DSAA 5002 - Data Mining and Knowledge Discovery in Data Science

(Fall Semester 2023)

Homework 1 Solution

Q1:

Step 1: Scan the transaction database, generate the candidate 1-itemset $\,{\cal C}_1$, and calculate the support of each $\,{\cal C}_1$ itemset.

 C_1

Itemset	Support Count
{A}	3
{B}	3
{C}	4
{D}	1
{E}	4

Step 2: Determine the frequent 1-itemset L_1 .

 L_1

Itemset	Support Count
{A}	3
{B}	3
{C}	4
{E}	4

Step 3: Generate the candidate 2-itemset C_2 , $C_2 = L_1*L_1$.

 C_2

Itemset
{A,B}
{A,C}
{A,E}
{B,C}
{B,E}
{C,E}

Step 4: Scan the transaction database and calculate the support of each $\ C_2$ itemset.

 C_2

Itemset	Support Count
{A,B}	1
{A,C}	3
{A,E}	2
{B,C}	2

{B,E}	3
{C,E}	3

Step 5: Determine the frequent 2-itemset $\ L_2$.

 L_2

Itemset	Support Count
{A,C}	3
{A,E}	2
{B,C}	2
{B,E}	3
{C,E}	3

Step 6: Generate the candidate 3-itemset $\,C_3$, $\,C_3=L_2*L_2$. Prun on Apriori principle. Apriori principle: If an itemset is frequent, then all of its subsets must also be frequent.

Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested.

 C_3

Itemset	2-item subset	2-item subset	2-item subset	Prunned
{A,C,E}	{A,C}	{A,E}	{C,E}	$\sqrt{}$
{A,B,C}	{A,B}	{A,C}	{B,C}	×
{A,B,E}	{A,B}	{A,E}	{B,E}	×
{B,C,E}	{B,C}	{B,E}	{C,E}	V

{A,B} item subset is not belong to L_2 , so {A,B,C} and {A,B,E} are prunned.

Prunned C_3

Itemset	
{A,C,E}	
{B,C,E}	

Step 7: Scan the transaction database and calculate the support of each $\,{\cal C}_3\,$ itemset.

 C_3

Itemset	Support Count
{A,C,E}	2
{B,C,E}	2

Step 8: Determine the frequent 3-itemset L_3 .

 L_3

Itemset	Support Count
{A,C,E}	2
{B,C,E}	2

Step 9: Generate the candidate 4-itemset C_4 , $C_4 = L_3*L_3$.

 C_{Λ}

Itemset 3-item subset	3-item subset	3-item subset	3-item subset	Prunned
-----------------------	---------------	---------------	---------------	---------

{A,B,C,E} {A,B,C} {A,B,E}	{B,C,E}	{A,C,E}	×
---	---------	---------	---

{A,B,C} and {A,B,E} item subsets are not belong to L_3 , so {A,B,C,E} is prunned. Prunned $C_4=null$

Step 10: Generate the association rules from frequent itemsets and calculate confidence levels.

confidence(S->(I-S)) = support(I)/support(S)

For the 2-Itemset

Frequent	Subset	Association	Support(I)	Support(S)	Confidence	Confidence(%)
Itemset		rules				
{A,C}	{A}	{A}->{C}	3	3	3/3	100%
	{C}	{C}->{A}	3	4	3/4	75%
{A,E}	{A}	{A}->{E}	2	3	2/3	66.66%
	{E}	{E} >{A}	2	4	2/4	50%
{B,C}	{B}	{B}->{C}	2	3	2/3	66.66%
	{C}	{C}->{B}	2	4	2/4	50%
{B,E}	{B}	{B}->{E}	3	3	3/3	100%
	{E}	{E}->{B}	3	4	3/4	75%
{C,E}	{C}	{C}->{E}	3	4	3/4	75%
	{E}	{E}->{C}	3	4	3/4	75%

Given the minimum confidence level to 60%, so the final association rules:

Rule1: {A}->{C}

Rule2: {C}->{A}

Rule3: {A}->{E}

Rule4: {B}->{C}

Rule5: {B}->{E}

Rule6: {E}->{B}

Rule7: {C}->{E}

Rule8: {E}->{C}

For the 3-Itemset

Tot the 3 remiser							
Frequent	Subset	Association	Support(I)	Support(S)	Confidence	Confidence(%)	
Itemset		rules					
{A,C,E}	{A}	{A}->{C,E}	2	3	2/3	66.66%	
	{C}	{C} >{A,E}	2	4	2/4	50%	
	{E}	{E} >{A,C}	2	4	2/4	50%	
	{A,C}	{A,C}->{E}	2	3	2/3	66.66%	
	{A,E}	{A,E}->{C}	2	2	2/2	100%	
	{C,E}	{C,E}->{A}	2	3	2/3	66.66%	
{B,C,E}	{B}	{B}->{C,E}	2	3	2/3	66.66%	
	{C}	{C}->{B,E}	2	4	2/4	50%	
	{E}	{E} >{B,C}	2	4	2/4	50%	

{B,C}	{B,C}->{E}	2	3	2/3	66.66%
{B,E}	{B,E}->{C}	2	2	2/2	100%
{C,E}	{C,E}->{B}	2	3	2/3	66.66%

Given the minimum confidence level to 60%, so the final association rules:

Rule1: {A}->{C,E} Rule2: {A,C}->{E} Rule3: {A,E}->{C} Rule4: {C,E}->{A} Rule5: {B}->{C,E} Rule6: {B,C}->{E} Rule7: {B,E}->{C}

Rule8: {C,E}->{B}

Q2:

Step 1: Scan the transaction database, generate the candidate 1-itemset $\,C_1$, and calculate the support of each $\,C_1$ itemset.

 C_1

Itemset	Support Count
{A}	2
{B}	4
{C}	1
{D}	2
{E}	3

Step 2: Determine the frequent 1-itemset L_1 .

 L_1

Itemset	Support Count
{A}	2
{B}	4
{D}	2
{E}	3

Step 3: Find all 2-itemset of each transaction.

TID	Item	2-itemset
T1	A,B,C	{A,B},{A,C},{B,C}
T2	B,D,E	{B,D},{B,E},{D,E}
Т3	A,B,D,E	{A,B},{A,D},{A,E},{B,D},{B,E},{D,E}
T4	B,E	{B,E}

Step 4: Map the 2-itemset of transactions into the hash table

Items = A, B, C, D, E

Order = 1, 2, 3, 4, 5

Hash function bucket $\#= h(\{x y\}) = ((order of x)*10+(order of y)) \% 7$

		{D,E}		
		{B,D}	{B,E}	

				{D,E}	{B,E}	{A,B}	
	{A,D}	{A,E}	{B,C}	{B,D}	{B,E}	{A,B}	{A,C}
Number	1	1	1	4	3	2	1
Bucket	0	1	2	3	4	5	6

Step 5: $L_1 * L_1$

<u>.</u>		
$L_1^*L_1$	#in the	
	bucket	
{A,B}	2	
{A,D}	1	
{A,E}	1	
{B,D}	4	
{B,E}	3	
{D,E}	4	

Step 6: Choose the itemsets where the number of content in its bucket is above the minimum support.

After DHP C_2

2-itemset
{A,B}
{B,D}
{B,E}
{D,E}

Step 7: Determine the frequent 2-itemset L_2 .

 L_2

2-itemset	Count
{A,B}	2
{B,D}	2
{B,E}	3
{D,E}	2

Step 8: Discard transactions using DHP

DHP:

If an item occurs in a frequent (k+1)-itemset, it must occur in at least k candidate k-itemsets (necessary but not sufficient)

Discard an item if it does not occur in at least k candidate k-itemsets during support counting

TID	Item	2-itemset	DHP Pruned
T1	A,B,C	{A,B}	Discard
T2	B,D,E	{B,D},{B,E},{D,E}	Keep{B,D,E}
T3	A,B,D,E	{A,B},{B,D},{B,E},{D,E}	Keep{B,D,E}
T4	B,E	{B,E}	Discard

So, the $\,D_3\,$ = {<T2,B C E>,<T3,B C E>} after discarding transactions using DHP

(b) i. Advantages:

- 1. The number of possible frequent closed itemsets is much smaller than that of frequent itemsets. Therefore, the storage is smaller.
- We do not need to generate all possible frequent itemsets. Therefore, execution time is shorter.

Disadvantages:

- 1. We need to expand the closed frequent itemset in order to check whether an itemset is frequent or not.
- 2. It is not easy for users to understand the closed frequent itemsets directly.

ii. Advantages:

- 1. According to closed frequent itesmsets with C_c, we can generate all traditional frequent itemsets associated with frequecies (i.e. F_c). However, according to maximal frequent itemsets with M_c, we cannot generate all traditional frequent itemsets associated with frequencies (i.e. F_c).
- 2. Closed frequent itemsets are useful to remove some of the redundant association rules. According to the concept of closed frequent itemsets, we can define redundant association rules as follows. X → Y is redundant if there exists another rule X'→ Y' where X'⊂ X and Y'⊂ Y, and their support and confidence are the same. Such redundant rules are not generated if closed frequent itemsets are used for rule generation.

Disadvantages:

- 1. The number of possible closed frequent itemsets is much larger than that of frequent itemsets. So the storage is larger.
- 2. It is not easy for users to understand the closed frequent itemsets directly.

- (c) We can use the same FP-growth approach to mine closed frequent itemset. We just need to make the following adaptions.
 - 1. When we generate conditional FP-trees, we process the items in the header table from the bottom to the top.
 - 2. Whenever we generate an itemset, we have to check whether this itemset is in the set of itemsets generated before.

Algorithm FP-growth (Tree,α)

- 1. A ← Ø; B← Ø
- 2. If tree contains a single path P
 - Partition the path into different segments such that all nodes in each segment have the same node support
 - For each segment S
 - o Choose the node N in S at the deepest height
 - o β —a set of nodes N to the root
 - o Generate the pattern $\beta \cup \alpha$ with support equal to minimum support of nodes in β
 - o If there does **NOT** exist an itemset I in A s.t. I.count= $(\beta \cup \alpha)$.count, Insert $\beta \cup \alpha$ into A

else

- For each ai in the header of Tree,
- o Generate pattern $\beta = a_i \cup \alpha$ with support equal to a_i support
- o Insert this pattern into B
- o Construct β 's conditional pattern base and then β 's conditional FP-tree Tree β
- o If Tree_{β} $\neq \emptyset$

Call FP-growth(Tree_β, β)

- 3. Last Step
 - (a) Process itemsets in B in descending order of the size of the itemsets
 - (b) For each itemset I_B in B,
 - (c) Check whether there exists an itemset I_A in A s.t. I_A is a super-itemset of I_B and I_A .count = I_B .count. If no, insert I_B into A
 - (d) Output A.

E.g.:

	frequency
Α	3
В	1
C	3
D	4

	frequency
A	3
C	3
D	4

Sorted:

	frequency
D	4
A	3
C	3

Trans: D,C

A	
D,	C
	A, C
A	
D	

Then, conditional tree on C is:

Trans:

D:1, A:1, C:1 D:2, C:2

	freq
A	1
D	3
C	3

20		
		freq
	D	3
	C	3

Conditional tree on A is:

Trans: D:1, A:1 A:2

	freq
D	1
A	3

freq	

root

B={	<{C},3>,<{A},3>
A={	{<{C,D},3>}

Conditional tree on D is:

Trans:

D: 4

	freq
D	4

		_
	freq	To at
D	4	root

3

Last Step:

Finally, A={<{C,D},3>,<{D},4>,<{A},3>}

Q4:

- (a) (5 marks){ 'Upload Songs'}: 80%, {'Add Tags'}: 60%, {'Share'}: 60%, {'Listen'}: 60%
- (b) (10marks) 2-sequences Candidate Generation:
- <{ 'Upload Songs', 'Add Tags'}>, <{ 'Upload Songs', 'Share'}>, <{ 'Upload Songs', 'Listen'}>,
- <{'Add Tags', 'Share'}>, <{'Add Tags', 'Listen'}>, <{'Share', 'Listen'}>,
- $\label{eq:congs} $$ \ef{Upload Songs'}, $$ {\document{`Upload Songs'}}, $$ \ef{Upload Songs'}, $$ \ef{Upload Son$

{'Share'}>, <{'Upload Songs'}, {'Listen'}>,

- <{'Add Tags'}, {'Upload Songs'}>, <{'Add Tags'}, {'Add Tags'}>, <{'Add Tags'}>, <{'Add Tags'}>,
- <{'Add Tags'}, {'Listen'}>,
- <{'Share'}, {'Upload Songs'}>, <{'Share'}, {'Add Tags'}>, <{'Share'},
- <{'Share'}, {'Listen'}>,
- <{'Listen'}, {'Upload Songs'}>, <{'Listen'}, {'Add Tags'}>, <{'Listen'}, {'Share'}>,
- <{'Listen'}, {'Listen'}>

Candidate Pruning: Remain unchanged

(c) (5 marks) Frequent 2-sequences:

- <{ 'Upload Songs', 'Add Tags'}>: 40%, <{ 'Share', 'Listen'}>: 40%,
- <{'Upload Songs'}, {'Listen'}>: 40%, <{'Add Tags'}, {'Listen'}>: 40%

(d) (10 marks) 3-sequences Candidate Generation:

- <{ 'Upload Songs', 'Add Tags'}, {'Listen'}>, <{'Upload Songs'}, {'Share', 'Listen'}>,
- <{'Add Tags'}, {'Share', 'Listen'}>

Candidate Pruning:

- (1) <{ 'Upload Songs', 'Add Tags'}, {'Listen'}> should not be pruned
- (2) <{'Upload Songs'}, {'Share', 'Listen'}> should be pruned because one 2-subsequence <{'Upload Songs'}, {'Share'}> is not frequent
- (3) <{'Add Tags'}, {'Share', 'Listen'}> should be pruned because one 2-subsequence <{'Add Tags'}, {'Share'}> is not frequent

(e) (5 marks) Frequent 3-sequences:

Since the support of <{ 'Upload Songs', 'Add Tags'}, {'Listen'}> is 20%. There is no frequent 3-sequence.