Evaluación Primer parcial

Nombre: MACIAS PICO JOSSELYN STEFANY

Curso: SEXTO NIVEL "B"

Los datos tabulados muestran el peso en libras de una muestra de 42 artículos manufacturados por una compañía.

7.9	7.31	7.36	7.31	7.35	7.32	7.48
7.37	7.32	7.28	7.36	7.32	7.37	7.33
7.36	7.35	7.34	7.33	7.26	7.33	7.38
7.30	7.25	7.35	7.34	7.40	7.40	7.27
7.32	7.42	7.39	7.41	7.44	7.30	7.36
7.37	7.43	7.28	7.39	7.35	7.29	7.41

a) Dibujar el histograma de datos

Histograma

b) Dibujar la distribución de frecuencia relativa

Frecuencias Relativas

```
# Columna de Frecuencia relativa
total = dfclases.sum(axis=0)
datahi = dfclases["Fi"]/total["Fi"] # aqui calculamos la frecuencia
datahi.values
In [25]:
           5 # agregamos nueva columna de frecuencia relativa
6 dfclases["hi"] = datahi
7 dfclases
Out[25]:
              peso_libra Fi
           0 7.90 1 0.023810
                    7.31 1 0.023810
          2 7.38 1 0.023810
                    7.35 2 0.047619
          4 7.32 1 0.023810
                    7.48 2 0.047619
            5
          6 7.37 2 0.047619
                    7.28 4 0.095238
          8 7.33 3 0.071429
                    7.34 2 0.047619
           10 7.26 4 0.095238
           11
                   7.38 4 0.095238
           12 7.30 3 0.071429
                    7.25 1 0.023810
           13
           14 7.40 2 0.047619
                    7.27 2 0.047619
           16 7.42 2 0.047619
                   7.39 1 0.023810
```

c) Dibujar la distribución de frecuencia acumulada

Frecuencias Absolutas

```
In [24]:
          1 #TABLA DE FRECUENCIAS ABSOLUTAS
           2 # OBTENER FRECUENCIAS ABSOLUTAS DE CADA CLASE
           3 datafi=pd.crosstab(index=datos["peso_libra"], columns = "Fi")
           4 # Creamos una lista con los valores de las frecuencias
           5 | li = datafi.values
           6 # agregamos una columna al dataframe
           7 dfclases["Fi"] = li
           8 #observamos dfcLase
           9 dfclases
Out[24]:
             peso_libra Fi
           0
                 7.90 1
           1
                  7.31 1
           2
                  7.36 1
           3
                  7.35 2
                  7.32 1
           5
                  7.48 2
                  7.37 2
           7
                  7.28 4
           8
                  7.33 3
                  7.34 2
           9
          10
                  7.26 4
                  7.38 4
          11
                  7.30 3
          12
          13
                  7.25 1
                  7.40 2
```

d) Calcular la media, y la desviación típica

Media

```
In [8]: 1 # enviando las medias a t1, t2, t3 para su utilización
         2 print("Media:", )
         3 t1 = datos.mean()
         4 print( "la Media de pesos: ", t1)
         5 print("DIRECTAMENTE DEL DATAFRAME ")
         6 datos.mean()
        Media:
        la Media de pesos: articulos
                                         21.500000
        peso_libra
                   7.361905
        dtype: float64
        DIRECTAMENTE DEL DATAFRAME
Out[8]: articulos
                    21.500000
        peso_libra
                      7.361905
        dtype: float64
```

e) Cual es la media, moda y mediana

Media ¶

```
1 # enviando las medias a t1, t2, t3 para su utilización
In [8]:
          print("Media:", )
          3 t1 = datos.mean()
         4 print( "la Media de pesos: ", t1)
5 print("DIRECTAMENTE DEL DATAFRAME ")
         6 datos.mean()
        Media:
        la Media de pesos: articulos
                                           21.500000
        dtype: float64
        DIRECTAMENTE DEL DATAFRAME
Out[8]: articulos
                      21.500000
        peso_libra
                      7.361905
        dtype: float64
```

Moda

```
In [11]: 1 # enviando las modas a mo1, mo2, mo3 para su utilización
          2 print("Moda:")
          3 mo1 = datos["peso_libra"].mode()
          4 print( "la Moda de peso de articulos: ", mo1)
          5 pd.DataFrame(mo1)
          6
        Moda:
        la Moda de peso de articulos: 0 7.32
        1 7.35
            7.36
        dtype: float64
Out[11]:
             0
         0 7.32
         1 7.35
         2 7.36
```

Mediana

```
In [7]:
          1 # enviando las medias a t1, t2, t3 para su utilización
          2 print("Mediana:", )
          3 t1 = datos.median()
          4 print( "la Mediana de pesos es: ", t1)
5 print("DIRECTAMENTE DEL DATAFRAME ")
          6 datos.median()
         Mediana:
         la Mediana de pesos es: articulos
                                                21.50
         peso libra
                        7.35
         dtype: float64
        DIRECTAMENTE DEL DATAFRAME
                      21.50
7.35
Out[7]: articulos
        peso_libra
         dtype: float64
```

Media

- f) Usando los resultados del problema determinar cual es la probabilidad de que un peso de un artículo sea 7.30?
- g) Usando los resultados del problema determinar cuál es la probabilidad de que un peso de un artículo sea 7.35 o menor?
- h) Usando los resultados del problema determinar cuál es la probabilidad de que un peso de un artículo sea 7.36 o menor?
- Genere 10 números aleatorios por el método congruencial multiplicativo y determine lo valores en peso en libras de cada uno.

Genere 10 números aleatorios por el método congruencial multiplicativo

determine lo valores en peso en libras de cada uno.

Xn+1 = (1140671485Xn+C) mod(M) Xn=81, C=12820163; M= 264

 $Xn+1 = (1140671485Xn+C) \mod(M)$ Xn=81, C=12820163; $M=2^{64}$

	Aleatorio generado	Probabilidad	Peso en libras
1			
2			
3			

4		
5		
6		
7		
8		
9		
10		