Machine Learning & Predictive Analytics

Class 4

Arnab Bose, Ph.D.

MSc Analytics
University of Chicago

Boosting

- 1. Trees are grown sequentially using information from previous trees.
- 2. Adaptive boosting (AdaBoost)
 - 1. Each training data instance is initially weighted the same.
 - 2. A classifier is built to make predictions on the training data.
 - 3. The relative weight of the misclassified training data is increased.
 - 4. A second classifier is trained using the updated weights to make predictions (again) on the training data.
- 3. The technique has similarities with Gradient Descent except that instead of tweaking a single predictor's parameters to minimize a cost function, AdaBoost adds predictors to the ensemble it is a coordinate descent algorithm. Coordinate descent is just like gradient descent, except that you can't move along the gradient, you have to choose just one coordinate at a time to move along.
- 4. Gradient Boosting fits new model to the residual errors of the previous model.
- 5. Stochastic Gradient Boosting use subsample hyperparameter to use a mini batch of sample to train each tree. This increases bias and lower variance and speeds up training.

Gradient Boosting Classifier – Example

#	Age	Gender	Active	Chronic	Asymptomatic	Residual 1	Residual 2 (LR = 0.1)	Residual 2 (LR = 0.3)
1	23	М	Υ	Υ	0	- 0.7	-0.65	-0.60
2	71	М	N	Υ	1	0.3	0.3	0.24
3	48	F	Υ	N	1	0.3	0.35	0.40
4	35	F	N	Υ	1	0.3	0.3	0.24
5	68	М	N	N	1	0.3	0.35	0.40
6	62	F	N	N	0	- 0.7	-0.65	-0.60

Details in PDF in Class 4 > Reading Materials

XGBoost

- 1. eXtreme Gradient Boosting supports
 - 1. Gradient boosting aka gradient boosting machine with learning rate
 - 2. Stochastic gradient boosting subsample of training instances to be used for each tree
 - 3. Regularized gradient boosting scale the contribution of each tree by a factor $0 < \nu < 1$
- 2. Execution speed and model performance (python package: xgboost).
- 3. Can handle missing values.

http://datascience.la/benchmarking-random-forest-implementations/

LightGBM

- 1. Uses histogram-based algorithms, which bucket continuous feature (attribute) values into discrete bins. This speeds up training and reduces memory usage.
 - 1. max_bin: max number of bins that feature values will be bucketed in
 - 2. min_data_in_bin: minimal number of data inside one bin
 - 3. bin_construct_sample_cnt: number of data that sampled to construct histogram bins.
- 2. Optimal Split for Categorical Features Particularly for high-cardinality categorical features sort the categories according to the training objective at each split.
- 3. Sparse Optimization Need only O(2 * #non_zero_data) to construct histogram for sparse features.
- 4. Optimization in Network Communication and in Parallel Learning.
- 5. Can handle missing values.

CatBoost

- 1. Has a special methodology that assigns indices to categorical columns to enable one-hot encoding.
- 2. Great quality without parameter tuning- Reduce time spent on parameter tuning, because CatBoost provides great results with default parameters.
- 3. Categorical features support Improve your training results with CatBoost that allows you to use non-numeric factors, instead of having to pre-process your data or spend time and effort turning it to numbers.
- 4. Improved accuracy Reduce overfitting when constructing your models with a novel gradient-boosting scheme.
- 5. Fast prediction Apply your trained model quickly and efficiently even to latency-critical tasks using CatBoost's model applier.
- 6. Can handle missing values.

XGB vs CatBoost vs Light GBM

Function	XGBoost	CatBoost	Light GBM	
Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples 	
Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model	
Parameters for controlling speed	 colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators:	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100 	

 $\underline{https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db}$

Boosting Parameters

- 1. The number of trees B (n_estimators). Unlike bagging and random forests, boosting can overfit if B is too large, although this overfitting tends to occur slowly if at all. Use cross-validation to select B.
- 2. The shrinkage parameter λ (learning_rate), a small positive number. This controls the rate at which boosting learns. Typical values are 0.01 or 0.001, and the right choice can depend on the problem. Very small λ can require using a very large value of B in order to achieve good performance.
- 3. The number of splits d in each tree (max_depth), which controls the complexity of the boosted ensemble. Often d = 1 works well, in which case each tree is a stump, consisting of a single split and resulting in an additive model. More generally d is the interaction depth, and controls the interaction order of the boosted model, since d splits can involve at most d variables.
- 4. Note since boosting takes into account previous trees, smaller trees are typically sufficient.

Stacking

- 1. Aggregate individual model predictions in an ensemble using a model.
- 2. Second layer model that aggregates first layer output is called blender or meta learner.
- 3. Each stacked layer requires a training set.
- 4. For all models and layers, an implementation option is to use Scikit-Learn Pipeline.

Kernel Methods & SVMs

In Reading – SVM slides from An Introduction to Statistical Learning https://www.statlearning.com/

SVM for Regression

- 1. The objective is to fit as many instances as possible within the margin whose width is still controlled by hyperparameter.
- 2. Adding more training instances does not affect the model's prediction hence the model is insensitive to the margin width.
- 3. Objective function $min \frac{1}{2} w^T w + C \sum_{i=1}^{m} \zeta^{(i)}$ subject to $|y_i w_i x_i| \le \varepsilon + |\zeta^{(i)}|$

https://stats.stackexchange.com/questions/13194/support-vector-machines-and-regression

Kernel Methods

- 1. Memory-based methods store the entire training set to make predictions for future data points.
- 2. Many linear parametric methods can be re-cast into equivalent "dual representation" in which the predictions are also based on linear combinations of kernel function evaluated at training data points

$$k(x_i, x_i) = \phi(x_i)^T \phi(x_i)$$

- 3. Where $\phi(x)$ is a feature space mapping
- 4. Example scalar inner product identity mapping for feature space

$$\phi(x) = x; \qquad k(x_i, x_{i'}) = x_i^T x_{i'}$$

- 5. Kernel trick / kernel substitution input vector enters in the form of scalar product, then that can be replaced with some other choice of kernel.
- 6. Advantage is computational.

Kernel examples

Stationary kernels – function of the only the difference between arguments

$$k(x_i, x_{i'}) = k(x_i - x_{i'})$$

Homogeneous kernels – radial basis functions (RBF) that depend only on the magnitude of the distance between arguments

$$k(x_i, x_{i'}) = k(||x_i - x_{i'}||) = \exp(-\gamma ||x_i - x_{i'}||^2)$$

Where $\|x_i - x_i\|^2$ is the squared Euclidean distance

Linear in Kernel Transformed Space = Non-linear in Original Space

$$z_{1} = x_{1}^{2}$$

$$z_{2} = \sqrt{2}x_{1} x_{2}$$

$$z_{3} = x_{2}^{2}$$

Heuristics when to use Linear Kernel

When number of features is large (few 10s of 1000) and number of training samples is small (few 1000) => linear kernel

2. When number of features is small (few 100s) and number of training samples medium (few 10s of 1000) do not use linear kernel => start with Gaussian

3. When number of features is small (few 100s) and number of training samples is large (few 100s of 1000 to millions) => linear kernel

SVM in scikit-learn

C is essentially a regularization parameter, which controls the trade-off between achieving a low error on the training data and minimizing the norm of the weights.

https://stats.stackexchange.com/questions/31066/what-is-the-influence-of-c-in-svms-with-linear-kernel

Textbook Chapters and Assignment

- Materials covered available in book:
 - DL: Chapter 5
 - HML: Chapters 5, 7
 - ISL: Chapters 8, 9
- Code: https://github.com/ageron/handson-ml2
- Different SVM Kernels: http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/