

Algorithms: Design and Analysis, Part II

Huffman Codes

Introduction and Motivation

Binary Codes

Binary code: Maps each character of an alphabet Σ to a binary string.

Example: $\Sigma = \text{a-z}$ and various punctuation (size 32 overall, say)

Obvious encoding: Use the 32 5-bit binary strings to encode this Σ (a fixed-length code)

Can we do better? Yes, if some characters of Σ are much more frequent than others, using a variable-length code.

Ambiguity

Example: Suppose $\Sigma = \{A,B,C,D\}$. Fixed-length encoding would be $\{00,01,10,11\}$.

Suppose instead we use the encoding $\{0,01,10,1\}$. What is 001 an encoding of?

- A) AB \rightarrow Leads to 001
- B) CD
- C) AAD \rightarrow Also leads to 001
- D) Not enough info to answer question

Prefix-Free Codes

Problem: With variable-length codes, not clear where one character ends + the next one begins.

Solution: Prefix-free codes - make sure that for every pair $i, j \in \Sigma$, neither of the encodings f(i), f(j) is a prefix of the other.

Example: {0,10,110,111}

Why useful? Can give shorter encodings with non-uniform character frequencies.

Example

Example:

Α	60%	00	0
В	25%	01	10
C	10%	10	110
D	5%	11	111

 Σ frequencies fixed-length variable-length (prefix free)

Fixed-length encoding: 2 bits/character

Variable-length encoding: How many bits needed on average?

$$0.6 \cdot 1 + 0.25 \cdot 2 + (0.1 + 0.05) \cdot 3 = 1.55$$