A comparative analysis of Automatic Speech Recognition Libraries

VASUDEVAN K

Abstract

This report compares the performance of three open-source speech recognition libraries: Vosk, Whisper, and wav2vec 2.0, in the context of commands for controlling an AFV. A single model from each library was evaluated on a dataset relevant to the application. This analysis focuses on the libraries' descriptions, RAM requirements, available models, supported languages, release dates, and transcription accuracy using the same dataset. The findings offer insights into the libraries' strengths and weaknesses, aiding readers in selecting a suitable option for their specific needs.

Introduction

Speech recognition technology plays a vital role in driving innovation and convenience across various applications. This report aims to compare and analyse three open-source speech recognition libraries: Vosk, Whisper, and wav2vec 2.0, to determine their suitability for this specific application.

While each library offers a diverse range of models, this evaluation focuses on a single, base model chosen from each library. This approach ensures a consistent and focused analysis allowing us to directly compare their performance on a dataset relevant to the project's application.

By evaluating these libraries based on their descriptions, resource requirements, available models, supported languages, and most importantly, transcription accuracy measured using the same project-specific dataset, this report will provide valuable insights into their strengths and weaknesses. Ultimately, this analysis aims to assist users in selecting the most effective speech recognition library for their specific needs, particularly those related to applications of this project.

Description of libraries

Vosk

Description

Vosk is an offline open-source speech recognition toolkit created by Alpha Cephei. Vosk models are small (50 Mb) but provide continuous large vocabulary transcription, zero-latency response with streaming API, reconfigurable vocabulary, and speaker identification. Vosk supplies speech recognition for chatbots, smart home appliances, virtual assistants. It can also create subtitles for movies, transcription for lectures and interviews. Vosk scales from small devices like Raspberry Pi or Android smartphone to big clusters. There are two types of models - big and small, small models are ideal for some limited tasks on mobile applications. They can run on smartphones, Raspberry Pi's. They are also recommended for desktop applications. Big models are for the high-accuracy transcription on the server.

Methodology

Vosk relies on Hidden Markov Models, which are probabilistic models that represent sequences of states. Each state corresponds to a specific sound unit in the speech, and the transitions between states capture the probability of one sound following another.

Programming Languages supported - Python, Java, Node.JS, C#, C++, Rust, Go and others.

Languages Supported

English, Indian English, German, French, Spanish, Portuguese, Chinese, Russian, Turkish, Vietnamese, Italian, Dutch, Catalan, Arabic, Greek, Farsi, Filipino, Ukrainian, Kazakh, Swedish, Japanese, Esperanto, Hindi, Czech, Polish.

RAM requirements

Small model typically is around 50Mb in size and requires about **300Mb** of memory in runtime. Big models require up to **16Gb** in memory since they apply advanced AI algorithms.

Description of Models

Some of English Models are listed below (model used for evaluation is highlighted),

Model	Size	Description				
vosk-model-small-en-us-0.15	40 Mb	Lightweight wideband model				
		for Android and RPi				
vosk-model-en-us-0.22-lgraph	128 Mb	Big US English model with				
		dynamic graph				
vosk-model-en-us-0.22	1.8 Gb	Accurate generic US English				
		model				
vosk-model-small-en-in-0.4	36 Mb	Lightweight Indian English				
		model for mobile applications				
vosk-model-en-in-0.5	1 Gb	Generic Indian English mode for telecom and broadcast				

Whisper

Description

OpenAl's Whisper is an automatic speech recognition (ASR) system trained on 680,000 hours of multilingual and multitask supervised data collected from the web. It shows that the use of such a large and diverse dataset leads to improved robustness to accents, background noise and technical language. Moreover, it enables transcription in multiple languages, as well as translation from those languages into English. We are open-sourcing models and inference code to serve as a foundation for building useful applications and for further research on robust speech processing. Whisper is robust to background noise and performs best at SNR ≤ 5dB.

Methodology

The Whisper architecture is a simple end-to-end approach, implemented as an encoder-decoder Transformer. Input audio is split into 30-second chunks, converted into a log-Mel spectrogram, and then passed into an encoder. A decoder is trained to predict the corresponding text caption, intermixed with special tokens that direct the single model to perform tasks such as language identification, phrase-level timestamps, multilingual speech transcription, and to-English speech translation.

Languages supported

Whisper does support transcription and translation across 98 languages and it performs best when sticking with English. The large model has a word error rate (WER) of 0.12 for English, 0.18 for Spanish,

0.23 for French, 0.25 for German and 0.28 for Mandarin2. However, some lower covered languages have much higher WER - e.g. Arabic (0.79), Hindi (0.86) and Swahili (1.00).

Description of Models (model used for evaluation is highlighted)

Size	Parameters	English-only model	Multilingual-	VRAM	Speed
			model	needed	(Relative)
Tiny	39 Mb	tiny.en	tiny	~ 1gb	32x
base	74 Mb	base.en	base	~1gb	16x
small	244 Mb	small.en	small	~ 2gb	6x
medium	769 Mb	medium.en	medium	~ 5gb	2x
large	1550 Mb	N/A	large	~ 10gb	1x

Wav2Vec 2.0

Description

wav2vec 2.0 is a complex and powerful speech recognition model developed by Facebook AI. It utilizes a self-supervised learning approach, meaning it learns from unlabelled audio data to capture essential speech features without requiring explicit transcriptions. This makes it potentially more efficient for training on large datasets and adapting to new domains with limited labelled data. Wav2vec trains models to learn the difference between original speech examples and modified versions, often repeating this task hundreds of times for each second of audio, and predicting the correct audio milliseconds into the future.

Methodology

Most current ASR models train on the log-Mel filter bank features of speech data, meaning audio that is been processed to make vocal features stand out. Wav2Vec turns raw speech examples into a representation — specifically, a code — that can be fed into an existing ASR system. The model then uses these representations to solve a self-supervised prediction task. Within each 10-second audio clip that the model is trained on, wav2vec generates several distractor examples, which swap out 10 ms of the original audio with sections from elsewhere in the clip. The model must then determine which version is correct. And this selection process is repeated multiple times for each 10-second training clip, essentially quizzing the model to discern accurate speech sounds from distractor samples hundreds of times per second.

Languages supported

It supports a total of 53 languages that includes Dutch, English, French, German, Italian, Polish, Portuguese, Spanish, Tamil, Hindi and so on.

RAM requirements

Meta has not explicitly mentioned the RAM usage of their models. Thus, with the help of psutil python package, an estimate of RAM usage of the model used for evaluation while transcribing a 15 second audio is obtained. It is approximated to be 500 – 600 Mb of RAM.

Description of Models (model used for evaluation is highlighted)

Model	Trained audio	Fine-tuned Audio	Language	Size
wav2vec2 - base - 960h	960 hrs	960 hrs	English	378 Mb
wav2vec2 - large - 960h	960 hrs	960 hrs	English	1.26 Gb
wav2vec2 - large - 960h - lv60 - self	53000 hrs	960 hrs + self-train	English	1.26 Gb
XLSR - 53 - Large	56000 hrs	N/A	Multilingual	3.5 Gb

EVALUATION OF MODELS

The models were tested with the list of commands that are related to the project's application. The following commands below were transcribed using the model and their performance is measured by calculating the Word Error Rate (WER) and Character Error Rate (CER). Making full use of **fastwer**, a python library, the WER and CER are easily calculated. (For accurate results the transcriptions are formatted to lower case, removed extra whitespaces, and removed special characters)

- 1. Turn left
- 2. Turn right
- 3. Turn right by [any angle]
- 4. Turn left by [any angle]
- 5. Brake
- 6. Turn on engine
- 7. Activate voice control
- 8. Deactivate voice control
- 9. Go forward
- 10. Go backward
- 11. Accelerate
- 12. Turn off engine
- 13. Turn on Engine
- 14. Adjust speed to [any number]
- 15. Help
- 16. Fire alert
- 17. Damage alert
- 18. Increase speed to [any number]
- 19. Decrease speed to [any number]
- 20. Lock hatch
- 21. Rotate Turret [by any angle]

ANALYSIS 1

Using the above commands as inputs to model the following table is obtained. This table gives a view on individual performance of each model based on CER, WER and Execution time taken by model. The following obtained for inputs by single male voice in noiseless environment.

TABLE 1

Commands	Whisper			Vosk			Wav2Vec		
	WER	CER	Time(s)	WER	CER	Time(s)	WER	CER	Time(s)
1	0	0	1.27	0	0	0.36	100	67	0.3
2	0	0	0.42	0	0	0.35	50	50	0.25
3	0	0	0.46	60	67	0.65	100	75	0.37
4	0	0	0.43	60	55	0.6	60	64	0.28
5	100	40	0.39	100	40	0.37	100	20	0.21
6	0	0	0.42	33	50	0.3	33	7	0.24
7	0	0	0.39	0	0	0.37	67	23	0.31
8	0	0	0.43	67	13	0.52	100	25	0.28
9	0	0	0.38	0	0	0.38	100	50	0.23
10	0	0	0.4	0	0	0.37	0	0	0.26
11	0	0	0.39	0	0	0.38	0	0	0.22
12	0	0	0.42	67	80	0.36	67	20	0.24
13	33	7	0.41	33	7	0.32	67	29	0.23
14	43	38	0.47	86	59	0.63	71	35	0.33
15	0	0	0.37	0	0	0.28	0	0	0.2
16	0	0	0.37	0	0	0.37	50	20	0.22
17	100	33	0.4	50	50	0.56	100	25	0.21
18	43	38	0.47	43	18	0.6	71	28	0.28
19	57	44	0.48	43	23	0.69	100	59	0.33
20	0	0	1.43	50	60	0.24	0	0	0.23
21	0	0	0.48	80	56	0.56	140	93	0.38

The table 1 shows the results of evaluating three speech recognition models, Whisper, Vosk, and Wav2vec 2.0, on 21 commands. The evaluation metrics include Word Error Rate (WER), Character Error Rate (CER), and Execution Time.

Based on the table, Whisper achieves the best overall performance. It has the most instances (15 out of 21) where it perfectly transcribes the command (0% WER and CER). Vosk follows with 8 commands, and Wav2vec 2.0 lags behind with only 4 commands.

In terms of execution time, Whisper seems to be slower than both Vosk and Wav2vec 2.0 for most commands. However, it is important to consider the trade-off between accuracy and speed. Since Whisper achieves the highest accuracy, its slower execution time might be acceptable depending on the application.

Using the above table a graphical representation is created for comparing the WER, CER and Execution time of the three models considered for evaluation.

FIGURE 1.1

FIGURE 1.2

FIGURE 1.3

ANALYSIS 2.1: COMPARISON OF MODELS OVER DIFFERENT VOICES USING CER

In this analysis two male voices (1 and 2) and a female voice (3) is used. Below table gives a view on performance of Whisper, Vosk and Wac2Vec models over three different voices compared with character error rate.

TABLE 2.1

	CER (%)									
commands	voice1				voice2			voice3		
	Whisper	Vosk	Wav2vec	Whisper	Vosk	Wav2vec	Whisper	Vosk	Wav2vec	
1	0	0	66.67	0	100	33.33	0	66.67	66.67	
2	0	0	50	0	50	70	0	90	40	
3	0	66.67	75	0	100	94.12	0	43.48	100	
4	0	54.55	63.64	0	93.75	75	0	69.57	104.35	
5	40	40	20	60	100	40	40	20	40	
6	0	50	7.14	57.14	35.71	71.43	0	14.29	64.29	
7	0	0	22.73	36.36	63.64	72.73	0	13.64	59.09	
8	0	12.5	25	4.17	33.33	50	0	12.5	54.17	
9	0	0	50	30	100	30	0	0	70	
10	0	0	0	27.27	27.27	36.36	0	9.09	27.27	
11	0	0	0	0	0	40	140	80	90	
12	0	80	20	0	46.67	66.67	26.67	0	60	
13	7.14	7.14	28.57	7.14	35.71	35.71	7.14	92.86	50	
14	37.84	59.46	35.14	0	72.22	72.22	27.27	63.64	90.91	
15	0	0	0	0	50	0	75	100	75	
16	0	0	20	0	80	30	0	90	70	
17	33.33	50	25	50	75	50	83.33	33.33	50	
18	38.46	17.95	28.21	0	85.71	90.48	0	58.33	62.5	
19	43.59	23.08	58.97	10	55	75	0	83.33	75	
20	0	60	0	20	10	0	80	40	80	
21	0	55.56	92.59	20	80	65	0	42.31	69.23	

Table 2.1. evaluates three speech recognition models (Whisper, Vosk, Wav2vec) on a set of commands spoken in three different voices (total of 63 commands when considering individual voices). The evaluation metric is character error rate (CER).

Whisper demonstrates superior performance. It achieves a 0% CER for an average of 60.3% of the commands across all voices. Additionally, 31.7% of commands have a CER below 50%. This stands in contrast to Vosk, which only achieves a 0% CER for an average of 17.5% of the commands, and Wav2vec, which has an even lower average of 9.5% commands with a 0% CER.

A graphical representation of comparison of model performance for different voices with CER.

FIGURE 2.1.1

FIGURE 2.1.2

FIGURE 2.1.3

ANALYSIS 2.2: COMPARISON OF MODELS OVER DIFFERENT VOICES USING WER

In this analysis two male voices (1 and 2) and a female voice (3) is used. Below table gives a view on performance of Whisper, Vosk and Wac2Vec models over three different voices compared with word error rate.

TABLE 2.2

		WER (%)								
commands		voice1			voice2			voice3		
	Whisper	Vosk	Wav2vec	Whisper	Vosk	Wav2vec	Whisper	Vosk	Wav2vec	
1	0	0	100	0	100	50	0	150	100	
2	0	0	50	0	50	100	0	150	100	
3	0	60	100	0	100	100	0	40	120	
4	0	60	60	0	100	75	0	100	160	
5	100	100	100	100	100	100	100	100	100	
6	0	33.33	33.33	66.67	33.33	100	0	33.33	100	
7	0	0	66.67	33.33	66.67	133.33	0	33.33	100	
8	0	66.67	100	33.33	33.33	133.33	0	66.67	133.33	
9	0	0	100	50	100	100	0	0	100	
10	0	0	0	50	50	100	0	50	50	
11	0	0	0	0	0	100	500	200	100	
12	0	66.67	66.67	0	33.33	100	33.33	0	100	
13	33.33	33.33	66.67	33.33	33.33	66.67	33.33	100	100	
14	42.86	85.71	71.43	0	125	125	40	120	140	
15	0	0	0	0	100	0	100	100	100	
16	0	0	50	0	100	100	0	100	100	
17	100	50	100	100	150	100	150	100	100	
18	42.86	42.86	71.43	0	100	125	0	100	120	
19	57.14	42.86	100	25	75	100	0	100	120	
20	0	50	0	50	50	0	100	50	150	
21	0	80	140	50	100	100	0	60	100	

Table 2.2. evaluates three speech recognition models (Whisper, Vosk, Wav2vec) on a set of commands spoken in three different voices (total of 63 commands when considering individual voices). The evaluation metric is character error rate (WER).

Whisper demonstrates superior performance. It achieves a 0% WER for an average of 46% of the commands across all voices. Additionally, 14.3% of commands have a WER below 50%. This stands in contrast to Vosk, which only achieves a 0% WER for an average of 17.5% of the commands, and Wav2vec, which has an even lower average of 9.5% commands with a 0% WER.

A graphical representation of comparison of model performance for different voices with WER

FIGURE 2.2.1

FIGURE 2.2.2

FIGURE 2.2.3

ANALYSIS 3: TESTING MODELS WITH A DATASET AND COMPARING THEIR PERFORMANCE WITH WER AND CER

Description of dataset - NPTEL2020 - Indian English speech dataset

GitHub Repo: https://github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-Dataset

A Speech-to-Text dataset scraped from NPTEL for Indo-English accent, from Education Domain. The dataset is created from NPTEL lectures as source. It contains 15,700 hours of audio which are split into 6.2 million chunks of length 3-10 seconds.

The dataset is split as,

Split	Number of Chunks
Train set	5 M
Validation set	625 K
Test set	625 K
Sample set	1 K

Sample Set is a small subset manually annotated by AI4Bharat to compute the quality of data. It is also referred as Pure Set. This report has utilized the pure set for the evaluation of models. The models resulted in WER and CER for each chunk. They are finally averaged for 1k chunks and it is obtained in the following table.

Whisper		Vo	sk	Wav2Vec		
WER (%)	CER (%)	WER (%) CER (%)		WER (%)	CER (%)	
23.24	16.64	48.5	38.43	46.22	22.06	

INFERENCE

Our evaluation across various metrics suggests Whisper as a strong contender for speech recognition tasks.

- Accuracy: As shown in Table 1 and the graphs (Analysis 1), the trendlines of Whisper consistently maintains a lower Word Error Rate (WER) and Character Error Rate (CER) compared to Vosk and Wav2Vec. This indicates Whisper's superior accuracy in recognizing spoken words.
- **Execution Time:** Notably, the execution time for each model across different commands exhibits negligible variation. This suggests similar processing speeds for all three models.
- Voice Independence: Interestingly, Figures 2.2.1 and 2.1.1 reveal that Whisper's performance remains relatively stable (lines tracking closely) for various voices. In contrast, Vosk and Wav2Vec show more variation in CER and WER across different speakers. This highlights Whisper's robustness to speaker variability.
- **Dataset:** the NPTEL dataset confirms Whisper's superiority in handling long sentences with minimal errors, making it the most suitable model for such tasks.
- **Error Rates:** As observed in all the tables, error rates greater than 100 denote that number of transcribed words are greater than the original text, which is insignificant.

Analysis for choosing the optimal Whisper model:

The voice command needs to be activated within 2 sec or less with optimal accurate transcriptions understood by the logic implemented in the system. Thus, the tiny, base, and small models were compared for their accuracy and transcription time. The following results were performed in minimal noise lab environment and the voice were captured with directional mic.

Results of Person 1:

Voice	Tiny		Base		Small		
Command	Time	Transcription	Time	Transcription	Time	Transcription	
Switch On Headlight	0.788491	on headlight	1.314791	on headlight	3.885505	on headlight	
Switch Off Headlight	0.750391	of it late	1.360515	off headlight	3.845536	switch off headlight	
Switch On Audio Alarm	0.816547	with shown audio alarm	1.371464	which are on audio alarm	3.906166	switch on audio alarm	
Switch Off Audio Alarm	0.80869	its all for the alarm	1.365144	off audio alarm	3.771101	of audio alarm	
Switch On Engine	0.759541	sean engine	1.333961	on engine	7.393852	engine	
Switch Off Engine	2.076154	so off engine	1.346933	of the engine	3.770076	of engine	

Results of person 2:

Voice	Tiny		Base		Small		
	Time	Transcription	Time	Transcription	Time	Transcription	
Switch On Headlight	0.80309	so its on headlight	1.358635	switch on headlight	3.851752	switch on headlight	
Switch Off Headlight	0.811181	switch off headlight		switch off headlight	3.857349	switch off headlight	
Switch On Audio Alarm		fitch on audio alarm	1.375453	switch on audio alarm		switch on audio alaram	
Switch Off Audio Alarm		switch of audio alarm		switch off audio item		switch off audio allahram	
Switch On Engine	0.817568	switch on engine	1.390719	switch on engine	3.964973	switch on engine	
Switch Off Engine	0.803196	switch off engine	1.344764	switch off engine	3.738925	switch off engine	

Conclusion:

Taking all factors into account, particularly accuracy and voice independence, Whisper emerges as the most promising choice for general speech recognition tasks. Its competitive execution time further strengthens its position. Overall, Whisper's well-rounded performance across various metrics positions it as the recommended model for speech recognition applications.

Considering the comparison made for Whisper models, the base model fits our requirements. Thus we choose base model for our system for transcription.