WIT 2021/2022

POB Lab 6

Reprezentacja koloru i segmentacja obrazów

Łukasz Roszkowiak

HISTOGRAM 2D

Konstrukcja histogramu 2D

0	0	0	0	0	0	0	0	0	0
0	2	2	2	1	2	2	2_	1	0
0	2	2	2	1_	1	2	2	4	0
0	1	2	2	7	6	6	2	1	0
0	1_	2	7	6	5	6	2	2	0
0	1	7	6	5	5	6	1	2	0
0	1	7	7	6	6	6	2_	2	0
0	1	2	1	1	2	2	1	5	0
0	1	2	1	1	1	2	2	3	0
0	0	0	0	0	0	0	0	0	0

Obraz pierwotny

Obraz wynikowy (metoda gradientowa Sobel'a)

histogram2D

Obraz wynikowy Obraz pierwotny (metoda gradientowa Sobel'a)

Obraz wynikowy Obraz pierwotny (metoda gradientowa Sobel'a) (4) 2 1 4 4

Histogram 2D

- Tworzenie histogramu 2D na podstawie obrazu źródłowego i przetworzonego
- Metoda ułatwia selekcję punktów pośrednich i ich klasyfikację do punktów brzegowych

MODELOWANIE KOLORU

Obraz kolorowy

• Dla obrazów kolorowych wartość f to wektor o trzech składowych, określający kolor w wybranej przestrzeni koloru $f=\{f_1, f_2, f_3\}$

Standardowo zapis obrazu kolorowego w

modelu barw RGB

Pixel of an RGB image are formed from the corresponding pixel of the three component images

*Obraz - źródło: https://www.geeksforgeeks.org/matlab-rgb-image-representation/

CIELAB color space $(L^*a^*b^*)$

- L* jasność (luminancja),
- a* barwa od zielonej do magenty
- b* barwa od niebieskiej do żółtej

*obraz: https://www.researchgate.net/profile/Sandra-Bino/publication/338303610/figure/fig1/AS:8457076154 28619@1578643816783/The-CIELAB-color-space-diagram-The-CIELAB-or-CIE-L-a-b-color-system-represents W640.jpg

Grayscale

Udział koloru RGB przy konwersji do Grayscale

- Grayscale conv_online [59%R 30%G 11%B] (R150,G77,B28)
- Grayscale GIMP [31%R 52%G 17%B] (R130,G220,B70)
- OpenCV:

RGB[A] to Gray: $Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$

^{*} https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html

Konwersja RGB2Gray

RGB

- R (255,0,0)
- G (0,255,0)
- B (0,0,255)

Gray

- V = 130
- V = 220
- V = 70

RGB2Gray

- R 130/(130+220+70) = 31%
- G 220/(130+220+70) = 52%
- B 70/(130+220+70) = 17%
- Gray $V = 0.31 \cdot R + 0.52 \cdot G + 0.17 \cdot B$