Quiz 6

Due Nov 22 at 11:59pm	Points 6	Questions 6	Time Limit None	

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	2,694 minutes	6 out of 6

Score for this quiz: **6** out of 6 Submitted Nov 20 at 10:47am This attempt took 2,694 minutes.

Question 1

1 / 1 pts

We are testing a set of toy cars from a new manufacturer. Each toy car has the same probability p to be incorrectly assembled. If we tested 5 toy cars, and we found 3 of those toy cars are incorrectly assembled. What is the most probable value for p based on the maximum likelihood estimation? Round it to two decimals.

Correct!

0.6

orrect Answers

- 0.6 (with margin: 0)
- 0 (with margin: 0)
- 0 (with margin: 0)
- 0 (with margin: 0)

Question 2

1 / 1 pts

Follow the previous question. If we know the density function of the prior distribution of p is:

P(p)=2p

What is the most probable value for p based on the maximum a posteriori estimation? Round it to two decimals.

Correct!

0.67

orrect Answers

0.67 (with margin: 0.01)

0 (with margin: 0)

0 (with margin: 0)

0 (with margin: 0)

Question 3	1 / 1 pts

Follow the previous questions. Which of the following statement is INCORRECT?

- (A) As we examine more and more toys, the choice of prior becomes less impactful.
- (B) We usually assume a uniform prior distribution if no further information is given for p.
- (C) A proper choice of prior distribution can significantly reduce the number of experiments

needed for the convergence to optimal p.

(D) When the prior is a normal distribution, Maximum A Posteriori estimator is the same as

Maximum Likehood estimation

_

B

_ C

Correct!

D

Question 4

1 / 1 pts

Consider building a Naive Bayes classifier for a 3-class multi-class classification problem with

20 binary features. What is the minimal number of parameters we need to specify for this Naive Bayes classifier?

Correct!

62

orrect Answers

62 (with margin: 0)

0 (with margin: 0)

0 (with margin: 0)

0 (with margin: 0)

Question 5

1 / 1 pts

Consider building a Naive Bayes classifier based on the training data below.

Patient	Age(A)	Weight (W)	Workout Regularly (E)	Diabetes (D)
1	Young	Light	No	Yes
2	Young	Heavy	No	Yes
3	Young	Heavy	No	No
4	Young	Heavy	No	No
5	Young	Light	Yes	No
6	Young	Light	Yes	No
7	Young	Light	Yes	No
8	Young	Light	Yes	No
9	Old	Heavy	No	Yes
10	Old	Heavy	Yes	Yes
11	Old	Light	No	No
12	Old	Light	Yes	No

What is the prior probability P (D = Yes) for the Naive Bayes classifier trained on the above data based on the maximum likelihood estimation? Round it to two decimals.

Follow the previous question. What is the probability P (W = Heavy|D = No) for the Naive Bayes classifier trained on the above data based on the maximum likelihood estimation? Round it to two decimals. Correct 0.25 0.25 (with margin: 0.01) 0 (with margin: 0) 0 (with margin: 0) 0 (with margin: 0) 0 (with margin: 0)

Quiz Score: 6 out of 6