Example 1. (Prisonet's Dilenma)

$$N = \{1, 2\}$$

$$S_1 = S_2 = \{Quiet, Fink\}$$

12	Quiet	Fink
Quiet	2,2	0,3
Fink	3,0	1,1

Payoff function for each player (Preference relation)

Question: Which are the P.N.E.'s (if any)?

> I P.N.E.: (Fink, Fink)

Example 2 (Matching Pennies)

1	Head	Tails
Head	1,-1	-L, <u>L</u>
Tails	-1, 1	L,-L

All information of bimatrix game captured.

Example 3 (Battle of the Sexes)

Boy	Theatre!	OK, football
OX, theatre	1,5	0, 0
Football!	0,0	5,1

2 P.N.F: (OK, theatre, Theorere!), (Football!, OK, football.)

... a Modification

		1
	,	Football great,
Theatre!	OK, football	I will invite my dad
1,5	0, 0	0,0
0,0	5, 1	-1, 2

L> 1 P.N.E.: (OK, bleatre..., Theotre!)

So, there can be 0,1, or multiple PNEs in a finite normal form game.

But, there is at least I (mixed) N.E. in every finite normal form game.

		2		
	1	L	R	
1	T	3,2	1,6	
P	M	5,6	0,5	
	В	0,7	2,2	

or)
$$\rho = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$$
, $2 = (\frac{2}{3}, \frac{1}{3})$
a1) What is each player's executed
a2) $= 15$ $= (0, 2)$ a N.E.?

b)
$$\rho = (\frac{1}{5}, \frac{4}{5}, 0)$$
, $q = (\frac{1}{3}, \frac{2}{3})$
b1) What is each player's payoff?
b2) 1s (ρ, q) a N.E.?

al)
$$U_1(\rho, 2) = \frac{1}{4} \cdot \frac{2}{3} \cdot 3 + \frac{1}{4} \cdot \frac{1}{3} \cdot 1 + \frac{1}{4} \cdot \frac{2}{3} \cdot 5 + \frac{1}{4} \cdot \frac{1}{3} \cdot 0 + \frac{1}{2} \cdot \frac{2}{3} \cdot 0 + \frac{1}{2} \cdot \frac{1}{3} \cdot 2 = \boxed{\frac{21}{12}}$$

$$U_2(\rho, 2) = \frac{1}{4} \cdot \frac{2}{3} \cdot 2 + \frac{1}{4} \cdot \frac{1}{3} \cdot 6 + \frac{1}{4} \cdot \frac{2}{3} \cdot 6 + \frac{1}{4} \cdot \frac{1}{3} \cdot 5 + \frac{1}{2} \cdot \frac{2}{3} \cdot 7 + \frac{1}{2} \cdot \frac{1}{3} \cdot 2 = \boxed{\frac{59}{12}}$$

N.E.: For each player, the actions (pure strategies)
with probability I against the other player's mixed strategy, should yield the same expected payoff.
The actions not in her support when played with probability I against the other player's mixed strategy, should yield at most the same expected payoff as that of an action in the support.

$$U_{1}(T,2) = \frac{2}{3} \cdot 3 + \frac{1}{3} \cdot 1 = \frac{7}{3}$$

$$U_{1}(T,2) \neq U_{1}(M,2)$$

$$U_{2}(M,2) = \frac{2}{3} \cdot 5 + \frac{1}{3} \cdot 0 = \frac{10}{3}$$

$$V_{3}(T,2) \neq U_{1}(M,2)$$

$$V_{4}(T,2) \neq U_{1}(M,2)$$

$$V_{5}(P,2) \text{ not a } N.E.$$

b1)
$$U_1(\rho, q) = \frac{1}{5} \cdot \frac{1}{3} \cdot 3 + \frac{1}{5} \cdot \frac{2}{3} \cdot 1 + \frac{4}{5} \cdot \frac{1}{3} \cdot 5 + \frac{4}{5} \cdot \frac{2}{3} \cdot 0 + 0 \cdot \frac{1}{3} \cdot 0 + 0 \cdot \frac{2}{3} \cdot 2 = \boxed{\frac{25}{15}}$$

$$U_2(\rho, q) = \frac{1}{5} \cdot \frac{1}{3} \cdot 2 + \frac{1}{5} \cdot \frac{2}{3} \cdot 6 + \frac{4}{5} \cdot \frac{1}{3} \cdot 6 + \frac{4}{5} \cdot \frac{2}{3} \cdot 5 + 0 \cdot \frac{1}{3} \cdot 7 + 0 \cdot \frac{2}{3} \cdot 2 = \boxed{\frac{78}{15}}$$

b2)
$$U_{1}(T, 2) = \frac{1}{3} \cdot 3 + \frac{2}{3} \cdot 1 = \frac{5}{3}$$

 $U_{1}(M, 2) = \frac{1}{3} \cdot 5 + \frac{2}{3} \cdot 0 = \frac{5}{3}$
 $U_{1}(B, 2) = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 2 = \frac{4}{3}$

$$U_{1}(B, 2) = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 2 = \frac{4}{3}$$
Support of player 1: $\{T, M\}$

$$U_{2}(\rho, L) = \frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 6 + 0 \cdot 7 = \frac{26}{5}$$

$$U_{2}(\rho, R) = \frac{1}{5} \cdot 6 + \frac{4}{5} \cdot 5 + 0 \cdot 2 = \frac{26}{5}$$

$$Support of player 2: \{L, R\}$$

Therefore, (p, g) is a N.E.