Chapitre 11: Matrices

Dans ce chapitre, \mathbb{K} est un corps commutatif (souvent un sous corps de \mathbb{C}). Les lettres n, p, q... désignent des éléments de \mathbb{N}^* .

I Définition

A) Matrice

Une matrice de type (n,p) à coefficients dans $\mathbb K$ est une famille $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ d'éléments de $\mathbb K$ indexée par $[\![1,n]\!] \times [\![1,p]\!]$. Leur ensemble est noté $M_{n,p}(\mathbb K)$; $M_{n,n}(\mathbb K)$ est noté aussi $M_n(\mathbb K)$

B) Représentation d'une matrice

Une matrice $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ de $M_{n,p}(\mathbb{K})$ est représentée par un tableau à n lignes, p colonnes de sorte que, pour tout $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$, $a_{i,j}$ est placé sur la i-ème ligne de la j-ème colonne.

Ainsi:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \in M_{n,p}(\mathbb{K})$$

La *i*-ème ligne de A est $(a_{i,1}, a_{i,2}...a_{i,p}) \in M_{1,p}(\mathbb{K})$ (matrice ligne) La *j*-ème colonne de A est $(a_{1,j}, a_{2,j}...a_{n,j}) \in M_{n,1}(\mathbb{K})$ (matrice colonne) Une matrice de type (n,n) s'appelle une matrice carrée d'ordre n.

II Matrice d'une famille de vecteurs dans une base

Ici, E est un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit $v \in E$, on lui associe la matrice colonne $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$ de ses composantes dans la base \mathfrak{B}_E

L'application :
$$\varphi: E \to M_{p,1}(\mathbb{K})$$
 est évidemment bijective (d'inverse $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} \mapsto \sum_{i=1}^p x_i e_i$)
$$v \mapsto \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$

Plus généralement, étant donnée une famille $\mathfrak{F}=(v_1,v_2...v_q)$ d'éléments de E, on introduit la matrice $A\in M_{p,q}(\mathbb{K})$ telle que, pour tout $j\in [1,q]$, la j-ème colonne de A soit la colonne des composantes de v_j dans la base \mathfrak{B}_E . Cette matrice sera notée $\mathrm{mat}(\mathfrak{F},\mathfrak{B}_E)$.

Exemple:

$$P = 1 - 2X$$
; $Q = 3 + X^2$; $R = 1 + X + X^2$

Matrice de (P,Q,R) dans la base naturelle de $\mathbb{R}_2[X]$ $((1,X,X^2))$:

$$\begin{pmatrix} 1 & 3 & 1 \\ -2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

C'est aussi la matrice de ((1,-2,0),(3,0,1),(1,1,1)) dans la base canonique de \mathbb{R}^3 .

III Matrice d'une application linéaire dans des bases

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ...e_n)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ... f_n)$.

Soit $\varphi \in L(E,F)$

Définition:

La matrice de φ dans les bases \mathfrak{B}_E et \mathfrak{B}_F est, par définition, la matrice à n lignes, p colonnes, qui donne, par colonne, les $\varphi(e_j)$ dans la base \mathfrak{B}_F :

C'est $mat((\varphi(e_1), \varphi(e_2)...\varphi(e_p)), \mathfrak{B}_F)$, notée $mat(\varphi, \mathfrak{B}_E, \mathfrak{B}_F)$

Proposition : la matrice $A \in M_{n,p}(\mathbb{K})$ détermine une unique application linéaire $\varphi \in L(E,F)$ telle que $A = \max(\varphi, \mathfrak{B}_F, \mathfrak{B}_F)$.

C'est le fait que la donnée des images des vecteurs de \mathfrak{B}_E détermine une et une seule application linéaire.

Ainsi, l'application $\phi_{\mathfrak{B}_{E},\mathfrak{B}_{F}}: L(E,F) \to M_{n,p}(\mathbb{K})$ est bijective. $\varphi \mapsto \operatorname{mat}(\varphi,\mathfrak{B}_{F},\mathfrak{B}_{F})$

Cas particulier : Si E = F et $\mathfrak{B}_E = \mathfrak{B}_F$, alors $mat(\varphi, \mathfrak{B}_E, \mathfrak{B}_E)$, notée $mat(\varphi, \mathfrak{B}_E)$ est la matrice de φ dans la base \mathfrak{B}_E

IV Le \mathbb{K} -ev $M_{n,p}(\mathbb{K})$.

Idée : transporter avec $\phi_{\mathfrak{B}_{E},\mathfrak{B}_{F}}$ la structure de \mathbb{K} -ev de L(E,F) de sorte que $\phi_{\mathfrak{B}_{E},\mathfrak{B}_{F}}$ devienne un isomorphisme (et pas seulement une bijection)

A) Somme

Etude:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit *F* un \mathbb{K} -ev de dimension *n*, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ... f_n)$.

Soit $f \in L(E, F)$, de matrice $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ dans \mathfrak{B}_E et \mathfrak{B}_F .

Soit $g \in L(E,F)$, de matrice $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ dans \mathfrak{B}_E et \mathfrak{B}_F .

Alors, pour tout $j \in [1, p]$:

$$(f+g)e_j = f(e_j) + g(e_f) = \sum_{i=1}^n a_{i,j} f_i + \sum_{i=1}^n b_{i,j} f_i = \sum_{i=1}^n (a_{i,j} + b_{i,j}) f_i$$

La matrice de f+g dans \mathfrak{B}_E , \mathfrak{B}_F est donc la matrice $C=(c_{i,j})_{\substack{1\leq i\leq n\\1\leq i\leq n}}$ définie par :

$$\forall i \in [1, n], \forall j \in [1, p], c_{i,j} = a_{i,j} + b_{i,j}$$

Définition:

Soient $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ et $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ deux éléments de $M_{n,p}(\mathbb{K})$. A + B est la

 $\text{matrice } C = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \text{ telle que } \forall (i,j) \in \left[1,n\right] \times \left[1,p\right], c_{i,j} = a_{i,j} + b_{i,j}.$

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ..., f_n)$.

Soient $f, g \in L(E, F)$

Alors $mat(f + g, \mathfrak{B}_E, \mathfrak{B}_F) = mat(f, \mathfrak{B}_E, \mathfrak{B}_F) + mat(g, \mathfrak{B}_E, \mathfrak{B}_F)$

Démonstration : résulte de l'étude.

B) Produit par un scalaire

L'étude est analogue à celle de la somme, avec $f \in L(E,F)$ et $\lambda \in \mathbb{K}$

Définition:

Soient
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}, \ \lambda \in \mathbb{K}$$
.

 λA est la matrice $A' = (a'_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ telle que $\forall (i,j) \in [[1,n]] \times [[1,p]], a'_{i,j} = \lambda a_{i,j}$.

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit $f \in L(E,F)$

Alors $mat(\lambda.f, \mathfrak{B}_E, \mathfrak{B}_F) = \lambda.mat(f, \mathfrak{B}_E, \mathfrak{B}_F)$

C) Le \mathbb{K} -ev $M_{n,p}(\mathbb{K})$

Théorème:

- $(M_{n,p}(\mathbb{K}),+,.)$ est un \mathbb{K} -ev
- Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Alors $\phi_{\mathfrak{B}_{E},\mathfrak{B}_{F}}: L(E,F) \to M_{n,p}(\mathbb{K})$ est un isomorphisme de \mathbb{K} -ev. $\varphi \mapsto \operatorname{mat}(\varphi,\mathfrak{B}_{E},\mathfrak{B}_{F})$

Démonstration:

- Vérification immédiates des différentes règles de calcul dans un \mathbb{K} -ev (le neutre est noté $0_{M_{n,n}(\mathbb{K})}$, matrice dont tout les coefficients sont nuls)
- Idem

Cas particulier:

Si $E = \mathbb{K}^p$ muni de sa base canonique \mathfrak{B}_p

Et $F = \mathbb{K}^n$ muni de sa base canonique \mathfrak{B}_n

Alors l'isomorphisme $\phi: L(\mathbb{K}^p, \mathbb{K}^n) \to M_{n,p}(\mathbb{K})$ est l'isomorphisme $f \mapsto \operatorname{mat}(f, \mathfrak{B}_p, \mathfrak{B}_p)$

canonique de $L(\mathbb{K}^p, \mathbb{K}^n)$ vers $M_{n,p}(\mathbb{K})$.

D) Dimension

Théorème :

 $M_{n,p}(\mathbb{K})$ est de dimension $n \times p$, une base naturelle de $M_{n,p}(\mathbb{K})$ étant la famille des $E_{i,j}$ pour $(i,j) \in \left[|1,n| \right] \times \left[|1,p| \right]$ où $E_{i,j}$ est la matrice de $M_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls sauf celui d'indice (i,j) qui vaut 1.

Démonstration:

Repose sur le fait que pour toute matrice $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$, $A = \sum_{i,j} a_{i,j} E_{i,j}$.

Conséquence:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Alors L(E,F) est de dimension $n \times p$.

Démonstration : L(E,F) est isomorphe à $M_{n,p}(\mathbb{K})$.

V Produit matriciel

A) Définition

Etude:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ... f_n)$.

Soit G un \mathbb{K} -ev de dimension m, muni d'une base $\mathfrak{B}_G = (g_1, g_2, ... g_m)$.

Soit $\psi: E \to G$ linéaire.

Soit $\varphi: G \to F$ linéaire.

Alors $\varphi \circ \psi$ est linéaire de E dans F.

Soit
$$A = \max(\varphi, \mathfrak{B}_G, \mathfrak{B}_E) = (a_{i,i}) \in M_{n,m}(\mathbb{K})$$

Soit
$$B = \max(\psi, \mathfrak{B}_E, \mathfrak{B}_G) = (b_{i,j}) \in M_{m,p}(\mathbb{K})$$

Soit
$$C = \max(\varphi \circ \psi, \mathfrak{B}_E, \mathfrak{B}_E) = (c_{i,i}) \in M_{n,n}(\mathbb{K})$$

Pour tout $j \in [1, p]$, on a:

$$\varphi \circ \psi(e_{j}) = \varphi(\psi(e_{j})) = \varphi\left(\sum_{k=1}^{m} b_{k,j} g_{k}\right) = \sum_{k=1}^{m} b_{k,j} \varphi(g_{k})$$

$$= \sum_{k=1}^{m} b_{k,j} \left(\sum_{i=1}^{n} a_{i,k} f_{i}\right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{n} a_{i,k} b_{k,j} f_{i}\right)$$

$$= \sum_{\substack{i \in [[1,m]] \\ k \in [1,m]}} a_{i,k} b_{k,j} f_{i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{m} a_{i,k} b_{k,j} f_{i}\right)$$

Donc
$$\forall i \in [1, n], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$$

Donc
$$\forall (i, j) \in [[1, n]] \times [[1, p]], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$$

Définition

Soit $A \in M_{n,m}(\mathbb{K})$, $B \in M_{m,p}(\mathbb{K})$. On note $A \times B$ la matrice C, élément de

$$M_{n,p}(\mathbb{K})$$
, définie par $\forall i \in [1, n], \forall j \in [1, p], c_{i,j} = \sum_{k=1}^{m} a_{i,k} b_{k,j}$

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit G un \mathbb{K} -ev de dimension m, muni d'une base \mathfrak{B}_G .

Soit $\psi \in L(E,G)$, $\varphi \in L(G,F)$. Alors:

 $mat(\varphi \circ \psi, \mathfrak{B}_{E}, \mathfrak{B}_{E}) = mat(\varphi, \mathfrak{B}_{G}, \mathfrak{B}_{E}) \times mat(\psi, \mathfrak{B}_{E}, \mathfrak{B}_{G})$

Exemple:

$$\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} 3 & -1 \\ 4 & 7 \end{pmatrix} = \begin{pmatrix} -1 & -8 \\ 22 & 26 \end{pmatrix}$$

B) Composantes de l'image d'un vecteur

Théorème:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit *F* un \mathbb{K} -ev de dimension *n*, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ... f_n)$.

Soit $\varphi \in L(E,F)$, $A = \max(\varphi, \mathfrak{B}_E, \mathfrak{B}_E)$

Soit $u \in E$, $X \in M_{p,1}(\mathbb{K})$ la colonne des composantes de u dans \mathfrak{B}_E .

Soit $v \in F$, $Y \in M_{n,1}(\mathbb{K})$ la colonne des composantes de v dans \mathfrak{B}_F .

On a l'équivalence : $v = \varphi(u) \Leftrightarrow Y = A \times X$

Démonstration :

Notons
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
, $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$, $Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

On a:
$$u = \sum_{j=1}^{p} x_j e_j$$
. Donc $\varphi(u) = \sum_{j=1}^{p} x_j \varphi(e_j) = \sum_{j=1}^{p} x_j \left(\sum_{i=1}^{n} a_{i,j} f_i\right) = \sum_{i=1}^{n} \left(\sum_{\substack{j=1 \ i-\text{eme composante} \\ e \neq (u) \text{ finds } e \text{ has } e \text$

Ainsi:

 $v = \varphi(u) \Leftrightarrow v \text{ et } \varphi(u) \text{ ont mêmes composantes dans } \mathfrak{B}_{F}$

$$\Leftrightarrow \forall i \in [1, n], y_i = \sum_{j=1}^p a_{i,j} x_j$$
$$\Leftrightarrow Y = A \times X$$

En effet:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^p a_{1,j} x_j \\ \sum_{j=1}^p a_{2,j} x_j \\ \vdots \\ \sum_{j=1}^p a_{n,j} x_j \end{pmatrix}$$

Exemple:

Soit $\varphi \in L(\mathbb{R}^2)$ de matrice $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ dans la base canonique \mathfrak{B}_2 de \mathbb{R}^2

Notons $\mathfrak{B}_2 = (e_1, e_2)$; $\varphi(e_1) = (1,2)$ $\varphi(e_2) = (3,4)$

Pour tout (x, y) de \mathbb{R}^2 , on a $\varphi(x, y) = (x', y')$

Avec
$$A \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Soit $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+3y \\ 2x+4y \end{pmatrix}$

C) Propriétés du produit

Proposition:

Pour tous $A, A' \in M_{n,p}(\mathbb{K}), B, B' \in M_{p,q}(\mathbb{K}), C \in M_{q,r}(\mathbb{K}), \lambda \in \mathbb{K}$, on a :

(1)
$$(A \times B) \times C = A \times (B \times C) = A \times B \times C$$

(2)
$$(A + A') \times B = A \times B + A' \times B$$

(3)
$$A \times (B + B') = A \times B + A \times B'$$

(4)
$$(\lambda A) \times B = \lambda . (A \times B) = A \times (\lambda . B)$$

(5)
$$A \times I_p = A$$
 et $I_p \times B = B$

$$\text{Où } I_p = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} = (\delta_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \text{ avec } \delta_{i,j} = 1 \text{ si } i = j \text{ , 0 sinon.}$$

Démonstration:

En passant par les applications linéaires, par exemple pour (2) :

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit G un \mathbb{K} -ev de dimension q, muni d'une base \mathfrak{B}_G .

Soient $\varphi, \varphi' \in L(E, F)$ de matrices A, A' dans les bases \mathfrak{B}_E et \mathfrak{B}_F .

Soit $\psi \in L(G, E)$ de matrice B dans les bases \mathfrak{B}_G et \mathfrak{B}_E .

Alors:

$$(A + A') \times B = \max((\varphi + \varphi') \circ \psi, \mathfrak{B}_{G}, \mathfrak{B}_{F})$$

$$= \max(\varphi \circ \psi + \varphi' \circ \psi, \mathfrak{B}_{G}, \mathfrak{B}_{F})$$

$$= \max(\varphi \circ \psi, \mathfrak{B}_{G}, \mathfrak{B}_{F}) + \max(\varphi' \circ \psi, \mathfrak{B}_{G}, \mathfrak{B}_{F})$$

$$= A \times B + A' \times B$$

(On procède de la même manière pour les autres formules)

La démonstration directe sans passer pas les applications linéaires est pénible.

Remarque : I_p s'appelle la matrice unité d'ordre p.

Attention : il n'y a pas commutativité en général

• $A \times B$ peut être défini mais pas $B \times A$

Exemple: A de type (n, p), B de type (p, q) avec $q \neq n$

• $A \times B$ et $B \times A$ peuvent être définies mais pas de même type

Exemple: A de type (n, p), B de type (p, n) avec $p \neq n$

• $A \times B$ et $B \times A$ peuvent être définies, de même type mais différentes.

Exemple: A de type (n, n), B de type (n, n):

$$\begin{pmatrix} 1 & -1 \\ 7 & -7 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 7 & -7 \end{pmatrix} = \begin{pmatrix} 15 & -15 \\ 15 & -15 \end{pmatrix}$$

Il n'y a pas intégrité non plus (voir exemple ci-dessus)

VI La \mathbb{K} -algèbre $M_n(\mathbb{K})$

A) Rappel

- $M_n(\mathbb{K}) = M_{n,n}(\mathbb{K})$: ensemble des matrices d'ordre n à coefficients dans \mathbb{K} .
- Une \mathbb{K} -algèbre est un ensemble A muni de deux lois de composition interne +, \times et d'une loi à opérateurs dans \mathbb{K} tels que :
 - (A,+,.) est un \mathbb{K} -ev.
 - \times est associative, distributive sur + et, pour tout $\lambda \in \mathbb{K}$, pour tous, $a,b \in A$, $(\lambda a) \times b = \lambda . (a \times b) = a \times (\lambda . b)$
 - il existe un neutre 1_A pour ×

(exemples : \mathbb{K} , $\mathfrak{F}(\mathbb{K}, \mathbb{K})$, $\mathbb{K}[X]$)

B) Théorème

- $(M_n(\mathbb{K}), +, \times, .)$ est une \mathbb{K} -algèbre
- Si E est un \mathbb{K} -ev de dimension n muni d'une base \mathfrak{B}_E , alors l'application $\phi_{\mathfrak{B}_E}: L(E) \to M_n(\mathbb{K})$ est un isomorphisme de \mathbb{K} -algèbre. $\varphi \mapsto \operatorname{mat}(\varphi, \mathfrak{B}_E)$

 $((L(E), +, \circ, .)$ est une \mathbb{K} -algèbre)

Démonstration:

- On sait que $(M_n(\mathbb{K}),+,.)$ est un \mathbb{K} -ev (de dimension n^2). De plus, selon le paragraphe précédent, \times est une loi de composition interne sur $M_n(\mathbb{K})$, associative, distributive sur +, admet comme élément neutre I_n , et « les scalaires sortent des produits ».
- On sait déjà que $\phi_{\mathfrak{D}_E}$ est un isomorphisme de \mathbb{K} -ev. De plus, pour tous $\varphi, \psi \in L(E)$:

$$\begin{aligned} \phi_{\mathfrak{B}_{E}}(\varphi \circ \psi) &= \mathrm{mat}(\varphi \circ \psi, \mathfrak{B}_{E}) = \mathrm{mat}(\varphi, \mathfrak{B}_{E}) \times \mathrm{mat}(\psi, \mathfrak{B}_{E}) = \phi_{\mathfrak{B}_{E}}(\varphi) \times \phi_{\mathfrak{B}_{E}}(\psi), \text{ et } \\ \phi_{\mathfrak{B}_{E}}(\mathrm{Id}_{E}) &= \mathrm{mat}(\mathrm{Id}_{E}, \mathfrak{B}_{E}) = I_{n} \end{aligned}$$

Remarque : si on note \mathfrak{B}'_E une autre base de E, alors l'application $L(E) \to M_n(\mathbb{K})$ est toujours un isomorphisme de \mathbb{K} -ev mais plus de \mathbb{K} -algèbre $\varphi \mapsto \operatorname{mat}(\varphi, \mathfrak{B}_E, \mathfrak{B}'_E)$

 $(\operatorname{car} \operatorname{mat}(\operatorname{Id}_{E}, \mathfrak{B}_{E}, \mathfrak{B}'_{E}) \neq I_{n})$

Exemple: Dans
$$\mathbb{R}^2$$
, $\mathfrak{B} = [(1,0),(0,1)]$ et $\mathfrak{B}' = [(1,2),(3,1)]$

$$mat(Id_E,\mathfrak{B},\mathfrak{B}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad mat(Id_E,\mathfrak{B}',\mathfrak{B}') = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$mat(Id_E,\mathfrak{B}',\mathfrak{B}) = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \quad mat(Id_E,\mathfrak{B},\mathfrak{B}') = \frac{1}{5} \begin{pmatrix} -1 & 3 \\ 2 & -1 \end{pmatrix}$$

C) Conséquences : règles de calcul

• Règles habituelles de l'anneau $(M_n(\mathbb{K}), +, \times)$

du
$$\mathbb{K}$$
-ev $(M_n(\mathbb{K}),+,.)$

« Les scalaires sortent des produits »

(C'est-à-dire les règles habituewlles d'une K-algèbre)

• Notation habituelle dans un anneau :

Pour
$$A \in M_n(\mathbb{K})$$
,
$$\begin{cases} A^0 = I_n \\ \forall k \in \mathbb{N}, A^{k+1} = A^k A \end{cases}$$

• Et (toujours dans l'anneau), si $A, B \in M_n(\mathbb{K})$ sont deux éléments qui commutent, alors :

$$\forall m \in \mathbb{N}, (A+B)^m = \sum_{k=0}^m C_m^k A^k B^{m-k}$$

et $\forall m \in \mathbb{N}^*, A^m - B^m = (A-B) \times (A^{m-1} + A^{m-2}B + ... + B^{m-1})$

Exemple:

Soit
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
, calculer A^k .

Première méthode : chercher une récurrence en calculant les premières valeurs, puis la monter et donner le résultat.

Autre méthode, plus simple : On a en effet :

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix} = 3I_3 + \underbrace{\begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}}_{R}$$

On a:
$$B^0 = I_3$$
 $B^1 = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ $B^2 = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $B^3 = 0$

Donc, comme I_3 et B commutent (I_3 commute avec tout le monde), on a :

$$A^{k} = (3I_{3} + B)^{k} = \sum_{p=0}^{k} C_{k}^{p} (3I_{3})^{k-p} B^{p} = \sum_{p=0}^{k} C_{k}^{p} (3)^{k-p} B^{p}$$

$$(\text{pour } k \ge 2) = C_{k}^{0} 3^{k-0} B^{0} + C_{k}^{1} 3^{k-1} B + C_{k}^{2} 3^{k-2} B^{2}$$

$$= 3^{k} I_{3} + k 3^{k-1} B + \frac{k(k-1)}{2} 3^{k-2} B^{2}$$

$$= 3^{k} 2k 3^{k-1} k 3^{k-1} + 2k(k-1)3^{k-2}$$

$$0 \quad 3^{k} \quad 2k 3^{k-1}$$

$$0 \quad 0 \quad 3^{k}$$

VII Transposition

A) Définition

Soit $A \in M_{n,p}(\mathbb{K})$, disons $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$.

La transposée de A est la matrice ${}^{t}A \in M_{p,n}(\mathbb{K})$ définie par :

$${}^{t}A = (a'_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}} \text{ où } \forall i \in \llbracket 1, n \rvert \} \forall j \in \llbracket 1, p \rvert , a'_{i,j} = a_{j,i}$$

Exemple:

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad {}^{t}A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

B) Propriétés

Pour tous $A, A \in M_{n,p}(\mathbb{K}), B \in M_{p,q}(\mathbb{K}), \lambda \in \mathbb{K}$:

$$^{t}(^{t}(A)) = A$$

$$^{t}(A+A')=^{t}A+^{t}A'$$

$$^{t}(\lambda A) = \lambda (^{t}A)$$

$$^{t}(AB)=^{t}B^{t}A$$

Démonstration : pour les trois premiers, c'est immédiat. Pour le quatrième :

Notons
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}, B = (b_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le q}}, AB = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le q}},$$

$$^{t}A = (a'_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le n}}, \ ^{t}B = (b'_{i,j})_{\substack{1 \le i \le q \\ 1 \le j \le p}}, \ ^{t}B^{t}A = (c'_{i,j})_{\substack{1 \le i \le q \\ 1 \le j \le n}}$$

Pour tous $i \in [1, n]$, $j \in [1, p]$, on a:

$$c'_{i,j} = \sum_{k=1}^{p} b'_{i,k} \ a'_{k,j} = \sum_{k=1}^{p} b_{k,i} a_{j,k} = \sum_{k=1}^{p} a_{j,k} b_{k,i} = c_{j,i}$$

Donc ${}^{t}(AB)={}^{t}B^{t}A$.

C) Matrices symétriques, antisymétriques

Soit $A \in M_n(\mathbb{K})$

A est symétrique
$$\iff \forall i \in [1, n], \forall j \in [1, n], a_{i,j} = a_{j,i} \iff^t A = A$$

A est antisymétrique $\underset{\text{déf}}{\Leftrightarrow} \forall i \in [[1, n]], \forall j \in [[1, n]], \ a_{i,j} = -a_{j,i} \Longleftrightarrow^t A = -A$

Exemple:

$$\begin{pmatrix}1&3&0\\3&2&2\\0&2&0\end{pmatrix}\text{ est symétrique,}\begin{pmatrix}0&-3&0\\3&0&2\\0&-2&0\end{pmatrix}\text{ est antisymétrique}$$

Proposition:

Les ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ des matrices symétriques et antisymétriques de $M_n(\mathbb{K})$ forment deux sous-espaces supplémentaires de $M_n(\mathbb{K})$, de dimensions $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$:

$$S_n(\mathbf{K}) = \mathrm{Vect} \left(\underbrace{\begin{pmatrix} 0 & 1 & \dots & \dots & 0 \\ 1 & 0 & 0 & \dots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & 0 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}}_{\substack{n(n-1)}{2}} , \dots, \underbrace{\begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & \dots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & 0 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}}_{n}, \dots, \underbrace{\begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 0 & 0 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}}_{n}, \dots \right)$$

Et cette famille est évidemment libre est génératrice

De même, $\dim A_n(\mathbb{K}) = \frac{n(n-1)}{2}$ (même famille que $S_n(\mathbb{K})$ en enlevant les n derniers et en remplaçant le 1 « du haut » par -1 dans les autres)

Donc dim $A_n(\mathbb{K})$ + dim $S_n(\mathbb{K}) = n^2$

De plus, si $M \in A_n(\mathbb{K}) \cap S_n(\mathbb{K})$, alors évidemment $M = 0_{M_n(\mathbb{K})}$

Donc $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont en somme directe, et $A_n(\mathbb{K}) \oplus S_n(\mathbb{K}) = M_n(\mathbb{K})$

VIII Matrices inversibles

A) Définitions – rappels

Soit $A \in M_n(\mathbb{K})$

A est inversible $\underset{Abf}{\Leftrightarrow} \exists B \in M_n(\mathbb{K}), AB = BA = I_n$

(C'est la définition générale de l'inversibilité pour × dans un anneau)

Proposition:

Si $A \in M_n(\mathbb{K})$ est inversible, alors il existe un et un seul $B \in M_n(\mathbb{K})$ tel que $AB = BA = I_n$. Cet élément s'appelle l'inverse de A et est noté A^{-1} . (la démonstration a été faite dans le cas général pour un anneau)

Définition : l'ensemble des éléments inversibles de $M_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$. Il forme un groupe pour la loi \times . (idem, voir cours sur les anneaux)

Plus précisément :

• $GL_n(\mathbb{K})$ est stable par \times :

Si $A, B \in GL_n(\mathbb{K})$, alors $AB \in GL_n(\mathbb{K})$ et $(AB)^{-1} = B^{-1}A^{-1}$.

- Si $A \in GL_n(\mathbb{K})$, alors $A^{-1} \in GL_n(\mathbb{K})$ et $(A^{-1})^{-1} = A$
- $I_n \in GL_n(\mathbb{K})$

Remarque : si AB = BA, alors A et B sont carrées de même type. Le fait d'avoir choisi $M_n(\mathbb{K})$ pour la définition d'inversibilité n'est donc pas restrictif pour $GL_n(\mathbb{K})$.

B) Théorème essentiel

Théorème:

Soit $A \in M_n(\mathbb{K})$

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_E .

Soit E' un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B}_{E'}$.

Soit $\varphi \in L(E, E')$ de matrice A dans les bases \mathfrak{B}_E et $\mathfrak{B}_{E'}$.

Alors A est inversible si et seulement si φ est bijective. Si c'est le cas, A^{-1} est la matrice de φ^{-1} dans les bases $\mathfrak{B}_{E'}$ et \mathfrak{B}_{E} .

Démonstration:

• Supposons A inversible: on peut introduire A^{-1} et l'application linéaire $\psi: E' \to E$ de matrice A^{-1} dans les bases $\mathfrak{B}_{E'}$ et \mathfrak{B}_{E} . Alors $\varphi \circ \psi = \mathrm{Id}_{E}$ et $\psi \circ \varphi = \mathrm{Id}_{E'}$

En effet:

Donc φ est bijective et $\varphi^{-1} = \psi$

• Supposons φ bijective. On introduit φ^{-1} et $B = \max(\varphi^{-1}, \mathfrak{B}_{E'}, \mathfrak{B}_{E})$. Alors:

$$\begin{split} A \times B &= \mathrm{mat}(\varphi, \mathfrak{B}_{E}, \mathfrak{D}_{E'}) \times \mathrm{mat}(\varphi^{-1}, \mathfrak{B}_{E'}, \mathfrak{B}_{E}) \\ &= \mathrm{mat}(\varphi \circ \varphi^{-1}, \mathfrak{B}_{E'}, \mathfrak{B}_{E'}) \\ &= \mathrm{mat}(\mathrm{Id}_{E'}, \mathfrak{B}_{E'}, \mathfrak{B}_{E'}) \\ &= I_{n} \\ B \times A &= \mathrm{mat}(\varphi^{-1}, \mathfrak{B}_{E'}, \mathfrak{B}_{E}) \times \mathrm{mat}(\varphi, \mathfrak{B}_{E}, \mathfrak{B}_{E'}) \\ &= \mathrm{mat}(\varphi^{-1} \circ \varphi, \mathfrak{B}_{E}, \mathfrak{B}_{E}) \\ &= \mathrm{mat}(\mathrm{Id}_{E}, \mathfrak{B}_{E}, \mathfrak{B}_{E}) \\ &= I_{n} \end{split}$$

Donc A est inversible et $A^{-1} = B$

Cas particulier : Théorème :

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B} .

Soit $\varphi \in L(E)$, $A = mat(\varphi, \mathfrak{B})$

Alors A est inversible si et seulement si φ est bijective, et dans ce cas $A^{-1} = \max(\varphi^{-1}, \mathfrak{B})$

Conséquence:

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B} .

Alors $\phi_{\mathfrak{B}}: GL(E) \to GL_n(\overline{\mathbb{K}})$ est un isomorphisme de groupe. $\varphi \mapsto \operatorname{mat}(\varphi, \mathfrak{B})$

C) Exemples

Soit
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
. A est-elle inversible, si oui que vaut A^{-1} ?

1^{ère} méthode, exclue:

Soit
$$B = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$$
. On a les équivalences :

 $AB = BA = I_n \Leftrightarrow \{\text{système de 8 équations à 4 inconnues}\}$

2^{ème} méthode :

Soit φ l'endomorphisme de \mathbb{R}^2 de matrice A dans la base canonique \mathfrak{B}_2 . Alors, pour tout $(x,y) \in \mathbb{R}^2$, $\varphi(x,y) = (x-y,2x+y)$.

Soit $(a,b) \in \mathbb{R}^2$. On a les équivalences :

$$\varphi(x,y) = (a,b) \Leftrightarrow \begin{cases} x - y = a \\ 2x + y = b \end{cases} \Leftrightarrow \begin{cases} x = \frac{a+b}{3} \\ y = \frac{b-2a}{3} \end{cases}$$

Donc φ est bijective et φ^{-1} a pour matrice $\begin{pmatrix} 1/3 & 1/3 \\ -2/3 & 1/3 \end{pmatrix}$ dans \mathfrak{B}_2 .

Donc
$$A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$$

Autre exemple:

Soit
$$A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$$

Soit $\varphi \in L(\mathbb{R}^2)$ de matrice A dans la base canonique $\mathfrak{B}_2 = (\vec{i}, \vec{j})$

Alors $\operatorname{Im} \varphi = \operatorname{Vect}(\varphi(\vec{i}), \varphi(\vec{j})) = \operatorname{Vect}((2,1), (4,2)) = \operatorname{Vect}((2,1))$. Donc $\operatorname{Im} \varphi$ est de dimension 1. Donc φ n'est pas de rang 2, donc φ n'est pas bijective, donc A n'est pas inversible.

D) Diverses caractérisations

Ici,
$$A \in M_n(\mathbb{K})$$

1) Avec les endomorphismes

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B} . Soit $\varphi \in L(E)$ de matrice A dans la base \mathfrak{B} .

A est inversible
$$\Leftrightarrow \varphi$$
 est bijective $\Leftrightarrow \varphi$ est injective $\Leftrightarrow \varphi$ est surjective

2) Avec les colonnes

$$A$$
 est inversible \Leftrightarrow Ses colonnes forment une base de $M_{n,1}(\mathbb{K})$

$$\underset{\text{de dimension }n}{\text{Car}\,M_{n,1}(\mathbb{K})\,\text{est}}} \begin{cases} \Leftrightarrow \text{Ses colonnes forment une famille libre} \\ \Leftrightarrow \text{Ses colonnes forment une famille génératrice de } M_{n,1}(\mathbb{K}) \end{cases}$$

Démonstration de la première équivalence :

Soit ϕ l'endomorphisme de $M_{n,1}(\mathbb{K})$ de matrice A dans la base naturelle de

$$M_{n,1}(\mathbb{K})$$
: $\left(E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, E_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}\right)$

Alors:

A est inversible $\Leftrightarrow \phi$ est bijective

$$\Leftrightarrow$$
 $[\phi(E_1), \phi(E_2), ... \phi(E_n)]$ est une base de $M_{n,1}(\mathbb{K})$

Or, pour tout $j \in [1, n], \phi(E_j)$ n'est autre que la j-ème colonne de A.

Généralisation:

Soit E un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B} = (e_1, e_2, ...e_n)$.

Pour tout $j \in [1, n]$, on note v_j le vecteur de E dont les composantes dans \mathfrak{B} sont données par la j-ème colonne de A.

Alors:

A est inversible
$$\Leftrightarrow [v_1, v_2, ... v_n]$$
 est une base de E

La démonstration est la même en prenant $\phi \in L(E)$ de matrice A dans la base \mathfrak{B} (puisque $\forall j \in [1, n], v_j = \phi(e_j)$)

Cas particulier : si $E = \mathbb{K}^n$ et \mathfrak{B} est la base canonique de \mathbb{K}^n . Les v_j sont appelés les vecteurs colonnes (c'est-à-dire les colonnes vues comme *n*-uplets)

3) Avec les systèmes

A est inversible
$$\Leftrightarrow$$
 pour tout $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in M_{n,1}(\mathbb{K})$ le système $(S) : AX = B$,

où
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 est la colonne des inconnues, a une unique solution.

En effet : (S) traduit l'assertion « ϕ est bijectif, où ϕ est un endomorphisme d'un \mathbb{K} -ev E de matrice A dans une base \mathfrak{B} »

En effet : Si $\phi \in L(E)$, mat $(\phi, \mathfrak{B}) = A$, $\mathfrak{B} = (e_1, e_2, ... e_n)$, alors :

A inversible $\Leftrightarrow \phi$ est bijective

$$\Leftrightarrow \forall \vec{b} \in E, \exists! \vec{x} \in E, \phi(\vec{x}) = \vec{b}$$

$$\Leftrightarrow \forall (b_1, b_2, \dots b_n) \in \mathbb{K}^n, \exists ! (x_1, x_2, \dots x_n) \in \mathbb{K}^n, \phi(\vec{x}) = \vec{b}$$

$$\Leftrightarrow \forall (b_1, b_2, \dots b_n) \in \mathbb{K}^n, \exists (x_1, x_2, \dots x_n) \in \mathbb{K}^n, AX = B$$

Définition:

Un système AX = B où :

$$A \in GL_n(\mathbb{K})$$

$$B \in M_{n,1}(\mathbb{K})$$

 $X \in M_{n,1}(\mathbb{K})$ est la colonne des inconnues

est appelé un système de Cramer. Il admet l'unique solution $X = A^{-1}B$

4) Inversibilité à droite ou à gauche seulement

Théorème :

$$A \text{ est inversible} \Leftrightarrow \exists B \in M_n(\mathbb{K}), \ AB = I_n$$

$$\Leftrightarrow \exists B \in M_n(\mathbb{K}), \ BA = I_n$$
 Et dans ces cas là $B = A^{-1}$

$$\Leftrightarrow \exists B \in M_n(\mathbb{K}), BA = I_n$$

Démonstration : déjà, les implications de gauche à droite sont évidentes.

 $1^{\text{ère}}$ équivalence : Supposons qu'il existe $B \in M_n(\mathbb{K})$ tel que $AB = I_n$

Soit E un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B} .

Soit $\varphi \in L(E)$ de matrice A dans la base \mathfrak{B} .

Soit $\psi \in L(E)$ de matrice B dans la base \mathfrak{B} .

Alors $\varphi \circ \psi = \mathrm{Id}_E$

Donc φ est surjective : tout élément v de E s'écrit $\varphi(\psi(v))$. Donc φ est bijective. Donc A est inversible. Et on a : $AB = I_n \Rightarrow A^{-1}AB = A^{-1} \Rightarrow B = A^{-1}$.

2^{ème} équivalence : on introduit les mêmes éléments.

 $\psi \circ \varphi = \mathrm{Id}_E$. Donc φ est injective :

$$\varphi(x') = \varphi(x) \Longrightarrow \psi(\varphi(x')) = \psi(\varphi(x)) \Longrightarrow x' = x$$

Donc φ est bijective. Donc A est inversible...

5) Transposition

Proposition :

A est inversible \Leftrightarrow ^tA est inversible

Et dans ce cas, $({}^{t}A)^{-1} = {}^{t}(A^{-1})$.

Démonstration:

Supposons A inversible : $AA^{-1} = A^{-1}A = I_n$

Alors:

$$^{t}(AA^{-1})=^{t}(A^{-1}A)=^{t}I_{n};$$
 $^{t}(A^{-1})^{t}(A)=^{t}(A)^{t}(A^{-1})=I_{n}$

Donc ${}^{t}A$ est inversible, d'inverse ${}^{t}(A^{-1})$.

Réciproquement, si tA est inversible, alors ${}^t({}^tA)$ est inversible, c'est-à-dire que A est inversible.

Conséquence :

A est inversible \Leftrightarrow Ses lignes forment une base de $M_{1,n}(\mathbb{K})$

⇔ Ses lignes forment une famille libre

 \Leftrightarrow Ses lignes forment une famille génératrice de $M_{1,n}(\mathbb{K})$

 \Leftrightarrow la famille de ses vecteurs lignes ($\in \mathbb{K}^n!!$) est...

(Les vecteurs lignes de A sont les vecteurs colonnes de tA)

E) Exemples importants

1) Les matrices diagonales

On note $\operatorname{Diag}_n(\mathbb{K})$ l'ensemble des matrices diagonales d'ordre n à coefficients dans \mathbb{K} . (attention, ce n'est pas une notation standard!)

Alors $\operatorname{Diag}_n(\mathbb{K})$ est une sous algèbre de $M_n(\mathbb{K})$ (et même commutative)

Proposition:

Soit $A \in \text{Diag}_n(\mathbb{K})$:

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}.$$

Alors A est inversible si et seulement si $\forall i \in [1, n], \lambda_i \neq 0$, et dans ce cas :

$$A^{-1} = \begin{pmatrix} \lambda_1^{-1} & 0 & \dots & 0 \\ 0 & \lambda_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n^{-1} \end{pmatrix}$$

Démonstration:

- Si un des λ_i est nul, la colonne C_i est nulle, donc la famille des colonnes de A n'est pas libre. Donc A n'est pas inversible.
- Si aucun des λ_i , on introduit la matrice proposée (on la nomme B), et alors $AB = BA = I_n$. Donc A est inversible et $A^{-1} = B$

2) Les matrices triangulaires supérieures

On note $TS_n(\mathbb{K})$ l'ensemble des matrices triangulaires supérieures d'ordre n à coefficients dans \mathbb{K} , c'est-à-dire du type $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ où $i > j \Rightarrow a_{i,j} = 0$. (la notation n'est pas standard non plus)

Alors $TS_n(\mathbb{K})$ est une sous algèbre de $M_n(\mathbb{K})$ (mais non commutative)

Proposition:

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in TS_n(\mathbb{K})$$

Alors A est inversible si et seulement si ses coefficients diagonaux sont tous non nuls.

Démonstration:

• Si les $a_{i,i}$ sont tous non nuls :

$$A = \begin{pmatrix} * & - & - & - \\ 0 & * & - & - \\ \vdots & \ddots & \ddots & - \\ 0 & \dots & 0 & * \end{pmatrix}$$
 (* désigne un scalaire non nul)

Alors la famille de ses colonnes $(C_1, C_2...C_n)$ est libre :

Si $\lambda_1 C_1 + \lambda_2 C_2 + ... + \lambda_n C_n = 0$, alors, avec le dernier coefficient, $\lambda_n a_{n,n} = 0$. Donc $\lambda_n = 0$ (car $a_{n,n} \neq 0$), et ainsi de suite...

• Si l'un des $a_{i,i}$ est nul :

 $C_1, C_2...C_i$ sont i éléments d'un ensemble de dimension i-1, à savoir

l'ensemble des colonnes du type $\begin{pmatrix} x_1 \\ \vdots \\ x_{i-1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ (qui est $\mathrm{Vect}(E_1, E_2, ... E_{i-1})$, où

 $(E_1, E_2, ... E_n)$ est la base naturelle de $M_{n,1}(\mathbb{K})$

Donc $(C_1, C_2...C_i)$ est liée. Donc A n'est pas inversible.

D'où l'équivalence.

Remarque : on peut montrer que si une matrice triangulaire supérieure est inversible, alors l'inverse de cette matrice est aussi triangulaire supérieure.

3) Matrice triangulaire inférieure

On a le même résultat que pour les matrices triangulaires supérieures, avec la même démonstration (ou en remarquant que A est triangulaire supérieure si et seulement si tA est triangulaire inférieure...)

Conséquence : Un système (S) carré (c'est-à-dire du type
$$A \times \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
,

où
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 est la colonne des inconnues) qui est triangulaire (c'est-à-dire que A est

triangulaire) sans 0 sur la diagonale est de Cramer (c'est-à-dire qu'il admet une et une seule solution)

Exemple:

$$\begin{cases} \lambda_1 x_1 + \dots = b_1 \\ \lambda_2 x_2 + \dots = b_2 \\ \vdots \\ \lambda_n x_n = b_n \end{cases}$$

- Le système admet une et une seule solution lorsque les coefficients diagonaux sont tous non nuls.
- Si l'un des λ_i est nul, le système n'a pas une et une seule solution.

En effet : supposons l'un des λ_i nul. On note $k = \min\{i \in [1, n], \lambda_i = 0\}$

• Si k = n (c'est-à-dire $\lambda_n = 0$ et $\forall i < n, \lambda_i \neq 0$)

Alors:

- Si $b_n \neq 0$, le système est incompatible.
- Si b_n = 0, alors on voit qu'on peut fixer x_n quelconque et obtenir une solution (x₁,x₂...x_n) à (S) en résolvant le système (S') composé des n-1 premières équations et considéré comme d'inconnues x₁,x₂...x_{n-1} ((S') a une unique solution puisque triangulaire sans 0 sur la diagonale). Donc (S) a une infinité de solutions (avec 1 degré de liberté)
- Sinon, soit (S'') le système « sous » (strictement) l'équation $n^{\circ}k$, en tant que d'inconnues $x_{k+1}, x_{k+2}...x_n$.
 - \circ Si (S'') est incompatible, alors (S) l'est aussi.
 - \circ Si (S'') est compatible :
 - Si aucune des solutions de (S'') ne satisfait la k-ième ligne, alors (S) est incompatible.
 - Sinon, l'une au moins, (x_{k+1}, x_{k+2}...x_n) par exemple, des solutions de (S'') satisfait la k-ième ligne: on peut alors fixer arbitrairement x_k et obtenir une solution (x₁, x₂,...x_k, x_{k+1}...x_n) en résolvant le système (S''') au-dessus (strictement) de la k-ième ligne, qui est de Cramer en tant que d'inconnues x₁, x₂,...x_k. Donc (S) a une infinité de solutions (avec au moins un degré de liberté)

Autre argument:

$$(S): AX = B$$
, avec $A \in M_n(\mathbb{K})$, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$.

On va voir plus généralement que si $A \in GL_n(\mathbb{K})$, alors soit (S) n'a pas de solution, soit il en a une infinité (pour \mathbb{K} infini seulement)

En effet:

- Si (S) n'a pas de solution, alors il n'a pas de solution...!
- Sinon, il admet une solution X_0 . Montrons alors qu'il en a d'autres.

A n'est pas inversible. Soit φ l'endomorphisme canoniquement associé à A. Donc φ n'est pas injectif. Donc $\ker \varphi \neq \{0\}$. Donc l'équation $AX = 0_{M_n(\mathbb{K})}$ a des solutions autres que 0. Alors les $X_0 + \lambda U$, où U est une solution non nulle de $AX = 0_{M_n(\mathbb{K})}$ et $\lambda \in \mathbb{K}$ sont des solutions de (S).

En effet : $A \times (X_0 + \lambda U) = A \times X_0 + \lambda AU = B + 0 = B$

IX Changement de base

A) Changement de base : matrice de passage, composantes d'un vecteur

E est ici un \mathbb{K} -ev de dimension n.

Soit $\mathfrak{B} = (e_1, e_2 ... e_n)$ une base de E. (« ancienne »)

Soit $\mathfrak{B}' = (e'_1, e'_2 ... e'_n)$ une autre base de E. (« nouvelle »)

On suppose qu'on connaît les composantes des e'_{j} dans la base \mathfrak{B} . (d'où le nom d'ancienne et de nouvelle). Alors la matrice qui donne, par colonne, les composantes des vecteurs de \mathfrak{B} ' dans la base \mathfrak{B} s'appelle la matrice de passage de \mathfrak{B} à \mathfrak{B} '.

Ainsi:

 $P = \text{matrice de passage de } \mathfrak{B} \text{ à } \mathfrak{B}'.$

= la matrice des
$$(a_{i,j})$$
 de sorte que $\forall j \in [1, n], e'_j = \sum_{i=1}^n a_{i,j} e_i$

notée mat(B', B) (matrice de la famille B' dans la base B)

Proposition : $P = mat(Id_E, \mathfrak{B}', \mathfrak{B})$ (attention, la base de départ est \mathfrak{B}')

Conséquence : si P est la matrice de passage de \mathfrak{B} à \mathfrak{B} ', alors P est inversible, et P^{-1} est la matrice de passage de \mathfrak{B} ' à \mathfrak{B} .

En effet: $\operatorname{Id}_E \in GL(E)$. Donc $\operatorname{mat}(\operatorname{Id}_E, \mathfrak{B}', \mathfrak{B})$ est inversible, d'inverse $\operatorname{mat}(\operatorname{Id}_E^{-1}, \mathfrak{B}, \mathfrak{B}') = \operatorname{mat}(\operatorname{Id}_E, \mathfrak{B}, \mathfrak{B}')$ qui est la matrice de passage de \mathfrak{B}' à \mathfrak{B} .

Remarque : si \mathfrak{B} est une base de E et \mathfrak{F} une famille de n vecteurs de E, alors \mathfrak{F} est une base de E si et seulement si la matrice qui donne par colonne les composantes des vecteurs de \mathfrak{F} dans la base \mathfrak{B} est inversible.

Théorème:

Soit \mathfrak{B} une base de E, \mathfrak{B} ' une autre base de E.

Soit P la matrice de passage de \mathfrak{B} à \mathfrak{B} '.

Soit $u \in E$, X la colonne de ses composantes dans \mathfrak{B} ,

X' celle de ses composantes dans \mathfrak{B}' .

Alors X = PX' (on obtient les anciennes en fonction des nouvelles)

Démonstration:

u = u donc $u = \text{Id}_E(u)$ c'est-à-dire X = PX' (la base de départ est \mathfrak{Z}' pour Id_E !) Autre démonstration :

On note
$$P = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$. On a:

$$u = \sum_{j=1}^{n} x'_{j} e'_{j} = \sum_{j=1}^{n} x'_{j} \left(\sum_{i=1}^{n} a_{i,j} e_{i} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} x'_{j} \right) e_{i}$$

et
$$u = \sum_{i=1}^{n} x_i e_i$$

Donc
$$\forall i \in [1, n], x_i = \sum_{j=1}^n a_{i,j} x_j^i$$
. Donc $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_1^i \\ \vdots \\ x_n^i \end{pmatrix}$

Exemple:

Dans \mathbb{R}^2 muni de sa base canonique $\mathfrak{B} = (\vec{i}, \vec{j})$.

Soit C la courbe d'équation :

(E): $2x^2 + 5y^2 - 2xy = 9$ dans \mathfrak{B} (C'est-à-dire que C est l'ensemble des éléments de \mathbb{R}^2 dont les composantes (x, y) dans \mathfrak{B} vérifient (E))

Soit $\vec{I} = 2\vec{i} + \vec{j}$, $\vec{J} = \vec{i} - \vec{j}$ alors $\mathfrak{B}' = (\vec{I}, \vec{J})$ est une nouvelle base de \mathbb{R}^2 . On cherche l'équation de C dans \mathfrak{B}' .

Matrice de passage de \mathfrak{B} à \mathfrak{B}' : $\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$

Soit $u \in \mathbb{R}^2$, de composantes $\begin{pmatrix} x \\ y \end{pmatrix}$ dans \mathfrak{B} et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ dans \mathfrak{B}' .

Alors
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

On a les équivalences :

$$u \in C \Leftrightarrow 2x^2 + 5y^2 - 2xy = 9$$

$$\Leftrightarrow 2(2x'+y')^2 + 5(x'-y')^2 - 2(2x'+y')(x'-y') = 9$$

$$\Leftrightarrow 8x'^2 + 8x'y' + 2y'^2 + 5x'^2 - 10x'y' + 5y'^2 - 4x'^2 + 2y'^2 + 2x'y' = 9$$

$$\Leftrightarrow 9x'^2 + 9y'^2 = 9$$

$$\Leftrightarrow x'^2 + y'^2 = 1$$

Aspect:

B) Les formules de changement de base pour une application linéaire

Théorème :

Soit E un \mathbb{K} -ev de dimension p, et \mathfrak{B}_E , $\mathfrak{B'}_E$ deux bases de E. Soit P la matrice de passage de \mathfrak{B}_E à $\mathfrak{B'}_E$.

Soit F un \mathbb{K} -ev de dimension n, et \mathfrak{B}_F , $\mathfrak{B'}_F$ deux bases de F. Soit Q la matrice de passage de \mathfrak{B}_F à $\mathfrak{B'}_F$.

Soit $\varphi \in L(E, F)$, soit $A = \max(\varphi, \mathfrak{B}_E, \mathfrak{B}_F)$, $A' = \max(\varphi, \mathfrak{B'}_E, \mathfrak{B'}_F)$.

Alors $A' = Q^{-1}AP$

Démonstration :

$$\varphi = \mathrm{Id}_{F} \circ \varphi \circ \mathrm{Id}_{E}$$

Donc
$$\operatorname{mat}(\varphi, \mathfrak{B'}_{E}, \mathfrak{B'}_{F}) = \operatorname{mat}(\operatorname{Id}_{F}, \mathfrak{B}_{F}, \mathfrak{B'}_{F}) \times \operatorname{mat}(\varphi, \mathfrak{B}_{E}, \mathfrak{B}_{F}) \times \operatorname{mat}(\operatorname{Id}_{E}, \mathfrak{B'}_{E}, \mathfrak{B}_{E})$$

$$A' = O^{-1}AP$$

Autre démonstration (sans introduction des notations):

$$Y = AX$$
, $Y' = A'X'$

$$\int X = PX'$$

$$Y = QY'$$

Donc
$$QY' = APX'$$
. Donc $Y' = Q^{-1}APX'$. Or $Y' = A'X'$. Donc $A' = Q^{-1}AP$

Cas particulier:

Soient $\varphi \in L(E)$, \mathfrak{B} et \mathfrak{B} ' deux bases de E, et P la matrice de passage de \mathfrak{B} à \mathfrak{B} '.

Soient $A = mat(\varphi, \mathfrak{B}), A' = mat(\varphi, \mathfrak{B}')$

Alors $A' = P^{-1}AP$.

X Matrices équivalentes et rang

A) Rang d'une matrice

Soit $A \in M_{n,p}(\mathbb{K})$.

rg(A) = le rang de la famille de ses colonnes.

Proposition:

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit $\varphi \in L(E,F)$ de matrice A dans les bases \mathfrak{B}_E et \mathfrak{B}_F .

Soit $(v_1, v_2, ... v_p)$ une famille de vecteurs de F dont les composantes dans \mathfrak{B}_F sont les colonnes de A.

Alors $\operatorname{rg}(A) = \operatorname{rg}(v_1, v_2, ... v_n) = \operatorname{rg}(\varphi)$

Démonstration:

On a l'isomorphisme ϕ de $M_{n,1}(\mathbb{K})$ dans F qui envoie la base naturelle $(E_1,E_2,...E_n)$ de $M_{n,1}(\mathbb{K})$ sur \mathfrak{B}_F .

C'est-à-dire : $\phi: M_{n,1}(\mathbb{K}) \to F$

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) \mapsto \sum_{i=1}^n x_i f_i$$

Alors les v_i ne sont autres que les $\phi(C_i)$ (où $C_1, C_2, ... C_p$ sont les colonnes de A)

Or, ϕ conserve le rang (c'est un isomorphisme)

Donc
$$rg(A) = rg(C_1, C_2, ... C_p) = rg(v_1, v_2, ... v_p)$$

Or, les v_i sont les $\varphi(e_i)$, et on sait que $rg(\varphi) = rg(\varphi(e_1), \varphi(e_2), ..., \varphi(e_p))$

Donc $rg(A) = rg(v_1, v_2, ... v_n) = rg(\varphi)$

Conséquences:

Si $A \in M_{n,p}(\mathbb{K})$ et si r = rg(A), alors $r \le n$ (rang d'une famille de vecteurs dans un espace de dimension n) et $r \le p$ (rang de p vecteurs)

A est inversible si et seulement si r = n = p

A est nulle si et seulement si r = 0

B) Matrice équivalente

Définition:

Soient $A, B \in M_{n,p}(\mathbb{K})$. On dit que B est équivalente à A lorsqu'il existe $P \in GL_p(\mathbb{K})$ et $Q \in GL_p(\mathbb{K})$ telles que $B = Q^{-1}AP$

(remarque : le ⁻¹ n'est que décoratif : si Q est $GL_n(\mathbb{K})$, $Q'=Q^{-1}$ y est aussi)

Proposition:

Soient $A, B \in M_{n,p}(\mathbb{K})$

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit $\varphi \in L(E,F)$ de matrice A dans les bases \mathfrak{B}_E et \mathfrak{B}_F .

Alors B est équivalente à A si et seulement si il existe une base \mathfrak{B}'_E de E et \mathfrak{B}'_F de F telles que B soit la matrice de φ dans les bases \mathfrak{B}'_E et \mathfrak{B}'_F .

En résumé, une matrice B est équivalente à A si et seulement si elles représentent la même application linéaire dans des bases différentes.

Démonstration:

Si on trouve \mathfrak{B}'_E et \mathfrak{B}'_F telles que $B = \operatorname{mat}(\varphi, \mathfrak{B}'_E, \mathfrak{B}'_F)$, alors $B = Q^{-1}AP$ où Q est la matrice de passage de \mathfrak{B}_F à \mathfrak{B}'_F et P la matrice de passage de \mathfrak{B}_E à \mathfrak{B}'_E .

Inversement : si $B = Q^{-1}AP$, on peut introduire une base $\mathfrak{B'}_E$ de E telle que P soit la matrice de passage de \mathfrak{B}_E à $\mathfrak{B'}_E$, et une base $\mathfrak{B'}_F$ de F telle que Q soit la matrice de passage de \mathfrak{B}_F à $\mathfrak{B'}_F$. Ainsi, $B = \max(\varphi, \mathfrak{B'}_E, \mathfrak{B'}_F)$.

Proposition:

La relation « être équivalente à » sur $M_{n,p}(\mathbb{K})$ est une relation d'équivalence, c'est-à-dire réflexive, transitive et symétrique :

Réflexive : $A = I_n^{-1} A I_n$

Symétrique : Si $B = Q^{-1}AP$, alors $A = QBP^{-1} = (Q^{-1})^{-1}B(P^{-1})$

Transitive : Si $B = Q^{-1}AP$ et $C = R^{-1}BS$, alors :

 $C = R^{-1}BS = R^{-1}(Q^{-1}AP)S = (R^{-1}Q^{-1})A(PS) = (QR)^{-1}A(PS)$

C) Théorème

Soient $A, B \in M_{n,p}(\mathbb{K})$. Alors:

A et B sont équivalentes $\Leftrightarrow \operatorname{rg}(A) = \operatorname{rg}(B)$

Démonstration:

(1) Si A et B sont équivalentes :

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit $\varphi \in L(E,F)$ de matrice A dans les bases \mathfrak{B}_E et \mathfrak{B}_F .

Donc il existe une base $\mathfrak{B'}_E$ de E et $\mathfrak{B'}_F$ de F telles que B soit la matrice de φ dans les bases $\mathfrak{B'}_E$ et $\mathfrak{B'}_F$.

C'est-à-dire : $A = mat(\varphi, \mathfrak{B}_E, \mathfrak{B}_F)$ et $B = mat(\varphi, \mathfrak{B}'_E, \mathfrak{B}'_F)$

Donc $rg(A) = rg(\varphi) = rg(B)$

(2) Supposons que rg(A) = rg(B) = r

Lemme : Soit $A \in M_{n,p}(\mathbb{K})$, notons r = rg(A)

On va montrer que A est équivalente à :

$$J_{n,p,r} = \begin{pmatrix} 1 & 0 & \dots & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & 1 & 0 & & \vdots \\ \vdots & & 0 & 0 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & \dots & 0 \end{pmatrix}$$

C'est-à-dire
$$J_{n,p,r} = (\gamma_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
 où
$$\begin{cases} \gamma_{i,i} = 1 \text{ si } i \le r \\ \gamma_{i,j} = 0 \text{ si } i \ne j \text{ ou } (i = j \text{ et } i > r) \end{cases}$$

Soit E un \mathbb{K} -ev de dimension p, muni d'une base \mathfrak{B}_E .

Soit F un \mathbb{K} -ev de dimension n, muni d'une base \mathfrak{B}_F .

Soit $\varphi \in L(E,F)$ de matrice A dans les bases \mathfrak{B}_E et \mathfrak{B}_F .

Alors $rg(\varphi) = r$. Donc $dim(\ker \varphi) = p - r$. Soit $(u_{r+1}, ... u_p)$ une base de $\ker \varphi$.

Soit G un supplémentaire de $\ker \varphi$ dans E.

Donc $\dim(G) = r$. Soit $(u_1, ... u_r)$ une base de G.

Alors $\mathfrak{B}'_E = (u_1, \dots u_r, u_{r+1}, \dots u_p)$ est une base de E.

Soient $v_1,...v_r$ les images par φ de $u_1,...u_r$.

Alors $(v_1,...v_r)$ est libre. En effet :

$$\alpha_{1}v_{1} + \alpha_{2}v_{2} + ... + \alpha_{r}v_{r} = 0 \Rightarrow \varphi(\alpha_{1}u_{1} + \alpha_{2}u_{2} + ... + \alpha_{r}u_{r}) = 0$$

$$\Rightarrow \alpha_{1}u_{1} + \alpha_{2}u_{2} + ... + \alpha_{r}u_{r} \in \ker \varphi \cap G$$

$$\Rightarrow \alpha_{1}u_{1} + \alpha_{2}u_{2} + ... + \alpha_{r}u_{r} = 0$$

$$\Rightarrow \forall i \in [1, r], \alpha_{i} = 0$$

On complète alors cette famille en une base de $F: \mathfrak{B}'_F = (v_1,...v_n)$

Ainsi, par construction : $J_{n,p,r} = mat(\varphi, \mathfrak{B'}_E, \mathfrak{B'}_F)$

Donc A est équivalente à $J_{n,p,r}$

D'où, pour la démonstration du théorème :

A et B sont toutes les deux de rang r, donc équivalentes à $J_{n,p,r}$. Donc A et B sont équivalentes.

Théorème:

Soit $A \in M_{n,p}(\mathbb{K})$. Alors $rg(A) = rg(^tA)$:

Notons $r = \operatorname{rg}(A)$. Alors, comme $J_{n,p,r}$ est de rang r, A est équivalente à $J_{n,p,r}$. Il existe donc $P \in GL_p(\mathbb{K})$ et $Q \in GL_n(\mathbb{K})$ tels que $A = Q^{-1}J_{n,p,r}P$

Donc ${}^tA = {}^tP^tJ_{n,p,r}{}^t(Q^{-1})$. Or, ${}^tP \in GL_p(\mathbb{K})$, ${}^t(Q^{-1}) = ({}^tQ)^{-1}$ et ${}^tQ \in GL_n(\mathbb{K})$ et ${}^tJ_{n,p,r} = J_{p,n,r}$ (qui est de rang r)

Donc ${}^{t}A$ est équivalente à une matrice de rang r. donc $rg({}^{t}A) = r$

Donc $rg(A) = rg(^tA)$.

Ainsi, le rang d'une matrice est aussi le rang de la famille de ses lignes.

Recherche pratique du rang:

$$A = \begin{pmatrix} 1 & 2 & 3 & -1 & 0 \\ 2 & 1 & 2 & 1 & 0 \\ 3 & 0 & 0 & 1 & 3 \\ 4 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}. \text{ Quel est le rang de } A ?$$

Remarque: on a vu que, étant donnés $(v_1,...v_n)$ vecteurs d'un \mathbb{K} -ev E, les modifications du type $v_i \leftarrow \lambda.v_i$ avec $\lambda \neq 0$ ne modifient pas $\operatorname{Vect}(v_1,...v_n)$ et par $v_i \leftarrow v_i + \alpha.v_j$ avec $i \neq j$ $v_i \leftrightarrow v_j$

conséquent le rang. On va utiliser cette remarque sachant que le rang d'une matrice est celui de ses colonnes, mais aussi celui de ses lignes.

Donc:

$$\operatorname{rg}(A) = \operatorname{rg} \begin{pmatrix} 0 & 2 & 3 & -1 & -1 \\ 0 & 1 & 2 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ L_{2} \leftarrow L_{4} - 4L_{5} \\ L_{2} \leftarrow L_{2} - 2L_{5} \\ L_{1} \leftarrow L_{1} - L_{5} \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 0 & 2 & 3 & -1 & -1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 0 & 0 & -1 & -3 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & -1 & -3 & 3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & -1 & -3 & 3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 1 & 2 & 1 & -2 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{frg} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0$$

XI Transformations élémentaires

A) Sur les colonnes

On note C_p l'ensemble des matrices à p colonnes. Une transformation élémentaire T_C sur les colonnes d'une matrice à p colonnes est une application $T_C: C_p \to C_p$ où A' $A \mapsto A'$

est déduite de A par l'une des opérations suivantes :

*
$$c_i \leftarrow \lambda c_i \text{ avec } \lambda \neq 0$$

*
$$c_i \leftarrow c_i + \alpha c_i$$
 avec $i \neq j$

*
$$c_i \leftrightarrow c_i$$

Théorème:

Soit T_C une transformation élémentaire sur les colonnes d'une matrice à p colonnes. Alors il existe une et une seule matrice $P \in GL_p(\mathbb{K})$ telle que $\forall A \in C_p, T_C(A) = A \times P$

Démonstration:

Soit
$$A \in M_{n,p}(\mathbb{K})$$

Soit E un \mathbb{K} -ev de dimension p, muni d'une base $\mathfrak{B}_E = (e_1, e_2, ... e_p)$.

Soit F un \mathbb{K} -ev de dimension n, muni d'une base $\mathfrak{B}_F = (f_1, f_2, ..., f_n)$.

Soit
$$\varphi \in L(E, F)$$
 tel que $A = mat(\varphi, \mathfrak{B}_E, \mathfrak{B}_F)$

Soit
$$A' = T_C(A)$$

• Si T_C est la transformation $c_i \leftarrow \lambda c_i$ avec $\lambda \neq 0$.

On voit alors que $A' = mat(\varphi, \mathfrak{B}'_E, \mathfrak{B}_F)$

Où
$$\mathfrak{B'}_{E} = (e_{1}, e_{2}, ... \lambda e_{i} ... e_{p})$$

Selon les formules de changement de base, $A' = I_n^{-1}AP = AP$, où P est la matrice

de passage de
$$\mathfrak{B}_E$$
 à $\mathfrak{B'}_E$, c'est-à-dire $P = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \lambda & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$ $\leftarrow i = I_p + (\lambda - 1)E_{i,i}$

• Si T_C est la transformation $c_i \leftarrow c_i + \alpha c_i$ avec $i \neq j$

Alors, de même, $A' = \text{mat}(\varphi, \mathfrak{B}'_E, \mathfrak{B}_F)$ avec $\mathfrak{B}'_E = (e_1, e_2, ... e_i + \alpha.e_i ... e_p)$

$$A' = I_n^{-1} A P = A P \text{ où } P = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & \alpha & & \vdots \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix} \leftarrow j = I_p + \alpha . E_{j,i}$$

• Si T_C est la transformation $c_i \leftrightarrow c_j$

$$A' = \text{mat}(\boldsymbol{\varphi}, \mathfrak{B'}_E, \mathfrak{B}_F) \text{ avec } \mathfrak{B'}_E = (e_1, e_2, \dots e_j, \dots e_j, \dots e_p)$$

$$A' = I_n^{-1} A P = A P \text{ où } P = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & 0 & 0 & \ddots & 1 & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 1 & \ddots & 0 & 0 \\ 0 & \dots & \dots & \dots & 0 & 1 \end{pmatrix} \leftarrow i = I_p - E_{j,j} - E_{i,i} + E_{j,i} + E_{i,j} + E_{i,j}$$

D'où l'existence

Unicité : Si P convient, on a nécessairement : $T_C(I_p) = I_p P = P$. Donc P est l'image de l'identité.

B) Transformation élémentaire sur les lignes

Soit L_n l'ensemble des matrices à n lignes. Une transformation élémentaire T_L sur les lignes d'une matrice à n lignes est une application $T_L:L_n\to L_n$ où A' est déduite de $A\mapsto A$!

A par l'une des transformations suivantes :

*
$$l_i \leftarrow \lambda l_i \text{ avec } \lambda \neq 0$$

*
$$l_i \leftarrow l_i + \alpha l_i$$
 avec $i \neq j$

*
$$l_i \leftrightarrow l_i$$

Théorème:

Soit T_L une transformation élémentaire sur les lignes des matrices à n lignes. Alors il existe une et une seule matrice $Q \in GL_n(\mathbb{K})$ telle que $\forall A \in L_n, T_L(A) = Q \times A$

Démonstration:

On peut refaire la même démonstration que précédemment (attention, c'est \mathfrak{B}_F qui sera alors changé), ou alors :

Soit $A \in M_{n,p}(\mathbb{K})$, on note $A' = T_L(A)$. Alors il est évident que 'A' est obtenue à partir de tA par une transformation élémentaire sur les colonnes (correspondant à T_L). Donc il existe $P \in GL_n(\mathbb{K})$ tel que ${}^tA' = ({}^tA) \times P$. Donc $A' = \underbrace{{}^tP}_{\in GL_n(\mathbb{K})} \times A$

Remarque : Si $\forall A \in L_n, T_L(A) = Q \times A$, alors $Q = T_L(I_n)$

C) Intérêt de ces théorèmes

- (1) On retrouve le fait qu'une transformation élémentaire sur les lignes/colonnes d'une matrice conserve son rang. En effet, une matrice A sera changée, par succession de transformations, en $A' = \underbrace{Q_1 ... Q_1}_{\in GL_n(\mathbb{K})} A \underbrace{P_1 ... P_k}_{\in GL_p(\mathbb{K})}$ donc A' est équivalente à A, donc de même rang.
- On voit ce qui se passe quand on fait des transformations élémentaires sur les lignes d'un système :

Soit (S): AX = B (A: « matrice du système », B: « matrice du 2^{nd} membre »)

Avec
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in M_{n,p}(\mathbb{K}), B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in M_{n,1}(\mathbb{K}), X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in M_{p,1}(\mathbb{K})$$

Alors (S):
$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p = b_n \end{cases}$$

Faire une transformation élémentaire sur les lignes, c'est simplement écrire :

 $AX = B \Leftrightarrow A'X = B'$ où A' et B' sont déduites de A et B par une même transformation T_L sur les lignes. Autrement dit, c'est écrire $AX = B \Leftrightarrow QAX = QB$ où $Q \in GL_n(\mathbb{K})$.

Transformation sur les colonnes d'un système : déconseillée. Exemple :

$$(S): \begin{cases} 2x + y + z = a \\ 2x - y = b \\ 5x = c \end{cases} A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & -1 & 0 \\ 5 & 0 & 0 \end{pmatrix} (S): A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
$$\Leftrightarrow (S'): \begin{cases} z + y + 2x = a \\ -y + 2x = b \\ 5x = c \end{cases} A' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{pmatrix} (S'): A' \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Leftrightarrow (S'): \begin{cases} z + y + 2x = a \\ -y + 2x = b \end{cases} \quad A' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 5 \end{pmatrix} \quad (S'): A' \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

XII Retour à la méthode du pivot

A) Cas des matrices inversibles

Proposition:

Soit $A \in GL_n(\mathbb{K})$. Alors il existe une suite de transformations élémentaires sur les lignes qui conduit à I_n

Exemple 1:

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix} \xrightarrow{\uparrow} A_1 = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 3 & -6 & -9 \end{pmatrix} \xrightarrow{\uparrow} A_2 = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$

On voit ici que A car $rg(A) = rg(A_1) = rg(A_2) = 3$. On continue :

$$A_{2} = \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{\uparrow} \begin{pmatrix} 1 & 4 & 0 \\ 0 & -3 & 0 \\ L_{2} \leftarrow L_{2} - 4L_{3} \begin{pmatrix} 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \xrightarrow{\downarrow} \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ L_{2} \leftarrow -\frac{1}{3}L_{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\uparrow} L_{1} \leftarrow L_{1} - 4L_{2}$$

Exemple 2:

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 6 & 7 \\ -2 & -2 & -1 \end{pmatrix} \underset{L_{2} \leftarrow L_{2} - 2L_{1}}{\uparrow} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} \underset{L_{2} \leftrightarrow L_{3}}{\downarrow} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\xrightarrow{\uparrow} \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \underset{L_{1} \leftarrow L_{1} - 4L_{3}}{\downarrow} \xrightarrow{\uparrow} \begin{pmatrix} 2 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \underset{L_{1} \leftarrow L_{1} - 3L_{2}}{\downarrow} \underset{L_{1} \leftarrow L_{1} - 2L_{1}}{\downarrow} \xrightarrow{\downarrow} \underset{L_{1} \leftarrow L_{1} - 2L_{1}}{\downarrow} \underset{L_{1} \leftarrow L_{1} - 2L_{1}}{\downarrow} \xrightarrow{\downarrow} \underset{L_{1} \leftarrow L_{1} \rightarrow L_{1}}{\downarrow} \xrightarrow{\downarrow} \underset{L_{1} \leftarrow L_{$$

Démonstration : par récurrence :

- Pour n = 1, ok.
- Soit $n \ge 2$. Supposons que pour toute matrice $A \in GL_{n-1}(\mathbb{K})$, il existe une succession de transformations élémentaires sur les lignes qui conduit à I_{n-1} .

Soit alors $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in GL_n(\mathbb{K})$. (On note L_i ses lignes)

Alors l'un des $a_{i,1}$ est non nul (car $A \in GL_n(\mathbb{K})$). Un éventuel échange de lignes ramène au cas $a_{1,1} \neq 0$.

Puis les transformations $L_i \leftarrow L_i - \frac{a_{i,1}}{a_{1,1}} L_1$ pour $i \in [2, n]$ amènent à :

$$\begin{pmatrix}
a_{1,1} & \\
0 & \\
\vdots & B
\end{pmatrix}$$

Alors B est inversible : ses lignes forment une famille libre car sinon on aurait $\sum_{i=2}^n \lambda_i l_i = 0 \text{ avec } (\lambda_2,...\lambda_n) \neq (0,...0) \text{ (où } l_i \text{ est la (i-1)-ème ligne de } B), \text{ et on aurait ainsi}$ $\sum_{i=2}^n \lambda_i L_i = 0.$

Les transformations sur les lignes de B reviennent aux mêmes transformations sur les L_i ($i \ge 2$), et amènent par hypothèse de récurrence à :

$$\begin{pmatrix}
a_{1,1} & & \\
0 & & \\
\vdots & & I_{n-1}
\end{pmatrix}$$

Ensuite, les transformations $L_1 \leftarrow L_1 - a_{1,j} L_j$ pour $j \ge 2$ puis la transformation $L_1 \leftarrow \frac{1}{a_{1,1}} L_1$ amènent à I_n

Application : nouvelle présentation pour calculer l'inverse d'une matrice A inversible.

Exemple:
$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix}$$

1ère méthode : point de vue des système. On cherche à résoudre le système

$$AX = B$$
 avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. On a les équivalences :

$$AX = B \Leftrightarrow \begin{pmatrix} 1 & 4 & 2 \\ 2 & 5 & 3 \\ 3 & 6 & 0 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ 0 & -6 & -9 \end{pmatrix} X = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} B$$

$$\Leftrightarrow \begin{pmatrix} 1 & 4 & 3 \\ 0 & -3 & -4 \\ L_3 \leftarrow L_3 - 2L_2 \end{pmatrix} X = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 2 & -1 \end{pmatrix} B \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ L_2 \leftarrow L_2 + 4L_3 \\ L_1 \leftarrow L_1 - 3L_3 \\ L_1 \leftarrow L_1 + \frac{4}{3}L_2 \\ L_2 \leftarrow -\frac{1}{3}L_2 \end{pmatrix} B$$

Donc
$$A^{-1} = \frac{1}{3} \begin{pmatrix} -12 & 18 & -7 \\ 6 & -9 & 4 \\ -3 & 6 & -3 \end{pmatrix}$$

Autre présentation :

Soient
$$A, M \in M_3(\mathbb{K})$$
 $(A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix})$

On a les équivalences :

$$AM = I \Leftrightarrow \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 2 \\ 3 & 6 & 0 \end{pmatrix} M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \dots \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} M = \frac{1}{3} \begin{pmatrix} -12 & 18 & -7 \\ 6 & -9 & 4 \\ -3 & 6 & -3 \end{pmatrix}$$

Ainsi, on a trouvé un inverse à droite, donc un inverse de A.

B) Cas d'une matrice quelconque

Exemple:

$$A = \begin{pmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} & 1 & 2 & 2 & 1 & 0 \\ 2 & 0 & 2 & -1 & 1 & 0 \\ 1 & 1 & 4 & 1 & 2 & 0 \\ 1 & -1 & -2 & -2 & -1 & 1 \\ -2 & 0 & -2 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 + 2L_1} \begin{pmatrix} -1 & 1 & 2 & 2 & 1 & 0 \\ 0 & \begin{bmatrix} -1 \\ 2 \end{bmatrix} & 6 & 3 & 3 & 0 \\ 0 & 2 & 6 & 6 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ L_2 \leftarrow L_3 + L_1 \\ L_3 \leftarrow L_3 + L_1 \\ L_3 \leftarrow L_3 - 2L_1 \end{pmatrix}$$

$$L_{3} \leftarrow L_{5} - L_{2} \begin{pmatrix} -1 & 1 & 2 & 2 & 1 & 0 \\ 0 & 2 & 6 & 3 & 3 & 0 \\ 0 & 0 & \boxed{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} C_{3} \leftrightarrow C_{6} \begin{pmatrix} -1 & 1 & 0 & 2 & 1 & 2 \\ 0 & 2 & 0 & 3 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

que des 0 ; on fait un échange de colonne

$$L_{4} \stackrel{\longrightarrow}{\longleftrightarrow} L_{5} A' = \begin{pmatrix} -1 & 1 & 0 & 1 & 2 & 2 \\ 0 & 2 & 0 & 3 & 3 & 6 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

On voit ici que la matrice A est de rang 4 (puisqu'elle est équivalente à A'). On peut maintenant faire des transformations élémentaires pour se ramener à $J_{5,6,4}$.

Généralisation, théorème :

Soit $A \in M_{n,p}(\mathbb{K})$, de rang r. Alors :

(1) Une succession de transformations élémentaires sur les lignes et, éventuellement, d'échange de colonnes, conduit à une matrice du type :

(A adapter quand r = 0: A = 0)

(2) Des transformations élémentaires sur les colonnes conduisent alors à $J_{n,p,r}$

On retrouve ainsi le fait que A est équivalente à $J_{n,p,r}: J_{n,p,r} = \underbrace{Q_m...Q_1}_{\in GL_n(\mathbb{K})} \underbrace{AP_1...P_k}_{\in GL_p(\mathbb{K})}$

Remarque : une matrice du type de G s'appelle une réduite de Gauss. Une telle matrice est évidemment de rang r. Par conséquent, si, partant de A de rang inconnu, on arrive à G, on trouve alors le rang de A.

Démonstration rapide :

Soit $A \in M_{n,p}(\mathbb{K})$

Pour la première colonne de A, si elle est nulle :

- Soit toutes les autres colonnes de A sont nulles, et alors A = 0.
- Soit une colonne, C_j , n'est pas nulle : on fait alors $C_1 \leftrightarrow C_j$

On peut supposer maintenant $C_1 \neq 0$.

Si $a_{1,1} = 0$, on cherche *i* tel que $a_{i,1} \neq 0$ (car $C_1 \neq 0$), et on fait $L_1 \leftrightarrow L_i$

On peut supposer maintenant $a_{1,1} \neq 0$.

On fait ensuite les transformations $L_i \leftarrow L_i - \frac{a_{i,1}}{a_{1,1}} L_1$ (pour $i \ge 2$), ce qui amène à :

$$A_1 = \begin{pmatrix} * & --- \\ 0 & A' \\ \vdots & A' \end{pmatrix}$$

Puis on recommence avec A', jusqu'à ce qu'on arrive à

$$\begin{pmatrix} * & - & - & - & - & - & - \\ 0 & \ddots & - & - & - & - & - \\ \vdots & & * & - & - & - & - \\ \vdots & & & & - & - & - & - \\ \vdots & & & & & & - & - & - \\ \vdots & & & & & & & \\ 0 & \dots & & & & & \\ 0 & \dots & & & & & \\ \end{pmatrix}$$

XIII Synthèse et compléments sur les systèmes

A) Définition

Un système linéaire de n équations, p inconnues à coefficients dans $\mathbb K$ est :

$$(S): \begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,p}x_p = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,p}x_p = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,p}x_p = b_n \end{cases}$$

Où la matrice $A = (a_{i,j})_{1 \le i \le n} \in M_{n,p}(\mathbb{K})$ est appelée la matrice du système,

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
 la colonne des inconnues et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ la colonne du second membre.

Résoudre (S), c'est donner l'ensemble S des solutions, c'est-à-dire l'ensemble des p-uplets $(x_1,...x_n) \in \mathbb{K}^p$ tels que les égalités de (S) soient satisfaites.

B) Interprétation

(S) peut traduire une égalité vectorielle du type $\sum_{j=1}^{p} x_i \vec{v}_j = \vec{w}$ où les \vec{v}_j sont les

vecteurs de composantes $\begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix}$ et \vec{w} le vecteur de composantes $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ (dans une base \mathfrak{B}_F

d'un espace vectoriel F de dimension n, par exemple $M_{n,1}(\mathbb{K})$ avec sa base naturelle)

On voit alors que:

- (S) admet au moins une solution si et seulement si $\vec{w} \in \text{Vect}(\vec{v}_1, \vec{v}_2, ... \vec{v}_p)$
- (S) admet au plus une solution si et seulement si $(\vec{v}_1, \vec{v}_2, ... \vec{v}_p)$ est libre.

En effet (premier point évident) :

- Si $(\vec{v}_1, \vec{v}_2, ... \vec{v}_p)$ est libre:
- si il n'y a pas de solution, on a 0 solutions
- si il y en a une, disons $(x_1, x_2, ...x_p)$. Soit $(x'_1, x'_2, ...x'_p)$ une autre solution.

Montrons que
$$(x_1, x_2, ...x_p) = (x'_1, x'_2, ...x'_p)$$
. On a $\sum_{j=1}^p x_i \vec{v}_j = \sum_{j=1}^p x'_i \vec{v}_j = \vec{w}$, soit

$$\sum_{j=1}^{p} (x_i - x'_i) \vec{v}_j = 0. \text{ Donc } \forall k \in [1, p], x_k = x'_k$$

• Si $(\vec{v}_1, \vec{v}_2, ... \vec{v}_p)$ est liée, il existe $(\lambda_1, \lambda_2, ... \lambda_p) \neq (0, 0, ... 0)$ tel que $\sum_{j=1}^p \lambda_i \vec{v}_j = 0$. Donc si $(x_1, x_2, ... x_p)$ est solution de (S), alors $(x_1 + \lambda_1, x_2 + \lambda_2, ... x_p + \lambda_p)$ en est aussi solution. Remarque : si $(\vec{v}_1, \vec{v}_2, ... \vec{v}_p)$ est une base de F, (n = p), alors (S) admet une unique solution quel que soit \vec{w}

(S) peut traduire une égalité du type $\varphi(\vec{u}) = \vec{w}$, où φ est une application linéaire d'un espace E de dimension p vers un espace F de dimension n et dont la matrice dans les bases \mathfrak{B}_E et \mathfrak{B}_F données est A et où \vec{w} est un élément de F de composantes $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ dans \mathfrak{B}_F et où \vec{u} est un vecteur (inconnu) de composantes $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ dans \mathfrak{B}_E (remarque : si $\mathfrak{B}_E = (e_1, e_2 ... e_p)$, les \vec{v}_j sont les $\varphi(\vec{e}_j)$)

- (S) admet au moins une solution si et seulement si $\vec{w} \in \text{Im } \varphi$.
- (S) admet au plus une solution si et seulement si φ est injective (même démonstration)
- Si φ est bijective (alors n = p), (S) a une et une seule solution, quel que soit le second membre.
- Si φ n'est pas bijective, le comportement de (S) dépend du second membre :
 - Si $\vec{w} \notin \text{Im} \varphi$, alors (S) n'a pas de solution
 - Si $\vec{w} \in \text{Im } \varphi$, alors (S) a au moins une solution. Plus précisément :
 - \circ Si φ est injective, une seule solution.
 - o Sinon, une infinité (pour \mathbb{K} infini), et ces solutions sont les $\{\vec{u}_0 + \vec{n}, \vec{n} \in \ker \varphi\}$, où \vec{u}_0 est une solution fixée de (S). En effet : si \vec{u}_0 est solution, alors : \vec{u} solution $\Leftrightarrow \varphi(\vec{u}_0) = \varphi(\vec{u}) \Leftrightarrow \vec{u}_0 \vec{u} \in \ker \varphi$.

Cas particulier: n = p (φ est injective $\Leftrightarrow \varphi$ est surjective). Si φ n'est pas bijective, alors:

- Si $\vec{w} \notin \text{Im } \varphi$, alors (S) n'a pas de solution
- Si $\vec{w} \in \text{Im } \varphi$, alors (S) a une infinité de solutions.

(S) peut traduire :

$$\begin{cases} \varphi_1(u) = b_1 \\ \varphi_2(u) = b_2 \\ \vdots \\ \varphi_n(u) = b_n \end{cases}$$

Où les φ_i sont n formes linéaires sur un espace vectoriel E de dimension p:

$$\varphi_i$$
:
$$u \text{ de composantes} \left(\begin{matrix} E \to K \\ x_i \\ \vdots \\ x_p \end{matrix} \right) \mapsto \sum_{j=1}^p a_{i,j} x_j$$

Dans le cas particulier d'un système homogène (c'est-à-dire que la colonne du second membre est nulle), le système traduit : $u \in \bigcap_{i=1}^n H_i$ où H_i est l'hyperplan $\ker \varphi_i$.

Remarque: dans tout les cas, l'ensemble des solutions de (S): AX = B est l'ensemble des $X_0 + U$, $U \in S_H$ où X_0 est une solution de (S) et S_H l'ensemble des solutions de (H): AX = 0, homogène associé à (S).

C) Résolution

Après méthode du pivot (transformation sur les lignes et, éventuellement, échange d'inconnues), on est ramené à :

$$(S): \begin{cases} \binom{*}{0} & - & - & - & - & - & - \\ 0 & \ddots & - & - & - & - & - \\ \vdots & \ddots & * & - & - & - & - \\ \hline 0 & \dots & 0 & 0 & \dots & \dots & 0 \\ \vdots & & \vdots & \vdots & & & \vdots \\ 0 & \dots & 0 & 0 & \dots & \dots & 0 \end{cases} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

On voit déjà que (S) est compatible si et seulement si $\forall i \in [r+1, n], b_i = 0$.

Démonstration:

- Si $\exists i \in [r+1, n], b_i \neq 0$, alors (S) est incompatible
- Si $\forall i \in [r+1, n], b_i = 0$, le système (S) équivaut alors au système (S'):

$$(S): r \begin{cases} \begin{pmatrix} * & - & - & - & - & - \\ & \ddots & & - & - & - & - \\ 0 & * & - & - & - & - \\ & & p - r & & \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_r \end{pmatrix}$$

Or, en tant que d'inconnues $x_1, x_2, ...x_r$, ayant fixé les autres, le système est un système triangulaire supérieur sans 0 sur la diagonale :

$$r \begin{pmatrix} * & - & - \\ & \ddots & - \\ 0 & & * \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} b_1 - \sum_{j=r+1}^p a_{1,j} x_j \\ \vdots \\ b_r - \sum_{j=r+1}^p a_{r,j} x_j \end{pmatrix}$$

Le système a des solutions, obtenues « en fixant arbitrairement p-r inconnues ». Ainsi :

Soit (S) à n équations, p inconnues, de rang r.

Alors:

- Il y a n-r conditions de compatibilité
- Lorsqu'elles sont satisfaites, le système admet des solutions avec p-r degrés de liberté.

Cas particuliers:

- Si r = n, le système est toujours compatible (0 conditions de compatibilité)
- Si r = p et que le système est compatible, il y a une unique solution.

- Si r = p = n, le système a une et une seule solution.
- Si (S) est homogène, il est toujours compatible (au moins la solution nulle) et l'ensemble de ses solution est un \mathbb{K} -ev de dimension p-r.

D) Compléments

1) Polynôme de matrices

Soit $A \in M_m(\mathbb{K})$.

Pour
$$P \in \overline{\mathbb{K}}[X]$$
, disons $P = \sum_{k=0}^{n} a_k X^k$, on note $P(A) = \sum_{k=0}^{n} a_k A^k$ $(A^0 = I_m)$.

Alors l'application $\phi: \mathbb{K}[X] \to M_{\scriptscriptstyle m}(\mathbb{K})$ est un morphisme de \mathbb{K} -algèbres, $P \mapsto P(A)$

c'est-à-dire que pour tout $P,Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$:

$$(P + \lambda Q)(A) = P(A) + \lambda Q(A)$$

$$(PQ)(A) = P(A) \times Q(A)$$

$$(1_{\overline{\mathbb{K}}[X]})(A) = I_m$$

(Vérifications simples, sauf pour la multiplication où il faut faire attention)

Proposition:

Toute matrice A admet un polynôme annulateur de A non nul et de degré $\leq m^2$ (un polynôme annulateur est un polynôme tel que P(A) = 0).

En effet: $A^0, A^1, ... A^{m^2}$ sont $m^2 + 1$ vecteurs de $M_m(\mathbb{K})$. Donc la famille

$$\left(A^{k}\right)_{k\in\left[\left[0,m^{2}\right]\right]}\text{ est liée. Il existe donc }\left(\lambda_{0},\lambda_{1},...\lambda_{m^{2}}\right)\neq\left(0,0,...0\right)\text{ tel que }\sum_{k=0}^{m^{2}}\lambda_{k}A^{k}=0\text{ }.$$

Le polynôme $P = \sum_{k=0}^{m^2} \lambda_k X^k$ est donc non nul et vérifie P(A) = 0.

(On a montré en même temps que ϕ n'est pas injective, puisque $\ker \phi \neq \{0\}$).

Proposition:

Il existe $M \in \mathbb{K}[X]$ tel que $\{P \in \mathbb{K}[X], P(A) = 0\} = \{MQ, Q \in \mathbb{K}[X]\}$.

M est unique à une constante multiplicative près.

En effet:

On pose M un polynôme de degré minimal (mais non nul) annulateur de A.

Soit alors N un autre polynôme annulateur.

La division euclidienne de N par M donne :

$$N = MQ + R$$
 avec $\deg R < \deg M$

Donc
$$\underbrace{N(A)}_{=0} = \underbrace{M(A)}_{=0} \times Q(A) + R(A)$$
. Donc $R(A) = 0$. Donc $R = 0$ car sinon

M n'est pas de degré minimal. Donc M divise N.

2) Matrices semblables

Soient $A, B \in M_n(\mathbb{K})$. On dit que A et B sont semblables (ou que B est semblable à A) lorsqu'il existe $P \in GL_n(\mathbb{K})$ tel que $B = P^{-1}AP$

On peut montrer aisément que « être semblable à » est une relation d'équivalence. Elle est plus fine que la relation « être équivalent à » sur $M_n(\mathbb{K})$, c'est-à-dire que « être semblable à » \Rightarrow « être équivalent à ».

Mais la réciproque est fausse :

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
 et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ sont équivalentes (car de même rang), mais non

semblables : si on trouve P tel que $A = P^{-1}IP$, alors $A = P^{-1}P = I$

Ainsi, B est semblable à A si et seulement si elles représentent le même endomorphisme dans une base différente.

Plus précisément :

Etant donné E un \mathbb{K} -ev de dimension n muni d'une base \mathfrak{B} ,

et $\varphi \in L(E)$ tel que $A = mat(\varphi, \mathfrak{B})$

Alors B est semblable à $A \Leftrightarrow \text{il}$ existe une autre base \mathfrak{B} ' de E telle que $B = \text{mat}(\varphi, \mathfrak{B}')$.

(La démonstration est la même que pour l'équivalence)

Une matrice semblable à une matrice diagonale est une matrice diagonalisable (attention, toutes ne le sont pas)

Exemple:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
. Montrons que A n'est pas diagonalisable.

Soit *E* un \mathbb{K} -ev de dimension 2 muni d'une base $\mathfrak{B} = (e_1, e_2)$

Soit $\varphi \in L(E)$ tel que $A = mat(\varphi, \mathfrak{B})$

Peut-on trouver \mathfrak{B}' telle que $mat(\varphi, \mathfrak{B}')$ soit diagonale?

Supposons que \mathfrak{B} ' existe, disons $\mathfrak{B}' = (e'_1, e'_2)$

Alors il existe
$$\lambda_1, \lambda_2 \in \mathbb{R}$$
 tels que $\varphi(e'_1) = \lambda_1 e'_1$ et $\varphi(e'_2) = \lambda_2 e'_2$. Soit $\begin{pmatrix} x \\ y \end{pmatrix}$

la colonne des composantes de e'_1 dans \mathfrak{B} .

Alors
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda_1 \begin{pmatrix} x \\ y \end{pmatrix}$$
, donc $\begin{cases} x + y = \lambda_1 x \\ y = \lambda_1 y \end{cases}$

Si $\lambda_1 \neq 1$, alors x = y = 0, ce qui est impossible car e'_1 est un vecteur d'une base.

Donc $\lambda_1 = 1$

De même, $\lambda_2 = 1$

Donc $\varphi = \operatorname{Id}_E$, ce qui est contradictoire car $A \neq I_2$. Donc A n'est pas diagonalisable.

3) Trace

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M_n(\mathbb{K})$$

Alors
$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{i,i}$$

Proposition:

L'application $M_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire (évident) $A \mapsto \operatorname{Tr}(A)$

Proposition:

Pour tout $A, B \in M_n(\mathbb{K})$, Tr(AB) = Tr(BA)

Démonstration :

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
, $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$, $C = AB = (c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$, $D = BA = (d_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$

On a

$$\operatorname{Tr}(AB) = \operatorname{Tr}(C) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{i,k} b_{k,i} \right) = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_{i,k} b_{k,i} \right)$$
$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} b_{k,i} a_{i,k} \right) = \sum_{k=1}^{n} d_{k,k} = \operatorname{Tr}(D) = \operatorname{Tr}(BA)$$

Conséquence:

Si A et B sont semblables, alors elles ont même trace (réciproque fausse) :

$$Tr(B) = Tr(P^{-1}AP) = Tr(P^{-1}(AP)) = Tr(APP^{-1}) = Tr(A)$$

Contre-exemple pour la réciproque :

$$\operatorname{Tr}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \operatorname{Tr}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2 \operatorname{mais}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ n'est pas semblable à } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Conséquence : on peut définir la trace d'un endomorphisme :

 $Tr(\varphi)$ est la trace de n'importe quelle matrice A telle que $A = mat(\varphi, \mathfrak{B})$.