

X2-Class **Power MOSFET**

IXTA12N65X2 IXTP12N65X2 IXTH12N65X2

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	650	V		
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\rm GS}} = 1\text{M}\Omega$	650	V		
V _{GSS}	Continuous	±30	V		
V _{GSM}	Transient	±40	V		
I _{D25}	$T_c = 25^{\circ}C$	12	Α		
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	24	Α		
I _A	$T_c = 25^{\circ}C$	6	А		
E _{AS}	$T_{c} = 25^{\circ}C$	300	mJ		
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$	50	V/ns		
P _D	T _c = 25°C	180	W		
T		-55 +150	°C		
T_{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _L	Maximum Lead Temperature for Soldering	g 300	°C		
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C		
F _c	Mounting Force (TO-263) Mounting Torque (TO-220 & TO-247)	10.65 / 2.214.6 1.13 / 10	N/lb Nm/lb.in		
Weight	TO-263	2.5	g		
	TO-220 TO-247	3.0 6.0	g g		

Symbol (T _J = 25°C, l	Symbol Test Conditions Characteristic $(T_j = 25^{\circ}C, Unless Otherwise Specified)$ Min. Typ.		Values Max.		
BV _{DSS}	$V_{_{\mathrm{GS}}}$ = 0V, $I_{_{D}}$ = 250 μA	650			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				μΑ
	T _J = 125°C			50	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			300	mΩ

650V **12A** $300 \text{m}\Omega$

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	6.6	11.0	S
R _{Gi}	Gate Input Resistance		4	Ω
C _{iss}			1100	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		830	pF
C _{rss}			1.5	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		53	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		190	pF
t _{d(on)}	Resistive Switching Times		23	ns
t, ($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		24	ns
t _{d(off)}	$R_{\rm G} = 20\Omega$ (External)		52	ns
t,	n _G = 2052 (External)		16	ns
$Q_{g(on)}$			17.7	nC
\mathbf{Q}_{gs}	$V_{gs} = 10V, V_{ds} = 0.5 \bullet V_{dss}, I_{d} = 0.5 \bullet I_{dss}$		5.5	nC
\mathbf{Q}_{gd}			5.5	nC
R _{thJC}				0.69 °C/W
R _{thCS}	TO-220		0.50	°C/W
	TO-247		0.25	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			12	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			48	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 6A, -di/dt = 100A/\mu s$ $V_R = 100V$		270 2.5 18.5		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 125$ °C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 6A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 6A$ Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXTA12N65X2

IXTP12N65X2 IXTH12N65X2

