04. Digital Signatures

이형태

2019학년도 2학기

Definitions of Digital Signatures

Overview of Digital Signatures

- Message authentication: Once Bob sends a message to Alice, he wants
 Alice to be certain that the message is indeed from him, though it is not
 important that the message be kept secret. ⇒ Use digital signatures!
 - Bob generates a signature using his secret key and sends the message with the signature attached to Alice.
 - ② Alice verifies the received signature using Bob's public key and the message.
- **Security requirement**: No one can generate Bob's valid signature if he/she does not have Bob's secret key.
- The message is authenticated both in terms of source (Bob) and in terms of data integrity (message).

Digital Signatures

Definition (Digital Signatures)

A digital signature scheme consists of the following three polynomial-time algorithms:

- KeyGen(λ) \rightarrow (pk, sk): It takes a security parameter λ as an input and returns a public key pk and a secret key sk.
- Sign(sk, M) $\rightarrow \sigma$: It takes the secret key sk and a message M as inputs and returns a signature σ .
- Verify $(pk, \sigma) \rightarrow 1/0$: It takes the public key pk and a signature σ as inputs and returns 1(Accept)/0(Reject).

Correctness

A digital signature is correct if for any security parameter λ and any message M,

$$Verify(pk, Sign(sk, M)) = 1$$

where (pk, sk) is an output of KeyGen (λ) .

Security Model for Digital Signatures

- ullet Consider the following game between the challenger ${\cal C}$ and the adversary ${\cal A}$:
 - **9 Setup**: \mathcal{C} runs KeyGen(λ) \rightarrow (pk, sk) and passes pk to \mathcal{A} .
 - **② Signing Queries**: \mathcal{A} issues signing queries on messages M_i polynomially many times. For each M_i , \mathcal{C} runs $\operatorname{Sign}(pk, M_i) \rightarrow \sigma_i$ and returns σ_i to \mathcal{A} .
 - **3 Output**: \mathcal{A} outputs a pair (M, σ) .
- ullet The success probability of ${\mathcal A}$ in the above game is defined to

$$\Pr[\mathsf{Verify}(pk,(M,\sigma))=1]$$

where (M, σ) is not generated in Step 2.

• A signature scheme is strongly unforgeable under adaptive chosen message attack if for any polynomial-time adversary $\mathcal A$ the success probability of the above game is negligible in the security parameter.

Signature Schemes

RSA Signatures

Key Generation

- Choose two large primes p and q, and set N = pq.
- **③** Compute d such that $d \cdot e \equiv 1 \pmod{\phi(N)}$.
- Output a public key pk = (N, e) and a secret key sk = d.

Sign

Given a message M, compute $s = M^d \pmod{N}$ and output $\sigma = (M, s)$.

Verify

Given $\sigma = (M, s)$, check whether $s^e \stackrel{?}{=} M \pmod{N}$. If it holds, return 1. Otherwise, return 0.

Correctness

 $s^e = (M^d)^e = M^{ed} = M^{s\phi(N)+1} = M \pmod{N}$ by Euler Theorem

Security of RSA Signature

- Difficult to recover the secret key d if the factoring problem is hard
- Existential forgery attack:
 - **1** Choose a signature $s \in \mathbb{Z}_N$.
 - ② Compute the message $M = s^e \pmod{N}$.
 - **3** Output $\sigma = (M, s)$.
 - \Rightarrow Then, it holds that $M = s^e \pmod{N}$ and the signature σ is valid.

RSA Padding: Probabilistic Signature Standard (PSS)

- Prevent the previous attack by allowing only certain message formats
- Probabilistic Signature Standard (PSS)
- Generate a random value salt.
- Form a string M' by concatenating a fixed padding 8 0x00's, the hash value mHash = Hash(M), and salt.
- **3** Compute H = Hash(M').
- Form a string *DB* by concatenating a fixed padding *PS*, 0x01 and *salt*.
- **o** Compute MGF(H).
- Compute $maskedDB = MGF(H) \oplus DB$.
- The encoded message EM = maskedDB||H||TF for the fixed padding TF.

ElGamal Signatures

Key Generation

- **①** Choose a large prime p and select a generator g of a large subgroup of \mathbb{Z}_p^* .
- ② Choose a random integer $x \in \{2, 3, ..., p-2\}$.
- **3** Compute $X = g^x \pmod{p}$.
- Output a public key pk = (p, g, X) and a secret key sk = x.

Sign

Given the secret key sk = x and a message M,

- **1** Choose a random element k from \mathbb{Z}_{p-1}^* .
- Ompute $r = g^k \mod p$ and $s = (M rx)k^{-1} \pmod{p-1}$.
- **3** Output $\sigma = (M, (r, s))$.

ElGamal Signature (Cont.)

Verify

Given the public key pk = (p, g, X) and a signature $\sigma = (M, (r, s))$,

- ② Check whether $t \stackrel{?}{=} g^M \pmod{p}$. If it holds, return 1. Otherwise, return 0.

Correctness

$$t = X^{r} \cdot r^{s} = (g^{x})^{r} (g^{k})^{s}$$
$$= (g^{x})^{r} (g^{k})^{(M-rx)^{k-1}} = g^{xr+M-rx} = g^{M} \pmod{p}$$

Security of ElGamal Signature

- ullet Difficult to recover the secret key x if the discrete logarithm problem is hard
- Existential forgery attack:
 - Choose integers i, j where gcd(j, p 1) = 1.
 - ② Compute $r = g^i X^j \pmod{p}$.
 - **3** Compute $s = -rj^{-1} \pmod{p-1}$.
 - **9** Compute $M = si \pmod{p-1}$.

 - \Rightarrow Then, it holds that $t = X^r \cdot r^s \pmod{p}$ where $t = g^M \pmod{p}$ since

$$t = X^{r} \cdot r^{s} = (g^{x})^{r} (g^{i} g^{xj})^{s} = g^{xr+si+sxj}$$
$$= g^{xr+si-rj^{-1}xj} = g^{si} = g^{M} \pmod{p}$$

and thus $\sigma = (M, (r, s))$ is valid.

• To prevent the above attack use H(M) instead of M itself where H is a hash function. If H is hard to find an inverse, then it is secure.

DSA Signatures

Key Generation

- **①** Generate a cyclic subgroup \mathbb{G} with order q of \mathbb{Z}_p^* .
- **2** Select a random generator g of \mathbb{G} .
- **3** Choose a random integer x from \mathbb{Z}_q^* and compute $X = g^x$ in \mathbb{G} .
- Output a public key pk = (p, q, g, X) and a secret key x.

Sign

Given the public key pk = (p, q, g, X) and a message M,

- Choose a random integer k from \mathbb{Z}_q^* .
- ② Compute $r = (g^k \mod p) \mod q$.
- **3** Compute $s = (H(M) + xr)k^{-1} \mod q$.
- Output $\sigma = (M, (r, s))$.

DSA Signature (Cont.)

Verify

Given the secret key sk = x and a signature $\sigma = (M, (r, s))$,

- ② Compute $u_1 = w \cdot H(M) \pmod{q}$.
- **3** Compute $u_2 = w \cdot r \pmod{q}$.
- Compute $\nu = (g^{u_1}X^{u_2} \pmod{p}) \pmod{q}$.
- Check whether $\nu \stackrel{?}{=} r \mod q$. If it holds, return 1. Otherwise, return 0.

Correctness

$$g^{u_1}X^{u_2} = g^{u_1+xu_2} = g^{w\cdot(H(M)+xr)}$$

= $g^{k(H(M)+xr)^{-1}(H(M)+xr)} = g^k \ (\because \ s = k^{-1}(H(M)+xr))$

$$\Rightarrow r \pmod{q} = g^k \pmod{q} = g^{u_1} X^{u_2} \pmod{q} = \nu$$

Elliptic Curve Cryptography

Elliptic Curves (EC) in Cryptography

- Use the set of points on elliptic curves, e.g.,
 E: Y² = X³ + aX + b over a field F
 ⇒ additive (cyclic) groups
- Based on the hardness of Discrete Logarithm Problem
- Pros: Short parameter sizes
 (160 bits (EC) vs. 1024 bits (RSA) for 80-bit security)
- Cons: Complicated computations for addition
- Standards such as IEEE P1363

Picture from http://www.purplealienplanet.com/node/27

ECDSA

Key Generation

- Use an elliptic curve *E* with
 - modulus *p*
 - coefficient a and b
 - ightharpoonup a point G which generates a cyclic group of prime order q (i.e. G: a generator).
- ② Choose a random integer x with 0 < x < q and compute X = xG.
- **3** Output a public key pk = (p, a, b, q, G, X) and a secret key sk = x.

Sign

Given the public key pk = (p, a, b, q, G, X) and a message M

- Choose a random integer k with 0 < k < q.
- ② Compute K = kG and let $r = x_K$ where x_K is the x-coordinate of the point K.
- **3** Compute $s = (H(M) + xr)k^{-1} \pmod{q}$.
- Output (M, (r, s)).

ECDSA (Cont.)

Verify

Given the secret key sk = x and a signature (M, (r, s)),

- **2** Compute $u_1 = w \cdot H(M) \pmod{q}$.
- **3** Compute $u_2 = w \cdot r \pmod{q}$.
- **1** Check whether $x_P \stackrel{?}{=} r \pmod{q}$. If it holds, return 1. Otherwise, return 0.

Correctness

$$P = u_1G + u_2X = (u_1 + xu_2)G = (w(H(M) + xr))G$$

= $k(H(M) + xr)^{-1}(H(M) + xr)G = kG$

 \Rightarrow r = the x-coordinate of kG = the x-coordinate of $P \pmod{q}$

cf. Elliptic Curve ElGamal

Key Generation

- Use an elliptic curve E with
 - modulus *p*
 - coefficient a and b
 - ightharpoonup a point G which generates a cyclic group of prime order q (i.e. G: a generator).
- ② Choose a random integer x with 0 < x < q and compute X = xG.
- **3** Output a public key pk = (p, a, b, q, G, X) and a secret key sk = x.

Encryption

Given the public key pk = (p, a, b, q, G, X) and a message M,

- Choose a random element r from \mathbb{Z}_q^* .
- ② Compute $C_1 = rG$ and $C_2 = M + rX$ and output $C = (C_1, C_2)$.

Decryption

Given the secret key sk = x and a ciphertext $C = (C_1, C_2)$, compute and output $C_2 - xC_1 (= M + rX - xrG = M + rX - rX)$.

References

PP10 C. Paar and J. Pelzl, Understanding Cryptography, Springer, 2010

Sho08 V. Shoup, A Computational Introduction to Number Theory and Algebra, 2nd ed., Cambridge University Press, 2008. (Chapter 2)