Differential Expression Analysis Techniques for Single-Cell RNA-seq Experiments

for the Computational Biology Doctoral Seminar (CMPBIO 293), organized by N. Yosef & T. Ashuach, Spring 2018, UC Berkeley

Kevin Benac and Nima Hejazi

Group in Biostatistics, University of California, Berkeley

11 April 2018

Introduction

Data

Objective

Methodology ZINB-WaVE DropLasso

Conclusions
Comparisor

The Data: Single-Cell RNA-seq

- scRNA-seq fast growing approach to measure the genome-wide transcriptome of many individual cells in parallel (Kolodziejczyk et al., 2015).
- Major advance compared to standard bulk RNA sequencing to investigate complex heterogeneous tissues,
- Access to cell-to-cell variability: better accuracy.

The Data: Single-Cell RNA-seq

- ► However, analysis of single-cell RNA-seq data is challenging.
- In one cell, only a tiny amount of RNA is present and large fraction of polyadenylated RNA can be stochastically lost during sample preparation steps (cell lysis, reverse transcription or amplification).
 - \implies Many genes fail to be detected although they are expressed!
- ▶ In practice, not uncommon to end up with a matrix of read counts where about 80% of the coefficients are zeros.
- ▶ This zeros are called *dropouts*.

The Data: Single-Cell RNA-seq

	Cell1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7
Xkr4	0	0	0	14	0	0	0
Syt11	1	9	2	2	0	0	0
Cpe	0	0	16	0	0	0	0
Rp1	0	0	0	0	0	0	0
Gm73	0	0	0	0	0	0	0
Gm79	0	0	0	0	0	0	0
Mpl15	8	8	6	1	0	0	0
Gm61	0	0	0	0	0	3	0
Lypla1	1	23	266	1	0	1	0
Tcea1	63	101	18	29	2	34	0

The Data: Single-Cell RNA-seq

- Raises modelling and computational issues.
- Need to detect a signal when most of the values are zeros only because they are missing.
- Traditional methods used for bulk RNA-seq data might not be sensible anymore.

Introduction

Data

Objective

Methodology ZINB-WaVE DropLasso

Conclusions
Comparisor

The Objective: Differential Expression

- Why "differential"? The goal is to find a subset of relevant biomarkers with respect to a particular condition of interest (e.g., disease, tissue of origin).
- Many experimental settings seek to isolate a subset of biomarkers from the full (larger) assayed set in order to identify biological patterns and better inform future biological experiments.
- Since experimental costs are high and modern biotechnologies allow numerous biological targets (e.g., genes) to be assayed, the result is a very high-dimensional statistical problem.

The Objective: Differential Expression

► Regularized Linear Models:

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \mathcal{L}(w, x_i, y_i) + \lambda \Omega(w) \right\}$$

Lasso for continuous outcomes (squared-error loss):

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^d w_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^d |w_j| \right\}$$

Introduction

Data

Objective

Methodology ZINB-WaVE

DropLasso

Compariso

Method that leads to low-dimensional representations of the data the same way PCA or tSNE does.

- Method that leads to low-dimensional representations of the data the same way PCA or tSNE does.
- However accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data.
- No need for normalization.

Mathematical set-up:

- n samples (single-cells),
- ▶ J genes,
- ▶ Y_{ij} read counts for gene j in cell i, $1 \leq ... \leq n$, $1 \leq j \leq J$.,
- $\blacktriangleright \pi_{ii}$: probability of dropout,
- $\blacktriangleright \mu_{ij}$: mean expression level.

Figure 1: The ZINB-WaVE model

- ZINB-WaVE mainly used for normalization and dimensionality reduction but can also be used for DE analysis.
- ▶ Compute weights from the estimated π using Bayes formula.
- If the observed counts are positive, w = 1, otherwise, 0 < w < 1.
- ▶ The higher π , the lower w

- Once we have the weights, fit a weighted negative binomial generalized linear model using the ZINB-WaVE weights.
- End-up with a matrix of fitted values.
- Not sparse anymore, look more like bulk RNA-seq data. ⇒ We can use classical tools for differential expression analysis (e.g. edgeR, DESeq2, limma-voom in R/Bioconductor).

Introduction

Data Objective

Methodology

ZINB-WaVE

DropLasso

Conclusions

- Consider the following data structure:
 - $x_i \in \mathbb{R}^d$ design matrix of scRNA-seq counts
 - ▶ $y_i \in \mathbb{R}$ cell-level outcome of interest (e.g., tissue of origin)
 - ▶ $\delta_i \in \{0,1\}^d$ s.t. $\delta_i \sim Bern(p)^d$ random dropout mask
 - $\delta \odot \mathbf{x} \in \mathbb{R}^d$ corrupted pattern for scRNA-seq dropout
 - ▶ $P(\delta_i = 1) = p$ probability of *not* being censored by dropout
- ► The DropLasso procedure seeks to identify differentially expressed genes based on cell-level differences while accounting for the dropout noise that masks scRNA data.

▶ Introducing dropout $(\delta_i \sim Bern(p)^d)$:

$$\min_{w \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\delta_i} \mathcal{L}\left(w, \delta_i \odot \frac{x_i}{p}, y_i\right) + \lambda \|w\|_1 \right\}$$

▶ Independence from *p* in expectation:

$$\mathbb{E}_{\delta_{i}} \sum_{j=1}^{d} w_{j} \left(\delta_{i} \odot \frac{x_{i}}{p} \right)_{j} = \sum_{j=1}^{d} \mathbb{E}_{\delta_{i}} w_{j} \delta_{i,j} \frac{x_{i,j}}{p}$$
$$= \sum_{j=1}^{d} w_{j} x_{i,j}$$

- Introducing the dropout term δ amounts to censoring the observed data and adjusting (i.e., $\frac{\kappa_p}{p}$) such that the effects of dropout noise are removed.
- ▶ This places a *statistical model* on the dropout noise i.e., $\delta_i \sim Bern(p)^d$
 - Dropout noise is independent across samples and genes. (Fine starting point but probably untrue scientifically.)
 - Modeling dropout noise in a more flexible manner could likely improve DropLasso performance and is identified as an item of future work.
- Merely introducing the simple dropout correction significantly improves performance under standard modeling metrics (e.g., AUC).

Dataset	Number of variables	LASSO	Dropout	Elastic net	DropLasso
EMTAB2805	100	0.95	0.94	0.966	0.964
	1 000	0.956	0.989	0.980	0.990 *
	10 000	0.764	0.961	0.817	0.961 *
	All (20 614)	0.72	0.928	0.796	0.946 **
GSE74596	100	0.997	0.996	0.994	0.998
	1 000	0.988	0.997	0.994	0.999
	10 000	0.769	0.960	0.909	0.990*
	All (14 172)	0.844	0.915	0.943	0.966
GSE45719	100	0.999	0.990	0.999	0.999
	1 000	0.997	0.999	0.999	1
	10 000	0.995	0.998	0.998	1 *
	All	0.990	0.999	0.999	1
GSE63818-GPL16791	100	0.94	0.977	0.984	0.998 *
	1 000	0.945	0.998	0.985	1 *
	10 000	0.951	0.995	0.987	0.998 *
	All	0.932	0.970	0.976	0.989
GSE48968-GPL13112	100	0.995	0.992	0.996	0.997
	1 000	0.962	0.992	0.996	0.997
	10 000	0.939	0.97	0.978	0.992 *
	All	0.948	0.962	0.96	0.987 *

Figure 2: Excerpt from table 3 of "DropLasso: A robust variant of Lasso for single cell RNA-seq data" Khalfaoui & Vert (2018)

Introduction

Data Objective

Methodology ZINB-WaVE DropLasso

Conclusions Comparison

ZINB-WaVE v. DropLasso

- ZINB-WaVE is designed to address issues in the statistical analysis pipeline that come before differential expression analysis:
 - Normalization
 - Dimensionality Reduction
- Since ZINB-WaVE attempts to make scRNA-seq data resemble bulk RNA-seq data, the weights can be used with standard differential expression tools.

ZINB-WaVE v. DropLasso

- DropLasso seeks to cast the scRNA-seq DE problem as a standard Lasso problem, accounting for dropout noise using the regularization introduced in the neural networks literature.
- Since DropLasso is a very new method, there have been no in-depth comparisons of the two techniques as of yet.

References I

Beyrem Khalfaoui and Jean-Philippe Vert. DropLasso: A robust variant of Lasso for single-cell RNA-seq data. *arXiv preprint arXiv:1802.09381*, 2018.

Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, and Jean-Philippe Vert. ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data. *bioRxiv*, 2017.