

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

TRANSMITTAL FORM

(to be used for all correspondence after initial filing)

TRANSMITTAL FORM <i>(to be used for all correspondence after initial filing)</i>		Application Number	10/618,824
		Filing Date	July 14, 2003
		First Named Inventor	Terry L. Gilton
		Art Unit	N/A
		Examiner Name	Not Yet Assigned
Total Number of Pages in This Submission		Attorney Docket Number	M4065.1006/P1006-A

ENCLOSURES (Check all that apply)

<input type="checkbox"/> Fee Transmittal Form <input type="checkbox"/> Fee Attached <input type="checkbox"/> Amendment/Reply <input type="checkbox"/> After Final <input type="checkbox"/> Affidavits/declaration(s) <input type="checkbox"/> Extension of Time Request <input type="checkbox"/> Express Abandonment Request <input checked="" type="checkbox"/> Information Disclosure Statement <input type="checkbox"/> Certified Copy of Priority Document(s) <input type="checkbox"/> Response to Missing Parts/ Incomplete Application <input type="checkbox"/> Response to Missing Parts under 37 CFR 1.52 or 1.53	<input type="checkbox"/> Drawing(s) <input type="checkbox"/> Licensing-related Papers <input type="checkbox"/> Petition <input type="checkbox"/> Petition to Convert to a Provisional Application <input type="checkbox"/> Power of Attorney, Revocation Change of Correspondence Address <input type="checkbox"/> Terminal Disclaimer <input type="checkbox"/> Request for Refund <input type="checkbox"/> CD, Number of CD(s) _____	<input type="checkbox"/> After Allowance Communication to Group <input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences <input type="checkbox"/> Appeal Communication to Group (Appeal Notice, Brief, Reply Brief) <input type="checkbox"/> Proprietary Information <input type="checkbox"/> Status Letter <input checked="" type="checkbox"/> Other Enclosure(s) (please identify below): IDS Citation (11 pages) Box of References
Remarks		

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name	DICKSTEIN SHAPIRO MORIN & OSHINSKY LLP Thomas J. D'Amico, Reg. No. 28,371
Signature	
Date	December 8, 2003

Docket No.: M4065.1006/P1006-A
(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:
Terry L. Gilton

Application No.: 10/618,824

Group Art Unit: N/A

Filed: July 14, 2003

Examiner: Not Yet Assigned

For: PROGRAMMABLE CONDUCTOR
MEMORY CELL STRUCTURE AND
METHOD THEREFOR

INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents
Washington, DC 20231

Dear Sir:

Pursuant to 37 C.F.R. § 1.56, the attention of the Patent and Trademark Office is hereby directed to the documents listed on the attached PTO/SB/08. It is respectfully requested that the subject matter of the documents be expressly considered during the prosecution of this application and that the documents be made of record therein and appear among the "References Cited" on any patent to issue from this application. A copy of each document is attached.

Those patents and publications which are marked with an asterisk (*) in the attached form PTO/SB/08 are not supplied because they were previously cited by or submitted to the Office in a prior application no. 10/121,790, filed April 10, 2002, and relied upon in this application for an earlier filing date under 35 U.S.C. 120.

A brief explanation of relevance of the non-(U.S.)-patent documents listed on form PTO/SB/08 is provided and attached hereto as Appendix A. The brief explanation provided for each document is not tantamount to an admission that a document is

“material” or that it qualifies as prior art. The Examiner is respectfully requested to utilize Appendix A only as a tool by which to better categorize the documents for substantive use in examining the claims of the application.

Documents discussed in Appendix A marked with an asterisk (**) are indicated to be potentially more relevant than others. Such marking is provided only to assist the Examiner; however, the Examiner is requested to thoroughly review all documents cited herein.

In accordance with 37 C.F.R. § 1.97(g), the filing of this Information Disclosure Statement shall not be construed to mean that a search has been made or that no other material information as defined in 37 C.F.R. § 1.56(a) exists. It is submitted that the Information Disclosure Statement is in compliance with 37 C.F.R. § 1.98 and the Examiner is respectfully requested to consider and cite the listed documents.

The Commissioner is hereby authorized to charge any deficiency in the fees filed, asserted to be filed or which should have been filed herewith (or with any paper hereafter filed in this application by this firm) to our Deposit Account No. 04-1073, under Order No. M4065.1006/P1006-A. A duplicate copy of this paper is enclosed.

Dated: December 8, 2003

Respectfully submitted,

By
Thomas J. D'Amico

Registration No.: 28,371
Peter F. McGee

Registration No. 35,947
DICKSTEIN SHAPIRO MORIN &
OSHINSKY LLP
2101 L Street, N.W.
Washington, DC 20037-1526
(202) 785-9700
Attorneys for Applicants

APPENDIX A

Japanese patent application publication No. 56126916A by Akira: this published application generally relates to, inter alia, diffusing selenium with high accuracy into a chalcogenide with silver by use of photoresist and thermal treatment.

Abdel-All, et al., Vacuum 59 (2000) 845-853: published in December, this document generally relates to, inter alia, the electrical properties of $\text{Ge}_5\text{As}_{38}\text{Te}_{57}$ as a function of temperature.

**Adler and Moss, J. Vac. Sci. Technol. 9 (1972) 1182-1189: this document generally relates to, inter alia, two types of electrical/material switching – threshold and memory, in amorphous materials; the effects of temperature, pressure, and frequency on switching; and the physics of threshold voltage and memory.

Adler et al., Ref. Mod. Phys. 50 (1978) 209-220: this document generally relates to, inter alia, threshold switching in amorphous alloys, state (“on” and “off”) characteristics, and glass properties.

Afifi, et al., Appl. Phys. A 55 (1992) 167-169: this document generally relates to, inter alia, SeGe-Sb glasses.

**Afifi, et al., J. Phys. 17 (1986) 335-342: this document generally relates to, inter alia, electrical and thermal conductivity of $\text{Ge}_x\text{Se}_{1-x}$ compositions as a function of temperature. $\text{Ge}_{25}\text{Se}_{75}$ stoichiometry is disclosed.

Alekperova and Gadzhieva, 23 (1987) 137-139: this document generally relates to, inter alia, a characteristic diode state in Ag_2Se compositions upon heating (to 376-400°K).

**Aleksiejunas and Cesnys, Phys. Stat. Sol. (a) 19 (1973) K169-K171: this document generally relates to, inter alia, the subjects of selenium investigation and how Se-Ag₂Se contributes silver ions to a selenium composition.

Angell, Annu. Rev. Phys. Chem. 43 (1992) 693-717: this document generally relates to, inter alia, the presence of ion conductors in solids.

Aniya, Solid State Ionics 136-137 (November 2,2000) 1085-1089: this document generally relates to, inter alia, ion conductor glasses.

Asahara and Izumitani, J. Non-Cryst. Solids 11 (1972) 97-104: this document generally relates to, inter alia, Cu-As-Se glass.

Asokan, et al., Phys. Rev. Lett. 62 (1989) 808-810: this document generally relates to, inter alia, Ge_xSe_{100-x} glasses and their transition from semiconductor-like material to metal-like material.

**Axon Technologies Corp., *Technology Description: Programmable Metallization Cell*: this believed publication generally relates to, inter alia, use of chalcogenides doped with metal such as silver or copper to create solid state switch with lower voltage requirement.

Baranovskii and Cordes, J. Chem. Phys. 111 (1999) 7546-7557: this document generally relates to, inter alia, ionic glasses and conduction (percolation theory).

Belin et al., Sol. St. Ionics 136-137 (November 2,2000) 1025-1029: this document generally relates to, inter alia, conductivity spectra of the glass 0.5Ag₂S-0.5GeS₂ and the temperature dependency of the conductivity.

Belin, et al., Solid State Ionics 143 (July 2, 2001) 445-455: this document generally relates to, inter alia, the electrical properties of $\text{Ag}_7\text{GeSe}_5\text{I}$ – an argyrodite compound.

Benmore and Salmon, Phys. Rev. Lett. 73 (1994) 264-267: this document generally relates to, inter alia, the characteristics of chalcogenide alloys.

Bernede, Thin Solid Films 70 (1980) L1-L4: this document is in the French language and the Applicant has no translation. It is presently understood to generally relate to, inter alia, metal- Ag_2Se -metal sandwich devices.

Bernede, Thin Solid Films 81 (1981) 155-160: this document generally relates to, inter alia, memories of selenium alloys with metal (e.g., Ag) electrodes, where the “on” memory states require constant voltage.

Bernede, Phys. Stat. Sol. (a) 57 (1980) K101-K104: this document generally relates to, inter alia, metal- Ag_2Se -P systems.

Bernede and Abachi, Thin Solid Films 131 (1985) L61-L64: this document generally relates to, inter alia, metal-insulator-metal thin films with electroforming effects; the films have silver, gold and copper electrodes.

**Bernede, et al., Thin Solid Films 97 (1982) 165-171: this document generally relates to, inter alia, $\text{Ag}_2\text{Se}/\text{Se}/\text{Metal}$ thin film sandwiches, which were studied by shape of electrodes (e.g., symmetrical or asymmetrical).

Bernede, et al., Phys. Stat. Sol. (a) 74 (1982) 217-224: this document generally relates to, inter alia, switching in $\text{Al}-\text{Al}_2\text{O}_3\text{Ag}_{2-x}\text{Se}_{1+x}$ devices.

Bondarev and Pikhitsa, Solid State Ionics 70/71 (1994) 72-76: this document generally relates to, inter alia, $\text{Ag}^{(+)}/\text{RbAg}_4\text{I}_5$ boundary – depletion layer, and dendritic electrodeposition.

**Boolchand, Asian Journal of Physics (2000) 9, 709-72: this document generally relates to, inter alia, $\text{Ge}_x\text{Se}_{1-x}$ glasses, which have selenium-rich and germanium-rich clusters, and the intrinsically-broken bond characteristics thereof.

**Boolchand, et al., J. Optoelectronics and Advanced Materials, 3 (September 2001), 703: this document generally relates to, inter alia, a review of Raman tool scattering of chalcogenide glasses. The floppyness and rigidness is observed. $\text{Ge}_x\text{Se}_{1-x}$ is disclosed, as is a stoichiometry of $\text{Ge}_{25}\text{Se}_{75}$.

**Boolchand, et al., Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132: this document generally relates to, inter alia, the prediction of glass rigidity in $\text{Ge}_x\text{Se}_{1-x}$ glass, e.g., $\text{Ge}_{23}\text{Se}_{77}$.

**Boolchand, et al., Diffusion and Defect Data, Vol. 53-54 (1987) 415-420: this document generally relates to, inter alia, thermal annealing of $\text{Ge}_x\text{Se}_{1-x}$ films.

**Boolchand, et al., Phys. Rev. B 25 (1982) 2975-2978: this document generally relates to, inter alia, the examination of GeSe glass having Sn impurities by Mossbauer spectroscopy. Investigations into glass network topology, which has an intrinsically broken bond backbone, suggesting Ge and Se rich clusters.

Boolchand, et al., Sol. State Comm. 45 (1983) 183-185: this document generally relates to, inter alia, $\text{Ge}_x\text{Se}_{1-x}$ and $\text{Ge}_x\text{S}_{1-x}$ glasses.

**Boolchand and Bresser, Dep. Of ECECS, Univ. Cincinnati 45221-0030: this document generally relates to, inter alia, $\text{Ge}_x\text{Se}_{1-x}$ and the relation of glass transition

temperature to Ge concentration in backbone. Although the publication date of this reference is not known to the Applicant, it was revised October 28, 1999 and is believed to be publicly available at the University of Cincinnati, Department of Electrical and Computer Engineering and Computer Science.

Boolchand and Grothaus, Eds. Chadi and Harrison, Proc. Int. Conf. Phys, Semicond., 17th (1985) 833-36: this document generally relates to, inter alia, GeSe and GeS glasses and the importance of a broken chemical order therein.

Bresser, et al., Phys. Rev. Lett. 56 (1986) 2493-2496: this document generally relates to, inter alia, an investigation of c-GeSe₂ structure.

Bresser, et al., J. de Physique 42 (1981) C4-193-C4-196: this document generally relates to, inter alia, the characteristics of GeSe₂ and GeS₂ glasses.

Bresser, et al., Hyperfine Interactions 27 (1986) 389-392: this document generally relates to, inter alia, germanium selenide glasses doped with tellurium.

Cahen, et al., Science 258 (1992) 271-274: this document generally relates to, inter alia, chalcopyrite CuInSe₂ glasses.

Chatterjee, et al., J. Phys. D: Appl. Phys. 27 (1994) 2624-2627: this document generally relates to, inter alia, As_xTe_{100-x-y}Se_y glasses and the current, voltage, and electrical switching behavior. Discloses applicability in read mostly memories.

**Chen and Tai, Appl. Phys. Lett. 37 (1980) 1075-1077: this document generally relates to, inter alia, silver photodoping of Ge_xSe_{1-x} and whisker formation (crystalline Ag₂Se).

Chen and Cheng, J. Am. Ceram. Soc. 82 (1999) 2934-2936: this document generally relates to, inter alia, germanium containing chalcogenides doped with Si₃N₄.

Chen, et al., J. Non-Cryst. Solids 220 (1997) 249-253: this document generally relates to, inter alia, As₁₀Ge₃₀Se₆₀ glasses (and the like) doped with Si₃N₄.

Cohen, et al., J. Non-Cryst. Solids 8-10 (1972) 885-891: this document generally relates to, inter alia, Ge-Te-X glasses as memory devices.

Croitoru, et al., J. Non-Cryst. Solids 8-10 (1972) 781-786: this document generally relates to, inter alia, the physics of conductivity in Ge-containing films.

Dalven and Gill, J. Appl. Phys. 38 (1967) 753-756: this document generally relates to, inter alia, beta-Ag₂Te.

Davis, Search 1 (1970) 152-155: this document generally relates to, inter alia, the subject of amorphous semiconductors as compared to glass.

**Dearnaley, et al., Rep. Prog. Phys. 33 (1970) 1129-1191: this document generally relates to, inter alia, background information about glass and memory.

**Dejus, et al., J. Non-Cryst. Solids 143 (1992) 162-180: this document generally relates to, inter alia, Ag-Ge-Se glass with Ag primarily bonded to Se. The reference discloses glass preparation.

den Boer, Appl. Phys. Lett. 40 (1982) 812-813: this document generally relates to, inter alia, a-Si:H sandwich structures and threshold switching from a low to high conductance.

Drusdau, et al., J. Non-Cryst. Solids 198-200 (1996) 829-832: this document generally relates to, inter alia, work with a-Si:H multilayers optoelectrical properties.

El Bouchairi, et al., Thin Solid Films 110 (1983) 107-113: this document generally relates to, inter alia, Ag_{2-x}Se_{1+x} thin film electrical characteristics and metal-like conduction.

El Ghraras, et al., J. Non-Cryst. Solids 155 (1993) 171-179: this document generally relates to, inter alia, photoconductivity of amorphous Se and Ge-Se alloy evaporated films, and reduction of photocurrent by increase of Ge content.

**El Ghrandi, et al., Thin Solid Films 218 (1992) 259-273: this document generally relates to, inter alia, GeSe films deposited by PECVD, Ag evaporation deposition onto glass and photodissolution into same, and optical properties are investigated. GeSe stoichiometries of 30/70 and 25/75, respectively, are disclosed.

**El Ghrandi, et al., Phys. Stat. Sol. (a) 123 (1991) 451-460: this document generally relates to, inter alia, dissolution of Ag into GeSe_{5.5} glass by flash evaporation.

El-kady, Indian J. Phys. 70 A (1996) 507-516: this document generally relates to, inter alia, Ge₂₁Se₁₇Te₆₂ glass and memory, switching, and current controlled negative resistance.

Elliott, J. Non-Cryst. Solids 130 (1991) 85-97: this document generally relates to, inter alia, mechanisms of photodissolution of metals (e.g., Ag) in chalcogenides based on ionic and electronic charge carriers.

**Elliott, J. Non-Cryst. Sol. 130 (1991) 1031-1034: this document generally relates to, inter alia, the photodissolution of metals (e.g., Ag) in chalcogenide glasses and the physics thereof.

Elsamanoudy, et al., Vacuum 46 (1995) 701-707: this document generally relates to, inter alia, studies of quaternary chalcogenide films with Te-As-Ge-Si sandwich structures between electrodes.

**El-Zahed and El-Korashy, Thin Solid Films 376 (November 1, 2000) 236-240: this document generally relates to, inter alia, Ge₂₀Bi_xSe_{80-x} film analysis regarding conduction and changes from p to n type.

Fadel, Vacuum 44 (1993) 851-855: this document generally relates to, inter alia, a study of the switching and memory characteristics of $\text{Se}_{75}\text{Ge}_{25-x}\text{As}_x$ films.

**Fadel and El-Shair, Vacuum 43 (1992) 253-257: this document generally relates to, inter alia, $\text{Se}_{75}\text{Ge}_7\text{Sb}_{18}$ glass electrical conduction and thermal character.

Feng, et al., Phys. Rev. Lett. 78 (1997) 4422-4425: this document generally relates to, inter alia, germanium selenide and germanium sulfide materials.

**Feng, et al., J. Non-Cryst. Solids 222 (1997) 137-143: this document generally relates to, inter alia, the structural character of $\text{Ge}_x\text{S}_{1-x}$ glass, e.g., hardness and elasticity.

**Fischer-Colbrie, et al., Phys. Rev. B 38 (1988) 12388-12403: this document generally relates to, inter alia, photodiffused Ag- GeSe_2 and the interaction between doped Ag with Se atoms and Ge with Ge atoms.

Fleury, et al., Phys. Stat. Sol. (a) 64 (1981) 311-316: this document generally relates to, inter alia, amorphous selenium films and their conductance.

Fritzsche, J. Non-Cryst. Sol. 6 (1971) 49-71: this document generally relates to, inter alia, background information on chalcogenides as semiconductors.

Fritzsche, Annual Review of Mat. Sci. 2 (1972) 697-744: this document generally relates to, inter alia, background information on amorphous semiconductors.

Gates, et al., J. Am. Chem. Soc. (2001): this document generally relates to, inter alia, creating Ag_2Se nanowires by chemical reaction.

Gosain, et al., Jap. J. Appl. Phys. 28 (1989) 1013-1018: this document generally relates to, inter alia, germanium telluride glasses sandwiched in electrodes and the physics thereof.

**Guin et al., J. Non-Cryst. Sol. 298 (March 28,2002) 260-269: this document generally relates to, inter alia, germanium selenide (GeSe) glass with low hardness, the mechanical properties of which are investigated. Stoichiometries of the glass are disclosed as being, inter alia, 10/90, 20/80, and 30/70, respectively.

**Guin et al., J. Am. Ceram. Soc. 85 (June 2002) 1545-1552: this document generally relates to, inter alia, germanium selenide glasses and a study of the hardness properties thereof. Glass stoichiometries of 40/60 and 20/80, respectively, are disclosed.

Gupta, J. Non-Cryst. Sol. 3 (1970) 148-154: this document generally relates to, inter alia, switching in chalcogenides.

Haberland and Stiegler, J. Non-Cryst. Solids 8-10 (1972) 408-414: this document generally relates to, inter alia, glasses containing Te, As, Ge, and Si, and pulse sequence and time factors in switching.

Haifz, et al., J. Apply. Phys. 54 (1983) 1950-1954: this document generally relates to, inter alia, As-Se-Cu glasses.

Hajto, et al., Int. J. Electronics 73 (1992) 911-913: this document generally relates to, inter alia, metal/a-Si:H/metal devices.

Hajto, et al., J. Non-Cryst. Solids 266-269 (May 1,2000) 1058-1061: this document generally relates to, inter alia, a-Si:H ion conductors, polarity-dependant digital and analogue memory, and dependency on contact metals.

Hajto, et al., J. Non-Cryst. Solids 198-200 (1996) 825-828: this document generally relates to, inter alia, electroformed V/a-Si:H/Cr devices.

Hajto, et al., Phil. Mag. B 63 (1991) 349-369: this document generally relates to, inter alia, p+ type amorphous Si memory structures with polarity dependent analogue switching.

Hayashi, et al., Japan. J. Appl. Phys. 13 (1974) 1163-1164: this document generally relates to, inter alia, Au-CdS(CdSe)-Au systems and metal-Se-Sn-SnO₂ systems.

**Hegab, et al., Vacuum 45 (1994) 459-462: this document generally relates to, inter alia, Ge₂₀M₇₅Sb₁₈ glass electrical conduction and thermal character.

Helbert et al., SPIE Vol. 333 Submicron Lithography (1982): this publication generally relates to, inter alia, hybrid ultragraphic process using both electron beam and conventional optical exposure within the same device level with a photoresist.

Hilt, dissertation (1999): this publication generally relates to, inter alia, stability of chalcogenides such as Ge_xSe_{1-x} with Ag doping by photodissolution and thermal diffusion.

Holmquist et al., 62 J. Amer. Ceram. Soc., No. 3-4 (March-April 1979): this publication generally relates to, inter alia, reactions and diffusion of Ag in arsenic chalcogenide glass below the glass transition temperature, including solubility information and concentration dependence of Ag diffusion in these glasses.

Hong and Speyer, J. Non-Cryst. Solids 116 (1990) 191-200: this document generally relates to, inter alia, Cd-Ge-As glass with Ag contacts.

Hosokawa, J. Optoelectronics and Advanced Materials 3 (2001) 199-214: this document generally relates to, inter alia, x-ray scattering experiments on glassy Ge_xSe_{1-x}.

Hu, et al., J. Non-Cryst. Solids 227-230 (1998) 1187-1191: this document generally relates to, inter alia, a-Si:H with Cr and V electrodes.

Hu, et al., Phil. Mag. B 74 (1996) 37-50: this document generally relates to, inter alia, a-Si:H glasses doped with Cr and analogue memory.

Hu, et al., Phil. Mag. B 80 (January 1, 2000) 29-43: this document generally relates to, inter alia, a-Si:H films doped with Cr-p+.

Huggett et al., 42 Appl. Phys. Lett., No. 7 (April 1983): this publication generally relates to, inter alia, reactive sputter etching to develop silver-sensitized Ge_xSe_{1-x} photoresist.

Iizima, et al., Solid State Comm. 8 (1970) 153-155: this document generally relates to, inter alia, switching and memory effects in As-Te-I^{1,2} and As-Te-Ge-Si³ glass systems. Thermal breakdown is proposed switching effect.

Ishikawa and Kikuchi, J. Non-Cryst. Solids 35 & 36 (1980) 1061-1066: this document generally relates to, inter alia, Ge_2S_2 films with Ag photodissolved therein.

**Iyetomi, et al., J. Non-Cryst. Solids 262 (February 2000) 135-142: this document generally relates to, inter alia, Ag/Ge/Se glasses as a composite of $GeSe_2$ and Ag_2Se (a fast ion conductor) and polarizability of Se ions.

Jones and Collins, Thin Solid Films 40 (1977) L15-L18: this document generally relates to, inter alia, switching in Se films and switching back with reverse pulse.

Joullie and Marucchi, Phys. Stat. Sol. (a) 13 (1972) K105-K109: this document generally relates to, inter alia, As_2Se_7 glass.

Joullie and Marucchi, Mat. Res. Bull. 8 (1973) 433-442: this document generally relates to, inter alia, As_2Se_5 film conduction and switching.

Kaplan and Adler, J. Non-Cryst. Solids 8-10 (1972) 538-543: this document generally relates to, inter alia, thermal effects on semiconductor switching.

Kawaguchi et al., 164-166 J. Non-Cryst. Solids (1993): this publication generally relates to, inter alia, deposition mechanism of Ag particles on Ag-rich Ag-As-S glass from a view-point of electrical effects.

**Kawaguchi, et al., J. Appl. Phys. 79 (1996) 9096-9104: this document generally relates to, inter alia, Ag-rich chalcogenide glass, Ge_3S_7 -Ag and $\text{Ge}_{30}\text{Se}_{70}$ -Ag, max Ag content of 67%, graphs phase diagram, and discloses that Ag works better than Cu.

**Kawaguchi and Masui, Jpn. J. Appl. Phys. 26 (1987) 15-21: this document generally relates to, inter alia, silver photodoping of chalcogenide films, e.g., $\text{Ge}_{30}\text{Se}_{70}$ films.

**Kawasaki, et al., Solid State Ionics 123 (1999) 259-269: this document generally relates to, inter alia, the electrical properties of $\text{Ag}_x(\text{GeSe}_3)_{1-x}$, conductivity EMF measurements, glass composition, X-ray diffraction, T_g and T_c , Ag ion transport, and glass structure.

**Kluge, et al., J. Non-Cryst. Solids 124 (1990) 186-193: this document generally relates to, inter alia, photodiffusion of silver into $\text{Ge}_x\text{Se}_{100-x}$ layers, how this differs from ion beam induced diffusion, $\text{Ge}_{30}\text{Se}_{70}$ stoichiometry, Ag_2Se , and percolation threshold.

**Kolobov, J. Non-Cryst. Solids 198-200 (1996) 728-731: this document generally relates to, inter alia, p-type conductive chalcogenides, materials, and physics thereof.

**Kolobov, J. Non-Cryst. Solids 137-138 (1991) 1027-1030: this document generally relates to, inter alia, doped and undoped glass layers as a p-n junction.

Korkinova and Andreichin, J. Non-Cryst. Solids 194 (1996) 256-259: this document generally relates to, inter alia, polarization of chalcogenide glass as depending on the materials used for electrode contacts.

**Kotkata, et al., Thin Solid Films 240 (1994) 143-146: this document generally relates to, inter alia, GeSe glass switching and film thickness, memory, current filament, chemical and mechanical switching properties, and discloses that heat treatment or aging improves switching.

**Kozicki and Mitkova, Proceedings of the XIX International Congress on Glass, Society for Glass Technology (2001): this publication generally relates to, inter alia, the physical effects of introduction of Ag into chalcogenide glasses, where introduction is by photodiffusion.

**Michael N. Kozicki, Programmable Metallization Cell Technology Description, February 18, 2000: this publication generally relates to, inter alia, programmable metallization cells (PMC) for storing memory as resistive states. The PMC cells use a chalcogenide glass region bounded by electrodes as a memory device. The chalcogenide glass can be germanium selenide. The electrodes can be an oxidizable and indifferent material. Multiple-bit cells are disclosed; relying on controlling an amount of electrodeposit. Barrier layers of metal oxides, isolation diodes, and access transistors are also disclosed.

**Michael N. Kozicki, Axon Technologies Corp. and Arizona State University, Presentation to Micron Technology, Inc., April 6, 2000: this publication generally relates to, inter alia, programmable metallization cells (PMC) for storing memory as resistive states and operating parameters for PMC devices.

**Kozicki et al., Proceedings of the 1999 Symposium on Solid State Ionic Devices (1999): this publication generally relates to, inter alia, physical and electrical characteristics of metal doped chalcogenide films (photodoped $\text{Ag}_4\text{As}_2\text{S}_3$) between electrodes, useful in memories, configurable connections, and self-repairing interconnections.

**Kozicki et al., Superlattices and Microstructures, 27 (2000): this publication generally relates to, inter alia, solid solutions of metals (e.g., silver) in arsenic trisulfide and their physical and electrical characteristics.

**Kozicki et al., Microelectronic Engineering, vol. 63/1-3 (2002): this publication generally relates to, inter alia, the photodiffusion of Ag into germanium selenide glass films, the amount of Ag that can be incorporated in to such a film by photodiffusion, and the characteristics of the resulting doped films.

Lakshminarayan, et al., J. Instn. Electronics & Telecom. Engrs. 27 (1981) 16-19: this document generally relates to, inter alia, tellurium-containing chalcogenide glasses.

Lal and Goyal, Indian Journal of Pure & Appl. Phys. 29 (1991) 303-304: this document generally relates to, inter alia, theory on chalcogenide switching.

**Leimer et al., Phys. Stat. Sol. (a) 29 (1975) K129-K132: this document generally relates to, inter alia, germanium selenide glass polarization behavior, e.g., inductive and capacitive components.

**Leung, et al., Appl. Phys. Lett. 46 (1985) 543-545: this document generally relates to, inter alia, photoinduced diffusion of Ag into $\text{Ge}_x\text{Se}_{1-x}$ and techniques for same.

Matsushita, et al., Jap. J. Appl. Phys. 11 (1972) 1657-1662: this document generally relates to, inter alia, $\text{Se}-\text{SnO}_2$ film switching and reversibility.

Matsushita, et al., Jpn. J. Appl. Phys. 11 (1972) 606: this document generally relates to, inter alia, polarized memory effect in Se films.

Mazurier, et al., Journal de Physique IV 2 (1992) C2-185 - C2-188: this document generally relates to, inter alia, Te-based glasses.

McHardy et al., 20 J. Phys. C.: Solid State Phys. (1987): this publication generally relates to, inter alia, sensitivity and high resolution of metals in amorphous chalcogenides by electron and UV radiation.

Messoussi, et al., Mat. Chem. And Phys. 28 (1991) 253-258: this document generally relates to, inter alia, selenium films and Bi electrodes.

**Mitkova and Boolchand, J. Non-Cryst. Solids 240 (1998) 1-21: this document generally relates to, inter alia, the analysis of Group IV and V chalcogenides.

**Mitkova and Kozicki, J. Non-Cryst. Solids 299-302 (May 14, 2002) 1023-1027: this document generally relates to, inter alia, photodissolution of Ag into Se-rich Ge-Se glasses for use in memory devices. The information disclosed in this reference was available to and known by the inventors prior to the filing of the application.

**Miyatani, J. Phys. Soc. Japan 34 (1973) 423-432: this document generally relates to, inter alia, electrical and ionic properties of solid solutions (e.g., doped glass), polarization, conductivity, Ag_2Se and Cu_2Se .

Miyatani, J. Phys. Soc. Japan 13 (1958) 317: this document generally relates to, inter alia, experiments regarding the electronic conductivity, ionic conductivity, hall constant, thermoelectric power, and Nernst coefficient of Ag_2Se as function of the e.m.f., E, the galvanic cell, or the deviation from stoichiometric composition.

**Miyatani, J. Phys. Soc. Japan 14 (1959) 996-1002: this document generally relates to, inter alia, Ag_2Te and Ag_2Se ion conduction and the chemical potential of silver ions.

Mott, J. Non-Cryst. Sol. 1 (1968) 1-17: this document generally relates to, inter alia, glasses with vanadium or iron.

**Nakayama, et al., Jpn. J. Appl. Phys. 32 (1993) 564-569: this document generally relates to, inter alia, electrically erasable nonvolatile memories in chalcogenide films of $\text{As}_x\text{Sb}_y\text{Te}_z$, flash evaporative deposition techniques, a high set-voltage compared to read-voltage, V_t creates a “filament,” and refresh-type pulse.

**Nakayama, et al., Jpn. J. Appl. Phys. 39 (November 15, 2000) 6157-6161: this document generally relates to, inter alia, phase transition random access memory (PRAM) made of chalcogenide glass.

**Nang et al., Jap. J. App. Phys. 15 (1976) 849-853: this document generally relates to, inter alia, $\text{Ge}_x\text{Se}_{1-x}$ electrical and optical properties; it also discloses $\text{Ge}_{.80}\text{Se}_{.20}$, $\text{Ge}_{.60}\text{Se}_{.40}$, and $\text{Ge}_{.50}\text{Se}_{.50}$.

Narayanan, et al., Phys. Rev. B 54 (1996) 4413-4415: this document generally relates to, inter alia, chalcogenide glass switching as thermally originated.

**Neale and Aseltine, , IEEE Transactions On Electron Dev. Ed-20 (1973) 195-209: this document generally relates to, inter alia, read mostly memories with chalcogenides (e.g., Ge, Te), also discloses “floating gate,” and material combinations including Ge and Se.

Ovshinsky and Fritzsche, Metallurgical Transactions 2 (1971) 641-645: this document generally relates to, inter alia, reversible changes in amorphous Si, Be, and B using a laser to write and erase.

Ovshinsky, Phys. Rev. Lett. 21 (1968) 1450-1453: this document generally relates to, inter alia, rapid and reversible resistive switching by electric field in amorphous semiconductors.

Owen, et al., IEE Proc. 129 (1982) 51-54: this document generally relates to, inter alia, a-Si:H, gold or aluminum dots and silver paste.

Owen, et al., Phil. Mag. B 52 (1985) 347-362: this document generally relates to, inter alia, photoinduced chalcogenide effects (As_2S_3) both reversible and irreversible.

**Owen, et al., Int. J. Electronics 73 (1992) 897-906: this document generally relates to, inter alia, threshold and memory switching a-Si:H ion conductor, polarity-dependant digital memory, analogue memory, and device operation dependency on metal contacts.

Owen et al., Nanostructure Physics and Fabrication (1989): this publication generally relates to, inter alia, photo-induced structural or physico-chemical changes of amorphous chalcogenides when exposed to light/irradiation, affecting chemical solubility.

Pearson and Miller, App. Phys. Lett. 14 (1969) 280-282: this document generally relates to, inter alia, glass diodes.

**Pinto and Ramanathan, Appl. Phys. Lett. 19 (1971) 221-223: this document generally relates to, inter alia, electric field inducement of glass switching "filamentary" path.

Popescu, Solid-State Electronics 18 (1975) 671-681: this document generally relates to, inter alia, the physics of chalcogenide switching.

Popescu and Croitoru, J. Non-Cryst. Solids 8-10 (1972) 531-537: this document generally relates to, inter alia, switching behavior and thermal instability in chalcogenide glasses.

Popov, et al., Phys. Stat. Sol. (a) 44 (1977) K71-K73: this document generally relates to, inter alia, investigations into threshold and memory switching effects in amorphous selenium with electrodes of Ca, Ni, Ag, and Al.

**Prakash, et al., J. Phys. D: Appl. Phys. 29 (1996) 2004-2008: this document generally relates to, inter alia, switching of $\text{Ge}_{10}\text{As}_{45}\text{Te}_{45}$ glass, study of threshold voltage concept and switch back to off, suitability for read mostly memory.

Rahman and Sivarama, Mat. Sci. Eng. B12 (1992) 219-222: this document generally relates to, inter alia, chalcogenide glass with no exothermic crystallization reaction above T_g being of a threshold-switching type.

**Ramesh, et al., Appl. Phys. A 69 (1999) 421-425: this document generally relates to, inter alia, electrical switching in GeTe with Ag or Cu and thermal character investigations.

Rose, et al., J. Non-Cryst. Solids 115 (1989) 168-170: this document generally relates to, inter alia, a-Si with Cr or V contacts.

Rose et al., Mat. Res. Soc. Symp. Proc. V258 (1992) 1075-1080: this document generally relates to, inter alia, a-Si:H memory.

Schuocker and Rieder, J. Non-Cryst. Solids 29 (1978) 397-407: this document generally relates to, inter alia, As-Te-Ge film sandwiches with Molybdenum electrodes.

Sharma and Singh, Proc. Indian Natn. Sci. Acad. 46, A, (1980) 362-368: this document generally relates to, inter alia, evaporated Se films and their electrical conductivity.

**Sharma, Ind. J. Of Pure and Applied Phys. 35 (1997) 424-427: this document generally relates to, inter alia, n-type Ag_2Se and other material stoichiometries. The device conductivity is analyzed, as is the grain size as a factor in device ability to polarize.

Shimizu et al., 46 B. Chem Soc. Japan, No. 12 (1973): this publication generally relates to, inter alia, electric conductivity increase by increasing Ag-photodoping of chalcogenide glass.

Snell, et al., J. Non-Cryst. Solids 137-138 (1991) 1257-1262: this document generally relates to, inter alia, a-Si:H analogue memory by applying voltages of increasing magnitude.

Snell et al., Mat. Res. Soc. Symp. Proc. V 297 (1993) 1017-1021: this document generally relates to, inter alia, a-Si:H analogue memory.

Steventon, J. Phys. D: Appl. Phys. 8 (1975) L120-L122: this document generally relates to, inter alia, switching in chalcogenides, resistively changes, and formation of microfilaments at switch.

Steventon, J. Non-Cryst. Solids 21 (1976) 319-329: this document generally relates to, inter alia, chalcogenide switching with pulses and multiple pulse resetting.

Stocker, App. Phys. Lett. 15 (1969) 55-57: this document generally relates to, inter alia, switching character of bulk and thin film glasses.

Tanaka, Mod. Phys. Lett. B 4 (1990) 1373-1377: this document generally relates to, inter alia, photodoping mechanism and Ag/As₃₀Se₇₀.

Tanaka, et al., Solid State Comm. 8 (1970) 387-389: this document generally relates to, inter alia, thermal effect on switching in chalcogenides and As-Te-(Ge or Si).

**Thornburg, J. Elect. Mat. 2 (1973) 3-15: this document generally relates to, inter alia, division of chalcogenides into stoichiometric compounds with no changes upon crystallization, stoichiometric compounds with changes upon crystallization, and non-

stoichiometric which phase separate on crystallization, As₂Se, and filament growth as a function of bias applied.

Thornburg, J. Non-Cryst. Solids 11 (1972) 113-120: this document generally relates to, inter alia, As₂Se₃ glass switching sandwich structure.

**Thornburg and White, (1972) 4609-4612: this document generally relates to, inter alia, precipitation of As particles out of As₂Se₃ glass and the alignment in a filament.

**Tichy and Ticha, J. Non-Cryst. Solids 261 (2000) 277-281: published in January, this document generally relates to, inter alia, Ge_xSe_{1-x} glass forming ability and 20/80 respective stoichiometry.

Titus, et al., Phys. Rev. B 48 (1993) 14650-14652: this document generally relates to, inter alia, percolation and chemical thresholds of chalcogenide glass.

**Tranchant, et al., Proceedings of the 6th Riso International Symposium. 9-13 September 1985: this document generally relates to, inter alia, GeSe glass with Ag, silver photodissolution, and generation of Ag₂Se.

Tregouet and Bernede, Thin Solid Films 57 (1979) 49-54: this document generally relates to, inter alia, Ag₂Te glass characteristics.

Uemura, et al., J. Non-Cryst. Solids 117-118 (1990) 219-221: this document generally relates to, inter alia, Ge₄Se₆ raman measurements and glass structure.

**Uttecht, et al., J. Non-Cryst. Solids 2 (1970) 358-370: this document generally relates to, inter alia, As-Te-Ge glass, V_t switching, filament formation, and reversal of voltage causes filament to grown in opposite direction.

Viger, et al., J. Non-Cryst. Solids 33 (1976) 267-272: this document generally relates to, inter alia, Se films dark-conductivity and photoconductivity.

**Vodenicharov, et al., Mat. Chem. and Phys. 21 (1989) 447-454: this document generally relates to, inter alia, M-GeSe-M films investigation for dc conductivity.

Wang, et al., IEEE Electron Dev. Lett. 13 (1992)471-472: this document generally relates to, inter alia, antifuses.

Weirauch, App. Phys. Lett. 16 (1970) 72-73: this document generally relates to, inter alia, chalcogenide device resistively changes in high electric fields.

**West, et al., J. Electrochem. Soc. 145 (1998) 2971-2974: this document generally relates to, inter alia, Ag/As₂₄S₃₆Ag₄₀/Ag systems and Ag transport.

**West, Ph.D. Dissertation, ASU 1998: this document generally relates to, inter alia, metal dendrite memory with Ag or Cu doped solid electrolyte, photodissolution of Ag into As₂S₃ glass, lateral devices with silver electrodes, vertical devices with Ag electrodes, write voltages and lesser read voltages, and pinpoint electrode surrounded by ring electrode. Although the exact publication date for this document is not known, it is believed to be available at Arizona State University.

Zhang, et al., J. Non-Cryst. Solids 151 (1992) 149-154: this document generally relates to, inter alia, T_g investigation for glasses.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

DEC 08 2003
U. S. PATENT & TRADEMARK OFFICE

Substitute for form 1449A/PTO				Complete if Known	
				Application Number	10/618,824
				Filing Date	July 14, 2003
				First Named Inventor	Terry L. Gilton
				Art Unit	N/A
				Examiner Name	Not Yet Assigned
Sheet	1	of	12	Attorney Docket Number	M4065.1006/P1006-A

U. S. PATENT DOCUMENTS					
Examiner Initials*	Cite No. ¹	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ² (if known)			
*	AA	2002/0000666	1/2002	Kozicki et al.	
*	AB	2002/0072188	6/2002	Gilton	
*	AC	2002/0106849	08/2002	Moore	
*	AD	2002/0123169	09/2002	Moore et al.	
*	AE	2002/0123170	09/2002	Moore et al.	
*	AF	2002/0123248	09/2002	Moore et al.	
*	AG	2002/0127886	09/2002	Moore et al.	
*	AH	2002/0132417	09/2002	Li	
*	AI	2002/0160551	10/2002	Harshfield	
*	AJ	2002/0163828	11/2002	Krieger et al.	
*	AK	2002/0168852	11/2002	Harshfield et al.	
*	AL	2002/0190289	12/2002	Harshfield et al.	
*	AM	2003/0001229	01/2003	Moore et al.	
*	AN	2003/0027416	02/2003	Moore	
*	AO	2003/0032254	02/2003	Gilton	
*	AP	2003/0038301	02/2003	Moore	
*	AQ	2003/0043631	03/2003	Gilton et al.	
*	AR	2003/0045049	03/2003	Campbell et al.	
*	AS	2003/0045054	03/2003	Campbell et al.	
*	AT	2003/0047765	03/2003	Campbell	
*	AU	2003/0047772	03/2003	Li	
*	AV	2003/0047773	03/2003	Li	
*	AW	2003/0049912	03/2003	Campbell et al.	
*	AX	2003/0068861	04/2003	Li	
*	AY	2003/0068862	04/2003	Li	
*	AZ	2003/0095426	05/2003	Hush et al.	
*	AA1	2003/0096497	05/2003	Moore et al.	
*	AB1	2003/0107105	06/2003	Kozicki	
*	AC1	2003/0117831	06/2003	Hush	
*	AD1	2003/0128612	07/2003	Moore et al.	
*	AE1	2003/0137869	07/2003	Kozicki	
*	AF1	2003/0143782	07/2003	Gilton et al.	
*	AG1	2003/0155589	08/2003	Campbell et al.	
*	AH1	2003/0155606	08/2003	Campbell et al.	
*	AI1	2003/0156447	08/2003	Kozicki	
*	AJ1	2003/0156463	08/2003	Casper et al.	
*	AK1	2003/0209728	11/2003	Kozicki et al	
*	AL1	2003/0209971	11/2003	Kozicki et al	
*	AM1	2003/0210564	11/2003	Kozicki et al	
*	AN1	3,622,319	11/1971	Sharp	
*	AO1	3,743,847	7/1973	Boland	
*	AP1	4,269,935	5/1981	Masters et al.	
*	AQ1	4,312,938	1/1982	Drexler, et al.	
*	AR1	4,316,946	1/1982	Masters, et al.	

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/PTO				Complete if Known	
				Application Number	10/618,824
				Filing Date	July 14, 2003
				First Named Inventor	Terry L. Gilton
				Art Unit	N/A
				Examiner Name	Not Yet Assigned
Sheet	2	of	12	Attorney Docket Number	M4065.1006/P1006-A

*	AS1	4,320,191	3/1982	Yoshikawa et al.	
*	AT1	4,405,710	9/1983	Balasubramanyam et al.	
*	AU1	4,419,421	12/1983	Wichelhaus, et al.	
*	AV1	4,499,557	2/1985	Holmberg et al.	
*	AW1	4,671,618	06/1987	Wu et al.	
*	AX1	4,795,657	1/1989	Formigoni et al.	
*	AY1	4,800,526	01/1989	Lewis	
*	AZ1	4,847,674	7/1989	Sliwa et al.	
*	AA2	5,177,567	1/1993	Klersy et al.	
*	AB2	5,219,788	6/1993	Abernathy et al.	
*	AC2	5,238,862	8/1993	Blalock et al.	
*	AD2	5,272,359	12/1993	Nagasubramanian et al.	
*	AE2	5,314,772	5/1994	Kozicki	
*	AF2	5,315,131	5/1994	Kishimoto et al.	
*	AG2	5,350,484	9/1994	Gardner et al.	
*	AH2	5,360,981	11/1994	Owen et al.	
*	AI2	5,500,532	3/1996	Kozicki et al.	
*	AJ2	5,512,328	4/1996	Yoshimura et al.	
*	AK2	5,512,773	4/1996	Wolf et al.	
*	AL2	5,726,083	3/1998	Takaishi	
*	AM2	5,751,012	5/1998	Wolstenholme et al.	
*	AN2	5,789,277	8/1998	Zahorik et al.	
*	AO2	5,814,527	9/1998	Wolstenholme et al	
*	AP2	5,818,749	10/1998	Harshfield	
*	AQ2	5,841,150	11/1998	Gonzalez et al.	
*	AR2	5,846,889	12/1998	Harbison et al.	
*	AS2	5,851,882	12/1998	Harshfield	
*	AT2	5,869,843	2/1999	Harshfield	
*	AU2	5,920,788	7/1999	Reinberg	
*	AV2	5,998,066	12/1999	Block et al.	
*	AW2	6,031,287	2/2000	Harshfield	
*	AX2	6,072,716	6/2000	Jacobson et al.	
*	AY2	6,077,729	6/2000	Harshfield	
*	AZ2	6,177,338	1/2001	Liaw et al.	
*	AA3	6,117,720	9/2000	Harshfield	
*	AB3	6,143,604	11/2000	Chiang et al.	
*	AC3	6,236,059	5/2001	Wolsteinholme et al.	
*	AD3	6,297,170	10/2001	Gabriel et al.	
*	AE3	6,300,684	10/2001	Gonzalez et al.	
*	AF3	6,316,784	11/2001	Zahorik et al.	
*	AG3	6,329,606	12/2001	Freyman et al.	
*	AH3	6,350,679	2/2002	McDaniel et al.	
*	AI3	6,376,284	4/2002	Gonzalez et al.	
*	AJ3	6,388,324	5/2002	Kozicki et al.	
*	AK3	6,391,688	5/2002	Gonzalez et al.	
*	AL3	6,414,376	7/2002	Thakur et al.	
*	AM3	6,418,049	7/2002	Kozicki et al.	
*	AN3	6,420,725	7/2002	Harshfield	
*	AO3	6,423,628	7/2002	Li et al.	

PTO/SB/08A (10-01)

Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U. S. DEPARTMENT OF COMMERCE
do not send a collection of information unless it contains a valid OMB control number.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 4 of 12				Complete if Known	
				Application Number	10/618,824
				Filing Date	July 14, 2003
				First Named Inventor	Terry L. Gilton
				Art Unit	N/A
				Examiner Name	Not Yet Assigned
				Attorney Docket Number M4065.1006/P1006-A	

FOREIGN PATENT DOCUMENTS

Examiner Initials*	Cite No. ¹	Foreign Patent Document	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear	T ⁶
		Country Code ³ -Number ⁴ -Kind Code ⁵ (if known)				
*	BA	JP-56126916	10/1981	Akira et al.		
*	BB	WO 97/48032	12/18/1997	Kozicki et al.		
*	BC	WO 99/28914	06/10/1999	Kozicki et al.		

Examiner Signature		Date Considered
--------------------	--	-----------------

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

¹ Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (use as many sheets as necessary)				Complete if Known	
Sheet	5	of	12	Application Number	10/618,824
				Filing Date	July 14, 2003
				First Named Inventor	Terry L. Gilton
				Group Art Unit	N/A
				Examiner Name	Not Yet Assigned
				Attorney Docket Number	M4065.1006/P1006-A

OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS					
Examiner Initials ¹	Cite No. ¹	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.			T ²
*	CA	Abdel-All, A.; Elshafie,A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.			
*	CB	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.			
*	CC	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.			
*	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.			
*	CE	Afifi,M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.			
*	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.			
*	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.			
*	CH	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.			
*	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.			
*	CJ	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.			
*	CK	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810			
*	CL	Axon Technologies Corporation, TECHNOLOGY DESCRIPTION: Programmable Metalization Cell/(PMC), pp. 1-6 (Pre-May 2000).			
*	CM	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.			
*	CN	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state Ionics 136-137 (2000) 1025-1029.			
*	CO	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.			
*	CP	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.			
*	CQ	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.			
*	CR	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.			
*	CS	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.			
*	CT	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.			
*	CU	Bernede, J.C.; Conan, A.; Fousenant, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.			
*	CV	Bernede, J.C. et al., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys.Stat. Sol. (a) 74 (1982) 217-224.			

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

Complete if Known

Application Number	10/618,824
Filing Date	July 14, 2003
First Named Inventor	Terry L. Gilton
Group Art Unit	N/A
Examiner Name	Not Yet Assigned

Sheet 6 of 12 Attorney Docket Number M4065.1006/P1006-A

*	CW	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg4I5, Solid State Ionics 70/71 (1994) 72-76.
*	CX	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in Ge _x Se _{1-x} Glasses, Asian Journal of Physics (2000) 9, 709-72.
*	CY	Boolchand, P.; Georgiev, D.G.; Goodman, B., Discovery of the Intermediate Phase in Chalcogenide Glasses, J. Optoelectronics and Advanced Materials, 3 (2001), 703
*	CZ	Boolchand, P.; Selvanathan, D.; Wang, Y.; Georgiev, D.G.; Bresser, W.J., Onset of rigidity in steps in chalcogenide glasses, Properties and Applications of Amorphous Materials, M.F. Thorpe and Tichy, L. (eds.) Kluwer Academic Publishers, the Netherlands, 2001, pp. 97-132.
*	CA1	Boolchand, P.; Enzweiler, R.N.; Tenhover, M., Structural ordering of evaporated amorphous chalcogenide alloy films: role of thermal annealing, Diffusion and Defect Data Vol. 53-54 (1987) 415-420.
*	CB1	Boolchand, P.; Grothaus, J.; Bresser, W.J.; Suranyi, P., Structural origin of broken chemical order in a GeSe ₂ glass, Phys. Rev. B 25 (1982) 2975-2978.
*	CC1	Boolchand, P.; Grothaus, J.; Phillips, J.C., Broken chemical order and phase separation in Ge _x Se _{1-x} glasses, Solid state comm. 45 (1983) 183-185.
*	CD1	Boolchand, P., Bresser, W.J., Compositional trends in glass transition temperature (Tg), network connectivity and nanoscale chemical phase separation in chalcogenides, Dept. of ECECS, Univ. Cincinnati (October 28, 1999) 45221-0030.
*	CE1	Boolchand, P.; Grothaus, J., Molecular Structure of Melt-Quenched GeSe ₂ and GeS ₂ glasses compared, Proc. Int. Conf. Phys. Semicond. (Eds. Chadi and Harrison) 17 th (1985) 833-36.
*	CF1	Bresser, W.; Boolchand, P.; Suranyi, P., Rigidity percolation and molecular clustering in network glasses, Phys. Rev. Lett. 56 (1986) 2493-2496.
*	CG1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; de Neufville, J.P., Intrinsically broken chalcogen chemical order in stoichiometric glasses, Journal de Physique 42 (1981) C4-193-C4-196.
*	CH1	Bresser, W.J.; Boolchand, P.; Suranyi, P.; Hernandez, J.G., Molecular phase separation and cluster size in GeSe ₂ glass, Hyperfine Interactions 27 (1986) 389-392.
*	CI1	Cahen, D.; Gilet, J.-M.; Schmitz, C.; Chernyak, L.; Gartsman, K.; Jakubowicz, A., Room-Temperature, electric field induced creation of stable devices in CuInSe ₂ Crystals, Science 258 (1992) 271-274.
*	CJ1	Chatterjee, R.; Asokan, S.; Titus, S.S.K., Current-controlled negative-resistance behavior and memory switching in bulk As-Te-Se glasses, J. Phys. D: Appl. Phys. 27 (1994) 2624-2627.
*	CK1	Chen, C.H.; Tai, K.L., Whisker growth induced by Ag photodoping in glassy Ge _x Se _{1-x} films, Appl. Phys. Lett. 37 (1980) 1075-1077.
*	CL1	Chen, G.; Cheng, J., Role of nitrogen in the crystallization of silicon nitride-doped chalcogenide glasses, J. Am. Ceram. Soc. 82 (1999) 2934-2936.
*	CM1	Chen, G.; Cheng, J.; Chen, W., Effect of Si ₃ N ₄ on chemical durability of chalcogenide glass, J. Non-Cryst. Solids 220 (1997) 249-253.
*	CN1	Cohen, M.H.; Neale, R.G.; Paskin, A., A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8-10 (1972) 885-891.
*	CO1	Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; and Vescan, L., Ohmic and non-ohmic conduction in some amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 781-786.
*	CP1	Dalven, R.; Gill, R., Electrical properties of beta-Ag ₂ Te and beta-Ag ₂ Se from 4.2 to 300K, J. Appl. Phys. 38 (1967) 753-756.
*	CQ1	Davis, E.A., Semiconductors without form, Search 1 (1970) 152-155.
*	CR1	Dearnaley, G.; Stoneham, A.M.; Morgan, D.V., Electrical phenomena in amorphous oxide films, Rep. Prog. Phys. 33 (1970) 1129-1191.
*	CS1	Dejus, R.J.; Susman, S.; Volin, K.J.; Montague, D.G.; Price, D.L., Structure of Vitreous Ag-Ge-Se, J. Non-Cryst. Solids 143 (1992) 162-180.
*	CT1	den Boer, W., Threshold switching in hydrogenated amorphous silicon, Appl. Phys. Lett. 40 (1982) 812-813.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

Complete if Known**INFORMATION DISCLOSURE
STATEMENT BY APPLICANT**

(use as many sheets as necessary)

Sheet	7	of	12	Attorney Docket Number	M4065.1006/P1006-A
-------	---	----	----	------------------------	--------------------

*	CU1	Drusdau, T.P.; Panckow, A.N.; Klabunde, F., The hydrogenated amorphous silicon/nanodisperse metal (SIMAL) system-Films of unique electronic properties, J. Non-Cryst. Solids 198-200 (1996) 829-832.	
*	CV1	EI Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag _{2-x} Se _{1+x} /n-Si diodes, Thin Solid Films 110 (1983) 107-113.	
*	CW1	EI Gharras, Z.; Bourahla, A.; Vautier, C., Role of photoinduced defects in amorphous Ge _x Se _{1-x} photoconductivity, J. Non-Cryst. Solids 155 (1993) 171-179.	
*	CX1	EI Ghrandi, R.; Calas, J.; Galibert, G.; Averous, M., Silver photodissolution in amorphous chalcogenide thin films, Thin Solid Films 218 (1992) 259-273.	
*	CY1	EI Ghrandi, R.; Calas, J.; Galibert, G., Ag dissolution kinetics in amorphous GeSe _{5.5} thin films from "in-situ" resistance measurements vs time, Phys. Stat. Sol. (a) 123 (1991) 451-460.	
*	CZ1	EI-kady, Y.L., The threshold switching in semiconducting glass Ge ₂₁ Se ₁₇ Te ₆₂ , Indian J. Phys. 70A (1996) 507-516.	
*	CA2	Elliott, S.R., A unified mechanism for metal photodissolution in amorphous chalcogenide materials, J. Non-Cryst. Solids 130 (1991) 85-97.	
*	CB2	Elliott, S.R., Photodissolution of metals in chalcogenide glasses: A unified mechanism, J. Non-Cryst. Solids 137-138 (1991) 1031-1034.	
*	CC2	Elsamanoudy, M.M.; Hegab, N.A.; Fadel, M., Conduction mechanism in the pre-switching state of thin films containing Te As Ge Si, Vacuum 46 (1995) 701-707.	
*	CD2	EI-Zahed, H.; EI-Korashy, A., Influence of composition on the electrical and optical properties of Ge ₂₀ BixSe _{80-x} films, Thin Solid Films 376 (2000) 236-240.	
*	CE2	Fadel, M., Switching phenomenon in evaporated Se-Ge-As thin films of amorphous chalcogenide glass, Vacuum 44 (1993) 851-855.	
*	CF2	Fadel, M.; EI-Shair, H.T., Electrical, thermal and optical properties of Se ₇₅ Ge ₇ Sb ₁₈ , Vacuum 43 (1992) 253-257.	
*	CG2	Feng, X.; Bresser, W.J.; Boolchand, P., Direct evidence for stiffness threshold in Chalcogenide glasses, Phys. Rev. Lett. 78 (1997) 4422-4425.	
*	CH2	Feng, X.; Bresser, W.J.; Zhang, M.; Goodman, B.; Boolchand, P., Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses, J. Non-Cryst. Solids 222 (1997) 137-143.	
*	CI2	Fischer-Colbrie, A.; Bienenstock, A.; Fuoss, P.H.; Marcus, M.A., Structure and bonding in photodiffused amorphous Ag-GeSe ₂ thin films, Phys. Rev. B 38 (1988) 12388-12403.	
*	CJ2	Fleury, G.; Hamou, A.; Viger, C.; Vautier, C., Conductivity and crystallization of amorphous selenium, Phys. Stat. Sol. (a) 64 (1981) 311-316.	
*	CK2	Fritzsche, H., Optical and electrical energy gaps in amorphous semiconductors, J. Non-Cryst. Solids 6 (1971) 49-71.	
*	CL2	Fritzsche, H., Electronic phenomena in amorphous semiconductors, Annual Review of Materials Science 2 (1972) 697-744.	
*	CM2	Gates, B.; Wu, Y.; Yin, Y.; Yang, P.; Xia, Y., Single-crystalline nanowires of Ag ₂ Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. (2001) currently ASAP.	
*	CN2	Gosain, D.P.; Nakamura, M.; Shimizu, T.; Suzuki, M.; Okano, S., Nonvolatile memory based on reversible phase transition phenomena in telluride glasses, Jap. J. Appl. Phys. 28 (1989) 1013-1018.	
*	CO2	Guin, J.-P.; Rouxel, T.; Keryvin, V.; Sangleboeuf, J.-C.; Serre, I.; Lucas, J., Indentation creep of Ge-Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow, J. Non-Cryst. Solids 298 (2002) 260-269.	
*	CP2	Guin, J.-P.; Rouxel, T.; Sangleboeuf, J.-C.; Melscoet, I.; Lucas, J., Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85 (2002) 1545-52.	
*	CQ2	Gupta, Y.P., On electrical switching and memory effects in amorphous chalcogenides, J. Non-	

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

Complete if Known

Application Number	10/618,824
Filing Date	July 14, 2003
First Named Inventor	Terry L. Gilton
Group Art Unit	N/A
Examiner Name	Not Yet Assigned

Sheet 8 of 12 Attorney Docket Number M4065.1006/P1006-A

*	CR2	Cryst. Sol. 3 (1970) 148-154. Haberland, D.R.; Stiegler, H., New experiments on the charge-controlled switching effect in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 408-414.
*	CS2	Haifz, M.M.; Ibrahim, M.M.; Dongol, M.; Hammad, F.H., Effect of composition on the structure and electrical properties of As-Se-Cu glasses, J. Apply. Phys. 54 (1983) 1950-1954.
*	CT2	Hajto, J.; Rose, M.J.; Osborne, I.S.; Snell, A.J.; Le Comber, P.G.; Owen, A.E., Quantization effects in metal/a-Si:H/metal devices, Int. J. Electronics 73 (1992) 911-913.
*	CU2	Hajto, J.; Hu, J.; Snell, A.J.; Turvey, K.; Rose, M., DC and AC measurements on metal/a-Si:H/metal room temperature quantised resistance devices, J. Non-Cryst. Solids 266-269 (2000) 1058-1061.
*	CV2	Hajto, J.; McAuley, B.; Snell, A.J.; Owen, A.E., Theory of room temperature quantized resistance effects in metal-a-Si:H-metal thin film structures, J. Non-Cryst. Solids 198-200 (1996) 825-828.
*	CW2	Hajto, J.; Owen, A.E.; Snell, A.J.; Le Comber, P.G.; Rose, M.J., Analogue memory and ballistic electron effects in metal-amorphous silicon structures, Phil. Mag. B 63 (1991) 349-369.
*	CX2	Hayashi, T.; Ono, Y.; Fukaya, M.; Kan, H., Polarized memory switching in amorphous Se film, Japan. J. Appl. Phys. 13 (1974) 1163-1164.
*	CY2	Hegab, N.A.; Fadel, M.; Sedeek, K., Memory switching phenomena in thin films of chalcogenide semiconductors, Vacuum 45 (1994) 459-462.
*	CZ2	Helbert et al., <i>Intralevel hybrid resist process with submicron capability</i> , SPIE Vol. 333 SUBMICRON LITHOGRAPHY, pp. 24-29 (1982).
*	CA3	Hilt, DISSERTATION: <i>Materials characterization of Silver Chalcogenide Programmable Metallization Cells</i> , Arizona State University, pp. Title page-114 (UMI Company, May 1999).
*	CB3	Holmquist et al., <i>Reaction and Diffusion in Silver-Arsenic Chalcogenide Glass Systems</i> , 62 J. AMER. CERAM. SOC., No. 3-4, pp. 183-188 (March-April 1979).
*	CC3	Hong, K.S.; Speyer, R.F., Switching behavior in II-IV-V2 amorphous semiconductor systems, J. Non-Cryst. Solids 116 (1990) 191-200.
*	CD3	Hosokawa, S., Atomic and electronic structures of glassy GexSe1-x around the stiffness threshold composition, J. Optoelectronics and Advanced Materials 3 (2001) 199-214.
*	CE3	Hu, J.; Snell, A.J.; Hajto, J.; Owen, A.E., Constant current forming in Cr/p+a-Si:H/V thin film devices, J. Non-Cryst. Solids 227-230 (1998) 1187-1191.
*	CF3	Hu, J.; Hajto, J.; Snell, A.J.; Owen, A.E.; Rose, M.J., Capacitance anomaly near the metal-non-metal transition in Cr-hydrogenated amorphous Si-V thin-film devices, Phil. Mag. B 74 (1996) 37-50.
*	CG3	Hu, J.; Snell, A.J.; Hajto, J.; Owen, A.E., Current-induced instability in Cr-p+a-Si:H-V thin film devices, Phil. Mag. B 80 (2000) 29-43.
*	CH3	Huggett et al., Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF6, 42 Appl. Phys. Lett., No. 7, pp. 592-594 (April 1983).
*	CI3	Iizima, S.; Sugi, M.; Kikuchi, M.; Tanaka, K., Electrical and thermal properties of semiconducting glasses As-Te-Ge, Solid State Comm. 8 (1970) 153-155.
*	CJ3	Ishikawa, R.; Kikuchi, M., Photovoltaic study on the photo-enhanced diffusion of Ag in amorphous films of Ge2S3, J. Non-Cryst. Solids 35 & 36 (1980) 1061-1066.
*	CK3	Iyetomi, H.; Vashishta, P.; Kalia, R.K., Incipient phase separation in Ag/Ge/Se glasses: clustering of Ag atoms, J. Non-Cryst. Solids 262 (2000) 135-142.
*	CL3	Jones, G.; Collins, R.A., Switching properties of thin selenium films under pulsed bias, Thin Solid Films 40 (1977) L15-L18.
*	CM3	Joullie, A.M.; Marucchi, J., On the DC electrical conduction of amorphous As2Se7 before switching, Phys. Stat. Sol. (a) 13 (1972) K105-K109.
*	CN3	Joullie, A.M.; Marucchi, J., Electrical properties of the amorphous alloy As2Se5, Mat. Res.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

Complete if Known**INFORMATION DISCLOSURE
STATEMENT BY APPLICANT**

(use as many sheets as necessary)

Sheet 9 of 12 Attorney Docket Number M4065.1006/P1006-A

*	CO3	Bull. 8 (1973) 433-442. Kaplan, T.; Adler, D., Electrothermal switching in amorphous semiconductors, J. Non-Cryst. Solids 8-10 (1972) 538-543.
*	CP3	Kawaguchi et al., Mechanism of photosurface deposition, 164-166 J. NON-CRYST. SOLIDS, pp. 1231-1234 (1993).
*	CQ3	Kawaguchi, T.; Maruno, S.; Elliott, S.R., Optical, electrical, and structural properties of amorphous Ag-Ge-S and Ag-Ge-Se films and comparison of photoinduced and thermally induced phenomena of both systems, J. Appl. Phys. 79 (1996) 9096-9104.
*	CR3	Kawaguchi, T.; Masui, K., Analysis of change in optical transmission spectra resulting from Ag photodoping in chalcogenide film, Jpn. J. Appl. Phys. 26 (1987) 15-21.
*	CS3	Kawasaki, M.; Kawamura, J.; Nakamura, Y.; Aniya, M., Ionic conductivity of Agx(GeSe3)1-x (0<=x<=0.571) glasses, Solid state Ionics 123 (1999) 259-269.
*	CT3	Kluge, G.; Thomas, A.; Klubes, R.; Grotzschel, R., Silver photodiffusion in amorphous GeSe100-x, J. Non-Cryst. Solids 124 (1990) 186-193.
*	CU3	Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731.
*	CV3	Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030.
*	CW3	Korkinova, Ts.N.; Andreichin, R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259.
*	CX3	Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTi chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146.
*	CY3	Kozicki et al., Silver incorporation in thin films of selenium rich Ge-Se glasses, International Congress on Glass, Volume 2, Extended Abstracts, July 2001, pgs. 8-9.
*	CZ3	Michael N. Kozicki, 1. Programmable Metallization Cell Technology Description, February 18, 2000
*	CA4	Michael N. Kozicki, Axon Technologies Corp. and Arizona State University, Presentation to Micron Technology, Inc., April 6, 2000
*	CB4	Kozicki et al., Applications of Programmable Resistance Changes In Metal-Doped Chalcogenides, Electrochemical Society Proceedings, Volume 99-13, 1999, pgs. 298-309.
*	CC4	Kozicki et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, Vol. 27, No. 516, 2000, pgs. 485-488.
*	CD4	Kozicki et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering 63 (2002) pgs 155-159.
*	CE4	Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instrn Electronics & Telecom. Engrs 27 (1981) 16-19.
*	CF4	Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304.
*	CG4	Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132.
*	CH4	Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545.
*	CI4	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jpn. J. Appl. Phys. 11 (1972) 1657-1662.
*	CJ4	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606.
*	CK4	Mazurier, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2-V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188.
*	CL4	McHardy et al., The dissolution of metals in amorphous chalcogenides and the effects o

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

Complete if Known

Application Number	10/618,824
Filing Date	July 14, 2003
First Named Inventor	Terry L. Gilton
Group Art Unit	N/A
Examiner Name	Not Yet Assigned

Sheet 10 of 12 Attorney Docket Number M4065.1006/P1006-A

*	CM4	electron and ultraviolet radiation, 20 J. Phys. C.: Solid State Phys., pp. 4055-4075 (1987)f
*	CM4	Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachi, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258.
*	CN4	Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21.
*	CO4	Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027.
*	CP4	Miyatani, S.-y., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432.
*	CQ4	Miyatani, S.-y., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.
*	CR4	Miyatani, S.-y., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002.
*	CS4	Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17.
*	CT4	Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569.
*	CU4	Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161.
*	CV4	Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.
*	CW4	Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on electrical switching in chalcogenide network glasses, Phys. Rev. B 54 (1996) 4413-4415.
*	CX4	Neale, R.G.; Asetline, J.A., The application of amorphous materials to computer memories, IEEE transactions on electron dev. Ed-20 (1973) 195-209.
*	CY4	Ovshinsky S.R.; Fritzsche, H., Reversible structural transformations in amorphous semiconductors for memory and logic, Metallurgical transactions 2 (1971) 641-645.
*	CZ4	Ovshinsky, S.R., Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21 (1968) 1450-1453.
*	CA5	Owen, A.E.; LeComber, P.G.; Sarrabayrouse, G.; Spear, W.E., New amorphous-silicon electrically programmable nonvolatile switching device, IEE Proc. 129 (1982) 51-54
*	CB5	Owen, A.E.; Firth, A.P.; Ewen, P.J.S., Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors, Phil. Mag. B 52 (1985) 347-362.
*	CC5	Owen, A.E.; Le Comber, P.G.; Hajto, J.; Rose, M.J.; Snell, A.J., Switching in amorphous devices, Int. J. Electronics 73 (1992) 897-906.
*	CD5	Owen et al., Metal-Chalcogenide Photoresists for High Resolution Lithography and Sub-Micron Structures, Nanostructure Physics and Fabrication, pp. 447-451 (M. Reed ed. 1989).
*	CE5	Pearson, A.D.; Miller, C.E., Filamentary conduction in semiconducting glass diodes, App. Phys. Lett. 14 (1969) 280-282.
*	CF5	Pinto, R.; Ramanathan, K.V., Electric field induced memory switching in thin films of the chalcogenide system Ge-As-Se, Appl. Phys. Lett. 19 (1971) 221-223.
*	CG5	Popescu, C., The effect of local non-uniformities on thermal switching and high field behavior of structures with chalcogenide glasses, Solid-state electronics 18 (1975) 671-681.
*	CH5	Popescu, C.; Croitoru, N., The contribution of the lateral thermal instability to the switching phenomenon, J. Non-Cryst. Solids 8-10 (1972) 531-537.
*	CI5	Popov, A.I.; Geller, I.KH.; Shemetova, V.K., Memory and threshold switching effects in amorphous selenium, Phys. Stat. Sol. (a) 44 (1977) K71-K73.
*	CJ5	Prakash, S.; Asokan, S.; Ghare, D.B., Easily reversible memory switching in Ge-As-Te glasses, J. Phys. D: Appl. Phys. 29 (1996) 2004-2008.
*	CK5	Rahman, S.; Sivarama Sastry, G., Electronic switching in Ge-Bi-Se-Te glasses, Mat. Sci. and Eng. B12 (1992) 219-222.

Substitute for form 1449B/PTO

Complete if Known

Application Number	10/618,824
Filing Date	July 14, 2003
First Named Inventor	Terry L. Gilton
Group Art Unit	N/A
Examiner Name	Not Yet Assigned

Sheet 11 of 12 Attorney Docket Number M4065.1006/P1006-A

*	CL5	Ramesh, K.; Asokan, S.; Sangunni, K.S.; Gopal, E.S.R., Electrical Switching in germanium telluride glasses doped with Cu and Ag, <i>Appl. Phys. A</i> 69 (1999) 421-425.
*	CM5	Rose, M.J.; Hajto, J.; Lecomber, P.G.; Gage, S.M.; Choi, W.K.; Snell, A.J.; Owen, A.E., Amorphous silicon analogue memory devices, <i>J. Non-Cryst. Solids</i> 115 (1989) 168-170.
*	CN5	Rose, M.J.; Snell, A.J.; Lecomber, P.G.; Hajto, J.; Fitzgerald, A.G.; Owen, A.E., Aspects of non-volatility in a -Si:H memory devices, <i>Mat. Res. Soc. Symp. Proc. V</i> 258, 1992, 1075-1080.
*	CO5	Schuocker, D.; Rieder, G., On the reliability of amorphous chalcogenide switching devices, <i>J. Non-Cryst. Solids</i> 29 (1978) 397-407.
*	CP5	Sharma, A.K.; Singh, B., Electrical conductivity measurements of evaporated selenium films in vacuum, <i>Proc. Indian Natn. Sci. Acad. A</i> , (1980) 362-368.
*	CQ5	Sharma, P., Structural, electrical and optical properties of silver selenide films, <i>Ind. J. Of pure and applied phys.</i> 35 (1997) 424-427.
*	CR5	Shimizu et al., <i>The Photo-Erasable Memory Switching Effect of Ag Photo-Doped Chalcogenide Glasses</i> , 46 B. <i>CHEM SOC. JAPAN</i> , No. 12, pp. 3662-3365 (1973).
*	CS5	Snell, A.J.; Lecomber, P.G.; Hajto, J.; Rose, M.J.; Owen, A.E.; Osborne, I.L., Analogue memory effects in metal/a-Si:H/metal memory devices, <i>J. Non-Cryst. Solids</i> 137-138 (1991) 1257-1262.
*	CT5	Snell, A.J.; Hajto, J.; Rose, M.J.; Osborne, L.S.; Holmes, A.; Owen, A.E.; Gibson, R.A.G., Analogue memory effects in metal/a-Si:H/metal thin film structures, <i>Mat. Res. Soc. Symp. Proc. V</i> 297, 1993, 1017-1021.
*	CU5	Steventon, A.G., Microfilaments in amorphous chalcogenide memory devices, <i>J. Phys. D: Appl. Phys.</i> 8 (1975) L120-L122.
*	CV5	Steventon, A.G., The switching mechanisms in amorphous chalcogenide memory devices, <i>J. Non-Cryst. Solids</i> 21 (1976) 319-329.
*	CW5	Stocker, H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, <i>App. Phys. Lett.</i> 15 (1969) 55-57.
*	CX5	Tanaka, K., Ionic and mixed conduction in Ag photodoping process, <i>Mod. Phys. Lett B</i> 4 (1990) 1373-1377.
*	CY5	Tanaka, K.; Iizima, S.; Sugi, M.; Okada, Y.; Kikuchi, M., Thermal effects on switching phenomenon in chalcogenide amorphous semiconductors, <i>Solid State Comm.</i> 8 (1970) 387-389.
*	CZ5	Thornburg, D.D., Memory switching in a Type I amorphous chalcogenide, <i>J. Elect. Mat.</i> 2 (1973) 3-15.
*	CA6	Thornburg, D.D., Memory switching in amorphous arsenic triselenide, <i>J. Non-Cryst. Solids</i> 11 (1972) 113-120.
*	CB6	Thornburg, D.D.; White, R.M., Electric field enhanced phase separation and memory switching in amorphous arsenic triselenide, <i>Journal(?)</i> (1972) 4609-4612.
*	CC6	Tichy, L.; Ticha, H., Remark on the glass-forming ability in Ge _x Se _{1-x} and As _x Se _{1-x} systems, <i>J. Non-Cryst. Solids</i> 261 (2000) 277-281.
*	CD6	Titus, S.S.K.; Chatterjee, R.; Asokan, S., Electrical switching and short-range order in As-Te glasses, <i>Phys. Rev. B</i> 48 (1993) 14650-14652.
*	CE6	Tranchant, S.; Peytavin, S.; Ribes, M.; Flank, A.M.; Dexpert, H.; Lagarde, J.P., Silver chalcogenide glasses Ag-Ge-Se: Ionic conduction and exafs structural investigation, Transport-structure relations in fast ion and mixed conductors Proceedings of the 6th Riso International symposium, 9-13 September 1985.
*	CF6	Tregouet, Y.; Bernede, J.C., Silver movements in Ag ₂ Te thin films: switching and memory effects, <i>Thin Solid Films</i> 57 (1979) 49-54.
*	CG6	Uemura, O.; Kameda, Y.; Kokai, S.; Satow, T., Thermally induced crystallization of amorphous Ge _{0.4} Se _{0.6} , <i>J. Non-Cryst. Solids</i> 117-118 (1990) 219-221.
*	CH6	Uttecht, R.; Stevenson, H.; Sie, C.H.; Griener, J.D.; Raghavan, K.S., Electric field induced filament formation in As-Te-Ge glass, <i>J. Non-Cryst. Solids</i> 2 (1970) 358-370.

PTO/SB/08B (10-01)

Approved for use through 10/31/2002 OMB 0651-0031

U. S. Patent and Trademark Office: U. S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO				Complete if Known	
INFORMATION DISCLOSURE STATEMENT BY APPLICANT <i>(use as many sheets as necessary)</i>				Application Number	10/618,824
				Filing Date	July 14, 2003
				First Named Inventor	Terry L. Gilton
				Group Art Unit	N/A
				Examiner Name	Not Yet Assigned
Sheet	12	of	12	Attorney Docket Number	
M4065.1006/P1006-A					

Examiner Signature		Date Considered	
-----------------------	--	--------------------	--

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached.