

Universidade Federal de Uberlândia Faculdade de Computação Curso de Graduação em Ciência da Computação

COMPUTAÇÃO BIO-INSPIRADA

DANIEL GONÇALVES (12011BCC011)

Relatório - Trabalho 1: Implementação de um algoritmo genético para o problema da mochila e comparação com outras abordagens

UBERLÂNDIA

2023

1 SUMÁRIO

1	S	UMÁRIO	2
2	Iì	NTRODUÇÃO	3
3		PESENVOLVIMENTO	
	3.1	Dados de Entrada	4
	3.2	Taxas de Crossover, Mutação e Tamanho da População	4
	3.3	Cálculo da Aptidão	4
	3.4	Geração da População Inicial	4
	3.5	Mecanismo de Seleção	4
	3.6	Mecanismos de Crossover	5
	3.	6.1 Crossover de 1 ponto	5
	3.	6.2 Crossover de 2 pontos	5
	3.7	Mecanismo de Mutação	5
	3.8	Critérios de Parada	5
4	R	ESULTADOS	6
	4.1	Média e Desvio-Padrão dos Ótimos	6
	4.2	Média e Desvio Padrão dos Tempos	8
5	C	ONCLUSÃO	Q

2 INTRODUÇÃO

O objetivo deste trabalho é explorar diferentes implementações de um algoritmo genético para o problema da mochila binária, e em seguida, comparar seus resultados com implementações baseadas em Programação Dinâmica e GRASP (Greedy Randomized Adaptive Search Procedure).

Duas implementações do algoritmo genético foram exploradas neste trabalho, com a única diferença entre elas sendo o operador de crossover. Os operadores considerados foram de Crossover de 1 pontos e o de Crossover de 2 pontos. O elitismo não foi considerado neste trabalho. Por fim, o mecanismo de seleção utilizado foi o de torneiro, considerado quatro indivíduos em cada rodada.

3 DESENVOLVIMENTO

A implementação do algoritmo genético foi feita na linguagem Python, com uso de pacotes disponíveis nativamente na própria linguagem. Todo o código está contido em um único arquivo (main.py), com as funções um() e dois() correspondendo ao Operador de Crossover de 1 ponto e de Crossover de dois pontos, respectivamente.

3.1 Dados de Entrada

Os dados de entrada para o programa seguem um padrão fixo, na ordem indicada a seguir:

- 1. Quantidade de objetos disponíveis (representada por N).
- 2. Peso Máximo da mochila.
- 3. N linhas, cada uma contendo o valor e o peso de um objeto, respectivamente.
- 4. O valor ótimo, sendo um parâmetro opcional.

O programa aceita esses dados por meio da entrada padrão, logo os dados armazenados em um arquivo devem ser redirecionados via linha de comando.

3.2 Taxas de Crossover, Mutação e Tamanho da População

De forma global a taxa de crossover utilizada foi de 70% e a de mutação foi de 1%, ambos valores muito utilizados na literatura.

Já o tamanho da população foi definido como quatro vezes a quantidade de objetos disponíveis, após testes com um exemplo básico (arquivo 1.txt).

3.3 Cálculo da Aptidão

A aptidão de um cromossomo é simplesmente a soma dos valores dos objetos adicionados na mochila. Caso o peso desses objetos exceda a capacidade da mochila, a aptidão é definida como –1.

3.4 Geração da População Inicial

A geração da população inicial é um passo fundamental para que o algoritmo funcione corretamente. À princípio, cromossomos cuja aptidão fosse –1 eram adicionados normalmente à população inicial. Porém, isso acabou por envenenar o algoritmo, de modo que ele não conseguia evoluir pela alta presença desses cromossomos.

Para contornar esse problema, foi incluída uma função responsável pela correção desses cromossomos na população inicial. Um número é sorteado, e a partir daquele alelo objetos vão sendo retirados da mochila até que o peso total seja menor ou igual ao limite, tornando o indivíduo válido.

Esse mecanismo é apenas usado na população inicial, não sendo usado no restante do algoritmo.

3.5 Mecanismo de Seleção

O mecanismo de Torneio foi adotado para a seleção. Na presente implementação, quatro indivíduos são escolhidos aleatoriamente dentro da população e o que tiver a melhor aptidão é

escolhido para fazer parte da população intermediária, que posteriormente pode ou não realizar crossover.

3.6 Mecanismos de Crossover

3.6.1 Crossover de 1 ponto

No crossover de 1 ponto é sorteado um número entre 0 e N-2, onde N é a quantidade de bits do cromossomo. A razão de ser N-2 é o fato de que estamos considerando apenas os locais onde cortes são possíveis, e não a quantidade de alelos existentes.

O crossover pode acontecer com uma chance de 70%. Caso não ocorra, os dois pais são adicionados à próxima população. Caso ocorra, os pais geram dois filhos, que por sua vez sofrem mutação e são adicionados à próxima população.

3.6.2 Crossover de 2 pontos

A única diferença com o outro mecanismo de crossover é o fato de que dois números são sorteados entre 0 e N-2, sendo que eles não podem ser iguais. A região entre o menor e o maior é trocada entre os pais, resultando em dois filhos, que por sua vez sofrem mutação e são adicionados à próxima população.

3.7 Mecanismo de Mutação

Para o mecanismo da mutação foi utilizada a abordagem em que existe uma chance de 1% para que ocorra uma mutação em cada gene de um dado cromossomo.

3.8 Critérios de Parada

Dois critérios de parada foram definidos:

- 1- Caso o ótimo tenha sido passado como parâmetro, o programa irá parar assim que o primeiro cromossomo com esse valor seja gerado.
- 2- Caso contrário, e quando o programa não for capaz de obter nenhum cromossomo com o ótimo passado, o algoritmo irá parar quando 80% dos cromossomos apresentarem a mesma aptidão.

4 RESULTADOS

Para os testes considerando as quatro implementações (PD, GRASP, AG Crossover 1-ponto, AG Crossover 2-pontos) foram selecionadas 4 instâncias do problema da mochila disponíveis junto com as implementações do problema em PD e GRASP. Em específico, foram os conjuntos de dados input1.in à input4.in.

O conjunto input1 apresenta 20 objetos, o input2 apresenta 40 objetos e os inputs 3 e 4 apresentam 50 objetos cada.

Para cada uma das abordagens foram realizadas 10 execuções para cada dos conjuntos de dados. Em seguida, as médias e desvios padrões dos ótimos obtidos e do tempo necessário para a execução foram calculados. A seguir discutirei alguns dos resultados observados:

4.1 Média e Desvio-Padrão dos Ótimos

Como pode ser observado no Gráfico 1, a Programação Dinâmica (PD) foi a abordagem cujas médias mais se aproximaram do ótimo global, seguida por perto por ambas as versões do algoritmo genético. Por último, o GRASP apresentou as piores médias entre os algoritmos considerados.

Além disso, pela Tabela 1, temos que com exceção do conjunto de dados 2, o algoritmo genético com crossover de 2 pontos apresenta melhores resultados que o de apenas um ponto.

Gr'afico~1-m'edia~dos~'otimos~obtidos~por~cada~um~dos~algoritmos~considerando~cada~um~dos~conjuntos~de~entrada.

Média dos Ótimos					
Algoritmo	Input1	Input2	Input3	Input4	
Dynamic	31621	67829	143449	28840	
Grasp	27939,1	50816,3	102641,9	26570,7	
AG - 1 Ponto					
Crossover	28912,1	62104,6	135884,8	24973,9	
AG - 2 Ponto					
Crossover	31101,6	60358	138163,3	25056,2	

Tabela 1 - média dos ótimos obtidos por cada um dos algoritmos.

Agora, se analisarmos os desvios-padrões dos ótimos obtidos, temos curiosamente que para todos os conjuntos de dados, a PD tem desvio-padrão de 0, como visto na Tabela 2. Isso indica que a abordagem baseada em PD alcançou o ótimo global em 100% das ocasiões. Já os outros algoritmos apresentam diferentes graus de desvio em relação a suas médias.

Gráfico 2 - desvio=padrãp dos ótimos obtidos por cada um dos algoritmos considerando cada um dos conjuntos de entrada.

Desvio Padrão dos Ótimos				
Algoritmo	Input1	Input2	Input3	Input4
Dynamic	0	0	0	0
Grasp	2451,751956	3830,385013	5728,462901	1128,612427
AG - 1 Ponto				
Crossover	3860,914441	6976,836408	6449,428619	1081,300703
AG - 2 Ponto				
Crossover	886,4660425	6323,22163	7174,22304	751,1394012

 $Tabela\ 2-desvios\text{-padr\~oes}\ dos\ \acute{o}timos\ obtidos\ por\ cada\ um\ dos\ algoritmos.$

4.2 Média e Desvio Padrão dos Tempos

Como pode ser observado no Gráfico 3 e na Tabela 3, quanto mais objetos uma instância do problema da mochila tem, maior tende a ser a o tempo necessário para que o algoritmo seja executado.

Em particular, o algoritmo GRASP apresentou as menores médias, o que acaba não sendo muito vantajoso por ter sido o algoritmo com as piores médias. Em seguida, o melhor algoritmo em tempo de execução foi o PD, o que considerando sua precisão para achar o ótimo global indica um ótimo custo-benefício.

No que tange os algoritmos genéticos considerados, seu desempenho foi um pouco inferior aos outros dois até a base de dados com 40 objetos, mas que aumentaram muito quando a base chegou à 50 objetos. Com isso, seu uso, da maneira como estão, só seria viável se o tempo não fosse um problema.

Gráfico 3 – média dos tempos das execuções de cada algoritmo considerando os conjuntos de dados.

Média dos Tempos				
Algoritmo	Input1	Input2	Input3	Input4
Dynamic	0,0033841	0,101316071	0,247328138	0,235338259
Grasp	0,000791693	0,001397824	0,001694489	0,003050256
AG - 1 Ponto				
Crossover	0,034760809	0,20354836	1,124678588	1,618087983
AG - 2 Ponto				
Crossover	0,037771344	0,199394655	1,68001883	1,415991712

Tabela 3 – médias dos tempos de exeeução de cada algoritmo.

Por fim, no que tange o desvio-padrão dos tempos, pelo Gráfico 4 e tabela 4, temos que o PD e o GRASP apresentam tempos mais consistentes, enquanto os dois algoritmos genéticos apresentam tempos mais voláteis, causados provavelmente por sua natureza não-determinística e aleatória.

 $Gr\'afico~4-desvio-padr\~ao~dos~tempos~das~execu\~c\~oes~de~cada~algoritmo~considerando~os~conjuntos~de~dados.$

Desvio Padrão dos Tempos				
Algoritmo	Input1	Input2	Input3	Input4
Dynamic	0,000334286	0,006586124	0,022516564	0,009193624
Grasp	0,000044	0,000057	0,000140098	0,000183527
AG - 1 Ponto				
Crossover	0,012836485	0,048013854	1,080695755	1,308693876
AG - 2 Ponto				
Crossover	0,007566032	0,105317341	1,327212668	0,914262564

Tabela 4 – desvio-padrão dos tempos de exeeução de cada algoritmo.

5 CONCLUSÃO

A abordagem utilizando PD acabou dominando o cenário tanto no quesito de encontrar o ótimo global sempre, em contraste com os outros algoritmos que nem sempre o encontram, quanto no quesito tempo. Apesar de ser menos eficiente que o algoritmo GRASP, o algoritmo PD apresenta um melhor custo-benefício.

Considerando o baixo desempenho em encontrar valores mais próximos do ótimo global em relação aos outros algoritmos, o GRASP apresenta uma ótima oportunidade de uso quando o tempo é limitado e a resposta esperada não precisa ser muito boa, mas suficientemente eficiente. Já os algoritmos genéticos implementados neste trabalho precisam ser refinados para que possam competir em tempo de execução e eficiência em encontrar o melhor global quando colocados lado a lado com outros algoritmos. Em particular, a inclusão do mecanismo de elitismo e outras abordagens para seleção, crossover e mutação podem aumentar o custo-benefício das implementações feitas.