PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer Semestre 2018

MAT 1203 – Álgebra lineal

Solución Interrogación 2

1. Dada la matriz $A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 4 \\ 1 & 0 & 0 \end{pmatrix}$. Escriba A como producto de matrices elementales.

Solución. Al escalonar la matriz

$$\begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 4 \\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Notamos que

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Luego

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3 ptos por determinar la factorización en matrices elementales de A^{-1} (se descuenta 1 pto por cada error)
- lacksquare 3 ptos por determinar la factorización en matrices elementales de A (se descuenta 1 pto por cada error)

2. Considere las matrices

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \ L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix} \ U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 4 \end{pmatrix}$$

Sea A matriz de 3×3 definida por PA = LU. Sin encontrar explícitamente A y A^{-1} , resuelva el sistema $Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Solución. Notemos que resolver el sistema $Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ es equivalente a resolver el sistema

$$Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to PAx = P \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \to LUx = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

el cual resolveremos

$$Ly = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \land Ux = y$$

entonces

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -1 & 1 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow y = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

luego

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 4 \end{pmatrix} x = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \rightarrow x = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{4} \\ \frac{-3}{4} \end{pmatrix}$$

- 1 pto por plantear el sistema LUx = Pb
- $\bullet \,$ 1 pto por plantear la solución del sistema como $Ly = Pb \wedge Ux = y$
- 2 ptos por determinar y (se descuenta 1 pto por cada error)
- 2 ptos por determinar x (se descuenta 1 pto por cada error)

3. Sea A una matriz tal que

$$A^3 = \left(\begin{array}{rrr} 2 & 0 & 2 \\ -1 & 1 & 2 \\ 2 & -1 & -1 \end{array}\right)$$

- a) Calcule el determinante de la matriz A^3 mediante desarrollo por cofactores.
- b) Demuestre que A no es invertible.

Solución.

a)
$$\det(A^3) = \det\begin{pmatrix} 2 & 0 & 2 \\ -1 & 1 & 2 \\ 2 & -1 & -1 \end{pmatrix} = 2 \det\begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix} + 2 \det\begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} = 2 + -2 = 0$$

b) Como el $\det(A^3) = \det(A)^3 \to \det(A)^3 = 0 \to \det(A) = 0$ y por teorema visto en clase sabemos que toda matriz con determinante 0 es una matriz no invertible.

- 1 pto por plantear el determinante mediante desarrollo por cofactores
- 2 ptos por calcularlo correctamente el determinante mediante desarrollo por cofactores (se descuenta 1 pto por cada error)
- 1 punto por argumentar que $\det(A^3) = \det(A)^3$.
- 2 ptos por argumentar que det(A) = 0 implica matriz no invertible.

4. Sea A de 4×4 tal que det(A) = 3.

a) Calcule $\det(2A) + \det\left(\frac{1}{2}A^{-1}\right)$

b) Calcule el $\det(\operatorname{Adj}(A))$

Solución.

a) Aplicando las propiedades de determinantes

$$\det(2A) + \det\left(\frac{1}{2}A^{-1}\right) = 2^{4} \det(A) + \det\left(\frac{1}{2}A^{-1}\right)
= 2^{4} \det(A) + \left(\frac{1}{2}\right)^{4} \det(A^{-1})
= 2^{4} \det(A) + \left(\frac{1}{2}\right)^{4} \frac{1}{\det(A)}
= 16 \cdot 3 + \frac{1}{16} \frac{1}{3}$$

b) Sabemos que $A^{-1} = \frac{1}{\det(A)} \operatorname{Adj}(A)$, luego

$$\det(A^{-1}) = \det\left(\frac{1}{\det(A)}\operatorname{Adj}(A)\right) \to \frac{1}{\det(A)} = \frac{1}{\det(A)^4}\det(\operatorname{Adj}(A)) \to \det(A)^3 = \det(\operatorname{Adj}(A))$$

Entonces $\det(\operatorname{Adj}(A)) = 27$

Puntaje:

• 1 pto por determinar que $det(2A) = 2^4 det(A)$.

• 1 pto por determinar que $\det\left(\frac{1}{2}A^{-1}\right) = \left(\frac{1}{2}\right)^4 \det\left(A^{-1}\right)$

■ 1 pto por determinar que $\det(A^{-1}) = \frac{1}{\det(A)}$

• 1 pto por enunciar que $A^{-1} = \frac{1}{\det(A)} \operatorname{Adj}(A)$

• 1 pto por demostrar que $det(A)^3 = det(Adj(A))$

• 1 pto por concluir que $\det(\mathrm{Adj}(A)) = 27$

- 5. Sea S el paralelepípedo que tiene un vértice en el origen y vértices adyacentes en (1,0,-2),(1,2,4),(-1,1,0)
 - a) Encuentre el volumen de S.
 - b) Sea T(x) = Ax una transformación lineal con A matriz tal que $\det(A) = -3$. Determine el volumen del paralelepípedo T(S).

Solución.

a) El volumen de S esta dado por el valor absoluto del determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo.

$$\left| \det \left(\begin{array}{rrr} 1 & 1 & -1 \\ 0 & 2 & 1 \\ -2 & 4 & 0 \end{array} \right) \right| = |-10| = 10$$

b) El volumen de T(S) esta dado por el valor absoltuto del, determinante de la matriz de transformacion de T por el determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo S. Es decir

$$\left| \det(A) \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -2 & 4 & 0 \end{pmatrix} \right| = |-3 \cdot -10| = 30$$

Puntaje:

- lacktriangle 1 pto por ocupar que el volumen de S esta dado por el valor absoluto del determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo
- 2 ptos por concluir que el volumen 10 u^3 (se descuenta 1 pto por cada error)
- 1 pto por ocupar que el volumen de T(S) esta dado por el valor absoltuto del, determinante de la matriz de transformacion de T por el determinante de la matriz cuyas columnas son los vectores que forman el paralepípedo S
- 2 ptos por concluir que el volumen 30 u^3 (se descuenta 1 pto por cada error)

Continúa en la siguiente página.

6. Dado el siguiente sistema de ecuaciones lineales

$$x +2y +z +3t = 0,$$

 $y -z -t = 1,$
 $2y +z = 1,$
 $3y -2z +t = 0.$

Justifique porque se puede ocupar la Regla de Cramer para solucionar este sistema y úsela para encontrar el valor de z tal que el vector $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ sea solución de este.

Solución.

La forma matricial de este sistema esta dado por

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

Como el det $\begin{pmatrix}1&2&1&3\\0&1&-1&-1\\0&2&1&0\\0&3&-2&1\end{pmatrix}=10\neq0,$ este sistema tiene solución única. Luego aplicando

la regla de cramer el valor de z tal que el vector $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ sea solución de este sistema esta dado por

$$z = \frac{\det \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{pmatrix}}{\det \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 1 & 0 \\ 0 & 3 & -2 & 1 \end{pmatrix}} = \frac{2}{10}$$

- 1 pto por argumentar que el sistema tiene solución ya que el determinate de la matriz es distinto de cero.
- 1 pto por calcular el determinante de la matriz A.

- 1.5 pto por enunciar que $z = \frac{\det(A(b))}{\det(A)}$.
- 1.5 pto por calcular $\det(A(b))$.
- \bullet 1 ptos por encontrar z correctamente.

7. Dada la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + y + z \\ x - y \end{pmatrix}$.

Encuentre el espacio nulo de esta transformación y determine si T es inyectiva. Justifique su respuesta.

Solución.

Para determinar el respectivo espacio nulo debemos resolver, $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, es decir, resolver el sistema homogéneo

$$3x + y + z = 0$$
$$x - y = 0$$

Cuya solución se puede escribir como x = y, z = -4x o bien

$$Si$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Nul(T)$ entonces $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}$, $x \in \mathbb{R}$.

De donde se tiene que

$$Nul(T) = Gen \left\{ \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \right\}.$$

En particular la transformación T es no inyectiva, ya que $Nul(T) \neq \{0\}$.

- 1 pto por argumentar que el espacio nulo consta de los vectores tal que $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 1 pto por argumentar que el espacio nulo consta de los vectores que satisfacen el sistema homogéneo.
- 2 ptos por mostrar el espacio nulo correctamente. (se descuenta un punto 1 punto por error)
- 2 ptos por concluir que la transformación no es inyectiva.(sino justifica no se le asigna puntaje).

- 8. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique sus respuestas.
 - a) Si $T: \mathbb{P}_2 \longrightarrow \mathbb{R}^2$ esta definida por $T(p(x)) = \begin{pmatrix} p(1) \\ 2p(1) \end{pmatrix}$ entonces la imagen del polinomio $p(x) = 3x^2 + 1$ bajo la transformación T es el vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 - $b) \ {\rm Si} \ A^T = A^{-1}$, entonces $\det(A)$ es 1 ó -1.
 - c) Si W es la unión del primer y tercer cuadrantres en el plano XY, es decir $W = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \mid x \cdot y \geq 0 \right\} \text{ entonces } W \text{ es un subespacio de } \mathbb{R}^2.$

Solución.

a) Falsa, ya que

$$T(p(x)) = \begin{pmatrix} p(1) \\ 2p(1) \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}.$$

b) Verdadera, ya que, de los datos del problema se tiene que

$$A^T A = I$$
,

luego aplicando determinante,

$$det(A^tA) = det(I),$$

de donde, usando el hecho que $det(A) = det(A^T)$, se concluye que

$$(det(A))^2 = 1$$

y por lo tanto $det(A) = \pm 1$.

c) Falsa, ya que si consideramos

$$u = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \qquad v = \begin{pmatrix} 7 \\ 1 \end{pmatrix},$$

se tiene que $u, v \in W$ sin embargo para el vector

$$u + v = \left(\begin{array}{c} 6\\ -2 \end{array}\right)$$

se verifica que $x \cdot y = 6 \cdot -2 = -12 < 0$.

- 2 ptos por mostrar que $T\begin{pmatrix} p(1) \\ 2p(1) \end{pmatrix} \neq \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ (0,5 por calcular $T\begin{pmatrix} p(1) \\ 2p(1) \end{pmatrix}$).
- 2 ptos por demostrar b)
- 2 ptos por argumentar (contradiciendo alguna propiedad de subespacio) que c) es falsa.