# Akademia Górniczo - Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Informatyki



#### Tytuł pracy

Integracja systemów przetwarzania mowy w środowisku zgodnym z paradygmatem SOA

#### Konrad Dziedzic, Rafał Fronczyk

rfronczyk@gmail.com, konraddziedzic@gmail.com

Promotor pracy: dr inż. Łukasz Czekierda

#### Oświadczenie

| Oświadczamy, świadomi odpowiedzialnoś        | ści karnej za poświadczenie nieprawdy, że   |
|----------------------------------------------|---------------------------------------------|
| niniejszą pracę dyplomową wykonaliśmy osob   | oiście i samodzielnie ( w zakresie wyszcze- |
| gólnionym we wstępie) i że nie korzystaliśmy | ze źródeł innych niż wymienione w pracy.    |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
| podpis  i  data                              | $podpis \ i \ data$                         |

#### Przedmowa

Rozwój technologiczny, a w szczególności rozwój komputerów i technologii z nimi związanych w ciągu ostatnich lat jest bardzo szybki. Zmieniają się zarówno, podzespoły, moc obliczeniowa, rozmiary, wygląd a nawet interfejsy. Komputery wkroczyły, lub są temu bardzo bliskie, do niemal każdej dziedziny życia. W związku z tym zmienia się sposób komunikacji między użytkownikiem a komputerem. W ostatnich czasach można zaobserwować dążenie inżynierów i projektantów do uczynienia komunikacji z komputerem jak najbardziej naturalną. Pomysły są różne od "kontrolerów bez kontrolera" jak Microsoft Kinect <sup>1</sup>, poprzez rozwiązania żuchowe" podobne do tego na jakie zdecydowało się Sony <sup>2</sup> w swoim kontrolerze PlayStation Move <sup>3</sup> poprzez klasyczne jak mysz i klawiatura. Jednak najbardziej naturalnym sposobem porozumiewania się wydaje się głos. Najbardziej znanym, bo napewno nie pionierskim, systemem który komunikuję się z użytkownikiem za pomocą głosu jest Apple Siri <sup>4</sup> - osobisty asystent, "żyjacy" wewnątrz systemu, umożliwiający dostęp do jego funkcji za pomocą mowy.

Niniejsza praca przedstawia prototyp systemu UniversalSynthesizer, służacego do zamiany tekstu na dźwięk i mowy na tekst, będącego zaawansowaną, rozproszoną, rozszerzalną, wielojęzyczną platformą/serwisem umożliwiającą łatwe tworzenie zróżnicowanych, wieloplatformowych aplikacji, mających różne zadania. Celem pracy nie było stworzenie gotowego do użytku, kompletnego, w pełni sprawnego produktu. Powstałą aplikację należy traktować bardziej jako punkt wyjścia, prototyp który w przyszłości może być wykorzystany do zbudowanie w pełni funkcjonalnego, ogólnie dostępnego,

<sup>&</sup>lt;sup>1</sup>http://www.xbox.com/en-US/kinect

<sup>&</sup>lt;sup>2</sup>http://www.sony.com/

<sup>&</sup>lt;sup>3</sup>http://us.playstation.com/ps3/playstation-move/

<sup>&</sup>lt;sup>4</sup>http://www.apple.com/iphone/features/siri.html

komercyjnego lub otwartego systemu. W związku z tym niektóre zagadnienia, dość istotne z punktu widzenia potencjalnego odbiorcy, ale nie będące ściśle powiązane z celem pracy zostały pominięty lub też niedopracowane.

# Spis treści

| 1            | $\mathbf{W}\mathbf{s}_1$ | tęp                | 1 |
|--------------|--------------------------|--------------------|---|
|              | 1.1                      | Definicja problemu | 1 |
|              |                          | 1.1.1 Obszar badań | 1 |
| 2            | Ain                      | ns of the project  | 3 |
|              | 2.1                      | Final aim          | 3 |
|              | 2.2                      | Preliminary aims   | 3 |
| 3 Discussion |                          | 5                  |   |
| 4            | 4 Materials & methods    |                    | 7 |
| Bi           | Bibliografia             |                    |   |
| Sp           | Spis rysunków            |                    |   |
| Sr           | Spis tabel               |                    |   |

#### SPIS TREŚCI

### Wstęp

#### 1.1 Definicja problemu

Komputerowe przetwarzanie mowy jest w ostatnim czasie szybko rozwijającą się dziedziną w przemyśle informatycznym. Wykorzystuje się je w wielu różnych dziedzinach zarówno związanych z rozrywką ( rozmainte gry polegające na jak najwierniejszym zaśpiewaniu podanego utworu), z życiem codziennym (Apple Siri czyi wirtualny asystent) jak i z pracą(różne systemy telefoniczne działające bez udziału człowieka). W wielu sytuacjach wykorzystanie komputerowo generowanej mowy jest niezastąpione.

Podobnie sytuacja wygląda z wykorzystaniem architektury SOA. Jest to jedno z najważniejszych osiągnieć informatycznych ostatnich lat. Podejście to zdecydowanie dominuje w obecnie projektowanych architekturach. Jednym z głowych powodów takiego stanu rzeczy jest uproszczenie modelu współczesnych dużych aplikacji. Umożliwia ono podzielenie systemu na serwisy które są niezależnymi, samodzielnymi, łatwymi w zarządzaniu, posiadającymi jasno i jednoznacznie zdefiniowane interfejsy encjami, które można wykorzystać w różnej kolejności w celu otrzymania różnych efektów.

Celem tej pracy jest zbadanie możliwości wykorzystania nowoczesnej i prężnie rozwijającej się architektury do stworzenia gotowego systemy ułatwiającego i ujednolicającego proces tworzenia aplikacji przetwarzających mowę.

#### 1.1.1 Obszar badań

W skład zakresu pracy wchodzą zarówno technologie związane z architekturą SOA jak i z przetwarzaniem mowy. W celu użycia odpowiednich narzędzi przeprowadzono wiele

#### 1. WSTĘP

badań i testów w czasie których dużą wagę przykładano do:

- możliwości konfiguracyjnych
- wydajności
- łatwości rozbudowy
- dostępnej dokumentacjji i pomocy technicznej

W efekcie przeprowadzonych czynności okazało się, że najlepsze efekty uzyskać można korzystając z szyny ESB Apache ServiceMix, syntezatorów mowy Ivona i FreeTTS oraz innych mniej istotnych narzędzi potrzebnych do stworzenia architektury zgodnej z SOA oraz zdolnej do efektywnego wykonywania postawionych przed nią zadań.

### Aims of the project

#### 2.1 Final aim

Our ultimate goal is...  $\,$ 

#### 2.2 Preliminary aims

There will be several preliminary scientific targets to be accomplished on the way...

#### 2. AIMS OF THE PROJECT

### Discussion

#### 3. DISCUSSION

Materials & methods

#### 4. MATERIALS & METHODS

### Bibliografia

- $[1] \ \ Lastname. \ \ \mathbf{Title}. \ \textit{Journal of Sth}, \ 2007.$
- [2] Name. Title. Journal of Sth, 2006.

#### **BIBLIOGRAFIA**

# Spis rysunków

#### SPIS RYSUNKÓW

# Spis tabel