Functional Analysis HW2

Kim Juhyeong

October 20, 2020

Problem 6.

For a nomed linear space V, it equips norm $\|\cdot\|_V$. Let U be open unit ball and \overline{U} be closed unit ball s.t

$$U = \{x \in V \mid ||x||_V < 1\}$$

$$\bar{U} = \{x \in V \mid ||x||_V \le 1\}$$

For $\forall x_1, x_2 \in U$ and $\forall t \in [0, 1]$, $||tx_1 + (1 - t_2)x_2||_V \le |t|||x_1||_V + |1 - t|||x_2||_V < 1$. For $\forall y_1, y_2 \in \bar{U}$ and $\forall t \in [0, 1]$, $||ty_1 + (1 - t_2)y_2||_V \le |t|||y_1||_V + |1 - t|||y_2||_V \le 1$. By triangle inequality. Therefore, U and \bar{U} are convex.

10/10

Problem 7.

Let norm in C(X) be $||f||_{C(X)} = \sup_{x \in X} |f(x)|$. For $f \in C(X)$, l(f) is scalar in non-negative real if $f \ge 0$. Therefore, l is a linear mapping between two normed spaces.

Then, $\forall f \in C(X), \ \forall x \in X, \ |f(x)| \le \|f\|_{C(X)} \ \text{and} \ \forall x \in X, \ \|f\|_{C(X)} - f(x) \ge 0 \ \text{and} \ \|f\|_{C(X)} + f(x) \ge 0.$

For positive linear functional l,

$$0 \le l(\|f\|_{C(X)} - f) = \|f\|_{C(X)} l(1) - l(f)$$

$$0 \le l(\|f\|_{C(X)} + f) = \|f\|_{C(X)}l(1) + l(f)$$

Therefore, $|l(f)| \leq ||f||_{C(X)} l(1)$. (Because $f = f \cdot 1$ for constant function 1.)

Since l is bounded, l is continuous by Theorem 2.11.

10/10

Problem 8.

Let $x_n \to x$ be a convergent sequence in \mathcal{H} and $Tx_n \to y$ for some $y \in \mathcal{H}$. Then, $\Gamma(T)$ is closed if Tx = y. For any $z \in \mathcal{H}$,

$$\begin{split} \langle Tx - y, z \rangle &= \langle Tx, z \rangle - \langle y, z \rangle \\ &= \langle x, Tz \rangle - \langle y, z \rangle \\ &= \lim_{n \to \infty} [\langle x_n, Tz \rangle - \langle Tx_n, z \rangle] \\ &= \lim_{n \to \infty} [\langle Tx_n, z \rangle - \langle Tx_n, z \rangle] \\ &= 0 \end{split}$$

Thus, Tx = y.

Then, the graph $\Gamma(T)$ is closed.

By Closed Graph Theorem, T is continuous.

By theorem 2.11, T is bounded since it is continuous linear mapping between two normed spaces \mathcal{H} and \mathcal{H} .

10/10

Problem 9.

For $d_1(x,y) = |x-y|$ and $d_2(x,y) = |\phi(x) - \phi(y)|$ where $\phi(x) = \frac{x}{1+|x|}$, to show d_1 and d_2 induces same topology,

$$d_{2}(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

$$= \frac{1}{1+|x|} \left| x - \frac{1+|x|}{1+|y|} y \right|$$

$$= \frac{1}{1+|x|} \left| x - y - \frac{|x| - |y|}{1+|y|} y \right|$$

$$\leq \frac{1}{1+|x|} \left(|x - y| + \frac{|(|x| - |y|)y|}{1+|y|} \right)$$

$$\leq \frac{1}{1+|x|} \left(|x - y| + \frac{|x - y||y|}{1+|y|} \right) = \frac{1}{1+|x|} \frac{1+2|y|}{1+|y|} |x - y|$$

$$\leq 2|x - y| = 2d_{1}(x, y)$$

Therefore, $\frac{1}{2}d_2(x,y) \le d_1(x,y)$.

$$d_{1}(x,y) = |x-y|$$

$$= (1+|x|) \left| \frac{x}{1+|x|} - \frac{y}{1+|x|} \right|$$

$$= (1+|x|) \left| \frac{x}{1+|x|} - \frac{1+|y|}{1+|x|} \cdot \frac{y}{1+|y|} \right|$$

$$= (1+|x|) \left| \frac{x}{1+|x|} - \frac{1+|x|-|x|+|y|}{1+|x|} \cdot \frac{y}{1+|y|} \right|$$

$$= (1+|x|) \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} + \frac{|y|-|x|}{1+|x|} \cdot \frac{y}{1+|y|} \right|$$

$$\leq (1+|x|) \left[d_{2}(x,y) + \frac{|y|||x|-|y||}{(1+|x|)(1+|y|)} \right]$$

$$\leq (1+|x|) \left[d_{2}(x,y) + \frac{|y|}{(1+|x|)(1+|y|)} d_{1}(x,y) \right]$$

$$= (1+|x|) d_{2}(x,y) + \frac{|y|}{1+|y|} d_{1}(x,y)$$

Then,

$$d_1(x,y) \le (1+|x|)(1+|y|)d_2(x,y)$$

Therefore,

$$\forall x, y \in \mathbb{R}, \frac{1}{2}d_2(x, y) \le d_1(x, y) \le d_2(x, y)$$

This is sufficient condition for the statement that d_1 and d_2 is equivalent metric.

In conclusion, these two metrics induces same topology.

(Instead of doing computation, it is enough to use the fact that ϕ is a homeomorphism between \mathbb{R} and (-1,1).)

To show d_2 is not complete, assume it is complete.

Then, every Cauchy sequence has a limit in \mathbb{R} .

Let $x_n = n$ be a Cauchy sequence in \mathbb{R} .

Then, for
$$\forall \epsilon > 0$$
, let $N = \left\lceil \frac{2}{\epsilon} \right\rceil + 1$.

Then,

$$d_2(x_n, x_m) = \left| \frac{n - m}{(1+n)(1+m)} \right| < \left| \frac{n - m}{nm} \right| < N^{-2}|n - m| < N^{-2}(|n| + |m|) < 2N^{-1} < \epsilon$$

Thus, it is a cauchy sequence.

However, limit $\lim_{n\to\infty} x_n = \infty$ is not a element of \mathbb{R} .

It is a contradiction.

Thus, d_2 is not complete in metric.

10/10

Problem 10.

Referring the given definitions in Hint, for $\forall x, y \in M$ and a scalar α ,

$$\lim_{n \to \infty} \Lambda_n(x+y) = \lim_{n \to \infty} [\Lambda_n x + \Lambda_n y] = \lim_{n \to \infty} \Lambda_n x + \lim_{n \to \infty} \Lambda_n y = \Lambda x + \Lambda y, \ x+y \in M$$
$$\lim_{n \to \infty} \Lambda_n(\alpha x) = \lim_{n \to \infty} \alpha \Lambda_n x = \alpha \Lambda x, \ \alpha x \in M$$

Thus, M is a subspace of l^{∞} .

Actually, l^{∞} is a Banach space with a norm $||x||_{\infty} = \sup_{n} |x_{n}|$ and complete in metric $||x - y||_{\infty}$ for $x, y \in l^{\infty}$.

Given subspace M and a seminorm(norm) $\|\cdot\|_{\infty}$, by Hahn-Banach Theorem, there exists a linear functional Λ such that

$$|\Lambda(x)| \leq ||x||_{\infty}$$
 for $x \in l^{\infty}$

and for a linear functional f on M such that $\forall x \in M, |f(x)| \leq ||x||_{\infty}$,

$$\Lambda(x) = f(x) = \lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n} \text{ if } x \in M$$

• To show (a),

$$\Lambda(\tau(x)) - \Lambda(x) = \Lambda(\tau(x) - x)$$

$$= \lim_{n \to \infty} \Lambda_n(\tau(x) - x)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n [x_{i+1} - x_i]$$

$$= \lim_{n \to \infty} \frac{1}{n} [x_{n+1} - x_1]$$

$$= 0$$

Since $x \in l^{\infty}$ is bounded. Therefore, $\Lambda(\tau(x)) = \Lambda(x)$

• (b) For $x \in l^{\infty}$, any α, β such that

$$\alpha < \liminf_{n \to \infty} x_n$$
 and $\limsup_{n \to \infty} x_n < \beta$

 $\exists N \text{ such that } \alpha < x_n < \beta \text{ for } \forall n > N.$

Then, $\tau^N(x) - \alpha$ and $\beta - \tau^N(x)$ are positive bounded sequences. Moreover,

$$0 < \Lambda(\tau^{N}(x) - \alpha) = \Lambda(\tau^{N}(x)) - \alpha = \Lambda(x) - \alpha$$

$$0 < \Lambda(\beta - \tau^{N}(x)) = \beta - \Lambda(\tau^{N}(x)) = \beta - \Lambda(x)$$

Thus, $\alpha < \Lambda(x) < \beta$.

Then, we can choose α and β arbitrarily close to liminf and limsup,

$$\liminf_{n \to \infty} x_n \le \Lambda(x) \le \limsup_{n \to \infty} x_n$$