Ana III Hausaufgabe, 5 Woche

Tutor: David Sering

SS 2021

Analysis III für Ingenieurwissenschaften

Juan Pardo Martin (397882) — Tuan Kiet Nguyen (404029) Leonardo Nerini (414193)

28. Mai 2021

1 Aufgabe

(Hausaufgabe zum Stoff der Ubung 4) Gegeben seien folgende zwei Kurven:

$$\gamma_1: t \mapsto e^{it}, \quad \frac{\pi}{2} \le t \le \pi,$$

$$\gamma_2: t \mapsto 1 + it, \quad -1 \le t \le 2.$$

Berechnen Sie die folgenden komplexen Kurvenintegrale mit der Definition als Parameterintegrale:

a)
$$\int_{\gamma_1} \frac{\log(i\log \overline{z})}{z} dz$$
, b) $\int_{\gamma_2} \frac{1}{z^2} dz$

1.1 Antwort

Man kann komplexe Parameterintegrale so schreiben:

$$\int_{\gamma} f(z)dz = \int_{b}^{a} f(\gamma(t))\gamma'(t)dt$$

a) für das erste Integral beobachen wir, dass im Einheitskreis wo γ_1 liegt, gilt:

$$\overline{z} = \frac{1}{z}$$

daraus folgt:

$$\int_{\gamma_1} \frac{\log(i\log \overline{z})}{z} dz = \int_{\gamma_1} \frac{\log\left(i\log \frac{1}{z}\right)}{z} dz$$

Wir verwenden die parametrizierung und ihre Ableitung $\gamma_1'(t)=\mathrm{i} e^{\mathrm{i} t}$

$$\begin{split} & \int_{\frac{\pi}{2}}^{\pi} \frac{\log \left(i \log \frac{1}{e^{it}}\right)}{e^{it}} i e^{it} dt = \int_{\frac{\pi}{2}}^{\pi} \log \left(i \log \frac{1}{e^{it}}\right) i dt = \int_{\frac{\pi}{2}}^{\pi} \log \left(i \log e^{-it}\right) i dt = \int_{\frac{\pi}{2}}^{\pi} \log (i(-it)) i dt \\ & = \int_{\frac{\pi}{2}}^{\pi} \log (t) i dt = i \int_{\frac{\pi}{2}}^{\pi} \log (t) dt = i \left[t \log (t) - t\right]_{t=\frac{\pi}{2}}^{t=\pi} = i \left(\pi \log (\pi) - \pi - \left(\frac{\pi}{2} \log \left(\frac{\pi}{2}\right) - \frac{\pi}{2}\right)\right) \\ & = i \left(\pi \log (\pi) - \frac{\pi}{2} \log \left(\frac{\pi}{2}\right) - \frac{\pi}{2}\right) = -i \frac{1}{2}\pi \left(1 + \log \left(\frac{\pi}{2}\right) - 2 \log (\pi)\right) = -i \frac{1}{2}\pi \left(1 + \log \left(\frac{1}{2\pi}\right)\right) = i \frac{1}{2}\pi \left(\log (2\pi) - 1\right) \end{split}$$

b)

$$\gamma_2'(t) = i$$

Also

$$\begin{split} \int_{\gamma_2} \frac{1}{z^2} dz &= \int_{-1}^2 \frac{1}{(1+it)^2} i dt = i \int_{-1}^2 \frac{1}{1-t^2+2it} dt = i \int_{-1}^2 \frac{1-t^2-2it}{(1-t^2)^2+(2t)^2} dt \\ &= i \int_{-1}^2 \frac{1-t^2-2it}{(t^2+1)+4t^2} dt = i \int_{-1}^2 \frac{1-t^2-2it}{t^4+2t^2+1} dt = i \int_{-1}^2 \frac{1-t^2-2it}{(t^2+1)^2} dt \\ &= i \int_{-1}^2 \frac{1-t^2-2it}{(t^2+1)^2} dt = \left(i \int_{-1}^2 \frac{1-t^2}{(t^2+1)^2} dt + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt\right) = i \int_{-1}^2 \frac{1-t^2}{(t^2+1)^2} dt + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= -\left(i \int_{-1}^2 \frac{1}{(t^2+1)} dt - \int_{-1}^2 \frac{2}{(t^2+1)^2} dt\right) + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= -i \left(\int_{-1}^2 \frac{1}{(t^2+1)} dt - 2 \left(\left[\frac{t}{2(t^2+1)}\right]_{t=-1}^{t=2} + \frac{1}{2} \int_{-1}^2 \frac{1}{t^2+1} dt\right]\right)\right) + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \left(2 \left(\left[\frac{t}{2(t^2+1)}\right]_{t=-1}^{t=2}\right]\right) + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \left(\frac{2}{(2^2+1)} - \frac{-1}{((-1)^2+1)}\right) + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \left(\frac{2}{5} + \frac{1}{2}\right) + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \frac{9}{10} + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \frac{9}{10} + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \\ &= i \frac{9}{10} + \int_{-1}^2 \frac{2t}{(t^2+1)^2} dt \end{split}$$

$$=i\frac{9}{10} + \left[-\frac{1}{(t^2+1)} \right]_{t=-1}^{t=2} = i\frac{9}{10} - \frac{1}{5} + \frac{1}{2} = i\frac{9}{10} + \frac{3}{10}$$

2 Aufgabe

Werten Sie das Integral

$$\int_{\gamma} \frac{z}{1 - z^2} dz, \quad \gamma : t \mapsto e^{it}, \frac{\pi}{4} < t < \frac{3\pi}{4}$$

mit geeigneten Stammfunktionen aus.

2.1 Antwort

Wir können $z^2=u$ substituieren mit $\frac{du}{dz}=2z.$

$$\int \frac{1}{2(1-u)} du = -\frac{1}{2} \log(1-u) = -\frac{1}{2} \log \left(1-z^2\right).$$

Wir haben eine Stammfunktion, die ihre Definitionsbereich $1-z^2 \notin \mathbb{G} = \{x+iy \in \mathbb{C} \mid x>0 \lor y\neq 0\}$ gelten soll.

Jedoch ist $-\frac{1}{2}\log(a(1-u))$, $a \in \mathbb{R} \setminus \{0\}$ auch eine Stammfunktion von $\frac{1}{2(1-u)}$, die verschiedenen Definitionenbereichen haben kann. Wir setzen a=1, und können sehen, dass wenn 1-u reell und <0 ist, ist es nicht definiert. Das ist ok, weil unsere kurve berüht die Positive reell Achse nicht. Also wir können die Stammfunktion anwenden.

$$-\frac{1}{2}\log(1 - e^{i\frac{3\pi}{2}}) + \frac{1}{2}\log(e^{1-i\frac{\pi}{2}}) = \left(-\frac{\log(2)}{4} - \frac{i\pi}{8}\right) - \left(-\frac{\log(2)}{4} + \frac{i\pi}{8}\right)$$
$$-i\frac{\pi}{4}$$

3 Aufgabe

Welche der folgenden Punktmengen sind Gebiete, welche sogar einfach zusammenhängend? Entscheiden Sie mit kurzer Begrundung.

- a) $M_7 = \{ z \in \mathbb{C} \mid |\text{Re } z| < 1 \},$
- b) $M_8 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\},\$
- c) $M_9 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z \neq 1\},\$
- d) $M_{10} = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 1\},\$
- e) $M_{11} = \mathbb{C} \setminus \{z \in \mathbb{C} \mid |\operatorname{Re} z| \le 1 \text{ und } \operatorname{Im} z = 0\}.$

3.1 Antwort

a) Diese Punktmenge soll eine Ebene zwischen den zwei Geraden, die parallel zur Imaginärchse sind und jeweils durch den Punkt (1,0) und (-1,0) auf der reellen Achse durchgehen, darstellen (Punkte auf dieser zwei Geraden gehören nicht zur der Punktmenge).

Diese Menge ist offen, vorstellungsweise einfach zusammenhängend \rightarrow ist ein Gebiet, das sogar einfach zusammenhängend ist.

- b) Diese Punktmenge soll die komplexe Menge ohne den Einheitskreis und auch ohne alle Punkte, die er umschließt, sein.
 - Diese Menge ist dann offen und vorstellungsweise auch zusammenhängend. Daher ist sie ein Gebiet. Sie ist aber nicht einfach zusammenhängend, weil z.B: wir nehmen den Kreis mit dem Radius 2 und der Mittelpunkt liegt im Ursprung an. Der Kreis gehört zur unseren Punktmenge, aber der zieht sich zusammen um den Ursprung, der aber nicht zur unseren Menge gehört.
- c) Es ist auch nicht zussamenhängend da es eine Ebene gibt die der Raum in 2 Teilen trennt. z.B man kann keine Pfad finden für (5,0,0) und (-5,0,0).
- d) Es ist zussamenhängend, jedoch nicht einfach zussamenhängend da es eine lücke gibt, die

Linie
$$y=z=1$$
. Man kann eine geschloßene Bahn konstruiren z.B
$$\begin{pmatrix} x\\1+\cos(\phi)\\1+\sin(\phi) \end{pmatrix}, \phi\in [0,2\pi[$$

die sich nicht auf einen Punkt zussamenziehen lässt.

e) Diese Menge ist zussamenhängend jedoch auch nicht einfach zussamenhängend, da Kreise in der Menge auf der Ursprung sich nicht zussamenziehen lassen.