# **Device Modeling Report**

COMPONENTS: OPERATIONAL AMPLIFIER (CMOS)

PART NUMBER: NJU7095

MANUFACTURER: NEW JAPAN RADIO



Bee Technologies Inc.

All Rights Reserved Copyright (c) Bee Technologies Inc. 2005

#### Spice Model



```
*$
*PART NUMBER: NJU7095
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2005
.SUBCKT nju7095 OUT1 IN-1 IN+1 VSS IN+2 IN-2 OUT2 VDD
X U1 IN+1 VSS IN-1 OUT1 VDD nju7095 s
X U2 IN+2 VSS IN-2 OUT2 VDD nju7095 s
.ENDS nju7095
.SUBCKT nju7095 s
                    IN+ VSS IN- OUT VDD
M1
           2 IN-3 VDD MbreakPD3
M2
           2 IN+ 4 VDD MbreakPD2
М3
           VDD 1 2 VDD MbreakPD
M4
           VDD 15 VDD MbreakPD
M5
           VDD 1 6 VDD MbreakPD
M6
           VDD 1 1 VDD MbreakPD
M7
           5 5 VSS VSS MbreakND W=3.2m
                                           L=6u
M8
           5 4 VSS VSS MbreakND3
M9
           3 3 IN1 VSS MbreakND1
M10
           4 3 IN2 VSS MbreakND1
M11
           1 6 11 11 MbreakND
                                W=3.2m
                                          L=6u
M12
           6 6 VSS VSS MbreakND3
M13
           7 5 VSS VSS MbreakND1
M14
           VDD 7 7 VDD MbreakPD
M15
           VDD 7 OUT VDD MbreakPD1
M16
           OUT 4 VSS VSS MbreakND2
C1
          OUT IN- 26p
C2
          1 2 100p
R1
          11 VSS 1.522k
R2
          IN1 VSS 2.0k
R3
          IN2 VSS 2.423k
          0 IN- 0.505p
11
12
          0 IN+
                1.5p
```

```
.model MbreakND NMOS (LEVEL=3 VTO=0.9 RS=10.000E-3 RD=10.000E-3
+ RDS=1.0000E6 TOX=2.0000E-6 CGSO=4.000E-12 CGDO=1.000E-12
+ CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND1 NMOS (LEVEL=3 L=6u W=0.165 VTO=1 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=1.00E-12
+ CGDO=5.000E-12 CBD=5.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND2 NMOS (LEVEL=3 L=6u W=0.732m VTO=0.9
+ RS=10.000E-3 RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6
+ CGSO=4.000E-12 CGDO=1.00E-12 CBD=1.000E-12
+ RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakND3 NMOS (LEVEL=3 L=6u W=3.2m VTO=0.9 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=1.000E-12
+ CGDO=1.000E-12 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=10E-6)
.model MbreakPD PMOS (LEVEL=3 L=6u W=0.23 VTO=-1 RS=10.000E-3
+ RD=10.000E-3 RDS=1.0000E6 TOX=2.0000E-6 CGSO=4.000E-12
+ CGDO=1.000E-12 CBD=1.000E-12 RG=5 RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD1 PMOS (LEVEL=3 L=6u W=0.0334 VTO=-0.9
+ RS=10.000E-3 RD=10.000E-3 RDS=1.00E6 TOX=2.0000E-6
+ CGSO=4.000E-12 CGDO=1.000E-12 CBD=1.000E-12
+ RG=5 RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD2 PMOS (LEVEL=3 L=6u W=0.001 VTO=-1.4
+ RS=10.000E-3 RD=10.00E-3 RDS=1.025e6 TOX=2.0000E-6 CGSO=1.000E-9
+ CGDO=1.000E-12 CBD=1.00E-12 RG=5 RB=1.0000E-3 KP=1E-6)
.MODEL MbreakPD3 PMOS (LEVEL=3 L=6u W=0.0010787 VTO=-1.4
+ RS=10.000E-3 RD=10.00E-3 RDS=1.00E6 TOX=2.0000E-6
+ CGSO=2.000E-8 CGDO=1.000E-12 CBD=1.00E-12 RG=5
+ RB=1.0000E-3 KP=1E-6)
.ENDS nju7095 s
.SUBCKT DbreakZ AK
D1 AK DF
DZ A2 A DR
VZKA21
.MODEL DF D
.MODEL DR D
.ENDS DbreakZ
*$
```

## **MOSFET MODEL**

| Pspice model | Model description                                  |
|--------------|----------------------------------------------------|
| parameter    | •                                                  |
| LEVEL        |                                                    |
| L            | Channel Length                                     |
| W            | Channel Width                                      |
| KP           | Transconductance                                   |
| RS           | Source Ohmic Resistance                            |
| RD           | Ohmic Drain Resistance                             |
| VTO          | Zero-bias Threshold Voltage                        |
| RDS          | Drain-Source Shunt Resistance                      |
| TOX          | Gate Oxide Thickness                               |
| CGSO         | Zero-bias Gate-Source Capacitance                  |
| CGDO         | Zero-bias Gate-Drain Capacitance                   |
| CBD          | Zero-bias Bulk-Drain Junction Capacitance          |
| MJ           | Bulk Junction Grading Coefficient                  |
| PB           | Bulk Junction Potential                            |
| FC           | Bulk Junction Forward-bias Capacitance Coefficient |
| RG           | Gate Ohmic Resistance                              |
| IS           | Bulk Junction Saturation Current                   |
| N            | Bulk Junction Emission Coefficient                 |
| RB           | Bulk Series Resistance                             |
| PHI          | Surface Inversion Potential                        |
| GAMMA        | Body-effect Parameter                              |
| DELTA        | Width effect on Threshold Voltage                  |
| ETA          | Static Feedback on Threshold Voltage               |
| THETA        | Modility Modulation                                |
| KAPPA        | Saturation Field Factor                            |
| VMAX         | Maximum Drift Velocity of Carriers                 |
| XJ           | Metallurgical Junction Depth                       |
| UO           | Surface Mobility                                   |

# **Output Voltage Swing**

# Simulation result



## **Evaluation Circuit**



VIN+ = (VDD/2) + 0.05, VIN- = (VDD/2) - 0.05

## Comparison Table

|                     | Measurement | Simulation | %Error |
|---------------------|-------------|------------|--------|
| V <sub>OM</sub> (V) | 2.9         | 2.9        | 0      |

All Rights Reserved Copyright (c) Bee Technologies Inc. 2005

# **Input Current**

# Simulation result



## **Evaluation Circuit**



|                      | Measurement | Simulation | % Error |
|----------------------|-------------|------------|---------|
| I <sub>b</sub> (pA)  | 1           | 1.002      | 0.2     |
| I <sub>os</sub> (pA) | 1           | 0.995      | -0.5    |

All Rights Reserved Copyright (c) Bee Technologies Inc. 2005

# **Input Offset Voltage**

# Simulation result



## **Evaluation Circuit**



|                      | Measurement | Simulation | %Error |
|----------------------|-------------|------------|--------|
| V <sub>OS</sub> (mV) | 2           | 1.982      | -0.9   |

# **Open loop Voltage Gain**

#### Simulation result



#### **Evaluation Circuit**



#### Comparison Table

|         | Measurement | Simulation | %Error |
|---------|-------------|------------|--------|
| Av (dB) | 70          | 70.032     | 0.045  |

All Rights Reserved Copyright (c) Bee Technologies Inc. 2005

# **Unity Gain Frequency**

## Simulation result



## **Evaluation Circuit**



| A <sub>V</sub> =40dB,C <sub>L</sub> =10pF | Measurement | Simulation | %Error |
|-------------------------------------------|-------------|------------|--------|
| Ft(MHz)                                   | 1           | 1          | 0      |

# **Common-Mode Rejection Ratio**

#### Simulation result



#### **Evaluation Circuit**



CMRR = AV/ACM

|           | Measurement | Simulation | %Error |
|-----------|-------------|------------|--------|
| CMRR (dB) | 65          | 65.067     | 0.104  |

#### **Slew Rate**

#### Simulation result



## **Evaluation Circuit**



|           | Measurement | Simulation | % Error |
|-----------|-------------|------------|---------|
| SR (V/us) | 1           | 1.05       | 5       |