

Learning goals

- Decision trees
- RuleFit
- Decision rules

DECISION TREES - BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

© - 1/6

DECISION TREES - BREIMAN

Idea: Partition data into axis-aligned regions via greedy search for feature cut points (minimizing a split criterion), then predict a constant mean c_m in each leaf region \mathcal{R}_m :

$$\hat{f}(x) = \sum_{m=1}^{M} c_m \mathbb{1}_{\{x \in \mathcal{R}_m\}}$$

- Applicable to regression and classification
- Models interactions and non-linear effects
- Handles mixed feat, spaces & missing values

hum

75

25

© - 1/6

INTERPRETATION OF TREE-BASED MODELS

- Interpretation via path of decision rules along tree branches
- **Feature importance** (quantifies how often and how usefully x_j is used):
 - \bullet For each split on feature x_j , record the decrease in the split criterion
 - ullet Aggregate this over the tree: sum or avg. over all splits involving x_j
 - Split criterion: variance (regression), Gini index / entropy (classif.)

- Each ΔVar is assigned to the splitting feature
- Feature importance = sum of all ΔVar for that feat.:

$$x_i$$
: 0.18

$$x_k$$
: 0.07 + 0.10 = 0.17

© – 2/6

DECISION TREES - EXAMPLE

- Fit decision tree with tree depth of 3 on bike data
- E.g., mean prediction for the first 105 days since 2011 is 1798
 → Applies to =15% of the data (leftmost branch)
- days_since_2011: highest feat. importance (explains most of variance)

Feature	Importance
days_since_2011	79.53
temp	17.55
hum	2.92

4504 100%							
yes - days_since_2011 < 435-no							
(3414 60%			61			
days_sin	ce_2011 <	106		temp	< 12		
	3934 45%			4408 10%		6634 31%	
	temp	< 14 d	ays_since_	2011 >= 72	1 hum	>= 83	
1798	(3246)	4450	(1698)	4860	(4291)	6753	
15%	19%	26%	1%	8%	2%	29%	

© - 3/6

▶ Hothorn 2006

▶ Zeileis 2008

▶ Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features
- Splits on any improvement, regardless of significance → prone to overfitting

© - 4/6

► Hothorn 2006

▶ Zeileis 2008

▶ Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- 2 Hypothesis test as stopping criteria

© - 4/6

▶ Hothorn 2006

▶ Zeileis 2008

▶ Strobl 2007

Problems with CART (Classification and Regression Trees):

- Selection bias towards high-cardinal/continuous features

Unbiased recursive partitioning via conditional inference trees (ctree) or model-based recursive partitioning (mob):

- Separate selection of feature used for splitting and split point
- Hypothesis test as stopping criteria

Example (selection bias):

Simulate data (n = 200), $Y \sim N(0, 1)$ and 3 features of different cardinality indep. from Y (repeat 500 times):

- $X_1 \sim Binom(n, \frac{1}{2})$
- $X_2 \sim M(n,(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}))$
- $X_3 \sim M(n, (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}))$

Which feature is selected in the first split?

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

© - 5/6

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (ctree): Bike data (constant model in final nodes)

Train MSE: 758,844 (ctree) 742,244 (mob)

© -5/6

Differences to CART:

- Two-step approach (finds 1. most significant split feat., 2. best split point)
- Parametric model (e.g. LM instead of constant) can be fitted in leaf nodes
- Significance of split (p-value) given in each node
- ctree and mob differ in hypothesis test used for selecting the split feature (independence test vs. fluctuation test) and how to find the best split point

Example (mob): Bike data (linear model with temp in final nodes)

Train MSE: 758,844 (ctree) 742,244 (mob)

© - 5/6

OTHER RULE-BASED MODELS

Decision Rules Holte 1993

- Flat list of simple "if then" statements
 → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

© - 6/6

OTHER RULE-BASED MODELS

Decision Rules ▶ Holte 1993

- Flat list of simple "if then" statements → very intuitive and easy-to-interpret
- Mainly devised for classification (support for regression is limited)
- Numeric features are typically discretised

$$\begin{aligned} &\text{IF } x_1 \leq 2.3 \text{ AND } x_4 = \text{``A''} & \text{THEN} & \text{y} = 1 \\ &\text{ELSE IF } x_2 > 5.0 & \text{THEN} & \text{y} = 2 \\ &\text{ELSE} & \text{y} = 3 \end{aligned}$$

RuleFit ▶ Friedman and Popescu 2008

- Extract binary rules $r_m(\mathbf{x}) \in \{0, 1\}$ from many shallow trees (one per root-to-leaf path)
- Fit an L₁-regularized LM $\hat{f}(\mathbf{x}) = \beta_0 + \sum_m \beta_m r_m(\mathbf{x}) + \sum_i \gamma_j x_i$
- Regularization retains only a few rules ⇒ sparse, non-linear, interaction-aware
- Coefficients relate to rule/feature importance

- 6/6