Cofinalidade Ref. Introduction to Set Theory - Thomas Jech

Autor: Xenônio Discord: xennonio

Sumário

1	Pre	fácio	1
2	Motivação		2
	2.1	Exemplos Conhecidos	2
	2.2	Definição de Cofinalidade	2
	2.3	Cardinais Singulares e Regulares	3
3	Exemplos e Propriedades de Cardinais Singulares e Regulares		4
	3.1	Exemplos de Cardinais Regulares e Singulares	4
	3.2	Algumas Propriedades Básicas	5
	3.3	Cardinais Limites Regulares Incontáveis	5
	3.4	Cofinalidade como a Cardinalidade de um Conjunto Ilimitado	6
4	Pro	priedades Algébricas da Cofinalidade	6
5	Exponenciação de Cardinais		7
	5.1	Teorema de König	7
	5.2	Exponenciação Cardinal para Cardinais Regulares	9
	5.3	Exponenciação Cardinal para Cardinais Singulares	9
	5.4	Como calcular $\aleph_{\alpha}^{\aleph_{\beta}}$ em ZFC + GHC	10
	5.5	Fórmula de Hausdorff	

1 Prefácio

A ideia dessas notas é apresentar o conceito de cofinalidade, dando motivações e intuições sobre ela. Em geral, os primeiros capítulos são um aglomerado de resultados e exemplos a respeito da ideia de cofinalidade, mostrando como ela pode surgir como um conceito natural e quais propriedades seguem dela.

Em particular, o conceito de cofinalidade nos leva naturalmente aos Axiomas de Grandes Cardinais. Veremos como cardinais fracamente inacessíveis surgem na análise de uma simples pergunta ao se estudar cardinais regulares e singulares, que é: existe algum cardinal limite regular incontável?

Vale ressaltar que é assumido que o leitor tenha uma familiaridade com o básico de aritmética cardinal e ordinal para compreender as provas dos Teoremas, entretanto, caso não esteja, é possível

entender a intuição por trás lendo apenas os comentários escritos ao longo do texto que direcionam o leitor a uma investigação natural dos conceitos definidos.

2 Motivação

2.1 Exemplos Conhecidos

Considere os seguintes teoremas:

• A união finita de conjuntos finitos é finita, i.e., se S é um sistema de conjuntos tal que $|S| < \omega_0$ e, para todo $A \in S$, temos que $|A| < \omega_0$, então

$$\left|\bigcup S\right| < \omega_0$$

• Analogamente, temos que a união contável de conjuntos contáveis é contável, i.e., se S é um sistema de conjuntos tal que $|S| < \omega_1$ e, para todo $A \in S$, temos que $|A| < \omega_1$, então

$$\left|\bigcup S\right| < \omega_1$$

Note que, em cada caso, temos que a moral da história é que é difícil "alcançar" \aleph_0 e \aleph_1 , respectivamente, "por baixo". Tal fenômeno pode ser capturado de forma precisa por meio do conceito de cofinalidade.

Em particular, generalizaremos a pergunta do seguinte modo: Sabemos que todo ordinal limite é o supremo do conjunto de todos os ordinais menores, i.e., para todo ordinal limite λ

$$\lambda = \bigcup \lambda$$

mas não necessariamente precisamos tomar o conjunto de todos os ordinais menores, podemos encontrar um subconjunto próprio S de λ tal que $\lambda = \sup S$, o quão pequeno S pode ser? Esse é o conceito que desejamos capturar.

2.2 Definição de Cofinalidade

Definição 2.1. Definiremos portanto $cf(\alpha)$, a cofinalidade de α , com α um ordinal limite, como o menor ordinal ϑ tal que α é o limite de uma sequência transfinita crescente $\langle \alpha_{\nu} : \nu < \vartheta \rangle$ de comprimento ϑ , ou seja

$$\alpha = \lim_{\nu \to \vartheta} \alpha_{\nu}$$

De forma equivalente, o que torna mais fácil de visualizar qual a relação disso com a motivação discutida acima, $cf(\alpha)$ é o menor ordinal β tal que existe $f: \beta \to \alpha$, com

$$\alpha = \bigcup_{\nu < \beta} f(\nu) = \bigcup \operatorname{Im}(f)$$

i.e., é o menor β tal que existe uma união de β elementos α_{ν} menores que α

2.3 Cardinais Singulares e Regulares

Com isso, podemos definir dois tipos de cardinais κ , em particular aqueles que podem ser escritos como a união de κ elementos menores, denominados singulares, e aqueles que não podem, denominados regulares, em outras palavras:

Definição 2.2. Um cardinal infinito κ é singular sse existe uma sequência transfinita crescente $\langle \alpha_{\nu} : \nu < \vartheta \rangle$ de ordinais $\alpha_{\nu} < \kappa$ cujo comprimento ϑ é um ordinal limite menor que κ e

$$\kappa = \lim_{\nu \to \vartheta} \alpha_{\nu}$$

Um cardinal infinito que não é singular é denominado regular.

De forma equivalente, podemos defini-los de uma maneira mais concreta por meio do seguinte lema

Lema 2.1. Um cardinal infinito κ é singular se, e somente se, é a soma de menos que κ cardinais menores, i.e.

$$\kappa = \sum_{i \in I} \kappa_i$$

com $|I| < \kappa$ e $\kappa_i < \kappa$, para todo $i \in I$.

Prova. (\Rightarrow) Se κ é singular, então $\kappa = \lim_{\nu \to \vartheta} \alpha_{\nu}$ para alguma sequência transfinita crescente com $\alpha_{\nu} < \kappa$ e $\vartheta < \kappa$. Como todo ordinal é o conjunto de todos os ordinais menores, então

$$\kappa = \bigcup_{\nu < \vartheta} \alpha_{\nu} = \bigcup_{\nu < \vartheta} \left(\alpha_{\nu} \setminus \bigcup_{\xi < \nu} \alpha_{\xi} \right)$$

definindo $A_{\nu} := \alpha_{\nu} \setminus \bigcup_{\xi < \nu} \alpha_{\xi}$, temos que $\langle A_{\nu} : \nu < \vartheta \rangle$ é uma sequência de comprimento menor que κ com conjuntos disjuntos de cardinalidade $\kappa_{\nu} = |A_{\nu}| = |\alpha_{\nu} \setminus \bigcup_{\xi < \nu} \alpha_{\xi}| \le |\alpha_{\nu}| < \kappa$, portanto

$$\kappa = \sum_{\nu < \vartheta} \kappa_{\nu}$$

(\Leftarrow) Assuma que $\kappa = \sum_{\alpha < \lambda} \kappa_{\alpha}$, com $\lambda, \kappa_{\alpha} < \kappa$, para todo $\alpha < \lambda$. Portanto

$$\kappa = \sum_{\alpha < \lambda} \kappa_{\alpha} = \lambda \cdot \sup_{\alpha < \lambda} \kappa_{\alpha}$$

e, como $\lambda < \kappa$, então necessariamente $\kappa = \sup_{\alpha < \lambda} \kappa_{\alpha}$, pois, caso contrário, $\kappa = \lambda$, contradição. Logo κ é o supremo da imagem da sequência transfinita $\langle \kappa_{\alpha} : \alpha < \lambda \rangle$, portanto é fácil achar uma subsequência crescente com limite κ .

Note que tal caracterização captura bem a ideia discutida pela motivação. Podemos relacioná-la com o conceito de cofinalidade da seguinte forma: em particular é esperado e fácil verificar que, se κ é um cardinal singular, então $\mathrm{cf}(\kappa) < \kappa$, i.e., existe uma sequência crescente de tamanho menor que κ com elementos menores que κ , mas que tem κ como limite e, se κ for regular, como $\mathrm{cf}(\kappa) \leq \kappa$, temos que $\mathrm{cf}(\kappa) = \kappa$.

3 Exemplos e Propriedades de Cardinais Singulares e Regulares

3.1 Exemplos de Cardinais Regulares e Singulares

Para facilitar a notação, diremos que um cardinal \aleph_{α} é um cardinal sucessor se α for um ordinal sucessor, e diremos que é um cardinal limite se α for um ordinal limite.

Vamos explorar o conceito que criamos a alguns cardinais. Para os casos utilizados na motivação, temos que $cf(\aleph_0) = \aleph_0$ e $cf(\aleph_1) = \aleph_1$, i.e., ambos são cardinais regulares, vistos que não podem ser escritos como a união de \aleph_0 ou \aleph_1 elementos menores, respectivamente. Em particular, o teorema seguinte provará que todo cardinal sucessor $\aleph_{\alpha+1}$ é um cardinal regular, ou seja, não é fácil "atingi-lo por baixo", apenas com conjuntos menores.

Teorema 3.1. Todo cardinal sucessor $\aleph_{\alpha+1}$ é um cardinal regular.

Prova. Assuma por contradição que $\aleph_{\alpha+1}$ seja singular, portanto, pelo Lema 2.1, ele pode ser escrito como a soma de um número menor de cardinais menores:

$$\aleph_{\alpha+1} = \sum_{i \in I} \kappa_i$$

com $|I| < \aleph_{\alpha+1}$ e $\kappa_i < \aleph_{\alpha+1}$, para todo $i \in I$. Portanto $|I|, \kappa_i \le \aleph_{\alpha}$ para todo $i \in I$, logo, temos que

$$\aleph_{\alpha+1} = \sum_{i \in I} \kappa_i \le \sum_{i \in I} \aleph_\alpha = \aleph_\alpha \cdot |I| \le \aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha$$

 \dashv

contradição, portanto $\aleph_{\alpha+1}$ é um cardinal regular.

Em contrapartida, temos que

$$\aleph_{\omega} = \lim_{n \to \omega} \aleph_n$$

$$\aleph_{\omega + \omega} = \lim_{n \to \omega} \aleph_{\omega + n}$$

$$\aleph_{\omega \cdot \omega} = \lim_{n \to \omega} \aleph_{\omega \cdot n}$$

$$\aleph_{\omega_1} = \lim_{\alpha \to \omega_1} \aleph_{\alpha}$$

É fácil ver que a grande maioria dos cardinais limites que temos contatos, exceto por \aleph_0 são de fato singulares, enunciaremos isso de uma maneira mais precisa com o próximo teorema. Além disso cada um dos exemplos mostrados acima tem cofinalidade ω . Veremos o quão poderoso é isso quando apresentarmos outras formas intuitivas de visualizá-los, mas por enquanto vamos responder a perguntas naturais que surgem como: existem cardinais regulares arbitrariamente grandes? Ou melhor, todos os cardinais limites incontáveis são regulares?

3.2 Algumas Propriedades Básicas

Vamos antes mostrar que de fato existem cardinais singulares arbitrariamente grandes, e mais, se \aleph_{α} é um cardinal limite singular, então o menor cardinal limite maior que \aleph_{α} , i.e., o próximo cardinal limite, também é singular.

Lema 3.1. Existem cardinais singulares arbitrariamente grandes.

Prova. Seja \aleph_{α} um cardinal arbitrário e considere a sequência

$$\aleph_{\alpha}, \aleph_{\alpha+1}, \aleph_{\alpha+2}, \ldots, \aleph_{\alpha+n}, \ldots$$

para $n \in \omega$, portanto

$$\aleph_{\alpha+\omega} = \lim_{n\to\omega} \aleph_{\alpha+n}$$

e, portanto $\aleph_{\alpha+\omega}$ é um cardinal singular maior que \aleph_{α} .

Como corlário temos que

Corolário 3.1. Se \aleph_{α} é um cardinal limite singular, então o próximo cardinal limite $\aleph_{\alpha+\omega}$ também é singular, em particular, se \aleph_{α} for regular, temos também que $\aleph_{\alpha+\omega}$ é singular.

Com isso, podemos ter uma visualização dos primeiros cardinais em relação a ser singular ou regular. Temos que, após \aleph_0 , o cardinal primeiro cardinal limite regular, temos que todos os sucessores até \aleph_ω são regular, e \aleph_ω por si só é singular, em particular, pelo lema anterior, todos os cardinais \aleph_ω que podem ser atingidos por meio de soma, multiplicação e exponenciação, são fáceis de provar serem singulares. Portanto a "reta" dos cardinais possui, aparentemente, quase sempre um cardinal singular nos cardinais limites e sempre contáveis muitos cardinais regulares sucessores entre eles.

3.3 Cardinais Limites Regulares Incontáveis

Vamos agora investigar como seria um cardinal limite regular incontável, assuma que \aleph_{α} é tal cardinal, como α é um ordinal limite, então

$$\aleph_{\alpha} = \lim_{\beta \to \alpha} \aleph_{\beta}$$

i.e., \aleph_{α} é o limite de uma sequência crescente de comprimento α . Como \aleph_{α} é um cardinal regular, então necessariamente $\alpha \geq \aleph_{\alpha}$, mas, como $\alpha \leq \aleph_{\alpha}$, então

$$\boxed{\alpha = \aleph_{\alpha}}$$

tal propriedade sugere que esses cardinais tem de ser bem grandes. Entretanto, o Lema a seguir revela que a propriedade destacada não é tão forte assim quanto parece, visto que podemos provar também que existem cardinais singulares \aleph_{α} arbitráriamente grandes tais que $\aleph_{\alpha} = \alpha$.

Lema 3.2. Existem cardinais singulares \aleph_{α} arbitrariamente grandes tais que $\aleph_{\alpha} = \alpha$.

Prova. Seja \aleph_{γ} um cardinal arbitrário e considere a sequência definida por $\alpha_0 = \omega_{\gamma}$, $\alpha_1 = \omega_{\alpha_0} = \omega_{\omega_{\gamma}}$, $\alpha_2 = \omega_{\alpha_1} = \omega_{\omega_{\omega_{\gamma}}}$, etc. em geral, $\alpha_{n+1} = \omega_{\alpha_n}$, para todo $n \in \omega$. Com isso, seja $\alpha = \lim_{n \to \omega} \alpha_n$, obviamente $\langle \aleph_{\alpha_n} : n \in \omega \rangle$ tem limite \aleph_{α} , logo

$$\aleph_{\alpha} = \lim_{n \to \omega} \aleph_{\alpha_n} = \lim_{n \to \omega} \alpha_{n+1} = \alpha$$

logo \aleph_{α} é o limite de uma sequência de cardinais menores com comprimento ω , portanto \aleph_{α} é um cardinal singular maior que \aleph_{γ} .

Uma dúvida natural é qual seria exemplo de um cardinal limite regular incontável? Tais cardinais são denominados fracamente inacessíveis, e acontece que a existência de tais cardinais κ é independente da ZFC, uma vez que $V_{\kappa} \vDash \text{ZFC}$, contradizendo o Segundo Teorema da Incompletude de Gödel.

3.4 Cofinalidade como a Cardinalidade de um Conjunto Ilimitado

Vamos agora analisar uma visão um pouco diferente sobre como intuir sobre o conceito de cofinalidade, que nos será útil ao pensar no sentido prático da existência de tais cardinais.

Podemos definir $cf(\kappa)$ como a menor cardinalidade de um conjunto A tal que $A \subseteq \kappa$ e, para todo $\beta < \kappa$, existe um $\alpha \in A$ tal que $\beta \leq \alpha$, i.e.

$$cf(\kappa) = \min\{|A| : A \subseteq \kappa \land \forall \beta < \kappa (\exists \alpha \in A(\beta \le \alpha))\}\$$

Em outras palavras, ele é o menor tamanho que um conjunto precisa ter para ser ilimitado em κ , tal definição de cofinalidade é equivalentes as anteriores.

Em particular, o que estamos querendo dizer então, é que cardinais regulares precisam de muito mais elementos para conseguir tornar uma sequência ilimitada, enquanto que cardinais singulares não. Isso tem um impacto no seguinte sentido: Imagine que queiramos provar alguma propriedade, em relação a ordinais menores que \aleph_{ω} , que tenha uma qualidade indutiva, tal processo requer somente contáveis muitos passos, uma vez que a cofinalidade de \aleph_{ω} é ω , enquanto que, por exemplo, fazer o mesmo com \aleph_1 exigiria incontáveis muitos passos.

4 Propriedades Algébricas da Cofinalidade

Note que, provamos que se \aleph_{α} for singular, então $\mathrm{cf}(\omega_{\alpha}) < \omega_{\alpha}$ e, se for regular, então $\mathrm{cf}(\omega_{\alpha}) = \omega_{\alpha}$. Mostraremos que

Lema 4.1. Se um ordinal limite α não for um cardinal, então $cf(\alpha) < \alpha$. Em particular, para todo ordinal limite α , temos que $cf(\alpha) = \alpha$ se, e somente se, α for um cardinal regular.

Prova. Seja α um número ordinal que não é um cardinal. Sendo $\kappa = |\alpha|$, existe $f : \kappa \to \alpha$ bijetor, i.e., uma sequência $\langle \alpha_{\nu} : \nu < \kappa \rangle$ de comprimento κ tq $\{\alpha_{\nu} : \nu < \kappa\} = \alpha$. Agora podemos encontrar, via indução transfinita, uma subsequência crescente com limite α . Como o comprimento da subsquência é no máximo κ , e como $\alpha < \kappa = |\alpha|$ (visto que α não é um cardinal), então $\mathrm{cf}(\alpha) < \alpha$.

Lema 4.2. Para todo ordinal limite α , temos que

$$cf(cf(\alpha)) = cf(\alpha)$$

Prova. Seja $\vartheta = \operatorname{cf}(\alpha)$. Obviamente ϑ é um ordinal limite e $\operatorname{cf}(\vartheta) \leq \vartheta$. Assuma por contradição que $\gamma = \operatorname{cf}(\vartheta) < \vartheta$, logo existe uma seq. crescente $\langle \nu_{\xi} : \xi < \gamma \rangle$ tq $\lim_{\xi \to \gamma} \nu_{\xi} = \vartheta$. Como $\vartheta = \operatorname{cf}(\alpha)$, existe $\langle \alpha_{\nu_{\xi}} : \xi < \gamma \rangle$ com limite α . Mas $\gamma < \vartheta$, contradição, visto que $\vartheta = \operatorname{cf}(\alpha)$ implica que ϑ é o menor ordinal tq α é o limite de uma sequência de comprimento ϑ .

Corolário 4.1. Para todo ordinal limite α , cf(α) é um cardinal regular.

5 Exponenciação de Cardinais

Enquanto adição e multiplicação de cardinais é simples, uma vez que

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max{\{\aleph_{\alpha}, \aleph_{\beta}\}}$$

a exponenciação de cardinais é bem mais complicada. Em particular, veremos alguns resultados básicos. Acontece que existe uma diferença entre cardinais regulares e singulares em relação a exponenciação.

Em particular, veremos que a Hipótese Generalizada do Contínuo

$$2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$
, para todo α

simplifica enormemente exponenciação de cardinais e, sem ela, não há muito o que provar além de

$$2^{\aleph_{\alpha}} \geq \aleph_{\alpha+1}$$

 \mathbf{e}

$$\alpha \le \beta \Rightarrow 2^{\aleph_{\alpha}} \le 2^{\aleph_{\beta}}.$$

5.1 Teorema de König

Antes de provar alguns teoremas sobre exponenciação de cardinais, vamos provar o Teorema de König, que assume que estamos trabalhando na ZFC.

Teorema 5.1. Teorema de König. Se $\kappa_i < \lambda_i$, $\forall i \in I$, onde κ_i e λ_i são cardinais, $i \in I$, então

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$

A ideia por trás da prova é: Se $\kappa_i < \lambda_i$, então toda função $f_i : \kappa_i \to \lambda_i$ é não-sobrejetora, portanto, existe um elemento $b_i \in \lambda_i \backslash \text{Im}(f_i)$, com isso, obtemos que, para toda função $f : \bigcup_{i \in I} A_i \to \prod_{i \in I} B_i$, o elemento $b = \langle b_i : i \in I \rangle$ não está na imagem de f.

Prova. Sejam $\langle A_i : i \in I \rangle$ e $\langle B_i : i \in I \rangle$ tais que $|A_i| = \kappa_i$ e $|B_i| = \lambda_i$ e A_i mutuamente disjuntos, $i \in I$. Como $|A_i| < |B_i|$, então, dadas $f_i : A_i \to B_i$ injetoras, sabemos que elas não são sobrejetoras. Defina então

$$B_i^{\dagger} = \{ x \in B_i : x \notin f_i[A_i] \}$$

Como f_i não é sobrejetora, $B_i^{\dagger} \neq \emptyset$, $i \in I$, portanto, por AC podemos escolher $b_i^{\dagger} \in B_i^{\dagger}$, $i \in I$. Construiremos uma injeção

$$F: \bigcup_{i\in I} A_i \to \prod_{i\in I} B_i$$

da seguinte forma

$$\pi_j(F(a)) = \begin{cases} f_i(a), & i = j \\ b_j^{\dagger}, & i \neq j \end{cases}$$

Se F(x) = F(y), com $x \in A_i$ e $y \in A_j$, então

$$\pi_i(F(x)) = \pi_i(F(y))$$

Se $i \neq j$, então

$$\pi_i(F(x)) = f_i(x) = b_i^{\dagger} = \pi_i(F(y))$$

contradição, visto que $b_i^{\dagger} \notin f_i[A_i]$. Se i=j, então $f_i(x)=f_i(y)$, mas como f_i é injetora, x=y, portanto F é injetora. Vamos agora provar que não há nenhuma sobrejeção.

Assuma por contradição que $G:\bigcup_{i\in I}A_i\to\prod_{i\in I}B_i$ seja sobrejetora, defina

$$B_i^{\ddagger} = \{ x \in B_i : x \notin \pi_i(G[A_i]) \}$$

Como $(\pi_i \circ G): A_i \to B_i$, então ela não é sobrejetora e, portanto, $B_i^{\ddagger} \neq \emptyset$, $i \in I$. AC nos garante que existe $b = \left\langle b_i^{\ddagger}: i \in I \right\rangle$ tal que $b_i^{\ddagger} \in B_i^{\ddagger}$. Como G é sobrejetora, existe $x \in A_i$, para algum $i \in I$, tal que $G(x) = b^{\ddagger}$, logo $\pi_i(G(x)) = \pi_i(b^{\ddagger}) \in B_i^{\ddagger}$, contradição, logo não existe G sobrejetora.

Note que a escolha de B_i^{\dagger} e B_i^{\ddagger} lembra a escolha de $X=\{x\in A:x\notin f(x)\}$ na prova do Teorema de Cantor e, de fato, o Teorema de Cantor é um corolário do Teorema de König para $\kappa_i=1$ e $\lambda_i=2,\,i\in I$.

5.2 Exponenciação Cardinal para Cardinais Regulares

Com o Teorema de König em mãos podemos provar o seguinte lema

Lema 5.1. Para todo ordinal α

$$\operatorname{cf}\left(2^{\aleph_{\alpha}}\right) > \aleph_{\alpha}$$

Note que o Lema anterior restringer vários valores para os quais $2^{\aleph_{\alpha}}$ não pode assumir, a depender de sua confinalidade. Por exemplo, se $2^{\aleph_0} = \aleph_{\omega}$, então cf $\left(2^{\aleph_0}\right) = \text{cf}\left(\aleph_{\omega}\right) = \aleph_0 > \aleph_0$, contradição.

Prova. Seja $\vartheta = \operatorname{cf}(2^{\aleph_{\alpha}})$, portanto, existem $\kappa_{\nu} < 2^{\aleph_{\alpha}}$, $\nu < \vartheta$ tal que

$$2^{\aleph_{\alpha}} = \sup \langle \kappa_{\nu} : \nu < \vartheta \rangle = \vartheta \cdot \sup \langle \kappa_{\nu} : \nu < \vartheta \rangle = \sum_{\nu < \vartheta} \kappa_{\nu}$$

visto que $\vartheta = \operatorname{cf}(2^{\aleph_{\alpha}}) \leq 2^{\aleph_{\alpha}}$. Pelo Teorema de König, para $\lambda_{\nu} = 2^{\aleph_{\alpha}}$, temos que

$$2^{\aleph_{\alpha}} = \sum_{\nu < \vartheta} \kappa_{\nu} < \prod_{\nu < \vartheta} 2^{\aleph_{\alpha}} = \left(2^{\aleph_{\alpha}}\right)^{\vartheta}$$

Assuma por contradição que $\vartheta \leq \aleph_{\alpha}$, logo

$$2^{\aleph_{\alpha}} > \left(2^{\aleph_{\alpha}}\right)^{\vartheta} \le \left(2^{\aleph_{\alpha}}\right)^{\aleph_{\alpha}} = 2^{\aleph_{\alpha} \cdot \aleph_{\alpha}} = 2^{\aleph_{\alpha}}$$

 \dashv

contradição, portanto $\vartheta = \mathrm{cf}(2^{\aleph_{\alpha}}) > \aleph_{\alpha}$.

Note que a prova do Teorema acima é exatamente a mesma para um cardinal $\kappa > 1$ qualquer no lugar de 2, o que nos fornece

Corolário 5.1. Para todo cardinal $\kappa > 1$ e todo ordinal α

$$\operatorname{cf}\left(\kappa^{\aleph_{\alpha}}\right) > \aleph_{\alpha}$$

Para cardinais \aleph_{α} regulares, as desigualdades mostradas até agora são as únicas propriedades que podem ser provadas para $2^{\aleph_{\alpha}}$. Entretanto, se \aleph_{α} for singular, então podemos provar várias outras propriedades. Provaremos um deles na seção seguinte e, mais adiante, provaremos o Teorema de Silver.

9

5.3 Exponenciação Cardinal para Cardinais Singulares

Teorema 5.2. Seja \aleph_{α} um cardinal singular, se $2^{\aleph_{\xi}} = \aleph_{\beta}$ para $\xi < \alpha$, então $2^{\aleph_{\alpha}} = \aleph_{\beta}$.

Prova. Como \aleph_{α} é singular existem $\kappa_i < \aleph_{\alpha}$, $i \in I$, com $|I| = \aleph_{\lambda} < \aleph_{\alpha}$ tal que

$$2^{\aleph_{\alpha}} = \sum_{i \in I} \kappa_i$$

Por hipótese, $2^{\kappa_i} = 2^{\aleph_{\lambda}} = \aleph_{\beta}$, logo

$$2^{\aleph_{\alpha}} = 2^{\sum_{i \in I} \kappa_i} = \prod_{i \in I} 2^{\kappa_i} = \prod_{i \in I} \aleph_{\beta} = (\aleph_{\beta})^{\aleph_{\lambda}} = \left(2^{\aleph_{\lambda}}\right)^{\aleph_{\lambda}} = 2^{\aleph_{\lambda}} = \aleph_{\beta}$$

Lema 5.2. Se $\alpha \leq \beta$, então

$$\aleph_{\alpha}^{\aleph_{\beta}} = 2^{\aleph_{\beta}}$$

Prova. Como $2 < \aleph_{\alpha}$, obviamente $2^{\aleph_{\beta}} \le \aleph_{\alpha}^{\aleph_{\beta}}$. Pelo Teorema de Cantor $\aleph_{\alpha} < 2^{\aleph_{\alpha}}$, logo

$$\aleph_{\alpha}^{\aleph_{\beta}} \leq \left(2^{\aleph_{\alpha}}\right)^{\aleph_{\beta}} = 2^{\aleph_{\alpha} \cdot \aleph_{\beta}} = 2^{\aleph_{\beta}}$$

Ao tentar calcular $\aleph_\alpha^{\aleph_\beta}$ para $\alpha>\beta$ o seguinte resultado é útil

Lema 5.3. Seja $\alpha \geq \beta$, logo

$$\left| \left[\omega_{\alpha} \right]^{\aleph_{\beta}} \right| = \aleph_{\alpha}^{\aleph_{\beta}}$$

Prova. Como $|\omega_{\alpha} \times \omega_{\beta}| = \aleph_{\alpha} \cdot \aleph_{\beta} = \aleph_{\alpha} = |\omega_{\alpha}|$, então $|[\omega_{\alpha} \times \omega_{\beta}]^{\aleph_{\beta}}| = |[\omega_{\alpha}]^{\aleph_{\beta}}|$. Agora, toda função $f : \omega_{\beta} \to \omega_{\alpha}$ está em $[\omega_{\alpha} \times \omega_{\beta}]^{\aleph_{\beta}}$, portanto $\omega_{\alpha}^{\omega_{\beta}} \subseteq [\omega_{\alpha} \times \omega_{\beta}]^{\aleph_{\beta}}$, então

$$\left|\omega_{\alpha}^{\omega_{\beta}}\right| = \aleph_{\alpha}^{\aleph_{\beta}} \le \left|\left[\omega_{\alpha} \times \omega_{\beta}\right]^{\aleph_{\beta}}\right| = \left|\left[\omega_{\alpha}\right]^{\aleph_{\beta}}\right|$$

Para a desigualdade contrária, se $X \in [\omega_{\alpha}]^{\aleph_{\beta}}$, então existe f em ω_b tal que $\operatorname{Im}(f) = X$. Com isso, dada tal função f_X para cada $X \in [\omega_{\alpha}]^{\aleph_{\beta}}$, definimos $F(X) = f_X$. Se $X \neq Y$, então $\operatorname{Im}(f_X) = X$ e $\operatorname{Im}(f_Y) = Y$, logo $F(X) = f_X \neq f_Y = F(y)$, i.e., F é injetora e, portanto

$$\left| \left[\omega_{\alpha} \right]^{\aleph_{\beta}} \right| \leq \left| \omega_{\alpha}^{\omega_{\beta}} \right| = \aleph_{\alpha}^{\aleph_{\beta}}$$

5.4 Como calcular $\aleph_{\alpha}^{\aleph_{\beta}}$ em ZFC + GHC

Assumindo a Hipótese Generalizada do Contínuo (GHC), podemos provar os seguintes teoremas

 \dashv

 \dashv

 \dashv

Teorema 5.3. (GHC) Se \aleph_{α} é um cardinal regular, então

$$\aleph_{\alpha}^{\aleph_{\beta}} = \begin{cases} \aleph_{\alpha}, \text{ se } \alpha > \beta \\ \aleph_{\beta+1}, \text{ se } \alpha \leq \beta \end{cases}$$

Prova. Se $\alpha \leq \beta$, pelo Lema 5.2. $\aleph_{\alpha}^{\aleph_{\beta}} = 2^{\aleph_{\beta}} = \aleph_{\beta+1}$. Seja então $\alpha > \beta$. Seja $S = [\omega_{\alpha}]^{\aleph_{\beta}}$, pelo Lema 5.3. $|S| = \aleph_{\alpha}^{\aleph_{\beta}}$. Na seção 3.4. provamos que a cofinalidade de κ pode ser interpretada como o menor tamanho que um conjunto precisa ter para ser ilimitado em κ . Em particular, como cf $(\aleph_{\alpha}) = \aleph_{\alpha}$ para cardinais regulares, sabemos que todo $X \subseteq \omega_{\alpha}$, tal que $|X| < \aleph_{\alpha}$, é limitado. Seja portanto

$$B = \bigcup_{\delta < \omega_{\alpha}} \mathcal{P}(\delta)$$

a coleção de todos os subconjuntos limitados de ω_{α} . Mostraremos que $|B| \leq \aleph_{\alpha}$ e, como $S \subset B$, então $|S| = \aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}$, visto que obviamente $|S| = \aleph_{\alpha}^{\aleph_{\beta}} \geq \aleph_{\alpha}$. Da definição de B obtemos que

$$|B| \le \sum_{\delta < \omega_{\alpha}} 2^{|\delta|}$$

Entretanto, para todo cardinal $\aleph_{\gamma} < \aleph_{\alpha}$, temos que $2^{\aleph_{\gamma}} = \aleph_{\gamma+1} \leq \aleph_{\alpha}$, portanto $2^{|\delta|} \leq \aleph_{\alpha}$, para todo $\delta < \omega_{\alpha}$, logo

$$|B| \leq \sum_{\delta < \omega_\alpha} 2^{|\delta|} \leq \sum_{\delta < \omega\alpha} \aleph_\alpha = \aleph_\alpha \cdot \aleph_\alpha = \aleph_\alpha$$

 \dashv

Provaremos uma fórmula similar, mas mais complicada, para exponenciação de cardinais singulares.

Teorema 5.4. (GHC) Se \aleph_{α} é um cardinal singular, então

$$\aleph_{\alpha}^{\aleph_{\beta}} = \begin{cases} \aleph_{\alpha}, \text{ se } \aleph_{\beta} < \operatorname{cf}(\aleph_{\alpha}), \\ \aleph_{\alpha+1}, \text{ se } \operatorname{cf}(\aleph_{\alpha}) \leq \aleph_{\beta} \leq \aleph_{\alpha}, \\ \aleph_{\beta+1}, \text{ se } \aleph_{\beta} \geq \aleph_{\alpha} \end{cases}$$

Esquematicamente, obtemos que

 $f(\aleph_{\beta}) = \aleph_{\alpha}^{\aleph_{\beta}}$

Prova. Se $\beta \geq \alpha$, então $\aleph_{\beta} \geq \aleph_{\alpha}$ e $\aleph_{\alpha}^{\aleph_{\beta}} = 2^{\aleph_{\beta}} = \aleph_{\beta+1}$. Se $\aleph_{\beta} < \operatorname{cf}(\aleph_{\alpha})$, então todo $X \subseteq \omega_{\alpha}$ tq $|X| = \aleph_{\beta} < \operatorname{cf}(\aleph_{\alpha}) < \aleph_{\alpha}$ é limitado em ω_{α} e, portanto, pelo mesmo argumento que no Teorema anterior obtemos que $\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}$. Seja então cf $(\aleph_{\alpha}) \leq \aleph_{\beta} \leq \aleph_{\alpha}$. Por um lado

$$\aleph_{\alpha} \le \aleph_{\alpha}^{\aleph_{\beta}} \le \aleph_{\alpha}^{\aleph_{\alpha}} = 2^{\aleph_{\alpha}} = \aleph_{\alpha+1} \tag{\dagger}$$

Por outro, pelo Corolário 5.1. cf $\left(\aleph_{\alpha}^{\aleph_{\beta}}\right) > \aleph_{\beta}$ e, como $\aleph_{\beta} \geq$ cf $\left(\aleph_{\alpha}\right)$, então cf $\left(\aleph_{\alpha}^{\aleph_{\beta}}\right) \neq$ cf $\left(\aleph_{\alpha}\right)$, portanto $\aleph_{\alpha}^{\aleph_{\beta}} \neq \aleph_{\alpha}$. Com isso, temos que (\dagger) garante que $\aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha+1}$.

5.5 Fórmula de Hausdorff

Se não assumirmos a GHC a situação fica bem mais complicada. Em particular, conseguimos provar o seguinte Teorema

Teorema 5.5. (Fórmula de Hausdorff) Para quaisquer ordinais α e β vale que

$$\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$$

 $\begin{array}{l} \textit{Prova.} \;\; \text{Se} \; \beta \geq \alpha + 1, \, \text{então} \; \aleph_{\alpha+1}^{\aleph_{\beta}} = 2^{\aleph_{\beta}} = 2^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}, \, \text{visto que} \; \aleph_{\alpha+1} \leq \aleph_{\beta} \leq 2^{\aleph_{\beta}}. \; \text{Seja} \\ \text{portanto} \;\; \beta \leq \alpha, \, \text{como} \; \aleph_{\alpha}^{\aleph_{\beta}} \leq \aleph_{\alpha+1}^{\aleph_{\beta}} \; \text{e} \; \aleph_{\alpha+1} \leq \aleph_{\alpha+1}^{\aleph_{\beta}}, \, \text{então} \; \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} \leq \aleph_{\alpha+1}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} = \aleph_{\alpha+1}^{\aleph_{\beta}}. \; \text{Logo,} \\ \text{basta mostrarmos que} \; \aleph_{\alpha+1}^{\aleph_{\beta}} \leq \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}. \; \text{Como} \; \omega_{\beta} < \omega_{\alpha+1} \; \text{e} \; \omega_{\alpha+1} \; \text{\'e} \; \text{regular, então para qualquer} \\ f : \omega_{\beta} \to \omega_{\alpha+1}, \; f \; \text{\'e} \; \text{limitada, i.e., existe} \; \gamma < \omega_{\alpha+1} \; \text{tq} \; f(\xi) < \gamma, \, \text{para todo} \; \xi < \omega_{\beta}. \; \text{Com isso} \end{array}$

$$\omega_{\alpha+1}^{\omega_{\beta}} = \bigcup_{\gamma < \omega_{\alpha+1}} \gamma^{\omega_{\beta}}$$

Agora, todo $\gamma < \omega_{\alpha+1}$ é tal que $|\gamma| \le \aleph_{\alpha}$ e, como $\left| \bigcup_{\gamma < \omega_{\alpha+1}} \gamma^{\omega_{\beta}} \right| \le \sum_{\gamma < \omega_{\alpha+1}} |\gamma|^{\aleph_{\beta}}$, então

$$\aleph_{\alpha+1}^{\aleph_\beta} \leq \sum_{\gamma < \omega_{\alpha+1}} |\gamma|^{\aleph_\beta} \leq \sum_{\gamma < \omega_{\alpha+1}} \aleph_\alpha^{\aleph_\beta} = \aleph_\alpha^{\aleph_\beta} \cdot \aleph_{\alpha+1}$$

 \dashv