MISD OWL

Master Infrastructure Situation Display
Observing Windows and Linux

Übersicht

- 1. Aufgabenstellung und die Umsetzung
- 2. Projektplanung
- 3. Aufbau der Software
- 4. Bedienung / GUI-Konzept
- 5. Live Demo
- 6. Projektstatistik
- 7. Fazit

AUFGABENSTELLUNG

Status Quo

Zielsetzung

Master Infrastructure Situation Display
Observing Windows and Linux

Besonderheiten

Status-Quo

- Infrastruktur von ca. 300 zu überwachenden Rechnern.
- Verschiedene Betriebssysteme (Linux, Windows)
- Zwei verschiedene Cluster (HPC, Brightcluster)
- Räumliche Verteilung der Infrastruktur

Zielsetzung

- Überwachung von Windows und Linux Computern
- Überwachung des HPC und Bright-Clusters
- Echtzeit Monitoring und Verlaufsanalyse
- Erweiterbarkeit der Darstellung und Datenakquise
- Erfassung des globalen Systemzustandes

Besonderheiten

- C# (Windows) und Mono (Linux) in einem Projekt
- Zweifache Server-Client-Architektur
- Überwachung von Clustern
- Visualisierung der Daten auf der Powerwall

Eckdaten des Teams

- Team bestehende aus neun Studenten (4. / 6. Semester)
- Zwölf Monate Projektzeit
- Begleitende Vorlesung "Informationsvisualisierung"

Projektplanung und Umsetzung

ABLAUF DES PROJEKTES

Entwicklungsmodell

Termindrift

Master Infrastructure Situation Display
Observing Windows and Linux

Änderungsursachen

Entwicklungsmodell

- Treppenmodell mit 4 Entwicklungsstufen
- Jede Stufe behandelt eine Systemkomponente
- Jede Stufe durchläuft eine gesamte Entwicklungsiteration
- Die Spezifikation wird in jeder Stufe um die jeweilige Detailebene erweitert
- Die Stufen sind überlappend, was ein Parallelisieren von Abnahme und Spezifikation erlaubt

Erster Stufenentwurf

Termindrift / Veränderung des Modell

- Zusätzlich Spezifikationsphase
- Zusammenlegung von Alpha und Beta
- Definitionsänderung der Beta
- Verzögerung aufgrund von Fehlern bei der Abnahmeprüfung

Ursachen für Änderungen

- Krankheitsfälle
- Prüfungszeiten
- Urlaubszeiten
- Strukturänderungen
- Falsche Schätzung von benötigter Arbeitszeit (insbesondere Cluster und GUI)

Architektur und Komponenten

AUFBAU DER SOFTWARE

Begriffe

Workstation

Rechner der von einem Dienst überwacht wird

Client

Rechner auf dem die Visualisierungs-Anwendung läuft

Layout

Anordnung der Organisationseinheiten und Workstations in der GUI

Level

Beschreibung der Darstellung der Kenngrößenwerte einer Workstation.

Systemübersicht

Architektur Server-Dienst

Server-Dienst: Cluster

Server-Dienst: Erweiterbakeit

- Erfassen der Plugins zur Laufzeit
- Automatische Distribution per Webservice
- Globale Werteerfassung
- Cluster Werteerfassung

Aufbau eines Plugin

MISD

- Name
- Plattform
- Auflistung der Kenngrößeneinstellungen
- AcquireData-Methden

	Produkt:	Copyright © 2012 Paul Brombos					
	Copyright:						
	Ma <u>r</u> ke:						
IPlugin	Assemblyversion:	1	0	*			
Schnittstelle	<u>D</u> ateiversion:	1	0	0	0		
	GUID:	966a9d56-6305-44a7-aacd-ac05					
	<u>N</u> eutrale Sprache:	(Kei	ne)			~	
■ Eigenschaften	Assembly COM	Assembly COM-sichtbar machen					
TargetPlatform : Platform				OK		Abbrechen	
■ Methoden							
AcquireData(): List <tuple<string, ob<="" p=""></tuple<string,>	oject, DataType>> ((+ .	5 ÜŁ	erlo	dur	ngen)	
	rSettinas>						
Commission Settings() : 21st smalled to							

Assemblyinformationen
el: CPU

Beschreibung:

Firma:

This plugin acquires CPU data, Va

MISD OWL Team

Architektur Workstation-Dienst

- Windows Dienst im Hintergrund
- Linux Daemon
- Schichtenmodell
- Erweiterbare Kenngrößen

Architektur Client-Anwendung

- MVVM Pattern
- Erweiterbare GUI
- TCP Schnittstelle zur Powerwall-Steuerung

VISUS-Powerwall "Hugo"

MISD

- 10x 4K Beamer 90° gedreht
- 4 Überblendbereiche
- Gesamtauflösung von 10.800 x 4.096
 Pixeln, Pixelgröße 0,56 mm
- 10 Display Knoten mit jeweils vier Videoausgängen
- 64 Render Knoten

Quelle: VISUS, http://www.visus.uni-stuttgart.de/institut/visualisierungslabor/technischer-aufbau.html

Client-Anwendung: Powerwall

BEDIENUNG / GUI KONZEPT

Struktur

MISD

- Systeme werden durch Kacheln repräsentiert
- Organisationseinheiten gruppieren Systeme
- Farbe der Kachel repräsentiert den Zustand

Kachelkonzept

Detailgrad der Informationen über Levels einstellbar

Level S

YannicNoller-PC

Level M

Level L

Kachelkonzept

Benutzerdefinierte Detailansicht Level L

Menüs

kontextabhängige Menüleiste

Konfigurationsmenü

Kontextmenü

- Radiales Kontextmenü
- Stellt häufig genutzte Funktionen bereit

Einstellungen

LIVE DEMO

PROJEKTSTATISTIK

Arbeitszeitentwicklung

Arbeitszeitentwicklung pro KW

Arbeitszeitentwicklung pro Tätigkeit

Arbeitszeitentwicklung pro Tätigkeit

Zeitaufwand pro Meilenstein und Tätigkeit

Prozentuale Verteilungen

Arbeitszeitentwicklung pro Person

Arbeitszeit pro Person

Resultate und Erlebnisse

FAZIT

Pro

Contra

Master Infrastructure Situation Display
Observing Windows and Linux

Zahlen

- ca. 4000 Arbeitsstunden
- ca. 57.000 LOC
- ca. 80 Teammeetings
- 9 Fun Events
- ca. 450 Seiten Konzeption und Dokumentation

Negative Projekterlebnisse

- Fehlende Interaktion an der Powerwall
- Verschieben von Meilensteinen notwendig
- Unzureichende Infrastruktur während des Projektes
- Hohe zusätzliche Belastung zum Projektabschluss

Positive Projektresultate

- Erfolgreiche und lehrreiche Teamarbeit
- Klare Rollen- und Aufgabenverteilung im Team
- Innovative und zielführende Umsetzung
- Einheitliches Qualitätsmanagement
- Erfolgreiche funktionsfähige Software

P. Brombosch

E. Doust

D. Krauss

F. Müller

Y. Noller

H. Schäfer

J. Scheurich

A. Schneider

S. Zillessen

FRAGEN

P. Brombosch

E. Doust

D. Krauss

F. Müller

Y. Noller

H. Schäfer

J. Scheurich

A. Schneider

S. Zillessen