БИЛЕТ 1

1. Степен на интеграция. Поколения ИС.

- **1- во поколение: SSI** (small-scale integration) с ниска степен на интеграция (< 100 компонента/чип): ЛЕ (AND, OR, NAND, NOR, XOR и AP);
- **2- ро поколение: MSI** (medium-scale integration) със средна степен на интеграция (от 100 до 3000 компонента/чип): броячи, дешифратори, суматори, мултиплексори, регистри и др.
- **3- то поколение: LSI** (large-scale integration): с висока степен на интеграция (от 3000 to 100,000 компонента/чип): специализирани схеми, малки микроконтролери, АЦП, ЦАП, памети с неголям обем.
- **4- то поколение: VLSI** (very large-scale integration): със свръхвисока степен на интеграция (от 100,000 до 1,000,000 компонента/чип): микроконтролери, полупроводникови памети (главно SRAM, PROM), някои DSP структури;
- **5- то поколение: ULSI / SVLSI** (ultra large-scale integration): с повече от 1млн. електронни компонента на чип съвременни DRAM памети, PLD структури (FPGA, CPLD), микропроцесори с общо предназначение, многоядрени процесори (multi-core processors, схеми за обработка на изображения и др.;

2. Памети SRAM - блокова схема, особености.

- с около 10 пъти по-ниска плътност на разполагане в чипа от DRAM;
- ниска статична консумация;
- високо бързодействие (малко време на достъп до ЗК);
- облекчен достъп (опростена схемотехника на схемите за достъп).

3. Свързване "жично-ИЛИ".

TTL елемент-реализация на "жично" или

<u>4. Памети тип EEPROM:</u> Вътрешно генериран имп. при програмиране – само 1 захранващо напр.; Изтриване/запис- в/у стария байт се записва нов байт инф.

5. Прекъсвания в НС11 - видове.

Общо: операциите Reset и прекъсване <u>зареждат РС с конкретен вектор сочещ към определен адрес</u> от който да се заредят съответните инструкции за изпълнение.

Reset: (1) спира изпълнението на текущата инструкция; (2) изпраща РС към съответния адрес /Reset вектор/; (3) вътрешните регистри и контролни битове от ССR се инициализират за последващо продължаване на работата;

Прекъсвания (Interrupts) - временно се спира работата на основната програма до приключване изпълнение на обработката на прекъсването (сервизна процедура). След това основната програма продължава да се изпълнява.

Видове прекъсвания: SWI (Software Interrupt), HWI (Hardware Interrupt) (IRQ, XIRQ)

6. Аналогов интерфейс в НС11 - брой канали, съхранение на данните.

8-канална система (съответно 8-битов мултиплексор), 8-битова точност на преобразуване; 4 бр 8-битови регистри ADR1-ADR4 съхраняват резултата от преобразуването Всеки един от тях е достъпен за ЦП Флагът (ССГ) за край на преобразуването указва валидността на данните в регистрите за съхранение на резултата.

7. Интерфейс тип SCI - особености, задаване честотата на обмен.

- универсален UART-тип интерфейс
- отделна подсистема в ЕМК 68НС11 Е серия
- стандартен NR2 формат:1 старт-бит,8/9 бита данни,1 стоп бит
- независим приемник и предавателно 1 и съща скорост на предаване,общ формат на данните -поддърва различни скорости на предаване

BAUD – регистър за задаване на скоростта на предаване – използва се за задаване скоростта на обмен на данни по SCI; Честотата може да бъде променяна във всеки един момент;

БИЛЕТ 2 1.DRAM памети - блокова схема, особености.

Предимства: висока плътност на разполагане на елементите; най-ниска цена на 1 bit информация; най-висок общ обем от всички ПП; проста схемотехника на 1-Т 3К - използва само MOS технология (n-MOS), изцяло CMOS съвместима.

Недостатъци: относително невисоко бързодействие (липса на положителна обратна връзка /ПОВ/ в структурата на ЗК); необходимост от регенерация; относително сложни режими на четене, запис и регенерация; повишени изисквания към поддържащите схеми; особено внимание към изграждане С_{зап} с висок специфичен капацитет (разнообразни технологии).

<u>2.Високоимпедансно състояние:</u> Паметите и МП схеми работят на определена честота. Всеки вход се х-теризира в зависимост от тех-гията, с входен паразитен капацитет (Ср). При вход с Висок Импенданс (НіZ състояние) се нямалява значително този паразитен капацитет.

3.Асоциативни памети - адресиране, приложение.

САМ ("асоциативен масив") - използва се в някои продукти, в които се извършва търсене с висока скорост.

Структура - специфичен ЗЕ с допълнителни схеми И,ИЛ И и др. За определяне на конкретния признак. Съществуват т.нар. *Асоциативни процесори*. EA=Aдрес+признак Когато думата съвпадаща с признака се открие, САМ връща адрес(и). Може да се връща и стойността или част от самата дума. Хардуерен еквивалент на софтуерния термин "асоциативен масив".

Cache паметта - асоциативна памет. Използва се от CPU (ЦП).

- Висока скорост (по-висока от тази на RAM)
- Относително висока цена за всеки бит има допълнителна асоциативна схема за сравнение

Пример-при обработка на сегмент от данни ,разположен в памети с голям обем: EA=AL+Pi

4. Reset вектори - разположение в адресното пространство. Смисъл.

Reset вектор – съдържа адреса на първата команда, която ще изпълни МП (също и при прекъсване); POR/External Reset – ползват един и същ вектор; COP/Clock monitor Reset – собствени вектори;

<u>5. SPI интерфейс - особености, режими на работа.</u>

Независима комуникационна подсистема е 68HC11за последователен (сериен) СИНХРОНЕН обмен на данни с висока скорост между ЕМК и външни устройства като: други микропроцесорни системи; системи за АЦП; драйвери за LCD дисплеи.

- за осъществяване на вътрешен обмен в т.нар. multiple master процесорни системи. SPI подсистемата-като Master или Slave.
- При конфигуриране като Master скорост на обмен до $\frac{1}{2}$ E-clock честотата на EMK (напр. 2Mbit/s при E-clock-4MHz);
- При конфигуриране като Slave скорост на обмен до пълната E-clock честота EMK (до 4Mbit/s при E-clock=4MHz).

Използват се следните принципи на буфериране при обмен:

- <u>единично буфериране</u> *при предаване* записът на нова порция данни става едва след прочитане на предходните от преместващия регистър;
- <u>двойно буфериране</u> *при приемане* данните при приемане се прехвърлят в отделен паралелен буфер за данни (избягване на състояние презастъпване "overrun").

6.Таймер система - ІС функция:

- записва момента на настъпване на външни събития от PA2,PA1,PA0 (PA3) - по фронт (преден или заден). Запомня се стойността на таймерния брояч в момента на събитието. *За софтуерно отчитане интервали от време*.

7.RTI - предназначение, специфика.

- Служи за генериране на хардуерно прекъсване през фиксиран интервал от време;
- Определяне на периода на RTI прекъсването от битове RTR[1:0] в регистъра PACTL;
- 4 възможни периода, определени от двоичните комбинации на битове RTR[1:0];
- RTI подсистемата се разрешава от бит RTII="1" от регистъра TMSK2.

БИЛЕТ 3

1.CISC, RISC - същност, предимства, недостатьци.

<u>Complex Instruction Set Computer (CISC)</u> - по-голям брой инструкции. Редукция на програмния код по редове. Ангажира процесора в по-голяма степен.

Reduced Instruction Set Computer (RISC) - с ограничен брой инструкции. Софт. е ангажиран с поголяма част от работата, по-малка заетост на процесора.

2. Шини в микропроцесорните системи - видове, предназначение, ограничения.

- AШ (AB, AL, address bus) адресна шина;
- ШД (DB, DL, data line) шина за данни;
- управляваща магистрала?;

Предназначение:Предаване на информация между отделните устройств

<u>.Памети тип LIFO - същност, приложение в ЕМК.</u>

- LIFO (Last-In First-Out)- първи се чете последния записан бит информация. Приложение: при Stack паметите (бърз достъп до данни).

4. PROM - реализация.

Пропуска се ток с висока стойност при което се прегаря жичката м/у АШ и ШД (без връзка) или се оставя (с връзка). Биполярни (TTL).

Структура с 4 броя ЗК, (четене, програмиране),

<u>5.Портове в НС11.</u>

Функциите на съответните изводи зависят от режима на работа.Общо 5 I/O порта (A,B,C,D,E) за всеки ЕМК от фамилия M68HC11(E-серия)-до 38 използваеми линии в зависимост от избрания режим на работа.

Порт	Изводи	О изводи	I/O изводи	Съвместими функции
Α	3	3	2	таймер
В	•	8	-	Адреси А8-А15
С	-	-	8	Адреси A6-A7 Данни D0-D7
D	-	-	6	SCI,SPI
F	8	-	7	АПП

6. Аналогов интерфейс в НС11 - режими на работа.

Единичен (single-channel, MULT=0). Варианти

- a) SCAN=0, Избраният канал се конвертира 4 последователни пъти и резултатите се съхраняват в регистри (ADR1) до (ADR4). След това очаква нова команда в регистъра ADCTL;
- б) SCAN=1. Резултатът от 5-то преобразуване се съхранява в регистър (ADR1), припокривайки първото, от 6-то в (ADR2) и т.н.

Групов (multi-channel, MULT=1). Варианти:

- a) SCAM=0. Избрана група от 4 канала се преобразуват еднократно. Резултатите се записват в регистри (ADR1) до (ADR4). След това очаква нова команда в регистъра ADCTL;
- б) SCAN=1. Избраната група канали се преобразува непрекъснато, като 5-то преобразуване се записва отново в регистър (ADR1), 6-то в (ADR2) и тн.

7.COP Watchdog система в HC11 - предназначение, задаване на таймаут периода.

ЕМК включва СОР система за защита от софтуерни грешки

- При включена СОР софтуерът следи за препълване на таймера
- При неизпълнение на софтуера в съответната последователност се инициализира RESET. Таймаут периодът може да се настройва с помощта на prescaler битове CR[1:0];

БИЛЕТ 4

1.ЕМК структура – основни блокове

Класическа структура: Централен процесор (аритметично-логическо устройство, АЛУ) с възможност за работа със специфична система от инструкции. Инструкциите се изпълняват за определено време в зависимост от тактовата честота и спецификата им; оперативна (енергозависима) RAM (RandomAccess Memory) памет; Управляващо устройство (УУ), Control Unit; Входно устройство (Input Unit); Изходно устройство (Output Unit);

2.Памети с непосредствен достъп – блокова схема, особености, достъп до 3К?

Запомняща среда на база тригери или други специфични транзисторни структури; Адресни шини – адресират 2^N 3K с дължина на думата L; М – част от адресните шини за адресиране на конкретен 3E; Достъпът до 3K става на базата на Дешифратори;

3. Памети тип FIFO - същност, приложение

- при тях се чете първия бит записана информация първо.(още стек)

Безадресна ОПо-бързи от с непосредствен достъп.

Приложение – при мониторите, за четене на инф. в процеса на визуализация,за обработка на инф.

4.ЕЕПРОМ – особености на запомнящата клетка, режими на работа

- има наличие на допълнителни структури за използване на електрони от и към плаващия гейт при прилагане на високо напрежение.
- EEПРОМ използва механизмът на "тунелен пренос" на електрони клетки тип FOTOX,FETMOS. Режими на работа: изтриване, запис, четене, standby, неизбрана

5. Режими WAIT в HC11

спира обработката на данни и намалява консумацията на междинно ниво около 3-4 пъти – системните регистри се записват в стека и се спира работата на ЦП до подаване на функция RESET или друго прекъсване.

6. Таймер система – ОС

Програмира действие, което да се изпълни в дефиниран момент време.

- отделни 16-битови регистри и 16-битови компаратори за всеки от 5-те ОС изхода.
- при съвпадение състоянието на брояча с това на регистъра- статус флаг (OCxF)=1 След съвпадение на зададения код стартиране на ОС функц.

7. Схеми за връзка по SPI интерфейс-особености, видове:

Независима комуникационна подсистема в HC11 за последоивателен синхронен обмен на данни с висока скорост между EMK и външни устройства като други МП, системи за АЦП, драйвери. За осъществяване на вътрешен обмен на т. нар multiple master процесорни системи.Като master – скорост 0.5, като slave – скорост 1.

БИЛЕТ 5

1. Развитие на МП-структура

1. Първа структура на МП – Интел4004 (1971г.108-740КHz, 1W); 2. 4040 (1972г. – 2ри МП 1МHz); 3. 8008 (1972г.) – 2х по-ефективен от 4004; 4. 8080 (1974г. –инструкции за прекъсване, най-разпространен); 5. 8048 (1976г. – 8 битов, СНМОЅ технология); 6. Intel 8086 (16 bit, PC); 7. 68000 (Моторола за Мас); 8. Интел 80386; 9. 486 (вграден мат. копроцесор); 10. Pentium I (нова технология), Pro, II(ММХ техн), III, IV (4GHz), D, Extreme edition (2ядра);

2. SRAM памети – особености, режим и четене

Особености: 1) С около 10 пъти по-ниска плътност на разполагане в чипа от DRAM; 2) Ниска статична консумация: 3) Високо бързодействие (малко време на достъп до ЗК): 4) Облекчен

достъп (опростена схемотехника на схемите за

3. FLASH памети – специфики на клетката, организация и типове.

Разлики в 3E: по-тънък слой на SiO2 под FG; по-дълбока област на сорса (за ускоряване); процесът на изтриване (тунелиране на електрони от плаващия гейт)

Организация: Boot block (Sector erased) Flash – изтриване на сектори от 4КВ до 128КВ; Bulk erased Flash – изтрива се целия Флаш; Операциите четене и запис – на принципа на непосредствен побайтов достъп:

Типове: NOR-базирани – за приложения с големи масиви данни (пр. Intel Dual-plane Flash 32Mbit); NAND-базирани – за масови приложни продукти и данни (мемори карти, твърди дискове);

4. ЕПРОМ – особености на 3К, режими на работа:

Особености на 3К: по-висока плътност на 3E от PROM – само 1 транзистор, без допълнителна връзка (fuse);

Режим:

- нормална: неизбрана, standby, четене
- изтриване с UV светлина
- Програмиране (Запис) -бавен (от 50ms до 100ns); адресира се цял байт

5. Режим STOP в HC11 – същност, особености

- спира всички тактови изтопчници и намалява консумираната мощност на възможно най-ниско ниво; съдържанието на RAM се съхранява; Поставяне в този режим – чрез команда STOP при S=0 от CCR.За излизане от режима се подава най-ниското ниво на един от вх-вете.

6. Прекъсване тип "неправилен код" – предназначение, тип

При откриване на неправилен код, EMK хардуерно може да прекъсне инструкцията. След това откриване, текущата стойност на PC се прехвърля в стека – изпълнява се процедура по прекъсване.

7. Пулс – акумулатор – предназначение, режими на работа

Отделна подсистема включваща 8-битов брояч за работа в 2 режима:

- > обикновен броячен режим увеличава се стойността на брояча при постъпване на сигнал на външния му извод.
- > *разрешителен акумулиращ режим* в този случай E clock/64 тактува 8-битовия брояч, но само докато външният извод PAI е активен.
- Контролни битове- в регистри PACTL, TMSK2 и TFLG2.

БИЛЕТ 6

1. Развитие на МП

1. Първа структура на МП – Интел4004 (1971г.108-740КHz, 1W); 2. 4040 (1972г. – 2ри МП 1МHz); 3. 8008 (1972г.) – 2х по-ефективен от 4004; 4. 8080 (1974г. –инструкции за прекъсване, най-разпространен); 5. 8048 (1976г. – 8 битов, СНМОЅ технология); 6. Intel 8086 (16 bit, PC); 7. 68000 (Моторола за Мас); 8. Интел 80386; 9. 486 (вграден мат. копроцесор); 10. Pentium I (нова технология), Pro, II(ММХ техн), III, IV (4GHz), D, Extreme edition (2ядра);

2. DRAM – основни режими на работа

Видове: четене- стандартно, четене – по страници (Fast Page Mode), запис, четене-запис;

3. PROM структура, начини на програмиране. "Блуждаещ" ток

Структора: матрична решетка от "бушони" – NiCr, poly-Si, W връзка с възможност за прегряване (Burning Rom).

Програмиране:

- -чрез устрйство програматор
- пуска се ток с висока стойност при което се прогаря жичката между АШ и ШД (липса на връзка) или се оставя (наличие на връзка). Запис- бавен.

4. Памети тип LIFO,FIFO

Безадресна ОПо-бързи от с непосредствен достъп.

FIFO- чете се първия бит записана инф. първо.

приложение – при мониторите, за четене на инф. в процеса на визуализация, за обработка на опр. инф.

IFO – последен влязъл, пръв излязъл; *приложение* при стек паметите.

- **<u>5. Енергоспестияващи режими в 68HC11, специфики, разлики</u>** работата на ЦП се прекратява до постъпване на RESET или друго прекъсване.
- WAIT режим спира обработката на данни и намалява консумацията на междинно ниво (до 3-4 пъти); Спира се работата на ЦП до пристигане на ресет или друго прекъсване (външно IRQ, XIRQ или вътрешно генерирано от таймер-системата, SCI, SPI); кварцовият осцилатор остава включен;
- STOP режим спира вс. тактови източници и намалява консумираната мощтност на възможно най-ниско ниво 100nA (RAM се съхранява).

- режим STANDBY – при изключване на захранването. Изход от режима – включване на захранването. (RAM се захранва от V_{STBY} извод).

6. Прекъсване тип IRQ(с черта) – същност реализация –

- допълнително маскирано прекъсване през вход за ЕМК
- Задействане- по-ниско ниво на сигнала от източника на прекъсване
- Свързване на няколко източника в схема "жично ИЛИ"

- Флагът I от контролният регистър ССR се установява в 1 (заявка за прекъсване) и може да се нулира SW след обслужването на прекъсването.

7. Таймер система в НС11 – структура, предназначение.

Таймера представлява брояч. В НС11 таимера се вклщчва на вход А който може да се ползва по различни начини.

Отделна система в ЕМК НС11; Включва пет отделни вериги за делене на

честотата: Предварителен делител на честотата от кварцовият осцилатор на 4, Основна таймерна верига –16 битов брояч с програмируем коефициент на броене, задаван чрез prescaler битове PR[1:0]

Предназначение: 1) Като основен брояч (таймер на сумиране); 2) RTI (Real Time Interrupt); 3) База за Watchdog COP системата; 4) Пулс-акумулатор (броене на импулси и броене по разрешение); 5) Входна функция; 6) Изходна функция;

БИЛЕТ 7

1.Обща структура на ЕМК. Изграждащи блокове.

Класическа структура: Централен процесор (аритметично-логическо устройство, АЛУ) с възможност за работа със специфична система от инструкции. Инструкциите се изпълняват за определено време в зависимост от тактовата честота и спецификата им; оперативна (енергозависима) RAM (RandomAccess Memory) памет; Управляващо устройство (УУ), Control Unit; Входно устройство (Input Unit); Изходно устройство (Output Unit);

2.Памети с последователен достъп. Видове. Параметри.

аметите биват още: адресни и безадресни.

Безадресни – конкретен механизъм (FIFO, UFO) или признак (асоциативни)за достъп без конкретен адрес:

Безадресна ОПо-бързи от с непосредствен достъп.

-FIFO (First-In First-Out) – При първи се чете първия бит записана информация. "Кюнец".

LIFO (Last-In First-Out) – При тези памети първи се чете последния записан бит информация. "*Кофа*".

<u> 3.ОТР-РКОМ – особености. Прилож</u>ение.

- OTP-EPROM (one-time programmable ROM) за еднократно програмиране – в апаратура, произвеждана в малки серии (без прозорче – в пластмасов корпус). При нужда се изтриват с радиоактивни α-лъчи).

Може би е само **PROM**:

- Еднократно програмируеми от потребителя в лабораторни условия;
- Структура матрична решетка (масив) от "бушони " (array of fuses) NiCr, poly-Si, W връзка с възможност за прегаряне – т.нар. Burning ROM;
- Биполяони (TTL)
- -Запис-бавен(5мин.).Високо бързодействие.
- -програмиране с ток;
- -еднократно програмиране;
- -биполярни PROM защитени от радиоактивно въздействие;

-високо бързодействие (до 1 ns); висока консумация.

Приложение на PROM

- при реализация на сложни логически функции –пример: Кодови Преобразуватели (КП): BCD ASCII, BCD -> 7-сегментен код и др.;
- -за реализация на времеви последователности;

съхранение на програми, в апаратура в големи серии.

<u>4.Памети тип LIFO, FIFO – същност, приложения.</u>

По-бързи от памети с непосредствен достъп.

Безадресна ◊По-бързи от с непосредствен достъп.

FIFO - чете се първия бит записана инф. "Кюнец".

Приложение на FIFO паметите:

ри монитори – за четене на инф. в процеса на визуализация; За обработка (трансфер) на "подредена" инф. между несинхронизирани шини и устройства:

LIFO – първи се чете последния записан бит инф. "Кофа".

Приложение: при Stack паметите (бърз достъп до данни).

5.Видове адресации в ЕМК НС11. Индексна адресация : [KOD][D]

В този адресен режим байтът след КОД съдържа 8-*битово отместване* (D- индексно отместване), което се добавя към съдържанието на индексния регистър (IX или IY). Резултатът формира ефективния адрес (EA). Този режим позволява адресиране на всяка клетка от адр.пространство. Общата дължина -2 байта.

Видове: непосредствена, директна, пълна, индексна, относителна, вътрешна.

6.,,Плъзгане" на програма – предназначение.

SW грешки:

Много комбинации ◊ възможни софтуерни грешки; Невъзможност на програмиста да тества физически вс. възможни комбинации. Бета-версии – постепенно се отстраняват забелязани от клиентите грешки.

НW приплъзване: Адреси или Данни вместо КОД.

7.Таймер-система в НС11- система броячи. Режими на работа Порт А.

- Отделна система в ЕМК 68НС11 (към Порт А);
- Включва 5 отделни вериги за делене на честотата.
- > Предварителен делител на честотата от кварцовия осцилатор на 4;
- > Основна таймерна верига 16-битов брояч с програмируем коефициент на броене (задаван чрез prescaler битове PR[1:0] на 1,4,8,16). От нея за:
- за 5РІ подсистемата на серийния интерфейс;
- за SCI подсистемата на серийния интерфейс;
- за Пулс-акумулатор подсистемата;
- за подсистемата за Прекъсване в реално време (RTI) / COP Watchdog подсистема.

Всички операции в таймерната система –съотнесени спрямо честотата на основния (таймерен) брояч.

- Начало на броене \$0000 (след излизане от Reset):
- Край на броене SFFFF. Флагът за препълване 0 (Overflow) в контролния регистър ССR се вдига в "1". След това броене отново от \$0000.

При нормален режим на работа на ЕМК – няма спиране, нулиране или промяна на брояча.

БИЛЕТ 8

1. Микропроцесори - развитие. Типове според вида инструкции.

1. Първа структура на МП – Интел4004 (1971г.108-740КHz, 1W); 2. 4040 (1972г. – 2ри МП 1МHz); 3. 8008 (1972г.) – 2х по-ефективен от 4004; 4. 8080 (1974г. –инструкции за прекъсване, най-разпространен); 5. 8048 (1976г. – 8 битов, СНМОЅ технология); 6. Intel 8086 (16 bit, PC); 7. 68000 (Моторола за Мас); 8. Интел 80386; 9. 486 (вграден мат. копроцесор); 10. Pentium I (нова технология), Pro, II(ММХ техн), III, IV (4GHz), D, Extreme edition (2ядра);

Брой (специфика) на инструкциите:

<u>Complex Instruction Set Computer (CISC)</u> - по-голям брой инструкции. Редукция на програмния код по редове. Ангажира процесора в по-голяма степен.

<u>Reduced Instruction Set Computer (RISC)</u> - с ограничен брой инструкции. Софтуерът е ангажиран с по-голяма част от работата, по-малка заетост на процесора. (Apple Corp.)

Very Long Instruction Word (VUW) - представлява продължение на RISC концепцията.

Компилаторът разделя инструкциите на базови операции, изпълними от процесора. Прилага принципа Instruction Level Parallelism (ILP). Цел: намаляване заетостта на процесора; <u>Superscalar Processors</u> (супер скаларни процесори) - при тях се изпълнява повече от една инструкция на цикъл. Прилага се концепция на хеширане и паралелна обработка.

Друга класификация според спецификата на набора инструкции:

- General Purpose Processor (GPP. универсални);
- Special Purpose Processor (SPP, със спец.предназначение);
- Application-Specific Instruction-set Processor (ASIP) (идва от ASIC схемите) напр. PLC контролерите:
- Digital Signal Processor (DSP) за бърза обработка в реално време.

2.Памети с непосредствен достъп. Параметри.

Запомняща среда на база тригери или други специфични транзисторни структури; Адресни шини – адресират 2^N 3K с дължина на думата L; Достъпът до 3K става на базата на Дешифратори; М - част от адресните шини за адресиране на конкретен 3E;

Параметри: обем на паметта (бр. 3E); дължина на думата L (битове); организация (обем х брой разряди – пр. 64К х 8); бързодействие; консумирана мощност;

.EPROM - запомняща клетка, режими на работа. Приложение.

По-висока плътност на 3E от PROM - само 1 транзистор, без доп.връзка (fuse);

Режими на работа: нормални (не избрана, четене, standby); изтриване (UV светлина); програмиране (запис).

Приложение: за запис на програми в ЕМК (честа промяна).

4.Програмен модел на ЕМК 68НС11 - регистри, описание.

Включва всички налични регистри в ЦП (6 бр)

ACC A (акумулатор A) - 8-битов; **ACC B** (акумулатор B) - 8-битов (или общо 16-битов акумулатор **ACC D**); **IX** (индексен регистър); **IY** (индексен регистър Y);**SP** (указател на елека); **PC** (програмен брояч); **CCR** {регистър на ссъстоянието)

Акумулатори А и В - 8-битови регистри с общо предназначение. Съхраняват временно операндите (данни) и резултата от изпълнение на предишна операция от АЛУ. За някои инструкции-образуват 16-битов регистър (акумулатор D).

Индексен регистър IX - при индексна адресация осигурява 16-битова стойност (базов адрес), която да се добави към 8-битовото отместване от инструкцията за образуване на ефективен адрес (EA).

Допуска изпълнение на операции INX, DEX, CPX. Може да се ползва като брояч или за съхранение на данни.

Индексен регистър IY - 16-битов. Подобно на IX участва в индексен адресен режим. Повечето инструкции, ползващи IY, изискват допълнителен байт от кода/цикъл за изпълнение.

ССК (рег. на състоянието): не съдържа данни; Съдържа 8 бита (флагове) от които:

- 5 индикатори на състоянието (C, V, Z, N, H)
- 2 маскови бита при прекъсване (IRQ, XIRQ);
- бит за освобождаване от стоп режим (S);

<u> 5.КОД. PRE Вуtе - същност. Относителна адресация.</u>

КОД: код на операцията. Всеки КОД идентифицира опр. инструкция и метод на адресация. **Допълнителен байт - PRE BYTE** за увеличаване броя команди (препраща ЦП към съответната страница). Предшества КОД в общия формат. Пълна инструкция - дължина от 1 до 4 байта. **Относителна адресация:** [КОД][В]; В- относително преместване.

Използва се само за преходи под условие. При разклонение на програми!; 2-байтова инструк; Ако условието е "True", относителното отместване В от инструкцията се добавя към съдържанието на РС за формиране на ЕА. В противен случай при "False" се продължава към следващата поред инструкция.

6.Интерфейс RS485 - особености, предназначение.

Особености:

- Липса на обща маса и необходимост от презапасяване за избягване на шума по линията (3V прагово на прежение при RS232);
- Сигналите по **RS485** са "плаващи" всеки сигнал се предава спрямо линиите **Sig+** и **Sig-**, съответно;
- Приемната част на **RS485** сравнява разликата в напрежението между линиите, вместо абсолютната стойност на сигнала;
- Най-добро подтискане на шума при усукана двойка на линиите и екраниране на кабела (STP, FTP) до 1200 м разстояние.

Характеристики:

- диференциален тип връзка;
- използва предаване тип "half-duplex" за разлика от RS232 (full-duplex);
- много възлов (multinode, за разлика от RS232 node-to-node) интерфейс възможност за връзка на много DE заедно (до 35, за RS422,RS423-AO 10);
- висока скорост на предаване: 35Mbs (12м) до IOOKbs (1200м)
- висока чувствителност на приемната част (около 200mV) поради диференциалната структура;

Приложение: основа на много съвременни протоколи: Profibus, Modbus

7.Таймер-система в НС11 - схема на един извод в режим ІС.

БИЛЕТ 9

. Динамични памети – структура. Особености на ЗК.

3К: ниска консумация

Структора: запомняща матрица(3K); лог. схеми за избор на адрес по редове и колони (адресни ДШ); усилватели (SA усилване на сиг. от 3K); логика за запомняне на адресите (RAS, CAS) и за начало/край на операциите четене/запис; схеми за четене/запис; вътрешни броячи за регенерация(MRC);изходна output enable логика.

<u> 2. ЕМК 68НС11 – режими на работа</u>

Основни(нормални) режими:

- *EMK* (*Single-chip*) налична е само on chip паметта. портовете В и С, както и STRA, STRB изходи с общо предназначение.
- *MП (Expanded multiplexed)* позволява достъп до външната памет. портове B,C управляващи сигнали AS, R/W.

Всеки от двата основни режима може да се комбинира с един от двата специални режима:

- BOOT (bootstrap) варянт на EMK, при който се изпълнява мониторната програма (bootloader), разположена във вътрешния ROM
- *TEST (special Test)* спецялен режим, позволяващ привилигирован достъп до вътрешните ресурси (config регистър, настроика).
- <u>3. Вътрешна адресация:</u> [КОД] цялата информация за изпълнение на инструкцията се съдържа в КОД. Използва се за работа с вътрешните регистри. 1 или 2 байтова инструкция.

4. Регистър ССК – предназначение.

не съдържа данни; Съдържа 8bit (флагове) от които: 5 флага на състоянието (C, V, Z, N, H), 2 маскови бита при прекъсване (IRQ, XIRQ), бит за освобождаване от стоп режим (S).

5. COP Watchdog система – предназначение. Избор на период. Интерпретация.

EMK има COP за защита от software грешки: софтуера следи за препълване на таймера; при неизпълнение на софтуера в съответната последователност се инициализира Reset. Битове CR[1:0] в OPTION регистъра определят таймаут периода на таймера. След делене на системния тактов сиг. Е на 2¹⁵ съответния делител се задава от CR[1:0]

6?. Интерфейс IE232(RS232):

интерфейс- сериен обмен, на EIA; двуполярно предаване (2 нива)- от 5 до 25V, с противоположна полярност спрямо маса; *Скорост*- не е фиксирана, зависи от устройствата; *конектор* DB-25: 25 извода или конектор DB-9.

Необходимост: 2-те устройства да са свързани с едни и същи конектори, с еднаква скорост. Прилага се за индустриален обем с формат 1-старт бит , 7(8) бита данни , 1(2) стоп бита. **Предимства**:

- скороста на предаване не е фиксирана а зависи от устройствата.
- позволяв дефиниране на до 20 сигнала от който са достатачни само 3 TxD (send data), RxD (receve data), маса.

- използва се за сериозен обем цифровид анни между 2 остройства. Двуполярно предаване (2 нива) - от 5 до 25 V с противоположна полярност спрямо маса.

Недостатъци:

- максимална скорост 20 kbps (основен недостатък)
- максимално растояние 15/30 метра (основен недостатък)
- необходимо е и двете остройства да са свързани с конектори от един и същи вид и да ползват еднаква скорост на предаване.
- минимална амплитуда на сигнала 3V.

7. Таймер-система в НС11 – схема на един извод в режим ОС.

БИЛЕТ 10

1. Видове памети с непосредствен достъп. Параметри. Особености.

DRAM: висока плътност на елементите, ниска цена, ниско бързодействие, голям общ обем **SRAM**: 10 пъти по ниска плътност, ниска консумация, високо бързодействие, лесен достъп

NVMROM – запазват съдържанието си и след изкл. на захранването.

PROM: програмиране с ток, високо бързодействие и консумация.

EPROM: по-висока плътност от PROM, повече бързодействие; радиоактивно неустойчиви, висока цена, невъсможност за селективно изтриване

PROM, EPROM - директно on-circuit програмиране

FLASH – ел-програмируеми памети (EEPROM) където цели области от паметта могат да бъдат изтривани едновременно. обем- 8 до 512 MB

Параметри: обем на паметта (бр. 3E); дължина на думата L (битове); организация (обем х брой разряди – пр. 64К х 8); бързодействие; консумирана мощност;

2. ЕМК 68НС11 – режими на работа, особености.

Определя се от входовете за избор на режим (mode select inputs MODA, MODA) по време на изпълнение на RESET.

Основни(нормални) режими:

- *EMK (Single-chip)* налична е само on chip паметта. портовете В и С, както и STRA, STRB изходи с общо предназначение.
- *MП (Expanded multiplexed)* позволява достъп до външната памет. портове B,C управляващи сигнали AS, R/W.

Всеки от двата основни режима може да се комбинира с един от двата специални режима:

- BOOT (bootstrap) варянт на EMK, при който се изпълнява мониторната програма (bootloader), разположена във вътрешния ROM
- *TEST (special Test)* спецялен режим, позволяващ привилигирован достъп до вътрешните ресурси (config регистър, настроика).

Особености: 8bit EMK; Захранващо напр.–5V;Чест. на работа- 3MHz, ниска конс. мощтност; Памет- ен-зависими данни RAM в режим Standby (до768Bytes); ROM/EPROM (до20 КВ); Интерфейси: серийни(синхронен и асинхронен), паралелен и аналогов. Енераоспестяващи режими: stop, wait, standby.

3. Непостредствена адресация – особености. [КОД][С $^{\rm th}_{\rm H}$][С $^{\rm th}_{\rm H}$]; [КОД][С $^{\rm th}$]

Съдържа директно след КОД аргументите за съответната операция, която ще се извършва (С^{tn}-константа). В зависимост от дължината на ползваните регистри и нали4ието на PRE-обща дължина от 2,3 или 4 байта.

4. Акумулатори в НС11 – описание, предназначение.

Акумулатори А и В: 8-битови регистри с общо предназначение. Съхраняват временно операндите(данни) и резултата от изпълнението на предишната операция от АЛУ. За някои инструкции – образуват 16-битов регистър (акумулатор D).

5. Power-on Reset (POR) –същност, ефекти.

Същтност: Осъществява се RESET при включване на захранването.

Ефекти:

- Инициализация на вътрешните регистри и контролни битове;
- Препраща се пр. брояч на стартов адрес \$FFFE, FFFF (Reset Vector) в нормален режим
- Препраща се пр. брояч на стартов адрес \$BFFE, BFFF (Reset Vector) в сервизен режим
- ЦП всички регистри и SP(stack pointer) са недефинирани непсоредствено след Reset;
- След Reset, регистърът INIT се инициализира в \$01;
- Таймер-система инициализира се за броене от \$0000. Всички ІС са изключени;
- SCI не зависи от режима при Reset;
- SPI системата е изключена;
- АЦП система- изключена:
- EEPROM –конфигурирана за нормално четене.
- Clock monitor системата изключена.

6. Интерфайс РС – тип, шини, особености.

- Активни линии SDA(serial data линия), SCL (serial clock линия) –двупосочни.
- I²C е мулти-мастер bus- т.е. повече от 1 устройство (Bus Master, обикновено EMK) може да инициира трансфер. При трансфер останалите устройства са Bus Slaves.
- Захранващи напрежения 5V/3.3V. възможни са и др, неспецифизиранис тойности.
- Максимум 112 устройства в обща комуникация. Зависи от броя адресни линии и капацитета на шините.
- 7-битов (до 10-битов) адрес (16 резервирани).

7. Таймер-система в НС11. Измерване честотата на периодична тактова поредица.

Таймера представлява брояч. В НС11 таимера се вклщчва на вход А който може да се ползва по различни начини.

включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bitброяч.)

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

БИЛЕТ 11

1. Видове памети с непосредствен достъп:

DRAM: висока плътност на елементите, ниска цена, ниско бързодействие, голям общ обем **SRAM**: 10 пъти по ниска плътност, ниска консумация, високо бързодействие, лесен достъп **NVMROM** – запазват съдържанието си и след изкл. на захранването.

PROM: програмиране с ток, високо бързодействие и консумация.

EPROM: по-висока плътност от PROM, повече бързодействие; радиоактивно неустойчиви, висока цена. невъсможност за селективно изтриване

PROM, EPROM - директно on-circuit програмиране

FLASH – ел-програмируеми памети (EEPROM) където цели области от паметта могат да бъдат изтривани едновременно. обем- 8 до 512 MB

Параметри: обем на паметта (бр. 3E); дължина на думата L (битове); организация (обем х брой разряди – пр. 64К х 8); бързодействие; консумирана мощност;

2. ЕМК 68НС11- режим:

- Захранващо напрежение: 5V.
- Честота на работа- до 3 MH_Z, ниска консумирана мощтност

Режим на работа: определя се от входовете за избор на режим (mode select inputs MODB, MODA) по време на изпълнение на RESET.

Основни режими:

- *EMK* (*Single-chip*) налична е само on chip паметта. портовете В и С, както и STRA, STRB изходи с обшо предназначение.
- *MП (Expanded multiplexed)* позволява достъп до външната памет. портове B,C управляващи сигнали AS, R/W.

Всеки от двата основни режима може да се комбинира с един от двата специални режима:

- BOOT (bootstrap) варянт на EMK, при който се изпълнява мониторната програма (bootloader), разположена във вътрешния ROM
- *TEST (special Test)* спецялен режим, позволяващ привилигирован достъп до вътрешните ресурси (config регистър, настроика).

Енергоспестяващ режим:

- Wait установяване програмно с команда, съхранява се съдържанието на регистрите и паметта, понижена консумация, изход от режима с прекъсване или reset.
- STOP програмно с команда, съхранява се съдържанието на рег. и паметта, консумация 100nA, изход прек, Reset.
- Standby при изключване на захранването (извод V_{STBY} захранва само RAM).
- 3. Вътрешна адресация: [КОД] цялата информация за изпълнение на инструкцията се съдържа в КОД. Използва се за работа с вътрешните регистри. 1 или 2 байтова инструкция.

4. Индексни регистри:

- **IX** при индексната адресация осигурява 16-битова стойност, която да се добави към 8-битовото отместване от инструкцията за образуване на ефективен адрес. Може да се използва като брояч за съхранение на данни.
- IY 16-битов, участва в индексен адресен режим, повечето инструкции изискват допълнителен байт.

5. Power-on Reset:

Установява Reset при включване на захранването. Reset вектор- \$FFFE, FFFF

<u>6. USB:</u> 7 адресни линии, диференциален сериен интерфейс, 4 шини(2 са I²C за данни), NRZI кодиране

Скорости: Slow-speed, Full-speed, High-speed, Super speed

Тип протоколи: Control, Interrupt, Isochronus, Bulk

Формат на обмена: Начален (Token) пакет (дали ше прави R/W), Пакет с

данни. Handshake пакет (потвърждаване). SOF (начало на фреймовете пакети- 11bit).

Пакет-струткура: Synch (8/32 bit), PID (8bit), ADDR (адреса на

устройството 7bit), ENDP (4bit), CRC (5bit за всеки Token, 16bit за Data), EOP (край на пакета, 3bit).

<u>7. Timer в HC11:</u> включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bit брояч.

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

Продължителност на Т_и имп: дефиниране на битове PR1, PR0 от регистъра така че overflow периода на таймера > T_и; Инициализация на регистър TCTRL2 (EDGxB=1,

EDGxA=1); инициализация на регистри- битове TMKS1[3:0], TFLG1[3:0] (при ICxI=1

– прекъсване, lcxI=0 –lC функц. без прекъсване; lCxF◊1 – флаг за събитие на lcx. Вдига се при всеки фронт.

БИЛЕТ 12

1. DRAM,3K:

DRAM:(+)-ове:висока плътност на разполагане на ЗК,проста схемотехника на 1-Т ЗК (MOS технология); (-) –уси: лошо бързодействие, необходимост от регенерация, сложен режим R/W/Регенерация, повишени изисквания към поддържащите схеми.

3К: $C_{\text{пар}}$ ($C_{\text{ЗАЛ}}$) = 30-40 fF; Ниска консумация (след зареждане, $C_{\text{пар}}$ не консумира ен.), постепенно разреждане на $C_{\text{пар}}$ (необходимост от регенерация – Memory Refresh)

Запис:

2. ЕМК 68НС11, ен.спестяващ режим:

- Wait установяване програмно с команда, съхранява се съдържанието на регистрите и паметта, понижена консумация, изход от режима с прекъсване или reset.
- STOP програмно с команда, съхранява се съдържанието на рег. и паметта, консумация 100nA, изход прек, Reset.
- Standby при изключване на захранването (извод V_{STBY} захранва само RAM).
- 3. Вътрешна адресация: [КОД] цялата информация за изпълнение на инструкцията се съдържа в КОД. Използва се за работа с вътрешните регистри. 1 или 2 байтова инструкция.
- <u>4. Регистър</u> <u>CCR:</u> не съдържа данни; 8bit (флагове) от които: 5 флага на състоянието (C, V, Z, N, H),2 маскови бита при прекъсване (IRQ, XIRQ),бит за освобождаване от стоп режим (S)
- <u>5. COP Watchdog:</u> EMK има COP за защита от software грешки: софтуера следи за препълване на таймера; при неизпълнение на софтуера в съответната последователност се инициализира Reset (COP Reset).

Битове CR[1:0] в OPTION регистъра определят таймаут периода на таймера. След делене на системния тактов сиг. Е на 2¹⁵ съответния делител се задава от CR[1:0]

<u>6?. Интерфейс IEA232:</u> интерфейс- сериен обмен, на EIA; двуполярно предаване (2 нива)- от 5 до 25V, с противоположна полярност спрямо маса; *Скорост*- не е фиксирана, зависи от устройствата; *конектор* DB-25: 25 извода или конектор DB-9.

Необходимост: 2-те устройства да са свързани с едни и същи конектори, с еднаква скорост.

Прилага се за индустриален обем с формат 1-старт бит , 7(8) бита данни , 1(2) стоп бита.

Предимства:

- скороста на предаване не е фиксирана а зависи от устройствата.
- позволяв дефиниране на до 20 сигнала от който са достатачни само 3 TxD (send data), RxD (receve data), маса.
- използва се за сериозен обем цифровид анни между 2 остройства. Двуполярно предаване (2 нива) от 5 до 25 V с противоположна полярност спрямо маса.

Недостатъци:

- максимална скорост 20 kbps (основен недостатък)
- максимално растояние 15/30 метра (основен недостатък)
- необходимо е и двете остройства да са свързани с конектори от един и същи вид и да ползват еднаква скорост на предаване.
- минимална амплитуда на сигнала 3V.
- <u>7. Timer в HC11:</u> включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bit брояч.

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

Генериране на ед. имп. Т_{ОUТ}: дефиниране на битове PR1, PR0 от рег. TMSK2 така че overflow периода на таймера> желания изх. импулс Т_{ОUТ};Инициализация на рег. TCTRL1; Инициализация на рег. битове: TMSK1[7:3], TFLG1[7:3](-при OCxI=1 — заявка за прекъсване при успешно сравнение, рег. TMSK2 — бит TOI=1; при OCxI=0- таймерна ОС функ. без прекъсване; - при OCxF◊ 1 — флаг за успешно сравнение в изход OCx)

БИЛЕТ 13

1. SRAM памети. ЗК. Режими на работа.

Особености: 1) С около 10 пъти по-ниска плътност на разполагане в чипа от DRAM; 2) Ниска статична консумация; 3) Високо бързодействие (малко време на достъп до ЗК); 4) Облекчен достъп (опростена схемотехника на схемите за достъп);

Запомнящи клетки:

- 3K = 1 bit чрез броя битове се измерва обема на паметта.

Режими на работа: неизбрана, read, write, standby

2. ЕМК 68НС11 – структура, системи, специфика.

Класическа структура:Централен процесор (аритметично-логическо устройство, АЛУ) с възможност за работа със специфична система от инструкции. Инструкциите се изпълняват за определено време в зависимост от тактовата честота и спецификата им; оперативна (енергозависима) памет; Управляващо устройство (УУ), Control Unit; Входно устройство (Input Unit); Изходно устройство (Output Unit);

Системи: COP Watchdog система, Таймер Система Специфики:

68HC11 – 8 битови CISC микроконтролери, 5 броя външни портове A, B, C, D, E.

D е с 6 или 8 бита; Захранващо напр.-5V;Чест. на работа- 3MHz, ниска конс. мощтност;

Памет- ен-зависима RAM до 768Bytes); ROM/EPROM до20 KB;

Интерфейси: серийни(синхронен и асинхронен), паралелен и аналогов.

3. Индексни регистри в НС11.

- **IX** при индексната адресация осигурява 16-битова стойност, която да се добави към 8-битовото отместване от инструкцията за образуване на ефективен адрес. Може да се използва като брояч за съхранение на данни.
- **IY** 16-битов, участва в индексен адресен режим, повечето инструкции изискват допълнителен байт.

5. Аналогов интерфейс в ЕМК 68НС11 – предназначение, структура, режими на работа.

Предназначение: Преобразува аналогов сигнал от аналогов вход избран от мултиплексор във цифров сигнал.

Структура: мултиплексор; АЦП – аналогово цифров преобразовател; Верига за цифров контрол; структура за запомняне на резултатите от преобразуването;

Режими на работа:

(ADR = адрес)

- Едииничен
- > scan = 0 избрания сигнал се конвентира 4 последователни пъти и резултатите се сахраняват в регистри ADR1 до ADR4 след което се очаква нова команда
- > scan = 1 при 5-тото конвентиране сигнала се записва в ADR1 припокриваики първото, при 6-тото в ADR2 и тн.
- Групово:
- > SKAN = 0 избира се група от 4 канала който се записват едновременно като резултатът се записва от ADR1 до ADR4.
- >SKAN = 1 избраната група се записва непрекъснато като 5-тото записване е отново в ADR1, 6-тото в ADR2 и тн.

6. Интерфейс IEA232 (RS232) – тип, шини, кодиране, предимства, недостатъци. интерфейс- сериен обмен, на EIA; двуполярно предаване (2 нива)- от 5 до 25V, с противоположна полярност спрямо маса; Скорост- не е фиксирана, зависи от устройствата; конектор DB-25: 25 извода или конектор DB-9.

Необходимост: 2-те устройства да са свързани с едни и същи конектори, с еднаква скорост. Прилага се за индустриален обем с формат 1-старт бит , 7(8) бита данни , 1(2) стоп бита.

Предимства:

- скороста на предаване не е фиксирана а зависи от устройствата.
- позволяв дефиниране на до 20 сигнала от който са достатачни само 3 TxD (send data), RxD (receve data), маса.
- използва се за сериозен обем цифровид анни между 2 остройства. Двуполярно предаване (2 нива) от 5 до 25 V с противоположна полярност спрямо маса.

Недостатъци:

- максимална скорост 20 kbps (основен недостатък)
- максимално растояние 15/30 метра (основен недостатък)
- необходимо е и двете остройства да са свързани с конектори от един и същи вид и да ползват еднаква скорост на предаване.
- минимална амплитуда на сигнала 3V.

<u>7. Таймер-система в HC11.Работа в режим IC.Измерване продължителността на имп.</u> Таймера представлява брояч. В HC11 таимера се вклщчва на вход A който може да се ползва по

Таймера представлява брояч. В НС11 таимера се вклщчва на вход А който може да се ползва по различни начини.

Работа в режим ІС:

- Таймер брояч синхронизиран по PH2 на E-clock.
- Приемане на входния сигнал на ICх асинхронно през първата половина на РН2.
- Запомняне стойноста на брояча в D-тригерите през втората половина на PH2 тоест втората половина на PH2 се приема като закаснение.
- Игнориране на закаснението (следващото събитие настъпва отново през първата половина на PH2.

Измерване на продължителноста на инпулс – задаваме активния фронт от 0 към 1 или обратно и измерваме разстоянието по оста на времето между 2 саседни активни фронта. Времето между двата активни фронта се явява продължителноста на импулса.

БИЛЕТ 14

1.Памети с последователен достъп.Видове.Интерпретация.Приложение.

аметите биват още: адресни и безадресни.

Безадресни – конкретен механизъм (FIFO, UFO) или признак (асоциативни)за достъп без конкретен адрес;

Безадресна ОПо-бързи от с непосредствен достъп.

-FIFO (First-In First-Out) – При първи се чете първия бит записана информация. "Кюнец".

Приложение:

При монитори - за четене на информация в процеса на визуализация;

-LIFO (Last-In First-Out) – При тези памети първи се чете последния записан бит информация. "Кофа".

Приложение: при Stack паметите (бърз достъп до данни).

2.Увеличаване разрядността на памети.Пример: 128Кх1◊128Кх4

Необходима разрядност 4 бита. Време за регенерация еднакво.

<u>3 Режими на работа на ЕМК НС11 - задаване предназначение</u> Основни(нормални) режими:

- EMK (Single-chip) налична е само on chip паметта. портовете В и С, както и STRA, STRB изходи с общо предназначение.
- *MП (Expanded multiplexed)* позволява достъп до външната памет. портове B,C управляващи сигнали AS, R/W.

Всеки от двата основни режима може да се комбинира с един от двата специални режима:

- BOOT (bootstrap) варянт на EMK, при който се изпълнява мониторната програма (bootloader), разположена във вътрешния ROM
- *TEST* (*special Test*) спецялен режим, позволяващ привилигирован достъп до вътрешните ресурси (config регистър, настроика).

Предназначение - нивата MODA, MODB определят състоянието на контролните битове SMOD и МДА в регистъра HPRIO.

В режим ЕМК, крачето МОDA е свързано към маса.

<u>4.Програмен модел на НС11-акумолатори</u>

Акумулатори А и В - 8-битови регистри с общо предназначение. Съхраняват временно операндите (данни) и резултата от изпълнение на предишна операция от АЛУ. За някои инструкции-образуват 16-битов регистър (акумулатор D).

5.Индексна адресцаия.Същност.Интерпретация. [КОД][D]

В този адресен режим байтът след **КОД** съдържа *8-битово отместване* (D- индексно отместване), което се добавя към съдържанието на индексния регистър (IX или IY). Резултатът формира ефективния адрес (EA). Този режим позволява адресиране на всяка клетка от адр.пространство. Общата дължина - **2** байта. адресиране на клетки от масив.

EA=IX+D; D=00+FF

<u>6.Синхронен сериен интерфейс в НС11-предназначение,особености режими</u> Предназначение:

Независима комуникационна подсистема в 68HC11 за последователен (сериен) СИНХРОНЕН обмен на данни с ВИСОКА СКОРОСТ между ЕМК и външни устройства като: други микропроцесорни системи; системи за АЦП; драйвери за LCD дисплей.

- за осъществяване на вътрешен обмен в т.нар. multiple master процесорни системи. SPI подсистемата - като Master или Slave.

Особености:

- -При конфигуриране като Master скорост на обмен до ½ E-clock честотата на EMK (напр. 2Mbit/s при E-clock=4MHz);
- При конфигуриране като Slave скорост на обмен до пълната Е-сюск честота EMK (до 4Mbit/s при E-clock=4MHz).

Използват се следните принципи на буфериране при обмен:

- **единично буфериране** при предаване записът на нова порция данни става едва след прочитане на предходните от преместващия регистър;
- **двойно буфериране** при приемане данните при приемане се прехвърлят в отделен паралелен буфер за данни (избягване на състояние презастъпване "overrun").

Формати на обмен: едновременно предаване/приемане на данните през SPI; отделна тактова шина (синхронизация на процесите на преместване и прехвърляне на данните от 2-та серийни канала за данни); допълнителна линия за избор на подчинено SPI-slave устройство при конфигурация 1 Master и няколко slave устройства.

<u>7.Интерфейс RS485-тип,шини,особености,приложение</u> Особености:

- Липса на обща маса и необходимост от презапасяването за избягване на шума по линията
- Сигналите са "плаващи" всеки сиг. се предава спрямо линиите Sig+ и Sig-;
- Приемната част сравнява разликата в напрежението между линиите вместо абсолютната стойност на сигнала
- Най-добро подтискане на шума

Характеристики:

- -диференциален тип връзка;
- използва предаване тип "half-duplex" за разлика от RS232 (full-duplex);

- многовъзлов (multinode, за разлика от RS232 node-to-node) интерфейс възможност за връзка на много DE заедно (до 35. за RS422.RS423-до 10):
- висока скорост на предаване: 35Mbs (12м) до 100kbs (1200м);
- висока чувствителност на приемната част (около 200mV) поради диференциалната структура;
- използват се съпротивления за съгласуване на линията при големи разстояния за избягване отразяване (рефлекция) на сигнала.
- диференциален тип връзка;
- използва предаване тип "half-duplex" за разлика от RS232 (full-duplex);
- многовъзлов (multinode, за разлика от RS232 node-to-node) интерфейс възможност за връзка на много DE заедно (до 35, за RS422,RS423-flO 10);
- висока скорост на предаване: 35Mbs (12м) до 100kbs (1200м);
- висока чувствителност на приемната част (около 200mV) поради диференциалната структура;
- използват се съпротивления за съгласуване на линията при големи разстояния за избягване отразяване (рефлекция) на сигнала.
- -мрежова структура с R5484 (съгл.съпротивление от 100Ω); режими: a) 1 Sender изпраща, 0 или няколко Receivers приемат; б) няколко Senders изпращат едноврменно;
- Sender се връща автоматично в H.I. ~100ms след изпращане;

Приложение: основа на мн. съвременни протоколи: Profibus, Modbus.

БИЛЕТ 15 1. Памети с непосредствен достъп. Блокова схема. Видове, особености.

Запомняща среда на база тригери или други специфични транзисторни структури; Адресни шини - адресират 2^N 3K с дължина на думата L; Достъпът до 3K става на базата на Дешифратори; М - част от адресните шини за адресиране на конкретен 3E;

DRAM: висока плътност на елементите, ниска цена, ниско бързодействие, голям общ обем **SRAM**: 10 пъти по ниска плътност, ниска консумация, високо бързодействие, лесен достъп **NVMROM** – запазват съдържанието си и след изкл. на захранването.

PROM: програмиране с ток, високо бързодействие и консумация.

EPROM: по-висока плътност от PROM, повече бързодействие; радиоактивно неустойчиви, висока цена, невъсможност за селективно изтриване

PROM, EPROM - директно on-circuit програмиране

FLASH – ел-програмируеми памети (EEPROM) където цели области от паметта могат да бъдат изтривани едновременно. обем- 8 до 512 MB

2. Увеличаване обема на паметта. Пример 1M x 8 ◊ 4M x 8

Увеличаването на обема на паметта се прилага за да се намалят боря на платките памет. Вмессто 4 броя памети може да се постави памет с 4 пъти по-голям обем.

Пример 1M x 8 \diamond 4M x 8 => 1M x 8 = 10 + 8 входа = 18 входа. 4Mx 8 = 2 + 10 + 8 = 20 входа като 18 от входовете A₀-A17 са свързани кум всички 1Mx8 а A18 и A19 са за избор на блок, те минават през дешифратор и се прилагат подобно на CS за съответния блок.

3. Енергоспестяващи режими в НС11 – видове, особености.

Работата на ЦП се прекратява до постъпване на RESET или друго прекъсване.

- WAIT режим спира обработката на данни и намалява консумацията на междинно ниво (до 3-4 пъти); Спира се работата на ЦП до пристигане на ресет или друго прекъсване (външно IRQ, XIRQ или вътрешно генерирано от таймер-системата, SCI, SPI); кварцовият осцилатор остава включен;
- STOP режим спира вс. тактови източници и намалява консумираната мощтност на възможно най-ниско ниво 100nA (RAM се съхранява).
- STANDBY при изключване на захранването. Изход от режима включване на захранването. (RAM се захранва от V_{STBY} извод).

4. Разширена адресация. Особености. [КОД][Ан][АL]

Съдържа директно след КОД адресите на операндите, които ще се обработват. В зависимост от дължината на ползваните регистри и наличието на PRE – обща дължина от 3 или 4 Bytes.

5. Аналогов интерфейс – структура, особености, режими на работа.

Структора – представлява преобразуване на аналогов сигнал от аналогов вход избран от мултиплексор. Съдържа:

- капацитиен масив, компаратор, регисрър за последователна апроксимация.
- регистрите за сахраняване на резултата за 4 броя 8 битови регистри.
- 16 входа. 8 от MUX, 4 вътрешни опорни/тест източници, 4 резервни.

Особенности: Използва се контролен регистър ADCTL в който се запизват в началото входните данни (избор на канал и режим). Входните данни избират:

- избор на аналогов вход
- статуса на преобразуване тоест единична или непрекъсната конволюция
- определя се дали преобразуването е от 1 или от няколко канала

Режими на работа:

(ADR = адрес)

- Едииничен
- > scan = 0 избрания сигнал се конвентира 4 последователни пъти и резултатите се сахраняват в регистри ADR1 до ADR4 след което се очаква нова команда
- > scan = 1 при 5-тото конвентиране сигнала се записва в ADR1 припокриваики първото, при 6-тото в ADR2 и тн.
- Групово:
- > SKAN = 0 избира се група от 4 канала който се записват едновременно като резултатът се записва от ADR1 до ADR4.
- > SKAN = 1 избраната група се записва непрекъснато като 5-тото записване е отново в ADR1, 6-тото в ADR2 и тн.

6. Интерфейс I²C – тип, шини, приложение.

- Активни линии SDA(serial data линия). SCL (serial clock линия) –двупосочни.
- I²C е мулти-мастер bus- т.е. повече от 1 устройство (Bus Master, обикновено EMK) може да инициира трансфер. При трансфер останалите устройства са Bus Slaves.
- Захранващи напрежения 5V/3.3V. възможни са и др, неспецифизиранис тойности.
- Максимум 112 устройства в обща комуникация. Зависи от броя адресни линии и капацитета на шините.

- 7-битов (до 10-битов) адрес (16 резервирани).

Приложение: I2C намира огромно пиложение на неговата абза се правят USB.

7. Таймер-система в НС11. Функция ОС.

Таймера представлява брояч. В НС11 таимера се вклщчва на вход А който може да се ползва по различни начини.

включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bitброяч.)

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

ОС функция – Програмира действие, което да се изпълни в дефиниран момент време.

- отделни 16-битови регистри и 16-битови компаратори за всеки от 5-те ОС изхода.
- при съвпадение състоянието на брояча с това на регистъра- статус флаг (OCxF)=1 След съвпадение на зададения код стартиране на ОС функц.

БИЛЕТ 16

1. Памети тип LIFO, FIFO. Асоциативни памети. Интерпретация, особености.

аметите биват още: адресни и безадресни.

Безадресни – конкретен механизъм (FIFO, UFO) или признак (асоциативни)за достъп без конкретен адрес;

Безадресна ОПо-бързи от с непосредствен достъп.

-FIFO (First-In First-Out) – При първи се чете първия бит записана информация. "Кюнец".

LIFO (Last-In First-Out) – При тези памети първи се чете последния записан бит информация. "*Кофа"*.

Асоциативни памети (САМ)— използва се в някои продукти, в които се извършва търсене с висока скорост; Структура – специфичен ЗЕ с доъплнителни схеми И, ИЛИ и др.; Приложение – при обработка на сегмент от данни, разположен в памети с голям обем;

2. Увеличаване обема на паметта . Пример 4M x 16 ◊ 16M x 16

Налични блокове 4M x 16. Необходим общ обем на паметта 16M x 16;

Забележка: схемата е същата, но вместо 64Кх8 се пишат 4Мх16 в квадратчетата (несигурен)

3. Енергоспестяващи режими WAIT, STOP – особености, разлики.

Работата на ЦП се прекратява до постъпване на RESET или друго прекъсване.

- WAIT режим спира обработката на данни и намалява консумацията на междинно ниво (до 3-4 пъти); Спира се работата на ЦП до пристигане на ресет или друго прекъсване (външно IRQ, XIRQ или вътрешно генерирано от таймер-системата, SCI, SPI); кварцовият осцилатор остава включен:
- STOP режим спира вс. тактови източници и намалява консумираната мощтност на възможно най-ниско ниво 100nA (RAM се съхранява).

- STANDBY – при изключване на захранването. Изход от режима – включване на захранването. (RAM се захранва от V_{STBY} извод).

4. Директна адресация. Особености [КОД][DA]

При тази адресация A_L се съдържа в байта след КОД (DA), A_H се предполага \$00. Адреси в диапазона \$00-\$FF са директни (2 байта инструкция). По-малко време за изпъление. Обикновено тази 256 байта област се резервира за често ползвани данни (от вътрешни регистри, RAM, външна памет).

5. Прекъсвания в НС11 – видове, обслужване.

Видове:

- SWI (SoftWare Interrupt) софтуерно (програмно) прекъсване;
- HWI (HardWare Interrupt) хардуерно (апаратно) прекъсване (!IRQ, !XIRQ(!-черти отгоре));

Обслужване:

- 1) Приключва се изпълението на текущата инструкция;
- 2) Текущото състояние на вътрешните регистри се записва в стека;
- 3) Флагът за прекъсване I в ССR се става в "1" и забранява последващи прекъсвания;
- 4) Зарежда се съответния вектор на прекъсването;
- 5) След приключване изпъленнието на обслужващата прекъсването процедура-команда RTI;
- 6) Съдържанието на вътрешните регистри се извлича от стека в обратен ред;
- 7) Продължава изпълнението на основната програма;

6. Интерфейс USB - тип, шини, режими, пакети, CRC.

USB: 7 адресни линии, диференциален сериен интерфейс, 4 шини(2 са I^2C за данни), NRZI кодиране

Скорости: Slow-speed, Full-speed, High-speed, Super speed **Тип протоколи (режими)**: Control, Interrupt, Isochronus, Bulk

Формат на обмена: Начален (Token) пакет (дали ше прави R/W), Пакет с

данни, Handshake пакет (потвърждаване). SOF (начало на фреймовете пакети- 11bit).

Пакет-струткура: Synch (8/32 bit), PID (8bit), ADDR (адреса на

устройството 7bit), ENDP (4bit), CRC (5bit за всеки Token, 16bit за Data), EOP (край на пакета, 3bit).

7. Таймер-система в НС11. Пулс акумулатор.

Таймера: представлява брояч. В HC11 таимера се вклщчва на вход A който може да се ползва по различни начини.

включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bitброяч.)

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

Пулс Акумолатор: Отделна подсистема включваща 8-битов брояч за работа в 2 режима:

- > обикновен броячен режим увеличава се стойността на брояча при постъпване на сигнал на външния му извод.
- > *разрешителен акумулиращ режим* в този случай E clock/64 тактува 8-битовия брояч, но само докато външният извод PAI е активен.
- Контролни битове- в регистри PACTL, TMSK2 и TFLG2.

БИЛЕТ 17

1. Памети с непосредствен достъп. Блокова схема. Видове. Параметри.

DRAM: висока плътност на елементите, ниска цена, ниско бързодействие, голям общ обем **SRAM**: 10 пъти по ниска плътност, ниска консумация, високо бързодействие, лесен достъп **NVMROM** – запазват съдържанието си и след изкл. на захранването.

PROM: програмиране с ток, високо бързодействие и консумация.

EPROM: по-висока плътност от PROM, повече бързодействие; радиоактивно неустойчиви, висока цена, невъсможност за селективно изтриване

PROM, EPROM – директно on-circuit програмиране

FLASH – ел-програмируеми памети (EEPROM) където цели области от паметта могат да бъдат изтривани едновременно. обем- 8 до 512 MB

Параметри: обем на паметта (бр. 3E); дължина на думата L (битове); организация (обем х брой разряди – пр. 64К х 8); бързодействие; консумирана мощност;

2. Увеличаване обема на паметта. Пример 1M x 8 0 4M x 8

Налични блокове 1M x 8. Необходим общ обем на паметта 4M x 8: Адресиране на паметта: A17 и A16 – избор на блок; A15-A0 – към всички 1Mx8;

Забележка: схемата е същата, но вместо 64Кх8 се пишат 1Мх8 в квадратчетата!

3. Режими на работа на ЕМК 68HC11 – избор, особености.

Основни режими:

- EMK (Single-chip) налична е само on chip паметта. портовете В и С, както и STRA, STRB изходи с общо предназначение.
- *MП (Expanded multiplexed)* позволява достъп до външната памет. портове B,C управляващи сигнали AS. R/W.

Всеки от двата основни режима може да се комбинира с един от двата специални режима:

- BOOT (bootstrap) - варянт на EMK, при който се изпълнява мониторната програма (bootloader), разположена във вътрешния ROM

- TEST (special Test) - спецялен режим, позволяващ привилигирован достъп до вътрешните ресурси (config регистър, настроика).

Енергоспестяващ режим:

- Wait установяване програмно с команда, съхранява се съдържанието на регистрите и паметта, понижена консумация, изход от режима с прекъсване или reset.
- STOP програмно с команда, съхранява се съдържанието на рег. и паметта, консумация 100nA, изход прек, Reset.
- Standby при изключване на захранването (извод V_{STBY} захранва само RAM).

4. Относителна адресация. Особености.

Относителна адресация: [КОД][В]; В- относително преместване.

Използва се само за преходи под условие. При разклонение на програми!; 2-байтова инструк; Ако условието е "True", относителното отместване В от инструкцията се добавя към съдържанието на РС за формиране на ЕА. В противен случай при "False" се продължава към следващата поред инструкция.

5. Аналогов интерфейс – предназначение, структура, режими на работа.

Предназначение: Преобразува аналогов сигнал от аналогов вход избран от мултиплексор във цифров сигнал.

Структура: мултиплексор; АЦП – аналогово цифров преобразовател; Верига за цифров контрол; структура за запомняне на резултатите от преобразуването;

Режими на работа:

(ADR = адрес)

- Едииничен
- > scan = 0 избрания сигнал се конвентира 4 последователни пъти и резултатите се сахраняват в регистри ADR1 до ADR4 след което се очаква нова команда
- > scan = 1 при 5-тото конвентиране сигнала се записва в ADR1 припокриваики първото, при 6-тото в ADR2 и тн.
- Групово:
- > SKAN = 0 избира се група от 4 канала който се записват едновременно като резултатът се записва от ADR1 до ADR4.
- >SKAN = 1 избраната група се записва непрекъснато като 5-тото записване е отново в ADR1, 6-тото в ADR2 и тн.

6. Интерфейс RS485 – тип, шини, особености, приложение.

Особености:

- Липса на обща маса и необходимост от презапасяването за избягване на шума по линията
- Сигналите са "плаващи" всеки сиг. се предава спрямо линиите Sig+ и Sig-;
- Приемната част сравнява разликата в напрежението между линиите вместо абсолютната стойност на сигнала
- Най-добро подтискане на шума

Характеристики:

- -диференциален тип връзка;
- използва предаване тип "half-duplex" за разлика от RS232 (full-duplex);
- многовъзлов (multinode, за разлика от RS232 node-to-node) интерфейс възможност за връзка на много DE заедно (до 35, за RS422,RS423-до 10);
- висока скорост на предаване: 35Mbs (12м) до 100kbs (1200м):
- висока чувствителност на приемната част (около 200mV) поради диференциалната структура;
- използват се съпротивления за съгласуване на линията при големи разстояния за избягване отразяване (рефлекция) на сигнала.
- диференциален тип връзка;
- използва предаване тип "half-duplex" за разлика от RS232 (full-duplex);
- многовъзлов (multinode, за разлика от RS232 node-to-node) интерфейс възможност за връзка на много DE заедно (до 35, за RS422,RS423-flO 10);
- висока скорост на предаване: 35Mbs (12м) до 100kbs (1200м);
- висока чувствителност на приемната част (около 200mV) поради диференциалната структура;

- използват се съпротивления за съгласуване на линията при големи разстояния за избягване отразяване (рефлекция) на сигнала.
- -мрежова структура с R5484 (съгл.съпротивление от 100Ω);

режими: a) 1 Sender изпраща, 0 или няколко Receivers приемат; б) няколко Senders изпращат едноврменно;

- Sender се връща автоматично в H.I. ~100ms след изпращане;

Приложение: основа на мн. съвременни протоколи: Profibus, Modbus.

7. Таймер-система в HC11. Подсистема за прекъсване в реално време (RTI).

RTI: Служи за генериране на хардуерно прекъсване през фиксиран интервал от време; Определяне на периода на RTI прекъсването – от битове RTR [1:0] в регистъра PACTL (пулсакумулатор контролен регистър); 4 възможни периода (интервала), определени от двоичните комбинации на битове RTR[1:0]; RTIподсистемата се разрешава от бит RTII="1" от регистъра TMSK2;

БИЛЕТ 18

1. Постоянни и програмируеми памети. Видове, особености.

Видове: - read- ROM (Mask-ROM); read/write- PROM, EPROM, EEPROM, Flash

Особености: енергозависими; с произволен достъп

MROM: Програмиране- еднократно (при производство); ниска цена.

PROM: програмиране с ток, еднократно от потребителя в лабораторни условия; Структура – матрична решетка (масив от "бушони") Биполярни PROM – защитени от радиоактивно въздействие: високо бързодействие (до 1 ns): висока консумация:

EPROM: вид ROM, енергозависима памет; представлява масив от MOS транзистори с плаващ гейт (floating gate transistors) – т.нар. UVEPROM;програмиране с по-високо от захранващото напрежение (Vpp = 12,7V); изтриване – чрез облъчване с UV светлина с определна дължина на вълната (w=253nm), за определно време;

Особености: Предимство – по-висока плътност на 3E от PROM; по-високо бързодействие; Недостатъци – радиоактивно неустойчиви; относително висока цена (керамичен корпус, кварцов прозорец); невъзможност за селективно изтриване;

EEPROM (Electrically Erasable PROM): появяват се поради необходимост от многократен запис при разположение на паметта в рамките на ЕМК; Разлика между ЕПРОМ и ЕЕПРОМ — наличие на допълнителни структури в ЕЕПРОМ за пренос на електрони от и към плаващия гейт при прилагане на високо напрежение; ЕЕПРОМ използва механизма Fowler-Nordheim (F-N) тунелен пренос на електрони — клетки тип FLOTOX, FETMOS и други;

FLASH: Особености – блоково програмиране/изтриване и индивидуален запис до конкретна ЗК; изтриване (чрез F-N тунелиране); програмиране – чрез F-Nтунелиране или СНЕ механизъм; Разлики в ЗЕ – по-тънък слой SiO2 под FG; по-дълбока облат на сорса => за ускоряване на процеса на изтриване;

2. Режим четене в памети DRAM. Времедиаграми.

3. Енергоспестяващи режими в НС11 – видове, особености

Работата на ЦП се прекратява до постъпване на RESET или друго прекъсване.

- WAIT режим спира обработката на данни и намалява консумацията на междинно ниво (до 3-4 пъти); Спира се работата на ЦП до пристигане на ресет или друго прекъсване (външно IRQ, XIRQ или вътрешно генерирано от таймер-системата, SCI, SPI); кварцовият осцилатор остава включен:
- STOP режим спира вс. тактови източници и намалява консумираната мощтност на възможно най-ниско ниво 100nA (RAM се съхранява).
- STANDBY при изключване на захранването. Изход от режима включване на захранването. (RAM се захранва от V_{STBY} извод).

4. Разширена адресация. Особености. [КОД][Ан][АL]

Съдържа директно след КОД адресите на операндите, които ще се обработват. В зависимост от дължината на ползваните регистри и наличието на PRE – обща дължина от 3 или 4 Bytes.

5. Немаскирани прекъсвания. Приоритет.

Немаскираните прекъсвания (!XIRQ (! черта отгоре) вход) водят ВИНАГИ до прекъсване на работата на ЦП. Прилагат се при възникнали сериозни проблеми – например програмно забиване, отпадане на захранването.

След ресет – битове X, I от регистъра ССR се установяват в '1' и забраняват всички маскирани прекъсвания и !XIRQ. След инициализация, бит X може да се нулира SW и да се разреши входа !XIRQ. След това X НЕ МОЖЕ да се установи в 1 SW – т.е. !XIRQ е НЕМАСКИРАНО ПРЕКЪСВАНЕ. !XIRQ – с най-висок приоритет (без Ресет) – по-висок от всички маскирани – с маска I;

6. Интерфейсни схеми по SPI – видове, предимства.

- F-RAM (Fast –RAM, Ramptron Corp.) специално разработен тип PAM за връзка по SPI; Предимства 1) Висока скорост на запис (до 40Mbit/s); 2) Не ползва Page буфер, като "стандартните" EEPROM и Flash директен трансфер байт след байт; 3) Опростен и адаптиран интерфейс само шини Si (serial in), SO (serial out), SCK, CS;
- Серийни EEPROM (Serial EEPROM) схеми EEPROM за сериен обмен; Преимства 1) Ползва само 4 линии от EMK за връзка (SI, SO, CS, SCK), вместо A/D магистрали. Добавени още HOLD, WP; 2) Опростена логика в схемата за изграждане на интерфейса; 3) Ниска цена; Недостатък голямо време за достъп при четене (бит по бит)

7. Таймер-система в НС11. Функция ОС.

Таймера представлява брояч. В НС11 таимера се вклщчва на вход А който може да се ползва по различни начини.

включва: 5 отделни вериги за делене на честотата; предварителен делител на честотата от кварцовия осцилатор на 4; основна таймерна верига (16bitброяч.)

Всички операции в таймерната сис. съотнесени спрямо чест. на основния таймерен брояч.

Начало за броене: \$0000, край \$FFFF, флаг за препълване

В нормален режим, в ЕМК не може се спре/промени брояча.

ОС функция – Програмира действие, което да се изпълни в дефиниран момент време.

- отделни 16-битови регистри и 16-битови компаратори за всеки от 5-те ОС изхода.
- при съвпадение състоянието на брояча с това на регистъра- статус флаг (OCxF)=1 След съвпадение на зададения код стартиране на ОС функц.