

Al Imam Mohammad Ibn Saud Islamic University College of Computer and Information Sciences

Computer Science Department

Course Title:	Digital Logic		
Course Code:	CS 106		
Course Instructor:	Dr. Sultan S. Alqahtani		
Exam: First Midterm			
Semester: Summer semester			
Date:	10/07/2019 - 07/11/1440		
Duration:	60 minutes		
Marks:	30		
Privileges: Dopen Book	☐ Open Notes		
☑ Calculator P	Permitted Laptop Permitted		
S. 1 .			
Student name:			
Student ID:			

Instructions:

- I. Answer all questions; there are three questions in 5 pages.
- 2. Write your answers directly on the question sheets. Use the ends of the question pages for rough work or if you need extra space for your answer.
- 3. If information appears to be missing from a question, make a reasonable assumption, state your assumption, and proceed.
- 4. No questions will be answered by the invigilator(s) during the exam period.

Official Use Only		
Question	Student Marks	Question Marks
I		10
2		10
3		10
Total		30

Question1: (25) Minutes [] / 10 Marks

- convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.
- 2. Represent the decimal number 6,248 in BCD, and from BCD to Excess-3.
- 3. Find the 9's and the 10's complement of the following decimal numbers:

00000000	25,000,000
9's complement:	9's complement:
10's complement:	10's complement:

- 4. Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign
 - a) 10011 10010

5. Convert decimal+49 and+29 to binary, using the signed-2's-complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (+29)+(-49), (-29)+(+49), and (-29)+(-49). Convert the answers back to decimal and verify that they are correct.

Question2: (20) Minutes [] / 10 Marks

- 1. Simplify the following Boolean expressions to a minimum number of literals:
 - a) XY + XY'
 - b) (A + B)' (A' + B')

Draw logic diagrams of the circuits that implement the original and simplified expressions in a and b.

2. Express the following function as a sum of minterms and as a product of maxterms: F(A,B,C,D) = B'D + A'B + BD

3. Express the complement of the following functions in sum of minterms form:

a)
$$F(A, B, C, D) = \Sigma(2, 4, 7, 10, 12, 14)$$

b) $F(x, y, z) = \Pi(3, 5, 7)$

Question3: (15) Minutes [] / 10 Marks

- 1. Simplify the following Boolean functions using Karnaugh Maps:
 - c) $F(A, B, C, D) = \Sigma(2, 4, 7, 10, 12, 14)$

d) $F(x,y,z) = \Sigma(2,3,6,7)$