ANÁLISE DOS EFEITOS DA DIMENSIONALIDADE EM REDES COM ESTATÍSTICA DE TSALLIS

Aluno: Antonio Mauricio Rocha Alencar Júnior

Orientador: Humberto de Andrade Carmona

Mecanismo

 Processo inicia com um sítio na origem, é gerado uma distância seguindo a distribuição

$$P(r) \sim r^{-(\alpha_g + d)}$$

sendo d a dimensão e α_g um parâmetro maior ou igual a 0

 Logo em seguida, é realizado um sorteio entre esse novo sítio e os sítios da rede, seguindo a probabilidade

$$\Pi_{ij} = \frac{k_i r_{ij}^{-\alpha_a}}{\sum_i k_i r_{ij}^{-\alpha_a}}$$

com a soma i sobre os sítios da rede e α_a um parâmetro maior ou igual a 0.

Distribuição de graus para múltiplos $lpha_g$

Fig 1 – Distribuição de graus com $\alpha_a=2.0$, sendo d a dimensão na qual a rede é construída e múltiplos valores de α_g , tendo $N=10^5$ sítios e 440 amostras. A curva solida preta representa a distribuição de graus teórica proposta, q-exponencial. Os valores de q e λ para fit estão expressas no gráfico.

Distribuição de graus para múltiplos $lpha_a$

Fig 2 – Distribuição de graus com $\alpha_g = 2.0$, sendo d a dimensão na qual a rede é construída e múltiplos valores de α_a , tendo $N = 10^5$ sítios e 440 amostras. A curva solida preta representa a distribuição de graus teórica proposta, q-exponencial. Os valores de q e λ para fit estão expressas no gráfico.

$\langle \ell \rangle$ versus α_q para $d=(1,2,3,4), N=10^5$

Fig 3 – Comprimento médio dos menores caminhos da rede, $\langle \ell \rangle$, em função do parâmetro α_g , com $\alpha_a = 2.0$, sendo d a dimensão na qual a rede é construída, tendo $N = 10^5$ sítios e 440 amostras. A região $0 \le \alpha_g \le 1$ possuí esse comportamento devido aos problemas de normalização da distribuição nessa região. Para $1 \le \alpha_g$, teremos $\langle \ell \rangle$ possuindo comportamento linear.

$\langle d_{max} \rangle$ versus α_g para $d=(1,2,3,4), N=10^5$

Fig 4 – Diâmetro médio da rede, $\langle d_{max} \rangle$, em função do parâmetro α_g , com $\alpha_a = 2.0$, sendo da dimensão na qual a rede é construída, tendo $N = 10^5$ sítios e 440 amostras. A região $0 \le \alpha_g \le 1$ possuí esse comportamento devido aos problemas de normalização da distribuição nessa região. Para $1 < \alpha_g$, teremos $\langle \ell \rangle$ possuindo comportamento linear.

$\langle R \rangle$ versus α_q para $d = (1,2,3,4), N = 10^5$

Fig 5 – Assortatividade média da rede, $\langle R \rangle$, em função do parâmetro α_g , com $\alpha_a=2.0$, sendo da dimensão na qual a rede é construída, tendo $N=10^5$ sítios e 440 amostras. A região $0 \le \alpha_g \le 1$ possuí esse comportamento devido aos problemas de normalização da distribuição nessa região. Para $1 \le \alpha_g$, teremos $\langle \ell \rangle$ possuindo comportamento linear.

$\langle \ell \rangle$ versus α_a para $d=(1,2,3,4), N=10^5$

Fig 6 – Comprimento médio dos menores caminhos da rede, $\langle \ell \rangle$, em função do parâmetro α_a , com $\alpha_g = 2.0$, sendo d a dimensão na qual a rede é construída, tendo $N = 10^5$ sítios e 440 amostras. Podemos observar que quanto menor a dimensão, maiores os valores do comprimento médio do menor caminho da rede $\langle \ell \rangle$.

 $\langle d_{max} \rangle$ versus α_a para $d=(1,2,3,4), N=10^5$

Fig 7 – Diâmetro médio da rede, $\langle d_{max} \rangle$, em função do parâmetro α_a , com $\alpha_g = 2.0$, sendo d a dimensão na qual a rede é construída, tendo $N = 10^5$ sítios e 440 amostras. Podemos observar que quanto menor a dimensão, maiores os valores do comprimento médio do menor caminho da rede $\langle d_{max} \rangle$.

$\langle R \rangle$ versus α_a para $d = (1,2,3,4), N = 10^5$

Fig 8 – Assortatividade média da rede, $\langle R \rangle$, em função do parâmetro α_a , com $\alpha_g = 2.0$, sendo d a dimensão na qual a rede é construída, tendo $N = 10^5$ sítios e 440 amostras. A região avermelhada representa a região onde $\alpha_a \leq d$, com a região branca $\alpha_a > d$.

$\langle \ell \rangle$ versus N para d=(1,2,3,4), α_a variado

Fig 9 – Comprimento médio dos menores caminhos da rede, $\langle \ell \rangle$, em função do logaritmo do número de sítios da rede, N, com $\alpha_g = 2.0$ e $\alpha_a = [0.0, 2.0, 4.0, 6.0, 8.0]$, sendo d a dimensão na qual a rede é construída. Foram utilizados [30, 11, 70, 200, 300, 1200, 1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

$\langle d_{max} \rangle$ versus N para d=(1,2,3,4), α_a variado

Fig 10 – Diâmetro médio da rede, $\langle d_{max} \rangle$, em função do logaritmo do número de sítios da rede, N, com $\alpha_g = 2.0$ e $\alpha_a = [0.0, 2.0, 4.0, 6.0, 8.0]$, sendo d a dimensão na qual a rede é construída. Foram utilizados [30, 11, 70, 200, 300, 1200, 1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

$\langle R \rangle$ versus N para d=(1,2,3,4), α_a variado

Fig 11 – Assortatividade média da rede, $\langle R \rangle$, em função do logaritmo do número de sítios da rede, N, com $\alpha_g = 2.0$ e $\alpha_a = [0.0, 2.0, 4.0, 6.0, 8.0]$, sendo d a dimensão na qual a rede é construída. Foram utilizados [30, 11, 70, 200, 300, 1200, 1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

Coeficiente para o comprimento médio do menor caminho (l)

Fig 12 – Coeficiente angular da relação $\langle \ell \rangle = \beta \log_{10} N$, em função do parâmetro α_a , sendo $\langle \ell \rangle$ o comprimento médio dos menores caminhos da rede e N o número de sítios na rede, com d a dimensão na qual a rede é construída, fixado $\alpha_g = 2.0$. Foram utilizados [30, 11, 70, 200, 300, 1200, 1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

Coeficiente para o diâmetro $\langle d_{max} \rangle$

Fig 13 – Coeficiente angular da relação $\langle d_{max} \rangle = \beta \log_{10} N$, em função do parâmetro α_a , sendo $\langle d_{max} \rangle$ o diâmetro médio da rede e N o número de sítios na rede, com d a dimensão na qual a rede é construída, fixado $\alpha_g = 2.0$. Foram utilizados [33, 11, 70, 200, 300, 1200, 1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

Coeficiente para o assortatividade $\langle R \rangle$

Fig 14 – Coeficiente angular da relação $\langle R \rangle = \beta \log_{10} N$, em função do parâmetro α_a , sendo $\langle R \rangle$ a assortatividade média da rede e N o número de sítios da rede, com d a dimensão na qual a rede é construída, fixado $\alpha_g = 2.0$. Foram utilizados [30,11,70,200,300,1200,1000] amostras para redes com [320000, 160000, 80000, 40000, 20000, 10000, 5000] sítios respectivamente.

Conclusões

- As propriedades estudadas possuem uma dependência direta apenas dos parâmetros α_a e d;
- O crescimento do parâmetro β com o crescimento de α_a indica que a rede torna-se mais fragmentada com o crescimento de α_a ;
 - A assortatividade apresenta uma mudança no comportamento em $\alpha_a \approx d$.