AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/631,810 Atty Docket No.: Q76527

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claim 1. (currently amended): A compound represented by formula (III):

wherein Z_1 represents an atomic group necessary to form thiazole; Z_2 represents an atomic group selected from the group consisting of a furan ring, and a thiophene ring which has a condensed ring to form a tetracylic ring system, a pyrrole ring, a pyrazole ring, an isoexazole ring, an isothiazole ring and an imidazole ring; R_2 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group; L_1 and L_2 each represents a methine group; p_1 represents 0; V_1 represents a substituent; Q_1 represents a methine group or a polymethine group necessary to form a methine dye; M_1 represents an electric charge balancing counter ion; and m_1 represents a number of from 0 to 10 necessary to neutralize the electric charge of the molecule; and n represents 0, 1 or 2, and when n represents 2, a plurality of V_1 may be the same or different.

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/631,810 Atty Docket No.: Q76527

Claim 2. (currently amended): The compound as claimed in claim 1, wherein the selected atomic group for Z_2 represents is a furan ring, a thiophene ring or a pyrrole ring.

Claim 3. (currently amended): The compound as claimed in claim 1, wherein the compound represented by formula (III) is represented by formula (VIII) or (IX):

$$V_{2} \longrightarrow Z_{3}$$

$$V_{3} \longrightarrow V_{4} \longrightarrow V_{1} \longrightarrow Z_{3}$$

$$V_{1} \longrightarrow V_{2} \longrightarrow V_{1} \longrightarrow C \longrightarrow Q_{1}$$

$$(V_{1})_{n} \longrightarrow R_{2}$$

$$(V_{1})_{n} \longrightarrow R_{2}$$

$$(V_{1})_{n} \longrightarrow R_{2}$$

wherein Z_4 represents an oxygen atom or a sulfur atom; Z_3 represents an atomic group necessary to form thiazole, L_1 , L_2 , p_1 , V_1 , n, R_2 , Q_1 , M_1 , and m_1 each has the same meaning as described in formula (III); and V_2 and V_3 each represents a substituent, or and V_2 and V_3 may form a condensed ring containing V_2 and V_3 ;

$$V_{2} = Z_{6}$$

$$V_{3} = V_{1} = L_{2} \Rightarrow V_{0} = Q_{1}$$

$$(V_{1})_{0} = R_{2}$$

$$(V_{1})_{0} = R_{2}$$

$$(IX)$$

wherein Z_6 represents N-R₃; Z_5 represents an atomic group necessary to form thiazole; R₃ represents a hydrogen atom or a substituent; L₁, L₂, p₁, V₁, n, R₂, Q₁, M₁, and m₁ each has the

AMENDMENT UNDER 37 C.F.R. § 1.111

Application No.: 10/631,810 Atty Docket No.: Q76527

same meaning as described in formula (III); and V_2 and V_3 each has the same meaning as described in formula (VIII).

Claim 4. (original): The compound as claimed in claim 3, wherein R₂ represents an alkyl group having an aryl group as a substituent or an aryl group.

Claim 5. (original): The compound as claimed in claim 3, wherein at least one substituent represented by V_1 is a group having at least one dissociable group which has a dissociable proton and has a negative charge at proton dissociation or which forms a salt with a counter cation in the form of an anion.

Claim 6. (currently amended): The compound as claimed in claim 3, wherein at least one substituent represented by V_2 or V_3 in formula (VIII) or formula (IX) is a group having at least one dissociable group which has a dissociable proton and has a negative charge at proton dissociation or which forms a salt with a counter cation in the form of an anion.

Claim 7. (original): The compound as claimed in claim 1, wherein R_2 represents an alkyl group having an aryl group as a substituent or an aryl group.

Claim 8. (original): The compound as claimed in claim 1, wherein at least one substituent represented by V_1 is a group having at least one dissociable group which has a dissociable proton and has a negative charge at proton dissociation or which forms a salt with a counter cation in the form of an anion.