LECTURE NUMBER (DATE)

Author

Tom Jeong

${\bf Contents}$

1	Completion	3
2	liminf and limsup	4

1 Completion

 $R \cong \text{Completion of } Q$

w.r.t $e/\sim =\{[(a_n)]: a_n\in e\}$ where $e=\{(a_n): a_n\in Q\}$ and (a_n) is cauchy, i.e. $\forall \epsilon>0, \exists N\in \mathbb{N}$ s.t. $n,m\geq N\implies |a_n-a_m|<\epsilon$

we want to show

- 1. (a_n) is cauchy $\forall a \in \mathbb{R} \to a \cdot (a_n)$ is also cauchy. What does it mean to multiply a number to a sequence? it means to multiply a number to each element of the sequence. i.e. $(a \cdot a_n)$
- 2. (a_n) and (b_n) are cauchy $\rightarrow (a_n + b_n)$ is also cauchy.
- 3. if $(a_n) + (b_n)$ is cauchy, then $(a_n)(b_n)$ are cauchy.

Proof 1.1 (proof of 2, 3). (a_n) and (b_n) are cauchy $\rightarrow (a_n + b_n)$ is also cauchy. let $\epsilon > 0, \exists N$ such that $\forall n_1, n_2, m_1, m_2 > N \implies |a_{n_1} - a_{m_1}| < \epsilon$ and $|b_{n_2} - b_{m_2}| < \epsilon$

w.t.s $\exists M$ such that $\forall n_3, m_3 > M \implies |(a_{n_3} + b_{n_3}) - (a_{m_3} + b_{m_3})| < \epsilon$ (using triangle inequality we can pair a's and b's together) $|(a_{n_3} + b_{n_3}) - (a_{m_3} + b_{m_3})| = |(a_{n_3} - a_{m_3}) + (b_{n_3} - b_{m_3})| \le |a_{n_3} - a_{m_3}| + |b_{n_3} - b_{m_3}| < 2\epsilon$

3. WTS $\exists M$ such that $\forall n_3, m_3 > M \implies |(a_{n_3} \cdot b_{n_3}) - (a_{m_3} \cdot b_{m_3})| < \epsilon$ = $|a_{n_3} \cdot b_{n_3} - a_{m_3} \cdot b_{m_3}| = |a_{n_3} \cdot b_{n_3} - a_{n_3} \cdot b_{m_3} + a_{n_3} \cdot b_{m_3} - a_{m_3} \cdot b_{m_3}|$ (we add an subtract) = $|a_{n_3} \cdot (b_{n_3} - b_{m_3})| + b_{m_3} \cdot (a_{n_3} - a_{m_3})|$ (... we need a lemma) using lemma 1.2 we see that the sequence converges

Lemma 1.2. if (a_n) is cauchy, then the sequence (a_n) is bounded.

$$\forall \epsilon_0 > 0, \exists N \text{ such that } \forall n, m > N \implies |a_n - a_m| < \epsilon$$

in particular, if we look at $|a_n - a_N| < \epsilon$ for $n \ge N$

$$-\epsilon_0 < a_n - a_N < \epsilon_0 \implies a_N - \epsilon < a_n < \epsilon + a_N$$

?? reverse inequality: $|a_n| - |a_N| < |a_n - a_N| < \epsilon_0 \implies |a_n| < |a_N| + \epsilon_0$ we see that the sequence is bounded by some number; in mathematical terms M such that $\forall n \in \mathbb{N} \implies |a_n| < M$ we can choose $M = \max\{|a_1|, |a_2|, \ldots, |a_N| + \epsilon_0\}$

Definition 1.1. define

$$[(b_n)][(a_n)] = [(a_n \cdot b_n)]$$

$$[(a_n)]([(b_n)] + [c_n]) = [(a_n)] \cdot [(b_n + c_n)] = [(a_n \cdot b_n + a_n \cdot c_n)]$$

Theorem 1.3.

$$(a_n) \subseteq \mathbb{R}$$

cauchy \longleftrightarrow (a_n) converges (there is a specific number that the sequence converges to) $\exists a \text{ such that } \forall \epsilon \exists N \text{ such that } \forall n \geq N \implies |a_n - a| < \epsilon$

Proof. (a_n) bounded, due to B.W Theorem. there exists a convergence subsequence. consider $(a_{n_j})_{j\geq 1}$ then a such that $\forall \epsilon > 0, \exists J \in \mathbb{N}$ such that $\forall j \geq J \implies |a_{n_j} - a| < \epsilon$

 $\exists N$, such that $\forall n, m \geq N \implies |a_n - a_m| < \epsilon$ we pick j large enough such that $j \geq J$ and $n_j \geq N$ we know that $|a_{n_j} - a| < \epsilon$ and $|a_{n_{j+1}} - a| < \epsilon$ we can use the triangle inequality to show that $|a_n - a| < 2\epsilon$

2 liminf and limsup

they are combination of words limit infimum and limit supremum.

Definition 2.1 (Limsup). given $(a_n)_{n\geq 1}$ define $\limsup(a_n)$ which is not the same concept as $\sup\{a_n\}$ they are not equal in general. $\limsup(a_n) = \sup\{\inf\{a_{n_j}: a_{n_j} \text{ is a subsequence of } (a_n)\}\}$ (a_n) is bounded then $= \sup\{\lim_{n\to\infty} \sup\{a_{n_j}\}\}$ thus $= \limsup\{a_n\} = \lim_{n\to\infty} \sup\{a_n\}\}$ $m \geq N$

Definition 2.2 (Liminf). $liminf(a_n) = \inf\{\sup\{a_{n_j} : a_{n_j} \text{ is a subsequence of } (a_n)\}\}\ (a_n)$ is bounded then $=\inf\{\lim_{n\to\infty}\inf\{a_{n_j}\}\}\ \text{thus} = \liminf\{a_n\} = \lim_{n\to\infty}\{\inf\{a_m\}\}\ m \geq N$

Definition 2.3 (Cluster Point). a is a cluster point of $(a_n)_{n\geq 1}$ if \exists subsequence $(a_{n_j})_{j\geq 1}$ such that $\lim_{j\to\infty}a_{n_j}=a$

Here is an example, make a subsequence with cluster points 1, 2, 3, and ∞

$$a_n = \begin{cases} 1 & \text{if } n = 1 \mod 4 \\ 2 & \text{if } n = 2 \mod 4 \\ 3 & \text{if } n = 3 \mod 4 \\ n & \text{if } n = 0 \mod 4 \end{cases}$$

then $\lim \sup(a_n) = \infty$ and $\lim \inf(a_n) = 1$

Theorem 2.1. $\forall (a_n)_{n>1}$ cluster points of (a_n) are in the interval $[\liminf (a_n), \limsup (a_n)]$

Proof. Recall the definition, $a_n = \liminf\{a_n\} = \inf\{\sup\{a_{n_j} : a_{n_j} \text{ is a subsequence of } (a_n)\}\}$ and , $\bar{a_n} = \limsup\{a_n\} = \sup\{\inf\{a_{n_j} : a_{n_j} \text{ is a subsequence of } (a_n)\}\}$ this means $a_n = \inf\{\sup\{a_{n_j} : a_{n_j} \text{ is a subsequence of } (a_n)\}\} \leq \sup\{a_m\} \text{ for } m \geq N \text{ and } a_n \leq \sup\{a_m\} \text{ for } m \geq N \text{ let } a, \text{ be a cluster point } \Longrightarrow \exists \text{ subsequence } (a_{n_j})_{j \geq 1} \text{ s.t. } \lim_{j \to \infty} a_{n_j} = a$

Corollary: if $\lim \sup(a_n) = \lim \inf(a_n)$ then (a_n) converges. in this case all three are equal