Problem Set 5

Pete Cuppernull

2/26/2020

Load Packages and Data

```
library(tidyverse)
library(tidymodels)
library(rsample)
library(glmnet)
library(leaps)
library(rcfss)
library(patchwork)
library(caret)
library(h2o)
library(ipred)
library(adabag)
library(randomForest)
library(ranger)
library(gbm)
library(tree)
library(pROC)
gss_test <- na.omit(read_csv("data/gss_test.csv"))</pre>
gss_train <- na.omit(read_csv("data/gss_train.csv"))</pre>
set.seed(1414)
```

Application

2. Estimate the Models

Logit

```
# `augment` will save the predictions with the holdout data set
  res <- augment(mod, newdata = assessment(splits)) %>%
    as tibble() %>%
    mutate(.prob = logit2prob(.fitted),
           .pred = round(.prob))
  # Return the assessment data set with the additional columns
}
gss_logit_cv10 <- vfold_cv(data = gss_train_logit, v = 10) %>%
  mutate(results = map(splits, holdout_results)) %>%
  unnest(results) %>%
 mutate(.pred = factor(.pred)) %>%
  group_by(id) %>%
  accuracy(truth = colrac, estimate = .pred)
logit_error <- 1 - mean(gss_logit_cv10$.estimate, na.rm = TRUE)</pre>
##roc
logit_roc <- vfold_cv(data = gss_train_logit, v = 10) %>%
 mutate(results = map(splits, holdout_results)) %>%
  unnest(results) %>%
  group_by(id) %>%
 roc(response = colrac, predictor = .pred)
```

Naive Bayes

```
h2o.no_progress()
h2o.init()
## Connection successful!
##
## R is connected to the H2O cluster:
##
       H2O cluster uptime:
                                   20 hours 28 minutes
##
       H2O cluster timezone:
                                   America/Chicago
##
       H2O data parsing timezone: UTC
##
       H2O cluster version:
                                   3.28.0.2
##
       H2O cluster version age:
                                   1 month and 6 days
##
       H2O cluster name:
                                   H2O_started_from_R_petecuppernull_tav246
##
       H2O cluster total nodes:
                                   1
##
       H2O cluster total memory:
                                   3.94 GB
       H2O cluster total cores:
##
##
       H2O cluster allowed cores:
##
       H2O cluster healthy:
                                   TRUE
##
       H20 Connection ip:
                                   localhost
##
       H20 Connection port:
                                   54321
##
       H20 Connection proxy:
                                   NA
##
       H20 Internal Security:
                                   FALSE
##
       H20 API Extensions:
                                   Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4
       R Version:
##
                                   R version 3.6.2 (2019-12-12)
```

```
#Save DFs as h20 objects
train.h2o <- as.h2o(gss_train %>%
                       mutate(colrac = as.factor(colrac)))
test.h2o <- as.h2o(gss_test %>%
                       mutate(colrac = as.factor(colrac)))
#set variable names
y <- "colrac"
x <- setdiff(names(gss_train), y)</pre>
#NB Model
nb <- h2o.naiveBayes(</pre>
 x = x
 y = y,
 training_frame = train.h2o,
 validation_frame = test.h2o,
  seed = 123,
  nfolds = 10)
nb_auc <- h2o.auc(nb, valid = TRUE)</pre>
```

Elastic net regression

```
gss_train_x <- model.matrix(colrac ~ ., gss_train)[, -1]</pre>
gss_train_y <- gss_train$colrac</pre>
gss_test_x <- model.matrix(colrac ~ ., gss_test)[, -1]</pre>
gss_test_y <- gss_test$colrac</pre>
         <- glmnet(gss_train_x, gss_train_y, alpha = 1.0)</pre>
elastic1 <- glmnet(gss_train_x, gss_train_y, alpha = 0.25)</pre>
elastic2 <- glmnet(gss_train_x, gss_train_y, alpha = 0.75)</pre>
         <- glmnet(gss_train_x, gss_train_y, alpha = 0.0)
fold_id <- sample(1:10, size = length(gss_train_y), replace = TRUE)</pre>
tuning_grid <- tibble::tibble(</pre>
           = seq(0, 1, by = .1),
  alpha
  mse_min
             = NA
 mse_1se
           = NA,
 lambda_min = NA,
  lambda_1se = NA
for(i in seq_along(tuning_grid$alpha)) {
  # fit CV model for each alpha value
  fit <- cv.glmnet(gss_train_x,</pre>
                    gss_train_y,
                    alpha = tuning_grid$alpha[i],
                    foldid = fold_id)
```

```
# extract MSE and lambda values
  tuning_grid$mse_min[i] <- fit$cvm[fit$lambda == fit$lambda.min]
tuning_grid$mse_1se[i] <- fit$cvm[fit$lambda == fit$lambda.1se]</pre>
  tuning_grid$lambda_min[i] <- fit$lambda.min</pre>
  tuning_grid$lambda_1se[i] <- fit$lambda.1se</pre>
##now that we have the model, lets generate predictions so we can calculate error rate and AUC
best_elastic_mod <- cv.glmnet(gss_train_x,</pre>
                      gss_train_y,
                      alpha = 0.3,
                      foldid = fold id)
best_elastic_mod_bin <- cv.glmnet(gss_train_x,</pre>
                      gss_train_y,
                      alpha = 0.3,
                      foldid = fold_id,
                      family = "binomial")
elastic_error <- mean(best_elastic_mod$cvm)</pre>
best_elastic_mod_auc <- cv.glmnet(gss_train_x,</pre>
                      gss_train_y,
                      alpha = 0.3,
                      family = "binomial",
                      type.measure = "auc",
                      foldid = fold_id)
elastic_auc <- mean(best_elastic_mod_auc$cvm)</pre>
```

Decision tree (CART)

```
truth = map(splits, ~ assessment(.x)$colrac)) %>%
  unnest(estimate, truth) %>%
  group_by(k) %>%
  accuracy(truth = truth, estimate = factor(round(estimate), levels = 0:1, labels = c("0", "1")))
#ggplot(gss_cv_tree_prune, aes(k, 1 - .estimate)) +
# geom_point() +
# geom line() +
# geom_vline(xintercept = gss_cv_tree_prune$k[[which.max(gss_cv_tree_prune$.estimate)]],
             linetype = 2) +
# labs(title = "Colrac predictions",
      subtitle = "CV Decision Tree",
       x = "Number of terminal nodes",
       y = "10-fold CV error rate")
#find auc
tree_auc <- expand.grid(gss_tree_cv$id, 2:30) %>%
 as_tibble() %>%
 mutate(Var2 = as.numeric(Var2)) %>%
 rename(id = Var1,
        k = Var2) \%
 left_join(gss_tree_cv) %>%
 mutate(prune = map2(tree, k, ~ prune.tree(.x, best = .y)),
         estimate = map2(prune, splits, ~ predict(.x, newdata = assessment(.y))[,2]),
         truth = map(splits, ~ assessment(.x)$colrac)) %>%
  unnest(estimate, truth) %>%
  mutate(estimate = round(estimate)) %>%
  group_by(k) %>%
 roc(response = truth, predictor = estimate)
```

Bagging

Random Forest - I NEED TO MODIFY THIS SO IT IS CV

```
hyper_grid <- expand.grid(</pre>
  mtry = seq(14, 24, by = 2),
  node_size = seq(3, 9, by = 2),
  sampe_size = c(.55, .632, .70, .80),
  OOB_RMSE = 0)
# ranger: fast implementation of random forests (Breiman 2001)
for(i in 1:nrow(hyper_grid)) {
  # train model
  model <- ranger(</pre>
   formula = colrac ~ .,
   data = gss train,
   num.trees = 500,
    mtry = hyper_grid$mtry[i],
    min.node.size = hyper_grid$node_size[i],
    sample.fraction = hyper_grid$sampe_size[i],
    seed = 123)
  # add OOB error to grid
 hyper_grid$00B_RMSE[i] <- sqrt(model$prediction.error)</pre>
# numerically inspect the model
hyper_grid <- hyper_grid %>%
  arrange(00B_RMSE)
best_rf <- ranger(</pre>
   formula = colrac ~ .,
    data = gss_train_logit,
    num.trees = 500,
    mtry = hyper_grid$mtry[[1]],
    min.node.size = hyper_grid$node_size[[1]],
    sample.fraction = hyper_grid$sampe_size[[1]])
rf_error <- best_rf$prediction.error</pre>
preds_num <- as.numeric(best_rf$predictions)</pre>
rf_auc <- roc(response = gss_train$colrac, predictor = preds_num)</pre>
```

Boosting

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3286	nan	0.1000	0.0281
##	2	1.2833	nan	0.1000	0.0206
##	3	1.2410	nan	0.1000	0.0199
##	4	1.2075	nan	0.1000	0.0158
##	5	1.1768	nan	0.1000	0.0147
##	6	1.1491	nan	0.1000	0.0119
##	7	1.1265	nan	0.1000	0.0112
##	8	1.1068	nan	0.1000	0.0090
##	9	1.0852	nan	0.1000	0.0106
##	10	1.0667	nan	0.1000	0.0091
##	20	0.9523	nan	0.1000	0.0025
##	40	0.8900	nan	0.1000	-0.0001
##	60	0.8578	nan	0.1000	0.0001
##	80	0.8353	nan	0.1000	-0.0007
##	100	0.8181	nan	0.1000	-0.0002
##	120	0.8030	nan	0.1000	-0.0003
##	140	0.7909	nan	0.1000	-0.0004
##	150	0.7855	nan	0.1000	-0.0001
##	100	0.7000	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3210	nan	0.1000	0.0320
##	2	1.2617	nan	0.1000	0.0320
##	3	1.2152	nan	0.1000	0.0004
##	4	1.1744	nan	0.1000	0.0210
##	5	1.1372	nan	0.1000	0.0132
##	6	1.1060	nan	0.1000	0.0132
##	7	1.0811	nan	0.1000	0.0142
##	8	1.0576	nan	0.1000	0.0101
##	9	1.0371	nan	0.1000	0.0081
##	10	1.0181	nan	0.1000	0.0094
##	20	0.9162	nan	0.1000	0.0015
##	40	0.8364	nan	0.1000	0.0003
##	60	0.7936	nan	0.1000	-0.0001
##	80	0.7652	nan	0.1000	-0.0012
##	100	0.7374	nan	0.1000	-0.0003
##	120	0.7135	nan	0.1000	-0.0011
##	140	0.6937	nan	0.1000	-0.0004
##	150	0.6844	nan	0.1000	-0.0000
##	100	0.0011	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3119	nan	0.1000	0.0349
##	2	1.2502	nan	0.1000	0.0288
##	3	1.2024	nan	0.1000	0.0245
##	4	1.1598	nan	0.1000	0.0246
##	5	1.1236	nan	0.1000	0.0210
π#	5	1.1230	IIall	0.1000	0.0103

##	6	1.0927	nan	0.1000	0.0124
##	7	1.0630	nan	0.1000	0.0130
##	8	1.0354	nan	0.1000	0.0105
##	9	1.0161		0.1000	0.0103
##	10	0.9975	nan	0.1000	0.0082
	20		nan		
##		0.8907	nan	0.1000	0.0014
##	40	0.7982	nan	0.1000	-0.0003
##	60	0.7447	nan	0.1000	-0.0006
##	80	0.7047	nan	0.1000	0.0000
##	100	0.6732	nan	0.1000	-0.0005
##	120	0.6435	nan	0.1000	-0.0004
##	140	0.6136	nan	0.1000	-0.0013
##	150	0.5996	nan	0.1000	-0.0005
##	T	T : D :	W-1:4D	Q+ Q ÷	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3293	nan	0.1000	0.0277
##	2	1.2796	nan	0.1000	0.0230
##	3	1.2433	nan	0.1000	0.0182
##	4	1.2098	nan	0.1000	0.0164
##	5	1.1806	nan	0.1000	0.0142
##	6	1.1539	nan	0.1000	0.0116
##	7	1.1276	nan	0.1000	0.0126
##	8	1.1077	nan	0.1000	0.0102
##	9	1.0880	nan	0.1000	0.0099
##	10	1.0686	nan	0.1000	0.0082
##	20	0.9627	nan	0.1000	0.0042
##	40	0.8949	nan	0.1000	-0.0004
##	60	0.8654	nan	0.1000	0.0001
##	80	0.8435	nan	0.1000	-0.0001
##	100	0.8243	nan	0.1000	-0.0002
##	120	0.8087	nan	0.1000	0.0001
##	140	0.7951	nan	0.1000	-0.0001
##	150	0.7908	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3146	nan	0.1000	0.0337
##	2	1.2610	nan	0.1000	0.0254
##	3	1.2136	nan	0.1000	0.0244
##	4	1.1756	nan	0.1000	0.0193
##	5	1.1388	nan	0.1000	0.0170
##	6	1.1099	nan	0.1000	0.0151
##	7	1.0826	nan	0.1000	0.0135
##	8	1.0573	nan	0.1000	0.0113
##	9	1.0365	nan	0.1000	0.0095
##	10	1.0164	nan	0.1000	0.0094
##	20	0.9196	nan	0.1000	0.0039
##	40	0.8423	nan	0.1000	-0.0006
##	60	0.7991	nan	0.1000	-0.0016
##	80	0.7683	nan	0.1000	0.0002
##	100	0.7426	nan	0.1000	-0.0009
##	120	0.7228	nan	0.1000	-0.0006
##	140	0.7014	nan	0.1000	-0.0001
##	150	0.6891	nan	0.1000	-0.0003
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3135	nan	0.1000	0.0342
##	2	1.2552	nan	0.1000	0.0311
##	3	1.2000	nan	0.1000	0.0259
##	4	1.1567	nan	0.1000	0.0194
##	5	1.1199	nan	0.1000	0.0171
##	6	1.0902	nan	0.1000	0.0151
##	7	1.0632	nan	0.1000	0.0127
##	8	1.0406	nan	0.1000	0.0092
##	9	1.0230	nan	0.1000	0.0076
##	10	1.0047	nan	0.1000	0.0066
##	20	0.8877	nan	0.1000	0.0025
##	40	0.8012	nan	0.1000	-0.0009
##	60	0.7542	nan	0.1000	-0.0000
##	80	0.7149	nan	0.1000	-0.0002
##	100	0.6791	nan	0.1000	0.0002
##	120	0.6523	nan	0.1000	-0.0012
##	140	0.6275	nan	0.1000	-0.0012
##	150	0.6140	nan	0.1000	-0.0003
##	100	0.0110	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3306	nan	0.1000	0.0265
##	2	1.2904	nan	0.1000	0.0191
##	3	1.2557	nan	0.1000	0.0168
##	4	1.2183	nan	0.1000	0.0171
##	5	1.1874	nan	0.1000	0.0171
##	6	1.1624	nan	0.1000	0.0140
##	7	1.1369	nan	0.1000	0.0110
##	8	1.1165	nan	0.1000	0.0094
##	9	1.0968	nan	0.1000	0.0094
##	10	1.0809	nan	0.1000	0.0033
##	20	0.9754	nan	0.1000	0.0070
##	40	0.9115		0.1000	0.0021
##	60	0.8786	nan nan	0.1000	0.0007
##	80	0.8577		0.1000	-0.0007
##	100	0.8392	nan nan	0.1000	-0.0001
##	120	0.8239	nan	0.1000	-0.0001
##	140	0.8148	nan		
##	150	0.8104	nan	0.1000 0.1000	-0.0010 -0.0001
##	100	0.0104	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3196	nan	0.1000	0.0333
##	2	1.2646	nan	0.1000	0.0358
##	3	1.2163	nan	0.1000	0.0200
##	4	1.1722	nan	0.1000	0.0217
##	5	1.1413	nan	0.1000	0.0255
##	6	1.1147	nan	0.1000	0.0133
##	7	1.0873		0.1000	0.0118
##	8	1.0655	nan	0.1000	0.0099
##	9	1.0434	nan	0.1000	0.0099
##	10	1.0254	nan	0.1000	0.0103
##	20	0.9293	nan	0.1000	0.0009
##	40	0.9293	nan	0.1000	0.0023
##	60	0.8089	nan	0.1000	-0.0010
##	00	0.0009	nan	0.1000	-0.0007

##	80	0.7753	nan	0.1000	-0.0005
##	100	0.7549	nan	0.1000	-0.0002
##	120	0.7310	nan	0.1000	-0.0011
##	140	0.7097	nan	0.1000	-0.0007
##	150	0.7007		0.1000	-0.0004
	150	0.7007	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3131	nan	0.1000	0.0326
##	2	1.2557	nan	0.1000	0.0293
##	3	1.2103	nan	0.1000	0.0213
##	4	1.1663	nan	0.1000	0.0213
##	5	1.1301	nan	0.1000	0.0181
##	6	1.0973	nan	0.1000	0.0154
##	7	1.0703	nan	0.1000	0.0120
##	8	1.0454	nan	0.1000	0.0116
##	9	1.0259	nan	0.1000	0.0082
##	10	1.0073	nan	0.1000	0.0085
##	20	0.9036	nan	0.1000	0.0008
##	40	0.8141	nan	0.1000	-0.0013
##	60	0.7646	nan	0.1000	-0.0008
##	80	0.7248	nan	0.1000	0.0003
##	100	0.6941	nan	0.1000	-0.0004
##	120	0.6644	nan	0.1000	-0.0004
##	140	0.6338	nan	0.1000	-0.0006
##	150	0.6237		0.1000	-0.0013
##	100	0.0257	nan	0.1000	0.0015
##	Iter	TrainDeviance	ValidDeviance	CtonCino	Tmmmorro
				StepSize	Improve
##	1	1.3304	nan	0.1000	0.0287
##	2	1.2836	nan	0.1000	0.0221
##	3	1.2450	nan	0.1000	0.0185
##	4	1.2104	nan	0.1000	0.0162
##	5	1.1830	nan	0.1000	0.0133
##	6	1.1579	nan	0.1000	0.0133
##	7	1.1316	nan	0.1000	0.0118
##	8	1.1098	nan	0.1000	0.0098
##	9	1.0892	nan	0.1000	0.0077
##	10	1.0706	nan	0.1000	0.0089
##	20	0.9601	nan	0.1000	0.0036
##	40	0.8966	nan	0.1000	0.0001
##	60	0.8631		0.1000	0.0001
			nan		
##	80	0.8429	nan	0.1000	-0.0003
##	100	0.8269	nan	0.1000	-0.0002
##	120	0.8133	nan	0.1000	-0.0003
##	140	0.8043	nan	0.1000	0.0000
##	150	0.7994	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3170	nan	0.1000	0.0340
##	2	1.2669	nan	0.1000	0.0254
##	3	1.2191	nan	0.1000	0.0232
##	4	1.1772	nan	0.1000	0.0208
##	5	1.1397	nan	0.1000	0.0174
##	6	1.1084	nan	0.1000	0.0146
##	7	1.0808		0.1000	0.0140
##	1	1.0008	nan	0.1000	0.0141

##	8	1.0591	nan	0.1000	0.0108
##	9	1.0382	nan	0.1000	0.0088
##	10	1.0184	nan	0.1000	0.0097
##	20	0.9196	nan	0.1000	0.0023
##	40	0.8419	nan	0.1000	0.0011
##	60	0.8029	nan	0.1000	0.0002
##	80	0.7751	nan	0.1000	-0.0003
##	100	0.7467	nan	0.1000	-0.0009
##	120	0.7251	nan	0.1000	-0.0004
##	140	0.7052	nan	0.1000	-0.0003
##	150	0.6984	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3128	nan	0.1000	0.0357
##	2	1.2523	nan	0.1000	0.0297
##	3	1.2046	nan	0.1000	0.0233
##	4	1.1614	nan	0.1000	0.0211
##	5	1.1269	nan	0.1000	0.0153
##	6	1.0975	nan	0.1000	0.0131
##	7	1.0677	nan	0.1000	0.0135
##	8	1.0409	nan	0.1000	0.0116
##	9	1.0223	nan	0.1000	0.0073
##	10	1.0018	nan	0.1000	0.0091
##	20	0.8900	nan	0.1000	0.0010
##	40	0.8040	nan	0.1000	-0.0003
##	60	0.7544	nan	0.1000	0.0003
##	80	0.7169	nan	0.1000	-0.0008
##	100	0.6832	nan	0.1000	-0.0005
##	120	0.6549	nan	0.1000	-0.0005
##	140	0.6287	nan	0.1000	-0.0010
##	150	0.6167	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3253	nan	0.1000	0.0295
##	2	1.2848	nan	0.1000	0.0201
##	3	1.2429	nan	0.1000	0.0208
##	4	1.2074	nan	0.1000	0.0175
##	5	1.1780	nan	0.1000	0.0135
##	6	1.1518	nan	0.1000	0.0126
##	7	1.1269	nan	0.1000	0.0118
##	8	1.1059	nan	0.1000	0.0098
##	9	1.0858	nan	0.1000	0.0082
##	10	1.0676	nan	0.1000	0.0085
##	20	0.9600	nan	0.1000	0.0034
##	40	0.8960	nan	0.1000	0.0017
##	60	0.8647	nan	0.1000	-0.0001
##	80	0.8436	nan	0.1000	-0.0002
##	100	0.8227	nan	0.1000	-0.0001
##	120	0.8054	nan	0.1000	-0.0001
##	140	0.7923		0.1000	-0.0005
##	150	0.7866	nan	0.1000	-0.0003
##	100	0.7000	nan	0.1000	0.0002
##					
	Iter	TrainDeviance	ValidDeviance	StenSize	Improve
##	Iter 1	TrainDeviance 1.3178	ValidDeviance nan	StepSize 0.1000	Improve 0.0336

##	2	1.2599	nan	0.1000	0.0278
##	3	1.2102	nan	0.1000	0.0229
##	4	1.1713	nan	0.1000	0.0193
##	5	1.1368	nan	0.1000	0.0179
##	6	1.1092	nan	0.1000	0.0141
##	7	1.0816	nan	0.1000	0.0140
##	8	1.0583	nan	0.1000	0.0120
##	9	1.0369	nan	0.1000	0.0099
##	10	1.0217	nan	0.1000	0.0071
##	20	0.9242	nan	0.1000	0.0022
##	40	0.8435	nan	0.1000	-0.0001
##	60	0.8014	nan	0.1000	0.0001
##	80	0.7675	nan	0.1000	-0.0005
##	100	0.7427	nan	0.1000	-0.0003
##	120	0.7194	nan	0.1000	-0.0004
##	140	0.6983	nan	0.1000	-0.0009
##	150	0.6894	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3139	nan	0.1000	0.0335
##	2	1.2547	nan	0.1000	0.0275
##	3	1.2048	nan	0.1000	0.0222
##	4	1.1615	nan	0.1000	0.0199
##	5	1.1281	nan	0.1000	0.0154
##	6	1.0953	nan	0.1000	0.0155
##	7	1.0706	nan	0.1000	0.0094
##	8	1.0433	nan	0.1000	0.0126
##	9	1.0198	nan	0.1000	0.0103
##	10	1.0004	nan	0.1000	0.0082
##	20	0.8892	nan	0.1000	0.0022
##	40	0.8074	nan	0.1000	-0.0000
##	60	0.7493	nan	0.1000	0.0004
##	80	0.7067	nan	0.1000	0.0000
##	100	0.6731	nan	0.1000	-0.0005
##	120	0.6465	nan	0.1000	-0.0011
##	140	0.6224	nan	0.1000	-0.0008
##	150	0.6082	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3239	nan	0.1000	0.0285
##	2	1.2752	nan	0.1000	0.0241
##	3	1.2336	nan	0.1000	0.0195
##	4	1.2006	nan	0.1000	0.0177
##	5	1.1706	nan	0.1000	0.0126
##	6	1.1417	nan	0.1000	0.0132
##	7	1.1179	nan	0.1000	0.0121
##	8	1.0952	nan	0.1000	0.0101
##	9	1.0717	nan	0.1000	0.0095
##	10	1.0537	nan	0.1000	0.0080
##	20	0.9462	nan	0.1000	0.0029
##	40	0.8797	nan	0.1000	0.0015
##	60	0.8494	nan	0.1000	-0.0002
##	80	0.8302	nan	0.1000	-0.0003
##	100	0.8128	nan	0.1000	0.0000
	100	0.0120	11311	0.1000	0.000

##	120	0.7978	nan	0.1000	-0.0001
##	140	0.7828	nan	0.1000	-0.0003
##	150	0.7782	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3142	nan	0.1000	0.0339
##	2	1.2610	nan	0.1000	0.0278
##	3	1.2088	nan	0.1000	0.0267
##	4	1.1680	nan	0.1000	0.0195
##	5	1.1333	nan	0.1000	0.0174
##	6	1.1024	nan	0.1000	0.0153
##	7	1.0754	nan	0.1000	0.0117
##	8	1.0499	nan	0.1000	0.0129
##	9	1.0255	nan	0.1000	0.0108
##	10	1.0073	nan	0.1000	0.0078
##	20	0.9103	nan	0.1000	0.0018
##	40	0.8320	nan	0.1000	0.0001
##	60	0.7882	nan	0.1000	-0.0003
##	80	0.7582	nan	0.1000	-0.0012
##	100	0.7284	nan	0.1000	-0.0007
##	120	0.7050	nan	0.1000	0.0000
##	140	0.6848	nan	0.1000	-0.0008
##	150	0.6748	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3055	nan	0.1000	0.0369
##	2	1.2448	nan	0.1000	0.0292
##	3	1.1911	nan	0.1000	0.0253
##	4	1.1479	nan	0.1000	0.0181
##	5	1.1099	nan	0.1000	0.0168
##	6	1.0778	nan	0.1000	0.0144
##	7	1.0493	nan	0.1000	0.0118
##	8	1.0251	nan	0.1000	0.0099
##	9	1.0042	nan	0.1000	0.0087
##	10	0.9875	nan	0.1000	0.0070
##	20	0.8789	nan	0.1000	0.0034
##	40	0.7910	nan	0.1000	-0.0012
##	60	0.7447	nan	0.1000	-0.0002
##	80	0.7046	nan	0.1000	-0.0004
##	100	0.6682	nan	0.1000	-0.0004
##	120	0.6419	nan	0.1000	0.0002
##	140	0.6131	nan	0.1000	-0.0002
##	150	0.6008	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3247	nan	0.1000	0.0297
##	2	1.2791	nan	0.1000	0.0234
##	3	1.2398	nan	0.1000	0.0175
##	4	1.2045	nan	0.1000	0.0159
##	5	1.1733	nan	0.1000	0.0146
##	6	1.1497	nan	0.1000	0.0132
##	7	1.1239	nan	0.1000	0.0116
##	8	1.1027	nan	0.1000	0.0098
##	9	1.0831	nan	0.1000	0.0091

##	10	1.0653	nan	0.1000	0.0084
##	20	0.9568	nan	0.1000	0.0031
##	40	0.8933	nan	0.1000	0.0001
##	60	0.8624	nan	0.1000	-0.0001
##	80	0.8421	nan	0.1000	-0.0006
##	100	0.8212	nan	0.1000	0.0009
##	120	0.8062	nan	0.1000	-0.0000
##	140	0.7948	nan	0.1000	-0.0003
##	150	0.7900	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3191	nan	0.1000	0.0291
##	2	1.2596	nan	0.1000	0.0291
##	3	1.2110	nan	0.1000	0.0250
##	4	1.1687	nan	0.1000	0.0214
##	5	1.1332	nan	0.1000	0.0162
##	6	1.0991	nan	0.1000	0.0152
##	7	1.0711	nan	0.1000	0.0134
##	8	1.0506	nan	0.1000	0.0091
##	9	1.0304	nan	0.1000	0.0092
##	10	1.0112	nan	0.1000	0.0090
##	20	0.9150	nan	0.1000	0.0020
##	40	0.8395	nan	0.1000	-0.0000
##	60	0.7944	nan	0.1000	-0.0003
##	80	0.7645	nan	0.1000	-0.0010
##	100	0.7379	nan	0.1000	0.0002
##	120	0.7168	nan	0.1000	-0.0005
			nan		
##	14()	0.6964	nan	0.1000	-0.0003
##	140 150	0.6964 0.6900	nan nan	0.1000	-0.0003 -0.0008
##	140 150	0.6964 0.6900	nan nan	0.1000 0.1000	-0.0003 -0.0008
## ##	150	0.6900	nan	0.1000	-0.0008
## ## ##	150 Iter	0.6900 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0008
## ## ## ##	150 Iter 1	0.6900 TrainDeviance 1.3102	nan ValidDeviance nan	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365
## ## ## ##	150 Iter 1 2	0.6900 TrainDeviance 1.3102 1.2522	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308
## ## ## ## ##	150 Iter 1 2 3	0.6900 TrainDeviance 1.3102 1.2522 1.2005	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241
## ## ## ## ##	150 Iter 1 2 3 4	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213
## ## ## ## ## ##	150 Iter 1 2 3 4 5	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0006
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446 0.6179	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0006 -0.0005
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0006
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446 0.6179 0.6014	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0005 0.0002
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446 0.6179 0.6014 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0005 0.0002 Improve
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446 0.6179 0.6014 TrainDeviance 1.3233	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0005 0.0002 Improve 0.0291
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.6900 TrainDeviance 1.3102 1.2522 1.2005 1.1586 1.1221 1.0912 1.0656 1.0433 1.0219 1.0068 0.8935 0.8026 0.7517 0.7118 0.6760 0.6446 0.6179 0.6014 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	-0.0008 Improve 0.0365 0.0308 0.0241 0.0213 0.0159 0.0146 0.0121 0.0108 0.0106 0.0062 0.0016 0.0002 -0.0003 -0.0005 -0.0009 -0.0005 0.0002 Improve

##	4	1.2038	nan	0.1000	0.0177
##	5	1.1756	nan	0.1000	0.0132
##	6	1.1447	nan	0.1000	0.0138
##	7	1.1199	nan	0.1000	0.0109
##	8	1.0975	nan	0.1000	0.0091
##	9	1.0775	nan	0.1000	0.0093
##	10	1.0584	nan	0.1000	0.0079
##	20	0.9478	nan	0.1000	0.0029
##	40	0.8809	nan	0.1000	0.0011
##	60	0.8519	nan	0.1000	-0.0012
##	80	0.8266	nan	0.1000	0.0005
##	100	0.8061	nan	0.1000	-0.0001
##	120	0.7912	nan	0.1000	-0.0003
##	140	0.7807	nan	0.1000	-0.0004
##	150	0.7746	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3129	nan	0.1000	0.0350
##	2	1.2556	nan	0.1000	0.0299
##	3	1.2080	nan	0.1000	0.0241
##	4	1.1670	nan	0.1000	0.0195
##	5	1.1306	nan	0.1000	0.0162
##	6	1.0995	nan	0.1000	0.0161
##	7	1.0709	nan	0.1000	0.0130
##	8	1.0465	nan	0.1000	0.0115
##	9	1.0258	nan	0.1000	0.0095
##	10	1.0071	nan	0.1000	0.0073
##	20	0.9097	nan	0.1000	0.0029
##	40	0.8300	nan	0.1000	0.0006
##	60	0.7880	nan	0.1000	-0.0009
##	80	0.7521	nan	0.1000	-0.0005
##	100	0.7261	nan	0.1000	-0.0004
##	120	0.7024	nan	0.1000	0.0001
##	140	0.6841	nan	0.1000	-0.0007
##	150	0.6729	nan	0.1000	-0.0004
##	200	0.0.20		0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3065	nan	0.1000	0.0381
##	2	1.2441	nan	0.1000	0.0288
##	3	1.1957	nan	0.1000	0.0243
##	4	1.1553	nan	0.1000	0.0210
##	5	1.1213	nan	0.1000	0.0153
##	6	1.0913	nan	0.1000	0.0135
##	7	1.0591	nan	0.1000	0.0151
##	8	1.0325	nan	0.1000	0.0124
##	9	1.0105	nan	0.1000	0.0101
##	10	0.9903	nan	0.1000	0.0091
##	20	0.8773	nan	0.1000	0.0031
##	40	0.7897		0.1000	0.0005
##	60	0.7336	nan	0.1000	-0.0003
##	80	0.7336	nan	0.1000	0.0003
##	100	0.6589	nan nan	0.1000	-0.0004
##	120	0.6317		0.1000	-0.0005
##	140	0.6035	nan	0.1000	-0.0005
##	140	0.0035	nan	0.1000	-0.0001

## ##	150	0.5898	nan	0.1000	-0.0005
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3306	nan	0.1000	0.0274
##	2	1.2873	nan	0.1000	0.0224
##	3	1.2481	nan	0.1000	0.0193
##	4	1.2150	nan	0.1000	0.0158
##	5	1.1870	nan	0.1000	0.0144
##	6	1.1612	nan	0.1000	0.0121
##	7	1.1358	nan	0.1000	0.0130
##	8	1.1126	nan	0.1000	0.0106
##	9	1.0951	nan	0.1000	0.0081
##	10	1.0759	nan	0.1000	0.0080
##	20	0.9668	nan	0.1000	0.0031
##	40	0.9049	nan	0.1000	-0.0006
##	60	0.8716	nan	0.1000	0.0012
##	80	0.8491	nan	0.1000	-0.0002
##	100	0.8295	nan	0.1000	-0.0005
##	120	0.8136	nan	0.1000	-0.0000
##	140	0.8019	nan	0.1000	-0.0002
##	150	0.7973	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3193	nan	0.1000	0.0330
##	2	1.2637	nan	0.1000	0.0261
##	3	1.2150	nan	0.1000	0.0229
##	4	1.1777	nan	0.1000	0.0195
##	5	1.1418	nan	0.1000	0.0155
##	6	1.1110	nan	0.1000	0.0150
##	7	1.0859	nan	0.1000	0.0117
##	8	1.0599	nan	0.1000	0.0125
##	9	1.0371	nan	0.1000	0.0102
##	10	1.0196	nan	0.1000	0.0086
##	20	0.9243	nan	0.1000	0.0010
##	40	0.8523	nan	0.1000	-0.0004
##	60	0.8140	nan	0.1000	-0.0013
##	80	0.7767	nan	0.1000	-0.0003
##	100	0.7475	nan	0.1000	-0.0005
##	120	0.7261	nan	0.1000	-0.0002
##	140	0.7079	nan	0.1000	-0.0002
##	150	0.6977	nan	0.1000	-0.0006
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3155	nan	0.1000	0.0328
##	2	1.2543	nan	0.1000	0.0296
##	3	1.2045	nan	0.1000	0.0239
##	4	1.1606	nan	0.1000	0.0210
##	5	1.1234	nan	0.1000	0.0176
##	6	1.0917	nan	0.1000	0.0160
##	7	1.0649	nan	0.1000	0.0124
##	8	1.0427	nan	0.1000	0.0108
##	9	1.0251	nan	0.1000	0.0071
##	10	1.0061	nan	0.1000	0.0093
##	20	0.8988	nan	0.1000	0.0007

##	40	0.8077	nan	0.1000	0.0004
##	60	0.7531	nan	0.1000	-0.0007
##	80	0.7126	nan	0.1000	-0.0004
##	100	0.6769	nan	0.1000	-0.0000
##	120	0.6448	nan	0.1000	-0.0006
##	140	0.6178	nan	0.1000	-0.0005
##	150	0.6066		0.1000	-0.0016
	150	0.0000	nan	0.1000	-0.0010
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3250	nan	0.1000	0.0297
##	2	1.2773	nan	0.1000	0.0253
##	3	1.2332	nan	0.1000	0.0194
##	4	1.1984	nan	0.1000	0.0166
##	5	1.1670	nan	0.1000	0.0142
##	6	1.1395	nan	0.1000	0.0132
##	7	1.1163	nan	0.1000	0.0111
##	8	1.0954	nan	0.1000	0.0104
##	9	1.0738	nan	0.1000	0.0110
##	10	1.0548	nan	0.1000	0.0077
##	20	0.9453	nan	0.1000	0.0045
##	40	0.8795	nan	0.1000	-0.0003
##	60	0.8476		0.1000	-0.0001
			nan		
##	80	0.8230	nan	0.1000	-0.0001
##	100	0.8014	nan	0.1000	-0.0002
##	120	0.7875	nan	0.1000	-0.0003
##	140	0.7754	nan	0.1000	-0.0001
##	150	0.7700	nan	0.1000	-0.0002
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	Iter 1			StepSize 0.1000	Improve 0.0362
## ##		TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	1	TrainDeviance 1.3148	ValidDeviance nan	StepSize 0.1000	Improve 0.0362
## ## ## ##	1 2	TrainDeviance 1.3148 1.2532	ValidDeviance nan nan	StepSize 0.1000 0.1000	Improve 0.0362 0.0291
## ## ## ##	1 2 3	TrainDeviance 1.3148 1.2532 1.2041	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235
## ## ## ## ##	1 2 3 4	TrainDeviance 1.3148 1.2532 1.2041 1.1604	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201
## ## ## ## ##	1 2 3 4 5	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171
## ## ## ## ## ##	1 2 3 4 5 6	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165
## ## ## ## ## ##	1 2 3 4 5 6 7	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145
## ## ## ## ## ## ##	1 2 3 4 5 6 7	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653 1.0442 1.0225	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653 1.0442 1.0225 1.0037	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653 1.0442 1.0225 1.0037 0.9037	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653 1.0442 1.0225 1.0037 0.9037 0.9037 0.8282 0.7862 0.7558	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005 -0.0010
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005 -0.0010 -0.0006
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3148 1.2532 1.2041 1.1604 1.1252 1.0929 1.0653 1.0442 1.0225 1.0037 0.9037 0.8282 0.7862 0.7558 0.7311 0.7093 0.6905	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005 -0.0010 -0.0006 -0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005 -0.0010 -0.0006
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0004 -0.0003 -0.0005 -0.0010 -0.0006 -0.0000
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.00021 0.0005 -0.0005 -0.0010 -0.0006 -0.00002 Improve
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.00021 0.0005 -0.0010 -0.0006 -0.0000 -0.0002 Improve 0.0366
##########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0005 -0.0010 -0.0006 -0.0000 -0.0002 Improve 0.0366 0.0311
##########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0005 -0.0010 -0.0006 -0.0000 -0.0002 Improve 0.0366 0.0311 0.0244
##########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0362 0.0291 0.0235 0.0201 0.0171 0.0165 0.0145 0.0111 0.0094 0.0091 0.0021 0.0005 -0.0010 -0.0006 -0.0000 -0.0002 Improve 0.0366 0.0311

##	6	1.0873	nan	0.1000	0.0146	
##	7	1.0569	nan	0.1000	0.0126	
##	8	1.0290	nan	0.1000	0.0116	
##	9	1.0053	nan	0.1000	0.0119	
##	10	0.9850	nan	0.1000	0.0083	
##	20	0.8745	nan	0.1000	0.0031	
##	40	0.7831	nan	0.1000	-0.0004	
##	60	0.7335	nan	0.1000	-0.0014	
##	80	0.6931	nan	0.1000	-0.0005	
##	100	0.6579	nan	0.1000	-0.0002	
##	120	0.6304	nan	0.1000	-0.0013	
##	140	0.6040	nan	0.1000	-0.0002	
##	150	0.5905	nan	0.1000	-0.0008	
##						
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve	
##	1	1.3165	nan	0.1000	0.0338	
##	2	1.2599	nan	0.1000	0.0277	
##	3	1.2121	nan	0.1000	0.0212	
##	4	1.1729	nan	0.1000	0.0192	
##	5	1.1360	nan	0.1000	0.0173	
##	6	1.1071	nan	0.1000	0.0137	
##	7	1.0787	nan	0.1000	0.0144	
##	8	1.0547	nan	0.1000	0.0119	
##	9	1.0363	nan	0.1000	0.0092	
##	10	1.0203	nan	0.1000	0.0086	
##	20	0.9220	nan	0.1000	0.0018	
##	40	0.8457	nan	0.1000	0.0000	
##	60	0.8061	nan	0.1000	-0.0009	
##	80	0.7771	nan	0.1000	-0.0003	
##	100	0.7520	nan	0.1000	-0.0001	
1			A 7. A C		A 7.	ha \ /

boost_error<- (gss_boost_cv\$results\$Sens+gss_boost_cv\$results\$Spec)/2</pre>

3. Evaluate the Models

Model performances:

• Cross-validated error rate

- Logistic regression: 0.2059248

- Naive Bayes: 0.253388 (need to figure out how to do this automatically)

Elastic net regression: 0.1601794Decision tree (CART): 0.2242547

- Bagging: 0.2155283

- Random forest: 0.1985095

- Boosting: 0.208509

• ROC/AUC

- Logistic regression: 0.7983075

- Naive Bayes: 0.8056687

Elastic net regression: 0.8665496Decision tree (CART): 0.7646995

- Bagging: 0.8640116

Random forest: 0.7983682

- Boosting: 0.8753265 not sure if this is correct

4. Which is the best model? Defend your choice.

Considering the classification error rates and the AUC results, I believe the best model is the one produced by the elastic net regression. This model exhibits the lowest classification error rate at 16.02%, which is substantially better than the next best model (random forest, at 19.8% error). Further, its AUC performed second best, just behind the boosting model, at .864 compared to .875, respectively. Considering that the AUC results are somewhat close and the elastic net is clearly the best performer in terms of error rate, I argue that elastic net regression is the best modeling procedure.

5. Evaluate the best model

The test classification error rate is 0.2109533 and the test AUC is 0.7844836. We can compare this to the training error rate of 0.1601794 and training AUC of 0.8665496. From these results, we can see that the model did not generalize as well as we would have hoped – while we should expect the test error rate to be slightly lower than the cross validation error rate (because with CV, we are still (to a degree) validating against data that was used to build the model), an increase of about 5% in the error rate and drop of about .08 in the AUC are substantial steps backward. In further research, I would likely also consider testing the boosting model since it performed nearly as well on the test sample as elastic net.