- TransReID[1]
- TransReID with Self-supervised pretraining[2]
- Self-supervised learning
 - DINO[3]

[1]S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, "Transreid: Transformer-based object re-identification," in *Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15013-15022.*[2]H. Luo *et al.,* "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

[3]M. Caron et al., "Emerging properties in self-supervised vision transformers," in Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), 2021, pp. 9650-9660.

[1]S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, "Transreid: Transformer-based object reidentification," in *Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15013-15022*.

- TransReID[1]
 - ViT 를 backbone으로 사용
 - [CLS] token 을 사용하여 feature 를 비교

[4]H. Luo et al., "A strong baseline and batch normalization neck for deep person reidentification," IEEE Transactions on Multimedia, vol. 22, no. 10, pp. 2597-2609, 2019.

- TransReID[1]
 - BNNeck : ID loss 와 Triplet loss의 embedding space 상에서 의 gap을 줄임
 - ID loss : Affine 한 decision boundary 를 만드는 것이 목적 (Cosine distance)
 - Triplet loss : Euclidean distance 를 기반으로 한 clustering boundary 를 만드는 것이 목적

- TransReID[1]
 - SIE (side information embedding), JPM(jigsaw patch module)

[4]H. Luo et al., "A strong baseline and batch normalization neck for deep person reidentification," IEEE Transactions on Multimedia, vol. 22, no. 10, pp. 2597-2609, 2019.

TransReID[1]

SIE (side information embedding)

Dataset	Object	#ID	#image	#cam	#view
MSMT17	Person	4,101	126,441	15	-
Market-1501	Person	1,501	32,668	6	-
DukeMTMC-reID	Person	1,404	36,441	8	-
Occluded-Duke	Person	1,404	36,441	8	-
VeRi-776	Vehicle	776	49,357	20	8
VehicleID	Vehicle	26,328	221,567	-	2

Ex: 1500_c3s3_062728_03.jpg (Market1501)

Camera 3번의 Side information embedding 이 patch embedding에 추가됨

- TransReID[1]
 - JPM (JigSaw Patch module)
 - 일부 patch 들의 정보에 집중한 [CLS]token을 통해 local feature를 modeling

- Transformer layer가 L개 라고 할때, L-1 layer까지는 동일하게 학습
- 마지막 transformer layer에서, 별도의 trasnformer layer를 두어 local feature 만으로 classification을 진행 (local feature의 개수 만큼 classification layer가 존재)
- Loss function

$$\mathcal{L} = \mathcal{L}_{ID}(f_g) + \mathcal{L}_T(f_g) + \frac{1}{k} \sum_{j=1}^k (\mathcal{L}_{ID}(f_l^j) + \mathcal{L}_T(f_l^j))$$

- TransReID[1]
 - JPM (JigSaw Patch module)
 - 일부 patch 들의 정보에 집중한 [CLS]token을 통해 local feature를 modeling

- TransReID[1]
 - JPM (JigSaw Patch module)

$$\mathcal{L} = \mathcal{L}_{ID}(f_g) + \mathcal{L}_T(f_g) + \frac{1}{k} \sum_{j=1}^k (\mathcal{L}_{ID}(f_l^j) + \mathcal{L}_T(f_l^j))$$

Global branch	CLS 1 ~ 9	→ Transformer layer A	\Rightarrow	CLS_global 1 ~ 9	CLS_global → Classifier 0
	CLS 5 9	→ Transformer layer B	=	CLS_local1 5 9	CLS_local1 → Classifier 1
Jigsaw branch	CLS 6 1	⇒ Transformer layer B	\Rightarrow	CLS_local2 6 1	CLS_local2 → Classifier 2
_	CLS 7 2	→ Transformer layer B	\Rightarrow	CLS_local3 7 2	CLS_local3 → Classifier 3
_	CLS 8 3	→ Transformer layer B	\Rightarrow	CLS_local4 8 3	CLS_local4 → Classifier 4

- TransReID[1]
 - JPM (JigSaw Patch module)
 - Ex) 16 * 8 patches, shift 5, group 4

TransReID[1]

Result

Person	4,101	126,441	1.5	
	7,101	120,441	15	-
Person	1,501	32,668	6	-
Person	1,404	36,441	8	-
Person	1,404	36,441	8	-
Vehicle	776	49,357	20	8
Vehicle	26,328	221,567	-	2
	Person Person Vehicle	Person 1,404 Person 1,404 Vehicle 776	Person 1,404 36,441 Person 1,404 36,441 Vehicle 776 49,357	Person 1,404 36,441 8 Person 1,404 36,441 8 Vehicle 776 49,357 20

			MSMT17		VeRi-776	
Method	JPM	SIE	mAP	R1	mAP	R1
Baseline	X	X	61.0	81.8	78.2	96.5
	/	X	63.6	82.5	79.2	96.8
	X	/	62.4	81.9	79.6	96.9
TransReID	/	✓	64.9	83.3	80.6	96.9

Market-1501 test result

JPM	SIE	mAP	Rank 1	Rank 5	Rank 10
X	X	87.1%	94.2%	98.2%	99.1%
O	X	87.4%	95.0%	98.2%	99.1%
X	O	87.9%	95.2%	98.6%	99.2%
O	O	88.2%	94.9%	98.5%	99.1%

[2]H. Luo et al., "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

- TransReID with Self-supervised pretraining[2]
 - ReID backbone은 imagenet을 통해 학습된 pretrained weight를 사용
 - ImageNet dataset과 ReID dataset은 domain gap 이 심함
 - 추가로 ImageNet을 통해 train된 weight는 category-level supervision에 초점이 맞추어져 있기 때문에 fine-grained identity information을 얻어야하는 ReID task에 필요한 weight와는 성질이 다름
 - LUPerson dataset (Large-scale Unlabeled Person Re-ID dataset)
 - 4M images , 200K ID, 46K scenes
 - LUPerson dataset을 사용한 self-supervised learning을 통해, transformer-based Re-ID model의 pretrained weight를 얻고자 하는것이 목적
 - Re-ID task의 pre-trained weight로 사용되기 가장 적합한 weight를 만들수 있는 SSL 방식은 무엇인가? -> DINO [3]
 - LUPerson dataset과 target dataset(fine-tuning) 간의 gap을 어떻게 줄일 수 있는가? (Target dataset에 더 잘 맞는 pretrained weight를 만들기 위해)
 - → Conditional Transfer Learning

[2]H. Luo et al., "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

- TransReID with Self-supervised pretraining[2]
 - Re-ID task의 pre-trained weight로 사용되기 가장 적합한 weight를 만들수 있는 SSL 방식은 무엇인가? -> DINO [3]
 - Supervised fine-tuning result

Pre-training			Maı	ket	MSM	1T17
Models	Methods	Data	mAP	R1	mAP	R1
	Supervised	IMG	86.7	94.8	52.2	76.0
R50	MoCoV2	LUP	88.2	94.8	53.3	76.0
KJU	MoCoV3	LUP	87.3	95.1	52.9	76.8
	DINO	LUP	86.5	94.4	51.9	75.8
	Supervised	IMG	85.0	93.8	53.5	75.2
	MoCoV2	IMG	63.6	72.1	19.6	36.1
ViT-S/16	MoCoV3	IMG	81.7	92.1	46.6	70.3
	MoBY	IMG	83.3	92.2	49.1	71.5
	DINO	IMG	84.6	93.1	54.8	76.7
	MoCoV2	LUP	72.1	87.6	27.8	47.4
ViT-S/16	MoCoV3	LUP	82.2	92.1	47.4	70.3
	MoBY	LUP	84.0	92.9	50.0	73.2
V11-5/10	DINO	LUP	90.3	95.4	64.2	83.4
	DINO	LUP^*	89.6	95.1	62.3	82.6

[2]H. Luo et al., "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

- TransReID with Self-supervised pretraining[2]
 - LUPerson dataset과 target dataset(fine-tuning) 간의 gap을 어떻게 줄일 수 있는가? (Target dataset에 더 잘 맞는 pretrained weight를 만들기 위해) → Conditional Transfer Learning
 - LUPerson dataset 은 unlabeled dataset 이기 때문에 data의 선별이 필요(Ex: Low resolution, cropped image)
 - Target dataset과 특징이 비슷한 data를 선별한 후(first stage), 이들 만을 이용하여 model을 pre-training 시키는 (second stage) 방식을 사용

Algorithm 1 Our Proposed Conditional Filtering

1:	procedure Filter(D_s, D_t)	
2:	$\theta_s \leftarrow TRAIN(D_s)$	⊳ Source Proxy Model
3:	$\theta_t \leftarrow TRAIN(\theta_s, D_t)$	► Target Proxy Model
4:	for $i \leftarrow 1$ to N do	$\triangleright x_s^i \in \mathcal{D}_s$
5:	$c_s^i \leftarrow CFS(x_s^i)$	Compute CFS
6:	$c_s \leftarrow SORT(c_s^1, c_s^2,, c_s^2)$	N Set Score Set
7:	$D'_s \leftarrow TOP(D_s, N', c_s)$	⊳ Filter Source Dataset
8:	return $\mathcal{D}_{s}^{'}$ $ ho$ 1	Return the Filtered Subset

CFS: catastrophic forgetting score

$$c_s^i = \frac{\langle \theta_s(x_s^i), \theta_t(x_s^i) \rangle}{||\theta_s(x_s^i)|| ||\theta_t(x_s^i)||}$$

[2]H. Luo et al., "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

- TransReID with Self-supervised pretraining[2]
 - LUPerson dataset과 target dataset(fine-tuning) 간의 gap을 어떻게 줄일 수 있는가? (Target dataset에 더 잘 맞는 pretrained weight를 만들기 위해) → Conditional Transfer Learning
 - LUPerson dataset 은 unlabeled dataset 이기 때문에 data의 선별이 필요(Ex: Low resolution, cropped image)
 - Target dataset과 특징이 비슷한 data*를 선별한 후(first stage), 이들 만을 이용하여* model*을* pre-training 시키는 (second stage) 방식을 사용

Source : LUPerson Target : Market1501

CFS: catastrophic forgetting score

$$c_s^i = \frac{\langle \theta_s(x_s^i), \theta_t(x_s^i) \rangle}{||\theta_s(x_s^i)|| \, ||\theta_t(x_s^i)||}$$

(a) Sampled data with high CFS

(b) Filtered data with low CFS

(c) Data in the target domain

[2]H. Luo et al., "Self-Supervised Pre-Training for Transformer-Based Person Re-Identification," arXiv preprint arXiv:2111.12084, 2021.

- TransReID with Self-supervised pretraining[2]
 - Result

	JPM	SIE	mAP	Rank 1	Rank 5	Rank 10
TransReID	X	X	87.1%	94.2%	98.2%	99.1%
	0	X	87.4%	95.0%	98.2%	99.1%
(IMG) 120 Epoch	X	0	87.9%	95.2%	98.6%	99.2%
120 2p 0411	O	O	88.2%	94.9%	98.5%	99.1%
TransReID -SSL(LUP) 30 Epoch	X	X	90.8%	95.2%	98.2%	99.0%
TransReID -SSL(LUP) 120 Epoch	X	X	93.1%	96.6%	98.9%	99.2%