Cálculo Vectorial – Parcial I

Jueves 5 de Febrero de 2020.

Nombre: .	
-----------	--

INSTRUCCIONES – LEA ESTO ANTES DE EMPEZAR

- Este examen tiene 4 problemas.
- Muestre su trabajo. Para recibir todo el credito debe mostrar su razonamiento y los pasos que lo llevaron a la respuesta final y estos deben ser escritos claramente. Si necesita más espacio escriba en la parte de atras del ejercicio anterior pero asegúrese de identificar claramente a que ejercicio corresponde cada pagina.
- Este es un examen individual y con libro cerrado. Su Celular debe estar **apagado** (si no puede apagarlo por motivos de urgencia mayor por favor comuníquelo a su profesor).
- Este examen tiene una duracion de 80 mins.

Se espera integridad academica de todos los estudiantes. Entendiendo esto, declaro que no voy a dar, usar o recibir ayuda no autorizada durante este examen. Firma del estudiante:

Problema #	1.	2.	3.	4.	TOTAL
Puntos ganados					

- 1. [12 pts] Sea $f(x,y) = e^{xy} + \sin(x+y)$.
 - (a) Verifique rigurosamente que f(x,y) es diferenciable en todos los puntos $(x,y) \in \mathbb{R}^2$.
 - (b) Encuentre la función $\ell(x,y)$ que mejor aproxima a f(x,y) cerca de (0,0).
 - (c) Encuentre la ecuación del plano tangente a la gráfica de f(x,y) en (0,0,1) y dibuje este plano.

2. [14 pts] La temperatura de los puntos (x,y,z) de \mathbb{R}^3 esta dada por la función

$$T(x, y, z) = xyz.$$

Un insecto camina sobre la esfera de ecuación $x^2 + y^2 + z^2 = 3$. Encuentre las temperaturas mínima y máxima que el insecto puede experimentar y los puntos de \mathbb{R}^3 donde estas temperaturas se alcanzan.

3. **[12 pts]**

- (a) Enuncie de manera precisa el "Teorema del gradiente" visto en clase.
- (b) Encuentre la ecuación del plano tangente a la colección de soluciones (x,y,z) de la ecuación

$$xyz + x^2 + y^2 + z^2 = 4$$

en el punto (1,1,1).

(c) Justifique su solución de la parte (b) utilizando el Teorema de la parte (a).

4. [12 pts] Verdadero o Falso: En los siguientes ejercicios marque V si el enunciado es Verdadero y F si el enunciado es falso. No es necesario escribir la justificación de su respuesta. ESCRIBA SUS RESPUESTAS EN LA TABLA QUE APARECE A CONTINUACION.

- (a) Si $\sigma(t) = (x(t), y(t), z(t))$ es una curva parametrizada que para todo t esta contenida en la esfera de ecuación $x^2 + y^2 + z^2 = 100$ entonces los vectores $\sigma(t)$ y $\sigma'(t)$ son perpendiculares para todo t.
- (b) Sea $U: \mathbb{R}^2 \to \mathbb{R}$ una función escalar diferenciable y defina $W(r, \theta) = U(r \cos \theta, r \sin \theta)$. Entonces para todo r_0 y θ_0 tenemos que

$$\frac{\partial W}{\partial \theta}(r_0, \theta_0) = \frac{\partial U}{\partial x}(r_0 \cos \theta_0, r_0 \sin \theta_0) \left(-r_0 \sin \theta_0\right) + \frac{\partial U}{\partial y}(r_0 \cos \theta_0, r_0 \sin \theta_0) \left(r_0 \cos \theta_0\right)$$

- (c) Sea $\sigma(t)$ una curva parametrizada en el plano. Si para todo t tenemos $\|\sigma'(t)\| = 10$ entonces $\sigma(t)$ parametriza una recta.
- (d) Existe un valor del número real c para el cual la función h(x,y) definida abajo es continua en (0,0)

$$h(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ c, & (x,y) = (0,0) \end{cases}$$