Generalized Zero-Shot Learning for Point Cloud Segmentation with Evidence-Based Dynamic Calibration

Hyeonseok Kim, Byeongkeun Kang, Yeejin Lee

Visual Computing Laboratory

Point Cloud Segmentation

Generalized Zero-Shot Point Cloud Segmentation

Zero-Shot Learning(ZSL) vs Generalized Zero-Shot Learning(GZSL)

	ZSL	GZSL ★				
Train	Seen					
Test	Unseen	Seen + Unseen				

Michele et al. (3DV 2021): 3DGenZ

Yang et al. (ICCV 2023): 3DPC-GZSL

GZSL Issue: Bias of Prediction towards Seen Categories

The GZSL models still show bias toward seen categories.

Mitigating Bias of Prediction towards Seen Categories

Calibrated Stacking

Probability calibration

Gating methods

Preliminary Experiments: Calibrated stacking

Strongly dependent on hyperparameter

Comparison of Calibration Methods

■ Seen-class Probability ■ Unseen-class Probability

Uncertainty Estimation

- This uncertainty (evidence) can be modeled using evidence theory (Sensoy et al. 2018).
- Uncertainty: $u = \frac{K}{\sum_{k=1}^{K} \alpha_k}$
 - This uncertainty is for the seen classes: $K = N_s$.

Overview

We propose a novel method, E3DPC-GZSL.

Phase I

- Training the encoder E to extract a vector f from the point cloud x.
- · Learning from scratch using seen data.
- Optimizing the cross-entropy.

Phase II

- The decoder D is trained to generate the feature vectors $\tilde{\mathbf{f}}$ from a random vector $\mathbf{z} \in \mathbb{R}^{N_z}$.
- Condition: text embedding $t \in \mathbb{R}^{N_t}$.

Phase II

- Semantic tuning improves synthesized features by using global scene and local point conditions.
- Tuning vector $\mathbf{s} \in \mathbb{R}^{N_t}$: encode the categories present in the point cloud.
- Training strategy: 3DPC-GZSL(Yang et al. 2023)

Phase III

- The object is to train the classifier \mathcal{C} and uncertainty estimator \mathcal{U} .
- C: assign class probabilities to points.
- *U*: obtain the uncertainty of a point.

Inference: uncertainty estimation

Uncertainty difference between seen and unseen points.

Evidence-Based Dynamic Calibration is performed based on the uncertainty of each input point.

Experiments: Results

	Training set		ScanNet v2			S3DIS				
	Encoder	Classifier	Seen	mIoU Unseen	All	HmIoU	Coon	mIoU Unseen	All	HmIoU
			Seen	Unseen	All		Seen	Ullseen	AII	
Full supervision	$ \mathcal{Y}^s \cup \mathcal{Y}^u $	$\mid \mathcal{Y}^s \cup \mathcal{Y}^u \mid$	43.3	51.9	45.1	47.2	74.0	50.0	66.6	59.6
Full supervision only for classifier	\mathcal{Y}^s	$\mathcal{Y}^s \cup \mathcal{Y}^u$	41.5	39.2	40.3	40.3	60.9	21.5	48.7	31.8
Supervision with seen	\mathcal{Y}^s	\mathcal{Y}^s	39.0	0.0	31.3	0.0	70.2	0.0	48.6	0.0
3DGenZ (Michele et al. 2021)	\mathcal{Y}^s	$\mid \mathcal{Y}^s \cup \mathcal{Y}^{ ilde{u}} \mid$	32.8	7.7	27.8	12.5	53.1	7.3	39.0	12.9
3DPC-GZSL (Yang et al. 2023a)	\mathcal{Y}^s	$\mathcal{Y}^s \cup \mathcal{Y}^{ ilde{u}}$	34.5	14.3	30.4	20.2	58.9	9.7	43.8	16.7
E3DPC-GZSL (ours)	$ \mathcal{Y}^s $	$\mid \mathcal{Y}^s \cup \mathcal{Y}^{ ilde{u}} \mid$	36.1	15.4	32.0	21.6	67.9	12.0	50.7	20.4
			+1.6	+1.1	+1.6	+1.4	+9.0	+2.3	+6.9	+3.7

S: floor wall ceiling table chair door clutter board bookcase U: beam column sofa window

Experiments: Ablation Study

Dataset	В	S	U	Seen	mIoU Unseen	All	HmIoU	-
ScanNet v2	\ \ \ \	- - - <	- - -	34.78 34.86 36.09 36.11	14.80 14.87 15.23 15.40	30.79 30.87 31.91 31.97	20.77 20.85 21.42 21.59	+
S3DIS	\ \ \ \	- - -	- - - /	65.03 66.58 66.46 67.90	10.17 11.27 11.02 12.01	48.15 49.56 49.40 50.70	17.60 19.28 18.90 20.42	+

- B: Baseline model without calibrated stacking
- S: Semantic tuning
- U: Evidence-based dynamic calibration

 This over-confidence issue makes it difficult to calibrate the prediction probabilities.

Summary

- We propose E3DPC-GZSL, a novel approach for generalized zero-shot point cloud semantic segmentation.
- Our method exploits the uncertainty of input points to dynamically calibrate classifier predictions, which mitigates the bias of zero-shot models towards seen classes and improves generalization performance.
- To address the issue of data scarcity, we introduce a novel training strategy that refines the semantic space by applying semantic tuning to text embeddings.
- Regularizing the model's overconfidence issue could improve performance in generalized zero-shot settings.
- We consider this as a direction for future research.

Thank You!