Course	Thing	Explanation	Date	Important	Index
Course	Ining	Definition	Date	Important	Index
		> <ma (~p-false)-p="" ma=""></ma>			
		Proof ::Prove a statement is false			
CS1231S	Contradiction Method	> Find a case where predicate is true, but outcome is false	19/08/2021		69
		Definition $> \mathscr{C}$ is a set of which all elements are nonempty subsets of A			
		> Every element of A is in exactly one element of $\mathscr C$ > Elements of a partition are the components of the partition			
		> x \mathscr{C} y \Leftrightarrow x is in the same component of \mathscr{C} as y			
		Proof			
		::Show every $x \in A$ is in at least one $S \in \mathscr{C}$ > Let $S \in \mathscr{C}$			
		> Prove x ∈ S			
		> x ∈ S ∈ @			
		::Show every $x \in A$ is in at most one $S \in \mathscr{C}$ > Let $x \in S_1$ and $x \in S_2$			
		> Prove S₁ ⊆ S₂			
CS1231S	Partition (Equivalence)	> Prove S ₂ ⊆ S ₁ > S ₁ = S ₂	10/09/2021		190
		Definition > The same-component /Relation with respect to a partition is			
		an equivalence relation			
		> Reflexive, symmetric, transitive			
		Proof ::Show that a relation is an equivalence relation			
CS1231S	Equivalence Relation	> Prove reflexive, symmetric, transitive Definition	16/09/2021		202
		> For x and y, there can be either 1 arrow or 0 arrows			
		Proof			
CS1231S	Antisymmetric Relation	::Show antisymmetric > $x_1 R x_2 \wedge x_2 R x_1 \Rightarrow x_1 = x_2$	16/09/2021		206
	-	Definition			
		> Let $f : A \rightarrow B$. Then $g : B \rightarrow A$ is an inverse of f > $\forall x \in A \forall y \in B \Rightarrow y = f(x) \Leftrightarrow x = g(y)$			
		Proof			
CS1231S	Invertible (Function)	::Prove function is invertible > Prove /Bijective	13/10/2021	Tmnoxt	307
C812318	invertible (Function)	Definition	13/10/2021	Important	307
		$><$ MA $\forall y\in B$ $\exists x\in A$ $(y=f(x))$ MA> $>$ Nobody in B is alone			
		Proof			
~~1.001.0		::Prove function is surjective	12/10/0001		200
CS1231S	Surjective	> Prove ∀y ∈ B → ∃x ∈ A Definition	13/10/2021	Important	308
		> <ma <math="">\forall x_1, x_2 \in A (f(x_1) = f(x_2) \Rightarrow x_1 = x_2) MA> > Nobody in B is F-boy</ma>			
		Proof			
		::Prove function is injective			
CS1231S	Injective	> Prove $f(x_1) = f(x_2) \implies x_1 = x_2$ Definition	13/10/2021	Important	309
		$> \forall y \in B \exists !x \in A (y = f(x))$			
		> Everyone in B has one partner			
		Proof ::Prove function is bijective			
CS1231S	Bijective	> Prove /Surjective and /Injective Definition	13/10/2021	Important	310
		> $f = g$ iff domains and codomains are the same and $f(x) = g(x)$			
		Proof			
CS1231S	Function Equality	::Prove functions are equal > Prove domain, range and values of f and g are the same	13/10/2021	Important	311
		Topics			
		<pre>?> Pigeonhole_Principle ?> Bijection</pre>			
		<pre>?> Countably_Infinite ?> Subsets Of Infinite Sets</pre>			
		?> Uncountable_p			
		Proof ::Prove countability of A and B if A ⊆ B			
		> B countable \implies A countable			
CS1231S	Cardinality	> A uncountable → B uncountable	13/10/2021		316
		Definition $A \rightarrow B$ is bijective $A = B $			
		Proof			
		::Prove a mapping is a bijection > Prove the mapping function is well defined, injective,			
CS1231S	Bijection	> Prove the mapping function is well defined, injective, surjective	14/10/2021		319
	Bijection	> Prove the mapping function is well defined, injective,			
	Bijection Uncountable P	<pre>> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → F(A) uncountable (use the R proof of uncountability)</pre>	14/10/2021		319
		> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → F(A) uncountable (use the ® proof of			
		> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the ® proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof			
CS1231S	Uncountable P	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the ® proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of @ is countable	15/10/2021		334
CS1231S		> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of Q is countable > Convert into 2D coordinate system, and enumerate using R≥0 Proof			
CS1231S	Uncountable P Cardinality Of Tuples	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of Q is countable > Convert into 2D coordinate system, and enumerate using Z≥0 Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have	15/10/2021		334
CS1231S	Uncountable P	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the ® proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of @ is countable > Convert into 2D coordinate system, and enumerate using ②≥0 Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have exactly one output	15/10/2021		334
CS1231S CS1231S CS1231S	Uncountable P Cardinality Of Tuples Well Defined (Function)	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of Q is countable > Convert into 2D coordinate system, and enumerate using Z≥0 Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have exactly one output Proof ::Prove A is a subset of B	15/10/2021 15/10/2021 20/10/2021		334
CS1231S CS1231S CS1231S CS1231S CS1231S	Uncountable P Cardinality Of Tuples	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of @ is countable > Convert into 2D coordinate system, and enumerate using \$≥0 Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have exactly one output Proof	15/10/2021		334
CS1231S CS1231S CS1231S	Uncountable P Cardinality Of Tuples Well Defined (Function)	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of R is countable > Convert into 2D coordinate system, and enumerate using ≥0 Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have exactly one output Proof ::Prove A is a subset of B > Vx ∈ A (x ∈ B) → A ⊆ B Process > Get Root, then Left, then Right	15/10/2021 15/10/2021 20/10/2021	Important	334
CS1231S CS1231S CS1231S CS1231S	Uncountable P Cardinality Of Tuples Well Defined (Function)	> Prove the mapping function is well defined, injective, surjective Definition > A countable infinite → P(A) uncountable (use the R proof of uncountability) Definition > Countable infinite × countable infinite = countable infinite Proof ::Prove the set of R is countable > Convert into 2D coordinate system, and enumerate using No Proof ::Prove that a function is well defined > Some outputs are out of range, or some inputs don't have exactly one output Proof ::Prove A is a subset of B > ∀x ∈ A (x ∈ B) → A ⊆ B Process	15/10/2021 15/10/2021 20/10/2021 20/10/2021	Important	334 335 353 354

Course	Thing	Explanation	Date	Important	Index
		Definition > Least number of edges to cover all vertices			
CS1231S	Minimum Spanning Tree	Process 7> Kruskal_Algorithm 7> Prim_Algorithm	21/11/2021		442
CS1231S	Kruskal Algorithm	Process > Choose the lightest edge from current point > If edge doesn't end up in circuit, add the edge	21/11/2021	Important	443
CS1231S	Prim Algorithm	Process > Choose the lightest edge from any point in the current tree	21/11/2021	Important	444