Using the data in the link below, attempt to model a customer's propensity to join our loyalty program

Ayan Karim

```
In [1]: # Import Dependencies
        %matplotlib inline
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.feature selection import RFE
        from sklearn.model selection import train test split, cross val score
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.svm import LinearSVC
        from sklearn.linear model import LogisticRegression
        from sklearn.naive bayes import GaussianNB
        from sklearn import metrics
        from sklearn.metrics import confusion matrix
        from scipy.stats import boxcox
In [2]: | df = pd.read csv('customers data.csv')
```

Description of Data:

This data set contains demographic information on customers and labels whether they've joined the loyalty program. More specifically, it includes a mixture of categorical (binary), continuous and discrete variables on gender, age, whether there's a card on file, the purchase amount and the time elapsed since last purchase for each customer.

The original data set contained 12,000 rows of data and 7 columns, however after cleaning the data and under sampling to balance our classes, we have 9,741 rows of data and 6 columns that we actually use for modeling.

Explore Data

```
df.head()
In [3]:
Out[3]:
            Unnamed: 0 purch_amt gender card_on_file age days_since_last_purch loyalty
         0
                    0
                           19.58
                                  male
                                                  31.0
                                                                    35.0
                                                                          False
                                              no
          1
                    1
                           65.16
                                  male
                                              yes
                                                 23.0
                                                                    61.0
                                                                          False
                                                                          False
          2
                    2
                           40.60
                                 female
                                                 36.0
                                                                    49.0
                                              no
          3
                    3
                           38.01
                                  male
                                              yes 47.0
                                                                    57.0
                                                                          False
                    4
                           22.32
                                                   5.0
                                                                    39.0
                                                                          False
                                 female
                                              yes
In [4]:
         df.shape
Out[4]: (120000, 7)
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 120000 entries, 0 to 119999
         Data columns (total 7 columns):
                                    120000 non-null int64
         Unnamed: 0
                                    120000 non-null float64
         purch amt
         gender
                                    120000 non-null object
         card on file
                                    120000 non-null object
         age
                                    120000 non-null float64
         days since last purch
                                    120000 non-null float64
                                    120000 non-null bool
         loyalty
         dtypes: bool(1), float64(3), int64(1), object(2)
         memory usage: 5.6+ MB
        df.columns
In [6]:
Out[6]: Index(['Unnamed: 0', 'purch amt', 'gender', 'card on file', 'age',
                 'days since last purch', 'loyalty'],
               dtype='object')
In [7]: # Drop Unnamed column
         df = df.drop(['Unnamed: 0'], axis=1)
```

```
In [8]: df.describe()
```

Out[8]:

	purch_amt	age	days_since_last_purch
count	120000.000000	120000.000000	120000.000000
mean	44.036234	25.803008	56.605908
std	20.473148	10.153072	16.422187
min	-43.950000	-22.000000	-9.000000
25%	30.210000	19.000000	45.000000
50%	43.970000	26.000000	57.000000
75%	57.830000	33.000000	68.000000
max	142.200000	71.000000	125.000000

Clean Data

```
In [9]: # Remove unrealistice values for continuous variables
         df.purch amt = df.purch amt[df.purch amt > df.purch amt.quantile(.25)]
         df.age = df.age[df.age > df.age.quantile(.25)]
         df.days since last purch = df.days since last purch[df.days since last p
         urch > df.days since last purch.quantile(.25)]
         # Remove rows with null values
         df = df.dropna()
In [10]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 47455 entries, 1 to 119999
         Data columns (total 6 columns):
         purch amt
                                  47455 non-null float64
                                  47455 non-null object
         gender
         card on file
                                  47455 non-null object
                                  47455 non-null float64
         age
         days_since_last_purch
                                  47455 non-null float64
                                  47455 non-null bool
         loyalty
         dtypes: bool(1), float64(3), object(2)
         memory usage: 2.2+ MB
In [11]:
         df.shape
Out[11]: (47455, 6)
```

In [12]: df.describe()

Out[12]:

	purch_amt	age	days_since_last_purch
count	47455.000000	47455.000000	47455.00000
mean	52.051808	30.093373	63.38940
std	14.710210	7.180507	11.81037
min	30.220000	20.000000	46.00000
25%	40.300000	24.000000	54.00000
50%	49.870000	29.000000	62.00000
75%	61.360000	35.000000	71.00000
max	125.530000	71.000000	118.00000

Visualize Data

```
In [13]: # Visualize distribution of continuous variables
    plt.figure(figsize=(5,5))
    plt.hist(df.purch_amt, edgecolor = 'k')
    plt.title('Purchase Amount')
    plt.show()

    plt.figure(figsize=(5,5))
    plt.hist(df.age, edgecolor = 'k')
    plt.title('Age')
    plt.show()

    plt.figure(figsize=(5,5))
    plt.hist(df.days_since_last_purch, edgecolor = 'k')
    plt.title('Days Since_Last_Purchase')
    plt.show()
```


In [14]: df.head()

Out[14]:

	purch_amt	gender	card_on_file	age	days_since_last_purch	loyalty
1	65.16	male	yes	23.0	61.0	False
2	40.60	female	no	36.0	49.0	False
3	38.01	male	yes	47.0	57.0	False
6	43.96	male	yes	36.0	64.0	False
9	93.63	female	no	40.0	47.0	True

```
In [15]: # from scipy.stats import boxcox

# df.purch_amt = boxcox(df.purch_amt)[0]
# df.age = boxcox(df.age)[0]
# df.days_since_last_purch = boxcox(df.days_since_last_purch)[0]
```

In [16]: df.head()

Out[16]:

	purch_amt	gender	card_on_file	age	days_since_last_purch	loyalty
1	65.16	male	yes	23.0	61.0	False
2	40.60	female	no	36.0	49.0	False
3	38.01	male	yes	47.0	57.0	False
6	43.96	male	yes	36.0	64.0	False
9	93.63	female	no	40.0	47.0	True

```
In [17]: # Visualize categorical variables, class balances
         x = ['female', 'male']
         y = list(df.groupby(['gender']).count().loyalty)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Gender')
         plt.xlabel('Gender')
         plt.ylabel('Count')
         plt.show()
         x = ['no', 'yes']
         y = list(df.groupby(['card_on_file']).count().loyalty)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Card on File')
         plt.xlabel('Yes or No')
         plt.ylabel('Count')
         plt.show()
         x = ['False', 'True']
         y = list(df.groupby(['loyalty']).count().gender)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Loyalty')
         plt.xlabel('Yes or No')
         plt.ylabel('Count')
         plt.show()
```


Correct Class Imbalance

```
In [18]: # Correct Class Imbalance by Under Sampling "No Loyalty"
    no_loyalty = df[df['loyalty'] == False]
    no_loyalty = no_loyalty.sample(frac=.115)

loyalty = df[df['loyalty'] == True]

undersample = pd.concat([no_loyalty, loyalty])
undersample = undersample.reset_index()
undersample = undersample.drop(['index'], axis=1)
```

```
In [19]: undersample.shape
Out[19]: (9741, 6)
```

```
In [20]: # Visualize Class Balabnce of Loyalty
    x = ['False', 'True']
    y = list(undersample.groupby(['loyalty']).count().gender)

plt.figure(figsize=(6,6))
    plt.bar(x,y, edgecolor = 'k')
    plt.title('Loyalty')
    plt.xlabel('Yes or No')
    plt.ylabel('Count')
    plt.show()
```


In [21]: # Visualize Correlation and Distributions of undersampled dataset
sns.pairplot(undersample[['purch_amt', 'age', 'days_since_last_purch']])

Out[21]: <seaborn.axisgrid.PairGrid at 0x10f935b38>

In [22]: # Correct Right Skew distribution with Box Box Distribution
 undersample.purch_amt = boxcox(undersample.purch_amt)[0]
 undersample.age = boxcox(undersample.age)[0]
 undersample.days_since_last_purch = boxcox(undersample.days_since_last_purch)[0]

```
In [23]: # Visualize Distributions after BoxCox Transformation
     sns.pairplot(undersample[['purch_amt', 'age', 'days_since_last_purch']])
```

Out[23]: <seaborn.axisgrid.PairGrid at 0x10f911e10>


```
In [24]: # Turn categorical Variables in to Numeric
undersample = pd.get_dummies(undersample, columns = ['gender', 'card_on_
file'])
undersample['loyalty'] = np.where(undersample['loyalty']==True, 1, 0)
```

```
In [25]: undersample.head()
```

Out[25]:

	purch_amt	age	days_since_last_purch	loyalty	gender_female	gender_male	card_on_file_
0	3.067936	1.887157	0.516721	0	0	1	_
1	3.273919	1.954479	0.516715	0	0	1	
2	2.930705	1.906285	0.516744	0	1	0	
3	3.410857	1.923729	0.516764	0	1	0	
4	3.417293	1.816201	0.516648	0	1	0	

Baseline Models

```
In [26]: # Split into test and training set
         X = undersample.drop(['loyalty'], axis=1)
         Y = undersample['loyalty']
         x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,
         random state=0)
         # List of models
         models = [RandomForestClassifier(n estimators=200, max depth=3, random s
         tate=42), LinearSVC(),
                   GaussianNB(), LogisticRegression(random state=42), GradientBoo
         stingClassifier(n estimators=200, random state=42)]
         model names = []
         accuracies = []
         # Iterate through models to compare accuracies
         for model in models:
             model_name = model.__class__._name__
             model names.append(model name)
             model.fit(x_train, y_train)
             predictions = model.score(x train, y train)
             accuracies.append(predictions)
         # Assign accuracies for each model to view
         accuracy df = pd.DataFrame()
         accuracy_df['Model'] = model_names
         accuracy df['Accuracy'] = accuracies
```

/usr/local/lib/python3.6/site-packages/sklearn/linear_model/logistic.p
y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.2
2. Specify a solver to silence this warning.
 FutureWarning)

In [27]: accuracy_df

Out[27]:

	Model	Accuracy
0	RandomForestClassifier	0.724974
1	LinearSVC	0.615375
2	GaussianNB	0.733958
3	LogisticRegression	0.615503
4	GradientBoostingClassifier	0.761037

In [28]: # GradientBoostingClassifier cross validation gbc = GradientBoostingClassifier(n_estimators=200, random_state=42) gbc.fit(x_train, y_train) y_pred = gbc.predict(x_test) cross_val_score(gbc, X, Y, cv=5)

Out[28]: array([0.73217034, 0.74332649, 0.73767967, 0.73767967, 0.71252567])

		precision	recall	f1-score	support
	0	0.75	0.72	0.73	957
	1	0.74	0.77	0.75	992
micro	avg	0.74	0.74	0.74	1949
macro		0.74	0.74	0.74	1949
weighted	avg	0.74	0.74	0.74	1949

```
In [30]: # Pass linear regression model to the RFE constructor

selector = RFE(gbc)
selector = selector.fit(X, Y)

# Sort ranked features
pd.set_option("display.max_rows", 999)
rankings = pd.DataFrame({'Features': X.columns, 'Ranking': selector.ranking_})
rankings = rankings.sort_values('Ranking')
rankings = rankings.reset_index()
rankings = rankings.drop(columns=['index'])
rankings = rankings.set_index('Features')
rankings = rankings.T
```

Out[30]:

```
Features purch_amt age days_since_last_purch gender_female card_on_file_yes gender_male

Ranking 1 1 1 2 3 4
```

```
In [31]: # RandomForestClassifier cross validation

rfc = RandomForestClassifier(n_estimators=300, max_depth=2, random_state = 42)
    rfc.fit(x_train, y_train)
    y_pred = rfc.predict(x_test)
    cross_val_score(rfc, X, Y, cv=5)
```

Out[31]: array([0.72036942, 0.7325462 , 0.71355236, 0.72638604, 0.70328542])

		precision	recall	f1-score	support
	0	0.78	0.62	0.69	957
	1	0.69	0.83	0.76	992
micro av	7g	0.73	0.73	0.73	1949
macro av	7g	0.74	0.73	0.72	1949
weighted av	7g	0.74	0.73	0.72	1949

```
In [33]: # Pass linear regression model to the RFE constructor

selector = RFE(rfc)
selector = selector.fit(X, Y)

# Sort ranked features
pd.set_option("display.max_rows", 999)
rankings = pd.DataFrame({'Features': X.columns, 'Ranking': selector.ranking_})
rankings = rankings.sort_values('Ranking')
rankings = rankings.reset_index()
rankings = rankings.drop(columns=['index'])
rankings = rankings.set_index('Features')
rankings = rankings.T
```

Out[33]:

```
Features purch_amt age days_since_last_purch card_on_file_yes card_on_file_no gender_femake

Ranking 1 1 1 2 3 3
```

Feature Engineering

```
In [34]: # Feature Engineering
  undersample['purch_amt'] = undersample['purch_amt'].apply(lambda x: x**2
)
  undersample = undersample.drop(['card_on_file_yes', 'gender_male'], axis
  =1)
```

Second Round Training on New Features and Predictions

```
In [35]: # GradientBoostingClassifier cross validation

    gbc = GradientBoostingClassifier(n_estimators=200, random_state=42)
    gbc.fit(x_train, y_train)
    y_pred = gbc.predict(x_test)
    cross_val_score(gbc, X, Y, cv=5)
Out[35]: array([0.73217034, 0.74332649, 0.73767967, 0.73767967, 0.71252567])
```

		precision	recall	f1-score	support
	0	0.75	0.72	0.73	957
	1	0.74	0.77	0.75	992
micro	avg	0.74	0.74	0.74	1949
macro	avg	0.74	0.74	0.74	1949
weighted	avg	0.74	0.74	0.74	1949

```
In [37]: # RandomForestClassifier cross validation

rfc = RandomForestClassifier(n_estimators=300, max_depth=2, criterion='e
    ntropy', random_state=42)
    rfc.fit(x_train, y_train)
    y_pred = rfc.predict(x_test)
    cross_val_score(rfc, X, Y, cv=5)
```

Out[37]: array([0.71626475, 0.73203285, 0.71201232, 0.72279261, 0.7073922])

		precision	recall	f1-score	support
	0	0.79	0.61	0.69	957
	1	0.69	0.85	0.76	992
micro	avg	0.73	0.73	0.73	1949
macro	avg	0.74	0.73	0.72	1949
weighted	avg	0.74	0.73	0.72	1949

```
In [ ]:
```