MATEMATIK 1

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

LİMİT VE SÜREKLİLİK

6.1. Bir Fonksiyonun Limiti

Tanım 6.1.1. $A \subset \mathbb{R}$ ve $a \in \mathbb{R}$ noktası A kümesinin bir yığılma noktası olmak üzere $f: A \to \mathbb{R}$, y = f(x) fonksiyonunu ele alalım. Eğer her $\varepsilon > 0$ sayısı için $|x - a| < \delta$ iken $|f(x) - L| < \varepsilon$ olacak şekilde $\delta = \delta(\varepsilon) > 0$ pozitif sayısı varsa x değişkeni a sayısına yaklaştığında y = f(x) fonksiyonunun limiti L'dir denir ve $\lim_{x \to a} f(x) = L$ şeklinde gösterilir. Bir fonksiyonun herhangi bir noktada limiti varsa tektir.

Limit tanımında, x değişkeni a sayısına $x \neq a$ olacak şekilde her iki yönden yaklaşırken y = f(x) değerlerinin giderek L sayısına daha yakın değerler alması söz konusudur. Aslında y = f(x) fonksiyonu x = a noktasında tanımlı bile olmayabilir. Burada asıl önemli olan y = f(x) fonksiyonunun x = a noktasına yakın değerler için nasıl tanımlandığıdır.

Örnek 6.1.1. $\lim_{x\to 1} (9x-5) = 4$ olduğunu limit tanımını kullanarak gösteriniz.

Çözüm. Her $\varepsilon > 0$ için $|x-1| < \delta$ iken $|f(x)-4| < \varepsilon$ olacak şekilde $\delta = \delta(\varepsilon) > 0$ sayısının var olduğunu gösterelim.

$$|(9x-5)-4| = |9x-9| = |9(x-1)| = 9|x-1| < \varepsilon$$

olup $\delta = \frac{\varepsilon}{9}$ dur. Dolayısıyla $\lim_{x \to 1} (9x - 5) = 4$ dür.

6.2. Sağdan ve Soldan Limitler

Limit tanımında x değişkeninin a noktasına nasıl yaklaşacağı konusunda bir sınırlama yoktur ancak bazen bir sınırlama konulması gerekir.

x değişkeni bir a sayısından büyük ve a ya yakın değerler alıyorsa x, a ya sağdan yaklaşıyor denir ve $x \to a^+$ şeklinde gösterilir. x değişkeni bir a sayısından küçük ve a ya yakın değerler alıyorsa x, a ya soldan yaklaşıyor denir ve $x \to a^-$ şeklinde gösterilir.

 $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ veya $f: A - \{a\} \to \mathbb{R}$ bir fonksiyon olsun.

x değişkeni a sayısına soldan yaklaştığında f(x) de bir L_1 reel sayısına yaklaşıyorsa; L_1 sayısına f fonksiyonunun x=a noktasındaki soldan limiti denir ve

$$\lim_{x \to a^{-}} f(x) = L_1$$

şeklinde gösterilir.

x değişkeni a sayısına sağdan yaklaştığında f(x) de bir L_2 reel sayısına yaklaşıyorsa; L_2 sayısına f fonksiyonunun x=a noktasındaki sağdan limiti denir ve

$$\lim_{x \to a^+} f(x) = L_2$$

şeklinde gösterilir.

f fonksiyonunun x=a noktasında limitinin var olması için gerek ve yeter şart bu noktadaki sağdan ve soldan limitlerinin mevcut ve birbirine eşit olmasıdır. Yani $L_1=L_2=L$ ise f fonksiyonunun x=a noktasındaki limiti L dir denir ve

$$\lim_{x \to a} f(x) = L$$

şeklinde gösterilir.

Örnek 6.2.1.

Şekil 6.2.1.

$$x \to 1^+$$
 iken $f(x) \to 3^-$ olduğundan $\lim_{x \to 1^+} f(x) = 3$ dür.

 $x \to 1^-$ iken $f(x) \to 3^+$ olduğundan $\lim_{x \to 1^-} f(x) = 3$ dür. Bu durumda

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = 3$$

olduğundan f fonksiyonunun x = 1 noktasında limiti vardır ve

$$\lim_{x \to 1} f(x) = 3$$

dür.

Örnek 6.2.2.

Şekil 5.6.2.

$$x \to -2^+$$
 iken $f(x) \to 3^+$ olduğundan $\lim_{x \to -2^+} f(x) = 3$ dür. $x \to -2^-$ iken $f(x) \to 5^-$ olduğundan $\lim_{x \to -2^-} f(x) = 5$ dir. Bu durumda

$$\lim_{x \to -2^+} f(x) \neq \lim_{x \to -2^-} f(x)$$

olduğundan f fonksiyonunun x = -2 noktasında limiti yoktur.

6.3. Limit Teoremleri

 $A \subset \mathbb{R}$ ve $a \in \mathbb{R}$ noktası A kümesinin bir yığılma noktası, $f: A \to \mathbb{R}$ ve $g: A \to \mathbb{R}$ tanımlı iki fonksiyon olmak üzere $\lim_{x \to a} f(x) = L_1$, $\lim_{x \to a} g(x) = L_2$, k sabit bir reel sayı ve $n \in \mathbb{N}^+$ olsun.

(1)
$$\lim_{x\to a} x = a$$
 ve $\lim_{x\to a} (k) = k$ dir.

Örnek 6.3.1.
$$\lim_{x\to 3} x = 3$$
, $\lim_{x\to -3} x = -3$, $\lim_{x\to 2} 5 = 5$, $\lim_{x\to -2} 5 = 5$ dir.

(2)
$$\lim_{x \to a} [f(x) \mp g(x)] = \lim_{x \to a} f(x) \mp \lim_{x \to a} g(x) = L_1 \mp L_2 \text{ dir.}$$

$$\lim_{x \to a} [k.f(x)] = k.L_1 \text{ dir.}$$

$$\lim_{x \to a} f^{n}(x) = \left[\lim_{x \to a} f(x) \right]^{n} = L_{1}^{n} \text{ dir.}$$

Örnek 6.3.2.
$$\lim_{x \to 3} (3x^2 + 4x + 5) = \lim_{x \to 3} 3x^2 + \lim_{x \to 3} 4x + \lim_{x \to 3} 5$$

= $3 \lim_{x \to 3} x^2 + 4 \lim_{x \to 3} x + \lim_{x \to 3} 5$
= $3.3^2 + 4.3 + 5 = 44$ dür.

(3)
$$\lim_{x \to a} (f(x).g(x)) = \lim_{x \to a} f(x). \lim_{x \to a} g(x) = L_1.L_2$$
 dir.

Örnek 6.3.3.
$$\lim_{x \to 1} \left(x^2 + \frac{3}{2} x + 1 \right) = \lim_{x \to 1} x^2 + \lim_{x \to 1} \frac{3}{2} x + \lim_{x \to 1} 1$$

$$= \lim_{x \to 1} x \cdot \lim_{x \to 1} x + \frac{3}{2} \lim_{x \to 1} x + \lim_{x \to 1} 1$$

$$= 1.1 + \frac{3}{2} \cdot 1 + 1 = \frac{7}{2} \text{ dir.}$$

(4)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}$$
 $(L_2 \neq 0)$ dir.

$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{\lim_{x \to a} g(x)} = \frac{1}{L_2} \quad (L_2 \neq 0) \text{ dir.}$$

Örnek 6.3.4.
$$\lim_{x \to 1} \frac{x^2 + 2x}{x^3 + 3} = \frac{\lim_{x \to 1} (x^2 + 2x)}{\lim_{x \to 1} (x^3 + 3)}$$
$$= \frac{\lim_{x \to 1} x^2 + 2\lim_{x \to 1} x}{\lim_{x \to 1} x^3 + \lim_{x \to 1} 3} = \frac{1^2 + 2.1}{1^3 + 3} = \frac{3}{4} \text{ dür.}$$

(5)
$$n \in \mathbb{N}^+$$
 ve tek sayı ise $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ dir. $n \in \mathbb{N}^+$ ve çift

sayı ise, $f(x) \ge 0$ ve $\lim_{x \to a} f(x) \ge 0$ olmak üzere

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

dir.

Örnek 6.3.5.
$$\lim_{x\to 2} \sqrt[3]{3x+2} = \sqrt[3]{\lim_{x\to 2} (3x+2)} = \sqrt[3]{8} = 2$$
 dir.

(6) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ fonksiyonunun $x \to a$ iken limiti

$$\lim_{x \to a} f(x) = b_n a^n + b_{n-1} a^{n-1} + \dots + b_1 a + b_0$$

dır.

Örnek 6.3.6.
$$\lim_{x \to 1} (x^5 + 4x^4 + 3x^3 + 2x^2 + x + 1)$$

= $1^5 + 4.1^4 + 3.1^3 + 2.1^2 + 1 + 1 = 12$ dir.

(7)
$$\lim_{x \to a} k^{f(x)} = k^{L_1} \text{ dir.}$$

Örnek 6.3.7.
$$\lim_{x\to 4} 2^{x+2} = 2^{\lim_{x\to 4} (x+2)} = 2^6 = 64$$
 dür.

(8) $\lim_{x \to a} [f(x)]^{g(x)} = L_1^{L_2} \text{ dir.}$

Örnek 6.3.8.
$$\lim_{x\to 0} [x^2+1]^{(2x+5)} = [\lim_{x\to 0} (x^2+1)]^{\lim_{x\to 0} (2x+5)} = 1^5 = 1$$
 dir.

(9)
$$\lim_{x \to a} \log_b f(x) = \log_b (\lim_{x \to a} f(x)) = \log_b L_1 (L_1 > 0)$$
 dir.

 $L_1 \le 0$ ise $\lim_{x \to a} \log_b f(x)$ limiti mevcut değildir.

Örnek 6.3.9. $\lim_{x\to 0} \ln(\cos x) = \ln(\lim_{x\to 0} (\cos x)) = \ln 1 = 0$ dir.

(10)
$$\lim_{x \to a} |f(x)| = |L_1| \text{ dir.}$$

Örnek 6.3.10.
$$\lim_{x \to 3} |x^2 - 5x| = \left| \lim_{x \to 3} (x^2 - 5x) \right| = |9 - 15| = |-6| = 6 \text{ dir.}$$

6.4. Sonsuz Kavramı

Bir $f: \mathbb{R} \to \mathbb{R}$ fonksiyonu verilmiş olsun. $a \in \mathbb{R}$ olmak üzere, eğer $x \to a$ için $f(x) \to 0$ ise, f fonksiyonuna sonsuz küçük, eğer $x \to a$ için $\frac{1}{f(x)} \to 0$ ise, f fonksiyonuna sonsuz büyük denir ve $\lim_{x \to a} f(x) = \infty \text{ veya } f(x) \to \infty$

şeklinde ifade edilir.

Limit tanımına dikkat edilirse, "∞" un gerçek anlamda bir limit olmadığı ancak fonksiyon için sürekli olarak büyüme anlamına geldiğine dikkat edilmelidir.

6.5. Özel Tanımlı Fonksiyonların Limiti

6.5.1. Parçalı Fonksiyonların Limiti

Parçalı fonksiyonların kritik noktalarındaki ve rasyonel fonksiyonların paydasını sıfır yapan noktalardaki limitini hesaplamak için bu noktalardaki sağdan ve soldan limite bakılır.

Örnek 6.5.1.1. $f: \mathbb{R} \to \mathbb{R}$ tanımlı $f(x) = \begin{cases} x^3 + 2x + 1, & x > 1 \\ 3^x + 2x - 1, & x \le 1 \end{cases}$

fonksiyonunun x = 1 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 1 noktası f fonksiyonunun kritik noktası olduğundan, sağdan ve soldan limite bakılmalıdır.

$$x > 1$$
 için $f(x) = x^3 + 2x + 1$ olduğundan,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^3 + 2x + 1) = 1^3 + 2.1 + 1 = 4$$

dür.

$$x \le 1$$
 için $f(x) = 3^x + 2x - 1$ olduğundan,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3^{x} + 2x - 1) = 3^{1} + 2 \cdot 1 - 1 = 4$$

dür.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = 4 \text{ olduğundan}, f \text{ fonksiyonunun } x = 1$$

noktasında limiti vardır ve

$$\lim_{x \to 1} f(x) = 4$$

dür.

Örnek 6.5.1.2. $f: \mathbb{R} \to \mathbb{R}$ tanımlı $f(x) = \begin{cases} x^3 + 1, & x \le 0 \\ \sin\left(\frac{\pi}{2}x\right), & x > 0 \end{cases}$

fonksiyonunun x = 2 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x > 0 için $f(x) = \sin\left(\frac{\pi}{2}x\right)$ olup, x = 2 noktası kritik nokta

olmadığından,

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \left[\sin\left(\frac{\pi}{2}x\right) \right] = \sin(\pi) = 0$$

dır.

6.5.2. Mutlak Değer Fonksiyonunun Limiti

y = |f(x)| fonksiyonunun kritik noktalarında yani f(x) = 0 denkleminin köklerinde limiti sıfırdır.

Örnek 6.5.2.1.
$$\lim_{x \to 3} |x^3 - 27| = |3^3 - 27| = 0$$
 dır.

Örnek 6.5.2.2.
$$\lim_{x \to -2} |x+2| = |-2+2| = 0$$
 dir.

Örnek 6.5.2.3.
$$\lim_{x\to 2} |1-x^2| = \left| \lim_{x\to 2} (1-x^2) \right| = |-3| = 3$$
 dür.

6.5.3. İşaret Fonksiyonunun Limiti

 $y = \operatorname{sgn} f(x)$ fonksiyonunun kritik noktalarında yani f(x) = 0 denkleminin köklerinde limitini hesaplamak için sağdan ve soldan limite bakılır.

Örnek 6.5.3.1. $f(x) = x^2 + 5 + \operatorname{sgn}(x^3 - 3) + \operatorname{sgn}(x - 5)$ fonksiyonunun x = 3 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 3 noktası f fonksiyonunun kritik noktası olmadığından,

$$\lim_{x \to 3} \left(x^2 + 5 + \operatorname{sgn}(x^3 - 3) + \operatorname{sgn}(x - 5) \right) = 3^2 + 5 + \operatorname{sgn}(24) + \operatorname{sgn}(-2)$$

$$= 9 + 5 + 1 - 1 = 14$$

dür.

Örnek 6.5.3.2. $f(x) = \operatorname{sgn}(\ln x)$ fonksiyonunun x = 1 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 1 noktası f fonksiyonunun kritik noktası olduğundan, sağdan ve soldan limite bakılmalıdır.

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \left[\operatorname{sgn}\left(\ln x\right) \right], \ x\to 1^+ \text{ için } \ln x>0 \text{ olduğundan,}$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left[\operatorname{sgn} \left(\ln x \right) \right] = 1$$

dir.

$$\lim_{x\to 1^{-}} f(x) = \lim_{x\to 1^{-}} \left[\operatorname{sgn}(\ln x) \right], \ x\to 1^{-} \text{ için } \ln x < 0 \text{ olduğundan,}$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left[\operatorname{sgn} \left(\ln x \right) \right] = -1$$

dir.

$$\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x) \quad \text{olduğundan}, \quad f \quad \text{fonksiyonunun} \quad x=1$$

noktasında limiti yoktur.

Uyarı 6.5.3.1. İşaret fonksiyonunun, kritik noktalarında limiti genellikle yoktur. Ancak istisna durumlar olabilir.

Örnek 6.5.3.3. $f(x) = \operatorname{sgn}(x^2 - 6x + 9)$ fonksiyonunun x = 3 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 3 noktası f fonksiyonunun kritik noktası olduğundan sağdan ve soldan limite bakılmalıdır.

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} \left[\operatorname{sgn} \left(x^{2} - 6x + 9 \right) \right] = \lim_{x \to 3^{+}} \left[\operatorname{sgn} (x - 3)^{2} \right]$$

ve

$$x \to 3^+$$
 için $(x-3) \to 0^+$ ve $(x-3)^2 \to 0^+ > 0$ olduğundan,
$$\lim_{x \to 3^+} f(x) = 1$$

dir.

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \left[\operatorname{sgn} \left(x^{2} - 6x + 9 \right) \right] = \lim_{x \to 3^{-}} \left[\operatorname{sgn} (x - 3)^{2} \right]$$

ve

$$x \to 3^-$$
 için $(x-3) \to 0^-$ ve $(x-3)^2 \to 0^+ > 0$ olduğundan,
$$\lim_{x \to 3^-} f(x) = 1$$

dir.

$$\lim_{x\to 3^+} f(x) = \lim_{x\to 3^-} f(x) = 1 \text{ olduğundan } f \text{ fonksiyonunun } x = 3$$

noktasında limiti vardır ve $\lim_{x \to 3} f(x) = 1$ dir.

6.5.4. Tam Değer Fonksiyonunun Limiti

 $y = \llbracket f(x)
rbracket$ fonksiyonunun kritik noktalarındaki yani $f(x) \in \mathbb{Z}$ olan değerlerde limitini hesaplamak için sağdan ve soldan limite bakılır.

Örnek 6.5.4.1. f(x) = x - 1 - [x] fonksiyonunun x = 2 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 2 noktası f fonksiyonunun kritik noktası olduğundan sağdan ve soldan limite bakılmalıdır.

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x - 1 - [x])$$
 ve $x \to 2^+$ için $[x] = 2$

olduğundan

$$\lim_{x \to 2^+} f(x) = 2 - 1 - 2 = -1$$

dir.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \left(x - 1 - [x] \right) \text{ ve } x \to 2^{-} \text{ için } [x] = 1$$

olduğundan

$$\lim_{x \to 2^{-}} f(x) = 2 - 1 - 1 = 0$$

dır.

$$\lim_{x\to 2^+} f(x) \neq \lim_{x\to 2^-} f(x) \text{ olduğundan, } f \text{ fonksiyonunun } x=2$$

noktasında limiti yoktur.

Örnek 6.5.4.2. $f(x) = x^3 + 2x^2 - \left\| \frac{x}{3} \right\|$ fonksiyonunun x = 1

noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 1 noktası f fonksiyonunun kritik noktası olmadığından

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(x^3 + 2x^2 - \left[\frac{x}{3} \right] \right) = 1^3 + 2 \cdot 1^2 - \left[\frac{1}{3} \right]$$
$$= 3 - \left[\left[0, \overline{3} \right] \right] = 3 - 0 = 3$$

dür.

Uyarı 6.5.4.1. Tam değer fonksiyonunun, kritik noktalarında limiti genellikle yoktur. Ancak istisna durumlar olabilir.

Örnek 6.5.4.3. $f(x) = [2x^2] + 2x + 1$ fonksiyonunun x = 0 noktasındaki limitini, varsa hesaplayınız.

Çözüm. x = 0 noktası f fonksiyonunun kritik noktası olduğundan, sağdan ve soldan limite bakılmalıdır.

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 1$$
 olduğundan, f fonksiyonunun $x=0$

2 noktasında limiti vardır ve $\lim_{x\to 0} f(x) = 1$ dir.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ([2x^{2}] + 2x + 1), \quad x \to 0^{-} \quad \text{için} \quad x^{2} \to 0^{+} \text{ ve}$$

$$[2x^2] = 0$$
 olduğundan $\lim_{x\to 0^-} f(x) = 0 + 2.0 + 1 = 1$ dir.

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 1 \text{ olduğundan, } f \text{ fonksiyonunun } x = 0$$
 noktasında limiti vardır ve $\lim_{x\to 0} f(x) = 1$ dir.

Örnek 6.5.4.4. $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)$ limitini hesaplayınız.

Çözüm.

Şekil 6.5.4.1.

Yukarıdaki birim çemberde $s(P\hat{O}A)=x$ radyan ise PA yayının uzunluğunun ölçüsü x birim olur. Ayrıca $|PH|=\sin x$ ve

$$|TA| = \tan x \text{ tir. } x \in \left(0, \frac{\pi}{2}\right) \text{ için}$$

$$|PH| < |P\widehat{A}| < |TA|$$

$$\Rightarrow \sin x < x < \tan x$$

$$\Rightarrow \frac{\sin x}{\sin x} < \frac{x}{\sin x} < \frac{\tan x}{\sin x}$$

$$\Rightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\Rightarrow 1 > \frac{\sin x}{x} > \cos x$$

$$\Rightarrow \lim_{x\to 0} (1) > \lim_{x\to 0} \frac{\sin x}{x} > \lim_{x\to 0} \cos x$$

$$\implies 1 > \lim_{x \to 0} \frac{\sin x}{x} > 1$$

olduğundan

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$$

dir. Buradan $a \in \mathbb{R}$ olmak üzere,

$$\lim_{x \to 0} \left(\frac{\sin ax}{x} \right) = \lim_{x \to 0} \left(\frac{\tan ax}{x} \right) = a \quad \text{ve} \quad \lim_{x \to 0} \left(\frac{\sin x}{ax} \right) = \lim_{x \to 0} \left(\frac{\tan x}{ax} \right) = \frac{1}{a}$$

olduğu görülür.

Örnek 6.5.4.5. $\lim_{x\to 0} \left(\frac{\sin 2x}{3x}\right)$ limitini hesaplayınız.

Çözüm.
$$\lim_{x \to 0} \left(\frac{\sin 2x}{3x} \right) = \lim_{x \to 0} \left(\frac{1}{3} \cdot \frac{\sin 2x}{x} \right) = \lim_{x \to 0} \left(\frac{1}{3} \cdot \frac{2 \sin 2x}{2x} \right) = \frac{2}{3} \text{ dür.}$$

Örnek 6.5.4.6. $\lim_{x\to 0} \left(\frac{\tan 4x}{\tan 5x} \right)$ limitini hesaplayınız.

Çözüm.
$$\lim_{x \to 0} \left(\frac{\tan 4x}{\tan 5x} \right) = \lim_{x \to 0} \left(\frac{\frac{\tan 4x}{x}}{\frac{\tan 5x}{x}} \right) = \frac{4}{5} \text{ dir.}$$

Örnek 6.5.4.7. $\lim_{x\to 0} \left(\frac{\sin^2 5x}{4x^2} \right)$ limitini hesaplayınız.

Çözüm.
$$\lim_{x\to 0} \left(\frac{\sin^2 5x}{4x^2} \right) = \lim_{x\to 0} \left(\frac{\sin 5x}{2x} \right)^2 = \left(\frac{5}{2} \right)^2 = \frac{25}{4} \text{ dür.}$$

Uyarı 6.5.4.2. $a, b \in \mathbb{R}$ olmak üzere,

$$\lim_{x \to 0} \left(\frac{\sin ax}{\sin bx} \right) = \lim_{x \to 0} \left(\frac{\tan ax}{\tan bx} \right) = \lim_{x \to 0} \left(\frac{\sin ax}{\tan bx} \right) = \lim_{x \to 0} \left(\frac{\tan ax}{\sin bx} \right) = \frac{a}{b}$$

dir.

Kaynaklar:

- 1. G. B. Thomas ve Ark., **Thomas Calculus I**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.
- 2. Prof. Dr. C. Çinar, Prof. Dr. İ. Yalçınkaya, Prof. Dr. A. S. Kurbanlı, Prof. Dr. D. Şimşek, **Genel Matematik**, Dizgi Ofset, 2013.
- 3. Prof. Dr. İ. Yalçınkaya, **Analiz III Diziler ve Seriler,** Dizgi Ofset, 2017.
- 4. H. İ. Karakaş, **Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar,** ODTÜ yayınları, 2011.