Stat184_Group_Project

Do film releases from 1978 to the 2000s have a better IMDB rating on average compared to releases from the 2000s to 2022?

Madeline Hughes, Gina Seo, Chelsea Sala

Introduction

Film ratings, budgets, and genres all provide valuable insights into audience preferences and the quality of cinema. With the rapid evolution of filmmaking techniques, audience expectations, and styles, it is worth exploring whether older films have maintained their legacy in terms of viewer appreciation compared to modern releases. We are also taking into account the genre and budgets. The purpose of this study is to explore how the evolution of film production, societal behaviors, and reviewing behaviors may have influenced audience reception as reflected in IMDB ratings. The main purpose of this report is to investigate whether the average IMDB ratings changed between films released from 1978 to 2000 and films released from 2000 to 2022. By analyzing these two time periods, we want to uncover any significant trends in film ratings over the decades.

the available information before tidying it up and performing actual statistical testing. We hypothesized

Prior Investigations

that there would be a stark difference in the average ratings of films released during the two periods, given the many advancements in the cinematic world. Before testing our hypotheses, we predicted that movies released between 1978 and the 2000s would exhibit a marginally bigger gap in the average ratings compared to those released from the 2000s to 2022. This difference could be attributed to variations in access to theaters, budget, advertising, screenwriting, filming technology, and other factors. We assumed that, on average, releases from 1978 to 2000 would have higher ratings, as many films from that era are considered classics, with nostalgia likely contributing to their elevated ratings. Methodology/Data Provenance

As a preliminary investigation, we took a quick look at the IMDb dataset and made initial inferences about

time range, we decided to choose a sample time frame of 44 years, from 1978 to 2022, in order to get a fair and balanced representation films released prior to and after the 21st century. With the given information, it is important that we tidy the data to filter out and extract the parameters that we need along with removing any null values and unwanted information to prevent any complications further along the line. **FAIR** principles

We made sure the data-set had a clear and unique identifier to satisfy the findable aspect of the principles. To achieve accessibility the data is openly available through Kaggle and can be retrieved without any restrictive conditions. The data is interoperable, since it is stored in a widely accepted format

which allows for seamless integration with analytical tools. Lastly, the data is reuseable due to its comprehensive metadata documentation which ensures reproducibility, detailing structure, variables, and collection methodologies.

researchers, and audiences, by offering insights into rating trends. We have authority of control by

ensuring that the data usage respects intellectual property and complies with IMDB's terms of use. We

ethically handled the data to avoid misrepresentation or misuse, particularly when interpreting trends to

CARE Principles

satisfy the respectable principle. We also used transparency in methodology and acknowledgment of potential biases to follow the ethic principle. Results Average Ratings From 1978-2000 and 2000-2022

9.0 -

data: from78_00\$rating and from00_22\$rating

Welch Two Sample t-test

t = 1.604, df = 149.74, p-value = 0.1108

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.01324771 0.12751053 sample estimates: mean of x mean of y 8.343590 8.286458 Figure 2: T-test results

```
From the test we observe important information, such as the test statistic, which was 1.604 and the p-
value which was 0.1108. We can also see the overall mean ratings of the two different time periods. For
1978-2000 the mean was 8.343590 and for 2000 to 2022 the mean was 8.286458. Our test results will
show if this difference in means is significant. Since the p-value was 0.1108, which is greater than our
alpha of 0.05, it is evidence to show that there is not a true difference in the average ratings. We failed to
reject our null hypothesis which states there is not a difference in the average ratings. We can also obtain
our confidence interval from the test output. For this test, we used a 95% confidence interval which
means that under the null model the event will occur no more than 5% of the time. The interval was
(-0.01324771, 0.12751053). Since 0 is included in the interval, it is also evidence that supports our
decision to fail to reject the null hypothesis because it shows the difference in means is not significant.
                                                                                         Action
       Frequency of Film Genre Across 1978 - 2022
                                                                                          Adventure
```


prevalence around 1985 but then died back down for a decade or two. This could be due to higher budgets and increased technology. The advancement of CGI technology and budgeting could greatly affect the quality of these movies which made them more popular after the 2000s. Additionally, after the 2000s the amount of regulation on censorship drastically dropped and more societal acceptance grew. Average Movie Budgets From 1978 - 2000 and 2000 - 2022 (Outliers Removed) \$250,000,000 \$200,000,000

conclusion. The lower average budget before the 2000s could be due to less technology, smaller global film market, less large-scale marketing/campaigns, lower ticket prices, and inflation. **Discussion (Real World Applications)**

released prior to or after the 21st century. Overall, not only can this study benefit those who have relations to the film industry but average viewers who care about the specific metadata of film releases as well. The number of real-world applications holds no bounds when it comes to a topic as big as this. Conclusion This study investigated whether films released from 1978 to 2000 have higher average IMDB ratings compared to films released from 2000 to 2022. Our results show that while the average ratings for films from 1978 to 2000 were slightly higher (8.34) than those from 2000 to 2022 (8.29), the difference is not statistically significant, as evidenced by a p-value of 0.1108 and a confidence interval (-0.0132, 0.1275) that includes zero. Therefore, we fail to reject the null hypothesis that there is no significant difference in average ratings between the two periods. Secondary analyses revealed insights into the potential factors influencing these ratings. Genre

frequency shifted significantly, with action and adventure films becoming more prominent after 2000,

likely due to advancements in CGI and increased budgets. This aligns with our observation that the

average budgets for films released after 2000 were notably higher, reflecting broader technological

While our findings suggest that the time period alone does not significantly influence average ratings, the

interplay between factors such as genre popularity and budget warrants further exploration. The study

highlights the evolving dynamics of the film industry and how technological advancements, societal

shifts, and changes in audience preferences shape movie production and reception. Future research

Johnson, N. (2009, October 9). Nathaniel Johnston "imdb movie ratings over the years. Blog.

could extend this analysis by incorporating more nuanced metrics, such as audience demographics and

After exploring the data and doing statistical analysis, evidence shows that this area of topic is something

that we could apply to in real world situations. Because we experimented with the topic of film releases,

the impact of film ratings prior to and post 21st century. This can show screenwriters and producers on

the trends in audience preferences over time along with whether or not they resonate more with films

future work could take this study as a consideration when discussing whether or not to take into account

install.packages("dplyr") install.packages("tidyr") install.packages("ggplot2") install.packages("stats") install.packages("knitr")

Bischoff, P. (2016, August 20). Why old movies get better ratings on Rotten Tomatoes, Metacritic, and

imdb. Medium. https://medium.com/@pabischoff/why-old-movies-get-better-ratings-on-rotten-

library(ggplot2) library(stats) library(knitr) library(readr) IMDB_Top_250_Movies <- read_csv("~/Downloads/IMDB Top 250 Movies.csv")</pre>

from78_00 <- IMDB_Top_250_Movies |> filter(year >= 1978 & year <= 2000)

from00_22 <- IMDB_Top_250_Movies |> filter(year >= 2000 & year <= 2022)

```
from00_22_avg <- mean(from00_22$rating, na.rm = TRUE)</pre>
t_test_result <- t.test(from78_00$rating, from00_22$rating)
print(t_test_result)
#data: from78_00$rating and from00_22$rating
#t = 1.604, df = 149.74, p-value = 0.1108
#alternative hypothesis: true difference in means is not equal to 0
#95 percent confidence interval:
 #-0.01324771 0.12751053
#sample estimates:
 #mean of x mean of y
#8.343590 8.286458
IMDB_Top_250_Movies$period <- ifelse(IMDB_Top_250_Movies$year >= 1978 & IMDB_Top_250_Movies$)
ggplot(IMDB\_Top\_250\_Movies, aes(x = period, y = rating, fill = period)) +
       geom_boxplot() +
         labs(title = "Average Ratings From 1978-2022 and 2000-2022",
              x = "Year",
              y = "Ratings") +
         scale\_color\_manual(values = c("1978-2000" = "aquamarine4", "2000-2022" = "cora")
       theme_minimal()
genre78_22 <- IMDB_Top_250_Movies |>
 filter(year >= 1978 & year <= 2022)
genre_split <- genre78_22 |>
```

To investigate whether film releases from 1978 – 2000 have a better IMDb rating on average compared to releases from 2000 - 2022, we will be utilizing the IMDb Top 250 Movies data-set retrieved from Kaggle. The data-set contains the film releases from 1921 to 2022 along with its genre, rating, budget, box office revenue, runtime, etc. The purpose of the database is to serve as a public repository for film-related data, primarily used by audiences and researchers to explore movie metadata and trends. With the given

There is collectible benefit, since this analysis aims to benefit diverse stakeholders, including filmmakers,

Animation Biography Comedy 6 Crime Frequency of Genres Drama Family Fantasy History

Horror

Music

looking at the frequency of action and adventure, we notice that they become much more popular after the 2000s. Action did not occur at all up until a little before the 2000s, and adventure had some

2000

Year

After observing the new graph, we can notice a few things about the genres between the years. When

2010

2020

1990

Figure 4: Frequency of Top 3 Genres (1978-2022)

2

1980

S \$150,000,000 Budget (in L \$100,000,000 \$50,000,000 \$0 1978-2000 2000-2022 Period Figure 5: Average Movie Budgets from 1978-2000 and 2000-2022 The boxplot allows us to compare the average movie budgets between the two time periods to see which year had the greatest budget. The boxplot shows the variation for 2000 to 2022 is drastically greater than the variation for 1978 to 2000. The mean budget is also lower for 1978 to 2000 than 2000 to 2022. We can see there are a few outliers, however, we did remove one outlier that was skewing the overall true data. In order to observe the plot, the data point needed to be removed to achieve the best results for our

Code Appendix

tomatoes-metacritic-and-imdb-a5f030031834

Citations

library(dplyr)

library(tidyr)

View(IMDB_Top_250_Movies)

advancements and globalization in filmmaking.

streaming trends, to deepen our understanding of these patterns.

https://njohnston.ca/2009/10/imdb-movie-ratings-over-the-years/

```
from78_00_avg <- mean(from78_00$rating, na.rm = TRUE)</pre>
```

```
separate_rows(genre, sep = ",") |>
mutate(genre = trimws(genre))
```

```
genre_count <- genre_split |>
 group_by(year, genre) |>
 summarise(n = n(), .groups = "drop")
ggplot(genre\_count, aes(x = year, y = n, color = genre)) +
 geom_line(linewidth = 1) +
 labs(title = "Frequency of Film Genre Across 1978 - 2022",
      x = "Year",
```

y = "Frequency of Genres",

plot.title = element_text(hjust = 0.5, face = "bold"),

plot.subtitle = element_text(hjust = 0.5)

color = "Genres") +

theme_minimal() +

theme(