01418364 Practical Deep Learn					Learı																												
	ข้อ เสนอ โครง	ฝึก		Raw Midt erm	Midt	ฝึกปฏิบัติ	2		3	3	8		ควิช		1	1		2	2	2	2		2	2		2	2	2		2	,	4	
04	งาน	ปฏิบัติ	ควิซ		erm	04	100		0 4	100 7	100 8	16	04		01			10 0			10 0	_					10 09					1	24
รหัส	10	16	24	120	30					10 ม.ค. 67			รหัส	_								_					31 ม.ค. 67	14 ก.พ	. 67 21			_	รวม
HXLVGJ	8.2	11.2	16.4	35	8.75	HXLVGJ				100 3.0			HXLVGJ						-		8 1.0							8.5 1	_		7.2		16.36
PGVF+6		10.5	15.2		10.25	PGVF+6							PGVF+6	_						1.0	6.5 1.									1.6	8.2	3.3	15.17
9AHVVX	8.4	13.7	8.4		14.00	9AHVVX							9AHVVX														10 2.0		.4				8.41
I18CCF	8.1	7.5	13.5		12.25	I18CCF				100 3.0			I18CCF								7 1.4	_			_		6 1.2		.8 8		1.5	-	13.45
S5CEKC		11.7	16.7		13.75	S5CEKC		_					S5CEKC														7 1.4				8.2		16.67
B0F5Y2	8.3	11.4	17.1		14.50					100 3.0	55 4.4		B0F5Y2								7.5 1.						6 1.2	7.5 1	.5 9.5	5 1.9	9.2	3.7	17.05
4ZLUH+	6.7	3.1	13.6		17.00	4ZLUH+	0 0				5 0.4		4ZLUH+																8		3.5		13.59
D/4NZS	8.4	13.9	18.4	79	19.75	D/4NZS				100 3.0			D/4NZS	10	1.0	10	1.0	6.5 1.	3 8	1.6	8.5 1.	7 9.5	1.9	8.5 1.	7 5.2	1.0	7 1.4	9 1	.8 8	1.6	6	2.4	18.44
O4QNDQ	8.3	14.3	16.6	58	14.50	O4QNDQ	37. 0 .	. <mark>8</mark> 85	2.6	100 3.0	100 8.0	14.30	O4QND0	9.3	0.9	8	8.0	8 1.	6 8	1.6	7.5 1.	5.25	1.1	5.75 1.	2 4.5	0.9	10 2.0	9 1	.8 7.9	5 1.5	4.5	1.8	16.63
SSQDCU	8.2	11.2	14.2	53	13.25	SSQDCU	48 1 .	.0 95	2.9	100 3.0	55 4.4	11.21	SSQDCI	J 3.55	0.4	5.5	0.6	6 1 .	2 7	1.4	4.5 0.9	9 0.9	0.2	3.5 0 .	7 6	1.2	9 1.8	8.5	.7 6	1.2	7.5	3.0	14.19
UA3+LJ	8.1	11.5	14.5	50	12.50	UA3+LJ	48 1 .	.0 90	2.7	100 3.0	60 4.8	11.46	UA3+LJ	8	8.0	6	0.6	6 1 .	2 5	1.0	7 1.4	4 8.5	1.7	4 0 .	8 3.7	0.7	4 0.8	5.5 1	.1 7.	5 1.5	7.2	2.9	14.52
AFT61C	8.3	10.5	16.4	85	21.25	AFT61C	37. 0 .	.8 90	2.7	100 3.0	50 4.0	10.45	AFT61C	9	0.9	7	0.7	6 1 .	2 8	1.6	8 1.0	3 .2	0.6	4.75 1.	0 5	1.0	6 1.2	8.5 1	.7 8	1.6	8.2	3.3	16.37
AJ7DW4	8.2	15.3	16.5	47	11.75	AJ7DW4	65 1 .	.3 10	3.0	100 3.0	100 8.0	15.30	AJ7DW4	6.5	0.7	8	0.8	5.5 1 .	1 6	1.2	7 1.4	4 3.3	0.7	7.5 1 .	5 6	1.2	8 1.6	7.5 1	.5 8	1.6	8.2	3.3	16.49
SYLV94	7.5	11.2	17.6	60	15.00	SYLV94	59 1 .	2 10	3.0	100 3.0	50 4.0	11.18	SYLV94	10	1.0	8	8.0	8 1.	6 6.5	1.3	8 1.0	6 3.7	0.7	3.75 0.	8 6.2	1.2	6 1.2	8.5 1	.7 10	2.0	9.2	3.7	17.61
ON9LKL	7.5	9.7	15.1	44	11.00	ON9LKL	70 1 .	4 95	2.9	100 3.0	30 2.4	9.65	ON9LKL	7	0.7	7	0.7	5.5 1 .	1 7	1.4	6.5 1.3	3 6.1	1.2	4 0.	8 3.5	0.7	6 1.2	7.5 1	.5 8	1.6	7.2	2.9	15.10
KSO530	8.0	5.4	11.4	33	8.25	KSO530	48 1 .	.0			55 4.4	5.36	KSO53C	6.5	0.7	7	0.7	3 0 .	6 6	1.2	3 0.0	6 1.6	0.3	4.5 0 .	9 1.7	0.3	6 1.2	6.5 1	.3 7	1.4	5.5	2.2	11.41
QZU9HO	8.5	13.8	17.1	56	14.00	QZU9HO	65 1 .	.3 90	2.7	100 3.0	85 6.8	13.80	QZU9H0	9.3	0.9	8	0.8	6 1 .	2 9	1.8	9 1.	3 2.1	0.4	3.25 0 .	7 5.5	1.1	8 1.6	8 1	.6 8	1.6	9	3.6	17.10
B/LNVW	8.2	12.4	14.7	67	16.75	B/LNVW	60 1 .	2 85	2.6	100 3.0	70 5.6	12.35	B/LNVW	10	1.0	6	0.6	6 1 .	2 8	1.6	7.5 1.	5 6.1	1.2	5 1 .	0 6	1.2	9 1.8	7.5 1	.5		5.2	2.1	14.70
KBCCW0	8.4	11.4	15.0	44	11.00	KBCCW0	59 1 .	2 80	2.4	100 3.0	60 4.8	11.38	KBCCW	7.8	8.0	8	8.0	4.5 0.	9 7	1.4	6.5 1.3	3 8.45	1.7	6.25 1.	3 1.7	0.3	6 1.2	7 1	.4 7.9	5 1.5	6.2	2.5	15.04
YUBEHP	8.1	11.0	14.2	33	8.25	YUBEHP	48 1 .	.0 75	2.3	100 3.0	60 4.8	11.01	YUBEHF	8	8.0	7	0.7	4.5 0 .	9 6	1.2	5.5 1.	1 7	1.4	4 0.	8 4.7	0.9	2 0.4	6 1	.2 9.	5 1.9	7.2	2.9	14.22
BS3PLI	8.2	14.4	18.4	78	19.50	BS3PLI	59 1 .	.2 10	3.0	100 3.0	90 7.2	14.38	BS3PLI	10	1.0	9	0.9	8 1.	6 8.5	1.7	7 1.4	4 6.25	1.3	7.25 1.	5 5	1.0	9 1.8	9 1	.8 9.	5 1.9	6.5	2.6	18.40
OIU8H5	8.4	11.5	16.7	85	21.25	OIU8H5	65 1 .	.3 10	3.0	100 3.0	52 4.2	11.46	OIU8H5	10	1.0	10	1.0	4 0.	8 7.5	1.5	8 1.0	6 4.75	1.0	5.25 1.	1 3.7	0.7	6 1.2	9.5 1	.9 8	1.6	8.5	3.4	16.74
LKTNTI	8.5	12.6	16.2	55	13.75	LKTNTI	70 1 .	.4 10	3.0	100 3.0	65 5.2	12.60	LKTNTI			6.5	0.7	8.5 1 .	7 8	1.6	8 1.0	6 2.1	0.4	6.5 1.	3 6.5	1.3	9 1.8	6.5 1	.3 5.9	5 1.1	8.5	3.4	16.17
NOHHVV	7.5	9.6	14.0	50	12.50	NOHHVV	48 1 .	.0 80	2.4	100 3.0	40 3.2	9.56	NOHHV	/ 10	1.0	6.5	0.7	5 1 .	0 6.5	1.3	5.5 1.	1 6.6	1.3	7.25 1.	5 3.7	0.7	5 1.0	4.5	.9 7.9	5 1.5	5.2	2.1	14.04
JZUSM2	6.7	8.7	15.6	52	13.00	JZUSM2	48 1 .	.0 90	2.7	100 3.0	25 2.0	8.66	JZUSM2	10	1.0	10	1.0	3 0 .	6 8.5	1.7	5.5 1.	1 4.7	0.9	7.75 1.	6 6.5	1.3		9.5 1	.9 6	1.2	8.2	3.3	15.57
Y6PREK	8.2	11.6	13.1	48	12.00	Y6PREK	48 1 .	.0 95	2.9	100 3.0	60 4.8	11.61	Y6PREK	7	0.7	6.5	0.7	5 1 .	0 6	1.2	7.5 1.	5 2.85	0.6	3 0 .	6 4.5	0.9	5 1.0	3.5	. 7 7	1.4	7.2	2.9	13.10
คะแนนเต็ม	10	16	24	120	30	Count	27 2	7 26	26	25 25	27 27	27	Count	26	26	27	27	27 2	7 26	26	26 26	3 27	27	27 2	7 27	27	25 25	26 2	26 2	5 25	26	26	27
Mean	8.1	11.2	15.2	56.2	14.1	Mean	53.7 1.	.1 89	6 2.7	100. 3.0	58.9 4.7	11.2	Mean	8.3	0.8	7.4	0.7	5.7 1.	1 7.3	1.5	6.9 1.4	4 4.8	1.0	5.6 1.	1 4.7	0.9	6.5 1.3	7.5 1	.5 7.	9 1.6	6.8	2.7	15.2
Median	8.2	11.4	15.2	55.0	13.8	Median	59.0 1	.2 90	0 2.7	100. 3.0	60.0 4.8	11.4	Median	9.2	0.9	7.0	0.7	5.5 1.	7.8	1.6	7.0 1.4	4 4.7	0.9	5.8 1.	2 5.0	1.0	6.0 1.2	7.5 1	.5 8.	0 1.6	7.2	2.9	15.2
QTD	0.5	27	22	15.0	2 7	QTD	112 0	5 10	0 1 2	00 11	22 2 2 7	5.6	STD	12	01	27	01	20 0	6 26	0.7	25 0	7 20	0.6	20 0	6 25	0.5	26 07	27 (7 2	0 0 8	26	1 1	7 2
Publishe	d by Go	2 Alnon	hoote	- Rer	oort Ahuse	– Undated	autom	atical	ly ava	ry 5 minu	itas																						