Capstone Project - The Battle of the Neighborhoods

The analysis of the best neighborhoods New York City using data science methodologies.

1 Contents

2		Intro	duct	ion	. 3
	2.	1	Back	ground	. 3
	2.	2	Prob	blem	. 3
3		Targ	et Au	udience	. 3
4		Data	ı		. 3
	4.	1	Data	9 Sets	. 3
		4.1.2	1	New York City data	. 3
		4.1.2	2	Foursquare API	. 3
	4.	2	Data	Preparation	. 4
		4.2.2	1	New York City data set	. 4
		4.2.2	2	Maps	. 4
		4.2.3	3	Four Square API	. 5
		4.2.4	1	Favorite Categories	. 5
		4.2.5	5	Merged Data	. 5
		4.2.6	ĵ	Filtered Merged Data:	. 6
5		Met	hodo	logy	. 6
	5.	1	Expl	oratory analysis	. 6
	5.	2	One	Hot Encoding	. 7
	5.	3	Norr	malized Score	. 7
	5.	4	qoT	Boroughs/Neighborhoods based on Normalized Sum	. 8

	5.5	Clustering	8
6	Resi	ults and Discussion	9
7	Con	clusion1	0

2 Introduction

2.1 Background

People have their own personal preferences of what they want around their house to live comfortably. When people are moving into a new neighborhood, it becomes difficult to find the best neighborhood that match their needs. Data analysis and machine learning helps solve this problem.

2.2 Problem

Customer A is planning to move to New York City. They have a personal preference of what needs to be close to their home for e.g. – Hospital, Restaurant, etc. They need help finding a neighborhood to move to in New York City with proximity to their needs and preferences.

The objective of this project is to use Machine learning algorithms and Foursquare location to determine the best neighborhood based on Customer A's needs and preferences in New York City.

3 Target Audience

- Anyone planning to move to a new neighborhood
- Real estate agents to help find a new place for their customers.
- This report is targeted to Customer A's preference. But this can be tailored to any person's needs.

4 Data

4.1 Data Sets

The datasets used for analysis for this project are:

4.1.1 New York City data

- Data Source: https://cocl.us/new_york_dataset
- Description: This data set contains Borough, Neighborhoods with latitudes and longitudes. This is used to explore different neighborhoods in New York city.

4.1.2 Foursquare API

- Data Source: https://api.foursquare.com
- Description: This API we will get all the venues in the New York city neighborhood. We can
 then analyses which neighborhood has the greatest number of venues that match Customer
 A's preference.

4.2 Data Preparation

4.2.1 New York City data set

- The New York City data set that contains Borough, Neighborhoods with latitudes and longitudes.
- This is used to explore different neighborhoods in New York city.

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

4.2.2 Maps

- Python folium library is used to visualize geographic details of New York City and its boroughs.
- The map of New York city is created with boroughs superimposed in different colors as shown:

4.2.3 Four Square API

- The Foursquare API is used to explore the boroughs and segment them.
- The API was set with a of **100 venue** and a radius of **500 meter** for each borough from their given latitude and longitude.
- Sample dataset of the list Venues name, category, latitude and longitude information from Foursquare API.

	Borough	Neighborhood	name	categories	lat	Ing
0	Bronx	Wakefield	Lollipops Gelato	Dessert Shop	40.894123	-73.845892
1	Bronx	Wakefield	Rite Aid	Pharmacy	40.896649	-73.844846
2	Bronx	Wakefield	Walgreens	Pharmacy	40.896528	-73.844700
3	Bronx	Wakefield	Dunkin'	Donut Shop	40.890459	-73.849089
4	Bronx	Wakefield	Carvel Ice Cream	Ice Cream Shop	40.890487	-73.848568

4.2.4 Favorite Categories

- A list of favorite categories is created **Options**. For our project Customer A's preference is as shown.
- Each of the other categories are buckets to a main category; For e.g. "Doctor's Office", 'Pharmacy' is labeled as **Health**.

4.2.5 Merged Data

- The foursquare API data, the New York City data and Favorite category data is merged to a new data set.
- Each Main Category is also assigned a color(this will be used to create a map later)

:									
		Borough	Neighborhood	name	categories	lat	Ing	MainCategory	Color
(0	Bronx	Wakefield	Lollipops Gelato	Dessert Shop	40.894123	-73.845892	Others	gray
	1	Bronx	Wakefield	Rite Aid	Pharmacy	40.896649	-73.844846	Health	purple
2	2	Bronx	Wakefield	Walgreens	Pharmacy	40.896528	-73.844700	Health	purple
	3	Bronx	Wakefield	Dunkin'	Donut Shop	40.890459	-73.849089	Cafe	red
4	4	Bronx	Wakefield	Carvel Ice Cream	Ice Cream Shop	40.890487	-73.848568	Others	gray

4.2.6 Filtered Merged Data:

• The Merged data is filtered for only those categories that is included in Customer A's preference.

5 Methodology

- This section represents the main component of the report. It starts with an exploratory data analysis before we dig deeper into solving the problem and applying machine learning algorithms.
- For the analysis, venues are filtered for only those categories that is included in Customer A's preference.
- One hot encoding is used to narrow the list of the most promising boroughs in the venue data frames
- Normalized sum is used to determine top borough/neighborhood based on Customer A's preference.
- k-mean cluster analysis of all venues in New York City will provide us the most promising neighborhoods for Customer A.
- The results from Normalized sum and k-mean cluster should give us the best borough/neighborhood based on Customer A's preference.

5.1 Exploratory analysis

In the Exploratory analysis the distribution of venues in New York City was investigated. The result is shown in figure with the corresponding color code explained in table. It can be seen that there is a lot of promising neighborhoods where venues of Customer A's interest are located.

Catergory	Color
Health	purple
Grocery	yellow
Cafe	red
Resturant	orange
Others	gray

5.2 One Hot Encoding

- One hot encoding is used to narrow the list of the most promising boroughs in the venue data frames.
- It is used to count the number of favorite main categories in the data frame.

1 Wakefield 0 0 1 2 Wakefield 0 0 1 3 Wakefield 1 0 0 6 Wakefield 1 0 0
3 Wakefield 1 0 0
6 Wakefield 1 0 0
10 Co-op City 0 0 1
12 Co-op City 0 0 0
16 Co-op City 0 1 0
20 Co-op City 0 0 0
29 Eastchester 0 0 0
30 Eastchester 1 0 0
35 Eastchester 0 0 0
70 Kingsbridge 0 0 0

5.3 Normalized Score

- A Normalized score is calculated for each Neighborhood based on the count of favorite main categories in the Neighborhood
- Normalized Score/Sum = Count of categories in Neighborhood/Total count of categories

5.4 Top Boroughs/Neighborhoods based on Normalized Sum

Top Boroughs are calculated based on the Normalized Score/Sum for the neighborhoods

	Borough	Normalized Sum
0	Bronx	0.279954
3	Queens	0.246544
1	Brooklyn	0.233871
2	Manhattan	0.148618
4	Staten Island	0.111751

	Borough	Neighborhood	Normalized Sum
2	Bronx	Belmont	0.025346
8	Bronx	Kingsbridge	0.024194
73	Queens	Woodside	0.024194
43	Manhattan	Chinatown	0.020737
49	Manhattan	Little Italy	0.020737

5.5 Clustering

- The k-means clustering is used to cluster the neighborhood into 8 clusters.
- In this analysis only favorite venues are considered -this was done by using one hot encoding, then calculated the mean of each venue in each neighborhood and finally grouped the data frame based on the neighborhood.
- The distribution of the clusters is shown in figure
- On further analysis the clusters 6 and 7 look most promising based on customer preference.
- The recommendation would be to move to Queens based on clustering and Normalized sum.

6 Results and Discussion

- For this report both normalized sum and clustering was performed.
- Considering normalized sum analysis, it was found that either Bronx or Queens could be a good choice to move.

	Borough	Normalized Sum
0	Bronx	0.279954
3	Queens	0.246544
1	Brooklyn	0.233871
2	Manhattan	0.148618
4	Staten Island	0.111751

	Borough	Neighborhood	Normalized Sum
2	Bronx	Belmont	0.025346
8	Bronx	Kingsbridge	0.024194
73	Queens	Woodside	0.024194
43	Manhattan	Chinatown	0.020737
49	Manhattan	Little Italy	0.020737

 The k-means provided an insight into similar neighborhoods and narrowed it down to cluster 6 and 7.

- After combining these results, we identified one single borough, that is most likely the best choice: is Queens.
- Upon further investigation the neighborhood Woodside in Queens borough seems a good option based on both normalized sum and clustering

7 Conclusion

- The purpose of this analysis was to identify a borough/neighborhood based on all the categories in the customer (i.e. arks, coffee, bars, restaurants, grocery stores).
- For this report both normalized sum and clustering was performed.
- After combining these results, we identified one single borough, that is most likely the best choice: is **Queens Woodside**.
- Upon further investigation the neighborhood **Woodside** in Queens borough seems a good option based on both normalized sum and clustering