

(1)
$$I(P, F \cap G) = \begin{cases} non negative integer & F&G int. prop. \\ \infty & otherwise \end{cases}$$

(2)
$$\cdot$$
 $1(P, F \cap G) = 0$ iff $P \notin F \cap G$.
 \cdot $1(P, F \cap G)$ depends only on the components of $F \bowtie G$ that pass through P .
(I) $F = const.$ or $G = const.$ \Rightarrow $1(P, F \cap G) = 0$)

13).
$$T = affine change of coordinates on A^{T} . Here
$$I(P, F \cap G) = I(T^{T}(P), F^{T} \cap G^{T})$$$$

4).
$$I(P, FNG) = I(P, GNF)$$

(5).
$$I(P, F \cap G) > M_P(F) \cdot M_P(G)$$
,

"=" \Leftrightarrow (tangear line 90 F are $P \neq tangear$ line 90 G are)

(6).
$$F = \pi F_{i}^{r_{i}}$$
, $G = \pi G_{j}^{S_{j}}$ then
$$I(P, F \cap G) = \sum_{i:j} r_{i} S_{j} I(P, F_{i} \cap G_{j}).$$

Thm.
$$\exists$$
! $I(P,F\cap G)$ for all F,G & all $P \in A^2$ satisfying $UJ-GJ$. It is given by
$$I(P,F\cap G) = \dim_{R} (\mathcal{O}_{P}(A^2)/(F,G))$$

Pf: uniqueAls. ONTS: one can calculate 1(P, PAG) for any F, G, P.

• $(2) \Rightarrow (1(P, F \cap G) = 0 \Leftrightarrow P \notin F \cap G)$

· Industively, assum $I(P, F \cap G) = n$ and $I(P, A \cap B)$ can be calculated whenever $I(P, A \cap B) < n$.

$$Y = deg_X F(X,o)$$
, $S := deg_X G(X,o)$

1°
$$r=0$$
. (and assume $G(X,0)=X^{m}(a_{0}+a_{1}X+...)$

$$\Rightarrow Y|F\Rightarrow F=YH$$

$$\Rightarrow I(P,F\cap G)\overset{(G)}{=}I(P,Y\cap G(X,0)+I(P,H\cap G)$$

$$\overset{(G)}{=}I(P,Y\cap G(X,0))+I(P,H\cap G)$$

$$\overset{(G)}{=}I(P,Y\cap X^{m})+I(P,H\cap G)$$

$$\overset{(G)}{=}m+I(P,H\cap G)$$

$$\Rightarrow I(P,H\cap G)=I(P,F\cap G)-m<1$$

$$\Rightarrow I(P,H\cap G)=I(P,F\cap G)-m<1$$

$$\Rightarrow I(P,H\cap G)=I(P,F\cap G)-m<1$$

$$\Rightarrow I(P,F\cap G)=I(P,F\cap G)-m<1$$

$$\Rightarrow I(P,F\cap G)=I(P,F\cap G)-m<1$$

$$\Rightarrow I(P,F\cap G)=I(P,F\cap G)-m<1$$

2°
$$Y \ge 1$$
. WMA: $F(X,0) & G(X,0)$ monic. $H := G - X^{S-r}F$

$$\Rightarrow \begin{cases} I(P,F \cap G) \stackrel{(P)}{=} I(P,F \cap H) \\ \text{deg } (H(X,0)) =: t < S \end{cases}$$
repeating \Rightarrow case 1°.

Existence:
$$I(P,FNG) := din_k (O_P(A)/(F,G))$$

WONTS: $I(P,FNG)$ satisfies (1)-(7).

• I (P, FNG) only depends on
$$(F,G) \triangleleft (O_P(\mathbb{A}^2) \Rightarrow (2), (4), (7)$$

• after charge \Rightarrow isomorphism of local ring \Rightarrow (3).

WLOG, WHA: P=(0,0) all components of PEG Pass through P.

$$0 := O_{p}(A^{2})$$

$$gcd(F,G) = 1 \stackrel{\$i,6}{\Rightarrow} V(F,G) < 100 \stackrel{\$i,7}{\Rightarrow} cor4 dim k[Xif]/(F,G) < 000 \stackrel{$i.7}{\Rightarrow} I(P,FNG) < 000.$$

$$(or if H| gcd(F,G) \Rightarrow (F,G) = (H) \Rightarrow I(P,FNG) \Rightarrow dim_k(G/(H)) \}$$

$$(f)H \stackrel{\sim}{=} (O_P(H)) \supseteq P(H)$$

$$\Rightarrow I(P,FNC) = 100. \Rightarrow (I).$$

Proof of (6): ONTS:
$$I(P, F \cap G H) = I(P, F \cap G) + I(P, F \cap H)$$

WMA: gcd (F, GH) = 1.

DNTS:
$$0 \rightarrow 0/(F,H) \rightarrow 0/(F,GH) \rightarrow 0/(F,G) \rightarrow 0$$
 eact.

$$\# z \in 0 \text{ s.r.} \forall (\overline{z}) = 0 \iff Gz = Fu + Gyv \text{ for some } u, v \in 0$$

$$S_{S,SN},S_{S,F}|_{F(X,Y)} \qquad G_{S,F}|_{F(X,Y)} \qquad G_{S,F}|_{F(X,Y$$

$$\Rightarrow G | Su \& 2 = F \cdot \frac{Su}{G} \cdot \frac{1}{S} + H \cdot v \in (F, H) \neq 0$$

$$\Rightarrow \overline{z} = 0 \text{ in } O/(F, H).$$

Ruf of (5):
$$m:= m_P(F)$$
, $n= m_P(G)$. $I=(X,Y) \triangleleft k[XY]$.

$$k[X|Y]_{I}^{n} \times k[X|Y]_{I}^{m} \xrightarrow{\Psi} k[X|Y]_{I}^{m+n} \xrightarrow{\varphi} k[X|Y]_{I}^{m+n}, F,G) \rightarrow 0$$
 extract $(\overline{A}, \overline{B}) \longmapsto \overline{AF + BG}$ $\cong \downarrow A \in Cor^{2}(2.9)$

$$\Rightarrow \dim(k[x,Y]/1^n) + \dim(k[x,Y]/1^m) \geq \dim(ker\varphi)$$

$$||=||\Leftrightarrow \psi = Ty$$

$$\dim(k[x,Y]/1^{m+n},F,G)) = \dim(k[x,Y]/1^{m+n}) - \dim(ker\varphi)$$

$$\Rightarrow I(P, F\cap G) = \dim(O/(F, G))$$

$$\Rightarrow \dim(O/(I^{m+n}, F, G))$$

$$= \dim(k(X,Y)/(I^{m+n}, F, G))$$

$$\Rightarrow \dim(k(X,Y)/(I^{m+n}) - \dim(k(X,Y)/(I^{n})) - \dim(k(X,Y)/(I^{n}))$$

$$= \frac{(m+n)(m+n+1)}{2} - \frac{n(n+1)}{2} - \frac{m(m+1)}{2}$$

$$= mn.$$

$$||z|| \Leftrightarrow \begin{cases} T = TSO. \\ Y = Tnj \end{cases}$$

=> (5) follows:

(laim: a) F & G has no common tangets at P then $I^{*} \subset (F,G) \cup fr \quad t \geq m+n-1.$

Pf of a): $L_1, ..., L_m$ +angers to F at P ($L_i = L_m$ for i > m) $M_1, ..., M_n$ trangeres to G at P ($M_j = M_n$ for j > n) Aij := L1 ... Lz M1 ... Mj + inj = 0. Prob 235 (c) > PAis | i+j=x) = basis for ver. space of all forms of dayon to in k[x,Y], ⇒ DNTS: Aij ∈ (F,6) O for all itj > m+n-1. $A_{i\bar{j}} = \begin{cases} A_{mo} B & i \ge m \\ A_{on} B & \bar{j} \ge n \end{cases}$ for some form B. WLOG, WMA: Aij = Amo B. $F = A_{mo} + F'$ (deg of terms of $F' \ge m+1$) =) Aij =-BF' (mod F,G) dy of terms of BF' ≥ itj-m+m+ ONTS: It c (F,6)0 for x>0. $V(F,6) = \{P_1, Q_1, \dots, Q_s\}$ H S.E. H(P) \$0 & H(Q=) =0 + == 1,...; S \Rightarrow HX, HY \in I(V(\neq , 6)) ⇒ (HX)N, (HY)N ∈ (F,G) for some N. \Rightarrow $I^{2N} \subseteq (F,G)$. Proof of (b): Suppose tangues are distinct and

Proof of (b): Suppose tangents are distinct and $V(\overline{A}, \overline{b}) = \overline{AF + B6} = 0.$ 12 i.e., deg. of toms in $AF + B6 \ge men$. Assum

$$S = A_{r} + \text{light terms} \quad (r < N)$$

$$B = B_{S} + \text{left terms} \quad (S < m)$$

$$AF + BG = ArF_{m} + B_{S}G_{n} + (\text{lightens}) \in I^{m+n} \quad (\Rightarrow B_{S} \neq 0.)$$

$$\Rightarrow \begin{cases} F_{r+m} = S + n \\ ArF_{m} = -B_{S}G_{n} \end{cases} \Rightarrow \begin{cases} F_{m} \mid B_{S} \Rightarrow m \leqslant S \\ G_{n} \mid Ar \Rightarrow n \leqslant r \end{cases}$$
The common tengen
$$\Rightarrow g \in (F_{m, G_{n}}) = 1$$

about minimal set of axioms:

2). Calculation should be coop,

Example:
$$E = (x^2 + y^2)^2 + 3x^2y - y^3$$

 $F = (x^2 + y^2)^3 - 4x^2y^2$ $P = (0.0)$

$$\begin{cases}
F - (x^{2} + y^{2})E = -4x^{2}y^{2} - (x^{2}+y^{2})(3x^{2}y - y^{3}) \\
= Y \left[(x^{2}+y^{2})(y^{2} - 3x^{2}) - 4x^{2}y \right] \\
\vdots \\
G + 3E = Y \left(5x^{2} - 3y^{2} + 4y^{3} + 4x^{2}y \right)
\end{cases}$$

$$E_{3} \qquad H_{2} \qquad H_{3} \qquad H_{4} \qquad H_{5} \qquad$$

Lem: (8).
$$P = Simple \text{ on } F \Rightarrow I(P, F \cap G) = ord_P^F(G)$$

(9). $g(d(F, G) = I) \Rightarrow \sum_{P} I(P_i F \cap G) = dim_k (k[x_i F]/(F_i G))$
 $P(S) : WMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(F_i G)$
 $P(S) : VMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(g)$
 $P(S) : VMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(g)$
 $P(S) : VMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(g)$
 $P(S) : VMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(g)$
 $P(S) : VMA : F = Inv. $g = \overline{G} \in \mathcal{O}_P(F) \Rightarrow \mathcal{O}_P[F]/(g) \cong \mathcal{O}_P[F]/(g)$$$$$$$