

Contribution of sigma meson pole to K_L - K_S mass difference *

K. Terasaki

Yukawa Institute for Theoretical Physics,
Kyoto University, Kyoto 606-8502, Japan

Abstract

The hypothesis of σ meson pole dominance in the $|\Delta\mathbf{I}| = \frac{1}{2}$ $K \rightarrow \pi\pi$ amplitudes is tested qualitatively by using the K_L - K_S mass difference.

Dominance of σ -meson pole contribution in the amplitudes for the $K_S \rightarrow \pi\pi$ decays was first proposed as the origin of the well-known $|\Delta\mathbf{I}| = \frac{1}{2}$ rule in these decays [1], and recently revived in connection with the direct CP violation in the $K \rightarrow \pi\pi$ decays [2]. If it is the case, however, the matrix elements, $\langle \sigma | H_w | K \rangle$, should survive and give a significant contribution to the K_L - K_S mass difference, Δm_K , where H_w is the strangeness changing ($|\Delta S| = 1$) effective weak Hamiltonian.

Dynamical contributions of various hadron states to hadronic processes in which pion(s) take part can be estimated by using a hard pion technique (with PCAC) in the infinite momentum frame (IMF) [3]. For later convenience, we review briefly it below. As an example, we consider a decay, $B(p) \rightarrow \pi_1(q)\pi_2(p')$, in the IMF, i.e., $\mathbf{p} \rightarrow \infty$, and assume that its amplitude $M(B \rightarrow \pi_1\pi_2)$ can be approximately evaluated at a slightly unphysical point, $\mathbf{q} \rightarrow 0$, i.e., $q^2 \rightarrow 0$ but $(p \cdot q)$ is finite:

$$M(B \rightarrow \pi_1\pi_2) \simeq \lim_{\mathbf{p} \rightarrow \infty, \mathbf{q} \rightarrow 0} M(B \rightarrow \pi_1\pi_2). \quad (1)$$

In this approximation, the $\sigma \rightarrow \pi^+\pi^-$ amplitude is described in terms of the *asymptotic* matrix element, $\langle \pi^- | A_{\pi^-} | \sigma \rangle$, (matrix element of A_{π^-} taken between π^- and σ with infinite momentum) as

$$M(\sigma \rightarrow \pi^+\pi^-) \simeq \sqrt{2} \left(\frac{m_\sigma^2 - m_\pi^2}{f_\pi} \right) \langle \pi^- | A_{\pi^-} | \sigma \rangle, \quad (2)$$

which has been symmetrized with respect to exchange of π^+ and π^- in the final state since isospin symmetry is always assumed in this note. The asymptotic matrix element, $\langle \pi^- | A_{\pi^-} | \sigma \rangle$, is given by

*Talk given at the Workshop on Possible Existence of the σ -meson and Its Implications to Hadron Physics, June 12 – 14, 2000, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto

$$\begin{aligned} & \lim_{\mathbf{p} \rightarrow \infty, \mathbf{q} \rightarrow 0} \langle \pi^-(p') | A_{\pi^-} | \sigma(p) \rangle \\ &= (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}') \langle \pi^- | A_{\pi^-} | \sigma \rangle \sqrt{N_\pi N_\sigma} \Big|_{\mathbf{p}=\mathbf{p}' \rightarrow \infty} \end{aligned} \quad (3)$$

and is related to the $\sigma\pi\pi$ coupling constant in the usual Feynman diagram approach [3], where N is the normalization factor of state vector.

Using the same technique, we can describe dynamical contributions of hadrons to the $K \rightarrow \pi\pi$ amplitude by a sum of equal-time commutator (ETC) term and surface term,

$$M(K \rightarrow \pi_1 \pi_2) \simeq M_{\text{ETC}}(K \rightarrow \pi_1 \pi_2) + M_{\text{S}}(K \rightarrow \pi_1 \pi_2). \quad (4)$$

M_{ETC} has the same form as that in the old soft pion technique [4]

$$M_{\text{ETC}}(K \rightarrow \pi_1 \pi_2) = \frac{i}{\sqrt{2}f_\pi} \langle \pi_2 | [V_{\bar{\pi}_1}, H_w] | K \rangle + (\pi_1 \leftrightarrow \pi_2) \quad (5)$$

but it now should be evaluated in the IMF. The surface term,

$$M_{\text{S}}(K \rightarrow \pi_1 \pi_2) = \lim_{\mathbf{p} \rightarrow \infty, \mathbf{q} \rightarrow 0} \left\{ -\frac{i}{\sqrt{2}f_\pi} q^\mu T_\mu \right\} + (\pi_1 \leftrightarrow \pi_2), \quad (6)$$

survives in contrast with the soft pion approximation and is now given by a sum of all possible pole amplitudes,

$$M_{\text{S}} = \sum_n M_{\text{S}}^{(n)} + \sum_l M_{\text{S}}^{(l)}, \quad (7)$$

where the hypothetical amplitude T_μ has been given by

$$T_\mu = i \int e^{iqx} \langle \pi_2(p') | T[A_\mu^{(\bar{\pi}_1)} H_w] | K(p) \rangle d^4x. \quad (8)$$

$M_{\text{S}}^{(n)}$ and $M_{\text{S}}^{(l)}$ are pole amplitudes in the s - and u -channels, respectively, i.e.,

$$\begin{aligned} M_{\text{S}}^{(n)}(K \rightarrow \pi_1 \pi_2) &= \frac{i}{\sqrt{2}f_\pi} \left(\frac{m_\pi^2 - m_K^2}{m_n^2 - m_K^2} \right) \langle \pi_2 | A_{\bar{\pi}_1} | n \rangle \langle n | H_w | K \rangle + (\pi_1 \leftrightarrow \pi_2), \end{aligned} \quad (9)$$

$$\begin{aligned} M_{\text{S}}^{(l)}(K \rightarrow \pi_1 \pi_2) &= \frac{i}{\sqrt{2}f_\pi} \left(\frac{m_\pi^2 - m_K^2}{m_l^2 - m_K^2} \right) \langle \pi_2 | H_w | l \rangle \langle l | A_{\bar{\pi}_1} | K \rangle + (\pi_1 \leftrightarrow \pi_2). \end{aligned} \quad (10)$$

In this way, an approximate σ pole amplitude for the $K_S \rightarrow \pi^+ \pi^-$ decay can be again described in terms of $\langle \pi^- | A_{\pi^-} | \sigma \rangle$ as

$$M^{(\sigma)}(K_S \rightarrow \pi^+ \pi^-) \simeq i \frac{2}{f_\pi} \left(\frac{m_\pi^2 - m_K^2}{m_\sigma^2 - m_K^2} \right) \langle \pi^- | A_{\pi^-} | \sigma \rangle \langle \sigma | H_w | K^0 \rangle. \quad (11)$$

Dominance of σ -meson pole in the $K_S \rightarrow \pi\pi$ amplitudes implies that $M^{(\sigma)}$ is much larger than the other contributions (the other pole amplitudes and M_{ETC} in addition to the factorized one, M_{fact} , if it exists), i.e.,

$$|M^{(\sigma)}| \gg |M_{\text{ETC}}|, |M_S^{(n \neq \sigma)}|, |M_S^{(l)}|, |M_{\text{fact}}|, \quad (12)$$

unless the amplitudes in the right-hand-side cancel accidentally each other. However, if the σ pole contribution dominates $K_S \rightarrow \pi\pi$ amplitudes, it may be worried about that its strange partner, κ , also plays a role in the same amplitudes. The κ pole amplitude can be obtained in the same way as $M^{(\sigma)}$ and its ratio to $M^{(\sigma)}$ is approximately given by

$$\left| \frac{M^{(\kappa)}(K_S \rightarrow \pi^+ \pi^-)}{M^{(\sigma)}(K_S \rightarrow \pi^+ \pi^-)} \right| \sim \left| \left(\frac{m_\sigma^2 - m_K^2}{m_\kappa^2} \right) \frac{\langle \pi | H_w | \kappa \rangle}{\langle \sigma | H_w | K \rangle} \right|. \quad (13)$$

If $m_\kappa^2 > m_\sigma^2 \sim m_K^2$, the above ratio will be small unless $\langle \pi | H_w | \kappa \rangle$ is anomalously enhanced. However, if $m_\kappa^2 \sim m_\sigma^2 \gg m_K^2$, the κ pole can play a role in the $K_S \rightarrow \pi\pi$ amplitudes. Nevertheless, neglect of κ pole contribution does not change the essence of the physics in the K_L - K_S mass difference as will be seen later. Therefore, we will neglect the κ contribution to the $K_S \rightarrow \pi\pi$ amplitudes for simplicity.

The decay rates for $\sigma \rightarrow \pi^+ \pi^-$ and $K_S \rightarrow \sigma \rightarrow \pi^+ \pi^-$ are given by

$$\Gamma(\sigma \rightarrow \pi^+ \pi^-) \simeq \frac{q_\sigma}{4\pi f_\pi^2 m_\sigma^2} (m_\sigma^2 - m_\pi^2)^2 |\langle \pi^- | A_{\pi^-} | \sigma \rangle|^2, \quad (14)$$

and

$$\Gamma^{(\sigma)}(K_S \rightarrow \pi^+ \pi^-) \simeq \frac{q_K}{2\pi f_\pi^2 m_K^2} \left(\frac{m_K^2 - m_\pi^2}{m_K^2 - m_\sigma^2} \right)^2 |\langle \pi^- | A_{\pi^-} | \sigma \rangle \langle \sigma | H_w | K^0 \rangle|^2, \quad (15)$$

respectively, where q_σ and q_K are the center-of-mass momenta of the final pions in the corresponding decays. Since the $K_S \rightarrow \pi\pi$ mode dominates the decays of K_S , its total width, Γ_{K_S} , is approximately given by $\Gamma_{K_S} \simeq \frac{3}{2}\Gamma(K_S \rightarrow \pi^+ \pi^-)$, so that $\Gamma_{K_S} \simeq \frac{3}{2}\Gamma^{(\sigma)}(K_S \rightarrow \pi^+ \pi^-)$ under the σ pole dominance hypothesis.

The σ meson pole dominance in the $K_S \rightarrow \pi\pi$ means that the matrix element, $\langle \sigma | H_w | K \rangle$, exists and its magnitude should be sizable. Therefore, under this hypothesis, the σ meson pole may give a substantial contribution to Δm_K . The formula describing dynamical contributions of hadrons to Δm_K has been given in the IMF long time ago [5]. Using it, we obtain the following pole contribution of σ meson,

$$\Delta m_K^{(\sigma)} = -\frac{|\langle K_L | H_w | \sigma \rangle|^2}{2m_K(M_K^2 - m_\sigma^2)}, \quad (16)$$

where the matrix element, $\langle K_L | H_w | \sigma \rangle$, is again evaluated in the IMF. For later convenience, we consider the ratio of the K_L - K_S mass difference to the full width of K_S . If we assume the σ pole dominance in the $K_S \rightarrow \pi\pi$ decays, we obtain

$$R^{(\sigma)} \equiv \frac{\Delta m_K^{(\sigma)}}{\Gamma_{K_S}} \simeq \frac{1}{2} \left(\frac{q_\sigma}{q_K} \right) \frac{(m_\sigma^2 - m_K^2)}{m_\sigma^2} \left(\frac{m_\sigma^2 - m_\pi^2}{m_K^2 - m_\pi^2} \right)^2 \frac{m_K}{\Gamma_\sigma} \quad (17)$$

from Eqs. (14) – (16), where the full width of σ is given by $\Gamma_\sigma \simeq \frac{3}{2}\Gamma(\sigma \rightarrow \pi^+ \pi^-)$ for m_σ less than the $K\bar{K}$ threshold ($\simeq 1$ GeV).

Now we study whether the above σ pole dominance in the $K_S \rightarrow \pi\pi$ decays can be realized in consistency with Δm_K .

(a)

(b)

Fig. I. $R^{(\sigma)} = \Delta m^{(\sigma)} / \Gamma_{K_S}$ for $0.4 < m_\sigma < 1.0$ GeV and $0.3 < \Gamma_\sigma < 0.5$ GeV. $R^{(\sigma)}$ is cut at 0.25 in (a) and at 0.50 in (b) in order not to exceed the estimated $\pi\pi$ continuum contribution $R^{(\pi\pi)}$ and the measured R_{exp} , respectively, as discussed in the text.

It has been known that contribution of S -wave $\pi\pi$ intermediate states to Δm_K can occupy about a half [6] of the observed value [7], i.e.,

$$R^{(\pi\pi)} \equiv \frac{\Delta m_K^{(\pi\pi)}}{\Gamma_{K_S}} = 0.22 \pm 0.03, \quad R_{\text{exp}} \equiv \left. \frac{\Delta m_K}{\Gamma_{K_S}} \right|_{\text{exp}} = 0.477 \pm 0.022. \quad (18)$$

The above $\Delta m_K^{(\pi\pi)}$ was estimated by using the Muskhelishvili-Omnès equation and the measured $\pi\pi$ phase shifts, etc., in which any indication of σ meson was not obviously seen. Therefore, if σ exists, its contribution should be included in the above $\Delta m_K^{(\pi\pi)}$, so that we may put loosely the upper limit of the σ pole contribution to Δm_K around the above estimate of $\Delta m_K^{(\pi\pi)}$, i.e., $\Delta m_K^{(\sigma)} / \Gamma_{K_S} < 0.25$, and look for values of m_σ and Γ_σ to satisfy it since σ meson is still hypothetical, i.e., its mass and width are still not confirmed. At energies

lower than 900 MeV, the $\pi\pi$ phase shift analyses have excluded any narrow $I = 0$ scalar state but a broad one ($\Gamma_\sigma \sim 500$ MeV) may have a room in the region [7], $0.4 < m_\sigma < 1.2$ GeV. In fact, various broad candidates of σ meson with different masses ($\sim 500 - 700$ MeV), different widths ($\sim 300 - 600$ MeV) and different structures have been studied at this workshop [8].

$R^{(\sigma)}$ in Eq.(17) increases rapidly as m_σ increases. It is beyond not only the estimated $R^{(\pi\pi)}$ for $m_\sigma > 0.55$ GeV but also the measured R_{exp} in Eq.(18) for $m_\sigma > 0.57$ GeV and is much larger than the above cuts in the region $m_\sigma^2 \gg m_K^2$. Therefore, even if κ pole contribution to the $K \rightarrow \pi\pi$ decays is taken into account, the result, $R^{(\sigma)} \gg R_{\text{exp}}$ for $m_\sigma^2 \gg m_K^2$, is not changed as discussed before. In this way, it is seen that the σ meson pole dominance in the $K \rightarrow \pi\pi$ amplitudes is not compatible with Δm_K if $m_\sigma > 0.57$ GeV and $0.3 < \Gamma_\sigma < 0.5$ GeV, unless any other contribution cancels $\Delta m_K^{(\sigma)}$.

However, the above does not necessarily imply that the σ meson pole dominance is compatible with the K_L - K_S mass difference if $m_\sigma < 0.55$ GeV, since we have so far considered only the long distance effects on the K_L - K_S mass difference. The short distance contribution from the box diagram [9] which is estimated by using the factorization may saturate the observed $(\Delta m_K)_{\text{exp}}$ although it is still ambiguous because of uncertainty of the so-called B_K parameter. If it is the case, however, we need some other contribution to cancel the $\pi\pi$ continuum contribution (including σ meson pole). Possible candidates are pseudo-scalar(PS)-meson poles since the other contributions of multi hadron intermediate states will be small because of their small phase space volumes. The above implies that the matrix elements, $\langle P|H_w|K\rangle$, $P = \pi^0, \eta, \eta', \dots$, survive and their sizes are large enough to cancel $\Delta m_K^{(\pi\pi)}$. In this case, however, $\langle \pi|H_w|K\rangle$'s can give large effects on the $K \rightarrow \pi\pi$ amplitudes [10] through Eq.(4) with Eq.(5) and break the σ meson pole dominance.

For the $K_L \rightarrow \gamma\gamma$ decay, it is known that short distance contribution is small [9]. To reproduce the observed rate for this decay, we again need contributions of PS-meson poles given by the matrix elements, $\langle P|H_w|K\rangle$'s, with sufficient magnitude, although their contributions are sensitive to the η - η' mixing and are not always sufficient. In fact, the above PS-meson matrix elements can approximately reproduce $\Gamma(K_L \rightarrow \gamma\gamma)_{\text{exp}}$, $\Gamma(K \rightarrow \pi\pi)_{\text{exp}}$'s and $(\Delta m_K)_{\text{exp}}$, simultaneously, with the help of some other contributions (non-factorizable amplitudes with PS- and K^* -meson poles for the $K_L \rightarrow \gamma\gamma$ decay, factorized ones for the $K \rightarrow \pi\pi$ decays and the short distance contribution to the K^0 - \bar{K}^0 mixing, etc.) but without any contribution of σ pole [10]. Namely, we do not necessarily need the σ pole contribution in the $K_S \rightarrow \pi\pi$ decays.

As was seen above, it is unlikely that the σ meson pole amplitude dominates the $K_S \rightarrow \pi\pi$. It will be seen directly by comparing $M^{(\sigma)}(K_S \rightarrow \pi^+\pi^-)$ with $M_{\text{ETC}}(K_S \rightarrow \pi^+\pi^-)$. If the asymptotic matrix elements, $\langle \pi|H_w|K\rangle$'s, with sufficient magnitude exist and satisfy the $|\Delta\mathbf{I}| = \frac{1}{2}$ rule (as derived by using a simple quark model [10] or as required to realize the same rule in the $K \rightarrow \pi\pi$ amplitudes, i.e., $M_{\text{ETC}}(K^+ \rightarrow \pi^+\pi^0) = 0$), we obtain

$$\left| \frac{M^{(\sigma)}(K_S^0 \rightarrow \pi^+\pi^-)}{M_{\text{ETC}}(K_S^0 \rightarrow \pi^+\pi^-)} \right| \simeq 2 \left| \left(\frac{m_K^2 - m_\pi^2}{m_\sigma^2 - m_K^2} \right) \langle \pi^- | A_{\pi^-} | \sigma \rangle \frac{\langle \sigma | H_w | K^0 \rangle}{\langle \pi^+ | H_w | K^+ \rangle} \right|. \quad (19)$$

The mass dependent factor $|(m_K^2 - m_\pi^2)/(m_\sigma^2 - m_K^2)|$ from $M^{(\sigma)}$ can be enhanced only if m_σ is very close to m_K and σ is narrow. However, if Γ_σ were small, $|\langle \pi^- | A_{\pi^-} | \sigma \rangle|$ also would be small. When we smear out the singularity at $m_\sigma = m_K$ using the Breit-Wigner form, the size of $|(m_K^2 - m_\pi^2)/(m_\sigma^2 - m_K^2)| \langle \pi^- | A_{\pi^-} | \sigma \rangle|$ is at most $\simeq 2$ for $0.4 < m_\sigma < 1.0$ GeV and

$0.3 < \Gamma_\sigma < 0.5$ GeV. However, any narrow σ state around m_K is not allowed [7] as mentioned before. Moreover, σ does not belong to the same ground state as π and K (for example, 3P_0 of $\{q\bar{q}\}$ state in the quark model, etc.), so that the matrix elements, $|\langle \sigma | H_w | K \rangle|$, will be much smaller than $|\langle \pi | H_w | K \rangle|$ since wave function overlapping between σ and K meson states will be much smaller than that between π and K which belong to the same 1S_0 state of $\{q\bar{q}\}$. Therefore, it is unlikely that the σ meson pole amplitude dominates the $K \rightarrow \pi\pi$ amplitudes.

An amplitude for dynamical hadronic process can be decomposed into (*continuum contribution*) + (*Born term*). Since M_S has been given by a sum of pole amplitudes, M_{ETC} corresponds to the continuum contribution [11]. In the present case, $M_{ETC}(K_S \rightarrow \pi\pi)$ will be dominated by contributions of isoscalar S -wave $\pi\pi$ intermediate states and develop a phase (\simeq isoscalar S -wave $\pi\pi$ phase shift at m_K) relative to the Born term which is usually taken to be real in the narrow width limit. The estimated phase difference between $|\Delta\mathbf{I}| = \frac{1}{2}$ and $\frac{3}{2}$ amplitudes for the $K \rightarrow \pi\pi$ decays is close to the measured isoscalar S -wave $\pi\pi$ phase shift at m_K [12]. It suggests that the isoscalar S -wave $\pi\pi$ continuum contribution will be dominant in the $K_S \rightarrow \pi\pi$ amplitudes.

In summary, we have studied contribution of the σ meson pole to Δm_K under the hypothesis that σ meson pole dominates the $K_S \rightarrow \pi\pi$ amplitudes, and have seen that it provides too large contributions to Δm_K and that, to cancel out such effects, contributions of pseudo-scalar-meson poles will be needed. We also have discussed, comparing the σ meson pole amplitude with M_{ETC} in the $K_S \rightarrow \pi\pi$ amplitudes, that enhancement of the σ meson pole contribution is not sufficient if it is broad. Additionally, a recent analysis in the $K \rightarrow \pi\pi$ decays within the theoretical framework of non-linear σ model suggests that the σ meson pole contribution can occupy, at most, about a half of the $|\Delta\mathbf{I}| = \frac{1}{2}$ amplitude [13]. Therefore, we conclude that the σ pole dominance in the $|\Delta\mathbf{I}| = \frac{1}{2}$ amplitude for the $K \rightarrow \pi\pi$ decays is very unlikely.

The author thanks Dr. D.-X. Zhang and Dr. Y. Y. Keum for discussions and comments. This work was supported in part by the Grant-in-Aid from the JSPS.

REFERENCES

- [1] S. Oneda, private communication (1983).
E. P. Shabalin, Sov. J. Nucl. Phys. **48**, 172 (1988).
T. Morozumi, C. S. Lim and A. I. Sanda, Phys. Rev. Lett. **65**, 404 (1990).
- [2] Y. -Y. Keum, U. Nierste and A. I. Sanda, Phys. Lett. **B457**, 157 (1999).
- [3] K. Terasaki, S. Oneda, and T. Tanuma, Phys. Rev. D **29**, 456 (1984).
S. Oneda and K. Terasaki, Prog. Theor. Phys. Suppl. **82**, 1 (1985) and references therein.
- [4] H. Sugawara, Phys. Rev. Lett. **15**, 870 and 997 (E) (1965).
M. Suzuki, Phys. Rev. Lett. **15**, 986 (1965).
- [5] C. Itzykson, M. Jacob and G. Mahoux, Suppl. Nuovo Cim. **V**, 978 (1967).
- [6] M. R. Pennington, Phys. Lett. B **153**, 439 (1985).
- [7] Particle Data Group, C. Caso *et al.*, Eur. Phys. J. **3**, 1 (1998) and references therein.
- [8] N. A. Tornqvist, the summary talk at this workshop and references therein.
- [9] M. K. Gaillard and B. W. Lee, Phys. Rev. D **10**, 897 (1974).
- [10] K. Terasaki, Report No. YITP-99-42, hep-ph/9908428.
- [11] V. S. Mathur and L. K. Pandit, *Advances in Particle Physics*, edited by R. L. Cool and R. E. Marshak (Interscience Publishers, New York, 1968), Vol. 2, p. 383.
- [12] A. N. Kamal, J. Phys. G: Nucl.Phys. **12**, L43 (1986) and references quoted therein.
- [13] M. Harada, Y. Keum, Y. Kiyo, T. Morozumi, T. Onogi and N. Yamada, Report No. HUPD-9913, KEK-TH-643, DPNU-99-27, hep-ph/9910201.