Залание 1

Тема. Оценка сложности и определение эффективности алгоритма

Цель. Приобретение практических навыков по определению:

- сложности алгоритмов на теоретическом и практическом уровнях
- эффективного алгоритма решения задачи из нескольких алгоритмов

Задание 1. Определить эффективный алгоритм из двух предложенных, используя оценку теоретической сложности каждого из алгоритмов и емкостную сложность, решения следующей задачи: дан массив из п элементов целого типа, удалить из массива все значения равные заданному.

<u>Примечание.</u> Удаление состоит в уменьшении размера массива. Удаление осуществляется путем сжатия массива и сохранения порядка следования всех элементов, как до удаляемого, так и следующих после удаляемого. Например, надо удалить из массива все значения равны 2. Исходный массив: n=10; 1 2 3 2 2 2 5 2 2 2. Результат: n=3; 1 3 5.

Алгоритмы решения задачи

```
х-массив, п – количество элементов в массиве, key – удаляемое значение
Алгоритм 1.
                                             Алгоритм 2
delFirstMetod(x,n,key){
                                             delOtherMetod(x,n,key){
i←1
                                             j←1
while (i<=n) do
                                             for i\leftarrow 1 to n do
      if x[i]=key then
                                               x[i]=x[i];
             //удаление
                                               if x[i]!=key then
              for j\leftarrow i to n-1 do
                                                  j++
                 x[i] \leftarrow x[i+1]
                                               endif
              od
                                             od
              n\leftarrow n-1
                                             n←j
      else
                                              }
            i \leftarrow i+1
      endif
od
}
```

Требования к выполнению задания

- 1. Для алгоритма привести этапы разработки:
 - 1.1.Постановка задачи
 - 1.2. Модель решения поставленной задачи.
 - а) Описать, как выполняется алгоритм.

- b) Определить для внешнего цикла инвариант цикла доказать корректность цикла.
- с) Определить вычислительную сложность алгоритма используя теоретический подход.
- 1.3. Реализовать алгоритм в виде функции и отладить на массиве при n=10, n=100. Включить в функцию операторы, подсчитывающие число выполненных сравнений и перемещений элементов при удалении.
- 1.4. Реализовать функции: заполнение массива датчиком случайных чисел, вывод массива на экран монитора.
- 1.5. Представить результаты тестирования, указав количество операций согласно теоретическим расчетам и полученным при выполнении алгоритма.
- 1.6.Протестировать алгоритм в случаях: все элементы должны быть удалены, ни один элемент не удаляется. Сравнить результаты теоретической сложности этих случаев.
- 2. Составить отчет по заданию 1, включив в него ответы на пункты 1.1 до 1.5. для каждого алгоритма в отдельности. Структура отчета представлена в приложении 1 данного материала.

Задание 2. Выполнение индивидуального задания в соответствии с вариантом

Вариант выбирается по правилу: остаток от деления номера студента в списке группы на 19(количество вариантов).

- 1. Выполнить разработку программы в соответствии с задачей варианта, включив в разработку следующие этапы:
 - 1.1.Постановка задачи
 - 1.2. Модель решения
 - 1.3. Разработка эффективного алгоритма
 - а) разработать алгоритм
 - б) определить инвариант
 - в) доказать корректность циклов в алгоритме
 - г) определить вычислительную сложность алгоритма на основе теоретического подхода
 - 1.4. Реализовать алгоритм варианта в виде одной функции (без декомпозиции на другие функции).
 - 1.5. Провести тестирование алгоритма на массиве из 10 чисел. Для этого разработать таблицу тестов и включить набор тестов в соответствии с ограничениями постановки задачи. Выполнить тестовые прогоны и убедиться, что все требования выполняются.
 - 1.6.Выполнить практическую оценку сложности алгоритма для больших п. Показать результаты прогонов для заданного п в лучшем и худшем случаях.

2. Составить отчет по заданию 2, отобразив в нем описание выполнения всех этапов с 1.1 по 1.6. и код всей программы со скринами результатов тестирования.

Варианты

№ варианта	Задача		
0	Найти количество натуральных чисел, не превосходящих		
	заданного n и делящихся на каждую из своих цифр.		
1	Умножение квадратных матриц.		
2	Умножение матрицы на вектор.		
3	Сложение двух матриц		
4	Получение матрицы обратной данной матрице		
5	Обход матрицы по спирали (по часовой стрелке: первая		
	строка, последний столбец, нижняя строка, первый столбец)		
6	Найти максимальный элемент в части матрицы,		
	расположенной над главной диагональю.		
7	Найти минимальное четное число в части матрицы – между		
	главной и побочной диагоналями (диагонали образуют		
	вертикальные песочные часы).		
8	Найти восходящую диагональ матрицы с максимальной		
	суммой элементов.		
9	Определить, симметрична ли матрица относительно главной		
	диагонали.		
10	Выполнить транспонирование матрицы		
11	Дан одномерный массив из n элементов целого типа.		
	Определить, сколько раз в массив входит максимальное		
	значение.		
12	Реализовать алгоритм «схема Горнера» вычисления		
	значения линейного многочлена n-ой степени.		
13	Дана прямоугольная матрица размером n*m. Определить		
	максимальное из чисел, встретившихся в матрице более		
	одного раза.		
14	Коэффициенты системы линейных уравнений заданы в виде		
	прямоугольной матрицы размером. С помощью допустимых		
	преобразований привести систему к треугольному виду		
	(коэффициенты должны быть только над главной		
	диагональю). Примечание. Система состоит из п уравнений		
	с n неизвестными. Матрица имеет размер n*(n+1). Т.е. i-ая		
	строка матрицы хранит коэффициенты і-ого уравнения и		
	свободный член.		
15	Дана целочисленная прямоугольная матрица размером n*m.		
	Характеристикой строки матрицы назовем сумму ее		
	положительных четных элементов. Переставляя строки		

	заданной матрицы, расположить их в соответствии с ростом		
	характеристик.		
16	Дана целочисленная квадратная матрица размером n*n.		
	Найти минимум среди сумм модулей элементов диагоналей		
	параллельных побочной диагонали.		
17	Дана целочисленная прямоугольная матрица размером n*m		
	Определить номер строки, в которой находится самая		
	длинная серия одинаковых элементов. Пример строки с		
	серией из четырех чисел 3: 1 2 3 3 3 3 5.		
18	Дан массив из п элементов целого типа. Преобразовать		
	массив следующим образом, чтобы сначала располагались		
	все элементы равные 0, затем все остальные.		

Приложение 1. Оформление отчета. Титульный лист и структура

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Отчет по выполнению практического задания Указать HOMEP Тема•

Дисциплина Структуры и алгоритмы обработки данных

Выполнил	студент	
		Фамилия И.О.
ΓΊ	руппа	<u>ИКБО-06-19</u>
1		Номер группы

Содержание отчета, созданное средствами среды создания отчета

1. **Отчет** по заданию X (указать номер задачи/задания) данной работы Условие задачи (текст из задания)

Номер варианта если отчет по индивидуальному заданию.

Далее отчет в соответствии с требованиями, указанными в самом задании, включает все пункты задания и описание выполнения в соответствии с пунктом.

2. **Отчет** по заданию XX (указать номер задачи/задания) данной работы Условие задачи (текст из задания)

Номер варианта если отчет по индивидуальному заданию.

Далее отчет в соответствии с требованиями, указанными в самом задании, включает все пункты задания и описание выполнения в соответствии с пунктом.

и так для каждого задания

Выводы о проделанной работе, полученные знания и практический опыт Список информационных источников