Decision methods for arithmetic

Third summer school on formal methods

Leonardo de Moura Microsoft Research

Symbolic Reasoning

Software analysis/verification tools need some form of symbolic reasoning

Logic is "The Calculus of Computer Science"

Zohar Manna

Saturation x Search

Proof-finding

Model-finding

SAT

$$p_1 \lor \neg p_2$$
, $\neg p_1 \lor p_2 \lor p_3$, p_3 $p_1 = true$, $p_2 = true$, $p_3 = true$

CNF is a set (conjunction) set of clauses Clause is a disjunction of literals Literal is an atom or the negation of an atom

Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

Resolution

$$C \vee l$$
, $D \vee \neg l \Rightarrow C \vee D$

$$l, \neg l \Rightarrow unsat$$

Improvements

Delete tautologies $l \lor \neg l \lor C$ Ordered Resolution Subsumption (delete redundant clauses)

C subsumes C V D

. . .

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\
\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r$$

$$\neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ q \lor r, \ r \qquad \Rightarrow \\ \neg p \lor \neg q \lor r, \ \neg p \lor q, \ p \lor r, \ \neg r, \ \neg q \lor r, \ r \rightarrow r, \$$

unsat

Resolution: Problem

Exponential time and space

Unit Resolution

$$C \lor l, \neg l \Rightarrow C$$

$$C \lor l, \neg l \Rightarrow C$$
subsumes
$$C \lor l$$

Complete for Horn Clauses

$$\neg q_1 \lor \dots \lor \neg qn \lor p$$

DPLL = Unit Resolution + Split rule

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$, $\neg x \lor y$, $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 $x \lor y$,
 $\neg x \lor y$,
 $x \lor \neg y$,

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$

$$x \lor y$$
, $\neg x \lor y$, $x \lor \neg y$, $\neg x \lor \neg y$
 y , $\neg y$, x , x , x , x , x

CDCL: Conflict Driven Clause Learning

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$

Propagations

Propagations

Propagations

Decisions

Model Assignments

Model Assignments

We can't falsify any fact in the trail.

Conflict

We can't find a value of y s.t. $4 + y^2 \le 1$

Conflict

We can't find a value of
$$y$$
 s.t. $4 + y^2 \le 1$

Learning that
$$\neg(x^2 + y^2 \le 1) \lor \neg(x=2)$$
 is not productive

$$x \ge 2, \qquad (\neg x \ge 1 \lor y \ge 1), \qquad (x^2 + y^2 \le 1 \lor xy > 1)$$

$$x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1 \quad x^2 + y^2 \le 1 \quad x \to 2$$

$$\neg(x^2 + y^2 \le 1) \lor x \le 1$$

Learned by resolution

$$\neg(x \ge 2) \lor \neg(x^2 + y^2 \le 1)$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \rightarrow x \ge 1 \rightarrow y \ge 1$ $\neg (x^2 + y^2 \le 1)$
 $\neg (x \ge 2) \lor \neg (x^2 + y^2 \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

MCSat – Finite Basis

Every theory that admits quantifier elimination has a finite basis (given a fixed assignment order)

$$F[x_1, \dots, x_n, y_1, \dots, y_m] \qquad y_1 \to \alpha_1, \dots, y_m \to \alpha_m$$

$$\exists x_1, \dots, x_n : F[x_1, \dots, x_n, y]$$

$$C_1[y_1, \dots, y_m] \land \dots \land C_k[y_1, \dots, y_m]$$

$$\neg F[x_1, \dots, x_n, y_1, \dots, y_m] \lor C_k[y_1, \dots, y_m]$$

Every "finite" theory has a finite basis

$$F[x_1, \dots, x_n, y_1, \dots, y_m]$$
 $y_1 \to \alpha_1, \dots, y_m \to \alpha_m$

$$y_1 = \alpha_1, \dots, y_m = \alpha_m$$

Theory of uninterpreted functions has a finite basis

Theory of arrays has a finite basis [Brummayer- Biere 2009]

In both cases the Finite Basis is essentially composed of equalities between existing terms.

MCSat: Termination

Propagations

Decisions

Model Assignments

Maximal Elements

|FiniteBasis|

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \longrightarrow x \ge 1 \longrightarrow y \ge 1$ $x^2 + y^2 \le 1 \longrightarrow x \le 1$
Conflict
 $\neg (x \ge 2) \lor \neg (x \le 1)$ $\neg (x^2 + y^2 \le 1) \lor x \le 1$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$
 $x \ge 2 \to x \ge 1 \to y \ge 1 \quad \neg(x^2 + y^2 \le 1)$

$$x \ge 2, \qquad (\neg x \ge 1 \lor y \ge 1), \qquad (x^2 + y^2 \le 1 \lor xy > 1)$$

$$x^2 \qquad \le 1$$
Conflict
$$\neg (x \ge 2) \lor \neg (x \le 1) \qquad \neg (x^2 + y^2 \le 1) \lor x \le 1$$

$$x \ge 2$$
, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $\Rightarrow x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1 \lor xy > 1)$
 $\Rightarrow x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1)$
 $\Rightarrow x \ge 2$, $(\neg x \ge 1 \lor y \ge 1)$, $(x^2 + y^2 \le 1)$

$$x < 1 \lor p$$
, $\neg p \lor x = 2$

 $x \rightarrow 1$

$$x < 1 \lor p, \qquad \neg p \lor x = 2$$

$$x \to 1 \qquad p$$

Conflict (evaluates to false)

New clause

$$x < 1 \lor x = 2$$

New clause

$$x < 1 \lor x = 2$$

x < 1

New clause

$$x < 1 \lor x = 2$$

MCSat: Architecture

MCSat: development

