Assignment: Advanced Feature Engineering and Predictive Modeling

Objective

The aim of this assignment is to extend the work done in Assignment 1 by applying advanced feature engineering techniques and building predictive models using Linear Regression and Decision Tree algorithms. This assignment focuses on preparing a dataset for predictive tasks, engineering relevant features, and evaluating model performance.

Instructions

1. Individual Work:

- This is an individual assignment.
- You must complete the assignment independently. Collaboration is not permitted.
- o Clearly mention your name and roll number in your submission.

2. Dataset Selection:

- Use the dataset cleaned and prepared in Assignment 1. If any additional changes are needed, document these changes clearly in your report.
- Ensure the dataset includes at least one target variable (dependent variable) and relevant features (independent variables).

3. Execution Platform:

- Complete the assignment in a Jupyter Notebook environment (e.g., Google Colab).
- Ensure that all intermediate outputs and steps are clearly visible in the submitted notebook.

4. Submission Requirements:

- Submit both the Jupyter Notebook file (.ipynb) and a well-formatted PDF with all code, outputs, and visualizations.
- The PDF should include observations and justifications for each task, written in plain English.
- Marks will be deducted for improperly formatted submissions or missing outputs.

5. Plagiarism:

 Strictly avoid plagiarism. Any evidence of copied work will result in a penalty.

Tasks

1. Feature Engineering (3 Marks)

1.1 Dimensionality Reduction (1 Mark)

- Apply Principal Component Analysis (PCA) to reduce the dimensions of your dataset.
- Document and justify the number of components selected and explain their significance.

1.2 Feature Selection (1 Mark)

- Use one filter-based method (e.g., correlation-based) and one wrapper-based method (e.g., forward selection or backward elimination) to select features.
- Document the selected features and justify their inclusion in the predictive model.

1.3 Handling Imbalanced Data (if applicable) (1 Mark)

- If the dataset contains class imbalance, apply sampling methods (e.g., oversampling, undersampling) to address the issue.
- Document and justify the method used.

2. Predictive Modeling (3 Marks)

2.1 Linear Regression (1.5 Marks)

- Train a linear regression model using the processed dataset.
- Evaluate the model using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared.

2.2 Decision Tree (1.5 Marks)

- Train a decision tree model for regression or classification (depending on your dataset's target variable).
- Visualize the tree structure and analyze the importance of features used in the model.

3. Model Evaluation (3 Marks)

3.1 Comparison of Models (1.5 Marks)

Compare the performance of Linear Regression and Decision Tree models.

• Discuss the strengths and limitations of each model based on their results.

3.2 Cross-Validation (1.5 Marks)

- Perform k-fold cross-validation for both models.
- Report the mean and standard deviation of the evaluation metrics.

Expectations

- Provide clear observations and justifications for each step, supported by evidence from your analysis.
- Ensure that your notebook and PDF are well-structured, neat, and easy to follow.
- Highlight any challenges faced during the assignment and describe how you addressed them.

Grading Criterion

• Feature Engineering: 3 marks

o Dimensionality Reduction: 1 mark

o Feature Selection: 1 mark

o Handling Imbalanced Data: 1 mark

• Predictive Modeling: 3 marks

o Linear Regression: 1.5 marks

o Decision Tree: 1.5 marks

Model Evaluation: 3 marks

o Comparison of Models: 1.5 marks

o Cross-Validation: 1.5 marks

Submission Quality and Formatting: 1 mark