Stochastische Modelle

4. Übung

Aufgabe 13. In dieser Aufgabe wird eine Markov-Kette mit vorgegebener Übergangsmatrix und Anfangsverteilung konstruiert. Die Konstruktion zeigt insbesondere, wie sich die Markov-Kette simulieren lässt.

Es sei $S = \mathbb{N}$ oder $S = \{1, \dots, N\}$ für ein $N \in \mathbb{N}$. Es sei $(p_{ij})_{ij \in S}$ eine stochastische Matrix und es seien $p_i \in [0, 1], i \in S$, so dass $\sum_{i \in S} p_i = 1$. Seien U_0, U_1, \dots unabhängige auf dem Intervall (0, 1) gleichverteilte Zufallsvariablen. Setze für alle $i, j \in S$

$$s_i := \sum_{k=1}^{i} p_k, \qquad s_{ij} := \sum_{k=1}^{j} p_{ik}.$$

Definiere $f: S \times (0,1) \to S$ durch

$$f(i, u) := \min\{j \in S : u \le s_{ij}\}, \quad i \in S, \ u \in (0, 1).$$

Schließlich sei $X_0 := \min\{i \in S : U_0 \leq s_i\}$ und X_1, X_2, \ldots seien rekursiv definiert durch $X_{n+1} := f(X_n, U_{n+1}), n \in \mathbb{N}_0$. Zeigen Sie, dass $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette ist mit Anfangsverteilung $P(X_0 = i) = p_i, i \in S$, und Übergangsmatrix $(p_{ij})_{ij \in S}$.

Aufgabe 14. Betrachten Sie eine einfache Irrfahrt auf \mathbb{Z} mit Übergangswahrscheinlichkeiten

$$p_{i,i-1} = 1 - p, \quad p_{i,i+1} = p, \quad i \in \mathbb{Z},$$

wobei 0 . Berechnen Sie alle*n* $-Schritt Übergangswahrscheinlichkeiten <math>p_{ij}^{(n)}$, $i, j \in \mathbb{Z}$, $n \in \mathbb{N}_0$.

In Satz 8, Kapitel 2, der Vorlesung ist der <mark>gegenwärtige Zeitpunkt n deterministisch</mark>. In Aufgabe 15 und Aufgabe 17 wird untersucht, wie sich die Aussage des Satzes auf zufällige Zeitpunkte erweitern lässt.

Aufgabe 15. Es sei $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette mit Zustandsraum $\{1,2\}$, Übergangsmatrix $\binom{1/2}{1/2} \binom{1/2}{1/2}$ und $P(X_0 = 1) = P(X_0 = 2) = \frac{1}{2}$. Gilt für jede Zufallsvariable T mit Werten in \mathbb{N}

$$P(X_{T+1} = 1 | X_0 = 1, X_T = 2) = P(X_1 = 1 | X_0 = 2)$$
?

Definition einer Stoppzeit. Sei $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette mit Zustandsraum S. Für jedes $n \in \mathbb{N}_0$ sei \mathcal{F}_n die Menge aller Ereignisse der Form $\{(X_0, \ldots, X_n) \in B\}$ mit $B \subset S^{n+1}$. Eine Zufallsvariable T mit Werten in $\mathbb{N}_0 \cup \{\infty\}$ heißt **Stoppzeit** (für die Markov-Kette), falls für jedes $n \in \mathbb{N}_0$

$$\{T=n\}\in\mathcal{F}_n$$

Interpretation. Die Menge \mathcal{F}_n besteht aus allen Ereignissen, die durch X_0, \ldots, X_n beschrieben werden und bei einer Stoppzeit T ist das Ereignis $\{T = n\}$ durch X_0, \ldots, X_n bestimmt. Werden X_0, X_1, \ldots nacheinander beobachtet bis man stoppt, dann kann die Entscheidung, ob zur Zeit n gestoppt wird, getroffen werden, sobald man X_0, \ldots, X_n kennt.

Aufgabe 16. Sei $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette mit Zustandsraum S. Sei $A \subset S$ und

$$T := \inf\{n \ge 0 : X_n \in A\}, \quad \tau := \inf\{n \ge 1 : X_n \in A\}.$$

- (a) Zeigen Sie, dass T und τ Stoppzeiten sind.
- (b) Ist T+1 eine Stoppzeit?
- (c) Ist $\tau 1$ eine Stoppzeit?

Aufgabe 17. Sei $\{X_n : n \in \mathbb{N}_0\}$ eine Markov-Kette mit Zustandsraum S und T sei eine Stoppzeit. Zeigen Sie die starke Markov-Eigenschaft: Für alle $m \in \mathbb{N}, Z \subset S^m, V \in \bigcup_{n=1}^{\infty} S^n$ gilt

$$P((X_{T+1},\ldots,X_{T+m}) \in Z | \mathbf{X}_T = \mathbf{i}, T < \infty, (\mathbf{X}_0,\ldots,\mathbf{X}_T) \in V) = P_i((X_1,\ldots,X_m) \in Z),$$
sofern $P(X_T = i, T < \infty, (X_0,\ldots,X_T) \in V) > 0.$

Aufgabe 18. Es sei $\frac{z}{z}$ ein absorbierender Zustand einer Markov-Kette $\{X_n : n \in \mathbb{N}_0\}$ und es sei $T := \inf\{n \in \mathbb{N}_0 : X_n = z\}$. Zeigen Sie für jeden Anfangszustand i

$$P_i(T < \infty) = P_i\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{X_k = z\}\right) = \lim_{n \to \infty} p_{iz}^{(n)}.$$