

What is claimed is:

1 1. An imaging lens of fixed focal length formed of only two lens components, in order from the
2 object side, as follows:

3 an aperture diaphragm;

4 a first lens component having positive refractive power, having a concave lens surface on
5 the object side, and having at least one aspheric lens surface; and

6 a second lens component having positive refractive power and having at least one
7 aspheric lens surface;

8 wherein the following conditions are satisfied:

9 $f_1 / f_2 < 3.0$

10 $C_{L2} / D_{L2} > 0.8$

11 where

12 f_1 is the focal length of said first lens component,

13 f_2 is the focal length of said second lens component,

14 C_{L2} is the thickness of said second lens component, measured parallel to the optical axis,
15 at a distance from the optical axis determined by the smaller maximum optically effective
16 diameter in said imaging lens of the two lens surfaces of said second lens component, and

17 D_{L2} is the thickness of said second lens component at the optical axis of the imaging lens.

1 2. The imaging lens of claim 1, wherein:

2 said first lens component includes a first lens element; and

3 said second lens component includes a second lens element.

1 3. The imaging lens of claim 1, wherein:

2 said first lens component consists of a first lens element; and

3 said second lens component consists of a second lens element.

1 4. The imaging lens of claim 1, wherein:

2 said first lens component has a meniscus shape;

3 said second lens component has a meniscus shape with its convex lens surface on the
4 object side; and

5 the concave lens surface of said second lens component is formed so that its negative
6 refractive power increases as the distance from the optical axis of the imaging lens increases.

1 5. The imaging lens of claim 2, wherein:

2 said first lens component has a meniscus shape;

3 said second lens component has a meniscus shape with its convex lens surface on the
4 object side; and

5 the concave lens surface of said second lens component is formed so that its negative
6 refractive power increases as the distance from the optical axis of the imaging lens increases.

1 6. The imaging lens of claim 2, wherein:

2 said first lens element has a meniscus shape;
3 said second lens element has a meniscus shape with its convex lens surface on the object
4 side; and
5 the concave lens surface of said second lens element is formed so that its negative
6 refractive power increases as the distance from the optical axis of the imaging lens increases.

1 7. The imaging lens of claim 3, wherein:
2 said first lens element has a meniscus shape;
3 said second lens element has a meniscus shape with its convex lens surface on the object
4 side; and
5 the concave lens surface of said second lens element is formed so that its negative
6 refractive power increases as the distance from the optical axis of the imaging lens increases.