134 11010101 184 10100000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 135 10001110 185 0101000 37 10000001 87 11011100 137 11000111 186 00101000 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 91 10011011 141 1011111 190 11100111 41 00111000 92 10101000 143 10111001 193 10110011 45 00001111 95 00101100 144 10111000 194 10111101 <				
29 01100111 79 01101001 129 11011101 179 00110101 30 11010111 80 11010000 130 1000101 180 1111111 31 10001111 81 01101000 131 01000101 181 0111111 32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 1011110 84 00001101 134 11010101 184 10100000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 1101100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 1010011 189 0000011 40 0010010 90 11111111 140 1011011 190 1110011 41 111000 91 1001101 141 1011111 191 1001011 42 0111100 93 10110000 143 1011001 193 10110011 44 0001110 94 01011000 144 1011100 195 1011101				
1010111				
31 10001111 81 01101000 131 01000101 181 0111111 32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 1011110 84 00001101 134 11010101 184 10100000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 11000111 188 00001010 38 10100100 88 01101110 138 10000111 189 00000101 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1110000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 0011110 94 01011000 144 1011100 193 10110011 44 0001111 95 00101100 145 01011100 194 1011101 45 0000111 96 0001010 146 0010110 195 10111010				
32 10100011 82 00110100 132 11000110 182 11011011 33 10110101 83 00011010 133 01100011 183 10001001 34 10111110 84 00001101 134 11010101 184 10100000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1110000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 0011110 93 10110000 143 10111001 193 10110011 44 0001110 94 01011000 144 10111000 194 10111101 45 0000111 96 00010110 145 01011100 195 10111010 46 11100011 97 00001011 147 00010111 197 11001010				
33 10110101 83 00011010 133 01100011 183 1001001 34 10111110 84 00001101 134 11010101 184 10100000 35 01011111 85 11100010 135 10001110 185 01010000 36 11001001 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 110000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111011 191 10010111 42 0111100 92 10101001 142 10111001 193 10110011 </td <td></td> <td></td> <td></td> <td></td>				
34 10111110 84 00001101 134 11010101 184 10100000 35 01011111 85 1100010 135 10001110 185 0101000 36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 11110000 91 10011011 141 10111011 191 10010111 43 00111100 92 10101001 142 10111011 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 </td <td></td> <td></td> <td></td> <td></td>				
35 01011111 85 11100010 135 10001110 185 01010000 36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111111 191 10010111 42 0111100 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
36 11001011 86 01110001 136 01000111 186 00101000 37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111111 191 10010111 43 00111100 92 10101001 142 10111011 192 10101111 44 00011110 94 01011000 143 10111001 193 10110011 45 00001111 95 00101100 145 01011100 194 10111101 46 11100011 96 00010110 146 0010110 195 10111010 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 100101000 149 10010011 199 11010110				184 10100000
37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 11110000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				185 01010000
37 10000001 87 11011100 137 11000111 187 00010100 38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110		86 01110001	136 01000111	186 00101000
38 10100100 88 01101110 138 10000111 188 00001010 39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110		87 11011100	137 11000111	
39 01010010 89 00110111 139 10100111 189 00000101 40 00101001 90 11111111 140 10110111 190 11100111 41 11110000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110	38 10100100	88 01101110		
40 00101001 90 11111111 140 10110111 190 11100111 41 1111000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110	39 01010010	89 00110111		
41 11110000 91 10011011 141 10111111 191 10010111 42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110	40 00101001			
42 01111000 92 10101001 142 10111011 192 10101111 43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110	41 11110000			
43 00111100 93 10110000 143 10111001 193 10110011 44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 10111010 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
44 00011110 94 01011000 144 10111000 194 10111101 45 00001111 95 00101100 145 01011100 195 1011101 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
45 00001111 95 00101100 145 01011100 195 1011101 46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
46 11100011 96 00010110 146 00101110 196 01011101 47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
47 10010101 97 00001011 147 00010111 197 11001010 48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
48 10101110 98 11100001 148 11101111 198 01100101 49 01010111 99 10010100 149 10010011 199 11010110				
49 01010111 99 10010100 149 10010011 199 11010110	_			
EO 11001111 100 01001010				198 01100101
		99 10010100		199 11010110
	20 11001111	100 01001010	150 10101101	

001 110100001			
201 11010001	214 01000001	227 111011101	240 000110111
202 10001100	215 11000100	228 01110111	
203 01000110	216 01100010		241 11101001
204 00100011	217 00110001	229 11011111	242 10010000
205 11110101		230 10001011	243 01001000
	218 11111100	231 10100001	244 00100100
206 10011110	219 01111110	232 10110100	245 00010010
207 01001111	220 00111111	233 01011010	
208 11000011	221 11111011		246 00001001
209 10000101		234 00101101	247 11100000
	222 10011001	235 11110010	248 01110000
210 10100110	223 10101000	236 01111001	249 00111000
211 01010011	224 01010100	237 11011000	250 00011100
212 11001101	225 00101010	238 01101100	
213 10000010	226 00010101		251 00001110
	220 000101011	239 00110110	252 00000111

IG=110101101 51 11110110 101 01010000 151 0 2 01101011 52 01111011 102 00101000 152 0 3 11100011 53 11101011 103 00010100 153 1 4 10100111 54 10100011 104 00001010 154 10 5 10000101 55 10000111 105 00000101 155 10 6 10010100 56 10010101 106 11010101 156 10
7 01001010
49 10000010 99 11101101 149 01110101 198 000

TABLE XV. (35,27) ℓ =3 FIRE CODE

01001101 214 0001111 11110000 215 0000111	0
-	01001101 214 0001111

TABLE XVI. (85,75) &=4 COMPUTER GENERATED CODE

IG=10110101001			
1 10110101001	51 1011111100	101 0100000110	
2 0101101010	52 0101111110	101 0100000110	151 0100100100
3 0010110101	53 0010111111	102 0010000011	152 0010010010
4 1010001110	54 1010001011	103 1010010101	153 0001001001
5 0101000111	55 1110010001	104 1110011110	154 1011110000
6 1001110111	56 110010001	105 0111001111	155 0101111000
7 1111101111		106 1000110011	156 0010111100
8 1100100011		107 1111001101	157 0001011110
9 1101000101	58 0011000111 59 1010110111	108 1100110010	158 0000101111
10 1101110110	60 1110001111	109 0110011001	159 1011000011
11 0110111011		110 1000011000	160 1110110101
12 1000001001	61 1100010011 62 1101011101	111 0100001100	161 1100001110
13 1111010000	63 11011111010	112 0010000110	162 0110000111
14 0111101000	64 0110111101	113 0001000011	163 1000010111
15 0011110100	65 1000001010	114 1011110101	164 1111011111
16 0001111010		115 1110101110	165 1100111011
17 00001111010		116 01110101111	166 1101001001
18 1011001010		117 1000111111	167 1101110000
19 0101100101	68 0100101011 69 1001000001	118 1111001011	168 0110111000
20 1001100101	70 1111110100	119 1100110001	169 0011011100
21 0100110011	71 01111110100	120 1101001100	170 0001101110
22 1001001101	72 00111111010	121 0110100110	171 0000110111
23 1111110010	73 1010101010	122 0011010011	172 1011001111
24 0111111001	74 0101010101	123 1010111101	173 1110110011
25 1000101000	75 1001111110	124 1110001010	174 1100001101
26 0100010100	76 0100111111	125 0111000101	175 1101010010
27 0010001010	77 1001001011	126 1000110110	176 0110101001
28 0001000101	78 1111110001	127 0100011011	177 1000000000
29 1011110110	79 1100101100	128 1001011001 129 1111111000	178 0100000000
30 0101111011	80 0110010110		179 0010000000
31 1001101001	81 0011001011	130 0111111100 131 0011111110	180 0001000000
32 1111100000	82 1010110001	132 0001111111	181 0000100000
33 0111110000	83 1110001100	133 1011101011	182 0000010000
34 0011111000	84 0111000110	134 1110100001	183 0000001000
35 0001111100	85 0011100011	135 1100000100	184 0000000100
36 0000111110	86 1010100101		185 0000000010
37 0000011111	87 1110000110	136 0110000010 137 0011000001	186 0000000001
38 1011011011	88 0111000011	138 1010110100	187 1011010101
39 1110111001	89 1000110101	139 0101011010	188 11101111110
40 1100001000	90 1111001110	140 001010101	189 0111011111
41 0110000100	91 0111100111	141 1010000010	190 1000111011
42 0011000010	92 1000100111	142 0101000001	191 1111001001
43 0001100001	93 1111000111	143 1001110100	192 1100110000
44 1011100100	94 1100110111	144 0100111010	193 0110011000
45 0101110010	95 1101001111	145 00100111010	194 0011001100
46 0010111001	96 1101110011	146 1010011010	195 0001100110
47 1010001000	97 1101101101	147 01010011010	196 0000110011
48 0101000100	98 1101100010	148 1001110010	197 1011001101
49 0010100010	99 0110110001	149 01001110010	198 1110110010
50 0001010001	100 1000001100	150 1001001000	199 0111011001
		100 10010010001	200 1000111000

201 0100011100	251 11101101111	301 0101011011	351 0011100100
202 0010001110	252 1100001111	302 10011111001	352 00011100100
203 0001000111	253 1101010011	303 1111101000	353 0001110010
204 1011110111	254 1101111101	304 0111110100	354 1011001000
205 1110101111	255 1101101010	305 0011111010	355 01011001000
206 1100000011	256 0110110101	306 0001111101	356 0010110010
207 1101010101	257 1000001110	307 1011101010	357 0001011001
208 1101111110	258 0100000111	308 0101110101	358 10111111000
209 0110111111	259 1001010111	309 1001101110	359 0101111100
210 1000001011	260 1111111111	310 0100110111	360 0010111110
211 1111010001	261 1100101011	311 1001001111	361 00010111111
212 1100111100	262 1101000001	312 1111110011	362 1011111011
213 0110011110	263 1101110100	313 1100101101	363 1110101001
214 0011001111	264 0110111010	314 1101000010	364 11000000000
215 1010110011	265 0011011101	315 0110100001	365 0110000000
216 1110001101	266 1010111010	316 1000000100	366 0011000000
217 1100010010	267 0101011101	317 0100000010	367 0001100000
218 0110001001	268 1001111010	318 0010000001	368 0000110000
219 1000010000	269 0100111101	319 1010010100	369 0000011000
220 0100001000	270 1001001010	320 0101001010	370 0000001100
221 0010000100	271 0100100101	321 0010100101	371 0000000110
222 0001000010	272 1001000110	322 1010000110	372 0000000011
223 0000100001	273 0100100011	323 0101000011	373 1011010110
224 1011000100	274 1001000101	324 1001110101	374 0101101011
225 0101100010	275 1111110110	325 1111101110	375 1001100001
226 0010110001	276 0111111011	326 0111110111	376 1111100100
227 1010001100	277 1000101001	327 1000101111	377 0111110010
228 0101000110	278 1111000000	328 1111000011	378 0011111001
229 0010100011	279 0111100000	329 1100110101	379 1010101000
230 1010000101 231 1110010110	280 0011110000	330 1101001110	380 0101010100
	281 0001111000	331 0110100111	381 0010101010
232 0111001011 233 1000110001	282 0000111100	332 1000000111	382 0001010101
234 1111001100	283 0000011110	333 11110101111	383 1011111110
235 0111100110	284 0000001111]	334 1100111111	384 0101111111
236 00111100110	285 1011010011	335 1101001011	385 1001101011
237 1010101101	286 1110111101	336 1101110001	386 1111100001
238 1110000010	287 1100001010	337 1101101100	387 1100100100
239 0111000001	288 0110000101	338 0110110110	388 0110010010
240 1000110100	289 1000010110 290 0100001011	339 0011011011	389 0011001001
241 0100011010	290 0100001011	340 1010111001	390 1010110000
242 0010001101	292 1111111100	341 1110001000	391 0101011000
243 1010010010	293 0111111100	342 0111000100	392 0010101100
244 0101001001	294 0011111111	343 0011100010	393 0001010110
245 1001110000	295 10101010111	344 0001110001 345 1011101100	394 0000101011
246 0100111000	296 1110000001	346 01011101101	395 1011000001
247 0010011100	297 110000001	347 0010111011	396 1110110100
248 0001001110	298 01100010100	348 1010001001	397 0111011010
249 0000100111	299 0011000101	349 1110010000	398 0011101101
250 1011000111	300 1010110110	350 01110010000	399 1010100010
	000 10101101101	330 01110010001	400 0101010001

401	. 1001111100	451 0101100111	501 1011100011	EE1 1010000000
	0100111110	452 1001100111		551 1010000000
	0010011111		502 1110100101	552 0101000000
		453 1111100111	503 1100000110	553 0010100000
	1010011011	454 1100100111	504 0110000011	554 0001010000
405	1110011001	455 1101000111	505 1000010101	
406		456 1101110111		555 0000101000
	0110001100		506 1111011110	556 0000010100
		457 1101101111	507 0111101111	557 0000001010
	0011000110	458 1101100011	508 1000100011	558 0000000101
409	0001100011	459 1101100101	509 1111000101	559 1011010111
410	1011100101	460 1101100110	510 1100110110	
	1110100110	461 0110110011	_	560 1110111111
	0111010011		511 0110011011	561 1100001011
		462 1000001101	512 1000011001	562 1101010001
	1000111101	463 1111010010	513 1111011000	563 1101111100
414	1111001010	464 0111101001	514 0111101100	564 0110111110
415	0111100101	465 1000100000	515 0011110110	
416				565 0011011111
		466 0100010000	516 0001111011	566 1010111011
417		467 0010001000	517 1011101001	567 1110001001
418		468 0001000100	518 1110100000	568 1100010000
419	1111111010	469 0000100010	519 0111010000	
420	0111111101	470 0000010001		
421				570 0011000100]
		471 1011011100	521 0001110100	571 0001100010
	0100010101	472 0101101110	522 0000111010	572 0000110001
	1001011110	473 0010110111	523 0000011101	573 1011001100
424	0100101111	474 1010001111	524 1011011010	574 0101100110
425	1001000011	475 1110010011	525 0101101101	
426				575 0010110011
		476 1100011101	526 1001100010	576 1010001101
427		477 1101011010]	527 0100110001	577 1110010010
	0110010111	478 0110101101	528 1001001100	578 0111001001
429	1000011111	479 1000000010	529 0100100110	579 1000110000
430	1111011011	480 0100000001		
431	1100111001	481 1001010100		580 0100011000
			531 1010011101	581 0010001100
	1101001000	482 0100101010	532 1110011010	582 0001000110
	0110100100	483 0010010101	533 0111001101	583 0000100011
434	0011010010	484 1010011110	534 1000110010	584 1011000101
435	0001101001	485 0101001111	535 0100011001	
436	1011100000	486 1001110011		585 1110110110
			536 1001011000	586 J111011011
	0101110000	487 1111101101	537 0100101100	587 1000111001
	0010111000	488 1100100010	538 0010010110	588 1111001000
439	0001011100	489 0110010C01	539 0001001011	589 0111100100
440	0000101110	490 1000011100	540 1011110001	
	0000010111	491 0100001110		590 0011110010
	1011011111		541 1110101100	591 0001111001
		492 0010000111	542 0111010110	592 1011101000
	1110111011	493 1010010111	543 0011101011	593 0101110100
	1100001001	494 1110011111	544 1010100001	594 0010111010
445	1101010000	495 1100011011	545 1110000100	595 00010111010
	0110101000	496 1101011001		
	0011010100		546 0111000010	596 1011111010
		497 11011111000	547 0011100001	597 0101111101
	0001101010	498 0110111100	548 1010100100	598 1001101010
	0000110101	499 0011011110	549 0101010010	599 0100110101
450	1011001110	500 0001101111	550 0010101001	600 1001001110
			000 001010101	000 1001001110

632 1100000010 633 0110000001 634 1000010100 635 0100001010 635 0100001010 636 0010000101 637 101001110 638 0101001011 639 100101011 639 1001110001 640 111110110 641 011111011 642 0011111011 643 1010101011 644 111000000 645 0110001011 645 011100000 646 0011100000 647 0001110000 646 0011100000 647 0001110000 647 0001110000 648 0000111000 649 0000111000 640 0011100000 640 0011100000 641 0011100000 644 00011100000 645 0011000000 646 00011100000 647 0001110000 648 0000111000 649 0011010000 640 0011100000 640 0011100000 640 0011100000 640 0001110000 640 00001110000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 00000111000 640 000000111000 640 00000111100 640 000000111100 640 00000111100 640 000000111100 640 00000111100 640 000000111100 640 000000111100 640 000000111100 640 000000111100 640 000000111100 640 000000111100 640 000000111100 640 000000111100 640 000000000 640 00000000000 640 0000000000	1100 0111 0111 1011 1001 0100 1010 0101 1110 1111 1001 0000 0000
E/O 0000111000	1000

		,
801 0000011001		901 1000010010
802 1011011000	852 0100110000	902 0100001001
803 0101101100	853 0010011000	903 1001010000
804 0010110110	854 0001001100	904 01001010000
805 0001011011	855 0000100110	905 00100101000
806 1011111001	856 0000010011	
807 1110101000	857 1011011101	906 0001001010
808 0111010100		907 0000100101
809 0011101010		908 1011000110
810 0001110101		909 0101100011
811 1011101110	860 1000111010	910 1001100101
812 0101110111	861 0100011101	911 1111100110
	862 1001011010	912 0111110011
	863 0100101101	913 1000101101
814 1111100011	864 1001000010	914 1111000010
815 1100100101	865 0100100001	915 0111100001
816 1101000110	866 1001000100	916 1000100100
817 0110100011	867 0100100010	917 0100010010
818 1000000101	868 0010010001	918 0010001001
819 1111010110	869 1010011100	919 1010010000
820 0111101011	870 0101001110	920 0101001000
821 1000100001	871 0010100111	921 00101001001
822 1111000100	872 1010000111	
823 0111100010	873 1110010111	922 0001010010
824 0011110001	874 1100011111	923 0000101001
825 1010101100		924 1011000000
826 0101010110		925 0101100000
827 0010101011		926 0010110000
828 1010000001		927 0001011000
829 1110010100		928 0000101100
830 0111001010	879 0011011010	929 0000010110
831 0011100101	880 0001101101	930 0000001011
832 1010100110	881 1011100010	931 1011011110
	882 0101110001	932 0101101111
	883 1001101100	933 1001100011
	884 0100110110	934 1111100101
835 1111101010	885 0010011011	935 1100100110
836 0111110101	886 1010011001	936 0110010011
837 1000101110	887 1110011000	937 1000011101
838 0100010111	888 0111001100	938 1111011010
839 1001011111	889 0011100110	939 0111101101
840 1111111011	890 0001110011	940 1000100010
841 1100101001	891 1011101101	941 0100010001
842 1101000000	892 1110100010	942 1001011100
843 0110100000	893 0111010001	943 0100101110
844 0011010000	894 1000111100	
845 0001101000	895 0100011110	
846 0000110100	896 0010001111	945 1010011111
847 0000011010	897 1010010011	946 1110011011
848 0000001101	898 1110011101	947 1100011001
849 1011010010		948 1101011000
850 0101101001		949 0110101100
	900 0110001101	950 0011010110

TABLE XVII. (27,17) & =5 COMPUTER GENERATED CODE

IG=10011101101	E1 00111111		
1 1001110110	51 0011111110	101 1111010100	151 0100101011
2 0100111011	52 0001111111	102 0111101010	152 1011100011
3 1011101011	53 1001001001	103 0011110101	153 1100000111
4 1100000011	54 1101010010	104 1000001100	754 1111110101
	55 0110101001	105 0100000110	154 11111110101
5 1111110111	56 1010100010	106 0010000011	155 1110001100
6 1110001101	57 0101010001	107 1000110111	156 0111000110
7 1110110000	58 1011011110	108 1101101101	157 0011100011
8 0111011000	59 0101101111	100 1101101101	158 1000000111
9 0011101100	60 1011000001	109 1111000000	159 1101110101
10 0001110110	61 1100010110	110 0111100000	160 1111001100
11 0000111011	62 0110001011	111 0011110000	161 01111100110
12 1001101011	63 1010110011	112 0001111000	162 0011110011
13 1101000011		113 0000111100	163 1000001111
14 1111010111		114 0000011110	164 1101110001
15 1110011101	65 1111100001	115 0000001111]	165 1111001110
16 1110111000	66 1110000110	116 1001110001	166 0111100111
17 0111011100	67 0111000011	117 1101001110	167 1010000101
18 0011101110	68 1010010111	118 0110100111	168 1100110100
	69 1100111101	119 1010100101	160 01100110100
	70 11111101000	120 1100100100	169 0110011010
20 1001001101	71 0111110100	121 0110010010	170 0011001101
21 1101010000	72 0011111010	122 0011001001	171 1000010000
22 0110101000	73 0001111101	123 1000010010	172 0100001000
23 0011010100	74 1001001000	124 0100001001	173 0010000100
24 0001101010	75 0100100100	125 1011110010	174 0001000010
25 0000110101	76 0010010010	125 1011111010	175 0000100001
26 1001101100	77 0001001001	126 0101111001	176 1001100110]
27 0100110110	78 1001010010	127 1011001010	177 0100110011
28 0010011011	79 0100101001	128 0101100101	178 1011101111
29 1000111011	80 1011100010	129 1011000100	179 1100000001
30 1101101011	81 0101110001	130 0101100010	180 1111110110
31 1111000011	82 1011001110	131 0010110001	181 01111111011
32 1110010111	83 0101100111	132 1000101110	182 1010001011
33 1110111101	84 1011000101	133 0100010111	183 1100110011
34 1110101000	85 1100010100	134 1011111101	184 1111101111
35 0111010100	00 110001010	135 1100001000	185 1110000001
36 0011101010	86 0110001010	136 0110000100	186 1110110110
37 0001110101	87 0011000101	137 0011000010	187 0111011011
38 1001001100	88 1000010100	138 0001100001	188 1010011011
39 0100100110	89 0100001010	139 1001000110	189 1100111011
40 0010010011	90 0010000101	140 0100100011	190 1111101011
41 1000111111	91 1000110100	141 1011100111	191 1110000011
42 1101101001	92 01000110107	142 1100000101	192 1110110111
43 1111000010	93 0010001101	143 1111110100	193 1110101101
	94 1000110000	144 0111111010	194 1110100000
	95 0100011000	145 0011111101	105 01110100000
45 1010000110	96 0010001100	146 1000001000	195 0111010000
46 0101000011	97 0001000110	147 0100000100	196 0011101000
47 1011010111	98 00001000111	148 0010000010	197 0001110100
48 1100011101	99 1001100111	149 0001000001	198 0000111010
49 11111111000	100 1101000101	150 1001010110	199 0000011101
50 0111111100	,	100 1001010110	200 1001111000

TABLE XVII. (27,17) & =5 COMPUTER GENERATED

	201 0100111100 202 0010011110 203 0001001111 204 1001010001 205 1101011110 206 01101010110 208 1100100110 209 0110010011 210 1010111111 211 1100101001 212 1111100010 213 0111110001 214 1010001110 215 01010001110 217 1100011100 218 0110001110 219 0011000111 221 1101111100 222 01101111101 223 00110111111 224 1000011001 225 1101111010 226 0110111101 227 1010101000 228 01010111101 227 1010101000 228 01010111101 227 1010101000 228 01010111101 231 1001011100 232 01001011101 233 00100101101 234 1000111101 235 1101101000 240 01010101000 240 0101010000 241 00100100000 242 00010010010 243 00001001001 244 0000010010	251 0101100110 252 0010110011 253 1000101111 254 1101100001 255 1111000110 256 0111100011 257 1010000111 258 110011010 259 111110110 260 011111011 261 0011111011 262 1000001011 263 1101110011 264 1111001111 265 1110010001 266 1110111110 267 0111011111 268 1010011001 270 0110011101 271 101011100 272 0101011100 273 0010101110 274 0001010111 275 1001011101 276 1101011000 277 0110101100 278 0011010110 279 0001101011 280 1001000011 281 110101100 278 0011010110 279 0001101011 282 1111011101 283 1110011000 284 0111001100 285 0011100111 287 1001001111 288 1101010000 289 1111011110 290 0111101111 291 1010000001 292 1100110111 293 0110011011 294 1010111011 295 1100101011 296 1111100110	3∪1 0011101011 302 1000000011 303 1101110111 304 1111001101 305 111001000 306 0111001000 307 0011100100 308 0001110010 310 1001101010 311 0100110101 312 1011101100 313 0101110110 314 0010111011 315 1000101011 316 1101100011 317 1111000111 318 1110010101 319 1110111100 320 0111011110 321 0011101111 322 1000000001 323 1101110110 324 0110111011 325 1010101011 326 1100100011 327 1111100111 328 1110000101 329 1110110100 330 0111011010 331 0011101101 332 1000000000 333 0100000000 334 0010000000 335 00010000000 336 00001000000 337 00000100000 338 0000000000 337 00000100000 338 00000000000 337 0000000000 338 00000000000 337 0000000000 338 00000000000 337 00000000000 338 00000000000 339 00000000000 341 0000000000 341 101101101 342 1001110111 343 1101001101 344 1111010000 345 0111101000 346 0011110100	351 0010011010 352 0001001101] 353 1001010000 354 0100101000 355 0010010100 356 0001001010 357 0000100101 358 1001100100 359 0100110010 360 0010011001 361 1000111010 362 0100011101 363 1011111000 364 010111110 366 0001011111 367 1001011001 368 1101011010 369 0110101101 370 1010100000 371 0101010000 371 0101010000 372 0010101000 374 0000101010 375 0000010101 376 100111110 378 0010011111 379 1000111110 378 0010011111 379 1000111010 381 0110110101 382 10101011001 383 0101010101 384 0010101101 385 1000100011 386 1101100101 387 1111000101 388 11100101010 389 0111001010 390 0011100101 391 1000000100 392 0100000010 393 00100000010 394 1000110110 395 0100011011
i	243 0000100100	293 0110011011	343 1101001101	393 0010000001
		295 1100101011	345 0111101000	395 0100011011
	246 1001110010 247 0100111001	296 1111100011 297 1110000111	346 0011110100 347 0001111010	396 1011111011 397 1100001011
	248 1011101010	298 1110110101	348 0000111101	398 1111110011
0	249 0101110101	299 1110101100	349 1001101000	399 1110001111
1	250 1011001100	300 0111010110	350 0100110100	400 1110110001

TABLE XVII- (CONTINUED)

40	1110101110	451 1000100000	501 0010111001	FF
40	2 0111010111	452 0100010000		551 1100101100
	3 1010011101		502 1000101010	552 0110010110
	4 1100111000	453 0010001000	503 0100010101	553 0011001011
		454 0001000100	504 101 1 111100	554 1000010011
	5 0110011100	455 0000100010	505 0101111110	
40	6 0011001110	456 0000010001	506 0010111111	555 1101111111
	7 0001100111	457 1001111110		556 1111001001
	8 1001000101		507 1000101001	557 1110010010
	9 1101010100	458 0100111111	508 110110001 0	558 0111001001
		459 1011101001	509 0110110 0 01	559 1010010010
	0 0110101010	460 1100000010	510 1010101110	560 0101001001
41		461 0110000001	511 0101010111	560 0101001001
41	2 1000011100	462 1010110110		561 1011010010
	3 0100001110	463 0101011011	512 1011011101	562 0101101001
	4 0010000111		513 1100011000	563 10110000107
		464 1011011011	514 0110001100	564 0101100001
	5 1000110101	465 1100011011	515 0011000110	565 1011000110
	6 1101101100	466 1111111011	516 0001100011	
41	7 0110110110	467 1110001011	517 1001000111	566 0101100011
41	8 0011011011	468 1110110011		567 1.011000111
	9 1000011011	469 1110101111	518 1101010101	568 1100010101
	0 1101111011		519 1111011100	569 11111111100
		470 1110100001	520 0111101110	570 0111111110
42		471 1110100110	521 0011110111	571 0011111111
	2 1110010011	472 0111010011	522 1000001101	572 1000001001
	3 1110111111	473 1010011111	523 1101110000	
42	4 1110101001	474 1100111001	524 0110111000	573 1101110010
42	5 1110100010	475 1111101010		574 0110111001
	6 0111010001	476 0111110101	525 0011011100	575 1010101010
	7 1010011110		526 0001101110	576 0101010101
	3 0101001111	477 1010001100	527 0000110111	577 1011011100
		478 0101000110	528 1001101101	578 0101101110
	9 1011010001	479 0010100011	529 1101000000	579 0010110111
	0 1100011110	480 1000100111	530 0110100000	
43		481 1101100101	531 0011010000	580 1000101101
432	2 1010110001	482 1111000100		581 1101100000
433	3 1100101110	483 0111100010		582 0110110000
	0110010111	484 0011110001	533 0000110100	583 0011011000
121	1010111101		534 0000011010	584 0001101100
	5 1100101000	485 1000001110	535 0000001101	585 0000110110
		486 0100000111	536 1001110000	586 0000011011
	0110010100	487 1011110101	537 0100111000	587 1001111011
	3 0011001010	488 1100001100	538 0010011100	500 1101011011
439	0001100101	489 0110000110	539 0001001110	588 1101001011
440	1001000100	490 0011000011	540 0001001110	589 1111010011
	0100100010	491 1000010111	540 0000100111	590 1110011111
442	0010010001		541 1001100101	591 1110111001
112	1000111110	492 1101111101	542 1101000100	592 1110101010
		493 1111001000	543 0110100010	593 0111010101
	0100011111	494 0111100100	544 0011010001	594 1010011100
	10111111001	495 0011110010	545 1000011110	594 1010011100
	1100001010	496 0001111001	546 0100001111	595 0101001110
	0110000101	497 1001001010		596 0010100111
	1010110100	498 0100100101	547 10111110001	597 1000100101
	0101011010		548 1100001110	598 1101100100
	0010101101	499 1011100100	549 0110000111	599 0110110010
436	וטווטוטוטו	500 0101110010	550 1010110101	600 0011011001
				000 0011011001

TABLE XVII. (CONTINUED)

601 1000011010 602 0100001101	651 1001010011	701 0110101011	751 10111111101
603 1011110000	652 1101011111	702 1010100011	752 0101111111
	653 1111011001	703 1100100117	753 1011001001
604 0101111000	654 1110011010	704 1111100101	754 1100010010
605 0010111100	655 0111001101	705 1110000100	755 0110001001
606 0001011110	656 1010010000	706 0111000010	756 1010110010
607 0000101111	657 0101001000	707 0011100001	757 0101011001
608 1001100001	658 0010100100	708 1000000110	758 1011011010
609 1101000110	659 0001010010	709 0100000011	759 0101101101
610 0110100011	660 0000101001	710 1011110111	760 1011000000
611 1010100111	661 1001100010	711 1100001101	761 0101100000
612 1100100101	662 0100110001	712 11111110000	762 0010110000
613 11111100100	663 1011101110	713 0111111000	763 0001011000
614 0111110010	664 0101110111	714 0011111100	764 0000101100
615 0011111001	665 1011001101	715 0001111110	765 0000010110
616 1000001010	666 1100010000	716 0000111111	766 0000001011
617 0100000101	667 0110001000	717 1001101001	767 1001110011
618 1011110100	668 0011000100	718 1101000010	768 1101001111
619 0101111010	669 0001100010	719 0110100001 7	769 1111010001
620 0010111101	670 0000110001	720 1010100110	770 1110011110
621 1000101000	671 1001101110	721 0101010011	771 0111001111
622 0100010100	672 0100110111	722 1011011111	772 1010010001
623 0010001010	673 1011101101	723 1100011001	773 1100111110
624 0001000101	674 1100000000	724 11111111010	774 0110011111
625 1001010100	675 0110000000	725 0111111101	775 1010111001
626 0100101010	676 0011000000	726 1010001000	776 1100101010
627 0010010101	677 0001100000	727 0101000100	777 0110010101
628 1000111100 629 0100011110	678 0000110000	728 0010100010	778 1010111100
629 0100011110 630 0010001111	679 0000011000	729 0001010001	779 0101011110
631 1000110001	680 0000001100	730 1001011110	780 0010101111
632 1101101110	681 0000000110	731 0100101111	781 1000100001
633 0110110111	682 0000000011]	732 1011100001	782 1101100110
634 1010101101	683 1001110100	733 1100000110	783 0110110011
635 1100100000	684 0100111010	734 0110000011	784 1010101111
636 01100100000	685 0010011101 686 1000111000	735 1010110111	785 1100100001
637 0011001000	687 0100011100	736 1100101101	786 1111100110
638 0001100100	688 0010001110	737 1111100000	787 0111110011
639 0000110010	689 0001000111	738 0111110000	788 1010001111_
640 0000011001	690 1001010101	739 0011111000	789 1100110001
641 1001111010	691 1101011100	740 0001111100	790 1111101110
642 0100111101	692 0110101110	741 0000111110	791 0111110111
643 1011101000	693 0011010111	742 0000011111	792 1010001101
644 0101110100	694 1000011101	743 1001111001	793 1100110000
645 0010111010	695 1101111000	744 1101001010	794 0110011000
656 0001011101	696 0110111100	745 0110100101	795 0011001100
647 1001011000	697 0011011110	746 1010100100	796 0001100110
648 0100101100	698 00011011111	747 0101010010	797 0000110011
649 0010010110	699 1001000001	748 0010101001	798 1001101111
650 0001001011	700 1101010110	749 1000100010	799 1101000001
	,00 1101010110	750 0100010001	800 1111010110

TABLE XVII. (CONTINUED)

801 0111101011 802 1010000011 803 1100110111 804 1111101101 805 1110000000 806 0111000000 807 0011100000 808 0001110000 809 0000111000 810 0000001110 811 0000001110	851 1100011111 852 1111111001 853 1110001010 854 0111000101 855 1010010100 856 0101001010 857 0010100101 858 1000100100 859 0100010010 860 0010001001 861 100011001	901 1111011011 902 1110011011 903 1110111011 904 1110101011 905 1110100011 906 1110100101 907 1110100100 908 1110100100 910 0011101001 911 1000000010 912 0100000001	951 1011100101 952 1100000100 953 0110000010 954 0011000001 955 1000010110 956 0100001011 957 1011110011 958 1100001111 959 1111110001 960 1110001110 961 0111000111
813 1001110101 814 1101001100	863 1011111010 864 0101111101	913 1011110110 914 0101111011	963 1100111100 964 0110011110
815 0110100110 816 0011010011	865 1011001000	915 1011001011	965 0011001111
817 1000011111	866 0101100100 867 0010110010	916 1100010011	966 1000010001
818 1101111001	868 0001011001	917 1111111111 918 1110001001	967 1101111110
819 1111001010	869 1001011010	919 1110110010	968 0110111111 969 1010101001
820 0111100101 821 1010000100	870 0100101101	920 0111011001	970 1100100010
822 0101000010	871 1011100000 872 0101110000	921 1010011010	971 0110010001
823 0010100001	873 0010111000	922 0101001101 923 1011010000	972 1010111110
824 1000100110	874 00010111001	924 0101101000	973 0101011111 974 1011011001
825 0100010011 826 101111111	875 0000101110	925 0010110100	975 1100011010
827 1100001001	876 0000010111] 877 1001111101	926 0001011010	976 0110001101
828 1111110010	878 1101001000	927 0000101101	977 1010110000
829 0111111001	879 0110100100	928 1001100000 929 0100110000	978 0101011000 979 0010101100
830 1010001010	880 0011010010	930 0010011000	979 0010101100 980 0001010110
831 0101000101 832 1011010100	881 0001101001	931 0001001100	981 0000101011
833 0101101010	882 1001000010 883 0100100001	932 0000100110	932 1001100011
834 0010110101	884 1011100110	933 0000010011] 934 1001111111	983 1101000111
835 1000101100	885 0101110011	935 1101001001	984 1111010101 985 1110011100
836 0100010110 837 0010001011	886 1011001111	936 1111010010	986 0111001110
837 0010001011 838 1000110011	887 1100010001	937 0111101001	987 0011100111
839 1101101111	888 1111111110 889 0111111111	938 1010000010	988 1000000101
840 1111000001	890 1010001001	939 0101000001 940 1011010110	989 1101110100
841 1110010110	891 1100110010	941 0101101011	990 0110111010 991 0011011101
842 0111001011 843 1010010011	892 0110011001	942 1011000011	992 1000011000
844 1100111111	893 1010111010 894 0101011101	943 1100010111	993 0100001100
845 1111101001	895 1011011000	944 1111111101 945 1110001000	994 0010000110
846 1110000010	896 0101101100	946 01110001000	995 0001000011 996 1001010111
847 0111000001 848 1010010110	897 0010110110	947 0011100010	997 1101011101
849 0101001011	898 0001011011 899 1001011011	948 0001110001	998 1111011000
850 1011010011	900 1101011011	949 1001001110 950 0100100111	999 0111101100
		220 0100100111	1000 0011110110

TABLE XVII. (CONCLUDED)

1001 0001111011 1002 1001001011 1003 1101010011 1004 1111011111 1005 1110011001 1006 1110111010	1007 0111011101 1008 1010011000 1009 0101001100 1010 0010100110 1011 0001010011 1012 1001011111	1013 1101011001 1014 1111011010 1015 0111101101 1016 1010000000 1017 0101000000 1018 0010100000	1019 0001010000 1020 0000101000 1021 0000010100 1022 0000001010 1023 0000000101
--	--	--	---

TABLE XVIII. (42,30) &=4 BURTON CODE

IG=1010000010001			
1 1010000010001	51 1011111101111	101 1010101000001	151 1001100001011
2 010100000100	52 111111110111	101 101010100000	151 100110000101
3 001010000010	53 110111110011	102 010101010000	152 111011001010
4 000101000001		103 001010101000	153 011101100101
5 101010101000	54 110011110000	104 000101010100	154 100110111010
	55 011001111000	105 000010101010	155 010011011101
6 010101010100	56 001100111100	106 000001010101	156 100001100110
7 001010101010	57 000110011110	107 101000100010	157 010000110011
8 000101010101	58 000011001111	108 010100010001	158 100000010001
9 101010100010	59 101001101111	109 100010000000	159 1110000000000
10 010101010001	60 111100111111	110 010001000000	160 011100000000
11 100010100000	61 110110010111	111 001000100000	161 001110000000
12 010001010000	62 110011000011	112 000100010000	162 000111000000
13 001000101000	63 110001101001	113 000010001000	163 000011100000
14 000100010100	64 110000111100	114 000001000100	164 000001110000
15 000010001010	65 011000011110	115 000000100010	165 000000111000
16 000001000101	66 001100001111	116 000000010001	166 000000011100
17 101000101010	67 101110001111	117 101000000000	167 000000001110
18 010100010101	68 111111001111	118 010100000000	168 000000000111
19 100010000010	69 110111101111	119 001010000000	169 101000001100
20 010001000001	70 110011111111	120 000101000000	170 010100000110
21 100000101000	71 110001110111	121 000010100000	171 001010000011
22 010000010100	72 110000110011	122 000001010000	172 101101001001
23 001000001010	73 110000010001	123 000000101000	173 111110101100
24 000100000101	74 110000000000	124 000000010100	174 011111010110
25 101010001010	75 011000000000	125 000000001010	175 001111101011
26 010101000101	76 001100000000	126 000000000101	176 101111111101
27 100010101010	77 000110000000	127 101000001011	177 111111110110
28 010001010101	78 000011000000	123 111100001101	178 011111111011
29 100000100010	79 000001100000	129 110110001110	179 100111110101
30 0100000 10001	80 000000110000	130 011011000111	180 111011110010
31 1000000000000	81 000000011000	131 100101101011	181 011101111001
32 0100000000000	82 000000001100	132 111010111101	182 100110110100
33 0010000000000	83 00000000110	133 110101010110	183 010011011010
34 0001000000000	84 00000000011	134 011010101011	184 001001101101
35 000010000000	85 101000001010	135 100101011101	185 101100111110
36 000001000000	86 010100000101	136 111010100110	186 010110011111
37 000000100000	87 100010001010	137 011101010011	187 100011000111
38 000000010000	88 010001000101	138 100110100001	188 111001101011
39 000000001000	89 100000101010	139 111011011000	189 110100111101
40 000000000100	90 010000010101	140 011101101100	190 110010010110
41 000000000010	91 10000000010	141 001110110110	191 011001001011
42 000000000001	92 010000000001	142 000111011011	192 100100101101
43 101000001001	93 100000001000	143 101011100101	193 111010011110
44 111100001100	94 010000000100	144 111101111010	194 011101001111
45 011110000110	95 001000000010	145 011110111101	195 100110101111
46 001111000011	96 000100000001	146 100111010110	196 111011011111
47 101111101001	97 101010001000	147 010011101011	197 11011011111
48 111111111100	98 010101000100	148 100001111101	198 1100101110111
49 011111111110	99 001010100010	149 111000110110	199 1100010101011
50 001111111111	100 000101010001	150 011100011011	
	100 0001010100011	130 011100011011	200 110000100010

001 01100			
201 011000010001		301 1100000101111	351 1001001111110
202 100100000000		302 110000000011	
203 010010000000		303 110000001001	
204 001001000000	254 010100000111	304 110000001100	353 100001000111
205 000100100000	255 100010001011	305 011000000110	354 111000101011
206 000010010000	I 256 111001001101 I		355 110100011101
207 000001001000	257 110100101110		356 110010000110
208 000000100100	258 0110100101111		357 011001000011
209 000000010010	259 100101000011	308 111111001100	358 100100101001
210 000000001001	260 1110101010001	309 011111100110	359 111010011100
211 101000001101		310 001111110011	360 011101001110
212 111100001110		311 1011111110001	361 001110100111
213 011110000111	262 011010101110 263 001101010111	312 111111110000	362 101111011011
214 100111001011		313 011111111000	363 111111100101
215 111011101101	264 101110100011	314 001111111100	364 1101111111010
216 1101111111110	265 111111011001	315 000111111110	365 011011111101
	266 110111100100	316 000011111111	366 100101110110
	267 011011110010	317 101001110111	367 0100101110110
218 1001010101111	268 001101111001	318 111100110011	368 100001010101
219 111010100011	269 101110110100	319 110110010001	369 111000100010
220 110101011001	270 010111011010	320 110011000000	370 011100010001
221 110010100100	271 001011101101	321 011001100000	371 100110000000
222 011001010010	272 101101111110	322 001100110000	372 010011000000
223 001100101001	273 010110111111	323 000110011000	373 0010011000000
224 101110011100	274 100011010111	324 000011001100	
225 010111001110	275 111001100011	325 000001100110	
226 001011100111	276 110100111001	326 000000110011	
227 101101111011	277 110010010100	327 101000010001	
228 111110110101	278 011001001010	328 1111000000000	
229 110111010010	279 001100100101	329 011110000000	378 000000010011
230 011011101001	280 101110011010	330 001111000000	379 101000000010
231 100101111100	281 010111001101	331 000111100000	380 010100000001
232 010010111110	282 100011101110	332 000011110000	381 100010001000
233 001001011111	283 010001110111	333 000001111000	382 010001000100
234 101100100111	284 100000110011	334 00000111100	383 001000100010
235 111110011011	285 111/)00010001	335 00000011110	384 000100010001
236 110111000101	286 1101000000000	336 000000011110	385 101010000000
237 110011101010	287 011010000000	337 101000000001	386 010101000000
238 011001110101	288 001101000000	338 111100001000	387 001010100000
239 100100110010	289 000110100000	339 0111160001000	388 000101010000
240 010010011001	290 000011010000	340 0011110000100	389 000010101000
241 100001000100	291 000001101000	340 001111000010	390 000001010100
242 010000100010	292 000000110100	341 000111100001	391 000000101010
243 001000010001	293 000000011010	342 101011111000	392 000000010101
244 101100000000	294 0000000011011	343 010101111100	393 101000000011
245 010110000000	295 101000001111	344 001010111110	394 111100001001
246 001011000000	296 111100001111	345 000101011111	395 110110001100
247 000101100000	297 110110001111	346 101010100111	396 011011000110
248 000010110000	298 110011001111	347 111101011011	397 001101100011
249 000001011000	299 110001101111	348 110110100101	398 101110111001
250 000000101100	300 110000111111	349 110011011010	399 111111010100
11001010101001	300 110000111111	350 011001101101	400 011111101010
			======

401 001111110101	451 100100010110	501 011110110011	551 011000110011
402 1011111110010	452 010010001011	502 100111010001	552 100100010001
403 0101111111001	453 100001001101	503 111011100000	553 111010000000
404 100011110100	454 111000101110	504 011101110000	554 011101000000
405 010001111010	455 011100010111	505 001110111000	555 001110100000
406 001000111101	456 100110000011	506 000111011100	
407 101100010110	457 111011001001	507 00011101110	
408 010110001011	458 110101101100	508 000001110111	
409 100011001101	459 011010110110	509 101000110011	558 0000C1110100
410 111001101110	460 001101011011	510 111100010001	559 000000111010
411 011100110111	461 101110100101	511 110110000000	560 000000011101
412 100110010011	462 111111011010	512 011011000000	561 101000000111
413 111011000001	463 011111101101	513 001101100000	562 111100001011
414 110101101000	464 100111111111		563 110110001101
415 011010110100	465 010011111111		564 110011001110
416 001101011010	466 100001111111	515 000011011000	565 011001100111
417 000110101101	467 1110001110111	516 000001101100	566 100100111011
418 101011011110	468 1101000110011	517 000000110110	567 111010010101
419 010101101111		518 000000011011	568 110101000010
420 100010111111		519 101000000110	569 011010100001
421 1110010101111		520 010100000011	570 100101011000
422 1101001010111	471 001100100000	521 100010001001	571 010010101100
423 1100100110011	472 000110010000	522 111001001100	572 001001010110
	473 000011001000	523 011100100110	573 000100101011
424 110001000100 425 011000100010	474 000001100100	524 001110010011	574 101010011101
	475 000000110010	525 101111000001	575 111101000110
426 001100010001	476 000000011001	526 111111101000	576 011110100011
427 101110000000	477 101000000101	527 011111110100	577 100111011001
428 010111000000	478 111100001010	528 001111111010	578 111011100100
429 001011100000	479 011110000101	529 000111111101	579 011101110010
430 000101110000	480 100111001010	530 101011110110	580 001110111001
431 000010111000	481 010011100101	531 010101111011	581 101111010100
432 000001011100	482 100001111010	532 100010110101	582 010111101010
433 000000101110	483 010000111101	533 111001010010	583 001011110101
434 000000010111	484 100000010110	534 011100101001	584 101101110010
435 101000000100	485 010000001011	535 100110011100	585 010110111001
436 010100000010	486 100000001101	536 010011001110	586 100011010100
437 001010000001	487 111000001110	537 001001100111	587 010001101010
438 101101001000	488 011100000111	538 101100111011	588 001000110101
439 010110100100	489 100110001011	539 111110010101	589 101100010010
440 001011010010	490 111011001101	540 110111000010	590 010110001001
441 000101101001	491 110101101110	541 1011100001	591 100011001100
442 1010101111100	492 011010110111	542 200101111000	592 010001100110
443 0101010111110	493 100101010011	543 010010111100	593 001000110011
444 001010101111	494 111010100001	544 001001011110	594 101100010001
445 1011010111111	495 110101011000	545 000100101111	595 111110000000
446 111110100111	496 011010101100	546 101010011111	596 0111110000000
447 110111011011	497 001101010110	547 111101000111	597 001111100000
448 110011100101	498 000110101011	548 110110101011	598 000111110000
449 110001111010	499 101011011101	549 1100110111101	599 000011111000
450 011000111101	500 111101100110	550 110001100110	600 000001111100
		110001100110	000 000001111100

00.	1 10010001000	0.00		
	1 100100010000	851 000101011000	901 110001101110	951 100111011111
	2 010010001000	852 000010101100	902 011000110111	952 111011100111
803		853 000001010110	903 100100010011	
804		854 000000101011	904 111010000001	953 110101111011
808		855 101000011110	905 110101001000	954 110010110101
806	101001000000	856 010100001111		955 110001010010
807		857 100010001111		956 011000101001
808	3 001010010000	858 111001001111	907 001101010010	957 100100011100
809	000101001000	859 110100101111	908 000110101001	958 010010001110
	000010100100		909 101011011100	959 001001000111
811	000001010010		910 010101101110	960 101100101011
812	0000001010010	861 110001000111	911 001010110111	961 111110011101
813		862 110000101011	912 101101010011	962 110111000110
814		863 110000011101	913 111110100001	963 011011100011
		864 110000000110	914 110111011000	964 100101111001
	011110000011	865 011000000011	915 011011101100	965 111010110100
816		866 100100001001	916 001101110110	
817		867 111010 00 1100	917 000110111011	
	011101110110	868 011101000110	918 101011010101	967 001110101101
819		869 001110100011	919 111101100010	968 101111011110
820		870 101111011001	920 0111101100010	969 010111101111
821	111111100010	871 111111100100	921 100111010001	970 100011111111
822		872 011111110010	922 010011101000	971 111001110111
823	100111110000	873 001111111001	922 010011101000	972 110100110011
824		874 1011111110100	923 001001110100	973 110010010001
825		875 010111111010	924 000100111010	974 110001000000
826		876 001011111010	925 000010011101	975 011000100000
827			926 101001000110	976 001100010000
828			927 010100100011	977 000110001000
829	111100101011	878 010110111011	928 100010011001	978 000011000100
830	1101100101011	879 100011010101	929 111001000100	979 000001100010
831	1100110011101	880 111001100010	930 011100100010	980 000000110001
832	0110011000110	881 011100110001	931 001110010001	981 101000010010
833	011001100011	882 100110010000	932 101111000000	982 010100001001
	100100111001	883 010011001000	933 010111100000	983 100010001100
834	111010010100	884 001001100100	934 001011110000	984 010001000110
835	011101001010	885 000100110010	935 000101111000	
836	001110100101	886 000010011001	936 000010111100	
837	101111011010	887 101001000100	937 000001011110	986 101100011001
	010111101101	888 010100100010	938 000000101111	987 111110000100
83 9	100011111110	889 001010010001	939 101000010000	988 011111000010
840	010001111111	890 101101000000	940 010100001000	989 001111100001
841	100000110111	891 010110100000	041 001010001000	990 101111111000
	111000010011	892 001011010000	941 001010000100	991 010111111100
843	110100000001	893 000101101000	942 000101000010	992 001011111110
844	110010001000	894 0000101101000	943 000010100001	993 000101111111
845	011001000100	895 000001011010	944 101001011000	994 101010110111
846	001100100010		945 010100101100	995 111101010011
	0001100100010	896 000000101101	946 001010010110	996 110110100001
	101011000000	897 101000011111	947 000101001011	997 110011011000
	010101100000	898 111100000111	948 101010101101	998 011001101100
250	001010110000	899 110110001011	949 111101011110	999 001100110110
0.00	001010110000	900 110011001101	950 011110101111	1000 000110011011
				1000 000110011011

```
1001 101011000101
                     1051 111101010010
                                          1101 011100100000
                                                               1151 100010001101
1002 111101101010
                     1052 011110101001
                                          1102 001110010000
                                                               1152 111001001110
1003 011110110101
                     1053 100111011100
                                          1103 000111001000
                                                               1153 011100100111
1004 100111010010
                     1054 010011101110
                                          1104 000011100100
                                                               1154 100110011011
1005 010011101001
                     1055 001001110111
                                          1105 000001110010
                                                               1155 111011000101
1006 100001111100
                     1056 101100110011
                                          1106 000000111001
                                                               1156 110101101010
1007 010000111110
                     1057 111110010001
                                          1107 101000010101
                                                               1157 011010110101
1008 001000011111
                     1058 110111000000
                                          1108 111100000010
                                                               1158 100101010010
1009 101100000111
                     1059 011011100000
                                          1109 011110000001
                                                               1159 010010101001
1010 111110001011
                     1060 001101110000
                                          1110 100111001000
                                                               1160 100001011100
1011 110111001101
                     1061 000110111000
                                          1111 010011100100
                                                               1161 010000101110
1012 110011101110
                     1062 000011011100
                                          1112 001001110010
                                                               1162 001000010111
                     1063 000001101110
1013 011001110111
                                          1113 000100111001
                                                               1163 101100000011
1014 100100110011
                     1064 000000110111
                                          1114 101010010100
                                                               1164 111110001001
1015 111010010001
                     1065 101000010100
                                          1115 010101001010
                                                               1165 110111001100
1016 110101000000
                     1066 010100001010
                                          1116 001010100101
                                                               1166 011011100110
1017 011010100000
                     1067 001010000101
                                          1117 101101011010
                                                               1167 001101110011
1018 001101010000
                     1068 101101001010
                                          1118 010110101101
                                                               1168 101110110001
1019 000110101000
                     1069 010110100101
                                          1119 100011011110
                                                               1169 111111010000
1020 000011010100
                     1070 100011011010
                                          1120 010001101111
                                                               1170 011111101000
1021 000001101010
                     1071 010001101101
                                          1121 100000111111
                                                               1171 001111110100
1022 000000110101
                     1072 100000111110
                                          1122 111000010111
                                                               1172 000111111010
1023 101000010011
                     1073 010000011111
                                          1123 110100000011
                                                               1173 000011111101
                                          1124 110010001001
1125 110001001100
1024 111100000001
                     1074 100000000111
                                                               1174 101001110110
1025 110110001000
                     1075 111000001011
                                                               1175 010100111011
1026 011011000100
                     1076 110100001101
                                          1126 011000100110
                                                               1176 100010010101
1027 001101100010
                     1077 110010001110
                                          1127 001100010011
                                                               1177 111001000010
1028 000110110001
                     1078 011001000111
                                          1128 101110000001
                                                               1178 011100100001
1029 101011010000
                     1079 100100101011
                                          1129 111111001000
                                                               1179 100110011000
1030 010101101000
                     1080 111010011101
                                          1130 011111100100
                                                               1180 010011001100
1031 001010110100
                     1081 110101000110
                                          1131 001111110010
                                                               1181 001001100110
1032 000101011010
                     1082 011010100011
                                          1132 000111111001
                                                               1182 000100110011
1033 000010101101
                     1083 100101011001
                                          1133 101011110100
                                                               1183 101010010001
1034 101001011110
                     1084 111010100100
                                          1134 010101111010
                                                               1184 111101000000
1035 010100101111
                     1085 011101010010
                                          1135 001010111101
                                                               1185 011110100000
1036 100010011111
                     1086 001110101001
                                          1136 101101010110
                                                               1186 001111010000
1037 111001000111
                     1087 101111011100
                                          1137 010110101011
                                                               1187 000111101000
1038 110100101011
                     1088 010111101110
                                          1138 100011011101
                                                               1188 000011110100
1039 110010011101
                     1089 001011110111
                                          1139 111001100110
                                                               1189 000001111010
1040 110001000110
                     1090 101101110011
                                          1140 011100110011
                                                              1190 000000111101
1041 011000100011
                     1091 111110110001
                                          1141 100110010001
                                                              1191 101000010111
1042 100100011001
                     1092 110111010000
                                          1142 111011000000
                                                              1192 111100000011
1043 111010000100
                     1093 011011101000
                                          1143 011101100000
                                                              1193 110110001001
1044 011101000010
                     1094 001101110100
                                         1144 001110110000
                                                              1194 110011001100
1045 001110100001
                     1095 000110111010
                                         1145 000111011000
                                                              1195 011001100110
1046 101111011000
                     1096 000011011101
                                         1146 000011101100
                                                              1196 001100110011
1047 010111101100
                    1097 101001100110
                                         1147 000001110110
                                                              1197 101110010001
1048 001011110110
                    1098 010100110011
                                         1148 000000111011
                                                              1198 111111000000
1049 000101111011
                    1099 100010010001
                                         1149 101000010110
                                                              1199 011111100000
1050 101010110101
                    1100 111001000000
                                         1150 010100001011
                                                              1200 001111110000
```

1201 0001111111000 1202 0000111111100 1203 000001111110 1204 000000111111

IG 100010000000	11		
1 100010000000		1 101 101100000011	150 00000000000000000000000000000000000
2 0100010000000			151 011001110111
3 0010001000000			152 101110111011
4 0001000100000		1	153 110101011101
5 000100010000			154 111000101110
			155 011100010111
			156 101100001011
			157 110100000101
8 000000010001		108 000001110000	158 111000000010
9 100010001000		109 000000111000	159 011100000001
10 010001000100		110 000000011100	160 101100000000
11 001000100010		111 000000001110	161 010110000000
12 000100010001		112 000000000111	162 001011000000
13 100000001000		113 100010000100	163 000101100000
14 010000000100		114 010001000010	164 000010110000
15 001000000010		115 001000100001	165 000001011000
16 000100000001		116 100110010000	166 000000101100
17 100000000000	1	117 010011001000	167 000000010110
18 010000000000	10 0101010101	118 001001100100	168 000000001011
19 001000000000		119 000100110010	169 100010000110
20 000100000000		120 000010011001	170 010001000011
21 000010000000		121 100011001100	171 101010100001
22 000001000000		122 010001100110	172 110111010000
23 000000100000	1	123 001000110011	173 011011101000
24 000000010000		124 100110011001	174 001101110100
25 000000001000	75 1010000000000	125 110001001100	175 000110111010
26 000000000100	76 0101000000000	126 011000100110	176 000011011101
27 000000000010	77 001010000000	127 001100010011	177 100011101110
28 000000000001	78 000101000000	128 100100001001	178 010001110111
29 100010000001	79 000020200000	129 110000000100	179 101010111011
30 110011000000	80 000001010000	130 011000000010	180 110111011101
31 011001100000	81 000000101000	131 001100000001	181 111001101110
32 001100110000	82 000000010100	132 1001000000000	182 011100110111
33 000110011000	83 000000001010	133 0100100000000	183 101100011011
34 000011001100	84 000000000101	134 001001000000	184 110100001101
35 000001100110	85 100010000011	135 000100100000	185 111000000110
36 000000110011	86 110011000001	136 000010010000	186 011100000011
37 100010011001	87 111011100000	137 000001001000	187 1011000000001
38 110011001100	88 011101110000	138 000000100100	188 1101000000000
39 011001100110	89 001110111000	139 000000010010	189 011010000000
40 001100110011	90 000111011100	140 000000001001	190 001101000000
41 100100011001	91 000011101110	141 100010000101	191 000110100000
42 110000001100	92 000001110111	142 110011000010	192 000011010000
43 011000000110	93 100010111011	143 011001100001	193 000001101000
44 001100000011	94 110011011101	144 101110110000	194 000000110100
45 100100000001	95 111011101110	145 010111011000	195 000000011010
46 110000000000	96 011101110111	146 001011101100	196 000000001101
47 011000000000	97 101100111011	147 000101110110	197 100010000111
48 001100000000	98 110100011101	148 000010111011	198 110011000011
49 000110000000	99 111000001110	149 100011011101	199 111011100001
50 000011000000	100 011100000111	150 110011101110	200 1111111100001

20 20	1 011111111000 2 00111111100	25		30 30	01 101110000000 02 010111000000		01 010100110101
20	3 000111111110 4 000011111111	253	3 100010001010	30	3 001011100000	35 35	52 101000011010 53 010100001101
20				30 30		35	4 101000000110
20			010101010001	30	6 000001011100	35 35	
20 20		257	7 101000101000 3 010100010100	30		35	7 110110000000
20	9 111101111111	259	001010001010	30 30		35 35	
21	0 111100111111 1 111100011111	260 261		31	0 010001000110	36	
	2 111100011111	262		31 31		36	1 000011011000
213	3 111100000111	263	101010001000	31		36 36	
214	111100000011 111100000001	264 265		314	4 011000100100	36	4 000000011011
216	111100000000	266		31! 31		36: 36:	
217	011110000000	267	100000101000	317	7 100001000100	367	
218	3 001111000000 9 000111100000	268 269		318 319		368	3 110111010001
220	000011110000	270	000100000101	320		369 370	9 111001101000 011100110100
221 222		271 272	100000000010	321	010011000100	371	
223		273	010000000001 101010000000	322 323		372	2 000111001101
221	000000001111	274	010101000000	324		373 374	
225 22 6		275 276	001010100000 000101010000	325	010000001100	375	101010011001
227	011001100010	277	000101010000	326 327		37 <i>6</i> 377	
228		278	000001010100	328	100000000001	378	
229 230		279 280	000000101010 000000010101	329 330		379	100100111001
231	001001000110	281	100010001011	331		380 381	
232 233	000100100011 100000010001	282 283	110011000101	332	000110010000	382	001100000111
234	1100100010001		111011100010 011101110001	333	000011001000 000001100100	383	100100000011
235	011001000100	285	101100111000	335	000000110010	384 385	
236 237	001100100010 000110010001		010110011100 001011001110	336	000000011001	386	011101000000
238	100001001000	288	000101100111	337	100010001101 110011000110	387	001110100000 000111010000
239	010000100100	289	100000110011	339	011001100011	389	0000111010000
241	001000010010 000100001001	290	110010011001 111011001100	340	101110110001 110101011000	390	000001110100
242	100000000100	292	011101100110	342	011010101100	391	000000111010 000000011101
	010000000010 001000000001		001110110011 100101011001	343	001101010110	393	100010001111
245	1001100000000	295	1100001011001	344 345	000110101011 100001010101	394	110011000111
246	010011000000	296	011000010110	346	110010101010	396	111111100011 1111111110001
24/	001001100000 000100110000	297	001100001011 100100000101	347	011001010101	397	111101111000
249	000010011000	299	110000000010	349	101110101010 010111010101	398 300	011110111100 001111011110
250	000001001100	300 (011000000001	350	101001101010	400	000111101111

```
401 100001110111
                    451 011001100100
                                        501 000100101000
                                                              551 011100000101
 402 110010111011
                    452 001100110010
                                        502 000010010100
                                                              552 101100000010
 403 111011011101
                    453 000110011001
                                        503 000001001010
                                                              553 010110000001
 404 111111101110
                    454 100001001100
                                        504 000000100101
                                                              554 101001000000
 405 011111110111
                    455 010000100110
                                        505 100010010011
                                                              555 010100100000
 406 101101111011
                    456 001000010011
                                        506 110011001001
                                                              556 001010010000
 407 110100111101
                    457 100110001001
                                        507 111011100100
                                                              557 000101001000
 408 111000011110
                    458 110001000100
                                        508 011101110010
                                                              558 000010100100
 409 011100001111
                    459 011000100010
                                        509 001110111001
                                                              559 000001010010
 410 101100000111
                    460 001100010001
                                        510 100101011100
                                                             560 000000101001
 411 110100000011
                    461 100100001000
                                        511 010010101110
                                                             561 100010010101
 412 111000000001
                    462 010010000100
                                        512 001001010111
                                                             562 110011001010
 413 111110000000
                    463 001001000010
                                        513 100110101011
                                                             563 011001100101
 414 0111111000000
                    464 000100100001
                                        514 110001010101
                                                             554 101110110010
 415 001111100000
                    465 100000010000
                                        515 111010101010
                                                             565 010111011001
 416 000111110000
                    466 010000001000
                                        516 011101010101
                                                             566 101001101100
 417 0000111111000
                    467 001000000100
                                        517 101100101010
                                                             567 010100110110
 418 0000011111100
                    468 000100000010
                                       518 010110010101
                                                             568 001010011011
 419 000000111110
                    469 000010000001
                                       519 101001001010
                                                             569 100111001101
 420 000000011111
                    470 100011000000
                                       520 010100100101
                                                             570 110001100110
 421 100010010000
                   471 010001100000
                                       521 101000010010
                                                             571 011000110011
 422 010001001000
                   472 001000110000
                                       522 010100001001
                                                             572 101110011001
423 001000100100
                   473 000100011000
                                       523 101000000100
                                                             573 110101001100
 424 000100010010
                   474 000010001100
                                       524 010100000010
                                                             574 011010100110
 425 000010001001
                   475 000001000110
                                       525 001010000001
                                                             575 001101010011
 426 100011000100
                   476 000000100011
                                       526 100111000000
                                                             576 100100101001
427 010001100010
                   477 100010010010
                                                             577 110000010100
                                       527 010011100000
428 001000110001
                   478 010001001001
                                       528 001001110000
                                                             578 011000001010
429 100110011000
                   479 101010100100
                                       529 000100111000
                                                             579 001100000101
430 010011001100
                   480 010101010010
                                       530 000010011100
                                                             580 100100000010
431 001001100110
                   481 001010101001
                                       531 000001001110
                                                             581 010010000001
432 000100110011
                   482 100111010100
                                       532 000000100111
                                                             582 101011000000
433 100000011001
                   483 010011101010
                                       533 100010010100
                                                             583 010101100000
434 110010001100
                   484 001001110101
                                       534 010001001010
                                                             584 001010110000
435 011001000110
                   485 100110111010
                                       535 001000100101
                                                             585 000101011000
436 001100100011
                   486 010011011101
                                       536 100110010010
                                                             586 000010101100
437 100100010001
                   487 101011101110
                                       537 010011001001
                                                             587 000001010110
438 110000001000
                   488 010101110111
                                       538 101011100100
                                                            588 000000101011
439 011000000100
                   489 101000111011
                                       539 010101110010
                                                            589 100010010110
440 001100000010
                  490 110110011101
                                      540 001010111001
                                                            590 010001001011
441 000110000001
                   491 111001001110
                                      541 100111011100
                                                            591 101010100101
442 100001000000
                   492 011100100111
                                      542 010011101110
                                                            592 110111010010
443 010000100000
                   493 101100010011
                                      543 001001110111
                                                            593 011011101001
444 001000010000
                  494 110100001001
                                      544 100110111011
                                                            594 1011111110100
445 000100001000
                   495 111000000100
                                      545 110001011101
                                                            595 010111111010
446 000010000100
                  496 011100000010
                                      546 111010101110
                                                            596 001011111101
447 000001000010
                  497 001110000001
                                      547 011101010111
                                                            597 100111111110
448 000000100001
                  498 100101000000
                                      548 101100101011
                                                            598 010011111111
449 100010010001
                  499 010010100000
                                      549 110100010101
                                                            599 101011111111
450 110011001000
                  500 001001010000
                                      550 111000001010
                                                            600 110111111111
```

```
651 011001000010
 601 111001111111
                                       701 100010011011
                                                             751 011100100000
 602 111110111111
                   652 001100100001
                                       702 110011001101
                                                             752 001110010000
 603 111101011111
                   653 100100010000
                                       703 111011100110
                                                             753 000111001000
 604 111100101111
                   654 010010001000
                                       704 011101110011
                                                             754 000011100100
                   655 001001000100
 605 111100010111
                                       705 101100111001
                                                             755 000001110010
606 111100001011
                   656 000100100010
                                       706 110100011100
                                                             756 000000111001
607 111100000101
                   657 000010010001
                                       707 011010001110
                                                             757 100010011101
608 111100000010
                   658 100011001000
                                       708 001101000111
                                                             758 110011001110
609 011110000001
                   659 010001100100
                                       709 100100100011
                                                             759 011001100111
610 101101000000
                   660 001000110010
                                       710 110000010001
                                                             760 101110110011
611 010110100000
                   661 000100011001
                                       711 111010001000
                                                             761 110101011001
612 001011010000
                   662 100000001100
                                       712 011101000100
                                                             762 111000101100
613 000101101000
                   663 010000000110
                                       713 001110100010
                                                             763 011100010110
614 000010110100
                   664 001000000011
                                       714 000111010001
                                                             764 001110001011
615 000001011010
                   665 100110000001
                                       715 100001101000
                                                             765 100101000101
616 000000101101
                   666 110001000000
                                       716 010000110100
                                                             766 110000100010
617 100010010111
                   667 011000100000
                                       717 001000011010
                                                            767 011000010001
618 110011001011
                   668 001100010000
                                       718 000100001101
                                                             768 101110001000
619 111011100101
                   669 000110001000
                                       719 100000000110
                                                             769 010111000100
620 1111111110010
                   670 000011000100
                                       720 010000000011
                                                             770 001011100010
                   671 000001100010
621 011111111001
                                       721 101010000001
                                                             771 000101110001
622 1011011111100
                   672 000000110001
                                       722 110111000000
                                                            772 100000111000
                   673 100010011010
623 010110111110
                                       723 011011100000
                                                            773 010000011100
                   674 010001001101
624 001011011111
                                       724 001101110000
                                                            774 001000001110
                   675 101010100110
625 100111101111
                                       725 000110111000
                                                            775 000100000111
                   676 010101010011
626 110001110111
                                       726 000011011100
                                                            776 100000000011
                   677 101000101001
627 111010111011
                                      727 000001101110
                                                            777 110010000001
628 111111011101
                   678 110110010100
                                       728 000000110111
                                                            778 111011000000
                   679 011011001010
629 111101101110
                                      729 100010011100
                                                            779 011101100000
630 011110110111
                   680 001101100101
                                      730 010001001110
                                                            780 001110110000
631 101101011011
                   681 100100110010
                                      731 001000100111
                                                            781 000111011600
632 110100101101
                   682 010010011001
                                      732 100110010011
                                                            782 000011101100
633 111000010110
                   683 101011001100
                                      733 110001001001
                                                            783 000001110110
634 011100001011
                   684 010101100110
                                      734 111010100100
                                                            784 000000111011
                   685 001010110011
635 101100000101
                                      735 011101010010
                                                            785 100010011110
636 110100000010
                   686 100111011001
                                      736 001110101001
                                                            786 010001001111
637 011010000001
                   687 110001101100
                                      737 100101010100
                                                            787 101010100111
                   688 011000110110
638 101111000000
                                      738 010010101010
                                                            788 110111010011
                  689 001100011011
639 010111100000
                                      739 001001010101
                                                            789 111001101001
640 001011110000
                  690 100100001101
                                      740 100110101010
                                                            790 111110110100
                  691 110000000110
641 000101111000
                                      741 010011010101
                                                            791 011111011010
642 000010111100
                  692 011000000011
                                      742 101011101010
                                                            792 001111101101
643 000001011110
                  693 101110000001
                                      743 010101110101
                                                            793 100101110110
644 000000101111
                  694 110101000000
                                      744 101000111010
                                                            794 010010111011
645 100010011000
                  695 011010100000
                                      745 010100011101
                                                            795 101011011101
646 010001001100
                  696 001101010000
                                      746 101000001110
                                                            796 110111101110
647 001000100110
                  697 000110101000
                                      747 010100000111
                                                            797 011011110111
648 000100010011
                  698 000011010100
                                      748 101000000011
                                                            798 101111111011
649 100000001001
                  699 000001101010
                                      749 110110000001
                                                           799 110101111101
650 110010000100
                  700 000000110101
                                      750 111001000000
                                                            800 111000111110
```

Tables XVI and XVII illustrate two computer-generated codes with 10 parity bits. It can be seen that the ℓ equals 4 code uses more (85·8=680) of the possible correctable-error patterns (1023) than the ℓ equals 5 code (27·16=432). If the length of the code word is 27 or less, the ℓ equals 5 should be used since it has better burst error-correcting capability and at most 432 correctable-error patterns is needed. Tables XVIII and XIX were included to illustrate the Burton and interlaced Hamming codes. It can be observed that the Burton and interlaced Hamming codes for these short word lengths use very few, $42\cdot8=336$ and $28\cdot8=224$, respectively, of the possible correctable-error patterns, 4095.

An ℓ burst error-correcting cyclic code can be most easily decoded by the error-trapping decoder for single errors with a slight modification. If it is assumed that the errors are confined to the ℓ high order bits

$$e(x) = x^{n-\ell} + ... + x^{n-2} + x^{n-1}$$
 (74)

Observing that

$$X^{n-k}e(X) = (X^{n-k-\ell} + \dots + X^{n-k-2} + X^{n-k-1})(X^n + 1) + X^{n-k-\ell} + \dots + X^{n-k-2} + X^{n-k-1}$$
(75)

and dividing by g(X) yields

$$\chi^{n-k}e(\chi) = p(\chi)g(\chi) + \chi^{n-k-2} + \dots + \chi^{n-k-2} + \chi^{n-k-1}$$
 (76)

and the remainder is

$$S(X) = X^{n-k-\ell} + ... + X^{n-k-2} + X^{n-k-1}$$
 (77)

This indicates that the high order syndrome bits correspond to the error bits and the remaining syndrome bits are zero. When zeros are detected in the first $n-k-\ell$ syndrome bits, the ℓ high order syndrome bits is the correctable burst of length ℓ . These zeros can be detected using a NOR gate. To associate the errors with the high order syndrome bits, the input is multiplied by χ^{n-k} which is equivalent to connecting the input to the high end of the syndrome register. The general form of the decoder is given in Figure 24.

Figure 24. Burst Error-Trapping Decoder

The decoding procedure for this burst error-trapping decoder can be described in the following steps:

- Gate 1 is turned on, and Gate 2 is turned off. The syndrome S(X) is formed by shifting all n bits of the received signal r(X) into the syndrome register. At the same time the n bits of the word are stored into the buffer register.
- 2. Gate 1 is turned off, and Gate 2 is turned on. With the input cut off, the word read in during Step 1 is now processed. The n bits stored in the buffer register are shifted out and are ready to be corrected as the syndrome register is shifted while searching for a correctable burst error pattern. As soon as the n-k-l leftmost stages of the syndrome register contain only zeros, the l rightmost stages contain the burst pattern. The corrections are then made when a one is present in the rightmost stage (output of NOR goes to 1 and adds modulo 2 to the present output of the buffer register). When an error is corrected, the feedback from the high end of the syndrome register is also eliminated as there should be no feedback once the burst is found.
- 3. When Step 2 is completed, the decoder is ready for the next word and Step 1 is repeated.

For the 48-bit block length with 8 parity bits available, the computer-generated (63,55) ℓ equal to 3 code was chosen as the best burst error-correcting code. The generator polynomial is given by

$$g(X) = 1 + X + X^2 + X^5 + X^8$$
 (78)

and the encoder for the (63,55) code and the shortened version the (48,40) code which fits the six 8-bit subword format is given in Figure 25. If the code used was a cyclic code and not a shortened cyclic code, the input to the decoder would be to the high end of the syndrome register. The input connections to the decoder for a shortened cyclic code is given as the remainder from dividing $X^{n-k+\eta}$ by g(X). This can be obtained for the

Encoder for (48,40) Shortened Cyclic Burst 3 Error-Correcting Code Figure 25.

(48,40) code shortened from the (63,55) code from Table XIV. The first entry in the table corresponds to no shortening or η equals 0, and each succeeding entry corresponds to another bit shortened. For our case at hand, η equals 15 and the input connection polynomial is obtained from entry 16 in Table XIV as 0 0 1 0 0 1 1 1 or as

$$C(X) = X^2 + X^5 + X^6 + X^7 \tag{79}$$

With this input connection polynomial the decoder for the (48,40) shortened cyclic burst 3 error-correcting code is given in Figure 26. For the 24-bit block length with 8 parity bits, the largest ℓ is 3, the same as the 48-bit block length. This (24,16) code can be obtained by shortening the (63,55) code 29 bits.

For the (48,38) code format the computer-generated (85,75) ℓ equal to 4 code can be shortened by 37 bits. The generator polynomial is given from Table X as

$$g(x) = 1 + x^2 + x^3 + x^5 + x^7 + x^{10}$$
 (80)

and the input connection polynomial is obtained from Table XVI, with η equal to 138 (37 + 101 since this code is already shortened from length 186)

$$c(x) = x + x^3 + x^5 + x^6 + x^8$$
 (81)

The format that was mechanized, the (24,14) ℓ equal to 5 code is derived from the (27,17) code of Table X. The generator polynomial is given as

$$g(X) = 1 + X^3 + X^4 + X^5 + X^7 + X^8 + X^{10}$$
 (82)

and the encoder is shown in Figure 27. The shortening factor for this (24,14) code is 317 (3+314 since this code is already shortened from length 341). The connection polynomial, obtained as the remainder of dividing X^{10+317} by g(X), is given in Table XVII as

$$C(X) = 1 + X + X^2 + X^5 + X^7 + X^9$$
 (83)

The decoder is given in Figure 28.

Figure 26. Decoder for (48,40) Shortened Cyclic Burst 3 Error-Correcting Code

Figure 27. Encoder for (24,14) Burst 5 Error-Correcting Code

Figure 28. Decoder for (24,14) Burst 5 Error-Correcting Code

Tables XX through XXV illustrate how this (24,14) burst decoder processes six different received signals and corrects the burst errors of length 5 or less. Tables XX and XXI illustrate the correction of burst length 5 errors of 1 1 1 1 1 and 1 1 0 1 1, respectively. The bursts are trapped when the five least significant bits of the syndrome register are 0. Tables XXII and XXIII illustrate the correction of bursts 1 1 1 1 and 1 0 1 1, respectively, of length 4. Table XXIV shows the correction of a burst of length 1, and Table XXV shows the processing of a received word that does not contain any errors.

Processing the received words with a single decoder of the form shown in Figure 28 requires a two-word time (48-bit time) to decode a single word (24 bits), as is illustrated in Tables XX through XXV. This decoder then cannot operate in real time. The received words can be decoded in real time though, if two of the decoders are used simultaneously as is shown in Figure 29.

The switches change position after each received word (24 bits). The received word is fed into one of the decoders, and the syndrome calculated as the previous word is fed out of the decoder and simultaneously corrected. This configuration will allow the decoding to be accomplished with only an initial delay of one word for the calculation of the first syndrome.

```
TABLE XX. PROCESSING OF r(x)=1+x^2+x^3+x^4+x^6+x^9+x^{10}+x^{11}+x^{12}
                +\chi^{13}+\chi^{14}+\chi^{15}+\chi^{16}+\chi^{17}+\chi^{18} WITH (24,14) BURST DECODER
                             V*(X)
  r(X)
                  s(X)
 <sub>X</sub>23
               000000000
               000000000
               000000000
 x<sup>20</sup>
               000000000
               0000000000
               1110010101
               0000101001
               0111110111
<sub>X</sub>15
               0100011000
               1100011001
               0001101111
               0111010100
               1101111111
 <sub>X</sub>10
               0001011100
               1110111011
               1110101011
               1110100011
        0
               0000110010
 x<sup>5</sup>
               0000011001
               0111101111
               0100010100
               1100011111
               1111111001
χ0
               0000011111
                                                    BURST TRAPPED
                                      x<sup>23</sup>
               0000001111
                                  1
1
1
1
1
1
1
1
                                                 Bit 23 Corrected
                                                 Bit 22 Corrected
              0000000111
                                                 Bit 21 Corrected
Bit 20 Corrected
               000000011
                                      <sub>X</sub>20
               000000001
               000000000
                                                 Bit 19 Corrected
              000000000
              000000000
              000000000
                                      \chi^{15}
              000000000
              000000000
              000000000
              000000000
              000000000
                                  1
1
1
0
                                      <sub>X</sub>10
              000000000
              000000000
              000000000
                                  0
              000000000
              000000000
                                      x^5
              000000000
              000000000
              000000000
              000000000
                                  1
              000000000
                                     \chi^0
              000000000
```

TABLE XXI. PROCESSING OF $r(x)=x^7+x^{23}$ WITH (24,14) BURST DECODER

r(X)		s(X)	٧*	(X)		
_X 23		1110010101				
X	1	1110010101				
	0	11101111100				
_X 20	0	0111011110				
χυσ	0	0011101111				
	0	1000000001				
	0	1101110110				
	0	0110111011				
15	0	1010101011				
χ^{15}	0	1100100011				
	0	1111100111				
	0	1110000101				
	0	1110110100				
10	0	0111011010				
x ¹⁰	0	0011101101				
	0	1000000000				
	0	0100000000				
	1	1100010101				
E	0	1111111100				
χ^5	0	0111111110				
	. 0	0011111111				
	0	1000001001				
	0	1101110010				
0	0	0110111001				
χ^{O}	0	1010101010		22		
		0101010101	1	x ²³		
		1011011100	0			
		0101101110	0 0	20		
		0010110111	0	χ ²⁰		
		1000101101	0			
		1101100000	0			
		0110110000	0			
		0011011000	0	15		
6		0001101100	0	χ^{15}		
		0000110110	0	•		
		0000011011	0		BURST TRAPP	
		0000001101	1		Bit 12 Correc	
		0000000110	1 0	10	Bit 11 Correc	ted
		000000011	0	χ10		
		0000000001	1		Bit 9 Correct	
		000000000	1		Bit 8 Correct	ed
		000000000	1			
		0000000000	1 1 1 0	r		
		0000000000	0	х ⁵		
		0000000000	0			
		0000000000	Ō			
		0000000000	0			
		0000000000	Ō	0		
		000000000	0	χ^0		

TABLE XXII. PROCESSING OF $r(x)=1+x+x^2+x^3+x^4+x^5+x^7+x^8+x^9+x^{10}$ $+x^{11}+x^{12}+x^{13}+x^{14}$ WITH (24,14) BURST DECODER V*(X) r(X)s(X)_x23 _X20 χ^{15} x¹⁰ x⁵ χ0 _X23 x²⁰ _X15 BURST TRAPPED Bit 13 Corrected Bit 12 Corrected Bit 11 Corrected **x**¹⁰ Bit 10 Corrected **x**⁵ χ^0

```
TABLE XXIII. PROCESSING OF r(x)=1+\chi^2+\chi^3+\chi^4+\chi^5+\chi^6+\chi^7+\chi^8+\chi^9+\chi^{10}+\chi^{11}+\chi^{12}+\chi^{13}+\chi^{14}+\chi^{15}+\chi^{16}+\chi^{17}+\chi^{18}+\chi^{19}+\chi^{20}+\chi^{21}+\chi^{22}+\chi^{23} WITH (24,14) BURST DECODER
```

				,	'A 'A	MI (11) (24)
r(X)	s(X)		V*(X)		
x ²³	1	1110010101				
^	1	1110010101				
		0000101001				
x ²⁰	1 1 1	0111110111				
^	1	0100011000				
	1	1100011001				
	1	0001101111				
		0111010100				
χ^{15}	1 1	1101111111				
٨	1	0001011100				
	1	1110111011	•			
	1	0000111110				
	1	1110001010				
x ¹⁰		1001010000				
^	1 1	1010111101				
	1	0010111101				
	1	0110111101				
		0100111101				
χ ⁵	1	0101111101				
^	1	0101011101				
	1	0101001101				
	1	0101000101				
		0101000001				
0 _X	0 1	1011010110				
۸	1	1011111110		23		
		0101111111	1	χ23		
		1011001001	1			
		1100010010	1	20		
		0110001001	1	χ ²⁰		
		1010110010	1			
		0101011001	1			
		1011011010	1			
		0101101101	1	15		
		1011600000	1	χ^{15}		
		0101100000	1			
		0010110000	1			
		0001011000	1			
		0000101100	1	10		
		0000010110	1	x ¹⁰	BURS	T TRAPPED
		0000001011	1			
		0000000101	1		Bit 8	Corrected
		0000000010	0		Bit 7	Corrected
		0000000001	1	. 5		
		000000000	0	χ^5	Bit 5	Corrected
		0000000000	1			
		000000000	1			
		0000000000	1			
		0000000000	1 1 1 0 1	0		
		000000000	1	χ^0		

TABLE XXIV. PROCESSING OF $r(x)=x^3+x^4+x^5+x^7+x^8+x^{10}$ WITH (24,14) BURST DECODER

```
V*(X)
  r(X)
                  s(X)
 x<sup>23</sup>
              0000000000
               000000000
               000000000
 <sub>X</sub>20
              000000000
        0
              000000000
        0
              000000000
        0 0 0
              000000000
              000000000
\chi^{15}
              000000000
        0
              000000000
        0
              000000000
              000000000
              000000000
<sub>X</sub>10
              1110010101
              1110111100
              1001001011
              0011000110
              0001100011
\chi^5
              0111010010
              1101111100
              1000101011
       0
             1101100011
       0
             1111000111
\chi^0
             1110010101
                                     x<sup>23</sup>
             11101111100
                                 0
0
0
0
             0111011110
             0011101111
                                    x<sup>20</sup>
             100000001
                                 0
             1101110110
             0110111011
             1010101011
                                 0
             1100100011
                                0
                                    \chi^{15}
             1111100111
             1110000101
                                0
             1110110100
                                0
            0111011010
                                0
            0011101101
                                0
1
0
                                    \chi^{10}
            1000000000
            0100000000
            0010000000
                               1
0
1
1
1
            0001000000
            0000100000
                                   \chi^5
            0000010000
                                                 BURST TRAPPED
            0000001000
            000000100
            0000000010
                                0 0 1
            000000001
                                   \chi^0
            000000000
                                              Bit O Corrected
```

TABLE XXV. PROCESSING OF $r(x)=1+x^3+x^4+x^5+x^7$ + x^8+x^{10} WITH (24,14) BURST DECODER

					- '	Countries Interested
r(X)		s(X)	٧	*(X)		
23						
_X 23	0	000000000				
	0	0000000000				
00	0	000000000				
x ²⁰	0	000000000				
	0	0000000000				
	Ö	000000000				
	Ö	000000000				
	Ö	0000000000				
χ^{15}	0	0000000000				
٨	0					
		000000000				
	0	000000000				
	0	000000000				
x ¹⁰	0	000000000				
X	1	1110010101				
	0	11101111100				
	1	1001001011				
	1	0011000110				
_	0	0001100011				
χ ⁵	1	0111010010				
	1	1101111100				
	ī	1000101011				
	Ō	1101100011				
	0	1111000111				
_X 0	1	0000000000				BURST TRAPPED
^	1	0000000000	0	χ^{23}		DON'S I INAFFED
			0	^		
		000000000	0			
		000000000	0	x ²⁰		
		0000000000	0	X		
		000000000	0			
		000000000	0			
		000000000	0			
		000000000	0	1.5		
		000000000	0	χ^{15}		
		000000000	0			
		000000000	0			
		000000000	0			
		000000000				
		000000000	0 1	_X 10		
		0000000000	ō	Λ.		
		000000000	1			
		000000000	1			
		000000000	0 1	χ ⁵		
		000000000		X		!
		000000000	1			
		000000000	1			
		000000000	0			
		000000000	0	Ω		
		000000000	1	χ^0		

Figure 29. Real Time Decoding with a One-Word Delay

SECTION VI

(24,14) BURST CODE CONSTRUCTION

The construction of the encoder and decoder for the (24,14) ℓ equal to 5 cyclic burst error-correcting code is considered in this section. TTL (transistor-transistor-logic) integrated logic circuits were chosen for the system on the basis of proven reliability, ease of design, and availability of a large number of circuit functions from several manufacturers.

For the encoder shown in Figure 27 a 10-bit shift register for the parity check register, six 2-input EXCLUSIVE OR gates, a gate, G1, that is to be on during the 14 clock pulses that the information bits are read in and off after the $14\frac{th}{c}$ clock pulse, and a switch that is in position A for the first 14 clock pulses and in position B after the 14th clock pulse was needed. D flip-flops were chosen for the parity check register and, in particular, the N7474, which is a dual edge-triggered flip-flop, was chosen, and the N7486 quad 2-input integrated circuit was used for the EXCLUSIVE OR gates. The switch and the control for G1 consisted of a 4-bit counter, N7493, which counts the first 14 clock pulses, a monostable multivibrator which is driven by the output of the count 14, and a JK flip-flop, N7470 (edge-triggered and gated inputs), which is clocked by the monostable to set its output, C, to 1 and \overline{Q} to 0. The output of the JK flip-flop controls the switch and G1. The AND gates used in the switch and G1 circuitry are N7411s, which are triple 3-input AND gates. The encoder was mechanized on 2 printed circuit boards, and the circuit diagrams for encoder boards 1 and 2 are shown in Figures 30 and 31, respectively. The printed circuit boards constructed from these circuit diagrams are shown in Figures 32 and 33. These are two-sided boards to minimize external wiring. 0 is the output of the encoder, V^{+} is +5v, $\Delta 1$ is the message input, $\Delta 2$ is the feedback from G1, C is the clock input, Ξ is ground, Γ is the clear, and E7 is the output of parity register 1, which is on board 1 and has to be connected to board 2. G1 is not shown on the printed circuit board as it was added later.

Figure 30. Encoder Circuit Diagram 1

Figure 31. Encoder Circuit Diagram 2

Figure 32. Encoder Printed Circuit Board 1

Figure 33. Encoder Printed Circuit Board 2

Now for the decoder, which is shown in Figure 28, a 10-bit shift register for the syndrome register, a 24-bit shift register to buffer the received signal, thirteen 2-input EXCLUSIVE OR gates, 2 gates, G1 and G2, a 6-input NOR gate to correct the burst errors, and a switch to disable the NOR gate during the first 24 clock pulses and to allow the NOR gate output to correct the errors during the next 24 clock pulses was needed. N7474 D flip-flops were used for the syndrome register, and N74164 shift registers were used for the buffer register. The N74164 is an 8-bit parallel-out serial-in shift register. For the EXCLUSIVE OR gates the N7486 was used and the N7405 hex inverter with open collector output was used as the 5-input NOR gate. The switch which controls the NOR gate is similar to the switch used in the encoder. This switch uses an N7493 and an N7472 (JK master slave flip-flop) to give a 5-bit counter which counts the desired 24 clock pulses. The output of this counter that corresponds to the 24th count feeds an N7400, a 2-input NAND gate, which will allow the NOR gate to control G1 and correct errors. An N7400 was also used for G1. The feedback of the counter turns the counter off, and the count of 24 is held until a clear button is activated. The decoder was mechanized on a single printed circuit board, and the circuit diagram for this decoder is given in Figure 34. Figure 35 gives the printed circuit board constructed from this circuit diagram. The switch, which is shown in dashed lines in Figure 34, is not shown on the printed circuit board as it was added later. A two-sided board was again used to minimize external wiring.

For future work CMOS (complementary MOSFET) logic would be desirable because of its lower power requirements, since switching speed is not critical. CMOS power levels are at the microwatt level rather than the milliwatt level for TTL logic, making it more suitable for battery-powered systems.

The printed circuit boards for the simulator used to demonstrate the encoding and decoding operations are shown in Figure 36. Also, light emitting diodes (LED) were used to display the ones and zeros of the encoded message and the corrected word. The printed circuit boards for the display are shown in Figure 37.

Figure 34. Decoder Circuit Diagram

Figure 35. Decoder Printed Circuit Board

Figure 36. Simulator Printed Circuit Boards

Figure 37. Display Printed Circuit Boards

SECTION VII

NON-CYCLIC BLOCK CODES

For cyclic coders, especially in the decoding operation, there is a delay in the processing of the encoded or decoded word. Depending upon the specific decoder, there can be a delay of up to two word lengths. Also, since the total word length is 48 bits of which 24 will be used for coding purposes and others passed unaltered, to use a cyclic code would require reformatting the word such that the 24 bits for coding are on one end of the word. An alternative to cyclic coders would be block coders which would not require reformatting the 48-bit word. Using a block code also enables the encoding and decoding to be accomplished with essentially no delay since there is no feedback shift register and the coding and decoding is done in parallel. The generator matrix, which corresponds to the generator polynomial for cyclic codes, for the (24,14) noncyclic block burst 5 error-correcting code is given as

	[:		0	1	1	1	0	1	1	0	1	0	0	0	0	0	C	0	0	0	0	0	0	0				
	()]	. 0	0	1	1	1	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0				
]]	. C	1	1	1	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0				
]	. 1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0				
	1	1	1	1	1	1	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0				
	1	1	1	0	0	0	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0				
G =	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0			/ 0 4	١
	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0			(84)
	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0				
	0	0	0	1	1	1	0	1	1	0	C	0	0	0	0	0	0	0	0	1	0	0	0	0				
	0	0	0	0	1	1	1	0	1	1	0	C	0	0	0	0	0	0	0	0	1	0	0	0				
	1	0	0	1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0				
	1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0				
	1	1	1	1	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1				
	_																							-				

This 14 X 24 generator matrix determines the connections for the encoder which is shown in Figure 38, where the 1's indicate a connection and 0's indicate no connection. It can be noted that the only delay in this encoding process is the delay through the multiple input EXCLUSIVE OR gate. The 10 X 24 parity check matrix which determines the decoder connections is obtained from Equation (84) as

The decoder is shown in Figure 39, and the delay is only slightly more because of two stages of EXCLUSIVE OR gates and the logic decoder.

The price that is paid for the fast encoding and decoding is complexity which is shown in the encoder and decoder and also in Figure 40, depicting the logic decoder in detail. As shown, the encoder requires a 14-bit register for the message word, a 24-bit register for the code word, 96 connections from the message word to the code word, and 30 multiple input EXCLUSIVE OR gates. The decoder requires a 24-bit register for the received word, a 10-bit register for the syndrome, 92 connections from the received word to the syndrome register, 10 multiple input EXCLUSIVE OR gates, and a 10-line to 1024-line logic decoder which can be constructed from sixty-six 4-line to 16-line logic decoders (N74154). The decoder also requires a 14-bit register for the corrected message word, 14 more multiple input EXCLUSIVE OR gates, and 175 connections (only message bits corrected) from the logic decoder to the corrected message register.

Figure 38. Encoder for (24,14) Noncyclic Block Burst 5 Error-Correcting Code

Decoder for (24,14) Noncyclic Block Burst 5 Error-Correcting Code Figure 39.

Figure 40. 10-Line to 1024-Line Logic Decoder

As a comparison of how the complexity increases with increasing burst error-correcting capability, the (24,14) code is compared to a (24,17) noncyclic block burst 3 error-correcting code. The 17 X 24 generator matrix is

and the encoder is given in Figure 41. From Equation (86) the 7 \times 24 parity check matrix is

and the decoder is shown in Figures 42 and 43.

The encoder requires a 17-bit message register, a 24-bit code word register, 76 connections between these registers, and 10 multiple input

Figure 41. Encoder for (24,17) Noncyclic Block Burst 3 Error-Correcting Code

Figure 42. Decoder for (24,17) Noncyclic Block Burst 3 Error Correcting Code

Figure 43. 7-Line to 128-Line Logic Decoder

EXCLUSIVE OR gates. The decoder requires a 24-bit received word register, a 7-bit syndrome register, 66 connections between these registers, a 7-line to 128 line logic decoder (constructed from nine 4-line to 16-line logic decoders), a 17-bit corrected message register, 63 connections from the logic decoder to the corrected message register, and a total of 24 EXCLUSIVE OR gates.

REFERENCES

- 1. Stein, S., and Jones, J., Modern Communication Principles, McGraw-Hill, New York, NY, 1965.
- 2. Peterson, W., and Weldon, E., <u>Error Correction Codes Second Edition</u>, The MIT Press, Cambridge, Mass., 1972.
- Kasami, T., "Optimum Shortened Cyclic Codes for Burst-Error-Correction," IEEE Trans. on Information Theory, IT-9, pp. 105-109, April, 1963.
- Lin, S., <u>An Introduction to Error-Correcting Codes</u>, Prentice-Hall, Englewood Cliffs, NJ, 1970.
- Trafton, P., et al., "Error Protection Manual for AFCS," Report No. AFCS-TR-73-1, November, 1972.

INITIAL DISTRIBUTION

ASD/ENO	1
ASD/ENYS	1
ASD/ENV	1
ASD/SD	1
AUL (AUL-LSE-70-239)	2
DARPA (TIO)	1
NAVAIR SYS COMD	1
COMDR NWC/CODE 753	2
DDC	
AFATL/DL	I
SDT	1
AFATL/DLMT	I
AFATL/DLMI	1
Hq USAF/SAMI	1
TAWC/TRADOCLO	1
AFATL/DLOSL	2
ASD/ENYELM	1
Ogden ALC/MMNOP	2
AFWL/LR	2

UNCLASSIFIED Security Classification DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified, ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION Electrical Engineering Department Unclassified University of Missouri Columbia, Missouri CODING FOR FREQUENCY - SHIFT - KEYED (FSK) COMMUNICATION SYSTEM. Final Kepert Januar December 1973 John J. Komo REPORT DATE M. TOTAL NO OF PAGES December 142 NTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBER(S) F08635-73-C-0078 Task No. b. OTHER HE T NO(5) (Any other numbers that may be assigned TR-73-245 Work Unit No. Distribution limited to U. S. Government agencies only; this report documents test and evaluation; distribution limitation applied December 1973. Other requests for this document must be referred to the Air Force Armament Laboratory (DLMT), Eglin Air Force Base, Florida 32542.

OLMT), Eglin Air Force Base, Florida 32542.

11 SUPPLEMENTARY NOTES

Available in DDC

Available in DDC

Available in DDC

13 ABSTRAC

Coding schemes for the correction of random errors or burst errors for fixed block length digital data words are presented in this report. The word format considered is a 48-bit word with six 8-bit subwords, and the codes developed are for the correction of errors in two subwords with a third subword for the parity bits. Several codes are considered and analyzed for their error correcting capability. Also, computer simulations were carried out on several of these codes, and a burst length 5-error correcting coding system was mechanized. Performance gains based on comparisons with uncoded, coherent frequency-shift-keyed system are

DD FORM 1473

UNCLASSIFIED

Eglin Air Force Base, Florida 32542

401391

Security Classification

UNCLASSIFIED Security Classification

KEY WORDS	LINI	< A	LIN	K B	LIN	K'C
	ROLE	wT	ROLE	wT	ROLE	, ·
Frequency-Shift-Keyed Communication System						
Random Error-Correcting Codes						
Burst Error-Correcting Codes					MILE	
urst Code Construction	5.6					
on-Cyclic Block Codes						
	-					
					The b	
	■ ^N					

UNCLASSIFIED
Security Classification