

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 9/88, C12P 19/02		A2	(11) International Publication Number: WO 98/50532 (43) International Publication Date: 12 November 1998 (12.11.98)
<p>(21) International Application Number: PCT/IB98/00708 (22) International Filing Date: 6 May 1998 (06.05.98)</p> <p>(30) Priority Data: 9709161.5 6 May 1997 (06.05.97) GB</p> <p>(71) Applicant (<i>for all designated States except US</i>): DANISCO A/S [DK/DK]; Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK).</p> <p>(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): BUCHTER-LARSEN, Aksel [DK/DK]; Amager Felledves 27, DK-2300 Copenhagen (DK). MARCUSSEN, Ian [DK/DK]; Knabrostrede 25, DK-1210 Copenhagen (DK).</p> <p>(74) Agents: HARDING, Charles, Thomas et al.; D. Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB).</p>			
<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>			

(54) Title: A PROCESS FOR PREPARING AN ANTI-OXIDANT

(57) Abstract

A process of preparing an anti-oxidant is described. The process comprises preparing a medium that comprises an anti-oxidant and at least one other component. The process comprises preparing *in situ* in the medium the anti-oxidant. The anti-oxidant is prepared from either a glucan by use of recombinant DNA techniques and/or by use of a recombinant glucan lyase.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

A PROCESS OF PREPARING AN ANTI-OXIDANT

The present invention relates to a process of preparing an anti-oxidant.

5 An anti-oxidant prevents, inhibits or reduces the oxidation rate of an oxidisable medium. In particular, anti-oxidants are used for the preservation of food, especially when the food is or comprises a fat. Typical chemical anti-oxidants include aromatic amines, substituted phenols and sulphur compounds. Examples of anti-oxidants for food products are polyvinylpolypyrrolidone, dithiothreitol, sulphur dioxide, synthetic
10 γ -tocopherol, δ -tocopherol, L-ascorbic acid, sodium L-ascorbate, calcium L-ascorbate, ascorbyl palmitate, propyl gallate, octyl gallate, dodecyl gallate, lecithin, diphenylamine ethoxyquin and butylated hydroxytoluene. Two commonly used anti-oxidants are GRINDOX 142 (obtained from Danisco A/S) and GRINDOX 1029 (obtained from Danisco A/S).

15

Typically, anti-oxidants are added to foodstuffs, such as beverages.

For example, anti-oxidants are used in the preparation of alcoholic beverages such as beer, cider, ale etc.. In particular, there is a wide spread use of anti-oxidants in the
20 preparation of wine. In this regard, Butzke and Bisson in Agro-Food-Industry Hi-Tech (July/August 1996 pages 26-30) present a review of wine manufacture.

According to Butzke and Bisson (*ibid*):

25 "Wine is the product of the natural fermentation of grape must or juice. In the case of red wine, the skins are present during the initial fermentation to allow extraction of pigment and important flavour and aroma constituents from the skin. The term "must" refers to the crushed whole grapes. In the case of white wine production, skins are removed prior to fermentation and only the juice is retained and processed.

- Grapes are harvested and brought directly to the winery from the field. The grapes are then crushed at the winery and the must either transferred to a tank for fermentation (red wine) or pressed to separate juice from the skin and seeds (white wine). In this latter case, the 5 juice is then transferred to a tank for fermentation. The tanks may either be inoculated with a commercial wine strain of *Saccharomyces* or allowed to undergo a natural or uninoculated fermentation. In a natural fermentation, *Saccharomyces* cells are greatly outnumbered by wild (non-*Saccharomyces*) yeast and bacteria at the beginning of 10 fermentation. By the end of the fermentation *Saccharomyces* is the dominant and most often only organism isolateable. Inoculation with a commercial wine strain or with fermenting juice or must changes the initial ratio of the numbers of different microorganisms, allowing *Saccharomyces* to dominate the fermentation much earlier.
- The metabolic activity of microorganisms in wine results in the production of aroma and flavour compounds some of which are highly objectionable to the consumer and all of which are distinct from the compounds responsible for the varietal character of the wine.
- Sulphur dioxide addition prevents chemical oxidation reactions and in this sense is an important stabilizer of the natural grape aroma and flavour. It may be added to the must or juice to preserve flavour, not necessarily as an antimicrobial agent. However, its antimicrobial 20 activity must be considered when choosing a strain to be genetically modified for wine production."

Hence, potentially harmful chemicals - such as sulphur dioxide - are used in wine manufacture.

- The present invention seeks to overcome any problems associated with the prior art 30 methods of preparing foodstuffs with antioxidants.

According to a first aspect of the present invention there is provided a process of preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared from a glucan by use of recombinant DNA techniques.

5

According to a second aspect of the present invention there is provided a process of preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared by use of a recombinant glucan lyase.

10

According to a third aspect of the present invention there is provided a medium prepared by the process according to the present invention.

Other aspects of the present invention include:

15

Use of anhydrofructose as an anti-oxidant for a medium comprising at least one other component, wherein the anhydrofructose is prepared *in situ* in the medium.

20

Use of anhydrofructose as a means for imparting or improving stress tolerance in a plant, wherein the anhydrofructose is prepared *in situ* in the plant.

25

Use of anhydrofructose as a means for imparting or improving the transformation of a grape, wherein the anhydrofructose is prepared *in situ* in the grape.

30

Use of anhydrofructose as a means for increasing antioxidant levels in a foodstuff (preferably a fruit or vegetable, more preferably a fresh fruit or a fresh vegetable), wherein the anhydrofructose is prepared *in situ* in the foodstuff.

- Use of anhydrofructose as a pharmaceutical in a foodstuff, wherein the anhydrofructose is prepared *in situ* in the foodstuff.
- A method of administering a foodstuff comprising anhydrofructose, wherein the anhydrofructose is in a pharmaceutically acceptable amount and acts as a pharmaceutical; and wherein the anhydrofructose has been prepared *in situ* in the foodstuff.
- Use of anhydrofructose as a nutraceutical in a foodstuff, wherein the anhydrofructose is prepared *in situ* in the foodstuff.
- A method of administering a foodstuff comprising anhydrofructose, wherein the anhydrofructose is in a nutraceutically acceptable amount and acts as a nutraceutical; and wherein the anhydrofructose has been prepared *in situ* in the foodstuff.
- Use of glucan lyase as a means for imparting or improving stress tolerance in a plant, wherein the glucan lyase is prepared *in situ* in the plant.
- Use of glucan lyase as a means for imparting or improving the transformation of a grape, wherein the glucan lyase is prepared *in situ* in the grape.
- Use of glucan lyase as a means for increasing antioxidant levels in a foodstuff (preferably a fruit or vegetable, more preferably a fresh fruit or a fresh vegetable), wherein the glucan lyase is prepared *in situ* in the foodstuff.
- Use of glucan lyase in the preparation of a pharmaceutical in a foodstuff, wherein the glucan lyase is prepared *in situ* in the foodstuff.
- A method of administering a foodstuff comprising an antioxidant, wherein the antioxidant is in a pharmaceutically acceptable amount and acts as a pharmaceutical; and wherein the antioxidant has been prepared *in situ* in the

foodstuff from a glucan lyase.

Use of glucan lyase in the preparation of a nutraceutical in a foodstuff, wherein the glucan lyase is prepared *in situ* in the foodstuff.

5

A method of administering a foodstuff comprising an antioxidant, wherein the antioxidant is in a nutraceutically acceptable amount and acts as a nutraceutical; and wherein the antioxidant has been prepared *in situ* in the foodstuff from a glucan lyase.

10

Use of a nucleotide sequence coding for a glucan lyase as a means for imparting or improving stress tolerance in a plant, wherein the nucleotide sequence is expressed *in situ* in the plant.

15

Use of a nucleotide sequence coding for a glucan lyase as a means for imparting or improving the transformation of a grape, wherein the nucleotide sequence is expressed *in situ* in the grape.

20

Use of a nucleotide sequence coding for a glucan lyase as a means for increasing antioxidant levels in a foodstuff (preferably a fruit or vegetable, more preferably a fresh fruit or a fresh vegetable), wherein the nucleotide sequence is expressed *in situ* in the foodstuff.

25

Use of a nucleotide sequence coding for a glucan lyase as a means for creating a pharmaceutical in a foodstuff, wherein the nucleotide sequence is expressed *in situ* in the foodstuff.

30

A method of administering a foodstuff comprising an antioxidant, wherein the antioxidant is in a pharmaceutically acceptable amount and acts as a pharmaceutical; and wherein the antioxidant has been prepared *in situ* in the foodstuff by means of a nucleotide sequence coding for a glucan lyase.

- Use of a nucleotide sequence coding for a glucan lyase as a means for creating a nutraceutical in a foodstuff, wherein the nucleotide sequence is expressed *in situ* in the foodstuff.
- 5 A method of administering a foodstuff comprising an antioxidant, wherein the antioxidant is in a nutraceutically acceptable amount and acts as a nutraceutical; and wherein the antioxidant has been prepared *in situ* in the foodstuff by means of a nucleotide sequence coding for a glucan lyase.
- 10 The term "nutraceutical" means a compound that is capable of acting as a nutrient (i.e. it is suitable for, for example, oral administration) as well as being capable of exhibiting a pharmaceutical effect and/or cosmetic effect.
- In contrast to the usual practice of adding anti-oxidants media, such as foodstuffs, we
15 have now found that particular anti-oxidants can be prepared *in situ* in the medium.
The *in situ* preparation of anti-oxidants is particularly advantageous in that less, or even no, additional anti-oxidants need be added to the medium, such as a food product.
- 20 The present invention is also believed to be advantageous as it provides a means of improving stress tolerance of plants.
- The present invention is also advantageous as it provides a means for viably
25 transforming grape.
- The present invention is further advantageous in that it enables the levels of antioxidants in foodstuffs to be elevated. This may have beneficial health implications. In this regard, recent reports (e.g. Biotechnology Newswatch April 21
30 1997 "*Potent Antioxidants, as strong as those in fruit, found in coffee*" by Marjorie Shaffer) suggest that antioxidants have a pharmaceutical benefit, for example in preventing or suppressing cancer formation.

General *in situ* preparation of antioxidants in plants has been previously reviewed by Badiani *et al* in Agro-Food-Industry Hi-Tech (March/April 1996 pages 21-26). It is to be noted, however, that this review does not mention preparing *in situ* antioxidants from a glucan, let alone by use of a recombinant glucan lyase.

5

Preferably, the glucan comprises α -1,4 links.

Preferably, the glucan is starch or a unit of starch.

- 10 Preferably, the glucan is a substrate for a recombinant enzyme such that contact of the glucan with the recombinant enzyme yields the anti-oxidant.

Preferably, the enzyme is a glucan lyase.

- 15 Preferably, the enzyme is an α -1,4-glucan lyase.

Preferably, the enzyme comprises any one of the sequences shown as SEQ ID Nos 1-6, or a variant, homologue or fragment thereof.

- 20 Preferably, the enzyme is any one of the sequences shown as SEQ ID Nos 1-6.

Preferably, the enzyme is encoded by a nucleotide sequence comprising any one of the sequences shown as SEQ ID Nos 7-12, or a variant, homologue or fragment thereof.

25

Preferably, the enzyme is encoded by a nucleotide sequence having any one of the sequences shown as SEQ ID Nos 7-12.

Preferably, the anti-oxidant is anhydrofructose.

30

Preferably, the anti-oxidant is 1,5-D-anhydrofructose.

Preferably, the medium is, or is used in the preparation of, a foodstuff.

Preferably, the foodstuff is a beverage.

- 5 Preferably, the beverage is an alcoholic beverage.

Preferably, the beverage is a wine.

- 10 Preferably, the anti-oxidant is prepared *in situ* in the component and is then released into the medium.

Preferably, the component is a plant or a part thereof.

Preferably, the component is all or part of a cereal or a fruit.

- 15 Preferably, the component is all or part of a grape.

The medium may be used as or in the preparation of a foodstuff, which includes beverages. In the alternative, the medium may be for use in polymer chemistry. In 20 this regard, the *in situ* generated anti-oxidants could therefore act as oxygen scavengers during, for example, the synthesis of polymers, such as the synthesis of bio-degradable plastic.

In accordance with the present invention, the anti-oxidant (preferably anhydrofructose) 25 is prepared *in situ* in the medium. In other words, the antioxidant (preferably anhydrofructose) that is prepared *in situ* in the medium is used as an anti-oxidant in the medium. In one embodiment, the antioxidant (preferably anhydrofructose) that is prepared *in situ* in the medium is used as the main anti-oxidant in the medium.

- 30 The term "*in situ* in the medium" as used herein includes the anti-oxidant being prepared by action of a recombinant enzyme expressed by the component on a glucan - which glucan is a substrate for the enzyme. The term also includes the anti-oxidant

being prepared by action of a recombinant enzyme expressed by the component on a glucan - which glucan is a substrate for the enzyme - within the component and the subsequent generation of the anti-oxidant. The term also includes the recombinant enzyme being expressed by the component and then being released into the medium,
5 which enzyme acts on a glucan - which glucan is a substrate for the enzyme - present in the medium to form the anti-oxidant in the medium. The term also covers the presence or addition of another component to the medium, which component then expresses a recombinant nucleotide sequence which results in exposure of part or all of the medium to an anti-oxidant, which anti-oxidant may be a recombinant enzyme
10 or a recombinant protein expressed and released by the other component, or it may be a product of a glucan - which glucan is a substrate for the enzyme - within the medium that has been exposed to the recombinant enzyme or the recombinant protein.

The term "by use of recombinant DNA techniques" as used herein includes the anti-
15 oxidant being any obtained by use of a recombinant enzyme or a recombinant protein, which enzyme or protein acts on the glucan. The term also includes the anti-oxidant being any obtained by use of an enzyme or protein, which enzyme or protein acts on a recombinant glucan.

20 The term "starch" in relation to the present invention includes native starch, degraded starch, modified starch, including its components amylose and amylopectin, and the glucose units thereof.

The terms "variant", "homologue" or "fragment" in relation to the enzyme include
25 any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acid from or to the sequence providing the resultant amino acid sequence has α -glucan lyase activity, preferably having at least the same activity of any one of the enzymes shown as SEQ ID No. 1-6. In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant enzyme has α -glucan lyase activity. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to any one of the sequences shown as SEQ ID No.s 1-6. More

preferably there is at least 95%, more preferably at least 98%, homology to any one of the sequences shown as SEQ ID No. 1-6.

The terms "variant", "homologue" or "fragment" in relation to the nucleotide sequence coding for the enzyme include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence providing the resultant nucleotide sequence codes for an enzyme having α -glucan lyase activity, preferably having at least the same activity of any one of the enzymes shown as SEQ ID No. 1-6. In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant nucleotide sequence codes for an enzyme having α -glucan lyase activity. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to any one of the sequences shown as SEQ ID No. 7-12. More preferably there is at least 95%, more preferably at least 98%, homology to any one of the sequences shown as SEQ ID No. 7-12.

The above terms are synonymous with allelic variations of the sequences.

The present invention also covers nucleotide sequences that can hybridise to the nucleotide sequence of the present invention.

The term "nucleotide" in relation to the present invention includes cDNA.

According to the present invention there is therefore provided a method of preparing *in situ* in an oxidisable medium an anti-oxidant. In a preferred embodiment, the anti-oxidant is anhydrofructose, more preferably 1,5-D-anhydrofructose. 1,5-D-anhydrofructose has been chemically synthesised (Lichtenthaler in Tetrahedron Letters Vol 21 pp 1429-1432). 1,5-D-anhydrofructose is further discussed in WO 95/10616, WO 95/10618 and GB-B-2294048.

The main advantages of using 1,5-D-anhydrofructose as an anti-oxidant are that it is a natural product, it is non-metabolisable, it is easy to manufacture, it is water-soluble, and it is generally non-toxic.

- 5 According to WO 95/10616, WO 95/10618 and GB-B-2294048, 1,5-D-anhydrofructose may be prepared by the enzymatic modification of substrates based on α -1,4-glucan by use of the enzyme α -1,4-glucan lyase. A typical α -1,4-glucan based substrate is starch.
- 10 Today, starches have found wide uses in industry mainly because they are cheap raw materials. There are many references in the art to starch. For example, starch is discussed by Salisbury and Ross in Plant Physiology (Fourth Edition, 1991, Published by Wadsworth Publishing Company - especially section 11.7). In short, however, starch is one of the principal energy reserves of plants. It is often found in colourless
15 plastids (amyloplasts), in storage tissue and in the stroma of chloroplasts in many plants. Starch is a polysaccharide carbohydrate. It comprises two main components: amylose and/or amylopectin. Both amylose and/or amylopectin consist of straight chains of α (1,4)-linked glucose units (ie glycosyl residues) but in addition amylopectin includes α (1,6) branched glucose units.
- 20 Some of the glucan lyases discussed in WO 95/10616 and WO 95/10618 that are suitable for producing 1,5-D-anhydrofructose from starch are shown as SEQ I.D. No.s 1-4. Some of the glucan lyases discussed in GB-B-2294048 that are suitable for producing 1,5-D-anhydrofructose from starch are shown as SEQ I.D. No.s 5-6.
- 25 Some of the nucleotide sequences coding for glucan lyases discussed in WO 95/10616 and WO 95/10618 that are suitable for producing 1,5-D-anhydrofructose from starch are shown as SEQ I.D. No.s 7-10. Some of the nucleotide sequences coding for glucan lyases discussed in GB-B-2294048 that are suitable for producing 1,5-D-anhydrofructose from starch are shown as SEQ I.D. No.s 11-12.
- 30

A further glucan lyase is discussed in WO 94/09122.

The recombinant nucleotide sequences coding for the enzyme may be cloned from sources such as a fungus, preferably *Morchella costata* or *Morchella vulgaris*, or from a fungally infected algae, preferably *Gracilariaopsis lemaneiformis*, or from algae lone, preferably *Gracilariaopsis lemaneiformis*.

5

In a preferred embodiment, the 1,5-D-anhydrofructose is prepared *in situ* by treating an α -1,4-glucan with a recombinant α -1,4-glucan lyase, such as any one of those presented as SEQ I.D. No.s 1-6.

10 Detailed commentary on how to prepare the enzymes shown as sequences SEQ I.D. No.s 1-6 may be found in the teachings of WO 95/10616, WO 95/10618 and GB-B-2294048. Likewise, detailed commentary on how to isolate and clone the nucleotide sequences SEQ I.D. No.s 7-12 may be found in the teachings of WO 95/10616, WO 95/10618 and GB-B-2294048.

15

If the glucan contains links other than and in addition to the α -1,4- links the recombinant α -1,4-glucan lyase can be used in conjunction with a suitable reagent that can break the other links - such as a recombinant hydrolase - preferably a recombinant glucanohydrolase.

20

General teachings of recombinant DNA techniques may be found in Sambrook,J., Fritsch, E.F., Maniatis T. (Editors) Molecular Cloning. A laboratory manual. Second edition. Cold Spring Harbour Laboratory Press. New York 1989.

25 In order to express a nucleotide sequence, the host organism can be a prokaryotic or a eukaryotic organism. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts is well documented in the art, for example see Sambrook *et al* (Molecular Cloning: A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory Press). If a 30 prokaryotic host is used then the gene may need to be suitably modified before transformation - such as by removal of introns.

In one embodiment, the host organism can be of the genus *Aspergillus*, such as *Aspergillus niger*. A transgenic *Aspergillus* can be prepared by following the teachings of Rambousek, J. and Leach, J. 1987 (Recombinant DNA in filamentous fungi: Progress and Prospects. CRC Crit. Rev. Biotechnol. 6:357-393), Davis R.W. 5 1994 (Heterologous gene expression and protein secretion in *Aspergillus*. In: Martinelli S.D., Kinghorn J.R.(Editors) *Aspergillus*: 50 years on. Progress in industrial microbiology vol 29. Elsevier Amsterdam 1994. pp 525-560), Ballance, D.J. 1991 (Transformation systems for Filamentous Fungi and an Overview of Fungal Gene structure. In: Leong, S.A., Berka R.M. (Editors) Molecular Industrial 10 Mycology. Systems and Applications for Filamentous Fungi. Marcel Dekker Inc. New York 1991. pp 1-29) and Turner G. 1994 (Vectors for genetic manipulation. In: Martinelli S.D., Kinghorn J.R.(Editors) *Aspergillus*: 50 years on. Progress in industrial microbiology vol 29. Elsevier Amsterdam 1994. pp. 641-666). However, the following commentary provides a summary of those teachings for producing 15 transgenic *Aspergillus*.

For almost a century, filamentous fungi have been widely used in many types of industry for the production of organic compounds and enzymes. For example, traditional Japanese koji and soy fermentations have used *Aspergillus sp.* Also, in this 20 century *Aspergillus niger* has been used for production of organic acids particular citric acid and for production of various enzymes for use in industry.

There are two major reasons why filamentous fungi have been so widely used in industry. First filamentous fungi can produce high amounts of extracellular products, 25 for example enzymes and organic compounds such as antibiotics or organic acids. Second filamentous fungi can grow on low cost substrates such as grains, bran, beet pulp etc. The same reasons have made filamentous fungi attractive organisms as hosts for heterologous expression of recombinant enzymes according to the present invention.

In order to prepare the transgenic *Aspergillus*, expression constructs are prepared by inserting a requisite nucleotide sequence into a construct designed for expression in filamentous fungi.

- 5 Several types of constructs used for heterologous expression have been developed. These constructs can contain a promoter which is active in fungi. Examples of promoters include a fungal promoter for a highly expressed extracellular enzyme, such as the glucoamylase promoter or the α -amylase promoter. The nucleotide sequence can be fused to a signal sequence which directs the protein encoded by the nucleotide sequence to be secreted. Usually a signal sequence of fungal origin is used. A 10 terminator active in fungi ends the expression system.

Another type of expression system has been developed in fungi where the nucleotide sequence can be fused to a smaller or a larger part of a fungal gene encoding a stable 15 protein. This can stabilize the protein encoded by the nucleotide sequence. In such a system a cleavage site, recognized by a specific protease, can be introduced between the fungal protein and the protein encoded by the nucleotide sequence, so the produced fusion protein can be cleaved at this position by the specific protease thus liberating the protein encoded by the nucleotide sequence. By way of example, one 20 can introduce a site which is recognized by a KEX-2 like peptidase found in at least some *Aspergilli*. Such a fusion leads to cleavage *in vivo* resulting in protection of the expressed product and not a larger fusion protein.

Heterologous expression in *Aspergillus* has been reported for several genes coding for 25 bacterial, fungal, vertebrate and plant proteins. The proteins can be deposited intracellularly if the nucleotide sequence is not fused to a signal sequence. Such proteins will accumulate in the cytoplasm and will usually not be glycosylated which can be an advantage for some bacterial proteins. If the nucleotide sequence is equipped with a signal sequence the protein will accumulate extracellularly.

30 With regard to product stability and host strain modifications, some heterologous proteins are not very stable when they are secreted into the culture fluid of fungi.

Most fungi produce several extracellular proteases which degrade heterologous proteins. To avoid this problem special fungal strains with reduced protease production have been used as host for heterologous production.

- 5 For the transformation of filamentous fungi, several transformation protocols have been developed for many filamentous fungi (Ballance 1991, *ibid*). Many of them are based on preparation of protoplasts and introduction of DNA into the protoplasts using PEG and Ca^{2+} ions. The transformed protoplasts then regenerate and the transformed fungi are selected using various selective markers. Among the markers
10 used for transformation are a number of auxotrophic markers such as *argB*, *trpC*, *niaD* and *pyrG*, antibiotic resistance markers such as benomyl resistance, hygromycin resistance and phleomycin resistance. A commonly used transformation marker is the *amdS* gene of *A. nidulans* which in high copy number allows the fungus to grow with acrylamide as the sole nitrogen source.
- 15 In another embodiment the transgenic organism can be a yeast. In this regard, yeast have also been widely used as a vehicle for heterologous gene expression. The species *Saccharomyces cerevisiae* has a long history of industrial use, including its use for heterologous gene expression. Expression of heterologous genes in
20 *Saccharomyces cerevisiae* has been reviewed by Goodey *et al* (1987, Yeast Biotechnology, D R Berry *et al*, eds, pp 401-429, Allen and Unwin, London) and by King *et al* (1989, Molecular and Cell Biology of Yeasts, E F Walton and G T Yarrington, eds, pp 107-133, Blackie, Glasgow).
- 25 For several reasons *Saccharomyces cerevisiae* is well suited for heterologous gene expression. First, it is non-pathogenic to humans and it is incapable of producing certain endotoxins. Second, it has a long history of safe use following centuries of commercial exploitation for various purposes. This has led to wide public acceptability. Third, the extensive commercial use and research devoted to the
30 organism has resulted in a wealth of knowledge about the genetics and physiology as well as large-scale fermentation characteristics of *Saccharomyces cerevisiae*.

A review of the principles of heterologous gene expression in *Saccharomyces cerevisiae* and secretion of gene products is given by E Hinchcliffe E Kenny (1993, "Yeast as a vehicle for the expression of heterologous genes", Yeasts, Vol 5, Anthony H Rose and J Stuart Harrison, eds, 2nd edition, Academic Press Ltd.).

5

Several types of yeast vectors are available, including integrative vectors, which require recombination with the host genome for their maintenance, and autonomously replicating plasmid vectors.

- 10 In order to prepare the transgenic *Saccharomyces*, expression constructs are prepared by inserting the nucleotide sequence into a construct designed for expression in yeast. Several types of constructs used for heterologous expression have been developed. The constructs contain a promoter active in yeast fused to the nucleotide sequence, usually a promoter of yeast origin, such as the GAL1 promoter, is used. Usually a 15 signal sequence of yeast origin, such as the sequence encoding the SUC2 signal peptide, is used. A terminator active in yeast ends the expression system.

For the transformation of yeast several transformation protocols have been developed. For example, a transgenic *Saccharomyces* can be prepared by following the teachings 20 of Hinnen *et al* (1978, Proceedings of the National Academy of Sciences of the USA 75, 1929); Beggs, J D (1978, Nature, London, 275, 104); and Ito, H *et al* (1983, J Bacteriology 153, 163-168).

The transformed yeast cells are selected using various selective markers. Among the 25 markers used for transformation are a number of auxotrophic markers such as LEU2, HIS4 and TRP1, and dominant antibiotic resistance markers such as aminoglycoside antibiotic markers, eg G418.

Another host organism is a plant. In this regard, the art is replete with references for 30 preparing transgenic plants. Two documents that provide some background commentary on the types of techniques that may be employed to prepare transgenic plants are EP-B-0470145 and CA-A-2006454 - some of which commentary is

presented below.

The basic principle in the construction of genetically modified plants is to insert genetic information in the plant genome so as to obtain a stable maintenance of the 5 inserted genetic material.

Several techniques exist for inserting the genetic information, the two main principles being direct introduction of the genetic information and introduction of the genetic information by use of a vector system. A review of the general techniques may be 10 found in articles by Potrykus (*Annu Rev Plant Physiol Plant Mol Biol* [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27).

Thus, in one aspect, the present invention relates to a vector system which carries a recombinant nucleotide sequence and which is capable of introducing the nucleotide 15 sequence into the genome of an organism, such as a plant, and wherein the nucleotide sequence is capable of preparing *in situ* an anti-oxidant.

The vector system may comprise one vector, but it can comprise at least two vectors. In the case of two vectors, the vector system is normally referred to as a binary 20 vector system. Binary vector systems are described in further detail in Gynheung An et al. (1980), *Binary Vectors, Plant Molecular Biology Manual A3*, 1-19.

One extensively employed system for transformation of plant cells with a given promoter or nucleotide sequence or construct is based on the use of a Ti plasmid from 25 *Agrobacterium tumefaciens* or a Ri plasmid from *Agrobacterium rhizogenes* (An et al. (1986), *Plant Physiol.* 81, 301-305 and Butcher D.N. et al. (1980), *Tissue Culture Methods for Plant Pathologists*, eds.: D.S. Ingrams and J.P. Helgeson, 203-208).

Several different Ti and Ri plasmids have been constructed which are suitable for the 30 construction of the plant or plant cell constructs described above.

The nucleotide sequence of the present invention should preferably be inserted into

the Ti-plasmid between the border sequences of the T-DNA or adjacent a T-DNA sequence so as to avoid disruption of the sequences immediately surrounding the T-DNA borders, as at least one of these regions appear to be essential for insertion of modified T-DNA into the plant genome.

5

As will be understood from the above explanation, if the organism is a plant, then the vector system of the present invention is preferably one which contains the sequences necessary to infect the plant (e.g. the *vir* region) and at least one border part of a T-DNA sequence, the border part being located on the same vector as the genetic construct. Preferably, the vector system is an *Agrobacterium tumefaciens* Ti-plasmid or an *Agrobacterium rhizogenes* Ri-plasmid or a derivative thereof, as these plasmids are well-known and widely employed in the construction of transgenic plants, many vector systems exist which are based on these plasmids or derivatives thereof.

10 15 In the construction of a transgenic plant the nucleotide sequence or construct or vector of the present invention may be first constructed in a microorganism in which the vector can replicate and which is easy to manipulate before insertion into the plant. An example of a useful microorganism is *E. coli*, but other microorganisms having the above properties may be used. When a vector of a vector system as defined above has been constructed in *E. coli*, it is transferred, if necessary, into a suitable 20 *Agrobacterium* strain, e.g. *Agrobacterium tumefaciens*. The Ti-plasmid harbouring the first nucleotide sequence or construct of the invention is thus preferably transferred into a suitable *Agrobacterium* strain, e.g. *A. tumefaciens*, so as to obtain an *Agrobacterium* cell harbouring the promoter or nucleotide sequence or construct 25 of the invention, which DNA is subsequently transferred into the plant cell to be modified.

30 As reported in CA-A-2006454, a large number of cloning vectors are available which contain a replication system in *E. coli* and a marker which allows a selection of the transformed cells. The vectors contain for example pBR322, the pUC series, the M13 mp series, pACYC 184 etc. In this way, the promoter or nucleotide or construct of the present invention can be introduced into a suitable restriction position

- in the vector. -The contained plasmid is used for the transformation in *E.coli*. The *E.coli* cells are cultivated in a suitable nutrient medium and then harvested and lysed. The plasmid is then recovered and then analysed - such as by any one or more of the following techniques: sequence analysis, restriction analysis, electrophoresis and further biochemical-molecular biological methods. After each manipulation, the used DNA sequence can be restricted or selectively amplified by PCR techniques and connected with the next DNA sequence. Each sequence can be cloned in the same or different plasmid.
- 10 After each introduction method of the nucleotide sequence or construct or vector according to the present invention in the plants the presence and/or insertion of further DNA sequences may be necessary. If, for example, for the transformation the Ti- or Ri-plasmid of the plant cells is used, at least the right boundary and often however the right and the left boundary of the Ti- and Ri-plasmid T-DNA, as 15 flanking areas of the introduced genes, can be connected. The use of T-DNA for the transformation of plant cells has been intensively studied and is described in EP-A-120516; Hoekema, in: The Binary Plant Vector System Offset-drukkerij Kanters B.B., Albllasserdam, 1985, Chapter V; Fraley, *et al.*, Crit. Rev. Plant Sci., 4:1-46; and An *et al.*, EMBO J. (1985) 4:277-284.
- 20 Direct infection of plant tissues by *Agrobacterium* is a simple technique which has been widely employed and which is described in Butcher D.N. *et al.* (1980), *Tissue Culture Methods for Plant Pathologists*, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. For further teachings on this topic see Potrykus (Annu Rev Plant Physiol Plant 25 Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27). With this technique, infection of a plant may be done on a certain part or tissue of the plant, i.e. on a part of a leaf, a root, a stem or another part of the plant.
- 30 Typically, with direct infection of plant tissues by *Agrobacterium* carrying the first nucleotide sequence or the construct, a plant to be infected is wounded, e.g. by cutting the plant with a razor or puncturing the plant with a needle or rubbing the

plant with an abrasive. The wound is then inoculated with the *Agrobacterium*. The inoculated plant or plant part is then grown on a suitable culture medium.

When plant cells are constructed, these cells are grown and, optionally, maintained
5 in a medium according to the present invention following well-known tissue culturing methods - such as by culturing the cells in a suitable culture medium supplied with the necessary growth factors such as amino acids, plant hormones, vitamins, etc, but wherein the culture medium comprises a component according to the present invention. Regeneration of the transformed cells into genetically modified plants may
10 be accomplished using known methods for the regeneration of plants from cell or tissue cultures, for example by selecting the transformed shoots and by subculturing the shoots on a medium containing the appropriate nutrients, plant hormones, etc.

- Further teachings on plant transformation may be found in EP-A-0449375.
15 Reference may even be made to Spongstad *et al* (1995 Plant Cell Tissue Organ Culture
40 pp 1-15) as these authors present a general overview on transgenic plant construction.
- 20 In one embodiment, the plant is a grapevine. There are a number of teachings in the art on how to prepare transformed grapevines. For example, reference may be made to Baribault *et al* (J Exp Bot 41 (229) 1990 1045-1050), Baribault *et al* (Plant Cell Rep 8 (3) 1989 137-140), Scorza *et al* (J Am Soc Horticultural Science 121 (4) 1996 616-619), Kikkert *et al* (Plant Cell Reports 15 (5) 1996 311-316), Golles *et al* (Acta
25 Hortic 1997 vol 447 Number: Horticultural Biotechnology in Vitro Culture and Breeding Pages 265-275), Gray and Scorza (WO-A-97/49277) and Simon Robinson *et al* (Conference abstracts and paper presented in Biotechnology - Food and Health for the 21st Century, Adelaide, Australia, 1998). By way of example Robinson *et
30 al* (*ibid*) disclose a method for transforming grapevine wherein somatic embryos are induced on callus formed from another tissue and *Agrobacterium* infection is used to transfer target genes into the embryo tissue.

Further reference may be made to the teachings of Andrew Walker in *Nature Biotechnology* (Vol 14, May 1996, page 582) who states that:

5 "*The grape, one of the most important fruit plants in the world, has been difficult to engineer because of its high levels of tannins and phenols, which interfere with cell culture and transformation; the compounds oxidize quickly and promote the decay of grape cells.*"

10 In that same edition of *Nature Biotechnology*, Perl *et al* (pages 624-628) report on the use of the combination of polyvinylpolypyrrolidone and dithiothreitol to improve the viability of grape transformation during *Agrobacterium* infection.

15 Hence, the present invention provides an alternative means for transforming grape. In this regard, the antioxidant that is prepared *in situ* by a grape transformed in accordance with the present invention improves the viability of grape transformation during *Agrobacterium* infection.

20 Thus, according to one aspect of the present invention, there is provided the use of an antioxidant prepared *in situ* in order to effectively transform a grape.

25 In some instances, it is desirable for the recombinant enzyme or protein to be easily secreted into the medium to act as or to generate an anti-oxidant therein. In such cases, the DNA encoding the recombinant enzyme is fused to *inter alia* an appropriate signal sequence, an appropriate promoter and an appropriate terminator from the chosen host.

30 For example, for expression in *Aspergillus niger* the gpdA (from the Glyceraldehyde-3-phosphate dehydrogenase gene of *Aspergillus nidulans*) promoter and signal sequence is fused to the 5' end of the DNA encoding the mature lyase. The terminator sequence from the *A. niger* trpC gene is placed 3' to the gene (Punt, P.J. et al 1991 - (1991): J. Biotech. 17, 19-34). This construction is inserted into a vector containing a replication origin and selection origin for *E. coli* and a selection marker

- for *A. niger*. Examples of selection markers for *A. niger* are the *amdS* gene, the *argB* gene, the *pyrG* gene, the *hygB* gene, the *BmlR* gene which all have been used for selection of transformants. This plasmid can be transformed into *A. niger* and the mature lyase can be recovered from the culture medium of the transformants.
- 5 Eventually the construction could be transformed into a protease deficient strain to reduce the proteolytic degradation of the lyase in the medium (Archer D.B. et al 1992 -Biotechnol. Lett. 14, 357-362).

In addition, and as indicated above, aside from using *Aspergillus niger* as the host,

10 there are other industrial important microorganisms which could be used as expression systems. Examples of these other hosts include: *Aspergillus oryzae*, *Aspergillus sp.*, *Trichoderma sp.*, *Saccharomyces cerevisiae*, *Kluyveromyces sp.*, *Hansenula sp.*, *Pichia sp.*, *Bacillus subtilis*, *B. amyloliquefaciens*, *Bacillus sp.*, *Streptomyces sp.* or *E. coli*.

15 In accordance with the present invention, a suitable marker or selection means may be introduced into the host that is to be transformed with the nucleotide sequence. Examples of suitable markers or selection means are described in any one of WO-A-93/05163, WO-A-94/20627, GB patent application No. 9702591.0 (filed 7 February 20 1997), GB patent application No. 9702576.1 (filed 7 February 1997), GB patent application No. 9702539.9 (filed 7 February 1997), GB patent application No. 9702510.0 (filed 7 February 1997) and GB patent application No. 9702592.8 (filed 7 February 1997).

25 In summation, the present invention relates to a process comprising preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared from a glucan by use of recombinant DNA techniques and/or the anti-oxidant is prepared by use of a recombinant glucan lyase.

In a preferred embodiment, the present invention relates to a process of preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared from a glucan by use of a recombinant glucan lyase.

5

In a more preferred embodiment, the present invention relates to a process of preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; wherein the anti-oxidant is prepared from a glucan by use of a recombinant glucan lyase; and 10 wherein the anti-oxidant is anhydro-fructose.

The present invention will now be described only by way of example.

TRANSGENIC GRAPE

15

Transformed grapes are prepared following the teachings of Perl *et al* (*ibid*) but wherein the use of the combination of polyvinylpolypyrrolidone and dithiothreitol is optional. In these studies, the grapes are transformed with any one of the nucleotide sequences presented as SEQ ID No. 7-12. The transformation leads to *in situ* 20 preparation of 1,5-D-anhydrofructose. The transformed grapes are beneficial for one or more of the reasons mentioned earlier.

Details on these studies are as follows.

25 Tissue-culture systems for transformation studies

The long term somatic embryogenic callus culture is developed from the vegetative tissues of anthers of *Vitis vinifera* CV Superior Seedless. Methods for another culture, induction of somatic embryogenesis and maintenance of embryogenic 30 cultures, are previously described (Perl *et al*, 1995, Plant Sci 104: 193-200). Briefly, embryogenic calli are maintained on solidified (0.25% gelrite) MS medium (Murashige and Skoog, 1962, Physiol Plant 15: 473-497) supplemented with 6%

sucrose, 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 5 mg/L Indole-3-aspartic acid (IASP), 0.2 mg/L 6-benzyladenine (BAP) and 1 mg/L abscisic acid (ABA). Proembryogenic calli are induced by transferring the calli to MS medium supplemented with the same phytohormones, but 2,4-D is substituted with 2 mg/L 2-naphthoxyacetic acid (NOA). This stage is used for transformation experiments.

Agrobacterium strains

For studying the sensitivity of grape embryogenic calli to the presence of different *Agrobacterium* strains, or for stable transformation experiments, cocultivation is attempted using the following *A tumefaciens* strains: EHA 101-p492 (Perl *et al*, 1993, Bio/Technology 11:715-718); LBA 4404-pGPTV (Becker *et al*, 1992, Plant Mol Biol 20: 1195-1197); and GVE 3101-pPCV91 (Vancanneyt *et al*, 1990, Mol Gen Genet 220: 245-250). These strains contain the binary vectors conferring resistance to kanamycin (*nptII*), basta (*bar*) and hygromycin (*hpt*), respectively, all under the control of the nopalilin-synthase (NOS) promoter and terminator. Bacteria are cultured with the proper antibiotics in liquid LB medium for 24 hours at 28°C at 200 rpm.

Cocultivation

For studying the sensitivity of grape embryogenic calli to different *Agrobacterium* strains, bacterial cultures with different optical densities (0.1-0.7 at 630 nm) are prepared from an overnight culture of *Agrobacterium* strains. Bacteria are centrifuged 5 minutes, 5000 rpm and resuspended in antibiotic free McCown's Woody Plant Medium (WPM) (Lloyd and McCown, 1981, Int Plant Prop Soc Proc 30: 421-427). Three grams fresh weight of embryogenic calli (7 days after transfer to NOA containing medium) are resuspended in 10 ml of overnight cultured bacterial suspensions for 5 minutes, dry blotted and transferred to Petri dishes containing regeneration medium [basal WPM medium supplemented with thidiazuron (TDZ) (0.5 mg/L), Zeatin riboside (ZR) (0.5 mg/L), and sucrose (3%)]. The regeneration medium is solidified with gelrite (0.25% w/v) and the calli, after initial drainage of excess bacteria, are cocultivated in the dark at 25°C for different times (5 minutes

up to 7 days). For stable transformation experiments, inoculum (OD 0.6 at 630 nm) is prepared from an overnight culture of LBA 4404 or GVE 3101. Bacteria are centrifuged 5 minutes, 5000 rpm and resuspended in antibiotic-free WPM medium. Embryogenic calli (3g fresh weight) are resuspended in 10 ml of bacteria for 5 minutes, dry blotted and transferred to Petri dishes containing solidified (0.25% w/v) gelrite regeneration medium supplemented with different antioxidants. The calli are cocultivated for 48 hours in the dark at 25°C.

Selective culture

10

Following 48 hours of cocultivation, the embryogenic callus is maintained in the dark for 7 days on antioxidant containing regeneration medium. Subsequently, the calli are collected on a sterile metal screen and transferred to fresh WPM regeneration medium at 25°C under 40 µE/m²/s (white fluorescent tubes). All regeneration media 15 are supplemented with 400 mg/L claforan, 1.5 g/L malt extract and different selectable markers: kanamycin (50-500 mg/L), hygromycin (15 mg/L) and Basta (1-10 mg/L). Periodic increases in hygromycin concentration are used. The putative transformed calli are cultured on regeneration medium supplemented with 15 mg/L hygromycin. Every two weeks the regenerating calli are transferred to fresh medium 20 supplemented with 20 and 25 mg/L hygromycin respectively. Control, untransformed grape calli are also cultured on selective media and are periodically exposed to increasing hygromycin concentrations. Green adventitious embryos, which developed on calli cultured for 8-10 weeks on selective regeneration medium, are transferred to germination medium. Embryo germination, rooting and subsequent plantlet 25 development are induced on WPM as described (Perl *et al*, 1995, Plant Sci 104: 193-200), supplemented with 25 mg/L hygromycin or 10 mg/L basta. Conversion of vitrified abnormal plantlets into normal-looking grape plantlets are obtained using solidified WPM medium supplemented with 0.1 mg/L NAA as described (Perl *et al*, 1995, Plant Sci 104: 193-200).

30

TRANSGENIC POTATOES

General teachings on potato transformation may be found in our copending patent applications PCT/EP96/03053, PCT/EP96/03052 and PCT/EP94/01082 (the contents 5 of each of which are incorporated herein by reference).

For the present studies, the following protocol is adopted.

Plasmid construction

10

The disarmed *Agrobacterium tumefaciens* strain LBA 4404, containing the helper *vir* plasmid pRAL4404 (Hoekema *et al*, 1983 Nature 303 pp 179-180), is cultured on YMB agar ($K_2HPO_4 \cdot 3H_2O$ 660 mg l⁻¹, MgSO₄ 200 mg l⁻¹, NaCl 100 mg l⁻¹, mannitol 10 g l⁻¹, yeast extract 400 mg l⁻¹, 0.8% w/v agar, pH 7.0) containing 100 mg l⁻¹ 15 rifampicin and 500 mg l⁻¹ streptomycin sulphate. Transformation with pVICTOR IV GNG E35S *nagB* IV2' or pVICTOR IV GNG rbc *nagB* IV2' or pVICTOR IV GNG E35S *nagB*' (which correspond to each of pVICTOR IV GNG E35S *nagB* IV2 or pVICTOR IV GNG rbc *nagB* IV2 or pVICTOR IV GNG E35S *nagB* but wherein 20 each of those plasmids also contains any one of the nucleotide sequences shown as SEQ ID No.s. 7-12 operatively linked to a functional promoter) is accomplished using the freeze-thaw method of Holters *et al* (1978 Mol Gen Genet 163 181-187) and transformants are selected on YMB agar containing 100 mg l⁻¹ rifampicin and 500 mg l⁻¹ streptomycin, and 50 mg l⁻¹ gentamycin sulphate.

25

Transformation of plants

Shoot cultures of *Solanum tuberosum* cv Saturna are maintained on LS agar containing Murashige Skoog basal salts (Sigma M6899) (Murashige and Skoog, 1965, Physiol Plant 15 473-497) with 2 µM silver thiosulphate, and nutrients and vitamins 30 as described by Linsmaier and Skoog (1965 Physiol Plant 18 100-127). Cultures are maintained at 25°C with a 16h daily photoperiod. After approximately 40 days, subculturing is performed during which leaves are removed, and the shoots cut into

mononodal segments of approximately 8 mm length.

- Shoot cultures of approximately 40 days maturity (5-6 cm height) are cut into 8 mm internodal segments which are placed into liquid LS-medium containing 5 *Agrobacterium tumefaciens* transformed with pVICTOR IV GNG E35S *nagB* IV2' or pVICTOR IV GNG rbc *nagB* IV2' or pVICTOR IV GNG E35S *nagB*' ($A_{660} = 0.5$, pathlength 1 cm). Following incubation at room temperature for 30 minutes, the segments are dried by blotting on to sterile filter paper and transferred to LS agar (0.8% w/v containing 2 mg l⁻¹ 2,4-D and 500 µg l⁻¹ trans-zeatin. The explants are 10 covered with filter paper, moistened with LS medium, and covered with a cloth for three days at 25°C. Following this treatment, the segments are washed with liquid LS medium containing 800 mg l⁻¹ carbenicillin, and transferred on to LS agar (0.8% w/v) containing 1 mg l⁻¹ trans-zeatin, 100 µg l⁻¹ gibberellic acid (GA3), with sucrose (eg 7.5 g l⁻¹) and glucosamine (eg 2.5 g l⁻¹) as the selection agent.
- 15 The segments are sub-cultured to fresh substrate each 3-4 weeks. In 3 to 4 weeks, shoots develop from the segments and the formation of new shoots continues for 3-4 months.

20 Rooting of regenerated shoots

- The regenerated shoots are transferred to rooting substrate composed of LS-substrate, agar (8 g/l) and carbenicillin (800 mg/l).
- 25 The transgenic plants may be verified by performing a GUS assay on the co-introduced β -glucuronidase gene according to Hodal, L. *et al.* (Pl. Sci. (1992), 87: 115-122).
- 30 Alternatively, the transgenic genotype of the regenerated shoot may be verified by performing NPTII assays (Radke, S. E. *et al.*, Theor. Appl. Genet. (1988), 75: 685-694) or by performing PCR analysis according to Wang *et al* (1993, NAR 21 pp 4153-4154).

Transfer to soil

The newly rooted plants (height approx. 2-3 cms) are transplanted from rooting substrate to soil and placed in a growth chamber (21°C, 16 hour light 200-
5 400uE/m²/sec). When the plants are well established they are transferred to the greenhouse, where they are grown until tubers had developed and the upper part of the plants are senescing.

Harvesting

10

The potatoes are harvested after about 3 months.

TRANSGENIC MAIZE PLANTS15 **Introduction**

Since the first publication of production of transgenic plants in 1983 (Leemans, 1993 Biotechnology 11 s22), there have been numerous publications of production of transgenic plants including especially dicotyledon crop plants.

20

Until very recently there are very few reports on successful production of transgenic monocotyledonary crop plants. This relatively slow development within monocots are due to two causes. Firstly, until the early 1980s, efficient regeneration of plants from cultured cells and tissues of monocots had proven very difficult. This problem 25 is ultimately solved by the culture of explants from immature and embryogenic tissue, which retain their morphogenic potential on nutrient media containing plant growth regulators. Secondly, the monocots are not a natural host for *Agrobacterium tumefaciens*, meaning that the successful developed techniques within the dicots using their natural vector *Agrobacterium tumefaciens* is unsuccessful for many years in the 30 monocots.

Nevertheless, it is now possible to successfully transformation and produce fertile

transgenic plants of maize using methods such as: (1) Silicon Carbide Whiskers; (2) Particle Bombardment; (3) DNA Uptake by PEG treated protoplast; or (4) DNA Uptake in Electroporation of Tissue. Each of these methods - which are reviewed by Thompson (1995 *Euphytica* 85 pp 75-80) - may be used to prepare *inter alia* transgenic maize according to the present invention.

In particular, the particle Gun method has been successfully used for the transformation of monocots. However, EP-A-0604662 reports on a different method of transforming monocotyledons. The method comprises transforming cultured tissues of a monocotyledon under or after dedifferentiation with *Agrobacterium* containing a super binary vector as a selectable marker a hygromycin-resistant gene is used. Production of transgenic calli and plant is demonstrated using the hygromycin selection. This method may be used to prepare *inter alia* transgenic maize according to the present invention.

15

Subsequent to the method of EP-A-0604662, EP-A-0672752 reports on non-dedifferentiated immature embryos. In this regard, both hygromycin-resistance and PPT-resistance genes are used as the selectable marker, with PPT giving rise to 10% or more independent transformed plants. This method may be used to prepare *inter alia* transgenic maize according to the present invention.

To date, it would appear that transgenic maize plants can be successfully produced from easily-culturable varieties - such as the inbred line A188. In this regard, see the teachings of Ishida *et al* (1996 *Nature Biotechnology* 14 pp 745-750). The method disclosed by these workers may be used to prepare *inter alia* transgenic maize according to the present invention.

Vasil (1996 *Nature Biotechnology* 14 pp 702-703) presents a further review article on transformation of maize. Even though it is possible to prepare transformed maize by use of, for example, particle Gun mediated transformation, for the present studies the following protocol is adopted.

Plasmid construction

The disarmed *Agrobacterium tumefaciens* strain LBA 4404, containing the helper *vir* plasmid pRAL4404 (Hoekema *et al*, 1983 *Nature* 303 pp 179-180), is cultured on 5 YMB agar ($K_2HPO_4 \cdot 3H_2O$ 660 mg l^{-1} , $MgSO_4$ 200 mg l^{-1} , $NaCl$ 100 mg l^{-1} , mannitol 10 g l^{-1} , yeast extract 400 mg l^{-1} , 0.8% w/v agar, pH 7.0) containing 100 mg l^{-1} rifampicin and 500 mg l^{-1} streptomycin sulphate. Transformation with pVICTOR IV GNG E35S *nagB* IV2' or pVICTOR IV GNG rbc *nagB* IV2' or pVICTOR IV GNG E35S *nagB*' is accomplished using the freeze-thaw method of Holters *et al* (1978 *Mol 10 Gen Genet* 163 181-187) and transformants are selected on YMB agar containing 100 mg l^{-1} rifampicin and 500 mg l^{-1} streptomycin, and 50 mg l^{-1} gentamycin sulphate.

Isolation and cocultivation of explants

15 Immature embryos of, for example, maize line A188 of the size between 1.5 to 2.5 mm are isolated and cocultivated with *Agrobacterium tumefaciens* strain LBA 4404 in N6-AS for 2-3 days at 25°C under illumination. Thereafter, the embryos are washed with sterilized water containing 250 mg/l of cefotaxime and transferred to an LS medium and 250 mg/l cefotaxime and glucosamine in concentrations of up to 100 20 mg/l (the medium is hereafter called LSS1).

Conditions for the selection of transgenic plants

25 The explants are cultured for three weeks on LSS1 medium and then transferred to an LS medium containing glucosamine and cefotaxime. After three weeks on this medium, green shoots are isolated.

Rooting of transformed shoots

30 Transformed shoots are transferred to an MS medium containing 2 mg/l for rooting. After four weeks on this medium, plantlets are transferred to pots with sterile soil for acclimatisation.

TRANSGENIC GUAR PLANTS

Transformation of guar cotyledonary explants is performed according to Joersbo and Okkels (PCT/DK95/00221) using *Agrobacterium tumefaciens* LBA4404 harbouring
5 a suitable plasmid.

Other plants may be transformed in accordance with the present invention, such as other fruits, other vegetables, and other plants such as coffee plants, tea plants etc.

- 10 Other modifications of the present invention will be apparent to those skilled in the art.

SEQUENCES

(1) GENERAL INFORMATION:

- (i) APPLICANT:
- (A) NAME: DANISCO A/S
 - (B) STREET: LANGEBROGADE 1
 - (C) CITY: COPENHAGEN
 - (D) STATE: COPENHAGEN K
 - (E) COUNTRY: DENMARK
 - (F) POSTAL CODE (ZIP): DK-1001

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1088 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Met Phe Ser Thr Leu Ala Phe Val Ala Pro Ser Ala Leu Gly Ala Ser
 1 5 10 15
 Thr Phe Val Gly Ala Glu Val Arg Ser Asn Val Arg Ile His Ser Ala
 20 25 30
 Phe Pro Ala Val His Thr Ala Thr Arg Lys Thr Asn Arg Leu Asn Val
 35 40 45
 Ser Met Thr Ala Leu Ser Asp Lys Gln Thr Ala Thr Ala Gly Ser Thr
 50 55 60
 Asp Asn Pro Asp Gly Ile Asp Tyr Lys Thr Tyr Asp Tyr Val Gly Val
 65 70 75 80
 Trp Gly Phe Ser Pro Leu Ser Asn Thr Asn Trp Phe Ala Ala Gly Ser
 85 90 95
 Ser Thr Pro Gly Gly Ile Thr Asp Trp Thr Ala Thr Met Asn Val Asn
 100 105 110
 Phe Asp Arg Ile Asp Asn Pro Ser Ile Thr Val Gln His Pro Val Gln
 115 120 125
 Val Gln Val Thr Ser Tyr Asn Asn Asn Ser Tyr Arg Val Arg Phe Asn
 130 135 140
 Pro Asp Gly Pro Ile Arg Asp Val Thr Arg Gly Pro Ile Leu Lys Gln
 145 150 155 160
 Gln Leu Asp Trp Ile Arg Thr Gln Glu Leu Ser Glu Gly Cys Asp Pro
 165 170 175
 Gly Met Thr Phe Thr Ser Glu Gly Phe Leu Thr Phe Glu Thr Lys Asp
 180 185 190
 Leu Ser Val Ile Ile Tyr Gly Asn Phe Lys Thr Arg Val Thr Arg Lys
 195 200 205
 Ser Asp Gly Lys Val Ile Met Glu Asn Asp Glu Val Gly Thr Ala Ser
 210 215 220
 Ser Gly Asn Lys Cys Arg Gly Leu Met Phe Val Asp Arg Leu Tyr Gly
 225 230 235 240
 Asn Ala Ile Ala Ser Val Asn Lys Asn Phe Arg Asn Asp Ala Val Lys
 245 250 255
 Gln Glu Gly Phe Tyr Gly Ala Gly Glu Val Asn Cys Lys Tyr Gln Asp
 260 265 270
 Thr Tyr Ile Leu Glu Arg Thr Gly Ile Ala Met Thr Asn Tyr Asn Tyr
 275 280 285
 Asp Asn Leu Asn Tyr Asn Gln Trp Asp Leu Arg Pro Pro His His Asp
 290 295 300
 Gly Ala Leu Asn Pro Asp Tyr Tyr Ile Pro Met Tyr Tyr Ala Ala Pro
 305 310 315 320
 Trp Leu Ile Val Asn Gly Cys Ala Gly Thr Ser Glu Gln Tyr Ser Tyr
 325 330 335
 Gly Trp Phe Met Asp Asn Val Ser Gln Ser Tyr Met Asn Thr Gly Asp
 340 345 350

Thr Thr Trp Asn Ser Gly Gln Glu Asp Leu Ala Tyr Met Gly Ala Gln
 355 360 365
 Tyr Gly Pro Phe Asp Gln His Phe Val Tyr Gly Ala Gly Gly Met
 370 375 380
 Glu Cys Val Val Thr Ala Phe Ser Leu Leu Gln Gly Lys Glu Phe Glu
 385 390 395 400
 Asn Gln Val Leu Asn Lys Arg Ser Val Met Pro Pro Lys Tyr Val Phe
 405 410 415
 Gly Phe Phe Gln Gly Val Phe Gly Thr Ser Ser Leu Leu Arg Ala His
 420 425 430
 Met Pro Ala Gly Glu Asn Asn Ile Ser Val Glu Glu Ile Val Glu Gly
 435 440 445
 Tyr Gln Asn Asn Asn Phe Pro Phe Glu Gly Leu Ala Val Asp Val Asp
 450 455 460
 Met Gln Asp Asn Leu Arg Val Phe Thr Thr Lys Gly Glu Phe Trp Thr
 465 470 475 480
 Ala Asn Arg Val Gly Thr Gly Gly Asp Pro Asn Asn Arg Ser Val Phe
 485 490 495
 Glu Trp Ala His Asp Lys Gly Leu Val Cys Gln Thr Asn Ile Thr Cys
 500 505 510
 Phe Leu Arg Asn Asp Asn Glu Gly Gln Asp Tyr Glu Val Asn Gln Thr
 515 520 525
 Leu Arg Glu Arg Gln Leu Tyr Thr Lys Asn Asp Ser Leu Thr Gly Thr
 530 535 540
 Asp Phe Gly Met Thr Asp Asp Gly Pro Ser Asp Ala Tyr Ile Gly His
 545 550 555 560
 Leu Asp Tyr Gly Gly Val Glu Cys Asp Ala Leu Phe Pro Asp Trp
 565 570 575
 Gly Arg Pro Asp Val Ala Glu Trp Trp Gly Asn Asn Tyr Lys Lys Leu
 580 585 590
 Phe Ser Ile Gly Leu Asp Phe Val Trp Gln Asp Met Thr Val Pro Ala
 595 600 605
 Met Met Pro His Lys Ile Gly Asp Asp Ile Asn Val Lys Pro Asp Gly
 610 615 620
 Asn Trp Pro Asn Ala Asp Asp Pro Ser Asn Gly Gln Tyr Asn Trp Lys
 625 630 635 640
 Thr Tyr His Pro Gln Val Leu Val Thr Asp Met Arg Tyr Glu Asn His
 645 650 655
 Gly Arg Glu Pro Met Val Thr Gln Arg Asn Ile His Ala Tyr Thr Leu
 660 665 670
 Cys Glu Ser Thr Arg Lys Glu Gly Ile Val Glu Asn Ala Asp Thr Leu
 675 680 685
 Thr Lys Phe Arg Arg Ser Tyr Ile Ile Ser Arg Gly Gly Tyr Ile Gly
 690 695 700
 Asn Gln His Phe Gly Gly Met Trp Val Gly Asp Asn Ser Thr Thr Ser
 705 710 715 720
 Asn Tyr Ile Gln Met Met Ile Ala Asn Asn Ile Asn Met Asn Met Ser
 725 730 735
 Cys Leu Pro Leu Val Gly Ser Asp Ile Gly Gly Phe Thr Ser Tyr Asp
 740 745 750
 Asn Glu Asn Gln Arg Thr Pro Cys Thr Gly Asp Leu Met Val Arg Tyr
 755 760 765
 Val Gln Ala Gly Cys Leu Leu Pro Trp Phe Arg Asn His Tyr Asp Arg
 770 775 780
 Trp Ile Glu Ser Lys Asp His Gly Lys Asp Tyr Gln Glu Leu Tyr Met
 785 790 795 800
 Tyr Pro Asn Glu Met Asp Thr Leu Arg Lys Phe Val Glu Phe Arg Tyr
 805 810 815
 Arg Trp Gln Glu Val Leu Tyr Thr Ala Met Tyr Gln Asn Ala Ala Phe
 820 825 830
 Gly Lys Pro Ile Ile Lys Ala Ala Ser Met Tyr Asn Asn Asp Ser Asn
 835 840 845
 Val Arg Arg Ala Gln Asn Asp His Phe Leu Leu Gly Gly His Asp Gly
 850 855 860
 Tyr Arg Ile Leu Cys Ala Pro Val Val Trp Glu Asn Ser Thr Glu Arg
 865 870 875 880

Glu Leu Tyr Leu Pro Val Leu Thr Gln Trp Tyr Lys Phe Gly Pro Asp
 885 890 895
 Phe Asp Thr Lys Pro Leu Glu Gly Ala Met Asn Gly Gly Asp Arg Ile
 900 905 910
 Tyr Asn Tyr Pro Val Pro Gln Ser Glu Ser Pro Ile Phe Val Arg Glu
 915 920 925
 Gly Ala Ile Leu Pro Thr Arg Tyr Thr Leu Asn Gly Glu Asn Lys Ser
 930 935 940
 Leu Asn Thr Tyr Thr Asp Glu Asp Pro Leu Val Phe Glu Val Phe Pro
 945 950 955 960
 Leu Gly Asn Asn Arg Ala Asp Gly Met Cys Tyr Leu Asp Asp Gly Gly
 965 970 975
 Val Thr Thr Asn Ala Glu Asp Asn Gly Lys Phe Ser Val Val Lys Val
 980 985 990
 Ala Ala Glu Gln Asp Gly Gly Thr Glu Thr Ile Thr Phe Thr Asn Asp
 995 1000 1005
 Cys Tyr Glu Tyr Val Phe Gly Gly Pro Phe Tyr Val Arg Val Arg Gly
 1010 1015 1020
 Ala Gln Ser Pro Ser Asn Ile His Val Ser Ser Gly Ala Gly Ser Gln
 1025 1030 1035 1040
 Asp Met Lys Val Ser Ser Ala Thr Ser Arg Ala Ala Leu Phe Asn Asp.
 1045 1050 1055
 Gly Glu Asn Gly Asp Phe Trp Val Asp Gln Glu Thr Asp Ser Leu Trp
 1060 1065 1070
 Leu Lys Leu Pro Asn Val Val Leu Pro Asp Ala Val Ile Thr Ile Thr
 1075 1080 1085

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1091 amino acids
 - (B) TYPE: amino acid
 - (C) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Tyr Pro Thr Leu Thr Phe Val Ala Pro Ser Ala Leu Gly Ala Arg
 1 5 10 15
 Thr Phe Thr Cys Val Gly Ile Phe Arg Ser His Ile Leu Ile His Ser
 20 25 30
 Val Val Pro Ala Val Arg Leu Ala Val Arg Lys Ser Asn Arg Leu Asn
 35 40 45
 Val Ser Met Ser Ala Leu Phe Asp Lys Pro Thr Ala Val Thr Gly Gly
 50 55 60
 Lys Asp Asn Pro Asp Asn Ile Asn Tyr Thr Thr Tyr Asp Tyr Val Pro
 65 70 75 80
 Val Trp Arg Phe Asp Pro Leu Ser Asn Thr Asn Trp Phe Ala Ala Gly
 85 90 95
 Ser Ser Thr Pro Gly Asp Ile Asp Asp Trp Thr Ala Thr Met Asn Val
 100 105 110
 Asn Phe Asp Arg Ile Asp Asn Pro Ser Phe Thr Leu Glu Lys Pro Val
 115 120 125
 Gln Val Gln Val Thr Ser Tyr Lys Asn Asn Cys Phe Arg Val Arg Phe
 130 135 140
 Asn Pro Asp Gly Pro Ile Arg Asp Val Asp Arg Gly Pro Ile Leu Gln
 145 150 155 160
 Gln Gln Leu Asn Trp Ile Arg Lys Gln Glu Gln Ser Lys Gly Phe Asp
 165 170 175
 Pro Lys Met Gly Phe Thr Lys Glu Gly Phe Leu Lys Phe Glu Thr Lys
 180 185 190
 Asp Leu Asn Val Ile Ile Tyr Gly Asn Phe Lys Thr Arg Val Thr Arg
 195 200 205
 Lys Arg Asp Gly Lys Gly Ile Met Glu Asn Asn Glu Val Pro Ala Gly
 210 215 220

Ser Leu Gly Asn Lys Cys Arg Gly Leu Met Phe Val Asp Arg Leu Tyr
 225 230 235 240
 Gly Thr Ala Ile Ala Ser Val Asn Glu Asn Tyr Arg Asn Asp Pro Asp
 245 250 255
 Arg Lys Glu Gly Phe Tyr Gly Ala Gly Glu Val Asn Cys Glu Phe Trp
 260 265 270
 Asp Ser Glu Gln Asn Arg Asn Lys Tyr Ile Leu Glu Arg Thr Gly Ile
 275 280 285
 Ala Met Thr Asn Tyr Asn Tyr Asn Tyr Asn Gln Ser Asp
 290 295 300
 Leu Ile Ala Pro Gly Tyr Pro Ser Asp Pro Asn Phe Tyr Ile Pro Met
 305 310 315 320
 Tyr Phe Ala Ala Pro Trp Val Val Val Lys Gly Cys Ser Gly Asn Ser
 325 330 335
 Asp Glu Gln Tyr Ser Tyr Gly Trp Phe Met Asp Asn Val Ser Gln Thr
 340 345 350
 Tyr Met Asn Thr Gly Gly Thr Ser Trp Asn Cys Gly Glu Glu Asn Leu
 355 360 365
 Ala Tyr Met Gly Ala Gln Cys Gly Pro Phe Asp Gln His Phe Val Tyr
 370 375 380
 Gly Asp Gly Asp Gly Leu Glu Asp Val Val Gln Ala Phe Ser Leu Leu
 385 390 395 400
 Gln Gly Lys Glu Phe Glu Asn Gln Val Leu Asn Lys Arg Ala Val Met
 405 410 415
 Pro Pro Lys Tyr Val Phe Gly Tyr Phe Gln Gly Val Phe Gly Ile Ala
 420 425 430
 Ser Leu Leu Arg Glu Gln Arg Pro Glu Gly Asn Asn Ile Ser Val
 435 440 445
 Gln Glu Ile Val Glu Gly Tyr Gln Ser Asn Asn Phe Pro Leu Glu Gly
 450 455 460
 Leu Ala Val Asp Val Asp Met Gln Gln Asp Leu Arg Val Phe Thr Thr
 465 470 475 480
 Lys Ile Glu Phe Trp Thr Ala Asn Lys Val Gly Thr Gly Gly Asp Ser
 485 490 495
 Asn Asn Lys Ser Val Phe Glu Trp Ala His Asp Lys Gly Leu Val Cys
 500 505 510
 Gln Thr Asn Val Thr Cys Phe Leu Arg Asn Asp Asn Gly Gly Ala Asp
 515 520 525
 Tyr Glu Val Asn Gln Thr Leu Arg Glu Lys Gly Leu Tyr Thr Lys Asn
 530 535 540
 Asp Ser Leu Thr Asn Thr Asn Phe Gly Thr Thr Asn Asp Gly Pro Ser
 545 550 555 560
 Asp Ala Tyr Ile Gly His Leu Asp Tyr Gly Gly Gly Asn Cys Asp
 565 570 575
 Ala Leu Phe Pro Asp Trp Gly Arg Pro Gly Val Ala Glu Trp Trp Gly
 580 585 590
 Asp Asn Tyr Ser Lys Leu Phe Lys Ile Gly Leu Asp Phe Val Trp Gln
 595 600 605
 Asp Met Thr Val Pro Ala Met Met Pro His Lys Val Gly Asp Ala Val
 610 615 620
 Asp Thr Arg Ser Pro Tyr Gly Trp Pro Asn Glu Asn Asp Pro Ser Asn
 625 630 635 640
 Gly Arg Tyr Asn Trp Lys Ser Tyr His Pro Gln Val Leu Val Thr Asp
 645 650 655
 Met Arg Tyr Glu Asn His Gly Arg Glu Pro Met Phe Thr Gln Arg Asn
 660 665 670
 Met His Ala Tyr Thr Leu Cys Glu Ser Thr Arg Lys Glu Gly Ile Val
 675 680 685
 Ala Asn Ala Asp Thr Leu Thr Lys Phe Arg Arg Ser Tyr Ile Ile Ser
 690 695 700
 Arg Gly Gly Tyr Ile Gly Asn Gln His Phe Gly Gly Met Trp Val Gly
 705 710 715 720
 Asp Asn Ser Ser Ser Gln Arg Tyr Leu Gln Met Met Ile Ala Asn Ile
 725 730 735
 Val Asn Met Asn Met Ser Cys Leu Pro Leu Val Gly Ser Asp Ile Gly
 740 745 750

Gly Phe Thr-Ser Tyr Asp Gly Arg Asn Val Cys Pro Gly Asp Leu Met
 755 760 765
 Val Arg Phe Val Gln Ala Gly Cys Leu Leu Pro Trp Phe Arg Asn His
 770 775 780
 Tyr Gly Arg Leu Val Glu Gly Lys Gln Glu Gly Lys Tyr Tyr Gln Glu
 785 790 795 800
 Leu Tyr Met Tyr Lys Asp Glu Met Ala Thr Leu Arg Lys Phe Ile Glu
 805 810 815
 Phe Arg Tyr Arg Trp Gln Glu Val Leu Tyr Thr Ala Met Tyr Gln Asn
 820 825 830
 Ala Ala Phe Gly Lys Pro Ile Ile Lys Ala Ala Ser Met Tyr Asp Asn
 835 840 845
 Asp Arg Asn Val Arg Gly Ala Gln Asp Asp His Phe Leu Leu Gly Gly
 850 855 860
 His Asp Gly Tyr Arg Ile Leu Cys Ala Pro Val Val Trp Glu Asn Thr
 865 870 875 880
 Thr Ser Arg Asp Leu Tyr Leu Pro Val Leu Thr Lys Trp Tyr Lys Phe
 885 890 895
 Gly Pro Asp Tyr Asp Thr Lys Arg Leu Asp Ser Ala Leu Asp Gly Gly
 900 905 910
 Gln Met Ile Lys Asn Tyr Ser Val Pro Gln Ser Asp Ser Pro Ile Phe
 915 920 925
 Val Arg Glu Gly Ala Ile Leu Pro Thr Arg Tyr Thr Leu Asp Gly Ser
 930 935 940
 Asn Lys Ser Met Asn Thr Tyr Thr Asp Lys Asp Pro Leu Val Phe Glu
 945 950 955 960
 Val Phe Pro Leu Gly Asn Asn Arg Ala Asp Gly Met Cys Tyr Leu Asp
 965 970 975
 Asp Gly Gly Ile Thr Thr Asp Ala Glu Asp His Gly Lys Phe Ser Val
 980 985 990
 Ile Asn Val Glu Ala Leu Arg Lys Gly Val Thr Thr Ile Lys Phe
 995 1000 1005
 Ala Tyr Asp Thr Tyr Gln Tyr Val Phe Asp Gly Pro Phe Tyr Val Arg
 1010 1015 1020
 Ile Arg Asn Leu Thr Thr Ala Ser Lys Ile Asn Val Ser Ser Gly Ala
 1025 1030 1035 1040
 Gly Glu Glu Asp Met Thr Pro Thr Ser Ala Asn Ser Arg Ala Ala Leu
 1045 1050 1055
 Phe Ser Asp Gly Gly Val Gly Glu Tyr Trp Ala Asp Asn Asp Thr Ser
 1060 1065 1070
 Ser Leu Trp Met Lys Leu Pro Asn Leu Val Leu Gln Asp Ala Val Ile
 1075 1080 1085
 Thr Ile Thr
 1090

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1066 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Ala Gly Phe Ser Asp Pro Leu Asn Phe Cys Lys Ala Glu Asp Tyr
 1 5 10 15
 Tyr Ser Val Ala Leu Asp Trp Lys Gly Pro Gln Lys Ile Ile Gly Val
 20 25 30
 Asp Thr Thr Pro Pro Lys Ser Thr Lys Phe Pro Lys Asn Trp His Gly
 35 40 45
 Val Asn Leu Arg Phe Asp Asp Gly Thr Leu Gly Val Val Gln Phe Ile
 50 55 60
 Arg Pro Cys Val Trp Arg Val Arg Tyr Asp Pro Gly Phe Lys Thr Ser
 65 70 75 80

Asp Glu Tyr-Gly Asp Glu Asn Thr Arg Thr Ile Val Gln Asp Tyr Met
 85 90 95
 Ser Thr Leu Ser Asn Lys Leu Asp Thr Tyr Arg Gly Leu Thr Trp Glu
 100 105 110
 Thr Lys Cys Glu Asp Ser Gly Asp Phe Phe Thr Phe Ser Ser Lys Val
 115 120 125
 Thr Ala Val Glu Lys Ser Glu Arg Thr Arg Asn Lys Val Gly Asp Gly
 130 135 140
 Leu Arg Ile His Leu Trp Lys Ser Pro Phe Arg Ile Gln Val Val Arg
 145 150 155 160
 Thr Leu Thr Pro Leu Lys Asp Pro Tyr Pro Ile Pro Asn Val Ala Ala
 165 170 175
 Ala Glu Ala Arg Val Ser Asp Lys Val Val Trp Gln Thr Ser Pro Lys
 180 185 190
 Thr Phe Arg Lys Asn Leu His Pro Gln His Lys Met Leu Lys Asp Thr
 195 200 205
 Val Leu Asp Ile Val Lys Pro Gly His Gly Glu Tyr Val Gly Trp Gly
 210 215 220
 Glu Met Gly Gly Ile Gln Phe Met Lys Glu Pro Thr Phe Met Asn Tyr
 225 230 235 240
 Phe Asn Phe Asp Asn Met Gln Tyr Gln Gln Val Tyr Ala Gln Gly Ala
 245 250 255
 Leu Asp Ser Arg Glu Pro Leu Tyr His Ser Asp Pro Phe Tyr Leu Asp
 260 265 270
 Val Asn Ser Asn Pro Glu His Lys Asn Ile Thr Ala Thr Phe Ile Asp
 275 280 285
 Asn Tyr Ser Gln Ile Ala Ile Asp Phe Gly Lys Thr Asn Ser Gly Tyr
 290 295 300
 Ile Lys Leu Gly Thr Arg Tyr Gly Gly Ile Asp Cys Tyr Gly Ile Ser
 305 310 315 320
 Ala Asp Thr Val Pro Glu Ile Val Arg Leu Tyr Thr Gly Leu Val Gly
 325 330 335
 Arg Ser Lys Leu Lys Pro Arg Tyr Ile Leu Gly Ala His Gln Ala Cys
 340 345 350
 Tyr Gly Tyr Gln Gln Glu Ser Asp Leu Tyr Ser Val Val Gln Gln Tyr
 355 360 365
 Arg Asp Cys Lys Phe Pro Leu Asp Gly Ile His Val Asp Val Asp Val
 370 375 380
 Gln Asp Gly Phe Arg Thr Phe Thr Thr Asn Pro His Thr Phe Pro Asn
 385 390 395 400
 Pro Lys Glu Met Phe Thr Asn Leu Arg Asn Asn Gly Ile Lys Cys Ser
 405 410 415
 Thr Asn Ile Thr Pro Val Ile Ser Ile Asn Asn Arg Glu Gly Gly Tyr
 420 425 430
 Ser Thr Leu Leu Glu Gly Val Asp Lys Lys Tyr Phe Ile Met Asp Asp
 435 440 445
 Arg Tyr Thr Glu Gly Thr Ser Gly Asn Ala Lys Asp Val Arg Tyr Met
 450 455 460
 Tyr Tyr Gly Gly Gly Asn Lys Val Glu Val Asp Pro Asn Asp Val Asn
 465 470 475 480
 Gly Arg Pro Asp Phe Lys Asp Asn Tyr Asp Phe Pro Ala Asn Phe Asn
 485 490 495
 Ser Lys Gln Tyr Pro Tyr His Gly Gly Val Ser Tyr Gly Tyr Gly Asn
 500 505 510
 Gly Ser Ala Gly Phe Tyr Pro Asp Leu Asn Arg Lys Glu Val Arg Ile
 515 520 525
 Trp Trp Gly Met Gln Tyr Lys Tyr Leu Phe Asp Met Gly Leu Glu Phe
 530 535 540
 Val Trp Gln Asp Met Thr Thr Pro Ala Ile His Thr Ser Tyr Gly Asp
 545 550 555 560
 Met Lys Gly Leu Pro Thr Arg Leu Leu Val Thr Ser Asp Ser Val Thr
 565 570 575
 Asn Ala Ser Glu Lys Lys Leu Ala Ile Glu Thr Trp Ala Leu Tyr Ser
 580 585 590
 Tyr Asn Leu His Lys Ala Thr Trp His Gly Leu Ser Arg Leu Glu Ser
 595 600 605

Arg Lys Asn Lys Arg Asn Phe Ile Leu Gly Arg Gly Ser Tyr Ala Gly
 610 615 620
 Ala Tyr Arg Phe Ala Gly Leu Trp Thr Gly Asp Asn Ala Ser Asn Trp
 625 630 635 640
 Glu Phe Trp Lys Ile Ser Val Ser Gln Val Leu Ser Leu Gly Leu Asn
 645 650 655
 Gly Val Cys Ile Ala Gly Ser Asp Thr Gly Gly Phe Glu Pro Tyr Arg
 660 665 670
 Asp Ala Asn Gly Val Glu Glu Lys Tyr Cys Ser Pro Glu Leu Leu Ile
 675 680 685
 Arg Trp Tyr Thr Gly Ser Phe Leu Leu Pro Trp Leu Arg Asn His Tyr
 690 695 700
 Val Lys Lys Asp Arg Lys Trp Phe Gln Glu Pro Tyr Ser Tyr Pro Lys
 705 710 715 720
 His Leu Glu Thr His Pro Glu Leu Ala Asp Gln Ala Trp Leu Tyr Lys
 725 730 735
 Ser Val Leu Glu Ile Cys Arg Tyr Tyr Val Glu Leu Arg Tyr Ser Leu
 740 745 750
 Ile Gln Leu Leu Tyr Asp Cys Met Phe Gln Asn Val Val Asp Gly Met
 755 760 765
 Pro Ile Thr Arg Ser Met Leu Leu Thr Asp Thr Glu Asp Thr Thr Phe
 770 775 780
 Phe Asn Glu Ser Gln Lys Phe Leu Asp Asn Gln Tyr Met Ala Gly Asp
 785 790 795 800
 Asp Ile Leu Val Ala Pro Ile Leu His Ser Arg Lys Glu Ile Pro Gly
 805 810 815
 Glu Asn Arg Asp Val Tyr Leu Pro Leu Tyr His Thr Trp Tyr Pro Ser
 820 825 830
 Asn Leu Arg Pro Trp Asp Asp Gln Gly Val Ala Leu Gly Asn Pro Val
 835 840 845
 Glu Gly Gly Ser Val Ile Asn Tyr Thr Ala Arg Ile Val Ala Pro Glu
 850 855 860
 Asp Tyr Asn Leu Phe His Ser Val Val Pro Val Tyr Val Arg Glu Gly
 865 870 875 880
 Ala Ile Ile Pro Gln Ile Glu Val Arg Gln Trp Thr Gly Gln Gly Gly
 885 890 895
 Ala Asn Arg Ile Lys Phe Asn Ile Tyr Pro Gly Lys Asp Lys Glu Tyr
 900 905 910
 Cys Thr Tyr Leu Asp Asp Gly Val Ser Arg Asp Ser Ala Pro Glu Asp
 915 920 925
 Leu Pro Gln Tyr Lys Glu Thr His Glu Gln Ser Lys Val Glu Gly Ala
 930 935 940
 Glu Ile Ala Lys Gln Ile Gly Lys Lys Thr Gly Tyr Asn Ile Ser Gly
 945 950 955 960
 Thr Asp Pro Glu Ala Lys Gly Tyr His Arg Lys Val Ala Val Thr Gln
 965 970 975
 Thr Ser Lys Asp Lys Thr Arg Thr Val Thr Ile Glu Pro Lys His Asn
 980 985 990
 Gly Tyr Asp Pro Ser Lys Glu Val Gly Asp Tyr Tyr Thr Ile Ile Leu
 995 1000 1005
 Trp Tyr Ala Pro Gly Phe Asp Gly Ser Ile Val Asp Val Ser Lys Thr
 1010 1015 1020
 Thr Val Asn Val Glu Gly Gly Val Glu His Gln Val Tyr Lys Asn Ser
 1025 1030 1035 1040
 Asp Leu His Thr Val Val Ile Asp Val Lys Glu Val Ile Gly Thr Thr
 1045 1050 1055
 Lys Ser Val Lys Ile Thr Cys Thr Ala Ala
 1060 1065

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1070 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Gly Leu Ser Asp Pro Leu Asn Phe Cys Lys Ala Glu Asp Tyr
 1 5 10 15
 Tyr Ala Ala Ala Lys Gly Trp Ser Gly Pro Gln Lys Ile Ile Arg Tyr
 20 25 30
 Asp Gln Thr Pro Pro Gln Gly Thr Lys Asp Pro Lys Ser Trp His Ala
 35 40 45
 Val Asn Leu Pro Phe Asp Asp Gly Thr Met Cys Val Val Gln Phe Val
 50 55 60
 Arg Pro Cys Val Trp Arg Val Arg Tyr Asp Pro Ser Val Lys Thr Ser
 65 70 75 80
 Asp Glu Tyr Gly Asp Glu Asn Thr Arg Thr Ile Val Gln Asp Tyr Met
 85 90 95
 Thr Thr Leu Val Gly Asn Leu Asp Ile Phe Arg Gly Leu Thr Trp Val
 100 105 110
 Ser Thr Leu Glu Asp Ser Gly Glu Tyr Tyr Thr Phe Lys Ser Glu Val
 115 120 125
 Thr Ala Val Asp Glu Thr Glu Arg Thr Arg Asn Lys Val Gly Asp Gly
 130 135 140
 Leu Lys Ile Tyr Leu Trp Lys Asn Pro Phe Arg Ile Gln Val Val Arg
 145 150 155 160
 Leu Leu Thr Pro Leu Val Asp Pro Phe Pro Ile Pro Asn Val Ala Asn
 165 170 175
 Ala Thr Ala Arg Val Ala Asp Lys Val Val Trp Gln Thr Ser Pro Lys
 180 185 190
 Thr Phe Arg Lys Asn Leu His Pro Gln His Lys Met Leu Lys Asp Thr
 195 200 205
 Val Leu Asp Ile Ile Lys Pro Gly His Gly Glu Tyr Val Gly Trp Gly
 210 215 220
 Glu Met Gly Gly Ile Glu Phe Met Lys Glu Pro Thr Phe Met Asn Tyr
 225 230 235 240
 Phe Asn Phe Asp Asn Met Gln Tyr Gln Gln Val Tyr Ala Gln Gly Ala
 245 250 255
 Leu Asp Ser Arg Glu Pro Leu Tyr His Ser Asp Pro Phe Tyr Leu Asp
 260 265 270
 Val Asn Ser Asn Pro Glu His Lys Asn Ile Thr Ala Thr Phe Ile Asp
 275 280 285
 Asn Tyr Ser Gln Ile Ala Ile Asp Phe Gly Lys Thr Asn Ser Gly Tyr
 290 295 300
 Ile Lys Leu Gly Thr Arg Tyr Gly Gly Ile Asp Cys Tyr Gly Ile Ser
 305 310 315 320
 Ala Asp Thr Val Pro Glu Ile Val Arg Leu Tyr Thr Gly Leu Val Gly
 325 330 335
 Arg Ser Lys Leu Lys Pro Arg Tyr Ile Leu Gly Ala His Gln Ala Cys
 340 345 350
 Tyr Gly Tyr Gln Gln Glu Ser Asp Leu His Ala Val Val Gln Gln Tyr
 355 360 365
 Arg Asp Thr Lys Phe Pro Leu Asp Gly Leu His Val Asp Val Asp Phe
 370 375 380
 Gln Asp Asn Phe Arg Thr Phe Thr Thr Asn Pro Ile Thr Phe Pro Asn
 385 390 395 400
 Pro Lys Glu Met Phe Thr Asn Leu Arg Asn Asn Gly Ile Lys Cys Ser
 405 410 415
 Thr Asn Ile Thr Pro Val Ile Ser Ile Arg Asp Arg Pro Asn Gly Tyr
 420 425 430
 Ser Thr Leu Asn Glu Gly Tyr Asp Lys Lys Tyr Phe Ile Met Asp Asp
 435 440 445

Arg Tyr Thr Glu Gly Thr Ser Gly Asp Pro Gln Asn Val Arg Tyr Ser
 450 455 460
 Phe Tyr Gly Gly Gly Asn Pro Val Glu Val Asn Pro Asn Asp Val Trp
 465 470 475 480
 Ala Arg Pro Asp Phe Gly Asp Asn Tyr Asp Phe Pro Thr Asn Phe Asn
 485 490 495
 Cys Lys Asp Tyr Pro Tyr His Gly Gly Val Ser Tyr Gly Tyr Gly Asn
 500 505 510
 Gly Thr Pro Gly Tyr Tyr Pro Asp Leu Asn Arg Glu Glu Val Arg Ile
 515 520 525
 Trp Trp Gly Leu Gln Tyr Glu Tyr Leu Phe Asn Met Gly Leu Glu Phe
 530 535 540
 Val Trp Gln Asp Met Thr Thr Pro Ala Ile His Ser Ser Tyr Gly Asp
 545 550 555 560
 Met Lys Gly Leu Pro Thr Arg Leu Leu Val Thr Ala Asp Ser Val Thr
 565 570 575
 Asn Ala Ser Glu Lys Lys Leu Ala Ile Glu Ser Trp Ala Leu Tyr Ser
 580 585 590
 Tyr Asn Leu His Lys Ala Thr Phe His Gly Leu Gly Arg Leu Glu Ser
 595 600 605
 Arg Lys Asn Lys Arg Asn Phe Ile Leu Gly Arg Gly Ser Tyr Ala Gly
 610 615 620
 Ala Tyr Arg Phe Ala Gly Leu Trp Thr Gly Asp Asn Ala Ser Thr Trp
 625 630 635 640
 Glu Phe Trp Lys Ile Ser Val Ser Gln Val Leu Ser Leu Gly Leu Asn
 645 650 655
 Gly Val Cys Ile Ala Gly Ser Asp Thr Gly Gly Phe Glu Pro Ala Arg
 660 665 670
 Thr Glu Ile Gly Glu Glu Lys Tyr Cys Ser Pro Glu Leu Leu Ile Arg
 675 680 685
 Trp Tyr Thr Gly Ser Phe Leu Leu Pro Trp Leu Arg Asn His Tyr Val
 690 695 700
 Lys Lys Asp Arg Lys Trp Phe Gln Glu Pro Tyr Ala Tyr Pro Lys His
 705 710 715 720
 Leu Glu Thr His Pro Glu Leu Ala Asp Gln Ala Trp Leu Tyr Lys Ser
 725 730 735
 Val Leu Glu Ile Cys Arg Tyr Trp Val Glu Leu Arg Tyr Ser Leu Ile
 740 745 750
 Gln Leu Leu Tyr Asp Cys Met Phe Gln Asn Val Val Asp Gly Met Pro
 755 760 765
 Leu Ala Arg Ser Met Leu Leu Thr Asp Thr Glu Asp Thr Thr Phe Phe
 770 775 780
 Asn Glu Ser Gln Lys Phe Leu Asp Asn Gln Tyr Met Ala Gly Asp Asp
 785 790 795 800
 Ile Leu Val Ala Pro Ile Leu His Ser Arg Asn Glu Val Pro Gly Glu
 805 810 815
 Asn Arg Asp Val Tyr Leu Pro Leu Phe His Thr Trp Tyr Pro Ser Asn
 820 825 830
 Leu Arg Pro Trp Asp Asp Gln Gly Val Ala Leu Gly Asn Pro Val Glu
 835 840 845
 Gly Gly Ser Val Ile Asn Tyr Thr Ala Arg Ile Val Ala Pro Glu Asp
 850 855 860
 Tyr Asn Leu Phe His Asn Val Val Pro Val Tyr Ile Arg Glu Gly Ala
 865 870 875 880
 Ile Ile Pro Gln Ile Gln Val Arg Gln Trp Ile Gly Glu Gly Pro
 885 890 895
 Asn Pro Ile Lys Phe Asn Ile Tyr Pro Gly Lys Asp Lys Glu Tyr Val
 900 905 910
 Thr Tyr Leu Asp Asp Gly Val Ser Arg Asp Ser Ala Pro Asp Asp Leu
 915 920 925
 Pro Gln Tyr Arg Glu Ala Tyr Glu Gln Ala Lys Val Glu Gly Lys Asp
 930 935 940
 Val Gln Lys Gln Leu Ala Val Ile Gln Gly Asn Lys Thr Asn Asp Phe
 945 950 955 960
 Ser Ala Ser Gly Ile Asp Lys Glu Ala Lys Gly Tyr His Arg Lys Val
 965 970 975

Ser Ile Lys Gln Glu Ser Lys Asp Lys Thr Arg Thr Val Thr Ile Glu
 980 985 990
 Pro Lys His Asn Gln Gly Tyr Asp Pro Ser Lys Glu Val Gly Asn Tyr Tyr
 995 1000 1005
 Thr Ile Ile Leu Trp Tyr Ala Pro Gly Phe Asp Gly Ser Ile Val Asp
 1010 1015 1020
 Val Ser Gln Ala Thr Val Asn Ile Glu Gly Val Glu Cys Glu Ile
 1025 1030 1035 1040
 Phe Lys Asn Thr Gly Leu His Thr Val Val Val Asn Val Lys Glu Val
 1045 1050 1055
 Ile Gly Thr Thr Lys Ser Val Lys Ile Thr Cys Thr Thr Ala
 1060 1065 1070

SEQ. ID. NO. 5

SEQUENCE TYPE: ENZYME

MOLECULE TYPE: AMINO ACID

ORIGINAL SOURCE: ALGAL

SEQUENCE LENGTH: 1092 AMINO ACIDS

SEQUENCE:

5	10	15
1 Met Phe Pro Thr Leu Thr Phe Ile Ala Pro Ser Ala Leu Ala Ala		
16 Ser Thr Phe Val Gly Ala Asp Ile Arg Ser Gly Ile Arg Ile Gln		
31 Ser Ala Leu Pro Ala Val Arg Asn Ala Val Arg Arg Ser Lys His		
46 Tyr Asn Val Ser Met Thr Ala Leu Ser Asp Lys Gln Thr Ala Ile		
61 Ser Ile Gly Pro Asp Asn Pro Asp Gly Ile Asn Tyr Gln Asn Tyr		
76 Asp Tyr Ile Pro Val Ala Gly Phe Thr Pro Leu Ser Asn Thr Asn		
91 Trp Tyr Ala Ala Gly Ser Ser Thr Pro Gly Gly Ile Thr Asp Trp		
106 Thr Ala Thr Met Asn Val Lys Phe Asp Arg Ile Asp Asn Pro Ser		
121 Tyr Ser Asn Asn His Pro Val Gln Ile Gln Val Thr Ser Tyr Asn		
136 Asn Asn Ser Phe Arg Ile Arg Phe Asn Pro Asp Gly Pro Ile Arg		
151 Asp Val Ser Arg Gly Pro Ile Leu Lys Gln Gln Leu Thr Trp Ile		
166 Arg Asn Gln Glu Leu Ala Gln Gly Cys Asn Pro Asn Met Ser Phe		
181 Ser Pro Glu Gly Phe Leu Ser Phe Glu Thr Lys Asp Leu Asn Val		
196 Ile Ile Tyr Gly Asn Cys Lys Met Arg Val Thr Lys Lys Asp Gly		
211 Tyr Leu Val Met Glu Asn Asp Glu Cys Asn Ser Gln Ser Asp Gly		
226 Asn Lys Cys Arg Gly Leu Met Tyr Val Asp Arg Leu Tyr Gly Asn		
241 Ala Ile Ala Ser Val Gln Thr Asn Phe His Lys Asp Thr Ser Arg		
256 Asn Glu Lys Phe Tyr Gly Ala Gly Glu Val Asn Cys Arg Tyr Glu		
271 Glu Gln Gly Lys Ala Pro Thr Tyr Val Leu Glu Arg Ser Gly Leu		
286 Ala Met Thr Asn Tyr Asn Tyr Asp Asn Leu Asn Tyr Asn Gln Pro		
301 Asp Val Val Pro Pro Gly Tyr Pro Asp His Pro Asn Tyr Tyr Ile		
316 Pro Met Tyr Ala Ala Pro Trp Leu Val Val Gln Gly Cys Ala		
331 Gly Thr Ser Lys Gln Tyr Ser Tyr Gly Trp Phe Met Asp Asn Val		
346 Ser Gln Ser Tyr Met Asn Thr Gly Asp Thr Ala Trp Asn Cys Gly		
361 Gln Glu Asn Leu Ala Tyr Met Gly Ala Gln Tyr Gly Pro Phe Asp		
376 Gln His Phe Val Tyr Gly Asp Gly Asp Gly Leu Glu Asp Val Val		
391 Lys Ala Phe Ser Phe Leu Gln Gly Lys Glu Phe Glu Asp Lys Lys		
406 Leu Asn Lys Arg Ser Val Met Pro Pro Lys Tyr Val Phe Gly Phe		
421 Phe Gln Gly Val Phe Gly Ala Leu Ser Leu Leu Lys Gln Asn Leu		
436 Pro Ala Gly Glu Asn Asn Ile Ser Val Gln Glu Ile Val Glu Gly		
451 Tyr Gln Asp Asn Asp Tyr Pro Phe Glu Gly Leu Ala Val Asp Val		
466 Asp Met Gln Asp Asp Leu Arg Val Phe Thr Thr Lys Pro Glu Tyr		
481 Trp Ser Ala Asn Met Val Gly Glu Gly Asp Pro Asn Asn Arg		
496 Ser Val Phe Glu Trp Ala His Asp Arg Gly Leu Val Cys Gln Thr		
511 Asn Val Thr Cys Phe Leu Arg Asn Asp Asn Ser Gly Lys Pro Tyr		
526 Glu Val Asn Gln Thr Leu Arg Glu Lys Gln Leu Tyr Thr Lys Asn		
541 Asp Ser Leu Asn Asn Thr Asp Phe Gly Thr Thr Ser Asp Gly Pro		
556 Gly Asp Ala Tyr Ile Gly His Leu Asp Tyr Gly Gly Val Glu		
571 Cys Asp Ala Ile Phe Pro Asp Trp Gly Arg Pro Asp Val Ala Gln		
586 Trp Trp Gly Glu Asn Tyr Lys Lys Leu Phe Ser Ile Gly Leu Asp		
601 Phe Val Trp Gln Asp Met Thr Val Pro Ala Met Met Pro His Arg		
616 Leu Gly Asp Ala Val Asn Lys Asn Ser Gly Ser Ser Ala Pro Gly		
631 Trp Pro Asn Glu Asn Asp Pro Ser Asn Gly Arg Tyr Asn Trp Lys		
646 Ser Tyr His Pro Gln Val Leu Val Thr Asp Met Arg Tyr Gly Ala		
661 Glu Tyr Gly Arg Glu Pro Met Val Ser Gln Arg Asn Ile His Ala		

676 Tyr Thr Leu Cys Glu Ser Thr Arg Arg Glu Gly Ile Val Gly Asn
 691 Ala Asp Ser Leu Thr Lys Phe Arg Arg Ser Tyr Ile Ile Ser Arg
 706 Gly Gly Tyr Ile Gly Asn Gln His Phe Gly Gly Met Trp Val Gly
 721 Asp Asn Ser Ala Thr Glu Ser Tyr Leu Gln Met Met Leu Ala Asn
 736 Ile Ile Asn Met Asn Met Ser Cys Leu Pro Leu Val Gly Ser Asp
 751 Ile Gly Gly Phe Thr Gln Tyr Asn Asp Ala Gly Asp Pro Thr Pro
 766 Glu Asp Leu Met Val Arg Phe Val Gln Ala Gly Cys Leu Leu Pro
 781 Trp Phe Arg Asn His Tyr Asp Arg Trp Ile Glu Ser Lys Lys His
 796 Gly Lys Lys Tyr Gln Glu Leu Tyr Met Tyr Pro Gly Gln Lys Asp
 811 Thr Leu Lys Lys Phe Val Glu Phe Arg Tyr Arg Trp Gln Glu Val
 826 Leu Tyr Thr Ala Met Tyr Gln Asn Ala Thr Thr Gly Glu Pro Ile
 841 Ile Lys Ala Ala Pro Met Tyr Asn Asn Asp Val Asn Val Tyr Lys
 856 Ser Gln Asn Asp His Phe Leu Leu Gly Gly His Asp Gly Tyr Arg
 871 Ile Leu Cys Ala Pro Val Val Arg Glu Asn Ala Thr Ser Arg Glu
 886 Val Tyr Leu Pro Val Tyr Ser Lys Trp Phe Lys Phe Gly Pro Asp
 901 Phe Asp Thr Lys Pro Leu Asn Glu Ile Gln Gly Gln Thr
 916 Leu Tyr Asn Tyr Ala Ala Pro Leu Asn Asp Ser Pro Ile Phe Val
 931 Arg Glu Gly Thr Ile Leu Pro Thr Arg Tyr Thr Leu Asp Gly Val
 946 Asn Lys Ser Ile Asn Thr Tyr Thr Asp Asn Asp Pro Leu Val Phe
 961 Glu Leu Phe Pro Leu Glu Asn Asn Gln Ala His Gly Leu Phe Tyr
 976 His Asp Asp Gly Gly Val Thr Thr Asn Ala Glu Asp Phe Gly Lys
 991 Tyr Ser Val Ile Ser Val Lys Ala Ala Glu Gly Ser Gln Met
 1006 Ser Val Lys Phe Asp Asn Glu Val Tyr Glu His Gln Trp Gly Ala
 1021 Ser Phe Tyr Val Arg Val Arg Asn Met Gly Ala Pro Ser Asn Ile
 1036 Asn Val Ser Ser Gln Ile Gly Gln Gln Asp Met Gln Gln Ser Ser
 1051 Val Ser Ser Arg Ala Gln Met Phe Thr Ser Ala Asn Asp Gly Glu
 1066 Tyr Trp Val Asp Gln Ser Thr Asn Ser Leu Trp Leu Lys Leu Pro
 1081 Gly Ala Val Ile Gln Asp Ala Ala Ile Thr Val Arg

Number of amino acid residues: 1092

Amino acid composition (including the signal sequense):

64 Ala	14 Cys	18 His	33 Met	56 Thr
48 Arg	55 Gln	45 Ile	49 Phe	22 Trp
89 Asn	49 Glu	65 Leu	59 Pro	67 Tyr
73 Asp	94 Gly	46 Lys	73 Ser	73 Val

SEQ. ID. NO. 6

SEQUENCE TYPE: ENZYME

MOLECULE TYPE: AMINO ACID

ORIGINAL SOURCE: ALGAL

SEQUENCE LENGTH: 570 AMINO ACIDS

SEQUENCE:

5	10	15
1 Met	10	15
16 Leu	16 Leu Ile Pro Pro Gly His Asp Ser Asp Pro Asp Tyr Tyr Ile Pro	
31 Met	31 Met Tyr Phe Ala Ala Pro Trp Val Ile Ala His Gly Tyr Arg Gly	
46 Thr	46 Thr Ser Asp Gln Tyr Ser Tyr Gly Trp Phe Leu Asp Asn Val Ser	
61 Gln	61 Gln Ser Tyr Thr Asn Thr Gly Asp Asp Ala Trp Ala Gly Gln Lys	
76 Asp	76 Asp Leu Ala Tyr Met Gly Ala Gln Cys Gly Pro Phe Asp Gln His	
91 Phe	91 Phe Val Tyr Glu Ala Gly Asp Gly Leu Glu Asp Val Val Thr Ala	
106 Phe	106 Phe Ser Tyr Leu Gln Gly Lys Glu Tyr Glu Asn Gln Gly Leu Asn	
121 Ile	121 Ile Arg Ser Ala Met Pro Pro Lys Tyr Val Phe Gly Phe Phe Gln	
136 Gly	136 Gly Val Phe Gly Ala Thr Ser Leu Leu Arg Asp Asn Leu Pro Ala	
151 Gly	151 Gly Glu Asn Asn Val Ser Leu Glu Glu Ile Val Glu Gly Tyr Gln	
166 Asn	166 Asn Gln Asn Val Pro Phe Glu Gly Leu Ala Val Asp Val Asp Met	
181 Gln	181 Gln Asp Asp Leu Arg Val Phe Thr Thr Arg Pro Ala Phe Trp Thr	
196 Ala	196 Ala Asn Lys Val Gly Glu Gly Gly Asp Pro Asn Asn Lys Ser Val	
211 Phe	211 Phe Glu Trp Ala His Asp Arg Gly Leu Val Cys Gln Thr Asn Val	
226 Thr	226 Thr Cys Phe Leu Lys Asn Glu Lys Asn Pro Tyr Glu Val Asn Gln	
241 Ser	241 Ser Leu Arg Glu Lys Gln Leu Tyr Thr Lys Ser Asp Ser Leu Asp	
256 Asn	256 Asn Ile Asp Phe Gly Thr Thr Pro Asp Gly Pro Ser Asp Ala Tyr	
271 Ile	271 Ile Gly His Leu Asp Tyr Gly Gly Val Glu Cys Asp Ala Leu	
286 Phe	286 Phe Pro Asp Trp Gly Arg Pro Asp Val Ala Gln Trp Trp Gly Asp	

301 Asn Tyr Lys Lys Leu Phe Ser Ile Gly Leu Asp Phe Val Trp Gln
 316 Asp Met Thr Val Pro Ala Met Met Pro His Arg Leu Gly Asp Pro
 331 Val Gly Thr Asn Ser Gly Glu Thr Ala Pro Gly Trp Pro Asn Asp
 346 Lys Asp Pro Ser Asn Gly Arg Tyr Asn Trp Lys Ser Tyr His Pro
 361 Gln Val Leu Val Thr Asp Met Arg Tyr Asp Asp Tyr Gly Arg Asp
 376 Pro Ile Val Thr Gln Arg Asn Leu His Ala Tyr Thr Leu Cys Glu
 391 Ser Thr Arg Arg Glu Gly Ile Val Gly Asn Ala Asp Ser Leu Thr
 406 Lys Phe Arg Arg Ser Tyr Ile Ile Ser Arg Gly Gly Tyr Ile Gly
 421 Asn Gln His Phe Gly Gly Met Trp Val Gly Asp Asn Ser Ser Thr
 436 Glu Asp Tyr Leu Ala Met Met Val Ile Asn Val Ile Asn Met Asn
 451 Met Ser Gly Val Pro Leu Val Gly Ser Asp Ile Gly Gly Phe Thr
 466 Glu His Asp Lys Arg Asn Pro Cys Thr Pro Asp Leu Met Met Arg
 481 Phe Val Gln Ala Gly Cys Leu Leu Pro Trp Phe Arg Asn His Tyr
 496 Asp Arg Trp Ile Glu Ser Lys Lys His Gly Lys Asn Tyr Gln Glu
 511 Leu Tyr Met Tyr Arg Asp His Leu Asp Ala Leu Arg Ser Phe Val
 526 Glu Leu Arg Tyr Arg Trp Gln Glu Val Leu Tyr Thr Ala Met Tyr
 541 Gln Asn Ala Leu Asn Gly Lys Pro Ile Ile Lys Thr Val Ser Met
 556 Tyr Asn Asn Asp Met Asn Val Lys Asp Ala Gln Asn Asp His Phe

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3267 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATGTTTCAA	CCCTTGCCTT	TGTCGCACCT	AGTCGCTGG	GAGCCAGTAC	CTTCGTAGGG	60
GCGGAGGTCA	GGTCAAATGT	TCGTATCCAT	TCGGCTTTTC	CAGCTGTGCA	CACAGCTACT	120
CGAAAAACCA	ATCGCCTCAA	TGTATCCATG	ACCGCATTGT	CCGACAAAACA	AACGGCTACT	180
GCGGGTAGTA	CAGACAAATCC	GGACGGTATC	GACTACAAGA	CCTACGATTA	CGTCGGAGTA	240
TGGGGTTTCA	GCCCCCTCTC	CAACACGAAC	TGGTTTGCIG	CCGGCTCTTC	TACCCCGGGT	300
GGCATCACTG	ATGGGACGGC	TACAATGAAT	GTCAACTTCG	ACCGTATCGA	CAATCCGTCC	360
ATACATGTCC	AGCATCTCCGT	TCAGGTTCA	GTCAACGTATC	ACAACAAACAA	CAGTACAGG	420
GTTGCTTCA	AGCCTGGATGG	CCCTTATTGCT	GATGTGACTC	GTGGGGCTAT	CCTCAAGCAG	480
CAACTAGATT	GGATTGGAAC	GCAGGAGCTG	TCAGAGGGAT	GTGATCCGG	AATGACTTTC	540
ACATCAGAAG	GTTCCTTGAC	TTTGAGAC	AAGGATCTAA	GGGTCACTCAT	CTACGGAAAT	600
TTCAAGACCA	GAGTTACGAG	AAAGTCTGAC	GGCAAGGTCA	TCATGGAAAA	TGATGAAGTT	660
GGAACATGCAT	CGTCCGGGAA	CAAGTGCAGG	GGATTGATGT	TGTTGATAG	ATTATAACGGT	720
AACGCTATCG	CTTCCGTCAA	CAAGAACATTC	CGAACACGACG	CGGTCAAGCA	GGAGGGATTG	780
TATGGTGCAG	GTGAAGTCAA	CTGTAAGTAC	CAGGACACCT	ACATCTTGA	ACGCACGTGGA	840
ATCGCCATGA	CAAAATTACAA	CTACGATAAC	TTGAACATA	ACCGTGGGA	CCTTAGACCT	900
CCGCATCATG	ATGGTGCCTC	CAACCCAGAC	TATTATATT	CAATGTACTA	CGCAGCACCT	960
TGGTTGATCG	TTATGGATG	CGCCGGTACT	TCGGAGCAGT	ACTCGTATGG	ATGGTTCATG	1020
GACAATGTCT	CTCAATCTTA	CATGAATACT	GGAGATACTA	CCTGGAATT	TGGACAAGAG	1080
GACCTGGCAT	ACATGGGCGC	GCAGTATGGA	CCATTGACC	AACATTGTTG	TTACGGTGCT	1140
GGGGTGGGA	TGGAATGTGT	GGTCACAGCG	TTCTCTCTTC	TACAAGGCAA	GGAGTTCGAG	1200
AACCAAGTTC	TCAACAAACG	TTCACTAATG	CCTCCGAAAT	ACGTCTTGG	TTTCTCCAG	1260
GGTGTTCG	GGACTTCTTC	CTTGTGAGA	GCACATATGC	CAGCAGGTGA	GAACAACATC	1320
TCAGTCGAA	AAATTGTA	AGGTTATCAA	AAACAATC	TCCCTTCTGA	GGGGCTCGCT	1380
GTGGACGTGG	ATATGCAAGA	CAACTTGCAG	GTGTTCA	CGAAGGGCGA	ATTTGGGACC	1440
GAAACAGGG	TGGGTACTGG	CGGGGATCCA	AACACCGAT	CGGTTTTGA	ATGGGCACAT	1500
GACAAAGGCC	TTGTTTGTCA	GACAAATATA	ACTTGCTCC	TGAGGAATGA	TAACGAGGGG	1560
CAAGACTACG	AGGTCAATCA	GACGTTAAGG	GAGAGGGAGT	TGTACACGAA	GAACGACTCC	1620
CTGACGGGT	CGGATTTGG	AATGACCGAC	GACGGCCCCA	GGGATGCGTA	CATCGGTAT	1680
CTGGACTATG	GGGTGGGAGT	AGAATGTGAT	GCAC	TTTCC	CAGACTGGGG	1740
GTGGCCGAAT	GGTGGGGAAA	TAACATATA	AAACTGTTCA	GCATTGGTCT	CGACTTCGTC	1800
TGGCAAGACA	TGACTGTTCC	AGCAATGATG	CCGCACAAA	TTGGGATGA	CATCAATGTG	1860
AAACCGGATG	GGAATTGGCC	GAATGCGGAC	GATCCGTCCA	ATGGACAATA	CAACTGGAAG	1920
ACGTACCATC	CCCAAGTGCT	TGTAACGTGAT	ATGCGTTATG	AGAATCATGG	TCGGGAACCG	1980
ATGGTCACTC	AACGCAACAT	TCATGCGTAT	ACACTGTGCG	AGTCTACTAG	GAAGGAAGGG	2040
ATCGTGGAAA	ACGCAGACAC	TCTAACGAG	TTCCGCGTA	GCTACATTAT	CAGTCGTGGT	2100
GGTTACATTG	GTAACCAGCA	TTTCGGGGGT	ATGTTGGTGG	GAGACAACTC	TACTACATCA	2160

AACTACATCC	AAATGATGAT	TGCCAACAAAT	ATTAACATGA	ATATGTCTTG	CTTGCCTCTC	2220
GTCGGCTCG	ACATTGGAGG	ATTCAACCTCA	TACGACAATG	AGAATCAGCG	AACGCCGTGT	2280
ACCGGGGACT	TGATGGTGAG	GTATGTGAG	GCGGGCTGCC	TGTTGCCGTG	GTTCAGGAAC	2340
CACTATGATA	GGTGATCGA	GTCCAAGGAC	CACGAAAGG	ACTACCAGGA	GCTGTACATG	2400
TATCCGAATG	AAATGGATAC	GTTGAGGAAG	TTCTGTTGAAT	TCCGTTATCG	CTGGCAGGAA	2460
GTGTTGTACA	CGGCCATGTA	CCAGAACATGCG	GCTTTCGAA	AGCCGATTAT	CAAGGCTGCT	2520
TCGATGTACA	ATAACGACTC	AAACGTTCGC	AGGGCCAGA	ACGATCATTT	CCTTCTTGGT	2580
GGACATGATG	GATATCGCAT	TCTGTGCCG	CCTGTTGTGT	GGGAGAATTTC	GACCGAACGC	2640
GAATTGTA	CTGCCGTGCT	GACCAAATGG	TACAATTCTG	GTCGGACTT	TGACACCAAG	2700
CCTCTGGAAG	GAGCGATGAA	CGGAGGGGAC	CGGAGGTTACA	ACTACCCCTG	ACCGCAAAGT	2760
GAATCACCAA	TCTTCGTGAG	AGAAGGTGCG	ATTCTCCCTA	CCCGCTACAC	GTTAACCGGT	2820
GAAAACAAT	CATTGAACAC	GTACACGGAC	GAAGATCCGT	TGGTGTGTTGA	AGTATTCCCC	2880
CTCGGAAACA	ACCGTGCCGA	CGGTATGTGT	TATCTGATG	ATGGCCGTGT	GACCACCAAT	2940
GCTGAAGACA	ATGGCAAGTT	CTCTGTCGTC	AAGGTGCCAG	CGGAGCAGGA	TGGTGGTACG	3000
GAGACGATAA	CGTTTACGAA	TGATTGCTAT	GAGTAACGTT	TCGGTGGACC	GTCTACGTT	3060
CGAGTGCAGC	GCGCTCAGTC	GCCGTCGAAC	ATCCACGTGT	CTTCTGGAGC	GGGTTCTCAG	3120
GACATGAAGG	TGAGCTCTGC	CACTTCAGG	GCTGCCGTG	TCAATGACGG	GGAGAACGGT	3180
GATTTCTGGG	TTGACCAGGA	GACAGATTCT	CTGTGGCTGA	AGTTGCCAA	CGTTGTTCTC	3240
CCGGACGCTG	TGATCACAAAT	TACCTAA				3267

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3276 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

ATGTATCCAA	CCCTCACCTT	CGTGGCGCCT	AGTGCCTAG	GGGCCAGAAC	TTTCACGTGT	60
GTGGGCATTT	TTAGGTCA	CATTCTTATT	CATTCCGTTG	TTCCAGCGGT	GCCTCTAGCT	120
GTGCGCAAAA	GCAACCGCCT	CAATGTATCC	ATGTCCGCTT	TGTTGACAA	ACCGACTGCT	180
GTACTGGAG	GGAAGGACAA	CCCGGACAAT	ATCAATTACA	CCACTTATGA	CTACGTCCT	240
GTGTGGCGCT	TGCGACCCCT	CAGCAATACG	AACCTGGTGT	CTGCCGGATC	TTCCACTCCC	300
GGCGATATTG	ACGACTGGAC	GGCGAACATG	AATGTGAAC	TCGACCGTAT	CGACAATCCA	360
TCTCTTCACTC	TGAGAAACC	GGTTCAAGGT	CAGGTCACTG	CATAAACGAA	CAATTGTTT	420
AGGTTTCGCT	TCAACCTGA	TGGTCTTATT	CGCGATGTTG	ATCGTGGGCC	TATCCTCCAG	480
CAGCAACTAA	ATTGGATCCG	GAAGCAGGAG	CAGTCGAAGG	GGTTTGTATCC	TAAGATGGGC	540
TTCACAAAAG	AAGGTTCTT	GAAATTGAG	ACCAAGGATC	TGAACGTTAT	CATATATGGC	600
AATTTTAAGA	CTAGAGTTAC	GAGGAAGAGG	GATGGGAAAG	GGATCATGGA	GAATAATGAA	660
GTGCCGGCAG	GATCGTGTAG	GAACAACTGC	CGGGGATTTGA	TGTTTGTGCA	CAGGTTGTAC	720
GGCACTGCCA	TCGCTTCCGT	TAATGAAAAT	TACCGCAACG	ATCCCGACAG	GAAAGAGGGG	780
TTCTATGGT	CAGGAGAAAT	AAACTGCGAG	TTTTGGACT	CCGAAACAAA	CAGGAACAAAG	840
TACATCTTAG	AACGAACCTGG	AATCGCCATG	ACAAATTACA	ATTATGACAA	CTATAACTAC	900
AACCACTGAG	ATCTTATTGC	TCCAGGATAT	CCTTCCGACC	CGAACCTCTA	CATTCCTATG	960
TATTTGCA	CACCTTGGGT	AGTTGTTAAG	GGATGCAGT	GCAACAGCGA	TGAACAGTAC	1020
TCGTACGGAT	GGTTTATGGA	TAATGTCCTC	CAAACCTACA	TGAATACTGG	TGGTACTTCC	1080
TGAACTGTG	GAGGGAGGAA	CTTGGCATAAC	ATGGGAGCAC	AGTGCCTGTCC	ATTGACCAA	1140
CATTTGTG	ATGGTGTATG	AGATGGTCTT	GAGGATGTTG	TCCAAGCGTT	CTCTCTTCTG	1200
CAAGGCAAG	AGTTTGAGAA	CCAAGTTCTG	ACAAACAGT	CCGTAATGCC	TCCGAAATAT	1260
GTGTTGGTT	ACTTTCAGGG	AGTCTTGGG	ATTGCTTCTT	TGTTGAGAGA	GCAAAGACCA	1320
GAGGGTGGTA	ATAACATCTC	TGTTCAAGAG	ATTGTCGAAG	GTTACCAAAG	CAATAACTTC	1380
CCTTAGAGG	GGTTAGCCGT	AGATGTGGAT	ATGCAACAA	ATTGCGCGT	GTTACCAACG	1440
AAGATTGAAT	TTGGGACGGC	AAATAAGGTA	GGCACCCGGGG	GAGACTCGAA	TAACAAGTCG	1500
GTGTTGAAT	GGGCACATGA	CAAAGCCCTT	GTATGTCAGA	CGAACATTAC	TTGCTTCTTG	1560
AGAAACGACA	ACGGCGGGGC	AGATTACGAA	GTCAATCAGA	CATTGAGGGAA	GAAGGGTTTG	1620
TACACAGAAGA	ATGACTCACT	GACGAAACAT	AACTTCCGAA	CTACCAACGA	CGGGCCGAGC	1680
GATGCGTACA	TTGGACATCT	GGACTATGGT	GGCGGAGGGAA	ATTGTGATGC	ACTTTCCCA	1740
GACTGGGTC	GACCGGGTGT	GGCTGAATGG	TGGGGTGTATA	ACTACAGCAA	GCTCTTCAA	1800
ATTGGTCTGG	ATTCGTCTG	GCAAGACATG	ACAGTTCCAG	CTATGATGCC	ACACAAAGTT	1860
GGCGACGCGAG	TCGATACGAG	ATCACCTTAC	GGCTGGCCGA	ATGAGAATGA	TCCCTCGAAC	1920
GGACGATACA	ATTGGAAATC	TTACCATCCA	CAAGTTCTCG	TAACTGATAT	GGCATATGAG	1980
AATCATGGAA	GGGAACCGAT	GGTCACTCAA	CGCAATATGC	ATGCGTACAC	ACTCTGTGAA	2040

TCTACGGAGGA	AGGAAGGGAT	TGTTGCAAAT	GCAGACACTC	TAACGAAGTT	CCGCCGCACT	2100
TATATTATCA	GTCGTGGAGG	TTACATTGGC	AACCAGCATT	TTGGAGGAAT	GTGGGTTGGA	2160
GACAACCTCTT	CCTCCCCAAAG	ATACCTCCAA	ATGATGATCG	CGAACATCGT	CAACATGAAC	2220
ATGTCTTGCC	TTCCACTAGT	TGGGTCCGAC	ATTGGAGGTT	TTACTTCGTA	TGATGGACGA	2280
AACGTGTGTC	CCGGGGATCT	AATGGTAAGA	TCGCGCAGG	CGGGTTGCTT	ACTACCGTGG	2340
TTCAGAAACC	ACTATGGTAG	GTGGTCGAG	GGCAAGCAAG	AGGGAAAATA	CTATCAAGAA	2400
CTGTACATGT	ACCAAGGACGA	GATGGCTACA	TTGAGAAAAT	TCATTGAATT	CCGTTACCGC	2460
TGGCAGGAGG	TGGTGTACAC	TGCTATGTAC	CAGAATCGGG	CTTTCGGGAA	ACCGATTATC	2520
AAGGCAGCTT	CCATGTACGA	CAACGACAGA	AACGTTCCGCG	GCGCACAGGA	TGACCACTTC	2580
CTTCTGGCGC	GACAGCATGG	ATATCGTATT	TTGTGTGAC	CTGTTGTG	GGAGAATACA	2640
ACCACTCGCG	ATCTGTACTT	GCCTGTGCTG	ACCAAATGGT	ACAAATTCCG	CCCTGACTAT	2700
GACACCAAGC	GCCTGGATT	TGCGTGGAT	GGAGGGCAGA	TGATTAAGAA	CTATTCTGTG	2760
CCACAAAGCG	ACTCTCCGAT	ATTTGTGAGG	GAAGGAGCTA	TTCTCCCTAC	CCGCTACACG	2820
TTGGACGGTT	CGAACAACTC	AATGAACACG	TACACAGACA	AAGACCCGTT	GGTGTGTTGAG	2880
GTATTCCTC	TTGGAAACAA	CCGTGCGCAG	GGTATGTTGTT	ATCTTGATGA	TGGCGGTATT	2940
ACTACAGATG	CTGAGGACCA	TGGCAAAATC	TCTGTTATCA	ATGTCGAAGC	CTTACGGAAA	3000
GGTGTTACGA	CGACGATCAA	TTTGTGCTAT	GACACTTATC	AATACGTTATT	TGATGGTCCA	3060
TTCTACGTT	GAATCCGAA	TCTTACGACT	GCATCAAAAA	TTAACGTGTC	TTCTGGAGGG	3120
GGTGAAGAGG	ACATGACACC	GACCTCTGCG	AACTCGAGGG	CAGCTTGTT	CAGTGATGGA	3180
GGTGTGGAG	AATACTGGGC	TGACAATGAT	ACGTCTTCTC	TGTGGATGAA	GTTGCCAAAC	3240
CTGTTCTGC	AAGACGCTGT	GATTACATT	ACGTAG			3276

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3201 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

ATGGCAGGAT	TTTCTGATCC	TCTCAACTTT	TGCAAAGCAG	AAGACTACTA	CAGTGTGCG	60
CTAGACTGGA	AGGGCCCTCA	AAAAATCATT	GGAGTAGACA	CTACTCTTCC	AAAGAGCACC	120
AAGTCCCA	AAAACCTGGCA	TGGAGTGAAC	TTGAGATTCG	ATGATGGGAC	TTTAGGTG	180
GTTCAGTTCA	TTAGGCCGTC	CGTTGGAGG	GTAGATAGC	ACCCCTGGTT	CAAGACCTCT	240
GACGAGTATG	GTATGAGAA	TACGAGGACA	ATTGTGCAAG	ATTATATGAG	TACTCTGAGT	300
AATAAATTGG	ATACTTATAG	AGGTCTTACG	TGGGAAACCA	AGTGTGAGGA	TTCGGGAGAT	360
TTCTTACCT	TCTCATCCAA	GGTCACCGCC	GTGAAAAAT	CCGAGCGGAC	CCGCAACAAG	420
GTCGGCGATG	GCCTCAGAAT	TCACCTATGG	AAAAGCCCTT	TCCGCATCCA	AGTAGTGC	480
ACCTTGACCC	CTTTGAAGGA	TCCCTTACCCC	ATTCCAAATG	TAGCCCGAGC	CAGAGCCCGT	540
GTGTCGACCA	AGGTGCGTTG	GCAAACTGCT	CCCAAGACAT	TCAAGAAAGG	CCTGCATCCG	600
CAACACAAGA	TGCTAAAGGA	TACAGTCTT	GACATTGTC	AACCTGGACA	TGGGAGTAT	660
GTGGGGTGGG	GAGAGATGGG	AGGTATCCAG	TTTATGAAGG	AGCCAACTT	CATGAACTAT	720
TTTAACTTCG	ACAATATGCA	ATACCAGCAA	GTCTATGCC	AAGGTGCTCT	CGATTCTCGC	780
GAGCCACTGT	ACCACTCGGA	TCCCTTCTAT	CTTGATGTGA	ACTCCAACCC	GGAGCACAAG	840
AATATCACGG	CAACCTTAT	CGATAACTAC	TCTCAAATTG	CCATCGACTT	TGGAAAGACC	900
AACTCAGGCT	ACATCAAGCT	GGGAACCAAG	TATGGTGTAA	TGATTGTTA	CGGTATCAGT	960
GCGGATACGG	TCCCGGAAAT	TGTACGACTT	TATCAGGTC	TTGTTGGACG	TTCAAAGTTG	1020
AAGCCCGAGAT	ATATTCTCGG	GGCCCTCATCAA	GCCGTGTTATG	GATACCAACA	GGAAAGTGAC	1080
TTGTATTCTG	TTGTGTCAGCA	GTACCGTGC	TGTAATTC	CACTTGACGG	GATTACGTC	1140
GATGTCGATG	TTCAGGACGG	TTTCAGAACT	TTCACCCACCA	ACCCACACAC	TTTCCCTAAC	1200
CCCCAAAGAGA	TGTTTACTAA	CTTGAGGAAT	AATGGAATCA	AGTGCTCCAC	CAATATCACT	1260
CCTGTTATCA	GCATTAACAA	CAGAGAGGGT	GGATACAGTA	CCCTCCTTGA	GGGAGTTGAC	1320
AAAAAAATACT	TTATCATGGA	CGACAGATAAT	ACCGAGGGAA	CAAGTGGGAA	TGCGAAGGAT	1380
GTTCGGTACA	TGTAATCAGG	TGGTGGTAAT	AAGGTTGAGG	TGATCCTAA	TGATGTTAAT	1440
GTCGGCCAG	ACTTTAAAGA	CAACTATGAC	TTCCCGCGA	ACTTCAACAG	CAAAACATAC	1500
CCCTATCATG	GTGGTGTGAG	CTACGGTTAT	GGGAACGGTA	GTGCGAGTTT	TTACCCGGAC	1560
CTCAACAGAA	AGGAGGTTCG	TATCTGGTGG	GGAAATGAGT	ACAAGTATCT	CTTCGATATG	1620
GGACTGGAAT	TTGTGTGGCA	AGACATGACT	ACCCCGAGCA	TCCACACATC	ATATGGAGAC	1680
ATGAAAGGGT	TGCCCAACCG	TCTACTCGTC	ACCTCAGACT	CCGTCAACCA	TGCTCTGAG	1740
AAAAAGCTCG	CAATTGAAAC	TTGGGCTCTC	TACTCTTACA	ATCTCCACAA	AGCAACTTGG	1800
CATGGTCTTA	GTCGTCTCGA	ATCTCGTAAG	AAACAAACGAA	ACTTCATCCT	CGGGCGTGG	1860
AGTTATGCGC	GAGCCTATCG	TTTGCTGTT	CTCTGGACTG	GGGATAATGC	AAGTAACCTGG	1920
GAATTCTGGA	AGATATCGGT	CTCTCAAGTT	CTTCTCTGG	GGCTCAATGG	TGTTGTCATC	1980

GCGGGGTCTG	ATACGGGTGG	TTTGAAACCC	TACCGTGTATG	CAAATGGGGT	CGAGGGAGAAA	2040
TACTGTAGCC	CAGAGCTACT	CATCAGGTGG	TATACTGGTT	CATTCTCTT	CCCGTGGCTC	2100
AGGAACCATT	ATGTCAAAAA	GGACAGGAAA	TGGTTCAGG	AACCATACTC	GTACCCAAG	2160
CATCTTGAAA	CCCATCCAGA	ACTCGCAGAC	CAAGCATGGC	TCTATAAAC	CGTTTGGAG	2220
ATCTGTAGGT	ACTATGTGGA	GCTTAGATAC	TCCCTCATCC	AACTACTTA	CGACTGCATG	2280
TTTCAAAACG	TAGTCGACGG	TATGCCAAC	ACCAGATCTA	TGCTCTTGAC	CGATACTGAG	2340
GATACCACCT	TCTTCAACGA	GAGCCAAAAG	TTCCCTCGACA	ACCAATATAT	GGCTGGTGAC	2400
GACATTCTTG	TTGCACCCAT	CCTCCACAGT	CGCAAAGAAA	TTCCAGGCGA	AAACAGAGAT	2460
GTCTATCTCC	CTCTTACCA	CACCTGGTAC	CCCTCAAATT	TGAGACCATG	GGACGATCAA	2520
GGAGTCGCTT	TGGGGAATCC	TGTCGAAGGT	GGTAGTGTCA	TCAATTATAC	TGCTAGGATT	2580
GTTCACCCCG	AGGATTATAA	TCTCTTCCAC	AGCGTGTAC	CACTCTACGT	TAGAGGGGT	2640
GCCATCATCC	CGCAAATCGA	AGTACGCCA	TGGACTGGCC	AGGGGGGAGC	CAACCGCATC	2700
AAGTTCAACA	TCTACCTGG	AAAGGATAAG	GAGTACTGTA	CCTATCTTGA	TGATGGTGT	2760
AGCCGTGATA	GTGCGCCGA	AGACCTCCA	CACTACAAG	AGACCCACGA	ACAGTCGAAG	2820
GTGGAAGGCG	CGGAAATCGC	AAAGCAGATT	GGAAAGAAGA	CGGGTTACAA	CATCTCAGGA	2880
ACCGACCCAG	AAGCAAAGGG	TTATCACCGC	AAAGTTGCTG	TCACACAAAC	GTCAAAAGAC	2940
AAGACGCCGT	CTGTCACTAT	TGAGCCAAA	CACATGGAT	ACGACCCCTC	CAAAGAGGTG	3000
GGTGATTATT	ATACCATCAT	TCTTGGTAC	GCACCAAGTT	TGATGGCAG	CATCGTCGAT	3060
GTGAGCAAGA	CGACTGTGAA	TGTTGAGGGT	GGGGTGAGC	ACCAAGTTA	TAAGAATCC	3120
GATTACATA	CGGTGTTAT	CGACGTGAAG	GAGGTGATCG	GTACCACAAA	GAGCGTCAAG	3180
ATACATGT	CTGCCGCTTA	A				3201

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3213 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

ATGGCAGGAT	TATCCGACCC	TCTCAATTTC	TGCAAAGCAG	AGGACTACTA	CGCTGCTGCC	60
AAAGGCTGGA	GTGGCCCTCA	GAAGATCATT	CGCTATGACC	AGACCCCTCC	TCAGGGTACA	120
AAAGATCCGA	AAAGCTGGC	TGCGTAAAC	CTTCCTTCG	ATGACGGGAC	TATGTTGTA	180
GTGCAATTCC	TCAGACCTCG	TGTTGGAGG	TGATAGATAG	ACCCAGTGT	CAAGACTTCT	240
GATGAGTAGC	GCGATGAGAA	TACGAGGACT	ATTGTACAAG	ACTACATGAC	TACTCTGGTT	300
GGAAAACCTGG	ACATTTTACG	AGGTCTTACG	TGGGTTTCTA	CGTTGGAGGA	TTGGGGCGAG	360
TACTACACCT	TCAAGTCCGA	AGTCACTGCC	GTGGACAAA	CCGAACGGAC	TCGAAACAAG	420
GTCGGCGACG	GCCTCAAGAT	TTACCTATGG	AAAATCCCT	TTCGCATCCA	GGTAGTGCCT	480
CTCTTGACCC	CCCTGGTGA	CCCTTTCCC	ATTCCTAACG	TAGCCATGC	CACAGCCCCT	540
GTGGCCGACA	AGGTTGTTTG	GCAGACGTC	CCGAAGACGT	TCAGGAAAAA	CTTGCATCCG	600
CAGCATAAGA	TGTTGAAGGA	TACAGTCTT	GATATTATCA	AGCCCCGGCA	CGGAGAGTAT	660
GTGGGTTGGG	AGAGATGGG	AGGCATCGAG	TTTATGAAGG	AGGCAACATT	CATGAATTAT	720
TTCAACTTTG	ACAATATGCA	ATATCAGCAG	GTCTATGCAC	AAGGGCTCT	TGATAGTCGT	780
GAGCCGTTGT	ATCACTCTGA	TCCCTTCTAT	CTCGACGTGA	ACTCCAACCC	AGAGCACAAG	840
AACATTACGG	CAACCTTTAT	CGATAACTAC	TCTCAGATTG	CCATCGACTT	TGGGAAGACC	900
AACTCAGGCT	ACATCAAGCT	GGGTACCCAG	TATGGCGGT	TCGATTGTTA	CGGTATCAGC	960
GCGGATACGG	TCCCGGAGAT	TGTGCGACTT	TATACTGGC	TTGTTGGCG	TTCGAAGTTG	1020
AAGCCCAGGT	ATATTCTCG	AGCCCCACAA	GCTGTTTATG	GATACCGCA	GGAAAGTGAC	1080
TTGATGCTG	TTGTTGCA	GTACCGTGA	ACCAAGTTTC	CGCTTGTATGG	TTGTCATGTC	1140
GATGTCGACT	TTCAAGGACAA	TTTCAGAACG	TTTACCACTA	ACCCGATTAC	TTTCCCTAAAT	1200
CCCAAAGAAA	TGTTTACCAA	TCTAAGGAAC	AATGGATCA	AGTGGTCCAC	CAACATCACC	1260
CCTGTTATCA	GTATCAGAGA	TGCCCCGAAT	GGGTACAGTA	CCCTCAATGA	GGGATATGAT	1320
AAAAAGTACT	TCATCATGGA	TGACAGATAT	ACCGAGGGGA	CAAGTGGGG	CCCGCAAAT	1380
GTTCGATACT	CTTTTACGG	CGGTGGGAAC	CCGGTTGAGG	TTAACCTAA	TGATGTTTGG	1440
GCTCGGCCAG	ACTTTGGAGA	CAATTATGAC	TTCCCTACGA	ACCTCAACTG	CAAAGACTAC	1500
CCCTATCATG	GTGGTGTGAG	TTACGGATAT	GGGAATGGCA	CTCCAGGTTA	CTACCCCTGAC	1560
CTTAACAGAG	AGGAGGTTCG	TATCTGGTGG	GGATTGCACT	ACGAGTATCT	CTTCAATATG	1620
GGACTAGAGT	TTGTATGGCA	AGATATGACA	ACCCCAAGC	TCCATTCTAC	ATATGGAGAC	1680
ATGAAAGGGT	TGCCCAACCGC	TCTGCTCGTC	ACCGCCGACT	CAGTACCAA	TGCCCTGTGAG	1740
AAAAGCTCG	CAATTGAAAG	TTGGGCTCTT	TACTCTACA	ACCTCCATAA	AGCAACCTTC	1800
CACGGTCTTG	GTGCTCTTGA	GTCTCGTAAG	AACAAACGTA	ACCTCATCT	CGGACGTGGT	1860
AGTTACGCCG	GTGCTCTATCG	TTTGCTGGT	CTCTGGACTG	GAGATAACGC	AAGTACGTGG	1920
GAATTCTGGA	AGATTTCGGT	CTCCCAAGTT	CTTCTCTAG	GTCTCAATGG	TGTGTGTATA	1980

GC	GGGGTCTG	ATACGGGTGG	TTTGAGCCC	GCACGTACTG	AGATTGGGA	GGAGAAATAT	2040
TG	CAGTCGG	AGCTACTCAT	CAGGTGGTAT	ACTGGATCAT	TCCCTTTGCC	ATGGCTTAGA	2100
AACC	ACTACG	TCAAGAAGGA	CAGGAAATGG	TTCCAGGAAC	CATAACGCTA	CCCCAAGCAT	2160
CTT	GAAACCC	ATCCAGAGCT	CGCAGATCAA	GCATGGCTT	ACAAATCTGT	TCTAGAAATT	2220
TG	CAGATACT	GGGTAGAGCT	AAGATATTCC	CTCATCCAGC	TCCCTTACGA	CTGCATGTT	2280
CAAA	ACGTTG	TCGATGGTAT	GCCACTTGCC	AGATCTATGC	TCTTGACCGA	TACTGAGGAT	2340
ACG	ACCTCT	TCAATGAGAG	CCAAAAGTTC	CTCGATAACC	AATATATGGC	TGGTGACGAC	2400
ATC	CTTGTAG	CACCATCCT	CCACAGCGT	AACAGGGT	CGGGAGAGAA	CAGAGATGTC	2460
TAT	CTCCCTC	TATTCACAC	CTGGTACCCC	TCAAACATTG	GACCGTGGGA	CGATCAGGGA	2520
GTC	GCTTTAG	GGAATCTGT	CGAAGGTGGC	AGCCTTATCA	ACTACACTGC	CAGGATTGTT	2580
GCCC	CAGAGG	ATTATAATCT	CTTCCACAAAC	GTGGTCCGG	TCTACATCG	AGAGGGTGCC	2640
ATC	ATTCCGC	AAATTCAAGGT	ACGCCAGTGG	ATTGGCGAAG	GAGGGCCTAA	TCCCATCAAG	2700
TTC	CAATATCT	ACCCCTGGAAA	GGACAAGGG	TATGTGACGT	ACCTTGATGA	TGGTGTTAGC	2760
CGC	GATAGT	CACCGATGA	CCTCCCGCAG	TACCGCGAGG	CCTATGAGCA	AGCGAAGGTC	2820
GAAG	GCAAG	ACGTCGAGAA	GCAACTTGGC	GTCATTCAAG	GGAATAAAC	TAATGACTTC	2880
TCCG	CCTCG	GGATTGATAA	GGAGGCAAAG	GGTTATCACC	GCAAAGTTTC	TATCAAACAG	2940
GAG	TCAAAG	ACAAGACCCG	TACTGTACC	ATTGAGCCA	AACACAACGG	ATAGACCCC	3000
TCTA	AGGAAAG	TTGGAATTA	TTATACCATC	ATTCTTGGT	ACGCACCGGG	CTTTGACGGC	3060
AGC	ATCGT	ATGTGAGCCA	GGCGACCGT	AACATCGAGG	GCGGGGTGGA	ATGGAAATT	3120
TTCA	AGGAACA	CCGGCTTGCA	TACGGTTGTA	GTCAACGTGA	AAGAGGTAT	CGGTACCACA	3180
AA	GTCCGTCA	AGATCACTTG	CACTACCGCT	TAG			3213

SEQ. ID. NO. 11

SEQUENCE TYPE: NUCLEIC ACID

MOLECULE TYPE: DNA (GENOMIC)

ORIGINAL SOURCE: ALGAL

SEQUENCE LENGTH: 3279 BP

STRANDEDNESS: DOUBLE

SEQUENCE:

	10	20	30	40	50	60	
1	ATGTTTCCTA	CCCTGACCTT	CATAGCGCCC	AGCGCGCTGG	CCGCCAGCAC	CTTTGTGGGC	
61	GCGGATATCC	GATCGGGCAT	TCGGCATTCAA	TCCGCTCTTC	CGGCCGTGCG	CAACGCTGTG	
121	CGCAGGAGCA	AACATTACAA	TGTATCCATG	ACCGCATTGT	CTGACAAGCA	AACCGCTATC	
181	AGTATTGGCC	CTGACAAATCC	GGACGGTATC	AACTACCAAA	ACTACGATTA	CATCCCTGTA	
241	GCGGGCTTTA	CGGCCCCCTC	CAACACCAAC	TGGTATGCTG	CCGGCTCTTC	CACTCCGGGC	
301	GGCATCACCG	ACTGGACCGC	TACCATGAAT	GTCAAATTG	ACCGCATTGA	CAATCCGTG	
361	TACTCCAATA	ACCATCCTGT	TCAGATTCA	GTCACGTG	ACAACAACAA	CAGCTCAGG	
421	ATTGCTTCA	ACCCCTGATGG	CCCCATTCTG	GACGTCTCTC	GAGGACCTAT	CCTGAACAG	
481	CAACTCACTT	GGATTGAAA	CCAGGAGCTG	GCGCAGGGAT	GTATCCGA	CATGAGCTTC	
541	TCTCTGAG	TTTTTTGTC	TTTGAAACC	AAAGACCTAA	ACGTTATAAT	CTACGGCAAC	
601	TGCAAGATGA	GAGTCACGAA	AAAGGATGGC	TACCTCGTAA	TGGGAAATGA	CGAGTGCAAC	
661	TGCAATCAG	ATGGCAATAA	GTGAGGAGA	TTGATGACG	TTGACGGCT	ATACGGAAT	
721	GCTATTGCTT	CCGTACAAAC	GAATTTTAC	AAAGACACTT	CTCGGAAACG	GAAATTCTAT	
781	GGTCAGGTG	AAAGTCACTG	TCGCTATGAG	GAGCAGGGTA	AGGCAGCCGAC	TTATGTTCTA	
841	GAAGCCTCTG	GACTCGCCAT	GACCAATTAC	AATTACGACA	ACTTGAAC	CAACCAACCA	
901	GACCTCGTTC	CTCCAGGTTA	TCCCGACCAT	CCCAACTAC	ACATTCCAA	GTACTACGCA	
961	GCACCGTGT	TGGTCGTTCA	GGGATGCGC	GGGACATCGA	AGCAATACTC	GTACGGTTGG	
1021	TTTATGGACA	ATGTCCTCA	GTCTACATG	AAACACTGGAG	ATACGGCGT	GAACCTGGGA	
1081	CAGGAAAAAC	TGGCATACAT	GGGCGC	TACGGGCCAT	TTGATCAGCA	CTTTGTGTAT	
1141	GGTGTGGAG	ATGGCCTTGA	AGATGTCGTC	AAAGCGTTCT	CCTTCTTCA	AGGAAAGGAG	
1201	TTCGAAGACA	AAAAACTCAA	CAAGCGTTCT	GTAATGCCTC	CGAAGTACGT	GTTTGGTTTC	
1261	TTCCAGGGTG	TTTCGGTGC	ACTTTCACTG	TTGAAGCAGA	ATCTGCCTG	CGGAGAGAAC	
1321	AAACATCTCAG	TGCAAGAGAT	TGTGGAGGGT	TACCAAGGATA	ACGACTACCC	CTTGAAGGG	
1381	CTCGCGGTAG	ATGTTGATAT	GCAAGATGAT	CTGCGAGTGT	TTACTACCAA	ACCCAGAAATAT	
1441	TGGTCGGCAA	ACATGGTAGG	CGAAGGCGGT	GATCCTTAACA	ACAGATCAGT	CTTTGAATGG	
1501	GCACATGACA	GGGGCCTTGT	CTGTCA	AACGTAAC	GTTCTTGAG	GAACGATAAC	
1561	AGTGGGAAAC	CATACGAAGT	GAATCAGACA	TTGAGGGAGA	AACAGTTGTA	TACGAAGAAC	
1621	GATTCTTGA	ACAACACCGA	TTTGGAAACT	ACCTCGGATG	GGCCTGGCGA	TGCGTACATT	
1681	GGACATTGG	ACTATGGTGG	TGGAGTGGAG	TGTGATGAA	TCTTCCCAGA	CTGGGGTCGA	
1741	CCAGACGTGG	CTCAATGGT	GGGAGAAAAC	TACAAGAAC	TGTTCA	TGGTCTCGAT	
1801	TTCTGTTGGC	AGGATATGAC	GGTACCTGCG	ATGATGCCG	ACCGACTCGG	TGATGCTGTC	
1861	AAACAAAATT	CCGGTAGTTC	GGGCCGGGG	TGGCCGAATG	AGAACGATCC	ATCCAACGGA	
1921	CGATACAAC	GGAAATCTTA	TCATCCGCAA	GTGCTCGTA	CCGACATGCG	CTATGGTGCA	
1981	GAGTATGGAA	GGGAACCGAT	GGTGTCTAA	CGAACACATTG	ACGCTACAC	TCTTTGTGAA	
2041	TCTACCAGAC	GGGAGGGAAAT	TGTGGGAAAC	GCAGACAGTT	TGACCAAGTT	CCGCCAGT	

2101 TACATCATCA GTCGAGGGAGG TTACATCGGT AACCAGCATT TCGGAGGGAT GTGGGTTGGG
 2161 GACAACAGTG CCACAGAACCT CAACCTCCAA ATGATGTTGG CGAACATTAT CAACATGAAT
 2221 ATGTCGTGCC TCCCCTGACT TGGCTCTGAT ATTGGCGGGT TCACCCAGTA CAATGATGCG
 2281 GGCACCCAA CCCCGAGGA TTTGATGGTA AGAATTCGTG AGGCTGGCTG TCTGCTACCG
 2341 TGGTTCAAGAA ACCACTATGA CAGGTGGATT GAGTCCAAGA AGCACGGAA GAAATACCAAG
 2401 GAGTTATACA TGACCCGGG GCAAAAGGAT ACAGTGAAGA AGTTCTGAA ATTCCGCTAC
 2461 CGCTGGCAGG AGGTTTGTA CACAGCATG TACCAAAATG CTACCACTGG AGAGCCGATC
 2521 ATCAAGCGG CGCCCCATGTA CAACAAACGAC GTCAACGTTG ATAATTCGCA GAATGATCAT
 2581 TTCTTCTCG GTGGACATGA CGGCTATCGT ATTCTCTGCG CACCTGTTG GCGCGAAAAT
 2641 GCGACAAGTC GCGAAGTGTG CTCGCTGTG TATAGCAAGT GGTTCAAATT CGGACCGGAC
 2701 TTGACACTA AGCCCTTGGG AAATGAGATT CAAGGAGGTC AGACGCTTTA TAATTACGCT
 2761 GCACCGCTGA ACAGATTGCC GATATTGTTG AGGGAAAGGGA CTATTCTCC GACACGGTAC
 2821 ACGCTGGACG GTGTAAACAA ATCTATCAAC ACAGTACACAG ACAATGATCC GCTTGTATTT
 2881 GAGCTGTTCC CTCTCGAAAAA CAACCGAGGC CATGGCTTGT TCTATCATGA TGATGGCGGT
 2941 GTCACCAACCA ACAGCTGAAGA CTTGGCAAG TATTCTGTGAA TCAGTGTGAA GGCCCGGCAG
 3001 GAAGGTTCTC AAATGAGTGT CAAGTTTGC AATGAAGTT ATGAACACCA ATGGGGAGCA
 3061 TCGTTCTATG TTGTTGTTG TAATATGGGT GCTCCGCTA ACATCAACGT ATCTTCTCAG
 3121 ATTGGTCAAC AGGACATGCA ACAGAGCTCC GTGAGTTCA GGGCGCAAAT GTTCACTAGT
 3181 GCTAACGATG GCGAGTACTG GGTTGACCA AGCACGAACT CGTTGTGGCT CAAGTTGCCT
 3241 GGTGAGTTA TCCAAGAGC TGCGATCACT GTTCGTTGA

SEQ. ID. NO. 12

SEQUENCE TYPE: NUCLEIC ACID
 MOLECULE TYPE: DNA (GENOMIC)
 ORIGINAL SOURCE: ALGAL
 SEQUENCE LENGTH: 1712 BP
 STRANDEDNESS: DOUBLE
 SEQUENCE:

	10	20	30	40	50	60
1	ATGACAAACT	ATAATTATGAA	CAATTGAAAC	TACAATCAAC	CGGACCTCAT	CCACCTGGC
61	CATGATTTCAG	ATCCTGACTA	CTATATTCCG	ATGTAATTG	CGGCACCATG	GGTGTATCGCA
121	CATGGATATC	GTGGCACCAAG	CGACAGTAC	TCTTATGGAT	GGTTTTGGAA	CAATGATATCC
181	CACTCTTACA	CAAACACTGG	CGATGATGCA	TGGGCTGGTC	AGAAGGATTT	GGCGTACATG
241	GGGGCACAAAT	GTGGCCCTT	CGATCAACAT	TTTGTATG	AGGCTGGAGA	TGGACTTGAA
301	GACGTTGTGA	CCGCATTCTC	TTATTGCAA	GGCAAGGAAT	ATGAGAACCA	GGGACTGAAT
361	ATACGTTCTG	CAATGCCCTCC	GAAGTACGTT	TTGGGATTTT	TCCAAGGCCT	ATTCCGGAGCC
421	ACATCGCTGC	TAAGGGACAA	CTTACCTGCC	GGCGAGAACAA	ACGTCTTTT	GGAAAGAAATT
481	GTGAAGGAT	ATCAAAATCA	GAACGTCGCA	TTTGAAGGTC	TTGCTGTGGA	TGTTGATATG
541	CAAGATGACT	TGAGAGTGT	CACTACGAGA	CCAGCGTTT	GGACGGCAAA	CAAGGTGGGG
601	GAAGGCGGTG	ATCCAAACAA	CAAGTCAGTG	TTTGAGTGGG	CACATGACAG	GGGCCTTGTC
661	TGCCAGACGA	ATGTAACCTTG	CTTCTTGAA	AACGAGAAAAT	ATCCTTACGA	AGTGAATCAG
721	TCATTGAGGG	AGAACGAGTT	GTATACGAG	AGTGTATTCT	TGGACAACAT	TGATTTGGAA
781	ACTACTCCAG	ATGGGCCTAG	CGATCGCTAC	ATTGGACACT	TAGACTACGG	TGGTGGTGTG
841	GAGTGTGATG	CACTATTCCC	AGACTGGGGT	CGACCAGAGC	TGGCTCAATG	GTGGGGCGAT
901	AACTACAAGA	AACTATTCA	CATTGGCTC	GATTCGTCT	GGCAAGATAT	GACGGTAACCT
961	GCGATGATGC	CGCACCGACT	CGGTGACCC	GTCGGCACAA	ATTCCGGTGA	GACGGCGCCG
1021	GGCTGGCCGA	ATGATAAGGA	TCCATCCAAAC	GGACGATACAA	ATTGGAAAGTC	TTACCATCCG
1081	CAAGTGTCTG	TGACTGACAT	GAGGTATGAC	GATTACGGAA	GAGATCCAT	TGTTACGCAA
1141	CGCAATCTCC	ATGCCCTACAC	TCTTTGTGAG	TCTACTAGGA	GGGAAGGCAT	TGTTGGAAAC
1201	GCAGATAGTC	TGACGAAGTT	CCGCCGACAG	TATATTATCA	GTCGTGGAGG	CTACATCGGT
1261	AATCAGCACT	TTGGTGGGAT	GTGGGTAGGA	GACAACCTT	CTACGGAAAGA	CTACCTCGCA
1321	ATGATGGTTA	TCAACGTTAT	CAACATGAAC	ATGTCGGTG	TCCCGCTCGT	TGGTTCCGAT
1381	ATTGGAGGTT	TCACGGAGCA	TGACAAGAGA	AACCCCTGCA	CACCGGACTT	GATGATGAGA
1441	TTTGTGCAAG	CTGGATGCTT	GCTACCGTGG	TTCAAGGAAC	ACTACGATAG	GTGGATCGAG
1501	AGCAAGAAC	ACGGAAAGAA	CTACCAAGAG	TTGTACATGT	ACCGCGACCA	CTTGGACGCC
1561	TTGAGAAGTT	TTGTGAAACT	CCGCTATCGC	TGGCAGGAAG	TGTTATACAC	AGCCATGTAT
1621	CAGAATGCTT	TGAACGGGAA	GCCGATCATC	AAAACGGTCT	CCATGTACAA	CAACGATATG
1681	AACGTCAAAG	ATGCTCAGAA	TGACCACTTC	CT		

CLAIMS

1. A process of preparing a medium that comprises an anti-oxidant and at least one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared from a glucan by use of recombinant DNA techniques.
5
2. A process according to claim 1, wherein the glucan comprises α -1,4 links.
- 10 3. A process according to claim 1 or claim 2 wherein the glucan is starch.
4. A process according to any one of the preceding claims wherein the glucan is a substrate for a recombinant enzyme such that contact of the glucan with the recombinant enzyme yields the anti-oxidant.
15
5. A process according to any one of claims 1 to 4, wherein the enzyme is a glucan lyase.
20
6. A process according to claim 5, wherein the enzyme is an α -1,4-glucan lyase.
7. A process according to claim 6, wherein the enzyme comprises any one of the sequences shown as SEQ ID Nos 1-6, or a variant, homologue or fragment thereof.
25
8. A process according to claim 7, wherein the enzyme is any one of the sequences shown as SEQ ID Nos 1-6.
9. A process according to any one of claims 5 to 8, wherein the enzyme is encoded by a nucleotide sequence comprising any one of the sequences shown as SEQ ID Nos 7-12, or a variant, homologue or fragment thereof.
30
10. A process according to claim 9, wherein the enzyme is encoded by a nucleotide sequence having any one of the sequences shown as SEQ ID Nos 7-12.

11. A process according to any one of the preceding claims, wherein the anti-oxidant is anhydrofructose.
12. A process according to claim 11, wherein the anti-oxidant is 1,5-D-anhydrofructose.
5
13. A process according to any one of the preceding claims, wherein the medium is, or is used in the preparation of, a foodstuff.
- 10 14. A process according to claim 13, wherein the foodstuff is a beverage.
15. A process according to claim 14, wherein the beverage is an alcoholic beverage.
- 15 16. A process according to claim 14, wherein the beverage is a wine.
17. A process according to any one of the preceding claims, wherein the anti-oxidant is prepared *in situ* in the component and is then released into the medium.
- 20 18. A process according to any one of the preceding claims, wherein the component is a plant or a part thereof.
19. A process according to claim 18, wherein the component is all or part of a cereal or a fruit.
- 25 20. A process according to claim 20, wherein the component is all or part of a grape.
21. A process of preparing a medium that comprises an anti-oxidant and at least
30 one other component, the process comprising preparing *in situ* in the medium the anti-oxidant; and wherein the anti-oxidant is prepared by use of a recombinant glucan lyase.

22. A process according to claim 21 wherein the glucan lyase is that as defined in any one of claims 6 to 10.
23. A medium prepared by the process according to any one of the preceding 5 claims.
24. Use of anhydrofructose as an anti-oxidant for a medium comprising at least one other component, wherein the anhydrofructose is prepared *in situ* in the medium.
- 10 25. Use of anhydrofructose as a means for imparting or improving stress tolerance in a plant, wherein the anhydrofructose is prepared *in situ* in the plant.
- 15 26. Use of anhydrofructose as a means for imparting or improving the transformation of a grape, wherein the anhydrofructose is prepared *in situ* in the grape.
27. Use of glucan lyase as a means for imparting or improving stress tolerance in a plant, wherein the glucan lyase is prepared *in situ* in the plant.
- 20 28. Use of glucan lyase as a means for imparting or improving the transformation of a grape, wherein the glucan lyase is prepared *in situ* in the grape.
- 25 29. Use of a nucleotide sequence coding for a glucan lyase as a means for imparting or improving stress tolerance in a plant, wherein the nucleotide sequence is expressed *in situ* in the plant.
- 30 30. Use of a nucleotide sequence coding for a glucan lyase as a means for imparting or improving the transformation of a grape, wherein the nucleotide sequence is expressed *in situ* in the grape.
31. A process or medium substantially as described herein.