We claim:

5

25

35

40

- A copolymer of ethylene with α-olefins which has a molar mass distribution M_w/M_n of from 1 to 8, a density of from 0.85 to 0.94 g/cm³, a molar mass M_n of from 10 000 g/mol to 4 000 000 g/mol and a CDBI of less than 50% and in which the side chain branching of the maxima of the individual peaks of the side chain branching distribution is in each case greater than 5 CH_s/1 000 carbon atoms.
- A copolymer of ethylene with α-olefins as claimed in claim 1 which has an at least bimodal
 side chain branching distribution.
 - 3. A copolymer of ethylene with α -olefins as claimed in claim 1 or 2 which has a molar mass M_n of from 150 000 g/mol to 1 000 000 g/mol.
- 4. A copolymer of ethylene with α-olefins as claimed in any of claims 1 to 3 which has at least one peak in the Crystaf® spectrum of the differential distribution in the range from 15 to 40°C and at least one further peak in the Crystaf® spectrum of the differential distribution in the range from 25 to 80°C.
- 20 5. A copolymer of ethylene with α-olefins as claimed in any of claims 2 to 4 in which the side chain branching distribution is bimodal or trimodal.
 - 6. A process for preparing ethylene copolymers as claimed in any of claims 1 to 5, which comprises polymerizing ethylene with α-olefins in the presence of the following components:
 - A) at least one monocyclopentadienyl complex comprising the structural feature of the formula (Cp–Z-A)Cr (I), where the variables have the following meanings:

30 Cp-Z-A is a ligand of the formula (II)

$$A - Z - R^{1A}$$

$$R^{2A}$$

$$R^{3A}$$

$$R^{4A}$$

$$R^{3A}$$

where

R1A-R4A

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{11A}_2 , $N(SiR^{11A}_3)_2$, OR^{11A} , $OSiR^{11A}_3$, SiR^{11A}_3 , BR^{11A}_2 , where the organic radicals R^{1A} - R^{4A} may also be substituted by halogens and where at least two of the vicinal radicals R^{1A} - R^{4A} are joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A} - R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

10

5

Z

is a bridge between A and Cp having the formula

15

where

L

is carbon or silicon, preferably carbon,

20

R^{5A}.R^{6A}

are each hydrogen, C_1 – C_{20} –alkyl, C_2 – C_{20} –alkenyl, C_6 – C_{20} –aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}_3 , where the organic radicals R^{5A} and R^{6A} may also be substituted by halogens and R^{5A} and R^{6A} may also be joined to form a five- or six-membered ring,

25

 $\begin{array}{c|c}
R_{p}^{7A} & R_{p}^{8A} \\
R_{p}^{7A} & E^{2A} & R_{p}^{8A} \\
 & | I & I_{4A} & (III) \\
 & N & R_{p}^{10A}
\end{array}$

30

where E^{1A}-E^{4A}

R7A-R10A

A is

are each carbon or nitrogen,

-

35

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{11A}_3 , where the organic radicals R^{7A} - R^{10A} may also bear halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and

40

6-20 carbon atoms in the aryl part or SiR^{11A}₃ as substituents and two

vicinal radicals R^{7A} - R^{10A} or R^{7A} and Z may also be joined to form a five- or six-membered ring,

- R^{11A}
- are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{11A} may also be joined to form a five- or six-membered ring and
- p is 0 when E^{1A}-E^{4A} is nitrogen and is 1 when E^{1A}-E^{4A} is carbon,
- 10

25

40

5

- B) optionally an organic or inorganic support,
- C) optionally one or more activating compounds and
- D) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.
 - 7. A catalyst system for olefin polymerization comprising
- 20 A') at least one monocyclopentadienyl complex A') comprising the structural feature of the formula (Cp- CR^{5B}R^{6B} -A)Cr (IV), where the variables have the following meanings:

Cp-CR⁵⁸R⁶⁸-A is A
$$\stackrel{R^{5B}}{\longrightarrow}$$
 $\stackrel{R^{2B}}{\longrightarrow}$ $\stackrel{R^{2B}}{\longrightarrow}$ $\stackrel{R^{3B}}{\longrightarrow}$ $\stackrel{R^{3B}}{\longrightarrow}$

- where 30
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical, NR^{5A}₂, N(SiR^{11B}₃)₂, OR^{11B}, OSiR^{11B}₃, SiR^{11B}₃, BR^{11B}₂, where the organic radicals R^{1B}-R^{4B} may also be substituted by halogens and two vicinal radicals R^{1B}-R^{4B} may also be joined to form a five- or six-membered ring,
 - R⁵⁸,R⁶⁸ are each hydrogen or methyl,

A is

where E^{1B}-E^{4B}

are each carbon or nitrogen,

R78-R108

r -r

R^{11B}

are each, independently of one another, hydrogen, C_1 – C_{20} –alkyl, C_2 – C_{20} –alkenyl, C_6 – C_{20} –aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR¹¹⁸₃, where the organic radicals R⁷⁸–R¹⁰⁸ may also bear halogens or nitrogen or further C_1 – C_{20} –alkyl groups, C_2 – C_{20} –alkenyl groups, C_6 – C_{20} –aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR¹¹⁸₃ as substituents and two vicinal radicals R⁷⁸–R¹⁰⁸ may also be joined to form a five- or six-membered ring,

15

5

10

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{11B} may also be joined to form a five- or six-membered ring.

20

p is 0 when E^{1B}-E^{4B} is nitrogen and is 1 when E^{1B}-E^{4B} is carbon,

25

where at least one radical R^{78} – R^{108} is C_1 – C_{20} –alkyl, C_2 – C_{20} –alkenyl, C_6 – C_{20} –aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{118}_3 and the organic radicals R^{78} – R^{108} may also bear halogens or nitrogen or further C_1 – C_{20} –alkyl groups, C_2 – C_{20} –alkenyl groups, C_6 – C_{20} –aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 as substituents and two vicinal radicals R^{78} – R^{108} may also be joined to form a five- or six-membered ring or at least one E^{18} – E^{48} is nitrogen.

30

B) optionally an organic or inorganic support,

35

C) optionally one or more activating compounds and

40

 optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.

- 8. A catalyst system for olefin polymerization as claimed in claim 7, wherein two vicinal radicals R^{1B}-R^{4B} in the monocyclopentadienyl complex A') form a fused ring system.
- A prepolymerized catalyst system comprising a catalyst system as claimed in claim 7 or 8
 and linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:200.
 - The use of a catalyst system as claimed in any of claims 7 to 9 for the polymerization or copolymerization of ethylene with α-olefins.
- 10 11. A process for preparing ethylene copolymers as claimed in any of claims 1 to 4, which comprises polymerizing ethylene with α-olefins in the presence of a catalyst system as claimed in any of claims 7 to 9.
- A process as claimed in claim 11, wherein the polymerization is carried out using, as
 monomers, a monomer mixture which comprises ethylene and/or C₃-C₁₂-1-alkenes and contains at least 50 mol% of ethylene.
 - 13. A polymer mixture comprising
 - (E) from 1 to 99% by weight of one or more ethylene copolymers as claimed in any of claims 1 to 5 and
 - (F) from 1 to 99% by weight of a polymer which is different from (E), where the percentages by weight are based on the total mass of the polymer mixture.
- 14. A fiber, film or molding comprising an ethylene copolymer as claimed in any of claims 1 to 5.

20

5