Math 2301

* Properties of relations (continued)

Let R be a relation on a set S.

** $T_{\underline{ranshviry}}$ We say that R is transitive if whenever $(x,y) \in \mathbb{R}$ and $(y,z) \in \mathbb{R}$, we also have $(z,z) \in \mathbb{R}$.

*** Example

Sany set We have a relation R on P(S), where $(A_1B) \in R$ if $A \subseteq B$. If $A \subseteq B$ $\in B \subseteq C$, then $A \subseteq C$

** & Graph

 $S = \{a, b, c\}$. $P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}\}$

Q: [workshop?]
What does the adjacency matrix look like

** Equivalence relations

Let R be a binary relation on a set S.

*** Definition: We say that R is an
equivalence relation if it is reflexive,
symmetric, and transitive.

* Equivalence relation generalise the idea of equality.

*** Examples and non-examples

- R on \mathbb{Z} defined as $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x+y \text{ is even } \}$ $\text{reflexive } \checkmark$ $\text{symmetric } \checkmark$ $\text{transitivity} \checkmark$ $\text{y+z} = 2k \text{ for some } k \in \mathbb{Z}$ $\text{x+z} = 2k+2k-2y} \rightarrow \text{even}$

- R on Z defined as

R = {(x,y) \in Z \times Z \times z + y is odd}

not reflexive !

symmetric \times transitive !!

- R on \mathbb{Z} defined as $R = \frac{1}{2}(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y \text{ is an integer}$ multiple of 173 $\text{symmetric } \times -y = 17 \text{ k}$ $\text{transitive } \times y - z = 17 \text{ l}$ $\Rightarrow x - z = 17 (\text{k+l}) \times y - z = 17 \text{ l}$

- R on S := { squares on a chessboard};

 $R = \{(s_1, s_2) \mid s_2 \text{ is reachable from } s_1 \text{ via a} \}$ Sequence of bishop moves $\{(s_1, s_2) \mid s_2 \text{ is reachable from } s_1 \text{ via a} \}$

reflexive v number of squares in a symmetric diagonal stranget line]

- \{(S_1,S_2)\} S_z is reachable from S_1 by at most a single bishop move?

reflexive \(\)

symmetric \(\)

not transitive

- \(\(\si_1, \si_2 \) \(\si_2 \) is reachable from \(\si_1 \) by at most two bishop moves?

reflexive \(\sigma_2 \) symmetric \(\sigma_1 \) transitive? \(\sigma_1 \) Suppose \((x_i y) \in R \) \((y_1 \in) \in R \)

\(\sigma_1 \) \(\sigma_2 \) \(\sigma_1 \) \(\sigma_2 \) \(\sigma_2 \) \(\sigma_1 \) some \(\sigma_2 \) \(\sigma_2 \) \(\sigma_1 \) shop moves.

** Equivalence classes

Notation: Let R be an equivalence relation on S. If $(x,y) \in R$, we usually write $x \sim_R y$, or simply $x \sim_R y$ if there is no confusion

We'll often just shorten by saying "let ~ be an equivalence relation".

Fix x & S

Collect all y & S

such that

X N y

If x N y f

X N Z

then: Z N X (symmem)

=> Z N Y (transitiony)

*** Definition Let ~ be an equivalence relation on S Let x & S The equivalence class of x under ~ is the set of all y & S such that x ~ y.

Usually denoted $[x] \rightarrow is a subset$ $[x] = \{y \in S \mid x \sim y\}$

*** Proposition

- (1) Let $y \in [x]$. Then $x \in [y]$ and [x] = [y]
- (2) If E_1 and E_2 are two equivalence classes, then either $E_1 = E_2$ or $E_1 \cap E_2 = \emptyset$

Proof

(1) Let $y \in [x] \Rightarrow x \sim y$. By symmetry, we have $y \sim x$. So, $x \in [y]$.

Let $y \in [x]$. $\Rightarrow x \wedge y$ To show that [x] = [y], suppose that $z \in [x]$ $\Rightarrow x \wedge z$

By symmetry & transitivity, y ~ Z >> Ze[y]

(Similarly if ZE[y] then ZE[x])

- >> [a] = [y].
- (2) Let E_1 , E_2 be two classes Suppose $E_1 \neq E_2$. finish What if $E_1 \cap E_2 \neq \emptyset$? I have. If $Z \in E_1 \cap E_2$, then $Z \in E_1$, $f \in Z \in E_2$.