CLOSURE SYSTEMS AND THEIR REPRESENTATIONS

Simon Vilmin

March, 23, 2023

MALOTEC Seminar

Back to school

. Knowledge Space Theory [Doignon, Falmagne, 1985]:

"Automatically assess the knowledge of students"

- . Some questions of an automated test
 - 1. Graphically solve $4x^2 3x + 2 = 0$ graphical resolution
 - 2. Figure out $\frac{(V4 \times V3)}{3} \frac{6 \times 7}{\sqrt{144}}$ arithmetic
 - 3. Find the discriminant of 3x2-x+8 -> formula of discriminant
 - 4. Study the polynomial 7x2 + 11x-5 study of 2nd order polynomial

Each question corresponds to a problem or item

What is your score?

. Some students took the test!

	1 2 3 4	
Wolf	X	. Lil masters the items 2 and 3 but
Lil		not the items 1 and 4
Lazuli	x x x	
Folauril	× × ×	. 23 is the (Knowledge) state of Lil
Dupont	x x x x x x x x x x x x x x x x x x x	
	Abbreviation of $\{2, \dots \}$	3

Knowledge spaces

. Knowledge space (X, \mathcal{K}) : set X of items, collection \mathcal{K} of states over X s.t.

 $\phi \in \mathcal{K}$

. K, K, E X implies K, U K, E X

> Mathematical but reasonable assumptions

In fact, closure systems

DEF. A closure system is a pair (X, \mathcal{E}) where X is a set, the groundset, and \mathcal{E} a collection of subsets of X satisfying $X \in \mathcal{E}$ and $C_1 \cap C_2 \in \mathcal{E}$ for every $C_1, C_2 \in \mathcal{E}$.

- . Sets in 8 are closed sets
- . the pair (G, ⊆) is a lattice
- . Induces a closure operator o:
 - . φ(A) = minimal closed set including A

Closure system = complement of a

Knowledge space

The problem with closure systems

- . Closure systems are abiquitous
 - . Knowledge Space Theory, Argumentation theory, Propositional logic, Formal Concept Analysis (FCA), Natabases,...

In KST, you cannot ask teachers for a set of states <

. But they have HUGE size and can be hard to understand

5 If |X| = n, 8 can have up to 2° closed sets

We need implicit representations!

meet-irreducible elements

Implicational Bases

Outline

Meet-irreducible elements: intuition

. We want to compactly represent a closure system (X, 8)

IDEA: find a small subset of & which conveys all the information of (X, &)

. Use properties of closure systems

- . XE & trivially holds -> useless
- . C∈ & is obtained by intersections → useless
- . $C \in \mathcal{B}$ is not obtained by intersections $\rightarrow C$ is crucial to (X, \mathcal{B}) , it is irreducible

The irreducible closed sets form the minimal amount of sets needed to rebuild 8

Meet-irreducible elements: definition

DEF. Let (X, \mathcal{E}) be a closure system, and let $M \in \mathcal{E}$. The closed set M is meet-irreducible if $M \neq X$ and for every $C_1, C_2 \in \mathcal{E}$, $M = C_1 \cap C_2$ implies either $M = C_1$ or $M = C_2$. We denote by $Mi(\mathcal{E})$ the set of meet-irreducible elements of (X, \mathcal{E}) .

Meet-irreducible \leftrightarrow unique upper cover (8, \leq)

Mi (8) = $\{3, 234, 1, 14, 134\}$

Meet-irreducible elements: more examples

- . (X, E) Boolean cube, |X|=n
- . Mi(8)= { X \ }x \ | x \ X \ }

$$2^{n} = |\mathcal{E}| \gg |M_{i}(\mathcal{E})| = n$$

exponential

K is fixed

.
$$Mi(\mathcal{C}) = \{X \setminus \phi(x) \mid x \in X\}$$

polynomial
$$gap$$
 $n^k \approx |\mathcal{C}| > |Mi(\mathcal{C})| = n$

- . (X, &) is a cliamond, |X|=n
- . $Mi(\mathcal{E}) = \{ \{x\} \mid x \in X \}$

$$n+2=|\mathcal{C}|\approx |Mi(\mathcal{C})|=n$$

constant gap

Outline

Implications: syntax and semantic premise conclusion

DEF. Let X be a set. An implication over X is an expression $A \rightarrow B$ where $A, B \subseteq X$. An implicational base is a pair (X, Σ) where Σ is a set of implications over X.

DEF. Let A o B be an implication over X, and C o X. Then, C satisfies A o B if A o C implies B o C. If (X, Σ) is an implicational base, C satisfies Σ if it satisfies each implication of Σ .

- $X = \{1, 2, 3, 4\}, \Sigma = \{13 \rightarrow 4, 2 \rightarrow 34\}$
- . 13 does not satisfy ≥ (13 → 4)
- . 234 satisfies Z

Implications and closure systems

- . Define $\mathcal{E}(Z) = \{C \subseteq X \mid C \text{ satisfies } Z\}$, what do we have?
 - . $X \in \mathcal{C}(\Sigma)$ holds
 - . if $C_1, C_2 \in \mathcal{C}(\Sigma)$, necessarily $C_1 \cap C_2 \in \mathcal{C}(\Sigma)$ also holds

An implicational base (X, Z) represents a closure system $(X, \mathcal{C}(Z))$

$$\Sigma = \{13 \rightarrow 4, 2 \rightarrow 34\}$$

Closure systems and implications

- . Given (X, \mathcal{C}) , any closed set including A also includes $\phi(A)$. The closed sets satisfy $A \to \phi(A)$. Minimal closed set including A including A
- . Put $\Sigma = \{A \to \phi(A) \mid A \subseteq X\}$. If $A \notin \mathcal{C}$, A does not satisfy Σ . (X, Σ) represents (X, \mathcal{C})
 - THM. [folklore] Every closure system can be represented by an implicational base (at least one)

At least one?

DEF. Two implicational bases are equivalent if they represent the same closure system.

poly-time testable

Which one is the best?

minimum and easy to find!

Ourain

- . (X, E) can enjoy minimality properties:
 - (1) non-redundant: cannot remove any implication from E
 - (2) minimum: E has the least possible number of implications
 - (3) optimum: $\sum_{A\to B\in\Sigma} |A| + |B|$ is minimal among all equiv. (X, Σ')
- . (3) ⇒ (2) ⇒ (1) but (3) hard to optimize, while (1), (2) poly [Ausiello et al., 1986]
- . (X, E) can have specific implications:
 - . P→ ϕ (P) with P pseudo-closed ~> (canonical base [Duquenne, Guigues, 1986]
 - . A -> b with A a minimal generator of b ->> canonical direct base

 [Bertet, Monjardet, 2010] P> A -> b but A'+> b for each A'c A
 - . A → b with A a D-cover of b → D-base [Adaricheva et al., 2013]

Implicational bases: more examples

- . (X, E) Boolean cube, |X|=n

$$2^n = |\mathcal{E}| \gg |\Sigma| = n$$
 exponential gap

1234

$$\Sigma = \{x \to \phi(x) \mid \{x\} \notin \mathcal{E}, x \in X\}$$

polynomial
$$qap \cdot (n^k \approx |\mathcal{C}| > |\Sigma| \approx n$$

- . (X, &) is a cliamond, |X|=n
- $\Sigma = \{xy \rightarrow \phi(xy) \mid x,y \in X, x \neq y\}$
- . n+2 = 181 < 1∑1≈n² polynomial gap

Outline

Formal statement

PROB. Implicational Base Identification (IBI)

In: the meet-irreducible elements $Mi(\mathcal{C})$ of a closure system (X,\mathcal{C}) Task: find a minimum implicational base (X,Σ) for (X,\mathcal{C})

PROB. Computing Meet-Irreducible (CMI)

In: an (minimum) implicational base (X, Σ) of a closure system (X, \mathcal{E}) Task: find the meet-irreducible elements $Mi(\mathcal{E})$ of (X, \mathcal{E})

- . Hypothesis: (X, &) is standard

. $\phi \in \mathcal{C}$ $\phi(x) \mid \{x \mid \in \mathcal{C} \text{ for all } x \in X\}$ every x is useful

The problems are elsewhere

• Finite sets	closure system	meet-irreducible	implications
• KST	Knowledge space	atoms	queries/entailment
• FCA	concept lattice	(reduced) context	attribute implications
· Horn logic	models	Characteristic models	Pure Horn CNF
• Databases	Closure system	Armstrong relation	Functional Dependencies

Depending on the field, one of IBI or CMI is more natural

- . queries: "If the students fail the items in A, they fail the items in B"
- . attribute implications: "The objects having attributes A also have attributes B"
- . Horn CNF: Horn clause (7 v 3 v 4) ↔ implication 13 → 4
- . Functional Dependencies: "Two tuples equal on A are equal on B"

Other sources of closure systems

Closure systems arise from several objects

particular cases of CMI, IBI

- . Graph
 . induced path
 . 13 → 2, 13 → 45

Comparing the representations

Question	(X, Z)	M:(%)	(X, E)
is x in a minimal key?	NP-c	poly	poly
is P pseudo-closed?	Poly	co NP-c	poly
is 8 a convex geometry?	¥ NP-c	poly	poly
Relative size	Relative size Brand new! [Adaricheva, Bichoupan, 2023]		
size of w.r.t. Z	_	$exp(\Sigma)$	exp(IEI)
Size of w.r.t. Mi(8)	exp(1Mi(8)1)	_	exp(1Mi(8)1)
size ofw.r.t. &	«181×1X1	«181	_

Each representation, E or Mi, can be much smaller than the other.

The complexity of a problem depends on the representation

Packing up motivations

- . Why studying IBI and CMI?
 - . The problems arise from different fields
 - . They are impacted by the type of closure system at hand
 - . Each representation has its own benefits

So now ... what about their complexity?

Enumeration: idea

9-> NOT count

- . IBI and CMI are enumeration problems: we try to list objects
- . But the output may have exponential size w.r.t. the input ...

PROB. Powerset

In: a set X

Task: list all the subsets of X

- . Powerset is easy to solve
- . But any algorithm will take at least $O(2^{|x|})$ time ...

I DEA: take output size into account -> output-sensitive complexity (see e.g. [Johnson et al., 1988])

. Powerset can be solved in poly-time in its (input) and output)

Enumeration: output-sensitive complexity

. Enumeration task: given an input x, list a set of solutions R(x)

Enumeration algorithm A x of size n, R(x) of size m

- . output-polynomial time
- . polynomial delay
- . incremental polynomial time
- . output quasi-polynomial time

First idea

Cannot compute the closure system to solve IBI (or CMI)

<u>25</u> 32

The truth

The complexity of CMI and IBI is unknown ...

- . Harder than enumerating the maximal independent sets of a hypergraph [Khardon, 1995]
- . Finding the maximal meet-irreducible elements is hard [Kavvadias et al., 2000]
- . Finding the maximal pseudo-closed sets is hard [Babin, Kuznetsov, 2013]
- . General (exponential) algorithms [Mannila, Räihä, 1992], [Wild, 1995]
- . Tractable cases: SD, lattices, types of convex geometries, modular lattices,...
 [Beaudou et al., 2017], [Nourine, V., 2023+], [Wild, 2000]
- . Surveys [Bertet et al. 2018], [Wild, 2017]

Hypergraphs

DEF. A hypergraph is a pair $\mathcal{H}=(X,E)$ where X is a set and E a collection of subsets of X

•
$$\mathcal{H} = \{X = \{1, ..., 5\}, \{E_1, E_2, E_3, E_4\}\}:$$

 $E_1 = \{123\}, E_2 = \{124\}, E_3 = \{34\}, E_4 = \{45\}$

DEF. Let H = (X, E) be a hypergraph. A set $I \subseteq X$ is an independent set of H if $E \not= I$ for all $E \in E$

• Maximal (\leq) independent sets of H I $MIS(H) = \{ I_1, I_2, I_3, I_4, I_5 \}$ $I_1 = 125, I_2 = 135, I_3 = 124, I_4 = 14, I_5 = 24$

Enum - MIS

```
PROB. Enum Max. Ind. Sets (Enum-MIS)

In: a simple hypergraph \mathcal{H}=(X,E)

Task: enumerate the maximal (s) independent sets of \mathcal{H}, MIS(\mathcal{H})
```

- . Open problem ... [Eiter et al., 2008]
- . quasi-poly algorithm [Fredman, Khachiyan, 1996]

CMI is harder than Enum-MIS

Mi(8) = MIS(H) + Some of the I/32{, I & MIS(H)

The big picture

THM. [Khardon, 1995] CMI and IBI are harder than Enum-MIS

A glimpse of our results

THM. [Defrain, Nourine, V., 2021] CMI is harder

Than Enum-MIS even if (X, E) is acyclic

THM. [Nourine, V., 2023+] If (X, Σ) has an appropriate decomposition, <u>CMI</u> can be solved in output quasi-polynomial time

Conclusion

- . Closure systems are obiquitous but huge and complex -> use representations.
 - . Implications: "If we have A, we have B"
 - . Meet-irreducible elements: the core of the system
- . Translating between the representations (CMI, IBI) is fascinating but tough
- . Our progress on acyclic implications
 - . the problem (CMI) is already quite hard (7, Enum-MIS)
 - . But we can manage some cases with nice decompositions
- . What's next? Acyclic and beyond? Other classes? Hardness of the problem?

- Doignon, Falmagne Spaces for the assessment of Knowledge International Journal of man-machine studies, 1985
- · Ausiello, D'Atri, Saccà Minimal representations of directed hypergraphs SIAM Journal on Computing, 1986
- Eduquenne, Guignes, 1986]
 Familles minimales d'implications informatives résultant d'un tableau de données binaires
 Mathématiques et Sciences humaines, 1986
- . Bertet, Monjardet The multiple facets of the canonical direct base Theoretical Computer Science, 2010
- . Adaricheva, Bichoupan Complexity results for implication bases of convex geometries arXiv, 2023

[Doignon, Falmagne, 1985]

[Ausiello et al., 1986]

[Bertet, Monjardet, 2010]

[Adaricheva, Bichoupan, 2023]

. Johnson, Yannakakis, Papadimitriou On generating all maximal independent sets Information Processing Letters, 1988 [Johnson et al., 1988]

. Khardon

[Khardon, 1995]

Translating between Horn representations and their Characteristic Models

Journal of Artificial Intelligence Research, 1995

. Karvadias, Sideri, Starropoulos Generating all maximal models of a Horn expression Information Processing Letters, 2000 [Kavvadias et al., 2000]

Babin, Kuznetsov [Babin, Kuznetsov, 2013] Computing premises of a minimal cover of functional dependencies is intractable Discrete Applied Mathematics, 2013

Mannila, Räihä The Design of Relational Satabases Addison - Wiley, 1992 [Mannila, Räihä, 1992]

[Wild, 1995]

. Wild Computations with finite dosure systems and Implications Springer LNCS 959, 1995

[Beaudou et al., 2017]

- Beaudou, Mary, Nourine Algorithms for K-meet-semiclistributive lattices Theoretical Computer Science, 2017
- . Nourine, Vilmin

 The enumeration of meet-irreducible elements based on hierarchical decompositions of arXiv, 2023

 implicational bases
- . Wild Optimal implicational bases for finite modular lattices
 - Quaestionas Mathematicae, 2000

Bertet, Demko, Viaud, Guérin

Lattices, closure systems and implication bases: A survey of structural aspects and algorithms

Theoretical Computer Science, 2018

. Adaricheva, Nation, Rand Ordered direct implicational basis of a finite closure system Discrete Applied Mathematics, 2013 [Adaricheva et al., 2013]

. Wild The joy of implications, aka pure Horn formulas: mainly a survey Theoretical Computer Science, 2017

[Eiter et al., 2008]

[Wild, 2017]

. Eiter, Makino, Gottlob Computational aspects of monotone dualization: a brief survey Discrete Applied Mathematics, 2008

Fredman, Khachiyan [Fredman, Khachiyan, 1996]
On the complexity of dualization of monotone disjunctive normal forms
Tournal of Algorithms, 1996

Defrain, Nourine, Vilmin

Translating between the representations of a ranked convex geometry

Discrete Mathematics, 2021.