

First Class Goals

• Get to know the class better and vice-versa

Set expectations and prepare you for what will come

Belém/Brazil

Electrical Engineering B.Sc. - 2011

Campinas/Brazil

Computer Engineering

M.Sc. - 2014

Ph.D. - 2017

Calgary/Canada

UNIVERSITY OF CALGARY

Postdoctoral Fellow
June 2017 – June 2020
Assistant Professor
July 2020 - present

My wife (Mariana) also a researcher in Al

Baby Jorge – Born 12 September 2019

Wedding in Banff (-30C!)
March 2019

Al runs in the family...

Meet and Greet

- Let's get to know you. If you are comfortable, please share:
 - Name
 - Supervisor
 - Background

Course Delivery

- Synchronous and in-person
 - MF 11:00 am to 12:15 pm
 - Room ENF 334
- Let's use D2L to ask general questions

Course Syllabus

This course focuses on advanced machine learning and image analysis techniques. The course will cover the following topics: models of image segmentation, state-of-the-art methods on ImageNet, self-supervised learning, domain adaptation, generative models. A special emphasis will be given to recent cutting-edge techniques. The course will be hands-on.

Course Syllabus (main topics)

- Python Bootcamp and machine learning concepts
- Data preparation and pre-processing
- Regularization techniques
- Neural Networks
- Transfer Learning and Domain Adaptation
- U-net model of image segmentation
- Generative models
- Self-supervised learning

Learning Outcomes

- 1. Acquire significant knowledge about cutting-edge image analysis and machine learning methods.
- 2. Design and develop image processing and machine learning solutions for relevant problems.
- 3. Acquire hands-on experience with image processing and machine learning programming frameworks (e.g., OpenCV, scikit-image, PyTorch, etc.).

What this course is about?

- Model deployment
- CI/CD pipelines
- Monitoring & triggering

This course is about designing and developing machine learning models to achieve the best quantitative metrics* to the problems being modelled.

Textbook

No mandatory textbook for this course

Starting at chapter 5

Course Assessment

Component	Learning Outcomes	Weight
Participation	1, 2	5%
Assignments (2)	1, 2, 3	40%
Quizzes (2)	1, 2	10%
Final Project	1, 2, 3	45%

• The lowest quiz grade will be dropped

Participation (5%)

Student participation will account for 5% of the final grade. How participation

will be measured?

- Students questions and answers during class
- Students participation on the D2L discussion board
- Students helping each other during class

Assignments (40%)

- Individual or in pairs
- Assignment 01 (20%):
 - Create a machine learning hands-on tutorial
 - **Due:** February 26th (midnight) | **Delivery method:** D2L dropbox
- Assignment 02 (20%):
 - Reading assignment present in class
 - **Due:** presentations will be scheduled in class | **Delivery method:** D2L dropbox

Quizzes (10%)

- 2 quizzes –highest grade is kept
- Quizzes are individual
- Content: all topics covered until the day of the quiz
- Quiz 01: February 2nd
- Quiz 02: March 1st
- The dropped quiz is to accommodate potential student absence

Final Project (45%)

- 5-page report + 1 additional page only with references (if necessary)
- Report template
 - Overleaf please make a copy for your team.
 - Microsoft word
- Report due date: April 5th at 9 am
- Final project presentations: April 5th and 8th
 - 10-minute presentation + 5-minutes for questions
 - Send slides one day before your presentation

Grades

Letter Grade	Total Mark (T)
A+	T≥95%
Α	90% ≤ T < 95%
A-	85% ≤ T < 90%
B+	80% ≤ T < 85%
В	75% ≤ T < 80%
B-	70% ≤ T < 75%
C+	65% ≤ T < 70%
С	60% ≤ T < 65%
C-	55% ≤ T < 60%
D+	50% ≤ T < 55%
D	45% ≤ T < 50%
F	T < 45%

The Programming Environment (Part 1)

https://colab.research.google.com/

https://jupyter.org/

https://github.com/rmsouza01/deep-learning

https://rcs.ucalgary.ca/index.php/RCS Home Page

The Programming Environment (Part 2)

- Python 3
- Python libraries:
 - siamxt
 - NumPy
 - SciPy
 - Matplotlib
 - Scikit-learn
 - Scikit-image
 - Pandas
 - Tensorflow (version ≥ 2.0)
 - PyTorch
- Please have your programming environment in your computer or on Google Colab set up asap

Deep Learning Framework

I hope you enjoy the class ©

Questions?

