Homework 6 BIOS 7731

Due 10/22 10:30am through Canvas. Students may work together on homework assignments, but the assignment handed in must represent your own work. Problems based on a later lecture are labeled with *.

- 1. Suppose X_1, \ldots, X_n are IID $Poisson(\theta)$ and $\theta \sim Gamma(1, \lambda)$.
 - (a) According to the loss function $l(\theta, a) = \theta^p (\theta a)^2$, where p is a fixed positive constant, show that the Bayes rule is $\frac{T(X) + p + 1}{n + \lambda}$, where $T(X) = \sum_{i=1}^{n} X_i$.
 - (b) Is the Bayes rule also minimax? If so, for what values of λ and p is it minimax?

2. Empirical Bayes

Consider estimation of regression slopes $\theta_1, \ldots, \theta_p$ for p pairs of observations, $(X_1, Y_1), \ldots, (X_p, Y_p)$, modeled as independent with $X_i \sim N(0, 1)$ and $Y_i | X_i = x \sim N(\theta_i x, 1)$.

- (a) Following a Bayesian approach, let the unknown parameters θ_i be iid random variables from $N(0, \tau^2)$. Find the Bayes estimate of θ_i in this Bayesian model with squared error loss.
- (b) Determine $E[Y_i^2]$ in the Bayesian model. Using this, suggest a simple method of moments estimator for τ^2 .
- (c) Given an empricial Bayes estimator for θ_i combining the simple "empirical" estimate for τ in part b) with the Bayes estimate for θ_i when τ is known in part a).
- 3. BD 3.4.2 (pg 203)
- 4. BD 3.4.3 (pg 203)
- 5. BD 3.5.1 (pg 206)*
- 6. BD 3.5.11 (pg 208)*