Contents

1	Introduzione	1
2	Ricavare k	2
3	Ricavare i parametri del motore	3

1 Introduzione

Rotazione del disco attaccato al motore: θ_m . Raggio del disco attaccato al motore: R_d .

Posizione del carretto : x.

Tensione in ingresso al motore: V

Stiffness molla: K

Resistenza e induttanza del motore: R, L

Massa carretto+peso: M Costante torque/backemf: K_e

Essendo il gearbox fissato al carretto abbiamo:

$$\theta_m = \frac{x}{R_d} \Rightarrow \dot{\theta}_m = \frac{\ddot{x}}{R_d}$$

Funzione di trasferimento tra forza erogata e posizione del carretto:

$$\frac{X}{F}(s) = \frac{1}{M} \frac{1}{s^2 + \frac{K}{M}}$$

Funzione di trasferimento tra Tensione e corrente:

$$\frac{I}{V}(s) = \frac{s^2 + \frac{K}{M}}{(s^2 + \frac{K}{M})(2R + 2sL) + \gamma s}$$

$$\gamma = \frac{4K_e^2}{R_d^2 M}$$

Per $\gamma \ll 1$:

$$\frac{I}{V} \approx \frac{1}{2R + 2sL}$$

$\mathbf{2}$ Ricavare k

Per ricavare le k delle molle l'idea generale è di guardare il displacement x del carretto applicando la stessa forza F(t).

Per $F(t) = F_0$ abbiamo $x(t) \to kF_0$.

Chiamiamo le due molle k_1, k_2 . Noi non conosciamo F_0 , ma è costante per entrambi e cambia solo il k. Quindi:

$$F_0 = k_1 x_1$$

$$F_0 = k_2 x_2$$

Quindi prendendo il rapporto:

$$\frac{x_1}{x_2} = \frac{k_2}{k_1}$$

Se $x_2 < x_1$ allora $k_2 > k_1$, e viceversa. Da questa formula possiamo ricavare il rapporto fra le due k e verificare con quelle scritte nel manuale.

Quindi:

- 1. Aprire il file simulink testK nella cartella tests/15March.
- 2. Caricare lo schema sulla scheda
- 3. Attaccare la prima molla
- 4. Far andare la scheda, calcolare x_1 quando il carretto è fermo
- 5. Spegnere la scheda, staccare la molla e attaccare l'altra molla
- 6. Far andare la scheda, calcolare x_2 e prendere il rapporto

3 Ricavare i parametri del motore