Visual Computing

Winter Semester 2020/2021, Uebung 04

Prof. Dr. Arjan Kuijper Max von Buelow, M.Sc., Volker Knauthe, M.Sc. Weidong Hu, Veronika Kaletta, Hatice Irem Diril

Übung 5 – Bildverarbeitung Abgabe bis zum Freitag, den 11.12. 2020, 8 Uhr morgens, als PDF in präsentierbarer Form

Aufgabe 1: Wiener Filter (3 Punkte)

1a) (0,5 Punkte)

Welches Problem wird durch die Verwendung des Wiener Filters gelöst? Erklären Sie das Problem kurz.

Lösungsvorschlag:

* Rauschen im Bild Während Bildaufnahme wird die Rauschensignal nicht vermeidbar. Untere Abbildung zeigt ein Beispiel.

Originalbild

Verwischtes Bild mit Rauschen

Visual Computing Uebung 5	5
vibuai domputing debung d	

Group 60:

Vorname	Name	Matrikel-Nr.
Yi	Cui	2758172
Yuting	Li	2547040
Xiaoyu	Wang	2661201
Ruiyong	Pi	2309738

1b) (0,5 Punkte)

Geben Sie den Wiener Filter an und beschreiben Sie kurz wie der Wiener Filter funktioniert.

Lösungsvorschlag:

Wiener Filter ist eine Regularisierung des Filters im Fourierraum (Darstellung in folgende Formular)

$$F = \frac{A^*}{|A|^2 + R^2} G \tag{1}$$

wobei R ist Verhältnis Rauschen zu Signal.

Durch Einstellung des R wird Rauschen in Fourierraum reduziert. Die Reduzierungsamplitude wird beispielweise in folgende Abbildung vorgestellt:

Abbildung 1: R Veränderung von klein nach groß (links nach rechts)

Visual Computing Uebung 5

Group 60:

Vorname	Name	Matrikel-Nr.
Yi	Cui	2758172
Yuting	Li	2547040
Xiaoyu	Wang	2661201
Ruiyong	Pi	2309738

1c) (1 Punkt)

Was muss bei der Wahl von R beachtet werden?

Lösungsvorschlag:

Der Parameter R entscheidet was verstärkt wird, deswegen muss es klug gewählt werden:

- * Zu groß ausgewählt (-> Tiefpass Filter):
 - Behaltet grobe Struktur
 - Verwischt Kanten
 - Entfernt Rauschen

- * Zu klein ausgewählt (-> Hochpass Filter):
 - Entfernt grobe Struktur & Kanten
 - Verstärkt das Rauschen

- * Optimal ausgewählt (-> Bandpass Filter):
 - Entfernt Rauschen
 - Behaltet grobe Struktur
 - Verstärkt Kantenstruktur leicht (deblurring)

1d) (1 Punkt)

Nennen Sie einen Vorteil und einen Nachteil des Wiener Filters.

Lösungsvorschlag:

Vorteile	Nachteile
- Schnell	- Nur ein Filter für das gesamte Bild
- Häufig verwendet	
- Beliebt	- Keine lokalen, spezifischen Verbesserungen
- Leicht zu implementieren	_
- Ein Wert für R	

Visual	Computir	ng Uebung	5
· Iouui	Compath	18 0000	_

Group 60:

Vorname	Name	Matrikel-Nr.
Yi	Cui	2758172
Yuting	Li	2547040
Xiaoyu	Wang	2661201
Ruiyong	Pi	2309738

Aufgabe 2: Perona-Malik-Gleichung (4 Punkte)

2a) (2,5 Punkte)

Erklären Sie den Unterschied zwischen der Perona-Malik-Gleichung und der Gaussschen Scale-Space Methode: Schreiben Sie die modifizierte Heat Equation auf. Nennen Sie den Conductivity Coefficient, und erläutern Sie wie diese Funktion die Diffusion beeinflusst.

Lösungsvorschlag:

* Perona-Malik-Gleichung ist eine anisotrope Diffusion, indem ein geeignete K gewählt werden muss und eine Stoppzeit benötigt ist.

$$\partial_t L = \nabla \cdot \left(c \left(|\nabla L|^2 \right) \nabla L \right) \tag{2}$$

wobei

$$c_1 = e^{-\frac{|\vec{\nabla}L|^2}{k^2}}$$
 $c_2 = 1/\left(1 + \frac{|\vec{\nabla}L|^2}{k^2}\right)$

* Gaussschen Scale-Space Methode ist eine isotrope Diffusion, die ein Faltung des Bildes mit Gaussche Funktion ist.

$$\Delta L = \nabla \cdot \nabla L \tag{3}$$

* modifizierte Heat Equation:

$$\partial_t L = \nabla \cdot \left(c \left(|\nabla L|^2 \right) \nabla L \right) \tag{4}$$

* Conductivity Coefficient: c (in obige Formeldarstellung)

$$\nabla \cdot (c\nabla L) = (\partial_x, \partial_y) \cdot (c(L_x, L_y)) = \partial_x (c(L_x)) + \partial_y (c(L_y))$$
(5)

C skaliert die Diffusionsgradient.

2b) (1,5 Punkte)

Welche Auswirkungen hat Parameter k bei der Perona-Malik Methode? Und wie beeinflusst die Größe des Parameters k das Ergebnis?

Lösungsvorschlag:

Parameter K bestimmt den Einfluss der Kantenstärke.

- * Großes k: Nur größere Gradienten (stärkere Kanten) bleiben übrig, bzw. nur dicke Kanten werden berücksigt
- * Kleines k: (fast) alle Gradienten (Kanten, rauschen) bleiben übrig, bzw. dünne und dicke Kanten werden berücksigt

Visual Computing Uebung 5

Group 60:

Vorname	Name	Matrikel-Nr.
Yi	Cui	2758172
Yuting	Li	2547040
Xiaoyu	Wang	2661201
Ruiyong	Pi	2309738

Aufgabe 3 (3 Punkte)

3a) (1 Punkt)

Warum benötigt die Total Variation Methode keine stopping time?

Lösungsvorschlag:

Total Variation Methode konvergiert zu der optimalen Lösung. Ein 'Early Stop' ist nicht nötig.

3b) (1 Punkt)

Warum funktioniert die Total Variation Methode bei den folgenden Bildern gut?

Lösungsvorschlag:

Beide von diesen Bilden beinhalten deutliche Kanten. Außerdem sind die Pixel stückweise konstant in beiden Bildern.

3c) (1 Punkt)

Nennen Sie zwei Vorteile von Total Variation gegenüber Perona Malik.

Lösungsvorschlag:

- * Kein Blurring, Stufenkanten bevorzugt
- * Keine Stoppzeit benötigt