0.0.1 Quantification scalaire uniforme

1.

$$D = E[(x - y)^{2}]$$

$$= \int_{-\infty}^{+\infty} p_{X}(x)(x_{Q}(x))^{2} dx$$

$$= \sum_{i=1}^{N} \int_{s_{i-1}}^{s_{i}} p_{X}(x)(x - y_{i})^{2} dx$$

2.
$$N=2$$
 $y_1=-\frac{\Delta}{2}$, $y_2=\frac{\Delta}{2}$

On cherche Δ qui minimise D:

$$D = \int_{-\infty}^{0} p_X(x)(x + \frac{\Delta}{2})^2 dx + \int_{0}^{\infty} p_X(x)(x - \frac{\Delta}{2})^2 dx$$

$$= \int_{-\infty}^{0} p_X(x)(x^2 + \frac{\Delta^2}{4} + x\Delta)dx + \int_{0}^{\infty} p_X(x)(x^2 + \frac{\Delta^2}{4} - x\Delta)dx$$

$$= \int_{-\infty}^{\infty} p_X(x)(x^2 + \frac{\Delta^2}{4})dx + \Delta(\int_{-\infty}^{0} p_X(x)dx - \int_{0}^{\infty} p_X(x)dx)$$

Or, $\int_{-\infty}^{0} p_X(x)dx + \int_{0}^{\infty} p_X(x)dx = 0$ (X de valeur moyenne nulle)

$$D = \int_{-\infty}^{\infty} p_X(x)(x^2 + \frac{\Delta^2}{4})dx + 2\Delta \int_{0}^{\infty} p_X(x)dx$$

$$= (\int_{-\infty}^{+\infty} p_X(x)dx)\frac{\Delta^2}{4} - (2\int_{0}^{\infty} xp_X(x)dx)\Delta + \int_{-\infty}^{+\infty} x^2p_X(x)dx$$

$$= \frac{\Delta^2}{4} - (2\int_{0}^{\infty} xp_X(x)dx)\Delta + \int_{-\infty}^{+\infty} x^2p_X(x)dx$$

Ainsi,

$$[D]\Delta = 0 \Rightarrow \frac{1}{4}2\Delta - 2\int_0^\infty xp_X(x)dx = 0 \Rightarrow \Delta = 4\int_0^\infty xp_X(x)dx$$

3. On a maintenant
$$\begin{cases} y_{i+1} - y_i &= \Delta \\ y_{N/2} = -\Delta/2, & y_{N/2+1} = \Delta/2 \end{cases}$$
 De plus, $y_{N/2} - y_1 = \Delta(N/2 - 1)$ donc $y_1 = y_{N/2} - \Delta(N/2 - 1) = -\Delta(N/2 - 1/2)$
$$y_i = \Delta/2(-N+1) + (i-1)\Delta = (i-N/2 - 1/2)\Delta$$

$$S_i = y_i + \Delta/2 = \Delta(i-N/2)$$

$$D = \int_{-\infty}^{\Delta(1-N/2)} p_X(x)(x + \Delta(N/2 - 1/2))dx$$

$$+ \sum_{i=2}^{N-1} \int_{\Delta(i-1-N/2)}^{\Delta(i-N/2)} p_X(x)(x - \Delta(i - \frac{N+1}{2})^2)dx$$

$$+ \int_{\Delta(N/2-1)}^{\Delta(i-N/2)} p_X(x)(x - \Delta(N/2 - 1/2))dx$$

Ensuite, on cherche Δ tel que $[D]\Delta = 0$ mais c'est relou donc on va pas le faire.

4. (a)
$$\Delta = \frac{2A}{4} = \frac{A}{2}$$

(b)
(c) $D = \frac{\Delta^2}{12} = \frac{A^2}{3 \times 2R}$

0.0.2 Quantification

0.0.3 Quantification et codage entropique

- 1. On ne peut pas le directement parce que les couples (R, D) n'ont ni R, ni D connu pour QSU et QSNU.
- 2. Sans codeur entropique, on ne se réfère qu'on premier tableau. Pour le même débit, on a toujours $RSB_{QSU} \leq RSB_{SQNU}$, donc la QSNU est meilleure.

3.
$$D_{min} = \sigma^2 2^{-2R}$$

$$RSB_{max} = 10\log_{10}\frac{\sigma^2}{D_{min}} = 6.02R$$

$$D(r) - D_{min}(R) = RSB_{max} - RSB(R) = 6R - RSB(R)$$

Avec un codeur entropique parfait, on a R = H et donc :

$\log_2 M$	QSU	QSNU
1	1.6	1.6
2	2.174	2.166
3	2.296	2.33
4	2.232	2.37
5	2.124	2.36

4. C'est QSU + CE qui est meilleur.

0.0.4 Codage scalable

1. (a)
$$M=2^R$$
 donc $\Delta=\frac{2X_{max}}{M}=\frac{2X_{max}}{2^R}=X_{max}2^{1-R}$

R	D	Non scalable	Scalable 1	Scalable 2
0	σ^2	0	0	0
1	$\sigma^2 2^{-2}$	1	1	1
2	$ \begin{vmatrix} \sigma^2 2^{-4} \\ \sigma^2 2^{-6} \end{vmatrix} $	2	1+2	2
3	$\sigma^2 2^{-6}$	3	1+2+3	3

Figure 1 – Débit

(b)
$$D = \frac{\Delta^2}{12} = \frac{(X_{max}2^{1-R})^2}{12} = X_{max}^2 \frac{1}{3} 2^{-2R}$$

(c) $R = 3 \Rightarrow M = 8$

- (d) $-X_1 = 0.9X_{max} \Rightarrow 111$ $-X_2 = -0.1X_{max} \Rightarrow 011$ $-X_3 = -0.6X_{max} \Rightarrow 001$
- 2. Le train binaire classique est 111 0111 001. Si les six bits de la fin sont perdus, on ne peut que reconstruire X_1 .
- 3. Scalable 1 : on code d'abord $X_1X_2X_3$ avec un bit par X_i , puis on la quantifiée avec 2 puis 3 bits. Au final, on code donc $X_1X_2X_3$ sur un train de 3+6+9=18 bits. Si on n'a que les 3 premiers 100, on peut reconstituer $X_1 = 0.5X_{max}$, $X_2 = X_3 = -0.5X_{max}$.
 - Scalable 2 : on envoie les premiers bits de X_1, X_2 et X_3 à la suite, puis les deuxièmes bits, puis les troisièmes. Le train fait donc 9 bits.
- 4. Codage d'image, codage vidéo. Because why? Because fuck you that's why.

0.0.5Codage avec information adjacente au décodeur

1. Un exemple de compression d'une sourceX en se servant d'une information adjacente supposée disponible au codeur et au décodeur :

En codage vidéo, le codeur dispose de l'image n-1 (compressée et décompressée) pour coder l'image n.

Le décodeur dispose également de l'image n-1.

2. On fabrique \tilde{X} à partir de X et de Y :

$$\tilde{X} = X - Y$$

Au décodeur, \tilde{X} sera utilisé pour calculer \hat{X} (l'estimé de X).

3. On suppose que Y et donc Z suivent une loi normale de moyenne nulle et d'écart-type respectif σ_Y et σ_Z .

(a)

$$\begin{split} E(X) &= E(Y+Z) = E(Y) + E(Z) = 0 \\ \sigma_X^2 &= E((X-E(X))^2) = E(X^2) = E(Y^2 + Z^2 + 2YZ) \\ &= E(Y^2) + 2E(Y)E(Z) + E(Z^2) \\ &= \sigma_Y^2 + \sigma_Z^2 \end{split}$$

- (b) On ne tient compte de Y ni au codeur, ni au décodeur, $\tilde{X} = X$ et $D_1(R) = \sigma_X^2 2^{-2R}$.
- (c) Si on compresse $\tilde{X}=X-Y=Z$, alors $D_2(R)=\sigma_{\tilde{X}}^22^{-2R}=(\sigma_X^2-\sigma_Y^2)2^{-2R}$. Donc : $D_2(R)\leq D_1(R)$
- 4. On n'utilise pas Y au codeur, donc à priori, les performances devraient être moins bonnes. Tout d'abord, X est quantifié à l'aide d'un quantificateur scalaire uniforme de pas Δ_1 , centré en 0. X appartient à un intervalle de quantification répété par un index q_1 , cet intervalle est alors découpé en M sous-intervalle, $m \in \{0, 1, ..., M-1\}$.

5.

$$\Delta_1 = M\Delta_2 \Rightarrow \Delta_2 = \frac{\Delta_1}{M}$$

6. Les m(s) sont équiprobables donc :

$$H = \sum_{i=1}^{\Delta_2} \frac{1}{\Delta_2} log_2(\frac{1}{\frac{1}{\Delta_2}} = log_2(\Delta_2))$$

C'est le nombre de bits nécessaire.

Première méthode:

On quantifie Y au décodeur avec Δ_1 :

7. Il faut :

$$\begin{cases} k\Delta_1 - \frac{\Delta_1}{2} \le Y \le k\Delta_1 + \frac{\Delta_1}{2} \\ k\Delta_1 - \frac{\Delta_1}{2} \le X \le k\Delta_1 + \frac{\Delta_1}{2} \end{cases}$$

On suppose que $Y=k\Delta_1$ donc, on a $k\Delta_1-\frac{\Delta_1}{2}\leq k\Delta_1+Z\leq k\Delta_1+\frac{\Delta_1}{2}$. Ce qui implique que :

 $-\frac{\Delta_1}{2} \le Z \le \frac{\Delta_1}{2}$

- 8. Lorsque Y est très proche de la limite de l'intervalle, on a une distorsion de l'ordre de Δ_1^2 , même lorsque $Z \ll Y$.
- 9. Deuxième méthode : On découpe l'intervalle de largeur Δ_1 en 0, en M sous-intervalle, et on sélectionne le milieu 0' du sous-intervalle indexé par m. Ensuite, Y est quantifié avec Δ_1 mais centré en 0'.

Première étape : on reconstruit $\hat{\omega}$ à partir de m et $-\frac{\Delta_1}{2} \leq \tilde{\omega} \leq \frac{\Delta_1}{2}$. Seconde étape : $Y \to \hat{Y}$

$$\hat{X} = Y + \hat{\omega} \text{ et}, X = Y + Z$$
 donc,
$$(\hat{X} - X) = (\hat{Y} - Y) + (\hat{\omega} - Z)$$

$$(\hat{Y} - Y)^2 \le \frac{\Delta_1^2}{4}$$

Si $Z \in \left[-\frac{\Delta_1}{2}; \frac{\Delta_1}{2}\right]$ alors, $(Z - \hat{\omega})^2 \leq \Delta_1^2$, sinon $(z - \hat{\omega})^2$ peut être large.

- 10. Δ_1 assez grand pour que $|Z| \leq \frac{\Delta_1}{2}$. D(R) augmente aussi et $(\hat{m} - m)$ augmente.
- 11. Montrons que $Pr(|Z| > \frac{\Delta_1}{2}) = \sqrt{\frac{2}{\pi \sigma_Z^2}} \int_{\frac{\Delta_1}{2}}^{+\infty} exp(-\frac{z^2}{2\sigma_z^2}) dz$, dont la distribution de probabilité est : On peut aussi montrer que :

$$\begin{split} Pr(|Z| > \frac{\Delta_1}{2}) &= 2Pr(Z > \frac{\Delta_1}{2}) \\ &= 2\sqrt{\frac{1}{2\pi\sigma_Z^2}} \int_{\frac{\Delta_1}{2}}^{+\infty} exp(-\frac{z^2}{2\sigma_z^2}) dz \end{split}$$

On suppose que $\Delta_2 << \Delta_1$, et $\Delta_2 << \sigma_Z$. On peut montrer que $|Z| \leq \frac{\Delta_2}{2} \Rightarrow D_1 = \frac{\Delta_2^2}{12}$ et que $|Z| > \frac{\Delta_2}{2} \Rightarrow D_2 = \Delta_2^2$.

$$\begin{split} D &= D_1 Pr(|Z| \leq \frac{\Delta_1}{2}) + D_2 Pr(|Z| > \frac{\Delta_1}{2}) \\ &= \frac{\Delta_2^2}{12} \int_{-\frac{\Delta_1}{2}}^{\frac{\Delta_1}{2}} \frac{1}{\sqrt{2\pi\sigma_Z^2}} exp(-\frac{z^2}{2\sigma_Z^2}) dz + \Delta_1^2 \sqrt{\frac{2}{\pi\sigma_Z^2}} \int_{\frac{\Delta_1}{2}}^{+\infty} exp(-\frac{z^2}{2\sigma_Z^2}) dz \\ &= \sqrt{\frac{2}{pi\sigma_z^2}} \left(\frac{\Delta_2^2}{12} \int_0^{\frac{\Delta_1}{2}} exp(-\frac{z^2}{2\sigma_Z^2}) dz + \Delta_1^2 \int_{\frac{\Delta_1}{2}}^{+\infty} exp(-\frac{z^2}{2\sigma_Z^2}) dz \right) \end{split}$$

12. R est fixé donc M est fixé, et $\Delta_2 = \frac{\Delta_1}{M}$. On calcul $\frac{\partial D}{\partial \Delta_1}$ et par magie on trouve 0.