Дифференциальные Уравнения Семинарские занятия

Вадим Гринберг по семинарам Войнова А. С.

Содержание

1	Cen	иинар 1, 10 января	2
	1.1	Общие факты	2
	1.2	Изоклины	3
	1.3	Диффуры с разделяющимися переменными	5
	1.4	n-параметрическое семейство кривых	6
	1.5	Замена переменных	7
		1.5.1 Линейная замена	7
		1.5.2 Общий вид	7
	1.6		8
2	Семинар 2, 17 января		
	2.1	Специальные замены. Однородные уравнения	12
	2.2	Однородные уравнения: $y = \frac{x}{t}$	12
	2.3	Однородные уравнения: дробно-линейный вид	13
	2.4	Однородные уравнения: $x=y^m$	15
	2.5	Домашнее задание №2	16
3	Con	nmon Tasks	17

Семинар 1, 10 января

Общие факты

Пускай у нас имеется функция x(t) (вообще говоря, вектор-функция $x=(x_1,\ldots,x_d)$) от переменной $t\in\mathbb{R}$, действующая из интервала (a,b) (по умолчанию считаем всей числовой прямой), такая, что для переменной t, функции x(t) и n её первых производных выполнено уравнение:

$$F(t, x(t), \dot{x}(t), \dots, x^{(n)}(t)) = 0$$

— это и есть дифференциальное уравнение n-го порядка. F в данном случае, грубо говоря, «функция от n+1 переменной», которая неявно задаёт x(t) (за точным определением — на лекцию).

Решить диффур означает найти такую функцию x(t), что выполняется вышеуказанное равенство.

Тупой пример: $\dot{x}(t) = x(t)$. Функция совпадает со своей производной. Решением, очевидно, будет $x(t) = \lambda \cdot e^t$, $\lambda \in \mathbb{R}$.

Любой диффур можно привести к удобоваримому виду:

$$\dot{x}(t) = f(t, x)$$

где f — некая хорошая функция (доказательство на лекции). С такими диффурами мы в основном и будем иметь дело.

Разберёмся, а как вообще можно решать диффуры. Пускай у нас имеется диффур $\dot{x}=f(t,x)$, который мы хотим решить. Попробуем приблизить график нашей кривой x(t) некоей ломаной линией. Возьмём какую-то начальную точку (t_0,x_0) , и будем смотреть на направление движения, то бишь на направление вектора $(\mathsf{d}t,\mathsf{d}x)$. Будем делать маленькие шаги вдоль этого направления. Тогда каждый раз, находясь в точке (t,x), мы будем переходить в точку $(t+\mathsf{d}t,x+\mathsf{d}x)$.

После многих таких шагов мы получим ломаную линию, приближающую график нашей кривой x(t). Эта ломаная называется **Ломаной Эйлера**.

Для удобства можно делать шаг dt всегда равным 1, поделив вектор направления на dt. Тогда соответственно шаг dx станет $\frac{dx}{dt} = \dot{x} = f(t,x)$, и вектор направления в точке (t,x) будет иметь вид (1, f(t,x)).

Пример: $\dot{x}=tx$. Построим Ломаную Эйлера, стартуя из точки $(t_0,\,x_0)=(0,\,1)$:

1.
$$t = 0, x = 1 \Rightarrow \dot{x} = 0 \cdot 1 = 0 \Rightarrow (1, f(t, x)) = (1, 0) \Rightarrow (t + dt, x + dx) = (1, 1)$$

2.
$$t = 1, x = 1 \Rightarrow \dot{x} = 1 \cdot 1 = 1 \Rightarrow (1, f(t, x)) = (1, 1) \Rightarrow (t + dt, x + dx) = (2, 2)$$

3.
$$t = 2, x = 2 \Rightarrow \dot{x} = 2 \cdot 2 = 4 \Rightarrow (1, f(t, x)) = (1, 4) \Rightarrow (t + dt, x + dx) = (3, 6)$$

4.

Изоклины

Определение 1. Пусть у нас есть диффур $\dot{x} = f(t, x)$.

Интегральная кривая — график функции x(t) — решения диффура. Тогда \dot{x} — это угловой коэффициент интегральной кривой в точке (t, x(t)), то бишь тангенс угла наклона касательной к x(t) в данной точке.

Изоклина – геометрическое место точек плоскости, в которых одно и то же направление движения (направление касательных), то есть, угол наклона вектора (dt, dx) один и тот же для любой точки (t, x) изоклины. Иными словами, $\dot{x} = const$.

Изолиния поля – подмножесство точек изоклины (являющееся линией), в которых вектор (dt, dx) один и тот же для любой точки (t, x) изолинии. То есть, вектор $(dt, dx) \sim (1, f(t, x)) = const.$ Для каждой изолинии константа своя.

Семейство изоклин определяется уравнением

$$\dot{x} = k = f(t, x)$$

где k — параметр. Придавая параметру k близкие значения, получаем достаточно густую сеть изоклин, с помощью которых можно приближенно построить интегральные кривые дифференциального уравнения.

Для примера выше изоклинами будут являться множества $\left\{xt=k\iff x=\frac{k}{t},\,k\in\mathbb{R}\right\}$ – гиперболы.

Научимся находить приближённые решения диффура, строя интегральную кривую при помощи изоклин. Стоит отметить сразу же, что **нулевая изоклина** f(t,x)=0 даёт уравнение линий, на которых могут находиться точки максимума и минимума интегральных кривых.

Для большей точности построения интегральных кривых хорошо находить ГМТ точек перегиба, исследуя вторую производную \ddot{x} при помощи уравнения:

$$\ddot{x} = \frac{\mathrm{d}f}{\mathrm{d}t} + \frac{\mathrm{d}f}{\mathrm{d}x} \cdot \dot{x} = \frac{\mathrm{d}f}{\mathrm{d}t} + f(t, x) \cdot \frac{\mathrm{d}f}{\mathrm{d}x} = 0$$

Линия, определяемая данным уравнением, и есть возможное ГМТ точек перегиба.

Пример №1

Изоклинами найти приближённое решение диффура

$$\dot{x} = 2t - x$$

Для получения изоклин положим $\dot{x} = const = k$, откуда:

$$2t - x = k \iff x = 2t - k$$

— параллельные прямые.

Пусть k=0, тогда получим изоклину x=2t — эта прямая делит плоскость на две части, в каждой из которых производная \dot{x} имеет один и тот же знак — интегральные кривые, пересекая x=2t, из области убывания x(t) переходят в область возрастания. Отсюда получаем, что на данной прямой лежат точки минимума.

Возьмём ещё две изоклины: x=2t+1, k=-1 и x=2t-1, k=1. Изобразим их на графике. Касательные, проведённые к интегральным кривым в точках пересечения с изоклинами k=-1, k=0 и k=1 образуют с осью абсцисс углы в 135, 0 и 45 градусов соответственно. На графике направление показано чёрточками.

Вторая производная: $\ddot{x} = 2 - \dot{x} = 2 - 2t + x$.

Рассмотрим прямую x=2t-2, на которой $\ddot{x}=0$. Это изоклина при k=2. Заметим, что в таком случае угол наклона касательной равен углу наклона самой изоклины. Значит, ни одна интегральная кривая не будет пересекать эту изоклину, но при этом они будут к ней стремиться на бесконечности.

Прямая x=2t-2 делит плоскость на две части, в одной из которых (над прямой) $\ddot{x}>0$, а значит, интегральные кривые выпуклы вниз, а в другой $\ddot{x}<0$, и интегральные кривые выпуклы вверх. Кроме того, поскольку точки минимума расположены над этой прямой, то интегральные кривые, проходящие ниже изоклины x=2t-2 не имеют точек экстремума.

Рассмотрим также изоклину $x=2t-4,\,k=4.$ В данном случае угол наклона касательной будет равен 75 градусов. При этом интегральные кривые будут также стремиться к x=2t-2, но являясь выпуклыми вверх. Тем самым мы получили другое семейство решений диффура.

На графике выше изображены интегральные кривые, приближающие x(t), полученные в соответствии с проведённым исследованием. Как видим, в точках пересечения с изоклинами кривые параллельны направлению касательных в точках пересечения.

Диффуры с разделяющимися переменными

Это суть дифференциальные уравнения вида:

$$\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{a(t)}{b(x)}$$

В данном случае стоит быть осторожным и проверять вырожденные случаи (b(x) = 0, a(t) = 0, чтобы нечаянно не убить некоторые решения).

Проверив особые случаи, перемножим крест-накрест и получим:

$$b(x)\mathsf{d}x=a(t)\mathsf{d}t$$
 \int теперь интегрируем каждую часть независимо от другой \int
$$B(x)=A(t)+C -\text{ это и будет решением диффура}$$

Пример №2

$$\dot{x} = tx$$

$$\dot{x} = tx = \frac{\mathrm{d}x}{\mathrm{d}t} \Longrightarrow \frac{\mathrm{d}x}{x} = t \cdot \mathrm{d}t \Longrightarrow \int \frac{\mathrm{d}x}{x} = \int t \cdot \mathrm{d}t$$

$$\ln|x| = \frac{t^2}{2} + C \Longrightarrow |x| = e^{\frac{t^2}{2}} \cdot \underbrace{e^C}_{\text{какая-то константа}} \Longrightarrow |x| = \lambda \cdot e^{\frac{t^2}{2}}, \ \lambda > 0 \Longrightarrow x = \lambda \cdot e^{\frac{t^2}{2}}, \ \lambda \in \mathbb{R}$$

В последних двух действиях мы взяли экспоненту от обеих частей и избавились от модуля.

Пример №3

Найдите кривую x(t), такую, что для любой $t_0 \in \mathbb{R}$ отрезки, соединяющую точку касания $(t_0, x(t_0))$ с точками пересечения касательной в данной точке с осями координат, будут равны.

Пусть мы касаемся нашей кривой x(t) в точке (t_0, x_0) – обозначим её M. Можно заметить, что тогда OM – медиана. Отсюда следует, что координаты точек пересечения с осями абсцисс и ординат равны соответственно $(2t_0, 0)$ и $(0, 2x_0)$. Тогда тангенс угла наклона касательной $\tan \angle MPO = -\frac{2x_0}{2t_0} = -\frac{x_0}{t_0} = \dot{x}(t_0)$, так как тангенс угла наклона касательной к функции x(t) в точке t_0 есть не что иное, как производная $x(t) - \dot{x}(t)$ – в данной точке. Таким образом, мы получили диффур:

$$\dot{x} = -\frac{x}{t}$$

Решим его, тем самым найдя x(t).

$$\begin{split} \dot{x} &= -\frac{x}{t} = \frac{\mathrm{d}x}{\mathrm{d}t} \Longrightarrow -\frac{\mathrm{d}x}{x} = \frac{\mathrm{d}t}{t} \Longrightarrow \int = \int \\ -\ln|x| &= \ln|t| + C \Longrightarrow \frac{1}{|x|} = |t| \cdot \lambda, \ \lambda > 0 \Longrightarrow x = \frac{\lambda}{t}, \ \lambda \in \mathbb{R} \end{split}$$

Пример №4

$$xt + (t+1) \cdot \dot{x} = 0$$

$$xt + (t+1) \cdot \dot{x} = 0 \Longrightarrow xt + (t+1) \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{xt}{t+1} \Longrightarrow -\frac{\mathrm{d}x}{x} = \frac{t \cdot \mathrm{d}t}{t+1} \Longrightarrow \int = \int \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{xt}{t+1} = -\frac{\mathrm{d}x}{t+1} = -\frac{$$

Возьмём правый интеграл.

$$\int \frac{t \cdot \mathrm{d}t}{t+1} = \int 1 - \frac{1}{t+1} \; \mathrm{d}t = t - \ln|t+1|$$

Тогда:

$$-\ln|x| = t - \ln|t+1| + C \Longrightarrow \frac{1}{|x|} = \lambda \cdot \frac{e^t}{t+1}, \ \lambda > 0 \Longrightarrow x = \lambda \cdot e^{-t} \cdot (t+1), \ \lambda \in \mathbb{R}$$

п-параметрическое семейство кривых

Это система дифференциальных уравнений вида:

$$\begin{cases}
F(t, x(t), c_1, \ldots, c_n) = 0 \\
F'(t, x(t), c_1, \ldots, c_n) = 0 \\
\vdots \\
F^{(n)}(t, x(t), c_1, \ldots, c_n) = 0
\end{cases}$$

— всего n+1 уравнение, константы c_1, \ldots, c_n неизвестны. Необходимо, как и раньше, найти подходящую x(t).

Метод решения таков: сначала мы выражаем константы c_1, \ldots, c_n через $t, x(t), \dot{x}(t), \ldots, x^{(n)}(t)$, и потом подставляем всё в одно уравнение, тем самым получая диффур вида:

$$G(t, x(t), \dot{x}(t), \ldots, x^{(n)}(t)) = 0$$

который мы умеем решать.

Пример №5

Необходимо найти диффур, задающий множество окружностей, касающихся оси абсцисс.

Чего делать, сходу и не вдуплишь, да?) Однако, выход есть — если видим слово "окружность нужно тут же писать её уравнение.

Пускай у нас есть окружность радиуса R, касающаяся оси абсцисс в точке t_0 . Тогда выполнено тождество:

$$(x-R)^2 + (t-t_0)^2 = R^2$$

В данном случае R и t_0 и есть наши неизвестные константы. Составим систему уравнений из производных:

$$\begin{cases} (x-R)^2 + (t-t_0)^2 - R^2 = 0\\ (2x \cdot \dot{x} - 2R \cdot \dot{x}) + 2t - 2t_0 = 0\\ 2(\dot{x})^2 + 2x \cdot \ddot{x} - 2R \cdot \ddot{x} + 2 = 0 \end{cases}$$

Осталось выразить R через \dot{x} и \ddot{x} из последнего уравнения, подставить во второе и выразить t_0 , после чего загнать всё в первое уравнение и получить нужный диффур.

Замена переменных

Разберём на примере. Пускай у нас есть диффур

$$\dot{x} = x - \sqrt{x}$$

Решать его в таком виде не очень приятно. Поэтому сделаем замену переменных (название – сущая формальность, так как вообще говоря мы заменяем одну функцию на другую, а не переменную):

$$y(t) = \sqrt{x(t)}$$

Тогда диффур примет вид:

$$2\dot{y} \cdot y = y^2 - y \Longrightarrow 2\dot{y} = y - 1 \Longrightarrow \frac{2dy}{y - 1} = dt$$

— получили простое уравнение с разделяющими переменными.

Рассмотрим ещё несколько примеров замен.

Линейная замена

Пускай у нас есть диффур вида:

$$\dot{x} = f(at + bx)$$

Можно сделать замену u = at + bx, получив уравнение $\dot{x} = f(u)$. Решим этот диффур относительно переменной u, получив функцию x(u), после чего, сделав обратную замену, выразить искомую x(t).

$$\begin{aligned} u &= at + bx \\ \mathrm{d}u &= a \cdot \mathrm{d}t + b \cdot \mathrm{d}x \Longrightarrow \mathrm{d}t = \frac{\mathrm{d}u - b \cdot \mathrm{d}x}{a} \\ \dot{x} &= \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{a \cdot \mathrm{d}x}{\mathrm{d}u - b \cdot \mathrm{d}x} = f(u) \\ a \cdot \mathrm{d}x &= f(u)\mathrm{d}u - b \cdot f(u)\mathrm{d}x \Longrightarrow \left(a + b \cdot f(u)\right)\mathrm{d}x = f(u)\mathrm{d}u \\ \mathrm{d}x &= \frac{f(u)}{a + b \cdot f(u)}\mathrm{d}u \end{aligned}$$

После этих махинаций всё легко решается как уравнение с разделяющими переменными.

Пример №6

$$\dot{x} = \cos(x - t)$$

Ну тут совсем толсто: u = x - t. В данном случае a = -1, b = 1. По формуле выше:

$$\mathrm{d}x = \frac{\cos u}{\cos u - 1} \mathrm{d}u$$

Теперь интегрируем, получаем x(u) и делаем обратную замену.

Общий вид

Пускай у нас есть диффур:

$$\dot{x} = f(t, x)$$

Можно сделать замену $u = \varphi(t, x)$, получив новое уравнение (весьма удачно, если получится диффур вида $\dot{u} = f(t, u)$, но такое бывает далеко не всегда). Решаем его и делаем обратную замену, получая x(t).

Пример №7

$$\dot{x} \cdot t = 2x^2 \cdot t^3 - x$$

Здесь можно сделать замену u = xt, откуда $\dot{u} = \dot{x} \cdot t + x \cdot 1$. Подставим:

$$\begin{split} \dot{x} \cdot t &= 2x^2 \cdot t^3 - x \iff \dot{x} \cdot t + x = 2x^2 \cdot t^3 \Longrightarrow \dot{u} = 2u^2 \cdot t \\ \frac{\mathrm{d}u}{\mathrm{d}t} &= 2u^2 \cdot t \Longrightarrow \frac{\mathrm{d}u}{u^2} = 2t \cdot \mathrm{d}t \Longrightarrow \int = \int \\ -\frac{1}{u} &= t^2 + C \Longrightarrow u = -\frac{1}{t^2 + C} \end{split}$$

Делаем обратную замену и выражаем x(t):

$$u = xt \Longrightarrow xt = -\frac{1}{t^2 + C} \Longrightarrow x = -\frac{1}{t^3 + Ct}$$

Домашнее задание №1

Задача №1. Найти все кривые x(t), такие, что длина отрезка, соединяющего точку касания и точку пересечения касательной в данной точке с одной из осей, была постоянной.

Решение.

Пусть длина отрезка MP=l. Рассмотрим треугольник MPQ — на рисунке выше. Мы знаем, что $PQ=t_0$. Известно, что $\tan \angle MPQ=\dot{x}=\frac{MQ}{PQ}$, откуда получаем, что

$$MQ = PQ \tan \angle MPQ = t_0 \dot{x}$$

. По условию, равенство можно продлить на всю числовую прямую, получая:

$$PQ = t \Longrightarrow MQ = t\dot{x}$$

Теперь применим Теорему Пифагора, чтобы получить дифференциальное уравнение на искомую кривую:

$$MP^{2} = PQ^{2} + MQ^{2}$$

$$l^{2} = t^{2} + t^{2}(\dot{x})^{2} \Longrightarrow l^{2} - t^{2} = t^{2}(\dot{x})^{2}$$

$$(\dot{x})^{2} = \frac{l^{2} - t^{2}}{t^{2}} \Longrightarrow \dot{x} = \pm \frac{\sqrt{l^{2} - t^{2}}}{t}$$

Получили диффур (вообще говоря, два диффура). Будем рассматривать случай со знаком +, так как знак — приведёт нас к почти аналогичному результату (это обговорится далее).

Итак, имеем диффур с разделяющимися переменными:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\sqrt{l^2 - t^2}}{t} \Longrightarrow \mathrm{d}x = \frac{\sqrt{l^2 - t^2}}{t} \mathrm{d}t \Longrightarrow \int \mathrm{d}x = \int \frac{\sqrt{l^2 - t^2}}{t} \mathrm{d}t$$

Возьмём правый интеграл, сделав замену переменных.

$$\begin{split} \int \frac{\sqrt{l^2 - t^2}}{t} \mathrm{d}t &= \left\{ t = l \cdot \sin \beta, \, \mathrm{d}t = l \cdot \cos \beta \mathrm{d}\beta \right\} = \int \frac{\sqrt{l^2 (1 - \sin^2 \beta)}}{l \cdot \sin \beta} \cdot l \cdot \cos \beta \mathrm{d}\beta = \\ &= \int \frac{l \cdot \cos \beta \cdot \cos \beta}{\sin \beta} \mathrm{d}\beta = l \cdot \int \frac{1 - \sin^2 \beta}{\sin \beta} \mathrm{d}\beta = l \left(\int \frac{\mathrm{d}\beta}{\sin \beta} - \int \sin \beta \mathrm{d}\beta \right) = \\ &= \left\{ \int \frac{\mathrm{d}\beta}{\sin \beta} = \int \frac{\mathrm{d}\beta}{2 \sin \left(\frac{\beta}{2}\right) \cos \left(\frac{\beta}{2}\right)} = \int \frac{\cos \left(\frac{\beta}{2}\right) \mathrm{d}\beta}{2 \sin \left(\frac{\beta}{2}\right) \cos^2 \left(\frac{\beta}{2}\right)} = \int \frac{\mathrm{d}\tan \left(\frac{\beta}{2}\right)}{\tan \left(\frac{\beta}{2}\right)} = \ln \left|\tan \left(\frac{\beta}{2}\right)\right| + C \right\} = \\ &l \cdot \ln \left|\tan \left(\frac{\beta}{2}\right)\right| + l \cdot \cos(\beta) + C \end{split}$$

Теперь сделаем обратную замену:

$$t = l \cdot \sin \beta \Longrightarrow \sin \beta = \frac{t}{l} \Longrightarrow \cos \beta = \pm \sqrt{1 - \frac{t^2}{l^2}}$$

$$\ln \left| \tan \left(\frac{\beta}{2} \right) \right| = \ln \left| \frac{\sin \left(\frac{\beta}{2} \right)}{\cos \left(\frac{\beta}{2} \right)} \right| = \ln \left| \frac{2 \cdot \sin \left(\frac{\beta}{2} \right) \cdot \cos \left(\frac{\beta}{2} \right)}{2 \cdot \cos^2 \left(\frac{\beta}{2} \right)} \right| = \ln \left| \frac{l \cdot \sin \beta}{(1 + \cos \beta) \cdot l} \right| = \ln \left| \frac{t}{l \pm \sqrt{l^2 - t^2}} \right|$$

Теперь запишем полный результат интегрирования обеих частей, помня, что $\int dx = x + C$:

$$x = \pm \sqrt{l^2 - t^2} + l \cdot \ln \left| \frac{t}{l \pm \sqrt{l^2 - t^2}} \right| + C$$

У нас тут есть модуль, что не очень хорошо. Кроме того, мы не рассмотрели случай с минусом. Убьём двух зайцев одним ударом, немного преобразовав ответ:

$$\pm \sqrt{l^2 - t^2} + l \cdot \ln \left| \frac{t}{l \pm \sqrt{l^2 - t^2}} \right| = \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln \left| \frac{t}{l \pm \sqrt{l^2 - t^2}} \right|^2 =
= \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln \left(\frac{t^2}{(l \pm \sqrt{l^2 - t^2}) \cdot (l \pm \sqrt{l^2 - t^2})} \right) =
= \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln \left(\frac{t^2 \cdot (l \mp \sqrt{l^2 - t^2})}{(l \pm \sqrt{l^2 - t^2}) \cdot (l \pm \sqrt{l^2 - t^2})} \cdot (l \mp \sqrt{l^2 - t^2})} \right) =
= \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln \left(\frac{t^2 \cdot (l \mp \sqrt{l^2 - t^2})}{(l \pm \sqrt{l^2 - t^2}) \cdot (l^2 - (l^2 - t^2))} \right) =
= \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln \left(\frac{l \mp \sqrt{l^2 - t^2}}{(l \pm \sqrt{l^2 - t^2})} \right)$$

Заметим, что если бы мы взяли случай с минусом, то тогда перед слагаемым с логарифмом стоял бы знак минус. Тогда, домножив на $-\frac{1}{2}$, мы бы возводили подлогарифменное выражение не в 2 степень, а в -2, соответственно абсолютно аналогичными преобразованиями получив под логарифмом такую же, но перевёрнутую дробь. Однако, и в числителе, и в знаменателе, у нас возникает по \pm или \mp – следовательно, рассмотрев случай с плюсом, мы уже получили все возможные варианты ответа.

Итоговый полный ответ:

$$x = \pm \sqrt{l^2 - t^2} + \frac{l}{2} \cdot \ln\left(\frac{l \mp \sqrt{l^2 - t^2}}{(l \pm \sqrt{l^2 - t^2})}\right) + C$$

Осталось лишь указать, что $t \in [-l, l]$, и $x(\pm l) = C$.

Задача N2. Придумать диффур 1 порядка, не обладающий решением на всей прямой. То бишь, не для всех t решение $\dot{x} = f(t, x)$ должно существовать.

 $Pemenue.\ f(t,x)$ должна быть всюду определённой функцией. Поэтому достаточно взять такую x=x(t) в качестве решения диффура, чтобы она не была всюду определена, при выполнении условия выше.

Пример: $\dot{x} = -x^2$. Проверим, что подходит:

$$\dot{x} = -x^2 \Longrightarrow \frac{\mathrm{d}x}{x^2} = -\mathrm{d}t \Longrightarrow \int = \int \frac{1}{x} = t \Longrightarrow x = \frac{1}{t}$$

Задача №3. Решите диффур:

$$(t^2-1)\cdot\dot{x}+2tx^2=0,$$
 начальное условие: $x(0)=1$

Решение.

$$\begin{split} (t^2-1)\cdot\dot{x} + 2tx^2 &= 0 \Longrightarrow (t^2-1)\cdot\mathrm{d}x + 2tx^2\mathrm{d}t = 0 \\ \frac{\mathrm{d}x}{x^2} &= \frac{2t\cdot\mathrm{d}t}{1-t^2} \Longrightarrow \int = \int \\ \frac{1}{x} &= \ln|1-t^2| + C \end{split}$$

Найдём константу:

$$x(0) = 1 \Longrightarrow 1 = \ln 1 + C \Longrightarrow C = 1$$

Итоговая кривая:

$$\frac{1}{x} = \ln|1 - t^2| + 1 \Longrightarrow x = \frac{1}{\ln|1 - t^2| + 1}$$

Задача №4. Изоклинами найти приближённое решение:

$$\dot{x} = \frac{x}{t+x}$$

Также изобразите изоклины на графике и покажите все различные (с точностью до топологии и асимптотики) решения (то есть, как рассмотрено выше в примере).

Решение. Уравнения изоклин:

$$\dot{x} = \frac{x}{t+x} = k \Longrightarrow x = t \cdot \frac{k}{1-k}$$

Получим прямые изменения характера роста и выпуклости, исследовав первые две производные:

$$\dot{x} = 0 = \frac{x}{t+x} \Longrightarrow x = 0$$

$$\ddot{x} = \frac{\dot{x}(t+x) - x(1+\dot{x})}{(t+x)^2} = \frac{\dot{x}t - x}{(t+x)^2} = 0 \Longrightarrow \frac{\frac{x}{t+x} \cdot t - x}{(t+x)^2} = 0 \Longrightarrow$$

$$\Longrightarrow \frac{-x^2}{(t+x)^3} = 0 \Longrightarrow x = 0$$

$$\ddot{x} > 0 \Longrightarrow t + x < 0 \Longrightarrow x < -t$$

$$\ddot{x} < 0 \Longrightarrow t + x > 0 \Longrightarrow x > -t$$

Таким образом, характер роста функции меняется в нуле, а выпуклость изменяется, проходя через прямые x=0, x=-t. На основании этого и нескольких изоклин можно построить приблизительный график кривой x(t).

Задача №5. Придумайте (вообще говоря, найдите) диффур 1 порядка, задающий множество прямых, являющихся касательными к единичной окружности с центром в нуле.

Решение. Уравнение касательной к окружности в точке $(t_0, x_0) - x \cdot x_0 + t \cdot t_0 = 1$. Таким образом, у нас есть два уравнения:

$$\begin{cases} x_0^2 + t_0^2 = 1\\ x \cdot x_0 + t \cdot t_0 = 1 \end{cases}$$

Будем выражать из них t_0 и x_0 , чтобы остались только переменные t и x. Для этого продифференцируем второе уравнение и попреобразуем:

$$x\cdot x_0+t\cdot t_0=1\Longrightarrow \dot x x_0+t_0=0$$

$$\dot x x_0=-t_0-$$
 здесь возведём в квадрат, запоминая знак минус $-(\dot x)^2x_0^2=t_0^2$

Из уравнения окружности мы получаем выражение на квадрат t_0 :

$$x_0^2 + t_0^2 = 1 \Longrightarrow t_0^2 = 1 - x_0^2$$

— теперь подставим t_0^2 в уравнение выше:

$$(\dot{x})^2 x_0^2 = 1 - x_0^2 \Longrightarrow x_0^2 (1 + (\dot{x})^2) = 1$$

$$x_0^2 = \frac{1}{1 + (\dot{x})^2} \Longrightarrow t_0^2 = 1 - x_0^2 = \frac{(\dot{x})^2}{1 + (\dot{x})^2}$$

$$x_0 = \pm \frac{1}{\sqrt{1 + (\dot{x})^2}}, \quad t_0 = \pm \frac{\dot{x}}{\sqrt{1 + (\dot{x})^2}}$$

Осталось подставить выраженные константы в уравнение касательной и получить некоторыми преобразованиями искомый диффур:

$$\pm \frac{x}{\sqrt{1+(\dot{x})^2}} \pm \frac{\dot{x}t}{\sqrt{1+(\dot{x})^2}} = 1$$

$$\pm x \pm \dot{x}t = \sqrt{1+(\dot{x})^2}$$

$$x^2 \pm 2\dot{x}xt + (\dot{x})^2t^2 = 1 + (\dot{x})^2$$

$$(\dot{x})^2(t^2-1) \pm (2xt)\dot{x} + (x^2-1) = 0 - \text{квадратное уравнение}$$

$$\dot{x} = \frac{\pm 2xt \pm \sqrt{4x^2t^2 - 4(t^2-1)(x^2-1)}}{2(t^2-1)}$$

$$\dot{x} = \frac{\pm xt \pm \sqrt{x^2+t^2-1}}{t^2-1}$$

Семинар 2, 17 января

Специальные замены. Однородные уравнения.

Определение 2. Φ ункцию g(t, x) назовём **однородной**, если

$$\forall \lambda \in \mathbb{R} : g(\lambda t, \lambda x) = \lambda \cdot g(t, x)$$

 Φ ункции M(t, x) и N(t, x) – **одинаково однородны**, если

$$\forall \lambda \in \mathbb{R} : M(\lambda t, \lambda x) = \lambda \cdot M(t, x) \iff N(\lambda t, \lambda x) = \lambda \cdot N(t, x)$$

Определение 3. Однородное дифференциальное уравнение – это диффур вида

$$M(t, x)dt + N(t, x)dx = 0$$

где функции M и N – одинаково однородны.

Решать такие диффуры можно путём сведения к уравнению с разделяющимися переменными при помощи различных замен. О них, а также о том, как сводить иные уравнения к однородным, мы и поговорим.

Однородные уравнения: $y = \frac{x}{t}$

Пускай у нас имеется диффур вида:

$$\dot{x} = f\left(\frac{x}{t}\right)$$

Оно уже однородное. Мы хотим привести его к уравнению с разделяющими переменными. Следующая замена позволит нам это сделать: $y=\frac{x}{t}$:

$$y = \frac{x}{t} \Longrightarrow x = y \cdot t \Longrightarrow dx = ydt + tdy$$

- подставляем в однородное уравнение и решаем, находя y(t). После этого обратная замена.

Пример №1

$$tdx = (x+t)dt$$

Данное уравнение уже является однородным. Преобразуем его и сделаем вышеуказанную замену (предварительно рассмотрев вырожденные случаи):

$$t dx = (x+t) dt \iff dx = \frac{x}{t} + dt, \ y = \frac{x}{t}$$
$$(y dt + t dy) = (y+1) dt$$
$$t dy = dt \implies dy = \frac{dt}{t} \implies \int = \int$$

Осталось проинтегрировать, получить y(t) и подставить $y = \frac{x}{t}$.

Пример №2

$$x^2 + \dot{x}t^2 = tx\dot{x}$$

Помня, что $\dot{x} = \frac{dx}{dt}$, преобразуем диффур и сделаем ту же замену.

$$x^{2} + \dot{x}t^{2} = tx\dot{x} \iff x^{2}dt = (tx - t^{2})dx, \ y = \frac{x}{t}$$

$$y^{2}t^{2}dt = t^{2}(y - 1)(ydt + tdy)$$

$$y^{2}dt = y^{2}dt + ytdy - ydt - tdy$$

$$ydt = t(y - 1)dy \iff \frac{dt}{t} = \left(1 - \frac{1}{y}\right)dy$$

$$\ln|t| = y - \ln|y| + C$$

Теперь удобно делать обратную замену:

$$\ln|yt| = y + C \iff \ln|x| = \frac{x}{t} + C$$

и преобразовать получившееся выражение до вида x = x(t).

Пример №3

$$t\dot{x} = x - t \cdot \exp\left(\frac{x}{t}\right)$$

— здесь руки сами просят поделить на t ($t \neq 0$, так как иначе уравнение не определено):

$$\dot{x} = \frac{x}{t} - \exp\left(\frac{x}{t}\right), \ y = \frac{x}{t}$$

$$\frac{y dt + t dy}{dt} = y - e^y \Longrightarrow \frac{t dy}{dt} = -e^y$$

$$\frac{dy}{e^y} = -\frac{dt}{t} \Longrightarrow \int = \int$$

$$e^{-y} = -\ln|t| + C$$

— далее обратная замена.

Однородные уравнения: дробно-линейный вид

Пускай мы имеем диффур вида:

$$\dot{x} = f\left(\frac{a_1t + b_1x + c_1}{a_2t + b_2x + c_2}\right), a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R}$$

Ясно, что числитель и знаменатель суть уравнения прямых на координатной плоскости. Мы можем преобразовать уравнения такого типа к только что рассмотренным $\dot{x} = f\left(\frac{x}{t}\right)$, если перенесём систему координат в точку пересечения данных прямых.

Теперь подробнее о методе. Имеем систему уравнений:

$$\begin{cases} a_1t + b_1x + c_1 = 0 \\ a_2t + b_2x + c_2 = 0 \end{cases}$$

— решением данной системы будет точка пересечения двух прямых (t^*, x^*) . Теперь перенесём систему координат в данную точку, произведя замену:

$$\widetilde{t} = t - t^*$$

$$\widetilde{x} = x - x^*$$

— теперь, произведя простые преобразования, получаем однородный диффур $(\dot{\widetilde{x}}) = \begin{pmatrix} \widetilde{x} \\ \overline{\widetilde{t}} \end{pmatrix}$.

Решив его, осталось провести обратную замену, прибавив соответствующие константы.

Здесь стоит обговорить случай, когда выражения в числителе и знаменателе задают параллельные прямые, то есть:

 $\dot{x} = f\left(\frac{at + bx + c_1}{at + bx + c_2}\right)$

— отличаются только на свободный член, ибо $c_2 = c_1 + c$, $c \in \mathbb{R}$. В данном случае уравнение тривиально сводится к уравнению вида $\dot{x} = \widetilde{f}(at + bx)$, которое мы умеем решать, линейной заменой сводя к диффуру с разделяющимися переменными.

Пример №4

$$(x+2)\mathsf{d}t = (2t+x-4)\mathsf{d}x$$

Перезапишем в дробно-линейном виде:

$$\dot{x} = \frac{x+2}{2t+x-4}$$

Решим систему:

$$\begin{cases} x+2=0\\ 2t+x-4=0 \end{cases} \Longrightarrow \begin{cases} x=-2\\ t=3 \end{cases}$$

Делаем замену, получая однородное уравнение:

$$\begin{cases} \widetilde{x} = x + 2 \\ \widetilde{t} = t - 3 \end{cases} \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}\widetilde{x}}{\mathrm{d}\widetilde{t}} = \frac{\widetilde{x}}{2\widetilde{t} + \widetilde{x}}$$

— осталось решить его как уравнение с разделяющимися переменными.

Пример №5

$$\dot{x} = \frac{5t - x - 3}{3t + 2x - 7}$$

Решим систему:

$$\begin{cases} 5t - x - 3 = 0 \\ 3t + 2x - 7 = 0 \end{cases} \Longrightarrow \begin{cases} x = 2 \\ t = 1 \end{cases}$$

Делаем замену, получая однородное уравнение:

$$\begin{cases} \widetilde{x} = x - 2 \\ \widetilde{t} = t - 1 \end{cases} \Longrightarrow \frac{\mathrm{d}\widetilde{x}}{\mathrm{d}\widetilde{t}} = \frac{5\widetilde{t} - \widetilde{x}}{3\widetilde{t} + 2\widetilde{x}}$$

Поделим числитель и знаменатель правой части уравнения на \widetilde{t} и положим $y=\frac{\widetilde{x}}{\widetilde{t}}$. Получаем уравнение с разделяющимися переменными:

$$\widetilde{t} \cdot \frac{\mathrm{d}y}{\mathrm{d}\widetilde{t}} = \frac{5 - 4y - 2y^2}{3 + 2y}$$

Однородные уравнения: $x = y^m$

Пускай мы имеем уравнение

$$M(t, x)dt + N(t, x)dx = 0$$

где функции M и N – HE одинаково однородные. Однако, мы были бы рады привести его к таковому. В этом нам поможет замена $x=y^m$, где $m \in \mathbb{Q}$.

Идея в том, что у однородного уравнения степени каждого из слагаемых уравнения должны совпадать — тогда при домножении на константу мы сможем её спокойно вынести за функции. Поэтому сначала мы найдём степень m, после чего будем решать обычное однородное уравнение при помощи известных методов. Разберём на примерах.

Пример №6

$$2t^4 \cdot x\dot{x} + x^4 = 4t^6$$

— перепишем с дифференциалами:

$$2t^4 \cdot x \mathsf{d} x + x^4 \mathsf{d} t = 4t^6 \mathsf{d} t$$

Делаем замену:

$$x = y^m \Longrightarrow dx = m \cdot y^{m-1} dy$$

— получаем уравнение:

$$2t^4 \cdot y^m \cdot m \cdot y^{m-1} \mathsf{d}y + y^{4m} \mathsf{d}t = 4t^6 \mathsf{d}t$$

Приравняем степени:

$$3 + 2m = 4m = 6 \Longrightarrow m = \frac{3}{2}$$

— теперь подставляем и решаем однородный диффур.

Пример №7

$$\dot{x} = x^2 - \frac{2}{t^2}$$

Перепишем с дифференциалами и сделаем замену $x = y^m$:

$$\begin{split} t^2 \mathrm{d}x &= x^2 t^2 \mathrm{d}t - 2 \mathrm{d}t \\ x &= y^m, \, \mathrm{d}x = m \cdot y^{m-1} \mathrm{d}y \\ m \cdot t^2 \cdot y^{m-1} \mathrm{d}y &= y^{2m} \cdot t^2 \mathrm{d}t - 2 \mathrm{d}t \end{split}$$

Ищем степень:

$$2 + m - 1 = 2m + 2 = 0 \Longrightarrow m = -1$$

Тогда:

$$-t^2 \cdot y^{-2} dy = y^{-2} \cdot t^2 dt - 2dt$$
$$-t^2 dy = t^2 dt - 2y^2 dt$$

Получили однородное уравнение, которое решается классически: $z=\frac{y}{t}$:

$$z = \frac{y}{t}, \quad y = zt, \quad dy = tdz + zdt$$
$$-t^2 (tdz + zdt) = t^2 dt - 2z^2 t^2 dt$$
$$-tdz - zdt = dt - 2z^2 dt$$
$$tdz = (2z^2 - z - 1)dt$$

Получили уравнение с разделяющимися переменными:

$$\frac{\mathrm{d}t}{t} = \frac{\mathrm{d}z}{2z^2 - z - 1} \Longrightarrow \int = \int$$

— находим решение z=z(t), после чего производим череду обратных замен, находя x=x(t).

Домашнее задание №2

Задача №1. Решить диффур:

$$\dot{x} = 2 \cdot \left(\frac{x+2}{x+t-1}\right)^2$$

Задача №2. Решить диффур:

$$\dot{x} = \frac{x+2}{t+1} + \tan\left(\frac{x-2t}{t+1}\right)$$

Задача №3. Решить диффур:

$$2x + (xt^2 + 1) \cdot t\dot{x} = 0$$

Задача №4. Найти все такие α , β , a, $b \in \mathbb{R}$, такие, что дифференциальное уравнение

$$\dot{x} = at^{\alpha} + bx^{\beta}$$

сводится к линейному.

Задача №5. Найдите все кривые x(t), такие, что расстояние от начала координат до касательной $\kappa x(t)$ в любой точке $(t_0, x(t_0))$ совпадает с абсииссой данной точки (равно t_0):

Common Tasks

- 1. Найти такую кривую x(t), что для любой $t_0 \in \mathbb{R}$ касательная к x(t) в точке $(t_0, x(t_0))$ пересекает ось абсцисс в точке $\frac{t_0}{2}$.
- 2. Найти дифференциальное уравнение первого порядка, задающее на плоскости семейство парабол $x=at^2+bt+c$, проходящих через точку (0,1) и касающихся прямой x=t.
- 3. Решить диффур:

$$\frac{t}{x}\dot{x} = \ln x - \ln t + 1$$

4. Решить задачу Коши:

$$\dot{x} = \frac{1}{2x} \cdot \exp\left(\frac{x^2}{t}\right) + \frac{x}{2t}$$
, начальное условие: $x(1) = 1$