Part I, Problem 1F-5b

Find
$$A^2$$
, A^3 , A^n if $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Part I, Problem 1F-8a

If
$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
, $A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}$, and $A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, what is the 3×3 matrix A ?

Part I, Problem 1G-3

If
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$, solve $A\mathbf{x} = \mathbf{b}$ by finding A^{-1} .

Part I, Problem 1G-4

Referring to problem 1G-3 above, solve the system

$$x_1 - x_2 + x_3 = y_1$$
 $x_2 + x_3 = y_2$ $-x_1 - x_2 + 2x_3 = y_3$ (1)

for the x_i as a function of the y_i .

Part I, Problem 1G-5

Show that $(AB)^{-1} = B^{-1}A^{-1}$ by using the definition of inverse matrix.

Part I, Problem 1H-3abc

(a) For what c-value(s) will

$$x_1 - x_2 + x_3 = 0,$$

$$2x_1 + x_2 + x_3 = 0,$$

$$-x_1 + cx_2 + 2x_3 = 0,$$
(2)

have a non-trivial solution?

- (b) For what c-value(s) will $\begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} x \\ y \end{pmatrix}$ have a non-trivial solution? (Write it as a system of homogeneous equations.)
- (c) For each value of c in part (a), find a non-trivial solution to the corresponding system. (Interpret the equations as asking for a vector orthogonal to the three given vectors; find it by using the cross product.)

Part I, Problem 1E-1cd

Find the equations of the following planes:

- (c) through (1,0,1), (2,-1,2), and (-1,3,2)
- (d) through the points on the x, y, and z-axes where x = a, y = b, z = c respectively (give the equation in the form Ax + By + Cz = 1 and remember it)

Part I, Problem 1E-2

Find the dihedral angle between the planes 2x - y + z = 3 and x + y + 2z = 1.

Part I, Problem 1E-6

Show that the distance D from the origin to the plane ax + by + cz = d is given by the formula

$$D = \frac{|d|}{\sqrt{a^2 + b^2 + c^2}}. (3)$$

Part II, Problem 1

Suppose we know that when the three planes $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ in \mathbb{R}^3 intersect in pairs, we get three lines L_1, L_2, L_3 which are distinct and parallel.

- (a) Sketch a picture of this situation.
- (b) Show that the three normals to $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ all lie in one plane, using a geometric argument.
- (c) Show that the three normals to $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ all lie in one plane, using an algebraic argument. (Note that the three planes clearly do *not* all intersect at one point.)

Part II, Problem 2

A manufacturing process mixes three raw materials M_1, M_2 , and M_3 to produce three products P_1, P_2 , and P_3 . The ratios of the amounts of raw materials (in the order M_1, M_2, M_3) which are used to make up each of the three products are as follows: For P_1 the ratio is 1:2:3, for P_2 the ratio is 1:3:5, and for P_3 the ratio is 3:5:8.

In a certain production run, 137 units of M_1 , 279 units of M_2 , and 448 units of M_3 were used. The problem is to determine how many units of each of the products P_1 , P_2 , and P_3 were produced in that run.

- (a) Set this problem up in matrix form. Use the letter A for the matrix, and write down the (one-line) formula for the solution in matrix form.
- (b) Compute the inverse matrix of A and use it to solve for the production vector P.
- (c) Find a choice for the ratios for the third product (in lowest form), different from the other two ratios, and for which the system has non-unique solutions.

Part II, Problem 3

For any plane \mathcal{P} which is not parallel to the (x,y) plane, define the *steepest direction* on \mathcal{P} to be the direction of any vector which lies in \mathcal{P} and which makes the *largest* (acute) angle with the (x,y) plane.

- (a) Let \mathcal{P} be the plane through the origin with normal vector \mathbf{n} . Derive a formula, in terms of \mathbf{n} , for a vector \mathbf{w} which points in the steepest direction on \mathcal{P} .
- (b) Now let \mathcal{P} be the plane through the origin which contains two non-parallel vectors \mathbf{u} and \mathbf{v} , where \mathbf{u} and \mathbf{v} do not both lie in the (x,y) plane. Derive a formula, in terms of \mathbf{u} and \mathbf{v} , for a vector \mathbf{w} which points in the steepest direction on \mathcal{P} .