IN THE SPECIFICATION

Please amend the specification beginning at page 9, line 7, as follows:

Further, by selecting the interval between the central wavelengths of the pumping light to a value greater than 6 nm and smaller than 35 nm, the wavelength dependency of gain can be reduced to the extent that the gain flattening filter is not required. The central wavelength λc in this case is a value defined regarding the single pumping light and is represented by the following equation when it is assumed that a wavelength of an i-th longitudinal mode of laser oscillating is λi and light power included in that mode is Pi:

$$\lambda c = \frac{\sum_{i} P_{i} \lambda_{i}}{\sum_{i} P_{i}}$$

$$\begin{bmatrix} P_{i} & P_{i} &$$

The reasons why the interval between the central wavelengths of the pumping light is selected to a value greater than 6 nm is that the oscillating band width of the semiconductor laser 3 of Fabry-Perot type connected to an external resonator 5 having narrow reflection band width is about 3 nm as shown in FIG. 12, and that a WDM coupler 11 (FIGS. 1, 2 and 3) for combining the pumping lights is permitted to have certain play or margin in wavelength interval between the pumping lights in order to improve wave combining efficiency. The WDM coupler 11 is designed so that lights having different wavelengths are received by different ports and the incident lights are joined at a single output port substantially without occurring of loss of lights. However, regarding light having intermediate wavelength between the designed wavelengths, the loss is increased even whichever port is used. For example, in a certain WDM coupler 11, a width of a wavelength band which increases the loss is 3 nm. Accordingly, in order that the band of the

Reply to Notice to File Corrected Application Papers dated April 10, 2009

semiconductor laser 3 is not included within said band, as shown in FIG. 12, a value 6 nm obtained by adding 3 nm to the band width of the semiconductor laser 3 is proper for low limit of the interval between the central wavelengths of the pumping light. On the other hand, as shown in FIG. 13A, if the interval between the central wavelengths of the semiconductor laser 3 is greater than 35 nm, as shown in FIG. 13B, a gain valley is created at an intermediate portion of the Raman gain band obtained by the pumping lights having adjacent wavelengths, thereby worsening the gain flatness. The reason is that, regarding the Raman gain obtained by the single pumping light, at a position spaced apart from the gain peak wavelength by 15 nm to 20 nm, the gain is reduced to half. Accordingly, by selecting the interval of the central wavelengths of the pumping light to the value greater than 6 nm and smaller than 35 nm, the wavelength dependency of gain can be reduced to the extent that the gain flattening filter is not required.