Федеральное государственное автономное образовательное учрежден	ИΕ
высшего образования «Московский физико-технический институт	
(национальный исследовательский университет)»	

Отчёт по лабораторной работе 5.1.3

Излучение рассеяния медленных электронов на атомах (Эффект Рамзауэра)

Выполнил студент:

Сериков Василий Романович

Сериков Алексей Романович

группа: Б03-102

Аннотация

Цель работы:

Исследовать энергетические зависимости вероятности рассеяния электронов атомами ксенона, определить энергии электронов, при которых наблюдается просветление ксенона и оценить размер его внешней электронной оболочки.

Теория:

Распределение вероятности обнаружить частицу в какой-то области пространства dV описывается в квантовой физике комплексной волновой функцией $\psi(\vec{r}):dw=|\psi|^2dV$. Волновая функция стационарного состояния (состояния с определённой энергией E) подчиняется уравнению Шредингера $-\frac{\hbar^2}{2m}\Delta\psi + U(\vec{r})\psi = E\psi$, где $U(\vec{r})$ — потенциальная энергия частицы.

От волновой функции требуются: 1. непрерывность, так как скачок волновой функции будет соответствовать резкому нефизическому скачку в распределении вероятности 2. гладкость (за исключением нефизического, но полезного случая бесконечно высокой стенки), так как скачок производной соответсвует нефизическому скачку среднего импульса $\langle \vec{p} \rangle = -i\hbar \int \psi^* \vec{\nabla} \psi dV$ границе

Нормировка волновой функции $\int \psi^* \psi dV = 1$, выражающая математическое требование суммы всех вероятностей, равной 1, применяется при финитном движении частицы (волновая функция отлична от нуля в ограниченной области пространства).

Для свободной частицы (U=0) уравнение Шредингера имеет решение вида плоской волны $\psi = Ce^{i\vec{r}\vec{r}}$. Для нормировки такого решения удобно выразить поток частиц (число частиц, пересекающих площадку dS за время dt:

$$j = \frac{dN}{dSdt} = \frac{|\psi|^2 dV}{dSdt} = \frac{|\psi|^2 dS \frac{p}{m} dt}{dSdt} = \frac{\hbar k}{m} |\psi|^2$$

Рассмотрим одномерную задачу с потенциалом

$$U(x) = \begin{cases} 0, x < 0 \\ -U_0 0 < x < l \\ 0, x > l \end{cases}.$$

Такой потенциал называют потенциальной ямой глубиной U_0 и шириной l. Пусть на такую

яму из минус бесконечности падает поток частиц. Определим долю частиц, прошедших через яму. Одномерное уравнение Шредингера $-\frac{\hbar^2}{2m}\psi'' + (U-E)\psi = 0$ в областях x<0 и x>l (где U=0) имеет решение вида $\psi = Ae^{ik_1x} + Be^{-ik_1x}$, где $k_1^2 = \frac{2mE}{\hbar^2}$. В области 0< x< l (где $U=-U_0$) $\psi = Ae^{ik_2x} + Be^{-ik_2x}$, где $k_2^2 = \frac{2m(E+U_0)}{\hbar^2}$

Слагаемые с положительным знаком в экспоненте соответствуют волне, распространяющейся слева направо. Слагаемые с отрицательным знаком - волне, распространяющейся справа налево.

В силу произвольности выбора падающего потока частиц, можно положить одну из констант равной произвольному числу. Удобно таким образом отнормировать падающий поток. Кроме того, после ямы имеет физический смысл только решение, распространяющееся слева направо (не от чего отражаться обратной волне).

Таким образом, решения для волновой функции надо искать в виде:

$$\psi = \begin{cases} e^{ik_1x} + Ae^{-ik_1x}, x < 0\\ C_1e^{ik_1x} + C_2e^{-ik_1x}, 0 < x < l.\\ Be^{ik_1x}, x > l \end{cases}$$

Требования непрерывности и гладкости при x=0 и x=l приводят к системе линейных уравнений:

$$1 + A = C_1 + C_2$$

$$C_1 e^{ik_2 l} + C_2 e^{-ik_2 l} = B e^{ik_1 l}$$

$$k_1 (1 - A) = k_2 (C_1 - C_2)$$

$$k_2 (C_1 e^{ik_2 l} - C_2 e^{-ik_2 l}) = k_1 B e^{ik_1 l}$$

Система позволяет найти все коэффициенты, но для нахождения коэффициента прохождения (или коэффициента отражения) достаточно найти амплитуду прошедшей (отражённой) волны B (A). После прямолинейных преобразований получаем:

$$B = \frac{4k_1k_2e^{-ik_1l}}{(k_1 + k_2)^2e^{-ik_2l} - (k_1 - k_2)^2e^{ik_1l}}$$

Коэффициент прохождения над ямой определяется отношением потоков падающих и прошедших частиц, то есть :

$$D = |B|^2 = BB^* = \frac{16k_1^2k_2^2}{(k_1 + k_2)^4 + (k_1 - k_2)^4 - (k_1 + k_2)^2(k_1 - k_2)^2(e^{2ik_2l} + e^{-2ik_2l})}.$$

Экспериментальная установка:

В работе используется тиратрон $T\Gamma 3-01/1.3$ Б, заполненный инертным газом. Электроны, эмитируемые катодом, ускоряются напряжением V, затем рассеиваются на атомах инертного газа. Эти электроны попадают на сетку, а оставшиеся попадают на анод и создают анодный ток.

Уравнение ВАХ

$$I_{\mathbf{a}} = I_0 \exp\left(-Cw(V)\right),\tag{1}$$

Рис. 1: Вероятность рассеяния электрона и ВАХ тератрона при классическом рассмотрении (a) и квантовом (б)

где $I_0=eN_0$ – ток катода, $I_{\rm a}=eN_a$ – ток анода, $C=Ln_{\rm a}\Delta_{\rm a}(L$ – расстояние между катодом и анодом, $\Delta_{\rm a}$ – площадь поперечного сечения атома, $n_{\rm a}$ – концентрация газа в лампе), w(V) – вероятность рассеяния на атоме. Зависимость вероятности рассеяния электрона от его энергии

$$w(V) = -\frac{1}{C} \ln \frac{I_{\mathbf{a}}(V)}{I_{\mathbf{0}}}.\tag{5a}$$

Рис. 2: Блок-схема установки

Рис. 3: Принципиальная схема установки

Ход работы:

1. Получим изображение BAX на экране осциллографа в динамическом режиме. Полученная картинка для двух различных значений напряжения накала лампы изображены на Рис4. и Рис5.

Рис. 4: Осциллограмма при напряжении накала $V=2,52\pm0,01$ В. Цена деления по оси абсцисс 5 В/дел.

Рис. 5: Осциллограмма при напряжении накала $V=2,79\pm0,01$ В. Цена деления по оси абсцисс 5 В/дел.

2. По полученным осциллограммам определим напряжение между катодом и сеткой, соответствующее первому максимуму и минимуму (отсчет максимумов и минимумов начинается справа налево).

Оценим напряжение пробоя, соответствующее резкому скачку тока в конце кривой. Полученные значения занесем в таблицу 1.

	Δ_{max} , дел.	Δ_{min} , дел.	$\Delta_{\text{проб.}}$, дел.	Δ_{max} , B	Δ_{min} , B	$\Delta_{\text{проб.}}, B$
$V_1 = 2,79 \text{ B}$	0,5	1,3	2,4	2,5	6.5	12
$V_1 = 2,52 \text{ B}$	0,5	1,2	2,4	2,5	6	12

Таблица 1: Значения напряжений при первом максимуме и минимуме анодного тока и напряжение пробоя. Цена деления по оси абсцисс 5 B/дел. $\sigma_{\Delta}=0,1$ дел. =0,5 B

3. По результатам измерений рассчитаем размер электронной оболочки атома инертного газа, заполняющего лампу, приняв $U_0 = 2.5$ B.

$$l_1 = \frac{3}{4} \frac{h}{\sqrt{2m(E_2 + U_0)}}$$
$$l_2 = \frac{1}{2} \frac{h}{\sqrt{2m(E_1 + U_0)}}$$

Также рассчитаем размер оболочки атома этого газа по формуле:

$$l_{3} = \frac{h\sqrt{5}}{\sqrt{32m(E_{2} - E_{1})}}$$

$$\sigma_{l_{1}} = l_{1}\frac{3}{4} \cdot \frac{hm}{(2m(E_{2} + U_{0}))^{3/2}}\sigma_{E_{2}}$$

$$\sigma_{l_{2}} = l_{2}\frac{hm}{(2m(E_{1} + U_{0}))^{3/2}}\sigma_{E_{1}}$$

$$\sigma_{l_{3}} = l_{3}\sqrt{\left(\frac{1}{E_{2} - E_{1}}\sigma_{E_{1}}\right)^{2} + \left(\frac{1}{E_{2} - E_{1}}\sigma_{E_{2}}\right)^{2}}$$

4. Оценим глубину потенциальной ямы по формуле:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1$$

Результаты измерений пунктов 3-4 занесем в таблицу 2.

$l_1, m \AA$	l_2 , Å	l_3 , Å	U_0 , эВ	$l_{ m {\scriptscriptstyle Ta} 6 \pi.},{ m \AA}$
$2,7\pm 0,2$	$3,1\pm0,2$	$3,4\pm0,3$	0.7 ± 0.5	1

Таблица 2: Полученные значения для размера электронной оболочки атома ксенона в динамическом режиме

5. Проведем измерения ВАХ тиратрона в статическом режиме для двух значений напряжения накала (тех же, что в динамическом режиме). Полученные результаты занесем в таблицу 3. Построим график $I_a = f(V_c)$

$V_1 = 2,770 \text{ B}$				$V_2 = 2,516 \; \mathrm{B}$			
$V_{\rm анод.}$, мВ	$V_{\text{катсет.}}$, B	$V_{ m aнog.}$, мВ	$V_{\text{\tiny Katcet.}}, B$	$V_{ m aнog.}$, мВ	$V_{\text{\tiny Katcet.}}$, B	$V_{ m aнog.}$, мВ	$V_{\text{\tiny Katcet.}},$ B
1,18	0,582	74,5	4,875	0,10	0,125	42,13	4,419
19,70	0,853	72,58	5,090	0,43	0,600	39,78	4,660
76,50	1,086	71,12	5,266	2,44	0,750	38,02	4,844
115,8	1,212	70,27	5,420	8,06	0,858	36,07	5,067
175,1	1,467	68,95	5,664	22,97	0,970	35,05	5,267
194,5	1,667	67,5	5,872	43,89	1,069	33,95	5,503

195,5	1,779	66.62	6,063	70,39	1,168	33,44	5,623
191,5	1,890	66,17	6,268	81,7	1,205	32,63	5,880
187,3	1,965	66,32	6,640	112,8	1,317	33,32	6,003
181,0	2,054	65,86	6,875	132,1	1,388	31,75	6,248
175,0	2,120	65,88	7,075	144,1	1,439	31,35	6,465
165,2	2,250	65,81	7,248	164,2	1,545	31,29	6,672
153,7	2,403	66,50	7,491	173,6	1,620	31,05	6,861
145,7	2,515	67,36	7,650	180,80	1,721	30,90	7,061
135,2	2,680	68,50	7,832	180,80	1,820	30,91	7,213
129,8	2,774	70,38	8,024	182,19	1,925	31,07	7,478
124,4	2,876	73,48	8,263	172,22	2,014	31,35	7,652
119,4	2,977	76,00	8,485	164,6	2,101	32,15	7,801
114,5	3,092	77,85	8,649	156,7	2,178	32,87	8,033
111,6	3,157	80,67	8,862	150,71	2,223	33,57	8,232
107,7	3,264	82,90	9,090	133,5	2,392	34,39	8,433
104,8	3,352	84,58	9,257	109,5	2,668	35,57	8,635
102,8	3,413	87,96	9,462	98,55	2,811	36,92	8,850
100,1	3,508	93,72	9,650	86,05	2,999	38,10	9,022
97,3	3,607	104,04	9,877	74,94	3,201	39,00	9,208
94,4	3,705	111,4	10,068	65,06	3,435	40,32	9,440
88,8	3,944	116,5	10,260	57,30	3,674	44,20	9,665
85,2	4,135	118,6	10,468	52,92	3,818	48,35	9,815
81,5	4,338	119,8	10,660	47,97	4,031	54,73	10,185
78,0	4,598	138,9	11,233	45,19	4,204	55,64	10,260
						56,43	10,509
						57,13	10,634
						59,05	10,825
						64,40	11,077
						74,80	11,550

Таблица 3: Полученная ВАХ тиратрона в статическом режиме. $\sigma_{V_{\text{анод.}}}=0,1\,$ мВ, $\sigma_{V_{\text{кат-сет.}}}=0,001\,$ В, $\sigma_{V_{1/2}}=0,001\,$ В, $R_{\text{анод.}}=100$ кОм

Рис. 6: График $I_a = f(V_c)$ для двух значений напряжения накала

6. По графикам проведем те же измерения, что и в динамическом режиме. Полученные результаты занесем в таблицу 4.

	Δ_{max} , B	Δ_{min} , B	$\Delta_{\text{проб.}}, B$
$V_1 = 2,774 \text{ B}$	1,779	7,248	10
$V_1 = 2,516 \text{ B}$	1,820	7,061	10

Таблица 4: Значения напряжений при первом максимуме и минимуме анодного тока и напряжение пробоя. $\sigma_{\Delta_{max/min}}=0,001~\mathrm{B}$

$l_1, \mathrm{\AA}$	$l_2, ext{ Å}$	$l_3, \mathrm{\AA}$	U_0 , эВ	$l_{ m \scriptscriptstyle Taбл.}, m \AA$
$2,99 \pm 0,04$	$2,95 \pm 0,04$	$2,92 \pm 0,07$	$2,43\pm0,05$	1

Таблица 5: Полученные значения для размера электронной оболочки атома ксенона в статическом режиме.

7. На основе формулы $w(V) = -\frac{1}{C} \ln \frac{I_{\rm a}(V)}{I_0}$ найдем зависимость вероятности рассеяния элек-

тронов от энергии и построим соответствующий график.

Рис. 7: График зависимости w(V) для двух напряжений накала

Обсуждение результатов и выводы:

В ходе данной работы мы исследовали энергетические зависимости рассеяния электронов атомами ксенона, определили энергии электронов при которых наблюдается просветление ксенона и оценили размер его внешней электронной оболочки.

Измерения проводили динамическим и статическим методами. Полученные напряжения пробоя в динамическом режиме $V_{\rm g}=12\pm0,5~{\rm B}$ и статическом $V_{\rm c}=12,7$ говорят о том, что используемый газ - ксенон ($V_{\rm Ta6n.}=12,1~{\rm B}$).

Полученный по измерениям в динамическом режиме размер электронной оболочки $\overline{l_{\rm g}}\approx 3,1\pm 0,1$ Å, в статическом аналогично $\overline{l_{\rm c}}\approx 2,95\pm 0,07$ Å, что далеко от табличного значения для ксенона $l_{\rm табл.}=1$ Å. Из чего можно сделать вывод, что использование одномерной потенциальной ямы для описания явления не подходит, а может использоваться только для оценки порядка величин.