From global to regional effects: a comparison of the different approaches

Vasilis Gkolemis

May 24, 2023

1 Introduction

2 Background

Let $\mathcal{X} \in \mathbb{R}^d$ be the d-dimensional feature space, \mathcal{Y} the target space and $f(\cdot): \mathcal{X} \to \mathcal{Y}$ the black-box function. We use index $s \in \{1, \ldots, d\}$ for the feature of interest and $c = \{1, \ldots, d\} - s$ for the rest. For convenience, to denote the input vector, we use $(x_s, \mathbf{x_c})$ instead of $(x_1, \cdots, x_s, \cdots, x_D)$ and, for random variables, (X_s, X_c) instead of $(X_1, \cdots, X_s, \cdots, X_D)$. The training set $\mathcal{D} = \{(\mathbf{x}^i, y^i)\}_{i=1}^N$ is sampled i.i.d. from the distribution $\mathbb{P}_{X,Y}$. Finally, $f^{\leq \text{method}}(x_s)$ denotes how $\leq \text{method} \geq \text{defines}$ the feature effect and $\hat{f}^{\leq \text{method}}(x_s)$ how it estimates it from the training set.

3 Feature Effect

The purpose of any feature effect (FE) method is to explain the 'black-box' function $f: \mathbb{R}^D \to \mathbb{R}$ using a Generalized Additive Model $f_{\leq method}(x) = c + f_1(x_1) + \cdots + f_D(x_D)$, as a global surrogate.

Table 1: Table Caption

Name	Definition (f)	Approximation (\hat{f})
PDP	$\mathbb{E}_{X_c}[f(x_s, X_c)]$	$\frac{1}{N}\sum f(x_s, x_c^{(i)})$
dPDP	$\mathbb{E}_{X_c}\left[\frac{\partial f(x_s, X_c)}{\partial x_s}\right]$	$\frac{1}{N} \sum \frac{\partial f(x_s, x_c^{(i)})}{\partial x_s}$

- 3.1 Approaches
- 4 Interaction Index
- 4.1 Approaches
- 5 Regional Effects
- 5.1 Approaches
- 6 Can we evaluate the approaches?
- 6.1 Idea 1

We may split every $f: \mathbb{R}^D \to \mathbb{R}$ into a model without interaction between $\mathbf{x_c}$ and x_s , i.e., $f_{ni}(\mathbf{x}) = f^{(x_s)}(x_s) + f^{(\mathbf{x_c})}(\mathbf{x_c})$, and the interaction term $\kappa(\mathbf{x_c}, x_s)$:

$$f(\mathbf{x}) = \underbrace{f^{(x_s)}(x_s) + f^{(\mathbf{x_c})}(\mathbf{x_c})}_{f_{ni}(\mathbf{x})} + \kappa(\mathbf{x_c}, x_s)$$

A simple approach is defining f to be a Neural Network and f_{ni} a Neural Additive Model without interaction between x_s and $\mathbf{x_c}$. Then $\kappa(\mathbf{x_c}, x_s) = f(\mathbf{x}) - f_{ni}(\mathbf{x})$ and we quantify the importance of κ as $\mathbb{E}_{X_c, X_s}[|\kappa(X_c, X_s)|] \approx \sqrt{\frac{1}{N} \sum_i \kappa^2(\mathbf{x_c}, x_s)}$.

6.2 Idea 2