Class 07

Josie (A11433761)

Before we get into clustering methods let's make some sample data to cluster where we know what the answer should be.

To help with this I will use the rnorm() function.

hist(rnorm(150000,mean=-3))

Histogram of rnorm(150000, mean = -3)


```
n=10000
hist(c(rnorm(n,mean=3),rnorm (n,mean=-3)))
```

Histogram of c(rnorm(n, mean = 3), rnorm(n, mean = -3)

c(rnorm(n, mean = 3), rnorm(n, mean = -3))

```
n=30
x<-c(rnorm(n,mean=3),rnorm (n,mean=-3))
y<-rev(x)
z<-cbind(x,y)
z</pre>
```

```
[1,] 4.110670 -1.806963
 [2,] 3.813138 -3.608678
 [3,] 3.218754 -3.489699
 [4,] 1.222338 -3.354657
 [5,] 1.191884 -3.709332
 [6,] 2.748526 -2.735017
 [7,] 3.053610 -1.048753
 [8,] 3.180411 -2.356207
 [9,] 3.935262 -2.470225
[10,] 3.650484 -3.438469
[11,] 4.500134 -4.879594
[12,] 2.982635 -2.474210
[13,] 1.402237 -3.771985
[14,] 2.057058 -1.869827
[15,] 3.528990 -3.679315
[16,] 2.796476 -3.261870
```

- [17,] 1.394751 -2.776697
- [18,] 5.211226 -5.173876
- [19,] 3.857948 -2.733254
- [20,] 3.069064 -2.383431
- [21,] 3.339916 -3.444614
- [22,] 3.932075 -2.745028
- [23,] 2.948115 -1.429715
- [24,] 2.367746 -2.000807
- [25,] 3.051122 -4.292615
- [26,] 3.027701 -3.524213
- [27,] 3.222355 -4.751351
- [28,] 3.194708 -1.355170
- [29,] 2.003491 -1.951833
- [20,] 2.000101 1.001000
- [30,] 3.091731 -1.453643 [31,] -1.453643 3.091731
- [32,] -1.951833 2.003491
- [33,] -1.355170 3.194708
- [34,] -4.751351 3.222355
- [35,] -3.524213 3.027701
- [36,] -4.292615 3.051122
- [37,] -2.000807 2.367746
- [38,] -1.429715 2.948115
- [39,] -2.745028 3.932075
- [40,] -3.444614 3.339916
- [41,] -2.383431 3.069064
- [42,] -2.733254 3.857948
- [43,] -5.173876 5.211226
- [44,] -2.776697 1.394751
- [11,] 2.770007 1.001701
- [45,] -3.261870 2.796476
- [46,] -3.679315 3.528990
- [47,] -1.869827 2.057058 [48,] -3.771985 1.402237
- [49,] -2.474210 2.982635
- [10,] 2.1, 1210 2.002000
- [50,] -4.879594 4.500134
- [51,] -3.438469 3.650484 [52,] -2.470225 3.935262
- [53,] -2.356207 3.180411
- [54,] -1.048753 3.053610
- [55,] -2.735017 2.748526
- [56,] -3.709332 1.191884
- [57,] -3.354657 1.222338
- [58,] -3.489699 3.218754
- [59,] -3.608678 3.813138

[60,] -1.806963 4.110670

plot(z)

K-means clustering

The function in base R for k-means clustering is called kmeans().

```
km<-kmeans(z,center=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

Clustering vector:

```
Within cluster sum of squares by cluster:
[1] 60.09283 60.09283
(between_SS / total_SS = 89.9 %)
```

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

km\$centers

x y 1 -2.932368 3.036819 2 3.036819 -2.932368

km\$cluster

plot(z,col=c("red","blue"))

plot(z, col=c(1,2))

plot(z, col=km\$cluster) #plot with clustering results and cluster centers
points(km\$centers, col="blue",pch=15,cex=2) #color the center and make it a square center (p.)

Can you cluster our data in ${\bf z}$ into four clusters?

```
km4<-kmeans(z,center=4)
plot(z,col=km4$cluster)
points(km4$centers, col="blue",pch=15,cex=2)</pre>
```


Hierarchical Clustering

The main function for hierarchical clustering is base R is called hclust(). Unlike kmeans() I cannot just pass in my data as input. I first need a distance matrix from my data.

```
d<-dist(z)
hc<-hclust(d)
hc</pre>
```

Call:
hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

hclust plot method

```
plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To get my clustering results, I can "cut" my tree at a given height. To do this, I will use the ${\tt cutree}$.

```
grps<-cutree(hc, h=10)</pre>
```

plot(z,hc\$grps)

Principle Component Analysis

PCA of UK food data

```
url<-"http://tinyurl.com/UK-foods"
x<-read.csv(url,row.names=1)
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

PCA to the rescue

The main function to do PCA in base R is called $\ensuremath{\mathtt{prcomp}}$ ()

```
pca<-prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

Let's see what's inside our result object pca

```
attributes(pca)
```

```
$names
[1] "sdev" "rotation" "center" "scale" "x"
$class
[1] "prcomp"
```

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

To make our main result figure, called a PC plot (or score plot, ordination plot, PC1 vs.PC2):

```
plot(pca$x[,1],pca$x[,2], col=c("black", "red","blue", "darkgreen"), pch=16, xlab="PC1 (67.4%)
```


Variable Loadings Plot: Lets focus on PC1 as it accounts for > 90% of variance

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
Fish	-0.084414983	-0.050754947	0.03906481	0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484