MA 1201 Spring Sem, 2025

1. The columns of A are n vectors from \mathbb{R}^m . If they are linearly independent, what is the rank of A? If they span \mathbb{R}^m , what is the rank? If they are a basis for \mathbb{R}^m , what then?

- 2. *Suppose the columns of a 5 by 5 matrix A are a basis for \mathbb{R}^5 .
 - (a) The equation Ax = 0 has only the solution x = 0 because _____.
 - (b) For every $b \in \mathbb{R}^5$, the system Ax = b is solvable because _____.

Note: A is invertible. Its rank is 5.

- 3. *Suppose **S** is a five-dimensional subspace of \mathbb{R}^6 . True or false?
 - (a) Every basis for **S** can be extended to a basis for \mathbb{R}^6 by adding one more vector.
 - (b) Every basis for \mathbb{R}^6 can be reduced to a basis for **S** by removing one vector.
- 4. *Prove that if \mathbf{V} and \mathbf{W} are three-dimensional subspaces of \mathbb{R}^5 , then \mathbf{V} and \mathbf{W} must have a nonzero vector in common. [Hint: Start with bases for the two subspaces, making six vectors in all.]
- 5. If A is a 64 by 17 matrix of rank 11, how many independent vectors satisfy Ax = 0? How many independent vectors satisfy $A^{T}y = 0$?
- 6. Find a basis for each of these subspaces of 3 by 3 matrices:
 - (a) All diagonal matrices.
 - (b) All symmetric matrices $(A^{T} = A)$.
 - (c) All skew-symmetric matrices $(A^{T} = -A)$.
- 7. Find the dimension and a basis for the four fundamental subspaces $(C(A), C(A^T), N(A), N(A^T))$ for

$$A = \left[\begin{array}{cccc} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array} \right] \quad \text{ and } \quad U = \left[\begin{array}{cccc} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

- 8. Suppose A is an m by n matrix of rank r. Under what conditions on those numbers does
 - (a) A have a two-sided inverse: $AA^{-1} = A^{-1}A = I$?
 - (b) Ax = b have infinitely many solutions for every b?
- 9. Why is there no matrix whose row space and nullspace both contain (1,1,1)?
- 10. Suppose the only solution to Ax = 0 (m equations in n unknowns) is x = 0. What is the rank and why? The columns of A are linearly _____.
- 11. *Find a 1 by 3 matrix whose nullspace consists of all vectors in \mathbb{R}^3 such that $x_1 + 2x_2 + 4x_3 = 0$. Find a 3 by 3 matrix with that same nullspace.

- 12. If Ax = 0 has a nonzero solution, show that $A^{T}y = b$ fails to be solvable for some right-hand sides b. Construct an example of A and b.
- 13. *Construct a matrix with the required property, or explain why you can't.
 - (a) Column space contains $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, row space contains $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\5 \end{bmatrix}$.
 - (b) Column space has basis $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, nullspace has basis $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.
 - (c) Row space = column space.
- 14. What 3 by 3 matrices represent the transformations that
 - (a) project every vector onto the xy plane?
 - (b) reflect every vector through the xy plane?
 - (c) rotate the xy plane through 90° , leaving the z-axis alone?
 - (d) rotate the xy plane, then xz plane, then yz plane, through 90°?
 - (e) rotate the xy plane, then xz plane, then yz plane, through 180°?
- 15. *If $T: V \to V$ is a linear transformation, then prove that T^2 is also a linear transformation.
- 16. *The space $M_{2,2}(\mathbb{R})$ of all 2 by 2 matrices has the four basis "vectors"

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \quad \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \quad \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \quad \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right].$$

For the linear transformation T of transposing (that is, $T: M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ is defined by $T(P) = P^{\mathrm{T}}$ for every $P \in M_{2,2}(\mathbb{R})$), find its matrix A with respect to the above basis. We know that $T^2(P) = (P^{\mathrm{T}})^{\mathrm{T}} = P$, that is, $T^2 = I$. Is $A^2 = I$?

- 17. With $v = (v_1, v_2) \in \mathbb{R}^2$, suppose T(v) = v, except that $T(0, v_2) = (0, 0)$. Show that this transformation satisfies T(cv) = cT(v) for every $v \in \mathbb{R}^2$ and $c \in \mathbb{R}$, but it need not satisfy T(v + w) = T(v) + T(w) for some $v, w \in \mathbb{R}^2$.
- 18. Which of these transformations is not linear? The input is $v = (v_1, v_2) \in \mathbb{R}^2$.

(a)
$$T(v) = (v_2, v_1);$$
 (b) $T(v) = (v_1, v_1);$ (c) $T(v) = (0, v_1);$ (d) $T(v) = (0, 1).$

- 19. Suppose a linear T transforms (1,1) to (2,2) and (2,0) to (0,0). Find T(v) when
 - (a) v = (2, 2); (b) v = (3, 1); (c) v = (-1, 1); (d) v = (a, b).
- 20. (a) What matrix transforms (1,0) and (0,1) to (2,5) and (1,3)?
 - (b) What matrix transforms (1,0) and (0,1) to (r,t) and (s,u)?
 - (c) *What matrix transforms (2,5) and (1,3) to (1,0) and (0,1)?
 - (d) *Why does no matrix transform (2,6) and (1,3) to (1,0) and (0,1)?