Popular Python Libraries

Numpy/Scipy

(numerical and scientific computing)

Pandas

(different data format)

Matplotlib/Pandas/Seaborn/Plotly

(visualization: base, dataframe, stat, interactive)

SciKit-Learn

(basic machine learning algorithms)

PySpark

(big data)

Organization of ML : Basic Backbone Q Question M Model A Answer

ML in Cartoon

$$P(+) = \sum_{C} P(C_1, +) = \frac{P(Y_1, +) + P(N_1, +)}{q^{1/6}} = \frac{27\%}{18\%}$$

$$= \sum_{C} P(C_1, T_1, +) = \frac{P(Y_1, +) + P(Y_1, +)}{18\%} + \frac{P(N_1, +) + P(N_2, +)}{18\%}$$

$$= \sum_{C} P(T_1, +) + \frac{P(Y_1, +) + P(Y_2, +)}{18\%} + \frac{P(N_1, +) + P(N_2, +)}{18\%} = \frac{27\%}{18\%}$$

$$P(+) = \frac{P(T_1, +) + P(T_2, +)}{P(T_1, +) + P(N_2, +) + P(N_2, +)} = \sum_{C} P(C_1, +) + \frac{P(Y_1, +) + P(N_2, +)}{18\%} = \frac{11.7\%}{11.7\%}$$

$$= \frac{11.7\%}{11.7\%} = \frac{11.7\%}{11.7\%} = \frac{11.7}{27} = \frac{43.8\%}{11.7\%}$$

One ML School

Bayesian Network Independence/Factorization

p(x,y) = p(x)p(y)

Correlation
Causal Relation

Understanding!

Independence

Variables x and y are independent if knowing one event gives no extra information about the other event. Mathematically, this is expressed by

$$p(x, y) = p(x)p(y)$$

Independence of x and y is equivalent to

$$p(x|y) = p(x) \Leftrightarrow p(y|x) = p(y)$$

If p(x|y)=p(x) for all states of x and y, then the variables x and y are said to be independent. We write then $x \perp \!\!\! \perp y$.

interpretatio

Note that $x \perp \!\!\! \perp y$ doesn't mean that, given y, we have no information about x. It means the only information we have about x is contained in p(x).

factorisation

If

$$p(x, y) = kf(x)g(y)$$

for some constant k, and positive functions $f(\cdot)$ and $g(\cdot)$ then x and y are independent.

Conditional Independence

$$\mathcal{X} \perp \!\!\!\perp \mathcal{Y} \mid \mathcal{Z}$$

denotes that the two sets of variables $\mathcal X$ and $\mathcal Y$ are independent of each other given the state of the set of variables $\mathcal Z$. This means that

$$p(\mathcal{X},\mathcal{Y}|\mathcal{Z}) = p(\mathcal{X}|\mathcal{Z})p(\mathcal{Y}|\mathcal{Z}) \text{ and } p(\mathcal{X}|\mathcal{Y},\mathcal{Z}) = p(\mathcal{X}|\mathcal{Z})$$

for all states of $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$. In case the conditioning set is empty we may also write $\mathcal{X} \perp \!\!\! \perp \!\!\! \mathcal{Y}$ for $\mathcal{X} \perp \!\!\! \perp \!\!\! \mathcal{Y} |\emptyset$, in which case \mathcal{X} is (unconditionally) independent of \mathcal{Y} .

Conditional independence does not imply marginal independence

$$p(x,y) = \sum_{z} \underbrace{p(x|z)p(y|z)}_{\text{cond. indep.}} p(z) \neq \underbrace{\sum_{z} p(x|z)p(z)}_{p(x)} \underbrace{\sum_{z} p(y|z)p(z)}_{p(y)}$$

Conditional dependence

If ${\mathcal X}$ and ${\mathcal Y}$ are not conditionally independent, they are conditionally dependent. This is written

$$\mathcal{X} \top \mathcal{Y} | \mathcal{Z}$$

Schools of ML

People and Kinds

