

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №1

по дисциплине «Теория принятия решений» Метод Парето

Студент группы: ИКБО-42-23	Голев С. С
	(Ф. И.О. студента)
Преподаватель	Железняк Л.М.
	$(\Phi M O) \text{ nnanodaeamana}$

СОДЕРЖАНИЕ

BBE	ЕДЕНИЕ	3
	МЕТОД ПАРЕТО	
	Выбор Парето-оптимального множества	
	Указание верхних/нижних границ критериев.	
	Лексикографическая оптимизация	
	Результаты работы программы	
	ЛЮЧЕНИЕ	
СПІ	ИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	9
ПРИ	иложения	10

ВВЕДЕНИЕ

Метод Парето, или принцип Парето, широко используется в задачах многокритериального принятия решений и оптимизации. Основная идея метода заключается в следующем:

Сравнение альтернатив по нескольким критериям:

При наличии множества вариантов (альтернатив) решения сравниваются по ряду критериев. Один вариант считается доминирующим по отношению к другому, если он по каждому критерию не хуже, а хотя бы по одному – лучше.

Парето-оптимальное множество:

Решения, которые не доминируются ни одним другим, называются Парето-оптимальными. Это означает, что нельзя улучшить хотя бы один критерий, не ухудшив при этом другой. Такое множество представляет собой набор лучших компромиссных вариантов, из которого затем может быть выбран окончательный вариант с учётом дополнительных предпочтений или ограничений.

1 МЕТОД ПАРЕТО

Задается множество альтернатив и их критериев со стремлениями.

Каждая альтернатива сравнивается с другими. Если найдется такая альтернатива s_j , что $s_j > s_i$ (то есть s_j не хуже s_i по всем критериям и хотя бы по одному критерию лучше), то s_i считается доминируемой, а s_i доминирующей.

Если для s_i ни одна другая альтернатива не доминирует над ней, s_i считается Парето-оптимальной.

Собираем все альтернативы, которые не доминируются ни одной другой, в множество, которое является Парето-оптимальным множеством.

1.1 Выбор Парето-оптимального множества

Предметная область: Выбор космического корабля.

Tаблица 1 - Aльтернативы со стремлениями

	Космический	Цена	Скорость	Время	Количест	Мощност
	корабль	(кредит	(км/ч) (+)	входа в	во орудий	ь щитов
		ы) (-)		гиперпрос транство	(шт) (+)	(B _T) (+)
				(сек) (-)		
1	TIE Fighter	20000	5000	3.0	2	100
2	TZ-24	22000	4900	3.2	4	120
3	S-100	21000	4800	3.1	3	150
4	F-T2	30000	5100	4.0	3	110
5	CR90	25000	4600	3.5	2	130
6	IL-5	26000	4700	3.7	2	100
7	FT-6	35000	4400	4.5	2	100
8	FT-8	34000	4500	4.3	3	115
9	S-13	33000	4600	4.1	2	105
10	S-SC4	32000	4700	3.9	3	125

Найдём оптимальное множество:

Таблица 1.2 – Нахождение оптимального множества

	1	2	3	4	5	6	7	8	9	10
1										
2										
3										
4										
5			3							
6	1	2	3							
7		2	3	4	5					
8		2	3							
9		2	3	4	5					
10			3							

Парето-оптимальное множество альтернатив {TIE Fighter, TZ-24, S-100, F-T2, CR90}.

1.2 Указание верхних/нижних границ критериев.

Парето-оптимальное множество альтернатив {TIE Fighter, TZ-24, S-100, F-T2, CR90}.

Для вариантов решений зададим границы. Цена корабля не должна превышать 22000 кредитов, скорость не менее 4800 км/ч, время входа в гиперпространство не менее 3.0 секунд, количество орудий 3 и более, мощность щитов больше 100 ватт.

Таблица 2 – Парето-оптимальные варианты с указанием границ

	Космический корабль	Цена (кредит ы) (-)	Скорость (км/ч) (+)	Время входа в гиперпрос транство (сек) (-)	Количест во орудий (шт) (+)	Мощност ь щитов (Вт) (+)
1	TZ-24	22000	4900	3.2	4	120
2	S-100	21000	4800	3.1	3	150

1.3 Субоптимизация

Парето-оптимальное множество альтернатив {TIE Fighter, TZ-24, S-100, F-T2, CR90}.

Главный критерий: Скорость.

Ограничения: Цена не более 25000 кредитов, время входа в гиперпространство больше 3.2 секунда, количество орудий больше 2, мощность щитов не менее 120 ватт.

Таблица 3 – Парето-оптимальные варианты

	Космический корабль	Цена (кредит ы) (-)	Скорость (км/ч) (+)	Время входа в гиперпрос транство (сек) (-)	Количест во орудий (шт) (+)	Мощност ь щитов (Вт) (+)
1	TIE Fighter	20000	5000	3.0	2	100
2	TZ-24	22000	4900	3.2	4	120
3	CR90	25000	4600	3.5	2	130
4	S-100	21000	4800	3.1	3	150
5	F-T2	30000	5100	4.0	3	110

Самый лучший корабль: TZ-24

1.3 Лексикографическая оптимизация

Упорядочим критерии по приоритету: важнейший критерий - Скорость, следующие: количество орудий, мощность щитов, цена, время входа в гиперпространство.

Таблица 4 – Альтернативы со стремлениями

	Космический корабль	Цена (кредит ы) (-)	Скорость (км/ч) (+)	Время входа в гиперпрос транство (сек) (-)	Количест во орудий (шт) (+)	Мощност ь щитов (Вт) (+)
1	TIE Fighter	20000	5000	3.0	2	100
2	TZ-24	22000	4900	3.2	4	120
3	S-100	21000	4800	3.1	3	150
4	F-T2	30000	5100	4.0	3	110
5	CR90	25000	4600	3.5	2	130
6	IL-5	26000	4700	3.7	2	100
7	FT-6	35000	4400	4.5	2	100
8	FT-8	34000	4500	4.3	3	115
9	S-13	33000	4600	4.1	2	105
10	S-SC4	32000	4700	3.9	3	125

Самый лучший корабль: F-Т2.

1.5 Результаты работы программы

```
(venv) PS C:\Users\semen\Desktop\MIREA\Teopия принятия решений\Практика1> python main1.py
Оптимальное множество:
TIE Fighter
TZ-24
S-100
F-T2
CR90
```

Рисунок 1 – Результат работы программы.

ЗАКЛЮЧЕНИЕ

В данной работе был изучен алгоритм Парето, выполнен ручной расчёт по этому алгоритму, написана программа на языке Python, которая реализует данный алгоритм, а также изучены улучшения этого алгоритма указания верхних и нижних границ критериев, субоптимизация, лексикографическая оптимизация.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение A – Код реализации метода Парето на языке Python.

Приложение А

Код реализации метода Парето на языке Python.

Листинг А.1. . Реализация Парето.

```
alts = [
     {"name": "TIE Fighter", "credits": 20000, "speed": 5000, "hyper": 3.0,
"weapons": 2, "shields": 100},
     {"name": "TZ-24",
                                 "credits": 22000, "speed": 4900, "hyper": 3.2,
"weapons": 4, "shields": 120}, {"name": "S-100", "c:
                                 "credits": 21000, "speed": 4800, "hyper": 3.1,
"weapons": 3, "shields": 150}, {"name": "F-T2", "ci
                                 "credits": 30000, "speed": 5100, "hyper": 4.0,
"weapons": 3, "shields": 110}, {"name": "CR90", "cr
                                 "credits": 25000, "speed": 4600, "hyper": 3.5,
"weapons": 2, "shields": 130}, {"name": "IL-5", "cr
                                 "credits": 26000, "speed": 4700, "hyper": 3.7,
"weapons": 2, "shields": 100}, {"name": "FT-6", "cr
                                 "credits": 35000, "speed": 4400, "hyper": 4.5,
"weapons": 2, "shields": 110}, {"name": "FT-8", "c:
                                 "credits": 34000, "speed": 4500, "hyper": 4.3,
"weapons": 3, "shields": 115}, {"name": "S-13", "c:
                                 "credits": 33000, "speed": 4600, "hyper": 4.1,
"weapons": 2, "shields": 105}, {"name": "S-SC4", "c:
                                 "credits": 32000, "speed": 4700, "hyper": 3.9,
"weapons": 3, "shields": 125},
1
min_crit = ["credits", "hyper"]
plus_crit = ["speed", "weapons", "shields"]
def dom(a, b):
    crits = 0
     for crit in min crit:
         if a[crit] <= b[crit]:</pre>
              crits += 1
     for crit in plus crit:
         if a[crit] >= b[crit]:
              crits += 1
     return crits == 5
def pareto(alts):
    pareto = []
     for i in range (len(alts)):
         for j in range (i+ 1, len(alts)):
              if dom(alts[i], alts[j]):
                   pareto.append(alts[i])
                   break
    return pareto
opt alt = pareto(alts)
print("Оптимальное множество:")
for alt in opt alt:
    print(alt["name"])
```

Конец листинга А.1.