Отчёт по лабораторной работе №4

Компьютерный практикум по статистическому анализу данных

Канева Екатерина, НФИбд-02-22

Содержание

1	Чель работы Задание					5	
2						6	
3	Теоретическая часть						
4	Выполнение лабораторной работы						
	4.1	Прим	меры			8	
	4.2	Задан	ния для самостоятельной работы		13	3	
		4.2.1	Произведение векторов		13	3	
		4.2.2	Системы линейных уравнений		14	4	
		4.2.3	Операции с матрицами		10	6	
		4.2.4	Линейные модели экономики		1	7	
5	Выв	зоды			19	9	

Список иллюстраций

4.1	Первый раздел примеров	8
4.2	Второй раздел примеров	9
4.3	Третий раздел примеров	10
4.4	Четвёртый раздел примеров	10
4.5	Пятый раздел примеров (1)	11
4.6	Пятый раздел примеров (2)	12
4.7	Пятый раздел примеров (3)	12
4.8	Последний раздел примеров	13
4.9	Раздел 1, задания 1 и 2	14
4.10	Раздел 2, задание 1 (1)	14
4.11	. Раздел 2, задание 1 (2)	15
4.12	2 Раздел 2, задание 2	15
	В Раздел 3, задание 1	16
4.14	Раздел 3, задание 2	16
4.15	5 Раздел 3, задание 3	17
4.16	Раздел 4, задание 1	17
4.17	' Раздел 4, задание 2	18
4.18	В Раздел 4, задание 3	18

Список таблиц

1 Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

2 Задание

- Используя Jupyter Lab, повторить примеры.
- Выполнить задания для самостоятельной работы.

3 Теоретическая часть

Julia - высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia.

4 Выполнение лабораторной работы

4.1 Примеры

Сначала я выполнила примеры с поэлементными операциями над многомерными массивами (рис. 4.1):

Рис. 4.1: Первый раздел примеров.

Потом я выполнила примеры с транспонированием, следом, рангом, определителем и инверсией матрицы (рис. 4.2):

```
[17]: import Pkg
Pkg.add("LinearAlgebra")
using LinearAlgebra
         Resolving package versions...
Updating `C.\Users\ekaneva\,julia\environments\v1.11\Project.toml`
[37e2e46] + LinearAlgebra v1.11.0
No Changes to `C:\Users\ekaneva\,julia\environments\v1.11\Manifest.toml`
 [21]: b = rand(1:20,(4,4))
[21]: 4x4 Matrix{Int64}:
7 11 11 9
6 13 5 5
11 11 16 9
3 9 17 2
 [23]: transpose(b)
[25]: tr(b)
[25]: 38
[29]: print(diag(b))
        [7, 13, 16, 2]
[31]: rank(b)
[31]: 4
[33]: inv(b)
[33]: 4×4 Matrix{Float64}:
          -0.26564 0.6728935 0.23919 -0.0766
0.00148258 0.113417 -0.0719051 0.033358
0.010131 -0.0583148 0.00864838 0.06128
0.301211 -0.124043 -0.108723 -0.0560909
[35]: det(b)
[35]: 4046.99999999999
[75]: pinv(a)
```

Рис. 4.2: Второй раздел примеров.

Потом я выполнила примеры с вычислением нормы векторов и матриц, поворотами, вращениями (рис. 4.3):

```
[43]: norm(X)
[43]: 6.708203932499369
[49]: X = [2, 4, -5]
Y = [1, -1, 3]
norm(X - Y)
[49]: 9.486832980505138
[51]: sqrt(sum((X-Y).^2))
[51]: 9.486832980505138
[53]: acos((transpose(X)*Y)/(norm(X)*norm(Y)))
[53]: 2.4404307889469252
[57]: opnorm(d)
[57]: 7.147682841795258
[59]: p=1
       opnorm(d,p)
[59]: 8.0
        0 1 -2
3 2 -1
2 -4 5
[63]: reverse(d,dims=1)
[63]: 3×3 Matrix{Int64}:
```

Рис. 4.3: Третий раздел примеров.

Потом я выполнила примеры с матричным умножением, единичной матрицей, скалярным произведением (рис. 4.4):

Рис. 4.4: Четвёртый раздел примеров.

Потом я выполнила примеры с факторизацией, специальными матричными структурами (рис. 4.5-4.7):

Рис. 4.5: Пятый раздел примеров (1).

```
[185]; det(A), det(Alu)

[185]; (0.18855350162195214, 0.18855350162195214)

[187]; Aqr = qr(A)

[187]; LinearAlgebra.QRCompactWY(Float64, Matrix(Float64))
Q factor: 3x3 LinearAlgebra.QRCompactWY(Float64, Matrix(Float64))
R factor:
3x3 Matrix(Float64):
-0.77576 -0.463136 -0.85136 -0.851294

[189]; Aqr.Q

[189]; Aqr.Q

[189]; 3x3 LinearAlgebra.QRCompactWY(Float64, Matrix(Float64))
[18]; Asym = A + A'

[18]; Asym = A + A'

[18]; Asymerge = A'

- Asymerge
```

Рис. 4.6: Пятый раздел примеров (2).

Рис. 4.7: Пятый раздел примеров (3).

Потом я выполнила примеры по общей линейной алгебре (рис. 4.8):

```
[132]: Arational = Matrix(Rational(BigInt))(rand(1:10, 3, 3))/10

[132]: 3x3 Matrix(Rational(BigInt));
7//10 7//10 2//5
3//5 3//5 9//10

[134]: x = fill(1, 3)

[134]: x = fill(2, 3)

[136]: b = Arational*x

[136]: b = Arational*x

[136]: 3-element Vector(Rational(BigInt));
9//5
3//2
22//10

[138]: Arational\b

[138]: Arational\b

[140]: LU(Rational(BigInt)): 1
1
1

[140]: LU(Rational(BigInt)): 1
2 0 0
6//7 0 0
6//7 0 0
6//7 0 2//5
0 8//70 0
7//10 7//10 2//5
0 8//70 0
7//10 7//10 2//5
0 8//70 0
7//10 7//10 2//5
0 8//70 0
7//10 7//10 7//10 2//5
0 0 9 59//70
```

Рис. 4.8: Последний раздел примеров.

4.2 Задания для самостоятельной работы

Далее я приступила к выполнению заданий для самостоятельной работы.

4.2.1 Произведение векторов

Выполнила следующие задания (рис. 4.9):

- 1. Задайте вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v.
- 2. Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v.

```
Произведение вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v.

[168]: v = [1, 2, 3, 2, 1] dot_v = dot(v, v)

[168]: 19

2. Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v.

[162]: sx5 Matrix(Int64):
1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1
```

Рис. 4.9: Раздел 1, задания 1 и 2.

4.2.2 Системы линейных уравнений

Выполнила следующие задания:

1. Решить СЛАУ с двумя неизвестными (рис. 4.10-4.11):

```
1. Решить СЛАУ с двумя неизвестными.

[164]: A = [1 1; 1 -1] b = [2, 3] x = A \ b

[164]: 2 -element Vector(Float64): 2.5 -0.5

[174]: A = [1 1; 2 2] b = [2, 4] try x = A \ b

catch print("No solution") end

No solution

[176]: A = [1 1; 2 2] b = [2, 5] try x = A \ b

catch print("No solution") end

No solution

No solution
```

Рис. 4.10: Раздел 2, задание 1 (1).

Рис. 4.11: Раздел 2, задание 1 (2).

2. Решить СЛАУ с двумя неизвестными (рис. 4.12):

Рис. 4.12: Раздел 2, задание 2.

4.2.3 Операции с матрицами

Выполнила следующие задания:

1. Приведите приведённые ниже матрицы к диагональному виду (рис. 4.13).

Рис. 4.13: Раздел 3, задание 1.

2. Вычислите (рис. 4.14):

Рис. 4.14: Раздел 3, задание 2.

3. Найдите собственные значения матрицы А. Создайте диагональную матрицу из собственных значений матрицы А. Создайте нижнедиагональную матрицу из матрицы А. Оцените эффективность выполняемых операций (рис. 4.15).

```
3. Найдите собственные значения матрицы А. Создайте диагональную матрицу из собственных значений матрицы А. Создайте нижнедиагональную матрицу из
              матрицы А. Оцените эффективность выполняемых операций
[228]: A = [140 97 74 168 131: 97 106 89 131 36: 74 89 152 144 71: 168 131 144 54 142: 131 36 71 142 36]:
[232]: @time self = eigen(A)
            0.000106 seconds (19 allocations: 3.047 KiB)
[232]: Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
          values:
5-element Vector{Float64}:
-128.49322764802145
            -55.887784553057
            42.752167279318854
87.16111477514488
542.467730146614
          542_467730146614
vectors:

5×5 Matrix{Float64}:
-0.147575 0.647178 0.010882 0.548903 -0.507907
-0.256795 -0.173068 0.834628 -0.233864 0.387253
-0.185537 0.239762 -0.422161 -0.731925 -0.440631
-0.819704 -0.247560 -0.0273194 0.365447 -0.514526
-0.453805 -0.657619 -0.352577 0.322668 -0.364928
[236]: @time d = Diagonal(self.values)
            0.000025 seconds (1 allocation: 16 bytes)
[236]: 5x5 Diagonal{Float64, Vector{Float64}}: -128.493
                      [238]: @time ld = LowerTriangular(A)
            0.014404 seconds (81 allocations: 3.828 KiB, 99.58% compilation time)
[238]: 5x5 LowerTriangular(Int64, Matrix(Int64)):
```

Рис. 4.15: Раздел 3, задание 3.

4.2.4 Линейные модели экономики

1. Матрица A называется продуктивной, если решение х системы при любой неотрицательной правой части у имеет только неотрицательные элементы x_i . Используя это определение, проверьте, являются ли матрицы продуктивными (рис. 4.16):

```
Линейные модели экономики

1. Матрица А называется продуктивной, если решение х системы при любой неотрицательной правой части у имеет только неотрицательные элементы x₂. Используя это определение, проверьте, являются ли матрицы продуктивными.

[242]: a = [1 2; 3 4] all(>=(0), inv(I - a)) ? "Продуктивная" : "Непродуктивная"

[244]: a = 0.5 * [1 2; 3 4] all(>=(0), inv(I - a)) ? "Продуктивная" : "Непродуктивная"

[244]: "Непродуктивная"

[246]: "Продуктивная"

[246]: "Продуктивная"
```

Рис. 4.16: Раздел 4, задание 1.

2. Критерий продуктивности: матрица A является продуктивной тогда и только тогда, когда все элементы матрица $(E-A)^{-1}$ являются неотрицательными числами. Используя этот критерий, проверьте, являются ли матрицы продуктивными (рис. 4.17):

Рис. 4.17: Раздел 4, задание 2.

3. Спектральный критерий продуктивности: матрица А является продуктивной тогда и только тогда, когда все её собственные значения по модулю меньше 1. Используя этот критерий, проверьте, являются ли матрицы продуктивными (рис. 4.18):

```
| Victional (Victional Propagation (Victional Propagational Propagation
```

Рис. 4.18: Раздел 4, задание 3.

5 Выводы

Изучила возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.