10710/2 W: 25 25 22 2 2 2° D: 32 16 8 4 2 1 32+0+8+1+1= 45 U. 2° 2'2' 2'2' 2° D. 32 16 8 4 2 1 32.16.8+0+ OL1=57 102

Zadanie 3.1. (0–1)

Po dodaniu dwóch liczb 101101₂ i 111011₂ zapisanych w systemie binarnym otrzymamy:

1.	11010002	P	O
2.	68%	Р (F
3.	140 ₆	Р	€
4.	11204	P	F

1101000 21 252123 222 20 64 3418 42 1

1120 454244 64 16 4 1 68 (.16+8.1= 104 140, 5°8'8' 512 (48 512+4.69 > 102

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest falszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Dana jest następująca funkcja:

funkcja f(n): ,
jeżeli n > 0

wypisz n

f(5) -> f(3)

wypiszn W: 53

1.	W wyniku wywołania f(5) otrzymamy ciąg 5 5 5 5 5 5.	P	F
2.	W wyniku wywołania f(6) otrzymamy ciąg 6 4 2 2 4 6.	P	F
3.	W wyniku wywołania f(7) otrzymamy ciąg(753) 1357.	P	F
4.	W wyniku wywołania f(8) otrzymamy ciąg 8 6 4 2 0 0 2 4 6 8.	P	F

Zadanie 3.2. (0-1)

1.	(10000000) ₂ jest liczbą większą od liczby (A9) ₉₅	P	E
2.	(1111) ₄ jest liczbą większą od liczby (1111111) ₂	Р	6
3.	(3003) ₄ jest liczbą większą od liczby (C2) ₁₆	P	F
4.	(333) ₆ jest liczbą większą od liczby (10100101) ₂	6	F

3 0 0 5

195

16 1

194

(10000000)2 128 14 32 16 8 4 2 1

f(b)->f(4)->f(2)->f(0)

W.642246

128,000

A 9

10.16+ 9=169

1111

(1111111)₂

333 (10100101)2 64 8 1 128 64 32 46 8 4 2 1 219 > 165

$$\log_{2} b = C$$
 $\log_{2} 16 = 9$

$$\alpha' = b \qquad \log_{2} 16$$

$$\log_{2} 16 = \log_{2} 7 = \log_{2} 2 = 1$$

Zadanie 3.1. (0-1)

Dana jest rekurencyjna funkcja f(n):

$$f(n)$$
:

jeżeli n = 0

wynikiem jest 1 w przeciwnym przypadku

$$s \leftarrow 1$$

dla $i = 0, 1, \ldots, n-1$
 $s \leftarrow s + f(i)$

wynikiem jest s

1.	Dla $n < 10$ wynikiem działania funkcji f jest liczba mniejsza od 1000.	P	F
2.	Obliczenie poprawnego wyniku f (200) zajmie na komputerze w dowolnej szkolnej pracowni najwyżej kilka sekund.	P	F
3.	W trakcie obliczania wartości funkcji f dla dowolnego $n > 0$ nastąpi łącznie co najwyżej $2n$ wywołań tej funkcji.	P	F
4.	f(10) = 1024.	P	F

h 5

$$f(0) = 1024.$$

$$f(0) = 1014.$$

$$f(0) = 2$$

$$S = 1 + 1(0) = 2$$

$$S = 2 + 1(0) = 2$$

$$S = 4 + f(2) = 8$$

$$S = 8 + f(3) = 8$$

$$S = 8 + f(3) = 8$$

$$S = 8 + f(3) = 8$$

$$S = 8 + 2 = 4$$

$$S_1 = 2 + 2 = 4$$

$$S_2 = 4 + 4 = 8$$