# HapMap and Association Studies for Complex Diseases Two Examples

Augustine Kong



### Mapping of a susceptibility gene for Type 2 Diabetes



# Locus-wide association study

High density of markers – 10.5 Mb region

Typed 228 microsatellite markers

Average density = one marker every 46 kb

1185 T2D patients and 931 population controls

## **DG10S478**: Iceland

| Allele | Affected freq (n=1185) | Control freq<br>(n=931) | Relative Risk<br>(multiplicative) | Two sided p-val      |
|--------|------------------------|-------------------------|-----------------------------------|----------------------|
| 0      | 0.636                  | 0.724                   | 0.67                              | 2.1×10 <sup>-9</sup> |
| 4      | 0.005                  | 0.002                   | 2.36                              | 0.12                 |
| 8      | 0.093                  | 0.078                   | 1.21                              | 0.09                 |
| 12     | 0.242                  | 0.178                   | 1.48                              | 4.6×10 <sup>-7</sup> |
| 16     | 0.022                  | 0.015                   | 1.53                              | 0.076                |
| 20     | 0.001                  | 0.003                   | 0.39                              | 0.17                 |

## **DG10S478**: Iceland

- DG10S478 genotyped in the CEPH Utah (CEU) HapMap samples
  - SNP1 allele G correlated with allele 0 of DG10S478 ( $R^2 = 0.95, P = 5.53 \times 10^{-38}$ )
  - SNP1 allele T correlated with the other alleles
- Risk conferred by alleles 8 and 12 of DG10S478 do not differ significantly (P = 0.3).
- Phylogenetic analysis of haplotypic variation within the LD block where DG10S478 resides
  - all haplotypes carrying DG10S478 non-0 alleles and SNP1 T in the
     CEU samples belong to a single, clearly defined monophyletic lineage
  - i.e. they share a relatively recent common ancestor within the phylogeny
- Reasonable to collapse all the non-0 alleles of DG10S487 into composite allele X.

## **DG10S478**: Iceland

| Allele | Affected freq (n=1185) | Control freq<br>(n=931) | Relative Risk<br>(multiplicative) | Two sided p-val      |
|--------|------------------------|-------------------------|-----------------------------------|----------------------|
| 0      | 0.636                  | 0.724                   | 0.67                              | 2.1×10 <sup>-9</sup> |
| 4      | 0.005                  | 0.002                   | 2.36                              | 0.12                 |
| 8      | 0.093                  | 0.078                   | 1.21                              | 0.09                 |
| 12     | 0.242                  | 2 0.178 1.48            |                                   | 4.6×10 <sup>-7</sup> |
| 16     | 0.022                  | 0.015                   | 1.53                              | 0.076                |
| 20     | 0.001                  | 0.003 0.3               |                                   | 0.17                 |
| X      | 0.364                  | 0.276                   | 1.50                              | 2.1×10 <sup>-9</sup> |

### DG10S478: Denmark

| Allele | Affected freq (n=228) | Control freq (n=539) | Relative Risk<br>(multiplicative) | One sided p-val |
|--------|-----------------------|----------------------|-----------------------------------|-----------------|
| 0      | 0.669                 | 0.740                | 0.71                              | 0.0024          |
| 4      | 0.002                 | 0.004                | 0.59                              | 0.310           |
| 8      | 0.070                 | 0.048                | 1.49                              | 0.046           |
| 12     | 0.239                 | 0.190                | 1.34                              | 0.016           |
| 16     | 0.020                 | 0.018                | 1.12                              | 0.390           |
| X      | 0.331                 | 0.260                | 1.41                              | 0.0024          |

## **DG10S478: USA**

| Allele | Affected freq (n=361) | Control freq (n=530) | Relative Risk<br>(multiplicative) | One sided p-val      |
|--------|-----------------------|----------------------|-----------------------------------|----------------------|
| -4     | 0.001                 | 0.000                | -                                 | -                    |
| 0      | 0.615                 | 0.747                | 0.54                              | 1.7×10 <sup>-9</sup> |
| 4      | 0.003                 | 0.004                | 0.73                              | 0.358                |
| 8      | 0.085                 | 0.049                | 1.79                              | 0.001                |
| 12     | 0.256                 | 0.180                | 1.57                              | 6.2×10 <sup>-5</sup> |
| 16     | 0.040                 | 0.020                | 2.07                              | 0.006                |
| X      | 0.385                 | 0.253                | 1.85                              | 1.7×10 <sup>-9</sup> |

### DG10S478: Estimates of the Genotype relative risks

|          |    | _    |      |      |
|----------|----|------|------|------|
| Cohort   | 00 | 0X   | XX   | PAR  |
| Iceland  | 1  | 1.41 | 2.27 | 0.21 |
| Denmark  | 1  | 1.37 | 1.92 | 0.17 |
| USA      | 1  | 1.64 | 3.29 | 0.28 |
| Combined | 1  | 1.45 | 2.41 | 0.21 |

- Estimated relative risks between cohorts not significantly different (P > 0.05)
- Combining the results from all 3 cohorts yields an overall two-sided P of 4.6×10<sup>-18</sup>
  - Given that the original 228 microsatellite markers tested have a total of 1664 alleles and allele X is the complement of allele 0, applying Bonferonni adjustment gives a P of  $7.7 \times 10^{-15}$

# Only one gene in the LD Block *TCF4* (official gene symbol: *TCF7L2*)





# Correlation of five selected HapMap SNPs with DG10S478 (with highest R<sup>2</sup> among the Phase I SNPs)

|      | CEPH Utah HapMap cohort | Combined Icelandic and US cohorts |
|------|-------------------------|-----------------------------------|
|      | R <sup>2</sup>          | R <sup>2</sup>                    |
| SNP1 | 0.95                    | 0.93                              |
| SNP2 | 0.78                    | 0.72                              |
| SNP3 | 0.61                    | 0.65                              |
| SNP4 | 0.43                    | 0.44                              |
| SNP5 | 0.42                    | 0.45                              |

# Association of the at-risk alleles of the five selected HapMap SNPs and the composite allele X of DG10S478 to T2D in both Iceland and the US

Subsets: Iceland (331 patients, 320 controls) US (226 patients, 210 controls)

|          |        | Icelandic cohort  |                   |      | US cohort |                   |                   |      | Combined             |      |                      |
|----------|--------|-------------------|-------------------|------|-----------|-------------------|-------------------|------|----------------------|------|----------------------|
|          | Allele | Patients<br>(331) | Controls<br>(320) | RR   | P-value   | Patients<br>(226) | Controls<br>(210) | RR   | P-value              | RR   | P-value              |
| SNP3     | С      | 0.382             | 0.289             | 1.52 | 0.00040   | 0.388             | 0.306             | 1.44 | 0.010                | 1.49 | 1.3×10 <sup>-5</sup> |
| SNP2     | Т      | 0.380             | 0.289             | 1.50 | 0.00056   | 0.374             | 0.268             | 1.63 | 0.00083              | 1.55 | 1.7×10 <sup>-6</sup> |
| DG10S478 | x      | 0.377             | 0.280             | 1.55 | 0.00021   | 0.369             | 0.243             | 1.82 | 5.6×10 <sup>-5</sup> | 1.66 | 5.9×10 <sup>-8</sup> |
| SNP5     | A      | 0.539             | 0.458             | 1.38 | 0.0034    | 0.527             | 0.476             | 1.22 | 0.14                 | 1.32 | 0.0013               |
| SNP4     | С      | 0.543             | 0.466             | 1.36 | 0.0053    | 0.536             | 0.479             | 1.26 | 0.093                | 1.32 | 0.0013               |
| SNP1     | Т      | 0.370             | 0.288             | 1.45 | 0.0016    | 0.376             | 0.250             | 1.81 | 6.0×10 <sup>-5</sup> | 1.59 | 6.3×10 <sup>-7</sup> |

- All five SNPs show association to T2D, but none exhibit stronger association to T2D than DG10S478
- Strength of the association to T2D corresponds monotonically to the correlation between each SNP and DG10S478

#### Further Search of the Causal Variant



- Exon 4 mutation ruled out
- All other exonic mutations ruled out
- Pooled sequencing across LD block reveals no better SNP

### Summary

- We did not map the variant/gene/region through genome-wide association, but easily could have
  - medium risk, common variant, population attributable risk not small
- However, genome-wide association focusing only on exonic SNPs might not have worked
- We still have not identified the causal variant yet
  - An unidentified SNP? one of the highly correlated SNPs? Not a SNP? Some Structural polymorphism?
- Still, the HapMap data have substantially speed up our progress in exploring the region
  - The LD structure allowed us to be reasonably confident that we have identified the susceptibility gene
- Maybe the Phase II data will help us further

# Variant of a gene located on chromosome 10q confers risk of type 2 diabetes mellitus Saturday Session #63

Struan F.A. Grant<sup>1</sup>, G. Thorleifsson<sup>1</sup>, I. Reynisdottir<sup>1</sup>, R. Benediktsson<sup>2,3</sup>, A. Manolescu<sup>1</sup>, J. Sainz<sup>1</sup>, H. Stefansson<sup>1</sup>, V. Emilsson<sup>1</sup>, A. Helgadottir<sup>1</sup>, U. Styrkarsdottir<sup>1</sup>, M.P. Reilly<sup>4</sup>, D.J. Rader<sup>4</sup>, Y. Bagger<sup>5</sup>, C. Christiansen<sup>5</sup>, V. Gudnason<sup>2</sup>, G. Sigurdsson<sup>2,3</sup>, U. Thorsteinsdottir<sup>1</sup>, J.R. Gulcher<sup>1</sup>, A. Kong<sup>1</sup>, K. Stefansson<sup>1</sup>

1) deCODE Genetics, Reykjavik, Iceland; 2) Icelandic Heart Association, Reykjavik, Iceland; 3) Landspitali-University Hospital, Reykjavik, Iceland; 4) University of Pennsylvania Health System, Philadelphia, USA; 5) Center for Clinical and Basic Research A/S, Ballerup, Denmark

#### Leukotriene A4 Hydrolase (*LTA4H*) gene

Candidate Gene for Myocardial Infarction
Resides in one LD block where there is no other gene



LTA4H structure with exons shown as colored cylinders, and the position of all genotyped SNPs relative to exons shown as green lines. The SNPs and alleles defining HapK are SG12S16 (C) (positioned in NCBI human assembly build 34 on chr. 12 94.896055 Mb), rs2660880 (G), rs6538697 (T), rs1978331 (A), rs17677715 (T), rs2247570 (T), rs2660898 (T), rs2540482 (C), rs2660845 (G), and rs2540475 (G), respectively. The relative position of SNPs typed in the HapMap project (Phase I, version 16c.1) are shown as grey lines.

#### **Icelandic Association**

|                                 | Frequenc |          |      |                 |
|---------------------------------|----------|----------|------|-----------------|
| Cohorts (n)                     | Patients | Controls | RR   | <i>P</i> -value |
| Icelanders                      |          |          |      |                 |
| All MI (1553/863)               | 0.113    | 0.104    | 1.1  | 0.36            |
| MI and additional CVD (325/863) | 0.145    | 0.104    | 1.45 | 0.0091          |

Additional CVD – Peripheral vascular disease and/or Stroke

P-value of 0.0091 becomes 0.035 after adjusting for multiple haplotyes tested

Marginal significance and very modest risk. Needs replication!

#### **Replication Cohorts: European Americans**

|                                                                                                | Frequenc | y of HapK |              |                              |
|------------------------------------------------------------------------------------------------|----------|-----------|--------------|------------------------------|
| Cohorts (n)                                                                                    | Patients | Controls  | RR           | <i>P-</i> value <sup>b</sup> |
| European Americans                                                                             |          |           |              |                              |
| Philadelphia                                                                                   |          |           |              |                              |
| All MI (728/430)                                                                               | 0.186    | 0.143     | 1.37         | 0.0051                       |
| Cleveland                                                                                      |          |           |              |                              |
| All MI (627/792)                                                                               | 0.166    | 0.151     | 1.12         | 0.15                         |
| MI and additional CVD (144/792)                                                                | 0.193    | 0.151     | 1.34         | 0.046                        |
| Atlanta                                                                                        |          |           |              |                              |
| All MI (236/553)                                                                               | 0.135    | 0.143     | 0.94         | 0.64                         |
| MI and additional CVD (39/553)                                                                 | 0.173    | 0.143     | 1.25         | 0.25                         |
| Combined                                                                                       |          |           |              |                              |
| All MI coh adj (cohort adjustment, Mantel-Haenszel) MI and additional CVD <sup>a</sup> coh adj |          |           | 1.16<br>1.31 | 0.018<br>0.037               |

<sup>&</sup>lt;sup>a</sup> Additional CVD, Cleveland and Atlanta cohorts only; no information for Philadelphia

<sup>&</sup>lt;sup>b</sup> P-values for replication are one-sided

#### **African Americans**

|                                | Frequenc |          |       |                 |
|--------------------------------|----------|----------|-------|-----------------|
| Cohorts (n)                    | Patients | Controls | RR    | <i>P</i> -value |
| African Americans              |          |          |       |                 |
| Philadelphia                   |          |          |       |                 |
| All MI (105/127)               | 0.103    | 0.017    | 6.5   | 0.000067        |
| Cleveland                      |          |          |       |                 |
| All MI (53/111)                | 0.122    | 0.072    | 1.78  | 0.11            |
| MI and additional CVD (13/111) | 0.152    | 0.072    | 2.31  | 0.14            |
| Atlanta                        |          |          |       |                 |
| All MI (39/149)                | 0.075    | 0.015    | 5.21  | 0.018           |
| MI and additional CVD (8/149)  | 0.202    | 0.015    | 16.36 | 0.0039          |

Is this real or is this a consequence of some bias such as imperfect matching of cases and controls? Note that frequency of HapK is substantially lower in the African Americans compared to the European Americans.

#### **Haplotype Diversity in the HapMap Samples**

#### **Big differences among populations**

|      |                     | CEU (60) | HCB (45) | <b>JPT</b> (45) | YRI (60) |
|------|---------------------|----------|----------|-----------------|----------|
|      | Haplotype (10 SNPs) | Frq      | Frq      | Frq             | Frq      |
| _    | CGTATTTTAG          | 37.50%   | 3.30%    | 3.00%           | 8.20%    |
| HapK | CGTATTTCGG          | 18.30%   | 36.80%   | 50.30%          | -        |
|      | CGCGTTGTAG          | 7.50%    | 2.00%    | 4.40%           | 13.10%   |
|      | TGTGCCGTAA          | 7.00%    | 1.10%    | -               | -        |
|      | TGTGCCGCGG          | 5.80%    | -        | -               | -        |
|      | TATGTCGTAA          | 3.50%    | -        | -               | -        |
|      | CGTGTCTTGG          | 3.10%    | -        | -               | 8.20%    |
|      | CGTGTCTTAG          | 2.60%    | 2.30%    | 10.70%          | 23.90%   |
|      | CGTATTTTAA          | 2.50%    | 2.10%    | 2.80%           | 1.80%    |
|      | CGTGTTTTGG          | 2.50%    | -        | -               | 2.70%    |
|      | CATGTCGTAA          | 1.80%    | -        | -               | -        |
|      | CGTATTTCAG          | 1.70%    | 1.10%    | -               | -        |
|      | CGTGTCGTGG          | 1.00%    | -        | -               | -        |
|      | TATGTCGTAG          | 0.90%    | -        | -               | -        |
|      | TGTGCCGTAG          | 0.90%    | -        | -               | -        |
|      | CGCGTTGTAA          | 0.80%    | 29.50%   | 17.20%          | -        |
|      | CGTATTTCGA          | 0.80%    | 2.60%    | 1.80%           | 0.80%    |
|      | CGTGTTTTAG          | 0.80%    | -        | -               | 10.70%   |
|      | others              | 0.00%    | 19.00%   | 9.80%           | 27.00%   |

A phylogenetic network representing the genealogical relationship between haplotypes in the *LTA4H* region (based on the HapK SNPs which we typed for

the HapMap samples plus the HapMap SNPs)



# Investigating Ancestry and Admixture Fractions

- Genotyped 75 unlinked microsatellite markers, selected as informative for distinguishing between African and European ancestry
  - --- all the three US cohorts
  - --- 364 Icelanders
  - --- 90 Nigerian Yorubans (HapMap)
- The Structure software was then applied to these data to estimate the fraction of European and African ancestry of individuals.

#### Distribution of genetically determined European ancestry in MI case-control cohorts

|                      |                                |                   |                                                                        | Distribution of estimated individual<br>European ancestry <sup>b</sup> |                       |        |                              |  |
|----------------------|--------------------------------|-------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|--------|------------------------------|--|
| Cohort               | Self-<br>Reported<br>Ethnicity | Disease<br>status | WLS group estimate<br>of European ancestry<br>(Std. Err.) <sup>a</sup> | Mean                                                                   | Std.<br>Deviatio<br>n | Median | 25-75<br>percentile<br>range |  |
| Yoruban<br>Nigerians | African                        | N/A               | N/A                                                                    | 0.036                                                                  | 0.024                 | 0.03   | 0.019-0.043                  |  |
| <b>Iceland</b>       | Eur.                           | N/A               | N/A                                                                    | 0.991                                                                  | 0.015                 | 0.994  | 0.990-0.996                  |  |
| All<br>American      | Eur. Am.                       | <b>Patients</b>   | 0.98 (0.0083)                                                          | 0.965                                                                  | 0.083                 | 0.991  | 0.977-0.995                  |  |
| All<br>American      | Eur. Am.                       | Controls          | 0.979 (0.0079)                                                         | 0.969                                                                  | 0.07                  | 0.992  | 0.979-0.995                  |  |
| All<br>American      | Afr. Am.                       | Patients          | 0.243 (0.0138)                                                         | 0.223                                                                  | 0.184                 | 0.178  | 0.108-0.282                  |  |
| All<br>American      | Afr. Am.                       | Controls          | 0.213 (0.016)                                                          | 0.199                                                                  | 0.145                 | 0.174  | 0.094-0.267                  |  |
| Philadelphia         | Afr. Am.                       | Patients          | 0.252 (0.0178)                                                         | 0.235                                                                  | 0.195                 | 0.188  | 0.121-0.288                  |  |
| Philadelphia         | Afr. Am.                       | Controls          | 0.213 (0.0217)                                                         | 0.186                                                                  | 0.137                 | 0.157  | 0.082-0.257                  |  |
| Cleveland            | Afr. Am.                       | Patients          | 0.232 (0.0222)                                                         | 0.21                                                                   | 0.174                 | 0.16   | 0.096-0.282                  |  |
| Cleveland            | Afr. Am.                       | Controls          | 0.239 (0.0219)                                                         | 0.223                                                                  | 0.136                 | 0.191  | 0.127-0.281                  |  |
| Atlanta              | Afr. Am.                       | Patients          | 0.226 (0.0246)                                                         | 0.206                                                                  | 0.166                 | 0.167  | 0.098-0.283                  |  |
| Atlanta              | Afr. Am.                       | Controls          | 0.198 (0.0128)                                                         | 0.193                                                                  | 0.155                 | 0.161  | 0.086-0.252                  |  |

# Adjusting for Ancestry and Admixture Fractions

- The African American patients do have on average a slightly higher fraction of European ancestry compared to controls
  - --- 22.3% versus 19.9%
- Difference can largely be accounted for by a handful of individuals who have a relatively large estimated European ancestry. Removing them
  - --- 20.0% versus 19.2%
- Either by excluding potentially misclassified individuals or by using individual ancestry estimates as covariate (Pritchard et al AJHG 2000), the impact on the association results is very modest

|                                    | Frequenc |          |       |                 |  |
|------------------------------------|----------|----------|-------|-----------------|--|
| Cohorts (n)                        | Patients | Controls | RR    | <i>P</i> -value |  |
| African Americans                  |          |          |       |                 |  |
| Philadelphia                       |          |          |       |                 |  |
| All MI sre (105/127)               | 0.103    | 0.017    | 6.5   | 0.000067        |  |
| All MI admix adj                   |          |          | 6.34  | 0.0001          |  |
| Cleveland                          |          |          |       |                 |  |
| All MI sre (53/111)                | 0.122    | 0.072    | 1.78  | 0.11            |  |
| All MI admix adj                   |          |          | 1.75  | 0.11            |  |
| MI and additional CVD sre (13/111) | 0.152    | 0.072    | 2.31  | 0.14            |  |
| MI and additional CVD admix adj    |          |          | 2.27  | 0.16            |  |
| Atlanta                            |          |          |       |                 |  |
| All MI sre (39/149)                | 0.075    | 0.015    | 5.21  | 0.018           |  |
| All MI admix adj                   |          |          | 5.08  | 0.019           |  |
| MI and additional CVD sre (8/149)  | 0.202    | 0.015    | 16.36 | 0.0039          |  |
| MI and additional CVD admix adj    |          |          | 16.67 | 0.0035          |  |

sre: self reported admix adj: admixture adjustment using estimated European ancestry as covariate

#### **Combining results from the three American cities**

| Ethnic groups (n)                           | Frequency of HapK |          |                    |                      |      |
|---------------------------------------------|-------------------|----------|--------------------|----------------------|------|
|                                             | Patients          | Controls | RR (95% CI)        | <i>P</i> -value      | PAR  |
| European Americans                          |                   |          |                    |                      |      |
| All MI (1591/1775)                          | 0.171             | 0.148    | 1.19 (1.04, 1.36)  | 0.006                |      |
| All MI coh adj, admix adj                   |                   |          | 1.16 (1.01, 1.34)  | 0.017                | 0.05 |
| MI and additional CVD (183/1345) b          | 0.192             | 0.15     | 1.35 (1.00, 1.81)  | 0.026                |      |
| MI and additional CVD coh adj, admix adj    |                   |          | 1.32 (0.98,1.78)   | 0.035                | 0.09 |
| African Americans                           |                   |          |                    |                      |      |
| All MI (197/387)                            | 0.105             | 0.032    | 3.52 (1.96, 6.29)  | 1.2×10 <sup>-5</sup> |      |
| All MI coh adj, admix adj                   |                   |          | 3.50 (1.90, 6.43)  | 2.9×10 <sup>-5</sup> | 0.14 |
| MI and additional CVD (21/260) <sup>b</sup> | 0.176             | 0.041    | 4.94 (1.58, 15.43) | 0.003                |      |
| MI and additional CVD coh adj, admix adj    |                   |          | 4.17 (1.21, 14.30) | 0.012                | 0.22 |

<sup>&</sup>lt;sup>b</sup> Cleveland and Atlanta cohorts only; information from Philadelphia not available

Note that for All MI, the RR confidence intervals for the European Americans and African Americans do not overlap (P < 0.001)

# Summary

- A variant/haplotype apparently European in origin confers much higher risk of MI in African Americans than in European Americans
- An Example of gene-gene(s) interaction?
   requires further investigations
- Ethnicity can sometimes be a useful, but imperfect, surrogate for certain genetic variants or combination of genetic variants.

# A variant of the gene encoding Leukotriene A4 Hydrolase confers ethnic specific risk of myocardial infarction

#### **Poster # 962**

Anna Helgadottir<sup>1</sup>, Andrei Manolescu<sup>1</sup>, Agnar Helgason<sup>1</sup>, Gudmar Thorleifsson<sup>1</sup>, Unnur Thorsteinsdottir<sup>1</sup>, Daniel F. Gudbjartsson<sup>1</sup>, Solveig Gretarsdottir<sup>1</sup>, Kristinn P. Magnusson<sup>1</sup>, Gudmundur Gudmundsson<sup>1</sup>, Andrew Hicks<sup>1</sup>, Thorlakur Jonsson<sup>1</sup>, Struan F. A. Grant<sup>1</sup>, Jesus Sainz<sup>1</sup>, Stephen J. O'Brien<sup>2</sup>, Sigurlaug Sveinbjornsdottir<sup>3</sup>, Einar M. Valdimarsson<sup>3</sup>, Stefan E. Matthiasson<sup>3</sup>, Allan I. Levey<sup>4</sup>, Gudmundur Thorgeirsson<sup>3</sup>, Jerome L. Abramson<sup>4</sup>, Murdach Reilly<sup>5</sup>, Viola Vaccarino<sup>4</sup>, Megan Wolfe<sup>5</sup>, Vilmundur Gudnason<sup>6</sup>, Arshed A. Quyyumi<sup>4</sup>, Eric J. Topol<sup>7</sup>, Daniel J. Rader<sup>5</sup>, Jeffrey R. Gulcher<sup>1</sup>, Hakon Hakonarson<sup>1</sup>, Augustine Kong<sup>1</sup>, Kari Stefansson<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>deCODE genetics Inc, Reykjavik, Iceland

<sup>&</sup>lt;sup>2</sup>Laboratory of Genomic Diversity, National Cancer Institute.

<sup>&</sup>lt;sup>3</sup>National University Hospital, Reykjavik, Iceland

<sup>&</sup>lt;sup>4</sup>Emory University School of Medicine, Atlanta, GA,USA

<sup>&</sup>lt;sup>5</sup>University of Pennsylvania School of Medicine, Philadelphia, PA, USA

<sup>&</sup>lt;sup>6</sup>Icelandic Heart Association, Reykjavik, Iceland

<sup>&</sup>lt;sup>7</sup>Cleveland Clinic Foundation, Cleveland, OH, USA