Network anatomy and *in vivo* physiology of visual cortical neurons

Davi D. Bock, Wei-Chung Allen Lee, Aaron M. Kerlin, Mark L.

Andermann, Greg Hood, Arthur W. Wetzel, Sergey Yurgenson,

Edward R. Soucy, Hyon Suk Kim, & R. Clay Reid

Summary

- Can we study the relationship between the structure and function of the cortex *in vivo*?
- How?
 - Two-photon calcium imaging
 - Electron microscopy
- Trace neuron network in mice visual cortex
- Where do excitatory neurons transmit to? In what pattern?

Opportunity

- Hypothesized neural patterns of connections shown using physiological data but not in living organisms
- Technology like EM is ideal for characterizing cortical network structure
- Improvement in computer speed and storage allow analysis of huge volume of cells

Challenge

- Incomplete understanding of network structure
- Limiting factors of computer speed and storage capacity

Action

Test stimulus orientation of group of neurons

Use in vivo two-photon calcium imaging

Get 3D TEM images of mice cortex tissue

- Slice up a bunch of tissue into very thin sections (40-45nm thick)
- Take pictures with TEM cameras
- Convert to 3D by stitching together image layers

Action

Categorize groups of cells based on function

 Overlay calcium image with EM image

Trace neurons, noting location of each synapse

connections

Resolution

"The strongest predictor of whether two axons converged on a common target was found by examining how many of their synapses were nearby in space"

Future

- Can link prediction from physiological data to actual anatomy
- More EM image volume will enable more connections to be traced
- Advancements in calcium imaging allow more data to be collected
- = opportunities to understand how neuronal circuits process information