GAI CONSULTANTS INC MONROEVILLE PA NATIONAL DAM INSPECTION PROGRAM. PECKS POND DAM (NDI 1.D. NUMBE--ETC(U) JAN 81 B M MIHALCIN FACTOR PORTS DACW31-81-C-0015 AD-A097 402 UNCLASSIFIED NL 1100 $\mathbf{r}_{\mathbf{h}}$ END 5 -8 I DTIC

MICROCOPY RESOLUTION TEST CHART

NATIONAL BOOK AND OR CONGARD CO. A.

5. * * v

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Design Flood is based on the estimated Probable Maximum Flood (greatest reasonably possible storm runoff) for the region, or fractions thereof. The Spillway Design Flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

Breach analyses are performed, when necessary, to provide data to assess the potential for downstream damage and possible loss of life. The results are based on specific theoretical scenarios peculiar to the analysis of a particular dam and are not applicable to other related studies such as those conducted under the Federal Flood Insurance Program.

MTIS GEARI

DITC TAB

U. announced
Ju. tifingtion

By

Availability Codes

'Avail and/or

Dist Special

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

ABSTRACT

Pecks Pond Dam: NDI I.D. No. PA-00754

Owner: Commonwealth of Pennsylvania

State Located: Pennsylvania (PennDER I.D. No. 52-15)

County Located: Pike

Stream: Bush Kill Creek

Inspection Date: 14 October 1980

Inspection Team: GAI Consultants, Inc.

570 Beatty Road

Monroeville, Pennsylvania 15146

Based on a visual inspection, operational history, and hydrologic and hydraulic analysis, the dam is considered to be in good condition.

The size classification of the facility is intermediate and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility is the PMF (Probable Maximum Flood). Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only 13 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, nonemergency.

It is recommended that the owner immediately:

- a. Retain the services of a registered professional engineer experienced in the hydrology and hydraulics of dams to further assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.
- b. Repair the minor eroded area behind the right spillway wingwall and provide protection against further erosion damage.

Pecks Pond Dam: NDI I.D. No. PA-00754

- Develop formal manuals of maintenance and operation for the facility. The manuals should include provisions for regular routine maintenance of the small earth dike located along the right abutment and control of vegetation immediately below the downstream embankment toe.
- Develop a formal warning system to notify downstream residents should hazardous conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

GAI Consultants, Inc.

Approved by:

Colonel, Corps of Engineers

District Engineer

Date 28 January 1981 Date 4 MARCH 81

TABLE OF CONTENTS

	Page
PREFACE	. i
ABSTRACT	. ii
OVERVIEW PHOTOGRAPH	. iv
TABLE OF CONTENTS	. v
SECTION 1 - GENERAL INFORMATION	. 1
1.0 Authority	. 1
1.1 Purpose	. 1
1.3 Pertinent Data	. 2
SECTION 2 - ENGINEERING DATA	. 6
2.1 Design	
2.2 Construction Records	
2.4 Other Investigations	•
2.5 Evaluation	
SECTION 3 - VISUAL INSPECTION	. 8
3.1 Observations	
3.2 Evaluation	
SECTION 4 - OPERATIONAL PROCEDURES	. 10
4.1 Normal Operating Procedure	. 10
4.2 Maintenance of Dam	. 10
4.3 Maintenance of Operating Facilities	. 10
4.4 Warning System	. 10
SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION:	
5.1 Design Data	
5.2 Experience Data	. 11
5.3 Visual Observations	. 11
5.4 Method of Analysis	
5.5 Summary of Analysis	. 11
SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY	
6.1 Visual Observations	. 14
6.3 Past Performance	14
6.4 Seismic Stability	. 14
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR	
REMEDIAL MEASURES	. 15
7.1 Dam Assessment	. 15
7.2 Recommendations/Remedial Measures	. 15

TABLE OF CONTENTS

APPENDIX A - VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

APPENDIX B - ENGINEERING DATA CHECKLIST

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGIC AND HYDRAULIC ANALYSES

APPENDIX E - FIGURES

APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM PECKS POND DAM NDI# PA-00754, PENNDER# 52-15

SECTION 1 GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

1.1 Purpose.

The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

- a. Dam and Appurtenances. Pecks Pond Dam is an earth, concrete and masonry embankment approximately 7 feet high and 170 feet long, including spillway. The facility is provided with a trapezoidal shaped, concrete and masonry chute channel spillway founded on rock at the left abutment. The outlet works consists of a 36-inch diameter bituminous coated corrugated metal pipe (BCCMP) connected to a concrete box culvert that discharges at the downstream embankment toe. Flow through the outlet is regulated by two sets of wooden stop logs set within a concrete vault near the center of the embankment.
- b. Location. Pecks Pond Dam is located on Bush Kill Creek in Porter Township, Pike County, Pennsylvania. The facility is situated within 1000 feet of Pennsylvania Route 402, about 5 miles south of Interstate 84 and about 25 miles north of the city of East Stroudsburg, Pennsylvania. The dam and reservoir are contained within the Pecks Pond, Pennsylvania 7.5 minute U.S.G.S. topographic quadrangle (see Figure 1, Appendix E). The coordinates of the dam are N41°16.9' and W75°5.3'.
- c. Size Classification. Intermediate (7 feet high, 2140 acre-feet storage capacity at top of dam).
 - d. Hazard Classification. High (see Section 3.1.e).
 - e. Ownership. Commonwealth of Pennsylvania
 Department of Environmental Resources
 Bureau of Forestry

f. Purpose. Recreation.

g. <u>Historical Data</u>. Information contained in PennDER files indicates that Pecks Pond Dam was originally constructed around 1906 by the Pennsylvania State Forest Commission. The facility was designed by Simon B. Elliot, a member of the Commission, and was built approximately 25 feet downstream of an old timber dam that dated back to 1865.

Significant seepage problems resulted in extensive repairs to the facility in 1934. Modifications were designed by B.A. Knight of the Pennsylvania Department of Forests and Waters (PennDER predecessors). These modifications, as seen in Figure 2, included the construction of a concrete cutoff wall in the center of the embankment and a new spillway at the left abutment. In addition, a small earth dike was constructed along the right abutment in order to increase the available freeboard. Prior to 1934, overflows along this low area were commonplace during heavy storms.

The need for a means of regulating the pool level became apparent shortly after the 1934 modifications were completed. In 1936-37, an outlet conduit (box culvert) and a stop log mechanism were designed (see Figure 3), but only partially constructed. Correspondence indicates that the inlet side was extended only 8 feet upstream from the stop log structure as hard rock was encountered that would have required excavation by blasting. The inlet end of the box culvert was capped with a thin concrete slab that had to be excavated and removed to affect drawdown. In 1967, an 18-foot section of 36-inch diameter BCCMP was added to the box culvert, extending the inlet to the upstream toe of the dam, and making it accessible without excavating. A steel plate reportedly covers the pipe inlet and is removed by diver when drawdown is desired.

The history of Pecks Pond Dam is well documented in PennDER files. State inspection reports are available for the years 1919, 1930, 1931 and 1935. Monthly inspection checklists are available between 1957 and 1959, while bi-annual reports are on file from 1959 through 1970. Since 1971, the facility has been inspected by the state on an annual basis. No significant deficiencies have been recorded over the last 10 years.

1.3 Pertinent Data.

- a. Drainage Area (square miles). 9.2
- b. Discharge at Dam Site.

Discharge Capacity of Outlet Conduit - Discharge curves are not available.

Discharge Capacity of Spillway at Maximum Pool = 420 cfs (see Appendix D, Sheet 11).

Elevations (feet above mean sea level). The following elevations were obtained through field measurements based on the elevation of normal pool at 1360.0 feet as indicated in Figure 1 (see Appendix D, Sheets 1 and 2).

> Top of Dam 1362.3 (field). 1361.9 (design). Maximum Design Pool Not known. Maximum Pool of Record Not known. Normal Pool 1360.0. (assumed datum). Spillway Crest 1360.0. Upstream Inlet Invert Not known. Downstream Outlet Invert 1355.1 (field). 1354.6 (design). Streambed at Dam Centerline 1352.0. (estimated). Low Top of Right Abutment Dike 1361.8 (field).

d. Reservoir Length (feet).

> Top of Dam 12,000 Normal Pool 10,800

Storage (acre-feet). e.

> 2140 Top of Dam Normal Pool 1100

f. Reservoir Surface (acres).

> 490 Top of Dam Normal Pool 420

Dam. g.

> Earth, concrete and ma-Type sonry.

Length 170 feet (excluding spillway at left abutment and adjacent dike at right

abutment).

7 feet (field measured; Height crest to downstream outlet

invert).

25 feet (field measured; Top Width

> shoreline to downstream edge of embankment crest. Shoreline varies slightly due to minor erosion).

Upstream Slope

Approximately 3H:1V.

Downstream Slope

3H:5V (hand-placed rock wall).

Zoning

Concrete corewall is flanked on downstream side by hand-placed rock and on immediate upstream side by "selected backfill material". Original embankment earth material completes the cross-section of the upstream slope (see Figure 2).

Impervious Core and Cutoff

15-inch wide concrete cutoff wall backed by selected fill extends the entire length of the main embankment.

Grout Curtain

None indicated.

h. <u>Diversion Canal and</u> Regulating Tunnels.

None.

i. Spillway.

Type

Trapezoidal shaped, concrete and masonry chute channel cut in rock at the left abutment.

Crest Elevation

1360.0. .

Crest Length

30 feet.

j. Outlet Conduit.

Type

36-inch diameter BCCMP discharges into 3-foot square concrete box culvert (see Figure 3).

Length

18 feet (36-inch diameter BCCMP). 18 feet (concrete box culvert).

Closure and Regulating Facilities

Flows through the outlet are regulated via two sets of wooden stop logs set

parallel in grooves within a concrete vault located near the center of the embankment. A steel plate reportedly caps the inlet end of the 36-inch diameter pipe.

Stop logs are accessible from the embankment crest.

Access

SECTION 2 ENGINEERING DATA

2.1 Design.

a. Design Data Availability and Sources. No formal design reports or calculations are available concerning any aspect of this facility. PennDER files contain several drawings and sketches the most significant of which have been included in Appendix E of this report (see Figures 2 and 3). These files also contain extensive correspondence dating back to 1919 along with dated photographs and frequent state inspection reports.

b. Design Features.

Embankment. Design features of the embankment are presented in Figure 2. As shown, the basic embankment cross section consists of an earthen upstream section, a central concrete corewall and a downstream section composed of hand-placed rock. The embankment was originally constructed without the concrete corewall. It was added in 1934 as part of extensive modifications that were intended to reduce or eliminate substantial seepage that had been discharging along the downstream embankment toe. The corewall was reportedly carried to "good foundation" material; however, whether or not it was extended to rock is not clear. The downstream embankment face is set at a 3H:5V slope. Although Figure 2 gives the impression of masonry along the downstream face, no mortar or bonding material was in evidence except for that associated with the right spillway wingwall. The crest of the embankment was measured to be about 25 feet wide, and consisted of a 4-foot wide concrete cap at the downstream edge and a 21-foot wide flat to slightly sloped section of the upstream earth portion of the embankment. The upstream embankment face was apparently designed without erosion protection at a slope of about 3H:1V.

A small earth dike, two feet high, was constructed in 1934 across a low area adjacent the right abutment of the embankment. The structure was measured by the inspection team to be about 130 feet long; however, its features and limits are difficult to clearly discern. The structure apparently consists of homogeneous earth with no notable design features.

2. Appurtenant Structures.

a) Spillway. Design features of the spillway are presented in Figure 2. As indicated, the spillway is a trapezoidal shaped, concrete and masonry chute channel cut into rock at the left abutment. Flows are controlled by a small, concrete, flat-crested weir.

- b) Outlet Conduit. The outlet conduit design is partially presented in Figure 3. The outlet consists of an 18-foot long section of 36-inch diameter BCCMP that discharges into an 18-foot long concrete box culvert. Control is provided by two sets of stop logs set in a concrete vault accessible from the embankment crest. In addition, a steel plate covers the inlet end of the conduit and must be manually removed by diver in order for flow to enter the conduit unobstructed. Figure 3 depicts this general scheme showing the approximate correct location of the stop logs and BCCMP inlet pipe.
- c) Specific Design Data and Criteria. No specific design data or information relative to design procedures are available other than the general notes contained in the available drawings.

2.2 Construction Records.

No formal records or correspondence pertaining to the circa 1906 construction of the original facility are available. There are, however, photographs, inspection reports and miscellaneous correspondence which partially document the major modifications that occurred in 1934, 1937, and 1967.

2.3 Operational Records.

No records of the day-to-day operation of the facility are available.

2.4 Other Investigations.

No formal investigations other than frequent state inspections have been performed on this facility subsequent to its construction. Significant modifications were made to the structure in 1934, 1937, and 1967; however, aside from drawings contained in PennDER files, no other data are available.

2.5 Evaluation.

The available data are considered sufficient to make a reasonable Phase I evaluation of the facility.

SECTION 3 VISUAL INSPECTION

3.1 Observations.

- a. General. The overall appearance of the facility suggests that the dam and its appurtenances are in good condition.
- Embankment. Observations made during the visual inspection indicate the embankment is in good condition (see Photograph 1). No evidence of seepage through the downstream embankment face, sloughing, excessive settlement, animal burrows, or signs of major maintenance neglect were observed. Minor erosion along the upstream embankment face and behind the upstream portion of the right spillway wingwall were noted, but, are not considered significant at this time. Provisions for erosion protection along the upstream embankment slope were apparently not included in the original design or in the design for the 1934 modifications. Minor cracks observed along the concrete cap that partially covers the crest were recently filled and adequately repaired. Some of the dense brush located along the downstream embankment toe had to be cut back by the inspection team in order to achieve a clear view of this area (see Photographs 2 and 3). It is suggested that control of this excess vegetation be specifically included as part of future routine maintenance.

The adjacent earth dike at the right abutment appears to be maintained only in that it serves as a footpath to the adjoining woods (see Photograph 4). Field measurements indicate settlement near the embankment-dike junction on the order of six inches. Maintenance of the dike is not as critical as is maintenance of the main embankment. It is, however, recommended that this minor appurtenance not be neglected in that it does serve to protect the embankment during high pools preventing water from flowing along the downstream embankment toe, eroding support and ultimately threatening the integrity of the structure.

c. Appurtenant Structures.

- 1. Spillway. The visual inspection revealed that the spillway is in good condition (see Photographs 5 and 6). Recently repaired cracks are in evidence along the right wingwall which also displayed some minor erosion along its upstream embankment side.
- 2. Outlet Conduit. The outlet conduit is considered to be in good condition. The interior of the concrete box culvert was inspected from the outlet end to the stop logs, with some minor spalling observed (see Photograph 8). New stop logs have been installed and the vault structure was generally observed to be in good condition (see Photograph 7).

- d. Reservoir Area. The general area surrounding Pecks Pond is comprised of gentle to moderate slopes that are heavily wooded. The pond floods a flat, swampy area which extends beyond its northern and eastern shores. The southern and western edges of the lake are lined with state owned seasonal dwellings that are annually leased to the public.
- e. Downstream Channel. The channel immediately downstream from Pecks Pond Dam is characterized as a rock lined streambed, 30 to 50 feet wide, set between moderate to steep, heavily wooded slopes. Between 500 and 1,500 feet downstream from the dam, six to seven seasonal dwellings are located about four feet above the streambed. It is estimated that, during the peak season and on weekends, as many as 20 to 30 lives could be lost and significant damage incurred in this area alone as the result of an embankment breach. Consequently, the hazard classification of the facility is considered to be high.

3.2 Evaluation.

The overall condition of the facility is considered to be good. Some minor deficiencies were noted including; 1) minor erosion along the upstream embankment slope and behind the upstream right spillway wingwall, 2) minor spalling associated with the outlet conduit, 3) lack of adequate maintenance of the small earth dike along the right abutment and, 4) excess vegetation encroaching upon the downstream embankment toe.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure.

Pecks Pond Dam is essentially a self-regulating facility. Excess inflows are automatically discharged through the emergency spillway. Under normal operating conditions, the outlet conduit stop logs are in place and the inlet end of the pond drain is capped. No formal operations manual is presently available.

4.2 Maintenance of Dam.

The facility is maintained on an unscheduled basis by PennDER, Bureau of Forestry personnel. Major maintenance is usually performed in accordance with recommendations presented by state inspectors from the PennDER, Bureau of Operations, who are charged with inspecting the facility annually. No formal maintenance manual is presently available.

4.3 Maintenance of Operating Facilities.

See Section 4.2 above.

4.4 Warning System.

No formal warning system is presently in effect.

4.5 Evaluation.

No formal operations or maintenance manuals are presently available for this facility although a program of regular inspection and informal maintenance has been established. Discussions with a state representative indicated that the PennDER, Bureau of Design, is prepared to develop such manuals including a formal warning system.

SECTION 5 HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data.

No formal design reports, calculations, or miscellaneous design data are available for this facility.

5.2 Experience Data.

Daily records of reservoir levels and/or spillway discharges are not available. The general appearance of the facility suggests adequate past performance. Correspondence indicates that the facility has historically been overtopped in the vicinity of the low dike adjacent to the right abutment.

5.3 Visual Observations.

On the date of inspection, no conditions were observed that would indicate the spillway could not perform satisfactorily during a flood event within the limits of its design capacity.

5.4 Method of Analysis.

The facility has been analyzed in accordance with the procedures and guidelines established by the U. S. Army, Corps of Engineers, Baltimore District, for Phase I hydrologic and hydraulic evaluations. The analysis has been performed utilizing a modified version of the HEC-1 program developed by the U. S. Army, Corps of Engineers, Hydrologic Engineering Center, Davis, California. Anaytical capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis.

- a. Spillway Design Flood (SDF). In accordance with procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I investigations, the Spillway Design Flood (SDF) for Pecks Pond Dam is the PMF (Probable Maximum Flood). This classification is based on the relative size of the dam (intermediate), and the potential hazard of dam failure to downstream developments (high).
- b. Results of Analysis. Pecks Pond Dam was analyzed under normal operating conditions. That is, the reservoir was initially at its normal pool or spillway elevation of approximately 1360.0 feet, with the spillway weir discharging freely. The

outlet conduit was assumed to be nonfunctional for the purpose of analysis, since the flow capacity of the conduit is such that it would not significantly increase the total discharge capabilities of the dam and reservoir. The spillway consists of a rock lined, trapezoidal shaped, concrete and masonry chute channel with discharges controlled by a concrete flat-crested weir. All pertinent engineering calculations relative to the evaluation of Pecks Pond Dam are provided in Appendix D.

Overtopping analysis (using the modified HEC-1 computer program) indicated that the discharge/storage capacity of Pecks Pond Dam can accommodate only about 13 percent of the PMF (SDF) prior to embankment overtopping. Under PMF conditions, the dam was inundated for about 26 hours, by depths of up to 4.0 feet. Under 1/2 PMF conditions, the dam was overtopped for about 22 hours, with a maximum depth of about 2.3 feet (Appendix D, Summary Input/Output Sheets, Sheet E). Since the SDF for Pecks Pond Dam is the PMF, it can be concluded that the dam has a high potential for overtopping, and thus, for breaching under floods of less than SDF magnitude.

As Pecks Pond Dam cannot safely accommodate a flood of at least 1/2 PMF magnitude, the possibility of embankment failure under floods of less than 1/2 PMF intensity was investigated (in accordance with Corps directive ETL-1110-2-234). Several possible alternatives were examined, since it is difficult, if not impossible, to determine exactly how or if a specific dam will fail. The major concern of the breaching analysis is with the impact of the various breach discharges on increasing downstream water surface elevations above those to be expected if breaching did not occur. It was assumed in the routing of the outflows downstream that the streambed was initially dry.

Failure of the dam was assumed to commence upon overtopping. This assumption minimizes the base stream flow in the downstream channel and, thus, simulates the least severe downstream conditions that could occur prior to dam failure. It is noted that, because of the existence of its concrete cap and corewall, Pecks Pond Dam could likely sustain some depth of overtopping prior to breaching. However, such conditions would tend to increase the base stream flow in the downstream channel and create an even more severe scenario.

Three breach models were analyzed for Pecks Pond Dam. The breach sections chosen were considered to be the maximum probable failure section, an average possible failure section, and the minimum probable failure section. The failure time (total time for breach section to reach its final dimensions) for both the maximum and average sections was 1-hour, while that for the minimum section was 0.5 hours (Appendix D, Sheet 13).

The peak breach outflows (resulting from 0.15 PMF conditions) ranged from about 1990 cfs (cubic feet per second) for the minimum section failure scheme to about 7,420 cfs for the maximum

section model. The peak outflow resulting from the average section breach model was about 3,990 cfs, as compared to the non-breach 0.15 PMF peak outflow of approximately 570 cfs (Summary Input/Output Sheets, Sheets I and E).

The principal center of damage investigated is located along the banks of Bush Kill Creek, just upstream from the Route 402 bridge (see Figure 1, Sections 2 and 3). Within the reach, the 0.15 PMF non-breach outflow remained within the banks of the stream, and thus, below the damage levels of the nearby dwellings. At Section 2, the peak water surface elevation resulting from the maximum section breach scheme was about 6.4 feet above the non-breach level, and about 2.0 feet above the damage level of the nearby residence. At Section 3, the increase in water level resulting from the maximum section breach model was about 5.9 feet above the non-breach level, and was about 2.9 feet above the damage level of the surrounding houses (Appendix D, Sheet 15).

It must also be noted that under 1/2 PMF non-breach conditions, the peak water surface elevations were close to the damage levels of the dwellings within the reach. Therefore, should the dam fail under 1/2 PMF conditions, there would most likely be a significant rise in the water level, and thus, significant damage at the downstream residences.

The consequences of dam failure can better be envisioned if not only the increase in the height of the floodwave is considered, but also the great increase in momentum of the larger and probably swifter moving volume of water. In addition, the possibility of a near instantaneous failure due to the collapse of the concrete corewall was not considered in this analysis, although such a failure is possible and would most likely result in higher downstream water surface elevations. Therefore, the failure of Pecks Pond Dam would most likely lead to increased property damage and possibly loss of life in the downstream region.

5.6 Spillway Adequacy.

As presented previously, Pecks Pond Dam can accommodate only about 13 percent of the PMF (SDF) prior to embankment overtopping. It has been shown that should a 0.15 PMF or larger event occur, the dam would be overtopped and could possibly fail, resulting in property damage and possibly loss of life in the downstream region. Therefore, the spillway is considered to be seriously inadequate.

SECTION 6 EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. Embankment. Based on visual observations, the embankment appears to be in good structural condition. Erosion observed along the upstream embankment face and behind the upstream portion of the right spillway wingwall was the only noteworthy deficiency in evidence and is considered minor. However, the damaged area behind the wingwall should be repaired and erosion protection provided.

b. Appurtenant Structures.

- l. Spillway. The spillway appears to be structurally well designed, firmly founded in rock and currently in good condition. Other than the previously mentioned minor erosion behind the upstream portion of the right spillway wingwall, no significant deficiencies were observed.
- 2. Outlet Conduit. The outlet conduit appears to be in good structural condition. Minor concrete spalling at its downstream end was noted, but, is not considered to be significant at this time.

6.2 Design and Construction Techniques.

No information is available that details the methods of design and/or construction of the original facility or its modifications in 1934, 1937, or 1967.

6.3 Past Performance.

There are no records documenting any events during which the present facility has not adequately functioned.

6.4 Seismic Stability.

The dam is located in Seismic Zone No. 1 and may be subject to minor earthquake induced dynamic forces. As the facility appears to be well constructed and sufficiently stable, it is believed that it can withstand the expected dynamic forces; however, no calculations and/or investigations were performed to confirm this belief.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. <u>Safety</u>. The results of this investigation indicate the facility is in good condition.

The size classification of the facility is intermediate and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility is the PMF (Probable Maximum Flood). Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only 13 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

- b. Adequacy of Information. The available data are considered sufficient to make a reasonable Phase I assessment of the facility.
- c. <u>Urgency</u>. The recommendations listed below should be implemented immediately.
- d. <u>Necessity for Additional Investigations</u>. Additional hydrologic/hydraulic investigations are currently deemed necessary as stated below.

7.2 Recommendations/Remedial Measures.

It is recommended that the owner immediately:

- a. Retain the services of a registered professional engineer experienced in the hydrology and hydraulics of dams to further assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.
- b. Repair the minor eroded area behind the right spillway wingwall and provide protection against future erosion damage.
- c. Develop formal manuals of maintenance and operation for the facility. The manuals should include provisions for the routine regular maintenance of the small earth dike located along the right abutment and control of vegetation immediately below the downstream embankment toe.

d. Develop a formal warning system to notify downstream residents should hazardous conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

APPENDIX A

VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES

CHECK LIST VISUAL INSPECTION F HASE 1

COUNTY Pike HAZARD CATEGORY High TEMPERATURE 40° @ 10:00 a.F	James A. Griffiths - PennDER	PAGE 1 OF
STATE Pennsylvania PENNDER# 52-15 nd SIZE Intermediate nd WEATHER Windy and Cold 1359.6 feet M.S.L. N/A M.S.L.	OWNER REPRESENTATIVES None	
NAME OF DAM Pecks Pond Dam NDI # PA — 00754 TYPE OF DAM Earth, Concrete and Masonry TYPE OF DAM Earth, Concrete and Masonry 14 October 1980 and DATE(S) INSPECTION 14 November 1980 POOL ELEVATION AT TIME OF INSPECTION TAILWATER AT TIME OF INSPECTION	B. M. Mihalcin D. J. Spaeder D. L. Bonk K. H. Khilji	RECORDED BY D. L. Bonk

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA - 00754
SURFACE CRACKS	None observed in the earth portion of the embankment. Evidence of cracks in the concrete cap atop the crest was observed; however, the cracks have recently been repaired and filled.
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.
SLOUGHING OR ERO- SION OF EMBANK- MENT AND ABUTMENT SLOPES	Minor erosion as evidenced by a bare, unvegetated shoreline was observed along the upstream embankment face. Minor erosion was also observed behind the right spillway wingwall.
VERTICAL AND HORI- ZONTAL ALIGNMENT OF THE CREST	Vertical - good. Horizontal - good.
RIPRAP FAILURES	None. The upstream embankment face appears to be unprotected.
JUNCTION OF EMBANK- MENT AND ABUT- MENT, SPILLWAY AND DAM	The embankment abuts rock at its left or spillway end. The right end is connected to a small dike about 130 feet long with a maximum height of 2 feet. The dike apparently provides freeboard to a low area right of the main dam.

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA	00754
DAMP AREAS IRREGULAR VEGETA- TION (LUSH OR DEAD PLANTS)	The area beyond the downstream toe of the dam is covered with high brush and several large trees which should be trimmed on a regular basis.	ush
ANY NOTICEABLE SEEPAGE	. None observed.	
STAFF GAGE AND RECORDER	None observed.	
DRAINS	None observed.	

PAGE 3 OF 8

OUTLET WORKS

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA - 00754
INTAKE STRUCTURE	Submerged, not observed. Intake reportedly covered with steel plate.
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	Concrete box culvert in good condition. Some minor spalling observed at downstream end.
OUTLET STRUCTURE	Flow through the outlet is regulated via stop logs located in a concrete vault within the embankment that is accessible from atop the embankment crest.
OUTLET CHANNEL	Discharges into rock lined spillway channel about 30 feet below embankment.
GATE(S) AND OPERA- TIONAL EQUIPMENT	Wooden stop logs accessible from the embankment crest.

PAGE 4 OF 8

EMERGENCY SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA 00754
TYPE AND CONDITION	Trapezoidal shaped, concrete and masonry chute channel spillway in good condition.
APPROACH CHANNEL	Shallow, rock lined channel approximately 22 feet long.
SPILLWAY CHANNEL AND SIDEWALLS	Right wingwall is constructed of concrete and masonry currently in good condition. Recent repairs are evident. Spillway weir and channel appear to be constructed with hand placed masonry that has been somewhat covered with concrete. Left side of spillway abuts rock. Some minor erosion behind the right spillway wingwall was observed.
STILLING BASIN PLUNGE POOL	None.
DISCHARGE CHANNEL	Channel cut in rock immediately below spillway weir transforms into a smaller stream lined with loose boulders about 50 to 100 feet beyond the embankment.
BRIDGE AND PIERS EMERGENCY GATES	A small wooden footbridge constructed on masonry piers and abutments is located about 100 feet downstream of the spillway crest.
	DAREROER

PAGE 5 OF 8

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA	NDI# PA - 00754
TYPE AND CONDITION	N/A.	
APPROACH CHANNEL	N/A.	
OUTLET STRUCTURE	N/A.	
DISCHARGE CHANNEL	N/A.	
		PAGE 6 OF 8

INSTRUMENTATION

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00754
MONUMENTATION SURVEYS	None.	
OBSERVATION WELLS	. None.	
WEIRS	None.	
PIEZOMETERS	None.	
OTHERS		

PAGE 7 OF 8

RESERVOIR AREA AND DOWNSTREAM CHANNEL

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI#PA. 00754
SLOPES: RESERVOIR	Moderate to steep, heavily forested slopes with low lying swampy areas along the northern and eastern flanks of the lake.
SEDIMENTATION	None observed.
DOWNSTREAM CHAN- NEL (OBSTRUCTIONS, DEBRIS, ETC.)	The channel immediately downstream is characterized as a rock lined streambed, 30 to 50 feet wide, set between moderate to steep, heavily wooded slopes. The first channel obstruction is a small concrete bridge for Pennsylvania Route 402 located about 950 feet downstream of the dam.
SLOPES: CHANNEL VALLEY	Narrow (30 to 50 feet wide) for first 1000 feet below dam. Valley broadens significantly for next 9000 feet at which point stream enters Pickeral Pond.
APPROXIMATE NUMBER OF HOMES AND POPULATION	Between 500 and 1,500 feet downstream of the dam, six to seven seasonal dwellings are located about four feet above the streambed. Approximate population = 20 to 30 persons (during peak season and on weekends).

PAGE BOF B

PECKS POND DAM GENERAL PLAN - FIELD INSPECTION NOTES

						,					,											,					
										===																	
===												===			=		===					===	===				
								=																			===
		===			===	===		\equiv				===					===	===				===					
																				4							
												SI								05							===
		==		==	=	===				==	=	Ü	=	1	==				- 4		====	===	===		===		
											T	3		Z					Ð	. 11							
		\equiv	===			E						E							Z	Z	===						
												Ū								4							
												10 Kg	RIGHT	ABU						- 40							
==	===	\equiv	⊨≡	\equiv		ऻ			₩	=		Z		Z		\equiv				7	=	==					
										¥	<i>f</i> =	g.							- 10								
									Ш	PIF		¥ U							4	3							::::
		\equiv		===	===	E			疅	7			= :					- 41 - (Ň		===			E		
										3		12						Į.	2	7							
														=				7		HORIZONTA							
													_	Ξ				SC A.L.	2								
\equiv	=		5		U,	=					=	H W										=					
			7		H H						I	18	361.8														===
==		\equiv	\leq		- 13		==	\equiv			1	5	172				===					==					===
						7						o															
==		二			Σ			=	#==	=	==		111	===		==					=	⊨	\equiv				
					4							Je															
						ō	\equiv	\equiv		===	7.						\equiv		==			≡	===				
			2		Ë	-								Ш													==
筺					C				!	==		=			===								=	===		===	::-:
			\times		П						1														::::		==:
		=	브				-	=		=	##	==		=	==		===		==	=			=	==	==	===	
					: <u> </u>						I																
	===		U,		5		==	\equiv	==		7		=	孟	E		===	≡		==	===			1:==		===	
			X		V da	- Li								ш													
			7			==	==	〓	= =					3			===	==		===	===	===	-	===		2211	: : :
									1					N M									E==	1			
			Ħ	ऻ	-	==	ऻ	\equiv	5	\equiv		=	=	à	==		=	⊨≡					-	===		====	
			EE						F.,	M.			Z	Σ										1			<u>: : : :</u>
===		=	⊨	==		===	⊨		ŧË	Q.			==	ш	ΪΞΞ		===		===	=			==		::::		
									王名	1568.5														E			::::
		=							₩		} ‡									-	==					 	
									Š	교	Ħ										===						:::`
									E	\equiv	7			Ŋ					==					! ::::		 	
		\equiv							8	0					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									F.:::		1 1 1 1	::::
=		=		=					- -					9	Q	ΞΞ	1			===	===	<u> </u>			::::	<u> </u>	<u>::::</u>
									φ					Z	8							1		Fig.			::::
									<u> </u>		F			3	<u></u>	::::					F		1:-::				_ : :
		E								:::::		-			μ -	L			1				12.22				
					<u> </u>		-		1		===	<u> </u>	===	3	1	Z	<u> </u>	-		::::		1::::	1		<u> </u>		<u>.</u>
			‡:: <u>:</u>				E		<u> </u>				سندا			A				<u> </u>							
								-		=	-				- 1	宇	1		1	 	 	1	1::::	 	1 : : : :	 	
	<u> : : : : : : : : : : : : : : : : : : :</u>						<u> </u>					F.:::	<u> </u>			13				:::	1::::	::::	<u> </u>				•
		=		1::::		E		1	: :::					<u> </u>	_	7			<u> </u>	ļ	<u> </u>	1::::	<u> </u>	ļ:			<u>-</u>
			1::::		-	ļ		Ħ)		•	13	<u> </u>	1		1::::		1	 			1::::			1	
	1:::::	<u> </u>	1:::::	1::::	t::::	1::::	1::::	-			1:::1	N .	1) :::	1::::	:::-	1::::	<u> </u>	1.:::	ļ::	1::::	1	-				
										8		8		5													:
		-																				1::::					
[,			F	1	1::::	1:	111111	1:::::		1::::		1::	1	1		1::::		1::::	1::::	1::::	1	1		1::1	

APPENDIX B ENGINEERING DATA CHECKLIST

CHECK LIST ENGINEERING DATA PHASE I

NAME OF DAM Pecks Pond Dam

нем	REMARKS NDI#PA- 00754
PERSONS INTERVIEWED AND TITLE	Jack M. Hugendubler - PennDER Bureau of Design
REGIONAL VICINITY MAP	See Appendix E, Figure 1.
CONSTRUCTION HISTORY	Originally constructed around 1906 by the Pennsylvania State Forest Commission. Design by Simon B. Elliot (Commission member). Modified in 1934, 1937, and 1967.
AVAILABLE DRAWINGS	Drawings contained in PennDER files. See Appendix E, Figures 2 and 3.
TYPICAL DAM SECTIONS	See Appendix E, Figure 2.
OUTLETS: PLAN DETAILS DISCHARGE RATINGS	See Appendix E, Figure 3. Discharge rating curves are not available.

PAGE 1 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA · 00754
SPILLWAY: PLAN SECTION DETAILS	See Appendix E, Figure 2.
OPERATING EQUIP. MENT PLANS AND DETAILS	None.
DESIGN REPORTS	None available.
GEOLOGY REPORTS	None available.
DESIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	None available.
MATERIAL INVESTIGATIONS: BORING RECORDS LABORATORY TESTING FIELD TESTING	None available.

PAGE 2 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA - 00754
BORROW SOURCES	Not known.
POST CONSTRUCTION DAM SURVEYS	None.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	No records of formal engineering studies or reports are available. Records of annual state inspections are contained in PennDER files.
HIGH POOL RECORDS	Not known.
MONITORING SYSTEMS	None.
MODIFICATIONS	Extensive repairs to curtail seepage performed in 1934. Outlet conduit installed in 1937 and modified in 1967.

PAGE 3 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA - 00754
PRIOR ACCIDENTS OR FAILURES	None recorded.
MAINTENANCE: RECORDS MANUAL	Standard PennDER Operations and Maintenance Manual is reportedly being prepared by the PennDER, Bureau of Design, but will not be finalized until this inspection report becomes available.
OPERATION: RECORDS MANUAL	Self-regulating.
OPERATIONAL PROCEDURES	The relatively simplistic operation of the stop log mechanisms is to be outlined and contained within the Operations and Maintenance Manual.
WARNING SYSTEM ANDIOR COMMUNICATION FACILITIES	Being prepared by PennDER, Bureau of Design.
MISCELLANEOUS	

PAGE 4 OF 5

GAI CONSULTANTS, INC.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

NDI ID # PA-00754 PENNDER ID # 52-15

SIZE OF DRAINAGE AREA: 9.2 square miles
ELEVATION TOP NORMAL POOL: 1360.0 STORAGE CAPACITY: 1,100 acre-feet
ELEVATION TOP FLOOD CONTROL POOL: STORAGE CAPACITY:
ELEVATION MAXIMUM DESIGN POOL: STORAGE CAPACITY:
ELEVATION TOP DAM: 1362.3 STORAGE CAPACITY: 2,140 acre-feet
SPILLWAY DATA
CREST ELEVATION: 1360.0 feet.
TYPE: Trapezoidal, concrete and masonry chute channel.
CREST LENGTH: 30 feet.
CHANNEL LENGTH: Approximately 50 feet (including approach).
SPILLOVER LÓCATION: Left abutment.
NUMBER AND TYPE OF GATES: None.
OUTLET WORKS
TYPE: 36-inch diameter BCCMP flows into a concrete box culvert.
LOCATION: Near center of embankment.
ENTRANCE INVERTS: Not known.
EXIT INVERTS: 1355.1 feet.
Steel plate affixed to inlet end of EMERGENCY DRAWDOWN FACILITIES: BCCMP. Drawdown initiated by manuall removing plate (via diver). Drawdown
HYDROMETEOROLOGICAL GAGES controlled by stop logs.
TYPE: None.
LOCATION:
RECORDS:
MAXIMUM NON-DAMAGING DISCHARGE: Not known.

APPENDIX C
PHOTOGRAPHS

PECKS POND DAM PHOTOGRAPH KEY MAP

View of the embankment downstream masonry face as seen from the left abutment. PHOTOGRAPH 2

Close-up view of the embankment downstream masonry face looking toward the left abutment. PHOTOGRAPH 3

View of the junction of the embankment-right abutment and the small adjoining earth dike that extends into wooded area. PHOTOGRAPH 4

View, looking downstream, of the spillway channel and masonry sidewall as seen from the embankment crest. PHOTOGRAPH 6

View of the interior of the concrete vault along the embankment crest that houses the stop log mechanisms. PHOTOGRAPH 7

View of the discharge end of the outlet conduit located along the downstream embankment face. PHOTOGRAPH 8

APPENDIX D HYDROLOGIC AND HYDRAULIC ANALYSES

PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), time(s) of occurrence the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequences resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir.
- c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.
- d. Routing of the failure hydrograph(s) to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevation(s) of failure hydrograph(s) for each location.

HYDROLOGY AND HYDRAULIC ANALYSIS DATA BASE

NAME	OF	DAM: _	PECKS	POND D	AM				·	
PROB	ABLI	MAXIMU	4 PRECIP	ITATIO	N (PMP)	=	21.5	INCHES/24	HOURS	(1)

STATION	1	2	3
STATION DESCRIPTION	PECKS POND DAM		
DRAINAGE AREA (SQUARE MILES)	9.2		
CUMULATIVE DRAINAGE AREA (SQUARE MILES)	-		
ADJUSTMENT OF PMF FOR DRAINAGE AREA LOCATION (%)	Zone 1		
6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS	111 123 133 142		
SNYDER HYDROGRAPH PARAMETERS			
ZONE (2) C _p (3)	1 0.45		
Ct (3) L' (MILES) (4)	1.23 2.6		
t _p = C _t (L') ^{0.6} (HOURS)	2.18		
SPILLWAY DATA			
CREST LENGTH (FEET) FREEBOARD (FEET)	30 2.3		

⁽¹⁾ HYDROMETEOROLOGICAL REPORT 33, U.S. ARMY CORPS OF ENGINEERS, 1956.
(2) HYDROLOGIC ZONE DEFINED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT, FOR DETERMINATION OF SNYDER COEFFICIENTS (Cp AND Ct).

⁽³⁾ SNYDER COEFFICIENTS

⁽⁴⁾ L' = LENGTH OF LONGEST WATERCOURSE FROM RESERVOIR INLET TO BASIN DIVIDE.

SUBJECT DAM SAFETY INSPECTION PECKS POND DAM CONSULTANTS, INC. PROJ. NO. _ 80-238-754 DATE ___ 11-5-80 Engineers • Geologists • Planners CHKD. BY JRL DATE 11-18-50 SHEET NO. ___ \ OF __ /5__ **Environmental Specialists**

DAM STATISTICS

HEIGHT OF DAM = 7 FT

(FIELD MEASURED; OUTLET INVEST TO TOP OF DAM - JEE NOTE 1)

NORMAL POOL STORAGE CAPACITY = 1100 AC-FT

(HEC-1)

MAXIMUM POOL STORAGE CARREITY = 2140 AC-FT (HEC-1) (@ TOP OF DAM)

DRAINAGE AREA = 9.2 SQUARE MILES.

(PLANMETERED ON USGS TOPS QUADS: PECKS POND, PROMISED LAND, PA)

ELEVATIONS:

TOP OF DAM (DESIGN) = 1361.9 (FIG. Z SEE NOTE 2) = 1362.3 TOP OF DAM (FIELD) ~ 1360.0 (FIG. Z ; SEE NOTE 2. NORMAL POOL (AIG. Z ; ISE NOTE 2 SPILLMAY CREST ≥ 1360.0 UPSTREAM INLET INVERT (DESIGN) = NOT KNOWN (FIG. 3, FOR OF DAM) DOWNSTREAM OUTLET INVERT (DESIGN) ≥ 1354.6 DOWNSTREAM OUTLET INVERT (FIELD) = 1355.1 = 1352.0 (FIG. Z) SEE METE ? STREAMBED @ DAM CENTERLINE LOW TOP OF ADJACENT DIKE (FIELD) = 1361. 8

SUBJECT	DAM SAFETY	INSPECTION	
	PECKS PON	Dam	
BY	DATE	425-856-08 ON LORE	CONSULTANTS, INC.
CHKD. BY JEL	DATE 11-18-80	SHEET NO Q OF	Engineers • Geologists • Planners Environmental Specialists

NOTE 1: "TOP OF DAM" HERE AND ON ALL SUBSEQUENT CALCULATIONS
SHEETS REFERS TO THE FIELD MEASURED LOW AREA IN THE EMPLAUKMENT
CLEST.

NOTE 2: THE DEVIGN DRAWNIGS ARE BASED ON A NORMAL POOL

OR SPILLIAY ELEVATION OF 98.5. HOWEVER, THE USES TOPO

OND FOR PENS POND, PA, INDICATES THAT THE NORMAL POOL

ELEVATION IS AT ELEVATION 1360. THEREFORE, IT WILL BE ASSUMED

THAT THE SPILLIANT CREST IS AT ELEUSTIAN 1360.0, AND 1361.5 FT

(OR 1360-98.5 FT) WILL BE ADDED TO THE ELEVATIONS GIVEN

ON THE DESIGN DRAWNISS. IT IS NOTED MERE THAT THE

ELEVATIONS USED IN THIS ANALYSIS ARE CONSIDERED ESTIMATES,

AND ARE NOT NECESSARILY ACCURATE.

DAM CLASSIFICATION

DAM SIZE: INTERMEDIATE (REF 1, TABLE 1)

HAZARD CLASSIFICATION: HIGH (FIELD OSSERVATION)

REQUIRED SDF: PMF (REF 1, TABLE 3)

HYDROGRAPH PARAMETERS

Cp= 0.45

(SUPPLIED DY CO.E., ZONE 1,
DELAMARE RIVER BASIN)

C= 1.23

SUBJECT _____ DAM SAFETY INSPECTION PECKS POND DAM

255 DATE 10-31-80 PROJ. NO. 80 - 238-754

CHKD. BY JRL DATE 11-18-80 SHEET NO. 3 OF 15

Engineers • Geologists • Planners Environmental Specialists

L' = LENGTH OF LONGEST WATERCOURSE FROM END OF RESERVOIR TO BASIN DIVIDE = 2.6 MILES.

(NOTE: SINCE L'CA, THE LENGTH OF THE CONSETT WATERCOURSE FROM THE RESERVOIR OUTLET TO A POINT OPPOSITE THE BASIN CENTROID, IS LESS THAN THE RESERVOIR LENGTH, THE SNYDER STANDARD LAS IS ADDROXIMATED AS TO = CE (L')0.6 HOURS (AS PER CO.E.). STREAM LENGTHS WERE MEASURED ON THE PECKS POND, PA, USGS 7.5' TOPO QUAD. HYDROGRAPH VARIABLES USED HERE ARE DEFINED IN REF. 2, IN SECTION ENTITIED "SATURE SYNTHETIC UNIT HIDROGORPH.")

RESERVOIR STORAGE CAPACITY

RESERVOIR SURFACE AREAS:

- SURFACE AREA (S.A.) @ NORMAL POOL (ELEU 1360.0) = 420 ACRES

- S.A. @ ELEN 1380 = 1040 ACRES

(PLANIMETERED ON USSS TOPO QUAD, PECKS POUR, PA)

S.A. @ TOP OF DAM (ELEV. 1360.3) = 491 ACRES

(BY LINEAR INTERPOLATION)

Engineers • Geologists • Planners Environmental Specialists

- S.A. @ ELEV 1359.2 = 300 ACRES
- STORAGE @ ELEV 1359.2 = 264 × 106 GALLONS
= 810 ACRE-FT (ORIGINAL NORMAL POOL)

NOTE: THE STORAGE VOLUME AND SURFACE AREA OF THE RESERVOIR AT THE CIRIGINAL NORMAL POOL WERE OBTAINED FROM "REPORT UPON THE PECKS PIND DAM OF STATE FORESTRY COMMISSION", HARRISEURS, PA, OCTORER 1919, FOUND IN PENDDER FILES. ACCORDING TO OTHER CORRESPONDENCE FOUND IN THE PERMIDER FILES, AND ACCORDING TO FIGURE & THE SPILLWAY CREST OR NORMAL POOL WAS RAISED BY 0.8 FEET IN 1934, OR TO ELEVATION 1360.

"ZERD-STORAGE ELEVATION: & ELEV 1359.2, V= 3 HA (MEMOD)

(ORIGINAL NORMAL POOL)

WHERE V = VOLUME = 810 AC-FT

H = MAXIMUM DEPTH OF RESERVOIR, IN FT,

A = SURFACE AREA = 300 ACRES

: $H = \frac{(3)(810)}{300} = \frac{8.1}{8.1} FT$, AND

ZERO - STARAGE ASSUMED AT 1359. 2 - 8.1 = 1351.1 FT

RESERVOIR ELEVATION - STORAGE RELATIONSHIP:

THE ELEVATION - STORAGE RELATIONSHIP IS CAMPUTED WITERNALLY
IN THE HEC-1 PROGRAM, BY USE OF THE COMIC METHOD, BASED ON THE
ELEVATION - SURFACE AREA DATA GIVEN ABOVE (SEE SUMMART INPIT OUTPUT
SHEETS). ALTHOUGH THE MINIMUM RESERVOIR ELEVATION DOES NOT NECESSACILY
OCCUR AT ELEVATION 1351.1, THIS VALUE DOES NOT SEEM UNREASONABLE, AND
IT MUST BE USED IN THE HEC-1 INPUT IN ORDER TO MAINTAIN A
STORAGE OF \$10 ACRE-FT AT ELEVATION 1359.2.

SUBJECT	DAM SAFET	TY INSPECTION	
BY	DATE	PROJ. NO. <u>90-238-754</u>	CONSULTANTS, INC.
CHKD BY JRL	DATE 11-18-80	SHEET NO. 5 OF 15	Engineers • Geologists • Planners Environmental Specialists

PMP CALCULATIONS

- APPROXIMATE RAINFALL INDEX = 01.5 INCHES

(CORRESPONDING TO A DURATION OF 24 HOURS

AND A DRAINAGE AREA OF 200 VOURTE MILES.)

(REF 3, FIG. 1)

- Assume DATA CORRESPONDING TO A 10-SQUARE MILE AREA MAY BE APPLIED TO THIS 9.2 SQUARE MILE BASIN:

DURATION (HRS)	PERCENT OF INDEX	Rainerce
6	111	
12	123	
24	133	
48	142	(REF. 3, FIG. 3)

HOP BROOK FACTOR (ADJUSTMENT FOR BASIN SHAFE AND FOR THE LESSER LIKELINOOD OF A SEVERE STORM CENTERING OVER A SMALL BASIN)
FOR A DRAINAGE AREA OF 9.0 SQUARE MILES IS 0.30.

(REF 4, p. 43)

SUBJECT		INSPECTION	
	PECKS For		CONSULTANTS, INC.
8Y	DATE	PROJ. NO	Engineers • Geologists • Planners
CHKD. BY JEL	DATE 11-18-80	SHEET NO OF	Environmental Specialists

SPILLWAY CAPACITY

CROSS-SECTION:

TOP OF WINSWALL

(TOP OF DAM)

SPILLWAY CREST
ELEV. 1360.0

LEFT
ABUTMENT

-NOT TO SCALE—

(LOOKING UPSTREAM)

PROFILE:

THE SPILLWAY CONSISTS OF A ROCK-LINED TRAPEZOIDAL - CHAPED CHUTE CHANNEL WITH DISCHARGES CONTROLLED DY A FLAT - CRESTED WEIR.

SUBJECT	DAM SAFETY PECKS POND		
BY		PROJ. NO	CONSULTANTS, INC.
CHKO. BY JRL	DATE 11-18-80	SHEET NO OF	Engineers • Geologists • Planners Environmental Specialists

DISCHARGE OVER THE WEIR CAN BE ESTIMATED BY THE RELATION

(REF 5, p. 5-23)

WHERE Q = DISCHARGE OVER THE WEIR, IN CFS,

C = DISCHARGE COEFFICIENT,

L = LENGTH OF WEIR CREST, IN FT,

H = TOTAL HEAD ON WEIR CREST, IN FT.

THE DISCHARGE COEFFICIENT IS ASSUMED TO BE ON THE OFFER OF 3.7

TO 3.3, AS OCTAINED FROM REF. 5, TABLE 5-3, FOR BROOD-CRESTED

WEIRS. THE TOTAL EFFECTIVE WEIR CREST LENETH IS 30 FT (SEE SHEET 6).

IT IS ASSUMED THAT DISCHARGE OVER THE LEFT ABUTMENT UP TO

ELEVATION 1360.3 (TOP OF DAM AND TOP OF RIGHT SPILLMAY WINEWALL)

OCCURS AT THE SAME VELOCITY AS THE DISCHARGE OVER THE WEIR. THEN

THE TOTAL SPILWAY DISCHARGE CAN DE ESTIMATED AS

$$Q_r = Q_\omega \left(\frac{A_T}{A_\omega} \right)$$
,

CHERE QT, AT REFER TO TOTAL SPILLWAY DISCHARGE AND FLOW AREA,

RESPECTIVELY,

AND QU, AW REFER TO DISCHARGE AND FLOW AREA ADONE THE LEIR DULY.

(HERE, THE AREA OF THE LEFT ABUTMENT UP TO ELEVATION) 1362.3

IS CONSIDERED AS PART OF THE "TOTAL" SPILLING . SEE CROSS-SECTION SKITCH, SHEET 6.)

APPROACH LOSSES ARE ASSUMED TO DE NECLESTIE MERE.

DAM SAFETY INSPECTION PECKS POND DAM

BY 275 DATE 11-3-80 PROJ. NO. 80-338-754

CHKD. BY JRL DATE 11-10-30 SHEET NO. 8 OF 15

Engineers • Geologists • Planners **Environmental Specialists**

SPILLWAY RATING TABLE:

	reservoir Elevation	н	c	Q.w	A w	AT	Q T
	(FT)	(FT)		(c#5)	(ετ 3)	(FT3)	(c=s)
	/360.0		-	_	-	-	0
	1360.5	0.5	2.7	29	15	16	30
	1361.0	1.0	3.0	90	30	38	100
	1361.5	1.5	3.2	176	45	50	200
	1362.0	2.0	3.3	280	60	69	J20
(مرمط	1362.3	2.3	3.3	345	69	80	400
	1362.5	a.5	3.3	391	び	88	460
	1362.7	2.7	3.3	439	81	96	520
	1363.0	3.0	<i>3</i> .3	514	90	108	620
	1363.5	3.5	<i>3.</i> 3	648	105	128	790
	1764.0	4.0	<i>3</i> .3	792	120	/48	980
	1365.0	5.0	<i>3</i> .3	1107	150	188	1390
	1366.0	6.0	<i>3</i> .3	1455	180	228	1840
,	1367.0	7.0	3.3	1834	210	268	2340

- 1 FROM REF 5, TABLE 5-3.
- @ Qu = CLH 3 , WHERE L = 30 FT.
- @ Aw = LH = 30H.
- 1 AT = H (30+[30+4.34] BELOW ELEV. 1368.3 AT = 80.4 + 39.9(H-2.3) ABOUT ELEV. 1363.3
- B QT = Qw (AT/Aw) , TO NEAREST 10 CFS.

SUBJECT	DAM SAFE	TY INSPECTION	
	PECKS PO	ND DAM	
BY	DATE	PROJ. NO. <u>80-238-754</u>	CONSULTANTS, INC.
CHKD. BY JRL	DATE 11-18-80	SHEET NO. 9 OF 15	Engineers • Geologists • Planners Environmental Specialists

EMBANKMENT RATING CURVE

ASSUME THAT THE EMBANKMENT BEHAVES ESSENTIALLY AS A BROAD-CRESTED WEIR WHEN OVERTOPPING OCCURS. THUS, THE DISCHARGE CAN BE ESTIMATED BY THE RELATIONSHIP

LENGTH OF EMPLANKMENT INUNDATED VS RESERVOIR ELEVATION:

	ELEVATION (FT)	LENGTH (ET)	
(NOW EAT	1361.8	0	
•	1362.0	10	
(POP OF)	1362.3	80	
	1362.4	305	
	1362.5	210	
	1362.6	420	
	1362.7	435	
	1363.0	470	
	1363.5	<i>ು</i>	
	1364.0	550	(FROM FIELD SURVET AND U.S.
	1365.0	585	TOPO JUND - PECKS POND, PA)
	1366.0	6 20	
	1367.0	650	

SUBJECT	DAM SAFETY INSPECTION	
	PECKS POND DAM	_
8Y	DATE 11-17-80 PROJ. NO. 80-738-754	_

CHKO. BY JRL DATE 11-18-80 SHEET NO. 10 OF 15

CONSULTANTS, INC.

Engineers • Geologists • Planners Environmental Specialists

Assume that incremental discharges over the embankment for successive reservoir elevations are approximately trapezoidal in cross-sectional flow area. Then any incremental area of flow can be estimated as $H_i \left[(\iota, +\iota_0)/2 \right]$, where $\iota_i = \iota_{ength}$ of embankment overtopped at higher elevation, $\iota_0 = \iota_{ength}$ at lower elevation, $\iota_i = \iota_{ength}$ at lower elevation, $\iota_i = \iota_{ength}$ are elevations. Thus, the total average flow-area uniquity head can be estimated as $\iota_i = \iota_{ength}$.

EMBANKMENT RATING TABLE:

RESERVOIR ELEVATION	e 4,	ړک	INCREMENTAL HEAD, H:	D INCREMENTAL FLOW AREA, L	Tome From AT	WE KNOWN HE	HI HI	9	<u>ම</u> දැ
(FT)	(ET)	(FT)	(FT)	(ET3)	(FT2)	(FT)			(CFS)
1361.8	٥		0.0	0.0	0.0	0.0	0.0	-	0
1362.0	10	0	0.2	1.00	1.00	0.10	0.004	2.93	0
1362.3	80	10	0.3	13.50	14.50	0.18	0.01	2.93	20
1362.4	205	80	0.1	14.25	28.75	0.14	0.01	2.93	30
1362.5	210	205	0.1	20.75	49.50	0.24	0.01	2.93	70
1362.6	420	210	0.1	31.50	81. OO	0.19	0.01	2.97	100
1362.7	435	420	0.1	42.75	123.75	0.28	0.01	2.99	190
1363.0	470	435	0.3	135.75	259.50	0.55	0.02	3.03	580
1363.5	SS	470	0.5	251.25	510.75	0.95	0.04	3.03	1500
1364.0	σ	كتى	0.5	271.25	782.00	1.42	0.06	3.04	2833
1365,0	SS	ಯಾ	1.0	567.50	1349.50	2.31	0.09	3.05	6260
1766.0	620	W	1.0	602.50	1952.00	3.15	0.13	3.25	10,570
1367.0	650	120	1.0	635.00	2587,00	J.98	0.16	2.36	15,790

[@] Hw = (Ar/L,)

I = DREADTH OF CREST; ASSUME THAT THE EMCAUKMENT CREST WINTH OF DS FEET IS REPRESENTATIVE OF THE ENTIRE INVUIDATED AREA.

SUBJECT _____ DAM SAFETY INSPECTION ______ PECKS POND DAM

PROJ. NO. 80-338-754

CHKD. BY JEL DATE 11-18-80

SHEET NO. 11 OF 15

Engineers • Geologists • Planners Environmental Specialists

TOTAL FACILITY RATING TABLE

Grome = aspectuar + GEMBOLIOTENST

	RESERVOIR ELEVATIONS (FT)	Q QSPILLINGY (CRS)	Q EMBAUNMENT (CPS)	Groval (cas)
				
	1360.0	0	-	0
	1360.5	30	-	30
	1361.0	100		100
	1361.5	200	-	200
	1362.0	320	0	320
(DAM)	1362.3	400	20	420
	1362.4	430*	30	460
	1362.5	460	70	530
	1362.6	490 *	100	590
	1362.7	520	190	710
	1363.0	620	580	1200
	1363.5	790	1500	2290
	1364.0	980	2830	3810
	1365.0	1396	6260	7650
	1366.0	1840	10,570	12,410
	1367.0	2340	15,790	18,130

^{* -} BY LINEAR INTERPOLATION.

O - FROM SHEET 8.

^{1 -} FROM SMEET 10.

SUBJECT	DAM SAFETY		
	PECKS POND	Dam	
BY	DATE	PROJ. NO. <u>80-238-754</u>	CONSULTANTS, INC.
CHKD. BY DL. A	DATE 12-1-80	SHEET NO. 13 OF 15	Engineers • Geologists • Planners

BREACH ASSUMPTIONS

TYPICAL BREACH SECTION:

HEC-I BREACHING ANALYSIS INPUT:

PLAN BRI	FACH BOTTOM DTH (FT)	MAX. BREACH DEPTH (=T)	SECTION SIDE-SCOPES	DREACH TIME (HC)
O MAX, DRENCH SECTION	100	7	5H:1V	1.0
@ AUG. BREACH SECTION	50	7	ə: I	1.0
3 MIN. BREACH SECTION	20	7	/:/	0.5

SUBJECT	PECKS POND CAM		
BY	DATE/2-/-80	PROJ. NO. 80-338-754	CONSULTANTS, INC
CHKD BY DLB	DATE /2-/-80	SHEET NO. 14 OF 15	Engineers • Geologists • Planners

THE BREACH ASSUMPTIONS LISTED ON SHEET 13 ARE
BASED ON THE SUGGESTED RANGES PROVIDED BY THE CO.E.
(BALTIMORE DISTRICT), AND ON THE PHYSICAL CONSTRAINTS OF
THE DAM AND SURROUNDING TERRAIN:

- DEPTH OF BREACH OPENING = 7 FT

 (TOP OF DAM TO INVERT OF OUTLET)
- LENGTH OF BREACHABLE EMBANKMENT = 170 FT (FIELD SURVEY)
- VALLEY BOTTOM WIDTH = 300 FT (FIELD OBJERNATION)

SUBJ	IECT	DAM SAFETY INSPECTION					
			PECKS POND	Dam			
BY	2275	DATE	12-4-80	PROJ. NO.	80-338-754		

SHEET NO. ___15__ OF __/5__

Engineers • Geologists • Planners **Environmental Specialists**

HEC-I DAM BREACHING ANALYSIS OUTPUT

RESERVOIR DATA: (MOER O. IS PMF BASE FLOW CONDITIONS)

PLAN NUMBER (SUEST)	ACTUAL MAX, FLOW DURING FAIL TIME (CFS)	CORRESPONDING TIME OF PERK (HRS)	INTERPOLATED OR MEC-1 ROUTED MAX. FLOW DURING FAIL TIME (CFS)	CORRESPONDING TIME OF REAK (HRS)		CORRESPONDING TIME OF PSOK (NPS)	TIME OF WITHING BREACH (HRS)
Ø	7421	46.0	742/	46.0	7421	46.0	45,0
@	3991	46.0	399/	46.0	3991	46.0	45.0
@	198 9	45.5	/989	45.5	1989	45.5	45.0

NOTE: THE O. ISPMF NON-BREACH PEAK OUTFLOW = 574 CFS

DOWNSTREAM ROUTING DATA: (WOER O.IS PMF BOX FLOW CONDITIONS)

PLAN NUMBER	PEAK FLOW (CES)	CORRESPONDING WATER SURFACE ELEVATION * (FT)	WATER SURFACE ELEVATION W/O BREACH ** (FT)	ELEVATION DIFFERENCE (FT)
OUTPUT @ SECTION	n 2 600 FT	D.S. FROM DAM		
0	7271	/349.0	1342.6	+6.4
0	3930	1346.9	1342.6	+4.3
3	2036	/345.1	1342.6	+ 2.5
OUTPUT @ SECTI	1013 3 ; 840 FT	DS FOOM JAM		
0	7232	1342.9	/337.0	r5.9
0	3974	1341.2	1337.0	+4.2
<u> </u>	2038	1339.5	/337.0	-2.5

^{*} FROM SUMMARY INPUT DUTPUT SHEETS, SHEET I.

DAMAGE LEVELS OF STRUCTURES @ SECTION 3 = 1340

^{**} FROM SUMMARY INPUT/OUTPUT SHEETS, SHEET E. NOTE: DAMAGE LEVELS OF STRUCTURES @ SECTION & = 1347

SAFETY INSPECTION DAM MAD PECKS POND CONSULTANTS, 12-5-80 PROJ. NO. 80-233-754 DATE Engineers • Geologists • Planners 12-6-80 CHKD. BY 255 DATE OF SHEET NO. **Environmental Specialists** SUMMARY INPUT/OUTPUT 0.440 1215. 241. 144. 60. **500** INITIAL AND CHISTANT RATHERAL ********* TAUTO 5,70 LUCAL ISTAGE HSTAN ALSMK 0.00 APPRUXIMATE CLAMA CUEFFICIENTS FROM GIVEN SHIDEN CP AND 1P ANE TC= 9.15 AND H=13.85 INTERVALS PERIOD KAIN ISAME 0.00 3.5 THAI C OVERTOPPING ANALYSIS CMS11. 4.19 HINNES, CPE ******** ISHOR H72 IPLT 0 JPRT 351. Z . Z . STRIC 1.00 EATIN 0.000 MULTI-PLAN ANALYSES TO BE PERFURNED WILDING I MYTICE 5 LKTICE 1 SPFE PMS NO N12 N74 H48 0.00 21.50 111.00 123.00 133.00 142.00 NWIT NYDRUGRAPH DATA 2.18 CP= .45 NTA= METHO SUB-AREA RUNUFF COMPUTATION JFLT 0 TRACE DAM SAFETT TARBECTIVA PECKS PUND DAM 0000 UVENTOPPING ANALTSIS 0000 15-NINUTE TIME STEP AND 72-HIUM STURE DURATION RT104 1.60 ŝ. ****** HYDROGRAPH DATA TRSDA TRSPC 9.20 0.00 HYDRUGRAPH 79 EMB-OF-PERIOD URBINATES, LAGE JUB SPECIFICATION PECFESSION DATA O LRUPT H ITAPE PRECIP DATA FND-OF-PERTOD COMP O LUSS DAIA STRKS 0.00 2 1ECCN F. P. D. SMAP 0.00 RESERVOIR INFLOR COMPUTATION Š. 1055 1047 JOPE.R 17 1COMP HT101. ******** TAREA 9.20 EXCS H S JSTA0 47k. 231. 01,TKR 0.00 .05 TURC RAIR E O RT108= STRKR 0.00 121. BASE FLOW PARAMETERS Perior IHYDG 2 2 ********* 14. FF MG.PA

24.42 22.04 2.39 5434hh. (620.31 560.31 61.31114423.473

ATK.

1

SUBJE	CT _)A	1					Ef S									EC,M		Ίζ	<u> </u>	<u></u>			_						7			
BY	W	<u>'</u> =	<u></u>	<u> </u>	_	D	ATI		_	13	2-	5	_	80	<u> </u>	_		PR	01	i. N	10.		80	<u>- 2</u>	.3	8	- 7	<u>54</u>		[<u></u>	<u>_</u>	o	NSI	JĽ.	TANT	S, IN
CHKD.	BY_	2	7.	<u>S</u> _		D	ΑT	E	_	/	<u>,2-</u>	<u>6-</u>	<i>8</i> 0	2		-		SH	EE	at (NO.	_	_e	<u>. </u>	OF	_	_፲				Engine Environ						nners
			D PMF					PMF					CA OME	L					DWI	•						:					1 162.60	596,60					
			0.0					0.15	•				•	o,					2	•			*******			:	1AUTU 0				1362.50	5 30.00					
		1402	2.21	20.02	1334.	VILLINE	78521.	3.31	£9.63	2001.		2617 16.	7412.	11.03	5404.	h6 /U.	VOI.UME.	523472,	22.05	560.17	19341.		•				HE ISTAGE 1 0	LSTK		10. ISPART	1362.40	460.00				EXP1. 0.0	
_	IIR TUTAL		21	7.0	₹.	IN TOTAL	• •					904.	. 97			٦.	OUR TOTAL		22.05	-17			*******	ī			JPRT INAME 0	1686		0.000 -1360.	1362.30	420.00 M130.00				CAMEA 0 0.0	DAMWID 0.
	R 72-Hunk		_	1042		72-	275		=		•	•		•	5406.		12		. ~		9. 10416 8. 13341			9			JPLT	1401	:	0.000	1 162.00	-	•			7. CUUI.	<u>ą</u> .
	*		•		1278	24-HOUR	783.	-	0	1934		92			3 BC.		7	5223	~	_	12176	•	*********	APH ROUTING		!	17APE 0	KUUTING DATA ES ISANE		0.000		12	•	15342.	1386.	EXP# PLEVL 0.0 0.0	DAM DATA COGO EX 0.0 0
	4n04-9	1	1.32	24.00	00.0	P-HCER	1962.	1.90	50.40	1200	4	6542.			1244.	4041.	N004-9	13083	13.2	336.0	648		•	HYDRUGHAPH			1ECON 0	HUU3 146.5		2 3 3	1361.50	760.00		2143.	1362.	CDO# EX	TUPF L.
	PEAK	=				PEAK	2543.				4	R476.	240.				PEAK	16953					********		91179	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ICOMP	A V G		0	1361.00	100.00		420.	1 500.	SP#11) C	
	8	CMS	I ACHES	AC-F1	THOUS CO M		2 to 5	INCHES	I	THOUS CO M		CFS	SHU	NC NESS	AC-FT			8 E	INCHES	# i	THOUS CU M		****		BOOTS TUBOLICA AS SACRES	E INTERNAL PER	ISTAD	00008 CLUSS	i	C I C I	1360.50	30.00			1359.	CHFL 5	
		_		_		. <u>. </u>					~			_			,	=-			: 	<u>ر</u>			1000				•		1360.00	0.00	•	_	. 1351.		
										0	KESFKVOTA	TNFLOW	2110 40 70 60711	TOROGENETIS									1 1 1 1 1								STAGE	FLOW		SUMPACE ANEAS CAPACITYS	FLEVATIONS		

BY				DAT DAT	E _		12	<u>, –</u>	<u>5-</u>	P(80		PRO SHE	J. N	Ю.		80 C		0			75 I	- 4 -				ers •	Geol		• Plan	S, INC
			0.10					1	0.15 PMF				O.SO PMF						DW.F											
	TUTAL VOLUME	762.	ET . C				TOTAL VOLUME	1307.	1.95	954.		TOTAL VOLUME. 223518.	9.42	239.19	26.96.		TOTAL VOLUME	*	13664.	516.37	12294.		*******			1STAGE TAUTO		151A 0	ISPHAT 0	
	72-4004		1.13	50.0			12-HOUR		1.95	954.		72-HUUR 776.	9.42	219.19	5696.		72-HUUR	1675.	20.33	516.37	9970. 12298.		*******			INAME		& 5	A STURA	
	24-HUUR		24.	512.		,	24-HOUR	12.	1.65	999.		24-HUUR 2186.	78.8	224.57	5348.		24-H011R	4819.	136.	495.08	9559.		:	.1	DAM	APLT APRI		ropt 1640	4.000 0.900	
	6-HOUR	=	7.26	139.			6-HOUR 553.	16.	.56	336.		6-HUUN 5129,	5.19	131.72	3137,	_	X 2014	11750.	333.	301.77	5826.		*******	H HINTING	D.S. FROM	LTAPE J	HAVE SAME	SAME	AMSKK Q. 000 . 9.	
49.75 HOURS	PEAK	3			90 30	46.13 HUUNG	574.	10.		i i	44.00 HUIRS	PEAK 6177.				43.50 HUUHS	PEAK	14286.	405.	:			•	HYDROGHAPII	21 600 FT	16.CUN	ALL PLANS ROUTEN	i RES	1,46	
# # #	945	S K		AC-FT	3	2 F	Ś	CHS	ĭ	AC-FT	TIME	CFS	INCHES	# E	60	TIME :		CFS	SEC SECUL	N. N.	AC-FT		:::		SECTION	ICUMP		9 A C	NSTUI.	
286. A			į	THOM	*7.4					THOU	6177. AT	1			THU	14286. AT					THO		*******		H DAM TO	15140		CLOS6	NSTPS	
PEAR DUTFLOW 18					PEAR GUIFLON 18						PEAK GUIFIAN 18		1			PEAK OUTFLUW IS		!		1			•••••••		RUUTE FRUM DAM 10			0.0 0.0		

RESERVOIR OUTFLOW HYDROGRAPHS

BY <u>V</u> CHKD. BY		OATE .		14.689.56		6117,71 44689.50	DJ. NO	80 D		-238- OF	-238-75 ofI
		i	19,34	4495.43	1347.37	4495,43	*		1AUTU 0		
•		1340.00	4.29	3167.77	1346.32	3187.77	•	ı	HE ISTAGE 1	LSTR	LSTR
		95.00	30.66	2161.65	1345.26	2161,65	•	UAN	JPRT JRAME U	; a #41	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
•	عد	70.00 1340.00	1.90	1380,85	1344.21	1380.85	•	FT D.S. FROM	E JPET 0 0	T.	E SAME ATA LUPT E LUPT
	RLNTH SEL 60002500	1343.00 70	1.23		1353.68		***	31 840	SECUN STAPE 0 0	ROUTING DA	L PLANS HAVE SA RUUTING DATA IRES ISANE
	ECE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-514.Filev. 514.E 150.00 67.00 150.00 350.00	,	404.24		404.24	•	2 TO SECT	I COMP	AL.	AV.5 0.00
	1) ELNYT	MATESSTA 15.00 1350.	.34	i		127.51	*	RUNTE FROM SECTION	15140		38 CL088
ANNEL ROUTING	QN(2) QN(3)	CRISS SECTION COORDINATES	13.22		1340.00 134	•	*****	į		1000	0°0 88070
MUBBAL DEPTH CHARMEL ROUTING	UN(1) GN(2) GN(3)	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	STURAGE	00175604 10	STAGE	FLOW	•	,		•	•

SUBJECT	DA		SAFETY			CON				ĺ	Π		<u></u>			
BY_WJV	DA		ECKS PON 12-5-80		DAM					(-			CON	<u> </u>]	NTC INC
CHKD. BY 2015	. DA		12-6-80			<u>0-2:</u> E o				į. 6	naine	ーノ ers				NTS, INC.
				SHE	ET NO	<u>E</u> _ 0	'F <u>-</u>		<u> </u>	E	inviron	mer	ntal Sp	eci	alists	
7.67 34.47	14790.43	1345.53	14796.43								(۵۵ و د				061	
38.38 38.38	10603.66	1344.21	10603.66 #9196.39			TIME OF FALUME HOURS	00.00	00.0	00.0		× 60 × 60 × 60 × 60 × 60 × 60 × 60 × 60				ON 3 @ = 840FT	
4.19 27.85	7165.71	1342.49	71375.71		10Р UF ОАН 1362.30 2143. 420.	TIME OF MAX OUTFLOW HOURS	51,00	49,75	44.00		SECTION OF FROM				SECTION	
2.64 24.78	4484.05	1341.58	20.1346 664.1346 7.1346	AMALYSIS		DURATION UVER TUP HUURS	00.0	0.00	26.25		TIME	48.75			TIPE	40.75
1.35	2622,36	1353.42	2622.38	H SAFETY ANA	SPILLMAY CHEST 1360.00 1097.	MAXINUM UUTFLUM CFS	103.	286. 574.	6177. 14286.	STATION 102	MAX14UM STAGE,FT	1347.6		STATIUM 203	MAKIMUM Stale, Ft	1317.0
91.61	1647,94	1352.11	1647.94 47497.03	SUMMARY OF DAM SAFETY	INITIAL WALUE 1360.00 1097. 0.	MAXINUM STUNAGE AC-FT	1530.	1929. 2278.	4333.	10	HAXIMUM FLUW, CFS	574.		51.4	MANSHUM FLUM, CFS	574.
	39313.31	1337.63	39313,31	*11		MAXTHUM DEPTH OVER DAM	00.0	0.60	7. 7 6. 3 7. 6 7. 7		RATIO	.15			KATIU	e.
. 29 14.05	205.39	1336.32	288,39 51974,77		ELEVATION Sturage Outflow	MAXIMUR Reservuir 4. S. Fer v	1361.01	1362.57	1366.33							
0.0	0.00	1335.00	25456.70		! :	RATIU OF PAF	50.	 	00.1							
SturaGE	OUTFLUN	STAGE	FLOW			SVE TO PATAN		0000KV	0.13 PMF						·	

PECKS PONI BY WJV DATE 12-5-80 CHKD. BY 255 DATE 12-6-80	NSPECTION DAM PROJ. NO80-238-754 SHEET NOF OFI	CONSULT/ Engineers • Geologists • Environmental Specialists
BREACHING AND LYSIS SAME AS CARE STORE WHEN WHEN THE STEP AND DAY WHEN WHEN THE STEP AND DAY WHEN STORE DUANTED WAS AND DAY WHEN THE STEP AND SPECIFICATION OF THE CONTROL OF THE STEP AND SPECIFICATION OF THE CONTROL OF THE STEP AND SPECIFICATION OF THE CONTROL OF THE GREAT OF THE STEP AND SHOWN AND THAT THE AND SHOWN AND THAT THE STEP AND SHOWN AND THAT THAT THE STEP AND THE STE	HYDRUCKAPH ROUTE THROUGH RESERVING TOPEL COON EARL UANNED 1862.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	STATION 101, PLAN 2, RATIO DAN BREECH DATA WSEL 1.99 1459-10 .50 1860-00 STATION 101, PLAN 3, RATIO
	9 G	9 @

SUBJECT DAM SAFETY PECKS PON	INSPECTION D DAM	
BY WJV DATE 12-5-80	PROJ. NO	CONSULTANTS, INC
CHKD. BY 2005 DATE 12-6-80	SHEET NOG OFT	Environmental Specialists

: :					!		
	T1#E	PECINATEC	INTERPULATED BREACH	CUMPUTED	* ERROR	ACCUMULATED	ACCUMILATED
	(HDURS)	CHOURS)	HIDROGHAFTH (CFS)	(CFS)	(CFS)	(Crs)	(AC-FT)
	45.000	0.000	431.	431.	9	•	•
	45.021	.021	501,	454.	47.	47.	
	45.042	.042	571.	491.	79.	126.	•
	45.063	1963	641.	53%	102	728	•6
	45.083	680.	75.	593		344.	
	45.104	\$0.T		330	123	. 0 0 0	-
	45.146	.146	921.	808	116.	762	
	45.167	167	.166		104	608	
	45.108	. 188	1062.	976.	60	894	2.
	45.208	. 208	1132.	1070.	. 2.9	956.	2.
	45.229	.229	1202.	1168.	¥.	980	3.
	45,250	.250	1272.	1272.	0	000	· · · · · · · · · · · · · · · · · · ·
	1/7.04	- 600			• • •		•
Trā	45.213	2636	. 844			1133	•
	46.23	133	1800		99	1178	2.
(45,354	354	1931.	1860.	72.	1250	2
Э	45.375	375	2063.	1990.	13.	1323.	*
t !	45.396	396	2195.	2125.	71.	1394.	
	45.417	.417	2377.	2263.	64.	1458.	•
	45.430	1437	2459.	2405.	54.	1511.	•
	45.458	# C C C C C C C C C C C C C C C C C C C	2591.	2551.	66	1551.	.
	45.479	6.4.	2723.	2701.	2] .	1572.	.
	90.00	200	1010		• ia	.276	• •
	45.547	242	3204	1111	200	1590	* *
	75.57	645	3379	3776		1007	÷ ~
!	45.583	583	3553	3503.	.16	1716.	
	45.604	.604	3728.	3673.	55.	1771.	~
	45.625	.625	3903.	3847.	56.	1827.	3.
	45.646	. 64b	4077.	4024.	54.	1880.	
	45.667	.667	4252.	4204.		1979.	3.
1	43,648	4.0	4427	4386.	•	1969.	•
•	45.708	BO.	4601.	4572.	30	1999	.
	421.04	621.			•	2013.	÷.
	43.730	00.		-1067	•	. C107	÷.
	11.00		٠,٢٠		::		
	761 - 64		2305	2346.		.000	<i>:</i> •
	44 611	710	5174	50.00		2114	•
	45.854	44.		5040		215.2	₹
	45.075	878	6186	6148.	36	2140	•
	45.846	972	6392.	6355	37.	1277	•
	45.917	.917	6597.	6564.	33.	2260.	÷
	45.938	.937	6803.	6776.	. #2	2488.	;
	426.67			0077			
		3 (. 6 9 6 9		. 30K	•

SUBJEC	T	MAG	SAFETY	INSPEC	TION	
		P	ECKS PON	MAD D		
8Y	WJV	DATE	12-5-80	PROJ. NO	80-238	- 754

12-6-80

DATE

CHKD. BY DJJ

Engineers • Geologists • Planners Environmental Specialists

H

SHEET NO.

SUBJECT	DAM					ECTION	ч_			
			S PON		DA					CONSULTANTS, IN
ву <u>WJV</u> снкр. ву <u>277</u>	DATE DATE		6-80 6-80		ROJ. (_	_OF			Engineers • Geologists • Planners Environmental Specialists
					≈ 600 FT	DAM		~ 840 FT	DAM	
		TIME OF	45.00		0 7 0	S FROM		8 8 8	S FROM	
	UF DAM 162.30 2143. 420.	TIME OF MAX GUTFLUM HOUKS	46.00		SECTION	۵		SECTTON	٥	
P R P L C C C C C C C C C C C C C C C C C C	30 TO	DUKATION UVEN TOP HUUMS	1.06	701	TIME	45.00	-	TIPE	46.00	• • • • • • • • • • • • • • • • • • •
MA VEREN	SPILLERAL 1390- 1001FLU 1991- 19991-	1960	STATION	HAAIMUN STAGE,FT		STATIUM 203	MAXÎMUM Stace, ft	1342.9		
AU 'YN U'F DA	1360.00 1360.00 1097.	PAXINUM STURAGE AC-FT	20 CO	v.	HAKIMUM FILU4, CFS	3211. 3930. 2026.	. S	MAAIMUM FLUM, CFS	7232.	
ā	LWITIA 136	MAXINUM OLPIN UVER DAM	A 6 0		RATIO			PATIO	ei. ei.	
	ELFYATCON STORAGE CHIFFEN	MAN	1362.35		PEN	- 8 6		PAN	- ~ ~	
		BAT10 CF Par	2 5							

CONSULTANTS, INC.

LIST OF REFERENCES

- 1. "Recommended Guidelines for Safety Inspection of Dams," prepared by Department of the Army, Office of the Chief of Engineers, Washington, D. C. (Appendix D).
- 2. "Unit Hydrograph Concepts and Calculations," by the U. S. Army, Corps of Engineers, Baltimore District (L-519).
- 3. "Seasonal Variation of Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours," Hydrometeorological Report No. 33, prepared by J. T. Reidel, J. F. Appleby and R. W. Schloemer, Hydrologic Service Division, Hydrometeorological Section, U. S. Army, Corps of Engineers, Washington, D. C., April 1956.
- 4. Design of Small Dams, U. S. Department of the Interior, Bureau of Reclamation, Washington, D. C., 1973.
- 5. Handbook of Hydraulics, H. W. King, and E. F. Brater, McGraw-Hill, Inc., New York, 1963.
- 6. Standard Handbook for Civil Engineers, F. S. Merritt, McGraw-Hill, Inc., New York, 1963.
- 7. Open-Channel Hydraulics, V. T. Chow, McGraw-Hill, Inc., New York, 1959.
- 8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the Interior, United States Geological Survey, Washington, D. C., 1907.
- 9. "Probable Maximum Precipitation, Susquehanna River Drainage Above Harrisburg, Pennsylvania," Hydrometerological Report No. 40, prepared by H. V. Goodyear and J. T. Riedel, Hydrometeorological Branch Office of Hydrology, U. S. Weather Bureau, U. S. Department of Commerce, Washington, D. C., May, 1965.
- 10. Flood Hydrograph Package (HEC- 1) Dam Safety Version, Hydrologic Engineering Center, U. S. Army, Corps of Engineers, Davis, California, July 1978.
- 11. "Simulation of Flow Through Broad Crest Navigation Dams with Radial Gates," R. W. Schmitt, U. S. Army, Corps of Engineers, Pittsburgh District.
- 12. "Hydraulics of Bridge Waterways," BPR, 1970, Discharge Coefficient Based on Criteria for Embankment Shaped Weirs, Figure 24, page 46.

- 13. Applied Hydraulics in Engineering, H. M. Morris and J. N. Wiggert, Virginia Polytechnic Institute and State University, 2nd Edition, The Ronald Press Company, New York, 1972.
- 14. Standard Mathematical Tables, 21st Edition, The Chemical Rubber Company, 1973, page 15.
- 15. Engineering Field Manual, U. S. Department of Agriculture, Soil Conservation Service, 2nd Edition, Washington, D. C., 1969.
- 16. Water Resources Engineering, R. K. Linsley and J. B. Franzini, McGraw-Hill, Inc., New York, 1972.
- 17. Engineering for Dams, Volume 2, W. P. Creager, J. D. Justin, J. Hinds, John Wiley & Sons, Inc., New York, 1964.

APPENDIX E FIGURES

LIST OF FIGURES

Figure	Description/Title
1	Regional Vicinity and Watershed Boundary Map
2	Plan for Repairs (August 24, 1931)
3	Proposed Outlet Conduit (June 6, 1936)

·		
· •		•
K S	D H D	
6		:
ENGANCIERT SO ENGANCIERT ENGANCIERT SUIT BUILD 15"	SERVICE SERVIC	ACTE FOUNDAMENTE (ST.) REFERENCE ST. ST. (ST.) FURTHER ST. ST. (ST.) FURTHER ST. (ST.) FURTHER ST. (ST.)
EN CONSERT CORNS	AL N 6 - 3 51 - NS	AND TOUR OF THE STATE OF
	Section of the sectio	ALL CONTROL OF A C
Mile and the same	LEAKAGE TELL AND TOESTELLATION TO STAP TOESTELLATION TOEST	Treats said a fram
FLAN		30
SOLE & . !		
REBUILD ABUTME!	and in	D. Francisco
Market W. S. S. SECOND	DETAIL OF SPILLIN	···
THE PART OF THE PART OF	THE PROPERTY TO A TABLE OF THE PROPERTY OF THE	97 50750 5
SECTION A A S.B.E	in the special of the	5/7 - 1/2 / 2 2 / 2 1/2 / 5/2 5 - 1/2 / 5/2 / 2 1/2 /
SCALEZ'II'	woman.	ALCONOMIC TO LCC MATE
	1005	graph appearance of the first o
ON CAN.	COURT ON GOSTIAN MA	200
FRONT ELEVATION	30 1175 1184 21.4	
6. 30[E 8 7]		·
W. 3'40.75	COMMONWEALTH OF PENNSYLVAN A	! .
to the state of th	DEPARTMENT OF FORESTS AND WATEL	2
F SHEET FILES	FLARETCH	
	REPAIRS TO PECKS POND DAM	
	SCALES AS SHOWN HALL DIEGO, HO	3 24, 931
;	Approved Secretary	
:	getretary	• 1

APPENDIX F

Geology

Pecks Pond Dam is located in the glaciated Low Plateaus section of the Appalachian Plateaus physiographic province of eastern Pennsylvania. In this area, the Appalachian Plateaus province is characterized topographically by flat-topped, hummocky hills formed as a result of glaciation and subsequent stream dissection of nearly flat-lying strata. The Devonian age sedimentary rock strata in Pike County regionally strike N35°E and dip gently to the northwest. The Delaware River is the major drainage basin in the area. Major tributary streams intersect the Delaware River at right angles; whereas, smaller streams display a slightly more random tributary pattern. Both major and minor tributary stream systems are joint controlled and exhibit modified rectangular and trellis-type drainage patterns.

Structurally, the area containing Pike County lies on the south flank of a broad, asymmetrical synclinorium that plunges to the southwest. Superimposed on this broad structural basin are numerous anticlinal and synclinal folds characterized by planar limbs and narrow hinges. Due to prior glaciation, low relief and surficial soil cover, fold axes are difficult to trace.

The sedimentary rock sequences in the vicinity of the dam and reservoir are probably members of the Susquehanna Group of Upper Devonian age (see Geology Map). The sedimentological changes observed in the Catskill Formation indicate that the rate of sedimentation exceeded the rate of basin subsidence resulting in a facies change from marine to non-marine strata. On the accompanying geology map the delineation between the Middle and Upper Devonian age sedimentary rock sequences represents the Allegheny Front which separates the Valley and Ridge physiographic province from the Appalachian Plateaus physiographic province.

Approximately half of Pike County, including the dam site, is covered by a blanket of Wisconsin age (most recent) glacial drift which, based on the degree of weathering, was probably deposited during the Woodfordian stage. Valley bottoms are typically covered by recent alluvium and Woodfordian outwash of variable thickness, but typically less than 10 feet. These deposits are characteristically unconsolidated stratified sand and gravel usually with more gravel than sand and some small boulders. The direction of the Wisconsin ice advance, was from the northeast over the Catskill Mountains and from the north over the Appalachian Plateau. The terminal moraine resulting from the southern most advance of the Wisconsin ice sheet in this area is located in the southern portion of Monroe County which borders Pike County to the South.

References:

- 1. Fletcher, F. W., Woodrow, D. L., "Geology and Economic Resources of the Pennsylvania Portion of the Milford and Port Jervis 15 minute U.S.G.S. Topographic Quadrangles," Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 223, 1970.
- 2. Sevon, W. D., Berg, T. M., "Geology and Mineral Resources of the Skytop Quadrangle, Monroe and Pike Counties, Pennsylvania", Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 214A., 1978.
- 3. Sevon, W., Personal Communication, Commonwealth of Pennsylvania Department of Environmental Resources, Harrisburg, December 3, 1980.

and very fine to medium quaire termbates or termbe while and there is medium quair terms and child. Another me are productive terminally the same appropriate, the form that is a sometime and child. The matter of small terms are made in a planta terms of the control of small terms are same as the control of small terms are same as the control of small terms are same as the control of the control of small terms are same as the control of t have nimple on planes with of emill to maximum vale, an availy to maximum vale and to the chall matter as a drugtly dress of the chall matter as a policy of some sold to appet the chall matter and policy of sold with thinly luminated and sold. And consider, consider to they, not of the considering and to the Modern common than Cyter for thinds. It was solder to prove an attempt for the challenge of the constance of the constanc UPPER DEVO Mahantango Formation - Open member medium lank unit, facely or an argumed, then because every a milty chalo; member in about 200 feet thick and is requisitely from loss a member by the Message of the experience of advanced production of the control of the experience of the control of the experience en de la companya de tower member, virtually name lithology an upper member. But is about 1,100 feet the 4 HOOLE DEVOR anidational. MILTON Marcellus Shale - Dark-group, evenly limitated, notice of sold and object of their consistency of another or sold of s GEOLOGY MAP SCALE

CONSULTANTS, INC.

GEULUGIC MAP OF NORTHEASTERH PENNSYLVANIA. COMPILED BY GEO. W. STOSE AND O.A. LJUNGSTEDT COMMONWEALTH OF PENN-SLYVANIA DEPT. OF INTERNAL AFFAIRS DATED 1932, SCALE 1' = 5 MILES.

GEOLOGIC MAP OF NORTHEASTERS PENNSYLVANIA.

= 6 MILES.

NDATELMED

TIC