1.a.
$$A = \begin{pmatrix} 1 & 0 - 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

$$(A|X) = det(X \cdot I - A) = det(X - I \cdot U \cdot I)$$

$$= (x-1)(x-2)(x-3) + 1 \cdot (-(-1) \cdot (x-2))$$

$$= (x-2)(x^2 - 4x + 3 + 1)$$

$$= (x-2)^3$$

$$M_A(x) = (x-z)^k, \quad k \leq 3.$$
Air. Pdy

$$A-2I = \begin{pmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \neq 0.$$

$$(A-7I)^2 = 0.$$
 = $M_A(x) = (x-2)^2$

: invariant duction we
$$d_1 = (x-2), d_2 = (x-2)^2 = x^2 - 4x + 4$$

$$RCF : \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & 1 & 4 \end{pmatrix} \qquad JNF : \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

$$G = E_7 \cdot E_1$$
 ray $g_7 > 1$. $R7 \times 1 \cdot R7 + R1$
7. $R3 \times 1 \cdot R3 - |x-3| R1$

$$\omega^{-1} = E_{1}^{-1} \cdot E_{2}^{-1} : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \sim_{1} \cdot \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

$$v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_3 = A \cdot v_5 = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

$$R = (v_1 v_2 v_3) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 $R^{-1}AR = B.$

For JNF
$$(=\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix})$$
 use basis $1, (x-2)$ of $F[x]/(x-2)^2$

i.e. basis
$$v_{1}, v_{2}, -2v_{2} + v_{3} \text{ of } F^{3}$$

$$S = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad S^{1}AS = C.$$

=> A diagonalizable (
$$n_A$$
 is a product of distinct linear fourten in FCx7), eigenstues $l=0$ or 1.

$$=> INF A A = \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right)^{n-r}$$

=>
$$(g(x))$$
 = $det(xI - B) = det(xI - PAP^{-1}) = det(P \cdot (xI - A) \cdot P^{-1})$
= $det(P \cdot (xI - A) \cdot det(P^{-1}) = det(xI - A) = (A|x)$.

$$\overline{for}$$
 $P(x) \in FCxJ$, $P(B) = P(PAP^{-1}) = PP(A)P^{-1}$

b. A diagoralisable,
$$PAP = D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \gamma \quad (A|x| = |x-\lambda_1| - - |x-\lambda_2|)$$
.

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
, $B = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, then $(A = (B = (x - \lambda)^2)$

but $A \neq B$ because $din |(B-\lambda I) = 1 < din \ker (A-\lambda I) = 2$.

(. Recall $A = d_1 \cdot d_5$ where $d_1 | d_2 | \cdot | d_5$ are invariant factors of xI-A $d_1 = d_5$.

N
$$\leq$$
 3. If $M_A = d_S$ is (New, $d_S = x - \lambda$, then $A = AII$

Otherwise $S \leq 2$, so $(c_A, m_A) = (c_B, m_B)$
 $= 7 \times T - A + x T - B$ have some invariant fautan

 $= 7 \times A + B = 0$

A $\sim B$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 1 & \lambda \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 1 & \lambda \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & \lambda & 0 & 0 & 0 \\ 0 & \lambda & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda$$

4. A nilpotret, $A^{k}=0$ => $A_{A}(x) | x^{k}$.

Minimal phynamial of A is product of linear factors in FEXT

=) I PEGLIFIS. PAP is in JNF, 4 eigenalus are the root of MA(x) (narely (in this rame.)

So
$$A \sim \left[\boxed{J_1} \right]$$

$$J_i = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_2 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_3 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = \left(\begin{array}{c} U \\ U \end{array} \right) \boxed{J_1}$$

$$J_4 = J(\Lambda_i, U) = J(\Lambda_i, U)$$

$$J_4 = J(\Lambda_i, U) = J(\Lambda_i, U)$$

$$J_4 = J(\Lambda_$$

 $\wedge_1 < \cdots < \wedge_{r_1} \qquad \sum_{\lambda_i' = \lambda}$

I great INF is uniquely determined up to readerly the blocks (whe it exists); hoe we have tixed the orderny by size of block (give I! eigevalue). II.

S.
$$P^TAP = B = \left(\begin{array}{c} J \\ J \end{array} \right)$$
 $J_i = \left(\begin{array}{c} \lambda_i \\ U \end{array} \right) \int_{A_i}^{A_i}$

Write $B = D_0 + N_0$ where D_0 is diagonal of N_0 has ally zero extrins off the sub-diagonal i=j+1 (i.e., write $J_i = \begin{pmatrix} J_i & C \\ & J_i \end{pmatrix} + \begin{pmatrix} C & C \\ & & I \end{pmatrix}$).

The No is nilpotest. $\left(\frac{b}{c}\right)^{k} = 0$, where the matrix is $k \times k$ also $D_0 N_0 = N_0 D_0$ (b/c can be able and block separately, 4 blocks of D_0 are scalar matrices.)

Now $A = PDP' + PN_0P' = D + N$ as required. \Box

$$= \begin{pmatrix} \lambda^{k} \\ \lambda^{k} \end{pmatrix} + \begin{pmatrix} k \\ 1 \end{pmatrix} \begin{pmatrix} \lambda^{k-1} \\ \lambda^{k-1} \\ \lambda^{k-2} \end{pmatrix} + \begin{pmatrix} k \\ 2 \end{pmatrix} \begin{pmatrix} \lambda^{k-2} \\ \lambda^{k-2} \\ \lambda^{k-2} \\ \lambda^{k-2} \end{pmatrix}$$

WCF^ s.t.
$$JCW$$
 < w> $F[x]$ -submodule of $F[x]/(x-\lambda)^n$

And $F[x]$ -submodule (=ideal) of $F[x]$

(a bainly $(x-\lambda)^n$,

i.e. \overline{I} = $(x-\lambda)^k$) $0 \le k \le n$.

So possible W 's are

 $(x-\lambda)^k$ or $\overline{I}/(x-\lambda)^n$
 $(x-\lambda)^k$, $--$, $(x-\lambda)^{n-1}$
 $0 \le k \le n$. \square

8. Min pdg $M_{-}(x)$ | $x^{5}-1$ Also, 1 is not an eigenvalue of T_{1} so (x-1) | $M_{-}(x)$. (redsolving are evals of T_{1})

Thus $M_{-}(x) = x^{5}-1$ = $x^{4}+x^{3}+x^{7}+x^{-1}=:f$ (inved in WX) by Prinary

A 7 has R(F) w/ blocks $\begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ the companior matrix of fSo, 4 | $dim_{-}N$.

9. $M_A \mid x^6 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)$ ired factorization in Q[x].

So, A has privary RCF w/ blacks the corresponding companion matrices

$$\boxed{1}, \boxed{0-1}, \boxed{-1}, \boxed{-1}$$

drades 1, 3, 2, 6

i representatives of conjugacy dances of walk 6 are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}. \quad \Box$$