

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Практикум по курсу

"Суперкомпьютеры и параллельная обработка данных"

Разработка параллельной версии программы для транспонирования матриц

ОТЧЕТ

о выполненном задании

студентки 328 учебной группы факультета ВМК МГУ Шелепнёвой Дарьи Дмитриевны

Оглавление

1	Пос	тановка задачи	2 -
2	Опи	исание алгоритма транспонирования матрицы	2 -
	2.1	Основа: последовательный алгоритм	2 -
	2.2	Параллельный алгоритм	3-
3	Резу	ультаты замеров времени выполнения	4 -
	3.1	Таблицы	4 -
	3.2	Графики	5 -
4	Ана	лиз результатов	7 -
5	Выв	ЗОДЫ	7 -

1 Постановка задачи

Ставится задача транспонирования матрицы.

Дана матрица $A \in \mathbb{R}^{n \times m}$, $n, m \in \mathbb{N}$, требуется получить матрицу $B \in \mathbb{R}^{m \times n}$, где $B = A_{ii}^T = A_{ji}$.

Требуется:

- 1. Реализовать параллельный алгоритм транспонирования матрицы с помощью технологий параллельного программирования OpenMP и MPI.
- 2. Сравнить их эффективность.
- 3. Исследовать масштабируемость полученных программ и построить графики зависимости времени выполнения программ от числа используемых потоков и объёма входных данных.

2 Описание алгоритма транспонирования матрицы

2.1 Основа: последовательный алгоритм

Простейший алгоритм транспонирования матрицы имеет следующий вид:

```
double **
transpose(double **a, int n, int m)
{
    double **b = malloc(sizeof(double *) * m);
    int i, j;
    for (i = 0; i < m; i++)
    {
        b[i] = malloc(sizeof(double) * n);
        for (j = 0; j < n; j++)
        {
            b[i][j] = a[j][i];
        }
    }
    return b;
}</pre>
```

Этот алгоритм имеет сложность O(nm).

2.2 Параллельный алгоритм

Разбиваем задачу вычисления конечной матрицы на подзадачи по вычислению строк и распределяем их по потокам. Разбиение на вычисление отдельных полей не производим, т.к. размеры матриц при вычислениях и так будут на порядки превышать число потоков/процессов.

В OpenMP модификация кода сводится к добавлению omp parallel for.

```
double **
transpose(double **a, int n, int m, int nThreads)
{
    double **b = malloc(sizeof(double *) * m);
    int i, j;
#pragma omp parallel for private(i, j) shared(a, b) num_threads(nThreads)
    for (i = 0; i < m; i++)
    {
        b[i] = malloc(sizeof(double) * n);
        for (j = 0; j < n; j++)
        {
            b[i][j] = a[j][i];
        }
    }
    return b;
}</pre>
```

В MPI-версии производится широковещательная рассылка заполненной матрицы *а*, каждый процесс изменяет соответствующие строки и отправляет их процессу-мастеру (имеющий rank=0) с помощью команд *MPI_Isend* и *MPI_Irecv*. Для синхронизации используются команды *MPI_Barrier*.

Коды программ можно посмотреть в репозитории https://github.com/DariaShel/skipod в соответствующих папках.

3 Результаты замеров времени выполнения

Ниже приведены результаты замеров времени выполнения программ на суперкомпьютере Polus в табличной форме и наглядно на графиках.

Программы запускались со следующими параметрами:

- Матрица $A \in \mathbb{R}^{n \times n}$, $n \in \{1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000\}$
- Количество потоков (процессов) nThread (nProc) $\in \{1, 2, 4, 8, 16, 32, 64\}$

Было взято среднее значение времени за 5 запусков для каждой конфигурации.

3.1 Таблицы

size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time
1000	1	0.003237	2000	1	0.017415	3000	1	0.044771	4000	1	0.105689	5000	1	0.413145
1000	2	0.000920	2000	2	0.011337	3000	2	0.026812	4000	2	0.063245	5000	2	0.230878
1000	4	0.000769	2000	4	0.007021	3000	4	0.016373	4000	4	0.037896	5000	4	0.115746
1000	8	0.000771	2000	8	0.005574	3000	8	0.014286	4000	8	0.034011	5000	8	0.058552
1000	16	0.000791	2000	16	0.004837	3000	16	0.011223	4000	16	0.023616	5000	16	0.036033
1000	32	0.000968	2000	32	0.004030	3000	32	0.009348	4000	32	0.018923	5000	32	0.030078
1000	64	0.001563	2000	64	0.003520	3000	64	0.008856	4000	64	0.019144	5000	64	0.035809
size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time	size	n_thread	average_time
size 6000	n_thread	average_time 0.683482	7000	n_thread	average_time 1.037804	size 8000	n_thread	average_time 1.525624	size 9000	n_thread	average_time 1.967304	10000		
	n_thread 1 2												1	2.478779
6000	1	0.683482	7000	1	1.037804	8000	1	1.525624	9000	1	1.967304	10000	1 2	2.478779 1.344648
6000 6000	1 2	0.683482 0.374073	7000 7000	1 2	1.037804 0.571479	8000 8000	1 2	1.525624 0.829646	9000 9000	1 2	1.967304 1.062822	10000	1 2	2.478779 1.344648 0.691871
6000 6000	1 2 4	0.683482 0.374073 0.194368	7000 7000 7000	1 2 4	1.037804 0.571479 0.292600	8000 8000 8000	1 2 4	1.525624 0.829646 0.428459	9000 9000 9000	1 2 4	1.967304 1.062822 0.552159	10000 10000 10000	1 2 4 8	2.478779 1.344648 0.691871 0.354458
6000 6000 6000	1 2 4 8	0.683482 0.374073 0.194368 0.100035	7000 7000 7000 7000	1 2 4 8	1.037804 0.571479 0.292600 0.149152	8000 8000 8000 8000	1 2 4 8	1.525624 0.829646 0.428459 0.219062	9000 9000 9000 9000	1 2 4 8	1.967304 1.062822 0.552159 0.285058	10000 10000 10000	1 2 4 8	2.478779 1.344648 0.691871 0.354458 0.228351

Результаты алгоритма ОрепМР

	n_proc	average_time	size	n_proc	average_time	size	n_proc	average_time	size	n_proc	average_time	size	n_proc	average_time
1000	1	0.006682	2000	1	0.028534	3000	1	0.066866	4000	1	0.135502	5000	1	0.301439
1000	2	0.009562	2000	2	0.039763	3000	2	0.104470	4000	2	0.160250	5000	2	0.349909
1000	4	0.005900	2000	4	0.025600	3000	4	0.057236	4000	4	0.133958	5000	4	0.232931
1000	8	0.005751	2000	8	0.025357	3000	8	0.051360	4000	8	0.080882	5000	8	0.150804
1000	16	0.007685	2000	16	0.038586	3000	16	0.081035	4000	16	0.143760	5000	16	0.223041
1000	32	0.010985	2000	32	0.046880	3000	32	0.107907	4000	32	0.167827	5000	32	0.263956
1000	64	0.008205	2000	64	0.026394	3000	64	0.061528	4000	64	0.101201	5000	64	0.169383
cizo														
	n proc	average time	size	n proc	average time	size	n proc	average time	ciza	n proc	average time	Size	n proc	average time
	n_proc	average_time		n_proc	average_time		n_proc	average_time	size	n_proc	average_time	size	n_proc	average_time
6000	n_proc	0.475649	7000	n_proc	0.793677	8000	n_proc	1.263932	9000	n_proc	average_time 1.608660	10000	n_proc	
					• -						1.608660		1	2.00399
6000	1	0.475649 0.540449	7000	1	0.793677	8000	1	1.263932	9000	1	1.608660 1.701407	10000	1 2	2.00399
6000	1 2	0.475649 0.540449	7000 7000	1 2	0.793677 0.837309	8000 8000	1 2	1.263932 1.379071	9000 9000	1 2	1.608660 1.701407	10000 10000	1 2	2.00399 1.92312 1.49555
6000 6000	1 2 4	0.475649 0.540449 0.361787	7000 7000 7000	1 2 4	0.793677 0.837309 0.610371	8000 8000 8000	1 2	1.263932 1.379071 1.043464	9000 9000 9000	1 2 4	1.608660 1.701407 1.233092	10000 10000 10000	1 2 4 8	2.003999 1.923120 1.49555 1.011920
6000 6000 6000	1 2 4 8	0.475649 0.540449 0.361787 0.229945	7000 7000 7000 7000	1 2 4 8	0.793677 0.837309 0.610371 0.336368	8000 8000 8000 8000	1 2 4 8	1.263932 1.379071 1.043464 0.441304	9000 9000 9000 9000	1 2 4 8	1.608660 1.701407 1.233092 0.717673	10000 10000 10000 10000	1 2 4 8	2.003993 1.923124 1.49555 1.011924
6000 6000 6000 6000	1 2 4 8	0.475649 0.540449 0.361787 0.229945 0.310338	7000 7000 7000 7000 7000	1 2 4 8 16	0.793677 0.837309 0.610371 0.336368 0.464161	8000 8000 8000 8000 8000	1 2 4 8	1.263932 1.379071 1.043464 0.441304 0.657626	9000 9000 9000 9000	1 2 4 8	1.608660 1.701407 1.233092 0.717673 0.826475	10000 10000 10000 10000 10000	1 2 4 8 16 32	2.003993 1.92312(1.49555) 1.01192(1.047194) 1.164294

Результаты алгоритма МРІ

График1 (ОрепМР)

График1 (МРІ)

График2 (ОрепМР)

График2 (МРІ)

4 Анализ результатов

На одинаковых конфигурациях OpenMP показал результаты лучшие, чем MPI. В алгоритме MPI тратится дополнительное время на пересылку данных между процессорами. Для наглядности был построен график зависимости скорости выполнения алгоритма от количества потоков/процессов для матрицы размера 10000×10000 .

Сравнение алгоритмов ОрепМР и МРІ

Как видно из графика, OpenMP справляется с поставленной задачей гораздо быстрее, чем MPI.

5 Выводы

Выполнена работа по разработке параллельной версии алгоритма транспонирования матриц. Изучена технология написания параллельных алгоритмов OpenMP и MPI. Проанализировано время выполнения алгоритмов на вычислительной системе Polus.

Технология OpenMP достаточно удобна в использовании и даёт значительный прирост производительности на рассчитанных на многопоточные вычисления системах.

МРІ можно назвать более низкоуровневой технологией: разработка МРІ-программы знакомит с основами взаимодействия вычислительных узлов суперкомпьютера.