MF921 Topics in Dynamic Asset Pricing

Stochastic Analysis & Stochastic Calculus in Quantitative Finance

Yuanhui Zhao

Boston University Week 2

Change of Numeraire: Motivation and Key Idea

In option pricing, we usually price under the risk-neutral measure using the money market account $B(t)=e^{rt}$ as the numeraire. But sometimes payoffs become simpler if we change the unit of measurement (the numeraire). Instead of measuring in "dollars," measure in "shares of stock".

The key idea is:

- ullet Pick any strictly positive traded asset N(t) as the numeraire.
- $\begin{array}{c} \bullet \ \ \text{Then define a new probability measure } \tilde{\mathbb{P}} \ \text{such that} \\ \frac{S(t)}{N(t)} \ \ \text{is a martingale under } \tilde{\mathbb{P}}. \ \text{No-arbitrage is preserved}. \end{array}$

We first look at the details how this work (Radon Nikodym derivative & Girsanov Theorem) and then apply the scheme to price different type of options.

Change of Numeraire

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}^*)$ with d-dim Brownian W:

- Money market account (baseline numeraire): $dB_t = B_t r_t dt$
- Traded asset S(t): $dS_t = S_t(r_t dt + \sigma_t dW_t)$, $\frac{S_t}{B_t}$ is a martingale.
- ullet Derivative pricing rule: for payoff X_T at maturity T, $V_0 = \mathbb{E}^{\mathbb{P}^*}\left[rac{X_T}{B_T}
 ight]$

Our goal is to pick another strictly positive traded asset N(t) and define a new measure $\tilde{\mathbb{P}}$ such that $\frac{S(t)}{N(t)}$ is a martingale for every traded asset S(t).

Change of Numeraire Con.

Oberve $\frac{S(t)}{B(t)}$ is a martingale under \mathbb{P}^* . We want $\frac{S(t)}{N(t)}$ to be a martingale under $\tilde{\mathbb{P}}$.

Define $\tilde{\mathbb{P}}$ via the Radon–Nikodym derivative with respect to \mathbb{P}^* :

$$\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*}\bigg|_{\mathcal{F}_T} = Z_T := \frac{N(T)/B(T)}{N(0)/B(0)}$$

By construction, $\frac{N(T)}{B(T)}$ is a martingale under \mathbb{P}^* , $Z_T>0$ and $\mathbb{E}^{\mathbb{P}^*}[Z_T]=1$ and take any payoff X_T :

$$V(0) = N(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[\frac{X_T}{N(T)} \right] = N(0) \mathbb{E}^{\mathbb{P}^*} \left[\frac{X_T}{N(T)} Z_T \right] = \mathbb{E}^{\mathbb{P}^*} \left[\frac{X_T}{B(T)} \right]$$

So the choice of Radon—Nikodym derivative guarantees the prices are consistent under both measures and no arbitrage is preserved.

Change of Numeraire Con.

What is the dS(t) looks like under meausre $\tilde{\mathbb{P}}$?

Note: Under
$$Q$$
, we have
$$\begin{cases} dS(t) = r(t)S(t)\,dt + \sigma(t)S(t)\,dW(t) \\ dN(t) = r(t)N(t)\,dt + \gamma(t)N(t)\,dW(t) \end{cases}$$

Denote
$$\widehat{N}_t = \frac{N_t}{B_t}$$
, apply Itô we get $\frac{d\widehat{N}_t}{\widehat{N}_t} = \gamma_t \, dW_t$, $\widehat{N}_t = \widehat{N}_0 e^{\left(\int_0^t \gamma_s \cdot dW_s - \frac{1}{2} \int_0^t \|\gamma_s\|^2 \, ds\right)}$.

Oberve that
$$Z_t = \frac{\widehat{N}_t}{\widehat{N}_0} = e^{\left(\int_0^t \gamma_s \cdot dW_s - \frac{1}{2} \int_0^t \|\gamma_s\|^2 ds\right)}$$

Girsanov's theorem says: if we define a new measure $ilde{\mathbb{P}}$ via this Z_t , then the process

$$\tilde{W}(t) = W(t) - \int_0^t \gamma_s dt$$

is a Brownian motion under $\tilde{\mathbb{P}}.$ Substitute into dS(t) to get the $\tilde{\mathbb{P}}$ dynamics:

$$dS(t) = S(t) \left[\left(r(t) + \sigma(t) \cdot \gamma(t) \right) dt + \sigma(t) \cdot d\tilde{W}(t) \right]$$

$$S(t) = S_0 \exp \left(\int_0^t \left(r(s) + \sigma(s) \cdot \gamma(s) - \frac{1}{2} \|\sigma(s)\|^2 \right) ds + \int_0^t \sigma(s) \cdot d\tilde{W}(s) \right)$$

Black-Scholes Formula

Given r,σ are constant, we have $S(T)=S(0)\exp\left\{(r-\frac{1}{2}\sigma^2)T+\sigma W(T)\right\}$.

The no-arbitrage price for the call option:

$$\psi_{c}(0) = \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}(S(T) - K)^{+})$$

$$= \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}(S(T) - K)I(S(T) \ge K))$$

$$= \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}S(T)I(S(T) \ge K)) - Ke^{-rT}\mathbb{P}^{*}(S(T) \ge K)$$

$$= I - Ke^{-rT} \cdot II$$

For II:

$$\begin{split} II &= \mathbb{P}^*(S(T) \geq K) = 1 - \Phi\left(\frac{\log(K/S(0)) - (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right) \\ &= \Phi\left(\frac{\log(S(0)/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right) \end{split}$$

Note: Φ is the CDF of the standard normal distribution.

Black-Scholes Formula Con.

For I, we apply the change of numeraire and use stock itself as numeraire. Then based on the eraly definition we have $\left.\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*}\right|_{\mathcal{F}_T}=Z_T:=e^{-rT}\frac{S(T)}{S(0)}$ and $\gamma_t=\sigma$. Therefore, under $\tilde{\mathbb{P}}$ we have the following dynamics of S(t):

$$\frac{dS_t}{S_t} = rdt + \sigma^2 dt + \sigma d\tilde{W}_t, \ S(t) = S(0) \exp\left\{ (r + \sigma^2/2)t + \sigma \tilde{W}_t \right\}$$

Then we can rewrite I:

$$\begin{split} I &= S(0)\mathbb{E}^{\mathbb{P}^*} \left(e^{-rT} \frac{S(T)}{S(0)} I(S(T) \ge K) \right) = S(0)\mathbb{E}^{\tilde{\mathbb{P}}} (I(S(T) \ge K)) \\ &= S(0)\tilde{\mathbb{P}} (S(T) \ge K) \\ &= S(0)\Phi \left(\frac{\log(S(0)/K) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}} \right). \end{split}$$

Putting together, we have the price of the call option is given by:

$$I - Ke^{-rT} \cdot II = S(0)\Phi(d_{+}) - Ke^{-rT}\Phi(d_{-})$$

where $d_{\pm} = \frac{\log(S(0)/K) + (r \pm \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$.

One Dimensional Barrier Options

Barrier options are path-dependent derivatives whose payoff is activated (knock-in) or extinguished (knock-out) if the underlying asset crosses a pre-specified barrier. They extend vanilla calls/puts by adding a barrier condition.

We first study continuously monitored barriers and derive Merton's closed-form pricing formulas (1973) for single-barrier options.

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}^*)$ with 1-dim Brownian W. The Market setting following:

$$dB(t) = B(t)rdt$$
, $dS(t) = rS(t)dt + \sigma S(t)dW(t)$

A continuously monitored barrier option has payoff = vanilla option payoff \times indicator of the barrier condition. For example:

• Up-and-out call:

$$V_0 = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K)^+ I \left\{ \max_{0 \le t \le T} S(t) \le H \right\} \right], \quad H > S(0)$$

Down-and-in put:

$$V_0 = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (K - S(T))^+ I \left\{ \min_{0 \le t \le T} S(t) \le H \right\} \right], \quad H < S(0)$$

Study the case of the down-and-in call option (DAIC) with strike K, barrier H < S(0):

$$\mathsf{DAIC} = e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[\left(S(T) - K \right)^+ I \left\{ \min_{0 \le t \le T} S(t) \le H \right\} \right]$$

One Dimensional Barrier Options Con.

For notation simplicity, denote a drifted Brownian motion:

$$W_{\mu,\sigma}(t) = \mu t + \sigma W(t), \quad M_t = \max_{0 \le s \le t} W_{\mu,\sigma}(s).$$

Some useful results from the reflection principle for a Brownian motion with a drift:

- (i) When $x \leq y$, y > 0, $\sigma > 0$:
 - $P(W_{\mu,\sigma}(t) \le x, M_t \ge y) = e^{2\mu y/\sigma^2} \Phi\left(\frac{x-2y-\mu t}{\sigma\sqrt{t}}\right)$
 - $P(W_{\mu,\sigma}(t) \le x, M_t \le y) = \Phi\left(\frac{x \mu t}{\sigma \sqrt{t}}\right) e^{2\mu y/\sigma^2} \Phi\left(\frac{x 2y \mu t}{\sigma \sqrt{t}}\right)$
- (ii) When $x \ge y > 0$, $\sigma > 0$:
 - $P(W_{\mu,\sigma}(t) \le x, M_t \le y) = P(M_t \le y) = \Phi\left(\frac{y \mu t}{\sigma\sqrt{t}}\right) e^{2\mu y/\sigma^2} \Phi\left(\frac{-y \mu t}{\sigma\sqrt{t}}\right)$
 - $P(W_{\mu,\sigma}(t) \le x, M_t \ge y) = P(W_{\mu,\sigma}(t) \le x) P(W_{\mu,\sigma}(t) \le x, M_t \le y) = \Phi\left(\frac{x \mu t}{\sigma \sqrt{t}}\right) \Phi\left(\frac{y \mu t}{\sigma \sqrt{t}}\right) + e^{2\mu y/\sigma^2} \Phi\left(\frac{-y \mu t}{\sigma \sqrt{t}}\right)$
- (iii) When $x \ge y$, y < 0, $\sigma > 0$:
 - $P\left(W_{\mu,\sigma}(t) \ge x, \min_{0 \le s \le t} W_{\mu,\sigma}(s) \le y\right) = e^{2\mu y/\sigma^2} \Phi\left(\frac{-x+2y+\mu t}{\sigma\sqrt{t}}\right)$

One Dimensional Barrier Options Con.

Back to the valuation of DAIC:

$$\begin{split} &\mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K)^+ I \left(\min_{0 \le t \le T} S(t) \le H \right) \right] \\ &= \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K) I \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \right] \\ &= \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} S(T) I \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \right] \\ &- K e^{-rT} P^* \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \\ &= I - K e^{-rT} \cdot II \end{split}$$

For II:

$$\begin{split} II &= P^* \left(S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right) \\ &= P \left\{ W_{r - \frac{\sigma^2}{2}, \sigma}(T) \geq \log(K/S(0)), \min_{0 \leq t \leq T} W_{r - \frac{\sigma^2}{2}, \sigma}(t) \leq \log(H/S(0)) \right\} \\ &= \exp \left\{ \frac{2(r - \sigma^2/2)}{\sigma^2} \log(H/S(0)) \right\} \cdot \Phi \left(\frac{2 \log(H/S(0)) - \log(K/S(0)) + (r - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \end{split}$$

One Dimensional Barrier Options Con.

For I, by changing of numeraire we can get:

$$\begin{split} I &= S(0)\mathbb{E}^{\mathbb{P}^*} \left(e^{-rT} \frac{S(T)}{S(0)} \cdot I \left\{ S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right\} \right) \\ &= S(0) \tilde{P} \left(S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right) \\ &= S(0) P \left\{ W_{r + \frac{\sigma^2}{2}, \sigma}(T) \geq \log(K/S(0)), \min_{0 \leq t \leq T} W_{r + \frac{\sigma^2}{2}, \sigma}(t) \leq \log(H/S(0)) \right\} \\ &= S(0) \cdot (H/S(0))^{\frac{2r}{\sigma^2} + 1} \Phi \left(\frac{\log(\{H^2/S(0)\}/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}} \right) \\ &= (H/S(0))^{\frac{2r}{\sigma^2} - 1} (H^2/S(0)) \Phi \left(\frac{\log(\{H^2/S(0)\}/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}} \right) \end{split}$$

Putting the two terms together, we get $I-Ke^{-rT}\cdot II=(H/S(0))^{\frac{2r}{\sigma^2}-1}\mathsf{BSC}(H^2/S(0)).$ Where $\mathsf{BSC}(x)$ is the Black-Scholes formula for a call option with the initial stock price being x:

$$\mathsf{BSC}(x) = x\Phi(d_+) - Ke^{-rT}\Phi(d_-) \text{ with } d_\pm = \frac{\log(x/K) + (r\pm\sigma^2/2)T}{\sigma\sqrt{T}}$$

Exchange Options

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}^*)$ with 2-dim independent Brownian, $W_1(t)$ and $W_2(t)$. We have two traded assets $S_1(t)$ and $S_2(t)$ with the following dynamics:

$$\begin{aligned} \frac{dS_1(t)}{S_1(t)} &= rdt + \sigma_1 dW_1(t) \\ \frac{dS_2(t)}{S_2(t)} &= rdt + \sigma_2 \left\{ \rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t) \right\} \end{aligned}$$

The exchange option gives the holder the right, but not the obligation, to exchange asset S_2 for asset S_1 at maturity T. The price of this option as following:

$$u(0) = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S_1(T) - S_2(T))^+ \right]$$

$$= S_2(0) \mathbb{E}^{\mathbb{P}^*} \left[\frac{e^{-rT} S_2(T)}{S_2(0)} \left(\frac{S_1(T)}{S_2(T)} - 1 \right)^+ \right]$$

$$= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[\left(\frac{S_1(T)}{S_2(T)} - 1 \right)^+ \right]$$

$$= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)^+ \right]$$

Exchange Options Con.

Apply Itô, we have the Radon-Nikodym derivative for numeraire:

$$Z_T := \frac{e^{-rT} S_2(T)}{S_2(0)} = \exp\left[\sigma_2 \left\{\rho W_1(T) + \sqrt{1 - \rho^2} W_2(T)\right\} - \frac{T}{2}\sigma_2^2\right]$$

By Girsanov theorem, under new measure $\tilde{\mathbb{P}}$:

$$\tilde{W}_1(t) = W_1(t) - \rho \sigma_2 t, \quad \tilde{W}_2(t) = W_2(t) - \sigma_2 \sqrt{1 - \rho^2} t$$

Apply Itô, we can get $d \ln S_1$, $d \ln S_2$:

$$d \ln F(t) = d \ln S_1(t) - d \ln S_2(t)$$

= $\left[-\frac{1}{2}\sigma_1^2 - \frac{1}{2}\sigma_2^2 + \rho \sigma_1 \sigma_2 \right] dt + (\sigma_1 - \rho \sigma_2) d\tilde{W}_1 - \sigma_2 \sqrt{1 - \rho^2} d\tilde{W} \dot{c}_2.$

Apply Itô to $g(x) = e^x$ with $x = \ln F(t)$:

$$\frac{dF_t}{F_t} = d(\ln F_t) + \frac{1}{2}d < \ln F >_t = (\sigma_1 - \rho\sigma_2)d\tilde{W}_{1t} - \sigma_2\sqrt{1 - \rho^2}d\tilde{W}_{2t}$$

Exchange Options Con.

Denote $\sigma = \sqrt{\sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2}$, $\tilde{W}(t) := \frac{1}{\sigma}\left\{(\sigma_1 - \rho\sigma_2)\tilde{W}_1(t) - \sigma_2\sqrt{1-\rho^2}\tilde{W}_2(t)\right\}$ Observe that \tilde{W} is a standard Brownian motion under $\tilde{\mathbb{P}}$. We have $\frac{dF(t)}{F(t)} = \sigma d\tilde{W}(t)$, observe that $F_T = F_0 \exp\left(-\frac{1}{2}\sigma^2T + \sigma\sqrt{T}Z\right)$, $Z \sim N(0,1)$. Then we can rewrite u(0):

$$u(0) = S_2(0)\mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)^+ \right]$$

= $S_2(0)\mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)I(F(T) > 1) \right]$
= $S_2(0) \left[\mathbb{E}^{\tilde{\mathbb{P}}} [F_T I\{F_T > 1\}] - \tilde{\mathbb{P}}(F_T > 1) \right]$