HEP NTUA Weekly Report

24/11/2021

George Bakas

Summary

- ttX analysis:
 - Combination of all years in Fiducial level
 - Unfolding
 - Show systematic variations after unfolding for Parton and Particle levels
 - Unfold using the bulk sum of response matrices from all years
 - Combination of each variation in fiducial
 - Unfolding for each combined variation → combination of acceptance/efficiency and responses
 - We have been writing the AN
 - Systematic Variations
 - Theory variations
 - Final Results chi, cosTheta* (leading, subleading) → abs and norm
 - Efficiency & acceptance comparison
- Z' analysis
 - Writing documentation for PhD thesis

Final Results Parton

Final Results Parton

Final Results Parton

Efficiency Acceptance Comparison Parton

Efficiency Acceptance Comparison Parton

Efficiency Acceptance Comparison Parton

Efficiency Acceptance Comparison Particle

Efficiency Acceptance Comparison Particle

Efficiency Acceptance Comparison Particle

BACKUP

Summary

- ttX analysis Pipeline Creation
 - 1. We want to be able to handle all Nominal files and their variations in an automated way
 - This requires deciding consistent naming conventions and a efficient planning
 - 3. Handling of:
 - 1. Nominal
 - 2. Parton Shower Weights
 - 3. PDF Variations
 - 4. JES
 - 5. Scale Variations
 - 6. bTagVariations
 - 7. Top quark mass variations
 - 4. Per year For all these we need to
 - 1. Create template files that have 2btag and 0btag in Extended and Reduced jetMassSoftDrop phase space
 - 2. 9 variables (mJJ, pTJJ, yJJ, jetPt[0,1], jetY[0,1], chi, |cosTheta*|[0,1]
 - 3. Template fit files (bkg qcd, bkg subdominant) and signal templates for all variations
 - 4. Fit on extended signal region for all variations

- 5. Response matrices, Acceptance, Efficiency
- 6. Signal Extraction
- Combine all Fiducial Level results (4 years) into 1 Extracted Signal for all variations
- 5. Unfold the combined result into Parton & Particle levels
- 7. Show systematic variations compared to the Nominal file
- 8. The same procedure must be done using different nominal files
 - 1. Fill in 2btag histograms in our signal region in the parton
 - 2. For each variation and each year
 - 3. Combine all years together
 - 4. Calculate systematics for samples other than the nominal

Brazilian Plots (2016_preVFP, 2017 and 2018) with sliding mJJ Cut

2016_preVFP 2017

Combined Datacard for 2016 preVFP, 2017 and 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


Brazilian Plots (2016 preVFP, 2017 and 2018) with sliding mJJ Cut wrt 2018

2016_preVFP 2017

Combined Datacard for 2016 preVFP, 2017 and 2018 wrt 2018

Mass Cut Mapping

```
{"mZ_1200_12":1000, "mZ_1400_14":1200, "mZ_1600_16":1400, "mZ_1800_18":1600, "mZ_2000_20":1600, "mZ_2500_25":2000, "mZ_3000_30":2000, "mZ_3500_35":2000, "mZ_4000_40":2000, "mZ_4500_45":2000}
```


