WO 2005/071068 PCT/EP2005/000694

SEQUENCE LISTING

<110> CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS <110> BIONOSTRA, S.L. <120> EMPTY CAPSIDS (VLPs(-VP4)) OF THE INFECTIOUS BURSAL DISEASE VIRUS (IBDV), OBTAINMENT PROCESS AND APPLICATIONS <130> P1392PC <150> ES P200400121 <151> 2004-01-21 (January 21, 2004) <160> 10 <170> PatentIn version 3.1 <210> 1 <211> 35 <212> DNA <213> Artificial sequence <220> Synthetic DNA <223> Oligo I primer <400> 1 gcgcagatct atgacaaacc tgtcagatca aaccc 35 <210> 2 <211> 34 <212> DNA <213> Artificial sequence <220> Synthetic DNA <223> Oligo II primer <400> 2 gcgcaagctt aggcgagagt cagctgcctt atgc 34 <210> 3 <211> 7595 <212> DNA <213> Artificial sequence <220> <223> Plasmid pFBD/pVP2-his-VP3 <221> promoter <222> (157)..(285) <223> Promotor ppolh <221> CDS <222> (291)..(1289) <223> pVP2 ORF

WO 2005/071068 PCT/EP2005/000694

<221> promoter <222> (7443)(7503) <223> Promoter p10)	
<400> 3 gggtgatcaa gtcttcgtc	g agtgattgta aataaaatgt	aatttacagt atagtatttt 60
	t gataataatt cttatttaac	
	c tccggaatat taatagatca	
_	a gtattttact gttttcgtaa	
ctataaatat teeggattat	t tcataccgtc ccaccatcgg	gcgcggatct atg aca 296 Met Thr 1
<u> </u>	acc cag cag att gtt ccg Thr Gln Gln Ile Val Pro 10	
_	gga ccg gcg tcc att ccg Gly Pro Ala Ser Ile Pro 25	
Lys His Thr Leu Arg S	tca gag acc tcg acc tac Ser Glu Thr Ser Thr Tyr 40 45	
-	cta att gtc ttt ttc cct Leu Ile Val Phe Phe Pro 60	
	tac aca ctg cag ggc aat Tyr Thr Leu Gln Gly Asn 75	
-	act gcc cag aac cta ccg Thr Ala Gln Asn Leu Pro 90	
	cgg agt ctc aca gtg agg Arg Ser Leu Thr Val Arg 105	
Gly Gly Val Tyr Ala 1	cta aac ggc acc ata aac Leu Asn Gly Thr Ile Asn 120 125	Ala Val Thr Phe Gln
	ctg aca gat gtt agc tac Leu Thr Asp Val Ser Tyr 140	
-	aac gac aaa att ggg aac Asn Asp Lys Ile Gly Asn 155	
	agc tta ccc aca tca tat Ser Leu Pro Thr Ser Tyr 170	

agg ctt ggt g Arg Leu Gly A 180									872
gcc aca tgt g Ala Thr Cys A 195									920
gcc gat gat t Ala Asp Asp T									968
atc aca ctg t Ile Thr Leu P 2									1016
ggg gga gag c Gly Gly Glu L 245		•				ı Val			1064
gcc acc atc t Ala Thr Ile T 260								= =:	1112
gct gtg gcc g Ala Val Ala A 275			-		•				1160
cca ttc aat c Pro Phe Asn L	-								1208
tcc atc aaa c Ser Ile Lys L 3									1256
gat cag atg t Asp Gln Met S 325	- - -				gcagtga	acga	tccat	ggtgg	1309
caactatcca gg	gggccctcc gt	cccgtcad	c gctagt	ggcc	tacgaaa	agag	tggca	aacagg	1369
atccgtcgtt ac	eggtegetg g	ggtgagcaa	a cttcga	gctg	atccca	aatc	ctgaa	actagc	1429
aaagaacctg gt	tacagaat ad	cggccgatt	t tgaccc	agga	gccatga	aact	acaca	aaatt	1489
gatactgagt ga	agagggacc gt	tcttggcat	t caagac	cgtc	tggccaa	acaa	gggag	gtacac	1549
tgactttcgt ga									1609
agcattcggc tt									1669
cacattgttc co									1729
gctgggcgat ga									1789 1849
agctgcctca gg									1909
		, 2-4,			J	•			_ _

acctcccct gaacctgaaa	cataaaatga	atgcaattgt	tgttgttaac	ttgtttattg	1969
cagcttataa tggttacaaa	taaagcaata	gcatcacaaa	tttcacaaat	aaagcatttt	2029
tttcactgca ttctagttgt	ggtttgtcca	aactcatcaa	tgtatcttat	catgtctgga	2089
tctgatcact gcttgagcct	aggagatccg	aaccagataa	gtgaaatcta	gttccaaact	2149
attttgtcat ttttaatttt	cgtattagct	tacgacgcta	cacccagttc	ccatctattt	2209
tgtcactctt ccctaaataa	tccttaaaaa	ctccatttcc	acccctccca	gttcccaact	2269
attttgtccg cccacagcgg	ggcattttc	ttcctgttat	gtttttaatc	aaacatcctg	2329
ccaactccat gtgacaaacc	gtcatcttcg	gctacttttt	ctctgtcaca	gaatgaaaat	2389
ttttctgtca tctcttcgtt	attaatgttt	gtaattgact	gaatatcaac	gcttatttgc	2449
agcctgaatg gcgaatggga	cgcgccctgt	agcggcgcat	taagcgcggc	gggtgtggtg	2509
gttacgcgca gcgtgaccgc	tacacttgcc	agcgccctag	cgcccgctcc	tttcgctttc	2569
ttcccttcct ttctcgccac	gttcgccggc	tttccccgtc	aagctctaaa	tcgggggctc	2629
cctttagggt tccgatttag	tgctttacgg	cacctcgacc	ccaaaaaact	tgattagggt	2689
gatggttcac gtagtgggcc	atcgccctga	tagacggttt	ttcgcccttt	gacgttggag	2749
tccacgttct ttaatagtgg	actcttgttc	caaactggaa	caacactcaa	ccctatctcg	2809
gtctattctt ttgatttata	agggattttg	ccgatttcgg	cctattggtt	aaaaaatgag	2869
ctgatttaac aaaaatttaa	cgcgaatttt	aacaaaatat	taacgtttac	aatttcaggt	2929
ggcacttttc ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	2989
aatatgtatc cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	3049
aagagtatga gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	3109
cttcctgttt ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	3169
ggtgcacgag tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	3229
cgccccgaag aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	3289
ttatcccgta ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	3349
gacttggttg agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	3409
gaattatgca gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	3469
acgatcggag gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	3529
cgccttgatc gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	3589
acgatgcctg tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	3649
ctagcttccc ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	3709

ctgcgctcgg (cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	3769
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	3829
atctacacga (cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	3889
ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	3949
attgatttaa a	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	4009
ctcatgacca a	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	4069
aagatcaaag (gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	4129
aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	aactcttttt	4189
ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	4249
tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	4309
ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	4369
cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	4429
agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagca	ttgagaaagc	4489
gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	4549
ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	tcctgtcggg	4609
tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	4669
tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	4729
cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	4789
tgagctgata	ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	4849
gcggaagagc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	4909
agaccagccg	cgtaacctgg	caaaatcggt	tacggttgag	taataaatgg	atgccctgcg	4969
taagcgggtg	tgggcggaca	ataaagtctt	aaactgaaca	aaatagatct	aaactatgac	5029
aataaagtct	taaactagac	agaatagttg	taaactgaaa	tcagtccagt	tatgctgtga	5089
aaaagcatac	tggacttttg	ttatggctaa	agcaaactct	tcattttctg	aagtgcaaat	5149
tgcccgtcgt	attaaagagg	ggcgtggcca	agggcatggt	aaagactata	ttcgcggcgt	5209
tgtgacaatt	taccgaacaa	ctccgcggcc	gggaagccga	tctcggcttg	aacgaattgt	5269
taggtggcgg	tacttgggtc	gatatcaaag	tgcatcactt	cttcccgtat	gcccaacttt	5329
gtatagagag	ccactgcggg	atcgtcaccg	taatctgctt	gcacgtagat	cacataagca	5389
ccaagcgcgt	tggcctcatg	cttgaggaga	ttgatgagcg	cggtggcaat	gccctgcctc	5449
cggtgctcgc	cggagactgc	gagatcatag	atatagatct	cactacgcgg	ctgctcaaac	5509

ctgggcagaa	cgtaagccgc	gagagcgcca	acaaccgctt	cttggtcgaa	ggcagcaagc	5569
gcgatgaatg	tcttactacg	gagcaagttc	ccgaggtaat	cggagtccgg	ctgatgttgg	5629
gagtaggtgg	ctacgtctcc	gaactcacga	ccgaaaagat	caagagcagc	ccgcatggat	5689
ttgacttggt	cagggccgag	cctacatgtg	cgaatgatgc	ccatacttga	gccacctaac	5749
tttgttttag	ggcgactgcc	ctgctgcgta	acatcgttgc	tgctgcgtaa	catcgttgct	5809
gctccataac	atcaaacatc	gacccacggc	gtaacgcgct	tgctgcttgg	atgcccgagg	5869
catagactgt	acaaaaaac	agtcataaca	agccatgaaa	accgccactg	cgccgttacc	5929
accgctgcgt	tcggtcaagg	ttctggacca	gttgcgtgag	cgcatacgct	acttgcatta	5989
cagtttacga	accgaacagg	cttatgtcaa	ctgggttcgt	gccttcatcc	gtttccacgg	6049
tgtgcgtcac	ccggcaacct	tgggcagcag	cgaagtcgag	gcatttctgt	cctggctggc	6109
gaacgagcgc	aaggtttcgg	tctccacgca	tcgtcaggca	ttggcggcct	tgctgttctt	6169
ctacggcaag	gtgctgtgca	cggatctgcc	ctggcttcag	gagatcggta	gacctcggcc	6229
gtcgcggcgc	ttgccggtgg	tgctgacccc	ggatgaagtg	gttcgcatcc	tcggttttct	6289
ggaaggcgag	catcgtttgt	tcgcccagga	ctctagctat	agttctagtg	gttggcctac	6349
gtacccgtag	tggctatggc	agggcttgcc	gccccgacgt	tggctgcgag	ccctgggcct	6409
tcacccgaac	ttgggggttg	gggtggggaa	aaggaagaaa	cgcgggcgta	ttggtcccaa	6469
tggggtctcg	gtggggtatc	gacagagtgc	cagccctggg	accgaacccc	gcgtttatga	6529
acaaacgacc	caacacccgt	gcgttttatt	ctgtcttttt	attgccgtca	tagcgcgggt	6589
tccttccggt	attgtctcct	tccgtgtttc	agttagcctc	ccccatctcc	cggtaccgca	6649
tgcctcgaga	ctgcaggctc	tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	6709
aggcctttga	attccggatc	ctcactcaag	gtcctcatca	gagacggtcc	tgatccagcg	6769
gcccagccga	ccagggggtc	tctgtgttgg	agcattgggt	tttggcttgg	gctttggtag	6829
agcccgcctg	ggattgcgat	gcttcatctc	catcgcagtc	aagagcagat	ctttcatctg	6889
ttcttggttt	gggccacgtc	catggttgat	ttcatagact	ttggcaactt	cgtctatgaa	6949
agcttggggt	ggctctgcct	gtcctggagc	cccgtagatc	gacgtagctg	cccttaggat	7009
ttgttcttct	gatgccaacc	ggctcttctc	tgcatgcacg	tagtctagat	agtcctcgtt	7069
tgggtccggt	atttctcgtt	tgttctgcca	gtactttacc	tggcctgggc	ttggccctcg	7129
gtgcccattg	agtgctaccc	attctggtgt	tgcaaagtag	atgcccatgg	tctccatctt	7189
ctttgagatc	cgtgtgtctt	tttccctctg	tgcttcctct	ggtgtggggc	cccgagcctc	7249
cactccgtag	cctgctgtcc	cgtacttggc	cctttgcgac	ttgctgcctg	cttgtggtgc	7309

gtttgcaaga	aaatttcgca	tccgatgggc	gttcgggtcg	ctgagtgcga	agttggccat	7369
gtcagtcaca	atcccattct	cttccagcca	catgaacaca	ctgagtgcag	attggaatag	7429
tgggtccacg	ttggctgctg	cttccattgc	tctgacggca	ctctcgagtt	cgggggtctc	7489
tttgaactct	gatgcagcca	tggcgccctg	aaaatacagg	ttttcggtcg	ttgggatatc	7549
gtaatcgtga	tggtgatggt	gatggtagta	cgacatggtt	tcggac		7595

<210> 4

<211> 333

<212> PRT

<213> Artificial sequence

<220>

<223> pVP2-his-VP3 protein

<400> 4

Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg
1 5 10 15

Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr 20 25 30

Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45

Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro 50 60

Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr 65 75 80

Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr 85 90 95

Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 100 105 110

Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115 120 125

Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 130 135 140

Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 150

Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly
165 170 175

Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys 180 185 190

Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 195 200 205

Thr	Ala 210	Ala	Asp	Asp	Tyr	Gln 215	Phe	Ser	Ser	Gln	Tyr 220	Gln	Pro	Gly	Gly	
Val 225	Thr	Ile	Thr	Leu	Phe 230	Ser	Ala	Asn	Ile	Asp 235	Ala	Ile	Thr	Ser	Leu 240	
Ser	Val	Gly	Gly	Glu 245	Leu	Val	Phe	Arg	Thr 250	Ser	Val	His	Gly	Leu 255	Val	
Leu	Gly	Ala	Thr 260	Ile	Tyr	Leu	Ile	Gly 265	Phe	Asp	Gly	Thr	Thr 270	Val	Ile	
Thr	Arg	Ala 275	Val	Ala	Ala	Asn	Asn 280	Gly	Leu	Thr	Thr	Gly 285	Thr	Asp	Asn	
Leu	Met 290	Pro	Phe	Asn	Leu	Val 295	Ile	Pro	Thr	Asn	Glu 300	Ile	Thr	Gln	Pro	
Ile 305	Thr	Ser	Ile	Lys	Leu 310	Glu	Ile	Val	Thr	Ser 315	Lys	Ser	Gly	Gly	Gln 320	
Ala	Gly		Gln	Met 325	Ser	Trp	Ser	Ala	Arg 330	Gly	Ser	Leu				
<pre><210> 5 <211> 35 <212> DNA <213> Artificial sequence <220> Synthetic DNA <223> Oligo III primer <400> 5</pre>											. 35					
	_		acya	Jaaa	cc tọ	guda	gatte	a da								33
<212	1.> : 2> :	DNA	ficia	al se	equer	nce										
		Syntl Oligo														
)> caag		aggc	gaga	gt ca	agct	gccti	t ato	gc							34
<21: <21:	0>	33 DNA	ficia	al se	equer	nce										
<220> Synthetic DNA <223> Oligo V primer																
<400> 7											33					

<210>	8					
<211> <212>	32 DNA					
	Artificial sequ	ience				
<220>	Synthetic DNA					
<223>	Oligo VI primer					
<400>						2.0
cgcggat	ccc tcaaggtcct	catcagagac	gg			32
.01.05						
<210> <211>						
<212>						
	Artificial sequ	ience				
<223>	Plasmid pESCURA	A/pVP2-VP3-0	GFP			
<221>	promoter					
	(5649)(5859)					
<223>	Promoter GAL 1	(pVP2)				
<221>	promoter					
	(7402)(8080)	(TIDO CED)				
<223>	Promoter GAL 2	(VP3-GEP)				
<221>						
	(8086)(9597)					
<223>	VP3-GFP ORF					
<400>	9 acta gtatcgatgg	attacaaqqa	tgacgacgat	aagatctgag	ctcttaatta	60
	_					
	cttc gccagaggtt					120
gccaga	aatt tacgaaaaga	tggaaaaggg	tcaaatcgtt	ggtagatacg	ttgttgacac	180
ttctaa	ataa gcgaatttct	tatgatttat	gatttttatt	attaaataag	ttataaaaaa	240
aataag [.]	tgta tacaaatttt	aaagtgactc	ttaggtttta	aaacgaaaat	tcttattctt	300
gagtaa	ctct ttcctgtagg	tcaggttgct	ttctcaggta	tagcatgagg	tcgctccaat	360
tcagct	gcat taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggcgctc	420
ttccgc	ttcc tcgctcactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	480
agetea	ctca aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	540
					•	600
	agca aaaggccagc					
tttcca	tagg ctccgcccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	660
gcgaaa	cccg acaggactat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	720
ctctcc	tgtt ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	780
cgtggc	gctt tctcatagct	cacgctgtag	gtatctcagt	tcggtgtagg	tcgttcgctc	840

caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	900
ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	960
taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	agtggtggcc	1020
taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	agccagttac	1080
cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	accaccgctg	gtagcggtgg	1140
tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	aagatccttt	1200
gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	ggattttggt	1260
catgagatta	tcaaaaagga	tcttcaccta	gatcctttta	aattaaaaat	gaagttttaa	1320
atcaatctaa	agtatatatg	agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	1380
ggcacctatc	tcagcgatct	gtctatttcg	ttcatccata	gttgcctgac	tccccgtcgt	1440
gtagataact	acgatacggg	agggcttacc	atctggcccc	agtgctgcaa	tgataccgcg	1500
agacccacgc	tcaccggctc	cagatttatc	agcaataaac	cagccagccg	gaagggccga	1560
gcgcagaagt	ggtcctgcaa	ctttatccgc	ctccatccag	tctattaatt	gttgccggga	1620
agctagagta	agtagttcgc	cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	1680
catcgtggtg	tcacgctcgt	cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	1740
aaggcgagtt	acatgatccc	ccatgttgtg	caaaaaagcg	gttagctcct	tcggtcctcc	1800
gatcgttgtc	agaagtaagt	tggccgcagt	gttatcactc	atggttatgg	cagcactgca	1860
taattctctt	actgtcatgc	catccgtaag	atgcttttct	gtgactggtg	agtactcaac	1920
caagtcattc	tgagaatagt	gtatgcggcg	accgagttgc	tcttgcccgg	cgtcaatacg	1980
ggataatacc	gcgccacata	gcagaacttt	aaaagtgctc	atcattggaa	aacgttcttc	2040
ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	2100
tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttctgggt	gagcaaaaac	2160
aggaaggcaa	. aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	2220
actcttcctt	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	2280
catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	2340
agtgccacct	gaacgaagca	tctgtgcttc	attttgtaga	acaaaaatgc	aacgcgagag	2400
cgctaatttt	: tcaaacaaag	aatctgagct	gcatttttac	agaacagaaa	tgcaacgcga	2460
aagcgctatt	: ttaccaacga	agaatctgtg	cttcattttt	gtaaaacaaa	aatgcaacgc	2520
gagagcgcta	atttttcaaa	caaagaatct	gagctgcatt	tttacagaac	agaaatgcaa	2580
cgcgagagcg	g ctattttacc	: aacaaagaat	ctatacttct	tttttgttct	acaaaaatgc	2640

WO 2005/071068 11 PCT/EP2005/000694

atcccgagag cgctattttt ctaacaaagc atcttagatt actttttttc tcctt	tgtgc 2700
gctctataat gcagtctctt gataactttt tgcactgtag gtccgttaag gttag	gaagaa 2760
ggctactttg gtgtctattt tctcttccat aaaaaaagcc tgactccact tcccc	gcgttt 2820
actgattact agcgaagctg cgggtgcatt ttttcaagat aaaggcatcc ccgat	tatat 2880
tctataccga tgtggattgc gcatactttg tgaacagaaa gtgatagcgt tgatg	gattct 2940
tcattggtca gaaaattatg aacggtttct tctattttgt ctctatatac tacgt	atagg 3000
aaatgtttac attttcgtat tgttttcgat tcactctatg aatagttctt actac	caattt 3060
ttttgtctaa agagtaatac tagagataaa cataaaaaat gtagaggtcg agttt	agatg 3120
caagttcaag gagcgaaagg tggatgggta ggttatatag ggatatagca cagag	gatata 3180
tagcaaagag atacttttga gcaatgtttg tggaagcggt attcgcaata tttta	igtagc 3240
tegttacagt eeggtgegtt tttggttttt tgaaagtgeg tetteagage gettt	tggtt 3300
ttcaaaagcg ctctgaagtt cctatacttt ctagagaata ggaacttcgg aatag	gaact 3360
tcaaagcgtt tccgaaaacg agcgcttccg aaaatgcaac gcgagctgcg cacat	acagc 3420
tcactgttca cgtcgcacct atatctgcgt gttgcctgta tatatatata catga	igaaga 3480
acggcatagt gcgtgtttat gcttaaatgc gtacttatat gcgtctattt atgta	iggatg 3540
aaaggtagtc tagtacctcc tgtgatatta tcccattcca tgcggggtat cgtat	gcttc 3600
cttcagcact accetttage tgttctatat getgecacte etcaattgga ttagt	ctcat 3660
ccttcaatgc tatcatttcc tttgatattg gatcatacta agaaaccatt attat	catga 3720
cattaaccta taaaaatagg cgtatcacga ggccctttcg tctcgcgcgt ttcgg	stgatg 3780
acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt ctgta	agcgg 3840
atgccgggag cagacaagcc cgtcagggcg cgtcagcggg tgttggcggg tgtcg	gggct 3900
ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatacc acago	ttttc 3960
aattcaattc atcattttt ttttattctt ttttttgatt tcggtttctt tgaaa	ittttt 4020
ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttag	gattgg 4080
tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc ttaac	ccaac 4140
tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct acata	taagg 4200
aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc atgca	icgaaa 4260
agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta ctgga	igttag 4320
ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc ttgac	tgatt 4380
tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac aattt	tttac 4440

WO 2005/071068 12 PCT/EP2005/000694

tcttcgaaga	cagaaaattt	gctgacattg	gtaatacagt	caaattgcag	tactctgcgg	4500
gtgtatacag	aatagcagaa	tgggcagaca	ttacgaatgc	acacggtgtg	gtgggcccag	4560
gtattgttag	cggtttgaag	caggcggcag	aagaagtaac	aaaggaacct	agaggccttt	4620
tgatgttagc	agaattgtca	tgcaagggct	ccctatctac	tggagaatat	actaagggta	4680
ctgttgacat	tgcgaagagc	gacaaagatt	ttgttatcgg	ctttattgct	caaagagaca	4740
tgggtggaag	agatgaaggt	tacgattggt	tgattatgac	acccggtgtg	ggtttagatg	4800
acaagggaga	cgcattgggt	caacagtata	gaaccgtgga	tgatgtggtc	tctacaggat	4860
ctgacattat	tattgttgga	agaggactat	ttgcaaaggg	aagggatgct	aaggtagagg	4920
gtgaacgtta	cagaaaagca	ggctgggaag	catatttgag	aagatgcggc	cagcaaaact	4980
aaaaaactgt	attataagta	aatgcatgta	tactaaactc	acaaattaga	gcttcaattt	5040
aattatatca	gttattaccc	tatgcggtgt	gaaataccgc	acagatgcgt	aaggagaaaa	5100
taccgcatca	ggaaattgta	aacgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	5160
aaatcagctc	attttttaac	caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	5220
aatagaccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	5280
acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	5340
aaccatcacc	ctaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	5400
ctaaagggag	cccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	· 5460
aagggaagaa	agcgaaagga	gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	5520
gcgtaaccac	cacacccgcc	gcgcttaatg	cgccgctaca	gggcgcgtcg	cgccattcgc	5580
cattcaggct	gcgcaactgt	tgggaagggc	gatcggtgcg	ggcctcttcg	ctattacgcc	5640
agctggatct	tcgagcgtcc	caaaaccttc	tcaagcaagg	ttttcagtat	aatgttacat	5700
gcgtacacgc	gtctgtacag	aaaaaaaaga	aaaatttgaa	atataaataa	cgttcttaat	5760
actaacataa	ctataaaaaa	ataaataggg	acctagactt	caggttgtct	aactccttcc	5820
ttttcggtta	gagcggatct	tagctagccg	cggtaccaag	cttaggcgag	agtcagctgc	5880
cttatgcggc	ctgaggcagc	tcttgctttt	cctgacgcgg	ctcgagcagt	tcctgaagcg	5940
gcctgggcct	catcgcccag	caggtagtct	acaccttccc	caattgcatg	ggctagggga	6000
gcggcaggtg	ggaacaatgt	ggagaccacc	ggcacagcta	tcctccttat	ggcccggatt	6060
atgtctttga _.	agccgaatgc	tcctgcaatc	ttcaggggag	agttgaggtc	ggccacctcc	6120
atgaagtatt	cacgaaagtc	agtgtactcc	cttgttggcc	agacggtctt	gatgccaaga	6180
cggtccctct	cactcagtat	caattttgtg	tagttcatgg	ctcctgggtc	aaatcggccg	6240

WO 2005/071068 13 PCT/EP2005/000694

tattctgtaa	ccaggttctt	tgctagttca	ggatttggga	tcagctcgaa	gttgctcacc	6300
ccagcgaccg	taacgacgga	tcctgttgcc	actctttcgt	aggccactag	cgtgacggga	6360
cggagggccc	ctggatagtt	gccaccatgg	atcgtcactg	ctaggctccc	tcttgccgac	6420
catgacatct	gatcccctgc	ctgaccacca	cttttggagg	tcactatctc	cagtttgatg	6480
gatgtgattg	gctgggttat	ctcgtttgtt	ggaatcacaa	gattgaatgg	cataaggttg	6540
tcggtgccgg	tcgtcagccc	attgtttgcg	gccacagccc	tggtgattac	cgttgtccca	6600
tcaaagccta	tgaggtagat	ggtggcgcc	agtacaaggc	cgtggacgct	tgttcgaaac	6660
acgagctctc	ccccaacgct	gaggcttgtg	atggcatcaa	tgttggctga	gaacagtgtg	6720
attgttaccc	cacctggttg	gtactgtgat	gagaattggt	aatcatcggc	tgcagttatg	6780
gtgtagactc	tgggcctgtc	actgctgtca	catgtggcta	ccatttttgg	gtcaagccct	6840
attgcgggaa	tggggtcacc	aagcctcaca	tacccaagat	catatgatgt	gggtaagctg	6900
aggacggtga	ccccttcccc	tactaggacg	ttcccaattt	tgtcgttgat	gttggctgtt	6960
gcagacatca	acccattgta	gctaacatct	gtcagttcac	tcaggcttcc	ttggaaggtc	7020
acggcgttta	tggtgccgtt	tagtgcataa	acgccaccag	gaagtgtgct	tgacctcact	7080
gtgagactcc	gactcactag	cctgcagtag	ttgtaactgg	ccggtaggtt	ctgggcagtc	7140
aggagcatct	gatcgaactt	gtagttccca	ttgccctgca	gtgtgtagtg	agcacccaca	7200
attgagccag	ggaatccagg	gaaaaagaca	attagccctg	accctgtgtc	ccccacagtc	7260
aaattgtagg	tcgaggtctc	tgacctgaga	gtgtgcttct	ccagggtgtc	gtccggaatg	7320
gacgccggtc	cggttgttgg	catcagaagg	ctccgtatga	acggaacaat	ctgctgggtt	7380
tgatctgaca	ggtttgtcat	agatccgggg	ttttttctcc	ttgacgttaa	agtatagagg	7440
tatattaaca	attttttgtt	gatactttta	ttacatttga	ataagaagta	atacaaaccg	7500
aaaatgttga	aagtattagt	taaagtggtt	atgcagtttt	tgcatttata	tatctgttaa	7560
tagatcaaaa	atcatcgctt	cgctgattaa	ttaccccaga	aataaggcta	aaaaactaat	7620
cgcattatca	tcctatggtt	gttaatttga	ttcgttcatt	tgaaggtttg	tggggccagg	7680
ttactgccaa	tttttcctct	tcataaccat	aaaagctagt	attgtagaat	ctttattgtt	7740
cggagcagtg	cggcgcgagg	cacatctgcg	tttcaggaac	gcgaccggtg	aagacgagga	7800
cgcacggagg	agagtcttcc	ttcggagggc	tgtcacccgc	tcggcggctt	ctaatccgta	7860
cttcaatata	gcaatgagca	gttaagcgta	ttactgaaag	ttccaaagag	aaggttttt	7920
taggctaaga	taatggggct	ctttacattt	ccacaacata	taagtaagat	tagatatgga	7980
tatgtatatg	gatatgtata	tggtggtaat	gccatgtaat	atgattatta	aacttctttg	8040

cgtccatcca aaaaaaa	agt aagaattttt g	aaaattcga att	cg atg gct g Met Ala A 1	
gag ttc aaa gag ac Glu Phe Lys Glu Th 5	_	-		-
gca gca gcc aac gt Ala Ala Ala Asn Va 25	l Asp Pro Leu Ph	_		
atg tgg ctg gaa ga Met Trp Leu Glu Gl 40	-	l Thr Asp Met		
ctc agc gac ccg aa Leu Ser Asp Pro As 55	,		_	
cca caa gca ggc ag Pro Gln Ala Gly Se 70				
tac gga gtg gag gc Tyr Gly Val Glu Al 85				
aaa gac aca cgg at Lys Asp Thr Arg Il 10	e Ser Lys Lys Me			
gca aca cca gaa tg Ala Thr Pro Glu Tr 120		n Gly Hìs Arg		
ggc cag gta aag ta Gly Gln Val Lys Ty 135				
gag gac tat cta ga Glu Asp Tyr Leu As 150		_	Arg Leu Ala	
gaa gaa caa atc ct Glu Glu Gln Ile Le 165		- ·	555	
cag gca gag cca cc Gln Ala Glu Pro Pr 18	o Gln Ala Phe Il			
gaa atc aac cat gg Glu Ile Asn His Gl 200		n Gln Glu Gln		<i>-</i>
ctc ttg act gcg at Leu Leu Thr Ala Me 215	-	_		

_	ccc Pro	_				_			-	_				8817
 -	ggc Gly	_						_		-				8865
	gcc Ala		_	 -	_				_					8913
	atc Ile													8961
	tcc Ser 295					_	_				_	_		9009
	ttc Phe													9057
	acc Thr													9105
	atg Met									_		-		9153
	cag Gln													9201
	gcc Ala 375											_		9249
	aag Lys												cac His	9297
	gag Glu										_	_	_	9345
	aag Lys			•				_		_				9393
	ggc									_				9441
	gac Asp 455			 - -	-		_				_	_		9489

cag tcc gcc ctg agc aaa gac ccc aac gag aag cgc gat cac atg gtc Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 470 475 480	9537
ctg ctg gag ttc gtg acc gcc gcc ggg atc act ctc ggc atg gac gag Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu 485 490 495 500	9585
ctg tac aag taa agc Leu Tyr Lys	9600
<210> 10 <211> 503 <212> PRT <213> Artificial sequence	
<220> <223> pVP2-VP3-GFP protein	
<pre><400> 10 Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala Val 1 5 10 15</pre>	
Arg Ala Met Glu Ala Ala Asn Val Asp Pro Leu Phe Gln Ser Ala 20 25 30	
Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp Met 35 40 45	
Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn Phe 50 55 60	
Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys Tyr 65 70 75 80	
Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu Glu 85 90 95	
Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys Met Glu Thr Met 100 105 110	
Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Gly His Arg 115 120 125	
Gly Pro Ser Pro Gly Gln Val Lys Tyr Trp Gln Asn Lys Arg Glu Ile 130 135 140	
Pro Asp Pro Asn Glu Asp Tyr Leu Asp Tyr Val His Ala Glu Lys Ser 145 150 155 160	
Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile Tyr 165 170 175	
Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val 180 185 190	
Ala Lys Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln 195 200 205	

WO 2005/071068 17 PCT/EP2005/000694

Met	Lys 210		Leu	Leu	Leu	Thr 215	Ala	Met	Glu	Met	Lys 220		Arg	Asn	Pro
Arg 225		Ala	Leu	Pro	Lys 230	Pro	Lys	Pro	Lys	Pro 235		Ala	Pro	Thr	Gln 240
Arg	Pro	Pro	Gly	Arg 245	Leu	Gly	Arg	Trp	Ile 250		Thr	Val	Ser	Asp 255	Glu
Asp	Leu	Glu	Gly 260	Ser	Ile	Ala	Thr	Met 265	Val	Ser	Lys	Gly	Glu 270	Glu	Leu
Phe	Thr	Gly 275	Val	Val	Pro	Ile	Leu 280	Val	Glu	Leu	Asp	Gly 285	Asp	Val	Asn
Gly	His 290	Lys	Phe	Ser	Val	Ser 295	Gly	Glu	Gly	Glu	Gly 300	Asp	Ala	Thr	Tyr
Gly 305	Lys	Leu	Thr	Leu	Lys 310	Phe	Ile	Cys	Thr	Thr 315	Gly	Lys	Leu	Pro	Val 320
Pro	Trp	Pro	Thr	Leu 325	Val	Thr	Thr	Leu	Thr 330	Tyr	Gly	Val	Gln	Cys 335	Phe
Ser	Arg	Tyr	Pro 340	Asp	His	Met	Lys	Gln 345	His	Asp	Phe	Phe	Lys 350	Ser	Ala
Met	Pro	Glu 355	Gly	Tyr	Val	Gln	Glu 360	Arg	Thr	Ile	Phe	Phe 365	Lys	Asp	Asp
Gly	Asn 370	Tyr	Lys	Thr	Arg	Ala 375	Glu	Val	Lys	Phe	Glu 380	Gly	Asp	Thr	Leu
Val 385	Asn	Arg	Ile	Glu	Leu 390	Lys	Gly	Ile	Asp	Phe 395	Lys	Glu	Asp	Gly	Asn 400
Ile	Leu	Gly	His	Lys 405	Leu	Glu	Tyr	Asn	Tyr 410	Asn	Ser	His	Asn	Val 415	Tyr
Ile	Met	Ala	Asp 420	Lys	Gln	Lys	Asn	Gly 425	Ile	Lys	Val	Asn	Phe 430	Lys	Ile
Arg	His	Asn 435	Ile	Glu	Asp	Gly	Ser 440	Val	Gln	Leu	Ala	Asp 445	His	Tyr	Gln
Gln	Asn 450	Thr	Pro	Ile	Gly	Asp 455	Gly	Pro	Val	Leu	Leu 460	Pro	Asp	Asn	His
Tyr 465	Leu	Ser	Thr	Gln	Ser 470	Ala	Leu	Ser	Lys	Asp 475	Pro	Asn	Glu	Lys	Arg 480
Asp	His	Met	Val	Leu 485	Leu	Glu	Phe	Val	Thr 490	Ala	Ala	Gly	Ile	Thr 495	Leu
Gly	Met	Asp	Glu 500	Leu	Tyr	Lys									