

How to Fairly Allocate Easy and Difficult Chores

CS656: Algorithmic Game Theory

Instructor: Sunil Easaw Simon

Introduction

- *n* agents, *m* items
- Items are indivisible goods or chores
- Allocation of items between the agents

$$\circ \quad \mathbf{x} = (x_1, x_2, \dots, x_n)$$

- Agent *i* values item *j* at $v_i(j)$
 - Goods: $v_i(j) \ge 0 \ \forall i$
 - Chores: $v_i(j) \le 0 \ \forall i$
- Agent i values bundle S at $v_i(S)$
- Additive Utility: $v_i(S) = \sum_{s \in S} v_i(s)$

Fairness and Efficiency:

Our goal to find an allocation which is *Fair* and *Efficient*

- Fairness : Envy-Freeness (EF)
- Efficiency: Pareto-Optimality (PO)

Envy-Freeness (EF)

EF: No agent prefers another one's bundle to their allocated bundle.

$$v_i(x_i) > v_i(x_i) \ \forall (i,j)$$
 for allocation $x = (x_1, x_2, ..., x_n)$

- Envy-Free allocation may not exist for indivisible chores.
- Relaxation of EF Envy-freeness up to one item (EF1).

Envy-Free up to one item (EF1)

- **EF1**: No agent prefers another one's bundle to their allocated bundle, after ignoring at most one item.
- Goods: $\exists c \in x_j : v_i(x_i) \ge v_i(x_i \setminus \{c\}), \forall (i, j).$
- Chores: $\exists c \in x_i : v_i(x_i \setminus \{c\}) \ge v_i(x_i)$, $\forall (i, j)$.
- EF1 allocation always exist.

Pareto-Optimal (PO)

- Allocation x is Pareto optimal, if there is no allocation y such that y pareto dominates x i.e.,
- y pareto dominates x

$$\forall i: v_i(y_i) \ge v_i(x_i) \text{ and } \exists j: v_i(y_i) > v_i(x_i)$$

- Does a EF1 + PO allocation exists?
 - Yes, for goods under additive utilities [Caragiannis et al., 2016]
 - Still an open question for chores under additive utilities
 - Yes, for chores under bivalued utilities [This paper]

Bivalued Utilities

- Bivalued utilities
 - $\circ \quad \forall i, j: \quad v_i(j) \in \{a, b\}$
 - ∘ For chores: $a \le b \le 0$
- Theorem 1
 - Given a chore division problem with bivalued utilities, an EF1 + PO allocation always exists and computed in polynomial time

Fisher Markets

- Instance I looks like:
 - \circ *n* agents *N*,
 - \circ *m* items *M*,
 - o **p** price vector for items
 - Valuations $v_i(j)$, valuation of agent i for item j
- Pain per Buck: $PB_{ij} = \frac{v_i(j)}{p_j}$ Maximum Pain per Buck: $MPB_i = \max_j PB_{ij}$
- Market Equilibrium (x, p)
 - All items are allocated
 - Agents only receive MPB items

Fisher Markets

- First Welfare Theorem
 - o Every equilibrium allocation in Fisher market is Pareto Optimal
- Price envy-freeness up to one item (pEF1)
 - A allocation is pEF1 if, for all $i, j \in N$, $\exists c \in x_i : p(x_i \setminus \{c\}) \le p(x_i)$
- Lemma:
 - If an allocation is pEF1 then it is EF1

Algorithm for EF1 + PO

Phase 1 Initialization

Let x be an allocation maximizing social welfare $\sum_i \in \mathcal{N} \ v_i(x_i)$. For each $c \in \mathcal{M}$, let $p_c = p \cdot |max_i \in \mathcal{N} \ v_i(c)|$ $k \leftarrow 1$, the number of the current iteration

- We start with an allocation and prices in equilibrium (x, p)
- If $c \in x_i$ then $v_i(c) = \max_j v_j(c)$ $PB_i(c) = |v_i(c)|/(p \cdot |v_i(c)|) = 1/p$

Algorithm for EF1 + PO

Phase 2a Reallocate chores

```
for \ell \in (k-2,k-3,\ldots,2,1) do while true do 
 i \leftarrow an agent from arg \max_i \in H_-\ell p_up to 1(x_i) j \leftarrow an agent from arg \min_j \in H_-\ell \in H_-\ell p\(\text{U}\) if p_up to 1(x_i) > p(x_j) then c \leftarrow any item from x_i \setminus entitled(i) Transfer c from i to j else break
```

Phase 2b Reallocate chores

```
while true do  ls \leftarrow \text{an agent from arg min}_i \in \mathcal{N} \ p(x_i)  if there is an MPB alternating path i \stackrel{c_1}{\to} j \stackrel{c_2}{\to} \cdots \stackrel{c_l}{\to} ls with p_up to 1(x_{i1}) > p(x_ls) then Choose such a path of minimum length \ell Transfer c_\ell from i_\ell to i_{\ell-1} else break if x satisfies pEF1 then return x
```

- Keeping the prices constant
- Reallocate chores to decrease envy
- MPB-path $i \stackrel{c_1}{\rightarrow} j \stackrel{c_2}{\rightarrow} \cdots \stackrel{c_l}{\rightarrow} k$
- Local Changes
- $i \stackrel{c}{\rightarrow} j$ exists and $p(x_j) < p(x_i) p_c$ then transferring c to j reduces envy and remain in equilibrium

Algorithm for EF1 + PO

Phase 3 Price reduction

```
\begin{split} &H\_k \leftarrow \{i \in \mathcal{N} : \text{there is an agent } ls \in \text{arg min}_i \in \mathcal{N} \ p(x_i) \ \text{with } ls \rightsquigarrow i \} \\ &\blacktriangleright \text{Timestamp: } t\_\{k,b\} \\ &\alpha \leftarrow \min\{PB_i(c)/MPB_i : i \in H\_k, c \in U_j \in \mathcal{N} \setminus H\_k \ x_j\} \\ &\text{for } i \in H\_k \ do \\ &\text{entitled}(i) \leftarrow x_i \\ &\text{for } c \in x_i \ do \\ &p\_c \leftarrow 1/\alpha \cdot p\_c \\ &\blacktriangleright \text{Timestamp: } t\_\{k,a\} \\ &k \leftarrow k+1 \\ &\text{Start Phase 2a (i.e. go to line 5)} \end{split}
```

- Keeps the allocation x fixed
- Identify set of agents and reduce prices of chores allocated to them by multiplicative factor
- Each time we identify different set of agents
- Algorithm terminates in poly. steps

Algorithm EF1 + PO

- Algorithmic Frame work:
 - Start with an allocation and price in equilibrium
 - Make local changes reducing envy (equilibrium maintained)
 - Reach pEF1 (+ equilibrium) \rightarrow terminate

Correctness is proved by induction of some properties on iterations

Another Fairness Notion: Maximin Share

- Maximin Share (MMS) allocation [Budish, 2011]
- *P*: Set of all partitions of chores/goods *M* into *n* bundles
- Agent i's maximin share (aka **MMS value**) is

$$MMS_i = \max_{p \in P} \min_{k \in [n]} v_i(p_k)$$

- x is an MMS allocation if $v_i(x_i) \ge \text{MMS}_i \quad \forall i$
- Finding MMS values is NP-hard
- MMS allocations may not exist in general. [Kurokowa et al '16]

Factored Utilities

Factored Utilities:

$$v_{ij} \in \{1, p_1, p_2, \cdots, p_k\} \subset \mathbb{Z} \text{ such that } p_{i-1} \mid p_i \quad \forall i$$

o Eg: {1, 2, 6, 12, 36}

Theorem

 \circ For factored utilities v over a set of items M (all goods or all chores), an MMS values can be found in polynomial time

Algorithm for MMS values

```
\begin{array}{l} 1 \ x \leftarrow (x_i = \emptyset)_i \in \mathcal{N} \\ 2 \ \text{for} \ r \in \mathcal{M} \ \text{in a nonincreasing order of} \ |v(r)| \ \text{do} \\ 3 \ k^* \leftarrow \arg\min_k \in \mathcal{N} \ |v(x_k)| \\ 4 \ x_k^* \leftarrow x_k^* \cup \{r\} \\ 5 \ \text{return} \ x \end{array}
```

- Items are sorted in nonincreasing order
- We model the problem as packing items into bundles such worst bundle is as good as possible

MMS allocation

 MMS allocation is not guaranteed to exist for all instances of additive utilities

- So we will discuss MMS allocation for two special subclasses of Factored Utilities
 - Personalised Factored Bi-valued Utilities
 - Weakly lexicographic Utilities

Personalized Factored Bivalued

- $v_{ij} \in \{a_i, b_i\}$ and $\exists k \in \mathbb{N}$ such that $a_i = b_i \cdot k$
 - Note that $a_i, b_i \in \mathbb{Z}$
- Theorem 2(a)
 - For personalised factored bivalued chores or goods
 - MMS allocation always exists
 - MMS allocation can be found in PTIME

Weakly Lexicographic Utilities

- Divides items into sets/levels
 - \circ {a,b} > {c,d,e} > {f} > {g,h}
 - $\circ \quad \forall i \quad v_i(c) = v_i(d) = v_i(e)$
 - $\circ \quad \forall i \quad |v_i(a)| > \sum_{m < a} |v_i(m)|$

- Theorem 2(b)
 - For weakly lexicographic chores or goods
 - MMS allocation always exists
 - MMS allocation can be found in PTIME

MMS allocation

- We make some valid reductions to reduce the problem
- $I = (N, M, v) \rightsquigarrow I' = (N 1, M \setminus S, v)$ is valid if
 - \circ $v_i(S) \ge \text{MMS}_i^n(M)$ and
 - $\circ \quad \mathsf{MMS}_{j}^{n-1}(M \setminus \mathsf{S}) \ge \mathsf{MMS}_{j}^{n}(M) \quad \forall j \in N \setminus \{i\}$
- If x is an MMS allocation, and x' is a Pareto improvement over x then x' is also MMS
- For weakly lexicographic and factored bivalued utilities, given an MMS allocation, an MMS + PO allocation can be computed in poly time

MMS + PO

- If x is an MMS allocation, and x' is a Pareto improvement over x then x' is also MMS
- For weakly lexicographic and factored bivalued utilities, given an MMS allocation, an MMS + PO allocation can be computed in poly time
- We give a polynomial time algorithm find these pareto improvements

Summary

- EF1 + PO for bivalued chores:
 - Can be found in polynomial time
- MMS values for factored utilities can be found in polynomial time
- MMS+PO exists for two subclasses of factored utilities
 - Factored bivalued and weakly lexicographic and can be found in poly. Time
- For personalized bivalued utilities, finding MMS+PO allocations in polynomial time remains an open question

Thank You!

MMS + PO

- We start with the MMS allocation and create a directed graph where edges represent an agent preferring another agent's item.
- We then repeatedly look for cycles, which can be done efficiently in poly.
 time
- By reallocating items along these cycles, we make Pareto improvements while preserving MMS fairness

