LCD1602 使用说明书

1. 概述

LCD1602(Liquid Crystal Display)是一种工业字符型液晶,能够同时显示 16×02 即 32 字符(16 列两行)

图 1 LCD1602 液晶模块实物图

2. 模块尺寸

图 2 LCD1602 模块尺寸

3. 引脚接口说明表

表 1 LCD1602 引脚接口说明

编号	符号	引脚说明	编号	符号	引脚说明
1	VSS	电源地	9	D2	数据
2	VDD	电源正极	10	D3	数据
3	VL	液晶显示偏压	11	D4	数据
4	RS	数据/命令选择	12	D5	数据
5	R/W	读/写选择	13	D6	数据
6	E	使能信号	14	D7	数据
7	D0	数据	15	BLA	背光源正极
8	D1	数据	16	BLK	背光源负极

第1脚: VSS 为电源地

第2脚: VDD接5V正电源

第 3 脚: VL 为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生"鬼影",使用时可以通过一个 10K 的电位器调整对比度。

第4脚: RS 为寄存器选择, 高电平时选择数据寄存器、低电平时选择指令寄存器。

第 5 脚: R/W 为读写信号线,高电平时进行读操作,低电平时进行写操作。当 RS 和 R/W 共同为低电平时可以写入指令或者显示地址,当 RS 为低电平 R/W 为高电平时可以读忙信号,当 RS 为高电平 R/W 为低电平时可以写入数据。

第6脚: E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14 脚: D0~D7 为 8 位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

4. LCD1602 的指令说明

LCD1602 液晶模块内部的控制器共有 11 条控制指令,如表 2 所示:

表 2 LCD1602 模块控制指令

序号	指令	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0
1	清显示	0	0	0	0	0	0	0	0	0	1
2	光标返回	0	0	0	0	0	0	0	0	1	*
3	置输入模式	0	0	0	0	0	0	0	1	I/D	S
4	显示开/关控制	0	0	0	0	0	0	1	D	С	В
5	光标或字符移位	0	0	0	0	0	1	S/C	R/L	*	*
6	置功能	0	0	0	0	1 DL N F * *		*			
7	置字符发生存贮器地址	0	0	0	1	字符发生存贮器地址(自定义字符)			夺)		
8	置数据存贮器地址	0	0	1	显示数据存贮器地址(在哪里显示))		
9	读忙标志或地址	0	1	BF	计算器地址						
10	写数到 CGRAM 或 DDRAM	1	0	要写	医写的数据内容(显示什么)						
11	从 CGRAM 或 DDRAM 读数	1	1	读出的数据内容							

1602 液晶模块的读写操作,屏幕和光标的操作都是通过指令编程来实现的。(说明: 1 为高电平、0 为低电平)

- 指令 1: 清显示,指令码 01H,光标复位到地址 00H 位置。
- 指令 2: 光标复位, 光标返回到地址 00H。
- 指令 3: 光标和显示模式设置。I/D: 光标移动方向,高电平右移,低电平左移。实际上就是控制从左到右写入还是从右至左的写入顺序。S: 屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效。S=1 当写一个字符,整屏显示左移(ID=1)或者右移(I/D=0),以得到光标不移动而屏幕移动的效果。S=0 当写一个字符,整屏显示不移动。
- 指令 4:显示开关控制。D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示. C:控制光标的开与关,高电平表示有光标,低电平表示无光标. B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。
- **指令 5**: 光标或显示移位 S/C: 高电平时移动显示的文字,低电平时移动光标。R/L: 文字或者光标移动方向,R表示右移,L表示左移。
- 指令 6: 功能设置命令 DL: 高电平时为 8 位总线, 低电平时为 4 位总线。N: 低电平时为单

行显示,高电平时双行显示。F: 低电平时显示 5×8 的点阵字符,高电平时显示 5×10 的点阵字符。

指令7: 字符发生器 RAM 地址设置。

指令8: DDRAM 地址设置。

指令 9: 读忙信号和光标地址。BF: 为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令 10: 写数据。 **指令 11**: 读数据。

5. 基本操作时序表

读操作时序

图 3 LCD1602 读操作时序图

写操作时序

图 4 LCD1602 写操作时序图

时序参数

 时序参数	符号		极限值	兴 /÷			
門戶參與	付亏	最小值	典型值	最大值	单位	测试条件	
E 信号周期	tc	400	_	_	ns		
E 脉冲宽度	tpw	150	_	_	ns	引脚E	
E 上升沿/下降沿时间	tr, tr	_	-	25	ns		
地址建立时间	t _{SP1}	30	_	_	ns	 引脚 E、RS、R/W	
地址保持时间	tHD1	10	_	_	ns	JIMIE、KO、K/W	
数据建立时间(读操作)	to	_	_	100	ns		
数据保持时间(读操作)	tHD2	20	_	_	ns	219th ppg - pp7	
数据建立时间(写操作) tsp2		40	_	_	ns	引脚 DBO~DB7	
数据保持时间(写操作)	tHD2	10	_	_	ns		

液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符。

6. LCD1602 内部显示地址

图 5 LCD1602 内部显示地址

例如第二行第一个字符的地址是 40H,那么是否直接写入 40H 就可以将光标定位在第二行第一个字符的位置呢?这样不行,因为写入显示地址时要求最高位 D7 恒定为高电平 1 所以实际写入的数据应该是 01000000B(40H) +10000000B(80H)=11000000B(C0H)。

7. 字符发生存储器

1602 液晶模块内部的字符发生存储器(CGROM)已经存储了 160 个不同的点阵字符图形,如表 3 所示,这些字符有:阿拉伯数字,英文字母的大小写,常用的符号,和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字符"A"的代码是 01000001B(41H),显示时模块把地址 41H 中的点阵字符图形显示出来,我们就能看到字母"A"。

表格 3 LCD1602 模块字库表

N 67 I													
b7- b3 b4 -b0	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
0000	CG/ RAM /(1)		Ø	3		••	F= -			- 3	=		p
0001	(2)		1	 -	Q	-≣i	-:= i	E!	Ţ.,	;	<u></u>	· ::	
0010	(3)	11	2			b	;	F"	4	ij	,×*	į::	₿
0011	(4)	#	.5		==	i	≝.	_i	","		==	==-	00
0100	(5)	#	#				†			!	•	 	<u>.</u>
0101	(6)	"				:	L	==	7	<u>.</u>			ü
0110	(7)		6		Ļ	+"	Ų	=;	ŢŢ		===	p	<u> </u>
0111	CG/ RAM/		7	Œ	IJ	·=:	IJ	Ţ ; ;	#	;::"	-		ŢŢ
	/(8) .CG/				×	 │ ┋							
1000	RAM (1)	١.	8		25		×	•1	.	- - -	Ņ	.j-	×
1001	(2))	9	I	Y	i	'	:	7	,i	ıb	1	
1010	(3)	*	#	T	2	į.	Z			ı'n	[,-		7
1011	(4)	+	# #	K		k	{	;	#			: ' ::	Ħ
1100	(5)	;	<	<u></u>	¥	1		17	=,		ŋ	ф.	P
1101	(6)	••••		M		m	}		Z	^,	<u></u> ,	± _	
1110	(7)	::	>	Ы	^.	n	-}	3	世	#	••	rä	
1111	CG/ RAM (8)	/	?	0		O	÷	19	IJ	7	III .	ö	

8. 注意事项

- (1) 在对液晶模块的初始化中要先设置其显示模式
- (2) 在液晶模块显示字符时光标是自动右移的,无需人工干预
- (3) 每次输入指令前都要判断液晶模块是否处于忙的状态

9. LCD1602 的一般初始化(复位)过程

9.1 LCD1602 初始化过程(8bit)

- (1) 延时 15ms
- (2) 写指令 38H(不检测忙信号)
- (3) 延时 5ms
- (4) 以后每次写指令,读/写数据操作均需要检测忙信号
- (5) 写指令 38H: 显示模式设置
- (6) 写指令 08H: 显示关闭
- (7) 写指令 01H: 显示清屏
- (8) 写指令 06H: 显示光标移动设置
- (9) 写指令 0CH: 显示开及光标设置

9.2 LCD1602 初始化过程(4bit)

- (01) 延时 50ms
- (02) 发送 0x03(4bit)(rs=0,rw=0)
- (03) 延时 4.5ms
- (04) 发送 0x03(4bit)(rs=0,rw=0)
- (05) 延时 4.5ms
- (06) 发送 0x03(4bit)(rs=0,rw=0)
- (07) 延时 150µs
- (08) 发送 0x02(4bit)(rs=0,rw=0)
- (09) 写指令 28H(8bit)
- (10) 写指令 0CH(8bit)
- (11) 写指令 01H(8bit)
- (12) 延时 2ms(8bit)
- (13) 写指令 06H(8bit)