

Data Provided: useful definitions and equations at end of paper (after Q4)

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Spring Semester 2010 - 2011 (2 hours)

ANALOGUE CIRCUITS 1

Answer **THREE** questions. Solutions will be considered in the order in which they are presented in the answer book and **no marks will be awarded for an attempt at a fourth question.** Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

- 1 The circuit of figure 1a is the power supply circuit for a 100W valve guitar amplifier.
 - (i) What is the common name given to this form of full wave rectifier? {1}
 - (ii) Which diodes will conduct at the peak of the half cycle that makes nodeB positive with respect to node A? {2}

Figure 1a

- (iii) What is the largest reverse voltage that each of D_1 to D_4 have to withstand? {3}
- (iv) For the conditions $C = 68 \mu F$ and I_L at full power output (100 W) = 350 mA, estimate
 - (a) The dc component of V_Q .
 - (b) The peak to peak ripple component of V_O .

State any assumptions or approximations used in arriving at your answers. {5}

The zener diode regulator circuit of figure 1b is to be used to derive a 200 V supply from figure 1a for the input and driver stages of the amplifier which between them draw a constant current of 5 mA.

- (v) If I_Z must always be > 1 mA, find the largest value of R that can be used in figure 1b? {3}
- (vi) What ripple voltage would you expect to measure at the output of the regulator if $r_Z = 25 \Omega$ and the amplifier is operating under the conditions of part (iv)? {2}

(vii) What is the power dissipation in R and D_Z under normal operating conditions? $\{4\}$

State any assumptions or approximations used in arriving at your answers to (v), (vi) and (vii).

- 2 (a) (i) For the circuit of figure 2a, find the value of I that will put the diode on the point of conduction. (ie, $V_D = 0.7 \text{ V}$ and $I_D = 0$) {2}
 - (ii) Find I_D and V_D for I = +5 mA and I = -5 mA. $\{4\}$
 - (iii) With the help of the results of parts 2 (a) (i) and (ii) or by other means, sketch a graph of I_D as a function of I for I = +5 mA to I = -5 mA. Label all the main features of your graph. $\{4\}$

- (b) The diodes used in figure 2b have a forward voltage drop of zero.
 - (i) For the circuit of figure 2b sketch the V_O you would expect to observe in response to the input shown. Calculate the voltage reached by V_O at the end of the pulse and label rising and

Figure 2b

- the pulse and label rising and falling time constants. {4}
- (ii) Sketch the form of I_C that you would expect to measure and calculate the positive and negative peak values of I_C . {3}
- (iii) An 18 k Ω resistor is now placed in parallel with C. Calculate the new value of V_O reached at the end of the input pulse. $\{3\}$
- 3 (a) Figure 3a shows a BJT switching circuit. The switch is controlled by V_I which is 10 V for an "on" drive and 0 V for an "off" drive. The "off" state I_C is approximately zero, $V_{CE(ON)}$ is 0.2 V and the "on" state V_{BE} is 0.7 V.

- (ii) What is the "on" state power dissipation in the BJT? {2}
- (iii) If h_{FE} for the BJT is 30, find a suitable value of R_B . {3}
- (iv) What are the values of I_C , I_L and I_S immediately after switch off? $\{3\}$
- (v) What is the value of V_{CE} immediately after switch off? {2}
- (b) (i) Work out suitable component values for the circuit of figure 3b in order to achieve $I_C = 1$ mA, $V_E = 4$ V and $V_C = 14$ V. Assume that $V_{BE} = 0.7$ V and that $h_{FE} = \beta = 200$ for T_1 . {5}
 - (ii) Redraw the circuit to include the coupling and decoupling capacitors that would be necessary to achieve a high voltage gain. {3}

Figure 3b

EEE 103

- 4 (a) In the amplifier circuit of figure 4a, V_1 is a voltage source and V_O is the resulting output voltage.
 - (i) Which of the terms "inverting", "non-inverting", "buffer" and "subtractor" correctly describe the circuit of figure 1? {*I*}
 - (ii) Write down the gain, V_O/V_1 of the amplifier and suggest resistor values that would be suitable to achieve a gain magnitude of 10 using a typical op-amp. $\{4\}$

Figure 4a

- (iii) By redrawing the circuit and labelling it appropriately, identify the virtual earth (or virtual ground) node in the circuit and explain briefly how the virtual earth is created and maintained. {4}
- (iv) What is the input resistance of the circuit? You should briefly justify your answer. {2}
- (b) The circuit of figure 4b is required to take an input signal of $V_1 = 1.5 \sin \omega t$ and condition it such that at V_O it is of the form $V_O = 2.5 + 2.5 \sin \omega t$

If V_2 is a dc voltage and $V_3 = 0$ V, find values of R_F and V_2 that will give the required output. $\{9\}$

4RCT/DAS END OF PAPER

You may find some of the following relationships and definitions useful:

$$g_m = \frac{eI_C}{kT}$$
 $r_{be} = \frac{\beta}{g_m}$ $h_{FE} = \frac{I_C}{I_B}$ $\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{i_c}{i_b}$ $\tau = RC$

$$I = C \frac{dV}{dt}$$
 $\omega = 2\pi f$ $V(t) = (V_{START} - V_{FINISH}) \exp\left(\frac{-t}{\tau}\right) + V_{FINISH}$

$$V_{AVE} = \frac{V_P}{\pi}$$
 for a half wave rectified sinusoid $V_{rms} = \frac{V_P}{\sqrt{2}}$ for a sinusoid

$$v_o = A_v (v^+ - v^-)$$
 $\frac{kT}{e} = 0.026 V$ $V = IR$

unit multipliers:
$$p = x10^{-12}$$
, $n = x10^{-9}$, $\mu = x10^{-6}$, $m = x10^{-3}$, $k = x10^{3}$, $M = x10^{6}$ $G = x10^{9}$

All the symbols have their usual meanings

EEE 103 3