Standardní limity

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\bullet \lim_{x\to 0}\frac{\ln(x+1)}{x}=1$$

$$\bullet \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Rozšířená reálná čísla

Rozšíříme reálná čísla o prvky ∞ a $-\infty$, tzv. *nevlastní body*;

$$\mathbb{R}^* = \mathbb{R} \cup \{\infty; -\infty\}.$$

Počítání v \mathbb{R}^*

- s "běžnými" reálnými čísly se počítá stále stejně
- ullet ∞ + reálné číslo $=\infty$, $-\infty$ + reálné číslo $=-\infty$
- $\infty \cdot$ kladné reálné číslo $= \infty$, $\infty \cdot$ záporné reálné číslo $= -\infty$, $-\infty \cdot$ kladné reálné číslo $= -\infty$, $-\infty \cdot$ záporné reálné číslo $= \infty$
- $\infty + \infty = \infty$, $-\infty + (-\infty) = -\infty$
- $\infty \cdot \infty = \infty$, $-\infty \cdot (-\infty) = \infty$, $-\infty \cdot \infty = -\infty$
- $\frac{\text{reálné číslo}}{\infty} = 0$, $\frac{\text{reálné číslo}}{-\infty} = 0$

Počítání a výjimky

Počítání v \mathbb{R}^*

- s "běžnými" reálnými čísly se počítá stále stejně
- ullet $\infty+$ reálné číslo $=\infty$, $-\infty+$ reálné číslo $=-\infty$
- $\infty \cdot$ kladné reálné číslo $= \infty$, $\infty \cdot$ záporné reálné číslo $= -\infty$, $-\infty \cdot$ kladné reálné číslo $= -\infty$, $-\infty \cdot$ záporné reálné číslo $= \infty$
- \bullet $\infty + \infty = \infty$, $-\infty + (-\infty) = -\infty$
- $\infty \cdot \infty = \infty$, $-\infty \cdot (-\infty) = \infty$, $-\infty \cdot \infty = -\infty$
- $\frac{\text{reálné číslo}}{\infty} = 0$, $\frac{\text{reálné číslo}}{-\infty} = 0$

Není definováno!

- $\frac{\text{reálné číslo}}{0}$, $\frac{\infty}{0}$, $\frac{-\infty}{0}$
- $0 \cdot \infty$, $0 \cdot (-\infty)$
- \bullet $-\infty + \infty$
- \bullet $\frac{\infty}{\infty}$, $\frac{-\infty}{\infty}$, $\frac{\infty}{-\infty}$, $\frac{-\infty}{-\infty}$

Okolí nevlastních bodů

Definice

Definujeme ε -okolí bodu ∞ jako

$$B(\infty;\varepsilon) = \left(\frac{1}{\varepsilon};\infty\right)$$

a ε -okolí bodu $-\infty$ jako

$$B(-\infty; \varepsilon) = (-\infty; -\frac{1}{\varepsilon}).$$

Prstencová ε -okolí definujeme stejně jako ta normální, tedy

$$P(\infty; \varepsilon) = B(\infty; \varepsilon)$$

$$P(-\infty; \varepsilon) = B(-\infty; \varepsilon).$$

Definice limity podruhé

Stěžejní Definice

Řekneme, že funkce f má v bodě $c \in \mathbb{R}^*$ limitu $A \in \mathbb{R}^*$, pokud platí

$$\forall \varepsilon \in \mathbb{R}, \varepsilon > 0 \ \exists \delta \in \mathbb{R}, \delta > 0 \ \forall x \in P(c; \delta) \colon f(x) \in B(A; \varepsilon).$$

Jinak řečeno:

- Pro jakkoliv malé okolí bodu A je možné nalézt dostatečně malé prstencové okolí bodu c takové, že funkční hodnoty bodů z tohoto prstencového okolí budou všechny v onom okolí A.
- Pro každé kladné ε existuje kladné δ takové, že pokud se x liší od c o méně jak δ (ovšem $x \neq c$), tak se f(x) liší od A o méně jak ε .

To, že f má v c limitu A, zapisujeme jako

$$\lim_{x\to c} f(x) = A.$$

Příklady

- $\bullet \lim_{x \to \infty} x = \infty$
- $\lim_{x \to \infty} \frac{1}{x} = 0$
- $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ (neplést s $\lim_{x \to 0} \frac{\sin x}{x} = 1!$)
- $\oint_{x\to 0} \frac{1}{x^2} = \infty$
- ale není pravda $\lim_{x\to 0}\frac{1}{x}=\infty$ tato limita neexistuje
- podobně $\lim_{x\to\infty} \sin x$ neexistuje

Terminologie

$$\text{Jestliže } \lim_{x \to c} f(x) = A :$$

$$\text{ve vlastním bodě, tj. } c \in \mathbb{R} \text{ a} \begin{cases} A \in \mathbb{R} \text{ (limita je vlastní)} \\ A = \infty \text{ (limita je nevlastní,} \\ \text{rovna (plus) nekonečnu)} \\ A = -\infty \text{ (limita je nevlastní,} \\ \text{rovna mínus nekonečnu)} \end{cases}$$

$$\text{v nevlastním bodě, tj. } c = \pm \infty \text{ a} \begin{cases} A \in \mathbb{R} \text{ (limita je vlastní,} \\ A \in \mathbb{R} \text{ (limita je vlastní)} \\ A = \infty \text{ (limita je nevlastní,} \\ \text{rovna (plus) nekonečnu)} \\ A = -\infty \text{ (limita je nevlastní,} \\ \text{rovna mínus nekonečnu)} \end{cases}$$

Kromě toho limita vůbec nemusí existovat.

Počítání s limitami podruhé

Mějme dvě funkce f, g, které mají v bodě $c \in \mathbb{R}^*$ limity:

$$\lim_{x \to c} f(x) = A \in \mathbb{R}^*, \qquad \lim_{x \to c} g(x) = B \in \mathbb{R}^*.$$

Potom:

- Limita funkce f + g v bodě c existuje a je rovna A + B, je-li A + B definováno.
- Limita funkce $f \cdot g$ v bodě c existuje a je rovna $A \cdot B$, je-li $A \cdot B$ definováno.
- Limita funkce $\frac{f}{g}$ v bodě c existuje a je rovna $\frac{A}{B}$, je-li $\frac{A}{B}$ definováno.

Symbolicky – kdykoliv má pravá strana smysl, tak platí:

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x),$$

$$\lim_{x \to c} (f(x) \cdot g(x)) = (\lim_{x \to c} f(x)) \cdot (\lim_{x \to c} g(x)),$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

Oblíbené limity v nevlastním bodě

Polynomy (= mnohočleny)

Je-li P nekonstantní polynom, tak $\lim_{x \to \pm \infty} P(x)$ bude vždy ∞ či $-\infty$.

Podíly polynomů ("racionální funkce")

O výsledku rozhoduje stupeň čitatele a jmenovatele.