Глава 3. Упражнения по работе с пользовательскими функциями Unifloc 7.7 VBA

Освоить работу с расчетными функциями Unifloc 7.7 VBAможно выполняя упражнения описанные в данном разделе и изучая устройство тестовых расчетных модулей. Упражнение демонстрируют некоторые подходы к использованию Unifloc 7.7 VBA. На основе этих подходов можно создать свои расчетные модули решающие специфические задачи пользователя.

3.1 Расчет РVТ свойств

Расчет физико химических свойств пластовых флюидов лежит в основе всех расчетов систем нефтедобычи. При решении прикладных задач редко возникает необходимость расчета PVT свойств непосредственно, однако понимание принципа их расчета, а особенно зависимости результатов расчета от исходных данных важно.

Цель упражнений по расчету PVT свойств:

- освоить принципы работы с пользовательскими функций Unifloc 7.7 VBA
- изучить влияние исходных PVT данных на результаты расчета PVT свойств
- изучить влияние выбора PVT корреляций на результаты расчета PVT свойств
- изучить механизм калибровки PVT корреляций на результаты измерений

3.1.1 Построение простых PVT зависимостей

Для выполнения упражнения используйте файл "10.PVT.xlsx"

1. Запустите файл с надстройкой Unifloc 7.7 VBA. Для того чтобы убедиться, что надстройка запущена откройте редактор VBE (Alt+F11). В дереве проектов должен отображаться файл надстройки UniflocVBA 7.xlam, puc. 3.1.

Рис. 3.1 — Окно редактора VBE с загруженной надстройкой Unifloc 7.7 VBA

2. Откройте файл с упражнением 10. PVT.xlsx (смотри рис. 3.2).

Рис. 3.2 — Открытый файл с упражнением 10. PVT.xlsx

3. Для расчета первого элемента таблицы в ячейках D23:D48 - газосодержания в нефти при давлении 1 атм и температуре 80 °C - введите в ячейку D23 строку

```
=PVT_Rs_m3m3(B23;C23;gamma_gas_;gamma_oil_; gamma_wat_; Rsb_; Rp_; Pb_; Tres_; Bob_; muob_)
```

Обратите внимание – при запущенной надстройке достаточно начать вводить в ячейку формулу, например ввести =PVT как Excel откроет

выпадающий список с подсказкой, показывающий возможные варианты названий функций (смотри рис. 3.3).

В приведенной строке B23; C23 - ссылки на соответствующие ячейки, gamma_gas_; gamma_oil_ - также ссылки на ячейки, которые предварительно были поименованы.

Рис. 3.3 — Выпадающий список с подсказками названий функции

Из выпадающего списка выберите функцию = PVT_Rs_m3m3 (после чего нажмите кнопку f_x "вставить функцию" слева от строки формул. Это вызовет окно задания параметров функции, в котором будут указаны все параметры, которые необходимо ввести. В этом окно можно ввести необходимые значения параметров или указать ссылки на соответствующие ячейки.

Рис. 3.4 — Окно ввода аргументов функции

4. После ввода всех параметров и нажатия кнопки ОК в ячейке должен отобразиться результат расчета. Воспользовавшись инструментом "Вли-

яющие ячейки"на вкладке "Формулы"можно отследить на какие ячейки ссылается введенная формула

Рис. 3.5 — Результат вызова пользовательской функции с отображение влияющих ячеек

5. Аналогично заполните все ячейки таблицы D23: D48 вызовами функции = PVT_Rs_m3m3() с соответствующими параметрами. Это можно сделать "протянув" ранее введенную функцию в ячейке D23.

Обратите внимание, что при "протягивании" поименованные ячейки оказываются закрепленными, а ссылки на значения давления и температуры съезжают вместе с протягиваемой ячейкой. Результат показан на рисунке 3.6

Рис. 3.6 — Результат расчета зависимости газосодержания от давления

6. По аналогии с зависимостью газосодержания от давления постройте графики зависимости других параметров от давления. Используйте следующие функции для проведения расчатов:

функция расчета объемного коэффициента нефти

```
=PVT_Bo_m3m3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета вязкости нефти при заданных термобарических условиях

```
=PVT_Muo_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета вязкости газа при заданных термобарических условиях

```
=PVT_Mug_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Pb_;Bob_;muob_)
```

функция расчета вязкости воды при заданных термобарических условиях

```
=PVT_Muw_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета плотности газа при заданных термобарических условиях

```
=PVT_Rhog_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb_; Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета плотности воды при заданных термобарических условиях

```
=PVT_Rhow_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb ; Rp ; Pb ;Tres ;Bob ;muob )
```

функция расчета плотности нефти при заданных термобарических условиях

```
=PVT_Rhoo_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb_; Rp_; Pb_;Tres_;Bob_;muob_)
```

Результаты приведены на рисунке 3.7

- 7. Ответьте на вопросы по упражнению приведенные в рабочей книге.
 - а) Можно ли глядя на графические зависимости определить параметры нефти? Если да, то какие?
 - б) Всегда ли заданное значение давления насыщения совпадает со значением давления насыщения считанным с графиков?

Рис. 3.7 — Результат расчета зависимости свойств пластовых флюидов от давления

- в) Чему равно значение объемного коэффициента при P=1 атма? Есть ли разница между исходным значением и значением определенным по графическими зависимостями?
- г) Как изменятся построенные зависимости если не вводить значения калибровочных параметров давления насыщения, объемного коэффициента при давлении насыщения, вязкости при давлении насыщения?

3.2 Расчет производительности скважины

Модель притока к скважине является достаточно простой и одновременно полезной, позволяя оперативно оценивать добычные возможности скважины. Для

индикаторной диаграммы Вогеля зависимость забойного давления от дебита ниже давления насыщения перестает быть линейной.

Для выполнения упражнения необходимо задать:

- 1. PVT свойства флюидов
- 2. Параметры работы скважины на установившемся режиме
- 3. Пластовое давление

Рис. 3.8 — Исходные данные для построения индикаторной кривой

Коэффициент продуктивности PI скважины рассчитывается в ячейке С25 по замеренным данным с помощью функции

```
=IPR PI sm3dayatm(qltest; Pwftest; Pres; fw; Pb)
```

А максимальный дебит Q_{max} при максимальной депрессии с забойным давлением равном нулю

```
=IPR Qliq sm3Day(PI ;Pres ;0;fw ;Pb )
```

После задания всех необходимых параметров перейдем к построению индикаторной кривой.

Для расчета забойного давления в зависимости от дебита введите в ячейку D40 строку

```
=IPR Pwf atma(PI ; Pres ; C40; fw ; Pb )
```

Для вычисления дебита в зависимости от давления Вы можете воспользоваться функцией

Рис. 3.9 — Результат построения индикаторной кривой

Применяя функции, строя дополнительные графики, ответьте на вопросы по упражнению, приведенные в рабочей книге.

- 1. Как можно оценить продуктивность скважины?
- 2. Зависит ли вид индикаторной кривой от газового фактора?

3.3 Набор расчетных модулей анализа скважины

Пример использования алгоритмов Unifloc 7.7 VBAприведен в файле UF7 calc well.xlsm.

Файл содержит набор расчетных модулей позволяющих провести анализ данных описывающих работу скважины с применением различных методов добычи.

3.4 Расчет свойств многофазного потока

Расчет характеристики потока, состоящего из двух или более фаз, является более сложным, чем вычисление параметров однофазного потока. Вследствие разности плотностей и вязкостей, поведение фаз в потоке может существенно различаться. Расчет параметров газожидкостной смеси необходим для прогнозирования распределения давления в скважине, анализа работы погружного оборудования и т.д.

Аналогично предыдущим упражнениям сперва необходимо задать:

- 1. PVT свойства флюидов
- 2. Параметры потока флюида Q_l расход жидкости и f_w обводненность. После этого в ячейке С20 для удобства использования все PVT свойства сгруппируются в единую строку с помощью функции

=PVT_encode_string(gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tre

PVRstr	1_ * :	× ✓ f _x =PVT_	encode_string(gamma_gas	_;gamma_c	il_;gamma_	_wat_;Rsb_	Rp_;Pb_;Tres_;	Bob_;muob	_)										
1 2	⊿ A	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
_ 1		ния по работе с макросами	Unifloc VBA			версия	7.7													
2	Расчет св	ойств многофазного потока																		
3																				
4																				
- E	Физико -	химические свойства флю	мла PVT																	
. 7	Jane	Y ₀	0.87		870	KF/M ³				ость расхода					гуры					
			0.01			KE/M3	-			ость доли газ				ы						
. 8		Yw	1		1000					ость вязкости ость давления				0.00 5000 0	DOTOVO DOS		oŭ.			
· 9)	Υ _s	0.8		0.976	KF/M ³		- Hocipor	IIC SABRICHIVI	ость давлени	101183080101	фактора при	т котором д	оли газа в	noroke pac	опа задапп	ON			
+ 1	0	R _{sb}	80	м³/м³	92	м ³ /т		Вопросы п	о упражени	ю										
+ 1	1	R _o	80	м ³ /м ³	92	м ³ /т								o 400 0						
- 1	2	Pbcal	120	атма	122	МПа		1. насколь расчета	ко изменит	ся расход ГЖС	при изменен	нии темпера	туры от зо	с до 100 с.	. Оцените в	в уме и про	верьте се	еоя на осно	se .	
+ 1	3	T _{res}	100	С	212	Φ		2. Может л		появиться сво										
1.1	4	B _{ob cal}	1.2	M ³ /M ³						ость ГЖС при і	подъеме на п	оверхность	в скважине	? Оцените	степень из	зменения в	уме и пр	оверьте се	бя на	
+ 1	5	μ _{ob cal}	1	сП				основе рас	чета											
1	6 Параметр	ры потока флюида																		
1	7	Qı	50	м ³ /сут																
1	8	f _w	10	%																
1																				
2	0	PVT строка	gamma_gas:0	,800;gamma	_oil:0,870;g	amma_wat:	1,000;rsb_m	3m3:80,000;rp_i	m3m3:80,00	0;pb_atma:120	.000;tres_C:10	10,000;bob_n	3m3:1,200;	muob_cP:1	,000;PVTco	orr:0;ksep fr	:0,000;pks	sep_atma:-1	000;tksep	C:-1,00

Рис. 3.10 — Исходные данные для расчета параметров многофазного потока

Для расчета параметров смеси при разных термобарических условиях вставьте следующие функции в таблицу и "протяните" их для полного заполнения.

Для расчета Q_{mix} - объемного расхода смеси воспользуйтесь в ячейке Е28 функцией

```
=MF_Qmix_m3day(Q_;fw_;C28;D28;PVRstr1_)
```

Вычисление β_{gas} - объемной доли газа в потоке в ячейке F28 производится с помощью функции

```
=MF_gas_fraction_d(C28;D28;fw_;PVRstr1_)
```

А вязкости газожидкостной смеси μ_{mix} в G28

=MF_Mumix_cP(Q_;fw_;C28;D28;PVRstr1_)

al.	A B	С	D	E	F	G	н	1.1	J	К	L	М	N	0	
21	^ 0	C		-	'			-		IX			IN .	- 0	+
22															$^{+}$
23															
24															
25															
26										0.25	0.5	0.75			
										Рпри	Р при	Рпри			
27		Р	Т	Q _{mix}	β_{gas}	μ_{mix}		ГΦ	PVT	βgas =0,25	βgas =0,5	βgas =0,75			
28		1	80	4392	0.99	0.04		10	gamma gas:0,80	21	9	3			
29		5	80	904	0.94	0.19		50	gamma_gas:0,80	64	33	13			
30		10	80	467	0.89	0.35		100	gamma_gas:0,80	93	54	25			
31		20	80	249	0.78	0.58		150	gamma_gas:0,80	123	76	36			
32		40	80	140	0.61	0.84		200	gamma_gas:0,80	168	95	46			
33		60	80	104	0.46	0.96		250	gamma_gas:0,80	300	111	56			
34		80	80	87	0.34	1.00		300	gamma_gas:0,80	300	124	65			
35		100	80	77	0.24	1.01		350	gamma_gas:0,80	300	136	74			4
36		120	80	71	0.15	1.01		400	gamma_gas:0,80	300	151	82			+
37		140	80	67	0.08	0.99		450	gamma_gas:0,80	300	175	90			+
38		160 180	80 80	64 64	0.01	0.97		500 550	gamma_gas:0,80	300 300	238 300	97 103			+
40		200	80	64	0.00	1.01		600	gamma_gas:0,80 gamma_gas:0,80	300	300	103			+
41		220	80	63	0.00	1.01		650	gamma_gas:0,80	300	300	114			+
42		240	80	63	0.00	1.07		700	gamma_gas:0,80	300	300	119			
43		260	80	63	0.00	1.11		750	gamma gas:0,80	300	300	124			
44		280	80	63	0.00	1.14		800	gamma_gas:0,80	300	300	128			
45		300	80	63	0.00	1.18		850	gamma gas:0,80	300	300	132			
46		320	80	63	0.00	1.22		900	gamma_gas:0,80	300	300	137			
47		340	80	63	0.00	1.26		950	gamma gas:0,80	300	300	142			
48		360	80	63	0.00	1.31		1000	gamma_gas:0,80	300	300	146			
49		380	80	63	0.00	1.36		1050	gamma_gas:0,80	300	300	152			
50		400	80	63	0.00	1.40		1100	gamma_gas:0,80	300	300	158			
51		420	80	63	0.00	1.45		1150	gamma_gas:0,80	300	300	166			
52		440	80	63	0.00	1.50		1200	gamma_gas:0,80	300	300	178			4
53		460	80	63	0.00	1.55		1250	gamma_gas:0,80	300	300	196			4
54															
55	Расход ГЖС					Доля га:	за в пото			Вязко	ость сме	еси от да	aE		
56 57	5000				1.20						1.80				

Рис. 3.11 — Расчет параметров многофазного потока

Для вычисления давления в зависимости от газового фактора и объемного содержания газа в потоке β_{qas}

Поместите в ячейку J28 строку:

=PVT_encode_string(gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;I28;Pb_;Tre

А в ячейки K28, L28, M28 функцию для вычисления давления

=MF_p_gas_fraction_atma(X;20;fw_;J28)

где X соответствующие ссылки на ячейки с β_{gas} - K26, L26, M26

Рис. 3.12 — Графики для параметров многофазного потока

Далее для расчета вязкости отдельных фаз потока при различных P,T аналогично воспользуйтесь функциями.

Вязкость смеси μ_{mix} в Е98

=MF_Mumix_cP(Q_;fw_;C98;D98;PVRstr1_)

Вязкость газа μ_{gas} в F98

=PVT_Mug_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr

Вязкость нефти μ_o в G98

=PVT_Muo_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr

И вязкость воды μ_{m} в Н98

=PVT_Muw_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr

Рис. 3.13 — Разложение вязкости смеси на отдельные компоненты

Для самопроверки ответьте на следующие вопросы

- 1. Насколько изменится расход ГЖС при изменении температуры от 30 С до 100 С? Оцените в уме и проверьте себя на основе расчета
- 2. Может ли в потоке появиться свободный газ при давлении выше давления насыщения? Если да то при каких условиях?
- 3. Как изменится вязкость ГЖС при подъеме на поверхность в скважине? Оцените степень изменения в уме и проверьте себя на основе расчета

3.4.1 Расчетный модуль анализа и настройки PVT свойств