# Solution to Problems for Week 2

Yunwen Lei

School of Computer Science University of Birmingham

The table below shows some information about 200 students and their most frequent method of travel to school.

|        | Walk | Not walk | Total |
|--------|------|----------|-------|
| Male   | 56   | 40       | 96    |
| Female | 72   | 32       | 104   |
| Total  | 128  | 72       | 200   |

- Find the probability that a randomly chosen student is female
- Find the probability that a randomly chosen student is female and walks to school
- Given the student is female what is the probability that they walk to school?

|        | Walk | Not walk | Total |
|--------|------|----------|-------|
| Male   | 56   | 40       | 96    |
| Female | 72   | 32       | 104   |
| Total  | 128  | 72       | 200   |

|        | Walk | Not walk | Total |
|--------|------|----------|-------|
| Male   | 56   | 40       | 96    |
| Female | 72   | 32       | 104   |
| Total  | 128  | 72       | 200   |

- **1**  $\mathbb{P}(\mathsf{Female}) = \frac{104}{200} = \frac{13}{25}$
- **2**  $\mathbb{P}(\mathsf{Female} \cap \mathsf{Walk}) = \frac{72}{200} = \frac{9}{25}$

- 1 There are 8 counters in a bag.
- 2 Five of the counters are red and 3 of the counters are blue.
- 3 Two counters are taken at random from the bag.
- 4 Compute the probability that one counter of each colour are taken.

Let  $A = \{\text{the first counter is red}\}\$ and  $B = \{\text{the second counter is red}\}.$  Then

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A)\mathbb{P}(B^c|A) = \frac{5}{8}\frac{3}{7} = \frac{15}{56}$$

Let  $A = \{$ the first counter is red $\}$  and  $B = \{$ the second counter is red $\}$ . Then

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A)\mathbb{P}(B^c|A) = \frac{5}{8}\frac{3}{7} = \frac{15}{56}$$

$$\mathbb{P}(A^{c} \cap B) = \mathbb{P}(A^{c})\mathbb{P}(B|A^{c}) = \frac{3}{8}\frac{5}{7} = \frac{15}{56}.$$

Let  $A = \{$ the first counter is red $\}$  and  $B = \{$ the second counter is red $\}$ . Then

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A)\mathbb{P}(B^c|A) = \frac{5}{8}\frac{3}{7} = \frac{15}{56}$$

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(A^c)\mathbb{P}(B|A^c) = \frac{3}{8}\frac{5}{7} = \frac{15}{56}.$$

Therefore

$$\mathbb{P}(A\cap B^c)+\mathbb{P}(A^c\cap B)=\frac{15}{28}.$$

For three events A, B and C, we know that

- A and C are independent
- B and C are independent
- A and B are disjoint
- $\mathbb{P}(A \cup C) = \frac{2}{3}, \mathbb{P}(B \cup C) = \frac{3}{4}, \mathbb{P}(A \cup B \cup C) = \frac{11}{12}.$

Compute  $\mathbb{P}(A), \mathbb{P}(B)$  and  $\mathbb{P}(C)$ .

We assume 
$$\mathbb{P}(A)=a, \mathbb{P}(B)=b, \mathbb{P}(C)=c$$
. Now 
$$\mathbb{P}(A\cup C)=a+c-ac=\frac{2}{3}$$
 
$$\mathbb{P}(B\cup C)=b+c-bc=\frac{3}{4}$$
 
$$\mathbb{P}((A\cup B)\cap C)=\mathbb{P}(A\cap C)+\mathbb{P}(B\cap C)$$

 $\mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C), \ \mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C)$ 



We assume 
$$\mathbb{P}(A)=a, \mathbb{P}(B)=b, \mathbb{P}(C)=c.$$
 Now  $\mathbb{P}(A\cup C)=a+c-ac=rac{2}{3}$   $\mathbb{P}(B\cup C)=b+c-bc=rac{3}{4}$   $\mathbb{P}((A\cup B)\cap C)=\mathbb{P}(A\cap C)+\mathbb{P}(B\cap C)$ 

 $\mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C), \ \mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C)$ 



$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A \cup B) + \mathbb{P}(C) - \mathbb{P}((A \cup B) \cap C) = a + b + c - ac - bc = \frac{11}{12}$$

We assume 
$$\mathbb{P}(A) = a, \mathbb{P}(B) = b, \mathbb{P}(C) = c$$
. Now

$$\mathbb{P}(A \cup C) = a + c - ac = \frac{2}{3}$$

$$\mathbb{P}(B \cup C) = b + c - bc = \frac{3}{4}$$

$$\mathbb{P}((A \cup B) \cap C) = \mathbb{P}(A \cap C) + \mathbb{P}(B \cap C)$$

$$\mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C), \ \mathbb{P}(B \cap C) = \mathbb{P}(B)\mathbb{P}(C)$$

$$A = ac$$

$$ac$$

$$b - bc$$

$$b$$

$$c - ac - bc$$

$$C$$

$$P(A) = a, P(B) = b, P(C) = c$$

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A \cup B) + \mathbb{P}(C) - \mathbb{P}((A \cup B) \cap C) = a + b + c - ac - bc = \frac{11}{12}$$

Subtract the third equation from the sum of the first and second equations:

$$\frac{11}{12} - \frac{8+9}{12} = \mathbb{P}(A \cup B \cup C) - \mathbb{P}(B \cup C) - \mathbb{P}(A \cup C)$$
$$= a + b + c - ac - bc - (a + c - ac) - (b + c - bc) = -c.$$

Then c=1/2, which then gives a=1/3 and b=1/2.

$$\mathbb{P}(A \cup C) = a + c - ac = \frac{2}{3}$$

$$\mathbb{P}(B \cup C) = b + c - bc = \frac{3}{4}$$

$$c = 1/2$$

Then

$$\mathbb{P}(A \cup C) = a + c - ac = \frac{2}{3}$$

$$\mathbb{P}(B \cup C) = b + c - bc = \frac{3}{4}$$

$$c = 1/2$$

Then

$$\frac{2}{3} = a + 1/2 - a/2 \Longrightarrow a = 1/3$$
$$\frac{3}{4} = b + 1/2 - b/2 \Longrightarrow b = 1/2$$

Consider two independent fair coin tosses, and the following events:

```
H_1 = \{ 	ext{1st toss is a head} \} H_2 = \{ 	ext{2nd toss is a head} \} D = \{ 	ext{the two tosses have different results} \}
```

Show that these events are pairwise independent but not independent.

The events  $H_1$  and  $H_2$  are independent, by definition. To see that  $H_1$  and D are independent, we note that

$$\mathbb{P}(D|H_1) = \frac{\mathbb{P}(H_1 \cap D)}{\mathbb{P}(H_1)} = \frac{1/4}{1/2} = \mathbb{P}(D)$$

The events  $H_1$  and  $H_2$  are independent, by definition. To see that  $H_1$  and D are independent, we note that

$$\mathbb{P}(D|H_1) = \frac{\mathbb{P}(H_1 \cap D)}{\mathbb{P}(H_1)} = \frac{1/4}{1/2} = \mathbb{P}(D)$$

Similarly,  $H_2$  and D are independent. On the other hand, we have

$$\mathbb{P}(H_1\cap H_2\cap D)=0\neq \mathbb{P}(H_1)\mathbb{P}(H_2)\mathbb{P}(D).$$

- A computer manufacturer uses chips from three sources.
- ② Chips from source A, B and C are defective with probabilities 0.005, 0.001 and 0.01, respectively.
- **3** The proportions of chips from A, B, C are 0.5, 0.1, 0.4, respectively.
- A randomly selected chip is found to be defective.
- **6** Compute the probability that the chips are from *A*.

Let D be the event for chip defective. Then

$$\mathbb{P}(D) = \mathbb{P}(D|A)\mathbb{P}(A) + \mathbb{P}(D|B)\mathbb{P}(B) + \mathbb{P}(D|C)\mathbb{P}(C)$$
  
= 0.005 \times 0.5 + 0.001 \times 0.1 + 0.01 \times 0.4 = 0.0066.

Let *D* be the event for chip defective. Then

$$\mathbb{P}(D) = \mathbb{P}(D|A)\mathbb{P}(A) + \mathbb{P}(D|B)\mathbb{P}(B) + \mathbb{P}(D|C)\mathbb{P}(C)$$
  
= 0.005 \times 0.5 + 0.001 \times 0.1 + 0.01 \times 0.4 = 0.0066.

By the Bayes' lemma we know

$$\mathbb{P}(A|D) = \frac{\mathbb{P}(A)\mathbb{P}(D|A)}{\mathbb{P}(D)} = \frac{0.005 \times 0.5}{0.0066} = \frac{25}{66}.$$

- **1** Let  $A_1$  and  $A_2$  be a partition of the sample space  $\Omega$ .
- ② Assume  $\mathbb{P}(B) > 0$  and  $\mathbb{P}(A_1|B) < \mathbb{P}(A_1)$ .
- **3** Prove that  $\mathbb{P}(A_2|B) > \mathbb{P}(A_2)$ .

**①** We prove it by contraction. Let us assume  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$ 

- **①** We prove it by contraction. Let us assume  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$
- ② Since  $\mathbb{P}(A_1|B) < \mathbb{P}(A_1)$ , we know

$$\mathbb{P}(A_1 \cap B) = \mathbb{P}(A_1|B)\mathbb{P}(B) < \mathbb{P}(A_1)\mathbb{P}(B).$$

- **①** We prove it by contraction. Let us assume  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$
- ② Since  $\mathbb{P}(A_1|B) < \mathbb{P}(A_1)$ , we know

$$\mathbb{P}(A_1 \cap B) = \mathbb{P}(A_1|B)\mathbb{P}(B) < \mathbb{P}(A_1)\mathbb{P}(B).$$

**3** The condition  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$  implies

$$\mathbb{P}(A_2 \cap B) = \mathbb{P}(A_2|B)\mathbb{P}(B) \leq \mathbb{P}(A_2)\mathbb{P}(B)$$

- **1** We prove it by contraction. Let us assume  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$
- ② Since  $\mathbb{P}(A_1|B) < \mathbb{P}(A_1)$ , we know

$$\mathbb{P}(A_1 \cap B) = \mathbb{P}(A_1|B)\mathbb{P}(B) < \mathbb{P}(A_1)\mathbb{P}(B).$$

**3** The condition  $\mathbb{P}(A_2|B) \leq \mathbb{P}(A_2)$  implies

$$\mathbb{P}(A_2 \cap B) = \mathbb{P}(A_2|B)\mathbb{P}(B) \leq \mathbb{P}(A_2)\mathbb{P}(B)$$

**4** Note  $A_1 \cap B$  and  $A_2 \cap B$  is a partition of B. We then get

$$\mathbb{P}(B) = \mathbb{P}(A_1 \cap B) + \mathbb{P}(A_2 \cap B) < \mathbb{P}(A_1)\mathbb{P}(B) + \mathbb{P}(A_2)\mathbb{P}(B) = \mathbb{P}(B).$$

This leads to a contradiction!

