Zadanie 1 - Planowanie przedsięwzięcia (metoda ścieżki krytycznej)

Przedsięwzięcie składa się z ośmiu operacji o następujących czasach trwania i relacjach poprzedzania

operacja	operacje poprzedzające	czas trwania [tygodnie]
M1	_	13
M2	-	8
M3	M1	9
M4	M1	15
M5	M2	20
M6	M2, M3	3
M7	M2, M3	4
M8	M4, M6	10

Należy określić najkrótszy możliwy czas realizacji tego przedsięwzięcia T_{\min} , ścieżkę krytyczną oraz zapasy czasowe poszczególnych operacji.

Rozwiązanie

Zadanie można rozwiązać stosując metodę ścieżki krytycznej.

Reprezentacja grafowa przedsięwzięcia z długościami łuków reprezentującymi czasy trwania operacji:

Najkrótszy możliwy czas realizacji przedsięwzięcia odpowiada długości najdłuższej ścieżki między wierzchołkami 1 i 6, reprezentującymi początek i koniec przedsięwzięcia. Najdłuższą taką ścieżką jest M1-M4-M8 o długości 38. Jest to więc ścieżka krytyczna i $T_{\min} = 38$.

Żeby wyznaczyć zapasy czasowe trzeba dla każdego wierzchołka policzyć

- s_i długość najdłuższej ścieżki od wierzchołka 1 do i,
- $l_i = s_n (\text{długość najdłuższej ścieżki od wierzchołka } i \text{ do 6}).$

	1	2	3	4	5	6
S_i	0	13	8	22	28	38
l_i	0	13	18	25	28	38

Na podstawie tych wielkości wyliczmy najwcześniejsze możliwe terminy rozpoczęcia i zakończenia operacji (*NWR* i *NWZ*) oraz terminy najpóźniejsze (*NPR* i *NPZ*) przy założeniu, że przedsięwzięcie ma być zrealizowane w 38 tygodni.

operacja	M1	M2	М3	M4	M5	M6	M7	M8
NWR	0	0	13	13	8	22	22	28
NWZ	13	8	22	28	28	25	26	38
NPR	0	10	16	13	18	25	34	28
NPZ	13	18	25	28	38	28	38	38

Następnie wyznaczamy zapas całkowity (ZC) i zapas swobodny (ZS).

operacja	M1	M2	М3	M4	M5	M6	M7	M8
ZC	0	10	3	0	10	3	12	0
ZS	0	0	0	0	10	3	12	0

Zadanie 2 – Planowanie przedsięwzięcia z uwzględnieniem ograniczeń zasobowych.

Zakładając, że każda operacja w przedsięwzięciu z poprzedniego zadania wymaga do realizacji dwóch pracowników, określić jaki będzie minimalny czas realizacji tego przedsięwzięcia T_{\min} jeżeli dysponujemy k pracownikami.

Rozwiązanie

Taki problem jest NP-trudny. Na podstawie analizy wykresu Gantta i ścieżki krytycznej można uzyskać następujące rozwiązania w zależności od wartości k.

Liczba pracowników k	< 2	2-3	4-5	≥ 6
Czas realizacji T_{\min}		82	45	38

Zadanie 3 – Zadanie programowania liniowego

Wyznaczyć zbiór rozwiązań dopuszczalnych i rozwiązanie optymalne następującego zadania programowania liniowego:

$$\max x_0 = 20x_W + 30x_Z \tag{0}$$

przy ograniczeniach

$2x_W +$	$x_Z \le 6$	(1)
$x_W +$	$2x_Z \le 8$	(2)
x_W -	$x_Z \le 1$	(3)
x_W	≤ 2	(4)
x_W	≥ 0	(5)
	$x_Z \ge 0$	(6)

Rozwiązanie

Stosując metodę graficzną wyznaczamy zbiór rozwiązań dopuszczalnych (obszar zakreskowany) oraz rozwiązanie optymalne, które odpowiada punktowi przecięcia się prostych, związanych z ograniczeniami (1) i (2).

Po rozwiązaniu układu równań (odpowiadających tym prostym) otrzymujemy następujące rozwiązanie optymalne: $x_W^* = 1^1/_3$, $x_Z^* = 3^1/_3$ z wartością funkcji celu: $x_0^* = 126^2/_3$.

Zadanie 4 – Wrażliwość na funkcję celu (analiza parametryczna)

Jak będzie się zmieniać rozwiązanie optymalne w powyższym zadaniu programowania liniowego, gdy współczynnik funkcji celu dla zmiennej x_W będzie przyjmował różne nieujemne wartości?

Rozwiązanie

Oznaczmy przez c wartość współczynnika funkcji celu dla zmiennej x_w . Gdy wartość c będzie się zmieniać, to na powyższym rysunku będzie się zmieniać nachylenie prostej reprezentującej funkcję celu. W rezultacie, w zależności od wartości $c \ge 0$, rozwiązaniom optymalnym będą odpowiadały kolejne punkty wierzchołkowe zbioru rozwiązań dopuszczalnych: (0, 4), $(1^1/_3, 3^1/_3)$ lub (2, 2) zgodnie z poniższą tabelką.

wartość <i>c</i>	rozwiązanie optymalne	optymalna wartość f. celu
(-∞, 15]	$x_W = 0, x_Z = 4$	120
[15, 60]	$x_W=1^{1/3}, x_Z=3^{1/3}$	$1^{1}/_{3}c + 100$
[60, ∞)	$x_W = 2, x_Z = 2$	2c + 60

Zadanie 5 – Wrażliwość na ograniczenia (analiza parametryczna)

Jak będzie się zmieniać rozwiązanie optymalne w zadaniu programowania liniowego analizowanym w Zadaniu 3, gdy prawa strona pierwszego ograniczenia będzie przyjmowała różne nieujemne wartości?

Rozwiązanie

Oznaczmy przez d wartość prawej strony pierwszego ograniczenia. Gdy d będzie przyjmowało różne wartości, to na powyższym rysunku będzie się "przesuwała" prosta (1) i w rezultacie będzie się zmieniał zbiór rozwiązań dopuszczalnych oraz jego punkty wierzchołkowe. W zależności od wartości $d \ge 0$, rozwiązanie optymalne będzie więc miało następującą postać.

wartość d	rozwiązanie optymalne	wartość f. celu
(-∞, 0]	-	_
[0, 4]	$x_W=0, x_Z=d$	30 <i>d</i>
[4, 7]	$x_W = (2d-8)/3, x_Z = (-d+16)/3$	(10d + 320)/3
[7, ∞)	$x_{W}=2, x_{Z}=3$	130

Zadanie 6 – Zadanie dualne

Sformułować zadanie dualne dla następującego zadania programowania liniowego.

$$\max x_0 = 20x_W + 30x_Z$$

$$\operatorname{przy ograniczeniach}$$

$$2x_W + x_Z \le 6 \qquad (1)$$

$$x_W + 2x_Z \le 8 \qquad (2)$$

$$x_W - x_Z \le 1 \qquad (3)$$

$$x_W \le 2 \qquad (4)$$

$$x_W \ge 0, \ x_Z \ge 0$$

Rozwiązanie

Przyjmując, że zmienne dualne v_1 , v_2 , v_3 , v_4 odpowiadają odpowiednio ograniczeniom (1), (2), (3) i (4) otrzymujemy następujące zadanie dualne.

min
$$v_0 = 6v_1 + 8v_2 + v_3 + 2v_4$$

przy ograniczeniach
$$2v_1 + v_2 + v_3 + v_4 \ge 20$$

$$v_1 + 2v_2 - v_3 \ge 30$$

$$v_1 \ge 0, v_2 \ge 0, v_3 \ge 0, v_4 \ge 0$$
.

Zadanie 7 – Rozwiązywanie zadania całkowitoliczbowego (metoda podziału i oszacowań)

Rozwiązać metodą podziału i oszacowań następujące zadanie programowania całkowitoliczbowego

$$\begin{aligned} & \max z = 7x_1 + 3x_2 \\ & 2x_1 + 8x_2 \le 38 \\ & 5x_1 + 2x_2 \le 17 \\ & x_1, x_2 \ge 0 \\ & x_1 \in C, \ x_2 \in C \end{aligned}$$

Rozwiązanie

Przykładowe drzewo przeglądu może wyglądać następująco:

Zakładamy kolejność rozbudowy drzewa zgodną z numeracją podproblemów. Wówczas dla kolejno rozpatrywanych podproblemów otrzymujemy następujące wyniki:

• Problem P_0

Rozwiązanie relaksacji liniowej: x = (1,67; 4,33), z = 24,67Najlepsze znalezione rozwiązanie całkowitoliczbowe: brak

• Problem P_1

Rozwiązanie relaksacji liniowej: x = (2; 3,5), z = 24,5Najlepsze znalezione rozwiązanie całkowitoliczbowe: brak

• Problem P_2

Rozwiązanie relaksacji liniowej: brak rozwiązania dopuszczalnego (zamknięcie gałęzi) Najlepsze znalezione rozwiązanie całkowitoliczbowe: brak

• Problem P_3

Rozwiązanie relaksacji liniowej: x = (2,2; 3), z = 24,4Najlepsze znalezione rozwiązanie całkowitoliczbowe: brak

• Problem P_4

Rozwiązanie relaksacji liniowej: x = (3; 1), z = 24 (zamknięcie gałęzi) Najlepsze znalezione rozwiązanie całkowitoliczbowe: $x^* = (3; 1)$, $z^* = 24$

• Problem P4

Rozwiązanie relaksacji liniowej: x = (2; 3), z = 23 (zamknięcie gałęzi) Najlepsze znalezione rozwiązanie całkowitoliczbowe: $x^* = (3; 1)$, $z^* = 24$

• Problem P5

Rozwiązanie relaksacji liniowej: x = (1; 4,5), z = 20,5 (zamknięcie gałęzi) **Optymalne** rozwiązanie całkowitoliczbowe: $x^* = (3; 1), z^* = 24$

Drzewo przeglądu byłoby mniejsze, gdybyśmy zastosowali skuteczniejszą procedurę szacowania od góry, np. poprzez zaokrąglanie w dół wartości z uzyskanej dla relaksacji liniowej oraz skuteczniejszą procedurę szacowania od dołu, np. poprzez zaokrąglanie w dół wartości rozwiązań x_1 , x_2 uzyskanych dla relaksacji liniowej.

Można też zastosować inną strategię podziału (według innych zmiennych decyzyjnych) oraz inną kolejność rozpatrywania podproblemów.

Zadanie 8 – Rozwiązywanie zadania całkowitoliczbowego (powłoka wypukła)

Sformułować nierówności opisujące powłokę wypukłą dla zadania programowania całkowitoliczbowego

$$\begin{aligned} & \max z = 7x_1 + 3x_2 \\ & 2x_1 + 8x_2 \le 38 \\ & 5x_1 + 2x_2 \le 17 \\ & x_1, x_2 \ge 0 \\ & x_1 \in C, \ x_2 \in C \end{aligned}$$

Rozwiązanie

Na poniższym rysunku przedstawiono zbiór rozwiązań dopuszczalnych (kropki) rozpatrywanego zadania programowania całkowitoliczbowego oraz powłokę wypukłą (obszar zakreskowany).

Na podstawie tego rysunku możemy sformułować nierówności opisujące powłokę wypukłą. Każda z tych nierówności będzie odpowiadała jednemu z boków powłoki wypukłej.

$$x_1 \ge 0$$

$$x_2 \le 4$$

$$x_1 + x_2 \le 5$$

$$2x_1 + x_2 \le 7$$

$$x_1 \le 3$$

$$x_2 \ge 0$$

Zadanie 9 – Planowanie produkcji (programowanie dynamiczne)

Produkcja pewnego wyrobu jest planowana z horyzontem czterotygodniowym. Na koniec poszczególnych tygodni należy dostarczyć odpowiednio 1, 4, 2 oraz 2 sztuki wyrobu. W każdym tygodniu można wyprodukować 1, 2 lub 3 sztuki tego wyrobu. Koszty produkcji c(u) w zależności od wielkości produkcji u są następujące

и	1	2	3
c(u)	3	5	6

Wyprodukowane wyroby mogą być przechowywane w magazynie zdolnym pomieścić maksymalnie 3 sztuki wyrobu. Na początku okresu planowania zapas wyrobu jest równy 1 i tyle ma pozostać w magazynie po czterech tygodniach. Koszt h(x) związany z przechowywaniem x sztuk wyrobu przez każdy kolejny tydzień wynosi

х	0	1	2	3
h(x)	0	2	3	4

Celem jest określenie takiego planu produkcji wyrobów w poszczególnych tygodniach, aby łączne koszty produkcji i magazynowania były jak najmniejsze.

Rozwiązanie

Do rozwiązania zadania możemy zastosować metodę programowania dynamicznego. Wyróżniamy 4 etapy (tygodnie) i 4 stany magazynu (w którym może znajdować się 0, 1, 2 lub 3 sztuki wyrobu).

W związku z tym graf przejść między stanami jest następujący:

Na łukach grafu zaznaczono koszty magazynowania (zakładając, że wyroby są dostarczane do klienta pod koniec tygodnia) oraz koszty produkcji. Wyznaczając najtańszą ścieżkę między wierzchołkami reprezentującymi początek i koniec horyzontu planowania, określamy minimalny łączny koszt produkcji i magazynowania równy 24 oraz optymalną strategię produkcji: 1 sztuka wyrobu w pierwszym tygodniu, 3 sztuki w drugim i czwartym tygodniu oraz dwie sztuki w trzecim tygodniu.

Zadanie 10 – Binarne zadanie plecakowe (programowanie dynamiczne)

Które spośród 5 przedmiotów posiadających dla nas wartość ocenianą jako 13, 10, 18, 22, 24 i ważących odpowiednio 2, 3, 5, 6 i 7 kg należy zapakować do plecaka o ładowności 11 kg, aby łączna wartość zapakowanych przedmiotów była jak największa?. Zadanie rozwiązać metodą programowania dynamicznego.

Rozwiązanie

W celu zastosowania metody programowania dynamicznego możemy przyjąć, że etapy odpowiadają pakowaniu poszczególnych pojedynczych przedmiotów. W związku z tym będzie 5 etapów. Stan w chwili zakończenia danego etapu określa aktualną wagę plecaka. Będziemy więc razem ze stanem 0 rozpatrywali 12 stanów. Niech V[i,j] określa maksymalną wartość przedmiotów, które można zapakować w etapach $1, \ldots, j$ o łącznej wadze nie większej niż i. Wartości V[i,j] można wyliczyć rekurencyjnie ze wzoru

$$V[i, j] = \max(V[i, j-1], V[i-w_i, j-1] + v_i),$$

gdzie w_j oznacza wagę przedmiotu j a v_j jego wartość. W powyższym wzorze obliczając V[i, j] bierze się pod uwagę dwie sytuacje:

- przedmiot j nie jest pakowany do plecaka wówczas V[i, j] = V[i, j-1] lub
- przedmiot *j* jest pakowany wówczas $V[i, j] = V[i-w_i, j-1] + v_i$.

Startując z V[i, 0]=0 dla i=0, 1, ..., 11 wyliczamy kolejne wartości V[i, j]. Wielkość V[11, 5] będzie wartością optymalnego rozwiązania.

V[i,j]	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	13	13	13	13	13
3	0	13	13	13	13	13
4	0	13	13	13	13	13
5	0	13	23	23	23	23
6	0	13	23	23	23	23
7	0	13	23	31	31	31
8	0	13	23	31	35	35
9	0	13	23	31	35	37
10	0	13	23	41	41	41
11	0	13	23	41	45	45

Zatem w optymalnym rozwiązaniu łączna wartość zapakowanych przedmiotów będzie 45. Analizując kiedy przy wyliczaniu V[i, j] w operatorze max został wybrany drugi element określamy przedmioty, które należy zapakować, tzn. przedmioty 1, 2 i 4.

Zadanie można też rozwiązać budując graf przejść między stanami i wyznaczając najdłuższą ścieżkę. Powyższą tabelkę można traktować jako pewną reprezentację tego grafu.

Zadanie 11 – Wyznaczanie maksymalnego przepływu w sieci (algorytm Forda-Fulkersona)

Zastosować algorytm Forda-Fulkersona do wyznaczenia maksymalnego przepływu i minimalnego przekroju w poniższej sieci S.

Liczby w nawiasach kwadratowych oznaczają przepustowości łuków.

Rozwiązanie

Rys. a), c), e) g) postać sieci S_f w kolejnych iteracjach algorytmu Rys. b), d), f) przepływy f w sieci S po kolejnych iteracjach algorytmu (liczby w nawiasach kwadratowych oznaczają przepustowości łuków bądź przepływ/przepustowość)

Na początku we wszystkich łukach sieci f(u, v) = 0 i związku z tym sieć użytecznych łuków S_f ma taką samą postać jak S. Na rys. a) zaznaczono jedną ze ścieżek powiększających, przez którą można przesłać maksymalnie dwie jednostki ($\delta = 2$). W rezultacie, po pierwszej iteracji przepływy w łukach sieci S będą takie jak na rys. b). Postać sieci S_f na początku drugiej iteracji algorytmu jest przedstawiona na rys. c). Jedną z ścieżek powiększających w tej sieci jest np. $P = (s, v_1, v_3, t)$, przez którą można przesłać

maksymalnie 3 jednostki i w rezultacie uzyskać przepływ jak na rys. d). W trzeciej iteracji (patrz rys. e)) istnieje tylko jedna ścieżka powiększająca $P = (s, v_1, v_3, v_4, t)$. Dla tej ścieżki $\delta = 1$ i po jej uwzględnieniu otrzymujemy przepływ w sieci S jak na rys. f). Na początku czwartej iteracji sieć S_f wygląda tak jak na rys. g= i nie istnieje w niej ścieżka powiększająca z s do t. Oznacza to koniec algorytmu, a szukany maksymalny przepływ przedstawia w związku z tym rys. f). Maksymalnie można więc przesłać 6 jednostek przez sieć S. Z rys. g) można odczytać minimalny przekrój (X^* , $V \setminus X^*$) w tej sieci. Zbiór X^* stanowią wierzchołki, do których można dotrzeć z s w sieci S_f , czyli wierzchołki s i v_2 . Minimalny przekrój tworzą więc łuki (s, v_1) i (v_2 , v_4), których łączna przepustowości jest równa 6.

Zadanie 12 – Sieć przepływowa z wieloma źródłami i ujściami

Rozważmy problem najtańszego przepływu w sieci S, w której występuje wiele źródeł s_1 , s_2 , ..., s_p i wiele ujść t_1 , t_2 , ..., t_r , przy czym suma wypływów ze źródeł i suma dopływów do ujść jest taka sama i równa F. Pokazać jak taki problem można sprowadzić do modelu najtańszego przepływu z jednym źródłem i jednym ujściem.

Rozwiązanie

Wystarczy do sieci S dodać dwa nowe wierzchołki s i t oraz łuki $(s, s_1), (s, s_2), ..., (s, s_p)$ i $(t_1, t), (t_2, t), ..., (t_r, t)$. Wierzchołek s będzie wtedy pojedynczym źródłem w tak zmodyfikowanej sieci, a wierzchołek t pojedynczym ujściem. Jednostkowe koszty przesyłu na dodanych łukach powinny być zerowe, a przepustowości na tyle duże, aby nie ograniczały potencjalnego przepływu, np. równe żądanej wartości przepływu F.

Zadanie 13 – Wyznaczanie najtańszej ścieżki między dwoma wierzchołkami

Pokazać jak można zastosować model problemu najtańszego przepływu do wyznaczenia najtańszej ścieżki między dwoma wyróżnionymi wierzchołkami *s* i *t* grafu zorientowanego.

Rozwiazanie

Każdemu łukowi należy przypisać przepustowość równą 1 i potraktować wagi łuków jako jednostkowy koszt przepływu. Następnie w tak skonstruowanej sieci wystarczy wyznaczyć najtańszy przepływ między wierzchołkami s i t o wartości F=1. W każdym łuku wyznaczony przepływ będzie wtedy całkowitoliczbowy, czyli równy 0 lub 1. Łuki, w których przepływ będzie równy jeden będą tworzyły najtańszą ścieżkę między wierzchołkami s i t.

Zadanie 14 – Wyznaczanie najliczniejszego skojarzenia w grafie dwudzielnym

Pokazać jak można zastosować model problemu maksymalnego przepływu do wyznaczenia najliczniejszego skojarzenia w grafie dwudzielnym $G = (V_1 \cup V_2, E)$.

Rozwiązanie

Należy nadać orientację wszystkim krawędziom grafu G skierowaną od wierzchołków ze zbioru V_1 do wierzchołków ze zbioru V_2 . Ponadto należy dodać dwa wierzchołki s i t reprezentujące źródło i ujście oraz dodatkowe łuki (s,u) dla każdego $u \in V_1$ i (v,t) dla każdego $v \in V_2$. Przepustowość każdego łuku można przyjąć jako równą 1. Wyznaczając w tak skonstruowanej sieci maksymalny przepływ od wierzchołka s do wierzchołka t, np. przy użyciu algorytmu Forda-Fulkersona, uzyskamy szukane skojarzenie w grafie G. Będą go tworzyły krawędzie, dla których przepływ jest równy 1.

Zadanie 15 – Zagadnienie transportowe

W zadaniu transportowym rozpatruje się zbiór dostawców X oferujących towary w ilości a_i , $i \in X$ oraz zbiór odbiorców Y o określonych zapotrzebowaniach b_j , $j \in Y$. Znane są jednostkowe koszty transportu w_{ij} towaru od poszczególnych dostawców $i \in X$ do odbiorców $j \in Y$. Celem jest dostarczenie każdemu

odbiorcy wymaganej ilości towaru przy najmniejszych sumarycznych kosztach transportu. Sformułować opisane zadanie transportowe w postaci problemu najtańszego przepływu.

Rozwiązanie

Należy utworzyć sieć przepływową, w której występuje wierzchołek źródłowy s, ujście t oraz wierzchołki reprezentujące poszczególnych dostawców $i \in X$ oraz poszczególnych odbiorców $j \in Y$. Sieć zawiera łuki (s, i) dla każdego $i \in X$ o przepustowości a_i i zerowym koszcie przesyłu, łuki (i, j) dla każdego $i \in X$, $j \in Y$ o nieograniczonej (bardzo dużej) przepustowości i jednostkowym koszcie przesyłu w_{ij} . oraz łuki (j, t) o przepustowości b_j i zerowym koszcie przesyłu. Wartość przepływu F od źródła s do ujścia t w takiej sieci powinna być równa sumie wszystkich zapotrzebowań odbiorców.

Zadanie 16 – Wyznaczanie ścieżek rozłącznych krawędziowo

Ścieżki są rozłączne krawędziowo jeżeli nie zawierają wspólnych krawędzi. Czasami ze względów niezawodnościowych poszukuje się w sieci kilku rozłącznych krawędziowo ścieżek łączących dwa zadane wierzchołki. Pokazać jak można zastosować model problemu najtańszego przepływu do wyznaczenia w grafie zorientowanym G = (V, E) zbioru k rozłącznych krawędziowo ścieżek, których suma wag jest najmniejsza i wszystkie zaczynają się w wierzchołku s, a kończą w wierzchołku t.

Rozwiązanie

Wierzchołki s i t będą stanowiły źródło i ujście w konstruowanej sieci przepływowej S = (V, E, c). Zauważmy, że jeżeli przypiszemy każdemu łukowi (u, v) sieci S przepustowość równą c(u, v) = 1 oraz jednostkowy koszt przesyłu w(u, v) równy wadze tego łuku, to najtańszy całkowitoliczbowy przepływ z s do t o wartości F = k określi nam szukane ścieżki połączeń. Ze względu na przepustowość równą 1 poszczególne łuki będą mogły należeć tylko do co najwyżej jednej ścieżki.

Zadanie 17 – Wyznaczanie ścieżek rozłącznych wierzchołkowo

Ścieżki łączące dwa wierzchołki w grafie są rozłączne wierzchołkowo jeżeli poza wierzchołkami końcowymi nie zawierają innych wspólnych wierzchołków. Pokazać jak można zastosować model problemu najtańszego przepływu do wyznaczenia w grafie zorientowanym G zbioru k rozłącznych wierzchołkowo ścieżek, których suma wag jest najmniejsza i wszystkie zaczynają się w wierzchołku s, a kończą w wierzchołku t.

Rozwiązanie

W celu skonstruowania sieci przepływowej S przypiszmy najpierw każdemu łukowi grafu G przepustowość 1 i jednostkowy koszt przesyłu równy wadze tego łuku. Następnie, każdy wierzchołek v grafu G poza wierzchołkami s i t zastępujemy dwoma wierzchołkami v_1 , v_2 i łączącym je łukiem (v_1, v_2) o przepustowości 1 i zerowym koszcie. Ponadto wszystkie łuki (u, v), które w grafie G dochodzą do wierzchołka v i łuki (v, z) wychodzące z v zastępujemy odpowiednio łukami (u, v_1) i (v_2, z) z przepustowością 1 i kosztem jednostkowym równym wadze łuków. Aby znaleźć szukane ścieżki wystarczy wyznaczyć najtańszy całkowitoliczbowy przepływ o wartości F = k z wierzchołka s do t.

Zadanie 18 – Planowanie produkcji (z liniowymi kosztami produkcji i magazynowania)

Produkcja pewnego wyrobu jest planowana z horyzontem czterotygodniowym. Na koniec poszczególnych tygodni należy dostarczyć odpowiednio 10, 20, 30 oraz 15 sztuk wyrobu. W każdym tygodniu można maksymalnie wyprodukować 20 sztuk wyrobu. Koszty produkcji zmieniają się z tygodnia na tydzień i wynoszą odpowiednio p_1 , p_2 , p_3 i p_4 od sztuki wyrobu. Wyprodukowane wyroby mogą być przechowywane w magazynie zdolnym pomieścić maksymalnie 30 sztuk wyrobu. Koszt związany z przechowywaniem wyrobu przez każdy kolejny tydzień wynosi w od sztuki wyrobu. Celem jest określenie takiego planu produkcji wyrobów w poszczególnych tygodniach, aby łączne koszty produkcji i magazynowania były jak najmniejsze. Sformułować to zadanie planowania produkcji w postaci problemu najtańszego przepływu.

Rozwiązanie

Na poniższym rysunku jest przedstawiony przykład modelu najtańszego przepływu, który można zastosować do rozwiązania zadania. Przepływ w łukach (s, v_1) , (s, v_2) , (s, v_3) , (s, v_4) reprezentuje wielkość produkcji w poszczególnych tygodniach. Przepływ w łukach (v_1, v_2) , (v_2, v_3) , (v_3, v_4) odpowiada ilości magazynowanych wyrobów z tygodnia na tydzień. Łuki (v_1, t) , (v_2, t) , (v_3, t) , (v_4, t) reprezentują natomiast zamówienia na wyroby w poszczególnych tygodniach. W nawiasach kwadratowych zaznaczono przepustowości łuków, a bez nawiasów koszt jednostkowy przesyłu. Aby rozwiązać zadanie należy znaleźć najtańszy przepływ w tej sieci od wierzchołka s do t o wartości F = 75, równej sumie ilości wszystkich wyrobów, które trzeba wyprodukować.

Zadanie 19 – Szeregowanie zadań w systemie jednoprocesorowym

Osiem zadań o następujących czasach obsługi p_j i pożądanych terminach zakończenia d_j ma być wykonanych na procesorze.

Zadanie	1	2	3	4	5	6	7	8
p_i	10	6	3	1	4	8	7	6
d_i	35	20	11	8	6	25	28	9

Określić taką kolejność wykonywania zadań na procesorze, aby:

- a) średni czas oczekiwania zadań na obsługę był jak najmniejszy
- b) maksymalne opóźnienie było jak najmniejsze
- c) liczba zadań opóźnionych była jak najmniejsza

Rozwiazanie

- a) Średni czas oczekiwania zadań będzie najmniejszy jeśli zastosujemy regułę SPT, czyli uszeregujemy zadania w kolejności niemalejących czasów wykonywania. Kolejność wykonywania zadań będzie więc następująca: 4-3-5-2-8-7-6-1, suma czasów oczekiwania 109, a średni czas oczekiwania 109/8 = 13,625.
- b) Maksymalne opóźnienie będzie najmniejsze gdy zastosujemy regułę EDD, czyli uszeregujemy zadania według niemalejących pożądanych ich czasów ukończenia. Kolejność wykonywania zadań będzie więc następująca: 5-4-8-3-2-6-7-1. Największe opóźnienie o wielkości 10 będzie miało zadanie 1.
- c) Aby wyznaczyć kolejność wykonywania zadań z najmniejszą liczbą zadań opóźnionych trzeba zastosować algorytm Moore'a (Hodgsona). Zgodnie z tym algorytmem kolejność wykonywania pierwszych sześciu zadań powinna być następująca: 5-4-3-2-7-1 i te zadania nie będą opóźnione. Po nich powinny być wykonane zadania 6 i 8, przy czym oba będą opóźnione. Tak więc najmniejsza możliwa do osiągniecia liczba zadań opóźnionych wynosi 2.

Zadanie 20 – Szeregowanie zadań w systemie przepływowym (algorytm Johnsona)

Każde z sześciu zadań ma być przetworzonych kolejno najpierw na procesorze P1, a potem na procesorze P2. Oba procesory mogą w danej chwili obsługiwać tylko jedno zadanie. Należy określić taką kolejność wykonania zadań na procesorach, aby czas ukończenia wszystkich zadań był jak najkrótszy przy następujących czasach obsługi na procesorach.

	Zad. 1	Zad. 2	Zad. 3	Zad. 4	Zad 5.	Zad 6.
P1	7	8	6	9	3	1
P2	4	10	5	7	2	3

Rozwiązanie

Aby wyznaczyć optymalną kolejność wykonywania zadań trzeba zastosować algorytm Johnsona. Według tego algorytmu kolejność wykonywania zadań na obu procesorach powinna być następująca: 6-2-4-3-1-5.

Zadanie 21 – Wyznaczanie charakterystyk funkcjonowanie systemu jednoprocesorowego z nieograniczonym buforem

Stanowisko może obsługiwać na raz tylko jedno zadanie. Przed stanowiskiem znajduje się bufor o nieograniczonej pojemności. Zakładając, że w okresie 50 sekund do systemu zgłosi się 5 zadań o poniższych parametrach czasowych, obliczyć średnią długość kolejki L_q , średnią liczbę zadań w systemie L_s , średni czas przebywania zadań w kolejce W_q i w systemie W_s oraz średnie obciążenie stanowiska U.

zadanie	A	В	C	D	E
termin pojawienia się [s]	2	4	14	20	44
czas obsługi [s]	14	6	12	8	6

Rozwiązanie

Symulując procesy zachodzące w systemie określamy dla kolejnych zdarzeń stan stanowiska i liczbę zadań w kolejce i w całym systemie obsługi.

Na podstawie tych wykresów wyznaczamy

$$L_q = \frac{34}{50}$$
, $W_q = \frac{34}{5} = 6\frac{4}{5}$, $L_s = \frac{80}{50} = 1\frac{3}{5}$, $W_s = \frac{80}{5} = 16$, $U = \frac{46}{50}$.

Zadanie 22 – Wyznaczanie charakterystyk funkcjonowania systemu jednoprocesorowego z ograniczonym buforem

Rozpatrzyć poprzednie zadanie przy założeniu, że bufor może pomieścić tylko jedno zadanie, a w przypadku, gdy bufor jest zapełniony, to nadchodzące zadanie nie jest przyjmowane do systemu.

Rozwiązanie

Symulując procesy zachodzące w systemie określamy dla kolejnych zdarzeń stan stanowiska i liczbę zadań w kolejce i w całym systemie obsługi.

Na podstawie tych wykresów wyznaczamy

$$L_q = \frac{14}{50}$$
, $W_q = \frac{14}{4} = 3\frac{1}{2}$, $L_s = \frac{48}{50}$, $W_s = \frac{48}{4} = 12$, $U = \frac{34}{50}$

Zadanie 23 – Wyznaczanie charakterystyk funkcjonowania systemu dwuprocesorowego

Zadania docierają do systemu obsługi co T=3 minuty. W systemie pracują dwa identyczne stanowiska przed którymi znajduje się wspólny bufor o pojemności 1. Jeżeli bufor jest zajęty, to nadchodzące zadania są odsyłane. Stanowiska obsługi wykonują zadania w średnim czasie S=5 minut. Zakładając markowski model kolejki (M|M|2) wyznaczyć:

- średnie obciążenie stanowisk *U*
- średnią długość kolejki L_q
- średni czas przepływu zadań przez system obsługi W_s
- udział zadań odesłanych bez obsługi r

Rozwiązanie

W systemie może być 0, 1, 2 lub 3 zadania. Niech π_0 , π_1 , π_2 , π_3 oznacza prawdopodobieństwo, że tyle ich jest w systemie.

Na podstawie grafu przejść między stanami formułujemy równania stanu

$$\lambda \pi_0 = \mu \pi_1 \tag{1}$$

$$\lambda \pi_1 + \mu \pi_1 = \lambda \pi_0 + 2\mu \pi_2 \tag{2}$$

$$\lambda \pi_2 + 2\mu \pi_1 = \lambda \pi_1 + 2\mu \pi_3 \tag{3}$$

$$2\mu\pi_3 = \lambda\pi_2 \tag{4}$$

uzupełnione równaniem

$$\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1 \tag{5}$$

Z równań (1)-(4) wynika

$$\begin{split} &\pi_1 = \rho \pi_0, \\ &\pi_2 = 0.5 \rho \pi_1 = 0.5 \rho^2 \pi_0 \\ &\pi_3 = 0.5 \rho \pi_2 = 0.25 \rho^3 \pi_0 \end{split}$$

gdzie
$$\rho = 5/3 = 1,67$$
.

Z powyższych zależności i z (5) wynika więc, że

$$\pi_0 = \frac{1}{1 + \rho + 0.5\rho^2 + 0.25\rho^3} = 0.192.$$

Zatem
$$\pi_1 = \rho \pi_0 = 0.320$$
, $\pi_2 = 0.5 \rho^2 \pi_0 = 0.267$, $\pi_3 = 0.25 \rho^3 \pi_0 = 0.222$.

Średnie obciążenie stanowisk: $U = 0\pi_0 + 1/2\pi_1 + \pi_2 + \pi_3 = 0,649$.

Średnia długość kolejki: $L_q = 0\pi_0 + 0\pi_1 + 0\pi_2 + \pi_3 = 0.222$ [zad.].

Średni czas przepływu zadań przez system obsługi: $W_s = L_s / \lambda_e$, gdzie $L_s = 0\pi_0 + 1\pi_1 + 2\pi_2 + 3\pi_3 = 1,520$ [zad.], a $\lambda_e = \lambda(\pi_0 + \pi_1 + \pi_2) = 0,26$ [zad./min]. Zatem $W_s = 5,85$ [min].

Udział zadań odesłanych bez obsługi: $r = \pi_3 = 0.222$.

Zadanie 24 – Analiza kolejek w bibliotece

Studenci przychodzą do biblioteki zgodnie z rozkładem Poissona z intensywnością λ. Czas spędzony przy punkcie wypożyczeń ma rozkład wykładniczy z wartością średnią 5 minut. Wyznaczyć intensywność λ, przy której z prawdopodobieństwem 0,9 w kolejce nie będzie więcej niż czterech studentów zakładając, że każdy przychodzący student zmieści się w kolejce.

Rozwiązanie

Ponieważ nie ma ograniczeń na długość kolejki, to prawdopodobieństwo, że w kolejce będzie dokładnie k studentów wynosi $P(k) = \rho^k P(0)$, gdzie $\rho = 5\lambda$, a $P(0) = 1-\rho$. Zatem

$$P(k \le 4) = P(0) + P(1) + P(2) + P(3) + P(4) = P(0)(1 + \rho + \rho^{2} + \rho^{3} + \rho^{4}) = P(0)\frac{1 - \rho^{5}}{1 - \rho^{5}} = 1 - \rho^{5}.$$

Ponieważ ma być $P(k \le 4) = 0.9$, więc $\rho^5 = 0.1$, czyli

$$\lambda = \frac{\rho}{5} = \frac{\sqrt[5]{0,1}}{5} = 0.126$$
 [zad./min].

Zadanie 25 – Otwarte sieci kolejkowe

Na stanowisku pomiarowym z nieograniczonym buforem sprawdza się jakość wytworzonych urządzeń. Nowe urządzenia pojawiają się zgodnie z rozkładem wykładniczym średnio co 10 minut. W wyniku testów okazuje się, że 70% urządzeń jest dobrych, 10% jest uszkodzonych i w związku z tym odrzucanych, a 20% trafia do naprawy, a następnie znowu na stanowisko pomiarowe. Zakładając, że czas pomiaru wynosi średnio 4 min i jest zmienną losową o rozkładzie wykładniczym, wyznaczyć średnią długość kolejki L_q i średni czas oczekiwania na pomiar W_q .

Rozwiązanie

Niech λ oznacza intensywność pojawiania się nowych urządzeń, a λ_p intensywność pojawiania się nowych i naprawionych urządzeń na stanowisku pomiarowym. Taka sama intensywność będzie na wyjściu urządzenia pomiarowego. Zatem

$$\lambda_p = \lambda + 0.2 \ \lambda_p$$
, czyli $\lambda_p = 10/8 \ \lambda$.

Ponieważ $\lambda = 0.1$ [zad./min], więc $\lambda_p = 1/8$ [zad./min] i dla stanowiska pomiarowego mamy $\rho = \lambda_p/\mu_p = \frac{1}{2}$, gdyż $\mu_p = \frac{1}{4}$ [zad./min].

Na podstawie prawa Jacksona

$$L_q = \frac{\rho^2}{1-\rho} = 0.5 \text{ [zad.]} \quad \text{oraz} \quad W_q = \frac{\rho}{\mu_p (1-\rho)} = 4 \text{ [min]}.$$