

Painel ► SBL0059 ► 3 setembro - 9 setembro ► Teste de revisão

Iniciado em terça, 29 Set 2020, 19:46

Estado Finalizada

Concluída em terça, 29 Set 2020, 22:14

Tempo empregado 2 horas 28 minutos

Avaliar 6,00 de um máximo de 10,00(60%)

Questão 1

Correto

Atingiu 2,00 de 2,00 Calcule $\int\limits_C x \ ds$, onde C é a curva parabólica x=t , $y=t^2$, entre (0,0) e (2,4).

Escolha uma:

$$\bigcirc$$
 a. $\frac{17\sqrt{17}-1}{12}$

- **√**
- \bigcirc b. $\frac{13\sqrt{17}-1}{12}$
- \bigcirc C. $\frac{14\sqrt{17}-1}{12}$
- \bigcirc d. $\frac{15\sqrt{17}-1}{12}$
- \circ e. $\frac{16\sqrt{17}-1}{12}$

Sua resposta está correta.

Similar ao item a que a curva parabólica é contínua sobre a curva ${\cal C}$ a integral pode ser calculada por :

$$\int\limits_C \,x\;ds = \int_a^b \,x(t)\,\parallel ec{{f v}}(t)\parallel \,dt$$

Usando a parametrização $\vec{\mathbf{r}}(t) = x\mathbf{i} + y\mathbf{j}$ temos que:

$$\vec{\mathbf{r}}(t) = t\mathbf{i} + t^2\mathbf{j}$$

Assim derivamos o $\vec{\mathbf{r}}(t)$ afim de obter o vetor $\vec{\mathbf{v}}(t)$

$$ec{\mathbf{v}}(t) = \mathbf{i} + 2t\mathbf{j}$$

Cujo o módulo é dado por:

$$\parallel ec{\mathbf{v}}(t) \parallel = \sqrt{1+4t^2}$$

Substituindo então os dados encontrados na integral, temos:

$$\int\limits_{\Omega}\,x\,ds=\int_{0}^{\,2}\,t\sqrt{1+4t^{2}}\;dt$$

Aplicando método de resolução de integral substituição simples, tomemos:

$$u = 4t^2 + 1$$

$$du = 8t dt$$

$$\frac{du}{8} = t dt$$

Colocando os limites de integração em relação a variável \boldsymbol{u} substituindo os valores iniciais:

$$u(0) = 4 \ 0^2 + 1$$
 $u(0) = 1$ $u(2) = 4 \ 2^2 + 1$ $u(2) = 17$

Substituindo os limites de integração:

$$\int_0^2 t \sqrt{1+4t^2} \ dt = rac{1}{8} \int_1^{17} \sqrt{u} \ du$$

$$=\left(rac{1}{8}
ight)\left(rac{2}{3}
ight)(u^{rac{3}{2}})|_{1}^{17}$$

Substituindo os dados temos:

$$\left(\frac{1}{8}\right) \left(\frac{2}{3}\right) (u^{\frac{3}{2}})|_{1}^{17} = \left(\frac{1}{8}\right) \left[\left(\frac{2}{3}\right) (\sqrt{17^{3}}) - \left(\frac{2}{3}\right) (\sqrt{1^{3}})\right]$$

$$= \left(\frac{1}{8}\right) \left[\left(\frac{2(17)(\sqrt{17})}{3}\right) - \left(\frac{2}{3}\right)\right]$$

$$= \left(\frac{1}{8}\right) \left(\frac{2}{3}\right) (17\sqrt{17} - 1)$$

$$= \frac{17\sqrt{17} - 1}{12}$$

A resposta correta é: $\frac{17\sqrt{17}-1}{12}$

.

Questão 2

Correto

Atingiu 2,00 de 2,00 Encontre a integral de linha de $f\left(x,\ y,\ z\right)=x+y+z$ sobre o segmento de reta de (1,2,3) a (0,-1,1).

Escolha uma:

- \odot a. $4\sqrt{14}$
- \odot b. $3\sqrt{15}$
- \odot c. $2\sqrt{15}$
- \odot d. $3\sqrt{14}$

e. \(2\sqrt{14}\)

Sua resposta está correta.

Resposta:

Para iniciarmos, temos que definir os segmentos de reta como $\mbox{\mbox{\mbox{\mbox{$r$}}_0\} e \mbox{\mbox{\mbox{\mbox{m}}_1\} para ser feita a parametrização, logo:}$

 $\times the following the fol$

Com \(\mathbf{\vec $\{r\}$ _1\) definidos, podemos então parametrizar eles para descobrir os valores de \(x\), \(y\) e \(z\).

\({\bf\vec r}\left(t\right)=\left(1-

 $t\rightarrow \frac{1}{\sqrt{r}}\$

 $\(\ x, y, z \ x = (1-t) \ 0, -1, 1 \ +t \ 1, 2, 3 \ x = (1-t)$

 $(\langle x, y, z \rangle = \langle x, y, z \rangle + \langle x, y, z \rangle$

 $\(\ x, y, z \ = \ \|x - 1 + 3t, 1 + 2t \).$

Com isso, obtemos os valores de (x), (y) e (z):

\(x\:=\:t\),

(y:=:-1+3t),

(z:=:1+2t).

Essa é a integral que vamos utilizar para encontrar a integral de linha utilizada para resolver a questão:

Partindo para a resolução, primeiro obtemos os valores de $\(frac{dx}{dt}\)$, $\(frac{dy}{dt}\)$ e $\(frac{dz}{dt}\)$.

 $\frac{dx}{dt}=1\:\,\(\:\:frac{dy}{dt}=3\:\)e\(\:\:frac{dz}{dt}=2\)$

Com os valores em mãos, podemos substitui-los e encontrar o valor do módulo do vetor velocidade.

Concluindo, com o módulo do vetor velocidade definido podemos fazer a integral para solucionar a questão.

A resposta correta é: \(3\sqrt{14}\)

.

Questão **3** Incorreto

Atingiu 0,00 de 2,00 Encontre o trabalho realizado por $\ (\{ bf \le F \})$ sobre a curva na direção de $\ (t)$ crescente, onde:

- $\{\bf{\vec{F}}\} = 3y{\bf{i}}+2x{\bf{j}}+4z{\bf{k}}\)$
- \({C}\) é união dos caminhos \({C}_1\) e \({C}_2\), dados
 repsectivamente pelas curvas \({{\bf{\vec{r}}}}_1(t)=t{\bf{i}}+t{\bf{j}}\) e \({{\bf{\vec{r}}}}_2(t)=t{\bf{i}}+t{\bf{k}}\), para \(0 \leq t \leq 1\).

Resposta: 7

Solução:

Primeiramente precisamos ressaltar que a questão pede a união dos caminhos $(C_1) e (C_2)$ descritos pelas funções vetoriais $(\{bf\{vec\{r\}\}\}_1(t)) e (\{bf\{vec\{r\}\}\}_2(t)),$ Então precisamos encontar $(\{bf\{vec\{F\}\}\}_1(t)) e (\{bf\{vec\{F\}\}\}_2(t)),$ para os caminhos $(\{C_1\}) e (\{C_2\})$ respectivamente, e depois somar o resultado das integrais de cada um. Veja os passos abaixo:

i) Baseando-se nas coordenadas dadas:

ii) Parametrizando a função \({\bf{\vec{F}}} = 3y{\bf{i}}+2x{\bf{j}}+4z{\bf{k}}\) em termos de \(t\):

iii) Derivando \({{\bf{\vec{r}}}}_1(t)=t{\bf{i}}+t{\bf{j}}\), obtemos:

iv) Simplificando para integração:

v) Após simplificarmos a expressão anterior, integramos:

Resposta: $\(frac{5}{2}\)$.

Agora faremos o mesmo procedimento para $(\{ \f\{\vec\{r\}\}\}_2(t) \) \in \{ \f\{\vec\{F\}\}\}_2(t) \).$

i) Baseando-se nas coordenadas dadas:

 $({\{\bf\{\vec\{r\}\}\}\}_2(t)=\{\bf\{i\}\}+\{\bf\{j\}\}+t\{\bf\{k\}\}\}), \ (0\leq t\leq 1\}).}$

```
ii) Parametrizando a função \({\bf{\vec{F}}} = 3y{\bf{i}}+2x{\bf{j}}+4z{\bf{k}}\) em termos de \(t\):
```

iii) Derivando: $\{\{\bf\{\vec\{r\}\}\}\}_2(t)=\{\bf\{i\}\}+\{\bf\{i\}\}+t\{\bf\{k\}\}\}), obtemos:$

 $\ (\frac{d}\left(\frac{r}}{2}dt = 0\left(\frac{i}{s} + 0\left(\frac{i}{s} + 0\left(\frac{s}{s} \right) \right) \right)$

iv) Simplificando para integração:

 $$$ ({ \f\{\ec_{F}\}}_2({\bf\{\ec_{r}\}}_2)(t))\cdot \left(d_{\f\{\ec_{r}\}}\right)dt = \left(3\left(b_{i}\right)+4t\left(b_{i}\right)\cdot \left(0\left(b_{i}\right)+0\left(b_{i}\right)+4t\left(b_{i}\right)dt\right) } \\ ({\f\{\ec_{r}\}\}}_2(t))\cdot \left(b_{i}\right)+0\left(b_{i$

v) Após simplificarmos a expressão anterior, integramos:

 $$$ \left(\bigg(\int_{C_{2}}\left(\left(\int_{C_{2}}\left(\int_$

 $\label{lem:comparison} Somando as integrais dos caminhos \(C]_1 \cup \{C]_2\) obtemos: \(\displaystyle \int \limits_{C_{1}}{\left(\bf{\vec_{r}}\right)_1} \(t)) \cdot\frac{d{\bf{\vec_{r}}}_2} \(t)\cdot\frac{d{\bf{\vec_{r}}}_2}(t)\cdot\frac{d{\bf{\vec_{r}}}_2}(t)\cdot\frac{d{\bf{\vec_{r}}}_3}(t) \cdot\frac{d{\bf{\vec_{r}}}_3}(t) \cdot\frac{d{\bf{\wec_{r}}}_3}(t) \cdot\frac{d{\bf{\wec_{r}}}_3}(t) \cdot\frac{d{\bf{\wec_{r}}}$

Resposta: $\(\frac{9}{2}\)$.

A resposta correta é: 4,5.

Questão **4**

Incorreto

Atingiu 0,00 de 2,00 Encontre o trabalho realizado por $\ (\{ bf \le F \})$ sobre a curva na direção de $\ (t)$ crescente, onde:

- $\{\{bf\{\vec{F}\}\} = 3y\{bf\{i\}\} + 2x\{bf\{i\}\} + 4z\{bf\{k\}\}\}\}$
- \(C\) é o caminho dado pela função vetorial \({\bf{\vec{r}}}\) (†)=t{\bf{i}}+t^{2}{\bf{j}}+t^{4}{\bf{k}}\), \(0 \leq t \leq 1. \)

Resposta: 4,3

Solução:

i) Derivando $({\bf{\vec{r}}}(t)=t{\bf{i}}+t^{^2}{\bf{j}}+t^{^4}{\bf{k}}),$ obtemos:

 $\frac{d(\bf{\vec{r}})}{dt} = {\bf{i}}+2t{\bf{j}}+4t^{^3}{\bf{k}}}$

ii) Parametrizando a função \($\left\{ \left\{ \left(F\right\} \right\} = 3y\left\{ \left(i\right\} + 2x\left\{ \left(f\right) \right\} + 4z\left\{ \left(f\right) \right\} \right\} \right\}$ em termos de \(f\):

iii) Simplificando para a integração:

iv) Após simplificarmos a expressão anterior, integramos:

Resposta: $\(\frac{13}{3} \).$

A resposta correta é: 4,3333333.

Questão **5**Correto
Atingiu 2,00 de

2,00

Encontre o fluxo do campo \({\bf \vec{F}}_2 = -y{\bf i} + x{\bf j} \) através da elipse \({\bf \vec{r}}(t) = (cos(t)){\bf i} + (4 sen(t)){\bf j}\), \(0 \leq t \leq 2\pi \).

0	~
	0

Solução:

Desta vez nós vamos usar a forma escalar para o cálculo do fluxo. Seja \ (\vec{r}(t)=\cos(t){\bf i}+4\sin(t){\bf j} \), teremos que \(x = \cos(t)\) e \(y = 4\sin(t) \). Logo \(dx = -\sin(t)\,dt \) e \((dy = 4\cos(t)\,dt \)

Agora podemos calcular o fluxo do campo Fluxo $\ (\bf \end{F}}_2 \):$

 $\ (\int_0^{2\pi} Mdy-Ndx)$

 $(= \int_0^{2\pi} \left[-4\sin(t)4\cos(t)-\cos(t)(-\sin(t))\right],dt)$

 $(= \int_0^{2\pi} {-16\sin(t)\cos(t)} + \sin(t)\cos(t)), dt)$

 $(=\int_0^{2\pi }-15\sin (t)\cos (t),dt=\frac{-15}{4}[\sin (t)]^{2\pi }_0=0)$

A resposta correta é: 0.

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da Computação

Contato

Rua Coronel Estanislau Frota, s/n – CEP 62.010-560 – Sobral, Ceará

□ Telefone: (88) 3613-2603

∠ E-mail:

Social

