Lecture 4 EE 421 / C\$ 425 Digital System Design

Fall 2024
Shahid Masud

Topics

Some examples from WinLogiLab (from last time)

FROM BEHAVIOUR TO IMPLEMENTATION

- Connecting logic expression to physical circuits: Boolean Algebra, K-Maps to logic gates, XOR
- Combinational Logic Implementation using functional mapping to Decoders, Memory and Multiplexers
- Implementation Constraints

Gates (Primary Gates)

BEHAVIOURAL MODELS

Gates (Compound Gates)

AND Gate followed by Inverter

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

OR Gate followed by Inverter

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

3 Input Compound Gates

Three Input NAND Gate

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Three Input NOR Gate

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

A Question about Compound Gates

Is this 3 input Nand gate same as the configuration on the right?

Complex Gates – the XOR and XNOR

Two Input Exclusive OR Gate

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

The XNOR Complex gate

Question?

Are these two gates equivalent, Yes? Or No?

Three Input XOR Gate

Α	В	С	(<i>A</i> ⊕B)	(<i>A</i> ⊕B)⊕(C)	F
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

 $K Map of(A \oplus B) \oplus (C)$

This is the right way to work with XOR Gates

C, AB 0

00	01	11	10
0	_ 1	0	1
1	0	1	0

Functional Digital Circuits – MSI (Medium Scale Integration)

Circuits that are formed from simple, compound or complex gates

Examples:

- Adder/Subtractor circuits
- Decoders
- Multiplexers
- Parity Checkers
- Memory Elements
- Counters, Modules
- SIPO, PISO, or FIFO, LIFO,—Require REGISTERS
- Etc.

Direct Implementation of Complex Logic Functions

1 Bit Full Adder Circuit

Truth table represents behaviour of inputs and outputs

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-Map for Sum Function

$$Sum = A \oplus B \oplus Cin$$

K-Map for Cout Function

$$Cout = AB + ACin + BCin$$

Full Adder Implementation using Logic Gates

$$Cout = AB + ACin + BCin$$

Encoders and Decoders Functional Chips

Remember: We are dealing with 'Complex' and 'High Speed Circuits'

Logic Implementation vs Functional Mapping

Low Level Gates

High Level Functional Modules

Full Adder Mapping on Decoder

Sum	Minterms =	{1,	2,	4,	7 }
-----	------------	-----	----	----	------------

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Cout Minterms = {3, 5, 6, 7}

Sum

Memory Storage (RAM or ROM) as a functional logic block – Lookup Tables

Truth Table Outputs are Programmed in the memory Lookup Table

MSB output (Bit 7) is Sum MSB-2 output (Bit 5) is Cout

Implement 3 bit x 3 bit Multiplier using Memory

Truth Table Outputs are Programmed in the memory Lookup Table

Α	В	AxB	Data
0	0	0	00 H
0	1	0	00 H
••••			
0	7	0	00 H
0	1	0	00 H
1	1	1	01 H
2	1	2	02 H
••••			
3	2	6	06 H
••••			
5	7	35	23 H
••••	••••	••••	••••

Multiplexer MUX Functional Module

Inputs		Select	Output
A	В	S	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

4 to 1 MUX

	Inp	uts	Select		Output	
Α	В	С	D	S1	S0	F
Α	В	С	D	0	0	Α
Α	В	С	D	0	1	В
Α	В	С	D	1	0	С
Α	В	С	D	1	1	D

8 to 1 MUX

Input Lines

Map a full adder to a 4 to 1 MUX

MUX Selector

Groups (2 Bits,

Full Adder Truth Table

_							
Α	В	Cin	Sum	Cout	4 groups)	Observations	
0	0	0	0	0		Sum output follows	
0	0	1	1	0	Select = 00	Cin; Cout remains 0	
0	1	0	1	0		Sum output follows Cin'; Cout follows Cin	
0	1	1	0	1	Select = 01 		
1	0	0	1	0	Select = 10	Sum output follows Cin'; Cout follows Cin	
1	0	1	0	1			
1	1	0	0	1		Sum output follows Cin; Cout remains 1	
1	1	1	1	1	Select = 11 		

Cin' Cin' Cin Cin Cin

Cin 4 to 1 MUX Sum Need one Mux for Each output 4 to 1 MUX Cout 22

Selector is same as inputs

Mapping 16 Minterms to a 8 to 1 MUX

Example: Implement logic functions using only 2 to 1 MUXes

F=x'(yz) + x(y+z+yz), use x as selector input

Now we have to find a way to map (yz) and (y+z+yz) into 2 to 1 MUX

Use y as select lines

For (yz); when y = 0, output is 0 when y = 1, output is z

Contd - Mapping only on 2 to 1 MUX

Full implementation using only 2 to 1 MUX

Implemention of F=x'(yz) + x(y+z+yz)

Conclusion

- Behaviour of Digital System is described in Truth Table or Boolean Algebra
- For Implementation of this Behaviour, we can use:
 - Logic Gates detailed and elaborate gate level design Complicated
 - Decoders
 - Multiplexers
 - Memory

High Level Mapping to Manage COMPLEXITY

