CSD1241 Tutorial 6

Problem 1. The **matrix representation** of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is an $m \times n$ matrix M such that $T(\vec{x}) = M\vec{x}$ for any $\vec{x} \in \mathbb{R}^n$.

Find the matrix representation of T in the following cases. In each case, find the points \vec{x} that are fixed by T, that is, $T(\vec{x}) = \vec{x}$.

(a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ y \end{pmatrix}$$

(b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ with

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + y - z \\ y + z \\ x - y - z \end{pmatrix}$$

- (c) Based on the results from a,b, we see that the map T always fixes the origin $O = \vec{0}$. Show that this property is true for any linear map, that is, $T(\vec{0}) = \vec{0}$ whenever $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.
- (d) Let l be a line in \mathbb{R}^2 which doesn't go through the origin. Using the result in c, could you explain that the map $T: \mathbb{R}^2 \to \mathbb{R}^2$ which is the reflection through l is not a linear transformation?

Problem 2. Another way to find the matrix representation M of $T: \mathbb{R}^n \to \mathbb{R}^m$ is to use the standard unit vectors $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ of \mathbb{R}^n

$$M = [T(\vec{e}_1) \ T(\vec{e}_2) \ \cdots \ T(\vec{e}_n)]$$

In the following cases, find the matrix representation of the linear transformation T by the method described above. In each case, find the points \vec{x} that are mapped to $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$,

that is,
$$T(\vec{x}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

(a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$

(b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ with

$$T\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\1\end{pmatrix},\ T\begin{pmatrix}1\\1\\0\end{pmatrix}=\begin{pmatrix}-1\\2\end{pmatrix},\ T\begin{pmatrix}0\\1\\1\end{pmatrix}=\begin{pmatrix}-5\\3\end{pmatrix}$$

Problem 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto the line l: x-2y=0.

- (a) Find the matrix M of T.
- (b) Find the image of the points $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 5 \end{pmatrix}$.
- (c) Find the image of the line m: x+y=3 under this map (find normal equation). Hint. Use the vector equation of m to express its coordinates.
- (d) Find the image of the line n: 2x + y = 15 under this map (find normal equation).

Problem 4. Redo Problem 3 with T be the skew projection onto l: x-2y=0 along the direction $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Problem 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal reflection through the line l: x-2y=0.

- (a) Find the matrix M of T.
- (b) Find the image of the points $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$.
- (c) Find the image of the line m: x + y = 3 under this map (find normal equation).
- (d) Find the image of the line n: 2x + y = 5 under this map (find normal equation).

Problem 6. Redo Problem 5 with T be the skew reflection through l: x-2y=0 along the direction $\vec{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.