```
In [6]:
        Libraries imported.
In [1]: import numpy as np # library to handle data in a vectorized manner
        import pandas as pd # library for data analsysis
        pd.set option("display.max columns", None)
        pd.set option("display.max rows", None)
        import json # library to handle JSON files
        from geopy.geocoders import Nominatim # convert an address into latitud
        e and longitude values
        import geocoder # to get coordinates
        import requests # library to handle requests
        from bs4 import BeautifulSoup # library to parse HTML and XML documents
        from pandas.io.json import json normalize # tranform JSON file into a p
        andas dataframe
        # Matplotlib and associated plotting modules
        import matplotlib.cm as cm
        import matplotlib.colors as colors
        # import k-means from clustering stage
        from sklearn.cluster import KMeans
        import folium # map rendering library
        print("Libraries imported.")
        Libraries imported.
In [7]: data = requests.get("https://en.wikipedia.org/wiki/Category:Suburbs in
```

```
Kuala Lumpur").text
In [8]: soup = BeautifulSoup(data, 'html.parser')
In [9]: neighborhoodList = []
In [10]: for row in soup.find_all("div", class_="mw-category")[0].findAll("li"):
              neighborhoodList.append(row.text)
In [11]: kl df = pd.DataFrame({"Neighborhood": neighborhoodList})
         kl df.head()
Out[11]:
                  Neighborhood
                    Alam Damai
          1 Ampang, Kuala Lumpur
          2
                 Bandar Menjalara
              Bandar Sri Permaisuri
              Bandar Tasik Selatan
In [12]: kl df.shape
Out[12]: (71, 1)
In [13]: def get latlng(neighborhood):
              lat lng coords = None
              while(lat lng coords is None):
                  g = geocoder.arcgis('{}, Kuala Lumpur, Malaysia'.format(neighbo
          rhood))
                  lat lng coords = g.latlng
              return lat lng coords
```

```
In [291: |
         coords = [ get lating(neighborhood) for neighborhood in kl df["Neighbor
         hood"1.tolist() 1
In [26]: coords
Out[26]: [[3.0576900000000364, 101.74388000000005],
          [3.148494115588384, 101.69672876508707].
          [3.1903500000000236, 101.62545000000006],
           [3.1039100000000417, 101.71226000000007],
          [3.072750000000042, 101.71461000000005],
          [3.08280000000002. 101.722810000000041.
          [3.1292000000000257, 101.67844000000008],
          [3.1292000000000257, 101.67844000000008],
           [3.111020000000053, 101.66283000000004],
          [3.06187000000056, 101.74675000000008],
           [3.14789000000075, 101.69405000000006],
          [3.12916000000007, 101.68406000000004],
           [3.147770000000037, 101.70855000000006],
          [3.0578100000000745, 101.68965000000009],
          [3.1434800000000678, 101.64433000000008],
           [3.1511418740671178, 101.69937468268016],
           [3.129290000000026, 101.69896000000006],
          [3.17381000000006, 101.68276000000009],
           [3.061870000000056, 101.74675000000008],
          [3.16359000000056, 101.69811000000004],
           [3.1479700000000435, 101.66795000000008],
          [3.136442497863743, 101.69029641203808].
          [3.1419057131529953, 101.67967833034047],
          [3.1566851613075664, 101.69807685476978],
          [3.083300000000065, 101.70438000000071,
           [3.1363700000000563, 101.68564000000003],
          [3.201630000000023, 101.72107000000005],
          [3.1329027727420717, 101.72467923770417],
          [3.1800248500092656, 101.67783444508486],
          [3.209500000000048, 101.65874000000008],
          [3.165460000000053, 101.71028000000007],
          [3.166400000000067, 101.73046000000005],
          [3.2094300000000544, 101.69318000000004],
```

```
[3.2175000000000296, 101.63763000000006],
[3.207768158327776, 101.64516652936956],
[3.1171300000000315, 101.67384000000004],
[3.0907400000000393, 101.67733000000004],
[3.121202171543197, 101.66389917991445],
[3.14789000000075, 101.69405000000006],
[3.1592600000000743, 101.69834000000009],
[3.14789000000075, 101.69405000000006].
[3.165320000000065, 101.65243000000004],
[3.094760000000065, 101.667470000000041,
[3.133540000000039, 101.713070000000071,
[3.1258432855470684, 101.71850881971983],
[3.0810200000000236. 101.697240000000081.
[3.18639000000074, 101.66810000000004],
[3.1799164410297633, 101.72143714871991],
[3.1750800000000368, 101.69305000000008],
[3.188160000000039, 101.70415000000008],
[3.191802843003158, 101.74007037312064],
[3.1245700000000625, 101.73597000000007],
[3.162200000000041, 101.650360000000031.
[3.0726000000000226, 101.68252000000007],
[3.0499700000000303, 101.70603000000006],
[3.2006600000000276, 101.63337000000007],
[3.0826900000000705, 101.7368900000007],
[3.1029700000000275, 101.68471000000005],
[3.21216000000004, 101.71540000000005],
[3.069080000000042, 101.742870000000041,
[3.223570000000052, 101.72399000000007],
[3.093590000000063, 101.72837000000004],
[3.2100497379521316, 101.63450794879562],
[3.1939400000000546, 101.70573000000007],
[3.1900700000000484, 101.65293000000008],
[3.0870700000000397. 101.73681000000005].
[3.1528300000000513, 101.62271000000004],
[3.157700000000034, 101.72452000000004],
[3.22240000000005, 101.671730000000081.
[3.1807300000000396, 101.70321000000007],
[3.2039100000000644, 101.737190000000061]
```

```
In [36]: | df coords = pd.DataFrame(coords, columns=['Latitude', 'Longitude'])
In [37]:
           kl df['Latitude'] = df coords['Latitude']
           kl df['Longitude'] = df coords['Longitude']
In [35]:
           print(kl df.shape)
           kl df
           (71, 3)
Out[35]:
                            Neighborhood Latitude Longitude
                              Alam Damai 3.057690 101.743880
             0
                     Ampang, Kuala Lumpur 3.148494 101.696729
             1
             2
                          Bandar Menjalara 3.190350 101.625450
             3
                       Bandar Sri Permaisuri 3.103910 101.712260
             4
                       Bandar Tasik Selatan 3.072750 101.714610
             5
                         Bandar Tun Razak 3.082800 101.722810
             6
                                 Bangsar 3.129200 101.678440
             7
                             Bangsar Park 3.129200 101.678440
                            Bangsar South 3.111020 101.662830
             8
             9
                            Batu 11 Cheras 3.061870 101.746750
                        Batu, Kuala Lumpur 3.147890 101.694050
            10
            11
                               Brickfields 3.129160 101.684060
                             Bukit Bintang 3.147770 101.708550
            12
            13
                                Bukit Jalil 3.057810 101.689650
                               Bukit Kiara 3.143480 101.644330
            14
            15
                              Bukit Nanas 3.151142 101.699375
```

Bukit Petaling 3.129290 101.698960

16

	Neighborhood	Latitude	Longitude
17	Bukit Tunku	3.173810	101.682760
18	Cheras, Kuala Lumpur	3.061870	101.746750
19	Chow Kit	3.163590	101.698110
20	Damansara Heights	3.147970	101.667950
21	Damansara Town Centre	3.136442	101.690296
22	Damansara, Kuala Lumpur	3.141906	101.679678
23	Dang Wangi	3.156685	101.698077
24	Desa Petaling	3.083300	101.704380
25	Federal Hill, Kuala Lumpur	3.136370	101.685640
26	Happy Garden	3.201630	101.721070
27	Jalan Cochrane, Kuala Lumpur	3.132903	101.724679
28	Jalan Duta	3.180025	101.677834
29	Jinjang	3.209500	101.658740
30	Kampung Baru, Kuala Lumpur	3.165460	101.710280
31	Kampung Datuk Keramat	3.166400	101.730460
32	Kampung Padang Balang	3.209430	101.693180
33	Kepong	3.217500	101.637630
34	Kepong Baru	3.207768	101.645167
35	KL Eco City	3.117130	101.673840
36	Kuchai Lama	3.090740	101.677330
37	Lembah Pantai	3.121202	101.663899
38	Maluri	3.147890	101.694050
39	Medan Tuanku	3.159260	101.698340
40	Miharja	3.147890	101.694050
41	Mont Kiara	3.165320	101.652430

	Neighborhood	Latitude	Longitude
42	Pantai Dalam	3.094760	101.667470
43	Pudu, Kuala Lumpur	3.133540	101.713070
44	Putrajaya	3.125843	101.718509
45	Salak South	3.081020	101.697240
46	Segambut	3.186390	101.668100
47	Semarak	3.179916	101.721437
48	Sentul, Kuala Lumpur	3.175080	101.693050
49	Setapak	3.188160	101.704150
50	Setiawangsa	3.191803	101.740070
51	Shamelin	3.124570	101.735970
52	Sri Hartamas	3.162200	101.650360
53	Sri Petaling	3.072600	101.682520
54	Sungai Besi	3.049970	101.706030
55	Taman Bukit Maluri	3.200660	101.633370
56	Taman Connaught	3.082690	101.736890
57	Taman Desa	3.102970	101.684710
58	Taman Ibukota	3.212160	101.715400
59	Taman Len Seng	3.069080	101.742870
60	Taman Melati	3.223570	101.723990
61	Taman Midah	3.093590	101.728370
62	Taman OUG	3.210050	101.634508
63	Taman P. Ramlee	3.193940	101.705730
64	Taman Sri Sinar	3.190070	101.652930
65	Taman Taynton View	3.087070	101.736810
66	Taman Tun Dr Ismail	3.152830	101.622710

```
Neighborhood Latitude Longitude
                        Taman U-Thant 3.157700 101.724520
          67
          68
                         Taman Wahyu 3.222400 101.671730
          69
                           Titiwangsa 3.180730 101.703210
          70
                         Wangsa Maju 3.203910 101.737190
In [38]: kl df.to csv("kl df.csv", index=False)
In [39]: address = 'Kuala Lumpur, Malaysia'
         geolocator = Nominatim(user agent="my-application")
         location = geolocator.geocode(address)
         latitude = location.latitude
         longitude = location.longitude
         print('The geograpical coordinate of Kuala Lumpur, Malaysiae {}, {}.'.f
         ormat(latitude, longitude))
         The geograpical coordinate of Kuala Lumpur, Malaysiae 3.1516964, 101.69
         42371.
In [40]: map kl = folium.Map(location=[latitude, longitude], zoom start=11)
         for lat, lng, neighborhood in zip(kl df['Latitude'], kl df['Longitude'
          ], kl df['Neighborhood']):
              label = '{}'.format(neighborhood)
              label = folium.Popup(label, parse html=True)
              folium.CircleMarker(
                  [lat, lng],
                  radius=5,
                  popup=label,
                  color='blue',
                  fill=True,
                  fill color='#3186cc',
                  fill opacity=0.7).add to(map kl)
```

```
map_kl
Out[40]:
In [41]: map kl.save('map kl.html')
In [91]: CLIENT ID = 'your Foursquare ID'
         CLIENT SECRET = 'your Foursquare Secret'
         VERSION = '20180605'
         print('Your credentails:')
         print('CLIENT_ID: ' + CLIENT_ID)
         print('CLIENT_SECRET:' + CLIENT_SECRET)
         Your credentails:
         CLIENT_ID: your Foursquare ID
         CLIENT SECRET: your Foursquare Secret
```

```
kl df.loc[0, 'Neighborhood']
In [108]:
Out[108]: 'Alam Damai'
In [115]: neighborhood latitude = kl df.loc[0, 'Latitude'] # neighborhood latitud
          e value
          neighborhood longitude = kl df.loc[0, 'Longitude'] # neighborhood longi
          tude value
          neighborhood name = kl df.loc[0, 'Neighborhood'] # neighborhood name
          print('Latitude and longitude values of {} are {}, {}.'.format(neighbor
          hood name,
                                                                          neighbor
          hood latitude,
                                                                          neighbor
          hood longitude))
          Latitude and longitude values of Alam Damai are 3.0576900000000364, 10
          1.74388000000005.
In [110]: results = requests.get(url).json()
          results
Out[110]: {'meta': {'code': 400,
            'errorType': 'invalid auth',
            'errorDetail': 'Missing access credentials. See https://developer.fou
          rsquare.com/docs/api/configuration/authentication for details.',
            'requestId': '5ee13470e6573d7f9e6c9438'},
           'response': {}}
In [117]: print('{} venues were returned by Foursquare.'.format(nearby venues.sha
          pe[0]))
          NameError
                                                    Traceback (most recent call l
          ast)
          <ipython-input-117-8d3c8155afff> in <module>
```

```
---> 1 print('{} venues were returned by Foursquare.'.format(nearby ve
         nues.shape[0]))
         NameError: name 'nearby_venues' is not defined
In [25]: def getNearbyVenues(names, latitudes, longitudes, radius=2000):
             venues=[]
             for name, lat, lng in zip(names, l df['Latitude'], kl df['Longitude'
         ], kl df['Neighborhood']):
                 print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id=
         {}&client secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                     CLIENT ID,
                     CLIENT SECRET,
                     VERSION,
                     lat,
                     lng,
                     radius,
                     LIMIT)
                 # make the GET request
                 results = requests.get(url).json()["response"]['groups'][0]['it
         ems']
                 # return only relevant information for each nearby venue
                 venues.append([(
                     name,
                     lat,
                     lna.
                     v['venue']['name'],
                     v['venue']['location']['lat'],
                     v['venue']['location']['lng'],
                     v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list fo
         r item in venue list])
             nearby venues.columns = ['Neighborhood',
```

```
'Neighborhood Latitude',
'Neighborhood Longitude',
'Venue',
'Venue Latitude',
'Venue Longitude',
'Venue Category']

return(nearby_venues)
```