SOC542 Statistical Methods in Sociology II Count outcomes

Thomas Davidson

Rutgers University

April 7, 2025

Course updates

Homework

- ► Homework 3 grades released
- ▶ Homework 4 released after class, due next Friday, 4/18
 - Count outcomes
 - Categorical and ordered outcomes (next week)

Course updates

Projects

- ▶ Preliminary results due 4/25
 - One or more tables or figures of descriptive statistics
 - One or more regression tables showing
 - Bivariate results
 - Multivariate results
 - Must include at least one figure showing estimates (e.g. coefficients, predictions, marginal effects)
 - ▶ Draft write up of methodology and results
- ▶ Presentations on 5/5

Plan

- Count outcomes
- ▶ Poisson regression
- Overdispersion and negative-binomial regression
- Offsets
- Zero-inflated models

- ▶ Count outcomes are variables defined as *non-negative integers*.
 - ▶ Values must be 0 or greater.
 - Numbers must not contain any fractional component.

- ▶ In general, we obtain count variables by counting discrete events over space and time. Many social processes produce counts:
 - ► How many people currently live in a census tract?
 - How many siblings does someone currently have?
 - How many times has someone ever been arrested?
 - How many sexual partners reported in one year?

Modeling counts using OLS

- ► We could treat counts like continuous variables and model them using OLS.
- Such a strategy might be appropriate if a count variable is normally distributed.
- But like the LPM, we might run into problems when making predictions.
 - Predictions not constrained to be positive or counts.

Data

Twitter and political parties in Europe

- ▶ Data from Twitter accounts of 190 political parties in 28 countries in Europe
- ► Includes cumulative number of tweets and engagements (likes, replies, retweets) from 2018
- ▶ Data on left-right ideology (0-10 scale) and % of parliamentary seats held

Data

Twitter and political parties in Europe

Modeling counts using OLS

	OLS	OLS FE	OLS FE (Log)
Seats %	8.826	47.643*	0.016
	(23.091)	(21.346)	(0.009)
Ideology [0-10]	-79.080	-46.490	-0.070
	(130.196)	(112.614)	(0.046)
Intercept	3066.667***	1958.652	7.767***
	(740.226)	(2033.170)	(0.823)
Num.Obs.	190	190	190
R2	0.002	0.427	0.428
R2 Adj.	-0.008	0.323	0.324
F	0.228	4.112	4.120

^{*} p <0.05, ** p <0.01, *** p <0.001 Country FE omitted.

Making predictions with OLS

Histogram of predict(ols.fe, data)

Making predictions with OLS

Histogram of exp(predict(ols.fe.log, data

Analyzing predictions

```
min(predict(ols.fe, data))
## [1] -370.4861
min(exp(predict(ols.fe.log, data)))
## [1] 26
```

Modeling counts as Poisson processes

- ▶ The **Poisson** distribution is a discrete probability distribution that indicates the count of events in a fixed interval. These counts can be considered as rates of events per unit.¹
- The probability mass function is defined by a single parameter λ , where the probability of observing k events is equal to

$$P(x = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

For any Poisson distributed random variable, x

$$E(x) = \lambda = Var(x)$$

¹The distribution gets its name from French mathematician Siméon Denis Poisson [1781-1840].

Modeling counts as Poisson processes

- ▶ Let's say the average number of visits to doctor each year is 1.6.
- We can model the probabilities of observing different numbers of visits given $\lambda = 1.6$:

$$P(k \text{ visits a year}) = \frac{1.6^k e^{-1.6}}{k!}$$

$$P(0 \text{ visits a year}) = \frac{1.6^0 e^{-1.6}}{0!} = \frac{e^{1.6}}{1} \approx 0.2$$

$$P(1 \text{ visits a year}) = \frac{1.6^1 e^{-1.6}}{1!} = \frac{1.6e^{-1.6}}{1} \approx 0.4$$

Poisson distributions


```
Poisson distributions, E[x] = \lambda = Var(x)

round(mean(x),2)

## [1] 1.59

round(var(x),2)

## [1] 1.53
```

► The Poisson regression model assumes that the outcome is Poisson distributed, conditional on the observed predictors.

$$y \sim Poisson(\lambda)$$

► To ensure that our estimates are positive, we can use a logarithmic *link function*, thus

$$y = log(\lambda) = \beta_0 + \beta_1 x_1 + \beta_2 x_1 + ... + \beta_k x_k$$

▶ Like logistic regression, this equation can equivalently be expressed using the *inverse* of the logarithm function:

$$\lambda = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_1 + \dots + \beta_k x_k}$$

Fitting a model

	OLS FE (Log)	Poisson
Seats %	0.016	0.013***
	(0.009)	(0.000)
Ideology [0-10]	-0.070	-0.018***
	(0.046)	(0.001)
Intercept	7.767***	7.708***
	(0.823)	(0.012)
Num.Obs.	190	190
R2	0.428	
R2 Adj.	0.324	
Log.Lik.	-308.005	-166974.776

^{*} p <0.05, ** p <0.01, *** p <0.001 Country FE omitted.

Interpretation

- ▶ The intercept β_0 is the *logged* average value of the outcome when all other predictors are equal to zero.
- ▶ Each coefficient β_i indicates the effect of a unit change of x_i on the *logarithm* of the outcome.
 - e.g., $\beta_{seats\%}$ implies that the expected log number of tweets increases by 0.013 in response to a 1-unit, or 1% increase in parliamentary seats held by a party.
- Coefficients can be interpreted as multiplicative changes after exponentiation
 - ▶ e.g., $e^{\beta_{seats\%}} = e^{0.013} \approx 1.013$. This implies that a ~1.3% increase in tweets.
 - ► These coefficients are sometimes referred to as **incident rate** ratios (IRRs).

	Poisson (Exponentiated)
Seats %	1.014***
	(0.000)
Ideology [0-10]	0.983***
	(0.001)
Intercept	2225.822***
	(25.924)
Num.Obs.	190
Log.Lik.	-166974.776
F	11552.594

^{*} p <0.05, ** p <0.01, *** p <0.001 Country FE omitted.

- A random variable is **overdispersed** if the observed variability is greater than the variability expected by the underlying probability model.
- ▶ **Underdispersion** occurs if the variability is lower than expected, but it is rarely an issue.

Poisson($\lambda = 1.6$) and NegBin($\mu = 1.6$, $\theta = 0.5$)

Negative binomial distribution and regression

The **negative binomial** distribution (aka the gamma-Poisson distribution) includes an additional parameter θ to account for dispersion, referred to as a **scale parameter**.

$$y = NegativeBinomial(\lambda, \theta)$$

- In negative binomial regression, θ is estimated from the data. The value must be positive.
 - ▶ Lower values indicate greater overdispersion.
 - ▶ Negative binomial becomes identical to Poisson as $\lim_{\theta\to\infty}$.

Fitting a negative binomial regression

Negative binomial regression is not implemented in glm. Instead, we can use the glm.nb function from the MASS package. 2

²The "fixest" package has an implementation, "fenegbin" that is more suitable for these data as it can also cluster standard errors.

Comparing Poisson and negative binomial regression

	Poisson	Negative binomial
Seats %	0.013***	0.014*
	(0.000)	(0.006)
Ideology [0-10]	-0.018***	-0.054
	(0.001)	(0.031)
Intercept	7.708***	8.031***
	(0.012)	(0.564)
Num.Obs.	190	190
AIC	334009.6	3267.4
BIC	334107.0	3368.0
Log.Lik.	-166974.776	-1602.681
F	11552.594	9.208

^{*} p <0.05, ** p <0.01, *** p <0.001 Country FE omitted. Exponentiated coefficients.

Negative binomial regression

```
nb$theta

## [1] 1.197566

nb$SE.theta

## [1] 0.110282
```

Negative binomial regression

Negative binomial regression

Bayesian estimation

Poisson posterior predictive check

Negative binomial posterior predictive check

Poisson PSIS plot

PSIS diagnostic plot

Negative binomial PSIS plot

PSIS diagnostic plot

Negative binomial regression

Comparing Poisson and negative binomial models

Negative binomial regression

Bayesian estimate of θ

Intuition

- Assume a count outcome y is measured over varying time intervals t. The level of y will vary both as a function of the underlying count process and the length of exposure.³
- We can add an offset to our model to account for varying exposures.
- ▶ The outcome of a model with an offset is now $\frac{y}{t}$.

³The same logic would apply if we measured quantities over varying spatial units, e.g. counting people in blocks versus census tracts.

Explanation

- ▶ The mean of a Poisson process, λ is implicitly $\lambda = \frac{\mu}{\tau}$, the expected number of events, μ , over the duration τ .
- Assume a Poisson process where λ_i is the expected number of events for the i^{th} observation. We can write the link function as

$$y = Poisson(\lambda)$$
 $log(\lambda) = log(\frac{\mu}{\tau}) = eta_0 + eta_1 x$

This can be re-written as

$$= log(\mu) - log(\tau) = \beta_0 + \beta_1 x$$

Explanation

We can think of τ as the number of **exposures** for each observation. Thus, we can write out a new model for μ :

$$y \sim Poisson(\mu)$$

$$\log(\mu) = \log(\tau) + \beta_0 + \beta_1 x$$

Example: Predicting retweet rates

- ► The number of retweets depends on the number of times a party tweeted
 - No tweets, no retweets
 - More tweets, more retweets?
- Two specifications
 - No offset
 - Log(tweets) included as offset

Example: Predicting retweet rates

	NB	NB (Offset)
Seats %	1.033***	1.033***
	(0.009)	(0.007)
Ideology [0-10]	0.973	0.977
	(0.045)	(0.034)
Intercept	21286.898***	7.528**
	(17921.337)	(4.739)
Num.Obs.	190	190
AIC	4391.7	4243.0
BIC	4492.3	4343.7
Log.Lik.	-2164.836	-2090.518
F	21.379	13.095

^{*} p <0.05, ** p <0.01, *** p <0.001

Using offsets

- Offsets allow models to be interpreted as rates rather than counts.
- ► Always include an offset if there are differences in measurement intervals across observations.
- Offsets can also be included when intervals are constant if a rate is more informative.

Intuition

- ► Some count outcomes have high rates of zeros. What if zeros are generated by a different process compared to non-zeros?
- Zero-inflated models allow us to jointly model the process determining whether counts are non-zero and the expected count for each non-zero observation.

Specification

► The zero-inflated Poisson model consists of a mixture of two linear models, a logistic regression predicting the probability of a zero and a Poisson model predicting the count outcome.

$$y_i = ZIPoisson(p, \lambda)$$
 $logit(p) = \gamma_0 + \gamma_1 z$

$$log(\lambda)\beta_0 + \beta_1 x$$

► Each model has its own set of regression parameters. These can be specified differently to model each process.

Example: Books borrowed from the library

- Are you borrowing any books from the library?
 - ► If so, how many?

Simulating library usage (binary)

```
N < -1000 # N
z <- rnorm(N, 0.5, 1) # Random variable determines library usage
p_{lib} \leftarrow 1/(1 + (exp(1)^{-}(z))) \# Convert \ to \ probability
lib <- rep(0,N) # Generate binary library variable
for (i in 1:N) {
    lib[i] <- rbinom(1, 1, p_lib[i])
sum(lib)/N
## [1] 0.604
```

Simulating borrowing (count)

```
x <- rnorm(N) # Random variable for books borrowed
books <- c() # Store number of books borrowed for each student
for (i in 1:N) {
    if (lib[i] == 1) { # Borrow books if library visitor
        books[i] \leftarrow rpois(1, lambda = exp(0.5 + x[i]))
   } else {books[i] <- 0} # Otherwise zero books borrowed
mean(books)
## [1] 1.584
max(books)
## [1] 52
```

Two kinds of zeros

```
sum(books == 0)
## [1] 542
sum(books == 0 & lib == 1)
## [1] 146
sum(books == 0 & lib == 0)
## [1] 396
```

Histogram of books

Estimating a Poisson model

Poisson posterior predictive checks

Poisson posterior predictive checks

Estimating a zero-inflated Poisson model

Chain 1 finished in 6.6 seconds.

We must use the brms library to implement Bayesian zero-inflated Poisson regression.

	Poisson (exp.)	ZI Poisson (exp.)
(Intercept)	0.991	
	[0.921, 1.063]	
×	2.687	
	[2.557, 2.826]	
b_Intercept		1.681
		[1.561, 1.818]
b_x		2.697
		[2.559, 2.832]
b_zi_Intercept		0.906
		[0.753, 1.090]
b_zi_z		0.421
		[0.347, 0.522]
ELPD	-1806.5	-1327.4

Posterior predictive checks

Posterior predictive checks

Comparing standard and zero-inflated Poisson models

```
## elpd_diff se_diff
## zip 0.0 0.0
## pois.m -479.1 45.1
```

Summary

- ▶ Standard linear models are generally unsuitable for count data
- Poisson regression can be used for many count outcomes
- Overdispersion occurs when variation higher than expected under Poisson model
 - Negative binomial regression includes a scale parameter to model this
- Offsets transform from counts to rates and should be used when measurement intervals vary
- Zero-inflated models can decompose processes generating zeros and counts

Next week

- Categorical outcomes
 - ► Multinomial and ordered logistic regression

Lab

▶ Estimating and interpreting count models in R