Contrôle S1 Architecture des ordinateurs

Répondre	exc	lusivemen	t sur	le	sujet
----------	-----	-----------	-------	----	-------

Durée: 1 h 30

Nom:	. Prénom :	Groupe:
------	------------	---------

Exercice 1 (4 points)

1. Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat
$\frac{32^8 \cdot 8^4 \cdot 128^7}{((1999 + 49)^3 \cdot 16^{-5})^5}$	
$\frac{((8192 \cdot 16^{11})^5 \cdot 65536^{-8})^3}{(32^{-5} \cdot (500 + 12))^{-5} \cdot 4096}$	

- 2. Donnez, <u>en puissance de deux</u>, le nombre de bits que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).
 - 128 Mib =
 - 2 Kio =
- 3. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière. Le résultat seul est attendu (pas de détail).
 - 128 Gib =
 - 2³¹ bits =

Exercice 2 (4 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas ¼ ou 2⁻²). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
11110001,0001	Binaire	Décimale	
3FA,1	Hexadécimale	Décimale	
125,4	Décimale	Hexadécimale (2 chiffres après la virgule)	
52,0625	Décimale	Binaire	
6142,153	Base 8	Hexadécimale	\
7,25	Décimale	Base 5 (3 chiffres après la virgule)	
67	Base 9	Base 3	
1110101011,111011	Binaire	Hexadécimale	

Exercice 3 (4 points)

Effectuez les opérations suivantes en binaire (les deux opérandes et le résultat sont codés sur 8 bits). Convertissez le résultat en une valeur décimale non signée et signée. Si un dépassement apparaît, écrire « ERREUR » à la place de la valeur décimale. Le résultat seul est attendu (pas de détail).

Opération	Résultat binaire	Valeur décimale				
Operation	Resultat binaire	Non signée	Signée			
01100110 - 10011011						
10001100 + 01111110						
01111011 + 10000011	,					
10010011 - 10001101						

Contrôle S1

Exercice 4 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Bas	e 2											Base 16					
			1	0	1	1	0	1	1	0	1		F	8	С	С	
				1	0	1	0	0	1	1	0	+	3	2	В	В	
			97.777.777														
Base	3.7																
Jasc	1	0	0	0	1	1	1 1	1 1	1	0	1	Base 8	3	7	3	4	
		781111111 A							-			+	4	7	2	5	

										1							

		Architecture des ordin	ateurs -	- EPITA -	S1 - 2017/2018					
E	(erci	<u>ce 5</u> (4 points)								
1.	1. Une mémoire possède 2000 ₁₆ adresses.									
	Combien de fils d'adresse possède cette mémoire ?									
	Si l'a	dresse basse est 016, quelle est l'adresse	e haute	(en hexad	écimal) ?					
2.	Une mémoire possède 11 fils d'adresse.									
	Combien d'adresses comporte-t-elle (en hexadécimal)?									
	Si l'a	dresse basse est 0 ₁₆ , quelle est l'adresse	e haute	(en hexad	écimal) ?					
3.	et M l'ordi	pace mémoire d'un microprocesseur est 2 possèdent 2000 ₁₆ adresses. M3 et l' re suivant : M1 puis M2, M3 et enfin M coléter le tableau ci-dessous (en hexadéc	M4 pos M4. L'a	ssèdent 11 dresse bas	fils d'adresse. Elle	s sont rangées dans				
		Adresse basse			Adresse basse					
	M1	Adresse haute		M3	Adresse haute	0.10				
		Adresse basse			Adresse basse					
	M2	Adresse haute		M4	Adresse haute					
Siv		est le nombre minimum de fils d'adres nanquez de place, vous pouvez utiliser			_					

4/4

Contrôle S1