# The track in which the computer comes first and the pipette second

Data @work

Dry-lab

**Data Science** 

Data in Life Sciences

**Quantitative Biomedical Sciences** 

Computational Biology

Data-driven Research

Data

Computational Life Sciences

Data-driven Life Sciences

Big Data

Research Methodology

Data track: from idea to conclusion

Data in Life Sciences

**Bioinformatics** 



## **Exploiting public data**

Bas Heijmans
Molecular Epidemiology
Leiden University Medical Center
The Netherlands
bas.heijmans@lumc.nl



### **Public data**

Genomics data is increasingly made publicly available upon publication

- Often requirement of journal
- 'Open science'
- Efficiency of research
- Transparency
- Reproducibility
- More citations



## New opportunities for data savvy scientists

Answering a research questions may not require the generation of new data!

(although a combination of new and old is preferred)



Research data (up to many samples)

- Gene Expression Omnibus (GEO)
   https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
   acc=GSE48472
- European Genome-phenome Archive (EGA)
   <a href="https://www.ebi.ac.uk/ega/datasets/EGAD00001000733">https://www.ebi.ac.uk/ega/datasets/EGAD00001000733</a>
- ARCHS –RNA-seq gene counts from GEO ready for R https://amp.pharm.mssm.edu/archs4/index.html



#### **GWAS** summary statistics

- GWAS catalog of genome-wide significant SNPs <u>https://www.ebi.ac.uk/gwas/</u>
- MR-base: summary statistics with focus on Mendelian randomization <a href="http://www.mrbase.org/">http://www.mrbase.org/</a>
- UK Biobank GeneAtlas http://geneatlas.roslin.ed.ac.uk/



#### Reference data (few samples)

- Human reference genome
   https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/
- Human reference epigenomes
   http://epigenomesportal.ca/ihec/
- Cancer genomes (reference & research data)
   <a href="https://cancergenome.nih.gov">https://cancergenome.nih.gov</a>



#### Biological pathways

- Gene ontology <u>http://www.geneontology.org</u>
- Reactome
   http://www.reactome.org



#### **Browsers**

- Genome browsers like UCSC and ESMBL <a href="https://genome-euro.ucsc.edu/cgi-bin/hgGateway?">https://genome-euro.ucsc.edu/cgi-bin/hgGateway?</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway?">redirect=manual&source=genome.ucsc.edu/cgi-bin/hgGateway?</a>
   <a href="http://www.ensembl.org/index.html">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway?">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway?">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway?">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway?">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hgGateway">http://www.ensembl.org/index.html</a>
   <a href="maintale.com/eurosc.edu/cgi-bin/hggateway">http://www.ensembl.org/index.html
- Omics atlases (effect of SNPs on expression/methylation and much more)
   <a href="http://bbmri.researchlumc.nl/atlas/">http://bbmri.researchlumc.nl/atlas/</a>



## Public data in practice

Slieker et al. Genome Biology (2016) 17:191 DOI 10.1186/s13059-016-1053-6

Genome Biology

RESEARCH Open Access



# Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms



Roderick C. Slieker<sup>1</sup>, Maarten van Iterson<sup>1</sup>, René Luijk<sup>1</sup>, Marian Beekman<sup>1</sup>, Daria V. Zhernakova<sup>2</sup>, Matthijs H. Moed<sup>1</sup>, Hailiang Mei<sup>3</sup>, Michiel van Galen<sup>4</sup>, Patrick Deelen<sup>2</sup>, Marc Jan Bonder<sup>2</sup>, Alexandra Zhernakova<sup>2</sup>, André G. Uitterlinden<sup>5</sup>, Ettje F. Tigchelaar<sup>2</sup>, Coen D. A. Stehouwer<sup>6</sup>, Casper G. Schalkwijk<sup>6</sup>, Carla J. H. van der Kallen<sup>6</sup>, Albert Hofman<sup>7</sup>, Diana van Heemst<sup>8</sup>, Eco J. de Geus<sup>9</sup>, Jenny van Dongen<sup>9</sup>, Joris Deelen<sup>1</sup>, Leonard H. van den Berg<sup>10</sup>, Joyce van Meurs<sup>5</sup>, Rick Jansen<sup>11</sup>, Peter A. C. 't Hoen<sup>4</sup>, Lude Franke<sup>2</sup>, Cisca Wijmenga<sup>2</sup>, Jan H. Veldink<sup>10</sup>, Morris A. Swertz<sup>12</sup>, Marleen M. J. van Greevenbroek<sup>6</sup>, Cornelia M. van Duijn<sup>13</sup>, Dorret I. Boomsma<sup>9</sup>, BIOS consortium, P. Eline Slagboom<sup>1</sup> and Bastiaan T. Heijmans<sup>1\*</sup>



## Genomic dysregulation and ageing

Lopes-Otin et al. *Cell* 2013: '9 hallmarks of ageing'



Kennedy et al. *Cell* 2014: '7 pillars of ageing'





# DNA methylation tracks chronological age



DNAmeth clock of Steve Horvath of 353 CpGs (*Genome Biol* 2013) applied on our own data (N>3000).



## Loss of epigenetic control with age



age-related Variably Methylated Positions aVMPs



- Biology remains elusive.
- · No link with gene expression.
- · We already know chronological age.



# Large scale: Biobank-based Integrative Omics Study (BIOS)

SNP arrays & imputation

Epigenome Illumina 450k array

Transcriptome

RNA-seq

Downstream omes

Phenotype



- Whole blood samples.
- 3295 methylome profiles: 450k array.
- 2044 transcriptome profiles: RNA-seq.







## **Genomics papers**

- 1. Discovery
- 2. Validation
- 3. Interpretation

And often public data helps a lot!



### Get a flavour of the possibilities

Slieker et al. Genome Biology (2016) 17:191 DOI 10.1186/s13059-016-1053-6

Genome Biology

RESEARCH Open Access



# Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms

Roderick C. Slieker<sup>1</sup>, Maarten van Iterson<sup>1</sup>, René Luijk<sup>1</sup>, Marian Beekman<sup>1</sup>, Daria V. Zhernakova<sup>2</sup>, Matthijs H. Moed<sup>1</sup>, Hailiang Mei<sup>3</sup>, Michiel van Galen<sup>4</sup>, Patrick Deelen<sup>2</sup>, Marc Jan Bonder<sup>2</sup>, Alexandra Zhernakova<sup>2</sup>, André G. Uitterlinden<sup>5</sup>, Ettje F. Tigchelaar<sup>2</sup>, Coen D. A. Stehouwer<sup>6</sup>, Casper G. Schalkwijk<sup>6</sup>, Carla J. H. van der Kallen<sup>6</sup>, Albert Hofman<sup>7</sup>, Diana van Heemst<sup>8</sup>, Eco J. de Geus<sup>9</sup>, Jenny van Dongen<sup>9</sup>, Joris Deelen<sup>1</sup>, Leonard H. van den Berg<sup>10</sup>, Joyce van Meurs<sup>5</sup>, Rick Jansen<sup>11</sup>, Peter A. C. 't Hoen<sup>4</sup>, Lude Franke<sup>2</sup>, Cisca Wijmenga<sup>2</sup>, Jan H. Veldink<sup>10</sup>, Morris A. Swertz<sup>12</sup>, Marleen M. J. van Greevenbroek<sup>6</sup>, Cornelia M. van Duijn<sup>13</sup>, Dorret I. Boomsma<sup>9</sup>, BIOS consortium, P. Eline Slagboom<sup>1</sup> and Bastiaan T. Heijmans<sup>1\*</sup>



# Reference epigenomes inform on biological function



