ShipinskyKS 11102024-154400

Задан двухполюсник на рисунке 1, причём R1 = 282.49 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
2.2	0.477	-156.4	12.641	83.0	0.038	51.0	0.305	-81.7
2.3	0.477	-158.6	12.117	81.6	0.039	51.1	0.296	-83.5
2.4	0.477	-160.9	11.602	80.0	0.041	51.2	0.289	-85.5
2.5	0.477	-163.2	11.146	78.6	0.042	51.3	0.282	-87.5
2.6	0.479	-165.4	10.698	77.1	0.043	51.3	0.276	-89.5
2.7	0.479	-167.3	10.300	75.8	0.044	51.5	0.272	-91.3
2.8	0.479	-169.2	9.908	74.5	0.045	51.6	0.267	-93.2
2.9	0.481	-170.8	9.570	73.3	0.046	51.6	0.264	-94.8
3.0	0.482	-172.4	9.236	72.0	0.047	51.6	0.261	-96.4
3.1	0.482	-173.9	8.962	71.0	0.048	51.6	0.258	-97.6

и частоты $f_{\scriptscriptstyle \rm H}=2.1$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=2.9$ $\Gamma\Gamma$ ц.

Найти модуль $s_{22}\;$ в дБ на частоте $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

- 1) -11.6 дБ
- 2) -6.4 дБ
- 3) 19.6 дБ
- 4) -26.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.0	0.473	-149.7	14.054	87.3	0.035	51.0	0.338	-72.9
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
2.2	0.471	-155.0	12.813	83.7	0.037	51.2	0.318	-76.5
2.3	0.470	-157.3	12.285	82.3	0.038	51.4	0.309	-78.2
2.4	0.470	-159.6	11.766	80.7	0.039	51.5	0.301	-79.9
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
2.9	0.474	-169.7	9.714	73.8	0.044	51.9	0.274	-88.7
3.0	0.475	-171.3	9.374	72.5	0.046	51.9	0.271	-90.3

и частоты $f_{\mbox{\tiny H}}=2.3$ ГГц, $f_{\mbox{\tiny B}}=2.7$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 3.

Рисунок 3 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.9 дБ 2) 3.5 дБ 3) 1.4 дБ 4) 0.7 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.349	-165.3	10.751	87.4	0.045	67.0	0.283	-68.4
1.4	0.358	-170.8	9.244	83.6	0.051	66.7	0.250	-73.2
1.6	0.362	-175.7	7.985	79.9	0.057	66.1	0.223	-78.0
1.8	0.369	-179.8	7.119	77.2	0.063	65.7	0.202	-83.2
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
2.4	0.378	170.1	5.218	68.9	0.082	63.1	0.168	-98.4
2.8	0.385	164.6	4.463	64.4	0.094	61.3	0.158	-106.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6

и частоты $f_{\scriptscriptstyle \rm H}=1.2$ ГГц, $f_{\scriptscriptstyle \rm B}=3.5$ ГГц.

Найти обратные потери по входу $\,$ на $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

1) 4.1 дБ 2) 8.1 дБ 3) 9.1 дБ 4) 4.6 дБ

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.76\text{-}2.38\mathrm{i}$.

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Найти точку (см. рисунок 5), соответствующую s_{22} на частоте 3.4 ГГц.

Рисунок 5 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D