Spatiotemporal characteristics of solar resource and photovoltaic productivity over the Euro-Mediterranean area

A climate perspective

Claudia Gutiérrez 24th may 2019

¹Facultad de Ciencias Ambientales y Bioquímica Universidad de Castilla-La Mancha, Toledo, Spain

Index

Context and introduction Energy transition VRE

Objectives and methodology

Results

 ΔPV by country

Conclusions

Context and introduction

Energy transition

Energy transition

Energy transition

Photovoltaic

- Increase in photovoltaic (PV) capacity
- Continous growth in projected trends.
- · Global increase leaded by China

Links between climate/weather and the power sector

- Highly dependent on the state of the atmosphere.
 - Potential energy produced/ mean resource (supply side)
- Modulate the electricity demand (demand side)
- Operation atmospheric variables like temperature

Links between climate/weather and renewables

Links between climate/weather and renewables

Electricity systems features:

Electricity systems features:

Demand and supply need to be balanced.

Electricity systems features:

- Demand and supply need to be balanced.
- Electricity systems are designed for centralized conventional power plants.

Electricity systems features:

- Demand and supply need to be balanced.
- Electricity systems are designed for centralized conventional power plants.
- VRE: variable renewable energy.

Balancing may occurs at different time scales

 Intermittency: not synchronized with the demand

- Intermittency: not synchronized with the demand
- Need of forecasting, plannification and/or storage

Balancing may occurs at different time scales

- Intermittency: not synchronized with the demand
- Need of forecasting, plannification and/or storage
- Variations from short to long scales (weather to climate)
 - short: operation
 - medium: planning, maintenance
 - long: resource assessment, financing, planning

Balancing may occurs at different time scales

Long scales: links between climate and renewables

Variability sources on PV

- 1. Astronomical factors
- 2. Atmospheric factors
 - clouds
 - aerosols
- 3. PV system factors
- 4. power plant size
- 5. distance between plants
- 6. Other factors
 - temperature
 - soiling

Need for long-term projections of **resource**and PV potential

Previous studies show a **discrepancy** between **GCMs** and **RCMs** surface solar radiation (SSR) over Europe:

- Increase projected by GCMs (Wild et al. 2015, Solar Energy).
- Decrease projected by RCMs (Jerez et al. 2015, Nature Communications).

Objectives and methodology

OBJECTIVE

 1 To illustrate the inconsistency between GCM and RCM projections and to attribute it to missing aerosols forcing.

 2 To deliver future projections of PV potential production over Europe.

METHODS

 1 To illustrate the inconsistency between GCM and RCM projections and to attribute it to missing aerosols forcing.

- Use of well-chosen groups of GCM-RCM within the Euro-CORDEX ensemble.
- 2021-2050 summer change in surface solar radiation, SSR, with respect of a reference period: 1971-2000. Use of RCP8.5 scenario.

GCM	RCM	Aerosols	
	CCLM4-8-17	-	
CNRM-CM5	ALADIN53	Szopa et al.	
	RCA4	-	
	CCLM4-8-17	-	

METHODS

 2 To deliver future projections of PV potential production over Europe.

solaR

Parametric PV model. **SSR** from **RCM** as input -> POA and electrical performance. Implemented in R (0. Perpiñán, 2013).

Figure 1: Squeme of a PV generator.

Results

SSR mean changes 2021-2050

GCM

RCM

ssr_gimp4.png

Figure 2: SSR change (1971/2000)-(2021/2050) (W/m^2)

SSR mean changes 2021-2050

GCM

RCM

ssr_gimp3.png

Figure 3: SSR change (1971/2000)-(2021/2050) (W/m2)

 Only RCMs with evolving aerosols show the increase in SSR as GCMs.

CLT mean changes 2021-2050

GCM

RCM

clt_gimp3.png

Figure 4: CLT change (1971/2000)-(2021/2050) (%)

CLT mean changes 2021-2050

GCM

RCM

clt_gimp3.png

Figure 5: CLT change (1971/2000)-(2021/2050) (%)

- RCMs without evolving aerosols:
 CLT spatial pattern can explain SSR spatial pattern.
- CLT spatial pattern cannot explain SSR spatial pattern in models with evolving aerosols.

Mean changes 2021-2050

GCM	RCM	$\Delta SSR [W/m^2]$	∆CLT [%]
CNRM-CM5		9.9	0.5
	CCLM4-8-17	-2.4	-0.8
	ALADIN53	12.6	0.3
	RCA4	-2.6	0.2
EC-EARTH		5.6	-0.3
	CCLM4-8-17	-2.7	-0.9
	RACMO22E	4.8	0.5
	RCA4	-2.1	0.1

Table 2: Spatial changes in SSR and CLT

AOD mean changes 2021-2050

Figure 6: AOD change (1971/2000)-(2021/2050)

- Spatial pattern of ΔAOD similar to ΔSSR when evolving aerosols considered.
- Higher correltation of SSR with AOD than with CLT.

GCM	RCM	ΔAOD	$ ho_{ m SSR,CLT}$	$ ho_{SSR,AOD}$
CNRM-CM5	CCLM4-8-17	-	-0.7	-
	ALADIN53	-0.2	-0.2	-0.9
	RCA4	-	-0.8	-
EC-EARTH	CCLM4-8-17	-	-0.8	-
	RACMO22E	-0.1	-0.3	-0.6
	RCA4	-	-0.8	-

\triangle PV relative JJA mean by country

Figure 7: Relative change in PV potential [%]

\triangle PV relative JJA mean by country

Figure 8: Relative change in PV potential [%]

 Decrease for models with no-evolving aerosols.

\triangle PV relative JJA mean by country

Figure 9: Relative change in PV potential [%]

- Decrease for models with no-evolving aerosols.
- Increase for models with evolving aerosols.
- Central-Europe is the most impacted area.

Conclusions

Conclusions

- For the mid century, an increase in photovoltaic potential is projected over Europe when the evolution of aerosols over the area is considered.
- The magnitude depends on the country and the models.
- The most impacted areas are in Central-Europe, with an important potential increase of more than 10% but large uncertainty between models.

Perspectives

- A robust answer is needed in order to deliver key messages for the solar industry.
- The FPS-aerosols could help to understand uncertainties and develop better projections for energy purposes

Thank you for your attention.

claudia.gutierrez@uclm.es