

CS326 – Systems Security

Lecture 20 Message Authentication Codes (MAC)

Elias Athanasopoulos athanasopoulos.elias@ucy.ac.cy

Recall: Digital Signing

Message Authentication Code (MAC)

- Digital Signing
 - Public-key cryptography (e.g., RSA, ElGamal)
 - Cryptographic Hash Function (e.g., SHA2)
- Perform an equivalent procedure to digital signing without using public-key cryptography
 - One shared key
 - Cryptographic Hash Function (e.g., SHA2)
 - Somehow mix the key with the hash function (keyed hash function)

MACs vs Digests

Digest

– For a given input x, a digest is m = H(x), where H() is a cryptographic hash function

MAC

– For a given input x, a MAC is m = H(x, k), where H() is a cryptographic hash function

How to create H(x, k)?

Notice

- (1) || stands for concatenation
- (2) attacks in this slide are *not* covered in the course

- m = H(k | | x)
 - Length-extension attack
- m = H(x | | k)
 - Collisions in the unkeyed hash function, introduces collision in the MAC
- m = H(k | | x | | k)
 - Better, but questionable

HMAC

- HMAC(K, m) = H((K' \bigoplus opad) || H((K' \bigoplus ipad) || m))
- Inputs
 - Key K, message m, and a cryptographic hash function H()
- Internals
 - K' is another secret key, derived from the original key K (by padding K to the right with extra zeroes to the input block size of the hash function, or by hashing K if it is longer than that block size)
 - opad is the outer padding (0x5c5c5c...5c5c, one-block-long hexademical constant)
 - ipad is the inner padding (0x363636...3636, one-block-long hexademical constant)
- Output
 - Fixed-length MAC, called: HMAC(K, m)

HMAC

MAC Properties

- Arbitrary input length
- Fixed output length
- Message Authentication
- Message Integrity
- Non-repudiation is not given

Hash, MAC, Digital Signature

	Cryptographic Hash	MAC	Digital Signature
Integrity	Yes	Yes	Yes
Authentication	No	Yes	Yes
Non-repudiation	No	No	Yes
Key	No keys	Symmetric	Asymetric

TLS Record Protocol

Byte	+0	+1	+2	+3	
0	Content type				
14	Vers	sion	Length		
5n	Payload				
nm	MAC				
mp	Padding (block ciphers only)				

The right record size

- Small records have larger CPU overhead due to frequent MAC verification
- Large records will have to be reassembled by the TCP layer before they can be processed by the TLS layer
- Not always possible to tune the record size