Real Estate Price Prediction

```
import numpy as np
In [1]:
         import pandas as pd
         from matplotlib import pyplot as plt
         %matplotlib inline
         import matplotlib
         matplotlib.rcParams['figure.figsize']=(20,10)
         df1=pd.read_csv(r"C:\Users\maram\Downloads\Bengaluru_House_Data.csv")
In [2]:
         df1.head(2)
                          availability
Out[2]:
               area_type
                                         location
                                                       size
                                                             society total_sqft bath balcony
                                                                                               price
             Super built-
                                        Electronic
         0
                             19-Dec
                                                                          1056
                                                     2 BHK
                                                             Coomee
                                                                                 2.0
                                                                                          1.0
                                                                                               39.07
                 up Area
                                      City Phase II
                            Ready To
                                           Chikka
         1
               Plot Area
                                                            Theanmp
                                                                          2600
                                                                                 5.0
                                                                                          3.0 120.00
                               Move
                                         Tirupathi
                                                   Bedroom
         df1.shape
In [3]:
         (13320, 9)
Out[3]:
         df1.groupby('area_type')['area_type'].agg('count')
In [4]:
         area_type
Out[4]:
         Built-up Area
                                   2418
         Carpet Area
                                     87
         Plot Area
                                   2025
         Super built-up Area
                                   8790
         Name: area_type, dtype: int64
In [5]:
         #df1['area_type'].value_counts()
         df1.columns.values
In [6]:
         array(['area_type', 'availability', 'location', 'size', 'society',
Out[6]:
                 'total_sqft', 'bath', 'balcony', 'price'], dtype=object)
         df1.drop(['area_type','availability','society','balcony'],axis=1,inplace=True)
In [7]:
         df1.head(3)
In [8]:
Out[8]:
                       location
                                      size total_sqft bath
                                                            price
         0 Electronic City Phase II
                                    2 BHK
                                               1056
                                                       2.0
                                                            39.07
         1
                 Chikka Tirupathi 4 Bedroom
                                               2600
                                                       5.0
                                                           120.00
         2
                      Uttarahalli
                                    3 BHK
                                               1440
                                                            62.00
                                                       2.0
         df1.isnull().sum()
In [9]:
```

```
location
                         1
Out[9]:
          size
                         16
          total_sqft
                          0
          bath
                         73
                          0
          price
          dtype: int64
In [10]: df1.dropna(inplace=True)
In [11]: df1.isnull().sum()
          location
                         a
Out[11]:
          size
          total_sqft
                         0
          bath
                         0
          price
          dtype: int64
In [12]: df1['size'].unique()
          array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroom',
Out[12]:
                  '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
                  '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK', '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
                  '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
                  '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)
          df1['bhk']=df1['size'].apply(lambda x :int(x.split(' ')[0]))
In [13]:
          # The lambda function splits each element (which is assumed to be a string) by a space
In [14]:
          df1['bhk'].unique()
          array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12,
Out[14]:
                 13, 18], dtype=int64)
          df1.head()
In [15]:
Out[15]:
                        location
                                      size total_sqft bath
                                                            price bhk
          0 Electronic City Phase II
                                                            39.07
                                     2 BHK
                                                1056
                                                       2.0
                                                                     2
          1
                  Chikka Tirupathi 4 Bedroom
                                                2600
                                                       5.0 120.00
                                                                     4
          2
                       Uttarahalli
                                     3 BHK
                                                       2.0 62.00
                                                1440
                                                                     3
          3
                Lingadheeranahalli
                                     3 BHK
                                                1521
                                                       3.0
                                                            95.00
                                                                     3
          4
                        Kothanur
                                     2 BHK
                                                1200
                                                       2.0
                                                            51.00
                                                                     2
In [16]: #df1['bhk1'] = df1['size'].str.replace(r'\D', '', regex=True)
In [17]: #df1['bhk1'].unique()
In [18]: df1[df1['bhk']>20]
```

```
Out[18]:
                             location
                                            size total sqft bath price bhk
          1718 2Electronic City Phase II
                                                      8000
                                                            27.0 230.0
                                          27 BHK
                                                                         27
          4684
                          Munnekollal 43 Bedroom
                                                      2400
                                                            40.0 660.0
                                                                         43
In [19]:
          # you can not have 43 bedrooms while u have total sqft = 2400
          df1.total_sqft.unique()
In [20]:
          array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'],
Out[20]:
                 dtype=object)
          def is float(x):
In [21]:
               try: #Im trying to convert x to float
                   float(x)
               except: #if its on form of interval or any return false
                   return False
               return True
In [22]:
          df1[~df1['total_sqft'].apply(is_float)].head(10)
Out[22]:
                        location
                                       size
                                               total sqft bath
                                                                  price bhk
           30
                       Yelahanka
                                     4 BHK
                                              2100 - 2850
                                                           4.0 186.000
          122
                         Hebbal
                                     4 BHK
                                              3067 - 8156
                                                               477.000
          137 8th Phase JP Nagar
                                                                          2
                                     2 BHK
                                              1042 - 1105
                                                           2.0
                                                                 54.005
          165
                        Sarjapur
                                     2 BHK
                                              1145 - 1340
                                                           2.0
                                                                43.490
          188
                       KR Puram
                                     2 BHK
                                              1015 - 1540
                                                           2.0
                                                                56.800
                                                                          2
          410
                                     1 BHK 34.46Sq. Meter
                                                                 18.500
                         Kengeri
                                                            1.0
                    Hennur Road
                                                                          2
          549
                                     2 BHK
                                              1195 - 1440
                                                           2.0
                                                                 63.770
          648
                         Arekere 9 Bedroom
                                               4125Perch
                                                           9.0
                                                               265.000
          661
                       Yelahanka
                                     2 BHK
                                              1120 - 1145
                                                                          2
                                                           2.0
                                                                 48.130
          672
                     Bettahalsoor 4 Bedroom
                                              3090 - 5002
                                                           4.0 445.000
In [23]:
          def tokens_sqft_to_num(x):
               tokens=x.split('-')
               if len(tokens)==2:
                   return (float(tokens[0])+float(tokens[1])/2)
               try:
                   return float(x)
              except:
                   return None
          tokens_sqft_to_num('2011')
In [24]:
          2011.0
Out[24]:
          tokens sqft to num('235 - 243')
In [25]:
```

```
356.5
Out[25]:
           df2=df1.copy()
In [26]:
In [27]:
           df2['total_sqft']=df1['total_sqft'].apply(tokens_sqft_to_num)
           df2.head()
In [28]:
Out[28]:
                          location
                                               total_sqft bath
                                                                  price bhk
              Electronic City Phase II
                                        2 BHK
                                                  1056.0
                                                            2.0
                                                                 39.07
                                                                           2
           1
                    Chikka Tirupathi 4 Bedroom
                                                  2600.0
                                                            5.0
                                                                120.00
           2
                                        3 BHK
                         Uttarahalli
                                                  1440.0
                                                            2.0
                                                                 62.00
                                                                           3
           3
                                                  1521.0
                 Lingadheeranahalli
                                        3 BHK
                                                                 95.00
```

1200.0

2.0

51.00

Feature Engineering

Kothanur

2 BHK

4

```
In [29]:
          df3=df2.copy()
           df3['price_per_sqft']=df3['price']*100000/df3['total_sqft']
In [30]:
           df3.head(3)
Out[30]:
                         location
                                         size total_sqft bath
                                                                price bhk price_per_sqft
              Electronic City Phase II
                                       2 BHK
                                                 1056.0
                                                          2.0
                                                                39.07
                                                                              3699.810606
           1
                   Chikka Tirupathi
                                                 2600.0
                                                                              4615.384615
                                  4 Bedroom
                                                          5.0
                                                               120.00
          2
                        Uttarahalli
                                       3 BHK
                                                 1440.0
                                                          2.0
                                                                62.00
                                                                              4305.55556
          len(df3.location.unique())
In [31]:
          1304
Out[31]:
```

Dimensionality reduction

```
In [32]: df3.location=df3.location.apply(lambda x:x.strip())
In [33]: location_stats=df3.groupby('location')['location'].agg('count').sort_values(ascending=location_stats.head(10))
```

```
location
Out[33]:
         Whitefield
                                    535
         Sarjapur Road
                                    392
         Electronic City
                                    304
         Kanakpura Road
                                    266
         Thanisandra
                                    236
         Yelahanka
                                    210
         Uttarahalli
                                    186
         Hebbal
                                    176
         Marathahalli
                                    175
         Raja Rajeshwari Nagar
                                    171
         Name: location, dtype: int64
         len(location_stats[location_stats<=10])</pre>
In [34]:
         1052
Out[34]:
         location_stats_less_than_10=location_stats[location_stats<=10]</pre>
In [35]:
          location_stats_less_than_10
         location
Out[35]:
         Basapura
                                    10
         1st Block Koramangala
                                    10
         Gunjur Palya
                                    10
         Kalkere
                                    10
         Sector 1 HSR Layout
                                    10
                                    . .
         1 Giri Nagar
                                     1
         Kanakapura Road,
                                     1
         Kanakapura main Road
                                     1
         Karnataka Shabarimala
                                     1
         whitefiled
         Name: location, Length: 1052, dtype: int64
         len(df3.location.unique())
In [36]:
         1293
Out[36]:
          df3.location=df3.location.apply(lambda x: 'other'if x in location_stats_less_than_10 e
In [37]:
          len(df3.location.unique())
Out[37]:
```

Outlier detuction/Removal

Out[39]:		location	size	total_sqft	bath	price	bhk	price_per_sqft
	9	other	6 Bedroom	1020.0	6.0	370.0	6	36274.509804
	45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	33333.333333
	58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	10660.980810
	68	Devarachikkanahalli	8 Bedroom	1350.0	7.0	85.0	8	6296.296296
	70	other	3 Bedroom	500.0	3.0	100.0	3	20000.000000

In [40]: df3.shape

Out[40]: (13246, 7)

In [41]: df4=df3[~(df3.total_sqft/df3.bhk<300)]</pre>

In [42]: df4.shape

Out[42]: (12502, 7)

In [43]: df4

Out[43]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000
•••							
13315	Whitefield	5 Bedroom	3453.0	4.0	231.00	5	6689.834926
13316	other	4 BHK	3600.0	5.0	400.00	4	11111.111111
13317	Raja Rajeshwari Nagar	2 BHK	1141.0	2.0	60.00	2	5258.545136
13318	Padmanabhanagar	4 BHK	4689.0	4.0	488.00	4	10407.336319
13319	Doddathoguru	1 BHK	550.0	1.0	17.00	1	3090.909091

12502 rows × 7 columns

In [44]: df4.price_per_sqft.describe()

```
12456.000000
          count
Out[44]:
                     6290.299983
          mean
          std
                     4175.619211
          min
                      267.829813
          25%
                     4186.725844
          50%
                     5281.690141
          75%
                     6904.652015
                   176470.588235
          max
          Name: price_per_sqft, dtype: float64
```

Check above data points. We have 6 bhk apartment with 1020 sqft. Another one is 8 bhk and total sqft is 600. These are clear data errors that can be removed safely

```
In [45]: def remove_pps_outliers(df):
    df_out = pd.DataFrame()
    for key, subdf in df.groupby('location'):
        m = np.mean(subdf.price_per_sqft)
        st = np.std(subdf.price_per_sqft)
        reduced_df = subdf[(subdf.price_per_sqft>(m-st)) & (subdf.price_per_sqft<=(m+s)
        df_out = pd.concat([df_out,reduced_df],ignore_index=True)
        return df_out
    df5 = remove_pps_outliers(df4)
    df5.shape</pre>
Out[45]:
```

Let's check if for a given location how does the 2 BHK and 3 BHK property prices look like

```
In [46]:
    def plot_scatter_chart(df,location):
        bhk2 = df[(df.location==location) & (df.bhk==2)]
        bhk3 = df[(df.location==location) & (df.bhk==3)]
        matplotlib.rcParams['figure.figsize'] = (15,10)
        plt.scatter(bhk2.total_sqft,bhk2.price,color='blue',label='2 BHK', s=50)
        plt.scatter(bhk3.total_sqft,bhk3.price,marker='+', color='green',label='3 BHK', s=
        plt.xlabel("Total Square Feet Area")
        plt.ylabel("Price (Lakh Indian Rupees)")
        plt.title(location)
        plt.legend()

plot_scatter_chart(df5,"Rajaji Nagar")
```



```
In [47]:
    def plot_scatter_chart(df,location):
        bhk2 = df[(df.location==location) & (df.bhk==2)]
        bhk3 = df[(df.location==location) & (df.bhk==3)]
        matplotlib.rcParams['figure.figsize'] = (15,10)
        plt.scatter(bhk2.total_sqft,bhk2.price,color='blue',label='2 BHK', s=50)
        plt.scatter(bhk3.total_sqft,bhk3.price,marker='+', color='green',label='3 BHK', s=
        plt.xlabel("Total Square Feet Area")
        plt.ylabel("Price (Lakh Indian Rupees)")
        plt.title(location)
        plt.legend()

plot_scatter_chart(df5,"Hebbal")
```

Hebbal


```
def remove_bhk_outliers(df):
In [48]:
              exclude_indices = np.array([])
              for location, location_df in df.groupby('location'):
                  bhk_stats = {}
                  for bhk, bhk_df in location_df.groupby('bhk'):
                      bhk_stats[bhk] = {
                          'mean': np.mean(bhk_df.price_per_sqft),
                          'std': np.std(bhk_df.price_per_sqft),
                          'count': bhk_df.shape[0]
                  for bhk, bhk_df in location_df.groupby('bhk'):
                      stats = bhk_stats.get(bhk-1)
                      if stats and stats['count']>5:
                          exclude_indices = np.append(exclude_indices, bhk_df[bhk_df.price_per_s
              return df.drop(exclude_indices,axis='index')
         df6 = remove bhk outliers(df5)
         # df8 = df7.copy()
         df6.shape
         (7326, 7)
Out[48]:
         plot_scatter_chart(df6, "Rajaji Nagar")
In [49]:
```


1800

Total Square Feet Area

2000

2200

2400

2600

1600


```
In [51]: import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df6.price_per_sqft,rwidth=0.8)
```

1200

1400

```
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")
```

```
Out[51]: Text(0, 0.5, 'Count')
```



```
In [52]: df6.bath.unique()
```

Out[52]: array([4., 3., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

```
In [53]: plt.hist(df6.bath,rwidth=0.8)
   plt.xlabel("Number of bathrooms")
   plt.ylabel("Count")
```

Out[53]: Text(0, 0.5, 'Count')


```
In [54]: df6[df6.bath>10]
```

Out[54]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
5273	Neeladri Nagar	10 BHK	4000.0	12.0	160.0	10	4000.000000
8476	other	10 BHK	12000.0	12.0	525.0	10	4375.000000
8565	other	16 BHK	10000.0	16.0	550.0	16	5500.000000
9298	other	11 BHK	6000.0	12.0	150.0	11	2500.000000
9629	other	13 BHK	5425.0	13.0	275.0	13	5069.124424

It is unusual to have 2 more bathrooms than number of bedrooms in a home

11338.0

In [55]:	df6[c	lf6.bath>df6.	bhk+2]					
Out[55]:		location	size	total_sqft	bath	price	bhk	price_per_sqft
	1625	Chikkabanavar	4 Bedroom	2460.0	7.0	80.0	4	3252.032520
	5234	Nagasandra	4 Bedroom	7000.0	8.0	450.0	4	6428.571429
	6705	Thanisandra	3 BHK	1806.0	6.0	116.0	3	6423.034330

Again the business manager has a conversation with you (i.e. a data scientist) that if you have 4 bedroom home and even if you have bathroom in all 4 rooms plus one guest bathroom, you will have total bath = total bed + 1 max. Anything above that is an outlier or a data error and can be removed

9.0 1000.0

8819.897689

```
In [56]: df7 = df6[df6.bath<df6.bhk+2]
    df7.shape

Out[56]: (7252, 7)</pre>
```

Hot encoding

8401

other

6 BHK

```
In [57]:
          df8 = df7.drop(['size','price_per_sqft'],axis='columns')
          df8.head(3)
Out[57]:
                      location total_sqft bath price bhk
          0 1st Block Jayanagar
                                  2850.0
                                          4.0 428.0
                                                       4
          1 1st Block Jayanagar
                                  1630.0
                                          3.0 194.0
                                                       3
          2 1st Block Jayanagar
                                  1875.0
                                          2.0 235.0
                                                       3
          dummies = pd.get_dummies(df8.location)
In [58]:
          dummies.head(3)
```

Out[58]:	1st Block Jayanagar	JP		2nd Stage Nagarbhavi	Hbr	Phase JP	Phase JP	7th Phase JP Nagar	Phase JP	JP	•••	Vishves
	0 1	0	0	0	0	0	0	0	0	0		
	1 1	0	0	0	0	0	0	0	0	0		
	2 1	0	0	0	0	0	0	0	0	0		

3 rows × 242 columns

n [59]:	<pre>df11 = pd.concat([df8,dummies.drop('other',axis='columns')],axis='columns') df11.head()</pre>

	location	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	•••	Vijaya
0	1st Block Jayanagar	2850.0	4.0	428.0	4	1	0	0	0	0		
1	1st Block Jayanagar	1630.0	3.0	194.0	3	1	0	0	0	0		
2	1st Block Jayanagar	1875.0	2.0	235.0	3	1	0	0	0	0		
3	1st Block Jayanagar	1200.0	2.0	130.0	3	1	0	0	0	0		
4	1st Block Jayanagar	1235.0	2.0	148.0	2	1	0	0	0	0		

5 rows × 246 columns

```
In [60]: df12 = df11.drop('location',axis='columns')
df12.head(2)
```

Out[60]:		total_sqft	bath	price	bhk	1st Block Jayanagar		2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	•••	Vijayana
	0	2850.0	4.0	428.0	4	1	0	0	0	0	0		
	1	1630.0	3.0	194.0	3	1	0	0	0	0	0		

2 rows × 245 columns

→

```
df12.shape
In [61]:
           (7252, 245)
Out[61]:
           X = df12.drop(['price'],axis='columns')
In [62]:
           X.head(3)
                                                          2nd
                                                                                5th
                                                                                       5th
                                                                                               6th
Out[62]:
                                                  1st
                                                                                            Phase
                                     1st Block
                                               Phase
                                                        Phase
                                                                 2nd Stage
                                                                              Block
                                                                                    Phase
              total_sqft bath bhk
                                                                                                       Vijayana
                                    Jayanagar
                                                   JΡ
                                                       Judicial
                                                                Nagarbhavi
                                                                                        JP
                                                                                                JP
                                                                               Hbr
                                                        Layout
                                                                                            Nagar
                                               Nagar
                                                                             Layout Nagar
           0
                 2850.0
                          4.0
                                 4
                                            1
                                                    0
                                                             0
                                                                         0
                                                                                 0
                                                                                         0
                                                                                                 0
                 1630.0
                          3.0
                                 3
                                            1
                                                    0
                                                             0
                                                                                 0
                                                                                         0
                                                                                                 0
           2
                 1875.0
                          2.0
                                 3
                                            1
                                                    0
                                                             0
                                                                                 0
                                                                                         0
                                                                                                 0
          3 rows × 244 columns
```

```
y = df12.price
In [63]:
         y.head(3)
              428.0
Out[63]:
              194.0
         2
              235.0
         Name: price, dtype: float64
In [64]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=10)
        from sklearn.linear_model import LinearRegression
In [65]:
         lr_clf = LinearRegression()
         lr clf.fit(X train,y train)
         lr_clf.score(X_test,y_test)
         0.8515492485425586
Out[65]:
```

Use K Fold cross validation to measure accuracy of our LinearRegression model

```
In [66]: from sklearn.model_selection import ShuffleSplit
    from sklearn.model_selection import cross_val_score
        cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
        cross_val_score(LinearRegression(), X, y, cv=cv)

Out[66]: array([0.83419256, 0.84066871, 0.85637292, 0.84326517, 0.84613103])

In [67]: from sklearn.model_selection import GridSearchCV
        from sklearn.linear_model import Lasso
        from sklearn.tree import DecisionTreeRegressor
```

```
def find best model using gridsearchcv(X, y):
    algos = {
        'linear_regression': {
            'model': LinearRegression(),
            'params': {
                'fit_intercept': [True, False],
                'n_jobs': [-1] # If you want to specify other parameters for LinearRe
        },
        'lasso': {
            'model': Lasso(),
            'params': {
                'alpha': [1, 2],
                'selection': ['random', 'cyclic']
        },
        'decision tree': {
            'model': DecisionTreeRegressor(),
            'params': {
                'criterion': ['mse', 'friedman_mse'],
                'splitter': ['best', 'random']
        }
    }
    scores = []
    cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for algo_name, config in algos.items():
        gs = GridSearchCV(config['model'], config['params'], cv=cv, return_train_score
        gs.fit(X, y)
        scores.append({
            'model': algo_name,
            'best_score': gs.best_score_,
            'best_params': gs.best_params_
        })
    return pd.DataFrame(scores, columns=['model', 'best_score', 'best_params'])
find best model using gridsearchcv(X, y)
```

Out[67]:

In [70]:

In [71]:

```
C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py:37
8: FitFailedWarning:
10 fits failed out of a total of 20.
The score on these train-test partitions for these parameters will be set to nan.
If these failures are not expected, you can try to debug them by setting error score
='raise'.
Below are more details about the failures:
10 fits failed with the following error:
Traceback (most recent call last):
  File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection\_validatio
n.py", line 686, in _fit_and_score
    estimator.fit(X_train, y_train, **fit_params)
  File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\tree\_classes.py", line 12
47, in fit
    super().fit(
  File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\tree\_classes.py", line 17
7, in fit
    self._validate_params()
  File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py", line 581, in va
lidate_params
   validate_parameter_constraints(
  File "C:\ProgramData\anaconda3\lib\site-packages\sklearn\utils\_param_validation.p
y", line 97, in validate_parameter_constraints
    raise InvalidParameterError(
sklearn.utils. param validation.InvalidParameterError: The 'criterion' parameter of D
ecisionTreeRegressor must be a str among {'poisson', 'squared_error', 'absolute_erro
r', 'friedman_mse'}. Got 'mse' instead.
  warnings.warn(some_fits_failed_message, FitFailedWarning)
C:\ProgramData\anaconda3\lib\site-packages\sklearn\model_selection\_search.py:952: Us
erWarning: One or more of the test scores are non-finite: [
                                                                     nan
                                                                                nan 0.68
251641 0.62267566]
 warnings.warn(
          model best score
                                                  best params
0 linear_regression
                   0.844581
                                   {'fit_intercept': False, 'n_jobs': -1}
1
            lasso
                   0.717742
                                    {'alpha': 1, 'selection': 'random'}
2
                   0.682516 {'criterion': 'friedman_mse', 'splitter': 'best'}
     decision_tree
def predict price(location, sqft, bath, bhk):
    loc_index = np.where(X.columns==location)[0][0]
    x = np.zeros(len(X.columns))
    x[0] = sqft
    x[1] = bath
    x[2] = bhk
    if loc index >= 0:
        x[loc_index] = 1
```

```
localhost:8888/nbconvert/html/Real Estate Price Prediction.ipynb?download=false
```

return lr_clf.predict([x])[0]

predict_price('1st Phase JP Nagar',1000, 2, 2)

```
C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X does n
         ot have valid feature names, but LinearRegression was fitted with feature names
           warnings.warn(
         84.22924041793821
Out[71]:
In [72]: predict_price('1st Phase JP Nagar',1000, 3, 3)
         C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X does n
         ot have valid feature names, but LinearRegression was fitted with feature names
           warnings.warn(
         87.41872656162407
Out[72]:
In [73]: predict_price('Indira Nagar',1000, 2, 2)
         C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X does n
         ot have valid feature names, but LinearRegression was fitted with feature names
           warnings.warn(
         181.82117905122465
Out[73]:
In [74]: predict_price('Indira Nagar',1000, 3, 3)
         C:\ProgramData\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X does n
         ot have valid feature names, but LinearRegression was fitted with feature names
           warnings.warn(
         185.01066519491047
Out[74]:
```

Export the tested model to a pickle file

```
In [75]: import pickle
with open('banglore_home_prices_model.pickle','wb') as f:
    pickle.dump(lr_clf,f)
```

Export location and column information to a file that will be useful later on in our prediction application

```
import json
columns = {
    'data_columns' : [col.lower() for col in X.columns]
}
with open("columns.json","w") as f:
    f.write(json.dumps(columns))
```