1071 Electronics Midterm 2 Chapter 5,6 2018/12/3 10:20~12:10
$$(V_{BE}(\text{on}) = V_{EB}(\text{on}) = 0.7 \text{ V}, \ V_{CE}(\text{sat}) = V_{EC}(\text{sat}) = 0.2 \text{ V}, \ V_{A} = \infty, \text{ and } \beta = 100 \text{ if not specified})$$

- 1. (10%) For the circuit shown in Figure 1, assume that Q_1 and Q_2 are matched and the transistor parameters are $\beta=40$, $V_{BE}(\text{on})=0.7$ V, and $V_A=\infty$. (a) Use β to indicate the relationship between I_1 and I_Q . (b) Let $R_B=0$. Design R_1 and R_C such that $I_Q=0.25$ mA and $V_{CEQ0}=3$ V.
- 2. (10%) Let $\beta = 25$ for the transistor in the circuit shown in Figure 2. Determine the range of V_1 such that $1 \le V_{CE} \le 4.5$ V. Sketch the load line for I_C and V_{CE} .

- 3. (15%) The common-emitter current gain of the transistor in Figure 3 is $\beta = 75$. Plot the voltage transfer characteristics over the range $0 \le V_I \le 5V$ (9%). Please mark the status of the pnp transistor (6%).
- 4. (15%) The transistor shown in Figure 5 has parameters $\beta = 100$, and $V_A = \infty$. (a) Determine the quiescent values I_{CQ} and V_{ECQ} . (b) Determine the small-signal voltage gain $A_v = v_o/v_s$. (c) Find the input resistance R_i .

5. (15%) For the circuit shown in Figure 4, $V_{CC}=3.3 \, \text{V}$, $R_L=4 \, \text{k}\Omega$, $R_1=585 \, \text{k}\Omega$, $R_2=135 \, \text{k}\Omega$, and $R_E=12 \, \text{k}\Omega$. The transistor parameters are $\beta=75$ and $V_A=60 \, \text{V}$ (a) Determine the quiescent values I_{CQ} and V_{ECQ} . (b) Determine the small-signal voltage gain $A_v=v_o/v_s$. (c) Determine R_{ib} and R_o .

- 6. (15%) Consider the circuit shown in Figure 6. The transistor parameters are β = 80 and V_A = ∞.
 (a) Determine the quiescent collector current I_{CQ}. (b) Plot the dc and ac load line on the same graph and mark the slope. (c) Determine the maximum symmetrical swing in the output voltage (Δv_{ec,peak-to-peak}) if the total instantaneous C-E voltage is to remain in the range 0.7 ≤ v_{EC} ≤ 9 V and the total instantaneous collector current is to be i_C ≥ 0 mA.
- 7. (20%) For each transistor in the circuit in Figure 7, the parameters are $\beta = 125$, $V_{BE}(\text{on}) = 0.7 \text{ V}$, and $r_o = \infty$. (a) Determine the Q-point of each transistor (I_{CQ} and V_{CEQ} for both Q_1 and Q_2) (4%). (b) Determine the small-signal parameters g_m , r_π , and r_o for both transistors (4%). (c) Find the overall small-signal voltage gain $A_v = v_o/v_s$ (6%). (d) Determine the input resistance R_i and output resistance R_o (6%).

