| 1. Definition: Bernoulli Distribu- | 2. Definition: Binary Entropy    |
|------------------------------------|----------------------------------|
| tion                               | Function                         |
| 3. Definition: Convergence In      | 4. Definition: Entropy           |
| Probability                        |                                  |
| 5. Remark: Properties Of Entropy   | 6. Theorem: Convergence To       |
|                                    | Common Entropy In Probability    |
| 7. Corollary: Aep                  | 8. Definition: Source.Memoryless |
| 9. Definition: Fixed Rate Code     | 10. Definition: Code Rate        |
| 11. Definition: Code Error Proba-  | 12. Theorem: Fixed Rate Coding   |
| bility                             | Theorem                          |
| 13. Definition: Hypothesis Test    | 14. Definition: Hypothesis Test  |
|                                    | Error Probability                |

| 15. Definition: Relative Entropy | 16. Theorem: Steins Lemma         |
|----------------------------------|-----------------------------------|
| 17. Theorem: Neyman Pearson      | 18. Proposition: Informatation    |
| Lemma                            | Theoretic Form Of Neyman Pear-    |
|                                  | son Decision Region               |
| 19. Theorem: Jensens Inequality  | 20. Theorem: Log Sum Inequality   |
| 21. Proposition: Bounds On En-   | 22. Definition: Joint Entropy     |
| tropy And Relative Entropy       |                                   |
| 23. Definition: Conditional En-  | 24. Proposition: Joint Entropy Is |
| tropy                            | Single Entropy Plus Conditional   |
|                                  | Entropy                           |
| 25. Proposition: Entropy Chain   | 26. Proposition: Conditioning Re- |
| Rule                             | duces Entropy                     |

| 27. Definition: Conditional Inde- | 28. Note: X Y And Function Of Y   |
|-----------------------------------|-----------------------------------|
| pendence                          | Form Markov Chain                 |
| 29. Corollary: Subadditivity Of   | 30. Remark: Expression For Con-   |
| Entropy                           | ditional Entropy                  |
| 31. Proposition: Entropy Data     | 32. Proposition: Properties Of    |
| Processing                        | Conditional Entropy               |
| 33. Theorem: Fano Inequality      | 34. Theorem: Relative Entropy     |
|                                   | Data Processing                   |
| 35. Definition: Total Variation   | 36. Theorem: Pinskers Inequality  |
| Distance                          |                                   |
| 37. Theorem: Relative Entropy Is  | 38. Corollary: Entropy Is Concave |
| Convex                            |                                   |

| 39. Theorem: Binomial Converges | 40. Theorem: Relative Entropy    |
|---------------------------------|----------------------------------|
| To Poisson                      | Between Sum Of Bernoullis And    |
|                                 | Poisson Is Bounded               |
| 41. Corollary: Relative En-     | 42. Corollary: Binomial Conver-  |
| tropy Between Sum Of Indepen-   | gence To Poisson Follows From    |
| dent Bernoullis And Poisson Is  | Relative Entropy Bound           |
| Bounded                         |                                  |
| 43. Lemma: Binomial Maximum     | 44. Theorem: Poisson Maximum     |
| Entropy                         | Entropy                          |
| 45. Definition: Mutual Informa- | 46. Proposition: Expressions For |
| tion                            | Mutual Information               |

| 47. Proposition: Bounds On Mu-   | 48. Proposition: Mutual Informa- |
|----------------------------------|----------------------------------|
| tual Information And Conditional | tion Chain Rule                  |
| Mutual Information               |                                  |
| 49. Theorem: Mutual Information  | 50. Definition: Synergy          |
| Data Processing                  |                                  |
| 51. Definition: Redundancy Or-   | 52. Theorem: Condition For Cor-  |
| thogonality Synergisticy         | related Observations Giving More |
|                                  | Information Than Independent     |
|                                  | Ones                             |
| 53. Definition: Sumset           | 54. Definition: Difference Set   |
| 55. Proposition: Sumset Bounds   | 56. Proposition: Ruzsa Triangle  |
|                                  | Inequality                       |

| 57. Proposition: Sum Entropy      | 58. Lemma: Entropy Ruzsa Trian-  |
|-----------------------------------|----------------------------------|
| Bounds                            | gle Inequality Lemma             |
| 59. Theorem: Entropy Ruzsa Tri-   | 60. Definition: Entropy Increase |
| angle Inequality                  |                                  |
| 61. Proposition: Mutual Informa-  | 62. Lemma: Triple Sum Reduces    |
| tion Expression For Entropy In-   | Entropy                          |
| crease                            |                                  |
| 63. Theorem: Doubling Difference  | 64. Definition: Entropy Rate     |
| Inequality                        |                                  |
| 65. Definition: Source.Stationary | 66. Lemma: Cesaro                |

| 67. Theorem: Entropy Rate Of     | 68. Theorem: Entropy Rate Is    |
|----------------------------------|---------------------------------|
| Stationary Source                | Conditional Entropy Given Infi- |
|                                  | nite Past                       |
| 69. Definition: Source.Ergodic   | 70. Theorem: Birkhoff           |
| 71. Theorem: Shannon Mcmillan    | 72. Definition: Type            |
| Breiman                          |                                 |
| 73. Definition: N Types          | 74. Proposition: Upper Bound On |
|                                  | Number Of N Types               |
| 75. Proposition: Prob Under Prod | 76. Definition: Type Class      |
| Dist Of String Of Type           |                                 |

| 77. Lemma: Most Likely Type       | 78. Proposition: Bounds On Size |
|-----------------------------------|---------------------------------|
| Class Under Prod Dist Is Type     | Of Type Class                   |
| Class Of That Dist                |                                 |
| 79. Corollary: Bounds On Proba-   | 80. Theorem: Sanov              |
| bility Of Type Class              |                                 |
| 81. Definition: Log Mgf           | 82. Proposition: Chernoff Bound |
| 83. Corollary: Minimising Distri- | 84. Theorem: Pythagorean Iden-  |
| bution In Sanov Is Unique For     | tity                            |
| Nonempty Closed Convex Events     |                                 |
| 85. Lemma: Expectation Of         | 86. Theorem: Gibbs Conditioning |
| Bounded Rvs Converges To Limit    | Principle                       |
| Of Convergence In Probability     |                                 |

| 87. Theorem: Error Exponents For | 88. Definition: Variable Rate Code |
|----------------------------------|------------------------------------|
| Fixed Rate Compression           |                                    |
| 89. Definition: Variable Rate    | 90. Theorem: Krafts Inequality     |
| Code.Prefix Free                 |                                    |
| 91. Theorem: Codes Distributions | 92. Theorem: Entropic Bounds On    |
| Correspondence                   | Expected Length Of Prefix Free     |
|                                  | Codes                              |
| 93. Corollary: Entropy Rate Of   | 94. Definition: Shannon Code       |
| Source Is Best Asymptotic Prefix |                                    |
| Free Compression Rate            |                                    |
| 95. Definition: Ideal Shannon    | 96. Theorem: Competitive Opti-     |
| Codelength                       | mality Of Shannon Codes            |

| 97. Definition: Mle Code        | 98. Proposition: Mle Code Price  |
|---------------------------------|----------------------------------|
|                                 | Of Universality                  |
| 99. Proposition: Mle Code Ex-   | 100. Definition: Counting Code   |
| pected Price Of Universality    |                                  |
| 101. Proposition: Counting Code | 102. Definition: Uniform Mixture |
| Description Length              |                                  |
| 103. Definition: Mixture Code   | 104. Lemma: Closed Form Ex-      |
|                                 | pression For Uniform Mixture Of  |
|                                 | Bernoullis                       |
| 105. Proposition: Mixture Code  | 106. Definition: Predictive Code |
| Description Length              |                                  |

| 107. Proposition: Predictive Code | 108. Lemma: Exponential Upper    |
|-----------------------------------|----------------------------------|
| Description Length                | Bound On Binomial Coefficient    |
| 109. Definition: Fisher Informa-  | 110. Proposition: Upper Bound    |
| tion                              | On Price Of Universality Of      |
|                                   | Counting Mixture And Predictive  |
|                                   | Codes                            |
| 111. Notation: Mdl Estimator      | 112. Definition: Mdl Code        |
| 113. Proposition: Mdl Code De-    | 114. Definition: Redundancy      |
| scription Length                  |                                  |
| 115. Definition: Worst Case Max-  | 116. Definition: Minimax Maximal |
| imal Redundancy                   | Redundancy                       |

| 117. Definition: Worst Case Aver- | 118. Definition: Minimax Average  |
|-----------------------------------|-----------------------------------|
| age Redundancy                    | Redundancy                        |
| 119. Theorem: Normalised Maxi-    | 120. Definition: Gamma Function   |
| mum Likelihood Code               |                                   |
| 121. Theorem: Shtarkov            | 122. Definition: Channel Capacity |
| 123. Theorem: Redundancy Ca-      | 124. Definition: Standard Parame- |
| pacity Theorem                    | terisation Of Pmfs On Alphabet    |
| 125. Theorem: Rissanen            | 126. Corollary: Bounds On Min-    |
|                                   | imax Maximal And Average Re-      |
|                                   | dundancies                        |

## 1. Entropy

## 1.1. Introduction

**Notation 1.1** Write  $x_1^n := (x_1, ..., x_n) \in \{0, 1\}^n$  for an length n bit string.

**Notation 1.2** We use P to denote a probability mass function. Write  $P_1^n$  for the joint proability mass function of a sequence of n random variables  $X_1^n = (X_1, ..., X_n)$ .

Definition: Bernoulli Distribution

**Definition 1.3** A random variable X has a **Bernoulli distribution**,  $X \sim \text{Bern}(p)$ , if for some fixed  $p \in (0, 1)$ ,

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

i.e. the probability mass function (PMF) of X is  $P : \{0, 1\} \to \mathbb{R}$ , P(0) = 1 - p, P(1) = p.

**Notation 1.4** Throughout, we take  $\log$  to be the base-2 logarithm,  $\log_2$ .

Definition: Binary Entropy Function

**Definition 1.5** The binary entropy function  $h:(0,1) \to [0,1]$  is defined as

$$h(p) := -p \log p - (1-p) \log (1-p)$$

**Example 1.6** Let  $x_1^n \in \{0,1\}^n$  be an n bit string which is the realisation of binary random variables (RVs)  $X_1^n = (X_1, ..., X_n)$ , where the  $X_i$  are independent and identically distributed (IID), with common distribution  $X_i \sim \text{Bern}(p)$ . Let  $k = |\{i \in [n] : x_i = 1\}|$  be the number of ones in  $x_1^n$ . We have

$$\mathbb{P}(X_1^n = x_1^n) \coloneqq P^n(x_1^n) = \prod_{i=1}^n P(x_i) = p^k(1-p)^{n-k}.$$

Now by the law of large numbers, the proportion of ones in a random  $x_1^n$  is  $k/n \approx p$  with high probability for large n. Hence,

$$P^n(x_1^n) \approx p^{np}(1-p)^{n(1-p)} = 2^{-nh(p)}.$$

Note that this reveals an amazing fact: this approximation is independent of  $x_1^n$ , so any message we are likely to encounter has roughly the same probability  $\approx 2^{-nh(p)}$  of occurring.

Remark 1.7 By the above example, we can split the set of all possible n-bit messages,  $\{0,1\}^n$ , into two parts: the set  $B_n$  of **typical** messages which are approximately uniformly distributed with probability  $\approx 2^{-nh(p)}$  each, and the non-typical messages that occur with negligible probability. Since all but a very small amount of the probability is concentrated in  $B_n$ , we have  $|B_n| \approx 2^{nh(p)}$ .

**Remark 1.8** Suppose an encoder and decoder both already know  $B_n$  and agree on an ordering of its elements:  $B_n = \{x_1^n(1), ..., x_1^n(b)\}$ , where  $b = |B_n|$ . Then instead of transmitting the actual message, the encoder can transmit its index  $j \in [b]$ , which can be described with

$$\lceil \log b \rceil = \lceil \log |B_n| \rceil \approx nh(p)$$

bits.

## Remark 1.9

- The closer p is to  $\frac{1}{2}$  (intuitively, the more random the messages are), the larger the entropy h(p), and the larger the number of typical strings  $|B_n|$ .
- Assuing we ignore non-typical strings, which have vanishingly small probability for large n, the "compression rate" of the above method is h(p), since we encode n-bit strings using nh(p)-bit strings. h(p) < 1 unless the message is uniformly distributed over all of  $\{0,1\}^n$ .
- So the closer p is to 0 or 1 (intuitively, the less random the messages are), the smaller the entropy h(p), so the greater the compression rate we can achieve.

1.2. Asymptotic equipartition property

**Notation 1.10** We denote a finite alphabet by  $A = \{a_1, ..., a_m\}$ .

**Notation 1.11** If  $X_1, ..., X_n$  are IID RVs with values in A, with common distribution described by a PMF  $P: A \to [0,1]$  (i.e.  $P(x) = \mathbb{P}(X_i = x)$  for all  $x \in A$ ), then write  $X \sim P$ , and we say "X has distribution P on A".

**Notation 1.12** For  $i \leq j$ , write  $X_i^j$  for the block of random variables  $(X_i,...,X_j)$ , and similarly write  $x_i^j$  for the length j-i+1 string  $(x_i,...,x_j) \in A^{i-j+1}$ .

**Notation 1.13** For IID RVs  $X_1, ..., X_n$  with each  $X_i \sim P$ , denote their joint PMF by  $P^n: A^n \to [0,1]$ :

$$P^n(x_1^n) = \mathbb{P}(X_1^n = x_1^n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i) = \prod_{i=1}^n P(x_i),$$

and we say that "the RVs  $X_1^n$  have the product distribution  $P^n$ ".

Definition: Convergence In Probability

**Definition 1.14** A sequence of RVs  $(Y_n)_{n\in\mathbb{N}}$  converges in probability to an RV Y if  $\forall \varepsilon > 0$ ,

$$\mathbb{P}(|Y_n - Y| > \varepsilon) \to 0 \quad \text{as } n \to \infty.$$

Definition: Entropy

**Definition 1.15** Let  $X \sim P$  be a discrete RV on a countable alphabet A. The **entropy** of X is

$$H(X) = H(P) \coloneqq -\sum_{x \in A} P(x) \log P(x) = \mathbb{E}[-\log P(X)].$$

Remark: Properties Of Entropy

## Remark 1.16

- We use the convention  $0 \log 0 = 0$  (this is natural due to continuity:  $x \log x \to 0$  as  $x \downarrow 0$ , and also can be derived measure-theoretically).
- Entropy is technically a functional the probability distribution P and not of X, but we use the notation H(X) as well as H(P).
- H(X) only depends on the probabilities P(x), not on the values  $x \in A$ . Hence for any bijective  $f: A \to A$ , we have H(f(X)) = H(X).
- All summands of H(X) are non-negative, so the sum always exists and is in  $[0, \infty]$ , even if A is countable infinite.

• H(X) = 0 iff all summands are 0, i.e. if  $P(x) \in \{0, 1\}$  for all  $x \in A$ , i.e. X is **deterministic** (constant, so equal to a fixed  $x_0 \in A$  with probability 1).

Theorem: Convergence To Common Entropy In Probability

**Theorem 1.17** Let  $X = \{X_n : n \in \mathbb{N}\}$  be IID RVs with common distribution P on a finite alphabet A. Then

$$-\frac{1}{n}\log P^n(X_1^n)\longrightarrow H(X_1)\quad\text{in probability}\quad\text{as }n\to\infty$$

Proof (Hints). Straightforward.

*Proof.* We have

$$P^n(X_1^n) = \prod_{i=1}^n P(X_i)$$

$$\Longrightarrow -\frac{1}{n}\log P^n(X_1^n) = -\frac{1}{n}\sum_{i=1}^n \log P(X_i) \to \mathbb{E}[-\log P(X_1)] \quad \text{in probability}$$

by the weak law of large numbers (WLLN) for the IID RVs  $Y_i = -\log P(X_i)$ .

Corollary: Aep

**Corollary 1.18** (Asymptotic Equipartition Property (AEP)) Let  $\{X_n : n \in \mathbb{N}\}$  be IID RVs on a finite alphabet A with common distribution P and common entropy  $H = H(X_i)$ . Then

• ( $\Longrightarrow$ ): for all  $\varepsilon > 0$ , the set of **typical strings**  $B_n^*(\varepsilon) \subseteq A^n$  defined by

$$B_n^*(\varepsilon) \coloneqq \left\{ x_1^n \in A^n : 2^{-n(H+\varepsilon)} \le P^n(x_1^n) \le 2^{-n(H-\varepsilon)} \right\}$$

satisfies

$$|B_n^*(\varepsilon)| \le 2^{n(H+\varepsilon)} \quad \forall n \in \mathbb{N}, \text{ and}$$
$$P^n(B_n^*(\varepsilon)) = \mathbb{P}(X_1^n \in B_n^*(\varepsilon)) \longrightarrow 1 \quad \text{as } n \to \infty$$

• ( $\Leftarrow$ ): for any sequence  $(B_n)_{n\in\mathbb{N}}$  of subsets of  $A^n$ , if  $\mathbb{P}(X_1^n\in B_n)\to 1$  as  $n\to\infty$ , then  $\forall \varepsilon>0$ ,

$$|B_n| \geq (1-\varepsilon) 2^{n(H-\varepsilon)} \quad \text{eventually}$$

i.e. 
$$\exists N \in \mathbb{N} : \forall n \geq N, \quad |B_n| \geq (1-\varepsilon)2^{n(H-\varepsilon)}.$$

Proof (Hints).

- $(\Longrightarrow)$ : straightforward.
- $(\Leftarrow)$ : show that  $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$  as  $n \to \infty$ .

Proof.

- (⇒):
  - Let  $\varepsilon > 0$ . By Theorem 1.17, we have

$$\mathbb{P}(X_1^n \notin B_n^*(\varepsilon)) = \mathbb{P}\left(\left|-\frac{1}{n}\log P^n(X_1^n) - H\right| > \varepsilon\right) \to 0 \quad \text{as } n \to \infty.$$

• By definition of  $B_n^*(\varepsilon)$ ,

$$1 \ge P^n(B_n^*(\varepsilon)) = \sum_{\substack{x_1^n \in B_n^*(\varepsilon)}} P^n(x_1^n) \ge |B_n^*(\varepsilon)| 2^{-n(H+\varepsilon)}.$$

• (<del>=</del>):

- $\begin{array}{ll} \bullet \ \ \text{We have} \quad P^n(B_n\cap B_n^*(\varepsilon)) = P^n(B_n) + P^n(B_n^*(\varepsilon)) P^n(B_n \cup B_n^*(\varepsilon)) \geq P^n(B_n) + P^n(B_n^*(\varepsilon)) 1, \ \text{so} \ P^n(B_n\cap B_n^*(\varepsilon)) \rightarrow 1. \end{array}$
- So  $P^n(B_n \cap B_n^*(\varepsilon)) \ge 1 \varepsilon$  eventually, and so

$$\begin{split} 1-\varepsilon &\leq P^n(B_n\cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n\cap B_n^*(\varepsilon)} P^n(x_1^n) \\ &\leq |B_n\cap B_n^*(\varepsilon)| 2^{-n(H-\varepsilon)} \leq |B_n| 2^{-n(H-\varepsilon)}. \end{split}$$

## Remark 1.19

- The  $\Longrightarrow$  part of AEP states that a specific object (in this case, the  $B_n^*(\varepsilon)$ ) can achieve a certain performance, while the  $\Leftarrow$  part states that no other object of this type can significantly perform better. This is common type of result in information theory.
- Theorem 1.17 gives a mathematical interpretation of entropy: the probability of a random string  $X_1^n$  generally decays exponentially with n  $(P^n(X_1^n) \approx 2^{-nH})$  with high probability for large n). The AEP gives a more "operational interpretation": the smallest set of strings that can carry almost all the probability of  $P^n$  has size  $\approx 2^{nH}$ .

• The AEP tells us that higher entropy means more typical strings, and so the possible values of  $X_1^n$  are more unpredictable. So we consider "high entropy" RVs to be "more random" and "less predictable".

## 1.3. Fixed-rate lossless data compression

Definition: Source.Memoryless

**Definition 1.20** A memoryless source  $X = \{X_n : n \in \mathbb{N}\}$  is a sequence of IID RVs with a common PMF P on the same alphabet A.

Definition: Fixed Rate Code

**Definition 1.21** A fixed-rate lossless compression code for a source X consists of a sequence of codebooks  $\{B_n : n \in \mathbb{N}\}$ , where each  $B_n \subseteq A^n$  is a set of source strings of length n.

Assume the encoder and decoder share the codebooks, each of which is sorted. To send  $x_1^n$ , an encoder checks if  $x_1^n \in B_n$ ; if so, they send the index of  $x_1^n$  in  $B_n$ , along with a flag bit 1, which requires  $1 + \lceil \log |B_n| \rceil$  bits. Otherwise, they send  $x_1^n$  uncompressed, along with a flag bit 0 to indicate an "error", which requires  $1 + \lceil \log |A^n| \rceil = 1 + \lceil n \log |A| \rceil$  bits.

Definition: Code Rate

**Definition 1.22** For each  $n \in \mathbb{N}$ , the **rate** of a fixed-rate code  $\{B_n : n \in \mathbb{N}\}$  for a source X is

$$R_n \coloneqq \frac{1}{n}(1+\lceil \log |B_n|\rceil) \approx \frac{1}{n}\log |B_n| \quad \text{bits/symbol}.$$

Definition: Code Error Probability

**Definition 1.23** For each  $n \in \mathbb{N}$ , the **error probability** of a fixed-rate code  $\{B_n : n \in \mathbb{N}\}$  for a source X is

$$P_e^{(n)} := \mathbb{P}(X_1^n \notin B_n).$$

Theorem: Fixed Rate Coding Theorem

**Theorem 1.24** (Fixed-rate Coding Theorem) Let  $X = \{X_n : n \in \mathbb{N}\}$  be a memoryless source with distribution P and entropy  $H = H(X_i)$ .

•  $(\Longrightarrow)$ :  $\forall \varepsilon > 0$ , there is a fixed-rate code  $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$  with vanishing error probability  $(P_e^{(n)} \to 0 \text{ as } n \to \infty)$  and with rate

$$R_n \le H + \varepsilon + \frac{2}{n} \quad \forall n \in \mathbb{N}.$$

• ( $\Leftarrow$ ): let  $\{B_n : n \in \mathbb{N}\}$  be a fixed-rate with vanishing error probability. Then  $\forall \varepsilon > 0$ , its rate  $R_n$  satisfies

$$R_n > H - \varepsilon$$
 eventually.

*Proof (Hints)*. (⇒): straightforward. (⇐): explain why  $0 < \varepsilon < 1/2$  WLOG.

Proof.

- (⇒):
  - Let  $B_n^*(\varepsilon)$  be the sets of typical strings defined in AEP (Asymptotic Equipartition Property (AEP)). Then  $P_e^{(n)} = 1 \mathbb{P}(X_1^n \in B_n^*) \to 0$  as  $n \to \infty$  by AEP.
  - Also by AEP,  $R_n = \frac{1}{n}(1 + \lceil \log |B_n^*| \rceil) \le \frac{1}{n} \log |B_n^*| + \frac{2}{n} \le H + \varepsilon + \frac{2}{n}$ .
- (<del>=</del>):
  - WLOG let  $0 < \varepsilon < 1/2$ . By AEP,

$$R_n \geq \frac{1}{n} \log |B_n^*| + \frac{1}{n} \geq \frac{1}{n} \log (1-\varepsilon) + H - \varepsilon + \frac{1}{n} = H - \varepsilon + \frac{1}{n} \log (2(1-\varepsilon)) > H + \frac{1}{n} \log (2(1-\varepsilon)) > H + \frac{1}{n} \log |B_n^*| + \frac{1}{n} \log |B_n^*| + \frac{1}{n} \log (2(1-\varepsilon)) > H + \frac{1}{n} \log |B_n^*| + \frac{1}{n} \log |B_n^*| + \frac{1}{n} \log (2(1-\varepsilon)) > H + \frac{1}{n} \log |B_n^*| + \frac{1}$$

eventually.

# 2. Relative entropy

Definition: Hypothesis Test

**Definition 2.1** Suppose  $x_1^n \in A^n$  are observations generated by IID RVs  $X_1^n$  and we want to decide whether  $X_1^n \sim P^n$  or  $Q^n$ , for two distinct candidate PMFs P, Q on A. A **hypothesis test** is described by a **decision region**  $B_n \subseteq A^n$  such that

- If  $x_1^n \in B_n$ , then we declare that  $X_1^n \sim P^n$ .
- Otherwise, if  $x_1^n \notin B_n$ , then we declare that  $X_1^n \sim Q^n$ .

Definition: Hypothesis Test Error Probability

**Definition 2.2** The associated **error probabilities** for a hypothesis test are

$$\begin{split} e_1^{(n)} &= e_1^{(n)}(B_n) \coloneqq \mathbb{P}(\text{declare } P \mid \text{data} \sim Q) = Q^n(B_n) \\ e_2^{(n)} &= e_2^{(n)}(B_n) \coloneqq \mathbb{P}(\text{declare } Q \mid \text{data} \sim P) = P^n(B_n^c). \end{split}$$

Definition: Relative Entropy

**Definition 2.3** The **relative entropy** between PMFs P and Q on the same countable alphabet A is

$$D(P \parallel Q) \coloneqq \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E} \bigg[ \log \frac{P(X)}{Q(X)} \bigg], \quad \text{where } X \sim P.$$

## Remark 2.4

- We use the convention that  $0\log\frac{0}{0}=0$  (this can be avoided by defining relative entropy measure-theoretically).
- $D(P \parallel Q)$  always exists and  $D(P \parallel Q) \ge 0$  with equality iff P = Q.
- Relative entropy is not symmetric:  $D(P \parallel Q) \neq D(Q \parallel P)$  in general, and does not satisfy the triangle inequality.
- Despite this, it is reasonable and natural to think of  $D(P \parallel Q)$  as a statistical "distance" between P and Q.

**Remark 2.5** Let  $X \sim P$ . We have, by WLLN,

$$\begin{split} \frac{1}{n} \log \left( \frac{P^n(X_1^n)}{Q^n(X_1^n)} \right) &= \frac{1}{n} \log \prod_{i=1}^n \frac{P(X_i)}{Q(X_i)} \\ &= \frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)} \\ &\longrightarrow D(P \parallel Q) \text{ in probability} \quad \text{as } n \to \infty. \end{split}$$

So for large n,  $\frac{P^n(X_1^n)}{Q^n(X_1^n)} \approx 2^{nD(P \parallel Q)}$  with high probability. Hence, the random string  $X_1^n$  is exponentially more likely under its true distribution P than under Q.

2.1. Asymptotically optimal hypothesis testing

Theorem: Steins Lemma

**Theorem 2.6** (Stein's Lemma) Let P, Q be PMFs on a finite alphabet A, with  $D = D(P \parallel Q) \in (0, \infty)$ . Let  $X = \{X_n : n \in \mathbb{N}\}$  be a memoryless source on A, with either each  $X_i \sim P$  or each  $X_i \sim Q$ .

•  $(\Longrightarrow)$ : for all  $\varepsilon > 0$ , there is a hypothesis test with decision regions  $\{B_n^*(\varepsilon) : n \in \mathbb{N}\}$  such that

$$\forall n \in \mathbb{N}, \quad e_1^{(n)}(B_n^*(\varepsilon)) \le 2^{-n(D-\varepsilon)}$$

and  $e_2^{(n)} \to 0$  as  $n \to \infty$ .

• ( $\Leftarrow$ ): for any hypothesis test with decision regions  $\{B_n : n \in \mathbb{N}\}$  such that  $e_2^{(n)}(B_n) \to 0$  as  $n \to \infty$ , we have  $\forall \varepsilon > 0$ ,

 $e_1^{(n)}(B_n) \geq 2^{-n\left(D+\varepsilon+\frac{1}{n}\right)} \quad \text{eventually}.$ 

Proof (Hints).

- (⇒):
  - Let  $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}$ . The rest is straightforward (use above remark).
- (<del>=</del>):
  - Show that  $P^n(B_n^*(\varepsilon) \cap B_n) \to 1$  as  $n \to \infty$ , use that  $\frac{1}{2} = 2^{-n(1/n)}$ .

Proof.

- (⇒):

  - Let  $B_n^*(\varepsilon) = \left\{ x_1^n \in A^n : 2^{n(D-\varepsilon)} \le \frac{P^n(x_1^n)}{Q^n(x_1^n)} \le 2^{n(D+\varepsilon)} \right\}$ .

    Then the convergence in probability of  $\frac{1}{n} \sum_{i=1}^n \log \frac{P(X_i)}{Q(X_i)}$  is equivalent to  $\mathbb{P}(X_1^n \notin B_n^*) = P^n(B_n^*(\varepsilon)) = e_2^{(n)} \to 0$  as  $n \to \infty$ , when  $X_1^n \sim P^n$ .
  - $\begin{array}{l} \bullet \ \ \text{Also,} & 1 \geq P^n(B_n^*) = \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) \frac{P^n(x_1^n)}{Q^n(x_1^n)} \geq \\ & 2^{n(D-\varepsilon)} \sum_{x_1^n \in B_n^*(\varepsilon)} Q^n(x_1^n) = 2^{n(D-\varepsilon)} Q^n(B_n^*(\varepsilon)). \end{array}$
- (<del>=</del>):

We have  $e_2^{(n)}(B_n^*(\varepsilon)) = P^n(B_n^*(\varepsilon)) \to 0$  as  $n \to \infty$ . Suppose  $e_2^{(n)}(B_n) = P^n(B_n^c) \to 0$ . Then  $P^n(B_n \cap B_n^*(\varepsilon)) \to 1$ . So eventually,

$$\begin{split} \frac{1}{2} &\leq P^n(B_n \cap B_n^*(\varepsilon)) = \sum_{x_1^n \in B_n \cap B_n^*(\varepsilon)} P^n(x_1^n) \frac{Q^n(x_1^n)}{Q^n(x_1^n)} \\ &\leq 2^{n(D+\varepsilon)} \sum_{x_1^n \in B_n} Q^n(x_1^n) \\ &= 2^{n(D+\varepsilon)} Q^n(B_n) = 2^{n(D+\varepsilon)} e_1^{(n)}(B_n) \end{split}$$

#### Remark 2.7

- The decision regions  $B_n^*$  are asymptotically optimal in that, among all tests that have  $e_2^{(n)} \to 0$ , they achieve the asymptotically smallest possible  $e_1^{(n)} \approx 2^{-nD}$ . However, they are not the most optimal decision regions for finite n. For finite regions, the optimal regions are given by the Neyman-Pearson Lemma.
- Assuming  $D \neq 0$  is a trivial assumption, as otherwise P = Q on A, so any test would give the correct answer.
- Assuming  $D < \infty$  is a reasonable assumption, as otherwise there is some  $a \in A$  such that P(a) > 0 but Q(a) = 0. In that case, we check whether any such a appear in  $x_1^n$  or not.

- In Stein's Lemma, we assume one error vanishes at possibly an arbitrarily slow rate, while the other decays exponentially. This is a natural asymmetry in many applications, e.g. in diagnosing disease.
- Stein's Lemma shows why the relative entropy is a natural measure of "distance" between two distributions, as large D means a smaller error probability (one vanishes exponentially at rate D), so easier to tell apart the distributions from the data.

# 2.2. Relative entropy and optimal hypothesis testing

Theorem: Neyman Pearson Lemma

**Theorem 2.8** (Neyman-Pearson Lemma) For a hypothesis test between P and Q based on n data samples, the **likelihood ratio** decision regions

$$B_{\rm NP} = \left\{ x_1^n \in A^n : \frac{P^n(x_1^n)}{Q^n(x_1^n)} \ge T \right\}, \quad \text{for some threshold } T > 0,$$

are optimal in that, for any decision region  $B_n \subseteq A^n$ , if  $e_1^{(n)}(B_n) \le e_1^{(n)}(B_{NP})$ , then  $e_2^{(n)}(B_n) \ge e_2^{(n)}(B_{NP})$ , and vice versa.

*Proof (Hints)*. Consider the inequality

$$\big(P^n(x_1^n) - TQ^n(x_1^n)\big) \Big(\mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n)\Big) \geq 0$$

(justify why this holds).

### Proof.

• Consider the obvious inequality

$$(P^n(x_1^n) - TQ^n(x_1^n)) \Big( \mathbb{1}_{B_{\mathrm{NP}}}(x_1^n) - \mathbb{1}_{B_n}(x_1^n) \Big) \geq 0$$

• Then, summing over all  $x_1^n$ ,

$$\begin{split} 0 & \leq P^n(B_{\mathrm{NP}}) - P^n(B_n) - TQ^n(B_{\mathrm{NP}}) + TQ^n(B_n) \\ & = 1 - e_2^{(n)}(B_{\mathrm{NP}}) - \left(1 - e_2^{(n)}(B_n)\right) - T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \\ & \Longrightarrow e_2^{(n)}(B_n) - e_2^{(n)}(B_{\mathrm{NP}}) \geq T\left(e_1^{(n)}(B_{\mathrm{NP}}) - e_1^{(n)}(B_n)\right) \end{split}$$

**Remark 2.9** Neyman-Pearson says that if any decision region has an error as small as that of  $B_{\rm NP}$ , then its other error must be larger than that of  $B_{\rm NP}$ .

**Notation 2.10** Let  $\hat{P}_n$  denote the empirical distribution (or **type**) induced by  $x_1^n$  on  $A^n$  (the frequency with which  $a \in A$  occurs in  $x_1^n$ ):

$$\forall a \in A, \quad \hat{P}_n(a) \coloneqq \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}$$

Proposition: Informatation Theoretic Form Of Neyman Pearson Decision Region

**Proposition 2.11** The Neyman-Pearson decision region  $B_{\rm NP}$  can be expressed in information-theoretic form as

$$B_{\mathrm{NP}} = \left\{ x_1^n \in A^n : D \Big( \hat{P}_n \parallel Q \Big) \geq D \Big( \hat{P}_n \parallel P \Big) + T' \right\}$$

where  $T' = \frac{1}{n} \log T$ .

*Proof (Hints)*. Rewrite the expression  $\frac{1}{n} \log \frac{P^n(x_1^n)}{Q^n(x_1^n)}$ .

*Proof.* We have

$$\begin{split} \frac{1}{n} \log \frac{P^n(x_1^n)}{Q^n(x_1^n)} &= \frac{1}{n} \log \left( \prod_{i=1}^n \frac{P(x_i)}{Q(x_i)} \right) \\ &= \frac{1}{n} \sum_{i=1}^n \log \frac{P(x_i)}{Q(x_i)} \\ &= \frac{1}{n} \sum_{i=1}^n \sum_{a \in A} \mathbb{1}_{\{x_i = a\}} \log \frac{P(a)}{Q(a)} \\ &= \sum_{a \in A} \left( \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}} \right) \log \frac{P(a)}{Q(a)} \end{split}$$

$$\begin{split} &= \sum_{a \in A} \hat{P}_n(a) \log \Bigg( \frac{P(a)}{Q(a)} \cdot \frac{\hat{P}_n(a)}{\hat{P}_n(a)} \Bigg) \\ &= D\Big(\hat{P}_n \parallel Q\Big) - D\Big(\hat{P}_n \parallel P\Big). \end{split}$$

Theorem: Jensens Inequality

**Theorem 2.12** (Jensen's Inequality) Let I be an interval,  $f: I \to \mathbb{R}$  be convex and X be an RV with values in I. Then

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X]).$$

Moreover, if f is strictly convex, then equality holds iff X is almost surely constant.

Proof. Omitted.

Theorem: Log Sum Inequality

**Theorem 2.13** (Log-sum Inequality) Let  $a_1, ..., a_n, b_1, ..., b_n$  be nonnegative constants. Then

$$\sum_{i=1}^n a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^n a_i\right) \log \frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}$$

with equality iff  $\frac{a_i}{b_i} = c$  for all i, for some constant c. We use the convention that  $0 \log 0 = 0 \log \frac{0}{0} = 0$ .

**Remark 2.14** This also holds for countably many  $a_i$  and  $b_i$ .

*Proof (Hints)*. Use Jensen's inequality with X the RV such that  $\mathbb{P}\left(X = \frac{a_i}{b_i}\right) = \frac{b_i}{\sum_{j=1}^n b_j}$  for all  $i \in [n]$ , and a suitable f.

# Proof.

• Define

$$f(x) = \begin{cases} x \log x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

f is strictly convex.

- Let  $A = \sum_i a_i$ ,  $B = \sum_i b_i$ . Let X be the RV with  $\mathbb{P}\left(X = \frac{a_i}{b_i}\right) = \frac{b_i}{B}$ for all  $i \in [n]$ .
- Then  $\mathbb{E}[f(X)] = \sum_i \frac{b_i}{B} \frac{a_i}{b_i} \log \frac{a_i}{b_i} = \frac{1}{B} \sum_i a_i \log \frac{a_i}{b_i}$ .  $f(\mathbb{E}[X]) = \mathbb{E}[X] \log \mathbb{E}[X] = \sum_i \frac{a_i}{b_i} \frac{b_i}{B} \log \sum_i \frac{a_i}{b_i} \frac{b_i}{B} = \frac{A}{B} \log \frac{A}{B}$ .
- So by Jensen's inequality,  $\frac{A}{B} \log \frac{A}{B} \le \frac{1}{B} \sum_{i} a_{i} \log \frac{a_{i}}{b}$ .

Proposition: Bounds On Entropy And Relative Entropy

#### Proposition 2.15

1. If P and Q are PMFs on the same finite alphabet A, then

$$D(P \parallel Q) \ge 0$$

with equality iff P = Q.

2. If  $X \sim P$  on a finite alphabet A, then

$$0 \le H(X) \le \log|A|$$

with equality to 0 iff X is a constant, and equality to  $\log |A|$  iff X is uniformly distributed on A.

**Remark 2.16** This also holds for countably infinite A.

# Proof (Hints).

- 1. Straightforward.
- 2. For  $\leq \log |A|$ , consider  $D(P \parallel Q)$  where Q is the uniform distribution on  $A \geq 0$  is straightforward.

Proof.

• • By the log-sum inequality,

$$D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)} \geq \left(\sum_{x \in A} P(x)\right) \log \frac{\sum_{x \in A} P(x)}{\sum_{x \in A} Q(x)} = 0$$

with equality if  $\frac{P(x)}{Q(x)}$  is the same constant for all  $x \in A$ , i.e. P = Q.

- Let Q be the uniform distribution on A, so  $H(Q) = \sum_{x \in A} \frac{1}{|A|} \log \frac{1}{1/|A|} = \log |A|$ .
  - Now  $0 \le D(P \parallel Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{1/|A|} = \log |A| H(X)$  with equality iff P = Q, i.e. P is uniform.

► Each term in -H(X) is  $\leq 0$ , with equality iff each  $P(x) \log P(x)$  is 0, i.e. P(x) = 0 or 1.

Remark 2.17 If  $X = \{X_n : n \in \mathbb{N}\}$  is a memoryless source with PMF P on A, then we have shown that it can be at best compressed to  $\approx H(P)$  bits/symbol. This means that we can always achieve non-trivial compression, i.e. a description using  $\approx H(P) < \log |A|$  bits/symbol, unless the source X is completely random (i.e. IID and uniformly distribute), in which case we cannot do better than simply describing each  $x_1^n$  uncompressed using  $\frac{\lceil \log |A^n| \rceil}{n} \approx \log |A|$  bits/symbol.

## 3. Properties of entropy and relative entropy

3.1. Joint entropy and conditional entropy

Definition: Joint Entropy

**Definition 3.1** Let  $X_1^n$  be an arbitrary finite collection of discrete RVs on corresponding alphabets  $A_1, ..., A_n$ . Note we can think of  $X_1^n$  itself a discrete RV on alphabet  $A_1 \times \cdots \times A_n$ . Let  $X_1^n$  have PMF  $P_n$ , then the **joint entropy** of  $X_1^n$  is

 $H(X_1^n) = H(P_n) = H(X_1, ..., X_n) \coloneqq \mathbb{E}[-\log P_n(X_1^n)] = -\sum_{x_1^n \in A^n} P_n(x_1^n) \log P_n(x_1^n) = -\sum_{x_1^n \in A^n} P_n(x_1^n) = -\sum_{x_1^n \in A$ 

**Example 3.2** Note that if X and Y are independent, then  $P_{X,Y}(x,y) = P_X(x)P_Y(y)$ , so

$$H(X,Y) = \mathbb{E}\left[-\log P_{X,Y}(X,Y)
ight] = \mathbb{E}\left[-\log P_X(X) - \log P_Y(Y)
ight] = H(X) + H(Y)$$

**Example 3.3** Let X and Y have joint PMF given by

| $\overline{X}$ |      |      |      |       |
|----------------|------|------|------|-------|
| <b>71</b>      | 1    | 1  2 | 3    |       |
| Y              | 1    | _    | )    |       |
| 0              | 1/10 | 1/5  | 1/4  | 11/20 |
| 1              | 1/5  | 1/20 | 1/5  | 9/20  |
|                | 3/10 | 1/4  | 9/20 |       |

Note that X and Y are not independent. We have

$$H(X) = -\frac{3}{10} \log \frac{3}{10} - \frac{1}{4} \log \frac{1}{4} - \frac{9}{20} \log \frac{9}{20} \approx 1.539,$$

$$H(Y) = -\frac{11}{20} \log \frac{11}{20} - \frac{9}{20} \log \frac{9}{20} \approx 0.993,$$

$$H(X,Y) = -\frac{1}{10}\log\frac{1}{10} - \dots - \frac{1}{5}\log\frac{1}{5} \approx 2.441 < H(X) + H(Y).$$

In general, if X and Y are not independent, then  $P_{XY}(x,y) = P_X(x)P_{Y\mid X}(y\mid x)$ , so

$$H(X,Y) = \mathbb{E}[-\log P_{XY}(x,y)] = \mathbb{E}[-\log P_X(x)] + \mathbb{E}\left[-\log P_{Y\mid X}(y\mid x)\right].$$

Definition: Conditional Entropy

**Definition 3.4** Let X and Y be discrete random variables with joint PMF  $P_{X,Y}$ , then the **conditional entropy** of Y given X is

$$H(Y\mid X) = \mathbb{E}\left[-\log P_{Y\mid X}(Y\mid X)\right] = -\sum_{x,y} P_{X,Y}(x,y) \log P_{Y\mid X}(y\mid x)$$

**Note 3.5**  $P_{Y|X}$  is a function of  $(x,y) \in X$ , and so for the expected value we multiply the log by the probability that X = x and Y = y.



**Proposition 3.6** For discrete RVs X and Y, we have

$$H(Y\mid X)=H(X,Y)-H(X).$$

Proof (Hints). Straightforward.

Proof. Note that  $P_{Y\mid X}(y\mid x)=\mathbb{P}(Y=y\mid X=x)=\frac{\mathbb{P}(Y=y,X=x)}{\mathbb{P}(X=x)}=P_{X,Y}(x,y)P_X(x)$ . Hence

$$\begin{split} H(X,Y) &= \mathbb{E} \left[ -\log P_{X,Y}(X,Y) \right] \\ &= \mathbb{E} \left[ -\log P_X(X) - \log P_{Y\mid X}(Y\mid X) \right] \\ &= \mathbb{E} [-\log P_X(X)] + \mathbb{E} \left[ -\log P_{Y\mid X}(Y\mid X) \right]. \end{split}$$

## 3.2. Properties of entropy, joint entropy and conditional entropy

Proposition: Entropy Chain Rule

**Proposition 3.7** (Chain Rule for Entropy) Let  $X_1^n$  be a collection of discrete RVs. Then

$$H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}).$$

In particular, if the  $X_1^n$  are independent, then

$$H(X_1^n) = \sum_{i=1}^n H(X_i).$$

*Proof (Hints)*. By induction.

*Proof.* We can write

$$\begin{split} P_{X_1^n}(x_1^n) &= P_{X_1}(x_1) P_{X_2 \mid X_1}(x_2 \mid x_1) \cdots P_{X_{n \mid X_1, \dots, x_{n-1}}}(x_n \mid x_1, \dots, x_{n-1}) \\ &= \prod_{i=1}^n P_{X_i \mid X_1^{i-1}}(x_i \mid x_1^{i-1}). \end{split}$$

Then the result follows by inductively using the above proposition.  $\square$ 

Proposition: Conditioning Reduces Entropy

**Proposition 3.8** (Conditioning Reduces Entropy) For discrete RVs X and Y,

$$H(Y \mid X) \le H(Y)$$

with equality iff X and Y are independent.

Proof (Hints). Express  $H(Y) - H(Y \mid X)$  as a relative entropy.  $\square$ 

*Proof.* We have

$$\begin{split} H(Y) - H(Y \mid X) &= \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}\left[-\log P_{Y \mid X}(Y \mid X)\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)}{P_Y(Y)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{Y \mid X}(Y \mid X)P_X(X)}{P_Y(Y)P_X(X)}\right] \\ &= \mathbb{E}\left[\log \frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right] \end{split}$$

$$= D(P_{X,Y} \parallel P_X P_Y) \ge 0,$$

with equality iff  $P_{X,Y} = P_X P_Y$ , i.e. X and Y are independent.

Definition: Conditional Independence

**Definition 3.9** Discrete RVs X and Z are conditionally independent given Y if:

- $P_{X,Z \mid Y}(x,z \mid y) = P_{X \mid Y}(x \mid y)P_{Z \mid Y}(z \mid y),$
- or equivalently,  $P_{X \mid Z,Y}(x \mid z, y) = P_{X \mid Y}(x \mid y)$ ,
- or equivalently,  $P_{Z \mid X,Y}(z \mid x,y) = P_{Z \mid Y}(z \mid y)$ .

We denote this by writing X - Y - Z and we say that X, Y, Z form a Markov chain. Note that X - Y - Z is equivalent to Z - Y - X, but not to X - Z - Y.

Note: X Y And Function Of Y Form Markov Chain

**Note 3.10** For any function g on Y, we have X - Y - g(Y).

Corollary: Subadditivity Of Entropy

Corollary 3.11  $H(X_1^n) \leq \sum_{i=1}^n H(X_i)$  with equality iff all  $X_1^n$  are independent.

*Proof.* Straightforward.

*Proof.*  $H(X_1^n) = \sum_{i=1}^n H(X_i \mid X_1^{i-1}) \leq \sum_{i=1}^n H(X_i)$  by the chain rule and conditioning reducing entropy.

Remark: Expression For Conditional Entropy

Remark 3.12 We can write

$$\begin{split} H(Y\mid X) &= -\sum_{x,y} \left(P_{X,Y}(x,y)\right) \log P_{Y\mid X}(y\mid x) \\ &= \sum_{x} P_{X}(x) \left(-\sum_{y} P_{Y\mid X}(y\mid x) \log P_{Y\mid X}(y\mid x)\right) \\ &=: \sum_{x} P_{X}(x) H(Y\mid X=x) \end{split}$$

Note  $H(Y \mid X = x)$  is **not** a conditional entropy, and in particular, we do not always have  $H(Y \mid X = x) \leq H(Y)$ . Since  $0 \leq H(Y \mid X = x)$ 

 $x) \leq \log |A_Y|$ , we have  $0 \leq H(Y \mid X) \leq \log |A_Y|$  with equality to 0 iff Y is a function of X (i.e.  $H(Y \mid X = x) = 0$  for all x).

Proposition: Entropy Data Processing

**Proposition 3.13** (Data Processing Inequality for Entropy) Let X be discrete RV on alphabet A and f be function on A. Then

- 1. H(f(X)|X) = 0.
- 2.  $H(f(X)) \leq H(X)$  with equality iff f is injective.

*Proof (Hints)*. Use that  $x \mapsto (x, f(x))$  is injective and the chain rule.

Proof. We have already shown the "if" direction of 2. We have H(X) = H(X, f(X)) = H(f(X)|X) + H(X), since  $x \mapsto (x, f(x))$  is injective. Also,  $H(X) = H(X, f(X)) = H(X \mid f(X)) + H(f(X)) \ge H(f(X))$ . So  $H(X) \ge H(f(X))$  with equality iff  $H(X \mid f(X)) = 0$ , i.e. X is a deterministic function of f(X), i.e. f is invertible.  $\square$ 

Proposition: Properties Of Conditional Entropy

**Proposition 3.14** (Properties of Conditional Entropy) For discrete RVs X, Y, Z:

- Chain rule:  $H(X, Z \mid Y) = H(X \mid Y) + H(Z \mid X, Y)$ .
- Subadditivity:  $H(X, Z \mid Y) \leq H(X \mid Y) + H(Z \mid Y)$  with equality iff X and Z are conditionally independent given Y.
- Conditioning reduces entropy:  $H(X \mid Y, Z) \leq H(X \mid Y)$  with equality iff X and Z are conditionally independent given Y.

Proof. Exercise.

Theorem: Fano Inequality

**Theorem 3.15** (Fano's Inequality) Let X and Y be RVs on respective alphabets A and B. Suppose we are interested in the RV X but only are allowed to observe the possibly correlated RV Y. Consider the estimate  $\widehat{X} = f(Y)$ , with probability of error  $P_e := \mathbb{P}(\widehat{X} \neq X)$ . Then

$$H(X \mid Y) \le h(P_e) + P_e \log(|A| - 1),$$

where h is the binary entropy function.

*Proof* (*Hints*). Consider an "error" Bernoulli RV E which depends on X and Y. Use the chain rule in two directions on  $H(X, E \mid Y)$ . Merge these and split up into the cases when E = 0 and E = 1 (using)

*Proof.* Let E be the binary RV taking value 1 when there is an error (i.e.  $\widehat{X} \neq X$ ), and taking value 0 otherwise. So  $E \sim \text{Bern}(P_e)$  and  $H(E) = h(P_e)$ . Then

$$H(X, E \mid Y) = H(X \mid Y) + H(E \mid X, Y) = H(X \mid Y)$$

since E is function of (X,Y). Using the chain rule in the other direction,

$$H(X, E \mid Y) = H(E \mid Y) + H(X \mid E, Y) \le H(E) + E(X \mid E, Y).$$

Now

$$\begin{split} H(X \mid Y) - h(P_e) &\leq H(X \mid E, Y) \\ &= P_e H(X \mid E = 1, Y) + (1 - P_e) H(X \mid E = 0, Y) \end{split}$$

When E = 0, given Y, we can determine X = f(Y) as a function of Y, so  $H(X \mid E = 0, Y) = 0$ . When E = 1, given Y, we know X doesn't take value f(Y), so there are |A| - 1 possible values that it takes, so  $H(X \mid E = 1, Y) \leq \log(|A| - 1)$ .

3.3. Properties of relative entropy

Theorem: Relative Entropy Data Processing

**Theorem 3.16** (Data Processing Inequality for Relative Entropy) Let  $X \sim P_X$  and  $X' \sim Q_X$  be RVs on the same alphabet A, and  $f: A \to B$  be an arbitrary function. Let  $P_{f(X)}$  and  $Q_{f(X)}$  be the PMFs of f(X) and f(X') respectively. Then

$$D(P_{f(X)} \parallel Q_{f(X)}) \le D(P_X \parallel Q_X).$$

Proof (Hints). Use that  $P_{f(X)}(y) = \sum_{x \in f^{-1}(\{y\})} P_X(x)$ .

*Proof.* For each  $y \in B$ , let  $A_y = \{x \in A : f(x) = y\} = f^{-1}(\{y\})$ . Then

$$D \Big( P_{f(X)} \parallel Q_{f(X)} \Big) = \sum_{y \in B} P_{f(X)}(y) \log \frac{P_{f(X)}(y)}{Q_{f(X)}(y)}$$

$$= \sum_{y \in B} \left( \sum_{x \in A_y} P_X(x) \right) \log \frac{\sum_{x \in A_y} P_X(x)}{\sum_{x \in A_y} Q_X(x)}$$

$$\leq \sum_{y \in B} \sum_{x \in A_y} P_X(x) \log \frac{P_X(x)}{Q_X(x)} \quad \text{by log-sum inequality}$$

$$= \sum_{x \in A} P_X(x) \log \frac{P_X(x)}{Q_X(x)} = D(P_X \parallel Q_X).$$

**Remark 3.17** The data processing inequality for relative entropy shows that we cannot make two distributions more "distinguishable" by first "processing" the data (by applying f).

Definition: Total Variation Distance

**Definition 3.18** The total variation distance between PMFs P and Q on the same alphabet A is

$$\|P - Q\|_{\mathrm{TV}} = \sum_{x \in A} |P(x) - Q(x)|.$$

**Remark 3.19** Let  $B = \{x \in A : P(x) > Q(x)\}$ , then

$$\begin{split} \|P - Q\|_{\text{TV}} &= \sum_{x \in A} |P(x) - Q(x)| \\ &= \sum_{x \in B} (P(x) - Q(x)) + \sum_{x \in B^c} (Q(x) - P(x)) \\ &= P(B) - Q(B) + Q(B^c) - P(B^c) \\ &= P(B) - Q(B) + (1 - Q(B)) + (1 - P(B)) \\ &= 2(P(B) - Q(B)). \end{split}$$

## Notation 3.20 Write

$$D_e(P \parallel Q) = (\ln 2)P(D \parallel Q) = \sum_{x \in A} P(x) \log_e \frac{P(x)}{Q(x)}$$

and more generally, write

$$D_c(P \parallel Q) = (\log_c 2)P(D \parallel Q) = \sum_{x \in A} P(x) \log_c \frac{P(x)}{Q(x)}.$$

Theorem: Pinskers Inequality

**Theorem 3.21** (Pinsker's Inequality) Let P and Q be PMFs on the same alphabet A. Then

$$\|P-Q\|_{\mathrm{TV}}^2 \leq (2\ln 2)D(P \parallel Q) = 2D_e(P \parallel Q).$$

## Proof (Hints).

- First prove for case that P and Q are PMFs of Bern(p) and Bern(q) (explain why we can assume  $q \leq p$  WLOG), by definining  $\Delta(p,q) = 2D_e(P \parallel Q) \|P Q\|_{\text{TV}}^2$ , and showing that  $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$ .
- Then show for general PMFs by using data processing, where  $f = \mathbb{1}_B$  for  $B = \{x \in A : P(x) > Q(x)\}.$

*Proof.* First, assume that P and Q are the PMFs of the distributions Bern(p) and Bern(q) for some  $0 \le q \le p \le 1$  ( $q \le p$  WLOG since we can simultaneously interchange both p with 1-p and q with 1-q if necessary). Let

$$\mathbf{A}(p,q) = (2\ln 2)D(P \parallel Q) - \|P - Q\|_{\mathrm{TV}}^2 = 2p\ln\frac{p}{q} + 2(1-p)\ln\frac{1-p}{1-q} - (2(p-q))^{\frac{1}{2}}$$

Since  $\Delta(p,p) = 0$  for all p, it suffices to show that  $\frac{\partial \Delta(p,q)}{\partial q} \leq 0$ . Indeed,

$$\frac{\partial \Delta(p,q)}{\partial q} = 2\frac{p}{q} - 2\frac{1-p}{1-q} - 8(q-p) = 2(q-p) \left(\frac{1}{q(1-q)} - 4\right) \le 0$$

since  $q(1-q) \leq \frac{1}{4}$  for all  $q \in [0,1]$ .

Now, assume P and Q are general PMFs and let  $B = \{x \in A : P(x) > Q(x)\}$  and  $f = \mathbb{1}_B$ . Define the RVs  $X \sim P$  and  $X' \sim Q$ , and let  $P_f$  and  $Q_f$  be the respective PMFs of the RVs f(X) and f(X'). Note that  $f(X) \sim \text{Bern}(p)$ ,  $f(X') \sim \text{Bern}(q)$  where p = P(B) and q = Q(B). Then

$$2D_e(P \parallel Q) \ge 2D_e ig(P_f \parallel Q_fig)$$
 by data-processing 
$$\ge ig\|P_f - Q_fig\|_{\mathrm{TV}}^2$$
 by above 
$$= (2(p-q))^2$$

$$= (2(P(B) - Q(B)))^{2}$$
$$= \|P - Q\|_{\text{TV}}^{2}.$$

Theorem: Relative Entropy Is Convex

**Theorem 3.22** (Convexity of Relative Entropy) The relative entropy  $D(P \parallel Q)$  is jointly convex in P,Q: for all PMFs P,P',Q,Q' on the same alphabet and for all  $0 < \lambda < 1$ ,

$$D(\lambda P + (1-\lambda)P' \parallel \lambda Q + (1-\lambda)Q') \leq \lambda D(P \parallel Q) + (1-\lambda)D(P' \parallel Q').$$

Proof. Exercise.

Corollary: Entropy Is Concave

Corollary 3.23 (Concavity of Entropy) The entropy of H(P) is a concave function on all PMFs P on a finite alphabet.

Proof (Hints). Use convexity of relative entropy of P and a suitable distribution.

*Proof.* Let P be a PMF on finite alphabet A and U be the uniform PMF on A. Then by convexity of relative entropy,  $D(P \parallel U) = \sum_{x \in A} p(x) \log \frac{P(x)}{1/|A|} = \log m - H(P)$  is convex in P, so H(P) is concave in P.

# 4. Poisson approximation

4.1. Poisson approximation via entropy

Theorem: Binomial Converges To Poisson

**Theorem 4.1** Let  $X_1, ..., X_n$  be IID RVs with each  $X_i \sim \text{Bern}(\lambda/n)$ , let  $S_n = X_1 + \cdots + X_n$ . Then  $P_{S_n} \to \text{Pois}(\lambda)$  in distribution as  $n \to \infty$ , i.e.  $\forall k \in \mathbb{N}$ ,

$$\mathbb{P}(S_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{as } n \to \infty$$

Remark 4.2 Using information theory, we can derive stronger and more general statements than the one above.

Theorem: Relative Entropy Between Sum Of Bernoullis And Poisson Is Bounded **Theorem 4.3** Let  $X_1, ..., X_n$  be (not necessarily independent) RVs with each  $X_i \sim \text{Bern}(p_i)$ . Let  $S_n = \sum_{i=1}^n X_i$  and  $\lambda = \sum_{i=1}^n p_i = \mathbb{E}[S_n]$ . Then

$$D_{e}(P_{S_{n}} \| \operatorname{Pois}(\lambda)) \leq \sum_{i=1}^{n} p_{i}^{2} + \sum_{i=1}^{n} H_{e}(X_{i}) - H_{e}(X_{1}^{n}).$$

#### $Proof\ (Hints).$

- Let  $Z_i = \operatorname{Pois}(p_i)$  for each  $i \in [n]$  be independent Poisson RVs so that  $T_n = \sum_{i=1}^n Z_i \sim \operatorname{Pois}(\lambda)$ .
- Use data processing inequality for relative entropy, and prove the fact that  $D_e(\operatorname{Bern}(p) \| \operatorname{Pois}(p)) \leq p^2$  for all  $p \in [0,1]$  (use that  $1 p \leq e^{-p}$ ).

*Proof.* Let  $Z_i = \operatorname{Pois}(p_i)$  for each  $i \in [n]$  be independent Poisson RVs so that  $T_n = \sum_{i=1}^n Z_i \sim \operatorname{Pois}(\lambda)$ . Then

$$egin{align*} \left(P_{S_n} \parallel \operatorname{Pois}(\lambda)
ight) &= D_e\Big(P_{S_n} \parallel P_{T_n}\Big) \ &\leq D_e\Big(P_{X_1^n} \parallel P_{Z_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_1^n} \parallel P_{X_1^n}\Big) \quad \text{by data-processing with } f(x_1^n) = x_1 + \dots + x_n \ &\leq D_e\Big(P_{X_$$

$$= \mathbb{E} \left[ \ln \frac{P_{X_1^n}(X_1^n)}{P_{Z_1^n}(X_1^n)} \right]$$

$$= \mathbb{E} \left[ \ln \left( \frac{P_{X_1^n}(x_1^n)}{\prod_{i=1}^n P_{Z_i^n}(X_i)} \cdot \frac{\prod_{i=1}^n P_{X_i}(X_i)}{\prod_{i=1}^n P_{X_i}(X_i)} \right) \right]$$

$$\begin{split} &= \mathbb{E} \left[ \ln \left( \prod_{i=1}^{n} \frac{P_{X_{i}}(x_{i})}{P_{Z_{i}}(x_{i})} \right) \right] + \sum_{x_{1}^{n} \in A^{n}} P_{X_{1}^{n}}(x_{1}^{n}) \ln \frac{1}{\prod_{i=1}^{n} P_{X_{i}}(x_{i})} - H_{e}(X_{1}^{n}) \right] \\ &= \sum_{i=1}^{n} D_{e} \left( P_{X_{i}} \parallel P_{Z_{i}} \right) + \sum_{i=1}^{n} H_{e}(X_{i}) - H_{e}(X_{1}^{n}) \end{split}$$

since for given  $x_1 \in A$ ,  $\sum_{x_2^n \in A^n} P_{X_1^n}(x_1^n) = P_{X_1}(x_1)$  (and similarly for each  $x_j$ , j=2,...,n). Now note that  $D_e\left(P_{X_i} \parallel P_{Z_i}\right) = D_e(\operatorname{Bern}(p_i) \parallel \operatorname{Pois}(p_i))$ , and for all  $p \in (0,1)$ ,

$$D_e(\mathrm{Bern}(p) \parallel \mathrm{Pois}(p)) = (1-p) \ln \frac{1-p}{e^{-p}} + p \ln \frac{p}{pe^{-p}}$$

$$= (1 - p) \ln(1 - p) + (1 - p)p + p^{2}$$

$$\leq (1 - p) \ln(e^{-p}) + p$$

$$= p^{2}$$

since  $1-p \le e^{-p}$  for all  $p \in [0,1]$ . Similarly, if p=0 or 1, then  $D_e(\operatorname{Bern}(p) \| \operatorname{Pois}(p)) = 0 \le p^2$ .

Corollary: Relative Entropy Between Sum Of Independent Bernoullis
And Poisson Is Bounded

Corollary 4.4 Let  $X_1, ..., X_n$  be independent, with each  $X_i \sim \text{Bern}(p_i)$ . Then

$$D_e(P_{S_n} \| \operatorname{Pois}(\lambda)) \le \sum_{i=1}^n p_i^2$$

Corollary: Binomial Convergence To Poisson Follows From Relative Entropy Bound Corollary 4.5 Theorem 4.1 follows directly from Theorem 4.3.

Proof (Hints). Use Pinsker's Inequality.

*Proof.* Let  $P_{\lambda}$  be the PMF of the Pois( $\lambda$ ) distribution. Then by Pinsker's Inequality,

$$\left\|P_{S_n} - P_{\lambda}\right\|_{\mathrm{TV}}^2 \leq 2D_e \Big(P_{S_n} \, \left\| \operatorname{Pois}(\lambda) \right) \leq 2 \sum_{i=1}^n \frac{\lambda^2}{n^2} = 2 \frac{\lambda^2}{n}.$$

So for each  $k \in \mathbb{N}$ ,  $\left| P_{S_n}(k) - P_{\lambda}(k) \right| \leq \left\| P_{S_n} - P_{\lambda} \right\|_{\text{TV}} \leq \sqrt{\frac{2}{n}} \lambda \to 0$  as  $n \to \infty$ .

**Remark 4.6** Theorem 4.3 is stronger than Theorem 4.1 in that it holds for all n rather than being asymptotic. It also provides an easily computable bound on the difference between  $P_{S_n}$  and  $Pois(\lambda)$ , and does not assume the  $p_i$  are equal, or that the RVs  $X_1, ..., X_n$  are independent.

**Remark 4.7** It is known that for independent  $X_1, ..., X_n, P_{S_n} \to \text{Pois}(\lambda)$  iff  $\sum_{i=1}^n p_i^2 \to 0$ . So the bound in Theorem 4.3 is the best possible.

4.2. What is the Poisson distribution?

Lemma: Binomial Maximum Entropy

**Lemma 4.8** (Binomial Maximum Entropy) Let  $B_n(\lambda)$  be set of distributions on  $\mathbb{N}_0$  that arise from sums  $\sum_{i=1}^n X_i$  where  $X_i \sim \text{Bern}(p_i)$  are independent and  $\sum_{i=1}^n p_i = \lambda$ . For all  $n \geq \lambda$ ,

$$H_e(\mathrm{Bin}(n,\lambda/n)) = \sup\{H_e(P): P \in B_n(\lambda)\}$$

Proof. Exercise.

Theorem: Poisson Maximum Entropy

### Theorem 4.9 (Poisson Maximum Entropy) We have

$$H_e(\operatorname{Pois}(\lambda))$$

$$= \sup \left\{ H_e(S_n) : S_n = \sum_{i=1}^n X_i, X_i \sim \mathrm{Bern}(p_i) \text{ independent} \wedge \sum_{i=1}^n p_i = \lambda, n \geq 1 \right\}$$

 $= \sup_{n \in \mathbb{N}} \sup \{ H_e(P) : P \in B_n(\lambda) \}.$ 

 $\begin{array}{ll} \textit{Proof.} & \text{Let} \quad H^* = \sup_{n \in \mathbb{N}} \sup \{ H_e(P) : P \in B_n(\lambda) \}. \quad \text{Note that} \\ B_n(\lambda) \subseteq B_{n+1}(\lambda), \quad \text{hence} \quad H^* = \lim_{n \to \infty} \sup \big\{ H_{e(P)} : P \in B_n(\lambda) \big\} = \lim_{n \to \infty} H_e(\text{Bin}(n, \lambda/n)). \end{array}$ 

Let  $P_n$  and Q be respective PMFs of  $Bin(n, \lambda/n)$  and  $Pois(\lambda)$ . Using that  $k! \leq k^k \leq e^{k^2}$ , we have

$$\begin{split} H_e(Q) &= \sum_{k=0}^{\infty} Q(k) \ln \frac{k!}{e^{-\lambda} \lambda^k} \\ &\leq \sum_{k=0}^{\infty} Q(k) \big(\lambda - k \ln \lambda + k^2\big) \end{split}$$

$$=\lambda^2+2\lambda-\lambda\ln\lambda<\infty$$

since  $\mathbb{E}[X] = \lambda$  and  $\mathbb{E}[X^2] = \lambda + \lambda^2$  for  $X \sim \text{Pois}(\lambda)$ . So  $H_e(Q)$  is finite. The convergence is left as an exercise.

## 5. Mutual information

Definition: Mutual Information

**Definition 5.1** The **mutual information** between discrete RVs X and Y is

$$I(X;Y) = H(X) - H(X|Y).$$

The **conditional mutual information** between X and Y given a discrete RV Z is

$$\begin{split} I(X;Y \mid Z) &= H(X \mid Z) - H(X \mid Y,Z) \\ &= H(X \mid Z) + H(Y \mid Z) - H(X,Y \mid Z) \\ &= H(Y \mid Z) - H(Y \mid X,Z). \end{split}$$

Proposition: Expressions For Mutual Information

**Proposition 5.2** Let X and Y be discrete RVs with marginal PMFs  $P_X$  and  $P_Y$  respectively, and joint PMF  $P_{X,Y}$ , then the mutual information can be expressed as:

$$\begin{split} I(X;Y) &= H(X) + H(Y) - H(X,Y) \\ &= H(Y) - H(Y \mid X) \\ &= D\big(P_{X,Y} \parallel P_X P_Y\big). \end{split}$$

Proof (Hints). Straightforward.

*Proof.* The first two lines are by the chain rule. For the third, we have

$$\begin{split} (X) + H(Y) - H(X,Y) &= \mathbb{E}[-\log P_X(X)] + \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}\left[-\log P_{X,Y}(X,Y)\right] \\ &= \mathbb{E}\left[\log\left(\frac{P_{X,Y}(X,Y)}{P_X(X)P_Y(Y)}\right)\right] \end{split}$$

$$= D\big(P_{X,Y} \parallel P_X P_Y\big).$$

#### Remark 5.3

- I(X;Y) is symmetric in X and Y.
- The sum of the information contain in X and Y separately minus the information contained in the pair indeed is the amount of mutual information shared by both.
- Considering Stein's Lemma, we can consider I(X;Y) as a measure of how well data generated from  $P_{X,Y}$  can be distinguished from independent pairs (X',Y') generated by the product distribution  $P_X P_Y$ , so is a measure of how far X and Y are from being independent.

Proposition: Bounds On Mutual Information And Conditional Mutual Information

## Proposition 5.4

- $0 \le I(X;Y) \le H(X)$  with equality to 0 iff X and Y are independent.
- Similarly,  $I(X; Z \mid Y) \ge 0$  with equality iff X Y Z, i.e. X and Z are conditionally independent given Y.

*Proof.* First is by Proposition 5.2 and non-negativity of conditional entropy, second is an exercise.

Proposition: Mutual Information Chain Rule

**Proposition 5.5** (Chain Rule for Mutual Information) For all discrete RVs  $X_1, ..., X_n, Y$ ,

$$I(X_1^n;Y) = \sum_{i=1}^n I(X_i;Y \mid X_1^{i-1}).$$

Proof (Hints). Straighforward.

*Proof.* By the chain rule for entropy,

$$\begin{split} I(X_1^n;Y) &= H(X_1^n) - H(X_1^n \mid Y) \\ &= \sum_{i=1}^n H(X_i \mid X_1^{i-1}) - \sum_{i=1}^n H(X_i \mid X_1^{i-1}, Y) \\ &= \sum_{i=1}^n (H(X_i \mid X_1^{i-1}) - H(X_i \mid X_1^{i-1}, Y)) \\ &= \sum_{i=1}^n I(X_i; Y \mid X_1^{i-1}). \end{split}$$

Theorem: Mutual Information Data Processing

**Theorem 5.6** (Data Processing Inequalities for Mutual Information) If X - Y - Z (so X and Z are conditionally independent given Y), then

$$I(X;Z), I(X;Y \mid Z) \le I(X;Y).$$

*Proof (Hints)*. Use chain rule for mutual information twice on the same expression.

*Proof.* By the chain rule, we have

$$I(X; Y, Z) = I(X; Y) + I(X; Z \mid Y)$$
  
=  $I(X; Z) + I(X; Y \mid Z)$ .

Now  $I(X; Z \mid Y) = 0$  by conditional independence, so  $I(X; Y) = I(X; Z) + I(X; Y \mid Z)$ .

**Example 5.7** We always have X - Y - f(Y), hence  $I(X; f(Y)) \le I(X; Y)$ , so applying a function to Y cannot make X and Y "less independent".

5.1. Synergy and redundancy

Note 5.8  $I(X; Y_1, Y_2)$  can greater than, equal to, or less than  $I(X; Y_1) + (X; Y_2)$ .

Definition: Synergy

**Definition 5.9** The synergy of  $Y_1, Y_2$  about X is

$$\begin{split} S(X;Y_1,Y_2) &= I(X;Y_1,Y_2) - (I(X;Y_1) + I(X;Y_2)) \\ &= I(X;Y_2 \mid Y_1) - I(X,Y_2). \end{split}$$

So the synergy can be < 0, > 0 or = 0.

Definition: Redundancy Orthogonality Synergisticy

## **Definition 5.10** If $S(X; Y_1, Y_2)$ is:

- negative, then  $Y_1$  and  $Y_2$  contain **redundant** information about X;
- zero, then  $Y_1$  and  $Y_2$  are **orthogonal**;
- positive, then  $Y_1$  and  $Y_2$  are **synergistic**. Intuitively, knowing  $Y_1$  already makes the information in  $Y_2$  more valuable (in that it gives more information about X).

Theorem: Condition For Correlated Observations Giving More Information Than Independent Ones

**Theorem 5.11** Let RVs  $Y_1, Y_2$  be conditionally independent given X, each with distribution  $P_{Y \mid X}$ , and RVs  $Z_1, Z_2$  be distributed according to  $Q_{Z \mid Y}(\cdot \mid Y_1), Q_{Z \mid Y}(\cdot \mid Y_2)$  respectively. Let RV Y have distribution  $P_{Y \mid X}$ , and  $W_1, W_2$  be conditionally independent given Y, distributed according to  $Q_{Z \mid Y}(\cdot \mid Y)$ .

If  $S(X; W_1, W_2) > 0$ , then  $I(X; W_1, W_2) > I(X; Z_1, Z_2)$ , for independent  $Z_1$  and  $Z_2$ , i.e. correlated observations are better than independent ones.

 $Proof\ (Hints).$  Use data processing for mutual information.

*Proof.* As in Definition [5.9], we have  $I(X; W_2 \mid W_1) > I(X; W_2)$ .  $I(X; W_2) = I(X; Z_2)$  since  $(X, W_2)$  has the same joint distribution as  $(X, Z_2)$ . By the data processing inequality, we have  $I(X; Z_2 \mid Z_1) = I(Z_2; X \mid Z_1) \leq I(Z_2; X) = I(X; Z_2)$ , since  $Z_1$  and  $Z_2$  are conditionally independent given X. Hence  $I(X; W_2 \mid W_1) > I(X; Z_2 \mid Z_1)$ , so  $I(X; W_2 \mid W_1) + I(X; W_1) > I(X; Z_2 \mid Z_1) + I(X; Z_1)$ , and the result follows by the chain rule.

**Example 5.12** Given two equally noisy channels of a signal X, we want to decide whether it is better (gives more information about X) for the channels to be independent (this corresponds with choosing the  $Y_1, Y_2, Z_1, Z_2$ ) or correlated (this corresponds with choosing the  $Y, W_1, W_2$ ).

The natural assumption that the conditionally independent observations  $Z_1, Z_2$  would be "better" than  $W_1, W_2$  (i.e.  $I(X; Z_1, Z_2) \ge I(X; W_1, W_2)$ ) is **false**. We can show diagramatically as



**Example 5.13** For example, let  $P_{Y\mid X}$  be the Z-channel: if X=0, then Y=0 with probability 1, and if X=1, then  $Y\sim \mathrm{Bern}(1-\delta)$  for some  $\delta\in(0,1)$ . Let  $Q_{Z\mid Y}$  be a binary symmetric channel: given Y taking values in 0,1,Z=Y with probability  $1-\varepsilon$ , and Z=1-Y with probability  $\varepsilon$  for some  $\varepsilon\in(0,1)$ . We can represent this as



If  $X \sim \text{Bern}(1/2)$ ,  $\delta = 0.85$  and  $\varepsilon = 0.1$ , then  $I(X; W_1, W_2) \approx 0.047 > I(X; Z_1, Z_2) \approx 0.039$ . So the correlated observations  $W_1, W_2$  are better than the independent observations  $Z_1, Z_2$ .

## 6. Entropy and additive combinatorics

6.1. Simple sumset entropy bounds

Definition: Sumset

**Definition 6.1** For  $A, B \subseteq \mathbb{Z}$  the sumset of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

Definition: Difference Set

**Definition 6.2** For  $A, B \subseteq \mathbb{Z}$  the **difference set** of A and B is  $A - B := \{a - b : a \in A, b \in B\}.$ 

Proposition: Sumset Bounds

**Proposition 6.3** Let  $A, B \subseteq \mathbb{Z}$  be finite. Then

 $\max\{|A|, |B|\} \le |A + B| \le |A||B|.$ 

Proof (Hints). Trivial.

Proof. Trivial.

Proposition: Ruzsa Triangle Inequality

**Proposition 6.4** (Ruzsa Triangle Inequality) Let  $A, B, C \subseteq \mathbb{Z}$  be finite. Then

$$|A - C| \cdot |B| \le (|A - B||B - C|).$$

 $Proof\ (Hints).$  Show that an appropriate function is injective.  $\Box$ 

Proof. Fix a presentation  $y=a_y-c_y$  (where  $a_y\in A, c_y\in C$ ) for each  $y\in A-C.$  Let

$$f: B \times (A-C) \rightarrow (A-B) \times (B-C)$$
 
$$(b,y) \mapsto \left(a_y - b, b - c_y\right).$$

If f(b,y)=f(b',y'), then  $a_{y'}-b'=a_y-b$  and  $b'-c_{y'}=b-c_y$ . So  $a_y-a_{y'}=b-b'=c_y-c_{y'}$ . So  $y=a_y-c_y=a_{y'}-c_{y'}=y'$ . Hence  $a_y=a_{y'}$ , and so b=b'. So f is injective, so  $|B\times(A-C)|\leq |(A-B)\times(B-C)|$ .

**Remark 6.5** If  $X_1^n$  is a large collection of IID RVs with common PMF P on alphabet A, then the Asymptotic Equipartition Property (AEP) tells us that we can concentrate on the  $2^{nH}$  typical strings.  $2^{nH} = (2^H)^n$  is typically much smaller than all  $|A|^n = (2^{\log|A|})^n$  strings. We can think of  $(2^H)^n$  as the effective support size of  $P^n$ , and can of  $2^H$  as the effective support size of a single RV with entropy H.

**Remark 6.6** We can use the above interpretation to obtain useful conjectures about bounds for the entropy of discrete RVs, from corresponding results on bounds on sumsets. We start with a sumset bound, then replace subsets of  $\mathbb{Z}$  by independent RVs on  $\mathbb{Z}$ , and replace  $\log |A|$  of each set A by the entropy of the corresponding RV.

Proposition: Sum Entropy Bounds

**Proposition 6.7** Let X and Y are independent RVs on alphabet  $\mathbb{Z}$ , then

$$\max\{H(X), H(Y)\} \le H(X+Y) \le H(X) + H(Y).$$

## Proof (Hints).

• For lower bound, show that  $H(X) \leq H(X+Y)$  using data processing and similarly for H(Y). The upper bound should follow directly from this calculation.

*Proof.* For the lower bound,

< H(X+Y) + H(Y)

$$H(X) + H(Y) = H(X,Y)$$
 by Chain Rule for Entropy
$$= H(Y,X+Y)$$
 by Data Processing
$$= H(X+Y) + H(Y \mid X+Y)$$
 by Chain Rule for Entropy

by Conditioning Reduces Entropy

Note we have equality for data processing, since  $(x, y) \mapsto (x, x + y)$  is injective. Hence  $H(X + Y) \ge H(X)$ , and the same argument shows that  $H(X + Y) \ge H(Y)$ .

For the upper bound, we have  $H(X) + H(Y) = H(X + Y) + H(Y \mid X + Y) \ge H(X + Y)$  by non-negativity of conditional entropy.

Lemma: Entropy Ruzsa Triangle Inequality Lemma

**Lemma 6.8** Let X,Y,Z be independent RVs on alphabet  $\mathbb{Z}$ . Then  $H(X-Z)+H(Y)\leq H(X-Y,Y-Z).$ 

## Proof (Hints).

- Show that  $I(X; X Z) \le I(X; (X Y, Y Z))$  using the Chain Rule for mutual information.
- Rewrite both sides of the above inequality in terms of entropies, using Data Processing.

*Proof.* Since X - Z = (X - Y) + (Y - Z), X and X - Z are conditionally independent given (X - Y, Y - Z) by Note 3.10. Thus by Data Processing for mutual information, we have  $I(X; (X - Y, Y - Z)) \ge I(X; X - Z)$ . Now

$$I(X; X - Z) = H(X - Z) - H(X - Z \mid X)$$
  
=  $H(X - Z) - H(Z \mid X) = H(X - Z) - H(Z)$ 

by Data Processing (since, given X = x,  $x - z \mapsto z$  is injective), and independence of X and Z. Also,

$$I(X; (X - Y, Y - Z)) = H(X - Y, Y - Z) + H(X) - H(X, X - Y, Y - Z)$$

$$= H(X - Y, Y - Z) + H(X) - H(X, Y, Z)$$
$$= H(X - Y, Y - Z) - H(Y) - H(Z)$$

by Data Processing (since  $(x, x - y, y - z) \mapsto (x, y, z)$  is injective), and independence of X, Y and Z.

Theorem: Entropy Ruzsa Triangle Inequality

**Theorem 6.9** (Ruzsa Triangle Inequality for Entropy) Let X, Y, Z be independent RVs on alphabet  $\mathbb{Z}$ . Then

$$H(X-Z)+H(Y)\leq H(X-Y)+H(Y-Z).$$

*Proof (Hints)*. By above lemma.

*Proof.* By the above lemma, we have

$$\begin{split} T(X-Z) + H(Y) & \leq H(X-Y,Y-Z) \\ & = H(X-Y) + H(Y-Z \mid X-Y) \quad \text{by Chain Rule for Entrop} \\ & \leq H(X-Y) + H(Y-Z). \end{split}$$

by Conditioning Reduces Entropy.



Definition: Entropy Increase

**Definition 6.10** For IID RVs  $X_1, X_2$  on alphabet  $\mathbb{Z}$ , the **entropy-increase** due to addition  $(\Delta^+)$  or subtraction  $(\Delta^-)$  is

$$\Delta^+ \coloneqq H(X_1 + X_2) - H(X_1),$$
 
$$\Delta^- \coloneqq H(X_1 - X_2) - H(X_1).$$

Proposition: Mutual Information Expression For Entropy Increase

**Proposition 6.11** For IID  $X_1, X_2$  on  $\mathbb{Z}$ , we have

$$\Delta^{+} = I(X_1 + X_2; X_2),$$

$$\Delta^-=I(X_1-X_2;X_2).$$

Proof (Hints). Straightforward.

*Proof.* We have

$$\begin{split} I(X_1 + X_2; X_2) &= H(X_1 + X_2) + H(X_2) - H(X_1 + X_2, X_2) \\ &= H(X_1 + X_2) + H(X_2) - H(X_1, X_2) \\ &= H(X_1 + X_2) + H(X_2) - H(X_1) - H(X_2) \end{split}$$

by Data Processing (since  $(x_1 + x_2, x_2) \mapsto (x_1, x_2)$  is injective) and Chain Rule for Entropy. The proof is identical for  $\Delta^-$ .

Lemma: Triple Sum Reduces Entropy

**Lemma 6.12** Let X,Y,Z be independent RVs on alphabet  $\mathbb{Z}$ . Then  $H(X+Y+Z)+H(Y)\leq H(X+Y)+H(Y+Z).$ 

## Proof (Hints).

- Show that  $I(X; X + Y + Z) \le I(X + Y; X)$ .
- Rewrite both sides in terms of entropies.

*Proof.* Since X - (X + Y, Z) - (X + Y + Z) form a Markov chain by Note 3.10, we have, by Data Processing and Chain Rule for mutual information,

$$I(X; X + Y + Z) \le I(X + Y, Z; X) = I(X + Y; X) + I(Z; X \mid X + Y).$$
  
=  $I(X + Y; X)$ 

since Z is (conditionally) independent of X given X + Y. Now

$$I(X + Y; X) = H(X + Y) + H(X) - H(X + Y, X)$$

$$= H(X + Y) + H(X) - H(Y, X)$$

$$= H(X + Y) + H(X) - H(Y) - H(X)$$

$$= H(X+Y) - H(Y)$$

since  $(y, x) \mapsto (x + y, x)$  is injective and X and Y are independent. Also,

$$I(X + Y + Z; X) = H(X + Y + Z) + H(X + Y + Z \mid X)$$
  
=  $H(X + Y + Z) - H(Y + Z \mid X)$   
=  $H(X + Y + Z) - H(Y + Z)$ 

since, given X = x,  $x + y + z \mapsto y + z$  is injective, and X and Y + Z are independent.  $\Box$ 

Theorem: Doubling Difference Inequality

**Theorem 6.13** (Doubling-difference Inequality) Let  $X_1$  and  $X_2$  be IID RVs on  $\mathbb{Z}$ . Then

$$\frac{1}{2} \le \frac{\Delta^+}{\Delta^-} \le 2.$$

## Proof (Hints).

- For lower bound, use Ruzsa Triangle Inequality for appropriate RVs.
- For upper bound, use Lemma 6.12 and Proposition 6.7.

*Proof.* For the lower bound, let X, -Y, Z be IID with the same distribution as  $X_1$ . Then by the Ruzsa Triangle Inequality,

$$H(X_1 - X_2) + H(X_1) \le H(X_1 + X_2) + H(X_1 + X_2).$$

So 
$$2(H(X_1 + X_2) - H(X_1)) \ge H(X_1 - X_2) - H(X_1)$$
.

For the upper bound, let X, -Y, Z be IID with the same distribution as  $X_1$ . Then by the above lemma and Proposition 6.7,

$$H(X_1+X_2)+H(X_1) \leq H(X_1-X_2)+H(X_1-X_2)$$

so 
$$H(X_1 + X_2) - H(X_1) \le 2(H(X_1 - X_2) - H(X_1)).$$

## 7. Entropy rate

Definition: Entropy Rate

**Definition 7.1** For an arbitrary source  $X = \{X_n : n \in \mathbb{N}\}$ , the **entropy rate** H(X) of X is the limit of the average number of bits per symbol:

$$H(\boldsymbol{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1^n)$$

whenever the limit exists.

**Example 7.2** If X is memoryless (so a sequence of IID RVs) with common entropy  $H = H(X_i)$ , then the entropy rate is

$$H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_1^n) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i) = H.$$

**Example 7.3** Let  $X = \{X_n : n \in \mathbb{N}\}$  be an irreducible, aperiodic Markov chain on a finite alphabet A with transition matrix Q, where

$$Q_{ab} = \mathbb{P}(X_{n+1} = b \mid X_n = a), \quad \forall a, b \in A$$

Let  $X_1 \sim P_{X_1}$  be the initial distribution and  $\pi$  be the unique stationary distribution  $(\mathbb{P}(X_n = x) \to \pi(x) \text{ as } n \to \infty)$ . X has a unique invariant distribution  $\pi$  to which it converges:

$$\forall x \in A, \quad \mathbb{P}(X_n = x) \to \pi(x) \quad \text{as } n \to \infty$$

and hence also

$$\mathbb{P}(X_{n-1}=x,X_n=y)=\mathbb{P}(X_n=x)Q_{xy}\to \pi(x)Q_{xy}.$$

Then by the Chain Rule for Entropy and conditional independence,

$$\begin{split} H(X_1^n) &= \sum_{i=1}^n H(X_i \mid X_1^{i-1}) \\ &= H(X_1) + \sum_{i=2}^n H(X_i \mid X_{i-1}) \\ &= H(X_1) - H(X_{n+1} \mid X_n) + \sum_{i=1}^n H(X_{i+1} \mid X_i). \end{split}$$

By the convergence theorem for Markov chains, we have  $P_{X_n} \to \pi$  as  $n \to \infty$ .  $H(X \mid Y)$  is a continuous function of the joint distribution  $P_{X,Y}$ , so  $H(X_n \mid X_{n-1}) \to H(\overline{X_1} \mid \overline{X_0})$  as  $n \to \infty$ , where  $\overline{X_0} \sim \pi$  and  $\mathbb{P}(\overline{X_1} = b \mid \overline{X_1} = a) = Q_{ab}$ . We have

$$\frac{1}{n}H(X_1^n) = \frac{1}{n}\big(H(X_1) - H\big(X_{n+1} \mid X_n\big)\big) + \frac{1}{n}\sum_{i=1}^n H\big(X_{i+1} \mid X_i\big)$$

The first term tends to 0 since the numerator is bounded, and the summands in the second term tend to  $H(\overline{X_1} \mid \overline{X_0})$ . So the entropy rate exists and is equal to  $H(X) = H(\overline{X_1} \mid \overline{X_0})$ .

Definition: Source.Stationary

**Definition 7.4** A source X is **stationary** if for any block length  $n \in \mathbb{N}$ , the distribution of  $X_{k+1}^{k+n}$  is independent of k.

**Remark 7.5** If  $X = \{X_n : n \in \mathbb{N}\}$  is one-sided stationary process, then by Kolmogorov's extension theorem, X admits a unique two-sided extension to  $X = \{X_n : n \in \mathbb{Z}\}.$ 

Lemma: Cesaro

**Lemma 7.6** (Cesàro) Let  $(a_n)$  be a sequence. The n-th Cesaro mean is defined as

$$\sigma_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

If  $(a_n)$  has limit L, then

$$\lim_{n\to\infty}\sigma_n=\lim_{n\to\infty}a_n=L.$$

Theorem: Entropy Rate Of Stationary Source

**Theorem 7.7** If  $X = \{X_n : n \in \mathbb{N}\}$  is a stationary process on finite alphabet A, then its entropy rate exists and is equal to

$$H(\boldsymbol{X}) = \lim_{n \to \infty} H(X_n \mid X_1^{n-1}).$$

*Proof* (*Hints*). Show that the sequence  $\{H(X_n) \mid X_1^{n-1} : n \in \mathbb{N}\}$  is non-increasing and use the Cesàro Lemma.

*Proof.* The sequence  $\{H(X_n) \mid X_1^{n-1} : n \in \mathbb{N}\}$  is non-negative by non-negativity of conditional entropy, and is non-increasing, since

$$\begin{split} H\big(X_{n+1}\mid X_1^n\big) &\leq H\big(X_{n+1}\mid X_2^n\big) & \text{by Conditioning Reduces Entropy} \\ &= H\big(X_2^{n+1}\big) - H(X_2^n) & \text{by Chain Rule for Entropy} \\ &= H(X_1^n) - H(X_1^{n-1}) & \text{by stationarity} \\ &= H\big(X_{n-1}\mid X_1^{n-2}\big) & \text{by Chain Rule for Entropy}. \end{split}$$

Hence the limit  $\lim_{n\to\infty} H(X_n \mid X_1^{n-1})$  exists, and so by the Cèsaro Lemma, the averages converge to the same limit. But by the Chain Rule for Entropy, the averages are

$$\frac{1}{n} \sum_{i=1}^{n} H(X_i \mid X_1^{i-1}) = \frac{1}{n} H(X_1^n).$$

Theorem: Entropy Rate Is Conditional Entropy Given Infinite Past

**Theorem 7.8** For a stationary process  $X = \{X_n : n \in \mathbb{Z}\}$  on a finite alphabet A,

$$H(\boldsymbol{X}) = \lim_{n \to \infty} H\big(X_0 \mid X_{-n}^{-1}\big) = H\big(X_0 \mid X_{-\infty}^{-1}\big).$$

Proof (Hints). Non-examinable.

*Proof.* By Martingale convergence, we have that

$$P(x_0 \mid X_{-n}^{-1}) \to P(x_0 \mid X_{-\infty}^{-1})$$
 almost surely as  $n \to \infty$ ,

where  $P(\cdot \mid x_{-n}^{-1})$  is the conditional distribution of  $X_0$  given  $X_{-n}^{-1} = x_{-n}^{-1}$ , and  $P(\cdot \mid x_{-\infty}^{-1})$  is the conditional distribution of  $X_0$  given  $X_{-\infty}^{-1} = x_{-\infty}^{-1}$ . Now, we can take expectations to obtain that, by the bounded convergence theorem (since  $p \mapsto p \log p$  is continuous and bounded for  $p \in [0,1]$ ),

$$H(X_0 \mid X_{-n}^{-1}) = \mathbb{E}\left[-\sum_{x_0 \in A} P(x_0 \mid X_{-n}^{-1}) \log P(x_0 \mid X_{-n}^{-1})\right]$$

$$\rightarrow \mathbb{E}\left[-\sum_{x_0 \in A} P(x_0 \mid X_{-\infty}^{-1}) \log P(x_0 \mid X_{-\infty}^{-1})\right]$$

$$=: H(X_0 \mid X_{-\infty}^{-1}) \quad \text{almost surely} \quad \text{as } n \to \infty.$$

Finally,  $H(X_0 \mid X_{-n}^{-1}) = H(X_{n+1} \mid X_1^n)$  by stationarity, so we are done by Theorem 7.7.

Definition: Source.Ergodic

**Definition 7.9** Let  $X = \{X_n : n \in \mathbb{Z}\}$  be a stationary source on finite alphabet A, and define the (left) **shift** operator  $T : A^{\mathbb{Z}} \to A^{\mathbb{Z}}$  on sequences  $A^{\mathbb{Z}}$  by

$$(Tx)_n = x_{n+1} \quad \forall n \in \mathbb{Z}.$$

X is **ergodic** if all shift invariant events are trivial, i.e. for any measurable  $B \subseteq A^{\mathbb{Z}}$ , we have

$$T^{-1}B = B \Longrightarrow \mathbb{P}(X_{\infty} \in B) = 0 \text{ or } 1.$$

Intuitively, an ergodic process is one which satisfies the general form of the strong law of large numbers.

It turns out that ergodicity is equivalent to the validity of the following:

Theorem: Birkhoff

**Theorem 7.10** (Birkhoff's Ergodic Theorem) Let  $X = \{X_n : n \in \mathbb{Z}\}$  be a stationary ergodic source on alphabet A. Then for any measurable function  $f: A^{\mathbb{Z}} \to \mathbb{R}$  such that

$$\mathbb{E}[|f(X_{-\infty}^{\infty})|] < \infty,$$

we have

$$\frac{1}{n} \sum_{i=1}^{n} f(T^{i} X_{-\infty}^{\infty}) \to \mathbb{E}[f(X_{-\infty}^{\infty})] \quad \text{almost surely} \quad \text{as } n \to \infty$$

Proof (Hints). Beyond the scope of this course.

Proof. Omitted.

**Remark 7.11** The strong law of large numbers follows instantly from Birkhoff by setting  $f(x_{-\infty}^{\infty}) = x_1$ .

Example 7.12 Every IID source is ergodic.

Theorem: Shannon Mcmillan Breiman

**Theorem 7.13** (Shannon-McMillan-Breiman) Let  $X = \{X_n : n \in \mathbb{N}\}$  be a stationary ergodic source on alphabet A with entropy rate H = H(X), then

$$-\frac{1}{n}\log P_n(X_1^n) \to H$$
 almost surely as  $n \to \infty$ 

where  $P_n$  is the PMF of  $X_1^n$ .

Proof (Hints). Non-examinable.

*Proof.* Idea: by Chain Rule for Entropy, we have

$$-\frac{1}{n}\log P_n(X_1^n) = -\frac{1}{n}\log \prod_{i=1}^n P(X_i\mid X_1^{i-1}) = \frac{1}{n}\sum_{i=1}^n [-\log P(X_i\mid X_1^{i-1})]$$

but we cannot directly apply the ergodic theorem to this, since  $-\log P(X_i \mid X_1^{i-1})$  is not of the form  $f(T^i x_{-\infty}^{\infty})$ . Instead, note that by Birkhoff's Ergodic Theorem and Theorem 7.8,

$$-\frac{1}{n}\log P(X_1^n \mid X_{-\infty}^0) = \frac{1}{n}\sum_{i=1}^n \left[-\log P(X_i \mid X_{-\infty}^{i-1})\right]$$

$$\to \mathbb{E}\left[-\log P(X_0 \mid X_{-\infty}^{-1})\right]$$

$$=: H(X_0 \mid X_{-\infty}^{-1}) = H \text{ almost surely } \text{ as } n \to \infty.$$

Also, by Birkhoff's Ergodic Theorem, for each fixed  $k \geq 1$ ,

$$\frac{1}{n} \sum_{i=1}^{n} \left( -\log P(X_i \mid X_{i-k}^{i-1}) \right) \to \mathbb{E}[-\log P(X_0 \mid X_{-k}^{-1})]$$

$$=: H(X_0 \mid X_{-k}^{-1}) \text{ almost surely } \text{ as } n \to \infty.$$

We have

$$\mathbb{P}\Big(-\frac{1}{n}\log P\big(X_1^n\mid X_{-\infty}^0\big) - \Big(-\frac{1}{n}\log P_n(X_1^n)\Big) > \varepsilon\Big) = \mathbb{P}\Big(\frac{1}{n}\log \frac{P_n(X_1^n)}{P(X_1^n\mid X_{-\infty}^0)} > \varepsilon\Big)$$

$$\mathbb{P}\bigg(\frac{P_n(X_1^n)}{P(X_1^n\mid X_{-\infty}^0)}>2^{n\varepsilon}\bigg)$$

$$2^{-n\varepsilon}\mathbb{E}\left[rac{P_n(X_1^n)}{P(X_1^n\mid X_{-\infty}^0)}
ight]$$
 by markov's inequality

$$2^{-n\varepsilon}\mathbb{E}\bigg[\mathbb{E}\bigg[\frac{P_n(X_1^n)}{P(X_1^n\mid X_{-\infty}^0)}\mid X_{-\infty}^0\bigg]\bigg]$$

$$2^{-n\varepsilon} \mathbb{E} \left[ \sum_{\substack{x_1^n \\ P(x_1^n \mid X_{-\infty}^0) > 0}} P(x_1^n \mid X_{-\infty}^0) \frac{P_n(x_1^n)}{P(x_1^n \mid X_{-\infty}^0)} \right]$$

which is summable, so by Borel-Cantelli,

$$\liminf_{n\to\infty} -\frac{1}{n}\log P\big(X_1^n\ |\ X_{-\infty}^0\big) \leq \liminf_{n\to\infty} -\frac{1}{n}\log P_n(X_1^n) \text{ almost surely}.$$

For each fixed k, consider the sequence of PMFs  $Q_n^{(k)}(x_1^n) = P_k(x_1^k) \prod_{i=k+1}^n P(x_i \mid X_{i-k}^{i-1})$  for  $x_1^n \in A^n$ . Then

$$-\frac{1}{n} \log Q_n^{(k)}(X_1^n) - \left| -\frac{1}{n} \sum_{i=1}^n \log P\big(x_i \mid x_{i-k}^{i-1}\big) \right|$$

$$= -\frac{1}{n} \left[ \log P_k \left( x_1^k \right) - \sum_{i=1}^k \log P \left( X_i \mid X_{i-k}^{i-1} \right) \right]$$

 $\rightarrow 0$  almost surely as  $n \rightarrow \infty$ 

So suffices to show that  $\limsup_{n\to\infty}-\frac{1}{n}\log P_n(X_1^n)\leq \limsup_{n\to\infty}-\frac{1}{n}\log Q_n^{(k)}(X_1^n)$  almost surely. So again, let  $\varepsilon>0$  be arbitrary, then

$$\mathbb{P}\Big(-\frac{1}{n}\log P_n(X_1^n) - \left(-\frac{1}{n}\log Q_n^{(k)}(X_1^n)\right) > \varepsilon\Big)$$

$$= \mathbb{P}\left(\frac{Q_n^{(k)}(X_1^n)}{P_n(X_1^n)} > 2^{n\varepsilon}\right) \le 2^{-n\varepsilon} \mathbb{E}\left|\frac{Q_n^{(k)}(X_1^n)}{P_n(X_1^n)}\right| \text{ by Markov's inequality}$$

$$\leq 2^{-n\varepsilon} \sum_{x_1^n \in A^n} P_n(x_1^n) \frac{Q_n^{(k)}(x_1^n)}{P_n(x_1^n)} = 2^{-n\varepsilon}$$

which is summable, so by Borel-Cantelli and the fact that  $\varepsilon > 0$  was arbitrary, we have

$$\limsup_{n\to\infty} -\frac{1}{n}\log P_n(X_1^n) \leq \limsup_{n\to\infty} -\frac{1}{n}\sum_{i=1}^n \log P\big(X_i \mid X_{i-k}^{i-1}\big).$$

## 8. Types and large deviations

8.1. The method of types

Definition: Type

**Definition 8.1** Let A be a finite alphabet and  $x_1^n \in A^n$ . The **type** of  $x_1^n$  is its empirical distribution  $\hat{P}_n = \hat{P}_{x_1^n}$ :

$$\hat{P}_n(a) = \hat{P}_{x_1^n}(a) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}.$$

**Notation 8.2** For a finite alphabet  $A = \{a_1, ..., a_m\}$ , let  $\mathcal{P}$  denote the set of all PMFs on A:

$$\mathcal{P} = \left\{ P \in [0,1]^m : \sum_{a \in A} P(a) = 1 \right\}.$$

Note that  $\mathcal{P}$  is an m-simplex.

Definition: N Types

**Notation 8.3** We write  $\mathcal{P}_n$  for the set of all n-types:

$$\mathcal{P}_n = \{P \in \mathcal{P} : nP(a) \in \mathbb{Z} \ \forall a \in A\}.$$

Note that  $\mathcal{P}_n$  is finite.

Proposition: Upper Bound On Number Of N Types

**Proposition 8.4** We have  $|\mathcal{P}_n| \leq (n+1)^m$ .

Proof (Hints). Straightforward.

*Proof.* Each  $P \in \mathcal{P}_n$  is of the form  $(k_1/n, ..., k_m/n)$ . There are at most (n+1) choices (0, ..., n) for each  $k_i$ .

Proposition: Prob Under Prod Dist Of String Of Type

**Proposition 8.5** Let  $x_1^n \in A^n$  have type  $\hat{P}_n$ . Then for any PMF Q,

$$Q^n(x_1^n) = 2^{-n(H(\hat{P}_n) + D(\hat{P}_n \parallel Q))}.$$

In particular, if  $Q = \hat{P}_n$ , then  $Q^n(x_1^n) = 2^{-nH(Q)}$ .

Proof (Hints). Rewrite  $\log Q^n(x_1^n)$ .

*Proof.* We have

$$\begin{split} \log Q^n(x_1^n) &= \sum_{i=1}^n \log Q(x_i) \\ &= \sum_{i=1}^n \sum_{a \in A} \mathbbm{1}_{\{x_i = a\}} \log Q(a) \\ &= n \sum_{a \in A} \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{\{x_i = a\}} \log Q(a) \\ &= n \sum_{a \in A} \hat{P}_n(a) \log Q(a) = - \sum_{a \in A} \hat{P}_n(a) \log \left(\frac{\hat{P}_n(a)}{Q(a)} \frac{1}{\hat{P}_n(a)}\right) \end{split}$$

$$\begin{split} &= -n \Biggl( \sum_{a \in A} \hat{P}_n(a) \log \frac{\hat{P}_n(a)}{Q(a)} + \sum_{a \in A} \hat{P}_n(a) \log \frac{1}{\hat{P}_n(a)} \Biggr) \\ &= -n (D(\hat{P}_n \parallel Q) + H(\hat{P}_n)) \end{split}$$

Definition: Type Class

**Definition 8.6** Given a n-type P, its **type class** is

$$T(P) \coloneqq \left\{ x_1^n \in A^n : \hat{P}_{x_1^n} = P \right\}.$$

Note that  $A^n = \coprod_{P \in \mathcal{P}_n} T(P)$ : since  $A^n$  has size  $|A|^n$  exponential in n, and the union is over  $|\mathcal{P}_n| \leq (n+1)^m$  (polynomial in n) elements, at least one type class must contain exponentially many strings.

T(P) consists of all possible arrangements of  $nP(a_1)$   $a_1$ 's, ...,  $nP(a_m)$   $a_m$ 's, so

$$|T(P)| = \frac{n!}{\prod_{j=1}^{m} (nP(a_j))!}.$$

Lemma: Most Likely Type Class Under Prod Dist Is Type Class Of That Dist

## **Lemma 8.7** Let $P \in \mathcal{P}_n$ . Then

$$P^n(T(P)) = \max\{P^n(T(Q)): Q \in \mathcal{P}_n\}.$$

i.e. the most likely type class under  $P^n$  is T(P).

## Proof (Hints).

- For  $Q \in \mathcal{P}_n$ , find an expression for  $P^n(x_1^n)$  which should be independent of  $x_1^n$ , for each case  $x_1^n \in T(P)$  and  $x_1^n \in T(Q)$ .
- Show that  $\frac{P^n(T(P))}{P^n(T(Q))} \ge 1$ , using the fact that  $k!/\ell! \ge \ell^{k-\ell}$  (why?).

*Proof.* Let  $Q \in \mathcal{P}_n$  be arbitrary. Then

$$\frac{P^n(T(P))}{P^n(T(Q))} = \frac{|T(P)| \cdot \prod_{i=1}^m P(a_i)^{nP(a_i)}}{|T(Q)| \cdot \prod_{i=1}^m P(a_i)^{nQ(a_i)}}$$

$$\begin{split} &= \frac{n!}{\prod_{i=1}^{m} (nP(a_i))!} \cdot \frac{\prod_{i=1}^{m} (nQ(a_i))!}{n!} \cdot \prod_{i=1}^{m} P(a_i)^{n(P(a_i) - Q(a_i))} \\ &= \prod_{i=1}^{m} P(a_i)^{n(P(a_i) - Q(a_i))} \cdot \prod_{i=1}^{m} \frac{(nQ(a_i))!}{(nP(a_i))!}. \end{split}$$

Now since  $k!/\ell! \ge \ell^{k-\ell}$  (to show this, consider  $k \ge \ell$  and  $k < \ell$  cases separately), this is

$$\begin{split} & \geq \prod_{i=1}^m P(a_i)^{n(P(a_i) - Q(a_i))} \cdot \prod_{i=1}^m \left( n(P(a_i)) \right)^{n(Q(a_i) - P(a_i))} \\ & = \prod_{i=1}^m n^{n(Q(a_i) - P(a_i))} \\ & = n^{n \sum_{i=1}^m (Q(a_i) - P(a_i))} = 1 \end{split}$$

since probabilities sum to 1.

Proposition: Bounds On Size Of Type Class

**Proposition 8.8** Let |A|=m. For any n-type  $P\in\mathcal{P}_n,$   $(n+1)^{-m}2^{nH(P)}\leq |T(P)|\leq 2^{H(P)}.$ 

Proof (Hints). Straightforward.

*Proof.* By Proposition 8.5, we have  $1 \ge P^n(T(P)) = |T(P)| 2^{-nH(P)}$ . For the lower bound,

$$\begin{split} 1 &= \sum_{x_1^n \in A^n} P^n(x_1^n) \\ &= \sum_{Q \in \mathcal{P}_n} P^n(T(Q)) \\ &\leq |\mathcal{P}_n| P^n(T(P)) & \text{by Lemma 8.7} \\ &\leq (n+1)^m |T(P)| 2^{-nH(P)}. \end{split}$$

Corollary: Bounds On Probability Of Type Class

Corollary 8.9 For any *n*-type  $P \in \mathcal{P}_n$  and any PMF Q on A,

$$(n+1)^{-m}2^{-nD(P \parallel Q)} \le Q^n(T(P)) \le 2^{-nD(P \parallel Q)}.$$

Proof (Hints). Straightforward.

*Proof.* Let  $x_1^n \in T(P)$  be arbitrary. Then by Proposition 8.5,

$$Q^{n}(T(P)) = |T(P)|Q^{n}(x_{1}^{n}) = |T(P)|2^{-n(H(P)+D(P \parallel Q))}.$$

So we are done by Proposition 8.8.

8.2. Sanov's theorem

Theorem: Sanov

**Theorem 8.10** (Sanov) Let  $X_1^n$  be IID with common PMF Q which has full support on alphabet A (i.e. Q(a) > 0 for all  $a \in A$ ) with |A| = m. Let  $\widehat{P}_n$  be the empirical distribution of  $X_1^n$ . For all  $E \subseteq \mathcal{P}$ ,

$$\mathbb{P}(\hat{P}_n \in E) \le (n+1)^m 2^{-nD^*}.$$

where  $D^* = \inf\{D(P \parallel Q) : P \in E\}$ . Also, if  $E = \operatorname{int}(E)$  is equal to the closure of its interior, then

$$\lim_{n\to\infty} -\frac{1}{n}\log \mathbb{P}(\hat{P}_n\in E) = D^* = D(P^*\parallel Q),$$

where  $P^* \in E$ .

## Proof (Hints).

- For the inequality, use that  $\mathbb{P}(\hat{P}_n \in E) = \mathbb{P}(\hat{P}_n \in E \cap \mathcal{P}_n) = \sum_{P \in E \cap \mathcal{P}_n} Q^n(T(P))$ . Explain why  $D^*$  is finite.
- For the equality, use the above inequality, and explain why there is a sequence  $\{P_n : n \in \mathbb{N}\}$  with each  $P_n \in \mathcal{P}_n$  and  $P_n \to P^*$  where  $D(P^* \parallel Q) = D^*$  (why does  $P^*$  exist?)

*Proof.* Since Q has full support, for any  $P \in \mathcal{P}$ , we have  $D(P \parallel Q) \leq -\sum_{a \in A} \log Q(a) < \infty$ , so  $D^*$  is finite. For the upper bound,

$$\begin{split} \mathbb{P}(\hat{P}_n \in E) &= \mathbb{P}(\hat{P}_n \in E \cap \mathcal{P}_n) \\ &= \sum_{P \in E \cap \mathcal{P}_n} \mathbb{P}(\hat{P}_n = P) \\ &= \sum_{P \in E \cap \mathcal{P}_n} \mathbb{P}(X_1^n \in T(P)) \\ &= \sum_{P \in E \cap \mathcal{P}_n} Q^n(T(P)) \\ &\leq |E \cap \mathcal{P}_n| \max\{Q^n(T(P)) : P \in E \cap \mathcal{P}_n\} \end{split}$$

$$\leq |E \cap \mathcal{P}_n| \max \left\{ 2^{-nD(P \parallel Q)} : P \in E \cap \mathcal{P}_n \right\} \quad \text{by Corollary 8.9}$$
 
$$= |E \cap \mathcal{P}_n| \cdot 2^{-n\min\{D(P \parallel Q) : P \in E \cap \mathcal{P}_n\}}$$
 
$$\leq (n+1)^m \cdot 2^{-nD^*}.$$

So  $\liminf_{n\to\infty} -\frac{1}{n} \log Q^n (\hat{P}_n \in E) \ge D^*$ .

For the lower bound, since E is compact and  $D(P \parallel Q)$  is continuous in P, the infimum  $D^*$  is attained by some  $P^*$ . (Note that since  $\mathcal{P}$  itself is compact, there is always a minimising  $P^*$  but this is not necessarily in E). Also, note that  $\bigcup_{n\in\mathbb{N}} \mathcal{P}_n$  is dense in  $\mathcal{P}$ , so we can find a sequence

 $\{P_n:n\in\mathbb{N}\}\subseteq E$  such that each  $P_n\in\mathcal{P}_n$  and  $P_n\to P^*$  (as a vector). Now for each  $n\in\mathbb{N},$ 

$$\mathbb{P}(\hat{P}_n \in E) \ge \mathbb{P}(\hat{P}_n = P_n) = Q^n(T(P_n)) \ge (n+1)^{-m} 2^{-nD(P_n \parallel Q)}$$

by Corollary 8.9. We have  $D(P_n \parallel Q) \to D(P^* \parallel Q)$  as  $n \to \infty$  since  $D(P \parallel Q)$  is continuous in P. So  $\limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(\hat{P}_n \in E) \le D(P^* \parallel Q) = D^*$ .

Definition: Log Mgf

**Definition 8.11** For a random variable Y, the **log-moment generating function** of Y is  $\Lambda : \mathbb{R} \to \mathbb{R}$  defined by

$$\Lambda(\lambda) := \ln \mathbb{E}[e^{\lambda Y}].$$

Notation 8.12 Write  $\Lambda^*(x) = \sup\{\lambda x - \Lambda(\lambda) : \lambda > 0\}.$ 

Proposition: Chernoff Bound

**Proposition 8.13** (Chernoff Bound) Let  $X_1^n$  be IID RVs and  $f: A \to \mathbb{R}$  have mean  $\mu = \mathbb{E}[f(X_1)]$ . Denote the empirical averages by  $S_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$ . Then for all  $\varepsilon > 0$ ,

$$\mathbb{P}(S_n \ge \mu + \varepsilon) \le e^{-n\Lambda^*(\mu + \varepsilon)},$$

where  $\Lambda$  is the log-moment generating function of the  $f(X_i)$ .

Proof (Hints). Use Markov's inequality.

*Proof.* By Markov's inequality, for all  $\lambda > 0$ ,

$$\mathbb{P}(S_n \geq \mu + \varepsilon) = \mathbb{P}\big(e^{n\lambda S_n} \geq e^{n\lambda(\mu + \varepsilon)}\big) \leq e^{-n\lambda(\mu + \varepsilon)}\mathbb{E}\big[e^{\lambda nS_n}\big].$$

Now since the  $X_i$  are independent,

$$\mathbb{E}\big[e^{\lambda nS_n}\big] = \mathbb{E}\big[e^{\lambda\sum_{i=1}^n f(X_i)}\big] = \mathbb{E}\left[\prod_{i=1}^n e^{\lambda f(X_i)}\right] = \prod_{i=1}^n \mathbb{E}\big[e^{\lambda f(X_i)}\big] = e^{n\Lambda(\lambda)}.$$

Hence,

$$\mathbb{P}(S_n \geq \mu + \varepsilon) \leq e^{-n\lambda(\mu + \varepsilon)} e^{n\Lambda(\lambda)} = e^{-n(\lambda(\mu + \varepsilon) - \Lambda(\lambda))},$$

and this holds for all  $\lambda > 0$ , so taking the infimum over  $\lambda$  gives the result.

**Example 8.14** Let  $X_1^n$  be IID with common PMF Q on finite alphabet A, let  $f:A\to\mathbb{R}$  with mean  $\mu=\mathbb{E}_{X\sim Q}[f(X)]$ . Denote the empirical averages by  $S_n:=\frac{1}{n}\sum_{i=1}^n f(X_i)$ . Let  $\varepsilon>0$ . By WLLN,  $\mathbb{P}(S_n\geq \mu+\varepsilon)\to 0$  as  $n\to\infty$ . We want to estimate how small this probability is as a function of n. Typically, the way we bound  $\mathbb{P}(S_n\geq \mu+\varepsilon)$  is by the Chernoff Bound. Alternatively, we have

$$S_n = \frac{1}{n} \sum_{i=1}^n f(X_i) = \frac{1}{n} \sum_{i=1}^n \sum_{a \in A} \mathbb{1}_{\{X_i = a\}} f(a) = \sum_{a \in A} \hat{P}_n(a) f(a) = \mathbb{E}_{X \sim \hat{P}_n} [f(X)].$$

Let B be the event  $B = \{S_n \ge \mu + \varepsilon\}$ , then we can write B as  $\{\hat{P}_n \in E\}$  where  $E = \{P \in \mathcal{P} : \mathbb{E}_{X \sim P}[f(X)] \ge \mu + \varepsilon\}$ . But Sanov says that

 $\mathbb{P}(S_n \geq \mu + \varepsilon) = \mathbb{P}(\hat{P}_n \in E) \leq (n+1)^m e^{-nD_e(P^* \parallel Q)} \text{ and in fact it tells us that } D_e(P^* \parallel Q) = \inf\{D_e(P \parallel Q) : P \in E\} \text{ is asymptotically the "correct" exponent.}$ 

**Proposition 8.15** Let  $X_1^n$  be IID RVs with common PMF Q on alphabet A and  $f: A \to \mathbb{R}$  have mean  $\mu = \mathbb{E}[f(X_1)]$ . Let  $P^*$  be the minimiser in Sanov for the event  $E = \{P \in \mathcal{P} : \mathbb{E}_{X \sim P}[f(X)] \ge \mu + \varepsilon\}$ . Then

$$\forall \varepsilon > 0, \quad \Lambda^*(\mu + \varepsilon) = D_e(P^* \parallel Q),$$

where  $\Lambda$  is the log-moment generating function of the  $f(X_i)$ .

## $Proof\ (Hints).$

- $\leq$ : show that  $S_n = \mathbb{E}_{X \sim \hat{P}_n}[f(X)]$ , then use the Chernoff Bound and Sanov.
- $\geq$ : for each  $\lambda \geq 0$ , define a PMF on A by

$$P_{\lambda}(a) = \frac{e^{\lambda f(a)}}{\mathbb{E}[e^{\lambda f(X_1)}]} Q(a).$$

- Show that  $\Lambda'(\lambda) = \mathbb{E}_{Y \sim P_{\lambda}}[f(Y)]$  and  $\Lambda''(\lambda) \geq 0$ .
- Deduce that there exists  $\lambda^* > 0$  such that  $\Lambda'(\lambda^*) = \mu + \varepsilon$ , then use the definition of  $P^*$  and expressing a relative entropy as an appropriate expectation to conclude the result.

*Proof.* ( $\leq$ ): Let  $\varepsilon > 0$ . We have

$$S_n = \frac{1}{n} \sum_{i=1}^n f(X_i) = \frac{1}{n} \sum_{i=1}^n \sum_{a \in A} \mathbb{1}_{\{X_i = a\}} f(a) = \sum_{a \in A} \hat{P}_n(a) f(a) = \mathbb{E}_{X \sim \hat{P}_n} [f(X)].$$

So we have  $\mathbb{P}(\hat{P}_n \in E) = \mathbb{P}(S_n \ge \mu + \varepsilon)$ , hence

$$\begin{split} \Lambda^*(\mu+\varepsilon) & \leq \liminf_{n\to\infty} -\frac{1}{n} \mathbb{P}(S_n \geq \mu+\varepsilon) \quad \text{by the Chernoff Bound} \\ & \leq \lim_{n\to\infty} -\frac{1}{n} \ln \mathbb{P}(\hat{P}_n \in E) \\ & = D_e(P^* \parallel Q) \quad \qquad \text{by Sanov.} \end{split}$$

 $(\geq)$ : For each  $\lambda \geq 0$ , define the PMF  $P_{\lambda}$  on A by

$$P_{\lambda}(a) = \frac{e^{\lambda f(a)}}{\mathbb{E}[e^{\lambda f(X_1)}]} Q(a).$$

Then

$$\Lambda'(\lambda) = \frac{\mathbb{E}\big[f(X_1)e^{\lambda f(X_1)}\big]}{\mathbb{E}\big[e^{\lambda f(X_1)}\big]} = \frac{1}{\mathbb{E}\big[e^{\lambda f(X_1)}\big]} \sum_{a \in A} Q(a)f(a)e^{\lambda f(a)} = \mathbb{E}_{Y \sim P_{\lambda}}[f(Y)]$$

and also, a straightforward calculation shows that

$$\Lambda''(\lambda) = \operatorname{Var}_{Y \sim P_{\lambda}}(f(Y)) \ge 0.$$

Hence,  $\Lambda'(\lambda)$  is increasing from  $\Lambda'(0) = \mu$  to  $\lim_{\lambda \to \infty} \Lambda'(\lambda) =: f^*$ , so there exists  $\lambda^* > 0$  such that  $\Lambda'(\lambda^*) = \mu + \varepsilon$ , hence  $\mathbb{E}_{Y \in P_{\lambda^*}}[f(Y)] = \mu + \varepsilon$ , so  $P_{\lambda^*} \in E$ . Thus,

$$\begin{split} D_e(P^* \parallel Q) &\leq D_e(P_{\lambda^*} \parallel Q) \\ &= \mathbb{E}_{Y \sim P_{\lambda^*}} \left[ \log \frac{P_{\lambda^*}(Y)}{Q(Y)} \right] \\ &= \mathbb{E}_{Y \sim P_{\lambda^*}} \left[ \log \frac{e^{\lambda^* f(Y)}}{\mathbb{E}[e^{\lambda^* f(X_1)}]} \right] \\ &= \lambda^* \mathbb{E}_{Y \sim P_{\lambda^*}} [f(Y)] - \Lambda(\lambda^*) \end{split}$$

$$= \lambda^*(\mu + \varepsilon) - \Lambda(\lambda^*) \leq \Lambda^*(\mu + \varepsilon).$$

Corollary: Minimising Distribution In Sanov Is Unique For Nonempty
Closed Convex Events

Corollary 8.16 Let  $X_1^n$  be IID RVs with common PMF Q on alphabet A. The minimiser  $P^*$  in Sanov for the event  $E = \{P \in \mathcal{P} : \mathbb{E}_{X \sim P}[f(X)] \ge \mu + \varepsilon\}$  is unique and is given by

$$P^*(a) = P_{\lambda^*}(a) = \frac{e^{\lambda^* f(a)}}{\mathbb{E}[e^{\lambda^* f(X_1)}]} Q(a).$$

where  $\lambda^* > 0$  satisfies  $\mathbb{E}_{Y \sim P_{\lambda^*}}[f(Y)] = \mu + \varepsilon$ .

*Proof* (*Hints*). Existence: by above proposition. Uniqueness: use a property of  $D(P \parallel Q)$  and the fact that E is non-empty, convex and closed.

*Proof.*  $D(P \parallel Q)$  is strictly convex in P for fixed Q and E is non-empty, convex and closed, so the minimising  $P^*$  is unique. The existence is by the proof of the above proposition.

Theorem: Pythagorean Identity

**Theorem 8.17** (Pythagorean Identity) Let  $E \subseteq \mathcal{P}$  be closed and convex. Let  $Q \notin E$  have full support on A, and let  $P^*$  achieve the minimum in Sanov's theorem. Then

$$\forall P \in E, \quad D(P \parallel Q) \ge D(P \parallel P^*) + D(P^* \parallel Q).$$

Proof (Hints).

- For  $P \in E$ , define  $\overline{P}_{\lambda} = \lambda P + (1 \lambda)P^*$  for  $\lambda \in [0, 1]$ . Show that  $D(\overline{P}_{\lambda} \parallel Q) \geq D(\overline{P}_{0} \parallel Q)$  for all  $\lambda \in [0, 1]$ .
- Show the derivative of  $D_{e}(\overline{P}_{\lambda} \parallel Q)$  at  $\lambda = 0$  is  $D_{e}(P \parallel Q) D_{e}(P \parallel P^{*}) D_{e}(P^{*} \parallel Q)$ .

Proof. Let  $P \in E$ . Define the mixture  $\overline{P_{\lambda}} = \lambda P + (1 - \lambda)P^*$  for  $0 \le \lambda \le 1$ . Since E is convex,  $\overline{P_{\lambda}} \in E$  for all  $\lambda \in [0, 1]$ , and by definition of  $P^*$ ,  $D(\overline{P_{\lambda}} \parallel Q) \ge D(P^* \parallel Q) = D(\overline{P_0} \parallel Q)$  for all  $\lambda \in [0, 1]$ . So we have

$$\begin{split} 0 & \leq \frac{\mathrm{d}}{\mathrm{d}\lambda} D_e(\overline{P}_\lambda \parallel Q) \bigg|_{\lambda=0} \\ & = \frac{\mathrm{d}}{\mathrm{d}\lambda} \sum_{a \in A} \overline{P}_\lambda(a) \ln \frac{\overline{P}_\lambda(a)}{Q(a)} \bigg|_{\lambda=0} \\ & = \sum_{a \in A} (P(a) - P^*(a)) \ln \frac{\overline{P}_\lambda(a)}{Q(a)} \bigg|_{\lambda=0} + \sum_{a \in A} (P(a) - P^*(a)) \end{split}$$

$$\begin{split} &= \sum_{a \in A} P(a) \ln \frac{P^*(a) P(a)}{Q(a) P(a)} - \sum_{a \in A} P^*(a) \ln \frac{P^*(a)}{Q(a)} \\ &= D_e(P \parallel Q) - D_e(P \parallel P^*) - D_e(P^* \parallel Q). \end{split}$$

## Remark 8.18

- The Pythagorean Identity is an  $L^2$ -style bound: the minimiser  $P^*$  can be viewed as the "orthogonal projection" of Q onto E.
- The Pythagorean Identity provides a quantatitive version of the uniqueness statement in Corollary 8.16: if  $D(P \parallel Q) = D(P^* \parallel Q)$ , then  $P = P^*$ ; additionally, if  $D(P \parallel Q) \leq D(P^* \parallel Q) + \delta$  (i.e.  $D(P \parallel Q)$  is close to  $D(P^* \parallel Q)$ ), then  $D(P \parallel P^*) \leq \delta$  (i.e. P is close to  $P^*$ ).

8.3. The Gibbs conditioning principle

Lemma: Expectation Of Bounded Rvs Converges To Limit Of Convergence In Probability

**Lemma 8.19** Let  $\{Z_n : n \in \mathbb{N}\}$  be a bounded sequence of RVs which converges to  $z \in \mathbb{R}$  in probability. Then

$$\mathbb{E}[Z_n] \to z \quad \text{as } n \to \infty.$$

Proof (Hints). Use Jensen's inequality, then split the expectation into two terms, one bounded above by  $\varepsilon$ , the other  $\to 0$ , to show that  $|\mathbb{E}[Z_n] - c| \to 0$ .

*Proof.* Let  $\varepsilon > 0$ . Since the  $Z_n$  are bounded, we have  $|Z_n| \leq M$  for all  $n \in \mathbb{N}$ , for some constant M. By Jensen's Inequality,

$$|\mathbb{E}[Z_n] - z| \leq \mathbb{E}[|Z_n - z|] = \mathbb{E}\left[|Z_n - z| \cdot \mathbb{1}_{\{|Z_n - z| \leq \varepsilon\}}\right] + \mathbb{E}\left[|Z_n - z| \cdot \mathbb{1}_{\{|Z_n - z| > \varepsilon\}}\right].$$

The first term is bounded above by  $\varepsilon$ . The second term is bounded above by

$$(M+|z|)\cdot \mathbb{E} \big[\mathbb{1}_{\{|Z_n-z|>\varepsilon\}}\big] = (M+|z|)\cdot \mathbb{P}(|Z_n-z|>\varepsilon) \to 0 \quad \text{as } n\to\infty.$$

Thus,  $\limsup_{n\to\infty} |\mathbb{E}[Z_n] - c| \leq \varepsilon$ , and  $\varepsilon > 0$  was arbitrary.

Theorem: Gibbs Conditioning Principle

**Theorem 8.20** (Gibbs' Conditioning Principle) Let  $X_1^n$  be IID with common PMF Q which has full support on A. Let  $\hat{P}_n$  be the empirical distribution of  $X_1^n$ . If  $E \subseteq \mathcal{P}$  is closed, convex, has non-empty interior, and  $Q \notin E$ , then

 $\forall a \in A, \quad \mathbb{E}[\hat{P}_n(a) \mid \hat{P}_n \in E] = \mathbb{P}(X_1 = a \mid \hat{P}_n \in E) \to P^*(a) \quad \text{as} \quad n \to \infty,$ 

where  $P^*$  is the unique minimiser in Sanov for the event E.

### $Proof\ (Hints).$

- Showing the equality is straightforward.
- Define  $B(Q, \delta) := \{ P \in \mathcal{P} : D(P \parallel Q) \le D(P^* \parallel Q) + \delta \}, \quad C = B(Q, 2\delta) \cap E \text{ and } D = E \setminus C.$
- Show that  $\mathbb{P}(\hat{P}_n \in D \mid \hat{P}_n \in E) \leq (n+1)^{2m} 2^{-n\delta}$  by using the density of  $\{\mathcal{P}_n : n \in \mathbb{N}\}$  in  $\mathcal{P}$  to reason that some  $P_n \in B(Q, \delta) \cap E \cap \mathcal{P}_n$  eventually exists.
- Use the Pythagorean Identity and Pinsker's Inequality to show that  $\mathbb{P}(|\hat{P}_n(a) P^*(a)| > \varepsilon | \hat{P}_n \in E) \to 0.$

*Proof.* The conditional distribution of each  $X_i$  given  $\hat{P}_n \in E$  is the same, so

$$\mathbb{E}[\hat{P}_n(a) \mid \hat{P}_n \in E] = \frac{1}{n} \sum_{i=1}^n \mathbb{P}(X_i = a \mid \hat{P}_n \in E) = \mathbb{P}(X_1 = a \mid \hat{P}_n \in E).$$

Define the relative entropy neighbourhoods

$$B(Q,\delta) \coloneqq \{P \in \mathcal{P} : D(P \parallel Q) \le D(P^* \parallel Q) + \delta\},\$$

and write  $C = B(Q, 2\delta) \cap E$  and  $D = E \setminus C$ .

Then

$$\mathbb{P}(\hat{P}_n \in D \mid \hat{P}_n \in E) = \frac{\mathbb{P}(\hat{P}_n \in D)}{\mathbb{P}(\hat{P}_n \in E)}.$$

By Sanov,

$$\mathbb{P}(\hat{P}_n \in D) \leq (n+1)^m 2^{-n\inf\{D(P \parallel Q): P \in D\}} \leq (n+1)^m 2^{-n(D(P^* \parallel Q) + 2\delta)}$$

and for the denominator, since  $\{\mathcal{P}_n : n \in \mathbb{N}\}$  is dense in  $\mathcal{P}$ ,  $\mathcal{P}_n$  eventually intersects every open set in  $\mathcal{P}$ , so eventually  $B(Q, \delta) \cap E \cap \mathcal{P}_n$  is non-empty (since E has non-empty interior). So we can eventually find  $P_n \in \mathcal{P}_n \cap E \cap B(Q, \delta)$ . By Corollary 8.9,

$$\begin{split} \mathbb{P}(\hat{P}_n \in E) &\geq \mathbb{P}(\hat{P}_n \in B(Q, \delta) \cap E) \\ &\geq \mathbb{P}(\hat{P}_n = P_n) = Q^n(T(P_n)) \\ &\geq (n+1)^{-m} 2^{-nD(P_n \parallel Q)} \\ &\geq (n+1)^{-m} 2^{-n(D(P^* \parallel Q) + \delta)}, \end{split}$$

since  $P_n \in B(Q, \delta)$ . Combining these, we obtain

$$\mathbb{P}(\hat{P}_n \in D \mid \hat{P}_n \in E) \le (n+1)^{2m} 2^{-n\delta} \to 0 \quad \text{as } n \to \infty.$$

For  $P \in C$ , by the Pythagorean Identity,

$$D(P^* \parallel Q) \ge D(P \parallel Q) \ge D(P \parallel P^*) + D(P^* \parallel Q),$$

thus  $D(P \parallel P^*) \leq 2\delta$ . So

$$\mathbb{P} \Big( D \Big( \hat{P}_n \parallel P^* \Big) \leq 2\delta \mid \hat{P}_n \in E \Big) \geq \mathbb{P} \Big( \hat{P}_n \in C \mid \hat{P}_n \in E \Big) \rightarrow 1 \quad \text{as } n \rightarrow \infty.$$

Hence by Pinsker's Inequality, since  $\delta > 0$  was arbitrary,

$$\mathbb{P}\Big( \left\| \hat{P}_n - P^* \right\|_{\text{TV}} > \varepsilon \, \middle| \, \hat{P}_n \in E \Big) \to 0 \text{ as } n \to \infty$$

for all  $\varepsilon > 0$ . Thus also,  $\mathbb{P}(\left|\hat{P}_n(a) - P^*(a)\right| > \varepsilon \mid \hat{P}_n \in E) \to 0$ . So, conditional on  $\hat{P}_n \in E$ ,  $\hat{P}_n \to P^*$  in probability as  $n \to \infty$ . Therefore,

since  $(\hat{P}_n(a))$  is a bounded sequence, we also have  $\mathbb{E}[\hat{P}_n(a) \mid \hat{P}_n \in E] \to P^*(a)$  as  $n \to \infty$  by Lemma 8.19.

**Example 8.21** Suppose a fair die is rolled 1000 times, and the observed average of the rolls is at least 5. What proportion of the rolls was a 6?

Let  $X_1^{1000}$  be IID RVs with uniform distribution Q on  $A = \{1, 2, 3, 4, 5, 6\}$ . Let f(x) = x,  $\mu = \mathbb{E}[X_1^{1000}] = 3.5$ , let  $E = \{P \in \mathcal{P} : \mathbb{E}[X_1 = X] \geq 5\}$ . By Corollary 8.16, the minimiser  $P^*$  is unique and is given by

$$P^*(a) = \frac{e^{\lambda^* a}}{\sum_{k=1}^6 e^{\lambda^* k}}, \quad \forall a \in A,$$

where  $\lambda^* > 0$  is such that  $\mathbb{E}_{Y \sim P_{\lambda^*}}[Y] = 5$ . We can directly compute  $\lambda^* \approx 0.63$  and so

$$P^* \approx (0.021, 0.039, 0.14, 0.25, 0.48)$$

So by the Gibbs' Conditioning Principle, we expect that about 48% of the rolls were 6.

# 8.4. Error probability in fixed-rate data compression

Theorem: Error Exponents For Fixed Rate Compression

**Theorem 8.22** Let  $X = \{X_n : n \in \mathbb{N}\}$  be a memoryless source with entropy  $H = H(X_1)$  and with PMF Q which has full support on finite alphabet A. For any rate R with  $H < R < \log |A|$ ,

•  $\Longrightarrow$ : There is a fixed-rate code  $\{B_n^* : n \in \mathbb{N}\}$  with asymptotic rate no more than R bits/symbol:

$$\limsup_{n \to \infty} \frac{1}{n} (1 + \lceil \log |B_n^*| \rceil) = \limsup_{n \to \infty} \frac{1}{n} \log |B_n^*| \le R,$$

and with probability of error  $P_e^{(n)}$  that decays to zero exponentially fast:

$$\limsup_{n \to \infty} \frac{1}{n} \log P_e^{(n)} \le -D^*,$$

where

$$D^* = \inf\{D(P \parallel Q) : \mathbf{H}(P) \ge R\}.$$

•  $\Leftarrow$ : for any fixed-rate code  $\{B_n:n\in\mathbb{N}\}$  with asymptotic rate no more than R bits/symbol:

$$\limsup_{n\to\infty}\frac{1}{n}(1+\lceil\log|B_n|\rceil)=\limsup_{n\to\infty}\frac{1}{n}\log|B_n|\leq R,$$

then its probability of error  $P_e^{(n)}$  cannot decay faster than exponentially with exponent  $D^*$ :

$$\liminf_{n \to \infty} \frac{1}{n} \log P_e^{(n)} \ge -D^*.$$

## Proof (Hints).

- $\Longrightarrow$ : let  $B_n^*$  be the codebook which is a union over the set of type classes T(P) such that H(P) < R.
- $\Leftarrow$ : explain why there is  $\delta > 0$  such that  $\inf\{D(P \parallel Q) : H(P) \ge R + \delta\} \le D^* + \varepsilon$ .
- Explain why, for all n large enough, there is  $P_n \in \mathcal{P}_n$  such that  $H(P_n) \geq R + \delta/2$  and  $D(P_n \parallel Q) \leq D^* + 2\varepsilon$ .
- Show that  $|B_n|/|T(P_n)| \to 0$  as  $n \to \infty$ , and hence that  $P_e^{(n)} \ge \frac{1}{2}(n+1)^{-m}2^{-n(D^*+2\varepsilon)}$  eventually.

*Proof.*  $\Longrightarrow$ : define the codebook

$$B_n^* = \bigcup_{\substack{P \in \mathcal{P}_n \\ H(P) < R}} T(P).$$

Then by Proposition 8.4 and Proposition 8.8,

$$|B_n^*| = \sum_{\substack{P \in \mathcal{P}_n \\ H(P) < R}} |T(P)| \le \sum_{\substack{P \in \mathcal{P}_n \\ H(P) < R}} 2^{nH(P)} \le (n+1)^m 2^{nR},$$

and so  $\limsup_{n\to\infty}\frac{1}{n}\log|B_n^*|\leq R$ . For the probability of error,

$$P_e^{(n)} = \mathbb{P}(X_1^n \notin B_n^*) = Q^n \left( \bigcup_{\substack{P \in \mathcal{P}_n \\ H(P) > R}} T(P) \right) \le \sum_{\substack{P \in \mathcal{P}_n \\ H(P) > R}} Q^n(T(P)) \le (n+1)^m 2^{-nD^*}.$$

 $\Leftarrow$ : let  $\varepsilon > 0$  be arbitrary. By continuity, there is a  $\delta > 0$  such that  $\inf\{D(P \parallel Q) : H(P) \ge R + \delta\} \le D^* + \varepsilon$ .

Since the *n*-types  $\{P_n: n \in \mathbb{N}\}$  are dense in  $\mathcal{P}$ , for all *n* large enough, we can find  $P_n \in \mathcal{P}_n$  such that  $H(P_n) \geq R + \delta/2$  and  $D(P_n \parallel Q) \leq D^* + 2\varepsilon$ . Also, by assumption, there is a sequence  $(r_n)$  such that  $\frac{1}{n} \log |B_n| \leq R + r_n$  and  $r_n \to 0$ . Now

$$\begin{split} \frac{|B_n|}{|T(P_n)|} & \leq \frac{2^{n(R+r_n)}}{(n+1)^{-m}2^{nH(P_n)}} = (n+1)^m 2^{n(R-H(P_n)+r_n)} \\ & \leq (n+1)^m 2^{n(r_n-\delta/2)} \to 0 \quad \text{as } n \to \infty. \end{split}$$

So  $|B_n|/|T(P_n)| \le 1/2$  eventually. Then, for an arbitrary string  $x_1^n \in T(P_n)$ , we have

$$\begin{split} P_e^{(n)} &= \mathbb{P}(X_1^n \in B_n^c) \ge \mathbb{P}(X_1^n \in T(P_n) \cap B_n^c) \\ &= |T(P_n) \cap B_n^c| Q^n(x_1^n) = \frac{|T(P_n) \cap B_n^c|}{|T(P_n)|} Q^n(T(P_n)) \end{split}$$

$$\geq \left(1 - \frac{|T(P_n) \cap B_n|}{|T(P_n)|}\right) (n+1)^{-m} 2^{-nD(P_n \parallel Q)}$$

$$\geq \left(1 - \frac{|B_n|}{|T(P_n)|}\right) (n+1)^{-m} 2^{-nD(P_n \parallel Q)}$$

$$\geq \frac{1}{2} (n+1)^{-m} 2^{-n(D^*+2\varepsilon)} \quad \text{eventually}$$

Thus,

$$\liminf_{n \to \infty} \frac{1}{n} \log P_e^{(n)} \ge -(D^* + 2\varepsilon),$$

and since  $\varepsilon > 0$  was arbitrary, we are done.

#### Remark 8.23

- Theorem 8.22 gives the rate at which the error probabilities  $P_e^{(n)}$  of the codes in the Fixed-rate Coding Theorem decay.
- Note that the code  $B_n^*$  is **universal**: it achieves the optimal error probability at rate R simultaneously for all memoryless sources with entropy H < R.
- The Fixed-rate Coding Theorem says that  $P_e^{(n)}$  cannot tend to zero if R < H. In fact, it is possible to show a "strong converse" of the Fixed-rate Coding Theorem, which says that in this case,  $P_e^{(n)} \rightarrow 1$  exponentially fast.

9. Variable-rate lossless data compression

**Notation 9.1** Let  $\{0,1\}^*$  denote the set of all binary strings of finite length.

Definition: Variable Rate Code

**Definition 9.2** A variable-rate lossless compression code of block length n on a finite alphabet A is an injective map  $C_n: A^n \to \{0,1\}^*$  which maps source strings to **codewords**.  $C_n$  is also known as the **encoder**.

Each  $C_n$  has an associated **length function**  $L_n: A^n \to \mathbb{N}$ , defined as  $L_n(x_1^n) = \text{length of } C_n(x_1^n)$ .

Definition: Variable Rate Code.Prefix Free

**Definition 9.3** A code  $C_n$  is **prefix-free** if for all  $x_1^n \neq y_1^n \in \{0,1\}^n$ , the codeword  $C_n(x_1^n)$  is not a prefix (an initial segment) of  $C_n(y_1^n)$ .

# Example 9.4

| $\boldsymbol{x}$ | C(x) |
|------------------|------|
| a                | 00   |
| b                | 01   |
| $\overline{c}$   | 10   |
| d                | 11   |

| x | C(x) |
|---|------|
| a | 0    |
| b | 10   |
| c | 110  |
| d | 111  |

| x           | C(x) |
|-------------|------|
| a           | 0    |
| b           | 00   |
| c           | 110  |
| $\boxed{d}$ | 111  |

| x | C(x) |
|---|------|
| a | 0    |
| b | 1    |
| c | 00   |
| d | 11   |

The first two codes are prefix-free, the last two are not.

**Remark 9.5** An advantage of prefix-free codes is that once a full codeword is received, it is guaranteed to be that codeword and not the start of another.

Theorem: Krafts Inequality

# **Theorem 9.6** (Kraft's Inequality)

•  $(\Longrightarrow)$ : for any function  $L_n:A^n\to\mathbb{N}$  satisfying **Kraft's inequality**:

$$\sum_{x_1^n \in A^n} 2^{-L_n(x_1^n)} \le 1,$$

there is a prefix-free code  $C_n$  on  $A^n$  with length function  $L_n$ .

• ( $\Leftarrow$ ): the length function of any prefix-free code satisfies Kraft's inequality.

Proof (Hints). For both directions, consider the complete binary tree of depth  $\max\{L_n(x_1^n): x_1^n \in A^n\}$ . For  $\Leftarrow$ , consider the number of descendants of each codeword in terms of its depth.

*Proof.*  $\Leftarrow$ : let  $C_n$  be a prefix-free code with length function  $L_n$ . Let  $L^* = \max\{L_n(x_1^n): x_1^n \in A^n\}$  and consider the complete binary tree of depth  $L^*$ . If we mark all the codewords on the tree, then the prefixfree property implies that no codeword is a descendant of any other codeword. Each codeword  $C_n(x_1^n)$  has  $2^{L^*-L_n(x_1^n)}$  descendants (possibly including itself) at depth  $L^*$ . The prefix-free property also implies that these descendants are disjoint for different codewords. Since the total number of leaves at depth  $L^*$  is  $2^{L^*}$ , we have

$$2^{L^*} \ge \sum_{x_1^n \in A^n} 2^{L^* - L_n(x_1^n)}.$$

 $\Rightarrow$ : given a length function  $L_n$  satisfying Kraft's inequality, consider the complete binary tree of depth  $L^* = \max\{L_n(x_1^n) : x_1^n \in A^n\}$ . Then, ordering the  $x_1^n \in A^n$  in the order of increasing  $L_n(x_1^n)$ , assign to each  $x_1^n$  (in order) any available node (i.e. any node that is not a prefix or descandant of any codewords already assigned) at depth  $L_n(x_1^n)$ . Kraft's inequality guarantees that there will always be such a node.

Remark 9.7 Kraft's Inequality informally says "not all codelengths for prefix-free codes can be short".

9.1. The codes-distributions correspondence

Theorem: Codes Distributions Correspondence

**Theorem 9.8** (Codes-distributions Correspondence)

•  $\Longrightarrow$ : for any PMF  $Q_n$  on  $A^n$ , there is a prefix-free code  $C_n^*$  with length function  $L_n^*$  such that

$$\forall x_1^n \in A^n, \quad L_n^*(x_1^n) < -\log Q_n(x_1^n) + 1$$

•  $\Leftarrow$ : for any prefix-free code  $C_n$  with length function  $L_n$ , there is a PMF  $Q_n$  on  $A^n$  such that

$$\forall x_1^n \in A^n, \quad -\log Q_n(x_1^n) \le L_n(x_1^n).$$

## Proof (Hints).

- $\Longrightarrow$ : straightforward.
- $\Leftarrow$ : consider Kraft's Inequality to define a suitable  $Q_n$ .

Proof.  $\implies$ : Let  $L_n^*(x_1^n) = \lceil -\log Q_n(x_1^n) \rceil < -\log Q_n(x_1^n) + 1$ .  $L_n^*$  satisfies Kraft's inequality:

$$\sum_{x_1^n \in A^n} 2^{-L_n(x_1^n)} = \sum_{x_1^n \in A^n} 2^{-\lceil -\log Q_n(x_1^n) \rceil} \leq \sum_{x_1^n \in A^n} 2^{\log Q_n(x_1^n)} = \sum_{x_1^n \in A^n} Q_n(x_1^n) = 1.$$

So we are done by the first part of Kraft's Inequality.

 $\Leftarrow$ : define the PMF  $Q_n$  on  $A^n$  by

$$Q_n(x_1^n) = \frac{2^{-L_n(x_1^n)}}{\sum_{y_1^n \in A^n} 2^{-L_n(y_1^n)}}.$$

Then

$$-\log Q_n(x_1^n) = L_n(x_1^n) + \log \left( \sum_{y_1^n \in A^n} 2^{-L_n(y_1^n)} \right) \le L_n(x_1^n).$$

since  $L_n$  satisfies Kraft's inequality (i.e.  $\sum_{y_1^n \in A^n} 2^{-L_n(y_1^n)} \le 1$ ).

## Remark 9.9

• Codes-distributions Correspondence says that the performance of any prefix-free can be dominated by a code with length function  $L_n(x_1^n) \approx -\log Q_n(x_1^n)$  for some PMF  $Q_n$  on  $A^n$ , and that for any distribution  $Q_n$  such a code exists. So finding a good code is equivalent to finding a good distribution. This assumes nothing about the distribution of the source  $X_1^n$  or the block length n.



**Theorem 9.10** Let  $X_1^n$  have PMF  $P_n$  on  $A^n$ .

 $\implies$ : there is a prefix-free code  $C_n^*$  with length function  $L_n^*$  that achieves an expected description length of

$$\mathbb{E}[L_n^*(X_1^n)] < H(X_1^n) + 1.$$

 $\Leftarrow$ : for any prefix-free code  $C_n$  with length function  $L_n$  on  $A^n$ ,

$$\mathbb{E}[L_n(X_1^n)] \ge H(X_1^n).$$

Proof (Hints). Straightforward.

*Proof.*  $\Longrightarrow$ : let  $C_n^*$  be the code with length function  $L_n^*(x_1^n) = \lceil -\log P_n(x_1^n) \rceil$  as in the Codes-distributions Correspondence. Then

$$\mathbb{E}[L_n^*(X_1^n)] < \mathbb{E}[-\log P_n(X_1^n) + 1] = H(X_1^n) + 1.$$

 $\Leftarrow$ : let  $Q_n$  be as in the Codes-distributions Correspondence. Then

$$\mathbb{E}[L_n(X_1^n)] \geq \mathbb{E}[-\log Q_n(X_1^n)]$$

$$= \mathbb{E}\bigg[\log\bigg(\frac{1}{P_n(X_1^n)}\cdot\frac{P_n(X_1^n)}{Q_n(X_1^n)}\bigg)\bigg]$$

$$= \mathbb{E}[-\log P_n(X_1^n)] + \mathbb{E}\left[\log \frac{P_n(X_1^n)}{Q_n(X_1^n)}\right]$$

$$= H(X_1^n) + D(P_n \parallel Q_n) \ge H(X_1^n).$$

Corollary: Entropy Rate Of Source Is Best Asymptotic Prefix Free Compression Rate

Corollary 9.11 Let  $X = \{X_n : n \in \mathbb{N}\}$  be a stationary source with entropy rate H = H(X). Then H is the best asymptotically achievable compression rate among all variable-rate prefix-free codes:

$$\lim_{n\to\infty} \inf_{(C_n,L_n) \text{ prefix-free}} \frac{1}{n} \mathbb{E}[L_n(X_1^n)] = H.$$

Proof (Hints). Straightforward.

*Proof.* By Theorem 9.10,

$$\frac{1}{n}H(X_1^n) \leq \inf_{(C_n,L_n) \text{ prefix-free}} \frac{1}{n}\mathbb{E}[L_n(X_1^n)] < \frac{1}{n}(H(X_1^n)+1).$$

9.2. Shannon codes and their properties

Definition: Shannon Code

**Definition 9.12** A **Shannon code** for a distribution  $Q_n$  on  $A^n$  is a code with length function

$$L_n(x_1^n) \coloneqq \lceil -\log Q_n(x_1^n) \rceil.$$

Note this is the code used in the proof of the Codes-distributions Correspondence.

## Remark 9.13

- Shannon codes do not always achieve the optimal (minimal) expected description length  $\mathbb{E}[L_n(X_1^n)]$ , which is achieved instead by the Huffman code. However, the difference between the expected description lengths of these codes is less than one bit by Theorem 9.10.
- Shannon codes give shorter descriptions to likely messages and longer descriptions to unlikely messages.

Definition: Ideal Shannon Codelength

**Definition 9.14** We call the  $L_n(x_1^n) = -\log Q_n(x_1^n)$  for  $x_1^n \in A^n$  the ideal Shannon codelengths.

Theorem: Competitive Optimality Of Shannon Codes

**Theorem 9.15** (Competitive Optimality of Shannon Codes) Let  $P_n$  be a distribution on  $A^n$  and  $X_1^n \sim P_n$ . For any other PMF  $Q_n$  on  $A^n$ ,

$$\mathbb{P}(-\log Q_n(X_1^n) \le -\log P_n(X_1^n) - K) \le 2^{-K}.$$

Proof (Hints). Use Markov's inequality.

*Proof.* By Markov's inequality, we have

$$\begin{split} \mathbb{P}(-\log Q_n(X_1^n) & \leq -\log P_n(X_1^n) - K) = \mathbb{P}\bigg(\frac{Q_n(X_1^n)}{P_n(X_1^n)} \geq 2^K\bigg) \\ & \leq 2^{-K} \mathbb{E}\bigg[\frac{Q_n(X_1^n)}{P_n(X_1^n)}\bigg] \\ & = 2^{-K} \sum_{x_1^n \in A^n} P_n(x_1^n) \cdot \frac{Q_n(x_1^n)}{P_n(x_1^n)} \\ & = 2^{-K}. \end{split}$$

## 10. Universal data compression

In this chapter, assume that we want to compress a message  $x_1^n \in \{0,1\}^n$  where each  $x_i$  is produced by an unknown distribution  $P = P_{\theta^*}$  which belongs to the parametric family  $\{P_{\theta} \sim \text{Bern}(\theta) : \theta \in (0,1)\}$ . We also assume codelengths can be non-integral for simplicity, since the actual codelength differs by at most one bit.

Note that in this case,  $\theta_{\text{MLE}} = k/n$  where k is the number of 1s in  $x_1^n$ . So the maximum likelihood distribution for  $x_1^n$  amsong all  $P_{\theta}$  is its type  $\hat{P}_n$ , and by Proposition 8.5, for all  $\theta \in \Theta$ ,

$$-\log P^n_{\theta_{\mathrm{MLE}}}(x_1^n) = nH(\hat{P}_n) \le -\log P^n_{\theta}(x_1^n).$$

Definition: Mle Code

**Definition 10.1** The **MLE code** first describes  $\hat{\theta}_{\text{MLE}}$  to the decoder, then describes  $x_1^n$  using the Shannon code for  $P_{\hat{\theta}_{\text{MLE}}}^n$ .

Proposition: Mle Code Price Of Universality

**Proposition 10.2** The description length of the MLE code is

$$nH(\hat{P}_n) + \log(n+1).$$

In particular, the price of universality of the MLE code is  $\log n$  bits.

Proof (Hints). Trivial.

Proof.  $\theta_{\text{MLE}} = k/n$  where k is the number of 1s in  $x_1^n$ , so  $k \in \{0, ..., n\}$ . So k can be described using  $\log(n+1)$  bits.  $x_1^n$  is described using  $-\log P_{\theta_{\text{MLE}}}^n(x_1^n) = nH(\hat{P}_n)$  bits.

Proposition: Mle Code Expected Price Of Universality

**Proposition 10.3** The expected description length of the MLE code is bounded above by

$$nH(P_{\theta^*}^n) + \log(n+1).$$

In particular, the price of universality in expectation of the MLE code is  $\log n$  bits.

Proof (Hints). Straightforward.

*Proof.* The expected description length is

$$\begin{split} \log(n+1) + \mathbb{E} \left[ -\log P_{\theta_{\text{MLE}}}^n(X_1^n) \right] &\leq \log(n+1) + \mathbb{E} [-\log P_{\theta^*}^n(X_1^n)] \\ &= \log(n+1) + nH(P_{\theta^*}). \end{split}$$

Definition: Counting Code

**Definition 10.4** The **counting code** first describes  $\theta_{\text{MLE}} = k/n$  to the decoder, then describes the index of  $x_1^n$  in the ordered list of  $\binom{n}{k}$  binary strings containing k 1s.

Proposition: Counting Code Description Length

**Proposition 10.5** The description length of the counting code is

$$\log(n+1) + \log\binom{n}{k}.$$

Proof (Hints). Trivial.

Proof. Trivial.

Definition: Uniform Mixture

**Definition 10.6** Given a parametric family of distributions  $\{P_{\theta} : \theta \in [0,1]\}$ , the **uniform mixture** of  $\{P_{\theta}^n : \theta \in [0,1]\}$  is the PMF  $Q_n$  on  $A^n$  defined by

$$Q_n(x_1^n) = \int_0^1 P_{\theta}^n(x_1^n) d\theta.$$

Definition: Mixture Code

**Definition 10.7** The **mixture code** is the Shannon code for the uniform mixture  $Q_n$  of the  $P_{\theta}^n$ .



**Lemma 10.8** For all  $k, \ell \in \mathbb{N}_0$ ,

$$\int_0^1 \theta^k (1 - \theta)^\ell d\theta = \frac{k!\ell!}{(k + \ell + 1)!}.$$

Proof. Exercise.

Proposition: Mixture Code Description Length

Proposition 10.9 The description length of the mixture code is

$$\log(n+1) + \log\binom{n}{k}.$$

Proof (Hints). Straightforward.

*Proof.* The uniform mixture is

$$Q_n(x_1^n) = \int_0^1 \theta^k (1-\theta)^{n-k} \,\mathrm{d}\theta,$$

where k is the number of 1s in  $x_1^n$ . By the above lemma with  $\ell = n - k$ , the description length is

$$-\log Q_n(x_1^n) = -\log \frac{k!(n-k)!}{(n+1)!} = \log(n+1) + \log \binom{n}{k}.$$

Definition: Predictive Code

**Definition 10.10** The **predictive code** describes the message  $x_1^n$  in steps instead of describing it all at once: having already communicated  $x_1^i$ , the encoder and decoder calculate the estimate

$$\hat{\theta}_i = \frac{k_i + 1}{i + 2},$$

where  $k_i$  is the number of 1s in  $x_1^i$ . Since  $\hat{\theta}_i$  is known to the decoder, the encoder then describes  $x_{i+1}$  using  $-\log P_{\hat{\theta}_i}(x_{i+1})$  bits. This is repeated for each i=1,...,n-1.

Proposition: Predictive Code Description Length

**Proposition 10.11** The description length of the predictive code is

$$\log(n+1) + \log\binom{n}{k},$$

where k is the number of 1s in  $x_1^n$ .

Proof (Hints). Straightforward.

*Proof.* We have  $k_0 = 0$  so  $\hat{\theta}_0 = 1/2$ . The description length is

$$\begin{split} \sum_{i=1}^{n} -\log P_{\hat{\theta}_{i-1}}(x_i) &= \sum_{i=1}^{n} -\log \left( \hat{\theta}_{i-1}^{x_i} \left( 1 - \hat{\theta}_{i-1} \right)^{1-x_i} \right) \\ &= -\sum_{i=1}^{n} \left( x_i \log \hat{\theta}_{i-1} + (1-x_i) \log \left( 1 - \hat{\theta}_{i-1} \right) \right) \\ &= -\sum_{i=1}^{n} \left( x_i \log \frac{k_{i-1}+1}{i+1} + (1-x_i) \log \frac{i-k_{i-1}}{i+1} \right) \\ &= -\sum_{i:x_i=1} \log(k_{i-1}) - \sum_{i:x_i=0} \log(i-k_{i-1}) + \sum_{i=1}^{n} \log(i+1) \end{split}$$

$$\begin{split} &= -\log(k_n!) - \log((n-k_n)!) + \log((n+1)!) \\ &= \log(n+1) + \log\binom{n}{k}. \end{split}$$

Lemma: Exponential Upper Bound On Binomial Coefficient

**Lemma 10.12** Let  $n \in \mathbb{N}$ ,  $0 \le k \le n$  and p = k/n. Then

$$\binom{n}{k} \leq \frac{1}{\sqrt{2\pi n p (1-p)}} \cdot 2^{nH(\mathrm{Bern}(p))}.$$

Proof. Exercise.

Definition: Fisher Information

**Definition 10.13** The **Fisher information** for a parametric family of PMFS  $\{P_{\theta}: \theta \in \Theta\}$  is defined as

$$J(\theta) := \mathbb{E}_{X \sim P_{\theta}} \left[ \frac{\frac{\partial}{\partial \theta} P_{\theta}(X)}{\left(P_{\theta}(X)\right)^{2}} \right].$$

Proposition: Upper Bound On Price Of Universality Of Counting
Mixture And Predictive Codes

**Proposition 10.14** The description length of the counting, mixture and predictive codes is bounded above by

$$nH(\hat{P}_n) + \frac{1}{2}\log\left(n\frac{J(\theta_{\text{MLE}})}{2\pi}\right) + 1.$$

In particular, the price of universality of the counting, mixture and predictive codes is  $\frac{1}{2} \log n$  bits.

Proof (Hints). Straightforward.

*Proof.* The description length of all three codes is  $\log(n+1) + \log\binom{n}{k}$  by Proposition 10.5, Proposition 10.9 and Proposition 10.5. By Lemma 10.12, we have

$$\log {n \choose k} \leq nH \left(\hat{P}_n\right) - \frac{1}{2} \log(2\pi n\theta_{\mathrm{MLE}}(1-\theta_{\mathrm{MLE}})) = nH \left(\hat{P}_n\right) + \frac{1}{2} \log \left(\frac{J(\theta_{\mathrm{MLE}})}{2\pi n}\right),$$

where  $J(\cdot)$  is the Fisher information of the family of Bernoulli PMFs. This concludes the result.

Notation: Mdl Estimator

**Notation 10.15** Partitioning the interval [0,1] into  $\sqrt{n}$  intervals of length  $1/\sqrt{n}$ , let  $\theta_{\text{MDL}}$  denote the index of the interval that  $\theta_{\text{MLE}}$  belongs to.

Definition: Mdl Code

Definition 10.16 The MDL (minimum description length) code first describes  $\theta_{\text{MDL}}$  to the decoder, then describes  $x_1^n$  using the Shannon code for  $P_{\theta_{\text{MDL}}}$ .

Remark 10.17 Note that we can write the MLE as

$$\theta_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^n X_i = \theta^* + \frac{1}{\sqrt{n}} \left( \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \theta^*) \right),$$

where  $\theta^*$  is the true underlying parameter. The term in the brackets has mean  $\mu = 0$  and variance  $\sigma^2 = \theta^*(1 - \theta^*)$ . So by the central limit theorem,

$$heta_{
m MLE} pprox heta^* + rac{1}{\sqrt{n}} Z, \quad Z \sim N(\mu, \sigma^2).$$

Hence,  $\theta_{\text{MLE}}$  has fluctuations of order  $O(1/\sqrt{n})$ . This suggests the MLE code strategy of describing it with O(1/n) accuracy is too fine-grained, and the MDL code strategy of describing it with  $O(1/\sqrt{n})$  accuracy is more appropriate.

Proposition: Mdl Code Description Length

**Proposition 10.18** The description length of the MDL code is

$$nH(\hat{P}_n) + \frac{1}{2}\log n + O(1).$$

In particular, the price of universality of the MDL code is  $\frac{1}{2} \log n$  bits.

 $\begin{array}{ll} \textit{Proof} & (\textit{Hints}). & \text{Use that} & D \Big( P_{\theta_{\text{MLE}}} \parallel P_{\theta_{\text{MDL}}} \Big) = O \Big( (\theta_{\text{MLE}} - \theta_{\text{MDL}})^2 \Big) \\ (\text{since } D(P \parallel Q) \text{ is locally quadratic in } (P - Q)). & \Box \end{array}$ 

*Proof.* By Proposition 8.5, we have

$$-\log P_{\theta_{\mathrm{MDL}}}^{n}(x_{1}^{n}) = nD\left(P_{\theta_{\mathrm{MLE}}} \parallel P_{\theta_{\mathrm{MDL}}}\right) + nH\left(\hat{P}_{n}\right).$$

Since  $D(P \parallel Q)$  is locally quadratic in (P - Q), the Taylor expansion gives

$$D \Big( P_{\theta_{\mathrm{MLE}}} \parallel P_{\theta_{\mathrm{MDL}}} \Big) = O \Big( (\theta_{\mathrm{MLE}} - \theta_{\mathrm{MLE}})^2 \Big).$$

Now by construction,  $|\theta_{\text{MLE}} - \theta_{\text{MDL}}| = O(1/\sqrt{n})$ . Thus,

$$nD(P_{\theta_{\text{MLE}}} \parallel P_{\theta_{\text{MDL}}}) = O(1),$$

which concludes the result.

## 11. Redundancy and the price of universality

## 11.1. Redundancy

Definition: Redundancy

**Definition 11.1** Suppose  $x_1^n \in A^n$  is generated by a memoryless source with PMF P on a finite alphabet A, with |A| = m. The **redundancy** on  $x_1^n$  of a code with length function  $L_n$  is the difference between  $L_n(x_1^n)$  and the target compression of  $-\log P^n(x_1^n)$  bits (the ideal Shannon codelength with respect to  $P^n$ ), so is given by

$$L_n(x_1^n) - (-\log P^n(x_1^n)).$$

If we use the Shannon code with respect to an arbitrary PMF  $Q_n$  on  $A^n$ , the redundancy is

$$\rho_n(x_1^n; P, Q_n) = -\log Q_n(x_1^n) - (-\log P^n(x_1^n)) = \log \frac{P^n(x_1^n)}{Q_n(x_1^n)}.$$

Remark 11.2 Note that by the Codes-distributions Correspondence, we can restrict our attention to (ideal) Shannon codes (assuming that we ignore integer codelength constraints).

Definition: Worst Case Maximal Redundancy

**Definition 11.3** The worst-case maximal redundancy of the Shannon code with respect to  $Q_n$  is its largest redundancy over all strings and all source distributions:

$$\sup_{P \in \mathcal{P}} \max_{x_1^n \in A^n} \log \frac{P^n(x_1^n)}{Q_n(x_1^n)}.$$

Definition: Minimax Maximal Redundancy

**Definition 11.4** The minimax maximal redundancy  $\rho_n^*$  over the class of all IID source distributions on  $A^n$  is the shortest possible worst-case maximal redundancy:

$$\rho_n^* = \inf_{Q_n} \sup_{P \in \mathcal{P}} \max_{x_1^n \in A^n} \log \frac{P^n(x_1^n)}{Q_n(x_1^n)}.$$

Definition: Worst Case Average Redundancy

**Definition 11.5** The worst-case average redundancy of the Shannon code with respect to  $Q_n$  is its largest average redundancy over all source distributions:

$$\sup_{P\in\mathcal{P}} \mathbb{E}_{X_1^n \sim P^n} \left[ \log \frac{P^n(X_1^n)}{Q_n(X_1^n)} \right] = \sup_{P\in\mathcal{P}} D(P^n \parallel Q_n).$$

Definition: Minimax Average Redundancy

**Definition 11.6** The minimax average redundancy over the class of all IID source distributions on  $A^n$  is the shortest possible worst-case average redundancy

$$\overline{\rho}_n = \inf_{Q_n} \sup_{P \in \mathcal{P}} D(P^n \parallel Q_n).$$

11.2. Shtarkov's upper bound

Theorem: Normalised Maximum Likelihood Code

**Theorem 11.7** (Normalised Maximum Likelihood Code) Let  $\{P_{\theta} : \theta \in \Theta\}$  be a parametric family of distributions on a finite alphabet B. Denote the minimax maximal redundancy over  $\{P_{\theta} : \theta \in \Theta\}$  by

$$\rho^*(\Theta) := \inf_{Q} \sup_{\theta \in \Theta} \max_{x \in B} \log \frac{P_{\theta}(x)}{Q(x)}.$$

Then  $\rho^*(\Theta) = \log Z$ , where

$$Z = \sum_{x \in B} \sup_{\theta \in \Theta} P_{\theta}(x).$$

## Proof (Hints).

- For  $\leq$ , consider a suitable distribution  $Q^*$  which is defined using Z.
- For  $\geq$ , use that for every Q,  $Q(x) \leq Q^*(x)$  for at least one x.

*Proof.* Define the distribution  $Q^*$  on B by  $Q^*(x) = \frac{1}{Z} \sup_{\theta \in \Theta} P_{\theta}(x)$ . We have

$$\begin{split} \rho^*(\Theta) & \leq \sup_{\theta \in \Theta} \max_{x \in B} \log \frac{P_{\theta}(x)}{Q^*(x)} \\ &= \max_{x \in B} \sup_{\theta \in \Theta} \log \frac{P_{\theta}(x)}{Q^*(x)} \\ &= \max_{x \in B} \log \frac{\sup_{\theta \in \Theta} P_{\theta}(x)}{Q^*(x)} = \max_{x \in B} \log Z = \log Z. \end{split}$$

For the lower bound, note that for every Q,  $Q(x) \leq Q^*(x)$  for at least one x, say  $x^*$ . Therefore,

 $\sup_{\theta \in \Theta} \max_{x \in B} \log \frac{P_{\theta}(x)}{Q(x)} \ge \sup_{\theta \in \Theta} \log \frac{P_{\theta}(x^*)}{Q(x^*)} \ge \sup_{\theta \in \Theta} \log \frac{P_{\theta}(x^*)}{Q^*(x^*)} = \log \frac{\sup_{\theta \in \Theta} P_{\theta}(x^*)}{Q^*(x^*)} = \log Z$ 

Taking the infimum over all Q gives that  $\rho^*(\Theta) \ge \log Z$  which concludes the result.

Definition: Gamma Function

## **Definition 11.8** The **Gamma function** is defined as

$$\Gamma(z) := \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x.$$

Note that for all  $n \in \mathbb{N}_0$ ,  $\Gamma(n+1) = n!$ .

Theorem: Shtarkov

**Theorem 11.9** (Shtarkov) The minimax maximal redundancy over the class of all memoryless sources on A with |A| = m satisfies, for all  $n \in \mathbb{N}$ ,

$$\rho_n^* \le \frac{m-1}{2} \log \left(\frac{n}{2}\right) + \log \frac{\Gamma(1/2)}{\Gamma(m/2)} + \frac{C'}{\sqrt{n}}$$

for a constant C depending only on m.

Proof Sketch. By Normalised Maximum Likelihood Code applied to the parametric family of all IID distributions  $P^n$  on  $A^n$ , we have

$$\rho_n^* = \log \left( \sum_{x_1^n \in A^n} \sup_P P^n(x_1^n) \right).$$

By Proposition 8.5, the MLE in this family is the empirical distribution  $\hat{P}_n = \hat{P}_{x_1^n}$ , so

$$\rho_n^* = \log \left( \sum_{x_1^n \in A^n} \hat{P}_{x_1^n}^n(x_1^n) \right).$$

| Evaluating this (after some length calculations) gives the result. |  |
|--------------------------------------------------------------------|--|
|                                                                    |  |
|                                                                    |  |
|                                                                    |  |

11.3. Rissanen's lower bound

Definition: Channel Capacity

**Definition 11.10** Let  $\{W(y \mid x) : x \in A, y \in B\}$  be a family of conditional PMFs  $W(\cdot \mid x)$ , describing the distribution of the output y of a discrete **channel** with input x. The **capacity** of the channel is

$$C = \sup I(X; Y),$$

where the supremum is over all jointly distribution RVs (X,Y), where X has an arbitrary distribution and the distribution of Y given X is  $\mathbb{P}(Y = y \mid X = x) = W(y \mid x)$ .

Theorem: Redundancy Capacity Theorem

**Theorem 11.11** (Redundancy-capacity Theorem) Let  $\{P_{\theta} : \theta \in \Theta\}$  be a "nice" parametric family of distributions on a finite alphabet B. Denote the minimax average redundancy over  $\{P_{\theta} : \theta \in \Theta\}$  by

$$\overline{\rho}(\Theta) := \inf_{Q} \sup_{\theta \in \Theta} D(P_{\theta} \parallel Q).$$

Then  $\overline{\rho}(\Theta)$  is equal to the capacity of the channel with input  $\theta$  and output  $X \sim P_{\theta}$ :

$$\overline{\rho}(\Theta) = \max_{\pi} I(T; X),$$

where the maximum is over all probability distributions  $\pi$  on  $\Theta$ ,  $T \sim \pi$  and  $X \mid T = \theta \sim P_{\theta}$  (so the pair of RVs (T, X) has joint distribution  $\pi(\theta)P_{\theta}(x)$ ).

Proof. Omitted (non-examinable).  $\Box$ 

Definition: Standard Parameterisation Of Pmfs On Alphabet

**Definition 11.12** The standard parameterisation of the set of PMFS on  $A = \{a_1, ..., a_m\}$  is  $\{P_{\theta} : \theta \in \Theta\}$ , where  $\Theta = \{\theta \in [0, 1]^{m-1} : \sum_{i=1}^{m-1} \theta_i \leq 1\}$  and

$$P_{\boldsymbol{\theta}}(a_i) = \begin{cases} \boldsymbol{\theta}_i & \text{if } i \neq m \\ 1 - \sum_{j=1}^{m-1} \boldsymbol{\theta}_j & \text{if } i = m \end{cases}.$$

Theorem: Rissanen

**Theorem 11.13** (Rissanen) Let  $\Theta$  parametrise the set of PMFs on A, where |A| = m. Let  $\{Q_n : n \in \mathbb{N}\}$  be an arbitrary sequence of distributions on  $A^n$ . Then for all  $\varepsilon > 0$ , there exists a constant C and a subset  $\Theta_0 \subseteq \Theta$  of volume less than  $\varepsilon$  such that for all  $\theta \notin \Theta_0$ ,

$$D(P_{\theta}^n \parallel Q_n) \ge \frac{m-1}{2} \log n - C$$
 eventually.

In particular,  $\overline{\rho}_n \ge \frac{m-1}{2} \log n - C'$  eventually for some constant C'.

Proof. Non-examinable.  $\Box$ 



Corollary 11.14 We have (eventually)

$$\frac{m-1}{2}\log n - C' \leq \overline{\rho}_n \leq \rho_n^* \leq \frac{m-1}{2}\log n + C$$

for some constants C, C'.

**Remark 11.15** The above bound has a probabilistic interpretation: there exists a sequence of distributions  $\{Q_n : n \in \mathbb{N}\}$  which are "uniformly close" to all product distributions:

$$-\log Q_n(x_1^n) \approx -\log P^n(x_1^n) + \frac{m-1}{2}\log n,$$

for all  $P \in \mathcal{P}$  and  $x_1^n \in A^n$ . Moreover, the error term  $\frac{m-1}{2} \log n$  is the best possible (up to addition of constants).