机器学习与数据挖掘——作业 2

林宇浩 21311274

一、线性分类器(Softmax 分类器)

训练结果如下图所示:

可以看到,线性分类器在此任务上的效果并不理想,尽管随着训练轮数的增加,训练损失在不断下降,在训练集上的准确率也有不断上升,但是测试损失并没有随着平稳下降,在测试集上的准确率也并没有随着平稳上升,测试中两个数据都在剧烈波动。这说明模型的拟合能力太差,没有学习到全面的特征,导致从曲线中看仿佛是在随机拟合。

同时注意到,尽管训练损失在下降,但是训练损失的绝对值还是非常大,下降到 5500 左右后已难以继续下降,这也说明了线性分类器在此任务中欠拟合了。

二、多层感知机(MLP)

1、两层感知机

两层感知机的结构为:1个输入层(维度与输入数据维度对应)、1个隐藏层、1个输出层(神经元数量与输出类别数量对应)

具体训练数据详见附件中文件夹 2 layers MLP, 图片名称对应隐藏层中神经元数量:

训练日志文件为 output_log_2_layers_MLP.txt:

```
Epoch[1/80] Average Loss:7.9526, Train Accuracy:10.02%, Train Time:1.70s, Test Average Loss:2.3047, Test Accuracy:10.00%, testing_time:2.49s Epoch[2/80] Average Loss:2.3045, Train Accuracy:10.00%, Train Time:1.20s, Test Average Loss:2.3044, Test Accuracy:10.00%, testing_time:2.48s Epoch[3/80] Average Loss:2.3042, Train Accuracy:10.00%, Train Time:1.20s, Test Average Loss:2.3041, Test Accuracy:10.00%, testing_time:2.45s Epoch[4/80] Average Loss:2.3040, Train Accuracy:10.00%, Train Time:1.21s, Test Average Loss:2.3039, Test Accuracy:10.00%, testing_time:2.44s Epoch[5/80] Average Loss:2.3038, Train Accuracy:10.00%, Train Time:1.20s, Test Average Loss:2.3037, Test Accuracy:10.00%, testing_time:2.47s Epoch[6/80] Average Loss:2.3036, Train Accuracy:10.00%, Train Time:1.19s, Test Average Loss:2.3036, Test Accuracy:10.00%, testing_time:2.46s
```

两层感知机训练过程为,为对比不同隐藏层神经元数的影响,将隐藏层神经元数作为唯一变量,对不同的模型均训练80轮,观察其训练数据的变化。

下表中,第一行为隐藏层的神经元数量。第二行为80轮(epoch)训练中,测试集上准确率的最大值。

神经元数	16	32	64	128	256	512	1024	2048
准确率	10.0%	17.06%	17.04%	15.12%	25.25%	26.76%	35.65%	43.75%

可以看到,对于只有两层的感知机,在隐藏层维度小于输入层维度(32*32*3=3072)的情况下,总体上看隐藏层神经元数量越多,其测试准确率越高,可能原因是由于层数比较少,且数据量比较大,较多的神经元能够帮助其弥补拟合能力上的不足。

(1) 隐藏层的神经元数量为 64:

(3) 隐藏层的神经元数量为 1024:

(2) 隐藏层的神经元数量为 128:

(4) 隐藏层的神经元数量为 2048:

从上面 4 幅图的训练数据也可以看出,对于较少的隐藏层神经元数量,其不就后即出现了过拟合,之后又在过拟合后重新尝试正确拟合,所以准确率会存在两个峰。同时可以看到,其训练损失虽然比较低,但是不久后就难以继续下降了。而对于较多的隐藏层神经元数量,其训练损失直到 80 轮还是在不断下降的,测试准确率随着训练准确率的上升而上升。从坐标轴可以看到,图 4 的训练损失是最大的,然而其测试和训练准确率反而是最好的,这也说明了训练损失并不是越小越好。

2、三层感知机

三层感知机的结构为:1个输入层(维度与输入数据维度对应)、2个隐藏层、1个输出层(神经元数量与输出类别数量对应)

具体训练数据详见附件中文件夹 3 layers MLP

下表中, 纵坐标为第 1 层隐藏层的神经元数量。横坐标为第 2 层隐藏层的神经元数量。表格中的数据为 80 轮(epoch)训练中, 测试集上准确率的最大值。

	16	32	64	128	256	512	1024	2048
32	19.21%	18.86%						
64	30.99%	40.64%	40.93%					
128	10.0%	45.55%	44.64%	12.28%				
256	10.0%	48.96%	47.78%	42.71%	44.7%			
512	46.83%	49.54%	48.63%	49.09%	47.32%	48.8%		
1024	10.0%	48.66%	50.43%	50.1%	49.94%	48.0%	49.26%	
2048	10.0%	10.0%	51.59%	51.55%	52.13%	51.33%	51.75%	48.06%

从上图中可以看出,对于三层感知机,在第1层的维度小于输入层维度(32*32*3=3072)的情况下,第1层隐藏层的神经元数量越多,测试准确率越高。对于第2层,从右图的趋势中可以看出,在第2层的维度不超过第1层维度的情况下,随着第2层隐藏层神经元数量的增加,测试准确率的变化趋势为先上升后下降。下表展示了第1层神经元数量固定时,第2层神经元数量为多少能够使得测试准确率最大:

2 2 110 3 K 14 7/3 EV E-94 1 - 42/ C -					
第1层神经元数量	使得测试准确率最大的第2层神经元数量				
32	16				
64	64				
128	32				
256	32				
512	32				
1024	64				
2048	64				

整体来看,对于神经元数量的选择,第2层应该比第1层数量要少,第2层神经元数量的增长速度比第一层缓慢很多。

0.00%								
	16	32	64	128	256	512	1024	2048
32	19.21%	18.86%						
64	30.99%	40.64%	40.93%					
128	10.00%	45.55%	44.64%	12.28%				
256	10.00%	48.96%	47.78%	42.71%	44.70%			
512	46.83%	49.54%	48.63%	49.09%	47.32%	48.80%		
1024	10.00%	48.66%	50.43%	50.10%	49.94%	48.00%	49.26%	
2048	10.00%	10.00%	51.59%	51.55%	52.13%	51.33%	51.75%	48.069

3、四层感知机

使用上面效果较好的几个三层感知机,再增加一层隐藏层,观察第3层隐藏神经元数量的影响,数据如下表所示:

第1层神经元	第2层神经元	第 3 层神经元数量			没有第3层时
数量	数量	16	32	64	
256	32	10.01%	48.72%	49.16%	48.96%
512	32	66.94%	71.84%	74.69%	49.54%
1024	64	10.00%	80.54%	86.56%	50.43%
2048	64	10.02%	87.48%	91.43%	51.59%

可以看到,第1层神经元数量越多时,添加第3层神经元后带来的提升越明显。反之,如果前两层隐藏层中神经元的数量比较少,添加第3层神经元带来的提升并不显著,甚至还可能下降。可以看到,上表中最大测试准确率都出现在第3层神经元数量为64时,即使在第3层比第2层神经元数量多的情况下也如此,主要原因可能是在没有

第3层时,各个模型的准确率本身就不高,即使训练了80轮,训练集上的准确率也只有百分之七八十的水平,模型的主要瓶颈还是欠拟合而不是过拟合,所以第3层参数越多效果越好,但是巨大参数量带来的问题也是很明显的,其训练耗时显著增加。

三、卷积神经网络 CNN

下图为 LeNet 的训练数据:

接下来以 LeNet 为基础,探究不同模型结构因素的影响。

1、卷积层数

卷积层层数	各层卷积核大小	各层滤波器(卷积核)数量	测试准确率
1	5	16	71.35%
2 (LeNet)	5、5	16、32	63.50%
3	5、3、3	16、32、64	57.65%

可以看到在本次任务中, 1 层的效果是最好的, 主要原因可能是本次任务的图片大小比较小, 只有 32*32, 如果经过太多次卷积和池化, 特征图的大小将过于小, 比如 3 层卷积中, 最后特征图的大小只有 2*2, 这导致能够说明的特征信息比较有限, 所以层数越多反而准确率越差。

2、滤波器数

第1层滤波器数量	第2层滤波器数量	测试准确率
8	8	49.96%
8	16	55.03%
16	16	56.69%
16	32	61.68%
32	32	64.04%
32	64	68.79%
64	64	71.49%
64	128	76.83%

可以看到,在本次任务中,滤波器的数量越多,测试准确率越高,可能的原因应该仍然是当前准确率还比较低,

模型的主要瓶颈是欠拟合而不是过拟合,所以通过增加滤波器数量增加参数能够提高模型的拟合能力,从而使得参数越多准确率越高。

3、Pooling 的使用

第1层卷积后是否使用 Pooling	第2层卷积后是否使用Pooling	测试准确率
Yes	Yes	63.50%
Yes	No	68.32%
No	Yes	77.00%
No	No	93.15%

可以看到,不使用池化层准确率最高,主要原因应当仍然与之前类似,由于本次任务的图片大小只有 32*32,而池化操作会导致特征图大小直接减半,池化操作一般的目的是减小特征图的空间尺寸,从而降低计算量和参数数量,然而在本次任务中特征图已经较小,使用池化操作反而会导致特征信息的丢失,从而使得准确率降低。

四、比较 SGD 算法、SGD Momentum 算法和 Adam 算法

模型	SGD 算法	SGD Momentum 算法	Adam 算法
LeNet 去掉第1层 Pooling 层	77.00%	100.00%	99.62%
LeNet 去掉全部 2 层 Pooling 层	93.15%	100.00%	99.65%
两层感知机(隐藏层神经元数量:1024)	35.65%	10.38%	10.00%
三层感知机(隐藏层神经元数量:256、32)	48.96%	10.00%	10.00%
四层感知机(隐藏层神经元数量:512、32、32)	71.84%	10.00%	10.00%

可以看到 SGD Momentum 算法和 Adam 算法对 LeNet 的优化效果非常良好,性能得到了大幅提升,但是其对多层感知机并不适用。

对 LeNet 去掉全部 2 层 Pooling 层后得到的模型进行分析:

(1) SGD 算法:

(2) SGD Momentum 算法:

(3) Adam 算法:

可以看到,使用 SGD Momentum 算法后,模型的收敛速度变得更快,而且测试损失和测试准确率曲线变化得更加平滑,不会像在 SGD 中那样剧烈波动。使用 Adam 算法后,收敛速度跟进一步变快,不到 20 轮训练准确率就达到 90%以上,比 SGD Momentum 算法快了一倍。

然后对三层感知机模型的训练进行分析:

(1) SGD 算法:

(2) SGD Momentum 算法:

(3) Adam 算法:

可以看到在 SGD Momentum 算法和 Adam 算法中,梯度都无法正常下降,测试准确率和训练准确率都几乎为 10%,这与随机猜测的准确率一样,说明模型没有进行任何学习。导致这种情况可能的原因或许是,由于感知机参数很多,解空间比较病态,使用 SGD Momentum 算法和 Adam 算法比较容易陷入一些局部解中,而随机梯度下降 法反而能够更好地在解空间中游走,使得准确率能够上升。

五、比较并讨论线性分类器、MLP 和 CNN 模型在 CIFAR-10 图像分类任务上的性能区别

类别	模型	测试准确率	达到最大准确率的训练轮数	一轮训练耗时
线性分类器	Softmax 分类器	31.47%	21	0.97s
	三层感知机(隐藏层神经元数	45.55%	75	1.35s
	量:128、32)			
MLP	三层感知机(隐藏层神经元数	49.54%	69	1.36s
	量:512、32)			
	四层感知机(隐藏层神经元数	91.43%	79	1.61s
	量:2048、64、64)			
CNN	LeNet 去掉第 1 层 Pooling 层	77.00%	79	1.17s
	LeNet 去掉全部 2 层 Pooling 层	93.15%	77	1.15s

可以看到,线性分类器虽然耗时最少,但是 21 轮后就已经无法继续拟合,准确率最低。MLP 虽然能够达到较高的准确率,但是其耗时最长,并且参数量非常大,一旦降低其参数量其性能会快速下降。CNN 在三者中性能最好,其能够达到最高的正确率,同时训练速度仅次于线性分类器。