P1

STUDY SUB-NANOMETER MEMBRANE FLUCTUATIONS IN SINGLE CELLS USING A PLASMONIC IMAGING MICROSCOPE

SURAJ KHOCHARE AND XIAONAN SHAN

Outline:

- 1. Background
- 2. Surface Plasmon Resonance Imaging
- 3. Sub-Nanometer Membrane Fluctuations
- 4. Cell Heterogeneity
- 5. Cell Metastasis
- 6. Conclusion
- 7. Future Scope

Background

World Health Organization Report

According to a survey by American Cancer Society in 2017,

- <u>15.5 million Americans</u> with a history of cancer were alive on January 1, 2016.
- Around <u>1.6 million</u> people were expected to be diagnosed with cancer in 2017 (excluding the ones with non-invasive cancer).
- Around <u>0.5 million</u> were expected to die of cancer in 2017 (1650 people per day).

Do we know the reason for cancer? | If not, can we study cancer cells? | Can we find a remedy?

Introduction to Membrane Fluctuations:

Cause of Cell Membrane Fluctuations

Extracellular Fluid

Surface protei

Alpha-Helix protein

, Glycoprotein

Structure of a Biological Cell

- ✓ Live cells undergo continuous <u>active processes</u>.
- ✓ Ex. :- Metabolism, Metastasis, Mitosis, etc.

Integral protein

(Globular protein)

Filaments of

cytoskeleton

Protein channel

transport protein)

Peripherial protein

Globular protein

Active fluctuations:

Hydrophobic tails

✓ Cross-membrane iontransport.

Hydrophilic heads

Phospholipid

molecule

Phospholipid bilayer

- ✓ Cell structure
- Endocytosis and Exocytosis

Techniques to Image Membrane Fluctuations:

Our Approach: Surface Plasmon Resonance Imaging

Sensitive only to bottom membrane

- Image only the bottom cell membrane.
- High sensitivity in z-direction, less distortion.

High Sensitivity : Sub-nanometer Membrane Fluctuations

- Study metabolism.
- Study metastasis.

Single Cells

- Study fundamental properties.
- Study cell heterogeneity.

Principle of Surface Plasmon Resonance (SPR) Imaging

$$\sin \theta_{sp} = \frac{\sqrt{\frac{\varepsilon_m n_s^2}{\varepsilon_m + n_s^2}}}{n_g}$$

SPR Angle

SPR Response

Live Cell Imaging Using SPR

Mapping Reflected Light Intensity to Distance from Substrate

Calibration Curve

Simulation Model

Layer 5 Cytoplasm

Layer 4 Cell Membrane

Layer 3 Culture Medium

Layer 2 Au

Layer 1 BK7

Analyse Sub-Nanometer Membrane Fluctuations

- ✓ Image small yet swift movement.
- ✓ Distribution range for fluctuations.
- ✓ These movements may contribute to respiration, metabolism, active fluctuations and thermal fluctuations.

Quick Review

Cell Heterogeneity Cell Movement Per Unit Area (nm/µm²) **ர** Total Cell Movement (nm) **a**) Cell 1 Cell 1 Cell 2 Cell 2 Cell 3 Cell 3 250 Cell 4 Cell 4 Cell 5 Cell 5 100 20 80 80 100 Time (sec) Time (sec) Cell Movement Per Unit Area (nm/µm²) Cell Movement Per Unit Area (nm/μm²) f) e) d) Cell 2 Center **Cell 4 Center** 1.2 Cell 2 Edge Cell 4 Edge 0.2 80 100 100 20 60 20 60 80 12 Time (sec) Time (sec)

Long Duration Cell Membrane Movement

(Scale Bar = 10 μ m)

- ✓ We see a <u>collective movement</u> (10's of nanometers) as we record for longer time.
- ✓ This can be related to <u>physiological processes</u> like metastasis.
- ✓ Do they have a correlation with the sub-nanometer membrane fluctuations?

Cell Metastasis

HT-1080

Displaced Area α Membrane Movement

Conclusion:

- ✓ <u>Live cell imaging</u> of cell bottom membrane with <u>high resolution</u> in z-direction and less noise.
- ✓ Imaging the cell membrane fluctuations <u>important to study metabolism</u>.
- ✓ We <u>observe heterogeneity</u> in cells which corresponds to multiple factors.
- ✓ Enable to <u>analyse metabolic response</u> of a cell during <u>anti-cancer drug treatments</u>.
- ✓ Cell metastasis can be evaluated based on membrane fluctuations to some extent.

Complementary and Non-complementary DNA Binding Analysis

Source: Rice University

Study DNA Binding using SPR Imaging:

Cropped Image

Complementary Binding

Non-Complementary Binding

Conclusion:

- ✓ **Mean-square displacement:** Non-complementary ~ 10 * Complementary
- ✓ **Diffusion Co-efficient:** Non-complementary ~ 100 * Complementary

Automated Detection of Low-SNR SPR Signals using Machine Learning

Videos for Particle Binding to the Plasmonic Substrate

- ✓ Low signal-to-noise ratio.
- ✓ Hard to evaluate using image processing algorithms.

❖ Results:

***** Conclusion:

- ✓ Increasing number of hidden layers improves signal detection.
- ✓ Increasing training dataset improves network training.
- ✓ Increasing number of iterations helps improve detection accuracy.

P4

Image Segmentation To Quantify Cloud Coverage In Night All-Sky Camera Images

Indian Institute of Astrophysics, Bangalore

Objectives:

- Quantify cloud coverage at a given geographical location.
- Deliver software tool to help astronomers in site characterization.

User Interface and Statistics of the Night Sky Regions:

	Sky	Cloud	Moon
Case 1	Present	Present	Present
Case 2	Present	Absent	Present
Case 3	Absent	Present	Present
Case 4	Present	Present	Absent
Case 5	Absent	Present	Absent
Case 6	Present	Absent	Absent

Results

- ✓ Matlab GUI.
- ✓ Choice of 3 algorithms (manual and automated segmentation).
- ✓ Statistics of the night-sky.

Conclusion:

- ✓ Quantitative analysis of swift and tiny membrane fluctuations at a single cell level help us to analyse some fundamental properties of cells.
- ✓ Addition of z-direction in image analysis improves the desired results.
- ✓ Machine learning can provide us with solutions to problems which traditional image processing algorithms find difficult to deal with.
- ✓ User-friendly software tools with semi-automated and/or automated features enables necessary manipulation of procedures along with reduced workload.

Questions..?

Thank You!