Assignment of ET 4389

Volker Strobel

February 29, 2016

1)

G is the network described in 7.txt.

• Number of nodes N: 379

• Number of links L: 914

• Link density p: 0.013

• Average degree E[D]: 4.82

• Degree variance Var[D]: 15.46

Figure 1: Degree distribution of Graph G

2)

• Degree correlation (assortativity) ρ_D : -0.30

Physical meaning:

Assortativity \sim Birds of a feather flock together. Disassortativity \sim Opposites attract.

Networks, in which nodes with a high degree are likely connected to other high-degree nodes are *assortative*; networks in which nodes with a low degree are likely connected to high-degree nodes are *disassortative*.

3)

• Clustering coefficient: 0.17

4)

- Average hopcount E[H]: 3.75
- Diameter H_{max} : 7

5)

• Largest eigenvalue (spectral radius) λ_1 : 7.44

6)

7)

Now, we consider the network G_N , described in NetScience.txt.

- Number of nodes N: 379
- Number of links L: 914
- Link density p: 0.013
- Average degree E[D]: 4.82
- Degree variance Var[D]: 15.46
- Clustering coefficient C: 0.80
- Assortativity ρ_D : -0.08
- Average hopcount E[H]: 6.04

• Spectral radius λ_1 : 10.38

• Algebraic connectivity μ_{N-1} : 0.015

• Diameter H_{max} : 17

8)

I am discussing the metrics in the sense of "which network may allow information to propagte to a larger fraction of the network".

Clustering coefficient C. The clustering coefficient C states how densely the neighbors of a node are connected, that is, are my friends also friends with eeach other. Here, G_N performs much better $(C(G) = 0.17 < C(G_N) = 0.80)$, and is therefore better suited, since information can reach me on several channels, and makes the network more robust.

Average degree E[H]. The average degree states the amount of neighbors of a node in a graph, in a communication network, to how many entities a message could be directly sent. Since both networks G and G_N have the same average degree, none of them performs better here.

Diameter H_{max} . The diameter of the communication network states how many edges a message needs to pass between two nodes in the worst case. Since a smaller H_{max} means faster communication in the worst case, G performs better $(H_{max}(G) = 7 < H_{max}(G_N) = 17)$.

Spectral radius λ_1 . The spectral radius is important for dynamic processes in networks, for example, if, and how fast, a message might go "viral" but also how fast a virus might affect the network. The larger $lambda_1$, the lower the epidemic threshold τ_c . Regarding security, a higher $lambda_1$ is better, therefore, G performs better ($\lambda_1(G) = 7.44 < \lambda_1(G_N) = 10.38$).

Algebraic connectivity μ_{N-1} . This metric states how well connected a graph is and, if the value is greater than zero, that the graph consits of one connected component. Since G has the higher connectivity, it performs better $(\mu_{N-1}(G) = 0.40 > \mu_{N-1}(G_N) = 0.015)$.

All in all, I would recommend design G, and is better suited to convey information across the network.

Figure 2: Comparison of the degree distribution of 100 ER instances and the theoretical degree distribution, where $Pr[D=k]=\binom{N-1}{k}p^k(1-p)^{N-1-k}=\binom{378}{k}0.013^k\cdot 0.987^{378-k}$.

10)

Average of the metrics over the 100 ER random networks:

- Number of nodes N: 379
- Number of links L: 914.33
- Link density p: 0.012764
- Degree variance Var[D]: 4.774007

• Clustering coefficient: 0.012574

 \bullet Assortativity: -0.003513

• Average hopcount E[H]: 3.928829

• Spectral radius λ_1 : 6.006430

• Algebraic connectivity μ_{N-1} : 0.025853

• Diameter H_{max} : 7.980000

11)

Now, we have a feeling of which network is better suited for information propagation. However, there are still limitations: for example the speed of information propagation. We know, how many nodes are infected in the $E[n_{R_{\infty}}]$ state, but not how fast that occured.

Metric	G	G_N	$100 \ \mathrm{ER}$
N	379	379	379
L	914	914	914.33
p	0.013	0.013	0.013
E[D]	4.82	4.82	4.82
Var[D]	15.46	15.46	4.77
C	0.17	0.80	0.01
$ ho_D$	-0.30	-0.08	0.00
E[H]	3.75	6.04	3.93
λ_1	7.44	10.38	6.01
μ_{N-1}	0.40	0.015	0.026
H_{max}	7	17	7.98

Table 1: Comparison of all metrics