

Лекция 5. Хеш-таблицы

Алгоритмы и структуры данных

Мацкевич С. Е.

План лекции 5 «Хеш-таблицы»

- Хеш-функции.
- Хеш-таблица. Стоимость добавления элементов.
- Разрешение коллизий методом цепочек.

• Разрешение коллизий методом открытой

адресации.

Двойное хеширование.

Быстрый контейнер. Постановка задачи.

Задача. Хранить ключи в контейнере:

- быстро добавлять,
- быстро удалять,
- быстро проверять наличие.

Решение 1.

Упорядоченный массив:

- длительное добавление O(n),
- длительное удаление -O(n),
- быстрый поиск $O(\log n)$.

Быстрый контейнер. Постановка задачи.

Задача. Хранить ключи в контейнере:

- быстро добавлять,
- быстро удалять,
- быстро проверять наличие.

Частное решение 2.

Пусть ключи — неотрицательные целые числа в диапазоне [0, ..., n-1]. Будем хранить A — массив bool.

 $A[i] = true \Leftrightarrow i coдержится:$

- мгновенное добавление -O(1),
- мгновенное удаление O(1),
- мгновенный поиск O(1).

Быстрый контейнер. Хеш-таблица.

Хеширование – преобразование ключей к числам.

Хеш-таблица — массив ключей с особой логикой, состоящей из:

- 1. Вычисления хеш-функции, которая преобразует ключ поиска в индекс.
- 2. Разрешения конфликтов, т.к. два и более различных ключа могут преобразовываться в один и тот же индекс массива.

Отношение порядка над ключами не требуется.

Хеш-функции

Определение. Хеш-функция — преобразование по детерминированному алгоритму входного массива данных произвольной длины (один ключ) в выходную битовую строку фиксированной длины (значение).

Результат вычисления хеш-фукнции называют «хешем».

Определение. Коллизией хеш-функции Н называется два различных входных блока данных X и Y таких, что H(x) = H(y).

Хеш-функции

Количество возможных значений хеш-функции не больше М и для любого ключа k:

$$0 \le h(k) < M$$

Важно! Хорошая хеш-функция должна:

- 1. Быстро вычисляться.
- 2. Минимизировать количество коллизий.

HASH = рубить, перемешивать.

Хеш-функции

Качество хеш-функции зависит от задачи и предметной области.

Пример плохой хеш-функции.

h(k) = [последние [три] цифры k] = k % 1000.

Такая хеш-функция порождает много коллизий, если множество

ключей – цены.

Частые значения: 000, 500, 999, 998, 990, 900.

Хеш-функции. Метод деления.

 $h(k) = k \mod M$.

М определяет размер диапазона значений: [0, ..., M-1].

Как выбрать М?

- Если $M = 2^K$, то значение хеш-функции не зависит от старших байтов.
- Если $M = 2^8 1$, то значение хеш-функции не зависит от перестановки байт.

Обычно в качестве М выбирают простое число, далекое от степеней двойки.

Хеш-функции. Метод деления многочленов.

Пусть

$$K(x) = k_0 + k_1 x + \dots + k_n x^n,$$

 $P(x) = p_0 + p_1 x + \dots + p_m x^m.$

Деление многочленов с остатком:

$$K(x) = A(x) \cdot P(x) + R(x),$$

A(x) – частное, R(x) – остаток, $\deg R < \deg P = m$.

Все коэффициенты в поле. Например, в поле Z_p , р – простое.

Делить удобно в столбик.

Хеш-функции. Метод деления многочленов.

Каждый ключ К определяется числами $(k_0, k_1, ..., k_{n-1})$.

Пусть
$$K(x) = k_0 + k_1 x + \dots + k_{n-1} x^{n-1}$$
.

Пусть задан полином $P(x) = p_0 + p_1 x + \dots + p_m x^m$.

Многочлен P(x) называют порождающим многочленом.

Определим хеш-функцию как остаток от деления:

$$H_P(K)(x) = K(x) \mod P(x) =$$

= $h_0 + h_1 x + \dots + h_{m-1} x^{m-1} =$
= $(h_0, h_1, \dots, h_{m-1}).$

Все коэффициенты в поле Z_p , где p — простое.

В алгоритмах CRC используется p = 2 и немного другая формула $H_P(K)(x) = K(x) \cdot x^m \mod P(x)$

Хеш-функции. Метод умножения.

 $\underline{h(k)} = [\underline{M} \cdot \{k \cdot A\}],$

где {} – дробная часть,

где [] – целая часть,

A – действительное число, 0 < A < 1,

М определяет диапазон значений: [0, .., М-1].

Кнут предложил в качестве А использовать число, обратное к золотому сечению:

$$A = \phi^{-1} = \left(\frac{\sqrt{5} - 1}{2}\right) = 0.6180339887 \dots$$

Такой выбор А дает хорошие результаты хеширования.

Хеш-функции. Метод умножения.

Хеш-функцию $h(k) = [M \cdot \{k \cdot A\}]$ вычисляют без использования операций с числами с плавающими точками.

Пусть М – степень двойки. $M = 2^p$, $p \le 32$.

Вместо действительного числа A берут близкое к нему $A = \frac{s}{2^{32}} = \frac{2654435769}{2^{32}}$. То есть s = 2654435769. Тогда $h(k) = \left[2^p \cdot \left\{k \cdot \frac{s}{2^{32}}\right\}\right] = \left[2^p \cdot \left\{\frac{r_1 2^{32} + r_0}{2^{32}}\right\}\right] = \left[2^p \cdot \left\{\frac{r_1 2^{32} + r_0}{2^{32}}\right\}\right]$

Тогда
$$h(k) = \left[2^p \cdot \left\{k \cdot \frac{s}{2^{32}}\right\}\right] = \left[2^p \cdot \left\{\frac{r_1 2^{32} + r_0}{2^{32}}\right\}\right] = \left[2^p \cdot \frac{r_0}{2^{32}}\right]$$

$$=\left[\frac{r_0}{2^{32-p}}\right]=\left[\frac{r_{01}2^{32-p}+r_{00}}{2^{32-p}}\right]=r_{01}=$$
 Старшие p бит r_0 .

Итого,
$$h(k) = (k \cdot s \mod 2^{32}) \gg (32 - p)$$
.

Хеш-функции строки.

Строка $s = s_0, s_1, \dots, s_{n-1}$.

Вариант 1.
$$h_1(s) = (s_0 + s_1 a + s_2 a^2 + \dots + s_{n-1} a^{n-1}) \mod M$$
.

Вариант 2.
$$h_2(s) = (s_0 a^{n-1} + s_1 a^{n-2} + \dots + s_{n-2} a + s_{n-1}) \mod M$$
.

Число М – степень двойки.

Важно правильно выбрать константу a.

Хотим, чтобы при изменении одного символа, хеш-функция изменялась.

То есть, чтобы все значения $s \cdot a \mod M$, $0 \le s < M$ были различны.

Для этого достаточно, чтобы a и M были взаимно простыми.

Докажем это.

Хеш-функции строки

<u>Teopema.</u> 1) Если a и M не являются взаимно простыми, то $\{s \cdot a \mod M, 0 \le s < M\} \ne \{0, ..., M-1\}.$

2) Если a и M взаимно просты, то $\{s \cdot a \mod M, 0 \le s < M\} = \{0, ..., M-1\}.$

<u>Доказательство.</u> 1) Пусть a и M не являются взаимно простыми. Тогда a и M имеют общий делитель d.

 $a = d \cdot x, M = d \cdot y.$

Для любого s остаток от деления $s \cdot a$ на M также делится на d: $s \cdot a = M \cdot k + r, r = s \cdot d \cdot x - d \cdot y \cdot k = d(sx - yk)$.

2) От противного. Пусть множество $\{s \cdot a \mod M, 0 \le s < M\}$ имеет меньше M различных элементов. Тогда существуют i и j, что $ia \equiv ja \pmod M$, i < j < M. Следовательно, $(j-i)a = M \cdot u$. Из этого следует, что j-i делится на M, т.к. a и M — взаимно простые. Но 0 < j-i < M. Противоречие.

Хеш-функции строки

 $h_2(s)$ вычисляется эффективнее, если использовать метод Горнера:

$$h_2(s) = (((s_0a + s_1)a + s_2)a + \dots + s_{n-2})a + s_{n-1}.$$

 $h_1(s)$ можно вычислять аналогично, но начиная с конца строки.

Но в с-строках известен только указатель на начало строки, а размер строки не известен.

Поэтому удобнее вычислять $h_2(s)$.

Хеш-функция строки


```
// Хеш-функция строки.
int Hash( const char* str, int m )
{
   int hash = 0;
   for(; *str != 0; ++str )
       hash = ( hash * a + *str ) % m;
   return hash;
}
```


Функции вычисления контрольной суммы также являются хеш-функциями.

CRC — циклически избыточный код, <u>Cyclic redundancy</u> <u>check</u>. Использует метод деления многочленов, но не просто остаток от деления многочленов, а:

$$H_P(K)(x) = K(x) \cdot x^m \mod P(x),$$

коэффициенты в поле Z_2 .

Для разных версий используются многочлены разных степеней, с разными коэффициентами.

Некоторые стандарты CRC

CRC стандарт	Многочлен
CRC-1	x + 1
CRC-5-USB	$x^5 + x^2 + 1$
CRC-8	$x^8 + x^7 + x^6 + x^4 + x^2 + 1$
CRC-16(-IBM)	$x^{16} + x^{15} + x^2 + 1$
CRC-32-IEEE 802.3	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$
CRC-64-ISO	$x^{64} + x^4 + x^3 + x + 1$

MD1, **MD2**, **MD3**, **MD4**, **MD5**, **MD6** — известные алгоритмы вычисления контрольных сумм.

Message Digest. Один из самых популярных — MD5 — 128-битный алгоритм хеширования. Разработан Рональдом Л. Ривестом в 1991г. Использует битовые операции с блоками длины 128.

Важное преимущество MD – <u>лавинный эффект</u>. Замена одного символа приводит к полному изменению хеша:

MD5("md5") = 1BC29B36F623BA82AAF6724FD3B16718.

MD5("md4") = C93D3BF7A7C4AFE94B64E30C2CE39F4F

Криптографические хеш-функции.

SHA-1, SHA-2 — 160, 256/512-битные хеши.

SHA = Secure Hash Code.

Криптографические = нет способа нахождения коллизий.

Хеш-таблицы

Определение. Хеш-таблица — структура данных, хранящая ключи в таблице. Индекс ключа вычисляется с помощью хеш-функции. Операции: добавление, удаление, поиск.

Пусть хеш-таблица имеет размер M, количество элементов в хеш-таблице – N.

Определение. Число хранимых элементов, делённое на размер массива (число возможных значений хеш-функции), называется **коэффициентом заполнения хеш-таблицы** (load factor). Обозначим его $\alpha = \frac{N}{M}$.

Этот коэффициент является важным параметром, от которого зависит среднее время выполнения операций.

Хеш-таблицы

Парадокс дней рождений.

При вставке в хеш-таблицу размером 365 ячеек всего лишь 23-х элементов вероятность коллизии уже превысит 50 % (если каждый элемент может равновероятно попасть в любую ячейку).

Хеш-таблицы различаются по методу разрешения коллизий.

Основные методы разрешения коллизий:

- 1. Метод цепочек.
- 2. Метод открытой адресации.

Каждая ячейка массива является указателем на связный список (цепочку).

Коллизии приводят к тому, что появляются цепочки длиной более одного элемента.

Добавление ключа.

- 1. Вычисляем значение хеш-функции добавляемого ключа h.
- 2. Находим A[h] указатель на список ключей.
- 3. Вставляем в начало списка (в конец списка дольше). Если запрещено дублировать ключи, то придется просмотреть весь список.

Время работы:

В лучшем случае - O(1).

В худшем случае

- если не требуется проверять наличие дубля, то $\mathbf{O}(1)$,
- иначе O(N).

Удаление ключа.

- 1. Вычисляем значение хеш-функции удаляемого ключа h.
- 2. Находим A[h] указатель на список ключей.
- 3. Ищем в списке удаляемый ключ и удаляем его.

Время работы:

В лучшем случае - O(1).

В худшем случае $- \mathbf{O}(\mathbf{N})$.

Поиск ключа.

1. Вычисляем значение хеш-функции ключа – h.

- 2. Находим A[h] указатель на список ключей.
- 3. Ищем его в списке.

Время работы:

В лучшем случае - O(1).

В худшем случае — O(N).

Среднее время работы.

Теорема. Среднее время работы операций поиска, вставки (с проверкой на дубликаты) и удаления в хеш-таблице, реализованной методом цепочек $-0(1+\alpha)$, где α — коэффициент заполнения таблицы.

<u>Доказательство.</u> Среднее время работы — математическое ожидание времени работы в зависимости от исходного ключа.

Время работы для обработки одного ключа T(k) зависит от длины цепочки и равно $1+N_{h(k)}$, где N_i — длина і-ой цепочки. Предполагаем, что хеш-функция равномерна, а ключи равновероятны.

Среднее время работы
$$T_{\rm cp}(M,N) = M\big(T(k)\big) = \sum_{i=0}^{M-1} \frac{1}{M}(1+N_i) = \frac{1}{M}\sum_{i=0}^{M-1}(1+N_i) = \frac{M+N}{M}$$
 = 1 + α


```
// Хеш-функция.
template<class T>
int Hash( T& data );
// Элемент цепочки в хеш-таблице.
template<class T>
struct CHashTableNode {
    T Data;
    CHashTableNode<T>* Next;
};
// Хеш-таблица.
template<class T>
class CHashTable {
public:
    CHashTable( int initialSize );
    bool Has( T& key ) const;
    void Add( T& key );
    bool Delete ( T& key );
private:
    vector<CHashTableNode<T>*> table;
};
```


Все элементы хранятся непосредственно в массиве. Каждая запись в массиве содержит либо элемент, либо NIL.

При поиске элемента систематически проверяем ячейки до тех пор, пока не найдем искомый элемент или не убедимся в его отсутствии.

Вставка ключа.

1. Вычисляем значение хеш-функции ключа – h.

- 2. Систематически проверяем ячейки, начиная от A[h], до тех пор, пока не находим пустую ячейку.
- 3. Помещаем вставляемый ключ в найденную ячейку.

В п.2 поиск пустой ячейки выполняется в некоторой последовательности. Такая последовательность называется **«последовательностью проб».**

Последовательность проб зависит от вставляемого в таблицу ключа. Для определения исследуемых ячеек расширим хеш-функцию, включив в нее номер пробы (от 0).

$$h: U \times \{0, 1, ..., M-1\} \rightarrow \{0, 1, ..., M-1\}.$$

Важно, чтобы для каждого ключа k последовательность проб

$$\langle h(k,0), h(k,1), \dots, h(k,M-1) \rangle$$

представляла собой перестановку множества (0,1,...,M-1), чтобы могли быть просмотрены все ячейки таблицы.


```
// Вставка ключа в хеш-таблицу (без учета удаленных
элементов).
void CHashTable::Insert( T& k )
{
   for( int i = 0; i < tableSize; ++i ) {
      int j = h( k, i );
      if( IsNil( table[j] ) ) {
        table[j] = k;
        return;
      }
   }
   throw CHashTableException( "Overflow" );
}</pre>
```


Поиск ключа.

Исследуется та же последовательность, что и в алгоритме вставки ключа.

Если при поиске встречается пустая ячейка, поиск завершается неуспешно, поскольку искомый ключ должен был бы быть вставлен в эту ячейку в последовательности проб, и никак не позже нее.

Удаление ключа.

Алгоритм удаления достаточен сложен.

Нельзя при удалении ключа из ячейки і просто пометить ее значением NIL. Иначе в последовательности проб для некоторого ключа (или некоторых) возникнет пустая ячейка, что приведет к неправильной работе алгоритма поиска.

<u>Решение.</u> Помечать удаляемые ячейки спец. значением «Deleted».

Нужно изменить методы поиска и вставки.

В методе вставки проверять «Deleted», вставлять на его место.

В методе поиска продолжать поиск при обнаружении «Deleted».

Вычисление последовательности проб.

Желательно, чтобы для различных ключей k последовательность проб $\langle h(k,0), h(k,1), ..., h(k,M-1) \rangle$ давала большое количество последовательностей-перестановок множества $\langle 0,1,...,M-1 \rangle$.

Обычно используются три метода построения h(k, i):

- 1. Линейное пробирование.
- 2. Квадратичное пробирование.
- 3. Двойное хеширование.

Линейное пробирование.

$$h(k,i) = (h'(k) + i) \bmod M.$$

Основная проблема – кластеризация.

Последовательность подряд идущих занятых элементов таблицы быстро увеличивается, образуя кластер.

Попадание в элемент кластера при добавлении гарантирует «одинаковую прогулку» для различных ключей и проб. Новый элемент будет добавлен в конец кластера, увеличивая его.

Если $h(k_1,i) = h(k_2,j)$, то $h(k_1,i+r) = h(k_2,j+r)$ для BCex r.

Квадратичное пробирование.

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod M.$$

Требуется, чтобы последовательность проб содержала все индексы 0, ..., M-1. Требуется подбирать c_1 и c_2 .

При
$$c_1 = c_2 = 1/2$$
, то проба вычисляется рекуррентно: $h(k, i+1) = h(k, i) + i + 1 \pmod{M}$.

Возникает вторичная кластеризация. Проявляется на ключах с одинаковым хеш-значением $h'(\cdot)$.

Если $h(k_1,0) = h(k_2,0)$, то $h(k_1,i) = h(k_2,i)$ для всех i.

Соответствует цепочкам в методе цепочек. Разница лишь в том, что в методе открытой адресации эти цепочки могут еще пересекаться.

Квадратичное пробирование.

<u>Утверждение.</u> Если $c_1 = c_2 = 1/2$, а $M = 2^p$, то квадратичное пробирование дает перестановку $\{0, 1, 2, 3, ..., M-1\}$.

<u>Доказательство.</u> От противного. Пусть существуют і и j, $0 \le i, j \le M - 1$, для которых

$$\frac{i(i+1)}{2} \equiv \frac{j(j+1)}{2} \pmod{2^p}.$$

Тогда

$$i^{2} + i - j^{2} - j = 2^{p+1}D,$$

 $(i-j)(i+j+1) = 2^{p+1}D,$

Если і и ј одинаковой четности, то i + j + 1 нечетна, но i - j не может делиться на 2^{p+1} .

Если і и ј разной четности, то i-j нечетна, но i+j+1 не может делиться на 2^{p+1} , т.к. $0 < i+j+1 < 2^{p+1}$. Противоречие.

<u>Двойное хеширование.</u>

$$\overline{h(k,i)} = (h_1(k) + ih_2(k)) \bmod M.$$

Требуется, чтобы последовательность проб содержала все индексы 0, ..., M-1. Для этого все значения $h_2(k)$ должны быть взаимно простыми с М.

- М может быть степенью двойки, а $h_2(k)$ всегда возвращать нечетные числа.
- М простое, а $h_2(k)$ меньше М.

Общее количество последовательностей проб = $O(M^2)$.

Анализ хеш-таблиц с открытой адресацией.

Теорема. Математическое ожидание количества проб при неуспешном поиске в хеш-таблице с открытой адресацией и коэффициентом заполнения $\alpha = \frac{n}{m} < 1$ в предположении равномерного хеширования не превышает $\frac{1}{1-\alpha}$.

Без доказательства.

Время работы методов поиска, добавления и удаления:

В лучшем случае -0(1).

В худшем случае – O(N).

B среднем –
$$O\left(\frac{1}{1-\alpha}\right)$$
.

Плюсы.

- + Основное преимущество метода открытой адресации не тратится память на хранение указателей списка.
- + Нет элементов, хранящихся вне таблицы.

Минусы.

- Хеш-таблица может оказаться заполненной. Коэффициент заполнения α не может быть больше 1.
- При приближении коэффициента заполнения α к 1 среднее время работы поиска, добавления и удаления стремится к N.
- Сложное удаление.

Динамическая хеш-таблица.

Изначально может быть неизвестно количество хранимых ключей. Коэффициент заполнения α может приближаться к 1, а в реализации методом цепочек может быть больше 1.

Среднее время работы для метода цепочек: $O(1 + \alpha)$, для открытой адресации $O(1/(1 - \alpha))$.

Требуется динамически увеличивать размер таблицы. Аналогично динамическому массиву.

Процесс увеличения размера хеш-таблицы называется «перехешированием».

Динамическая хеш-таблица.

Перехеширование.

- 1. Создать новую пустую таблицу. Размер новой таблицы \widetilde{M} может быть равен $2 \cdot M$, где M размер старой таблицы. Если размер таблицы должен быть простым, то следует использовать простое число близкое к $2 \cdot M$.
- 2. Проитерировать старую таблицу. Каждый ключ старой таблицы перенести в новую. Для добавления в новую таблицу надо использовать другую хешфункцию, возвращающую значения от 0 до $\widetilde{M}-1$.

Динамическая хеш-таблица.

Когда выполнять перехеширование?

Для разных хеш-таблиц следует использовать разные стратегии.

Для хеш-таблиц, реализованных методом цепочек:

Например, когда коэффициент заполнения α достиг 1.

<u>Для хеш-таблиц, реализованных методом открытой адресации:</u>

Например, когда α достиг значения $\frac{2}{3}$ или $\frac{3}{4}$.

Хеш-таблицы. Время работы.

	Лучший случай.	В среднем. Метод цепочек.	В среднем. Метод открытой адресации.	Худший случай.
Поиск	0(1)	$O(1 + \alpha)$	$O\left(\frac{1}{1-\alpha}\right)$	O(N)
Вставка	0(1)	$O(1 + \alpha)$	$O\left(\frac{1}{1-\alpha}\right)$	O(N)
Удаление	0(1)	$O(1 + \alpha)$	$O\left(\frac{1}{1-\alpha}\right)$	O(N)

