

SURFACE RESISTANCE CHARACTERIZATION OF Nb₃Sn USING THE HZB QUADRUPOLE RESONATOR

ABSTRACT AND MOTIVATION

Nb₃Sn is one of the most promising alternative materials to niobium for applications in SRF cavities. With its high critical temperature of about 18.5 K and superheating critical field B_{sh} ≈ 400 mT, Nb₃Sn provides potential major improvements for both applications currently being investigated in the SRF community, high gradient accelerators as well as high-Q cavities with significantly reduced operating costs. Recent results with cavities have demonstrated R_s values of about 27 n Ω at 4.2 K far beyond the fundamental limit of niobium [1].

The RF properties of a sample prepared by Cornell University were characterized using the HZB Quadrupole Resonator. In this contribution we present surface resistance and RF critical field measurements.

NEW SAMPLE HOLDER

Up to now

Niobium sample brazed into stainless steel flange

⇒ No heat treatments of sample assembly possible (few hundred °C max.)

Workaround: Electron-beam weld on niobium part after treatment

New sample holder design

Connection with titanium screws and indium wire gasket

- ⇒ Pure Nb sample allows high T treatments (Nb₃Sn coating, N doping/infusion, ...)
- ⇒ UHV compatible at RT and in LHe
- ⇒ Opportunity for additional temperature sensors
- ⇒ Exchangeability between QPRs at CERN and HZB

RF CRITICAL FIELD

THE SAMPLE

QPR sample before coating: fine grain bulk niobium, RRR 300

QPR sample after coating with Nb₃Sn Coating procedure as for cavities [1]

Baseline measurement with niobium substrate prior to coating [2,3]

- \Rightarrow Residual resistance 4 n Ω
- ⇒ RF critical field 220 mT

SURFACE RESISTANCE

- ⇒ Calorimetric measurement of RF surface resistance
- ⇒ Extended parameter space (frequency, temperature and RF field)

Surface resistance vs. RF field

Surface resistance vs. temperature with BCS fits

References

- [1] S. Posen and M. Liepe, Phys. Rev. ST Accel. Beams 17, 112001 (2014).
- [2] R. Kleindienst, "Radio Frequency Characterization of Superconductors for Particle Accelerators",
- PhD thesis, submitted to University of Siegen, 2017.
- [3] R. Kleindienst, A. Burrill, S. Keckert, J. Knobloch and O. Kugeler, "Commissioning Results of the HZB Quadrupole Resonator", in Proc. SRF'15, Whistler, Canada, 2015.

RF Magnetic Field [mT]

CAPACITIES

⇒ High residual resistance with Q-slope and strong frequency dependence

sebastian.keckert@helmholtz-berlin.de +49-30-8062-12922

RF Magnetic Field [mT]