» Table of contents 1. Solved Problems 2. Cumulative Distribution Function 3. Probability Density Functions

[2/19

Problem

Let *X* and *Y* be two random variables that denote the outcome of the roll of two dice.

Problem

Problem

Let X and Y be two random variables that denote the outcome of the roll of two dice. Answer the following:

1. Find R_X , R_Y and the PMF of X and Y

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$
- 4. Let Z = X + Y. Find the range and PMF of Z

Problem

- \checkmark Find R_X , R_Y and the PMF of X and Y
- Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$
- $\angle X$. Let $\angle Z = X + Y$. Find the range and PMF of $\angle Z$
- **5.** Find $P(X = 4 \mid Z = 8)$

(A)
$$R_{X} = \frac{5}{12}, \dots, \frac{6}{5}$$

 $R_{Y} = \frac{5}{12}, \dots, \frac{6}{5}$
 $R_{X} = \frac{5}{12}, \dots, \frac{6}{5}$
 $= \frac{7}{12}, \dots, \frac{6}{5}$
 $= \frac{7}{12}, \dots, \frac{7}{12}$
 $= \frac{7}{12}, \dots, \frac{7}{12}$

$$P_{2}(x) = P(x=1, Y=1)$$

$$= P(x=1) P(Y=1)$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P(x=1) P(Y=2) + P(x=2) P(Y=1)$$

$$= P(x=1) P(Y=2) + P(x=2) P(Y=1)$$

$$= P(x=1) P(Y=2) + P(x=2, Y=1)$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P(x=1, Y=3) + P(x=2, Y=1) + P(x=3, Y=1)$$

$$= P_{2}(4) = P(x=1, Y=3) + P(x=2, Y=1)$$

$$= P_{3}(5) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=1)$$

$$= P_{3}(6) = 12$$

$$= P(x=1, Y=2) + P(x=2, Y=2)$$

$$\begin{array}{ll}
\bigcirc & P(x=4|z=8) \\
& = P(x=4, z=8) \\
\hline
& P(z=8) \\
& \times 4 \times 100 \\
& = \frac{16 \cdot 6}{3/36} = 1
\end{array}$$

PMF of Sum of Poisson Random Variables

Let $X \sim \text{Poisson}(\alpha)$ and $Y \sim \text{Poisson}(\beta)$ be two independent Poisson random variables.

PMF of Sum of Poisson Random Variables

Let $X \sim \text{Poisson}(\alpha)$ and $Y \sim \text{Poisson}(\beta)$ be two independent Poisson random variables. Let Z = X + Y be a new random variable.

PMF of Sum of Poisson Random Variables

Let $X \sim \text{Poisson}(\alpha)$ and $Y \sim \text{Poisson}(\beta)$ be two independent Poisson random variables. Let Z = X + Y be a new random variable. Find the PMF of Z.

Sol².
$$R_{x} = \{0,1,2,...\}$$
, $R_{y} = \{0,1,2,...\}$
 $R_{z} = \{0,1,2,...\}$
 $P_{z}(R) = P(z=R) = P(x+Y=R)$
 $P_{z}(R) = P(x+Y=R)$ [Law of Total Prob]
 $P_{z}(R) = \{0,1,2,...\}$

* Answer to previous problem...

$$\sum_{i=0}^{k} P(Y = k-i) Y(X=i) P(X=i)$$

$$= \frac{e^{(x+\beta)}}{k!} \sum_{i=0}^{k} \frac{k!}{(k-i)!} i!$$

$$= \frac{e^{(x+\beta)}}{k!} \sum_{i=0}^{k} \frac{k!}{(k-i)!} i!$$

$$= \frac{e^{(x+\beta)}}{k!} \sum_{i=0}^{k} \frac{k!}{(k-i)!} i!$$

PMF of a Function of a Random Variable

Let X be a discrete random variable with the following PMF

PMF of a Function of a Random Variable

Let X be a discrete random variable with the following PMF

$$P_{X}(k) = egin{cases} 1/4 & ext{ for } k = -2 \ 1/8 & ext{ for } k = -1 \ 1/8 & ext{ for } k = 0 \ 1/4 & ext{ for } k = 1 \ 1/4 & ext{ for } k = 2 \ 0 & ext{ otherwise} \end{cases}$$

PMF of a Function of a Random Variable

Let X be a discrete random variable with the following PMF

$$P_{X}(k) = egin{cases} 1/4 & ext{ for } k = -2 \ 1/8 & ext{ for } k = -1 \ 1/8 & ext{ for } k = 0 \ 1/4 & ext{ for } k = 1 \ 1/4 & ext{ for } k = 2 \ 0 & ext{ otherwise} \end{cases}$$

We define a new R.V. $Y = (X+1)^2$. What is PMF of Y?

Definition of CDF

The cumulative distribution function (CDF) of a random variable *X* is defined as

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathbb{R}$.

* the subscript X indicates that this is the CDF of the random variable X

Definition of CDF

The cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(x) = P(X \le x), \text{ for all } x \in \mathbb{R}.$$

- st the subscript X indicates that this is the CDF of the random variable X
- * the CDF is defined for all $x \in \mathbb{R}$

Definition of CDF

The cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathbb{R}$.

- * the subscript X indicates that this is the CDF of the random variable X
- * the CDF is defined for all $x \in \mathbb{R}$

Example of CDF

Consider an experiment where a coin is tossed twice.

Definition of CDF

The cumulative distribution function (CDF) of a random variable *X* is defined as

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathbb{R}$.

- * the subscript X indicates that this is the CDF of the random variable X
- * the CDF is defined for all $x \in \mathbb{R}$

Example of CDF

Consider an experiment where a coin is tossed twice. Let *X* denote the number of heads.

Definition of CDF

The cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathbb{R}$.

- * the subscript X indicates that this is the CDF of the random variable X
- * the CDF is defined for all $x \in \mathbb{R}$

Example of CDF

Consider an experiment where a coin is tossed twice. Let X denote the number of heads. Find the CDF of X.

$$P_X(0) = P(X = 0) = 1/4$$
 $P_X(1) = P(X = 1) = 1/2$,
 $P_X(2) = P(X = 2) = 1/4$.

Definition of CDF

The cumulative distribution function (CDF) of a random variable X is defined as

$$F_X(x) = P(X \le x),$$
 for all $x \in \mathbb{R}$.

- st the subscript X indicates that this is the CDF of the random variable X
- st the CDF is defined for all $lpha \in \mathbb{R}$

Example of CDF

Consider an experiment where a coin is tossed twice. Let X denote the number of heads. Find the CDF of X.

$$P_X(0) = P(X = 0) = 1/4,$$

 $P_X(1) = P(X = 1) = 1/2,$
 $P_X(2) = P(X = 2) = 1/4.$

* Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
- * CDF stays flat in x_k and x_{k+1}

$$F_X(x) = F_X(x_k), \quad x_k < x < x_{k+1}$$

st CDF jumps at each x_k . In particular, we have

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
- * CDF stays flat in x_k and x_{k+1}

$$F_X(x) = F_X(x_k), \quad x_k < x < x_{k+1}$$

» Remarks on CDF...

CDF jumps at each x_k . In particular, we have

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
- * CDF stays flat in x_k and x_{k+1}

$$F_X(x) = F_X(x_k), \quad x_k < x < x_{k+1}$$

» Remarks on CDF...

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- * CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
- * CDF stays flat in x_k and x_{k+1}

$$F_X(\mathbf{x}) = F_X(\mathbf{x}_k), \quad \mathbf{x}_k < \mathbf{x} < \mathbf{x}_{k+1}$$

* CDF jumps at each x_k . In particular, we have

 $F_X(x_k) - F_X(x_k - \epsilon) = P_X(x_k), \quad \epsilon > 0 \text{ small}$

$$F_{x}(x) \leq F_{x}(y)$$

* Hence, CDF is a non-decreasing function: if y > x, then $F_X(x) < F_X(x)$

» Remarks on CDE...

CDF jumps at each x_k . In particular, we have

* Let X be a discrete R.V. with range
$$R_X = \{x_1, x_2, \dots\}$$

- * Here we assume $x_1 < x_2 < \cdots$
- CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
 - CDF stays flat in x_k and x_{k+1}

$$F_X(x) = F_X(x_k), \quad x_k < x < x_{k+1}$$

 $F_X(x_k) - F_X(x_k - \epsilon) = P_X(x_k), \quad \epsilon > 0 \text{ small}$

* Hence, CDF is a non-decreasing function: if
$$y > x$$
, then $F_X(y) < F_X(x)$

- * CDF approaches 1 as x becomes large, i.e., $\lim_{x\to\infty} F_X(x) = 1$

» Remarks on CDF...

- * Let X be a discrete R.V. with range $R_X = \{x_1, x_2, \dots\}$
- * Here we assume $x_1 < x_2 < \cdots$
- CDF is in the form of staircase
- * $F_X(-\infty) = 0$. It jumps at each point in range
- * CDF stays flat in x_k and x_{k+1}

$$F_X(x) = F_X(x_k), \quad x_k < x < x_{k+1}$$

st CDF jumps at each x_k . In particular, we have

$$F_X(x_k) - F_X(x_k - \epsilon) = P_X(x_k), \quad \epsilon > 0 \text{ small}$$

- * Hence, CDF is a non-decreasing function: if y > x, then $F_X(y) \le F_X(x)$
- * CDF approaches 1 as x becomes large, i.e., $\lim_{x\to\infty} F_X(x) = 1$
- * if $R_X = \{x_1, x_2, \dots\}$, $F_X(x) = \sum_{x_k \le x} P_X(x_k)$

» Properties of CDF...

» Properties of CDF... A result For all $a \le b$, we have $P(a < X < b) = F_X(b) - F_X(a)$ = fx(b) - Fx(a) + P(a < x < b) They make diff in dison-case. P(x < x) = P(x < x) - P(x = x) $= F_{x}(x) - P_{x}(x).$

Example of CDF

Let X be a discrete random variable with range $R_X = \{1, 2, 3, \dots\}$. Suppose the PMF of X is given by

Example of CDF

Let X be a discrete random variable with range $R_X = \{1, 2, 3, \dots\}$. Suppose the PMF of X is given by

$$P_X(k) = \frac{1}{2^k}, \text{ for } k = 1, 2, 3, \dots$$

Example of CDF

Let X be a discrete random variable with range $R_X = \{1, 2, 3, \dots\}$. Suppose the PMF of X is given by

$$P_{X}(k) = \frac{1}{2^{k}}, \quad \text{for } k = 1, 2, 3, \dots$$

1. Find and plot the CDF of X, $F_X(x)$

Example of CDF

Let X be a discrete random variable with range $R_X = \{1, 2, 3, \dots\}$. Suppose the PMF of X is given by

$$P_{X}(k)=rac{1}{2^{k}}, \quad ext{for } k=1,2,3,\dots$$

- 1. Find and plot the CDF of X, $F_X(x)$
- 2. Find $P(2 < X \le 5)$

Example of CDF

Let X be a discrete random variable with range $R_X = \{1, 2, 3, \dots\}$. Suppose the PMF of X is given by

$$P_X(k) = \frac{1}{2^k}$$
, for $k = 1, 2, 3, \dots$

- 1. Find and plot the CDF of X, $F_X(x)$
- 2. Find $P(2 < X \le 5)$
- 3. Find P(X > 4)
- * Is this a valid PMF?

» Answer to previous problem...

* Find and plot the CDF of X, $F_X(x)$

» Answer to previous problem...

- » Answer to previous problem...
 - $* \ \operatorname{Find} \textit{P}(2 < \textit{X} \leq 5)$

Example

Let X be a continuous random variable.

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random.

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a,b] that have same length must have same probability.

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a,b] that have same length must have same probability. Find the CDF of X.

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a,b] that have same length must have same probability. Find the CDF of X.

* Note that P(X = x) = 0 for all x

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a,b] that have same length must have same probability. Find the CDF of X.

- * Note that P(X = x) = 0 for all x
- Uniformity implies that

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a,b] that have same length must have same probability. Find the CDF of X.

- * Note that P(X = x) = 0 for all x
- * Uniformity implies that

$$P(X \in [x_1, x_2]) \propto (x_2 - x_1), \quad \text{where } a \leq x_1 \leq x_2 \leq b$$

Example

Let X be a continuous random variable. Let X denote a real number chosen uniformly at random. Here uniformly means that all intervals in [a, b] that have same length must have same probability. Find the CDF of X.

- * Note that P(X = x) = 0 for all x
- * Uniformity implies that

$$P(X \in [x_1, x_2]) \propto (x_2 - x_1), \quad \text{where } a \leq x_1 \leq x_2 \leq b$$

* Since $P(X \in [\underline{a}, \underline{b}]) = 1$, we have

$$P(X \in [x_1, x_2]) = \frac{x_2 - x_1}{b - a}, \text{ where } a \le x_1 \le x_2 \le b$$

where
$$a \le x_1 \le x_2 \le b$$

» Answer to previous problem...

» Answer to previous problem...

» Continuous Random Variable

Definition: Continuous Random Variable

A random variable X with CDF $F_X(x)$ is said to be continuous if $F_X(x)$ is a continuous function for all $x \in \mathbb{R}$.