Simulado

Roberto de Pinho

27/08/2021

Validação da simulação

Foi feita a geração de uma tabela simulada de 100 mil indivíduos. Por sorteio, com probabilidade 50%/50% foram considerados vacinados ou não. Considera-se que todos os indivíduos foram expostos por tempo suficiente para que sejam infectados, caso sem vacina.

A partir dos valores das Tabelas 2 e S1 (https://doi.org/10.1101/2021.08.21.21261501) foram feitos sorteios para marcar cada indivíduo com Infection, Hospitalization, ICU admission e Death, considerando o status de vacinados ou não. Os resultados do sorteio de uma população são apresentados na tabela abaixo. São considerados apenas os valores para Vaxzevria/Fiocruz / Fully vaccinated.

vacc	n	n_infected	n_hosp	n_icu	n_death	tot_infected	tot_hosp	tot_icu	tot_death	ve_infected	ve_hosp	ve_icu	ve_death
FALSE 50	46200	5046200	866000	296500	277700	6385100	968700	328200	305200	NA	NA	NA	NA
TRUE 49	53800	1338900	102700	31700	27500	6385100	968700	328200	305200	73.467	88.141	89.309	90.097

Probabilidades

Probabilidade de infecção se vacinado

infected if vacc prob = 1-0.729 = 27.1%

Probabilidade de ser Hospitalizado / UTI / Morte se infectado (sem vacina).

Tabela 2 hosp_if_infected_prob = (hosp_events / hosp_person-days) / (infected_events / infected_person-days)

 $hosp_if_infected_prob = (22449 \ / \ 607756996) \ / \ (130302 \ / \ 607095423) = 17.21\%$

icu_if_infected_prob = $(7558 \ / \ 607855737) \ / \ (130302 \ / \ 607095423) = 5.793\%$

 $death_if_infected_prob = (7037 \ / \ 607859573) \ / \ (130302 \ / \ 607095423) = 5.394\%$

Probabilidade de ser Hospitalizado / UTI / Morte se infectado (com vacina).

```
Tabela S1
```

```
prob = 1 - VE
```

hosp_if_infected_prob * (1-VE) / infected_if_vacc_prob

hosp_if_vacc_prob = hosp_if_infected_prob * (1-0.88) / infected_if_vacc_prob = 7.621%

 $icu_if_vacc_prob = icu_if_infected_prob * (1-0.891) / infected_if_vacc_prob = 2.33\%$

death_if_vacc_prob = death_if_infected_prob * (1-0.902) / infected_if_vacc_prob = 1.951%