1 Multiple regression analysis

重回帰分析

1.1 Objectives

Club	Run	Batting ave.	Home runs
Tigers	597	.262	145
Giants	531	.255	82
Eagles	534	.256	105

This data is available in baseball201x.mat.

1.1 Objectives

- Estimate one continuous value from a linear combination of multiple (more than one) types of variables.
- Eg. Baseball

$$R_{un} = a_1 B_{atting} + a_2 H_{omerun} + a_0$$
(1.1)

 R_{un} : Run (score)

 B_{atting} : Batting average

 H_{omerun} : Number of home runs

 Runs that a team earns is likely to be predicted based on the team's batting average and number of home runs hit by a team in a year.

1.2 Theory

1.2.1 Model

$$y_j = a_1 \left(x_{1j} - \overline{x_1} \right) + \cdots a_p \left(x_{pj} - \overline{x_p} \right) + a_0 + \epsilon_j \quad (1.2)$$

- y_j : Objective variable (目的変数)/Dependent variable (従属変数). Values to be estimated.
- x_j : Explanatory variable (説明変数)/Independent variable (独立変数). Values to explain the objective variable.
- j: Suffix of samples. j = 1, 2, ..., n. Specify the baseball club.
- n: Number of samples. Twelve clubs: n = 12.
- a_i : (Partial) Regression coefficient (偏回帰係数). Weights of explanatory variables.

1.2.1 Model

- p: Number of explanatory variables
- ϵ_j : Error (誤差) or residual (残差). Difference between the observed (観測値) and predicted (推定値) values. ϵ_j is a random variable with the mean being 0. $\epsilon_j \perp \epsilon_k$. Errors randomly vary around zero.
- $\overline{x_i}$: Mean of x_i .

$$\overline{x_i} = \frac{1}{n} \sum_{j=1}^{n} x_{ij}$$

1.2.1 Model

- Scalar variable ... Italic font
- Vector ... Italic and bold font
- Matrix ... Capital letter in Italic and bold font

1.2.1 Model

- Determine partial regression coefficients with the least squares sum of errors
- For all *n* samples, (1.2) holds and can be written by using matrices and vectors as follows:

$$\begin{bmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} - \overline{x_1} & \dots & x_{i1} - \overline{x_i} & \dots & x_{p1} - \overline{x_p} & 1 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ x_{1j} - \overline{x_1} & \dots & x_{ij} - \overline{x_i} & \dots & x_{pj} - \overline{x_p} & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ x_{1n} - \overline{x_1} & \dots & x_{in} - \overline{x_i} & \dots & x_{pn} - \overline{x_p} & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_i \\ \vdots \\ a_p \\ a_0 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_j \\ \vdots \\ \epsilon_n \end{bmatrix} (1.3)$$

$$(n \times 1) \qquad (n \times (p+1)) \qquad ((p+1) \times 1) \quad (n \times 1)$$

$$y = Xa + \epsilon \qquad (1.4)$$

1.2.2 Mathematical principles

• Least squares estimation of *a* is determined when the sum of squared errors is minimized. The sum is given by

$$\epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2 = \begin{bmatrix} \epsilon_1 & \dots & \epsilon_n \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix} = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} \to \min.$$
 (1.5)

• From (1.4), the error vectors are

$$\epsilon = y - Xa \tag{1.6}$$

$$\epsilon^{\mathrm{T}} =$$

7

1.2.2 Mathematical principles

• Least squares estimation of *a* is determined when the sum of squared errors is minimized. The sum is given by

$$\epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2 = \begin{bmatrix} \epsilon_1 & \dots & \epsilon_n \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{bmatrix} = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} \to \min.$$
 (1.5)

• From (1.4), the error vectors are

$$\epsilon = y - Xa$$

$$\epsilon^{T} = y^{T} - a^{T}X^{T}$$
(1.6)

1.2.2 Mathematical principles

• Using (1.6), the sum of squared errors is

$$\boldsymbol{\epsilon}^{\mathrm{T}}\boldsymbol{\epsilon} = \tag{1.7}$$

10

1.2.2 Mathematical principles

• Using (1.5) and (1.6), the sum of squared errors is

$$\epsilon^{T} \epsilon = (y^{T} - a^{T} X^{T})(y - Xa)$$

$$= y^{T} y - a^{T} X^{T} y - y^{T} Xa + a^{T} X^{T} Xa$$

$$= y^{T} y - 2a^{T} X^{T} y + a^{T} X^{T} Xa$$
(1.7)

• For derivation, you may use the following equation about scalars.

$$\boldsymbol{a}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{a} \tag{1.8}$$

1.2.2 Mathematical principles

• The coefficients a that minimizes $\epsilon^{\mathrm{T}}\epsilon$ is given by solving the following about a.

$$\frac{\partial \epsilon^{\mathrm{T}} \epsilon}{\partial a} = \tag{1.9}$$

= 0

• Then, the least square estimate of a is given by

$$a = (1.10)$$

Mathematical review I:

Derivative of a scalar with respect to a vector

s: Scalar
$$v \in \mathbb{R}^{p \times 1}$$
 $v = \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix}$ $b = \begin{bmatrix} b_1 \\ \vdots \\ b_p \end{bmatrix}$ $\frac{\partial s}{\partial v} = \begin{bmatrix} \frac{\partial s}{\partial v_1} \\ \vdots \\ \frac{\partial s}{\partial v_p} \end{bmatrix}$ $W \in \mathbb{R}^{p \times p}$

Eg.

$$\frac{\partial b^{\mathrm{T}} v}{\partial v} = b$$
 $\frac{\partial b^{\mathrm{T}} v}{\partial b} = v$ $\frac{\partial b^{\mathrm{T}} W b}{\partial b} = 2W b$

13

1.2.2 Mathematical principles

• The coefficients a that minimizes $\epsilon^{\mathrm{T}} \epsilon$ is given by solving the following about a.

$$\frac{\partial \epsilon^{\mathrm{T}} \epsilon}{\partial a} = -2X^{\mathrm{T}} y + 2X^{\mathrm{T}} X a \tag{1.9}$$

$$= 0$$

ullet Then, the least square estimate of a is given by

$$\boldsymbol{a} = \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} \tag{1.10}$$

14

1.3 Example of estimation

• By using (1.10), the partial regression coefficients of (1.1) are solved, and the estimation equation is

$$R_{un} = a_1 B_{atting} + a_2 H_{omerun} + a_0$$

= $4.38 \times 10^3 B_{atting} + 0.838 \times H_{omerun} + 575$ (1.11)

1.3 Example of estimation

- We may say that the runs of Tigers are unexpectedly small considering its batting average and number of home runs.
 - Estimated runs is 622.
 - Actual runs is 597.

. .

1.3 Example of estimation

 Runs that baseball clubs earn in a year are estimated by the number of single hits and home runs.

$$R_{un} = a_1 H_{omerun} + a_2 S_{ingle} + a_3 T_{wobase}$$

$$+ a_4 T_{hreebase} + a_0$$

$$= 1.82 \times H_{omerun} + 0.75 \times S_{ingle} + 1.13 \times T_{wobase}$$

$$+ 2.24 \times T_{hreebase} - 577$$

- We expect that the team earns
 - 1.82 runs from a home run
 - 1.13 runs from a two-base hit
 - 0.75 run from a single hit

1.3 Example of estimation

- Homework (optional, fro your own study)
 - Compute the *a* values for the following model.

$$W_{inning-rate} = a_1 \times Run + a_2 \times ERA + a_0$$

- Next week
 - How can we improve the estimation and reduce the error?

18