(1) [6 marks]

Consider the context-sensitive grammar $G = (\{S\}, \{a, b\}, S, P)$ where P consists of the following productions:

$$\begin{array}{ccc} \mathtt{S} & \rightarrow & \mathtt{abb} \mid \Lambda \\ \mathtt{ab} & \rightarrow & \mathtt{aabbb} \mid \mathtt{ba} \end{array}$$

Precisely define L(G), the language generated by G.

(2) [20 marks]

Let M be the Turing machine with state set $Q=\{q_0,\ldots,q_7,\mathrm{h_a},\mathrm{h_r}\}$, input alphabet $\Sigma=\{\mathtt{a},\mathtt{b},\#\}$, tape alphabet $\Gamma=\Sigma\cup\{\Delta,\mathtt{X}\}$, initial state q_0 , and the following transition function δ :

δ	Δ	a	Ъ	#	Х
q_0	$(q_1, \Delta, \mathbf{R})$				
q_1		$(q_2, \Delta, \mathbf{R})$	$(q_5, \Delta, \mathbf{R})$	$(q_7, \#, R)$	
q_2		$(q_2,\mathtt{a},\mathrm{R})$	$(q_2,\mathtt{b},\mathrm{R})$	$(q_3, \#, \mathbf{R})$	
q_3			$(q_4, \mathtt{X}, \mathtt{L})$		(q_3, X, R)
q_4	(q_1, Δ, R)	$(q_4,\mathtt{a},\mathrm{L})$	$(q_4,\mathtt{b},\mathrm{L})$	$(q_4, \#, L)$	$(q_4,\mathtt{X},\mathtt{L})$
q_5		$(q_5,\mathtt{a},\mathrm{R})$	$(q_5,\mathtt{b},\mathrm{R})$	$(q_6, \#, R)$	
q_6		$(q_4, \mathtt{X}, \mathtt{L})$			(q_6, X, R)
q_7	(h_a, Δ, S)				(q_7, X, R)

(Remember that unspecified transitions go to the reject state $h_{\rm r.})\,$

- (i) [8 marks] Draw a transition diagram for M.
- (ii) [6 marks] For each of the following strings, say whether it is accepted by M or not:
 - aab#aab
 - aba#bab
- (iii) [6 marks] Precisely define L(M), the language accepted by M.

(3) [12 marks]

Assume that natural numbers $n \in \mathbb{N}$ are represented by strings $\mathbf{1}^n$ (where $\mathbf{1}^0 = \Lambda$). Remember that Turing machines compute multi-argument functions from a list of inputs separated by blanks.

Consider the following Turing machine M which computes a binary partial function $f_M \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

- (i) (a) [2 marks] What is $f_M(1,1)$?
 - (b) [2 marks] What is $f_M(1,2)$?
- (ii) [8 marks] Give the partial function $f_M \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

(4) [12 marks]

Consider the following decision problems:

Halting problem (HP)

Input: A Turing machine M and a string $w \in \Sigma^*$.

Question: Does M reach a halting configuration on input w?

abc-halting problem (abc-HP)

Input: A Turing machine M.

Question: Does M reach a halting configuration on input abc?

Show that the abc-halting problem is undecidable, by reducing HP to abc-HP.

(5) [20 marks]

Consider the following Turing machine M with input alphabet $\{1\}$:

- (i) [6 marks] Describe in words the behaviour of M on inputs of length n.
- (ii) [4 marks] Give the function $\mathbf{s}_{M}\text{, the space complexity of }M\text{.}$
- (iii) [10 marks] Give the function τ_M , the time complexity of M, and carefully justify your claim.

(6) [8 marks]

Answer each of the following with "true" or "false". You need not justify your answers.

- (i) [2 marks] $2n \log(n) + 128n \in O(n^2)$
- (ii) [2 marks] $3^n \in O(2^n)$
- (iii) [2 marks] $2^n \in O(n!)$
- (iv) [2 marks] $n^n \in O(n!)$

(7) [12 marks]

A boolean expression $C_1 \wedge C_2 \wedge \cdots \wedge C_n$ is in *conjunctive normal form* (CNF) if each conjunct C_i is a disjunction of literals. For example,

$$(\neg x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_3)$$

is in conjunctive normal form. An expression is a *tautology* if every assignment of truth values to variables makes the expression true. For example, the above expression is not a tautology because the assignment $x_1, x_3 \mapsto \text{true}, \ x_2, x_4 \mapsto \text{false}$ makes it false. Now consider the following decision problem:

CNF-Tautology problem (CNF-Taut)

Input: A boolean expression C in conjunctive normal form.

Question: Is C a tautology?

Sketch a proof that CNF-Taut is in P.

Hint: show that a CNF expression is a tautology if and only if each disjunction of literals has a particular form. Then describe a Turing machine which checks whether each conjunct has this form and explain why the machine's time complexity is a polynomial.

(8) [10 marks]

Show that if L_1 and L_2 are languages in NP, then $L_1 \cap L_2$ is also in NP.

