

## **Answer Key for Practice Questions on Complexity (Week 3)**

## **Tutorial Questions**

1. O(n)

2.

|   | Number of steps                            | Big O                    |
|---|--------------------------------------------|--------------------------|
| а | $9 + 0.02N^2 + 0.1N$                       | O(N <sup>2</sup> )       |
| b | $N^2 + 2N^{-3}$                            | O(N <sup>2</sup> )       |
| С | N! + 100N <sup>20</sup>                    | O(N!)                    |
| d | $2^N + N!$                                 | O(N!)                    |
| е | $5N(log_2 N) + N X sqrt(N)$                | O(N <sup>1.5</sup> )     |
| f | $N^2 (log_2 N) + N (log_2 N)^2$            | O(N <sup>2</sup> log N)  |
| g | $10N^2\log(N) + 5N^3 + N^{\log(N)}$        | O(N <sup>log N</sup> )   |
| h | $10^5 + 10^4 (\log(N))^2 + 10^3 \log(N^2)$ | O((log N) <sup>2</sup> ) |

See <a href="https://youtu.be/GEQPI5FWifc">https://youtu.be/GEQPI5FWifc</a>

- 3. The complexities are:
  - a. O(n + m) or O(max(n, m))
  - b. O(n<sup>2</sup>)
  - c. O(n<sup>2</sup>)

See 3(c): <a href="https://youtu.be/ezIA4GqDzx8">https://youtu.be/ezIA4GqDzx8</a>

- 4. The complexities are:
  - a. For f(n), it's O(n)
  - b. For g(n), it's  $O(n^2)$
  - c. For h(n), it's  $O(n^2)$

See <a href="https://youtu.be/Pc-kO4IOMHc">https://youtu.be/Pc-kO4IOMHc</a>

- 5. The complexities:
  - a.  $O(n^2)$
  - b.  $O(n^3)$

See <a href="https://youtu.be/all1ZpUNhic">https://youtu.be/all1ZpUNhic</a>

- 6. The complexities:
  - a.  $O(n^3)$
  - b. O(n<sup>4</sup>)
  - c.  $O(n^3 \log n)$

See (a) <a href="https://youtu.be/LCpce0\_-0AA">https://youtu.be/LCpce0\_-0AA</a>

- (b) <a href="https://youtu.be/hvKe-AFm2Vs">https://youtu.be/hvKe-AFm2Vs</a>
- (c) <a href="https://youtu.be/TKjHmpCe9H0">https://youtu.be/TKjHmpCe9H0</a>



## **Extra Practice Questions**

7. O(1)

8.

|   | Number of steps                        | Big O                    |
|---|----------------------------------------|--------------------------|
| а | $2N^2 + 2N^3 + 3N^4$                   | O(N <sup>4</sup> )       |
| b | $N^2 \times 2N^{-3}$                   | O(N <sup>-1</sup> )      |
| С | N! <b>X</b> 100N <sup>20</sup>         | O(N! x N <sup>20</sup> ) |
| d | 5 <b>x</b> (2N)!                       | O((2N)!)                 |
| е | $N(log_2 N) + N(log_3 N) + N(log_4 N)$ | O(N log N)               |
| f | $N(log_2 (2N))$                        | O(N log N)               |
| g | $1000 + 5\log(N) + 2N + N^2 + 2^{2N}$  | O(2 <sup>2N</sup> )      |
| h | $\log(N^5) + \log_5(N) + 5N$           | O(N)                     |

- 9. The complexities are:
  - a. O(n)
  - b. O(n<sup>2</sup>)
  - c. O(nk)
- 10. The complexities are:
  - a.  $O(n^2)$
  - b. O(n log n)
  - c.  $O(n^2)$
- 11. Answers:
  - a. O(2<sup>n</sup>)
  - b. O(1)
- 12. Answers:
  - a. These lines set **ith\_min** to the next smallest value after **min**.

So, if a = [1, 2, 3, 4, 5] (position of the elements in a does not matter), max = 5 and min = 1. **ith\_min** will be set to 2.

If min = 2, ith\_min will be set to 3.

If min = 3, ith\_min will be set to 4.

- b. i = 4, ith\_min = 6
- c.  $O(n^2)$
- d. Possible to come up with an algorithm with time complexity of O(n log n).

~End