MP* KERICHEN 2020-2021

DS n°1 bis (X, ENS)

Il sera, dans la notation, tenu compte de la presentation et de la qualit de la rdaction. Les resultats devront obligatoirement tre souligns ou encadrs $la\ rgle$, le texte et les formules ponctues, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pnalits:

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathmatiques non ponctues: -1 point,
- Recours des abrviations (tt, qqs, fc., ens...): -2 points.

L'usage de la calculatrice est interdit.

Trigonalisation simultanée d'endomorphismes unipotents

Notations. On désignera par K le corps des réels ou celui des complexes; pour tout entier $n \ge 1$, on note M(n, K) l'espace des matrices à n-lignes et n-colonnes à coefficients dans K et on l'identifie à l'espace des endomorphismes de K^n . On note $SO(n, \mathbb{R})$ le sous-ensemble de $M(n, \mathbb{R})$ formé des matrices orthogonales de déterminant 1.

La lettre E désignera toujours un K-espace vectoriel de dimension $n \ge 1$; L(E) désignera l'ensemble des endomorphismes de E et GL(E) désignera celui des endomorphismes inversibles. On dit qu'une partie F de E est laissée stable par un endomorphisme T si l'on a $T(F) \subset F$.

On appelle commutant d'une partie X d'une algèbre l'ensemble des éléments de Y qui commutent à tous les éléments de X.

Première partie

- 1. Soit A une matrice de $M(n, \mathbb{R})$, diagonale avec coefficients diagonaux a_1, \ldots, a_n ; on suppose qu'il existe deux indices i et j tels que $a_i \neq a_j$. Vérifier que si une matrice B commute avec A, on a $b_{i,j} = 0$.
- **2.** Déterminer le commutant de $SO(2,\mathbb{R})$ dans $M(2,\mathbb{R})$.
- **3. a)** Montrer que, si $n \ge 3$, le commutant de $SO(n, \mathbb{R})$ dans $M(n, \mathbb{R})$ est formé de matrices diagonales.
 - b) Déterminer ce commutant.

Deuxième partie

Une partie W de L(E) sera dite irréductible si $\{0\}$ et E sont les seuls sous-espaces vectoriels de E laissés stables par tous les éléments de W.

- **4.** Vérifier que, si $E = \mathbb{R}^n$, $n \ge 2$, $SO(n, \mathbb{R})$ est irréductible.
- 5. Vérifier que, si deux élément A et B de L(E) commutent, tout sous-espace propre de l'un d'eux est laissé stable par l'autre.
- 6. Montrer que, si $K = \mathbb{C}$, le commutant d'une partie irréductible de L(E) est réduit aux multiples scalaires de l'endomorphisme identité id_E .
- 7. Ce résultat subsiste-t-il lorsque $K = \mathbb{R}$?

Troisième partie

Un élément A de L(E) est dit unipotent si $A - id_E$ est nilpotent (c'est-à-dire s'il existe un entier k > 0 tel que $(A - id_E)^k = 0$).

On se propose de démontrer que, si $K=\mathbb{C}$ et si G est un sous-groupe de GL(E) formé d'éléments unipotents, E admet une base dans laquelle tous les éléments de G sont représentés par des matrices triangulaires supérieures avec des coefficients diagonaux égaux à 1.

- 8. Montrer que tout élément unipotent A est inversible, et déterminer la somme $\sum_{n\geq 0} (id_E-A)^n$.
- **9.** Traiter le cas où n=2 et où G est l'ensemble des puissances d'un élément g_0 . Dans ce cas, est-il nécessaire de supposer $K=\mathbb{C}$?

On suppose maintenant $n \ge 1$. On rappelle que $K = \mathbb{C}$.

- 10. Vérifier que le sous-espace vectoriel W de L(E) engendré par G est une sous-algèbre de L(E).
- **11.** Calculer $\operatorname{tr}(g id_E)$, $\operatorname{tr}(g)$, $\operatorname{tr}((g id_E)g')$ pour $g, g' \in G$.
- 12. Supposant en outre G irréductible, montrer que G est réduit à id_E et préciser la valeur de n.

[On pourra utiliser le résultat suivant, qui sera démontré dans la **quatrième partie**: si $K = \mathbb{C}$ et si W est une sous-algèbre de L(E), irréductible et contenant id_E , alors W = L(E)].

- 13. Ne supposant plus G irréductible, démontrer l'existence d'un vecteur non nul x de E tel que g(x) = x pour tout $g \in G$.
- **14.** Conclure.

Quatrième partie

Le but de cette partie est de démontrer le résultat admis à la question 12. Procédant par l'absurde, on suppose $W \neq L(E)$.

On fixe une base $(e_1, ..., e_n)$ de E et on identifie les éléments de L(E) à leurs matrices représentatives dans cette base. Pour tout i = 1, ..., n, on désigne par :

- V_i l'ensemble des matrices A telles que $a_{k,l} = 0$ si $l \neq i$;
- L_i l'application de E dans V_i définie par

$$(L_i(x))_{k,l} = \delta_{i,l} x_k$$

— P_i l'application de L(E) dans V_i définie par

$$(P_i(A))_{k,l} = \delta_{i,l} A_{k,i}.$$

Enfin on note Φ l'application linéaire de L(E) dans L(L(E)) définie par :

$$\Phi(A)(B) = A \circ B.$$

- 15. Démontrer les assertions suivantes :
 - a) V_i est invariant par tous les $\Phi(A)$, $A \in L(E)$ et $\Phi(A)(L_i(x)) = L_i(A(x))$.
 - **b)** $\Phi(A) \circ P_i = P_i \circ \Phi(A).$
 - c) $W \cap V_i$ est nul ou égal à V_i .
- 16. Construire un sous-espace vectoriel W' de L(E), supplémentaire de W et laissé stable par tous les $\Phi(A)$, $A \in L(E)$.

On note π le projecteur de L(E) sur W parallèlement à W'; pour $i,j=1,\ldots,n,$ on pose :

$$A_{i,j} = L_j^{-1} \circ P_j \circ \pi \circ L_i \in L(E).$$

- 17. Montrer que $A_{i,j}$ est un multiple scalaire de id_E , que l'on notera $a_{i,j}id_E$.
- 18. Vérifier les égalités suivantes :
 - a) $\pi(id_E) = id_E$.
 - **b)** $\sum_{i} L_i(e_i) = id_E.$
 - c) $P_i(id_E) = L_i(e_i)$.
- **19.** Déterminer $a_{i,j}$.
- **20.** Conclure.

* *