1 st Semester (B. Tech.) Paper Code: ETCH 113 Time: 1: 30 hr.	First/Mid Term Examination September, 2017	Sub: Applied Chemistry Max. Marks: 30	
Note: Attempt any three Ques	tions including Question No.1 w	hich is compulsory	
I(a) Explain why the sublimation curve has a (b) Write condensed p	fusion curve of ice has positive slope in the phase rule and explain w	as a negative slope whereas hase diagram? Thy it is used for two compo	onent
(c) Calculate the mass	and volume of air need	ed for the combustion of 1 k	cg of
carbon. (d) 1.56 g of the coal win 50.0 mL of 0.1 N required 6.25 mL of percentage of N in the Coal was C = 75 %; H = 5.2 %; C	vas kjeldahlized and NH $_2$ SO ₄ . After absorpt 0.1 N NaOH for exacoal sample.	I ₃ gas thus evolved was absolution, the excess (residual) act neutralization. Calculate owing percentage compositions ash = 4.5 %	orbed acid- the
Calorimeter? Explain w (b) Describe the Otto-I by-products recovered i	rith the help of a neat dia Hoffman's process for parties of the process.	preparing coke and mention [5+5]	0
3 Differentiate between at Fixed bed Cataly by Liquid phase ther c) Octane number ar	tic Cracking and Movin mal cracking and vapou	ving: ng bed Catalytic Cracking ar phase thermal cracking [5+5]	3.68
4 (a) Draw and discuspractical application of t		of lead-silver system. Di	scuss

121.0-11.0 6.41.6 - 0.121

of Triple point.

\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\
\$ \$0.90 \\

(Please write your Roll No. immediately)

9

(b) Give a labeled phase diagram of water system and discuss the importance

4848 40.007 4848 26.600. 4848 26.600.

[5+5]

Roll No