2023-2학기 전자기파와 광학 HW5, Due: 11:59pm Nov. 3rd (eTL upload)

File name: NAME_ID_HW#, e.g. 홍길동_20230101_HW#

1. Griffiths problem 10.1 (수업시간에 성실하게 필기한 분에게 유리한 문제입니다)

Problem 10.1 Show that the differential equations for V and A (Eqs. 10.4 and 10.5) can be written in the more symmetrical form

$$\Box^{2}V + \frac{\partial L}{\partial t} = -\frac{1}{\epsilon_{0}}\rho,$$

$$\Box^{2}\mathbf{A} - \nabla L = -\mu_{0}\mathbf{J},$$

$$\Box^{2} \equiv \nabla^{2} - \mu_{0}\epsilon_{0}\frac{\partial^{2}}{\partial t^{2}} \quad \text{and} \quad L \equiv \nabla \cdot \mathbf{A} + \mu_{0}\epsilon_{0}\frac{\partial V}{\partial t}.$$
(10.6)

where

$$\Box^2 \equiv \nabla^2 - \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} \quad \text{and} \quad L \equiv \nabla \cdot \mathbf{A} + \mu_0 \epsilon_0 \frac{\partial V}{\partial t}$$

Griffiths problem 10.2

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length l, width w, and height h, situated a distance d above the yz plane (Fig. 10.2).

FIGURE 10.2

- (a) Find the energy in the box at time $t_1 = d/c$, and at $t_2 = (d+h)/c$.
- (b) Find the Poynting vector, and determine the energy per unit time flowing into the box during the interval $t_1 < t < t_2$.
- (c) Integrate the result in (b) from t_1 to t_2 , and confirm that the increase in energy (part (a)) equals the net influx.

3. Griffiths problem 10.3

Problem 10.3

(a) Find the fields, and the charge and current distributions, corresponding to

$$V(\mathbf{r}, t) = 0$$
, $\mathbf{A}(\mathbf{r}, t) = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{\mathbf{r}}$.

(b) Use the gauge function $\lambda = -(1/4\pi\epsilon_0)(qt/r)$ to transform the potentials, and comment on the result.

2023-2학기 전자기파와 광학 HW5, Due: 11:59pm Nov. 3rd (eTL upload)

File name: NAME_ID_HW#, e.g. 홍길동_20230101_HW#

4. Griffiths problem 10.4

Problem 10.4 Suppose V = 0 and $\mathbf{A} = A_0 \sin(kx - \omega t) \hat{\mathbf{y}}$, where A_0 , ω , and k are constants. Find \mathbf{E} and \mathbf{B} , and check that they satisfy Maxwell's equations in vacuum. What condition must you impose on ω and k?

- 5. 수업시간에 Jefimenko's equations 을 유도하는 과정을 상세히 다뤘습니다. Griffiths 교재 pp. 449-pp.450 을 읽고
 - (a) Retarded scalar potential 이 다음을 만족함을 보이시오.

$$\nabla^2 V - \mu_0 \epsilon_0 \frac{\partial^2 V}{\partial t^2} = -\frac{1}{\epsilon_0} \rho.$$

(b) Retarded vector potential 이 다음을 만족함을 보이시오.

$$\nabla^2 \mathbf{A} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}.$$

(c) Equation 10.36 과 Equation 10.38 을 유도해 보세요. (수업시간에 성실하게 필기한 분에게 유리한 문제입니다)

$$\mathbf{E}(\mathbf{r},t) = \frac{1}{4\pi\epsilon_0} \int \left[\frac{\rho(\mathbf{r}',t_r)}{r^2} \hat{\mathbf{i}} + \frac{\dot{\rho}(\mathbf{r}',t_r)}{cr} \hat{\mathbf{i}} - \frac{\dot{\mathbf{J}}(\mathbf{r}',t_r)}{c^2 n} \right] d\tau'.$$
 (10.36)

$$\mathbf{B}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \left[\frac{\mathbf{J}(\mathbf{r}',t_r)}{\imath^2} + \frac{\dot{\mathbf{J}}(\mathbf{r}',t_r)}{c\imath} \right] \times \hat{\boldsymbol{\kappa}} d\tau'.$$
 (10.38)