

Diagnostic Techniques for Condition Monitoring of Insulation System of Power ApparatusComputational Intelligence & Discrete Mathematical Tools

Dr. S. Venkatesh
School of Electrical & Electronics Engineering
SASTRA UNIVERSITY

CONTENTS

- NEED FOR PD PATTERN RECOGNITION
- SURVEY OF AI AND ASSOCIATED TECHNIQUES USED IN PD INSULATION DIAGNOSIS
- MOTIVATION FOR CARRYING OUT THE RESEARCH
- GOALS & OBJECTIVES OF THE RESEARCH
- FRAMEWORK FOR DEVELOPMENT OF HYBRID CLASSIFIER VERIONS FOR MULTIPLE SOURCE AND DYNAMIC PD PATTERN RECOGNITION AND DIAGNOSIS
- RESEARCH STUDIES FOR DEVELOPMENT OF HYBRID CLASSIFIER VERSIONS FOR MULTI-SOURCE AND DYNAMIC PD PATTERN RECOGNITION:
 - LABORATORY TESTING- BENCHMARK MODELS & INDUSTRIAL OBJECTS
 - DIGITAL PD MEASUREMENT, ACQUISITION AND PRE-PROCESSING
 - SALIENT ASPECTS OF PNN VERSIONS AND CLUSTERING ALGORITHMS
 - OBSERVATIONS, ANALYSIS & RESULTS
- INFERENCES & CONCLUSIONS

NEED FOR PD PATTERN RECOGNITION

- **Power utilities and industries have** installed on-line PD diagnostic **system** to assess insulation of power apparatus
 - **Caters to risk assessment** rather than providing solutions identification of PD source to
- Identification of sources of PD is a **fundamental yet vital step** towards successful diagnosis of insulation systems:
 - Various defects influence reliability of insulation system in unique ways
 - **Comparison of PD** signatures between reference (benchmark) and experimental patterns is diffused largely
 - Multiple PD sources are usually encountered during real-time/ practical measurement

Typical PD Pattern Representation on A. Elliptical and B. Sinusoidal Base

- **Treeing in Coaxial Configuration**
- **Air Corona** D.
- **Surface Discharge**
- **Discharge at Dielectric Interface**

MOTIVATION FOR RESEARCH

FROM THE PERSPECTIVE OF CLUSTERING/ AI ALGORITHMS:

A major classical work in the field of data mining and AI has summarized the need for multifarious approaches for successful pattern recognition

	tor mui	titarious appr	oacnes for success	ful pattern recognition	on		
Research Paper	Authors & Journal		f Various Clustering for Pattern Recognition	Features/ Characteristics	Type of Algorithm utilized in this research		
Survey of	Rui Xu &	Partition	Square Error Based	1. Tends to build cluster	Versions of Vector Quantization		
Clustering Algorithms	Donald Wunsch	Methods		of proper convex shape 2. relates dense	Versions of K-means		
	IEEE Trans. on Neural		Density Estimation	connected components that are flexible in terms of their shape	Gaussian Mixture Density with EM-ML algorithms		
	Networks, Vol.16,	Graph	Cluster affinity search	Topological structure of data	Hyper-graph (HG)		
	No. 3, 2005	Theoretic Methods	Cluster identification via connectivity kernels	thro' binary relations; Learning thro' HG properties instead of Kernel functions.			
		AI, NN and	ANN	Supervised and	LVQ Versions		
		Evolutionary	Evolutionary	Unsupervised learning techniques	Orthogonal Least Square		
		Methods	Constraint Based		EM-ML algorithms		
		Sequence	Sequence Similarity	Dynamic behaviour	Stationary and Non-		
		Data	Indirect Sequence	with time constraints	stationary Continuous		
			Statistical Sequence		Density HMM Versions		
		High	Subspace Clustering	Attribute and Domain	Principal Component Analysis		
		Dimensionality	Projection Techniques	decomposition	with the following: 1. Discrete Wavelet		
			Co-clustering Techniques		Transformation- Diebuchies 2. S- Transform and its variants		

GOALS & OBJECTIVES OF PROPOSED RESEARCH

GOAL:

- DEVELOP HYBRID NEURAL NETWORK CLASSIFIER VERSIONS FOR DIAGNOSIS OF INSULATION SYSTEMS
 - Continuous Density HMM- PNN Versions
 - S- Transform based PNN Versions
 - Hypergraph based clustering with PNN Versions

OBJECTIVES:

- Provide solution for diagnosis of large database exhibiting the following characteristics:
 - High Dimensionality Input Data (Curse of Dimensionality)
 - Over fitting of Training Database
 - Fully Overlapped patterns
- DEVELOP CLUSTERING ALGORITHMS FOR TRAINING NNs:
 - Sequence Similarity based Clustering:
 - Continuous Density Hidden Markov Model (CDHMM):
 - Stationary & Non-Stationary Versions
 - High Dimensionality Clustering:
 - Discrete S- Transform: Generalized S- Transform (ST) & Hyperbolic- ST (HST)
 - Graph Theoretic Clustering:
 - Properties of Hypergraph for noise removal, segmentation and edge detection
 - Helly, Bonded Sets, Duality, Conformality etc

EXPERIMENTAL STUDIES FOR DEVELOPMENT OF HYBRID PNN CLASSIFIERS FOR MULTIPLE SOURCE AND DYNAMIC PD PATTERN RECOGNITION

EXPERIMENTATION OF MULTIPLE SOURCE PD PATTERN RECOGNITION:

- Benchmark Laboratory Models replicating:
 - Electrode bounded cavity (single/ multiple)
 - Air- Corona
 - Oil- Corona
 - Electrode bounded cavity with Air- Corona
 - Surface Discharge in Air and Oil
 - Electrical Treeing
- Cross Linked Polyethylene (XLPE) Cables simulating:
 - Electrode Bounded Cavity (single)
 - Gliding (surface) discharges
 - Multiple Source Discharges- Cavity with Surface Discharges
- Pollution Initiated Flashover Studies in Ceramic Insulators
 - Varying Salinities and varying sources of surface discharges:
 - Cap, pin, ribs & pin-cap
- Bushing in Distribution Transformer simulating:
 - Gliding discharges due to pollution, Corona discharges and Partially overlapped multiple sources (Gliding discharges with Air-Corona)

5

FABRICATION OF BENCHMARK LABORATORY MODELS DEPICTING VARIOUS PD SOURCES

Perspex
NonMetallic
Chamber

10mm dia, polished
Sharp Needle

Tip Radius
1000 µm

Earth
Electrode

HV Terminal

60mm Ø,
8mm thk

80mm Ø,
12mm thk

2mm
thk
nee dle

Fig. 1: Electrode Bounded Cavity

Fig. 4: Oil- Corona

Fig. 5: Electrode Bounded Cavity with Air- Corona

Fig. 6: Multiple Electrode Bounded Cavities

BENCHMARK LABORATORY MODELS & REAL-TIME OBJECTS DEPICTING VARIOUS PD SOURCES

Fig. 7: Electrical Treeing

Fig. 8: Cable Sample replicating Gliding Discharges due to Missing Semi-Conductive Layer

Fig. 9: Cable simulating Electrode-bounded Cavity

Fig. 10: Cable Sample depicting Multi-Source (Electrode-bounded Cavity with Surface Discharge)

PHOTOGRAPH OF BENCHMARK LABORATORY MODELS REPLICATING DIFFERENT PD SOURCES

Perspex & Cast Resin Models replicating Cavity Discharges

Model replicating Electrode Bounded Cavity overlapped on Air-Corona Discharges

Air & Oil Corona Model with an 85° apex angle electrode on HV bus

Model replicating Multiple Source Electrode Bounded Cavity

Model replicating Multiple Source Electrode Bounded Cavity with Surface Discharges

Model replicating Needle-Plane Electrode Configuration for simulating Electrical Treeing

TYPICAL EXPERIMENTAL PD TEST SETUP AND ACQUISITION SYSTEM

PD Test Setup.wmv

Calibration & Measurement.wmv

Measurement and Data Acquisition for Laboratory Models Simulating Single & Multiple Source PD Patterns

(A) Typical PD Signatures of Air Corona Discharges at Varying Applied Voltages

(B) PD Signatures of Surface Discharges in Air (gliding discharges) at Varying Applied Voltages

(C) PD Signatures of Electrode Bounded Cavity Discharges at Varying Applied Voltages

(D) PD Signatures of Multiple Source PD (Electrode Bounded Cavity with Air Corona) at Varying Applied Voltages

EXPERIMENTAL PD TEST SETUP – ELECTRICAL TREEING

1.

PHOTOGRAPHS OF VARIOUS BENCHMARK LABORATORY MODELS REPLICATING ELECTRICAL TREEING

Photographs of Top and Cross Sectional View of Branch-Bush Treeing-12mm thick perspex

Photographs of Branch Treeing initiation and propagation in 12mm thick perspex

Photographs of Branch-tree initiation and breakdown in 20mm thick perspex

EXPERIMENTAL PD TEST SETUP- PREDICTION OF FLASHOVER DUE TO POLLUTION SEVERITY

Current Limiting Resistors

PD and leakage current waveforms during Pollution **Performance Test on Insulators**

Scintillations at Cap

Arcing at Cap and Pin

Flashover Initiation

A. Applied voltage 16.6kV

B. Applied voltage of 24.1 kV

ACQUISITION OF PD PATTERNS & PREPROCESSING/ FEATURE EXTRACTION

- Implemented the following coding using MATLAB 6.1, Release 12:
 - PNN Modular Ensemble Versions for PD Pattern recognition after due verification (Fisher's Iris Plant Database) and Validation (Partial Test Set and One- Hold-One- Out)
 - Preprocessing/ Feature Extraction techniques for obtaining PD fingerprints

SI. No.	Preprocessing/ Feature Extraction Technique	Phase Window	Type of PD Fingerprint
1.	Measures Based on Maximum & Minimum Values	30° and 10°	φ-q _{max} -n; φ-q _{min} -n; φ-q-n _{max} ; φ-q-n _{min} ;
2.	Measures Based on Central Tendency and Dispersion	30° and 10°	q _{mean-} q _{median} -q _{mode}
3.	Measures Based on Statistical Moments	30° and 10°	q _{range-} q _{dev} -q _{qar.dev}
4.	Measures Based on Mean Values (Types)	30° and 10°	q _{hm} - q _{gm} -q _{am} -q _{rms}
5.	Two Pass Split Window Scheme (TPSW)	30° and 10°	q-n

SEQUENCE SIMILARITY BASED TECHNIQUE STATIONARY & NON-STATIONARY VERSIONS OF HIDDEN MARKOV MODELS

COMPARISON OF ANN & HMM

CHARACTERSTICS & SPECIFIC ASPECTS	NEURAL NETWORKS	HIDDEN MARKOV MODELS				
	 Provide discrimination based learning capabilities 	 Good adaptation in dealing with time-sequence structures 				
MERITS	 No need for assumption of statistical distribution of datasets 	 Capable in dealing with uncertainty 				
LIMITATIONS	 No special mechanism to deal with sequential nature of signals 	 No global contextual information is taken into account 				
	 No 'unified theory' which explains the choice of architecture 	 Speed during discrimination for substantial datasets may be a constraint 				
TRAINING	Separate model must be trained for each class	Whole dataset used for training				
TESTING	 Produces usually binary decisions 	 Produces a maximum likelihood for each class in addition to classification decision 				
SCALABILITY	Addition of a new class/ category implies retraining of the entire network	Addition of a class results in a new HMM which necessitates training of only that category				

•

SUMMARY OF KEY ASPECTS OF HYBRID HMM-PNN

- IHMM is a doubly stochastic process consisting of an underlying stochastic process that is not directly observable
 - May be visualized through another set of stochastic processes that produces a sequence of observations
 - Model characterized by a collection of hidden states connected by transitions
- Comprises two types of model representations
 - Ergodic (fully connected) Model: Every state can be reached from every other state of the model
 - Non- ergodic (Left-Right) Model: State index may increase as time increases (states proceed from left to right)
- Five state labels are utilized in this research

PD patterns are best characterized by two zones -"discharge pulses" and "background"

■ Model denoted by $\lambda = (A, B, \Pi)$

PD Pattern Recognition
and Classification

Classification using PNN: Trained weight vectors obtained from LVQ 2 become the nodes pertaining to the pattern layer

using LVQ 2 Clustering Algorithm

Performance of Hybrid CDHMM-PNN for Multiple Source PD Laboratory Models

Feature Extraction Scheme	Phase Window	No. of Tuples	Training Patterns	Total Number of	Classification Hybrid CDHMM Versions (%)			
Scheme				Testing Patterns	Stationary	Non- Stationary		
Measures based on Maximum Value	φ-q _{max} -n (10°)	36	108		94.8	96.8		
Measures based on Minimum	φ-q _{min} -n (10°)	36	108		94.2	95.5		
Measures based on Types of Mean Values	AM-GM-HM- RM (10°)	36	108	400	94.7	96.2		
Measures based on Mean- Slope-Angle	Mean- Slope- Angle (10°)	36	108		92.95	97.44		

Comparison of Optimal State Sequence in Stationary and Non-stationary Versions of CDHMM- Case Study 1

PD														(Opt	ima l	Stat	te Se	que	nce												
Source						St	ation	nary	C	DHN	ΙM											N	on-st	tatio	na ry	CD	ΗM	M				
	1	1	4	4	Τ	1	1/3	Т	3	5	2	5	П	2	1	1	1	3	l	1/3	3	2	3	2	1	3	Ţ	4	5	4	2	1
Ele et un de																																
Electro de Boun de d	1	1	4	1	Т	1/4	1	T	1/2	2/3	3	5	П	3	1	ŀ	1	2	1/4	1	3	1	1/4	4	1	1/3	3	3/4	3	5	3	2
Cavity	1	1/4	2	2/3	†	2/1	2/3	1	3	1	4/3	4/	5	3/4	3	1	1	1/2	4/5	2/3	2/1	3	1	4/3	4/5	4/3	3	3/4	3/2	2/1	1	-
	1	1/2	2	T	寸	5	2	5	Τ	. .	Τ	•	·	-	·	ŀ	3/1	2/4	4/1	5	2/1		1	2	5	1	2	5	1	5	l	-
	Ļ	144	4.05	Ļ,	_	4	1//4	L.,	4	٠,	+	_	_			<u></u>		1/0	4/2	115	٠,	4	+		2	,		10	_	,	,	
Air Corona	1	1/4	4/5	"	/4	1	1//4	4/5		4 2		5	3	l	,	l/4	1	1/2	4/1	4/5	1	1	2	1	3	1 '	1/5	4/3	2	5	l	
	1	1/4	4/5	2		2	1	2/4	1	4 4/:	7	4/3	3	3	5	2	1	2	2/4	2/5	3/2	2 2	3	1	1 /	2 4	4	5	3	5	3	1
Oil	1	1/3	3	Ī	3/5	T	3	-	•	Ŧ	•	- [7	·			1	2	ì	2	3	2 3	3 2	: 7	1 2	Ti	4	3	4	2	5	2
Corona	ľ	1/	3 3/	5	2	2/	5 2	1	4	2	•	·	ľ	Т	-		1	2	1/3	4/5	2	2/3	1	3	2	ì	2/3	3/5	3	4 2		1
	1	5/4	2	4	3	1	1/2	5/4	Τ	3/2	3	3	4	5	3	3/1	1	4/2	4/5	2	2/3	2	4	3	1	2	4/5	5	3	4	2	1
Electro de	1	4/1	4/2	2	5		5/1	2	T	5	•		-		·		1/3	2/4	1/2	3/5	5	1	1/3	3/5	5/2	5	1	5	1	1	٠	٠
Bounded Cavity	1	2	2/4	1	2		1/3	4	T	5	1	1/2	1		-		1	2	2/4	1/4	1/3	4/3	4	1	3/1	3/4	3	5	3	l	·	·
with Air Corona	1	2	3	4	5		3	4		5	3	1/4	2	3	1	•	1	2	4	5	4	5	4	5	2	5	4	5	4	1		- 21

Performance of Hybrid CDHMM-PNN during pollution studies in ceramic insulators

Feature Extraction Scheme	Phase Window	No. of Tuples	Training Patterns	Total Number of Testing Patterns	Sam	CDHMM Vei	rsions (%) in Pollution ance Studies Sample 3 (Salinity 57g/l)			
					Stationary	Non- Stationary	Stationary	Non- Stationary		
Measures based on Maximum Value	φ-q _{max} -n (10°)	36	60		90.5	92.67	94	95.5		
Measures based on Mean-Slope- Angle	Mean- slope- angle (10°)	36	60	200	91.6	94.4	95	96		

HIGH DIMENSIONALITY BASED TECHNIQUE VERSIONS OF S- TRANSFORM

1		1
1		7

STFT and wavelet transform

variable as well as multi-

resolution strategy

function

translation

Enables use of the frequency

Operates utilizing Exponential

Variables in the exponential

function are also scaled-down

addressed in a procedure that

Sample elements are scaled by

 $S[bT,0] = \frac{1}{P} \sum_{n=0}^{P-1} x \left[\frac{m}{PT} \right]$ for p=0.4

according to the sample

Frequency resolution is

sample size in addition to

allows extrapolation

COMPARISON OF WAVELET & S- TRANSFORMS	
	_

dilation of a basis function

parameter (fixed number of

Arbitrary Kernel- The mother

Initial kernels are necessary

frequency) analysis addressed

 $\psi\left(\frac{t-b}{a}\right)$ serves as changing

window of the sample signal

(shifting) parameter and "a" is

 $F(ix) = \sum_{n = -\infty}^{\infty} f\left(\frac{x}{N}\right) e^{\frac{isx}{N}} W_{\psi} f(a,b) = |a|^{-1/2} \iint f(x,t) \psi\left(\frac{t-b}{a}\right) dxdt \qquad S\left[bT, \frac{p}{PT}\right] = \sum_{m=0}^{P-1} x\left[\frac{m+p}{PT}\right] e^{\frac{-2\pi^2m^2}{p^2}} \frac{j2\pi mk}{e} for p \neq 0;$

where "b" is translation

the scaling parameter

Enables multi-resolution

and the primary wavelet

to be specifically defined

Multi-resolution (time-

functions act as dual:

(mother wavelet) with a scaling

CHARACTERSTICS/ FEATURES	FOURIER TRANSFORM	WAVELET TRANSFORM	S – TRANSFORM

into frequency

DOMAIN

KERNEL

NATURE OF ANALYSIS

WINDOWING/ **SIGNAL SAMPLING**

MATHEMATICAL

REPRESENTATION

components and

(particular case

and sine kernels)

Multi-resolution

provides excellent

frequency resolution

about time distribution

Exponential function

provides decomposition

of signal using cosine

analysis not addressed;

sampling does not exist

Limitation related to

time-variant signals

Windowing and

Does not describe

CHARACTERSTICS/ FEATURES	FOURIER TRANSFORM	WAVELET TRANSFORM	S – TRANSFORM
	 Decomposes signal 	 Decomposes signal based on 	• Intermediate step between

cycles/ scale)

studies

Flow Chart of
Discrete
S- Transform for
Multiple Source PD
Pattern Recognition

Comparison of Wavelet Transform-PNN & S Transform- PNN in Classifying Multiple Source PD

Classification Capability of Wavelet Transform-PNN

Feature	No. of	Total No. of	Total	Clas	sification Cap	ability (%))	
Vector	Tuples	Windows for	Number of	OPNN	APNN	LVQ2 Clustering		
		Statistically Extracted Features	PD Signatures	without Clustering	without Clustering	OPNN	APNN	
Daubechies	192	16	480	92	93.1	94.2	94.7	
Coefficients (Order 7 and Level 3)	264	9	480	90.2	91.3	92.3	93.1	

Classification Capability of S Transform-PNN

Total Number of	No. of	*		Taper Parameter		Total	Classification				
Classes for		_	(for HS	T)	Patterns	Number of	Hybrid S-	Transform			
Discrimination	ST-	HST-	$\mathbf{g}_{\mathbf{f}}$	$\mathbf{g}_{\mathbf{b}}$	for each	Testing	Variants with PNN (%)				
	PNN	PNN			Class	Patterns	ST-PNN	HST-PNN			
4 Classes (3 Single Source and 1 Multi-Source PD)	150	100	0.5	1.5	90		96.25	96.6			
5 Classes (3 Single Source and 2 Multi-Source PD)		200				480 for 4 Classes &	92	94			
4 Classes (3 Single Source and 1 Multi-Source PD)	500	40	0.5	1.5	90	600 for 5 Classes	96.3	99.79			
5 Classes (3 Single Source and 2 Multi-Source PD)	500	40			90		95.5	99.83			

Capability of Hybrid S-Transform PNN Variants in Classifying Multi-Source PD Signatures in 33kV XLPE Cable Samples

Total Number of Classes for Discrimination	No. of Tuples		Taper Parameter (for HST)		Training Patterns for each Class	Total Classification Number Hybrid Of S-Transfor Testing Variants with Patterns PNN (%)		orid nsform ts with
	ST- PNN	HST- PNN	$\mathbf{g}_{\mathbf{f}}$	$\mathbf{g}_{\mathbf{b}}$			ST- PNN	HST- PNN
4 Classes (3 Single Source and 1 Fully Overlapped Multi-Source)	150	40	0.5	1.5	90	480	95.25	96.67
4 Classes (3 Single Source and 1 Fully Overlapped Multi-Source)	150	40	0.5	1.5	90	600	94.5	96.17

Performance of Hybrid S-Transform PNN Variants in Classifying Multiple Source PD Signatures in 11kV Bushing of 11kV/ 415V Distribution Transformer

Total Number of Classes for Discrimination	No. of Tuples		Taper Parameter (for HST)		Training Patterns for each Class	Total Number of Testing Patterns	Classification Hybrid S-Transform Variants with PNN (%)	
	ST- PNN	HST- PNN	$\mathbf{g}_{\mathbf{f}}$	$\mathbf{g}_{\mathbf{b}}$			ST-PNN	HST- PNN
3 Classes (2 Single Source and 1 Partially Overlapped Multi-Source)	150	40	0.5	1.5	90	360	93.4	95.2
3 Classes (3 Single Source and 1 Partially Overlapped Multi-Source)	150	40	0.5	1.5	90	450	92	94.2

Analysis plot of HST Time-Frequency Amplitude Characteristics

Electrode bounded Cavity Discharges

There is a substantial increase in frequency at time points ranging from 20-30, while small variations are observed in the range 110-120.

Air Corona Discharges

Variations are observed with a considerably lower band of frequency during the time range varying from 22-38 and finer changes in the time period 122-130.

Electrode bounded Cavity Discharges

It is interesting to note that in the case of electrode bounded cavity with air corona (multiple-source) discharges, the complex non-stationary behaviour and overlapped characteristic of signature patterns is evident

GRAPH THEORETIC TECHNIQUE HYPERGRAPH BASED FEATURE EXTRACTION

RATIONALE BEHIND HYPER GRAPH APPROACH FOR CLUSTERING/ CENTER SELECTION

Hyper Graph (HG)

- Implementation of binary relationship between vertices.
- DOES NOT express simultaneously both geometry and topology relationship

Enhancement of Geometric notion of data

 Utilizes various distance metrics for building neighborhood, stars etc for geometric visibility

Focus on the topological aspects rather than the geometrical aspects such as contour, symmetry, homogeneity etc

Implements SET THEORETIC concepts for topological operations

- A graph G is a pair (V,E), where V is a set of vertices, and E is a set of edges between the vertices E = {(u,v) | u, v ε V}.
- All graphs will be considered as connected with no isolated vertex. We denote it by G = (V, E).
- Given a graph G, we denote by Γ (x) the neighborhood of a vertex x.

Hyper graph 'H' on a set S is a family
 (E_i)_{i∈I} of non-empty subsets of S called hyper edges with U E_i = S

 $E_{x_{1}} = \{x_{1}, x_{2}, x_{3}\}$ $E_{x_{2}} = \{x_{1}, x_{2}, x_{3}, x_{4}\}$ $E_{x_{3}} = \{x_{2}, x_{3}, x_{5}\}$ $E_{x_{4}} = \{x_{2}, x_{4}, x_{5}\}$ $E_{x_{5}} = \{x_{3}, x_{4}, x_{5}\}$

RATIONALE BEHIND HYPER GRAPH APPROACH FOR CLUSTERING/ CENTER SELECTION

- Feature detail preservation capability
- Ability to cluster data
- Capacity to handle noisy data
- Reduction of computational complexity (processes only star centers of HG)
- Efficient algorithms to process/detect edges and sharp/ overlapped boundaries, identifying homogeneous regions etc.

NEIGHBORHOOD HYPERGRAPH

- Given a graph G, the hyper graph (H_G) having vertices of G and neighbourhood of these vertices as hyper-edges (including these vertices) is called the neighbourhood HG of G.
- To each graph we can associate a neighbourhood hyper graph:

$$H_G = \{ S, (E_G = \{ x \} \cup \Gamma(x) \}.$$

NEIGHBOURHOOD HG

INTERSECTING FAMILIES AND HELLY PROPERTY

- A family of hyper edges from this family intersects two by two. Distinguishes two types of interesting families:
 - Intersecting family with an empty intersection
 - Intersecting families with a non-empty intersection (belongs to a star)

Classification Capability of HG based PNN Version for Moderate Dataset PD Signature

Type of Feature	Nu	mber of Opti HG A	Training Patterns	Classification (%)		
	Electrode bounded cavity	Air	Oil	Multiple Source		
φ-q _{max} -n (30°)	8kV-26 10kV-13 12kV-7	7kV-17 9kV-15 11kV-8	15.04kV-18 17.36kV- 17 20.08kV- 14	6.9kV- 3 8kV- 10 10kV- 17	165	98
φ-q _{max} -n (10°)	8kV- 6 10kV-16 12kV-10	7kV-8 9kV-12 11kV-10	15.04kV-15 17.36kV- 16 20.08kV- 14	6.9kV- 7 8kV- 12 10kV- 17	170	96.67
φ-q _{min} -n (10°)	8kV-12 10kV-18 12kV-8	7kV-16 9kV-18 11kV-17	15.04kV-12 17.36kV- 13 20.08kV- 15	6.9kV- 18 8kV- 21 10kV- 17	188	94.3
AM-GM- HM-RM (10°)	8kV-9 10kV-26 12kV-9	7kV-15 9kV-18 11kV-17	15.04kV-17 17.36kV- 17 20.08kV- 19	6.9kV- 18 8kV- 19 10kV- 15	190	91.3

pseudo code for viva voce\HYPERGRAPHvoid10 kvtensam.m

FOR GAUSSIAN MIXTURE DENSITY KERNEL NEURAL NETWORKS EM-ML ALGORITHM EM-ML WITH JACKNIFE ALGORITHM

FUNDAMENTAL CONCEPTS OF HRPNN

HRPNN CONCEPTS:

- Over-training and its impact due to individual mean vectors.
 - Desirable to employ a smaller set of kernel functions.
- Expectation Maximization (EM) algorithm to derive an optimal Maximum Likelihood (ML) training algorithm for Gaussian mixture PNN for training two fundamental kinds of Gaussian PNNs:
 - Homoscedastic PNN-"same scatter"
 - Heteroscedastic PNN-"different scatter"
- HRPNN allows having a smaller set of Gaussian function with different variance (scatter) enabling a much more parsimonious PNN.

MATHEMATICAL ASPECTS OF HETEROSCEDASTIC PNN

- First layer accepts input patterns.
- Second layer nodes are divided into k groups, one for each class.
 - Also called as a Pattern Layer or Exemplar Layer
 - The ith kernel in the jth group, is defined as a Gaussian basis function

$$\mathbf{p}_{i,j}(x) = \frac{1}{\left(2 \prod \sigma_{i,j}^{2}\right)^{\frac{d}{2}}} \exp\left(-\frac{\|x - c_{i,j}\|^{2}}{2 \prod \sigma_{i,j}^{2}}\right)$$

where $c_{i,j}$ is the centre or the mean vector and $\sigma_{i,j}^2$ is the positive variance parameter or smoothening parameter.

ullet The third layer has k nodes and estimates a class conditional PDF f_j using a mixture of Gaussian kernels,

$$f_j(x) = \sum_{i=1}^{M_j} \beta_{i,j} p_{i,j}(x)$$

where $M_{i,j}$ number of pattern units for class j and $\beta_{i,j}$ positive mixing coefficient satisfying the condition Σ $\beta_{i,j} = 1$, $1 \le j \le k$.

MATHEMATICAL ASPECTS OF HETEROSCEDASTIC PNN

Fourth layer of the HRPNN makes the decision according to the equation:

$$g_{Bayes}(x) = \arg(\max_{1 \le j \le K} \{\alpha_j f_j(x)\})$$

 α_{i} refers to the class a-priori probability.

EXPECTATION MAXIMIZATION (EM) ALGORITHM:

E-STEP:

- Computes expected value of the 'unobserved' data using the current parameter estimate and the observed data.
- At each iteration computes the weights for $1 \le m \le M_i$, $1 \le n \le N_i$ and $1 \le i \le K$:

$$w_{m,i}^{(k)}(x_{n,i}) = \frac{\beta_{m,i} | {}^{(k)} p_{m,i}^{(k)}(x_{n,i})}{\sum_{l=1}^{M_i} \beta_{l,i} | {}^{(k)} p_{l,i}^{(k)}(x_{n,i})}$$

MATHEMATICAL ASPECTS

Contd...

$$p_{l,i}^{(k)}(x_{n,i}) = \frac{1}{\left(2 \prod \sigma_{l,i}^2 \Big|^{(k)}\right)^{\frac{d}{2}}} \exp\left(\frac{-\left\|x_{n,i} - c_{l,i}\right\|^{(k)}}{2 \prod \sigma_{l,i}^2 \Big|^{(k)}}\right)$$

M-step:

- Forms a likelihood function and determines an ML estimate of the parameter.
- Updates the parameters for $1 \le m \le M_i$, $1 \le n \le N_i$ and $1 \le i \le K$:

$$c_{m,i} \Big|^{(k+1)} = \frac{\sum_{n=1}^{N_i} w_{m,i}^{(k)}(x_{n,i}) x_{n,i}}{\sum_{n=1}^{N_i} w_{m,i}^{(k)}(x_{n,i})}$$

$$\sigma_{m,i}^{2} = \frac{\sum_{m=1}^{N_{i}} w_{m,i}^{(k)}(x_{n,i}) \|x_{n,i} - c_{m,i}\|}{d\sum_{m=1}^{N_{i}} w_{m,i}^{(k)}(x_{n,i})}$$

CLASSIFICATION CAPABILITY OF HOPNN AND HRPNN- MULTIPLE SOURCE PD

Input Feature	No. of	Total No.	•	nosen Initial Ce Sets for each cla	Classification Capability EM-ML Algorithm (%)		
	Tuples	of Testing Datasets	and ECC (Se	et 1 only)	No. of Iterations	HOPNN	HRPNN
			HOPNN	HRPNN			
φ-q _{max} -n (30°)	36	621	24,22, 20,21	20,18, 18,20	28	88.6	89.5
φ-q _{min} -n (30°)	36	621	22,25, 24,18	18,17, 16,18	30	87.6	87.9
φ-q _{max} -n (10°)	108	624	12,14, 15, 14	10,12, 13,9	36	90.2	91.3
φ-q _{min} -n (10°)	108	624	16,11, 16,12	13,11, 9,8	43	88.2	88.5
Traditional Statistical Operators (30°)	48	621	14,16, 14,10	12,15, 11,10	11	94.1	94.6
Traditional Statistical Operators (10°)	144	621	12,14, 18,11	14,11, 15,13	9	94.8	95.1

Input Data:

- 1. Number of Classes (R)
 - Dimensionality of Input Data (d)
 - 3. Number of Patterns of Class (E)
 - 4. Number of Training Samples (N)
 - Input for Testing (x)

ML with EM Algorithm:

Obtain the Maximum Likelihood (ML) Estimate of the Weights, Centers and Variance of each Class (using Lagrangier Multiplier Operator):

1. Weight (w):
$$w_{F,i}^{R}(x_{n,i}) = \frac{\beta_{F,i}|^{(R)} p_{F,i}^{(R)}(x_{n,i})}{\sum_{m=1}^{E_{i}} \beta_{m,i}|^{(R)} p_{m,i}^{(R)}(x_{n,i})}$$

2. Center (c):
$$c_{g,i}|_{(R+1)} = \frac{\sum_{s=1}^{N_i} w_{g,i}^R(x_{s,i}) x_{s,i}}{\sum_{s=1}^{N_i} w_{g,i}^R(x_{s,i})}$$

3. Variance (c):
$$\sigma_{S,i}^2|^{(R+1)} = \frac{\sum_{s_{n-1}}^{N_i} w_{S,i}^R(x_{n,i}) \|x_{n,i} - c_{S,i}\|^{(R)}}{d \sum_{s_{n-1}}^{N_i} w_{S,i}^R(x_{n,i})}^2$$

4. Mixing Coefficient (B):
$$\beta_{F,i}|^{(R+1)} = \frac{1}{N_i} \sum_{i,j=1}^{N_i} w_{F,i}^{R}(x_{i,j})$$

Jack-Knife Procedure:

Computing the Pseudo Value Estimates of Centers, Variance and mixing Coefficient:

1. Pseudo Estimate for Center:

$$A. c_{Fj} \Big|^{(R+1)} = \frac{\sum_{N=1}^{N_i} w_{Fj}^R (x_{Nj}) x_{Nj}}{\sum_{N=1}^{N_i} w_{Fj}^R (x_{Nj})}$$

$$B. c_{g,j} \Big|_{-j}^{(R+1)} = \frac{\sum_{i,n-1,n-j}^{N_i} w_{g,i}^R (x_{n,i}) x_{n,j}}{\sum_{i,n-1,n-j}^{N_i} w_{g,i}^R (x_{n,i})}, 1 \le j \le N_j$$

C.
$$c_{IJ}^{\uparrow}|^{(R+1)} = N_i c_{IJ}|^{(R+1)} - \frac{N_i - 1}{N_i} \sum_{j=1}^{N_i} c_{IJ}|^{(R+1)}_{-j}$$

Ċ

Training Algorithm for Robust Heteroscedastic Probabilistic Neural Network Using EM-ML with Jack-knife Procedure

pseudo code for viva voce\Rhpnn-autopdf

2. Pseudo Estimate for Variance

A.
$$\sigma_{S,i}^2|^{(R+1)} = \frac{\sum_{n=1}^{N_i} w_{S,i}^R(x_{n,i}) \|x_{n,i} - \hat{c}_{S,i}\|^{(R)}}{d \sum_{n=1}^{N_i} w_{S,i}^R(x_{n,i})}$$

B.
$$\sigma_{Z,i}^2\Big|_{-j}^{(R+1)} = \frac{\sum_{N=1,N=j}^{N_i} w_{Z,i}^R(x_{N,i}) \Big\| x_{N,i} - \hat{c}_{Z,i} \Big|_{-j}^{(R)} \Big\|^2}{d \sum_{N=1,N=j}^{N_i} w_{Z,i}^R(x_{N,i})}$$

$$\text{C. } \sigma_{E,i}^2 \left|^{(R+1)} = N_i \sigma_{E,i}^2 \right|^{(R+1)} - \frac{N_i - 1}{N_i} \sum_{j=1}^{N_i} \sigma_{E,i}^2 \left|^{(R+1)}_{-j} \right|^{(R+1)}$$

3. Pseudo Estimate for Mixing Coefficient:

A.
$$\beta_{Fj}|_{(R*1)} = \frac{1}{N_i} \sum_{n=1}^{N_i} w_{F,j}^R(x_{nj})$$

B.
$$\beta_{g,j}\Big|_{-j}^{(R+1)} = \frac{1}{N_i - 1} \sum_{n=1,n\neq j}^{N_i} w_{g,j}^R (x_{n,j})_1 \le j \le N_i$$

C.
$$\beta_{g,j}\Big|_{-j}^{(R+1)} = \frac{1}{N_i - 1} \sum_{n=1, n \neq j}^{N_i} w_{g,i}^R(x_{n,j}) 1 \le j \le N_i$$

$$\text{D. } \hat{\beta_{g,j}}\Big|^{(R+1)} = N_i \beta_{g,j} \Big|^{(R+1)} - \frac{N_i - 1}{N_i} \sum_{j=1}^{N_i} \beta_{g,j} \Big|^{(R+1)}_{-j}$$

Compute Probability Density Function Estimate:

$$p_{S,j}^{(R)}\left(\mathbf{x}_{n,j}\right) = \frac{1}{\left(2\Pi\sigma_{S,j}^{2}\left|^{(R)}\right)^{d/2}}\exp\left[\frac{-\left\|\mathbf{x}_{n,j} - c_{S,j}\right|^{(R)}\right\|^{2}}{2\sigma_{S,j}^{2}\left|^{(R)}}\right]$$

Class Conditional Probability Density Function Estimate:

$$f_{j}(x) = \sum_{i=1}^{E} \beta_{i,j} p_{i,j}(x) \le j \le R$$

Bayes Classifier Decision:

$$O_{Bayes}(x) = \arg \left(\max_{1 \le j \le R} \left(\alpha_j f_j(x) \right) \right)$$

95%

95%

95%

95.63%

98.75%

97.5%

97.5%

98.75%

98.75%

97.5%

42

91.67%

93.75%

95.83%

94.17%

95.83%

97.5%

97.5%

96.25%

8

7

2

3

3

2

2

4

					TON OF HRPNN AND RHRPNN IN RCE PD PATTERN CLASSIFICATION							
Input Feature Vector	PD Typez		Total No. of Training Datasets	Testing Datasets	No. of Centers (PDFs) labeled sequentially as V, S,OC, VC and VS HRPNN RHRPNN HRPNN RHRPNN		No. of Misch	Classificatio	n C			
	Single Source	3	90 (30 sets/	120	22,20,21	20,20,20	26	14	8	RHRPNN 6	93.33%	Ĥ
Ф-q _{max} -n (30°)	Multi-Source:	_	type)		22,20,21	20,20,20	20			, i	33.3370	
(30°)	Partially overlapped	4	120 (30 sets /type)	160	24,22,20,21	20,18,18,20	28	12	12	8	92.5%	

24,21,18

20,25,24,18

20,25,28

10,12,13,8

15,12,14

14,16,14,10

8,14,12

12,14,18,11

120

160

120

160

120

160

120

160

Single Source

Multi-Source:

Partially.

overlapped Single Source

Multi-Source:

Partially

overlapped Single Source

Multi-Source:

Partially

overlapped

Single Source

Multi-Source:

Partially

overlapped

Ф-q_{min}-п (30°)

Ф-q_{max}-n (10°)

q-n

(30°): TPSW

Scheme

q**-n** (10°):

TPSW

Scheme

90 (30 sets/

120 (30 sets

type)

/type)

type)

/type)

type)

/type)

type)

/type)

_		_										
Input Feature Vector	PD Typez		Total No. of Training Datasets	Testing Datasets	No. of Cente labeled sequ V, S, OC, VC	entially as	No. of Iterat	ions	No. of Misch	assifications	Classificatio	n Capability
					HRPNN	RHRPNN	HRPNN	RHRPNN	HRPNN	RHRPNN	HRPNN	RHRPNN
	0:1-0		00 (204-/									

20,18,18

18,17,16,18

20,18,16

5,3,6,7

4,7,8

5,4,7,3

3,4,3

3,4,4,6

24

30

25

36

12

8

10

7

16

15

11

15

7

5

8

6

10

10

5

7

5

4

3

6

	MULTIPLE SOURCE PD PATTERN CLASSIFICATION										
Input Feature Vector	PD Typez	Total No. of Training Datasets	Testing Datasets	No. of Cente labeled seque V, S,OC, VC	entially as	No. of Iterat	ions	No. of Misch	assifications	Classification	on Ca

ARCHITECTURE OF RBPNN

CLASSIFICATION CAPABILITY OF RBPNN - MULTIPLE SOURCE PD (NO. OF CENTERS)

Classification Capability of FOLS-RBPNN for Different Number of Centers

Type of Preprocessing	Sequence in Phase	Patterns	No. of FOLS Centers as Patterns		Classification Capability (Total No. of Patterns: 480)		
Scheme	Window	presented during Training	Automatically generated centers	Manually modified centers	Automatically generated centers	Manually modified centers	
Measures Based on	φ-q _{max} -n (30°)	180	112	128	81%	76%	
Maximum Values	φ-q _{max} -n (10°)	180	94	114	89%	78%	
Measures Based on	φ-q-n (30°)	180	104	124	85%	75%	
Central Tendency	φ-q-n (10°)	180	72	108	92%	86%	

CLASSIFICATION CAPABILITY OF RBPNN - MULTIPLE SOURCE PD

Classification Capability of FOLS-RBPNN for all types of Preprocessing Schemes

Type of Preprocessing Scheme	Sequence in Phase Window	No. of patterns during Training	No. of Patterns as FOLS Centers	Classification Capability (Total No. of Patterns: 480)
Measures Based on	φ-q _{max} -n (30°)	180	112	81%
Maximum Values	φ-q _{max} -n (10°)	180	94	89%
Measures Based on	φ-q _{min} -n (30°)	180	126	80%
Minimum Values	φ-q _{min} -n (10°)	180	108	84%
Measures Based on	φ-q-n (30°)	180	104	85%
Central Tendency	φ-q-n (10°)	180	82	92%
Measures Based on	φ-q-n (30°)	180	114	83%
Dispersion	φ-q-n (10°)	180	88	89%

Classification Capability of Enhanced Kernel Clustering based PNN Modular Version for Large Dataset PD Signature

Feature Vector	Classification Capability (%)					
	Decision based on Modular HOPNN Version	Decision based on Modular HRPNN Version	Decision based On Modular RHRPNN Version	Decision based on Modular RBPNN Version	Decision based on Combined Kernel Clustering based Modular PNN Versions	
φ-q-n (measures for 10° phase window): 1. Measures based on Maximum Values 2. Measures based on Statistical Operators & Higher Order Moments 3. Measures based on Types of Mean Values	93.4	95.2	97.2	93.6	96.8	

_		T		
SI. No.	PNN Modular Version	Clustering/ Center Selection Algorithm	Characteristic Features	Inferences
1.	PNN Module I (Basic Versions) OPNN APNN HOPNN	 OPNN and APNN does not utilize clustering algorithms HOPNN utilizes ML with EM Algorithm for clustering 	 Utilizes same 'scatter' (σ) with different centers 'μ' More appropriate for small training datasets 	•Appropriateness of prototype centers becomes vital • Restrictions on the credibility of the structure when the dataset lacks veracity
2.	PNN Module II (Improved Partition Clustering Versions) • LVQ-PNN Versions • K MEANS- PNN Versions	 Labelled Clustering: LVQ Versions-1, 2 & 3 Unlabelled Clustering: K-Means: Forgy & Standard 	 Clusters obtained by training using reference (codebook) vector More appropriate for moderate datasets 	 Random centers of selected initial seed data as codebook vectors may lead to overtraining Appropriate for training validated sets of known sources of single source PD
3.	PNN Module III (Enhanced Kernel Clustering Versions) HRPNN RHRPNN RBPNN	 Maximum Likelihood with Expectation Maximization Algorithm (EM & ML) ML & EM with Jackknife procedure Forward Orthogonal Least Square (FOLS) Algorithm 	 Utilizes different 'scatter' with different centers '\mu' Useful for large training datasets 	 Jackknife technique provides a more parsimonious yet effective sets of centers Counters the effect of 'outliers' effectively

INFERENCES & CONCLUSIONS

SI. No.	PNN Modular Version	Clustering/ Center Selection Algorithm	Characteristic Features	Inferences
4.	PNN Module IV (Dynamic Pattern Recognition) Stationary CD- HMM Non-stationary CD-HMM	LVQ 2 for training the density estimates of optimal state labels	Utilizes Veterbi Algorithm for obtaining optimal state transition density estimates	 Provides a mechanism for discriminating PD sources based on non-stationary version of HMM - Correlated through the changes in the optimal state transition labels Provides an interesting opportunity for dynamic pattern recognition which in turn provides plausible mechanism to distinguish and characterize ageing of insulation systems
5.	PNN Module V (Hybrid Versions) Generalized S- Transform Hyperbolic S- Transform	• Principal Component Analysis (for dimensionality reduction)	 Clusters obtained by training using reference (codebook) vector More appropriate for moderate datasets 	■Offers an exciting and a viable alternative to WT in the context of providing a distinct methodology to associate the time-frequency relationship of the non-stationary behaviour of PD signatures ■Capability of HST variant in providing plausible solutions to discriminate PD sources buried in noise during real-time studies

CONCLUSIONS & FUTURE SCOPE

- Devising a strategy for Dynamic PD pattern recognition and classification utilizing the novel technique of non-stationary CDHMM-PNN version
 - Provides plausible avenues to understand the dynamics of the discharge mechanism due to the non-stationary behaviour of PD signatures
 - May prove to be useful in PD analysis for discharge initiated ageing in dielectric materials
- Formulation and development of a novel approach of utilizing the Hyperbolic S- Transform as a hybrid PNN Ensemble Classifier:
 - Provides a viable alternative to the more complex wavelet transformation
 - Easy yet effective time- frequency representation of PD signatures
 - Provides fresh opportunities in discriminating
 - Non-stationary and complex non-Markovian multiple source PD signatures
 - Discrimination of discharge signatures buried in noise
- This study makes obvious the capability of the HST variant in providing possible solutions to discriminate PD signatures buried in noise during practical realtime measurements

- 1. Van Brunt, R. J. (1991), Stochastic properties of partial discharge phenomenon, *IEEE Transactions on Electrical Insulation*, 26(5), 902–948.
- 2. Gulski, E., & Krivda, A. (1993), Neural network as a tool for recognition of partial discharges, *IEEE Transactions on Electrical Insulation*, 28(6), 984–1001.
- 3. Satish, L., & Zaengl, W.S. (1994), Artificial Neural Networks for recognition of 3-D Partial Discharge Patterns, *IEEE Transactions on Dielectrics and Electrical Insulation*, 1(2), 265–275.
- 4. Abdel-Galil, T.K., Sharkawy, R.M., Salama, M.M.A., & Bartnikas, R. (2005), Partial discharge pattern classification using the fuzzy decision tree approach, *IEEE Transactions on Instrumentation and Measurement*, 54(6), 2258-2263.
- 5. Satish, L., & Zaengl, W. S. (1995), Can Fractal Features be used for recognizing 3-D Partial Discharge Patterns? *IEEE Transaction on Dielectrics and Electrical Insulation*, 2(3), 352–359.
- 6. Abdel-Galil, T.K. & Hegazy, Y.G. et al. (2004), Partial discharge pulse pattern recognition using Hidden Markov models, *IEEE Transactions on Dielectrics and Electrical Insulation*, 11(4), 715–723.
- 7. Lalitha, E.M., & Satish, L.(2000), Wavelet analysis for classification of multisource PD patterns, *IEEE Transactions on Dielectrics & Electrical Insulation*, 7(1), 40–47.
- 8. Danikas, M.G.,Gso, N., & Aro, M.(2003), Partial Discharge Recognition using Neural Networks: A Review, *Electrical Engineering*, 85, 87-93.

- 9. Danikas, M.G., & Karlis, A.D. (2006), On the Use of Neural Networks in Recognizing Sources of Partial Discharges in Electrical Machine Insulation: A Short Review, International Review of Electrical Engineering (I.R.E.E.), 1(2), 277-285.
- 10. Sahoo, N. C., Salama, M. M. A., & Bartinkas, R. (2005), Trends in partial discharge pattern classification: A survey, *IEEE Transactions on Dielectrics and Electrical Insulation*, 12(2), 248–264.
- 11. Donald Specht, F. (1990). Probabilistic Neural Networks and the Polynomial Adaline as Complementary Techniques for Classification. *IEEE Transactions on Neural Networks, Vol.1, No.1,* 111-121.
- 12. Yaman Barlas, & Korhan Kanar. (1999), A Dynamic Pattern-oriented Test for Model Validation, Proceedings of 4th Systems Science European Congress, Valencia, Spain, 269-286.
- 13. De Shuang Huang, & Wenbo Zhao, (2005), Determining the Centers of Radial Basis Probabilistic Neural Networks by Recursive Orthogonal Least Square Algorithms, International Journal on Applied Mathematics and Computation, 162, 461-473.
- 14. Zheng Rong Yang, Chris Chalk, Allan Christopher Williams, & Mark Zwolinski, (2000), Applying a Robust Heteroscedastic Probabilistic Neural Network to Analog Fault Detection and Classification, *IEEE Transaction on Computer Aided Design of Integrated Circuits and Systems, Vol.19, No.1*, 142-151.

- 1. Van Brunt, R. J. (1991), Stochastic properties of partial discharge phenomenon, *IEEE Transactions on Electrical Insulation*, 26(5), 902–948.
- 2. Gulski, E., & Krivda, A. (1993), Neural network as a tool for recognition of partial discharges, *IEEE Transactions on Electrical Insulation*, 28(6), 984–1001.
- 3. Satish, L., & Zaengl, W.S. (1994), Artificial Neural Networks for recognition of 3-D Partial Discharge Patterns, *IEEE Transactions on Dielectrics and Electrical Insulation*, 1(2), 265–275.
- 4. Abdel-Galil, T.K. & Hegazy, Y.G. et al. (2004), Partial discharge pulse pattern recognition using Hidden Markov models, IEEE Transactions on Dielectrics and Electrical Insulation, 11(4), 715–723.
- 7. Lalitha, E.M., & Satish, L.(2000), Wavelet analysis for classification of multi-source PD patterns, *IEEE Transactions on Dielectrics & Electrical Insulation*, 7(1), 40–47.
- 8. Danikas, M.G., Gso, N., & Aro, M.(2003), Partial Discharge Recognition using Neural Networks: A Review, *Electrical Engineering*, 85, 87-93.
- 9. Danikas, M.G., & Karlis, A.D. (2006), On the Use of Neural Networks in Recognizing Sources of Partial Discharges in Electrical Machine Insulation: A Short Review, *International Review of Electrical Engineering (I.R.E.E.)*, 1(2), 277-285.

- 10. Sahoo, N. C., Salama, M. M. A., & Bartinkas, R. (2005), Trends in partial discharge pattern classification: A survey, *IEEE Transactions on Dielectrics and Electrical Insulation*, 12(2), 248–264.
- 11. Donald Specht, F. (1990). Probabilistic Neural Networks and the Polynomial Adaline as Complementary Techniques for Classification. *IEEE Transactions on Neural Networks, Vol.1, No.1,* 111-121.
- 12. Yaman Barlas, & Korhan Kanar. (1999), A Dynamic Pattern-oriented Test for Model Validation, Proceedings of 4th Systems Science European Congress, Valencia, Spain, 269-286.

THANK YOU