

1 / 1

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04-336409

(43) Date of publication of application : 24.11.1992

(51) Int. C1. H01G 9/00

H01G 9/02

(21) Application number: 03-137160 (71) Applicant: ELNA CO LTD

ASAHI GLASS CO LTD

(22) Date of filing: 13.05.1991 (72) Inventor: KIMURA YOSHIKATSU

JINBO TOSHIICHI KURIHARA KANAME

(54) ELECTRIC DOUBLE-LAYER CAPACITOR AND ITS MANUFACTURE

(57) Abstract:

PURPOSE: To elongate a capacitor by improving the wettability and the liquid retainability to electrolyte to a separator.

CONSTITUTION: An electron beam is applied on a separator 7 by an electron beam processing means 9 so as to activate the functional group on the surface, and then the same separator 7 is placed, for example, on the polarizable electrode 5 on the side of a case body 2, and electrolyte is injected.

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-336409

(43)公開日 平成4年(1992)11月24日

(51) Int.Cl.⁵

A

識別記号

庁内整理番号

FΙ

技術表示箇所

H01G 9/00

301 7924-5E

9/02 301 7924-5E

審査請求 未請求 請求項の数4(全 4 頁)

(21)出願番号

特願平3-137160

(71)出題人 000103220

エルナー株式会社

(22)出願日

平成3年(1991)5月13日

神奈川県藤沢市辻堂新町2丁目2番1号

(71)出願人 000000044

旭硝子株式会社

東京都千代田区丸の内2丁目1番2号

(72)発明者 木村 好克

神奈川県藤沢市辻堂新町2丁目2番1号

エルナー株式会社内

(72) 発明者 神保 敏一

神奈川県藤沢市辻堂新町2丁目2番1号

エルナー株式会社内

(74)代理人 护理士 大原 拓也

最終頁に続く

(54)【発明の名称】 電気二重層コンデンサおよびその製造方法

(57) 【要約】

【目的】セパレータの電解液に対する濡れ性および保液 力を改善し、コンデンサの長寿命化を図る。

【構成】セパレータ7に電子線処理手段9により電子線 を照射してその表面の官能基を活性化させた後、同セパ レータ7を例えばケース本体2側の分極性電極5上に載 置して電解液を注入する。

【特許請求の範囲】

【請求項1】 皿状に形成されたケース本体と、同ケース 本体に被せられるキャップとを含み、それらの底部に分 極性電極を取付け、その各分極性電極に所定の電解液を 含浸させるとともに、それら分極性重極の間にセパレー 夕を介在させてなる電気二重層コンデンサにおいて、上 記セパレータには電子線処理が施されていることを特徴 とする電気二重層コンデンサ。

【請求項2】上記セパレータはメルトブローン不識布か ンデンサ。

【請求項3】皿状に形成されたケース本体と、同ケース 本体に被せられるキャップの各底部に分極性電極を取付 けるとともに、そのいずれか一方の分極性電極上にセパ レータを載置し、各分極性電極に所定の電解液を含浸さ せた後、上記ケース本体と上記キャップとを気密的に組 み合せてなる電気二重層コンデンサの製造方法におい て、上記セパレータに電子線処理を施した後に、同セパ レータを上記分極性電極上に載置して電解液を含浸させ るようにしたことを特徴とする電気二重層コンデンサの 20 製造方法。

【請求項4】セパレータの電子線処理工程と電解液の含 浸工程とが連続して行なわれることを特徴とする請求項 3に記載の電気二重層コンデンサの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電気二重層コンデンサに 関し、さらに詳しく言えば、そのセパレータに関するも のである。

[0002]

【従来の技術】図2に例示されているように、電気二重 層コンデンサ1は皿状のケース本体2と、同ケース本体 2にシール手段としてのガスケット3を介して被せられ るキャップ4とを備えている。

【0003】製造に際しては、ケース本体2にガスケッ ト3を嵌合させた後、同ケース本体2の底部に導電性接 着剤を介してシート状の分極性電極5が取付けられる。 これと並行して、キャップ4の底部にも同じくシート状 の分極性電極6が導電性接着剤を介して取付けられる。

【0004】そして、例えばケース本体2例の分極性電 40 極5上にセパレータ7が載置され、同ケース本体2とキ ャツブ4に電解液が注入され、各分極性電極5,6に対 する電解液の含浸が行なわれる。

【0005】しかる後、ケース本体2に対してキャップ 4が被せられ、同ケース本体2の周縁がかしめられて所 定容量のコインセルが作られる。

【0006】なお、分極性電極5,6は、例えば導電性 物質として活性炭、カーボンの粉末にパインダーとして のPTFE(ポリテトラフルオロエチレン)を混練し、 所定の厚みに圧延してなるシートから例えば円形に打ち 50 工程とを連続して行なうことが好ましい。また、セパレ

抜くことにより得られる。

[0007]

【発明が解決しようとする課題】分極性電極 5, 6への 電解液の含浸時、セパレータ7にも同電解液の含浸が行 なわれるようにするため、セパレータ7には電解液に対 する濡れ性と保液力が要求される。

2

【0008】この意味からすれば、ポリプロピレンやポ リエチレンなどの不識布が好ましいが、そのままでは機 械的強度が弱い。そこで、ガラス繊維を混入している。 らなることを特徴とする請求項1に記載の電気二重層コ 10 ガラス繊維はその線径を細くすることができるため、機 械的強度が高められることに加えて全体としての表面積 が拡大され、その分保液力が高められる。

> 【0009】しかしながら、製造上次のような問題があ る。すなわち、ガラス繊維を混入した後、ローラがけを 行なうのであるが、その際抜け落ちることがあり、ピン ホール発生の原因となる。また、マザーシートからセパ レータ7を型で打ち抜くのであるが、ガラス繊維が混入 されているため、その打ち抜き型の消耗が激しい。

【0010】これに代わる索材としてメルトプローン不 織布がある。メルトプローンとは、ポリマーを溶解(メ ルト)し、吹き飛ばす(ブロー)の意味である。

【0011】すなわち、このメルトプローン不識布は、 溶解した熱可塑性ポリマー、例えばポリプロピレン、ポ リエチレン、ポリエチレンテレフタレート、ポリプチレ ンテレフタレートなどを押出機のノズルダイから捕集機 に高速加熱ガスで吹き出すことにより得られる。

【0012】メルトプローン不織布は成形性および機械 的強度の点では好ましいと言えるが、その線径が太いた め表面積が小さく、また、表面の官能基が活性化されて 30 いないため、電解液に対する濡れ性および保液力が余り 良くない。

【0013】このメルトプローン不織布をセパレータと して使用する場合、一枚で使用されたり、あるいは複数 枚、例えば二枚重ねて使用する場合があるが、いずれに しても電解液不足となり、コンデンサの短命化を招来す るおそれがある.

[0014]

【課題を解決するための手段】本発明は上記従来の欠点 を解消するためになされたもので、その構成上の特徴 は、皿状に形成されたケース本体と、同ケース本体に被 せられるキャップとを含み、それらの底部に分極性電極 を取付け、その各分極性電極に所定の電解液を含浸させ るとともに、それら分極性電極の間にセパレータを介在 させてなる電気二重層コンデンサにおいて、セパレータ に電子線処理を施したことにある。

【0015】すなわち、セパレータに電子線処理を施し た後に、同セパレータをいずれか一方の分極性電極上に 載置して電解液を含浸させるのである。

【0016】この場合、電子線処理工程と電解液の含浸

7

ータの素材としてはメルトプローン不識布が好適である が、メルトプロー方式によらないポリプロピレンやポリ エチレンなどの不模布であってもよい。

[0017]

【作用】電子線処理を行なうことにより、セパレータ表 面の官能基が活性化され、電解液に対する濡れ性および 保液力が大幅に改善される。

[0018]

【実施例】図1を参照しながら、本発明の実施例を説明 らパンチング機8にてセパレータ7を例えば円形に打ち 抜くのであるが、この例ではその打ち抜き前に、電子線 処理手段9により原反7aに電子線を照射してその表面 の官能基を活性化するようにしている。

【0019】この例とは異なり、打ち抜いた後のセパレ ータ7に電子線を照射するようにしてもよい。なお、セ パレータの素材としては、メルトプローン不識布が好ま しいが、メルトプロー方式によらないポリプロピレンや ポリエチレンなどの不識布であってもよい。

【0020】次に、セパレータ7をケース本体2側の分 * 20

*極性電極5上に載置し、同ケース本体2内に電解液を注 入する。この場合、セパレータ7の表面の官能基が活性 化されているため、同セパレータ7に対して電解液がス ムースに含浸する。

【0021】しかる後、ケース本体2とキャップ4とを 組合せて図2に示されているようにその周録を気密的に 封口する。 すなわち、ケース本体2 に対する分極性電極 5の取付けと並行して、キャップ4にも分極性電極6の 取付けと電解液の含浸が行なわれ、最終的にケース本体 する。まず、セパレータの原反(マザーシート) 7 aか 10 2 に対してキャップ 4 が被せられ、同ケース本体 2 の間 緑がかしめられる。

> 【0022】ここで、試料として平均繊維径が1~10 μmのメルトプロー方式によるポリプロピレン不識布 (厚さ150 µm、目付量40g/平方m)を用い、電 子線未処理の比較例と、電子線処理を施した実施例とに ついて、それらの電解液保液率を測定した結果を表1に 示す。

[0023]

【表1】

		比 較 例 (未処理)	実 庭 例			
			直後	1時間後	2.4 時間後	100時間後
電解液の	3分值	350	365	365	364	352
保液率 (%)	5分值	8 0	141	138	131	118

なお、この保液率測定方法は次のとおりである。

【0024】(1)まず、大きさ50×50mmの試験 片をとり、これをプロピレンカーポネイト中に浸漬し、 十分に含浸させる。

【0025】(2)試験片の端をピンセットではさんで 30 取り出し、45度に傾けたガラス板に3分間放置した 後、液滴を取り除き重量を測定し、次式によって保液率 を算出する。

[0026]

保液率 $(%) = (W_2 - W_1) / W_1 \times 100$ 式中、W1 は浸漬前の重量、W1 は浸漬後の重量であ る。

【0027】(3)しかる後、試験片を2枚のろ紙には さみ、おもりを載せる。おもりとしては、5×25cm の治具(650g)を用いた。

【0028】(4)1分後に試験片を取り出し、重量を 測定し、上記の式によって保液率を求める。

【0029】(5)(3)、(4)を2回繰り返す。

【0030】(6)(2)で求めた保液率を3分値とし た。

【0031】(7)(3)、(4)および(5)で求め た保液率がそれぞれ4,5,6分位となるが、表1には 3分値と、5分値を採用した。

【0032】また、本実施例に関しては、電子線処理を 行なってから電解液を含浸させるまでの時間をその直 50 後、1時間後、24時間後および100時間後としてそ の各々について保液率を測定した。

【0033】この測定結果、すなわち3分値と5分値と の比較から分かるように、本発明によると、高い保液率 を示しコンデンサの長寿命化が図れる。

[0034]

【発明の効果】以上説明したように、本発明によれば、 セパレータに電子線処理を施した後、電解液を含浸する ようにしたことにより、電解液に対する濡れ性および保 液力が改善され、コンデンサの長寿命化が達成される。

【図面の簡単な説明】

【図1】本発明の実施例に係る製造工程を概略的に示し た模式図。

【図2】 電気二重層コンデンサの内部構造を図解した断 40 面図。

【符号の説明】

- 1 電気二重層コンデンサ
- 2 ケース本体
- 3 ガスケット (シール手段)
- 4 キャップ
- 5,6 分極性電極
- 7 セパレータ
- 8 パンチング機
- 9 電子線処理手段

-55-

[図1]

【図2】

フロントページの続き

(72)発明者 栗原 要

神奈川県藤沢市辻堂新町2丁目2番1号 エルナー株式会社内