Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №4.3.3

Исследование разрешающей способности микроскопа методом Аббе

Автор:

Глеб Уваркин 615 группа Преподаватель:

Клёнов Сергей Львович

Цель работы:

Определение дифракционного предела разрешения объектива микроскопа методом Аббе.

В работе используются:

Лазер; кассета с набором сеток разного периода; линзы; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

1 Используемые формулы.

Для определения периода решёток имеем формулы:

$$d\sin\theta_x = m_x\lambda, \qquad d\sin\theta_y = m_y\lambda, \tag{1}$$

где m_x и m_y – целые числа, характеризующие порядки дифракционных максимумов, θ_x и θ_y – направления на главные дифракционные максимумы в горизонтальной и вертикальной плоскостях соответственно.

Минимальное разрешаемое объективом расстояние определяется условием

$$l_{\min} \approx \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},$$
 (2)

где D – диаметр диафрагмы.

Увеличение системы линз рассчитывается по формуле (см. рис. 2)

$$\Gamma = \frac{b_1 b_2}{a_1 a_2}$$

2 Экспериментальная установка.

Схема образования изображения в объективе микроскопа представлена на рис. 1. Для простоты рассмотрим случай, когда предметом является периодическая структура (дифракционная решётка), освещаемая параллельным пучком лучей.

Рис. 1: Образование изображения в объективе микроскопа. P_1 – плоскость предмета, F – задняя фокальная плоскость объектива, P_2 – плоскость, сопряжённая с предметной плоскостью. В плоскости P_2 световые пучки сильно перекрываются.

Схема модели проекционного микроскопа приведена на рис. 2. Предметом служат сетки, расположенные в кассете. Смена сеток осуществляется поворотом внешнего кольца кассеты.

Рис. 2: Схема экспериментальной установки - модель проекционного микроскопа.

Излучение лазера (ОКГ) почти перпендикулярно падает на сетку С, установленную вблизи фокальной плоскости линзы Π_1 – объектива микроскопа. В нашей модели линза Π_1 выбирается достаточно длиннофокусной ($f\approx 10\,$ см), т.к. размер первичного изображения в фокальной плоскости F должен быть не слишком малым, чтобы дополнительными диафрагмами можно было влиять на вторичное изображение в плоскости P_2 . Вторичное изображение из плоскости P_2 проецируется на экран Э линзой Π_2 (короткофокусной, чтобы изображение на экране было крупнее). Во избежание микротравм глаза от излучения лазера не следует использовать эту линзу традиционным образом как окуляр микроскопа.

<u>MIP</u>

3 Выполнение работы.

3.1 Определение периода решёток по их пространственному спектру.

Определим расстояние между соседними дифракционными максимумами, измерив расстояние между удалёнными друг от друга максимумами (горизонтальными) и число промежутков между ними. Проведём измерение для пяти разных сеток. Результаты занесём в таблицу 1.

Таблица 1: Измерение периода решёток (с помощью спектра).

Решётка №	Расстояние, см	Число промежутков
1	14.3	4
2	14.4	6
3	14.3	12
4	7.1	12
5	8.1	18

Измерим расстояние H от сетки до экрана: $H=134~{\rm cm}$.

Запишем длину волны лазера, указанную на установке: $\lambda = 532$ нм.

3.2 Определение периода решёток по изображению, увеличенному с помощью модели микроскопа.

Соберём модель проекционного микроскопа (рис. 2).

Определим расстояния a_1, b_1, a_2, b_2 . Измерим периоды изображений сеток на экране. Данные занесём в таблицу 2.

Таблица 2: Измерение периода решётки (с помощью микроскопа).

Решётка №	Период изображения, мм	b_2 , cm	$a_2 + b_1$, cm	a_1 , cm	a_2 , cm
1	0.93	69	44		
2	1.4	69	44		
3	3	68.5	44.5	16	3.2
4	6	68.5	44.5		
5	8	67	46		

3.3 Определение периодов решёток по оценке разрешающей способности микроскопа.

Поместим щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы \mathcal{J}_1 . Определим для каждой решётки минимальный размер диафрагмы D, при котором на экране ещё видно изображение сетки (при меньших размерах щели изображение выглядит как одномерная решётка). Занесём результаты в таблицу 3.

Таблица 3: Измерение периода решёток (метод разрешающей способности).

Решётка №	1	2	3	4	5
Размер щели, мм	-	3.37	1.66	1.05	0.72

3.4 Пространственная фильтрация и мультиплицирование.

Проделаем качественный опыт по пространственной фильтрации. Подберём сетку средних размеров с достаточно крупным вторичным изображением (метка "3"). Ширину щели подберём так, чтобы она свободно пропускала максимум нулевого порядка и не пропускала максимумы первого порядка, расположенные в поперечном направлении. Поворачивая щель относительно оси системы, получим изображение решёток при различных ориентациях щели: для вертикального и горизонтального положения, а также для наклонного положения под углом 45° , когда пропускаются максимумы с $m_x = m_y$.

Для наблюдения явления мультиплицирования поменяем местами сетку C и щель D: сначала, не трогая линз, получим на экране резкое изображение щели, а затем в фокальной плоскости F объектива поставим кассету с сетками, которые будут «рассекать» фурье-образ щели.

Подберём такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток.

4 Обработка результатов.

1. По измерениям спектров (таблица 1) определим дифракционные углы θ_x и рассчитаем периоды решёток по формуле (1).

d, MKM	$ heta_x$, рад	Решётка №
20	0.053	1
30	0.054	2
60	0.053	3
120	0.026	4
160	0.030	5

Таблица 4: Периоды решёток (метод спектра).

2. По измерениям увеличенных с помощью микроскопа изображений сеток (таблица 2) рассчитаем их периоды и сравним с результатами, полученными ранее.

Таблица 5: Периоды решёток (определение с помощью микроскопа).

Решётка №	Увеличение	d, MKM
1		17
2		25
3	55	54
4		109
5		143

Результаты опытов практически совпадают.

3. По измерениям со щелью (таблица 3) рассчитаем по формуле (2) минимальное расстояние (период решётки d), разрешаемое микроскопом, и сравним с результатами предыдущих измерений.

Таблица 6: Периоды решёток (оценка разрешающей способности микроскопа).

Решётка №	1	2	3	4	5
d, mkm	-	35	70	111	163

Эти результаты также близки к полученным ранее.

4. Для проверки теории Аббе построим график зависимости d = f(1/D), взяв периоды сеток, определённые по спектру (рис 3).

Рис. 3: Подтверждение теории Аббе.

Из графика видно, что зависимость близка к линейной ⇒ теория Аббе выполняется.

5. а) Отразим полученные изображения пространственной фильтрации на рис. 4

Рис. 4: Пространственная фильтрация.

Ряд максимумов (рис. 4(a)) аналогичен дифракционной картине от одномерной решётки с вертикальными щелями. Поэтому оптическое изображение квадратной сетки при введении горизонтальной щели перейдёт в систему вертикальных полос. Аналогично для рис. 4(6).

Если щель повернуть параллельно диагонали сетки (рис. 4(в и г)), то она выделит прямолинейный ряд максимумов, параллельной той же диагонали, причём расстояния между максимумами увеличатся в $\sqrt{2}$ раз. В результате оптическое изображение сетки перейдёт в систему наклонных полос, перпендикулярных к щели, а сами полосы сделаются в $\sqrt{2}$ раз уже.

Д.С. Рождественский указал, что непосредственной причиной появления ложных структур в этих опытах (опытах Аббе) является дифракция света на экранирующей сетке.

б) Явление мультиплицирования изображено на рис. 5

Рис. 5: Пространственная фильтрация.

Данное явление связано с тем, что фильтрующая решётка пропускает дискретный спектр компонент, что в свою очередь делает возможным представление изображения в плоскости Π_2 в виде периодического.

Также было установлено, что при смене дифракционной сетки с меньшим периодом на сетку с большим периодом, период изображения уменьшается. Данный факт подтверждается формулами.

5 Вывод.

- В ходе данной лабораторной работы был измерен период дифракционной решётки. Значения, полученные различными способами, оказались достаточно близкими.
- Был определён дифракционный предел разрешения объектива микроскопа методом Аббе, а также была проверена теория Аббе.
- Были изучены явления пространственной фильтрации и мультиплицирования.