补码符号位的权重

本文完整版链接,从另一个角度看补码,点击查看

补码的由来

由于原码在进行编码时采用了数制与码制相结合的方法,即<mark>最高位</mark> 符号位采用0代表正数,1代表负数的码制编码方式,低位采用带有相应权重的数制编码方式进行编码;而码制 是不能进行算术运算的,这就会出现5的原码0 0101,等于10而不是等于0;

而且会出现正零0 0与负零1 0的表达方式,

但实际并不存在正零和负零,造成编码的浪费;

补码权重

由于原码所存在的问题,就出现了补码,补码等于原码按位取反加一,补码采用数制编码方式进行编码,最高位(符号位)虽然依旧是0代表正数,1代表负数,但是却有权重(表 示有大小关系),权重位-2ⁿ;如下图所示:

这也很好理解八位补码中10000000 (-128) 为什么是最小的,因为最高位的权重为负,而其它位的权重为正,其它为一,就会使求和的结果的数值增加,如下图所示:

-128	1	0	0	0	0	0	0	0
	‡	‡	‡	‡	‡	‡	‡	‡
对应位权重	-2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

补码转十进制, 十进制转补码

由于补码符号位具有权重,那么补码便可以直接转化位十进制数,例如:10110110对应位的权重如下图所示:

1	0	1	1	0	1	1	0
‡	‡	‡	‡	‡	‡	‡	‡
-2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

$$10110110 = 1*(-27) + 0*(26) + 1*(25) + 1*(24) + 0*(23) + 1*(22) + 1*(21) + 0*(20)$$
=-128+32+16+4+2
=-74

而1101.0110对应位的权重如下图所示:

1	0	1	1	0	1	1	0
‡	‡	‡	‡	‡	‡	‡	‡
-2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴

 $1101.0110 = 1*(-2^3) + 1*(2^2) + 0*(2^1) + 1*(2^0) + 0*(2^{-1}) + 1*(2^{-2}) + 1*(2^{-3}) + 0*(2^{-4})$ = -8 + 4 + 1 + 0.25 + 0.125 = -2.625

以上就是二进制补码 转十进制的方法,相比于把补码转化成原码在转化成十进制快很多;

十进制转补码运算时采用反码加一也是比较方便,只是注意在对带有小数的源码取反之后,所加的这个一是加在最右边那一位之上的;

比如:

-2.625

2.625=110.101

原码: 1110.101

反码: 1001.010

得补码=1001.011

当然也可以不经过反码;

 $-2.625 = -4 + 1 + 0.25 + 0.125 = 1* (-2^2) + 1*(2^0) + 1*(2^{-2}) + 1*(2^{-3})$

所以补码=1001.011

比如:

 $-93 = -128 + 32 + 2 + 1 = 1* (-2^7) + 1*(2^5) + 1*(2^1) + 1*(2^0)$

所以补码为10100011

补码位数的扩展就是符号位扩展

补码进行位数的扩展,直接在高位扩展符号位即可,正数最高位扩展0大小不变,而负数的补码n位补码为1010……1101,则最高位的权重为-2ⁿ⁻¹,当扩展成n+1位补码11010……1101时,变化的就是最高位权重以及次高位的权重,最高位的权重为-2ⁿ,而次高位权重为2ⁿ⁻¹,这两位求和为1*(-2ⁿ)+1*(2ⁿ⁻¹)=-2ⁿ⁻¹,大小不变;所以补码扩展位数直接对符号位进行扩展即可;

在对补码进行十进制转化时可能得到简化,比如:

1111011101=1011101=-2^6^+2^4^+2^3^+2^2^+2^0^=-64+16+8+4+1=-35

原因用图解的方式进行打开:

1111011101各位对应的权重如下:

1	1	1	1	0	1	1	1	0	1
‡	‡	‡	‡	‡	‡	‡	‡	‡	‡
-2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

最高位和次高位因为都为1,但是所在位权重是相反的,相加的结果是1*(-2⁹) + 1*(2⁸) = 1*(1-2) * 2⁸ = -2⁸,这不就是第九位为补码最高位时的权重? 还可以发现因为第八位也为1,这个运算结果还可以与第八位进行相同运算,1 * (-2⁹) + 1* 2⁸ + 1 * 2⁷ = 1*(1 + 2 - 4) * 2⁷ = -2⁷,这不就是第八为补码最高位时的权重吗? 当然这里因为第七位数据依旧是1,还可以与前面结果进行计算,得到的结果当然是-2⁶。运算过程如下:

最终会发现补码 1111011101 的高四位全一的数据与权重相乘在求和运算的结果却与 1011101 的最高位权重是一致的,均为-2⁶。

1	0	1	1	1	0	1
‡	‡	‡	‡	‡	‡	‡
2 ⁻⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

而其余位是相同的,这两个数相等;这也说明,补码在进行位扩展时,要保证大小不变,必须进行符号位的扩展; 您的支持是我更新的最大动力!将持续更新工程,如果本文对您有帮助,还请多多点赞战、评论 □ 和收藏 ☆!