Trigonometry Formula Sheet:

Arc Length:

$$s = \theta r$$
 $\theta \rightarrow radians$

Area of a Sector:

$$A = \frac{1}{2}\theta r^2 \quad \theta \to radians$$

$$A = \left(\frac{\theta}{360^{\circ}}\right) \pi r^2 \quad \theta \to degrees$$

Six Trig Functions: (SOH CAH TOA)

$$\sin \theta = \frac{opp}{hyp} \qquad \qquad \csc \theta = \frac{hyp}{opp}$$

$$\cos \theta = \frac{adj}{hyp}$$
 $\sec \theta = \frac{hyp}{adj}$

$$an \theta = \frac{opp}{adj}$$
 $cot \theta = \frac{adj}{opp}$

Graphing Trig Functions:

$$y = Asin(Bx + c) + D$$

Amplitude:
$$|A| = \frac{\max - \min}{2}$$
 Period: $P = \frac{2\pi}{B}$

Vertical Shift:
$$D = \frac{\max + \min}{2}$$
 Phase Shift: $\chi = \frac{-C}{B}$

Law of Sines:

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines:

$$c^2 = a^2 + b^2 + 2ab\cos C$$

Law of Tangents:

$$\frac{a-b}{a+b} = \frac{\tan[1/2 (A-B)]}{\tan[1/2 (A+B)]}$$

Reciprocal Identities:

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

Quotient Identities:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities:

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + tan^2\theta = sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

Even-Odd Identities:

$$\sin(-\theta) = -\sin \theta$$

$$\cos(-\theta) = \cos \theta$$

$$\tan(-\theta) = -\tan \theta$$

$$\csc(-\theta) = -\csc \theta$$

$$\sec(-\theta) = \sec \theta$$

$$\cot(-\theta) = -\cot \theta$$

Co-function Identities:

$$cos(90^{\circ} - \theta) = sin \theta$$

$$sin(90^{\circ} - \theta) = cos \theta$$

$$tan(90^{\circ} - \theta) = cot \theta$$

$$cot(90^{\circ} - \theta) = tan \theta$$

$$sec(90^{\circ} - \theta) = csc \theta$$

$$csc(90^{\circ} - \theta) = sec \theta$$

Power Reducing Formulas:

$$sin^2\theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$$

$$tan^2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

Double Angle Formulas:

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\sin 2\theta = \frac{2 \tan \theta}{1 + tan^2 \theta}$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\cos 2\theta = 2\cos^2 - 1$$

$$\cos 2\theta = 1 - 2\sin^2\theta$$

$$\cos 2\theta = \frac{1 - tan^2\theta}{1 + tan^2\theta}$$

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

Half-Angle Formulas:

$$\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos\theta}{2} = \frac{\sin\theta}{1 + \cos\theta}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

Triple Angle Formulas:

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

Sum and Difference Identities:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Polar Equations:

$$x = r \cos \theta \qquad y = r \sin \theta$$
$$r = \sqrt{x^2 + y^2}$$
$$\theta = tan^{-1} \left(\frac{y}{x}\right)$$

Sum-to-Product Formulas:

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Product-to-Sum Formulas:

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

Area of a Triangle:

$$A = \frac{1}{2}ab\sin C$$

Heron's Formula:

$$Area = \sqrt{s(s-a)(s-b)(s-c)}$$
$$s = \frac{1}{2}(a+b+c)$$

Common Trigonometric Values:

Degrees:	Radians:	$\sin \theta$	$\cos \theta$	$\csc \theta$	$\sec \theta$	tan θ	$\cot \theta$
0 °	0	0	1	Undefined	1	0	Undefined
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	2	$\frac{2\sqrt{3}}{3}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	$\sqrt{2}$	$\sqrt{2}$	1	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{2\sqrt{3}}{3}$	2	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	1	Undefined	Undefined	0
180°	π	0	-1	Undefined	-1	0	Undefined
270°	$\frac{3\pi}{2}$	-1	0	-1	Undefined	Undefined	0
360°	2π	0	1	Undefined	1	0	Undefined

Common Inverse Trigonometric Values:

x	$sin^{-1}(x)$	$cos^{-1}(x)$	$tan^{-1}(x)$
$-\sqrt{3}$	N/A	N/A	$-60^{\circ} = -\frac{\pi}{3}$
-1	$-90^{\circ} = -\frac{\pi}{2}$ $-60^{\circ} = -\frac{\pi}{3}$	$180^{\circ} = \pi$	$-45^{\circ} = -\frac{\pi}{4}$
$-\frac{\sqrt{3}}{2}$	$-60^{\circ} = -\frac{\pi}{3}$	$150^\circ = \frac{5\pi}{6}$	
$-\frac{\sqrt{2}}{2}$	$-45^{\circ} = -\frac{\pi}{4}$	$135^{\circ} = \frac{3\pi}{4}$	
$-\frac{\sqrt{3}}{3}$			$-30^{\circ} = -\frac{\pi}{6}$
$-\frac{1}{2}$	$-30^{\circ} = -\frac{\pi}{6}$	$120^\circ = \frac{2\pi}{3}$	
0	0°	$90^{\circ} = \frac{\pi}{2}$	0°
$\frac{1}{2}$	$30^{\circ} = \frac{\pi}{6}$	$60^{\circ} = \frac{\pi}{3}$	
$\frac{\sqrt{3}}{3}$			$30^{\circ} = \frac{\pi}{6}$
$\frac{\sqrt{2}}{2}$	$45^{\circ} = \frac{\pi}{4}$	$45^{\circ} = \frac{\pi}{4}$	
$\frac{\sqrt{3}}{2}$	$60^{\circ} = \frac{\pi}{3}$	$30^{\circ} = \frac{\pi}{6}$	
1	$90^{\circ} = \frac{\pi}{2}$	0°	$45^{\circ} = \frac{\pi}{4}$
$\sqrt{3}$	N/A	N/A	$60^{\circ} = \frac{\pi}{3}$