Lineare Algebra 2 Tutonium 1, 14.4.2021

Warm-Up

Richtig oder Falsch?

1. Sei G eine Gruppe, $H \leq G$ eine Untergruppe und definiere

 $a \equiv b \mod H \quad \Longleftrightarrow \quad ab^{-1} \in H.$

Dann ist \equiv eine Äquivalenzrelation auf G.

- 2. Seien G,H und \equiv wie eben, dann ist G/H eine Gruppe. igst
- 3. Sei V ein Vektorraum, $U\subseteq V$ ein Unterraum und definiere

 $v \equiv w \mod U \iff v-w \in U.$

Dann ist \equiv eine Äquivalenzrelation auf V.

- 4. Seien V,U und \equiv wie eben, dann ist V/U eine abelsche Gruppe. Falls ja, wie sieht die Verknüpfung aus? \checkmark
- 5. Seien V, U und \equiv wie eben, dann ist V/U ein Vektorraum. Falls ja, wie sieht die Skalarmultiplikation aus? \checkmark
- 6. Seien V,W Vektorräume und $f:V\longrightarrow W$ ein Homomorphismus. Ist $U\subseteq V$ ein Unterraum, dann gibt es eine Projektionsabbildung $\pi:V$ und einen eindeutigen Homomorphismus $\overline{f}:V/U\longrightarrow W$, sodass $f=\overline{f}\circ\pi$ gilt.

gran neu?

Transihintet

1. Reflexinitét, Symmetrie, tacG: a=a mod H a=b mod H and oh. inv: G -> G, g -> g -1
inv(H) = H =) b=a mod th 6/H = & Ha | at G } Morge de Rechtrebenhlorsen = 7 ha | hett 3 = [a]= $a \equiv h \alpha \iff a (h \alpha)^{-1} \in H$ $(aa^{-1})h = h$ => Sha | LEH ? E ta]=

Die hanvische Gruppenshuhter auf G/H
G/H × G/H — G/H ((Ha), (Hb)) - H(ab) Oder aquivalent gesagt: G surj. 67/H, am Ha ist ein Grappenhomonosphismus. Wohldefinietheit: Ha = Ha', Hb = Hb' $\stackrel{!}{\Rightarrow} H(ab) = H(a'b')$ Va, a, 6, 6 €G Jun Beigniel: 6 € H =7/6(1) 6 H =7 b = 1 b'= 1 ab (a'b') -1 € H abb1-1 a1-1 ett aba⁻¹ € H Yaca Ybett: aba tett : (=> H & 6 it eine normale Untymppe Ben: $(G,+)=(G,\cdot)$ abelie Gruppe >> ta∈G bb∈H: a+b-a ∈ H = a-a+b=b=) Alle H ≤ G sind nomal, falls a alubel.

h-Vehtorraume, le Vorper. 5. U≤V mit (V, +) abeliche Conyppe $(V,+,\cdot)$ 2 ·: K×V → V $(\lambda, v) \longrightarrow \lambda v$ Il nicht linear: 1 (vtw) = dv + dw HEK TVINEV $(\lambda \mu) v = \lambda (\mu(v))$ ∀v∈V Va,µeu $(u, t) \leq (v, t)$ ist eine Untegroppe $\sim s(\sqrt{u}, t)$ aboldre Grype 1=+| uxu - u Skalamulh; plikoh'on

K × //2 -> //2 $(\lambda, \nu + u) \longrightarrow (\lambda v) + u$ $v+u=\omega+u$ => $(\lambda_v)+u=(\lambda_\omega)+u$ D Av-Aw ∈ u $\lambda(\mathsf{v}$ - $\mathsf{w})$ ϵu U ist abgoodbossen sogt. Shalarumttipliketion. Noch zu profen:

= f(v) => findulishint Also instasonalere V+U=W+U $\stackrel{L}{\Longrightarrow}$ f(v)=f(w) $v-we les f \iff f(v-w) = 0$ (!) (=) U Sherf. Homomorphiesalt (syn. Isomorphiesalt) $f:V \longrightarrow W$ Howomorphismus von l-VR. Surjettiv-machen: $f:V \xrightarrow{surjettiv} Im(f) \subseteq W$ f(V) uvRInjetit 1 - machen: ? Office Ag. relation ong V: $\times \sim \gamma \iff f(x) = f(\gamma)$ Per $\int V_{N} = 0$ $\int V_{N} =$ => Bijelton: $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{1}$ =) Homomorphiesatz:

Aufgabe 1

Wir betrachten den Unterraum $D:=Lin(\{(1,1)\})$ des \mathbb{R} -Vektorraums \mathbb{R}^2 . Zeige $\mathbb{R}^2/\mathcal{D}\simeq \mathbb{R}^p$ mithilfe des Homomorphiesatzes.

$$= \langle (1) \rangle_{R-\text{linearer}} = \mathbb{R} \cdot (1)$$
Spann
$$= \mathcal{J} \lambda (1) | d \in \mathbb{R}^{3}$$

$$f(\frac{1}{1}) = 1 - 1 = 0$$

$$f(\frac{1}) = 1 - 1 = 0$$

$$f(\frac{1}{1}) = 1 - 1 = 0$$

$$f(\frac{1}{1}) = 1 - 1 = 0$$

=)
$$D = \ker f$$
.
Not $x_1: \text{ Im } f = \mathbb{R}$. ($\Longrightarrow f \text{ it surjettiv}$)
 $S: x \in \mathbb{R}$. $f((x)) = x - 0 = x$
=) $f \text{ surjettiv}$.
How solf \mathbb{R}^2 $\cong \mathbb{R}$.

Aufgabe 4

Sei K ein Körper und V ein K-Vektorraum sowie U ein Unterraum von V.

- 1. Ist $0 \neq f \in \operatorname{Hom}_K(V,K)$, so gilt $\dim_K(V/\ker(f)) = 1$.
- 2. Ist $\dim_K(V/U)=1$, so gibt es ein $0
 eq f\in \operatorname{Hom}_K(V,K)$ mit $U=\ker(f)$.

$$=>$$
 $\exists x \in V: f(x) \neq 0$.

$$f(\lambda(f(x))^{-1})x) = \lambda f(x)^{-1} f(x) = \lambda$$

Les
$$\pi = \mathcal{U}$$
.

 $\ker (\varphi \circ \pi) = \ker (f)$.

Tromophimus

rtmader.github.io