Corte de cable

Corte de cable

Entrada: Un entero N correspondiente a la longitud del cable y unos valores no negativos p_k correspondientes al precio de venta de un segmento de longitud k $(1 \le k \le N)$

Salida: Esquema de corte que represente la mayor ganancia posible

* La idea es que los precios no son fijos por unidad, ni necesariamente hay economías de escala (en esos casos la solución sería trivial)

Ejemplo: Con N = 4

k	1	2	3	4
p	1	5	8	9

Solución: 2 segmentos de longitud 2 cada uno para una ganancia total de 10

Corte de cable

Para resolver mediante programación dinámica ¿Qué forma debería tener la solución óptima de un subproblema?

Dada una longitud i ($i \le N$) la solución óptima para ese subproblema consistiría en elegir una de las siguientes opciones:

- 1. Cortar un segmento de una unidad (*j*=1) y sumar la mejor ganancia posible del *i-1* restante de cable
- 2. Cortar un segmento de dos unidades (*j*=2) y sumar la mejor ganancia posible del *i*-2 restante de cable
- 3. Cortar un segmento de tres unidades (*j*=3) y sumar la mejor ganancia posible del *i*-3 restante de cable

Si las conociéramos ...

. . .

 j. Dejar el segmento de i unidades (j=i) y no dejar nada restante

Solución mediante programación dinámica

```
r_{1} = p_{1}
for i = 2 to N:

r_{i} = p_{i}
for j = 1 to i-1

r_{i} = MAX(r_{i}, p_{j} + r_{i-j})
print(r_{N})
```

¿Cuál es la eficiencia de este algoritmo?

La cantidad de subproblemas es lineal y cada uno se puede resolver con eficiencia lineal. Esto nos da $O(N^2)$, sin duda menor que $O(N2^{N-1})$ de la solución por búsqueda exhaustiva

Ejemplo: N = 4, p = 1, 5, 8, 9

r

1	
5	MAX(5, 1+1)
8	MAX(8, 1+5, 5+1)
10	MAX(9, 1+8, 5+5, 8+1)