Sum-of-squares

Amit Rajaraman

Last updated December 12, 2022

Contents

1	Fundamentals		
	1.1	Introduction	2
	1.2	Semidefinite Programming	3
	1.3	Pseudoexpectations	5
	1.4	Application: Max-cut	6

§1. Fundamentals

1.1 Introduction

The sum-of-squares technique, at its most basic form, is a way of determining whether for some polynomial p over \mathbb{R}^n , $p(x) \ge 0$ for x in some base set. For now, suppose that our "base set" is $\{0,1\}^n$. Elegantly, it manages to convert disproofs of such inequalities to algorithms to determine a point where p(x) < 0.

More concretely, we shall show non-negativity by expressing p as a sum of squares of low degree polynomials (while low degree is not technically required, it makes the converted algorithm efficient).

Definition 1.1 (Sum-of-squares proof). Given a polynomial f in variables x_1, \ldots, x_n , a degree d sum-of-squares proof or degree d sum-of-squares certificate (abbreviated SoS proof or SoS certificate) of $f \ge 0$ is a set $\{g_1, \ldots, g_m\}$ of polynomials of degree at most d/2 such that

$$f(x) = \sum_{i=1}^{m} g_i^2(x)$$
 (1.1)

for all x. If f has a degree d sum-of-squares certificate, we write that

$$\vdash_d f(x) \geq 0.$$

Let \mathcal{A} be a set of constraints of the form $A_i(x)=0$ or $B_j(x)\geq 0$ for $i\in [k], j\in [\ell]$. Then, an degree d SoS proof given \mathcal{A} of $f\geq 0$ is a set $\{g_1,\ldots,g_m\}$ of polynomials of degree at most d/2 such that (1.1) holds for all x satisfying the constraints in \mathcal{A} . If such a set exists, we write

$$\mathcal{A} \vdash_d f \geq 0.$$

We always assume that d in this context is even.

Note that simple set restrictions can be captured by the set of constraints. In particular, we can check restrict ourselves to the boolean hypercube $\{-1,1\}^n$ by having \mathcal{A} contain $x_i^2=1$ for all i. Note that the set of functions with degree d SoS proofs of non-negativity forms a closed convex cone.

Proposition 1.2. Any non-negative $f: \{-1,1\}^n \to \mathbb{R}$ has a degree 2n sum-of-squares proof.

Proof. Recall that any function $h: \{-1,1\}^n \to \mathbb{R}$ can be expressed as a polynomial of degree at most n as

$$h(x) = \sum_{S \subseteq [n]} \hat{f}(S)x_S,$$

where $x_S = \prod_{i \in S} x_i$ with the convention $x_\varnothing = 1$. Knowledgeable readers may recognize this as the *Fourier expansion* of h – we omit the details of why such an expansion exists, but refer the reader to the excellent text by O'Donnell [O'D14] for more details. In particular, \sqrt{f} is a polynomial of degree at most n, so squaring both sides we get that f has a degree 2n SoS proof.

The above is *not* true in general; not every non-negative polynomial $f : \mathbb{R}^n \to \mathbb{R}$ can be written as a sum of squares.

Definition 1.3. Given a vector $y \in \mathbb{R}^n$, the vector $y^{\otimes k} \in \mathbb{R}^{n^d}$ has entries indexed by elements of $[n]^d$, with the α th entry being $\prod_{j \in d} y_{\alpha_j}$. Also denote $v_k(x)$ to be the size $\binom{n+k}{k}$ vector with entries equal to all the monomials of x of degree at most k.

Note that for $x := (x_1, \dots, x_n) \in \mathbb{R}^n$, any monomial of degree at most d/2 appears in the vector $(1, x)^{\otimes d/2}$, where $(1, x) = (1, x_2, \dots, x_n) \in \mathbb{R}^{n+1}$. Also recall that a matrix A is said to be positive semidefinite, denoted $A \succeq 0$, if $x^\top Ax \geq 0$ for all vectors x, which is equivalent to asserting that all eigenvalues of the matrix are non-negative.

Proposition 1.4. Let f be a polynomial. f has a degree d sum-of-squares proof iff there exists $A \succeq 0$ such that

$$f(x) = \langle v_{d/2}(x), Av_{d/2}(x) \rangle. \tag{1.2}$$

Proof. For the forward direction, suppose that $f = \sum_{i=1}^m g_i^2$, with $g_i(x) = v_i^\top v_{d/2}(x)$ by writing it out in the monomial basis. Then,

$$f(x) = \sum_{i=1}^{m} v_{d/2}(x)^{\top} v_i v_i^{\top} v_{d/2}(x)$$
$$= \left\langle v_{d/2}(x), \underbrace{\sum_{i=1}^{m} v_i v_i^{\top}}_{A} v_{d/2}(x) \right\rangle.$$

The backward direction is straightforward by decomposing A as $\sum \lambda_i v_i v_i^{\top}$, where each $\lambda_i \geq 0$, and observing that each $v_i^{\top} v_{d/2}(x)$ is a polynomial of degree at most d/2.

As a corollary, this implies that if an f has a degree d SoS proof, it has one with at most $\binom{n+d}{d}$ squares. Also note that eq. (1.2) is *linear* in the elements of A.

If we bump up a function by enough, we can ensure non-negativity. It turns out that we can do the same to ensure SoS-ness.

Lemma 1.5. Let $f: \{-1,1\}^n \to \mathbb{R}$ be any function of degree at most d. For sufficiently large L, L+f has a degree d SoS certificate.

Proof. Note that for any S, $1 + x_S \ge 0$ has a degree $\lceil |S|/2 \rceil$ SoS proof. Indeed, setting $S = T_1 \sqcup T_2$ for T_1, T_2 of (almost) equal size, $1 + x_S = \frac{1}{2}(x_{T_1} + x_{T_2})^2$. Similarly, $1 - x_S$ has a degree |S| SoS proof as well. Therefore,

$$\sum_{|S| < d} |\hat{f}(S)| + \sum_{|S| < d} \hat{f}(S)x_S = \sum_{|S| < d} |\hat{f}(S)|(1 + \operatorname{sign}(\hat{f}(S))x_S)$$

has a degree d SoS certificate, so the statement is true with $L = \sum_{|S| \le d} \hat{f}(S)$.

1.2 Semidefinite Programming

The reader is likely familiar with *linear programming*, where we are interested in

$$\min_{x \in \mathcal{P}} c^{\top} x, \text{ where } \mathcal{P} = \{x \ge 0 : Ax = b\}.$$

Although a linear program may in general have inequalities in the constraints, we may merge these into the $x \ge 0$ condition by introducing slack variables (if we have $\sum_i a_i x_i \ge 0$, we may add a non-negative variable y and make it $\sum_i a_i x_i - y = 0$). In *semidefinite programming*, the setting is mostly the same, albeit with the minor change that we represent the variables by a matrix instead of a vector, and we additionally have that this matrix is positive semidefinite. More concretely, denoting

$$\langle C, X \rangle = \sum_{i,j} C_{ij} X_{ij},$$

we are interested in

$$\min_{X \in \mathcal{S}} \langle C, X \rangle$$
, where $\mathcal{S} = \{X \succeq 0 : \langle A_i, X \rangle = b_i \text{ for } i \in [m]\}.$

We interchangeably use S to denote the set of constraints and the corresponding body. Proposition 1.4 suggests a link between SoS proofs and SDPs. A natural question is: can we solve SDPs efficiently?

Note that the set of all PSD matrices X forms a convex cone. In combination with the linear constraints, the intersection of this cone and the affine subspace form a so-called "spectrahedron", which we would like to minimize our quantity over. Note that any linear program is a semidefinite program, by enforcing that all off-diagonal elements of the matrix are zero. To answer our earlier question, it turns out that we cannot solve SDPs exactly. However, if we enforce certain structural restrictions, we can solve them approximately (up to a small additive error).

Definition 1.6 (Separation Oracle). For a convex body $K \subseteq \mathbb{R}^n$, a (*strong*) *separation oracle* for K does the following given as input any $x \in K$.

- 1. if $x \in K$, it returns yes.
- 2. if $x \notin K$, it returns no, and in addition a vector a and real b such that $\langle a, y \rangle \geq b$ for all $y \in K$ and $\langle a, x \rangle < b$ this is a so-called "separating hyperplane" that separates x and K.

More generally, we can efficiently minimize an inner product over a convex (bounded) body up to an additive error of ϵ , given an efficient weak separation oracle.

Theorem 1.7. Let $f: \{-1,1\}^n \to \mathbb{R}$ have a degree d sum-of-squares proof of non-negativity. Then, for $\epsilon > 0$, there exists an algorithm that finds a sum-of-squares proof of $f + \epsilon$ in $\operatorname{poly}(n^d, \log(1/\epsilon))$.

The high-level idea of the algorithm is as follows.

We first solve the "feasibility problem" of finding a point in a body K, given that $B(c,r) \subseteq K \subseteq B(0,R)$. We begin by setting $\mathcal{E}^{(0)} = B(0,R)$. Given the ellipsoid $\mathcal{E}^{(i)}$, if its center returns yes, we return the point itself. Otherwise, we use the separating hyperplane to get a halfspace H in which K is contained, and set $\mathcal{E}^{(i+1)}$ to be the smallest ellipsoid containing $\mathcal{E}^{(i)} \cap H$. This algorithm runs in $\operatorname{poly}(n,\operatorname{size}(K))\log(R/r)$ – the proof amounts to showing that the volume of the ellipsoid decreases by a factor of at least $\exp(1/2(n+1))$ at each stage, and we have a lower bound on the volume of K by $\operatorname{vol}(B(0,r))$.

We can slightly modify this algorithm to one that approximately solves the optimization version of maximizing $c^{\top}x$ as well. Once we get a point α in the body, we begin looking at $K \cap \{x : c^{\top}x > c^{\top}\alpha\}$ and repeat the feasibility algorithm. This is repeatedly done until we can guarantee that we are within ϵ of the optimum. The only non-trivial part of this algorithm is showing that we can use the oracle to construct an oracle for the new body $K \cap \{x : c^{\top}x > c^{\top}\alpha\}$. To complete the connection to SDPs, we require that the SDP constraints $\mathcal S$ admits an efficient weak separation oracle; we omit the details of this. Next, we require that the body $\mathcal S$ contains a ball and is contained in a ball. The former is not true in general because the constraints typically make our body lower-dimensional (a subspace). To get around this, we introduce an additive error in each the contraints, so the new constraints are $|\langle A, X \rangle - b_i| \le \epsilon$ for each i. In this case, there is a ball of radius $O((\epsilon/\|A\|_F)^n)$ contained in the body, where $\|A\|_F^2 = \sum_{i,j,k} (A_i)_{jk}^2$.

In our context of finding X such that $f(x) = v_{d/2}(x)^{\top} X v_{d/2}(x)$, we know that $||A||_F^2 \leq \text{Tr}(A)^2 \leq \hat{f}(\varnothing)^2$, so the body is bounded as well.

Like how LPs have duals, so do SDPs. If we have the primal

$$\min_{X \in \mathcal{S}} \langle C, X \rangle, \text{ where } \mathcal{S} = \left\{ X \succeq 0 : \langle A_i, X \rangle = b_i \text{ for } i \in [m] \right\},$$

its dual is

$$\max_{y \in \mathcal{S}^D} b^\top y, \text{ where } \mathcal{S}^D = \left\{ S \succeq 0 : C - \sum_{i=1}^m y_i A_i = S \right\}.$$

¹It is not even known if this is in NP! It is known that it is in PSPACE however.

The PSDness condition in the dual just says that $C \succeq \sum_{i=1}^m y_i A_i$.

Proposition 1.8 (Weak Duality). Let X and y be solutions to the primal and dual SDPs respectively. Then, $\langle C, X \rangle \ge b^{\top}y$.

Proof. We have

$$\langle C, X \rangle = \left\langle \sum_{i=1}^{m} y_i A_i + S, X \right\rangle$$
$$= \sum_{i=1}^{m} y_i \langle A_i, X \rangle + \langle S, X \rangle$$
$$= b^{\top} y + \langle S, X \rangle > b^{\top} y.$$

The final inequality requires showing that if $S, X \succeq 0$, then $\langle S, X \rangle \geq 0$; we omit the details of the proof.

In linear programming, we have strong duality which asserts that the two optima are in fact *equal*. However, in SDPs, some mild conditions are required for this to be true.

Theorem 1.9 (Strong duality). Let S be the set of constraints of a primal SDP and S^D the set of constraints in its dual, such that the two have optima α^*, β^* . Then, $\langle C, \alpha^* \rangle = \langle b, \beta^* \rangle$ if

- 1. the spectrahedron S is non-empty and there exists β such that $\sum_{i \in [m]} \beta_i A_i C \succ 0$, or
- 2. the spectrahedron S^D is non-empty and there exists $\alpha \succ 0$ such that $\langle A, \alpha \rangle = b_i$ for all $i \in [m]$.

As a corollary, one may show that $\langle C, \alpha^* \rangle = \langle b, \beta^* \rangle$ if the set of optimal solutions of either of the two SDPs is non-empty and bounded.

We omit the (rather involved) proof of the above.

1.3 Pseudoexpectations

Let us again restrict ourselves to $\{-1,1\}^n$ for a while. We have established one link between SoS proofs and SDPs, and now we shall establish another link between them and the following.

Definition 1.10 (Pseudodistribution). A degree d pseudodistribution is a function $\mu: \{-1,1\}^n \to \mathbb{R}$ such that the expectation operator $\widetilde{\mathbb{E}}_{\mu}$ defined by $\widetilde{\mathbb{E}}_{\mu}f = \sum_{x \in \{-1,1\}^n} f(x)\mu(x)$ satisfies

- (a) $\widetilde{\mathbb{E}}_{\mu}1=1$, and
- (b) for all f of degree at most d/2, $\widetilde{\mathbb{E}}_{\mu}f^2 \geq 0$.

In this case, $\widetilde{\mathbb{E}}_{\mu}$ is called a *pseudoexpectation*.

Analogous to Proposition 1.2, we get that any degree $\geq 2n$ pseudodistribution is an actual distribution, in the sense that $\mu \geq 0$. Analogous to Proposition 1.4, we get the following.

Proposition 1.11. $\widetilde{\mathbb{E}}$ is a degree d pseudoexpectation iff

- (a) $\widetilde{\mathbb{E}}1 = 1$, and
- (b) $\widetilde{\mathbb{E}}v_{d/2}(x)v_{d/2}(x)^{\top} \succeq 0$.

Proof. Note that for any vector (\hat{f}) of Fourier coefficients of a degree $\leq d/2$ function $f: \{-1,1\}^n \to \mathbb{R}$ (so $f(x) = \hat{f}^\top v_{d/2}(x)$),

$$\widetilde{\mathbb{E}}f^2 = \widetilde{\mathbb{E}}\left(\sum_{|S| \le d} \hat{f}(S)x_S\right)^2$$

$$= \widetilde{\mathbb{E}}\hat{f}^\top v_{d/2}(x)v_{d/2}(x)^\top \hat{f}$$

$$= \hat{f}^\top \left(\widetilde{\mathbb{E}}v_{d/2}(x)v_{d/2}(x)^\top\right) \hat{f}.$$

To conclude, note that $\widetilde{\mathbb{E}}v_{d/2}(x)v_{d/2}(x)\succeq 0$ iff $\hat{f}^{\top}\left(\widetilde{\mathbb{E}}v_{d/2}(x)v_{d/2}(x)^{\top}\right)\hat{f}\geq 0$ for all vectors \hat{f} .

Given any function that is not non-negative everywhere, there exists some distribution μ such that $\mathbb{E}_{\mu}f < 0$. Ideally, we would like a similar result in order to distinguish between functions that have SoS certificates of degree d and those that don't.

Theorem 1.12. f has a degree d sum-of-squares proof iff for all degree d pseudoexpectations $\widetilde{\mathbb{E}}$, $\widetilde{\mathbb{E}}f \geq 0$.

Equivalently, f does not have a degree d sum-of-squares proof iff there exists a degree d pseudoexpectation $\widetilde{\mathbb{E}}$ such that $\widetilde{\mathbb{E}} f < 0$.

Proof. The forward direction is straightforward by Definition 1.10(b). For the backward direction, suppose instead that f does not have a degree d SoS proof. Then, there exists a separating hyperplane between f and this set, that is, some degree d pseudoexpectation $\widetilde{\mathbb{E}}$ such that $\widetilde{\mathbb{E}} f < 0$. If we manage to show that $\widetilde{\mathbb{E}} 1 > 0$, we are done since we can then rescale μ to make it exactly equal to 1. By Lemma 1.5, we have L > 0 such that $\widetilde{\mathbb{E}} (f + L) \geq 0$. Since $\widetilde{\mathbb{E}} f < 0$, this means that $\widetilde{\mathbb{E}} L = L \cdot \widetilde{\mathbb{E}} 1 > 0$, completing the proof.

Using our earlier discussion, given a function f without a degree d SoS certificate of positivity, we may find in $\operatorname{poly}(n^d, 1/\epsilon, \operatorname{size}(f))$ time a pseudoexpectation $\widetilde{\mathbb{E}}$ such that $\widetilde{\mathbb{E}} f < \epsilon$.

1.4. Application: Max-cut

In this subsection, let us describe how the content of the previous three subsections interact through an example, and give an approximation algorithm for the max-cut problem.

Question. Given a graph G = (V, E), find $S \subseteq V$ such that the size of the cut $E(S, S^c) = \{\{i, j\} \in E : i \in S, j \in S^c\}$ is maximized.

Unlike min-cut, which may be solved in polynomial time using flow, the above is NP-complete.

One basic approximation algorithm was proposed by Erdős, which merely returns a random cut. With constant probability, the returned cut is a 1/2-approximation of the max-cut. We shall in this algorithm study an algorithm due to Goemans and Williamson [GW00].

Assume wlog that V = [n], and identify any $S \subseteq V$ with the vector in $\{-1,1\}^n$ with a 1 at precisely those vertices in S. Note that the function defined by

$$f_G(x) = \frac{1}{4} \sum_{ij \in E} (x_i - x_j)^2 = \frac{1}{2} \sum_{ij \in E} (1 - x_i x_j).$$

on input S returns precisely the size of the cut corresponding to S. Equivalently, considering the *graph Laplacian* $L_G := D_G - A_G$, where D_G is the diagonal matrix of degrees and A_G is the adjacency matrix, we have

$$f_G(x) = \frac{1}{4}x^{\top}L_Gx = \frac{1}{4}\langle L_G, xx^{\top} \rangle.$$

We are interested in $\max_{x \in \{-1,1\}^n} f_G(x) =: \mathsf{opt}(G)$.

Theorem 1.13. Set $\alpha_{\text{GW}} \coloneqq \min_{\rho \in [-1,1]} \frac{2 \arccos(\rho)}{\pi (1-\rho)} \approx 0.8786$. Then,

$$\frac{\mathsf{opt}(G)}{\alpha_{GW}} - f_G(x) \ge 0$$

has a degree 2 sum-of-squares certificate.

Let $\widetilde{\mathbb{E}}_{\mathsf{opt}}$ be a pseudoexpectation that maximizes $\widetilde{\mathbb{E}}_{\mathsf{opt}} f_G$ as $\mathsf{opt}_{\mathsf{SOS}_2}(G)$. Clearly, $\mathsf{opt}_{\mathsf{SOS}_2}(G) \ge \mathsf{opt}(G)$. Furthermore, by the previous theorem,

$$\operatorname{opt}(G) \leq \operatorname{opt}_{\operatorname{SOS}_2}(G) \leq \frac{1}{\alpha_{GW}} \operatorname{opt}(G).$$

By the discussion at the end of the previous subsection, we can find in $poly(n, 1/\epsilon)$ a pseudodistribution μ such that

$$\widetilde{\mathbb{E}}_{\mu} f_G \ge \mathsf{opt}_{\mathrm{SOS}_2}(G) - \epsilon.$$

So,

$$\frac{1}{\alpha_{\mathrm{GW}}}\mathrm{opt}(G) \geq \widetilde{\mathbb{E}}_{\mu}f_G \geq \mathrm{opt}(G) - \epsilon.$$

Lemma 1.14. Let μ be a degree 2 pseudodistribution on $\{-1,1\}^n$. Then, there exists a ("real") distribution μ' on $\{-1,1\}^n$ such that

$$\mathbb{E}_{\mu'} f_G \ge \alpha_{\rm GW} \cdot \widetilde{\mathbb{E}}_{\mu} f_G.$$

Further, it is possible to efficiently sample from μ' given μ . Plugging this back into our previous sequence of equations,

$$\mathbb{E}_{\mu'} f_G \ge \alpha_{\text{GW}}(\mathsf{opt}(G) - \epsilon) \ge (\alpha_{\text{GW}} - \epsilon)\mathsf{opt}(G),$$

and efficient sampling implies that we can in $poly(n, 1/\epsilon)$ time sample a random cut S such that with good probability, the size of the cut of S is a $(\alpha_{GW} - \epsilon)$ -approximation of the max-cut. Let us now get to the proofs of the above results.

Proof that Lemma **1.14** *implies Theorem* **1.13**. It suffices to show that for all pseudodistributions $\widetilde{\mathbb{E}}_{\mu}$,

$$\widetilde{\mathbb{E}}_{\mu} \left[\frac{\mathsf{opt}(G)}{\alpha_{\mathsf{GW}}} - f_G \right] \geq 0.$$

Equivalently, we would like to show that

$$\widetilde{\mathbb{E}}_{\mu} f_G \leq \frac{\mathsf{opt}(G)}{\alpha_{GW}}.$$

Letting μ' be a distribution as in Lemma 1.14,

$$\widetilde{\mathbb{E}}_{\mu}f_G \leq \frac{1}{\alpha_{\mathrm{GW}}}\mathbb{E}_{\mu'}f_G \leq \frac{1}{\alpha_{\mathrm{GW}}}\mathrm{opt}(G).$$

Proof of Lemma 1.14. We may assume wlog that $\widetilde{\mathbb{E}}_{\mu}x=0$, by changing $\mu(x)$ to $\frac{\mu(x)+\mu(-x)}{2}$ – note that this procedure does not change $\widetilde{\mathbb{E}}_{\mu}f_G$ because $f_G(x)=f_G(-x)$. Using Proposition 1.11(b) and recalling that any principal submatrix of a PSD matrix is PSD, $\widetilde{\mathbb{E}}_{\mu}xx^{\top}\succeq 0$. So, let ν be a normal distribution on \mathbb{R}^n with mean 0 and covariance matrix $\widetilde{\mathbb{E}}_{\mu}xx^{\top}$. Finally, define μ' by the process that samples a vector v according to ν , and returning $\mathrm{sign}(\nu)$ – this is well-defined with probability 1.

References

[GW00] Michel Goemans and David Williamson. 0.878 approximation algorithms for max cut and max 2-sat. *Journal of the ACM*, 42, 07 2000.

[O'D14] Ryan O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.