

GT-U7 GPS Modules

1. Fu	ınctional description	2
	1.1 Overview	2
	1.2 GPS performanc	2
	1.3 Block diagram	3
	1.4 Assisted GPS (A-GPS)	3
	1.5 AssistNow Autonomous	3
	1.6 Protocols and interfaces	4
	1.6.1 UART	4
	1.6.2 USB	4
	1.6.3 Serial Peripheral Interface (SPI)	4
	1.7 Antenna	4
	1.8 Power Management	5
	1.9 Maximum Performance Mode	5
	1.10 Eco Mode	5
	1.11 Power Save Mode	5
2 Pir	Definition	6
	2.1 Pin assignment	6
3 Ele	ectrical specifications	8
	3.1 Absolute maximum ratings	8
	3.2 Operating conditions	9
	3.3 SPI timing diagrams	9
	3.4 Timing recommendations	9
4 1/1	echanical specifications	10

1. Functional description

1.1 Overview

The GT-U7 module series is a family of stand-alone GPS receivers featuring the high performance u-blox 6 positioning engine. These flexible and cost effective receivers offer numerous connectivity options in a miniature 16 x 12.2 x 2.4 mm package. Their compact architecture and power and memory options make GT-U7 modules ideal for battery operated mobile devices with very strict cost and space constraints. The 50-channel u-blox 6 positioning engine boasts a Time-To-First-Fix (TTFF) of under 1 second. The dedicated acquisition engine, with 2 million correlators, is capable of massive parallel time/frequency space searches, enabling it to find satellites instantly. Innovative design and technology suppresses jamming sources and mitigates multipath effects, giving GT-U7 GPS receivers excellent navigation performance even in the most challenging environments.

1.2 GPS performanc

Parameter	Specification			
Receiver type	50 Channels GPS L1 frequency, C/A Code SBAS: WAAS, EGNOS, MSAS			
Time-To-First-Fix ¹		NEO-6G/Q/T	NEO-6M/V	NEO-6P
Time To Trise Tix	Cold Start ²	26 s	27 s	32 s
	Warm Start ²	26 s	27 s	32 s
	Hot Start ²	1 s	1 s	1 s
	Aided Starts ³	1 s	<3 s	<3 s
Sensitivity ⁴		NEO-6G/Q/T	NEO-6M/V	NEO-6P
Sensitivity	Tracking & Navigation	-162 dBm	-161 dBm	-160 dBm
	Reacquisition ^s	-160 dBm	-160 dBm	-160 dBm
	Cold Start (without aiding)	-148 dBm	-147 dBm	-146 dBm
	Hot Start	-157 dBm	-156 dBm	-155 dBm
Maximum Navigation update rate		NEO-6G/Q/IM/T	NEO-6P/V	
		5Hz	1 Hz	
Horizontal position accuracy ⁶	GPS	2.5 m		
	SBAS	2.0 m		
	SBAS + PPP ⁷	< 1 m (2D, R50) ⁸⁾		
	SBAS + PPP ⁷	< 2 m (3D, R50) ⁸		
Configurable Timepulse frequency range		NEO-6G/Q/M/P/V	NEO-6T	
		0.25 Hz to 1 kHz	0.25 Hz to 10	MHz
Accuracy for Timepulse signal	RMS	30 ns		
	99%	<60 ns		
	Granularity	21 ns		
	Compensated ⁹	15 ns		
Velocity accuracy ⁶		0.1m/s		
Heading accuracy ⁶		0.5 degrees		
Operational Limits	Dynamics	≤ 4 g		
	Altitude ¹⁰	50,000 m		
	Velocity ¹⁰	500 m/s		

1.3 Block diagram

Figure 1: Block diagram (For available options refer to the product features table in section 1.2).

1.4 Assisted GPS (A-GPS)

Supply of aiding information like ephemeris, almanac, rough last position and time and satellite status and an optional time synchronization signal will reduce time to first fix significantly and improve the acquisition sensitivity. All GT-U7 modules support the u-blox AssistNow Online and AssistNow Offline A-GPS services11 and are OMA SUPL compliant.

1.5 AssistNow Autonomous

AssistNow Autonomous provides functionality similar to Assisted-GPS without the need for a host or external network connection. Based on previously broadcast satellite ephemeris data downloaded to and stored by the GPS receiver, AssistNow Autonomous automatically generates accurate satellite orbital data ("AssistNow Autonomous data") that is usable for future GPS position fixes. AssistNow Autonomous data is reliable for up to 3 days after initial capture.

1.6 Protocols and interfaces

Protocol Type

NMEA Input/output, ASCII, 0183, 2.3 (compatible to 3.0) UBX Input/output, binary, u-blox proprietary RTCM Input, 2.3

1.6.1 UART

GT-U7 modules include one configurable UART interface for serial communication (for information about configuration see section 1.15).

1.6.2 USB

GT-U7 modules provide a USB version 2.0 FS (Full Speed, 12Mbit/s) interface as an alternative to the UART. The pull-up resistor on USB_DP is integrated to signal a full-speed device to the host. The VDDUSB pin supplies the USB interface. u-blox provides a Microsoft® certified USB driver for Windows XP, Windows Vista and Windows 7 operating systems.

1.6.3 Serial Peripheral Interface (SPI)

The SPI interface allows for the connection of external devices with a serial interface, e.g. serial flash to save configuration and AssistNow Offline A-GPS data or to interface to a host CPU. The interface can be operated in master or slave mode. In master mode, one chip select signal is available to select external slaves. In slave mode a single chip select signal enables communication with the host.

1.7 Antenna

Parameter	Specification	
Antenna Type		Passive and active antenna
	Minimum gain	15 dB (to compensate signal loss in RF cable)
Active Antenna Recommendations	Maximum gain	50 dB
	Maximum noise figure	1.5 dB

1.8 Power Management

u-blox receivers support different power modes. These modes represent strategies of how to control the acquisition and tracking engines in order to achieve either the best possible performance or good performance with reduced power consumption.

1.9 Maximum Performance Mode

During a Cold start, a receiver in Maximum Performance Mode continuously deploys the acquisition engine to search for all satellites. Once the receiver has a position fix (or if pre-positioning information is available), the acquisition engine continues to be used to search for all visible satellites that are not being tracked.

1.10 Eco Mode

During a Cold start, a receiver in Eco Mode works exactly as in Maximum Performance Mode. Once a position can be calculated and a sufficient number of satellites are being tracked, the acquisition engine is powered off resulting in significant power savings. The tracking engine continuously tracks acquired satellites and acquires other available or emerging satellites.

1.11 Power Save Mode

Power Save Mode (PSM) allows a reduction in system power consumption by selectively switching parts of the receiver on and off

2 Pin Definition

2.1 Pin assignment

No	Module	Name	I/O	Description
1	All	Reserved	1	Reserved
2	All	SS_N	Ļ	SPI Slave Select
3	All	TIMEPULSE	0	Timepulse (1PPS)
4	All	EXTINTO	Ì	External Interrupt Pin
5	All	USB_DM	1/0	USB Data
6	All	USB_DP	1/0	USB Data
7	All	VDDUSB	1	USB Supply
8	All	Reserved		See Hardware Integration Manual Pin 8 and 9 must be connected together.
9	All	VCC_RF	0	Output Voltage RF section Pin 8 and 9 must be connected together.
10	All	GND	Î	Ground
11	All	RF_IN	I	GPS signal input
12	All	GND	1	Ground
13	All	GND	ĺ	Ground
14	All	MOSI/CFG_COM0	0/1	SPI MOSI / Configuration Pin. Leave open if not used.
15	All	MISO/CFG_COM1	Ĭ	SPI MISO / Configuration Pin. Leave open if not used.
16	All	CFG_GPS0/SCK	Ĭ	Power Mode Configuration Pin / SPI Clock Leave open if not used.
17	All	Reserved	L	Reserved
18	All	SDA2	1/0	DDC Data
19	All	SCL2	I/O	DDC Clock
20	All	TxD1	0	Serial Port 1
21	All	RxD1		Serial Port 1

No	Module	Name	1/0	Description	
22	All	V_BCKP	1	Backup voltage supply	
23	All	VCC	Ţ	Supply voltage	
24	All	GND	1	Ground	

Table 8: Pinout

3 Electrical specifications

3.1 Absolute maximum ratings

Parameter	Symbol	Min	Max	Units
Power supply voltage	VCC	-0.5	3.6	V
Backup battery voltage	V_BCKP	-0.5	3.6	V
USB supply voltage	VDDUSB	-0.5	3.6	V
Input pin voltage	Vin	-0.5	3.6	V
DC current trough any digital I/O	Ipin	2	10	mA
pin (except supplies)			100	mA
VCC_RF output current	ICC_RF		15	dBm
Input power at RF_IN	Prfin		-5	dBm
Storage temperature	Tstg	-40	85	° C

source impedance = 50, continuous wave

3.2 Operating conditions

Parameter	Symbol	Module	Min	Тур	Max	Units	Condition
Power supply voltage	VCC	NEO-6G	1.75	1.8	1.95	٧	
		NEO-6Q/M NEO-6P/V/T	2.7	3.0	3.6	٧	
Supply voltage USB	VDDUSB	All	3.0	3.3	3.6	٧	
Backup battery voltage	V_BCKP	All	1.4		3.6	٧	
Backup battery current	I_BCKP	All		22		μΑ	V_BCKP = 1.8 V, VCC = 0V
Input pin voltage range	Vin	All	0		VCC	٧	
Digital IO Pin Low level input voltage	Vil	All	0		0.2*VCC	V	
Digital IO Pin High level input voltage	Vih	All	0.7*VCC		VCC	V	
Digital IO Pin Low level output voltage	Vol	All			0.4	V	Iol=4mA
Digital IO Pin High level output voltage	Voh	All	VCC -0.4			٧	loh=4mA
USB_DM, USB_DP	VinU	All	Compatible	with USB with	22 Ohms sei	ries resista	nce
VCC_RF voltage	VCC_RF	All		VCC-0.1		٧	
VCC_RF output current	ICC_RF	All			50	mΑ	
Antenna gain	Gant	All			50	dB	
Receiver Chain Noise Figure	NFtot	All		3.0		dB	
Operating temperature	Topr	All	-40		85	°C	

3.3 SPI timing diagrams

In order to avoid a faulty usage of the SPI, the user needs to comply with certain timing conditions. The following signals need to be considered for timing constraints:

3.4 Timing recommendations

Parameter	Description	Recommendation	
t _{init}	Initialization Time	500 μs	
t _{des}	Deselect Time	1 ms	
Bitrate		100 kbit/s	

4 Mechanical specifications

Symbol	Min. (mm)	Typ. (mm)	Max. (mm)
A	15.9	16.0	16.6
В	12.1	12.2	12.3
С	2.2	2.4	2.6
D	0.9	1.0	1.3
E	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.3
Н		0.82	
K	0.7	0.8	0.9
M	0.8	0.9	1.0
Ν	0.4	0.5	0.6
Weight		1.6g	