A Digital Process Twin Conceptual Architecture for What-If Process Analysis

2nd International Workshop on Modelling and Implementation of Digital Twins for Complex Systems (MIDas4CS'24)

<u>Ivan Compagnucci</u>¹, Barbara Re², Monique Snoeck³, Estefanía Serral Asensio³

Gran Sasso Science Institute, Italy
 University of Camerino, Italy
 KU Leuven, Belgium

What-if Process Analysis

Interventions allow to continuously update and modify business processes to improve their overall performance (i.e., reduce costs, balancing resource utilization, reduce process cycle time)

"How to predict the values that one or more process performance measures will take after a given business **process intervention**?"

Goal: Find a way to predict the values of process performance before implementing business process interventions in real-world

The Digital Twin Paradigm

 $A_{DT} = \langle Actual System, Data, Models \rangle$

Eramo, R., Bordeleau, F., Combemale, B., van den Brand, M., Wimmer, M., Wortmann, A.: Conceptualizing Digital Twins. IEEE Softw. 39(2), 39–46 (2022)

Digital Process Twin

A **Digital Process Twin** is a digital representation of a real business process, integrated with real-time data and used for simulations, predictions and optimizations

Digital Process Twins provide a new approach to **rethinking and re-engineering** of business processes

1. Enhanced Business Process Model

From static models vs Real-time dynamic models

2. Process Optimization

Simulations and predictions for proactive optimizations (instead of retrospective analysis)

3. Continuous Feedback Cycle

Continuous feedback loop for continuous improvement

ADAPTIVE-TWIN

ADAPTIVE-TWIN is a conceptual architecture for implementing Digital Process Twin

The proposed conceptual architecture consist in a multi-modeling approach combining a Domain Model and the standard BPMN into a data-aware business process modeling

Goal: virtual implementation and simulation of potential changes in business processes

It was implemented in a tool and evaluated in an inspired-by real-world dispatching of smart containers

Digital Process Twin Conceptual Model

Actual Business Process: The Container Dispatch

Generated from synthetic event logs

IoT-Enhanced Business Process

Costs:

Worker 1: 20€/hr - 24/7

Worker 2: 30€/hr - 24/7

Worker 3: 25€/hr - 24/7

Activities Duration:

..... Moving the Container: 25/35mins – Uniform

System Registration: 5 mins - Fixed

- · - · Solving Quality Problems: 1 hour - Fixed

Scenario Specification:

Total N°of Instances: 500 Containers

Instances Arrival Time: 1 Container/hr

Work schedules: 24/7

Actual Business Process

Data: Digital Shadows

Digital Shadows were generated by instantiating a MERODE Domain Model

MERODE is a Model-Driven methodology that uses object-oriented domain modeling to develop Enterprise Information Systems

A MERODE Domain Model for IoT was derived by mapping classes from the SSN/SOSA IoT ontologies

Compagnucci, I., Snoeck, M., Serral E. 2023. Supporting Digital Twins Systems Integrating the MERODE Approach (MODELS-C '23), pp. 449–458.

Data: Digital Shadows

- Existence Dependency Graph (EDG)
 - Designed to define business process objects (classes) and their associations
- Finite State Machines (FSMs)
 - Designed to **trigger state changes in** multiple business objects performing business events
- Object Event Table (OET)
 - Designed to map business events to each business objects indicating state change (C/M/E)

Digital Shadows in Practice

Data Digital Shadow

MERLIN Code Generator has been used to pass from the **MERODE Domain Model to Code** as RESTful web application

Models: Descriptive Models

The Actual Process (P1) correspond to a

behavior process model describing the process logic

Real-time domain process data are handled by Digital Shadows

- + Attributes
- + Current State
- + Possible Actions

Real-Time Business Objects Data

Merging Process and Data Perspectives

1. Domain Model Instantiation

2. Service Task Configuration

Digital Shadow

Business Process

Models: Predictive Model

Goal: Build a model to virtually estimate the impacts of changes in process performance

Business Process Simulation

General Parameters

- # of Process Instances
- Resource Pool
- Timetables
- ..

BPMN Parameters

- Assign a Resource to a specific task
- Duration of a task

-

Models: Predictive Model

A Data-Driven Process Simulation has been integrated to estimate the impact of a process optimizations by leveraging real-time data

ADAPTIVE-TWIN Implements BIMP Process Simulator Java Engine based on the *token-based* mechanism

Models: Prescriptive Model

Goal: Derive feedback to estimate the impacts of

changes in process performance

KPIs E Optimized Business Process P1' Event Logs

Simulation reports an improvement in comparing the performance of P1 and P1'

Conclusion

Digital Process Twin can offer new interesting opportunities

Rapid prototyping of business processes including new changes

Implementation and Assessment of process changes in a safe and controlled environment

Predict the future vs Analyzing the past

Point of Concerns

Source data needs to be accurate and well-collected

Design high-fidelity descriptive models

Simulations and advanced analysis require data analysis expertise (i.e., make right assumptions in business process simulations)

Limitation

Quantitative analysis of the Business Process

Business Process Simulation allows to estimates quantitative performances only

The Domain Data Model for IoT

The Domain Data Model is specific for IoT-Enhanced Business Processes

ADAPTIVE-TWIN is in the "Tool-Chain" concept

The current approach requires further development to integrate all components into a single solution

Future Work

Enhance the Accuracy of Business Process Digital Replica

Integrating additional models to address different perspective of the process replica

Introduce new Analysis on the Business Process Digital Replica

Integrating additional analysis such as real-time process prediction or model properties (i.e., soundness, safeness)

Evaluation of the approach on a More Complex Scenarios

Applying the approach to a larger scenario to evaluate its scalability and robustness

Thank you

Ivan Compagnucci¹, Barbara Re², Monique Snoeck³, Estefanía Serral Asensio³

¹ Gran Sasso Science Institute, Italy
² University of Camerino, Italy
³ KU Leuven, Belgium