LITS: An Optimized Learned Index for Strings

Yifan Yang, Shimin Chen SKLP, ACS, Institute of Computing Technology, CAS University of Chinese Academy of Sciences

Overview

Existing Indexes Optimized for Strings

- existing learned indexes fail to outperform traditional indexes when indexing string keys **Characteristics of String keys**
- long, variable-sized, with skewed prefixes

	tree height	node search	last-mile search
ART	×	√	n/a
НОТ		V	n/a
RSS	V	V	×
SIndex	V	√	×
LITS	√	√	n/a

our solution: LITS

Learned Index with Hash-enhanced Prefix Table and Sub-tries

LITS Structure

Hash-enhanced Prefix Table

CDF Model in LITS: Hash-enhanced Prefix Table (HPT)

Idea of HPT: learn the pattern of a string data set by better approximating prob(c|P)

(prob(c|P)): conditional probability of the next character being c given the prefix P)

Fig. An illustration of the CDF computation using the HPT for string "bac".

Performance Model for Structure Selection

Hardness of String Data Set: Group Partial Key Length (GPKL)

- GPKL reflects the hardness of modeling a string data set
- GPKL can be computed efficiently by reading the strings in one pass

Idea of PMSS: select the optimal structure for a sub-trie based on the hardness of a subset and offline benchmark tests

Compact Leaf Node

Evaluation

□ 7 real-world string data sets and 4 synthetic string data sets > read-only workload throughput (Mops)

> YCSB workload throughput (Mops)

