7.1 Introducció 7.2 Funcionament de la memòria virtual 7.3 Fallada de pàgina 7.4 Traducció ràpida amb TLB 7.5 Protecció i Compartició

## Tema 7. Memòria Virtual Estructura de Computadors (EC)

#### Rubèn Tous

rtous@ac.upc.edu Computer Architecture Department Universitat Politecnica de Catalunya



#### Índex

- 7.1 Introducció
- 7.2 Funcionament de la memòria virtual
- 3 7.3 Fallada de pàgina
- 4 7.4 Traducció ràpida amb TLB
- 5 7.5 Protecció i Compartició

#### 7.1.1 Motivació

- El procés d'enllaçat assigna adreces de memòria absolutes.
- Però es poden executar múltiples programes simultàniament. Cóm és possible saber sobre quines adreces de memòria treballarà un programa abans d'executar-lo?
- I si el programa supera la grandària de la memòria física?

#### 7.1.1 Motivació

- Resposta: memòria virtual.
- Per un costat, permet que la memòria sigui compartida de manera eficient i segura per múltiples programes.
- Per un altre costat, permet a un o més programes excedir la capacitat de la MP, gracies a l'ús de l'emmagatzematge secundari.

- L'MV consisteix essencialment en fer servir dos espais d'adreçament diferents:
  - L'espai d'adreçament lògic o virtual: les adreces que hi haurà als programes (quan els compilem i també quan els executem).
  - L'espai d'adreçament físic: adreces de la memòria física (les adreces reals").

- L'espai d'adreçament lògic o virtual (MV):
  - Exclusiu de cada programa.
  - Grandària: la màxima permesa pel número de bits d'adreça.
  - Aïlla de la complexitat real: impressió de que només hi ha un programa i memòria il·limitada.
  - Les adreces del compilador i de la CPU: adreces lògiques.

- L'espai d'adreçament físic (MF):
  - Adreces de la memòria física (les adreces reals").
  - Durant l'execució d'un programa, caldrà carregar-lo a l'MF.
  - L'MV defineix un mecanisme que permet recordară quines adreces físiques s'han carregat les adreces lògiques d'un programa.
  - Quan la CPU sol·licita una dada, l'adreça lògica es tradueixen l'adreça física on realment és la dada.



## 7.1.3 El disc com un nivell més en la jerarquia de memòria

- Una de les motivacions originals de l'MV: límitació de la memòria física.
- Abans es solucionava mitjançant overlaying.
- L'MV funciona d'una manera semblant, posarem al disc les parts d'un programa que no s'estan fent servir.
- Ho gestiona el sistema operatiu, amb l'ajuda del hardware.

## 7.1.3 El disc com un nivell més en la jerarquia de memòria

- El disc passa a ser una capa més de la jerarquia de memòria.
- La relació entre el disc i l'MF serà la mateixa que hi ha entre l'MP i l'MC.



#### Índex

- 7.1 Introducció
- 2 7.2 Funcionament de la memòria virtual
- 3 7.3 Fallada de pàgina
- 4 7.4 Traducció ràpida amb TLB
- 5 7.5 Protecció i Compartició

- Terminologia diferent que a MC però mateix concepte.
- L'equivalent als blocs d'MC en memòria virtual s'anomenen pàgines.
- Les fallades d'MV s'anomenen fallades de pàgina.

- Una pàgina virtual és un bloc de memòria contigu i de grandària fixa T d'un programa.
- Per exemple  $T = 4KiB = 2^{12}$  bytes.
- És la unitat més petita de gestió de memòria amb que treballa l'MV.

- La subdivisió d'un programa en pàgines la fem pensant en l'espai d'adreçament lògic del programa.
- Cada pàgina tindrà un número de pàgina virtual (virtual page number o VPN).
- Donada una adreça lògica A, VPN =  $\frac{A}{T}$  = 32 -t bits alts de l'adreça.
- page offset = t bits de menor pes de l'adreça.

#### Exemple:

- $A = 0x10010004 i T = 4KiB = 2^{12}$ .
- VPN = 0x10010.
- Page offset = 0x004.

- Durant l'execució, caldrà anar carregant a l'MF les pàgines que es vagin necessitant.
- Cada subdivisió contigua de grandària T de la memòria física l'anomenarem marc de pàgina (page frame en anglès).
- Cada marc de pàgina tindrà associat un número de pàgina física (physical page number o PPN).
- Les pàgines d'un programa que, en un moment donat, no estiguin a la memòria física estaran al disc.



#### Exemple:

- Adreces de 32 bits i una mida de pàgina T = 4KiB =  $2^{12}$  bytes.
- L'espai d'adreçament lògic de cada programa seria de  $2^{32}$  bytes = 4GiB =  $2^{32}/2^{12} = 2^{20}$  pàgines virtuals.
- Dos programes que fan servir 2 pàgines virtuals cadascú (VPN 0 i VPN 1).
- Memòria física de 2<sup>14</sup> bytes = 16KiB = 2<sup>14</sup>/2<sup>12</sup> = 4 marcs de pàgina (PPN 0, PPN 1, PPN 2 i PPN 3).



- L'assignació de pàgines a marcs de pàgina la realitza el sistema operatiu en funció de l'espai disponible en cada moment.
- El VPN no determina on van les pàgines, com passava en una memòria cache completament associativa.

#### 7.2.2 Traducció d'adreces

- El processador treballa amb adreces lògiques.
- Cada vegada que necessita llegir o escriure una dada pregunta per l'adreça lògica d'aquesta dada a la unitat de gestió de memòria (MMU).
- Traducció d'adreces: la MMU tradueix l'adreça lògica en l'adreça física on realment es troba la dada.

#### 7.2.2 Traducció d'adreces

 Donat el número de pàgina (el VPN) a la que pertany l'adreça, el sistema de traducció determina en quin marc de pàgina (PPN) de la memòria física es troba.



- La selecció de a quin marc de pàgina es carrega una pàgina donada la realitza el sistema operatiu.
- Per poder recordar després (traducció d'adreces), a quin marc de pàgina s'ha carregat la pàgina amb un VPN determinat, es fa servir una taula anomenada taula de pàgines.
- Hi ha una taula de pàgines per cada programa.

- Cada filera de la taula de pàgines s'anomena entrada de la taula de pàgines (PTE).
- Hi ha tantes entrades com pàgines virtuals hi hagi.
- A l'exemple anterior, la taula de pàgines de cadascun dels programes tindria 2<sup>20</sup> entrades.



Exemple: traducció de l'adreça lògica 0x00000801 mitjançant la taula de pàgines corresponent al Programa 1 de l'exemple anterior.

Adreca lògica



- La taula de pàgines la gestiona el sistema operatiu.
- Per simplicitat, suposem de moment que s'emmagatzema a la memòria.

- Si hi ha múltiples programes executant-se concurrentment, cadascú disposarà de la seva pròpia taula de pàgines.
- Quan hi ha múltiples programes en execució es va repartint el control del CPU entre ells (un CPU).
- En un instant de temps, només hi ha un programa en execució, el que anomenen procés actiu.

- Per saber on està la taula de pàgines del procés actiu, el hardware inclou un registre que apunta a la posició inicial de la seva taula de pàgines.
- El registre de la taula de pàgines, el PC i els registres de propòsit general determinen el que s'anomena estat del procés actiu.

#### Índex

- 7.1 Introducció
- 7.2 Funcionament de la memòria virtual
- 3 7.3 Fallada de pàgina
- 4 7.4 Traducció ràpida amb TLB
- 5 7.5 Protecció i Compartició

### 7.3 Fallada de pàgina

- Es produeix una fallada de pàgina (page fault) quan la CPU referència una adreça lògica pertanyent a una pàgina que no es troba a la memòria física.
- És a dir, que el bit P de l'entrada de la TP corresponent al VPN sol·licitat val 0.
- Quan això succeeix cal:
  - Llegir del disc la pàgina.
  - Carregar-la en un marc de pàgina de la memòria física.
  - Actualitzar la informació de la TP.
  - Reintentar l'operació.



### 7.3 Fallada de pàgina

- Passem per alt, de moment, la manera que té el sistema operatiu de localitzar la pàgina al disc.
- Mai llegirem o escriurem dades individuals directament al disc, sempre carregarem primer la pàgina a l'MF.
- Per tant, pel que fa a les escriptures, podem dir que seguirem una política d'escriptura diferida amb assignació.

### 7.3.1 Reemplaçament d'una pàgina

- Si cal carregar una pàgina a MF i no queda cap marc de pàgina lliure? Reemplaçament.
- Algorisme de reemplaçament de pàgines, e.g. LRU.
- Com fem servir escriptura retardada cal un bit M de pàgina modificada"(bit M).
- Abans de reemplaçar una pàgina amb bit M = 1 cal escriure al disc la pàgina modificada.
- A la zona del disc on s'emmagatzemen les pàgines reemplaçades se l'anomena espai d'intercanvi (swap space).

#### Índex

- 7.1 Introducció
- 7.2 Funcionament de la memòria virtual
- 3 7.3 Fallada de pàgina
- 4 7.4 Traducció ràpida amb TLB
- 5 7.5 Protecció i Compartició

#### 7.4.1 El TLB, una cache de traduccions

- Per llegir o escriure una dada caldrà accedir abans a la TP.
- Però TP a la memòria! Dos accessos a memòria cada vegada :-(
- TLB = cache de traduccions (translation-lookaside buffer).
- Emmagatzema les darreres entrades utilitzades de la TP.
- És un component hardware (part de la MMU).

#### 7.4.1 El TLB, una cache de traduccions

#### Taula de pàgines



#### 7.4.1 El TLB, una cache de traduccions

- Entrada del TLB = VPN + còpia d'una entrada de la TP (bits P i M, i PPN).
- Com es fa la cerca? Per VPN.
- Però cal saber si l'entrada està inicialitzada: farem servir el mateix bit P.
- Per això l'anomenarem bit V (Validesa).

### 7.4.2 Encert de TLB

- Quan calgui traduir una adreça, primer es buscarà el VPN entre els VPNs del TLB.
- Si es troba (encara que V val 0): encert de TLB (TLB hit).
- Utilitzarem la informació per traduir.

### 7.4.2 Encert de TLB

- Si el bit V val 0, després de l'encert de TLB es produirà una fallada de pàgina.
- Un cop resolta (i actualitzada la TP) es reescriurà l'entrada al TLB.
- Finalment reintentem tot el procés

### 7.4.3 Fallada de TLB

- Si el VPN no es troba al TLB: fallada de TLB (TLB miss).
- Copiem entrada TP al TLB (sense mirar si P és 0 o 1).
  - Reemplacem primer entrades TLB amb el bit V a 0.
  - Si no n'hi ha cap: algorisme de reemplaçament aleatori.
- Finalment reintentem tot el procés.

### 7.4.4 El bit V

- El bit V pot valer 0 per dos motius:
  - Entrada TLB no inicialitzada.
  - Entrada copiada de TP amb P=0.
- Però hi podria haver, per casualitat, encert de TLB en una entrada no inicialitzada!
- No importa, provocarà fallada de pàgina i reescriptura entrada TLB.

# 7.4.5 Gestió de les escriptures amb TLB

- Si encert de TLB ens estalviarem accedir a la TP per fer la traducció.
- Però, i si l'accés és una escriptura i el bit M al TLB val 0?
- Posarem simultàniament a 1 els bits M al TLB i a la taula de pàgines.
- Només ho farem quan el bit M valgui 0 (la primera vegada).

# 7.4.6 Flux de processament d'accessos a memòria amb TLB



Figura 7.8. Flux del processament de la traducció d'una adreça. [1] Gestió per hardware (MMU). [2] Gestió per software (excepció)

# 7.4.7 Integració de la memòria virtual i la memòria cache



# 7.4.8 Exemple pràctic

- Espai d'adreçament lògic de  $2^{32}$  bytes =  $4GiB = 2^{32}/2^{12} = 2^{20}$  pàgines virtuals.
- Memòria física de 2<sup>14</sup> bytes = 16KiB = 2<sup>14</sup>/2<sup>12</sup> = 4 marcs de pàgina.
- Un únic programa en execució (PPN 3 lliure).
- L'ordre en que s'han produït els accessos previs ha estat: VPN 3, VPN 0, VPN 2.
- Per claredat al TLB el reemplaçament serà LRU en comptes d'aleatori.

# 7.4.8 Exemple pràctic

#### Taula de pàgines (a l'inici)

| VPN     | P | M | PPN  |
|---------|---|---|------|
| 0x00000 | 1 | 0 | 0x01 |
| 0x00001 | 0 | 0 |      |
| 0x00002 | 1 | 0 | 0x02 |
| 0x00003 | 1 | 1 | 0x00 |
| 0x00004 | 0 | 0 |      |
| 0x00005 | 0 | 0 |      |
| 0x00006 | 0 | 0 |      |
|         | 0 | 0 |      |
| 0xFFFFF | 0 | 0 |      |
|         |   |   |      |

#### TLB (a l'inici)

| VPN     | ٧ | IVI | PPN  |
|---------|---|-----|------|
| 0x00003 | 1 | 1   | 0x00 |
| 0x00000 | 1 | 0   | 0x01 |
| 0x00002 | 1 | 0   | 0x02 |
| 0xAFB3  | 0 | 0   | 0xFA |
|         |   | _   |      |

#### Seqüència d'accessos a memòria

| adreça       | VPN     | TLB<br>miss | $\mathtt{VPN}_{\mathtt{TLB\_OUT}}$ | page<br>fault | esc.<br>disc | lect.<br>disc | PPN  |
|--------------|---------|-------------|------------------------------------|---------------|--------------|---------------|------|
| E:0x00002A0B | 0x00002 | No          | -                                  | No            | -            | -             | 0x02 |
| L:0x00001F21 | 0x00001 | Sí          | -                                  | Sí            | -            | 0x00001       | 0x03 |
| L:0x0000420C | 0x00004 | Sí          | 0x00003                            | Sí            | 0x00003      | 0x00004       | 0x00 |
| L:0x00003001 | 0x00003 | Sí          | 0x00000                            | Sí            | -            | 0x00003       | 0x01 |
| L:0x00005120 | 0x00005 | Sí          | 0x00002                            | Sí            | 0x00002      | 0x00005       | 0x02 |

# Índex

- 7.1 Introducció
- 7.2 Funcionament de la memòria virtual
- 3 7.3 Fallada de pàgina
- 7.4 Traducció ràpida amb TLB
- 5 7.5 Protecció i Compartició

- L'MV permet compartir la memòria del computador de manera segura entre múltiples processos.
- Un procés no ha de poder accedir a l'espai d'adreçament d'un altre procés o del sistema operatiu.
- La traducció via TP ho garantitza si assumin que els processos no comparteixen cap pàgina física.

- Podria un procés modificar la seva pròpia TP?
- No, les TPs van a l'espai d'adreçament reservat al S.O.
- El S.O. no és un procés, sinó un programari comú a tots els processos.
- El S.O. té reservada una part de l'espai d'adreçament de tots els processos.
- en MIPS, les adreces lògiques amb el bit 31=1.

- El processador disposa de dos modes de funcionament, mode usuari i mode sistema.
- Només en mode sistema serà possible modificar el TLB o les TPs.

### Protecció contra escriptura:

- Es pot prohibir l'escriptura en determinades pàgines i permetre-ho en altres.
- El motiu el veurem a la següent subsecció (compartició).
- Bit de permís d'escriptura (E) que s'inclou en cada entrada de la TP i del TLB.

# 7.5.2 Compartició

- Un procés P1 vol permetre a un altre, P2, accedir al seu espai d'adreçament.
- El sistema operatiu, a petició de P1, assigna una pàgina lògica de P2 a la mateixa pàgina física que P1 vol compartir.
- La pàgina compartida pot tenir permís d'escriptura o no per al procés P2.

# 7.5.2 Compartició

