1.

Опр. 2.1. Комплексным числом называется элемент z декартова произведения $\mathbb{R} \times \mathbb{R}$:

$$z = (a, b), \quad a, b \in \mathbb{R},$$

снабженного двумя операциями, undyuupoванными из \mathbb{R} :

- (a,b) + (c,d) = (a+c,b+d);
- $(a,b)\cdot(c,d)=(ac-bd,ad+bc);$

2.

- (a,b) + (c,d) = (a+c,b+d);
- $(a,b)\cdot(c,d)=(ac-bd,ad+bc);$

3

Ассоциативность сложения.

$$((a,b)+(c,d))+(e,f)=(a,b)+((c,d)+(e,f))$$

Коммутативность сложения.

$$(a,b) + (c,d) = (c,d) + (a,b)$$

4.

Ассоциативность относительно операции умножения.

$$((a,b)\cdot(c,d))\cdot(e,f) = (a,b)\cdot((c,d)\cdot(e,f))$$

Коммутативность относительно операции умножения.

$$(a,b) \cdot (c,d) = (c,d) \cdot (a,b)$$

5.

Существование нулевого элемента. Нулевым элементом называют такой элемент, который не изменяет другой при операции сложения. В множестве комплексных чисел таковым является (0,0). Действительно,

$$\exists (\alpha, \beta) : (a, b) + (0, 0) = (a, b)$$

6.

Существование противоположного элемента. Противоположным элементом к элементу (a,b) называют такой элемент, который в сумме с (a,b) дает нулевой элемент.

$$\exists (\alpha, \beta) : (a, b) + (\alpha, \beta) = (0, 0)$$

Из этого требования следует, что $\alpha=-a$ и $\beta=-b$. Следовательно противоположным элементом к (a,b) будем называть элемент (-a,-b). Можно 7

Существование единицы. Единичным элементом, единицей, называют такой элемент, который не меняет комплексное число при умножении на него

$$\exists (\alpha, \beta) : (a, b) \cdot (\alpha, \beta) = (a, b)$$

Единичным элементом множества комплексных чисел является элемент (1,0).

Существование обратного элемента. Обратный элемент — это такой, который при умножении на исходное комплексное число дает единицу.

$$\exists (\alpha, \beta) : (a, b) \cdot (\alpha, \beta) = (1, 0)$$

Мы получили общий вид для обратного элемента:

$$(\alpha, \beta) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

9.

Опр. 3.1. Алгебраической формой комплексного числа $z=(a,b)\in\mathbb{C}$ называется представление его в следующем виде:

$$z=a+ib,$$

где символ i называется **мнимой единицей** и обладает свойством $i^2 = -1 \in \mathbb{R}$. 10.

Опр. 3.4. Тригонометрической формой комплексного числа $z\in\mathbb{C}$ называется представление его в следующем виде:

$$z = (\rho \cos \psi, \rho \sin \psi) = \rho(\cos \psi, \sin \psi).$$

11.

Опр. 3.2. Пусть $z=a+ib\in\mathbb{C}$ - комплексное число, тогда

• $\overline{z} = a - ib$ называется числом, комплексно сопряженным к z;

12

Опр. 3.2. Пусть $z=a+ib\in\mathbb{C}$ - комплексное число, тогда

• $|z| = \sqrt{N(z)} = \sqrt{a^2 + b^2}$ называется **модулем** комплексного числа.

13.

Теорема 3.1. (Формула Муавра) Пусть $z \in \mathbb{C}$ и $n \in \mathbb{N}$, тогда

$$|z^n| = |z|^n$$
, $\arg(z^n) = n \cdot \arg(z)$.

Для любого натурального числа n и любого вещественного числа ф:

 $(\cos(\phi) + i*\sin(\phi))^{\wedge}n = \cos(n*\phi) + i*\sin(n*\phi)$

Ì4.

Декартово произведение множеств – это операция, которая создает новое множество, состоящее из всех возможных упорядоченных наборов элементов исходных множеств.

Декартово произведение множеств на себя:

$$A^n = A imes A imes \cdots imes A = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A$$
 для всех $i = 1, 2, \ldots, n\}$

Декартово произведение нескольких множеств (А и В):

 $A \times B = \{ (a, b) | a \in A, b \in B \}$

15.

Опр. 1.1. Внутренним законом композиции на множестве M называется отображение $M \times M \to M$ декартова произведения $M \times M$ в M. Значение

$$(x,y) \mapsto z \in M$$

называется композицией элементов x и y относительно этого закона.

Опр. 1.2. Закон композиции называется **ассоциативным**, если для любых трех элементов $x, y, z \in M$ имеет место следующее свойство:

$$(x*y)*z = x*(y*z).$$

17.

Опр. 1.3. Закон композиции называется **коммутативным**, если для любой пары элементов $x,y\in M$ имеет место свойство

$$x * y = y * x$$
.

18.

Опр. 2.1. Нейтральным элементом относительно закона композиции x*y называется элемент $e \in M$, такой что:

$$e * x = x = x * e, \quad \forall x \in M.$$

19.

Опр. 2.2. Элемент $\theta \in M$ называется **поглощающим** относительно закона композиции x * y, если имеет место следующее свойство:

$$\forall x \in M \quad x * \theta = \theta = \theta * x.$$

20.

Опр. 2.3. Элемент y называется **обратным** к элементу x относительно внутреннего закона композиции с нейтральным элементом e, если

$$y * x = e = x * y$$
.

21.

Опр. 2.4. Множество M с заданным на нем одним или несколькими законами композиции называется **алгебраической структурой**.

22.

Внешний закон композиции:

Это операция, которая сочетает элемент из множества М с элементом из другого множества К:

• : $K \times M \to M$

(отображение К на М в М)

23.

Опр. 3.1. Алгебраическая структура G называется **группой** если выполняются следующие требования (аксиомы группы):

- (a) ассоциативность: x * (y * z) = (x * y) * z;
- (б) нейтральный элемент: $\exists e \in G : \forall x \in G \quad x * e = x = e * x;$
- (в) обратный элемент: $\forall x \in G \quad \exists \, x^{-1}: \quad x*x^{-1} = e = x^{-1}*x;$ 24.

Магма:

Это алгебраическая структура, состоящая из множества M с одной бинарной операцией *: *: $M \times M \to M$ 25.

Полугруппа:

Это алгебраическая структура (M, *), в которой операция * ассоциативна:

$$(x * y) * z = x * (y * z)$$

для всех $x, y, z \in M$.

26.

Моноид:

Это алгебраическая структура (М, *), которая является полугруппой и имеет нейтральный элемент е:

- 1. **Ассоциативность:** (x * y) * z = x * (y * z)
- 2. **Нейтральный элемент:** e * x = x * e = x

27.

Опр. 1.1. Закон композиции \circ называется дистрибутивным слева относительно закона *, если для любых элементов $x, y, z \in M$ имеет место равенство

$$x \circ (y * z) = (x \circ y) * (x \circ z).$$

28 (в добавление к 27 вопросу)

NtB 1.2. Соответственно, дистрибутивность справа означает выполнение следующего равенства:

$$\forall x, y, z \in M \quad (y * z) \circ x = (y \circ x) * (z \circ x).$$

Если закон дистрибутивен и слева и справа, то он называется **двояко дистри-бутивным**.

29.

Опр. 1.2. Кольцом R называется множество замкнутое относительно двух согласованно заданных на нем бинарных операций (обычно обозначаемых через + и \cdot), удовлетворяющих следующим требованиям:

- R абелева группа относительно "+" (0 нейтральный элемент);
- R коммутативный моноид относительно "." (1 нейтральный элемент);
- Законы + и · согласованы ("·" дистрибутивен относительно "+"):

$$x \cdot (y+z) = x \cdot y + x \cdot z.$$

30.

Кольцо \mathbb{Z}_m вычетов по модулю $m \in \mathbb{Z}$:

$$x \equiv y \mod m, \quad y \in \{0, 1, \dots, m - 1\}.$$

31.

Опр. 3.1. Многочленом от одной переменной с коэффициентами из кольца R будем называть формальную бесконечную сумму следующего вида:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots,$$

где отличны от нуля только *пекоторые* коэффициенты $a_0, a_1, a_2, \ldots \in R$, а x является формальной переменной.

32.

33.

Опр. 3.2. Говорят, что многочлен p(x) делится на многочлен q(x) (пишут $p \ \vdots \ q),$ если существует такой многочлен g(x), что $p(x) = g(x) \cdot q(x).$

Лемма 3.1. Свойства делимости многочленов:

- если $p(x) \stackrel{.}{:} q(x)$ и $q(x) \stackrel{.}{:} r(x)$, тогда $p(x) \stackrel{.}{:} r(x)$:
- nycmv p(x), q(x) : g(x), morda

$$\forall a(x), b(x) \in R[x]$$
 $a(x)p(x) + b(x)q(x) \stackrel{.}{:} g(x)$

34.

Опр. 3.3. Два многочлена p(x) и q(x) называются ассоциированными, если $p(x)=\alpha\cdot q(x)$, где $\alpha\in R,\,\alpha\neq 0.$

35.

Опр. 3.4. Степенью $\deg(p)$ многочлена $p \in R[t]$ называется максимальный номер его ненулевого коэффициента. Если $\deg p = n \in \mathbb{N}_0$ то коэффициент a_n называется **старшим коэффициентом** многочлена p.

36.

NtB 3.3. Для нулевого многочлена $\theta(t)$ положим $\deg(\theta) = -\infty$.

37. Свойства степени при делении многочлена:

Лемма 3.4. Свойства степени при делении многочленов:

- $ecnu \ f \ \vdots \ g, \quad f, g \neq 0 \quad \Rightarrow \quad \deg(f) \geqslant \deg(g);$
- $ecnu f : g, \quad \deg(f) = \deg(g) \implies f \sim g.$

38.

Связь степени остатка:

При делении многочлена p(x) на многочлен q(x) (где q(x) не является нулевым многочленом) остаток r(x) имеет степень: $deg(r(x)) \le deg(q(x))$ 39.

Опр. 3.6. Корнем многочлена $p(x) \in R[x]$ кратности m называется число $x_0 \in R$, такое что

$$p(x) \stackrel{.}{:} (x - x_0)^m, \quad p(x) \not\mid (x - x_0)^{m+1}.$$

40.

По теореме Безу, остаток от деления многочлена p(x) на $(x - x_0)$ равен значению многочлена в точке x_0 : $r = p(x_0)$

Если x_0 - корень многочлена p(x) тогда $p(x_0)=0$.

+ x0 - лепитель p(x)

41

Опр. 1.1. Делителем нуля в кольце R называется всякий элемент $x \neq 0$, такой что

$$\exists y \neq 0: \quad xy = 0.$$

42.

Опр. 1.2. Областью целостности называется кольцо, в котором нет делителей нуля.

43.

Опр. 1.3. Элемент $z \neq 0$ называется **нильпотентом**, если

$$\exists n \in \mathbb{N}: \quad z^n = 0.$$

44.

Опр. 1.5. Полем называется ненулевое кольцо, в котором каждый ненулевой элемент обратим.

45.

Матрица — это прямоугольная таблица элементов из поля K, организованных в m строк и n столбцов:

Коэффициенты матрицы: Элементы a_{ij} называются коэффициентами или элементами матрицы, где: i — номер строки (i = 1, 2, ..., m). j — номер столбца (j = 1, 2, ..., n).

46.

 $Mat_K(m,n)$ - это множество всех m×n матриц с элементами из поля K. K – поле, из которого берутся элементы матрицы; m – количество строк в матрице; n – количество столбцов в матрице. 47.

Матрица называется **квадратной**, если число ее строк равно числу столбцов. **Единичная** матрица – это квадратная матрица, в которой все элементы главной диагонали равны 1, а все остальные элементы равны 0.

48.

NtB 3.1. Будем обозначать множество $m \times n$ матриц через $Mat_{\mathbb{K}}(m,n)$. Определим на этом множестве некоторые операции:

Сложение: если $A = ||a_{ij}||, B = ||b_{ij}||$ и $C = ||c_{ij}||,$ тогда

$$C = A + B \quad \Leftrightarrow \quad c_{ij} = a_{ij} + b_{ij}$$

49.

NtB 3.1. Будем обозначать множество $m \times n$ матриц через $Mat_{\mathbb{K}}(m,n)$. Определим на этом множестве некоторые операции:

Умножение на число: если $A = ||a_{ij}||, \lambda \in \mathbb{K}$ и $D = ||d_{ij}||,$ тогда

$$D = \lambda \cdot A \quad \leftrightarrow \quad d_{ij} = \lambda \cdot a_{ij}.$$

50.

Если матрица A имеет размер $m \times p$, а матрица B — размер $p \times n$, то их произведение C = A * B определяется как матрица размера $m \times n$, элементы которой вычисляются по формуле:

$$C = A \cdot B \quad \Leftrightarrow \quad c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

Перемножить можно только такие матрицы, у которых число столбцов у первого сомножителя совпадает с числом строк второго сомножителя.

51.

При перемножении матриц получается матрица, число строк которой совпадает с числом строк первого сомножителя, а число столбцов - с числом столбцов второго. То есть $A_{n\times m}*A_{m\times k}=A_{n\times k}$

Умножение матриц не является коммутативным:

В общем случае для матриц A и B: A * B ≠ B * A

Причины:

- Размеры матриц могут не позволять выполнить обратное умножение.
- Даже если размеры позволяют, результаты умножения могут отличаться.
- Порядок множителей влияет на результат из-за особенностей определения умножения матриц.

53.

NtB 3.1. Будем обозначать множество $m \times n$ матриц через $Mat_{\mathbb{K}}(m,n)$. Определим на этом множестве некоторые операции:

Транспонирование: пусть $A \in Mat_{\mathbb{K}}(m,n)$, тогда $A^T \in Mat_{\mathbb{K}}(n,m)$:

$$A^T = \|\widetilde{a}_{i,j}\|: \quad \widetilde{a}_{ij} = a_{ji}$$

54.

Свойства операции транспонирования

(а) Согласованность со сложением матриц:

$$\forall A, B \in \operatorname{Mat}_{\mathbb{K}}(m, n) : (A + B)^T = A^T + B^T$$

(б) Согласованность с умножением матрицы на число:

$$\forall A \in \operatorname{Mat}_{\mathbb{K}}(m, n), \forall \alpha \in \mathbb{K} : (\alpha A)^T = \alpha A^T$$

(в) Согласованность с умножением матриц:

$$\forall A, B \in \operatorname{Mat}_{\mathbb{K}}(m, n) : (A \cdot B)^T = B^T \cdot A^T$$

Опр. 4.1. Определителем квадратной матрицы A называется число |A|, которое ставится ей в соответствие следующим образом:

1. Если
$$A_{1\times 1}=(a)$$
, тогда $|A|=a$;

2. Если
$$A_{2\times 2}=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$$
, тогда $\begin{vmatrix} a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21};$

56

3. Если
$$A_{3\times3}=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix}$$
, тогда $|A|$ можно получить разложением по nepsoù cmpose:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}, \end{vmatrix} = a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} +$$

$$+ a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

57, 58

Onp. 1.1. Системой линейных алгебраических уравнений называется система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

При этом x_1, x_2, \dots, x_n называются неизвестными, $\{a_{ij}\}$ - коэффициентами системы и $b_1, b_2, \dots b_m$ - свободные члены.

Свободными членами называются значения, стоящие в правой части уравнений. Неизвестными называются переменные, значения которых нужно найти, чтобы уравнения системы выполнялись.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad \times = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad b = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_m \end{pmatrix}$$

$$A \times = k$$

60.

NtB 1.1. *Решить* систему линейных алгебраических уравнений значит найти такие значения ее неизвестных, при которых все уравнения системы окажутся верными равенствами.

61

Расширенная матрица в рамках решения СЛАУ — это матрица, которая объединяет коэффициенты системы и столбец свободных членов.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \longrightarrow A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{3} \\ a_{31} & a_{32} & a_{33} & b_{3} \end{pmatrix}$$

62

Опр. 2.1. Эквивалентными преобразованиями матрицы называются слелующие три вида преобразований:

- (а) перестановка местами произвольных строк матрицы;
- (б) умножение произвольной строки матрицы на число $\lambda \neq 0$;
- (в) прибавление к произвольной строке матрицы другой строки;

63.

Методы Крамера и Гаусса — это два различных подхода к решению СЛАУ. Они применяются для нахождения значений неизвестных переменных.

 ${f NtB}$ 2.2. Метод Крамера заключается в вычислении определителя матрицы A и определителей, полученных из матрицы A подстановкой столбца b в эту матрицу:

65.

Метод Крамера применим только к квадратным системам с единственным решением, где $\det(A) \neq 0$.

Метод Гаусса заключается в том, чтобы элементарными преобразованиями привести расширенную матрицу системы к верхнетреугольному виду и затем, используя метод подстановки найти решение:

67. (метод обратной матрицы)

Суть метода обратной матрицы:

Если матрица коэффициентов A квадратная и обратимая ($\det(A) \neq 0$), то решение СЛАУ можно найти с помощью обратной матрицы A^{-1} . Решение выражается как: $X = A^{-1} * b$

Где: X — столбец-матрица неизвестных. A^{-1} — обратная матрица к A. b — столбец свободных членов. 68. (метод Гаусса для поиска обратной матрицы)

• метод Гаусса - элементарными преобразованиями строк, необходимо из матрицы A получить единичную матрицу E, обратная матрица тогда возникнет из следующей конструкции:

$$[A|E] \sim [E|A^{-1}]$$

- 69. (метод союзной матрицы для поиска обратной матрицы)
 - метод союзной матрицы вычислив союзную матрицу \widehat{A} , найти A^{-1} с использованием следующей формулы:

$$A^{-1} = \frac{1}{\det A} \widehat{A}^T$$

70.

Алгебраическим дополнением элемента a_{ij} квадратной матрицы A называется число A_{ij} , вычисляемое по формуле: $A_{ij} = (-1)^{\hat{}}(i+j) * M_{ij}$

Где: М_{іі} — минор элемента а_{іі}, то есть определитель матрицы, полученной из А удалением і-й строки и ј-го столбца.