Semi-supervised Classification with Graph Convolutional Neural Networks

by Thomas N. Kipf and Max Welling

Daan Michiels

February 21, 2018

Semi-supervised classification on graphs

undirected, connected N nodes each node has C features

some nodes are labeled want to label the rest

Existing approach:

smoothing labels over graph

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}$$
Supervised loss
$$\sum_{i,j} A_{ij} \| f(X_i) - f(X_j) \|^2$$

Idea:

CNN on graphs

(filtering? convolution?)

Proposal: spectral convolutions, to first order (kind of)

Convolutions on graphs: expensive $O(N^2)$

 \rightarrow Approximate, in this case "to first order" (in Fourier domain, multiply by linear function)

Important property: only need a node and its neighbors!

After renormalization trick, get $H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$ trainable weights and $H^{(0)} = X$, the node features. $\tilde{A} = A + I_N$

Classification setup

Calculate $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$ in pre-processing.

Two-layer model for classification:

$$Z = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right).$$

Time complexity: $O(|\mathcal{E}|CHF)$ N×C

xC Cx

Batch gradient descent Dropout TensorFlow on GPU

Experiments

Three types: citation networks, knowledge graph, random graphs

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Experiments

Table 3: Comparison of propagation models.

Description		Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5)	K = 3	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8	79.5	74.4
	K = 2		69.6	81.2	73.8
1st-order model (Eq. 6)		$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)		$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)		$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1st-order term only		$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron		$X\Theta$	46.5	55.1	71.4

Figure 2: Wall-clock time per epoch for random graphs. (*) indicates out-of-memory error.

Limitations and future work

- Memory requirement
- ▶ No directed graphs, edge features
- Assumption of locality
- ▶ Importance of self-connections vs. edges? $(\tilde{A} = A + \lambda I_N)$
- ► Poor performance for highly regular graphs (e.g. image classification)

Reference: arXiv:1609.02907

Questions?