

ME,CE,EC,EE,CS

Lecture No-01

Topics to be Covered

Basic probability

Basic Theorems on probability

Conditional probability

Bayes' Theorem

Revision

- 1. Single Variable calculus J. All branches. 2. Multi Variable calculus J.
- 3. Obdinosty Differential Equations)
- 4. Postial Differential Equations ___ ME, CE, EC, EE
- 5. Vector conculus
- 6. Complex Calculus_ ME, EC, EE

Basic Probability


```
Exteriments — Determinatic Exteriments — outcome is certain

Un determinatic Exteriments — outcome is

(Random Exteriments) uncertain.

Probability exist Since outcome is

Unfredictable.
```

Sample Space (S): The set containing all the Possible Outcomes of a Random experiment is called sample space. It is denoted with s!

2) If Random Experiment India Playing an ODI with S={Win, Lose, Draw] Pakistan,

3) If an aspisant Write GATE exam, S={Qualified, Disqualified}

4) If Relationship is a Random Experiment, S={Massiage, Break-up}

Event (E): Any Subset of Sample Stace is called an Event.

Ex. Gretting a Head When a coin is flipped

Random Experiment E={Head}

Event

Probability of an Event:

If n(s) is the total number of elements in the Sample space of a Random Experiment and if n(E) is the number of forwardle elements of E in Sample space s, then Probability of event s to happen is denoted by p(E) and it is

given by
$$P(E) = \frac{n(E)}{n(s)}$$

Ex: If RE is Rolling a dice, then P{Getting a Prime number}=?

Prime Number = {2,3,5}

P(Getting a Prime Number) =
$$\frac{n(F)}{n(s)} = \frac{3}{6} = \frac{1}{2}$$

-> Axioms of Probability:

① For any Event 'A' with in a Sample space is: n(s) $0 \le P(A) \le 1$ $0 \le P(A) \le 1$ $0 \le P(A) \le n(s)$

N(s) N(s)

2) P(s)=1 => Every Random Experiment will have a result.

$$P(A) = \frac{n(A)}{n(s)}$$

- Area of circle

Area of hectargle

Types of Events:

1) Mutually Exclusive Events: -> P(ANB)=0

If 'A' and 'B' are two events in a Sample space 's',

they are Sound to be Mutually Exclusive if ANB= \$= {}

i.e Events A and B doesn't have any element in Common.

Ex: If Rolling a dice is Random Experiment, then

A -> Gretting a Prime Number

B -> Gretting a Composite Number

(2) Mutually Exhaustive Events:

Two events A and B with in a Sample stace 's' if AUB=S. (ie When the Random Experiment is conducted, definitely cither 'A' or 'B' Comes as an Outcome).

Ex: If RF is Rolling a dice, then
A -> Gretting an odd Number

B -> Getting an Even Number.

P(AUB) = P(s) = 1

S={1,2,3,4,5,6}; A= {1,3,5}; B={2,4,6}=) AUB= S + ANB= Ø

3 Independent Events:

Two Events E, and Ez with in a Same Sample space (or) different Sample spaces are Said to be Indefendent events if Happening of one event doesn't Impact the happening of other.

Ex: $E_1 \Rightarrow$ Gretting a Head When a coin is flipped. $E_2 \Rightarrow$ Gretting an Odd Number When a dice is Rolled. $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ $P(E_1) = \frac{1}{2}$, $P(E_2) = \frac{1}{2}$. $P(E_1 \cap E_2) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. Ex: If $E_1 \rightarrow$ Getting a Head in a 1st toss. $E_2 \rightarrow$ Getting a Tail in 2nd Toss.

- Impossible Event. The Event which Can't happen when a Random Experiment is Conducted.
 - =) P(ImPossible Event)=0.

-> Compliment of an Event:

If A' is any event with in a sample space 's' and P(A) is the Probability of happening of event A, then A' (or) \overline{A} denotes not happening of A' and $P(A^C)$ (or) $P(\overline{A})$ denotes the Probability of not happening of event A'.

Basic Theorems on Probability

1 Addition Theorem of Probability:

If A'and 'B'are two Events within a Sample Space 'S', then

$$P(AUB) = P(A) + P(B) - P(ANB)$$

$$\frac{n(AUB)-n(A)+n(B)-n(AnB)}{n(S)}$$

AUB -> Atteast one of 'A' ox 'B'.

Cose (i): If A and B one mutually Exclusive, then
$$AB = \emptyset$$

$$P(AB) = 0$$

$$P(AUB) = P(A) + P(B)$$

If E, Ez, Ez, Ez, ... En ore 'n' collectively Exclusive Ez Ez En Events in a Sample space 's', then

$$P(E_1 V E_2 V E_3 V - \cdot \cdot E_n) = P(E_1) + P(E_2) + \cdot \cdot + P(E_n)$$

Case (ii): If 'A' and 'B' are Independent Events, then

$$P(AVB) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - (P(A) \cdot P(B))$$

$$= P(A) + P(B) (P(A^{c}))$$
Since $P(AVB) = P(A) + P(B) - P(A) \cdot P(B)$

$$= P(A) \cdot P(B^{c}) + P(B)$$

:
$$P(AUB) = P(A) + P(B) \cdot P(A^{c}) = P(B) + P(A) \cdot P(B^{c})$$

$$A \rightarrow S - A$$
 $B \rightarrow S - B$

$$\Rightarrow P(A^c \cap B^c) = 1 - P(AUB)$$

$$\rightarrow P(A \cap B) = B - (A \cap B)$$

$$=)b(U_cUB) = b(B) - b(VUB)$$

$$A \rightarrow S - A$$
 $B \rightarrow B$

-> Permutations of Combinations: Selection.

Arrangements.

Selecting 's' things from 'n' different things =
$$n_{c_{s}} = \frac{n!}{(n-s)! \cdot s!}$$

$$1,2,3,4\rightarrow 3$$
 $4 way 1,2,4$
 $1,3,4$
 $1,3,4$
 $2,3,4$

Np -> Solecting 's' objects from 'n' different objects and allanging the objects in 's' Places

$$\int_{-\infty}^{\infty} \frac{1}{(n-n)!} = 1$$

$$= \frac{1}{(n-n)!} = 1$$

$$= \frac{1}{(n-n)!} = 1$$

$$= \frac{1}{(n-n)!} = 1$$

