1-1 Comparison of running times

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

Answer

Considering the linear case where f(n) = n and $1\mu = 10^{-6}$:

```
1 second = 1.00 \times 10^{6} \mu second

1 minute = 6.00 \times 10^{7} \mu second

1 hour = 3.60 \times 10^{9} \mu second

1 day = 8.64 \times 10^{10} \mu second

1 month = 2.59 \times 10^{12} \mu second

1 year = 3.15 \times 10^{13} \mu second

1 century = 3.15 \times 10^{15} \mu second
```

So, given that T is the time take in microseconds we just need to solve the equation for each given time t.

$$\begin{split} f(n) &= \lg n \implies n = 2^T \\ f(n) &= \sqrt{n} \implies n = T^2 \\ f(n) &= n \implies n = T \\ f(n) &= n \lg n \implies n = \lfloor e^{W(T)} \rfloor \text{ (Lambert W function)} \\ f(n) &= n^2 \implies n = \lfloor \sqrt{T} \rfloor \\ f(n) &= n^3 \implies n = \lfloor \sqrt[3]{T} \rfloor \\ f(n) &= 2^n \implies n = \lfloor \lg T \rfloor \\ f(n) &= n! \implies \text{iterating } n \text{ until } n! \leq T \text{, another solution is } \lfloor \Gamma(n+1) = T \rfloor^{-1} \end{split}$$

So, two functions are hard to find the largest value of n which are $e^{W(T)}$ and n!. The first one you can use Wolfram Alpha² with the following expression:

solve $n : n \lg n = T$ (replace T with desired value).

The n! I just implemented and tested for some values of n.

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\frac{1}{\log n}$	2^{10^6}	$2^{6.00 \times 10^7}$	$2^{3.60 \times 10^9}$	$2^{8.64 \times 10^{10}}$	$2^{2.59 \times 10^{12}}$	$2^{3.15 \times 10^{13}}$	$2^{3.15 \times 10^{15}}$
\sqrt{n}	1.00×10^{12}	3.60×10^{15}	1.30×10^{19}	7.46×10^{21}	6.72×10^{24}	9.95×10^{26}	9.95×10^{30}
n	1.00×10^{6}	6.00×10^{7}	3.60×10^{9}	8.64×10^{10}	2.59×10^{12}	3.15×10^{13}	3.15×10^{15}
$n \lg n$	6.27×10^4	2.80×10^6	1.33×10^{8}	2.76×10^{9}	7.18×10^{10}	7.97×10^{11}	6.85×10^{13}
n^2	1.00×10^{3}	7.75×10^3	6.00×10^{4}	2.94×10^{5}	1.61×10^{6}	5.62×10^{6}	5.62×10^{7}
n^3	1.00×10^{2}	3.91×10^{2}	1.53×10^3	4.42×10^3	1.37×10^{4}	3.16×10^{4}	1.47×10^{5}
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

¹gamma function

²http://www.wolframalpha.com/