Everything I know about Subset Sum Reconfiguration

Robin Houston · July 15, 2013

This is a brief summary of everything I know about the subset sum reconfiguration problem as of four o'clock in the afternoon of Monday the 15th of July. It is brief by necessity, because I know so little.

Proposition 1. Subset sum reconfiguration is weakly NP-hard. (Demaine-Ito)

Proof. The ordinary subset sum problem may be reduced to subset sum reconfiguration. Given elements a_1, \ldots, a_m with target sum t, build an SSR instance with elements a_1, \ldots, a_m , t_1 and t_2 , threshold values k = t and c = 2t, starting configuration t_1 and ending configuration t_2 . At some point element t_1 must move from inside to outside: the first time it does, the inside set during the move must consist of some collection of a elements that sum to t.

Proposition 2. For all n > 1, there is an n-element SSR instance whose configuration graph has diameter 2n - 2.

Proof. We exhibit in terms of a parameter *m*:

- an instance with 2m + 2 elements and a shortest solution with 4m + 2 steps;
- if m > 0, an instance with 2m + 1 elements and a shortest solution with 4m + 1 steps.

The instance with 2m + 2 elements has elements $a_1, \ldots, a_m, b_1, \ldots, b_m, x$ and y. For the weights, let $w(a_i) = m + 1$ and $w(b_i) = m + 2$ for all i. Let w(x) = w(y) = m(m + 2). The starting configuration is a_1, \ldots, a_m, x and the target configuration is a_1, \ldots, a_m, y . For threshold values let k = m(m + 2) and c = 2m(m + 2).

The first time x moves, the weights of the remaining elements inside must sum to m(m+2). In particular, these weights must sum to m modulo m+1, hence the inside elements at this point must include all the b's. Since the weight of x plus the b's equals the capacity c, the elements inside at this point must therefore be precisely all the b's. So all the a's and b's have to move twice, and x and y once each, for a total of 4m+2 moves. To obtain the instance with 2m+1 elements, remove the element a_1 .

Remark 3. The lower bound exhibited in Proposition 2 is optimal for n < 8. I have verified this by exhaustive enumeration using the program $ssr_graphs.py$.

Proposition 4. For all m > 1, there is a (5m + 3)-element SSR instance that has an element that must move at least 2m + 1 times in any solution sequence.

Proof. The elements are x_1, \ldots, x_{2m+1} of weight 3, a_1, \ldots, a_{3m+1} of weight 2, and b of weight 1. Let k = 6m and c = 6m + 3. The starting configuration is x_1, \ldots, x_{2m+1} , and the target is a_1, \ldots, a_{3m+1}, b . For $i = 0, 1, \ldots, 2m$, consider the first move after which there are precisely 2m - i of the a elements inside. That means the a's and possibly b inside at this point must sum to 3i. If i is odd then, since b is the only element with odd weight, b must be inside at this point; similarly if i is even then b must be outside. So element b moves at least 2m times. Since it must end up inside, it must move an odd number of times altogether, so at least 2m + 1 times.

1