Day 3 (Jan 27th)

Monday, January 27, 2020 1:24 PM

2-to-4 Decoder:

X	Υ	Α	В	С	D
0	0	0	0	0 (1
0	1	0	0	1	0
1	0	Q	1	0	0
1	1	1	0	0	0

3 to 8 Decoder:

Х	Υ	Z	S	Co	
			0	0	
				0	
			V J	0	
			0	Û	
			(1)	0	
			0	1	
			0	1	
			$\begin{pmatrix} 1 \end{pmatrix}$	\1	
			\smile		

Priority Encoder:

For all zeros we don't care about the current output (because we shouldn't ever get all zeros) If C is 1 we don't care what D is so we can simplify the truth table

If B is 1 we don't care about C or D

If A is 1 we don't care about B, C or D

			JOUL D, C.	0. 0	
Α	В	С	D	Х	Υ
0	0	0	0	Х	Х
0	0	0	1	0	0
0	0	1	х	0	1
0	1	Х	x	1	0
1	Х	Х	Х	1	1

X Karnaugh Map:

X Karnaugh Map:					
			С	С	
	X	0	0	0	
	1	1	1	1	В
A	1	1	1	1	В
A	1	1	1	1	
		D	D		

X.A+ B (the don't cares would be 0)

Y Karnaugh Map:

			С	С	
	Х	0	I_	_1	
	0	0	0	0	В
A (1	1	1	1	В
Α	1	1	1	1	
	\ A	D	D		
V. AIDIC)6/th	o don't c	roc woul	d bo 0)	

Multiplexer

S	I ₁	Io	F	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	

0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Basically Either copy over $I_{0}\mbox{'s}$ column to F or $I_{1}\mbox{'s}$ Column to F

			l ₁	l ₁	
	0	1	1	0	
S	0	0	1	1	
		Io	Io		

F: S'I_o+SI₁

F=(1,2,6,7)

Х	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Selector bits are always the most significant bits (X in this single selector bit case) Amount of Inputs are equal to $2^{(Amount of Selector Bits)}$

The Way to help visualize the multiplexor in the pables, you divide the Exclusive Or e selector bit

The Way to help visualize the multip				
X	Υ	Z	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	0	0	
1	0	1	0	

Two Selector Bits:

X	Υ	Z	F
0	0	0 /	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
			~
1	1	0	1
1	1	1	W

