Soluzioni prova scritta

Ingegneria Informatica 30/01/2024

Esercizio 1

1. Punti Sia $F(2, m, L, U) \subset \mathbb{R}$ l'insieme dei numeri di macchina con base 2, mantissa di lungezza $m \in \mathbb{N}$ ed esponente fra L ed U; ovvero i numeri reali $x \in \mathbb{R}$ della forma

$$x = \operatorname{segno}(x) \cdot 2^e \cdot \sum_{j=1}^m \alpha_j 2^{-j},$$

con $e \in \mathbb{Z}$, $L \leq e \leq U$ e $\alpha_j \in \{0, 1\}$, $\alpha_1 = 1$.

Il massimo numero contenuto in F(2, m, L, U) è $2^{U}(1-2^{-m})$

Supponiamo di volere memorizzare una matrice $A \in \mathbb{R}^{20 \times 10}$ le cui entrate siano numeri floating point in **precisione singola**; questa operazione richiede 6400 bit.

2. Punti Siano $n, k, h \in \mathbb{N}, 0 < k, h < n, \text{ ed } A \in \mathbb{C}^{n \times n}$ partizionata a blocchi come segue

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix},$$

con $B \in \mathbb{C}^{h \times k}$, $C \in \mathbb{C}^{h \times (n-k)}$, $D \in \mathbb{C}^{(n-h) \times k}$, $E \in \mathbb{C}^{(n-h) \times (n-k)}$.

- V F Se D = 0 allora A è riducibile.
- V F Se C = 0 allora A è riducibile.
- V F Se B = 0 allora A è riducibile.
- V F Se k = h, B = 0 e E = 0 allora A è riducibile.
- $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ Se k = h e D = 0 allora A è riducibile.
- \overline{V} F Se il grafo orientato associato ad A è fortemente connesso allora A è riducibile.
- 3. 2 Punti Data $f: \mathbb{R} \to \mathbb{R}$ si consideri il polinomio interpolante $P_k(x)$ sui nodi x_0, \ldots, x_k , rappresentato nella **base di Newton** come:

$$P_k(x) = \sum_{j=0}^{k} f[x_0, \dots, x_j] \cdot N_j(x).$$

 N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi 2, 3 e 4.

- V F $N_j(x)$ è un polinomio di grado j, per ogni j = 0, ..., k.
- V F $N_j(x)$ è un polinomio di grado k per ogni $j = 0, \ldots, k$.
- V \mathbf{F} $N_j(x) = \prod_{i=0, i \neq j}^k \frac{x-x_i}{x_j-x_i}$.
- $\overline{\mathbf{V}} \left[\overline{\mathbf{F}} \right] N_j(x_i) = 0 \text{ se } j > i.$
- V F $N_j(x_i) = 0$ se $j \neq i$.
- V F $N_j(x_i) = 0$ se j < i.
- 4. Punti Si consideri la risoluzione di un sistema lineare Ax = b, dove $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, con i metodi di Jacobi e Gauss Seidel.
- V F Per applicare il metodo di Jacobi è necessario che $a_{ii} \neq 0$, per ogni $i = 1, \ldots, n$.
- $\overline{\mathbf{V}}$ F Per applicare il metodo di Gauss Seidel è necessario che $a_{ii} \neq 0$, per ogni $i = 1, \ldots, n$.
- V F La matrice di iterazione del metodo di Jacobi è sempre singolare.
- V F La matrice di iterazione del metodo di Gauss Seidel è sempre singolare.
- V F Se il metodo di Jacobi converge allora anche Gauss Seidel converge.
- V F Se il metodo di Gauss Seidel converge allora anche Jacobi converge.

Esercizio 2

(i) 4 Punti Sia $A \in \mathbb{C}^{4\times 4}$ e si considerino i tre grafici qua sotto come possibili configurazioni dei cerchi di Gershgorin e degli autovalori della matrice A (sull'asse delle x ci sono le parti reali mentre sull'asse delle y le parti immaginarie). Per ognuna di tali configurazioni dire se è ammissibile o non ammissibile; nel caso di non ammissibilità giustificare la risposta.

Nomi configurazioni: (a) in alto sinistra, (b) in alto a destra e (c) in basso.

(ii) 4 Punti Stesso quesito del punto precedente assumendo stavolta che $A \in \mathbb{R}^{4\times 4}$ e le seguenti configurazioni.

Nomi configurazioni: (a) a sinistra e (b) a destra.

- (i) Le configurazioni (a) e (c) sono ammissibili mentre (b) è inammissbile.
- (ii) Entrambe le configurazioni sono inammissbili.

Esercizio 3

(i) 6 Punti Per ognuna delle funzioni

$$f_1(x) = \log_2(x) - 5 + x,$$

 $f_2(x) = x^2 - 10x + 23,$

determinare un intervallo $[a_i, b_i]$ tale che $f_i(a)f_i(b) < 0$, i = 1, 2, e applicare due passi del metodo di bisezione per determinare una radice.

- (ii) 2 Punti Per ognuno dei due casi precedenti determinare il numero minimo di passi del metodo di bisezione che garantisce un errore assoluto nell'approssimazione della radice minore di 10^{-4} .
- (i) Una possibile scelta per $f_1(x)$ è $[a_1, b_1] = [3, 4]$, che fornisce la sequenza di intervalli [3, 3.5] e [3, 3.25].

Anche per $f_2(x)$ si può scegliere $[a_2, b_2] = [3, 4]$ che fornisce la sequenza di intervalli [3.5, 4] e [3.75, 4].

[(ii)] Per ognuno dei casi precedenti è sufficiente eseguire $\lceil 4 \log_2(10) \rceil$ iterazioni del metodo di bisezione per avere un errore assoluto inferiore a 10^{-4} .

Esercizio 4

Si consideri l'approssimazione di $\int_{-1}^{1} f(x)dx$. Data una formula di quadratura $J_n(f)$, con n+1 nodi e grado di precisione $m \in \mathbb{N}$, si definisce il nucleo di Peano la funzione

$$G(t) = \int_{-1}^{1} s_{m,t}(x)dx - J_n(s_{m,t}(x))$$

dove

$$s_{m,t}(x) = \begin{cases} (x-t)^m & t < x \\ 0 & t \ge x \end{cases}.$$

- (i) 4 Punti Si dimostri che per la formula dei trapezi il nucleo di Peano ha segno costante per $t \in [-1,1]$.
- (ii) 4 Punti Si dimostri che per la formula di Simpson il nucleo di Peano ha segno costante per $t \in [0,1]$.
- (i) Svolgendo i calcoli si ottiene che in questo caso $G(t) = \frac{t^2-1}{2}$ che è sempre non positivo per $t \in [-1, 1]$.
- [(ii)] Svolgendo i calcoli si ottiene che in questo caso $G(t) = \frac{(1-t)^4}{4} \frac{(1-t)^3}{3}$ che è sempre non positivo per $t \in [0,1]$.