(بار	lj	Y (Y	y	K	50)/	7 ° _	-3	()	4	

05.04 11.04

10

Дифракция на синусоидальных решётках. Элементы Фурье-оптики ⁰1 ⁰2

Семинар 10

1. Плоская волна с длиной волны λ распространяется в плоскости XZ под углом α к оси Z. Запишите распределение комплексной амплитуды волны и интенсивности в плоскости Z=0. Найти разность фаз между колебаниями в точках Z=0 и Z=L, лежащих на оси Z (см. рисунок).

- ⁰2. Решётка освещается нормально падающей плоской монохроматической волной с амплитудой A. Укажите пространственные частоты и амплитуды плоских волн за дифракционной решёткой, прозрачность которой $\tau(x) = \cos^2(\Omega x)$.
- 0 3. Оцените ширину пространственного спектра плоских волн Δk_{x} при дифракции плоской монохроматической волны на щели шириной b.

• • •	
λ_{λ}	$ 7)A(x,z) = a \cdot explik(xsindtz)$
$\widehat{A}(X)$	$\Rightarrow A(x,0) = a \cdot e \times p(z \times x \times z + nd)$
$I(x) \mid z = 0$	
89-)	
	3,739

OTBET

 $\frac{A, T(x) = d \cos^{2}(\pi x)}{A_{-1} W_{c}}$ $c = \frac{1}{3}$

1) $A(x) = A_0 T(x) = \frac{A_0 a}{2} (1 - cos z T(x)) =$ $= \frac{1}{2} A_0 a + \frac{1}{4} A_0 a e^{i \cdot z \cdot T(x)} + \frac{1}{4} A_0 a e^{i \cdot z \cdot T(x)}$ $A_1 / w_1 = 0$ $A_2 w_2$

B Shx

16.2 hx 27 = 211 6

INBET