Problème 1 : Le début justifie la fin

Dans cet exercice, on considère l'ensemble, noté \mathcal{S} , des suites $(u_n)_{n\geqslant 0}$ à valeurs réelles et telles que

$$u_{n+1} = \frac{\exp(u_n)}{n+1}$$

pour tout entier $n \ge 0$.

Pour tout nombre réel x, on note u(x) la suite appartenant à \mathscr{S} et dont le premier terme vaut x. On note également $u_n(x)$ le terme d'indice n de cette suite. Ainsi, $u_0(x) = x$ et $u_1(x) = \exp(x)$.

- 1) Démontrer que toute suite appartenant à ${\mathscr S}$ est strictement positive à partir du rang 1.
- 2) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathscr{S} . Démontrer que, s'il existe un rang $N\geqslant 2$ pour lequel $u_N\leqslant 1$, alors $(u_n)_{n\geqslant 0}$ converge vers 0.
- 3) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathscr{S} . Démontrer que, si cette suite ne converge pas vers 0, alors elle diverge vers $+\infty$.

Ci-dessous, on note E_0 l'ensemble des réels x pour lesquels la suite u(x) converge vers 0, et E_{∞} l'ensemble des réels x pour lesquels u(x) diverge vers $+\infty$.

- 4) Démontrer que $0 \in E_0$.
- 5) a) Démontrer, pour tout entier $n \ge 0$, que la fonction $x \mapsto u_n(x)$ est strictement croissante sur \mathbb{R} .
 - b) En déduire que, si x est un élément de E_0 , alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .
- 6) a) Démontrer que la fonction $x \mapsto \exp(x) x(x+1)$ est strictement positive sur l'intervalle $[2, +\infty[$.
 - b) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathscr{S} . Démontrer que, s'il existe un rang $N\geqslant 1$ pour lequel $u_N\geqslant N+1$, alors $(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.
 - c) Démontrer que $1 \in E_{\infty}$.
- 7) Démontrer que, si x est un élément de E_{∞} , alors l'intervalle $[x, +\infty[$ est inclus dans E_{∞} .

Nous allons maintenant démontrer qu'il existe un nombre réel δ tel que l'intervalle $]-\infty,\delta[$ est inclus dans E_0 et l'intervalle $]\delta,+\infty[$ est inclus dans E_∞ .

- 8) On définit deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ de la façon suivante. Tout d'abord, on pose $a_0=0$ et $b_0=1$. Puis, pour tout entier $n\geqslant 0$, on pose $a_{n+1}=(a_n+b_n)/2$ et $b_{n+1}=b_n$ si $(a_n+b_n)/2\in E_0$, et on pose $a_{n+1}=a_n$ et $b_{n+1}=(a_n+b_n)/2$ sinon.
 - a) Démontrer que les suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ sont convergentes et ont même limite.
 - b) Soit δ la limite commune aux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$. Démontrer que l'intervalle $]-\infty,\delta[$ est inclus dans E_0 et l'intervalle $]\delta,+\infty[$ est inclus dans E_∞ .
- 9) On pose c₂ = ln(ln(2)), c₃ = ln(ln(2ln(3))) et c₄ = ln(ln(2ln(3ln(4)))), et plus généralement, pour tout entier ℓ ≥ 2, c_ℓ = ln(ln(2ln(3ln(···ln((ℓ − 1)ln(ℓ))...)))).
 Démontrer que, pour tout entier ℓ ≥ 2, le nombre réel c_ℓ appartient à E₀.
- 10) Démontrer que la suite $(c_{\ell})_{\ell \geqslant 2}$ converge.
- 11) Démontrer que $\delta \in E_{\infty}$.

Problème 2 : La loi du milieu

Soit n un entier naturel non nul. Dans un sac, on place 2n+1 boules indiscernables au toucher et numérotées $0,1,2,\ldots,2n$. On vide alors progressivement le sac jusqu'à n'y laisser qu'une seule boule, selon le protocole suivant :

- on tire trois boules simultanément;
- si les trois boules tirées ont pour numéros a, b et c, avec a < b < c, on élimine les boules de numéros a et c et on replace dans le sac la boule de numéro b;
- on recommence les opérations précédentes.

Au bout de n tirages, il ne reste plus qu'une seule boule, et on note D_n son numéro. Pour tout entier k, on note $\mathbf{P}[D_n=k]$ la probabilité que la dernière boule restant dans le sac soit celle de numéro k.

I – Étude des petits cas

- 1) Déterminer la loi de la variable aléatoire D_1 .
- 2) Déterminer la loi de la variable aléatoire D_2 .

II - Valeurs extrêmes et symétrie

- 3) Déterminer la probabilité $P[D_n = 0]$.
- 4) Déterminer la probabilité $P[D_n = 1]$ en fonction de n.
- 5) Soit i un entier tel que $0 \le i \le 2n$. Pourquoi a-t-on $P[D_n = i] = P[D_n = 2n i]$?
- 6) Calculer l'espérance de la variable aléatoire D_n en fonction de n.

III – Comportement limite

Dans cette partie, on souhaite étudier la loi de D_n lorsque n tend vers $+\infty$. Afin de faciliter cette étude, on démontre tout d'abord un résultat préliminaire.

7) On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et par

$$u_n = \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n}$$

pour tout $n \ge 1$. Démontrer que $u_n \le \frac{1}{\sqrt{3n+1}}$ pour tout $n \ge 0$.

Il est maintenant temps d'étudier la loi de D_n elle-même.

- 8) Déterminer, pour tout entier j tel que $0 \le j \le 2n$, la probabilité p_j que la boule de numéro j soit éliminée lors de la première sélection.
- 9) Démontrer que, si $n \ge 3$, alors $p_j \ge \frac{1}{2n}$ pour tout entier j tel que $0 \le j \le 2n$.
- 10) On note M_n la plus grande des probabilités $\mathbf{P}[D_n = j]$ lorsque $0 \le j \le 2n$. Démontrer que M_n tend vers 0 lorsque n tend vers $+\infty$.

Problème 3 : Que la force soit avec f!

Dans tout le problème, k désigne un entier naturel non nul, I un intervalle ouvert de $]0, +\infty[$, et f une fonction définie sur I et à valeurs strictement positives.

On dit que la fonction f est « k-forte » si, pour tous les réels x et y appartenant à I,

$$\left(y^kf\left(y\right)-x^kf\left(x\right)\right)\left(\frac{f\left(y\right)}{y^k}-\frac{f\left(x\right)}{x^k}\right)\geq 0.$$

On dit que f est « k-faible » si, pour tous les réels x et y appartenant à I,

$$\left(y^k f(y) - x^k f(x)\right) \left(\frac{f(y)}{y^k} - \frac{f(x)}{x^k}\right) \leq 0.$$

I - Quelques exemples et propriétés

- 1) Démontrer que la fonction f_1 définie sur l'intervalle $[0, +\infty]$ par $f_1(x) = x^2$ est 1-forte et 3-faible.
- Démontrer que la fonction f₂ définie sur l'intervalle |0,1| par f₂(x) = exp(x) est 1-faible mais pas 1-forte.
- Démontrer que la fonction f₃ définie sur l'intervalle |1,+∞| par f₃(x) = exp(x) est 1-forte mais pas 1-faible.
- Démontrer que la fonction f₄ définie sur l'intervalle |0, +∞| par f₄(x) = 1/x est k-faible pour tout entier k≥ 1.
- 5) Existe-t-il une fonction définie sur l'intervalle $]0, +\infty[$ qui soit k-forte pour tout entier $k \ge 1$?

II – Quelques critères de force et de faiblesse

6) Démontrer que f est k-forte si et seulement si

$$\frac{x^k}{y^k} + \frac{y^k}{x^k} \le \frac{f(x)}{f(y)} + \frac{f(y)}{f(x)}$$

pour tous les réels x et y appartenant à I, et que f est k-faible si et seulement si

$$\frac{x^k}{y^k} + \frac{y^k}{x^k} \ge \frac{f(x)}{f(y)} + \frac{f(y)}{f(x)}$$

pour tous les réels x et y appartenant à I.

7) Démontrer que f est k-forte si et seulement si

$$\frac{\max\left(x^{k}, y^{k}\right)}{\min\left(x^{k}, y^{k}\right)} \leq \frac{\max\left(f(x), f(y)\right)}{\min\left(f(x), f(y)\right)}$$

pour tous les réels x et y appartenant à I, et que f est k-faible si et seulement si

$$\frac{\max\left(x^{k}, y^{k}\right)}{\min\left(x^{k}, y^{k}\right)} \ge \frac{\max\left(f(x), f(y)\right)}{\min\left(f(x), f(y)\right)}$$

pour tous les réels x et y appartenant à 1.

8) On note g_k et h_k les fonctions définies sur I par

$$g_k(x) = x^k f(x)$$
 et $h_k(x) = \frac{f(x)}{x^k}$

IV - Résultat le plus probable

On rappelle que, pour deux événements A et B, on note $A \setminus B$ l'événement selon lequel A est réalisé, mais pas B. En outre, si $P[B] \neq 0$, on note $P_B[A]$ la probabilité conditionnelle de A sachant B.

On souhaite ici démontrer, pour tout entier $n \ge 1$, que $P[D_n = n] = M_n$. Dans ce but, on va démontrer la propriété \mathcal{P}_n suivante :

Pour tout entier k tel que $0 \le k \le n-1$, on a $P[D_n = k] \le P[D_n = k+1]$.

- 11) Démontrer que, si \mathcal{P}_n est vraie, alors $P[D_n = n] = M_n$.
- 12) Démontrer \mathcal{P}_1 .

On suppose maintenant que l'on dispose d'un entier $n \ge 2$ tel que \mathcal{P}_{n-1} est vraie et d'un entier k tel que $0 \le k \le n-1$.

- 13) Pour tout entier ℓ compris entre 0 et 2n, distinct de k et de k+1, on note X_{ℓ} l'événement selon lequel les trois boules de numéros k, k+1 et ℓ sont choisies dès la première sélection.
 - a) Pourquoi, si $\ell > k+1$, a-t-on $\mathbf{P}_{X_{\ell}}[D_n = k] = 0$ et $\mathbf{P}_{X_{\ell}}[D_n = k+1] = \mathbf{P}[D_{n-1} = k]$?
 - b) Donner des résultats analogues sur $\mathbf{P}_{X_\ell}[D_n=k]$ et $\mathbf{P}_{X_\ell}[D_n=k+1]$ lorsque $\ell < k$.
 - c) On note maintenant X l'événement selon lequel les deux boules de numéros k et k+1 sont choisies dès la première sélection. Démontrer que $\mathbf{P}_X[D_n=k] \leq \mathbf{P}_X[D_n=k+1]$.
- 14) Soit Y l'événement selon lequel l'une des boules de numéros k et k+1 est éliminée lors de la première sélection.
 - a) Démontrer que $\mathbf{P}_{Y\setminus X}[D_n=k]=\mathbf{P}_{Y\setminus X}[D_n=k+1]$.
 - b) En déduire que $P_Y[D_n = k] \le P_Y[D_n = k+1]$.
- 15) Soit a, b et c les numéros des trois boules choisies lors de la première sélection, avec a < b < c.
 - a) Soit G l'événement selon lequel c < k. Démontrer que $\mathbf{P}_G[D_n = k] \le \mathbf{P}_G[D_n = k+1]$.
 - b) Soit H l'événement selon lequel a < k et k+1 < c. Démontrer que $\mathbf{P}_H[D_n = k] \le \mathbf{P}_H[D_n = k+1]$.
 - c) Soit I l'événement selon lequel k+1 < a. Démontrer que, si $k \le n-2$, alors $\mathbf{P}_I[D_n=k] \le \mathbf{P}_I[D_n=k+1]$.
- 16) Démontrer que, si $k \le n-2$, alors $P[D_n = k] \le P[D_n = k+1]$.
- 17) Démontrer \mathcal{P}_n .

- a) Démontrer que, si g_k et h_k sont monotones, alors f est k-forte ou k-faible.
- b) Démontrer que, si f est k-faible, alors g_k et h_k sont monotones.
- c) Soit f la fonction définie sur l'intervalle $I = [0, +\infty[$ par

me

out

$$f(x) = \begin{cases} x & \text{si } 0 < x < 1; \\ 4 & \text{si } x = 1; \\ x & \text{si } 1 < x < 2; \\ 4x & \text{si } 2 \le x. \end{cases}$$

Démontrer que f est 1-forte mais que les fonctions g_1 et h_1 ne sont pas monotones.

- 9) On suppose dans cette question que f est dérivable sur I et que sa dérivée f' est continue sur I.
 - a) Démontrer que, si $|f'(x)| \ge k \frac{f(x)}{x}$ pour tout réel $x \in I$, alors f est k-forte.
 - b) Démontrer que, si $|f'(x)| \le k \frac{f(x)}{x}$ pour tout réel $x \in I$, alors f est k-faible.
 - c) Démontrer que les réciproques aux questions 9)a) et 9)b) sont vraies.

III - Une multitude de fonctions fortes et faibles

On dit que la fonction f est « forte » s'il existe un entier $k \ge 1$ pour lequel f est k-forte, et que f est « faible » s'il existe un entier $k \ge 1$ pour lequel f est k-faible.

- 10) Démontrer que, si f est faible, la fonction F définie sur I par $F(x) = \frac{1}{f(x)}$ est faible.
- 11) Démontrer que, si deux fonctions f et g définies sur I sont faibles, les fonctions f + g, $f \times g$ et $\frac{f}{g}$ sont faibles.
- 12) Démontrer à l'aide de contre-exemples que, si deux fonctions f et g définies sur l sont fortes, les fonctions f + g, f × g et f ne sont pas nécessairement fortes.
- 13) Soit f une fonction définie sur I et à valeurs strictement positives, et g une fonction définie sur |0,+∞|.
 - a) Démontrer que, si f et g sont faibles, la fonction $g \circ f$ est faible.
 - b) Démontrer que, si f et g sont fortes, la fonction $g \circ f$ est forte.

IV - Application à la démonstration d'inégalités

14) Soit a, b et c trois réels strictement positifs, et n un entier naturel non nul. Démontrer que

$$\left(\frac{a+c}{b+c}\right)^n + \left(\frac{b+c}{a+c}\right)^n \leq \left(\frac{a}{b}\right)^n + \left(\frac{b}{a}\right)^n.$$

15) Dans cette question, on pourra utiliser le fait que les fonctions cos et sin sont dérivables sur]0, π/2 | de dérivées respectivement cos' = - sin et sin' = cos.

La fonction tan est définie sur $\left]0, \frac{\pi}{2}\right[$ par $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Soit a et b deux nombres réels de l'intervalle $\left]0,\frac{\pi}{2}\right[$. Démontrer que

$$\frac{\sin(a)}{\sin(b)} + \frac{\sin(b)}{\sin(a)} \leqslant \frac{a}{b} + \frac{b}{a} \leqslant \frac{\tan(a)}{\tan(b)} + \frac{\tan(b)}{\tan(a)}$$