IN THE CLAIMS:

Please amend the claims as follows.

1. (Currently Amended) A method for implementing a functional memory, in which wherein memory data is stored as data units for each of which a dedicated storage space is assigned in the memory, in accordance with which the method comprising:

—<u>implementing_the_a_memory is_implemented</u>—as a directory structure comprising a tree-shaped hierarchy having nodes at several different levels, wherein an individual node <u>ean be_includes</u> (i) a trie node associated with a logical table wherein an individual element <u>may_containcontains</u> a pointer pointing to a lower node in the tree-shaped hierarchy—and wherein an individual element <u>may_also be_empty</u>, in which case the content of the element corresponds to a nil pointer, the <u>a_number</u> of elements in the <u>logical_table_corresponding_to_a_power_of_two</u>, or (ii) a bucket containing at least one element <u>in_such_a_way_that_the_wherein_a_type_of_an_said_individual_element_in_the_bucket</u> is selected from a group including a data unit, a pointer to a stored data unit, a pointer to another directory structure and <u>said_another_directory_structure</u>;

performing address computation performed—in the directory structure comprises the steps of by

(a) selecting in the node at the <u>an</u> uppermost level of the tree-shaped hierarchy a given number of bits from the <u>a</u> bit string formed by the <u>employed</u> search keys <u>employed</u>, forming from the <u>selected given number of bits</u> a search word with which the <u>for seeking an</u> address of the <u>a</u> next node is <u>sought</u> in the <u>individual node</u>,

and proceeding to said next node,

(b) selecting a predetermined number of bits from the unselected bits in the bit string formed by the <u>employed</u> search keys <u>employed</u> and forming from the <u>selected predetermined number of bits another</u> search word <u>with which the for seeking another</u> address of a further new node at a lower level <u>is sought from the logical table of the individual node that has been accessed,</u>

repeating step (b) until an element containing a nil pointer is encountered or until the address of the new node at a-said lower level is the address of a-said bucket,

wherein the nodes to which a given node contains pointers are child nodes of said given node and the nodes to which the child nodes contain pointers are grandchild nodes of said given node; and

characterized by

implementing trie nodes as quad nodes of four elements, and replacing in at least part of the directory structure groups of successive nodes by compressed nodes in such a way that by

- (a) <u>replacing</u> an individual group comprising a given quad node and its child nodes is <u>replaced</u> by a node whose logical table has 16 elements, and
- (b) <u>forming</u> a compressed node known per se <u>is formed</u> from said node of 16 elements by physically storing in the <u>compressed</u> node <u>only</u> non-nil pointers and <u>in addition</u> a bit pattern on <u>the a</u> basis of which <u>the a</u> physical storage location in the <u>compressed</u> node, corresponding to the search word, <u>ean beis</u> determined.

- 2. (Currently Amended) A method as claimed in claim 1, e h a r a c t e r i z e d in that further comprising performing replacement is carried out in the directory structure on all groups in which the quad node has two child nodes.
- 3. (Currently Amended) A method as claimed in claim 1, e h a r a c t e r i z e d in that further comprising performing replacement is carried out in the directory structure on all groups in which the quad node has up to eight grandchild nodes at most.
- 4. (Currently Amended) A method as claimed in claim 2, eharacterized in that further comprising setting an upper limit is set for the number of pointers in the compressed node, wherein when said limit is exceeded, the compressed node is again decompressed to a another quad node and child nodes.
- 5. (Currently Amended) A method as claimed in claim 4, c h a r a c t e r i z e d in that further comprising employing eight pointers is employed as said upper limit.
- 6. (Currently Amended) A method as claimed in claim 14, e h a r a c t e r i z e d in that further comprising employing ten pointers is employed as said upper limit.

- 7. (Currently Amended) A method as claimed in claim 2, e h a r a c t e r i z e d in that further comprising performing compression is additionally carried out on at least some of the quad nodes (N80...N82) in the structure in such a way so that only non-nil pointers are physically stored in the node and in addition a bit pattern (BP2) on the a basis of which the physical storage location in the node, corresponding to the search word, ean be is determined.
- 8. (Currently Amended) A method as claimed in claim 1, characterized in that further comprising storing the non-nil pointers are stored in the compressed node in succession in the a same order that they the non-nil pointers have in said logical table.
- 9. (Currently Amended) A method as claimed in claim 8, e h a r a c t e r i z e d in that wherein the bit pattern has one bit for each element in the table, each said one bit indicating whether the corresponding element contains a nil pointer or a non-nil pointer.
- 10. (Currently Amended) A method as claimed in claim 8, e h a r a c t e r i z e d in that further comprising reserving space is reserved for the bit pattern in all-said trie nodes of the directory structure.

- 11. (Currently Amended) A method as claimed in claim 8, e h a r a c t e r i z e d in that further comprising reserving space is reserved for the bit pattern in the compressed nodes only.
- 12. (Currently Amended) A method for implementing a functional memory, in which wherein memory data is stored as data units for each of which a dedicated storage space is assigned in the memory, in accordance with which the method comprising:

implementing the memory is implemented as a directory structure comprising a tree-shaped hierarchy having nodes at several different hierarchy levels, wherein an individual node ean beincludes (i) an internal node associated with a logical table wherein an individual element may contain a pointer pointing to a lower node in the tree-shaped hierarchy and wherein an individual element may also be empty, in which case the content of the node corresponds to a nil pointer, the a number of elements in the logical table corresponding to a power of two, or (ii) a leaf containing an element the of a type of which is selected from a group including a pointer to a stored data unit, a data unit, and a pointer to a node in another directory structure;

performing address computation performed in the directory structure comprises the steps of by

(a) _selecting in the <u>individual</u> node at <u>the an</u> uppermost level of the tree-shaped hierarchy a given number of bits from <u>the a</u> bit string formed by <u>the employed</u> search keys-<u>employed</u>, forming from the <u>selected given number</u> of bits a search

word with which the to seek an address of the a next node is sought in the individual node, and proceeding to said next node,

(b) _selecting a_another given number of bits from the_unselected bits in the bit string formed by the employed_search keys_employed, and forming from the selected_another given number of bits a_another_search word with which theto seek another address of a further new node at a lower level is sought_from the logical table of the individual_node that has been accessed, and

repeating step (b) until an empty element is encountered or until the address of the new node at a lower level is the address of a the leaf,

wherein the nodes to which a given node contains includes pointers are child nodes of said given node and the nodes to which the child nodes contain pointers are grandchild nodes of said given node; and

characterized by

implementing internal nodes as quad nodes having four elements, and replacing, in at least part of the directory structure, groups of successive nodes by compressed nodes in such a way that by

replacing an individual group comprising a given quad node and its child nodes is replaced by a node whose <u>node</u> logical table has 16 elements, and

forming a compressed node known per se is formed from said node of 16 elements by physically storing in the compressed node only non-nil pointers and in addition a bit pattern on the a basis of which the a physical storage location in the

<u>compressed</u> node, corresponding to the search word, <u>ean beis</u> determined.

- 13. (Currently Amended) A method as claimed in claim 12, e h a r a c t e r i z e d in that further comprising performing replacement is carried out in the directory structure on all groups in which the quad node has two child nodes.
- 14. (Currently Amended) A method as claimed in claim 12, e h a r a c t e r i z e d in that further comprising performing replacement is carried out in the directory structure on all groups in which the quad node has up to eight grandchild nodes at most.
- 15. (Currently Amended) A method as claimed in claim 13, e h a r a c t e r i z e d in that further comprising setting an upper limit is set for the a number of pointers in the compressed node, wherein

when said <u>upper limit</u> is exceeded, the compressed node is again decompressed to a quad node and child nodes.

16. (Currently Amended) A method as claimed in claim 15, e h a r a e t e r i z e d in that further comprising employing eight pointers is employed as said upper limit.

- 17. (Currently Amended) A method as claimed in claim 15, e h a r a c t e r i z e d in that further comprising employing ten pointers is employed as said upper limit.
- 18. (Currently Amended) A method as claimed in claim 13, e h a r a c t e r i z e d in that further comprising performing compression is additionally earried out on at least some of the quad nodes in the structure in such a way so that only the non-nil pointers are physically stored in the compressed node and in addition a bit pattern (BP2) on the a basis of which the physical storage location in the node, corresponding to the search word, ean be is determined.
- 19. (Currently Amended) A method as claimed in claim 12, characterized in that further comprising storing the non-nil pointers are stored in the compressed node in succession in the a same order that they have as in said node logical table.
- 20. (Currently Amended) A method as claimed in claim 19, e h a r a c t e r i z e d in that wherein the bit pattern has one bit for each element in the node logical table, each bit indicating whether the each corresponding element contains a nil pointer or a non-nil pointer.

- 21. (Currently Amended) A method as claimed in claim 19, e h a r a e t e r i z e d in that further comprising reserving space is reserved for the bit pattern in all trie nodes of the directory structure.
- 22. (Currently Amended) A method as claimed in claim 19, e h a r a c t e r i z e d in that further comprising reserving space is reserved for the bit pattern in the compressed nodes only.
- 23. (Currently Amended) A memory arrangement for storing data units, said memory arrangement comprising:

a directory structure in which wherein progress is made by using search words formed from a bit string constituted by the search keys employed in each case, said directory structure comprising a tree-shaped hierarchy having nodes at several different hierarchy levels,

wherein an individual node ean beis (i) a trie node associated with a logical table wherein an individual element may contain on pointer pointing to a lower node in the tree-shaped hierarchy and wherein an individual element may also be empty, in which case the content of the element corresponds to a nil pointer, the a number of elements in the logical table corresponding to a power of two, or (ii) a bucket containing at least one element in such a wayso that the a type of an individual element in the bucket

is selected from a group including a data unit, a pointer to a stored data unit, a pointer to a node in another directory structure, and said another directory structure,

characterized in that

wherein some of the trie nodes are quad nodes whose having a node logical table has that includes four elements and some are of the trie nodes whose are nodes having a node logical table has that includes 16 elements and in which onlywherein non-nil pointers are physically stored in addition to a bit pattern (BP1) on the a basis of which the a physical storage location in the node, corresponding to the search word, ean be determined.

- 24. (Currently Amended) A method-memory arrangement as claimed in claim 23, e h a r a c t e r i z e d in that wherein at least some of said quad nodes store physically only those pointers that are non-nil pointers and in addition a bit pattern (BP2) on the basis of which the physical storage location in the node, corresponding to the search word, ean be is determined.
- 25. (Currently Amended) A memory arrangement for storing data units, said memory arrangement comprising:
- a directory structure in which wherein progress is made by using search words formed from a bit string constituted by the search keys employed in each case, said directory structure comprising a tree-shaped hierarchy having nodes at several different

hierarchy levels, wherein an individual node <u>can beis</u> (i) an internal node associated with a logical table wherein an individual element <u>may contain contains</u> a pointer pointing to a lower node in the tree-shaped hierarchy—and wherein an individual element <u>may also be empty</u>, in which case the content of the element corresponds to a nil pointer, <u>a</u> the number of elements in the <u>logical</u> table corresponding to a power of two, or (ii) a leaf containing at least one element of a type selected from a group including a pointer to a stored data unit and a pointer to a node in another directory structure,

characterized in that

wherein some of the trie nodes are quad nodes whose having a node logical table has including four elements and some of the trie nodes are nodes whose logical having a node logical table has that includes 16 elements and in which only wherein non-nil pointers are physically stored in addition to a bit pattern (BPI) on the a basis of which the a physical storage location in the node, corresponding to the search word, ean be determined.

26. (Currently Amended) A method-memory arrangement as claimed in claim 2325, e h a r a c t e r i z e d in that wherein at least some of said quad nodes store physically only those pointers that are non-nil pointers and in addition a bit pattern (BP2) on the basis of which the physical storage location in the node, corresponding to the search word, can be is determined.

Please add new claims 27-30, as follows:

- 27. (New) A method as claimed in claim 1, further comprising determining said individual element is empty, wherein a content of the individual element corresponds to said nil pointer.
- 28. (New) A method as claimed in claim 12, further comprising determining said individual element is empty, wherein a content of the individual node corresponds to said nil pointer.
- 29. (New) A memory arrangement as claimed in claim 23, wherein said individual element is empty and a content of said individual element corresponds to a nil pointer.
- 30. (New) A memory arrangement as claimed in claim 25, wherein said individual element is empty and a content of said individual element corresponds to nil pointer.