CSE7101- Capstone Project Review-1

AUTOMATED PUBLIC LIGHTNING SYSTEM USING ESP NOW PSCS_14

Batch Number: CSE_248

Roll Number Student Name

20221CCS0002	AMREEN J
20231CCS3005	BHAVANA A
20231CCS3006	AALIYA ZAINA

Name of the Program: Computer Science and Engineering

Name of the HoD: Dr. Anandaraj

Name of the Program Project Coordinator: Ms Priyanka

Name of the School Project Coordinators: Dr. Sampath A K, Dr. Geetha A

Under the Supervision of,

Mr. Tanveer Ahmed Assistant Professor

Problem Statement Number: PSCS_17

• Manual public lighting systems waste energy by operating on fixed schedules, ignoring ambient light conditions. Rural/remote areas lack adaptive solutions due to high costs and dependency on centralized networks.

Key Features

- 1. Energy inefficiency due to non-adaptive lighting schedules.
- 2. High deployment costs of IoT solutions requiring cloud infrastructure.
- 3. Lack of real-time responsiveness to environmental changes.

Content

- Problem Statement
- Objectives
- Background and Related work for title Selection
- Analysis of Problem Statement
- Innovation or Novel Contributions
- Git-hub Link
- Timeline of the Project
- References

Objectives

- 1. Design a low-cost, *offline* lighting system using ESP8266.
- 2. Implement *ESP-NOW* for decentralized master-slave communication.
- 3. Optimize energy usage via ambient light sensor.
- 4. Enable automatic light activation/deactivation without human intervention.

Analysis of Problem Statement

Technology Stack: Hardware: ESP8266 D1 mini, Light sensors, Relay modules, LEDs

Communication: ESP-NOW (for peer-to-peer data transfer)

Software: Arduino IDE, C/C++

Challenges:

Challenge Solution

Packet loss in ESP-NOW Use acknowledgment messages

LDR calibration Calibrate dynamically under different light levels

Power supply to relays Use external 5V source to avoid brownouts

Analysis of Problem Statement (contd...)

Software Requirements

IDE: Arduino IDE Item Specification

 Libraries: ESP8266WiFi, ESP-NOW, Adafruit_Sensor

• Protocol: ESP-NOW (for peer-to-peer

communication)

Microcontrollers ESP8266 (NodeMCU) ×6 units

Sensors Ambient Light Sensor ×1

Actuators 5V Single-Channel Relay Modules ×6

Lights LEDs (for simulation)

Power 5V Power Supply

Hardware Requirements

Analysis of Problem Statement

• Challenges Identified:

- Language barrier for rural users
- Manual, time-consuming navigation
- No job-matching intelligence

Opportunities:

- Use AI to predict and serve user needs instantly
- Increase adoption by making the system accessible to non-tech-savvy users

• Expected Benefits:

- Shorter query resolution time
- Improved user engagement
- Higher job placement success rates

Github Link

Github Link

https://github.com/Amreen-552/Automated-Public-Lighting-System-

Capstone-2025-

Background & Related Work

Existing Solutions:

- Timer-based systems: Inflexible, ignore weather/seasonal changes.
- Cloud-IoT systems: Expensive, require stable internet (unsuitable for remote areas).
- Smart city projects: Centralized, high-cost (e.g., Philips Hue).
- Gap Identified:
- No cost-effective, offline solution using peer-to-peer communication for public lighting.

Timeline of the Project (Gantt Chart)

References (IEEE Paper format)

- 1. P. K. Sahoo et al., "IoT-Based Smart Lighting System for Energy Efficiency," IEEE Access, vol. 9, pp. 112158–112173, 2021.
- 2. Espressif Systems, "ESP-NOW Protocol Documentation," 2023. [Online]. Available: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
- 3. A. Gupta, "Low-Cost Automation Using ESP8266," Journal of Embedded Systems, vol. 7, no. 4, pp. 45–59, Dec. 2022.

