Computational Thinking to Support Clinicians and Biomedical Scientists June 21–22, 2011

Automated Reasoning for Application of Clinical Guidelines

Mark A. Musen, M.D., Ph.D.

Mary K. Goldstein, M.D., M.Sc.

Samson W. Tu, M.S.

GLINDA: GuideLine INteraction Detection Architecture

- Computational methods for reasoning about evidence-based practice
- Mechanisms for dealing with the messiness of clinical situations
 - Application of multiple clinical-practice guidelines
 - Adjustments for patient co-morbidities
 - Adjustments for interactions among interventions

GLINDA Project Team

- Mark Musen, M.D., Ph.D.¹
- Mary Goldstein, M.D., M.Sc.^{1,2}
- Samson Tu, M.S.¹
- Susana Martins, M.D., M.Sc.²
- Csongor Nyulas, M.S.¹
- Hyunggu Jung, M.S.¹
- Pamela Kum²

¹ Stanford University, Stanford, CA

² VA Palo Alto Health Care System, Palo Alto, CA

Clinical Context of our Work

- Populations are aging worldwide
- Older adults tend to have multiple chronic conditions

75 million people in the US have two or more concurrent chronic conditions

- Management of multiple co-morbidities presents challenging problems
 - Competing therapeutic goals
 - Interventions that interact
 - Difficulty achieving parsimonious treatment plans

Role of Clinical Practice Guidelines

- Clinical practice guidelines define evidence-based best practices
- Lots of work on automating CPGs
 EON, InterMed (GLIF), SAGE,
 PROforma, Asbru, ...
- Almost all CPGs—and all systems to automate treatment in accordance with CPGs—focus on single diseases

Simplified ATHENA Architecture

ATHENA HTN Knowledge Base

ATHENA-HTN Evaluation Studies

Encoded Guidelines

ATHENA Hypertension

ATHENA Heart Failure

ATHENA Hyperlipidemia

ATHENA Diabetes

ATHENA Kidney Disease

ATHENA Opioid Therapy

Limitations of Single-Disease Guidelines [Boyd et al. JAMA 2005]

- Simultaneous application of multiple guidelines leads to suboptimal care
 - Hypothetical 79-year-old woman with chronic obstructive pulmonary disease, Type 2 diabetes, osteoporosis, hypertension, and osteoarthritis
 - If the relevant CPGs were followed, the hypothetical patient would be prescribed 12 medications and a complicated, pharmacologically inappropriate regimen
- Application of CPGs needs to
 - Detect and repair conflicting interactions
 - Prioritize recommendations

Recommendations for Hypertension

Recommendations for Hyperlipidemia

Therapeutic Possibilities	Indications	Contraindications
CLICK ON DRUGS FOR IMPORTANT		
Add one or more of the following drugs <u>Statin</u>	DL not within guideline goal	
Bile Acid Sequestrant	LDL not within guideline goal	
Nicotinic Acid	 LDL not within guideline goal 	Diabetes Mellitus

Recommendations for Diabetes

Overview of GLINDA Approach

- Incorporate our extensive experience with ATHENA CDS in an agent-oriented architecture
- Use task—method decomposition to create agent-oriented model of procedural elements
- Develop ontology of guideline interactions
- Develop agents for detecting conflicts, repairing conflicts, prioritizing and integrating treatment recommendations

GLINDA Task-Method Decomposition

Modeling tasks and methods in Protégé

Modeling tasks and methods in Protégé

Modeling tasks and methods in Protégé

Implementation of Tasks and Methods in an Agent-Oriented Architecture

Running GLINDA – Initializing ...

Running GLINDA – Creating Agents

Running GLINDA – Configuring Agents

Running GLINDA – Activating Agents

Running GLINDA – Get Data

Running GLINDA – Select Guideline

Running GLINDA – Run ATHENA Agents

Running GLINDA – Consolidate Advisories

Running GLINDA – Calculate Interactions

Running GLINDA – Repair and Prioritize

Ontology of
Cross-Guideline
Interactions
Among
Recommendations

- Advisory_Interaction
 - Inconsistent_Patient_Characterizations
 - Inconsistent_Goal
 - Multi-Activity_Interaction
 - Cumulative_Number_Constraint
 - Drug-Drug_Interaction
 - Timing_Interaction
 - Single_Activity_Interaction
 - Dose_Modification_Level_Difference
 - Dose_Modification_Rate_Difference
 - Support_Across_Guidelines
 - Collateral_Effect
 - Consistent_Negative_Support
 - Consistent_Positive_Support
 - Contradictory_Support
 - Contraindicated
 - Mixed_Support

Example 1: Contradictory Recommendations

Example 2: Inconsistent Patient Characterizations

Example 3: Cumulative Number of Interventions

Use of patient data to drive our work

- We extracted 2455 complex, deidentified patient cases from the Stanford Translational Research Integrated Database Environment (STRIDE)
- We are applying our method for interaction detection to 226 selected cases selected for their combination of diseases and number of drugs
- Formative evaluation of system performance drives knowledge-base evolution

Conclusions

- Systems that assist with guideline-based care need to address the messiness of actual clinical situations
- An agent-oriented architecture allows for
 - Reasoning about comorbidities, application of multiple guidelines, and situation-specific interactions
 - Flexibility in experimenting with alternative computational workflows
- Creating GLINDA will drive development of formal models for computational thinking about
 - Guideline interactions
 - Repair mechanisms
 - Prioritization of interventions

This work has been supported by the National Library of Medicine

Any opinions expressed here are not necessarily those of the NLM or of the Department of Veterans Affairs