

- Arhitekura Klastera
- Midlver
- **❖**JMS

Računarski klaster

- Kolekcija međusobno povezanih računara, koji rade zajedno kao jedan, integrisan rač. resurs
 - Klaster podržava paralelizam na nivou posla i distribuirano računanje sa visokom raspoloživošću
 - Midlver na bazi slanja poruka
- Tipičan klaster:
 - Spajanje više slika u SSI (single-system image)
 - Koristi komunikacione protokole sa malim kašnjenjima
 - Sprega sa SSI slabija od sprege u SMP

Vrste klastera

- Postoje sledeće vrste klastera:
 - PC klaster (uglavnom Linux klasteri)
 - Klasteri radnih stanica (Cluster of Workstations, COW)
 - Klaster servera ili Farma servera
 - Klasteri SMP ili ccNUMA (cache coherent Non-Uniform Memory Architecture) sistema
 - Klasteri MPP procesora (MPP = massively parallel processors); 85% prvih-500 sistema su na bazi MPP

Arhitektura Klastera

Parallel applications Parallel applications

Sequential applications Sequential applications pequential applications

Parallel programming environment

Cluster middleware (Single system image and availability infrastructure)

PC/workstation | PC/workstation | PC/workstation

PC/workstation

Communications software

Communications software

Communications software

Communications software

Network interface hardware

Network interface hardware

Network interface hardware

Network interface hardware

Cluster interconnection network/switch

- Slojevi arhitekture:
 - Aplikativni (okruženje za prog., UI, baza podataka, OLTP, itd.)
 - Midlver (SSII + Infrastruktura za visoku raspoloživost)
 - Lokalni OS i komunikacioni softver na čvorovima PC/WS
 - Mreža za povezivanje/komutaciju

Atributi za klasifikaciju klastera

Atributi	Vrednost atributa		
Pakovanje	Kompaktno	Labavo (Slack)	
Upravljanje	Centralizovano	Decentralizovano	
Homogenost	Homogen	Heterogen	
Zaštita	Zatvoren	Izložen	
Primer	Namenski klaster	Klaster preduzeća	

Klasifikacija Klastera (1/2)

- Skalabilnost:
 - Mogućnost dodavanja servera u klasteru, ili dodavanje više klastera u mreži
- Pakovanje: Kompaktno / Labavo
 - Kompaktno pakovanje u stalcima u mašinskoj sobi
 - Labavo geografski distribuirani PC, ili radne stanice
- Upravljanje: Centralizovano / Decentralizovano

Klasifikacija Klastera (2/2)

- Programabilnost: Sposobnost da izvršava različite aplikacije
- Zaštita: Izloženost komunikacije između klastera

Kritični aspekti projektovanja klastera i izvodivost implementacije

Osobina	Funkcionalna karakterizacija	Izvodive implementacije
Raspoloživost i	HW i SW podrška za održivu visoku	Preuzimanje, kontrolna tačka, opravak
podrška	raspoloživost (HA)	vraćanjem nazad, nonstop OS, itd.
HW otpornost na	Automatizovano rukovanje otkazima i	Redundantnost komponenti, vruće
otkaze	otklanjanje svih kritič. tačaka otkaza	razmene, RAID, više izv.napajanja, itd.
SSI (Single System	SSI na funkcionalnom nivou HW, SW,	HW ili midlver mehanizmi za postizanje
mage)	midlvera i OS proširenja	DSM sa koherentnim keš mem.
Efikasna komunikacija	Smanjenje režije slanja poruka i	Brzo slanje poruka, aktivne poruke,
	skrivanje kašnjenja	poboljšana MPI biblioteka, itd.
Rukovanje poslovima	Globalni sistem za rukovanje posl. sa	Primena sistema za ruk. poslovima kao
na celom klasteru	boljim raspoređivanjem i nadzorom	što je LSF, Codine, itd.
Dinamičko uravnote-	Uravnoteženje opterećenja svih	Nadzor opterećenja, migracija procesa,
ženje opterećenja	čvorova sa oporavakom od otkaza	replikacija poslova, grupno raspoređ.
Skalabilnost i	Dodavanje servera i klastera sa pove.	Skalabilna međuveza, nadzor perform.,
programabilnost	opterećenja i skupova podataka	distribuirano izvršenje i bolji SW alati

Prednosti klasterizacije

- Visoka raspoloživost (HA)
- Hardverska otpornost na otkaze
- Pouzdanost OS i aplikacije
 - Izvršava se više kopija OS i aplikacija
- Skalabilnost
- Visoka performansa
 - Veći propusnost (throughput) sistema

Prvih 5 superračunara u 2010

Ime sistema	Opis arhitekture (broj jezgara, procesor, GHz, OS, topologija međuveze)	Stalna brzina	Snaga po sistemu
Jaguar u Oak Ridge Nac. Lab u SAD	Cray XT5-HE: je MPP sa 224,162 jezgra na 2.6 GHz Opteron 6- jezgarni procesori, međuveza je 3-D torus	1.759 PFlops	6.95 MW
Nebulae u kineskom Nac. Centru (NSCS)	Dawning TC3600 Blade sistem: sa 120,640 jezgara u 2.66 GHz Intel EM64T Xeon X5650 i Nvidia GPU sa Linux, međuveza je Infiniband QDR mreža	1.271 PFlops	2.55 MW
Roadrunner u DOE/NNSA/LANL	IBM BladeCenter QS22/LS21 klaster od 122,400 jezg. u 12,960 3.2 GHz POWER XCell 8i i 6,480 AMD 1.8 GHz Opteron	1.042 PFlops	2.35 MW
SAD	procesora, sa Linux i Infiniband mrežom		
Kraken XT5 u NICS	Cray XT5-HE: je MPP sa 98,928 jezgra na 2.6 GHz Opteron 6-	831.7	3.09 MW
Univerzitet Tenesi	jezgarni procesori, međuveza je 3-D torus	TFlops	
JUGENE u	IBM BlueGene/P sa 294,912 procesora: PowerPC jezg. 4-way	825.5	2.27 MW
FZJ, Nemačka	SMP čvorovi i 144 TB memorije u 72 stalka, međuveza je 3-D torus	TFlops	
	LUIUS	7	10

Tri načina povezivanja čvorova klastera

Važnije arhitekture računskih čvorova za klastere iz 2010

Arhitektiura čvora	Važnije karakteristike	Reprezentativni sistemi
Homogeni čvor sa istim višejezgarnim procesorima	Više višejezgarnih procesora koji su povezani preko ukrsne matrice (crossbar) sa deljenom mem. i lokalnim diskovima	Cray XT-5 koristi 2 6-jezgarna AMD Opteron procesora u svakom čvoru
Hibridni čvorovi sa CPU plus GPU ili FLP za ubrzanje	Opštenamenski CPU za celobrojne operacije + GPU kao koprocesor za operacije u pokretnom zarezu (FLP)	Kineski Tianhe sistem koristi 2 Intel Xeon procesora + 2 AMD GPU u svakom čvoru

Primer: Superračunar IBM Blue Gene/L

- Razvili IBM i Lawrence Livermore National Lab
- Na privih 17 od 100 pozicija u rangiranju na top500.org, uključujući 5 u prvih 10
 - Teorijska vršna brzina: 360 TeraFLOPS
- Najveća konfiguracija:
 - U Lawrence Livermore Nat'l Lab
 - 64 fizičkih stalaka
 - 65,536 računskih čvorova
 - Međuračunarska mreža tipa Torus od 64 x 32 x 32

Arhitektura IBM BlueGene/L HW-a

14

Poređenje 4 tehnologije međuveza za klaster

Osobina	Myrinet	Quadrics	InfiniBand	Ethernet
Brzine	1.28 Gb/s (M-XP)	2.8 Gb/s (QsNet)	2.5 Gb/s (1X)	1 Gb/s
linkova	10 Gb/s (M-10G)	7.2 Gb/s (QsNetII)	10 Gb/s (4X)	
			30 Gb/s (12X)	
MPI	~3 us	~3 us	~4.5 us	~40 us
kašnjenje				
Mrežni	Da	Da	Da	Ne
procesor				
RDMA	Da	Da	Da	Ne
Topologije	Bilo koja	Bilo koja	Bilo koja	Bilo koja
Unutrašnja	Clos	Plitko stablo	Plitko stablo	Bilo koja
topologija				
Usmeravanje	Na bazi izvora	Na bazi izvora	Na bazi	Na bazi
			odredišta	odredišta
Kontrola toka	Stani-kreni	Mravlje putanje	Apsolutni kredit	802.3x
	(Stop and Go)	(Worm-hole)	(Absolute credit)	15

Primer: InfiniBand (1/2)

- Obezbeđuje jednostavnu uslugu za rukovanje porukama (messaging)
 - Direktan pristup usluzi za rukovanje porukama bez potrebe za oslanjaje na OS
- Usluga stvara kanale koji povezuju aplikacije
 - Ovi kanali su između virtuelnih adresnih prostora aplikacija

Primer: InfiniBand (2/2)

- InfiniBand stvara kanal koji direktno povezuje virtuelne adresne prostore aplikacija
- Te dve aplikacije mogu biti u razdvojenim fizičkim adresnim prostorima – u različitim serverima

InfiniBand arhitektura (1/2)

- HCA (Host Channel Adapter)
 - Povezuje krajnji čvor, kao što je server ili skladišni uređaj, na InfiniBand mrežu
- ◆ TCA (Target Channel Adapter)
 - Poseban HCA namenjena za upotrebu u ugrađenom okruženju kao što je skladišni uređaj
- Komutator (switch)
 - Projektovan da dostigne ciljnu performansu i troškove
- Usmerivač (router)
 - Za segmentaciju veoma velike mreže u manje podmreže povezane usmerivačima

InfiniBand arhitektura (2/2)

Primer: Google Search Engine

- Superklaster nad brzim PC rač. i Gigabit LAN za aplikacije globalnog pretraživanja web stranica
 - Klaster je smešten u 40 PC/switch stalaka sa 80 PC po stalku i 3200 PC ukupno
 - U dva stalka je smešteno dva 128 x 128 Gigabit Ethernet komutat., prednji (front) rač., UPS, itd.
- Google SW sistemi za paralelne pretrage, URL povezivanje, rangiranje strana, rukovanjem datotekama i bazama podataka, itd.

Arhitektura klastera Google Search Engine

Slojevi arhitekture klastera: Hardver, Softver, i Midlver

Midlver (rukovanje otkazima i raspoloživošću), Linux proširenja, i hardver za postizanje visoke raspoloživosti u klasterskom sistemu

Projektantski principi za klastere

- Glavni projektantski principi za klastere su:
 - Jedna sistemska slika (SSI)
 - Visoka raspoloživost (HA)
 - Otpornost na greške (FT)
 - Oporavak povratkom unazad (Rollback recovery)

Jedna sistemska slika (SSI)

- Jedna sistemska slika je iluzija, stvorena pomoću SW ili HW, koja predstavlja kolekciju resursa kao jedan integrisani moćni resurs
 - SSI čini da se klaster pojavljuje korisniku kao jedna mašina, sa aplikacijama, koja je povezana na mrežu
 - Klaster sa više sistemskih slika nije ništa drugo do zbirka nezavisnih računara (tj. opšti distribuirani sistem)

Osobine SSI (Single-System-Image)

- Jedan sistem:
 - Korisnici vide ceo klaster kao jedan sistem
- Simetrija:
 - Usluge su dostupne sa bilo kog čvora, tj. simetrične su ka svim čvorovima i svim korisnicima
- Lokacijska transparentnost:
 - Korisniku nije poznata lokacija uređaja koji obezbeđuje uslugu

SSI usluge

- Osnove SSI usluge:
 - Jedna ulazna tačka, npr. telnet cluster.usc.edu
 - Jedna hijerarhija datoteka: xFS, AFS, Solaris MC Proxy
 - Jedan U-I, pristup mreži, i memorijski prostor
- Dodatne SSI usluge:
 - Jedno rukovanje poslovima: GlUnix, Codine, LSF, itd.
 - Jedna korisnička sprega: Kao CDE u Solaris/NT
 - Jedan prostor procesa

Projektantski zahtevi za SSI

- ◆ Zahtevi za SSI:
 - Jedna tačku upravljanja
 - Jedan adresni prostor
 - Jedan sistem za upravljanje poslovima
 - Jedna korisnička sprega
 - Jedno upravljanje procesima

Primer: Realizacija jedne ulazne tačke u klasteru računara

- ♦ 4 čvora u klasteru su domaćini za prijem korisnič. zahteva za login
- Login na klaster sa standardnom Unix komandom kao što je "telnet cluster.cs.hku.hk", gde je domen simboličko ime klastera
- DNS prevodi simboličko ime, i vraća IP adresu 159.226.41.150 najmanje opterećenog čvora, koji je u ovom slučaju čvor Host1
- Korisnik se onda prijavljuje koristeći ovu IP adresu
- DNS periodično prima informaciju o opterećenju od čvorova domaćina u cilju uravnoteženja opterećenja (load-balancing)

Jedna hijerarhija datoteka

- Iluzija jedne slike sistema dat. koja integriše lokalne i globalne diskove i druge uređaje sa datotekama
- Datoteke na 3 tipa lokacija u klasteru:
 - Lokalno skladište disk na lokalnom čvoru
 - Udaljeno skladište diskovi na udaljenim čvorovima
 - Stabilna skladišta osobine:
 - Perzistentnost podaci ostaju u njemu neki period vremena (npr., 7 dana) i nakon potpunog isključenja klastera
 - Otpornost na greške korišćenjem redundantnih uređaja i periodičnim bekapima na trake

Stabilno skladište

- Može se realizovati:
 - Centralizovano (jedan RAID disk)
 - Distribuirano (lokalnih diskova u čvorovima klastera)
- Prednosti i nedostaci:
 - Prvi pristup sa jednim diskom ima jednu tačku otkaza i potencijalno usko grlo za performansu
 - Drugi pristup je teže realizovati, ali on može biti ekonomičniji, efikasniji, i sa većom raspoloživošću

Distribuirana RAID arhitektura

Arhitektura midlvera za SSI klasterizaciju

Visoka raspoloživost kroz redundantnost

- Tri pojma često idu zajedno: pouzdanost, raspoloživost, i servisibilnost (RAS)
- Definicije ovih pojmova su:
 - Pouzdanost je mera koliko dugo sistem može da radi bez kvara
 - Raspoloživost se iskazuje kao procenat vremena u kom je sistem raspoloživ za korisnika
 - Servisibilnost se odnosi na jednostavnost servisiranja sistema (održavanje, popravke, nadogradnje, itd.)

Raspoloživost i stopa otkaza

OK Fail (fault occurs) OK

Normal operation Being repaired Time

Mean time to fail (MTTF)

Mean time to repair (MTTR)

- Slika prikazuje ciklus rad-popravka (rač.) sistema
- ◆ Raspoloživost = MTTF / (MTTF + MTTR)
- Skorašnje istraživanje o Fortune 1000 kompanijama:
 - Srednji br. otkaza računara je 9 puta godišnje sa srednjim vremenom van rada od 4 sata
 - Srednji gubitak prihoda po satu van rada je \$82,500

Raspoloživost nekih tipova računarskih sistema

Tip sistema	Raspoloživost (%)	Van rada u toku 1 god
Konvencionalna radna stanica	99	3.6 dana
HA sistem (high-availability)	99.9	8.5 sati
Sistem elastičan za greške (fault-resillient)	99.99	1 sat
Sistem otporan na greške (fault-tolerant)	99.999	5 min

Konfiguracije klastera otporne na otkaze

- Sledeće 3 konfiguracije se često koriste:
 - Vruća rezerva (Hot Standby)
 - Primarna komponenta obezbeđuje uslugu, dok redundantna rezervna komponenta čeka bezposlena, ali je pripravna (hot)
 - Međusobno preuzimanje
 - sve komponente aktivno rade koristan posao; kad jedna otkaže, njen teret se preraspodeljuje na druge komponente
 - Otpornost na otkaze
 - Najskuplja konfiguracija, jer N komponenti daju performansu samo jedne komponente, za N puta veću cenu. Maskira se otkaz N-1 komponenti

Preuzimanje (Failover)

- Najvažnija osobina za komercijalne aplikacije
- Kad otkaže komponenta, ostatak sistema preuzma posluživanje od komponente u otkazu
 - Mehanizam preuzimanja obezbeđuje sl. funkcije: dijagnostiku, obaveštenje, i oporavak od otkaza
- Dijagnostika otkaza (detakcija i lociranje)
 - Tehnika "javljanje" (heartbeat), gde čvorovi klastera šalju niz specijalnih (heartbeat) poruka jedan drugom
 - Ako sistem ne prima ove poruke od nekog čvora, otkazao je ili taj čvor ili mrežna veza do tog čvora

Šeme oporavka

- Dva tipa tehnika oporavka:
 - Oporavak u nazad
 - Procesi periodično sačuvavaju konzistentno stanje (kontrolna tačka, eng. checkpoint) u stabilno skladište
 - Posle otkaza, sistem izoluje komp. u otkazu i vraća se na zadnju kontrolnu tačku, tzv. "vraćanje unazad" (rollback)
 - Lako se implementira i široko se koristi
 - Implicira uzaludno izvršenje
 - Oporavak u napred
 - Sistem koristi rezultate dijagnostike za rekonstrukciju validnog stanja sistema i nastavak izvršenja
 - Oporavak u napred zavisi od aplikacije i može zahtevati dodatni HW

Tehnike kontrolne tačke i oporavka

- Nivoi kontrolna tačke:
 - Jezgro OS, biblioteka, i aplikacija
- Moguće optimizacije:
 - Režija kontrolne tačke
 - Izbor optimalnog intervala kontrolne tačke
- Inkrementalna kontrolna tačka
 - Čuva se samo deo stanja koji se promenio od predhodne tačke
- Korisnički definisana kontrolna tačka
 - Kaže sistemu kada i šta da sačuva, a šta da ne sačuva

Raspoređivanje i rukovanje poslovima u klasteru

- Delovi sistema za rukovanje poslovima (JMS):
 - Korisnički server: korisnik može da podnosi poslove u jednom ili više redova, specificira zahteve za resursima, briše posao, i ispituje stanje posla ili reda
 - Raspoređivač poslova: raspoređuje i ulančava poslove u skladu sa tipovima poslova, zahtevima za resurse, raspoloživošću resursa, i politikama raspoređivanja
 - Rukovalac resursima: dodeljuje i prati resurse, sprovodi politike raspoređivanja, i prikuplja informaciju za obračun

JMS administracija

Zahtevi:

- JMS treba da može da dinamički rekonfiguriše klaster sa min uticajem na tekuće poslove
- Prolog i epilog skripte se izvršavaju pre i posle svakog posla radi provera zaštite, obračuna, i čišćenja
- Korisnici treba da imaju mogućnost čistog uništavanja svojih poslova
- Administrator JMS treba da ima mogućnost čistog suspendovanja ili uništavanja bilo kog posla
 - Čistog znači da kad je posao suspendovan ili uništen, svi njegovi procesi moraju biti uključeni

Tipovi poslova u klasteru

- Tipovi poslova:
 - Serijski poslovi se izvršavaju na jednom čvoru
 - Paralelni poslovi koriste više čvorova
 - Interaktivni poslovi su oni koji zahtevaju brz odziv, i njihov ulaz-izlaz je usmeren na terminal
 - Paketski poslovi obično traže više resursa, kao što je veliki memorijski prostor i dugo CPU vreme
 - Oni se podnose u red poslova da bi bili raspoređeni kad resursi postanu raspoloživi (npr., van radnog vremena)

Karakteristike radnih opterećenja

Važi pravilo 2:1, koje kaže da mreža od 64 radne stanice, sa dobrim JMS SW, može da, pored originalnog sekvencijalnog opterećenja, izdrži dodatno paralelno opterećenje od 32 čvora

 Drugim rečima, klasterizacija daje superračunar u kom se polovina veličine klastera dobija besplatno!

Šeme raspoređivanja više poslova

- Poslovi mogu biti raspoređeni:
 - za rad u zadato vreme ili kad se desi zadati događaj
- Prioritet poslova se određuje na osnovu:
 - vremena podnošenja, resursa čvora, vremena izvršenja, memorije, prostora na disku, tipa posla, i identiteta korisnika
- Statički prioriteti
 - Prvi-došao, prvi-poslužen (slično sa FIFO)
 - Prioritet prema identitetu korisnika
- Dinamičkih prioriteti

Aspekti i šeme raspoređivanja

Tř.	Min Xvi na alalami
Sema	Ključni problemi
Bez istiskivanja	Kašnjenje visoko-prioritetnih poslova
Sa istiskivanjem	Režija, implementacija
Statički	Neuravnoteženo opterećenje
Dinamički	Režija, implementacija
Posvećeno	Loše iskorišćenje
Deljenje prostora	Popločavanje, veliki posao
Deljenje vremena	Upravljanje poslovima na bazi procesa
	sa režijom za smenu konteksta
Nezavisno	Ozbiljno usporenje
Grupno	Problematična implementacija
Ostanak	Usporenje lokalnih poslova
Migracija	Migracioni prag, migraciona režija
	Sa istiskivanjem Statički Dinamički Posvećeno Deljenje prostora Deljenje vremena Nezavisno Grupno Ostanak

Režimi raspoređivanja (1/2)

- Posvećen režim:
 - Radi jedan posao na klasteru, i najviše jedan proces posla je dodeljen nekom čvoru u nekom trenutku
- Deljenje prostora:
 - Više poslova radi simultano na razdvojenim particijama (grupama) čvorova
 - Najviše jedan proces je dodeljen čvoru
 - Particija čvorova je dodeljena poslu, a međuveza i U-I podsistem mogu biti deljeni od strane svih poslova

Režimi raspoređivanja (2/2)

- Deljenje vremena:
 - Više korisničkih procesa se dodeljuje istom čvoru
 - Postoje sledeće politike paralelnog raspoređivanja:
 - <u>Nezavisno raspoređivanje</u>: Koristi OS svakog čvora za raspoređivanje procesa kao na običnim radnim stanicama
 - Grupno raspoređivanje (Gang): Raspoređuje sve procese paralelnog posla zajedno
 - <u>Nadmetanje sa stranim poslovima</u>: Raspoređuje istovremeno poslove klastera i lokalne poslove; lokalni poslovi bi trebali da imaju prioritet u odnosu na poslove klastera
 - Bavljenje sa lokacijom posla: Ostani ili migriraj

Aspekti šeme migracije

- Raspoloživost čvora:
 - Berkeley studija: Čak tokom vršnih sati, 60% radnih stanica u klasteru je raspoloživo
- Režija migracije:
 - Berkeley studija: usporenje čak do 2.4 puta
 - Usporenje je manje ako paralelni posao radi na klasteru dvostruke veličine
- Regrutacioni prag:
 - je količina vremena u kom čvor ostaje nekorišćen pre nego ga klaster proglasi za besposlen čvor

Osobine JMS (1/2)

- Svi podržavaju:
 - paralelne i paketske poslove
 - uravnoteženje opterećenja
 - dinamičko suspendovanje i nastavljanje korisničkih poslova
 - dinamičko dodavanje ili brisanje resursa (npr., čvorova)
- Većina podržava:
 - spregu komandne linije i grafičku korisničku spregu
 - heterogne Linux klastere

Osobine JMS (2/2)

- Neki podržavaju kontrolne tačke
- Većina ne podržava proces dinamičke migracije
 - Alternativa statička migracija: može migrirati samo jednom i to nakon što je napravljen