MAA 4211 HOMEWORK 1 S2020

- DUE THURSDAY FEBRUARY 13 IN CLASS
- SUBMITTED WORK MUST BE NEAT, LEGIBLE, AND THE ANSWER SHEETS MUST BE STAPLED TOGETHER WITH NO RAGGED EDGES.
- 57 points. The score will be scaled to be score out of 20 points.

[1](21 points: 3 points apiece)

Write out the following definitions.

- (a) The set $S \subseteq R$ is bounded above
- (b) The set $S \subset R$ is bounded below
- (c) The set $S \subseteq R$ has a maximum element
- (d) The set $S \subseteq R$ has a minimum element
- (e) The axiom of the least upper bound
- (f) The real number r is a rational number.
- (g) The rational numbers are dense in the reals.

[2](18 points)

- (a) Let (a_n) be a sequence. DEFINE: The sequence (a_n) converges to the limit l as $n \to \infty$.(4 points)
- (b) It is required to prove that the sequence $a_n = \frac{6n^2 4n + 1}{2n^2 + n + 3}$ converges to the limit 3 as $n \to \infty$.
 - 1. What must be shown (write in terms of definition)(3 points)
 - 2. With all steps displayed show that $|a_n 3| \le \frac{4}{n}$ for all $n \ge 8$. (7 points)
 - 3. Using step 2 show that $\lim_{n\to\infty} a_n = 3$ (4 points)

[3](18=6+6+6 points. SHOW ALL CALCULATIONS)

- (a) Compute the least positive integer k such that for some positive integer m, the rational number $\frac{m}{3^k}$ lies in the interval $(\sqrt{911}, \sqrt{913})$.
- (b) Compute the least positive integer k such the EVERY interval of length 0.0331 contains a at least TWO rational numbers with denominator 3^k .
- (c) For the value of k found in (b) determine three rationals with denominator 3^k in the interval $(\sqrt{911}, \sqrt{913})$