Potencia estadística

Diseño e implementación de experimentos en ciencias sociales Departamento de Economía (UdelaR) What is power?

What is power?

- We want to separate signal from noise.
- Power = probability of rejecting null hypothesis, given true effect $\neq 0$.
- ▶ In other words, it is the ability to detect an effect given that it exists.
- Formally: (1 Type II) error rate.
- ▶ Thus, power \in (0, 1).
- ► Standard thresholds: 0.8 or 0.9.

Starting point for power analysis

- Power analysis is something we do before we run a study.
 - Helps you figure out the sample you need to detect a given effect size.
 - Or helps you figure out a minimal detectable difference given a set sample size.
 - May help you decide whether to run a study.
- It is hard to learn from an under-powered null finding.
 - ▶ Was there an effect, but we were unable to detect it? or was there no effect? We can't say.

Power

- ➤ Say there truly is a treatment effect and you run your experiment many times. How often will you get a statistically significant result?
- Some guesswork to answer this question.
 - How big is your treatment effect?
 - ► How many units are treated, measured?
 - ▶ How much noise is there in the measurement of your outcome?

Approaches to power calculation

- ► Analytical calculations of power
- ► Simulation

Power calculation tools

- Interactive
 - ► EGAP Power Calculator
 - rpsychologist
- R Packages
 - pwr
 - ► DeclareDesign, see also https://declaredesign.org/

Analytical calculations of power

Analytical calculations of power

► Formula:

Power =
$$\Phi\left(\frac{|\tau|\sqrt{N}}{2\sigma} - \Phi^{-1}(1 - \frac{\alpha}{2})\right)$$

- Components:
 - \triangleright ϕ : standard normal CDF is monotonically increasing
 - ightharpoonup au: the effect size
 - ▶ N: the sample size
 - \triangleright σ : the standard deviation of the outcome
 - $ightharpoonup \alpha$: the significance level (typically 0.05)

```
power calculator <- function(mu t, mu c,
    sigma, alpha = 0.05, N) {
    lowertail <- (abs(mu_t - mu_c) * sqrt(N))/(2 *
        sigma)
    uppertail <- -1 * lowertail
    beta <- pnorm(lowertail - qnorm(1 - alpha/2),
        lower.tail = TRUE)
    +1 - pnorm(uppertail - qnorm(1 - alpha/2),
        lower.tail = FALSE)
    return(beta)
```

```
## [1] 0.2388632
```

```
## [1] 0.9768629
```

```
## [1] 0.5065661
```

```
## [1] 1
```

```
library(DeclareDesign)
library(tidyverse)
PO <- declare population(N, u0 = rnorm(N))
# declare Y(Z=1) and Y(Z=0)
00 <- declare potential outcomes(Y Z 0 = 5 +
   u0, Y Z 1 = Y Z 0 + tau
# design is to assign m units to
# treatment
AO <- declare_assignment(Z = conduct_ra(N = N,
    m = round(N/2))
# estimand is the average difference
# between Y(Z=1) and Y(Z=0)
estimand_ate <- declare_inquiry(ATE = mean(Y_Z_1 -
   Y Z O)
RO <- declare_reveal(Y, Z)
designO base <- PO + AO + OO + RO
```

```
## For example:
design0_N100_tau25 <- redesign(design0_base,</pre>
   N = 100, tau = 0.25)
dat0 N100 tau25 <- draw data(design0 N100 tau25)
head(dat0 N100 tau25)
##
      TD
                  u0 Z Y Z 0 Y Z 1
## 1 001 0.44853297 1 5.448533 5.698533 5.698533
  2 002 -0.20105196 1 4.798948 5.048948 5.048948
  3 003 1.54239837 0 6.542398 6.792398 6.542398
## 4 004 -0.54998139 1 4.450019 4.700019 4.700019
## 5 005 -1.10680777 1 3.893192 4.143192 4.143192
## 6 006 -0.04259078 0 4.957409 5.207409 4.957409
```

```
with(dat0_N100_tau25, mean(Y_Z_1 - Y_Z_0)) # true ATE
## [1] 0.25
with(dat0 N100 tau25, mean(Y[Z == 1]) - mean(Y[Z ==
    0])) # estimate
## [1] 0.3374549
lm robust(Y ~ Z, data = dat0 N100 tau25)$coef # estimate
## (Intercept)
     5.0510077 0.3374549
##
```

```
EO <- declare_estimator(Y ~ Z, model = lm_robust,
    label = "t test 1", inquiry = "ATE")
t test <- function(data) {</pre>
    test <- with(data, t.test(x = Y[Z ==
        1], y = Y[Z == 0]))
    data.frame(statistic = test$statistic,
        p.value = test$p.value)
}
TO <- declare test(handler = label test(t test),
    label = "t test 2")
design0_plus_tests <- design0_base + E0 +</pre>
    T0
design0_N100_tau25_plus <- redesign(design0_plus_tests,</pre>
    N = 100, tau = 0.25)
## Only repeat the random assignment,
## not the creation of YO. Ignore
```

Power with covariate adjustment

Covariate adjustment and power

- Covariate adjustment can improve power because it mops up variation in the outcome variable.
 - ► If prognostic, covariate adjustment can reduce variance dramatically. Lower variance means higher power.
 - ▶ If non-prognostic, power gains are minimal.
- All covariates must be pre-treatment. Do not drop observations on account of missingness.
 - ► See the module on threats to internal validity and the 10 things to know about covariate adjustment.
- Freedman's bias as n of observations decreases and K covariates increases.

Power with covariate adjustment

Covariate adjustment and power

- Covariate adjustment can improve power because it mops up variation in the outcome variable.
 - ▶ If prognostic, covariate adjustment can reduce variance dramatically. Lower variance means higher power.
 - If non-prognostic, power gains are minimal.
- All covariates must be pre-treatment. Do not drop observations on account of missingness.
 - ► See the module on threats to internal validity and the 10 things to know about covariate adjustment.
- Freedman's bias as n of observations decreases and K covariates increases.

Blocking

- Blocking: randomly assign treatment within blocks
 - "Ex-ante" covariate adjustment
 - Higher precision/efficiency implies more power
 - Reduce "conditional bias": association between treatment assignment and potential outcomes
 - Benefits of blocking over covariate adjustment clearest in small experiments

Power for cluster randomization

Power and clustered designs

- Recall the randomization module.
- ightharpoonup Given a fixed N, a clustered design is weakly less powered than a non-clustered design.
 - ► The difference is often substantial.
- We have to estimate variance correctly:
 - Clustering standard errors (the usual)
 - Randomization inference
- To increase power:
 - Better to increase number of clusters than number of units per cluster.
 - How much clusters reduce power depends critically on the intra-cluster correlation (the ratio of variance within clusters to total variance).

A note on clustering in observational research

- Often overlooked, leading to (possibly) wildly understated uncertainty.
 - Frequentist inference based on ratio $\hat{\beta}/\hat{se}$
 - If we underestimate \hat{se} , we are much more likely to reject H_0 . (Type-I error rate is too high.)
- Many observational designs much less powered than we think they are.

EGAP Power Calculator

- ► Try the calculator at: https://egap.shinyapps.io/power-app/
- ► For cluster randomization designs, try adjusting:
 - Number of clusters
 - Number of units per clusters
 - Intra-cluster correlation
 - ► Treatment effect

Comments

- Know your outcome variable.
- What effects can you realistically expect from your treatment?
- What is the plausible range of variation of the outcome variable?
 - A design with limited possible movement in the outcome variable may not be well-powered.

Conclusion: How to improve your power

- 1. Increase the N
 - ▶ If clustered, increase the number of clusters if at all possible
- 2. Strengthen the treatment
- 3. Improve precision
 - Covariate adjustment
 - Blocking
- 4. Better measurement of the outcome variable