proposition: predicate w/o quantifier is not a proposition (i.e. x = 0 w/o for all/there exists x is not a proposition) rows = 2^n, n = num of predicates

nega: always negate quantifiers $\neg \forall x \text{ to } \exists x \text{ when writing out translation}$

quantifier/logic translation: always use: $\forall x (P(x) \rightarrow Q(x))$ and $\exists x (P(x) \land Q(x))$

quantifier scoping: $\forall x \exists y \text{ for all } x \text{ there is at least one } y, doesnt have to be the same y$

 $\exists y \ \forall x \ there \ is \ only \ one \ y \ for \ all \ x, is the same \ y \ for \ all \ x$

Distributing quantifier:

Nested quantifier: demorgan is done one layer after another: $\neg \forall x \forall y \forall z P(x) \equiv \exists x \neg \forall y \forall z P(x) \equiv \exists x \exists y \exists z \neg P(x)$

Only \land and \lor distribute

Useful demorgans/equivalence laws:

De Morgan's Law for quantifiers:

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

De Morgan's Law: $\neg(p \land q) \equiv \neg p \lor \neg q, \neg(p \lor q) \equiv \neg p \land \neg q$

Definition of $\rightarrow: p \leq q \equiv T, p > q \equiv F$

Idempotent Laws: $p \lor p \equiv p, p \land p \equiv p$

Distributive Law: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r), p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption Laws: $p \lor (p \land q) \equiv p, p \land (p \lor q) \equiv p$, this is because \lor only needs at most one to be true

TABLE 8 Logical

$$\begin{split} p &\leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ \\ p &\leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \end{split}$$

 $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Equivalences Involving Biconditional Statements.

 $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

Impl breakout/contrapos: $p \to q \equiv \neg p \lor q \equiv \neg q \to \neg p$ (always breakout first to simplify stuff)

Nega impl: $\neg(p \rightarrow q) \equiv p \land \neg q$

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$
$$p \to q \equiv \neg q \to \neg p$$
$$p \lor q \equiv \neg p \to q$$

$$p \wedge q \equiv \neg (p \to \neg q)$$

$$\neg(p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

 $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$
$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Tautology/must be true $A(x) \land (\neg A(x) \lor A(x)) \equiv A(x)$

Contradiction/must be false $p \land \neg p$

Satisfiable/can have one case to be true

counterexamples think:

 $\forall x \exists y (y^2 = x)[x, y \in R]$, false, x cannot be < 0(should also check for zero)

 $\forall y \exists x (y = 3x)[x, y \in Z]$, false, y = 1, x can be a fraction.

 $\exists x \forall y (y = 3x)[x, y \in Z]$, false, x = 4, y = 1,2,3,203

Proof 101:

always prove/disprove for all instead of there exists, then let vars be arb. type of num

to disprove P(x)=prove $\neg P(x)$ (is true)

Proof

by contradiction: seeking contradiction, assume the (negation), there is a contradiction, thus original is true

by cases: blah, then (WLOG) all cases exhausted

by contrapos: assume contrapo

truth table finding: if mostly false, then its $\wedge + add \neg$, ; if mostly true, then its $\vee + add \neg$; if its half false & true, then its \Leftrightarrow

Sets:

Cardinality: num of elements in a set. Just be careful with which one gets subtracted from

Power set: every single possible combos of sets including $\{\emptyset\}$

disjoint sets

minus: A - B = in A but not in B

Sets proof 101:

Subset method: show that each side of the identity is a subset of the other side.

Proper subset: $A \subset B \land A \neq B$, A is a subset of B, and A and B are not the same set.

Inclusion-exclusion principle: Only applies to cardinality

 $|A \cup B \cup C|(thisistotal) = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

More counterexamples for rational $x=\sqrt{2}, y=\sqrt{2}, x\times y=2$, which is irrational times irrational making a rational

Counterexamples for positive / negative, x = 0

Prime numbers > 2 are odd. Or prime numbers only divide themselves and 1.

Tautology can always be satisfiable. Satisfiable cannot always be tautology.

Madeleine's OH equations: $x \in \overline{(B \cap A)} \equiv x \in \overline{(B \cup A)} \equiv x \notin (B \cap A) \equiv x \notin B \lor x \notin A$

TABLE 1 Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$\begin{array}{l} A \cup U = U \\ A \cap \emptyset = \emptyset \end{array}$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{A \cup B} = \overline{\overline{A}} \cap \overline{\overline{B}}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	