Construction de l'heptadécagone inscrit dans un cercle donné (Richmond, 1893).

Chaque construction individuelle est (apprise à l'école) élémentaire (recherche de perpendiculaire, bissection d'un angle, détermination du milieu d'un segment, tracé d'un cercle).

Point de départ : O est le centre du cercle circonscrit et P_1 l'extrémité d'un rayon-unité quelconque pris comme premier sommet de l'heptadécagone. On commence par déterminer le quatrième sommet, P_4 , après quoi les autres suivront sans difficulté. On y parvient en déterminant le point N_4 situé à l'aplomb de P_4 sur OP_1 . L'abscisse de N_4 (donc de P_4) doit être égale au cosinus de $6\pi/17$.

OB est le rayon perpendiculaire à OP₁. J est positionné au quart de la distance OB (BJ = 3 OJ).

On joint J à P₁. On bissecte l'angle OJP₁ puis, à nouveau, sa moitié gauche de telle manière que OJE = OJP₁/4.

On détermine F tel que l'angle EJF soit égal à 45° (par exemple en traçant la perpendiculaire à EJ puis en bissectant l'angle droit opposé à P_1). Avec le milieu, C, de FP₁ pour centre (non représenté sur la figure car très proche du point N_4 , défini ciaprès), on trace le demi-cercle supérieur passant par P_1 (donc de rayon $FP_1/2$). Il coupe OB en K.

On trace le demi-cercle supérieur centré sur E et passant par K. Il coupe OP_1 en N_4 . On élève la perpendiculaire à OP_1 , passant par N_4 et on note P_4 son intersection avec le cercle de référence.

 P_4 est le quatrième sommet de l'heptagone inscrit, en comptant P_1 comme le premier. On reporte l'arc P_1P_4 autant de fois que nécessaire (15 fois) pour trouver tous les sommets de P_1 à P_{17} . Il ne reste plus qu'à les joindre.

Avec un peu de patience et de soin, on calcule les coordonnées des points sur la figure :

$$\mathbf{x_{O}} = 0 \; ; \; \mathbf{x_{P1}} = 1 \; ; \; \mathbf{x_{F}} = \frac{1}{16} \; \left(-1 \; + \; \sqrt{17} \; - \; \sqrt{34 \; - 2 \; \sqrt{17} \;} \; \right) ; \; \mathbf{x_{E}} = \frac{1}{1 \; + \; \sqrt{17} \; + \; \sqrt{34 \; + 2 \; \sqrt{17} \;}} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{F}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{x_{C}}}{2} \; ; \; \mathbf{x_{C}} = \frac{1 \; + \; \mathbf{$$

$$\mathbf{x_{N_4}} = \mathbf{x_{P_4}} = \frac{1 + \sqrt{17 - 2\sqrt{17} + 2\sqrt{85 - 16\sqrt{17}}}}{1 + \sqrt{17} + \sqrt{34 + 2\sqrt{17}}} \; ; \; \mathbf{y_J} = 1 \, / \, 4 \; ; \; \mathbf{y_K} = \sqrt{-\mathbf{x_F}} \; ; \; \mathbf{y_{P_4}} = \sqrt{1 - \mathbf{x_{P_4}}^2} \; ;$$

Numériquement, on a : $x_F = -0.121982$; $x_E = 0.0860377$; $x_C = 0.439009$; $x_{N4} = x_{P4} = 0.445738$.