

Licenciatura em Engenharia Informática e Multimédia

Computação Física

2º Exame, 29 de Julho de 2021

Atenção: Cada grupo é resolvido numa folha A4 destacável com a identificação do número e nome do

T

- a) Qual a quantidade mínima de bits para representar a gama de valores decimais [1, 16]? Justifique a resposta.
- b) Realize a conversão de cada um dos seguintes números para base 2 com 6 bits: -10₍₁₀₎, 19₍₁₆₎.
- c) Quais as diferenças entre o modelo da comunicação I2C e o modelo da comunicação Série.
- d) Descreva detalhadamente quais os passos que um microprocessador faz para cumprir uma instrução.

II

Projete um contador com flip-flops tipo D edge-triggered, que ao ritmo de um sinal de clock, coloque à saída os números, {-1, -2, -3, -4}. Este contador dispõe de uma entrada DIR. Quando DIR a 1, a sequência mostrada é {-1, -2, -3, -4}. Quando DIR a 0, a sequência mostrada é {-4, -1, -3, -2}. A mudança do valor lógico de DIR só tem efeito na sequência mostrada, no primeiro sinal de clock após mostrar o valor {-1}.

- a) Defina as entradas e saídas.
- b) Desenhe o ASM.
- c) Desenhe o diagrama de Moore-Mealey do circuito a projetar, baseado nos flip-flops tipo D.
- d) Projete a Função de Estado Seguinte.
- e) Projete a Função de Saída.
- f) Desenhe o diagrama lógico completo.

III

- a) Dado um CPU baseado no modelo Harvard codifique o conjunto de instruções da tabela com o menor número de bits. Justifique.
- b) Indique explicitamente quantos registos internos tem o CPU e qual a dimensão de cada registo em bits. Justifique.
- c) Quantos bits tem os address bus e data bus de interligação do CPU às memórias da arquitetura. Justifique.
- d) Desenhe o módulo funcional e os sinais de entrada e saída do módulo de controlo.
- e) Projete o módulo de controlo.

Nota: Const8 e Rel8 são valores binários a 8 bits.

End7 é um valor binário a 7 bits.

)										
,	I	nstrução	Funcionalidade							
	MOV	C, Const8	C = Const8							
	MOV	R, Rel8	R = Rel8							
	MOV	M, A	M(R) = A							
	MOV	A, M	A=M(R)							
	SUB	A, C	A = A - C							
	CLRZ		Z=0							
	JNB	End7	Se $(!B)$ PC = End7							
	JNZ	End7	Se $(!Z)$ PC = End7							
	JP	End7	Se $(!S)$ PC = End7							

1		1													
	I.a	I.b	I.c	I.d	II.a	II.b	II.c	II.d	II.e	II.f	III.a	III.b	III.c	III.d	III.e
	1	1	1	2	1	2	1	1,5	1,5	1	2	1	1	2	1