CH15 習題演練

陳家威1

January 2, 2023

¹R10323045@ntu.edu.tw

複習 — Panel Data

PANEL DATA

年份	工廠	產出	土地	勞動力
2020	甲	10 箱	100 坪	200 人
2021	甲	15 箱	96 坪	300 人
2022	甲	9箱	110 坪	100 人
2020	乙	20 箱	87 坪	248 人
2021	乙	29 箱	93 坪	310 人
2022	乙	33 箱	110 坪	402 人
2020	丙	3 箱	20 坪	18 人
2021	丙	6 箱	28 坪	32 人
2022	丙	2 箱	11 坪	13 人

- ■有時間
- 平衡 (balanced)

學生編號	老師	分數	曠課次數	家庭年收入
1	甲	90	10 次	200 萬
2	甲	87	9 次	300 萬
3	甲	80	11 次	100 萬
4	Z	100	8 次	248 萬
5	Z	95	3 次	310 萬
6	Z	92	1次	402 萬
7	丙	88	2 次	18 萬
8	丙	57	8 次	32 萬
9	丙	76	1次	13 萬

■ 沒有時間

PANEL DATA REGRESSION

當迴歸式中,要納入分群的「效果」,例如

- 不同廠商效率不同
- 不同老師教學品質不同

就可以被視為一個面板數據

$$y_{it} = \beta_1 + \beta_2 x_{it} + \beta_3 z_{it} + \alpha_i + \epsilon_{it}$$

 α_i 象徵這個人 (廠商),在不同時間點,共同有的性質

- 1. 固定效果 $FE \alpha_i$ 代表不同個體有不同截距
- 2. 隨機效果 RE α_i 是在誤差項

Panel Data 要有時間嗎?

一般來說講到 Panel Data 都會有時間,但沒有時間的資料,也可以當成 Panel Data 來處理 FE 與 RE,你們的作業就是這樣的例子

3 | 21

Stata

指定為 PANEL DATA

xtset id time

- 1. id 替換成群組(廠商、教師、國家...)
- 2. time 替代為時間變數

如果不指定 time,則指會指定群組,依然可以做 FE RE,但沒辦法做「時間固定效果 (time fixed effet)」

固定效果

作法一、
reg y land labor i.firm
建議作法、

xtreg y land labor, fe

隨機效果

xtreg y land labor, re 檢定隨機效果 (LM test) xttest0

FE 還是 RE?

如果兩者係數差不多,用 RE 比較有效 (efficient)。 但如果差很多,那要用 FE,才會是一致的 (consistent)

係數差不多?

用 Hausman Test 來檢定兩者回歸係數有無顯著差異

H0: 係數一樣 Ha: 係數不一樣

拒絕 Hausman Test 的虛無假設 — 接受不一樣 ⇒ 要用 FE

習題 15-15

化工廠的例子

想要知道銷售與

- 資本
- 勞動
- ■原料

之間的關係

$$\ln(SALES_{it}) = \beta_1 + \beta_2 \ln(CAPITAL_{it}) + \beta_3 \ln(LABOR_{it}) + \beta_4 \ln(MATERIAL_{it}) + u_i + e_{it}$$

OLS

不管廠商之間生產力的差別,統一做回歸

 ${\tt eststo} \ {\tt est_a_ols} \ : \ {\tt reg} \ {\tt lsales} \ {\tt lcapital} \ {\tt llabor} \ {\tt lmaterials}$

ç

穩健標準差

■ (CH8) 如果 e_{it} 的變異數隨個體而異,可以請 stata 考慮進去,回報「穩健標準誤差」

```
eststo est_a_r : reg lsales lcapital llabor lmaterials, r
```

■ 如果想讓同一群廠商變異數一樣,可以指定為「群聚穩健標準誤差 (clustered robustness SE)」

```
eststo est_a_clus : reg lsales lcapital llabor
lmaterials, vce(cluster firm)
```

告訴 Stata : 我知道有異質性變異數不符合 OLS 的假設,但將錯就錯,算出這時候該有的標準誤差吧,不過同一家廠商的變異數應該是一樣的。

OLS 不同標準誤差下的結果

	est_a_ols	est_a_r	est_a_clus
log of capital	0.104***	0.104***	0.104***
	(0.00677)	(0.00786)	(0.0110)
log of labor	0.105***	0.105***	0.105***
3	(0.00987)	(0.0105)	(0.0145)
log of materials	0.742***	0.742***	0.742***
	(0.00636)	(0.0103)	(0.0143)
Constant	1.641***	1.641***	1.641***
	(0.0485)	(0.0649)	(0.0916)

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

固定效果

在估計固定效果之前,一定要記得告訴 Stata 他是 Panel Date xtset firm year

再估計固定效果

eststo est_e_fe : xtreg lsales lcapital llabor lmaterials, fe $\label{eq:control} % \begin{center} \begin{cen$

2 | 21

隨機效果

不指定做法,預設上會採用隨機效果。但為了明確性,還是建議加上 re

```
 \begin{tabular}{ll} eststo & est\_d\_re & : & xtreg & lsales & lcapital & llabor & lmaterials \,, \\ & re & \end{tabular}
```

可以接著用 Breusch and Pagan LM 檢定,來檢定隨機效果(相對於 OLS)有沒有使用的必要

xttest0

FE 與 RE,都幾?

用 Hausman Test

hausman est_e_fe est_d_re

在 Hausman Test 中拒絕了虛無假設,因此認定 FE 與 RE 的係數顯著有差異。

這時應該繼續用 FE 來避免不一致性。

如果 Hausman Test 無法拒絕虛無假設,表示其實 FE RE 兩著估計 的係數差不多,那應該要選 RE,因為這種估計會更有效 (efficient)。就像使用 FGSL 處理異質變異數一樣。

.4

回歸結果

	est_a_ols	est_d_re	est_e_fe	est_e_fe_cl
log of capital	0.104***	0.102***	0.0519***	0.0519***
	(0.00677)	(0.00787)	(0.0130)	(0.0157)
log of labor	0.105***	0.130***	0.106***	0.106***
	(0.00987)	(0.0117)	(0.0205)	(0.0261)
log of materials	0.742***	0.700***	0.597***	0.597***
	(0.00636)	(0.00764)	(0.0117)	(0.0287)
Constant	1.641***	1.948***	3.500***	3.500***
	(0.0485)	(0.0638)	(0.166)	(0.290)

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

一點經濟學— 固定規模報酬的檢定

Cobb-Douglas 生產函數 $Y = AK^{\alpha}L^{\beta}M^{\gamma}$

- 廠商理論與總體經濟常用的生產函數
- $\alpha + \beta + \gamma > 1$ 規模報酬遞增
- $\alpha + \beta + \gamma = 1$ 固定規模報酬 (CRTS)

$$\begin{split} \tilde{Y} &= A(2K)^{\alpha} (2L)^{\beta} (2M)^{\gamma} \\ &= 2^{\alpha + \beta + \gamma} A K^{\alpha} L^{\beta} M^{\gamma} \\ &= 2Y \quad \text{if } \alpha + \beta + \gamma = 1 \end{split}$$

當所有要素都增加一倍,產出也剛好增加一倍,稱為固定規模報酬

對數下的 C-D 生產函數

將 Cobb-Douglas 生產函數取對數

$$\ln(Y) = \ln(A) + \alpha \ln(K) + \beta \ln(L) + \gamma \ln(M)$$

對照

$$\ln(SALES_{it}) = \beta_1 + \beta_2 \ln(CAPITAL_{it}) + \beta_3 \ln(LABOR_{it}) + \beta_4 \ln(MATERIAL_{it}) + u_i + e_{it}$$

檢定固定規模報酬

題目 15-15 的 (b) 小題,用 OLS 以及穩健標準誤差下的結果,檢驗 固定規模報酬

```
global ols_list est_a_ols est_a_r est_a_clus

foreach m of global ols_list{
    est restore `m'
    test lcapital+llabor+lmaterials = 1
    lincom lcapital+llabor+lmaterials-1
}
```

彈性

資本對產出的彈性定義為

$$\frac{\ln(K)}{\ln(Y)}$$

恰好就是回歸式中 CAPITAL 的係數。

而這些回歸係數還有一個經濟意涵,就是資本份額與勞動份額 在完全競爭市場中,MPL = w,勞動邊際產出需要等於工資。 Cobb-Douglas 稱產函數中的勞動邊際產出為

$$\mathit{MPL} = \frac{d\mathit{Y}}{d\mathit{L}} = \beta \mathit{A} \mathit{K}^{\alpha} \mathit{L}^{\beta-1} \mathit{M}^{\gamma} = \beta \frac{\mathit{Y}}{\mathit{L}}$$

因此勞工的薪資則是

$$wL = MPK \times L = \beta \frac{Y}{L} \times L = \beta Y$$

也就是生產函數 $Y = AK^{\alpha}L^{\beta}M^{\gamma}$ 之下,勞工共分得總產出的 β 部 分。因此稱 β 為勞動份額。

一樣恰好就是回歸式中 LABOR 的係數。

透過經濟理論尋找適合的計量模型

經濟理論 ⇒ 變數關係 ⇒ 計量模型 ⇒ 實證研究