MPRAduo library construction

Introduction

10/21/2022 Ver. 1.0

We developed two different protocols for MPRAduo according to the library type to test. In the reciprocal protocol, we construct two single libraries first and then combine them to make duo libraries for both orientations of elements. In the direct protocol, we construct one single library and then insert another oligo pool to construct one dup library. We used the reciprocal protocol for the benchmarking library and used the direct protocol for the whole-genome RE1 library and non-canonical library.

Materials

- Q5 NEBNext Master Mix (NEB, M0541)
- NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621)
- Q5 High-Fidelity 2X Master Mix (NEB, M0492L)
- AMpure XP (Beckman Coulter, A63881)
- > Sfil (NEB, R0123)
- > Pmel (NEB, R0560)
- > AsiSI (NEB, R0630)
- Exonuclease V (RecBCD) (NEB ,M0345)
- Cut Smart Buffer (NEB, B6004)
- > Synthesized oligo (Agilent Technologies or Twist Bioscience)
 - > eluted by 50 μL of TE
- > pMPRAv3:∆luc:∆xbal vector (addgene #109035, A vector)
- > pMPRAduo:∆orf vector (P vector)
- » pMPRAv3:minP:GFP vector (addgene #109036)
- » pMPRAduo:minP:GFP vector
- → 10-beta Competent E. coli (High Efficiency) (NEB C3019H)
- > 10-beta Electrocompetent E. coli (NEB C3020K)
- Carbenicillin (Teknova, C8001)
- > Plasmid Plus Midi (Qiagen, 12943)
- > Plasmid Plus Maxi (Qiagen, 12963)
- > Plasmid Plus Mega (Qiagen, 12981)
- > Plasmid Plus Giga (Qiagen, 12991)

- > SYBR gel stain (Cat# S7563 Life Technologies)
- 384 well plates (Cat# 4483285 Life Technologies)
- Optical Adhesive Film (Cat# 4311971 Life Technologies)

- > Primers
 -) 1. MPRA_v3_ampB_F: GCCAGAACATTTCTCTGGCCTAACTGGCCGCTTGACG
 - > 2. MPRAduo_libA_10I_R: CCGACTAGCTTGGCCGCCGANNNNNNNNNNNTCTAGAGGTTCGTCGACGCGATCGCAGGAGCCGCAGTG

 -) 4. MPRAduo libP F: GCCAGAACATTTCTCTGGCCTAACTGGCCTCGCTTGC
 - > 5. MPRAduo_libP_10I_R: GGTACTCACtAGGCCTCGGCNNNNNNNNNNNNAGCGGCTGCAGCAGGTTTAAACCAGGTCGGCCAGGG

 - > 7. MPRAduo_GFP_forA_F: CACTGCGGCTCCTGCGATCTAACTGGCCGGTACCTGAGCTCGCTA
 - > 8. MPRAduo_GFP_forA_R: TCTAGAGGTTCGTCGACGCGATATTATTATCATTACTTGTACAGCTCGTCCATGC
 - 9. MPRAduo GFP forP F: CCCTGGCCGACCTGGTTTCTAACTGGCCGGTACCTGAGCTCGCTA
 - > 10. MPRAduo_GFP_forP_R: AGTCAGCGGCTGCAGCAGGTTTATTATTATCATTACTTGTACAGCTCGTCCATGC
 - → 11. MPRAduo AintoP F: CCCAGGCACGACGTTGGTTTACTGGCCGCTTGACG
 - > 12. MPRAduo AintoP R: AGTCAGCGGCTGCAGCAGGTTTCTAGCTTGGCCGCCGA
 - > 13. MPRAduo_PintoA_F: CACTGCGGCTCCTGCGATACTGGCCTCGCTTGC
 - > 14. MPRAduo PintoA R: TCTAGAGGTTCGTCGACGCGATCTCACTAGGCCTCGGC
 - > 19. MPRA_v3_TruSeq_Amp2Sa_F: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAACTGGCCGCTTGACG
 - > 20. libA_seqPCR_N7: CGACGCTCTTCCGATCTNNNNNNNCTAGCTTGGCCGCCGA
 - > 21. MPRAduo TruSeq 2Sa F2: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTGGCCTCGCTTGC
 -) 22. libP seqPCR N7: CGACGCTCTTCCGATCTNNNNNNNCTCACTAGGCCTCGGC
 - > 23. MPRA Illumina GFP F v2: ACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCCCTGAGCAAAGACC
 - > 24. 4LibMIX_seqPCRr_v2N7: CGACGCTCTTCCGATCTNNNNNNNCATGTCTGCTCGAAGCG
 - > 25. TruSeq_Multiplex_Tag_P7: CAAGCAGAAGACGGCATACGAGAT[8bp_index]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
 - > 26. TruSeq_Multiplex_Tag_P5: AATGATACGGCGACCACCGAGATCTACAC[8bp index]ACACTCTTTCCCTACACGACGCTCTTCCGATC

Procedure

Shared steps in the reciprocal protocol and the direct protocol

1. Building single Δ orf library

1. Linearize vector

Mix below and inclubate at 50°C overnight

Purify using 1x volume of AMpure XP followed by elution using 50 uL of water

Table1			
	contents	amount	
1	P vector	10 ug	
2	Cut Smart Buffer	10 uL	
3	Sfil	10 uL	
4	water	up to 100 uL	

2. PCR E elements

Mix PCR reaction below for each E element

Cycle condition: 98°C for 30sec, 20 cycles of (98°C for 10 sec, 60°C for 15 sec, 65°C 45 sec), 72°C for 5 min purify using 2x volume of AMpure XP followed by elution using 50 uL of water

Table2			
	contents	amount	
1	Q5 NEBNext Master Mix	5 uL	
2	Primer 4 10 uM	0.5 uL	
3	Primer 5 10 uM	0.5 uL	
4	gBlock double strand DNA	50 ng	
5	water	up to 10 uL	

3. Gibson assembly

Mix below and incubate at 50°C for 40 min

Transform 1 uL of assembled product to 10-beta Competent E. coli and clone single colony

Verify insert using Sanger sequencing

Table3			
	contents	amount	
1	PCR product	1 uL	
2	Sfil-digested P-vector	100 ng	
3	NEBuilder HiFi DNA Assembly Master Mix	2.5 uL	
4	water	up to 5 uL	

4. Linearize template vector

Mix below and Incubate at 37°C for 2 hr followed by 65°C 20 min Dilute digested products to 1 ng/uL

Table4			
	contents	amount	
1	cloned P-plasmid with insert	500 ng	
2	Cut Smart Buffer	1 uL	
3	Omel	0.25 uL	
4	water	up to 10 uL	

5. Amplify test fragments

Mix PCR reaction below for each E element

Cycle condition: 98° C for 30sec, 6 cycles of (98° C for 10 sec, 60° C for 15 sec, 65° C 45 sec), 72° C for 5 min Purify PCR product using 2x volume of AMpure XP followed by elution using 20μ L water

Table5			
	contents	amount	
1	Q5 NEBNext Master Mix	10 uL	
2	Primer 4 10 uM	0.5 uL	
3	Primer 5 10 uM	0.5 uL	
4	Linearized template plasmid	1 uL	
5	water	up to 20 uL	

6. Pooling and Gibson assembly

Mix PCR products in equalmolar

Mix below and incubate 50°C for 1 hr

Purify assembled products using 1.2x volume of AMpureXP

Table6		
	contents	amount
1	Pooled PCR product	600 ng
2	Sfil-digested P-vector	500 ng
3	NEBuilder HiFi DNA Assembly Master Mix	15 uL
4	water	up to 30 uL

7. Transformation, colony harvesting

Transform 1 uL of assmebled product to 10-beta Competent E. coli
Plate to LB plate supplemented with Carbenicillin and incubate overnight
Harvest approximately 100-200 colonies per test sequence by washing plate by PBS
Centrifuge by 4000g for 20 min
Prep plasmid using Plusmid Plus Midi

Reciprocal protocol

2. Building single S ∆orf library

8. Linearize vector

Mix below and incubate at 50°C overnight

Purify using 1x volume of AMpure XP followed by elution using 50 uL of water

Table8			
	contents	amount	
1	A vector	10 ug	
2	Cut Smart Buffer	10 uL	
3	Sfil	10 uL	
4	water	up to 100 uL	

9. Amplify and barcoding oligo library

Mix PCR reaction below

Cycle condition: 98° C for 30sec, 4-6 cycles of $(98^{\circ}$ C for 10 sec, 60° C for 15 sec, 65° C 45 sec), 72° C for 5 min Purify PCR product using 2x volume of AMpure XP followed by elution using 50μ L water

Table7			
	contents	amount	
1	Q5 NEBNext Master Mix	300 uL	
2	Primer 1 10 uM	30 uL	
3	Primer 3 10 uM	30 uL	
4	synthesized oligo pool	6 uL	
5	water	up to 600 uL	

10. Gibson assembly

Mix below and incubate at 50°C for 60 min

Purify assembled products using 1.2x volume of AMpureXP followed by elution using 50 μ L water

Table9			
	contents	amount	
1	PCR product	2.2 ug	
2	Sfil-digested A-vector	2 ug	
3	NEBuilder HiFi DNA Assembly Master Mix	50 uL	
4	water	up to 100 uL	

11. Transformation

Transform assembled product into 10-beta electrocompitent cells with 2kV, 200 ohm, 25 μ F in order to achieve a transformation efficiency equal to 300-times the number of unique oligos sequences Add 10 mL SOC outgrowth medium, separate to 10 tubes and incubate at 37°C for 1 hr Independently scaled up in 20 mL of LB supplemented with 100 μ g/mL of carbenicillin Incubate on a shaker at 37°C for 9.5 hr Prep plasmid library using Plasmid Plus Midi or Maxi

3. Building single orf libraries

12. Linearize single Δ ORF vector

Mix below and inclubate at 37°C overnight

Purify using 1x volume of AMpure XP followed by elution using 50 uL of water

Table11		
	contents	amount
1	single ∆orf library	10 ug
2	AsiSI or Pmel	10 uL
3	cut smart buffer	10 uL
4	water	up to 100 uL

13. Amplify minP-GFP (1st)

Mix reaction below

Cycle condition: 98°C for 30sec, 20 cycles of (98°C for 10 sec, 60°C for 15 sec, 72°C 45 sec), 72°C for 5 min add 1 uL of DpnI and incubate at 37°C for 30 min

Purify using 1.5x volume of AMpure XP followed by elution using 50 uL of water

Table	Table10			
	contents	amount	for vector A	for vector P
1	Q5 High-Fidelity 2X Master Mix	25 uL		
2	Forward Primer 10 uM	2.5 uL	Primer 7	Primer 9
3	Reverse Primer 10 uM	2.5 uL	Primer 8	Primer 10
4	template plasmid	1 ng		
5	water	up to 50 uL		

14. Amplify minP-GFP (2nd)

Mix reaction below

Cycle condition: 98°C for 30sec, 20 cycles of (98°C for 10 sec, 60°C for 15 sec, 72°C 45 sec), 72°C for 5 min Purify using 1.5x volume of AMpure XP followed by elution using 50 uL of water

Table12				
	contents	amount	for vector A	for vector P
1	Q5 High-Fidelity 2X Master Mix	800 uL		
2	Forward Primer 10 uM	80 uL	Primer 7	Primer 9
3	Reverse Primer 10 uM	80 uL	Primer 8	Primer 10
4	1st PCR product	0.32 uL		
5	water	up to 1600 uL		

15. Gibson assembly

Mix below and incubate at 50°C for 90 min

Purify assembled products using 1.2x volume of AMpureXP followed by elution using 30 µL water

Table13		
	contents	amount
1	GFP insert	9 ug
2	AsiSI/Pmel digested library	3 ug
3	NEBuilder HiFi DNA Assembly Master Mix	50 uL
4	water	up to 100 uL

16. RecBCD treatment

Mix below and iucubate at 37°C overnight

Purify with a Monarch PCR & DNA Clean up kit using 12 µL of water for elution

Table14		
	contents	amount
1	assembled product	30 uL
2	RecBCD	5 uL
3	AsiSI or Pmel	1 uL
4	NEB Buffer 4	5 uL
5	ATP	1 mM
6	BSA	10 ug
7	water	up to 50 uL

17. Transformation

Transform 3 μ L of assembled product into 50 μ L of 10-beta electrocompitent cells with 2kV, 200 ohm, 25 μ F Add 10 mL SOC outgrowth medium and incubate at 37°C for 1 hr

Scale up in 100 mL of LB supplemented with 100 µg/mL of carbenicillin

Incubate on a shaker at 37°C for 9.5 hr

Prep plasmid library using Plasmid Plus Maxi

4. Assembling duo libraries

18. Amplify oligo-GFP-barcode casette

Mix reaction below

Cycle condition: 98°C for 30sec, 12 cycles of (98°C for 10 sec, 60°C for 15 sec, 65°C 1 min), 72°C for 5 min Add 2 uL of DpnI and incubate at 37°C for 1 hr

Purify assembled products using 0.6x volume of AMpureXP followed by elution using 100 µL water

Table15				
	contents	amount	for vector A	for vector P
1	Q5 High-Fidelity 2X Master Mix	800 uL		
2	Forward Primer 10 uM	80 uL	Primer 11	Primer 13
3	Reverse Primer 10 uM	80 uL	Primer 12	Primer 14
4	single ORF plasmid library	32 ng		
5	water	up to 1600 uL		

19. Gibson assembly

Mix below and incubate at 50° C for 90 min. Use linearized vector from step 12. Purify assembled products using 1.2x volume of AMpureXP followed by elution using 75 μ L water

Table16		
	contents	amount
1	Amplified inserts	4 ug
2	AsiSI/Pmel digested single ∆ORF library	2 ug
3	NEBuilder HiFi DNA Assembly Master Mix	100 uL
4	water	up to 200 uL

20. RecBCD treatment

Mix below and iucubate at 37°C overnight Purify with a Monarch PCR & DNA Clean up kit using 12 μL of water for elution

Table17		
	contents	amount
1	assembled product	75 uL
2	RecBCD	5 uL
3	AsiSI	1 uL
4	Pmel	1 uL
5	NEB Buffer 4	10 uL
6	ATP	1 mM
7	BSA	10 ug
8	water	up to 100 uL

21. Transformation

Transform $3\mu L$ of assembled product into $50~\mu L$ of 10-beta electrocompitent cells with 2kV, 200~ohm, $25~\mu F$ Add 10~mL SOC outgrowth medium, separate to 5 tubes and incubate at $37^{\circ}C$ for 1~hr Scale up in 5~x 100~mL of LB supplemented with $100~\mu g/mL$ of carbenicillin Incubate on a shaker at $30^{\circ}C$ for 16~hr Prep plasmid library using Plasmid Plus Mega

Direct protocol

6. Assembling a duo ΔORF library

Here we describe the protocol to insert P vector into A vector. When inserting P vector into A vector, change vector plasmids and restriction enzymes appropriately.

22. Linearize single Δ ORF vector

Mix below and inclubate at 37°C overnight

Purify using 1x volume of AMpure XP followed by elution using 50 uL of water

Table	Table20		,
	contents	amount	
1	single ∆orf library (plasmid A)	10 ug	
2	AsiSI	10 uL	
3	cut smart buffer	10 uL	
4	water	up to 100 uL	

23. Amplify and barcoding oligo library

Mix PCR reaction below

Cycle condition: 98°C for 30sec, 4-6 cycles of (98°C for 10 sec, 60°C for 15 sec, 65°C 45 sec), 72°C for 5 min Purify PCR product using 2x volume of AMpure XP followed by elution using 50 µL water

Table21		
	contents	amount
1	Q5 NEBNext Master Mix	300 uL
2	Primer 2 10 uM	30 uL
3	Primer 6 10 uM	30 uL
4	synthesized oligo pool	6 uL
5	water	up to 600 uL

24. Gibson assembly

Mix below and incubate at 50°C for 60 min

Purify assembled products using a Monarch PCR & DNA Clean up kit using 12 μL of water for elution

Table18			
	contents	amount	
1	PCR product (step 23)	220 ng	
2	linearized single ΔORF vector (step 22)	2 ug	
3	NEBuilder HiFi DNA Assembly Master Mix	100 uL	
4	water	up to 200 uL	

25. Transformation

Transform assembled product into 10-beta electrocompitent cells with 2kV, 200 ohm, 25 μ F in order to achieve a transformation efficiency equal to 200-300 times the number of unique oligos sequences Add 10 mL SOC outgrowth medium, separate to 10 tubes and incubate at 37°C for 1 hr Independently scaled up in 20 mL of LB supplemented with 100 μ g/mL of carbenicillin Incubate on a shaker at 37°C for 9.5 hr Prep plasmid library using Plasmid Plus Maxi

26. Amplify minP-GFP

Follow step 13-14

27. Linearize duo ΔORF vector

Mix below and inclubate at 37°C overnight

Purify using 1x volume of AMpure XP followed by elution using 50 uL of water

Table	Table19		,
	contents	amount	
1	duo ∆orf library	10 ug	
2	Pmel	10 uL	
3	cut smart buffer	10 uL	
4	water	up to 100 uL	

28. Gibson assembly

Mix below and incubate at 50° C for 90 min. Use linearized vector from step 12. Purify assembled products using 1.2x volume of AMpureXP followed by elution using 75 μ L water

Table22			
	contents	amount	
1	Amplified GFP inserts	4 ug	
2	Pmel digested duo ∆ORF library	2 ug	
3	NEBuilder HiFi DNA Assembly Master Mix	100 uL	
4	water	up to 200 uL	

29. RecBCD treatment

Mix below and iucubate at 37°C overnight Purify with a Monarch PCR & DNA Clean up kit using 12 μ L of water for elution

Table23		
	contents	amount
1	assembled product	75 uL
2	RecBCD	5 uL
3	AsiSI	1 uL
4	Pmel	1 uL
5	NEB Buffer 4	10 uL
6	ATP	1 mM
7	BSA	10 ug
8	water	up to 100 uL

30. Transformation

Transform $3\mu L$ of assembled product into $50~\mu L$ of 10-beta electrocompitent cells with 2kV, 200~ohm, $25~\mu F$ Add 12~mL SOC outgrowth medium, separate to 6 tubes and incubate at $37^{\circ}C$ for 1 hr Scale up in 6 x 500~mL of LB supplemented with $100~\mu g/mL$ of carbenicillin Incubate on a shaker at $30^{\circ}C$ for 16~hr Prep plasmid library using Plasmid Plus Giga

Preparation of Illumina sequencing libraries for oligo-barcode matching

31. Amplify oligo-barcode fragment from single \triangle ORF vector

Mix reaction below

Cycle condition: 98°C for 30sec, 5 cycles of (98°C for 10 sec, 62°C for 15 sec, 72°C 1 min), 72°C for 2 min Purify assembled products using 1x volume of AMpureXP followed by elution using 30 μ L EB

Table24				
	contents	amount	for A vector	for P vector
1	Q5 High-Fidelity 2X Master Mix	100 uL		
2	Forward Primer 10 uM	10 uL	Primer 19	Primer 21
3	Reverse Primer 10 uM	10 uL	Primer 20	Primer 22
4	single ORF plasmid library	400 ng		
5	water	up to 200 uL		

32. Amplify oligo-barcode fragment with Illumina index

Mix reaction below

Cycle condition: 98°C for 30sec, 6 cycles of (98°C for 10 sec, 62°C for 15 sec, 72°C 1 min), 72°C for 2 min Purify assembled products using 1x volume of AMpureXP followed by elution using 30 μ L EB

Table25					
	contents	amount	for both vector		
1	Q5 High-Fidelity 2X Master Mix	50 uL			
2	Forward Primer 10 uM	5 uL	Primer 25		
3	Reverse Primer 10 uM	5 uL	Primer 26		
4	PCR product from step 31	20 uL			
5	water	up to 100 uL			

33. Sequence using 2x250 bp chemistry

Preparation of Illumina sequencing libraries for Tag-seq

- 34. Prepare cDNA following MPRAduo library transfection protocol.
- 35. Serial dilute plasmid library from 1000pg to 1fg using 10 fold dilutions.

Use 1000 uL per dilution

Use EB + 0.01% SDS for dilutions.

36. qPCR Setup for normalization and cycle determination

Mix reaction below

Cycle condition: 98°C for 30sec, 40 cycles of (98°C for 10 sec, 62°C for 15 sec, 72°C 1 min), 72°C for 2 min, Melt Curve Analysis

Table26					
	contents	amount	for both vector		
1	Q5 High-Fidelity 2X Master Mix	5 uL			
2	Forward Primer 10 uM	0.5 uL	Primer 23		
3	Reverse Primer 10 uM	0.5 uL	Primer 24		
4	cDNA/diluted plasmid	1 uL			
5	SYBR Gel Stain (1/6000 diluted)	1 uL			
6	water	up to 10 uL			

37. Analyze the result of qPCR

Find the CT (cycle) when the amplification curve for the cDNA qPCR just begins to take off and subtract one cycle.

Use this number of cycles in the first illumina prep PCR.

38. 1st PCR

Mix reaction below

Cycle condition: 98°C for 30sec, **N** cycles of (98°C for 10 sec, 62°C for 15 sec, 72°C 1 min), 72°C for 2 min Purify assembled products using 1x volume of AMpureXP followed by elution using 30 μ L EB

Table27					
	contents	amount	for both vector		
1	Q5 High-Fidelity 2X Master Mix	50 uL			
2	Forward Primer 10 uM	5 uL	Primer 23		
3	Reverse Primer 10 uM	5 uL	Primer 24		
4	cDNA/diluted plasmid	10 uL			
5	water	up to 100 uL			

39. 2nd PCR

Mix reaction below

Cycle condition: 98°C for 30sec, 6 cycles of (98°C for 10 sec, 62°C for 15 sec, 72°C 1 min), 72°C for 2 min Purify assembled products using 1x volume of AMpureXP followed by elution using 30 μ L EB

Table28				
	contents	amount	for both vector	
1	Q5 High-Fidelity 2X Master Mix	50 uL		
2	Forward Primer 10 uM	5 uL	Primer 25	
3	Reverse Primer 10 uM	5 uL	Primer 26	
4	1st PCR product from step38	20 uL		
5	water	up to 100 uL		

40. Sequence using 2x150 bp or 1x150 bp chemistry