Langage de base de la théorie des ensembles

École Normale Supérieure de Tétouan

November 24, 2024

Plan

- Ensemble Sous ensemble
- Ensemble des parties d'un ensemble
- Opérations sur les Ensembles
 - Union
 - Intersection
 - Différence
 - Différence symétrique
 - Complémentaire d'un ensemble
- Produit Cartésien
- Recouvrement d'un ensemble

Définition d'un ensemble

Définition d'un ensemble

Définition

Un ensemble est une collection bien définie d'objets, appelés éléments de l'ensemble. On note généralement un ensemble avec des accolades, par exemple $A = \{1, 2, 3\}$ représente un ensemble contenant les éléments 1, 2, et 3.

Définition d'un ensemble

Définition

Un ensemble est une collection bien définie d'objets, appelés éléments de l'ensemble. On note généralement un ensemble avec des accolades, par exemple $A = \{1, 2, 3\}$ représente un ensemble contenant les éléments 1, 2, et 3.

Figure: Ensemble $A = \{1, 2, 3\}$

Ensemble défini en extension - Ensemble défini en compréhension

Ensemble défini par extension est un ensemble qui est défini par une liste des éléments entre accolades.

Ensemble défini en extension -Ensemble défini en compréhension

- **Ensemble défini par extension** est un ensemble qui est défini par une liste des éléments entre accolades.
- **Ensemble défini par compréhension** est un ensemble qui est défini par un prédicat admissible P(x). Il existe alors un ensemble

$$E = \{x : P(x)\},\$$

qui est l'ensemble de tous les éléments qui vérifient P.

Ensemble défini en extension -Ensemble défini en compréhension

- **Ensemble défini par extension** est un ensemble qui est défini par une liste des éléments entre accolades.
- **Ensemble défini par compréhension** est un ensemble qui est défini par un prédicat admissible P(x). Il existe alors un ensemble

$$E = \{x : P(x)\},\$$

qui est l'ensemble de tous les éléments qui vérifient P.

Exemple

Soit
$$E = \{x \in \mathbb{N} : 3 < x < 8\}$$

Ensemble défini en extension -Ensemble défini en compréhension

- **Ensemble défini par extension** est un ensemble qui est défini par une liste des éléments entre accolades.
- **Ensemble défini par compréhension** est un ensemble qui est défini par un prédicat admissible P(x). Il existe alors un ensemble

$$E = \{x : P(x)\},\$$

qui est l'ensemble de tous les éléments qui vérifient P.

Exemple

Soit
$$E = \{x \in \mathbb{N} : 3 \le x \le 8\}$$

= $\{3, 4, 5, 6, 7, 8\}$.

Exemples

L'ensemble des entiers naturels :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

Exemples

- L'ensemble des entiers naturels :
 - $\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$
- L'ensemble des entiers relatifs :

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Exemples

L'ensemble des entiers naturels :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

L'ensemble des entiers relatifs :

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

L'ensemble des nombres rationnels :

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$$

Exemples

L'ensemble des entiers naturels :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

L'ensemble des entiers relatifs :

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

L'ensemble des nombres rationnels :

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$$

L'ensemble des nombres réels :

 \mathbb{R} = ensemble des points sur la droite réelle

Exemples

L'ensemble des entiers naturels :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

L'ensemble des entiers relatifs :

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

L'ensemble des nombres rationnels :

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}$$

L'ensemble des nombres réels :

 \mathbb{R} = ensemble des points sur la droite réelle

L'ensemble des nombres complexes :

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

Ensembles finis et infinis

Définition

Un ensemble est dit fini s'il possède un nombre fini d'éléments. Le cardinal d'un ensemble fini est le nombre d'éléments qu'il contient, noté card(E) pour un ensemble E.

Ensembles finis et infinis

Définition

Un ensemble est dit **fini** s'il possède un nombre fini d'éléments. Le cardinal d'un ensemble fini est le nombre d'éléments qu'il contient, noté card(E) pour un ensemble E.

Exemples

• $A = \{1, 2, 3, 4, 5\}$ est un ensemble fini ayant pour cardinal card(A) = 5.

Ensembles finis et infinis

Définition

Un ensemble est dit **fini** s'il possède un nombre fini d'éléments. Le cardinal d'un ensemble fini est le nombre d'éléments qu'il contient, noté card(E) pour un ensemble E.

Exemples

- $A = \{1, 2, 3, 4, 5\}$ est un ensemble fini ayant pour cardinal card(A) = 5.
- $B = \{a, b, c\}$ est un ensemble fini avec card(B) = 3.

Définition d'un ensemble infini

Définition

Un ensemble est dit infini s'il possède un nombre infini d'éléments, c'est-à-dire qu'il est impossible de lui attribuer un cardinal fini.

Définition d'un ensemble infini

Définition

Un ensemble est dit infini s'il possède un nombre infini d'éléments, c'est-à-dire qu'il est impossible de lui attribuer un cardinal fini.

Remarques

- L'ensemble vide, noté ∅, est l'ensemble qui ne contient aucun élément.
- Un ensemble singleton est un ensemble qui contient exactement un seul élément. Si a est cet élément, alors l'ensemble singleton contenant a est noté $\{a\}$.

Inclusion et Égalité entre deux Ensembles

Définition

Soient A et B deux ensembles. On dit que A est inclus dans B, noté $A \subset B$, si

$$\forall x \in A \Rightarrow x \in B$$
.

Inclusion et Égalité entre deux Ensembles

Définition

Soient A et B deux ensembles. On dit que A est inclus dans B, noté $A \subset B$, si

$$\forall x \in A \Rightarrow x \in B.$$

La négation est notée $A \not\subset B$, et on a

$$A \not\subset B \Leftrightarrow \exists x \in A : x \notin B$$
.

Exemple d'inclusion

Exemple

Soient les ensembles suivants :

$$E=\{0,1,2\},\quad F=\{1,2,3\},\quad G=\{0,1,2,4\}.$$

Dans ce cas, $E \subset G$ mais $E \not\subset F$.

Exemple d'inclusion

Exemple

Soient les ensembles suivants :

$$E = \{0, 1, 2\}, \quad F = \{1, 2, 3\}, \quad G = \{0, 1, 2, 4\}.$$

Dans ce cas, $E \subset G$ mais $E \not\subset F$.

Propositions

- L'ensemble vide est par convention inclus dans tout ensemble.
- Si $E \subset F$ et $F \subset G$, alors $E \subset G$.

Égalité de deux ensembles

Définition

Deux ensembles E et F sont égaux, noté E=F, si et seulement si

$$(E = F) \Leftrightarrow (E \subset F \text{ et } F \subset E).$$

Égalité de deux ensembles

Définition

Deux ensembles E et F sont égaux, noté E = F, si et seulement si

$$(E = F) \Leftrightarrow (E \subset F \text{ et } F \subset E).$$

Exemple

Soient $A = \{k \in \mathbb{Z} : |2k+1| \le 3\}$ et $B = \{-2, -1, 0, 1\}$, on a A = B.

Ensemble des parties d'un ensemble

Définition

Soit E un ensemble. On appelle ensemble des parties de E, noté $\mathcal{P}(E)$, l'ensemble de tous les sous-ensembles de E.

Ensemble des parties d'un ensemble

Définition

Soit E un ensemble. On appelle ensemble des parties de E, noté $\mathcal{P}(E)$, l'ensemble de tous les sous-ensembles de E.

Si $A \in \mathcal{P}(E)$, cela signifie $A \subset E$.

Exemple d'ensemble des parties

Exemple

• Soit $E = \{a, b, c\}$, on veut déterminer les sous-ensembles de E.

Exemple d'ensemble des parties

Exemple

• Soit $E = \{a, b, c\}$, on veut déterminer les sous-ensembles de E.

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Ainsi, on a $card(\mathcal{P}(E)) = 8 = 2^{card(E)}$.

Exemple d'ensemble des parties

Exemple

• Soit $E = \{a, b, c\}$, on veut déterminer les sous-ensembles de E.

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

Ainsi, on a $card(\mathcal{P}(E)) = 8 = 2^{card(E)}$.

• Soit $E = \{1, 2, 3, 4\}$. L'ensemble des parties de E, noté $\mathcal{P}(E)$, est donné par

$$\mathcal{P}(E) = \left\{ \begin{array}{l} \emptyset, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \\ \{1, 2, 3, 4\} \end{array} \right\}$$

Cardinal de l'ensemble des parties

Définition

Soit E un ensemble de cardinal n, alors $\mathcal{P}(E)$ est l'ensemble des parties de E, et le cardinal de $\mathcal{P}(E)$ est 2^n .

Preuve

Soit E un ensemble de cardinal n = card(E). Nous allons montrer par récurrence que le cardinal de l'ensemble des parties de E est 2^n .

• **Initialisation** : si n = 1, alors $E = \{a\}$ est un singleton. Les deux sous-ensembles de E sont \emptyset et E, donc il y a bien $2^1 = 2$ sous-ensembles.

Cardinal de l'ensemble des parties

Définition

Soit E un ensemble de cardinal n, alors $\mathcal{P}(E)$ est l'ensemble des parties de E, et le cardinal de $\mathcal{P}(E)$ est 2^n .

Preuve

Soit E un ensemble de cardinal n = card(E). Nous allons montrer par récurrence que le cardinal de l'ensemble des parties de E est 2^n .

- **Initialisation** : si n = 1, alors $E = \{a\}$ est un singleton. Les deux sous-ensembles de E sont \emptyset et E, donc il y a bien $2^1 = 2$ sous-ensembles.
- Hérédité : supposons que la proposition est vraie pour un entier fixé $n \ge 1$, c'est-à-dire que pour tout ensemble F de n éléments, F admet 2^n sous-ensembles. Montrons que la proposition est vraie pour n+1éléments.

Suite de la preuve

Soit E un ensemble à n+1 éléments. Fixons un élément $a \in E$. Alors, les sous-ensembles de E se répartissent en deux catégories :

• Les sous-ensembles A qui **ne contiennent pas** a. Ce sont les sous-ensembles de $E \setminus \{a\}$. Par hypothèse de récurrence, il y a 2^n sous-ensembles de ce type.

Suite de la preuve

Soit E un ensemble à n+1 éléments. Fixons un élément $a \in E$. Alors, les sous-ensembles de E se répartissent en deux catégories :

- Les sous-ensembles A qui **ne contiennent pas** a. Ce sont les sous-ensembles de $E \setminus \{a\}$. Par hypothèse de récurrence, il y a 2^n sous-ensembles de ce type.
- Les sous-ensembles A qui contiennent a. Ces sous-ensembles sont de la forme $A = \{a\} \cup A'$, où $A' \subseteq E \setminus \{a\}$. Par hypothèse de récurrence, il v a aussi 2^n sous-ensembles A', et donc 2^n sous-ensembles Acontenant a.

D'où, le nombre de sous-ensembles de E est $2^n + 2^n = 2^{n+1}$.

Union de deux ensembles

Définition

Soient E un ensemble et A et B deux sous-ensembles de E. L'**union** de deux ensembles A et B, notée $A \cup B$, est l'ensemble des éléments qui appartiennent à A ou à B (ou aux deux). Autrement dit,

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}.$$

Union de deux ensembles

Définition

Soient E un ensemble et A et B deux sous-ensembles de E. L'**union** de deux ensembles A et B, notée $A \cup B$, est l'ensemble des éléments qui appartiennent à A ou à B (ou aux deux). Autrement dit,

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}.$$

Figure: $A \cup B$

Propriétés

 $\bullet \ A \cup (A \cup B) = A \cup B$

- $\bullet \ A \cup (A \cup B) = A \cup B$
- $B \cup (A \cup B) = A \cup B$

- \bullet $A \cup (A \cup B) = A \cup B$
- $B \cup (A \cup B) = A \cup B$
- Commutativité :

$$A \cup B = B \cup A$$

Propriétés

- \bullet $A \cup (A \cup B) = A \cup B$
- $B \cup (A \cup B) = A \cup B$
- Commutativité :

$$A \cup B = B \cup A$$

Applications

• Montrer que si $A \subset B$ alors $A \cup B = B$.

Propriétés

- \bullet $A \cup (A \cup B) = A \cup B$
- $B \cup (A \cup B) = A \cup B$
- Commutativité :

$$A \cup B = B \cup A$$

Applications

- Montrer que si $A \subset B$ alors $A \cup B = B$.
- Vérifier que $A \cup \emptyset = A$, $A \cup A = A$ et $A \cup E = E$.

Intersection de deux ensembles

Définition

Soient E un ensemble et A et B deux sous-ensembles de E.

L'intersection de deux ensembles A et B, notée $A \cap B$, est l'ensemble des éléments qui appartiennent à la fois à A et à B. Autrement dit.

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}.$$

Intersection de deux ensembles

Définition

Soient E un ensemble et A et B deux sous-ensembles de E.

L'intersection de deux ensembles A et B, notée $A \cap B$, est l'ensemble des éléments qui appartiennent à la fois à A et à B. Autrement dit,

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}.$$

Figure: $A \cap B$

Propriétés

• $A \cap B \subset A$ et $A \cap B \subset B$.

- $A \cap B \subset A$ et $A \cap B \subset B$.
- $A \subset B \Leftrightarrow A \cap B = A$.

- $A \cap B \subset A$ et $A \cap B \subset B$.
- $A \subset B \Leftrightarrow A \cap B = A$.
- $A \cap \emptyset = \emptyset$, $A \cap A = A$ et $A \cap E = A$.

- $A \cap B \subset A$ et $A \cap B \subset B$.
- $A \subset B \Leftrightarrow A \cap B = A$.
- $A \cap \emptyset = \emptyset$. $A \cap A = A$ et $A \cap E = A$.
- $\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

- $A \cap B \subset A$ et $A \cap B \subset B$.
- $A \subset B \Leftrightarrow A \cap B = A$
- $A \cap \emptyset = \emptyset$. $A \cap A = A$ et $A \cap E = A$.
- $\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Différence entre deux ensembles

Définition

La **différence** entre deux ensembles A et B d'un ensemble E, notée $A \setminus B$, est l'ensemble des éléments qui appartiennent à A mais pas à B. Alors

$$A \setminus B = \{x \in E \mid x \in A \text{ et } x \notin B\}.$$

Différence entre deux ensembles

Définition

La **différence** entre deux ensembles A et B d'un ensemble E, notée $A \setminus B$, est l'ensemble des éléments qui appartiennent à A mais pas à B. Alors

$$A \setminus B = \{x \in E \mid x \in A \text{ et } x \notin B\}.$$

Figure: $A \setminus B$

Différence symétrique

Définition

La différence symétrique de deux ensembles A et B, notée $A\Delta B$, est définie par :

$$A\Delta B=(A\setminus B)\cup (B\setminus A).$$

Différence symétrique

Définition

La différence symétrique de deux ensembles A et B, notée $A\Delta B$, est définie par :

$$A\Delta B=(A\setminus B)\cup (B\setminus A).$$

Différence symétrique $A\Delta B$

Complémentaire d'un ensemble

Définition

Soient E un ensemble et A un sous-ensemble de E. Le complémentaire de A dans E, noté $C_E(A)$ ou \overline{A} , est l'ensemble des éléments de E qui ne sont pas dans A.

Complémentaire d'un ensemble

Définition

Soient E un ensemble et A un sous-ensemble de E. Le complémentaire de A dans E, noté $C_E(A)$ ou \overline{A} , est l'ensemble des éléments de E qui ne sont pas dans A.

$$C_E(A) = \{x \in E \mid x \notin A\}.$$

Illustration du complémentaire

En d'autres termes, $C_E(A)$ représente tous les éléments qui appartiennent à E mais pas à A.

Propriétés

Complémentaire du complémentaire :

$$C_E(C_E(A)) = A.$$

Propriétés

Complémentaire du complémentaire :

$$C_E(C_E(A)) = A.$$

2 Complémentaire de l'union :

$$C_E(A \cup B) = C_E(A) \cap C_E(B).$$

Propriétés

Complémentaire du complémentaire :

$$C_E(C_E(A)) = A.$$

② Complémentaire de l'union :

$$C_E(A \cup B) = C_E(A) \cap C_E(B).$$

Complémentaire de l'intersection :

$$C_E(A \cap B) = C_E(A) \cup C_E(B).$$

Propriétés

Complémentaire de l'ensemble vide :

$$C_E(\emptyset) = E$$
.

Propriétés

Omplémentaire de l'ensemble vide :

$$C_E(\emptyset) = E$$
.

Complémentaire de l'ensemble universel :

$$C_E(E) = \emptyset.$$

6 $A \subset B \Rightarrow C_F(B) \subset C_F(A)$.

Propriétés

Omplémentaire de l'ensemble vide :

$$C_E(\emptyset) = E$$
.

Complémentaire de l'ensemble universel :

$$C_E(E) = \emptyset$$
.

- \bigcirc $A \setminus B = A \cap C_F(B)$.

Définition

Soient E et F deux ensembles. Le produit cartésien, noté $E \times F$, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

$$E \times F = \{(x, y) \mid x \in E, y \in F\}$$

Exemples

• $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ est l'ensemble des couples (x, y) où $x, y \in \mathbb{R}$.

Autrement dit:

$$\mathbb{R}^2 = \{(x,y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$$

Exemples

• $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ est l'ensemble des couples (x, y) où $x, y \in \mathbb{R}$.

Autrement dit:

$$\mathbb{R}^2 = \{(x,y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$$

L'ensemble $[0,1] \times \mathbb{R}$ représente tous les couples (x,y) où $x \in [0,1]$ et $y \in \mathbb{R}$. En d'autres termes :

$$[0,1] \times \mathbb{R} = \{(x,y) \mid 0 \le x \le 1, y \in \mathbb{R}\}.$$

Illustration de $[0,1]\times \mathbb{R}$

Définition

Soit I un ensemble d'indices et $(X_i)_{i \in I}$ une famille de sous-ensembles de E. On dit que cette famille est un **recouvrement** de E si :

$$E\subseteq\bigcup_{i\in I}X_i$$
.

Exemple 1

Considérons l'ensemble E = [0, 1], le segment des réels entre 0 et 1. Un possible recouvrement de E est la famille d'intervalles ouverts :

$$C = \{A_n = (-\frac{1}{n}, 1 + \frac{1}{n}) \mid n \in \mathbb{N}^*\},$$

où chaque A_n est un intervalle ouvert plus large que [0,1].

- Pour n = 1, $A_1 = (-1, 2)$,
- Pour n = 2, $A_2 = (-0.5, 1.5)$,
- Pour n=3, $A_3=(-\frac{1}{2},1+\frac{1}{2})$, etc.

Exemple 1

Considérons l'ensemble E = [0, 1], le segment des réels entre 0 et 1. Un possible recouvrement de E est la famille d'intervalles ouverts :

$$C = \{A_n = (-\frac{1}{n}, 1 + \frac{1}{n}) \mid n \in \mathbb{N}^*\},$$

où chaque A_n est un intervalle ouvert plus large que [0,1].

- Pour n = 1, $A_1 = (-1, 2)$,
- Pour n = 2, $A_2 = (-0.5, 1.5)$,
- Pour n=3, $A_3=(-\frac{1}{3},1+\frac{1}{3})$, etc.

L'union de ces ensembles couvre E = [0, 1], car :

$$\bigcup_{n\in\mathbb{N}^*}A_n\supseteq [0,1].$$

Exemple 2: Recouvrement discret

Considérons l'ensemble $E = \{a, b, c\}$, constitué de trois éléments. Un recouvrement possible est la famille :

$$\mathcal{C}=\{A_1,A_2\},$$

où:

$$A_1 = \{a, b\}, \quad A_2 = \{b, c\}.$$

Exemple 2: Recouvrement discret

Considérons l'ensemble $E = \{a, b, c\}$, constitué de trois éléments. Un recouvrement possible est la famille :

$$\mathcal{C}=\{A_1,A_2\},$$

où:

$$A_1 = \{a, b\}, \quad A_2 = \{b, c\}.$$

L'union de ces deux ensembles donne :

$$A_1 \cup A_2 = \{a, b\} \cup \{b, c\} = \{a, b, c\} = E.$$

Partition d'un ensemble

Définition

Soit I un ensemble d'indices et $(X_i)_{i \in I}$ une famille d'ensembles. On dit que cette famille est une partition de E si :

$$\forall (i,j) \in I^2 \quad (i \neq j) \Rightarrow X_i \cap X_j = \emptyset \quad \text{et} \quad E = \bigcup_{i \in I} X_i.$$

Partition d'un ensemble

Définition

Soit I un ensemble d'indices et $(X_i)_{i \in I}$ une famille d'ensembles. On dit que cette famille est une partition de E si :

$$\forall (i,j) \in I^2 \quad (i \neq j) \Rightarrow X_i \cap X_j = \emptyset \quad \text{et} \quad E = \bigcup_{i \in I} X_i.$$

Exemple

La famille ([0,5] et [5,8]) est une partition de [0,8] car :

$$[0,5] \cap [5,8] = \emptyset$$
 et $[0,5] \cup [5,8] = [0,8]$.