Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Artem Gorodilov Naměřeno: 20. května 2024

Obor: Astrofyzika **Skupina:** Po 14:00 **Testováno:**

Úloha č. D: Franck-Hertzův experiment

1. Zadání

- 1. Sledovat vliv nastavení experimentu na chování proudu procházejícího trubicí.
- Změřit závislost anodového proudu na urychlujícím napětí a určit energii nejnižší excitační hladiny atomů vzácného plynu v trubici.
- 3. Naměřit spektrum vyzařované z trubice Franck-Hertzova experimentu a určit, jaký plyn v trubici září.

2. Teorie

2.1. Franck-Hertzův experiment

Franck-Hertzův experiment je jedním z prvních experimentů, který dokázal kvantovou povahu atomů. Při průchodu elektronů přes plynnou trubici dochází k excitaci atomů plynu. Elektrony jsou urychlovány elektrickým polem a při dostatečně vysoké energii mohou předat energii atomům plynu. Při předání energie dochází k excitaci atomů a následně k jejich deexcitaci. Při deexcitaci dochází k emisi fotonů, které jsou detekovány.

Při průchodu elektronů plynnou trubicí dochází k vytvoření proudu, který je závislý na urychlujícím napětí. Při určitém napětí dojde k náhlému poklesu proudu, což je způsobeno tím, že elektrony předají energii atomům plynu a dojde k excitaci. Tento jev se nazývá Franck-Hertzův jev.

2.2. Energie excitační hladiny

Energie excitační i-hladiny atomů plynu je dána vztahem:

$$E_{ex,i} = e \frac{U_i}{i} \tag{1}$$

kde e je elementární náboj a U_i je urychlující napětí v daném maximu proudu i viz. obrázek (1).

Figure (1) Závislost kolektorového proudu na urychlujícím napětí pro rtuť.

2.3. Experementální uspořádání

Experimentální uspořádání Franck-Hertzova experimentu je zobrazeno na obrázku (2). Elektrony jsou emitovány z rozžhavené katody, stabilizovány kalibračním napětím U_1 , poté urychleny anodovým napětím U_2 a nakonec zpomaleny brzdným napětím U_3 . Při průchodu elektronů plynovou trubicí jsou atomy plynu excitovány a poté deexcitovány. Během deexcitace jsou emitovány a zaznamenávány fotony.

Figure (2) Experimentální uspořádání Franck-Hertzova experimentu.

3. Měření

3.1. Nalezení optimálních parametrů experimentu

Pro nalezení optimálních hodnot U_1 a U_3 jsme zkoumali závislost $I=f(U_2)$. Za tímto účelem jsme zafixovali U_1 a změnili hodnotu U_3 , poté jsme totéž zopakovali v opačném pořadí. Současně jsme sledovali změnu proudu I. Naším cílem bylo najít takové hodnoty U_1 a U_3 , při kterých se ručička ampérmetru v daném rozsahu hodnot (od 0 A do 10,5 A) třikrát vychýlila, čímž jsme získali tři vrcholy na V-A charakteristice.

Tímto způsobem jsme zjistili následující optimální hodnoty U_1 a U_3 :

$$U_1 = 2.5 \text{ V}, U_3 = 8.14 \text{ V}.$$

3.2. Měření závislosti $I = f(U_2)$

Po nastavení požadovaných optimálních parametrů systému jsme změřili a vykreslili závislost $I = f(U_2)$ a fitovali polynomem oblasti proudových špiček. Výsledky jsou znázorněny na grafu (3) a v tabulce (1).

Figure (3) Závislost kolektorového proudu na urychlujícím napětí.

Získali jsme následující hodnoty datových maxim:

U_2 [V]	I [nA]	E [eV]
18.61(8)	3.11(1)	18.61(8)
40.57(5)	8.40(3)	20.29(3)
61.97(6)	17.00(4)	20.32(2)

Podle vzorce (1) jsme tedy zjistili hodnotu energie excitační hladiny atomů plynu:

$$E_{ex,min} = 19.7(6) \text{ eV}$$

3.3. Určení prvků plynu

K určení prvků s nejbližší hodnotou nejnižší excitované energie atomu plynu, kterou jsme získali, jsme použili databázi NISTASD [1]. Zjistili jsme, že prvky s nejbližší hodnotou $E_{ex,min}$ jsou:

$$E_{HeI} = 19.82 \text{ eV}$$
 a $E_{NeI} = 16.62 \text{ eV}$.

Abychom nakonec určili prvek plynu, změřili jsme spektrum měřeného plynu a vytvořili spektra prvků He I a Ne I pomocí databáze NISTLIBS [2]. Poté jsme spektra vynesli do jednoho grafu, abychom vizuálně analyzovali jejich podobnost. Výsledky jsou uvedeny na obrázku (4).

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python [3]. Chyby byly rozšířeny o Studentův koeficient (2-Tail Confidence Level) s ohledem na stupně volnosti pro každou hodnotu, pro interval spolehlivosti 68.27%.

4. Závěr

Při hledání optimálních parametrů experimentu jsme stanovili následující funkce napětí: Při zvyšování U_1 proud I zvyšuje, což je způsobeno tím, že větší množství elektronů je fokusováno tak aby prošlo trubicí. Při zvyšování U_3 proud I zvyšuje, což je způsobeno tím, že větší množství elektronů je zpomaleno a může předat energii atomům plynu. Optimalní hodnoty U_1 a U_3 byly $2.5~\mathrm{V}$ a $8.14~\mathrm{V}$.

Z naměřených hodnot jsme určili energii nejnižší excitační hladiny atomů plynu, která byla rovna $E_{ex,min}=19.7(6)$ eV.

Na základě výsledků jsme určili, že prvkem plynu je, pravděpodobně, Ne I. Pro potvrzení jsme změřili spektrum měřeného plynu a porovnali jsme ho s databází NISTLIBS. Většina spektrálních čar měřeného plynu odpovídala spektru prvku Ne I, což potvrzuje naše předchozí tvrzení.

Rozdíl mezi $E_{ex,min}$ a E_{NeI} byl 3.1(6) eV což může být způsobeno chybou měření kvůli oscilacím proudu, které mohou být způsobeny nečistotami v trubici nebo nepřesnost v nastavení optimálních parametrů napětí.

Figure (4) Spektra měřeného plynu a prvků He I a Ne I.

Odkazy

- [1] NIST ASD, Dostupné online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html
- [2] NIST LIBS, Dostupné online: https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html
- [3] Uncertainties, Dostupné online: https://pypi.org/project/uncertainties

5. Appendix

5.1. Tabulka naměřených hodnot pro spektrální čáry železa

	P
U_2 [V]	I [nA]
9.4	1.1
12.1	1.9
15.7	2.7
19.1	3.1
21.4	2.8
22.5	2.2
25.4	0.9
28.2	1.6
30.7	3.0
32.9	3.9
34.1	5.0
36.9	6.5
39.1	9.1
42.1	8.6
43.6	7.0
43.6	6.5
47.5	4.6
50.6	5.5
52.4	6.8
53.7	8.0
55.1	9.6
56.2	12.0
58.2	15.0
61.0	17.0
64.0	15.0
67.3	12.0
68.0	9.9