From Information Theory to Term Weighting Alternatives to Classic BM25-IDF based on a New Information Theoretical Framework

Weimao Ke

wk@drexel.edu

College of Computing and Informatics

Drexel University, Philadelphia, U.S.A.

December 18, 2022 @ IEEE Big Data Conference

Outline

- ► Background: TF*IDF and BM25
- ► Theory: Discounted Least Information Theory of Entropy
- Application: DLITE for Term Weighting
- Experimental Setup
- Results and Finding
- Conclusion

This research was partially supported by IMLS grant #RE-246450-OLS-20 (LEADING) and NSF grant #1741306.

Background: TF*IDF

Classic TF*IDF:

- ▶ Term Frequency (tf_{dt}) : # occurrences of term t in document d
- ▶ Document Frequency (n_t) : # docs containing term t

Okapi BM25 is a version of TF*IDF and the default scoring in Elastic Search.

Background: TF

Variants of TF weight, $w_{dt}^{TF} =:$

- 1. Raw frequency: tf_{dt}
- 2. Normalization with logarithm: $\log t f_{dt} + 1$
- 3. Normalization with saturation: $\frac{tf_{dt}}{k+tf_{dt}}$
- 4. Document length normalization: $\frac{tf_{dt}}{l_d}$

In BM25, the TF component is a combination of #3 (saturation) and #4 (doc length normalization).

Background: IDF

Classic IDF formula: $w_t^{IDF} = \log \frac{N}{n_t}$, where N is the total # of docs.

Three perspectives on IDF (Inverse Document Frequency):

- 1. Heuristic (Salton): The **inverse** relation between a term's informativeness and how commonly (or rarely) it appears.
- 2. Probabilistic (Robertson & Sparck Jones): The estimate of a term's contribution to the **log-likelihood** (odds) of document relevance, i.e. retrieval status value (RSV) in IR ranking.
- 3. Information theoretical (Aizawa): The amount of information in a term measured by **KL Divergence** or conditional entropy.

Salton Robe

Robertson

Sparck Jones

Aizawa

Background: Entropy and KL Divergence

Kullback-Leibler (KL) Divergence, a.k.a. relative entropy:

$$KL(P||Q) = \sum_{x \in X} p_x \log \frac{p_x}{q_x}$$

measures the amount of discrimination information (in Shannon Entropy) for distributions P and Q.

Shannon

Leibler

Background: IDF as KL Divergence

P and Q in a text collection:

- - $ightharpoonup q_t' = 1 q_t$ the probability of NOT observing the term.

- $p_t = 1$ be in the probability of observing term t in a document containing the term.
- $ho p'_t = 0$ the probability of NOT observing it in that document.

It can be shown that:

$$KL(P_t||Q_t) = \log \frac{N}{n_t}$$

IDF captures the discriminative power (information) of a term based on KL Divergence.

Background: Issues with KL-based IDF

Theoretical properties of KL divergence:

- 1. Not a metric distance
 - Not symmetric, $KL(P||Q) \neq KL(Q||P)$
 - Not satisfying triangular inequality
 - ► Hard to interpret how scores add up (sum)
- 2. Unbounded, can have infinite values

Implications on IDF w_t^{IDF} :

- 1. Interpretation of $\sum_t w_t^{IDF}$?
- 2. Can have relatively large w_t^{IDF} for a rare term t.

Example: "The Mochi is sooooooooooo tasty."

Theory: LIT

Least Information Theory, LIT(P, Q):

$$= \sum_{x \in X} \int_{p_x}^{q_x} -\log p \ dp$$
$$= \sum_{x \in X} \left| p_x (1 - \ln p_x) - q_x (1 - \ln q_x) \right|$$

- Metric distance, bounded
- Great results in IR, clustering, classification, and many others.
- Missing an important information-theoretic property
 - NOT satisfying the breakdown rule, i.e. the LIT of an ensemble ≠ the weighted sum of LITs in the sub-systems.
 - ▶ i.e. $lit(x \cdot p, x \cdot q) \neq x \cdot lit(p, q)$

Ke (2012, 2013), Gong & Ke (2013) Gong (2015), Ke (2015, 2017), Du & Ke (2018)

Theory: DLITE

We introduce an entropy discount $\Delta_H(P, Q)$:

$$= \sum_{x \in X} \left| p_x - q_x \right| \frac{\int_{p_x}^{q_x} - p \log p \ dp}{\int_{p_x}^{q_x} x \ dx}$$

Discounted LIT of Entropy, DLITE (pronounced delight) is:

$$DL(P, Q) = LIT(P, Q) - \Delta_H(P, Q)$$

Theory: DLITE Properties (Highlights)

With the entropy discount, DLITE:

- Satisfies several information-theoretic properties, including:
 - ► The breakdown rule: The DLITE of an ensemble = the weighted sum of DLITEs in the sub-systems.
 - ▶ i.e. $dl(x \cdot p, x \cdot q) = x \cdot dl(p, q)$
- ▶ Non-negative, bounded in [0,1], symmetric
- ▶ DL(P, Q) = 0 only when P and Q are identical.
- $\rightarrow \sqrt[3]{DLITE}$ satisfies triangular inequality (metric distance).

Application: DLITE Alternative to IDF

Remember P_t and Q_t in a text collection:

- $ightharpoonup q_t = n_t/N$ be the probability of observing term t in a randomly drawn document.
- $ightharpoonup q_t' = 1 q_t$ the probability of NOT observing the term.

- $p_t = 1$ be in the probability of observing term t in a document containing the term.
- $ho p_t' = 0$ the probability of NOT observing it in that document.

DLITE's alternative to IDF:

$$w_t^{DLITE} = DLITE(P_t, Q_t)$$

Term weight based on the amount of DLITE in observing the term.

Application: DLITE Alternative to BM25

Combined with TF, we have iDL (ideal):

1.
$$iDL_{dt} = w_{dt}^{TF} \times w_{t}^{DLITE}$$

2.
$$iDL_{dt}^{\frac{1}{3}} = w_{dt}^{TF} \times \sqrt[3]{w_t^{DLITE}}$$

Compared to Okapi BM25:

$$\triangleright$$
 BM25 = $w_{dt}^{TF} \times w_{t}^{IDF}$

Experimental Setup

Ad hoc information retrieval experiments:

- Lucene with a highly regarded BM25 baseline implementation.
- ▶ 3 benchmark collections: 1992 2017.
- \blacktriangleright Evaluation metrics: gMAP, MAP, P_{10} , nDCG, R_{PR}

Results: Best on Each Collection

Method	gMAP	MAP	P10	nDCG	R_{PR}			
TREC 1994 Routing Track								
BM25	0.288	0.407	0.597	0.504	0.451			
iDL	0.305	0.414	0.639	0.509	0.467			
$iDL^{rac{1}{3}}$	0.309	0.419	0.637	0.524	0.469			
TREC 2005 HARD Track								
BM25	0.271	0.337	0.509	0.387	0.371			
iDL	0.306	0.369	0.533	0.412	0.421			
$iDL^{rac{1}{3}}$	0.323	0.388	0.564	0.447	0.447			
TREC 2017 Common Core								
BM25	0.387	0.457	0.615	0.452	0.452			
iDL	0.394	0.468	0.642	0.477	0.468			
$iDL^{rac{1}{3}}$	0.387	0.470	0.612	0.465	0.424			

TABLE I

BEST RESULTS ON EACH COLLECTION. EACH SCORE IS THE HIGHEST A METHOD ACHIEVED IN THE GIVEN EVALUATION METRIC. A BOLD FONT SHOWS THE BEST AMONG THE THREE METHODS IN EACH METRIC.

Results: HARD Track

Method	gMAP	MAP	P10	nDCG	R_{PR}		
No Stemming							
BM25	0.271	0.337	0.509	0.357	0.371		
iDL	0.306	0.369	0.533	0.410	0.421		
$iDL^{\frac{1}{3}}$	0.323	0.388	0.565	0.446	0.447		
With Stemming							
BM25	0.252	0.324	0.491	0.387	0.371		
iDL	0.287	0.358	0.532	0.412	0.403		
$iDL^{rac{1}{3}}$	0.312	0.382	0.548	0.447	0.436		

TABLE VII

TREC'05 HARD W. QUERY TITLE+DESC+NARR

Results: TREC'17 Common Core

~MAD

Method	gMAP	MAP	P10	nDCG	R_{PR}		
No Stemming							
BM25	0.353	0.439	0.591	0.472	0.466		
iDL	0.377	0.449	0.624	0.478	0.472		
$iDL^{rac{1}{3}}$	0.320	0.455	0.612	0.465	0.474		
With Stemming							
BM25	0.375	0.450	0.615	0.452	0.486		
iDL	0.392	0.464	0.642	0.468	0.497		
$iDL^{rac{1}{3}}$	0.386	0.456	0.596	0.446	0.477		

D1Λ

MAD

TABLE IX

TREC'17 COMMON CORE WITH QUERY TITLE+DESC

Findings

Findings:

- Experiments showed superior results with DLITE methods
- ▶ They consistently outperformed BM25, a very competitive baseline
- Results were even better on verbose (longer) queries and HARD topics.

Conclusion

Conclusion and looking forward:

- ▶ DLITE theory suitable for term weighting and applicable in other tasks for text mining and analytics.
- ► Can be applied in other processes to measure information gain in machine learning models, e.g. decision tree building.
 - $ightharpoonup \sqrt[3]{DLITE}$ is a metric **distance** (quantity)
 - ► DLITE can be considered **volumetric** (amount)
- Other creative ideas and research collaboration...

Thank you!

- Questions or comments?
- ► Feel free to reach out to me.

Weimao Ke wk@drexel.edu