

Expresions rule logics Lecture 3

DR. Herlina Jayadianti., ST., MT

Preposition Review

 Preposition is a statement that have the value of truth: T or F or not T or F

Proposition Example:
.....
Not Preposition Example
.....

- 1. $\neg (\neg A \land \neg B) \lor (A \land B)$
- 2. $A \lor (A \land \neg B)$
- 3. $((\neg A \lor (\neg B \land \neg A)) \lor (B \land A)) \lor (A \lor B)$
- 4. $(A \lor \neg B) \land (((\neg A \land B) \rightarrow \neg A) \land \neg B)$

- 1. $\neg (\neg A \land \neg B) \lor (A \land B)$
- 2. $A \lor (A \land \neg B)$
- 3. $(((\neg A \lor (\neg B \land \neg D)) \lor (B \land C)) \lor (A \lor B))$
- 4. $(A \lor \neg B) \land (((\neg A \land C) \rightarrow \neg A) \land \neg B)$

- 1. $\neg (\neg A \land \neg B) \lor (C \land D)$
- 2. $A \lor (A \land \neg B)$
- 3. $(((\neg A \lor (\neg B \land \neg D)) \lor (B \land C)) \lor (A \lor B))$
- 4. $(A \lor \neg B) \land (((\neg A \land C) \rightarrow \neg A) \land \neg B)$

- 1. $\neg(\neg A \land \neg B) \lor (A \land B)$
- 2. $A \lor (A \land B)$
- 3. $A \vee A \wedge B$

- 4. $((\neg A \lor (\neg B \land A)) \lor (B \land A)) \lor (A \lor B)$
- 5. $(A \lor \neg B) \land (((\neg A \land B) \rightarrow \neg A) \land \neg B)$

Review - Logic Operator

Operator	Conventional notation	Zohar Manna* notation
"not", OR "negation"	¬	Not
"and", OR "conjunction"	^	And
"or", OR "disjunction"	V	Or
"xor", OR "exclusive or"	\oplus	
"implies", OR "if then",	\rightarrow	If-then
"if and only if",	\leftrightarrow	If-and-only-if
"if then else"	nothing	If-then-else

*) Manna, Z and Waldinger, R., 1985, " *The logical basis for computer programming*", Addison-Wesley Publishing Company.

Used of Logic Operator

logika (matematika OR informatika) -boolean

Q

Web

Buku

Gambar

Berita

Lainnya 🔻

Alat penelusuran

Laman 2 dari sekitar 5.980.000 hasil (0,17 detik)

Logika Matematika | Matematika Menyenangkan

www.matematikamenyenangkan.com/logika-matematika/ >

26 Mar 2009 - Apakah **Logika** Itu? Perhatikan ilustrasi berikut ini! Anda adalah seorang siswa SMK yang baru saja lulus sekolah dan langsung memulai ...

Logika Informatika | Informatika

informatika.web.id/category/logika-informatika *

14 Feb 2013 - Category Archives: **Logika Informatika** ... Logika adalah metode atau teknik yang diciptakan untuk meneliti ketepatan penalaran. Logika ...

[PDF] MODUL LOGIKA MATEMATIKA

navelmangelep.files.wordpress.com/2011/.../modul-logika-matematika.p... ▼

Modul **logika matematika** ini terdiri atas beberapa bagian Proses. Pembelajaran antara lain: 1. Pernyataan, Kalimat Terbuka, serta Ingkarannya. ➤ Pernyataan.

ASAH OTAK "Logika, Analisa, IQ, Matematika" | Facebook

https://www.facebook.com/Thinker.Family -

... about this. Menumbuhkan pemikiran bahwa Logika, Analisa, Matematika adalah hal yang menyenangkan dan bermanfaat dalam peningkatan kreatifitas otak.

LOGIC INTERPRETATION

INTERPRETATION?

= PENAFSIRAN

Logic Interpretation

 an interpretation is a compositional assignment of objects to parameters leading to a "possible" distribution of truth values among statements

Example:

If (A and B) then C

one of the interpretation logic :

A <- True

B <- False

C <- True

and the value of the example above is

POGYAKARTIP

..in Program

Function in Pascal Programming

```
function
pass(UTS,UAS,Aktif:integer):boolean;
begin
  pass := ((UTS>60 or UAS>60 ) and
  (Aktif>70)) or ((UTS >40 and UAS>50)
  and (Aktif
end;
```

PASSED

Determine the value of

- a. Pass (65,55,75)
- b. Pass (45,55,75)
- c. Pass (55,55,75)
- d. Pass (41,51,81)


```
function
  p(x,y,z:integer):boolean;
  begin
  p := ((x>60 or y>60 ) and
  (z>70)) or ((x >40 and y>50)
  and (z>80))
  end;
```


Ambiguity

If Dewi Study hard then she pass the exam and she will get a gift

A = Dewi Study Hard

B = Dewi Pass the exam

C = Dewi will get a gift

in Logic expresition

if A then B and C

Interpretation

if A then B and C

(if A then B) and C

if A then (B and C)

Table of Truth

Α	В	С	(if A then B) and C	if A then (B and C)
True	True	True	True	True
True	True	False	False	False
True	False	True	False	False
True	False	False	False	False
False	True	True	True	True
False	True	False	False	True
False	False	True	True	True
False	False	False	False	True

Ambiguity: The differences in interpretation lead to differences in the value of truth in the proposition (a compound proposition).

HOGYAKARTA

What is the result?

```
var
  x,y,z,hasil : integer;
begin
  x := 3;
  y := 4;
  z := 5;
  hasil:=6;
  if x>y then
       if y>z then
          hasil:=7
  else
      hasil:=8;
  writeln(hasil);
end;
```

Terdapat 2 penafsiran kepemilikan else

- else miliknya if x>y, karena terlihat dari indentasinya Biasanya kita melihatnya dari sisi ini, sehingga hasilnya sepertinya bernilai 8
- else miliknya if y>z karena berdasar aturan else milik if yang terdekat. Ini yang dilakukan komputer, sehingga hasilnya 6

POGYAKARTA

AMBIGUITY and The Solutions

- Ambiguity: The differences in interpretation lead to differences in the value of truth in the proposition (a compound proposition).
 - Solution : using Fully Parenthesized Expression

Example: (in bhs Indonesia)

- Jika tikus waspada dan bergerak cepat maka kucing atau anjing tidak mampu menangkapnya
- Proposition:

A: Tikus waspada

B: Tikus bergerak cepat

C: Kucing mampu menangkap

D: Anjing mampu menangkap

if A and B then not C or not D

if (A and B) then not (C and D)

not (if (A or B) then C and D)

not (if (A and B) then (C or D))
not (if (A and B)) then (C or D)

Priority Operator

Number	Operator	Conventional notations	Zohar Manna* notation
1	"not", OR "negasi"	¬	Not
2	"and", OR "konjungsi"	٨	And
3	"or", OR "disjungsi"	V	Or
4	"xor", OR "exclusive or"	\oplus	
5	"implies", OR "if then",	\rightarrow	If-then
6	"if only if",	\leftrightarrow	If-and-only-if

If you see more than one operator in the same hierarchy, then starting from the left

• Example:

Dewi is pretty and kind

Dewi is kind and pretty

P = Dewi is pretty

Q = Dewi is kind

Then: P and Q ≡ Q and P

P and Q equivalent with Q and P

Logic Equivalen ≡

Р	Q	P and Q	Q and P
Т	Т	T	T
Т	F	F	F
F	Т	F	F
F	F	F	F

P and Q ≡ Q and P
P and Q Equivalent with Q and P
P and Q Equal to Q and P

Logic Propotitional₁ - **LAWS**

Laws	Example
Identity laws	A and True ≡ A A or False ≡ A
Dominiton laws	A or True ≡ True A and False ≡ False
Law of contradiction	A and not A ≡ False A or not A ≡ True
Idempoten law	A and $A \equiv A$ A or $A \equiv A$
Law of Double Negation	not (not A) = A

Logic Propotitional₂ - LAWS

Laws	Example
Commutative Laws	A and $B \equiv B$ and A A or $B \equiv B$ or A
Associativity Laws	(A and B) and $C \equiv A$ and (B and C) (A or B) or $C \equiv A$ or (B or C)
Distributivity Laws	A and (B or C) \equiv (A and B) or (A and C) A or (B and C) \equiv (A or B) and (A or C)
Absorption	A and (A or B) \equiv A A or (A and B) \equiv A
De Morgan	Not (A and B) ≡ not A or not B Not (A or B) ≡ not A and not B

Exercise _{1 (in bahasa Indonesia)}

Change the sentences become a logical expression

- Jika saya tidak keliru, Dewi sudah diwisuda dan pacarnya atau orangtuanya berada di sampingnya
- Bowo membeli saham dan membeli properti untuk investasinya, atau dia dapat menanamkan uang di deposito bank dan menerima bunga uang.

Bowo membeli saham dan membeli properti untuk investasinya, atau dia dapat menanamkan uang di deposito bank dan menerima bunga uang.

- A: bowo membeli saham
- B : Bowo membeli properti
- C : Bowo menanamkan uang di bank
- D : Bowo memperoleh bunga bank
- (A and B) atau (C and D)
- X atau Y

Exercise 2

Inserting parentheses in logical expressions so there is no ambiguity

If A and B and C then D

answer: If ((A and B) and C) then D

If (A and (B and C)) then D

- 1. If ((A or B) or C) then not (D)
- 2. If (A or (B or C)) then not (D) asosiatif
- 3. If not (A and B) then not (C and D)
- 4. If not A or not B then not C or not D de morgan
- 5. If A then B **if and only if** if not C then not D
- 6. If A or B and C then A and B or C

If((A or B) or C) then not (D)
 If(A or (B or C)) then not (D)
 If(A or B) or (C then not (D))

- If not (A and B) then (not (C and D))
- 2. If A then B if and only if if not C then not D
- If A or B and C then A and B or C

Exercise 3

if the values of A and B are False, and the value of C and D are True, then lets find the truth value of the logical expression below:

- 1. Not (A if and only If B) and (if not C then D)
- 2. If (not A and (B or not C) or (B if and only if A)) then (D and C)
- 3. (A or (if B then (C and not A))) if and only if (B or not D)
- 4. If (If A then (if not B then C) else (B and C)) then (A and not B) else (if B then not D)

Exercise 4

Prove that the following logical expression is equivalent by using a truth table

- a) Not(A) if and only if B ≡(not(A) or B) and (not (B) or A)
- b) If A then (if not A then B) \equiv True
- c) If (A or not B) then $C \equiv (\text{not A and B})$ or C
- d) If A then (if B then C) \equiv if (if A then B) then C
- e) If A then B ≡ not (A and not B)

Thank you See you next week