# 34-layer plain architecture



### Residual Net



Figure 2. Residual learning: a building block.







- (1) zero padding
- (2) convolution
- (3) projection

# ResBlock\_Bottleneck





### ResNet 34 - layer



# ResNet 50 - layer

| layer name | output size | 18-layer                                                                       | 34-layer                                                                       | 50-layer                                                                                                          | 101-layer                                                                                        | 152-layer                                                                                         |
|------------|-------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| conv1      | 112×112     |                                                                                |                                                                                | 7×7, 64, stride 2                                                                                                 |                                                                                                  |                                                                                                   |
|            |             | 3×3 max pool, stride 2                                                         |                                                                                |                                                                                                                   |                                                                                                  |                                                                                                   |
| conv2_x    | 56×56       | $\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$      | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$   | $   \begin{bmatrix}     1 \times 1, 64 \\     3 \times 3, 64 \\     1 \times 1, 256   \end{bmatrix} \times 3 $    | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$      |
| conv3_x    |             | , ,                                                                            |                                                                                | $ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $      | [ 1×1, 512 ]                                                                                     | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$    |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$ | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$ | $   \begin{bmatrix}     1 \times 1, 256 \\     3 \times 3, 256 \\     1 \times 1, 1024   \end{bmatrix} \times 6 $ | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$ | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$  |
| conv5_x    |             |                                                                                |                                                                                | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$                   | Г 11 512 ]                                                                                       | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $ |
|            | 1×1         | average pool, 1000-d fc, softmax                                               |                                                                                |                                                                                                                   |                                                                                                  |                                                                                                   |
| FLOPs      |             | $1.8 \times 10^9$                                                              | $3.6 \times 10^9$                                                              | $3.8 \times 10^9$                                                                                                 | $7.6 \times 10^9$                                                                                | 11.3×10 <sup>9</sup>                                                                              |





#### **Batch Normalization**

Normalization: 각 차원의 데이터가 동일한 범위 내의 값을 가지도록 만드는 것

[ 2개의 특성(feature)으로 구성된 데이터셋의 정규화 예시 ]



Whitening: 평균이 0이며 공분산이 단위행렬인 정규분포 형태의 데이터로 변환하는 기법 Problem: 이는 covariance matrix의 계산과 inverse의 계산이 필요하기 때문에 계산량이 많을 뿐더러, Whitening은 일부 파라미터들의 영향이 무시된다.

[ 2개의 특성(feature)으로 구성된 데이터셋의 화이트닝 예시 ]



#### **Batch Normalization**

Batch Normalization: 평균과 분산을 조정하는 과정이 별도의 과정으로 떼어진 것이 아니라, 신경망 안에 포함되어 학습 시 평균과 분산을 조정하는 과정



```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\}; Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

#### **Batch Normalization**

#### **Internal Covariance Shift**

Covariate Shift(공변량 변화): 학습 시기와는 다르게 테스트 시기에 입력 데이터의 분포가 변경되는 현상 Internal Covariate Shift: 네트워크 내부에서 Covariate Shift 가 일어나면서 입력의 분포가 변하는 현상



