University of Rome "La Sapienza"

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2018/2019

Prof. Luca locchi

Luca locchi

7. Probabilistic models for classification

1 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Sapienza University of Rome, Italy Master in Artificial Intelligence and Robotics Machine Learning (2018/19)

7. Probabilistic models for classification

Luca locchi

Luca locchi

7. Probabilistic models for classification

Overview

- Probabilistic generative models
- Probabilistic discriminative models
- Logistic regression

References

C. Bishop. Pattern Recognition and Machine Learning. Sect. 4.2, 4.3

Luca locchi

7. Probabilistic models for classification

3 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Probabilistic Models for Classification

- Generative: estimate $P(C_i|\mathbf{x})$ through $P(\mathbf{x}|C_i)$ and Bayes theorem
- Discriminative: estimate $P(C_i|\mathbf{x})$ directly from a model

Probabilistic Generative Models

Consider first the case of two classes.

Find the conditional probability:

$$P(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)P(C_1)}{p(\mathbf{x}|C_1)P(C_1) + p(\mathbf{x}|C_2)P(C_2)}$$
$$= \frac{1}{1 + \exp(-\alpha)} = \sigma(\alpha)$$

with:

$$\alpha = \ln \frac{p(\mathbf{x}|C_1)P(C_1)}{p(\mathbf{x}|C_2)P(C_2)}$$

and

$$\sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$
 the sigmoid function.

Luca locchi

7. Probabilistic models for classification

5 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Probabilistic Generative Models

Assume $p(\mathbf{x}|C_i) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ - same covariance matrix

we get:

$$P(C_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0),$$

with:

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2),$$
 $w_0 = -\frac{1}{2}\mu_1^T\mathbf{\Sigma}^{-1}\mu_1 + \frac{1}{2}\mu_2^T\mathbf{\Sigma}^{-1}\mu_2 + \ln\frac{P(C_1)}{P(C_2)}.$

Luca locchi 7. Probabilistic models for classification

Probabilistic Generative Models

Maximum likelihhod solution for 2 classes

Assuming $P(C_1) = \pi$ (thus $P(C_2) = 1 - \pi$), $P(\mathbf{x}|C_i) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$

Given data set $D = \{(\mathbf{x}_n, t_n)_{n=1}^N\}$, $t_n = 1$ if \mathbf{x}_n belongs to class C_1 , $t_n = 0$ if \mathbf{x}_n belongs to class C_2

Let N_1 be the nhumber of samples in D belonging to C_1 and N_2 be the number of samples in C_2 ($N_1 + N_2 = N$)

Likelihood function

$$P(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^N [\pi \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_1, \boldsymbol{\Sigma})]^{t_n} [(1-\pi)\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_2, \boldsymbol{\Sigma})]^{(1-t_n)}$$

Luca locchi

7. Probabilistic models for classification

7 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Probabilistic Generative Models

Maximum likelihhod solution for 2 classes Maximizing log likelihood function, we obtain

$$\pi = \frac{N_1}{N}$$

$$m{\mu}_1 = rac{1}{N_1} \sum_{n=1}^N t_n \mathbf{x}_n \qquad m{\mu}_2 = rac{1}{N_2} \sum_{n=1}^N (1-t_n) \mathbf{x}_n$$

$$\mathbf{\Sigma} = \frac{N_1}{N} S_1 + \frac{N_2}{N} S_2$$

with
$$S_i = \frac{1}{N_i} \sum_{n \in C_i} (\mathbf{x}_n - \boldsymbol{\mu}_i) (\mathbf{x}_n - \boldsymbol{\mu}_i)^T$$
, $i = 1, 2$.

Note: details in C. Bishop. PRML. Section 4.2.2

Luca locchi

7. Probabilistic models for classification

8 / 17

Probabilistic Generative Models

Decision rule: $c = C_1 \iff P(c = C_1 | \mathbf{x}) > 0.5$

Luca locchi

7. Probabilistic models for classification

9 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Probabilistic Discriminative Models

Estimate directly $P(C_i|\mathbf{x})$

Logistic regression is a classification method based on maximum likelihood.

Logistic regression

Two classes

Given data set D, consider $\{\phi_n, t_n\}$, with $t_n \in \{0, 1\}$ and $\phi_n = \phi(\mathbf{x}_n)$, $n = 1, \dots, N$

Likelihood function:

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$

with
$$y_n = p(C_1|\phi_n) = \sigma(\mathbf{w}^T\phi_n)$$

Luca locchi

7. Probabilistic models for classification

11 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Logistic regression

Cross-entropy error function

$$E(\mathbf{w}) \equiv -\ln p(\mathbf{t}|\mathbf{w}) = -\sum_{n=1}^{N} [t_n \ln y_n + (1-t_n) \ln(1-y_n)]$$

Gradient of the error with respect to ${\bf w}$

$$abla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

Luca locchi

7. Probabilistic models for classification

12 / 17

Iterative reweighted least squares

Apply Newton-Raphson iterative optimization for minimizing $E(\mathbf{w})$.

$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

 $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix of $E(\mathbf{w})$ (second derivatives with respect to \mathbf{w}).

Luca locchi

7. Probabilistic models for classification

13 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Iterative reweighted least squares

$$\nabla E(\mathbf{w}) = \mathbf{\Phi}^T(\mathbf{y} - \mathbf{t})$$

$$oldsymbol{H} =
abla
abla E(\mathbf{w}) = \sum_{n=1}^N y_n (1 - y_n) \phi_n \phi_n^T = oldsymbol{\Phi}^T oldsymbol{R} oldsymbol{\Phi}$$

with $\mathbf{t} = (t_1, ..., t_n)^T$, $\mathbf{y} = (y_1, ..., y_n)^T$,

R: diagonal matrix with $R_{nn} = y_n(1 - y_n)$,

$$oldsymbol{\Phi} = \left(egin{array}{c} \phi_1^{\mathcal{T}} \ \ldots \ \phi_N^{\mathcal{T}} \end{array}
ight)$$

Luca locchi

7. Probabilistic models for classification

Iterative reweighted least squares

Iterative method:

- 1. Initialize w
- 2. Repeat until termination condition

$$\mathbf{w} \leftarrow \mathbf{w} - (\mathbf{\Phi}^{T} \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{T} (\mathbf{y} - \mathbf{t})$$

Luca locchi

7. Probabilistic models for classification

15 / 17

Sapienza University of Rome, Italy - Machine Learning (2018/2019)

Multiclass logistic regression

$$P(C_k|\phi) = y_k(\phi) = \frac{exp(a_k)}{\sum_j exp(a_j)}$$

with $a_k = \mathbf{w}_k^T \phi$.

Discriminative model

$$P(\mathbf{T}|\mathbf{w}_1,...\mathbf{w}_K) = \prod_{n=1}^{N} \prod_{k=1}^{K} P(C_k|\phi_n)^{t_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{nk}^{t_{nk}}$$

with $y_{nk} = y_k(\phi_n)$ and **T** $N \times K$ matrix of t_{nk} .

Luca locchi

7. Probabilistic models for classification

Multiclass logistic regression

Cross-entropy error function

$$E(\mathbf{w}_1, \dots \mathbf{w}_K) = -\ln P(\mathbf{T}|\mathbf{w}_1, \dots \mathbf{w}_K) = -\sum_{n=1}^N \sum_{k=1}^K t_{nk} \ln y_{nk}$$

Iterative algorithm with gradient $\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots \mathbf{w}_K) = \dots$ and Hessian matrix $\nabla_{\mathbf{w}_k} \nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots \mathbf{w}_K) = \dots$

Luca locchi

7. Probabilistic models for classification

17 / 17