信息学院本科生 2010-2011 学年第二学期 数据结构期末考试试卷 (A卷)答案

专	业:_		年级:			学号:			
姓	名: _		成绩:						
得	分		5选择题(
		1. 设n点 x = 2;		规模的非	:负整数,	下面程序片段	的时间复杂	度是	c
		while	(x < n/2)						
			x = 2*x;	0()		C 0/ 1) D	0(2)	
2		$O(\log_2 n)$				C. $O(n \log_2 n)$			ムルツ
2.						,所有元素进			
				伐玍旳,		可能的出栈序	·列甲,以兀	系 d 力	头的片
		数是		4		0.5	Ъ		
2	A. 3	•	B.		<i>ት</i> ነቶ ትኮ		D.		- /土 一 >/-
3.						退栈操作交替	·进仃。但个	九叶连	:
						足。 C. abcdef	D	- C - J -1	_
4									
4.				_	-	中,且队列非空 ,且要求第 1			
						,且安水东 I 昆。	17进入队列	的儿系	.1于1泊1工
	A[0]:					C. n-1, 0	D	n 1 n	1
5		•				之。II-1,0 2.叉树中叶结点			
٥.	A. 2					· 文例 中町 編点 C. 384		385	_°
6						6.384 插入关键字 48		363	
0.						四八天诞于 46 【树中,关键字	12	4)	
						、M 中,大键于 关键字分别是	\prec	>	`
	31 F	71年纪 点 以	7年、石丁	组 从 于	水行则	大链十刀加瓦	(13)	53	\
	Δ 1	°	В.	24 49			6	7	(90)
			D.						

7.	若-	一棵二叉树的前序	遍历序列和后序通	遍历序列分别为 1, 2, 3,	4和4,3,2,1,则该
		叉树的中序遍历序	列不会是	_ 0	
	A.	1, 2, 3, 4	B. 2, 3, 4, 1	C. 3, 2, 4, 1	D. 4, 3, 2, 1
8.	对	于下列关键字序。	列,不可能构成:	某二叉排序树中一条	查找路径的序列是
		o			
	A.	95, 22, 91, 24, 94,	71	B. 92, 20, 91, 34,	88, 35
	C.	21, 89, 77, 29, 36,	38	D. 12, 25, 71, 68,	33, 34
9.	下列	列关于图的叙述中	,正确的是	o	
	I.	回路是简单路径			
	II.	存储稀疏图,用	邻接矩阵比邻接着	長更省空间	
	III.	若有向图中存在	拓扑序列,则该图	图不存在回路	
	A.	仅II	B. 仅I、II	C. 仅III	D. 仅 I、III
10.	无	向图 G = (V, E)中音	含7个顶点,顶点	间的边是随机设置的,	为保证图 G 在任何
	情况	兄下都是连通的,	则需要的最少边数	女是。	
	A.	6	B. 15	C. 16	D. 21
11.	为	提高散列(Hash)	表的查找效率,	可以采取的正确措施是	₫。
	I.	增大装填(载)[因子		
	II.	设计冲突(碰撞)少的散列函数		
	III.	处理冲突(碰撞)时避免产生聚集	美(堆积)现象	
	A.	仅I	B. 仅II	C. 仅I、II	D. 仅II、III
12.	采	用 Hash 技术,下	面操作中性能不信	生的是。	
	A.	搜索给定关键字。	•		
	В.	按关键字升序排列	列输出所有元素。		
	C.	删除给定关键字的	 的元素。		
	D.	输出关键字升序扩	非列位于第 k 位的	元素。	
13.	为	实现快速排序算法	去,待排序序列宜	采用的存储方式是	0
	A.	顺序存储	B. 散列存储	C. 链式存储	D. 索引存储
14.	己	知序列 25, 13, 10,	12,9 是最大堆(大根堆),在序列尾部排	插入新元素 18,将其
	再认	周整为大根堆,调	整过程中元素之间	可进行的比较次数是	0
	A.	1	B. 2	C. 4	D. 5

15. 对一组数据(2, 12, 16, 88, 5, 10)进行排序,若前三趟排序结果如下

第一趟: 2, 12, 16, 5, 10, 88

第二趟: 2, 12, 5, 10, 16, 88

第三趟: 2, 5, 10, 12, 16, 88

则采用的排序方法可能是。

得 分

二、(本题 10 分) 在任意一棵非空二叉排序树(二叉搜索树, BST) T1 中, 删除某结点后又将其插入,则所得二叉排序树 T2 与原二叉排序树 T1 相比, 会有几种情况? 试证明你的结论。

删除的结点为 A。

分两种情况:

- 1 不变化: 删除的是叶结点。
- 2 有变化: 删除的不是叶结点。再分以下两种情况。

度为 1: 为其原孩子结点 B 的后代(子孙)结点。具体地, 若 B 是 A 的左孩子, 插入 到 B 的右子树中; 若 B 是 A 的右孩子, 插入到 B 的左子树中。

度为 2: 若使用 A 的直接前驱 C 替代, 插入到 C 的右子树中: 若使用 A 的直接后继 D 替代,插入到 D 的左子树中。

证略。

得 分

三、(本题8分)用一维数组存放的一棵二叉树如下图所示:

í								
								İ
	Α	В		\mathbf{C}				D
	11	ב						1
								i

画出该二叉树,并分别写出先序、中序及后序遍历该二叉树时访问 结点的顺序。

先序: ABCD

中序: ACDB

后序: DCBA

得 分

四、(本题 12 分) 有以下 10 个关键字: 28, 72, 97, 63, 4, 53, 84, 32, 61, 52, 使用归并排序方法将所给关键字排成升序序列,给出排序过程。

初始: 28, 72, 97, 63, 4, 53, 84, 32, 61, 52

i=1: 28, 72, 63, 97, 4, 53, 32, 84, 52, 61

i=2: 28, 63, 72, 97, 4, 32, 53, 84, 52, 61

i=3: 4, 28, 32, 53, 63, 72, 84, 97, 52, 61

i=4: 4, 28, 32, 52, 53, 61, 63, 72, 84, 97

得 分

五、(本题 10 分)设一个哈希表的地址区间为 0-16,哈希函数为 H(K)=K mod 17。采用线性探测法处理冲突,请将关键字序列 19,14,23,01,68,20,84,27,55,11,10,79,12 依次存储到哈希表中,画出结果,并计算平均查找长度。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
68	01	19	20	55		23				27	11	10	79	14	12	84
1	1	1	1	1		1				1	1	3	3	1	4	1
AS	ASL=20/13															

得 分

六、(本题 15 分)对右面的带权图,回答下列问题。

- 1)给出每个顶点的度。
- 2) 画出图的邻接矩阵。
- 3)使用 Prim 算法求图的最小生成树。

顶点	a	b	c	d	e	f	50
度	3	3	3	6	3	3	3

邻接矩阵

得 分

七、(本题 15 分) 一个长度为 L (L \geq 1) 的升序序列 S, 处在第 $\begin{bmatrix} L/2 \end{bmatrix}$ 个位置的数称为 S 的中位数。例如,若序列 S₁=(11, 13, 15, 17, 19),则 S₁ 的中位数是 15。两个序列的中位数是含它们所有元素的升序序列的中位数。

例如,若 S_2 =(2, 4, 6, 8, 20),则 S_1 和 S_2 的中位数是 11。现有两个等长升序序列 A 和 B,试设计一个在时间和空间两方面都尽可能高效的算法,找出两个序列 A 和 B 的中位数。

```
}
          else
          { // 若元素为偶数个
             start1 = mid1 + 1; // 舍弃 A 的前半部分
             end2 = mid2; // 舍弃 B 的后半部分
          }
      }
      else
          if ( ( start1 + end1 ) % 2 == 0 )
          { // 若元素为奇数个
             end1 = mid1; // 舍弃 A 中间点以后的部分且保留中间点
             start2 = mid2; // 舍弃 B 中间点以前的部分且保留中间点
          }
          else
          { // 若元素为偶数个
             end1 = mid1; // 舍弃 A 的后半部分
             start2 = mid2+1; // 舍弃 B 的前半部分
          }
      }
   }
   return A[start1] < B[start2] ? A[start1] : B[start2];
}
```