CMPSC 360 Fall 2024

Discrete Mathematics for Computer Science Mahfuza Farooque Worksheet 5 Solutions

- 1. Proof or disprove the following statements.
 - (a) For $a, b \in \mathbb{R}$, if $a^2 = b^2$, then a = b.
 - (b) $n^2 + n + 41$ is prime for $n \in \mathbb{Z}$.

Answer:

- (a) We can find a counterexample for this statement: a=1,b=-1. In this example, $a^2=b^2=1$, but $a\neq b$. \square
- (b) We can find a counterexample for this statement. Since $n^2 + n + 41 = (n+1)n + 41$, we can try to construct a perfect square, where n = 40. Then, $(n+1)n + 41 = (40+1) \times 40 + 41 = 41 \times 40 + 41 = 41 \times 41$, which contradicts the statement that $n^2 + n + 41$ is prime. \Box
- 2. Prove by contrapositive that if a number is divisible by 4, then its last two digits in base 10 is divisible by 4.

Proof:

The contrapositive statement is: If a number's last two digits in base 10 is not divisible by 4, then the number itself is not divisible by 4.

Assume that we have $n = 100a + b, a, b \in \mathbb{Z} \land b \in [0, 100)$, where $b \equiv k \pmod{4}, k \neq 0$. Since $100a = 25(4a) \equiv 0 \pmod{4}$, and by the compatibility of addition in modular arithmetic we would have $100a + b \equiv 0 + k \pmod{4} \equiv k \pmod{4}$. Since $k \neq 0$, we can conclude that $4 \nmid (100a + b)$, or $4 \nmid n$.

Thus we proved the contrapositive statement, and hence proving the original statement. \Box

3. Suppose $q \in \mathbb{Z}$. Prove by contrapositive that if 6q + 7 is even, then q is odd.

Proof:

The contrapositive statement is: If q is even, then 6q + 7 is odd.

Assume that q is even. By definition, q = 2n where $n \in \mathbb{Z}$.

Consider the expression 6q + 7:

$$6q + 7 = 6(2n) + 7 = 12n + 7 = 12n + 6 + 1 = 2(6n + 3) + 1$$

Since $n \in \mathbb{Z}$, we have $6n + 3 \in \mathbb{Z}$. Hence, by the definition of odd, we have 6q + 7 is odd.

Since we have proven that if q is even, then 6q+7 is odd, by contrapositive, it follows that if 6q+7 is even, then q must be odd. \square

4. For $a, b, c \in \mathbb{R}^+$, prove that if ab = c, then $a \leq \sqrt{c}$ or $b \leq \sqrt{c}$.

Answer:

Suppose a, b, and c are positive real numbers such that ab = c, and suppose $a > \sqrt{c}$ and $b > \sqrt{c}$. By ordering properties of real numbers:

- Since a > 0, we have $b > \sqrt{c} \leftrightarrow ab > a\sqrt{c}$.
- Since $\sqrt{c} > 0$, $a > \sqrt{c} \leftrightarrow a\sqrt{c} > \sqrt{c}$. $\sqrt{c} = c$.

Thus, $ab > a\sqrt{c} > \sqrt{c}.\sqrt{c} = c$, which implies ab > c.

However, ab > c contradicts the assumption that ab = c.

Therefore, if ab = c, then $a \leq \sqrt{c}$ or $b \leq \sqrt{c}$. \square

5. Suppose $n \in \mathbb{Z}$ and $p \in \mathbb{P}$ (i.e., p is a prime number). Prove the statement: if $p \mid n$, then $p \nmid (n+1)$.

Proof:

Let's assume there exists some integer n and prime p such that $p \mid n$ and $p \mid (n+1)$.

By definition of divisibility:

$$p \mid n \to p \cdot r = n, r \in \mathbb{Z} \tag{1}$$

$$p \mid (n+1) \to p \cdot s = n+1, s \in \mathbb{Z}$$
 (2)

Combining Eq. 1 and Eq. 2, we have $p \cdot s = p \cdot r + 1$, which can be derived as $p \cdot (s - r) = 1$.

From the definition of divisibility we can say that $p \mid 1$.

As $p \mid 1$, we have $p \leq 1$. But $p \in \mathbb{P}$ requires p > 1 which leads to contradiction.

Hence, For any integer n and any prime p, if $p \mid n$, then $p \nmid (n+1) \square$