In the Claims

- **1.** (currently amended) A polyolefin composition wherein the polyolefin is polyethylene or polypropylene, which comprises as UV absorber a mixture of
- a) at least one hydroxybenzophenone and at least one 2-hydroxyphenylbenzotriazole with the proviso that the polyolefin is a high density polyethylene <u>prepared with a Phillips catalystof the "Phillips" typeor-a polyethylene of the metallocene type</u>:
- b) at least one hydroxybenzophenone and at least one 2-hydroxyphenyltriazine, with the proviso that if the polyolefin is polypropylene, no polyvinylpyridin is present;
- c) at least one hydroxybenzophenone and at least one oxanilide; wherein the hydroxybenzophenone is of formula I

where v is an integer from 1 to 3 and w is 1 or 2 and the substituents Z independently of one another are hydrogen, halogen, hydroxyl or alkoxy having 1 to 12 carbon atoms;

- d) at least one 2-hydroxyphenylbenzotriazole and at least one examilide;
- e) at least one 2-hydroxyphenyltriazine and at least one oxanilide:
- f) at least one hydroxybenzophenone, at least one 2-hydroxyphenylbenzotriazole and at least one oxanilide; wherein the hydroxybenzophenone is of formula I

where v is an integer from 1 to 3 and w is 1 or 2 and the substituents Z independently of one another are hydrogen, halogen, hydroxyl or alkoxy having 1 to 12 carbon atoms;

- g) at least one hydroxybenzophenone, at least one oxanilide and at least one 2-hydroxyphenyl-triazine; or
- h) at least one 2-hydroxyphenylbenzotriazole, at least one oxanilide and at least one 2-hydroxy phenyltriazine.

2.

2. (canceled)

3. (currently amended) A polyolefin composition according to claim **1** wherein the hydroxybenzophenone is of formula I

the 2-hydroxyphenylbenzotriazole is of formula IIa, IIb or IIc

(IIb)

the 2-hydroxyphenyltriazine is of formula III

$$(Y_1)_r$$
 $(Y_1)_r$ $(III);$

and the oxanilide is of formula (IV)

$$(L)_{y} \xrightarrow{H} \stackrel{O}{\longrightarrow} H \xrightarrow{(IV)} ; \text{ wherein}$$

in the compounds of the formula (I) v is an integer from 1 to 3 and w is 1 or 2 and the substituents Z independently of one another are hydrogen, halogen, hydroxyl or alkoxy having 1 to 12 carbon atoms;

in the compounds of the formula (IIa),

 R_1 is hydrogen, alkyl having 1 to 24 carbon atoms, phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety, cycloalkyl having 5 to 8 carbon atoms or a radical of the formula

$$R_4$$
 R_5
 C_nH_{2n+1-m} - M_m in which

 R_4 and R_5 independently of one another are alkyl having in each case 1 to 5 carbon atoms, or R_4 , together with the radical C_nH_{2n+1-m} , forms a cycloalkyl radical having 5 to 12 carbon atoms, m is 1 or 2, n is an integer from 2 to 20 and

M is a radical of the formula -COOR₆ in which

 R_6 is hydrogen, alkyl having 1 to 12 carbon atoms, alkoxyalkyl having in each case 1 to 20 carbon atoms in the alkyl moiety and in the alkoxy moiety or phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety,

 $\rm R_2$ is hydrogen, halogen, alkyl having 1 to 18 carbon atoms, and phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety, and

 R_3 is hydrogen, chlorine, alkyl or alkoxy having in each case 1 to 4 carbon atoms or -COOR₆ in which R_6 is as defined above, at least one of the radicals R_1 and R_2 being other than hydrogen;

in the compounds of the formula (IIb)

T is hydrogen or alkyl having 1 to 6 carbon atoms,

 T_1 is hydrogen, chlorine or alkyl or alkoxy having in each case 1 to 4 carbon atoms, n is 1 or 2 and,

if n is 1.

 T_2 is chlorine or a radical of the formula -OT₃ or -N and,

if n is 2,
$$T_2$$
 is a radical of the formula T_6 or -O- T_9 -O- in which

 T_3 is hydrogen, alkyl which has 1 to 18 carbon atoms and is unsubstituted or substituted by 1 to 3 hydroxyl groups or by -OCOT₆, alkyl which has 3 to 18 carbon atoms, is interrupted once or several times by -O- or -NT₆- and is unsubstituted or substituted by hydroxyl or -OCOT₆, cycloalkyl which has 5 to 12 carbon atoms and is unsubstituted or substituted by hydroxyl and/or alkyl having 1 to 4 carbon atoms, alkenyl which has 2 to 18 carbon atoms and is unsubstituted or substituted by hydroxyl, phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety, or a radical of the formula -CH₂CH(OH)-T₇

 T_4 and T_5 independently of one another are hydrogen, alkyl having 1 to 18 carbon atoms, alkyl which has 3 to 18 carbon atoms and is interrupted once or several times by -O- or

 $-NT_{6}$ -, cycloalkyl having 5 to 12 carbon atoms, phenyl, phenyl which is substituted by alkyl having 1 to 4 carbon atoms, alkenyl having 3 to 8 carbon atoms, phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety or hydroxyalkyl having 2 to 4 carbon atoms,

 T_6 is hydrogen, alkyl having 1 to 18 carbon atoms, cycloalkyl having 5 to 12 carbon atoms, alkenyl having 3 to 8 carbon atoms, phenyl, phenyl which is substituted by alkyl having 1 to 4 carbon atoms, phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety,

 T_7 is hydrogen, alkyl having 1 to 18 carbon atoms, phenyl which is unsubstituted or substituted by hydroxyl, phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety, or -CH₂OT₈,

 T_8 is alkyl having 1 to 18 carbon atoms, alkenyl having 3 to 8 carbon atoms, cycloalkyl having 5 to 10 carbon atoms, phenyl, phenyl which is substituted by alkyl having 1 to 4 carbon atoms, or phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety,

 T_9 is alkylene having 2 to 8 carbon atoms, alkenylene having 4 to 8 carbon atoms, alkynylene having 4 carbon atoms, cyclohexylene, alkylene which has 2 to 8 carbon atoms and is interrupted once or several times by -O-, or a radical of the formula -CH₂CH(OH)CH₂OT₁₁OCH₂CH(OH)CH₂- or -CH₂-C(CH₂OH)₂-CH₂-,

 T_{10} is alkylene which has 2 to 20 carbon atoms and can be interrupted once or several times by -O-, or cyclohexylene,

 T_{11} is alkylene having 2 to 8 carbon atoms, alkylene which has 2 to 18 carbon atoms and is interrupted once or several times by -O-, 1,3-cyclohexylene, 1,4-cyclohexylene, 1,3-phenylene or 1,4-phenylene, or

 T_{10} and T_{6} , together with the two nitrogen atoms, are a piperazine ring;

in the compounds of formula (IIc)

R'2 is C1-C12alkyl and k is a number from 1 to 4;

in the compounds of the formula (III)

u is 1 or 2 and r is an integer from 1 to 3, the substituents

Y₁ independently of one another are hydrogen, hydroxyl, halogenomethyl, alkyl having 1 to 12 carbon

atoms, alkoxy having 1 to 18 carbon atoms, or halogen, if u is 1,

Y₂ is alkyl having 1 to 18 carbon atoms, phenoxy which is unsubstituted or substituted by hydroxyl, alkoxy having 1 to 18 carbon atoms, or halogen, or is substituted by alkyl or alkoxy having in each case 1 to 18 carbon atoms or halogen, alkyl which has 1 to 12 carbon atoms and is substituted by -COOH, -COOY₈, -CONH₂, -CONH₉, -CONY₉Y₁₀, -NH₂, -NHY₉, -NY₉Y₁₀, -NHCOY₁₁, -CN and/or -OCOY₁₁, alkyl which has 4 to 20 carbon atoms, is interrupted by one or more oxygen atoms and is unsubstituted or substituted by hydroxyl or alkoxy having 1 to 12 carbon atoms, alkenyl having 3 to 6 carbon atoms, glycidyl, cyclohexyl which is unsubstituted or substituted by hydroxyl, alkyl having 1 to 4 carbon atoms and/or -OCOY₁₁, phenylalkyl which has 1 to 5 carbon atoms in the alkyl moiety and is unsubstituted or substituted by hydroxyl, chlorine and/or methyl, -COY₁₂ or -SO₂Y₁₃, or, if u is 2.

Y₂ is alkylene having 2 to 16 carbon atoms, alkenylene having 4 to 12 carbon atoms, xylylene, alkylene which has 3 to 20 carbon atoms, is interrupted by one or more -O- atoms and/or is substituted by hydroxyl, -CH₂CH(OH)CH₂-O-Y₁₅-OCH₂CH(OH)CH₂, -CO-Y₁₆-CO-, -CO-NH-Y₁₇-NH-CO- or -(CH₂)_m-CO₂-Y₁₈-OCO-(CH₂)_m, in which m is 1, 2 or 3,

 Y_8 is alkyl having 1 to 18 carbon atoms, alkenyl having 3 to 18 carbon atoms, alkyl which has 3 to 20 carbon atoms, is interrupted by one or more oxygen or sulfur atoms or -NT₆- and/or is substituted by hydroxyl, alkyl which has 1 to 4 carbon atoms and is substituted by -P(O)(OY₁₄)₂, -NY₉Y₁₀ or -OCOY₁₁ and/or hydroxyl, alkenyl having 3 to 18 carbon atoms, glycidyl, or phenylalkyl having 1 to 5 carbon atoms in the alkyl moiety,

 Y_9 and Y_{10} independently of one another are alkyl having 1 to 12 carbon atoms, alkoxyalkyl having 3 to 12 carbon atoms, dialkylaminoalkyl having 4 to 16 carbon atoms or cyclohexyl having 5 to 12 carbon atoms, or Y_9 and Y_{10} together are alkylene, oxaalkylene or azaalkylene having in each case 3 to 9 carbon atoms,

 Y_{11} is alkyl having 1 to 18 carbon atoms, alkenyl having 2 to 18 carbon atoms or phenyl,

 Y_{12} is alkyl having 1 to 18 carbon atoms, alkenyl having 2 to 18 carbon atoms, phenyl, alkoxy having 1 to 12 carbon atoms, phenoxy, alkylamino having 1 to 12 carbon atoms or phenylamino,

 Y_{13} is alkyl having 1 to 18 carbon atoms, phenyl or alkylphenyl having 1 to 8 carbon atoms in the alkyl radical,

Y₁₄ is alkyl having 1 to 12 carbon atoms or phenyl,

 Y_{15} is alkylene having 2 to 10 carbon atoms, phenylene or a group -phenylene-M-phenylene- in which M is -O-, -S-, -SO₂-, -CH₂- or -C(CH₃)₂-,

 Y_{16} is alkylene, oxaalkylene or thiaalkylene having in each case 2 to 10 carbon atoms, phenylene or alkenylene having 2 to 6 carbon atoms,

 Y_{17} is alkylene having 2 to 10 carbon atoms, phenylene or alkylphenylene having 1 to 11 carbon atoms in the alkyl moiety, and

Y₁₈ is alkylene having 2 to 10 carbon atoms or alkylene which has 4 to 20 carbon atoms and is interrupted once or several times by oxygen;

in the compounds of the formula (IV) x is an integer from 1 to 3 and the substituents L independently of one another are hydrogen, alkyl, alkoxy or alkylthio having in each case 1 to 22 carbon atoms, phenoxy or phenylthio.

- **4. (original)** A polyolefin composition according to claim **3**, in which, in the compounds of the formula (IIa), R₁ is hydrogen or alkyl having 1 to 20 carbon atoms, R₂ is hydrogen, alkyl having 1 to 18 carbon atoms or phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety and R₃ is hydrogen, chlorine or alkyl having 1 to 4 carbon atoms.
- **5.** (original) A polyolefin composition according to claim **4**, in which R_1 is in the ortho-position relative to the hydroxyl group and is hydrogen or alkyl having 4 to 12 carbon atoms, R_2 is in the paraposition relative to the hydroxyl group and is alkyl having 1 to 6 carbon atoms or cumyl and R_3 is hydrogen or chlorine.
- **6.** (original) A polyolefin composition according to claim 3, in which, in the compounds of the formula (IIb), T is alkyl having 1 to 6 carbon atoms, T_1 is hydrogen, chlorine or alkyl having 1 to 4 carbon atoms, n is 1 or 2 and, if n is 1, T_2 is one of the radicals of the formula -OT₃ or

$$-N \int_{T_5}^{T_4} \text{ and, if n is 2, } T_2 \text{ is a radical of the formula -O-T}_9\text{-O- or } \int_{T_6}^{N-T_{10}} N \int_{T_6}^{N-T_{10}} \text{ in which } T_6$$

 T_3 is hydrogen, alkyl having 1 to 18 carbon atoms or alkyl which has 3 to 18 carbon atoms and is interrupted once or several times by -O-, T_4 and T_5 independently of one another are hydrogen, alkyl having 1 to 18 carbon atoms, alkenyl having 3 to 8 carbon atoms or hydroxyalkyl having 2 to 4 carbon

atoms, T_6 is hydrogen or alkyl having 1 to 6 carbon atoms, and T_9 and T_{10} are alkylene having 2 to 8 carbon atoms, alkenylene having 4 to 8 carbon atoms or alkylene which has 2 to 18 carbon atoms and is interrupted once or several times by -O-.

7. (original) A polyolefin composition according to claim 3, in which, in the compounds of the formula (III), the substituents Y₁ are hydrogen, alkyl having 1 to 12 carbon atoms or halogen, if u is 1, Y₂ is alkyl having 1 to 18 carbon atoms, alkyl which has 1 to 12 carbon atoms and is substituted by hydroxyl, alkoxy having 1 to 18 carbon atoms, -COOY₈, -CONY₉Y₁₀ and/or -OCOY₁₁, glycidyl or phenylalkyl having 1 to 4 carbon atoms in the alkyl moiety, or, if u is 2, Y₂ is alkylene having 2 to 16 carbon atoms, alkenylene having 4 to 12 carbon atoms, xylylene or alkylene which has 3 to 20 carbon atoms, is interrupted by one or more -O- atoms and/or is substituted by hydroxyl, the substituents Y₈ to Y₁₁ being as defined in claim 3.

- **8.** (original) A polyolefin composition according to claim **7**, in which u is 1 and r is 2, Y_1 is alkyl having 1 to 4 carbon atoms and Y_2 is alkyl having 1 to 18 carbon atoms or alkyl which has 1 to 12 carbon atoms and is substituted by hydroxyl, alkoxy having 1 to 18 carbon atoms, -COOY₈ and/or -OCOY₁₁, Y_8 being alkyl having 1 to 18 carbon atoms, alkenyl having 3 to 18 carbon atoms or alkyl which has 3 to 20 carbon atoms, is interrupted by one or more oxygen atoms and/or is substituted by hydroxyl, and Y_{11} being alkenyl having 2 to 18 carbon atoms.
- **9.** (original) A polyolefin composition according to claim **8**, in which Y_1 is methyl and Y_2 is an octyl radical or alkyl which has 1 to 3 carbon atoms and is substituted by hydroxyl, alkoxy having 13 or 15 carbon atoms, -COOY₈ and/or -OCOY₁₁, Y_8 being a decyl or octadecenyl radical or alkyl which has 7 carbon atoms and is substituted by hydroxyl and interrupted by an oxygen atom, and Y_{11} being propenyl.
- **10. (original)** A polyolefin composition according to claim **3**, in which, in the compounds of the formula (I), v and w independently of one another are 1 or 2 and the substituents Z independently of one another are hydrogen, halogen or alkoxy having 1 to 12 carbon atoms.

- **11. (original)** A polyolefin composition according to claim **3**, in which, in the compounds of the formula (IV), x and y are 1 or 2 and the substituents L independently of one another are hydrogen or alkyl having in each case 1 to 12 carbon atoms.
- **12. (original)** A polyolefin composition according to claim **1** wherein the amount of the individual UV absorber in the mixture is from 20% to 80% based on the weight of the mixture, with the proviso that the sum adds to 100%.

 α

- **13.** (original) A polyolefin composition according to claim **1** wherein the total amount of UV-absorber is from 0.005 to 5% based on the weight of the polymer.
- **14.** (currently amended) A polyolefin composition according to claim **1**, which additionally contains at least one sterically hindered amine, in particular an amine of this type containing at least one radical of the formula

in which R is hydrogen or methyl.

15. (canceled)