CHAPTER 3. PROJECTED GRADIENT DESCENT

Hao Yuan Kun Yuan

October 10, 2023

1 Problem formulation

This chapter considers the following constrained problem

$$\min_{x \in \mathbb{R}^d} \quad f(x), \quad x \in \mathcal{X} \tag{1}$$

where f(x) is a differentiable objective function and \mathcal{X} is a closed convex subset of \mathbb{R}^d .

Notation. We introduce the following notations:

- Let $x^* := \arg\min_{x \in \mathcal{X}} \{f(x)\}$ be the optimial solution to problem (1).
- Let $f^* := \min_{x \in \mathcal{X}} \{f(x)\}$ be the optimal function value.

2 Projection onto closed convex sets

Lemma 2.1. Given a closed convex set $C \subseteq \mathbb{R}^d$, for any $x \in \mathbb{R}^d$, there exists a unique $z^* \in C$ such that $||x - z^*|| \le ||x - z||$ for any $z \in C$. The point z^* will be called the projection of x onto C, and will be denoted by $\mathcal{P}_C[x]$.

Proof. First, we show the existence of z^* . Fix $x \in \mathbb{R}^d$, and denote $\delta := \inf\{||z - x||, z \in C\}$. It is evident that $\delta \geq 0$. Now let $\{z_k\}_{k \geq 1}$ be a sequence of points in C such that

$$||z_k - x||^2 \le \delta^2 + \frac{1}{k}$$

for any k. We first show that $\{z_k\}_{k\geq 1}$ is a Cauchy sequence. Let k, l > 0 be arbitrary, and notice that, since C is convex, we have $\frac{1}{2}(z_k + z_l) \in C$, which implies

$$\|\frac{1}{2}(z_k + z_l) - x\|^2 \ge \delta^2.$$
 (2)

Expanding this inequality leads to

$$\frac{1}{2}\langle z_k - x, z_l - x \rangle \ge \delta^2 - \frac{1}{4} ||z_k - x||^2 - \frac{1}{4} ||z_l - x||^2.$$

We now calculate $||z_k - z_l||^2$ and get

$$||z_k - z_l||^2 = ||z_k - x||^2 + ||z_l - x||^2 - 2\langle z_k - x, z_l - x \rangle$$

$$\leq 2(||z_k - x||^2 + ||z_l - x||^2) - 4\delta^2 \leq \frac{2}{k} + \frac{2}{l}.$$

where we used the inequality 2 in the second step. Thus for any $\epsilon > 0$, as long as $k, l \ge \lceil 4/\epsilon^2 \rceil$, we have $||z_k - z_l|| \le \epsilon$, showing that $\{z_k\}$ is a Cauchy sequence. By the completeness of \mathbb{R}^d , $z^* = \lim_{k \to \infty} z_k$ exists. Since C is closed, we have $z^* \in C$, and by the continuity of the norm function, we have

$$||z^* - x|| = \lim_{k \to \infty} ||z_k - x|| = \delta,$$

which is less than or equal to ||z - x|| for any $z \in C$, by the definition of δ .

Next, we show the uniqueness of z^* . Suppose both z_1^* and z_2^* satisfy $||z_1^* - x|| = ||z_2^* - x|| = \delta$. Denote $\bar{z} = \frac{1}{2}(z_1^* + z_2^*)$, and we have

$$\delta^{2} \leq \|\bar{z} - x\|^{2} = \left\| \frac{1}{2} (z_{1}^{*} - x) + \frac{1}{2} (z_{2}^{*} - x) \right\|^{2} = \frac{1}{2} \delta^{2} + \frac{1}{2} \langle z_{1}^{*} - x, z_{2}^{*} - x \rangle,$$

which leads to

$$\langle z_1^* - x, z_2^* - x \rangle \ge \delta^2.$$

Consequently,

$$||z_1^* - z_2^*||^2 = ||z_1^* - x||^2 + ||z_2^* - x||^2 - 2\langle z_1^* - x, z_2^* - x \rangle \le \delta^2 + \delta^2 - 2\delta^2 = 0$$

implying that $z_1^* = z_2^*$. The proof is now complete.

Lemma 2.2. Let $C \subseteq \mathbb{R}^d$ be a closed convex set, then for any $x \in \mathbb{R}^d$ and $y \in C$, we have $y = \mathcal{P}_C[x]$ if and only if $\langle z - y, x - y \rangle \leq 0$ for any $z \in C$.

Proof. We first prove that if $y = \mathcal{P}_C[x]$ then $\langle z - y, x - y \rangle \leq 0$ for any $z \in C$. To this end, we fix x and y and suppose there exists $z_0 \in C$ such that $\langle z_0 - y, x - y \rangle > 0$, it then follows

that $z_0 \neq y$. Set $z = y + t(z_0 - y)$, it holds that

$$||x - z||^{2} - ||x - y||^{2} = ||x - y - t(z_{0} - y)||^{2} - ||x - y||^{2}$$

$$= ||z_{0} - y||^{2} t^{2} - 2t\langle x - y, z_{0} - y\rangle$$

$$= ||z_{0} - y||^{2} t\left(t - \frac{2\langle x - y, z_{0} - y\rangle}{||z_{0} - y||^{2}}\right).$$
(3)

Defining $t^* := \min \left\{ 1, \frac{\langle x - y, z_0 - y \rangle}{\|z_0 - y\|^2} \right\}$, we have $0 < t^* \le 1$ and $z^* := y + t^*(z_0 - y) = (1 - t^*)y + t^*z_0 \in C$. Substituting $0 < t^* \le \frac{\langle x - y, z_0 - y \rangle}{\|z_0 - y\|^2}$ to (3), we have $\|x - z^*\| < \|x - y\|$, which conflicts with $y = \mathcal{P}_C[x]$.

Next we prove if $y = \mathcal{P}_C[x]$ then $\langle z - y, x - y \rangle \leq 0$ for any $z \in C$ then $y = \mathcal{P}_C[x]$. We notice that $||x - z||^2 = ||(x - y) - (z - y)||^2 = ||x - y||^2 + ||z - y||^2 - 2\langle x - y, z - y \rangle$ for any $z \in C$. With $\langle x - y, z - y \rangle \leq 0$, we have $||x - z|| \geq ||x - y||$. Since z is arbitrary, we conclude that $y = \mathcal{P}_C[x]$.

Lemma 2.3. Let $C \subseteq \mathbb{R}^d$ be a closed convex set, then $\|\mathcal{P}_C[x] - \mathcal{P}_C[y]\| \leq \|x - y\|$ for any $x, y \in \mathbb{R}^d$.

Proof. We first notice that

$$||x - y||^{2} = ||(x - \mathcal{P}_{C}[x] + \mathcal{P}_{C}[y] - y) + (\mathcal{P}_{C}[x] - \mathcal{P}_{C}[y])||^{2}$$

$$= ||x - \mathcal{P}_{C}[x] + \mathcal{P}_{C}[y] - y||^{2} + ||\mathcal{P}_{C}[x] - \mathcal{P}_{C}[y]||^{2}$$

$$+ 2\langle x - \mathcal{P}_{C}[x] + \mathcal{P}_{C}[y] - y, \mathcal{P}_{C}[x] - \mathcal{P}_{C}[y]\rangle.$$

$$= ||x - \mathcal{P}_{C}[x] + \mathcal{P}_{C}[y] - y||^{2} + ||\mathcal{P}_{C}[x] - \mathcal{P}_{C}[y]||^{2}$$

$$- 2\langle y - \mathcal{P}_{C}[y], \mathcal{P}_{C}[x] - \mathcal{P}_{C}[y]\rangle - 2\langle x - \mathcal{P}_{C}[x], \mathcal{P}_{C}[y] - \mathcal{P}_{C}[x]\rangle. \tag{4}$$

From Lemma 2.2, we know

$$\langle y - \mathcal{P}_C[y], \mathcal{P}_C[x] - \mathcal{P}_C[y] \rangle \le 0, \qquad \langle x - \mathcal{P}_C[x], \mathcal{P}_C[y] - \mathcal{P}_C[x] \rangle \le 0.$$

Substituting the above inequalities to (4), we reach $||x - y||^2 \ge ||\mathcal{P}_C[x] - \mathcal{P}_C[y]||^2$.

3 Examples of projections

- Box: $C = [\eta_1, \eta_2]^N$, $\forall x \in \mathbb{R}^N$, $(\mathcal{P}_C[x])_i = (\max\{\eta_1, \min\{x_i, \eta_2\}\})$, $i = 1, \dots, N$.
- Hyperplane: $C = \{x \mid u^{\top}x = \eta, u \in \mathbb{R}^N, \eta \in \mathbb{R}\}, \forall x \in \mathbb{R}^N, \mathcal{P}_C[x] = x + \frac{\eta u^{\top}x}{\|u\|_2^2}u$.

4 Projected gradient descent

For optimization problem 1, given any arbitrary initialization variable $x_0 \in \mathcal{X}$, projected gradient descent iterates as follows

$$y_{k+1} = x_k - \gamma \nabla f(x_k), \tag{5a}$$

$$x_{k+1} = \mathcal{P}_{\mathcal{X}}[y_{k+1}], \quad \forall k = 0, 1, 2, \dots$$
 (5b)

where γ is the learning rate.

5 Convergence analysis

5.1 Smooth and generally convex problem

Lemma 5.1. Suppose f(x) is L-smooth. If $\gamma = \frac{1}{L}$, then the sequence generated by projected gradient descent (5) with arbitrary $x_0 \in \mathcal{X}$ satisfies

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_{k+1} - x_{k+1}\|^2, \quad k = 0, 1, 2, \dots$$

Proof. Since f(x) is L-smooth, it holds that

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

$$\stackrel{\text{(5a)}}{=} f(x_k) - L \langle y_{k+1} - x_k, x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

$$= f(x_k) - \frac{L}{2} (\|y_{k+1} - x_k\|^2 + \|x_{k+1} - x_k\|^2 - \|y_{k+1} - x_{k+1}\|^2) + \frac{L}{2} \|x_{k+1} - x_k\|^2$$

$$= f(x_k) - \frac{L}{2} \|y_{k+1} - x_k\|^2 + \frac{L}{2} \|y_{k+1} - x_{k+1}\|^2$$

$$= f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_{k+1} - x_{k+1}\|^2.$$

Lemma 5.2. Suppose f(x) is L-smooth. If $\gamma = \frac{1}{L}$, then the sequence generated by projected gradient descent (5) with arbitrary $x_0 \in \mathcal{X}$ satisfies

$$f(x_{k+1}) \le f(x_k) - \frac{L}{2} ||x_{k+1} - x_k||^2, \quad k = 0, 1, 2, \dots$$

Proof. From Lemma 2.2, we have

$$\mathcal{P}_{\mathcal{X}}[x_{k} - \gamma \nabla f(x_{k})] = x_{k+1}$$

$$\Rightarrow \langle (x_{k} - \gamma \nabla f(x_{k})) - x_{k+1}, x_{k} - x_{k+1} \rangle \leq 0$$

$$\Rightarrow \|x_{k+1} - x_{k}\|^{2} + \langle \gamma \nabla f(x_{k}), x_{k+1} - x_{k} \rangle \leq 0$$

$$\Rightarrow \langle \nabla f(x_{k}), x_{k+1} - x_{k} \rangle \leq -\frac{1}{\gamma} \|x_{k+1} - x_{k}\|^{2} = -L \|x_{k+1} - x_{k}\|^{2}$$
(6)

Since f(x) is L-smooth, we have

$$f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2$$

$$\stackrel{(6)}{=} f(x_k) - \frac{L}{2} ||x_{k+1} - x_k||^2$$
(7)

Theorem 5.3. Suppose f(x) is L-smooth. If $\gamma = \frac{1}{L}$, then the sequence generated by projected gradient descent (5) with arbitrary $x_0 \in \mathcal{X}$ satisfies

$$f(x_K) - f(x^*) \le \frac{L}{2K} ||x_0 - x^*||^2, \quad K > 0.$$

Proof. First, we have

$$\langle \nabla f(x_k), x_k - x^* \rangle = \frac{1}{2\gamma} (\gamma^2 \|\nabla f(x_k)\|^2 + \|x_k - x^*\|^2 - \|y_{k+1} - x^*\|^2). \tag{8}$$

From Theorem 2.2, it holds that

$$\langle y_{k+1} - x_{k+1}, x^* - x_{k+1} \rangle \le 0,$$

which leads to

$$||x_{k+1} - x^*||^2 + ||y_{k+1} - x_{k+1}||^2 \le ||y_{k+1} - x^*||^2.$$
(9)

Substituting 9 into 8, we have

$$\langle \nabla f(x_k), x_k - x^* \rangle \le \frac{1}{2\gamma} (\gamma^2 \|\nabla f(x_k)\|^2 + \|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 - \|y_{k+1} - x_{k+1}\|^2). \tag{10}$$

Then,

$$\sum_{k=0}^{K-1} (f(x_k) - f(x^*))$$

$$\leq \sum_{k=0}^{K-1} \langle \nabla f(x_k), x_k - x^* \rangle$$

$$\leq \frac{1}{2L} \sum_{k=0}^{K-1} ||\nabla f(x_k)||^2 + \frac{L}{2} ||x_0 - x^*||^2 - \frac{L}{2} \sum_{k=0}^{K-1} ||y_{k+1} - x_{k+1}||^2.$$
(11)

From Lemma 5.1, we have

$$\frac{1}{2L} \sum_{k=0}^{K-1} \|\nabla f(x_k)\|^2 \le \sum_{k=0}^{K-1} (f(x_k) - f(x_{k+1}) + \frac{L}{2} \|y_{k+1} - x_{k+1}\|^2)
= f(x_0) - f(x_K) + \frac{L}{2} \sum_{k=0}^{K-1} \|y_{k+1} - x_{k+1}\|^2.$$

Plugging this into 11, we have

$$\sum_{k=1}^{K} (f(x_k) - f(x^*)) \le \frac{L}{2} ||x_0 - x^*||^2.$$

Using the Lemma 5.2, we complete the proof.

5.2 Smooth and strongly convex problem

Theorem 5.4. Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a closed convex set, $f: \mathcal{X} \to \mathbb{R}$ be differentiable, L-smooth and μ -strongly convex. If $\gamma = \frac{1}{L}$, projected gradient descent 5 with arbitrary $x_0 \in \mathcal{X}$ satisfies

$$||x_K - x^*||^2 \le (1 - \frac{\mu}{L})^K ||x_0 - x^*||^2, \quad K > 0.$$

Proof.

$$f(x_{k}) - f(x^{*})$$

$$\leq \langle \nabla f(x_{k}), x_{k} - x^{*} \rangle - \frac{\mu}{2} \|x_{k} - x^{*}\|^{2}$$

$$\leq \frac{1}{2\gamma} (\gamma^{2} \|\nabla f(x_{k})\|^{2} + \|x_{k} - x^{*}\|^{2} - \|x_{k+1} - x^{*}\|^{2} - \|y_{k+1} - x_{k+1}\|^{2}) - \frac{\mu}{2} \|x_{k} - x^{*}\|^{2}, \quad (12)$$

where the first inequality is from the strongly convex property and the last inequality is from 10. 12 leads to

$$||x_{k+1} - x^*||^2 \le 2\gamma (f(x^*) - f(x_k)) + \gamma^2 ||\nabla f(x_k)||^2 - ||y_{k+1} - x_{k+1}||^2 + (1 - \gamma\mu)||x_k - x^*||^2.$$
(13)

Using Lemma 5.1 and Lemma 5.2, we have

$$f(x^*) - f(x_k) \le f(x_{k+1}) - f(x_k) \le -\frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|y_{k+1} - x_{k+1}\|^2.$$
 (14)

Substituting 14 into 13, we have

$$||x_{k+1} - x^*||^2 \le (1 - \frac{\mu}{L})||x_k - x^*||^2,$$

which completes the proof.

Remark: In Theorem 5.4, if we suppose f is differentiable, L-smooth and μ -strongly convex

on \mathbb{R}^d , then the result can be strengthened as

$$||x_K - x^*|| \le (1 - \frac{\mu}{L})^K ||x_0 - x^*||, \quad K > 0.$$

The proof can be found in chap 4 Theorem 5.7.