

NEURAL CORRELATES OF CONSCIOUS CONTENT

Marcin Koculak

Under supervision of prof. Michał Wierzchoń

PSA

SELF-PACED DEFENCE

WERSJA PO POLSKU!

https://tinyurl.com/polskiphd

ENGLISH SLIDES

https://tinyurl.com/slajdypdf

THE PROBLEM

DICHOTOMY OF CONSCIOUSNESS SCIENCE

CLEARLY DISTINGUISHABLE

RELIABLE CANDIDATE MEASURES: COMPLEXITY

MIXED WITH AROUSAL ET AL.

EXPERIMENTALLY DIFFICULT

DIFFICULT TO TRACK

MANY COMPETING CORRELATE CANDIDATES

MIXED WITH COGNITION

EXPERIMENTALLY EASY

THE PROBLEM II

EXTENT OF CONSCIOUS CONTENT

TO NATURALISTIC SETTING

TO EXPERIENCE SAMPLING

METHODS

REDESIGNING RESTING-STATE

EYES CLOSED

EYES OPENED

WALK

METHODS

FLAVOURS OF COMPLEXITY

RESULTS

TRACKING CONSCIOUS CONTENT

PARTICIPANTS

WOMEN - 357 MEN - 266

MIX-CLOSED - 570

MIX-0PEN - 570

OPEN - 107

AUDIO - 252

LONG - 112

SHORT - 337

WALK - 163

STORIES - 166

RECORDINGS

"LOCALIZING" THE EFFECTS

RESULTS

TRACKING THE DYNAMICS

RESULTS

TRACKING THE DYNAMICS II

CONCLUSIONS

COMPLEX = CONSCIOUS?

- Complexity measures (LZc) can track conscious content
- It is not a viable option for typical experiments (sample size, localization issues)
- New resting state paradigms work
- Database, paradigms, and code will be public
- More research needed

SUPPLEMENTARY MATERIALS

PHD WRAPPED/REWIND

COLLABORATORS

Michał Bola

Kinga Ciupińska

Wiktoria Orłowska

Dominika Drążyk

Laura Łępa

THANK YOU FOR ATTENTION!

RESPONSES TO REVIEWS

THESIS GOALS WHY ALL OF THIS?

MAIN GOAL

Investigate if complexity is a useful measure outside of state research

SUBGOALS

- 1. Identifying a viable experimental approach resting state
- 2. Maximizing the chances for meaningful results C-REST database
- 3. Formalising experimental strategy "atheoretical" complexity
- 4. Exploring the collected data complexity analyses

DEFINING CONSCIOUSNESS IN RESEARCH

BACKGROUND CONSCIOUSNESS

DATASET CONDITION MATRICES

AUDIO	MIX	OPEN	LONG	SHORT	STORIES	WALK		RUNS	
								2	3
225	210			165	141	135	AUDIO	25	1
	402			289	140	138	MIX	152	8
		107	103				OPEN		JE Z
			112				LONG		
				310	110	107	SHORT	23	2
					156	137	STORIES	10	
						150	WALK	13	

TEMPORAL DYNAMICS OF COMPLEXITY

UNIVERSAL COMPLEXITY

Complexity measures capture general system properties

- Detachment from theoretical framework of IIT
- Proposal for simpler but testable underlying mechanisms

Data-driven exploration of relations between complexity and consciousness

- Utilising available data
- Focus on generalizability
- Understanding parameter space of the measure

New hybrid approaches

PROOF OF (COMPLEX) CONCEPT

HYPOTHESIS

Lempel-Ziv complexity will track conscious content as operationalized between resting-state conditions.

BASELINES

Selectivity for conscious content - alpha (arousal/perceptual confounds)

Specificity of complexity variant - MSE, DFA

Robustness of estimation – ROI, temporal dynamics, window size

GOAL SUMMARY WAS IT WORTH IT?

OUTCOMES

Important contribution to resting-state modernization movement

Unique resting-state database for general purpose research

Proposal for data-driven content/qualia research paradigm

Proof-of-concept application of the paradigm to data

QUALIA OR QUANTIA?

QUALIA OR QUANTIA?

COMBINED PARADIGMS

Lacaux, C., Strauss, M., Bekinschtein, T. A., & Oudiette, D. (2024). Embracing sleep-onset complexity. Trends in Neurosciences, 47(4), 273–288.

https://doi.org/10.1016/j.tins.2024.02.002

COMBINED PARADIGMS

Andrillon, T., Windt, J., Silk, T., Drummond, S. P. A., Bellgrove, M. A., & Tsuchiya, N. (2019). Does the Mind Wander When the Brain Takes a Break? Local Sleep in Wakefulness, Attentional Lapses and Mind-Wandering. Frontiers in Neuroscience, 13, 949. https://doi.org/10.3389/fnins.2019.00949

COMBINED PARADIGMS

Boulakis, P. A., Mortaheb, S., Calster, L. van, Majerus, S., & Demertzi, A. (2023). Whole-Brain Deactivations Precede Uninduced Mind-Blanking Reports. Journal of Neuroscience, 43(40), 6807–6815. https://doi.org/10.1523/JNEUROSCI.0696-23.2023

"LOCALIZATION" ISSUES

"AUDITORY"

Reported in literature as locations for early auditory correlates (e.g. AAN)

"CENTRO-FRONTAL"

Added as non-sensory baseline region for comparison purpose.

"VISUAL"

Early correlates of conscious visual perception (e.g. VAN)

"CENTRO-PARIETAL"

Late correlates of conscious visual perception (e.g. P300)

WHY THESE MEASURES?

Nilsen, A. S., Juel, B., Thürer, B., & Storm, J. F. (2020). Proposed EEG measures of consciousness: a systematic, comparative review. https://doi.org/10.31234/osf.io/sjm4a

Figure 2. Overview of measures and categories. Each bubble represents a single measure with size determined by the number of results registered and position by CI and dominant effect direction relative to wake control (increase or decrease). Light grey bubbles represent measures that were removed in the filtering process (see Suppl. 1) with CI determined at filtering step S1.2. Colored bubbles are measures that remained after the filtering process, with CI determined at filtering step S1.6. CI for categories, presented as numbers along the bottom of the figure, is determined at S1.6. The category multi-parameter (M.P.) had no measures surviving the filtering process, and therefore has no estimate of consistency available.

WHY THESE MEASURES?

Nilsen, A. S., Juel, B., Thürer, B., & Storm, J. F. (2020). Proposed EEG measures of consciousness: a systematic, comparative review. https://doi.org/10.31234/osf.io/sjm4a

WHY THESE MEASURES?

Luppi, A. I., Craig, M. M., Pappas, I., Finoia, P., Williams, G. B., Allanson, J., Pickard, J. D., Owen, A. M., Naci, L., Menon, D. K., & Stamatakis, E. A. (2019). Consciousness-specific dynamic interactions of brain integration and functional diversity. Nature Communications, 10(1), 4616. https://doi.org/10.1038/s41467-019-12658-9

Tagliazucchi, E., Chialvo, D. R., Siniatchkin, M., Amico, E., Brichant, J.-F., Bonhomme, V., Noirhomme, Q., Laufs, H., & Laureys, S. (2016). Largescale signatures of unconsciousness are consistent with a departure from critical dynamics. Journal of The Royal Society Interface, 13(114), 20151027. https://doi.org/10.1098/rsif.2015.1027

WHY THESE MEASURES?

Barry, R. J., De Blasio, F. M., Fogarty, J. S., & Clarke, A. R. (2020). Natural alpha frequency components in resting EEG and their relation to arousal. Clinical Neurophysiology, 131(1), 205–212. https://doi.org/10.1016/j.clinph.2019.10.018

OTHER MEASURES

Canales-Johnson, A., Billig, A. J., Olivares, F., Gonzalez, A., Garcia, M. D. C., Silva, W., Vaucheret, E., Ciraolo, C., Mikulan, E., Ibanez, A., Huepe, D., Noreika, V., Chennu, S., & Bekinschtein, T. A. (2020). Dissociable Neural Information Dynamics of Perceptual Integration and Differentiation during Bistable Perception. Cerebral Cortex, 30(8), 4563–4580.

https://doi.org/10.1093/cercor/bhaa058

OTHER

GOOD TO HAVE

- Raincloud plots
- Bayesian multilevel mixed modelling

