General	Physics	(I)	Waves

Types of Waves

1. Mechanical waves (村林波): 遵守牛頓運動定律, 需要介質傳道。 Traveling wave,

Traveling wave Transverse naves:局部運動速度在直坡傳遞三方向. 的波 Longitud:mal naves:局部運動速度平行波傳遞三方向

2. Electromagnetic waves (電磁波): 遵守 Maxwell's equations, 不需介質傳遞.

3. Mutter waves (物质液): 藥守量子力學原理, 描述物質出現之机率輻

vave form: 三度打多

What is wave: 在将空中变化的物理量,其变化方式遵守波为程(wave aquation)

Example: 1. 如题子上的transverse wave, 考腊時間與空間愛化的。

2. 空氣中的岸波,為空氣密度及壓力隨時間及空間的改變

3. 電磁波為隨時間及空間改變的電場及磁場強度。

Wave equation的通解具有形式: 片(kx±wt), k, w皆為常報

点可代表位意的函数形式, 视边界條件可用不同的基底函数 展開, 例如每作 sine 及 rosine functions 的線性組合。

解示可稱為液形 (wave form) { hckx-wt) 代表后 {正 x-車方向等遊之行進設 (traveling nave)

一月年到鮮 speed of a tuveling nave 三條件: kx-wt=constant 對明間後分(即問經過時間 dt後,在距離X的位置dx为多大三處可以 看到原準的記度用多?)

$$\Rightarrow k \frac{dx}{dt} - w = 0$$

$$\Rightarrow \frac{dx}{dt} = v = \frac{w}{k} = \frac{2\pi f}{\frac{2\pi}{\lambda}} = f\lambda$$

$$\Rightarrow \frac{dx}{dt} = v = \frac{w}{k} = \frac{2\pi f}{\frac{2\pi}{\lambda}} = f\lambda$$

$$\Rightarrow \frac{dx}{dt} = v = \frac{w}{k} = \frac{2\pi f}{2\pi k} = f\lambda$$

$$\Rightarrow \frac{dx}{dt} = v = \frac{w}{k} = \frac{2\pi f}{2\pi k} = \frac{2\pi f}{2\pi k$$

最常见之 wave equation #3式: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$

此度几次,七為空間及時間座標,少為隨時空速化而形成波兰为理量.

量子为學中的 Schrödinger agretion 形為多 wave agretion, 有 it ot=- == == + V√, 将在下學與介級

Example: transverse nave on a rope (超上之高低波) (連殿課本和導方式)

- 基本假設: 2 單心網長之質量為此,即 dm= udx
 3. 繩張为為 て
 4. 繩子程可拉伯,但輻度極小
 5. 忽晚重力 經子監度近年得持水平(波洛微捷)
- (2) 为的分解 (芹, 尼平行於經子之切方向, 即可用鲜平梅迷方向
- (以)物理定律: F=ma, F,2 随属大小皆为等大之张力 $4z y = \frac{dy^2}{dt^2}$, dm = ndx

全编于在两端文,即位置一段2度的斜率dx 为5及5. 則繩子在了方向所受之總力可近似為

ド= ma ⇒
$$\gamma$$
 ($5z - 51$) = $M d\gamma \frac{dy^2}{dt^2}$

此項即斜率對 ⇒ $\frac{5z - 51}{d\chi} = \frac{M}{\gamma} \frac{dy^2}{dt^2}$ ⇒ $\frac{dy^2}{d\chi^2} = \frac{M}{\gamma} \frac{dy^2}{dt^2}$

→ 沙達 V = /元 (1. 强力愈大、波速愈快 2. 單位長度之質量愈大 政連節,慢

主意在波的傳遞中, 您子作为您收得您的介質,

亚不在波的行验局上转動。有转動的是波形而非介質。

Wave equation $\frac{3^2y}{3^2} = \frac{1}{\sqrt{2}} \frac{3^{\frac{1}{2}}}{3^{\frac{1}{2}}}$ for fix $\frac{3^2y}{3^2} = \frac{1}{\sqrt{2}} \frac{3^{\frac{1}{2}}}{3^2}$ for fixed $\frac{3^2y}{3^2} = \frac{1}{\sqrt{2}} \frac{3^2y}{3^2} = \frac{1}{\sqrt{2}} \frac{3^2y}{3^$

 $y'(x,t) = y_1(x,t) + y_2(x,t)$ 市海足 wave equation 总解 (電腦及 y'(x,t)) resultant wave (or net nave)

Principle of superposition可推論,在運動方程須邁及上述vave og 的條件下

1. 描述在時空中交管的 traveling wave, 僵須特之們簡單相加

2. 容許用特定的正交基底特任意 wave form fcxt) 做领性展開,

女性 hcx,t) the Fourier transform [BpM sine 或 cosine function 展開 h(x,t)] 故了解 sine 或 cosine functions 行 式自り 解通学有助了解任意形式 wave form 自1行為

Sinusoidal wave functions: ω sine ω = ω =

$$\frac{\partial y^2}{\partial x^2} = -y_m k^2 \sin(kx - \omega t + \phi)$$

$$\frac{\partial y^2}{\partial t^2} = -y_m \omega^2 \sin(kx - \omega t + \phi)$$

$$\Rightarrow \frac{\partial y}{\partial x^2} = \frac{k^2}{\omega^2} \frac{\partial^2 y}{\partial t^2} = \frac{1}{2} \frac{\partial^2 y}{\partial t^2} = \frac{1}{2}$$

(i) 對於空間中的任一特定位置水=水。, ycxo, t)= Ym sin (-wt+(kxo+中))

冯振福为ym,频率为f, phase ronstant为(kx+++)的 simple harmonic motion.

(2) 對於任意特定時間七一七,每經過距離△X二人,(即以三亞人三次) 則此正確的股份完整地重現一次。故稱入為此正弦浪之 浪長。

Energy transportation in string waves (鑑波中的電景傳進)

首位最度带有的勤能为 0

繩了在少方向有運動速度 故帶有動能

波形为片(水一心也) 由无向无停追,故使得率位复度上华有 動作的位分之空間中左边的位置移動到空間中左边的位置。 等效果即為動能隨著波由空間的左边傳遞到空間的石边。

从正弦波为伤.

若單位長度的質量為此,即dm=mdx,則sine nave 傳遞的動能可利用以下估計

$$dK = \frac{1}{2} dm \left(\frac{dy}{dt}\right)^2 = \frac{1}{2} (u dx) \left(\frac{dy}{dt}\right)^2$$

$$y 3$$

$$y 3$$

$$y 3$$

$$y 3$$

than dK = { (Mdx) wym2 ros2 (kx-wt)

因决速为v,在经過時間dt=水值這小股網子原本 华有的能量可以完全传送到它的石辺(部正公方面)

故军位明的传递之部是可表考 dK = 是从dx wzym 105°(kx-wt)

= = = 2 u v w 2 y m 1052 (kx-wt)

動能通量随時間空間变化,

工程及物理上比较 夏用的問題為、然過無窮多週期後,平均單位 13到沿通遇的新能差多少, 200

$$\int_{-\infty}^{\infty} \frac{dk}{dt} dt = \frac{1}{2} \mu \nabla \omega^{2} y_{m}^{2} = \frac{1}{2}$$

Sinusordal 液形 YCX)=Ymsinkx 具有的位岸 (答考 proge Q對猿力之計算)

尼在y軸之分量大小: 尼二尼二 Tdy

 $\frac{\partial^2 f_2 \left(\frac{\partial y}{\partial x} \right)}{\partial x} = \frac{-(F_2 - F_1)}{\partial x} = \frac{\partial \left(\frac{\partial y}{\partial x} \right)}{\partial x^2} = \frac{\partial^2 y}{\partial x^2}$ $= \frac{\partial \left(\frac{\partial y}{\partial x} \right)}{\partial x} = \frac{\partial^2 y}{\partial x^2}$

冠雪将振幅鱼you 拉到y= Ymsinkx, 局部單位复度由外力输入的功为

范存得维中的波,到有 k= w (page 3)及 v= /元 (page 2)

4MW2ym2

Standing waves (馬之波)

本身不為行程波(traveling wave),即無法表示多名(X-vt) 三形式,但可視為两振幅相同、方向向反主行建设的量加。

(課本Fig 16-17)

两 amplitude相目,方向相反的 sine nave量为12

Using trigonometric identity

sind + sinß = 2 sin = (d+B) cos = (d-B)

= 2 ym sin(kx) (05 (wt)

經上遊處皆為簡諧運動,

振輻與位置有間、為 2 8m sin(kx)的絕對值

nodes: 原注波上振畅这0度之满及 kx=n元, n=0,1,2,antinodes: 原主油上振幅的土度。高度1,2,00

antinodes: 馬主波上振輻嵌火度n, 涵及kχ=(n+型π, n=0,1,2,--

刑多成居主沙夏三條件: 入= ≥L m , m=1,2,3,... (即 L /3 → 的整数倍)

$$\Rightarrow f = \frac{\sqrt{2}}{2} = m \frac{\sqrt{2}}{2L}$$

—m华南省harmonic mumber

M=1, 维 fundamental mode 或 first harmonic

m=2: second harmonic

m= }: third harmonic

harmonic series: collection of all possible harmonic number.

The pattern consist m loops

m=3