| Punto |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.a | 1.b | 1.c | 1.d | 2.a | 2.b | 3.a | 3.b | 3. c |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

Parcial 2: Algebra lineal. Tema A, 18 de Septiembre de 2015,

Nombre y apellido	código	Sección	Nota
			/50

Nota:

- 1. Por favor justificar todas sus respuestas y escribir claro.
- 2. Contestar en los espacios reservados para las soluciones de los ejercicios.
- 3. Una hoja sin nombre no se corregirá.
- 4. Sobre su puesto debe tener únicamente éste cuadernillo, algo con que escribir y algo con que borrar.
- 5. sección 27= Jerson 10 a.m., sección 28= Juan Camilo 10 a.m., sección 29= Jerson 12 m., sección 30= Juan Camilo 12 m.
 - 1. [/16] Sea

$$A = \left(\begin{array}{rrrr} 2 & 1 & 1 & 1 \\ 1 & -1 & 2 & 1 \\ 4 & -1 & 5 & 3 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

- a) [/4]Encontrar base para C_A , el espacio de las columnas de A.
- b) [/4] Diaga cual es la dimensión de N_A , el espacio núlo de A. Justificar su respuesta.
- c) [/4] Encontrar una base para R_A , el espacio de las filas de A.
- d) [/4] Sea $T_A: \mathbb{R}^4 \to \mathbb{R}^4$, la transformación lineal definida por:

$$T_A\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}) = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

Diga cuanto es $rango(T_A)$. Justificar su respuesta. [Recuerde que $rango(T_A)$ es la dimensión de $Im(T_A)$, la imagen de T_A , también llamada rango de T_A].

2.
$$[/14]$$
 Sean $\vec{b_1} = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$, $\vec{b_2} = \begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix}$, $\vec{b_3} = \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$ y $\vec{v} = \begin{pmatrix} 5 \\ -14 \\ -16 \end{pmatrix}$ vectores de \mathbb{R}^3 .

- a) [/8] Muestre que $B = \{\vec{b_1}, \vec{b_2}, \vec{b_3}\}$ es una base para \mathbb{R}^3 y calcúle adems que es $[\vec{v}]_B$, el vector de coordenadas de \vec{v} con respecto a la base B.
- b) [/6] Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$, la transformación lineal tal que $T(\vec{b_1}) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $T(\vec{b_2}) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ y $T(\vec{b_3}) = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$. Halle $T(\vec{v})$.

- 3. [/20] Sea $V = Mat_{2\times 2}(\mathbb{R})$, el espacio vectorial de las matrices de 2×2 , con entradas en \mathbb{R} .
 - a) [/6] Diga cuanto es dim(V). Justificar su respuesta exhibiendo la base caónica para V.
 - $b)\ \ [/7]$ Sea D el subconjunto de V formado por las matrices triangulares superiores. Más precisamemente:

$$D = \left\{ \left(\begin{array}{cc} x & y \\ 0 & z \end{array} \right) : x, y, z \in \mathbb{R} \right\}$$

Demuestre que D es un subespacio de V.

c) [/7] Sean $A_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$ y $A_3 = \begin{pmatrix} 5 & 2 \\ 4 & 7 \end{pmatrix}$ tres matrices en V. Diga si A_1 , A_2 y A_3 son linealmente independientes y encuentre una basae para $Span(A_1, A_2, A_3)$. [Conviene usar la técnica de la coordinatización con respecto a la base canónica de V].

Parcial 2 (Duración: 1h20)

17 DE SEPTIEMBRE 2015 MATE 1105

Esto es un examen **individual**. No se permite el uso de libros, apuntes, calculadoras o cualquier medio electrónico. Los dispositivos electrónicos (celulares, calculadoras, tabletas etc.) deben permanecer **apagados y guardados** durante todo el examen. Las respuestas deben ser justificadas. **Cada pregunta vale** 2 **puntos**.

Ejercicio 1

Se considera el espacio vectorial $\mathbb{R}_2[X] = \{a_2X^2 + a_1X + a_0 : \forall k \in \{0; 1; 2\}, a_k \in \mathbb{R}\}$ de polinomios con coeficientes reales de grado menor o igual a 2.

- a. Justificando su respuesta, muestre que la dimensión de $\mathbb{R}_2[X]$ es igual a 3.
- **b.** Muestre que la familia $(P_1, P_2, P_3) = (2X, X^2 + 1, X^2 1)$ es una base de $\mathbb{R}_2[X]$.
- **c.** Halle las coordenadas del vector Q = 4X + 6 en la base (P_1, P_2, P_3) .

Ejercicio 2

Sea R la recta de ecuación y = -x en \mathbb{R}^2 y sea $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la reflexión con respecto a la recta R: $T \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ y $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$. Se denotará a continuación $v_1 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ y $v_2 := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. La base canónica de \mathbb{R}^2 se denotará (e_1, e_2) .

- **a.** Halle coeficentes (α, β) y (λ, μ) tales que $\alpha v_1 + \beta v_2 = e_1$ y $\lambda v_1 + \mu v_2 = e_2$.
- **b.** Determine la matriz A de T en la base canónica de \mathbb{R}^2 (es decir, la matriz estándar de T) y la expresión general de $T \begin{pmatrix} x \\ y \end{pmatrix}$ para $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.

Ejercicio 3

Sea T la aplicación

$$T: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \end{pmatrix} & \longmapsto & \begin{pmatrix} x+2y \\ x-y \\ -4x-2y \end{pmatrix} \right.$$

- **a.** Muestre que T es una aplicación lineal de \mathbb{R}^2 a \mathbb{R}^3 y determine la matriz estándar de T (es decir, la matriz de T en las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3).
- **b.** Calcule el rango de T.
- ${\bf c.}$ Calcule la dimensión del núcleo de T.

Ejercicio 4

- a. Sea $T: E_1 \longrightarrow E_2$ una aplicación lineal entre dos espacios vectoriales E_1 y E_2 y sea $\ker T$ el núcleo de T. Mostrar que $\ker T$ es un sub-espacio vectorial de E_1 .
- **b.** Sea $T: E_1 \longrightarrow E_2$ una aplicación lineal entre dos espacios vectoriales E_1 y E_2 y sea Im T la imagen de T. Mostrar que Im T es un sub-espacio vectorial de E_2 .

Álgebra Lineal, Parcial 2 (versíon 2) 15 de septiembre de 2015

Nombre:

Código:

Instrucciones: Este examen es de 80 minutos. No se permiten el uso de notas ni calculadoras. Por favor escriba su nombre en esta hoja y también en las hojas donde se encuentran sus soluciones.

1. Sea
$$Y = \operatorname{span} \left\{ \begin{bmatrix} 2\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 6\\3\\-3\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\4\\3 \end{bmatrix} \right\}.$$

- (a) (3 points) Encuentre una base de Y.
- (b) (1 point) Cuál es la dimensión de Y?
- 2. Defina la transfomación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ por $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_2 x_1 \end{bmatrix}$.
 - (a) (2 points) Calcule $T\left(T\left(\begin{bmatrix} 2\\5\end{bmatrix}\right)\right)$.
 - (b) (2 points) Encuentre el núcleo de T.
 - (c) (2 points) ξT es invertible? ξ Por que o por que no?
- 3. (3 points) Suponga que $T:\mathbb{R}^2\to\mathbb{R}^2$ es una transformación lineal que satisface

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}, T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}.$$
Calcule $T\left(\begin{bmatrix}5\\3\end{bmatrix}\right)$.

4. Sea P_2 el espacio vectorial de polinomios de grado menor o igual que dos.

Sea
$$W_1 = \{ f \in P_2 : f(3) = 0 \}$$
 y sea $W_2 = \{ f \in P_2 : f(3) \ge 0 \}$.

- (a) (3 points) Demuestre que W_1 es un subespacio de P_2 .
- (b) (2 points) Encuentre dos polinomios linealmente independientes en P_2 . (No es necesario justificar la independencia.)
- (c) (2 points) Demuestre que W_2 no es un subespacio de P_2 .

${\rm MATE}1105$ - ${\rm ALGEBRA}$ LINEAL

Segundo Examen Parcial 15 de septiembre de 2015 3:30 pm a 4:50 pm Nombre: Código:

Profesor de complementarias:

Este examen contiene 4 preguntas. El total del puntaje es 20. Este es un examen individual. No se permite el uso de libros, apuntes, calculadoras o cualquier medio electrónico. Calculadoras, teléfonos, y demás equipos electrónicos deben estar apagados y guardados durante todo el examen. Todas las respuestas deben ser justificadas.

Tabla de calificación (para uso únicamente del profesor)

Pregunta	Valor	Puntaje
1	8	
2	3	
3	4	
4	5	
Total	20	

1. Considere la matriz

$$A = \left[\begin{array}{cccc} 0 & 6 & 6 & 3 \\ 1 & 2 & 1 & 1 \\ 4 & 1 & -3 & 4 \\ 1 & 3 & 2 & 0 \end{array} \right]$$

- (a) (2 puntos)Halle el rango de la matriz.
- (b) (2 puntos) Halle una base para el espacio de filas.
- (c) (2 puntos) Halle una base para el espacio de columnas.
- (d) (2 puntos) Halle una base para el espacio nulo.
- 2. Sea T una transformación lineal de \mathbb{R}^2 en \mathbb{R}^3 tal que T((1,-1))=(0,1,0) y T((2,1))=(1,1,0).
 - (a) (1 punto) Encuentre T((0,5)).
 - (b) (2 puntos) Halle la matriz que representa la transformación.
- 3. Sea W_1 el subespacio de \mathbb{R}^3 generado por los vectores (2,0,0) y (1,0,0). Y sea W_2 el subespacio generado por los vectores (0,1,1) y (0,0,-1).
 - (a) (2 puntos) Verifique que $W_1 \cap W_2$ es un subespacio de \mathbb{R}^3 .
 - (b) (2 puntos) Encuentre un conjunto de vectores que genere $W_1 \cap W_2$.

- 4. Justificando su respuesta con una demostración o con un contraejemeplo diga si las siguientes afirmaciones son verdaderas o falsas. Solamente se considerarán respuestas justificadas.
 - (a) (1 punto) Los polinomios $1+x^2$ y $1-x^2$ son linealmente independientes como vectores del espacio vectorial de los polinomios.
 - (b) (1 punto) La transformación lineal de \mathbb{R}^2 en si mismo dada por T((x,y))=(-y,-x) es una rotación del plano.
 - (c) (1 punto) Si T es una transformación lineal invertible de \mathbb{R}^2 en si mismo entonces existe un escalar r tal que para cada vector x de \mathbb{R}^2 se tiene que T(x) = rx.
 - (c) (1 punto) En un espacio vectorial todo vector V es diferente a su opuesto -v.
 - (d) (1 punto) Si W_1 y W_2 son subespacios del espacio vectorial $V, W_1 \cup W_2 = V.$