TUTORIAL MECHANICAL ENERGY BALANCE

Since the diameter does not change $\Delta P_{K2+3} = 0$

1-2

therefore Eq. (1) becomes:

SPs 2-3 = 89 (h3-h2)

and

$$\Delta P_{f2-3} = \frac{2LK}{R} \left(\frac{3n+1}{4n} \right) \left(\frac{4Q}{4R^3} \right)^n$$

In the section 2-3 there are 17 m of straight pipe, 3 90 bends and one butterfly value so

Le = 17 + 300 + 3 x 36D

LE = 17 + 30x0.05+3x36x0.05 = 23.9m

substituting values into Eq.(2)

$$P_{2} = 10 \text{ kPa} + \frac{2 \times 23.9 \times 71}{0.025} \times \left(\frac{3.023 + 1}{4 \times 0.23}\right)^{0.23} \times \left(\frac{4 \times 6 \times 10^{-4}}{17.0025^{3}}\right)^{0.23} \times \frac{1 \times 20}{10^{3} \text{ Pa}}$$

+ 1055 x 9 51 x (-3.5) x 1K90 1000 Pa

72 = 10 + 3.82 - 36.2 = 356 KPag

(c) A mechanical awayy balance between 1 and 3 gives:

Since the preportion tank is open $P_1 = P_0$ so $P_1 = 0$ KPag diameter does not change so $AP_{K1=3} = 0$

$1_{-3} = \frac{199}{9}(h_3 - h_1)$ $1_{-3} = \frac{1055}{9.81}(-3.5 - 0.5)$ $1_{-3} = \frac{2LK}{9}(\frac{3n+1}{9n})^{n}$	1/12) me except the length he faconal valve.	
$R_{s_{1+3}} = -36.2 \text{ kPa}$ $R_{s_{1+3}} = \frac{2LK}{R} \left(\frac{3n+1}{4n}\right)^n \left(\frac{3n+1}$	1/12) me except the length he faconal valve.	
I the variables one the san Level to incorporate to e new value of L is L = 23.9 + 36D = 23.9	me except the leighth he faconal valve.	L because
e new value of L is $L = 23.9 + 36D = 23.9$		
	9+36×0.05 - 2574	
$1 = \frac{2 \times 25.7 \times 71}{0.025} \left(\frac{3 \times 0}{4} \right)$	railated as	
SPf 1=3 = 410.7 kPo		
ump = 10 KPa - 36.2 +	1	2
Power in the pump is		3
	Print = 10 KPa - 36.2 + Print = 384.5 KPa Power in the pump is	lostituting values into Eq. (3) Imp = $10 \text{kPa} - 36.2 + 4/0.7 = 384.5 \text{kPa}$ Primp = 384.5kPa Power in the pump is: Ower = $\Delta P_{\text{pump}} \times Q = 384.5 \times 6 \times 10^{-4} \text{kPa} \times \frac{\text{m}^3}{\text{s}}$ Power = 0.23kwatts

Problem 2

(b) Calculations were done by using MathCad

Let's calculate the critical Reynolds Number

$$N_{Rec} := \frac{2100 \cdot (4 \cdot n + 2) \cdot (5 \cdot n + 3)}{3 \cdot (1 + 3 \cdot n)^2}$$
 $N_{Rec} = 2.838 \times 10^3$

Let's calculate the Generalized Reynolds number in the pipe, because the material is a power law fluid n'=n and k' = $k((3n'+1)/4n')^{n'}$

$$\begin{aligned} \mathbf{n}' &:= \mathbf{n} & k' &:= \mathbf{k} \cdot \left(\frac{3\mathbf{n}' + 1}{4 \cdot \mathbf{n}'}\right)^{\mathbf{n}'} & k' &= 21.489 \frac{kg}{m \cdot s} 1.72 \\ \mathbf{u}_p &:= \frac{Q}{\pi \cdot \frac{D_p^2}{4}} & \mathbf{u}_p &= 0.468 \frac{m}{s} \end{aligned}$$

Because of a problem with units in Mathcad when the power s not an integer, let's get rid of the units but express the variables in metric units.

$$\begin{split} \rho_{nu} &:= 1066 & D_{pnu} := 0.055 & u_{pnu} := 0.468 & k'_{nu} := 21.489 \\ & N_{Regen_pipe} := \frac{D_{pnu}^{\quad n'} u_{pnu}^{\quad 2-n'} \cdot \rho_{nu}}{k'_{mu} \cdot 8^{n'-1}} & N_{Regen_pipe} = 26.662 \end{split}$$

In the pipe $N_{Regen} < N_{Rec}$ so the flow is laminar in the pipe

Let's calculate now the Generalized Reynolds Number in the tube of the heater and cooler. In order to calculate the flow in the heater/cooler we need to divide the total flow by the number of tubes, so:

$$Q_{h_c} := \frac{Q}{20} \qquad Q_{h_c} = 5.556 \times 10^{-5} \frac{\text{m}^3}{\text{s}} \qquad Q_{hcmu} := 5.556 \cdot 10^{-5}$$

$$u_{h_c} := \frac{Q_{h_c}}{\pi \cdot \frac{D_t^2}{4}} \qquad u_{h_c} = 0.177 \frac{\text{m}}{\text{s}} \qquad u_{h_c_mu} := 0.177$$

$$N_{Regen_h_c} := \frac{D_{pnu}^{n'} u_{h_c_nu}^{2-n'} \cdot \rho_{nu}}{k'_{nu} \cdot 8^{n'-1}}$$

$$N_{Regen_h_c} = 5.007$$

In the tubes of the heater/cooler $N_{Regen} < N_{Rec}$ so the flow is laminar

(c) Calculate the length of the holding tube

The maximum velocity in the holding tube is

$$\begin{split} u_{max} &:= u_p \frac{3 \cdot n + 1}{n + 1} & u_{max} = 0.672 \frac{m}{s} \\ L_{H_T} &:= u_{max} \cdot t_{holding} & L_{H_T} = 13.446 \, m \end{split}$$

(d) Estimate the discharge pressure (P_d)

A balance of the mechanical energy between the pressure discharge and the filling tank at atmospheric pressure P_0 will be:

$$\Delta P_{pump} = P_d - P_0 + \frac{1}{2\alpha} \rho \left(\overline{u}_o^2 - \overline{u}_d^2 \right) + \rho g \left(h_0 - h_d \right) + \Delta p_{f_- d \to 0}$$

But between d and 0 there is no pump, also from the figure $h_d = h_0$ and if the diameter of the pipe does not change at the discharge and the entrance to the filling tank the corresponding medium velocities are the same. Thus, the mechanical balance simplifies to:

$$\boldsymbol{P}_{\!d}-\boldsymbol{P}_{\!0}=\Delta\boldsymbol{P}_{\!f_{-}d->0}$$

Since P_{θ} is subtracted from P_d the result will be in gauge pressure. In addition:

$$\Delta P_{f_d->0} = \Delta P_{f,\textit{heater}} + \Delta P_{\textit{pipeline}} + \Delta P_{H_T} + \Delta P_{f,\textit{cooler}}$$

$$\Delta P_{\mbox{f_heater}} \coloneqq \frac{2k n u \cdot L_{\mbox{heater_nu}}}{\frac{D_{\mbox{tnu}}}{2}} \cdot \left(\frac{3 \cdot n + 1}{4 \cdot n}\right)^n \left[\frac{4 \cdot Q_{\mbox{hcnu}}}{\pi \cdot \left(\frac{D_{\mbox{tnu}}}{2}\right)^3}\right]^n$$

 $\Delta P_{f_heater} = 4.249 \times 10^4$ By dividing this value by 1000 the result is in kPa

$$\Delta P_{\mbox{\underline{f}_pipeline}} := \frac{2k n u \cdot \left(L_{\mbox{\underline{pipe}_nu}} + Le_{\mbox{\underline{nu}}}\right)}{\frac{D_{\mbox{\underline{pnu}}}}{2}} \cdot \left(\frac{3 \cdot n + 1}{4 \cdot n}\right)^n \cdot \left[\frac{4 \cdot Q_{\mbox{\underline{nu}}}}{\pi \cdot \left(\frac{D_{\mbox{\underline{pnu}}}}{2}\right)^3}\right]^n$$

 $\Delta P_{f_pipeline} = 1.976 \times 10^5$ By dividing this value by 1000 the result is in kPa

$$\Delta P_{\underbrace{f_H_T}} := \frac{2knu \cdot L_{\underbrace{H_Tnu}}}{\frac{D_{pnu}}{2}} \cdot \left(\frac{3 \cdot n + 1}{4 \cdot n}\right)^n \cdot \left[\frac{4 \cdot Q_{nu}}{\pi \cdot \left(\frac{D_{pnu}}{2}\right)^3}\right]^n$$

$$\Delta P_{f~H~T} = 6.849 \times 10^4$$

$$P_{\texttt{d_gauge}} \coloneqq \frac{\left(2 \cdot \Delta P_{\texttt{f_heater}} + \Delta P_{\texttt{f_pipeline}} + \Delta P_{\texttt{f_H_T}}\right)}{1000}$$

$$P_{d \text{ gauge}} = 351.107 \text{ kPa}$$

AP(1-2

We know the curve 8th very Tw, so let's colculate in

 $\bar{u} = \frac{Q}{4\pi^2} = \frac{7\kappa 10^{-4}}{11\kappa 0.03^2} = 0.25 \frac{m}{5}$ and $8\bar{u} = \frac{8\kappa 0.25}{5} \frac{m}{5} \approx 33 \frac{1}{5}$

From a plot su versus Tw -> Tw 2230 Pa

L= 25+175D = 25+175x0.06 = 35.5 m So to calculate APF we can use

> TW = APLXP = DPL = 2LxTW $\Delta P_1 = \frac{2 \times 35.5 \times 230}{0.03} = 544,333.3 \, \text{Pa}$ DP(= 544.3 KPa

SPheater

Flow in a tube = 9= Q = 7x10-9 m3 = 2.33x10-5 m3/s

mean velocity The = \frac{9}{10^2} = \frac{2.33 \text{ x10}^2 \text{ m/s}}{10^2 \text{ x10} \text{ 5}} = 0.13 \text{ m/s}

 $\frac{8 \text{ Th}}{D} = \frac{8 \times 0.13}{0.015} = 70.3 \frac{1}{\text{s}}$

From the plot 8 mm = 70.3 1/s -> Ju = 315 Pa

the pressure loss can be calculated as: 3-3 Ju = APheaty & P => SPheater = ZL JW $\Delta P_n = \frac{2 \times 2.5 \times 315}{0.015} = 210,000 Pa = 210 KPa$ DP cooler Flow in a tube = Q = 9H = 7x104 m3/s = 1.40x105 m3/s The mean velocity T_c is: $T_c = \frac{9H}{TR^2} = \frac{1.40 \times 10^{-5} \text{ m}^2/\text{s}}{11 \times 10.075 \text{ y}^2} = 0.08 \text{ m}$ $\frac{8\sqrt{1}}{2} = \frac{8\times0.08}{0.015} = 42.7 \frac{1}{5}$ Franke plot 8th versus Tw => Tw = 250Pa and APfooler = Twx 2L = 250 x 2x 25 = 166,666.7 Pe BPasala = 166.7 KPQ Substituting volues into Eg.(2) P1 = 10 KPag + 55 KPa + 544.3 + 210 + 166.7 P1 = 986 KReq

(c) To find the rheological behavior of the material we could plot the data in logarithmic coordinates and we will see that we obtain a straight line so the material is a power law rheological material and the slope of the graph is equal to 1/n where n is the flow index.

A linear regression on below data gives a value of 1/n = 2.66 and n = 0.38 so the material is shear thinning, for a Newtonian n = 1.

Problem 4

	3 3
	Nrubes = PTOTAL = 9000 x 10 m 3 PNBE 3600 S x 1.909 x 10 5 m 3
	QNBe 36005 X 1.907 XIU /M/
たらは、	Notes = 131 Thes.
	107000 = 139 1000).
	(ii)
	NPr - 2LK (30+1) /4Q
	$NP_{f} = 2LK \left(\frac{30+1}{40} \right) \left(\frac{4Q}{TR^{3}} \right)$
	0.2
	$ \frac{\Delta P_{f} = 2 \times 3.8 \text{m} \times 21 \text{Re.S}}{4.5 \times 10^{3} \text{m}} \left(\frac{3 \times 0.2 + 1}{4 \times 0.2} \right) \left(\frac{4 \times 1.909 \times 10^{3}}{11 \times (4.5 \times 10^{3})^{3}} \right) $
	$4.5 \times 10^{3} \text{ m}$ 4×0.2 $1 \times 14.5 \times 10^{3}$
	OT = 124,521 Pa
	ND 12/152 1/P-
-	DPC = 124.52 KPe
13.	<u> </u>