Prism: Scaling Bitcoin by $10,000 \times$

Lei Yang ¹ Vivek Bagaria ² Gerui Wang ³ Mohammad Alizadeh ¹ David Tse ² Giulia Fanti ⁴ Pramod Viswanath ³

¹MIT CSAII

²Stanford University

³University of Illinois Urbana-Champaign

⁴Carnegie Mellon University

The Stanford Blockchain Conference 2020

► Security: 50% adversary

- ► Security: 50% adversary
- ► Throughput: 7 tps
- Confirmation Latency: hours

► Security: 50% adversary

► Throughput: 7 tps

Confirmation Latency: hours

How much better can we do theortically

► Security: 50% adversary

► Throughput: 7 tps

Confirmation Latency: hours

How much better can we do theortically and practically?

► Security: 50% adversary

► Throughput: 7 tps

Confirmation Latency: hours

How much better can we do theortically and practically? And how?

This talk

The Prism consensus protocol

System implementation

Evaluation results and findings

This talk

The Prism consensus protocol

System implementation

Evaluation results and findings

Mining rate f = 1 block per 10 min

Bitcoin: *k*-deep confirmation rule causes high latency

30% adversary power

k	ϵ
0	1.0000000
5	0.1773523
10	0.0416605
15	0.0101008
20	0.0024804
25	0.0006132
30	0.0001522
35	0.0000379
40	0.0000095
45	0.0000024
50	0.0000006

T, B, C, D

Numer of blocks per second: T / B

Propagation Delay: D + B / C

"active" blocks: TD/B + T/C

30% adversary power
For 10⁻³ attack probability, wait
250 mins!

200 1111115.	
k	ϵ
0	1.0000000
5	0.1773523
10	0.0416605
15	0.0101008
20	0.0024804
25	0.0006132
30	0.0001522
35	0.0000379
40	0.0000095
45	0.0000024
50	0.0000006

Same when increasing the block size

Add new transactions

Add new transactions

▶ 1 voter chain: 25-deep

▶ 1 voter chain: 25-deep

▶ 1000 voter chains: 2-deep

Prism is provably fast and secure

Adversary power $\beta < 0.5$

► Security: consistency and liveness

Prism is provably fast and secure

Adversary power $\beta < 0.5$

- Security: consistency and liveness
- ▶ Throughput: $(1 \beta)C$

Prism is provably fast and secure

Adversary power $\beta < 0.5$

- Security: consistency and liveness
- ▶ Throughput: $(1 \beta)C$
- ► Confirmation Latency: $O(D) + O\left(\frac{-D\log(\epsilon)}{m}\right)$

Prism throughput approaches the network bandwidth

Prism latency approaches the network latency

The Prism consensus protoco

System implementation

Evaluation results and findings

Implementing Prism in Rust

- ▶ 10,000 lines of Rust
- UTXO model
- Pay-to-public-key transactions
- Code available at t.leiy.me/prism-code

Blockchain client: consensus and ledger keeping

Blockchain client: consensus and ledger keeping

Blockchain client: consensus and ledger keeping

High throughput brings challenges

In real time:

- ▶ 70,000 tps
- ▶ 400 blocks/s
- ▶ 1000 chains

Scoreboard:

Scoreboard: A, C

Scoreboard: A, C

Scoreboard: A, B, C, E

Scoreboard: A, B, C, E

Scoreboard:

Scoreboard: A, D, E, F

Scoreboard: A, D, E, F

Scoreboard: A, D, E, F

Scoreboard:

Handle high block rate with async ledger update

Handle high block rate with async ledger update

- ► Ledger updates are "infrequent"
- Sanitize later

The Prism consensus protoco

System implementation

Evaluation results and findings

Testbed setup

- ▶ 100 1000 AWS EC2 instances
- ► Random 4-regular graph
- ▶ 120ms propagation delay
- ▶ 400 Mbps bandwidth

Comparison with Algorand, Bitcoin-NG, Nakamoto

Comparison with Algorand, Bitcoin-NG, Nakamoto

Comparison with Algorand, Bitcoin-NG, Nakamoto

Prism is robust against censorship attacks

Prism is robust against balancing attacks

Our implementation is efficient

CPU

► Signature check: 22%

► RocksDB: 53%

Data serialization: 7%

Bandwidth

► Transaction blocks: 99.5%

▶ Voter blocks: 0.4%

▶ Proposer blocks: 0.1%

Takeaways

- Prism approaches the physical limit by deconstructing and scaling each part
- Prism is proven with a real implementation
- Building a high performance blockchain client requires careful design

Resources

- ► Code: t.leiy.me/prism-code
- Theory Paper: Deconstructing the Blockchain to Approach Physical Limits
- System Paper: t.leiy.me/prism-paper
- ► Online Demo: t.leiy.me/prism-demo