

planetmath.org

Math for the people, by the people.

transversality

Canonical name Transversality

Date of creation 2013-03-22 13:29:46 Last modified on 2013-03-22 13:29:46 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 6

Author mathcam (2727)

Entry type Definition
Classification msc 57R99
Defines transversal
Defines transverse
Defines transversally
Defines transversely

Transversality is a fundamental concept in differential topology. We say that two smooth submanifolds A, B of a smooth manifold M intersect transversely, if at any point $x \in A \cap B$, we have

$$T_rA + T_rB = T_rX$$
,

where T_x denotes the tangent space at x, and we naturally identify T_xA and T_xB with subspaces of T_xX .

In this case, A and B intersect properly in the sense that $A \cap B$ is a submanifold of M, and

$$\operatorname{codim}(A \cap B) = \operatorname{codim}(A) + \operatorname{codim}(B).$$

A useful generalization is obtained if we replace the inclusion $A \hookrightarrow M$ with a smooth map $f: A \to M$. In this case we say that f is transverse to $B \subset M$, if for each point $a \in f^{-1}(B)$, we have

$$df_a(T_aA) + T_{f(a)}B = T_{f(a)}M.$$

In this case it turns out, that $f^{-1}(B)$ is a submanifold of A, and

$$\operatorname{codim}(f^{-1}(B)) = \operatorname{codim}(B).$$

Note that if B is a single point b, then the condition of f being transverse to B is precisely that b is a regular value for f. The result is that $f^{-1}(b)$ is a submanifold of A. A further generalization can be obtained by replacing the inclusion of B by a smooth function as well. We leave the details to the reader.

The importance of transversality is that it's a stable and generic condition. This means, in broad terms that if $f:A\to M$ is transverse to $B\subset M$, then small perturbations of f are also transverse to B. Also, given any smooth map $A\to M$, it can be perturbed slightly to obtain a smooth map which is transverse to a given submanifold $B\subset M$.