SEQUENCE LISTING

<110>	Mologen Forschungs-, Entwicklungs- und Vertriebs GmbH										
<120>	Vaccine against Oncovirus Infections, such as infections by Feline leukosis virus of the cat										
<130>	XI 1292-03										
<150> <151>	DE 102 44 863.9 2002-09-23										
<160>	40										
<170>	PatentIn version 3.3										
<210> <211> <212> <213>	1 1929 DNA Feline leukemia virus										
	gene (1)(1929)										
<309>	NCBI M12500 2001-02-21 (162)(1990)										
<400>	1 aagto caacgcacco aaaaccotot aaagataaga otototogtg gaacttagog	60									
		120									
_	, y y y y y y y y y y y y y y y y y y y	180									
		240 300									
		360									
		420									
		480									
		540									
tgtgaç	gggaa aaagaaacc ccoggeeerg magaaaaa g ggg	600									
tgggad	oggac ctaagatgtg gggattgcga ctatacegta caggatatga ccctatcgct	660									
ttatto	caegg tgteeeggea ggtateaace attaegeege eteaggeaat gggaeeaaae	720									

780 ctagtettae etgateaaaa acceecatee egacaatete aaacagggte caaagtggeg acccagagge cecaaacgaa tgaaagegee ecaaggtetg ttgeececac caccatgggt 840 900 cccaaacgga ttgggaccgg agataggtta ataaatttag tacaagggac atacctagcc 960 ttaaatgoca cogaccocaa caaaactaaa gactgttggc tetgeetggt ttetegacca 1020 coctattacg aagggattgc aatottaggt aactacagca accaaacaaa cocccccca teetgeetat etaeteegea acacaaacta actatatetg aagtateagg geaaggaatg 1080 tgcataggga etgtteetaa aaceeaeeag getttgtgca ataagacaca acagggacat 1140 1200 acaggggege actatetage egececcaae ggeaectatt gggeetgtaa caetggaete 1260 accecatgea tttecatgge ggtgeteaat tggaeetetg atttttgtgt ettaategaa 1320 ttatggccca gagtgactta ccatcaaccc gaatatgtgt acacacattt tgccaaagct gtcaggttcc gaagagaacc aatatcacta acggttgccc ttatgttggg aggacttact 1380 1440 gtagggggca tagccgcggg ggtcggaaca gggactaaag ccctccttga aacagcccag 1500 ttcagacaac tacaaatggc catgcacaca gacatccagg ccctagaaga atcaattagt geettagaaa agteeetgae eteeetttet gaagtagtet tacaaaacag aeggggeeta 1560 1620 gatattetat tettacaaga gggagggete tgtgcegcat tgaaagaaga atgttgette 1680 tatgeggate acaceggaet egteegagae aatatggeea aattaagaga aagaetaaaa cagoggcaac aactgtttga ctcccaacag ggatggtttg aaggatggtt caacaagtcc 1740 1800 ccctggttta caaccctaat ttcctccatt atgggcccct tactaatcct actcctaatt 1860 ctcctcttcg gcccatgcat ccttaaccga ttagtacaat tcgtaaaaga cagaatatct 1920 gtggtacagg ctttaatttt aacccaacag taccaacaga taaagcaata cgatccggac 1929 cgaccatga

```
<210> 2
<211> 1527
<212> DNA
<213> Feline leukemia virus
```

<220>
<221> gene
<222> (1)..(1527)
<223> DNA sequence wild type "gag" gene

<400> 2 atgggccaaa ctataactac ccccttgagc ctcaccctca accactggtc tgaggttcag

gcacgggccc	gtaatcaggg	tgtcgaagtc	cggaaaaaga	aatggattac	actgtgtgaa	120
gccgaatggg	taatgatgaa	tgtaggttgg	ccccgagaag	gaactttcac	cattgacaat	180
atttcacagg	tcgaggagag	aatcttcgcc	ccggggccat	atggacaccc	agatcaaatc	240
ccttatatta	ccacgtggag	atccctagcc	acagaccccc	ctccatgggt	tegeceatte	300
ctaccccctc	ctaagcatcc	caggacagat	cctcccgage	ctctttcgcc	gcaacctctt	360
gegeegeaac	cctcttcccc	ccaccccgtc	ctctaccccg	ttctccccaa	accagacccc	420
cccaaggcgc	ctgtattacc	acccaatcct	tcttcccctt	taattgatct	cttaacagaa	480
gagecaeete	cctatcctgg	gggtcacggg	ccaacaccgc	cgtcaggccc	tagaacccca	540
actgcctccc	cgattgccat	ccggctgcga	gaacgacgag	aaaatccagc	tgagaaatct	600
caagccctcc	ccttaaggga	agacccaaac	aacagacccc	agtactggcc	attctcggcc	660
tctgacctgt	acaattggaa	attgcataac	cccctttct	cccaggaccc	agtggcccta	720
actaacctaa	ttgagtccat	tttagtgaca	catcagccaa	cctgggacga	ctgccaacag	780
ctcttacagg	ctctcctgac	ggcagaggag	agacaaaggg	tectecttga	agcccgaaag	840
caagttccag	gcgaggacgg	acggccaacc	cagctgccca	atgtcgttga	cgaggctttc	900
cccttgaccc	gteccaactg	ggatttttgt	acgccggcag	gtagggagca	cctacgcctt	960
tatogocagt	tgctgttagc	ggggctccgc	ggggctgcaa	gacgccccac	taatttggca	1020
caggtaaagc	aagttgtaca	agggaaagag	gaaacgccag	cctcattctt	agaaagatta	1080
aaagaggctt	acagaatgta	tactccctat	gaccctgagg	acccagggca	ggctgctagt	1140
gttatcctgt	cctttatcta	ccagtctagc	ccggacataa	gaaataagtt	acaaaggcta	1200
gaaggcctac	aggggttcac	actgtctgat	ttgctaaaag	aggcagaaaa	gatatacaac	1260
aaaagggaaa	ccccagagga	aagggaagaa	agattatggc	agcggcagga	agaaagagat	1320
aaaaagcgcc	ataaggagat	gactaaagtt	ctggccacag	tagttgctca	gaatagagat	1380
aaggatagag	gggaaagtaa	actgggagat	caaaggaaaa	tacctctggg	gaaagaccag	1440
tgtgcctatt	gcaaggaaaa	gggacattgg	gttcgcgatt	gcccgaaacg	accccggaag	1500
aaacccgcca	actccactct	cctctaa				1527

<210> 3

<211> 642

<212> PRT <213> Feline leukemia virus

```
<220>
<221> PEPTIDE
<222> (1)..(447)
<223> Amino acid sequence of the protein corresponding to Seq.ID1
<400> 3
Met Glu Ser Pro Thr His Pro Lys Pro Ser Lys Asp Lys Thr Leu Ser
                                    10
Trp Asn Leu Ala Phe Leu Val Gly Ile Leu Phe Thr Ile Asp Ile Gly
            20
                                25
Met Ala Asn Pro Ser Pro His Gln Ile Tyr Asn Val Thr Trp Val Ile
                            40
        35
Thr Asn Val Gln Thr Asn Thr Gln Ala Asn Ala Thr Ser Met Leu Gly
    50
Thr Leu Thr Asp Ala Tyr Pro Thr Leu His Val Asp Leu Cys Asp Leu
                    70
Val Gly Asp Thr Trp Glu Pro Ile Val Leu Asn Pro Thr Asn Val Lys
                                    90
His Gly Ala Arg Tyr Ser Ser Ser Lys Tyr Gly Cys Lys Thr Thr Asp
            100
Arg Lys Lys Gln Gln Gln Thr Tyr Pro Phe Tyr Val Cys Pro Gly His
                            120
                                                125
        115
Ala Pro Ser Leu Gly Pro Lys Gly Thr His Cys Gly Gly Ala Gln Asp
    130
                        135
Gly Phe Cys Ala Ala Trp Gly Cys Glu Thr Thr Gly Glu Ala Trp Trp
                                        155
                    150
145
Lys Pro Thr Ser Ser Trp Asp Tyr Ile Thr Val Lys Arg Gly Ser Ser
                165
Gln Asp Asn Ser Cys Glu Gly Lys Cys Asn Pro Leu Val Leu Gln Phe
                                185
            180
Thr Gln Lys Gly Arg Gln Ala Ser Trp Asp Gly Pro Lys Met Trp Gly
```

Leu	Arg 210	Leu	Tyr	Arg	Thr	Gly 215	Tyr	Asp	Pro	Ile	Ala 220	Leu	Phe	Thr	Val
Ser 225	Arg	Gln	Val	Ser	Thr 230	Ile	Thr	Pro	Pro	Gln 235	Ala	Met	Gly	Pro	Asn 240
Ľeu	Val	Leu	Pro	Asp 245	Gln	Lys	Pro	Pro	Ser 250	Arg	Gln	Ser	Gln	Thr 255	Gly
Ser	Lys	Val	Ala 260	Thr	Gln	Arg	Pro	Gln 265	Thr	Asn	Glu	Ser	Ala 270	Pro	Arg
Ser	Val	Ala 275	Pro	Thr	Thr	Met	Gly 280	Pro	Lys	Arg	Ile	Gly 285	Thr	Gly	Asp
Arg	Leu 290	Ile	Asn	Leu	Val	G1n 295	Gly	Thr	Tyr	Leu	Ala 300	Leu	Asn	Ala	Thr
Asp 305	Pro	Asn	Lys	Thr	Lys 310	Asp	Cys	Trp	Leu	Cys 315	Leu	Val	Ser	Arg	Pro 320
Pro	Tyr	Tyr	Glu	Gly 325	Ile	Ala	Ile	Leu	Gly 330	Asn	Tyr	Ser	Asn	Gln 335	Thr
Asn	Pro	Pro	Pro 340	Ser	Суѕ	Leu	Ser	Thr 345	Pro	Gln	His	Lys	Leu 350	Thr	Ile
Ser	Glu	Val 355	Ser	Gly	Gln	Gly	Met 360	Cys	Ile	Gly	Thr	Val 365	Pro	Lys	Thr
His	Gln 370	Ala	Leu	Cys	Asn	Lys 375	Thr	Gln	Gln	Gly	His 380	Thr	Gly	Ala	His
Tyr 385	Leu	Ala	Ala	Pro	Asn 390	Gly	Thr	Tyr	Trp	Ala 395	Cys	Asn	Thr	Gly	Leu 400
Thr	Pro	Cys	Ile	Ser 405	Met	Ala	Val	Leu	Asn 410	Trp	Thr	Ser	Asp	Phe 415	Cys
Val	Leu	Ile	Glu 420	Leu	Trp	Pro	Arg	Val 425	Thr	Tyr	His	Gln	Pro 430	Glu	Tyr

Ser Leu Thr Val Ala Leu Met Leu Gly Gly Leu Thr Val Gly Gly Ile Ala Ala Gly Val Gly Thr Gly Thr Lys Ala Leu Leu Glu Thr Ala Gln Phe Arg Gln Leu Gln Met Ala Met His Thr Asp Ile Gln Ala Leu Glu Glu Ser Ile Ser Ala Leu Glu Lys Ser Leu Thr Ser Leu Ser Glu Val Val Leu Gln Asn Arg Arg Gly Leu Asp Ile Leu Phe Leu Gln Glu Gly Gly Leu Cys Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr Ala Asp His Thr Gly Leu Val Arg Asp Asn Met Ala Lys Leu Arg Glu Arg Leu Lys Gln Arg Gln Gln Leu Phe Asp Ser Gln Gln Gly Trp Phe Glu Gly Trp Phe Asn Lys Ser Pro Trp Phe Thr Thr Leu Ile Ser Ser Ile Met Gly Pro Leu Leu Ile Leu Leu Leu Leu Phe Gly Pro Cys Ile Leu Asn Arg Leu Val Gln Phe Val Lys Asp Arg Ile Ser Val Val Gln Ala Leu Ile Leu Thr Gln Gln Tyr Gln Gln Ile Lys Gln Tyr Asp Pro Asp

Val Tyr Thr His Phe Ala Lys Ala Val Arg Phe Arg Arg Glu Pro Ile

```
<210> 4
<211> 508
<212> PRT
<213> Feline leukemia virus
<220>
<221> PEPTIDE
<222> (1)..(508)
<223> Amino acid sequence of the protein corresponding to Seq.ID2
<400> 4
Met Gly Gln Thr Ile Thr Pro Leu Ser Leu Thr Leu Asn His Trp
                5
                                   10
Ser Glu Val Gln Ala Arg Ala Arg Asn Gln Gly Val Glu Val Arg Lys
                               25
Lys Lys Trp Ile Thr Leu Cys Glu Ala Glu Trp Val Met Met Asn Val
        35
Gly Trp Pro Arg Glu Gly Thr Phe Thr Ile Asp Asn Ile Ser Gln Val
                       55
Glu Glu Arg Ile Phe Ala Pro Gly Pro Tyr Gly His Pro Asp Gln Ile
                                       75
Pro Tyr Ile Thr Trp Arg Ser Leu Ala Thr Asp Pro Pro Pro Trp
                                   90
                85
Val Arg Pro Phe Leu Pro Pro Lys His Pro Arg Thr Asp Pro Pro
                               105
Glu Pro Leu Ser Pro Gln Pro Leu Ala Pro Gln Pro Ser Ser Pro His
        115
                           120
                                            125
Pro Val Leu Tyr Pro Val Leu Pro Lys Pro Asp Pro Pro Lys Ala Pro
    130
Val Leu Pro Pro Asn Pro Ser Ser Pro Leu Ile Asp Leu Leu Thr Glu
                   150
Glu Pro Pro Pro Tyr Pro Gly Gly His Gly Pro Thr Pro Pro Ser Gly
                                170
```

Pro	Arg	Thr	Pro 180	Thr	Ala	Ser	Pro	Ile 185	Ala	Ile	Arg	Leu	Arg 190	Glu	Arg
Arg	Glu	Asn 195	Pro	Ala	Glu	Lys	Ser 200	Gln	Ala	Leu	Pro	Leu 205	Arg	Glu	Asp
Pro	Asn 210	Asn	Arg	Pro	Gln	Tyr 215	Trp	Pro	Phe	Ser	Ala 220	Ser	Asp	Leu	Tyr
Asn 225	Trp	Lys	Leu	His	Asn 230	Pro	Pro	Phe	Ser	Gln 235	Asp	Pro	Val	Ala	Leu 240
Thr	Asn	Leu	Ile	Glu 245	Ser	Ile	Leu	Val	Thr 250	His	Gln	Pro	Thr	Trp 255	Asp
Asp	Cys	Gln	Gln 260	Leu	Leu	Gln	Ala	Leu 265	Leu	Thr	Ala	Glu	Glu 270	Arg	Gln
Arg	Val	Leu 275	Leu	Glu	Ala	Arg	Lys 280	Gln	Val	Pro	Gly	Glu 285	Asp	Gly	Arg
Pro	Thr 290	Gln	Leu	Pro	Asn	Val 295	Val	Asp	Glu	Ala	Phe 300	Pro	Leu	Thr	Arg
Pro 305	Asn	Trp	Asp	Phe	Cys 310	Thr	Pro	Ala	Gly	Arg 315	Glu	His	Leu	Arg	Leu 320
Tyr	Arg	Gln	Leu	Leu 325	Leu	Ala	Gly	Leu	Arg 330	Gly	Ala	Ala	Arg	Arg 335	Pro
Thr	Asn	Leu	Ala 340	Gln	Val	Lys	Gln	Val 345	Val	Gln	Gly	Lys	Glu 350	Glu	Thr
Pro	Ala	Ser 355	Phe	Leu	Glu	Arg	Leu 360	Lys	Glu	Ala	Tyr	Arg 365	Met	Tyr	Thr
Pro	Tyr 370	Asp	Pro	Glu	Asp	Pro 375	Gly	Gln	Ala	Ala	Ser 380	Val	Ile	Leu	Ser
Phe 385	Ile	Tyr	Gln	Ser	Ser 390	Pro	Asp	Ile	Arg	Asn 395	Lys	Leu	Gln	Arg	Leu 400

Glu Gly Leu Gln Gly Phe Thr Leu Ser Asp Leu Leu Lys Glu Ala Glu 405 410 415 Lys Ile Tyr Asn Lys Arg Glu Thr Pro Glu Glu Arg Glu Glu Arg Leu Trp Gln Arq Gln Glu Glu Arq Asp Lys Lys Arg His Lys Glu Met Thr 440 Lys Val Leu Ala Thr Val Val Ala Gln Asn Arg Asp Lys Asp Arg Gly 455 460 450 Glu Ser Lys Leu Gly Asp Gln Arg Lys Ile Pro Leu Gly Lys Asp Gln 470 475 465 Cys Ala Tyr Cys Lys Glu Lys Gly His Trp Val Arg Asp Cys Pro Lys 485 490 495 Arg Pro Arg Lys Lys Pro Ala Asn Ser Thr Leu Leu 500 505 <210> 5 <211> 1530 <212> DNA <213> Feline leukemia virus <220> <221> misc feature <222> (1)..(1530)<223> DNA sequence of the mutagenized "gag" gene <400> 5 atgggccaga ccatcaccac coccetgage etgaccetga accaetggag egaggtgcag 60 120 qccaqqqcca qqaaccaqqq cgtqgaqqtq aggaaqaaga agtqgatcac cctqtqcqaq qeeqaqtggg tgatgatgaa egtgggetgg eecagggagg geacetteac categacaac 180 atcagecagg tggaggagag gatettegee eeeggeeeet aeggeeacce egaccagate 240 300 coctacatea ccacetggag gageetggee acegaeecee ccccetgggt gaggeeette ctgcccccc ccaagcaccc caggaccgac cccccgage ccctgagecc ccageccctg 360 geocceage ecagegeece ecceateage ageotytace cogtgetgee caagecegae 420 480 ccccccaagg cccccgtgct gccccccaac cccagcagcc ccctgatcga cctgctgacc

daddadcccc cocctaccc cqqcqqccac ggcccaccc ccccaagegg ccccaaggacc

600 cccaccgcca gccccatcgc cagcaggctg agggagagga gggagaaccc cgccgagaag 660 agecaggeee tgeccetgag ggaggaeeee aacaacagge eecagtactg gecetteage 720 gccagcgace tgtacaactg gaagctgcac aacccccct tcagccagga ccccgtggcc 780 ctgaccaacc tgatcgagag catcctggtg acccaccage ccacctggga cgactgccag 840 caqctgctgc aggccctgct gaccgccgag gagaggcaga gggtgctgct ggaggccagg aagcaggtgc ccggcgagga cggcaggccc acccagctgc ccaacgtggt ggacgaggcc 900 960 ttocccctga ccaggcccaa ctgggacttc tgcacccccg ccggcaggga gcacctgagg 1020 etgtacagge agetgetget ggeeggeetg aggggegeeg ceaggaggee caccaacetg gcccaggtga agcaggtggt gcagggcaag gaggagacac ccgccagctt cctggagagg 1080 ctgaaggagg cctacaggat gtacaccccc tacgaccccg aggaccccgg ccaggccacc 1140 1200 agegtgatee tgagetteat etaceagage ageceegaca teaggaacaa getgeagagg 1260 ctggagggcc tgcagggctt caccetgage gacetgctga aggaggeega gaagatetae aacaagaggg agacacccga ggagagggag gagaggctgt ggcagaggca ggaggagagg 1320 1380 gacaagaaga ggcacaagga gatgaccaag gtgctggcca ccgtggtggc ccagaacagg 1440 gacaaggaca ggggcgagag caagctgggc gaccagagga agatccccct gggcaaggac cagtgcgcct actgcaagga gaagggccac tgggtgaggg actgccccaa gaggcccagg 1500 aagaageeeg eeaacageae eetgetgtag 1530

```
<210> 6
<211> 509
```

<212> PRT

<213> Feline leukemia virus

<220>

<221> PEPTIDE

<222> (1)..(509)

<223> Amino acid sequence of the protein corresponding to Seq.ID5

<400> 6

Met Gly Gln Thr Ile Thr Thr Pro Leu Ser Leu Thr Leu Asn His Trp 1 5 10 15

Ser Glu Val Gln Ala Arg Ala Arg Asn Gln Gly Val Glu Val Arg Lys
20 25 30

Lys Lys Trp Ile Thr Leu Cys Glu Ala Glu Trp Val Met Met Asn Val 35 40 45

Gly Trp Pro Arg Glu Gly Thr Phe Thr Ile Asp Asn Ile Ser Gln Val 50 60

Glu Glu Arg Ile Phe Ala Pro Gly Pro Tyr Gly His Pro Asp Gln Ile 65 70 75 80

Pro Tyr Ile Thr Trp Arg Ser Leu Ala Thr Asp Pro Pro Pro Trp 85 90 95

Val Arg Pro Phe Leu Pro Pro Pro Lys His Pro Arg Thr Asp Pro Pro 100 105 110

Glu Pro Leu Ser Pro Gln Pro Leu Ala Pro Gln Pro Ser Ala Pro Pro 115 120 125

Ile Ser Ser Leu Tyr Pro Val Leu Pro Lys Pro Asp Pro Pro Lys Ala 130 135 140

Pro Val Leu Pro Pro Asn Pro Ser Ser Pro Leu Ile Asp Leu Leu Thr 145 150 155 160

Glu Glu Pro Pro Pro Tyr Pro Gly Gly His Gly Pro Thr Pro Pro Ser 165 170 175

Gly Pro Arg Thr Pro Thr Ala Ser Pro Ile Ala Ser Arg Leu Arg Glu 180 185 190

Arg Arg Glu Asn Pro Ala Glu Lys Ser Gln Ala Leu Pro Leu Arg Glu 195 200 205

Asp Pro Asn Asn Arg Pro Gln Tyr Trp Pro Phe Ser Ala Ser Asp Leu 210 215 220

Tyr Asn Trp Lys Leu His Asn Pro Pro Phe Ser Gln Asp Pro Val Ala 225 230 235 240

Leu Thr Asn Leu Ile Glu Ser Ile Leu Val Thr His Gln Pro Thr Trp 245 250 255

Asp Asp Cys Gln Gln Leu Leu Gln Ala Leu Leu Thr Ala Glu Glu Arg

260 265 270

Gln	Arg	Val 275	Leu	Leu	Glu	Ala	Arg 280	Lys	Gln	Val	Pro	Gly 285	Glu	Asp	Gly
Arg	Pro 290	Thr	Gln	Leu	Pro	Asn 295	Val	Val	Asp	Glu	Ala 300	Phe	Pro	Leu	Thr
Arg 305	Pro	Asn	Trp	Asp	Phe 310	Cys	Thr	Pro	Ala	Gly 315	Arg	Glu	His	Leu	Arg 320
Leu	Tyr	Arg	Gln	Leu 325	Leu	Leu	Ala	Gly	Leu 330	Arg	Gly	Ala	Ala	Arg 335	Arg
Pro	Thr	Asn	Leu 340	Ala	Gln	Val	Lys	Gln 345	Val	Val	Gln	Gly	Lys 350	Glu	Glu
Thr	Pro	Ala 355	Ser	Phe	Leu	Glu	Arg 360	Leu	Lys	Glu	Ala	Tyr 365	Arg	Met	Tyr
Thr	Pro 370	Tyr	Asp	Pro	Glu	Asp 375	Pro	Gly	Gln	Ala	Thr 380	Ser	Val	Ile	Leu
Ser 385	Phe	Ile	Tyr	Gln	Ser 390	Ser	Pro	Asp	Ile	Arg 395	Asn	Lys	Leu	Gln	Arg 400
Leu	Glu	Gly	Leu	Gln 405	Gly	Phe	Thr	Leu	Ser 410	Asp	Leu	Leu	Lys	Glu 415	Ala
Glu	Lys	Ile	Tyr 420	Asn	Lys	Arg	Glu	Thr 425	Pro	Glu	Glu	Arg	Glu 430	Glu	Arg
Leu	Trp	Gln 435	Arg	Gln	Glu	Glu	Arg 440	Asp	Lys	Lys	Arg	His 445	Lys	Glu	Met
Thr	Lys 450	Val	Leu	Ala	Thr	Val 455	Val	Ala	Gln	Asn	Arg 460	Asp	Lys	Asp	Arg
Gly 465	Glu	Ser	Lys	Leu	Gly 470	Asp	Gln	Arg	Lys	Ile 475	Pro	Leu	Gly	Lys	Asp 480
Gln	Cys	Ala	Tyr	Cys 485	Lys	Glu	Lys	Gly	His 490	Trp	Val	Arg	Asp	Cys 495	Pro

7 <210> <211> 1929 <212> DNA <213> Feline leukemia virus <220> <221> misc feature <222> (1)..(1929)<223> DNA sequence for the mutagenized "env" gene (gp85) <400> 7 atggagteec ceacecacee caagecetee aaggacaaga eeetgteetg gaacatggtg 60 ttoctggtgg gcatcctgtt caccattgac attggcatgg ccaacccctc cccccccgg 120 180 atctacaatg tgacctgggt gatcaccaat gtgcagacca acacccaggc caatgccacc 240 totatgotgg geaccetgae agatgeatae eccaecetge atgtggaeet gtgtgaeetg 300 gtgggggaca cctgggagcc cattccgctg aaccccacca atgtgaagca tggggccagg 360 tactectect ccaagtatgg etgeaagaee acagacagga agaagcagea geagacetae 420 ccettetatg tgtgccctgg ccatgccccc tccctgggcc ccaagggcac ccactgtggg 480 ggggcccagg atggcttctg tgctgcctgg ggctgtgaaa ccacagggga ggcctggtgg 540 aaqcccacct cotootqqqa otacatcaca gtgaaqaggg gotootocca ggacaactco tgtgagggca agtgcaaccc cctggtgctg cagttcaccc agaagggcag gcaggcctcc 600 tgggatggcc ccaagatgtg gggcctgagg ctgtacagga caggctatga ccccattgcc 660 ctgttcacag tgtccaggca ggtgtccacc atcacccccc cccaggccat gggccccaac 720 780 ctggtgctgc ctgaccagaa gccccctcc aggcagtccc agacaggctc caaggtggcc 840 acceagagge cecagaceaa tgagtetgee eccaggtetg tggeeceeae caccatggge 900 cccaagagga ttggcacagg ggacaggctg atcaacctgg tgcagggcac ctacctggcc ctgaatgcca cagaccccaa caagaccaag gactgctggc tgtgcctggt gtccaggccc 960 ccctactatg agggcattge catectggge aactacteea accagaceaa ecceceece 1020 1080 teetgeetgt ecacececa geacaagetg accatetetg aggtgtetgg ecagggeatg tgcattggca cagtgcccaa gacccaccag gccctgtgca acaagaccca gcagggccac 1140 1200 acaggggccc actaectgge tgtecccaat ggcaectaet gggeetgcaa cacaggeetg

accccctgca	tctccatggc	tgtgctgaac	tggacctctg	acttctgtgt	gctgattgag	1260
ctgtggccca	gggtgaccta	ccaccagect	gagtatgtgt	acacccactt	tgccaaggct	1320
gtgaggttca	ggagggagcc	catctccctg	acagtggccc	tgatgctggg	gggcctgaca	1380
gtggggggca	ttgctgctgg	ggtgggcaca	ggcaccaagg	ccctgctgga	aacagcccag	1440
ttcagacaac	tacaaatggc	catgcacaca	gacatccagg	ccctagaaga	gtcagttagc	1500
gctttagaaa	aatccctgac	ctccctctct	gaagtagtcc	tacaaaacag	acgaggccta	1560
gatattctat	tcctacaaga	gggaggactc	tgtgccgcat	taaaagaaga	atgttgtttt	1620
tatgcagatc	acaccggatt	agtccgagat	aatatggcta	aattaagaga	aagattaaaa	1680
cagcggcaac	aactgtttga	ctcccaacag	ggatggtttg	aaggatggtt	caacaagtcc	1740
ccctggctta	caaccctaat	ttcctctatt	atgggcccct	tgcttatcct	gctcctaatt	1800
ctcctcttcg	gcccatgcat	ccttaaccga	ttggtgcaat	tcgtaaaaga	cagaatatcg	1860
gtggtacaag	ccttagtttt	aacccaacag	taccaacaga	taaagcaata	cgatccggac	1920
cgaccatga						1929

<210> 8

<211> 1440

<212> DNA

<213> Feline leukemia virus

<220>

<221> misc_feature

<222> (1)..(1440)

<223> DNA Sequence of the mutagenized "env" gene (gp70)

<400> 8

60 atggagtece ceaeceaece caageeetee aaggacaaga ceetgteetg gaacatggtg 120 ttcctggtgg gcatcctgtt caccattgac attggcatgg ccaacccctc cccccccgg 180 atctacaatg tgacctgggt gatcaccaat gtgcagacca acacccaggc caatgccacc 240 totatgotgg gcaccotgac agatgcatac cocaccotgc atgtggacct gtgtgacctg 300 gtgggggaca cctgggagcc cattccgctg aaccccacca atgtgaagca tggggccagg 360 tactcctcct ccaagtatgg ctgcaagacc acagacagga agaagcagca gcagacctac 420 coefficient to the control of the co 480 ggggcccagg atggcttctg tgctgcctgg ggctgtgaaa ccacagggga ggcctggtgg 540 aageceaeet eeteetggga etacateaea gtgaagaggg geteeteeea ggacaaetee

tgtgagggca agtgcaacce cetgetgetg cagttcacce agaagggcag gcaggeetee 600 tgggatggcc ccaagatgtg gggcctgagg ctgtacagga caggctatga ccccattgcc 660 ctgttcacag tgtccaggca ggtgtccacc atcaccccc cccaggccat gggccccaac 720 ctqqtqctqc ctqaccaqaa qccccctcc aqqcaqtccc aqacaqqctc caaqqtqqcc 780 acccagagge eccagaceaa tgagtetgee eccaggtetg tggeeceeac caccatggge 840 cccaaqaqqa ttggcacagg ggacaggctg atcaacctgg tgcagggcac ctacctggcc 900 ctgaatgcca cagaccccaa caagaccaag gactgctggc tgtgcctggt gtccaggccc 960 1020 coctactatg agggcattgc catcotgggc aactactcca accagaccaa coccccccc 1080 tectgeetgt ccaccecca gcacaagetg accatetetg aggtgtetgg ccagggeatg tgcattggca cagtgcccaa gacccaccag gccctgtgca acaagaccca gcagggccac 1140 1200 acaggggccc actacctggc tgtccccaat ggcacctact gggcctgcaa cacaggcctg accccctgca totocatggc tgtgctgaac tggacctctg acttctgtgt gctgattgag 1260 ctgtggccca gggtgaccta ccaccagcet gagtatgtgt acaccactt tgccaagget 1320 gtgaggttca ggagggagcc catctccctg acagtggccc tgatgctggg gggcctgaca 1380 qtqqqqqca ttqctqctqg ggtgggcaca ggcaccaagg ccctqctgga aacagcctga 1440

<210> 9

<211> 642

<212> PRT

<213> Feline leukemia virus

<220>

<221> PEPTIDE

<222> (1)..(642)

<223> Amino acid sequence of the protein corresponding to Seq.ID7

<400> 9

Met Glu Ser Pro Thr His Pro Lys Pro Ser Lys Asp Lys Thr Leu Ser 1 10 15

Met Ala Asn Pro Ser Pro Pro Arg Ile Tyr Asn Val Thr Trp Val Ile 35 40 45

Thr	Asn 50	Val	Gln	Thr	Asn	Thr 55	Gln	Ala	Asn	Ala	Thr 60	Ser	Met	Leu	Gly
Thr 65	Leu	Thr	Asp	Ala	Tyr 70	Pro	Thr	Leu	His	Val 75	Asp	Leu	Cys	Asp	Leu 80
Val	Gly	Asp	Thr	Trp 85	Glu	Pro	Ile	Pro	Leu 90	Asn	Pro	Thr	Asn	Val 95	Lys
His	Gly	Ala	Arg 100	Tyr	Ser	Ser	Ser	Lys 105	Tyr	Gly	Cys	Lys	Thr 110	Thr	Asp
Arg	Lys	Lys 115	Gln	Gln	Gln	Thr	Tyr 120	Pro	Phe	Tyr	Val	Cys 125	Pro	Gly	His
Ala	Pro 130	Ser	Leu	Gly	Pro	Lys 135	Gly	Thr	His	Cys	Gly 140	Gly	Ala	Gln	Asp
Gly 145	Phe	Cys	Ala	Ala	Trp 150	Gly	Cys	Glu	Thr	Thr 155	Gly	Glu	Ala	Trp	Trp 160
Lys	Pro	Thr	Ser	Ser 165	Trp	Asp	Туг	Ile	Thr 170	Val	Lys	Arg	Gly	Ser 175	Ser
Gln	Asp	Asn	Ser 180	Cys	Glu	Gly	Lys	Cys 185	Asn	Pro	Leu	Val	Leu 190	Gln	Phe
Thr	Gln	Lys 195	Gly	Arg	Gln	Ala	Ser 200	Trp	Asp	Gly	Pro	Lys 205	Met	Trp	Gly
Leu	Arg 210	Leu	Tyr	Arg	Thr	Gly 215	Tyr	Asp	Pro	Ile	Ala 220	Leu	Phe	Thr	Val
Ser 225	Arg	Gln	Val	Ser	Thr 230	Ile	Thr	Pro	Pro	Gln 235	Ala	Met	Gly	Pro	Asn 240
Leu	Val	Leu	Pro	Asp 245	Gln	Lys	Pro	Pro	Ser 250	Arg	Gln	Ser	Gln	Thr 255	Gly
Ser	Lys	Val	Ala 260	Thr	Gln	Arg	Pro	Gln 265	Thr	Asn	Glu	Ser	Ala 270	Pro	Arg

Ser Val Ala Pro Thr Thr Met Gly Pro Lys Arg Ile Gly Thr Gly Asp

Arg Leu Ile Asn Leu Val Gln Gly Thr Tyr Leu Ala Leu Asn Ala Thr Asp Pro Asn Lys Thr Lys Asp Cys Trp Leu Cys Leu Val Ser Arg Pro Pro Tyr Tyr Glu Gly Ile Ala Ile Leu Gly Asn Tyr Ser Asn Gln Thr Asn Pro Pro Pro Ser Cys Leu Ser Thr Pro Gln His Lys Leu Thr Ile Ser Glu Val Ser Gly Gln Gly Met Cys Ile Gly Thr Val Pro Lys Thr His Gln Ala Leu Cys Asn Lys Thr Gln Gln Gly His Thr Gly Ala His Tyr Leu Ala Val Pro Asn Gly Thr Tyr Trp Ala Cys Asn Thr Gly Leu Thr Pro Cys Ile Ser Met Ala Val Leu Asn Trp Thr Ser Asp Phe Cys Val Leu Ile Glu Leu Trp Pro Arg Val Thr Tyr His Gln Pro Glu Tyr Val Tyr Thr His Phe Ala Lys Ala Val Arg Phe Arg Arg Glu Pro Ile Ser Leu Thr Val Ala Leu Met Leu Gly Gly Leu Thr Val Gly Gly Ile Ala Ala Gly Val Gly Thr Gly Thr Lys Ala Leu Leu Glu Thr Ala Gln Phe Arg Gln Leu Gln Met Ala Met His Thr Asp Ile Gln Ala Leu Glu

Glu Ser Val Ser Ala Leu Glu Lys Ser Leu Thr Ser Leu Ser Glu Val

Val Leu Gln Asn Arg Arg Gly Leu Asp Ile Leu Phe Leu Gln Glu Gly 515 Gly Leu Cys Ala Ala Leu Lys Glu Glu Cys Cys Phe Tyr Ala Asp His Thr Gly Leu Val Arg Asp Asn Met Ala Lys Leu Arg Glu Arg Leu Lys 550 555 545 560 Gln Arg Gln Gln Leu Phe Asp Ser Gln Gln Gly Trp Phe Glu Gly Trp 565 570 Phe Asn Lys Ser Pro Trp Leu Thr Thr Leu Ile Ser Ser Ile Met Gly 580 585 Pro Leu Leu Ile Leu Leu Ile Leu Leu Phe Gly Pro Cys Ile Leu 595 600 605 Asn Arg Leu Val Gln Phe Val Lys Asp Arg Ile Ser Val Val Gln Ala 610 Leu Val Leu Thr Gln Gln Tyr Gln Gln Ile Lys Gln Tyr Asp Pro Asp 625 630 Arg Pro <210> 10 <211> 479 <212> PRT <213> Feline leukemia virus <220> <221> PEPTIDE (1)..(479)<223> Amino acid sequence of the protein corresponding to Seq.ID8 <400> 10 Met Glu Ser Pro Thr His Pro Lys Pro Ser Lys Asp Lys Thr Leu Ser 5 Trp Asn Met Val Phe Leu Val Gly Ile Leu Phe Thr Ile Asp Ile Gly

25

Met Ala Asn 35	Pro Ser	Pro Pro	Arg 3	Ile Tyr	Asn Val	Thr 45	Trp Val	Ile
Thr Asn Val	Gln Thr	Asn Thr 55	Gln A	Ala Asn	Ala Thr 60	Ser 1	Met Leu	Gly
Thr Leu Thr 65	Asp Ala	Tyr Pro 70	Thr I	Leu His	Val Asp 75	Leu	Cys Asp	Leu 80
Val Gly Asp	Thr Trp 85	Glu Pro	Ile I	Pro Leu 90	Asn Pro	Thr A	Asn Val 95	Lys
His Gly Ala	Arg Tyr 100	Ser Ser		Lys Tyr 105	Gly Cys		Thr Thr 110	Asp
Arg Lys Lys 115	Gln Gln	Gln Thr	Tyr H 120	Pro Phe	Tyr Val	Cys 1	Pro Gly	His
Ala Pro Ser 130	Leu Gly	Pro Lys 135	Gly 1	Thr His	Cys Gly 140	Gly A	Ala Gln	Asp
Gly Phe Cys 145	Ala Ala	Trp Gly 150	Cys (Glu Thr	Thr Gly 155	Glu A	Ala Trp	Trp 160
Lys Pro Thr	Ser Ser 165	Trp Asp	Tyr I	Ile Thr 170	Val Lys	Arg (Gly Ser 175	
Gln Asp Asn	Ser Cys 180	Glu Gly	_	Cys Asn 185	Pro Leu		Leu Gln 190	Phe
Thr Gln Lys 195	Gly Arg	Gln Ala	Ser 7 200	Trp Asp	Gly Pro	Lys 1 205	Met Trp	Gly
Leu Arg Leu 210	Tyr Arg	Thr Gly 215	Tyr A	Asp Pro	Ile Ala 220	Leu	Phe Thr	Val
Ser Arg Gln 225	Val Ser	Thr Ile 230	Thr E	Pro Pro	Gln Ala 235	Met	Gly Pro	Asn 240
Leu Val Leu	Pro Asp 245	Gln Lys	Pro l	Pro Ser 250	Arg Gln	Ser	Gln Thr 255	

Ser Lys Val Ala Thr Gln Arg Pro Gln Thr Asn Glu Ser Ala Pro Arg Ser Val Ala Pro Thr Thr Met Gly Pro Lys Arg Ile Gly Thr Gly Asp Arg Leu Ile Asn Leu Val Gln Gly Thr Tyr Leu Ala Leu Asn Ala Thr Asp Pro Asn Lys Thr Lys Asp Cys Trp Leu Cys Leu Val Ser Arg Pro Pro Tyr Tyr Glu Gly Ile Ala Ile Leu Gly Asn Tyr Ser Asn Gln Thr Asn Pro Pro Pro Ser Cys Leu Ser Thr Pro Gln His Lys Leu Thr Ile Ser Glu Val Ser Gly Gln Gly Met Cys Ile Gly Thr Val Pro Lys Thr His Gln Ala Leu Cys Asn Lys Thr Gln Gln Gly His Thr Gly Ala His Tyr Leu Ala Val Pro Asn Gly Thr Tyr Trp Ala Cys Asn Thr Gly Leu Thr Pro Cys Ile Ser Met Ala Val Leu Asn Trp Thr Ser Asp Phe Cys Val Leu Ile Glu Leu Trp Pro Arg Val Thr Tyr His Gln Pro Glu Tyr Val Tyr Thr His Phe Ala Lys Ala Val Arg Phe Arg Arg Glu Pro Ile Ser Leu Thr Val Ala Leu Met Leu Gly Gly Leu Thr Val Gly Gly Ile

Ala Ala Gly Val Gly Thr Gly Thr Lys Ala Leu Leu Glu Thr Ala

<210> 11 <211> 1440 <212> DNA <213> Feline leukemia virus <220> <221> qene <222> (1)...(1440)DNA sequence of wildtype "env" gene (gp70) <400> 11 60 atggaaagte caacgcacce aaaaccetet aaagataaga etetetegtg gaacttageg 120 tttctggtgg ggatcttatt tacaatagac ataggaatgg ccaatcctag tccacaccaa 180 atatataatg taacttgggt aataaccaat gtacaaacta acacccaagc taacgccacc 240 totatgttag gaaccttaac cgatgcctac cotaccctae atgttgactt atgtgaccta 300 gtgggagaca cctgggaace tatagtccta aacccaacca atgtaaaaca cggggcacgt 360 tactcctcct caaaatatgg atgtaaaact acagatagaa aaaaacagca acagacatac ccettttacg tetgeceegg acatgeceee tegttgggge caaagggaac acattgtgga 420 480 ggggcacaag atgggttttg tgccgcatgg ggatgtgaga ccaccggaga agcttggtgg 540 aagcccacct cctcatggga ctatatcaca gtaaaaagag ggagtagtca ggacaatagc 600 tgtgagggaa aatgcaaccc cctggttttg cagttcaccc agaagggaag acaagcctct 660 tgggacggac ctaagatgtg gggattgcga ctataccgta caggatatga ccctatcgct 720 ttattcacgg tgtcccggca ggtatcaacc attacgccgc ctcaggcaat gggaccaaac 780 ctagtettae etgateaaaa acceecatee egacaatete aaacagggte caaagtggeg 840 acccagagge cecaaaegaa tgaaagegee eeaaggtetg ttgeeeeeae caccatgggt cccaaacgga ttgggaccgg agataggtta ataaatttag tacaagggac atacctagcc 900 960 ttaaatgcca ccgaccccaa caaaactaaa gactgttggc tctgcctggt ttctcgacca 1020 ccctattacg aagggattgc aatcttaggt aactacagca accaaacaaa cccccccca 1080 tectgeetat etacteegea acacaaacta actatatetg aagtateagg geaaggaatg tgcataggga ctgttcctaa aacccaccag gctttgtgca ataagacaca acagggacat 1140 1200 acaqqqqqq actatctagc cgccccaac ggcacctatt gggcctgtaa cactggactc 1260 accocatgca tttccatggc ggtgctcaat tggacctctg atttttgtgt cttaatcgaa 1320 ttatggccca gagtgactta ccatcaaccc gaatatgtgt acacacattt tgccaaagct

gtcaggttcc gaagagaacc aatatcacta acggttgccc ttatgttggg aggacttact

```
gtagggggca tagccgcggg ggtcggaaca gggactaaag ccctccttga aacagcctga 1440
<210> 12
<211> 42
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(42)
<223> gag-mutl-rneu
<400> 12
                                                                   42
aattaagage tecaegtete eeceegetaa eageaactgg eg
<210> 13
<211> 45
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(45)
<223> gag-mut2-1
<400> 13
                                                                   45
aattaagagc tccaggtctc cggggctccg cggggctgca agacg
<210> 14
<211> 48
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(48)
<223> gag-mut3-r
<400> 14
aattaagage tecaegtete etteeettt gttgtatate ttttetge
                                                                   48
<210> 15
<211> 48
<212> DNA
<213> Primer
<220>
<221> misc_feature
```

```
<222> (1)..(48)
<223> gag-mut4-1
<400> 15
aattaagagc tccaggtctc cggaaacccc agaggaaagg gaagaaag
                                                                    48
<210> 16
<211> 34
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(34)
<223> Felvgag-1
<400> 16
cggataaggt accatgggcc aaactataac tacc
                                                                    34
<210> 17
<211> 37
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(37)
<223> Felvgag-r
<400> 17
                                                                    37
ttctcagage tcttagagga gagtggagtt ggcgggt
<210> 18
<211> 33
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(33)
<223> envl
<400> 18
                                                                    33
eggataaggt accatggeea atcetagtee acc
<210> 19
<211> 37
<212> DNA
<213> Primer
```

```
<220>
<221> misc_feature
<222> (1)..(37)
<223> envr
<400> 19
agttctcaga gctcttaggc tgtttcaagg agggctt
                                                                      37
<210> 20
<211> 28
<212> DNA
<213> Primer
<220>
<221> misc_feature 
<222> (1)..(28)
<223> Primer
<400> 20
                                                                      28
atattggate ceatggeeaa eccetece
<210> 21
<211> 34
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(34)
<223> Primer
<400> 21
attatggtct cctgctgctt cttcctgtct gtgg
                                                                      34
<210> 22
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc feature
<222>
      (1)..(30)
<223> Primer
<400> 22
                                                                      30
taataggtet ceageageag acctaceet
<210> 23
<211> 33
```

```
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(33)
<223> Primer
<400> 23
                                                                    33
taataggtct ctgtgaacag ggcaatgggg tca
<210> 24
<211> 34
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(34)
<223> Primer
<400> 24
                                                                    34
tatttggtct cttcacagtg tccaggcagg tgtc
<210> 25
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(30)
<223> Primer
<400> 25
tattaggtct cagcttgtgc tggggggtgg
                                                                    30
<210> 26
<211> 34
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(34)
<223> Primer
<400> 26
                                                                    34
aataaggtct ccaagctgac catctctgag gtgt
```

```
<210> 27
<211> 27
<212> DNA
<213> Primer
<220>
<221> misc_feature
\langle 222 \rangle (1)...(27)
<223> Primer
<400> 27
                                                                      27
attaaqaqct ctcaggctgt ttccagc
<210> 28
<211> 31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(31)
<223> Primer
<400> 28
                                                                      31
attgeeggta ceatggagte ecceaeceae e
<210> 29
<211> 35
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(35)
<223> Primer
<400> 29
                                                                      35
atcagaggtc tcccatgcca atgtcaatgg tgaac
<210> 30
<211> 27
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(27)
<223> Primer
```

```
<400> 30
                                                                      27
gatetgggte tecatggeea accecte
<210> 31
<211> 36
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(36)
<223> Primer
<400> 31
                                                                      36
aattatggtc tcgcagttca gacaactaca aatggc
<210> 32
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(30)
<223> Primer
<400> 32
aattatgage teteagggee tgteagggte
                                                                      30
<210> 33
<211> 28
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(28)
<223> Primer
<400> 33
                                                                      28
aattatggta ccatggagtc ccccaccc
<210> 34
<211> 35
<212> DNA
<213> Primer
<220>
<221> misc_feature
```

```
<222> (1)..(35)
<223> Primer
<400> 34
tataatggtc tcaactgggc tgtttccagc agggc
                                                                    35
<210> 35
<211> 31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222>
      (1)...(31)
<223> Primer
<400> 35
atattaggtc tcagatccgg gggggggggg g
                                                                    31
<210> 36
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(30)
<223> Primer
<400> 36
atattggtct caggagaggg acaagaagag
                                                                    30
<210> 37
<211> 32
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(32)
<223> Primer
<400> 37
aatatggtct ctcagcctgc tggcgatggg gc
                                                                    32
<210> 38
<211> 32
<212> DNA
<213> Primer
```

```
<220>
<221> misc_feature
<222> (1)..(32)
<223> Primer
<400> 38
attatggtct ctgcacctga ggctgtacag gc
                                                                    32
<210> 39
<211> 36
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(36)
<223> Primer
<400> 39
                                                                    36
aatatggtct cggtgctccc tgccggcggg ggtgca
<210> 40
<211> 28
<212> DNA
<213> Primer
<220>
<221> misc feature
<222> (1)..(28)
<223> Primer
<400> 40
                                                                    28
aatatggtct ctctcctcct gcctctgc
<220> 41
<211> 7
<212> PRT
<213> SV40
<220>
<221> peptide
<222>(1)..(7)
<223> Nuclear Localization Signal from SV40
<400> 41
Pro Lys Lys Arg Lys Val
```