Opposaves Seletion 4

- Octomine il the given set + operation firm
a goup. · All non diagonal matrices under addition: · Yes! We must show that the group axioms hold: (we do this for 222 matrices)

· Associativity: (M+N)+L = M+(N+L) $\begin{bmatrix} \binom{m_1 & 0}{0 & m_2} + \binom{n_1 & 0}{0 & n_2} \end{bmatrix} + \binom{l_1 & 0}{0 & l_2}$ $= \left[\begin{pmatrix} m_1 + n_1 & 0 \\ 0 & m_2 + n_2 \end{pmatrix} + \begin{pmatrix} l_1 & 0 \\ 0 & l_2 \end{pmatrix} \right]$ $= \begin{pmatrix} m_1 + n_1 + l_1 & 0 \\ 0 & m_2 + n_2 + l_2 \end{pmatrix} =$ We see that we get the same answer for the right hand side, here associativity holds. In fact, we could have seen this immediately, since the operation is inherited from R, associativity hold automorrieally.

4.14] • All nxn diagonal matries W only ±1 (3)
on the diagonals. Year, it's a group. (isomorphic to (42)) 4.15) · All nxn uppor-triangular matrices under multiplication. Not a group ! (not all inverses exist) 4.16. New marriers volor metrix addition.

It's a group! (isomorphic to (R, t)) 4. 17] " n xn, upper rienzular matrices of det 1 under mutriphication. It's a group. This is neutrix multiplication, so we know that associativity holds. The identity element is the identity mustix, so the only this we need to show is that (1) It's dosed under multiplication.

(2) The inverses are also striangular. We do O first. Note they if we multiply a motion of M.

<u>Section 5</u> (6)
5.47 Prove that it G is an abelian group, than the ser of all elements W x=e form a subgroup H of G.
(this is called the 2-torsion subgroup)
We check the conditions of theorem 514
(1) His dosed under multiplication:
Let $x^2 = e$ and $y^2 = e$. Then $(xy)^2 = xyxy$
= xx yy = ee = e.
Note that we needed to use that G was abelian.
2) The identity elevent e of G is in H. Clearly e= e.
Of at H, then $a^{-1} \in H$ also $a^{-1} = a^{-1} = a^{-1$
by Schwing
sme aa 9 = aa a a
inverses one unique.
Here H is a subgroup of G.

Section 8
$$T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}.$$

$$8.1 \quad TV = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 8 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$11 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 6 \quad 6 \quad 6$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix}$$

$$[63] \mu^{7} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix}.$$

must book-ist told

$$[8.5]$$
 $\sqrt{7}$ $\sqrt{7}$

8.46 Show that Sn is nonabelian for 123. (8) We first show that Sz is non-abelian. Gaside $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ Than TT = (3 2 1), but $\sigma t = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$ Then we show that Is is a subgroup of In to 17,3. Indeed, or ES3 as given by $(0(1)\sigma(2)\Gamma(3) \ Y \ S \cdots \ n)$ Then 53 is realized as the subgroup of 5, leaving (4,5,...,n) fixed, but permuting (1,2,3). Hence In have a non-abelian subgroup, which is not possible whese In is non-abelian itself.

Section 6

Tend the number of elements in the indicated cyclic group. [6-17] The cyclic subgroup of 7/30 generated by 25. We write the multiples of 25 modulo 30: 25, 20, 15, 10, 5, 30, so the order is 6. We could have used Theorem 614 which said thore the order is $\frac{30}{5} = \frac{6}{5}$. 608 307 = 1/42 + 1/307 = 9rd(30,42) = 6 = 7.Also 30, 18, 6, 36, 24, 12, 42=0 mod 42 30.2 mad 42 (Samme sver 5°) [6.19] $\hat{c}^2 = -1$, $\hat{c}^3 = -\hat{c}$, $\hat{c}^4 = -\hat{c} \cdot \hat{c} = 1$ Si $\{i\}$ have 4 elements. $X = \frac{1+i}{\sqrt{2}} = e^{i\frac{\pi}{4}}, \quad \infty \quad \alpha = 1$ 11+i/>1,50 its powers on rever be 1. Hence this subgroup is courtably infinite. (22)