Introducción a la Administración de Servidores Linux

Enrique Devars @codevars

¿Qué necesitas para iniciar este curso?

- Conceptos básicos de ingeniería de software.
- Manejo básico de la terminal.
- Manejo de algún lenguaje de scripting como Shell o Python. (Opcional).
- Conocimiento de redes computacionales. (Opcional).

¿Quiénes usan Linux?

- +80% de mercado de servidores.
- **El 100**% del top 500 supercomputadoras.
- 90% de los servidores en la nube.

Objetivo del curso

- Familiarizarte con los diferentes tipos de servidores.
- Aprender los conceptos claves detrás de un sistema Linux.
- Administrar de manera básica un servidor Linux.
- Entender cómo funciona un sistema Linux por dentro.

Habilidades y roles de un administrador Linux

Habilidades clave

- Control de accesos
- Monitoreo del sistema
- Administración de recursos
- Troubleshooting
- Instalación y mantenimiento de software
- Creación de respaldos
- Documentación

Roles que puedes desempeñar

DevOps Engineer.

Se enfocan en los procesos y metodologías para la correcta liberación en el proceso de desarrollo de software.

Roles que puedes desempeñar

Site Reliability Engineer.

Se enfocan en que los sistemas de software operen de manera correcta y con el mayor grado de confiabilidad posible.

Roles que puedes desempeñar

Security Operations Engineer.

Encargados de mantener la seguridad de los sistemas a nivel de red y aplicaciones.

Algunos otros roles

- Network Engineer
- Database Administrator
- Network Operation Center Engineer
- MLOps Engineer
- Cloud engineer

¿Qué son los servidores?

¿Qué es un servidor?

Un servidor es un **grupo de recursos tecnológicos** (hardware y software) que cumplen con uno o varios propósitos.

Estos usualmente reciben **peticiones de un cliente** y luego otorgan una **respuesta**.

Pero eso ya es viejísimo profe...

Caso de uso

Algunos tipos de servidores

- Web (frontend, backend)
- Bases de datos
- De pruebas
- Videojuegos
- Medios
- Email

- Impresión
- Archivosy recursos(SFTP, SMB)
- VolP

Y existen muchos más...

Servidor de pruebas

Esto usa Uber para hacer pruebas de su aplicación en diferentes dispositivos móviles **reales**.

Empecemos a aprender de Linux

¿Qué es un sistema Linux/UNIX?

Linux es un kernel, que es solo una parte del sistema.

GNU/Linux

Es una familia de sistemas operativos que usan a Linux como Kernel y una gran colección de programas para conformar un sistema operativo completo.

Distribuciones

¿Cuál es la diferencia entre Linux y UNIX?

UNIX

UNIX es un sistema operativo que se desarrolló en el año de 1969 por los laboratorios Bell de AT&T.

Distribuciones

Arquitectura de un sistema UNIX/Linux

¿Cómo están formados?

Ambos tienen capas

Hardware

Son todos nuestros dispositivos físicos conectados al sistema (discos, mouse, memoria, procesador, teclado, etc.).

Kernel

Es la parte clave de todo sistema operativo Linux.

Es una pieza de software que nos permite controlar todo el hardware de nuestro servidor como el uso de CPU o memoria RAM.

Shell

Es la interfaz que está entre el kernel y el usuario.

Es quien nos permite ejecutar comandos y pasarlos a un sistema de bajo nivel.

Aplicaciones

Es donde el usuario directamente interactúa. Es la capa donde trabajan nuestros comandos y aplicaciones.

Arquitectura de un sistema UNIX/Linux

Breve historia del software libre y el open-source

GNU (not Unix)

Free Software Foundation

Cuatro libertades del software libre

- 0. La libertad de ejecutar el programa.
- 1. La libertad de estudiar el funcionamiento del programa y modificarlo.
- 2. La libertad de redistribuir.
- 3. La libertad de distribuir copias de sus versiones modificadas a otras personas.

Open Source

Ejemplo

La diferencia radica en las libertades y filosofías de cada uno.

Sistemas operativos y distribuciones

Distribución

Interpreta el Kernel de Linux, pueden variar en el formato, manejador de paquetes y popularidad.

Existen cientos de distribuciones independientes, pero las más populares son...

LTS (long-term support)

Versiones de la distribución que prometen 5 años de soporte y mantenimiento.

Nota del autor: lo que recomendamos instalar.

Non-free-repositories

Son paquetes con licencias no aprobadas por los lineamientos de Debian Free Software.

Rolling Vs Fixed Release

Rolling release: las actualizaciones se publican al momento de desarrollarse. (Arch Linux, Gentoo-based).

Fixed release: las actualizaciones son probadas y posteriormente publicadas. (Ubuntu).

¿Dónde viven nuestros servidores?

On premise

Todo el hardware y software del servidor es alojado y mantenido por la organización.

Cloud

Pública

Privada

Hybrid (Híbrida)

Es una combinación de servicios on premise y cloud.

Formas de montar un servidor

Instalación directa

Se instala un sistema operativo para ocupar el 100% de los recursos dedicados (software y hardware) ya sea a un solo servicio o varios.

Virtualización

Se instala un software que sirve como **host** conocido como (**hypervisor**) que administra los recursos para crear múltiples **guests**.

Virtualization

Hypervisors

Guest

Guest

Hypervisor

Hardware

Tipo 1 (Bare-metal)

Guest

Guest

Hypervisor

Host OS

Hardware

Tipo 2 (Hosted)

Contenedores y máquinas virtuales

Instalando Ubuntu Server

Instalando RHEL

Configuración básica para un servidor remoto

SSH

Secure Shell Protocol: Es un protocolo que nos permite acceder de manera remota a un servidor.

¿Qué son los sistemas de archivos?

Sistema de archivos

Es un sistema que nos permite almacenar, mover, eliminar y buscar archivos.

Puede ser compatible o no entre diferentes sistemas operativos.

Principales sistemas de archivos locales

- FAT
- FAT32
- NTFS
- EXT4

- XFS
- BtrFS
- ZFS

Particiones de un servidor Linux

Árbol de directorios

Diferentes tipos de archivos

Tipos de archivo

Tipo de archivo	Símbolo	Crear	Remover
Archivo regular	-	editores, cp,	rm
Directorio	d	mkdir	rmdir, rm -r
Archivo de caracteres	С	mknod	rm
Archivo de bloque	b	mknod	rm
Socket de dominio local	S	socket system call	rm
Named Pipe	р	mknod	rm
Link simbólico	I	In -s	rm

Archivos regulares

Consiste en una serie de bytes, el sistema de archivos no le impone una estructura.

Archivos de texto, archivos de datos, programas ejecutables y librerías.

Directorios

Contienen referencias a otros archivos.

- /. referencia al directorio mismo
- /.. referencia al directorio derivado

Hard links

Estos links son una copia de un archivo original, hacen referencia a un punto de la memoria en la que se almacena el archivo.

Links simbólicos

También se conocen como soft links. Apuntan al archivo original, por una referencia por nombre.

Si eliminamos el archivo original, el link queda inservible, a diferencia de los hard links.

Archivos de dispositivos

De caracteres/bloque.

Estos archivos permiten que los programas se comuniquen con los periféricos y el hardware.

No son drivers, pero sí definen la comunicación con ellos y el manejo del dispositivo.

Sockets de dominio local

Son conexiones entre procesos que intermedian la comunicación, sobre todo lo que involucra la red.

Solo se puede acceder a ellos desde el localhost.

Named Pipes

Estos archivos comunican dos procesos que corren al mismo tiempo.

Se conocen como FIFO files (first in/first out), que pueden entenderse como una pila de procesos.

Conociendo los repositorios y paquetes

Paquetes

Incluyen todos los archivos necesarios para ejecutar el software, hacen el proceso de instalación lo más sencillo posible, porque incluye los archivos binarios, de configuración y dependencias.

Repositorio

Almacena los paquetes para que el usuario pueda descargarlos e instalar el software.

Pertenecen a los distribuidores de Linux, aquí se liberan las actualizaciones de los paquetes.

.deb

Formato de instalación de paquetes de Debian y Ubuntu.

dpkg: herramienta que instala, desinstala y consulta.

.rpm

Formato de instalación de paquetes de Red Hat, CentOS, SUSE, Amazon Linux.

rpm: herramienta que instala, desinstala y consulta.

rpm y dpkg

Comandos all-in-one

```
-- install
-- remove
- l (list)
- i (install)
- q (query, acompaña con una bandera)
- U (upgrade)
- e (erase)
```

¿Qué es un manejador de paquetes?

Manejadores de paquetes

Aprende a usar el manejador de paquetes

Manejo de paquetes a profundidad

¿Cómo instalar software?

¿Qué es un proceso en Linux?

Proceso

Un proceso representa una referencia a un programa ejecutándose dentro de nuestro sistema, el cual puede ser controlado y monitoreado.

Este hace uso de recursos de memoria, de I/O, de procesamiento, etc.

Demonio

Son procesos que se ejecutan en segundo plano, ejecutándose de forma persistente o reiniciándose de forma automática bajo ciertas condiciones.

Usualmente, se inician en el arranque del sistema.

Señales

Son procesos de bajo nivel que sirven como peticiones en el ámbito de kernel para interrumpir otros procesos.

Escaneo de procesos

Manejo de procesos

Estados de un proceso

- Running or Runnable (R)
- Uninterruptible Sleep (D)
- Interruptible Sleep (S)
- Stopped (T)
- Zombie (Z)

Creación y manejo de demonios

Automatización de procesos

Esto es solo el comienzo