[AMR11]

p. 146

235 Problèmes d'interversion de symboles en analyse.

I - Problèmes d'interversion avec les suites et séries de fonctions

1. Utilisation de la convergence uniforme

Théorème 1 (de la double limite). Soient X une partie non vide d'un espace vectoriel normé de dimension finie, E un espace de Banach, (f_n) une suite de fonctions de X dans E et $a \in \overline{X}$. On suppose :

- (i) (f_n) converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}, f_n(x)$ admet une limite quand x tend vers a.

Alors,

$$\lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right)$$

Théorème 2. Soient X une partie non vide d'un espace vectoriel normé de dimension finie, E un espace de Banach, (f_n) une suite de fonctions de X dans E et $a \in X$. On suppose :

- (i) (f_n) converge uniformément sur X vers f.
- (ii) $\forall n \in \mathbb{N}, f_n(x)$ est continue en a.

Alors f est continue en a.

Exemple 3. La suite (f_n) définie sur \mathbb{R}^+ pour tout $n \in \mathbb{N}$ par $f_n : x \mapsto e^{-nx}$ converge vers

$$f: \begin{array}{ccc} \mathbb{R}^+ & \to & \mathbb{R}^+ \\ f: & & \\ x & \mapsto & \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$$

Les fonctions f_n sont continues, mais f ne l'est pas : on n'a pas convergence uniforme sur \mathbb{R}^+ .

Théorème 4. Soient I un intervalle non vide de \mathbb{R} , E un espace vectoriel normé et (f_n) une suite de fonctions de I dans E. On suppose :

- (i) $\forall n \in \mathbb{N}$, f_n est dérivable sur I.
- (ii) (f_n) converge simplement sur I vers f.
- (iii) (f'_n) converge uniformément sur I.

Alors f est dérivable sur I et $\forall x \in I$, $f'(x) = \lim_{n \to +\infty} f'_n(x)$.

p. 195

Contre-exemple 5. La suite (f_n) définie sur \mathbb{R} pour tout $n \in \mathbb{N}$ par $f_n : x \mapsto \left(x^2 + \frac{1}{n^2}\right)^{\frac{1}{2}}$ converge vers $x \mapsto |x|$, qui n'est pas dérivable à l'origine bien que les f_n le soient.

Théorème 6. Soient I = [a, b] un segment non vide de \mathbb{R} , E un espace de Banach et (f_n) une suite de fonctions de I dans E. On suppose :

- (i) $\forall n \in \mathbb{N}, f_n \text{ est de classe } \mathscr{C}^1 \text{ sur } I.$
- (ii) Il existe $x_0 \in I$ tel que $(f_n(x_0))$ converge.
- (iii) (f'_n) converge uniformément sur I vers g.

Alors (f_n) converge uniformément sur I vers f de classe \mathscr{C}^1 sur I et f' = g.

2. Séries de fonctions et limites

Théorème 7. Soient X une partie non vide d'un espace vectoriel normé, E un espace de Banach, $\sum f_n$ une série de fonctions de X dans E et $a \in \overline{X}$. On suppose :

- (i) $\sum f_n$ converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}, f_n(x)$ admet une limite ℓ_n quand x tend vers a.

Alors, $\sum \ell_n$ converge dans E et,

$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x) = \sum_{n=0}^{+\infty} \ell_n$$

Théorème 8. Soient X une partie non vide d'un espace vectoriel normé, E un espace de Banach, $\sum f_n$ une série de fonctions de X dans E et $a \in X$. On suppose :

- (i) $\sum f_n$ converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}$, f_n est continue en a.

Alors, $\sum_{n=0}^{+\infty} f_n$ est continue en a.

Exemple 9. La fonction $x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-n|x|}}{n^2}$ est continue sur \mathbb{R} .

Théorème 10. Soient I un intervalle non vide de \mathbb{R} , E un espace de Banach et $\sum f_n$ une série de fonctions de I dans E. On suppose :

- (i) $\forall n \in \mathbb{N}$, f_n est dérivable sur I.
- (ii) Il existe $x_0 \in I$ tel que $\sum f_n(x_0)$ converge.
- (iii) $\sum f'_n$ converge uniformément sur I.

agreg.skyost.eu

Alors $\sum f_n$ converge simplement sur I uniformément sur tout compact de I, et,

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

Exemple 11. La fonction $\zeta: s \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^s} \operatorname{est} \mathscr{C}^{\infty} \operatorname{sur}]1, +\infty[\operatorname{et},$

$$\forall k \in \mathbb{N}, \forall s \in]1, +\infty[, \zeta^{(k)}(s) = (-1)^k \sum_{n=1}^{+\infty} \frac{(\ln(s))^k}{n^s}$$

3. Le cas des séries entières

Définition 12. On appelle **série entière** toute série de fonctions de la forme $\sum a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

[**GOU20**] p. 247

Lemme 13 (Abel). Soient $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tels que $(a_n z_0^n)$ soit bornée. Alors :

- (i) $\forall z \in \mathbb{C}$ tel que $|z| < |z_0|$, $\sum a_n z^n$ converge absolument.
- (ii) $\forall r \in]0, |z_0|[, \sum a_n z^n \text{ converge normalement dans } \overline{D}(0, r) = \{z \in \mathbb{C} \mid |z| \le r\}.$

Définition 14. En reprenant les notations précédentes, le nombre

$$R = \sup\{r \ge 0 \mid (|a_n|r^n) \text{ est bornée}\}\$$

est le **rayon de convergence** de $\sum a_n z^n$.

p. 255

Exemple 15. $-\sum n^2 z^n$ a un rayon de convergence égal à 1.

— $\sum \frac{z^n}{n!}$ a un rayon de convergence infini. On note $z\mapsto e^z$ la fonction somme.

Proposition 16. Soit $\sum a_n z^n$ une série entière de rayon de convergence $r \neq 0$. Alors $S \in \mathcal{H}(D(0,r))$ et,

[**QUE**] p. 57

$$S'(z) = \sum_{n=0}^{+\infty} n a_n z^{n-1}$$

pour tout $z \in D(0, r)$.

Plus précisément, pour tout $k \in \mathbb{N}$, S est k fois dérivable avec

$$S^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1) \dots (n-k+1) a_n z^{n-k}$$

[DEV]

[**GOU20**] p. 263

Théorème 17 (Abel angulaire). Soit $\sum a_n z^n$ une série entière de rayon de convergence supérieur ou égal à 1 telle que $\sum a_n$ converge. On note f la somme de cette série sur le disque unité D de $\mathbb C$. On fixe $\theta_0 \in \left[0, \frac{\pi}{2}\right[$ et on pose $\Delta_{\theta_0} = \{z \in D \mid \exists \rho > 0 \text{ et } \exists \theta \in [-\theta_0, \theta_0] \text{ tels que } z = 1 - \rho e^{i\theta}\}.$

Alors
$$\lim_{\substack{z \to 1 \\ z \in \Delta_{\theta_0}}} f(z) = \sum_{n=0}^{+\infty} a_n$$
.

Application 18.

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)} = \frac{\pi}{4}$$

Application 19.

$$\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$$

Contre-exemple 20. La réciproque est fausse :

$$\lim_{\substack{z \to 1 \\ |z| < 1}} (-1)^n z^n = \lim_{\substack{z \to 1 \\ |z| < 1}} \frac{1}{1+z} = \frac{1}{2}$$

Théorème 21 (Taubérien faible). Soit $\sum a_n z^n$ une série entière de rayon de convergence 1. On note f la somme de cette série sur D(0,1). On suppose que

$$\exists S \in \mathbb{C} \text{ tel que } \lim_{\substack{x \to 1 \\ x < 1}} f(x) = S$$

Si $a_n = o\left(\frac{1}{n}\right)$, alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n = S$.

Remarque 22. Ce dernier résultat est une réciproque partielle du Théorème 17. Il reste vrai en supposant $a_n = O\left(\frac{1}{n}\right)$ (c'est le théorème Taubérien fort).

II - Problèmes d'interversion en intégration

On se place dans un espace mesuré (X, \mathcal{A}, μ) .

1. Intégrale d'une suite de fonctions

Théorème 23 (Convergence monotone). Soit (f_n) une suite croissante de fonctions mesurables positives. Alors, la limite f de cette suite est mesurable positive, et,

[**B-P**] p. 124

p. 137

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu$$

Application 24. Soient f, g deux fonctions mesurables positives.

- (i) $f \le g \implies \int_X f \, d\mu \le \int_X g \, d\mu$ (l'intégrale est croissante).
- (ii) $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$ (l'intégrale est additive).
- (iii) $\forall \lambda \ge 0$, $\int_X \lambda f \, d\mu = \lambda \int_X f \, d\mu$ (l'intégrale est positivement homogène).
- (iv) Si f = g pp., alors $\int_X f d\mu = \int_X g d\mu$.

Théorème 25 (Lemme de Fatou). Soit (f_n) une suite de fonctions mesurables positives. Alors,

 $0 \leq \int_X \liminf f_n \,\mathrm{d}\mu \leq \liminf \int_X f_n \,\mathrm{d}\mu \leq +\infty$

Exemple 26. Soit f croissante sur [0,1], continue en 0 et dérivable en 1 et dérivable pp. dans [0,1]. Alors,

$$\int_0^1 f'(x) \, \mathrm{d}x \le f(1) - f(0)$$

Théorème 27 (Convergence dominée). Soit (f_n) une suite d'éléments de \mathcal{L}_1 telle que :

- (i) pp. en x, $(f_n(x))$ converge dans \mathbb{K} vers f(x).
- (ii) $\exists g \in \mathcal{L}_1$ positive telle que

$$\forall n \in \mathbb{N}$$
, pp. en x , $|f_n(x)| \le g(x)$

Alors,

$$\int_{X} f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{X} f_n \, \mathrm{d}\mu \text{ et } \lim_{n \to +\infty} \int_{X} |f_n - f| \, \mathrm{d}\mu = 0$$

Exemple 28. — On reprend l'Exemple 26 et on suppose f partout dérivable sur [0,1] de dérivée bornée. Alors l'inégalité est une égalité.

— Soit $\alpha > 1$. On pose $\forall n \ge 1$, $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\alpha x} dx$. Alors,

$$\lim_{n \to +\infty} I_n(\alpha) = \int_0^{+\infty} e^{(1-\alpha)x} \, \mathrm{d}x = \frac{1}{\alpha - 1}$$

Exemple 29.

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{x^n}{x^{2n} + 1} \, \mathrm{d}x = 0$$

Application 30 (Lemme de Borel-Cantelli). Soit (A_n) une famille de parties de \mathscr{A} . Alors,

$$\sum_{n=1}^{+\infty} \mu(A_n) < +\infty \implies \mu\left(\limsup_{n \to +\infty} A_n\right) = 0$$

2. Intégrale à paramètre

Soit $f: E \times X \to \mathbb{C}$ où (E, d) est un espace métrique. On pose $F: t \mapsto \int_X f(t, x) \, \mathrm{d}\mu(x)$.

[**Z-Q**] p. 312

[AMR11]

p. 156

[B-P]

p. 144

a. Continuité

Théorème 31 (Continuité sous le signe intégral). On suppose :

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue en $t_0 \in E$.
- (iii) $\exists g \in L_1(X)$ positive telle que

$$|f(t,x)| \le g(x) \quad \forall t \in E, \text{pp. en } x \in X$$

Alors F est continue en t_0 .

Corollaire 32. On suppose:

- (i) $\forall t \in E, x \mapsto f(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est continue sur E.
- (iii) $\forall K \subseteq E, \exists g_K \in L_1(X)$ positive telle que

$$|f(t,x)| \le g_K(x) \quad \forall t \in E, \text{pp. en } x$$

Alors *F* est continue sur *E*.

p. 318

Exemple 33. La fonction

$$\Gamma : \begin{array}{ccc} \mathbb{R}_{*}^{+} & \to & \mathbb{R}_{*}^{+} \\ t & \mapsto & \int_{0}^{+\infty} t^{x-1} e^{-t} \, \mathrm{d}t \end{array}$$

est bien définie et continue sur \mathbb{R}_*^+ .

Exemple 34. Soit $f: \mathbb{R}^+ \to \mathbb{C}$ intégrable. Alors,

p. 104

$$\lambda \mapsto \int_0^{+\infty} e^{-\lambda t} f(t) dt$$

est bien définie et est continue sur \mathbb{R}^+ .

b. Dérivabilité

On suppose ici que E est un intervalle I ouvert de \mathbb{R} .

[Z-Q] p. 313

Théorème 35 (Dérivation sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t, x)$ est dérivable sur I. On notera $\frac{\partial f}{\partial t}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq I$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g_K(x) \quad \forall t \in I, \text{pp. en } x$$

Alors $\forall t \in I, x \mapsto \frac{\partial f}{\partial t}(x, t) \in L_1(X)$ et F est dérivable sur I avec

$$\forall t \in I, F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) \, \mathrm{d}\mu(x)$$

Remarque 36. — Si dans le Théorème 35, hypothèse (i), on remplace "dérivable" par " \mathscr{C}^1 ", alors la fonction F est de classe \mathscr{C}^1 .

— On a un résultat analogue pour les dérivées d'ordre supérieur.

Théorème 37 (k-ième dérivée sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto f(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto f(t,x) \in \mathscr{C}^k(I)$. On notera $\left(\frac{\partial}{\partial t}\right)^j f$ la j-ième dérivée définie presque partout pour $j \in [0,k]$.

(iii) $\forall j \in [0, k], \forall K \subseteq I \text{ compact}, \exists g_{j,K} \in L_1(X) \text{ positive telle que}$

$$\left| \left(\frac{\partial}{\partial t} \right)^j f(x, t) \right| \le g_{j,K}(x) \quad \forall t \in K, \text{pp. en } x$$

Alors $\forall j \in [0, k], \ \forall t \in I, \ x \mapsto \left(\frac{\partial}{\partial t}\right)^j f(x, t) \in L_1(X) \ \text{et} \ F \in \mathscr{C}^k(I) \ \text{avec}$

$$\forall j \in [0, k], \ \forall t \in I, \ F^{(j)}(t) = \int_X \left(\frac{\partial}{\partial t}\right)^j f(x, t) \, \mathrm{d}\mu(x)$$

Exemple 38. La fonction Γ de l'Exemple 33 est \mathscr{C}^{∞} sur \mathbb{R}_{*}^{+} .

p. 318

Exemple 39. On se place dans l'espace mesuré $(\mathbb{N}, \mathscr{P}(\mathbb{N}), \text{card})$ et on considère (f_n) une suite de fonctions dérivables sur I telle que

[**B-P**] p. 149

$$\forall x \in \mathbb{R}, \, \sum_{n \in \mathbb{N}} |f_n(x)| + \sup_{x \in I} |f_n'(t)| < +\infty$$

Alors $x \mapsto \sum_{n \in \mathbb{N}} f_n(x)$ est dérivable sur I de dérivée $x \mapsto \sum_{n \in \mathbb{N}} f'_n(x)$.

[**GOU20**] p. 169

Application 40 (Transformée de Fourier d'une Gaussienne). En résolvant une équation différentielle linéaire, on a

$$\forall \alpha > 0, \, \forall x \in \mathbb{R}, \, \int_{\mathbb{R}} e^{-\alpha t^2} e^{-itx} \, \mathrm{d}t = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{x^2}{\pi \alpha}}$$

[DEV]

Application 41 (Intégrale de Dirichlet). On pose $\forall x \ge 0$,

[**G-K**] p. 107

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$$

alors:

- (i) F est bien définie et est continue sur \mathbb{R}^+ .
- (ii) F est dérivable sur \mathbb{R}_*^+ et $\forall x \in \mathbb{R}_*^+$, $F'(x) = -\frac{1}{1+x^2}$.
- (iii) $F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

c. Holomorphie

On suppose ici que E est un ouvert Ω de \mathbb{C} .

[**Z-Q**] p. 314

Théorème 42 (Holomorphie sous le signe intégral). On suppose :

- (i) $\forall z \in \Omega, x \mapsto f(z, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $z \mapsto f(z, x)$ est holomorphe dans Ω . On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$|f(x,z)| \le g_K(x) \quad \forall z \in K$$
, pp. en x

Alors F est holomorphe dans Ω avec

$$\forall z \in \Omega, F'(z) = \int_X \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z)$$

Exemple 43. La fonction Γ de l'Exemple 33 est holomorphe dans l'ouvert $\{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$.

p. 318

3. Intégrale sur un espace produit

Théorème 44 (Fubini-Tonelli). Soient (Y, \mathcal{B}, v) un autre espace mesuré et $f: (X \times Y) \to \overline{\mathbb{R}^+}$. On suppose μ et v σ -finies. Alors :

[B-P] p. 237

- (i) $x \mapsto \int_Y f(x, y) \, dv(y)$ et $y \mapsto \int_X f(x, y) \, d\mu(x)$ sont mesurables.
- (ii) Dans $\overline{\mathbb{R}^+}$,

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_X \left(\int_Y f(x, y) \, \mathrm{d}\nu(y) \right) = \int_Y \left(\int_X f(x, y) \, \mathrm{d}\mu(x) \right)$$

Théorème 45 (Fubini-Lebesgue). Soient (Y, \mathcal{B}, v) un autre espace mesuré et $f \in \mathcal{L}_1(\mu \otimes v)$. Alors :

- (i) Pour tout $y \in Y$, $x \mapsto f(x, y)$ et pour tout $x \in X$, $y \mapsto f(x, y)$ sont intégrables.
- (ii) $x \mapsto \int_Y f(x, y) \, d\nu(y)$ et $y \mapsto \int_X f(x, y) \, d\mu(x)$ sont intégrables, les fonctions étant définies pp.
- (iii) On a:

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_X \left(\int_Y f(x, y) \, \mathrm{d}\nu(y) \right) = \int_Y \left(\int_X f(x, y) \, \mathrm{d}\mu(x) \right)$$

Contre-exemple 46. On considère $f:(x,y)\mapsto 2e^{-2xy}-e^{-xy}$. Alors, $\int_{[0,1]}\left(\int_{\mathbb{R}^+}f(x,y)\,\mathrm{d}x\right)\mathrm{d}y=0$, mais $\int_{\mathbb{R}^+}\left(\int_{[0,1]}f(x,y)\,\mathrm{d}y\right)\mathrm{d}x=\ln(2)$.

Exemple 47. Soient $f:(x,y)\mapsto xy$ et $D=\{(x,y)\in\mathbb{R}^2\mid x,y\geq 0\text{ et }x+y\leq 1\}$. Alors,

[**GOU20**] p. 359

p. 267

$$\int \int_D = f(x, y) \, dx dy = \int_0^1 x \frac{(1 - x)^2}{2} \, dx = \frac{1}{24}$$

III - Problèmes d'interversion en analyse de Fourier

1. Séries de Fourier

Définition 48. Soit $f : \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et continue par morceaux sur \mathbb{R} . On appelle **coefficients de Fourier** de f les nombres complexes définis par

 $\forall n \in \mathbb{Z}, c_n(f) = \int_0^{2\pi} f(t)e^{-int} dt$

La **série de Fourier** associée à f est

$$\sum_{n\in\mathbb{Z}}c_n(f)e^{inx}$$

Théorème 49 (Parseval). Soit $f : \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et continue par morceaux sur \mathbb{R} . Alors la série de Fourier de f est convergente et,

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)| \, \mathrm{d}t$$

Exemple 50. Avec $f: x \mapsto 1 - \frac{x^2}{\pi^2}$, on obtient $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Théorème 51 (Jordan-Dirichlet). Soit $f: \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors la série de Fourier de f est convergente en tout point $x \in \mathbb{R}$ et sa somme en ce point vaut

$$\frac{f(x^+) + f(x^-)}{2}$$

Exemple 52. Toujours avec $f: x \mapsto 1 - \frac{x^2}{\pi^2}$, on obtient $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

2. Transformée de Fourier

Définition 53. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction mesurable. On définit, lorsque cela a un sens, sa **transformée de Fourier**, notée \widehat{f} par

[AMR08] p. 109

$$\widehat{f} : \begin{array}{ccc} \mathbb{R}^d & \to & \mathbb{C} \\ \xi & \mapsto & \int_{\mathbb{R}^d} f(x) e^{-i\langle x, \xi \rangle} \, \mathrm{d}x \end{array}$$

Exemple 54 (Densité de Poisson). On pose $\forall x \in \mathbb{R}$, $p(x) = \frac{1}{2}e^{-|x|}$. Alors $p \in L_1(\mathbb{R})$ et, $\forall \xi \in \mathbb{R}$, $\widehat{p}(\xi) = \frac{1}{1+\xi^2}$.

Lemme 55 (Riemann-Lebesgue). Soit $f \in L_1(\mathbb{R}^d)$, \widehat{f} existe et

$$\lim_{\|\xi\|\to+\infty}\widehat{f}(\xi)$$

Théorème 56. $\forall f \in L_1(\mathbb{R}^d)$, \widehat{f} est continue, bornée par $\|f\|_1$. Donc la **transformation de Fourier**

$$\mathscr{F}: \begin{array}{ccc} L_1(\mathbb{R}^d) & \to & \mathscr{C}_0(\mathbb{R}^d) \\ f & \mapsto & \widehat{f} \end{array}$$

est bien définie.

Corollaire 57. La transformation de Fourier $\mathscr{F}: L_1(\mathbb{R}^d) \to \mathscr{C}_0(\mathbb{R}^d)$ est une application linéaire continue.

Exemple 58.

$$\forall \xi \in \mathbb{R}, \ \widehat{\mathbb{I}_{[-1,1]}}(\xi) = \begin{cases} \frac{2\sin(\xi)}{\xi} \text{ si } \xi \neq 0\\ 2 \text{ sinon} \end{cases}$$

Remarquons ici que la transformée de Fourier n'est pas intégrable.

Théorème 59 (Formule de dualité).

$$\forall f,g \in L_1(\mathbb{R}^d), \int_{\mathbb{R}^d} f(t) \widehat{g}(t) \, \mathrm{d}t = \int_{\mathbb{R}^d} \widehat{f}(t) g(t) \, \mathrm{d}t$$

Corollaire 60. La transformation de Fourier $\mathscr{F}: L_1(\mathbb{R}^d) \to \mathscr{C}_0(\mathbb{R}^d)$ est une application injective.

Théorème 61 (Formule d'inversion de Fourier). Si $f \in L_1(\mathbb{R}^d)$ est telle que $\widehat{f} \in L_1(\mathbb{R}^d)$, alors

$$\widehat{\widehat{f}}(x) = (2\pi)^d f(x)$$
 pp. en $x \in \mathbb{R}^d$

Théorème 62 (Formule sommatoire de Poisson). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 telle que $f(x) = O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ quand $|x| \to +\infty$. Alors :

[**GOU20**] p. 284

$$\forall x \in \mathbb{R}, \, \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2i\pi nx}$$

Application 63 (Identité de Jacobi).

$$\forall s > 0, \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n = -\infty}^{+\infty} e^{-\frac{\pi n^2}{s}}$$