In the claims

1. (currently amended) A compound represented by formula (I):

$$R_{12}$$
 R_{13} R_{13} R_{10} R_{11} R_{10} R_{11} R_{10} R_{11} R_{10} R_{11} R_{10} R_{11} R_{11} R_{11} R_{12} R_{13} R_{14} R_{15} R

wherein,

- A is either a double bond or a single bond, n is 2 or 3, and each occurrence of R₁ is independently selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;
- R_2 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_{15} [[- R_9OR_8 , - SR_8 , and - CO_2R_8]];
- R_{14} is selected from the group consisting of $\underline{R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, $\underline{-OC(O)R}$, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})}$ =N(OH); carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_{15})_2}$; [[- $R_9(O)CR_8$; $C(R_8)$ =N(OH); carboxylic acid; $\underline{-R_9C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_8)_2}$;]] and silyl;

 $\underline{R}_{\underline{15}}$ [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 $\underline{R}_{\underline{16}}$ [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

 Q_1 represents independently for each occurrence S or O; and Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]] or a pharmaceutically acceptable salt thereof.

- 2. (currently amended) The compound of claim 1, wherein one occurrence of R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl; A is a double bond; n = 2; at least one occurrence of R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; R₂-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 3. (currently amended) The compound of claim 1, wherein one occurrence of R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and either one or two occurrences of R₁ represent hydrogen.
- 4. (currently amended) The compound of claim 1, wherein A is a double bond; n = 2; and one occurrence of R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl, and the second occurrence of R₁ is hydrogen, and the compound is an E (entgegen) isomer.
- (currently amended) The compound of claim 1, wherein one occurrence of R₁ is 4-methoxy-phenyl, one occurrence of R₁ is hydrogen; R₂-R₁₃ each represent hydrogen; and R₁₄ represents -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 6. (currently amended) The compound of claim 1, wherein one occurrence of R₁ is phenyl, one occurrence of R₁ is hydrogen, R₂-R₁₃ each represent hydrogen, and R₁₄ represents -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].

7. (currently amended) A pharmaceutical composition comprising a compound of formula (I):

$$R_{12}$$
 R_{13} R_{13} R_{14} R_{10} R_{11} R_{14} R_{2} R_{10} R_{11} R_{2} R_{3} R_{10} R_{11} R_{2} R_{3}

wherein,

- A is either a double bond or a single bond, n is 2 or 3, and each occurrence of R₁ is independently selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;
- R_2 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_8];
- R_{14} is selected from the group consisting of $\underline{R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, -OC(O)R, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})=N(OH)}$; carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_{15})_2}$; [[- $R_9(O)CR_8$; - $C(R_8)=N(OH)$; carboxylic acid; $\underline{-R_9C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_8)_2}$;]] and silyl;

 \underline{R}_{15} [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 $\underline{R}_{\underline{16}}$ [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

Q₁ represents independently for each occurrence S or O; and

 Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]] or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.

- 8. (currently amended) The pharmaceutical composition of claim 7, wherein one occurrence of R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl; A is a double bond; n = 2; at least one occurrence of R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; and R₂-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 9. (currently amended) The pharmaceutical composition of claim 7, wherein one occurrence of R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and one or two occurrences of R₁ represent hydrogen.
- 10. (currently amended) The pharmaceutical composition of claim 7, wherein A is a double bond; n = 2; and one occurrence of R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl, and the second occurrence of R₁ is hydrogen, and the compound is an E (entgegen) isomer.
- 11. (currently amended) A method for treating a disorder caused by a deficiency in monoamine concentration in a human comprising administering a therapeutically effective dose of a compound of formula (I):

$$R_{12}$$
 R_{13} R_{13} R_{14} R_{10} R_{11} R_{2} R_{2} R_{6} R_{5} R_{4} R_{3} R_{10} R_{11} R_{2} R_{3}

wherein,

A is either a double bond or a single bond, n is 2 or 3, and each occurrence of R_1 is independently selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;

 R_2 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_8];

 R_{14} is selected from the group consisting of $\underline{R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, $\underline{-OC(O)R}$, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})}$ =N(OH); carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2}$ -P($\underline{Q_1}$)(OR₁₅)₂; [[- $R_9(O)CR_8$; - $C(R_8)$ =N(OH); carboxylic acid; $\underline{-R_9C(O)H}$; $\underline{-Q_2}$ -P($\underline{Q_1}$)(OR₈)₂;]] and silyl;

 \underline{R}_{15} [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 $\underline{R}_{\underline{16}}$ [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

Q₁ represents independently for each occurrence S or O; and

 Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]] or a pharmaceutically acceptable salt thereof.

- 12. (currently amended) The method of claim 11, wherein one occurrence of R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl; A is a double bond; n = 2; at least one occurrence of R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; and R₂-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 13. (currently amended) The method of claim 11, wherein one occurrence of R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and one or two occurrences of R₁ represent hydrogen.
- 14. (currently amended) The method of claim 11, wherein A is a double bond; n = 2; and one occurrence of R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl, and the second occurrence of R₁ is hydrogen, and the compound is an E (entgegen) isomer.
- 15. (**previously presented**) The method of claim 11, wherein said disorder in a human is associated with a deficiency in the concentration of serotonin or norepinephrine.
- 16. (**previously presented**) The method of claim 11, wherein said disorder in a human is selected from the group consisting of depression, substance addiction, neurodegenerative disease, Attention Deficit Disorder, Huntington's Disease, and bipolar disorder.
- 17. (previously presented) The method of claim 16, wherein said disorder in a human is Parkinson's Disease or Alzheimer's Disease.
- 18. (previously presented) The method of claim 16, wherein said substance addiction is cocaine addiction.

Claims 19-26. (Canceled)

27. (currently amended) A compound represented by formula (II):

$$R_{12}$$
 R_{13} R_{1} R_{2} R_{10} R_{14} R_{2} R_{3} R_{4} R_{7} R_{6} R_{5} R_{4} (II)

wherein,

R₁ and R₂ each independently are selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;

 R_3 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_8];

 R_{14} is selected from the group consisting of $\underline{R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, $\underline{-OC(O)R}$, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})=N(OH)}$; carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_{15})_2}$; [[- $R_9(O)CR_8$; - $C(R_8)=N(OH)$; carboxylic acid; $-R_9C(O)H$; $-Q_2-P(Q_1)(OR_8)_2$;]] and silyl;

 \underline{R}_{15} [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 \underline{R}_{16} [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

Q1 represents independently for each occurrence S or O; and

 Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]]

or a pharmaceutically acceptable salt thereof.

- 28. (**currently amended**) The compound of claim 27, wherein R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₂ is hydrogen, or R₂ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; R₃-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 29. (currently amended) The compound of claim 27, wherein R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₂ is hydrogen; or R₂ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₁ is hydrogen.
- 30. (currently amended) The compound of claim 27, wherein R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl; and R₂ is hydrogen, and the compound is an E (entgegen) isomer.
- 31. (currently amended) The compound of claim 27, wherein R₁ is 4-methoxy-phenyl, R₂ is hydrogen, R₃-R₁₃ each represent hydrogen, and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 32. (currently amended) The compound of claim 27, wherein R₁ is phenyl, R₂ is hydrogen, R₃-R₁₃ each represent hydrogen, and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 33. (currently amended) A pharmaceutical composition comprising a compound of formula (II):

$$R_{12}$$
 R_{13} R_{1} R_{2} R_{10} R_{10} R_{14} R_{2} R_{10} R_{11} R_{2} R_{3} R_{11} R_{2} R_{3} R_{11} R_{2} R_{3} R_{4} R_{5} R_{4}

wherein,

R₁ and R₂ each independently are selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;

 R_3 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_8];

 R_{14} is selected from the group consisting of $\underline{-R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, -OC(O)R, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})=N(OH)}$; carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_{15})_2}$; [[- $R_9(O)CR_8$; - $C(R_8)=N(OH)$; carboxylic acid; $\underline{-R_9C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_8)_2}$;]] and silyl;

 \underline{R}_{15} [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 \underline{R}_{16} [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

Q₁ represents independently for each occurrence S or O; and

 Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]] or a pharmaceutically acceptable salt thereof; and

a pharmaceutically acceptable carrier.

- 34. (**currently amended**) The pharmaceutical composition of claim 33, wherein R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₂ is hydrogen, or R₂ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; R₃-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].
- 35. (currently amended) The pharmaceutical composition of claim 33, wherein R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₂ is hydrogen; or R₂ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₁ is hydrogen.
- 36. (**currently amended**) The pharmaceutical composition of claim 33, wherein R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl; and R₂ is hydrogen, and the compound is an E (entgegen) isomer.
- 37. (currently amended) A method for treating a disorder caused by a deficiency in monoamine concentration in a human comprising administering a therapeutically effective dose of a compound of formula (II):

$$R_{12}$$
 R_{13} R_{1} R_{2} R_{10} R_{11} R_{2} R_{3} R_{4} (II)

12

wherein,

- R₁ and R₂ each independently are selected from the group consisting of hydrogen, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl;
- R_3 - R_{13} each independently are selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkoxy, [[- $C(O)R_8$]] - $C(O)R_{15}$, amino, hydroxy, thio, halogen, cyano, nitro, trifluoromethyl, - N_3 , [[- $C(R_8)$ = NR_8 ; -N= $C(R_8)_2$, - $C(O)N(R_8)_2$, - Q_2 - $P(Q_1)(OR_8)_2$,]] - $C(R_{15})$ = NR_{15} ; -N= $C(R_{15})_2$, - $C(O)N(R_{15})_2$, - Q_2 - $P(Q_1)(OR_{15})_2$, - SO_2R , silyl, - $R_{16}OR_{15}$, - SR_{15} , and - CO_2R_8]];
- R_{14} is selected from the group consisting of $\underline{R_{16}C(O)OR_{15}}$, $\underline{-OC(O)R_{15}}$, $\underline{O-R_{17}}$, [[- $R_9C(O)OR$, $\underline{-OC(O)R}$, $O-R_{15}$,]] wherein $\underline{R_{17}}$ [[R_{15}]] is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, alkenyl, and alkynyl; $\underline{-R_{16}(O)CR_{15}}$; $\underline{-C(R_{15})=N(OH)}$; carboxylic acid; $\underline{-R_{16}C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_{15})_2}$; [[- $R_9(O)CR_8$; $C(R_8)=N(OH)$; carboxylic acid; $\underline{-R_9C(O)H}$; $\underline{-Q_2-P(Q_1)(OR_8)_2}$;]] and silyl;

 \underline{R}_{15} [[R₈]] represents independently for each occurrence hydrogen, alkyl, alkenyl, alkynyl, or aryl;

 \underline{R}_{16} [[R₉]] represents independently for each occurrence a bond or an alkyl, alkenyl, alkynyl, or aryl biradical;

Q1 represents independently for each occurrence S or O; and

 Q_2 represents independently for each occurrence O, S, or NR_{15} ; [[NR₈;]] or a pharmaceutically acceptable salt thereof.

38. (currently amended) The method of claim 37, wherein R₁ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₂ is hydrogen, or R₂ is selected from the group consisting of aryl, heteroaryl, cycloalkyl, polycyclic, heterocyclic, alkenyl, and alkynyl, and R₁ is hydrogen, and the compound is an E (entgegen) or Z (zusammen) isomer; R₃-R₁₃ each independently represent hydrogen or alkyl; and R₁₄ is -R₁₆C(O)OR₁₅ or -OC(O)R₁₅ [[-R₉C(O)OR or -OC(O)R]].

- 39. (currently amended) The method of claim 37, wherein either R₁ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₂ is hydrogen; or R₂ is selected from the group consisting of haloaryl, alkoxy, alkylaryl, polycyclyl, alkenylaryl, and alkynylaryl; and R₁ is hydrogen.
- 40. (currently amended) The method of claim 37, wherein R₁ is selected from the group consisting of phenyl, 3,4-Dichloro-phenyl, 4-methoxy-phenyl, 4-fluoro-phenyl, 1-napthyl, 2-furyl, 3-furyl, methoxy, and substituted or unsubstituted alkenylaryl; and R₂ is hydrogen, and the compound is an E (entgegen) isomer.
- 41. (**previously presented**) The method of claim 37, wherein said disorder in a human is associated with a deficiency in the concentration of serotonin or norepinephrine.
- 42. (**previously presented**) The method of claim 37, wherein said disorder in a human is selected from the group consisting of depression, substance addiction, neurodegenerative disease, Attention Deficit Disorder, Huntington's Disease, and bipolar disorder.
- 43. (previously presented) The method of claim 42, wherein said disorder in a human is Parkinson's Disease or Alzheimer's Disease.
- 44. (**previously presented**) The method of claim 42, wherein said substance addiction is cocaine addiction.

Claims 45-59. (Canceled)