

RESTORATION ADVISORY BOARD

Little America June 22, 2004

AGENDA

- Introduction
- Approval of Minutes May 18, 2004
- Discussion/Questions on Environmental Restoration Project Status
- Hydraulic Fracturing Technology Presentation
- Meeting Logistics
 - Future Meeting Schedules
 - Next Meeting: August 24, 2004 at Little America
- Adjournment

APPROVAL OF MINUTES

May 18, 2004 Meeting

Discussion/Questions on Environmental Restoration Project Status

Utilization of Enabling Technologies such as Hydraulic Fracturing to Enhance the Permeation/Dispersal of Permanganate during In Situ Chemical Oxidation (ISCO)

Michael A. Urynowicz, Ph.D., P.E. Assistant Professor, University of Wyoming

COCs

TCE

PCE

DCE

VC

BTEX

PAHs

Phenols

PCP

PCBs

Cresol

Diesel fuel

МТВЕ

Dieldrin

HMX, RDX

TNT

....

Situ Chemical Oxidation (ISCO)

COCs

Source Zone

- ✓ Free product recovery
- Surfactant or cosolvent flushing recovery
- √ Steam flushing recovery
- √ Heating enhanced

Chemical oxidation

Core Zone of the Plume

- Air sparging and Soil vapor extraction
- ✓ Enginæred

Chemical oxidation

reduction

SATURATED ZONE

Distal Zone of the Plume

- ✓ Monitored natural attenuation
 - ✓ Enginæred
- Chemical oxidation
- / Permeable reactive barriers

Graindwater flow and COC flux to potential eceptos of concern

In Situ Chemical Oxidation

During the early 1990's, experiments and pilot tests demonstrated the potential viability of chemical oxidation for in situ remediation.

Applications now include:

- H₂O₂ (Fenton's reagent)
- KMnO₄ or NaMnO₄
- O₃

Other Oxidants:

- Persulfate
- Peracetic Acid
- Hypochlorous acid

In Situ Chemical Oxidation with Permanganate

- Reaction kinetics are rapid.
- Can degrade many contaminants of concern (COCs).
- Can increase the rate of DNAPL interface mass transfer.
- Possible process-induced beneficial effects.
- Can be used to augment existing treatment systems.
- Available in liquid and solid forms

In Situ Chemical Oxidation with Permanganate

Potential Limitations:

- Possible process-induced detrimental effects
- Subsurface oxidant distribution can be difficult; as a result, high treatment efficiency is not always possible

Oxidant Type/Form

Feature	Fenton's	Ozone	Permanganate
Reagenii	Liquid, offsite	Gas, onsite	Liquid/solid, offsite
Doses	5 to 50 wt.%	Variable	0.02 to 4.0 wt.%
Amendment s:	Fe, acid	Often air	None typically
COCs (+):	BTEX, PAHs, phenols, alkenes	BTEX, PAHs, phenols, alkenes	PAHs, phenols, alkenes
COCs (-):	PCBs	PCBs	Alkanes, PCBs
Delivery:	Injection wells	Sparge wells	Injection wells, fractures
Distribution:	Advection	Advection	Advection/Diffusion
Reaction rate:	Very high	High - Moderate	High - Moderate

Delivery Systems

Hydraulic Fractures

Pneumatic Fractures

Treatment Walls

Geologic/Hydrologic Site Characteristics

Subsurface heterogeneities

- Preferential flow Permeability
- Low Permeability versus high permeability Natural oxidant demand (NOD)
- High NOD versus low NOD

Transport Limitations

Hydraulic Fracturing

Hydraulic Fracturing

Fracture emplacement casing

Fractures filled with sand media

Contaminated LPM deposit with TCE or other organics

Density Gradients

Hydraulic Fracturing with Permanganate

Fracture Emplacement

Figure. 3-6. Fractures created at the bottom of driven casing.

TABLE 2. Test Cell Installation Features				
Test cell characteristic (1)	Units (2)	Iron-filled fractures for declorination (3)	Permanganate-filled fractures for oxidation (4)	
Method and time of installation Fracture depth-proppant-amount	=	Iron metal and guar gel; 2-3 hr 1.2 m-Sand-0.14 m ³ 1.8 m-Fe ⁹ -1,000 kg 2.4 m-Fe ⁹ -3,000 kg 3.6 m-Fe ⁹ -2,600 kg 5.0 m-Sand-0.57 m ³	Permanganate OPM; 2-3 hr 1.2 m-Sand-0.14 m ³ 1.8 m-KMnO ₄ =400 kg 2.4 m-KMnO ₄ =600 kg 3.6 m-KMnO ₄ =600 kg 5.0 m-Sand-0.57 m ³	
Test cell diameter Test cell depth Test cell volume Fracture trend direction Fracture propagation	m m 	6 5 148 SE Typical	6 5 148 NW Typical	

FIG. 3. Cross Sections of Test Cells Used to Evaluate: (a) Fe^o Metal; (b) KMnO₄ OPM Filled Hydraulic Fractures as Horizontal Treatment Zones

MEETING LOGISTICS

August 24, 2004 Little America

ADJOURNMENT