National University of Singapore School of Computing

Semester 1, AY2023-24

CS4246/CS5446

AI Planning and Decision Making

Tutorial Week 4: Hierarchical Planning

Guidelines

You may discuss the content of the questions with your classmates. But everyone should work on and be ready to present ALL the solutions.

Package delivery

You have a number of trucks with which to deliver a set of packages. Each package starts at some location on a grid map, and has a destination somewhere else. Each truck is directly controlled by moving forward and turning. The package can be loaded to the truck and unloaded from the truck.

1) Forward action:

If you model the *Forward* action as a primitive action, what would be the precondition and effect? Assume that addition is defined and available as an operator. State any assumptions you make in the modeling.

Solution:

- We need to define a fluent At(o, [x, y]) that defines the current location (the x,y-coordinates) of the object o.
- Addition is defined and available; hence, we can define the next location of the object using $x + \delta, y + \rho$. Now, we can define the precondition and effects as follows.
- Precondition: $\{At(t, [x,y]), Truck(t), Coordinate(x), Coordinate(y)\}$ Effect: $At(t, [(x + \delta), (y + \rho)])$.
- 2) What other primitive actions are needed define the planning problem? (no need to write the PDDL definition)

Solution:

• Turnright(t), Turnleft(t), Load(p, t), Unload(p, t) where t is the truck and p is the package.

3) Construct a hierarchy of high-level actions for this problem.

Solution:

- Use the HLA Navigate(t, [x, y]) to take a truck t to coordinates [x, y].
- HLA Deliver(t, p) to deliver package p to its destination with truck t.
- At(o, [x, y]) defines the current location (the x,y-coordinates) of the object o.
- Fluent *Destination(p, [x1, y1])* defines the package's destination.
- 4) What knowledge about the solution does your hierarchy encode?

Solution:

The hierarchy encodes the following information:

- Trucks can only carry one package at a time.
- We need to only drop packages off at their destinations not intermediate points.
- We can serialize deliveries.
- From a higher-level, the hierarchy says that the planner needs only to choose which trucks deliver which packages in what order, and trucks should navigate given their destinations.
- 5) What are some shortcomings (in terms of real-life implementation) of the hierarchy defined above?

Solution:

The hierarchy has the following shortcomings:

- In reality, trucks would move in parallel, but we have no representation for parallel actions in the hierarchy.
- The solution manadates that one truck can deliver only one package; in real life this is hardly the case.