Exercicis corrent continu

- 1. Un corrent transporta $1,0.10^{18}$ electrons en 4 minuts. La càrrega de l'electró és $1,6.10^{-19}$ C. Calculeu la intensitat. (**R**: 0,67 mA)
- 2. Calculeu la resistència d'un fil de coure d'1 km de longitud i de 1 mm² de secció. (ρ_{Cu} =1,72.10-8 Ω m) (**R:** 17,2 Ω)
- 3. A l'aplicar una diferència de potencial de 120 V als extrems d'un conductor passa una intensitat de 5 A. Calculeu la seva resistència. (\mathbf{R} : 24 Ω)
- 4. Calculeu la resistència d'una bombeta que indica 40 W i 125 V. (**R:** 391 Ω)
- 5. Una resistència elèctrica cedeix calor a raó de 40 W quan la diferència de potencial entre els seus borns és de 60 V. Quin és el valor de la seva resistència? (**R:** 90 Ω)
- 6. Una estufa de 500 W funciona 8 hores diàries. Si el kWh costa 0.09 €, quin és el cost per mantenir-la encesa durant 1 mes. Si està connectada a 220 V, quina intensitat hi circula? (**R**: 10,8 €; 2,27 A)
- 7. Tenim dues bombetes amb les característiques de voltatge i potència següents: l'una amb 110V i 75 W, i l'altra amb 220 V i 150 W. Raoneu:
 - a. Quina tindrà una resistència mes gran?
 - b. Per quina passarà mes intensitat, suposant que cada una es connecti al voltatge adequat? (R: a) la segona; b) igual)
- 8. Una bombeta té la següent inscripció: "100 W 130 V"
 - a. Ouin valor té la seva resistència?
 - b. Quina potència consumeix si la tensió de la xarxa és només de 100 V?
 - c. Calculeu la intensitat del corrent que hi circula en l'últim cas. (R: 169W, 59 W, 0,59 A)

9.

Una bombeta elèctrica de 60 W a 110 V es connecta per error a la xarxa de 220 V, llueix durant uns instants amb gran lluentor i acaba fonent-se. a) Quina és la potència efectiva manifestada per la bombeta en la seva connexió errònia. b) Quina resistència hauríem d'haver intercalat en sèrie amb la bombeta perquè a 220 V hagués funcionat correctament?.

R: (240 W) (202 Ω)

Calculeu la resistència equivalent entre els punts A i B de les següents figures:

R: $(1,33 \Omega)$ $(4,5 \Omega)$ $(2,67 \Omega)$ (6Ω) $(4,10 \Omega)$

11.

L'estufa d'una casa consumeix una potència de 5000 W si es connecta a una tensió de 220V.

- a) Quina intensitat circula per l'estufa?.
- b) Quina resistència té l'estufa?.
- c) Quina potència desenvoluparia si es connectés a 110 V?.

R: $(22.7 \text{ A}) (9.68 \Omega) (1250 \text{ W})$

12.

Una bombeta du les indicacions següents: 220 V i 100 W. a) Calculeu la intensitat que la travessa si la connectem a 220 V. b) Si necessitem connectar-la a una tensió de 380 V, quina resistència hem d'associar-li per tal que la intensitat que la recorri sigui la mateixa que al cas anterior?. c) Calculeu la longitud del fil metàl·lic de 0,02 mm² de secció i $4.5 \cdot 10^{-8} \,\Omega \cdot m$ de resistivitat que necessitem per a construir la resistència. R: $(0.45 \, A) \, (360 \, \Omega) \, (160 \, m)$

13.

Connectem una resistència de $10~\Omega$ a una pila i la tensió als seus extrems és de 8~V. Si en comptes d'aquesta resistència n'hi connectem una de $20~\Omega$, la tensió és de 9~V. Calculeu la força electromotriu i la resistència interna de la pila.

R: $(10,2 \text{ V}) (2,8 \Omega)$

14. El voltímetre del circuit següent senyala 2,5 V. Què indiquen els amperímetres?

Resultat: 1,25 A

1,875 A

 L'amperímetre del circuit de la figura indica 1,5 mA. Calcula la diferència de potencial entre els punts A i B.

Resultat: 3,375 mV

(PAU setembre 97) Calcula la resistència elèctrica equivalent entre A i B,

- a. Amb l'interruptor C connectat.
- **b.** Amb l'interruptor C desconnectat.

Resultat: $1,33 \Omega$

 $1,33 \Omega$

17. (PAU setembre 98) En el circuit de la figura, la intensitat que circula per la resistència de 8 Ω és d'1 A.

- a. Quina intensitat circularà per cadascuna de les resistències de 16 Ω ?
- b. Quina potència es dissiparà per efecte Joule en la resistència de 20 Ω ?
- c. Quina intensitat circularà per la resistència de 6 Ω ?

Resultat: 0,5 A 80 W 8 A

18.
Calcula la resistència interna del generador del circuit representat sabent que l'amperímetre indica 550 mA.

Resultat: $4,66 \Omega$

19. Per a cada resistència del circuit calcula: a. La diferència de potencial aplicada. b. La intensitat que hi circula.

Resultat: 8,04; 3,22; 3,22; 5,6; 5,6 i 5,6 V 1,34; 0,8; 0,54; 1,4; 0,7 i 0,7 A