Aufgabe 1: Das Phong-Beleuchtungsmodell

Teilaufgabe 1a

Abbildung 1: Whatever

Teilaufgabe 1b

TODO

Teilaufgabe 1c

TODO

Teilaufgabe 1d

TODO

Teilaufgabe 1e

TODO

Teilaufgabe 1f

TODO

Aufgabe 2: Raytracing

Teilaufgabe 2a

- \bullet Anstelle einen Punkt für einen Pixel abzutasten, tastet man k^2 mal in äquidistanten Intervallen ab.
- Aliasing wird dadurch verringert.

Teilaufgabe 2b

- Maximale Rekursionstiefe erreicht
- Rekursion bis der Beitrag zur Farbe vernachlässigbar wird

Teilaufgabe 2c

Was ist der Unterschied zwischen Distributed Raytracing und Whitted-Style Raytracing? TODO

Welchen Lichttransport kann man durch Distributed Raytracing berechnen, den Whitted-Style Raytracing nicht erfassen kann? TODO

Teilaufgabe 2d

Nennen Sie kurz und stichpunktartig die zwei Schritte, die zur Berechnung von Vertex-Normalen bei einem Dreiecksnetz notwendig sind! Gehen Sie dabei davon aus, dass nur die Vertex-Positionen und die Topologie des Netzes gegeben sind! TODO

Aufgabe 3

Teilaufgabe 3a

TODO

Teilaufgabe 3b

TODO

Teilaufgabe 4a TODO
Teilaufgabe 4b TODO
Aufgabe 5 TODO
Aufgabe 6: Texturierung
Teilaufgabe 6a TODO
Teilaufgabe 6b TODO
Teilaufgabe 6c TODO
Teilaufgabe 6d TODO
Aufgabe 7: Cube-Maps und Environment-Mapping
Teilaufgabe 7a
TODO

Aufgabe 4

TODO
Aufgabe 8: Hierarchische Datenstrukturen
Teilaufgabe 8a
TODO
Teilaufgabe 8b
TODO
Teilaufgabe 8c
TODO
Teilaufgabe 8d
TODO
Aufgabe 9: Rasterisierung und OpenGL
TODO
Aufgabe 10: Tiefenpuffer und Transparenz
Teilaufgabe 10a
TODO
Teilaufgabe 10b
TODO

Teilaufgabe 7b

Teilaufgabe 10c

TODO

Aufgabe 11: Phong-Shading und Phong-Beleuchtungsmodell

```
shader.vert
uniform mat4 matN; // Normalentransformation (Objekt -> Kamera)
2 uniform mat4 matM; // Modelltransformation
3 uniform mat4 matV; // Kameratransformation
4 uniform mat4 matP; // Projektionstransformation
5 uniform mat4 matMV; // Model-View-Matrix
6 uniform mat4 matMVP; // Model-View-Projection-Matrix
8 in vec3 P; // Eingabe-Vertex in Objektkoordinaten
9 in vec3 n; // Eingabenormale in Objektkoordinaten
11 out vec3 P_k; // Vertex-Position in Kamerakoordinaten
12 out vec3 n_k; // Vertex-Normale in Kamerakoordinaten
14 void main() {
    // P_k = TODO;
     // n_k = TODO;
     // gl_Position = TODO;
17
18 }
```