BME464L Project (Fall 2013, Palmeri)

Soft Tissue-Mimicking Phantom Rotation Controller

Research Problem

Medical imaging research is performed on soft tissue-mimicking materials during the research and development process to avoid the overhead and complexities introduced with ex vivo and in vivo studies. Gelatin-based phantoms with micron-size scattering particles are commonly used in ultrasound and CT imaging to mimic soft tissues [1]. During the fabrication of these phantoms, the gelatin mixture must be rotated at a constant, prescribed rate for a specified amount of time to insure that a uniform distribution of scattering particles is achieved during the crosslinking process.

Project Objective

Design a microcontroller-based device that interfaces with a DC gear motor that allows a user to specify the rate of rotation as a function of time over a specified temporal range. The device should also allow for emergent cessation of rotation when excessive resistance is encountered by the rotation apparatus and the ability to notify a user when rotation is complete or has been aborted. This project can also involve the mechanical design and fabrication of the rotation transmission mechanism and phantom holding apparatus.

Research Contact

Dr. Mark Palmeri, M.D., Ph.D. (mark.palmeri@duke.edu)

References

[1] Hall et al. "Phantom Materials for Elastography", IEEE Transactions on Ultrasonics, 1997