ESERCIZIO 2

Si consideri l'impianto automatizzato illustrato schematicamente in Fig. 2. Il funzionamento è il seguente: le due macchine M_A e M_B lavorano pezzi grezzi diversi, caricandosi automaticamente da un buffer di ingresso che non è mai vuoto. Le macchine possono lavorare un solo pezzo grezzo alla volta. Un robot manipolatore provvede a trasferire i prodotti lavorati da tali macchine un verso un nastro trasportatore dotato di due posti, uno per il prodotto A e uno per il prodotto B, dove viene effettuata anche l'operazione di assemblaggio. Non è possibile prevedere a priori l'ordine di terminazione della lavorazione delle macchine M_A e M_B . Quando entrambi i pezzi sono pronti sul nastro nei relativi posti, il robot procede all'assemblaggio, a seguito del quale pecorre far avanzare il nastro di una quantità prefissata, lasciando spazio per successivi assemblaggi. I prodotti C assemblati vengono scaricati automaticamente alla fine del nastro.

Fig. 2

Si chiede di:

- 2.1) Identificare con chiarezza le operazioni del robot e del nastro in modo sufficientemente semplificato (ad esempio, per la lavorazione della macchina si possono individuare il comando StartLavA e la misura EndLavA).
- 2.2) Progettare un modello a reti di Petri che modellizzi il comportamento desiderato del sistema, adottando il modello delle attività a 2 eventi.
- 2.3) Rappresentare con il linguaggio SFC una porzione significativa del modello a reti riguardante le operazioni del robot manipolatore.

Si consideri ora la seguente variante, che prevede l'utilizzo del buffer. Per i soli pezzi di tipo B, quando il nastro contiene già un pezzo B in attesa di assemblaggio, il robot depone un eventuale successivo pezzo prodotto dalla macchina M_B nel buffer. In presenza di 2 pezzi B, uno sul nastro e uno nel buffer, il manipolatore deve prendere il pezzo B sul nastro per fare l'assemblaggio. Per i pezzi di tipo A, non ci sono variazioni.

2.4) Si chiede di quindi progettare un modello a reti di Petri che modellizzi il comportamento desiderato del sistema compreso l'utilizzo del buffer, adottando il modello delle attività a 2 eventi o 1 evento.

SOLUZIONE ESERCIZIO 2

- 2.1) Scaro di M_A, Scarico di M_B, AssemblaggioEAvanzamentoNastro (non c'è necessità di distinguerle a questo livello di dettaglio)
- 2.2) Modello ad 1 evento, per semplicità, senza buffer:

Significato delle transizioni:

T1	Lavorazione di M _A
T2	Scarico di M _A
T3	Assemblaggio e avanz. nastro
T4	Lavorazione di M _B
T5	Scarico di M _B

Significato dei posti:

P1	pezzo lavorato da MA pronto per lo scarico	
P2	pezzo scaricato da M _A sul nastro C	
P3	pezzo lavorato da M _B pronto per lo scarico	
P4	pezzo scaricato da M _B sul nastro C	
P5	M _A disponibile	
P6	M _B disponibile	
P7	Robot disponibile	
P8	Spazio disponibile per prodotti A sul nastro	
P9	Spazio disponibile per prodotti B sul nastro	

2.4) Modello ad 1 evento, per semplicità, con buffer. Per ora inseriamo solo il buffer:

Significato delle transizioni aggiunte:

T6	Scarico di M _B sul buffer	
T7	Assemblaggio con pezzo B dal buffer e avanz. nastro	

Significato dei posti:

P10	pezzo scaricato da M _B sul buffer	
P11	spazio disponibile per prodotti A sul buffer	

Infine, inseriamo ora le priorità (o regole) richieste dall'esercizio:

r1	autoanello P4-T6	quando sono disponibili nastro e buffer, priorità al nastro
		(buffer usato solo se il nastro è già occupato)
r2	autoanello P11-T5	se M _B è pronta a scaricare c'è un pezzo B nel buffer, priorità al
		buffer (M _B scaricata solo se il buffer è vuoto)
r3	autoanello P9-T7	quando ci sono prodotti B sia sul nastro sia nel buffer, priorità al
		nastro (assemblaggio con B dal buffer solo se nastro libero)

