

Detection of Amplifiers using Active Measurements

Hamza Zafar

Advisor(s): Simon Bauer, M. Sc.

Oliver Gasser, M. Sc.

Dipl.-Inform. Stefan Metzger

Supervisor: Prof. Dr.-Ing. Georg Carle

Technical University of Munich (TUM)

Department of Informatics

Chair of Network Architectures and Services

Garching, 08.04.2019

Agenda

- Introduction
- Framework
- Measurements
- Dashboards
- Conclusion

Introduction: Background

Distributed Reflective Denial-of-Service Attack (DRDoS)

Figure: DRDoS attack using a botnet.

Bandwidth Amplification Factor (BAF):

$$BAF = \frac{len(Response\ payload)}{len(Request\ payload)}$$

Amplifier:

- Publicly available
- Lacks authentication
- Connection-less
- BAF > 1

Introduction: Motivation

Terabit Attack Era

- GitHub reported 1.35 Tbps
- Arbor Networks reported 1.7 Tbps

Abuse of IoT devices

Mirai malware

Solution

- No IP address spoofing, no DRDoS attacks
- Reduce the number of amplifiers

Our Contribution

Framework to detect amplifiers using active network measurements

Introduction: Research Questions

- How to orchestrate network scans in a large network?
- How to conduct network scans ethically?
- Do amplifiers exhibit any characteristics?
- Does the bandwidth amplification factor (BAF) changes over time?
- Does the number of active amplifiers change over time?

Framework: Features

REST API

Developed using Django REST Framework (DRF)

API Endpoint	Request Method	Description
/api/v1/scan	POST	create new scan
/api/v1/scan	GET	list scan names
$/api/v1/scan/\{name\}$	GET	get scan details
$/api/v1/scan/\{name\}$	PUT	update scan
$/api/v1/scan/\{name\}$	DELETE	remove scan
$/api/v1/scan/\{name\}/result$	GET	get latest scan result
/api/v1/scan/running	GET	list task-ids of running scanning jobs
$/api/v1/scan/revoke/\{task_id\}$	GET	revoke running job with the specified task $_$ id

Table: REST API endpoints

CLI Client

Increases usability

Scan Scheduling

- Periodically execute network scans
- Celery Task Queue used

Framework: Features (cont.)

E-mail notifications

Notify about amplifiers and error messages

Network Scanner (Zmap)

- Horizontal scanner (one scan per protocol)
- Fast network scanner "/0 scans in under 45 minutes"
- Stateless
- Randomized probes
- IPv6 address space scanning

Visualization Dashboards

- Developed using Grafana
- Home Dashboard: stats from all scans
- Scan Dashboard: stats for a specific scan
- Amplifier Dashboard: stats for a specific amplifier

Measurements

Address ranges: TUM's public IPv4 addresses

Scanning frequency: Twice a day

• **Scanning duration:** Two weeks (23.02.2019 – 06.03.2019)

• No. of scanned addresses: 130k

Scan execution time: approx. 17 minutes

Protocol	Attack Vector
Chargen	get random ASCII characters
CLDAP	get list of users registered in a directory
DNS	DNS ANY query for google.com
Memcached	stat items command
NetBIOS	get NetBIOS name table
NTP	monlist command
QOTD	get random quote
RIPv1	get routing table
SNMP	get system description field using community string public
SSDP	discover packet for UPnP devices

Table: Overview of attack vectors used for detection of amplifiers.

Measurements: Ethical Considerations

- Validate probe packet
 - Don't cause harm to the devices
 - Use Wireshark to validate packet structure
 - Optimally, deploy services and capture request packets
- Host a web page to express scanning intentions

For a brief time in February 2018, the rDNS pointer for planetlab19.net.in.tum.de. points to researchscan19.netintum.umbrellastudy.com.

- Maintain a blacklist
- Avoid saturating networks
 - Low packet rate (128 pps)
 - ZMap's randomized probing
- Restricted access to scan results

Measurements: Results

- Amplifiers detected for 5 protocols
- NetBIOS, SNMP have the highest no. of amplifiers
- Amplifiers decrease during the weekend
- Amplifiers increase during the day

Protocol	\mathbf{Min}	Max	Avg
NetBIOS	73	215	122
SNMP	23	27	25
SSDP	1	3	2
Chargen	2	2	2
DNS	1	1	1

Table: Min, Max and Avg. number of amplifiers

Figure: No. of active amplifiers detected over a period of two weeks

Measurements: NetBIOS Amplifiers

- Windows based protocol to allow applications to communicate on LAN
- Probe NetBIOS nametable
- Linux/Unix based machines found running NetBIOS
 - SAMBA suite
- Amplifiers belong to three subnets
- Subnet-1:
 - End user devices
- Subnet-2 & subnet-3:
 - Printers
 - Mail servers
 - LDAP servers

Figure: Number of active NetBIOS amplifiers in three subnets

Measurements: SNMP Amplifiers

- Simple Network Management Protocol (SNMP)
- Manage and monitor network devices
- Probe system description property

Samsung Samsung M262x 282x Series; V3.00.01.04 JAN-18-2012; Engine V1.00.02 01-17-2013; NIC V6.01.01; S/N ZD2JB8GD2B00LSR Figure: System description string received from a Samsung printer

- SNMP GetRequest vs. GetBulkRequest
- Majority of SNMP amplifiers are printers

Vendor	Device Type	Count
HP	Printer	11
Brother	Printer	4
Kyocera	Printer	3
Samsung	Printer	2
Lexmark	Printer	1
Epson	External print server	1
nTop	nBox Netflow hardware appliance	1
APC	Uninterruptible Power Supply (UPS)	1

Table: SNMP amplifier device types and vendors.

Measurements: SSDP Amplifiers

- Simple Service Discovery Protocol (SSDP)
- Discovery and advertisement of plug-and-play devices
- Probe SSDP discover request
- Two Samsung printers found

DNS Amplifiers

- Probe DNS ANY query for google.com
- One DNS open resolver found
- DNS resolver caches results
- BAF drops during weekend due to
- less records in resolver's cache

Figure: Change in BAF of amplifiers

Measurements: Chargen Amplifiers

- Legacy character generator protocol
- Testing and network debugging
- Highest BAF (74X)
- Two amplifiers
- Nmap scan reveals amplifiers are running:
 - Legacy protocols Echo, Discard
 - Outdated Sun Solaris 8 OS
- Sun Solaris 8 enables Chargen on system startup
- Sun management console found

Figure: Sun Management Console

Measurements

Bandwidth Amplification Factor of amplifiers:

Protocol	Amplifiers	BAF		
		all	50%	10%
NetBIOS	145	3.24	4.06	4.91
SNMP	24	3.02	4.15	6.47
SSDP	2	14.86	19.7	19.7
Chargen	2	74	74	74
DNS	1	12.56	12.56	12.56

Table: BAF per protocol recorded from the last scanning iteration, all shows the average BAF of all amplifiers, 50% and 10% shows the average BAF of 50% and 10% of the worst amplifiers, respectively.

• 9 devices found with multiple amplification vulnerabilities

Pos.	Protocol Combination	Count
1	NetBIOS, SNMP	7
2	NetBIOS, SSDP	1
3	NetBIOS, SSDP, SNMP	1

Table: Combination of vulnerable protocols detected in amplifiers

Framework: Dashboards

Visualization Dashboards Demo

Framework: Home Dashboard

Framework: Scan Dashboard

Framework: Amplifier Dashboard

Conclusion

• Extensible framework for amplifier detection using active measurements

Evaluation by executing scans ethically in Munich Scientific Network

Number of amplifiers and BAF varies with time

Misconfigurations exposes devices

• Internet wide scans in future could be a source of interesting insights

Backup Slides

Framework: REST API

REST architecture style

- Client-server "separation of concerns"
- Uniform Interface

Django REST Framework (DRF)

- Python based
- Opensource
- Pluggable components
- Field validations (IP address format, port range)

Figure: Framework architecture

Framework: Scan Scheduling

Scanning Node

CELERY Worker

Scan Scheduling

Periodically execute network scans

Celery

- Task Queue
- Asynchronous execution of long running tasks
- Publisher-Subscriber model

Celery beat scheduler

Keeps track of scans

Triggers task execution

Celery worker

- **Executes tasks**
- Stores results in database

Master Node

RabbitMQ MESSAGE-BROKER

CELERY BEAT SCHEDULER

Figure: Framework architecture

Framework: Network Scanner

Network Scanner

Horizontal vs. vertical scanning technique

ZMap

- Fast network scanner "/0 scans in under 45 minutes"
- Stateless
- Decouples sending probes and receiving responses
- Bypasses the TCP/IP stack
- Randomized probes
- IPv6 address space scanning

Figure: Framework architecture

Framework: Visualization

- Grafana Data visualization framework
 - Opensource
 - Support for several databases
 - Tables, graphs, heat-maps etc. to visualize data
- Home Dashboard: stats from all scans
- Scan Dashboard: stats for a specific scan
- Amplifier Dashboard: stats for a specific amplifier

Framework: Notifications

E-mail notifications

- Sent when the scan completes or fails
- Helps in tackling operational challenges of the framework

Figure: Amplifiers found notification

Figure: Error notification

Measurements

- TUM's public IPv4 address ranges scanned
- 10 UDP-based protocols assessed for amplification abuse
- PlanetLab static IP addresses used for scanning nodes
- Scans executed twice a day

Figure: Scanning setup

Mitigation Strategies

- Prevent IP address spoofing
- Prevent public access to devices
 - SNMP, SSDP, NetBIOS are strictly designed for usage in LAN
 - Protect DNS resolvers
- Use latest operating systems and protocol versions
 - Sun Solaris 8's support was discontinued in March 2012
 - SNMPv3 provides username, password based authentication
 - UDP interface is disabled in latest memcached versions
 - NTP's monlist command is disabled in latest releases
- Secure service configuration
 - SNMP "public" passphrase on printers should be changed
- Protocol hardening
 - DNS: switch to TCP if the response size exceeds a threshold

Related Work

- Amplification Hell: Revisiting Network Protocols for DDoS Abuse [1]
 - Scanned the internet for amplifiers, we scanned a university network
 - Described a passive approach for amplifier detection (BAF=5 and traffic=10MB)
 - Response size from the Chargen amplifiers is 74 bytes
 - Scanned only SNMPv2, we scanned SNMPv1 and v2 devices
 - DNS average BAF 28.7, we observed 12.56
 - SSDP average BAF 30.7, we observed 14.86
- Hell of a Handshake: Abusing TCP for Reflective Amplification DDoS Attacks [2]
 - TCP stacks re-transmit the SYN-ACK packet to victim
 - No amplification attack reported based on the TCP amplifiers
- OpenResolverProject.org and OpenNTPProject.org
 - Scan internet for DNS and NTP amplifiers
 - Limited to two protocols and IPv4 addresses

[1] Christian Rossow. "Amplification Hell: Revisiting Network Protocols for DdoS Abuse". In: In Proceedings of the 2014 Network and Distributed System Security Symposium, NDSS. 2014.

[2] Marc Kuhrer and Thomas Hupperich and Christian Rossow and Thorsten Holz, "Hell of a Handshake: Abusing TCP for Reflective Amplification DDoS Attacks", In Proceedings of the 2014 USENIX Workshop on Offensive Technologies WOOT' 14