10 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos, N.C: 0

- En el circuito con diodos de la figura, y para los datos que se indican, señale la respuesta VERDADERA. DATOS: Ve = 8V; V1= 2V; Diodo D1: Vy = 0.7V
 - [A] Vs = 0V
 - [B] Vs = 2V
 - [C] Vs = 2.7V
 - [D] La corriente por las dos resistencias es idéntica, ya que forman un divisor resistivo.

- En el circuito de la figura hay dos subcircuitos digitales hechos con diodos, transistores y resistencias: el 1), con entradas A y B, y salida C; y el 2), con entrada D, y salida F. Suponiendo que se conecta C y D, señale la respuesta FALSA:
 - DATOS: $V_{Y} = 0.7V$ (para todos los diodos); $V_{BEON} = 0.7V$, $V_{CESAT} = 0.2V$ (para el transistor).

- [A] Cuando las entradas son A = B = "1" (5V), entonces $V_C = V_D = 1.4V$.
- [B] Cuando D1 y/o D2 conduce, entonces no puede conducir ni D3 ni el transistor.
- [C] Cuando A ="1" y B = "0", $V_F = 0.2V$.
- [D] El circuito en conjunto actúa como una puerta NAND de las entradas.
- Se tiene un transistor bipolar de silicio NPN en un circuito que se encuentra polarizado en la región de saturación y su corriente de colector es de 25mA. Indique cuál de las siguientes afirmaciones respecto a este transistor es FALSA:

DATOS: V_{BEON}=0.7V; V_{CESAT}=0.2V

- [A] Su corriente de colector es: $I_C = I_{E}-I_{B}$
- [B] Su corriente de colector es: $I_C < \beta \times I_B$
- [C] Su tensión colector-base es: V_{CB} = 0.5V
- [D] La potencia que disipa el transistor (P = $I_C \times V_{CE}$) tiene un valor de 5mW, aproximadamente.
- El circuito de la figura puede ser utilizado como un inversor lógico, con entradas de tensión de 0V y 5V correspondientes al "0" y al "1" lógicos, respectivamente. ¿Cuál será el valor mínimo que deberá tener R2 para que el circuito trabaje correctamente en conmutación? (es decir, que pueda alcanzar la saturación)
 - [A] $R2_{MIN} = 0.5k\Omega$
 - Datos: **β**: 100 [B] $R2_{MIN}$ = $1k\Omega$
 - R1= $270k\Omega$ [C] $R2_{MIN} = 2k\Omega$
 - Vcc= 5V [D] $R2_{MIN}$ = $3k\Omega$ V_{BEON} = 0.7, V_{CESAT} =0.2V

- 5. Acerca del transistor MOSFET, señale la respuesta FALSA.
- [A] En la zona óhmica, la corriente varía cuadráticamente en función de V_{GS}
- [B] Los transistores MOSFET de canal N son más rápidos en la conmutación debido a que los electrones tienen mayor movilidad que los huecos.
- [C] Para evitar la ruptura de la capa thinox del transistor, se suele utilizar un circuito recortador a dos niveles en el terminal de puerta, diseñado con diodos.
- [D] En los transistores PMOS, a partir de un determinado potencial negativo en V_{GS} se forma el canal por acumulación de huecos, lo que permite la conducción cuando V_{DS} <0.
- 6. Dadas las curvas del transistor MOSFET con las zonas (A,B,C,D) indique la respuesta FALSA.
- [A] En conmutación, el transistor funcionaría alternativamente entre las zonas A y D
- [B] En la zona B, el transistor se comporta como una resistencia variable en función de V_{GS}.
- [C] En la zona B, cerca del origen, podemos usar la expresión óhmica aproximada: $I_{DS} \approx 2K(V_{GS} V_T)V_{DS}$
- [D] La parábola que delimita las zonas C y D viene dada por la expresión $V_{DS} = V_{GS}-V_{T}$

- 7. En el circuito de polarización de la figura, indique la afirmación **CORRECTA** sobre el punto Q del transistor MOSFET. Parámetros del transistor: $V_T = 2V$, $K = 2mA/V^2$
- [A] $V_{GS} = 6V$, $I_{DS} = 8mA$, $V_{DS} = 2V$
- [B] El transistor está cortado, pues la corriente de puerta es 0.
- [C] $V_{GS} = 4V$, $I_{DS} = 9mA$, $V_{DS} = 1V$
- [D] $V_{GS} = 4V$, $I_{DS} = 8mA$, $V_{DS} = 2V$

8. En las tablas adjuntas se indican algunas de las características eléctricas de dos familias lógicas genéricas A y B. A partir de ellas, indique la respuesta **CORRECTA** (la notación X→Y indica salida X conectada a entrada Y):

Familia A						
V_{IHmin}	V_{ILmax}	V_{OHmin}	V_{OLmax}			
2 V	0.8 V	2.7 V	0.5 V			
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}			
20 μΑ	- 0.36 mA	-400 μA	8 mA			
Familia B						
V_{IHmin}	V _{IHmin} V _{ILmax}		V_{OLmax}			
2 V	2 V 0.8 V		0.4 V			
I _{IHmax}	I _{IHmax} I _{ILmax}		I _{OLmax}			
40 uA	40 μA - 1.6mA		16 mA			

- [A] El margen de ruido A→B es de 0.7 V.
- [B] El fan-out $A \rightarrow B$ es de 20.
- [C] El fan-out B→A es de 44.
- [D] El margen de ruido B→A es de 0.4V.

9. Queremos conectar una salida TTL de colector abierto con una entrada CMOS alimentada a 12 V. Indique la respuesta correcta:

Familia A (TTL colector abierto)						
V _{OLmax}	I _{OHmax (fugas)}	I _{OLmax}				
0.4 V	100 μΑ	24 mA				

Familia B (CMOS +12V)					
V _{IHmin} V _{ILmax}		I _{IHmax}	I _{ILmax}		
8.4 V	8.4 V 3.6 V		-10 pA		

- [A] Tenemos que añadir una resistencia de pull-up conectada entre la salida y 12 V.
- [B] La conexión puede ser directa.
- [C] Se necesita un buffer TTL para poder suministrar la corriente necesaria en las entradas CMOS.
- [D] Tenemos que añadir una resistencia de pull-up conectada entre la salida y 5 V.
- 10. Dado el siguiente circuito secuencial síncrono, diseñado con puertas y un biestable D, señale la afirmación **CORRECTA** sobre la **frecuencia máxima** de funcionamiento:

Parámetros temporales: Biestables: (Set up: t_{su} = 5 ns, Hold: t_h = 2 ns, tp_{HL} = 20 ns, tp_{LH} = 18 ns), Puertas: (tp_{HL} = 10 ns, tp_{LH} = 8 ns).

- [A] 22 Mhz
- [B] 55 Mhz
- [C] 40 Mhz
- [D] 18 Mhz

(PÁGINA INTENCIONADAMENTE EN BLANCO)

Apellidos:	Nombre:

PROBLEMA (4 PUNTOS)

El circuito digital de la Figura 1, diseñado con transistores MOSFET, tiene dos entradas (A, B) y una salida (F).

Nota: En zona óhmica (lineal) utilice la expresión aproximada $R_{ON} \approx 1/(2K(V_{GS} - V_T))$

Parámetros transistores: $V_T = 1 V$ $K = 1 \text{ mA/V}^2$
$V_T = 1 V$ $K = 1 \text{ mA/V}^2$

[A] (0.5 Puntos) Rellene la siguiente tabla de verdad e indique la expresión lógica de F en función de las entradas A y B.

Α	В	F
0	0	
0	1	
1	0	
1	1	

[B] (1.5 Puntos) Suponga que $V_A = V_B = 5V$ ("1" lógico). Nota: como el circuito es digital, los transistores funcionan en commutación, entre corte y zona lineal (R_{on}).

Dibuje el circuito eléctrico equivalente (sustituya cada transistor por R_{on} o un interruptor abierto) y realice los cálculos necesarios para completar la tabla siguiente. Considere la misma R_{on} para los dos transistores.

Complete la siguiente tabla sobre el funcionamiento del circuito.

$R_{on}(k\Omega)$	Zona T1	Zona T2	V _F (Volt)	Consumo estático (mW)

[C] (1.2 Puntos) Suponga que se modifica el circuito del apartado A) como se muestra en la Figura 2.

C.1) (0.2 Puntos) Indique el tipo de salida del circuito modificado:

C.2) **(0.5 Puntos)** Suponga que se conectan 2 circuitos como el anterior (Figura 2), tal y como se muestra en la Figura 3 (cada caja de la fig.3 representa un circuito idéntico al de la fig.2). Indique la expresión lógica de F en función de las entradas (A, B, C, D). Justifique brevemente la respuesta.

F (A, B, C, D) = _____

C.3) **(0.5 Puntos)** Calcule el rango de valores admisibles para Rpu (Rpu_{min} \leq Rpu \leq Rpu_{max}). Utilice los siguientes parámetros del fabricante:

 V_{OLmax} = 0.5V, V_{OHmin} = 4.5V, I_{OLmax} = 24mA, I_{OHmax} (fugas) = 100 μ A

_____ ≤ R_{pu} ≤ _____

[D] **(0.8 Puntos)** Se desea controlar el encendido de un LED con el circuito digital de la Figura 2. <u>Complete el esquema</u> de la figura adjunta y calcule los elementos externos necesarios.

El LED se alimenta a +20V y tiene las siguientes características: I_{LED} = 20mA; V_{LED} = 2V.

A

DNI

0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

- a b c d
- a b c d 2 - - - -
- a b c d
- a b c d
- a b c d
- a b c d
- a b c d 8 — — — —
- a b c d 9 - - - -
- a b c d
 10 - -

ETSINF - Tco

Examen Primer parcial - 25/04/2016

Apellidos

Nombre

Marque así Así NO marque

NO BORRAR, corregir con Typex