Métodos Cerrados

Los métodos cerrados necesitan dos valores iniciales para la raíz, la cual se encuentra dentro de un intervalo predeterminado por un límite inferior y otro superior.

Estos métodos convergen porque se acercan a la raíz a medida de que avanzan las iteraciones.

- Si $f(x_l)$ y $f(x_u)$ tienen signos opuestos, entonces existe un número impar de raíces en el intervalo.
- Si $f(x_l)$ y $f(x_u)$ tienen el mismo signo, entonces no hay raíces o existe un número par de ellas en el intervalo.

Método de Bisección

Es un método de búsqueda incremental, en el que el intervalo siempre se divide a la mitad.

Si f(x) es real y continua en el intervalo que va desde x_l hasta x_u y $f(x_l)$ y $f(x_u)$ cambian de signo, entonces en $f(x_l)f(x_u) < 0$ hay al menos un raíz real entre x_l y x_u . En otras palabras:

$$Si\ f(x_l)\cdot f(x_u) < 0 \Rightarrow \exists x_r \in [x_l,x_u]\ /\ f(x_r) = 0$$

Algoritmo

- 1. Elegir valores para x_l y x_u , de manera que encierren la raíz que que se cumpla $f(x_l)f(x_u) < 0$.
- 2. Se aproxima x_r mediante:

$$x_r = rac{x_l + x_u}{2}$$

- 3. Se verifica lo siguiente:
 - 1. Si $f(x_l)f(x_r) < 0$, entonces $x_u = x_r$ y se vuelve al paso 2.
 - 2. Si $f(x_l)f(x_r) > 0$, entonces $x_l = x_r$ y se vuelve al paso 2.
 - 3. Si $f(x_l)f(x_r) = 0$, entonces se termina el cálculo

Tabla

i	x_l	x_u	$f(x_l)$	$f(x_u)$	x_r	$f(x_r)$

Iteraciones por margen de error

$$n = ent(rac{\ln(x_u - x_l) - \ln(\epsilon)}{\ln(2)})$$

Estimación de error

$$\epsilon_a = |rac{x_r^{nuevo} - x_r^{anterior}}{x_r^{nuevo}}| \cdot 100$$

Métodos Abiertos

Los algoritmos se basan en fórmulas que requieren únicamente un solo valor de inicio, el cual no necesariamente encierran la raíz.

Estos métodos aveces divergen o se alejan de la raíz a medida de que avanzan los cálculos.

Punto Fijo

Se debe reescribir la ecuación f(x)=0 de tal modo que x esté a un lado de la ecuación. Dando como resultado:

$$x = g(x)$$

La ecuación va iterando en base al resultado anterior, de modo que que:

$$x_{i+1} = g(x_i)$$

Teorema

Si α es la solución de la ecuación $x_{i+1}=g(x_i)$, y además $\alpha\in I$, entonces se cumple **de manera jerárquica** qué:

- 1. g(x) y g'(x) son continuas en I
- 2. $|g'(x)| \leq M < 1, \forall x \in I$
- 3. $x \in I$ (El intervalo I debe estar dentro de x. x se obtiene por el punto 2.)

Tabla

i	x_i	$g(x_i)$	$g'(x_i)$
0	x_0	-	-
1			

Iteraciones por margen de error

$$\epsilon \leq rac{M^n}{1-M} |\Delta x|, con \ \epsilon = x_i - x_n \ \Delta x = x_1 - x_0 \ M = g'(x+\epsilon)$$

Estimación de error

$$\epsilon_a = |rac{x_{i+1} - x_i}{x_{i+1}}| \cdot 100$$

Newton-Raphson

Si el valor inicial de la raíz es x_i , entonces se traza una recta tangente al punto $(x_i, f(x_i))$.

Dado el hecho de que para obtener la recta tangente a un punto se necesita la derivada, y que para obtener la intersección con el eje x debe cumplir que $f(x_i)=0$. Entonces, la ecuación dada es:

$$x_{i+1}=x_i-rac{f(x_i)}{f'(x_i)}$$

En caso de querer encontrar un punto máximo o un punto mínimo, entonces es posible realizar lo siguiente:

$$x_{i+1}=x_i-\frac{f'(x_i)}{f''(x_i)}$$

Tabla

i	x_i	x_{i+1}
0	x_0	-
1		

Raíces de Polinomios

Forma general de una ecuación polinomial:

$$P_n(x) = \sum_{i=0}^n a_n x^n$$

Recordar qué:

- ullet En una ecuación grado n hay n raíces reales o complejas
- Si n es impar, existe al menos una solución real

Interpolación Lineal

La idea de la interpolación polinomial es encontrar un polinomio P(x), tal que $P[x_i] = f(x_i)$

Esto, tomando en cuenta que el conjunto de polinomios de grado n, es en realidad un espacio vectorial de dimensión n+1.

Con esto, se dará un palo ordenado de la siguiente manera:

$$P(x_o) = y_0$$

 $P(x_1) = y_1$
 \vdots
 $P(x_i) = y_i$

o también puede estar escrito así:

x	x_0	x_1		x_i
y	y_0	y_1	•••	y_i

Se resuelve con la siguiente matriz

1	x_0	x_0^2	x_0^n	y_0
1	x_1	x_1^2	x_1^n	y_1
1				
1	x_n	x_n^2	x_n^n	y_n

Interpolación de Newton

$$egin{aligned} b_0 &= f(x_0) \ b_1 &= f[x_1, x_0] \ & \cdots \ b_n &= f[x_n, x_{n-1}, \cdots, x_1, x_0] \end{aligned}$$

i	X _i	f(x _i)	Primero	Segundo	Tercero
0	Xo	f(x ₀) -	$f[x_1, x_0]$	$f[x_2, x_1, x_0]$	$f[x_3, x_2, x_1, x_0]$
1	x_1	$f(x_1)$	$\implies f[x_2, x_1] =$	$f[x_3, x_2, x_1]$	→
2	x_2	$f(x_2)$	$\Rightarrow f[x_3, x_2]$		
3	<i>X</i> ₃	$f(x_3)$			

$$f[x_i,x_j] = rac{f(x_i)-f(x_j)}{x_i-x_j} \ f[x_i,x_j,x_k] = rac{f[x_i,x_j]-f[x_j,x_k]}{x_i-x_k}$$

Polinomio de Lagrange

$$L_i(x) = \prod_{j=0}^n rac{x-x_j}{x_i-x_j}, \ j
eq i$$