一、填空题: (每小题 3 分,合计 18 分)

- 1. 设向量 \vec{a} 与三个坐标面的夹角分别为 ξ , η , ζ ,则 $\cos^2 \xi + \cos^2 \eta + \cos^2 \zeta = ____.$
- 2. 设数量场 $u = \ln \sqrt{x^2 + y^2 + z^2}$,则 $grad u|_{(1,0,1)} = _____.$
- 3. 二次积分 $\int_{1}^{4} dx \int_{x}^{4} \frac{1}{x \ln y} dy = _____.$
- 4. Σ为圆柱面 $x^2 + y^2 = 1$ 介于 z = 0, z = 1之间部分,则 $\iint (x+1)dS = ______.$
- 5. 若积分 $\int_{L} (x^4 + 4xy^{\lambda}) dx + (6x^{\lambda-1}y^2 5y^4) dy$ 在 xoy 平面内与路径无关,则 $\lambda =$ ___.
 6. 设函数 $f(x) = \begin{cases} x, 0 \le x < 1 \\ -1, 1 \le x \le 2 \end{cases}$. 已知 S(x) 是 f(x) 在 [0, 2] 的余弦级数的和函数, 则 S(2022) = _____

二、选择题: (每小题 3 分,合计 30 分)

(注:请考生将选择题答案写入下面表格中.)

1	2	3	4	5	6	7	8	9	10

- 1. 空间直线 $\frac{x+2}{3} = \frac{y-2}{1} = \frac{z+1}{-5}$ 与平面 4x+3y+3z+1=0 的位置关系是().
 - A、互相垂直 B、互相平行 C、不平行也不垂直 D、直线在平面上
- 2. 曲线 $\begin{cases} z = 2 x^2 \\ y = 0 \end{cases}$ 绕 z 轴旋转一周所得的曲面与曲面 $z = (x 1)^2 + (y 1)^2$ 的交线在

xoy 面上的投影曲线方程为(

$$\mathbf{A} \cdot \begin{cases} x^2 + y^2 - x - y = 0 \\ z = 0 \end{cases} \qquad \mathbf{B} \cdot \begin{cases} 2x^2 + y^2 - 2x - 2y = 0 \\ z = 0 \end{cases}$$

$$\mathbf{C} \cdot x^2 + y^2 - x - y = 0 \qquad \mathbf{D} \cdot 2x^2 + y^2 - 2x - 2y = 0$$

函数 $z = 3(x^2 + y^2) - x^3$ 的极值点是 ().

$$A \times (0,0)$$
与 $(2,0)$ $B \times (2,0)$ $C \times (0,0)$ $D \times \mathcal{E}$

B,
$$(2,0)$$

$$C_{\infty}(0,0)$$

4. 若 z = f(x, y) 在 (x_0, y_0) 处沿 x 轴反方向的方向导数 A ,则 f(x, y) 在该点对 x的偏导数().

A、不一定存在

$$C$$
、为 $-A$ D、一定不存在

5. 设
$$I_1 = \iint_D \ln^3(x+y) dx dy$$
, $I_2 = \iint_D (x+y)^3 dx dy$, $I_3 = \iint_D [\sin(x+y)]^3 dx dy$, 其中 D 由

$$x = 0$$
, $y = 0$, $x + y = \frac{1}{2}$, $x + y = 1$ 所围成,则 I_1 , I_2 , I_3 的大小顺序为().

$$\text{A. } I_1 < I_2 < I_3 \quad \text{B. } I_3 < I_2 < I_1 \quad \text{C. } I_3 < I_1 < I_2 \quad \text{D. } I_1 < I_3 < I_2$$

6. 已知 L 是曲线 $x^2 + y^2 = a^2$,则曲线积分 $\int_{\Gamma} (x+y)^2 ds = ($).

A,
$$a^2$$
 B, a^3 C, $2\pi a^3$ D, πa^4

A、绝对收敛 B、条件收敛 C、发散 D、不能确定敛散性 8. 曲面 $x^2 + \cos(xy) + yz + x = 0$ 在点 (0,1,-1) 处的切平面方程为().

A, x + y + z = 2 B, x - y + z = -2 C, x - 2y + z = -3 D, x - y - z = 0

9. 设 Σ 为球面 $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$ 的外侧,则 $\bigoplus_{\Sigma} z dx dy = ($).

A,
$$\frac{4}{3}\pi R^3$$
 B, 0 C, π D, $\frac{2}{3}\pi R^3$

A. 一定绝对收敛; B. 一定条件收敛; C. 一定发散; D. 可能收敛也可能发散.

三、计算题: (每小题 7 分, 共 35 分)

- **1、**求过直线 $L: \begin{cases} x-z+4=0 \\ x+5y+z=0 \end{cases}$,并与平面 x-4y-8z+12=0 交成二面角为 $\frac{\pi}{4}$ 的平面方程。
- 2、设z = z(x,y) 是由方程 $\varphi(x-az,y-bz) = 0$ 所确定的隐函数,其中 φ 可微,求 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y}.$
- 3、设 f(x, y) 为连续函数,且 $f(x, y) = \frac{\sin y}{y} \iint_D f(u, v) du dv$,其中 D 是由直线 $x = 0, y = \pi, y = x$ 围成的区域,求 f(x, y).
- **4、**计算 $\int_L (x^2-3y)dx-xdy$, 其中 L 是由点(0,1)经圆 $(x-1)^2+(y-1)^2=1$ 的下半圆周到点(2,1)的路径。
- 5、计算曲面积分 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 1) dx dy$, 其中Σ是曲面 $z = 1 x^2 y^2$, $(z \ge 0)$ 上侧.
- 四、(9分) 求幂级数 $\sum_{n=1}^{\infty} n(x-1)^{n-1}$ 的收敛域、和函数 S(x) ,并求级数 $\sum_{n=2}^{\infty} n(\frac{-1}{2})^n$ 的和 s .

五、(8分)(以下题目二选一,多做不多给分)

- 1、一根绳长 2 m, 截成三段,分别折成圆、正三角形与正方形,问:这三段分别为多长时使所得的面积总和最小,并求该最小值.
- 2、将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体体积最大?