2025-05-21

# Projekt GATOR

Firma świadcząca przewozy pasażerskie (busowe)



Uniwersytet Warmińsko-Mazurski w Olsztynie

Gabriel Gancewski, Wiktor Dąbrowski

# Spis treści

| Spis treści                        | 1  |
|------------------------------------|----|
| Streszczenie                       | 2  |
| Przedstawienie organizacji "GATOR" |    |
| Proces biznesowy                   |    |
| Technologie                        | g  |
| UML                                | 10 |
| Aplikacja                          | 13 |
| Strona internetowa                 | 23 |

### Streszczenie

Zaprojektowaliśmy system rezerwacji oraz zarządzania przewozami pasażerskimi dla firmy świadczącej usługi transportu busowego. Projekt obejmuje zarówno stronę internetową, jak i aplikację mobilną.

Projekt rozwiązuje problem braku nowoczesnych narzędzi do zarządzania przewozami oraz trudności w szybkim i wygodnym zakupie biletów przez pasażerów.

# Przedstawienie organizacji "GATOR"

#### Cel działalności firmy

Celem działalności firmy GATOR jest zapewnienie komfortowego, bezpiecznego i punktualnego transportu pasażerskiego dla klientów indywidualnych, jak i grupowych.

#### **Opis firmy**

GATOR jest niedużą firmą działającą na rynku przewozów pasażerskich, która od niedawna świadczy usługi przewozu pasażerów na terenie Olsztyna i okolic. Firma zatrudnia dziesięciu kierowców, dwóch mechaników oraz dwóch pracowników biurowych. Firma posiada 15 autobusów, gdzie każdy może pomieścić 28 pasażerów siedzących i dodatkowo 40 pasażerów stojących. Siedziba firmy znajduje się w Olsztynie przy ulicy Lubelskiej 10. Na razie nie przewiduje się otwierania filii firmy w innych miejscach.

#### **Procesy biznesowe**

- Planowanie i organizacja tras: Optymalizacja rozkładów jazdy. Rozkłady jazdy dostępne online.
- Zarządzanie flotą: Regularne przeglądy techniczne autobusów.
- Ustalanie ceny: Cena biletów jest określana na podstawie decyzji firmy.

- Obsługa klienta: System rezerwacji biletów online bilety są dostępne do kupna na stronie firmy. Obsługa zwrotów i reklamacji.
- Logistyka i zarządzanie personelem: Rekrutacja i szkolenie kierowców.

#### Aktorzy biznesowi

- Klienci indywidualni i grupowi: Osoby, które kupują bilety.
- Pracownicy: Kierowcy, mechanicy oraz pracownicy biurowi.

### Proces biznesowy

#### Realizacja przewozu pasażerskiego firmy "GATOR".

#### • Główny scenariusz:

- 1. Klient dokonuje rezerwacji biletu online za pomocą aplikacji bądź strony internetowej.
- 2. System rejestruje rezerwację oraz weryfikuje klienta.
- 3. System przypisuje kurs wybierając autobus na podstawie trasy.
- 4. System wysyła potwierdzenie rezerwacji oraz bilet do klienta.
- 5. Kierowca realizuje przewóz.
- 6. System aktualizuje status kursu w czasie rzeczywistym i przekazuje go klientowi.
- 7. Klient wsiadając do autobusu kasuje bilet.
- 8. Klient wysiada w miejscu docelowym.

#### Rozszerzenia:

- 2.A. System informuje klienta, że klient podał za mało danych.
- 2.B. System informuje klienta, że klient podał zły e-mail.
- 2.C. System informuje klienta, że klient podał złą kartę kredytową.
- Wymagania funkcjonalne opis ogólny na poziomie wizji systemu:
  - System musi umożliwić rezerwację biletu na wybrany kurs.

- 2. System powinien weryfikować klienta.
- 3. System powinien przesyłać aktualny status kursu klientowi.

#### • Wymagania jakościowe:

- 1. System musi być dostępny w trybie 24/7.
- 2. Dopuszcza się maksymalnie 1 awarię krytyczną (trwającą dłużej niż 30 minut) na rok.
- 3. Interfejs użytkownika powinien być przejrzysty i łatwy w obsłudze.
- 4. System powinien umożliwiać zobaczenie aktualizacji statusu kursu w czasie dłuższym niż 1 minuta od zmiany.

#### • Ograniczenia:

1. System powinien być dostępny na urządzeniach mobilnych jak i na komputerach stacjonarnych.

#### Warunki końcowe:

- 1. Pozytywne: Klient pomyślnie złożył rezerwację.
- 2. Negatywne: Klient otrzymał komunikat o nieudanej rezerwacji.



Obraz 1. Diagram przypadków użycia

#### Przypadki użycia:

- **Loguj się** usługa weryfikacji i autoryzacji użytkownika na podstawie danych użytkownika (email, hasło)
- Administruj systemem Administrator wykonuje zadania związane z administrowaniem systemem
- Złóż rezerwację Klient ma możliwość złożenia rezerwacji
- Przypisz kurs oraz autobus Administrator korzystając z systemu przypisuje kurs oraz autobus do rezerwacji
- Wybierz ilość miejsc Klient może podać ilość miejsc podczas rezerwacji
- Wykonaj kurs Kierowca wykonuje przewóz



Obraz 2. Model analityczny systemu rezerwacji

# Technologie

| Warstwa                | Technologia                                         | Uzasadnienie                                                                                                                                              |
|------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Funkcje<br>serwerowe   | AWS Lambda (+ API<br>Gateway)                       | Automatyczne skalowanie, "pay-per-use", brak konieczności zarządzania serwerem, szybkie wdrożenia.                                                        |
| Język backendu         | Node.js (ES6+) z opcją<br>TypeScript                | Lekkość, szybki czas startu w Lambda, duża społeczność,<br>bogaty ekosystem modułów, możliwość dodania typów przez<br>TypeScript dla lepszej czytelności. |
| Framework HTTP         | Fastify                                             | Fastify – bardzo niskie LAG (cold start), wbudowana walidacja JSON Schema;                                                                                |
| Baza danych            | PostgreSQL Aurora<br>Serverless                     | Relacyjna, transakcyjna Aurora Serverless pozwala na automatyczne skalowanie.                                                                             |
| ORM / Query<br>Builder | Prisma (albo TypeORM /<br>Sequelize)                | Prisma – wygodne migracje, generowanie typów w TS, czytelne query;                                                                                        |
| Uwierzytelnianie       | AWS Cognito (albo JWT + bcrypt)                     | Cognito – szybki start (gotowy portal logowania,<br>potwierdzenia mailowe, resetowanie hasła), weryfikacja<br>tokenów po stronie API Gateway.             |
| Hosting<br>frontendu   | S3 + CloudFront<br>(statyczne pliki<br>HTML/JS/CSS) | SPA (React/Vue/Angular) – proste i tanie rozwiązanie, CDN w globalnym zasięgu.                                                                            |
| CI/CD                  | GitHub Actions / AWS<br>CodePipeline                | Automatyzacja testów i deploymentu: przy każdym pushu do<br>main branch deploy na środowisko testowe; przy merge →<br>deployment produkcyjny.             |
| Monitorowanie          | CloudWatch Logs +<br>AWS X-Ray                      | Podstawowe logi Lambda + metryki (czas wykonania, błędy);<br>X-Ray do śledzenia przepływu żądań między Lambdami (jeśli<br>będzie więcej mikroserwisów).   |
| Powiadomienia          | AWS SNS / SES                                       | Proste wysyłanie maili (SES) lub SMS/Push (SNS) w przypadku powiadomień o rezerwacjach, przypomnieniach.                                                  |
| Kolejkowanie           | AWS SQS                                             | Dla zadań batchowych typu generowanie faktur PDF lub<br>wysyłka gromady emaili.                                                                           |

### **UML**



Obraz 3. Diagram klas konceptualny



Obraz 4. Diagram klas implementacyjny



Obraz 5. Diagram obiektów



Obraz 6. Schemat SQL

# **Aplikacja**



Obraz 7. Logowanie



Obraz 8. Rejestracja



Obraz 9. Sklep biletów



Obraz 10. Informacje o kursie

| 9:41        | ai                  | 유 |
|-------------|---------------------|---|
| <b>←</b>    |                     |   |
| Karta       | VISA (I)            | • |
| Numer karty |                     |   |
| 1           |                     |   |
| Ważna do    | CVV                 |   |
| MM/RRRR     |                     |   |
|             |                     |   |
| Wybierz in  | ną metodę płatności |   |
|             |                     |   |
|             |                     |   |
|             | Zapłać              |   |

Obraz 11. Finalizacja kupna biletu



Obraz 12. Posiadane bilety



Obraz 13. Informacje o zakupionym bilecie

| 9:41                           | .ıl 🗢 <b>■</b>                  |
|--------------------------------|---------------------------------|
| Zarezei                        | rwuj autobus                    |
| Imię                           |                                 |
| Nazwisko                       |                                 |
| Numer telefor                  | nu                              |
| Nazwa firmy/<br>(opcjonalne)   | organizacji                     |
| Typ przejazdo<br>w obie strony | u (w jedną stronę,              |
| 🗎 Data ora                     | z godzina wyjazdu               |
| Data oraz (o                   | z godzina powrotu<br>pcjonalne) |
| Liczba pasaż                   | erów                            |
|                                | Dalej                           |
| <b>©</b>                       | a                               |

Obraz 14. Rezerwacja 1



Obraz 15. Rezerwacja 2



Obraz 16. Finalizacja rezerwacji

## Strona internetowa



Obraz 17. Strona główna



Obraz 18. Okienko logowania



Obraz 19. Okienko rejestracji



Obraz 20. Okienko kupna biletu



Obraz 21. Okienko rezerwacji

# Dziękujemy za uwagę

Gabriel Gancewski

Wiktor Dąbrowski