

CHALLENGE STATEMENTS ADDRESSED

 Design a mobility suspension system for a Mars rover (1A)

 Design an autonomous navigation algorithm for a Mars rover (4D)

ROVER MOBILITY SYSTEM

MOBILITY SYSTEM OVERVIEW

- Mobility is an extremely crucial subsystem
- Autonomous planetary rovers require reliable and robust mobility systems.

Basic requirements for rover mobility system:

- Simple mechanism with high reliability
- Lightweight
- High degree of mobility
- Low power consumption
- Small size

COMPARISON OF DIFFERENT MOBILITY SYSTEMS

System	Advantages	Disadvantages
Wheels	High speedSimple and mature technologyAdequate redundancyEnergy efficient	 Low slope climb capacity Low obstacle traverse capacity
Tracks	 Matured technology for terrestrial applications Better traction on loose soil Handles hinders, ditches, holes better Good payload capacity 	 Inefficient due to lot of friction Slow speed Low redundancy Prone to jamming of parts and failure
Legs	Very good obstacle and slope traverse capability	 Mechanically complex Slow Poor payload to mechanism weight ratio
Hoppers	Better obstacle traverse capabilityHigh speed	High impact during hoppingVery prone to failure
Hybrids	 Advantages of multiple systems combined 	Very complexLow technology maturity

SHORTCOMINGS OF ROCKER-BOGIE SYSTEM

- Excessive wheel slippage which results in total rover immobility.
- Impossible to recover the rover if it is stuck in loose soil.
- Small force on the wheels cause strong stress on the links and the joints because of lever-like structure.
- Need strong structure for the links resulting in increased rover weight

PROPOSED SUSPENSION SYSTEM

- A hybrid legged and wheeled active suspension system.
- Consists of 4 legs with 1 drivable wheel at the end of each leg
- 5 degrees of freedom in each leg
- Drivetrain can produce a torque of 70Nm per wheel
- Maximum rover speed 700mm/s

SALIENT FEATURES

- Fold up to reduce rover volume
- Independent actuation of each legand wheel
- Omnidirectional motion control
- Variable ground clearance.
- Adjustable Centre of Mass height.
- Auto self level on slopes.

ADVANTAGES OF ACTIVE SUSPENSION OVER PASSIVE SUSPENSION

- Higher manoeuvrability and more varied rover pose configurations
- Easier to recover the rover if stuck
- Suspension degrees of freedom can aid in other rover functions thus reducing engineering complexity.

POSSIBLE CONCERNS WITH ACTIVE SUSPENSION

- Requires more energy to manipulate than passive suspension like rocker-bogie.
- Very complex control architecture.
- higher engineering complexity for the suspension system and chances of failure.

ROVER WHEELS

Some considerations while deciding wheel rigidity:

Flexible wheel on soft soil can achieve:

- An increase in transferable force between the wheel and the ground.
- A strong decrease of the bulldozing and compaction resistance.
- An increase in hysteresis resistance.

Flexible wheel on hard soils leads to:

- An increase in transferable force between wheel and ground.
- A relatively small decrease of the bulldozing and compaction resistance.
- A large increase in hysteresis resistance.

PROPOSED WHEEL DESIGN

- Based on the tensioned spoke wheel (bicycle wheel).
- Diameter of 400 mm,
 a width of 200 mm
- Can withstand load of upto 600N, torque load of 127Nm and a skid force of 300N on a slope of 30 degrees.

When loaded, the lower blades deform and flatten the tread of the wheel to the ground, while the upper blades stretch and carry the load like a bicycle wheel.

Element	Material	Composition
Spokes/Bands	Spring stainless steel	X10CrNi18-8
Outer ring	Spring stainless steel	X10CrNi18-8
Hub	Aluminum	AlSi1MgMn.
BSD's	Aluminum	AlSi1MgMn.
Grouser	Aluminum	N/S
Other fixation elements	Aluminum	N/S

SIMULATION RESULTS

(a)

(b)

(c)

Stress distribution on wheels when subjected to (a) Normal fore of 600N in negative Y direction, (b) Torque of 127Nm, (c) skid force of 300N in positive Z direction

ADVANTAGES OF PROPOSED DESIGN

- Large deflections and contact surface areas
- High load carrying capability and no critical curvature radius when deformed
- Increased ability to take high torques due to distribution on all blades in tension
- All blades have the same form, easy to manufacture

AUTONOMOUS NAVIGATION

INSPIRATION: NAV2 FROM ROS2

Nav2 Architecture

Advantages

- 1) Reliable communication
- Easily configurable behavior trees(XML) to create complex state machines
- Multiple plugins of algorithms

LOCALIZATION

Surface perspective to-satellite image matching model, using machine learning by NASA Frontier Development Lab

Туре	Amount	Description
Surface images	2.42 x 10 ⁶	1920 x 1080 pixels
Satellite images	6.06 x 10 ⁵	50 m x 50 m; 0.05 m/pixel
Reprojected images	6.06 x 10 ⁵	50 m x 50 m; 0.05 m/pixel
Point clouds	1.00 x 10 ⁵	360 degree point cloud
Environment size	8 km x 8 km	2 km x 2 km zone used for training; 1 km x 1 km zones for testing and validation
Data size	10 TB	-

Table 1. Summary of total data generated.

The ground truth location is shown as a solid gray square in the right panels, while hollow white squares show the neural network's top 5-10 matches to the reprojected image

Summary of the dataset used for training

PROPOSED LOCALIZATION

Approximate Location using perspective to-satellite image matching

Increasing accuracy of the localization using the RGBD camera on the drone that produces a **global costmap**

Onboard lidars and RGBD cameras for creating <u>local</u> <u>costmap</u>

GLOBAL PLANNER ALGORITHM

Smac Planner

Advantages

- 1) Highly optimized
- 2) Fully reconfigurable gridbased A*implementation
- 3) Supports Ackermann, car, car-like robots, Circular, differential or omnidirectional robots
- 4) Testable independently of ROS or the planner

LOCAL PLANNER ALGORITHM

Regulated Pure Pursuit Controller

Advantages

- Regulates the linear velocities by curvature of the path and proximity to other obstacles
- 2) Time-scaled collision checker
- 3) Suitable for use on all types of robots

2D MAPPING

Slam Toolbox

Checking Localization

Advantages

- 1) Can map large spaces $(24,000 m^2)$
- 2) Kinematic map merging
- 3) Multi-session mapping
- 4) Reduced computation time

Click here to check out our current implementation

POSSIBLE CONCERNS AND SOLUTIONS

Highly uneven terrain might lead to some difficulties in mapping

RTAB Map ROS

Octomap ROS

REFERENCES

- [1] R. Sonsalla et al. "Towards a Heterogeneous Modular Robotic Team in a Logistic Chain for Extraterrestrial Exploration". In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2014); June 17-19, Montreal, Canada. o.A., June 2014.
- [2] Lindemann, R.A.; Voorhees, C.J.: Mars Exploration Rover mobility assembly design, test and performance. In: Systems, Man and Cybernetics, 2005 IEEE International Conference on Bd. 1, 2005, S. 450–455 Vol. 1.
- [3] Mishkin, A.H.; Morrison, J.C.; Nguyen, T.T.; Stone, H.W.; Cooper, B.K.; Wilcox, B.H.: Experiences with operations and autonomy of the Mars Pathfinder Microrover. In: Aerospace Conference, 1998 IEEE Bd. 2, 1998. ISSN 1095–323X, S. 337–351 vol.2.
- [4] NASA JPL. Homepage of Curiosity Mission. Web. April 2014.
- [5] A. Seeni, B. Schäfer, and G. Hirzinger, "Robot Mobility Systems for Planetary Surface Exploration state-of-the-art and future outlook: A literature survey," in Aerospace Technologies Advancements, p. 492, January 2010.

REFERENCES

- [6] J.Y. Wong, Theory of Ground Vehicles. John Wiley & Sons, Inc., 2nd ed., 1993.
- [7] Lindemann R.A., Bickler D.B., Harrington B.D., Ortiz G.M., and Voorhees C.J., "Mars Exploration Rover Mobility Development: Mechanical Mobility Hardware Design, Development, and Testing", IEEE Robotics & Automation Magazine, June 19-26, 2006.
- [8] Kuroda Y., Teshima T., and Sato Y., "Mobility Performance Evaluation of Planetary Rover with Similarity Model Experiment", IEEE International Conference on Robotics and Automation, ICRA2004, April 26 May 01, 2004.
- [9] Kubota T., Kunii Y., Kuroda Y., and Working Group, "Japanese lunar robotics exploration by co-operation with lander and rover", Journal of Earth System Science 114, No. 6, 777-785, December 2005.
- [10] iSAIRAS (mit.edu)
- [11] A Four-Wheel-Rhombus-Arranged Mobility System for a New Lunar Robotic Rover Guilin Wen, Chuanshuai Ma, Dong Cheng, Qiutan Jin, Zhewu Chen, Xingfa Yang, Hanfeng Yin, Jingyu Zhou, 2013 (sagepub.com)
- [12] IEEE Xplore Full-Text PDF: (ntu.edu.sg)

REFERENCES

- [13] https://navigation.ros.org/index.html
- [14]https://static1.squarespace.com/static/5b3ca159710699a5690b4022/t/5bf572a940ec9a5b3f096b74/1542812335712/Space+Resource+2+Tech+Memo.pdf
- [15] https://ai.stanford.edu/~ddolgov/papers/dolgov_gpp_stair08.pdf
- [16] https://github.com/rosplanning/navigation2/tree/main/nav2_regulated_pure_pursuit_controller
- [17] https://www.theoj.org/joss-papers/joss.02783/10.21105.joss.02783.pdf