

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

11.12.2012

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introdu

The MCA framework
Updates

Implementation

Modelling Semantics Updates Retraction

xampl

Hansson's Hamburger Cheese and Onion

Conclu

The idea

Remember the Hamburger example from homework II. Could we get a computer to do it for us?

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

Updates

Implementation

Modelling Semantics Updates Retraction

xample

lansson's Hamburger heese and Onion

Conclus

Introduction

The MCA framework

Updates

Retraction

Implementation

Modelling

Semantics

Updates

Retraction

Retraction

Examples

Hansson's Hamburger Cheese and Onion

Conclusion

Results

Future work

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

Updates

Implementation

Modelling Semantics Updates Retraction

Example

lansson's Hamburger Theese and Onion

Conclus

Introduction

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

Updates

Retraction

Implementation

Semantics Updates Retraction

Examples

Hansson's Hamburger

Conclu

The MCA framework

This paper provides an update semantics for counterfactual conditionals. It does so by giving a dynamic twist to the 'Premise Semantics' for counterfactuals developed in Veltman (1976) and Kratzer (1981).

F. Veltman: Making Counterfactual Assumptions

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

Introduction
The MCA framework

Updates Retraction

Implementation

Modelling Semantics Updates Retraction

kamples

Hansson's Hamburger Cheese and Onion

Conclus

The MCA framework

Cognitive States

A cognitive state $S = \langle F_S, U_S \rangle$ is a list of worlds::

	q	р	r
w ₀	0	0	0
₩1	0	0	1
$ w_2 $	1	0	0
W3	1	0	1
W4	0	1	0
W ₅	0	1	1
w ₆	1	1	0
w ₇	1	1	1

We denote being in F_S by a line | left of the world. Worlds are not in U_S iff they are stroked out.

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

The MCA framewor

Updates

Retraction

Implementation

Modelling Semantic Updates Retraction

Example

Hansson's Hamburger Cheese and Onion

Conclu

	q	р	r	
$ w_0 $	0	0	0	
$ w_1 $	0	0	1	
$ w_2 $	1	0	0	
w ₃	1	0	1	
W4	0	1	0	
W ₅	0	1	1	
w ₆	1	1	0	
w ₇	1	1	1	

$$[q \lor \neg r] =$$

		q	р	r
	$ w_0 $	0	0	0
	w_1	0	0	1
	$ w_2 $	1	0	0
=	$ w_3 $	1	0	1
	$ w_4 $	0	1	0
	W ₅	0	1	1
	$ w_6 $	1	1	0
	$ w_7 $	1	1	1

Updating with a fact only changes F_5 .

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduct

The MCA framework
Updates
Retraction

Implementation

Modelling Semantics Updates Retraction Retraction

Example

Hansson's Hamburger Cheese and Onion

Conclu

Future wor

	q	р	r
w ₀	0	0	0
$ w_1 $	0	0	1
$ w_2 $	1	0	0
$ w_3 $	1	0	1
$ w_4 $	0	1	0
W ₅	0	1	1
w ₆	1	1	0
$ w_7 $	1	1	1

$$igl[\Box(p o(qee r))]=$$

	q	р	r
w ₀	0	0	0
$ w_1 $	0	0	1
$ w_2 $	1	0	0
$ w_3 $	1	0	1
₩4	0	1	0
W ₅	0	1	1
w ₆	1	1	0
W7	1	1	1

Updating with a law deletes all worlds in which it is false from both F_S and U_S .

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction The MCA framewor

Updates Retraction

Implementation

Modelling Semantics Updates Retraction Retraction

Example

Hansson's Hamburger Cheese and Onion

Concli

Definition 3 (Basis) Let $S = \langle U_S, F_S \rangle$ be a state.

- (i) The situation s forces the proposition P within U_S iff for every $w \in U_S$ such that $s \subseteq w$ it holds that $w \in P$.
- (ii) The situation s determines the world w iff s forces $\{w\}$ within U_S .
- (iii) The situation s is a basis for the world w iff s is a minimal situation determining w within U_S .

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

The MCA framewor

Updates Retraction

Implementation

Modelling Semantics Updates Retraction Retraction

xamples

Hansson's Hamburger Cheese and Onion

Conclu

Definition 4 (Retraction) Let $S = \langle U_S, F_S \rangle$ be a state.

- (i) Suppose $w \in U_S$, and $P \subseteq W$. The set $w \downarrow P$ is determined as follows:
 - $s \in w \downarrow P$ iff $s \subseteq w$ and there is a basis s' for w such that s is a maximal subset of s' not forcing P.
- (ii) $S \downarrow P$, the retraction of P from S, is the state $\langle U_{S \downarrow P}, F_{S \downarrow P} \rangle$ determined as follows:
 - (a) $w \in U_{S \downarrow P}$ iff $w \in U_S$
 - (b) $w \in F_{S \downarrow P}$ iff $w \in U_S$ and there are $w' \in F_S$ and $s \in w' \downarrow P$ such that $s \subseteq w$.
- (iii) The state $S[\text{if it had been the case that } \phi]$ is given by $(S \downarrow \llbracket \neg \phi \rrbracket)[\phi]$

Evante Garza-Licudine, Malvin Gattinger

Introduction The MCA framework

The MCA fi Updates Retraction

Implementation

Modelling Semantics Updates Retraction Retraction

Example

Hansson's Hamburger Cheese and Onion

Conclu

Implementation

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introdu

The MCA framewor

Implementation

Semantics Updates Retraction

Examples

Hansson's Hamburger

Conclus

► The list of propositions is given as an argument to construct the neutral cognitive state:

```
1 language=['p','q','r']
2 genworlds(language)
```

► Logical constants:

```
phi="-(p)"
phi="(p)&(q)"
phi="(p)|(q)"
phi="(p)>(q)"
```

► Bracket conventions

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction
The MCA framework

The MCA framework Updates

Implementation

Modelling Semantics Updates Retraction

> Ex<mark>amples</mark> Hansson's Hamburge

Hansson's Hamburger Cheese and Onion

Conclus

Modelling

Worls

A world has two sub-structures:

```
1  {
2   'meta': { 'FS': True, 'US': True, 'name': 'w_3' },
   'values': { 'p': 1, 'q': 0, 'r': 1 }
4  },
```

This one corresponds to this line in a table:

	р	q	r
W3	1	0	1

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

Updates

Retraction

Implementation

Modelling Semantics Updates Retraction

Exampl

Hansson's Hamburger

Conclus

Modelling

Cognitive states

A cognitive state is an array of worlds:

```
2
      { 'meta': {'FS': True, 'US': True, 'name': 'w_0'},
3
        'values': {'p': 0, 'q': 0} },
      { 'meta': {'FS': True, 'US': True, 'name': 'w_1'},
4
5
        'values': {'p': 0, 'q': 1} },
6
      f 'meta': {'FS': True. 'US': True. 'name': 'w 2'}.
7
        'values': {'p': 1, 'q': 0} },
      { 'meta': {'FS': True, 'US': True, 'name': 'w_3'},
9
        'values': {'p': 1, 'q': 1} }
10
```

The Factual Counterfactual Counter

Evante Garza-Licudine. Malvin Gattinger

Implementation

Modelling

Semantics Updates Retraction

Examples Hansson's Hamburge

Cheese and Onion

Conclu

Results Future work

We use a recursive function to check if a formula is true in a certain world:

```
def tiw(world, formula):
     if len(formula) == 1: # atomic
 3
      return world["values"][formula]
 4
     else:
      structure=chop(formula)
      if structure ["connective"] == "~": # negation
7
       return not tiw(world.structure["subright"])
      if structure ["connective"] == "&": # conjunction
       return ( tiw(world, structure["subleft"]) & tiw(world, structure["
             subright"]) )
      if structure ["connective"] == "|": # disjunction
       return ( tiw(world, structure["subleft"]) | tiw(world, structure["
             subright"]) )
      if structure["connective"] == ">": # disjunction
13
       return ( tiw(world, structure["subleft"]) <= tiw(world, structure[
             "subright"]) )
```

Implementation

Updates

```
S[\phi] = \langle U_S, F_S \cap \llbracket \phi \rrbracket \rangle if F_S \cap \llbracket \phi \rrbracket \neq \varnothing;
S[\phi] = \mathbf{0}, otherwise.
```

```
def updateFormula(cogstate, formula):
    newstate = []
3
    if formulaIsConsistent(cogstate, formula):
4
     for world in cogstate:
      if not formulaIsTrue(world, formula):
6
       world[meta][FS] = False
      newstate.append(world)
    else:
9
     newstate = destrovAllWorlds(cogstate)
    return newstate
```

Implementation

Updates

 $S[\Box \phi] = \langle U_S \cap \llbracket \phi \rrbracket, F_S \cap \llbracket \phi \rrbracket \rangle \text{ if } F_S \cap \llbracket \phi \rrbracket \neq \emptyset;$ $S[\Box \phi] = \mathbf{0}$, otherwise.

```
def updateLaw(cogstate, law):
     newstate = []
     if formulaIsConsistent(cogstate, law):
 4
      for world in cogstate:
       if not formulaIsTrue(world, law):
 6
        world[meta][FS] = False
7
        world[meta][US] = False
       newstate.append(world)
9
     else:
      newstate = destroyAllWorlds(cogstate)
11
     return newstate
```

 $w\downarrow P=\{s\subseteq w\mid s\nvDash P\wedge\exists s' \text{ basis for } w:s\subset_{\textit{max}*} s'\}$

```
def retractOnWorld(cogstate,worldname,proposition):
     result=[]
 3
     world=getWorldByName(worldname,cogstate)
     for situation in sitgen(world): # s
      if Forceable(situation, proposition, cogstate):
6
       continue # s may not force P
7
      adding=False
 8
      for basis in getAllBases(world.cogstate): # s'
9
       if not subset(situation.basis):
        continue # s is has to be a subset of s'
       Maximal=True
12
       for t in subsitgen(basis):
13
        if Forceable (situation, proposition, cogstate):
14
         continue # t may not force P
15
        if subset(situation.t):
16
         if situation != t:
          Maximal=False
       if not Maximal:
18
19
        continue # s should be a maximal subset of s'
20
       adding=True
21
      if adding:
22
       result.append(situation)
     return result
```

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

The MCA framewor

Updates Retraction

Implementation

Modelling Semantics Updates Retraction

xamples

Hansson's Hamburger Cheese and Onion

Conclu

Future worl

Retracting a state boils down to retracting all worlds in F_S : $U_{S|P} = U_S$

 $F_{S\downarrow P} = \{ w \in U_S \mid \exists w' \in F_S : \exists s \in w' \downarrow P : s \subseteq w \}.$

```
def retractOnState(cogstate,proposition):
     result=[]
3
     for world in cogstate:
4
      newworld={} # do not shoot ourselves in the foot
      newworld["values"]=dict(world["values"])
 6
      newworld["meta"]=dict(world["meta"])
7
      addingToFS=False
      if world["meta"]["US"]:
       for biworld in cogstate:
        if biworld["meta"]["FS"]:
         biretract=retractOnWorld(cogstate, biworld["meta"]["name"],
               proposition)
         for s in biretract:
          if subset(s.world):
14
           addingToFS=True
      newworld["meta"]["FS"]=addingToFS
16
      result.append(dict(newworld))
     return result
```

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

Introduction

The MCA framework
Updates

Implementation

Modelling Semantics

Updates Retraction Retraction

Examples

Hansson's Hamburger Cheese and Onion

Conclu

Retraction

If it had been the case that ϕ

Finally, we can now assume a counterfactual:

```
def ifItHadBeenTheCase(cogstate, formula):
    # It's so pretty!
return update(retract(cogstate,proposition(cogstate,lnot(formula))
), formula)
```

This gives us $(S \downarrow \llbracket \neg \phi \rrbracket)[\phi]$.

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

The MCA fram

Updates Retraction

Implementation

Modelling Semantics

Updates Retraction Retraction

xamples

Cheese and Onion

Conclu

Examples

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduct

Updates

Implementation

Semantic Updates Retractic

Examples

Hansson's Hamburger

Conclu

```
# Start the tex file
    out = texheader("Hansson's Hamburger puzzle", "The Factual
          Counterfactual Counter")
 3
 4
    # Need propositional letters for "seeing a man walking with a
          hamburger", "snackbar A is open" and "snackbar B is open".
    alphabet = ["p", "q", "r"]
 6
    # Now we generate the universe
 8
    W = worldgen(alphabet)
 9
    out += texify(W)
10
    # Update with the fact that we see the man
    W = updateFormula(W, "r")
12
13
    out += texify(W)
14
15
    # Update with the law that if we see a man with a hamburger, he
          must have got it at one of the snackbars
    W = updateLaw(W, "(r)>((p)|(q))")
16
17
    out += texify(W)
18
19
    # Update since we see A is open
20
    W = updateFormula(W. "p")
21
    out += texify(W)
22
23
    # Compute the counterfactual
24
    W = ifItHadBeenTheCase(W, "~(p)")
25
    out += texify(W)
```

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

Introduct

Updates
Retraction

Implementation

Semantics Updates Retraction

Example

Hansson's Hamburger Cheese and Onion

Concli

Future work

Examples

Hansson's Hamburger

S_0	q	р	r	
w ₀	0	0	0	١
$ w_1 $	0	0	1	
w ₂	1	0	0	
w ₃	1	0	1	[
W ₄	0	1	0	
w ₅	0	1	1	
w ₆	1	1	0	
W7	1	1	1	

	w ₀	0	0	0
	₩Ţ	0	0	1
	w ₂	1	0	0
$\big[\Box(r\to(p\vee q))\big]=$	lw ₃	1	0	1
	W4	0	1	0
	w ₅	0	1	1
	w ₆	1	1	0
	W7	1	1	1

 S_2 q p

S_3	q	р	r
w ₀	0	0	0
₩I	0	0	1
w ₂	1	0	0
w ₃	1	0	1
w_4	0	1	0
w ₅	0	1	1
w ₆	1	1	0
w ₇	1	1	1
	w ₀ w ₁ w ₂ w ₃ w ₄ w ₅ w ₆	W ₀ 0 W ₁ 0 W ₂ 1 W ₃ 1 W ₄ 0 W ₅ 0 W ₆ 1	w0 0 0 w1 0 0 w2 1 0 w3 1 0 w4 0 1 w5 0 1 w6 1 1

$$\downarrow \llbracket \neg \neg p \rrbracket \llbracket \neg p \rrbracket = \begin{vmatrix} |w_0| & 0 & 0 \\ \frac{w_T}{w_T} & 0 & 0 \\ |w_2| & 1 & 0 \\ |w_3| & 1 & 0 \\ |w_4| & 0 & 1 \\ |w_5| & 0 & 1 \\ |w_6| & 1 & 1 \\ |w_7| & 1 & 1 \end{vmatrix}$$

 S_{Δ}

The last state does not support q, therefore $\neg p \rightsquigarrow q$ is not accepted in S_3 . The same holds for $\neg p \rightsquigarrow r$. But $\neg p \rightsquigarrow q \lor r$ is accepted. The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

Updates
Retraction

Implementation

Modelling

Semantics Updates Retraction Retraction

=xamples

Hansson's Hamburger Cheese and Onion

Conclu

Future work

Increasing the possible worlds increases runtime. How much?

```
def checkRandomCounterfactual(cogstate):
     # generate a random law and update with it:
     law="("+choice(alphabet)+")>("+choice(alphabet)+")"
     cogstate = updateLaw(cogstate.law)
 4
6
     # generate a random fact and update with it:
7
     fact=choice(alphabet)
     cogstate = updateFormula(cogstate.fact)
9
     # generate a random non-trivial counterfactual and check it:
     cfantecedent=choice(alphabet)
     restralph=list(alphabet)
13
     restralph.remove(cfantecedent)
     cfconsequent=choice(restralph)
14
     cogstateNew = ifItHadBeenTheCase(cogstate, cfantecedent)
16
     result = supports (cogstateNew, cfconsequent)
```

Beware: The time needed to check a counterfactual varies. To get an average result, we ran this function 1000 times on the neutral state for a given number of propositions.

The Factual Counterfactual

Evante Garza-Licudine, Malvin Gattinger

Introduction

The MCA framework
Updates
Retraction

Implementation

Modelling Semantics Updates Retraction Retraction

Example

Hansson's Hamburger Cheese and Onion

Concli

Conclusion

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introd

The MCA framewor
Updates
Retraction

Implementation

Semantic Updates Retractio

Retraction Retraction

Examples
Hansson's Hamburge

Conclusion

Results

Lessons learned

- Successfully implemented the semantics from [MCA].
- ▶ Any hamburger-like example can now easily be tried.
- ▶ More than four propositions are hard to cope with.
- ► We can now check if interpreting counterfactuals is "just as easy as" interpreting propositional logic ...

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction
The MCA framework

Retraction

Implementation

Modelling Semantics Updates Retraction

Example

Hansson's Hamburger Cheese and Onion

Conclu

Results

Results

The Veltman-curve

It is not as easy as material implication.

number of propositions:	2	3	4	5	6	7	8	9
counterfactuals thinkpad	0,750	3,080	17,210	146,380	1442,920			
counterfactuals MoL room	0,500	2,030	10,740	67,970	705,330	10947,400		
counterfactuals webserver	0,610	2,480	12,500	78,760	849,320	22207,320		
mplications thinkpad	0,060	0,090	0,170	0,320	0,610	1,200	2,460	4,87
mplications MoL room	0,040	0,070	0,120	0,240	0,430	0,840	1,670	3,30
mplications webserver	0,050	0,080	0,150	0,290	0,590	1,120	2,150	4,14

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction

The MCA fra Updates Retraction

Implementation

Modelling Semantics Updates Retraction

Example

lansson's Hamburger heese and Onion

Conclu

Future Work

- ► Are there further philosophical consequences?
- What about other counterfactual frameworks? Can we benchmark against Kratzer, Lewis, ...?
- ▶ Can the complexity be removed by optimization?
- What happens in the non-classical case? Currently we hard-coded:

```
1 truthvalues = [0,1]
```

► Predicate Logic (This would be hell.)

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

Introduction The MCA framework

Updates Retraction

Implementation

Modelling Semantics Updates Retraction

Example

Hansson's Hamburger Cheese and Onion

Conclus

Got questions? Ask us!

Got counterfactuals? Go to http://tinyurl.com/counterfactual and check them!

The Factual Counterfactual Counter

Evante Garza-Licudine, Malvin Gattinger

The MCA framework

Updates

Implementation

Modelling Semantics Updates Retraction

Examp

lansson's Hamburger beese and Onion

Conclus