Package 'PPQplan'

October 12, 2022

Type Package

```
Title Process Performance Qualification (PPQ) Plans in Chemistry,
     Manufacturing and Controls (CMC) Statistical Analysis
Version 1.1.0
Maintainer Yalin Zhu <yalin.zhu@merck.com>
Depends R (>= 3.2.0)
Imports ggplot2, plotly
Description Assessment for statistically-based PPQ sampling plan, including calculating the pass-
     ing probability, optimizing the baseline and high performance cutoff points, visualiz-
     ing the PPQ plan and power dynamically. The analytical idea is based on the simulation meth-
     ods from the textbook Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovin-
     sky, K., & Zhang, L. (2017). Statistical Methods for CMC Applications. In Statistical Applica-
     tions for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Indus-
     try (pp. 227-250). Springer, Cham.
License GPL-3
Suggests knitr, rmarkdown, devtools
VignetteBuilder knitr
NeedsCompilation no
RoxygenNote 7.1.0
Encoding UTF-8
URL https://allenzhuaz.github.io/PPQplan/,
     https://github.com/allenzhuaz/PPQplan
BugReports https://github.com/allenzhuaz/PPQplan/issues
LazyData true
Language en-US
Author Yalin Zhu [aut, cre] (<a href="https://orcid.org/0000-0003-3830-8660">https://orcid.org/0000-0003-3830-8660</a>),
     Merck & Co., Inc. [cph]
Repository CRAN
Date/Publication 2020-10-08 04:30:06 UTC
```

2 heatmap_ly

R topics documented:

heatı	map_ly	A Gener Plan Us		,		Power of the Samp	ling
Index							20
	ti_pp		 		 		. 18
	ti_occurve						
	ti_ctplot						
	rl_pp						
	PPQ_pp		 		 		. 13
	PPQ_occurve		 		 		. 12
	PPQ_ggplot		 		 		. 10
	PPQ_ctplot		 		 		. 9
	pp		 		 		. 8
	pi_pp		 		 		. 7
	pi_occurve		 		 		. 5
	pi_ctplot		 		 		. 4
	k_factor						
	heatmap_ly		 		 		. 2

Description

The function for dynamically plotting (ggplot) the heatmap to evaluate the sampling plan based on a general lower and/or upper specification limits.

Usage

```
heatmap_ly(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, test.point, dynamic)
```

Arguments

attr.name	(optional) user-defined attribute name for sampling plan assessment
attr.unit	(optional) user-defined attribute unit
Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
test.point	(optional) actual process data points for testing whether the processes pass PPQ
dynamic	logical; if TRUE, then convert the plain heatmap to dynamic graph using plotly.

Value

A Plain or Dynamic Heatmap for Sampling Plan Assessment.

k_factor 3

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
pp and PPQ. occurve.
```

Examples

```
## Not run:
heatmap_ly(attr.name = "Thickness", attr.unit = "%",Llim = -0.2, Ulim = 0.2,
mu = seq(-0.2, 0.2, 0.001), sigma = seq(0,0.2, 0.001),
test.point=data.frame(c(0.1,-0.05),c(0.15,0.05)), n=2, dynamic = T)
## End(Not run)
```

k_factor

Estimating K-factors for Tolerance Intervals Based on Howe's Method

Description

Estimates k-factors for tolerance intervals based on Howe's method with normality assumption.

Usage

```
k_{factor}(n, alpha = 0.05, P = 0.99, side = 1)
```

Arguments

n	Sample size
alpha	The level chosen such that (1-alpha) is the confidence level.
P	The proportion of the population to be covered by the tolerance interval.
side	Whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).

Value

The estimated k-factor for tolerance intervals assuming normality.

Note

This function is a simplified version of tolerance::K.factor(), only considering Howe's method.

4 pi_ctplot

See Also

ti_pp

Examples

```
k_{factor}(10, P = 0.95, side = 2)
```

pi_ctplot Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using Prediction Interval.

Description

The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
pi_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, test.point)
```

Arguments

attr.name user-defined attribute name for PPQ assessment
attr.unit user-defined attribute unit
Llim lower specification limit
Ulim upper specification limit
mu hypothetical mean of the attribute
sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch

n.batch number of batches for passing PPQ during validationalpha significant level for constructing the prediction interval.

test.point (optional) actual process data points for testing whether the processes pass PPQ

Value

Heatmap (or Contour Plot) for PPQ Assessment.

Author(s)

pi_occurve 5

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
pi_pp and pi_occurve.
```

Examples

```
## Not run:
## Example verifying simulation resutls in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma \leftarrow seq(0.2, 3.5, 0.1)
pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
mu <- seq(90, 110, 0.5)
pi_ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=90, Ulim=110)
mu < - seq(95, 105, 0.1)
sigma < - seq(0.1, 2.5, 0.1)
pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
pi_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, test.point=test)
## End(Not run)
```

pi_occurve

Operating Characteristic (OC) Curves for the CQA PPQ Plan using Prediction Interval.

Description

The function for plotting the OC curves and optimizing the baseline and high performance PPQ plans, given lower and upper specification limits.

Usage

```
pi_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, add.reference)
```

pi_occurve

Arguments

attr.name user-defined attribute name
attr.unit user-defined attribute unit
Llim lower specification limit
Ulim upper specification limit

mu hypothetical mean of the attribute

sigma hypothetical standard deviation of the attribute

n sample size (number of locations) per batch

n.batch number of batches for passing PPQ during validation alpha significant level for constructing the prediction interval.

add. reference logical; if TRUE, then add reference OC curves (Baseline and High Performance)

in the plot.

Value

OC curves for specification test and PPQ plan.

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
pi_pp and rl_pp.
```

```
## Not run:
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01))
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), n.batch=3)
# Baseline curve
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), alpha = 0.1135434)
# High performance curve
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
sigma = seq(0.01,1,0.01), alpha = 0.0225518)
# 95% with reference curves
pi_occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
```

pi_pp 7

```
sigma = seq(0.01,1,0.01), add.reference=TRUE)
pi_occurve(attr.name = "Composite Assay", attr.unit = "%",
mu = 100, sigma = seq(0.1,6,0.1), Llim=95, Ulim=105, n.batch=1, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=seq(95,105,0.1), sigma=1, Llim=95, Ulim=105, n=10, add.reference=TRUE)
pi_occurve(attr.name = "Protein Concentration", attr.unit="%",
mu=seq(90, 110, 0.1), sigma=1.25, Llim=90, Ulim=110, add.reference=TRUE)
## End(Not run)
```

pi_pp

Probability of Passing PPQ Test using Prediction Interval

Description

The function for calculating the probability of passing critical quality attributes (CQA) PPQ test.

Usage

```
pi_pp(Llim, Ulim, mu, sigma, n, n.batch, alpha)
```

lower specification limit

Arguments

Llim

Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
alpha	significant level for constructing the prediction interval.

Value

A numeric value of the passing/acceptance probability

Author(s)

8 pp

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

rl_pp.

Examples

```
## Not run:
pi_pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi_pp, mu=97, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi_pp, mu=100, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
## End(Not run)
```

pp

Probability of Passing General Upper and/or Lower Specification Limit

Description

The function for calculating the probability of passing a general upper and/or lower boundary.

Usage

```
pp(Llim, Ulim, mu, sigma, n)
```

Arguments

Llim	lower specification limit
Ulim	upper specification limit

mu hypothetical mean of the attribute

sigma hypothetical standard deviation of the attribute

n sample size (number of locations)

Value

A numeric value of the passing/acceptance probability

Author(s)

PPQ_ctplot 9

See Also

rl_pp and PPQ_pp.

PPQ_ctplot	Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using General Multiplier.

Description

The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
PPQ_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, test.point)
```

Arguments

attr.name	(optional) user-defined attribute name for PPQ assessment
attr.unit	(optional) user-defined attribute unit
Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
k	general multiplier for constructing the specific interval
test.point	(optional) actual process data points for testing whether the processes pass PPQ

Value

Heatmap (or Contour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

10 PPQ_ggplot

See Also

PPQ_pp and PPQ_occurve.

Examples

```
## Not run:
mu <- seq(1.6,3.4,0.05)
sigma <- seq(0.05, 0.8, 0.01)
PPQ_ctplot(attr.name = "Total Protein", attr.unit = "mg/mL", Llim=1.5, Ulim=3.5,
mu = mu, sigma = sigma, k=2.373)
## Example verifying simulation resutls in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma <- seq(0.2, 5, 0.1)
PPQ_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373)
mu < - seq(90, 110, 0.5)
PPQ_ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=90, Ulim=110,
mu = mu, sigma = sigma, k=2.373)
mu <- seq(95, 105, 0.1)
sigma <- seq(0.1, 2.5, 0.1)
PPQ_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
PPQ_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, test.point=test)
## End(Not run)
```

PPQ_ggplot

Heatmap/Contour Plot for Dynamically Assessing Power of the CQA PPQ Plan Using General Multiplier.

Description

The function for dynamically plotting (ggplot) the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
PPQ_ggplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, test.point, dynamic)
```

Arguments

```
attr.name (optional) user-defined attribute name for PPQ assessment attr.unit (optional) user-defined attribute unit
```

PPQ_ggplot 11

Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
k	general multiplier for constructing the specific interval
test.point	(optional) actual process data points for testing whether the processes pass PPQ
dynamic	logical; if TRUE, then convert the heatmap ggplot to dynamic graph using plotly.

Value

Dynamic Heatmap (or Contour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
PPQ_pp and PPQ_occurve.
```

```
## Not run:
mu <- seq(95, 105, 0.1)
sigma <- seq(0.1,1.7,0.1)
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, dynamic = FALSE)
test <- data.frame(mu=c(97,98.3,102.5), sd=c(0.55, 1.5, 0.2))
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
mu = mu, sigma = sigma, k=2.373, test.point = test)
## End(Not run)</pre>
```

PPQ_occurve

PPQ_occurve	Operating Characteristic (OC) Curves for the CQA PPQ Plan Using General Multiplier.

Description

The function for plotting the OC curve to show the PPQ plan, given lower and upper specification limits.

Usage

```
PPQ_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, add.reference)
```

Arguments

attr.name	(optional) user-defined attribute name
attr.unit	(optional) user-defined attribute unit
Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
k	general multiplier for constructing the specific interval
add.reference	logical; if TRUE, then add reference OC curves (Baseline and High Performance) in the plot.

Value

OC curves for specification test and PPQ plan.

Author(s)

Yalin Zhu Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
PPQ_pp and rl_pp.
```

PPQ_pp 13

Examples

```
## Not run:
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=97, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=100, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373)
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105,
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373, add.reference=TRUE)

PPQ_occurve(attr.name = "Protein Concentration", attr.unit="%", Llim=90, Ulim=110,
mu=seq(90, 110, 0.1), sigma=1.25, k=2.373)

## Only display referece curves, leave k as NULL by default
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105,
mu=98, sigma=seq(0.1, 10, 0.1), n=10, add.reference=TRUE)

## End(Not run)
```

PPQ_pp

Probability of Passing PPQ Test Using General Multiplier

Description

The function for calculating the probability of passing critical quality attributes (CQA) PPQ test.

Usage

```
PPQ_pp(Llim, Ulim, mu, sigma, n, n.batch, k)
```

Arguments

Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
k	general multiplier for constructing the specific interval

Value

A numeric value of the passing/acceptance probability

Author(s)

14 PPQ_pp

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

rl_pp.

```
## Not run:
PPQ_pp(Llim = 90, Ulim = 110, mu=105, sigma=1.5, n=10, k=3.1034)
# One-sided tolerance interval with k=0.753 (95/67.5 one-sided tolerance interval LTL)
PPO_pp(sigma=0.03, mu=1.025, n=40, Llim=1, Ulim=Inf, k=0.753)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=seq(0.1,10,0.1), FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ_pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
sigma < - seq(0.1, 4, 0.1)
pp1 <- sapply(X=sigma, FUN = PPO_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
pp2 <- sapply(X=sigma, FUN = PPQ_pp, mu=98, n=10, Llim=95, Ulim=105, k=2.373)
pp3 <- sapply(X=sigma, FUN = PPQ_pp, mu=99, n=10, Llim=95, Ulim=105, k=2.373)
pp4 <- sapply(X=sigma, FUN = PPQ_pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
plot(sigma, pp1, xlab="Standard Deviation", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(sigma, pp2, type="o", pch=2, col=2)
lines(sigma, pp3, type="o", pch=3, col=3)
lines(sigma, pp4, type="o", pch=4, col=4)
legend("topright", legend=paste0(rep("mu=",4),c(97,98,99,100)), bg="white",
col=c(1,2,3,4), pch=c(1,2,3,4), lty=1, cex=0.8)
mu < - seq(95, 105, 0.1)
pp5 <- sapply(X=mu, FUN = PPQ_pp, sigma=0.5, n=10, Llim=95, Ulim=105, k=2.373)
pp6 <- sapply(X=mu, FUN = PPQ_pp, sigma=1, n=10, Llim=95, Ulim=105, k=2.373)
pp7 <- sapply(X=mu, FUN = PPQ_pp, sigma=1.5, n=10, Llim=95, Ulim=105, k=2.373)
pp8 \leftarrow sapply(X=mu, FUN = PPQ_pp, sigma=2, n=10, Llim=95, Ulim=105, k=2.373)
pp9 \leftarrow sapply(X=mu, FUN = PPQ_pp, sigma=2.5, n=10, Llim=95, Ulim=105, k=2.373)
plot(mu, pp5, xlab="Mean Value", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(mu, pp6, type="o", pch=2, col=2)
lines(mu, pp7, type="o", pch=3, col=3)
lines(mu, pp8, type="o", pch=4, col=4)
lines(mu, pp9, type="o", pch=5, col=5)
legend("topright", legend=paste0(rep("sigma=",5),seq(0.5,2.5,0.5)), bg="white",
col=c(1,2,3,4,5), pch=c(1,2,3,4,5), lty=1, cex=0.8)
## End(Not run)
```

rl_pp 15

rl_pp

Probability of Passing Specification Test for a Release Batch

Description

The function for calculating the probability of passing critical quality attributes (CQA) specification test.

Usage

```
rl_pp(Llim, Ulim, mu, sigma, NV)
```

Arguments

Llim	lower specification limit
Ulim	upper specification limit

mu hypothetical mean of the attribute

sigma hypothetical standard deviation of the attribute
NV nominal volume for the specification test.

Value

A numeric value of the passing/acceptance probability

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
PPQ_pp, pi_pp and ti_pp.
```

```
rl_pp(Llim=1.5, Ulim=3.5, mu=2.5, sigma=0.8)
```

ti_ctplot

ti_ctplot	Heatmap/Contour Plot for Assessing Power of the PPQ Plan using Tolerance Interval.

Description

The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
ti_ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch,
alpha, coverprob, side, test.point)
```

Arguments

attr.name	user-defined attribute name for PPQ assessment
attr.unit	user-defined attribute unit
Llim	lower specification limit
Ulim	upper specification limit
mu	hypothetical mean of the attribute
sigma	hypothetical standard deviation of the attribute
n	sample size (number of locations) per batch
n.batch	number of batches for passing PPQ during validation
alpha	significant level for constructing the tolerance interval.
coverprob	coverage probability for constructing the tolerance interval
side	whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).
test.point	(optional) actual process data points for testing whether the processes pass PPQ

Value

Heatmap (or Contour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

ti_occurve 17

See Also

```
ti_pp and ti_occurve.
```

Examples

```
## Not run:
mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
ti_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%",
mu = mu, sigma = sigma, Llim=95, Ulim=105)

ti_ctplot(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL",
Llim = 100, Ulim = Inf, mu=seq(100, 110, 0.5), sigma=seq(0.2, 15,0.5), n=40,
alpha = 0.05, coverprob = 0.675, side=1)
## End(Not run)</pre>
```

ti_occurve

Operating Characteristic (OC) Curves for the PPQ Plan using Tolerance Interval.

Description

The function for plotting the OC curve to show the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
ti_occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha,
coverprob, side, add.reference, NV)
```

Arguments

at	tr.name	user-defined attribute name
at	tr.unit	user-defined attribute unit
L1	.im	lower specification limit
U1	.im	upper specification limit
mu	ı	hypothetical mean of the attribute
si	gma	hypothetical standard deviation of the attribute
n		sample size (number of locations) per batch
n.	batch	number of batches for passing PPQ during validation
al	.pha	significant level for constructing the tolerance interval.
СО	verprob	coverage probability for constructing the tolerance interval
si	de	whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).

add.reference logical; if TRUE, then add reference OC curves (Baseline and High Performance) in the plot.

NV nominal volume for the specification test.

Value

OC curves for specification test and PPQ plan.

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

```
ti_pp and rl_pp.
```

Examples

```
## Not run:
ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)

ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)

ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6, 0.05), n=40,
alpha = 0.05, coverprob = 0.97, side=1, NV=3)

ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6, 0.05), n=40,
alpha = 0.05, coverprob = 0.992, side=1, NV=3)

## End(Not run)
```

ti_pp

Probability of Passing PPQ Test using Tolerance Interval

Description

The function for calculating the probability of passing critical quality attributes (CQA) PPQ test.

ti_pp 19

Usage

```
ti_pp(Llim, Ulim, mu, sigma, n, n.batch, alpha, coverprob, side)
```

Arguments

Llim	lower specification limit
Ulim	upper specification limit

mu hypothetical mean of the attribute

sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch

n.batch number of batches for passing PPQ during validation
alpha significant level for constructing the tolerance interval
coverprob coverage probability for constructing the tolerance interval

side whether a 1-sided or 2-sided tolerance interval is required (determined by side

= 1 or side = 2, respectively).

Value

A numeric value of the passing/acceptance probability

Author(s)

Yalin Zhu

References

Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry. *Springer*.

See Also

rl_pp.

```
ti_pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=97, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti_pp, mu=100, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
```

Index

```
heatmap_ly, 2

k_factor, 3

pi_ctplot, 4
pi_occurve, 5
pi_pp, 7
pp, 8

PPQ_ctplot, 9

PPQ_ggplot, 10

PPQ_occurve, 12

PPQ_pp, 13

rl_pp, 15

ti_ctplot, 16
ti_occurve, 17
ti_pp, 18
```