

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

8 2 0 6 4 4 7 0 5 5

CO-ORDINATED SCIENCES

0973/31

Paper 3 Theory (Core)

May/June 2020

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of the human female reproductive system.

Fig. 1.1

(i) Label Fig. 1.1 using words from the list.

Each word may be used once, more than once or not at all.

cervix		ovary	0	viduct	
	uterus		vagina		[3]

(ii) The boxes on the left are parts of the human female reproductive system.

The boxes on the right are the functions of the different parts.

Draw one line from each part to its function.

part	function
ovary	site of fertilisation
oviduct	receives penis during sexual intercourse
uterus	releases female gametes
vagina	where fetus develops

© UCLES 2020 0973/31/M/J/20

[3]

(b) HIV is a sexually transmitted disease often spread through unprotected sexual intercourse.

Fig. 1.2 is a graph showing the number of new infections of HIV in a country between 1999 and 2009.

Fig. 1.2

(1)	Calculate the overall change in the number of new HIV infections between 1999 and 2009.
	[1
(ii)	Describe the trends in new HIV infections between 1999 and 2009.
	Use data to support your answer.
	[2

(c) Table 1.1 shows methods of how HIV can be transmitted or controlled.

Complete Table 1.1 to identify if the method is an example of **transmission** or **control**.

Table 1.1

method	transmission or control
barrier contraception	
contaminated blood transfusion	
sharing needles when taking drugs	

[2]

[Total: 11]

2 (a) The diagram in Fig. 2.1 shows part of the water cycle.

Clouds form above the sea and rain falls from the clouds.

Clouds are made up of very small drops of liquid water.

Fig. 2.1

The letters P, Q and R show locations where physical changes happen in the water cycle.

(i) Use the letters P, Q and R to complete Table 2.1.

Each letter may be used once, more than once or not at all.

Table 2.1

description of change	location
water vapour condenses	
liquid water gains kinetic energy	
water molecules move closer together	
water evaporates	

Γ	2	1
L	v	J

		[1]

(b)	Car acid	rbon dioxide in the air dissolves in rainwater. This causes the rainwater to become slightly dic.								
	(i)	Water is ne	utra	ıl.						
		State the pl	l va	lue of water.						
									[1]	
	(ii)	Suggest a p	Ηv	alue of rainwater.						
									[1]	
(c)	Cor	mplete the wo	ord e	equation for the neutr	alis	ation reaction betw	een	an acid and a base.		
		acid	+	base -	\rightarrow		+			
									[1]	
(d)	Tab	le 2.2 shows	son	ne oxides.						
	It al	so shows wh	ethe	er they are acidic or b	oasi	C.				
				Tab	le 2	.2				
				oxide		acidic or basic				
				carbon dioxide		acidic				
				chlorine oxide		acidic				
				magnesium oxide		basic				
				phosphorus oxide		acidic				

(i) Predict whether nitrogen dioxide is acidic or basic.

sodium oxide

basic

(ii)	Nitrogen dioxide is an air pollutant.
	Describe one human activity that releases nitrogen dioxide into the air.
	[1
(iii)	Identify one other gaseous air pollutant that is harmful to humans.
	[1
	[Total: 10

3 (a) Fig. 3.1 shows a skier at the top of a slope.

Fig. 3.1

(i) The skier travels 310.5 m in 20 s.

Calculate the average speed of the skier.

average speed = m/s [2]

(ii) Fig. 3.2 shows a speed-time graph of the skier.

Fig. 3.2

Use Fig. 3.2 to determine the distance travelled while the skier has constant acceleration during the first 8 seconds.

			distance =		m [2]
(iii)	State the name o	f the force that impe	edes the skier's	motion.	
					[1]
(b) (i)	The skier has a m	nass of 85 kg			
(5) (1)	THO ORIOT HAS A H	idoo or oo kg.			
	The gravitational	field strength g is 1	0N/kg.		
	Calculate the wei	ght of the skier.			
			weight =		N [2]
(ii)	State the source slope.	of the gravitationa	ıl field that cau	ises the skier to accele	rate down a
					[1]
(iii)	When the skier go	oes to the top of a s	slope, he does	work.	
	As he climbs, his	gravitational potent	ial energy incre	eases.	
	Choose from the	list the correct word	I to complete th	e sentence below.	
	created	gained	lost	transferred	
	The work done by	∕ the skier is equal f	to the total ene	rgy	
		,			[1]
					[Total: 9]

4 A student investigates photosynthesis using an aquatic plant (Elodea).

Fig. 4.1 shows the apparatus the student uses.

Fig. 4.1

(a)	(i)	The aquatic plant releases bubbles of gas.	
		Name the gas the bubbles are made from.	
			[1]
	(ii)	The investigation was repeated with the filament lamp removed.	
		Explain why the number of bubbles produced decreases.	
			[1]
(b)	Pho	otosynthesis is an enzyme-controlled reaction.	
(D)		Define the term <i>enzyme</i> .	
	(i)		
	()		
	(ii)	Suggest why placing a hot filament lamp too close to the water could stop the pl producing bubbles.	lant
			[1]

(c) Fig. 4.2 is a photomicrograph of the cells in an Elodea leaf.

Fig. 4.2

(i) Identi	fy the part of the cell labelled X in Fig. 4.2.
	[1]
(ii) Name	e three parts of a cell found in both plant cells and animal cells.
1	
2	
3	[3]
(iii) Sugg Fig. 4	est two ways the structure of root hair cells would differ from the cells shown in .2.
	[2]
(iv) State	one function of root hair cells.
	[1]
	[Total: 12]

		[
(b) F	ig.	5.1 shows the chemical symbols of five non-metallic elements.
		C <i>l</i> Ar N
		P S
		Fig. 5.1
(One of the symbols in Fig. 5.1 is not in the same period of the Periodic Table as the others.
		Identify the symbol and explain your answer.
		symbol
		explanation
(i	ii)	Select two elements from Fig. 5.1 that are contained in fertilisers.
`	,	and
(ii	ii)	State one reason why fertiliser is added to soil.
•	•	
(c) S	Sele	ect one element from Fig. 5.1 that is used to treat water to make it safe to drink.
E	Expl	ain how it does this.
e	elem	nent
E	expl	anation

(d) Fig. 5.2 shows the electronic structures of atoms of argon, chlorine and potassium.

Fig. 5.2

(i) Argon does **not** react with potassium.

Explain why.

Use ideas about electronic structures in your answer.

[2]

(ii) Potassium reacts with chlorine to form potassium chloride.

Describe how the electronic structures of a potassium atom and of a chlorine atom change when potassium and chlorine react.

change in potassium

change in chlorine

[2]

(iii) Name the type of chemical bonding in potassium chloride.

......[1]

State one advantage and one disadvantage, apart from cost, of solar cells. advantage disadvantage	6	(a)	Solar cells can be used to generate electricity for a house.
			State one advantage and one disadvantage, apart from cost, of solar cells.
disadvantage			advantage
			disadvantage
			[2]

(b) Fig. 6.1 shows an ice cube and a thermometer in a glass of water.

Fig. 6.1

(i) The water provides thermal energy which melts the ice.

State what happens to the temperature of the ice as it is melting.

(ii) Fig. 6.2 shows that more ice cubes have been added to the glass of water.

Fig. 6.2

The ice cubes reduce the temperature of the water. The scale on the liquid-in-glass thermometer shows this decrease in temperature.

Explain this action of the liquid-in-glass thermometer.

Use ideas about particles in your answer.

[2]

The water in the glass is evaporating.

Describe evaporation in terms of the motion of the water molecules.

[Total: 7]

(iii)

7 (a) A teacher measured the height of the students in a class to the nearest cm.

Table 7.1 shows the results.

Table 7.1

height range/cm	frequency in class
140–145	2
146–150	6
151–155	8
156–160	12
161–165	5
166–170	2
171–175	1

	(i)	State the m	ost commo	on height ran	ige in the cla	ass.			
								Cr	n [1]
	(ii)			tion shown b					- 4-
									[1]
(iii)	State the ev	vidence fro	m Table 7.1	that suppor	ts your answ	er in (a)(ii).		
									[1]
(b)	Use	words from							
		words iroin	the list to d	complete the	sentences	about natura	al selection.		
(6)				complete the			al selection.		
(5)	Eac	h word may	be used or	nce, more th	an once or ı	not at all.	al selection.	al: a	
(5)	Eac	h word may	be used or	nce, more the	an once or r	not at all.		die	
	Eac	h word may	be used or	nce, more the	an once or ı	not at all.	al selection.	die	
	Eac	h word may alleles r	be used or	nce, more the	an once or r co	not at all.		die	
	Eac	h word may alleles r viduals in a p	be used or react population	nce, more the	an once or r con rvive pring.	not at all. mpetition va	riety	die	
	Eac	h word may alleles r viduals in a pere are not e	be used or react population	cells suproduce offs ources for al	an once or r con rvive pring.	not at all. mpetition va	riety	die	
	Indiv	h word may alleles r viduals in a p ere are not e	react copulation enough res	cells suproduce offs ources for al	an once or r con rvive pring. If the individ	not at all. mpetition va uals there is	riety increased		
	Indiv	h word may alleles r viduals in a p ere are not e	react copulation enough res	cells suproduce offs ources for al	an once or r con rvive spring. If the individue environm	not at all. mpetition va uals there is	riety increased		
	Indiv If the Indiv Indiv	h word may alleles viduals in a pere are not e viduals that a viduals that a	react copulation enough res are better a	produce offs ources for al	an once or r con rvive spring. If the individue environm	not at all. mpetition va uals there is	increased		next

(c)	Lack of resources can cause extinction of a species.
	Suggest two ways humans can cause extinction.
	1
	2
	[2]
	[Total: 9]

Ca	lcium	and copper are metals.	
(a)	(i)	State two physical properties of metals.	
		1	
		2	
			[2
	(ii)	Copper is a transition metal. Calcium is not a transition metal.	
		State two properties of transition metals that are not properties of calcium.	
		1	
		2	
			[2
	(iii)	Calcium and copper are added to separate amounts of water.	
		Describe the reaction, if any, for each metal.	
		calcium	
		copper	[2
(b)	Cop	oper metal is produced when copper(II) oxide reacts with hydrogen gas.	
	The	e equation for this reaction is shown.	
		$CuO + H_2 \rightarrow Cu + H_2O$	
	(i)	Explain why this equation is described as balanced.	
			[1
	(ii)	Identify which substance is reduced in this reaction.	
		Explain your answer.	
		substance	
		explanation	
			[2

(c) Metals are covered with a thin layer of copper during electroplating.

Fig. 8.1 shows apparatus and materials to electroplate a metal key with copper.

Fig. 8.1

Draw a diagram to show the apparatus and materials set up to electroplate the metal key with copper.

[2]

[Total: 11]

9 (a) Fig. 9.1 shows a thin converging lens used in a digital camera.

A ray of light has been drawn from a man's head to the image sensor.

Fig. 9.1

- (i) On Fig. 9.1 draw a ray of light from the man's **hand** to show where it will be detected on the image sensor of the camera. [2]
- (ii) The image is formed on the image sensor.

Circle the **two** correct words or phrases that describe the image.

diminished	enlarged	inverted	same size	upright	
					[2]

(iii) The camera detects visible light, and has an infrared sensor.

Write **visible light** and **infrared** in the correct positions in the electromagnetic spectrum in Fig. 9.2.

[2]

X-rays				radio waves
--------	--	--	--	-------------

Fig. 9.2

(b) The camera is used to photograph a thunder storm.

Thunder and lightning are caused at the same time. The photographer sees the flash of lightning before he hears the thunder.

(i)	Explain why the photographer sees the lightning before he hears the thunder.
(ii)	Explain why an astronaut orbiting the Earth in a space-station sees the lightning but does not hear the thunder.

(c)	Wh	en electronic equipment is recycled, some of the materials can be sorted using magnets.
	(i)	In a recycling factory an electromagnet is used to sort steel from other metals.
		Explain why an electromagnet is used to sort the steel.
		[2]
	(ii)	Some materials at the recycling factory were tested to see if they conducted electricity.
		Complete Table 9.1 by placing a tick (\checkmark) in the electrical conductor column or electrical insulator column to correctly describe each material.

Table 9.1

	electrical conductor	electrical insulator
aluminium		
cardboard		
copper		
polystyrene		
PVC		

[2]

[Total: 13]

BLANK PAGE

10 Fig. 10.1 is a drawing of a person doing a parachute jump.

Before the jump the person experiences a large increase in the production of the hormone adrenaline, which targets the liver and the heart.

Fig. 10.1

(a)	Describe how adrenaline is transferred to the heart and the liver.
	[1
	[1

(b) Place ticks (\checkmark) in the boxes to show all the effects of adrenaline on the body in Table 10.1.

Table 10.1

decreased pulse rate	
increased breathing rate	
increased transpiration	
mutation of DNA	
widened pupils	

[2]

(c)	One	e other effect of adrenaline is an increased rate of respiration.	
	(i)	State the word equation for respiration.	
			[2]
	(ii)	State why respiration is needed for muscle contraction.	
			[1]
(d)	Res	spiration is one of the characteristics of living things.	
	Stat	te two other characteristics of living things.	
	1		
	2		
			[2]
		[Total	: 8]

11

Pet	Petroleum and natural gas are extracted from the Earth.								
(a)	Gas	soline is a useful product made from petroleum by fractional distillation.							
	(i)	State a use for gasoline.							
			[1]						
	(ii)	State one other useful product made from petroleum by fractional distillation.							
			[1]						
(b)	Cor	mpound G is the main constituent of natural gas.							
	(i)	State the name of compound G .							
			[1]						
	(ii)	Fig. 11.1 is a diagram of one molecule of compound G.							
		key							
		Fig. 11.1							

On Fig. 11.1, complete the key to identify the atoms in the molecule of **G**.

[1]

(0	:)	Alkanes	are	saturated	compounds
1,	-,	,a	a. c	outui utou	compound

Alkenes are **unsaturated** compounds.

(i)	Describe a test and its results that shows whether a compound is an alkane or an alke	ne.
	test	
	result with an alkane	
	result with an alkene	
		[2]
(ii)	Describe the difference in the covalent bonding in alkanes and in alkenes.	
		[1]
(iii)	State the name of the chemical reaction that makes alkenes from alkanes.	
		[1]
	[Total	: 8]

12 (a) Fig. 12.1 shows a circuit containing a battery of 4 cells.

Fig. 12.1

(i)	Name the components P and Q .	
	component P	
	component Q	 21
(ii)	The battery is a source of electromotive force (e.m.f.).	-]
	State the unit of e.m.f.	
	unit =[1]
(iii)	The switch is closed and both lamps light up.	
	Readings are recorded on ammeters A ₁ and A ₂ .	
	Describe the difference, if any, in the readings of ${\rm A_1}$ and ${\rm A_2}$.	
	Explain your answer.	
	difference	٠.
	explanation	
		 21

(b) Fig. 12.2 shows a mains operated d.c. power source.

Fig. 12.2

	Identify one electrical hazard on Fig. 12.2.
	[1]
(c)	Argon gas is used in some types of lamp.
	An argon atom has the chemical symbol $^{40}_{18}$ Ar.
	State the composition of the nucleus of an atom of Argon.

(d)	A sa	ample of radioactive rock was tested to see if it emitted α -particles.
	(i)	Describe how a radiation detector could be used to show that $\alpha\text{-particles}$ were being emitted.
		[2]
	(ii)	When the sample of radioactive rock is removed from the detector, the detector continues to record some radiation.
		Explain this observation.
		[1]

[Total: 11]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	II	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	×e	xenon 131	86	R	radon -			
	=			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ä	bromine 80	53	Н	iodine 127	85	Ą	astatine			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	moloulum -	116	^	livermorium -
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Bi	bismuth 209			
	2			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -
	=			2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	පි	cadmium 112	80	РĜ	mercury 201	112	S	copernicium -
										29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Gre										27	ဝိ	cobalt 59	45	R	rhodium 103	77	٦	indium 192	109	¥	meitnerium -
		- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	д	tantalum 181	105	Ср	dubnium –
					ato	rek				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ̈́	hafnium 178	104	¥	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium -
	_			3	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium —

71	Γn	lutetium 175	103	Ļ	lawrencium	ı
70	Υp	ytterbium 173	102	N _o	nobelium	ı
69	T	thulium 169	101	Md	mendelevium	I
89	ш	erbium 167	100	Fm	fermium	ı
29	운	holmium 165	66	Es	einsteinium	ı
99	٥	dysprosium 163	98	ర	californium	ı
65	Д	terbium 159	97	Ř	berkelium	ı
64	gq	gadolinium 157	96	Cm	curium	ı
63	En	europium 152	95	Am	americium	ı
62	Sm	samarium 150	94	Pn	plutonium	ı
61	Pm	promethium	93	d	neptunium	I
09	PZ	neodymium 144	92	\supset	uranium	238
59	Ā	praseodymium 141	91	Ра	protactinium	231
28	Ce	cerium 140	06	T	thorium	232
22	Гa	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).