3

Вариант № 8.

(№ 1598) На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

	П1	П2	ПЗ	П4	П5	П6	П7
П1						10	
П2			7		8	12	
П3		7					
П4					5		
П5		8		5			4
П6	10	12					
П7					4		

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта Г в пункт Ж.

(№ 1628) Логическая функция F задаётся выражением (x \land z) \lor ((w \rightarrow x) \equiv (z \rightarrow y)). 2

3	?	3	3	F
			1	0
		1	1	0
	1	1	1	0

На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

(№ 1655) В фрагменте базы данных представлены сведения о родственных отношениях. Определите, у скольких детей отец старше матери, но не более чем на 2 года.

Таблица 1				
ID	Фамилия_И.О.	Пол	Год рожд.	
238	Бортко А.В.	М	1939	
259	Бортко Д.И.	М	2001	
293	Бортко Е.П.	ж	1943	
323	Бортко И.А.	M	1973	
354	Бортко Н.Н.	ж	1979	
365	Конь А.Б.	M	1984	
425	Конь Е.А.	ж	2012	
523	Конь М.А.	ж	2014	
654	Пашко О.А.	ж	1951	
655	Воронов В.И.	M	1964	
656	Воронов О.В.	М	1994	
861	Воронова А.Е.	ж	1965	
941	Черновец А.Н.	ж	1983	
960	Черновец Н.Н.	М	1950	

ID_Родителя	ID_Ребенка
238	323
293	323
323	259
354	259
365	425
365	523
654	354
654	941
655	656
861	656
941	425
941	523
960	354
960	941

- (№ 1679) По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А и \overline{b} используются такие кодовые слова: A-1; $\overline{b}-011$. Укажите сумму длин кратчайших кодовых слов для букв В и Г, при котором код будет допускать однозначное декодирование. (№ 1781) На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
 - 1) Строится двоичная запись числа N.
 - 2) К этой записи дописывается (дублируется) последняя цифра.
 - 3) Затем справа дописывается 0, если в двоичном коде числа N чётное число единиц, и 1, если нечётное.
 - 4) К полученному результату дописывается ещё один бит чётности так, чтобы количество единиц в двоичной записи полученного числа стало чётным.

Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число N, после обработки которого автомат получает число, большее 136. В ответе это число запишите в десятичной системе.

6 (№ 1804) (А.Г. Минак) Определите, при каком наименьшем введённом значении переменной ѕ программа выведет число, превосходящее 600.

- 7 (№ 1876) Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла 56 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 4 раз выше и частотой дискретизации в 3,5 раз меньше, чем в первый раз. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.
- 8 (№ 1953) Петя составляет шестибуквенные слова перестановкой букв слова КАБАЛА. При этом он избегает слов с двумя подряд одинаковыми буквами. Сколько всего различных слов может составить Петя?
- 9 (№ 2001) (А. Кабанов) Откройте файл электронной таблицы 9-0.xls, содержащей результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. В каком количестве измерений температура оказалась выше 25 градусов?
- 10 (№ 2026) С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «муж» или «Муж» в тексте романа в стихах А.С. Пушкина «Евгений Онегин» (файл 10-0.docx). Другие формы слова «муж», такие как «мужу», «мужа» и т.д., учитывать не следует. В ответе укажите только число.
- 11 (№ 2075) (ege.yandex.ru) При регистрации в компьютерной системе, используемой при проведении командной олимпиады, каждому ученику выдается уникальный идентификатор целое число от 1 до 1000. Для хранения каждого идентификатора используется одинаковое и минимально возможное количество бит. Идентификатор команды состоит из последовательно записанных идентификаторов учеников и 8 дополнительных бит. Для записи каждого идентификатора команды система использует одинаковое и минимально возможное количество байт. Во всех командах равное количество участников. Сколько участников в каждой команде, если для хранения идентификаторов 20 команд-участниц потребовалось 180 байт?
- 12 (№ 2129) (С.С. Поляков) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
 - 1. заменить (v, w)
 - 2. нашлось (v)

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда

возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (222)
заменить (222, 1)
заменить (111, 2)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1...12...2 (2019 единиц и 2019 двоек)?

13 (№ 2164) На рисунке изображена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, 3, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город М, проходящих через город Г?

- 14 (№ 2225) (М.В. Кузнецова) Значение арифметического выражения: $9^7 + 3^{21} 9$ записали в системе счисления с основанием 3. Сколько цифр «0» содержится в этой записи?
- 15 (№ 2253) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

$$ДЕЛ(x, A) \rightarrow (ДЕЛ(x, A) \rightarrow ДЕЛ(x, 34) \land ДЕЛ(x, 51))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

16 (№ 2281) Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 3*n + 5, при n > 30

F(n) = 2*F(n+1) + F(n+4), при чётных n \le 30

F(n) = F(n+2) + 3*F(n+5), при нечётных n \le 30
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых значение F(n) содержит не менее двух значащих цифр 0 (в любых разрядах).

- 17 (№ 2297) Рассматривается множество целых чисел, принадлежащих отрезку [1200;11200], которые делятся на 5 и не делятся на 7, 13, 17 и 19. Найдите количество таких чисел и минимальное из них. В ответе запишите два числа через пробел: сначала количество, затем минимальное число.
- 18 (№ 2354) Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-3.xls в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

21

(№ 2418) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч три камня или увеличить количество камней в куче в два раза. Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра

Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 72. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 72 или больше камней.

В начальный момент в первой куче было 7 камней, во второй куче — S камней, $1 \le S \le 64$. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

Bonpoc 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Bonpoc 2. Укажите минимальное значение S, при котором у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Bonpoc 3. Найдите два значения S, при которых у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и при этом у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Найденные значения запишите в ответе в порядке возрастания.

(№ 412) Укажите наименьшее пятизначное число х, при вводе которого алгоритм печатает 26391.

Паскаль	Python	Си
var x, y, a, b: integer;	<pre>x = int(input())</pre>	<pre>#include <stdio.h></stdio.h></pre>
begin	a = 0	<pre>int main(void)</pre>
readln(x);	b = 0	{
a:=0; b:=0; y:=1;	y = 1	int a, b, x, y;
while x > 0 do begin	while x > 0:	scanf("%d", &x);
if (x mod 10) mod 2 = 0	if (x % 10) % 2 == 0:	a = 0; b = 0; y = 1;
then	a = a*10 + x % 10	while (x > 0) {
a:= a*10 + x mod 10	else:	if ((x % 10) % 2 == 0)
else begin	y = y*10	a = a*10 + x % 10;
y:= y*10;	b = b*10 + x % 10	else {
b:= b*10 + x mod 10	x = x // 10	y = y*10;
end;	a = a*y + b	b = b*10 + x % 10;
x := x div 10	print(a)	}
end;		x = x / 10;
a:= a*y + b		}
writeln(a);		a = a*y + b;
end.		<pre>printf("%d", a);</pre>
		}

- 23 (№ 2497) Исполнитель Калькулятор преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:
 - 1. Прибавить 1
 - 2. Прибавить 2
 - 3. Умножить на 3

Программа для исполнителя Калькулятор – это последовательность команд. Сколько существует программ, для которых при исходном числе 1 результатом является число 12?

- **24** (№ 2551) Текстовый файл $\underline{24\text{-j}5.txt}$ состоит не более чем из 10^6 символов S, T, O, C, K. Сколько раз встречается в файле комбинация «SOCKOS»?
- 25 (№ 2569) Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [180131; 180179], числа, имеющие ровно 6 различных делителей. В ответе для каждого найденного числа запишите два его наибольших делителя в порядке возрастания.

(№ 2642) (А.М. Кабанов) В магазине сотовой связи представлены смартфоны различной стоимости. Считается, что К самых дешёвых смартфонов относятся к бюджетному сегменту, а М самых дорогих – к премиум сегменту. По заданной информации о цене каждого из смартфонов определите цену самого дешёвого смартфона премиум сегмента, а также целую часть средней цены телефона из бюджетного сегмента.

Входные и выходные данные. В первой строке входного файла <u>26-k5.txt</u> находятся три числа, записанные через пробел: N – общее количество результатов учащихся (натуральное число, не превышающее 10 000), K – количество смартфонов в бюджетном сегменте, М – количество смартфонов в премиум сегменте. В следующих N строках находятся значения каждого из результатов (все числа натуральные, не превышающие 30000), каждое в отдельной строке.

Запишите в ответе два числа: сначала цену самого дешёвого смартфона премиум сегмента, а затем целую часть средней цены телефона из бюджетного сегмента.

Пример входного файла:

При таких исходных данных ответ должен содержать 2 числа — 25000 и 8333. Пояснение: стоимость смартфонов из бюджетного сегмента: 5500, 7500, 12000; стоимость смартфонов из премиум сегмента — 25000 и 28500. Минимальная цена премиум смартфона 25000, а средняя цена бюджетного 8333,33.

27

(№ 2686) Имеется набор данных, состоящий из пар положительных целых чисел. Необходимо выбрать из каждой пары ровно одно число так, чтобы сумма всех выбранных чисел в шестнадцатеричной системе счисления оканчивалась на F и при этом была минимально возможной. Гарантируется, что искомую сумму получить можно. Программа должна напечатать одно число — минимально возможную сумму, соответствующую условиям задачи.

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество пар N ($1 \le N \le 100000$). Каждая из следующих N строк содержит два натуральных числа, не превышающих $10\ 000$.

Пример входного файла:

Для указанных входных данных значением искомой суммы должно быть число 31, которое в шестнадцатеричной системе счисления записывается как 1F₁₆.

В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла В.

Вариант построен по материалам сайта <u>kpolyakov.spb.ru</u>.

© К. Поляков, 2021