Example Class 4

LIU Chen

Department of Statistics and Actuarial Science, The University of Hong Kong

October 11, 2022

Bayesian Approach: Prior to posterior

Bayesian approach

- X: observable random variate with probability function $f(x \mid \theta)$
- θ : unobservable random variate with a specified prior probability function $\pi(\theta)$:

$$\int_{\Theta}\pi(heta)d heta=1$$
 (continuous $heta$), or $\sum_{ heta\in\Theta}\pi(heta)=1$ (discrete $heta$)

Bayesian Approach: Prior to posterior

Posterior Probability Function

The posterior probability function of θ given the observed data \boldsymbol{x} is defined to be the conditional probability function of θ given $\boldsymbol{X} = \boldsymbol{x}$, that is

$$\pi(\theta \mid x) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{\int_{\Theta} f(\mathbf{x} \mid \theta')\pi(\theta')d\theta'}$$
$$\propto f(\mathbf{x} \mid \theta)\pi(\theta)$$

Bayesian Approach: **Expected Posterior Loss**

Let the prior $\pi(\theta)$ be given for $\theta \in \Theta$. Consider a decision problem with loss function $L(\theta, a)$ for $\theta \in \Theta$ and action $a \in \mathcal{A}$ (action space). Definition. The expected posterior loss given data x, incurred by taking action a, is

$$\mathbb{E}[L(\theta, a) \mid \mathbf{x}] = \int_{\Theta} L(\theta, a) \pi(\theta \mid \mathbf{x}) d\theta$$

Bayesian Approach: Bayesian decision

Definition.

A Bayesian decision is to take an action $a \in \mathcal{A}$ which minimises the expected posterior loss $\mathbb{E}[L(\theta, a) \mid x]$

Writing $f(\mathbf{x}) = \int_{\Theta} \pi(\theta') f(\mathbf{x} \mid \theta') d\theta'$, we have

$$\mathbb{E}[L(\theta, a) \mid \mathbf{x}] = \int_{\Theta} L(\theta, a) \frac{f(\mathbf{x} \mid \theta) \pi(\theta)}{f(\mathbf{x})} d\theta$$
$$= \frac{1}{f(\mathbf{x})} \int_{\Theta} L(\theta, a) f(\mathbf{x} \mid \theta) \pi(\theta) d\theta$$

Thus, minimising $\mathbb{E}[L(\theta, a) \mid x]$ w.r.t. $a \in \mathcal{A}$ is equivalent to minimising $\int_{\Theta} L(\theta, a) f(x \mid \theta) \pi(\theta) d\theta$ w.r.t. $a \in \mathcal{A}$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Point estimation of $\theta \in \mathbb{R}^k$

Consider two examples of loss function L:

- ② $L(\theta, \mathbf{a}) = \|\theta \mathbf{a}\|_1 (\mathbf{a} \in \mathbb{R}^k)$ is minimized by \mathbf{a} satisfying $\mathbb{P}(\theta_i \leq a_i \mid \mathbf{x}) = 1/2, \quad i = 1, \dots, k$. Thus, the Bayesian decision is to set a_i to be the posterior median of θ_i

Hypothesis testing about θ

Consider testing:

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1 \equiv \Theta \backslash \Theta_0$$

Action space: $A = \{a_0 (\leftrightarrow \text{accept } H_0), a_1 (\leftrightarrow \text{reject } H_0)\}$

Define, for some $L_0, L_1 > 0$, the **loss function**

$$L(\theta, a_0) = L_1 \mathbf{1} \{ \theta \in \Theta_1 \}, \quad L(\theta, a_1) = L_0 \mathbf{1} \{ \theta \in \Theta_0 \}$$

Given *x*, the **expected posterior loss**

$$\mathbb{E}\left[L\left(\theta, a_{j}\right) \mid \mathbf{x}\right] = L_{1-j}\mathbb{E}\left[\mathbf{1}\left\{\theta \in \Theta_{1-j}\right\} \mid \mathbf{x}\right] = L_{1-j}\mathbb{P}\left(\theta \in \Theta_{1-j} \mid \mathbf{x}\right)$$

The Bayesian decision is to choose a_j such that $L_{1-j}\mathbb{P}\left(\theta \in \Theta_{1-j} \mid \mathbf{x}\right)$ is minimised, or equivalently, that

$$\frac{L_{1-j}}{L_j} < \frac{\mathbb{P}\left(\theta \in \Theta_j \mid \boldsymbol{x}\right)}{1 - \mathbb{P}\left(\theta \in \Theta_j \mid \boldsymbol{x}\right)}$$

i.e.

reject
$$H_0$$
 if $\mathbb{P}(H_1 \mid \mathbf{x}) = \mathbb{P}(\theta \in \Theta_1 \mid \mathbf{x}) = \int_{\Theta_1} \pi(\theta \mid \mathbf{x}) d\theta > \frac{L_0}{L_0 + L_1}$

Interval estimation of θ I

posterior coverage probability of $[a - \delta, a + \delta]$

Interval estimation of θ II

(b) Desire posterior coverage probability $\geq 1-\alpha \rightarrow \text{minimise } length$

Interval estimation of θ III

(c) Fix posterior coverage probability = $1 - \alpha$ & require "equal-tailed"

Predictive distribution

LIU Chen (STAT6011) Example Class 4 October 11, 2022 11/31

Linear Model Basics

• A linear model includes an $n \times 1$ response vector $\mathbf{y} = (y_1, \dots, y_n)$ and an $n \times p$ design matrix (regressors) $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_p]$. The relationship between \mathbf{y} and \mathbf{X} has the form,

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}).$$

• From standard statistical analysis, the classical unbiased and least-square estimates of the regression parameter β and σ^2 are

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}; \quad \hat{\sigma}^2 = \frac{1}{n-p}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})$$

• The predicted value of y_0 given X_0 is

$$\hat{m{y}}_0 = m{X}_0 \hat{m{eta}} = m{X}_0 (m{X}^\intercal m{X})^{-1} m{X}^\intercal m{y}$$

Hypothesis testing under linear model

$$H_0: \beta_j = c$$
 versus $H_1: \beta_j \neq c$

Wald t-test

$$T = rac{\hat{eta}_j - c}{\sqrt{var(\hat{eta}_j)}} \stackrel{\mathrm{under}}{\sim} \stackrel{H_0}{\sim} t(n-p)$$

Likelihood ratio test

$$LR = -2 \ln \left(\frac{L(\hat{\beta}_{H_0})}{L(\hat{\beta})} \right) \stackrel{\text{under } H_0}{\sim} \chi^2(1)$$

Bayesian linear model

$$m{y} = m{X}m{eta} + m{\epsilon}, \quad m{\epsilon} \sim N(m{0}, \sigma^2 m{I}).$$
 $m{y} | m{X}, m{eta}, \sigma^2 \sim N(m{X}m{eta}, \sigma^2 m{I})$ $m{eta}_j \sim N(0, \sigma_0^2), \ j = 1, \dots, p$ $m{\sigma}^2 \sim \mathit{InvGamma}(\xi, \xi)$

Bayesian linear model (cont'd)

$$\begin{split} f(\boldsymbol{\beta}, \sigma^2 | \boldsymbol{X}, \boldsymbol{y}) &\propto & f(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) \pi(\boldsymbol{\beta}) \pi(\sigma^2) \\ &\propto & (\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})}{2\sigma^2}\right) \exp\left(-\frac{\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta}}{2\sigma_0^2}\right) \\ & (\sigma^2)^{-\xi - 1} \exp(-\frac{\xi}{\sigma^2}) \\ & f(\sigma^2 | \boldsymbol{X}, \boldsymbol{y}, \boldsymbol{\beta}) \propto & (\sigma^2)^{-\xi - n/2 - 1} \exp\left(-\frac{\xi + \frac{1}{2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})}{\sigma^2}\right) \\ & f(\boldsymbol{\beta} | \boldsymbol{X}, \boldsymbol{y}, \sigma^2) \propto \exp\left(-\frac{\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta}}{2\sigma_0^2} - \frac{\boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta}}{2\sigma^2}\right) \end{split}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Bayesian linear model (cont'd)

Sometimes prior distributions might not be valid distributions. For example,

$$\pi(oldsymbol{eta}) \propto 1 \longleftrightarrow {\sf N}(0,\sigma^2), \sigma^2 o \infty$$
 $\pi(\sigma^2) \propto 1/\sigma^2 \longleftrightarrow {\sf InvGamma}(\xi,\xi), \xi o 0$

Even if the priors are improper, as long as the resulting posterior distribution are valid we can still conduct legitimate statistical inference on them

Predicting from linear models

- New covariates $\tilde{\mathbf{X}}$, and wish to predict the corresponding outcome $\tilde{\mathbf{y}}$.
- If $\boldsymbol{\beta}$ and σ^2 are known, then $\tilde{\mathbf{y}} \sim \mathcal{N}(\tilde{\mathbf{X}}\boldsymbol{\beta}, \sigma^2)$
- When parameters are unknown,

$$f(\tilde{y}|\mathbf{y}) = \int f(\tilde{y}|\boldsymbol{\beta}, \sigma^2) f(\boldsymbol{\beta}, \sigma^2|\mathbf{y}) d\boldsymbol{\beta} d\sigma^2$$

• For each posterior draw of $(\beta_{(i)}, \sigma_{(i)}^2)_{i=1}^M$, draw \tilde{y}_i from $N(\tilde{X}\beta_{(i)}, \sigma_{(i)}^2)$. The resulting samples $(\tilde{y}_{(i)})_{i=1}^M$ represent the predictive distribution.

Bayesian Linear Regression (Example)

- Dataset: "data.csv"
- Linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$.

• Frequentist MLE:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \approx (1.085, 0.384, 2.445)^T,$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{x}_i^T \hat{\beta})^2 \approx 0.326.$$

Bayesian Linear Regression (Example)

- Bayesian paradigm: $\beta \sim N(\mu_0, \sigma_0^2 I_3)$ and $\sigma^2 \sim IG(\xi_0, \xi_0)$ where I_n denote the *n*-dimensional identity matrix, $\mu_0 = \mathbf{0}$, $\sigma_0 = 10$, $\xi_0 = 0.1$
- Gibbs sampler:

$$egin{aligned}
ho(\sigma^2|oldsymbol{eta},oldsymbol{X},oldsymbol{y}) &\propto \left(rac{1}{\sigma^2}
ight)^{n/2+\xi_0+1} \mathrm{e}^{-rac{1}{\sigma^2}[(oldsymbol{y}-oldsymbol{X}eta)^T(oldsymbol{y}-oldsymbol{X}eta)/2+\xi_0]} \ &\sim \mathit{IG}(n/2+\xi_0,(oldsymbol{y}-oldsymbol{X}eta)^T(oldsymbol{y}-oldsymbol{X}eta)/2+\xi_0) \
ho(eta|oldsymbol{\mu}_0,\sigma_0,\sigma,oldsymbol{X},oldsymbol{y}) &\propto \mathrm{e}^{-rac{1}{2}(eta-\Sigmaoldsymbol{\eta})^Toldsymbol{\Sigma}^{-1}(eta-\Sigmaoldsymbol{\eta})} \ &\sim \mathit{N}(oldsymbol{\Sigma}oldsymbol{\eta},oldsymbol{\Sigma}), \ oldsymbol{\eta} &= oldsymbol{\mu}_0/\sigma_0^2 + oldsymbol{X}^Toldsymbol{y}/\sigma^2, \ oldsymbol{\Sigma} &= (oldsymbol{I}_3/\sigma_0^2 + oldsymbol{X}^Toldsymbol{X}/\sigma^2)^{-1} \end{aligned}$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へで

Bayesian Linear Regression (Example)

	eta_0	eta_1	β_2	σ^2
mean	1.085	0.382	2.445	0.334
variance	0.00733	0.02331	0.00184	0.00116

Table 1: Posterior means and variances of unknown parameters.

- MLE results. $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$, $\epsilon \sim N(0, \sigma^2)$
- $\hat{\beta}_0 = 1.007$, $\hat{\beta}_1 = 0.518$, $\hat{\beta}_2 = 2.037$, $\hat{\beta}_3 = 0.754$, $\hat{\sigma}^2 = 0.295$
- Posterior means and variances of unknown parameters are listed below.

	β_0	eta_1	β_2	β_3	σ^2
mean	1.007	0.518	2.035	0.756	0.305
variance	0.00693	0.02193	0.00966	0.02741	0.00098

Table 2: Posterior means and variances of unknown parameters.

• Two-sided hypothesis test:

$$H_0: \beta_3 = 0$$
 versus $H_1: \beta_3 \neq 0$.

Likelihood ratio test (LRT):

$$T_{\text{LRT}} = (n-4)(\Lambda^{-2/n} - 1) = \frac{\mathbf{y}^T (\mathbf{H} - \mathbf{H}_{-4})\mathbf{y}}{\mathbf{y}^T (\mathbf{I}_n - \mathbf{H})\mathbf{y}/(n-4)} \sim F(1, n-4),$$
(1)

where \boldsymbol{H} and \boldsymbol{H}_{-4} denote the hat matrices with and without the interaction term.

Wald test:

$$T_{\text{Wald}} = \frac{\hat{\beta}_3^2}{\hat{\sigma}^2 \boldsymbol{e}_4^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{e}_4},$$
 (2)

where $\mathbf{e}_4 = (0, 0, 0, 1)^T$.

22 / 31

$$T_{\text{Wald}} = \frac{\hat{\beta}_3}{\hat{\sigma}\sqrt{(\boldsymbol{X}^{\intercal}\boldsymbol{X})_{3,3}^{-1}}} \sim t(200 - 4) = t(196)$$

$$p\text{-value}_{\text{Wald}} = 1.002 \times 10^{-5}$$

$$-2\ln\left(\frac{L(\hat{\beta}_{H_0})}{L(\hat{\beta})}\right) \stackrel{\text{under } H_0}{=} -2\ln\frac{L(\hat{\beta}_{H_0}, \hat{\sigma}_{H_0})}{L(\hat{\beta}, \hat{\sigma})} \sim \chi^2(1)$$

$$L(\beta, \sigma) = (2\pi)^{-n/2}\sigma^{-n} \exp\left(-\frac{(\boldsymbol{y} - \boldsymbol{X}\beta)^{\intercal}(\boldsymbol{y} - \boldsymbol{X}\beta)}{2\sigma^2}\right)$$

$$p\text{-value}_{\text{LRT}} = 7.926 \times 10^{-6}$$

• The p-value under the two-sided hypothesis test is

$$p$$
-value₂ = $2 - 2\Phi(|Z|) = 2[1 - \max{\{\Phi(Z), \Phi(-Z)\}}].$

We define the two-sided posterior probability (PoP_2) as

$$PoP_2 = 2[1 - max{Pr(\beta_3 > 0|y), Pr(\beta_3 < 0|y)}].$$

• $PoP_2 = 0$

Coin Tossing Problem

- We consider an experiment in which a coin was tossed 12 times, with 9 heads and 3 tails observed.
- ullet Let heta be the probability of observing a head for a toss of the coin
- Suppose that we conduct a one-sided hypothesis test,

$$H_0: \theta \le 0.5 \text{ versus } H_1: \theta > 0.5.$$

ullet Based on the binomial or negative binomial likelihood, the frequentist hypothesis test yields conflicting results under the significance level of lpha=0.05: The null hypothesis is accepted under the binomial distribution, but it is rejected under the negative binomial distribution.

Coin Tossing Problem (Binomial)

• For $Y \sim \text{Bin}(n, \theta)$, we have

$$\Pr(Y \ge y \mid \theta) = \sum_{k=y}^{n} \binom{n}{k} \theta^{k} (1-\theta)^{n-k}$$

$$= \frac{\Gamma(n+1)}{\Gamma(n-y+1)\Gamma(y)} \int_{0}^{\theta} t^{y-1} (1-t)^{n-y} dt = I_{\theta}(y, n-y+1)$$

where $I_x(a, b)$ is the regularized incomplete beta function defined as

$$I_{x}(a,b) = \frac{B(x;a,b)}{B(a,b)}$$
 $B(x;a,b) = \int_{0}^{x} t^{a-1} (1-t)^{b-1} dt$
 $B(a,b) = \int_{0}^{1} t^{a-1} (1-t)^{b-1} dt$

p-value_{Bin} = $I_{0.5}(y, n - y + 1)$

LIU Chen (STAT6011) Example Class 4 October 11, 2022 26 / 31

Coin Tossing Problem (Negative-Binomial)

• For $Y \sim NB(r, \theta)$, we have

$$Pr(Y \ge y \mid r, \theta) = \sum_{k=y}^{\infty} {k+r-1 \choose k} \theta^k (1-\theta)^r$$
$$= \frac{\Gamma(y+r)}{\Gamma(r)\Gamma(y)} \int_0^{\theta} t^{y-1} (1-t)^{r-1} dt$$
$$= I_{\theta}(y, r)$$

•

$$p$$
-value_{NB} = $I_{0.5}(y, r) = I_{0.5}(y, n - y)$

- Under Bayesian paradigm, we assume a symmetric beta prior $(\alpha = \beta)$ for θ , i.e., $\theta \sim \text{Beta}(\alpha, \beta)$.
- For $\alpha=2,1,0.5,0.1,0.01,0.001,0.0001,0.00001$, calculate $P(H_0|n=12,y=3)$ and comment on your findings in comparison with the *p*-values obtained under the binomial and negative binomial likelihood.
- Plot (i) p-value $_{\rm B}$ against $P(H_0|n,y)$ (ii) p-value $_{\rm NB}$ against $P(H_0|n,y)$ as sample size n increases while fixing y/n=0.75. For the Bayesian paradigm, we set $\alpha=\beta=0.01$.

$P(H_0 n,y)$		
0.0592346		
0.0461426		
0.0394446		
0.0340598		
0.0328493		
0.0327283		
0.0327162		
0.0327150		

Figure 1: Plots of $P(H_0|n, y)$ against $\alpha = (2, 1, 0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001)$.

Figure 2: Plots of $P(H_0|n, y)$ against p-value_B (left) and p-value_{NB} (right)

- 4 🗆 ト 4 🗗 ト 4 🖹 ト 4 🖹 - 釣 Q (C)

31/31

LIU Chen (STAT6011) Example Class 4 October 11, 2022