Unit-5: Combinational Circuit

Multiplexers-De-multiplexers Decoder-Encoder Combinational circuits are defined as the time independent circuits which do not depends upon previous inputs to generate any output are termed as combinational circuits.

Sequential circuits are those which are dependent on clock cycles and depends on present as well as past inputs to generate any output.

Features of Combinational Circuit –

- 1. In this output depends only upon present input.
- 2. Simplest design and Speed is fast
- 3. There is no feedback between input and output.
- 4. Elementary building blocks: Logic gates
- 5. Used for arithmetic as well as boolean operations.
- 6. Combinational circuits don't have capability to store any state.
- 7. As combinational circuits don't have clock, they don't require triggering.
- 8. These circuits do not have any memory element.

Examples – Encoder, Decoder, Multiplexer, Demultiplexer

Multiplexer

- Also called data selectors.
- Basic function: select one of its 2^n data input lines and place the corresponding information onto a single output line.
- *n* input bits needed to specify which input line is to be selected.
 - Place binary code for a desired data input line onto its n select input lines.

Block Diagram:

Typical Application of a MUX

• One of the primary applications of multiplexers is to provide for the transmission of information from several sources over a single path. This process is known as multiplexing

- Q. The two input MUX would have _____
- a) 1 select line
- b) 2 select lines
- c) 4 select lines
- d) 3 select lines

Q. 4 to 1 MUX would have _____

- a) 2 inputs
- b) 3 inputs
- c) 4 inputs
- d) 5 inputs

4:1 Multiplexer

Selection	Output	
S1	So	Y
0	0	Io
0	1	I 1
1	0	I2
1	1	I 3

$$Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

Expression implementation with Multiplexer

Q. $Y(A, B,C) = \sum m (1, 3, 5, 6)$ implement with 4:1 multiplexer

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

Any 2 input (AB/BC/AC) select line

Rearrange equation with selection line

$$Y = \underline{0.(\overline{BC})} + \underline{\overline{BC}(\overline{A} + A)} + \underline{ABC} + \overline{\overline{ABC}}$$
10 | 11 | 12 | 13

Q. $Y(A, B,C) = \sum m(1, 2, 4, 5)$ implement with 4:1 multiplexer

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

Any 2 input (AB/BC/AC) select line

Rearrange equation with selection line

$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}(\overline{C} + C) + AB.0$$

$$| 0 | 11 | 12 | 13$$

Logic Gate implementation with 2:1 Multiplexer

AND GATE

NAND GATE

A	D	001	_
0	0	1	OUT = 1
0	1	1	when A = 0
1	0	1	OUT = B'
1	1	0	when A = 1
VDD 0 0	<u>u</u> r	A ————————————————————————————————————	о о о о о о о о о о о о о о о о о о о

OR GATE

Α	В	OUT	_
0	0	0	OUT = B when A = 0
0	1	1	when A = 0
1	0	1	OUT = 1 when A = 1
1	1	1	when A = 1

Α	В	OUT	
0	0	1	OUT = B' when A = 0
0	1	0	when A = 0
1	0	0	OUT = 0 when A = 1
1	1	0	when A = 1

Logic Gate implementation with 2:1 Multiplexer

XOR GATE

XNOR GATE

Α	В	OUT	_
0	0	0	OUT = B when A = 0
0	1	1	when A = 0
1	0	1	OUT = B' when A = 1
1	1	0	when A = 1

			_
Α	В	OUT]_
0	0	1	OUT = B' when A = 0
0	1	0	when A = 0
1	0	0	OUT = B when A = 1
1	1	1	when A = 1

NOT GATE

Α	OUT
0	1
1	0

4:1 Mux using 2:1 Mux

8:1 Mux using 4:1 and 2:1 Mux

S1 (MSB)	SO(LSB)	Out
0	0	10
0	1	I1
1	0	12
1	1	13

Se	Select Data Inputs				
S ₂	S_1	S_0	γ		
0	0	0	D_0		
0	0	1	D_1		
0	1	0	D ₂		
0	1	1	D_3		
1	0	0	D ₄		
1	0	1	D ₅		
1	1	0	D_6		
1	1	1	D ₇		

De-multiplexer

- Switch one common input line to one of several output line based on select input.
- It is data distributor.
- Size of demux $1:2^n$ Example 1:4, 1:8, 1:16... Demultiplexer

Sele Inp	ction uts	Outputs			
S 1	S ₀	ү з	Y 2	Y 1	Yo
0	0	0	0	0	ı
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

 Y_2

 Y_1

 Y_0

Application

Decoder

- A combinational circuit that has 'n' input lines and maximum of 2ⁿ output lines.
- One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled.

The outputs of the decoder are **min terms** of 'n' input variables lines when it is enabled

Size of Decoder are 2:4, 3:8, 4:16....

A 1	A o	Y 3	Y 2	Y 1	Y 0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Which one is decoder?

- (a) 4:1
- (b) 1:4
- (c) 3:8
- (d) 8:3

How many inputs and outputs for four variable function in a decoder.

- (a) 4,8
- (b) 4,16
- (c) 3,8
- (d) 16, 1

Full Adder using 3:8 Decoder

S = A'B'C + A'BC' + AB'C' + ABC =
$$\Sigma(1,2,4,7)$$

CY = A'BC + ABC' + ABC' + ABC = $\Sigma(3,5,6,7)$

Full Subtractor using 3:8 Decoder

DIFFERENCE = A'B'C + A'BC' + AB'C' + ABC = $\Sigma(1,2,4,7)$ BORROW = A'B'C + A'BC' + A'BC+ABC= $\Sigma(1,2,3,7)$

А3	A2	A1	A0	HIGH OUTPUT
0	0	0	0	YO
0	0	0	1	Y1
0	0	1	0	Y2
0	0	1	1	Y3
0	1	0	0	Y4
0	1	0	1	Y5
0	1	1	0	Y6
0	1	1	1	Y7
1	0	0	0	Y8
1	0	0	1	Y9
1	0	1	0	Y10
1	0	1	1	Y11
1	1	0	0	Y12
1	1	0	1	Y13
1	1	1	0	Y14
1	1	1	1	Y15

4:16 decoder using 2:4 decoder

Encoder

Inputs				Outputs	
D_3	D_2	D_1	D_0	Q ₁	Q_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
0	0	0	0	х	Χ

Which of the following is not valid encoder?

(A)

8 X 3

(B)

5 X 32

(C)

2 X 1

(D)

All are valid