46.4 The Simplex Algorithm Using Tableaux

We now describe a formalism for presenting the simplex algorithm, namely (full) tableaux. This is the traditional formalism used in all books, modulo minor variations. A particularly nice feature of the tableau formalism is that the update of a tableau can be performed using elementary row operations identical to the operations used during the reduction of a matrix to row reduced echelon form (rref). What differs is the criterion for the choice of the pivot.

Since the quantities $c_j - c_K \gamma_K^j$ play a crucial role in determining which column A^j should come into the basis, the notation \bar{c}_j is used to denote $c_j - c_K \gamma_K^j$, which is called the *reduced cost* of the variable x_j . The reduced costs actually depend on K so to be very precise we should denote them by $(\bar{c}_K)_j$, but to simplify notation we write \bar{c}_j instead of $(\bar{c}_K)_j$. We will see shortly how $(\bar{c}_{K^+})_i$ is computed in terms of $(\bar{c}_K)_i$.

Observe that the data needed to execute the next step of the simplex algorithm are

- (1) The current basic solution u_K and its basis $K = (k_1, \ldots, k_m)$.
- (2) The reduced costs $\bar{c}_j = c_j c_K A_K^{-1} A^j = c_j c_K \gamma_K^j$, for all $j \notin K$.
- (3) The vectors $\gamma_K^j = (\gamma_{k_i}^j)_{i=1}^m$ for all $j \notin K$, that allow us to express each A^j as $A_K \gamma_K^j$.

All this information can be packed into a $(m+1) \times (n+1)$ matrix called a *(full) tableau* organized as follows:

$c_K u_K$	\bar{c}_1	• • •	\bar{c}_j	• • •	\overline{c}_n
u_{k_1}	γ_1^1	• • •	γ_1^j	• • •	γ_1^n
:	:		÷		:
u_{k_m}	γ_m^1		γ_m^j		γ_m^n

It is convenient to think as the first row as Row 0, and of the first column as Column 0. Row 0 contains the current value of the objective function and the reduced costs. Column 0, except for its top entry, contains the components of the current basic solution u_K , and the remaining columns, except for their top entry, contain the vectors γ_K^j . Observe that the γ_K^j corresponding to indices j in K constitute a permutation of the identity matrix I_m . The entry $\gamma_{k^-}^{j^+}$ is called the *pivot* element. A tableau together with the new basis $K^+ = (K - \{k^-\}) \cup \{j^+\}$ contains all the data needed to compute the new u_{K^+} , the new $\gamma_{K^+}^j$, and the new reduced costs $(\bar{c}_{K^+})_j$.

If we define the $m \times n$ matrix Γ as the matrix $\Gamma = [\gamma_K^1 \cdots \gamma_K^n]$ whose jth column is γ_K^j , and \overline{c} as the row vector $\overline{c} = (\overline{c}_1 \cdots \overline{c}_n)$, then the above tableau is denoted concisely by

$$\begin{array}{c|c}
c_K u_K & \overline{c} \\
u_K & \Gamma
\end{array}$$