

Exercice 1 - Mouvement T - *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide $\mathbf{1}$. On note G le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin pneumatique positionné entre $\mathbf{1}$ et $\mathbf{0}$ permet de maintenir $\mathbf{1}$ en équilibre.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer l'effort que doit développer le vérin pour maintenir **1** en équilibre.

Corrigé voir 1.

Exercice 2 - Mouvement R *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$. La liaison pivot est motorisée par un moteur dont l'action mécanique sur 1 est donnée par $\overrightarrow{C_m} = C_m \overrightarrow{k_0}$. On note m_1 la masse du solide 1 et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer l'effort que doit développer le moteur pour maintenir **1** en équilibre.

Corrigé voir 2.

Exercice 3 - Mouvement TT - *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1,et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de 2 et m_2 sa masse.

Un vérin électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet de maintenir $\mathbf{1}$ en équilibre. Un vérin électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet de maintenir $\mathbf{2}$ en équilibre.

On cherche à résoudre le problème **en statique**. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Corrigé voir 3.

Exercice 4 - Mouvement RR *

B2-14

B2-15

C1-05

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

Corrigé voir 4.

Exercice 5 - Mouvement RT *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 5.

Exercice 6 - Mouvement TR *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G₂ = C désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un vérin électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 *Donner le torseur de chacune des actions mécaniques.*

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 6.

Exercice 7 - Mouvement RR 3D **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 7.

Exercice 8 - Mouvement RR 3D **

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1}$ = $H\overrightarrow{j_1}$, on note m_1 la masse de 1; • $G_2 = C$ désigne le centre d'inertie de 2, on note m_2
- la masse de 2.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par \overrightarrow{g} =

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir 8.

Exercice 9 - Barrière Sympact ** C1-05

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} =$ \overrightarrow{R}_{1} . De plus, $H = 120 \,\mathrm{mm}$ et $R = 40 \,\mathrm{mm}$.

On néglige la pesanteur sur la pièce 1.

On note $\{\mathscr{F}(\text{Moteur} \to 1)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array} \right\}_{\forall P}$ l'action mécanique du moteur sur la pièce **1**.

On note $\{\mathscr{F}(\text{Ressort} \to 2)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{k_0} \end{array} \right\}_{\forall P}$ l'action

On note
$$\{\mathscr{F}(\text{Ressort} \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{k_0} \end{array}\right\}_{\forall P}$$
 l'action

mécanique d'un ressort couple sur la pièce 2. Le raideur du ressort est telle qu'il exerce un couple de 45 Nm pour un angle de rotation 100°. On considère que le couple est nul lorsque la pièce 2 est à la verticale ($\varphi_0 = \frac{\pi}{2}$). Il est au maximum lorsque $\varphi_f = 0$.

On note
$$\{\mathscr{F}(\operatorname{Pes} \to 2)\} = \left\{\begin{array}{c} -Mg\overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{\forall G} \operatorname{avec} \overrightarrow{AG} = L\overrightarrow{i_2}.$$

Question 1 Réaliser un graphe d'analyse.

Question 2 Expliciter C_r en fonction des différents constantes $(k, \varphi_o, \varphi_f)$ et celles qui vous sembleraient utile.

Question 3 Proposer une méthode permettant d'exprimer le couple moteur en fonction des autres actions mécaniques.

Corrigé voir 9.

Exercice 10 - Suspension automobile **

B2-14

C1-05

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Peut-on résoudre complètement le système? Pourquoi?

Corrigé voir 10.

Exercice 11 - Pèse camion **

C1-05

On considère un bâti $\mathbf{0}$ auquel est attaché le repère $\Re = (O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$. Le champ de pesanteur est $g = -g \overrightarrow{y_0}$. La barre $\mathbf{1}$ est liée au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(A, \overrightarrow{z_0})$. Le plateau porte camion $\mathbf{2}$ est lié à la barre $\mathbf{1}$ par une liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$. Le levier $\mathbf{3}$ est lié au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(B, \overrightarrow{z_0})$. Ce levier est également lié au plateau $\mathbf{2}$ par une liaison pivot parfaite d'axe $(D, \overrightarrow{z_0})$. Le camion $\mathbf{4}$, de centre de masse G et de masse G inconnue, repose sur le plateau $\mathbf{2}$. L'action mécanique connue est caractérisée par :

$$\{\text{ext} \to 3\} = \left\{ \begin{array}{c} -F \ \overline{y_0} \\ \overrightarrow{0} \end{array} \right\}_E.$$

Question 1 *Tracer le graphe de structure. Définir le nombre d'inconnues statiques.*

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

Corrigé voir 11.

Exercice 12 - Mouvement T *

C2-07

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide $\mathbf{1}$. On note G le centre d'inertie de $\mathbf{1}$ tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$ ($\overrightarrow{j_1} = \overrightarrow{j_0}$). La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin pneumatique positionné entre $\mathbf{1}$ et $\mathbf{0}$ permet de maintenir $\mathbf{1}$ en équilibre.

On donne
$$\{\mathcal{F}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{i_1} \\ \overrightarrow{0} \end{array}\right\}_G$$
 et $\{\mathcal{F}(\text{ver} \to 1)\} = \left\{\begin{array}{c} F_v \overrightarrow{i_1} \\ \overrightarrow{0} \end{array}\right\}_A$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

On isole 1 et on applique le théorème de la résultante statique en projection suivant $\overrightarrow{i_0}$.

Question 2 Exprimer l'équation d'équilibre de la pièce 1.

Question 3 Déterminer l'ensemble des inconnues de liaison.

Corrigé voir 12.

Exercice 13 - Mouvement R *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$. La liaison pivot est motorisée par un moteur dont l'action mécanique sur 1 est donnée par $\overrightarrow{C_m} = C_m \overrightarrow{k_0}$. On note m_1 la masse du solide 1 et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

On donne
$$\{\mathscr{F}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B \text{ et}$$

$$\{\mathscr{F}(\text{Mot} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array}\right\}_A.$$

On isole 1 et on réalise un théorème du moment statique en A en projection sur $\overrightarrow{k_0}$.

Question 2 Donner l'équation d'équilibre de la pièce 1.

Question 3 Déterminer l'ensemble des inconnues de liaisons.

Corrigé voir 13.

Exercice 14 - Barrière Sympact ** C2-07

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$, $\overrightarrow{CB} = R \overrightarrow{i_1}$ et $\overrightarrow{AB} = \lambda \overrightarrow{i_2}$. De plus, H = 120 mm et R = 40 mm.

On néglige la pesanteur sur la pièce 1.

On note $\{\mathscr{F}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array}\right\}_{\forall P}$ l'action mécanique du moteur sur la pièce 1.

On note
$$\{\mathscr{F}(\text{Ressort} \to 2)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{k_0} \end{array} \right\}_{\forall P}$$
 l'action

mécanique d'un ressort couple sur la pièce 2.

On note
$$\{\mathscr{F}(\text{Pes} \to 2)\} = \left\{\begin{array}{c} -Mg\overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{\forall G} \text{ avec } \overrightarrow{AG} = L\overrightarrow{i_2}.$$

Question 1 Réaliser un graphe d'analyse.

Question 2 Proposer une méthode permettant d'exprimer le couple moteur en fonction des autres actions mécaniques.

Question 3 *Mettre en œuvre une méthode permettant d'exprimer le couple moteur en fonction des autres actions mécaniques.*

Question 4 Tracer, en utilisant Python, l'évolution du couple moteur en fonction de l'angle de la manivelle. On prendra M=1 kg et L=0,1 m

Corrigé voir 14.

Exercice 15 – Suspension automobile ** C2-07

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Corrigé voir 15.

Exercice 16 - Robot avion **

C2-07

Objectif L'objectif est de déterminer le couple articulaire C_{12} à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur.

Hypothèses:

- l'étude est réalisée pour une demi couture orbitale (couture supérieure);
- le repère $\mathscr{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ sera supposé galiléen;
- $\overrightarrow{y_0}$ est l'axe vertical ascendant et $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$;
- toutes les liaisons sont supposées parfaites.

Repérage et paramétrage

Le repère associé à l'embase fixe (0) est le repère $\mathcal{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{y_0}$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1, \overrightarrow{y_1})$, par rapport au bâti (0), a pour repère associé le repère $\mathcal{R}_1(O_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ tel que $O_0 = O_1$, $\overrightarrow{x_0} = \overrightarrow{x_1}$, $\overrightarrow{y_0} = \overrightarrow{y_1}$, $\overrightarrow{z_0} = \overrightarrow{z_1}$.

Le bras (2), en liaison pivot d'axe $(O_2, \overrightarrow{z_2})$ par rapport à l'embase de rotation (1), a pour repère associé le repère $\mathcal{R}_2(O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ tel que $\overrightarrow{O_1O_2} = L_1\overrightarrow{x_1} + L_2\overrightarrow{y_1}, \overrightarrow{z_1} = \overrightarrow{z_2}$ et $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3, \overrightarrow{z_3})$ par rapport au bras (2), a pour repère associé le repère $\mathcal{R}_3(O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ tel que $\overrightarrow{O_2O_3} = L_3\overrightarrow{x_2}, \overrightarrow{z_1} = \overrightarrow{z_3}$ et $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta_{13}$.

Le bras (4), en liaison pivot d'axe $(O_4, \overrightarrow{x_4})$ par rapport au bras (3), a pour repère associé le repère $\mathcal{R}_4(O_4; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ tel que $\overrightarrow{O_3O_4} = L_4\overrightarrow{x_3} + l_5\overrightarrow{y_3}, \overrightarrow{x_3} = \overrightarrow{x_4}$ et $(\overrightarrow{y_3}, \overrightarrow{y_4}) = (\overrightarrow{z_3}, \overrightarrow{z_4}) = \theta_{34}$.

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $(O_5, \overrightarrow{z_5})$ par rapport au bras (4), a pour repère associé le repère $\mathcal{R}_5(O_5; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$ tel que $\overrightarrow{O_4O_5} = L_5\overrightarrow{x_3}, \overrightarrow{z_1} = \overrightarrow{z_5}$ et $(\overrightarrow{x_1}, \overrightarrow{x_5}) = (\overrightarrow{y_1}, \overrightarrow{y_5}) = \theta_{15}$.

La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overline{O_2G_2} = \frac{1}{2}L_3\overline{x_2}$.

La masse du bras (3) et du bras (4) est notée M_{34} et la position du centre de gravité est définie par $\overline{O_3G_3} = \frac{1}{3}L_4\overrightarrow{x_3} + L_5\overrightarrow{y_3}$.

La masse de l'ensemble (E1) est notée M_{E1} et la position du centre de gravité est définie par $\overrightarrow{O_5G_5} = L_7\overrightarrow{x_5}$.

L'extrémité de l'outil est définie par le point P définie par $\overrightarrow{O_5P} = L_8 \overrightarrow{x_5}$.

Le torseur d'action mécanique lié au perçage sera

noté:
$$\{\mathscr{T}(\text{Tronçon (perçage}) \to E_1)\} = \left\{ \begin{array}{cc} -F & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}_{P \in \mathbb{Z}}$$

Un effort presseur est de plus nécessaire pour le perçage optimal des deux tronçons. Le torseur d'action mécanique associé sera noté : $\{\mathcal{T}(\text{Tronçon (presseur)} \rightarrow E_1)\}$

$$\left\{ egin{array}{ccc} -P & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight\}_{P,\mathcal{R}_{arepsilon}}.$$

Le torseur couple modélisant l'action du moteur sur

la pièce 1 sur 2 :
$$\{\mathcal{T}(1_m \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_{12} \overrightarrow{z_0} \end{array}\right\}_{\forall P}$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Question 1 Réaliser le graphe de structure de l'ensemble en précisant les liaisons et les actions mécaniques extérieures.

Question 2 Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} .

Question 3 Réaliser un bilan des actions mécaniques extérieures appliquées à Σ et écrire les éléments de réduction de chaque torseur d'actions mécaniques.

Question 4 Quel théorème doit-être appliqué et sur quel axe de projection, pour déterminer le couple C_{12} ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivants : $\theta_{12} = 60^{\circ}$, $\theta_{13} = -4^{\circ}$, $\theta_{15} = -90^{\circ}$.

Dans la suite de l'étude, l'angle θ_{13} sera considéré nul.

Question 5 Déterminer l'équation littérale du couple C_{12} en fonction de g, F, P, M_2 , M_{34} , M_{E1} , L_3 , L_4 , L_5 , L_6 , L_7 , θ_{12} , θ_{15} .

Les valeurs du robot considéré sont :

- $M_2 = 264 \,\mathrm{kg}, M_{34} = 430 \,\mathrm{kg}, M_{E1} = 150 \,\mathrm{kg}, P = 150 \,\mathrm{N},$ $F = 1000 \,\mathrm{N};$
- $L_1 = 0,405 \,\mathrm{m},\ L_2 = 0,433 \,\mathrm{m},\ L_3 = 1,075 \,\mathrm{m},\ L_4 = 1,762 \,\mathrm{m},\ L_5 = 0,165 \,\mathrm{m},\ L_6 = 0,250 \,\mathrm{m},\ L_7 = 0,550 \,\mathrm{m},\ L_8 = 0,750 \,\mathrm{m}.$

Question 6 Déterminer alors la valeur du couple C_{12} .

La valeur limite supérieure du couple C_{12} est fixée par le constructeur à 9000 Nm.

Question 7 Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position? Justifier la réponse.

- 1.
- 2. .
- 3. .

- 5. $C_{12} \frac{1}{2}M_2gL_3\cos\theta_{12} M_{34}g\left(L_3\cos\theta_{12} + \frac{1}{3}L_4\cos\theta_{12}\right) (F+P)\left(L_3\frac{1}{2} (L_4 + L_5)\right)$ $M_{E1}g\left(L_3\cos\theta_{12} + L_4 + L_5 + L_7\cos\theta_{15}\right) (F+P)\left(L_3\sin(\theta_{15} \theta_{12})\right) + (L_4 + L_5)\sin(\theta_{15}) + (L_4 + L_5)\sin(\theta_{15}) = 0$ 6. $C_{12} = \frac{1}{4}M_2gL_3 + M_{34}g\frac{1}{2}\left(L_3 + \frac{1}{3}L_4\right) + M_{E1}g\left(L_3\frac{1}{2} + L_4 + L_5\right) + (L_4 + L_5)$

Corrigé voir 16.

Exercice 17 - Vilebrequin *

B2-14 Pas de corrigé pour cet exercice.

Question 1 Exprimer sous forme littérale l'expression de la position du centre d'inertie du solide.

Question 2 Déterminer h pour que le centre d'inertie appartienne à l'axe de rotation (O, \overrightarrow{x}) du vilebrequin.

Question 3 Faire l'application numérique.

Question 4 Exprimer le torseur de pesanteur sur le vilebrequin en G puis en O.