Shrinking Knowledge Base Size:

Dimension Reduction, Splitting & Filtering

 $Z = \underset{d \in D}{\operatorname{arg}} \operatorname{top-k} \ \operatorname{rel.}(q, d)$

Retrieve top k documents

2. rel.(q, d) $\approx sim(f_Q(q), f_D(d))$

Approximate relevancy by vector similarity on embeddings from Bert/SentenceBert/DPR

3. $\approx sim(r_Q(f_Q(q)), r_D(f_D(d)))$

Reduce embedding dimensionality using functions r_{O} , r_{D} (queries and docs)

Method	Compression	Original		Center +Norm.
		IP	L ²	{IP, L ² } (% original)
Original	$1 \times$	0.609	0.240	0.618 (100%)
Sparse Projection (128)	$6 \times$	0.398	0.448	0.457 (74%)
Dimension Dropping (128)	$6 \times$	0.426	0.466	0.478 (77%)
Greedy Dimension Dropping (128)	$6\times$	0.447	0.478	0.504 (82%)
PCA (128)	6×	0.577	0.562	0.579 (94%)
PCA (128, scaled top 5)	$6\times$	0.586	0.572	0.592 (96%)
Autoencoder (128, single layer)	6×	0.585	0.569	0.588 (95%)
Autoencoder (128, shallow decoder)	$6 \times$	0.599	0.582	0.599 (97%)
Autoencoder (128, single layer) $+$ L $_1$	$6 \times$	0.600	0.587	0.601 (97%)
Autoencoder (128, shallow decoder) $+$ L $_1$	$6\times$	0.601	0.591	0.601 (97%)
Precision 16-bit	$2\times$	0.612	0.610	0.615 (100%)
Precision 8-bit	$4\times$	0.613	0.610	0.614 (99%)
Precision 1-bit (offset 0 5)	$32\times$	0 559	0 556	0 561 (91%)
PCA (245) + Precision 1-bit (offset 0.5)	100×	0.459	0.458	0.461 (75%)
PCA (128) + Precision 8-bit	24×	0.558	0.553	0.567 (92%)

Issues of large KBs:

- dense retrieval is slow
- bottleneck of knowledge-intensive
 NLP pipelines
- need ~1TB of memory for experiments

Combine PCA and precision reduction to get 100x compression with 75% retained performance.

- 0. Always center & normalize before & after dimension reduction
- 1. PCA: quick and good-enough solution requiring little data
- 2. Autoencoder: slightly better, less stable, larger data requirements
- 3. 8/16-bit precision: almost no performance loss

Associated paper at SPA@ACL 2022: Knowledge Base Index Compression via Dimensionality and Precision Reduction (Vilém Zouhar, Marius Mosbach, Miaoran Zhang, Dietrich Klakow)

