Boolean Algebra

- Also known as Switching Algebra
 - > Invented by mathematician George Boole in 1849
 - > Used by Claude Shannon at Bell Labs in 1938
 - To describe digital circuits built from relays
- Digital circuit design is based on
 - > Boolean Algebra
 - Attributes
 - Postulates
 - Theorems
 - > These allow minimization and manipulation of logic gates for optimizing digital circuits

Boolean Algebra Attributes

- Binary
 - \rightarrow A1a: X=0 if X \neq 1
 - \rightarrow A1b: X=1 if X \neq 0
- Complement
 - > aka *invert*, *NOT*
 - \rightarrow A2a: if X=0, X'=1
 - \rightarrow A2b: if X=1, X'=0
 - The tick mark ' means complement, invert, or NOT
 - Other symbol for complement: $X'=\overline{X}$

AND operation

	A3a:	\cap	$\Omega = 0$	1
>	Asa.	U	UΞl	J

	A 1	1	1 1
\	A4a:		ı — ı
/	Δ ta.	1	1 — I

$$\rightarrow$$
 A5a: 0•1=1•0=0

- The dot Theans And	_	The dot	•	means	ANI
----------------------	---	---------	---	-------	-----

X	Y	X•Y
0	0	0
0	1	0
1	0	0
1	1	1

- Other symbol for AND:
 X•Y=XY (no symbol)
- OR operation

$$\rightarrow$$
 A4b: 0+0=0

$$\rightarrow$$
 A5b: 1+0=0+1=1

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

X'

X

Boolean Algebra Postulates

OR operation

• Identity Elements

> P2a: X+0=X

> P2b: X•1=X

Commutativity

 \rightarrow P3a: X+Y=Y+X

> P3b: X•Y=Y•X

Complements

> P6a: X+X'=1

> P6b: X•X'=0

X	Y	X+0	X+Y	Y+X	X'	X+X'
0	0	0	0	0	1	1
0	1	0	1	1	1	1
1	0	1	1	1	0	1
1	1	1	1	1	0	1

AND operation

X	Y	X• 1	X•Y	Y•X	X'	X•X'
0	0	0	0	0	1	0
0	1	0	0	0	1	0
1	0	1	0	0	0	0
1	1	1	1	1	0	0

Boolean Algebra Postulates

- Associativity
 - \rightarrow P4a: (X+Y)+Z=X+(Y+Z)
 - \rightarrow P4b: $(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$

X	Y	Z	X+Y	(X+Y)+Z	Y+Z	X+(Y+Z)	X•Y	(X•Y)•Z	Y•Z	X•(Y•Z)
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	0	0	1	0
1	0	0	1	1	0	1	0	0	0	0
1	0	1	1	1	1	1	0	0	0	0
1	1	0	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1	1	1

Boolean Algebra Postulates

Distributivity

- > P5a: $X+(Y \cdot Z) = (X+Y) \cdot (X+Z)$
- $> P5b: X \bullet (Y+Z) = (X \bullet Y) + (X \bullet Z)$

					(X+Y)•		X+			X•Y+		X•
X	Y	Z	X+Y	X+Z	(X+Z)	Y•Z	$(Y \bullet Z)$	X•Y	X•Z	X•Z	Y+Z	(Y+Z)
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	0	0	1	0
0	1	1	1	1	1	1	1	0	0	0	1	0
1	0	0	1	1	1	0	1	0	0	0	0	0
1	0	1	1	1	1	0	1	0	1	1	1	1
1	1	0	1	1	1	0	1	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1

Idempotency

$$\rightarrow$$
 T1b: X•X=X

Null elements

 \rightarrow T2a: X+1=1

> T2b: X•0=0

OR AND

X	Y	X+Y	X•Y	X+X	X•X	X+1	X•0	X'	X''
0	0	0	0	0	0	1	0	1	0
0	1	1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	0	0	1
1	1	1	1	1	1	1	0	0	1

• Involution

$$\rightarrow$$
 T3: (X')'= $\overline{\overline{X}}$ =X

- Absorption (aka covering)
 - \rightarrow T4a: X+(X•Y)=X
 - \rightarrow T4b: $X \bullet (X+Y)=X$
 - \rightarrow T5a: X+(X' \bullet Y)=X+Y
 - \rightarrow T5b: $X \bullet (X'+Y) = X \bullet Y$

OR AND

				X+	X•			X+		X•
X	Y	X+Y	X•Y	(X • Y)	(X+Y)	X'	X'•Y	(X'•Y)	X'+Y	(X'+Y)
0	0	0	0	0	0	1	0	0	1	0
0	1	1	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0	0
1	1	1	1	1	1	0	0	1	1	1

• Absorption (aka *combining*)

```
\rightarrow T6a: (X \bullet Y) + (X \bullet Y') = X
```

 \rightarrow T6b: $(X+Y) \bullet (X+Y')=X$

OR AND

						(X•Y)+		(X+Y)•
X	Y	X+Y	X•Y	Y'	X•Y'	(X • Y ')	X+Y'	(X+Y')
0	0	0	0	1	0	0	1	0
0	1	1	0	0	0	0	0	0
1	0	1	0	1	1	1	1	1
1	1	1	1	0	0	1	1	1

- Absorption (aka *combining*)
 - > T7a: $(X \bullet Y) + (X \bullet Y) \bullet Z = (X \bullet Y) + (X \bullet Z)$
 - > T7b: $(X+Y) \cdot (X+Y'+Z) = (X+Y) \cdot (X+Z)$

				(XY)+		(XY)+		X+Y'	(X+Y)•		(X+Y)•
X Y Z	Y'	XY	XY'Z	(XY'Z)	XZ	(XZ)	X+Y	+ Z	(X+Y'+Z)	X+Z	(X+Z)
0 0 0	1	0	0	0	0	0	0	1	0	0	0
0 0 1	1	0	0	0	0	0	0	1	0	1	0
0 1 0	0	0	0	0	0	0	1	0	0	0	0
0 1 1	0	0	0	0	0	0	1	1	1	1	1
1 0 0	1	0	0	0	0	0	1	1	1	1	1
1 0 1	1	0	1	1	1	1	1	1	1	1	1
1 1 0	0	1	0	1	0	1	1	1	1	1	1
1 1 1	0	1	0	1	1	1	1	1	1	1	1

- DeMorgan's theorem (very important!)
 - \rightarrow T8a: $(X+Y)'=X'\bullet Y'$
 - $\overline{X+Y} = \overline{X} \cdot \overline{Y}$ break (or connect) the bar & change the sign
 - \rightarrow T8b: $(X \cdot Y)' = X' + Y'$
 - $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$ break (or connect) the bar & change the sign
 - > Generalized DeMorgan's theorem:
 - GT8a: $(X_1+X_2+...+X_{n-1}+X_n)'=X_1'\bullet X_2'\bullet...\bullet X_{n-1}'\bullet X_n'$
 - GT8b: $(X_1 \bullet X_2 \bullet \dots \bullet X_{n-1} \bullet X_n)' = X_1' + X_2' + \dots + X_{n-1}' + X_n'$

OR AND

X	Y	X+Y	X•Y	X'	Y'	(X+Y)'	X'•Y'	(X•Y)'	X'+Y'
0	0	0	0	1	1	1	1	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0	0

- Consensus Theorem
 - $T9a: (X \bullet Y) + (X' \bullet Z) + (Y \bullet Z) = (X \bullet Y) + (X' \bullet Z)$
 - $\rightarrow T9b: (X+Y) \bullet (X'+Z) \bullet (Y+Z) = (X+Y) \bullet (X'+Z)$

					(XY)+					(X+Y)•	
					(X'Z)+	(XY)+				(X'+Z)•	(X+Y)•
X Y Z	X'	XY	X'Z	YZ	(YZ)	(X'Z)	X+Y	X'+Z	Y+Z	(Y+Z)	(X'+Z)
0 0 0	1	0	0	0	0	0	0	1	0	0	0
0 0 1	1	0	1	0	1	1	0	1	1	0	0
0 1 0	1	0	0	0	0	0	1	1	1	1	1
0 1 1	1	0	1	1	1	1	1	1	1	1	1
1 0 0	0	0	0	0	0	0	1	0	0	0	0
1 0 1	0	0	0	0	0	0	1	1	1	1	1
1 1 0	0	1	0	0	1	1	1	0	1	0	0
1 1 1	0	1	0	1	1	1	1	1	1	1	1

C. E. Stroud

Boolean Algebra & Switching Functions (9/07)

More Theorems?

- Shannon's expansion theorem (also very important!)
 - > T10a: $f(X_1, X_2, ..., X_{n-1}, X_n) = (X_1' \cdot f(0, X_2, ..., X_{n-1}, X_n)) + (X_1 \cdot f(1, X_2, ..., X_{n-1}, X_n))$
 - Can be taken further:

$$\begin{split} & - f(X_1, X_2, \dots, X_{n-1}, X_n) = (X_1' \bullet X_2' \bullet f(0, 0, \dots, X_{n-1}, X_n)) \\ & + (X_1 \bullet X_2' \bullet f(1, 0, \dots, X_{n-1}, X_n)) + (X_1' \bullet X_2 \bullet f(0, 1, \dots, X_{n-1}, X_n)) \\ & + (X_1 \bullet X_2 \bullet f(1, 1, \dots, X_{n-1}, X_n)) \end{split}$$

• Can be taken even further:

-
$$f(X_1, X_2, ..., X_{n-1}, X_n) = (X_1' \bullet X_2' \bullet ... \bullet X_{n-1}' \bullet X_n' \bullet f(0, 0, ..., 0, 0))$$

+ $(X_1 \bullet X_2' \bullet ... \bullet X_{n-1}' \bullet X_n' \bullet f(1, 0, ..., 0, 0)) + ...$
+ $(X_1 \bullet X_2 \bullet ... \bullet X_{n-1} \bullet X_n \bullet f(1, 1, ..., 1, 1))$

- > T10b: $f(X_1, X_2, ..., X_{n-1}, X_n) = (X_1 + f(0, X_2, ..., X_{n-1}, X_n)) \bullet (X_1' + f(1, X_2, ..., X_{n-1}, X_n))$
 - Can be taken further as in the case of T10a
- We'll see significance of Shannon's expansion theorem later

Principle of Duality

- Any theorem or postulate in Boolean algebra remains true if:
 - > 0 and 1 are swapped, *and*
 - > and + are swapped
 - **BUT**, be careful about operator precedence!!!
- Operator precedence order:
 - 1) Left-to-right
 - 2) Complement (NOT)
 - 3) AND
 - 4) OR
- Use parentheses liberally to ensure correct Boolean logic equation

Postulates w/ Precedence & Duality

P.	a. expression	b. dual
2	a+0=a	a•1=a
3	a+b=b+a	a•b=b•a
4	(a+b)+c=a+(b+c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
5	$a+(b \bullet c) = (a+b) \bullet (a+c)$	$a\bullet(b+c)=(a\bullet b)+(a\bullet c)$
6	a+a'=1	a•a'=0

Theorems w/ Precedence & Duality

Th.	a. expression	b. dual				
1	a+a=a	a•a=a				
2	a+1=1	a•0=0				
3	a''=a					
4	a+ab=a	a(a+b)=a				
5	a+a'b=a+b	a(a'+b)=ab				
6	ab+ab'=a	(a+b)(a+b')=a				
7	ab+ab'c=ab+ac	(a+b)(a+b'+c)=(a+b)(a+c)				
8	(a+b)'=a'b'	(ab)'=a'+b'				
9	ab+a'c+bc=ab+a'c	(a+b)(a'+c)(b+c)=(a+b)(a'+c)				
10	$f(X)=x_1'f(0,,x_n)+x_1f(1,,x_n)$	$f(X)=(x_1+f(0,,x_n))(x_1'+f(1,,x_n))$				

Switching Functions

- For n variables, there are 2^n possible combinations of values
 - > From all 0s to all 1s
- There are 2 possible values for the output of a function of a given combination of values of *n* variables
 - > 0 and 1
- There are 2^{2^n} different switching functions for n variables

- n=0 (no inputs) $\Rightarrow 2^{2^n} = 2^{2^0} = 2^1 = 2$ switch function

- > Output can be either 0 or 1
- n=1 (1 input, A) $\Rightarrow 2^{2^n} = 2^{2^1} = 2^2 = 4$
 - > Output can be 0, 1, A, or A'

• n=2 (2 inputs, A and B) $\Rightarrow 2^{2^n} = 2^{2^2} = 2^4 = 16$

$$f_0 = 0$$
 logic 0
 $f_1 = A'B' = (A+B)'$ NOT-OR or NOR
 $f_2 = A'B$
 $f_3 = A'B' + A'B = A'(B'+B) = A'$ invert A

Most frequently used C. E. Stroud

Less frequently used
Boolean Algebra & Switching
Functions (9/07)

Least frequently used

• n=2 (2 inputs, A and B) $\Rightarrow 2^{2^n} = 2^{2^2} = 2^4 = 16$

$$f_4$$
 = AB'
 f_5 = A'B'+AB' = (A'+A)B' = B'
 f_6 = A'B+AB'
 f_7 = A'B'+A'B+AB' = A'(B'+B)+(A'+A)B'
= A'+B' = (AB)'
Most frequently used Less frequently used

C. E. Stroud

Less frequently used
Boolean Algebra & Switching
Functions (9/07)

invert B

exclusive-OR

NOT-AND or NAND

Least frequently used

9

• n=2 (2 inputs, A and B) $\Rightarrow 2^{2^n} = 2^{2^2} = 2^4 = 16$

$$f_8$$
 = AB AND f_9 = A'B'+AB exclusive-NOR f_{10} = A'B+AB = (A'+A)B = B buffer B f_{11} = A'B'+A'B+AB = A'(B'+B)+(A'+A)B = A'+B

Most frequently used C. E. Stroud

Less frequently used
Boolean Algebra & Switching
Functions (9/07)

Least frequently used

• n=2 (2 inputs, A and B) $\Rightarrow 2^{2^n} = 2^{2^2} = 2^4 = 16$

$$f_{12} = AB' + AB = A(B' + B) = A$$
 buffer A
 $f_{13} = A'B' + AB' + AB = A(B' + B) + A'B' = A + A'B' = A + B'$
 $f_{14} = A'B + AB' + AB = A(B' + B) + (A' + A)B = A + B$ OR
 $f_{15} = A'B' + A'B + AB' + AB = A'(B' + B) + A(B' + B)$
 $= A' + A = 1$ logic 1

Most frequently used C. E. Stroud

Less frequently used
Boolean Algebra & Switching
Functions (9/07)

Least frequently used