

TABLE OF CONTENTS

- 1. Problem Statement
- 2. Dataset
- 3. Results of Data Analysis
- 4. Machine Learning Results
- 5. Conclusions
- 6. Proposed Future Work
- 7. Thanks
- 8. References
- 9. Appendix Additional Figures
 - a. Figures and Graphs from Data Analysis
 - b. Figures and graphs from Machine Learning

PROBLEM STATEMENT

Cardiovascular heart disease (CHD) is the leading cause of death annually worldwide.

Cardiovascular diseases can be managed if caught early and simple lifestyle changes are made.

The intent of this project is to explore a set of data for patients measuring known factors for heart disease to:

Develop a machine learning model to

- predict risk of developing heart disease within the next ten years.
- Develop insights regarding CHD by exploring patient data

Make recommendations for a patient

 reeducation program to reduce risk of developing CHD

THE DATASET

- This dataset is a subset of the Framingham, MA heart study data set.
- This data consists of a large group of initially "healthy" patients between the ages of 30-59 who were then tracked for 20 years to determine if they developed CHD
- The subset of data utilized contains information on over 4,200 patients.
 - o 43% Male
 - 50.5% Nonsmokers
 - Patients ranging 32-70 years old
- Data is 15% Patients At Risk and 85% patients with no risk of developing CHD in the next 10 years
 - Due to imbalance will have to use different tactics during model building

FEATURES INVESTIGATED

- Age
- Education Level
- Gender
- Smoker vs Nonsmoker
 - # of cigarettes smoked daily
- Prevalence of
 - Stroke
 - Hypertension
 - Diabetes
- Cholesterol
- Blood Pressure
- BMI
- Heart Rate
- Blood Sugar

Exploratory Data Analysis Results

The risk of developing Cardiovascular Heart Disease increases with:

- 1. Smoking, the more a patient smokes the higher the risk.
- 2. Cholesterol, and higher cholesterol means higher risk.
- 3. Blood Pressure
- 4. Prevalence of Stroke
- 5. Prevalence of Hypertension
- 6. Diabetes

DATA ANALYSIS CONCLUSIONS

Patient groups at highest risk, to target with reeducation material include:

- 1. Patients over 50
- 2. Males
- 3. Patients who smoke
- 4. Patients with diabetes and hypertension.

DATA ANALYSIS CONCLUSIONS

Recommendations for reeducation material:

- Managing diet and exercise to reduce blood pressure, manage blood sugar, and manage weight can reduce risk!
- 2. Cutting back on smoking can reduce risk: even if the patient only reduces consumption.

In-Depth Analysis Results

Multiple Models were built and Tested For Accuracy

- Model accuracy was determined by comparing correct predictions and incorrect predictions.
- Models were built using 2 methods: (1) using all patient data and (2)
 using patient data without prevalence of stroke and if a patient smokes
 or not
- Model efficacy was determined by
 - (1) Least number of patients at risk incorrectly categorized, and
 - (2) Least number patients not at risk incorrectly categorized
 - (3) Correctly categorized patients

Model Results and Use

metric!

Most important metric!

Model Results and Use

- Recommend these patients for immediate lifestyle change
- Consider additional measures as patient is AT RISK

Recommend these patients for immediate lifestyle change-

Final Model Results

Final Conclusions from Analysis

- Best model accuracy was achieved by removing prevalence of stroke and whether or not patient smokes
- 2. Accuracy of categorizations is ~85.5%
- Recommendations for patient treatment based upon final categorization in resulting matrix

Proposed Future Work

The following are possible avenues to continue exploration using this data, but are out of current scope of work:

- Build interactive Application to allow for entry of new patient data by physician for risk prediction
- Build model to predict amount of risk and projected decline if recommendations for healthy lifestyle are followed
- 3. Build interactive application for patients to track improvements given recommendation plan and risk improvement/elimination

Additional opportunities are detailed in the report found here.

THANKS

Does anyone have any questions?

caitlinjejansson@gmail.com https://github.com/C]E]ansson/Springboard Projects/C apsone2

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

REFERENCES

- [1] https://www.thelancet.com/journals/lancet/article/PIIS0140-6736%2813%2961752-3/fulltext
- $\bullet \qquad [\ 2\] \qquad \underline{\text{https://web.archive.org/web/20170710152157/https://www.framinghamheartstudy.org/index.php}$
- [3] https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
- [4] <u>https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics</u>
- [5] <u>https://towardsdatascience.com/cross-validation-430d9a5fee22</u>

APPENDIX A: Exploratory Data Analysis and Statistics

SUMMARY OF DATASET BY FEATURE

Feature	Values	Data Type	# of Null	Description	
Age	32-70	Continuous	None	Patient age in years, only whole numbers	
Education	1, 2, 3, 4	Discrete	None	Education Level: 1-Some High School, 2-High School Diploma/GED, 3-College, 4-Degr	
Sex	M, F	Discrete	None	Patient gender (M/F or 0=M, 1=F)	
is_smoking	Yes, No	Discrete	None	If the patient is a current smoker (Yes/No or 1=yes, 0=no)	
Cigs per Day	0-70	Continuous	29	Number of Cigarettes smoked per day (null = unknown)	
BP Meds	0, 1	Discrete	53	Whether the patient is taking Blood Pressure Medications (0=no, 1=yes, null=unknown	
prevalentStroke	0, 1	Discrete	None	Prevalence of stroke (0=none, 1=has had occurences of stroke)	
prevalentHyp	0, 1	Discrete	None	Prevalence of hypertension (0=none, 1= has prevalence hypertension	
diabetes	0, 1	Discrete	None	If the patient has diabetes (0=no, 1=yes)	
totChol	107-696	Continuous	50	Total Cholesterol	
sysBP	83.5-295	Continuous	None	Systolic Blood Pressure	
diaBP	48-142.5	Continuous	None	Diastolic Blood Pressure	
ВМІ	15-54-56.8	Continuous	19	Body Mass Index	
heartRate	44-143	Continuous	1	Resting heart rate in beats per minute (bpm)	
glucose	40-394	Continuous	388	Blood glucose level. (mg/dL)	
TenYearCHD	0,1	Discrete (calculated)	848 (test data)	Riskisk of developing CHD in next decade (0=no risk, 1=risk)	

SUMMARY OF STATISTICAL ANALYSIS BY FEATURE

		Hypothesis Testing				
Feature	Correlation	Test	Result	P-Value		
Age	0.0890	T-Test	Reject Ho - Correlated	1.85E-38		
Education Level	-0.0043	Chi-Square	Reject Ho - Correlated	4.87E-04		
Gender	-0.0170	Chi-Square	Reject Ho - Correlated	3.37E-06		
Smoker	-0.0009	Chi-Square	Fail to Reject	9.07E-02		
Number of Cigarettes per Day	0.0130	T-Test	Reject Ho - Correlated	5.37E-04		
Use of BP Meds	0.0290	Chi-Square	Reject Ho - Correlated	2.07E-06		
Prevalence of Stroke	0.0110	Chi-Square	Reject Ho - Correlated	9.32E-05		
Prevalence of Hypertension	0.0400	Chi-Square	Reject Ho - Correlated	1.03E-21		
Diabetic	0.0370	Chi-Square	Reject Ho - Correlated	1.27E-08		
Total Cholesterol	0.0190	T-Test	Reject Ho - Correlated	5.31E-07		
Systolic BP	0.0560	T-Test	Reject Ho - Correlated	5.52E-24		
Diastolic BP	0.0500	T-Test	Reject Ho - Correlated	8.90E-12		
ВМІ	0.0270	T-Test	Reject Ho - Correlated	4.45E-04		
Heart Rate	-0.0079	T-Test	Fail to Reject	2.47E-01		
Blood Sugar	0.0410	T-Test	Reject Ho - Correlated	3.41E-06		

KDE Distributions by Feature vs Risk of Developing CHD

Full Correlation Heatmap

1.00

0.75

- 0.50

- 0.25

0.00

-0.25

INITIAL FINDINGS: Smoking and CHD

Cigarettes Smoked vs Risk of Developing CHD

INITIAL FINDINGS: AGE AND CHD

INITIAL FINDINGS: AGE, GENDER AND CHD

INITIAL FINDINGS: BMI, GENDER AND CHD

INITIAL FINDINGS: BLOOD PRESSURE AND CHD

Boxplot of Systolic BP vs Risk of Developing CHD

INITIAL FINDINGS: AGE, DIABETES AND CHD

INITIAL FINDINGS: AGE, HYPERTENSION AND CHD

INITIAL FINDINGS: AGE, STROKE AND CHD

APPENDIX B: Machine Learning

Light GBM Feature Selection

Cross Validation Accuracy Scores

Accuracy Scores

F1 Scores

Confusion Matrices:All Models, All Features

Confusion Matrices: All Models, Reduced Features

Summary of Accuracy Scores: All models

2	Algorithm	CrossValMeans	CrossValerrors	Accuracy Scores	F1-Scores
All Features	svc	0.844	0.005	0.869	0.000
	DecisionTree	0.750	0.014	0.780	0.280
	AdaBoost	0.756	0.016	0.785	0.291
	RandomForest	0.846	0.008	0.873	0.104
	RandomForest-withBootstrap	0.843	0.006	0.872	0.084
	ExtraTrees	0.844	0.010	0.872	0.065
	GradientBoosting	0.842	0.011	0.866	0.133
	MultipleLayerPerceptron	0.843	0.012	0.876	0.160
	KNeighboors	0.833	0.004	0.851	0.137
	LogisticRegression*	0.850	0.003	0.876	0.125
	Linear Discriminant Analysis^	0.851	0.005	0.869	0.136
	LightGBM	0.832	0.009	0.864	0.164
	svc	0.851	0.019	0.841	0.000
	DecisionTree	0.751	0.023	0.760	0.269
	AdaBoost	0.750	0.017	0.761	0.270
Reduced Features	RandomForest	0.848	0.018	0.845	0.103
	RandomForest-withBootstrap	0.849	0.019	0.841	0.000
	ExtraTrees	0.851	0.017	0.841	0.069
	GradientBoosting	0.843	0.015	0.850	0.164
	MultipleLayerPerceptron	0.839	0.011	0.839	0.052
	KNeighboors	0.836	0.018	0.839	0.227
	LogisticRegression^	0.855	0.019	0.858	0.213
	LinearDiscriminantAnalysis	0.854	0.017	0.854	0.233
	LightGBM	0.835	0.010	0.854	0.244

^{*}Best Performing Model Overall

[^]Best Performing Model in Subest (all features, reduced features)