Test Exercise 2 – GPA

(a)

(ii)

```
# import packages for the analysis
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import statsmodels.formula.api as smf
GPA = pd.read_table('TestExer2-GPA.txt')
# create a fitted model
lm = smf.ols(formula='FGPA ~ SATV', data=GPA).fit()
lm.summary()
                    OLS Regression Results
    Dep. Variable:
                             FGPA
                                          R-squared:
                                                       0.008
           Model:
                              OLS
                                     Adj. R-squared:
                                                       0.007
                      Least Squares
                                          F-statistic:
         Method:
                                                       5.201
            Date: Sun, 22 Sep 2019 Prob (F-statistic):
                                                      0.0229
            Time:
                           10:57:44
                                     Log-Likelihood:
                                                     -388.44
 No. Observations:
                               609
                                                AIC:
                                                       780.9
     Df Residuals:
                                                BIC:
                               607
                                                       789.7
        Df Model:
  Covariance Type:
                         nonrobust
             coef std err
                               t P>|t| [0.025 0.975]
 Intercept 2.4417
                    0.155 15.747 0.000
                                          2.137
                                                  2.746
    SATV 0.0631
                    0.028
                           2.280 0.023
                                          0.009
                                                  0.117
      So for the model FGPA = a+b*SATV,
(i)
      b = 0.063, standard error of b is 0.028, P-value is 0.023
      95% CI of SATV's increasing by 1 on FGPA is [0.009, 0.117]
```

```
# create a fitted model
mlm = smf.ols(formula='FGPA ~ SATM+SATV+FEM', data=GPA).fit()
# print the coefficients
mlm.summary()
```

OLS Regression Results

Dep. Variable:	FGPA	R-squared:	0.083
Model:	OLS	Adj. R-squared:	0.078
Method:	Least Squares	F-statistic:	18.24
Date:	Sun, 22 Sep 2019	Prob (F-statistic):	2.41e-11
Time:	12:04:45	Log-Likelihood:	-364.67
No. Observations:	609	AIC:	737.3
Df Residuals:	605	BIC:	755.0
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.5570	0.216	7.205	0.000	1.133	1.981
SATM	0.1727	0.032	5.410	0.000	0.110	0.235
SATV	0.0142	0.028	0.507	0.612	-0.041	0.069
FEM	0.2003	0.037	5.358	0.000	0.127	0.274

- (i) So for the model FGPA = a+b1*SATM+b2*SATV+b3*FEM, b2 = 0.014, standard error of b2 is 0.028, P-value is 0.612
- (ii) 95% CI of SATV's increasing by 1 on FGPA is [-0.041, 0.069]

(c) The correlation Matrix:

<pre>GPA.iloc[:,1:].corr()</pre>						
	FGPA	SATM	SATV	FEM		
FGPA	1.000000	0.195040	0.092167	0.176491		
SATM	0.195040	1.000000	0.287801	-0.162680		
SATV	0.092167	0.287801	1.000000	0.033577		
FEM	0.176491	-0.162680	0.033577	1.000000		

It shows that the correlation between SATV and FGPA is less than 10% and much smaller than the other two pairs. So when stronger predictors introduced into the model, the influence of SATV will become insignificant.

(d)

 H_0 : b2 = 0

 H_1 : $b2 \neq 0$

Analyze the restricted model:

```
# create a restricted fitted model without SATV
rmlm = smf.ols(formula='FGPA ~ SATM+FEM', data=GPA).fit()

R0_2 = rmlm.rsquared
R1_2 = mlm.rsquared
F = (R1_2-R0_2)*605/(1-R1_2)
F
```

0.25715514284401925

We get F = 0.257155 < 3.9. So, the effect of SATV on FGPA is insignificant.

As we know from (b) that t^2 of b2 is $0.507105^2 = 0.257155$

Clearly, $F = t^2$