第2节课

§ 1.2 概 率

一、频 率 的定义与性质

- 1. 定义 在相同的条件下,进行了n 次试验,在这 n 次试验中,事件 A 发生的次数 n_A 称为 事件 A 发生的频数。 比值 n_A /n 称为 事件 A 发生的频率,并记成 $f_n(A)$ 。
- 2. 它具有下述性质:

$$1^{\circ} \quad 0 \leq f_n(A) \leq 1 ;$$

$$2^{\circ}$$
 $f_n(\Omega) = 1;$

 3° 若 A_1, A_2, \dots, A_k 是两两互不相容事件,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k)$$

$$= f_n(A_1) + f_n(A_2) + \cdots + f_n(A_k)$$

掷硬币实验

n=500次(7组) n_A : 正面出现的次数 $f_n(A)$: 正面出现的频率

n_A	251	249	256	253	251	246	244	
$f_n(A)$	0.502	0.498	0.512	0.506	0.502	0.492	0.488	

所以频率具有不确定性。

实验者	n	n_H	$f_n(H)$
德•摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5096
K•皮尔逊	12000	6019	0.5016
K•皮尔逊	24000	12012	0.5005

所以频率具有稳定性

事件发生

的频繁程度

事件发生 的可能性的大小

频率

稳定性

概率

频率的性质

概率的公理化定义

$$1^{\circ} \quad 0 \le f_n(A) \le 1 \; ;$$

$$2^{\circ}$$
 $f_n(\Omega) = 1;$

$$3^{0} f_{n}(\bigcup_{i=1}^{k} A_{i}) = \sum_{i=1}^{k} f_{n}(A_{i})$$

$$1^{\circ} \quad 0 \leq P(A) \leq 1$$
;

$$2^{\circ}$$
 $P(\Omega)=1;$

$$3^{0} \qquad P\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} P\left(A_{i}\right)$$

二概率的定义和性质

- 1.定义 设 E 是随机试验, Ω 是它的样本空间,对于 E 的每一个事件 A 赋予一个实数,记为 P(A),称为事件 A 的概率,要求集合函数 $P(\bullet)$ 满足下列条件:
 - 1^0 (非负性) $0 \le P(A)$;
 - 2^0 (归一性) $P(\Omega)=1$;
 - 3^{0} (可列可加性) 若 A_{1}, A_{2}, \cdots 是两两互不相容事件,则 $P(A_{1} \cup A_{2} \cup \cdots) = P(A_{1}) + P(A_{2}) + \cdots$

2. 概率的性质

$$P(A_1 \bigcup A_2 \bigcup \cdots) = P(A_1) + P(A_2) + \cdots$$

性质 1 $P(\emptyset) = 0$;

 $A_{n_1}, A_{n_2}, \cdots, A_{n_n}$

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

性质 3
$$P(B-A) = P(B) - P(AB) = P(\overline{A}B)$$

$$A \subset B = P(B) - P(A)$$

(单调性) $A \subset B \Rightarrow P(B) \ge P(A)$

性质 4 *P*(*A*)≤1;

$$B = (B - A) \bigcup AB$$
$$P(B) = P(B - A) + P(AB)$$

性质 5
$$P(\overline{A}) = 1 - P(A)$$
;

$$A \cup \overline{A} = \Omega$$

性质 6
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$A \cup B = A \cup B\overline{A}$$

$$A \bigcup B \bigcup C = A \bigcup B\overline{A} \bigcup C\overline{A}\overline{B}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC)$$
$$+ P(ABC)$$

例1. 设事件 A,B 的概率分别为1/2和1/3,下列三种情况下

1) P(AB) = 1/4; 2) $AB = \phi$; 3) $B \subset A$, $\Re : P(A - B), P(A \cup B)$

解 $P(A) = \frac{1}{2}$ $P(B) = \frac{1}{3}$

- 1) P(A-B) = P(A) P(AB)
- $2) \quad P(A-B) = P(A)$
- 3) P(A-B) = P(A) P(B)
- 1) $P(A \cup B) = P(A) + P(B) P(AB)$
- 2) $P(A \cup B) = P(A) + P(B)$
- 3) $P(A \cup B) = P(A)$

例2. 己知 P(A) = 0.5, P(B) = 0.4, P(A - B) = 0.3 , 求 $P(\overline{A} \cup \overline{B}), P(A \cup \overline{B})$

解 1)
$$P(\overline{A} \cup \overline{B}) = 1 - P(AB) = 0.8$$

$$P(A - B) = P(A) - P(AB) = 0.3$$

$$P(AB) = 0.2$$

2)
$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A\overline{B})$$

= $P(A) + P(\overline{B}) - (P(A) - P(AB))$

=0.6+0.2=0.8

例3. 设 $A \times B \times C$ 为三个事件

$$P(A) = P(B) = P(C) = 1/4, P(AB) = P(BC) = 1/8, P(AC) = 0$$

求:A、B、C 都不发生的概率。

$$P(\overline{A}\overline{B}\overline{C}) = 1 - P(A \cup B \cup C)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(BC) - P(CA) + P(ABC)$$

$$P(ABC) = 0$$