Beijing Normal University School of Mathematics

Template

app1eDog

2024年11月23日

28

math - number theory

目录

1	hpp		3
	1.1	heading	3
	1.2	debug.h	4
2	shel	ll scripts	5
	2.1	linux version	5
	2.2	windows version	5
3	data	a structure	6
	3.1	stack	6
	3.2	queue	6
	3.3	DSU	6
	3.4	spare table	6
	3.5	Cartesian tree	7
	3.6	segment tree	7
	3.7	segment tree split	9
	3.8	persistent segment tree	10
	3.9	sweep line	12
	3.10	treap	13
	3.11	splay	17
	3.12	link cut tree	20
	3.13	Lichao tree	20
	3.14	ODT	21
4	stri	ng	21
	4.1	kmp	21
	4.2	z function	22
	4.3	manacher	22
	4.4	AC automaton	22
	4.5	PAM	23
	4.6	Suffix Array	24
	4.7	Cantor expansion	25
	4.8	trie	26

目录 3

	5.1	$\mod \operatorname{int} \dots $	28
	5.2	Eculid	29
	5.3	inverse	30
	5.4	sieve	31
	5.5	powerful number	33
	5.6	block	34
	5.7	CRT & exCRT	35
	5.8	BSGS & exBSGS	36
	5.9	Miller Rabin	36
	5.10	Pollard Rho	37
	5.11	quadratic residu	37
	5.12	Lucas	38
	5.13	Wilson	40
	5.14	LTE	40
	5.15	Mobius inversion	41
6	mat	ch - polynomial	43
	6.1	FTT	43
	6.2	FWT	44
	6.3	class polynomial	46
	6.4	wsy poly	50
7	mat	the game theory	57
1		ch - game theory	57
	7.1	nim game	57 57
	7.2	anti - nim game	57
8	mat	h - linear algebra	58
	8.1	matrix	58
	8.2	linear basis	59
	8.3	linear programming	60
	8.4	bm	60
9	com	nplex number	62
10		l-	00
τU	gra:		63
		topology sort	63
	10.2	shortest path	63
	10.3	minimum spanning tree	66

99

13 Print All Cases

	10.4	SCC	66
	10.5	DCC	67
	10.6	2-sat	70
	10.7	minimum ring	71
	10.8	tree - center of gravity	71
	10.9	tree - DSU on tree	71
	10.10	tree - AHU	72
	10.11	tree - LCA	73
	10.12	tree - heavy light decomposion	73
	10.13	tree - virtual tree	74
	10.14	tree - pseudo tree	75
	10.15	tree - divide and conquer on tree	76
	10.16	tree - matrix tree	78
	10.17	Prefür sequence	79
	10.18	network flow - maximal flow	79
	10.19	network flow - minimum cost flow	82
	10.20	network flow - minimal cut	84
	10.21	network flow - upper / lower bound	85
	10.22	network flow - other versions	86
	10.23	matching - matching on bipartite graph	88
	10.24	matching - matching on general graph	90
11	geoi	metry	91
	11.1	two demention	91
	11.2	convex	91
	11.3	half plane union	93
	11.4	rotate	93
	11.5	Simpson	94
12	offli	ne algorithm	95
	12.1	discretization	95
	12.2	Mo algorithm	95
	12.3	回滚莫队	95
	12.4	CDQ	96
	12.5	segment tree devide and conquer	97

13.1 print all trees with n nodes	99
13.1.1 有根树	99
14 Magic 10	01
14.1 magic heap	01
14.2 operator queue	01
14.3 Fast GCD	02
14.4 $q \equiv \frac{a}{b} \mod mod$	02

6 1 HPP

1 hpp

1.1 heading

```
#include <bits/stdc++.h>
         // using namespace std;
  4
        using LL = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
  5
        using UI = unsigned int;
using ULL = unsigned long long;
using ULL = unsigned long long;
using PIL = std::pair<int, LL>;
using PLI = std::pair<LL, int>;
using PLI = std::pair<LL, LL>;
10
11
\overline{13}
14
        using vi = std::vector<int>;
15
        using vi = std::vector<vi>;
using vi = std::vector<vi>;
using vl = std::vector<LL>;
using vvl = std::vector<vl>;
16
17
18
        using vpi = std::vector<PII>;
19
20
21
22
23
        #define ff first
        #define ss second
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
\overline{24}
25
26
27
28
29
30
         #ifdef LOCAL
        #include "debug.h"
         #else
         #define debug(...) \
31
                do {
32
                } while (false)
33
         #endif
34
        constexpr int inf = 0x3f3f3f3f;
constexpr LL INF = 1e18;
35
36
        constexpr int lowbit(int x) { return x & -x; }
37
38
        constexpr int add(int x, int y) { return x + y < mod ? x + y : x - mod + y; }
constexpr int sub(int x, int y) { return x < y ? mod + x - y : x - y; }
constexpr int mul(LL x, int y) { return x * y % mod; }
constexpr void Add(int& x, int y) { x = add(x, y); }
constexpr void Sub(int& x, int y) { x = sub(x, y); }
constexpr void Mul(int& x, int y) { x = mul(x, y); }
constexpr void Mul(int& x, int y) { x = mul(x, y); }</pre>
39
40
41
42
43
44
        constexpr int pow(int x, int y, int z = 1) {
   for (; y; y /= 2) {
      if (y & 1) Mul(z, x);
      }
}
45
46
47
48
                        Mul(x, x);
49
50
                return z:
51
        temps constexpr int add(Ts... x) {
  int y = 0;
  (..., Add(y, x));
52 \\ 53 \\ 54 \\ 55
                return y;
56
57
        temps constexpr int mul(Ts... x) {
                int y = 1;
(..., Mul(y, x));
58
59
60
                return y;
61
62
        tandu bool Max(T& x, const U& y) { return x < y ? x = y, true : false; } tandu bool Min(T& x, const U& y) { return x > y ? x = y, true : false; }
63
64
65
66
        void solut() {
67
              ;
68
69
70
71
72
73
74
75
76
77
        int main() {
                std::ios::sync_with_stdio(false);
                std::cin.tie(0);
                int t = 1;
                std::cin >> t;
while (t--) {
                        solut();
                return 0;
```

1.2 debug.h

1.2 debug.h

```
template <typename T, typename U>
std::ostream& operator<<(std::ostream& os, const std::pair<T, U>& p) {
   return os << '<' << p.first << ',' << p.second << '>';';
 \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{1}{8} \frac{1}{9}
          }
          template <
          typename T, typename = decltype(std::begin(std::declval<T>())),
    typename = std::enable_if_t<!std::is_same_v<T, std::string>>>
std::ostream& operator<<(std::ostream& os, const T& c) {</pre>
10
                   auto it = std::begin(c);
                  if (it == std::end(c)) return os << "{}";
for (os << '{' << *it; ++it != std::end(c); os << ',' << *it);
return os << '}';</pre>
11
13
14
          }
15
         #define debug(arg...)
     do {
16
                           std::cerr << "[" #arg "] :"; \
dbg(arg);
17
18
19
20
21
22
23
                   } while (false)
         template <typename... Ts>
void dbg(Ts... args) {
    (..., (std::cerr << ' ' << args));
    std::cerr << std::endl;</pre>
24
25
26
```

8 2 SHELL SCRIPTS

2 shell scripts

2.1 linux version

```
#!/bin/bash

cd "$1"

g++ -o main -02 -std=c++17 -DLOCAL main.cpp -ftrapv -fsanitize=address,undefined

for input in *.in; do
    output=${input%.*}.out
    answer=${input%.*}.ans

./main < $input > $ouput

echo "case ${input%.*}: "
    echo "My: "
    cat $output
    echo "Answer: "
    cat $answer

done
```

2.2 windows version

3 data structure

3.1 stack

```
1  vi stk;
2  for (int i = 1; i <= n; i++){
3     while (!stk.empty() and stk.back() > a[i]) {
4         stk.pop_back();
5     }
6     stk.pop_back(a[i]);
7  }
```

3.2 queue

3.3 DSU

```
/* DSU */
vi fa(n + 1);
std::iota(all(fa), 0);
std::function<int(int)> find = [&] (int x) -> int{
    return x == fa[x] ? x : fa[x] = find(fa[x]);
};
auto merge = [&] (int x, int y) -> void{
    x = find(x), y = find(y);
    if (x == y) return;
    // operations //
    fa[y] = x;
};
```

3.4 spare table

一维

```
/* spare table */
int B = 30;
       vvi f(n + 1, vi(B));
vi Log2(n + 1);
auto init = [&]() -> void {
 3
 6
7
               for (int i = 1; i <= n; i++) {
    f[i][0] = a[i];
                       if (i > 1) Log2[i] = Log2[i / 2] + 1;
 9
              int t = Log2[n];
for (int j = 1; j <= t; j++) {
   for (int i = 1; i <= n - (1 << j) + 1; i++) {
     f[i][j] = std::max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}</pre>
10
11
12
13
14
15
               }
16
       };
17
       init();
       init(),
auto query = [&](int l, int r) -> int {
   int t = Log2[r - l + 1];
   return std::max(f[l][t], f[r - (1 << t) + 1][t]);</pre>
18
19
20
       };
21
```

```
/* spare table */
       intB = 30;
 3
       std::vector f(n + 1, std::vector<std::array<std::array<int, B>, B>>(m + 1));
 4
       vi Log2(n + 1);
      auto init = [&]() -> void {
   for (int i = 2; i <= std::max(n, m); i++) {
      Log2[i] = Log2[i / 2] + 1;
 \begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \end{array}
 9
             for (int i = 2; i <= n; i++) {
   for (int j = 2; j <= m; j++) {
     f[i][j][0][0] = a[i][j];
}</pre>
10
11
12
13
             14
15
16
17
18
19
20 \\ 21 \\ 22 \\ 23 \\ 24
                                               f[i][j][ki][kj] =
                                                      std: max(f[i][j][ki - 1][kj], f[i + (1 << (ki - 1))][j][ki - 1][kj]);
                                         } else {
                                               f[i][j][ki][kj]
                                                      std: max(f[i][j][ki][kj-1], f[i][j+(1 << (kj-1))][ki][kj-1]);
25
                                        }
26
                                 }
\overline{27}
                          }
\frac{1}{28}
                    }
29
             }
30
31
       init();
       auto query = [&](int x1, int y1, int x2, int y2) -> int {
   int ki = Log2[x2 - x1 + 1], kj = Log2[y2 - y1 + 1];
32
33
             int k1 = Log2[x2 - x1 + 1], kj = Log2[y2 - y1 + 1];
int t1 = f[x1][y1][ki][kj];
int t2 = f[x2 - (1 << ki) + 1][y1][ki][kj];
int t3 = f[x1][y2 - (1 << kj) + 1][ki][kj];
int t4 = f[x2 - (1 << ki) + 1][y2 - (1 << kj) + 1][ki][kj];
return std::max({t1, t2, t3, t4});</pre>
34
35
36
37
38
39
      };
```

3.5 Cartesian tree

一种特殊的平衡树, 用元素的值作为平衡点节点的 val, 元素的下标作为 key.

```
/* cartesian tree */
vi ls(n + 1), rs(n + 1), stk(n + 1);
int top = 1;
for (int i = 1; i <= n; i++) {
    int k = top;
    while (k and a[stk[k]] > a[i]) k--;
    if (k) rs[stk[k]] = i;
    if (k < top) ls[i] = stk[k + 1];
    stk[++k] = i;
    top = k;
}</pre>
```

3.6 segment tree

```
/* segment tree @ czr */
     const int N = 100010;
 3
     struct node {
 4
          int 1, r;
         ll sum, maxn, add, set;
    bool addflag, setflag;
}tr[N << 2];</pre>
    void push_up(int u) {
    tr[u].sum = tr[u << 1].sum_+ tr[u << 1 | 1].sum;</pre>
10
11
         tr[u].maxn = max(tr[u << 1].maxn, tr[u << 1 | 1].maxn);
12
    // 0 4 0 0 0
13
    // 2 6 2 2 2
// 2 6 2 4 4
14
15
16
17
    void push_down(int u) {
18
         auto& root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];</pre>
19
         if (root.setflag) {
```

3.6 segment tree

```
20
                 assert(!root.addflag);
 21
                 left.add = 0, left.set = root.set, left.addflag = false, left.setflag = true;
22
23
                 right.add = 0, right.set = root.set, right.addflag = false, right.setflag = true;
                 left.sum = root.set * (left.r - left.l + 1);
 24
                 right.sum = root.set * (right.r - right.l + 1);
 25
                 left.maxn = root.set;
 26
                 right.maxn = root.set;
 27
                 root.set = 0, root.setflag = false;
 28
            if (root.addflag) {
 29
                 assert(!root.setflag);
 30
                 if (left.setflag) left.set += root.add;
else left.add += root.add, left.addflag = true;
 31
 32
 33
                 if (right.setflag) right.set += root.add;
 34
                 else right.add += root.add, right.addflag = true;
 35
 36
                 left.sum += root.add * (left.r - left.l + 1);
                 right.sum += root.add * (right.r - right.l + 1);
left.maxn += root.add;
 37
 38
 39
                 right.maxn += root.add
 40
                 root.add = 0, root.addflag = false;
 41
 42
            assert(root.add == 0);
 43
 44
      void build(int u, int 1, int r, vector<11>& a) {
   if (1 == r) {
      tr[u].1 = tr[u].r = 1, tr[u].sum = tr[u].maxn = a[1];
      tr[u].add = 0, tr[u].set = 0;
      tr[u].addflag = tr[u].setflag = false;
} also {
 45
 46
 47
 48
 49
 50
 51
                 tr[u].1 = 1, tr[u].r = r, tr[u].add = 0, tr[u].set = 0;
 52
                 tr[u].addflag = tr[u].setflag = false;
 53
                 int mid = l + r >> 1;
                 build(u << 1, 1, mid, a);
build(u << 1 | 1, mid + 1, r, a);
 54
 55
 56
                 push_up(u);
 57
           }
      }
 58
 59
 60
      // 区间加
 61
      void modify(int u, int 1, int r, 11 d) {
            if (1 > r) return;
if (tr[u].1 >= 1 && tr[u].r <= r) {
 62
 63
                 if (tr[u].setflag) tr[u].set += d;
else tr[u].add += d, tr[u].addflag = true;
tr[u].sum += d * (tr[u].r - tr[u].l + 1);
 64
 65
 66
                 tr[u].maxn += d;
 67
 68
            } else {
 69
                 push_down(u);
                 int mid = tr[u].l + tr[u].r >> 1;
if (1 <= mid) modify(u << 1, 1, r, d);
if (r > mid) modify(u << 1 | 1, 1, r, d);</pre>
 70
 71
 72
 73
                 push_up(u);
 74
      }
 76
      // 区间赋值
 77
 78
      void update(int u, int l, int r, ll x) {
 79
            if (1 > r) return;
 80
            if (tr[u].1 >= 1 && tr[u].r <= r) {</pre>
                 tr[u].set = x, tr[u].setflag = true;
tr[u].add = 0, tr[u].addflag = false;
 81
 83
                 tr[u].sum = x * (tr[u].r - tr[u].l + 1);
 84
                 tr[u].maxn = x;
 85
            } else {
 86
                 push_down(u)
                 int mid = tr[u].l + tr[u].r >> 1;
 87
                 if (1 <= mid) update(u << 1, 1, r, x);
if (r > mid) update(u << 1 | 1, 1, r, x);</pre>
 88
 89
 90
                 push_up(u);
 91
      }
 92
 93
      11 query_sum(int u, int 1, int r) {
    if (1 > r) return 0;
    if (tr[u].1 >= 1 && tr[u].r <= r) return tr[u].sum;</pre>
 94
 95
 96
            else {
    ll res = 0;
 97
 98
 99
                 push_down(u);
                 int mid = tr[u].l + tr[u].r >> 1;
100
101
                 if (1 <= mid) res += query_sum(u << 1, 1, r);</pre>
                 if (r > mid) res += query_sum(u << 1 | 1, 1, r);</pre>
102
103
                 return res;
104
      }
105
106
```

 $3-DATA\ STRUCTURE$

```
107
     |ll query_maxn(int u, int l, int r) {
            if (1 > r) return -1e18;
if (tr[u].1 >= 1 && tr[u].r <= r) return tr[u].maxn;
108
109
110
            else {
111
                 11 \text{ res} = -1e18;
                push_down(u);
112
113
                 int mid = tr[u].l + tr[u].r >> 1;
                 if (1 <= mid) res = max(res, query_maxn(u << 1, 1, r));
114
                 if (r > mid) res = max(res, query_maxn(u << 1 | 1, 1, r));</pre>
115
116
                 return res;
           }
117
118
      }
119
      // 找到最小 i 使得 sum(1, i) >= k
ll find_presum_idx(int_u, int 1, int r, int x) {
120
121
122
            if (tr[u].1 == tr[u].r) return tr[u].1;
123
            else {
124
                push_down(u);
                 int mid = tr[u].l + tr[u].r >> 1;
125
126
                 if (r <= mid) {</pre>
127
                      return find_presum_idx(u << 1, 1, r, x);</pre>
128
                 } else if (1 > mid) {
129
                      return find_presum_idx(u << 1 | 1, 1, r, x);</pre>
130
                 } else {
                      il lsum = query_sum(u << 1, 1, r);
if (lsum >= x) return find_presum_idx(u << 1, 1, mid, x);
else return find_presum_idx(u << 1 | 1, mid + 1, r, x - lsum);</pre>
131
132
133
134
                }
           }
135
      }
136
```

3.7 segment tree split

12

```
/* segment tree split @ wrb */
     #include<bits/stdc++.h>
 \bar{3}
     using namespace std;
     namespace Acc{
 \begin{array}{c} 4\\5\\6\\7 \end{array}
          using i64=int64_t;
enum{N=200009,M=10000000};
          i64 v[M];
 8
          int lc[M],rc[M],tot,a[N],r[N];
 9
          auto up=[](int o){
10
               v[o]=v[lc[o]]+v[rc[o]];
11
12
          void bd(int&o,int 1,int r){
13
               if(o=++tot,l==r)return cin>>v[o],void();
14
               int md=l+r>>1;
               bd(lc[o],1,md),bd(rc[o],md+1,r),up(o);
15
16
17
          void spl(int&o,int&x,int l,int r,int L,int R){
18
19
               if(l<=L&&R<=r)return o=x,x=0,void();</pre>
               int md=L+R>>1;
20
21
22
23
24
25
               o=++tot;
               if(l<=md)spl(lc[o],lc[x],l,r,L,md);</pre>
               if(r>md)spl(rc[o],rc[x],l,r,md+1,R);
               up(o),up(\bar{x});
          void mg(int&o,int x,int l,int r){
   if(!o||!x)return o|=x,void();
\frac{1}{26}
27
               if(l==r)return v[o]+=v[x],void();
28
               int md=l+r>>1;
               mg(lc[o],lc[x],l,md);
mg(rc[o],rc[x],md+1,r);
29
30
31
32
               up(o);
\frac{33}{34}
          void ins(int&o,int l,int r,int x,int k){
               if(!o)o=++tot;
35
               if(v[o]+=k,l==r)return;
36
               int md=l+r>>1;
37
               x<=md?ins(lc[o],1,md,x,k):ins(rc[o],md+1,r,x,k);</pre>
38
          i64 qry(int o,int 1,int r,int L,int R){
   if(!o)return 0;
39
40
41
               if(1<=L&&R<=r)return v[o];</pre>
               int md=L+R>>1;i64 z=0;
if(l<=md)z=qry(lc[o],l,r,L,md);
42
43
               if(r>md)z+=qry(rc[o],1,r,md+1,R);
44
45
               return z;
46
47
          int kth(int o,int l,int r,int k){
48
               if(l==r)return 1;
49
               if(k>v[o])return -1;
```

```
50
                     int md=l+r>>1;
51
                     if(k<=v[lc[o]])return kth(lc[o],1,md,k);</pre>
52
                     else return kth(rc[o],md+1,r,k-v[lc[o]]);
53
54
              auto work=[](){
55
                     int n,m,i,x,y,o=1;
                     for(cin>>n>m,bd(r[1],1,n);m--;)switch(cin>>i,i){
    case 0:cin>>i>x>>y,spl(r[++o],r[i],x,y,1,n);break;
56
57
                            case 0.cim>>i>>x>>y,spi([++0],f[1],x,y,1,m),break;
case 1:cim>>x>>y,mg(r[x],r[y],1,n);break;
case 2:cim>>i>>x>>y,ins(r[i],1,n,y,x);break;
case 3:cim>>i>>x>>y,cout<<qry(r[i],x,y,1,n)<<'\n';break;
case 4:cim>>i>>x,cout<<kth(r[i],1,n,x)<<'\n';break;</pre>
58
59
60
61
62
                     }
63
              };
64
65
       int main(){
66
              ios::sync_with_stdio(0);
              cin.tie(0),Acc::work();
67
68
       }
```

3.8 persistent segment tree

单点修改, 版本拷贝

n 个数, m 次操作, 操作分别为

- 1. v_i 1 loc_i $value_i$: 将第 v_i 个版本的 $a[loc_i]$ 修改为 $value_i$,
- 2. v_i 2 loc_i : 拷贝第 v_i 个版本, 并查询该版本的 $a[loc_i]$.

```
// 洛谷 P3919 【模板】可持久化线段树 1 (可持久化数组)
 3
     struct node {
 4
         int 1, r, key;
 5
    };
 6
 7
     int main() {
 8 9
         std::ios::sync_with_stdio(false);
std::cin.tie(0);
10
         std::cout.tie(0);
11
         int n, m;
std::cin >> n >> m;
12
13
         vi a(n + 1);
for (int i = 1; i <= n; i++) {</pre>
14
15
16
              std::cin >> a[i];
18
         /* hjt segment tree */
int idx = 0;
19
20
21
         vi root(m + 1);
22
         std::vector<node> tr(n * 25);
23
\overline{24}
         std::function<int(int, int)> build = [&](int 1, int r) -> int {
              int p = ++idx;
if (1 == r) {
\overline{25}
26
27
                  tr[p].key = a[1];
\frac{1}{28}
                  return p;
29
30
              int mid = (1 + r) >> 1;
31
              tr[p].l = build(1, mid);
32
              tr[p].r = build(mid + 1, r);
33
              return p;
34
35
         36
37
              int q = ++idx;
tr[q].1 = tr[p].1, tr[q].r = tr[p].r;
if (tr[q].1 == tr[q].r) {
    tr[q].key = x;
38
39
40
41
42
                  return q;
43
              int mid = (1 + r) >> 1;
44
45
              if (k <= mid) {</pre>
46
                  tr[q].l = modify(tr[q].l, l, mid, k, x);
              } else {
```

3 DATA STRUCTURE

```
48
                   tr[q].r = modify(tr[q].r, mid + 1, r, k, x);
49
              }
50
              return q;
51
52
         };
53
         std::function<int(int, int, int, int)> query = [&](int p, int l, int r, int k) -> int {
54
55
56
57
              if (tr[p].1 == tr[p].r) {
                   return tr[p].key;
              int mid = (1 + r) >> 1;
if (k <= mid) {</pre>
58
59
                   return query(tr[p].1, 1, mid, k);
              } else {
60
61
                   return query(tr[p].r, mid + 1, r, k);
62
              }
63
64
65
         root[0] = build(1, n);
66
67
         for (int i = 1; i <= m; i++) {</pre>
              int op, ver, k, x;
std::cin >> ver >> op;
68
69
              if (op == 1) {
70
71
72
73
74
75
76
77
78
79
                   std::cin >> k >> x;
                   root[i] = modify(root[ver], 1, n, k, x);
              } else {
                   std::cin >> k;
                   root[i] = root[ver];
                   std::cout << query(root[ver], 1, n, k) << ' \n';
              }
80
         return 0;
    }
```

区间第 k 小

长度为 n 的序列 a, m 次查询, 每次查询 [l,r] 中的第 k 小值.

```
// 洛谷P3834 【模板】可持久化线段树 2

    \begin{array}{r}
      123456789
    \end{array}

     struct node {
          int 1, r, cnt;
     };
     int main() {
          std::ios::sync_with_stdio(false);
          std::cin.tie(0)
10
          std::cout.tie(0);
11
12
          int n, m;
13
          std::cin >> n >> m;
          vi a(n + 1), v;
for (int i = 1; i <= n; i++) {
    std::cin >> a[i];
14
15
16
17
                v.push_back(a[i]);
18
19
          std::sort(all(v));
          v.erase(unique(all(v)), v.end());
auto find = [&](int x) -> int { return std::lower_bound(all(v), x) - v.begin() + 1; };
20
21
22
23
24
25
26
27
28
29
           /* hjt segment tree */
          std::vector<node>(n * 25);
           vi root(n + 1);
          int idx = 0;
          std::function<int(int, int)> build = [&](int 1, int r) -> int {
                int p = ++idx;
if (l == r) return p;
30
31
                int mid = (1 + r) > 1;
\begin{array}{c} 32 \\ 33 \\ 34 \\ 35 \end{array}
                tr[p].1 = build(1, mid), tr[p].r = build(mid + 1, r);
                return p;
          };
36
37
          std::function<int(int, int, int, int)> modify = [&](int p, int 1, int r, int x) -> int {
                int q = ++idx;
tr[q] = tr[p];
38
39
                if (tr[q].l == tr[q].r) {
40
                     tr[\bar{q}].cnt++;
41
                     return q;
42
43
                int mid = (1 + r) >> 1;
```

3.9 sweep line

```
44
             if (x <= mid) {</pre>
             tr[q].1 = modify(tr[q].1, 1, mid, x);
} else {
45
46
47
                 tr[q].r = modify(tr[q].r, mid + 1, r, x);
48
49
             tr[q].cnt = tr[tr[q].1].cnt + tr[tr[q].r].cnt;
50
51
        };
52
53
         std::function<int(int, int, int, int, int)> query = [&](int p, int q, int l, int r,
                                                                      int x) -> int {
54
55
             if (1 == r) return 1;
56
             int cnt = tr[tr[p].1].cnt - tr[tr[q].1].cnt;
             int mid = (1 + r) >> 1;
57
             if (x <= cnt) {</pre>
59
                 return query(tr[p].1, tr[q].1, 1, mid, x);
60
             } else {
61
                 return query(tr[p].r, tr[q].r, mid + 1, r, x - cnt);
             }
62
63
        };
64
65
        root[0] = build(1, v.size());
66
67
68
         for (int i = 1; i <= n; i++) {</pre>
69
             root[i] = modify(root[i - 1], 1, v.size(), find(a[i]));
70
71
72
73
74
75
76
77
         for (int i = 1; i <= m; i++) {</pre>
             int 1, r, k;
             std::cin >> 1 >> r >> k;
             std::cout << v[query(root[r], root[l - 1], 1, v.size(), k) - 1] << '\n';
        return 0;
78
    }
```

3.9 sweep line

```
/* sweep line @ czr */
 3
     struct Node {
          int 1, r;
 4
          ll sum, length, res;
 5
     }tr[N << 2];</pre>
 6
7
     void push_up(int u) {
 8 9
          tr[u].res = (tr[u << 1].res + tr[u << 1 | 1].res) % Mod;
10
     void update_length(int u) {
   if (tr[u].sum) {
11
12
13
               tr[u].length = tr[u].res;
14
            else
15
               if (tr[u].1 == tr[u].r) tr[u].length = 0;
16
               else tr[u].length = (tr[u << 1].length + tr[u << 1 | 1].length) % Mod;</pre>
17
          }
     }
19
     void build(int u, int 1, int r) {
   if (1 == r) tr[u] = {1, r, 0, 0, 0};
20
21
22
          else {
23
               tr[u] = {1, r, 0, 0, 0};
               int mid = 1 + r >> 1;
build(u << 1, 1, mid);
2\overline{4}
\overline{25}
26
               build(u << 1 | 1, mid + 1, r);
27
              push_up(u);
28
          }
29
     }
30
31
     void modify(int u, int l, int r, int op) {
32
          if (tr[u].1 >= 1 && tr[u].r <= r) {
33
               tr[u].sum += op;
34
               update_length(u);
35
          } else {
36
               int mid = tr[u].1 + tr[u].r >> 1;
               if (1 <= mid) modify(u << 1, 1, r, op);
if (r > mid) modify(u << 1 | 1, 1, r, op);</pre>
37
38
39
               push_up(u);
40
               update_length(u);
41
          }
42
43
     void change(int u, int x, ll d) {
```

```
45
            if (tr[u].l == tr[u].r) {
46
                  tr[u].res = (tr[u].res + d) % Mod;
47
                  update_length(u);
48
            } else {
                  int mid = tr[u].l + tr[u].r >> 1;
if (x <= mid) change(u << 1, x, d);
else change(u << 1 | 1, x, d);</pre>
49
50
51
52
53
54
                  push_up(u);
                  update_length(u);
            }
55
```

```
/* sweep line @ wrb */
 23
     #define int long long
     const int N = 2e5+10;
 4
    int b[N<<1],n,len,ans;</pre>
    struct node{
    int y1,y2,x,k;
}a[N<<1];</pre>
 6
7
     struct Seg{
 9
    #define lc (o<<1)</pre>
    #define rc (o<<1|1)
    static const int N = 5e6+10;</pre>
10
11
12
         int sum[N],cnt[N],tag[N];
13
         void push_up(int o,int 1,int r){
14
              if(sum[o])cnt[o]=b[r+1]-b[1];
15
              else cnt[o]=cnt[lc]+cnt[rc];
16
17
          void add(int o,int l,int r,int L,int R,int k){
18
              if(r<L || 1>R)return;
19
              if(l==L && r==R)return (void)(sum[o]+=k,push_up(o,1,r));
20
              int mid=L+R>>1;
              if(r<=mid)add(lc,l,r,L,mid,k);
else if(l>mid)add(rc,l,r,mid+1,R,k);
\overline{21}
\overline{22}
23
              else add(lc,1,mid,L,mid,k),add(rc,mid+1,r,mid+1,R,k);
24
              push_up(o,L,R);
\overline{25}
         }
\frac{26}{27}
    #undef lc
     #undef rc
28
29
30
    void work(){
         cin>>n;
31
32
         for(int i=1,x1,y1,x2,y2;i<=n;i++){</pre>
              cin>>x1>>y1>>x2>>y2;
              b[i*2-1]=y1,b[i*2]=y2,a[i*2-1]={y1,y2,x1,1},a[i*2]={y1,y2,x2,-1};
33
34
35
         n << = 1;
36
         sort(b+1,b+n+1),len=unique(b+1,b+n+1)-b-1;
37
         for(int i=1;i<=n;i++)a[i].y1=lower_bound(b+1,b+len+1,a[i].y1)-b,a[i].y2=lower_bound(b+1,b+len+1,a[i].</pre>
         y2)-b;
sort(a+1,a+n+1,[](node a,node b)->bool{return a.x<b.x;});
38
39
40
              t.add(1,a[i].y1,a[i].y2-1,1,len-1,a[i].k);
41
              ans+=t.cnt[1]*(a[i+1].x-a[i].x);
         }
42
43
          cout<<ans;
44
    #undef int
```

3.10 treap

fhq treap

n 次操作, 操作分为如下 6 种:

- 1. 插入数 x;
- 2. 删除数 x (若有多个相同的数,只删除一个);
- 3. 查询数 x 的排名 (排名定义为小于 x 的数的个数 + 1);
- 4. 查询排名为 x 的数;
- 5. 求 x 的前驱 (前驱定义为小于 x 的最大数);

3.10 treap 17

6. 求 x 的后继 (后继定义为大于 x 的最小数).

```
struct node {
 3
            node *ch[2];
             int key, val;
 4
             int cnt, size;
 5
            node(int _key) : key(_key), cnt(1), size(1) {
    ch[0] = ch[1] = nullptr;
 6
7
 8
                   val = rand();
10
             // node(node *_node) {
11
            // key = _node->key, val = _node->val, cnt = _node->cnt, size = _node->size;
// }
12
13
14
15
             inline void push_up() {
                   size = cnt;
if (ch[0] != nullptr) size += ch[0]->size;
16
17
18
                   if (ch[1] != nullptr) size += ch[1]->size;
19
20
      };
21
22
      struct treap {
      #define _2 second.first
#define _3 second.second
23
24
25
26
            node *root:
27
            pair<node *, node *> split(node *p, int key) {
   if (p == nullptr) return {nullptr, nullptr};
   if (p->key <= key) {</pre>
28
29
30
                         auto temp = split(p->ch[1], key);
p->ch[1] = temp.first;
31
32
33
                         p->push_up();
34
                         return {p, temp.second};
35
                         auto temp = split(p->ch[0], key);
p->ch[0] = temp.second;
36
37
                        p->push_up();
return {temp.first, p};
38
39
40
                   }
            }
41
42
            pair<node *, pair<node *, node *> > split_by_rank(node *p, int rank) {
   if (p == nullptr) return {nullptr, {nullptr, nullptr}};
   int ls_size = p->ch[0] == nullptr ? 0 : p->ch[0]->size;
   if (rank <= ls_size) {</pre>
43
44
45
46
                         auto temp = split_by_rank(p->ch[0], rank);
p->ch[0] = temp._3;
47
48
                  p > comp._o,
p -> push_up();
return {temp.first, {temp._2, p}};
} else if (rank <= ls_size + p->cnt) {
   node *lt = p->ch[0];
49
50
51
52
                         node *rt = p->ch[1];
p->ch[0] = p->ch[1] = nullptr;
53
54
                         return {lt, {p, rt}};
55
56
                         auto temp = split_by_rank(p->ch[1], rank - ls_size - p->cnt);
p->ch[1] = temp.first;
57
58
59
                         p->push_up();
60
                         return {p, {temp._2, temp._3}};
61
                   }
62
            }
63
            node *merge(node *u, node *v) {
   if (u == nullptr && v == nullptr) return nullptr;
   if (u != nullptr && v == nullptr) return u;
64
65
66
                   if (v != nullptr && u == nullptr) return v;
67
                   if (u->val < v->val) {
    u->ch[1] = merge(u->ch[1], v);
68
69
70
71
72
73
74
75
76
77
78
                         u->push_up();
                         return u;
                   } else {
                         v\rightarrow ch[0] = merge(u, v\rightarrow ch[0]);
                         v->push_up();
                         return v;
                   }
79
             void insert(int key) {
                   auto temp = split(root, key);
auto l_tr = split(temp.first, key - 1);
80
81
82
                   node *new_node;
83
                   if (l_tr.second == nullptr) {
                         new_node = new node(key);
```

3 DATA STRUCTURE

```
85
                } else {
 86
                     1_tr.second->cnt++;
 87
                     1_tr.second->push_up();
 88
 89
                node *l_tr_combined = merge(l_tr.first, l_tr.second == nullptr ? new_node : l_tr.second);
 90
                root = merge(l_tr_combined, temp.second);
 91
 92
           void remove(int key) {
   auto temp = split(root, key);
   auto l_tr = split(temp.first, key - 1);
   if (l_tr.second->cnt > 1) {
 93
 94
 95
 96
                     1_tr.second->cnt--
 97
 98
                     1_tr.second->push_up();
 99
                     l_tr.first = merge(l_tr.first, l_tr.second);
100
                } else {
                     if (temp.first == l_tr.second) temp.first = nullptr;
delete l_tr.second;
101
102
103
                     1_tr.second = nullptr;
104
105
                root = merge(l_tr.first, temp.second);
106
107
108
           int get_rank_by_key(node *p, int key) {
                auto temp = split(p, key - 1);
int ret = (temp.first == nullptr ? 0 : temp.first->size) + 1;
109
110
111
                root = merge(temp.first, temp.second);
112
                return ret;
113
114
           int get_key_by_rank(node *p, int rank) {
   auto temp = split_by_rank(p, rank);
115
116
                int ret = temp._2->key;
root = merge(temp.first, merge(temp._2, temp._3));
117
118
119
                return ret;
120
121
122
           int get_prev(int key) {
                auto temp = split(root, key - 1);
123
124
                int ret = get_key_by_rank(temp.first, temp.first->size);
125
                root = merge(temp.first, temp.second);
126
                return ret;
127
           }
128
129
           int get_nex(int key) {
130
                auto temp = split(root, key);
                int ret = get_key_by_rank(temp.second, 1);
root = merge(temp.first, temp.second);
131
132
133
                return ret;
134
     };
135
136
137
      treap tr;
138
139
      int main() {
           ios::sync_with_stdio(false);
140
141
           cin.tie(0)
142
           cout.tie(0);
143
144
           srand(time(0));
145
           int n;
146
147
           cin >> n;
148
           while (n--) {
                int op, x;
cin >> op >> x;
if (op == 1) {
149
150
151
                tr.insert(x);
} else if (op == 2) {
152
153
154
                tr.remove(x);
} else if (op == 3) {
   cout << tr.get_rank_by_key(tr.root, x) << '\n';</pre>
155
156
157
                } else if (op == 4) {
158
                     cout << tr.get_key_by_rank(tr.root, x) << '\n';</pre>
159
                } else if (op == 5) {
160
                     cout << tr.get_prev(x) << '\n';</pre>
161
                  else {
162
                     cout << tr.get_nex(x) << '\n';</pre>
                }
163
164
           return 0;
165
      }
166
```

3.10 treap 19

用 01 trie 实现的一种方式

同样的题目, 注意使用 01 trie 只能存在非负数. 速度能快不少, 但只能单点操作, 而且有点费空间.

```
// 洛谷 P3369 【模板】普通平衡树
 \overline{2}
      struct Treap {
   int id = 1, maxlog = 25;
   int ch[N * 25][2], siz[N * 25];
 3
 4
 5
 6
           int newnode() {
 8
 9
                 ch[id][0] = ch[id][1] = siz[id] = 0;
10
                 return id;
12
13
           void merge(int key, int cnt) {
14
                 int \ddot{u} = 1;
                 for (int i = maxlog - 1; i >= 0; i--) {
   int v = (key >> i) & 1;
   if (!ch[u][v]) ch[u][v] = newnode();
15
16
17
18
                      u = ch[u][v];
19
                      siz[u] += cnt;
                 }
20
\overline{21}
           }
22
           int get_key_by_rank(int rank) {
   int u = 1, key = 0;
   for (int i = maxlog - 1; i >= 0;
      if (siz[ch[u][0]] >= rank) {
23
24
25
                                             - 1; i >= 0; i--) {
26
                      u = ch[u][0];
} else {
27
                            key |= (1 << i);
29
                            rank -= siz[ch[u][0]];
30
31
                            u = ch[u][1];
32
                      }
33
34
                 return key;
35
36
37
           int get_rank_by_key(int rank) {
38
                 int key = 0;
39
                 int u = 1;
                 for (int i = maxlog - 1; i >= 0; i--) {
   if ((rank >> i) & 1) {
40
41
                            key += siz[ch[u][0]];
u = ch[u][1];
42
43
44
                      } else {
                            u = ch[u][0];
45
46
47
                       if (!u) break;
48
49
                 return key;
50
51
           int get_prev(int x) { return get_key_by_rank(get_rank_by_key(x)); }
int get_next(int x) { return get_key_by_rank(get_rank_by_key(x + 1) + 1); }
53
54
      } treap;
55
56
      const int num = 1e7;
57
      int n, op, x;
58
59
      int main() {
60
           std::ios::sync_with_stdio(false);
61
           std::cin.tie(0);
62
           std::cout.tie(0);
63
64
           std::cin >> n;
           for (int i = 1; i <= n; i++) {
   std::cin >> op >> x;
   if (op == 1) {
65
66
67
68
                      treap.merge(x + num, 1);
69
                 } else if (op == 2) {
                 treap.merge(x + num, -1);
} else if (op == 3) {
    std::cout << treap.get_rank_by_key(x + num) + 1 << '\n';
}</pre>
70
71
72
73
74
75
                 } else if (op == 4) {
                      std::cout << treap.get_key_by_rank(x) - num << '\n';</pre>
                 } else if (op == 5) {
                      std::cout << treap.get_prev(x + num) - num << '\n';</pre>
76
77
                   else if (op == 6) {
78
                       std::cout << treap.get_next(x + num) - num << '\n';</pre>
79
80
           return 0;
```

3 DATA STRUCTURE

82 |}

20

3.11 splay

文艺平衡树

初始为 1 到 n 的序列, m 次操作, 每次将序列下标为 $[l \sim r]$ 的区间翻转.

```
// 洛谷 P3391 【模板】文艺平衡树
 1
2
3
     struct node {
 \begin{array}{c} 4\\5\\6\\7\end{array}
          int ch[2], fa, key;
          int siz, flag;
          void init(int _fa, int _key) { fa = _fa, key = _key, siz = 1; }
     };
 9
     struct splay {
   node tr[N];
10
11
12
          int n, root, idx;
13
14
15
          bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
          void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + 1; }
16
17
18
19
          void pushdown(int u) {
                if (tr[u].flag) {
20
21
22
                    std::swap(tr[u].ch[0], tr[u].ch[1]);
tr[tr[u].ch[0]].flag ^= 1, tr[tr[u].ch[1]].flag ^= 1;
                    tr[u].flag = 0;

    \begin{array}{r}
      23 \\
      24 \\
      25
    \end{array}

               }
          }
\frac{1}{26}
          void rotate(int x) {
                int y = tr[x].fa, z = tr[y].fa;
\overline{27}
28
                int op = get(x);
29
30
31
               tr[y].ch[op] = tr[x].ch[op ^ 1];
if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
32
33
34
                if (z) tr[z].ch[y == tr[z].ch[1]] = x;
               pushup(y), pushup(x);
35
36
          37
38
39
40
41
                if (k == 0) root = u;
          }
42
43
44
          void output(int u) {
45
               pushdown(u);
46
                if (tr[u].ch[0]) output(tr[u].ch[0]);
               if (tr[u].key >= 1 && tr[u].key <= n) {
   std::cout << tr[u].key << ' ';</pre>
47
48
49
50
51
52
53
54
55
56
                if (tr[u].ch[1]) output(tr[u].ch[1]);
          }
          void insert(int key) {
                idx++:
                tr[idx].ch[0] = root;
                tr[idx].init(0, key);
57
58
               tr[root].fa = idx;
               root = idx;
59
               pushup(idx);
60
61
62
          int kth(int k) {
                int u = root;
63
                while (1) {
64
65
                    pushdown(u);
                     if (tr[u].ch[0] && k <= tr[tr[u].ch[0]].siz) {
66
67
                          u = tr[u].ch[0];
                    } else {
    k -= tr[tr[u].ch[0]].siz + 1;
68
69
70 \\ 71 \\ 72
                          if (k <= 0) {</pre>
                               opt(u, 0);
                               return u;
73
                          } else {
```

3.11 splay 21

```
74
75
76
77
78
79
                              u = tr[u].ch[1];
                         }
                    }
               }
 80
      } splay;
 81
 82
      int n, m, 1, r;
 83
 84
      int main() {
 85
           std::ios::sync_with_stdio(false);
 86
           std::cin.tie(0);
 87
           std::cout.tie(0);
 88
 89
           std::cin >> n >> m;
 90
           splay.n = n;
 91
           splay.insert(-inf);
 92
           rep(i, 1, n) splay.insert(i);
 93
           splay.insert(inf);
 94
           rep(i, 1, m) {
 95
               std::cin >> 1 >> r;
 96
               1 = \text{splay.kth}(1), r = \text{splay.kth}(r + 2);
               splay.opt(1, 0), splay.opt(r, 1);
splay.tr[splay.tr[r].ch[0]].flag ^= 1;
 97
 98
 99
100
           splay.output(splay.root);
101
102
           return 0;
103
      }
```

普通平衡树

```
// 洛谷 P3369 【模板】普通平衡树
 2
 3
     struct node {
 4
          int ch[2], fa, key, siz, cnt;
 5
 6
7
          void init(int _fa, int _key) { fa = _fa, key = _key, siz = cnt = 1; }
 8
9
          void clear() { ch[0] = ch[1] = fa = key = siz = cnt = 0; }
    };
10
11
     struct splay
12
         node tr[N];
13
          int n, root, idx;
14
          bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
15
16
          void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + tr[u].cnt; }
17
18
19
          void rotate(int x) {
              int y = tr[x].fa, z = tr[y].fa;
int op = get(x);
tr[y].ch[op] = tr[x].ch[op ^ 1];
20
\overline{21}
\overline{22}
              if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
if (z) tr[z].ch[y == tr[z].ch[1]] = x;
23
24
25
26
27
              pushup(y), pushup(x);
28
29
30
          void opt(int u, int k) {
    for (int f = tr[u].fa; f = tr[u].fa, f != k; rotate(u)) {
31
                   if (tr[f].fa != k) {
32
33
                        rotate(get(u) == get(f) ? f : u);
34
35
36
               if (k == 0) root = u;
37
38
          void insert(int key) {
39
40
               if (!root) {
41
                   idx++;
42
                   tr[idx].init(0, key);
43
                   root = idx;
44
                   return;
45
               int u = root, f = 0;
46
               while (1) {
47
                   if (tr[u].key == key) {
48
49
                        tr[u].cnt++;
                        pushup(u), pushup(f);
50
```

3 DATA STRUCTURE

```
opt(u, 0);
 52
                        break;
 53
 54
                   f = u, u = tr[u].ch[tr[u].key < key];
 55
                   if (!u) {
 56
                        idx++;
                       tr[idx].init(f, key);
tr[f].ch[tr[f].key < key] = idx;
pushup(idx), pushup(f);</pre>
 57
 58
 59
 60
                        opt(idx, 0);
 61
                        break;
 62
                   }
 63
              }
          }
 64
 65
 66
          // 返回节点编号 //
 67
          int kth(int rank) {
 68
               int u = root;
69
               while (1) {
                   if (tr[u].ch[0] && rank <= tr[tr[u].ch[0]].siz) {</pre>
70
71
72
73
74
75
76
77
78
79
                       u = tr[u].ch[0];
                   } else {
                        rank -= tr[tr[u].ch[0]].siz + tr[u].cnt;
                        if (rank <= 0) {</pre>
                            opt(u, 0);
                            return u;
                        } else {
                            u = tr[u].ch[1];
                        }
 80
                   }
 81
              }
 82
          }
 83
 84
          // 返回排名 //
 85
          int nlt(int key) {
 86
               int rank = 0, u = root;
               while (1) {
 87
                   if (tr[u].key > key) {
    u = tr[u].ch[0];
 88
 89
 90
                   } else {
                        rank += tr[tr[u].ch[0]].siz;
 91
                        if (tr[u].key == key) {
    opt(u, 0);
 92
 93
 94
                            return rank + 1;
 95
                        }
 96
                        rank += tr[u].cnt;
 97
                        if (tr[u].ch[1]) {
                            u = tr[u].ch[1];
 98
 99
                        } else {
100
                            return rank + 1;
                        }
101
102
                   }
103
              }
104
105
106
          int get_prev(int key) { return kth(nlt(key) - 1); }
107
108
          int get_next(int key) { return kth(nlt(key + 1)); }
109
110
          void remove(int key) {
111
              nlt(key);
112
               if (tr[root].cnt > 1) {
                   tr[root].cnt--;
113
114
                   pushup(root);
115
                   return;
116
               int u = root, l = get_prev(key);
tr[tr[u].ch[1]].fa = 1;
117
118
              tr[1].ch[1] = tr[u].ch[1];
tr[u].clear();
119
120
121
              pushup(root);
122
123
          124
125
126
               if (tr[u].ch[1]) output(tr[u].ch[1]);
127
128
129
130
     } splay;
131
132
     int n, op, x;
133
134
     int main() {
135
          std::ios::sync_with_stdio(false);
136
          std::cin.tie(0);
          std::cout.tie(0);
```

3.12 link cut tree 23

```
138
139
          splay.insert(-inf), splay.insert(inf);
140
141
          std::cin >> n;
142
          for (int i = 1; i <= n; i++) {
              std::cin >> op >> x;
if (op == 1) {
143
144
145
                   splay.insert(x)
146
              } else if (op == 2)
147
                   splay.remove(x);
              } else if (op == 3) {
148
                   std::cout << splay.nlt(x) - 1 << endl;</pre>
149
150
              } else if (op == 4) {
151
                   std::cout << splay.tr[splay.kth(x + 1)].key << endl;</pre>
              } else if (op == 5) {
152
153
                   std::cout << splay.tr[splay.get_prev(x)].key << endl;</pre>
              } else if (op == 6) {
154
155
                   std::cout << splay.tr[splay.get_next(x)].key << endl;</pre>
156
          }
157
158
159
          return 0;
     }
160
```

3.12 link cut tree

```
/* link cut tree @ wrb */
 2
      struct LCT{
            int v[N],r[N],f[N],s[N][2],st[N],tp;
void pu(int x){v[x]=a[x]^v[s[x][0]]^v[s[x][1]];}
void flp(int x){r[x]^=1,std::swap(s[x][0],s[x][1]);}
void pd(int x){if(r[x])flp(s[x][0]),flp(s[x][1]),r[x]=0;}
 3
 4
 5
 6
 7
            bool isrt(int x){return s[f[x]][0]!=x&&s[f[x]][1]!=x;}
 8
                 int y=f[x],z=f[y],k=(s[y][1]==x);if(!isrt(y)) s[z][y==s[z][1]]=x;
f[x]=z,f[y]=x,f[s[x][k^1]]=y,s[y][k]=s[x][k^1],s[x][k^1]=y,pu(y),pu(x);}
 9
10
11
            void spl(int x){
                 st[tp++]=x;for(int i=x;!isrt(i);i=f[i])st[tp++]=f[i];
12
                 while(tp)pd(st[--tp]);
13
                  while(!isrt(x)){
14
                       if(!isrt(f[x]))rtt((s[f[x]][0]==x)^(s[f[f[x]]][0]==f[x])?x:f[x]);
15
16
                       rtt(x);
17
                 }pu(x);
18
19
            void acc(int x){for(int y=0;x;y=x,x=f[x]) spl(x),s[x][1]=y,pu(x);}
            void mkrt(int x){acc(x),spl(x),flp(x);}
int fdrt(int x){acc(x),spl(x);while(s[x][0])x=s[x][0];spl(x);return x;}
20
21
            void cut(int x,int y){mkrt(x);if(x==fdrt(y)&&f[y]==x&&!s[y][0])s[x][1]=f[y]=0,pu(x);}
void lk(int x,int y){mkrt(x);if(x!=fdrt(y))f[x]=y;}
22
23
      }t;
```

3.13 Lichao tree

```
/* Lichao tree @ wrb */
     #include<bits/stdc++.h>
 3
     using namespace std;
     namespace Acc{
     #define lc (o<<1)
#define rc (o<<1|1)
 5
 6
          const int N = 4e5+10;
          int v[N],n,1,r,z;
 8
 9
          double k[N],b[N];
          inline void r1(int&x){x=(x+z-1)%39989+1;}
10
11
          inline void r2(int&x){x=(x+z-1)%1000000000+1;}
12
          double f(int o,int x){
13
              return k[o]*x+b[o];
14
15
          int beat(int x,int a,int b){
              double u=f(a,x),v=f(b,x);
return fabs(u-v)<=1e-8?a<b:u>v;
16
17
18
19
          void add(int o,int L,int R,int x){
20
              int md=L+R>>1;
\overline{21}
               if(1<=L&&R<=r){</pre>
22
                    if(!v[o])return (void)(v[o]=x);
                   if(beat(L,v[o],x) && beat(R,v[o],x))return;
if(beat(L,x,v[o]) && beat(R,x,v[o]))return (void)(v[o]=x);
23
24
25
                    if(beat(md,x,v[o]))swap(x,v[o]);
```

24 4 STRING

```
\frac{26}{27}
                  if(beat(L,x,v[o]))add(lc,L,md,x);
                  else add(rc,md+1,R,x);
28
                  return;
29
30
              if(r>md)add(rc,md+1,R,x);
31
              if(l<=md)add(lc,L,md,x);</pre>
32
33
         int ask(int o,int L,int R){
34
35
36
37
              if(L==R)return v[o];
              int md=L+R>>1,h=1<=md?ask(lc,L,md):ask(rc,md+1,R);</pre>
             return beat(1,h,v[o])?h:v[o];
38
         void work(){
39
              cin>>n;
40
              for(int op,y1,y2,c=0;n--;){
41
                  cin>>op;
42
                  if(op){
43
                       cin>>l>>y1>>r>>y2,++c,r1(l),r2(y1),r1(r),r2(y2);
44
                       if(l==r)k[c]=0,b[c]=max(y1,y2);
45
                       else {
                           if(l>r)swap(l,r),swap(y1,y2);
k[c]=(y2-y1+0.)/(r-1),b[c]=y1-k[c]*1;
46
47
48
49
                       add(1,1,4e4+10,c);
50
                  }else cin>>1,r1(1),cout<<(z=ask(1,1,4e4+10))<<'\n';
51
             }
52
53
54
    int main(){
55
         return Acc::work(),0;
56
    }
```

3.14 ODT

```
/* ODT @ wrb */
 23
     struct T{
           int 1,r,v;
 4
          T(int a, int b=-1, int c=-1):l(a),r(b),v(c){}
 5
          bool operator<(const T&_)const{return 1<_.1;}</pre>
 \frac{\tilde{6}}{7}
     };
     set<T>s;
 8 9
     auto spl(int p){
          auto it=s.lower_bound(p);
10
          if(it!=end(s) && it->l==p)return it;
11
           --it;
12
          int l=it->1,r=it->r,v=it->v;
13
          s.erase(it),s.insert(T(1,p-1,v));
14
          return s.insert(T(p,r,v)).first;
15
16
     void asgn(int 1,int r,int v){
          auto ed=spl(r+1),bg=spl(1);
17
18
          s.erase(bg,ed);
          auto i=s.insert(T(1,r,v)).first,j=prev(i);
if(i!=begin(s)&&j->v==v)l=j->1,s.erase(j);
if((j=next(i))!=end(s)&&j->v==v)r=j->r,s.erase(j);
19
20
\overline{21}
22
           s.erase(i),s.insert(T(1,r,v));
\overline{23}
     }
```

4 string

4.1 kmp

```
/* kmp */
auto kmp = [&](const std::string& s) -> vi {
   int n = s.length();
   vi next(n);
   for (int i = 1; i < n; i++) {
        int j = next[i - 1];
        while (j > 0 and s[i] != s[j]) j = next[j - 1];
        if (s[i] == s[j]) j++;
        next[i] = j;
   }
   return next;
};
```

4.2 z function 25

4.2 z function

```
/* exkmp */
      auto exkmp = [&](const std::string& s) -> vi {
 3
           int n = s.size();
 4
           vi z(n);
           for (int i = 1, l = 0, r = 0; i < n; i++) {
    if (i <= r and z[i - 1] < r - i + 1) {
        z[i] = z[i - 1];
 5
 6
 8
                 } else {
                      z[i] = std::max(0, r - i + 1);
while (z[i] + i < n \text{ and } s[z[i]] == s[z[i] + i]) z[i]++;
 9
10
11
12
                 if (z[i] + i - 1 > r) {
13
                       1 = i;
                      r = z[i] + i - 1;
14
15
16
17
           return z;
      };
```

4.3 manacher

```
/* manacher @ wrb */
auto Manacher = [&](const std::string& t) {
    std::string s = "#";
    for (char c : t) s += c, s += '#';
    int i, o = 0, r = 0, n = s.size();
    std::vector<int> p(n, 1), q(n);
    for (i = 0; i < n; ++i) {
        if (i <= r) p[i] = std::min(r - i + 1, p[2 * o - i]);
        for (; p[i] <= i && s[i + p[i]] == s[i - p[i]]; ++p[i]);
        if (i + p[i] - 1 > r) r = i + p[i] - 1, o = i;
    }
    return p;
}
```

4.4 AC automaton

```
/* AC auto */
      int cnt = 0;
const int N = 2e5 + 10;
     static std::array<std::array<int, 26>, N> tr;
static std::array<int, N> exist, fail, ans, point;
 6
      vi order;
 8
      auto insert = [&](const auto& s) {
            int p = 0;
           for (const auto& ch : s) {
  int c = ch - 'a';
  if (!tr[p][c]) tr[p][c] = ++cnt;
10
11
12
13
                 p = tr[p][c];
14
15
            exist[p]++;
16
           return p;
     };
17
18
19
      auto build = [&]() {
           std::queue<int> q;
for (int i = 0; i < 26; i++) {
    if (tr[0][i]) q.push(tr[0][i]);</pre>
20
21
22
23
24
            while (!q.empty()) {
25
                 auto u = q.front();
26
                 q.pop();
                 forder.push_back(u);
for (int i = 0; i < 26; i++) {
    if (tr[u][i]) {</pre>
27
28
29
                             fail[tr[u][i]] = tr[fail[u]][i];
30
31
                             q.push(tr[u][i]);
                       } else {
32
                             tr[u][i] = tr[fail[u]][i];
33
34
                 }
35
36
           }
    };
```

26 4 STRING

```
39
     auto query = [&](const auto& s) {
         int p = 0;
for (const auto ch : s) {
40
41
42
              p = tr[p][ch - 'a'];
43
              ans[p]++;
44
45
         return;
46
    };
47
     void solve (){
48
         for (int i = 0; i < n; i++) {
49
             point[i] = insert(t);
50
51
         build();
         query(s);
/* fail 树上子树求和 */
53
54
         reverse(all(order));
for (const auto& i : order) ans[fail[i]] += ans[i];
55
56
```

4.5 PAM

```
/* PAM @ ddl */
     std::vector<node> tr;
 3
     std::vector<int> stk;
 4
     auto newnode = [&](int len) {
          tr.emplace_back();
 6
7
          tr.back().len = len;
         return (int) tr.size() - 1;
 8
    auto PAMinit = [&]() {
   newnode(0), tr.back().fail = 1;
   newnode(-1), tr.back().fail = 0;
 9
10
11
12
          stk.push_back(-1);
13
14
    PAMinit();
15
     auto getfail = [&](int v) {
16
          while (stk.end()[-2 - tr[v].len] != stk.back()) {
              v = tr[v].fail;
18
19
          return v;
20
    };
\overline{21}
     auto insert = [&](int last, int c, int cnt) {
22
          stk.emplace_back(c);
\overline{23}
          int x = getfail(last);
\frac{23}{24} \frac{25}{25}
          if (!tr[x].ch[c]) {
               int u = newnode(tr[x].len + 2);
\frac{26}{27}
               tr[u].fail = tr[getfail(tr[x].fail)].ch[c];
               tr[x].ch[c] = u;
28
               /* tr[u].size = tr[tr[u].fail].size + 1; */
29
               /* Can be used to count the number of types of palindromic strings ending at the current
30
                * position */
31
32
          tr[tr[x].ch[c]].size += cnt;
\begin{array}{c} 33 \\ 34 \\ 35 \\ 36 \\ 37 \end{array}
          return tr[x].ch[c];
     auto build = [&]() { /* DP on fail tree */
          int ans = 0;
for (int i = (int) tr.size() - 1; i > 1; i--) {
38
               tr[tr[i].fail].size += tr[i].size;
39
               /* options */
40
41
          return ans;
42
    j};
     /* PAM */
43
    int ans = 0, last = 0;
for (int i = 0; i < n; i++) {
44
45
          last = insert(last, s[i] - 'a', 1);
46
```

4.6 Suffix Array 27

```
11
          vector<int> bl;
12
          size_t count() const {
13
               return t.size() - 2;
14
15
          const T& operator[](const size_t& p) const {
16
               return t[p];
17
18
          const T& ask(const size_t& p) const {
19
               return t[bl[p]];
20
21
          int gf(int o, int p) {
\frac{22}{23}
               while (p - t[o].len - 1 < 0 \mid | s[p - t[o].len - 1] != s[p]) o = t[o].fa;
24
25
          void append(int c) {
               int p = s.size(), o;
s += c, o = gf(las, p);
if (t[o].ch[c] == 0) {
26
27
28
\frac{1}{29}
                     t.emplace_back();
                     t.back().len = t[o].len + 2;
t.back().fa = t[gf(t[o].fa, p)].ch[c];
30
31
                     t.back().d = t[t.back().fa].d + 1;
32
33
                     t[o].ch[c] = t.size() - 1;
34
35
               bl.emplace_back(las = t[o].ch[c]);
36
          PAM(): las(), s(), t(2) {
   t[0].fa = t[1].fa = 1, t[1].len = -1;
37
38
39
          PAM(const string& str, int h) : las(), s(), t(2) {
   t[0].fa = t[1].fa = 1, t[1].len = -1;
40
41
42
               for (char c : str) append(c - h);
43
44
     };
```

4.6 Suffix Array

```
/* suffix array and ST table @ jiangly */
auto suffixArray = [&](const std::string& s) {
 3
           int n = s.length();
           vi sa(n), rk(n);
 4
           std::iota(all(sa), 0);
std::sort(all(sa), [&](int a, int b) { return s[a] < s[b]; });</pre>
 5
 6
 7
           rk[sa[0]] = 0;
 8
           for (int i = 1; i < n; ++i) {</pre>
 9
                rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);
10
11
           int k = 1;
12
           vi tmp(n), cnt(n);
13
           tmp.reserve(n);
           while (rk[sa[n-1]] < n-1) {
14
15
                 tmp.clear();
                 for (int i = 0; i < k; ++i) tmp.push_back(n - k + i);
for (const auto& i : sa) {
    if (i >= k) tmp.push_back(i - k);
16
17
18
19
20
                 std::fill(all(cnt), 0);
21
                 for (int i = 0; i < n; i++) cnt[rk[i]]++;
for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1];
for (int i = n - 1; i >= 0; i--) sa[--cnt[rk[tmp[i]]]] = tmp[i];
22
23
24
                 std::swap(rk, tmp);
25
                 rk[sa[0]] = 0;
26
                 for (int i = 1; i < n; i++) {
                      rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] or sa[i - 1] + k == n or tmp[sa[i - 1] + k] < tmp[sa[i] + k]);
27
28
29
30
                k *= 2;
31
           vi height(n);
for (int i = 0, j = 0; i < n; ++i) {
    if (rk[i] == 0) continue;</pre>
32
33
34
                if (j) --j;
while (s[i + j] == s[sa[rk[i] - 1] + j]) ++j;
height[rk[i]] = j;
35
36
37
38
39
           return std::make_tuple(sa, rk, height);
40
     auto [sa, rk, height] = suffixArray(s);
41
42
     vvi f(n, vi(30, inf));
43
      vi Log2(n);
44
      auto init = [&]() -> void {
           for (int i = 0; i < n; i++) {</pre>
```

28 4 STRING

```
46
                   f[i][0] = height[i];
47
                   if (i > 1) Log2[i] = Log2[i / 2] + 1;
48
49
             int t = Log2.back();
            for (int j = 1; j <= t; j++) {
    for (int i = 0; i <= n - (1 << j); i++) {
        f[i][j] = std::min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
50
51
52
53
54
            }
55
      };
56
      init();
      auto query = [&](int 1, int r) -> int {
   int t = Log2[r - 1 + 1];
   return std::min(f[1][t], f[r - (1 << t) + 1][t]);</pre>
57
58
59
60
61
      auto lcp = [&](int i,
                                        <u>int</u> j) {
            i = rk[i], j = rk[j];
if (i > j) std::swap(i, j);
62
63
64
            return query(i + 1, j);
      };
65
```

```
/* suffix array @ wrb */
                    auto SA = [](std::string s) {
                                  int n = s.size(), m = 128, i, j, l;
std::vector<int> ct(m), sa(n), rk(n), h(n), a(n);
for (i = 0; i < n; ++i) ++ct[rk[i] = s[i]];
for (i = 1; i < m; ++i) ct[i] += ct[i - 1];
for (i = n - 1; ~i; --i) sa[--ct[rk[i]]] = i;
for (l = 1; l < n; l *= 2) {
   for (j = 0, i = n - 1; i >= n - 1; --i) a[j++] = i;
   for (i = 0; i < n; ++i) if (sa[i] >= 1) a[j++] = sa[i] - 1;
   ct = std::vector<int>(m):
    \overline{3}
    4
    5
    6
    8
    9
10
                                                       ct = std::vector<int>(m);
11
                                                     for (i = 0; i < n; ++i) ++ct[rk[a[i]]];
for (i = 1; i < m; ++i) ct[i] += ct[i - 1];</pre>
12
13
14
                                                       for (i = n - 1; ~i; --i) sa[--ct[rk[a[i]]]] = a[i];
15
                                                       std::swap(rk, a), rk[sa[0]] = 0;
                                                     for (i = 1; i < n; ++i) {
    rk[sa[i]] = rk[sa[i - 1]] + (a[sa[i]] != a[sa[i - 1]] || a[(sa[i] + 1) % n] != a[(sa[i - 1] + 1) % n] || a[(sa[i] + 1) % n] 
16
17
                                                                                         1) % n]);
18
                                                     if ((m = rk[sa[n - 1]] + 1) == n) break;
19
20
\overline{21}
                                    for (i = j = 0; i + 1 < n; h[rk[i++]] = j) {
\frac{1}{22}
                                                     for (j? --j: 0; s[i+j] == s[sa[rk[i] - 1] + j]; ++j);
23
24
25
26
                                    sa.erase(sa.begin());
                                     rk.erase(rk.begin());
                                    h.erase(h.begin());
27
                                    return make_tuple(sa, rk, h);
28
                  //h[i] : LCP(rk[i], rk[i - 1])
```

4.7 Cantor expansion

```
/* Cantor expresion @ wrb */
    std::cin >> n, fac[0] = 1;
    for (int i = 1; i <= n; ++i) {
    std::cin >> a[i];
 3
 4
 5
         fac[i] = 111 * fac[i - 1] * i % P;
 \frac{\tilde{6}}{7}
    auto ins = [&](int x) {
         for (; x <= n; x += x & -x) ++t[x];</pre>
 9
10
    auto ask = [\&] (int x) {
         int z = 0;
11
         for (; x; x ^= x & -x) z += t[x];
12
13
         return z;
14
15
    int z = 0;
16
    for (int i = n; i; --i) {
17
         z = (z + 111 * fac[n - i] * ask(a[i])) % P;
18
         ins(a[i]);
19
    std::cout << ++z << '\n';
20
```

4.8 trie 29

4.8 trie

普通字典树 (单词匹配)

```
/* trie */
    int cnt;
 3
     std::vector<std::array<int, 26>> trie(n + 1);
     vi exist(n + 1);
     auto insert = [&](const std::string& s) -> void {
         int p = 0;
 6
         for (const auto ch : s) {
   int c = ch - 'a';
   if (!trie[p][c]) trie[p][c] = ++cnt;
 8
 9
10
              p = trie[p][c];
11
12
          exist[p] = true;
13
    };
14
     auto find = [&](const string& s) -> bool {
         int p = 0;
15
         for (const auto ch : s) {
   int c = ch - 'a';
16
17
              if (!trie[p][c]) return false;
18
19
              p = trie[p][c];
20
21
         return exist[p];
     };
```

01 字典树 (求最大异或值)

给定 n 个数, 取两个数进行异或运算, 求最大异或值.

```
/* trie */
int cnt = 0;
 3
        std::vector\langlestd::array\langleint, 2>> trie(N);
auto insert = [&](int x) -> void {
 4
                int p = 0;

for (int i = 30; i >= 0; i--) {

   int c = (x >> i) & 1;

   if (!trie[p][c]) trie[p][c] = ++cnt;
 5
 6
 7
  8
 9
                        p = trie[p][c];
10
11
        };
        auto find = [&](int x) -> int {
12
                int sum = 0, p = 0;

for (int i = 30; i >= 0; i--) {

   int c = (x >> i) & 1;

   if (trie[p][c ^ 1]) {

      p = trie[p][c ^ 1];

      cum += (1 << i);
13
14
15
16
17
18
                                sum += (1 << i);
19
                        } else {
                               p = trie[p][c];
20
21
22
\overline{23}
                return sum;
        };
```

字典树合并

来自浙大城市学院 2023 校赛 E 题.

给定一棵根为 1 的树,每个点的点权为 w_i . 一共 q 次询问,每次给出一对 u,v,询问以 v 为根的子树上的点与 u 的权值最大异或值.

```
int main() {
 2
         std::ios::sync_with_stdio(false);
3
         std::cin.tie(0);
 4
         int n, m;
std::cin >> n;
5
6
7
         vi w(n + 1);
8
         for (int i = 1; i <= n; i++) std::cin >> w[i];
9
         vvi e(n + 1);
10
         for (int i = 1, u, v; i < n; i++) {</pre>
```

30 4 STRING

```
11
                 std::cin >> u >> v;
12
                 e[u].push_back(v);
13
                 e[v].push_back(u);
14
15
           // 离线询问 //
16
            std::cin >> m;
17
18
           std::vector<vpi> q(n + 1);
19
            vi ans(m + 1);
20
21
           for (int i = 1; i <= m; i++) {</pre>
                 int u, v;
22 \\ 23 \\ 24 \\ 25
                 std::cin >> u >> v;
                 q[v].emplace_back(u, i);
26
           // 01 trie //
27
           std::vector<std::array<int, 2>> tr(1);
28
           auto new_node = [&]() -> int {
   tr.emplace_back();
\overline{29}
30
31
32
                 return tr.size() - 1;
            vi id(n + 1);
33
34
           auto insert = [&](int root, int x) {
                 int p = root;
for (int i = 29; i >= 0; i--) {
   int c = x >> i & 1;
35
36
                       if (!tr[p][c]) tr[p][c] = new_node();
p = tr[p][c];
37
38
39
                 }
           };
40
41
           auto query = [&](int root, int x) -> int {
                 int ans = 0, p = root;
for (int i = 29; i >= 0; i--) {
   int c = x >> i & 1;
   if (tr[p][c ^ 1]) {
      p = tr[p][c ^ 1];
      ans += (1 << i);
}</pre>
42
43
44
45
46
47
48
                       } else {
49
                            p = tr[p][c];
50
51
                 }
52
53
54
                 return ans;
           std::function<int(int, int)> merge = [&](int a, int b) -> int {
55
                 // b 的信息挪到 a 上 //
                 if (!a) return b;
if (!b) return a;
tr[a][0] = merge(tr[a][0], tr[b][0]);
tr[a][1] = merge(tr[a][1], tr[b][1]);
56
57
58
59
60
                 return a;
61
62
            std::function<void(int, int)> dfs = [&](int u, int fa) {
63
                 id[u] = new_node();
                 insert(id[u], w[u]);
for (auto v : e[u]) {
   if (v == fa) continue;
64
65
66
67
                       dfs(v, u);
68
                       id[u] = merge(id[u], id[v]);
69
                 for (auto [v, i] : q[u]) {
   ans[i] = query(id[u], w[v]);
70 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77
                 }
           dfs(1, 0);
           for (int i = 1; i <= m; i++) std::cout << ans[i] << endl;</pre>
           return 0;
     }
```

5 math - number theory

$5.1 \mod int$

```
template <int P>
      struct Mint {
 3
            int v = 0;
 4
 5
            // reflection //
 6
            template <typet = int>
            constexpr operator T() const {
 7
 8
                 return v;
 9
10
            // constructor //
constexpr Mint() = default;
template <typet>
11
12
13
            constexpr Mint(T x) : v(x % P) {}
constexpr int val() const { return v; }
14
15
16
            constexpr int mod() { return P; }
17
18
19
            friend std::istream& operator>>(std::istream& is, Mint& x) {
20
                 LL y;
                 is >> y;
21
22
                 x = y;
\overline{23}
                 return is;
24
25
            friend std::ostream& operator<<(std::ostream& os, Mint x) { return os << x.v; }</pre>
26
27
            // comparision //
28
            friend constexpr bool operator == (const Mint& lhs, const Mint& rhs) { return lhs.v == rhs.v; }
           friend constexpr bool operator!=(const Mint& Ins, const Mint& Ins) { return Ins.v != rhs.v; } friend constexpr bool operator!=(const Mint& Ihs, const Mint& rhs) { return Ihs.v != rhs.v; } friend constexpr bool operator<=(const Mint& Ihs, const Mint& rhs) { return Ihs.v <= rhs.v; } friend constexpr bool operator>=(const Mint& Ihs, const Mint& rhs) { return Ihs.v > rhs.v; } friend constexpr bool operator>(const Mint& Ihs, const Mint& rhs) { return Ihs.v > rhs.v; }
29
30
31
32
33
            friend constexpr bool operator>=(const Mint& lhs, const Mint& rhs) { return lhs.v >= rhs.v; }
34
35
            // arithmetic //
36
            template <typet>
37
            friend constexpr Mint power(Mint a, T n) {
38
                 Mint ans = 1;
39
                 while (n) {
40
                       if (n & 1) ans *= a;
41
                       a *= a;
42
                       n >>= 1:
43
                 return ans;
44
45
46
            friend constexpr Mint inv(const Mint& rhs) { return power(rhs, P - 2); }
            friend constexpr Mint operator+(const Mint& lhs, const Mint& rhs) {
   return lhs.val() + rhs.val() < P ? lhs.val() + rhs.val() : lhs.val() - P + rhs.val();</pre>
47
48
49
50
            friend constexpr Mint operator-(const Mint& lhs, const Mint& rhs) {
                 return lhs.val() < rhs.val() ? lhs.val() + P - rhs.val() : lhs.val() - rhs.val();</pre>
51
52
            friend constexpr Mint operator*(const Mint& lhs, const Mint& rhs) {
   return static_cast<LL>(lhs.val()) * rhs.val() % P;
53
54
55
           friend constexpr Mint operator/(const Mint& lhs, const Mint& rhs) { return lhs * inv(rhs); }
Mint operator+() const { return *this; }
Mint operator-() const { return Mint() - *this; }
56
57
58
59
            constexpr Mint& operator++() {
60
                 if (v == P) v = 0;
61
62
                 return *this;
63
64
            constexpr Mint& operator--() {
65
                 if (v == 0) v = P;
66
67
                 return *this;
68
69
70
71
            constexpr Mint& operator++(int) {
   Mint ans = *this;
                 ++*this;
72
73
                 return ans;
74
75
            constexpr Mint operator--(int) {
                 Mint ans = *this;
                  --*this;
76
77
                 return ans;
78
79
            constexpr Mint& operator+=(const Mint& rhs) {
```

```
80
             v = v + rhs;
81
            return *this;
82
83
        constexpr Mint& operator-=(const Mint& rhs) {
84
             v = v - rhs;
            return *this;
86
87
        constexpr Mint& operator*=(const Mint& rhs) {
88
             v = v * rhs;
89
             return *this;
90
91
        constexpr Mint& operator/=(const Mint& rhs) {
92
             v = v / rhs;
return *this;
93
94
    };
95
    using Z = Mint<998244353>;
96
```

5.2 Eculid

欧几里得算法

```
1 std::gcd(a, b)
```

扩展欧几里得算法

```
/* exgcd */
 3
      auto exgcd = [&](LL a, LL b, LL& x, LL& y) {
   LL x1 = 1, x2 = 0, x3 = 0, x4 = 1;
   while (b != 0) {
 4
                 LL c = a / b;
 5
 6
7
                 std::tie(x1, x2, x3, x4, a, b) = std::make_tuple(x3, x4, x1 - x3 * c, x2 - x4 * c, b, a - b * c);
 9
           x = x1, y = x2;
10
     auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
    if (!b) {
        x = 1, y = 0;
    }
11
12
13
14
                 return a;
15
16
           LL d = self(self, b, a % b, y, x);
17
           y -= a / b * x;
18
           return d;
19
     };
```

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2     if (!b) {
        x = 1, y = 0;
        return;
     }
6     self(self, b, a % b, y, x);
     y -= a / b * x;
};
```

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2     if (!b) {
3         x = 1, y = 0;
4         return a;
5     }
6     LL d = self(self, b, a % b, y, x);
7     y -= a / b * x;
8     return d;
9 };
```

类欧几里得算法

```
一般形式: 求 f(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor
```

5.3 inverse 33

```
f(a, b, c, n) = nm - f(c, c - b - 1, a, m - 1)
```

```
LL f(LL a, LL b, LL c, LL n) {
    if (a == 0) return ((b / c) * (n + 1));
    if (a >= c || b >= c)
        return f(a % c, b % c, c, n) + (a / c) * n * (n + 1) / 2 + (b / c) * (n + 1);
    LL m = (a * n + b) / c;
    LL v = f(c, c - b - 1, a, m - 1);
    return n * m - v;
}
```

```
更进一步, 求: g(a,b,c,n) = \sum_{i=0}^{n} i \lfloor \frac{ai+b}{c} \rfloor 以及 h(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor^2 g(a,b,c,n) = \lfloor \frac{mn(n+1)-f(c,c-b-1,a,m-1)-h(c,c-b-1,a,m-1)}{2} \rfloor h(a,b,c,n) = nm(m+1) - 2f(c,c-b-1,a,m-1) - 2g(c,c-b-1,a,m-1) - f(a,b,c,n)
```

```
const int inv2 = 499122177;
const int inv6 = 166374059;
 3
 4
        LL f(LL a, LL b, LL c, LL n);
       LL g(LL a, LL b, LL c, LL n);
LL h(LL a, LL b, LL c, LL n);
 5
 6
        struct data {
 9
             LL f, g, h;
10
11
        data calc(LL a, LL b, LL c, LL n) {
    LL ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + 1, n21 = n * 2 + 1;
13
14
               data d;
15
               if (a == 0) {
                     d.f = bc * n1 \% mod;
16
                     d.g = bc * n % mod * n1 % mod * inv2 % mod;
d.h = bc * bc % mod * n1 % mod;
17
18
19
                     return d;
20
\frac{1}{21}
               if (a >= c || b >= c) {
22
                     d.f = n * n1 \% mod * inv2 \% mod * ac % mod + bc * n1 % mod;
23
                     ac * n % mod * n1 % mod * n21 % mod * inv6 % mod + bc * n % mod * n1 % mod * inv2 % mod;
d.h = ac * ac % mod * n % mod * n1 % mod * n21 % mod * inv6 % mod +
bc * bc % mod * n1 % mod + ac * bc % mod * n % mod * n1 % mod;
24
25
26
                     d.f %= mod, d.g %= mod, d.h %= mod;
data e = calc(a % c, b % c, c, n);
d.h += e.h + 2 * bc % mod * e.f % mod + 2 * ac % mod * e.g % mod;
d.g += e.g, d.f += e.f;
27
29
30
31
32
                     d.f %= mod, d.g %= mod, d.h %= mod;
                     return d;
\begin{array}{c} 33 \\ 34 \end{array}
              data e = calc(c, c - b - 1, a, m - 1);

d.f = n * m % mod - e.f, d.f = (d.f % mod + mod) % mod;

d.g = m * n % mod * n1 % mod - e.h - e.f, d.g = (d.g * inv2 % mod + mod) % mod;

d.h = n * m % mod * (m + 1) % mod - 2 * e.g - 2 * e.f - d.f;
35
36
37
38
               d.h = (d.h \% mod + mod) \% mod;
39
```

5.3 inverse

线性递推

$$a^{-1} \equiv -\lfloor \frac{p}{a} \rfloor \times (p\%a)^{-1}$$

求 n 个数的逆元

```
/* inverse */
 2
3
      auto inverse =[&](const vi& a) {
            int n = a.size();
 4
            vi b(n), f(n), ivf(n);
            f[0] = a[0];

for (int i = 1; i < n; i++) {

f[i] = 111 * f[i - 1] * a[i] % p;
 5
 6
7
 8
 9
            ivf.back() = quick_power(f.back(), p - 2, p);
for (int i = n - 1; i; i--) {
   ivf[i - 1] = 111 * ivf[i] * a[i] % p;
10
11
12
            b[0] = ivf[0];
for (int i = 1; i < n; i++) {
13
14
15
                  b[i] = 111 * ivf[i] * f[i - 1] % p;
16
17
            return b;
18
     };
```

5.4 sieve

素数

```
vi prime, is_prime(n + 1, 1);
auto Euler_sieve = [&] (int n) {
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) prime.push_back(i);
        for (auto p : prime) {
            if (i * p > n) break;
            is_prime[i * p] = 0;
            if (i % p == 0) break;
        }
    }
}
```

欧拉函数

```
\begin{array}{c}2\\3\\4\\5\\6\\7\end{array}
 8
                        prime.push_back(i);
                        phi[i] = i - 1;
10
                  for (auto p : prime) {
   if (i * p > n) break;
   is_prime[i * p] = 0;
   if (i % p) {
11
12
13
14
15
                              phi[i * p] = phi[i] * phi[p];
16
                        } else {
                              phi[i * p] = phi[i] * p;
break;
17
18
19
20
                        }
                  }
\overline{21}
            }
22
      };
```

约数和

```
vi g(n + 1), d(n + 1), prime;
vi is_prime(n + 1, 1);
auto get_d = [&](int n) {
   int tot = 0;
   g[1] = d[1] = 1;
   for (int i = 2; i <= n; i++) {
      if (is_prime[i]) {</pre>
```

5.4 sieve 35

```
8
9
                                 prime.push_back(i);
                                 d[i] = g[i] = i + 1;
10
                        for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        g[i * p] = g[i] * p + 1;
        d[i * p] = d[i] / g[i] * g[i * p];
        break;
11
12
13
14
15
16
17
                                         break;
                                 } else {
18
                                         d[i * p] = d[i] * d[p];
g[i * p] = 1 + p;
19
20
21
22
23
                }
        };
```

莫比乌斯函数

```
vi mu(n + 1), prime;
       vi is_prime(n + 1, 1);
       auto get_mu = [&](int n) {
 4
              mu[1] = 1;
              for (int i = 2; i <= n; i++) {
    if (is_prime[i]) {</pre>
 5
 6
7
                            prime.push_back(i);
mu[i] = -1;
 9
                     for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        mu[i * p] = 0;
        break;
    }
}
10
11
12
13
14
15
                                    break;
16
17
                            mu[i * p] = -mu[i];
                     }
19
20
       };
```

杜教筛

```
const int N = 1e7;
         vi mu(N + 1), phi(N + 1), prime;
         vl sum_phi(N + 1), sum_mu(N + 1);
vi is_prime(N + 1, 1);
std::map<LL, LL> mp_mu;
 6
         /* 计算 1 ~ 10<sup>7</sup> 的 mu */
auto get_mu = [&](int n) {
    phi[1] = mu[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) {
 9
10
11
                                     prime.push_back(i);
phi[i] = i - 1;
mu[i] = -1;
12
13
14
15
                           for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        phi[i * p] = phi[i] * p;
        mu[i * p] = 0;
        break;
}
16
18
19
20
\overline{21}
22
                                               break;
23
\frac{1}{24}
                                     phi[i * p] = phi[i] * phi[p];
mu[i * p] = -mu[i];
\frac{1}{25}
26
27
                   }
28
         };
        get_mu(N);
for (int i = 1; i <= N; i++) {
    sum_phi[i] = sum_phi[i - 1] + phi[i];
    sum_mu[i] = sum_mu[i - 1] + mu[i];</pre>
29
30
31
32
33
34
       /* 杜教筛: 求 mu 的前缀和 */
```

```
std::function<LL(LL)> S_mu = [&](LL x) -> LL {
37
            if (x <= N) return sum_mu[x];</pre>
38
            auto it = mp_mu.find(x);
39
            if (it != mp_mu.end()) return mp_mu[x];
           LL ans = 1;

for (LL i = 2, j; i <= x; i = j + 1) {

   j = x / (x / i);

   ans -= S_mu(x / i) * (j - i + 1);
40
41
42
43
44
45
            return mp_mu[x] = ans;
46
      };
47
      /* 杜教筛: 求 phi 的前缀和 */
auto S_phi = [&] (LL x) -> LL {
48
49
            if (x <= N) return sum_phi[x];
LL ans = 0;
50
51
52
53
54
55
            for (LL i = 1, j; i <= x; i = j + 1) {
    j = x / (x / i);
    ans += 1ll * (S_mu(j) - S_mu(i - 1)) * (x / i) * (x / i);
56
            return (ans - 1) / 2 + 1;
      };
```

5.5 powerful number

目标: 求积性函数 f(n) 的前缀和. 做法如下:

- 1. 构造积性函数 g(n),满足其易求前缀和且素数处函数值等于 f 的函数值.
- 2. 构造 h = f/g, 即 f = h*g (狄利克雷卷积), 容易知道 h(1) = 1. 容易计算出 h 在非 powerful number 处函数值均为 0.
- 3. 根据

$$F(n) = \sum_{i=1}^{n} f(n)$$

$$= \sum_{i=1}^{n} \sum_{d|i} g(i)h(i/d)$$

$$= \sum_{d=1}^{n} \sum_{i=1}^{\left\lfloor \frac{n}{d} \right\rfloor} h(d)g(i)$$

$$= \sum_{d=1}^{n} h(d)G\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$= \sum_{d=1,2,\cdots,n,d \text{ is powerful number}} h(d)G\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

发现只需要计算 h 在 powerful number 处的函数值即可, 可以边搜索边计算.

给定 $f(p^k) = p^k(p^k - 1)$ 为积性函数, 计算其前缀和.

```
auto powerfulNumber = [&](LL n) {

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

              /* 1. construct g, and compute G */
             /* int m = sqrt(n); // maybe TLE // */
int m = 2e6;
             std::vector<Z> Gs(m + 1);
              vi prime, is_prime(m + 1, 1);
             for (int i = 2; i <= m; i++) {
   if (is_prime[i]) {
     prime.push_back(i);
     Gs[i] = i - 1;
}</pre>
10
11
12
                    13
14
15
16
                                 Gs[i * p] = Gs[i] * Gs[p];
17
                          } else {
```

5.6 block 37

```
19
                               Gs[i * p] = Gs[i] * p;
20
21
22
                  }
23
            for (int i = 2; i <= m; i++) {
   Gs[i] = Gs[i - 1] + Z(i) * Gs[i];
24
25
26
            std::map<LL, Z> mp;
auto G = [&](auto&& self, LL n) {
27
28
29
                  if (n <= m) return Gs[n];</pre>
30
                   if (mp.find(n) != mp.end()) return mp[n];
                  Z ans = Z(n) * Z(n + 1) * Z(n * 2 + 1) * inv6;

for (LL 1 = 2, r, k; 1 <= n; 1 = r + 1) {

k = n / 1, r = n / (n / 1);
31
32
33
34
                        ans -= (Z(r) * Z(r + 1) - Z(1 - 1) * Z(1)) * inv2 * self(self, k);
35
36
                  return mp[n] = ans;
37
            };
/* 2. compute h(p^c) */
38
39
            vvl ps(prime.size());
            std::vector<std::vector<Z>> hs(prime.size());
40
            int len = 0;
41
            for (int i = 0; i < prime.size(); i++) {
   LL p = prime[i], now = p * p, c = 2;
   ps[i] = {1, p}, hs[i] = {1, 0};
   while (now <= n) {
42
43
44
45
                        ps[i].push_back(now);
46
                        Z ans = Z(ps[i][c]) * (Z(ps[i][c]) - 1);
for (int j = 1; j <= c; j++) {
    ans -= Z(ps[i][j]) * Z(ps[i][j - 1]) * Z(p - 1) * hs[i][c - j];</pre>
47
48
49
50
                        hs[i].push_back(ans);
51
52
                        now *= p, c += 1;
53
54
                  len += ps[i].size();
55
56
            debug(len);
57
            /* 3. search powerful number */
58
            Z ans = 0;
59
            auto dfs = [&](auto&& self, int id, LL now, Z hd) -> void {
                  ans += hd * G(G, n / now);
for (int i = id; i < prime.size(); i++) {</pre>
60
61
                        int p = prime[i], c = 2;
if (now > n / p / p) break;
for (LL x = now * p * p; x <= n; x *= p, c++) {
    if (hs[i][c]) self(self, i + 1, x, hd * hs[i][c]);
}</pre>
62
63
64
65
66
67
                  }
68
69
            dfs(dfs, 0, 1, 1);
70
            return ans;
      };
```

5.6 block

分块的逻辑

下取整 $\lfloor \frac{n}{q} \rfloor = k$ 的分块 $()g \leq n)$

```
1  for(int l = 1, r, k; l <= n; l = r + 1){
2     k = n / 1;
3     r = n / (n / 1);
4     debug(l, r, k);
}</pre>
```

 $k = \lfloor \frac{n}{q} \rfloor$ 从大到小遍历 $\lfloor \frac{n}{q} \rfloor$ 的所有取值, [l, r] 对应的是 g 取值的区间.

```
for(int l = 1, r, k; l < n; l = r + 1){
    k = (n + 1 - 1) / l;
    r = (n + k - 2) / (k - 1) - 1;
    debug(l, r, k);
}</pre>
```

 $k = \lceil \frac{n}{q} \rceil$ 从大到小遍历 $\lceil \frac{n}{g} \rceil$ 的所有取值, [l, r] 对应的是 g 取值的区间.

一般形式

计算 $\sum_{i=1}^{n} f(i) \lfloor \frac{n}{i} \rfloor$, 设 s(i) 为 f(i) 的前缀和。

```
1  for (int l = 1, r; l <= n; l = r + 1) {
2     r = n / (n / 1);
3     ans += (s[r] - s[l - 1]) * (n / 1);
}</pre>
```

 $\sum_{i=1}^{n} f(i) \lfloor \frac{a}{i} \rfloor \lfloor \frac{b}{i} \rfloor$

```
for (int 1 = 1, r, r1, r2; 1 <= n; 1 = r + 1) {
    if (a / 1) {
        r1 = a / (a / 1);
    } else {
        r1 = n;
    }
    if (b / 1) {
        r2 = b / (b / 1);
    } else {
        r2 = n;
    }
    remin(min(r1, r2), n);
    ans += (s[r] - s[1 - 1]) * (a / 1) * (b / 1);
}</pre>
```

5.7 CRT & exCRT

求解

$$\begin{cases}
N \equiv a_1 \bmod m_1 \\
N \equiv a_2 \bmod m_2 \\
\dots \\
N \equiv a_n \bmod m_n
\end{cases}$$

```
有 N \equiv \sum_{i=1}^{k} a_i \times \operatorname{inv}\left(\frac{M}{m_i}, m_i\right) \times \left(\frac{M}{m_i}\right) \operatorname{mod} M
```

```
1    /* CRT */
2    auto crt = [&](int n, const vi& a, const vi& m) -> LL{
3        LL ans = 0, M = 1;
4        for(int i = 1; i <= n; i++) M *= m[i];
5        for(int i = 1; i <= n; i++){
            ans = (ans + a[i] * inv(M / m[i]) * (M / m[i])) % M;
7        }
8        return (ans % M + M) % M;
9    };</pre>
```

扩展中国剩余定理

```
1    /* exCRT */
2    auto excrt = [&](int n, const vi& a, const vi& m) -> LL{
3        LL A = a[1], M = m[1];
```

 $5.8 \quad BSGS \& exBSGS$ 39

```
for (int i = 2; i <= n; i++) {
   LL x, y, d = std::gcd(M, m[i]);
   exgcd(M, m[i], x, y);
   LL mod = M / d * m[i];
   x = x * (a[i] - A) / d % (m[i] / d);
   A = ((M * x + A) % mod + mod) % mod;
   M = mod;
}
return A;
};</pre>
```

5.8 BSGS & exBSGS

求解满足 $a^x \equiv b \mod p$ 的 x

```
/* BSGS + [&] (LL a, LL b, LL p) {
    if (1 % p == b % p) return 011;
    LL k = std::sqrt(p) + 1;
    std::unordered_map<LL, LL> hash
    for (LL i = 0, j = b % p; i < k; i++) {
        hash[j] = i;
        i = i * a % p;
    }
}</pre>
  2
 3
  4
  5
 6
 8
  9
                         j = j * a % p;
10
                LL ak = 1;
11
                for (int i = 1; i <= k; i++) ak = ak * a % p;
12
                for (int i = 1, j = ak; i <= k; i++) {
    if (hash.count(j)) return 111 * i * k - hash[j];</pre>
13
14
15
                         j = 111 * j * ak % p;
16
17
                 return -INF;
18
        };
```

$(a,p) \neq 1$ 的情形

```
/* exBSGS */
         /* return value < 0 means no solution */
auto exBSGS = [&](auto&& self, LL a, LL b, LL p) {</pre>
 3
                 b exbsds = [&](altowx self, LL a, b
b = (b % p + p) % p;
if (111 % p == b % p) return 011;
LL x, y, d = std::gcd(a, p);
exgcd(exgcd, a, p, x, y);
if (d > 1) {
  4
 5
  6
  8
                          if (b % d != 0) return -INF;
exgcd(exgcd, a / d, p / d, x, y);
return self(self, a, b / d * x % (p / d), p / d) + 1;
  9
10
11
12
                  return BSGS(a, b, p);
13
        };
14
```

5.9 Miller Rabin

```
/* Miller Rabin */
    v1 vv = \{2, 325, 9375,
                         28178, 450775, 9780504, 1795265022};
3
    auto quick_power = [&](LL a, LL n, LL mod) {
4
       LL ans = 1;
5
       while (n) {
6
           if (n & 1) ans = (i128) ans * a % mod;
           a = (i128) a * a % mod;
8
           n >>= 1;
9
10
       return ans;
11
   };
12
   13
14
15
16
17
18
           LL p = quick_power(a % n, d, n);
           int i = s;
while (p != 1 and p != n - 1 and a % n and i--) p = (i128) p * p % n;
19
20
21
           if (p != n - 1 and i != s) return false;
22
23
       return true;
```

24 |};

5.10 Pollard Rho

能在 $O(n^{\frac{1}{4}})$ 的时间复杂度随机出一个 n 的非平凡因数.

```
/* pollard rho */
    \begin{array}{c}2\\3\\4\\5\\6\\7\end{array}
 8 9
10
                    LL d = std::gcd(val, x);
11
                    if(d > 1) return d;
12
13
14
            LL d = std::gcd(val, x);
15
            if(d > 1) return d;
16
        }
17
    };
```

利用 Miller Rabin 和 Pollard Rho 进行素因数分解

```
auto factorize = [&](LL a) -> v1{
               vl ans, stk;

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

              for (auto p : prime) {
   if (p > 1000) break;
   while (a % p == 0) {
      ans.push_back(p);
   }
}
                             a /= p;
                      if (a == 1) return ans;
              }
10
11
              stk.push_back(a);
12
              while (!stk.empty()) {
                     LL b = stk.back();
13
                      stk.pop_back();
if (miller_rabin(b)) {
14
15
16
17
                             ans.push_back(b);
                             continue;
18
19
                      LL c = b;
20
21
22
23
24
                      while (c >= b) c = pollard_rho(b);
                     stk.push_back(c);
stk.push_back(b / c);
              return ans;
25
       };
```

5.11 quadratic residu

```
/* cipolla */
        auto cipolla = [&](int x) {
               std::srand(time(0));
 \frac{3}{4} \\ \frac{5}{6}
               auto check = [\&] (int x) -> bool { return pow(x, (mod - 1) / 2) == 1; };
               if (!x) return 0;
if (!check(x)) return -1;
               int a, b;
while (1) {
 7
 8
 9
                      a = rand() % mod;
                      b = sub(mul(a, a), x);
if (!check(b)) break;
10
11
13
               PII t = {a, 1};
              PII t = {a, 1};
PII ans = {1, 0};
auto mulp = [&](PII x, PII y) -> PII {
    auto [x1, x2] = x;
    auto [y1, y2] = y;
    int c = add(mul(x1, y1), mul(x2, y2, b));
    int d = add(mul(x1, y2), mul(x2, y1));
    return [a, d];
14
15
16
17
18
19
20
                       return {c, d};
21
               };
```

5.12 Lucas 41

5.12 Lucas

卢卡斯定理

用于求大组合数,并且模数是一个不大的素数.

$$\left(\begin{array}{c} n \\ m \end{array}\right) \bmod p = \left(\begin{array}{c} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{array}\right) \cdot \left(\begin{array}{c} n \bmod p \\ m \bmod p \end{array}\right) \bmod p$$

$$\left(\begin{array}{c} n \bmod p \\ m \bmod p \end{array}\right)$$
 可以直接计算, $\left(\begin{array}{c} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{array}\right)$ 可以继续使用卢卡斯计算.

递归至 m=0 的时候, 返回 1.

p 不太大, 一般在 10^5 左右.

```
auto C = [&](LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return fac[n] * inv_fac[m] % p * inv_fac[n - m] % p;
};

/* lucas */
auto lucas = [&](auto&& self, LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return C(n % p, m % p, p) * self(self, n / p, m / p, p) % p;
}</pre>
```

素数在组合数中的次数

Legengre 给出一种 n! 中素数 p 的幂次的计算方式为:

$$\sum_{1 \leqslant j} \left\lfloor \frac{n}{p^j} \right\rfloor.$$

另一种计算方式利用 p 进制下各位数字和:

$$v_p(n!) = \frac{n - S_p(n)}{p - 1}.$$

则有

$$v_p(C_m^n) = \frac{S_p(n) + S_p(m-n) - S_p(m)}{p-1}.$$

扩展卢卡斯定理

计算

$$\binom{n}{m} \mod p$$
,

p 可能为合数.

第一部分: CRT.

原问题变成求

$$\begin{cases} \begin{pmatrix} n \\ m \end{pmatrix} \equiv a_1 \bmod p_1^{\alpha_1} \\ \begin{pmatrix} n \\ m \end{pmatrix} \equiv a_2 \bmod p_2^{\alpha_2} \\ \dots \\ \begin{pmatrix} n \\ m \end{pmatrix} \equiv a_k \bmod p_k^{\alpha_1} \end{cases}$$

在求出 a_i 之后就可以利用 CRT 求出答案.

第二部分: 移除分子分母中的素数

问题转换成求解

$$\binom{n}{m} \mod q^k$$

等价于

$$\frac{\frac{n!}{q^x}}{\frac{m!}{q^y}\frac{(n-m)!}{q^z}}q^{x-y-z} \bmod q^k,$$

其中 x 表示 n! 中 q 的次数, y, z 同理.

第三部分: 威尔逊定理的推论

问题转换为求

$$\frac{n!}{q^x} \mod q^k$$
.

可以利用威尔逊定理的推论.

```
/* exlucas */
                     auto exLucas = [&](LL n, LL m, LL p) {

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9 \\
      10 \\
      11 \\
      12 \\
   \end{array}

                                         auto inv = [&](LL a, LL p) {
                                                          LL x, y;
exgcd(a, p, x, y);
return (x % p + p) % p;
                                         auto func = [&](auto&& self, LL n, LL pi, LL pk) {
                                                              if (!n) return 111;
                                                            LL ans = 1;

for (LL i = 2; i <= pk; i++) {

   if (i % pi) ans = ans * i % p;
13
14
                                                            ans = quick_power(ans, n / pk, pk);
for (LL i = 2; i <= n % pk; i++) {
   if (i % pi) ans = ans * i % pk;</pre>
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
                                                             ans = ans * self(self, n / pi, pi, pk) % pk;
                                                            return ans;
                                         };
                                         auto multiLucas = [&](LL n, LL m, LL pi, LL pk) {
                                                           b Multilucas = [@](LL ii, LL ii, LL iii, lt iii, 
                                                            return ans;
                                         auto crt = [&](const vl& a, const vl& m, int k) {
   LL ans = 0;
                                                             for (int i = 0; i < k; i++) {</pre>
                                                                                 ans = (ans + a[i] * inv(p / m[i], m[i]) * (p / m[i])) % p;
39
```

5.13 Wilson 43

```
40
              return (ans % p + p) % p;
41
42
         43
44
45
46
             prime.push_back(1);
while (pp % i == 0) {
    prime.back() *= i;
47
48
49
50
51
                  pp /= i;
52
              a.push_back(multiLucas(n, m, i, prime.back()));
53
54
         if (pp > 1) {
             prime.push_back(pp);
a.push_back(multiLucas(n, m, pp, pp));
55
56
57
58
         return crt(a, prime, a.size());
59
    };
```

5.13 Wilson

简单结论

对于素数 p 有

$$(p-1)! \equiv -1 \mod p$$
.

推论

令 $(n!)_p$ 表示不大于 n 且不被 p 整除的正整数的乘积.

特殊情形: n 为素数 p 时即为上述结论.

一般结论: 对素数 p 和正整数 q 有

$$((p^q)!)_p \equiv \pm 1 \bmod p^q.$$

详细定义:

$$((p^q)!)_p = \begin{cases} 1 & \text{if } p = 2 \text{ and } q \geqslant 3, \\ -1 & \text{other wise.} \end{cases}$$

5.14 LTE

将素数 p 在整数 n 中的个数记为 $v_p(n)$.

(n,p)=1

对所有素数 p 和满足 (n,p)=1 的整数 n, 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y).$$

p 是奇素数

对所有奇素数 p 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y) + v_p(n).$$

p = 2

对
$$p=2$$
 且 $p \mid x-y$ 有

1. 对奇数 n 有

$$v_2(x^n - y^n) = v_2(x - y).$$

2. 对偶数 n 有

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

除此之外, 对上述 x, y, n, 若 $4 \mid x - y$, 有

- 1. $v_2(x+y) = 1$.
- 2. $v_2(x^n y^n) = v_2(x y) + v_2(n)$.

5.15 Mobius inversion

莫比乌斯函数

$$\mu(n) = \begin{cases}
1 & n = 1, \\
0 & n 含有平方因子, \\
(-1)^k & k 为 n 的本质不同素因子个数.
\end{cases}$$

性质

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1 \\ 0 & n \neq 1 \end{cases}.$$
$$\varphi(n) = \sum_{d|n} d \cdot \mu(\frac{n}{d}).$$

反演结论

$$[\gcd(i,j)=1] = \sum_{d|\gcd(i,j)} \mu(d).$$

 $O(n \log n)$ 求莫比乌斯函数

```
mu[1] = 1;
for (int i = 1; i <= n; i++){
   for (int j = i + i; j <= n; j += i){</pre>
```

5.15 Mobius inversion 45

莫比乌斯变换

设
$$f(n), F(n)$$
.

1.
$$F(n) = \sum_{d|n} f(d)$$
, $\mathbb{M} f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$.

2.
$$F(n) = \sum_{n|d} f(d)$$
, 则 $f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right) F(d)$.

6 math - polynomial

6.1 FTT

FFT 与拆系数 FFT

```
const int sz = 1 \ll 23;
 2 3
    int rev[sz];
    int rev_n;
 4
     void set_rev(int n) {
         if (n == rev_n) return;
 6
7
         for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] | (i & 1) * n) / 2;
         rev_n = n;
 8
 9
    tempt void butterfly(T* a, int n) {
10
         set_rev(n);
for (int i = 0; i < n; i++) {</pre>
11
12
              if (i < rev[i]) std::swap(a[i], a[rev[i]]);</pre>
13
14
15
16
    namespace Comp {
18
    long double pi = 3.141592653589793238;
19
\frac{20}{21}
    tempt struct complex {
         T x, y;
complex(T x = 0, T y = 0) : x(x), y(y) {}
complex operator+(const complex& b) const { return complex(x + b.x, y + b.y); }
22
23
\overline{24}
25
26
27
         complex operator*(const complex& b) const {
\frac{1}{28}
              return complex<T>(x * b.x - y * b.y, x * b.y + y * b.x);
29
30
          complex operator~() const { return complex(x, -y); }
31
         static complex unit(long double rad) { return complex(std::cos(rad), std::sin(rad)); }
32
33
34
          // namespace Comp
35
36
37
    struct fft_t {
    typedef Comp::complex<double> complex;
38
         complex wn[sz];
39
40
         fft_t() {
41
              for (int i = 0; i < sz / 2; i++) {
42
                   wn[sz / 2 + i] = complex::unit(2 * Comp::pi * i / sz);
43
44
              for (int i = sz / 2 - 1; i; i--) wn[i] = wn[i * 2];
45
46
47
         void operator()(complex* a, int n, int type) {
48
              if (type == -1) std::reverse(a + 1, a + n);
              butterfly(a, n);
49
50
              for (int i = 1; i < n; i *= 2) {
                   const complex* w = wn + i;
51
52
                   for (complex *b = a, t; b != a + n; b += i + 1) {
53
54
55
56
57
                        t = \bar{b}[i];
                       b[i] = *b - t;
*b = *b + t;
for (int j = 1; j < i; j++) {
    t = (++b)[i] * w[j];</pre>
58
59
                            b[i] = *b - t;
                             *b = *b + t;
60
                        }
                   }
61
62
63
              if (type == 1) return;
              for (int i = 0; i < n * 2; i++) ((double*) a)[i] /= n;
64
65
66
    } FFT;
67
68
     typedef decltype(FFT)::complex complex;
69
\frac{70}{71}
     vi fft(const vi& f, const vi& g) {
    static complex ff[sz];
72
         int n = f.size(), m = g.size();
73
          vi h(n + m - 1);
74
          if (std::min(n, m) <= 50) {</pre>
              for (int i = 0; i < n; i++) {</pre>
```

 $6.2 ext{ } FWT$

```
for (int j = 0; j < m; ++j) {
   h[i + j] += f[i] * g[j];</pre>
 76
 77
78
 79
                  }
 80
                  return h;
 81
 82
             int c = 1:
             while (c + 1 < n + m) c *= 2;
 83
            std::memset(ff, 0, sizeof(decltype(*(ff))) * (c));
for (int i = 0; i < n; i++) ff[i].x = f[i];</pre>
 84
 85
 86
             for (int i = 0; i < m; i++) ff[i].y = g[i];</pre>
 87
            FFT(ff, c, 1);
             for (int i = 0; i < c; i++) ff[i] = ff[i] * ff[i];</pre>
 88
 89
 90
            for (int i = 0; i + 1 < n + m; i++) h[i] = std::llround(ff[i].y / 2);</pre>
 91
 92
       }
 93
      94
 95
 96
 97
             int n = f.size(), m = g.size();
 98
             vi h(n + m - 1);
             if (std::min(n, m) <= 50) {</pre>
 99
                  for (int i = 0; i < n; ++i) {
   for (int j = 0; j < m; ++j) {</pre>
100
101
102
                             Add(h[i + j], mul(f[i], g[j]));
103
104
105
                  return h;
106
107
             int c = 1;
108
             while (c + 1 < n + m) c *= 2;
            for (int i = 0; i < 2; ++i) {
109
                  std::memset(ff[i], 0, sizeof(decltype(*(ff[i]))) * (c));
std::memset(gg[i], 0, sizeof(decltype(*(ff[i]))) * (c));
for (int j = 0; j < n; ++j) ff[i][j].x = f[j] / s[i] % s[1];
for (int j = 0; j < m; ++j) gg[i][j].x = g[j] / s[i] % s[1];</pre>
110
111
112
113
114
                  FFT(ff[i], c, 1);
115
                  FFT(gg[i], c, 1);
116
117
             for (int i = 0; i < c; ++i) {
                  ff[2][i] = ff[1][i] * gg[1][i];
ff[1][i] = ff[1][i] * gg[0][i];
gg[1][i] = ff[0][i] * gg[1][i];
118
119
120
                  ff[0][i] = ff[0][i] * gg[0][i];
121
122
123
            for (int i = 0; i < 3; ++i) {</pre>
                  FFT(ff[i], c, -1);
for (int j = 0; j + 1 < n + m; ++j) {
124
125
                       Add(h[j], mul(std::llround(ff[i][j].x) % mod, s[i]));
126
127
128
            FFT(gg[1], c, -1);
for (int i = 0; i + 1 < n + m; ++i) {
129
130
                  Add(h[i], \; mul(std::llround(gg[1][i].x) \; \% \; mod, \; s[1])); \\
131
132
133
             return h;
134
```

6.2 FWT

各种分治过程: and:

```
\begin{split} & FWT[A] = merge(FWT[A_0] + FWT[A_1], FWT[A_1]), \\ & UFWT[A'] = merge(UFWT[A'_0] - UFWT[A'_1], UFWT[A'_1]). \end{split}
```

or:

$$\begin{aligned} & \text{FWT}[\mathbf{A}] = merge(\text{FWT}[\mathbf{A}_0], \text{FWT}[\mathbf{A}_0] + \text{FWT}[\mathbf{A}_1]), \\ & \text{UFWT}[\mathbf{A}'] = merge(\text{UFWT}[\mathbf{A}'_0], -\text{UFWT}[\mathbf{A}'_0] + \text{UFWT}[\mathbf{A}'_1]). \end{aligned}$$

xor:

```
FWT[A] = merge(FWT[A_0] + FWT[A_1], FWT[A_0] - FWT[A_1]),
```

```
\text{UFWT[A']} = merge\left(\frac{\text{UFWT[A'_0]} + \text{UFWT[A'_1]}}{2}, \frac{\text{UFWT[A'_0]} - \text{UFWT[A'_1]}}{2}\right).
```

```
/* FWT */
     auto FWT_and = [&](vi v, int type) -> vi {
 2
          \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}
 9
                                v[i] = add(x, y);
10
                          } else {
                                v[i] = sub(x, y);
11
12
13
               }
14
15
          }
16
          return v;
17
     };
18
19
     auto FWT_or = [&](vi v, int type) -> vi {
\frac{20}{21}
          int n = v.size();
for (int mid = 1; mid < n; mid <<= 1) {</pre>
               for (int block = mid << 1, j = 0; j < n; j += block) {
  for (int i = j; i < j + mid; i++) {
    LL x = v[i], y = v[i + mid];
    if (type == 1) {
        v[i + mid] = add(x, y);
    }
}</pre>
22
23
24
25
26
\overline{27}
                          } else {
   v[i + mid] = sub(y, x);
28
29
30
                     }
31
               }
32
          }
33
          return v;
34
35
36
     auto FWT_xor = [&](vi v, int type) -> vi {
37
          int n = v.size();
          38
39
40
41
                          v[i] = add(x, y);
42
43
                          v[i + mid] = sub(x, y);
if (type == -1) {
44
                                Mul(v[i], inv2);
Mul(v[i + mid], inv2);
45
46
47
48
                     }
49
               }
50
51
          return v;
52
53
     };
     a = FWT(a, 1), b = FWT(b, 1);
for (int i = 0; i < (1 << n); i++) {
54
55
56
           c[i] = mul(a[i], b[i]);
57
58
     c = FWT(c, -1);
```

```
/* FWT @ wrb */
 2
       void FMTor(int f[]) {
            for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
if (j >> i & 1) f[j] = (f[j] + f[j ^ 1 << i]) % P;
 3
 4
 5
 \frac{6}{7}
      void FMToriv(int f[]) {
            for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
        if (j >> i & 1) f[j] = (f[j] - f[j ^ 1 << i] + P) % P;</pre>
 9
10
11
      void FMTand(int f[]) {
            for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
if (~j >> i & 1) f[j] = (f[j] + f[j ^ 1 << i]) % P;
13
14
15
16
17
      void FMTandiv(int f[]) {
            for (int i = 0; i < n; ++i)
    for (int j = 0; j < m; ++j)
        if (~j >> i & 1) f[j] = (f[j] - f[j ^ 1 << i] + P) % P;
18
19
20
21
    void FWT(int f[]) {
```

```
23
                   for (int len = 1; len < m; len *= 2) {</pre>
24
                            for (int i = 0; i < m; i += len * 2) {</pre>
                                     for (int j = i; j < i + len; ++j) {
    int x = f[j], y = f[j + len];
    f[j] = (x + y) % P;
    f[j + len] = (x - y + P) % P;
25
26
27
28
29
30
                            }
31
                   }
         }
32
          void FWTiv(int f[]) {
33
                  for (int len = 1; len < m; len *= 2) {
    for (int i = 0; i < m; i += len * 2) {
        for (int j = i; j < i + len; ++j) {
            int x = f[j], y = f[j + len];
            f[j] = 111 * (x + y) * iv2 % P;
            f[j + len] = 111 * (x - y + P) * iv2 % P;
}</pre>
34
35
36
37
38
39
40
                                     }
                            }
41
                  }
42
         }
43
```

6.3 class polynomial

```
class polynomial : public vi {
   public:
 2
 3
         polynomial() = default;
         polynomial(const vi& v) : vi(v) {}
 4
 5
         polynomial(vi&& v) : vi(std::move(v)) {}
 6
          int degree() { return size() - 1; }
 8
 9
          void clearzero() {
10
              while (size() && !back()) pop_back();
11
12
    };
13
14
15
     polynomial& operator+=(polynomial& a, const polynomial& b) {
         a.resize(std::max(a.size(), b.size()), 0);
for (int i = 0; i < b.size(); i++) {
16
17
18
              Add(a[i], b[i]);
19
20
          a.clearzero();
21
         return a;
22
    }
23
24
    polynomial operator+(const polynomial& a, const polynomial& b) {
25
         polynomial ans = a;
26
          return ans += b;
27
     }
28
29
     polynomial& operator-=(polynomial& a, const polynomial& b) {
         a.resize(std::max(a.size(), b.size()), 0);
for (int i = 0; i < b.size(); i++) {
30
31
32
              Sub(a[i], b[i]);
33
\frac{34}{35}
          a.clearzero();
         return a;
36
     }
37
38
    polynomial operator-(const polynomial& a, const polynomial& b) {
39
         polynomial ans = a;
40
          return ans -= b;
41
42
     class ntt_t {
43
44
45
         static const int maxbit = 22;
         static const int sz = 1 << maxbit;
static const int mod = 998244353;
46
47
48
          static const int g = 3;
49
         std::array<int, sz + 10> w;
std::array<int, maxbit + 10> len_inv;
50
51
52
53
         ntt_t() {
              int wn = pow(g, (mod - 1) >> maxbit);
54
              w[0] = 1;
55
              for (int i = 1; i <= sz; i++) {</pre>
56
57
                   w[i] = mul(w[i - 1], wn);
58
59
              len_inv[maxbit] = pow(sz, mod - 2);
```

```
60
                  for (int i = maxbit - 1; ~i; i--) {
 61
                       len_inv[i] = add(len_inv[i + 1], len_inv[i + 1]);
 62
 63
 64
 65
            void operator()(vi& v, int& n, int type) {
                  int bit = 0;
while ((1 << bit) < n) bit++;
int tot = (1 << bit);</pre>
 66
 67
 68
 69
                  v.resize(tot, 0);
 70
71
72
73
74
75
76
77
78
                  vi rev(tot);
                  n = tot;
                  for (int i = 0; i < tot; i++) {
    rev[i] = rev[i >> 1] >> 1;
                       if (i & 1) {
    rev[i] |= tot >> 1;
                  for (int i = 0; i < tot; i++) {</pre>
                       if (i < rev[i]) {</pre>
 80
                             std::swap(v[i], v[rev[i]]);
 81
82
 83
                  for (int midd = 0; (1 << midd) < tot; midd++) {</pre>
 84
                        int mid = 1 << midd;</pre>
 85
                        int len = mid << 1;</pre>
 86
                        for (int i = 0; i < tot; i += len) {</pre>
                             for (int j = 0; j < mid; j++) {
   int w0 = v[i + j];</pre>
 87
 88
 89
                                   int w1 = mul(
                                  w[-max(
   w[type == 1 ? (j << maxbit - midd - 1) : (len - j << maxbit - midd - 1)],
   v[i + j + mid]);
v[i + j] = add(w0, w1);
v[i + j + mid] = sub(w0, w1);</pre>
 90
 91
 92
 93
 94
                             }
                       }
 95
 96
                  if (type == -1) {
 97
 98
                       for (int i = 0; i < tot; i++) {</pre>
 99
                             v[i] = mul(v[i], len_inv[bit]);
100
101
                  }
102
      } NTT;
103
```

乘法

```
polynomial& operator*=(polynomial& a, const polynomial& b) {
   if (!a.size() || !b.size()) {
 2
 3
                  a.resize(0);
 4
5
                  return a;
 6
7
            polynomial tmp = b;
int deg = a.size() + b.size() - 1;
            int temp = deg;
 8
 9
10
            // 项数较小直接硬算
11
12
            if ((LL) a.size() * (LL) b.size() <= (LL) deg * 50LL) {</pre>
13
                   tmp.resize(0);
                  tmp.resize(deg, 0);
for (int i = 0; i < a.size(); i++) {
   for (int j = 0; j < b.size(); j++) {
      tmp[i + j] = add(tmp[i + j], mul(a[i], b[j]));
}</pre>
14
15
16
17
18
19
20
                  }
                   a = tmp;
\overline{21}
                  return a;
22
23
\frac{24}{25}
            // 项数较多跑 NTT
26
            NTT(a, deg, 1);
\overline{27}
            NTT(tmp, deg, 1);
for (int i = 0; i < deg; i++) {
\frac{1}{28}
\overline{29}
                  Mul(a[i], tmp[i]);
\frac{29}{30} 31
            NTT(a, deg, -1);
32
             a.resize(temp);
33
            return a;
34
      }
35
```

```
36 | polynomial operator*(const polynomial& a, const polynomial& b) {
37 | polynomial ans = a;
38 | return ans *= b;
39 | }
```

逆

```
polynomial inverse(const polynomial& a) {
            polynomial ans({pow(a[0], mod - 2)});
polynomial temp;
 \begin{array}{c} 3 \\ 4 \\ 5 \end{array}
            polynomial tempa;
            int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {
 6
 7
                  tempa.resize(0);
 8
                  tempa.resize(1 << i << 1, 0);
for (int j = 0; j != tempa.size() and j != deg; j++) {
   tempa[j] = a[j];</pre>
10
11
12
                  temp = ans * (polynomial({2}) - tempa * ans);
                  if (temp.size() > (1 << i << 1)) {
    temp.resize(1 << i << 1, 0);</pre>
13
14
15
16
                  temp.clearzero();
17
                  std::swap(temp, ans);
18
19
            ans.resize(deg);
20
            return ans;
21
```

对数

```
polynomial diffrential(const polynomial& a) {
 3
          if (!a.size()) {
              return a:
 4
          polynomial ans(vi(a.size() - 1));
 5
6
7
          for (int i = 1; i < a.size(); i++) {
   ans[i - 1] = mul(a[i], i);</pre>
 8 9
          return ans;
     }
10
11
12
     polynomial integral(const polynomial& a) {
          polynomial ans(vi(a.size() + 1));
for (int i = 0; i < a.size(); i++) {</pre>
13
14
               ans[i + 1] = mul(a[i], pow(i + 1, mod - 2));
15
16
17
          return ans;
18
     }
19
20
     polynomial ln(const polynomial& a) {
\overline{21}
          int deg = a.size();
22
          polynomial da = diffrential(a);
23
24
25
          polynomial inva = inverse(a);
          polynomial ans = integral(da * inva);
          ans.resize(deg);
26
          return ans;
```

指数

```
polynomial exp(const polynomial& a) {
    polynomial ans({1});
    polynomial temp;
    polynomial tempa;
    polynomial tempaa;
    int deg = a.size();
    for (int i = 0; (1 << i) < deg; i++) {
        tempa.resize(0);
        tempa.resize(1 << i << 1, 0);
        for (int j = 0; j != tempa.size() and j != deg; j++) {
            tempa[j] = a[j];
        }
        tempaa = ans;
    }
}</pre>
```

```
14
                    tempaa.resize(1 << i << 1);</pre>
                    temp = ans * (tempa + polynomial({1}) - ln(tempaa));
if (temp.size() > (1 << i << 1)) {
    temp.resize(1 << i << 1, 0);</pre>
15
16
17
18
19
                    temp.clearzero();
20
                   std::swap(temp, ans);
\overline{21}
\overline{22}
             ans.resize(deg);
23
             return ans;
24
```

根号

```
polynomial sqrt(polynomial& a) {
 2
           polynomial ans({cipolla(a[0])});
if (ans[0] == -1) return ans;
 \frac{1}{3}
           polynomial temp;
 5
6
7
           polynomial tempa;
           polynomial tempaa;
           int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {</pre>
 8 9
                 tempa.resize(0);
10
                 tempa.resize(1 << i << 1, 0);
                 for (int j = 0; j != tempa.size() and j != deg; j++) {
   tempa[j] = a[j];
11
12
13
14
                 tempaa = ans;
                 tempaa - ams,
tempaa.resize(1 << i << 1);
temp = (tempa * inverse(tempaa) + ans) * inv2;
if (temp.size() > (1 << i << 1)) {</pre>
15
16
17
18
                      temp.resize(1 << i << 1, 0);
19
\frac{1}{20}
                 temp.clearzero();
                 std::swap(temp, ans);
22
23
           ans.resize(deg);
24
           return ans;
25
26
     // 特判 //
27
\frac{1}{28} 29
     int cnt = 0;
for (int i = 0; i < a.size(); i++) {</pre>
30
           if (a[i] == 0) {
31
32
                cnt++;
33
           } else {
34
                 break;
35
36
37
     if (cnt) {
38
           if (cnt == n) {
                 for (int i = 0; i < n; i++) {
    std::cout << "0";
39
40
41
42
                 std::cout << endl;</pre>
43
                 return 0;
44
45
           if (cnt & 1) {
46
                 std::cout << "-1" << endl;
47
                 return 0;
48
           polynomial b(vi(a.size() - cnt));
for (int i = cnt; i < a.size(); i++) {
   b[i - cnt] = a[i];</pre>
49
50
51
52
53
           a = b;
54
     a.resize(n - cnt / 2);
55
     a = sqrt(a);
if (a[0] == -1) {
    std::cout << "-1" << endl;</pre>
56
57
58
59
           return 0;
60
61
     reverse(all(a));
62
     a.resize(n):
     reverse(all(a));
```

6.4 wsy poly

```
#include <bits/stdc++.h>
     using ul = std::uint32_t;
 3
     using li = std::int32_t;
     using ll = std::int64_t;
     using ull = std::uint64_t;
using llf = long double;
using lf = double;
     using vul = std::vector;
using vvul = std::vector<vul>;
using pulb = std::pair<ul, bool>;
11
     using vpulb = std::vector<pulb>;
using vvpulb = std::vector<vpulb>
13
     using vb = std::vector<bool>;
14
15
     const ul base = 998244353;
17
18
     std::mt19937 rnd;
19
20
     ul plus(ul a, ul b) { return a + b < base ? a + b : a + b - base; }
21
     ul minus(ul a, ul b) { return a < b ? a + base - b : a - b; }
23
\overline{24}
     ul mul(ul a, ul b) { return ull(a) * ull(b) % base; }
\overline{25}
26
     void exgcd(li a, li b, li& x, li& y) {
\frac{1}{27}
          if (b) {
28
               exgcd(b, a % b, y, x);
y -= x * (a / b);
\frac{1}{29}
          } else {
30
               x = 1;

y = 0;
31
32
33
34
     }
35
36
     ul inverse(ul a) {
          li x, y;
exgcd(a, base, x, y);
return x < 0 ? x + li(base) : x;
37
38
39
40
     }
41
     ul pow(ul a, ul b) {
42
          ul ret = 1;
ul temp = a;
43
44
          while (b) {
   if (b & 1) {
45
46
47
                   ret = mul(ret, temp);
48
49
               temp = mul(temp, temp);
50
               b > = 1;
51
52
          return ret;
53
     }
54
55
     ul sqrt(ul x) {
56
57
          ul a;
          ul w2;
58
          while (true) {
    a = rnd() % base;
59
60
61
               w2 = minus(mul(a, a), x);
62
               if (pow(w2, base - 1 >> 1) == base - 1) {
63
                    break;
64
65
66
          ul b = base + 1 >> 1;
67
          ul rs = 1, rt = 0;
68
          ul as = a, at = 1;
          ul qs, qt;
while (b) {
69
70
71
               if (b & 1) {
72
73
74
75
76
                    qs = plus(mul(rs, as), mul(mul(rt, at), w2));
                    qt = plus(mul(rs, at), mul(rt, as));
                    rs = qs;
                    rt = qt;
77
               b >>= 1;
78
               qs = plus(mul(as, as), mul(mul(at, at), w2));
79
               qt = plus(mul(as, at), mul(as, at));
               as = qs;
80
               at = qt;
81
82
83
          return rs + rs < base ? rs : base - rs;
```

```
ul log(ul x, ul y, bool inited = false) {
 87
          static std::map<ul, ul> bs;
 88
           const ul d = std::round(std::sqrt(lf(base - 1)));
 89
           if (!inited) {
               bs.clear();
 90
               for (ul i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
   bs[j] = i;
 91
 92
 93
               }
 94
          ul temp = inverse(pow(x, d));
for (ul i = 0, j = 1;; i += d, j = auto it = bs.find(mul(y, j));
 95
 96
                                               j = mul(j, temp)) {
 97
 98
               if (it != bs.end()) {
 99
                    return it->second + i;
100
101
          }
     }
102
103
     ul powroot(ul x, ul y, bool inited = false) {
   const ul g = 3;
104
105
106
           ul lgx = log(g, x, inited);
107
          li s, t;
exgcd(y, base - 1, s, t);
if (s < 0) {</pre>
108
109
110
               s += base - 1;
111
112
          return pow(g, ull(s) * ull(lgx) % (base - 1));
113
114
115
      class polynomial : public vul {
116
          public:
          void clearzero() {
   while (size() && !back()) {
117
118
                   pop_back();
119
120
121
          polynomial() = default;
122
123
          polynomial(const vul& a) : vul(a) {}
          polynomial(vul&& a) : vul(std::move(a)) {}
ul degree() const { return size() - 1; }
124
125
126
          ul operator()(ul x) const {
127
               ul ret = 0;
128
               for (ul i = size() - 1; ~i; --i) {
129
                   ret = mul(ret, x);
130
                    ret = plus(ret, vul::operator[](i));
131
132
               return ret;
133
          }
134
     };
135
136
     polynomial& operator+=(polynomial& a, const polynomial& b) {
          a.resize(std::max(a.size(), b.size()), 0);
for (ul_i = 0; i != b.size(); ++i) {
137
138
139
               a[i] = plus(a[i], b[i]);
140
141
          a.clearzero();
142
          return a;
143
144
145
      polynomial operator+(const polynomial& a, const polynomial& b) {
146
          polynomial ret = a;
147
           return ret += b;
148
149
150
     polynomial& operator-=(polynomial& a, const polynomial& b) {
          a.resize(std::max(a.size(), b.size()), 0);
for (ul i = 0; i != b.size(); ++i) {
151
152
153
               a[i] = minus(a[i], b[i]);
154
155
          a.clearzero();
156
          return a;
157
158
159
     polynomial operator-(const polynomial& a, const polynomial& b) {
160
          polynomial ret = a;
161
          return ret -= b;
162
163
164
      class ntt_t {
165
          public:
1.66
           static const ul lgsz = 20;
167
          static const ul sz = 1 << lgsz;</pre>
168
           static const ul g = 3;
169
          ul w[sz + 1];
          ul leninv[lgsz + 1];
170
171
          ntt_t() {
```

```
172
                ul wn = pow(g, (base - 1) >> lgsz);
173
                 w[0] = 1;
174
                for (ul i = 1; i <= sz; ++i) {</pre>
175
                      w[i] = mul(w[i - 1], wn);
176
177
                leninv[lgsz] = inverse(sz);
178
179
                for (ul i = lgsz - 1; ~i; ~-i) {
    leninv[i] = plus(leninv[i + 1], leninv[i + 1]);
180
181
182
            void operator()(vul& v, ul& n, bool inv) {
                ul lgn = 0;
while ((1 << lgn) < n) {
183
184
185
                      ++1gn;
186
187
                n = 1 \ll lgn;
                v.resize(n, 0);
for (ul i = 0, j = 0; i != n; ++i) {
   if (i < j) {</pre>
188
189
190
191
                          std::swap(v[i], v[j]);
192
                     193
194
195
196
                           k >>= 1;
                      }
197
198
                      j |= k;
199
200
                for (ul lgmid = 0; (1 << lgmid) != n; ++lgmid) {</pre>
201
                      ul mid = 1 << lgmid;
202
                      ul len = mid << 1;
203
                      for (ul i = 0; i != n; i += len) {
                          for (ul j = 0; j != mid; ++j) {
    ul t0 = v[i + j];
204
205
                                ul t1 =
206
                                    mul(w[inv ? (len - j << lgsz - lgmid - 1) : (j << lgsz - lgmid - 1)],
    v[i + j + mid]);</pre>
207
208
                                v[i + j] = plus(t0, t1);
209
                                v[i + j + mid] = minus(t0, t1);
210
211
                          }
212
                     }
213
214
                 if (inv) {
                     for (ul i = 0; i != n; ++i) {
215
216
                           v[i] = mul(v[i], leninv[lgn]);
217
218
                }
219
           }
220
      } ntt;
221
222
      polynomial& operator*=(polynomial& a, const polynomial& b) {
223
            if (!b.size() || !a.size()) {
224
                a.resize(0);
225
                return a;
226
227
           polynomial temp = b;
ul npmp1 = a.size() + b.size() - 1;
228
229
            if (ull(a.size()) * ull(b.size()) <= ull(npmp1) * ull(50)) {</pre>
230
                temp.resize(0);
                temp.resize(npmp1, 0);
for (ul i = 0; i != a.size(); ++i) {
    for (ul j = 0; j != b.size(); ++j) {
        temp[i + j] = plus(temp[i + j], mul(a[i], b[j]));
}
231
232
233
234
235
                      }
236
\bar{2}37
                a = temp;
238
                a.clearzero();
239
                return a;
240
241
           ntt(a, npmp1, false);
           ntt(temp, npmp1, false);
for (ul i = 0; i != npmp1; ++i) {
    a[i] = mul(a[i], temp[i]);
242
243
244
245
246
           ntt(a, npmp1, true);
247
            a.clearzero();
248
           return a;
249
      }
250
251
      polynomial operator*(const polynomial& a, const polynomial& b) {
252
           polynomial ret = a;
253
            return ret *= b;
\begin{array}{c} 254 \\ 255 \end{array}
256
      polynomial& operator*=(polynomial& a, ul b) {
257
           if (!b) {
258
                a.resize(0);
```

```
259
                 return a;
260
261
            for (ul i = 0; i != a.size(); ++i) {
                 a[i] = mul(a[i], b);
262
263
264
            return a;
265
       }
266
       polynomial operator*(const polynomial& a, ul b) {
    polynomial ret = a;
267
268
269
            return ret *= b;
270
271
272
       polynomial inverse(const polynomial& a, ul lgdeg) {
272
273
274
275
276
277
            polynomial ret({inverse(a[0])});
            polynomial temp;
            polynomial tempa;
             for (ul i = 0; i != lgdeg; ++i) {
                 tempa.resize(0);
                 tempa.resize(0',
tempa.resize(1 << i << 1, 0);
for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
   tempa[j] = a[j];</pre>
278
279
280
281
                 temp = ret * (polynomial({2}) - tempa * ret);
if (temp.size() > (1 << i << 1)) {</pre>
282
283
284
                       temp.resize(1 << i << 1, 0);
285
286
                  temp.clearzero();
287
                  std::swap(temp, ret);
288
289
            return ret;
290 }
291
       void quotientremain(const polynomial& a, polynomial b, polynomial& q, polynomial& r) {
   if (a.size() < b.size()) {</pre>
292
293
294
                 q = polynomial();
r = std::move(a);
295
296
                 return;
297
298
            std::reverse(b.begin(), b.end());
299
            auto ta = a;
300
            std::reverse(ta.begin(), ta.end());
            ul n = a.size() - 1;
ul m = b.size() - 1;
301
302
303
            ta.resize(n - m + 1);
            ul lgnmmp1 = 0;
while ((1 << lgnmmp1) < n - m + 1) {
304
305
306
                  ++lgnmmp1;
307
            q = ta * inverse(b, lgnmmp1);
q.resize(n - m + 1);
308
309
310
311
            std::reverse(b.begin(), b.end());
            std::reverse(q.begin(), q.end());
312
            r = a - b * q;
313
314
315
       polynomial mod(const polynomial& a, const polynomial& b) {
316
            polynomial q, r;
317
             quotientremain(a, b, q, r);
318
            return r;
319
320
321
       polynomial quotient(const polynomial& a, const polynomial& b) {
322
            polynomial q, r; quotientremain(a, b, q, r);
323
324
            return q;
325
326
327
       polynomial sqrt(const polynomial& a, ul lgdeg) {
    polynomial ret({sqrt(a[0])});
328
329
            polynomial temp;
330
            polynomial tempa;
            for (ul i = 0; i != lgdeg; ++i) {
    tempa.resize(0);
331
332
                 tempa.resize(1 << i << 1, 0);
for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
    tempa[j] = a[j];</pre>
333
334
335
336
                  temp = (tempa * inverse(ret, i + 1) + ret) * (base + 1 >> 1);
if (temp.size() > (1 << i << 1)) {
   temp.resize(1 << i << 1, 0);</pre>
337
338
339
340
341
                  temp.clearzero();
342
                  std::swap(temp, ret);
343
344
            return ret;
345 }
```

```
346
347
      polynomial diffrential(const polynomial& a) {
348
           if (!a.size()) {
349
                return a;
350
           polynomial ret(vul(a.size() - 1, 0));
351
           for (ul i = 1; i != a.size(); ++i) {
   ret[i - 1] = mul(a[i], i);
352
353
354
355
           return ret;
      }
356
357
358
      polynomial integral(const polynomial& a) {
359
           polynomial ret(vul(a.size() + 1, 0));
360
           for (ul i = 0; i != a.size(); ++i) {
361
                ret[i + 1] = mul(a[i], inverse(i + 1));
362
363
           return ret;
364
      }
365
      polynomial ln(const polynomial& a, ul lgdeg) {
   polynomial da = diffrential(a);
366
367
368
           polynomial inva = inverse(a, lgdeg);
           polynomial ret = integral(da * inva);
if (ret.size() > (1 << lgdeg)) {</pre>
369
370
                ret.resize(1 << lgdeg);</pre>
371
372
                ret.clearzero();
373
374
           return ret;
375
      }
376
      polynomial exp(const polynomial& a, ul lgdeg) {
    polynomial ret({1});
    polynomial temp;
377
378
379
           polynomial tempa;
for (ul i = 0; i != lgdeg; ++i) {
380
381
382
                tempa.resize(0);
                tempa.resize(1 << i << 1, 0);
383
384
                for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
385
                     tempa[j] = a[j];
386
387
                temp = ret * (polynomial({1}) - ln(ret, i + 1) + tempa);
388
                if (temp.size() > (1 << i << 1)) {</pre>
389
                     temp.resize(1 << i << 1, 0);
390
391
                temp.clearzero();
392
                std::swap(temp, ret);
393
394
           return ret;
395
396
397
      polynomial pow(const polynomial& a, ul k, ul lgdeg) { return exp(ln(a, lgdeg) * k, lgdeg); }
398
399
      polynomial alpi[1 << 16][17];</pre>
400
401
      polynomial getalpi(const ul x[], ul 1, ul lgrml) {
           if (lgrml == 0)
402
403
                return alpi[1][lgrm1] = vul({minus(0, x[1]), 1});
404
           return alpi[1][lgrm1] = getalpi(x, 1, lgrm1 - 1) * getalpi(x, 1 + (1 << lgrm1 - 1), lgrm1 - 1);</pre>
405
      }
406
407
      void multians(const polynomial& f, const ul x[], ul y[], ul 1, ul lgrml) {
    if (f.size() <= 700) {
        for (ul_i = 1; i_! = 1 + (1 << lgrml); ++i) {</pre>
408
409
410
411
                     y[i] = f(x[i]);
412
413
                return;
414
           if (lgrml == 0) {
415
                y[1] = f(x[1]);
416
417
                return:
418
           multians(mod(f, alpi[1][lgrml - 1]), x, y, 1, lgrml - 1);
multians(mod(f, alpi[1 + (1 << lgrml - 1)][lgrml - 1]), x, y, 1 + (1 << lgrml - 1), lgrml - 1);</pre>
419
420
421
      }
422
423
      ul sqrt(ul x) {
424
           ūl a;
425
           ul w2;
426
           while (true) {
427
                a = rnd() % base;
                w2 = minus(mul(a, a), x);
if (pow(w2, base - 1 >> 1) == base - 1) {
428
429
430
                     break:
                }
431
           }
432
```

```
433
           ul b = base + 1 >> 1;
434
           ul rs = 1, rt = 0;
435
           ul as = a, at = 1;
           ul qs, qt;
while (b) {
436
437
438
               if (b & 1) {
                    qs = plus(mul(rs, as), mul(mul(rt, at), w2));
qt = plus(mul(rs, at), mul(rt, as));
439
440
                    rs = qs;
441
442
                    rt = qt;
443
444
                b >>= 1:
445
                qs = plus(mul(as, as), mul(mul(at, at), w2));
                qt = plus(mul(as, at), mul(as, at));
446
                as = qs;
447
448
                at = qt;
449
450
           return rs + rs < base ? rs : base - rs;</pre>
451
452
453
      ul log(ul x, ul y, bool inited = false) {
454
           static std::map<ul, ul> bs;
455
           const ul d = std::round(std::sqrt(lf(base - 1)));
456
           if (!inited) {
457
                bs.clear();
               for (ul_i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
458
459
                    bs[j] = i;
460
461
           lul temp = inverse(pow(x, d));
for (ul i = 0, j = 1;; i += d, j = mul(j, temp)) {
    auto it = bs.find(mul(y, j));
    if (it l= bs.gad()) {
462
463
464
465
               if (it != bs.end()) {
466
                    return it->second + i;
467
468
           }
469
470
      ul powroot(ul x, ul y, bool inited = false) {
  const ul g = 3;
  ul lgx = log(g, x, inited);
471
472
473
474
           li s, t;
           exgcd(y, base - 1, s, t);
if (s < 0) {
475
476
477
               s += base - 1;
478
479
           return pow(g, ull(s) * ull(lgx) % (base - 1));
480
481
482
      ul n;
483
484
      int main() {
           std::scanf("%u", &n);
485
486
           polynomial f;
487
           for (ul i = 0; i <= n; ++i) {
488
               ul t;
                std::scanf("%u", &t);
489
490
               f.push_back(t % base);
491
492
           polynomial g = \exp(\ln(f * inverse(f[0]), 17) * inverse(3), 17) * powroot(f[0], 3);
493
           while (g.size() <= n) {</pre>
                g.push_back(0);
494
495
496
           for (ul i = 0; i <= n; ++i) {</pre>
                if (i) {
497
                    std::putchar(' ');
498
499
500
                std::printf("%u", g[i]);
501
502
           std::putchar(' \ n');
503
           return 0;
504
```

Lagrange interpolation

一般的插值

给出一个多项式 f(x) 上的 n 个点 (x_i, y_i) , 求 f(k).

插值的结果是

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j},$$

直接带入 k 并且取模即可, 时间复杂度 $O(n^2)$.

```
/* interpolation */
auto lagrange = (const vi& x, const vi& y, int n, int k) {
    for (int i = 1; i <= n; i++) {
        LL s1 = y[i] % mod, s2 = 1ll;
        for (int j = 1; j <= n; j++) {
            if (i != j) {
                s1 = s1 * (k - x[j]) % mod;
                s2 = s2 * (x[i] - x[j]) % mod;
            }
        }
        Add(ans, mul(s1, quick_power(s2, mod - 2, mod)));
    }
    return ans;
};</pre>
```

坐标连续的插值

```
给出的点是 (0, y_0), \dots, (n, y_n).
```

```
1 /* interpolation */
    auto lagrange(int n, std::vector\langle \mathbb{Z} \rangle y, int x) \rightarrow Z {
         if (x \le n) return y[x];
 4
        Z s1 = 1, s2 = 0;
         for (int i = 1; i \le n; i++) s1 *= (x - i);
 5
         for (int i = 1; i \le n; i++) {
 6
             Z res = ((n - i) \& 1 ? -y[i] : y[i]);
 8
             res = (x - i);
9
             res = fiv [i - 1];
             res = fiv [n - i];
10
11
             s2 + res;
12
         }
13
         return s1 * s2;
14 }
```

7 math - game theory

7.1 nim game

若 nim 和为 0, 则先手必败.

暴力打表.

```
| vi SG(21, -1); /* 记忆化 */
| std::function<int(int, int)> sg = [&](int x) -> int {
| if (/* 为最终态 */) return SG[x] = 0; |
| if (SG[x] != -1) return SG[x]; |
| vi st; |
| for (/* 枚举所有可到达的状态 y */) {
| st.push_back(sg(y)); |
| } |
| std::sort(all(st)); |
| for (int i = 0; i < st.size(); i++) {
| if (st[i] != i) return SG[x] = i; |
| } |
| return SG[x] = st.size(); |
```

7.2 anti - nim game

若

- 1. 所有堆的石子均为一个, 且 nim 和不为 0,
- 2. 至少有一堆石子超过一个, 且 nim 和为 0,

则先手必败.

8 math - linear algebra

8.1 matrix

determinant mod 998244353

```
/* determinant */
       auto det = [&](int n, vvi e) -> int {
 \bar{3}
              int ans = 1;
 4
5
              for (int i = 1; i <= n; i++) {</pre>
                    if (a[i][i] == 0) {
    for (int j = i + 1; j <= n; j++) {
        if (a[j][i] != 0) {
 6
7
                                         for (int k = i; k <= n; k++) {</pre>
 9
                                               std::swap(a[i][k], a[j][k]);
10
11
                                         ans = sub(mod, ans);
12
                                         break;
                                  }
13
                           }
14
15
                    if (a[i][i] == 0) return 0;
Mul(ans, a[i][i]);
16
17
                    int x = pow(a[i][i], mod - 2);
for (int k = i; k <= n; k++) {
    Mul(a[i][k], x);</pre>
18
19
20
21
                    for (int j = i + 1; j <= n; j++) {
   int x = a[j][i];
   for (int k = i; k <= n; k++) {
      Sub(a[j][k], mul(a[i][k], x));
}</pre>
\overline{22}
23
\overline{24}
25
26
27
                    }
28
29
              return ans;
30
       };
```

determinant mod non-prime

```
/* determinant @ wrb */
       int a[609][609];
      int a[cos];cos;
int main() {
   int n, P, z = 1;
   std::cin >> n >> P;
   for (int i = 1; i <= n; ++i) {
      for (int j = 1; j <= n; ++j) std::cin >> a[i][j];
}
 \frac{1}{3}
 5
 6
 9
              for (int i = 1; i <= n; ++i) {</pre>
                    for (int j = i + 1; j <= n; ++j) {
    while (a[j][i]) {
10
                                 z = -z;
int d = a[i][i] / a[j][i];
for (int k = i; k <= n; ++k) {
   int x = (a[i][k] - 111 * d * a[j][k]) % P;</pre>
13
14
15
                                         a[i][k] = a[j][k], a[j][k] = x;
16
17
                           }
18
19
20
                    z = 111 * z * a[i][i] % P;
21
22
              std::cout << (z + P) % P;
23
```

matrix multiplication

 $A_{n \times m}$ 与 $B_{m \times k}$ 相乘并模 998244353.

```
1    /* matrix multiplication */
2    auto matmul = [&](int n, int m, int k, const vvi& a, const vvi& b) -> vvi {
3       vvi c(n + 1, vi(k + 1));
4       for (int i = 1; i <= n; i++) {
5          for (int l = 1; 1 <= m; l++) {
</pre>
```

8.2 linear basis

```
/* linear basis */
vl p(63), s(63);
                                            /* basis and case */
       vl p(63), s(63);  /* basis and case *;
auto insert = [&](LL x, int id) {
    LL ans = 0;
    for (int i = 62; i >= 0; i--) {
        if (~(x >> i) & 1) continue;
        if (!p[i]) {
            p[i] = x;
            s[i] = ans ^ (111 << id);
            break;</pre>
 3
4
5
6
  7
8
  9
10
                                break;
11
12
                        x ^= p[i], ans ^= s[i];
13
14
                return x;
15
        auto_query = [&](LL x) {
16
17
               LL ans = 0;
for (int i = 62; i >= 0; i--) {
    if (~(x >> i) & 1) continue;
    x ^= p[i], ans ^= s[i];
18
19
\frac{10}{20}
22
                return (x ? -1 : ans);
23
\overline{24}
        auto queryMax = [&]() {
25
                LL ans = 0;
                for (int i = 62; i >= 0; i--)
26
                        if ((ans ^ p[i]) > ans) ans ^= p[i];
27
\overline{28}
                return ans:
29
        };
```

```
/* linear basis @ wrb */
template<typename T, const int M = sizeof(T) * 8>
struct Liner_Basis {
 \bar{2}
 \overline{3}
 \frac{4}{5}
            T a[M];
            size_t sz;
Liner_Basis() : a(), sz() {}
size_t size() const {
 7
8
                  return sz;
 9
10
            void clear() {
11
                 memset(a, 0, sizeof a);
12
            bool ins(T x) {
13
                  for (size_t i = M - 1; ~i && x; --i)
    if (x >> i & 1) {
        if (a[i]) x ^= a[i];
14
15
16
17
                              else return a[i] = x, true;
                        }
18
19
                  return false;
\begin{array}{c} 20 \\ 21 \\ 22 \end{array}
            Liner_Basis& operator+=(const Liner_Basis&_) {
                  for (T x : _.a) if (x) this->ins(x);
return *this;
\frac{23}{24}
\begin{array}{c} 25 \\ 26 \end{array}
            Liner_Basis operator+(const Liner_Basis&_) {
   Liner_Basis z = *this;
                  return z += _;
27
\frac{1}{28}
29
            T qry(T x = 0) {
                  for (size_t i = M - 1; ~i; --i)
if ((x ^ a[i]) > x) x ^= a[i];
30
31
32
33
                  return x;
            }
34
      template<typename T>
using LB = Liner_Basis<T>;
35
36
37
      38
39
40
```

```
41
     | struct Liner_Basis {
            using u64 = unsigned long long;
static const size_t M = 60;
42
43
44
            u64 a[M + 1];
            size_t sz;
size_t size() {
45
46
47
            return sz;
48
            Liner_Basis& operator+=(u64 x) {
for (size_t i = M; ~i && x; --i)
49
50
            if (x >> i & 1)
if (a[i]) x ^= a[i];
51
52
            else return a[i] = x, ++sz, *this;
53
            return *this;
54
55
56
            Liner_Basis& operator+=(const Liner_Basis&_) {
            for (u64 x : _.a) if (x) *this += x; return *this;
57
58
59
            Liner_Basis operator+(u64 x) {
Liner_Basis z = *this;
60
61
62
            return z += x;
63
            Liner_Basis operator+(const Liner_Basis&_) {
Liner_Basis z = *this;
64
65
66
            return z += _;
}
67
            u64 qry(u64 x = 0) {
for (size_t i = M; ~i; --i)
if ((x ^ a[i]) > x) x ^= a[i];
68
69
70
71
            return x;
72
73
74
            u64 rank(u64 x) {
            uo4 falk(uo4 x) {
uo4 h = 1, z = 0;
for (size_t i = 0; i <= M; ++i)
if (a[i]) {
if (x >> i & 1) z += h;
75
76
77
78
            h <<= 1;
79
80
            return z;
81
            u64 kth(u64 x) {
82
83
            u64 z = 0;
84
            for (size_t i = M; ~i; --i)
if (x >> i & 1) z ^= a[i];
85
86
            return z;
87
88
      }v;
      using LB = Liner_Basis;
```

8.3 linear programming

8.4 bm

```
/* bm @ wrb */
     const int p = 998244353;
     auto power = [](int a, int b = p - 2) {
 3
          int z = 1;
 4
          while (b) {
 5
 6
              if (b & 1) z = 111 * z * a % p;
 7
              a = 111 * a * a % p, b >>= 1;
 8
 9
          return z;
10
     };
11
     vector<int> berlekamp_massey(const vector<int> &a) {
       vector<int> v, last; // v is the answer, 0-based, p is the module
int k = -1, delta = 0;
12
13
14
       for (int i = 0; i < (int)a.size(); i++) {</pre>
15
          int tmp = 0;
for (int j = 0; j < (int)v.size(); j++)
   tmp = (tmp + (long long)a[i - j - 1] * v[j]) % p;</pre>
16
17
18
19
\frac{20}{21}
          if (a[i] == tmp) continue;
22
23
          if (k < 0) {
            k = i;
24
            delta = (a[i] - tmp + p) % p;
25
            v = vector < int > (i + 1);
26
27
            continue;
```

9 complex number

```
tandu struct Comp {

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

                     T a, b;
                     Comp(T _a = 0, T _b = 0) { a = _a, b = _b; }
Comp operator+(const Comp& x) const { return Comp(a + x.a, b + x.b); }
Comp operator-(const Comp& x) const { return Comp(a - x.a, b - x.b); }
Comp operator*(const Comp& x) const { return Comp(a * x.a - b * x.b, a * x.b + b * x.a); }
bool operator==(const Comp& x) const { return a == x.a and b == x.b; }
                    bool operator==(const Comp& x) const { return T real() { return a; }
T imag() { return b; }
U norm() { return (U) a * a + (U) b * b; }
Comp conj() { return Comp(a, -b); }
Comp operator/(const Comp& x) const {
    Comp y = x;
    Comp c = Comp(a, b) * y.conj();
    T d = y.norm();
10
11
12
\overline{13}
14
                               T d = y.norm();
return Comp(c.a / d, c.b / d);
15
16
17
18
19
           typedef Comp<LL, LL> complex;
           complex gcd(complex a, complex b) {
  LL d = b.norm();
  if (d == 0) return a;
21
22
                    if (d == 0) return a;
std::vector<complex> v(4);
complex c = a * b.conj();
auto fdiv = [&](LL a, LL b) -> LL { return a / b - ((a ^ b) < 0 && (a % b)); };
v[0] = complex(fdiv(c.real(), d), fdiv(c.imag(), d));
v[1] = v[0] + complex(1, 0);
v[2] = v[0] + complex(0, 1);</pre>
23
\overline{24}
25
26
27
\frac{1}{28}
                     v[3] = v[0] + complex(1, 1);
29
30
                     for (auto& x : v) {
31
                              x = a - x * b;
32
33
                     std::sort(all(v), [&](complex a, complex b) { return a.norm() < b.norm(); });</pre>
34
                     return gcd(b, v[0]);
35
          };
```

66 10 GRAPH

10 graph

10.1 topology sort

```
/* topology sort */
 \begin{array}{c} 1\\2\\3\\4\\5\end{array}
      vi top;
      auto topsort = [&]() -> bool {
            vi d(n + 1);
            std::queue<int> q;
for (int i = 1; i <= n; i++) {
    d[i] = e[i].size();
    if (!d[i]) a push(i);</pre>
 6
7
 8
                  if (!d[i]) q.push(i);
 9
10
            while (!q.empty()) {
                  int u = q.front();
11
12
                  q.pop();
13
                  top.push_back(u);
                  for (auto v : e[u]) {
    d[v]--;
14
15
16
                        if (!d[v]) q.push(v);
17
18
19
            if (top.size() != n) return false;
            return true;
20
\overline{21}
      };
```

10.2 shortest path

Floyd

```
/* floyd */
  \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}
         auto floyd = [&]() -> vvi {
                 vvi dist(n + 1, vi(n + 1, inf));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], e[i][j]);
    }</pre>
  8 9
                          dist[i][i] = 0;
10
                 for (int k = 1; k <= n; k++) {</pre>
                          for (int i = 1; i <= n; i++) {
   for (int j = 1; j <= n; j++) {
      Min(dist[i][j], dist[i][k] + dist[k][j]);
}</pre>
11
12
13
14
15
                          }
16
                 return dist;
17
        };
18
```

Dijkstra

```
/* dijkstra */
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
        auto dijkstra = [&](int s) -> vl {
                v1 dist(n + 1, INF);
vi vis(n + 1, 0);
                dist[s] = 0;
 6
7
                std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(OLL, s);
                q.empidecold, sy,
while (!q.empty()) {
    auto [dis, u] = q.top();
    q.pop();
    if (vis[u]) continue;
 8 9
10
11
12
                       vis[u] = 1;
                       for (const auto& [v, w] : e[u]) {
    if (dist[v] > dis + w) {
        dist[v] = dis + w;
        q.emplace(dist[v], v);
}
13
14
15
16
17
18
                       }
19
20
                return dist;
       };
```

10.2 shortest path 67

SPFA

```
/* SPFA */
      int n, m, s;
vl dist(n + 1, INF);
      std::vector<bool> vis(n + 1);
std::vector<PLI > e(n + 1);
      void spfa(int s){
            for (int i = 1; i <= n; i++) dist[i] = INF;
dist[s] = 0;</pre>
 8 9
            std::queue<int> q;
10
            q.push(s);
11
            vis[s] = true;
12
            while(q.size()){
                  auto u = q.front();
q.pop();
vis[u] = false;
13
14
15
                  for(const auto& [v, w] : e[u]){
    if(dist[v] > dist[u] + w){
        dist[v] = dist[u] + w;
16
18
19
                               if(!vis[v]){
20
                                     q.push(v);
21
                                     vis[v] = true;
22
                               }
23
                         }
\overline{24}
                  }
25
            }
26
      }
```

Johnson

```
/* johnson */
 \bar{2}
     auto johnson = [&]() -> vvl {
          /* 负环 */
 3
 4
          vl dist1(n + 1);
         vi vis(n + 1), cnt(n + 1);
auto spfa = [&]() -> bool {
 5
 6
              std::queue<int> q;
 7
              for (int u = 1; u <= n; u++) {
 8
 9
                   q.push(u);
10
                   vis[u] = false;
11
12
               while (!q.empty()) {
13
                   auto u = q.front();
14
                   q.pop();
15
                   vis[u] = false;
                   for (auto [v, w] : e[u]) {
    if (dist1[v] > dist1[u] + w) {
        dist1[v] = dist1[u] + w;
    }
16
18
                             Max(cnt[v], cnt[u] + 1);
if (cnt[v] >= n) return true;
19
20
21
                             if (!vis[v]) {
\frac{1}{22}
                                  q.push(v);
23
24
25
                                  vis[v] = true;
                        }
26
                   }
27
28
              return false;
29
30
          /* dijkstra */
31
          vl dist2(n + 1);
         32
33
34
35
                   vis[u] = false;
36
37
              dist2[s] = 0;
              std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(0, s);
38
39
              while (!q.empty()) {
    auto [d, u] = q.top();
40
41
42
                   q.pop();
43
                   if (vis[u]) continue;
                   44
45
46
47
48
                             q.emplace(dist2[v], v);
49
                   }
50
```

68 10 GRAPH

```
51
                   }
             };
if (spfa()) return vvl{};
52
53
             for (int u = 1; u <= n; u++) {
   for (auto& [v, w] : e[u]) {
      w += dist1[u] - dist1[v];
}</pre>
54
55
56
57
58
59
             vvl dist(n + 1, vl(n + 1));
for (int u; u <= n; u++) {</pre>
60
                   dijkstra(u);
61
                   for (int v = 1; v <= n; v++) {
   if (dist2[v] == 1e9) {</pre>
62
63
64
                                dist[u][v] = INF;
65
                            else {
66
                                dist[u][v] = dist2[v] + dist1[v] - dist1[u];
67
68
                   }
69
70
71
             return dist;
      };
```

最短路计数 - Dijkstra

```
/* dijkstra */
 3
      auto dijkstra = [&](int s) -> std::pair<vl, vi> {
            vl dist(n + 1, INF);
 4
            vi cnt(n + 1), vis(n + 1);
            dist[s] = 0;
 5
 6
7
            cnt[s] = 1;
           std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(OLL, s);
           while (!q.empty()) {
    auto [dis, u] = q.top();
 9
10
11
                  q.pop();
12
                  if (vis[u]) continue;
13
                  vis[u] = 1;
14
                  for (const auto& [v, w] : e[u]) {
                       if (dist[v] > dis + w) {
    dist[v] = dis + w;
15
16
17
                             cnt[v] = cnt[u];
                       q.push({dist[v], v});
} else if (dist[v] == dis + w) {
   // cnt[v] += cnt[u];
   cnt[v] += cnt[u];
18
19
\frac{10}{20} 21
22
23
                             cnt[v] %= mod;
\begin{array}{c} 23 \\ 24 \\ 25 \end{array}
                 }
26
           return {dist, cnt};
27
      };
```

最短路计数 - Floyd

```
/* floyd */
         auto floyd() = [&] -> std::pair<vvi, vvi> {
  \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
                  6
  78
  9
                            dist[i][i] = 0;
10
11
                  for (int k = 1; k <= n; k++) {</pre>
                           (int k = 1; k <= n; k++) {
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
      if (dist[i][j] == dist[i][k] + dist[k][j]) {
         cnt[i][j] += cnt[i][k] * cnt[k][j];
      } else if (dist[i][j] > dist[i][k] + dist[k][j]) {
         cnt[i][j] = cnt[i][k] * cnt[k][j];
         dist[i][j] = dist[i][k] + dist[k][j];
    }
}
12
13
14
15
16
17
18
19
\frac{10}{20}
                                    }
                           }
22
23
                  return {dist, cnt};
         };
```

负环

判断的是最短路长度.

```
/* SPFA */
 3
     auto spfa = [&]() -> bool {
         std::queue<int> q;
vi vis(n + 1), cnt(n + 1);
 4
 5
6
7
8
9
         for (int i = 1; i <= n; i++) {</pre>
              q.push(i);
              vis[i] = true;
          while (!q.empty()) {
10
              auto u = q.front();
11
              q.pop();
              12
13
14
                        dist[v] = dist[u] + w;
15
                        cnt[v] = cnt[u] + 1;
if (cnt[v] >= n) return true;
if (!vis[v]) {
16
17
18
19
                             q.push(v);
\frac{20}{21}
                             vis[v] = true;
22
                   }
23
24
          }
25
         return false;
26
     }
```

10.3 minimum spanning tree

Kruskal

```
std::vector<std::tuple<int, int, int>> edge;
      auto kruskal = [&]() -> int {
    std::sort(all(edge), [&](std::tuple<int, int, int> a, std::tuple<int, int, int> b) {
        auto [x1, y1, w1] = a;
        auto [x2, y2, w2] = b;
        return w1 < w2;
    }
}</pre>
 3
 5
 6
7
 8
             int res = 0, cnt = 0;
for (int i = 0; i < m; i++) {
    auto [a, b, w] = edge[i];
    constant</pre>
10
11
                     a = find(a), b = find(b);
if (a != b) {
12
13
14
                            fa[a] = b;
15
                            res += w;
16
                            /* res = std::max(res, w); */
                            cnt++;
18
                     }
19
20
              if (cnt < n - 1) return -1;</pre>
21
             return res;
22
       }
```

10.4 SCC

Tarjan

```
/* tarjan */
vi dfn(n + 1), low(n + 1), stk(n + 1), belong(n + 1);
int timestamp = 0, top = 0, scc_cnt = 0;
std::vector<bool> in_stk(n + 1);
auto tarjan = [&](auto&& self, int u) -> void {
    dfn[u] = low[u] = ++timestamp;
    stk[++top] = u;
    in_stk[u] = true;
    for (const auto& v : e[u]) {
        if (!dfn[v]) {
            self(self, v);
        }
```

 $10 \quad GRAPH$

```
12
                     Min(low[u], low[v]);
13
                } else if (in_stk[v]) {
14
                     Min(low[u], dfn[v]);
15
16
17
           if (dfn[u] == low[u]) {
                scc_cnt++;
int v;
18
19
                do {
20
                     v = stk[top--];
in_stk[v] = false;
belong[v] = scc_cnt;
21
22
23
24
25
                } while (v != u);
           }
26
     };
```

10.5 DCC

点双连通分量

求点双连通分量.

```
vi dfn(n + 1), low(n + 1), is_bcc(n + 1), stk;
int timestamp = 0, bcc_cnt = 0, root = 0;
vvi bcc(2 * n + 1);
std::function<void(int, int)> tarjan = [&](int u, int fa) {
 3
 4
 \begin{array}{c} 5 \\ 6 \\ 7 \end{array}
             dfn[u] = low[u] = ++timestamp;
             int child = 0;
             stk.push_back(u);
             if (u == root and e[u].empty()) {
 9
                   bcc_cnt++;
10
                   bcc[bcc_cnt].push_back(u);
11
                   return;
12
13
             for (auto v : e[u]) {
                   if (!dfn[v]) {
14
15
                         tarjan(v, u);
low[u] = std::min(low[u], low[v]);
if (low[v] >= dfn[u]) {
16
17
18
                                child++;
19
                                if (u != root or child > 1) {
20 \\ 21 \\ 22 \\ 23 \\ 24
                                      is_bcc[u] = 1;
                                bcc_cnt++;
                                int z;
                                do {
25
26
                                      z = stk.back();
                                      stk.pop_back();
27
                                bcc[bcc_cnt].push_back(z);
} while (z != v);
\frac{1}{28}

    \begin{array}{c}
      29 \\
      30 \\
      31 \\
      32
    \end{array}

                                bcc[bcc_cnt].push_back(u);
                         }
                   } else if (v != fa) {
                         low[u] = std::min(low[u], dfn[v]);
                   }
33
34
             }
35
      for (int i = 1; i <= n; i++) {
   if (!dfn[i]) {</pre>
36
37
38
                   root = i;
39
                   tarjan(i, i);
40
             }
41
      }
```

求割点.

 $10.5 \quad DCC \qquad \qquad 71$

```
14
                                  is_bcc[u] = 1;
15
                            }
16
17
                 } else if (v != fa) {
                      low[u] = std::min(low[u], dfn[v]);
18
19
           }
20
\overline{21}
     };
\overline{22}
     for (int i = 1; i <= n; i++) {
   if (!dfn[i]) {</pre>
\frac{1}{23}
24
25
                 root = i;
                 tarjan(i, i);
26
27
```

边双连通分量

求边双连通分量.

```
std::vector<vpi> e(n + 1);
 2 3
     for (int i = 1; i <= m; i++) {</pre>
          int u, v;
std::cin >> u >> v;
 4
 5
           e[u].emplace_back(v, i);
 6
           e[v].emplace_back(u, i);
     vi dfn(n + 1), low(n + 1), is_ecc(n + 1), fa(n + 1), stk;
int timestamp = 0, ecc_cnt = 0;
vvi ecc(2 * n + 1);
 8
10
11
     std::function<void(int, int)> tarjan = [&](int u, int id) {
           low[u] = dfn[u] = ++timestamp;
12
          stk.push_back(u);
for (auto [v, idx] : e[u]) {
13
14
               if (!dfn[v]) {
15
16
                     tarjan(v, idx);
               low[u] = std::min(low[u], low[v]);
} else if (idx != id) {
17
18
19
                     low[u] = std::min(low[u], dfn[v]);
20
21
22
23
           if (dfn[u] == low[u]) {
               ecc_cnt++;
24
                int v;
25
                do {
26
                     v = stk.back();
27
                     stk.pop_back();
               ecc[ecc_cnt].push_back(v);
} while (v != u);
\frac{1}{28}
29
30
          }
31
     };
    for (int i = 1; i <= n; i++) {
   if (!dfn[i]) {</pre>
32
33
34
               tarjan(i, 0);
35
     }
```

另一个版本

```
/* DCC @ wrb */
    |// 割点
     std::vector<int> G[N];
     int dfn[N], low[N], is_cut[N], tm, rt;
 5
     void tar(int u) {
 6
           int c = 0;
          dfn[u] = low[u] = ++tm;
for (int v : G[u]) {
 8 9
                if (!dfn[v]) {
                     ++c, tar(v);
10
               low[u] = std::min(low[u], low[v]);

if (low[v] == dfn[u]) is_cut[u] = 1;

} else low[u] = std::min(low[u], dfn[v]);
11
12
13
14
15
           if (u == rt) is_cut[u] = c > 1;
     }
16
17
     int main() {
           int n, m;
19
           std::cin >> n >> m;
20
          for (int x, y; m--; ) {
```

72 10 GRAPH

```
21
                 std::cin >> x >> y;
 22
                 G[x].emplace_back(y);
 23
                 G[y].emplace_back(x);
 24
 25
           for (rt = 1; rt <= n; ++rt) {</pre>
 \frac{1}{26}
                 if (!dfn[rt]) tar(rt);
 27
 \overline{28}
           std::vector<int> cut_v;
 29
30
           for (int i = 1; i <= n; ++i) {
    if (is_cut[i]) cut_v.emplace_back(i);</pre>
 31
 32
            std::cout << cut_v.size() << '\n';
 33
           for (int x : cut_v) std::cout << x << ' ';</pre>
 34
 35
 36
 37
      // 桥
      std::vector<std::pair<int, int>> G[N], brg;
int dfn[N], low[N], rt, tm;
 38
 39
      void tar(int u, int fa, int fr) {
    dfn[u] = low[u] = ++tm;
 40
 41
 42
           for (auto[v, i] : G[u]) {
 43
                 if (!dfn[v]) {
                tar(v, u, i), low[u] = std::min(low[u], low[v]);
} else if (i != fr) {
 44
 45
                      low[u] = std::min(low[u], dfn[v]);
 46
 47
 48
 49
50
           if (u != rt && dfn[u] == low[u]) {
                 brg.emplace_back(std::minmax(u, fa));
 51
 52
 5\overline{3}
54
      int main() {
            int n, m;
 55
            std::cin >> n >> m;
           for (int i = 1, x, y; i <= m; ++i) {
    std::cin >> x >> y;
 56
 57
                G[x].emplace_back(y, i);
G[y].emplace_back(x, i);
 58
 59
 60
           for (rt = 1; rt <= n; ++rt) {
    if (!dfn[rt]) tar(rt, -1, -1);</pre>
 61
 62
 63
 64
           std::sort(begin(brg), end(brg));
           for (auto[u, v] : brg) {
    std::cout << u << ' ' << v << '\n';</pre>
 65
 66
 67
 68
 69
 70
 \begin{array}{c} 71 \\ 72 \end{array}
       // 点双
      std::vector<int> G[N];
 73\\74
      std::vector<std::vector<int>> bcc;
      int dfn[N], low[N], tm, st[N], tp, rt;
 75
76
77
      void tar(int u) {
           dfn[u] = low[u] = ++tm, st[++tp] = u;
           if (G[u].empty()) bcc.push_back({u});
for (int v : G[u]) {
 78
79
                 if (!dfn[v]) {
                      tar(v), low[u] = std::min(low[u], low[v]);
if (low[v] == dfn[u]) {
 80
 81
82
83
                           bcc.push_back({u});
 84
                                bcc.back().emplace_back(st[tp]);
 85
                           } while(st[tp--] != v);
 86
 87
                 } else low[u] = std::min(low[u], dfn[v]);
 89
 90
      int main() {
 91
           std::ios::sync_with_stdio(0);
 92
            std::cin.tie(0);
 93
           int n, m;
 94
            std::cin >> n >> m;
           for (int x, y; m--; ) {
    std::cin >> x >> y;
 95
96
 97
                 G[x].emplace_back(y);
 98
                 G[y].emplace_back(x);
 99
100
           for (int i = 0; i < n; ++i) tar(i);</pre>
           std::cout << bcc.size() << '\n';</pre>
101
           for (auto v : bcc) {
102
                 std::cout << v.size() << ' ';
103
                 for (int x : v) std::cout << x << ' ';
std::cout << '\n';</pre>
104
105
           }
106
    | }
107
```

10.6 2-sat 73

```
108
109
110
      std::vector<std::pair<int, int>> G[N];
std::vector<std::vector<int>> becc;
111
112
       int dfn[N], low[N], tm, st[N], tp;
113
       void tar(int u, int fr) {
    dfn[u] = low[u] = ++tm, st[++tp] = u;
    for (auto[v, i] : G[u]) {
        if (!dfn[v]) {
114
115
116
117
                 tar(v, i), low[u] = std::min(low[u], low[v]);
} else if (i != fr) {
118
119
120
                       low[u] = std::min(low[u], dfn[v]);
121
122
123
            if (dfn[u] == low[u]) {
124
                 becc.emplace_back();
125
                      becc.back().emplace_back(st[tp]);
126
127
                  } while (st[tp--] != u);
128
129
130
       int main() {
131
            int n, m;
132
            std::cin >> n >> m;
            for (int i = 1, x, y; i <= m; ++i) {
    std::cin >> x >> y;
    G[x].emplace_back(y, i);
133
134
135
136
                 G[y].emplace_back(x, i);
137
138
            for (int i = 0; i < n; ++i) {</pre>
139
                  if (!dfn[i]) tar(i, -1);
140
141
            std::cout << becc.size() << '\n';</pre>
142
            for (auto& v : becc) {
143
                 std::cout << v.size() << ' ';
                 for (int x : v) std::cout << x << ' ';
std::cout << '\n';</pre>
144
145
            }
146
       }
147
```

10.6 2-sat

给出 n 个集合,每个集合有 2 个元素,已知若干个数对 (a,b),表示 a 与 b 矛盾.要从每个集合各选择一个元素,判断能否一共选 n 个两两不矛盾的元素.

```
/* two sat */
      auto 2sat = [&](int n, const vpi& v) -> vi {
 3
            /* tarjan */
           vvi e(2 * n);
vi dfn(2 * n), low(2 * n), stk(2 * n), belong(2 * n);
int timestamp = 0, top = 0, scc_cnt = 0;
std::vector<bool> in_stk(2 * n);
 4
5
 67
            auto tarjan = [&](auto&& self, int u) -> void {
 8
                  dfn[u] = low[u] = ++timestamp;
 9
                  stk[++top] = u;
in_stk[u] = true;
10
11
                  for (const auto& v : e[u]) {
12
                       if (!dfn[v]) {
13
                             self(self, v);
14
                       Min(low[u], low[v]);
} else if (in_stk[v]) {
15
16
                             Min(low[u], dfn[v]);
17
18
19
20
21
                  if (dfn[u] == low[u]) {
                       scc_cnt++;
22
                        int v;
23
                             v = stk[top--];
in_stk[v] = false;
belong[v] = scc_cnt;
24
25
26
27
                       } while (v != u);
28
                  }
\frac{1}{29}
30
            for (const auto& [a, b] : v) {
    e[a].push_back(b ^ 1);
    e[b].push_back(a ^ 1);
31
32
33
34
            for (int i = 0; i < 2 * n; i++) {</pre>
35
                  if (!dfn[i]) tarjan(tarjan, i);
```

```
36 | }
37 | vi ans;
38 | for (int i = 0; i < 2 * n; i += 2) {
39 | if (belong[i] == belong[i + 1]) return vi{};
40 | ans.push_back(belong[i] > belong[i + 1] ? i + 1 : i);
41 | }
42 | return ans;
43 |};
```

上述将 i 与 i+1 作为一个集合里的元素, 编号为 0 至 2n-1.

10.7 minimum ring

Floyd

```
/* minimum ring */
  \begin{smallmatrix}2&3&4&5\\5&6&7&8\end{smallmatrix}
         auto min_circle = [&]() -> int {
                 vvi dist(n + 1, vi(n + 1, inf));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], g[i][j]);
                          dist[i][i] = 0;
  9
                 for (int k = 1; k <= n; k++) {
   for (int i = 1; i < k; i++) {
     for (int j = 1; j < i; j++) {
        Min(ans, dist[i][j] + g[i][k] + g[k][j]);
     }</pre>
10
11
12
13
14
15
16
                          for (int i = 1; i <= n; i++) {</pre>
                                  for (int j = 1; j <= n; j++) {
    Min(dist[i][j], dist[i][k] + dist[k][j]);</pre>
17
18
19
20
                          }
\overline{21}
                 }
22
                 return ans;
\frac{-}{23}
         };
```

tree - diameter

10.8 tree - center of gravity

```
/* center of gravity */
int sum; /* 点权和 */
 1
      vi size(n + 1), weight(n + 1), w(n + 1), depth(n + 1);
std::array<int, 2> centroid = {0, 0};
 3
 4
 5
       auto get_centroid = [&](auto&& self, int u, int fa) -> void {
 \frac{\tilde{6}}{7}
             size[u] = w[u];
weight[u] = 0;
             for (auto v : e[u]) {
   if (v == fa) continue;
 8
 9
                    self(self, v, u);
size[u] += size[v];
10
11
12
                    Max(weight[u], size[v]);
13
             Max(weight[u], sum - size[u]);
if (weight[u] <= sum / 2) {
    centroid[centroid[0] != 0] = u;</pre>
14
15
16
17
             }
      };
18
```

10.9 tree - DSU on tree

给出一课 n 个节点以 1 为根的树, 每个节点染上一种颜色, 询问以 u 为节点的子树中有多少种颜色.

```
1 // Problem: U41492 树上数颜色 int main() {
```

 $10.10 \quad tree - AHU$

```
std::ios::sync_with_stdio(false);
5
         std::cin.tie(0);
6
         std::cout.tie(0);
 8
         int n, m, dfn = 0, cnttot = 0;
9
         std::cin >> n;
         vvi e(n + 1);
vi siz(n + 1), col(n + 1), son(n + 1), dfnl(n + 1), dfnr(n + 1), rank(n + 1);
10
11
12
         vi ans(n + 1), cnt(n + 1);
13
14
         for (int i = 1; i < n; i++) {</pre>
              int u, v;
std::cin >> u >> v;
15
16
17
              e[u].push_back(v);
18
              e[v].push_back(u);
19
20
         for (int i = 1; i <= n; i++) {
21
              std::cin >> col[i];
22
23
         auto add = [&](int u) -> void {
24
              if (cnt[col[u]] == 0) cnttot++;
25
              cnt[col[u]]++;
26
27
         auto del = [&](int u) -> void {
28
              cnt[col[u]]--
29
              if (cnt[col[u]] == 0) cnttot--;
30
         auto dfs1 = [%](auto&% self, int u, int fa) -> void {
    dfnl[u] = ++dfn;
31
32
33
              rank[dfn] = u;
34
              siz[u] = 1;
              for (auto v : e[u]) {
   if (v == fa) continue;
35
36
37
                   self(self, v, u);
38
                   siz[u] += siz[v];
39
                   if (!son[u] or siz[son[u]] < siz[v]) son[u] = v;</pre>
40
41
              dfnr[u] = dfn;
42
43
         auto dfs2 = [&](auto&& self, int u, int fa, bool op) -> void {
              for (auto v : e[u]) {
   if (v == fa or v == son[u]) continue;
   self(self, v, u, false);
44
45
46
47
48
              if (son[u]) self(self, son[u], u, true);
49
              for (auto v : e[u]) {
   if (v == fa or v == son[u]) continue;
50
51
                   rep(i, dfnl[v], dfnr[v]) { add(rank[i]); }
52
              add(u);
ans[u] = cnttot;
if (op == false)
53
54
55
56
                   rep(i, dfnl[u], dfnr[u]) { del(rank[i]); }
57
58
         dfs1(dfs1, 1, 0);
59
         dfs2(dfs2, 1, 0, false);
std::cin >> m;
60
61
         for (int i = 1; i <= m; i++) {</pre>
62
63
              int u;
64
              std::cin >> u;
              std::cout << ans[u] << endl;
65
66
67
         return 0;
68
    }
```

10.10 tree - AHU

```
/* AHU */
    std::map<vi, int> mapple;
    std::function<int(vvik, int, int)> tree_hash = [&](vvik e, int u, int fa) -> int {
         vi code;
         if (u == 0) code.push_back(-1);
6
        for (auto v : e[u]) {
             if (v == fa) continue;
7
8
             code.push_back(tree_hash(e, v, u));
9
10
         std::sort(all(code));
11
         int id = mapple.size();
         auto it = mapple.find(code);
if (it == mapple.end()) {
12
13
             mapple[code] = id;
```

```
15 | } else {
16 | id = it->ss;
17 | }
18 | return id;
19 |};
```

10.11 tree - LCA

```
/* LCA */
 3
     int B = 30;
     vvi e(n + 1), fa(n + 1, vi(B));
 4
5
     vi dep(n + 1);
     auto dfs = [&] (auto&& self, int u) -> void {
 6
7
           for (auto v : e[u]) {
                if (v == fa[u][0]) continue;
 8 9
                dep[v] = dep[u] + 1;
fa[v][0] = u;
10
                self(self, v);
           }
11
12
13
     auto init = [&]() -> void {
14
           dep[root] = 1;
          15
16
17
18
19
20
           }
\overline{21}
     };
     init();
auto LCA = [&](int a, int b) -> int {
    if (dep[a] > dep[b]) std::swap(a, b);
    if dep[a] - dep[a];
22 \\ 23 \\ 24 \\ 25
          int d = dep[b] - dep[a];
for (int i = 0; (1 << i) <= d; i++) {
   if (d & (1 << i)) b = fa[b][i];</pre>
26
27
28
29
           if (a == b) return a;
           for (int i = B - 1; i >= 0 and a != b; i--) {
    if (fa[a][i] == fa[b][i]) continue;
30
31
32
33
34
                a = fa[a][i];
                b = fa[b][i];
           }
35
           return fa[a][0];
36
     auto dist = [&](int a, int b) -> int { return dep[a] + dep[b] - dep[LCA(a, b)] * 2; };
```

10.12 tree - heavy light decomposion

对一棵有根树进行如下 4 种操作:

- 1.1 x y z: 将节点 x 到节点 y 的最短路径上所有节点的值加上 z.
- 2. $2 \times y$: 查询节点 x 到节点 y 的最短路径上所有节点的值的和.
- 3. 3xz: 将以节点 x 为根的子树上所有节点的值加上 z.
- 4. 4 x: 查询以节点 x 为根的子树上所有节点的值的和.

```
/* heavy light decomposion */
 3
     int cnt = 0;
     vi son(n + 1), fa(n + 1), siz(n + 1), depth(n + 1);
     vi dfn(n + 1), rank(n + 1), top(n + 1), botton(n + 1);
auto dfs1 = [&] (auto&& self, int u) -> void {
 \begin{array}{c} 4\\5\\6\\7 \end{array}
           son[u] = -1, siz[u] = 1;
for (auto v : e[u]) {
 8 9
                if (depth[v] != 0) continue;
                depth[v] = depth[u] + 1;
10
                fa[v] = u;
11
                self(self, v)
12
                siz[u] += siz[v];
13
                if (son[u] == -1 \text{ or } siz[v] > siz[son[u]]) son[u] = v;
14
           }
    };
15
```

10.13 tree - virtual tree 77

```
16
     auto dfs2 = [&](auto&& self, int u, int t) -> void {
          top[u] = t;
dfn[u] = ++cnt;
17
19
          rank[cnt] = u;
          botton[u] = dfn[u];
20
          if (son[u] == -1) return;
\overline{21}
22
          self(self, son[u], t);
\frac{-}{23}
          Max(botton[u], botton[son[u]]);
24
          for (auto v : e[u]) {
   if (v != son[u] and v != fa[u]) {
\overline{25}
26
                    self(self, v, v);
27
                    Max(botton[u], botton[v]);
28
29
30
31
     depth[root] = 1;
32
     dfs1(dfs1, root);
33
     dfs2(dfs2, root, root);
34
35
     /* 求 LCA */
36
     auto LCA = [&](int a, int b) -> int {
          while (top[a] != top[b]) {
37
38
               if (depth[top[a]] < depth[top[b]]) std::swap(a, b);</pre>
               a = fa[top[a]];
39
40
          return (depth[a] > depth[b] ? b : a);
41
42
     };
43
     /* 维护 u 到 v 的路径 */
44
     while (top[u] != top[v]) {
   if (depth[top[u]] < depth[top[v]]) std::swap(u, v);</pre>
45
46
47
          opt(dfn[top[u]], dfn[u]);
48
          u = fa[top[u]];
49
50
     if (dfn[u] > dfn[v]) std::swap(u, v);
51
     opt(dfn[u], dfn[v]);
52
53
     /* 维护 u 为根的子树 */
54
     opt(dfn[u], botton[u]);
55
56
     线段树的 build() 函数中
57
     if(1 == r) tree[u] = {1, 1, w[rank[1]], 0};
58
59
60
     build(1, 1, n);
for (int i = 1; i <= m; i++) {</pre>
61
62
63
          int op, u, v;
          LL k;
64
          std::cin >> op;
65
          if (op == 1) {
66
               std::cin >> u >> v >> k;
while (top[u] != top[v]) {
67
68
                   if (depth[top[u]] < depth[top[v]]) std::swap(u, v);</pre>
69
70
                   modify(1, dfn[top[u]], dfn[u], k);
71
                   u = fa[top[u]];
73
               if (dfn[u] > dfn[v]) std::swap(u, v);
74
75
          modify(1, dfn[u], dfn[v], k);
} else if (op == 2) {
76
77
               std::cin >> u >> v;
               LL ans = 0;
               while (top[u] != top[v]) {
   if (depth[top[u]] < depth[top[v]]) std::swap(u, v);</pre>
78
79
                    ans = (ans + query(1, dfn[top[u]], dfn[u])) % p;
80
81
                    u = fa[top[u]];
82
               if (dfn[u] > dfn[v]) std::swap(u, v);
ans = (ans + query(1, dfn[u], dfn[v])) % p;
std::cout << ans << endl;</pre>
83
84
85
          } else if (op == 3) {
   std::cin >> u >> k;
86
87
88
              modify(1, dfn[u], botton[u], k);
89
          } else {
90
               std::cin >> u;
91
               std::cout << query(1, dfn[u], botton[u]) % p << endl;</pre>
92
     }
93
```

10.13 tree - virtual tree

```
2 3
     auto build_vtree = [&](vi ver) -> void {
          std::sort(all(ver), [&](int x, int y) { return dfn[x] < dfn[y]; });</pre>
          vi stk = {1};
for (auto v : ver) {
 4
 5
               int u = stk.back();
int lca = LCA(v, u);
 6
7
               if (lca != u) {
 8
                    while (dfn[lca] < dfn[stk.end()[-2]]) {
   g[stk.end()[-2]].push_back(stk.back());</pre>
 9
10
11
                          stk.pop_back();
12
                    }
13
                    u = stk.back();
                    if (dfn[lca] != dfn[stk.end()[-2]]) {
14
                         g[lca].push_back(u);
stk.pop_back();
15
16
                          stk.push_back(lca);
17
18
                    } else {
                          g[lca].push_back(u);
19
20
                          stk.pop_back();
\overline{21}
                    }
22
23
24
25
               }
               stk.push_back(v);
          while (stk.size() > 1) {
26
               int u = stk.end()[-2];
27
               int v = stk.back();
               g[u].push_back(v);
28
29
               stk.pop_back();
30
          }
     };
31
```

10.14 tree - pseudo tree

```
/* ring detection (directed) */
     vi vis(n + 1), fa(n + 1), ring;
auto dfs = [&](auto&& self, int u) -> bool {
 \begin{array}{c} 3 \\ 4 \\ 5 \end{array}
          vis[u] = 1;
          for (const auto& v : e[u]) {
    if (!vis[v]) {
 6
7
                    fa[v] = u;
 8 9
                    if (self(self, v)) {
                         return true;
                    }
10
11
               } else if (vis[v] == 1) {
                    ring.push_back(v);
for (auto x = u; x != v; x = fa[x]) {
12
13
                         ring.push_back(x);
14
15
16
                    reverse(all(ring));
17
                    return true;
18
               }
19
          }
20
21
          vis[u] = 2;
          return false;
22
23
24
25
     for (int i = 1; i <= n; i++) {
    if (!vis[i]) {</pre>
               if (dfs(dfs, i)) {
\frac{1}{26}
                    // operations //
27
               }
28
          }
29
     }
30
31
32
     /* cycle detection (undirected) */
     vi vis(n + 1), ring;
33
34
     vpi fa(n + 1)
     auto dfs = [&](auto&& self, int u, int from) -> bool {
35
          vis[u] = 1;
36
          for (const auto& [v, id] : e[u]) {
37
               if (id == from) continue;
               if (!vis[v]) {
   fa[v] = {u, id};
38
39
                    if (self(self, v, id)) {
40
41
                         return true;
42
               } else if (vis[v] == 1) {
43
                    ring.push_back(v);
44
                    for (auto x = u; x != v; x = fa[x].ff) {
45
46
                         ring.push_back(x);
47
48
                    return true;
49
               }
```

```
50
51
          vis[u] = 2;
52
          return false;
53
    };
    for (int i = 1; i <= n; i++) {
   if (!vis[i]) {</pre>
54
55
56
               if (dfs(dfs, i, 0)) {
                    // operations //
57
58
59
     }
60
```

10.15 tree - divide and conquer on tree

点分治

第一个题

一棵 $n \leq 10^4$ 个点的树, 边权 $w \leq 10^4$. $m \leq 100$ 次询问树上是否存在长度为 $k \leq 10^7$ 的路径.

```
// 洛谷 P3806 【模板】点分治1

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

      int main() {
           std::ios::sync_with_stdio(false);
std::cin.tie(0);
            std::cout.tie(0);
           int n, m, k;
std::cin >> n >> m;
 8
10
11
            std::vector<vpi> e(n + 1);
12
            std::map<int, PII> mp;
13
14
            for (int i = 1; i < n; i++) {</pre>
15
                 int u, v, w;
                 std::cin >> u >> v >> w;
16
                 e[u].emplace_back(v, w);
e[v].emplace_back(u, w);
17
18
19
           for (int i = 1; i <= m; i++) {
    std::cin >> k;
    mp[i] = {k, 0};
20
21
22
\frac{-}{23}
\overline{24}
\overline{25}
            /* centroid decomposition */
26
           int top1 = 0, top2 = 0, root;
vi len1(n + 1), len2(n + 1), vis(n + 1);
static std::array<int, 20000010> cnt;
\frac{1}{27}
\frac{1}{28}
29
30
            std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
31
                 if (vis[u]) return 0;
32
                 int ans = 1;
                 for (auto [v, w] : e[u]) {
   if (v == fa) continue;
33
34
35
                       ans += get_size(v, u);
36
37
                 return ans;
38
           };
39
40
            std::function<int(int, int, int, int&)> get_root = [&](int u, int fa, int tot,
41
                                                                                           int& root) -> int {
42
                 if (vis[u]) return 0;
43
                 int sum = 1, maxx = 0;
                 for (auto [v, w] : e[u]) {
44
45
                       if (v == fa) continue;
                       int tmp = get_root(v, u, tot, root);
Max(maxx, tmp);
46
47
48
                       sum += tmp;
49
50
                 Max(maxx, tot - sum);
                 if (2 * maxx <= tot) root = u;</pre>
51
52
                 return sum;
53
54
           std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
   if (dist <= 10000000) len1[++top1] = dist;</pre>
55
56
                 for (auto [v, w] : e[u]) {
   if (v == fa or vis[v]) continue;
57
58
59
                       get_dist(v, u, dist + w);
60
```

```
61
           };
 62
 63
            auto solve = [&](int u, int dist) -> void {
 64
                 top2 = 0;
 65
                 for (auto [v, w] : e[u]) {
                      if (vis[v]) continue;
 66
                      top1 = 0;
 67
                      get_dist(v, u, w);
for (int i = 1; i <= top1; i++) {
   for (int tt = 1; tt <= m; tt++) {</pre>
 68
 69
70
71
72
73
74
75
76
77
78
                                 int k = mp[tt].ff;
                                 if (k >= len1[i]) mp[tt].ss |= cnt[k - len1[i]];
                      for (int i = 1; i <= top1; i++) {
    len2[++top2] = len1[i];</pre>
                           cnt[len1[i]] = 1;
 80
81
82
83
84
85
                for (int i = 1; i <= top2; i++) cnt[len2[i]] = 0;</pre>
           };
            std::function<void(int)> divide = [&](int u) -> void {
                 vis[u] = cnt[0] = 1;
                 solve(u, 0);
 86
                 for (auto [v, w] : e[u]) {
 87
                      if (vis[v]) continue;
 88
                      get_root(v, u, get_size(v, u), root);
 89
                      divide(root);
 90
                }
 91
           };
 92
            get_root(1, 0, get_size(1, 0), root);
 93
 94
           divide(root);
 95
 96
           for (int i = 1; i <= m; i++) {
   if (mp[i].ss == 0) {
     std::cout << "NAY" << endl;</pre>
 97
 98
99
                 } else {
100
                      std::cout << "AYE" << endl;
101
                 }
102
           }
103
104
           return 0;
105
```

第二个题

一棵 $n \le 4 \times 10^4$ 个点的树, 边权 $w \le 10^3$. 询问树上长度不超过 $k \le 2 \times 10^4$ 的路径的数量.

```
12
     // 洛谷 P4178 Tree
 \frac{3}{4} \\ \frac{4}{5} \\ \frac{6}{7}
     int main() {
          std::ios::sync_with_stdio(false);
std::cin.tie(0);
          std::cout.tie(0);
 8
          int n, k;
std::cin >> n;
 9
10
          std::vector<vpi> e(n + 1);
          for (int i = 1; i < n; i++) {</pre>
11
12
               int u, v, w;
std::cin >> u >> v >> w;
13
14
               e[u].emplace_back(v, w);
15
               e[v].emplace_back(u, w);
16
17
          std::cin >> k;
18
19
           /* centroid decomposition */
20 \\ 21 \\ 22 \\ 23 \\ 24
           int root;
          vi len, vis(n + 1);
          std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
               if (vis[u]) return 0;
25
               int ans = 1:
               for (auto [v, w] : e[u]) {
   if (v == fa) continue;
\frac{1}{26}
27
28
29
30
31
32
                    ans += get_size(v, u);
               }
               return ans;
          };
33
          std::function<int(int, int, int, int&)> get_root = [&](int u, int fa, int tot,
34
                                                                                  int& root) -> int {
35
               if (vis[u]) return 0;
```

10.16 tree - matrix tree

```
36
               int sum = 1, maxx = 0;
37
               for (auto [v, w] : e[u]) {
38
                   if (v == fa) continue;
39
                   int tmp = get_root(v, u, tot, root);
                   maxx = std::max(maxx, tmp);
40
                   sum += tmp;
41
42
              }
43
              maxx = std::max(maxx, tot - sum);
              if (2 * maxx <= tot) root = u;
44
45
              return sum;
46
47
48
          std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
49
               len.push_back(dist);
              for (auto [v, w] : e[u]) {
    if (v == fa || vis[v]) continue;
50
51
52
                   get_dist(v, u, dist + w);
53
54
         };
55
          auto solve = [&](int u, int dist) -> int {
56
              len.clear();
get_dist(u, 0, dist);
57
58
59
               std::sort(all(len));
60
               int ans = 0;
              for (int 1 = 0, r = len.size() - 1; 1 < r;) {
   if (len[1] + len[r] <= k) {</pre>
61
62
63
                        ans += r - 1++;
                   } else {
64
65
                        r--;
66
67
68
              return ans;
69
70
71
          std::function<int(int)> divide = [&](int u) -> int {
72
73
              vis[u] = true
               int ans = solve(u, 0);
74
               for (auto [v, w] : e[u]) {
75
                   if (vis[v]) continue;
76
77
                   ans -= solve(v, w);
                   get_root(v, u, get_size(v, u), root);
ans += divide(root);
78
79
80
              return ans;
81
          };
82
          get_root(1, 0, get_size(1, 0), root);
std::cout << divide(root) << endl;</pre>
83
84
85
86
          return 0:
87
     }
```

81

10.16 tree - matrix tree

```
const int N=33,M=152599,P=998244353;
     int qpow(int a,int b=P-2){
 3
           int r=1;for(;b;b>>=1,a=111*a*a%P)if(b&1)r=111*r*a%P;return r;
     struct T{int x,y,z;T(int a=0,int b=0,int c=0):x(a),y(b),z(c){}}e[N*N];
 6
     struct F{
           int a,b;
 8
          F():a(),b(){}
          F().a(),b();

F(int x,int y):a(x),b(y){}

F operator+(const F&_)const{return F((a+_.a)\%P,(b+_.b)\%P);}

F operator+=(const F&_)freturn *this=*this+_;}

F operator-(const F&_)const{return F((a-_.a+P)\%P,(b-_.b+P)\%P);}
 9
10
11
12
          F operator-=(const F&_){return *this=*this-_;}
F operator*(const F&_)const{return F((111*a*_.b+111*b*_.a)%P,111*b*_.b%P);}
13
14
15
           F operator*=(const F&_){return *this=*this*_;}
           int operator&()const{return b?2:(a?1:0);}
16
17
           bool operator!()const{return !a&&!b;}
18
           F operator~()const{
19
                int d=qpow(b);
                return F((P-111*a*d%P*d%P)%P,d);
20
21
22
\frac{-}{23}
     int fa[N],phi[M],n,m;
24
     int gf(int x){return x==fa[x]?x:fa[x]=gf(fa[x]);}
25
          cal(int p){
F a[N][N],d,iv,z=F(0,1);
26
27
           int i,j,k,l,x=0;iota(fa,fa+n+1,0);
```

```
28
           for(i=1;i<=m;++i)if(e[i].z%p==0){</pre>
29
                if((j=gf(e[i].x))!=(k=gf(e[i].y)))fa[j]=k;
                j=e[i].x,k=e[i].y,l=e[i].z,++x;
a[j][k]-=F(1,1),a[k][j]-=F(1,1);
30
31
32
                a[j][j]+=F(1,1),a[k][k]+=F(1,1);
33
          for(j=0,i=1;i<=n;++i)if(fa[i]==i)++j;
if(j>1 || x<n-1)return 0;</pre>
34
35
36
37
           for(i=1;i<n;++i){</pre>
               for(k=i,j=i+1;j<n;++j)if(&a[j][i]>&a[k][i])k=j;
if(k!=i)swap(a[i],a[k]),z*=F(0,P-1);
38
39
                if(!a[i][i])return 0;
                for(z*=a[i][i],iv=~a[i][i],j=i;j<n;++j)a[i][j]*=iv;
for(j=i+1;j<n;++j)for(d=a[j][i],k=i;k<n;++k)a[j][k]-=a[i][k]*d;
40
41
42
43
          return z.a;
44
45
     void work(){
46
          int h=0,i,j,x,y,z;
47
          for(cin>>n>m, i=1; i<=m; ++i) cin>>x>>y>>z, e[i]=T(x,y,z), h=max(h,z);
48
          iota(phi+1,phi+h+1,1);
49
           for(i=1;i<=h;++i)for(j=i<<1;j<=h;j+=i)phi[j]=(phi[j]-phi[i]+P)%P;</pre>
           for(z=0,i=1;i<=h;++i)z=(z+1ll*phi[i]*cal(i)%P)%P;</pre>
50
51
           cout<<z<'\n';
52
```

10.17 Prefür sequence

```
\* prefur @ wrb *\
2
   for(int i=1;i<n;i++)cin>>fa[i],d[fa[i]]++;
   3
4
5
       p[i]=fa[j];
6
       while(i<n-1&&!--d[p[i]]&&j>p[i])p[i+1]=fa[p[i]],i++;
   }
9
    10
11
   for(int i=1;i<n-1;i++)cin>>p[i],d[p[i]]++;
12
   p[n-1]=n;
   for(int i=1,j=1;i<n;i++,j++){
    while(d[j])j++;</pre>
13
14
15
       fa[j]=p[i];
16
       while(i < n\&\&! - d[p[i]]\&\&j > p[i])fa[p[i]]=p[i+1],i++;
   }
```

10.18 network flow - maximal flow

Dinic

```
/* dinic */
      struct edge {

    \begin{array}{r}
      23 \\
      45 \\
      67 \\
      89
    \end{array}

            int from, to;
            LL cap, flow;
            edge(int u, int v, LL c, LL f) : from(u), to(v), cap(c), flow(f) {}
     };
      struct Dinic {
10
            int n, m = 0, s, t;
11
            std::vector<edge> e;
12
            vi g[N];
13
            int d[N], cur[N], vis[N];
14
15
            void init(int n) {
                  for (int i = 0; i < n; i++) g[i].clear();</pre>
16
17
                  e.clear();
18
                 m = 0;
19
\overline{20}
21
22
           void add(int from, int to, LL cap) {
   e.push_back(edge(from, to, cap, 0));
   e.push_back(edge(to, from, 0, 0));
23
24
25
                  g[from].push_back(m++);
                  g[to].push_back(m++);
26
```

```
27
28
29
             bool bfs() {
                   for (int i = 1; i <= n; i++) {
    vis[i] = 0;
30
31
32
                   std::queue<int> q;
q.push(s), d[s] = 0, vis[s] = 1;
while (!q.empty()) {
    int = p fount();
}
33
34
35
36
                         int u = q.front();
                         q.pop();
                         for (int i = 0; i < g[u].size(); i++) {
    edge& ee = e[g[u][i]];</pre>
37
38
                                if (!vis[ee.to] and ee.cap > ee.flow) {
   vis[ee.to] = 1;
39
40
41
                                      d[ee.to] = d[u] + 1;
42
                                      q.push(ee.to);
43
44
                         }
45
46
                   return vis[t];
47
48
            LL dfs(int u, LL now) {
    if (u == t || now == 0) return now;
49
50
                   LL flow = 0, f;

for (int& i = cur[u]; i < g[u].size(); i++) {
    edge& ee = e[g[u][i]];
    edge& er = e[g[u][i] ^ 1];
    if (d[u] + 1 == d[ee.to] and (f = dfs(ee.to, std::min(now, ee.cap - ee.flow))) > 0) {
51
52
53
54
55
56
                                ee.flow += f, er.flow -= f;
                               flow += f, now -= f;
if (now == 0) break;
57
58
59
                         }
60
                   }
61
                   return flow;
62
63
64
            LL dinic() {
                   LL ans = 0;
65
66
                   while (bfs()) {
                         for (int i = 1; i <= n; i++) cur[i] = 0;
ans += dfs(s, INF);</pre>
67
68
69
70
                   return ans;
71
       } maxf;
```

HLPP


```
/* 点的连边编号 */
            std::vector<int> g[N];
 6
7
8
            std::priority_queue<node> q;
            std::queue<int> qq;
            bool vis[N];
 9
10
           int cnt[N];
11
12
           void init() {
13
                 e.clear();
                 nd.clear();
for (int i = 0; i <= n + 1; i++) {</pre>
14
15
                       nd.pushback(node(inf, i, 0));
16
17
                       g[i].clear();
18
                       vis[i] = false;
19
                 }
           }
20 \\ 21 \\ 22 \\ 23 \\ 24
           void add(int u, int v, LL w) {
                 e.pushback(edge(u, v, w));
e.pushback(edge(v, u, 0));
g[u].pushback(m++);
25
                 g[v].pushback(m++);
26
27
28
\overline{29}
           void bfs() {
30
                 nd[t].hight = 0;
31
                 qq.push(t);
                 while (!qq.empty()) {
   int u = qq.front();
32
33
                       qq.pop();
vis[u] = false;
34
35
                       for (auto j : g[u]) {
   int v = e[j].to;
   if (e[j].cap == 0 && nd[v].hight > nd[u].hight + 1) {
      nd[v].hight = nd[u].hight + 1;
      if (vis[v] == false) {
36
37
38
39
40
41
                                        qq.push(v);
42
                                        vis[v] = true;
                                  }
43
44
                             }
45
                       }
46
                 }
47
                 return;
48
\overline{49}
50
           void _push(int u) {
51
52
53
54
                 for (auto j : g[u]) {
    edge &ee = e[j], &er = e[j ^ 1];
                       int v = ee.to;
                       node &nu = nd[u], &nv = nd[v];
55
                       if (ee.cap && nv.hight + 1 == nu.hight) {
                             LL flow = std::min(ee.cap, nu.flow);
ee.cap -= flow, er.cap += flow;
56
57
58
                             nu.flow -= flow, nv.flow += flow;
                             if (vis[v] == false && v != t && v != s) {
59
60
                                   q.push(nv);
                                   vis[v] = true;
61
62
63
                             if (nu.flow == 0) break;
64
                       }
                 }
65
66
           }
67
68
           void relabel(int u) {
69
                 nd[u].hight = inf;
                 for (auto j : g[u]) {
   int v = e[j].to;
   if (e[j].cap && nd[v].hight + 1 < nd[u].hight) {</pre>
70
71
72
73
74
75
76
77
78
79
80
                             nd[u].hight = nd[v].hight + 1;
                 }
           }
           LL hlpp() {
                 bfs();
                 if (nd[s].hight == inf) return 0;
81
                 nd[s].hight = n;
                 for (int i = 1; i <= n; i++) {
82
83
                       if (nd[i].hight < inf) cnt[nd[i].hight]++;</pre>
84
                 for (auto j : g[s]) {
   int v = e[j].to;
   int flow = e[j].cap;
85
86
87
88
                       if (flow) {
                            e[j].cap -= flow, e[j ^ 1].cap += flow;
nd[s].flow -= flow, nd[v].flow += flow;
if (vis[v] == false && v != s && v != t) {
89
90
91
92
                                  q.push(nd[v]);
```

```
93
                             vis[v] = true;
 94
                        }
 95
                    }
 96
 97
               while (!q.empty()) {
98
                    int u = q.top().id;
                    q.pop();
vis[u] = false;
99
100
101
                    _push(u);
                    if (nd[u].flow) {
102
103
                         cnt[nd[u].hight]--;
104
                         if (cnt[nd[u].hight] == 0) {
                             for (int i = 1; i <= n; i++) {
    if (i != s && i != t && nd[i].hight > nd[u].hight && nd[i].hight < n + 1) {</pre>
105
106
107
                                      nd[i].hight = n + 1;
108
109
                             }
110
                        }
                        relabel(u);
111
112
                         cnt[nd[u].hight]++;
113
                         q.push(nd[u]);
114
                         vis[u] = true;
115
116
117
               return nd[t].flow;
118
119
      } maxf;
```

10.19 network flow - minimum cost flow

Dinic + SPFA

```
/* Dinic + SPFA */
      struct edge {
 3
           int from, to;
           LL cap, cost;
 5
 6
           edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
     };
 8 9
      const int N = 2000;
10
11
      struct MCMF {
12
           int n, m = 0, s, t;
13
           std::vector<edge> e;
           vi g[N];
int cur[N], vis[N];
14
15
           LL dist[N], minc;
16
17
18
           void init(int n) {
19
                for (int i = 0; i < n; i++) g[i].clear();</pre>
                e.clear();
20
\frac{20}{21}
                minc = m = 0;
22
23
24
           void add(int from, int to, LL cap, LL cost) {
                e.push_back(edge(from, to, cap, cost));
e.push_back(edge(to, from, 0, -cost));
25
26
27
                g[from] .push_back(m++);
                g[to].push_back(m++);
29
30
31
32
           bool spfa() {
                for (int i = 1; i <= n; i++) {
    dist[i] = INF, cur[i] = 0;</pre>
33
34
                std::queue<int> q;
q.push(s), dist[s] = 0, vis[s] = 1;
35
36
37
                while (!q.empty()) {
                      int u = q.front();
q.pop();
38
39
                     q.pop();
vis[u] = 0;
for (int j = cur[u]; j < g[u].size(); j++) {
    edge& ee = e[g[u][j]];
    int u = ce to:</pre>
40
41
42
43
                           if (ee.cap && dist[v] > dist[u] + ee.cost) {
    dist[v] = dist[u] + ee.cost;
44
45
46
                                 if (!vis[v]) {
47
                                      q.push(v);
48
                                      vis[v] = 1;
49
```

```
50
                         }
51
                    }
52
               }
53
               return dist[t] != INF;
54
55
          LL dfs(int u, LL now) {
   if (u == t) return now;
56
57
58
59
               vis[u] = 1;
               LL ans = 0;
               for (int& i = cur[u]; i < g[u].size() && ans < now; i++) {
  edge &ee = e[g[u][i]], &er = e[g[u][i] ^ 1];</pre>
60
61
62
                    int v = ee.to;
                    if (!vis[v] && ee.cap && dist[v] == dist[u] + ee.cost) {
63
64
                         LL f = dfs(v, std::min(ee.cap, now - ans));
65
                         if (f) {
66
                              minc += f * ee.cost, ans += f;
67
                              ee.cap -= f;
68
                              er.cap += f;
69
70
71
72
73
74
75
76
77
78
79
                    }
               }
               vis[u] = 0;
               return ans;
          PLL mcmf() {
               LL \max f = 0;
               while (spfa()) {
                    LL tmp;
80
                    while ((tmp = dfs(s, INF))) maxf += tmp;
81
82
               return std::make_pair(maxf, minc);
83
84
     } minc_maxf;
```

Primal-Dual 原始对偶算法

```
/* primal dual */
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
     struct edge {
           int from, to;
           LL cap, cost;
 \frac{6}{7}
           edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
 9
     struct node {
10
           int v, e;
\overline{11}
12
           node(int _v = 0, int _e = 0) : v(_v), e(_e) {}
13
     };
14
15
     const int maxn = 5000 + 10;
16
17
      struct MCMF {
           int n, m = 0, s, t;
18
19
           std::vector<edge> e;
\frac{1}{20}
           vi g[maxn];
           int vis[maxn];
          LL dis[maxn], h[maxn]; node p[maxn * 2];
22
\frac{1}{23} 24
\frac{25}{26}
           void add(int from, int to, LL cap, LL cost) {
    e.push_back(edge(from, to, cap, cost));
\overline{27}
                e.push_back(edge(to, from, 0, -cost));
28
                g[from].push_back(m++);
29
30
31
                g[to].push_back(m++);
32
33
34
           bool dijkstra() {
                std::priority_queue<PIL, std::vector<PIL>, std::greater<PIL>> q;
for (int i = 1; i <= n; i++) {
    dis[i] = INF;</pre>
35
36
                     vis[i] = 0;
37
                dis[s] = 0;
38
                q.push({0, s});
39
                 while (!q.empty()) {
40
41
                     auto u = q.top().ss;
42
                      q.pop();
                      if (vis[u]) continue;
43
44
                      vis[u] = 1;
45
                     for (auto i : g[u]) {
```

```
46
                         edge ee = e[i];
47
                         int v = ee.to;
48
                         LL nc = ee.cost + h[u] - h[v];
                        if (ee.cap and dis[v] > dis[u] + nc) {
    dis[v] = dis[u] + nc;
49
50
                             p[v] = node(u, i);
51
                             if (!vis[v]) q.push({dis[v], v});
52
                        }
53
                   }
54
               }
55
               return dis[t] != INF;
56
57
          }
58
59
          void spfa() {
               std::queue<int> q;
60
61
               for (int i = 1; i <= n; i++) h[i] = INF;</pre>
               h[s] = 0, vis[s] = 1;
62
               q.push(s);
63
               while (!q.empty()) {
   int u = q.front();
64
65
66
                    q.pop();
67
                    vis[u] = 0;
                    for (auto i : g[u]) {
68
69
                         edge ee = e[i];
                         int v = ee.to;
70
71
72
73
74
75
                         if (ee.cap and h[v] > h[u] + ee.cost) {
                             h[v] = h[u] + ee.cost;
                             if (!vis[v]) {
                                  vis[v] = 1;
                                  q.push(v);
76
77
78
79
                             }
                        }
                   }
               }
80
81
         }
82
         PLL mcmf() {
83
               LL \max f = 0, \min c = 0;
84
               spfa();
85
               while (dijkstra()) {
86
                    LL minf = INF;
                   for (int i = 1; i <= n; i++) h[i] += dis[i];
for (int i = t; i != s; i = p[i].v) minf = std::min(minf, e[p[i].e].cap);
87
88
                    for (int i = t; i != s; i = p[i].v) {
89
                        e[p[i].e].cap -= minf;
e[p[i].e ^ 1].cap += minf;
90
91
92
93
                   maxf += minf;
94
                   minc += minf * h[t];
95
               }
96
               return std::make_pair(maxf, minc);
97
98
     } minc_maxf;
```

存在负环的网络

流满后推流, 转化为上下界网络流.

10.20 network flow - minimal cut

最小割解决的问题是将图中的点集 V 划分成 S 与 T, 使得 S 与 T 之间的连边的容量总和最小.

最大流最小割定理

网络中s到t的最大流流量的值等于所要求的最小割的值, 所以求最小割只需要跑 Dinic 即可.

获得 S 中的所有点

在 Dinic 的 bfs 函数中,每次将所有点的 d 数组值改为无穷大,最后跑完最大流之后 d 数组不为无穷大的就是和源点一起在 S 集合中的点.

例子

最小割的本质是对图中点集进行 2-划分, 网络流只是求解答案的手段.

- 1. 在图中花费最小的代价断开一些边使得源点 s 无法流到汇点 t. 直接跑最大流就得到了答案.
- 2. 在图中删除最少的点使得源点 s 无法流到汇点 t. 对每个点进行拆点, 在 i 与 i' 之间建立容量为 1 的有向边.

10.21 network flow - upper / lower bound

无源汇上下界可行流

每条有向边有流量的上下界限制,但整张图并未确定源点与汇点.如果存在满足每个点的流入量等于流出量,且每条边的流量满足其上下界限制的流,称之为可行流.

- 1. 将每条边先给予大小为下界的流量,
- 2. 对每个点计算总流入量 in_u 与总流出量 out_u 的值,
- 3. 建立超级源点到每个点, 容量大小为 $\max\{0, \text{in}_u \text{out}_u\}$ 的边; 建立每个点到超级汇点, 容量大小为 $\max\{0, \text{out}_u \text{in}_u\}$,
- 4. 跑从超级源点到超级汇点的最大流,如果超级源点每条边都流满意味着存在可行流. 将每条边的流量加上预先给每条边设置的下界流量即为可行流方案.

有源汇上下界可行流

1. 建立汇点 t 到源点 s 的, 容量为 ∞ 的有向边, 将其转化为无源汇的问题.

有源汇上下界最大流

- 1. 建立汇点 t 到源点 s 的, 容量为 ∞ 的有向边, 将其转化为无源汇的问题,
- 2. 跑上下界可行流, 可行流流量为边 $t \xrightarrow{\infty} s$ 的流量.
- 3. 删除 $t \xrightarrow{\infty} s$ 的边, 再残量网络上跑 s 到 t 的最大流,
- 4. 答案等于可行流流量 + 最大流流量.

有源汇上下界最小流

- 1. 建立汇点 t 到源点 s 的, 容量为 ∞ 的有向边, 将其转化为无源汇的问题,
- 2. 跑上下界可行流, 可行流流量为边 $t \xrightarrow{\infty} s$ 的流量.
- 3. 删除 $t \xrightarrow{\infty} s$ 的边, 再残量网络上跑 t 到 s 的最大流,
- 4. 答案等于可行流流量 最大流流量.

有源汇上下界最小费用可行流

- 1. 按下界流满并计算费用,
- 2. 类似有源汇上下界最大流建图, 跑超级源点到超级汇点的费用流,
- 3. 答案等于按下界的费用加上后续残量网络.

10.22 network flow - other versions

```
/* dinic @ wrb */
       template<typename T, T inf = numeric_limits<T>::max()>
struct Max_Flow {
 2
 3
 4
               vector<int> he, cur, d, ne, to;
 5
               vector<T> c;
 6
               int s, t;
              Max_Flow(int m) : he(m, -1), s(-1), t(-1) {}
void add(int x, int y, T z = inf, T w = 0) {
    // cerr << x << ' ' << y << ' ';
    // if (z == inf) cerr << "inf\n";
    // else cerr << z << '\n';</pre>
 7
 8
 9
10
11
                     ne.emplace_back(he[x]);
he[x] = ne.size() - 1;
to.emplace_back(y);
13
14
                      c.emplace_back(z);
15
16
                      ne.emplace_back(he[y]);
                      he[y] = ne.size() - 1;
17
18
                      to.emplace_back(x);
19
                      c.emplace_back(w);
20
21
               int bfs() {
22
                      queue<int> q;
                     queue<int> q;
d.assign(he.size(), -1);
q.emplace(s), d[s] = 0;
for (; q.size(); q.pop()) {
   int u = q.front(), v;
   for (int i = he[u]; ~i; i = ne[i]) {
      if (c[i] && d[v = to[i]] == -1) {
        d[v] = d[u] + 1;
      if (v == t) return 1.
23
24
25
26
\overline{27}
28
29
30
                                            if (v == t) return 1;
31
                                            q.emplace(v);
32
                                     }
33
                             }
34
35
                      return 0;
36
              T dfs(int u, T fl) {
   if (u == t) return fl;
37
38
                     if (u -- c, zc...
T z = 0, r;
for (int& i = cur[u], v; ~i; i = ne[i]) {
    if (c[i] && d[v = to[i]] == d[u] + 1) {
        -- dfe(v min(fl, c[i]));
}
39
40
41
                                    r = dfs(v, min(fl, c[i]));
if (r == 0) d[v] = -1;
else {
42
43
44
45
                                            fl = r, z += r, c[i] = r, c[i ^ 1] += r;
46
                                            if (fl == 0) return z;
47
                             }
48
49
                      }
50
                      return z;
51
              T dinic(int _s, int _t) {
52
                      Tz = 0;
53
                      for (s = _s, t = _t; bfs();) {
   cur = he, z += dfs(s, inf);
54
55
                      }
56
57
                      return z;
58
59
       };
```

```
/* bounded flow @ lys */
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <vector>
#define int long long
using namespace std;
```

```
10
    const int maxn = 50020;
11
     const int inf = 1e18;
13
     struct Dinic_limit
14
          int st, sgn; // st = 1 表示有源汇; sgn 表示最大(1)最小(-1)流
15
16
          struct edge
17
18
               int x, y, cap, flow, cost;
19
20 \\ 21 \\ 22 \\ 23 \\ 24
          int deg[maxn]; // rd - cd
          vector<int> e[maxn];
          vector<edge> edges;
          int mx;
          int mcmf;
25
          void add(int x, int y, int cap, int cost)
26
27
               edges.push_back({x, y, cap, 0, cost});
edges.push_back({y, x, 0, 0, -cost});
mx = max({mx, x, y});
28
\overline{29}
30
               int m = edges.size();
31
               e[x].push_back(m - 2), e[y].push_back(m - 1);
32
33
          void add(int x, int y, int 1, int r, int cost)
34
35
                if (cost >= 0)
                    add(x, y, r - 1, cost), deg[y] += 1, deg[x] -= 1, mcmf += 1 * cost;
36
37
38
                    add(y, x, r - 1, -cost), deg[y] += r, deg[x] -= r, mcmf += r * cost;
39
          int s, t;
int vis[maxn], dis[maxn];
40
41
42
          bool spfa()
43
44
               queue<int> q;
               fill(vis, vis + mx + 1, 0), fill(dis, dis + mx + 1, inf);
dis[s] = 0, q.push(s), vis[s] = 1;
45
46
47
               while (!q.empty())
48
                    int x = q.front();
q.pop(), vis[x] = 0;
for (int i : e[x])
49
50
51
52
                         auto k = edges[i];
if (k.cap - k.flow > 0 && k.cost + dis[x] < dis[k.y])</pre>
53
54
55
                               dis[k.y] = dis[x] + k.cost;
56
57
                               if (!vis[k.y])
58
                                    q.push(k.y), vis[k.y] = 1;
59
                         }
60
                    }
               }
61
               return dis[t] != inf;
62
63
64
          int cur[maxn];
          int dfs(int x, int lim)
65
66
               if (x == t || lim == 0)
67
68
                    return lim;
69
               vis[x] = 1;
70
71
72
73
74
75
76
77
78
79
               int res = 0, f;
               for (int &i = cur[x]; i < (int)e[x].size(); i++)</pre>
                     auto &k = edges[e[x][i]];
                    if (!vis[k.y] && k.cost + dis[x] == dis[k.y] && (f = dfs(k.y, min(lim, k.cap - k.flow))))
    res += f, lim -= f, k.flow += f, edges[e[x][i] ^ 1].flow -= f, mcmf += f * k.cost;
if (lim == 0)
                         break:
               }
               vis[x] = 0;
80
               return res;
81
82
          int dinic(int s_, int t_)
83
84
               int ss = mx + 1, tt = ss + 1;
85
               int tot = 0;
86
               for (int i = 1; i <= mx; i++)</pre>
87
                    if (deg[i] > 0)
                    add(ss, i, deg[i], 0), tot += deg[i];
else if (deg[i] < 0)
89
                         add(i, tt, -deg[i], 0);
90
91
               if (st)
               add(t_, s_, 0, inf, 0);
s = ss, t = tt;
92
93
               int res = 0;
94
95
               while (spfa())
96
                    fill(cur, cur + mx + 1, 0), res += dfs(s, inf);
```

```
// cerr << res << " " << tot << endl;
 97
 98
                if (res != tot)
 99
                     return -1;
100
                 if (st == 0)
101
                     return 1;
102
                res = -edges.back().flow;
                edges.back().cap = edges.back().flow = 0;
edges[edges.size() - 2].cap = edges[edges.size() - 2].flow = 0;
s = s_, t = t_;
if (sgn == -1)
103
104
105
106
                     swap(s, t);
107
108
                while (spfa())
109
                     fill(cur, cur + mx + 1, 0), res += sgn * dfs(s, inf);
110
                return res;
111
112
           void clear()
113
                for (int i = 0; i <= mx; i++)
    e[i].clear(), deg[i] = 0;</pre>
114
115
116
                edges.clear();
                mx = 0, mcmf = 0;
117
118
           Dinic_limit(int st_ = 1, int sgn_ = 1) { st = st_, sgn = sgn_; } // st = 1 表示有源汇; sgn 表示最大(1)最小(-1)流
119
120
121
           // 使用时调用 dinic 函数,返回-1表示无解,否则返回最大/最小流
      };
122
123
124
      Dinic_limit G(1, 1);
125
126
      signed main()
127
           ios::sync_with_stdio(false), cin.tie(0);
int n, m, S, T;
cin >> n >> m >> S >> T;
128
129
130
131
           for (int i = 0; i < m; i++)</pre>
132
                int s, t, 1, r, c;
cin >> s >> t >> 1 >> r >> c;
133
134
                G.add(s, t, 1, r, c);
135
           }
136
137
           int res = G.dinic(S, T);
           if (res == -1)
138
                cout << -1 << endl;
139
140
           {
141
                cout << res << " " << G.mcmf << endl;</pre>
142
143
           }
144
      }
```

10.23 matching - matching on bipartite graph

二分图最大匹配

Kuhn-Munkres

时间复杂度: $O(n^3)$.

```
/* Kuhn-Munkres */
     auto KM = [&](int n1, int n2, vvi e) -> std::pair<vi, vi> {
         vi vis(n2 + 1);
vi l(n1 + 1, -1), r(n2 + 1, -1);
std::function<bool(int)> dfs = [&](int u) -> bool {
 3
 4
 5
 6
7
               for (auto v : e[u]) {
                    if (!vis[v]) {
                        vis[v] = 1;
 8
 9
                        if (r[v] == -1 \text{ or } dfs(r[v])) {
10
                             r[v] = u;
11
                             return true;
                        }
                   }
13
              }
14
15
              return false;
16
          for (int i = 1; i <= n1; i++) {</pre>
17
              std::fill(all(vis), 0);
18
19
              dfs(i);
20
21
          for (int i = 1; i <= n2; i++) {</pre>
22
               if (r[i] == -1) continue;
```

```
23 | 1[r[i]] = i;

24 | }

25 | return {1, r};

26 |};

27 | auto [mchl, mchr] = KM(n1, n2, e);

28 | std::cout << mchl.size() - std::count(all(mchl), -1) << endl;
```

Hopcroft-Karp

据说时间复杂度是 $O(m\sqrt{n})$ 的, 但是快的飞起.

```
/* Hopcroft-Karp */

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

       vpi e(m);
       auto hopcroft_karp = [&] (int n, int m, vpi& e) -> std::pair<vi, vi> {
   vi g(e.size()), l(n + 1, -1), r(m + 1, -1), d(n + 2);
   for (auto [u, v] : e) d[u]++;
   std.:pair<[-2,1](), d(n + 2);</pre>
              std::partial_sum(all(d), d.begin());
for (auto [u, v] : e) g[--d[u]] = v;
 8
              for (vi a, p, q(n + 1);;) {
    a.assign(n + 1, -1);
                    p.assign(n + 1, -1);
int t = 1;
10
11
12
                     for (int i = 1; i <= n; i++) {
13
                            if (1[i] == -1) {
14
                                  q[t++] = a[i] = p[i] = i;
15
16
                    bool match = false;
for (int i = 1; i < t; i++) {
   int u = q[i];</pre>
17
18
19
20
21
22
23
24
25
                            if (l[a[\bar{u}]] != -1) continue;
                            for (int j = d[u]; j < d[u + 1]; j++) {
                                  int v = g[j];
if (r[v] == -1) {
                                         while (v != -1) {
    r[v] = u;
\frac{26}{27}
                                                 std::swap(1[u], v);
                                                u = p[u];
28
29
30
31
32
33
                                          }
                                         match = true;
                                          break;
                                   if (p[r[v]] == -1) {
                                         q[t++] = v = r[v];
34
                                         p[v] = u;
35
                                          a[v] = a[u];
36
37
38
39
                     if (!match) break;
40
41
              return {1, r};
      };
42
```

二分图最大权匹配

Kuhn-Munkres

注意是否为完美匹配,非完美选0,完美选-INF. (存疑)

```
\begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
      auto KM = [&](int n, vvl e) -> std::tuple<LL, vi, vi> {
            vl la(n + 1), lb(n + 1), pp(n + 1), vx(n + 1);
vi l(n + 1, -1), r(n + 1, -1);
             vi va(n + 1), vb(n + 1);
            LL delta;
 6
7
8
            auto bfs = [&](int x) -> void {
  int a, y = 0, y1 = 0;
  std::fill(all(pp), 0);
  std::fill(all(vx), INF);
 9
10
11
                   r[y] = x;
12
                   do {
13
                          a = r[y], delta = INF, vb[y] = 1;
                         for (int b = 1; b <= n; b++) {
    if (!vb[b]) {</pre>
14
15
16
                                      if (vx[b] > la[a] + lb[b] - e[a][b]) {
```

```
vx[b] = la[a] + lb[b] - e[a][b];
17
18
19
                                                 pp[b] = y;
\begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \end{array}
                                          if (vx[b] < delta) {</pre>
                                                 delta = vx[b];
                                                 y1 = b;
                                   }
25
26
27
28
29
30
                            for (int b = 0; b <= n; b++) {
   if (vb[b]) {
      la[r[b]] -= delta;
}</pre>
                                          lb[b] += delta;
                                   } else
                                          vx[b] -= delta;
31
32
33
34
35
                            }
                     y = y1;
} while (r[y] != -1);
while (y) {
   r[y] = r[pp[y]];
   r = r [r]
36
37
38
39
                            y = pp[y];
              for (int i = 1; i <= n; i++) {
    std::fill(all(vb), 0);</pre>
40
41
                     bfs(i);
42
43
              LL ans = 0;
for (int i = 1; i <= n; i++) {
    if (r[i] == -1) continue;</pre>
44
45
46
                     l[r[i]] = i;
ans += e[r[i]][i];
47
48
49
50
              return {ans, 1, r};
       };
51
52
       auto [ans, mchl, mchr] = KM(n, e);
```

10.24 matching - matching on general graph

94 11 GEOMETRY

11 geometry

11.1 two demention

点与向量

```
struct Point {
  \frac{1}{2}
                      LL x = 0, y = 0;
Point() = default;
                     Point() = default,
Point(long long x, long long y) : x(x), y(y) {}
operator bool() { return *this != Point{}; }
friend bool operator==(Point p, Point q) { return p.x == q.x and p.y == q.y; }
friend bool operator!=(Point p, Point q) { return !(p == q); }
friend Point operator+(Point p, Point q) { return {p.x + q.x, p.y + q.y}; }
friend Point operator-(Point p, Point q) { return {p.x - q.x, p.y - q.y}; }
  4
  5
  6
7
  8
  9
                     friend LL dot(Point p, Point q) { return p.x * q.x + p.y * q.y; }
friend LL det(Point p, Point q) { return p.x * q.y - q.x * p.y; }
friend bool operator<(Point p, Point q) {
    return std::pair{p.quad(), det(q, p)} < std::pair{q.quad(), Oll};
    return (p.x == q.x ? p.y < q.y : p.x < q.x);
}</pre>
10
11
12
13
14
15
16
                      int quad() const {
                               if (x > 0 & x y >= 0) return 1;
if (x <= 0 \text{ and } y > 0) return 2;
if (x <= 0 \text{ and } y <= 0) return 3;
if (x >= 0 \text{ and } y <= 0) return 4;
17
18
19
20
21
22
23
24
25
26
27
                                return 0;
                      friend LL dist(Point p, Point q) {
   return (p.x - q.x) * (p.x - q.x) + (p.y - q.y) * (p.y - q.y);
           std::istream& operator>>(std::istream& is, Point& p) { return is >> p.x >> p.y; }
          std::ostream& operator<<(std::ostream& os, Point p) {
    return os << '(' << p.x << ',' << p.y << ')';
28
30
```

线段

```
struct line {
 3
          point a, b;
 4
5
          line(point _a = {}, point _b = {}) { a = _a, b = _b; }
           /* 交点类型为 double */
 \begin{matrix} 6\\7\\8\\9\end{matrix}
          friend point iPoint(line p, line q) {
               point v1 = p.b - p.a;
               point v2 = q.b - q.a;
               point u = q.a - p.a;
return q.a + (q.b - q.a) * ((u ^ v1) * 1. / (v1 ^ v2));
10
11
13
           /* 极角排序 */
14
          bool operator<(const line& p) const {
   double t1 = std::atan2((b - a).y, (b - a).x);</pre>
15
16
                double t2 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
17
18
19
               if (fabs(t1 - t2) > eps) {
    return t1 < t2;</pre>
20
21
               return ((p.a - a) ^ (p.b - a)) > eps;
22
          }
     };
```

11.2 convex

2D

```
1    /* andrew */
2    auto andrew = [&](std::vector<point>& v) -> std::vector<point> {
3        std::sort(all(v));
```

11.2 convex 95

```
std::vector<point> stk;
5
        for (int i = 0; i < n; i++) {</pre>
 6
            point x = v[i];
             while (stk.size() > 1 \text{ and } ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) 
8
                 stk.pop_back();
 9
10
             stk.push_back(x);
11
12
        int tmp = stk.size();
        for (int i = n - 2; i \ge 0; i - -) {
13
             point x = v[i];
14
15
             while (stk.size() > tmp and ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) {
16
                 stk.pop_back();
             stk.push_back(x);
18
19
20
        return stk;
21
    };
```

求凸包 and 判断点与凸包关系

```
#include<bits/stdc++.h>
     #ifdef LOCAL
 3
     #include "debug.h"
     #else
     #define debug(...) 0
 6
     #endif
     #define all(v) begin(v), end(v)
 8
     using namespace std;
     using pii = pair<int, int>;
10
     template<typename T, typename P, T inf = numeric_limits<T>::max()>
struct Convex_Hull {
    ____
11
12
          using ptt = pair<T, T>;
13
         ., using 1128 = __int128; vector<ptt> a, b; T low har-
14
15
16
          T lox, hix;
         P crs(const ptt& a, const ptt& b) {
17
18
              return (P)a.first * b.second - (P)a.second * b.first;
19
20
         ptt mns(const ptt% a, const ptt% b) {
              return ptt{a.first - b.first, a.second - b.second};
21
22
23
          Convex_Hull(vector<ptt> c) {
24
              assert(c.size() > 0);
25
              sort(begin(c), end(c));
26
              vector<int> st = {0};
27
              int n = c.size(), tp = 0;
for (int i = 1; i < n; ++i) {</pre>
28
29
                   while (tp > 0 &&
30
                        crs(mns(c[st[tp]], c[st[tp-1]]), mns(c[i], c[st[tp]])) \leftarrow 0) 
31
                             --tp, st.pop_back();
32
33
                   st.emplace_back(i), ++tp;
34
              }
35
              int tmp = tp;
              for (int i = n - 1; ~i; --i) {
   while (tp > tmp &&
36
37
38
                        crs(mns(c[st[tp]], c[st[tp - 1]]), mns(c[i], c[st[tp]])) <= 0) {</pre>
39
                             --tp, st.pop_back();
40
41
                   st.emplace_back(i), ++tp;
42
43
              for (int i = 0; i <= tmp; ++i) {</pre>
44
                   a.emplace_back(c[st[i]]);
45
46
              for (int i = tmp; i <= tp; ++i) {
47
                   b.emplace_back(c[st[i]]);
              }
48
49
50
          // n >= 3
51
         pair<int, vector<ptt>> insd(T x, T y) { // 0: outside, 1: invertex, 2, {u,v}: inedge, 3: inside
              ptt o = {x, y};
if (x < a[0].first || x > b[0].first) return {0, {}};
52
53
54
              int li = lower_bound(begin(a), end(a), ptt{x, -inf}) - begin(a);
              if (o == a[li]) return {1, {}};
int hi = lower_bound(begin(b), end(b), ptt{x, inf}, greater{}) - begin(b);
if (o == b[hi]) return {1, {}};
55
56
57
              if (li == 0) {
58
                   if (hi + 1 == b.size()) return {0, {}};
assert(b.end()[-1].first == b.end()[-2].first);
59
60
61
                   if (y < b.end()[-1].second || y > b.end()[-2].second) return {0, {}};
                   return {2, {b.end()[-1], b.end()[-2]}};
62
```

96 11 GEOMETRY

```
63
                  if (hi == 0) {
 64
                        if (li + 1 == a.size()) return {0, {}};
assert(a.end()[-2].first == a.end()[-1].first);
 65
                       if (y < a.end()[-2].second || y > a.end()[-1].second) return {0, {}};
return {2, {a.end()[-2], a.end()[-1]}};
 67
 68
 69
70
71
72
73
74
75
76
77
78
                  P v1 = crs(mns(o, a[li - 1]), mns(a[li], a[li - 1]));
                  if (v1 == 0) return {2, {a[ii - 1], a[ii]}};
P v2 = crs(mns(o, b[hi - 1]), mns(b[hi], b[hi - 1]));
if (v2 == 0) return {2, {b[hi - 1], b[hi]}};
                  debug(v1, v2);
                  return {v1 > 0 && v2 > 0 || v1 < 0 && v2 < 0 ? 3 : 0, {}};
       };
       namespace Acc {
            auto work = []() {
    string ans[] = {"OUT", "ON", "ON", "IN"};
 80
81
82
83
                  int n, q;
cin >> n;
 84
85
                  vector<pair<int, int>> a(n);
for (auto& [x, y] : a) cin >> x >> y;
 86
                  Convex_Hull<int, long long> ch(a);
 87
                  debug(ch.a, ch.b);
 88
                  cin >> q;
 89
                  for (int x, y; q--; ) {
 90
                        cin >> x >>
 91
                        cout << ans[ch.insd(x, y).first] << '\n';</pre>
 92
 93
            };
 94
 95
       int main() {
 96
            std::ios::sync_with_stdio(0);
 97
            std::cin.tie(0);
int T = 1;
 98
 99
             // std::cin >> T;
100
             while (T--) Acc::work();
101
      }
```

11.3 half plane union

```
/* half plane union */
        auto half_plane = [&](std::vector<line>& ln) -> std::vector<point> {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
               std::sort(all(ln));
               ln.erase(
                      unique(
 6
7
                             all(ln),
                              [](line& p, line& q) {
                                    double t1 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
double t2 = std::atan2((q.b - q.a).y, (q.b - q.a).x);
return fabs((t1 - t2)) < eps;</pre>
 8 9
10
                             })
11
                      ln.end());
12
               auto check = [&](line p, line q, line r) -> bool {
   point a = iPoint(p, q);
   return ((r.b - r.a) ^ (a - r.a)) < -eps;</pre>
13
14
15
16
17
               line q[ln.size() + 2];
               int hh = 1, tt = 0;
q[++tt] = ln[0];
18
19
20
               q[++tt] = ln[1];
              qi'fttj - In[i];
for (int i = 2; i < (int) ln.size(); i++) {
    while (hh < tt and check(q[tt - 1], q[tt], ln[i])) tt--;
    while (hh < tt and check(q[hh + 1], q[hh], ln[i])) hh++;
    q[++tt] = ln[i];</pre>
21
22
23
24
25
26
27
               while (hh < tt and check(q[tt - 1], q[tt], q[hh])) tt--;
while (hh < tt and check(q[hh + 1], q[hh], q[tt])) hh++;</pre>
28
29
30
               q[tt + 1] = q[hh];
               std::vector<point> ans;
for (int i = hh; i <= tt; i++) {</pre>
31
                      ans.push_back(iPoint(q[i], q[i + 1]));
32
33
               return ans;
34
       };
```

11.5 Simpson 97

```
/* rotate @ wrb */
    #include<cstdio>
    #include<algorithm>
    #define db double
 5
    namespace Acc{
         const int N = 5e4+10;
 6
         struct node{
         int x,y;
}a[N],stk[N];
 8
 9
10
         11
         int dis(node a,node b){return ((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
12
         int n,tp,ans;
13
         void work(){
14
             scanf("%d",&n);
             for(int i=1;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);</pre>
15
16
             std::sort(a+1,a+n+1,[=](node a,node b)->bool{return a.x<b.x || (a.x==b.x && a.y<b.y);});
             stk[1]=a[1],tp=1;
18
             for(int i=2;i<=n;i++){</pre>
                 while(tp>1 && cmp(stk[tp-1],stk[tp],a[i])<=0)tp--;</pre>
19
20
                 stk[++tp]=a[i];
\overline{21}
22
             int tmp=tp;
for(int i=n-1;i>=1;i--){
23
                 while(tp>tmp && cmp(stk[tp-1],stk[tp],a[i])<=0)tp--;</pre>
24
\frac{1}{25}
                 stk[++tp]=a[i];
26
27
             for(int i=1,j=3;i<tp;i++){</pre>
28
                 \label{lem:while} \begin{tabular}{ll} while (cmp(stk[i],stk[i+1],stk[j]) \le cmp(stk[i],stk[i+1],stk[j+1])) = j\%(tp-1)+1; \\ \end{tabular}
29
                 ans=std::max(ans,std::max(dis(stk[i],stk[j]),dis(stk[i+1],stk[j])));
30
31
             printf("%d",ans);
32
         }
33
    }
34
    int main(){
35
         return Acc::work(),0;
    }
36
```

11.5 Simpson

```
#include <bits/stdc++.h>
      using namespace std;
 3
      double a;
 4
      double f(double x) {
 5
            return pow(x, a / x - x);
 6
      double simpson(double 1, double r) {
   double mid = (1 + r) / 2;
   return (r - 1) * (f(1) + 4 * f(mid) + f(r)) / 6;
 9
10
      }
      double asr(double l, double r, double eps, double ans, int d) {
   double mid = (1 + r) / 2;
   double Fl = simpson(l, mid), Fr = simpson(mid, r);
   if (abs(Fl + Fr - ans) <= 15 * eps && d < 0) {
      return Fl + Fr + (Fl + Fr - ans) / 15;
   }</pre>
11
12
13
14
15
16
17
            return asr(1, mid, eps / 2, Fl, d - 1) + asr(mid, r, eps / 2, Fr, d - 1);
18
19
      double calc(double 1, double r, double eps) {
20
            return asr(l, r, eps, simpson(l, r), 12);
21
22
      int main() {
23
            cin >> a:
            if (a < 0) {
\overline{24}
                  cout << "orz\n";
25
26
            } else {
27
                  cout << fixed << setprecision(5) << calc(1e-8, 15, 1e-8) << '\n';
28
29
      }
```

12 offline algorithm

12.1 discretization

```
std::sort(all(a));
a.erase(unique(all(a)), a.end());
auto get_id = [&](const int& x) -> int { return lower_bound(all(a), x) - a.begin() + 1; };
```

12.2 Mo algorithm

普通莫队

```
int block = n / sqrt(2 * m / 3);
     std::sort(all(q), [&](node a, node b) {
    return a.l / block == b.l / block ? (a.r == b.r ? 0 : ((a.l / block) & 1) ^ (a.r < b.r))</pre>
 \frac{2}{3}
                                                        : a.1 < b.1;
 5
     auto move = [&](int x, int op) -> void {
          if (op == 1) {
              /* operations */
 9
          } else {
10
              /* operations */
11
12
    for (int k = 1, 1 = 1, r = 0; k <= m; k++) {
  node Q = q[k];</pre>
13
14
          while (1 > Q.1) {
15
16
               move(--1, 1);
17
18
          while (r < Q.r) {</pre>
19
              move(++r, 1);
20
21
          while (1 < Q.1) {</pre>
22
23
               move(l++, -1);
24
25
26
27
          while (r > Q.r) {
               move(r--, -1);
```

12.3 回滚莫队

```
/* rollback Mo */
      #include<bits/stdc++.h>
 \frac{1}{3}
      namespace Acc {
    const int N = 200009;
 5
            int a[N], b[N], id[N], f[N], g[N], p[N], z[N];
 6
7
            std::pair<int, int> st[N];
            struct T {
                  int 1, r, o;
 9
            }q[N];
10
            auto work = []() {
11
                  int n, m;
std::cin >> n;
12
13
                  for (int i = 1; i <= n; ++i) {</pre>
14
                         std::cin >> a[i], b[i] = a[i];
15
                  std::sort(b + 1, b + n + 1);
int ct = std::unique(b + 1, b + n + 1) - b - 1;
for (int i = 1; i <= n; ++i) {</pre>
16
18
19
                         a[i] = std::lower_bound(b + 1, b + ct + 1, a[i]) - b;
\frac{20}{21}
                  std::cin >> m;
                  for (int i = 1; i <= m; ++i) {
    auto&[1, r, o] = q[i];
    std::cin >> 1 >> r, o = i;
23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28
                  int B = ceil(n / sqrt(m));
for (int i = 1; i <= n; ++i) {
   id[i] = (i - 1) / B + 1;</pre>
29
30
                   std::sort(q + 1, q + m + 1, [](T a, T b) {
```

12.4 CDQ 99

```
31
                         return id[a.1] == id[b.1] ? a.r < b.r : a.l < b.1;</pre>
32
33
                   int ans = 0, L = 1, R = 0;
                  for (int i = 1; i <= m; ++i) {
   auto[1, r, o] = q[i];
   if (id[1] != id[q[i - 1].1]) {</pre>
34
35
36
37
                               ans = 0;
                              mems td:min(n, id[1] * B), L = R + 1;
memset(f + 1, 0, ct << 2);
memset(g + 1, 0, ct << 2);</pre>
38
39
40
                         }
41
42
                         if (id[1] == id[r]) {
                               for (int j = 1; j <= r; ++j) {
    if (p[a[j]] == 0) p[a[j]] = j;
    else ans = std::max(ans, j - p[a[j]]);</pre>
43
44
45
46
                              for (int j = 1; j <= r; ++j) p[a[j]] = 0; z[o] = ans, ans = 0;
47
48
49
                         } else {
                               while (R < r) {
50
                                     ++R, g[a[R]] = R;
if (f[a[R]] == 0) f[a[R]] = R;
51
52
                                     else ans = std::max(ans, R - f[a[R]]);
53
54
                               int las = ans, t = L;
while (1 < L) {</pre>
55
56
57
                                     --L;
                                     int x = f[a[L]], y = g[a[L]];
st[L] = std::make_pair(x, y);
58
59
                                     f[a[L]] = L;
60
61
                                     if (g[a[L]] == 0) g[a[L]] = L;
                                     else ans = std::max(ans, g[a[L]] - L);
62
                               }
63
                               z[o] = ans;
64
                              for (int j = 1; j < t; ++j) {
    auto[x, y] = st[j];
    f[a[j]] = x, g[a[j]] = y;
65
66
67
68
69
                               ans = las, L = t;
70
                         }
71
                  for (int i = 1; i <= m; ++i) {
    std::cout << z[i] << '\n';</pre>
73
74
                  }
75
            };
76
77
      }
      int main() {
78
             std::ios::sync_with_stdio(0);
79
             std::cin.tie(0), Acc::work();
80
      }
```

12.4 CDQ

n 个三维数对 (a_i, b_i, c_i) , 设 f(i) 表示 $a_j \leq a_i, b_j \leq b_i, c_j \leq c_i (i \neq j)$ 的个数. 输出 f(i) $(0 \leq i \leq n-1)$ 的值.

```
// 洛谷 P3810 【模板】三维偏序(陌上花开)
 3
     struct data {
 4
          int a, b, c, cnt, ans;
 5
          data(int _a = 0, int _b = 0, int _c = 0, int _cnt = 0, int _ans = 0) {
   a = _a, b = _b, c = _c, cnt = _cnt, ans = _ans;
 6
 9
10
          bool operator!=(data x) {
               if (a != x.a) return true;
if (b != x.b) return true;
11
12
13
               if (c != x.c) return true;
               return false;
14
15
          }
     };
16
17
18
     int main() {
19
          std::ios::sync_with_stdio(false);
20
21
          std::cin.tie(0);
22
          int n, k;
23
          std::cin >> n >> k;
          static data v1[N], v2[N];
for (int i = 1; i <= n; i++) {</pre>
24
25
```

```
26
                std::cin >> v1[i].a >> v1[i].b >> v1[i].c;
27
28
           std::sort(v1 + 1, v1 + n + 1, [\&](data x, data y) {
                if (x.a != y.a) return x.a < y.a;
if (x.b != y.b) return x.b < y.b;
return x.c < y.c;</pre>
29
30
31
32
           }):
33
34
35
           int t = 0, top = 0;
           for (int i = 1; i <= n; i++) {
                t++:
36
37
                 if (v1[i] != v1[i + 1]) {
                      v2[++top] = v1[i];
38
39
                      v2[top].cnt = t;
                      t = 0;
                }
40
41
42
           vi tr(N);
           auto add = [&](int pos, int val) -> void {
   while (pos <= k) {</pre>
43
44
45
                      tr[pos] += val;
46
                      pos += lowbit(pos);
47
                }
48
49
50
           auto query = [&](int pos) -> int {
                 int ans = 0;
51
                while (pos > 0) {
52
                      ans += tr[pos];
                      pos -= lowbit(pos);
53
54
55
                return ans;
56
57
           std::function<void(int, int)> CDQ = [&](int 1, int r) -> void {
                if (1 == r) return;
int mid = (1 + r) >> 1;
58
59
                CDQ(1, mid), CDQ(mid + 1, r);

std::sort(v2 + 1, v2 + mid + 1, [&](data x, data y) {

    if (x.b != y.b) return x.b < y.b;

    return x.c < y.c;
60
61
62
63
64
                });
65
                 std::sort(v2 + mid + 1, v2 + r + 1, [&](data x, data y) {
                     if (x.b != y.b) return x.b < y.b;
return x.c < y.c;</pre>
66
67
                int i = 1, j = mid + 1;
while (j <= r) {</pre>
69
70
71
72
73
74
75
76
77
78
79
                      while (i <= mid && v2[i].b <= v2[j].b) {</pre>
                           add(v2[i].c, v2[i].cnt);
                           i++;
                      v2[j].ans += query(v2[j].c);
                      j++;
                for (int ii = 1; ii < i; ii++) {
                      add(v2[ii].c, -v2[ii].cnt);
80
                }
81
                return;
82
83
           CDQ(1, top);
           vi ans(n + 1);
for (int i = 1; i <= top; i++) {
   ans[v2[i].ans + v2[i].cnt] += v2[i].cnt;</pre>
84
85
86
87
88
           for (int i = 1; i <= n; i++) {
    std::cout << ans[i] << endl;</pre>
89
90
91
           return 0;
92
```

12.5 segment tree devide and conquer

```
/* seg div @ wrb */
#include<bits/stdc++.h>
using namespace std;
namespace Acc {
    const int N = 1e5;
    pair<int, int> q[N * 2];
    vector<int> v[N * 4];
    int n, l, r, p;
    int fa[N * 2], sz[N * 2];
    pair<int, int> st[N * 2];
    int tp;
    void ins(int o, int L, int R) {
```

```
13
                      if (r < L || 1 > R) return ;
14
                      if (1 <= L && R <= r) {</pre>
15
                            v[o].emplace_back(p);
16
                            return ;
18
                     int md = L + R >> 1;
                     ins(o << 1, L, md);
ins(o << 1 | 1, md + 1, R);
19
20
\overline{21}
              auto gf = [](int x) {
    while (x != fa[x]) x = fa[x];
\overline{22}
23
24
25
                     return x;
26
               auto mg = [](int x, int y) {
                     x = gf(x), y = gf(y);
if (x != y) {
27
28
                            if (sz[x] < sz[y]) swap(x, y);
fa[y] = x, sz[x] += sz[y];
st[++tp] = {x, y};</pre>
29
30
31
32
                     }
33
34
35
              f;
void dfs(int o, int L, int R) {
   int lastp = tp;
   for (int i : v[o]) {
      auto[x, y] = q[i];
      mg(x, y + n), mg(x + n, y);
      if (gf(x) == gf(x + n)) {
        for (int i = L; i <= R; ++i) {
            cout << "Mo\n":</pre>
36
37
38
39
40
                                          cout << "No\n";
41
42
43
                                   goto _;
                            }
44
45
                     if (L == R) {
    cout << "Yes\n";</pre>
46
47
                     } else {
48
49
                            int md = L + R >> 1;
                            dfs(o << 1, L, md);
dfs(o << 1 | 1, md + 1, R);
50
51
52
                     }
53
                     for (; tp > lastp; --tp) {
   auto[x, y] = st[tp];
   fa[y] = y, sz[x] -= sz[y];
54
55
56
57
                     }
58
59
               auto work = []() {
                     int m, k;
cin >> n >> m >> k;
for (int i = 1; i <= m; ++i) {</pre>
60
61
62
\overline{63}
                            int x, y;
cin >> x >> y >> 1 >> r;
if (++1 <= r) {</pre>
64
65
66
                                   q[p = i] = \{x, y\}, ins(1, 1, k);
67
68
                     iota(fa + 1, fa + n * 2 + 1, 1);
fill(sz + 1, sz + n * 2 + 1, 1);
dfs(1, 1, k);
69
70
71
72
73
74
              };
       }
       int main() {
75
              ios::sync_with_stdio(0);
76
               cin.tie(0), Acc::work();
       }
```

13 Print All Cases

13.1 print all trees with n nodes

构造所有 n 个节点的树.

13.1.1 有根树

```
表示其数量的数列在 oeis 上编号为 A000081. n=1,2,3\cdots,20 的项分别为: 1,1,2,4,9, 20,48,115,286,719, 1842,4766,12486,32973,87811, 235381,634847,1721159,4688676,12826228.
```

构造所有 $n \le 20$ 的有根树的 (平均) 运行时间为 15.7054s.

```
/* integer partition */
      int n = 5;
 \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}
      std::vector<vvi> part(n + 1);
      auto integerPartition = [&](int n) {
   // part[1] = {{1}};
   for (int i = 1; i <= n; i++) {</pre>
                 part[i].push_back({i});
for (int j = 1; j < i; j++) {
    for (const auto& v : part[i - j]) {</pre>
 9
10
                             vi tmp = v;
                             tmp.push_back(j);
std::sort(all(tmp));
11
12
13
14
15
                             part[i].push_back(tmp);
16
                 std::sort(all(part[i]));
17
                 part[i].erase(unique(all(part[i])), part[i].end());
18
19
20
     integerPartition(n);
\overline{21}
      /* find all trees */
22
      std::vector<std::string>> trees(n + 1);
\begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \end{array}
      auto allTrees = [&](int n) {
           std::string s;
for (int i = 1; i < n; i++) s += '(';
for (int i = 1; i < n; i++) s += ')';
            trees[n].push_back(s);
           for (const auto& v : part[n - 1]) {
    std::vector<std::string> now;
                  auto dfs = [&](auto&& self, int i) {
                       if (i == v.size()) {
                             std::string s = "";
                             auto tmp = now;
                             std::sort(all(tmp));
                             for (const auto& ss : tmp) s += '(' + ss + ')';
                             trees[n].push_back(s);
                             return;
38
39
                       for (const auto& s : trees[v[i]]) {

40

41

42

43

                             now.push_back(s);
self(self, i + 1);
                             now.pop_back();
                       }
44
45
                  dfs(dfs, 0);
46
            std::sort(all(trees[n]));
48
            trees[n].erase(unique(all(trees[n])), trees[n].end());
49
     };
for (int i = 1; i <= n; i++) {
50
51
52
53
54
           allTrees(i);
           debug(i, trees[i].size());
            std::cout << '\n';
55
     for (const auto& s : trees[n]) {
56
            vvi e(n + 1);
            vi fa(n + 1);
            int cnt = 1, now = 1;
```

```
for (const auto& c : s) {
    if (c == '(') {
        cnt += 1;
        e [now].push_back(cnt);
        e[cnt].push_back(now);
    fa[cnt] = now;
        now = cnt;
    } else {
        now = fa[now];
    }
}
debug(e);
/* do the things you need */
}
```

104 14 MAGIC

14 Magic

14.1 magic heap

对顶堆维护中位数.

```
/* magic heap */

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

       struct MagicHeap {
             LL sum1 = 0, sumr = 0;
             std::priority_queue<int> ql;
             std::priority_queue<int, std::vector<int>, std::greater<int>> qr;
void le2ri() {
                    auto x = ql.top();
                   suml -= x, ql.pop();
sumr += x, qr.push(x);
10
11
             void ri2le() {
                   auto x = qr.top();
12
13
                   sumr -= x, qr.pop();
                   suml += x, ql.push(x);
14
15
             void pushL(int x) { suml += x, ql.push(x); }
void pushR(int x) { sumr += x, qr.push(x); }
void push(int x) {
16
17
18
19
                    if (ql.empty()) {
20
21
22
23
                         pushL(x);
                   } else if (qr.empty()) {
   (x <= q1.top() ? le2ri(), pushL(x) : pushR(x));</pre>
                    } else {
                         int le = ql.top(), ri = qr.top();
if (le <= x and x <= ri) {
    (ql.size() == qr.size() ? pushL(x) : pushR(x));
} else if (x < le) {</pre>
24
25
26
27
28
                                if (ql.size() != qr.size()) le2ri();
29
30
                                pushL(x);
                          } else {
31
                                if (ql.size() <= qr.size()) ri2le();</pre>
32
                                pushR(x);
33
34
                   }
35
36
             int size() { return ql.size() + qr.size(); }
bool empty() { return ql.empty() and qr.empty(); }
37
38
             LL val() { return suml + sumr; }
39
             LL mid() { return ql.top(); }

LL dist() { return sumr - suml + ql.top() * (ql.size() - qr.size()); }
40
41
      };
```

14.2 operator queue

双栈维护队列半群.

```
template <typename T, typename Op>
     struct OpQueue {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
          static_assert(std::is_convertible_v<std::invoke_result_t<0p, T, T>, T>);
           const T e;
          const 1 e,
const 0p op;
std::vector<T> 1, r, a;
OpQueue(T e, 0p op) : e(e), op(op), l{e}, r{e} {}
T val() const { return op(l.back(), r.back()); }
 6
7
 8 9
           void push(T x) {
10
               r.push_back(op(r.back(), x));
11
                a.push_back(x);
12
13
           void pop() {
14
                if (1.size() == 1) {
15
                     for (; !a.empty(); a.pop_back()) {
16
                          1.push_back(op(a.back(), 1.back()));
17
18
                     r.resize(1);
19
20
21
                assert(l.size() > 1);
                1.pop_back();
22
23
           int size() const { return 1.size() + r.size() - 2; }
\overline{24}
           bool empty() const { return 1.size() + r.size() == 2; }
25
```

14.3 Fast GCD 105

```
26 | /* When using this, remember to replace "T" with correct type and "e" with identity in the half group. */
28 | auto op = [](T a, T b) -> T {
29 | /* You operations */
30 | };
31 | OpQueue<T, decltype(op)> a(e, op);
```

14.3 Fast GCD

O(V) 预处理, O(1) 查询 GCD.

```
/* fast GCD @ luogu shit */
       const int N = 5005, M = 1e6 + 5, S = 1000, P = 998244353;
 3
       int _a[M], _b[M], _c[M];
       int v[M], p[M], r;
int f[S + 1][S + 1];
 6
       int a[N], b[N];
 9
       void Init() {
              a[1] = _b[1] = _c[1] = 1;
for (int i = 2; i <= M - 5; ++i) {
    if (!v[i]) {
        p[++r] = i;
        c[i] = b[i] = 1        c[i] =</pre>
10
11
12
13
                           a[i] = b[i] = 1, c[i] = i;
14
                    }
15

int tp;
for (int j = 1; j <= r && (tp = i * p[j]) <= M - 5; ++j) {
    v[tp] = 1;
        _a[tp] = _a[i] * p[j];
        _b[tp] = _b[i];
        _c[tp] = _c[i];
    if (_a[tp] > _b[tp]) {
        swap(_a[tp], _b[tp]);
        if (_b[tp] > _c[tp]) {
            swap(_b[tp], _c[tp]);
        }
}

16
17
18
19
20
21
22
23
24
25
26
27
28
                           if (!(i % p[j])) {
\overline{29}
                                 break;
30
31
                    }
             }
32
33
34
             for (int i = 1; i <= S; ++i) {</pre>
                    f[0][i] = f[i][0] = i;
for (int j = 1; j <= S; ++j) {
f[i][j] = f[j % i][i];
35
36
37
38
39
40
             return;
       }
41
42
       int gcd(int x, int y) {
43
              int A = 1, tp = f[_a[x]][y % _a[x]];
44
45
              A *= tp;
             y /= tp;
46
              tp = f[_b[x]][y \% _b[x]];
47
              A *= tp;
48
49
              tp = (v[_c[x]] ? f[_c[x]][y % _c[x]] : (y % _c[x] ? 1 : _c[x]));
A *= tp;
50
51
              y /= tp;
52
53
              return A;
54
       }
```

14.4 $q \equiv \frac{a}{b} \mod mod$

 $14 \quad MAGIC$

10 [}