Mathematical modelling for All-solid-state battery

<u>Tuan Vo</u>^{a,b†}, Claas Hüter^b, Stefanie Braun^a

^aDepartment of Mathematics, Applied and Computational Mathematics (ACoM), RWTH Aachen University, Schinkelstraße 02, 52062 Aachen, Germany
^bInstitute of Energy and Climate Research (IEK-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

Mathematical modelling for the next-generation All-solid-state batteries: Nucleation (SE|SSE)^(*)-Interface

Rechargeable Lithium-ion battery (LIB) is at the heart of every electric vehicle (EV), portable electronic device, and energy storage system [5]. Nowadays, LIBs enable human life more efficient and help to solve global environment issues thanks to EVs' zero emission. However, conventional LIB (c-LIB) is sensible to temperature and pressure, hence, flammable and explosive, which is undesirable. This bottleneck is mainly due to liquid-based electrolyte found in c-LIBs.

All-solid-state battery (ASSB) is one of promising candidates to overcome bottlenecks of c-LIBs. Thanks to solid-state electrolyte (SSE), ASSB is highly stable towards temperature and pressure. Nevertheless, Limetal dendrite triggered at (SE|SSE)-Interface is the main drawback of ASSB since these dendritic threads extrapolate into SSE grain boundary network, causing crevice, degradation of ionic conductivity, and the probability of short-circuit, which is unfavorable [10].

Next-generation All-solid-state battery (ng-ASSB) with a consideration of nucleation criterion defined by

$$\partial_t \mathbf{u} + \nabla \cdot \left(\overset{4}{\mathbb{C}} f_{\text{alocation}}(\lambda, \mu, \mathbf{d}_{G_i, i=1, \dots, N}^R, \mathbf{d}^E; \mathbf{x}) : \nabla \mathbf{u}^{(s)} \right) + \rho \mathbf{b} = -\rho \nabla V_e, \tag{1}$$

s.t.
$$a_{\text{Griffith}}^{\text{generalised}} := a^* = \arg\min_{a \in \mathbb{R}} \iiint_{\Omega} f(a, \boldsymbol{u}, \theta; \lambda, \mu, \boldsymbol{d}^{(\star)} \otimes \boldsymbol{d}^{(\star)}) d\Omega - \iint_{\Gamma} f(a; \gamma) d\Gamma \Big|_{\bar{\boldsymbol{u}}}$$
 (2)

where $V_e : \mathbb{R}^3 \to \mathbb{R}$ is the electric potential applied globally on ASSB. Due to nature setting of ASSB taking the form (SE|SSE|SE) the electric potential becomes uniform. Additionally, \boldsymbol{u} is the displacement field, θ temperature field, a crevice length, λ, μ Lamé constants, $\boldsymbol{d}^{(\star)} \otimes \boldsymbol{d}^{(\star)}$ embedded misorientation structural tensor, and γ cracking-surface energy density, can help to improve ASSB performance [1][2].

Aim: The study is with the purpose of gaining a better insight into dendrite nucleation and formation in ASSB.

Griffith nucleation criterion governs (SE|SSE)-Interface [4].

Observation: Space-charge Layer

Motivation: Energy density landscape

ASSB enables energy demand due to (i), and followed by (ii).

Theoretical capacity of charge:

Pure Metallic Lithium (Li) versus Graphite (C6)

[Ah l-1]^{[7][7]} [mah cm⁻³]^[7]

[Ah kg⁻¹]

[Ah kg⁻¹]

[Ah kg⁻¹]

[Ah kg⁻¹]

[AssB: Metallic Lithium (Li) rithium LiB: Graphite (C6)

Negative electrode materials

[AssB: Metallic Lithium LiB: Graphite (C6)

340 740 2062 3861

(i) Theoretical capacity of charge.

[AssB: Demand Petrol (ii) Practical energy density.

Artificial Neural Networks

Application: Steel's property prediction.

HIDDEN LAYER
OUTPUT LAYER

The ANNs scheme enhances bainitic trafo. temperature prediction, validated by [9].

Nucleation interface: Taking place at the critically dendritic (SE|SSE)-Interface

Semiconductor

Application: Start/Stop-System in Starter.
Use-case: BMW B47 (-25°C, 0°C, 120°C).
Optimisation: Pareto @BoschForschung.
(Multi-objective optimisation framework)

Negative-temp. Coefficient (NTC) Nd/Gd semiconductor is modelled and validated [7].

Lithium-ion battery

Modelling: Swelling phenomena @FEM [5]. Use-case: Bosch-48-V-Battery.

Coupled fields are Displacement field \boldsymbol{u} and temperature field $\boldsymbol{\theta}$;

$$m{u}: egin{cases} \Omega imes \mathbb{R}_+ & \to \mathbb{R}^3, \\ (m{x},t) & \mapsto m{u}(m{x},t), \end{cases} \quad heta: egin{cases} \Omega imes \mathbb{R}_+ & \to \mathbb{R}, \\ (m{x},t) & \mapsto m{\theta}(m{x},t) \end{cases}$$

Governing conservation equations used to describe balance of mass, conservation of linear momentum, conservation of angular momentum, and conservation of energy with $\rho(\boldsymbol{x},t)$ is mass density per unit volume (puv); $\boldsymbol{b}(\boldsymbol{x},t)$ body force puv; $\boldsymbol{v}(\boldsymbol{x},t)$ velocity; $e(\boldsymbol{x},t)$ internal energy puv; $\boldsymbol{q}(\boldsymbol{x},t)$ heat flux; $r(\boldsymbol{x},t)$ heat source puv; $\boldsymbol{\sigma}$ Cauchy stress and $\boldsymbol{\varepsilon}$ infinitesimal strain.

Strain energy is based on the deformation of SSE due to dendrite formation at (SE|SSE)-interface

Surface energy is analysised based on the open crevice cracking at (SE|SSE)-interface affected by prescribed pressure

 $\iint f(a;\gamma) \, d\Gamma$

