Material produzido pelo prof Rudimar, adaptação profa Fernanda

Grafos: Unidade 1

■Conceituação e Definições

Utilize sempre os livros recomendados para complementar seus estudos (plano de ensino)

2019/1

Material produzido pelo prof Rudimar, adaptação profa Fernanda

O que é um grafo?

- Estrutura de abstração
- Matematicamente, formaliza relações de interdependência existentes entre os elementos de um conjunto

2019/1

<u>Vértices</u> (nós)	São os pontos entre dois arcos ou arestas. Ex. Na representação de um mapa os vértices seriam as cidades.
<u>Arco</u>	Ligação orientada (setas) entre dois vértices.
<u>Aresta</u>	Ligação não orientada (linhas) entre dois vértices.
<u>Laço</u>	Arco em que as extremidades inicial e final são coincidentes.
Adjacência (vizinho de)	Dois <u>vértices são Adjacentes</u> (vizinhos) se são extremos do mesmo arco ou aresta.
	Duas <u>arestas são Adjacentes</u> (vizinhos) se têm um extremo (vértice) comum.
	Dois <u>arcos são Adjacentes</u> (vizinhos) se têm um extremo (vértice) comum.

<u>Cadeia</u>	É uma sucessão de arestas $(a_1$, a_2 ,) em que a aresta a está ligada à aresta a_{k-1} por um extremo e à aresta a_{k+1} pel outro extremo.
<u>Caminho</u>	É uma sucessão de arcos em que a extremidade final de ur arco é a extremidade inicial do arco seguinte. Pode ser finit ou infinito sendo indicado pela sucessão de arcos ou pelo vértices que liga.
Caminho Simples	Caminho em que não há repetição de arcos.
<u>Caminho</u> <u>Elementar</u>	Caminho em que não há repetição de vértices (exceto vértice inicial e final do circuito porque são coincidentes)
<u>Árvore</u>	Grafo onde há um e somente um caminho_entre qualquer pa de vertices – não há ciclos. É um grafo conexo sem ciclos.

	(arestas)
Ciclo simples	Ciclo sem repetir arestas.
Ciclo elementar	Ciclo sem repetir vértices (exceto inicial e final).
Ciclo de Euler	Ciclo simples contendo todas as arestas do grafo.
Ciclo de Hamilton	Ciclo elementar contendo todos os vértices do grafo.

<u>Circuito</u>	É um caminho_finito em que as extremidades inicial e fina coincidem.
Circuito simples	Circuito sem repetir arcos.
Circuito elementar	Circuito sem repetir vértices (exceto inicial e final).
Circuito de Euler	Circuito simples contendo todos os arcos do grafo (ver ciclo de Euler).
<u>Circuito de</u> <u>Hamilton</u>	Circuito elementar contendo todos os vértices do grafo (ve ciclo de Hamilton).
Comprimento do caminho	É o número de arcos do caminho.

Conceit	os e Definições
<u>Grafo</u>	Um grafo G=(V,A) é uma coleção de nós ligados entre si n todo ou em parte. Os nós chamam-se <u>vértices</u> (conjunto V) as ligações (conjunto A) são chamadas <u>arestas</u> (ligação ser sentido) ou <u>arcos</u> (ligação com sentido)
Grafo completo	Todos os pares de vértices são adjacentes
Grafo Conexo	Há <u>cadeia</u> (grafo não orientado) entre qualquer par d vertices.
Grafo fortemente conexo	Há caminho (grafo orientado) entre qualquer par de vértices.
Grafo Orientado	Os vértices estão ligados exclusivamente por arcos.
Grafo não orientado	Os vértices estão ligados exclusivamente por arestas.

Grafo Pseudo-	Em todos os vértices são iguais os <u>semigraus</u> interior e exterior.
simétrico	
<u>Grafo</u> <u>Simétrico</u>	Se existe o arco (vi , vj) existe o arco (vj , vi). Um grafo <i>não</i> orientado é sempre simétrico.
Grafo anti- simétrico	Se existe o arco (v_i, v_j) não existe o arco (v_j, v_i) .
<u>Grafo</u> <u>Bipartido</u>	Quando existe conjunto de vértices V que pode ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 .
<u>Grafo</u> <u>Regular</u>	Todos os vértices têm o mesmo grau.
Número Cromático	Número mínimo de cores para pintar todos os vértices adjacentes com cor diferente.

Material produzido pelo prof Rudimar, adaptação profa Fernanda

Grafo bipartido

Sejam os conjuntos $H=\{h \mid h \text{ é um homem}\}\ e\ M=\{m \mid m \text{ é um mulher}\}\ e\ o\ grafo\ G(\textit{V,A})\ acima\ onde:$

 $V = H \cup M$

A = $\{(v,w) \mid (v \in H e w \in M) \text{ ou } (v \in M e w \in H) e < v \text{ foi namorado de } w>\}$

2019/1

Material produzido pelo prof Rudimar, adaptação profa Fernanda

Grafo bipartido completo

O grafo acima é um grafo **bipartido completo** que contém duas partições de 3 vértices cada. Ele é completo pois todos os vértices de uma partição estão ligados a todos os vértices da outra partição.

2019/1

Conceitos e	e Definições
Grau do vértice	Número de arestas de que o vértice é extremo.
Semigrau exterior do vértice (v+)	Número de arcos de que o vértice é extremo inicial (to conhecido como grau de saída).
Semigrau interior do vértice (v-)	Número de arcos de que o vértice é extremo final (também conhecido como grau de entrada).
<u>Subgrafo</u>	É um subconjunto de vértices do grafo com todos os arcos (arestas) do grafo que ligam estes vértices.
Subgrafo	É um subgrafo em que há ligação (caminho ou cadeia) entre qualquer par dos seus vértices.
fortemente conexo máximo	É máximo quando engloba todos os vértices que partilham desta condição.
Vértice Isolado	Um vértice diz-se <i>Isolado</i> quando não é extremo de arco ou aresta.
Vértice Suspenso	Um vértice diz-se Suspenso se não é extremo inicial de um arco.

Sucessor de um nó	Sucessor de um nó x_i é todo x_j que seja extremidade final de um arco que parte de x_i x_j sucessor de $x_i \Leftrightarrow \exists (x_i, x_j)$
Antecessor (Predecessor) de um nó	Antecessor x_i é todo x_j que seja extremidade inicial de un arco que termina em x_i x_j antecessor de $x_i \Leftrightarrow \exists (x_j, x_i)$
Sucessores de um conjunto de nós	Seja $X_n = \{ x_1, x_2,, x_z \}$, então $\Gamma(X_z) = \bigcup_{x_i \in X_n} \Gamma(x_i)$
Antecessores de um conjunto de nós	Seja $X_n = \{ x_1, x_2,, x_z \}$, então $\Gamma^{-1}(X_z) = \bigcup_{x_i \in X_n} \Gamma^{-1}(x_i)$