Math 3551 - Fall 2024 Sylvan Franklin - Homework 7

1. Let G_1 and G_2 be groups, $\varphi:G_1\to G_2$ be a homomorphism, and H be any subgroup of G_2 . Define:

$$\varphi^{-1}(H) = \{ g \in G_1 : \varphi(g) \in H \}$$

(a) Prove that $\varphi^{-1}(H)$ is a subgroup of G_1 .

Proof: Non empty: Since H is a subgroup it contains the indentity, and since φ is a homomorphism and $\varphi \left(e_{G_1} \right) = e_{G_2}$, the identity is in $\varphi^{-1}(H)$. Closure: take any $a,b \in \varphi^{-1}(H)$, now $\varphi(a) \in H$ and $\varphi(b) \in H$, Since H is a group $\varphi(a)\varphi(b) \in H$. Since φ is a homomorphism we have $\varphi(ab) \in H$, which implies $ab \in \varphi^{-1}(H)$. A similar argument holds for the inverse: for $g \in \varphi^{-1}(H)$, there is $\varphi(g) \in H$ and since H is a group and φ is a homomorphism, there exists an inverse and the means to map it back $\varphi(g) \in H \iff \varphi(g)^{-1} \in H \implies \varphi(g^{-1})$ which by definition means that $g^{-1} \in \varphi^{-1}(H)$

(b) Prove that if H is normal in G_2 , then $\varphi^{-1}(H)$ is normal in G_1 .

$$\begin{array}{l} \textit{Proof: } g_2hg_2^{-1} \in H \Longrightarrow g_1ag_2 \in G_2 \text{ forall } g_1,g_2,h,a \in G_1,G_2,H,\varphi^{-1}(H) \text{, so now we have} \\ g_2hg_2^{-1} \in H \Longrightarrow \varphi^{-1}(g_2hg_2^{-1}) \in G_1 \Longrightarrow \varphi^{-1}(g_2)\varphi^{-1}(h)\varphi^{-1}(g_2^{-1}) \in G \end{array}$$

2. Let H be a subgroup of G, and define a relation \sim on G by $a \sim b$ if and only if $b^{-1}a \in H$

(a) Prove that \sim is an equivalence relation.

Proof: Reflexive: $g^{-1}g \in H$, since $g^{-1}g = e \in H$, Symmetric: $b^{-1}a \in H$, since H is a subgroup, it has both inverses, and all compositions of all elements, therefore $a^{-1}b \in H$. Transitivity: Given $a \sim b : b^{-1}a \in H$ and $b \sim c : c^{-1}b \in H$. Want to show $a \sim c : c^{-1}a \in H$. Since H is closed $b^{-1}, a, c^{-1}, b \in H \Longrightarrow c^{-1}a \in H$

(b) Fix $g \in G$, and describe the equivalence class of this relation. We have defined this set in class, what was it called?

Rearranging $b^{-1}a \in H$ you get $a \in bH$, or the left coset.

3. Let H be a subgroup of G The right coset of $H \in G$ represented by g, is the set:

$$Hg = \{hg : h \in H\}$$

and the set of right cosets of $H \in G$ is denoted $H \setminus G$.

(a) For any right coset of Hg_1 of H, show that the map $x \to x^{-1}$ is injective from Hg_1 onto some left coset g_2H of H.

Proof: If you have some hg, in the right coset, and you invert it $((hg))^{-1}$, that would give you $(g)^{-1}(h)^{-1}$, which is definitionally some left coset, with $g_2=(g)^{-1}$ and $(h)^{-1}\in H$ since H is closed under the inverse. Also $(a)^{-1}=(b)^{-1}\Longrightarrow a=b$, since a and b are in the right coset, which means that they are both related by some g, which can be expressed ag and bg, now by inverting these we get $((a,g))^{-1}=(g)^{-1}(a)^{-1}$ and $((b,g))^{-1}=(g)^{-1}(b)^{-1}$, now we have that $((a,g))^{-1}=((b,g))^{-1}\Longrightarrow (g)^{-1}(a)^{-1}=(g)^{-1}=(b)^{-1}$, and by left cancelation a=b.

(b) Show that the map $x \to x^{-1}$ induces a bijection between the sets $G \setminus H$ and $H \setminus G$ *Proof:* Simliar to the last proof, proving both that:

$$G \setminus H \mapsto H \setminus G$$
:

For any
$$(ga), (g,b) \in G \setminus H\left[((ga))^{-1} = ((gb) \Longrightarrow ga = gb)^{-1}\right] ((ga))^{-1} = (a)^{-1}(g)^{-1}$$
, and also $((gb))^{-1} = (b)^{-1}(g)^{-1}$, and by cancellation, we get $a = b$

A similar argument holds for $H \setminus G \mapsto G \setminus H$, using the fact that H is a subgroup, which means that it is closed, and in particular closed under inverses.