PUF-enabled Security Challenge, European Cyber Security Awareness Week (CSAW) 2023

Proposal of a new PUF based on sensors for the identification of loT smart mobile devices

Authors: Raúl Aparicio-Téllez, Jorge Fernandez-Aragon, Abel Naya-Forcano and Guillermo Diez-Señorans

Supervisors: Miguel Garcia-Bosque, Santiago Celma

Universidad Zaragoza

Group of Electronic Design (GDE), I3A, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain

and obtain the binary key.

Justification

Sensors of smart mobile devices provide an inherent non-zero acceleration, angular velocity and noise level when stationary.

Proposal

Use the non-zero measured parameters obtained to generate a unique fingerprint.

PUF

Results provide a valid identification and authentication system. Already integrated in IoT system.

Selection of the parameters

- Split in N intervals.
- Average (γ_{ave}^i) , maximum (γ_{max}^i) and minimum (γ_{min}^i) values for every interval i.
- Average (μ) and standard deviation (σ) .
- Valid range: $\{\Omega\} = \{\gamma_i | |\gamma_i - \mu| \le k \cdot \sigma\}.$

Encoding process

- Average (\overline{s}) and noise (s_{noise}) of the signal: $\overline{s} = \Omega_{aver}$; $s_{noise} = \left| \Omega_{max} - \overline{\Omega_{min}} \right|.$
- Narrow the interval $s \rightarrow \alpha$.
- Fitted data to a Gaussian distribution with intervals of equal probability.

PUF response

- Transform α , α_{noise} into binary sequence using Gray Code.
- Sequence of 6 bits for each parameter, axis and device.
- Join all values to obtained final response → 108-bit word.

Uniqueness and reproducibility

Inter-HD and Intra-HD distributions, identification threshold (t_{EER}) and equal error rate (EER) obtained with 8 devices through 30 measurements.

> Receiver Operating Characteristic (ROC) curves obtained and comparison with other PUFs.

- [1] Ma, H. (2017). "A PUF sensor: Securing physical measurements". [2] Willers, O. (2016). "MEMS Gyroscopes as Physical Unclonable Function".
- [3] Aysu, A. (2013). "Digital fingerprints for low-cost platforms using MEMS sensors".
- [4] Maes, R. (2012). "Physically Unclonable Functions: Concept and Constructions".

✓ Good identifiability based on state-of-the-art PUFs.

- **✓** Results validate the feasibility of the PUF.
- **✓** Cost reduction (already integrated).
- ✓ Resistant to some common loT attacks.
- **✓** Future lines: study more sensors and parameters.

Generate the PUF key downloading our app

Google Play

Read the full paper

ESULTS

TECHNIC/