$\xi^{q_0+q_1}(1-\xi)^2$. If we let $\theta=(q_0+q_1)/(q_0+q_1+2)$ be the probability for getting $s_i=0$ in the queries of \mathcal{H}_0 and \mathcal{H}_1 , then the entire probability not aborting is $\xi^{q_0+q_1}(1-\xi)^2 \leq 4/(e^2(q_0+q_1+2)^2)$. If the abortion fails, the probability of outputting the correct \mathcal{Z} is $2\epsilon/q_{\mathcal{H}_2}$. Thus, the probability of solving CBDH problem is $8\epsilon/(e^2q_{\mathcal{H}_2}(q_0+q_1+2)^2)$.

V. CONCRETE CONSTRUCTION OF IB-BME

A. Identity-based broadcast matchmaking encryption

- Setup(λ): With the input security parameter λ , it first picks and sets a bilinear group $\mathcal{BG} = (\mathbb{G}_0, \mathbb{G}_1, \mathbb{G}_T, p, e)$, where the bilinear map $e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$ holds and p is the prime order of groups $(\mathbb{G}_0, \mathbb{G}_1)$. Next, it randomly picks a generator $g \in \mathbb{G}_0$, generators $h, u, v, w \in \mathbb{G}_1$, $\alpha, \beta, \rho \in \mathbb{Z}_p$ and calculates $g_1 = g^\rho, h_0 = h^\rho, h_1 = h^\beta$. Then, it selects the following collision-resistant hash functions $\mathcal{H}_0: \{0,1\}^* \to \mathbb{G}_0, \mathcal{H}_1: \{0,1\}^* \to \mathbb{G}_1, \mathcal{H}_2: \mathbb{G}_T \to \mathbb{Z}_p, \mathcal{H}_3: \mathbb{Z}_p^2 \times \mathbb{G}_0 \times \mathbb{G}_1^2 \to \{0,1\}^\ell, \mathcal{H}_4: \mathbb{G}_0 \times \mathbb{G}_1^2 \times \{0,1\}^\ell \times \mathbb{Z}_p^{2t} \to \mathbb{Z}_p$. Finally, it publishes the public parameter $\operatorname{\mathsf{pp}} = (\mathcal{BG}, g, g_1, u, v, w, h, h_0, h_1, \{\mathcal{H}_i\}_{i \in [0,4]})$ and stores the master secret key $\operatorname{\mathsf{msk}} = (\rho, \alpha)$.
- **EKGen**(msk, id*): Based on msk and identity id*, it produces an encryption key $ek_{id^*} = \mathcal{H}_1(id^*)^{\alpha}$.
- **DKGen**(msk, id): With the input msk and identity id, it returns a decryption key $dk_{id} = (dk_1, dk_2, dk_3)$, where $dk_1 = \mathcal{H}_0(id)^{\rho}, dk_2 = \mathcal{H}_0(id)^{\alpha}, dk_3 = \mathcal{H}_0(id)$.
- Enc(pp, \mathcal{S} , $\operatorname{ek}_{\operatorname{id}^*}$, m): Given pp, a target identity set \mathcal{S} with its length t, an encryption key identity $\operatorname{ek}_{\operatorname{id}^*}$ and the plaintext $m \in \{0,1\}^{\ell_1}$, it first picks $s,d_1,d_2,\sigma,\tau \in \mathbb{Z}_p$ and computes $C_0 = h^s$, $C_1 = g^s$, $C_2 = h^\tau_1$. For each $\operatorname{id}_i \in \mathcal{S}$, it sets $\operatorname{U}_{\operatorname{id}_i} = \mathcal{H}_2(e(h_0,\mathcal{H}_0(\operatorname{id}_i))^s)$ and $\operatorname{V}(\operatorname{id}_i) = \mathcal{H}_2(e(\mathcal{H}_0(\operatorname{id}_i),ek_{\operatorname{id}^*} \cdot h^\tau_1))$, $f(x) = \prod_{i=1}^t (x \operatorname{U}_{\operatorname{id}_i}) + d_1 = \sum_{i=0}^{t-1} a_j x^j + x^t \mod p$ and $g(y) = \prod_{k=1}^t (y \operatorname{V}(\operatorname{id}_i)) + d_2 = \sum_{k=0}^{t-1} b_k y^k + y^t \mod p$, where a_0,\ldots,a_{t-1} and b_0,\ldots,b_{t-1} are the coefficients correspond to x^j and y^k . Next, it sets $C_3 = [\mathcal{H}_3(d_1,d_2,C_1,C_0,C_2)]_{\ell-\ell_1}||(\mathcal{H}_3(d_1,d_2,C_1,C_0,C_2)]^{\ell_1}\oplus m)$, $\varphi = \mathcal{H}_4(C_1,C_0,C_2,C_3,a_0,\ldots,a_{t-1},b_0,\ldots,b_{t-1})$ and $C_4 = (u^\varphi v^\sigma w)^s$. Finally, it generates a ciphertext
- $\mathsf{ct} = (\sigma, C_1, C_0, C_2, C_3, C_4, a_0, \dots, a_{t-1}, b_0, \dots, b_{t-1}).$ • Dec(pp, dk_{id_i}, id*, ct): Based on the public parameter pp, a decryption key dk_{id_i} , the target identity id^* and the ciphertext ct = $(\sigma, C_1, C_0, C_2, C_3, C_4, a_0,$ $\dots, a_{t-1}, b_0, \dots, b_{t-1}),$ it first computes $\varphi = \mathcal{H}_4(C_1, C_0, C_2, C_3, a_0, \dots, a_{t-1}, b_0, \dots, b_{t-1})$ and then determines whether $e(C_1, u^{\varphi}v^{\sigma}w) = e(g, C_4)$ holds. If not, it returns \perp . Otherwise, it computes $\mathsf{U}_{\mathsf{id}_i} = \mathcal{H}_2(e(C_0,\mathsf{dk}_{i,1})) = \mathcal{H}_2(e(C_0,\mathcal{H}_0(\mathsf{id}_i)^{\rho})),$ $\begin{array}{lll} \operatorname{Gid}_{i} & \operatorname{\mathcal{H}2}(\mathsf{C}(\mathsf{G}),\mathsf{Gid}_{i}, I) & \operatorname{\mathcal{H}2}(\mathsf{C}(\mathsf{G}),\mathsf{\mathcal{H}0}(\mathsf{Id}_{i})), \\ d_{1} & = f(\mathsf{U}_{\mathsf{id}_{i}}) & = \sum\limits_{j=0}^{t-1} a_{j}(\mathsf{U}_{\mathsf{id}_{i}})^{j} + (\mathsf{U}_{\mathsf{id}_{i}})^{t} \mod p \\ & \text{and} \ \mathsf{V}(\mathsf{id}_{i}) & = \mathcal{H}_{2}(e(\mathsf{dk}_{i,3}, C_{2})e(\mathsf{dk}_{i,2}, \mathcal{H}_{1}(\mathsf{id}^{*}))) & = \\ \mathcal{H}_{2}(e(\mathcal{H}_{0}(\mathsf{id}_{i}), ek_{\mathsf{id}^{*}} \cdot h_{1}^{\tau})), & d_{2} & = g(\mathsf{V}_{\mathsf{id}_{i}}) & = \\ & t-1 & & & & & & & & & & & & \\ \end{array}$ $\sum_{i=0}^{t-1} b_j(\mathsf{V}_{\mathsf{id}_i})^j + (\mathsf{V}_{\mathsf{id}_i})^t \mod p. \quad \text{If} \quad [C_3]_{\ell-\ell_1}$ $[\widetilde{\mathcal{H}}_3(d_1,d_2,C_1,C_0,C_2)]_{\ell-\ell_1}$, it returns \perp . Otherwise, it outputs $m = [\mathcal{H}_3(d_1, d_2, C_1, C_0, C_2)]^{\ell_1} \oplus [C_3]^{\ell_1}$.

- B. Adaptive identity-based broadcast matchmaking encryption
 - Setup(λ, ℓ): With the input security parameter λ and the maximum legitimate identity set ℓ , it first picks a bilinear group $\mathcal{BG} = (\mathbb{G}_0, \mathbb{G}_1, \mathbb{G}_T, p, e)$ with three random generators $g, v \in \mathbb{G}_0$ and $h \in \mathbb{G}_1$. Next, it chooses random $(\ell+1)$ -dimensional vectors from \mathbb{Z}_p with $r_1^{\tau} = (r_{1,0}, \ldots, r_{1,\ell})$ and $r_2^{\tau} = (r_{2,0}, \ldots, r_{2,\ell})$. It also picks $t_1, t_2, \beta_1, \beta_2, \alpha, \rho \in \mathbb{Z}_p, b, \tau \in \mathbb{Z}_p^*$, sets $\vec{r} = r_1^{\tau} + br_2^{\tau} = (r_0, \ldots, r_\ell), t = t_1 + bt_2,$ $\beta = \beta_1 + b\beta_2$ and calculates $R = g^{\vec{r}} = (g^{r_0}, \ldots, g^{r_\ell}),$ $T = g^t, e(g, h)^{\beta}$. Then, it selects the following hash functions $\mathcal{H}_0 : \{0,1\}^* \to \mathbb{G}_1, \mathcal{H}_1 : \{0,1\}^* \to \mathbb{G}_0,$ $\mathcal{H}_2 : \{0,1\}^* \to \mathbb{Z}_p, \mathcal{H}_3 : \mathbb{G}_T \to \mathbb{Z}_p.$ Finally, it publishes the public parameter pp = $(\mathcal{BG}, v, v^{\rho}, g, g^b, R, T, e(g, h)^{\beta}, h, h^{r_1}, h^{r_2}, h^{t_1}, h^{t_2}, g^{\tau\beta}, h^{\tau\beta_1}, h^{\tau\beta_2}, h^{1/\tau}, \{\mathcal{H}_i\}_{i\in[0,3]})$ and stores the master secret key $\mathsf{msk} = (h^{\beta_1}, h^{\beta_2}, \alpha, \rho).$
 - **EKGen**(msk, id*): Based on msk and identity id*, it produces an encryption key $ek_{id^*} = \mathcal{H}_1(id^*)^{\alpha}$.
 - **DKGen**(msk, id): With the input msk and identity id, it first selects $z \in \mathbb{Z}_p$, random tags $\operatorname{rtag}_1, \ldots, \operatorname{rtag}_\ell$ and returns a decryption key $\operatorname{dk}_{\operatorname{id}} = (\operatorname{dk}_1, \operatorname{dk}_2, \operatorname{dk}_3, \operatorname{dk}_4, \operatorname{dk}_5, \operatorname{dk}_6, \{\operatorname{dk}_{7,j}, \operatorname{dk}_{8,j}, \operatorname{rtag}_j\}_{j=1}^\ell)$, where $\operatorname{dk}_1 = \mathcal{H}_0(\operatorname{id})^\rho, \operatorname{dk}_2 = \mathcal{H}_0(\operatorname{id})^\alpha$, $\operatorname{dk}_3 = \mathcal{H}_0(\operatorname{id})$, $\operatorname{dk}_4 = h^{\beta_1}(h^{t_1})^z$, $\operatorname{dk}_5 = h^{\beta_2}(h^{t_2})^z$, $\operatorname{dk}_6 = h^z$, $\operatorname{dk}_{7,j} = (h^{t_1})^{\operatorname{rtag}_j}h^{r_{1,j}}/(h^{r_{1,0}})^{(\mathcal{H}_2(\operatorname{id}))^j}$, $\operatorname{dk}_{8,j} = (h^{t_2})^{\operatorname{rtag}_j}h^{r_{2,j}}/(h^{r_{2,0}})^{(\mathcal{H}_2(\operatorname{id}))^j}$.
 - Enc(pp, S, $\operatorname{ek}_{\operatorname{id}^*}$, m): Given pp, a target identity set S with its length $n \leq \ell$, an encryption key identity $\operatorname{ek}_{\operatorname{id}^*}$ and the plaintext m, it first defines an identity vector $\vec{y} = (y_0, \ldots, y_n, \ldots, y_\ell)$, where y_i is the coefficients from $f(x) = \prod_{\operatorname{id}_j \in S} (x \mathcal{H}_2(\operatorname{id}_j)) = \sum_{i=0}^n y_i x^i$. Here please note that if $n < \ell$, $y_{n+1} = \ldots = y_\ell = 0$. It next picks s, d_2 , ctag $\in \mathbb{Z}_p$ and computes $C_0 = m \cdot e(g, h)^{\beta s}$, $C_1 = g^s$, $C_2 = g^{bs}$, $C_3 = (T^{\operatorname{ctag}} \prod_{i=0}^n (g^{r_i})^{y_i})^{d_2 s}$, $C_4 = v^s$. For each $\operatorname{id}_i \in S$, it sets $\operatorname{V}(\operatorname{id}_i) = \mathcal{H}_3(e(\mathcal{H}_0(\operatorname{id}_i), ek_{\operatorname{id}^*} \cdot g^{bs} \cdot v^{\rho s}))$, $g(y) = \prod_{k=1}^n (y \operatorname{V}(\operatorname{id}_i)) + d_2 = \sum_{i=0}^n b_k y^k + y^t \mod p$, where $b_0, \ldots, b_n, \ldots, b_\ell$ are the coefficients correspond to y^k . Finally, it generates a ciphertext $\operatorname{Ct} = (C_0, C_1, C_2, C_3, C_4, \operatorname{ctag}, b_0, \ldots, b_n)$.
 - Dec(pp, dk_{id_i}, id*, ct): Based on the public parameter pp, a decryption key dk_{id_i}, the target identity id* and the ciphertext ct = $(C_1, C_2, C_3, b_0, \ldots, b_n)$, it first computes $V(id_i) = \mathcal{H}_3(e(dk_{i,3}, C_2)e(dk_{i,2}, \mathcal{H}_1(id^*))e(dk_{i,1}, C_4)) = \mathcal{H}_3(e(\mathcal{H}_0(id_i), ek_{id^*} \cdot g^{bs} \cdot v^{\rho s}))$, $d_2 = g(V_{id_i}) = \sum_{j=0}^n b_j(V_{id_i})^j + (V_{id_i})^j \mod p$. It next calculates rtag = $\sum_{i=1}^\ell y_i$ rtag_i, if rtag = ctag, it aborts and outputs \perp ; otherwise, it computes $A = (e(C_1, \prod_{j=1}^m dk_{7,j}^{y_j})e(C_2, \prod_{j=1}^m dk_{8,j}^{y_j})/(C_3^{1/d_2}, dk_6))$, $B = e(C_1, dk_4) \cdot e(C_2, dk_5)$ and recovers $m = \mathbf{A}^{1/(\text{rtag}-\text{ctag})} \cdot \mathbf{B}^{-1}$.

C. Security Proofs of IB-BME

Theorem 6: Assume that ADDH and DDH assumptions hold, then our IB-BME realizes adaptively security.