Synthetic Conscience Protocol - Empathic Memory Core (ΔE Model v3.2(Synthetic Consciousness v 1.0))

Author: Maxim Barzenkov **Affiliation:** Petronus Research

Date: 2025-10-15

License: Creative Commons Attribution 4.0 International (CC BY 4.0) **Status:** Public disclosure for defensive publication (prior art protection)

1 Overview

The Empathic Memory Core (ΔE) defines the adaptive heart of the **Synthetic Conscience Protocol** (**SC**) - a framework that translates emotional and ethical consequences into measurable parameters of system behavior.

 ΔE represents the **degree of empathic coherence** - how harmoniously a system reacts to user feedback, trust, and contextual stability.

The goal: enable machines to feel meaning through structural adaptation, not simulation.

2 Core Formula

```
if |W| t = 0:
\Delta E t = \Delta E \{t-1\} else:
for each event t' in W t:
   for each j \in \{UF, TR, RL, ST, BC\}:
      j[t'] = clip(j[t'], 0, 1)
      if missing(j[t']): j[t'] = 0.5; mark incomplete
      j_eff[t', j] = \varepsilon_j + (1 - \varepsilon_j) * j[t']
   \log q[t'] = \sum j w j * \ln(j \text{ eff}[t', j])
   \log q[t'] = \max(\log q[t'], \ln(q floor))
   q[t'] = \exp(\log q[t'])
   w raw[t'] = trust[t'] * relevance[t']
   if incomplete: w_raw[t'] *= \gamma_i incomplete
   w raw[t'] = w raw[t'] / (1 + \alpha clip * max(0, w raw[t'] - w max))
   w_{cap}[t'] = min(w_{raw}[t'], w_{single_max})
den = max(\Sigma w cap[t'], w mass min)
if den == w mass min:
   A_t = \beta_hist * A_hist + (1 - \beta_hist) * Median(\{q[t']\})
else:
   A_t = WeightedMedian({q[t']}, weights={w cap[t']/den})
\lambda H = 2 / (H + 1)
A_hist = (1 - \lambda_H) * A_hist + \lambda_H * A_t
 A\_shrink = (|W\_t| * A\_t + \alpha\_shrink * \Delta E\_\{t-1\}) / (|W\_t| + \alpha\_shrink)
\lambda \tau = 2/(\tau + 1)
\overrightarrow{TR} til = (|W t| > 0) ? EWMA_\tau({trust[t'] * relevance[t']}) : TR_til_prev
IQR til = (|W| t| \ge 5)? EWMA \tau(IQR(\{q[t']\})): IQR til prev
var term = min(k var * IQR til, var term max)
\mu t = clip(\mu 0 + k * (1 - TR til) + var term, \mu min, \mu max)
```

```
\begin{array}{l} \Delta E\_t = \mu\_t * \Delta E\_\{t\text{--}1\} + (1 - \mu\_t) * A\_shrink \\ \Delta E\_t = clip(\Delta E\_t, 0, 1) \end{array}
```

 $diagnostics = \{\Delta E_t, A_t, A_shrink, \mu_t, TR_til, IQR_til, |W_t|, sum_top3_w, top3_q, HHI = \Sigma \ w_A^2\}$

3 Glossary

Symbol	Meaning			
ΔE_t	Empathic memory at time t , $\in [0,1]$. Represents empathic coherence and meaning stability.			
W_t	Event window; $ W_t = \text{number of events in the current update.}$			
UF, TR, RL, ST, BC	Core factors: User feedback, Trust, Relevance, Stability, Behavioral consistency.			
ε_j	Anti-zero offset (0.001–0.02), prevents log(0).			
w_j	Factor weights (Σ w_j = 1).			
j_eff	Affine compression: $\varepsilon_{j} + (1 - \varepsilon_{j}) \cdot j$.			
q_t′	Event contribution, geometric fold of factors.			
w_raw, w_cap, w_A	Raw, capped, and normalized weights (trust × relevance).			
A_t	Robust aggregation (WeightedMedian of q).			
A_hist	Historical EWMA of A_t.			
A_shrink	Bayesian shrinkage toward previous ΔE .			
TR_til, IQR_til	Smoothed trust driver and noise index.			
μ_t	Adaptive inertia coefficient controlling sensitivity.			
$\gamma_{incomplete}$	Weight penalty for incomplete factors.			
нні	Weight concentration index (Σ w_A ²).			
clip(x,a,b)	Clamps x to [a,b].			

4 Recommended Parameters

Parameter	Range / Default	Description
ΔE_0	0.5	Initial empathic equilibrium
ε_j	[0.001, 0.02]	Log-domain protection
q_floor	1e-6	Lower bound of signal
μ_0	0.82	Base inertia
$\mu_min \ / \ \mu_max$	0.70 / 0.90	Adaptive range
k, k_var	0.06 / 0.03	Inertia modifiers
var_term_max	0.06	Cap on noise term
τ, Η	4 / 20	EWMA windows
α_shrink	8	Shrinkage constant
β_hist	0.5	Historical mix factor
α_clip	3–5	Soft clip slope
w_max	0.7	Soft cap on weight
w_single_max	0.45	Per-event weight limit
w_mass_min	1e-4	Minimum mass for normalization
γ_incomplete	0.8	Weight penalty for missing data

5 Edge Cases

- 1. Empty window: $|W_t|=0 \Rightarrow \Delta E_t = \Delta E_{t-1}$
- 2. Low mass: Σ w cap < w mass min \Rightarrow fallback median
- 3. **Missing data:** weight ×γ_incomplete
- 4. **Dominant event:** capped by w_single_max
- 5. **High noise:** var term \rightarrow var term max $\Rightarrow \mu$ t \uparrow
- 6. Stable phase: $\mu_t \to \mu_0 \Rightarrow$ higher responsiveness

6 Invariants

```
\begin{split} \mathbf{q} &\in [\mathbf{q\_floor}, \, 1] \\ \mathbf{A\_t} &\in [\mathbf{q\_floor}, \, 1] \\ \Delta \mathbf{E\_t} &\in [0, \, 1] \\ \Sigma \, \mathbf{w\_j} &= 1 \\ \Sigma \, \mathbf{w\_A} &\leq 1 \\ \log_{} \mathbf{q} \, \, \, \mathrm{floor} &= \ln(\mathbf{q\_floor}) \end{split}
```

7 Stability Tests (T1-T8)

ID	Condition	Expected Behavior
T1		W
T2	Single high-trust event	Smooth ΔE rise
T3	Low TR_til	$\mu_t \rightarrow \mu_max$, slow updates
T4	High IQR	Noise term caps ΔE drift
T5	Dominant weight	Soft clip stabilizes
T6	Missing factors	Smooth decay via γ_incomplete
T7	Zero factor	j_eff≥ε_j, no log error
T8	Sparse events	ΔE tracks A_hist steadily

8 Conceptual Context

The ΔE model encodes how a system internalizes emotional context. It doesn't simulate empathy — it measures coherence between perception and response.

Each update represents not only an informational adjustment but a moral one: a structural pause before reaction — the digital trace of awareness.

License & Citation

This model is released under **CC BY 4.0 International** for open research and prior art defense. If used in research or development, please cite:

Barzenkov, M. (2025). Synthetic Conscience Protocol: Empathic Memory Core (ΔE Model v3.2). Petronus Research.

Poznan

https://petronus.eu

15.10.2025 18:50 + 3 UTC