TD1

Etude des circuits en régime sinusoïdal

- 1. Représentation complexe d'une grandeur sinusoïdale.
- La tension du réseau alternatif EDF a pour expression $u=325\cos(314t-30^{\circ})$. a)
 - Calculer sa fréquence et sa période
 - Déterminer sa phase à l'origine
 - Déterminer l'amplitude complexe de cette tension sous forme exponentielle et cartésienne
- b) Déterminer l'amplitude complexe sous forme exponentielle et cartésienne des grandeurs suivantes:
 - $u = -7\cos(2t + 40^{\circ})$
 - $i = 4\sin(10t + 10^{\circ})$
- Déterminer les fonctions sinusoïdales de pulsation ω décrites par les amplitudes complexes c) suivantes:
 - $\underline{I} = -3 + j4$
 - $U = i8e^{-j20^{\circ}}$
- Utiliser les amplitudes complexes pour calculer l'intensité $i=i_1+i_2$:

$$i_2 = 3\sin(\omega t)$$

- $i_1 = 4\cos(\omega t)$ $i_2 = 3\sin(\omega t)$ $i_1 = 4\cos(\omega t + 30^\circ)$ $i_2 = 5\sin(\omega t 20^\circ)$

2. Impédance.

- a) Pour chaque circuit, déterminer sous forme cartésienne son impédance et son admittance équivalente. Représenter en fonction de la pulsation ω l'évolution du module et de l'argument de l'impédance.
 - Une résistance en série avec une bobine.
 - Une résistance en série avec un condensateur.
 - Une bobine en série avec un condensateur.
 - Une résistance en parallèle avec une bobine.
 - Une résistance en parallèle avec un condensateur.
 - Une bobine en parallèle avec un condensateur.
- b) On applique une tension $u = U_{max} \cos(\omega t)$ (avec $U_{max} = 10 \, \mathrm{V}$) aux bornes d'un circuit constitué d'une résistance de 2Ω en série avec une bobine d'inductance 1mH. Pour des fréquences égales à $100 \, \mathrm{Hz}$ puis $1 \, \mathrm{kHz}$:
 - Déterminer l'expression de l'intensité du courant sous la forme $i=I_{max}\cos(\omega t-\phi)$.
 - Représenter le diagramme vectoriel des tensions et de l'intensité.
 - Calculer la puissance moyenne reçue par le circuit.
- c) Reprendre les questions de l'exercice b) avec un circuit constitué d'une résistance de 100Ω en parallèle avec un condensateur de capacité $5\mu F$.
- d) On considère le circuit ci-dessous.

- Si *u* et *i* sont en phase, que peut-on en déduire concernant l'impédance équivalente du circuit.
- Quelle valeur faut-il donner à la capacité C pour que *u* et *i* soient en phase indépendamment de la fréquence ?
- Quelle est alors la valeur de l'impédance équivalente du circuit ?

3. Diviseurs.

a)

Si l'on souhaite qu'un moteur à courant alternatif monophasé tourne, une solution consiste à faire circuler deux courants en quadrature (déphasés de 90°) dans deux bobinages distincts.

On suppose que les deux bobinages sont identiques et assimilables à des circuits RL série.

On propose de connecter un condensateur en série avec un des deux bobinages, comme indiqué sur la figure cicontre.

- Le courant i_2 sera-t-il en avance ou en retard sur le courant i_1 ? Montrer alors que l'on peut écrire la relation suivante : $\frac{\underline{I}_1}{\underline{I}_2} = -j \, \mathbf{k}$
- En utilisant le diviseur de courant, exprimer en fonction de R et de L la capacité C du condensateur permettant de vérifier la relation précédente.
- Que vaut alors le facteur k.

b)

On alimente un récepteur d'impédance $Z_2=25\,e^{j\pi/3}$ par une ligne ayant une résistance égale à 1Ω et une réactance égale à $0,5\Omega$.

- Si la tension *u* a pour valeur efficace 240V, utiliser le diviseur de tension pour calculer la valeur efficace de la tension aux bornes du récepteur.
- Calculer le déphasage de la tension *u* par rapport à la tension aux bornes du récepteur.

4. Puissances.

a) On applique une tension sinusoïdale d'amplitude maximale 100V à un circuit linéaire. L'intensité maximale du courant est alors égale à 20A, le courant est retardé de 40° par rapport à la tension.

Calculer les puissances actives et réactive absorbées par le circuit.

- b) Calculer les puissances active et réactive des circuits suivant lorsqu'on applique à leurs une tension de valeur efficace 110V et de fréquence 60Hz (préciser si ces puissances sont physiquement absorbée ou fournie par le circuit) :
 - Un résistor et une bobine en série
 - Un résistor et un condensateur en série
 - Un résistor et une bobine en parallèle
 - Un résistor et un condensateur en parallèle

Valeurs numériques : $R = 10\Omega$ L = 50mH $C = 400\mu F$

5. Circuit résonnant.

- a) Une bobine de résistance série $R_L=3\Omega$ et d'inductance $L=100\,\mathrm{mH}$ est connectée en série avec un condensateur de capacité $C=50\,\mathrm{pF}$ et un résistor de résistance $R=6\,\Omega$. Ce circuit est connecté à un générateur délivrant une tension sinusoïdale d'amplitude indépendante de la fréquence. Calculer la pulsation de résonance en intensité, le facteur de qualité, la bande passante du circuit ainsi que les pulsations à mi-puissance.
- b) Concevoir un circuit RLC série ayant une bande passante de 20 rad/s et une pulsation propre de 1000 rad/s (on impose $R = 10 \Omega$).
- On représente sur la figure ci-dessous le tuner d'un récepteur radio. L'antenne est connectée à un circuit RLC parallèle servant à sélectionner une fréquence particulière.
 La capacité C du condensateur est variable et permet de s'accorder sur la fréquence souhaitée, la résistance R représente la résistance d'entrée de l'amplificateur HF.

- Déterminer l'admittance du circuit RLC parallèle vu par l'antenne.
- Exprimer cette admittance sous la forme suivante :

$$\underline{\mathbf{Y}} = \frac{1}{\mathbf{R}} (1 + jQ(\omega/\omega_0 - \omega_0/\omega))$$

Préciser l'expression de la pulsation propre ω_0 et du facteur de qualité Q.

- Quelle est la nature du phénomène se produisant à la pulsation propre $\ \omega_0$.
- Pour un récepteur radio FM, l'onde reçue par l'antenne est dans une gamme de fréquence allant de 87,5 MHz à 108 MHz. Calculer la plage de variation de capacité C du condensateur nécessaire pour couvrir toute la bande FM si $L=4\,\mu\,H$.
- Si l'on souhaite que la bande passante du circuit n'excède pas 100kHz, calculer la valeur minimale de la résistance R.

Correction 1

La tension du réseau alternatif EDF a pour expression $u=325\cos(314t-30^\circ)$.

• Fréquence
$$F = \frac{\omega}{2\pi} = \frac{314}{2\pi}$$
 $F = 50 \text{ Hz}$

Période
$$T = \frac{1}{F} = \frac{1}{50}$$
 $T = 20 \text{ ms}$

- Phase à l'origine $\Psi = -30^{\circ}$
- Amplitude complexe $U=325e^{-j30^{\circ}}\approx 281,46-j162,5$
- Déterminer l'amplitude complexe sous forme exponentielle et cartésienne des grandeurs b) suivantes:

•
$$u = -7\cos(2t + 40^{\circ})$$
 $U = 7e^{j220^{\circ}} \approx -5,36 - j4,5$

$$i = 4\sin(10t + 10^{\circ})$$
 $I = 4e^{j-80^{\circ}} \approx 0.69 - j3.94$

Déterminer les fonctions sinusoïdales de pulsation ω décrites par les amplitudes complexes c) suivantes:

•
$$\underline{I} = -3 + j4$$

• $\underline{U} = j8e^{-j20^{\circ}}$ $i = 5\cos(\omega t + 126,87^{\circ})$ $u = 8\cos(\omega t + 70^{\circ})$

$$U = j8e^{-j20^{\circ}}$$

$$u = 8\cos(\omega t + 70^{\circ})$$

Utiliser les amplitudes complexes pour calculer l'intensité $i=i_1+i_2$: d)

•
$$i_1 = 4\cos(\omega t)$$
 $i_2 = 3\sin(\omega t)$

$$\underline{\underline{I}}_1 = 4$$

intensité

$$\underline{I}_2 = -j3$$

$$I = I_1 + I_2 = 4 - j \, 3 = 5 e^{-j \, 36,87^{\circ}}$$

$$i_1 = 4 \cos(\omega t + 30^{\circ})$$

$$i_2 = 5 \sin(\omega t - 20^{\circ})$$

•
$$i_1 = 4\cos(\omega t + 30^\circ)$$
 $i_2 = 5\sin(\omega t - 20^\circ)$

$$I_1 = 4e^{j30^{\circ}} \approx 3,46 + j2$$

$$I_2 = 5 e^{-j110^{\circ}} \approx -1,71 - j4,7$$

$$I=I_1+I_2=1,75-j\,2,7\approx 3,22\,\mathrm{e}^{-j\,57^\circ}$$
 $i=3,22\cos\left(\omega\,t\,-57^\circ\right)$ Remarque : l'intensité maximale de la somme est plus faible que la plus petite des deux