SRN			
Oitit	L	<u> </u>	

PES University, Bengaluru

(ESTABLISHED UNDER KARNATAKA ACT No. 16 of 2013)

UE15CS254

MAY 2017: END SEMESTER ASSESSMENT (ESA) B.TECH, IV SEMESTER

UE15CS254—THEORY OF COMPUTATION

TIME: 3 HRS.

ANSWER ALL QUESTIONS

MAX MARKS:100

04

06

- 1. a) Define the following terms:
 - i. Regular language
 - ii. Extended transition function for a non-deterministic finite automaton
 - b) Construct a deterministic finite automaton that accepts the following language over the alphabet $\{a, b\}$ where $L = \{ba^2wab^2: w \in (a, b)^*\}$.
 - c) Convert the following non-deterministic finite automaton to its equivalent deterministic finite automaton 06 by clearly showing the subset construction method.

State	Input = 0	Input = 1	Input = 2	λ
\rightarrow q ₀	. {}	{q ₁ }	{q ₂ }	{q ₁ , q ₂ }
q ₁	{q ₀ }	{q ₂ }	{q ₀ , q ₁ }	{}
*q ₂	{}	{}	{}	{}

d) Using table filling algorithm, minimize the following deterministic finite automaton:

- 2. a) Construct regular expressions for the following languages:
 - i. Even binary numbers without leading zeros
 - ii. $L = \{a^nb^m: (n + m) \text{ is odd}\}$
 - iii. $L = \{a^nb^m: n \ge 3, m \text{ is odd}\}$
 - iv. $L = \{vwv: v, w \in (a, b)^*. |v| = 2\}$
 - b) Find a regular expression for the language $L = \{w \in \{a, b\}^*: n_a(w) \text{ is even } \& n_b(w) \text{ is odd}\}$.
- .
- c) Show that the language of binary strings of even length having the same number of 0s in its two halves is not regular.
- 3. a) Show that the following language is ambiguous.

S → aaS I aaaS I λ

- b) Apply CYK algorithm to verify whether the string aaaabbb can be derived by the following grammar:
 - S → AB
 - $A \rightarrow BB \mid a$
 - $B \rightarrow AB \mid b$

04

02

08

08

n 110

			-	
SRN				
		····		

c) Convert the following grammar into CNF:

 $S \rightarrow Aa \mid B \mid Ca$

 $B \rightarrow aB \mid b$

 $C \rightarrow Dd \mid D$

 $D \rightarrow E \mid d$

 $E \rightarrow ab$

- d) State the difference between GNF and S-grammar. Give an example where the grammar is in GNF but 04 is not S-grammar.
- 4. a) Construct a PDA to accept the language $a^n b^m$, where $m = n \mod 3$, $n \ge 0$. How much stack memory is 06 required to handle this language?
 - b) Discuss the steps involved in converting CFG to PDA & convert the following CFG to PDA. S \rightarrow aA | bB | cC, A \rightarrow Sa, B \rightarrow Sb, C \rightarrow λ
 - c) What is the language accepted by the following PDA?

04

06

 $\delta(q_0, b, Z) = (q_0, AZ)$

 $\delta(q_0, b, A) = (q_0, AA)$

 $\delta(q_0, n, Z) = (q_0, AZ)$

 $\delta(q_0, n, A) = (q_0, AA)$

 $\delta(q_0, a, A) = (q_0, \lambda)$

 $\delta(q_0, \lambda, Z) = (q_1, Z)$

where q_0 is the initial state & q_1 is the final state.

Verify whether the string "banana" is accepted by the automaton or not.

- 5. a) Develop a Turing machine which finds the remainder of division of a given binary number by 2. Do not overwrite the given number. Put a separator between the given number and the remainder.
 - b) The following transitions define a Turing machine.

08

 $\delta(q_0, 0) = (q_0, 0, R)$

 $\delta(q_0, 1) = (q_1, 1, R)$

 $\delta(q_1, 0) = (q_1, 0, R)$

 $\delta(q_1, 1) = (q_0, 1, R)$

 $\delta(q_0, Blank) = (q_2, \#, R)$

 $\delta(q_1, Blank) = (q_3, \#, R)$

 $\delta(q_2, Blank) = (q_4, 0, R)$

 $\delta(q_3, Blank) = (q_4, 1, R)$

where q_0 is the initial state & q_4 is the final state.

What happens if the tape contains:

i) 10010

ii) 01011

What does the Turing machine do?

c) Define post correspondence problem (PCP) & solve PCP for the below given lists.

04

List B

110

		List A	List B
i		Xi	Yı
	1	11	111
L	2	100	001
L	3	111	11

ii. X_i Y_i
1 110 110110
2 0011 00

3

List A

0110
