AGENDA

- Homework and project
 - Due Saturday
 - Talk to me
- Answer exit survey tickets
- Review Last time (ML, regression)
- Continue with Linear regression
 - Multiple linear regression
 - Interactions
 - Categorical
 - Non-linear
- Training and testing
- KNN

QUESTIONS FROM EXIT SURVEY

- P-Values
- What statements do we need to make concerning the accuracy of prediction obtained from our model
- How does linear regression compare to other models?
 - Speed?
 - Polynomial, non-linear regression?
- Assumptions of linear regression
 - Checking assumptions

REVIEW FROM LAST TIME

- Intro to Machine Learning
 - What is machine learning
 - Different types of machine learning
 - Parts of machine learning
 - Machine learning in practice
- Vocabulary
 - Observations
 - Features, predictors, attributes
 - · Response, labels
 - Dimensionality
 - Supervised, unsupervised, regression, classification
- Simple linear regression
- Multivariate linear regression

CONTINUE WITH LINEAR REGRESSION

TRAINING AND TESTING

How does a prediction, supervised problem work?

Model gets built

Use the model to predict new outputs

There are many model options

Q: Which one do we choose?

There are many model options

Q: Which one do we choose?

Let's choose the model that gives us the best performance

There are many model options

Q: Which one do we choose?

Let's choose the model that gives us the best performance

Q: How do we measure performance? How well does it work?

There are many model options

Q: Which one do we choose?

Let's choose the model that gives us the best performance

Q: How do we measure performance? How well does it work?

Can we use our dataset for an error estimate?

There are many model options

Q: Which one do we choose?

Let's choose the model that gives us the best performance

Q: How do we measure performance? How well does it work?

Can we use our dataset for an error estimate?

How would this work? Issues?

Training Error

Dataset

Q: Are there any issues with training error?

Q: How small can we make our training error?

Q: Are there any issues with training error?

Q: How small can we make our training error?

A: We can make the training error go to zero. We just need to memorize.

This is called over fitting

Want performance on new observations. Data that we haven't seen

In general:

- Training error goes to zero by adding complexity
- Test error goes down initially but then goes up (Overfitting)

K NEAREST NEIGHBOR

- A supervised learning algorithm
- Instance based learning
- Lazy learner
- Used for both regression and classification
- Voting and averaging

- A supervised learning algorithm
- Instance based learning
- Lazy learner
- Used for both regression and classification
- Voting and averaging

Q: How does this work?

- A supervised learning algorithm
- Instance based learning
- Lazy learner
- Used for both regression and classification
- Voting and averaging

Q: How does this work?

- Choose a k
- Calculate distances
- Average or vote

Advantages:

- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time
- Lot's of storage
- Easily fooled by irrelevant features and high dimensions