Содержание

Этап 1. Исследование архитектуры ARM	. 3
Ознакомление с историей развития архитектуры	. 3
Ознакомление с выбранной моделью архитектуры	. 3
Этап 2. Исследование инструментария для создания модели прикладной архитектуры процессора	. 5
Знакомство с документацией, представленной руководителем практики	5
Знакомство с тестовым окружением, предоставленным преподавателем	. 5
Этап 3. Реализация модели	6
Часть 1. Описание регистров	6
Часть 2. Описание блоков памяти	6
Часть 3. Описание набора инструкций	6
Часть 4. Описание мнемоник команд	7
Результаты	8
Тестирование реализованной модели: проверка валидности кода	8
Тестирование реализованной модели: ассемблирование	8
Тестирование реализованной модели: дисассемблирование	8
Анализ результатов тестирования	9
Литература	1∩

Этап 1. Исследование архитектуры ARM

Ознакомление с историей развития архитектуры

Согласно варианту, архитектурой, подлежащей рассмотрению, является архитектура ARM разработчика ARM Limited. Расшифровка аббревиатуры – Advanced RISC (reduced instruction set computer) Machine.

Первая поставленная передо мной задача — познакомиться с историей версий выбранной архитектуры. Для этого была изучена статья «Список архитектур ARM» [1] Дерево версий представлено на Рис. 1 Дерево версий архитектуры ARM

Ознакомление с выбранной моделью архитектуры

Проанализировав актуальность версий, для дальнейшего рассмотрения была выбрана модель ARM11 36 JF-S (version – ARMv6). Для ознакомления с ней была изучена документация [2]. Были проанализированы следующие разделы:

- Chapter 1. Introduction. (Базовое знакомство с моделью).

Рис. 1 Дерево версий архитектуры ARM

 Chapter 2. Programmer's model. (Общее представление о программной модели архитектуры, включая модель памяти, информацию о регистрах, а также о дополнительных инструкциях, характерных для модели).

При описании модели памяти было отмечено наличие 31 регистра общего назначения (разрядность – 32 бита), двух регистров состояния (CPSR и SPSR), хранящих текущее состояние процессора и зафиксированное при возникновении исключения, соответственно. Для модели характерно единое адресное пространство.

Следующим шагом изучения модели архитектуры является знакомство с набором инструкций. Для ознакомления была использована документация. [3] А именно следующие разделы:

- Chapter 2. ARM Instruction Set. Alphabetical list of ARM Instructions.
- Chapter 3. ARM Addressing Modes

По окончанию изучения материала был структурирован набор инструкций и составлена схема, изображенная на Рис. 2 Набор инструкций модели.

Data processing instructions												
Add and subtract		1 1	B. 4-	Parallel add and subtract		0:	Multiply and multiply-accumulate					8.45
Add and subtract	Compare	Logical	Byte-reverse	Parallel add at	na subtract	Sing or zero extend and add	32x32	32x16	16X16 Dual 16x16		Saturate	Miscellaneous
ADC	CMN	AND	REV	QADD16	QADD8	SADD16TO32	MLA	SMLAWy	SMLALxy	SMLAD	SSAT	CLZ
ADD	CMP	BIC	REV16	QADDSUBX	QSUB16	SADD8TO16	MUL	SMUWy	SMLAxy	SMLADX	SSAT16	NOP
QADD		CPY	REVSH	QSUBADDX	QSUB8	SADD8TO32	SMLAL SMMUL		SMULxy	SMLALD	USAT	PKHBT
QDADD		EOR		SADD16	SADD8	SUNPK16TO32	SMMLA SMMLAR			SMLALDX	USAT16	PKHTB
QDSUB		MOV		SADDSUBX	SHADD8	SUNPK8TO16	SMMLS			SMLSD		SEL
QSUB		MVN		SHADD16	SHSUB16	SUNPK8TO32	SMMLSR			SMLSDX		
RSB		ORR		SHADDSUBX	SHSUB8	UADD16TO32	SMMULR			SMLSLD		
RSC		TEQ		SHSUBADDX	SSUB8	UADD8TO16	SMULL			SMLSLDX		
SBC		TST		SSUB16	UADD8	UADD8TO32	UMLAL UMAAL			SMUAD		
SUB				SSUBADDX	UHADD8	UUNPK16TO32	UMULL			SMUADX		
				UADD16	UHSUB16	UUNPK8TO16				SMUSD		
				UADDSUBX	UHSUB8	UUNPK8TO32				SMUSDX		
				UHADD16	UQADD8							
				UHADDSUBX	UQSUB16							
				UHSUBADDX	UQSUB8							
				UQADD16	USAD8							
				UQADDUBX	USADA8							
				UQSUBADDX	USUB16							
				USUBADDX	USUB8							

Control instructions						
Branch	Status register handling	Change state	Software interrupt	Software breakpoint		
В	MRS	CPS	SWI	BKPT		
BL	MSR	SETEND				
BLX						
BX						
BXJ						

	Load and store instructions						
Load	Load multiply Preload		Store	Store multiply	Swap	Synchronization primitives	
LDR	LDM	PLD	STR	STM	SWP	CLREX	
LDRI	В		SRS			LDREX	
LDRE	ST .					LDREXB	
LDRI	D					LDREXD	
LDRI	н					LDREXH	
LDRS	В					STREX	
LDR	Т					STREXB	
LDRS	н					STREXD	
RFE	:					STREXH	

Coprocessor instructions				
Coprocessor	Alternative coprocessor			
CDP	CDP2			
LDC	LDC2			
MCR	MCR2			
MCRR	MCRR2			
MRC	MRC2			
MRRC	MRRC2			
STC	STC2			

Рис. 2 Набор инструкций модели

Этап 2. Исследование инструментария для создания модели прикладной архитектуры процессора

Знакомство с документацией, представленной руководителем практики

Для реализации модели необходимы для изучения:

- Правила написания нотации
- Описание структуры файлов .asm
- Описание структуры файлов .bin

Знакомство с тестовым окружением, предоставленным преподавателем

Для анализа работы модели, которую необходимо разработать, руководителем было предоставлено тестовое окружение и поставлена задача познакомиться с возможными опциями и функционалом в целом.

Конкретно нас интересовали возможности проверки кода на валидность, ассемблирование .asm файла и дисассемблирование .bin файла.

Этап 3. Реализация модели

Часть 1. Описание регистров

```
storage R0 S[32];
                             view CPSR = CPSR S;
storage R1_S[32];
                             view SPRS = SPRS S;
storage R2_S[32];
storage R3 S[32];
                             view N = CPSR S[31];
storage R4_S[32];
                             view Z = CPSR S[30];
storage R5_S[32];
                             view C = CPSR S[29];
storage R6_S[32];
                             view V = CPSR S[28];
storage R7_S[32];
                             view Q = CPSR_S[27];
storage R8_S[32];
                             view DNM_1 = CPSR_S[25..26];
storage R9_S[32];
                             view J = CPSR\_S[24];
storage R10_S[32];
                             view DNM_2 = CPSR_S[20..23];
storage R11_S[32];
                             view GE = CPSR\_S[16..19];
storage R12_S[32];
                             view DNM 3 = CPSR S[10..15];
storage R13_S[32];
                             view E = CPSR_S[9];
storage R14_S[32];
                             view A = CPSR_S[8];
storage R15_S[32];
                             view I = CPSR S[7];
                             view F = CPSR\_S[6];
storage CPSR_S[32];
                             view T = CPSR_S[5];
storage SPRS S[32];
                             view M = CPSR S[0..4];
```

Листинг 1 Пример конфигурации регистров модели и их представлений

Часть 2. Описание блоков памяти

Для данной архитектуры характерно единое адресное пространство.

| memory: range ram[0x00000000..0xFFFFFFFF]

Часть 3. Описание набора инструкций

```
encode imm7 field = immediate[7] data;
encode imm8 field = immediate[8] data;
encode imm12 field = immediate[12] data:
encode imm15 field = immediate[15] data;
encode reg32 field = register{
        PC = 1111,
        LR = 1110,
        SP = 1101,
        R12 = 1100,
        R11 = 1011,
        R10 = 1010,
        R9 = 1001,
        R8 = 1000,
        R7 = 0111.
        R6 = 0110,
        R5 = 0101.
        R4 = 0100,
        R3 = 0011,
        R2 = 0010,
        R1 = 0001.
        R0 = 0000
};
```

Листинг 2 Пример написания битовых паттернов

```
instruction and1 = {condition.al, 00, 1, 0000, one_bit_field.b, reg32 as Rn, reg32 as Rd, imm12 as shifter_operand}; instruction and2 = {condition.al, 00, 0, 0000, one_bit_field.b, reg32 as Rn, reg32 as Rd, sequence varopnd}; instruction qadd = {condition.al, 0001 0000, reg32 as Rn, reg32 as Rd, 0000 /*as SBZ*/, 0101, reg32 as Rm }; instruction qdadd = {condition.al, 0001 0100, reg32 as Rn, reg32 as Rd, 0000 /*as SBZ*/, 0101, reg32 as Rm }; instruction qdsub = {condition.al, 0001 0110, reg32 as Rn, reg32 as Rd, 0000 /*as SBZ*/, 0101, reg32 as Rm }; instruction qsub = {condition.al, 0001 0010, reg32 as Rn, reg32 as Rd, 0000 /*as SBZ*/, 0101, reg32 as Rm }; instruction rsb1 = {condition.al, 00, 1, 0011, one_bit_field.b, reg32 as Rn, reg32 as Rd, imm12 as shifter_operand }; Листинг 3 Пример кодирования полей в составе опкода
```

Часть 4. Описание мнемоник команд

format arg2_sh is "{1}, {2}, {3}"; format arg3 is "{1}, {2}, {3}"; format arg2_shifts is "{1}, {2}, {3}{4}"; Листинг 4 Пример описания форматных строк

Результаты

Тестирование реализованной модели: проверка валидности кода

Architecture: ARM1136JF

TaskID: e336455f-1cb2-40f7-99ec-a441fd66f42e

RESULTS:

Task creation time: 26.05.2019 21:55:55

Task state: Finished

Task finish time: 26.05.2019 21:55:55 Here is task output interpreted with UTF8:

Architecture 'ARM1136JF' seems to be valid for now.

Листинг 6 Результат проверки кода на валидность

Рис. 3 Диаграмма представления регистра состояния CPSR

Тестирование реализованной модели: ассемблирование

adc PC,R7,0xFF7 add R1,R2,0xFF7 bl 0xFFFFFF bic R0,R1,0xFF7

Листинг 7 Пример содержимого .asm файла

ARM1136JF

TaskID: 960a7cb0-f0dd-4d1b-8ba0-6e80bdaab326

RESULTS:

Task creation time: 26.05.2019 22:02:53

Task state: Finished

Task finish time: 26.05.2019 22:02:53 Here is task output interpreted with UTF8:

Architecture 'ARM1136JF' seems to be valid for now.

Assembling accomplished. Binary module written.

Листинг 8 Результат ассемблирования файла

Тестирование реализованной модели: дисассемблирование

RESULTS:

Task creation time: 26.05.2019 22:05:26

Task state: Finished

Task finish time: 26.05.2019 22:05:26 Here is task output interpreted with UTF8:

Binary module disassembled.

Листинг 9 Результат дисассемблирования файла

Анализ результатов тестирования

В результате выполнения поставленных задач была реализована модель, которая по итогу проведения тестирования корректна (ассемблируется и дисассемблируется). Результат дисассемблирования (output.asm) идентичен исходным входным данным (input.asm), что говорит о ее работоспособности и применимости в других проектах. Результат дисассемблирования с использованием предоставленного тестового окружения совпадает с результатом дисассемблирования на сторонней машине.

Литература

- 1. Список архитектур ARM [Электронный ресурс] URL: https://ru.wikipedia.org/wiki/Список архитектур ARM
- 2. [Книга] ARM1136JF-STM and ARM1136J-STM; Revision: r1p5; Technical Reference Manual
- 3. [Книга] ARM Architecture. Reference Manual Architecture. Reference Manual.