Linear mixed models

Why, what, how?

Timothée Bonnet with content from Terry Neeman

January 17, 2019

Statistical models: MEAN and VARIANCE components

Response = Intercept + Slope \times Predictor

Statistical models: MEAN and VARIANCE components

What is in ϵ ? How can we tweak that? Why should we care?

Let's do exercises in section 1

Exercise 1:

Mean symptom score by treatment group

Vaccine challenge experiment:

- 6 mice/group (saline/low dose/high dose)
- All mice challenged with Shigella
- Followed for 14 days
- Outcome: Symptom score average Days 2 - 8

One-way ANOVA (post-hoc Bonferroni) p=0.04

Experimental design

The observed difference in outcome could be the result of:

- · Cage effects
- · Mouse strain effects

These effects are CONFOUNDED with treatment effect

Cage 1: saline

Experimental design

The observed difference in outcome could be the result of:

- · Cage effects
- · Mouse strain effects

These effects are CONFOUNDED with treatment effect

Cage 1: saline

Solutions:

Mixed cages: can compare within cages

More cages: must compare between cages

Mixed cages: can compare within cages

- Share the noise among treatments
- Few cages needed: Technically efficient
- But may be technically impossible

Mixed cages: can compare within cages

- Share the noise among treatments
- Few cages needed: Technically efficient
- But may be technically impossible

More cages: must compare between cages

- Redefine experimental unit
- Noise among cages, instead of within
- Needs to re-scale the experiment

Exercise 2:

What is wrong with this design?

What is wrong with this design?

- CONTROLS: not tested under identical conditions
- REPLICATION: only pseudo-replication
- BLOCKING: none
- RANDOMISATION: NA

What is wrong with this design?

- CONTROLS: not tested under identical conditions
- REPLICATION: only pseudo-replication
- BLOCKING: none
- RANDOMISATION: NA

This experiment is useless

What is going on conceptually?

$$\textit{Response} = \underbrace{\textit{Intercept} + \textit{Slope} \times \textit{Predictor}}_{} + \underbrace{\textit{Error}, \ \text{with} \ \epsilon \sim \textit{N}(0, \sigma)}_{}$$

Mean Structure Experimental factors Variance Structure Unrelated to experiment factors Unexplained "noise"

What is going on conceptually?

For robust models we need assumptions about the error:

- Gaussian error distribution
- 2 Homoscedasticity (constant error variance)
- Independence of errors

That what $\epsilon \sim N(0, \sigma)$ means

Unexplained "noise"

What is going on conceptually?

$$\label{eq:Response} \begin{aligned} \textit{Response} &= \underbrace{\textit{Intercept} + \textit{Slope} \times \textit{Predictor}}_{\substack{\text{Mean Structure} \\ \text{Experimental factors}}} + \underbrace{\textit{Error}, \text{ with } \epsilon \sim \textit{N}(0, \sigma)}_{\substack{\text{Variance Structure} \\ \text{Unrelated to experiment factors}}} \end{aligned}$$

For robust models we need assumptions about the error:

- Gaussian error distribution
- 4 Homoscedasticity (constant error variance)
- Independence of errors

That what $\epsilon \sim \mathcal{N}(0,\sigma)$ means

In mice and frog experiments, ϵ are non-independent

Unexplained "noise"

Fixed or random effect?

In general

- Doesn't change inference much. Random effect slightly more efficient.
- Summary cleaner with random effect, especially when many random levels
- Random shifts the focus from level values to variation among levels
- Variance parameters interesting in themselves
- Are levels of interest (fixed) or are they some kind of noise (random)

Exercises with Ime4 output

Understanding different variance structure

Understanding different variance structure

Understanding different variance structure

Understanding different variance structure: **Nested and Crossed structures**

```
Crossed: (1|plate) + (1|row) + (1|column)
Nested: (1|plate) + (1|plate:row) + (1|plate:column) =
(1|plate/row/column)
What is the difference?
```


crossed random effects: one level of a random effect can appear in conjunction with more than one level of another random effect

Beyond random intercepts

Right-hand side = what groups observations

Nested, crossed et al. on the right hand side of the |: (1|something) How are data related to each other, what groups them Does not tell what parameter vary according to group

Beyond random intercepts

Right-hand side = what groups observations

Nested, crossed et al. on the right hand side of the |: (1|something) How are data related to each other, what groups them Does not tell what parameter vary according to group

Left-hand side = what varies according to grouping

The 1 stands for **intercept**But many things can go to the left hand side.

Beyond random intercepts

Right-hand side = what groups observations

Nested, crossed et al. on the right hand side of the |: (1|something) How are data related to each other, what groups them Does not tell what parameter vary according to group

Left-hand side = what varies according to grouping

The 1 stands for intercept

But many things can go to the left hand side.

Random interactions, random regressions, random slopes...

e.g.,
$$y \sim 1 + x + (1 + x | something)$$

Everything you need to know about mixed models

- http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
- Subscribe to mailing-list: https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models