Networking

G54CCS – Lecture 5 Richard Mortier

http://www.cs.nott.ac.uk/~rmm/teaching/2011-g54ccs/

Overview

- Connectivity
- Protocols
- Addressing
- Naming

Overview

- Connectivity
 - Network Hierarchy
 - Network Resources
 - Security
- Protocols
- Addressing
- Naming

Connectivity

- What do networks do?
 - Transfer data between hosts (computers)
- What does the Internet do?
 - Transfer data between networks
- Cloud services rely on network connectivity
 - Other networks
 - Fixed and mobile devices
 - Wired and wireless access

Networks

- A hierarchy of providers
- Local Area Network (LAN)
 - School, University
- Metropolitan Area Network (MAN)
 - University, EMMAN
- Wide Area Network (WAN)
 - National: JANET
 - International: Sprint, AT&T

Network Resources

- Reliability
 - How much data is lost in transfer?
- Latency
 - How long does it take to get there?
- Bandwidth
 - How fast can data be transferred?
- Bandwidth vs. Throughput vs. Goodput
 - Raw signal vs.
 - Impact of encoding vs.
 - Impact of loss

Performance Variability

- Loss
 - Generally zero until something goes wrong
 - Loss due to overload vs. error
- Latency
 - Speed of light, switching, queuing
 - San Francisco—New York, Transatlantic ~ 75ms
- Bandwidth http://bit.ly/u6lzpQ
 - -2G = 14.4 kb/s; 2.5G = 57.6 kb/s; 3G = 384 kb/s
 - ADSL ~ 8 Mb/s; Cable modem (DOCSIS) ~ 50 Mb/s
 - Wireless Ethernet = 2 600 Mb/s
 - Wired Ethernet = 100 Mb/s 100 Gb/s
 - Disk ~ 3 Gb/s; HDMI = 10.2 Gb/s; RAM ~ 256 Gb/s

Network Security

- Network security is very hard to get right
 - Too much software, too many attack vectors
- If you connect, anyone can send you anything
 - Firewalling helps
 - But can't stop malicious data
 - Or prevent careless users
- In any case, resources are remote
 - This means they can be consumed remotely
 - Your connectivity can be removed
 - Distributed Denial of Service

Overview

- Connectivity
- Protocols
 - Internet
 - Transport
 - Application
- Addressing
- Naming

Encapsulation

- Data comes down from higher layer in chunks
- Packetize to generate suitable sized chunks
- Encapsulate by prepending header
- Example: IP header

Transport

- IP provides packets with addresses
 - Hosts (interfaces) have addresses...
 - But we need to get data between programmes!
- Job of the transport protocol
 - TCP (reliable, ordered, bytestream) vs. UDP (not)
 - Both use port numbers to address within the host
 - Identify a particular process
 - E.g., ports 80 and 443 are (usually) a web server

HTTP

- On top of all that, we have HTTP
 - Originally for transferring static content
 - Webpages, images
 - Now the de facto standard application protocol
- Simple set of verbs
 - GET, POST, PUT, DELETE, HEAD, ...
- Uniform resource addressing
 - scheme://domain:port/path?query_string#fragment_id
 - http://www.nottingham.ac.uk/search.aspx?q=mortier
 - Cf. labs, particularly #3

Overview

- Connectivity
- Protocols
- Addressing
 - Routing & Forwarding
 - Aggregation
 - Management
- Naming

Internet Addressing

- Host addresses in IPv4 are 32 bits long
 - Intended to be globally unique
 - Really it's interfaces that get allocated addresses
 - 32 bits is no longer enough
- Commonly depicted in 4 parts
 - E.g., 128.243.35.39 == 0x80f32327 == 2163417895
- How does traffic get where it needs to?

Routing and Forwarding

- The Internet is connected by routers
 - Computers with many network interfaces (ports)
 - Running specialized software

Routing and Forwarding

Cisco CRS-1 Multi-shelf system

Routing and Forwarding

- The Internet is connected by routers
 - Computers with many network interfaces (ports)
 - Running specialized software
- Routing builds up information to figure out the correct port on which to forward a packet
 - Packets may be replicated, reordered, dropped
 - Scalability: networks may become large
 - Dynamics: need to handle host and link failures

Address Aggregation

- Need to determine the route from the address
 - Group addresses for efficiency
- Use *prefixes* with explicit *prefix lengths*
 - E.g., 172.16/12; 10/8; 192.168/16; 128.243/16
- Routing generates (prefix, port) mapping
 - The forwarding table
- Map address to prefix via longest prefix match
 - Means the most specific entry is used
 - If no match, then use default route; else drop

Longest Prefix Matching

```
10
                                          /32 – Host
   192
             168
                                  12
1100 0000 . 1010 1000 . 0000 1010 . 0000 1100
   192
             168
                                  0
                                          /16
192
             168
                                          /21
1100 0000 . 1010 1000 . 0000 1000 . 0000 0000
  192
             168
                        10
                                          /23
1100 0000 . 1010 1000 . 0000 1010 . 0000 0000
  192
             168
                        10
                                          /24
1100 0000 . 1010 1000 . 0000 1010 . 0000 0000
                                          /24
   192
             168
1100 0000 . 1010 1000 . 0000 0100 . 0000 0000
```

Address Management: Macro

- Internet Assigned Numbers Authority (IANA)
 - Co-ordinates number spaces
- Delegates netblocks to Regional Internet Registries (RIRs)
 - Africa, Asia/Pacific, North America, Latin America, EMEA
 - ...and down to <u>National and Local registries</u> (NIRs, LIRs)
- Approach appropriate registry for an allocation
 - Must provide suitable justification
 - Much harder to get a large allocation (== short prefix)
- Deeply manual process involving much politics
 - http://www.iana.org/numbers/ and http://www.iana.org/

Address Management: Micro

- Used to also be very manual
 - A big text file containing (IP, Ethernet) address map
 - Also needed to maintain subnet allocations for routing protocols
- <u>Dynamic Host Configuration Protocol</u>, DHCP
 - RFC 2131
 - "Can anyone give me an address?"
 - Usually provides a pile of other configuration information
- Address Resolution Protocol, ARP
 - "Does anyone know who's at <ipaddr>?"
- Both utilise IP broadcast address, 255.255.255.255

Network Address Translation

- Private Addressing, RFC1918
 - 172.16/12, 192.168/16, 10/8
 - Should never be externally routed
- Traditional NAT, RFC3022; see also RFC2663
 - Use private addresses internally
 - Map into a (small) set of routable addresses
 - Use source ports to distinguish connections
 - Requires IP, TCP/UDP header rewriting
 - Addresses, ports, checksums at least
- Not a security mechanism!

Address Shortages

- IPv4 supports 32 bit addresses
 - Advertised as nearly 400,000 netblocks
 - IANA pool exhausted 3/Feb/2011
 - First RIR pool exhausted 15/Apr/2011 (APNIC)
- Complete exhaustion in 2013—2014
 - Virtualization (cloud!) is accelerating this
- IPv6 supports 128 bit addresses
 - So not a problem?
 - ...except for the routing protocols
 - ...and all the associated services needing to move

Overview

- Connectivity
- Protocols
- Addressing
- Naming
 - DNS
 - Queries & Responses
 - Security

Naming

- IP addresses are all very well but
 - Not especially human-readable
 - Not always appropriate granularity
- HOSTS.TXT
 - A file (/etc/hosts) mapping names-numbers
 - Originally transferred to all hosts using FTP
 - Simple, but not terribly automatic or scalable
 - Scale via distributed hierarchical set of servers

DNS

- <u>Domain Name Service</u>, RFC1034/1035/2181
 - Client-Server protocol returning variety of records
 - Commonly uses UDP for queries but can use TCP
 - TCP used for bulk transfers between servers
- Hierarchy is "baked in"
 - Namespace divides into zones
 - Top Level Domains usually professionally managed
 - Root servers know how to get everywhere
- Not a 1:1 mapping between names and numbers!
 - E.g., Round-robin load-balancing

Name Service

- TLDs operated by registrars
- Delegate sub-domains to other registrars
 - ...and on down the hierarchy
- Eventually customer rents a subdomain/name
 - I.e., registrar installs appropriate records
- Setup primary and secondary servers
 - For subdomains
 - Separate IP netblocks, physical networks, &c
 - DNS is a very common single-point-of-failure

Queries

- Queries either recursive or iterative
 - A-B-C-D-A; or A-B-A, A-C-A, A-D-A
- Server either authoritative or caching
 - To discover authoritative requires query to root
 - Thus load on root servers is very high
- Caching server locally
 - Caches records each with an expiry time: soft-state
- Acquire zone's complete set via zone transfer
 - Often access controlled

Responses

- Name lookup uses following record types:
 - CNAME: name --> canonical name
 - www.cs.nott.ac.uk. 61272 IN CNAME pat.cs.nott.ac.uk.
 - A: name --> number

```
    pat.cs.nott.ac.uk.
    68622IN A 128.243.20.9
    pat.cs.nott.ac.uk.
    68622IN A 128.243.21.19
```

- PTR: name (or number) --> name
 - 9.20.243.128.in-addr.arpa. 39617 IN PTR pat.cs.nott.ac.uk.
- NS: domain --> authoritative name server

```
cs.nott.ac.uk.
                   10585IN
                                  ns1.nottingham.ac.uk.
                             NS

    cs.nott.ac.uk.

                   10585IN
                                  ns2.nottingham.ac.uk.
  cs.nott.ac.uk.
                  10585IN
                                  marian.cs.nott.ac.uk.
  cs.nott.ac.uk.
                  10585IN
                                  extdns1.warwick.ac.uk.
cs.nott.ac.uk.
                   10585IN
                                  extdns2.warwick.ac.uk.
```

- MX: domain --> mail exchange
 - nott.ac.uk. 3600 IN MX 1 mx191.emailfiltering.com.
 nott.ac.uk. 3600 IN MX 2 mx192.emailfiltering.com.
 nott.ac.uk 3600 IN MX 3 mx193.emailfiltering.com.

DNS Security

- DNS is quite insecure
 - Cache poisoning
 - Caching and soft-state mean bad data propagates and can persist for some time
 - Even if through a simple mistake
 - Man-in-the-middle attacks
 - Iterative/Recursive queries almost demand this
 - Name spoofing
 - How clear is your font?
 - How well can your users spell?

Overview

- Connectivity
 - Network Hierarchy
 - Network Resources
 - Security
- Protocols
 - Internet
 - Transport
 - Application
- Addressing
 - Routing & Forwarding
 - Aggregation
 - Management
- Naming
 - DNS
 - Queries & Responses
 - Security