Required Problems

1. Let $f: D \to R$ and $g: D \to \mathbb{R}$, where $D \subset \mathbb{R}^n$ and $R \subset \mathbb{R}$, be concave functions. Let $h: R \to \mathbb{R}$ be an increasing function. Show that each of the following propositions is true:

Afternoon: Problem Set 2

- (a) $f(\mathbf{x}) + g(\mathbf{x})$ is a concave function.
- (b) $f(\mathbf{x})$ is a quasiconcave function.
- (c) $(h \circ f)(\mathbf{x})$ is a quasiconcave function.
- 2. Find the extreme values of each of the following functions, then use the second-order conditions to determine whether they are maxima or minima.
 - (a) $f(x,y) = x^2 + xy + 2y^2 + 3$
 - (b) $g(x,y) = -x^2 y^2 + 6x + 2y$
- 3. Solve the following constrained utility-maximization problem.

$$\max_{x_1, x_2} x_1^{\alpha} x_2^{\beta} \quad \text{s.t.} \quad M = p_1 x_1 + p_2 x_2$$

4. Solve the following constrained utility-maximization problem.

$$\max_{x_1, x_2} \alpha \ln(x_1) + x_2 \quad \text{s.t.} \quad M \ge p_1 x_1 + p_2 x_2$$

Practice Problems

- 5. Which of the following functions on \mathbb{R}^n are concave or convex? Use the 2nd derivative test or the definiteness of the Hessian (for univariate and multivariate functions, respectively) to determine concavity/convexity.
 - (a) $f(x) = 3e^x + 5x^4 \ln(x)$
 - (b) $g(x,y) = -3x^2 + 2xy y^2 + 3x 4y + 1$
 - (c) $h(x, y, z) = 3e^x + 5y^4 \ln(z)$
- 6. Determine whether or not the following functions are quasiconcave, quasiconvex, or neither on \mathbb{R}^2_+ .
 - (a) $f(x) = e^x$
 - (b) $g(x) = x^3 x$
 - (c) $h(x,y) = ye^{-x}$
 - (d) $j(x,y) = (2x 3y)^3$
- 7. Which of the following functions are homogeneous? What are the degrees of homogeneity of the homogeneous ones?
 - (a) $f(x,y) = 3x^5y + 2x^2y^4 3x^3y^3$
 - (b) $g(x,y) = 3x^5y + 2x^2y^4 3x^3y^4$
 - (c) $h(x,y) = x^{1/2}y^{-1/2} + 3xy^{-1} + 7$
 - (d) $j(x,y) = x^{3/4}y^{1/4} + 6x + 4$

8. Which of the following functions are homothetic? Give a reason for each answer.

(a)
$$f(x,y) = e^{x^2 y} e^{xy^2}$$

(b)
$$g(x,y) = x^3y^6 + 3x^2y^4 + 6xy^2 + 9$$

(c)
$$h(x,y) = 2\ln(x) + 3\ln(y)$$

9. Consider the function

$$f(x_1, x_2) = \sqrt{x_1^2 + x_2^2}$$

- (a) Show that $f(x_1, x_2)$ is homogeneous of degree 1
- (b) Verify that Euler's Theorem holds for this function.
- 10. Let $f(\mathbf{x})$ be a convex function. Prove that $f(\mathbf{x})$ reaches a local minimum at \mathbf{x}^* if and only if $f(\mathbf{x}^*)$ reaches a global minimum at \mathbf{x}^* .

11. Find the local extreme values and classify the points as maxima, minima, or neither

(a)
$$f(x_1, x_2) = 2x_1 - x_1^2 - x_2^2$$

(b)
$$g(x_1, x_2) = x_1^2 + 2x_2^2 - 4x_2$$

(c)
$$h(x_1, x_2) = x_1^3 - x_2^2 + 2x_2$$

12. Solve the following constrained optimization problems.

(a)
$$\min_{x} (x_1^2 + x_2^2)$$
 s.t. $x_1 x_2 = 1$

(a)
$$\min_{\mathbf{x}} (x_1^2 + x_2^2)$$
 s.t. $x_1 x_2 = 1$
(b) $\min_{\mathbf{x}} (x_1 x_2)$ s.t. $x_1^2 + x_2^2 = 1$

(c)
$$\max_{\mathbf{x}} (x_1 + x_2)$$
 s.t. $x_1^4 + x_2^4 = 1$

13. State the Kuhn-Tucker theorem for the following minimization problem:

$$\min_{x_1, x_2} f(x_1, x_2) \quad \text{s.t.} \quad g(x_1, x_2) \le 0 \text{ and } x_1 \ge 0, x_2 \ge 0$$

14. Consider the following maximization problem:

$$\max_{x,y} xy \quad \text{s.t.} \quad x+y \le 100 \quad \text{and} \quad x,y \ge 0$$

State the Kuhn-Tucker first order conditions and solve the maximiation problem.

15. Suppose a consumer livers on an island where he produces two goods, x and y, according to the production possibility frontier $x^2 + y^2 \le 200$, and he consumes all goods himself. His utility function is

$$u(x,y) = xy^3$$

The consumer also faces an environment constraint on his total output of booth goods, given by $x + y \le 20$.

- (a) Write out the Kuhn-Tucker first-order conditions.
- (b) Find the consumer's optimal x and y. Identify which constraints are binding.