Sampling Theory

- It is a process to convert continous time signal Into
- Sufficient no of samples must be taken, so that the Oxiginal signal is reconstructed properly.
- No of Samples to be taken depends on maximum Signal freq. present in the Signal.

- It is a process to convert Continous time signal.

Sufficient no of samples must be taken, so that the Original signal is reconstructed properly.

- No of samples to be taken depends on muximum Signal freq. present in the signal.
- Dittount type of sampling.
 - Ideal Samples.
 - Natural Samples.
 - Flat top Samples.

Dittouted types of sampling.

- Ideal Samples.
- Natural Samply.
- Flat top Samples.

il A band limited signal of finite energy, which has no treq. component higher than fm (Hz), is completely described by His sample values at mitorn Intervals less them or equal to 1/2fm

Ts & 1/2fm

completely described by Its sample values at mitorn intervals less them or equal to 1/24m

Ts & 1/2fm

hus no forey. Components hogher than fm(Hz), may be completely recovered from the knowledge of Its Samples taken at the seate of 2tm Samples Per Second.

fs > 2fm

 $\delta_{T_S}(t) = \frac{1}{T_S} \sum_{T_S} \sum_{T_$

$$X(t)$$

$$S_{TS}(t)$$

$$S_{TS}(t)$$

$$= X(t) \left[\frac{1}{T_S} (1 + 260s \omega_S t + 1) \right]$$

$$= X(t) \left[\frac{1}{T_S} (1 + 260s \omega_S t + 1) \right]$$

$$= X(t) \left[\frac{1}{T_S} (1 + 260s \omega_S t + 1) \right]$$

- -) As long as fs > 2fm, (r(w) Will occupent Peniodially without overlapping.
- -) Spectorum $\kappa(\omega)$ extends upto ∞ freq. Int order perpuse is to extouct original Spectorum $\chi(\omega)$ out of the Spectorum $\chi(\omega)$.
- → At receiver we place LPF of frey wm. So we can extract original Information.
- -> to 2tm. To avoid successive seles not to ovadape

- Spectorum $\kappa(\omega)$ extends repto as freq. Int order Perpuse is to extend original Spectorum $\chi(\omega)$ out of the Spectorum $\chi(\omega)$.
- -> At receiver we place LPF of frey wm. So we can extract voiginal Intermation.
- > ts>2tm, To avoid successive (feley not to ovadape ts = 2tm, successive (feley just touch eachother. ts < 2tm, Successive (feley overlape rachother
- -> Hence, for occurate ctoon without dostortoon E

.. .. read wighted injugators.

- → ts>2tm, To avoid successive (Jeles not to ovadape ts = 2tm, successive (Jeles Just touch eachother. ts < 2tm, Successive (Jeles overlape rachother
- -> Hence, for occurstanction without dostorton $f_s \ge 2f_m$
- -) $f_s = 2 fm$, there f_s is reflected as Nyquest secte. $T_s = \frac{1}{2} fm$, T_s is Nyquest Interval.

fs >2fm

-) $f_s = 2 fm$, there f_s is reflected as Nyquest sate $T_s = \frac{1}{2} fm$, T_s is Nyquest Interval.

Cuye-1 - ts > 2fm

Cuye-I - ts > 2fm

Cuse-II - ts = 2tm

Cuse-II - ts < 2tm

Cuse-II - ts < 2tm

Overlapping

Overlapping

EH

- It to < 2tm, then Successive Samples (jets) of (160) will overlap ends other.
- Due to Aliasing effect, It Is not possible to recover original sognal XCH by LPF.
- Have due to overlape of one region to other region, Signal XCHI is distorted.
- So before we go for sampling, we pass original sognal through LPF. This is even redtered as pre-alias filter, other name is band limit filter.

- region, Sognal XCHI is distorted.
- So before we go too sampling, we pass original sognal through LPF. This is even redtered as pre alias filter, other name is band limit filter.
- In Short, to avoid aliwing.
 - I fre aliay Filtur am be need
 - y fs > 2tm

Examples on Sampling & Nyquist Rate

$$X(t) = 3 \text{ Cos (Sott)} + 10 \text{ Sin (300Tt)} - \text{ Cos (100Tt)}$$

$$(alculate the Nyquost rate too this signal.$$

$$f_1 = \frac{\omega_1}{7\pi} = 25 \text{ Hz} \qquad \rightarrow \text{ max freq. } f_m = 150 \text{ Hz.}$$

$$f_2 = \frac{\omega_2}{7\pi} = 150 \text{ Hz} \qquad \rightarrow f_s = 2 \text{ fm}$$

$$= 2 \times 150$$

$$f_3 = \frac{\omega_3}{7\pi} = 50 \text{ Hz}$$

2) Find the Njquist sete 2 Njquist Interval for the signal $X(t) = \frac{1}{2\pi t} \cos (4000\pi t) \cos (1000\pi t)$ $= \frac{1}{4\pi} \left[2 \cos (4000\pi t) \cos (1000\pi t) \right]$ $= \frac{1}{4\pi} \left[2 \cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (5000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{1}{4\pi} \left[\cos (3000\pi t) + \cos (3000\pi t) \right]$ $= \frac{$

J
$$f_s = 2 fm$$

$$= 2(2500)$$

$$= 1/5000$$

$$= 0.2 \text{ m/sec}$$
3] Determine the Nyquist seate for a Continent-time signal XCH = 6 (ws 50000 + 20 sin 30000 - 10 (ws 100000 + 10)

J 1 = $\frac{\omega_1}{211}$ = 25 H2
J max fm. fm. = 150 H2
$$f_2 = \frac{\omega_2}{211}$$
 = 150 H2.
$$f_3 = \frac{\omega_3}{211}$$
 = 50 H2
$$= \frac{2 \times 150}{20000}$$
= 27 150
$$= \frac{2 \times 150}{20000}$$
= 300 H2

-> It uses painciple of multiplication_

- To generate ideal samples train, we use switching samples.
- If we assume, closing time t-to, then It has to be consider Ideal Impulse tooken.
- · Immule touin

- 10 generate 12tal samples train, we use switching Sampler.
- If we assume, closing time t-to, then It has to be Consider Ideal Impulse tooken.

- Output

gets = xcts
$$\delta_{TS}$$
(t)

= xcts δ_{TS} (t)

= xcts δ_{TS} (t)

= xcts δ_{TS} (t)

- Impulse toesin $\delta_{Ts}(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT_s)$ | Poactfally not Possible - Output gets = xcts $\delta_{Ts}(t)$ | Infortance.

EH

Natural Sampling

- It uses chopping principle

- So mathematoally

- forey. Lomain

- This mathed is used practially.

- Notte Intentionne To Less.

- It was Sample and hold about - It is positively possible like natural sumpling but Flat top Sampling 13 easier compared to northern sundry

__

- It has very hogh notse Interference.

I croconternee companson of sampling techiques.

Perstermance Pasameter	Josephing Sempling	Natural Scimpling	flat top Sampling
Sampling	Maltiploatour	Chopping	Sample & Hold Cloouit
Generation Circuit	X(t) g(t)	(CH) (CH) (Pet)	Sempling X(t) (3) Discharge ET

	- 4		V
Waveforms	1	M	My
Feasibility	Practoally not possible	pouctfally	used Paractically.
Notsc Intertenner.	Very high	Less	hrzh
			E

Feasibility	Practually not possible	pouctfally	used Pauctially.
Notse Interference	Very high	Less	hogh
Time domain	gct) = \(\frac{\beta}{\text{L}} \) X(H) \(\text{6Ct-nTs} \)	Jet) = IA & E Ts n o XCH) Sinc (ndsT) e12Th	gct) ? E n=-0 st x(t) h(t-nTs)
Frey Lumain.	x (t-nts)	Sinc (ntsi) X(t-nts)	x(t-nts) H(t)

PWM (Pulse Width Modulestron)

EF

, saw tooth waveform /XCt)

E

EF

Performance PAM PWM PPM	
Parametor .	
Waveform time	

	time	time	טייט
			,
	Amplitude of Pulse	- with of Probe	- Relutore Positoza
Worlding	Propostorul to ump.	I propostant to	of Pulse is proportional
Parnople	of modulating signl.	modulating signal	to amp. of modulding
	- BW is depending	- BW. depends on	- BW depends on
	on without much	rose time of	atise time of
Bondwidth		Pulje.	rulse.
	- Vanores w.r.t	- Varsiey w.r.t	- Constant.
Toursmitted	time	time	
Power	X *		
,			E

b			U
· Bondwidth	- BW is depending on without rule	- BW, deponds on 200c time of Pulse.	- BW depends on stise time of rulse.
Toursmitted Power	- Vanous w.r.t	- Varriey w.r.t time	- Constant.
Morse	- Max	- MINL	- leis
	- It is similar to AM	- It is similar to FM	- It is Similar to PM.

Time Division Multiplexing (TDM)

- The sampled PAM waveform is off for most of the time.
- During the off period, the chunnel can be used to transmit samples of other waveforms.
- The concept of Interleaving Samples from Sorval signals into a Single vavetormy is called TOM.

E

A Signal xict) is Band-limited to 42 kHz and three others signals acts, xicts and xict) are bund limited to 1.4 kHz each. Assume that three signals are tronsmently TDM.

@ set-up or scheme Tom too realizing this multiplexing requirement with each signal sampled of its Nagrasi oute.

(B) I don't the required spred of the Commutator

@ Njanust rate

$$x_{1}(t)$$
 $B_{1} = 4.2 \text{ kH}_{2}$ $f_{s_{1}} = 2B_{1} = 8.4 \text{ keH}_{2}$
 $x_{2}(t)$ $B_{2} = 1.4 \text{ kH}_{2}$ $f_{s_{2}} = 2B_{2} = 2.8 \text{ leH}_{2}$
 $x_{3}(t)$ $x_{3} = 1.4 \text{ leH}_{2}$ $x_{4}(t)$ $x_{5} = 2B_{2} = 2.8 \text{ leH}_{2}$
 $x_{4}(t)$ $x_{4} = 1.4 \text{ leH}_{2}$ $x_{5} = 2B_{4} = 2.8 \text{ leH}_{2}$

-
$$\times_1$$
 (+) = 4.2 kH2
 \times_2 (+) = 1.4 kH2
 \times_3 (+) = 1.4 kH2
 \times_4 (+) = 1.4 kH2

@ Njanest rate

$$x_{1}(H)$$
 $B_{1} = 4.2 \text{ kH}_{2}$ $f_{s_{1}} = 2B_{1} = 8.4 \text{ kH}_{2}$ $x_{2}(H)$ $B_{2} = 1.4 \text{ kH}_{2}$ $f_{s_{2}} = 2B_{2} = 2.8 \text{ lcH}_{2}$ $x_{3}(H)$ $x_{3}(H)$ $x_{3} = 1.4 \text{ lcH}_{2}$ $x_{4}(H)$ $x_{4} = 1.4 \text{ lcH}_{2}$ $x_{4} = 2B_{4} = 2.8 \text{ lcH}_{2}$

@ Assume that the Commutator Up is Quantized with L=1024 and the result is bingry coded what is the O/p bit oute 9 [take ret. of example 1] $- L = 1024 = 2^{m}$

=) m = log L

Rb = m x fs

= log lo24

= log bits/sample.

Sumple.

= 168 Kbpsee

Two unalog signals ociet) if izet) are to be tourimitted over a common channal by means of TDM.

The highest freq. of oriety is 3kHz and that of azet) is 4.5 kHz. What is the minimum pormissible sampling oute 9

- oc, (+) B, = 3KH2
- 2(2cH) Bz = 45 KH2

The highest forcy. of orich 15 3kHz and may be original or act) is 4.5 kHz. What is the minimum permissible sampling orte 9

- oc, (+) B₁ = 3KH₂
- 2(2ct) B2 = 45 KH2
- Composite signal of xittl and x2th is x1th+x2th.
- Bendwidth at composite signal of hoghest at xills and
- highst of x1(H) & x2(H) 15 4.5 KH2.
- min sampling rate to = 2W
 - · 2×4.5
 - 9 KSamply/ See.

The T1 curricy System used in digital telephony multiplexery 24 voice chumnely based on 8 bit PCM. Each voice signal is put through a LPF with the cut off frequency of 3.4 kHz. The LPF 0/P is sampled at 8 kHz. Then a single bit is added at the end of the terme for the purpose of synchronization. Calculate

- 9) Bit duanton
- b) Trummission outc
- c) Nyanost Bandwidth

```
b) Tourmission oute

c) Nyawist Boundouldth

- T, Curstin Ststem | - Vorce Sognal

- It was TDM-PCM | - 300 Hz - 34 KHz

1 \text{ M} \rightarrow \text{LPF} \rightarrow \text{quart} \rightarrow -45 = 2B = 2 \times 3.4 \text{ KHz} = 6.4 \text{ KHz}

2 \text{ M} \rightarrow \text{LPF} \rightarrow \text{quart} \rightarrow -45 = 2B = 2 \times 3.4 \text{ KHz} = 6.4 \text{ KHz}

2 \text{ M} \rightarrow \text{LPF} \rightarrow \text{quart} \rightarrow -45 = 2B = 2 \times 3.4 \text{ KHz} = 6.4 \text{ KHz}

3 \text{ M} \rightarrow \text{Lc} = 3.4 \text{ KHz} \rightarrow -45 = 8 \text{ KHz}

1 \text{ M} = 8 \text{ bits}

1 \text{ M} = 2 \text{ bits}
```

The signal
$$-300 \text{ Hz} - 34 \text{ kHz}$$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal $-300 \text{ Hz} - 34 \text{ kHz}$

The signal -300

- bit rute 2 Rb = mts = 8 x 8000 = 64 Kbpsec Frame Period Tt = 1 = 1 = 125 ersec
 - bits in one bame. = 8(24) +1 = 193 bits.
- (a) bit absorbin 2 Tt No of bits = 127 abor = 0.648 a Sec
- (b) Taunsmission aute Rb = 1/Tb = 10.648 use = 1.544 mbps

- bit rute 2 Rb = mts = 8 x 8000 = 64 Kbpsec
- France previod Tt = 1 = 1 = 125 ensel
- bits in one bame. = 8(24) +1 = 193 bits.
- (a) bit dysatom 2 Tt No of bits = 127 use = 0.648 usec
- (b) Tayonsmission aute Rb = 1/Tb = 10.648 use = 1.544 mbps
- (C) Rb = 2B B = Pb/2 = 1.544/2 = 0.772 MHz or 772 KHz

The Samples are uniformly sampled and then multiplexed with TDM. The sampling operation was flat Top samples with I used duration. For Synchronization on extra pulse of I used duration is added the highest trees, of each voice signal is 3.4 kHz.

a) calculate the spacing between successive pulses of multiplexed Signal by assuming a sampling reste of 8 kHz

b) Respect for Hyguest oute of Sampling.

- Spacing bet. Pulses 2 5 estee -1 estee 2 4 usec.

- Spacing bet. Pulses 2 5 stee -1 estee = 4 stee. Tf = \frac{1}{4s} = \frac{1}{6800} = 147.06 stee.

 - For I pulse time without spaces

- Spacry = 5.88 -1 = 4.88 elsec.
- Lowering Sampling set 1" In Spacing bet."
 Successive Pulses.

Eight message signals are sampled of multiplexed with TDM. The TDM output is passed through a LPF before trunsmission. Six of the Vp signals have a BW of 4 KHz and the Other two are band limited to 12 KHz. @ I dentity the minimum sampling rate of composite signal. also find the overll sampling rate.

- 6 Design an agradoronous TDM for this appliation. Assume commutator speed to be 8000 rotations/sec
- O compare the toursmission bandwidth requirement too for part (a) and (b)

- for composite signal consider highest beindwidth of signal.

= 2 (12 KH2)

= 24 KH2

- Overall sampling sate for & channels

= 8 x ts

2 8 x 24 = 192000 Samples/Sec

(Samples/Sa) (Samples/Sac) Speed 8000 sot/Sac.

| (Samples/Sac) (Samples/Sac) | (Samples/Sac)