Métodos Numéricos

A. Ismael F. Vaz

Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt

Licenciatura em Engenharia Informática

Ano lectivo 2011/2012

Conteúdo

MATLAB

Conteúdo

MATLAB

O que é o MATLAB?

MATLAB

Começou como sendo um programa iterativo para cálculos com matrizes e transformou-se numa linguagem matemática de alto nível.

O seu desenvolvimento permite agora, por exemplo, a resolução de equações diferenciais e o desenho de gráficos a duas e três dimensões. Possuindo o MATLAB uma linguagem de programação poder-se-ia dizer que qualquer algoritmo pode ser implementado em MATLAB.

O que aprender?

Neste caso apenas iremos introduzir os comandos básicos e a criação de scripts necessários aos capítulos seguintes.

O MATLAB possui uma toolbox (entre outras) que fornece um conjunto de algoritmos para optimização.

O que é o MATLAB?

MATI AB

Começou como sendo um programa iterativo para cálculos com matrizes e transformou-se numa linguagem matemática de alto nível.

O seu desenvolvimento permite agora, por exemplo, a resolução de equações diferenciais e o desenho de gráficos a duas e três dimensões. Possuindo o MATLAB uma linguagem de programação poder-se-ia dizer que qualquer algoritmo pode ser implementado em MATLAB.

O que aprender?

Neste caso apenas iremos introduzir os comandos básicos e a criação de *scripts* necessários aos capítulos seguintes.

O MATLAB possui uma *toolbox* (entre outras) que fornece um conjunto de algoritmos para optimização.

Só existe o MATLAB?

Ferramentas similares

Outros programas similares são o Mathematica e o Maple

Mathematica

Mais vocacionado para manipulação simbólica, embora o MATLAB também já incorpore algumas destas funcionalidades.

Maple - Exemplo

Resolver a equação diferencial com condições iniciais

$$\frac{d^2y}{dx^2}(x) - 3y(x) = x, \quad y(0) = 1 \quad \frac{dy}{dx}(0) = 2$$

dsolve(diff(y(x),x,x) - 3*y(x) = x, y(0)=1, D(y)(0)=2, y(x));

Só existe o MATLAB?

Ferramentas similares

Outros programas similares são o Mathematica e o Maple

Mathematica

Mais vocacionado para manipulação simbólica, embora o MATLAB também já incorpore algumas destas funcionalidades.

$$\frac{d^2y}{dx^2}(x) - 3y(x) = x, \quad y(0) = 1 \quad \frac{dy}{dx}(0) = 2$$

Só existe o MATLAB?

Ferramentas similares

Outros programas similares são o Mathematica e o Maple

Mathematica

Mais vocacionado para manipulação simbólica, embora o MATLAB também já incorpore algumas destas funcionalidades.

Maple - Exemplo

Resolver a equação diferencial com condições iniciais

$$\frac{d^2y}{dx^2}(x) - 3y(x) = x$$
, $y(0) = 1$ $\frac{dy}{dx}(0) = 2$

dsolve(diff(y(x),x,x) - 3*y(x) = x, y(0)=1, D(y)(0)=2, y(x));

Ambiente MATLAB

Histórico de comandos

Operações básicas

Aritméticas

```
>> 2+3*2-1.5*2^2
ans =
```

ans é uma variável *built-in* que é criada sempre que um resultado não é atribuído.

Variáveis *built-in* – constantes

```
>> pi
ans =
3.1416
```


Operações básicas

```
Funções
>> a=2*sin(pi)^2+3*exp(1)+sqrt(2)+cosh(2)
a =
13.3313
```

Ajuda

```
>> help acos
```

ACOS Inverse cosine.

ACOS(X) is the arccosine of the elements of X. Complex results are obtained if ABS(x) > 1.0 for some element.

See also cos, acosd.

. . .

Operações básicas - Formatos

Precisão

O MATLAB usa sempre aritmética com precisão de 15 algarismos significativos, no entanto, por defeito apenas mostra 4.

```
>> format long
>> a
a =
  13.33125473883387
>> format short
>> a
   13.3313
>> format short e
>> a
a =
```

1.3331e+001

Operações básicas com escalares

```
O ;
```

Os comandos que terminam com o ; não são impressos no ecrã.

```
>> a=log(2)+log10(2)+log2(2);
>> a
a =
    1.9942
>> a=log(2)+log10(2)+log2(2)
a =
```

Útil quando se pretende efectuar vários comandos seguidos (*scripts*) e não se pretende ver determinados resultados.

1.9942

Vectores linha

a =

$$\Rightarrow$$
 a=[1,2,3]

a =

2

3

Vectores coluna

$$>> a=[1;2;3]$$

a =

1

2

3

O(A) transposto(a)

$$\Rightarrow$$
 a=[1,2,3],

a =

1

2

3

O(A) transposto(a)

a =

.

1

2

3

Operações com vectores

```
>> a+b
ans =
    1.8415    2.9093    3.1411
>> a^2
??? Error using ==> mpower
Matrix must be square.
```

Operações elemento a elemento

```
>> a.^2
ans =
                9
>> (a+b).^2
ans =
   3.3910 8.4640 9.8666
>> a.*b
ans =
```

Operações com vectores

```
>> 2*a+b.^2
ans =
```

0.8415 1.8186 0.4234

```
Operações elemento a elemento
>> a*b
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> a*b'
ans =
3.0834
```

Operações com vectores

```
>> a'*b
ans =
0.8415  0.9093  0.1411
1.6829  1.8186  0.2822
2.5244  2.7279  0.4234
```

Matriz

Α =

Matriz 2×3 . O MATLAB é case sensitive, i.e., A é diferente de a.

Matriz transposta

Matriz 3×2 .


```
Definição
>> A+B
ans =
     3
     5
>> A'+B'
ans =
     3
     5
>> (A+B),
ans
             5
     3
      5
```

```
Soma
>> A=[2 3; 3 4; 4 5]
A =
>> B=[1 2; 2 3; 3 4]
B =
```


O número de colunas da primeira matriz tem de ser igual ao número de linhas da segunda matriz.

```
Produto elemento a elemento
>> A.*B
ans =
          12
    12
          20
>> A^2
??? Error using ==> mpower
Matrix must be square.
>> A.^2
ans =
          16
    16
          25
```

Sistemas lineares

Um sistema linear pode ser representado na forma de matricial como Ax=b, em que A é uma matriz (dos coeficientes), x é a solução do sistemas e b é um vector (dos termos independentes).

Sistema

$$\begin{cases} x_1 & +2x_2 & +3x_3 & = 1\\ 4x_1 & +5x_2 & +6x_3 & = 2\\ 7x_1 & +8x_2 & +9x_3 & = 3 \end{cases} \equiv \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$$

i.e.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ e $b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Resolução de Sistemas lineares

```
O exemplo anterior
>> A=[1 2 3; 4 5 6; 7 8 9]; b=[1 2 3]';
>> x=A \ b
Warning: Matrix is close to singular or badly scaled.
         Results may be inaccurate. RCOND = 2.203039e-018.
x =
   -0.3333
    0.6667
>> A*x-b
ans =
  1.0e-015 *
   -0.2220
```

Resolução de Sistemas lineares

```
Curiosidades
>> det(A)
ans =
     0
>> [L,U]=lu(A)
    0.1429
               1.0000
                                0
    0.5714
               0.5000
                          1.0000
    1.0000
U =
    7.0000
               8.0000
                          9.0000
               0.8571
                          1.7143
```


0

-0.0000

Resolução de Sistemas lineares

Acesso a elementos de vectores e matrizes

```
Acesso a vectores
>> b=sin(b);
>> b(1)
ans =
    0.8415
>> b(2:3)
ans =
    0.9093
    0.1411
>> b(:)
ans =
    0.8415
    0.9093
    0.1411
```

```
Acesso a matrizes
>> A(2,2)
ans =
     5
>> A(2,:)
ans =
            5
>> A(:,1)
ans =
>> A(1:2,2:3)
ans =
            3
     5
            6
```

Matrizes e vectores especiais

```
Zeros e uns
>> zeros(2,3)
ans =
                 0
                 0
>> ones(2,1)
ans =
>> t=1:1:3
          2
                 3
>> t=1.1:0.1:1.2
    1.1000
              1.2000
```

```
Identidade
>> eye(3)
ans =
\rightarrow rand(3,2)
ans =
    0.6068 0.7621
    0.4860 0.4565
    0.8913 0.0185
>> randn(2,2)
ans =
    1.1892 0.3273
   -0.0376 0.1746
```

Modificação de elementos em vectores e matrizes

```
Atribuições
>> A = ones(3,3);
>> A(1:2,1)=3
     3
>> A(3,1:2:3)=4
     3
```

```
Troca de valores
>> A([1 2],1)=2*A([1 2],1)
A =
>> A([1 3],1)=A([3 1],1)
A =
```


Operadores lógicos e o find

```
find
>> v=[0.1 \ 0.4 \ 0.12 \ 0.13]
v =
    0.1000 0.4000 0.1200 0.1300
>> i=find(v>0.12)
i =
     2
>> a=v(i)
a =
    0.4000 0.1300
>> i=find(v==0.1)
i =
>> i=find(v~=0.1)
i
                 4
```

Operadores lógicos e o find

Operadores lógicos Símbolo Símbolo Representa Representa Maior ou igual que Maior que > >= Menor que Menor ou igual que $\leq =$ Igual a Diferente de & E Negação Ou

Funções básicas

Funções

Função	Descrição
max	Elemento máximo de um vector
min	Elemento mínimo de um vector
sum	Soma de todos os elementos
mean	Média aritmética
stdev	Desvio padrão

Mensagens e display de variáveis

1.00

2.71828183

Mensagens e display de variáveis

```
Terminal
>> x=1;y=2;
>> fprintf('Duas variáveis: %5.1f %6.2f\n',x,y);
Duas variáveis: 1.0 2.00
>> x=[1 2];y=[3 4];
>> fprintf('Dois vectores: %5.1f %6.2f\n',x,y);
Dois vectores: 1.0 2.00
Dois vectores: 3.0 4.00
```

```
Terminal
```

```
>> x
>> disp(x)
```

Terminal

```
>> x=1.23;
>> s=sprintf('Uma string %4.2f',x)
s =
Uma string 1.23
```

Scripts

Definição

Um *script* trata-se da execução de uma série de comandos. Os *scripts* são guardados em ficheiros de extensão .m e por isso designámos por *M-Files* (ficheiros M).

```
Ficheiro bioinf.m
x = 0:.1:1;
y = exp(x);
fprintf('%4.2f %8.4f\n',x,y);
```

Execução			
>> bioir	nf		
0.00	0.1000		
0.20	0.3000		
2.01	2.2255		
2.46	2.7183		

Desenho de gráficos 2D

```
Plot
>> x=0:0.05:4*pi;
>> plot(x,sin(x).^2+2*exp(x/(4*pi)));
>> xlabel('x');
>> ylabel('sin^2(x)+2e^{x/(4\pi)}');
>> title('0 meu primeiro plot');
>> axis([0 4*pi 1 7]);
```


Desenho de gráficos 2D

Desenho de gráficos 2D

```
Sobreposição
>> x=0:0.05:4*pi;
>> plot(x,sin(x).^2+2*exp(x/(4*pi)));
>> hold on;
>> plot(x,-\sin(x).^2+2*exp(x/(4*pi)));
>> hold off:
>> x=0:0.05:4*pi;
>> v1=sin(x).^2+2*exp(x/(4*pi));
\Rightarrow y2=-sin(x).^2+2*exp(x/(4*pi));
>> plot(x,y1,x,y2);
Dois gráficos quase idênticos (atenção às cores).
```


Usando marcas e tipos de linhas

```
>> x=0:0.05:4*pi;
>> y=0:1:4*pi;
>> plot(x,sin(x).^2+2*exp(x/(4*pi)),'--r',1,3,'ok',...
3,4,'*g',y,-sin(y).^2+2*exp(y/(4*pi)),'+k');
```



```
Plot3
>> t = 0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t);
>> [x,y]=meshgrid(0:0.1:4*pi,0:0.1:pi);
>> plot3(x,y,sin(x).*cos(y));
>> surf(x,y,sin(x).*cos(y));
```


Desenho de curvas de nível

Contour

```
>> [x,y]=meshgrid(0:0.1:4*pi,0:0.1:pi);
>> contour(x,y,sin(x).*cos(y));
>> contour(x,y,sin(x).*cos(y),50);
```


Desenho de curvas de nível

Funções MATLAB

As funções em MATLAB são escritas em ficheiros M. O nome do ficheiro deve corresponder ao nome da função

```
Execução
>> simples(2)
ans =
>> a=simples([1 2])
>> b=simples([1 2; 2 3])
b =
```

```
simples.m
function f = simples(x)
% 0 quadrado de x
% .^ para ...
f=x.^2;
```

```
Help
>> help simples
0 quadrado de x
```

```
myfun.m
function [a, b] = myfun(x,y)
%
 Argumentos de entrada:
    x - 0 meu primeiro argumento
    y - 0 meu segundo argumento
% Argumentos de saída:
    a - O meu primeiro argumento de saída
    b - O meu segundo argumento de saída
% Isto já não aparece no Help
```



```
myfun.m - Cont.
% Verificar os argumentos de entrada
[d1,d2]=size(x);
if d2^{-}=1
    error('Só aceito vectores coluna');
else
    if nargin < 2
        y=ones(d1,1); % Valor por defeito para o y
    else
        [d3,d4]=size(y);
        if d4 = 1
            error('Só aceito vectores coluna');
        end
        if d3 \approx d1
            error('Dimensões de x e y não são iguais');
        end
    end
end
```

```
myfun.m - Cont.
if nargout < 1
    error('Pelo menos um argumento de saída');
end

a=2*x+y;

if nargout > 1
    b=3*x+2*y;
end
```



```
Execução
>> myfun([1 2])
??? Error using ==> myfun
Só aceito vectores coluna
>> myfun([1 2]')
??? Error using ==> myfun
Pelo menos um argumento de saída
>> f=myfun([1 2]')
f =
     3
>> f=myfun([1 2]',[1 2 3])
??? Error using ==> myfun
Só aceito vectores coluna
```



```
Execução
>> for i=1:2
fprintf('%d --> %d\n',i,2*i);
end
1 --> 2
2 --> 4
```


Funções MATLAB - O inline

```
Execução
>> g=inline('sin(x)');
>> g(1)
ans =
        0.8415
>> g=inline('sin(x)*a','x','a');
>> g(1,2)
ans =
        1.6829
```


Zeros de funções

```
A função fzero
>> g=inline('cos(x)');
>> fzero(g,1.1)
ans =
1.5708
```


