Modal Logic

Jonathan Lawry

Department of Engineering Mathematics University of Bristol

Introduction

- In the previous section uncertainty has been represented in a quantitative way by giving numerical values to beliefs.
- In this section we shall consider a symbolic approach to representing uncertainty in terms of modalities.
- We shall then see how this can be combined with a numerical approach to provide further insight into the relationship between DS-theory and Probability theory.
- The idea is to directly incorporate the notions of *possibly the* case and necessarily the case directly into a formal logic.
- This is done by means of modal operators □ for necessity and ◊ for possibly.

Propositional Modal Logic

- Let W be a set of possible worlds and let E be a binary relation on W.
- The relation E can have a variety of interpretations including $E(w_1, w_2)$ meaning; w_1 and w_2 are indistinguishable, w_2 is accessible from w_1 , w_2 is imaginable from w_1 etc.
- The pair $\langle W, E \rangle$ is referred to as a Kripke interpretation.
- We define a set of basic propositions A, B, C, A_1, A_2 etc.
- For each proposition A is either true or false in each of the possible worlds.
- Let $w \models A$ denote that proposition A is true in world w.
- For each proposition A we can identify the set of worlds in which A is true:
- $W(A) = \{ w \in W : w \models A \}$

Well-Formed Formula of Modal Logic

- We can combine propositions to make formula using the standard connectives \neg (not), \wedge (and), \vee (or).
- As well as these connectives we also introduce two modal operators

 (necessarily) and

 (possibly).
- So for a formula θ , $\square \theta$ means that ' θ is *necessarily* the case' and $\lozenge \theta$ means that ' θ is *possibly* the case'.
- The well-formed formula (wff) of modal logic are defined recursively as follows:
 - All propositions are wff.
 - If θ, φ are wff so are $\neg \theta$, $\theta \land \varphi$, and $\theta \lor \varphi$.
 - If θ is a wff so are $\square \theta$ and $\lozenge \theta$.

Semantics of Modal Logic

- For a Kripke Interpretation (W, E);
- $w \models \neg \theta$ if and only if $w \not\models \theta$ i.e. θ is not true at w.
- $w \models \theta \land \varphi$ if and only if $w \models \theta$ and $w \models \varphi$.
- $w \models \theta \lor \varphi$ if and only if $w \models \theta$ or $w \models \varphi$.
- $w \models \Box \theta$ if θ is true in every world accessible from w.
- i.e. for all w' such that E(w, w'), $w' \models \theta$.
- $w \models \Diamond \theta$ if θ is true in at least one world accessible from w.
- i.e. there exists w' such that E(w, w') and $w' \models \theta$.

Example

- Let $W = \{w_1, w_2, w_3, w_4, w_5\}$ be a set of webpages.
- Let E be such that $E(w_i, w_i)$ and $E(w_i, w_j)$ for $i \neq j$ if there is a link from webpage w_i to w_j .
- Further suppose we have two propositional variables *A* = 'this page is an Eng. Maths page' and *B* = 'this page is a UoB page'.

Example

- For this Kripke interpretation we have:
- $w_1 \models \Box B$, $w_1 \models \Diamond B$, $w_1 \models \Diamond A$, $w_1 \models \Diamond \neg A$, $w_1 \not\models \Box A$.
- $w_2 \models \Box B$, $w_2 \models \Diamond B$, $w_2 \models \Diamond A$, $w_2 \models \Diamond \neg A$, $w_2 \not\models \Box A$.
- $w_3 \models \Box B$, $w_2 \models \Diamond B$, $w_2 \models \Diamond A$, $w_2 \models \Box A$.
- $w_4 \models \Diamond B$, $w_4 \models \Diamond \neg B$, $w_4 \not\models \Box B$, $w_4 \models \Diamond A$, $w_4 \models \Diamond \neg A$, $w_4 \not\models \Box A$.
- $w_5 \models \Box B$, $w_5 \models \Diamond B$, $w_5 \models \Diamond A$, $w_5 \models \Diamond \neg A$, $w_5 \not\models \Box A$.

Entailment and Equivalence

- $\theta \models \varphi$ (θ entails φ) if and only if, $w \models \theta$ implies that $w \models \varphi$; alternatively $W(\theta) \subseteq W(\varphi)$.
- $\theta \equiv \varphi \text{ if and only if } \theta \models \varphi \text{ and } \varphi \models \theta; \text{ alternatively } W(\theta) = W(\varphi)$
- In our example $A \models A \land B$, $B \equiv \Box B$, $B \equiv \Box \Box B$.
- In general, $\neg \Box \neg \theta \equiv \Diamond \theta$ (similarly, $\neg \Diamond \neg \theta \equiv \Box \theta$)

$$W(\neg \Box \neg \theta) = W(\Box \neg \theta)^c = \{w : \text{ for all } w', E(w, w') \Rightarrow w' \models \neg \theta\}^c$$
$$= \{w : \text{ for all } w', E(w, w') \Rightarrow w' \not\models \theta\}^c$$
$$= \{w : \text{ there exists } w', E(w, w') \text{ and } w' \models \theta\} = W(\lozenge \theta)$$

Properties of Relations

- Recall the following properties of relations:
- Reflexive: E(w, w) for all $w \in W$.
- **Symmetric**: If E(w, w') then E(w', w).
- **Transitive:** If $E(w_1, w_2)$ and $E(w_2, w_3)$ then $E(w_1, w_3)$.
- **Dense:** If $E(w_1, w_3)$ then there exists w_2 such that $E(w_1, w_2)$ and $E(w_2, w_3)$.
- **Serial:** For all w, there exists w' such that E(w, w').
- **Identity Relation:** E(w, w') if and only if w = w'.

Properties of *E*

- The properties of E determine the properties of the entailment relation \models .
- If *E* is *reflexive* then $\Box \theta \models \theta$.
- If *E* is *transitive* then $\Box \theta \models \Box \Box \theta$.
- If *E* is *dense* then $\Box\Box\theta \models \Box\theta$.
- If *E* is *serial* then $\Box \theta \models \Diamond \theta$.
- If *E* is *symmetric* then $\theta \models \Box \Diamond \theta$.
- If *E* is a subset of the *identity relation* then $\theta \models \Box \theta$

Properties of *E*

- Show that: If *E* is *reflexive* then $\Box \theta \models \theta$.
- Suppose $w \models \Box \theta \Rightarrow$ for all w' such that E(w, w'), $w' \models \theta$. Since E is reflexive $E(w, w) \Rightarrow w \models \theta$.
- Show that: If *E* is *serial* then $\square \theta \models \lozenge \theta$.
- Suppose $w \models \Box \theta \Rightarrow$ for all w' such that E(w, w'), $w' \models \theta$. Since E is serial there exists w' such that E(w, w'). Hence, $w' \models \theta \Rightarrow w \models \Diamond \theta$.

Probability, Modal Logic and DS-Theory

- Let P be a probability measure on 2^W .
- Let $R(w) = \{w' : E(w, w')\}$ i.e. R(w) is the set of worlds which are reachable from w.
- \blacksquare R is a random set from W into 2^W .
- Notice that $w \models \Box \theta$ if and only if $R(w) \subseteq W(\theta)$.
- Also, $w \models \Diamond \theta$ if and only if $R(w) \cap W(\theta) \neq \emptyset$.
- We can define a mass function such that $m(F) = P(\{w : R(w) = F\}) = \sum_{w : R(w) = F} P(w)$.
- If E is serial then for all w, $R(w) \neq \emptyset$ and hence $m(\emptyset) = 0$.
- In this case $P(\Box \theta) = Bel(\theta)$ and $P(\Diamond \theta) = Pl(\theta)$

Probability of Necessary and Possible

$$P(\Box \theta) = P(W(\Box \theta)) = \sum_{w:R(w)\subseteq W(\theta)} P(w) = \sum_{F\subseteq W(\theta)} \sum_{w:R(w)=F} P(w)$$
$$= \sum_{F\subseteq W(\theta)} m(F) = Bel(W(\theta)) = Bel(\theta)$$

Also,

$$P(\lozenge \theta) = P(\neg \Box \neg \theta) = 1 - P(\Box \neg \theta) = 1 - Bel(\neg \theta) = Pl(\theta)$$