

UNIDADE I

Ciência de Dados

Prof. Me. João Cruz

Definição

O que é ciência de dados?

- A Ciência de Dados é um campo interdisciplinar que combina técnicas estatísticas, matemáticas e de programação para extrair insights e conhecimentos úteis a partir de conjuntos de dados complexos.
- Ela envolve a coleta, organização, processamento e análise de grandes volumes de dados, com o objetivo de identificar padrões, fazer previsões e tomar decisões embasadas em evidências.

Etapas da Ciência de Dados

A visão geral da Ciência de Dados abrange várias etapas.

- A primeira delas é a coleta de dados (pode ser feita por meio de várias fontes, como sensores, bancos de dados, mídias sociais, entre outros).
- A próxima é o processo de limpeza e organização dos dados (remoção de ruídos, erros e inconsistências)
 - Nessa etapa é que os dados são estruturados de forma adequada para análise.
 - A terceira etapa é a exploração dos dados (são usadas diferentes técnicas estatísticas e de visualização, aplicadas para entender os padrões e relações presentes nos dados).
 - Nessa etapa também é possível identificar tendências, correlações e outliers e insights.

Ciência de Dados e Big Data (Quais as diferenças?)

Ciência de Dados

- A ciência de dados pode ser definida como a disciplina que fornece princípios, metodologias e orientações para transformação, validação, análise e criação de significado a partir de dados.
- O objetivo é extrair conhecimento de conjuntos de dados usando as análises estatísticas tradicionais, algoritmos e ferramentas. As mesmas técnicas podem ser usadas em pequenos e grandes volumes de dados (Big Data).

Big Data

 Refere-se à enorme quantidade de dados gerados a partir de várias fontes, como transações comerciais, mídias sociais, sensores, dispositivos móveis, entre outros.

Podemos classificar uma fonte de dados como Big Data quando utilizamos os 3 Vs:

- Volume (grande quantidade de dados).
- Velocidade (gerados em alta velocidade).
- Variedade (diversidade de tipos e formatos de dados).

Big Data não tem nada a ver com Ciência de Dados?

Fonte: https://x.gd/9gtO6

- É importante lembrar que a Ciência de Dados, embora não seja a mesma coisa que Big Data, está intimamente ligada às metodologias para a análise dos dados extraídos.
- No material didático (Big Data e Ciência de dados além do hype), é possível compreender de forma mais clara como as novas tecnologias implementadas em dispositivos como eletrodomésticos, smartphones, câmeras de segurança e até wearables (dispositivos vestíveis) são compreendidos pela ciência como fontes geradoras de Big Datas.

Insights e Outliers, para que servem?

Outliers

- São valores que se diferenciam significativamente do restante dos dados em um conjunto.
- Esses valores extremos estão longe da média ou dos demais valores do conjunto e podem ser causados por erros de medição, comportamentos anômalos ou eventos raros.
- Outliers podem distorcer a análise de dados e afetar negativamente a precisão de modelos e estatísticas descritivas.

Fonte: autoria própria.

A detecção e o tratamento de outliers são importantes em várias aplicações, pois podem indicar erros de coleta de dados, indicar a presença de eventos incomuns ou fornecer insights valiosos sobre comportamentos excepcionais no conjunto de dados.

Insights e Outliers, para que servem?

Fonte: https://x.gd/xq1I7

Insights

- São percepções, entendimentos e conclusões significativas e valiosas obtidas a partir da análise de dados ou informações.
- São descobertas que vão além dos dados brutos, revelando padrões, tendências ou relações ocultas que podem levar a novas ideias, melhorias em processos, estratégias de negócios mais eficientes e tomadas de decisões informadas.
- Podem ser alcançados por meio de diversas técnicas de análise de dados, como estatísticas descritivas, mineração de dados, aprendizado de máquina e visualização de dados.
- Os insights são valiosos para orientar ações e estratégias de negócios, identificar oportunidades e desafios, prever tendências futuras e entender melhor o comportamento dos clientes e usuários.

Tomada de Decisão Orientada por dados?

Estratégico

Tático

Operacional

Fonte: autoria própria.

- A Tomada de Decisão Orientada por Dados (DOD) é uma prática na qual as decisões são embasadas na análise de dados, em vez de dependerem apenas da intuição dos executivos da alta direção.
- A DOD não é uma prática de "tudo ou nada", e muitas empresas a adotam em diferentes graus, dependendo das suas necessidades e recursos.

A DOD se baseia nos dados, em análises e técnicas de estatística e probabilidade para indicar tendências, insights e outliers que somados ao know-how dos executivos da alta direção podem apoiar a tomada de decisão estratégica.

Qualidade dos dados

- A qualidade dos dados é um desafio fundamental na Ciência de Dados. Os dados podem conter erros, estar incompletos, ser inconsistentes ou conter viés.
- A falta de qualidade dos dados pode levar a conclusões errôneas e afetar a confiabilidade dos resultados obtidos.

Privacidade e ética

- A coleta e o uso de dados envolvem questões de privacidade e ética.
- Ao lidar com dados sensíveis, como informações pessoais dos usuários, é essencial garantir a privacidade e a segurança dos dados.
- Além disso, é necessário considerar o viés nos dados e nos modelos para evitar discriminação ou resultados distorcidos.

Escalabilidade

- A Ciência de Dados lida com conjuntos de dados cada vez maiores (Big Data).
- Desafios da infraestrutura, do armazenamento e do processamento e análise em relação a conjuntos de dados que crescem exponencialmente.
- Novos algoritmos que lidem com a escalabilidade e os grandes volumes são essenciais.

Complexidade dos algoritmos e modelos

- A escolha e implementação de algoritmos adequados para análise e modelagem de dados específicos é com certeza um grande desafio.
- Existem muitos algoritmos e modelos disponíveis, cada um com suas vantagens e desvantagens, e é necessário entender as características dos dados e os requisitos do problema para selecionar a abordagem mais apropriada.

Interpretação e comunicação dos resultados

 A interpretação correta dos resultados e a capacidade de explicar as descobertas de maneira não técnica são habilidades importantes para garantir que os insights sejam compreendidos e utilizados corretamente.

Escassez de talentos

- Existe uma demanda crescente por profissionais qualificados em Ciência de Dados, mas há uma escassez de talentos nessa área.
- Encontrar e contratar cientistas de dados, engenheiros de dados e analistas com habilidades técnicas e conhecimentos de negócios é um desafio enfrentado por muitas organizações.

Mudanças rápidas de tecnologia:

Como um campo em constante evolução, com avanços tecnológicos e novas técnicas surgindo regularmente, um desafio para Engenheiros e Analistas de Dados é manter-se atualizado com as últimas tecnologias, ferramentas e técnicas, requer um esforço contínuo de aprendizado e desenvolvimento profissional.

Soluções baseadas em dados

Soluções da dados

- Limpeza e pré-processamento de dados
- Análise exploratória de dados
- Modelagem preditiva
- Segmentação e personalização
- Detecção de anomalias e fraudes
- Otimização de processos
- Visualização de dados

Abordagens que também são consideradas soluções baseadas em dados

- Text mining
- Processamento de linguagem natural
- Aprendizado de máquina interpretável
- Aprendizado de reforço
- Dados em tempo real
- Automação de processos

Habilidades de um profissional de Ciência de Dados

Conhecimento em programação

Estatística e matemática

Aprendizado de máquina e mineração de dados

Conhecimento de bancos de dados

Visualização de dados

Domínio do negócio

Pensamento analítico e resolução de problemas

Comunicação e habilidades interpessoais

Fonte: autoria própria.

(KDD) Descoberta de Conhecimentos em Banco de Dados

- Descoberta de Conhecimento em Bancos de Dados ou KDD (Knowledge Discovery in Databases) refere-se ao processo de identificar padrões, conhecimentos úteis e informações ocultas em grandes volumes de dados.
- Esse processo abrange várias etapas, incluindo seleção e pré-processamento de dados, transformação, mineração de dados para descoberta de padrões, avaliação dos resultados e interpretação dos achados.
- O objetivo é transformar dados brutos em informações significativas e conhecimento acionável.

 O termo "mineração de dados" (Data Mining) refere-se ao estágio de descoberta do processo de KDD.

Etapas do KDD

Seleção de dados

- Nesta etapa, os dados relevantes são identificados e selecionados para a análise.
- Isso envolve a definição de critérios de inclusão e exclusão e a obtenção dos conjuntos de dados adequados para o problema em questão.

Pré-processamento de dados

- Os dados brutos podem ser complexos, inconsistentes ou conter ruído.
- Nesta etapa, ocorre a limpeza e a transformação dos dados, incluindo a remoção de dados ausentes ou duplicados, normalização, discretização e outras técnicas de preparação dos dados para análise.

Etapas do KDD

Transformação de dados

- A transformação de dados é feita para representar os dados em uma forma mais adequada para análise.
- Isso pode envolver a agregação de dados, a criação de novos atributos ou a redução da dimensionalidade por meio de técnicas como análise de componentes principais (PCA) ou seleção de recursos.

Mineração de dados

- A mineração de dados é a etapa central do processo de descoberta de conhecimento.
- Nessa etapa, são aplicadas técnicas e algoritmos de aprendizado de máquina, estatística e visualização de dados para identificar padrões, tendências, associações ou relações interessantes nos dados.
- Isso pode incluir técnicas como classificação, regressão, clusterização, regras de associação, redes neurais, entre outras.

Etapas do KDD

Avaliação e interpretação dos resultados

- Após a aplicação das técnicas de mineração de dados, os resultados obtidos são avaliados e interpretados.
- Isso envolve a análise dos padrões descobertos, a validação dos modelos construídos e a interpretação dos insights obtidos em termos do problema ou domínio específico em questão.

Utilização e aplicação dos conhecimentos

 Os conhecimentos e insights descobertos durante o processo são utilizados para tomar decisões informadas, desenvolver estratégias, resolver problemas e promover melhorias nos negócios ou em outras áreas de aplicação.

Vantagens do KDD

Descobertas de preferências de mercado.

Associações e tendências ocultas nos dados

Tendências de vendas

Decisões em dados e evidências sólidas.

Maior visão dos riscos financeiros

Melhoria da produtividade

Maior eficiência operacional

Insights de

comportamentos de clientes

Fonte: autoria própria.

Interatividade

Analise as afirmações a seguir:

- O constante crescimento das bases de dados (Big Data) é um problema, porque torna os algoritmos desenvolvidos pela Ciência de dados defasados muito rapidamente.
- II. O DOD vem se tornando cada vez mais um diferencial para as grandes corporações, pois permite que a tomada de decisão não se baseie apenas no know-how dos executivos seniores.
- III. Os Big Datas são uma ciência diferente da Ciência de Dados, mesmo estando intimamente ligadas, uma vez que a primeira estuda apenas bases de dados com grande volume, velocidade e variedade, enquanto a segunda bases de dados estruturadas e corporativas.

Analisando as três afirmações, qual das alternativas abaixo está correta?

- a) Apenas a afirmação I é verdadeira.
- b) Apenas a afirmação II é verdadeira.
- c) Apenas a afirmação III é verdadeira.
- d) Apenas as afirmações II e III são verdadeiras.
- e) Todas as afirmações são verdadeiras.

Resposta

Analise as afirmações a seguir:

- O constante crescimento das bases de dados (Big Data) é um problema, porque torna os algoritmos desenvolvidos pela Ciência de dados defasados muito rapidamente.
- II. O DOD vem se tornando cada vez mais um diferencial para as grandes corporações, pois permite que a tomada de decisão não se baseie apenas no know-how dos executivos seniores.
- III. Os Big Datas são uma ciência diferente da Ciência de Dados, mesmo estando intimamente ligadas, uma vez que a primeira estuda apenas bases de dados com grande volume, velocidade e variedade, enquanto a segunda bases de dados estruturadas e corporativas.

Analisando as três afirmações, qual das alternativas abaixo está correta?

- a) Apenas a afirmação I é verdadeira.
- b) Apenas a afirmação II é verdadeira.
- c) Apenas a afirmação III é verdadeira.
- d) Apenas as afirmações II e III são verdadeiras.
- e) Todas as afirmações são verdadeiras.

- O CRISP-DM é, segundo Chapman (2000), um modelo de processo muito utilizado na área de mineração de dados para guiar projetos de análise de dados.
- Ele fornece uma estrutura flexível e abrangente para a condução de projetos de mineração de dados, permitindo que as equipes enfrentem desafios complexos e tomem decisões informadas ao longo de todo o ciclo de vida do projeto.
- O CRISP-DM é composto por seis etapas interconectadas.

Entendimento do Negócio

 Nesta fase inicial, a equipe trabalha para compreender os objetivos e requisitos do projeto, identificando como a mineração de dados pode contribuir para as metas de negócios.

Entendimento dos Dados

 Nesta fase, os dados disponíveis são explorados e analisados para identificar sua qualidade, relevância e potencial para atender aos objetivos do projeto. Isso envolve a realização de análises exploratórias e a compreensão das características dos dados.

Preparação dos Dados

Aqui os dados são limpos, transformados e preparados para análise. Isso inclui lidar com valores ausentes, normalização, seleção de atributos relevantes e outras tarefas de preparação.

Modelagem

 Nesta fase, são desenvolvidos modelos de mineração de dados, como algoritmos de aprendizado de máquina, para explorar os padrões e relacionamentos nos dados.
 Diferentes abordagens são testadas e avaliadas para encontrar a mais adequada.

Avaliação

Os modelos construídos na fase de modelagem são avaliados para garantir que eles atendam aos critérios de sucesso do projeto. Isso pode envolver testes de desempenho, validação cruzada e outros métodos para garantir que os modelos sejam robustos e generalizáveis.

Implantação

Nesta última fase, os resultados da análise são apresentados aos stakeholders e são tomadas medidas para implementar os insights obtidos no ambiente de negócios. Isso pode envolver a criação de relatórios, integração com sistemas existentes ou outras formas de utilização prática.

Fases do modelo de referência CRISP-DM

Fonte: Chapman (2000, p. 12).

Extração de conhecimento

 A extração de conhecimento envolve a aplicação de <u>algoritmos</u> e <u>técnicas de descoberta</u> de <u>padrões</u>, <u>associações</u> e <u>tendências</u> nos dados para identificar informações valiosas e conhecimento útil.

Destacam-se:

- Mineração de Dados.
- Aprendizado de Máquina.
- Processamento de Linguagem Natural.
- Visualização de Dados.

Fontes de Dados

Bases de Dados Estruturadas

Bases de Dados Não Estruturadas

Dados de Sensores e Dispositivos IoT

Dados de Mídias Sociais

Dados de Texto e Documentos

Dados de Streaming

Dados de Fontes Externas

Dados Geoespaciais

Dados Transacionais

Visão Geral sobre Aprendizado de Máquina

Definição

- Aprendizado de Máquina, também conhecido como Machine Learning, é uma subárea da inteligência artificial que se concentra no desenvolvimento de algoritmos e modelos capazes de aprender e tomar decisões a partir dos dados, sem serem explicitamente programados.
- O objetivo principal do Aprendizado de Máquina é permitir que os sistemas "aprendam" automaticamente a partir dos dados e melhorem seu desempenho ao longo do tempo, sem a necessidade de regras ou instruções específicas.

Categorias do Machine Learning

Aprendizado Supervisionado

- Os algoritmos são treinados utilizando um conjunto de dados de entrada pré-rotulados (dados de treinamento).
- O objetivo é aprender a relação entre as entradas e as saídas correspondentes, para que o modelo seja capaz de fazer previsões ou tomar decisões em novos dados não vistos anteriormente.

Aprendizado Não Supervisionado:

- Os algoritmos são aplicados a conjuntos de dados sem informações prévias sobre as saídas desejadas.
- O objetivo é descobrir estruturas, padrões ou grupos intrínsecos nos dados, fornecendo uma visão mais profunda dos dados e insights sobre seu comportamento.

Categorias do Machine Learning

Aprendizado semissupervisionado

- É usado para as mesmas finalidades que o aprendizado supervisionado, porém **envolve** tanto **dados com rótulos como sem rótulos** para treinamento.
- Ele pode ser aplicado a tarefas como classificação, regressão e previsão. É vantajoso quando rotular todos os dados é caro demais.

Aprendizado por Reforço

- Envolve o treinamento de algoritmos por meio de interações com um ambiente. O agente de aprendizado toma ações em um ambiente e recebe recompensas ou punições com base no desempenho de suas ações.
- O objetivo é maximizar as recompensas ao longo do tempo, aprendendo a melhor política de ação.
- Isso é frequentemente aplicado em jogos, robótica e otimização de processos.

Etapas processo de Aprendizado de Máquinas

Overfiting e Underfitting

Overfitting (sobreajuste)

- Ocorre quando o modelo se torna excessivamente complexo e se ajusta perfeitamente aos dados de treinamento, capturando até mesmo o ruído presente nesses dados.
- Como resultado, o modelo memoriza os exemplos de treinamento em vez de aprender os padrões subjacentes que permitem generalizar para novos dados.
- Isso pode levar a um desempenho pobre na etapa de teste, em que o modelo falha em fazer previsões precisas em dados não vistos.

Sinais de Overfitting incluem:

- O desempenho do modelo é excelente nos dados de treinamento, mas ruim nos dados de teste.
- O modelo possui uma complexidade excessiva em relação ao tamanho dos dados disponíveis.
- O modelo captura o ruído presente nos dados de treinamento, resultando em uma precisão excessivamente alta nesses dados, mas não em novos dados.

Overfiting e Underfitting

Underfitting (subajuste)

- Ocorre quando o modelo é muito simples ou não é capaz de capturar os padrões presentes nos dados de treinamento.
- Nesse caso, o modelo n\u00e3o consegue se ajustar adequadamente aos dados e acaba subestimando a complexidade do problema.
- O resultado é um desempenho insatisfatório tanto nos dados de treinamento quanto nos dados de teste.

Sinais de Underfitting incluem:

- O desempenho do modelo é ruim tanto nos dados de treinamento quanto nos dados de teste.
- O modelo n\u00e3o consegue capturar os padr\u00f0es e rela\u00e7\u00f0es importantes presentes nos dados.
- O modelo é muito simples em relação à complexidade do problema.

Overfiting e Underfitting

Equilíbrio

Overfitting

Fonte: livro-texto.

Outras técnicas para evitar Underfitting e Overfitting:

- Ajuste de hiperparâmetros.
- Ensemble Learning.
- Cross-Validation.
- Aumento de dados (Data Augmentation).

Conceitos relacionados a Machine Learning

Balanço entre Viés e Variância em modelos de Machine Learning.

O viés de um modelo é a simplificação ou suposições errôneas que ele faz sobre os dados

A variância de um modelo refere-se à sensibilidade excessiva do modelo aos dados de treinamento

O objetivo é encontrar um equilíbrio entre viés e variância, em que o modelo seja suficientemente complexo para capturar os padrões importantes nos dados, mas não seja excessivamente complexo a ponto de se ajustar ao ruído presente nos dados de treinamento

Conceitos relacionados a Machine Learning

Sistemas de Aprendizado

- Um sistema de aprendizado de Machine Learning é um conjunto de componentes e algoritmos que permitem que uma máquina aprenda a partir dos dados e faça previsões ou tomadas de decisão com base nesse aprendizado.
- O objetivo é capacitar a máquina a reconhecer padrões, extrair informações úteis e melhorar seu desempenho ao longo do tempo, sem ser explicitamente programada para cada tarefa específica.

Tipos de aprendizagem

- Aprendizado Supervisionado.
- Aprendizado Não Supervisionado.
- Aprendizado por Reforço.
- Aprendizado Semissupervisionado.

Conceitos relacionados a Machine Learning

Espaço de Hipóteses

- O espaço de hipóteses se refere ao conjunto de todas as possíveis funções ou modelos que um algoritmo de aprendizado pode escolher como solução para um determinado problema.
- Essas hipóteses são expressas por meio de parâmetros, pesos ou estruturas específicas, dependendo do algoritmo e do tipo de aprendizado utilizado.
 - O espaço de hipóteses define as restrições sobre o conjunto de soluções possíveis que o algoritmo de aprendizado pode explorar durante o processo de treinamento.

Conceitos relacionados a Machine Learning

Espaço de Hipóteses

- É importante destacar que a escolha do espaço de hipóteses pode afetar o desempenho do modelo.
- Se o espaço de hipóteses for muito restrito, o modelo pode não ter capacidade suficiente para capturar a complexidade dos dados.
 - Por outro lado, se o espaço de hipóteses for muito amplo, o modelo pode se tornar excessivamente complexo e se ajustar demais aos dados de treinamento, resultando em um sobreajuste.

Interatividade

Quando falamos em Machine Learning, existem duas categorias de algoritmos utilizados para implementação dessa técnica de extração de conhecimento.

Analise as frases a seguir e indique quais delas são verdadeiras em relação a este contexto:

- I. O objetivo do aprendizado supervisionado é que a máquina compreenda a relação entre os dados de entrada e saída no treinamento para poder prever futuras saídas quando receber dados não treinados.
- II. Quando falamos de aprendizado supervisionado, não existirá a fase de treinamento, a máquina aprenderá com os feedbacks dos usuários.
- III. Em ambos os modelos de aprendizado, mesmo após o treinamento, os modelos podem ser mantidos, proporcionando um aprendizado contínuo.
 - a) As afirmações I e II são verdadeiras.
 - b) As afirmações I e III são verdadeiras.
 - c) As afirmações II e III são verdadeiras.
 - d) Apenas a afirmação II está correta.
 - e) Nenhuma das afirmações está correta.

Resposta

Quando falamos em Machine Learning, existem duas categorias de algoritmos utilizados para implementação dessa técnica de extração de conhecimento.

Analise as frases a seguir e indique quais delas são verdadeiras em relação a este contexto:

- I. O objetivo do aprendizado supervisionado é que a máquina compreenda a relação entre os dados de entrada e saída no treinamento para poder prever futuras saídas quando receber dados não treinados.
- II. Quando falamos de aprendizado supervisionado, não existirá a fase de treinamento, a máquina aprenderá com os feedbacks dos usuários.
- III. Em ambos os modelos de aprendizado, mesmo após o treinamento, os modelos podem ser mantidos, proporcionando um aprendizado contínuo.
 - a) As afirmações I e II são verdadeiras.
 - b) As afirmações I e III são verdadeiras.
 - c) As afirmações II e III são verdadeiras.
 - d) Apenas a afirmação II está correta.
 - e) Nenhuma das afirmações está correta.

Separação didática entre aprendizados de máquina

Técnicas de algoritmos de aprendizado preditivo

Aprendizado Supervisionado – Classificação

Definição

- A classificação é uma técnica muito importante no campo do aprendizado de máquina, em que o objetivo é atribuir rótulos ou categorias a diferentes instâncias de dados com base em suas características.
- É uma forma de aprendizado supervisionado em que o algoritmo de aprendizado é treinado usando um conjunto de dados rotulados, em que as classes ou categorias já são conhecidas.

Fonte: livro-texto.

Exemplos de algoritmos de classificação

 Existem diferentes tipos de algoritmos de classificação, cada um com suas próprias suposições e métodos de classificação.

Vamos ver os mais populares:

Árvores de decisão

- Cria uma estrutura em forma de árvore que representa decisões e condições baseadas nas características dos dados.
- Cada nó da árvore representa uma característica e cada ramo representa uma decisão.
- As folhas da árvore correspondem às classes ou categorias finais.

Exemplos de algoritmos de classificação

Máquinas de vetores de suporte (SVM)

- Buscam encontrar um hiperplano de separação que maximize a margem entre as classes.
- Ele mapeia as características de entrada em um espaço de dimensões superiores e realiza a classificação com base na posição dos exemplos nesse espaço.

k-vizinhos mais próximos (k-NN)

- Classifica as instâncias de acordo com a classe das instâncias vizinhas mais próximas.
- A distância entre as instâncias é calculada com base nas características e os k-vizinhos mais próximos são considerados para determinar a classe do exemplo em questão.

Exemplos de algoritmos de classificação

Redes Neurais

- São modelos inspirados no funcionamento do cérebro humano, compostos por camadas de neurônios interconectados.
- Cada neurônio processa as características de entrada e a rede aprende os pesos das conexões para realizar a classificação.

Regressão

- É uma técnica estatística utilizada no campo do aprendizado de máquina para modelar e prever relações entre variáveis.
- A regressão busca prever um valor numérico contínuo com base em um conjunto de variáveis independentes.

Fonte: livro-texto

Regressão

- O objetivo da regressão é encontrar uma função matemática ou estatística que relacione as variáveis independentes (também chamadas de características ou variáveis de entrada) a uma variável dependente (também conhecida como variável de saída ou variável alvo).
- Essa função é chamada de modelo de regressão e é utilizada para fazer previsões sobre o valor da variável dependente para novos exemplos de dados.

Tipos de regressão

 Existem vários tipos de regressão, cada um adequado para diferentes tipos de problemas e dados.

Alguns dos principais tipos de regressão incluem:

Regressão Linear

É um tipo de regressão que assume uma relação linear entre as variáveis independentes e dependentes. O modelo de regressão linear encontra a melhor linha reta que representa essa relação, minimizando a soma dos quadrados dos erros entre os valores reais e os valores previstos.

Regressão Logística

É usada quando a variável dependente é binária, ou seja, possui apenas duas classes. O modelo de regressão logística utiliza uma função logística para estimar a probabilidade de um exemplo pertencer a uma das classes.

Tipos de regressão

Regressão Polinomial

- É uma extensão da regressão linear, em que a relação entre as variáveis é modelada usando um polinômio.
- Isso permite capturar relações não lineares entre as variáveis e aumentar a flexibilidade do modelo.

Regressão de Séries Temporais

- É usada para prever valores futuros com base em padrões temporais nos dados.
- A regressão de séries temporais leva em consideração a dependência temporal dos dados e utiliza métodos como médias móveis, Arima (AutoRegressive Integrated Moving Average) e modelos baseados em suavização exponencial.

Aprendizado não supervisionado

- O aprendizado não supervisionado é uma das abordagens de aprendizado de máquina, em que o objetivo é extrair informações úteis a partir de dados não rotulados. Ele busca identificar padrões e estruturas nos dados sem uma definição prévia das classes.
- O sucesso do aprendizado não supervisionado depende de uma escolha cuidadosa das técnicas e algoritmos utilizados, bem como da qualidade dos dados de entrada.

Fonte: https://br.freepik.com/fotos-gratis/aluno-em-sala-de-aula-olhando-para-o-curso_12977081.htm#query=e-learning&position=0&from_view=search&track=sph

Aprendizado não supervisionado – Agrupamento

- O agrupamento, também conhecido como clustering, busca identificar grupos ou clusters de objetos similares em um conjunto de dados.
- O objetivo do agrupamento é encontrar estruturas e padrões nos dados sem a necessidade de rótulos ou categorias predefinidas.
- O processo de agrupamento envolve a divisão dos dados em grupos de tal forma que objetos dentro do mesmo grupo sejam mais semelhantes entre si do que com objetos de outros grupos.
- A semelhança é geralmente medida com base nas características ou atributos dos objetos.

Aprendizado não supervisionado – Agrupamento (Algoritmos)

Alguns dos algoritmos de agrupamento mais comuns incluem:

K-Means

- É um algoritmo de particionamento que divide os dados em K grupos, em que K é um valor predefinido.
- Ele inicializa os centroides dos grupos de forma aleatória e, em seguida, itera alternando entre atribuir objetos ao grupo mais próximo e atualizar os centroides com base nos objetos atribuídos.

Hierárquico

- É uma abordagem que constrói uma estrutura hierárquica de clusters.
- Existem dois tipos principais: aglomerativo, em que cada objeto começa como um cluster e os clusters são combinados de forma iterativa; e divisivo, em que todos os objetos começam em um único cluster e são divididos em subclusters.

Aprendizado não supervisionado – Agrupamento (Algoritmos)

DBSCAN

- É um algoritmo baseado em densidade que agrupa os objetos com base na densidade local.
- Ele identifica regiões densas de objetos conectados e atribui esses grupos como clusters, enquanto objetos isolados são considerados ruídos.

Mean Shift

- É um algoritmo que busca iterativamente o centro de massa dos pontos em uma vizinhança definida por uma janela de busca.
- Ele move os pontos em direção aos centros de massa até atingir uma convergência, formando assim os clusters.

Aprendizado não supervisionado – Associação

- Associação é usada para descobrir padrões interessantes ou relações entre itens em um conjunto de dados.
- A técnica de associação envolve encontrar conjuntos de itens que ocorrem juntos com frequência em um conjunto de dados. Esses conjuntos são chamados de "itemsets frequentes".

Aprendizado não supervisionado – Sumarização

- A sumarização é uma técnica que visa resumir informações em um conjunto de dados de forma concisa, mas informativa.
- Ela é usada para extrair as principais ideias, características ou padrões de um conjunto de dados extenso, reduzindo-o para um resumo mais compacto e fácil de entender.

Aprendizado não supervisionado – Sumarização

Existem dois tipos principais de sumarização:

Sumarização manual

- É feita por seres humanos, que leem, analisam e selecionam as informações mais importantes do conjunto de dados para criar um resumo.
- Isso é comum em áreas como jornalismo, em que os profissionais resumem e sintetizam informações de várias fontes para criar notícias ou artigos resumidos.

Sumarização automática

 Realizada por algoritmos e técnicas de processamento de linguagem natural (PLN) que analisam o texto ou os dados brutos e extraem informações relevantes para gerar o resumo.

Existem várias abordagens para a sumarização automática, dentre elas as que mais se destacam são:

Aprendizado não supervisionado – Sumarização

Sumarização extrativa:

- Nessa abordagem, as frases ou trechos mais importantes do texto são identificados e selecionados para formar o resumo.
- Geralmente, são considerados critérios como relevância, importância e coerência para determinar quais partes do texto devem ser incluídas no resumo.

Sumarização abstrativa:

- Nessa abordagem, o sistema de sumarização gera frases sinteticamente que capturam o significado do texto original, em vez de simplesmente extrair frases do texto original.
- Isso envolve a compreensão do texto, a interpretação do significado e a geração de frases com base nesse entendimento.

Interatividade

Ao falarmos de modelos descritivos de aprendizagem não supervisionada, quais das técnicas abaixo <u>não</u> são recomendadas?

- a) Classificação e Regressão.
- b) Agrupamento e Associação.
- c) Agrupamento e Sumarização.
- d) Associação e Sumarização.
- e) A fusão das técnicas das alternativas b e c.

Resposta

Ao falarmos de modelos descritivos de aprendizagem não supervisionada, quais das técnicas abaixo <u>não</u> são recomendadas?

- a) Classificação e Regressão.
- b) Agrupamento e Associação.
- c) Agrupamento e Sumarização.
- d) Associação e Sumarização.
- e) A fusão das técnicas das alternativas b e c.

Mineração de Dados

- A mineração de dados é uma área de estudo que visa extrair informações valiosas e significativas a partir de grandes conjuntos de dados.
- É um processo iterativo e interdisciplinar que envolve a aplicação de técnicas e algoritmos para descobrir padrões, tendências, relações e conhecimentos ocultos nos dados.

Fonte: https://br.freepik.com/vetores-gratis/ilustracao-do-conceito-de-processamen to-de-dados_12219361.htm#query=minera%C3%A7%C3%A3o%20de%20dados& position=0&from_view=search&track=ais

Etapas da mineração de dados

Seleção de Dados

 Envolve a identificação dos dados relevantes para o problema em questão. Essa etapa inclui a definição dos critérios de seleção e a obtenção dos dados necessários.

Pré-processamento

• É a fase em que os dados brutos são limpos, organizados e preparados para análise. Isso pode envolver a remoção de dados ausentes, correção de erros, normalização e transformação dos dados.

Transformação

Nesta etapa, os dados são convertidos em uma forma adequada para análise. Isso pode incluir a redução de dimensionalidade, a extração de características relevantes e a aplicação de técnicas estatísticas ou algoritmos de processamento de dados.

Etapas da mineração de dados

Mineração de Dados

É a fase central do processo, em que são aplicados algoritmos e técnicas de mineração de dados para descobrir padrões, relações e conhecimentos nos dados. Isso pode envolver a aplicação de técnicas de aprendizado de máquina, análise estatística, visualização de dados e outras abordagens.

Avaliação e Interpretação

Os resultados da mineração de dados são avaliados quanto à sua relevância, qualidade e utilidade. Os padrões e conhecimentos descobertos são interpretados para extrair informações significativas e compreender seu impacto no problema em questão.

Utilização do Conhecimento

 Os resultados e insights obtidos são utilizados para tomar decisões informadas, desenvolver estratégias, resolver problemas e gerar valor para a organização ou área de estudo.

Onde aplicamos a mineração de dados

Modelos de Machine Learning usados em Mineração de Dados

- Os modelos de aprendizado de máquina são representações matemáticas ou estatísticas que capturam os padrões e relações nos dados.
- Existem diversos tipos de modelos, cada um com suas características e aplicações específicas. A escolha do modelo correto depende do problema em questão, dos dados disponíveis e dos objetivos do projeto.
- A construção de um modelo envolve também o treinamento adequado, a avaliação de desempenho e a consideração de outros fatores importantes para o sucesso do projeto.
 - Regressão Linear
 - Regressão Logística
 - Árvores de Decisão
 - Random Forest
 - Redes Neurais Artificiais
 - Máquinas de Vetores de Suporte (SVM)
 - Naive Bayes
 - Algoritmos de Agrupamento (Clustering)

Árvore de Decisão

 A árvore de decisão é um modelo de aprendizado de máquina que representa uma estrutura hierárquica de decisões e suas possíveis consequências.

 Essa técnica é utilizada para problemas de classificação e regressão, em que o objetivo é tomar decisões ou prever valores com base em características ou atributos dos dados.

não

Gatinho!

Naive Bayes

- O Naive Bayes é um modelo de aprendizado de máquina baseado no Teorema de Bayes e na suposição de independência condicional entre os recursos.
- Ele é comumente usado para problemas de classificação, especialmente em tarefas de processamento de linguagem natural, como análise de sentimentos, detecção de spam e categorização de documentos.
- O modelo Naive Bayes é chamado "ingênuo" porque assume que todas as características são independentes entre si, ou seja, não há correlação entre elas.

Naive Bayes

Descreve a probabilidade de um evento ocorrer dado o conhecimento prévio sobre o evento.
 No caso do Naive Bayes, a probabilidade de uma classe dadas as características é calculada usando a seguinte fórmula:

```
P (Classe | Características) = P (Classe) * P (Características | Classe) / (Características)
```

Em que:

- P (Classe | Características) é a probabilidade da classe dadas as características observadas.
- P (Classe) é a probabilidade da classe ocorrer independentemente das características.
- P (Características | Classe) é a probabilidade das características ocorrerem dada a classe.
- P (Características) é a probabilidade das características ocorrerem independentemente da classe.

K-Vizinhos mais próximos (KNN)

- O algoritmo dos k-vizinhos mais próximos, conhecido como KNN (do inglês K-Nearest Neighbors), é um método de aprendizado de máquina utilizado para classificação e regressão.
- Ele é baseado no princípio de que amostras com características semelhantes tendem a ter rótulos ou valores de saída semelhantes.
- No KNN, o objetivo é classificar uma nova amostra ou prever seu valor de saída com base nas informações dos k-vizinhos mais próximos presentes no conjunto de treinamento.
 - A distância entre as amostras é geralmente medida usando métricas como a distância Euclidiana ou a distância de Manhattan.

K-Vizinhos mais próximos (KNN)

- O k-NN é um algoritmo simples de aprendizado de máquina baseado em instância que faz previsões com base nos vizinhos mais próximos no espaço de características.
- A eficácia do k-NN pode ser influenciada pelo valor de k escolhido e pela natureza do conjunto de dados. Experimente diferentes valores de k para ver como isso afeta a precisão do classificador.

Fonte: autoria própria.

K-Means

- O K-Means (K-Médias) é um método de aprendizado de máquina não supervisionado utilizado para realizar agrupamento de dados.
- Ele é utilizado em problemas de mineração de dados e análise exploratória, em que o objetivo é encontrar grupos ou clusters de amostras que sejam similares entre si.

Fluxograma do algoritmo K-Means

- O objetivo do K-Médias é minimizar a soma dos quadrados das distâncias entre as amostras e seus centroides correspondentes.
- Essa métrica é chamada de "inércia" e representa a coesão dentro de cada cluster.
- Quanto menor a inércia, mais compactos e bem-definidos são os clusters.

Interatividade

Analise as descrições das etapas da mineração de dados e indique qual das alternativas nomeia de forma correta cada uma das etapas.

- I. Nesta etapa os padrões e conhecimentos descobertos são interpretados para extrair informações significativas e compreender seu impacto no problema em questão.
- II. Nesta etapa os dados são convertidos em uma forma adequada para análise.
- III. É a etapa em que os dados brutos são limpos, organizados e preparados para análise.
 - a) I Avaliação e Interpretação, II Transformação e
 III Pré-processamento.
 - b) I Seleção de Dados, II Pré-processamento e III Mineração de Dados.
 - c) I Mineração de Dados, II Transformação e III Avaliação do Conhecimento.
 - d) I Utilização do Conhecimento, II Utilização do Conhecimento e III Seleção de Dados.
 - e) I Pré-processamento, II Mineração de Dados e III Transformação.

Resposta

Analise as descrições das etapas da mineração de dados e indique qual das alternativas nomeia de forma correta cada uma das etapas.

- I. Nesta etapa os padrões e conhecimentos descobertos são interpretados para extrair informações significativas e compreender seu impacto no problema em questão.
- II. Nesta etapa os dados são convertidos em uma forma adequada para análise.
- III. É a etapa em que os dados brutos são limpos, organizados e preparados para análise.
 - a) I Avaliação e Interpretação, II Transformação e
 III Pré-processamento.
 - b) I Seleção de Dados, II Pré-processamento e III Mineração de Dados.
 - c) I Mineração de Dados, II Transformação e III Avaliação do Conhecimento.
 - d) I Utilização do Conhecimento, II Utilização do Conhecimento e III Seleção de Dados.
 - e) I Pré-processamento, II Mineração de Dados e III Transformação.

Referências

- CASTRO, L. N.; FERRARI, D. G. Introdução à mineração de dados: conceitos básicos, algoritmos e aplicações. São Paulo: Saraiva, 2016.
- CHAPMAN, P. *et al. CRISP-DM 1.0*: step-by-step data mining guide. 2000. Disponível em: https://tinyurl.com/3mn8j4xk. Acesso em: 29 ago. 2023.
- FACELI, K.; LORENA, A. C.; GAMA, J.; DE CARVALHO, A. C. P. L. F. *Inteligência artificial:* uma abordagem de aprendizado de máquina. Rio de Janeiro: LTC, 2011.
- FILATRO, A. C. Data science na educação: presencial, a distância e corporativa. São Paulo: Saraiva, 2020.
- MITCHELL, T. M. Machine Learning. Portland: McGraw-Hill, 1997.

Referências

- NORVIG, P. Inteligência artificial. Rio de Janeiro: Grupo GEN, 2013.
- PIATETSKY, G. CRISP-DM, still the top methodology for analytics, data mining, or data science projects. KDnuggets, October, 2014. Disponível em: https://tinyurl.com/8b4tevy7. Acesso em: 29 ago. 2023.
- TAN, P.-N.; STEINBACH, M.; KUMAR, V. *Introduction to Data Mining*. Boston: Pearson Addison-Wesley, 2006. Disponível em: https://tinyurl.com/mr45rp3p. Acesso em: 29 ago. 2023.

ATÉ A PRÓXIMA!