

Water wave optimization: A new nature-inspired metaheuristic, Yu-Jun Zheng, College of Computer Science Technology, Zhejiang University of Technology, Hangzhou 310023, China

Water wave optimization

Karolina Maczka

Wydzial Matematyki i Nauk Informacyjnych Politechnika Warszawska

March, 2023

Teoria fal wodnych - pierwszy Newton

Laplace

$$x = A(e^{z_0/c} - e^{-z_0/c})\sin\frac{x_0}{c}$$
 (1)

$$z = A(e^{z_0/c} - e^{-z_0/c})\cos\frac{x_0}{c}$$
 (2)

- x i z okreslaja odpowiednio poziome i pionowe przeuniecia poszczególnych czastek o położeniu poczatkowym (x_0, z_0)
- A to funkcja czasu
- c to pewna stała

Kelland

$$z = h + (e^{\alpha z} - e^{-\alpha z})\sin(\alpha(ct - x))$$
 (3)

- $\alpha = 2\pi/\lambda$, gdzie λ to długość fali
- c to predkość fali
- h to głebokość

Modele

- pierwsza genracja lata 60'
- druga generacja lata 70'
- trzecia generacja modele WAM (tylko podstawowe równanie transportu widmowego) i SWAN

SWAN - dyskretny spektralny model

Równanie modelu SWAN

$$\frac{\frac{d}{dt}N(\sigma,\theta) + \nabla_{x,y}(c_{x,y}N(\sigma,\theta)) + \frac{d}{d\sigma}(c_{\sigma}N(\sigma,\theta)) + \frac{d}{d\sigma}(c_{\theta}N(\sigma,\theta)) = \frac{S(\sigma,\theta)}{\sigma}$$

Od lewej jest to suma tempa zmian gestości siły fali w czasie, zmiana gestości mocy fali na jednostke powierzchni w danym punkcie przestrzeni, zmiany czestotliwości fali w wyniku jej propagacji w ośrodku, propagacji w przestrzeni θ . Gdzie c_{σ} i c_{θ} to predkości rozchodzenia sie fal w odpowiednio σ -space i θ -space. $S(\sigma,\theta)$ - dodatkowa energia w układzie np. dodana przez wiatr, interakcje fal, stłumiona przez tarcie pomiedzy woda i dnem

WWO

Bez utraty ogólności, załóżmy, że mamy problem maksymalizacji funkcji celu f. W WWO, przestrzeń rozwiazań X jest analogiczna do obszaru dna morskiego, a fitness punktu x należacego do X jest odwrotnie proporcjonalny do jego głebokości wody: im krótsza odległość do poziomu wody, tym wyższy fitness f(x). Analogicznie trójwymiarowa przestrzeń dna morskiego uogólniamydo przestrzeni n-wymiarowej.

Populacja rozwiazań to fala posiadajaca wysokość (lub amplitude), długość.

Podczas procesu rozwiazywania problemu rozważamy: rozchodzenie sie (propagacje), refrakcje i załamanie fal.

Propagacja

Dla każdej nowej generacji:

$$x'(d) = x(d) + rand(-1,1) \cdot \lambda L(d)$$

Długośc fali aktualizuje sie w nastepujacy sposób:

$$\lambda = \lambda \cdot \alpha^{-(f(x)-f_{min}+c)/(f_{max}-f_{min}+c)}$$

Refrakcja

Pozycja po refrakcji

$$x'(d) = N(\frac{x^*(d) + x(d)}{2}, \frac{|x^*(d) - x(d)|}{2})$$

Długośc fali aktualizuje sie w nastepujacy sposób:

$$\lambda' = \lambda \frac{f(x)}{f(x')}$$

Załamanie sie fali

Pozycja po załamaniu

$$x'(d) = x(d) + N(0,1) \cdot \beta L(d)$$

Algorytm

Algorithm 1. The WWO algorithm.

```
Randomly initialize a population P of n waves (solutions);
    while stop criterion is not satisfied do
3
       for each x \in P do
4
          Propagate \mathbf{x} to a new \mathbf{x}' based on Eq. (6);
5
          if f(\mathbf{x}') > f(\mathbf{x}) then
6
            if f(\mathbf{x}') > f(\mathbf{x}^*) then
                Break \mathbf{x}' based on Eq. (10);
8
               Update x^* with x';
9
             Replace \mathbf{x} with \mathbf{x}';
10
           else
11
              Decrease \mathbf{x}.h by one:
12
              if \mathbf{x}.h = 0 then
13
                 Refract \mathbf{x} to a new \mathbf{x}' based on Eq. (8) and (9);
14
        Update the wavelengths based on Eq. (7);
      return x*.
15
```

[1]

Właściwości

- dobrze sobie radzi z mała populacja (5-10 fal)
- im wieksza jest wysokość fali tym dłuższy jest średni czas życia fali
- mała wysokość powoduje, że fale beda czesto zastepowane zwiekszy sie różnorodność rozwiazań
- duże α powoduje, że algorytm bada duży obszar, a im jest mniejsze, tym dokładniej bada określony teren

Funkcje unimodalne

Comparative results on unimodal benchmark functions.

		IWO	BBO	GSA	HuS	BA	WW0
f 1	max	2.77E+06	8.09E+07	5.31E+07	1.26E+07	5.51E+08	1.17E+06
	min	3.44E+05	5.75E+06	4.56E + 06	1.61E + 06	1.18E+08	1.44E+05
	median	$^{2}1.42E+06$	52.14E+07	$^{4}8.37E + 06$	$^{3}5.10E + 06$	$^{6}3.10E + 08$	16.26E+05
	std	5.72E+05	1.67E+07	1.32E+07	2.62E + 06	1.05E + 08	2.45E+05
f_2	max	4.06E+04	8.04E+06	1.61E+04	2.41E+04	6.35E+09	1.48E+03
	min	6.09E + 03	1.15E+06	3.47E+03	3.09E + 02	1.13E+09	2.00E + 02
	median	41.52E+04	53.95E+06	$^{2}8.38E+03$	$^{3}9.09E+03$	$^{6}2.49E + 09$	12.68E+02
	std	8.67E + 03	1.55E+06	2.90E+03	6.01E+03	7.55E + 08	2.02E + 02
f_3	max	1.50E+04	5.07E+04	7.58E+04	3.36E+03	1.11E+05	1.32E+03
	min	3.50E+03	5.92E+02	2.04E + 04	3.00E + 02	3.44E+04	3.15E+02
	median	$^{3}7.29E+03$	47.65E+03	54.51E+04	13.02E+02	$^{6}7.19E + 04$	$^{2}4.87E+02$
	std	2.69E+03	1.28E+04	1.04E+04	5.41E+02	1.75E+04	1.85E+02

[1]

Funkcje multimodalne cz.1

Comparative results on multimodal benchmark functions.

		IWO	BBO	GSA	HuS	BA	WWO
f ₄	max	5.45E+02	6.54E+02	8.49E+02	5.64E+02	1.26E+04	5.42E+02
	min	4.02E+02	4.23E+02	5.73E+02	4.04E+02	2.01E+03	4.00E+02
	median	³ 5.11E+02	45.42E+02	56.82E+02	25.03E+02	63.05E+03	14.02E+02
	std	2.88E+01	3.84E+01	5.15E+01	3.66E+01	1.97E+03	3.64E+01
f s	max	5.20E+02	5.20E+02	5.20E+02	5.21E+02	5.21E+02	5.20E+02
	min	5.20E+02	5.20E+02	5.20E+02	5.21E+02	5.21E+02	5.20E+02
	median	35.20E+02	45.20E+02	15.20E+02	55.21E+02	65.21E+02	² 5.20E+02
	std	3.77E-03	4.22E-02	6.47E-04	7.83E-02	4.81E-02	6.98E-04
f ₆	max	6.05E+02	6.18E+02	6.24E+02	6.29E+02	6.39E+02	6.13E+02
	min	6.00E+02	6.08E+02	6.17E+02	6.19E+02	6.32E+02	6.01E+02
	median	16.02E+02	³ 6.14E+02	46.20E+02	56.23E+02	66.37E+02	² 6.06E+02
	std	1.12E+00	2.35E+00	1.83E+00	2.18E+00	1.56E+00	2.62E+00
fr	max	7.00E+02	7.01E+02	7.00E+02	7.00E+02	9.63E+02	7.00E+02
	min	7.00E+02	7.01E+02	7.00E+02	7.00E+02	8.19E+02	7.00E+02
	median	⁴ 7.00E+02	⁵ 7.01E+02	17.00E+02	37.00E+02	⁶ 9.12E+02	17.00E+02
	std	1.21E-02	2.64E-02	9.55E-04	5.56E-02	3.23E-01	6.26E-03
f_8	max	8.75E-02	9.39E+02	8.01E+02	9.75E+02	1.12E+03	8.15E+02
	min	8.27E+02	8.39E+02	8.00E+02	9.10E+02	9.76E+02	8.00E+02
	median	³ 8.43E+02	48.79E+02	² 8.00E+02	⁵ 9.40E+02	61.07E+03	18.00E+02
	std	1.01E+01	2.07E+01	2.06E-01	1.27E+01	2.56E+01	2.34E+00
f_9	max	9.78E+02	9.84E+02	1.10E+03	1.09E+03	1.34E+03	9.84E+02
	min	9.30E+02	9.35E+02	1.02E+03	9.59E+02	1.15E+03	9.35E+02
	median	19.46E+02	² 9.49E+02	51.06E+03	41.01E+03	61.25E+03	³ 9.61E+02
	std	1.14E+01	1.14E+01	1.74E+01	2.60E+01	4.41E+01	1.11E+01
f10	max	3.57E+03	1.00E+03	5.25E+03	3.21E+03	7.45E+03	2.71E+03
	min	1.59E+03	1.00E+03	3.45E+03	1.36E+03	5.26E+03	1.02E+03
	median	*2.58E+03	11.00E+03	54.37E+03	³ 2.17E+03	66.47E+03	² 1.49E+03
	std	3.80E+02	6.80E-01	3.61E+02	4.33E+02	5.19E+02	3.62E+02

Funkcje multimodalne cz.2

fn	max	3.80E+03	4.51E+03	6.35E+03	4.23E+03	8.75E+03	3.89E+03
	min	1.48E+03	2.12E+03	3.70E + 03	2.20E+03	7.20E+03	2.49E+03
	median	12.92E+03	33,32E+03	54.99E+03	23.24E+03	68.24E+03	43.38E+03
	std	4.48E+02	5.12E+02	5.67E+02	4.66E+02	3.62E+02	2.89E+02
f_{12}	max	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03
	min	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03	1.20E+03
	median	11.20E+03	11.20E+03	11.20E+03	11.20E+03	11.20E+03	11.20E+03
	std	1.48E-02	5.62E-02	1.00E-03	7.77E-02	3.34E-01	5.61E-02
f_{13}	max	1.30E+03	1.30E+03	1.30E+03	1.30E+03	1.30E+03	1.30E+03
	min	1.30E+03	1,30E+03	1.30E+03	1.30E+03	1.30E+03	1.30E+03
	median	21.30E+03	51.30E+03	31.30E+03	41.30E+03	61.30E+03	11.30E+03
	std	6.50E-02	1.06E-01	6.65E-02	6.50E-02	5.48E-01	6.41E-02
f14	max	1.40E+03	1.40E+03	1.40E+03	1.40E+03	1.50E+03	1.40E+03
	min	1.40E+03	1.40E+03	1.40E+03	1.40E+03	1.44E+03	1.40E+03
	median	21.40E+03	51.40E+03	41.40E+03	31.40E+03	61.47E+03	11.40E+03
	std	1.19E-01	1.99E-01	4.23E-02	4.74E-02	1.39E-01	4.41E - 02
f_{15}	max	1.51E+03	1.53E+03	1.51E+03	1.52E+03	5.92E+05	1.50E+03
	min	1.50E+03	1.51E+03	1.50E+03	1.51E+03	1.59E+04	1.50E+03
	median	31.50E+03	41.51E+03	21.50E+03	51.52E+03	61.55E+05	11.50E+03
	std	8.48E-01	4.30E+00	7.30E-01	3.27E+00	1.40E+05	7.75E-01
f_{16}	max	1.61E+03	1.61E+03	1.61E+03	1.61E+03	1.61E+03	1.61E+03
	min	1.61E+03	1.61E+03	1.61E+03	1.61E+03	1.61E+03	1.61E+03
	median	31.61E+03	11.61E+03	61.61E+03	41.61E+03	51.61E+03	21.61E+03
	std	6.14E-01	5.92E-01	3.43E-01	7.25E-01	1.90E-01	4.67E-01

On f13-f16, the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.

Funkcje hybrydowe

Comparative results on hybrid benchmark functions.

		IWO	BBO	GSA	HuS	BA	WW0
f ₁₇	max	3.50E+05	2.31E+07	1.14E+06	1.10E+06	9.90E+06	6.16E+04
	min	5.37E+03	1.26E+06	1.85E+05	1.43E+04	1.45E+06	6.71E+03
	median	26.75E+04	53.13E+06	45.63E+05	31.51E+05	64.24E+06	12.61E+04
	std	6.85E + 04	4.19E + 06	2.20E + 05	1.61E+05	1.79E+06	1.24E+04
f_{18}	max	1.80E+04	1.03E+05	4.20E+03	1.09E+04	3.64E+08	2.73E+03
	min	2.26E + 03	6.74E + 03	2.02E + 03	2.02E + 03	1.33E+07	1.85E+03
	median	44.35E+03	52.28E+04	² 2.13E+03	$^{3}2.73E+03$	68.54E+07	12.01E+03
	std	3.69E + 03	1.97E+04	3.78E + 02	2.25E+03	1.00E+08	1.25E+02
f ₁₉	max	1.91E+03	1.98E+03	2.00E+03	2.04E+03	2.06E+06	1.91E+03
	min	1.90E+03	1.91E+03	1.91E+03	1.91E+03	1.95E+03	1.90E+03
	median	21.91E+03	$^{3}1.91E+03$	52.00E+03	41.92E+03	⁶ 2.01E+03	11.91E+03
	std	1.65E + 00	2.77E+01	3.43E+01	3.31E+01	2.03E+01	1.38E+00
f ₂₀	max	5.34E+03	8.62E+04	6.82E + 04	6.03E + 04	4.44E+04	1.58E+04
	min	2.30E+03	8.64E + 03	2.32E + 03	2.22E + 04	5.40E + 03	2.14E+03
	median	12.74E+03	52.72E+04	41.77E+04	$^{6}3.68E + 04$	$^{3}1.63E+04$	24.25E+03
	std	7.00E + 02	1.76E+04	1.39E + 04	8.49E+03	1.03E+04	3.18E+03
f21	max	9.03E+04	1.67E+06	3.09E+05	1.66E+05	3.34E+06	1.76E+05
-	min	6.74E + 03	6.70E + 04	5.87E+04	1.07E + 04	1.43E+05	3.70E+03
	median	$^{2}3.35E+04$	54.22E+05	41.71E+05	$^{3}4.70E+04$	69.17E+05	12.92E+04
	std	2.30E+04	3.35E+05	6.53E + 04	4.24E+04	7.51E+05	3.50E+04
f ₂₂	max	2.52E+03	3.28E+03	3.63E+03	3.67E+03	3.56E+03	2.85E+03
	min	2.23E+03	2.25E+03	2.63E + 03	2.37E+03	2.72E+03	2.22E+03
	median	12.36E+03	$^{3}2.71E+03$	63.15E+03	$^{4}3.08E + 03$	53.14E+03	22.48E+03
	std	7.34E+01	2.34E+02	2.50E + 02	2.67E+02	2.05E + 02	1.43E+02

On f_{19} , the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.

Funkcje złożone

Comparative results on composition benchmark functions.

		IWO	BBO	GSA	HuS	BA	wwo
f ₂₃	max	2.62E+03	2.62E+03	2.65E+03	2.62E+03	2.88E+03	2.62E+03
	min	2.62E + 03	2.62E + 03	2.50E + 03	2.62E + 03	2.51E+03	2.62E + 03
	median	$^{4}2.62E + 03$	62.62E+03	$^{2}2.56E+03$	52.62E+03	12.51E+03	$^{3}2.62E + 03$
	std	7.95E-02	1.32E+00	6.45E+01	8.45E-01	1.28E+02	1.45E - 01
f ₂₄	max	2.63E+03	2.65E + 03	2.60E+03	2.71E+03	2.60E+03	2.63E + 03
	min	2.60E + 03	2.63E + 03	2.60E + 03	2.63E + 03	2.60E + 03	2.62E + 0.0
	median	$^{3}2.62E+03$	52.63E+03	12.60E+03	$^{6}2.66E + 03$	$^{2}2.60E+03$	42.63E+03
	std	1.08E + 01	5.97E+00	1.71E-02	1.25E+01	1.20E+00	6.89E + 00
f ₂₅	max	2.71E+03	2.72E+03	2.71E+03	2.75E+03	2.76E+03	2.72E+03
	min	2.70E + 03	2.71E + 03	2.70E + 03	2.71E+03	2.70E + 03	2.70E + 0
	median	$^{3}2.70E+03$	52.71E+03	12.70E+03	62.72E+03	² 2.70E+03	42.71E+0
	std	8.08E-01	3.01E+00	1.32E+00	6.27E+00	1.50E+01	2.00E+0
26	max	2.70E+03	2.80E+03	2.80E+03	2.80E+03	2.70E+03	2.70E+0
	min	2.70E + 03	2.70E + 03	2.80E + 03	2.70E + 03	2.70E+03	2.70E+0
	median	$^{2}2.70E+03$	$^{3}2.70E+03$	52.80E+03	⁶ 2.80E+03	42.70E+03	12.70E+0
	std	5.43E-02	2.20E+01	5.43E-03	3.53E+01	5.37E-01	6.50E-0
27	max	3.10E+03	3.51E+03	4.43E+03	6.47E+03	3.53E+03	3.50E+0
	min	3.01E+03	3.24E+03	3.10E + 03	3.57E+03	3.21E+03	3.10E+0
	median	$^{2}3.10E + 03$	43.40E+03	53.82E+03	64.84E+03	33.31E+03	13.10E+0
	std	3.38E+01	6.35E+01	3.51E+02	6.83E+02	6.46E+01	5.90E+0
28	max	3.85E+03	4.27E+03	6.92E+03	6.65E+03	6.10E+03	5.39E+0
	min	3.56E + 03	3.61E+03	3.76E + 03	4.70E+03	3.01E+03	3.10E+0
	median	13.69E+03	$^{3}3.79E+03$	65.43E+03	55.36E+03	44.52E+03	23.78E+0
	std	4.12E + 01	9.33E+01	7.15E + 02	4.61E+02	5.93E + 02	3.61E+0
29	max	2.79E+04	8.64E+06	2.93E+06	4.11E+07	1.36E+07	5.06E+0
723	min	5.37E+03	4.26E + 03	3.10E + 03	4.81E+03	6.16E+05	3.56E+0
	median	51.58E+04	$^{3}5.26E+03$	13.10E+03	41.54E+04	64.21E+06	24.02E+0
	std	5.14E+03	1.11E+06	3.78E+05	7.70E+06	2.83E+06	3.60E+0
f ₃₀	max	1.69E+04	3.75E+04	1.14E+05	3.74E+04	5.08E+05	7.66E+0
	min	6.05E + 03	7.78E+03	1.22E+04	8.27E+03	6.26E+04	4.25E+0
	median	$^{2}8.85E+03$	51.56E+04	$^{3}1.46E+04$	41.51E+04	61.77E+05	15.63E+0
	std	2.08E+03	6.08E+03	1.84E+04	6.58E+03	9.11E+04	7.38E+0

On f_{24} — f_{27} , the values in bold are better than those seemingly same values not in bold, because the digits after the second decimal place are omitted.

Bibliografia

• Yu-Jun Zheng.

Water wave optimization: A new nature-inspired metaheuristics.