FKgrain User's Manual

(Version: 2/1/2021)

Table of Contents

1	Software Installation					
	1.1	Dependencies	2			
		1.1.1 Matlab Runtime	2			
		1.1.2 R	2			
		1.1.3 GDAL	3			
	1.2	Main Program	3			
2	2 Generate Zero-Contour Image of Factorial Kriged DEM					
3	Grain Segmentation and Sizing					
	3.1	Stage 1 – Processing of Zero-Contour Image	6			
	3.2	Stage 2 – Multi-Level Grain Segmentation	7			
		3.2.1 Level #1	7			
		3.2.2 Subsequent Levels	9			
		3.2.3 Export Results	11			

1 Software Installation

1.1 Dependencies

1.1.1 Matlab Runtime

- (1) Download Matlab Runtime Installer from the link below:

 https://drive.google.com/file/d/1AM-gQMwe66ClW6BzuNx CHVNxmIi1Gte/view?usp=sharing
- (2) Unzip MatlabRuntime.zip and start the installer:
 ./MatlabRuntime/for redistribution/MyAppInstaller web.exe
- (3) Follow the steps from the installer and accept terms of agreement

1.1.2 R

- (1) Download R 3.6.3 installer from the link below:

 https://cran.r-project.org/bin/windows/base/old/3.6.3/R-3.6.3-win.exe

 (Different version may not have the required library. Only R 3.6.1 to 3.6.3 have been tested.)
- (2) Follow the steps to install R
- (3) Add C:\Program Files\R\R-3.6.3\bin to PATH system environment
- (4) Open a terminal and run R Console by typing R and press enter

```
C:\Users\hongp>R

R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R OKOnAOC
bYUziHNC
'license()' 'licence()' oC

R OX@pA\hHXF^mC
'contributors()' pB
'citation()' |iDzpbX~Ta R R MC
'demo()' @d{A 'help()' uWUA
'help.start()' zL HTML sUC
'q()' } RC
```

- (5) Install gstat and sp packages by running the following commands in R console: install.packages("gstat") install.packages("sp")
- (6) Type in "yes" when asked if personal library is required
- (7) Select the mirror server to download the packages. The default server is 0-Cloud.

- (8) Check if the library is correctly installed by running the following commands in R console. If no error is shown, then the library has been successfully installed. library("gstat") library("sp")
- (9) If the library installation has been unsuccessful, try to run it by using a Windows PowerShell or run the terminal using Administrator.

1.1.3 GDAL

- (1) Download OSGeo4W from the link below: http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86 64.exe
- (2) Choose Express Desktop Install and press Next
- (3) Make sure GDAL is selected when prompt.

(4) Choose a download site and press Next. Default site: http://osgeo4w-oslandia.com

(5) Search for "gdal: The GDAL/ORG library and command line tools" and click on "Skip" if it is not selected.

(6) Press Next and agree on all license terms to start the installation process.

1.2 Main Program

- (1) Download the *FKgrain* program package from the link below: https://github.com/ncku-arsem/FKgrain
- (2) Unzip the downloaded program package
- (3) Run the main program by launching FK grain.exe.
- (4) "Starting MR" will appear during the Matlab Runtime is being launched, "MR Done" will appear when it is ready.

2 Generate Zero-Contour Image of Factorial Kriged DEM

(1) In the Menu bar, click FK (factorial kriging) and select "Zero-Level Contour".

(2) Select an input DEM file (in .txt format). A 6 m \times 6 m DEM (with 1 cm \times 1 cm resolution) is provided in SampleDEM folder. (Note: space in the path name will result in error)

(3) Select a folder and type in a filename where the output image files will be saved.

A box will appear (see below) showing the progress of zero-level contour calculations. Wait until all calculations are done and the results show up. The whole process can take up to 30 minutes, depending on the size of data and speed of CPU. When DEM detrending is finished, an original DEM and a detrended DEM will show up; when kriging calculations are done, the ordinary kriged DEM, long-range and short-range factorial kriged (FK) DEM will show up. When all calculations are done, a binary image of zero-level contours will show up. These images may be also viewed by clicking FK in Menu bar and selecting "Visualization Tool". They are shown in the next page.

The figure below illustrates all output files saved in the selected folder. DetrendedDEM is the planar-detrended DEM, FK_Combine is the ordinary kriged (OK) DEM, FK_Long_Range is the long-range FK DEM, FK_Short_Range is the short-range FK DEM, and Zero_Level_Contour is the zero-level contour image of the short-range FK DEM. These image files can be retrieved by the GIS software.

3 Grain Segmentation and Sizing

In the Menu bar, click on Main \rightarrow Stage1, and select an input zero-contour image file. If no tfw file is found, users will be asked for the scale of the image.

3.1 Stage 1 – Processing of Zero-Contour Image

A morphological operation window will show up (see below). On the right side of the window, the Controls panel contains a set of morphological operations: Inverse, Fill, Opening, Closing, Erosion, and Dilation. Morphological operations work with binary images.

The example given below shows the original zero-contour image and the result of morphological operations (i.e., delineated grain segments) obtained by going through the following 5 steps:

- 1. Fill \rightarrow Fill Coordinates (x, y) = (1, 1), where (x, y) should indicate a location of background.
- 2. Inverse
- 3. Fill → Fill Holes

This step is to eliminate the fragmentations that arise from the grain surface texture. Such textural features on the grain surface should be removed as they represent subgrain-scale noises, providing no useful information for grain segmentation.

- 4. Closing, with a square structuring element of size equal to 7.
- 5. Opening, with a square structuring element of size equal to 7.

Each operation implemented is recorded in the Logs panel, which can be saved as a log file and retrieved for later use. After implementing the morphological operations, the elliptical fits to the delineated grain segments will show up automatically, which can be turned off/on. For the sake of better visualization, left clicking to flash between the processed and original images or adjusting the transparency would be useful. Press "Enter Stage 2" when all operations in Stage 1 are done.

Note that the parameters used in steps 4-5 are suited for the present example. When processing other images, users should select suitable parameters to optimize the result. The image processing used in FKgrain is based on the Matlab morphological operations. For details, users are referred to https://www.mathworks.com/help/images/morphological-filtering.html?s_tid=CRUX_lftnav.

3.2 Stage 2 – Multi-Level Grain Segmentation

Stage 2 proceeds with multiple levels of morphological grain segmentation. The goal is to process the whole population of grain segments, while the operations divide the population into multiple classes of segment size and process one class at a time. By doing so, grain segmentation becomes tractable. Care must be taken, however, to balance the processing performance and efficiency.

3.2.1 Level #1

Press "Start" to launch the operations of Level #1. Each level consists of two operational steps:
(1) **Step 1** – grain thresholding; (2) **Step 2** – grain segmentation.

Step 1 thresholds the smaller grain segments. Only those grain segments with sizes greater than the specified threshold (number of pixels) will remain. The thresholded smaller segments will be processed in subsequent levels. The threshold can be specified by moving the scroll bar or typing in the input box. Level #1 starts with the largest threshold. When finishing **Step 1**, press "Done" to enter **Step 2**.

Step 2 is to separate individual grains that are delineated as a single grain segment. A Controls panel will show up where users can select and implement morphological operations.

As an illustration, the result shown below is obtained using a threshold of 6000 in **Step 1**, with 172 grain segments remaining. In **Step 2**: as a larger opening (square size = 16) is used, some smaller grains are lost (marked in green); as a smaller opening (square size = 15) is used, some grains tend to be under-segmented (marked in cyan).

Step 2: Opening, square size = 15

Step 2: Opening, square size = 16

The table below shows the results (from Level #1) using different thresholds in **Step 1**, with the same opening size $(16\times16 \text{ pixels})$ used in **Step 2**.

3.2.2 Subsequent Levels

After a level of morphological grain segmentation is done, enter the next level to process smaller grain segments. Repeat for subsequent levels until reaching an acceptable outcome.

The following table shows the thresholds (for **Step 1**) and opening sizes (for **Step 2**) used in the example given below. These parameters are not necessarily optimal. Users may need to adjust the number of levels and the parameter values to suit their specific data needs.

Level	Step 1: Threshold	Step 2: Opening operation
#1	24,000	Square size 16
#2	12,000	Square size 18
#3	6,000	Square size 19
#4	800	Square size 14

The results from each level are shown as follows.

Level #1: Threshold = 24,000

After Stage 2: Four-level morphological grain segmentation

3.2.3 Export Results

Press "Save" to save the results. The results will include two shapefiles: (1) result.shp is the grain boundaries, and (2) result_ellipse.shp is the ellipse fits. These shapefiles can be retrieved by the GIS software. In the attribute table of the shapefile are the coordinates (x, y) of the ellipse center, major and minor (a- and b-) axes and orientation of the ellipse. Their units (meters) are consistent with those of the input DEM.

	Α	В	С	D	Е	F
1	ID	X	y	a	b	tilt
2	1	0.1700	1.0450	0.5220	0.4136	108.9381
3	2	0.7275	4.1499	0.8636	0.5187	-30.3067
4	3	0.8550	0.8125	0.4992	0.2726	42.5775
5	4	1.0050	3.1574	0.6197	0.3650	105.6599
6	5	1.1525	4.8524	0.6292	0.4018	94.8379
7	6	1.2275	0.7725	0.4316	0.2817	82.1758
8	7	1.4650	2.1199	0.7357	0.5249	32.2649
9	8	2.4574	1.3275	0.6580	0.4897	3.1818
10	9	2.5699	0.8850	0.2428	0.1323	-13.0248
11	10	2.7374	1.0250	0.1104	0.0846	57.2052
12	11	2.7899	0.6250	0.3929	0.1842	77.9055
13	12	2.7424	0.8850	0.0886	0.0819	11.4348
14	13	3.0174	0.6325	0.4711	0.2647	77.1987
15	14	3.1924	3.6924	0.4507	0.4155	15.9243
16	15	2.9874	2.1374	0.0875	0.0430	0.3449
17	16	3.2299	1.4225	0.5571	0.4148	9.2431
18	17	3.0574	0.2500	0.2201	0.1047	71.4185

Alternatively, a shapefile of ellipse fits and the corresponding attribute table can be generated using an existing grain-boundary shapefile (e.g., digitized grain boundaries). This can be done by clicking "Extra" in the Menu bar and selecting an input grain-boundary shapefile.

