® 日本国特許庁(TP)

⑩ 公 開 特 許 公 報 (A) 昭63-145761

@Int Cl.4

識別記号

庁内整理番号

63公開 昭和63年(1988)6月17日

C 23 C 4/00 4/08 6686-4K 6686-4K

審査請求 未請求 発明の数 I (全3頁)

耐摩耗性部材 53発明の名称

> (2)特 17761 - 291956

昭61(1986)12月8日 願 邻出

②発 明 者 Ш 戸 唐 史 挫 眀 者 樽 本 次 分発 勉 冗発 明 沯 瀋 水

広島県安芸郡府中町新地3番1号 マッダ株式会社内 広島県安芸郡府中町新地3番1号 マツダ株式会社内 広島県安芸郡府中町新地3番1号 マツダ株式会社内

明 者 婸 73発 南

広島県安芸郡府中町新地3番1号 マッダ株式会社内 広島県安芸郡府中町新地3番1号

マッダ株式会社 犯出 頒 Į. 砂代 理 人 弁理士 青 山 葆

外2名

1. 発明の名称

耐聚矩件部材

2、特許請求の範囲

- (1)金属基材の上面に折出硬化現象を生ずる合 金メッキが抱され、該合金メッキ暦の上面に、自 己発熱型合金の溶射層が形成されてなることを特 徴とする耐原能性即射。
- 3、発明の詳細な説明

(産業上の利用分野)

本発明は耐摩耗性部材の改良に関する。

(従来技術とその問題点)

従来、金属素材(Fe等)の上面に、析出硬化現 象を生ずる合金メッキ(Ni - P等)を施して、こ れを加熱炉で加熱(400℃ ×1時間または200℃ × 4 0時間)することにより、合金メッキを折出 硬化させて耐摩耗性を向上させた耐摩耗性部材が 実用化されている。

しかしながら、この耐摩耗性部材の製造法では 熟処理が頂わしく加熱に長時間を要するという欠

点があった。

このため、特開昭61-12892号公報では、 金属素材上面の合金メッキを高周波加熱して折出 硬化させる方法が提案されているが、高周波誘導 加熱装置は高値であるうえ、金属素材の特性も変 わるおそれがあった。

(発明の目的)

本権明は上記従来の問題を解決するためになさ れたもので、短時間に、かつコスト安に合金メッ 半のみを折出硬化させた耐燃能性部材を提供する ことを目的とするものである。

(発明の構成)

このため本発明に係る耐摩耗性部材は、金属店 材の上面に析出硬化現象を生ずる合金メッキが施 され、該合金メッキ層の上面に、自己発熱型合金 の溶射圏が形成されてなることを特徴とするもの である。

(発明の効果)

水発明によれば、金属素材上の上面に施された 合金メッキの上面に、自己発熱型合金の溶射層が 形成された耐摩耗性部材であるから、該溶射層の 溶射時に合金メッキが同時に折出硬化されるよう になる。

したがって、合金メッキの折出硬化が瞬時に、 かつコスト安にできるとともに、金属素材は熱影 樗をほとんど受けないので、その特性が変わるお それも全くない。

また、折出硬化された合金メッキの上面に軟質 の溶射層が形成されていることから、この耐摩耗 性郵材をエンジンのシリンダ搭動面に用いた場合 には、ピストンとの初期なじみ性が良好となり、 耐焼付性が向上するようになる。

(実施例)

以下、本発明の実施例を添付図面について詳細 に説明する。

第1図(a)に示すように、耐摩耗性密材の製造 方法は、まず、工程 「で、金属素材(例えばSS 41)1の上面1aに、折出硬化製象を生ずる合金 メッキ(例えばNI-P)2を施す。

ついで第1図(b)に示すように、この合金メッ

(3) そして、この合金メッキ暦2の上面2 mに 自己発熱型合金を、溶射出力37KWでプラズマ 溶射して、5~20μm程度の溶射器4を形成した。

溶射に用いた自己発熱型合金の成分例を第1要 に示す。

第1表

	自己発熱型合金の成分	
本	Cr:20%-A1:5%-Ni:發那	
本発明例(b)	Mo:5%-Ae:5,5%-Ni:魏郎	
本発明例(c)	A l: 1% - N i ; 残郎	
比較例	Ni-Pメッキ暦を無処理で	便度liv
	析出硬化	1000~

第3図(a)は合金メッキ暦2を施し、溶射暦4 を形成した試験片1の断面組織(×400)を示す 写真である。

第3図(b)はその説明図であり、(A)は自己発 熱型合金の溶射層4で、硬度Hv120~160 であった。 キ暦2の上面2aに、ノズル3により自己発熱型合金(例えばCr-Al-Ni)をプラズマ溶射して、第1図(a)に示すような溶射層4を形成する。

この自己発熱型合金の溶射により、その時の発 熱反応で合金メッキ暦2の上暦部分のみが解時に 折出硬化して、耐摩耗性が向上するようになる。

次に実験例を説明する。

(1) 第2図(a)に示すように、外径が80.内径が40、厚み15mmの試験片(金属素材)!を作成した。

材質はSS41、硬度Hv 180~200、表面和さRa0.2μαであった。

(2) 次に、この試験片Ⅰに、次亚リン酸塩を蔵 元剤とする無電解ニッケルーリンのメッキ浴によ り、約25μm厚さの合金メッキ圏2を施した。

合金メッキ圏 2 中のリン含有量は約7 重量%で あった。

合金メッキ暦2の上面2aをベーバー(#600) によりラッピングして、表面相さRa0. Lμmの 仕上げ加工を行なった。

(B)は合金メッキ所2の硬化部で、厚さは5~ I 0 μ m. 製度 li v 9 0 0~ 1 0 0 0 . x H v 9 6 6 であった。

(C)は合金メッキ暦2の未硬化郎で、厚きは2 0~25 μa. 硬度Hv450~600. χHv56 6であった。

- ·(D)は試験片(金属素材) | である。
- (4) 次に、上記方法で製造した試験片 Lの耐能 付担テストを行なった。

①和手材として、C:3.6%.Cr:0.5%.Si:2.4%.Cu:0.9%.Mn:0.45%.Ma:1.7%.P:0.15%.Ni:0.85%.S:0.015%.V:0.17%.Mg:0.04%.Fe:製部からなる 鉢鉄罅物を、第2関(b)に示すような寸法(nm)の ピン6に加工し、試験片しとの当り面6a(結構で 示す)を電子ビーム加工によりチル化した。チル 硬度以750~805であった。

②そして、第2図(c)に示すように、油圧軸7 に試験片1を固定し、回転軸8にピン6を4等分位置に固定して、ピン6を回転させながら試験片

特開昭 63-145761 (3)

1を、油圧加重を変化させながらピン6に押し付けた。

その結果を第4図に示す。同図からも明らかなように、比較例に対して本発明例(a)~(c)は耐旋付性が大幅に向上していることがわかる。

4. 図面の簡単な説明

第1図(a)~第1図(c)は本発明に係る耐摩托性 部材の製造法を示す説明図、第2図(a) は試験片 の斜視図、第2図(b)はピンの斜視図、第2図(c) は試験機の側面図、第3図(a)は試験片の断面組 織を示す写真、第3図(b)は第3図(a)の説明図、 第4図は焼付性のテスト結果を示すグラフである。

1 …金属業材(試験片)、2 …合金メッキ層、

4 … 自己発熱型合金の溶射層。

特 作 出 願 人 マッダ 株式会社 代 頭 人 弁 頭 士 青山 葆 ほか2名

第 1 题(b)

路 1 図(c)

第2四(0)

第 2 图(b)

第 2 図(C)

3 M(0)