# SAYISAL ANALIZ



Ders İçeriği

- Polinom Enterpolasyonu
- Lagrange Enterpolasyonu
- 🔖 Örnek Uygulamalar

9. Hafta

Bir fonksiyonun sonlu sayıdaki  $x_0, x_1, \dots, x_n \in \mathbb{R}$  noktalarında aldığı  $f(x_0), f(x_1), \dots, f(x_n)$  değerleri bilinsin (fonksiyonun kendisi bilinmiyor). Bu noktalardan geçen n. dereceden bir tek,

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

polinomu vardır (i=0,1,2...,n için  $P_n(x_i)=f(x_i)$ ).  $P_n(x)$  polinomu elde edilip bir x noktasındaki f(x) değerinin yerine  $P_n(x)$  alınırsa, bilinmeyen f(x) değeri yaklaşık  $f(x) \approx f(x) = P_n(x)$  olarak hesaplanmış olur. Bu yaklaşıma **polinom enterpolasyonu** (polinom kullanarak ara değer bulma) denir.

```
(x_0,f(x_0)) \\ (x_1,f(x_1)) \\ \dots \\ (x_n,f(x_n)) \quad \text{noktalarından geçen } n. \text{ dereceden} \quad P_n(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \\ \text{polinomunu belirlemek için} \quad P_n(x_i) = f(x_i)) \quad , \quad i = 0,1,2...,n \quad \text{ yani,} \\ \begin{cases} a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n = f(x_0) \\ a_0 + a_1x_1 + a_2x_1^2 + \dots + a_nx_1^n = f(x_1) \\ \vdots \\ a_0 + a_1x_n + a_2x_n^2 + \dots + a_nx_n^n = f(x_n) \end{cases}
```

### Polinom Enterpolasyonu (Ara Değer Bulma)

denklem siteminden  $a_0, a_1, a_2, ..., a_n$  katsayılarının belirlenmesi gerekir. Bu lineer denklem sistemi çözülerek bu katsayılar belirlenebilir.

$$\begin{bmatrix} 1 & x_0 & x_0^2 \dots & x_0^n \\ 1 & x_1 & x_1^2 \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n^n) \end{bmatrix}$$

denklem sistemindeki

$$A = \begin{bmatrix} 1 & x_0 & x_0^2 \dots & x_0^n \\ 1 & x_1 & x_1^2 \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \dots & x_n^n \end{bmatrix}$$

9. Hafta

katsayılar matrisi Vandermonde matrisi olarak bilinir ve singüler değildir.

### Polinom Enterpolasyonu (Ara Değer Bulma)

Verilen noktolordan hareketle by noktolorin
ilk dördönden Gçöncü dereceden bir polinom
(kübik) eercirmek mimkinmidir. Éper
mimkinse polinomu bularak P(3) =? hesaployini?

8. Hafta

drnek

$$a_0 + a_1(3,2) + a_2(3,2)^2 + a_3(3,2)^3 = 22$$
  
 $a_0 + a_1(2,7) + a_2(2,7)^2 + a_3(2,7)^3 = 17.8$   
 $a_0 + a_1(1) + a_2(1)^2 + a_3(1)^3 = 14.2$ 

zeklinde dort denklem sistemi elde edilin; sistem Eszülerek ...

dolayisigla polinomumuz.

8. Hafta

relundedir. Buna poire

6. P(3) = 20,212 olarak elde edilir. Sayfa

Örnek 1: Sinüs fonksiyonu için

$$x_0 = 0 \sin(x_0) = \sin(0) = 0 (0,0)$$

$$x_1 = \pi/2 \sin(x_1) = \sin(\pi/2) = 1 (\frac{\pi}{2}, 1)$$

$$x_2 = \pi \sin(x_2) = \sin(\pi) = 0 (\pi, 0)$$

$$x_3 = 3\pi/2 \sin(x_3) = \sin(3\pi/2) = -1 (\frac{3\pi}{2}, -1)$$

$$x_4 = 2\pi$$
  $\sin(x_4) = \sin(2\pi) = 1$ 

 $P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ 

olmak üzere,  $(2\pi,1)$ 

noktalarından geçen 4. derece

polinomunu bulmaya çalışalım.

| <u>xi</u> | fxi |
|-----------|-----|
| 0         | 0   |
| 1.5708    | 1   |
| 3.1416    | 0   |
| 4.7124    | -1  |
| 6.2832    | 0   |



Fonksiyonların katsayıları >> A=[ones(5,1) xi xi.^2 xi.^3 xi.^4] 1.5708 2.4674 3.8758 6.0881 3.1416 9.8696 31.006 97,409 493.13 4.7124 22.207 104.65 6.2832 39.478 248.05 1558.5 >> a=inv(A)\*fxi 1.6977 -0.81057 0.086004 -1.0408e-017

9. Hafta

 $P_4(x) = p4 = 1.6977 * x - 0.81057 * x^2 + 0.086004 * x^3 - 1.0408 * 10^{-17} * x^4$ 

$$\sin(x) = -(x-\pi) + \frac{1}{6}(x-\pi)^3 - \frac{1}{120}(x-\pi)^5 - \frac{1}{720}(x-\pi)^7 - \dots \quad \text{olmak ""uzere"} \quad p3(x) = -(x-\pi) + \frac{1}{6}(x-\pi)^3$$

fonksiyonunu sinüs fonksiyonu yerine kullanalım.



Taylor açılımındaki,

$$p5(x) = -(x - \pi) + \frac{1}{6}(x - \pi)^3 - \frac{1}{120}(x - \pi)^5$$

kısmı sinüs fonksiyonu yerine kullanırsak yaklaşım biraz daha da ha iyi olacaktır ( grafikte yeşil çizgi).



9. Hafta

## Birinci Dereceden Polinom Enterpolasyonu (Doğrusal Enterpolasyon)

Bir fonksiyonun  $x_0, x_1 \in R$  noktalarındaki  $f(x_0), f(x_1)$  değerleri bilinsin (ya da kolay  $x_0 < x < x_1$  olmak üzere, x bir ara değer olsun ve f(x) bilinmesin (kolay hesaplanamasın). f(x) değerini birinci derecen polinom interpolasyonu ile hesaplamaya çalışalım.

$$\dfrac{(x_0,f(x_0))}{(x_1,f(x_1))}$$
 noktalarından geçen doğru denklemi, 
$$y-y_0=m(x-x_0) \ ,$$

$$m$$
= eğim=  $\frac{f(x_1) - f(x_0)}{x_1 - x_0}$  olmak üzere,

 $x_1 - x_0$  birinci dereceden interpolasyon polinomu  $P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} \cdot (x - x_0)$ 

tır.

Bu interpolasyon polinomunu, 
$$\boxed{P_1(x) = \frac{x - x_1}{x_0 - x_1} \cdot f(x_0) + \frac{x - x_0}{x_1 - x_0} \cdot f(x_1)} \text{ biçiminde yazılsın.}$$

$$P_1(x) \text{ polinomu} \quad L_0(x) = \frac{x - x_1}{x_0 - x_1} = -\frac{x_1}{x_0 - x_1} + \frac{1}{x_0 - x_1} x \qquad \text{ve} \quad L_1(x) = \frac{x - x_0}{x_1 - x_0} = -\frac{x_0}{x_1 - x_0} + \frac{1}{x_1 - x_0} x$$

Polinomları cinsinden,

9. Hafta

$$P_1(x) = L_0(x) \cdot f(x_0) + L_1(x) \cdot f(x_1) \quad \text{olarak yazılabilir.} \quad L_0(x), L_1(x) \text{ polinomları için}$$

$$L_0(x_0) = 1, L_0(x_1) = 0$$
  $L_1(x_0) = 0, L_1(x_1) = 1$  dir.

#### Langrange Enterpolasyonu

Bir f(x) fonksiyonunun  $x_0, x_1, x_2, ... x_n$  gibi (aralıkları eşit olan veya olmayan) ayrık noktalarda bilinen  $f(x_0), f(x_1), f(x_2), ..., f(x_n)$  değerleri varsa ve bu f(x) fonksiyonunun, enterpolasyon fonksiyonu P(x) 'i veren Lagrange Enterpolasyon Formülü,

$$P(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$

şeklinde verilir.

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + \dots + L_n(x)f(x_n)$$

genel ifadesi kullanılır. Burada  $L_i$ , Lagrange enterpolasyon katsayıları,

$$L_{i}(x) = \prod_{j=0}^{n} \left( \frac{x - x_{j}}{x_{i} - x_{j}} \right)$$

$$i \neq i$$

ifadesi ile tanımlanmıştır. n. dereceden  $L_i$  katsayısı,

9. Hafta

$$L_i(x) = \frac{(x - x_0)(x - x_1)(x - x_2)...(x - x_{n-1})(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$

ile hesaplanır.

#### Langrange Enterpolasyonu

#### ÖRNEK -1

Aşağıda tabloda verilen noktalardan geçen polinomu bulunuz.

Bu problem için denklemden,

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$
 elde edilir.

Burada Lagrange enterpolasyon katsayıları,

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Sayısal değerler P(x) ifadesinde yerine yazılırsa,

$$P(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)} \cdot 1 + \frac{(x-0)(x-2)}{(1-0)(1-2)} \cdot 2 + \frac{(x-0)(x-1)}{(2-0)(2-1)} \cdot 4$$

elde edilir. Bu ifade düzenlendiğinde enterpolasyon polinomu olarak

$$P(x) = \frac{1}{2}x^2 + \frac{1}{2}x + 1$$
 bulunur.

9. Hafta

$$\frac{|X|}{|Y|} = \frac{|X|}{|X|} =$$

fliz7 = 0.841 + 7.852-0.382+0.05h

f11271 = 8.45

3. Hafta SAÜ YYurtaY

$$L_0(x) = \frac{(x-20) \cdot (x-40) \cdot (x-60) \cdot (x-80) \cdot (x-100)}{(0-20) \cdot (0-40) \cdot (0-60) \cdot (x-80) \cdot (0-100)} \cdot 26 = 0.19$$

$$L_1(x) = \frac{(x-0) \cdot (x-40) \cdot (x-60) \cdot (x-80) \cdot (x-100)}{(20-0) \cdot (20-40) \cdot (20-60) \cdot (20-80) \cdot (20-100)} -48,6 = -2,93$$

$$L_{2}(x) = \frac{(x-0) \cdot (x-20) \cdot (x-60) \cdot (x-80) \cdot (x-100)}{(40-0) \cdot (40-60) \cdot (40-80) \cdot (40-100)} \cdot 61.6 = 17.37$$

$$L_3(x) = \frac{(x-0) \cdot (x-20) \cdot (x-40) \cdot (x-80) \cdot (x-100)}{(60-0) \cdot (60-20) \cdot (60-40) \cdot (60-80) \cdot (60-100)} \cdot 71,2 = 60,23$$

$$24(x) = \frac{(x-0) \cdot (x-20) \cdot (x-40) \cdot (x-60) \cdot (x-100)}{(80-0) \cdot (80-20) \cdot (80-40) \cdot (80-60) \cdot (80-100)} \cdot 74.18 = -6.32$$

$$L_5(x) = \frac{(x-0) \cdot (x-20) \cdot (x-40) \cdot (x-60) \cdot (x-80)}{(100-0) \cdot (100-10) \cdot (100-60) \cdot (100-80)} \cdot 75.2 = 0.7$$

### Langrange Enterpolasyonu

#### ÖRNEK

Aşağıda tabloda verilen noktalardan geçen Lagrange Enterpolasyon polinomunun P(3.2) = ? bulunuz  $\frac{x \mid 0 \mid 1 \mid 2 \mid 3 \mid 4}{f(x) \mid 4 \mid 6 \mid 10 \mid 48 \mid 94}$ 

9. Hafta

#### Langrange Enterpolasyonu

#### ÖRNEK

Aşağıda tabloda verilen noktalardan geçen Lagrange Enterpolasyon polinomunun P(3.2) = ? bulunuz  $\frac{x \mid 0 \mid 1 \mid 2 \mid 3 \mid 4}{f(x) \mid 4 \mid 6 \mid 10 \mid 48 \mid 94}$ 

Lagrange enterpolasyon formülü,

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2) + L_3(x)f(x_3) + L_4(x)f(x_4)$$

şeklinde düzenlenir, bu ifadedeki L(x) katsayıları,

$$L_0(x) = \frac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)}$$

$$L_1(x) = \frac{(x-x_0)(x-x_2)(x-x_3)(x-x_4)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)(x_1-x_4)}$$

$$L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)}$$

$$L_3(x) = \frac{(x-x_0)(x-x_1)(x-x_2)(x-x_4)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)(x_3-x_4)}$$
9.
Hafta 
$$L_4(x) = \frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)}{(x_4-x_0)(x_4-x_1)(x_4-x_2)(x_4-x_3)}$$

Tablodaki değerler yerine yazılarak gerekli hesaplamalar yapılırsa

...



Böylece enterpolasyon polinom değeri,

$$P(3.2) = 58.4128$$

olarak bulunur.

## Langrange Enterpolasyonu

#### Örnek:

Üçüncü dereceden bir polinomu ele alalım. Polinomun belirli noktalarda aldığı değerler aşağıdaki gibi olsun. Bu polinomu bularak x=2.3 değerine karşılık P(x)= değerini bulunuz

| x    | 0  | 1 | 2  | 3   | 4  |
|------|----|---|----|-----|----|
| P(x) | 10 | 4 | -8 | -14 | -2 |

9. Hafta

### Langrange Enterpolasyonu

#### Örnek:

Üçüncü dereceden bir polinomu ele alalım. Polinomun belirli noktalarda aldığı değerler aşağıdaki gibi olsun. Bu polinomu bularak x=2.3 değerine karşılık P(x)= değerini bulunuz

| χ    | 0  | 1 | 2  | 3   | 4  |
|------|----|---|----|-----|----|
| P(x) | 10 | 4 | -8 | -14 | -2 |

Çözüm:

L1(x)= 
$$\frac{(x-1)(x-2)(x-3)(x-4)}{(0-1)(0-2)(0-3)(0-4)} = \frac{x^4 - 10x^3 + 35x^2 - 50x + 24}{24}$$
L2(x)= 
$$\frac{(x-0)(x-2)(x-3)(x-4)}{(1-0)(1-2)(1-3)(1-4)} = \frac{x^4 - 9x^3 + 26x^2 - 24x}{6}$$
L3(x)= 
$$\frac{(x-0)(x-1)(x-3)(x-4)}{(2-0)(2-1)(2-3)(2-4)} = \frac{x^4 - 8x^3 + 19x^2 - 12x}{4}$$
L4(x)= 
$$\frac{(x-0)(x-1)(x-2)(x-4)}{(3-0)(3-1)(3-2)(3-4)} = \frac{x^4 - 7x^3 + 14x^2 - 8x}{6}$$
L5(x)= 
$$\frac{(x-0)(x-1)(x-2)(x-3)}{(4-0)(4-1)(4-2)(4-3)} = \frac{x^4 - 6x^3 + 11x^2 - 6x}{24}$$

$$P(x)=10L1(x)+4L2(x)-8L3(x)-14L4(x)-2L5(x)$$

9. Hafta

$$P(x)=2x^3-9x^2+x+10$$

19.  $P(2.3) = 2(2.3)^3 - 9(2.3)^2 +$ Sayfa

$$P(2.3) = 2(2.3)^3 - 9(2.3)^2 + 2.3 + 10 = -10,976$$

# Örnek:

Bir f(x) fonksiyonunun x=0,1,2 noktalarındaki değerleri sırasıyla f=1,2,4 olarak verilmiş olsun. N=2 alınması halinde Lagrange fonksiyonları

### Örnek:

Bir f(x) fonksiyonunun x=0,1,2 noktalarındaki değerleri sırasıyla f=1,2,4 olarak verilmiş olsun. N=2 alınması halinde Lagrange fonksiyonları

$$L_0 = \frac{(x-1)(x-2)}{(0-1)(0-2)}; \qquad L_1 = \frac{(x-0)(x-2)}{(1-0)(1-2)}; \qquad L_2 = \frac{(x-0)(x-1)}{(2-0)(2-1)}$$

olarak hesaplanabilir. Bu durumda interpolasyon fonksiyonu

$$f(x) = \frac{(x-1)(x-2)}{2} \times 1 + \frac{(x-0)(x-2)}{(-1)} \times 2 + \frac{(x-0)(x-1)}{2} \times 4$$

şeklinde olup, bu fonksiyon x için düzenlenirse

$$f(x) = \frac{1}{2}x^2 + \frac{1}{2}x + 1$$

şekline getirilebilir. Aynı fonksiyonu N=2 inci dereceden polinomu

$$f(x) = a_0 + a_1 x + a_2 x^2$$

şeklinde tanımlayıp, veri noktaları yardımıyla yazılacak

$$1 = a_0 + a_1 0 + a_2 0$$
  

$$2 = a_0 + a_1 1 + a_2 1$$
  

$$4 = a_0 + a_1 2 + a_2 4$$

lineer denklem takımını çözerek de elde etmek mümkündür.

# Uygulama:

Paraşütle atlayan bir sporcunun, zamana göre hız değişimi aşağıda verilmiştir, Buna göre

- a) Hızın zamana göre değişimini gösteren (f(x) veya p(x)) polinomu bulunuz ?
- b) Sporcunun 5. sn deki düşme hızını bulunuz?

| $\mathbf{t}_{\mathrm{i}}$ | P(t <sub>i</sub> ) |
|---------------------------|--------------------|
| 0                         | 0                  |
| 2                         | 24                 |
| 4                         | 80                 |
| 6                         | 168                |
| 8                         | 288                |

### Langrange Enterpolasyonu

```
% lagrange enterpolasyonu
          x=[0 1 2 3 4]; % x değerlerinin verilmesi
          f=[10 4 -8 -14 -2]; % Y değerlerinin verilmesi
     4
     5 -
                               % x 'in sahip olduğu değerlerin sayısı
          n=length(x);
     6
     7 -
          xd=2.3:
                                  % ilk değerin verilmesi
    8 -
          polinom=0;
    9
    10 -
          for i=1:n % polinomun hesaplanması
    11 -
             v=[1:(i-1) (i+1):n];
    12 -
              pay=polyval(poly(x(v)), xd);
    13 -
              payda=polyval(poly(x(v)), x(i));
                                                         >> lagrange
    14 -
              polinom = polinom + pay / payda*f(i);
                                                         f(2.3) = -10.976
    15 -
          end
    1.6
 9. 17
          % istenen ara değerin görüntülenmesi
Hafta
          disp(['f(' num2str(xd) ')=' num2str(polinom)]);
    19
23.
Sayfa
```

#### PROBLEMLER

Problem 1: Aşağıdaki veri tablosu bir polinoma aittir. Bu polinomun derecesini ve x in en büyük kuvvetine sahip olan terimin katsayısını bulunuz.

Problem 2: Aşağıdaki veri tablosu için ileri yön sonlu farklar tablosunu hazırlayınız. Hazırlanacak olan bu tabloda x=4 olan satırı temel satır olarak ele alıp f(4.31) için enterpolasyon yapınız.

Problem 3: Aşağıda verilmiş olan tablodan faydalanarak f(3.0) yi bulunuz.

Problem 4: Aşağıda tablo halinde verilen fonksiyon için Lagrange enterpolasyonunu kullanarak f(4.3) ü bulunuz.

Problem 5:

Hatablosunu kullanarak

- a) f(1.09)
- 24. b) f(0.93)
- Sayfa c) f(1.42) d) f(0.21)

J'Elland.

## Kaynaklar

### Sayısal Analiz

(S.Akpınar)

Mühendisler için Sayısal Yöntemler

(Steven C.Chapra&RaymontP.Canale)

Nümerik Analiz

(Schanum's outlines-Nobel)



8. Hafta