Redes Neuronales

Grupo 10

Integrantes
Francisco Bartolomé
Juan Marcos Bellini
Natalia Navas

Problema

- Aproximación de terrenos
- Redes neuronales multicapa
- Aprendizaje supervisado

Red Neuronal - Implementación

- Pesos inicializados con valores aleatorios dentro del rango $(-k^{^1/^2}, k^{^1/^2})$
- Funciones de activación: exponencial y tangente hiperbólica
- Mejoras: momentum, n adaptativo y combinación de ambas

Funciones de Activación

Función Hiperbólica (para funciones entre -1 y 1):
 g(h) = tanh(h)
 g'(h) =(1-g²)

Función Exponencial (para funciones entre 0 y 1):
 g(h) = (1+(e-2h))⁻¹
 g'(h) = 2g(1-g)

Error generado por las funciones de activación

Arquitectura de la red (capas ocultas)	Error Cuadrático Medio de entrenamiento (Tangente hiperbólica)	Error Cuadrático Medio de entrenamiento (Exponencial)	Error Cuadrático Medio de testeo (Tangente hiperbólica)	Error Cuadrático Medio de testeo (Exponencial)
[6 4 4 4]	0.0018	0.0063	0.3011	4.6498
[7 7]	0.0011	0.0015	0.1499	0.9579
[9 9 9]	7.4455e-04	4.1799e-04	0.1358	0.2558
[10 8 5 4 2]	0.0013	0.0031	0.2630	2.2431
[20 10]	7.6796e-04	7.8030e-04	0.0805	0.5036
[5 20 5]	0.0020	0.0047	0.2398	3.5731
[3 3 3 3 3 3]	0.0044	0.0071	0.6951	5.0215

Comparación de error generados por las Funciones de Activación

tangente hiperbólica devuelve mejores resultados que la función exponencial

Error dependiente de la cantidad de patrones de entrenamiento

Mejoras del Algoritmo Backpropagation

- Momentum
- n adaptativo
- Combinación de ambos

Momentum

Tomar en cuenta los pesos anteriores

$$\Delta w_{pq}(t+1) = -\eta \frac{dE}{dw_{pq}} + \alpha \Delta w_{pq}(t)$$

Error cuadrático medio para distintos valores alfa

ற adaptativo

Adaptar n relativamente a la evolución del error

$$\Delta \eta = \left\{ \begin{array}{ll} +a & si \ \Delta E < 0 \ consistent emente \\ -b \eta & si \ \Delta E > 0 \\ 0 & en \ otro \ caso \end{array} \right.$$

Errores cuadráticos medios para distintos valores de a y b

Combinación de Momentum y n adaptativo

Consiste en combinar el término de momentum con un n adaptativo

Comparación de Algoritmos de Backpropagation

Valores comparativos entre las distintas implementaciones.

	Sin mejora	Con momentum	Con η adaptativo	Con momentum y η adaptativo
[10 8 5 4 2]	0.1113	0.0935	0.0876	0.8128
[20 10]	0.1011	0.1659	0.0922	0.1400
[3 3 3 3 3 3]	1.1096	0.1646	0.8251	0.2618
[5 20 5]	0.1923	0.2371	0.1545	0.1689
[7 7]	0.1216	0.1891	0.1488	0.1858
[9 9 9]	0.0790	0.0778	0.0945	0.1433

Arquitecturas

Arquitecturas testeadas y graficadas

```
[3
[6
[8 5]
```


Conclusiones

- Mejor Función de Activación: Tangente hiperbólica.
- Mejor arquitectura resultó ser [8 8]
- A partir de 300 patrones de entrenamiento