From: BI4z3 Module 1

- 1. What is an algorithm?
 - A) A type of computer software.
 - B) A step-by-step method for solving a well-defined problem.
 - C) A programming language.
 - D) A mathematical equation.
- 2. Which of the following is NOT a characteristic of an algorithm?
 - A) It takes acceptable inputs.
 - B) It produces a desired output.
 - C) It contains ambiguous instructions.
 - D) It consists of a set of instructions.
- 3. Where does the term "algorithm" originate from?
 - A) A Greek mathematician.
 - B) The name of a Persian mathematician, Muhammad ibn Musa al-Khwarizmi.
 - C) The Latin word for "problem."
 - D) A type of ancient computer.
- 4. Which of the following best describes the importance of an algorithm being unambiguous?
 - A) It can be interpreted in multiple ways.
 - B) It must be understandable to a human.
 - C) It ensures that the problem is stated clearly.
 - D) It makes the algorithm faster.
- 5. What is the main purpose of an algorithm?
 - A) To execute a computer program.
 - B) To solve a problem with a defined set of instructions.
 - C) To store data in a computer.
 - D) To translate a programming language.
- 6. Who is Muhammad ibn Musa al-Khwarizmi, and what is his significance in mathematics?
 - A) The inventor of the first computer.
- B) A mathematician whose works introduced Arabic numerals and algebraic concepts to Western mathematics.
 - C) The creator of the binary system.
 - D) A philosopher who wrote about logic.
- 7. The word "algebra" originates from which book written by al-Khwarizmi?
 - A) "The Computation Book"
 - B) "The Book of Numbers"
 - C) "Kitab al-Jabr wa'l-Muqabala"
 - D) "The Book of Algorithms"

- 8. Why is it important for the instructions in an algorithm to be explicitly stated?
 - A) To allow human intuition to play a role.
 - B) To ensure the problem solver understands the solution process.
 - C) To make the algorithm more complex.
 - D) To reduce the number of steps in the algorithm.
- 9. What would happen if an algorithm receives incorrect input?
 - A) It will automatically correct the input.
 - B) It will produce an incorrect output.
 - C) It will not execute.
 - D) It will produce the correct output regardless of the input.
- 10. Which of the following is an example of an algorithm in daily life?
 - A) A computer's motherboard.
 - B) A cooking recipe booklet.
 - C) A song playlist.
 - D) A movie's script.
- 11. Consider the problem: "Find the largest of three numbers." Which of the following is the correct step if `a > b`?
 - A) Compare `b` and `c`.
 - B) Set `b` as the largest.
 - C) Compare `a` and `c`.
 - D) Set `a` as the smallest.
- 12. Which of the following steps is NOT included in the algorithm to find the mean of a set of numbers?
 - A) Initialize `sum` to 0.
 - B) Initialize `i` to 0.
 - C) Subtract each number from the `sum`.
 - D) Divide the `sum` by `n`.
- 13. Which of the following is NOT an example of an algorithm?
 - A) The rules of how to play a game.
 - B) Instructions for assembling furniture.
 - C) A random selection of songs.
 - D) Directional maps for driving from point A to B.
- 14. Which of the following best defines problem-solving?
 - A) Guessing the solution to a problem.
 - B) The act of finding a solution to a difficulty or constraint.
 - C) A natural ability to solve issues without any process.
 - D) Using random methods to tackle challenges.

- 15. Which of the following is NOT considered a systematically effective method for solving problems?
 - A) Experience
 - B) Process model
 - C) Trial and error
 - D) Using algorithms
- 16. What is the main focus when discussing algorithms in problem solving?
 - A) Guesswork and luck
 - B) Systematically effective methods
 - C) Trial-and-error methods
 - D) Natural endowment
- 17. In computer science, what is a crucial element in solving problems with computers?
 - A) Guessing the right algorithm
 - B) Understanding the computer's information processing model
 - C) Using random inputs and outputs
 - D) Depending solely on natural problem-solving abilities
- 18. What does the process model represent in problem-solving?
 - A) A set of instructions based on someone else's experience.
 - B) Scientific steps that systematically solve a problem.
 - C) A random approach to tackling problems.
 - D) A method based on guesswork.
- 19. Which component of the computer's information processing model involves obtaining data from the user?
 - A) Processing
 - B) Output
 - C) Input
 - D) Storage
- 20. Which device is used for processing inputs in a computer?
 - A) Display unit
 - B) Central Processing Unit (CPU)
 - C) Keyboard
 - D) Printer
- 21. How are problems solved using a computer according to the information processing model?
 - A) By using random guesses to find the solution.
 - B) By inputting data, processing it, and producing output data.
 - C) By relying on trial and error.
 - D) By using a natural endowment approach.

- 22. Which of the following is NOT an output device in a computer system?
 - A) Speaker
 - B) Display unit
 - C) Storage drive
 - D) Printer
- 23. Which of the following best describes data transmission in a computer's information processing model?
 - A) The CPU processes inputs to produce data.
 - B) Input/output data may be transmitted via storage drives and network devices.
 - C) The user inputs data using devices like a keyboard or mouse.
 - D) Output data is produced by devices such as speakers and printers.
- 24. What does the computer model of computation rely on?
 - A) Guesswork and luck.
 - B) Input, processing, and output.
 - C) Random inputs.
 - D) Instinctive problem-solving.
- 25. In the context of problem-solving, what is the first step to take?
 - A) Formulating a model.
 - B) Guessing the solution.
 - C) Understanding the problem.
 - D) Computing the output directly.
- 26. Which of the following is crucial when understanding a problem?
 - A) Guessing the format of the data.
 - B) Understanding the format and nature of input data.
 - C) Directly outputting the data.
 - D) Ignoring any missing data.
- 27. Why is it important to know the format of the input data when solving a problem?
 - A) To guess the output format.
 - B) Because different formats require different processing methods.
 - C) To ignore the incorrect data.
 - D) Because the format does not affect the processing.
- 28. If grades are represented as letters (e.g., A, B, C), what should be done to calculate an average?
 - A) Add and divide the letters directly.
 - B) Assign numerical values to the letters, then calculate.
 - C) Ignore the letter grades.
 - D) Guess the average.

- 29. What is the result of the computational model if the input is a bunch of numerical grades?
 - A) A random number.
 - B) A number from 0 to 100.
 - C) A letter grade.
 - D) A pie chart.
- 30. What should be considered if some grades are missing in a dataset?
 - A) Include those students with a grade of 0.
 - B) Ignore the problem.
 - C) Calculate the average without considering missing grades.
 - D) Assign the highest grade to missing entries.
- 31. When assigning numbers to letter grades (e.g., A = 12, B = 11), what is the purpose?
 - A) To complicate the process.
 - B) To make it possible to perform arithmetic operations like addition and division.
 - C) To guess the average.
 - D) To make the data harder to process.
- 32. What is the purpose of a "lookup table" in the context of computing an average from letter grades?
 - A) To randomly generate letter grades
 - B) To map numeric averages back to corresponding letter grades
 - C) To store large amounts of data efficiently
 - D) To visually represent data
- 33. What is the main goal of the second step, "Formulating a Model," in problem-solving?
 - A) To figure out how to use the available data to compute an answer
 - B) To create a flowchart
 - C) To implement the algorithm
 - D) To determine the final output format
- 34. Which of the following is a commonly used representation of an algorithm?
 - A) Data table
 - B) Pseudo-code
 - C) Pie chart
 - D) File format
- 35. What is pseudo-code primarily used for?
 - A) To describe an algorithm in a way that is understandable to humans
 - B) To execute a program on a computer
 - C) To visualize data
 - D) To store data in a file

- 36. In the "DisplayGrades" algorithm, what is the primary purpose of the loop (repeated n times)?
 - A) To display each grade individually
 - B) To sum all the grades
 - C) To find the highest grade
 - D) To calculate the percentage of each grade
- 37. What is the result of dividing the sum of grades by the number of grades in the "DisplayGrades" algorithm?
 - A) The total number of grades
 - B) The average grade
 - C) The maximum grade
 - D) The minimum grade
- 38. In problem-solving, when should you quit the process according to the lamp problem example?
 - A) When the lamp works
 - B) When the bulb is replaced
 - C) When the lamp is plugged in
 - D) When a new lamp is purchased
- 39. In the lamp problem example, what should you do if the lamp is not working after replacing the bulb?
 - A) Buy a new lamp
 - B) Replace the socket
 - C) Check the wiring
 - D) Contact customer support
- 40. What is the main purpose of running a program after writing and compiling it?
 - A) To check the file format
 - B) To ensure it solves the intended problem and produces correct solutions
 - C) To generate a random output
 - D) To display the code on the screen
- 41. If a program runs correctly for some input data but not for all, what might be the issue?
 - A) The algorithm might not handle all possible situations
 - B) The input data is corrupted
- C) The computer needs to be restarted
- D) The programming language is incompatible
- 42. What is a potential reason for a program producing incorrect output?
 - A) The algorithm was not properly converted into a program
 - B) The computer is outdated
 - C) The user did not enter the data quickly enough

- D) The program was written in an unsupported language
- 43. What are problems with a program that prevent it from running correctly known as?
 - A) Glitches
 - B) Bugs
 - C) Errors
 - D) Faults
- 44. What should be done if the program produces an incorrect solution due to a bug?
 - A) Restart the computer
 - B) Debug the program and correct the algorithm if necessary
 - C) Change the programming language
 - D) Increase the computer's memory
- 45. After ensuring a program produces the correct result, what should be the next step?
 - A) Delete the program
 - B) Reconsider the original problem to ensure the solution is formatted correctly
 - C) Publish the results immediately
 - D) Stop the program from running again
- 46. Why might a solution need to be reformatted after a program produces correct results?
 - A) To make the program run faster
 - B) To ensure the output is presented in a way that solves the problem as intended
 - C) To reduce the file size
 - D) To translate the output into different languages
- 47. What might be needed if the program's output is a long list of numbers, but the goal was to identify a pattern?
 - A) Print out the numbers on paper
 - B) Display the information in a chart or graph
 - C) Convert the list into a text file
 - D) Re-run the program with the same input
- 48. When evaluating a solution, what might be discovered that could lead to additional steps being required?
 - A) The program is too simple
 - B) The code needs to be longer
 - C) Additional data is needed to fully solve the problem
 - D) The program needs to be translated into another language
- 49. What is the primary responsibility of the problem solver after the program produces results?
 - A) To interpret the results in a meaningful way and determine if the problem is solved
 - B) To upgrade the computer's hardware
 - C) To publish the code online

- D) To immediately delete the source code
- 50. What action might be necessary if the program's results do not fully solve the problem?
 - A) Re-do some of the problem-solving steps, possibly starting from step 1
 - B) Ignore the results and try a different problem
 - C) Increase the input data size
 - D) Rewrite the program in a different programming language
- 51. Why is it important to interpret the results after running a program?
 - A) To check for syntax errors
 - B) To ensure the solution aligns with the original problem and objectives
 - C) To see how fast the program runs
 - D) To find hidden features in the code
- 52. If the results of a program indicate that some instructions were performed out of sequence, what should be checked?
 - A) The computer's operating system
 - B) The algorithm and the sequence of steps in the program
 - C) The size of the input file
 - D) The color of the output text
- 53. What does the term "compiles" refer to in the context of programming?
 - A) The process of converting source code into machine code
 - B) The process of collecting input data
 - C) The process of saving a file
 - D) The process of writing pseudo-code
- 54. What could happen if a bug in a program is not identified and fixed?
 - A) The program may continue to produce incorrect results
 - B) The program will run faster
 - C) The computer may crash
 - D) The program will become unusable

Answers

- 1. C
- 2. B
- 3. C
- 4. B
- 5. B
- 6. C
- 7. B
- 8. B
- 9. B
- 10. C

- 11. C
- 12. C
- 13. B
- 14. C
- 15. B
- 16. B
- 17. B
- 18. C
- 19. B
- 20. B
- 21. C
- 22. B
- 23. B 24. C
- 25. B
- 26. B
- 27. B
- 28. B
- 29. B
- 30. A 31. B
- 32. B
- 33. A 34. B
- 35. A
- 36. B
- 37. B
- 38. A
- 39. A
- 40. B
- 41. A
- 42. A
- 43. B
- 44. B
- 45. B
- 46. B
- 47. B
- 48. C
- 49. A
- 50. A 51. B
- 52. B
- 53. A

Module 2

M1 u1

- 1. What is an algorithm design technique?
 - A) A way to write code
 - B) A tool for debugging
 - C) A general approach to solving problems algorithmically
 - D) A method to organize data
- 2. Which of the following is an example of an algorithm design technique?
 - A) Sorting
 - B) Data storage
 - C) Brute-force
 - D) File handling
- 3. Why are algorithm design techniques important?
 - A) They help classify problems based on difficulty
 - B) They provide guidance in designing algorithms for new problems
 - C) They are only used for solving mathematical problems
 - D) They make programming languages more powerful
- 4. Which algorithm design technique involves trying all possible solutions?
 - A) Dynamic programming
 - B) Brute-force
 - C) Backtracking
 - D) Branch and bound
- 5. Why might brute-force techniques be inefficient for large problems?
 - A) They require complex mathematical calculations
 - B) They involve minimal programming effort
 - C) They exhaustively check all possible solutions
 - D) They are dependent on specific problem heuristics
- 6. What is the key characteristic of brute-force algorithms that makes them reliable for finding a solution?
 - A) They use advanced mathematical strategies
 - B) They check only the most likely solutions
 - C) They guarantee finding a solution if one exists
 - D) They optimize the solution process
- 7. Which of the following is an example where brute-force technique is used?
 - A) Data compression
 - B) Password cracking

- C) Machine learning
- D) Image processing
- 8. In which problem does brute-force check every possible route to find the shortest path?
 - A) Knapsack problem
 - B) Traveling Salesman Problem
 - C) Sorting problem
 - D) Graph coloring
- 9. What is the main advantage of brute-force algorithms?
 - A) They are very efficient for all problem sizes
 - B) They are widely applicable to different types of problems
 - C) They use minimal computing resources
 - D) They require complex implementations
- 10. What makes brute-force algorithms simple to implement?
 - A) They require advanced knowledge of the problem
 - B) They involve systematic checks of all possibilities
 - C) They minimize the number of operations
 - D) They use shortcuts to find solutions faster
- 11. How does the brute-force technique handle string matching problems?
 - A) By comparing only the first and last characters
 - B) By checking every possible starting position in the string
 - C) By using advanced data structures
 - D) By ignoring case sensitivity
- 12. Which sorting algorithm is based on the brute-force concept?
 - A) Quick Sort
 - B) Selection Sort
 - C) Merge Sort
 - D) Bubble Sort
- 13. What is the key difference between Selection Sort and Insertion Sort?
 - A) Selection Sort is faster than Insertion Sort
 - B) Insertion Sort places an unsorted element in its suitable place in each iteration
 - C) Selection Sort requires more memory
 - D) Insertion Sort is a recursive algorithm
- 14. Why might brute-force algorithms serve as the starting point for improved algorithms?
 - A) They are complex and hard to understand
 - B) They require minimal initial effort to develop
 - C) They are only applicable to simple problems
 - D) They are guaranteed to be the most efficient

- 15. What is a major drawback of brute-force algorithms for large input sizes?
 - A) They are difficult to implement
 - B) They become inefficient due to the large number of possibilities
 - C) They often miss the correct solution
 - D) They require specialized hardware
- 16. Which of the following is NOT an advantage of the brute-force technique?
 - A) Simplicity in implementation
 - B) Guaranteed solution if one exists
 - C) Applicability to a wide range of problems
 - D) High efficiency for large problems
- 17. How does brute-force handle problems with exponential growth in possibilities?
 - A) It skips certain possibilities to save time
 - B) It checks every possibility, which makes it inefficient
 - C) It uses a divide and conquer approach
 - D) It relies on random sampling to find the solution
- 18. In what scenario might brute-force algorithms be most appropriate?
 - A) When a quick, simple solution is needed for a small problem
 - B) When optimizing a solution for large, complex problems
 - C) When using machine learning techniques
 - D) When dealing with real-time processing
- 19. Why are brute-force algorithms not always the best choice for solving problems?
 - A) They are too complex for simple problems
 - B) They often require specialized algorithms
 - C) They can be inefficient for large input sizes
 - D) They are not applicable to all types of problems
- 20. Which of the following scenarios is likely to be inefficient when using brute-force?
 - A) Small-scale password cracking
 - B) Sorting a list of 10 elements
 - C) Traveling Salesman Problem with 20 cities
 - D) String matching in a short text

Answers:

- 1. C
- 2. C
- 3. B
- 4. B
- 5. C

- 6. C
- 7. B
- 8. B
- 9. B
- 10. B
- 11. B
- 12. B&D
- 13. B
- 14. B
- 15. B
- 16. D
- 17. B
- 18. A
- 19. C
- 20. C

M2_u2

- 1. What is the basic principle of the divide and conquer technique?
 - A) Combining small problems into one big problem
 - B) Dividing a big problem into sub-problems and solving them
 - C) Iteratively solving a problem in a loop
 - D) Solving problems using brute force
- 2. In the divide and conquer technique, what is the first step?
 - A) Combine solutions of sub-problems
 - B) Divide the problem into sub-problems
 - C) Conquer the sub-problems by solving them
 - D) Identify the base case
- 3. Which of the following sorting algorithms is based on the divide and conquer technique?
 - A) Bubble Sort
 - B) Selection Sort
 - C) Merge Sort
 - D) Insertion Sort
- 4. What is the purpose of the "conquer" step in divide and conquer?
 - A) To solve the original problem
 - B) To solve the sub-problems
 - C) To combine the solutions of sub-problems
 - D) To divide the sub-problems further
- 5. Which of the following is not a characteristic of the divide and conquer technique?
 - A) Recursion
 - B) Efficiency

- C) Parallelism
- D) Exhaustive search
- 6. What does the divide and conquer technique generally improve in algorithms?
 - A) Space complexity
 - B) Time complexity
 - C) Readability
 - D) Flexibility
- 7. Which algorithm is used for efficient searching in a sorted array using divide and conquer?
 - A) Linear Search
 - B) Binary Search
 - C) Depth-First Search
 - D) Breadth-First Search
- 8. The Karatsuba algorithm, which is used for multiplying large integers, is an example of:
 - A) Brute force
 - B) Divide and conquer
 - C) Dynamic programming
 - D) Backtracking
- 9. What is the main advantage of parallelism in the divide and conquer technique?
 - A) It reduces the number of sub-problems
 - B) It simplifies the problem
 - C) It allows sub-problems to be solved simultaneously
 - D) It reduces memory usage
- 10. Which of the following is a disadvantage of the divide and conquer technique?
 - A) Simplicity
 - B) Improved Efficiency
 - C) Overhead from recursive calls
 - D) Easy parallelization
- 11. Strassen's algorithm, which is used for matrix multiplication, reduces the number of:
 - A) Additions
 - B) Subtractions
 - C) Multiplicative operations
 - D) Divisions
- 12. Which step of divide and conquer is responsible for generating the solution to the original problem?
 - A) Divide
 - B) Conquer
 - C) Combine

- D) Optimize
- 13. The divide and conquer technique is particularly well-suited for problems that:
 - A) Can be solved iteratively
 - B) Have overlapping sub-problems
 - C) Can be divided into independent sub-problems
 - D) Require a greedy approach
- 14. Which sorting algorithm divides the list into two halves, recursively sorts each half, and then merges the sorted halves?
 - A) Quick Sort
 - B) Merge Sort
 - C) Heap Sort
 - D) Bubble Sort
- 15. The divide and conquer approach is often more efficient than iterative methods because:
 - A) It always reduces space complexity
 - B) It has a lower overhead
 - C) It reduces the size of the problem at each step
 - D) It doesn't require recursion

Answers

- 1. B
- 2. B
- 3. C
- 4. B
- 5. D 6. B
- 7. B 8. B
- 9. C
- 10. C
- 11. C
- 12. C
- 13. C
- 14. B
- 15. C

Module 3

M3 u1

- 1. What does a flowchart represent in algorithm design?
 - A) Mathematical equations
 - B) Graphical representation of an algorithm

- C) Pseudo-code implementation
- D) Written computer programs
- 2. Which of the following symbols is used to represent a process in a flowchart?
 - A) Oval
 - B) Diamond
 - C) Rectangle
 - D) Parallelogram
- 3. In flowcharting, what does a diamond shape represent?
 - A) Process
 - B) Decision
 - C) Input/Output
 - D) Terminal
- 4. Which symbol in a flowchart is used to indicate the start and stop of the chart?
 - A) Circle
 - B) Oval
 - C) Rectangle
 - D) Parallelogram
- 5. What is the purpose of the parallelogram symbol in a flowchart?
 - A) To represent a process
 - B) To indicate input/output
 - C) To show the flow of control
 - D) To mark the end of the program
- 6. Which flowchart symbol is used to connect flowcharts that span across multiple pages?
 - A) Diamond
 - B) Rectangle
 - C) Circle
 - D) Arrow
- 7. What is the flow arrow or line used for in a flowchart?
 - A) To start and stop the process
 - B) To represent input and output operations
 - C) To indicate the direction of the process flow
 - D) To make decisions
- 8. Which of the following is NOT a rule recommended by the American National Standards Institute (ANSI) for flowcharting?
 - A) Flowcharts must have only one starting and ending point
 - B) Flowcharts can have multiple decision points with no connectors
 - C) Flowcharts should follow a top-to-bottom or left-to-right approach

- D) Every aspect of the flowchart should use standard symbols
- 9. What does pseudo-code typically represent?
 - A) Fully executable code
 - B) A combination of English and programming syntax
 - C) Graphical representation of code
 - D) Mathematical formulas
- 10. Which of the following is true about pseudo-code?
 - A) It follows the syntax of a specific programming language
 - B) It can be compiled and executed directly
 - C) It provides a structured way to detail logic without specific programming syntax
 - D) It uses only graphical symbols to represent instructions
- 11. Which of the following programming languages can be used to write computer programs that implement algorithms?
 - A) Java
 - B) C++
 - C) PHP
 - D) All of the above
- 12. In a flowchart, which symbol should have two flow lines connecting to the previous and next symbols?
 - A) Oval
 - B) Rectangle
 - C) Parallelogram
 - D) Diamond
- 13. In the context of flowcharts, what is the purpose of the connector symbol (circle)?
 - A) To start the flowchart
 - B) To represent a decision point
 - C) To indicate the end of the flowchart
 - D) To connect different parts of the flowchart
- 14. Why are flowcharts and pseudo-code important in algorithm development?
 - A) They make algorithms easier to understand and implement
 - B) They are only used in advanced algorithm development
 - C) They are necessary for all types of programming languages
 - D) They replace the need for writing actual code
- 15. What should be the first step in developing a flowchart or pseudo-code for an algorithm?
 - A) Start coding the solution in a programming language
 - B) Identify the problem and the main steps to solve it
 - C) Create a complex design without considering the problem

- D) Execute the solution to see the results

Answers:

- 1. B
- 2. C
- 3. B
- 4. B
- 5. B
- 6. C
- 7. C
- 8. B
- 9. B
- 10. C
- 11. D
- 12. D
- 13. D
- 14. A

15. B

M3 u2

- 1. What is a decision table used for in computer science?
 - A) Compiling code
 - B) Graphically representing an algorithm for decision-making
 - C) Writing pseudocode
 - D) Implementing recursion
- 2. Which of the following is NOT a component of a decision table?
 - A) Condition/Attribute Component
 - B) Action/Conclusion Component
 - C) Data/Output Component
 - D) Condition/Rule Applied Component
- 3. What does the Condition/Attribute Component in a decision table represent?
 - A) The actions to be taken
 - B) The conditions or attributes based on which a decision is made
 - C) The possible outcomes
 - D) The rules applied to a decision
- 4. In a decision table, what does the Action/Conclusion Component specify?
 - A) The conditions under which decisions are made
 - B) The rules that need to be applied

- C) The actions to be taken based on specific conditions
- D) The final decision taken
- 5. Which component in a decision table contains the conclusion or decision selected from possible outcomes?
 - A) Condition/Attribute Component
 - B) Condition/Rule Applied Component
 - C) Action/Conclusion Component
 - D) Action/Conclusion/Decision Taken Component
- 6. What does a decision tree primarily represent?
 - A) A set of conditions for decision-making
 - B) A list of potential outcomes
 - C) The sequence of actions in a flowchart
 - D) The structure of a recursive algorithm
- 7. Which symbol is used to represent a condition or attribute node in a decision tree?
 - A) Rectangle
 - B) Arrow
 - C) Oval
 - D) Diamond
- 8. In a decision tree, what does a rectangle symbol represent?
 - A) A condition or attribute node
 - B) A decision, conclusion, or leaf node
 - C) A start node
 - D) A process block
- 9. What is the starting point of a decision tree called?
 - A) Leaf node
 - B) Root node
 - C) Conclusion node
 - D) Condition node
- 10. How does a decision tree process decisions?
 - A) By looping back to previous nodes
 - B) By starting from the root node and traversing to the leaf node
 - C) By using a recursive function
 - D) By combining conditions and actions in a table
- 11. In a decision tree, what does the arrow symbol indicate?
 - A) A process block
 - B) The flow of control or direction of the branch
 - C) The final decision

- D) The end of the algorithm
- 12. Which of the following best describes the relationship between decision tables and decision trees?
 - A) Both are used exclusively for mathematical operations
 - B) Both are graphical representations for modeling decision processes
 - C) Decision tables are a type of decision tree
 - D) Decision trees are used to replace decision tables
- 13. Which of the following is an advantage of using decision tables?
 - A) They provide a visual representation of decision-making
 - B) They eliminate the need for coding
 - C) They are easier to implement than decision trees
 - D) They automatically generate solutions
- 14. What is the final outcome of a decision tree referred to as?
 - A) Root node
 - B) Leaf node
 - C) Condition node
 - D) Branch node
- 15. Which tool is particularly useful for modeling and analyzing decision processes in complex systems?
 - A) Flowchart
 - B) Decision table
 - C) Pseudocode
 - D) Recursive algorithm

Answers:

- 1. B
- 2. C
- 3. B
- 4. C
- 5. D
- 6. A
- 7. C
- 8. B
- 9. B
- 10. B
- 11. B
- 12. B
- 13. A
- 14. B

Module 4

M4 u1

- 1. What is the primary goal of sorting in computing?
 - A) Rearranging items in a list for better visualization
 - B) Rearranging the items of a given list in ascending or descending order
 - C) Counting the number of items in a list
 - D) Finding duplicates in a list
- 2. Which of the following is NOT an example of a sorting algorithm?
 - A) Bubble sort
 - B) Merge sort
 - C) Binary search
 - D) Insertion sort
- 3. Why is sorting important in computing?
 - A) It helps in faster data processing
 - B) It makes data look organized
 - C) It enables faster solution to problems like searching
 - D) It helps in data compression
- 4. What is searching in computing?
 - A) Rearranging items in a list
 - B) Finding a given value in a set
 - C) Deleting items from a list
 - D) Merging two lists
- 5. Which of the following is an example of a searching algorithm?
 - A) Quick sort
 - B) Sequential search
 - C) Merge sort
 - D) Bubble sort
- 6. In which scenario is binary search particularly effective?
 - A) On unsorted data
 - B) On small data sets
 - C) On sorted data
 - D) On data with duplicates
- 7. What is the key difference between binary search and linear search?
 - A) Binary search is faster but can only be used on sorted data
 - B) Linear search is faster but can only be used on sorted data

- C) Binary search can find multiple items at once
- D) Linear search always starts from the middle of the list
- 8. Which algorithm design technique does Bubble sort fall under?
 - A) Divide and conquer
 - B) Greedy algorithm
 - C) Dynamic programming
 - D) Brute force
- 9. Which of the following sorting algorithms is based on the divide and conquer technique?
 - A) Selection sort
 - B) Bubble sort
 - C) Quick sort
 - D) Insertion sort
- 10. What is an example of a problem that can be solved using the brute force design technique?
 - A) Quick sort
 - B) Sequential search
 - C) Binary search
 - D) Strassen's matrix multiplication
- 11. Which sorting algorithm is most suitable for sorting a small list of numbers with minimal computational resources?
 - A) Bubble sort
 - B) Merge sort
 - C) Quick sort
 - D) Radix sort
- 12. In which computing problem area would you most likely use Strassen's matrix multiplication?
 - A) Graph traversal
 - B) String processing
 - C) Numerical computation
 - D) Sorting
- 13. Which of the following is an application of graph algorithms?
 - A) Bubble sort
 - B) Binary search
 - C) Binary tree traversal
 - D) Text pattern matching
- 14. Which algorithm design technique is most commonly used in text pattern matching?
 - A) Divide and conquer
 - B) Greedy algorithm
 - C) Brute force

- D) Dynamic programming
- 15. What is the primary advantage of using binary search over sequential search?
 - A) Binary search can be used on unsorted data
 - B) Binary search is more memory-efficient
 - C) Binary search is faster on sorted data
 - D) Binary search can search for multiple items simultaneously

Answers:

- 1. B
- 2. C
- 3. C
- 4. B
- 5. B
- 6. C
- 7. A
- 8. D
- 9. C
- 10. B
- 11. A
- 12. C
- 13. C
- 14. C
- 15. C

M4_u2

- 1. Which of the following operations is primarily used to determine the order of elements in a sorting algorithm?
 - A) Copy Operation
 - B) Comparison Operation
 - C) Swap Operation
 - D) Merge Operation
- 2. In the Simple Sort algorithm, what happens during the first pass?
 - A) The largest element is moved to the beginning of the list.
 - B) The smallest element is moved to the sorted portion of the list.
 - C) All elements are swapped with each other.
 - D) The list is divided into two equal parts.
- 3. Which sorting algorithm divides the array into smaller subarrays before sorting?
 - A) Selection Sort
 - B) Insertion Sort
 - C) Simple Sort

- D) Merge Sort
- 4. During which operation is a temporary cell created in the computer to facilitate the sorting process?
 - A) Comparison Operation
 - B) Copy Operation
 - C) Swap Operation
 - D) Merge Operation
- 5. Which sorting algorithm repeatedly selects the smallest element from the unsorted portion of the list and moves it to the sorted portion?
 - A) Insertion Sort
 - B) Merge Sort
 - C) Selection Sort
 - D) Quick Sort
- 6. In the Insertion Sort algorithm, where is the first unsorted element placed after being compared?
 - A) At the end of the sorted portion
 - B) At the beginning of the unsorted portion
 - C) In its correct sorted position
 - D) In the middle of the unsorted portion
- 7. Which sorting algorithm is characterized by the process of repeatedly dividing the array into halves until individual elements are reached, and then merging them back in sorted order?
 - A) Selection Sort
 - B) Bubble Sort
 - C) Insertion Sort
 - D) Merge Sort
- 8. What is the main difference between the Simple Sort and Selection Sort algorithms?
 - A) Simple Sort uses comparison, while Selection Sort uses swapping.
- B) Simple Sort repeatedly moves the smallest element to the sorted portion, while Selection Sort selects the smallest element and swaps it with the first unsorted element.
 - C) Simple Sort is a type of Merge Sort, while Selection Sort is a type of Insertion Sort.
 - D) Simple Sort uses multiple arrays, while Selection Sort uses a single array.
- 9. In which of the following sorting algorithms does each element get inserted into its correct position within the sorted portion of the array one at a time?
 - A) Quick Sort
 - B) Selection Sort
 - C) Bubble Sort
 - D) Insertion Sort

- 10. Which sorting algorithm is most efficient for nearly sorted lists?
 - A) Bubble Sort
 - B) Quick Sort
 - C) Insertion Sort
 - D) Selection Sort

Answers

- 1. B
- 2. B
- 3. D
- 4. C
- 5. C
- 6. C
- 7. D
- 8. B
- 9. D
- 10. C