1	2	3	4

Calificación

ÁLGEBRA LINEAL Primer parcial — 16 de octubre de 2020

1. Consideremos el \mathbb{Q} -espacio vectorial $V = \mathbb{Q}^{2\times 2}$. Sean S,T los subespacios

$$S = \left\{ A \in V \ : \ \operatorname{tr} A = 0 \right\}, \qquad T = \left\langle \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} -4 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} k & 4 \\ 3 & 4 \end{pmatrix} \right\rangle.$$

Determinar todos los valores de $k \in \mathbb{Q}$ para los cuales existe una transformación lineal nilpotente $f: V \to V$ tal que f(S) = T y $f(T) \subseteq S$.

Para alguno de los valores hallados definir una f que cumpla estas condiciones.

Recordar: f es nilpotente si existe $n \ge 1$ tal que $f^n = 0$.

2. Sea $\{a^{(1)},\dots,a^{(r)}\}\subseteq K^{\mathbb{N}}$ un conjunto linealmente independiente; cada $a^{(j)}$ es una sucesión infinita

$$a^{(j)} = \left(a_1^{(j)}, a_2^{(j)}, a_3^{(j)}, \dots\right).$$

Para cada $m \ge 1$ consideremos la matriz $A_m \in K^{m \times r}$ dada por $(A_m)_{ij} = a_i^{(j)}$. Sea $S_m = \{x \in K^r : A_m \cdot x^t = 0\}$. Probar que:

- (a) $S_{m+1} \subseteq S_m$ para todo m.
- (b) Si $x \in K^r$ es tal que $x \in S_m$ para todo $m \ge 1$, entonces x = 0.
- (c) Existe m_0 tal que $rg(A_m) = r$ para todo $m \ge m_0$.
- 3. Sea B una base de \mathbb{Q}^4 y sea $B^*=\{\delta_1,\delta_2,\delta_3,\delta_4\}$ su base dual. Sean $w,v_1,v_2,v_3\in\mathbb{Q}^4$ tales que
 - $(w)_B = (-1, 1, 0, 1).$

 - $\langle v_2, v_3 \rangle^{\circ} = \langle \delta_1 + 2\delta_2 + \delta_4, 3\delta_1 4\delta_2 3\delta_3 + 11\delta_4 \rangle.$
 - (a) Probar que $\{w, v_1, v_2\}$ es linealmente dependiente.
 - (b) Calcular dim($\langle v_1, v_2, v_3 \rangle$).
- 4. Sean $x, a_1, \dots, a_n \in K$. Probar que el determinante de la matriz

$$\begin{pmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x + a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & x + a_n \end{pmatrix}$$

es igual a $x^n + (a_1 + \cdots + a_n) x^{n-1}$.