Actividad de Aprendizaje 1.4 Ejercicios sobre las distribuciones Multinomial y Normal Bivariada

Distribución Multinomial $(n, \theta_1, \dots, \theta_k)$

- 1. Utilizando directamente la fórmula de la función de masa de probabilidades conjunta, demuestre que la funciones de masa de probabilidades marginales unidimensionales corresponden a variables aleatorias binomiales, indicando con qué parámetros específicamente.
- 2. Considerando $k \geq 3$, demuestre que las funciones de masa de probabilidades conjuntas marginales de menor dimensión d, esto es $2 \leq d < k$, son también multinomiales, indicando con qué parámetros específicamente.
- 3. Demuestre que las variables aleatorias componentes de un vector aleatorio Multinomial NO son independientes.
- 4. Considere el caso k=3. demuestre lo siguiente, para cualquier permutación (i,j,ℓ) de $\{1,2,3\}$:
 - a) La distribución de probailidad de X_i condicional en que $X_j = x_j$ y $X_\ell = x_\ell$ es Binomial, indicando con qué parámetros.
 - b) La distribución de probailidad conjunta de (X_i, X_j) condicional en que $X_\ell = x_\ell$ es Multinomial, indicando con qué parámetros.
- 5. Generalice el ejercicio anterior para cualquier $k \geq 3$ y cualquier permutación de $\{1, \ldots, k\}$.

Distribución Normal bivariada $(\mu_X, \mu_Y, \sigma_X, \sigma_Y, \rho)$

- 6. Demuestre que sus conjuntos de nivel son elipses centradas en (μ_X, μ_Y) y con rotación, obteniendo el ángulo de rotación en función de los parámetros.
- 7. Demuestre que las funciones de densidad de probabilidad condicionales de Y|X=x y de X|Y=y corresponden a distribuciones de probabilidad Normal, indicando con qué parámetros en cada caso.
- 8. Considere un vector aleatorio (X,Y) con función de densidad Normal bivariada estándar con parámetro $-1 < \rho < 1$ (esto es, con $\mu_X = 0 = \mu_Y$ y $\sigma_X = 1 = \sigma_Y$). Se define la variable aleatoria W := Y/X. Obtenga explícitamente la función de densidad de probabilidades de W.