Impacts of Forest Fragmentation on Floristics and Carbon Storage

William F. Laurance

Smithsonian Tropical Research Institute, Panama

Biological Dynamics of Forest Fragments Project, Manaus, Brazil

Rapid Forest Destruction in Amazonia

Fragmented Landscapes

20,000 km of new forest edge created each year

- Initiated in 1979, operated cooperatively by INPA and STRI
- Pre-fragmentation censuses of many taxa
- No hunting, logging, or significant forest fires

Permanent Plots

- 40 1-ha plots
 - 24 in fragments or near edges
 - 16 in intact-forest interiors
- 32,000 trees (≥10 cm dbh) monitored since early 1980s
- Mortality, recruitment, and growth determined during recensuses every 4-6 years
- 95.3% of trees identified
 - 267 genera
 - 1162 species

Elevated Tree Mortality

Laurance et al. (1998) Ecology 79:2032-2040

Biomass Collapse

Laurance et al. (1997) Science 278:1117-1118

Big Trees are Especially Vulnerable

Laurance *et al.* (2000) *Nature* **404**:836

Change in Species Richness

Based on analysis of 1162 species or morphospecies

Fluctuating Stem Numbers

Change in Fisher's Alpha

Rate of Species Loss

 $R_s = -0.612$ P = 0.00003

Species Turnover

Tree-Size Distributions

Edge plots

- $-\chi^2=56.4$, df=5, P<0.00001
- Interior plots

 $-\chi^2=1.58$, df=5, P=0.90

 R_s = -0.593 P=0.00005

Changing Floristic Composition

Changes in Abundances of Tree Genera in Fragments

- Bootstrapping analysis $(P \le 0.01)$ of Importance Values
- 141 genera sufficiently common (in ≥ 5 plots) for analysis
 - 15 increased significantly (10.6%)
 - 26 declined significantly (18.4%)
- Average magnitude of change across all genera far larger than in intact forest (38.3% vs. 10.7%)

Floristic Changes are Highly Non-random

Proliferating Pioneers Near Edges

Density of 52 Mainly Successional Species

Laurance et al. (In press) Ecology

Change in Abundance vs. Wood Density

Successional Trees are Still Increasing

Summary

Edge Effects

- At least in the first two decades after isolation, edge effects are the dominant driver of ecological change
- Although local tree diversity has not yet declined, chronically elevated tree mortality causes a "violent revolution" in community composition and dynamics
- Observed changes in tree communities are highly nonrandom

Altered Carbon Dynamics

- Proliferating trees in fragments are often early successional species that have much lower wood densities than the old-growth species they are replacing
- Short longevities of pioneer trees and high edge-related tree mortality means that carbon cycling accelerates markedly in fragments
- The changes in community composition are increasing over time

