Colle 13 \sim 13 janvier 2016 \sim Colleur : Isenmann \sim MP1 \sim Trinôme :

Planche 1.

Question de cours. Soit P annulant u, alors $Sp(u) \subset rac(P)$.

Exercice 1. Montrer que $A \in M_n(\mathbb{C})$ est diagonalisable ssi tA l'est.

Exercice 2. Soit $A \in M_n(\mathbb{R})$ vérifiant $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Planche 2.

Question de cours. Lemme des noyaux.

Exercice 1. Soit $A \in M_n(\mathbb{R})$ telle que $Sp(A) \subset \mathbb{R}^+$. Montrer que $det(A) \geq 0$.

Exercice 2. Soit $f \in L(E)$. Montrer que f est diagonalisable ssi f^2 l'est et si $\ker(f) = \ker(f^2)$.

Planche 3.

Question de cours. $\dim(E_{\lambda}(u)) \leq mult(\lambda, u)$.

Exercice 1. Soit $A \in GL_n(\mathbb{R})$ et $B \in M_n(\mathbb{R})$. Montrer que AB est diagonalisable ssi BA l'est.

Exercice 2. Soit $A \in M_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0$. Quelle est la parité du rang de A?

Hints

Planche 1.

Exercice 1. Utiliser la définition de diagonalisibilité avec PDP^{-1} .

Exercice 2. Le déterminant c'est le produit des valeurs propres dans \mathbb{C} . Les valeurs propres sont parmi les racines du polynôme annulateur. La multiplicité de λ est la même que celle de $\overline{\lambda}$ pour une matrice réelle.

Planche 2.

Exercice 1. Le déterminant c'est le produit des valeurs propres dans \mathbb{C} . Les valeurs propres réelles sont positives. Celles complexes se multiplient entre elles et donnent des modules. La multiplicité de λ est la même que celle de $\overline{\lambda}$ pour une matrice réelle.

Exercice 2. Un sens est facile : de gauche à droite. Il suffit d'écrire la matrice dans une bonne base.

L'autre plus compliqué : on utilise le lemme des noyaux en disant que si $Q(X) = P(X^2)$ annule A. Et on regarde ce qu'il se passe au niveau des racines en fonction de si elles sont nulles ou pas.

Planche 3.

Exercice 1. Utiliser la définition de diagonalisibilité avec PDP^{-1} .

Exercice 2. A est diagonlisable. Les valeurs propres possibles on les connaît : 0 j ou \bar{j} . La multiplicité de λ est la même que celle de $\bar{\lambda}$ pour une matrice réelle.

Solutions - Planche 1.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 2.

Question de cours.

Exercice 1.

Exercice 2.

Solutions - Planche 3.

Question de cours.

Exercice 1.

Exercice 2.