Introduction to Graph Theory by Richard Trudeau Ch. 6 Solutions

Tyler Bailey

May 15, 2019

1 Find X (chromatic number) for each of the following graphs: C_v , W_v , UG, Octahedron, dodecahedron, icosahedron.

Solution:

 $X_{C_v} = 2$

 $X_{W_v} = 3$

 $X_{UG} = 2$

 $X_{Oct} = 3$

 $X_{Dod} = 3$

 $X_{Ico} = 4$

2 Find X for each of the graphs in Figure 126.

Solution:

- a) 3
- b) 4
- c) 3
- 3 Prove the "Two Color Theorem": the set of all graphs with X=2 is equal to the set of all graphs having at least one edge and no odd cyclic subgraphs.

Solution: A solution is in the book.

4 K_3 has X=3, so every supergraph of K_3 has $X\geq 3$. On the other hand, C_5 is a graph with X=3 that is not a supergraph of K_3 . Find a graph with X = 4 that is not a supergraph of K_3 .

Solution: The Grtzsch graph is one such example.

5 If a graph G has chromatic number X and \overline{G} has chromatic number \overline{X} , prove that $X\overline{X} \geq v$. Then use the fact that $(1/2)(m+n) \geq \sqrt{mn}$ whenever integers m, n > 0 to prove that $X + \overline{X} \ge 2\sqrt{v}$.

Solution: Suppose G has v vertices, and that G and \overline{G} have chromatics numbers X and \overline{X} . Given the colorings of G and \overline{G} we can color K_v using the ordered pairs $(X_{v_i}, \overline{X_{v_i}})$. Since $X_{K_v} = v$, we must have $X_{K_v} = v \leq X\overline{X}$.

The next part of the problem follows from $\sqrt{X\overline{X}} \ge \sqrt{v}$ and $(1/2)(X + \overline{X}) \ge \sqrt{X\overline{X}} \ge \sqrt{v}$.

6 Find a graph for which $X\overline{X} = v$ and for which a $X + \overline{X} = 2\sqrt{v}$. Could a single graph satisfy both equations?

Solution:

$$K_3 = 3, \overline{K_3} = 1$$

$$C_4 = 2, \overline{C_4} = 2$$

Yes, it is possible, take e.g. our second example: v = 4, and $X = \overline{X} = 2$.