HW7

Daniel Ginsburg

1

In this equation a=1, b=2, and d=0. Thus, $a>b^d$, and therefore the O(n) is $=n^{\log_b(a)}=n^{\log_2(2)}=n^1=n$.

2

Let n be the position in the array containing the last valid integer. First you look for an ∞ . You do this by looking at the 2^{ith} integer as i increases starting from 0, until you hit an ∞ . You know that $i \leq log_2(n) + 1$. Thus

starting from 0, until you hit an ∞ . You know that $i \leq log_2(n) + 1$. Thus the highest possible position you will check is around arr[2n], and it will be done in $O(\log(n))$ time. Once you find the ∞ , you do a binary search (with 1 and 2n as the start and end) to find the x (if it is in the array). You assume ∞ is bigger than x. This operation is also O(log(2n)) = O(log(n)) because $log_2(2n) = log_2(n) + 1$. Because both operations are $O(\log(n))$, the total run time is $O(\log(n))$.