T-79-06-20

IR94558/IR94558N/IR94559/IR94559N

Low Noise Dual Operational Amplifier

Description

The IR94558/IR94558N and IR94559/IR94559N are low noise dual operational amplifiers. High input resistance, wide common mode input voltage range, and absence of latch-up make these amplifiers ideal for voltage-follower applications.

Features

- 1. No frequency compensation required
- High input impedance 5MΩ (TYP.)
- 3. Short circuit protected outputs
- 4. 8-pin dual-in-line package (IR94558/IR94559) 8-pin small-outline package (IR94558N/IR94559N)

Pin Connections

Equivalent Circuit

Absolute Maximum Ratings

(Ta=25℃) -

Parameter	Symbol	Con	dition	Rating	Unit	
Supply voltage	$V_{CC} - V_{EE}$. 36	· V	
Differential input voltage	V _{tD}			±30	v	
In-phase input voltage *1	V _{ICM}		· · ·	±15	V	
Power dissipation	Pp	Ta≤25℃	IR94558/IR94559	500	mW	
			IR94SS8N/IR94S59N	500	mw	
P _D derating ratio	ΔP _D /C	Ta>25 C	IR945581894559	. 5	-317/50	
		13/250	IR94558N/IR94559N	4	mW/C	
Operating temperature	Topr			-20~+75	C	
Storage temperature	Teta			-55~+150	°C	

Electrical Characteristics

 $(V_{CC}=15V, V_{EE}=-15V, Ta=25C)$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input offset voltage	· V _{to}	R _S ≤10kΩ		1	0.5	6	mV
Input offset current	I ₁₀			5	200	nA	
Input bias current	l _B	-1		40	500	nA	
Input Impedance	Z _{IIN}		0:3	. 5		. MΩ	
In-phase input voltage	V _{ICM}		±12	±14		' V :	
Major amplitude voltage gain	Av	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$		86	110		. dB.
Maximum output voltage	Vom	R _L ≥10kΩ		±12	±14		, V
		R _L ≥2kΩ		±10	±13		
Common signal rejection ratio	CMR	R _s ≤10kΩ		70	90		dΒ
Supply voltage rejection ratio	SVR	R ₅ ≤10kΩ			30	150	μV/V
Power dissipation	PD				105	170	mW
Input conversion noise voltage	V _{NI}	RS=1kO, BW=10Hz-30kHz			2.5		μV _{ma}
Gain band product	G.B.	$R_L=2k\Omega$	- IR94558/TR94558N		3.0		MHz
			1R94559/1R94559N		6.0		
Slew rate	SR	R _L ≥2kΩ	TR94658/TR94558N		1.0		V/µs
			IR94559/IR94589N		2.0		

■ Electrical Characteristic Curves (Unless otherwise specified, V_{CC}=15V, V_{EE}=-15V, Ta=25°C)

Input bias current—Ambient temperatue Characteristics

Maximum output amplitude voltage-

Maximum output voltage—Supply voltage Characteristics

Input conversion noise voltage— Frequency Characteristics

3

Open loop voltage gain—Frequency Characteristics

Maximum output amplitude voltage— Frequency Characteristics

