신한은행 빅데이터 해커톤

데이런

김지수 박세라 송지우 윤서희 임아현

목차

- 1. 개요
- 2. 데이터 변수 설명
 - 3. 데이터 전처리
 - 4. 데이터 분석
 - 5. 모델링
- 6. 평가 및 개선사항

▪개요

"야식 자주 먹으면 투자 성향 공격적?"...데이터 결합 싹 틔우는 신한금융

박진우 기자 🏠

입력 2020.12.02 17:42 수정 2020.12.03 01:41 지면 A14

- 유럽의 증권사에서 소비 성향을 투자상품 추천에 활용해 성공한 사례
 - 데이터 3법 시행을 계기로 본격적인 분석 작업을 시작하는 추세
- 현재 금융권에서 MZ세대를 고객으로 유치하기 위해 경쟁이 치열

- 개요

■ 데이터 분석 목표

- 신한 카드 거래 고객 중 현재 증권사와 거래를 하고있는 고객의 특징 파악
 - > 이를 활용하여 증권 성향의 고객을 예측하는 알고리즘 개발
- 증권 성향 고객에게 홍보나 혜택 등의 향후 실제 활용할 수 있는 방안을 고안

데이터 변수 설명

P1	P2	Р3	P4	P5	P6	P7	B1	B2	В3	 B165	B166	B167
М	20대_후	1	1	0	0	A은행	0	0	0	 0	0	4350000
М	50대_후	1	0	0	0	A은행	0	0	0	 0	0	580000
М	40대_후	1	1	0	0	A은행	0	0	0	 0	0	1950000
F	60대_초	1	1	0	0	A은행	0	0	0	 0	0	43000000
М	30대_후	0	1	0	0	B은행	0	0	0	 0	0	4910000

C1	E1	E2	E3	E4	E5	E6
210	0	0	11111111110	0	111111111111	1100000000
40	0	0	0	0	111110111111	10000000000
50	0	1101101111	0	0	111101101111	101101101111
50	0	0	0	0	111111111111	111111111111
40	0	111111111111	0	0	111111111111	111111111111

신한 카드 결제 정보 데이터

• P3 : 은행활동고객TF

• P4: 카드우수고객TF

• P5 : 금투활동고객TF

• P6: 라이프활동고객TF

• B: 166개 업종 별 금액 + 총 결제 금액

• C: 결제 횟수

• E: 패턴코드 (12자리)

--- 데이터 변수 설명

■ 증권 성향 고객

- 카드우수고객TF(P4), 금투활동고객TF(P5)가 모두 1인 고객
- 즉, 카드도 많이 사용하고 금융 투자도 많이 하는 고객을 증권 성향 고객
 - > 신한투자증권을 활용하여 증권사에서 거래할 확률이 높을 것으로 판단

데이터 전처리

- Pandas와 Numpy 패키지를 설치하여 데이터 분석을 진행하였다.
- 데이터 시각화를 위해 matplotlib 패키지를 설치하였다.
- df = 473228 rows x 181 columns

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
matplotlib.rcParams['font.size'] = 15
matplotlib.rcParams['axes.unicode_minus'] = False
from google.colab import drive
drive.mount('/content/drive')

filename = '/content/drive/MyDrive/해커톤 준비/임아현/data_033/data_033.csv'
df = pd.read_csv(filename, encoding='cp949')
```

데이터 전처리

- 은행활동고객TF(P3), 카드우수고객TF(P4), 금투활동고객TF(P5), 라이프활동고객TF(P6) 컬럼이 모두 '0'인고객은 신한은행 계좌가 없고, 신한카드를 주로 이용하지 않고, 신한투자증권을 이용하지 않고, 신한라이프에 미가입된 고객이다.
- 이러한 고객은 해당 사에서 증권을 구매할 가능성이 매우 낮은 고객들로 판단하여 분석에서 제외하였다.
- df = 406023 rows x 181 columns

```
filt = (df['P3']==0) & (df['P4']==0) & (df['P5']==0) & (df['P6']==0)
df = df[~filt]
df
```

P1	P2	Р3	P4	P5	P6	P7	B1	B2	B3	 B165	B166	B167	C1	E1	E2	E3	E4	E5	E6
М	20대_후	1	1	0	0	A은행	0	0	0	 0	0	4350000	210	0	0	11111111110	0	111111111111	1100000000
М	50대_후	1	0	0	0	A은행	0	0	0	 0	0	580000	40	0	0	0	0	111110111111	10000000000
М	40대_후	1	1	0	0	A은행	0	0	0	 0	0	1950000	50	0	1101101111	0	0	111101101111	101101101111
F	60대_초	1	1	0	0	A은행	0	0	0	 0	0	43000000	50	0	0	0	0	111111111111	111111111111
М	30대_후	0	1	0	0	B은행	0	0	0	 0	0	4910000	40	0	111111111111	0	0	111111111111	111111111111

데이터 전처리

- 데이터를 전체적으로 훑어본 결과 E1~E6까지 패턴코드였고, E4는 론이용패턴코드임을 확인하였다.
- 신한카드 이용 고객 중 현재 증권사와 거래를 하고 있는 고객의 특징을 정의하기 위해 카드우수고객TF(P4), 금투활동고객TF(P5) 데이터를 집중해서 분석을 진행하였다.
- 이 과정에서 론이용패턴코드(E4)는 증권 성향이 높은 고객을 설명해주기에 모호한 부분이 있다고 판단하여
 E4를 분석에서 제외하였다.
- df = 406023 rows x 180 columns [최종적으로 분석에 사용하게 된 데이터]

```
df = df.drop(columns=['E4'])
df
```

P1	P2	Р3	P4	P5	P6	P7	B1	B2	B3	 B164	B165	B166	B167	C1	E1		E2	E3	E5	E6
М	20대_후	1	1	0	0	A은행	0	0	0	 0	0	0	4350000	210	0		0	11111111110	111111111111	1100000000
М	50대_후	1	0	0	0	A은행	0	0	0	 0	0	0	580000	40	0		0	0	111110111111	10000000000
М	40대_후	1	1	0	0	A은행	0	0	0	 19000	0	0	1950000	50	0		1101101111	0	111101101111	101101101111
F	60대_초	1	1	0	0	A은행	0	0	0	 0	0	0	43000000	50	0		0	0	111111111111	111111111111
М	30대_후	0	1	0	0	B은행	0	0	0	 0	0	0	4910000	40	0	11	1111111111	0	111111111111	111111111111

--- 데이터 분석

■ 데이터 간의 관계를 파악하고 새로운 출력 데이터를 만들어낸다.

- 1. 금융투자 유무에 따른 '연령대별 고객 분포'는 어떠한가?
- 2. 금융투자 유무에 따른 '연령대별 성별 비중'은 어떠한가?
- 3. 금융투자 유무에 따른 '업종별 차이'는 어떠한가?

```
a = (df['P5'] == 1)
df_T = df[a]
df_T
```

금융투자 유 df_T = 47691 rows x 180 columns

	P1	P	2 F	3 1	P 4	P5	P6	P7	B1	B2	B3	 B164	B165	B166	B167	C1	E1	E2	E3	E5	E6
8	М	30대_록	5	0	0	1	0	B은행	0	0	0	 27000	0	0	1130000	40	0	0	0	111110000000	111100000000
27	М	40대_루	Ė	1	1	1	1	A은행	0	0	0	 0	0	0	2150000	130	0	100000	0	100010100101	100000100000
29	F	50대_초	Ė	1	1	1	1	A은행	0	0	0	 0	0	0	3650000	100	0	10010	0	111111111111	111111111000
33	F	30대_후	Ė	1	1	1	0	A은행	0	0	0	 0	0	0	3730000	70	111111111111	100000000000	0	111111111111	111111111111
38	F	40대_록	5	1	1	1	0	A은행	0	0	0	 0	0	0	7620000	160	0	0	0	111111111111	111111111111

```
b = (df['P5'] == 0)
df F = df[b]
df_F
```

금융투자 무 df_F = 358332 rows x 180 columns

	P1	P2	Р3	P4	P5	P6	P7	B1	B2	B3	 B164	B165	B166	B167	C1	E1	E2	E3	E5	E6
0	М	20대_후	1	1	0	0	A은행	0	0	0	 0	0	0	4350000	210	0	0	11111111110	111111111111	1100000000
1	М	50대_후	1	0	0	0	A은행	0	0	0	 0	0	0	580000	40	0	0	0	111110111111	10000000000
2	М	40대_후	1	1	0	0	A은행	0	0	0	 19000	0	0	1950000	50	0	1101101111	0	111101101111	101101101111
3	F	60대_초	1	1	0	0	A은행	0	0	0	 0	0	0	43000000	50	0	0	0	111111111111	111111111111
4	М	30대_후	0	1	0	0	B은행	0	0	0	 0	0	0	4910000	40	0	111111111111	0	111111111111	111111111111

금융투자 유무에 따른 '연령대별 고객 분포'

```
age=df_T['P2'].value_counts().sort_index()
plt.title("연령대별 고객분포")
age.plot(kind = 'pie', figsize=(7,7),autopct='%1.1f%%',colors = color)
plt.show()
```


금융투자 유무에 따른 '연령대별 성별 비중'

```
stacked_bar_df_T = df_T.groupby(["P2","P1"]).size().unstack()
stacked_bar_df_T.plot(kind='bar', stacked=True, color=color)
plt.title("연령별 성별 비중")
plt.xticks(rotation=0, fontsize=9)
plt.show()
```


금융투자 유무에 따른 '업종별 차이'

숙박	B1-B6	교통	B7-B11
쇼핑	B13-B21, B32, B77-B78	농수산	B22-B29
식료품	B30-B31, B35-B42	가구	B43-B54
사무/전자기기	B55-B60	의류/미용	B63-B76, B152-B153
취미	B79-B96	스포츠/문화/레저	B97-B105, B121-B122, B137-B138
보험/의료	B106-B107, B139-B149	교육	B108, B155-B156
자동차	B118-B120, B132, B157-B166	가정생활/서비스	B135-B136, B154
업종	B124-B127, B151-B152	서비스	B129-B132

- 각 업종별로 금융 투자 유무에 따라 어떤 부분에 많은 금액을 소비하는지 조사하고자, 기존 데이터에서 비슷한 분야를 업종별로 묶어서 분석을 진행하였다.
- 일상에서 자주 사용하는 곳이 아니고, '1개월'이라는 주어진 기간 안에 드문 확률로 사용되는 소비 데이터는 분석에서 제외하였다. EX) 예식장, 장의사

14

금융투자 유무에 따른 '업종별 차이'가 작은 업종 [교육]

```
df_T_edu = df_T.loc[:, ['B108','B155','B156']]
df_T_edu_s = df_T_edu[['B108','B155','B156']].sum()

values = df_T_edu_s
labels = df_T_edu.columns
wedgeprops = {'width':0.6, 'edgecolor':'w', 'linewidth':5}
plt.figure(figsize=(5, 5))
plt.pie(values, labels=labels, autopct='%.1f', pctdistance=0.7, wedgeprops=wedgeprops, startangle=90)
plt.show()
```

금융투자 무

금융투자 유무에 따른 '업종별 차이'가 작은 업종 [농수산, 식료품]

금융투자 유무에 따른 '업종별 차이'가 큰 업종 [숙박]

• 금융 투자를 하는 고객들이 특급호텔(B1)에서 숙박하는 비중이 6.3% 높다.

금융투자 유무에 따른 '업종별 차이'가 큰 업종 [스포츠/문화/레저]

• 금융 투자를 하는 고객들이 실외 골프장(B98)을 이용하는 비중이 10.5% 높다.

금융투자 유무에 따른 '업종별 차이'가 큰 업종 [교통]

• 금융 투자를 하는 고객들이 항공사(B7)를 이용하는 비중이 7.3% 높다.

XGBOOST

1. 모듈 Import

```
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

2. 데이터 전처리 > 금융투자TF(P5)와 B1-B167만 남긴다.

df = df.drop(columns=['P1', 'P2', 'P3', 'P4', 'P6', 'P7', 'C1', 'E1', 'E2', 'E3', 'E4', 'E5', 'E6'])
df

	P5	B1	B2	B3	B4	B5	B6	B7	B8	B9	 B158	B159	B160	B161	B162	B163	B164	B165	B166	B167
0	0	0	0	0	0	190000	0	101000	0	54000	 0	0	0	70000	76000	0	0	0	0	4350000
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	580000
2	0	0	0	0	0	0	0	0	1000	0	 0	0	0	0	110000	0	19000	0	0	1950000
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	43000000
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	20000	0	0	0	0	0	4910000

XGBOOST

3. 데이터 가공하기 > P5(금투TF): 목표변수, B1-B167: 설명변수

```
X = df.loc[:, 'B1':'B167'] #설명변수
Y = df.loc[:, 'P5'] #목표변수
```

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 7)
X_train

	B1	B2	В3	B4	B5	B6	B7	B8	В9	B10	 B158	B159	B160	B161	B162	B163	B164	B165	B166	B167
36540	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	260000
55370	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	900000
347912	0	0	0	0	0	0	0	0	0	0	 0	0	0	93000	0	0	0	0	0	760000
269198	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	820000
113748	0	0	0	0	0	0	0	0	0	0	 0	0	0	2112000	0	0	0	0	0	4010000
235075	0	0	0	0	0	0	0	0	306000	0	 0	0	0	0	0	0	0	0	0	2190000
10742	0	0	0	0	0	0	0	0	0	0	 0	0	0	30000	0	0	0	0	0	580000
49689	0	0	0	0	0	0	0	0	17000	0	 0	0	0	0	0	0	0	0	0	840000

XGBOOST

4. 모델 훈련시키기

```
model = XGBClassifier()
model.fit(X_train, y_train)
print(model)
```

6. 모델 평가하기

```
accuracy = accuracy_score(Y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy*100.0))
Accuracy: 89.89%
```

5. 예측 수행하기

```
Y_pred = model.predict(X_test)
predictions = [round(value) for value in Y_pred]
```

Accuracy: 89.89%

CATBOOST

1. 데이터 전처리

```
X = df.loc[:, 'B1':'B167'] #설명변수
Y = df.loc[:, 'P5'] #목표변수
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 7)
X train
                                   B9 B10 ... B158 B159 B160
      B1 B2 B3 B4 B5 B6 B7 B8
                                                               B161 B162 B163 B164 B165 B166
                                                                                               B167
36540
                                                                                              260000
55370
                                                 0
                                                                                              900000
                                                                  0
                                                                       0
                                                                            0
                                                                                      0
347912
                                                               93000
                                                                                              760000
                                                      0
                                                                            0
                                                                                      0
269198
                                                                       0
                                                                                              820000
113748
                                                      0
                                                           0 2112000
                                                                                           0 4010000
                                                 0
235075
                             0 306000
                                        0
                                                      0
                                                                       0
                                                                                      0
                                                                                           0 2190000
                                                 0
```

CATBOOST

2. 모듈 Import

```
import numpy as np
from catboost import CatBoostClassifier, Pool

from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from sklearn.linear_model import LogisticRegression
```

3. 데이터 가공하기

```
print('train shape: ', X_train.shape)
print('test shape: ', X_test.shape)

train shape: (331259, 167)
test shape: (141969, 167)
print('train shape: ', Y_train.shape)
print('test shape: ', Y_test.shape)

train shape: (331259, 167)
test shape: (141969,)
```

CATBOOST

4. 모델 훈련시키기

```
model = CatBoostClassifier()
model.fit(X_train, Y_train)
print(model)
```

Learning rate set to 0.122757

```
learn: 0.5947707
                               total: 200ms
                                              remaining: 3m 19s
0:
1:
       learn: 0.5228800
                               total: 373ms
                                               remaining: 3m 5s
      learn: 0.4690816
                               total: 590ms
                                              remaining: 3m 16s
3:
      learn: 0.4313746
                               total: 774ms
                                              remaining: 3m 12s
4:
      learn: 0.4030955
                               total: 982ms
                                              remaining: 3m 15s
      learn: 0.3821298
                               total: 1.2s
                                              remaining: 3m 18s
```

5. 예측 수행하기

```
Y_pred = model.predict(X_test)
predictions = [round(value) for value in Y_pred]
accuracy = accuracy_score(Y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy*100.0))
Accuracy: 89.87%
```

Accuracy: 89.87%

- 단기 데이터로 분석을 진행하였기 때문에 모델링의 결과가 정확하지 않을 수 있다.
 - 장기 데이터로 분석하는 경우에 활용도가 높아지기 때문에, 누적된 데이터를 사용하는 것이 바람직하다고 판단된다.
- 금융 투자를 하는 사람들이 금융 투자를 하지 않는 사람들보다 높은 비중을 보이는 업종은 실외 골프장, 특급 호텔, 항공사이다.
 - 세 개의 업종을 중심으로 홍보와 활용 방안을 제시하고자 한다.

- MTS (Mobile Trading System)
 - 최근 개인 투자자 참여 확대 > MTS 이용 비중 증가
 - MZ 세대 유입 > 편의성을 위해 하나의 통합 앱으로 운영하는 추세

신한투자증권

<신한알파>

- 단순하고 깔끔한 기능으로 호평
- '앱인앱 형식'으로 추가 앱 설치 없이 100개 이상의 금융 서비스 제공
- 주식 잔고 '영수증' 서비스

■ 소액 자동 투자 시스템

- 실외 골프장, 항공사, 특급호텔
- 신한투자증권에서 사용 가능한 포인트 지급
- 일정 포인트 이상 시, 자동으로 투자해주는 시스템
- 주식 계좌가 없다면, 시스템 홍보 문자 전송

명가 및 개선사항

- 1. MZ세대의 경우 투자 자체를 소액으로 하는 경우가 많다.
- 2. 경제 지식이 부족하고 공부하지 않은 상태로 게임처럼 투자한다.

전문가와 AI가 판단한 종목에 투자하는 것이 수익률이 높을 확률이 크다.

감사합니다