21-120: Differential and Integral Calculus Recitation #10 Outline: 09/26/24

- 1. For each of the following, find $(f^{-1})'(a)$:
 - (a) $f(x) = x^2 + 3x + 2$, $x \ge -\frac{3}{2}$, a = 2
- (c) $f(x) = x + \sin x$, a = 0

(b) $f(x) = x - \frac{2}{x}$, x < 0, a = 1

- (d) $f(x) = x + \sqrt{x}$, a = 2
- 2. In the problem above, why do some parts have restrictions on x while others don't? What would go wrong if we removed the requirement $x \ge -\frac{3}{2}$ in part (a)?
- 3. For each function f below, find the equation of the tangent line to the graph of f^{-1} at the specified point P, without directly using the Inverse Function Theorem. That is, first write an equation for the tangent line for f at the appropriate point, and then convert the equation into an equation of the tangent line for f^{-1} at the point P.
 - (a) $f(x) = (x^3 + 1)^4$, P(16, 1)

- (b) $\sqrt{x-4}$, P(2,8)
- 4. For each function f below, find the equation of the tangent line to the graph of f^{-1} at the specified point P, using the Inverse Function Theorem. Check that your answers agree with the answers to the previous problem.
 - (a) $f(x) = (x^3 + 1)^4$, P(16, 1)

- (b) $\sqrt{x-4}$, P(2,8)
- 5. Find the derivatives of the following functions:
 - (a) $y = \arccos(\sqrt{x})$

(c) $y = \sqrt{\csc^{-1}(x)}$

(b) $y = \sec^{-1}(-x)$

- (d) $y = x \csc^{-1}(x)$
- 6. For each of the following, use the given values to find $(f^{-1})'(a)$: functions:
 - (a) $f(\pi) = 0$, $f'(\pi) = -1$, a = 0

(c) f(1) = 0, f'(1) = -2, a = 0

(b) f(6) = 2, f'(6) = 1/3, a = 2

- (d) $f(\sqrt{3}) = 1/2$, $f'(\sqrt{3}) = 2/3$, a = 1/2
- 7. Suppose $f(t) = t^3 + 4t + 2$. Find the slope of the tangent line to the graph of $g(x) = xf^{-1}(x)$ at the point x = 7.