

Mitigasi Banjir Wilayah Jakarta dengan Prediksi Tinggi Muka Air Sungai Ciliwung Berbasis Machine Learning (Algoritma LightGBM Regressor)

Pick me a team name - Universitas Indonesia

Hendri Erka Setya

Shawn Michael Dayanti Intong

OUTLINE

LATAR BELAKANG MASALAH

Grafik Jumlah Wilayah Rukun Warga (RW) yang Terdampak Banjir di DKI Jakarta (2018-2022) Sumber: Katadata. 27 Februari 2023

- Headline Beberapa Berita Terkait Banjir di Jakarta Akibat Sungai Clliwung yang Meluap Sumber: Google
- Banjir merupakan salah satu bencana alam yang masih terus menjadi momok bagi masyarakat DKI Jakarta.
- Secara geografis, DKI Jakarta merupakan dataran rendah yang berada di antara hulu sungai dan pesisir. Hal ini yang menyebabkan wilayah DKI
 Jakarta menjadi rawan banjir.
- Menurut perhitungan dari Himpunan Pengusaha Pribumi Indonesia (HIPPI) DKI Jakarta, kerugian dunia usaha akibat banjir besar DKI Jakarta 2021
 mencapai Rp 1 triliun. Kerugian tersebut dihitung dari proyeksi perputaran uang selama libur tahun baru yang biasanya melonjak tajam, khususnya di
 sektor ritel, restoran, pelaku UMKM, pengelola destinasi wisata, pengelola taksi, hingga transportasi online.

LATAR BELAKANG MASALAH

- Penyebab utama terjadinya banjir di DKI Jakarta adalah banjir kiriman, terjadi ketika hujan dengan intensitas tinggi terjadi di hulu sungai.
- DKI Jakarta berada di wilayah dataran rendah dan memiliki 13 aliran sungai.
- Hujan dengan intensitas tinggi di daerah hulu (Jawa Barat dan Banten) akan terbawa melalui aliran sungai ke Jakarta sebelum lepas ke laut.
- Pasang naik di Pantai: [TMA Marina Ancol > TMA Ciliwung]
- Akibatnya, sungai yang bermuara di Jakarta meluap dan banjir di beberapa bantaran sungai.

- Salah satu langkah awal pemerintah DKI meminimalisir dampak bencana banjir adalah membangun sistem pemantauan tinggi muka air Sungai Ciliwung dan curah hujan di pos pemantauan dengan sensor.
- Tinggi muka air sungai dan curah hujan diukur secara real time dan akan dilaporkan ke pos pemantauan.

• Dengan memanfaatkan kemajuan teknologi terutama dalam bidang *machine learning, artificial intelligence* dan *data science*, tentu dapat dibuat suatu sistem deteksi / mitigasi / *early warning system* yang dapat memprediksi tinggi muka air Sungai Ciliwung di masa mendatang; dan hal ini tentu berdampak baik untuk meminimalisir dampak dari bencana banjir yang mungkin akan terjadi

PROBLEM UNDERSTANDING

- Dengan latar belakang masalah tersebut, maka dapat kita tentukan masalah yang ingin diselesaikan adalah pembuatan prediksi tinggi muka air Sungai Ciliwung di 3 pos pantau sensor curah hujan dan TMA (Katulampa, Bogor, dan Manggarai) di masa mendatang (6 jam ke depan) guna memberikan peringatan dini banjir di DKI Jakarta sehingga dapat mengurangi dampak banjir tersebut apabila melebihi batas ketinggian tertentu.
- Dataset yang digunakan adalah data sensor curah hujan dan tinggi muka air (TMA) di sepanjang kali Ciliwung periode 2021-2022 sebagai data training. Data sensor curah hujan dan TMA dicatat setiap 1 jam.
- Dengan demikian, tujuan penelitian ini antara lain sebagai berikut.
 - 1. Menganalisis informasi berharga dari data sensor curah hujan dan tinggi muka air (TMA) di sepanjang kali Ciliwung periode 2021-2022.
 - 2. Menerapkan metode LightGBM Regressor pada pembuatan model prediksi tinggi muka air (TMA) Sungai Ciliwung 6 jam mendatang untuk mitigasi dan usaha meminimalisir dampak bencana banjir di DKI Jakarta
 - 3. Mengetahui besar metrik evaluasinya (RMSE) dari model prediksi TMA Sungai Ciliwung 6 jam mendatang dengan algoritma LightGBM Regressor.

DATASET

Sumber Dataset:

- Data sekunder vang bersumber dari DSDA Jakarta diakses melalui Data Science Competition 2023 StarCore **Analytics**
- Dataset yang digunakan adalah data sensor curah hujan dan tinggi muka air (TMA) sepanjang kali Ciliwung periode 2021-2022 sebagai data training. Data sensor curah hujan dan TMA dicatat setiap 1 jam. engan 1 Januari 2023.

Tautan Dataset:

bit.lv/DatasetFinalDSC https://www.kaggle.com/competitions/ data-science-competition-2023/data

Isi Dataset:

train Curah hujan 2021-2022 XLSX &

+	← 🖹 submission.csv		
	A	В	
1	ID	Prediksi 6 Jam Ke D	
2	1		
3	2		
4	3		
5	5		
6	6		
7	7		
8	9		
9	10		
10	11		
11	13		
12	14		
13	15		
14	17		
15	18		
16	19		
17	21		
18	22		
19	23		
20	25		

METODOLOGI

Software dan Library

Library

from feature_engine.imputation import MeanMedianImputer

from feature_engine.timeseries.forecasting import WindowFeatures

from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

Flowchart Diagram

METODOLOGI

Algoritma

LightGBM adalah framework gradient boosting dengan algoritma *tree based*. Seperti kita ketahui bahwa untuk algoritma boosting, maka beberapa weak learner digabungkan sehingga membuat suatu strong learner yang mampu meminimalisir loss function seperti RMSE menggunakan *gradient descent*.

Perbedaannya dengan gradient boosting biasa, LightGBM mengimplementasikan teknik *Gradient Based One Side Sampling Technique (GOSS)* yang memilih baris data dengan gradien besar dan drop baris data yang memiliki gradien kecil. Selain itu, terdapat teknik *Exclusive Feature Bundling (EFB)* yang mereduksi dimensi data atau feature dengan cara menggabungkan feature exclusive (feature dengan banyak nilai nolnya) menjadi satu feature utuh sehingga model training menjadi jauh lebih cepat.

Untuk arsitekturnya sendiri, LightGBM melakukan tree splitting secara *leaf-wise* tidak seperti gradient boosting lainnya yang *level-wise* dimana karena *leaf*-nya tetap maka loss nya menjadi jauh lebih kecil.

Algoritma ini memiliki keuntungan sebagai berikut:

- Kecepatan training tinggi dan efisien
- Penggunaan memory yang rendah
- Akurasi yang lebih baik
- Dapat menangani data dalam jumlah besar

Architecture of LightBGM

HASIL ANALISIS DAN PEMODELAN

Training Curah

	Pos Pantau	Waktu	Intensitas
0	Balekambang	2021-11-21 08:00:00	0
1	Balekambang	2021-11-21 09:00:00	0
2	Balekambang	2021-11-21 19:00:00	0
3	Balekambang	2021-11-21 20:00:00	0
4	Balekambang	2021-11-21 21:00:00	0

Preview Dataframe

(211238, 3)

Shape of Dataframe

1	Pos Pantau
count	211238
unique	18
top	Manggarai
freq	17069

Variabel Kategorik

Pos	Pantau	0
Inte	ensitas	0

Check Missing Values

	Intensitas
count	211238.000000
mean	27.389580
std	108.510682
min	0.000000
25%	0.000000
50%	0.000000
75%	6.000000
max	17449.000000

Variabel Numerik

Training Curah Hujan

DATA UNDERSTANDING

Training TMA

	Waktu	Pintu Air	Tinggi Air
0	2021-01-01 01:00:00	Depok	82.0
1	2021-01-01 01:00:00	Katulampa	27.0
2	2021-01-01 01:00:00	Manggarai	530.0
3	2021-01-01 01:00:00	Manggarai	528.0
4	2021-01-01 01:00:00	Marina Ancol	165.0

Preview Dataframe

(72068, 3)

Shape of Dataframe

Variabel Kategorik

Pintu Air 0 Tinggi Air 2538

Check Missing Values

	Tinggi Air
count	67538.000000
mean	232.173947
std	232.897145
min	-32.000000
25%	65.000000
50%	144.000000
75%	266.000000
max	6300.000000

Variabel Numerik

Training TMA

Testing Curah

	Pos Pantau	Waktu	Intensitas
0	Balekambang	2023-01-01 07:00:00	8
1	Balekambang	2023-01-01 08:00:00	12
2	Balekambang	2023-01-01 09:00:00	12
3	Balekambang	2023-01-01 10:00:00	12
4	Balekambang	2023-01-01 11:00:00	12

Preview Dataframe

(24308, 3)

Shape of Dataframe

Variabel Kategorik

Pos Pantau 0 Intensitas 0

Check Missing Values

	Intensitas
count	5606.000000
mean	18.638423
std	63.656042
min	0.000000
25%	0.000000
50%	0.000000
75%	6.000000
max	732,000000

Variabel Numerik

Testing TMA

	Waktu	Pintu Air	Tinggi Air	ID	Prediksi 6 Jam Ke Depan
0	2023-01-01 00:00:00	Depok	100.0	1	NaN
1	2023-01-01 00:00:00	Katulampa	20.0	2	NaN
2	2023-01-01 00:00:00	Manggarai	635.0	3	NaN
3	2023-01-01 00:00:00	Marina Ancol	159.0	4	NaN
4	2023-01-01 01:00:00	Depok	133.0	5	NaN

Preview Dataframe

(24308, 3)

Pintu Air 0
Tinggi Air 14
ID 0
Prediksi 6 Jam Ke Depan 5664

Shape of Dataframe

Check Missing Values

	Tinggi Air	ID	Prediksi 6 Jam Ke Depan
count	5650.000000	5664.000000	0.0
mean	235.845681	2832.500000	NaN
std	240.013788	1635.200294	NaN
min	1.400000	1.000000	NaN
25%	79.000000	1416.750000	NaN
50%	140.000000	2832.500000	NaN
75%	573.000000	4248.250000	NaN
max	1592.000000	5664.000000	NaN

Variabel Numerik

Training TMA

Submission

	ID	Prediksi 6 Jam Ke Depan
0	1	NaN
1	2	NaN
2	3	NaN
3	5	NaN
4	6	NaN

(4248, 2)

Preview Dataframe

Shape of Dataframe

DATA PREPARATION

Handling Outliers

Melakukan penanganan outliers
train_tma["Tinggi Air"] = np.abs(train_tma["Tinggi Air"])
train_tma = train_tma[(train_tma["Tinggi Air"] > 0) & (train_tma["Tinggi Air"] < 1000)]</pre>

	Pintu Air	Tinggi Air
Waktu		
2021-05-25 06:00:00	Katulampa	-15.0
2022-05-29 21:00:00	Katulampa	-26.0
2022-05-29 22:00:00	Katulampa	-26.0
2022-05-29 23:00:00	Katulampa	-26.0
2022-05-30 01:00:00	Katulampa	-26.0
2022-05-30 02:00:00	Katulampa	-26.0
2022-05-30 06:00:00	Katulampa	-26.0
2022-05-30 07:00:00	Katulampa	-26.0
2022-05-30 10:00:00	Katulampa	-26.0
2022-05-30 11:00:00	Katulampa	-26.0
2022-05-30 12:00:00	Katulampa	-26.0

	Pintu Air	Tinggi Air
Waktu		
2021-01-06 05:00:00	Manggarai	5353.0
2021-04-18 12:00:00	Manggarai	6300.0

Handling Duplicates

Melakukan penghapusan baris duplikat
train_tma.drop_duplicates(subset = ["Waktu", "Pintu Air"], inplace = True)
train_tma.reset_index(drop = True, inplace = True)

	Waktu	Pintu Air	Tinggi Air
0	2021-01-01 01:00:00	Depok	82.0
1	2021-01-01 01:00:00	Katulampa	27.0
2	2021-01-01 01:00:00	Manggarai	530.0
3	2021-01-01 01:00:00	Manggarai	528.0
4	2021-01-01 01:00:00	Marina Ancol	165.0

DATA PREPARATION

Handling Missing Values

```
# Melakukan interpolasi
df["Tinggi Air"] = df["Tinggi Air"].interpolate()
```

Target Making "Prediksi 6 Jam Ke Depan"

```
# Melakukan shift pada label selama 6 jam
katulampa = sub_preds.iloc[:1416, 0].shift(-6)
depok = sub_preds.iloc[1416:2832, 0].shift(-6)
manggarai = sub_preds.iloc[2832:, 0].shift(-6)
```

72063	2022-12-31 22:00:00	Marina Ancol	162.0
72064	2022-12-31 23:00:00	Depok	NaN
72065	2022-12-31 23:00:00	Katulampa	NaN
72066	2022-12-31 23:00:00	Manggarai	NaN
72067	2022-12-31 23:00:00	Marina Ancol	152.0

Prediksi 6 Jam Ke Depan 28.0 27.0 26.0 10.0 23.0

	Prediksi 6 Jam Ke Depan
Tinggi Air	0.994220
Intensitas	0.002224
Tinggi Air_window_6_mean	0.994482
Tinggi Air_window_6_min	0.995080
Tinggi Air_window_6_max	0.992368
Tinggi Air_window_6_std	0.246243
Intensitas_window_6_mean	-0.000808
Intensitas_window_6_min	-0.003158
Intensitas_window_6_max	0.001455
Intensitas_window_6_std	0.002918
Tinggi Air_window_24_mean	0.994570
Tinggi Air_window_24_min	0.994505
Tinggi Air_window_24_max	0.988640
Tinggi Air_window_24_std	0.413854
Intensitas_window_24_mean	-0.006588
Intensitas_window_24_min	0.040617
Intensitas_window_24_max	-0.002536
Intensitas_window_24_std	-0.014135
Tinggi Air_expanding_mean	0.992887

Tinggi Air_expanding_min	0.985821		
Tinggi Air_expanding_max	0.985292		
Tinggi Air_expanding_std	0.927350		
Intensitas_expanding_mean	0.264257		
Intensitas_expanding_min	nan		
Intensitas_expanding_max	-0.108356		
Intensitas_expanding_std	0.152697		
hour	0.003230		
dayofweek	0.000145		
dayofyear	0.016282		
dayofmonth	-0.002486		
week	0.014111		
quarter	0.014472		
month	0.016486		
year	0.016025		
Tinggi Air_Marina	0.001700		
Intensitas_Marina	0.000364		
Prediksi 6 Jam Ke Depan	1.000000		

DATA PREPROCESSING

Label Encoding

	Pintu Air	Tinggi Air	Intensitas
Waktu			
2021- 01-01 01:00:00	Katulampa	27.0	NaN
2021- 01-01 02:00:00	Katulampa	26.0	NaN
2021- 01-01 03:00:00	Katulampa	26.0	NaN
2021- 01-01 04:00:00	Katulampa	10.0	NaN
2021- 01-01 05:00:00	Katulampa	28.0	NaN

	Pintu Air	Tinggi Air	Intensitas
0	11	27.0	0.0
1	1	26.0	0.0
2	1	26.0	0.0
3	91	10.0	0.0
4	1	28.0	0.0

DATA PREPROCESSING

Feature Engineering

	Pintu Air	Tinggi Air	Intensitas
Waktu			
2021- 01-01 01:00:00	Katulampa	27.0	NaN
2021- 01-01 02:00:00	Katulampa	26.0	NaN
2021- 01-01 03:00:00	Katulampa	26.0	NaN
2021- 01-01 04:00:00	Katulampa	10.0	NaN
2021- 01-01 05:00:00	Katulampa	28.0	NaN

hour	dayofweek	dayofyear	dayofmonth	week	quarter	month	year
1	4	1	1	53	1	1	2021
2	4	1	1	53	1	1	2021
3	4	1	1	53	1	1	2021
4	4	1	1	53	1	1	2021
5	4	1	1	53	1	1	2021

Datetime Features

DATA PREPROCESSING

Feature Engineering

Tinggi Air_window_6_mean	Tinggi Air_window_6_min	Tinggi Air_window_6_max	Tinggi Air_window_6_std	Intensitas_window_6_mean	Intensitas_window_6_min
24.333333	10.0	29.0	7.118052	4.000000	0.0
24.333333	10.0	29.0	7.118052	4.000000	0.0
24.333333	10.0	29.0	7.118052	4.000000	0.0
24.333333	10.0	29.0	7.118052	4.000000	0.0
24.333333	10.0	29.0	7.118052	4.000000	0.0

Window Features

MODELLING

Menggunakan Algoritma Light Gradient Boosting Machine

LGBMRegressor

Melakukan Spesifikasi Hyperparameter

n estimators = 1000 learning rate = 0,01

Melakukan Transformasi Target

Nilai logaritma "Prediksi 6 Jam Ke Depan"

Melakukan Time Series Split

Training Set 80% Validation Set 20%

EVALUATION

	Tinggi Air	ID	Prediksi 6 Jam Ke Depan
Waktu			
2023-01-01 00:00:00	20.0	2	21.443635
2023-01-01 01:00:00	46.5	6	31.851668
2023-01-01 02:00:00	55.7	10	31.313954
2023-01-01 03:00:00	59.7	14	31.943542
2023-01-01 04:00:00	52.4	18	22.133968

2023-02-28 19:00:00	NaN	5647	666.784335
2023-02-28 20:00:00	NaN	5651	666.270029
2023-02-28 21:00:00	NaN	5655	665.583298
2023-02-28 22:00:00	NaN	5659	662.969574
2023-02-28 23:00:00	NaN	5663	653.803294

	Tinggi Air	ID	Prediksi 6 Jam Ke Depan
count	4230.000000	4248.000000	4248.000000
mean	253.401395	2832.000000	251.668198
std	273.978642	1635.248243	268.773233
min	1.400000	1.000000	10.786777
25%	27.200000	1416.500000	29.447762
50%	96.000000	2832.000000	98.608872
75%	605.000000	4247.500000	610.976496
max	1592.000000	5663.000000	689.603972

Perbandingan Aktual dan Prediksi

EVALUATION

RMSE

30.37690651425261

Katulampa: 8.103150330233316

Depok: 42.1900096643554

Manggarai: 30.374518718395628

Perbandingan Aktual dan Prediksi

KESIMPULAN

- Terlihat bahwa terdapat perbedaan tinggi air tiap-tiap lokasi dengan Manggarai relatif paling tinggi dibandingkan Katulampa dan Depok.
- Terlihat bahwa curah hujan relatif tinggi ketika malam hari dan rendah ketika siang hari
- Terlihat bahwa curah hujan paling rendah saat sekitar bulan Juli-Agustus
- Model LGBMRegressor dapat dengan baik memprediksi tinggi muka air 3 lokasi yaitu Katulampa, Depok, dan Manggarai dengan overall RMSE sebesar 30,3769 dan dapat juga dilihat dari distribusi yang mendekati aktual.
- Diperoleh statistik deskriptif dari model dan data aktual dari 6 jam ke depan relatif sama, terutama bila meninjau harga mean dan standar deviasi dari tinggi muka air sungai Ciliwung untuk lokasi pos pantau Katulampa, Depok, dan Manggarai.

DAFTAR PUSTAKA

- DSDA DKI Jakarta. Pemantauan Tinggi Muka Air. Diakses 29 Agustus 2023 pukul 20.30 WIB. URL: https://poskobanjirdsda.jakarta.go.id/
- Geeksforgeeks. *LightGBM (Light Gradient Boosting Machine)*. Diakses pada 1 September 2023 pukul 20.00 WIB. https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
- Lubis, R. H. & Syahputra, R. E. (2022). Peramalan Deret Waktu untuk Bisnis: Pendekatan Algoritma LGBM Regressor. Jurnal Data Science Indonesia 2021, Vol 1, Number 1. https://doi.org/10.47709/dsi.v1i1.1169
- Katadata. (Februari, 2023). Riwayat Banjir Jakarta 5 Tahun Terakhir, Membaik atau Memburuk? Diakses pada 31
 Agustus 2023 pukul 20.00 WIB. URL:
 https://databoks.katadata.co.id/datapublish/2023/02/27/riwayat-banjir-jakarta-5-tahun-terakhir-membaik-atau-memburuk
- Rachmadi, Sudarsono, & Santoso. (2021). Implementasi Metode LightGBM Untuk Klasifikasi Kondisi Abnormal Pada Pengemudi Sepeda Motor Berbasis Sensor Smartphone. Jurnal Komputer Terapan Vol. 7, No. 2, November 2021, 218 -227. https://jurnal.pcr.ac.id/index.php/jkt/
- Soebroto, dkk. (2015). PREDIKSI TINGGI MUKA AIR (TMA) UNTUK DETEKSI DINI BENCANA BANJIR MENGGUNAKAN SVR-TVIWPSO. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 2, No. 2, Oktober 2015, 1-8. http://dx.doi.org/10.25126/jtiik.201522126
- StarCore Analytics. (2023). Petunjuk Teknis Final DSC 2023. Diakses 21 Agustus 2023 pukul 16.00 WIB. URL: http://bit.ly/JuknisFinalDSC

TERIMA KASIH