Chapter 6 Database Design

Objectives

In this chapter, you will learn:

- That successful database design must reflect the information system of which the database is a part
- Systems Development Life Cycle (SDLC)
- Database Life Cycle (DBLC)
- About database design strategies: top-down vs.
 bottom-up design and centralized vs. decentralized design

The Information System

- Provides for data collection, storage, and retrieval
- □ Composed of:
 - People, hardware, software
 - Database(s), application programs, procedures
- Systems analysis
 - Process that establishes need for and extent of information system
- Systems development
 - Process of creating information system

The Information System (cont'd.)

- Applications
 - Transform data into information that forms basis for decision making
 - Usually produce the following:
 - Formal report
 - Tabulations
 - Graphic displays
 - Composed of the following two parts:
 - Data
 - Code: program instructions

The Information System (cont'd.)

- □ Performance depends on three factors:
 - Database design and implementation
 - Application design and implementation
 - Administrative procedures
- Database development
 - Process of database design and implementation
 - Implementation phase includes:
 - Creating database storage structure
 - Loading data into the database
 - Providing for data management

The Systems Development Life Cycle (SDLC)

- Traces history (life cycle) of information system
- Database design and application development mapped out and evaluated
- Divided into following five phases:
 - Planning
 - Analysis
 - Detailed systems design
 - Implementation
 - Maintenance
- □ Iterative rather than sequential process

FIGURE The Systems Development Life Cycle (SDLC) 9.2 **Phase** Action(s) Section **Initial assessment** 9.2.1 **Planning Feasibility study** User requirements 9.2.2 Analysis **Existing system evaluation** Logical system design Detailed **Detailed system specification** 9.2.3 systems design 9.2.4 Coding, testing, and debugging **Implementation** Installation, fine-tuning **Evaluation** 9.2.5 Maintenance Maintenance **Enhancement**

Planning

- General overview of company and objectives
- Assessment of flow-and-extent requirements
 - Should the existing system be continued?
 - Should the existing system be modified?
 - Should the existing system be replaced?
- Study and evaluate alternate solutions
 - Technical aspects of hardware and software requirements
 - System cost
 - Operational cost

Analysis

- Problems defined during planning phase are examined in greater detail during analysis
- □ Thorough audit of user requirements
- Existing hardware and software systems are studied
- □ Goal:
 - Better understanding of:
 - System's functional areas
 - Actual and potential problems
 - Opportunities

Analysis-Logical Systems Design

- Must specify appropriate conceptual data model, inputs, processes, and expected output requirements
- Might use tools such as data flow diagrams
 (DFD), hierarchical input process output (HIPO)
 diagrams, or entity relationship (ER) diagrams
- Yields functional descriptions of system's components (modules) for each process within database environment

Detailed Systems Design

- Designer completes design of system's processes
- Includes all necessary technical specifications
- Steps laid out for conversion from old to new system
- Training principles and methodologies are also planned
 - Submitted for management approval

Implementation

- Hardware, DBMS software, and application programs are installed
 - Database design is implemented
- Cycle of coding, testing, and debugging continues until database is ready for delivery
- Database is created and system is customized
 - Creation of tables and views
 - User authorizations

Maintenance

- □ Three types of maintenance activity:
 - Corrective maintenance (response to system error)
 - Adaptive maintenance(due to changes in business envi)
 - Perfective maintenance(to enhance the system)
- Computer-aided systems engineering (CASE)
 - Produce better systems within reasonable amount of time and at reasonable cost
 - CASE-produced applications are structured, documented, and standardized

The Database Life Cycle (DBLC)

- □ Six phases:
 - Database initial study
 - Database design
 - Implementation and loading
 - Testing and evaluation
 - Operation
 - Maintenance and evolution

Introduce changes

Make enhancements

9.3.6

Maintenance and

evolution

The Database Initial Study

- □ Overall purpose:
 - Analyze company situation
 - Define problems and constraints
 - Define objectives
 - Define scope and boundaries
- Interactive and iterative processes required to complete first phase of DBLC successfully

The Database Initial Study (cont'd.)

- □ Analyze the company situation
 - General conditions in which company operates, its organizational structure, and its mission
 - Discover what company's operational components are, how they function, and how they interact

The Database Initial Study (cont'd.)

- Define problems and constraints
 - ■Formal and informal information sources
 - Finding precise answers is important
 - Accurate problem definition does not always yield a solution

The Database Initial Study (cont'd.)

- Database system objectives must correspond to those envisioned by end users
 - What is proposed system's initial objective?
 - Will system interface with other systems in the company?
 - Will system share data with other systems or users?
- □ Scope: extent of design according to operational requirements → define data structure, type and number of entities, physical size of database and so on.
- Boundaries: limits external to system (existing hardware+software,

Database Design

- Necessary to concentrate on data characteristics required to build database model
- □ Two views of data within system:
 - Business view
 - Data as information source
 - Designer's view
 - Data structure, access, and activities required to transform data into information

FIGURE 9.6

Database design process

^{*} See Chapter 12, Distributed Database Management Systems

⁺ See Chapter 11, Database Performance Tuning and Query Optimization

Implementation and Loading

- Actually implement all design specifications from previous phase:
 - Install the DBMS
 - ■Virtualization: creates logical representations of computing resources independent of physical resources
 - Create the Database
 - Load or Convert the Data

Testing and Evaluation

- Occurs in parallel with applications programming
- Database tools used to prototype applications
- If implementation fails to meet some of system's evaluation criteria:
 - Fine-tune specific system and DBMS configuration parameters
 - Modify physical or logical design
 - Upgrade software and/or hardware platform

Testing and Evaluation (cont'd.)

- Integrity
 - Enforced via proper use of primary, foreign key rules
- Backup and Recovery
 - Full backup(entire database)
 - □ **Differential backup** (only object that have been updated or modifies since the last full backup are backed up).
 - □ Transaction log backup (back up only the transaction log operations that are not reflected in a previous backup copy of the database)

Operation

- Once database has passed evaluation stage, it is considered operational
- Beginning of operational phase starts process of system evolution

Maintenance and Evolution

- Required periodic maintenance:
 - Preventive maintenance (backup)
 - Corrective maintenance (recovery)
 - Adaptive maintenance(enhancing performance, adding entities and attributes and so on)
 - Assignment of access permissions and their maintenance for new and old users
 - Generation of database access statistics
 - Periodic security audits
 - Periodic system-usage summaries(monthly, quarterly or yearly) for internal billing or budgeting purposes.

Database design process: Stage 1: Conceptual Design

- Data modeling creates an abstract database structure
 - Represents real-world objects
- Embodies clear understanding of business and its functional areas
- Ensure that all data needed are in model, and that all data in model are needed
- □ Requires four steps

i.Data Analysis and Requirements

- □ Discover data element characteristics
 - Obtains characteristics from different sources
- Requires thorough understanding of the company's data types and their extent and uses
- □ Take into account business rules
 - Derived from description of operations

ii. Entity Relationship Modeling and Normalization

- Designer enforces standards in design documentation
 - Use of diagrams and symbols, documentation writing style, layout, other conventions
- Business rules must be incorporated into conceptual model
- ER model is a communications tool as well as design blueprint

TABLE 9.3

Developing the Conceptual Model Using ER Diagrams

STEP	ACTIVITY
1	Identify, analyze, and refine the business rules.
2	Identify the main entities, using the results of Step 1.
3	Define the relationships among the entities, using the results of Steps 1 and 2.
4	Define the attributes, primary keys, and foreign keys for each of the entities.
5	Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.)
6	Complete the initial ER diagram.
7	Validate the ER model against the end users' information and processing requirements.
8	Modify the ER model, using the results of Step 7.

iii. Data Model Verification

- Verified against proposed system processes
- Revision of original design
 - Careful reevaluation of entities
 - Detailed examination of attributes describing entities
- Define design's major components as modules:
 - Module: information system component that handles specific function

Data Model Verification (cont'd.)

TABLE 9.5

The ER Model Verification Process

STEP	ACTIVITY
1	Identify the ER model's central entity.
2	Identify each module and its components.
3	Identify each module's transaction requirements: Internal: Updates/Inserts/Deletes/Queries/Reports
	External: Module interfaces
4	Verify all processes against system requirements.
5	Make all necessary changes suggested in Step 4.
6	Repeat Steps 2-5 for all modules.

iv. Distributed Database Design

- Portions of database may reside in different physical locations
 - Database fragment: subset of a database stored at a given location
- Processes accessing the database vary from one location to another
- Designer must also develop data distribution and allocation strategies

Stage 2: DBMS Software Selection

- □ Critical to information system's smooth operation
- Common factors affecting purchasing decisions:
 - Cost
 - DBMS features and tools
 - Underlying model
 - Portability
 - DBMS hardware requirements

Stage 3: Logical Design

- Map conceptual design to specific data model
- Still independent of physical-level details
- Requires all objects be mapped to specific constructs used by selected database software
 - Definition of attribute domains, design of required tables, access restriction formats
 - Tables must correspond to entities in conceptual design
- Translates software-independent conceptual model into software-dependent model

i. Map the Conceptual Model to the Logical Model

- Map the conceptual model to the chosen database constructs
- □ Five mapping steps involved:
 - Strong entities
 - Supertype/subtype relationships
 - Weak entities
 - Binary relationships
 - Higher degree relationships

ii. Validate the Logical Model Using Normalization

- Translation requires the definition of the attribute domains and appropriate constraints
- All defined constraints must be supported by the logical data model

iii. Validate the Logical Model against User Requirements

- □ Final step in the logical design process
- Validate all logical model definitions against all end-user data, transaction, and security requirements

Stage 4: Physical Design

- Process of selecting data storage and data access characteristics of database
- Storage characteristics are function of:
 - Device types supported by hardware
 - Type of data access methods supported by system
 - DBMS
- More complex when data are distributed

i. Define Data Storage Organization

- Designer must determine several attributes:
 - Data volume
 - Data usage patterns
- □ Which in turn influence:
 - Location and physical storage organization for each table
 - What indexes and the type of indexes to be used for each table
 - What views and the type of views to be used on each table

ii. Define Integrity and Security Measures

- □ Define user and security groups and roles
 - Database role: set of database privileges that could be assigned as a unit to a user or group

- □ Assign security controls
 - Specific access rights on database objects to a user or group of users

iii.Determine Performance Measures

- Performance can be affected by characteristics:
 - Storage media
 - Seek time
 - Sector and block (page) size
 - □ And more...
- Fine-tuning the DBMS and queries to ensure that they will meet end-user performance requirements

Database Design Strategies

- □ Top-down design
 - Identifies data sets
 - Defines data elements for each of those sets
 - Definition of different entity types
 - Definition of each entity's attributes
- □ Bottom-up design
 - Identifies data elements (items)
 - Groups them together in data sets

Centralized vs. Decentralized Design

Centralized design

- When data component is composed of small number of objects and procedures
- Typical of small systems

Decentralized design

- Data component has large number of entities
- Complex relations on which complex operations are performed
- Problem is spread across several operational sites

Centralized vs. Decentralized Design (cont'd.)

- All modules are integrated into one model
- Aggregation problems to be addressed:
 - Synonyms and homonyms
 - Entity and entity subtypes
 - Conflicting object definitions

FIGURE 9.17

Summary of aggregation problems

Summary

- Information system facilitates transformation of data into information
 - Manages both data and information
- SDLC traces history (life cycle) of an application within the information system
- DBLC describes history of database within the information system

Summary (cont'd.)

- Database design and implementation process moves through series of well-defined stages
- Conceptual design subject to several variations:
 - □ Top-down vs. bottom-up
 - Centralized vs. decentralized