

UNIVERSIDAD NACIONAL DEL ALTIPLANO

INGENIERÍA ESTADÍSTICA E INFORMÁTICA

> MÉTODOS DE OPTIMIZACIÓN

Actividad N° 4 cap
3 - Optimización y Complejidad

Desarrolle un ejercicio o mas del material del cap 3, el presentar el procedimiento y aparte un codigo funcional que te ayude entender el problema elegido

 ${\bf Andree~Alessandro~Chili~Lima} \\ [229071] \\ {\bf https://github.com/antartida15l/TRABAJO-2}$

04/10/2024

Ejercicio 2.2

Demuestra que $x^2 + x + 1$ es $O(x^2)$ pero no es O(x).

Entonces
$$x^2 + x + 1$$
 es $O(x^2)$

Para demostrar que se cumpla la desigualdad:

$$f(x) \le C \cdot g(x)$$

ahora: $f(x) = x^2 + x + 1$ es $O(x^2)$, es decir, que existe una constante C tal que:

$$x^2 + x + 1 \le C \cdot x^2$$
 para $x \ge N$

Demostramos

Reorganizamos la desigualdad para compararla con x^2 :

$$x^2 + x + 1 \le C \cdot x^2$$

Dividimos ambos lados de la desigualdad por x^2 (suponiendo que x > 0):

$$1 + \frac{1}{x} + \frac{1}{x^2} \le C$$

Cuando x se hace grande, los términos $\frac{1}{x}$ y $\frac{1}{x^2}$ tienden a 0. Así, para valores suficientemente grandes de x, la suma $1 + \frac{1}{x} + \frac{1}{x^2}$ se aproxima a 1.

podemos afirmar que:

$$1 + \frac{1}{x} + \frac{1}{x^2} \le 2$$

se cumple:

$$x^2 + x + 1 \le 2x^2$$

Hemos demostrado que $x^2 + x + 1$ es $O(x^2)$.

Demostrar $x^2 + x + 1$ no es O(x)

Ahora, debemos probar que $x^2 + x + 1$ no es O(x), tal que para todo $x \ge N$, se cumpla la desigualdad:

$$x^2 + x + 1 \le C \cdot x$$

podríamos dividir ambos lados por x (asumiendo que x > 0):

$$x + 1 + \frac{1}{x} \le C$$

no existe una constante C tal que $x^2+x+1 \leq Cx$, lo que demuestra que x^2+x+1 no es O(x).

Rpta

Hemos demostrado que:

- x^2+x+1 es $O(x^2)$, ya que podemos encontrar una constante C=2 tal que para $x\geq 1$, se cumpla $x^2+x+1\leq 2x^2$.
- $x^2 + x + 1$ no es O(x), porque el término x^2 crece mucho más rápido que cualquier múltiplo de x, lo que hace imposible encontrar una constante C que satisfaga la desigualdad $x^2 + x + 1 \le Cx$.

```
### Description of the complete of the complet
```


Análisis Interactivo de Complejidad: $f(x) = x^2 + x + 1$

Conclusión:

• $f(x) = x^2 + x + 1$ pertenece a la clase de complejidad $\mathbf{O}(x^2)$, pero no $\mathbf{O}(d)$