Rings and Fields Assignment 2

James Zoryk. Student Number: 2663347.

It is given that

$$R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}\$$

is a subring of \mathbb{C} . For each c=0,1,2, we consider the map $\rho \to \mathbb{Z}/3\mathbb{Z}$ with

$$\rho(a+b\sqrt{-5}) \mapsto \overline{a+bc}$$

Question 1a. Determine for which of those c the resulting ρ is a ring homomorphism.

Proof. For each c we will prove that whether ρ_c is a homomorphism.

I) For c=0, consider the $\rho_0 \to \mathbb{Z}/3\mathbb{Z}$ with $\rho_0(a+b\sqrt{-5}) \mapsto \overline{a}$. Let $x,y \in R$ such that $x=a_1+b_1\sqrt{-5}$ and $y=a_2+b_2\sqrt{-5}$, with $a_k,b_k \in \mathbb{Z}$. Then it follows that

$$\rho_0(xy) = \rho_0((a_1a_2 - 5b_1b_2) + (a_1b_2 + b_1a_2)\sqrt{-5})).$$

This produces a map of

$$\rho_0(xy) \mapsto \overline{a_1 a_2 - 5b_1 b_2} = \overline{a_1 a_2 + b_1 b_2}.$$

However

$$\rho(x)\rho(y) \mapsto \overline{a_1}\overline{a_2}.$$

Hence the map ρ_0 is not a homomorphism.

- II) For c=1 consider the map $\rho_1 \to \mathbb{Z}/3\mathbb{Z}$ with $\rho_1(a+b\sqrt{-5}) \mapsto \overline{a+b}$. Let $x,y \in R$ such that $x=a_1+b_1\sqrt{-5}$ and $y=a_2+b_2\sqrt{-5}$, with $a_k,b_k \in \mathbb{Z}$. Then it follows that
 - i) Given $\rho_1(x+y)$ can be expressed as

$$\rho_1((a_1+a_2)+(b_1+b_2)\sqrt{-5}) \mapsto \overline{(a_1+a_2)+(b_1+b_2)}$$

Since $\rho_1(x) \mapsto \overline{a_1 + b_1}$ and $\rho_1(y) \mapsto \overline{a_2 + b_2}$, then it follows that

$$\rho_1(x) + \rho_1(y) \mapsto \overline{a_1 + a_2 + b_1 + b_2}$$

This shows that $\rho_0(a+b) = \rho_0(a) + \rho_0(b)$

ii) Now, $\rho_1(xy)$ is expressed by

$$\rho_0((a_1a_2 - 5b_1b_2) + (a_1b_2 + b_1a_2)\sqrt{-5})) \mapsto \overline{a_1a_2 - 5b_1b_2 + (a_1b_2 + a_2b_1)}$$

Since this is in an modular class of three, the term $\overline{-5b_1b_2}$ equals $\overline{1b_1b_2}$ so this results in a map of

$$\overline{a_1a_2 + b_1b_2 + a_1b_2 + a_2b_1}.$$

Then for the other side, we have

$$\rho(x)\rho(y) \mapsto \overline{a_1a_2 + a_1b_2 + b_1a_2 + b_1b_2}.$$

This shows that $\rho_1(xy) = \rho_1(x)\rho_1(y)$.

Hence the map ρ_1 is a homomorphism.

- III) For c=2 consider the map $\rho_2 \to \mathbb{Z}/3\mathbb{Z}$ with $\rho_2(a+b\sqrt{-5}) \mapsto \overline{a+2b}$. Let $x,y \in R$ such that $x=a_1+b_1\sqrt{-5}$ and $y=a_2+b_2\sqrt{-5}$, with $a_k,b_k \in \mathbb{Z}$. Then it follows that
 - i) Given $\rho_2(x+y)$ can be expressed as

$$\rho_2((a_1+a_2)+(b_1+b_2)\sqrt{-5}) \mapsto \overline{(a_1+a_2)+2(b_1+b_2)}$$

Since $\rho_2(x) \mapsto \overline{a_1 + 2b_1}$ and $\rho_1(y) \mapsto \overline{a_2 + 2b_2}$, then it follows that

$$\rho_2(x) + \rho_2(y) \mapsto \overline{a_1 + a_2 + 2(b_1 + b_2)}$$

This shows that $\rho_2(a+b) = \rho_2(a) + \rho_2(b)$

ii) Now, $\rho_2(xy)$ is expressed by

$$\rho_2((a_1a_2-5b_1b_2)+(a_1b_2+b_1a_2)\sqrt{-5}))\mapsto \overline{a_1a_2+b_1b_2+2(a_1b_2+b_1a_2)}.$$

Then for the other side, we have

$$\rho(x)\rho(y) \mapsto \overline{a_1a_2 + 4b_1b_2 + 2(a_1b_2 + b_1a_2)} = \overline{a_1a_2 + b_1b_2 + 2(a_1b_2 + b_1a_2)}$$

This shows that $\rho_2(xy) = \rho_2(x)\rho_1(y)$.

Hence the map ρ_2 is a homomorphism.

Question 1b. Let c=2, Show that the first isomorphism theorem for ring gives a ring isomorphism $R/(3, 1+\sqrt{-5}) \simeq \mathbb{Z}/3\mathbb{Z}$

Proof. We can compose a natural homomorphism

$$\phi: \mathbb{Z} \to R \to R/(3, 1+\sqrt{-5})$$

which maps any n in \mathbb{Z} to a class $n+(3,1+\sqrt{-5})\in R/(1,1+\sqrt{-5})$. Show that this homomorphism has a $K=ker(\phi)=(3,1+\sqrt{-5})$ and is surjective. Since

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) \in (3, 1 + \sqrt{-5})$$

This shows that $6\mathbb{Z} \subset K$, which suggest either that; K = (1), K = (2), K = (3), or K = (6). Now, suppose that K = (1), then there should exist an $a, b \in \mathbb{Z}$ such that

$$1 = (a + b\sqrt{-5})(1 + \sqrt{-5}).$$

Which leads us to

$$1 = a - 5b$$
, and $0 = (a+b)(\sqrt{-5})$.

This system has no solution with $a, b \in \mathbb{Z}$. However, we see that

$$6 = a - 5b$$
, and $0 = (a+b)(\sqrt{-5})$

does have a solution, given by a=-1 and b=1, which implies that $6\mathbb{Z} \subseteq K$. However, with this we see that $\phi(3)=3$ while the $\phi((a+b\sqrt{-5})(1+\sqrt{-5}))=0$. This indicates that $(3)\subseteq K$.

Show that ϕ is subjective.

Given an arbitrary element $x \in R/(3, 1+\sqrt{-5})$, there exists an element $y \in R$ such that $\phi(y) = x$.

We can write x in the form a+K for some $a \in R$. So need to show there is $y \in R$ such that $\phi(y) = a + K$. As $\phi(y) = y + K$.

Question 1c. Show that the ideal $(3, (1+\sqrt{-5}))$ of R is not principal.

Proof. We see that the ideal generated by $K = (3, (1 + \sqrt{-5}))$ which is a subring with elements of the form $\{3x + (1 + \sqrt{-5})y \mid x, y \in R\}$. Assume that K is a principal ideal such that K is generated by a single element $K = (\alpha)$ for some $(\alpha) \in R$.

Since $3 \in (\alpha)$ and $1 + \sqrt{-5} \in (\alpha)$, then there exists $r_1, r_2 \in R$ such that $3 = r_1 \alpha$ and $1 + \sqrt{-5} = r_2 \alpha$.

Define the norm map $N: R \to \mathbb{Z}$, with

$$N(a+b\sqrt{-5}) \mapsto a^2+5b^2$$
 and $N(\alpha_i\alpha_j)=N(\alpha_i)N(\alpha_j)$, with $\alpha_i,\alpha_j \in K$.

Then it implies

$$N(r_1)N(\alpha) = N(r_1\alpha) = N(3) \mapsto 9,$$

and also

$$N(r_2)N(\alpha) = N(r_1\alpha) = N(1+\sqrt{-5}) \mapsto 6.$$

This shows that $N(\alpha)|9$ and $N(\alpha)|6$, which implies that either $N(\alpha)=1$ or $N(\alpha)=3$. We can see that $a^2+5b^2=3$ has no solution with a and b in \mathbb{Z} . This leaves $a^2+5b^2=1$ which has a solution of $a=\{\pm 1\}$ and b=0. However this implies that ideal K is generated by $K=(\pm 1)$, which clearly is not true.

This contradiction prove that K is not a principal ideal of R.