# Summary: Polar Coordinates

#### Definition

The **polar coordinates** of a point P are an ordered pair  $(r, \theta)$  such that

$$x = r\cos(\theta) \tag{1}$$

$$y = r\sin(\theta),\tag{2}$$

where the ordered pair (x, y) give the rectangular coordinates of the point P.

In other words, given the polar coordinates  $(r, \theta)$  of a point, we can find its x- and y-coordinates using these formulas.

The usual rectangular coordinates are also called **Cartesian coordinates**. To find polar coordinates from Cartesian coordinates, we use

$$r = \pm \sqrt{x^2 + y^2} \tag{3}$$

$$\theta = \arctan\left(\frac{y}{x}\right). \tag{4}$$

However, r and  $\theta$  are not unique for any given point, as explained below.

Polar coordinates are motivated by the fact that we can locate a point on a plane by specifying:

r: the distance from the origin to the point,

 $\theta$ : the angle of the ray from the origin to the point with the positive x-axis.

### Ambiguities in polar coordinates

The polar coordinates describing a point are not unique. First,

$$(r, \theta) = (r, \theta + 2\pi n)$$
 (n any integer).

That is , knowing the x- and y- coordinates only determines  $\theta$  up to  $2\pi$ -periodicity. We frequently use conventions such as:

$$0 \le \theta < 2\pi$$
  
or  $-\pi < \theta \le \pi$ .

Second,

$$(-r,\theta) = (r,\theta \pm \pi) \qquad -\infty < r < \infty$$
 and equivalently  $(r,\theta) = (-r,\theta \pm \pi) \qquad -\infty < r < \infty$ .

### Finding theta

To find  $\theta$ , we first find

$$\theta_0 = \arctan\left(\frac{|y|}{|x|}\right).$$

Then we find  $\theta$  using  $\theta_0$ , by considering which quadrant it lies in, which is best



Figure 1: Here, (x, y) lies in the second quadrant,  $\theta = \pi - \theta_0$ .

done using a picture like the one above.

## Circles and rays in polar coordinates

An equation in polar coordinates is called a **polar equation**. We will mostly be dealing with polar equations of the form  $r = r(\theta)$ .

The simplest examples are:

 $\bullet$  r=a:



•  $\theta = \alpha \ (r \ge 0)$ :



• If we use the convention  $-\infty < r < \infty$ , then  $\theta = \alpha$  is a line through the origin:



## Rotation about the origin

The graph of  $r = r(\theta - \alpha)$  is obtained by rotating the graph of  $r = r(\theta)$  about the origin by the angle  $+\alpha$ .

If  $\alpha > 0$  the rotation is counterclockwise.

if  $\alpha < 0$  the rotation is clockwise.