Eso208 Programming Assignment 2

Prasad Jaware 200705 Group: J4

1. input1.txt

4 2 0 10 2 4 1 11.5 0 1 5 4.5

a) Gauss elimination

3

Enter the method you want to use

- 1. Guass Elimination(without pivoting)
- 2. Guass Elimination(with partial pivoting)
- 3. LU decomposition by Doolittle method (without pivoting)
- 4. LU decomposition by Crout method (without pivoting)
- 5. Cholesky decomposition (for symmetric positive definite matrix)

1

X =

1.5000

2.0000

0.5000

b) Gauss elimination (Partial Pivoting)

Enter the method you want to use

- 1. Guass Elimination(without pivoting)
- 2. Guass Elimination(with partial pivoting)
- 3. LU decomposition by Doolittle method (without pivoting)
- 4. LU decomposition by Crout method (without pivoting)
- 5. Cholesky decomposition (for symmetric positive definite matrix)

2

X =

1.5000

2.0000

0.5000

Name 📤	Value
 A	3x4 double
 B	[8.2682,-0.0057,
durerror curerror	3.6868e-04
eigenvalue	double 2,4.5990,-1
error	3.0808e-04
fid	21
filename	"output1.txt"
i i	1
iter iter	9
⊞ j	2
 k	2
ine line	'0 1 5 4.5'
merror	1.0000e-03
method	1
miter	100
utf outf	22
 ■ Q	[1.0000,0.0012,-5
 R	[8.2682,-0.0159,
size	3
talue value	8x5 double
<u></u> X	[1.5000;2;0.5000]
	1.8672

Name 📤	Value
⊞ A	3x4 double
∐ B	[8.2682,-0.0057,
curerror	3.6868e-04
= eigenvalue	[8.2682,4.5990,-1
error	3.6868e-04
	23
💶 filename	"output1.txt"
⊞ i	1
iter	9
∃ j	2
⊞ k	2
line line	'0 1 5 4.5'
merror	1.0000e-03
	2
miter miter	100
→ outf	24 1x1 double
∃ Q	[1.0000,0.0012,-5
∐ R	[8.2682,-0.0159,
∃ size	3
	8x5 double
 X	[1.5000;2.0000;0
ymod	1.8672

c) LU decomposition by Doolittle method (Without Pivoting)

Enter the method you want to use

1. Guass Elimination(without pivoting) Name A Value 2. Guass Elimination(with partial pivoting) **⊞** A 3x4 double 3. LU decomposition by Doolittle method (without pivoting) fid 9 4. LU decomposition by Crout method (without pivoting) "output1.txt" 🍱 filename ⊞i 5. Cholesky decomposition (for symmetric positive definite 1 ∭j ∭k 2 matrix) 3 3 2 ₩L [4,0,0;2,3,0;0,1,4.6... line Y = '0 1 5 4.5' 描 method 4 10 描 outf 0 <u></u>р 2 0 <u></u> s1 0.3333 s2 0.3333 0 📩 size 3 **⊞** U [1,0.5000,0;0,1,0.... [1.5000;2.0000;0.... L =[2.5000;2.1667;0.... 1.0000 0 [1,0,0;0.5000,1,0;... ine 🍱 '0 1 5 4.5' 0.5000 1.0000 0 method 3 0 0.3333 1.0000 🚻 outf 8 <u></u>р 2 🛨 s1 0 U = 0.3333 ize size 3 ₩ U [4,2,0;0,3,1;0,0,4.6... 4.0000 2.0000 0 [1.5000;2;0.5000] 3.0000 1.0000 H Y [10;6.5000;2.3333] 0 4.6667

X =

1.5000

2.0000

0.5000

d) LU decomposition by Crout method (Without Pivoting)

Enter the method you want to use

- 1. Guass Elimination(without pivoting)
- 2. Guass Elimination(with partial pivoting)
- 3. LU decomposition by Doolittle method (without pivoting)
- 4. LU decomposition by Crout method (without pivoting)
- 5. Cholesky decomposition (for symmetric positive definite matrix)

4

```
0
  0
  0
L =
 4.0000
            0
                 0
 2.0000 3.0000
    0 1.0000 4.6667
U =
 1.0000 0.5000
    0 1.0000 0.3333
         0 1.0000
X =
 1.5000
 2.0000
 0.5000
```

e) Cholesky decomposition (for symmetric positive definite matrix)

Enter the method you want to use

- 1. Guass Elimination(without pivoting)
- 2. Guass Elimination(with partial pivoting)
- 3. LU decomposition by Doolittle method (without pivoting)
- 4. LU decomposition by Crout method (without pivoting)
- 5. Cholesky decomposition (for symmetric positive definite matrix)

5

Y =

0

0

L =

2.0000 0 0 1.0000 1.7321 0 0 0.5774 2.1602

Name 📤	Value
 A	3x4 double
ans ans ans ans	[2,1,0;0,1.7321,0
fid	11
ilename	"output1.txt"
⊞ i	1
Ⅲ j	2
 k	3
	2
 L	[2,0,0;1,1.7321,0;
ine line	'0 1 5 4.5'
method	5
→ outf	12
ll p	2
 1 s1 s1	0.3333
± s2	0.3333
ize size	3
⊞ U	[1,0.5000,0;0,1,0
	[1.5000;2.0000;0
	[5;3.7528;1.0801]

X =

1.5000

2.0000

0.5000

2. input.txt

3 8 -1 -1 -1 4 -2 -1 -2 -1 100 0.001 8

a) Power Method

Enter the method you want to use

- 1. Power method
- 2. Inverse power method
- 3. Inverse power method with shift
- 4. QR method

1

Give your input in a file named 'input2.txt'

FORMAT: Size of matrix

matrix

Maximum iterations

Maximum approximate relative error

Press ENTER to continue

z =

0.9778

-0.1998

-0.0624

(Error, Eigenvalue) is

value =

1.5505 8.2398

Name 📤	Value
 A	[8,-1,-1;-1,4,-2;-1,
cureigenval	8.2682
dureigenvec :	[8.0850;-1.6524;
durerror curerror	6.1649e-04
eigenvalue	8.2682
error	6.1649e-04
 fid	13
tilename 🚾	"output2.txt"
i i	3
iter iter	15
ine line	'0.001'
maxelement	0.9778
maxelpos —	1
merror	1.0000e-03
method	1
miter	100
d outf	14
size	3
🛨 value	14x2 double
<u></u> y	[8.0850;-1.6524;
<u></u> ymod	68.3630
<u></u> z	[0.9778;-0.1998;
zmod	8.2682

```
      0.1239
      8.2602

      0.4008
      8.2658

      0.1632
      8.2674

      0.1173
      8.2680

      0.0632
      8.2681

      0.0368
      8.2682

      0.0205
      8.2682

      0.0115
      8.2682

      0.0036
      8.2682

      0.0036
      8.2682

      0.0011
      8.2682

      0.0011
      8.2682

      0.0006
      8.2682
```

eigenvalue =

8.2682

b) Inverse Power Method

Enter the method you want to use

- 1. Power method
- 2. Inverse power method
- 3. Inverse power method with shift
- 4. QR method

2

Give your input in a file named 'input2.txt'

FORMAT: Size of matrix

matrix

Maximum iterations

Maximum approximate relative error

Press ENTER to continue

z =

- -0.1288
- -0.3396
- -0.9317

(Error, Eigenvalue) is

value =

1.0e+03 *

0.1000	0.0071
0.1784	0.0035
1.8103	0.0020
0.2047	0.0019
0.2259	0.0019
0.2008	0.0019
0.2021	0.0019
0.2001	0.0019

Name 📤	Value
 A	[8,-1,-1;-1,4,-2;-1,
<mark></mark> B	[0.1127,-0.0141,
🛨 cureigenval	1.8672
dureigenvec :	[0.2406;0.6340;1
curerror	200
🛨 eigenvalue	1.8672
error	200
🛨 fid	15
💶 filename	"output2.txt"
<mark> </mark>	3
🛨 iter	100
<u>line</u>	'0.001'
merror	1.0000e-03
method	2
	100
■ outf	16
ize size	3
1x1 double	99x2 double
 y	[0.2406;0.6340;1
	3.4864
 z	[-0.1288;-0.3396;
zmod	0.5356

- 0.2004 0.0019
- 0.2000 0.0019
- 0.2001 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0013
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0013
- 0.2000 0.0019 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0019
- 0.2000 0.0013
- 0.2000 0.0019
- 0.2000 0.0019 0.2000 0.0019
- 0.2000 0.0019

```
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
0.2000 0.0019
```

eigenvalue =

1.8672

c) Inverse Power Method with Shift

Enter the method you want to use

- 1. Power method
- 2. Inverse power method
- 3. Inverse power method with shift
- 4. QR method

3

Give your input in a file named 'input2.txt'

FORMAT: Size of matrix matrix Maximum iterations Maximum approximate relative error The scalar value to which the eigenvalue should be closest
Press ENTER to continue
z =
0.9778 -0.1999 -0.0624
(Error,Eigenvalue) is
value =
100.0000 8.2676 7.2541 8.2682 0.5375 8.2682 0.0472 8.2682 0.0039 8.2682 0.0003 8.2682
eigenvalue =
8.2682
QR method Enter the method you want to use
1. Power method
2. Inverse power method
3. Inverse power method with shift
4. QR method 4
Give your input in a file named 'input2.txt'
FORMAT: Size of matrix matrix Maximum iterations Maximum approximate relative error
Press ENTER to continue
(Iterations,Error,Eigenvalues) is

d)

value =

1.000041.57208.22734.4842-1.71152.00007.04678.25784.5835-1.84133.00001.16208.26514.5978-1.8629

Name 📤	Value
 A	[8,-1,-1;-1,4,-2;-1,
 B	[3.5556,-0.7778,
☐ cureigenval	8.2682
dureigenvec :	[8.0849;-1.6526;
durerror curerror	3.1548e-04
🚠 eigenvalue	8.2682
⊟ error	3.1548e-04
fid	17
💶 filename	"output2.txt"
⊞ i	3
iter	7
	3
line	'8'
	1.0000e-03
→ method	3
→ miter	100
→ outf	18
∃ size	3
theta	8
	6x2 double
⊞ y	[8.0849;-1.6526;
	68.3630
∏ z	[0.9778;-0.1999;
 zmod	3.7287

Name 📤	Value
 A	[8.2682,-0.0057,
∐ B	[8.2682,-0.0057,
durerror curerror	3.6868e-04
igenvalue <u></u>	[8.2682,4.5990,-1
error	3.6868e-04
id fid	19
filename	"output2.txt"
i i	3
iter iter	9
 j	3
<u></u> k	2
ine line	'0.001'
merror	1.0000e-03
method	4
miter	100
outf	20
 □ Q	[1.0000,0.0012,-5
∐ R	[8.2682,-0.0159,
size	3
🛨 value	8x5 double
	1.8672

4.00000.19128.26724.5992-1.86655.00000.03158.26794.5992-1.86716.00000.00528.26814.5991-1.86727.00000.00108.26824.5990-1.86728.00000.00048.26824.5990-1.8672

eigenvalue =

8.2682 4.5990 -1.8672