

Centro de Enseñanza Técnica Industrial

Desarrollo de Software

Actividad 1 - Clase 8

Jesús Alberto Aréchiga Carrillo 22310439 6N

Profesor

Clara Margarita Fernández Riveron

Abril de 2025

Guadalajara, Jalisco

Introducción

En probabilidad discreta, el estudio de las distribuciones conjuntas de dos (o más) variables aleatorias permite describir cómo se comportan en conjunto. Para variables aleatorias discretas XXX e YYY, la función de probabilidad conjunta

$$P_{X,Y}(x,y) = P(X = x, Y = y)$$

se suele presentar en forma de tabla o matriz. A partir de ella podemos obtener las distribuciones marginales (sumando sobre una de las variables) y, de ahí, las distribuciones condicionales

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} \ o \ P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(X = x)}$$

Ejercicio:

Dada la distribución conjunta de dos variables aleatorias X y Y:

X/Y	1	2	3
0	0.1	0.2	0.1
1	0.2	0.1	0.1

Calcular:

a)
$$P(x = 1, v = 2)$$

b)
$$P(v = 3, x = 0)$$

a)
$$P(X = 1 | Y = 2) = \frac{P(X = 1, Y = 2)}{P(Y = 2)}$$

De la tabla: P(X = 1, Y = 2) = 0.1

Marginal
$$P(Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) = 0.2 + 0.1 = 0.3$$

$$\frac{P(X=1, Y=2)}{P(Y=2)} = \frac{0.1}{0.3} = \frac{1}{3} = 0.3333$$

b)
$$P(X = 0 | Y = 3) = \frac{P(X = 0, Y = 3)}{P(X = 0)}$$

De la tabla: P(X = 0, Y = 3) = 0.1

Marginal
$$P(X = 0) = P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 0, Y = 3) = 0.1 + 0.2 + 0.1 = 0.4$$

$$\frac{P(X=0,Y=3)}{P(X=0)} = \frac{0.1}{0.4} = \frac{1}{4} = 0.25$$

Conclusiones:

El análisis de distribuciones conjuntas y condicionales es una herramienta fundamental en estadística y probabilidad, ya que nos permite cuantificar la dependencia entre variables y actualizar nuestras creencias ante nueva información (principio de Bayes). Estas técnicas se aplican en campos tan diversos como la ingeniería, la economía, el aprendizaje automático y la bioestadística. Dominar el paso de la distribución conjunta a las marginales y condicionales abre la puerta a modelos más sofisticados (por ejemplo, cadenas de Markov o redes bayesianas) y a la toma de decisiones basadas en evidencia probabilística.