1t12ba

Un compilateur de formules LTL en automate de Büchi généralisés

Emile ROLLEY Thomas MORIN

Université de Bordeaux

12 mai 2022

Automates de Büchi sur les transitions

Automates de Büchi sur les transitions

Même définition que pour un automate de Büchi généralisé :

$$\mathcal{A} = (S, \rightarrow, S_0, F_1, ..., F_l)$$
 avec $\forall i \in \{1, ..., l\}, F_i \subseteq \rightarrow$

Automates de Büchi sur les transitions

Même définition que pour un automate de Büchi généralisé :

$$\mathcal{A} = (S,
ightarrow, S_0, F_1, ..., F_l) \quad ext{avec} \quad orall i \in \{1, ..., l\}, \ F_i \subseteq
ightarrow$$

Figure 1: Exemple d'automate reconnaissant la formule LTL $\mathsf{GF}p$, avec en pointillé, les transitions appartenant à l'unique condition d'acceptation.

Intuition

Diviser la formule de départ φ en sous-formules plus simple (dites *réduites*) et ajouter une condition d'acceptation pour chaque sous-formule de la forme $\alpha U\beta$.

Intuition

Diviser la formule de départ φ en sous-formules plus simple (dites *réduites*) et ajouter une condition d'acceptation pour chaque sous-formule de la forme $\alpha U\beta$.

Étapes

- 1. Mise en forme normale négative de φ .
- **2**. $S_0 = \{ \varphi \}$.
- 3. Pour chaque état Y dans S :
 - ▶ Calculer un graphe orienté temporaire G_Y .
 - Ajouter dans A les transitions et les nouveaux états correspondants grâce à G_Y .

Définition (*NNF*)

Une formule est en **forme normale négative** (*NNF*) si elle est constituée uniquement des sous-formules suivantes :

- $ightharpoonup \perp, p \text{ et } \neg p \text{ avec } p \in \mathsf{AP}$
- \blacktriangleright X α et $\alpha \circledast \beta$ avec $\circledast \in \{\mathsf{U}, \mathsf{R}, \lor, \land\}$

Définition (*NNF*)

Une formule est en **forme normale négative** (*NNF*) si elle est constituée uniquement des sous-formules suivantes :

- $ightharpoonup \perp, p \text{ et } \neg p \text{ avec } p \in \mathsf{AP}$
- ▶ $X\alpha$ et $\alpha \circledast \beta$ avec $\circledast \in \{U, R, \lor, \land\}$

Définition (ensemble réduit)

Un ensemble de formules Z est **réduit** si :

- ▶ toutes les formules de Z sont **réduites**, c'est-à-dire, de la forme p, $\neg p$ ou $X\alpha$ avec $p \in AP$
- ▶ $\bot \notin Z$, et $\{p, \neg p\} \nsubseteq Z$ pour tout $p \in AP$.

Calcul de \mathcal{G}_Y

Soit $Y = Z \cup \{\alpha\}$ où α n'est pas réduite et si possible maximale (càd. n'est sous-formule d'aucune autre formule non réduite de Y). Les arêtes à partir de Y sont :

- ▶ Si $\alpha = \alpha_1 \vee \alpha_2$, $Y \rightarrow Z \cup \{\alpha_1\}$ et $Y \rightarrow Z \cup \{\alpha_2\}$.
- $Si \alpha = \alpha_1 \wedge \alpha_2, Y \to Z \cup \{\alpha_1, \alpha_2\}$
- ▶ Si $\alpha = \alpha_1 R \alpha_2$, $Y \to Z \cup \{\alpha_1, \alpha_2\}$ et $Y \to Z \cup \{X\alpha, \alpha_2\}$.
- $\blacktriangleright \ \ \text{Si} \ \alpha = \alpha_1 \ \mathsf{U} \ \alpha_2, \ \mathsf{Y} \to \mathsf{Z} \cup \{\alpha_2\} \ \mathsf{et} \ \mathsf{Y} \to^{\alpha} \mathsf{Z} \cup \{\mathsf{X}\alpha, \alpha_1\}.$

Calcul de \mathcal{G}_Y

Soit $Y = Z \cup \{\alpha\}$ où α n'est pas réduite et si possible maximale (càd. n'est sous-formule d'aucune autre formule non réduite de Y). Les arêtes à partir de Y sont :

- ▶ Si $\alpha = \alpha_1 \vee \alpha_2$, $Y \rightarrow Z \cup \{\alpha_1\}$ et $Y \rightarrow Z \cup \{\alpha_2\}$.
- $\blacktriangleright \text{ Si } \alpha = \alpha_1 \wedge \alpha_2, Y \to Z \cup \{\alpha_1, \alpha_2\}$
- ► Si $\alpha = \alpha_1 R \alpha_2$, $Y \to Z \cup \{\alpha_1, \alpha_2\}$ et $Y \to Z \cup \{X\alpha, \alpha_2\}$.
- ▶ Si $\alpha = \alpha_1 \cup \alpha_2$, $Y \rightarrow Z \cup \{\alpha_2\}$ et $Y \rightarrow^{\alpha} Z \cup \{X\alpha, \alpha_1\}$.

Cette construction est appliquée récursivement jusqu'à ce que toutes les feuilles du graphe soient réduites.

Calcul des transitions à partir de Y

Finalement, une fois G_Y calculé, sont ajoutées dans A:

- ▶ les transitions suivantes $\{Y \rightarrow^{\Sigma_Z} next(Z) \mid Z \in Red(Y)\}$
- ▶ pour chaque sous-formule $\alpha = \alpha_1 \cup \alpha_2$, les conditions d'acceptations $F_{\alpha} = \{Y \rightarrow^{\Sigma_Z} \operatorname{next}(Z) \mid Y \in S, Z \in \operatorname{Red}_{\alpha}(Y)\}$

Calcul des transitions à partir de Y

Finalement, une fois G_Y calculé, sont ajoutées dans A:

- ▶ les transitions suivantes $\{Y \rightarrow^{\Sigma_Z} next(Z) \mid Z \in Red(Y)\}$
- pour chaque sous-formule $\alpha=\alpha_1$ U α_2 , les conditions d'acceptations $F_\alpha=\{Y\to^{\Sigma_Z} \operatorname{next}(Z)\mid Y\in S,\ Z\in\operatorname{Red}_\alpha(Y)\}$ Avec,

$$\begin{split} \operatorname{Red}(Y) &= \{ Z \ \operatorname{r\'eduit} \mid Y \to^* Z \} \\ \operatorname{Red}_{\alpha}(Y) &= \{ Z \ \operatorname{r\'eduit} \mid Y \to^{* \setminus \alpha} Z \} \\ \operatorname{next}(Z) &= \{ \alpha \mid \mathsf{X} \alpha \in Z \} \\ \Sigma_Z &= \bigcap_{p \in Z} \Sigma_p \cap \bigcap_{\neg p \in Z} \Sigma_{\neg p} \end{split}$$

Un exemple pour $\varphi=p \ \mathrm{U} \ \mathrm{X} q$

(Un autre exemple pour $\varphi = p \cup FXq$)

