CUNY SPS DATA 621 - CTG5 - HW4

Betsy Rosalen, Gabrielle Bartomeo, Jeremy O'Brien, Lidiia Tronina, Rose Koh April 24th, 2019

Contents

1	DATA EXPLORATION	2
2	DATA PREPARATION	3
3	BUILD MODELS	4
4	SELECT MODELS	5
5	Appendix	6

1 DATA EXPLORATION

```
## 'data.frame':
                  8161 obs. of 26 variables:
## $ INDEX
               : int 1 2 4 5 6 7 8 11 12 13 ...
## $ TARGET_FLAG: int
                      0 0 0 0 0 1 0 1 1 0 ...
## $ TARGET AMT : num
                      0 0 0 0 0 ...
## $ KIDSDRIV
               : int 000000100...
                : int 60 43 35 51 50 34 54 37 34 50 ...
## $ HOMEKIDS
              : int 0010010200...
## $ YOJ
               : int 11 11 10 14 NA 12 NA NA 10 7 ...
## $ INCOME
               : chr
                     "$67,349" "$91,449" "$16,039" "" ...
                      "No" "No" "No" "No" ...
## $ PARENT1
               : chr
## $ HOME_VAL
                      "$0" "$257,252" "$124,191" "$306,251" ...
               : chr
                      "z_No" "z_No" "Yes" "Yes" ...
## $ MSTATUS
                : chr
                     "M" "M" "z_F" "M" ...
## $ SEX
                : chr
## $ EDUCATION : chr "PhD" "z_High School" "z_High School" "<High School" ...
                      "Professional" "z_Blue Collar" "Clerical" "z_Blue Collar" ...
## $ JOB
               : chr
## $ TRAVTIME
                      14 22 5 32 36 46 33 44 34 48 ...
              : int
                      "Private" "Commercial" "Private" "Private" ...
## $ CAR_USE
                      "$14,230" "$14,940" "$4,010" "$15,440" ...
## $ BLUEBOOK
              : chr
                      11 1 4 7 1 1 1 1 1 7 ...
## $ TIF
                : int
## $ CAR_TYPE
                      "Minivan" "Z_SUV" "Minivan" ...
               : chr
## $ RED CAR
                : chr
                      "yes" "yes" "no" "yes" ...
                      "$4,461" "$0" "$38,690" "$0" ...
## $ OLDCLAIM
                : chr
## $ CLM FREQ
                      2020200100...
               : int
                      "No" "No" "No" "No" ...
## $ REVOKED
                : chr
                : int 3 0 3 0 3 0 0 10 0 1 ...
## $ MVR PTS
## $ CAR AGE
                : int
                     18 1 10 6 17 7 1 7 1 17 ...
## $ URBANICITY : chr "Highly Urban/ Urban" "Highly Urban/ Urban" "Highly Urban/ Urban" "Highly Urban"
```

change BLUEBOOK, HOME_VAL, INCOME \$ to numerical value change PARENT1 , Yes-> 2 No ->1 change RED_CAR , yes ->1 no ->0 change SEX into GENDER and if M change into 1 and z_F into 0 split URBANICITY to RURAL and URBAN dummy variables 1,0

Table 1: Data Dictionary

VARIABLE	DEFINITION	TYPE
TARGET_FLAG	car crash = 1, no $car crash = 0$	response
TARGET_AMT	car crash cost = >0, no $car crash = 0$	response
AGE	driver's age - very young/old tend to be risky	numerical predictor
BLUEBOOK	value of vehicle	numerical predictor
CAR_AGE	age of vehicle	numerical predictor
CAR_TYPE	type of car (6types)	categorical predictor
CAR_USE	usage of car (commercial/private)	categorical predictor
CLM_FREQ	number of claims past 5 years	numerical predictor
EDUCATION	max education level (5types)	categorical predictor
HOMEKIDS	number of children at home	numerical predictor
HOME_VAL	value of home - home owners tend to drive more responsibly	numerical predictor
INCOME	income - rich people tend to get into fewer crashes	numerical predictor
JOB	job category (8types, 1missing)- white collar jobs tend to be safer	categorical predictor
KIDSDRIV	number of driving children - teenagers likely get into crashes	numerical predictor
MSTATUS	maritial status - married people drive more safely	catogerical predictor
MVR_PTS	number of traffic tickets	numerical predictor
OLDCLAIM	total claims in the past 5 years	numerical predictor
PARENT1	single parent	categorical predictor
RED_CAR	a red car	categorical predictor
REVOKED		categorical predictor
SEX	gender - woman may have less crashes than man	categorical predictor
TIF	time in force - number of years being customer	numerical predictor
TRAVTIME	distance to work	numerical predictor
URBANCITY	urban/rural	categorical predictor
YOJ	years on job - the longer they stay more safe	numerical predictor

2 DATA PREPARATION

3 BUILD MODELS

4 SELECT MODELS

5 Appendix

The appendix is available as script.R file in project4_insurance folder. https://github.com/betsyrosalen/DATA_621_Business_Analyt_and_Data_Mining