

基于WebRTC的互动直播实践

映客直播 - 叶峰峰

- 1 互动直播发展简介
- 2 映客互动直播SDK及体验优化
- 3 监控与运营支撑
- 4 总结及展望

什么是CDN直播?

定义:

单个主播 + RTMP推流

优点:

全链路使用TCP,技术较为成熟

缺点:

形式单一、缺少话题 弱网延时较大、 只能通过评论与观众互动 CDN源站 主播

什么是互动直播?

定义:

多个主播 + RTP推拉流

优点:

形式多样、话题点多

观众互动: 文字、音频、视频

缺点:

传输延时敏感、整个直播系统较 为复杂

2016年5月 映客互动直播上线

音视频连麦

主播PK介绍

- 1. 主播 1 v 1 PK开始前,主播各自有观众
- 2. PK是互动直播业务中最有价值的应用场景

CDN vs 互动

	项目	CDN直播	互动直播				
主	业务形式	单个主播	多人连麦、主播1V1PK				
播	传输协议	RTMP/TCP	RTP/UDP				
	传输控制	传输层重传	应用层重传				
端	延时要求	无	低延时				
	实现复杂度	低	较高				
观	传输协议	Http-FLV/RTMP	Http-FLV/RTMP				
众	TCP/UDP	TCP	ТСР				
	流数量	主播单流	主播多流/合成流				
端	流同步	无	多流间同步				

主播1 V 1 PK

一、互动直播简介

LiveVideo StackCon 音视頻技术大会

直播系统架构拓扑

什么是直播需要的互动SDK?

CDN 推流SDK

Web RTC

LiveVideo StackCon 音视頻技术大会

对比项	WebRTC	连麦		
音频采样率	8K/16K	48K		
音频编码	iLBC/Opus	AAC-LC		
音频码率	[10 – 32]kbps	[64 – 128]kbps		
视频编码	VP8/VP9	H.264		
视频参数	VGA、800Kbps	576P、1.2Mbps		
传输方式	P2P	Relay		

互动直播SDK!= WebRTC

LiveVideo StackCon 畜神蝌技术大会

互动SDK 和直播SDK结构

实时连麦库结构

互动直播SDK

如何提升用户体验?

传输

• 抗丢包(自适应、4G冗余)

• 降延时(连麦网络优选)

性能

• 前处理优化

• 硬编解优化

秒开

• CDN GOP帧缓存

• CDN 网络优选

多流

• 观众端多流播放

• 多流同步播放

传输

• 下行UDP加速

• QUIC

主播推流端优化

观众端优化

主播端体验优化. 传输、性能

动态策略

更严苛的码率自适应策略

快降慢升

Hybrid ARQ

LINK 服务动态切换

多径冗余

WIFI推流 + 4G补偿

4G通道发送重传数据

观看卡顿率 -1%

动态策略

多侄儿尔

推流

基础网络

性能优化

性能优化

视频前处理开销巨大 手机过热系统降频、采集降帧

- 1. 美颜、特效等级可配置
- 2. 音视频硬编解
- 3. 动画礼物优化
- 4. 异步IO网络库优化

- 1. 有保障的连麦服务 全国5个BGP机房 2条海外专线 主播间支持级联
- 2. 有保障的主播网络
- 3. 开播前的网络优选

主播端体验优化. 传输优化

Echo模式时延

主播←→主播 150ms 主播 → 观众端 2-3s 50ms + 20% 能流畅直播

互动直播_推流流畅率

观众端体验优化.秒开、多流、传输

观众端体验优化

秒开

定义: 从进入房间到首帧出现时间

秒开优化:

服务端:

- 1. CDN支持关键帧GOP缓存
- 2. 优选服务支持批量处理及结果缓存

客户端:

- 1. 大厅数据批量加载
- 2. PING快速探测

观众端秒开率:95%

观众端体验优化. 多流

合流/多流 对比

1. 合流: 多人音视频在服务端合并后转发。

只有一条流,兼容性好;

合流服务器开销、增加延时。

2. 多流: 每个人音视频流单独转发。

多人多流、不转码、低延时。

PK使用多流减少卡顿

- 1. PK场景 , 主播连麦前各自有观众
- 2. 合流: 转码开销、延时、卡顿
- 3. 多流: 低延时、减少卡顿

实时流只能使用多流

- 1. N个人连麦,需要N路合流
- 2. 合流会增加延时

多条CDN流之间如何同步

- 1. 同一条流的音视频同步问题
- 2. 多条流之间的同步问题
- 3. 传输封装协议无关的时间信息传递

观众端体验优化. 多流同步. H.264 SEI

封装协议无关的时间戳扩展

H.264 Unregistered SEI

															00	àsP.uUÞ°à8
00	44	00	D3	DD	00	00	00	00	27	01	00	00	00	00	00	.D.ÓÝ'
						6E										.;6inke krns s
79	6E	63	00	00	33	32	36	38	33	38	37	32	30	30	3A	ync3268387200:
31	35	33	38	32	31	35	35	30	32	36	30	34	3A	31	35	1538215502604:15
33	38	32	31	35	35	(30)	33	30	32	30	00	80	00	00	00	38215503020.€
4F	09	00	4F	FC	00	D3	DD	00	00	00	00	17	01	00	00	00ü.ÓÝ

StartCode(4B) NalType(1B) SEI Type(1	B) PayLoadSize(nB) UUID(16	B) MSG(xB) Tail(2B)
--------------------------------------	----------------------------	---------------------

$$n = (16 + x)/0xFF + 1$$

LiveVideo StackCon 音视頻技术大会

观众端体验优化. 传输

观众端体验优化.传输.QUIC

QUIC是基于UDP的,提供 TCP+TLS+HTTP/2相同功能的协议。 QUIC vs HTTP/2+TLS+TCP的优势:

- 1. 减少了 TCP 三次握手及 TLS 握手时间。
- 2. 改进的拥塞控制。
- 3. 避免队头阻塞的多路复用。
- 4. 连接迁移。
- 5. 前向冗余纠错。

重新缓冲次数 -30%

页面加载速度 +10%

主播: 减少弱网推流卡顿

观众: 优化弱网秒开 + 降低卡顿率

LiveVideo StackCon 音视頻技术大会

观众端体验优化.传输.QUIC.直播

QUIC在直播中的应用:

- 1. RTMP over QUIC & Http over QUIC
- 2. 减少了连接时间,优化秒开
- 3. 改进的丢包处理算法 , 优化弱网卡顿

弱网推流 QUIC vs TCP:

(500k bps + %1 loss)

观看效果对比

Q uick U DP I nternet C onnections

改造:

- 1. Librtmp支持QUIC
- 2. 播放器支持QUIC
- 3. 推流、拉流CDN支持 quic-go

为什么要做直播追踪和运营相关系统?

直播流程追踪系统:

- 1. 关注直播开播关键流程
- 2. 快速定位开播失败原因

大数据分析系统:

- 1. 统计传输质量数据
- 2. 数据监控及对比

三、监控与运营支撑

LiveVideo StackCon 音柳翰技术大会

互动直播. 如何做到直播质量每一秒都可追踪?

现象: 热门流播放卡顿

问题: 性能 or 网络

分析:

- 1. 收集信息
- 2. 捕捉卡顿点
- 3. 推流链路数据分析
- 4. 结论及后续优化

```
"cv": "IK6.1.65_lphone",
"md eid": "live stream push",
"md_einfo": {
  "bitrate": "167".
  "capturefps": "16",
  "connect": "0",
  "custom": "{\"customJson\":\"nor
  "delaytime": "36",
  "domain": "push.cls.inke.cn",
  "encoder": "170",
  "fps": "15",
 "live_id": "1538010554030301",
 "stream_type": "live",
  "timestamp": "1538019044"
"osversion": "ios_11.400000",
"ua": "iPhone8_1",
```


问题发现

分析步骤

主播信息

主播推流埋点

互动直播. 如何做到直播质量每一秒都可追踪?

转推服务埋点

礼物造成卡顿

问题总结及优化建议:

总结:

Iphone 6s + IOS11.4 主播长时间开播后,手机发热导致 性能下降,造成画面采集帧率下降, 在展示礼物时,出现明显卡顿。

优化计划:

- 1. 优化礼物特效
- 2. 前处理性能优化
- 3. 细化关键埋点数据颗粒度

四、总结及展望

H.265 CDN直播推流

H.265 短视频制作

H.265 互动直播

优点: 更好的视频效果

缺点: 适配、转码

推流:RTMP over QUIC 拉流:HTTP over QUIC 提升弱网环境秒开、卡顿率

QUIC源站已上线 映客已支持QUIC推流

QUIC下行边缘节点建设

新业务拓展

技术服务于业务 新的业务拓展带来新的技术挑战 交友(P2P)、K歌(端上合流)

H.265

业务

展望

5G

基础网络能力的提升是新业务广泛推广的基石

5G时代到来必将给实时 通信带来更多的机会

Thank you

