Association (III)

1 Review: Statistical tests

2 Review: *t*-test

3 Review: Chi-squared test

4 Correlation

1. Review: Statistical tests

Additional references

Leahey, "Alphas and Asterisks: The Development of Statistical Significance Testing Standards in Sociology", *Social Forces*, 2005.

Ziliak and McCloskey, *The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives*, University of Michigan Press, 2008.

Hypothesis testing

Substantive hypotheses

There is an association between X and Y, ... There is a difference of X between groups of Y, ...

Null hypothesis tests

 H_0 : the association of X by Y is likely to be random.

 H_0 : the difference in X between groups of Y is likely to be random.

Rejecting the null

 H_0 estimates the likelihood of an association or difference being attributable to sampling error under a certain level of confidence.

Hypothesis testing

2. Review: t-test

t-test

Measuring association as the difference in means between two groups of i.i.d. observations:

- Population notation: $\delta = \mu_1 \mu_2$
- Sample notation: $D = \bar{X}_1 \bar{X}_2$

The *t*-test computes a 95% CI around the difference of their means and returns its *p*-value against the *t*-distribution.

- Null hypothesis H_0 : $\mu_1 \mu_2 = 0$
- Test statistic: $t = \frac{D}{SE_D}$

t-test

ttest v1, by(v2)

- v1 is continuous, v2 is a dummy
- use prtest if v1 is also a dummy (proportions test)
- use tab, gen() to create dummies from categorical variables

use datasets/qog2011, clear

- Variables: d gol_enep gol_est2
- Create dummies and compare parties across electoral systems.

t-test

use datasets/qog2011, clear

Explore the variables and interpret the output below.

. prtest no mes, by(gol polreg)

Two-sample test of proportions 0. Democracy: Number of obs =

109 1. Dictators: Number of obs = 79

Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
 Democracy Dictators 	.293578 .2911392	.0436195 .0511113			.2080853 .1909628	.3790706 .3913156
diff	.0024387 under Ho:	.067194 .0672205	0.04	0.971	129259	.1341365

```
diff = prop(0. Democracy) - prop(1. Dictators)
                                                         z = 0.0363
Ho: diff = 0
```

3. Review: Chi-squared test

Chi-squared test

The Chi-squared test is a nonparametric test of association that measures the deviation in orthogonality between groups:

- Null hypothesis H_0 : $\chi^2 = 0$
- Test statistic: $\chi^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i}$ (deviation between observed frequencies O_i and expected frequencies E_i for each table cell i)

tab v1 v2, exp chi2 V

- lacksquare add V to measure the association with Cramér's V (0 < V < 1)
- use tabchi to inspect residuals, tabodds for odds ratios

Chi-squared test

use datasets/nhis2009, clear

- Variables: d raceb marstat
- Analyze the frequencies and residuals with tabchi

. tab marstat raceb if marstat < 8, chi2 V

	Race						
Legal marital status	White	Black	Hispanic	Asian	Total		
Married	7,151	1,059	2,231	780	11,221		
Widowed	1,215	352	223	84	1,874		
Divorced	2,367	641	595	93	3,696		
Separated	343	264	274	25	906		
Total	11,076	2,316	3,323	982	17,697		

Pearson chi2(9) = 733.4437 Pr = 0.000 Cramér's V = 0.1175

4. Correlation

Pearson correlation coefficient

Measuring association as the linear dependence of two variables:

Population notation
$$ho = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}_X\mathsf{Var}_Y}, \quad -1 \le \rho \le 1$$
 Sample notation $r = \frac{1}{n-1} \sum_{i=1}^n (\frac{X_i - \bar{X}}{s_X}) (\frac{Y_i - \bar{Y}}{s_Y})$

Detects linear correlation

- Uncorrelated \neq unrelated
- Correlated ≠ unconfounded

Perfect (positive, negative) correlation

Significant (moderate, strong) correlation

Insignificant (weak, non-linear) correlation

Pearson correlation coefficient

Significance test:

Null hypothesis
$$H_0$$
 $r=0$ Test statistic $T=r\sqrt{rac{n-2}{1-r^2}}$

Sanity check

- Uncorrelated \neq independent
- Correlated \neq causally related

Figure 1: Frequencies of the words "hamster" and "contraception" in Google Books, 1900-2000

Source: Harkness, "Seduced by Stats?", Significance, 2012.

Source: Messerli, "Chocolate Consumption, Cognitive Function, and Nobel Laureates", *New England Journal of Medicine*, 2012.

Correlation matrixes

pwcorr [varlist], [obs sig]

- obs shows the number of observations
- sig shows the coefficient's *p*-value

gr mat [varlist], [half etc.]

- half plots only half of all graphs (quicker)
- accepts scatterplot options (jitter, mlab, etc.)

Correlation matrixes

mkcorr [varlist], lab num sig log(corr.txt) replace

- ssc install the command if needed
- \blacksquare lab num sig add labels, numbers and p-values

Computer skills

- Import as a table in a spreadsheet editor.
- Convert from text to table in a rich text editor.

use datasets/qog2011, clear

- Variables: d wdi_puhegdp wdi_the wdi_prhe
- Visualize, compute, export and import the correlation matrix.

gr mat

Showing only Africa and the Middle East (N = 68).

From Stata output...

. pwcorr wdi_hiv wdi_hec wdi_prhe wdi_puhegdp, obs sig star(.05)

	wdi_hiv wdi_hec wdi_prhe wdi_pu~p	
wdi_hiv	1.0000	
	141	
wdi_hec	-0.1953* 1.0000 0.0207 140 187	
wdi_prhe	0.0979 -0.0555 1.0000 0.2497 0.4509 140 187 188	coefficient
wdi_puhegdp	-0.0607	<i>p</i> -value
	1 170 107 100 100	observations

... to publishing standard

Table 4
Pearson pairwise correlations among the dependent and explanatory variables

	ETRC	ETRI	CAPINT	LEV	SIZE	POLCON1	POLCON2	MKBV	INVINT	ROA
ETRC	1									
ETRI	0.031*	1								
CAPINT	-0.033**	-0.044**	1							
LEV	-0.051^*	-0.021	-0.041**	1						
SIZE	-0.124	-0.190	-0.163**	0.337**	1					
POLCON1	-0.023**	-0.047**	0.129	0.031**	0.146	1				
POLCON2	-0.011^*	-0.044^*	-0.064	0.116	0.179**	0.138**	1			
MKBV	0.045	-0.036	-0.051	-0.035	-0.077**	-0.130	-0.026	1		
INVINT	0.020	-0.014	0.067**	-0.128**	-0.195**	0.193**	-0.005	-0.041	1	
ROA	0.073*	0.047*	0.067**	-0.038	0.073	0.049	0.012	0.053	-0.019	1

Variable definitions: ETRC = (Tax expenses – Deferred tax expenses)/(Operating cash flows); ETR1 = (Tax expenses – Deferred tax expenses)/(Profit before interest and tax); POLCON1 = Percentage of government equity ownership; POLCON2 = 1 if the firm is connected with top politicians; of otherwise; SIZE = Natural log of total assets; LEV = (Total debt)/(Total assets); CAPINT = (Property, plant and equipment)/(Total assets); INVINT = (Inventory/Total assets); ROA = (Pre-tax profits)/(Total assets); MKBV = (Market price of share)/(Shareholders equity/Number of ordinary shares outstandine).

Source: Adhikari *et al.*, "Public Policy, Political Connections, and Effective Tax Rates: Longitudinal Evidence from Malaysia", *Journal of Accounting and Public Policy*, 2006.

^{*} Correlation is significant at the 0.05 level (2-tailed).

^{**} Correlation is significant at the 0.01 level (2-tailed).

Thanks for your attention!

Project

- Start testing associations in your data
- Refine hypotheses and write draft findings

Readings

- Stata Guide, Sec. 9
- *Making History Count*, ch. 3

Practice

- Replicate do-file
- Exercises in slides