Segundo Examen (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (2.5 pts) Demuestra que la relación $R \subseteq A \times A$ es transitiva y simétrica si y sólo si $R^{-1} \circ R = R$.

Demostración. (\Rightarrow) Supongamos que $R \subseteq A \times A$ es transitiva y simétrica, veamos $R^{-1} \circ R = R$.

(⊆) Sea $(x, y) \in R^{-1} \circ R$, entonces existe $z \in A$ de modo que $(x, z) \in R$ y $(z, y) \in R^{-1}$. Por definición de relación iniversa, $(y, z) \in R$ y por ser R simétrica, $(z, x) \in R$. Luego $(y, z), (z, x) \in R$ y R es transitiva, por lo que $(y, x) \in R$, pero como R es simétrica, $(x, y) \in R$. Esto prueba que $R^{-1} \circ R \subseteq R$.

(⊇) Sea $(a,b) \in R$, como R es simetrica, $(b,a) \in R$ y por ello $(a,b) \in R^{-1}$. Por otro lado, como $(a,b),(b,a) \in R$ y R es transitiva, entonces $(a,a) \in R$. Así, si c=a, entonces $(a,c) \in R$ y $(c,b) \in R^{-1}$; lo cual demuestra que $(a,b) \in R^{-1} \circ R$. Por lo tanto $R \subseteq R^{-1} \circ R$, y con ello:

$$R = R^{-1} \circ R$$

(\Leftarrow) Supongamos que $R = R^{-1} \circ R$, veamos que R es simiétrica y transitiva.

(Simetría) Sean $x, y \in A$ y supongamos que $(x, y) \in R$, entonces se sigue de la hipótesis que $(x, y) \in R^{-1} \circ R$ y así, existe $z \in A$ de modo que $(x, z) \in R$ y $(z, y) \in R^{-1}$. Por definición de relación inversa, $(y, z) \in R$ y $(z, x) \in R^{-1}$, de donde $(y, x) \in R^{-1} \circ R$, lo cual implica por hipótesis que $(y, x) \in R$. Por lo que R es simétrica.

(Transitividad) Sean $a, b, c \in A$ y supongamos que $(a, b) \in R$ y $(b, c) \in R$. Como R es simétrica (probado en el párrafo de arriba), de lo último se obtiene que $(c, b) \in R$ y con ello $(b, c) \in R^{-1}$. Luego, $(a, b) \in R$ y $(b, c) \in R^{-1}$, así que $(a, c) \in R^{-1} \circ R$, de donde $(a, c) \in R$. Por lo tanto, R es simétrica.

Lo cual finaliza la prueba de la equivalencia.

do la contención $\bigcup_{b \in \mathbb{R}} f^{-1}[\{b\}] \subseteq A$.

Ej. 2 (2.5 pts) Sea $f: A \to B$ una función. Demuestra que $A = \bigcup_{b \in B} f^{-1}[\{b\}]$.

Demostración. Veamos la igualdad por doble contención.

(⊆) Sea $a \in A$ cualquier elemento, entonces b := f(a) es un elemento de B. Dado que $f(a) \in b$, entonces por definición de imagene inversa, $a \in f^{-1}[\{b\}]$. Por lo tanto, existe $b \in B$ tal que $a \in f^{-1}[\{b\}]$, o, equivalentemente $a \in \bigcup_{b \in B} f^{-1}[\{b\}]$. Probando así la contención $A \subseteq \bigcup_{b \in B} f^{-1}[\{b\}]$. (⊇) Sea $y \in \bigcup_{b \in B} f^{-1}[\{b\}]$ cualquier elemento, entonces existe $b \in B$ de modo que $a \in f^{-1}[\{b\}]$. Dado que $f^{-1}[\{b\}] = \{x \in X \mid f(x) \in \{b\}\}$, entonces en particular $y \in A$. Probando así la contención $a \in f^{-1}[\{b\}]$.

Ej. 3 (2.5 pts) Sean $f: A \to B$ una función y $S \subseteq A$. Demuestra que si f es inyectiva, entonces $f^{-1}[f[S]] = S$.

Demostración. Supongamos que f es inyectiva, en clase vimos que $S \subseteq f^{-1}[f[S]]$ siempre se cumple, por lo que verificar la igualdad deseada se reduce a demostrar que $f^{-1}[f[S]] \subseteq S$.

Efectivamente, sea $x \in f^{-1}[f[S]]$ cualquier elemento, entonces $f(x) \in f[S]$ por definición de imagen inversa. Ahora, por definición de imagen directa, existe $s \in S$ tal que f(x) = f(x); pero, al ser f invectiva, se tiene que x = s. A consecuencia de lo anterior $x \in S$, mostrando que $f^{-1}[f[S]] \subseteq S$.

Ej. 4 (2.5 pts) Sean $f: A \to B y g, h: B \to A$ funciones. Demuestra que si g es inversa izquierda de f y h es inversa derecha de f, entonces g = h.

Demostración. Supongamos que g es inversa izquierda de f y h es inversa derecha de f; esto quiere decir que:

$$g \circ f = id_A$$
 y $f \circ h = id_B$

obteniéndose de lo anterior:

$$g = g \circ id_B$$
 (La identidad es neutro de la composición)
 $= g \circ (f \circ h)$ (Hipótesis)
 $= (g \circ f) \circ h$ (La composición es asociativa)
 $= id_A \circ h$ (Hipótesis)
 $= h$ (La identidad es neutro de la composición)

que es justo lo que se buscaba demostrar.

- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sean X un conjunto y $g: \emptyset \to X$. Pruebe que las siguientes condiciones son equivalentes:
 - i) g es biyectiva.
 - ii) g es sobreyectiva.
 - iii) $X = \emptyset$.

Demostración. Verificaremos la equivalencia por triple implicación.

- (i) \Rightarrow (ii) Supongamos que g es biyectiva, entonces por definición, particularmente es sobreyectiva.
- (ii) \Rightarrow (iii) Por contradicción, Supongamos que g es sobreyectiva y que $X \neq \emptyset$. Entonces existe un elemento $x \in X$. Como g es sobreyectiva, entonces existe $a \in \text{dom}(g) = \emptyset$ de modo que

- f(a) = x; sin embargo, esto es un absurdo pues $a \in \emptyset$ siempre es falso. Por lo tanto, se da la implicación deseada.
- (iii) Supongamos que $X=\emptyset$, hay que mostrar que $g:\emptyset\to\emptyset$ es sobreyectiva y biyectiva; es decir:

$$\forall x,y \in \varnothing \big(f(x) = f(y) \to x = y\big) \quad \text{y} \quad \forall x \in \varnothing \; \exists a \in \varnothing \big(b = f(a)\big)$$

estas sob abreviaturas de lenguaje, recordemos que son equivalentes a:

$$\forall x, y \Big(\big(x \in \emptyset \land y \in \emptyset \big) \to \big(f(x) = f(y) \to x = y \big) \Big) \quad \text{y} \quad \forall x \Big(\big(x \in \emptyset \big) \to \exists a \in \emptyset \big(b = f(a) \big) \big)$$

Notemos que la proposición " $(x \in \emptyset \land y \in \emptyset) \rightarrow (f(x) = f(y) \rightarrow x = y)$ " y la proposición " $x \in \emptyset \rightarrow \exists a \in \emptyset (b = f(a))$ " son verdaderas, pues ambas son implicaciones cuyos antecedentes son falsos. Así que " $\forall x, y ((x \in \emptyset \land y \in \emptyset) \rightarrow (f(x) = f(y) \rightarrow x = y))$ " y " $\forall x ((x \in \emptyset) \rightarrow \exists a \in \emptyset (b = f(a)))$ " son verdaderas; es decir, $g : \emptyset \rightarrow \emptyset$ es inyectiva y sobreyectiva; por tanto, biyectiva.