ISPIT IZ OSNOVA ELEKTRONIKE

19.09.2012.

ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE

ODSEK ZA SIGNALE I SISTEME

ODSEK ZA FIZIČKU ELEKTRONIKU

- 1. Parametri tranzistora u pojačavaču sa slike 1 su: $V_{T1} = V_{T2} = 0,4\text{V}$, $B_1 = 2,5\text{mA/V}^2$, $B_2 = 25\text{mA/V}^2$ i $\lambda_1 = \lambda_2 \rightarrow 0$, dok je $V_{DD} = 2,5\text{V}$, $I_B = 1\text{mA}$ i $R_P = 1\text{k}\Omega$.
 - a) [2] Odrediti struje drejna oba tranzistora u mirnoj radnoj tački.
 - b) [3] Odrediti naponsko pojačanje pojačavača $a_v = v_p / v_u$.
 - c) [3] Odrediti strujno pojačanje pojačavača $a_i = i_p / i_u$.
 - d) [2] Odrediti otpornost koju vidi pobudni generator.
- **2.** a) [3] Nacrtati kolo za ograničavanje izlaznog napona, koje se sastoji od otpornika između ulaza i izlaza i paralelno vezane diode D_1 i Zener diode D_{Z2} između izlaznih krajeva, pri čemu je $BV_1 > V_{Z2}$. Katode D_1 i D_{Z2} su spojene na negativan izlazni priključak. Anode D_1 i D_{Z2} su spojene na pozitivan izlazni priključak.
 - b) [3] Nacrtati funkciju prenosa kola iz tačke a).
 - c) [2] Nacrtati vremenski dijagram napona na izlazu kola iz tačke a) za sinusoidalni ulazni napon, čija je amplituda manja od V_{Z2} .
 - d) [2] Nacrtati vremenski dijagram napona na izlazu kola iz tačke a) za sinusoidalni ulazni napon, čija je amplituda veća od V_{Z2} .
- **3.** a) [4] Nacrtati jedinstven strujni izvor Wilson-ovog tipa sa minimalnim brojem bipolarnih tranzistora i dve izlazne struje I_1 i I_2 , pri čemu je $I_1 = 2 \cdot I_2$.
 - b) [3] Izračunati odnose izlaznih struja strujnog izvora i referentne struje (I_1/I_R i I_2/I_R).
 - c) [3] Izračunati odnos izlaznih otpornosti prvog i drugog izlaza strujnog izvora (R_{i1}/R_{i2}).
- **4.** a) [8] U kolu sa slike 4 operacioni pojačavač je idealan i napaja se iz **jedne** baterije za napajanje $V_{CC} = 5$ V. Diode su idealne sa $V_D = 0,6$ V, a poznato je i R = 10k Ω . Odrediti i nacrtati karakteristiku prenosa $v_I = v_I(v_G)$ ako se ulazni napon menja u granicama -5V $\leq v_G \leq 5$ V.
 - b) [2] Ako se na ulaz kola dovede naponski signal $v_G(t) = 5V \cdot \sin(2\pi f t)$, gde je f = 1 kHz, nacrtati, jedan ispod drugog, vremenske oblike signala $v_G(t)$ i $v_I(t)$. Na dijagramima naznačiti sve relevantne naponske nivoe.

Studenti koji polažu drugi kolokvijum rade zadatke 3 i 4 u trajanju do 2 sata. Studenti koji polažu kompletan ispit rade sve zadatke u trajanju do 3 sata.