Festigkeit PR+SY

Biegedeformation

$$\rho = \frac{E \cdot I}{M_b}$$

$$k(x) = \frac{1}{\rho(x)} = \frac{M_b(x)}{E \cdot I}$$

$$k(x) = -\frac{w''}{\left(1 + w'^2\right)^{3/2}}$$

$$\varphi \approx \tan \varphi = -\frac{dw}{dx} = -w'$$

$$w'' = -\frac{M_b(x)}{E \cdot I}$$

Integrationsmethode

$$Q = -\int q \cdot dx \quad \rightarrow \quad M_b = \int Q \cdot dx$$

$$\rightarrow \quad \varphi = \int \frac{M_b}{E \cdot I} \cdot dx \quad \rightarrow \quad w = -\int \varphi \cdot dx$$

Randbedingungen:

Lager		w	w'	M_b	Q
Gelenk	// /	0	$\neq 0$	0	$\neq 0$
Parallelführung	/ /	$\neq 0$	0	$\neq 0$	0
Einspannung	<u></u>	0	0	$\neq 0$	$\neq 0$
Freies Ende		$\neq 0$	$\neq 0$	0	0

Überlagerung

 $w_1 = w_{11} + w_{12}$

$$w_2 = w_{21} + w_{22}$$

Satz von Maxwell: $\frac{w12}{F2} = \frac{w21}{F1}$

Beispiel:

Formänderungsarbeit

$$W = \frac{1}{2} \cdot M_b \cdot \varphi = \frac{M_b^2 \cdot l}{2 \cdot E \cdot I} \left[W = \frac{1}{2} \int_0^l \frac{M_b^2}{E \cdot I} \cdot dx \right]$$

Sätze von Castigliano:
$$w=rac{\partial W}{\partial F}$$
 $\varphi=rac{\partial W}{\partial M}$

$$w = \frac{1}{E \cdot I} \cdot \int_{-1}^{1} M_i \cdot M_k \cdot dx \quad \varphi = \frac{1}{E \cdot I} \cdot \int_{-1}^{1} M_i \cdot M_k \cdot dx$$

The second secon	S	$M_{k1} \longrightarrow M_{k2}$	$\frac{1}{2} s M_{\rm i} \left(M_{\rm k1} + M_{\rm k2}\right)$	$\frac{1}{6} s M_{\rm i} (M_{\rm k1} + 2 M_{\rm k2})$	$\frac{1}{6} s(2M_{i1}M_{k1} + 2M_{i2}M_{k2} + M_{i1}M_{k2} + M_{i2}M_{k1})$	$\frac{1}{3}sM_{\mathrm{i}}\left(M_{\mathrm{k1}}+M_{\mathrm{k2}}\right)$	$\frac{1}{12} s M_{\rm i} (3 M_{\rm k1} + 5 M_{\rm k2})$	$\frac{1}{12} sM_i \left(M_{k1} + 3M_{k2} \right)$
M _k	λ	Mk 8	$\frac{1}{2}sM_{\rm i}M_{\rm k}$	$\frac{1}{6} s M_{\rm i} M_{\rm k}$	$rac{1}{6} s \left(2 M_{\mathrm{i}1} + M_{\mathrm{i}2} ight) M_{\mathrm{k}}$	$\frac{1}{3} s M_{\rm i} M_{\rm k}$	$\frac{1}{4}sM_{\rm i}M_{\rm k}$	$\frac{1}{12}sM_{\rm i}M_{\rm k}$
V	β	M _k	$rac{1}{2}sM_{ m i}M_{ m k}$	$\frac{1}{3}sM_{\rm i}M_{\rm k}$	$\frac{1}{2} s (M_{i1} + M_{i2}) M_k \frac{1}{6} s (M_{i1} + 2M_{i2}) M_k$	$rac{1}{3}sM_{ m i}M_{ m k}$	$rac{5}{12}sM_{ m I}M_{ m k}$	$rac{1}{4}sM_{ m i}M_{ m k}$
	σ	M _k	$sM_{\rm i}M_{\rm k}$	$\frac{1}{2}sM_{\rm i}M_{\rm k}$	$\frac{1}{2} s \left(M_{i1} + M_{i2} \right) M_{k}$	$\frac{2}{3} s M_{\rm i} M_{\rm k}$	$\frac{2}{3}sM_{\rm i}M_{\rm k}$	$rac{1}{3}sM_{\mathrm{i}}M_{\mathrm{k}}$
		$M_{\rm i}$	M ₁	M_{i}	M_{11} M_{12} $ M_{12} $	M _i **)	$M_i **)$ $ s $	M ₁ **)
		#	1	7	က	4	70	9

Schiefe Biegung

$$\sigma = \frac{M_{by}}{I_y} \cdot z - \frac{M_{bz}}{I_z} \cdot y$$

$$I_{yz^*} = I_{yz} - y_s \cdot z_s \cdot A$$

Eine Symmetrieachse und deren Senkrechte durch den Schwerpunkt sind immer Hautachsen.

$$\eta = y \cdot \cos \alpha + z \cdot \sin \alpha$$

$$\zeta = z \cdot \cos \alpha - y \cdot \sin \alpha$$

$$\tan \alpha_1 = \frac{I_{yz}}{I_1 - I_z}$$

$$I_{1,2} = \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + I_{yz}^2}$$

$$M_1 = M_{\nu} \cdot \cos \alpha_1 + M_z \cdot \sin \alpha_1$$

$$M_2 = M_z \cdot \cos \alpha_1 - M_y \cdot \sin \alpha_1$$

$$\sigma = \frac{M_1}{I_1} \cdot \zeta - \frac{M_2}{I_2} \cdot \eta \quad \tan \beta = \frac{\zeta}{\eta} = \frac{M_2 \cdot I_1}{M_1 \cdot I_2}$$

$$\eta = y \cdot \cos \alpha_1 + z \cdot \sin \alpha_1$$

$$\zeta = z \cdot \cos \alpha_1 - y \cdot \sin \alpha_1$$

Allg. Vorgehen:

- 1. I_{max} und I_{min} berechnen
- 2. Lage der Hauptachsen ($\zeta \eta$ Koordinaten)
- 3. Biegemoment zerlegen => M₁, M₂
- 4. $\zeta \eta$ Koordinaten der Externalpunkte
- 5. Spannungsberechnung in den Haptachsen

Schub

Scherung

$$\tau_a = \frac{Q}{A}$$

Schub bei Querkraftbiegung

$$\tau = \frac{Q \cdot S}{I_y \cdot b}$$

$$S = \int_{A^*} z \cdot dA = z_s^* \cdot A^*$$

Schubfluss:

$$q = \tau \cdot t$$

$$q = \frac{Q \cdot S}{I_y}$$

Faustregel:

$$\frac{h}{l} \le \frac{1}{10} \rightarrow \tau$$
 vernachlässigbar

Knickung

Elastische Knickung (EULER)

$$F_K = \frac{\pi^2 \cdot E \cdot I}{l_K^2}$$
 Schlankheitsgrad $\lambda = \frac{l_K}{i} = l_K \cdot \sqrt{\frac{A}{I}}$

$$\lambda = \frac{l_K}{i} = l_K \cdot \sqrt{\frac{A}{I}}$$

$$\sigma_K = \frac{\pi^2 \cdot E}{\lambda^2}$$
 Trägheitsradius

Fall 3

Fall 4

Fall 5

$$S_K = \frac{F_K}{F}$$

Elastisch-plastische Knickung (TETMAJER)

$$\boxed{\sigma_K = a - b \cdot \lambda} \quad \text{für } \lambda_F < \lambda < \lambda_P$$

$$f\ddot{u}r \lambda_{E} < \lambda < \lambda_{B}$$

Werkstoff	E [N/mm ²]	λ_{F}	λ_{P}	a [N/mm ²]	b [N/mm ²]	
S235	210'000	65	104	310	1,14	
E295 / E335	210'000	-	89	335	0,62	
5%-Ni-Stahl	210'000	-	86	470	2,30	
Nadelholz	10'000	-	100	29,3	0,194	
Grauguss	100,000	-	80	$\sigma_{K} = 776 - 12 \cdot \lambda + 0.053 \cdot \lambda^{2}$		

Mit der Tetmajer-Gleichung können keine Stäbe ausgelegt werden, sondern nur nachgerechnet!

$$S_K = \frac{\sigma_K}{\sigma_{vorh}}$$
 mit $\sigma_{vorh} = \frac{F}{A}$

Vorgehen:

- → Querschnitt 1. EULER (Imin berechnen)
- 2. Schlankheitsgrad λ $\lambda > \lambda_P \rightarrow OK$

 $\lambda < \lambda_P \rightarrow \sigma_K (\lambda)$

 $3.S_K = \sigma_K(\lambda) / \sigma_{vorh}$ $S_K > S_{soll} \rightarrow OK$

 $S_K < S_{soll} \rightarrow$ neuer Querschnitt

Ebener Spannungszustand

Hauptspannungen

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2}$$

$$\tan \alpha_1 = \frac{\tau}{\sigma_1 - \sigma_y} \qquad \sigma_M = \frac{\sigma_x + \sigma_y}{2}$$

$$\tau_{max} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2} = \frac{\sigma_1 - \sigma_2}{2}$$

Druckbehälter

Zylindrischer Kessel:

$$\sigma_t \cong \frac{\Delta p \cdot d}{2 \cdot t}$$

$$d \approx d_i \approx d_a$$

$$\sigma_a \cong \frac{\Delta p \cdot d}{4 \cdot t}$$

 $d \approx d_i \approx d_a$

Kugelförmiger Kessel:

Zusammengesetzte Beanspruchung

Biegung & Normalkraft

$$\sigma = \frac{N}{A} + \frac{M_b}{I_y} \cdot Z$$

z: Abstand vom Schwerpunkt

 $\sigma_z = (\sigma_1 + \sigma_2)/2$

 $\sigma_b = (\sigma_1 - \sigma_2)/2$

Biegung & Torsion (duktiles Material vorausgesetzt!)

$$\sigma_v = \frac{M_v}{W_b} \le \sigma_{zul}$$

$$\sigma_v = \frac{M_v}{W_b} \le \sigma_{zul} \qquad M_v = \sqrt{M_b^2 + \frac{3}{4} \cdot (\alpha_0 \cdot M_t)^2}$$

→ Für Kreisquerschnitte:

$$d \geq \sqrt[3]{\frac{32 \cdot M_v}{\pi \cdot \sigma_{zul}}} = \sqrt[3]{\frac{32}{\pi \cdot \sigma_{zul}} \cdot \sqrt{M_b^2 + \frac{3}{4} \cdot (\alpha_0 \cdot M_t)^2}}$$

Biegung & Querkraft

- elementare Querschnittsformen i.d.R. Spannungen bei ihren Maxima getrennt nachweisen => $\sigma_{max} \le \sigma_{zul}$, $\tau_{max} \le \tau_{zul}$
- I > 10 h => nur Biegespannungen massgebend
- I < h => nur Schubspannungen massgebend

$$\sigma_v = \sqrt{\sigma_{b,max}^2 + 3 \cdot \tau_m^2}$$

- Stahlbau:

Festigkeitshypothesen

 $\sigma_v = \sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2}$ <u>NH</u>:

spröde WS, Schweissnähte, stossartige Bel. zäher WS

 $\sigma_v = 2 \cdot \tau_{max} = \sqrt{(\sigma_x - \sigma_y)^2 + 4 \cdot \tau^2} = \sigma_1 - \sigma_2$ <u>SH</u>:

spröde Werkstoffe auf Druck

GEH: zähe Werkstoffe (statisch & dynamisch)

$$\sigma_v = \sqrt{\sigma_x^2 - \sigma_x \cdot \sigma_y + \sigma_y^2 + 3 \cdot \tau^2} = \sqrt{\sigma_1^2 - \sigma_1 \cdot \sigma_2 + \sigma_2^2}$$

Spannungsnachweis:

Hypothesen gelten alle nur, wenn jeweils alle Spannungskomponenten den selben Spannungs-Zeit-Verlauf haben!

Ansonsten: Anstrengungsverhältnis nach BACH

$$\alpha_0 = \frac{1}{\varphi} \cdot \frac{\sigma_{Probe\ beim\ Lastfall\ von\ \sigma}}{\tau_{Probe\ beim\ Lastfall\ von\ \tau}} \quad mit \quad \varphi = \begin{cases} 1 & NH \\ 2 & SH \\ \sqrt{3} & GEH \end{cases}$$

In NH, SH & GEH $\tau = \alpha_0 \cdot \tau$ einsetzen (falls Belastungen gleich: $\alpha_0 = 1$)

$$au_F = 0.58 \cdot R_e$$
 $au_B = 0.58 \cdot R_m$ für Stahl

Spezialfall: eine Normal & eine Schubspannung

$$\sigma_{v} = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^{2} + (\alpha_{0} \cdot \tau)^{2}} \qquad NH$$

$$\sigma_{v} = \sqrt{\sigma^{2} + 4 \cdot (\alpha_{0} \cdot \tau)^{2}} \qquad SH$$

$$\sigma_{v} = \sqrt{\sigma^{2} + 3 \cdot (\alpha_{0} \cdot \tau)^{2}} \qquad GEH$$

$$\sigma_v \leq \sigma_{zul}$$

Falls Werkstoff nicht bekannt: 2 Möglichkeiten

- WS annehmen
- für α_0 einen Wert annehmen, da α_0 i.d.R. zwischen 0.5 und 0.8 liegt

Dimensionierung:

- 1. Näherung => Querschnitt (Dauerfestigkeiten pauschalt durch S = 3...4 dividieren => σ_{zul})
- 2. Nachrechnung => ev. neuer Querschnitt
- 3. Ev. erneut nachrechnen, etc.

Festigkeitsnachweis

Statischer Festigkeitsnachweis

$$\begin{bmatrix} R_p = K_t \cdot R_{pN} \\ R_m = K_t \cdot R_{mN} \end{bmatrix}$$
 K_t nach TB 3-11

$$n_{pl} = \sqrt{\frac{R_{p,max}}{R_p}} \le \alpha_p$$
 $\xrightarrow{R_p,max} \alpha_p$ nach TB 3-2 b)

nur für Biegung & Torsion; für Z/D $n_{pl} = 1$

 $R_{p,max} = 1050 \text{ N/mm}^2 \text{ (Stahl und GS)}$

 $R_{p,max} = 320 \text{ N/mm}^2 \text{ (GJS)}$

 $R_{p,max} = 250 \text{ N/mm}^2 \text{ (Aluminium Knetlegierungen)}$ \rightarrow

falls $n_{pl} > \alpha_p$, dann α_0 anstelle n_{pl} einsetzen

 $\alpha_p = \frac{M_{vpl}}{M_{el}} \qquad n_{pl} = \frac{M_{pl}}{M_{el}}$ Plastisch: $M_{el} = R_n \cdot W_h$

Zähe Werkstoffe:

$$S_F = rac{\sigma_F}{\sigma_n} \geq S_{F,min}$$
 $S_B = rac{\sigma_B}{\sigma_n} \geq S_{B,min}$
resp. das Selbe mit $\tau_F \& \tau_B$

Für zusammengesetzte Beanspruchung:

$$S_F = \frac{1}{\sqrt{\left(\frac{\sigma_{zd}}{\sigma_{zdF}} + \frac{\sigma_b}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_s}{\tau_{sF}} + \frac{\tau_t}{\tau_{tF}}\right)^2}} \ge S_{F,min}$$

Spröde Werkstoffe:

$$S_F = \frac{\sigma_B}{\sigma_{max}} \ge S_{B,min}$$

Dauerfestigkeitsnachweis

- 1. Vorhandene Spannungen σ, τ
- 2. Werkstoffkennwerte

$$\sigma_W = K_t \cdot \sigma_{WN}$$
$$\tau_W = K_t \cdot \tau_{WN}$$

- 3. Bezogenes Spannungsgefälle G' → Stützzahl n
- 4. Kerbwirkung

$$\beta_k = \frac{\alpha_k}{n}$$

falls experimentelle β_{K} -Werte verwendet werden:

$$\beta_k = \beta_{k,Probe} \cdot \frac{\kappa_{\alpha,Probe}}{\kappa_{\alpha}}$$

- 5. Geom. Grösseneinfluss
- K_g
- Oberflächenrauheit
- $K_{0\sigma/\tau}$
- Randschicht
- Κv
- → Konstruktionsfaktor:

$$K_D = \left(\frac{\beta_k}{K_g} + \frac{1}{K_O} - 1\right) \cdot \frac{1}{K_V}$$

6. Gestaltwechselfestigkeit

$$\sigma_{GW} = \frac{\sigma_W}{\kappa_D}$$

bzw.

$$\tau_{GW} = \frac{\tau_W}{\kappa_D}$$

Nenn-

7. Vergleichsmittelspannung:

$$\sigma_{mv} = \sqrt{(\sigma_{zdm} + \sigma_{bm})^2 + 3 \cdot \tau_{tm}^2}$$

$$\tau_{mv} = f_{\tau} \cdot \sigma_{mv}$$

(für GEH)

Proben-

Bauteil-

- 8. Gestaltausschlagfestigkeit:
 - Smith-Diagramm:

	Dauerfestigkeits- Schaubild nach Smith	spannungs- amplitude	Gestalt- ausschlag- festigkeit	Ausschlag- festigkeit
Überlastungsfall 1 $\sigma_m = konst.$	GA. GGA		O _{GA}	O _A
Überlastungsfall 2 x = konst.	σ_A , σ_{GA}	σ _s	O _{GA}	
Überlastungsfall 3 $\sigma_{u} = konst.$	σ_A , σ_{GA}		O _{GA}	O _A

- oder Formeln:

$$\sigma_{GA} = \sigma_{GW} - \psi_{\sigma} \cdot \sigma_{mv}$$

$$\tau_{GA} = \tau_{GW} - \psi_{\tau} \cdot \tau_{mv}$$

$$\sigma_{GA} = \frac{\sigma_{GW}}{1 + \psi_{\sigma} \cdot (\sigma_{mv}/\sigma_a)}$$

$$\tau_{GA} = \frac{\tau_{GW}}{1 + \psi_{\tau} \cdot (\tau_{mv}/\tau_a)}$$

$$f\ddot{u}r \ \sigma_m = konst.$$

$$f\ddot{u}r \ \sigma_m = konst.$$

$$\psi_{\sigma} = a_M \cdot R_m + b_M$$

$$\psi_{\tau} = f_{\tau} \cdot \psi_{\sigma}$$

 a_M und b_M nach TB 3-13 und f_τ nach TB 3-2

9. Vergleichsmittelspannung:

$$\sigma_{mv} = \sqrt{(\sigma_{zdm} + \sigma_{bm})^2 + 3 \cdot \tau_{tm}^2}$$

$$\tau_{mv} = f_{\tau} \cdot \sigma_{mv}$$

- 10. Sicherheiten:
 - nur eine dynamisch wirkende Beanspruchung:

$$S_D = \frac{\sigma_{GA}}{\sigma_a} \ge S_{D,min}$$
 bzw. $S_D = \frac{\tau_{GA}}{\tau_a} \ge S_{D,min}$

- mehrere dyn. wirkende Beanspruchungen (GEH):

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{zda}}{\sigma_{zdGA}} + \frac{\sigma_{ba}}{\sigma_{bGA}}\right)^2 + \left(\frac{\tau_{sa}}{\tau_{sGA}} + \frac{\tau_{ta}}{\tau_{tGA}}\right)^2}} \ge S_{D,min}$$

Statisch unbestimmte Systeme

Überlagerung / Superposition (Standardlastfälle)

Formänderungsarbeit

- 1. Statisch Unbestimmte X₁ wählen
 - → Lager wegnehmen/reduzieren
- 2. M_b im 0-System
- $\rightarrow M_0$
- 3. M_b im 1-System
- → M₁

5.
$$\frac{w_{10} + X_1 \cdot w_{11} = 0}{X_1 = -\frac{w_{10}}{w_{11}}}$$

$$M_{ges} = M_0 + X_1 \cdot M_1$$

Deformation eines stat. unbestimmt gelagerten Trägers:

$$w = \frac{1}{EI} \cdot \int_0^l M_{ges} \cdot \overline{M}_1 \cdot dx$$

Integrationsmethode

Aufwändig und umständlich...