Fanorona

Adversarial Search Methods

Cátia Teixeira Rojan Aslani

February 2023

Faculty of Engineering of University of Porto Master's in Data Science and Engineering

Artificial Intelligence course Professor: Luís Paulo Reis

- Introduction
- Methods
- Results and Discussion
- Conclusions and Future Works
- Demo

Introduction

What is Fanorona?

Malagasy national board game.

Board Sizes

Fanoron-Tsivy

Rules

- White plays first.
- Stones move along the lines.
- Capture happens when the player moves a stone in the same line as the opponent stone adjacent to it.
- In captures, all the stones in the continuous line are captured.
- Capture the opponent's stone by approach or withdrawal.
- If, after a capture, another capture is available, the player may continue to move.
- Win/Lose/Draw

State of the art

- Accessible
- Deterministic
- Non Episodic
- Static
- Discrete

- Algorithms implemented

 - Monte-Carlo Tree Search (MCTS)
 - many others.
- Until now, Fanorona has never been strongly solved.

Methods Structure of the game

player.py
game.py
board.py
stats.py

Possible game modes

Choose player 1 (White tokens)

Human Minimax Minimax_AlphaBeta Monte_Carlo_TS

Choose player 2 (Black tokens)

Human Minimax Minimax_AlphaBeta Monte_Carlo_TS

In which board size would you like to play with?

Fanoron-Telo (3 X 3) Fanoron-Dimy (5 X 5) Fanoron-Tslvy(9 X 5)

What is your difficulty level?

Easy Medium Hard

Al Agents

- Random
- MINIMAX
- MINIMAX w/ αβ cuts
- Monte Carlo Tree Search (MCTS)

Utility based

MINIMAX (+ αβ)

- depth-first
- depth <-> difficulty
 - 3: Med
 - 5: Hard
- evaluation function
- αβ: greater efficiency

- Relevant Parameters
 - Max rollout depth
 - Nº iterations
 - \circ C

$$UCBI(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(PARENT(n))}{N(n)}}$$

N° of player tokens - N° of opponent tokens

total N° of tokens

Heuristic Evaluation Function

For each token in a strong intersection +0.5 was added

Evaluation function for MINIMAX and MINIMAX aB. and biasina

and MINIMAX αβ, and biasing function for MCTS

Results

Measure computer performance in different difficulty levels (depth) and board sizes

The effectiveness of the algorithms

was measured by their winning rate

Al vs random (for now)

Game time duration

Number of movements

AI vs Random

MINIMAX- α β wins 100%

MINIMAX $w/\alpha\beta$

medium

MCTS wins 67%—

MCTS hard

29

Al vs Al SxS Boold

Algorithm	Match	Winner	Time	Number of moves
MINIMAX	hard vs medium	hard	3.2	18
MINIMAX w/ αβ		hard	1.6	18
MCTS		hard	52.6	20
				T

MINIMAX w/ $\alpha\beta$

medium

56.99

Monte Carlo Tree Search Game Time Durations

16

Total number of moves per game

(Preliminary) Results

All Al configurations win Random Agent.

Monte Carlo is slower than all but can win with fewer moves - sometimes adapts an offensive attitude.

Both MINIMAX algorithms have promissing results.

Algorithm	Pros	Cons	
MINIMAX	Guarantee to find optimal move	 computationally expensive prone to getting stuck in loops 	
MINIMAX w/ αβ	slightly faster than MINIMAX and much faster than MCTS		
MCTS	can adapt a more offensive attitude	Takes much more time	

Future works

- Allow player to make consecutive moves in one turn
- Add other draw situations
- Algorithm optimization: decrease space complexity
- MINIMAX: successor generation ordering
- MCTS: optimization of UCB and incorporation of draw condition in rollout phase