Multivariate distributions

Calculating conditional PDF

Let $f(x,y) = 15x^2y$ for $0 \le x \le y \le 1$. Find f(x|y).¹

Properties of a joint PDF

Continuous random variables X and Y have the following joint probability density function (PDF):²

$$f_{XY}(x,y) = \begin{cases} kx^2y^3 & \text{where } 0 < x, y < 6\\ 0 & \text{otherwise} \end{cases}$$

Note: 0 < x, y < 6 means that both x and y are between 0 and 6; it does not mean that x is greater than 0 and y is less than 6.

a. Find k.

b. Find the marginal PDF of X, $f_X(x)$.

¹Grimmer HW12.4

 $^{^2{}m Grimmer~HW}12.1$

c.	Find	the marginal PDF of Y , $f_Y(y)$.
1.	Find	$\mathrm{E}[X].$
e.	Find	$\mathrm{E}[Y].$

f. Find Var(X).

g.	Find $Var(Y)$.
h.	Find $Cov(X,Y)$.
į	Are X and Y independent? Explain your reasoning using mathematical concepts from the course
1.	The A and I independent: Explain your reasoning using mathematical concepts from the course
j.	What is the PDF of X conditional on Y , $f_{X Y}(x y)$?

Properties of joint random variables³

Suppose the following:

- E[D] = 10• E[F] = 4
- E[DF] = 8
- Var(D) = 60
- Var(F) = 60
- a. What is Cov(D, F)?

b. What is the correlation between D and F?

c. Suppose you multiplied F by 2 to generate a new variable, H. What is Cov(D, H)?

 $^{^3 {}m Grimmer~HW12.3}$

d.	What is $Cor(I)$	D,H)?	How does th	is compare to	vour answer	to Part (1	o) of this question?
----	------------------	-------	-------------	---------------	-------------	------------	----------------------

e. Suppose instead that Var(D) = 30. How would this change Cor(D, F)?

Continuous Bayes' theorem

Previously, we used Bayes' theorem to link the conditional probability of discrete events A given B to the probability of B given A. There is an analogous Bayes' theorem that relates the conditional densities of random variables X and θ (below) Prove the continuous Bayes' theorem.⁴

$$f(\theta \mid X) = \frac{f(X \mid \theta)f(\theta)}{\int f(X \mid \theta)f(\theta)d\theta}$$

 $^{^4\}mathrm{Grimmer~HW12.5}$

Submission of practice questions

Submit practice questions for the final exam here: $https://forms.gle/CPo9FMQgQRPePDfN7 \ Note that we need at least 10 people to submit before there's enough to circulate!$