CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION USING MACHINE LEARNING

Presented By: PRANTIKA DAS, DR B.C. ROY ENGINEERING COLLEGE

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Power distribution systems are prone to various types of faults such as line-to-ground, line-to-line, and three-phase faults. These faults can disrupt power supply and reduce system reliability. The challenge lies in accurately detecting and classifying these faults using electrical measurement data (voltage, current, phasors) to differentiate them from normal operating conditions, thereby ensuring the stability of the power grid.

PROPOSED SOLUTION

Develop a Machine Learning that Classifies Power System Fault Using the dataset provided. The model will process electrical measurements to identify the type of fault rapidly and accurately. This Classification will help automate fault detection and assist in quicker recovery actions, ensuring system reliability

Key components -

- Data Collection: Use the Kaggle dataset on power System faults.
- 2. **Preprocessing:** Clean and normalize the dataset
- 3. Model Traning: Train a Classification model (e.g, Decision Tree, Random Forest, or SVM).
- 4. Evalaution: Validate the Model using accuracy, precision, recall, and F1-Score

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

- System requirements :
- IBM Cloud (mandatory)
- IBM Watson Studio for model development and deployment
- IBM Cloud object Storage for dataset handling

ALGORITHM & DEPLOYMENT

Algorithm Selection:

Random Forest Classifier (or SVM based on Performance)

Data Input:

Voltage, Current, and phasor measurements from the dataset

Training Process:

Supervised Learning Using labelled fault types

Prediction Process:

Model deployed on IBM Watson Studio with API endpoint for real-time prediction

Pipeline leaderboard $\ \, \nabla$

	Rank 个	Name	Algorithm	Specialization	Accurac Cross Vali
*	1	Pipeline 9	 Batched Tree Ensemble Classifier (Random Forest Classifier) 	INCR	0.409
	2	Pipeline 8	 Random Forest Classifier 		0.409
	3	Pipeline 4	 Snap Logistic Regression 		0.393
	4	Pipeline 3	 Snap Logistic Regression 		0.393

			Powersystem_1 — F			
IBM watsonx.ai Studio		itudio Q Search in	your works Q Upgra	de ③ 💪 Pranti	ika Das's Account	on ∨⊗
ployment spaces / Power_system1 / P9 - Ran			idom Forest Classifier: power_ml1 /		Ū ③ -] O [
Power	syste	em_1 • Deployed On	line			
API referen	ce	Test				
Enter inp	out data	a				
Text		JSON				
Enter dat	a manuall	y or use a CSV file to populate	the spreadsheet. Max file size is 5	0 MB.		
Downloa	d CSV tem	plate 坐 Browse local file	s 7 Search in space 7		Clea	rall ×
Bowinda		plate D Browner took inc	o contract in space :			
	uble)	Wind Speed (km/h) (double) Weather Condition (other)	Maintenance Status (other) Component Health (other)	D
1						_
_		22	Thunderstorm	Pending	Overheated	5
2		22	Thunderstorm Snowy	Pending Completed	Overheated Normal	
						5
2		21	Snowy	Completed	Normal	5
3		21 18	Snowy	Completed Scheduled	Normal Normal	5 3 5
3		21 18 29	Snowy Snowy Rainy	Completed Scheduled Pending	Normal Normal Overheated	5 3 5
2 3 4 5		21 18 29 21	Snowy Snowy Rainy Clear	Completed Scheduled Pending Scheduled	Normal Normal Overheated Normal	5 3 5 3
2 3 4 5		21 18 29 21	Snowy Snowy Rainy Clear	Completed Scheduled Pending Scheduled	Normal Normal Overheated Normal	5 3 5 3
2 3 4 5 6		21 18 29 21	Snowy Snowy Rainy Clear	Completed Scheduled Pending Scheduled	Normal Normal Overheated Normal	5 3 5 3

Prediction results

Prediction type Multiclass classification

Prediction percentage

Line Transformer Breakage Failure

Confidence level distribution

Display format for prediction results

×

	Prediction	Confidence
1	Line Breakage	35%
2	Line Breakage	41%
3	Transformer Failure	47%
4	Transformer Failure	41%
5	Line Breakage	38%
6	Transformer Failure	37%
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		

CONCLUSION

This project shows that machine learning can accurately detect and classify power system faults. Models like SVM and Neural Networks offer fast, reliable, and automated fault analysis, making them suitable for smart grid applications. While results are promising, future work should focus on real-time implementation and handling diverse grid conditions.

FUTURE SCOPE

• Machine learning for power system fault detection can be enhanced through real-time implementation, deep learning models, IoT integration, and testing on large-scale grids. Future work may also explore hybrid techniques and address cybersecurity challenges in smart grids.

REFERENCES

IBM Skill Build Organization

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Prantika Das

for the completion of

Getting Started with Artificial Intelligence

(PLAN-E624C2604060)

According to the Your Learning Builder - Plans system of record

Completion date: 16 Jul 2025 (GMT)

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Prantika Das

for the completion of

Journey to Cloud: Envisioning Your Solution

(PLAN-32CB1E21D8B4)

According to the Your Learning Builder - Plans system of record

Completion date: 17 Jul 2025 (GMT)

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Prantika Das

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 25 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

