Charakterystyka Eulera

Zadanie domowe

Weronika Jakimowicz

Zadanie 1. Opisz grupę automorfizmów triangulacji \mathbb{R} P² o najmniejszej liczbie wierzchołków.

usunąć kolokwializmy, pokazać, że jądro Aut(D) \to S₅ = \mathbb{Z}_2 , na początku uzasadnić 2E = 3T, ładniej pokazać, że sześciany są trzymane przez automorfizmy

Ile wierzchołków?

Zacznijmy od zauważenia, że patrzymy na 2-rozmaitość, czyli dowolny punkt triangulacji ma otoczenie, które wygląda jak mała sfera w \mathbb{R}^2 . Na \mathbb{R}^2 każda krawędź przylega do 2 trójkątów, a każdy trójkąt ma 3 krawędzie, stąd

$$2E = 3T$$
.

Wiemy, że jeśli X ma triangulację o V wierzchołkach, E krawędziach i T trójkątach, to

$$\chi(X) = V - E + T$$
.

Jak wcześniej zauważyliśmy, 2E = 3T, więc mamy

$$\chi(X) = V - E + \frac{2}{3}E = V - \frac{1}{3}E.$$

Ilość krawędzi szacujemy od góry przez ilość krawędzi w grafie pełnym: E $\leq {V \choose 2}$ czyli

$$V = \chi(X) + \frac{1}{3}E \le \chi(X) + \frac{V(V-1)}{6}$$

dla \mathbb{R} P² dostajemy więc ograniczenie

$$V \leq 1 + \frac{V(V-1)}{6}$$

$$6 \ge 6V - V^2 + V = V(7 - V)$$

Powyższa nierówność dla V = 6 staje się równością. Tak samo dla V = 1 mamy równość, ale z oczywistego powodu nie ma jednowierzchołkowej triangulacji na \mathbb{R} P². Pozostałe liczby naturalne z przedziału (0, 7) nie mają szansy spełniać powyższe równanie (widać na obrazku)

Z listy 1 wiemy, że 6 wierzchołkowa triangulacja \mathbb{R} P² jest jedyna z dokładnością do izomorfizmu, czyli nie musimy się martwić którą triangulacje opisujemy.

Plan działania

Płaszczyzna rzutowa \mathbb{R} P 2 to S 2 wydzielona przez antypodyczne działanie \mathbb{Z}_2 . W takim razie, 6 wierzchołkowa triangulacja na \mathbb{R} P 2 przychodzi od triangulacji na S 2 . Dwudziestościan ma 12 wierzchołków i 20 ścian i jest to interesująca nas triangulacja sfery. Łatwiejsze jest jednak badanie grupy automorfizmów bryły dualnej do dwudziestościanu - dwunastościanu o 12 ścianach i 20 wierzchołkach.

narysować na sferze z osiami symetrii

Z dodecahedronu możemy dostać icosahedron - wystarczy postawić wierzchołek na każdej ścianie i połączyć odpowiednio wierzchołkami. W ten sam sposób można z icosahedronu wrócić do dodecahedronu. Stąd grupy automorfizmów obu tych brył będą równe i wystarczy popatrzeć na dodecahedron D:

Uzasadnimy teraz to, co prawi Wikipedia, mianowicie, że $Aut(D) = A_5 \times \mathbb{Z}_2$.

Czy zgadza się rząd?

Niech $v \in D$ będzie wierzchołkiem dodecahedronu (odpowiada ścianie icosahedronu).

- |Obr(v)| = 20, bo automorfizm może postać wierzchołek na dowolny inny spośród 20 które D posiada.
- |Stab(v)| = 3! = 6, gdyż są to permutacje 3 sąsiadów tego wierzchołka przy trzymaniu v w miejscu.

W takim razie dostajemy

$$|Aut(D)| = |Orb(v)| \cdot |Stab(v)| = 20 \cdot 6 = 120 = |A_5 \times \mathbb{Z}_2|.$$

Pozbycie się \mathbb{Z}_2

Wśród automorfizmów dodecahedronu D mamy dwa "rodzaje" odwzorowań

- rotacje i symetrie, które zachowują ruch wskazówek zegara przy numerowaniu sąsiadów dowolnego wierzchołka,
- b odwzorowanie antypodyczne tudzież symetria względem punktu w samym środku D, która

przewraca tę kolejność do góry nogami.

Ten drugi rodzaj odwzorowania będzie odpowiadać za czynnik \mathbb{Z}_2 w Aut(D). Wystarczy więc zająć się samą grupą symetrii i rotacji i pokazać, że to A_5 .

Symetrie i obroty

Sztuczką na pokazanie, że symetrie D to A₅ jest zauważenie 5 sześcianów w środku D. Sześciany możemy narysować idąc krokami:

- weź krawędź w D
- b połącz wszystkie sąsiady tej krawędzi w ścianę
- weź krawędź po przeciwnej stronie D
- połącz jej wszystkie sąsiady w ścianę
- połącz te dwie ściany w sześcian.

Z tej metody wytwarzania sześcianów można od razu wywnioskować, że automorfizm przeprowadza sześciany na sześciany, ponieważ sąsiedztwo wierzchołków musi być zachowane, a to ono było podstawą wyciskania sześcianów z D.

Ponumerujmy sześciany od 1 do 5 - możemy teraz je permutować. Najbardziej leniwym sposobem na zauważenie, że grupa uzyskana przez porządne permutacje tych sześcianów to A_5 jest podzielenie |Aut(D)| = 120 przez 2, które oznacza, że wyrzucamy antypodyzm (element rzędu 2). Zostawia to nam 60 automorfizmów, które będą permutować te sześciany i które powinniśmy móc włożyć w S_5 . Jedyna (z dokładnością do izomorfizmu) podgrupa S_5 o 60 elementach jest A_5 tak jak chcieliśmy.

Uzasadniliśmy, że $A_5 \times \mathbb{Z}_2$ = Aut(dodecahedron) = Aut(icosahedron) bo tak jak już wspomniałam, bryły te są dualne. Po wydzieleniu S^2 z triangulacją będącą icosahedronem przez działanie antypodyczne dostajemy grupę automorfizmów triangulacji $\Delta \mathbb{R} P^2$ o 6 wierzchołkach:

$$\operatorname{Aut}(\Delta \mathbb{R} \operatorname{P}^2) = \operatorname{A}_5 \times \mathbb{Z}_2 / \mathbb{Z}_2 = \operatorname{A}_5$$

Zadanie 4. Niech X będzie przestrzenią topologiczną. Definiujemy przestrzeń konfiguracji $Conf_n(X)$ jako przestrzeń położeń n różnych punktów w X (zakładamy, że dwa punkty nie mogą leżeć w tym samym miejscu. Definiujemy też przestrzeń konfiguracji $conf_n(X)$ jako przestrzeń położeń n nierozróżnialnych punktów w X, czyli

$$Conf_n(X) = \{(x_1, ..., x_n) \in X^n : x_i \neq x_j, \text{ gdy } i \neq j\}$$
$$conf_n(X) = \frac{Conf_n(X)}{S_n}$$

 $gdzie S_n działa na Conf_n(X) przez permutacje współrzędnych.$

Oblicz charaketrystykę Eulera $conf_n(\mathbf{Y})$, gdzie \mathbf{Y} to drzewo o 4 wierzchołkach, z czego 3 to liście, dla n=2,3,4.

n = 2

Zauważmy, że w każdym punkcie $Conf_n(\mathbf{Y})$ leży niemalże identyczna kopia \mathbf{Y} z tym, że brakuje w niej jednego punktu -> tego, który miałby obie współrzędne równe. Korzystając z addytywnej definicji charakterystyki Eulera, graf \mathbf{Y} ma charakterystykę $\chi(\mathbf{Y})=1$. W takim razie, jeśli wyjmiemy z niego punkt to dostajemy graf z $\chi(\mathbf{Y}-\bullet)=1-1=0$.

Formuła Riemanna-Hurwitza mówi, że jeśli mamy funkcję $f: Conf_n(\mathbf{Y}) \to \mathbf{Y}$, to wtedy

$$\chi(\mathsf{Conf}_{\mathsf{n}}(\mathbf{Y})) = \int_{\mathbf{Y}} \chi(\mathsf{f}^{-1}(\mathsf{X})) \mathsf{d}\chi(\mathsf{X})$$

W tym konkretnym przypadku od razu w oczy rzuca się funkcja

$$f(x, y) = x,$$

w której przeciwobrazem dowolnego punktu jest Y bez punktu. W takim razie

$$\chi(\mathsf{Conf}_{\mathsf{n}}(\mathbf{Y})) = \chi(\mathbf{Y})\chi(\mathbf{Y} - \bullet) = 1 \cdot 0 = 0.$$

Zauważmy, że teraz możemy napisać funkcję g : $Conf_n(\mathbf{Y}) \to conf_n(\mathbf{Y})$ która "skleja" dwa punkty będące swoimi permutacjami. W takim razie nad dowolnym punktem w $conf_n(\mathbf{Y})$ wiszą dwa punkty w $Conf_n(\mathbf{Y})$. W takim razie

$$2 \cdot \chi(Conf_n(\mathbf{Y})) = \chi(conf_n(\mathbf{Y}))$$

i $\chi(conf_n(\mathbf{Y})) = 0$.

Rozważmy teraz funkcję

$$f: Conf_3(\mathbf{Y}) \rightarrow Conf_2(\mathbf{Y})$$

taka, że

$$f(x, y, z) = (x, y).$$

Teraz nad każdym punktem $Conf_2(\mathbf{Y})$ wisi kopia \mathbf{Y} bez dwóch punktów. Charakterystyka \mathbf{Y} bez dwóch punktów to -2, mamy więc

$$\chi(\mathsf{Conf}_3(\mathbf{Y})) = \int_{\mathsf{Conf}_2(\mathbf{Y})} \chi(\mathsf{f}^{-1}(\mathsf{X})) \mathsf{d}\chi(\mathsf{X}) = \chi(\mathsf{Conf}_2(\mathbf{Y})) \cdot \chi(\mathbf{Y} - \bullet - \bullet) = -2 \cdot 0 = 0.$$

Oczywiste jest również odwzorowanie g : $Conf_3(\mathbf{Y}) \rightarrow conf_3(\mathbf{Y})$, które skleja 6 punktów mających te same współrzędne w jeden punkt. W takim razie

$$\chi(\mathsf{conf}_3(\mathbf{Y})) = \frac{1}{4}\chi(\mathsf{Conf}_3(\mathbf{Y})) = \frac{1}{4} \cdot 0 = 0.$$

Analogicznie jak wcześniej, funkcja $f: Conf_4(Y) \to Conf_3(Y)$ wraz z całką Riemanna-Hurwitza mówi, że

$$\chi(\mathsf{Conf}_{\mathcal{A}}(\mathbf{Y})) = 0.$$

Ponieważ odwzorowanie g : $Conf_4(\mathbf{Y}) \rightarrow conf_4(\mathbf{Y})$ jest 4!-krotne, to

$$\chi(\text{conf}_4(\mathbf{Y})) = \frac{0}{4!} = 0.$$

Zadanie 5. Mapą na powierzchni M nazywamy podział powierzchni na komórki homeomorficzne z dyskami, których przekroje są zawarte w ich brzegach. Z takim podziałem mamy związany graf dualny, którego wierzchołki, to komórki, a krawędź istnieje pomiędzy wierzchołkami, gdy odpowiadające im komórki mają niepusty przekrój. Kolorowaniem mapy nazywać będziemy funkcję ze zbioru komórek w pewien skończony zbiór kolorów, która przyjmuje różne wartości na krojących się niepusto komórkach.

- (a) Jak mogą wyglądać mapy na powierzchniach? Czy da się uprościć je tak, by graf dualny był 1-szkieletem triangulacji? Rozważyć mapę o sześciu krajach na butelce Kleina.
- (b) Twierdzenie o k barwach dla powierzchni M mówi, że każdą mapę na powierzchni M można pokolorować co najwyżej k kolorami. Udowodnić twierdzenie o 5 barwach dla sfery S², o 6 barwach dla RP² o 7 barwach dla torusa T² i o 6 barwach dla butelki Kleina.

(a) W mapie pozwalamy, aby w jednym punkcie spotykały się co najwyżej 3 kraje. Jeśli istnieje punkt, w którym spotykają się 4 kraje, wtedy ten punkt zamieniamy na krawędź:

W ten sposób z grafu C₄ dostajemy graf mający trójkąty jako ściany.

W przypadku, gdy widzimy na mapie Andorę, to ignorujemy jedną granicę między Francją i Hiszpanią przy rysowaniu grafu dualnego:

Unikamy w ten sposób krawędzi wielokrotnych i dostajemy miejsce na dwuwymiarowy sympleks (\triangle) .

Niestety, nie każdy graf pochodzący od takich map na powierzchni da się rozszerzyć do triangulacji. Rozważmy na przykład mapę, do której graf dualny to K₆ na butelce Kleina:

Obszar zacieniowany kółeczkami po prawej stronie rysunku zawiera 5 wierzchołków zamiast 3 zwyczajowo obecnych w \triangle . Nie możemy tego pięciokąta przekroić by otrzymać trójkąty, bo

K₆ jest już grafem pełnym i takie działanie dałoby wielokrotną krawędź.

Zacznijmy od tego, że 7 kolorów na torusie jest koniecznych. Wynika to z faktu, że triangulacja torusa o minimalnej ilości wierzchołków to K_7 .

Po pierwsze, minimalna ilość wierzchołków w triangulacji na torusie to 7. Ponieważ torus jest rozmaitością 2 wymiarową, to

$$\frac{2}{3}E = T$$

z formuły Gaussa-Bonnet wiemy, że

$$0 = V - E + F = V - E + \frac{2}{3}E = V - \frac{1}{3}E.$$
 (*)

Górne szacowanie na ilość wierzchołków to

$$E \leq \binom{V}{2} = \frac{V(V-1)}{2},$$

co po podstawieniu do (*) daje

$$0 = V - \frac{1}{3}E \ge V - \frac{V(V - 1)}{6} = \frac{7V - V^2}{6} = \frac{V(7 - V)}{6}$$

co implikuje, że $V \geq 7$.

Pokażemy teraz, przy pomocy indukcji po ilości wierzchołków, że dla każdego grafu G na torusie wystarczy 7 kolorów, by go pomalować.

Przypadek bazowy, to znaczy $|G| \le 7$, jest dość oczywisty. Załóżmy teraz, że każdy graf o co najwyżej n wierzchołkach potrafimy pokolorować 7 kolorami. Niech G będzie grafem na torusie, który ma (n + 1) wierzchołków. Rozważamy przypadki:

1. Istnieje wierzchołek $v \in G$ taki, że $deg(v) \le 6$.

Możemy wtedy wierzchołek v wyjąć, tzn. rozważyć graf $G' = G \setminus v$ w którym ze zbioru wierzchołków usunięty został v, a ze zbioru krawędzi usunięto wszystkie krawędzie e takie, że $e \cap v \neq \emptyset$.

Na mocy założenia indukcyjnego graf G' możemy pokolorować 7 kolorami. Sąsiedzi wierzchołka v, jako że było ich 6 sztuk, korzystają z maksymalnie 6 kolorów. Możemy więc wybrać kolor, który nie jest przez nich użyty i pomalować nim v.

2. Jeśli wszystkie wierzchołki mają stopień co najmniej 7, to wtedy mamy

$$\mathsf{E} = \frac{1}{2} \sum_{\mathsf{v} \in \mathsf{V}} \mathsf{deg}(\mathsf{v}) \ge \frac{7\mathsf{V}}{2} \Rightarrow \frac{2}{7} \mathsf{E} \ge \mathsf{V}$$

krawędzi.

Graf G niekoniecznie jest triangulacją, ale na pewno nie zawiera przecinających się krawędzi. Możemy więc nieco zmodyfikować to, co wiemy o zależności między liczbą krawędzi a liczbą ścian. Jesteśmy na rozmaitości dwuwymiarowej, więc jedna krawędź trafia do dwóch ścian. Każda ściana z kolei ma co najmniej 3 krawędzie. Dostajemy więc zależność

$$2E \ge 3T \Rightarrow \frac{2}{3}E \ge T.$$

Charakterystyka Eulera torusa wynosi 0, więc możemy użyć formuły Gaussa-Bonneta

$$0 = V - E + T \le V - E + \frac{2}{3}E =$$

$$= V - \frac{1}{3}E \le \frac{2}{7}E - \frac{1}{3}E =$$

$$= \frac{6 - 7}{21}E = -\frac{E}{21}$$

z tego wynika, że

co daje sprzeczność z E > 0. W takim razie w grafie narysowanym na torusie zawsze znajdziemy wierzchołek stopnia \leq 6.

Zaczniemy znowu od pokazania, że istnieje na \mathbb{R} P 2 graf, który potrzebuje 6 kolorów do bycia pomalowanym.

Triangulacja \mathbb{R} P² o najmniejszej liczbie wierzchołków to K₆. Wnioskujemy to z formuły Gaussa-Bonnet uzupełnionej o fakt, że \mathbb{R} P² jest rozmaitością wymiaru 2

$$1 = V - E + T = V - \frac{1}{3}E$$

dokładamy jeszcze górne ograniczenie na liczbę krawędzi, czyli E $\leq \binom{\mathsf{V}}{2}$, by dostać

$$1 = V - \frac{1}{3}E \ge V - \frac{V(V - 1)}{6} = \frac{V(7 - V)}{6}$$
$$0 \le \frac{6 + V(V - 7)}{6}$$

V = 6 jest najmniejszym dodatnim rozwiązaniem tej nierówności.

Dla V = 6 wymagamy E = 15, czyli 6-wierzchołkowa triangulacja \mathbb{R} P² jest grafem K₆:

Załóżmy teraz, że wszystkie grafy o co najwyżej n wierzchołkach narysowane na \mathbb{R} P² potrafimy pomalować używając 6 kolorów. Niech G będzie grafem o (n + 1) wierzchołkach.

- 1. Jeśli istnieje wierzchołek $v \in G$ taki, że $deg(v) \le 5$, to podobnie jak w przypadku torusa, możemy ten wierzchołek wyjąć, pokolorować graf $G' = G \setminus v$ i znajdziemy dla v kolor niewykorzystywany przez jego sąsiadów.
- 2. W tym przypadku zakładamy, że wszystkie wierzchołki $v \in G$ mają stopień deg $(v) \ge 6$. Tak jak i wcześniej, mamy

$$2E > 6V$$
.

Płaszczyzna rzutowa ma charakterystykę Eulera 1, w takim razie

$$1 = V - E + T$$

$$3 = 3V - 3E + 3T < E - 3E + 2E = 0$$

co jest sprzecznością. W takim razie w grafie narysowanym na \mathbb{R} P² zawsze znajdziemy wierzchołek deg(v) < 5 i wykonamy kroki z pierwszego punktu.

W przypadku sfery próżno szukać grafu, którego nie pokolorujemy 4 kolorami - prawdziwe jest twierdzenie o 4 barwach.

Oczywiście grafy, które mają nie więcej niż 5 wierzchołków pokolorujemy bez problemu. Załóżmy więc, że każdy graf o co najwyżej n wierzchołkach możemy pokolorować i niech G będzie (n + 1)-wierzchołkowym grafem.

- 1 Jeśli znajdziemy wierzchołek stopnia ≤ 4 lub mniej to robimy to co w przypadku torusa i płaszczyzny rzutowej.
- 2 Jeśli każdy wierzchołek jest stopnia > 5.

Butelka Kleina

Rozważmy graf G na butelce Kleina. Jeśli $|G| \le 6$, to bez problemy pokolorujemy go 6 kolorami (fakt, że potrzebujemy co najmniej 6 kolorów wynika z rysunku w ptk (a) zadania).

Niech więc G będzie grafem na Kleinie takim, że |G| = n + 1. Uzupełnijmy G do triangulacji, wtedy

$$0 = \sum_{v \in V} (6 - \deg(v))$$

mówi nam, że albo wszystkie wierzchołki są stopnia 6, albo istnieje wierzchołek stopnia > 6 rekompensowany przez wierzchołek stopnia < 6.

Jeśli istnieje wierzchołek $v \in G$ taki, że $deg(v) \le 5$, to możemy ten wierzchołek wyjąć, pokolorować 6 kolorami graf $G \setminus \{v\}$, wierzchołek v pomalować kolorem, który nie pojawia się wśród jego < 5 sąsiadów i włożymy go z powrotem do G nie psując kolorowania.

Zadanie komplikuje się natomiast, jeśli G jest 6-regularny. Wybierzmy wierzchołek $v \in G$. Ma on 6 sąsiadów, czyli jest wierzchołkiem 6 trójkątów w triangulacji którą stał się G:

Jeżeli istnieje para sąsiadów, która nie jest ze sobą połączona, to możemy pomalować je na jeden kolor. Wtedy sąsiedzi v wykorzystują tylko 5 kolorów i ostatni, szósty, pozostaje wolny do kolorowania v.

Jeśli natomiast wszyscy sąsiedzi v są ze sobą połączeni, to oznacza, że mamy K_7 zanurzone w G, które z kolei jest narysowane na butelce Kleina. Wiemy, że K_7 nie można narysować na butelce Kleina, więc dochodzimy do sprzeczności w tym punkcie.

To pokazuje, że przy pomocy indukcji możemy pokonać butelkę Kleina używając tylko 6 kolorów farb.

Zadanie 6. Niech $\mathbb K$ będzie ciałem. Grassmannian $\mathrm{Gr}_{\mathbb K}(\mathsf{k},\mathsf{n})$ to przestrzeń k-wymiarowych podprzestrzeni $\mathbb K^n$. Jeśli $\mathbb K = \mathbb R, \mathbb C$ to jest to rozmaitość. Oblicz charakterystykę Eulera Grassmannianu $\mathrm{Gr}_{\mathbb C}(\mathsf{k},\mathsf{n})$ korzystając z uogólnionej formuły Riemanna-Hurwitza i działania torusa $\mathsf T^n$ na $\mathbb C^n$.

Torus T^n działa na \mathbb{C}^n przez macierze diagonalne o wyrazach a $\in \mathbb{C}$ takich, że |a| = 1. Torus T^n ma charakterystykę Eulera równą –2n.

Każdą k-wymiarową podprzestrzeń \mathbb{C}^n możemy przekształcić na inną k-wymiarową podprzestrzeń \mathbb{C}^n taką, że jej wektory są ortogonalne. Dostajemy wtedy macierz n \times n rzędu k (k lnz. kolumn).

Możemy więc zdefiniować działanie Tⁿ na Grassmannianie - macierz diagonalna A działa na podprzestrzeń utożsamioną z macierzą V poprzez sprzężenie AVA⁻¹. Jest to dobrze określone, bo

$$(AB)V(AB)^{-1} = (AB)V(B^{-1}A^{-1}) = A(BVB^{-1})A^{-1}.$$

Możemy teraz określić odwzorowanie $\pi: \mathrm{Gr}_{\mathbb{C}}(\mathsf{k},\mathsf{n}) \to \mathrm{Gr}_{\mathbb{C}}(\mathsf{k},\mathsf{n})/\mathsf{T}^\mathsf{n}$, które punktowi przypisuje orbitę.

Zauważmy teraz, że jeśli podprzestrzeń k wymiarowa ma nietrywialną orbitę, to tak naprawdę ta orbita wygląda jak suma n okręgów, czyli ma charakterystykę Eulera równą 0. Interesują nas więc tylko te przestrzenie, które mają trywialną orbitę, tzn. są punktami stałymi działania torusa.

Aby macierz była punktem stałym, musi zachodzić

$$AVA^{-1} = V \Rightarrow AV = VA^{-1}$$

ponieważ A jest diagonalna i ma wyrazy zespolone o module 1, to A jest macierzą unitarną. Jeśli V jest macierzą diagonalną, to warunek wyżej mówi, że V jest macierzą hermitowską, czyli V = $\overline{V^T}$. To z kolei znaczy, że $V\overline{V^T}= \operatorname{Id}_{k\times k}$, czyli V na przekątnej ma zera i 1. Takich macierzy możemy wyprodukować $\binom{n}{n-k}=\binom{n}{k}$, wybierając które miejsca na przekątnej będą zerami. To oznacza, że $\chi(\operatorname{Gr}_{\mathbb{C}}(k,n))=\binom{n}{k}$.

Zadanie 7. Grassmannian $Gr_{\mathbb{C}}(k, n)$ ma pewien podział na komórki, który możemy opisać za pomocą szufladek i groszków. Rozważmy n szufladek, w których umieszczać będziemy k groszków, co najwyżej po jednym w danej szufladzie. Takie rozmieszczenie groszków reprezentuje zbiór k-wymiarowych podprzestrzeni \mathbb{C}^n . Kolejne l szufladek od lewej reprezentuje podprzestrzeń \mathbb{C}^n

rozpiętą przez pierwsze l wektorów bazowych e_1 , e_2 , ..., e_l , a liczba groszków leżących w l pierwszych l szufladkach to wymiar przekroju k-wymiarowej podprzestrzeni z tego zbioru z podprzestrzenią rozpiętą przez e_1 , ..., e_l .

- (a) Pokaż, że konkretne rozmieszczenie groszków w szufladach reprezentuje przestrzeń k-wymiarowych podprzestrzeni \mathbb{C}^n izomorficzna z \mathbb{C}^m , gdzie m to liczba przesunięć groszków w lewo o jedną szufladkę dopóki to możliwe.
- (b) Przestrzeń ℂ^m z poprzedniego podpunktu to otwarta komórka wspomnianego rozkładu. Komórka odpowiadająca rozmieszczeniu groszków A zawiera się w domknięcu komórki odpowiadającej rozmieszczeniu B, gdy A można otrzymać z B poprzez kolejne przesunięcia groszków w lewo o jedną szufladkę. Domknięcie komórki odpowiadającej rozmieszczeniu A nazywamy (A) rozmaitością Schuberta. Policz charakterystykę Eulera rozmaitości Schuberta. Policz charakterystykę Eulera Gr_ℂ(k, n) zliczając te komórki

(a) Zacznijmy od rozmieszczenia groszków tak, że nie możemy już żadnego przesunąć w lewo. To znaczy, że podprzestrzenie które są kodowane przez to ustawienie groszków kroją się niepusta z podprzestrzenią rozpinaną przez pierwszy wektor bazowy e_1 , z podprzestrzenią rozpiętą przez dwa pierwsze wektory bazowe e_1 , e_2 i tak dalej. W takim razie, typowa podprzestrzeń reprezentowana przez takie ustawienie jest generowana przez wektory

Interesuje nas przestrzeń rozpinana przez takie wektory, więc w i-tym wektorze możemy usunąć część przychodzącą z j < i wektorami. W ten sposób dostaniemy przestrzeń rozpiętą przez $e_1, e_2, ..., e_k$. Nie mamy żadnego parametru, więc jest to izomorficzne z punktem, czyli z \mathbb{C}^0 .

Załóżmy, że mamy k groszków umieszczonych odpowiednio w szufladkach o numerze m_1 , m_2 , ..., m_k . Dzięki pierwszemu groszkowi możemy do naszej k-wymiarowej podprzestrzeni \mathbb{C}^n wybrać wektor

$$a_1^{m_1}e_1 + a_2^{m_1}e_2 + ... + e_{m_1}$$
.

Kolejny groszek, na m₂ ≠ m₁ miejscu pozwoli nam dołożyć wektor

$$a_1^{m_2}e_1 + a_2^{m_2}e_2 + ... + a_{m_1}^{m_2} + ... + e_{m_2}.$$

Ze współczynników pojawiających się przy kolejnych e_i możemy stworzyć macierz

$$\begin{bmatrix} a_1^{m_1} & a_2^{m_1} & ... & 1 & 0 & ... & 0 & ... & 0 \\ a_1^{m_2} & a_2^{m_2} & ... & a_{m_1}^{m_2} & ... & ... & 1 & 0 & ... \\ \vdots & \vdots \\ a_1^{m_k} & a_2^{m_k} & ... & a_{m_1}^{m_k} & ... & ... & ... & ... & 1 \end{bmatrix}$$

która ma m_k kolumn i k wierszy. Możemy skorzystać z algorytmu eliminacji Gaussa, by dostać w pierwszych k kolumnach kwadratową macierz górnotrójkątną z 1 na przekątnej.

W pierwszym wierszu zostaje nam (m_1-1) zmiennych, w drugim wierszu mamy (m_2-2) nowych zmiennych i tak dalej. Sumarycznie dostajemy

$$\sum_{i=1}^{k} (m_i - i)$$

parametrów w takiej macierzy, co jest równe ilości potencjalnych przesunięć groszków: i-ty groszek może przejść przez co najwyżej (m_i – i) szufladek, niekoniecznie za jednym zamachem.

Pokazaliśmy, że jeśli możemy dokonać m przesunięć groszków, to takie ustawienie możemy zapisać jako przestrzeń liniową przy pomocy m parametrów.

(b) W tym podpunkcie pytamy tak naprawdę, na ile możliwości możemy dojść do "trywialnego" ułożenia zaczynając w ułożeniu A. Każde ułożenie pośrednie będziemy ewaluować 1 lub (-1) w zależności od tego, czy jest izomorficzne z \mathbb{C}^{2k} (wtedy +1) czy z \mathbb{C}^{2k+1} (wówczas -1).

Ułożenie k groszków w n szufladkach jest jednoznacznie wyznaczane przez położenia $m_1 < m_2 < ... < m_k$ kolejnych groszków. Z takiego ułożenia możemy otrzymać inne przez przesuwanie w lewo dowolne ustawienie, w której na pozycjach > m_{k-1} jest co najwyżej jeden groszek, na pozycjach > m_{k-2} - co najwyżej dwa groszki i tak dalej.

Możemy ułożyć m_k zer w ciągu i k spomiędzy nich zamienić na jedynki, symbolujące położenie groszków, i zastanawiać się, które ułożenia są niedozwolone. k jedynki możemy wybrać bez restrykcji na $\binom{m_k}{k}$ sposobów.

Niedozwolone ułożenia posiadają co najmniej (i + 1) groszków na pozycjach m $_{k-i}$. Takich ułożeń jest $\binom{m_k-m_{k-i}}{i+1}\cdot\binom{m_k-i-1}{k-i-1}$. Dostajemy z zasady włączeń i wyłączeń wzór

$$\sum_{i=0} (-1)^{i} \binom{m_k - m_{k-i}}{i+1} \cdot \binom{m_k - i - 1}{k-i-1}$$

na ilość możliwych przesunięć w lewo groszków z ustawienia $m_1 < m_2 < ... < m_k$.

Teoretycznie charakterystyka Eulera powinna wyjść $\binom{n}{k}$, czyli na ile sposobów możemy ułożyć k groszków w n szufladkach. Jest to równe ilości wierzchołków w grafie, który od k groszków ustawionych skrajnie po prawej stronie przechodzi do k groszków ustawionych skrajnie po lewej stronie na wszystkie możliwe sposoby.