QCD for Higgs invisible analysis

Considerations for proper normalisation, and application to signal-selection BDT

A.-M. Magnan Imperial College London

06/05/2014, IC $H \rightarrow \tau \tau$, inv analysis meeting

Steps to finding a proper preselection...

- Preselection: dijet pair with jets pT>50 GeV, eta < 4.7.</p>
- Plotting standard variables \Rightarrow clear problem in $\Delta \eta_{jj}$ variable \Rightarrow add $\Delta \eta_{jj} > 3.6$ to the preselection stage.
- Given available QCD-VBF samples: select METsignificance>3 to enhance real MET contribution ⇒ OK: about 90% efficient on the signal.
- Looking at $\Delta \phi_{jj}$: it is clear that normalising QCD to region $\Delta \phi_{jj} > 2.6$ will end-up in disagreement with QCD-VBF samples !!
- Looking at minimum Δφ(jets,MET): clear that signal is > 1.5, whereas QCD has two populations. Select minΔφ(jets,MET)> 1.5 ⇒ in addition to MET significance: about 75% efficient on the signal.
- Sample composition in the end, in events: Data = 17271, EWKbkg = 11816.1, QCD=data-ewk= 5454.9, signal = 912.6 (out of 1211.35).
- Normalisation factor: 1.44.
- Clearly: need to find a less unbiased way to normalise the QCD !!
- Other try: data-driven QCD sample by reverting cut on MET significance (slice 2-2.6).

Applying all cuts except variable plotted

- QCD MC is normalised to region about 3.6.
- step below 3.6: trigger effect, but much less MC than data.
- signal already cut by trigger: marginal effect.
- Data-driven QCD looks fine too here.

- Excellent agreement: high $\Delta \phi_{jj}$ region completely cut by min $\Delta \phi$ (jets,MET)> 1.5 selection.
- Data-driven QCD not so good.
- Still some discrimination with signal for further selection.

Note on inclusive QCD samples

Applying all cuts except variable plotted

- Data in good agreement with no-QCD for METsig > 5.0.
- Data-driven QCD: Data-BKG for 2 < METsig < 2.6 normalised to Data-BKG for *METsig* > 3.0, factor 0.22

$min\Delta\phi(jets,MET)$

- Good agreement above 1.5, also with data-driven QCD.
- Below: data has a plateau when QCD-VBF decreases ⇒ can expect that decreasing the cut would increase data-MC disagreement....

- Suspiciously good description of Mjj too!
- If we trusted other backgrounds: things would be fine, but.....

Considerations for the absolute normalisation

- Ideas for better normalisation:
 - Work out proper NLO/LO k-factors, using fastNLO QCD dijet calculations from Klaus Rabbertz. Have instructions available, have not tried yet...
 - Use variable like dijet pT fraction which seems to have region with QCD-only ... Bit clumsy!
 - Use a template fit: need to trust other backgrounds first, and be in signal-free region: maybe using CJV jet cut?

Conclusion on QCD

- Really need unbiased way to normalise QCD samples.
- Investigate also data-driven technique based on hypothesis that after this preselection, QCD is coming from pure combinatorics effects: use data-driven sample made with 1-3rd or 2nd-3rd jets for which 1-2nd fails selection to have orthogonal sample?
- Need to start checking other backgrounds (W,Z) in control regions with leptons, using this preselection:
 - Dijet pair with p_T > 50GeV, $|\eta| < 4.7$, $\Delta \eta_{ii} > 3.6$
 - METsig > 3.0, $min\Delta\phi$ (jets,MET)> 1.5.
- Next slides: started checking potential performance of signal-selection MVA: can we still do better than cut-based analysis with this pre-selection and already 25% loss of signal?

Setting up the signal BDT

- Preselection: background "efficiency" = 10%, signal eff = 75%.
- Note: bkg eff is not real eff (QCD samples are not "complete")
- Select most relevant variables, look at correlations.

Input variables

Outputs

Efficiency curves

- Best working point: something like 65% signal efficiency for 90% background rejection, BDT > -0.35.
- ullet \Rightarrow expect 593 signal events (mH=125 GeV), and 1730 background events.

Integrals between BDT = -0.36 and 1.

1.			
Sample	nsel	ntot	ε
Signal	880.6	1314.1	0.670
Data	1537	17271	0.089
QCD	28.5	5463	0.005
EWK	1828	11816	0.155

- Features in the QCD curve to be understood...
- Everything to be optimised...

Conclusions

- With cut-based analysis: expected 210 \pm 30(stat+syst) signal events, and observed 390 data events.
- With BDT, 210 signal events = 23% signal efficiency compared to preselection applied ⇒ expect 0.982 background rejection: 311 events.
- With BDT, 390 background events = 0.977 background rejection ⇒ expect 28% signal efficiency...
- So out-of-the-box cutting on the BDT, expect about 20% improvement keeping same working point as cut-based analysis...