COEFICIENTE DE CORRELACIÓN PARCIAL

1 Introducción	2
2 Correlación parcial mediante correlación de Pearson.	4
3 Correlación parcial mediante el recurso de diagramas de Venn.	
4 Aplicación práctica con SPSS	9
5 Correlación parcial como correlación entre residuales	
6 Coeficiente de regresión múltiple y coeficiente de regresión parcial	16

Carlos Camacho Universidad de Sevilla

1.- Introducción

Aunque el término de correlación parcial guarda cierta similitud con el de correlación semiparcial, y de hecho presentan cálculos parecidos, sus propósitos son bien diferentes. La correlación semiparcial hay que situarla en el contexto de la regresión múltiple, en el proceso de inclusión de variables, para ver la contribución de los distintos regresores en la explicación de la variable dependiente. Normalmente las variables independientes comparten cierta información -están solapadas-, y hay que comprobar si al incluirla en el modelo aportan nueva información o su aportación es pura redundancia, si añaden variabilidad explicada o si la misma se encuentra en las variables incluidas anteriormente. En términos estadísticos, se trata de averiguar el incremento ocurrido en R^2 cuando se añade una (o varias) variables. Por ejemplo, si en un determinado modelo de regresión hemos incluido la variable X_1 , la variable X_2 y deseamos saber cuánto aporta la variable X_3 sobre las anteriores simplemente calcularemos la diferencia entre la R^2 de estas tres variables y la R^2 de las dos primeras variables. Así, el incremento de R^2 , debido a la inclusión de X_3 será:

$$\Delta R^2 = R_{v,123}^2 - R_{v,12}^2 = R_{v(3,12)}^2$$

En la correlación parcial interesa no tanto la contribución de una determinada variable en el modelo de regresión, como la eliminación de ciertas variables que resultan perturbadoras para la cabal comprensión de la relación entre las variables de interés. Tiene que ver con las denominadas correlaciones espúreas donde se observan relaciones entre variables que parecen indicar que unas afectan otras, cuando en realidad la concomitancia que presentan es debida a que su variabilidad va pareja debido al efecto de terceras variables. Estas terceras variables son precisamente las que hay que detectar (no siempre cosa fácil) y eliminar su influjo para comprobar si realmente las variables consideradas siguen manteniendo la supuesta relación.

Un ejemplo típico de correlación espúrea es aquel en el que se relacionan, para sujetos en periodos evolutivos, variables cognitivas y variables físicas, como la inteligencia y la estatura. Está claro que si trabajamos con niños de edades comprendidas, digamos, entre 6 y 9 años, los más altos serán los más inteligentes, pero no por el efecto de la estatura, sino porque ambas, estatura e inteligencia, corren parejas con el transcurrir de los años. Es la edad la que da lugar a la maduración general de los sujetos, y con ella, la inteligencia y la estatura. Si no consideramos la edad obtendremos el siguiente gráfico para la relación entre ambas variables:

No obstante, si observamos dentro de diagrama general y distinguimos las distintas edades, observaremos que no parece haber para cada edad relación entre *Estatura* e *Inteligencia*, aunque considerando el conjunto de las edades pareciera que la hubiera.

Estatura

Si realizásemos un diagrama causal para ver las relaciones entre las distintas variables:

Observaríamos que, debido al desarrollo biológico de los niños, los de mayor edad tendrían mayor estatura así como mayor inteligencia, así la edad transmitiría su variabilidad a la estatura e igualmente a la inteligencia. De esta forma, si nos limitásemos a operar exclusivamente con la estatura y la inteligencia parecería a primera vista que la primera condiciona a la segunda, pero si eliminásemos tanto de la estatura como de la inteligencia la variabilidad *prestada* por la edad, observaríamos que no le quedaría nada específico de la estatura que afectase a la inteligencia.

Esto lo podemos hacer de dos formas. Desde una perspectiva experimental sería posible anular la influencia de la variable edad simplemente trabajando con valores constantes de la misma. De esta forma, su variabilidad sería cero y se anularía todo posible efecto. Por ejemplo, podríamos haber operado sólo con niños de 6 años. No obstante, este método obligaría a reducir las muestras (sólo 6 años) con lo que se pierde potencia en los cálculos.

Una alternativa al método experimental de control de variables nos la ofrece el procedimiento de la *correlación parcial*, que consiste en eliminar la influencia de una variable restando su variabilidad del conjunto de variables a las que suponemos que afecta y operando con el resto de variabilidad de dichas variables. Este planteamiento mantiene el tamaño maestral original, aunque presupone el supuesto de linealidad para el conjunto de las variables

Expondremos a continuación tres procedimientos de llevar a cabo la correlación parcial. Una primera, rápida de ejecución con el SPSS, basada en la correlación de Pearson, que está limitada a tres variables donde estudiamos el efecto entre dos variables eliminando el efecto de una tercera. Una segunda, más sencilla e intuitiva, recurriendo a los diagramas de Venn, y que es de propósito general, en el sentido de que podemos relacionar todas las variables que deseemos eliminando igualmente las que consideremos oportunas. Y una tercera más formal, basada en la correlación entre residuales, que refleja mejor la lógica matemática llevada a cabo pero más compleja de ejecución.

2.- Correlación parcial mediante correlación de Pearson

Este es el procedimiento clásico de cuando eran los cálculos a mano y no se disponía de otros recursos. Son correlaciones simples y de primer orden, esto es, relacionando una variable con otra y eliminando el efecto de una tercera. Si tenemos X_1 , X_2 y X_3 la expresión que relaciona X_1 con X_2 eliminado X_3 será:

$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{1 - r_{13}^2}\sqrt{1 - r_{23}^2}}$$

Supongamos en este sentido que tenemos una muestra de 20 sujetos y deseamos estudiar el efecto que tiene sobre la Calificación de una determinada asignatura (Y) las siguientes variables: Inteligencia (X_1) Horas de estudio (X_2) , Clase social (X_3) y Sexo (X_4) :

		♦ horas	nsocial 🗸		
1	109,000	10,000	3,000	4,100	,000
2	120,000	8,000	4,000	4,300	,000
3	112,000	21,000	2,000	6,400	,000
4	115,000	14,000	2,000	4,500	,000
5	98,000	18,000	1,000	4,200	,000
6	101,000	23,000	3,000	5,500	,000
7	100,000	21,000	2,000	6,000	,000
8	105,000	12,000	2,000	5,100	,000
9	130,000	21,000	5,000	8,800	,000
10	121,000	19,000	4,000	7,500	,000
11	132,000	16,000	5,000	7,800	1,000
12	140,000	18,000	5,000	9,300	1,000
13	111,000	9,000	4,000	5,200	1,000
14	109,000	25,000	3,000	6,500	1,000
15	95,000	16,000	3,000	5,200	1,000
16	88,000	10,000	2,000	2,100	1,000
17	106,000	14,000	4,000	4,800	1,000

Si deseamos conocer la correlación parcial de la inteligencia con las calificaciones eliminando el efecto del nivel social:

Obtendremos:

	Correlaciones								
Variables de	control		Inteligencia	Calificación					
Nivel Social	Inteligencia	Correlación	1,000	,623					
		Significación (bilateral)		,004					
		gl	0	17					
	Calificación	Correlación	,623	1,000					
		Significación (bilateral)	,004						
		gl	17	0					

Y la correlación parcial de la Inteligencia con la Calificación eliminando el efecto del Nivel social:

$$r_{v1.3} = 0.623$$
.

Si lo hiciéramos a mano, necesitaríamos las siguientes correlaciones de primer orden:

	Corre	laciones		
		Inteligencia	Nivel Social	Calificación
Inteligencia	Correlación de Pearson	1	,703**	,760**
	Sig. (bilateral)		,001	,000
Nivel Cosial	N	20	20	20
Nivel Social	Correlación de Pearson	,703**	1	,557*
	Sig. (bilateral)	,001		,011
	N	20	20	20
Calificación	Correlación de Pearson	,760**	,557*	1
	Sig. (bilateral)	,000	,011	
	N	20	20	20
**. La corre	elación es significativa en el	nivel 0,01 (bila	teral).	

Aplicando la fórmula:

$$r_{y_{1.3}} = \frac{r_{y_1} - r_{y_3} r_{13}}{\sqrt{1 - r_{y_3}^2} \sqrt{1 - r_{13}^2}} = \frac{0.760 - 0.557 * 0.703}{\sqrt{1 - 0.557^2} \sqrt{1 - 0.703^2}} = \frac{0.368}{0.831 * 0.711} = 0.623$$

3- Correlación parcial mediante el recurso de diagramas de Venn.

Este procedimiento es el más intuitivo y fácil de entender. Las expresiones matemáticas, reflejo de las representaciones gráficas otorgan una comprensión inmediata a los resultados numéricos. Recurriremos para ello a los diagramas de Venn. Tengamos, en este sentido, tres variables: X_1 , X_2 e Y. Si representamos simbólicamente su campo de variación mediante círculos y suponemos que una de las variables, por ejemplo X_1 , comparte variabilidad con las restantes variables, tendremos el siguiente gráfico:

^{*.} La correlación es significativa en el nivel 0,05 (bilateral).

Supongamos que deseamos eliminar toda la variabilidad de X_1 para el conjunto de variables. Tanto de la X_2 como de la Y, como si X_1 no existiera en absoluto. Tendríamos la siguiente expresión:

$$R_{y2.1}^2 = \frac{R_{y.12}^2 - R_{y1}^2}{1 - R_{y1}^2}$$

En el numerador tenemos la contribución de X_2 eliminando lo que comparte con X_1 , y en el denominador lo que queda de Y cuando también eliminamos de ésta lo que comparte con X_1 . Por la misma lógica, si deseamos eliminar de X_1 y de Y el efecto de X_2 :

$$R_{y_{1.2}}^2 = \frac{R_{y_{.12}}^2 - R_{y_2}^2}{1 - R_{y_2}^2}$$

Obsérvese el paralelismo entre las correlaciones semiparciales y las parciales. En las correlaciones semiparciales, por ejemplo en $R_{Y(2.1)}^2$ estudiamos la contribución de X_2 sobre Y una vez que hemos eliminado de X_2 lo que comparte con X_1 , es decir la contribución de X_2 sobre Y libre de X_1 . En el caso de las correlaciones parciales, por ejemplo $R_{Y2.1}^2$ estudiamos el efecto de X_2 sobre Y una vez eliminado X_1 de ambas variables (de X_2 y de Y). Tengamos a este respecto de nuevo el diagrama de Venn de las variables X_1 , X_2 e Y:

Si recurriésemos a un gráfico, tendríamos en la correlación semiparcial el siguiente cociente:

$$R_{y(2.1)}^2 = \frac{R_{y.12}^2 - R_{y1}^2}{1} = \frac{1}{1}$$

Y en la correlación parcial:

$$R_{y2.1}^2 = \frac{R_{y.12}^2 - R_{y1}^2}{1 - R_{y1}^2} = \frac{}{}$$

Obsérvese que en la correlación semiparcial dividimos la parte específica de X_2 entre el total de Y (que vale 1, su 100% de variabilidad), mientras que en la parcial dividimos la misma parte entre lo que queda de Y cuando también hemos quitado a ésta lo que comparte con X_1). El hecho de que el denominador sea menor de 1 hace que la correlación parcial sea siempre mayor que la semiparcial.

Ejemplo 1.- Estudiamos el efecto de las variables *ejercicio*, *edad* y *grasas* sobre el *colesterol*:

		,	ANOVA			
Modelo)	Suma de cuadrados	gl	Media cuadrática	F	Sig.
1	Regresión	8478,404	1	8478,404	1,608	,221 ^b
	Residuo	94906,796	18	5272,600		
	Total	103385,200	19			
2	Regresión	14618,129	2	7309,065	1,400	,274°
	Residuo	88767,071	17	5221,592		
	Total	103385,200	19			
3	Regresión	49275,942	3	16425,314	4,857	,014 ^d
	Residuo	54109,258	16	3381,829		
	Total	103385,200	19			
a. V	ariable depend	liente: colesterol				
b. P	redictores: (Co	nstante), ejercicio				
c. Pi	redictores: (Co	nstante), ejercicio,	edad			
d. P	redictores: (Co	nstante), ejercicio,	edad, grasa	as		

1.- Calcular $R_{y2.1}^2$ y $R_{y3.21}^2$

SOL:

1.- Calculemos en primer lugar los valores de R cuadrado de los distintos modelos:

$$R_{y1}^2 = \frac{8478.404}{103385.200} = 0.082$$

$$R_{y.12}^2 = \frac{14618.129}{103385.200} = 0.141$$

$$R_{y.123}^2 = \frac{49275.942}{103385.200} = 0.477$$

Así pues:

$$R_{y2.1}^2 = \frac{R_{y.12}^2 - R_{y1}^2}{1 - R_{y1}^2} = \frac{0.141 - 0.082}{1 - 0.082} = 0.064$$

$$R_{y3.21}^2 = \frac{R_{y.123}^2 - R_{y.12}^2}{1 - R_{y.12}^2} = \frac{0.477 - 0.141}{1 - 0.141} = 0.393$$

4.- Aplicación práctica con SPSS.

Trabajemos con los datos del ejercicio anterior:

			🖋 grasas	Ø ejercicio	
1	350,00	80,0	35,0	0	,00
2	190,00	30,0	40,0	2	1,00
3	263,00	42,0	15,0	1	1,00
4	320,00	50,0	20,0	0	,00
5	280,00	45,0	35,0	0	,00
6	198,00	35,0	50,0	1	1,00
7	232,00	18,0	70,0	1	1,00
8	320,00	32,0	40,0	0	,00
9	303,00	49,0	45,0	0	,00
10	220,00	35,0	35,0	0	,00
11	405,00	50,0	50,0	0	,00

Y resolvamos las mismas cuestiones:

1.- Calcular
$$R_{y2.1}^2$$
 y $R_{y3.21}^2$

Según estos datos:

 $X_1 \rightarrow ejercicio$ $X_2 \rightarrow edad$ $X_3 \rightarrow grasas$ $Y \rightarrow colesterol$

Por tanto en el primer caso nos piden la parcial de edad con colesterol eliminando la edad. En este sentido, simplemente calculamos la regresión múltiple de colesterol con ejercicio y edad:

Hacemos clic en Estadísticos... y marcamos en "Correlaciones parciales y semiparciales"

Resultado:

				Coeficientes	s ^a				
		Coeficientes no estandarizados		Coeficientes estandarizad os			Correlaciones		s
Modelo E		В	Error estándar	Beta	t	Sig.	Orden cero	Parcial	Semiparcia
1	(Constante)	233,560	55,741		4,190	,001			
	ejercicio	-16,806	24,298	-,172	-,692	,498	-,286	-,165	-,155
	edad	1,361	1,255	,269	1,084	,293	,342	,254	,244

Por tanto:

$$R_{y2.1}^2 = 0.254^2 = 0.064$$

En relación a $R_{y3,21}^2$ nos piden la parcial de las grasas eliminando el ejercicio y la edad. Procediendo de manera equivalente a anteriormente:

				Coeficientes	5"				
		Coeficier estandar		Coeficientes estandarizad os				Correlacione	s
Error Modelo B estándar		Beta	t	Sig.	Orden cero	Parcial	Semiparcial		
1	(Constante)	99,937	61,275		1,631	,122			
	ejercicio	-6,248	19,831	-,064	-,315	,757	-,286	-,079	-,057
	edad	2,346	1,056	,464	2,223	,041	,342	,486	,402
	grasas	2,306	,720	,606	3,201	,006	,494	,625	,579

Por tanto:

$$R_{y3.21}^2 = 0.625^2 = 0.393$$

Resultados equivalente a los realizados a mano.

5.- Correlación parcial como correlación entre residuales.

Otra alternativa, cuando deseamos eliminar la influencia de una determinada variable de un conjunto de ellas, consiste en restarle *in situ* a las puntuaciones de tales variables el efecto de la variable que deseamos suprimir. Tengamos, de nuevo, X_1 , X_2 e Y, donde deseamos eliminar el posible efecto de X_2 tanto de X_1 como de Y, con la intención de conocer la relación entre X_1 e Y libre de la influencia de X_2 . En ese sentido, calcularemos la ecuación de regresión que liga X_2 con X_1 :

$$\hat{X}_1 = a + bX_2$$

Si a las puntuaciones originales de X_I les restamos \hat{X}_1 , que son precisamente las puntuaciones de X_I que debe a X_2 , obtendremos, entonces, las puntuaciones de X_I libre de X_2 . Si por otro lado, hacemos lo mismo con Y:

$$\hat{Y} = a + bX_2$$

Si restamos a los valores de Y, los valores \hat{Y} , que son los que presta X_2 a esta variable, entonces, igualmente obtendremos los valores de Y libres de X_2 . Si a continuación calculamos la correlación entre $(Y - \hat{Y})$ y $(\hat{X}_1 - X_1)$, habremos obtenido la correlación parcial de Y con X_I eliminado la influencia de X_2 ; esto es, $r_{y1.2}$. Así pues, la correlación parcial puede plantearse como una correlación entre residuos:

$$r_{y1.2} = r_{(Y-\hat{Y}_1)(X_1-\hat{X}_1)}$$

Ejemplo 2.- Supongamos que deseamos estudiar el efecto que tiene sobre la Calificación de una determinada asignatura (Y) las siguientes variables: *Inteligencia* (X_1) *Horas de estudio* (X_2) y *Nivel social* (X_3) . A este respecto disponemos de las siguientes <u>puntuaciones</u> obtenidas por 20 estudiantes:

X_1	X_2	X_3	Y	X_1	X_2	X_3	Y
****	****	*****	****	****	*****	*****	*****
109	10	3	4.1	 132	16	5	7.8
120	8	4	4.3	140	18	5	9.3
112	21	2	6.4	111	9	4	5.2
115	14	2	4.5	109	25	3	6.5
98	18	1	4.2	95	16	3	5.2
101	23	3	5.5	88	10	2	2.1
100	21	2	6.0	106	14	4	4.8
105	12	2	5.1	123	12	3	5.6
130	21	5	8.8	120	20	2	7.2
121	19	4	7.5	102	22	2	6.3
		l					

Esto supuesto, calcular mediante las puntuaciones residuales, la correlación de *Inteligencia* y *Calificación*, eliminando toda influencia del *Nivel social*.

SOL:

Calculemos en primer lugar la ecuación de regresión que liga la variable X_1 (Inteligencia) con X_3 (Nivel social). Resulta ser:

$$\hat{X}_1 = 87.840 + 7.872 X_3$$

En términos de SPSS:

		c	oeficientes ^a			
		Coeficier estanda		Coeficientes estandarizad os		
Modelo		В	Error estándar	Beta	t	Sig.
1	(Constante)	87,840	6,121		14,351	,000
	Nivel Social	7,872	1,876	,703	4,197	,001

A continuación restemos a la *Inteligencia* los valores de esta variable explicados por *Nivel social*.

$$X_1 - \hat{X}_1 \implies RES_1$$

En términos de SPSS simplemente son los residuales de esta ecuación (lo que queda de la inteligencia que no logra explicar el nivel social. Marcamos "Guardar" en el anterior modelo de regresión:

Y haciendo lo propio con la variable *Y* (Calificación). Calculamos la ecuación de regresión que liga Calificación con Nivel Social. Tenemos:

$$\hat{Y} = 3.355 + 0.808X_3$$

En términos de SPSS:

		c	oeficientes ^a			
		Coeficier estanda		Coeficientes estandarizad os		
Modelo)	В	Error estándar	Beta	t	Sig.
1	(Constante)	3,355	,926		3,624	,002
	Nivel Social	,808,	,284	,557	2,848	,011

Ahora procederos igual que anteriormente y restaremos de las *Calificaciones*, aquello valores ligados con el *Nivel social* ($Y - \hat{Y}$). Haciendo operaciones y efectuando las siguientes denominaciones:

$$Y_1 - \hat{Y_1} \implies RES_2$$

Marcamos "Guardar" en el anterior modelo de regresión:

Y obtendremos los siguientes datos transformados:

		♦ horas					
1	109,000	10,000	3,000	4,100	,000	-2,456	-1,680
2	120,000	8,000	4,000	4,300	,000	,672	-2,288
3	112,000	21,000	2,000	6,400	,000	8,416	1,429
4	115,000	14,000	2,000	4,500	,000	11,416	-,471
5	98,000	18,000	1,000	4,200	,000	2,288	,037
6	101,000	23,000	3,000	5,500	,000	-10,456	-,280
7	100,000	21,000	2,000	6,000	,000	-3,584	1,029
8	105,000	12,000	2,000	5,100	,000	1,416	,129
9	130,000	21,000	5,000	8,800	,000	2,800	1,404
10	121,000	19,000	4,000	7,500	,000	1,672	,912
11	132,000	16,000	5,000	7,800	1,000	4,800	,404

Calculando la correlación entre ambas variables:

$$r_{(Y-\hat{Y}_1)(X_1-\hat{X}_1)} = \frac{\sum_{e_1} e_2}{N} - \overline{e}_1 \overline{e}_2 = \frac{160.808}{20} - 0*0 = 0.6230$$

Mediante SPSS:

Correlaciones					
		RES_1	RES_2		
RES_1	Correlación de Pearson	1	,623**		
	Sig. (bilateral)		,003		
	N	20	20		
RES_2	Correlación de Pearson	,623**	1		
	Sig. (bilateral)	,003			
	N	20	20		
**. La correlación es significativa en el nivel 0,01 (bilateral).					

6.- Coeficiente de regresión múltiple y coeficiente de regresión parcial

Como se sabe, los coeficientes de regresión múltiple indican el efecto de una cierta variable sobre la variable dependiente cuando las restantes permanecen constantes. En este sentido, también se conocen como *coeficientes de regresión parcial*, por cuanto se estudia el efecto de tal variable sobre la dependiente cuando hemos sustraído la variabilidad de las restantes.

Para ilustrarlo, observemos la ecuación de regresión múltiple que liga la variable *Calificación* con la *Inteligencia* y el *Nivel social*. Efectuando los cálculos oportunos, tendremos:

$$\hat{Y} = -4.922 + 0.0942X_1 + 0.0633X_3$$

En términos de SPSS:

		C	Coeficientes ^a			
Coeficientes no estandarizados			Coeficientes estandarizad os			
Modelo		В	Error estándar	Beta	t	Sig.
1	(Constante)	-4,922	2,629		-1,872	,078
	Inteligencia	,094	,029	,727	3,283	,004
	Nivel Social	,066	,321	,046	,207	,839
a. \	Variable dependie	ente: Calificación				

Se entiende que el valor 0.0942 indica el cambio en Y por cada unidad de X_1 cuando X_3 permanece constante, o dicho, de otro modo, cuando sustraemos la variabilidad de esta última variable. Pues bien, esto mismo obtendremos cuando calculamos la ecuación de regresión entre los residuales e_1 y e_2 anteriormente mencionados, como consecuencia de eliminar X_3 tanto de Y como de X_1 . De esta forma, si calculamos la ecuación de regresión entre e_2 y e_3 obtendremos:

$$\hat{e}_2 = 0.0942e_1$$

En términos de SPSS:

Coeficientes^a

		Coeficientes no estandarizados		Coeficientes estandarizados		
Mod	delo	В	Error estándar	Beta	t	Sig.
1	(Constante)	1,263E-15	,258		,000	1,000
	RES_1	,094	,028	,623	3,378	,003

a. Variable dependiente: RES_2

Su valor nos muestra el efecto de X_1 (0.094) sobre Y una vez eliminados la variabilidad de X_3 . Se observa que la regresión en estandarizadas es precisamente su coeficiente de correlación parcial (0.623)

Si deseamos conocer la relación matemática entre los coeficientes de regresión y las correlaciones parciales:

$$b = r \frac{S_{e_2}}{S_{e_1}}$$

Por los descriptivos sabemos de las desviaciones tipo de los errores:

Estadísticos descriptivos

	N	Mínimo	Máximo	Media	Desviación estándar
RES_1	20	-16,456	16,416	,00000	9,477142
RES_2	20	-2,871	2,229	,00000	1,433623
N válido (por lista)	20				

Despejando r:

$$r = b \frac{S_{e_1}}{S_{e_2}} = 0.094 \frac{9.477}{1.434} = 0.623$$