Department of Computer Science University of Bristol

COMS30030 Image Processing and Computer Vision

Lecture 10

Basics of Classical Object Detection

What is 'Object Detection'?

- Object Detection aims at bridging the 'semantic gap' between...
 - given pixel values, and
 - meaningful objects (grouping of pixels + classification of groups)
- image regions need to be found and assigned with semantic labels from a space of object classes

What is 'Object Detection'?

- Why do classical shape detection and segmentation on their own rarely work for real-world object detection?
 - high intra-class, low inter-class variance
 - classes are rarely well defined

- change of illumination, scale, pose + deformation, occlusion...
- → object recognition is a difficult task

First Real-time Detection Method: Viola & Jones' (2001) (base line standard for off-the-shelf method for almost a decade)

Example Algorithm: Viola & Jones' Real-time Method (2001)

Our Agenda:

- Sliding Window Detectors
- Haar-like Features
- Feature Extraction and Integral Images
- Weak Classifiers
- Boosting and Classifier Evaluation
- Cascades of Boosted Classifiers

Best description of full details available in consolidated paper by Viola and Jones, International Journal of Computer Vision, 2004

Shift and Scale Invariance: Sliding Window Detectors

- image is tested for object presence window-by-window
- the window is `slided' and `scaled' throughout the image
- each resulting window is judged w.r.t. an object model giving a response indicating object presence or absence

Basic Object Model Idea: Characteristic Set of Block Features

Haar-like Features as Weak Classifiers

Integral Images

Integral Images

(IMAGE INTEGRATION)
$$\mathbf{II}(-1,y) = 0; \qquad \mathbf{II}(x,y) = \mathbf{II}(x-1,y) + A(x,y);$$

$$A(x,-1) = 0;$$
 $A(x,y) = A(x,y-1) + \mathbf{I}(x,y).$

Calculating the Avg Pixel Value of Large Block Fast

Calculating the Avg Pixel Value of Large Block Fast

Calculating the Avg Pixel Value of Large Block Fast

