I/O-efficient Manipulation of Binary Decision Diagrams

Steffan Christ Sølvsten

S. C. Sølvsten, J. van de Pol, A. B. Jakobsen, and M. W. B. Thomasen. *Adiar: Binary Decision Diagrams in External Memory.* 2022

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

Examples of (Reduced Ordered) Binary Decision Diagrams.

Theorem (Bryant '86)For a fixed variable order, if one exhaustively applies the two rules below, then one obtains the Reduced OBDD, which is a unique canonical form of the function.

(1) Remove redundant nodes

(2) Merge duplicate nodes

 $bdd_apply(f,g,\odot)$

Base Case $(f, g \in \mathbb{B})$:

Inductive Case:

 $bdd_apply(f,g,\odot)$

Base Case $(f, g \in \mathbb{B})$:

Inductive Case:

$$bdd_apply(f,g,\odot)$$

Let N_f , N_g be the size of the BDDs for f and g.

Let T be the $O(N_f \cdot N_g)$ size of the BDD for $f \odot g$.

Theorem

 $bdd_apply(f,g,\odot)$ runs in $O(N_f + N_g + T)$ time

- Memoisation (*Computation Cache*) ensures each (t_f, t_g) is only computed once.
- Reduction Rules can be maintained with a make_node(i, t, e) in O(1) time.
 - 1 Redundancy is resolved with an if-statement.
 - 2 Duplication is avoided with a hash table (*Unique Node Table*).

Corollary

 $bdd_apply(f,g,\odot)$ runs in O(1) time per BDD node.

Adiar

I/O-efficient Decision Diagrams

github.com/ssoelvsten/adiar

Running time of BuDDy for the N-Queens problem.

Running time of BuDDy for 3D Tic-Tac-Toe with N=21.

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it

CountPaths

Apply

Equality Checking

The I/O model by Aggarwal and Vitter '87

For any realistic values of N, M, and B we have that

$$N/B < \operatorname{sort}(N) \triangleq N/B \cdot \log_{M/B} N/B \ll N$$
,

Theorem (Aggarwal and Vitter '87) N elements can be sorted in $\Theta(sort(N))$ I/Os.

Theorem (Arge '95) A Priority Queue can do N insertions and extractions in $\Theta(sort(N))$ I/Os.

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$

node I/Os cache lookups

2 2

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
$$4 3$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups

4 3

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
5 3

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
6 4

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
6 4

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$

node I/Os cache lookups

7 4

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
8 4

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
8 5

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
8 6

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

$$M = 4$$
, $B = 2$
node I/Os cache lookups
8 6

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(a)
$$(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$$

Algorithm	Time Complexity
bdd_pathcount	$O(N_f)$
bdd_not	$O(N_f)$
bdd_restrict	$O(N_f)$
bdd_apply	$O(N_f \cdot N_g)$
bdd_equal	O(1)

Algorithm	I/O-Complexity
bdd_pathcount	$O(N_f)$
bdd_not	$O(N_f)$
bdd_restrict	$O(N_f)$
bdd_apply	$O(N_f \cdot N_g)$
bdd_equal	O(1)

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

$$(i_1, id_1) < (i_2, id_2) \equiv i_1 < i_2 \lor (i_1 = i_2 \land id_i < id_j)$$

Node-based representation of prior shown $\ensuremath{\mathsf{BDDs}}$

CountPaths

Idea

Count the number of in-going paths to each node.

CountPaths

Time-Forward Processing

Defer work with Q_{count} : PriorityQueue $\langle (s \to t, \mathbb{N}) \rangle$ sorted on t in ascending order.

$$((i, \mathrm{id}) \xrightarrow{\perp} \alpha, \quad \sum_{i} n_{i}), \qquad ((i, \mathrm{id}) \xrightarrow{\top} \beta, \quad \sum_{i} n_{i})$$

Priority Queue:
$$Q_{count}$$
: [$((0,0) \xrightarrow{\top} (1,0), 1)$, $((0,0) \xrightarrow{\bot} (2,0), 1)$,


```
Seek
                Sum
                                 Result
(2,0)
                  0
                                    0
       Priority Queue: Qcount:
      ((0,0) \xrightarrow{\perp} (2,0), 1)
      ((1,0) \xrightarrow{\perp} (2,0), 1)
      ((1,0) \xrightarrow{\top} (3,1), \quad 1) ,
```



```
Seek
                                   Sum
                                                                      Result
(2,0)
                                        2
                                                                             0
              Priority Queue: Qcount:
             \begin{array}{cccc} ((2,0) \xrightarrow{\bot} (3,0), & 2) & , \\ ((1,0) \xrightarrow{\top} (3,1), & 1) & , \\ ((2,0) \xrightarrow{\top} (3,1), & 2) & ] \end{array}
```



```
Seek
                                    Sum
                                                                      Result
(3,0)
                                        0
                                                                             0
              Priority Queue: Qcount:
             \begin{array}{cccc} ((2,0) \xrightarrow{\bot} (3,0), & 2) & , \\ ((1,0) \xrightarrow{\top} (3,1), & 1) & , \\ ((2,0) \xrightarrow{\top} (3,1), & 2) & ] \end{array}
```


CountPaths : Example

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

Time-Forward Processing

Observation (semi-tranposition)

 \leftarrow : $s \rightarrow t$ (Internal Arcs) are output at time t and hence sorted by t.

Time-Forward Processing

Observation (semi-tranposition)

 \leftarrow : $s \rightarrow t$ (Internal Arcs) are output at time t and hence sorted by t.

Time-Forward Processing

Observation (semi-tranposition)

- \leftarrow : $s \rightarrow t$ (Internal Arcs) are output at time t and hence sorted by t.
- \rightarrow : $s \rightarrow \mathbb{B}$ (Terminal Arcs) are output at time s.

Time-Forward Processing

 $Q_{app:1}$: PriorityQueue $\langle (s o (t_f, t_g))
angle$ sorted on $\min(t_f, t_g)$ in ascending order.

Case 1

 $t_f.var() \neq t_g.var()$

 $Q_{app:1}$: PriorityQueue $\langle (s \rightarrow (t_f, t_g)) \rangle$ sorted on $\min(t_f, t_g)$ in ascending order.

Case 1

 $t_f.var() \neq t_g.var()$

Case 2(a):

 $t_f.var() = t_g.var() \land t_f.id() = t_g.id()$

 $Q_{app:1}$: PriorityQueue $\langle (s \rightarrow (t_f, t_g)) \rangle$ sorted on min (t_f, t_g) in ascending order.

Case 1

$$t_f.var() \neq t_g.var()$$

 $Q_{app:2}$: PriorityQueue $\langle (s \to (t_f, t_g), (\alpha, \beta)) \rangle$ sorted on max (t_f, t_g) in ascending order.

Case 2(a):

$$t_f.var() = t_g.var() \wedge t_f.id() = t_g.id()$$

Case 2(b):

$$t_f.var() = t_g.var() \land t_f.id() \neq t_g.id()$$

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(b)
$$\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$$

Priority Queue: Q_{app:1}:

- [$(0,0) \xrightarrow{\top} ((1,0),(2,1))$,
 - $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$

(0,0)

(2.1)

J

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

(0,0)

(c) (a) ∧ (b)

(a)
$$(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$$

(b) $\neg (x_0 ? x_2 \lor x_3 : x_2 \land x_3)$

Seek: min((1,0),(2,1))

Priority Queue: Qapp:1:

 $(0,0) \xrightarrow{\top} ((1,0),(2,1))$

 $(0,0) \xrightarrow{\perp} ((2,0),(2,0)) ,$

 $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$

 $(1,0) \xrightarrow{\top} ((3,1),(2,1))$

(0,0)

(1,0)

J

Seek: min((2,0),(2,0))Priority Queue: Qapp:1: $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$ $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$ $(1,0) \xrightarrow{\top} ((3,1),(2,1))$

Output: (c) $(a) \wedge (b)$

Seek: min((2,0),(2,0))Priority Queue: Qapp:1: $(0,0) \xrightarrow{\perp} ((2,0),(2,0))$ $(1,0) \xrightarrow{\perp} ((2,0),(2,1))$ $(1,0) \xrightarrow{\top} ((3,1),(2,1))$ $(2,0) \xrightarrow{\top} ((3,1),(3,0))$ $(2,0) \xrightarrow{\perp} ((3,0),\top)$]

Output: (2,0)

Apply

Time-Forward Processing

Send reduction t' with Q_{red} : PriorityQueue $\langle (s o t')
angle$ descending on parent s.

Time-Forward Processing

Send reduction t' with Q_{red} : PriorityQueue $\langle (s o t')
angle$ descending on parent s.

Time-Forward Processing

Send reduction t' with Q_{red} : PriorityQueue $\langle (s o t')
angle$ descending on parent s.

Observation (semi-tranposition)

 \leftarrow : $s \rightarrow t$ (Internal Arcs) provide parents of unreduced node t.

Time-Forward Processing

Send reduction t' with Q_{red} : PriorityQueue $\langle (s o t')
angle$ descending on parent s.

Observation (semi-tranposition)

- \leftarrow : $s \rightarrow t$ (Internal Arcs) provide parents of unreduced node t.
- ightarrow: $s
 ightarrow\mathbb{B}$ (Terminal Arcs) are reduced and already sorted as per Q_{red} .

Reduce Level i:

1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.

Reduce Level i:

1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.

Reduce Level i:

1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.

- 1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.
- Sort remaining nodes by children, output unique nodes, and remember duplications.

- 1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.
- Sort remaining nodes by children, output unique nodes, and remember duplications.

- f I Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.
- Sort remaining nodes by children, output unique nodes, and remember duplications.
- 3 Sort back to match internal arcs and forward to parents with Q_{red} .

- 1 Obtain nodes from Q_{red} and terminal arcs. Filter and remember redundant nodes.
- Sort remaining nodes by children, output unique nodes, and remember duplications.
- 3 Sort back to match internal arcs and forward to parents with Q_{red} .

(d) $(a) \wedge (b)$ reduced

Algorithm	I/O-Complexity	
bdd_pathcount	$O(\operatorname{sort}(N_f))$	
bdd_not	$2N_f/B$	
bdd_restrict	$O(\operatorname{sort}(N_f))$	
bdd_apply	$O(\operatorname{sort}(N_f \cdot N_g))$	

Contents

What are Binary Decision Diagrams?

Why do they break?

How can we fix it?

CountPaths

Apply

Equality Checking

Algorithm	I/O-Complexity
bdd_pathcount	$O(\operatorname{sort}(N_f))$
bdd_not	$2N_f/B$
bdd_restrict	$O(sort(N_f))$
bdd_apply	$O(\operatorname{sort}(N_f \cdot N_g))$

Algorithm	I/O-Complexity
bdd_pathcount	$O(\operatorname{sort}(N_f))$
bdd_not	$2N_f/B$
bdd_restrict	$O(sort(N_f))$
bdd_apply	$O(\operatorname{sort}(N_f \cdot N_g))$
bdd_equal	?

$$f\leftrightarrow g\equiv \top$$

$$f \leftrightarrow g \equiv \top$$

$$\underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathsf{Apply}} + \underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathsf{Reduce}} + \underbrace{O(1))}_{\mathsf{check is }\top} = O(\mathsf{sort}(\mathit{N}^2))$$

Theorem (Bryant '86)

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

Trivial cases: $f \not\equiv g$ if there is a mismatch in

•	$N_f eq N_g$	Number of nodes	<i>O</i> (1) I/Os
•	$L_f eq L_g$	Number of levels	<i>O</i> (1) I/Os
•	$N_{f,i} eq N_{g,i}$	Number of nodes on a level	O(L/B) I/Os
•	$L_{f,i} eq L_{g,i}$	Label of an <i>i</i> th level	O(L/B) I/Os

Theorem (Bryant '86)

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

IsIsomorphic(f, g)

- Check whether root v_f of f and root v_g of g have a local violation.
- Check $low(v_f) \sim low(v_g)$ and $high(v_f) \sim high(v_g)$ "recursively".

Return false on first violation. If there are no violations then return true.

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

IsIsomorphic(f, g)

- Check whether root v_f of f and root v_g of g have a local violation.
- Check $low(v_f) \sim low(v_g)$ and $high(v_f) \sim high(v_g)$ "recursively".

Return false on first violation. If there are no violations then return true.

$$\underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathtt{Apply'}} + \underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathtt{Reduce}} + \underbrace{O(1))}_{\mathtt{check is }\top} = O(\mathsf{sort}(\mathit{N}^2))$$

Theorem (Bryant '86)

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

Return false if more than $N_{f,i} = N_{g,i}$ pairs of nodes are checked on level i.

$$\underbrace{O(\mathsf{sort}(\Sigma_i \ \mathsf{N}_{f,i}))}_{\mathsf{Apply''}} = O(\mathsf{sort}(\mathsf{N}))$$

Observation

Each level output by the Reduce algorithm has the following properties:

Observation

Each level output by the Reduce algorithm has the following properties:

Observation

Each level output by the Reduce algorithm has the following properties:

Observation

Each level output by the Reduce algorithm has the following properties:

■ Nodes on level *i* have their identifiers *consecutively* numbered.

Observation

Each level output by the Reduce algorithm has the following properties:

■ Nodes on level *i* have their identifiers *consecutively* numbered.

Observation

Each level output by the Reduce algorithm has the following properties:

- Nodes on level *i* have their identifiers *consecutively* numbered.
- Nodes on level *i* are output sorted by their children.

Theorem

If G_f and G_g are outputs of Reduce.

 $G_f \sim G_g \iff For \ all \ i \in [0; N_f) \ the \ node \ G_f[i] \ matches \ G_g[i] \ numerically.$

Proof.

⇐ : Must describe the exact same graph.

 \Rightarrow : Strong induction on BDD levels bottom-up.

Theorem

If G_f and G_g are outputs of Reduce.

 $G_f \sim G_g \iff For \ all \ i \in [0; N_f) \ the \ node \ G_f[i] \ matches \ G_g[i] \ numerically.$

Proof.

← : Must describe the exact same graph.

 \Rightarrow : Strong induction on BDD levels bottom-up.

Corollary

If G_f and G_g are outputs of Reduce then $f \equiv g$ is computable using $2 \cdot N/B$ I/Os.

$$\begin{array}{c|c} & \text{Algorithm} & \text{Time (s)} \\ \hline f \leftrightarrow g \equiv \top & 0.38 \\ \hline \end{array}$$

Checking the (EPFL Benchmark) voter circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Algorithm Time (s)
$$f \leftrightarrow g \equiv \top \quad 0.38$$

$$O(\operatorname{sort}(N)) \quad 0.058$$

Checking the (EPFL Benchmark) voter circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Algorithm	Time (s)
$f\leftrightarrow g\equiv op$	0.38
O(sort(N))	0.058
2N/B	0.006

Checking the (EPFL Benchmark) voter circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).

Steffan Christ Sølvsten

■ soelvsten@cs.au.dk

ssoelvsten.github.io

Adiar

github.com/ssoelvsten/adiar

ssoelvsten.github.io/adiar

Algorithm	Depth-First	Time-Forwared
bdd_pathcount	$O(N_f)$	$O(\operatorname{sort}(N_f))$
bdd_not	$O(N_f)$	$2N_f/B$
bdd_restrict	$O(N_f)$	$O(\operatorname{sort}(N_f))$
bdd_apply	$O(N_f N_g)$	$O(\operatorname{sort}(N_f N_g))$
bdd_equal	O(1)	2 N /B