ONLINE MASTERS IN **DATA SCIENCE**

DSC 257R - UNSUPERVISED LEARNING

ℓ_p NORMS

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Measuring distance in \mathbb{R}^m

Usual choice: Euclidean distance:

$$||x-z||_2 = \sqrt{\sum_{i=1}^m (x_i-z_i)^2}$$
.

Measuring distance in \mathbb{R}^m

Usual choice: Euclidean distance:

$$||x-z||_2 = \sum_{i=1}^m (x_i-z_i)^2$$
.

For $p \ge 1$, here is ℓ_p distance:

$$||x - z||_p = \left(\sum_{i=1}^m |x_i - z_i|^p\right)^{1/p}$$

- p = 2: Euclidean distance
- ℓ_1 distance: $||x z||_1 = \sum_{i=1}^m |x_i z_i|$
- ℓ_{∞} distance: $||x z||_{\infty} = \max_{i} |x_{i} z_{i}|$

Example 1

Consider the all-ones vector (1, 1, ..., 1) in \mathbb{R}^d . What are its ℓ_2 , ℓ_1 , and ℓ_∞ length?

Example 2

In \mathbb{R}^2 , draw all points with

- 1 ℓ_2 length 1
- 2 ℓ_1 length 1
- 3 ℓ_{∞} length 1

Weighted ℓ_1 Norm

For ChemCam, what if we want to emphasize/de-emphasize certain elements?

Weighted ℓ_1 Norm

For ChemCam, what if we want to emphasize/de-emphasize certain elements?

Weighted ℓ_1 norm between x and x':

$$\sum_{i=1}^m w_i |x_i - x_i'|.$$

Weighted ℓ_p Norm

How would you define a weighted ℓ_p norm?