

Đại học Bách Khoa Hà Nội Khoa Toán - Tin

Course: Giải Tích 2 Mã môn học: MI1124

Academic year: 2024.2 Chương trình đào tạo: Cử nhân

Giảng viên: Đỗ Trọng Hoàng

1.1 Tuần 1

Bài 1. Viết phương trình tiếp tuyến và pháp tuyến với đường cong

a) $y=e^{1-x^2}$ tại giao điểm của đường cong với đường thẳng y=1

b) $\begin{cases} x = 2t - \cos(\pi t) \\ y = 2t + \sin(\pi t) \end{cases}$ tại điểm A ứng với t = 1/2

c) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$ tại điểm M(8;1)

Bài 2. Với a > 0, tính độ cong tại điểm bất kỳ của các đường cong sau

a) $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t). \end{cases}$

b) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

c) $r = ae^{b\varphi}$, với $b \in \mathbb{R}$.

Bài 3. Tính độ cong của đường $y = \ln x$ tại điểm có hoành độ x > 0. Khi nào độ cong đạt cực đại? Khi $x \to \infty$ thì độ cong sẽ như thế nào ?

1

Bài 4. Với c là tham số, tìm hình bao của họ các đường cong sau

a) $y = \frac{x}{c} + c^2$

b) $cx^2 - 3y - c^3 + 2 = 0$

c) $y = c^2(x - c)^2$

d) $Ax\sin c + B\cos c = C,$ với $A,B,C \in \mathbb{R}$

e) (20192-GK-2) $2x^2 - 4xc + 2y^2 + c^2 = 0$, với $c \neq 0$.

f) $(20192\text{-GK-3}) \ y = 4cx^3 + c^4$,

g) $(20193\text{-GK-1}) y = (2x + 3c)^4$,

Bài 5. Giả sử $\vec{p}(t), \vec{q}(t), \alpha(t)$ là các hàm khả vi. Chứng minh rằng

a)
$$\frac{d}{dt}(\vec{p}(t) + \vec{q}(t)) = \frac{d\vec{p}(t)}{dt} + \frac{d\vec{q}(t)}{dt}$$

b)
$$\frac{d}{dt}(\alpha(t)\vec{p}(t)) = \alpha(t)\frac{d\vec{p}(t)}{dt} + \alpha'(t)\vec{p}(t)$$

c)
$$\frac{d}{dt}(\vec{p}(t)\vec{q}(t)) = \vec{p}(t)\frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt}\vec{q}(t)$$

d)
$$\frac{d}{dt}(\vec{p}(t) \times \vec{q}(t)) = \vec{p}(t) \times \frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt} \times \vec{q}(t)$$

Bài 6. Đường cong C được biểu diễn bởi hàm vecto $\vec{r}(t)$. Giả sử $\vec{r}(t)$ là hàm khả vi và $\vec{r}'(t)$ luôn vuông góc với $\vec{r}(t)$. Chứng minh rằng C nằm trên một mặt cầu tâm tại gốc tọa độ.

Tuần 2 1.2

Bài 7. Viết phương trình tiếp tuyến và pháp diện của đường

a)
$$\begin{cases} x = a \sin^2 t \\ y = b \sin t \cos t & \text{tai diểm ứng với } t = \frac{\pi}{4}, \ (a, b, c > 0) \\ z = c \cos^2 t \end{cases}$$

b)
$$\begin{cases} x = 4\sin^2 t \\ y = 4\cos t & \text{tai } M(1; -2\sqrt{3}; 2) \\ z = 2\sin t + 1 \end{cases}$$

c)
$$(20182\text{-CK-5})$$
 $\begin{cases} x = t\cos 2t \\ y = t\sin 2t \\ z = 3t \end{cases}$ tại điểm ứng với $t = \frac{\pi}{2}$.
d) (20192-GK-4) $\begin{cases} x = 2(t-\sin t) \\ y = 2(1-\cos t) \end{cases}$ tại điểm ứng với $t = \frac{-\pi}{2}$.
e) (20181-GK-1) $\begin{cases} x = (t^2-1)e^{2t} \\ y = (t^2+1)e^{3t} \end{cases}$ tại điểm ứng với $t = 0$.

d) (20192-GK-4)
$$\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases}$$
 tại điểm ứng với $t = \frac{-\pi}{2}$.

e) (20181-GK-1)
$$\begin{cases} x = (t^2 - 1)e^{2t} \\ y = (t^2 + 1)e^{3t} \end{cases}$$
 tại điểm ứng với $t = 0$.

Bài 8. Tính độ cong của các đường cong

a)
$$\begin{cases} x = \cos t \\ y = \sin t & \text{tại điểm ứng với } t = \frac{\pi}{2} \\ z = t \end{cases}$$

b)
$$\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \quad \text{tại điểm ứng với } t = \pi \\ z = t \end{cases}$$

c) Tính độ cong tại điểm M(1;0;-1) của đường là giao của mặt trụ $4x^2+y^2=4$ và mặt phẳng x - 3z = 4.

d) (20192-GK-2)
$$\begin{cases} x=2(t-\sin t) \\ y=2(1-\cos t) \end{cases}$$
tại điểm ứng với $t=\frac{\pi}{2}$.

e) (20192-GK-3) $y = e^{2x}$ tại điểm A(0,1).

f) (20193-GK-1) $x = \sqrt{4y} + 1$ tại điểm (3, 1).

Bài 9. Viết phương trình pháp tuyến và tiếp diên của mặt cong

a)
$$x^2 - 4y^2 + 2z^2 = 6$$
 tai điểm $(2; 2; 3)$

b)
$$z = 2x^2 + 4y^2$$
 tại điểm $(2; 1; 12)$

c)
$$\ln(2x+y^2) + 3z^3 = 3$$
 tại điểm $(0;-1;1)$

c)
$$\ln(2x+y^2)+3z^3=3$$
 tại điểm $(0;-1;1)$ e) (20152-CK-7) $z=2x^2+3y^2$ tại điểm $M(1,-1,5)$.

d)
$$x^2 + 2y^3 - yz = 0$$
 tại điểm (1; 1; 3)

d)
$$x^2 + 2y^3 - yz = 0$$
 tại điểm $(1; 1; 3)$ f) $(20193\text{-GK-1}) y^2 = 3(x^2 + z^2)$ tại điểm $(\sqrt{2}, 3, 1)$.

Bài 10. Viết phương trình tiếp tuyến và pháp diên của đường

a)
$$\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$$
 tại $A(1; 3; 4)$

b)
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 47 \\ x^2 + 2y^2 = z \end{cases}$$
 tại $B(-2; 1; 6)$

c) (20182-CK-5)
$$\begin{cases} x^2 + y^2 + z^2 = 25 \\ 4x + 3y + 5z = 0 \end{cases}$$
 tại $M(3, -4, 0)$.

Bài 11. (20182-CK-3) Viết phương trình tiếp diện của mặt $x^2 + 3y^2 - z^2 = 3$, biết nó song song với mặt $ph \overset{\circ}{\text{ang }} x - 3y + z = 0.$

Tuần 3 1.3

Bài 12. Thay đổi thứ tự lấy tích phân của các tích phân sau

a)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y)dy$$

d)
$$\int_{0}^{\frac{\pi}{2}} dy \int_{\sin y}^{1+y^2} f(x,y) dx$$

b)
$$\int_{0}^{1} dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx$$

e)
$$\int_{0}^{\sqrt{2}} dy \int_{0}^{y} f(x,y) dx + \int_{\sqrt{2}}^{2} dy \int_{0}^{\sqrt{4-y^2}} f(x,y) dx$$

c)
$$\int_{0}^{2} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y)dy$$

f) (20192-GK-3)
$$\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx$$

Bài 13. Tính các tích phân sau

a)
$$\iint_{\mathcal{D}} \frac{y}{1+xy} dx dy$$
, $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1; 0 \le y \le 2\}$

b) $\iint_{\mathcal{D}} x^2(y-x) dx dy$, với \mathcal{D} là miền giới hạn bởi các đường cong $y=x^2$ và $x=y^2$

c) $\iint\limits_{\mathcal{D}} 2xydxdy$, với \mathcal{D} giới hạn bởi các đường $x=y^2, x=-1, y=0$ và y=1

d) $\iint\limits_{\mathcal{D}}(x+y)dxdy, \text{ với } \mathcal{D} \text{ xác định bởi } x^2+y^2\leq 1, \sqrt{x}+\sqrt{y}\geq 1$

e) $\iint_{\mathcal{D}} |x+y| dx dy, \mathcal{D} = \{(x,y) \in \mathbb{R}^2 : |x| \le 1; |y| \le 1\}$

f) $\iint\limits_{|x|+|y|\leq 1} (|x|+|y|) dx dy$

g) $\int_{0}^{1} dx \int_{0}^{1-x^2} \frac{xe^{3y}}{1-y} dy$

Bài 14. Tìm cận lấy tích phân trong toạ độ cực của $\iint_{\mathcal{D}} f(x,y) dx dy$, trong đó \mathcal{D} là miền xác định như sau

4

a) $a^2 \le x^2 + y^2 \le b^2$

b) $x^2 + y^2 \ge 4x, x^2 + y^2 \le 8x, y \ge x, y \le \sqrt{3}x$

c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$, $y \ge 0$, (a, b > 0)

d) $x^2 + y^2 \le 2x, x^2 + y^2 \le 2y$

Bài 15. Dùng phép đổi biến trong toạ độ cực, hãy tính các tích phân sau

a) $\int_{0}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} \ln(1+x^{2}+y^{2})dy$, (R>0)

b) $\iint\limits_{\mathcal{D}} xydxdy,$ với \mathcal{D} là nửa mặt tròn: $(x-2)^2+y^2\leq 1, y\geq 0$

c) $\iint\limits_{\mathcal{D}} (\sin y + 3x) dx dy, \text{ với } \mathcal{D} \text{ là mặt tròn: } (x-2)^2 + y^2 \leq 1$

d) $\iint\limits_{\mathcal{D}} |x+y| dx dy, \text{ với } \mathcal{D} \text{ là mặt tròn: } x^2+y^2 \leq 1$

Bài 16. Chuyển tích phân sau theo hai biến u và v:

a) $\int_{0}^{1} dx \int_{-x}^{x} f(x,y) dy$, nếu đặt $\begin{cases} u = x + y \\ v = x - y \end{cases}$

b) áp dụng tính với $f(x,y)=(2-x-y)^2$

Bài 17. Tính các tích phân sau

a) $\iint_{\mathcal{D}} \frac{2xy+1}{\sqrt{1+x^2+y^2}} dxdy$, trong đó $\mathcal{D}: x^2+y^2 \le 1$

b) $\iint\limits_{\mathcal{D}} \frac{dxdy}{(x^2 + y^2)^2}$, trong đó \mathcal{D} : $\begin{cases} y \le x^2 + y^2 \le 2y \\ x \le y \le \sqrt{3}x \end{cases}$

c)
$$\iint_{\mathcal{D}} \frac{xy}{x^2 + y^2} dx dy, \text{ trong d\'o } \mathcal{D}: \begin{cases} 2x \le x^2 + y^2 \le 12 \\ x^2 + y^2 \ge 2\sqrt{3}y \\ x \ge 0, y \ge 0 \end{cases}$$

d)
$$\iint\limits_{\mathcal{D}} |9x^2 - 4y^2| dx dy, \text{ trong d\'o } \mathcal{D} : \frac{x^2}{4} + \frac{y^2}{9} \le 1$$

e)
$$\iint\limits_{\mathcal{D}} (3x + 2xy) dx dy, \text{ trong d\'o } \mathcal{D}: \begin{cases} 1 \le xy \le 9 \\ y \le x \le 4y \end{cases}$$

f) (20152-CK-5)
$$\iint_D 3x dx dy$$
, trong đó $D: \begin{cases} 0 \le x \le 2, \\ 1 \le x + y \le 3. \end{cases}$

g) (20171-CK-1) $\iint_D (x-2y) dx dy,$ trong đó D giới hạn bởi các đường $y=x^2-1$ và y=0.

h) (20192-GK-3)
$$\iint_D 4y dx dy, \text{ v\'oi } D: \begin{cases} x^2+y^2 \leq 1, \\ x+y \geq 1 \end{cases}$$

i) (20152-CK-1)
$$\iint_D e^{x^2+y^2} dx dy$$
, trong đó $D: \begin{cases} a^2 \le x^2+y^2 \le b^2, \\ x \ge 0, \end{cases}$ (0 < a < b)

Tuần 4 1.4

Bài 18. (20192-GK-1) Tính thể tích của miền giới hạn bởi các mặt cong $y=x^2,\,x=y^2,\,z=y^2$ và mặt Oxy.

Bài 19. Tính diện tích của miền \mathcal{D} giới hạn bởi các đường $\begin{cases} y^2=x, y^2=2x \\ x^2=y, x^2=2y \end{cases}$

Bài 20. Tính diện tích của miền \mathcal{D} giới hạn bởi $\begin{cases} y=0, y^2=4ax \\ x+y=3a, y\leq 0, (a>0). \end{cases}$

Bài 21. Tính diện tích của miền \mathcal{D} xác định bởi $\begin{cases} 2x \leq x^2 + y^2 \leq 4x \\ 0 \leq y \leq x \end{cases}$

Bài 22. Tính diện tích của miền \mathcal{D} xác định bởi $r \geq 1, r \leq \frac{2}{\sqrt{3}}\cos\varphi$

Bài 23. Tính diện tích của miền \mathcal{D} giới hạn bởi các đường (a > 0)

a)
$$(x^2 + y^2)^2 = 2a^2xy$$
 b) $r = a(1 + \cos\varphi)$

Bài 24. Chứng minh rằng diện tích của miền \mathcal{D} xác định bởi $x^2 + (\alpha x - y)^2 \leq 4$ không đổi $\forall \alpha \in \mathbb{R}$

Bài 25. Tính diện tích phần mặt cầu $x^2 + y^2 + z^2 = 4a^2$ nằm bên trong mặt trụ $x^2 + y^2 - 2ay = 0$, (a > 0).

Bài 26. Sử dụng tích phân kép để tìm diện tích của miền bị chặn bởi một lá của hình hoa hồng có bốn lá: $r = \cos 2\theta$.

Bài 27. (20152-CK-7) Tính $\iint_D (x^2 + 4y^2) dx dy$, với $D: x^2 + y^2 \le 1$.

Bài 28. (20182-CK-3) Tính diện tích của miền phẳng D được cho bởi

$$(x^2 + y^2)^2 \le 2x^2y, x \ge 0.$$

Bài 29. Tính diện tích phần mặt cong

- a) (20192-GK-1) $z = x^2 + y^2 + 1$ nằm trong mặt trụ $x^2 + y^2 = 4$.
- b) (20193-GK-2) $x 2y^2 + 2z^2 = 0$ nằm trong mặt trụ $y^2 + z^2 = 1$.

Tuần 5 1.5

Tính các tích phân bội ba sau

Bài 30.
$$\iiint\limits_V z dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 0 \le x \le 1 \\ x \le y \le 2x \\ 0 \le z \le \sqrt{5 - x^2 - y^2} \end{cases}$$
Bài 31.
$$\iiint\limits_V (3xy^2 - 4xyz) dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 1 \le y \le 2 \\ 0 \le xy \le 2 \\ 0 \le z \le 2 \end{cases}$$

Bài 31.
$$\iiint\limits_{V} (3xy^2 - 4xyz) dx dy dz, \text{ trong đó miền } V \text{ xác định bởi:} \begin{cases} 1 \le y \le 2 \\ 0 \le xy \le 2 \\ 0 \le z \le 2 \end{cases}$$

Bài 32.
$$\iiint\limits_V xye^{yz^2}dxdydz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1 \\ x^2 \leq z \leq 1 \end{cases}$$

Bài 33.
$$\iiint\limits_V (x^2+y^2) dx dy dz, \text{ trong đó miền } V \text{ xác định bởi: } \begin{cases} x^2+y^2+z^2 \leq 1 \\ x^2+y^2-z^2 \leq 0 \end{cases}$$

Bài 34.
$$\iiint\limits_V z\sqrt{x^2+y^2}dxdydz, \text{ trong d\'o}$$

- a) V là miền giới hạn bởi mặt trụ: $x^2+y^2=2x$ và các mặt phẳng: $y=0, z=0, z=a, \, (y\geq 0, a>0)$
- b) Vlà nửa của hình cầu $x^2+y^2+z^2 \leq a^2, z \geq 0, (a>0)$

c)
$$V$$
 là nửa của khối elipsoid $\frac{x^2+y^2}{a^2}+\frac{z^2}{b^2}\leq 1, z\geq 0, (a,b>0)$

Bài 35. $\iiint\limits_V y dx dy dz$, trong đó V là miền giới hạn bởi mặt nón: $y=\sqrt{x^2+z^2}$ và mặt phẳng y=h, (h>0)

Bài 36.
$$\iiint\limits_{V} \frac{x^2}{a^2} dx dy dz, \text{ trong } \text{d\'o} \ V: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1 \ (a,b,c>0)$$

Bài 37.
$$\iiint\limits_{V} (x^2 + y^2 + z^2) dx dy dz, \text{ trong d\'o } V: \begin{cases} 1 \le x^2 + y^2 + z^2 \le 4 \\ x^2 + y^2 \le z^2 \end{cases}$$

Bài 38. $\iiint\limits_V \sqrt{x^2+y^2} dx dy dz$, trong đó V là miền giới hạn bởi $x^2+y^2=z^2, z=-1$

Bài 39.
$$\iiint\limits_V \frac{dxdydz}{\left[x^2+y^2+(z-2)^2\right]^2}, \text{ trong dó } V: \begin{cases} x^2+y^2 \leq 1 \\ |z| \leq 1 \end{cases}$$

1. (20152-CK-7) Tính tích phân bội ba

$$\iiint_V yzdxdydz,$$

với
$$V = \{(x, y, z) \mid z^2 \le x \le \sqrt{z}, 0 \le y \le z, 0 \le z \le 1\}$$

2. (20152-CK-1) Tính tích phân bội ba

$$\iiint_{V} x dx dy dz,$$

với V là miền giới hạn bởi các mặt phẳng toạ độ và mặt 3x + y + z = 3.

1.6 Tuần 6

Bài 41. Tính thể tích của miền xác định bởi $\begin{cases} x+y\geq 1\\ x+2y\leq 2\\ y\geq 0, 0\leq z\leq 2-x-y \end{cases}$

Bài 42. Tính thể tích của miền giới hạn bởi các mặt $\begin{cases} z=4-x^2-y^2\\ 2z=2+x^2+y^2 \end{cases}$

Bài 43. Tính thể tích của miền xác định bởi $|x-y|+|x+3y|+|x+y+z|\leq 1$.

Bài 44. Tính thể tích của miền giới hạn bởi các mặt $z = 1 + x^2 + y^2$, mặt trụ $x^2 + 4y^2 = 4$ và mặt phẳng Oxy.

7

Bài 45. Tính thể tích của miền giới hạn bởi các mặt: $az = x^2 + y^2, z = \sqrt{x^2 + y^2}, (a > 0).$

1.7 Tuần 7

Bài 46. Xét tính liên tục của hàm số $I(y) = \int_{0}^{1} \frac{y^2 - x^2}{(x^2 + y^2)^2} dx$.

Bài 47. Tìm
$$\lim_{y \to 1} \int_{0}^{y} \frac{\arctan x}{x^2 + y^2} dx$$
.

Bài 48. Khảo sát sự liên tục của tích phân $I(y)=\int\limits_0^1 \frac{yf(x)}{x^2+y^2}dx$ với f(x) là hàm số dương, liên tục trên đoạn [0,1].

Bài 49. Cho hàm số $f(y) = \int_0^{\frac{\pi}{2}} \ln{(\sin^2 x + y^2 \cos^2 x)} dx$. Tính f'(1).

Bài 50. Chứng minh rằng tích phân phụ thuộc tham số $I(y) = \int_{-\infty}^{+\infty} \frac{\arctan(x+y)}{1+x^2} dx$ là một hàm số liên tục, khả vi đối với biến y. Tính I'(y) rồi suy ra biểu thức của I(y).

1.8 Tuần 8

Bài 51. Tính các tích phân sau, (với a, b, α, β là các số dương, n là số nguyên dương):

a)
$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx$$

d)
$$\int_{0}^{1} x^{\alpha} (\ln x)^{n} dx$$

b)
$$\int_{0}^{\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$

e)
$$\int_{0}^{+\infty} \frac{dx}{(x^2+y)^{n+1}}$$

c)
$$\int_{0}^{+\infty} e^{-ax} \frac{\sin(bx) - \sin(cx)}{x} dx$$

f)
$$\int_{0}^{\frac{\pi}{2}} \ln(1+y\sin^2 x)dx, \text{ v\'oi } y > -1$$

Bài 52. Tính các tích phân sau:

a)
$$\int_{0}^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$$

$$e) \int_{0}^{+\infty} \frac{1}{1+x^3} dx$$

b)
$$\int_{1}^{+\infty} \frac{(\ln x)^4}{x^2} dx$$

f)
$$\int_{0}^{+\infty} \frac{x^{n+1}}{(1+x^n)^2} dx, (2 < n \in \mathbb{N})$$

c)
$$\int_{0}^{+\infty} x^{10} e^{-x^2} dx$$

g)
$$\int_{-\infty}^{0} e^{2x} \sqrt[3]{1 - e^{3x}} dx$$

$$d) \int_{0}^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx$$

h)
$$\int_{0}^{a} x^{2n} \sqrt{a^2 - x^2} dx$$
, $(a > 0, n \in \mathbb{N})$

i)
$$\int_{0}^{1} \frac{1}{\sqrt[n]{1-x^n}} dx, (2 \le n \in \mathbb{N})$$

1.9 Tuần 9

Thi giữa kỳ

1.10 Tuần 10

Tính các tích phân sau:

Bài 53.
$$\int\limits_C (3x-y) ds,\, C$$
 là nửa đường tròn $y=\sqrt{9-x^2}$

Bài 54.
$$\int_C (x-y)ds$$
, C là đường tròn $x^2+y^2=2x$

Bài 55.
$$\int\limits_C y^2 ds, \ C$$
 là đường có phương trình
$$\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t), (0 \le t \le 2\pi, a > 0) \end{cases}$$

Bài 56.
$$\int\limits_{C} \sqrt{x^2+y^2} ds, \ C \text{ là đường cong } \begin{cases} x=a(\cos t+t\sin t) \\ y=a(\sin t-t\cos t), (0\leq t\leq 2\pi, a>0) \end{cases}$$

Tính các tích phân sau:

Bài 57.
$$\int_{AB} (x^2 - 2xy)dx + (2xy - y^2)dy$$
, trong đó AB là cung Parabol $y = x^2$ từ $A(1;1)$ đến $B(2;4)$

Bài 58.
$$\int_C (2x-y)dx + xdy$$
, trong đó C là đường cong
$$\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$$
 theo chiều tăng của t , $(0 \le t \le 2\pi, a > 0)$

Bài 59.
$$\int_{ABCA} 2(x^2 + y^2)dx + x(4y + 3)dy$$
, trong đó $ABCA$ là đường gấp khúc đi qua $A(0;0)$, $B(1;1)$, $C(0;2)$

1.11 Tuần 11

Bài 60. $\int_{ABCDA} \frac{dx + dy}{|x| + |y|}$, trong đó ABCDA là đường gấp khúc đi qua A(1;0), B(0;1), C(-1;0), D(0;-1)

Bài 61. Tính tích phân sau

$$\int_{C} (xy + x + y)dx + (xy + x - y)dy$$

bằng hai cách: tính trực tiếp, tính nhờ công thức Green rồi so sánh các kết quả, với C là đường:

a)
$$x^2 + y^2 = R^2$$

b)
$$x^2 + y^2 = 2x$$

c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a, b > 0)$$

Bài 62.
$$\oint_{x^2+y^2=2x} x^2(y+\frac{x}{4})dy - y^2(x+\frac{y}{4})dx$$

Bài 63.
$$\oint_{OABO} e^x[(1-\cos y)dx - (y-\sin y)dy]$$
, trong đó $OABO$ là đường gấp khúc qua $O(0;0), A(1;1), B(0;2)$

Bài 64.
$$\oint_{x^2+y^2=2x} (xy + e^x \sin x + x + y) dx - (xy - e^{-y} + x - \sin y) dy$$

Bài 65.
$$\oint\limits_C (xy^4 + x^2 + y\cos(xy))dx + (\frac{x^3}{3} + xy^2 - x + x\cos(xy))dy, \text{ trong d\'o } C \text{ l\`a d\'u\'ong cong } \begin{cases} x = a\cos t \\ y = a\sin t, (a > 0) \end{cases}$$

Bài 66. Dùng tích phân đường loại 2 tính diện tích của miền giới hạn bởi một nhịp cycloid : $x = a(t - \sin t), y = a(1 - \cos t)$ và trực Ox, (a > 0).

1.12 Tuần 12

Bài 67.
$$\int_{(-2;-1)}^{(3;0)} (x^4 + 4xy^3) dx + (6x^2y^2 - 5y^4) dy$$

Bài 68.
$$\int_{(1;\pi)}^{(2;2\pi)} (1 - \frac{y^2}{x^2} \cos \frac{y}{x}) dx + (\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}) dy$$

Bài 69. Tính tích phân đường

$$I = \int_{L} (3x^{2}y^{2} + \frac{2}{4x^{2} + 1})dx + (3x^{3}y + \frac{2}{y^{3} + 4})dy$$

trong đó L là đường cong $y = \sqrt{1-x^4}$ đi từ A(1;0) đến B(-1;0).

Bài 70. Tìm hằng số α để tích phân sau không phụ thuộc vào đường đi trong miền xác định

$$\int_{AB} \frac{(1-y^2)dx + (1-x^2)dy}{(1+xy)^{\alpha}}.$$

Bài 71. Tìm hằng số a, b để biểu thức : $(y^2 + axy + y\sin(xy))dx + (x^2 + bxy + x\sin(xy))dy$ là vi phân toàn phần của một hàm số u(x,y) nào đó. Hãy tìm hàm số u(x,y) đó.

Bài 72. Tìm hàm số h(x) để tích phân

$$\int_{AB} h(x)[(1+xy)dx + (xy+x^2)dy]$$

không phụ thuộc vào đường đi trong miền xác định. Với h(x) vừa tìm được, hãy tính tích phân trên từ A(2;0) đến B(1;2).

Bài 73. Tìm hàm số h(xy) để tích phân

$$\int_{AB} h(xy)[(y+x^3y^2)dx + (x+x^2y^3)dy]$$

không phụ thuộc vào đường đi trong miền xác định. Với h(xy) vừa tìm được, hãy tính tích phân trên từ A(1;1) đến B(2;3).

1.13 Tuần 13

Tính các tích phân mặt loại 1 sau đây

Bài 74.
$$\iint_S (z+2x+\frac{4y}{3})dS$$
, trong đó

$$S = \{(x, y, z) : \frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1, x \ge 0, y \ge 0, z \ge 0\}$$

Bài 75.
$$\iint_S (x^2 + y^2) dS$$
, trong đó $S = \{(x, y, z) : z = x^2 + y^2; 0 \le z \le 1\}$

Bài 76.
$$\iint_S z dS$$
, trong đó $S = \{(x, y, z) : y = x + z^2, 0 \le x \le 1, 0 \le z \le 1\}$

Bài 77.
$$\iint\limits_{S} \frac{dS}{(1+x+y+z)^2}$$
, trong đó S là biên của tứ diện $x+y+z \leq 2, x \geq 0, y \geq 0, z \geq 0$

Tính các tích phân mặt loại 2 sau đây

Bài 78. $\iint_S z(x^2+y^2)dxdy$, trong đó S là nửa mặt cầu: $x^2+y^2+z^2=1,\ z\geq 0$, hướng của S là phía ngoài mặt cầu

Bài 79.
$$\iint_S y dz dx + z^2 dx dy$$
, trong đó S là phía ngoài của mặt ellipsoid $x^2 + \frac{y^2}{4} + z^2 = 1$, $x \ge 0, y \ge 0, z \ge 0$

Bài 80.
$$\iint\limits_S x^2y^2zdxdy$$
, trong đó S là mặt trên của nửa mặt cầu $x^2+y^2+z^2=R^2, z\leq 0$

Bài 81.
$$\iint_S (y+z) dx dy$$
, trong đó S là phía trên của mặt $z=4-4x^2-y^2$ với $z\geq 0$

1.14 Tuần 14

Bài 82. $\iint\limits_S x^3 dy dz + y^3 dz dx + z^3 dx dy,$ trong đó S là phía ngoài của mặt cầu $x^2 + y^2 + z^2 = R^2$

Bài 83.
$$\iint\limits_{S} y^2 z dx dy + xz dy dz + x^2 y dz dx, \text{ trong đó } S \text{ là phía ngoài của miền } \begin{cases} x^2 + y^2 \leq 1, 0 \leq z \leq x^2 + y^2 \\ x \geq 0, y \geq 0 \end{cases}$$

Bài 84.
$$\iint\limits_{S} x dy dz + y dz dx + z dx dy, \text{ trong đó } S \text{ là phía ngoài của miền } \begin{cases} (z-1)^2 \geq x^2 + y^2 \\ a \leq z \leq 1 \end{cases}$$

Bài 85. Dùng công thức Stoke tính tích phân đường $\int_C (x+y^2)dx + (y+z^2)dy + (z+x^2)dz$, trong đó C là biên của tam giác với các đỉnh (1;0;0), (0;1;0), (0;0;1), hướng ngược chiều kim đồng hồ khi nhìn từ trên xuống.

Bài 86. Gọi
$$S$$
 là phần mặt cầu $x^2+y^2+z^2=1$ nằm trong mặt trụ
$$\begin{cases} x^2+x+z^2=0\\ y\geq 0, \end{cases}$$
hướng của S là

phía ngoài của mặt cầu.

Chứng minh rằng:
$$\iint_S (x-y) dx dy + (y-z) dy dz + (z-x) dz dx = 0.$$

1.15 Tuần 15

Bài 87. Tính đạo hàm theo hướng $\vec{\ell}$ của hàm $u = x^3 + 2y^3 + 3z^2 + 2xyz$ tại điểm A(2;1;1) với $\vec{\ell} = AB, B(3;2;3)$.

Bài 88. Tính môđun của $\overrightarrow{\text{grad}}u$, với $u=x^3+y^3+z^3-3xyz$ tại A(2;1;1). Khi nào thì $\overrightarrow{\text{grad}}u$ vuông góc với Oz, khi nào thì $\overrightarrow{\text{grad}}u=0$?

Bài 89. Tính $\overrightarrow{\operatorname{grad}}u$, với

$$u=r^2+rac{1}{r}+\ln r$$
 trong đó $r=\sqrt{x^2+y^2+z^2}$

Bài 90. Theo hướng nào thì sự biến thiên của hàm số

$$u = x\sin z - y\cos z$$

từ gốc O(0,0,0) là lớn nhất?

Bài 91. Tính góc giữa hai vector $\overrightarrow{\text{grad}}z$ của các hàm số

$$z = \sqrt{x^2 + y^2}$$

$$z = x - 3y + \sqrt{3xy}$$

tại (3;4).

1.16 Tuần 16

Bài 92. Trong các trường sau đây, trường nào là trường thế? Tìm hàm thế vị (nếu có).

a)
$$\vec{F} = 5(x^2 - 4xy)\vec{i} + (3x^2 - 2y)\vec{j} + \vec{k}$$

b)
$$\vec{F} = (yz - 3x^2)\vec{i} + xz\vec{j} + (xy + 2)\vec{k}$$

c)
$$\vec{F} = (x+y)\vec{i} + (x+z)\vec{j} + (z+y)\vec{k}$$

d)
$$\vec{F} = C \frac{x\vec{i} + y\vec{j} + z\vec{k}}{\sqrt{(x^2 + y^2 + z^2)^3}}, C \neq 0$$
 là hằng số

e)
$$\vec{F} = (\arctan z + 4xyz)\vec{i} + (2x^2z - 3y^2)\vec{j} + (\frac{x}{1+z^2} + 2x^2y)\vec{k}$$

Bài 93. Cho $\vec{F} = xz^2\vec{i} + yx^2\vec{j} + zy^2\vec{k}$. Tính thông lượng của \vec{F} qua mặt cầu $S: x^2 + y^2 + z^2 = 1$, hướng ra ngoài.

Bài 94. Cho $\vec{F} = x(y+z)\vec{i} + y(z+x)\vec{j} + z(x+y)\vec{k}$, L là giao tuyến của mặt trụ $x^2 + y^2 + y = 0$ và nửa mặt cầu $x^2 + y^2 + z^2 = 2$, $z \ge 0$. Chứng minh rằng lưu số của \vec{F} dọc theo L bằng 0.

Đáp số

1.1 Tuần 1

Bài 1.

(a) PTTT: 2x + y - 3 = 0 và PTPT: -x + 2y - 1 = 0

(b) PTTT: $\frac{x-1}{\pi+2} = \frac{y-2}{2}$ và PTPT: $(2+\pi)(x-1) + 2(y-2) = 0$

(c) PTTT: x + 2y - 10 = 0 và PTPT: 2x - y - 15 = 0.

Bài 2.

(a) $\frac{1}{4a|\sin(\frac{t}{2})|} \quad (t \neq k2\pi).$

(b) $\frac{2}{3|\sin(2t)|}$, với $t \neq \frac{k\pi}{2}$.

(c) $\frac{1}{ae^{\varphi}\sqrt{1+b^2}}$

Bài 3. Độ cong $\frac{1/x^2}{(1+1/x^2)^{3/2}}$. Độ cong đạt cực đại khi $x=\frac{\sqrt{2}}{2}$. Khi $x\to\infty$, thì độ cong tiến đến 0.

Bài 4.

(a) $\left(\frac{x}{2}\right)^2 - \left(\frac{y}{3}\right)^3 = 0 \text{ trừ điểm } (0,0)$

(d) $A^2x^2 + B^2y^2 = C^2$

(b) $y = \pm \frac{2x^3}{9\sqrt{3}} + \frac{2}{3}$

(e) $y = \pm x \text{ trừ điểm } (0,0)$

(c) y = 0 và $y = \frac{x^2}{16}$

(g) y = 0

(f) $y = -3x^4$

Bài 5. Suy ra từ định nghĩa!

Bài 6. Đường cong C nằm trên mặt cầu $x^2 + y^2 + z^2 = C$, với C > 0.

1.2 Tuần 2

Bài 7.

(a) PTTT: $\frac{x - \frac{a}{2}}{a} = \frac{z - \frac{c}{2}}{c}$ và y = 0. PTPD: $a(x - \frac{a}{2}) - c(z - \frac{c}{2}) = 0$.

(b) PTTT:
$$\frac{x-1}{2\sqrt{3}} = \frac{y+2\sqrt{3}}{2} = \frac{z-2}{\sqrt{3}}$$
. PTPD: $2\sqrt{3}(x-1) + 2(y+2\sqrt{3}) + \sqrt{3}(z-2) = 0$.

Bài 8.

(a) $\frac{1}{2}$

(b) $\sqrt{\frac{\pi^4 + \pi^2 + 1}{(\pi^2 + 1)^3}}$

(c) $\frac{\sqrt{10}}{12}$

Bài 9.

(a) PTTD: x - 4y + 3z = 3 và PTPT: $\frac{x-2}{1} = \frac{y-2}{-4} = \frac{z-3}{3}$

(b) PTTD: 8x + 8y - z = 12 và PTPT: $\frac{x-2}{8} = \frac{y-1}{8} = \frac{z-1}{-1}$

(c) PTTD: 2x - 2y + 9z - 11 = 0 và PTPT: $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-1}{9}$.

(d) PTTD: 2x + 3y - z - 2 = 0 và PTPT: $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-3}{-1}$

Bài 10.

(a) PTTT: $\frac{x-1}{12} = \frac{y-3}{-4} = \frac{z-4}{-1}$. PTPD: 12(x-1) - 4(y-3) + 3(z-4) = 0

(b) PTTT: $\frac{x+2}{27} = \frac{y-1}{28} = \frac{z-6}{4}$. PTPD: 27(x+2) + 28(y-1) + 4(z-6) = 0

(c) PTTT: $\frac{x-3}{-4} = \frac{y+4}{-3} = \frac{z}{5}$. PTPD: -4(x-3) + -3(y+4) + 5z = 0

Bài 11. PTTD: $x - 3y + z \pm 3 = 0$

1.3 Tuần 3

Bài 12.

(a)
$$\int_{-1}^{0} dy \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y) dx + \int_{0}^{1} dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) dx$$

(b) $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$

(c) $\int_0^1 dy \int_{y^2/2}^{1-\sqrt{1-y^2}} f(x,y) dx + \int_0^1 dy \int_{1+\sqrt{1-y^2}}^2 f(x,y) dx + \int_1^2 dy \int_{y^2/2}^2 f(x,y) dx$.

- (d) $\int_0^1 dx \int_0^{\arcsin x} f(x,y) dy + \int_1^{1+\frac{\pi^2}{2}} dx \int_{\sqrt{x-1}}^{\frac{\pi}{2}} f(x,y) dy$.
- (e) $\int_0^{\sqrt{2}} dx \int_x^{\sqrt{4-x^2}} f(x,y) dy$

Bài 13.

- (a) $3 \ln 3 2$
- (c) $-\frac{1}{3}$

(e) $\frac{8}{3}$

(g) $\frac{e^3-1}{6}$

- (b) $-\frac{1}{504}$
- (d) $\frac{3}{5}$

(f) $\frac{4}{3}$

Bài 14.

- (a) $|a| \le r \le |b|, 0 \le \varphi \le 2\pi$.
- (b)
- (c)

Bài 15.

(a)

(b) $\frac{4}{3}$

(c) 6π

(d)

Bài 16.

- (a) $\int_0^1 du \int_0^{2-u} f(\frac{u+v}{2}, \frac{u-v}{2}) \cdot \frac{1}{2} dv$
- (b)

Bài 17.

(a) $2\pi(\sqrt{2}-1)$

(c) $\frac{11}{8}$

(d) 216

(b)

(e) $52 + 80 \ln 2$

1.4 Tuần 4

Bài 19.

Bài 20.

Bài 21.

Bài 22.

Bài 23.

- (a)
- (b)

Bài 24.

Bài 25.

1.5 Tuần 5

Bài 30. $\frac{5}{6}$

Bài 31. $12 - 16 \ln 2$

Bài 32. $\frac{e}{4} - \frac{1}{2}$

Bài 33.

Bài 34.

(a) $4a^2$

(b)

(c)

Bài 35. $\frac{\pi h^4}{4}$

Bài 36.

Bài 37.

Bài 38.

Bài 39.

Bài 40.

1.6 Tuần 6

Bài 41.

Bài 42.

Bài 43.

Bài 44.

Bài 45.

1.7 Tuần 7

Bài 46.

Bài 47.

Bài 48.

Bài 49.

1.8 Tuần 8

Bài 51.

- a) $\ln(\frac{b+1}{a+1})$
- b) $\ln(\frac{\beta}{\alpha})$

Bài 52.

- a)
- b)
- c)
- $d) \frac{\pi}{4\sqrt{2}}$
- e) $\frac{2\sqrt{3}\pi}{9}$
- f)
- $g) \frac{2\pi}{9\sqrt{3}}$
- h)
- i) $\frac{1}{n} \frac{\pi}{\sin(\frac{\pi}{n})}$

1.9 Tuần 9

1.10 Tuần 10

Bài 53. −18

Bài 54. 2π

Bài 55. $\frac{256}{15}a^3$

Bài 56. $\frac{a^2}{3}(\sqrt{(1+4\pi^2)^3}-1)$

Bài 57. $-\frac{41}{30}$

Bài 58. $(4\pi^2 - 6\pi)a^2$

1.11 Tuần 11

Bài 59. 3

Bài 60. 0

Bài 61.

- a)
- b)
- c) 0

Bài 62. $\frac{9\pi}{8}$

Bài 63. 4 - 2e

Bài 64. -3π

1.12 Tuần 12

Bài 65.

Bài 66.

Bài 67.

Bài 68.

Bài 69.

Bài 70.

1.13 Tuần 13

Bài 71.

Bài 72.

Bài 73.

Bài 74.

Bài 75.

Bài 76.

1.14 Tuần 14

Bài 77.

Bài 78.

Bài 79.

Bài 80.

Bài 81.

Bài 82.

1.15 Tuần 15

Bài 83. $\frac{3\pi}{20}$

Bài 84. $\pi(1-a)^3$

Bài 85. -1

Bài 86.

Bài 87. $\frac{22\sqrt{6}}{3}$

 $\textbf{B\grave{a}i 88.} \ \ |\overrightarrow{gradu}(A)| = 3\sqrt{11}; \ \overrightarrow{gradu} \perp Oz \Leftrightarrow z^2 = xy; \ \overrightarrow{gradu} = 0 \Leftrightarrow x = y = z.$

1.16 Tuần 16

Bài 89. $(2-\frac{1}{r^3}+\frac{1}{r^2})(x,y,z)$

Bài 90. $\overrightarrow{v} = (0, -1, 0)$

Bài 91. $\arccos(-\frac{12}{5\sqrt{145}})$

Bài 92.

Bài 93. $\frac{4\pi}{5}$

Bài 94.