

SISTEMAS DE INFORMAÇÃO 1

Relatório da Segunda Fase do Trabalho Prático

Docente

Prof. Afonso Remédios

Alunos

43552 Samuel Costa 43884 Pedro Rocha

Índice

Relatório	3
1.a) Modelo Entidade-Associação	4
1.b) Anexo ao Modelo Entidade-Associação	4
2 Modelo Relacional	7
3 Análise da normalização	9
4 Construção do Modelo Físico do Sistema	9
5 Preenchimento do modelo físico	9
6 Tradução de interrogações em álgebra relacional	
7 Produção de Interrogações com recurso à SQL-DML	
7 FTOUUÇÃO DE TITLETTOGAÇÕES CONTTECUISO À SQL-DIVIL	10

Relatório

Este relatório, referente ao segundo de três trabalhos práticos, foi elaborado no âmbito da unidade curricular de Sistemas de Informação I e acompanha a realização da segunda fase do trabalho prático. Depois de, na primeira fase ter sido elaborado o modelo entidade-associação (MEA) que representa os dados do sistema, a partir do documento de requisitos, nesta fase procedeu-se à transformação do modelo Entidade-Associação no modelo relacional.

Ao longo do documento apresentam-se o modelo Entidade-Associação, elaborado na primeira fase do trabalho prático, bem como o anexo que o acompanha; a representação dos dados no modelo Relacional; uma análise da normalização do modelo relacional; a construção do modelo físico do sistema com recurso à DDL; o preenchimento do modelo físico com dados que permitiram testar o funcionamento do sistema; a elaboração de interrogações expressando-as em Álgebra Relacional; e, por fim, a expressão de interrogações, incluindo as expressas em álgebra relacional, em SQL.

1.a) Modelo Entidade-Associação

Ver anexo.

1.b) Anexo ao Modelo Entidade-Associação

RIG: Todos os atributos são obrigatoriamente NOT NULL exceto quando indicado.

CURSOS

Sigla: varchar(4)

Nome: varchar(256)

INSTITUICOES

ID Instituicao: int

Nome: varchar(250)

Endereço: varchar(250)

Morada: varchar(250)

Postal: varchar(10)

Localidade: varchar(100)

E-mail: varchar(250)

Telefone: int

PROFESSORES

ID Professor: int

Nome: varchar(250)

RI1: um professor tem de pertencer pelo menos a uma instituição.

ProfessorNaInstituicao

Data_Inicio: date

Cargo: varchar(100)

Categoria: varchar(100)

ProfessorAvaliadorDoProcesso

Presidente: bit

RI2: um mesmo professor não pode ser presidente de mais do que duas equipas.

RI3: o professor que faz parte de uma instituição não pode integrar a equipa de acreditação de um curso da sua instituição.

RI4: entre 2 a 4 professores de escola diferente daquela sobre a qual decorre o processo.

RI5: um mesmo professor não pode participar de mais do que 5 equipas.

ProfessorResponsavelDeProcesso

RI6: Da escola sobre a qual decorre o processo

PROCESSOS

ID_Processo: int

Texto_Submissao: varchar(max)

Data_Submissao: date

Valor: Decimal (9,3)

Data UAlteracao: dateAndTime

RI7: Valor é o preço por tipo RI8: quando um processo tem entre 2 e 4 avaliadores (equipa válida), estado passa *de registado* para *em análise*

RI9: Assim que o processo tem equipa atribuída (ver RI3 e RI4), o estado passa para em análise.

RI10: Não é permitida a passagem para o estado *acreditado* se não forem cumpridos todos os requisitos obrigatórios.

RI11: Se pelo menos um requisito facultativo não for cumprido, o estado será *temporariamente acreditado*.

RI12: Se não forem registados requisitos associados ao tipo ou não for adicionado nenhum relatório, o estado do processo não poderá evoluir para 'não-acreditado', 'acreditado' e 'temporariamente-acreditado'.

ACREDITACAO

ALTERACAO

QT_Alteracoes: smallint

ECTS_Proporcionais: bit

TIPOS

ID_Tipo: smallint

Nome: varchar(50)

Preco: decimal(9,3)

OCC: {nome};

REQUISITO

Codigo: char(10)

Requisito: varchar(max)

Obrigatorio: bit

ESTADO

ID_Estado: tinyint

Estado: varchar(50)

Domínio: {registado, em análise, não acreditado, acreditado, condicionalmente

acreditado}

AvaliacaoDeRequisitoDoProcesso

Cumpre: bit

RI13: Apenas podem ser adicionados requisitos e registar o seu cumprimento, se o estado processo for *em* análise.

RI14: Caso não tenham sido satisfeitos os requisitos facultativos, tendo sido os obrigatórios, o estado do processo é "temporariamente acreditado"

RI15: Passa para estado "acreditado", quando todos os requisitos (ver RI) tiverem sido satisfeitos.

RELATÓRIOS

Data: date

Texto: varchar(max)

RI16: não podem ser adicionados novos relatórios nos estados não-acreditado ou acreditado

RI17: Só podem ser associados relatórios a processos no estado "em análise".

RESPOSTAS

Num Sequencial: smallint

Data: date

Texto: varchar(max)

Nota-se ainda que algumas das regras identificadas como restrições de identidade (RI), terão que ser garantidas a nível aplicacional.

2 Modelo Relacional

Nota Prévia: as Restrições de Integridade preenchidas a amarelo são garantidas do lado da aplicação.

Instituicoes (<u>ID_Instituicao</u>, Nome, EnderecoMorada, EnderecoPostal, EnderecoLocalidade, Email, Telefone)

ProfessorNalnstituicao (ID Inst, ID_Prof, Data_Inicio, Cargo, Categoria)

OCC: {ID Prof}

CE: { ID_Inst ref. Instituicoes(ID_Instituicao)}, {ID_Prof ref Professores(ID_Professor)}

RIA: Professores tem que participar da associação ProfessorNaInstituicao

ProfessorAvaliadorDoProcesso (Processo, Professor, Presidente)

OCC:{ Professor}

CE: {Processo ref Processos(ID Processo)} {Professor ref Professores(ID Professor)}

RI1A: Deriva de MEA:RI2 – contar equipas em que é presidente e ser menor ou igual a 2

RI2A: Deriva de MEA:RI3 - instituição do processo não pode ser a mesma que a instituição do prof que faz parte da equipa

RI3A: Deriva de MEA:RI4 - count dos elementos de equipa >1&&<4

RI4A: count equipas de que prof faz parte <=5

Professores (ID Professor, Nome)

Processos (<u>ID_Processo</u>, Data_UAlteracao, Data_Submissao, Texto_Submissao, ProfResponsavel, EstadoAtual, Tipo, Preco)

CE: {{ProfResponsavel ref Professores(ID_Professor)}, {Estado ref Estados(ID_Estado)}, {Tipo ref Tipos(ID_Tipo)}, {Preco ref Tipos(Preco)}}

RIA1: Cada Processo deve existir em Acreditacao ou Alteracao. A cardinalidade das relações entre essas entidades e a entidade Cursos, bem como as suas restrições de obrigatoriedade, determinam que, quando um processo for relacionado a um par Instituição-Curso, este seja de Acreditação. Nos processos subsequentes, será processo de Alteração.

RI2: ProfResponsavel, Estado, e Tipo têm que existir nas tabelas referenciadas.

RIA3: Deriva de MEA:RI6 – Instituição de ProfResponsavel equals Processo

Cursos (Sigla, Instituicao, Nome)

CE: {Instituicao ref. Instituicoes(ID_Instituicao)}

Acredita (Processo, ParInstituicaoCurso)

CE: {{Processo ref. Processos(ID_Processo)},{ ParInstituicaoCurso ref. Cursos (Instituicao, Sigla)}

RIA: Acreditacao tem que participar da associação Acredita

Alteracao (ProcessoOrigem, <u>ProcessoAlteracao</u>, ParInstituicaoCurso, QT_Alteracoes, ECTS Proporcionais)

OCC: {ProcessoOrigem, ParInstituicaoCurso}

CE: {ProcessoOrigem ref. Processos (ID_Processo)} {ParInstituicaoCurso ref. Cursos (Instituicao, Sigla)

RI: Todas as alterações têm que ter associado um par Instituição-Curso.

AvaliacaoDeRequisitoDoProcesso (Processo, Requisito, Cumpre)

OCC: {Requisito}

CE: {Processo ref Processo(ID_Processo)} {Requisito ref Requisito(ID_Requisito)}

Estados (ID_Estado, Estado)

RID: Estado \in {registado, em análise, não acreditado, acreditado, condicionalmente acreditado}

Tipos (ID Tipo, Nome, Preco)

OCC:{ Nome}

Requisitos (ID Requisito, Requisito, Obrigatorio, Tipo)

CE: {Tipo ref Tipos(ID_Tipo)}

RIA1: Todos os Requisitos têm de existir em Tipos.

RIA2: Todos os Tipos têm de estar associados a pelo menos um Requisito, ou seja, todos os Tipos têm de participar pelo menos uma vez na associação.

Relatórios (Processo, Data, Texto)

CE: {Processo ref Processos(ID_Processo)}

Respostas (Relatorio, Num Sequencia, Data, Texto)

CE: {Relatorio ref. Relatorios (Processo, Data)}

3 Análise da normalização

Por forma a permitir uma utilização flexível do sistema, optou-se por identificar algumas das relações apenas por ID's auto-incrementados. Esta opção é menos restritiva em termos da possibilidade de inserção de dados no sistema, permitindo uma gestão transacional mais relaxada, apesar de abrir caminho à sua utilização indevida. Este critério não foi seguido em tabelas nas quais não é esperado volume significativo de introdução de registos, como é o caso da tabela Tipos e da tabela Estados.

Não foram encontradas circunstâncias em que a ambiguidade do modelo relacional na definição dos dados exigisse alterações face ao que já se tinha apurado em 2.

4 Construção do Modelo Físico do Sistema

Por recurso à *Data Definition Language* (DDL), foi construído o esquema da base de dados. Foram produzidos os scripts SQL:

(1) CreateTableFase2.sgl para criação e (2) DropTableFase2.sgl para remoção do modelo.

5 Preenchimento do modelo físico

Foi produzido o script (1) *PopulateFase2.sql* para efetuar o preenchimento do modelo físico com dados que permitissem testar as alíneas dos pontos 6 e7. O script produzido, bem como aqueles escritos em 4, fazem uso de controlo transacional para garantir que as instruções são executadas em bloco.

6 Tradução de interrogações em álgebra relacional

Foi considerado o esquema relacional presente na secção 2.

- a) πProfessor(Nome, Cargo, Categoria), Instituicao (Nome) (σ_{ID_Professor=3} ((Professores Nome))
 b) (πProfessor(σProfessor=null (πProfessor(σ year=2016(Processos Nome)))
 - ProfessorAvaliador do Processo))) $\bowtie_{\mathsf{Professor=Professor}} (\pi \mathsf{Professor}(\sigma \mathsf{year=2017})))$ (Processos $\bowtie_{\mathsf{ID_Processo=Processo}} (\mathsf{ProfessorAvaliador}(\sigma \mathsf{Processo}))))))$
- c) $(\pi \text{Professor } (\text{Professor } \Im \text{Top(1)}, \text{Count(Processo)} = \text{MAX(Processo)})))$ $\land \text{Tipo} = 2(\text{Processos} \bowtie_{\text{ID_Processo}} \text{ProfessorAvaliadorDoProcesso}))))$
- d) π Nome, EnderecoMorada (Instituicao.nome, I.EnderecoMorada $\mathfrak T$ min(EstadoAtual)=5 ((Instituicoes $\bowtie_{\mathsf{ID_Inst=Instituicao}}(\pi_{\mathsf{Processo,Instituição}})$ Acredita \cup $\pi_{\mathsf{ProcessoAlteracao,Instituição}}$ Alteracao)) $\bowtie_{\mathsf{Processo=ID_Processo}}$ Processos)

- e) $(\pi \text{ Nome,EnderecoMorada,(}\Im\text{count(ID_Processo}),sum(when case EstadoAtual<5.1 else 0))(I.Nome, I.EnderecoMorada <math>\Im ((Instituicoes \bowtie_{ID_Inst=Instituicao}(\pi_{Processo,Instituição} \land Acredita \cup \pi_{ProcessoAlteracao,Instituição} \land Alteracao)) \bowtie_{Processo=ID_Processo} \land Processos)))$
- f) π Instituicao, Curso (Instituicao, curso \Im count(Processo) ($\pi_{\text{Processo,Instituição}}$ Acredita \cup $\pi_{\text{ProcessoAlteracao,Instituição}}$ Alteracao)))

7 Produção de Interrogações com recurso à SQL-DML

- a) As interrogações pedidas em 6 foram escritas em SQL, e apresentam-se no anexo TraducaoDeAlgebraRelacionalParaSQL.sql
- b) Projetaram-se as chaves da tabela Processo, bem como o texto de submissão de cada registo, filtrando-se pela data de conclusão (2017). Efetuou-se a junção interna com a união das tabelas de Acreditação e Alteração, e com a tabela de Instituições. Ordenouse por nome de Instituição e por Curso. Construiu-se uma lista de projeção que espelhasse os atributos pedidos.
- c) Foi obtido resultado expresso na alínea seguinte em (iii). Juntou-se a tabela obtida com a tabela Processos, obtendo os processos concluídos [estadoatual=3 (não acreditado) ou 5(acreditado)] dentro do intervalo estabelecido. Para tal usou-se o operador between e função convert.(i)
 Foi obtido o conjunto dos processos cujas respostas cumprem o critério estabelecido, usando a função datediff e a palavra reservada distinct (ii).
 Foi obtida uma lista de todos os tuplos ocorridos em (i) que fazem parte do conjunto mencionado em (ii).
- d) Combinaram-se as entradas de Alteracao com as entradas de Acredita. Obtiveram-se os processos do ISEL respeitantes ao curso de LEIC (iii). Foi efetuado inner join com a tabela Processos que tem um campo preco, calculado na ocasião da inserção do registo. Como a tabela obtida dizia respeito apenas aos processos de LEIC da instituição ISEL, foi projetada a soma do campo preco.
- e) Foram obtidos todas as Instituições. Juntaram-se as Instituições aos Cursos introduzidos na BD (iv). Foi necessário replicar o comando para obter (iv), pois o mapeamento a relação entre Cursos e processos, está disperso em 2 tabelas, pelo que uma junção do que foi produzido em (iv) com Acredita e seguidamente com Alteração omitiria (não permitindo duplicados) os processos de acreditação que originaram processos de Alteração. Assim foi efetuada junção (inner join) do que foi obtido em (iv) com a tabela acredita e do que foi obtido em (iv) com a tabela alteração. Efetuouse a união das duas tabelas de projeção. Foi efetuado o agrupamento por Instituicao.ID e Curso. Sigla. Foram filtradas as instituições com mais de 5 processos submetidos em 2016 com o comando Having. Dessas, foram ignoradas aquelas com algum processo submetido em 2017. Foi projetado o Nome da Instituição e a sigla do curso.

f)