Algorithmique des graphes

David Pichardie

5 Avril 2018

Bilan du CM4

- Fermeture transitive
 - Définition
 - Calcul par parcours de graphe
 - Calcul par multiplication de matrices booléennes
 - Calcul par l'algorithme de Warshall
- Composantes fortement connexes
 - Définitions
 - Algorithme de Kosaraju

complexité en O(S3)

complexité en O(S3)

Peux-ton éviter certains calculs?

complexité en O(S3)

oui (on évite certaines boucles)

complexité en O(S3)

```
WARSHALL(A) =
   A* <- copie(A+Id)
   pour tout k ∈ S
       pour tout i ∈ S
            si A*[i,k] alors
            pour tout j ∈ S
                 si A*[k,j] alors A*[i,j] <- vraie
            renvoie A*</pre>
```

(moins d'écriture)

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour k=0,...,n

Quel lien avec A*?

Correction

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour k=0,...,n

$$A^* = A_n$$

les chemins passent parmi 1,..,n

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour $k=0,\ldots,n$

Que vaut A₀[i,j]?

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour $k=0,\ldots,n$

 $A_0[i,j] = vraie si et seulement si (i,j) est un arc ou i=j.$

Donc $A_0 = A + Id$

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour $k=0,\ldots,n$

Comment exprimer A_k en fonction A_{k-1}?

Correction

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour k=0,...,n

Comment exprimer A_k en fonction A_{k-1}?

• $A_k[i,j] = vraie si A_{k-1}[i,j] = vraie$

- un chemin passe par 1,...,k-1, et donc à fortiori par 1,...,k
- $A_k[i,j] = vraie si A_{k-1}[i,k]=vraie et A_{k-1}[k,j]=vraie$

```
un chemin de i à k passe par 1,...,k-1
```

un chemin de k à j passe par 1,...,k-1

Donc $A_k[i,j] = A_{k-1}[i,j] \| (A_{k-1}[i,k] \&\& A_{k-1}[k,j])$

Supposons S=[1,n] et notons $A_k[i,j]$ le booléen qui vaut vraie si et seulement si il existe un chemin simple de i à j dont les sommets intermédiaires (autres que i et j) sont dans [1,k], pour $k=0,\ldots,n$

Donc

 $A_0=A+Id$

 $A_k[i,j] = A_{k-1}[i,j] || (A_{k-1}[i,k] && A_{k-1}[k,j]) si k>0$

Correction

Un premier Warshall correct:

Correction

Un premier Warshall correct:

Peux-on gommer les indices ?

Correction

Un premier Warshall correct:

Correction

Un premier Warshall correct:

Montrons que A[k][i,j] = A*[i,j] à chaque passage

Correction

Un premier Warshall correct:

```
quand a eu lieu la
                          dernière modification?
WARSHALL(A) =
  A <- matrice(n x n x n)
                                          quand a eu lieu la
  A* <- copie(A+Id)
                                        dernière modification?
  A[0] <- copie(A+Id)
  pour tout k \in S
                                                    quand a eu lieu la
     pour tout i \in S
                                                 dernière modification?
        pour tout j \in S
           A*[i,j] <- A*[i,j] | (A*[i,k] && A*[k,j])
           A[k][i,j] \leftarrow A[k-1][i,j] \mid (A[k-1][i,k] && A[k-1][k,j])
  renvoie A*
```

Correction

Un premier Warshall correct:

```
WARSHALL(A) =  A \leftarrow \text{Matrice}(n \times n \times n)   A^* \leftarrow \text{copie}(A+Id)   A[0] \leftarrow \text{copie}(A+Id)   A[0] \leftarrow \text{copie}(A+Id)   \text{pour tout } k \in S   \text{pour tout } i \in S   \text{pour tout } j \in S   A^*[i,j] \leftarrow A^*[i,j] \times A^
```

Correction

Mais

$$A[k-1][i,k] = A[k][i,k]$$

car les chemins simples de i à k passant par 1,...,k ne passent que par 1,...,k-1.

De même

$$A[k-1][k,j] = A[k][k,j]$$

Correction

Un premier Warshall correct:

```
A[k-1][i,j]
WARSHALL(A) =
 A <- matrice(n x n x n)
 A* <- copie(A+Id)
                                              A[k-1][i,k]
 A[0] <- copie(A+Id)
  pour tout k \in S
                                                        A[k-1][k,j]
     pour tout i \in S
        pour tout j \in S
           A*[i,j] <- A*[i,j] | (A*[i,k] && A*[k,j])
           A[k][i,j] \leftarrow A[k-1][i,j] \mid (A[k-1][i,k] && A[k-1][k,j])
  renvoie A*
                     Donc A[k][i,j]=A*[i][j] ici
```


6

k	arc(s) ajouté(s)
0	
1	
2	
3	
4	
5	

k	arc(s) ajouté(s)	
0		
1	(3,2); (3,6)	
2		
3		
4		
5		
6		

6

k	arc(s) ajouté(s)	
0		
1	(3,2); (3,6)	
2	(1,3)	
3		
4		
5		
5		

k	arc(s) ajouté(s)
0	
1	(3,2); (3,6)
2	(1,3)
3	(2,1); (4,2); (4,1); (4,6); (2,6)
4	
5	
6	

k	arc(s) ajouté(s)
0	
1	(3,2); (3,6)
2	(1,3)
3	(2,1); (4,2); (4,1); (4,6); (2,6)
4	-
5	
6	

k	arc(s) ajouté(s)
0	
1	(3,2); (3,6)
2	(1,3)
3	(2,1); (4,2); (4,1); (4,6); (2,6)
4	-
5	-

6

k	arc(s) ajouté(s)
0	
1	(3,2); (3,6)
2	(1,3)
3	(2,1); (4,2); (4,1); (4,6); (2,6)
4	_
5	<u>-</u>
6	(1,5); (2,5); (3,5)

Composantes fortement connexes

Algorithme de Kosaraju

- parcours en profondeur sur G pour calculer FIN (ordre suffixe)
- 2. calcul de l'inverse G' de G
- parcours en profondeur sur G', mais en itérant la boucle principale par ordre de FIN décroissant
- 4. les composantes fortement connexes sont les arbres de la forêt du 2e parcours

coût global O(A+S)

Question

Comment réduire le coût du calcul de la fermeture transitive grâce aux composantes fortement connexes ?

Fermeture transitive par passage au quotient

1. Soit G=(S,A) un graphe orienté

- coût linéaire O(S+A)
- On calcule sa table de cfc (un numéro de composante pour chaque sommet). On note S_{cfc} l'ensemble des cfc.
- 3. On calcule le graphe quotient $G_q = (S_{cfc}, A_q)$ coût $O(S_{cfc}^3)$
- 4. On calcule la fermeture transitive $G_q^*=(S_{cfc},A_q^*)$ de G_q
- 5. Pour tout $(i,j) \in S^2$, $(i,j) \in A^*$ si et seulement si $(cfc[i],cfc[j]) \in A_q^*$

Calcul de composantes fortement connexes Algorithme de Tarjan

- 1. un seul parcours en profondeur mais en utilisant une pile auxiliaire pour calculer les composantes
- la fonction récursive VISITE renvoie un numéro de sommet
- 3. un peu magique...

Algorithme de Tarjan

Procédure principale

coût global **O**(A+S) mais avec un seul parcours!

```
CFC()=
  date \leftarrow 0
  DEBUT \leftarrow [0, ..., 0]
  P ← Pile_Vide()
  Ncfc \leftarrow 0
  \mathsf{CFC} \leftarrow [0, \ldots, 0]
  pour tout i∈S
     si DEBUT[i]=0 alors TARJAN(i)
  renvoie CFC
                          non VU
```

dates de DEBUT classiques

pile auxiliaire

nombre de cfc

numéro unique de composante pour chaque sommet

Algorithme de Tarjan

Procédure récursive

renvoie min

variable locale

```
TARJAN(i)=
                                 on va tenter de
 date ← date + 1
                                faire diminuer min
 DEBUT[i] ← date
 min ← DEBUT[i]
  Empile(P,i)
  pour tout j∈Adj[i]
    si DEBUT[j]=0 alors min ← MIN(min,TARJAN(j))
    sinon si CFC[j]=0 alors min ← MIN(min,DEBUT[j])
  si min=DEBUT[i] alors
    Ncfc \leftarrow Ncfc + 1
                             si min n'a pas diminué, on
                                  a trouvé une cfc
    répète
      k \leftarrow Depile(P)
      CFC[k] \leftarrow Ncfc
                              les éléments de la cfc sont au
    tant que k<>i
                                 dessus de i dans la pile
```

Algorithme de Tarjan : visualisation

- on numérote les sommets par l'ordre de début de visite dans le parcours en profondeur
- on grise un sommet dont la visite a commencé
- on noircit un sommet dont la visite est terminée
- on utilise des lassos pour marquer les CFC calculées
- à chaque appel de Tarjan(i), on indique sur le sommet i la valeur courante de min et on indique la valeur de la pile P avant l'appel

Tarjan(1)

 $\frac{\text{(vide)}}{P}$

Tarjan(2)

$$\frac{1}{P}$$

Tarjan(3)

Tarjan(4)

Tarjan(4)

Tarjan(3)

Tarjan(2)

Tarjan(5)

Tarjan(6)

Tarjan(7)

Tarjan(7)

Tarjan(8)

Tarjan(8)

Tarjan(7)

Tarjan(6)

Tarjan(5)

Tarjan(2)

Tarjan(9)

Tarjan(9)

Tarjan(2)

Tarjan(1)

 $\frac{\text{(vide)}}{P}$

cf comparaison_tarjan_kosaraju.pdf