# **CS559 Machine Learning** Bayesian Decision Theory

Tian Han

Department of Computer Science Stevens Institute of Technology

Week 2

#### Outline

- Introduction
- Bayesian Decision Theory
- Minimum Error Rate Classification
- Classifier and Discriminant Functions
- Three Approaches for Decision Problem

Introduction •0000000000



- (From the Economist 2000) The essence of the Bayesian approach is to provide a mathematical rule explaining how you should change your existing beliefs in the light of new evidence.
- It allows the scientist to combine new data with their existing knowledge.
- Bayesian decision theory uses Bayes approach to analysis the problem of pattern classification.
- Quantify the trade-offs between various decisions using probability and the cost that accompany such decisions.

#### Assumption:

Introduction

- Decision problem is posed in **probabilistic** terms.
- All of the relevant probabilities are known.

# Fish Example



Introduction

Salmon



Sea Bass

Figure: From J.Corso slides

- Classify fish as either Salmon or Sea Bass.
- Random variable  $\omega$  describe the fish category. (State of nature)
  - $\omega = \omega_1$ : Sea Bass
  - $\omega = \omega_2$ : Salmon
- Only two fish categories.

Introduction

- The Prior probability reflects our prior knowledge of how likely we expect an outcome of an event **before** we actually observed such event.
- For fish example, represents how likely we are to get a sea bass or salmon before we see the next fish on the conveyor belt.
- Prior comes from prior knowledge, NO data have been seen yet.
- Prior might be different depending on the situation.
- If have reliable prior knowledge, USE IT!

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.
- A decision rule prescribes what actions to take based on observed data.

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.
- A decision rule prescribes what actions to take based on observed data.
- Assume only prior available and equal cost for incorrect classifications.

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.
- A decision rule prescribes what actions to take based on observed data.
- Assume only prior available and equal cost for incorrect classifications.
  - Decide  $\omega_1$  if  $P(\omega_1) > P(\omega_2)$

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.
- A decision rule prescribes what actions to take based on observed data.
- Assume only prior available and equal cost for incorrect classifications.
  - Decide  $\omega_1$  if  $P(\omega_1) > P(\omega_2)$
  - Otherwise, decide  $\omega_2$

- $P(\omega = \omega_1)$ , or  $P(\omega_1)$  for prior next is the sea bass.
- $P(\omega = \omega_2)$ , or  $P(\omega_2)$  for prior next is the salmon.
- $P(\omega_1) + P(\omega_2) = 1$ : either  $\omega_1$  or  $\omega_2$  must occur.
- A decision rule prescribes what actions to take based on observed data.
- Assume only prior available and equal cost for incorrect classifications.
  - Decide  $\omega_1$  if  $P(\omega_1) > P(\omega_2)$
  - Otherwise, decide ω<sub>2</sub>

Limitation: Always choose the same. If the prior is uniform (e.g.,  $P(\omega_1) = P(\omega_2) = 0.5$ ), such rule behaves not well.

# Class Conditional Density

- Use class-conditional information could improve accuracy.
- A feature is an observable variable, e.g., lightness, length, width, etc.
- Class Conditional Density: probability density function for x, the feature, given the state of nature is  $\omega$ , i.e.,  $p(x|\omega)$
- E.g.,  $p(x|\omega_1), p(x|\omega_2)$  describe the difference in lightness between populations of sea bass and salmon



Figure: Class conditional probability[DHS book chapter 2]

Introduction

# Posterior Probability

• If know prior  $P(\omega)$  and conditional density  $p(x|\omega)$ , as well as observed feature value x (e.g., lightness of the fish), how does that affect our decision?

# Posterior Probability

- If know prior  $P(\omega)$  and conditional density  $p(x|\omega)$ , as well as observed feature value x (e.g., lightness of the fish), how does that affect our decision?
- Posterior probability: the probability of a certain state of nature  $\omega$  given our observables feature x:  $P(\omega|x)$

# Posterior Probability

- If know prior  $P(\omega)$  and conditional density  $p(x|\omega)$ , as well as observed feature value x (e.g., lightness of the fish), how does that affect our decision?
- Posterior probability: the probability of a certain state of nature  $\omega$  given our observables feature x:  $P(\omega|x)$
- Bayes rule:

$$P(\omega_i|x) = \frac{p(x|\omega_i)P(\omega_i)}{p(x)}$$

$$p(x) = \sum_{i=1}^{2} p(x|\omega_i)P(\omega_i)$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

# Posterior Probability

- Posterior is determined by prior and likelihood.
- Example: when  $P(\omega_1) = \frac{2}{3}$ ,  $P(\omega_2) = \frac{1}{3}$



Figure: Posterior probability[DHS book chapter 2]

Introduction

#### Decision Rule based on Posterior

- Given observation x, the decision is based on posterior probability.
  - Decide  $\omega_1$ , if  $P(\omega_1|x) > P(\omega_2|x)$
  - Decide  $\omega_2$ , if  $P(\omega_2|x) > P(\omega_1|x)$

Introduction

- Given observation x, the decision is based on posterior probability.
  - Decide  $\omega_1$ , if  $P(\omega_1|x) > P(\omega_2|x)$
  - Decide  $\omega_2$ , if  $P(\omega_2|x) > P(\omega_1|x)$
- Probability of error: for two class scenario, whenever we observe a particular x,

$$P(error|x) = \begin{cases} P(\omega_1|x), & \text{if decide } \omega_2 \\ P(\omega_2|x), & \text{if decide } \omega_1 \end{cases}$$

# Minimize the Probability of Error

- Minimize the probability of error.
- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- $P(error|x) = \min[P(\omega_1|x), P(\omega_2|x)]$
- Also minimize the average probability of error:

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error|x) p(x) dx$$

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2)$

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2)$ 
  - evidence p(x): unimportant for making a decision.

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2)$ 
  - evidence p(x): unimportant for making a decision.
  - If for some x, we have  $p(x|\omega_1)=p(x|\omega_2)\to$  decision rely on prior.

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2)$ 
  - evidence p(x): unimportant for making a decision.
  - If for some x, we have  $p(x|\omega_1) = p(x|\omega_2) \to$  decision rely on prior.
  - If have uniform prior → decision rely on likelihood.

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$ 
  - evidence p(x): unimportant for making a decision.
  - If for some x, we have  $p(x|\omega_1) = p(x|\omega_2) \to$  decision rely on prior.
  - If have uniform prior → decision rely on likelihood.
- Assumption: equal cost for each decision.

- Decide  $\omega_1$  if  $P(\omega_1|x) > P(\omega_2|x)$ ; otherwise decide  $\omega_2$ .
- (Equivalent): Decide  $\omega_1$ , if  $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$ 
  - evidence p(x): unimportant for making a decision.
  - If for some x, we have  $p(x|\omega_1) = p(x|\omega_2) \to \text{decision rely on}$ prior.
  - If have uniform prior → decision rely on likelihood.
- Assumption: equal cost for each decision.
- Summary: Given both prior and likelihoods, Bayesian decision rule combines them (through posterior probability) for decision making which achieves minimum probability of error.

#### Generalize the previous fish example in several ways:

- allow the use of more than one feature. (length, weight etc)
- allow more than two states of nature. (tilapia, sardine etc)
- allow actions other than deciding the state of nature. (Not make a decision)
- introduce loss function more general than the probability of error. (some classification mistakes are more costly than others)

#### **Notation**

- feature vector  $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$ : allow use of more than one feature.
- $\omega_1, \omega_2, ..., \omega_c$ : finite set of c states of nature, i.e., categories.
- $\alpha_1, \alpha_2, ..., \alpha_a$ : finite set of a possible actions.
- $\lambda(\alpha_i|\omega_i)$ : loss function, describes the loss incurred for taking action  $\alpha_i$  when state of nature is  $\omega_i$ .
- $P(\omega_i)$ : prior probability that state of nature is  $\omega_i$ .
- $p(\mathbf{x}|\omega_i)$ : state conditional probability for  $\mathbf{x}$ .

Bayes formula:

$$P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{p(\mathbf{x})}$$

The evidence  $p(\mathbf{x})$ :

$$p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i) P(\omega_i)$$

#### Conditional Risk

- Observe x, take action  $\alpha_i$ , if true state of nature  $\omega_i \to loss$  $\lambda(\alpha_i|\omega_i)$ .
- The expected loss, or conditional risk, of taking action  $\alpha_i$  is (on board):

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$

 For given observation x, selecting the action that minimizes the conditional risk.

#### Overall Risk

- **Decision rule**: function  $\alpha(\mathbf{x})$ :  $R^d \to \{\alpha_1, ..., \alpha_a\}$ , indicate which action to take for every possible observation  $\mathbf{x}$ .
- The overall risk: expected loss associated with a given decision rule  $\alpha(\mathbf{x})$  considering all possible observations:

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

• Choose  $\alpha(\mathbf{x})$  that minimizes the overall risk.

Compute conditional risk for all possible actions:

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$

Select action  $\alpha_i$  that has minimum conditional risk:

$$\alpha^{\star} = \arg\min_{\alpha_i} R(\alpha_i | \mathbf{x})$$

- Bayesian decision rule minimizes the overall risk.
   (Minimum Risk Decision)
- The minimum overall risk R\* is called Bayes risk, best performance we can get.

- α<sub>1</sub>: deciding that the true state of nature is ω<sub>1</sub>.
   α<sub>2</sub>: deciding that the true state of nature is ω<sub>2</sub>.
- $\lambda(\alpha_i|\omega_j)$ : loss incurred for deciding  $\omega_i$  when the true state of nature is  $\omega_j$ , denote as  $\lambda_{ij}$ .

- α<sub>1</sub>: deciding that the true state of nature is ω<sub>1</sub>.
   α<sub>2</sub>: deciding that the true state of nature is ω<sub>2</sub>.
- $\lambda(\alpha_i|\omega_j)$ : loss incurred for deciding  $\omega_i$  when the true state of nature is  $\omega_j$ , denote as  $\lambda_{ij}$ .
- Recall  $R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x}).$ 
  - $R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$
  - $R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$

- α<sub>1</sub>: deciding that the true state of nature is ω<sub>1</sub>.
   α<sub>2</sub>: deciding that the true state of nature is ω<sub>2</sub>.
- $\lambda(\alpha_i|\omega_j)$ : loss incurred for deciding  $\omega_i$  when the true state of nature is  $\omega_j$ , denote as  $\lambda_{ij}$ .
- Recall  $R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x}).$ 
  - $R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$
  - $R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$
- Decision Rule: decide  $\omega_1$  if  $R(\alpha_1|\mathbf{x}) < R(\alpha_2|\mathbf{x})$

## Two Class Classification

- α<sub>1</sub>: deciding that the true state of nature is ω<sub>1</sub>.
   α<sub>2</sub>: deciding that the true state of nature is ω<sub>2</sub>.
- $\lambda(\alpha_i|\omega_j)$ : loss incurred for deciding  $\omega_i$  when the true state of nature is  $\omega_j$ , denote as  $\lambda_{ij}$ .
- Recall  $R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x}).$ 
  - $R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$
  - $R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$
- Decision Rule: decide  $\omega_1$  if  $R(\alpha_1|\mathbf{x}) < R(\alpha_2|\mathbf{x})$
- In terms of posterior:

$$(\lambda_{21} - \lambda_{11})P(\omega_1|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\mathbf{x})$$

• In terms of prior and likelihood:

$$(\lambda_{21} - \lambda_{11})P(\omega_1|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\mathbf{x})$$

### Likelihood Ratio

• In terms of prior and likelihood:

$$(\lambda_{21} - \lambda_{11})P(\omega_1|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\mathbf{x})$$
$$(\lambda_{21} - \lambda_{11})P(\mathbf{x}|\omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})P(\mathbf{x}|\omega_2)P(\omega_2)$$

• Assume:  $\lambda_{21} > \lambda_{11}$  and  $\lambda_{12} > \lambda_{22}$  (loss incurred for making an mistake is greater than loss incurred for being correct)

### Likelihood Ratio

In terms of prior and likelihood:

$$(\lambda_{21} - \lambda_{11}) P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | \mathbf{x})$$

$$(\lambda_{21} - \lambda_{11}) P(\mathbf{x} | \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) P(\mathbf{x} | \omega_2) P(\omega_2)$$

- Assume:  $\lambda_{21} > \lambda_{11}$  and  $\lambda_{12} > \lambda_{22}$  (loss incurred for making an mistake is greater than loss incurred for being correct)
- **Likelihood ratio test**: decide  $\omega_1$  if

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \underbrace{\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}}_{\text{independent of } \mathbf{x}}$$

• 
$$p(\mathbf{x}|\omega_1) = N(4,1), \ p(\mathbf{x}|\omega_2) = N(10,1)$$

• 
$$P(\omega_1) = \frac{1}{3}$$

$$\bullet \ \lambda = \left[ \begin{array}{cc} 0 & 1 \\ 2 & 0 \end{array} \right]$$

• Decision rule?

# Minimum Error Rate

## Minimum-Error-Rate Classification

- Actions are decisions on classes
  - If action  $\alpha_i$  is taken and true state of nature is  $\omega_j$ , then decision correct if i=j, and in error if  $i\neq j$ .
- Choose the decision rule that minimizes the probability of error, i.e., error rate.

## Zero-One Loss

#### Zero-one Loss:

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0, & \text{if } i = j\\ 1, & \text{if } i \neq j \end{cases}$$

- NO cost for correct decision.
- SAME unit cost for any errors.

#### Conditional risk:

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$
$$= \sum_{i\neq j} P(\omega_j|\mathbf{x})$$

## Risk

Conditional risk:

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x})$$
$$= \sum_{i\neq j} P(\omega_j|\mathbf{x})$$
$$= 1 - P(\omega_i|\mathbf{x})$$

 $P(\omega_i|\mathbf{x})$ : posterior probability that action  $\alpha_i$  is correct given observation x.

• Minimum Risk Decision: choose the action that minimize the conditional risk.  $(R(\alpha_i|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x}))$ 

$$\min R(\alpha_i|\mathbf{x}) \equiv \max P(\omega_i|\mathbf{x})$$

- Decide  $\omega_i$  if  $P(\omega_i|\mathbf{x}) > P(\omega_j|\mathbf{x})$  for  $j \neq i$ .
- Above rule: minimize probability of error, minimize error rate, minimize the risk etc

#### Likelihood Ratio Test:

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

- Let  $\theta_{\lambda} = \frac{\lambda_{12} \lambda_{22}}{\lambda_{21} \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$ , then Decide  $\omega_1$  if  $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \theta_{\lambda}$
- For zero-one loss:  $\lambda=\left[\begin{array}{cc}0&1\\1&0\end{array}\right]$  ,  $\theta_{\lambda}=\frac{P(\omega_2)}{P(\omega_1)}=\theta_a$
- Penalize more on misclassifying  $\omega_2$  to  $\omega_1$ , e.g.,  $\lambda = \begin{bmatrix} 0 & 5 \\ 1 & 0 \end{bmatrix}$ ,  $\theta_{\lambda} = \frac{5P(\omega_2)}{P(\omega_1)} = \theta_b$

## Likelihood Ratio for fish example



Figure: Likelihood Ratio. If use zero-one loss, the decision boundary is determined by threshold  $\theta_a$ .[DHS book chapter 2]

## Discriminant Functions

- Discriminant functions: useful way to represent pattern classifier.
- $g_i(\mathbf{x})$ : discriminant function for *i*-th class.
- The classifier is said to assign an observation (or feature vector)  ${\bf x}$  to class  $\omega_i$  if:

$$g_i(\mathbf{x}) > g_j(\mathbf{x}), \text{ for } j \neq i$$

• Decide  $\omega_i$  that have **largest** discriminant.

## Network Representation of Classifier



Figure: Classifier which includes d inputs and c discriminant function  $g_i(\mathbf{x})$  [DHS book chapter 2]

# Bayesian Classifier

Bayesian classifier can be naturally represented using discriminants:

# Bayesian Classifier

Bayesian classifier can be naturally represented using discriminants:

• General risk:  $g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$ **Maximum** discriminant function is equivalent to **minimum** conditional risk.

# Bayesian Classifier

Bayesian classifier can be naturally represented using discriminants:

- General risk:  $g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$ Maximum discriminant function is equivalent to minimum conditional risk.
- Zero-one loss:  $q_i(\mathbf{x}) = P(\omega_i|\mathbf{x})$ . Maximum discriminant function is equivalent to maximum posterior probability.

### Choice of Discriminant Function

- The choice of discriminant function is NOT unique.
  - Multiply by some positive constant
  - Shift by some constant
  - Use monotone increasing function f(.) on  $q_i(\mathbf{x})$
- Particularly:

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} | \omega_i) P(\omega_i)}$$
$$g_i(\mathbf{x}) = p(\mathbf{x} | \omega_i) P(\omega_i)$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x} | \omega_i) + \ln P(\omega_i)$$

## Two Category Case

Usually define a single discriminant function

$$g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x})$$

For minimum-error-rate (i.e., with zero-one loss), followings are convenient:

$$g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})$$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Decision rule: decide  $\omega_1$  if  $g(\mathbf{x}) > 0$ , otherwise decide  $\omega_2$ .

# **Decision Region**

- Discriminant functions of various forms, same decision rules.
- Decision rule divides the feature space  $\mathbf{x} \in R^d$  into c decision regions:  $R_1, ..., R_c$ , separated by decision boundaries.



Figure: [DHS book chapter 2]

In general, we have three distinct approaches for decision problem which are (in increasing order of complexity):

In general, we have three distinct approaches for decision problem which are (in increasing order of complexity):

• **Discriminant function**: find a function  $g(\mathbf{x})$  which maps each input  $\mathbf{x}$  directly onto a class label.

In general, we have three distinct approaches for decision problem which are (in increasing order of complexity):

- **Discriminant function**: find a function  $g(\mathbf{x})$  which maps each input  $\mathbf{x}$  directly onto a class label.
- **Discriminative models**: approaches that model the posterior probabilities directly (i.e.,  $p(\omega_k|\mathbf{x})$ ).

In general, we have three distinct approaches for decision problem which are (in increasing order of complexity):

- **Discriminant function**: find a function  $g(\mathbf{x})$  which maps each input  $\mathbf{x}$  directly onto a class label.
- **Discriminative models**: approaches that model the posterior probabilities directly (i.e.,  $p(\omega_k|\mathbf{x})$ ).
- **Generative models**: approaches that model the joint distribution  $p(\omega_k, \mathbf{x})$ .
  - Specifically, determining the class-conditional densities  $p(\mathbf{x}|\omega_k)$  and prior class probabilities  $p(\omega_k)$  for each class  $\omega_k$  individually. Then use Bayes' theorem to find posterior  $p(\omega_k|\mathbf{x})$ .