Milestone Report – Dartboard Calibration Module

Project: Dart Detection and Classification

Milestone: Prototype for image processor was completed

Date: July 10, 2025

Objective

Develop a calibration system for a steel-tip dartboard using webcam input and **ArUco markers** to geometrically define the dartboard's rings and sectors. The goal is to handle distortion and perspective skew from camera placement and enable precise field classification.

Key Features Achieved

1. ArUco Marker-Based Detection

- **Usage:** Four ArUco markers are placed around the dartboard to define a reference quadrilateral.
- Purpose:
 - Provides accurate spatial reference for the dartboard.
 - Enables **automatic center estimation** and initial scaling.
 - Compensates for camera tilt and distortion.
- **Library**: OpenCV's cv2. aruco module used for detection and pose estimation.

2. Concentric Ring Calibration

- **Input**: User manually adjusts outermost ring to match dartboard boundary.
- Automatic generation:
 - The five inner rings (Triple, Inner Single, Outer Bull, Bullseye) are created using standardized dartboard ratios.

3. Sector (Line) Calibration

- **Sectors**: 20 radial lines divide the board into scoring areas.
- Adjustable parameters:
 - line_rotation: Aligns sectors correctly (between 20 and 1).
 - line_scale: Controls line length based on outer ring.
 - offset_x, offset_y: Shift center from marker-based estimate if needed.
 - stretch_x, stretch_y: Handle elliptical distortion (e.g. camera tilt).

4. Data Structure

- All calibration results are stored in structured format:
 - rings: List of ellipses.
 - line_rotation, line_scale: Sector info.
 - offset_x, offset_y: Center shift.
 - stretch_x, stretch_y: Aspect ratio correction.

Accuracy Notes

- Visual inspection confirms:
 - Radial lines match dartboard sectors.
 - Ring sizes correspond well to true regions even with elliptical distortion.
- Click-test diagnostics reveal correct (though still being fine-tuned) ring and sector classifications.

In Progress / Next Steps

- Refine ring classification logic (currently drifting into adjacent regions slightly).
- Integrate with dart detection phase.

Screenshots

