Facit till 4. Mekaniska lösningar

4.1. Formeln för att räkna ut vridmoment är $M=F\cdot l$. Vi vet att vridmomentet är $10\,000\,\mathrm{N}\,\mathrm{m}$ och att kofoten är $65\,\mathrm{cm}$ lång. Vi kan lösa ut kraften F ur formeln:

$$F = \frac{M}{l} = \frac{10\,000\,\mathrm{N\,m}}{65\,\mathrm{cm}} = \frac{10\,000\,\mathrm{N\,m}}{0.65\,\mathrm{m}} = 15\,384.6\,\mathrm{N} \approx 15.4\,\mathrm{kN}$$

Svar: Pelle måste använda en kraft på $15.4\,\mathrm{kN}$ för att bryta upp dörren.

4.2. Vi vet att soffans massa är $50\,\mathrm{kg}$. Den kommer att lyftas i konstant hastighet, och är alltså i jämvikt. Vi kan använda formeln $F_g=m\cdot g$ för att räkna soffans tyngdkraft.

$$F_g = m \cdot g = 50 \,\mathrm{kg} \cdot 9.82 \,\mathrm{m \, s}^{-2} = 491 \,\mathrm{N}$$

Jämviktsekvation i vertikalled ger:

$$\uparrow$$
: $F_{\mathsf{rep}} - F_g = 0$
$$F_{\mathsf{rep}} = F_g$$

$$F_{\mathsf{rep}} = 491 \, \mathrm{N}$$

Svar: Pelle måste dra i repet med en kraft på $491\,\mathrm{N}$ för att lyfta soffan i konstant hastighet.

4.3.