Билет 23. Разрыв логарифмического потенциала двойного слоя на границе области

Логарифмический потенциал двойного слоя: $U_1(x)=\int\limits_L
ho_2 rac{d}{dn} (ln rac{1}{r}) dL$ ho_2 - плотность двойного слоя. В области, не содержащей L, U_1 гармонична. Учитывая, что $\frac{d}{dn}(ln\frac{1}{r})dL=\frac{cos\phi}{r}$, где ϕ это угол между n и r, можно преобразовать так: $U_1(x)=\int\limits_{T}\rho_2\frac{cos\phi}{r}dL$. Если L представляет собой замкнутый контур, удовлетворяющий условиям Ляпунова для поверхностей, и имеющий в каждой точке касательную, то разрыв можно охарактеризовать равенствами: $\begin{cases} U_{1i}=U_{10}-\pi*\rho_{20}\\ U_{1e}=U_{10}+\pi*\rho_{20} \end{cases}$, где U_{10} - прямое значение U_1 , ρ_{20} - значение плотности ho_2 в какой-нибудь точке ξ , лежащей на контуре L. U_{1i} и U_{1e} - предельные значения того же потенциала, когда точка x стремится совпасть с точкой ξ , подходя к ней или изнутри или извне контура L. В частном случае $\rho_2=1$ интеграл $\int \frac{\cos\phi}{r} dL$ аналогичный интегралу в формуле Гаусса, имеет три различных значения: $\begin{cases} -2*\pi, \\ 0, \\ -\pi \end{cases}$, в зависимости от того, находится точка х внутри, вне, или

на конту

Теормин. Преобразование Хопфа-Коула для уравнения Бюргерса

Уравнение Бюргерса описывает нелинейность и диффузию (вязкость)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} = D \frac{\partial^2 u}{\partial r^2}$$

Проведём преобразование Хопфа-Коула для этого уравнения: $u=\psi_x=\frac{\partial \psi}{\partial x}$ Тогда: $\frac{\partial^2 \psi}{\partial x \, \partial t} + \frac{\partial}{\partial x} \left(\frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 \right) = D \frac{\partial^3 \psi}{\partial x^3}$

Проинтегрируем по x: $\frac{\partial \psi}{\partial t} + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 = D \frac{\partial^2 \psi}{\partial x^2} + C$

Пусть C=0. Замена $\psi(x,t)=-2D\ln v$. Тогда $\frac{\partial \psi}{\partial t}=-2D\frac{v_t}{v}; \ \frac{\partial \psi}{\partial x}=-2D\frac{v_x}{v}; \ \frac{\partial^2 \psi}{\partial x}=-2D\frac{v_{xx}v-v_x^2}{v};$

 $\frac{\partial^2 \psi}{\partial x^2} = -2D \frac{v_{xx}v - v_x^2}{v_x^2}$

Подставим: $-2D\frac{v_t}{v} + 2D^2\frac{v_x^2}{v^2} = -2D\frac{v_{xx}v - v_x^2}{v^2}$. Тогда $2D^2\frac{v_x^2}{v^2}$ сокращается.

 $v_t = Dv_{xx}$ - получили линейное уравнение вместо нелинейного.