Το σύμπαν αποτελείται από σωματίδια ύλης που συγκρατούνται μεταξύ τους με σωματίδια φορείς δυνάμεων φερμιόνια μποζόνια μποζόνια βαθμίδος graviton

- Οι αλληλεπιδράσεις των σωματιδίων περιγράφονται από την κβαντομηχανική και ειδική θεωρία της σχετικότητας
- Τα σωματίδια δεν είναι πραγματικά σωματίδια αλλά πεδία

Διαγράμματα Feynman

Ηλεκτρόνιο αλληλεπιδρά με ένα quark ενός πυρήνα μέσω ανταλλαγής ενός φωτονίου (ηλεκτρομαγνητική δύναμη)

Οι ευθείες γραμμές, οι κυματιστές και οι κορυφές αντιπροσωπεύουν μαθηματική όρο στον υπολογισμό της αλληλεπίδρασης

ΛΕΠΤΟΝΙΑ

QUARK

Μποζόνια Βαθμίδος

$$Q=0 \qquad \begin{bmatrix} v_e \\ e \end{bmatrix} \qquad \begin{bmatrix} V_e \\ R \\ e \end{bmatrix} \qquad \begin{bmatrix} V_{\mu} \\ \mu \end{bmatrix} \qquad \begin{bmatrix} V_{\mu} \\ R \\ \mu \end{bmatrix} \qquad \begin{bmatrix} V_{\tau} \\ \tau \end{bmatrix} \qquad \begin{bmatrix} V_{\tau} \\ R \\ \tau \end{bmatrix}$$

QUARK

Μποζόνια Βαθμίδος

Μποζόνια Βαθμίδος

Η εικόνα των σωματιδίων σήμερα

	Λεπτόνια			Quarks		
	Σωματίδιο	Q	M (GeV/c ²)	Σωματίδιο	Q	M (GeV/c²)
1η	е	-1	0.0005	d	-1/3	0.003
γενεά	V _e	0	<10-9	u	+2/3	0.003
2 ^η γενεά	μ	-1	0.106	S	-1/3	0.1
	v_{μ}	0	<10-9	С	+2/3	1.3
3 ^η γενεά	Т	-1	1.78	b	-1/3	4.5
	V_{T}	0	<10-9	t	+2/3	173

Αλληλεπιδράσεις quark – quark και quark - gluon

Παράμετροι του S.M.

Πειραματικός προσδιορισμός

3 σταθερές σύζευξης	g _s e sinθ
4 CKM παράμετροι	$ heta_1$ $ heta_2$ $ heta_3$ και δ
2 μάζες μποζονίων	m_z m_H
3 μάζες λεπτονίων	$m_{ m e}$ m_{μ} $m_{ au}$
6 μάζες quark	m_u m_d m_s m_c m_b m_t

18 ελεύθερες παράμετροι Δεν υπάρχει πρόνοια για μάζες νετρίνο

$$m_W^2 = \frac{1}{2}g^2 \rho_0^2$$

$$m_Z^2 = \frac{1}{2}(g^2 + g'^2)\rho_0^2 \qquad g = e/\sin\theta_W$$

$$m_H^2 = 4\lambda \rho_0^2 \qquad g' = e/\cos\theta_W \qquad m_f = c_f \rho_0$$

Ανακάλυψη ως προς Μέτρηση

Η ιστορική αναδρομή έδειξε ότι η φυσική στοιχειωδών σωματιδίων περιέχει

εποχές ανακαλύψεων, ακολουθούμενες από προσεγμένες και ακριβείς

μετρήσεις με σκοπό την κατανόηση των φαινομένων

Σε κάθε περίπτωση, η βαθύτερη αυτή κατανόηση, έδωσε περισσότερη πληροφορία και οδήγησε σε νέες ανακαλύψεις

Σε μεγάλο βαθμό, αυτό οφείλεται στους αδρονικούς επιταχυντές όπου πολλές ενδιαφέρουσες διεργασίες πραγματοποιούνται σε περιβάλλον με πολύ «θόρυβο» από άλλα σωματίδια, ενώ στους επιταχυντές λεπτονίω (e⁺-e⁻) το περιβάλλον είναι ιδιαίτερα καθαρό

e-e+ συγκριτικά με αδρονικό επιταχυντή

