

IRFP4668PbF

HEXFET® Power MOSFET

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

G

V _{DSS}	200V
R _{DS(on)} typ.	8.0 m Ω
max	9.7m Ω
I _D	130A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	130		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	92	А	
I _{DM}	Pulsed Drain Current ①	520		
P _D @T _C = 25°C	Maximum Power Dissipation	520	W	
	Linear Derating Factor	3.5	W/°C	
V _{GS}	Gate-to-Source Voltage	± 30	V	
dv/dt Peak Diode Recovery 3		57	V/ns	
T _J	Operating Junction and	-55 to + 175	°C	
T _{STG}	Storage Temperature Range			
	Soldering Temperature, for 10 seconds	300		
	(1.6mm from case)			
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)		

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	760	mJ
I _{AR}	Avalanche Current ①	See Fig. 14, 15, 22a, 22b,	Α
E _{AR}	Repetitive Avalanche Energy ④		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.29	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient ⑦®		40	

www.irf.com 1

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.21		V/°C	Reference to 25°C, I _D = 5mA ^①
R _{DS(on)}	Static Drain-to-Source On-Resistance		8.0	9.7	mΩ	$V_{GS} = 10V, I_D = 81A $ ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
R_{G}	Internal Gate Resistance		1.0		Ω	

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	150			S	$V_{DS} = 50V, I_{D} = 81A$
Q_g	Total Gate Charge		161	241	nC	I _D = 81A
Q_{gs}	Gate-to-Source Charge		54			V _{DS} = 100V
Q_{gd}	Gate-to-Drain ("Miller") Charge		52			V _{GS} = 10V ⊕
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		109			$I_D = 81A, V_{DS} = 0V, V_{GS} = 10V$
$t_{d(on)}$	Turn-On Delay Time		41		ns	$V_{DD} = 130V$
t _r	Rise Time		105	_		I _D = 81A
$t_{d(off)}$	Turn-Off Delay Time		64			$R_G = 2.7\Omega$
t _f	Fall Time		74			V _{GS} = 10V ⊕
C _{iss}	Input Capacitance		10720			$V_{GS} = 0V$
C _{oss}	Output Capacitance		810			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		160		pF	f = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)@		630			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $ ©
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		790			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			130	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			520		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 81A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		130		ns	$T_J = 25^{\circ}C$ $V_R = 100V$,
			155		Ī	$T_J = 125^{\circ}C$ $I_F = 81A$
Q _{rr}	Reverse Recovery Charge		633		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $\textcircled{4}$
			944		Ĩ	$T_J = 125$ °C
I _{RRM}	Reverse Recovery Current		8.7		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting T_J = 25°C, L = 0.23mH R_G = 25 Ω , I_{AS} = 81A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:loss_def} \ensuremath{ \Im \ } I_{SD} \leq 81A, \ di/dt \leq 520A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

- $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

- ▶ 汇集 8,000 家半导体厂商,坐拥 70,000,000 个电子元器件 datasheet
- ➢ 涉及详细参数,器件、封装、应用图,参考设计,中文 PDF
- 🕨 工程师首选 datasheet 全球数据中心,你能想到我们就能搜到

集成电路查询网:www.datasheet5.com

- 国内唯一一家电路图分享、交易平台,让电路体现你电子行业的价值
- 聚焦万量级热门免费电路,哪怕你是一个初学者,手把手教你创造出实物。

电路城:www.cirmall.com

- 百万电子行业工程师(创客)知识交流平台,电路图免费分享乐园
- 百万精品电路图为你倾心准备
- 工程师的驿站、技术达人停泊的港湾

电子电路图网:www.cndzz.com

- ▶ 依托全球电子业 16 年的 Findchips 充当幕后器件搜索引擎
- ▶ 国内首家实时 BOM 批量比价平台,让你站在最高的舞台纵观电子行业

批量器件比价:www.bom2buy.com

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Typical C_{OSS} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
- t_{av =} Average time in avalanche.
- D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle T / \; Z_{thJC} \\ I_{av} &= 2\triangle T / \; [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

IRFP4668PbF International Inte

Fig 16. Threshold Voltage Vs. Temperature

Fig. 18 - Typical Recovery Current vs. di_f/dt

Fig. 17 - Typical Recovery Current vs. di_f/dt

Fig. 19 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit www.irf.com

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

IRFP4668PbF

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994. 1.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

	DIMENSIONS					
SYMBOL	INC	HES	MILLIN	ETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5,49		
e	.215	.215 BSC 5.46 BSC		BSC		
Øk	.0	10		25		
L	.559	.634	14.20	16.10		
L1	.146	.169	3,71	4.29		
ØΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5.69		
S	.217	BSC	5.51	BSC		

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER 4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free!

TO-247AC packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

International