Задание на лабораторную работу №2

Подготовка

- 1. Зарегистрироваться на https://thedogapi.com/ и получить API KEY.
 - 2. API KEY хранится в .env файле, который добавлен в .gitignore.

Задание

Написать программу, которая:

- 1. Подключается к API с использованием модуля requests и скачивает изображение животного с информацией о породе.
- 2. Преобразует изображение в numpy-массив и выполняет над ним операцию выделения контуров (пользовательским и библиотечным методами).
- 3. Сохраняет исходное изображение и оба варианта обработанных изображений, упоминая в названии сохраняемых файлов породу животного.

Программа умеет последовательно обрабатывать нескольких изображений подряд в результате одного запуска (использовать параметр limit в http-запросе, позволяющий настроить количество возвращаемых изображений при одном запросе к API).

Исходные и обработанные изображения сохраняются в отдельную специально созданную поддиректорию в файлы, начинающиеся с порядкового номера изображения (например, "1_munchkin_original.png", "1_munchkin_processed.png" и т.д.). Использовать библиотеку оs и её методы os.makedirs() и os.path.join().

Функционал программы должен быть инкапсулирован в двух классах:

- 1. Kлаcc CatImage
 - а. Инкапсулирует скаченное изображение и его метаданные (url изображения, порода)
 - b. Инкапсулирует методы обработки изображения (алгоритм свертки, выделения контуров и т.п.)
 - с. Перегружает методы сложения, вычитания изображений и преобразования в строку.
- 2. Kлаcc CatImageProcessor
 - а. Инкапсулирует функционал работы с API, а также управляет процессом обработки и сохранения скаченных изображений.
 - b. Измеряет время работы каждого из своих методов и логирует (выводит в консоль) процесс выполнения. Измерение времени реализовано посредством декоратора методов класса.

Атрибуты и методы классов должным образом защищены, имеют подходящие аннотации (статический метод, property, дескриптор и т.д.)

Дополнительное задание

CatImage является абстрактным классом, от которого наследуют конкретные реализации: для цветного и $\frac{4}{5}$ изображений.

Требование к лабораторным работам

- 1 Код должен правильно работать.
- 2 Отсутствует дублирование кода / логики.
- 3 Отсутствует мусор (закомментированных строк, лишних переменных и т.д.).
- 4 Код должен быть читабельным (осмысленное название переменных и функций, прослеживается логика компоновки)
 - 5 Соблюдается форматирование кода
 - 6 В коде присутствует документация.
 - 7 В github репозитории нет лишних файлов / папок.

Варианты задания

Теорию по теме обработки изображений можно найти в книге:

Теоретические основы цифровой обработки изображений: Учебное пособие / В.А. Сойфер, В.В. Сергеев, С.Б. Попов, В.В. Мясников. Самарский государственный аэрокосмический университет имени академика С.П. Королева. Самара, 2000, 256 с.

№	Выполняемая операция
варианта	
1	Повышение резкости окном 3х3 с усреднением по 5 отсчетам
	См. стр. 181-183
2	Повышение резкости окном 3х3 с усреднением по 9 отсчетам
	См. стр. 181-183
3	Сглаживание окном 3х3 с высокой степенью сглаживания высокочастотных
	шумов
	Математический аппарат аналогичен случаю повышения четкости, пример
	маски приведен ниже:
	$\begin{pmatrix} 1/9 & 1/9 & 1/9 \\ 9 & 9 & 1/9 \end{pmatrix}$
	$\begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 9/9 & 9/9 \end{bmatrix}$
4	Сглаживание окном 3х3 со средней степенью сглаживания высокочастотных
	Шумов
	Математический аппарат аналогичен случаю повышения четкости, пример
	маски приведен ниже:
	$\begin{pmatrix} 1/10 & 1/10 & 1/10 \end{pmatrix}$
	$\begin{bmatrix} 1/10 & 2/10 & 1/10 \end{bmatrix}$
	$\begin{bmatrix} 1/& 1/& 1/\\ 10& 10& 10 \end{bmatrix}$
_	
5	Сглаживание окном 3х3 с низкой степенью сглаживания высокочастотных
	Шумов
	Математический аппарат аналогичен случаю повышения четкости, пример
	маски приведен ниже:
	$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$
	$\begin{bmatrix} 1/8 & 1/4 & 1/8 \end{bmatrix}$
	$\begin{pmatrix} 1/16 & 1/8 & 1/16 \end{pmatrix}$
	(16 /8 /16)
6	Выделение контуров оператором Лапласа, размер окна 3х3
	См. стр. 195-196
7	Медианная фильтрация с окном из 5 элементов, расположенных «крестом»
	См. стр. 224-226
8	Медианная фильтрация с окном из 9 элементов, расположенных «крестом»
	См. стр. 224-226
9	Медианная фильтрация с окном из 9 элементов, расположенных «квадратом»
	См. стр. 224-226
10	Медианная фильтрация с окном из 81 элемента, расположенного «квадратом»
	См. стр. 224-226