8. Logistic Regression STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Mar 26, 2024

Assignment 1

- Due Friday 3/29, 11:59pm
- Topics
 - (Programming) NumPy basics
 - (Programming) Linear regression on a polynomial
 - (Math) Derivation and proof for linear regression
- Please read the instruction carefully!
 - Submit one <u>pdf</u> and one <u>zip</u> file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - ...
- If you feel difficult, consider to take **option 2**.

Recap: Supervised Learning

- Learning a function $h: \mathcal{X} \to \mathcal{Y}$
- Labels could be discrete or continuous
 - Discrete labels: classification (today's topic)
 - Continuous labels: regression

Classification Problem

- Task: Given an input x, assign it to one of K distinct classes C_k where $k \in \{1, ..., K\}$.
- Two-class classification (K = 2)
 - y = 1 means that x is in C_1 (or positive class).
 - y = 0 means that x is in C_2 (or negative class).
 - Or, y = -1 can be used depending on algorithms.
 - Cf. for one-class classification (K=1), we still have a negative class, but we don't have training data for it.
- Multi-class classification ($K \ge 2$),
 - $y \in \{1, ..., K\}$
 - Or, 1-of-K coding (or one-hot encoding) as target vector
 - e.g., $y = [0, 1, 0, 0, 0]^T$ means that x is in C_2 .

Classification Problem

- Training: train a classifier h(x) with training data
 - Training data: $\left\{\left(x^{(1)},y^{(1)}\right),\left(x^{(2)},y^{(2)}\right),\ldots,\left(x^{(N)},y^{(N)}\right)\right\}$
- Test (evaluation):
 - Test data: $\left\{ \left(x_{\mathrm{test}}^{(1)}, y_{\mathrm{test}}^{(1)} \right), \left(x_{\mathrm{test}}^{(2)}, y_{\mathrm{test}}^{(2)} \right), \ldots, \left(x_{\mathrm{test}}^{(N_{\mathrm{test}})}, y_{\mathrm{test}}^{(N_{\mathrm{test}})} \right) \right\}$
 - The trained classifier produces predictions

$$\left\{ h\left(x_{\text{test}}^{(1)}\right), h\left(x_{\text{test}}^{(2)}\right), \dots, h\left(x_{\text{test}}^{(N_{\text{test}})}\right) \right\}$$

• Evaluation metric: 0-1 loss

Indicator function:
$$I(a) = \begin{cases} 1 & \text{if } a \text{ is true} \\ 0 & \text{if } a \text{ is false} \end{cases}$$

classification error =
$$\frac{1}{N_{\text{test}}} \sum_{i=1}^{N_{\text{test}}} I\left[h\left(x_{\text{test}}^{(j)}\right) \neq y_{\text{test}}^{(j)}\right]$$

Classification Strategies

- Learning the distributions $p(C_k|x)$
 - Discriminative models: Directly model $p(C_k|x)$ and learn parameters from the training set.
 - Generative models: Learn class densities $p(x|C_k)$ and priors $p(C_k)$ to obtain $p(x,C_k)=p(x|C_k)p(C_k)$
- Nearest neighbor classification
 - Given query data x, find the closest training points and do majority vote.
- Discriminant functions
 - Learn a function h(x) that maps x onto some C_k .

Classification Strategies

- Learning the distributions $p(C_k|x)$
 - Discriminative models: Directly model $p(C_k|x)$ and learn parameters from the training set.
 - Generative models: Learn class densities $p(x|C_k)$ and priors $p(C_k)$ to obtain $p(x,C_k)=p(x|C_k)p(C_k)$
- Nearest neighbor classification
 - Given query data x, find the closest training points and do majority vote.
- Discriminant functions
 - Learn a function h(x) that maps x onto some C_k .

Outline

- Learning $p(C_k|x)$ with discriminative models
 - Logistic Regression
 - Softmax Regression
 - Cross-Entropy Loss

Convex Functions

Logistic Regression

Probabilistic Discriminative Models

- Modeling decision boundary as a function of x
 - Learn $p(C_k|x)$ over data
 - Classification is done by taking argmax: $y = \operatorname{argmax}_k p(C_k|x)$
 - Directly predict class labels from inputs
- Cf. Probabilistic Generative Models
 - Learn $p(x|C_k)$ and $p(C_k)$ over data (maximum likelihood and prior) Then use Bayes' rule to predict $p(C_k|x)$

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)}$$

$$\propto p(x|C_k)p(C_k)$$

Kibok Lee

Example: Classification

• $x \in \mathbb{R}$

Example: Classification

• $x = [x_1, x_2]^T \in \mathbb{R}^2$

Logistic Regression

 Models the class posterior using a sigmoid applied to a linear function of the feature vector:

$$p(C_1|\phi) = h(\phi) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))$$

 We can solve the parameter w by maximizing the likelihood of the training data.

Sigmoid and Logit Functions

• The logistic sigmoid function is:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

• Its inverse is the **logit** function (a.k.a. the log of the odds ratio):

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

 It generalizes to normalized exponential, or softmax.

$$p_i = \frac{\exp(q_i)}{\sum_j \exp(q_j)}$$

Likelihood Function

 Depending on the value of the label y, the likelihood is defined as:

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))$$
$$P(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \phi(\mathbf{x}))$$

Integrating all cases:

$$P(y|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))^y (1 - \sigma(\mathbf{w}^T \phi(\mathbf{x})))^{(1-y)}$$

Learning Objective: Log-likelihood

• For a dataset $\{(\phi(\mathbf{x}^{(n)}), y^{(n)})\}$, where $y^{(n)} \in \{0, 1\}$ the likelihood function is

$$p(\mathbf{y}|\mathbf{w}) = \prod_{n=1}^{N} (h^{(n)})^{y^{(n)}} (1 - h^{(n)})^{1 - y^{(n)}}$$

where

$$h^{(n)} = p(C_1 | \phi(\mathbf{x}^{(n)})) = \sigma(\mathbf{w}^T \phi(\mathbf{x}^{(n)}))$$

- Define a loss function
 - Minimizing $E(\mathbf{w})$ maximizes likelihood.

$$E(\mathbf{w}) = -\log p(\mathbf{y}|\mathbf{w})$$

• log
$$P(\mathbf{y}|\mathbf{w}) = \sum_{n=1}^{N} y^{(n)} \log h^{(n)} + (1 - y^{(n)}) \log(1 - h^{(n)})$$

$$\nabla_{\mathbf{w}} \log P(\mathbf{y}|\mathbf{x}^{(1)},...\mathbf{x}^{(N)},\mathbf{w})$$

$$= \sum_{m=1}^{N} \nabla_{\mathbf{w}} \left(y^{(n)} \log h(\mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}, \mathbf{w})) \right)$$

$$\bullet \log P(\mathbf{y}|\mathbf{w}) = \sum_{n=1}^{N} y^{(n)} \log h^{(n)} + (1 - y^{(n)}) \log(1 - h^{(n)})$$

$$\sigma^{(n)} \triangleq \sigma\left(\mathbf{w}^T \phi(\mathbf{x}^{(n)})\right) = h(\mathbf{x}^{(n)}, \mathbf{w}) = h^{(n)}$$

$$\nabla_{\mathbf{w}} \log P(\mathbf{y}|\mathbf{x}^{(1)},...\mathbf{x}^{(N)},\mathbf{w})$$

$$= \sum_{n=1}^{N} \nabla_{\mathbf{w}} \left(y^{(n)} \log h(\mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}, \mathbf{w})) \right)$$

•
$$\log P(\mathbf{y}|\mathbf{w}) = \sum_{n=1}^{N} y^{(n)} \log h^{(n)} + (1 - y^{(n)}) \log(1 - h^{(n)})$$

$$\sigma^{(n)} \triangleq \sigma\left(\mathbf{w}^T \phi(\mathbf{x}^{(n)})\right) = h(\mathbf{x}^{(n)}, \mathbf{w}) = h^{(n)}$$

$$\nabla_{\mathbf{w}} \log P(\mathbf{y}|\mathbf{x}^{(1)},...\mathbf{x}^{(N)},\mathbf{w})$$

$$= \sum_{n=1}^{N} \nabla_{\mathbf{w}} \left(y^{(n)} \log h(\mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}, \mathbf{w})) \right)$$

$$= \sum_{n=1}^{N} \left(y^{(n)} \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{\sigma^{(n)}} - (1 - y^{(n)}) \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{1 - \sigma^{(n)}} \right) \nabla_{\mathbf{w}} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))$$

$$\frac{\partial}{\partial s}\sigma(s) = \frac{\partial}{\partial s}\left(\frac{1}{1 + \exp(-s)}\right) = \sigma(s)(1 - \sigma(s))$$

• log
$$P(\mathbf{y}|\mathbf{w}) = \sum_{n=1}^{N} y^{(n)} \log h^{(n)} + (1 - y^{(n)}) \log(1 - h^{(n)})$$

$$\sigma^{(n)} \triangleq \sigma\left(\mathbf{w}^T \phi(\mathbf{x}^{(n)})\right) = h(\mathbf{x}^{(n)}, \mathbf{w}) = h^{(n)}$$

$$\nabla_{\mathbf{w}} \log P(\mathbf{y}|\mathbf{x}^{(1)},...\mathbf{x}^{(N)},\mathbf{w})$$

$$= \sum_{n=1}^{N} \nabla_{\mathbf{w}} \left(y^{(n)} \log h(\mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}, \mathbf{w})) \right)$$

$$= \sum_{n=1}^{N} \left(y^{(n)} \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{\sigma^{(n)}} - (1 - y^{(n)}) \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{1 - \sigma^{(n)}} \right) \nabla_{\mathbf{w}} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))$$

$$= \sum_{n=1}^{N} \left(y^{(n)} (1 - \sigma^{(n)}) - (1 - y^{(n)}) \sigma^{(n)} \right) \nabla_{\mathbf{w}} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))$$

$$\bullet \log P(\mathbf{y}|\mathbf{w}) = \sum_{n=1}^{N} y^{(n)} \log h^{(n)} + (1 - y^{(n)}) \log(1 - h^{(n)})$$

$$\sigma^{(n)} \triangleq \sigma\left(\mathbf{w}^T \phi(\mathbf{x}^{(n)})\right) = h(\mathbf{x}^{(n)}, \mathbf{w}) = h^{(n)}$$

$$\nabla_{\mathbf{w}} \log P(\mathbf{y}|\mathbf{x}^{(1)},...\mathbf{x}^{(N)},\mathbf{w})$$

$$= \sum_{n=1}^{N} \nabla_{\mathbf{w}} \left(y^{(n)} \log h(\mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}, \mathbf{w})) \right)$$

$$= \sum_{n=1}^{N} \left(y^{(n)} \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{\sigma^{(n)}} - (1 - y^{(n)}) \frac{\sigma^{(n)} (1 - \sigma^{(n)})}{1 - \sigma^{(n)}} \right) \nabla_{\mathbf{w}} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))$$

$$= \sum_{n=1}^{N} \left(y^{(n)} (1 - \sigma^{(n)}) - (1 - y^{(n)}) \sigma^{(n)} \right) \nabla_{\mathbf{w}} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))$$

$$= \sum_{n=1}^{N} \left(y^{(n)} - \sigma^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

Logistic Regression: Gradient Descent

• Taking the gradient of $E(\mathbf{w})$ gives us

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} \left(h^{(n)} - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

- where $h^{(n)} = p(C_1|\phi(\mathbf{x}^{(n)})) = \sigma(\mathbf{w}^T\phi(\mathbf{x}^{(n)}))$
- This is essentially the same gradient expression that appeared in linear regression with least-squares.
- Note the error term between model prediction and target value:
 - Logistic regression: $h^{(n)} y^{(n)} = \sigma(\mathbf{w}^T \phi(x^{(n)})) y^{(n)}$
 - Cf. Linear regression: $h^{(n)} y^{(n)} = \mathbf{w}^T \phi(x^{(n)}) y^{(n)}$

Recall: Newton's Method

- We want to minimize $E(\mathbf{w})$
 - Convert $E'(\mathbf{w}) = f(\mathbf{w})$
 - Repeat until convergence

$$\mathbf{w} := \mathbf{w} - rac{E'(\mathbf{w})}{E''(\mathbf{w})}$$
 Newton update when \mathbf{w} is a scalar

This method can be extended for multivariate case:

$$\mathbf{w} := \mathbf{w} - H^{-1} \nabla_{\mathbf{w}} E$$
 Newton update when \mathbf{w} is a vector

where H is a hessian matrix (evaluated at \mathbf{w})

$$H_{ij}(\mathbf{w}) = \frac{\partial^2 E(\mathbf{w})}{\partial \mathbf{w}_i \partial \mathbf{w}_j}$$

Logistic Regression Has No Closed-form Solution

 Recall: For linear regression, least squares has a closed-form solution:

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

- Hessian of linear regression is $\mathbf{\Phi}^T \mathbf{\Phi}$.
- Hessian of logistic regression is $\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$, where \mathbf{R} is a diagonal matrix satisfying

$$R_{nn} = h^{(n)}(1 - h^{(n)})$$

Logistic Regression Has No Closed-form Solution

 Recall: For linear regression, least squares has a closed-form solution:

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

• It generalizes to weighted least squares with an $N \times N$ diagonal weight matrix **R**.

$$\mathbf{w}_{WLS} = (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{y}$$

- For logistic regression, however, there is no closed-form solution (\mathbf{R} depends on \mathbf{w}).
 - Hence, we need to apply an iterative method, e.g., gradient descent or Newton's method.
 - It is convex, so we will arrive at the optimal solution.

Iterative Solution

- Apply Newton-Raphson method to iterate to a solution ${\bf w}$ for $\nabla E({\bf w})=0$
- This involves least squares with weights R:

$$R_{nn} = h^{(n)}(1 - h^{(n)})$$

• Since **R** depends on **w** (and vice versa), we get iterative reweighted least squares (IRLS)

• where
$$\mathbf{w}^{(new)}=(\mathbf{\Phi}^T\mathbf{R}\mathbf{\Phi})^{-1}\mathbf{\Phi}^T\mathbf{R}\mathbf{z}$$

$$\mathbf{z}=\mathbf{\Phi}\mathbf{w}^{(old)}-\mathbf{R}^{-1}(\mathbf{h}-\mathbf{y})$$

- Softmax regression is a multiclass generalization of logistic regression.
 - Also known as multinomial logistic regression, softmax classifier, maximum entropy classifier, ...

• When K=2, logistic regression models class conditional probabilities as:

$$p(y = 1|\mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}^T \phi(\mathbf{x}))}{1 + \exp(\mathbf{w}^T \phi(\mathbf{x}))}$$

$$p(y = 0|\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(\mathbf{w}^T \phi(\mathbf{x}))}$$

$$\sigma(s) = \frac{1}{1 + \exp(s)}$$

 Geometrical intuition: w is direction to increase the classification score (orthogonal to decision boundary)

• When K=2, logistic regression models class conditional probabilities as:

$$p(y=1|\mathbf{x};\mathbf{w}) = \frac{\exp(\mathbf{w}^T\phi(\mathbf{x}))}{1+\exp(\mathbf{w}^T\phi(\mathbf{x}))}$$

$$p(y=0|\mathbf{x};\mathbf{w}) = \frac{1}{1+\exp(\mathbf{w}^T\phi(\mathbf{x}))}$$
on $K > 2$ we extend the formulation as:

• When $K \ge 2$, we extend the formulation as:

$$p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))} \quad \text{(for } k = 1, \dots, K-1\text{)}$$

$$p(y = K | \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$

• Where is \mathbf{w}_{K} ?

• Softmax regression with $\{\mathbf w_1, ..., \mathbf w_{K-1}\}$

$$p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))} \quad \text{(for } k = 1, ..., K-1\text{)}$$

$$p(y = K | \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$

• By shifting all weight vectors by an arbitrary \mathbf{w}_K $(\mathbf{w}_i \leftarrow \mathbf{w}_i - \mathbf{w}_K)$, we have the K-th weight vector.

$$p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$
 (for $k = 1, ..., K$)

Derivation?

• Softmax regression with $\{\mathbf w_1, ..., \mathbf w_K\}$

$$p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp((\mathbf{w}_k - \mathbf{w}_K)^T \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp((\mathbf{w}_j - \mathbf{w}_K)^T \phi(\mathbf{x}))}$$

$$= \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}) - \mathbf{w}_K^T \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}) - \mathbf{w}_K^T \phi(\mathbf{x}))}$$

$$= \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x})) / \exp(\mathbf{w}_K^T \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x})) / \exp(\mathbf{w}_K^T \phi(\mathbf{x}))}$$

$$= \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{\exp(\mathbf{w}_K^T \phi(\mathbf{x})) + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$

$$= \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$

Learning Objective: Log-likelihood

• Softmax regression:

Indicator function: $I(a) = \begin{cases} 1 & \text{if } a \text{ is true} \\ 0 & \text{if } a \text{ is false} \end{cases}$

• Or,
$$p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \phi(\mathbf{x}))}$$
$$p(y | \mathbf{x}; \mathbf{w}) = \prod_{k=1}^K \left[\frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}))}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \phi(\mathbf{x}))} \right]^{I(y=k)}$$

• Log-likelihood:
$$\log p(D|\mathbf{w}) = \sum_{i} \log p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w})$$

$$= \sum_{i} \log \prod_{k=1}^{M} \left[\frac{\exp(\mathbf{w}_{k}^{T} \phi(\mathbf{x}^{(i)}))}{\sum_{j=1}^{M} \exp(\mathbf{w}_{j}^{T} \phi(\mathbf{x}^{(i)}))} \right]^{I(y^{(i)}=k)}$$

 We can learn parameters w by gradient ascent or Newton's method.

- Softmax regression is a multiclass generalization of logistic regression.
 - Also known as multinomial logistic regression, softmax classifier, maximum entropy classifier, ...
- If we take $\mathbf{s} \in \mathbb{R}^K$ as a general input, we call the negative log-likelihood (NLL) as cross-entropy loss.
 - Softmax regression = linear regression + softmax $\phi(\mathbf{x}) \to \mathbf{p}$ $\phi(\mathbf{x}) \to \mathbf{s}$ $\mathbf{s} \to \mathbf{p}$
 - Classification is done by taking argmax: $y = \operatorname{argmax}_k \mathbf{p} = \operatorname{argmax}_k \mathbf{s}$, where $\mathbf{p} = [p_1, ..., p_K] \in [0,1]^K$
 - At test time, you can skip softmax.
 - Cross-entropy loss = softmax + NLL loss

$$\mathbf{s} \to L$$
 $\mathbf{s} \to \mathbf{p}$ $\mathbf{p} \to L$

Want to interpret raw classifier scores as probabilities

Softmax function

Classifier scores

$$\mathbf{s} = f(\mathbf{x}, \mathbf{w})$$

3.2 cat

5.1 car

frog -1.7 lassifier scores $p_k = p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(s_k)}{\sum_i \exp(s_i)}$

Want to interpret raw classifier scores as probabilities

3.2 cat

5.1 car

frog -1.7 Softmax function

Classifier scores
$$\mathbf{s} = f(\mathbf{x}, \mathbf{w})$$

$$p_k = p(y = k | \mathbf{x}; \mathbf{w}) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$

Putting it all together:

$$L_i = -\log p(y = y^{(i)}|\mathbf{x} = \mathbf{x}^{(i)}; \mathbf{w})$$

$$= -\log \frac{\exp(s_{y^{(i)}})}{\sum_{j} \exp(s_{j})}$$

$$=-s_{y^{(i)}}-\log\sum_{i}\exp(s_{j})$$

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Example: $f(x) = x^2$ is convex:

A function $f: X \subseteq \mathbb{R}^N \to \mathbb{R}$ is **convex** if for all $x_1, x_2 \in X, t \in [0, 1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,

$$|f(tx_1 + (1-t)x_2)| \le |tf(x_1) + (1-t)f(x_2)|$$

Example: $f(x) = \cos(x)$ is <u>not convex</u>:

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

^{*}Many technical details inside!

A differentiable f is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

first-order approximation of f is global underestimator

- A twice-differentiable f is convex if and only if its Hessian is positive semi-definite ($H = \nabla^2 f(x) \ge 0$).
 - This is handy when proving convexity of a function.

Image credit: Stephen Boyd

Next: Generative Classifiers