# 國立台灣大學期末報告 地理環境資源學系 水文學及實習



(圖一)萬里溪集水區高程圖

### 一、集水區特徵:

1. 集水區面積 由 Calculate Geometry 計算出為 235150482.13 平方公尺

# 2. 集水區周長 由 Calculate Geometry 計算出為 93104.65 公尺

#### 3. 不對稱度

為主流右側面積占全水區的面積之比值。在花蓮的萬里溪橋以上的集水區,右岸(向下游的方向看的右邊)的面積為 156018844.91 平方公尺,而整個集水區的面積為 235150482.13 平方公尺,故此集水區的不對稱度為 156018844.91/235150482.13 等於 0.663485

# 河流總長度 河流總長度由 Calculate Geometry 計算出為 130923.120 公尺

# 主流(最遠流長)長度 主流總長度由 Calculate Geometry 計算出為 47814.469133 公尺。

#### 6. 河流數量

河流數量由屬性表格的統計資料得出 67 條。

#### 7. 排水密度(又稱水系密度)

河流總長度為=130923.120 公尺,集水區的面積為 235150482.13 平方公尺,水系密度:130923.120/235150482.13=0.000557。(河流長度(m)/集水區面積(m²))

#### 8. 河流頻率

河流數量有 67 個,除以集區面積 235150482.13 平方公尺,河川頻率為 0.412501812。單位:(河流個數(個)/集水區面積(km²))

#### 9. 細長比

面積=235.150 平方公里,等面積圓的直徑公式為= $2\sqrt{\frac{A}{\pi}}$ ,計算出為 17.303 公里。且最遠流常比為集水區 stream length 當中,最長的流長 47.814 公里,計算過程參數如下: 細長比=17.303/ 47.814 =0.361881457。

#### 10. 崎嶇數

崎嶇度為水系密度乘以最高最低差排水密度為 0.000557 集水區高低差為 2965 公尺 0.000557\*2965=1.651505

#### 11. 一級河平均坡降

一級河的一級河流的高程加總除以長度加總,得到平均坡度 0.222。

#### 12. 主流縱剖面



(圖二)萬里溪主流縱剖面

#### 二、河川級序的面積高度積分曲線(圖、積分值都要呈現)



(圖三)萬里溪面積高程曲線

#### 面積高度積分值:

面積高程積分簡易算法為

一集水區內的高程中,

(平均高度- 最低高度)/(最高高度 - 最低高度)

平均高=1474.084 , 最低=0 , 最高=2965

積分=(14740.84-0)/(2965-0)=0.497161, 而殘土率也就是0.497161。

### 三、 推估集水區的空間降雨(雨量補遺與徐昇式)



(圖四)徐昇式多邊形法劃分萬里溪橋集水區

| ARCID   | Area(square m)  | proportion |
|---------|-----------------|------------|
| XC1I050 | 53628558.6635   | 0.228061   |
| XC1T940 | 111867608.578   | 0.475728   |
| XC1T910 | 45835049.351    | 0.194918   |
| XC1T900 | 19985826.2012   | 0.084992   |
| XC0T9G0 | 3833439.33207   | 0.016302   |
| 總和      | 235150482.12577 | 1          |

(表一)萬里溪橋集水區內雨量測站

#### 四、推估集水區各重現期(5-, 10-, 20-, 50-yr)的1日, 2日最大雨量



(圖五) 萬里溪每年1日,2日最大雨量

若寫成頻率方程式通式型態  $y = \mu + \sigma \cdot K$ 

則頻率因子為 
$$K = -\frac{\sqrt{6}}{\pi} \left( 0.5772 + \ln \ln \frac{T}{T-1} \right)$$

| Т  | K    | 1day     | 2day     |
|----|------|----------|----------|
| 5  | 0.72 | 272.1117 | 397.3573 |
| 10 | 1.30 | 313.7691 | 470.999  |
| 20 | 1.87 | 353.7279 | 541.6379 |
| 50 | 2.59 | 405.4505 | 633.0728 |

(表二)頻率方程式參數



(圖六)萬里溪橋1日最大雨量重現期



(圖七)萬里溪橋2日最大雨量重現期

## 五、 推估集水區各重現期(5-, 10-, 20-, 50-yr)的1日,2日最大流量



(圖八) 逕流深度



(圖九)萬里溪橋每年最大逕流深度

若寫成頻率方程式通式型態  $y = \mu + \sigma \cdot K$ ,

則頻率因子為 
$$K = -\frac{\sqrt{6}}{\pi} \left( 0.5772 + \ln \ln \frac{T}{T-1} \right)$$



Max 2-day runoff

1000

Nep/ Luni

500

0

20

40

60

YEAR

(圖十)萬里溪橋1日最大流量重現期

(圖十一)萬里溪橋2日最大流量重現期

| Т  | К    | Max 1-day<br>runoff(mm/day) | Max 2-day<br>runoff(mm/day) |
|----|------|-----------------------------|-----------------------------|
| 5  | 0.72 | 259                         | 419.4714701                 |
| 10 | 1.3  | 318                         | 513.2825911                 |
| 20 | 1.87 | 376                         | 605.4762789                 |
| 50 | 2.59 | 449                         | 721.9314636                 |

(表三)頻率方程式參數

#### 六、 計算集水區的基流量(長期平均BFI)

• 單參數數值濾波法 
$$b_k = ab_{k-1} + \frac{1-a}{2}(y_k + y_{k-1})$$
 轉換為逕流深度 代公式 限制條件 $(y_k>=b_k)$ 

以年為單位,將逕流總量(cms)換置成逕流深度(mm/day),利用「單參數數值 濾波法」,將總逕流量進行基流分離,並將基流深度除以總逕流深度,得出每年的 基流指數BFI。綜觀這十年來,長期的平均基流指數為 0.657。

| Year | 總徑流量(mm/day) | 基流量(mm/day) | BFI 基流指數 |
|------|--------------|-------------|----------|
| 2001 | 2670.02      | 1512.96     | 0.567    |
| 2002 | 623.27       | 468.89      | 0.752    |
| 2003 | 1719.02      | 1111.06     | 0.646    |
| 2004 | 2026.49      | 1175.96     | 0.580    |
| 2005 | 3599.04      | 2260.50     | 0.628    |
| 2006 | 3034.67      | 2003.24     | 0.660    |
| 2007 | 3477.66      | 2042.40     | 0.587    |
| 2008 | 2240.54      | 1401.58     | 0.626    |
| 2009 | 2460.61      | 1775.01     | 0.721    |
| 2010 | 1066.66      | 854.42      | 0.801    |

(表四)計算基流表格



#### (圖十二) 萬里溪橋基流指數

第二部分:多集水區比較

# 1. 不同集水區的面積高度積分曲線

| 溪流名稱         | 萬里溪                                                              | 荖濃溪                                          | 急水溪                                                                                |
|--------------|------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|
| 河流位置         | 花蓮縣                                                              | 高雄市                                          | 台南市                                                                                |
| 高度積分值        | 0.497161                                                         | 0.409754838                                  | 0.1323                                                                             |
| 高度積分曲<br>線   | 面積高程曲線  12 1 0.8 至 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 a/A RAE | 面積高度曲線  1 1                                  | 会大英花城田横高度由雄<br>1 00 01 02 03 04 05 05 07 08 09 10 00 01 02 03 04 05 05 07 08 09 10 |
| 上圖標示         |                                                                  |                                              |                                                                                    |
| 面積高程曲<br>線判讀 | 曲線平滑,推估為<br>Strahler 演育模式中<br>壯年期地形內的河<br>流。                     | 曲線平滑,推估為<br>Strahler 演育模式中<br>壯年期地形內的河<br>流。 | 曲線呈凹形,推<br>估為Strahler 演育<br>模式的老年期地<br>形內的河流。                                      |

判讀根據<sup>1</sup>: Strahler 演育模式是將地形演育階 段總共分成三個時期,幼年期、 壯年期及老年期,幼年期的集水區測高曲線呈現凸形,面積高度積分值較高 (HI>0.6); 壯年期的集水區測高曲線呈現 S 形,測高曲線積分值介 於 0.4~0.6 間;老年期的集水區由於受到侵蝕程度較高,測高曲線呈現凹形,測高曲線 積 分值較低(HI<0.4)。

\_

<sup>&</sup>lt;sup>1</sup> 賴柏溶,以測高曲線探討台灣主要河川集水區演育情況,碩士論文 , 2012, 第二頁。

# 2. 地形特徵與基流量關係

| 溪流名稱         | 萬里溪          | 急水溪        |  |
|--------------|--------------|------------|--|
| 河流位置         | 花蓮縣          | 台南市        |  |
| 基流指數         | 0.657        | 0.586      |  |
| 列舉地文特徵參數     |              |            |  |
| 不對稱度         | 0.663        | 0.693      |  |
| 水系密度         | 0.000557     | 0.00074    |  |
| 河流頻率         | 0.0000004125 | 0.00000024 |  |
| 長性比          | 0.3618       | 0.444      |  |
| 崎嶇數          | 1.651505     | 0.911      |  |
| 集水區面積        | 235150482.13 | 224795145  |  |
| ( square m ) |              |            |  |
| 河川總長度        | 130923.120   | 166278     |  |
| (m)          |              |            |  |
| 一級河平均坡降      | 0.222        | 0.033      |  |
| 計論           |              |            |  |

萬里溪的基流指數較多,意指其不受降雨所影響之河流流量較於穩定。在地形參數中,兩條河流在一級河平均坡降與崎嶇數最大,萬里溪的崎嶇數遠大於急水溪,一級河平均坡降也高出了三倍之多。