PROBLEME 3

Dans tout le problème, l'entier n est donné, strictement supérieur à 1. L'espace $E = \mathbf{R}^n$ est muni de sa structure euclidienne canonique, son produit scalaire étant noté (|) et la norme euclidienne || || .

L'espace des matrices carrées réelles de taille n est noté M_n , et celui des matrices symétriques est noté S_n .

On identifie une matrice A de M_n et l'endomorphisme de E dont la matrice dans la base canonique est A; de même on identifie les éléments x de E aux matrices colonnes de leurs coordonnées dans la base canonique de E. Ces identifications donnent un sens au produit Ax.

Partie I

Étude d'une norme sur S_n

1. Définition d'une norme sur S_n

- **a.** Soit U un élément de M_n . Montrer que la fonction $x \mapsto |(Ux|x)|$ est bornée sur la boule unité de E, constituée des vecteurs de norme inférieure ou égale à 1.
 - **b.** Soit *U* un élément de S_n tel que (Ux|x) = 0 pour tout *x* de *E*. Prouver que *U* est la matrice nulle.
 - **c.** Montrer que l'application N, de S_n dans \mathbf{R} , qui à tout élément U de S_n associe le nombre :

$$N(U) = \sup\{|(Ux|x)|; ||x|| \le 1\}$$

est une norme sur S_n .

2. Propriété de multiplicativité

- **a.** Soient deux matrices U et V de S_n . Montrer que le produit UV est dans S_n si et seulement si ces matrices commutent.
- **b.** Soit U un élément de S_n . On désigne par $\lambda_1, ..., \lambda_n$ ses valeurs propres, et par $\nu(U)$ le maximum des valeurs absolues des λ_i . Prouver que $\nu(U) = N(U)$ et que pour tout x de E, on a $||Ux|| \le N(U)||x||$.
- c. Déduire des questions précédentes que si U et V sont deux éléments de S_n qui commutent, alors $N(UV) \le N(U)N(V)$ (on commencera par prouver que pour tout x de E, on a $|(UVx|x)| \le ||Ux||||Vx||$).

Partie II

Caractérisation de matrices symétriques définies positives

1. Propriétés élémentaires

Soit A un élément de S_n . Montrer que A est définie positive si et seulement si il existe une matrice inversible M de M_n telle que $A={}^tMM$.

2. Un lemme

Soit A une matrice symétrique définie positive. On "prolonge" A en un élément A' de S_{n+1} de la façon suivante :

$$A' = \begin{bmatrix} A & C \\ {}^{t}C & a \end{bmatrix}$$
 où C est une matrice de $M_{1,n}(\mathbf{R})$ et a un réel.

On suppose que det(A') > 0. Le but de ce qui suit est de prouver que A' est encore définie positive.

- **a.** Prouver que $a^{-t}CA^{-1}C > 0$ (on pourra multiplier la matrice A' par la matrice $\begin{bmatrix} A^{-1} & -A^{-1}C \\ 0 & 1 \end{bmatrix}$).
- **b.** En déduire qu'il est possible de trouver une matrice N de la forme $N = \begin{bmatrix} M & D \\ 0 & \alpha \end{bmatrix}$ avec M dans M_n , D matrice ligne et α réel, vérifiant $A' = {}^t NN$, et conclure.

3. Mineurs de Gauss

Pour un élément A de S_n , on notera A_p la matrice de taille p extraite de A en position "supérieure gauche".

- **a.** Prouver que si A est définie positive, alors on a $det(A_p) > 0$ pour tout p entre 1 et n.
- **b.** Réciproquement, on suppose que $\det(A_p) > 0$ pour tout p entre 1 et n. Prouver grâce au lemme que A est définie positive (ainsi, la définie positivité d'une matrice peut se tester par le calcul de quelques déterminants).

Partie III

Inversion d'une matrice symétrique définie positive

1. Etude d'une condition d'inversibilité

Dans toute la suite du problème, on supposera donné un élément T de S_n tel que $N(I_n - T) \le k$ où k est un réel vérifiant 0 < k < 1 (I_n est la matrice unité de M_n).

- a. Donner un encadrement des valeurs propres de T, et en déduire que T est définie positive.
- **b.** En utilisant les valeurs propres de T^{-1} , prouver que

$$N(T^{-1}) \le \frac{1}{1-k}$$
 et $N(T^{-1} - I_n) \le \frac{k}{1-k}$.

2. Un algorithme

On considère la suite (Y_p) de matrices de M_n définies par la récurrence :

$$\begin{cases} Y_0 = I_n \\ Y_{p+1} = Y_p (2I_n - TY_p) \end{cases}$$

- **a.** Montrer que les matrices Y_p sont symétriques et commutent avec T.
- **b.** On pose $Z_p = I_n TY_p$. Prouver que $Z_{p+1} = Z_p^2$.
- **c.** On pose $e_p = N(Y_p T^{-1})$. Prouver, en majorant au préalable $N(Z_p)$, que pour tout entier positif p, on a l'inégalité :

(1)
$$e_p \le \frac{k^{2^p}}{1-k}$$
.

d. Que peut-on en déduire à propos de la suite (Y_n) ?