CÁLCULO

AULA 17

PROF. DANIEL VIAIS NETO

INTRODUÇÃO

• Hoje: Limites.

VALOR $a, x \neq a$

NOTAÇÃO:

FUNÇÃO $\lim_{x \to a} f(x) = L$ $\lim_{x \to a} f(x) = \lim_{x \to a} \int_{\text{Limite DE } f(x) \text{ Quando } x} \int_{\text{Tende AO Valor } a, \text{ CASO O Limite exista.}} \int_{\text{CASO O Limite exista.}} f(x) dx$

Objetivo: Observar como a função se comporta pontualmente.

Exemplo:

$$f(x) = \frac{2x^2 - 6x}{x - 3}, x \neq 3$$

Vejamos o que acontece para os valores de x ao redor e muito próximos de x = 3.

$$f(x) = \frac{2x^2 - 6x}{x - 3}, x \neq 3$$

x < 3

x	f(x)
2,99	5,98
2,999	5,998
2,9999	5,9998
2,99999	5,99998

x > 3

\boldsymbol{x}	f(x)
3,01	6,02
3,001	6,002
3,0001	6,0002
3,00001	6,00002

Em ambos os casos, f(x) está tendendo a 6, ou seja, $\lim_{x\to 3} \frac{2x^2-6x}{x-3} = 6$.

$$f(x) = \frac{2x^2 - 6x}{x - 3}, x \neq 3$$

$$x \rightarrow 3$$
 pela direita

$$\lim_{x\to 3^+} f(x)$$

$$x \rightarrow 3$$
 pela esquerda

$$\lim_{x\to 3^-} f(x)$$

A função f(x) não é definida em x = 3 e, ainda assim, possui limite quando $x \rightarrow 3$

Observação: o que nos interessa é o conjunto de valores que f pode assumir na vizinhança de a, não o valor particular de f(a).

Exemplo:

$$f(x) = \begin{cases} 2x + 1, x \neq 1 \\ 4, & x = 1 \end{cases}$$

$$f(1) = ?$$

$$\lim_{x\to 1} f(x) = ?$$

$$\lim_{x \to 1} (2x + 1) = 3 \neq f(1)$$

Observação: Há casos em que mesmo que a função f(x) seja definida e um ponto a, não necessariamente existe um limite quando $x \to a$.

Exemplo:

$$f(x) = \begin{cases} 2x + 1, x \ge 1\\ 2x - 1, x < 1 \end{cases}$$

$$\lim_{x\to 1^-} f(x) = ?$$

$$\lim_{x \to 1^{-}} (2x - 1) = 1$$

$$\lim_{x\to 1^+} f(x) = ?$$

$$\lim_{x \to 1^+} (2x + 1) = 3$$

Portanto, $\lim_{x\to 1} f(x)$ não existe.

EXERCÍCIO 1

Dado o gráfico de uma função f(x) qualquer, calcule intuitivamente os seguintes limites:

a)
$$\lim_{x \to 0} f(x)$$

b)
$$\lim_{x \to 1} f(x)$$
 8

c)
$$\lim_{x \to 3} f(x)$$
 1

d)
$$\lim_{x \to 4} f(x)$$
 7

e)
$$\lim_{x \to 2^{-}} f(x)$$
 3

x tende ao valor 2 pela esquerda

x tende ao valor 2 pela direita

EXERCÍCIO 2

Dado o gráfico de uma função f(x) qualquer, calcule intuitivamente os seguintes limites:

a)
$$\lim_{x\to 1^-} f(x)$$
 -\infty

b)
$$\lim_{x \to 1^+} f(x)$$
 -1/2

c)
$$\lim_{x\to 2^-} f(x)$$
 +\infty

$$\mathrm{d}\lim_{x\to 2^+} f(x) \qquad \mathbf{0}$$

e)
$$\lim_{x \to 0^{-}} f(x)$$
 -1

$$f) \lim_{x \to 0^+} f(x) -1$$

g)
$$\lim_{x \to +\infty} f(x)$$
 -1/2

h)
$$\lim_{x \to -\infty} f(x)$$
 -\infty

CONTINUIDADE

Definição. Seja x_o um ponto do domínio de uma função f. Dizemos que f é **contínua** no ponto x_o se $\lim_{x\to x_o} f(x) = f(x_o)$.

Exemplo: Algumas funções que não são contínuas no ponto x_o .

