SHUTTLE ACTIVE THERMAL CONTROL SYSTEM DEVELOPMENT TESTING

VOLUME II

MODULAR RADIATOR SYSTEM TESTS

Report No. T169-28

23 October 1973

Submitted by

VOUGHT SYSTEMS DIVISION LTV Aerospace Corporation Dallas, Texas

To

National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas

Prepared by:

B. Schens

F. E. Voss

Approved by:

R. J. French, Supervisor Environmental Control/

Life Support Group

H. R. Howell

FOREWORD

This volume is one of a series of reports describing the development tests conducted on a candidate Shuttle heat rejection system at the National Aeronautics and Space Administration - Johnson Space Center during the period from March to July 1973. The complete test series are reported in the following volumes:

Volume I	Overall Summary
Volume Il	Modular Radiator System Tests
Volume III	Modular Radiator System Test Data
	Correlation With Thermal Model
Volume IV	Modular Radiator System Test Data
V smufoV	Integrated Radiator/Expendable Cooling System
	Tests
Volume VI	Water Ejector Plume Tests
Volume VII	Improved Radiator Coating Adhesives Tests
Volume VIII	Tube Anomaly Investigation

The tests were conducted jointly by NASA and the Vought Systems Division of LTV Aerospace Corporation under Contract NAS9-10534. D. W. Morris of the NASA-JSC Crew Systems Division was the contract technical monitor. Mr. R. J. Tufte served as the VSD Project Engineer.

TABLE OF CONTENTS

		PAGE
1.0	SUMMARY	1
2.0	INTRODUCTION	2
	2.1 Test Objectives	2
	2.2 Mission Environments Simulated	4
3.0	TEST ARTICLE AND INSTRUMENTATION	5
_	3.1 Panel Description	5
	3.2 System Description	5
	3.3 Instrumentation	6
	3.4 Environment Simulation	7
4.0	TEST DESCRIPTION	8
	4.1 Test Description by Week	8
	4.2 Summary of Testing by Objective	10
5.0	TEST RESULTS	11
	5.1 Baseline System	11
	5.2 Two-Sided Radiation Tests	12
	5.3 Design Data	16
6.0	CONCLUSIONS	20
7.0	REFERENCES	22
7.0	The braining of the state of th	
	APPENDICES	
A	Environment Summary	A-1
В	Weekly Test Reports	B-1

LIST OF FIGURES

FIGURE	P	IGE
1	Shuttle Configurations Simulated by Test Article	50
2	β = 78° Orbits Simulated	51
3	β = 0° Orbits Simulated	52
4	Uncoated Radiator Panel	53
5	SESL Chamber "A" Showing 8 MRS Panels and LTV Test Personnel	54
6	MRS Panels Installed in Chamber A	55
7	MRS Pinels During Insulation	56
8	Connecting Tubes and Panels After Insulation	57
9	Insulated MRS Panels Prior to Chamber Closeout	58
10	Detail of Insulation on Panels and Environment Simulator	59
11	Simplified System Schematic, Showing Prime and Bank Tube Relationships	60
12	Fluid Schematic for Full Scale Modular Radiator	61
13	Thermocouple Locations on Panel	63
14	LTV Instrumentation - Power Supply, Strip Chart Recorders, CRT Display	64
15	LTV Instrumentation - Flow Control Console	65
16	LTV Instrumentation - Pressure Signal Conditioning Equipment and Flow Control Console	66
17	LTV Instrumentation - Freon Pump and Freon Line Chamber Penetration During Installation	67
18	Flow Loop α · · · · · · · · · · · · · · · · · ·	68
19		69
20	Flow Loop α_2	70
21	Summary of Week 1 Flow Configurations to Simulate Baseline	71
22	Flow of Testing During Week 1	72
23	Insulation Displaced from Panels 2, 3, 4 and 7 Due to Freon 11 Line Rupture	73
24	Insulation Displaced from Panels 6, 7, and 8 Due to Second and Third Freon 11 Line Ruptures	74
25	Flow Loop γ	75
26	Flow Loop &	76
27		77

FIGURE		PAG
28	Summary of Week 2 Flow Configurations	. 78
29	Flow Loop Simulating Two-Sided Radiation from the Forward 30' of the Cargo Bay Doors	. 79
30	Test Point 1A - Stabilized Temperatures	. 80
31	Test Point 5A - Mixed and Main Outlet Temperatures	. 81
32	Test Point 5A - Leg Flow Rates and Outlet Temperatures	. 82
33	Test Point 1 - Stabilized Temperatures	. 83
34	Test Point 3 - Stabilized Temperatures	. 84
35	Test Point 20 - Mixed Outlet and Leg Outlet Temperatures.	. 85
36	Test Point 20 - Leg Flow Rates	. 86
37	Test Point 4 - Stabilized Temperatures	. 87
38	Test Foint 8 - Mixed and Main Outlet Temperatures	. 88
39	Test Point 8 - Inlet Temp and Leg Outlet Temperatures	. 89
40	Test Point 8 - Leg and Total Flow Rates	. 90
41	Test Point 10 - Stabilized Temperatures	. 91
42	Test Point 11 - Stabilized Temperatures	. 92
43	Test Point 12 - Stabilized Temperatures	. 93
44	Test Point 14 - Stabilized Temperatures	. 94
45	Test Point 14, 14A - Inlet Temperature, Prime, Bank and Mixed Outlet Temperatures	. 95
46	Test Point 14, 14A - Bank Tube Outlet Temperatures, Panels 2 and 6	. 96
47	Test Point 14, 14A - Total, Bank Prime Flow Rates	. 97
48	Test Point 14, 14A - Leg Flow Rates	. 98
49	Test Point 17 - Stabilized Temperatures	. 99
50	Test Point 17A - Stabilized Temperatures	. 100
51	Test Point 16-1 - Stabilized Temperatures	. 101
52	Test Point 16-2 - Stabilized Temperatures	. 102
53	Test Point 16 - Panel 2 and 6 Outlet Temperatures, Mixed Outlet Temperatures, Mixed Outlet Temperature	. 103
54	Test Point 18 - Stabilized Temperatures	. 104
55	Influence of Environment on Performance Comparison of Test Points 5 and 8	. 105
56	Test Point 21 - Stabilized Temperatures	106

FIGURE	PAGE
57	Test Point 22-1 - Stabilized Temperatures 107
58	Test Point 22-2 - Stabilized Temperatures 108
59	Test Point 22 - Panel and Mixed Outlets 109
60	Test Point 23-1 - Stabilized Temperatures 110
61	Test Point 23-2 - Stabilized Temperatures
62	Test Point 23 - Panel and Mixed Outlet Temperatures 112
63	Test Point 24-1 - Stabilized Temperatures
64	Test Point 24-2 - Stabilized Temperatures
65	Test Point 25-1 - Stabilized Temperatures
66	Test Point 25-2 - Stabilized Temperatures 116
67	Test Point 26 - Stabilized Temperatures 117
68	Test Point 27 - Stabilized Temperatures
69	Test Point 28 - Stabilized Temperatures 119
70	Test Point 29-1 - Stabilized Temperatures 120
71	Test Point 29-2 - Stabilized Temperatures 121
72	Test Point 61 - Flow Rates
73	Test Point 61 - Prime, Bank, Mixed Outlet Temperatures 123
74	Test Point 63 - Flowrates
75	Test Point 63 - Prime, Bank and Mixed Outlet Temperatures . 125
76	Test Point 64 - Flow Rates
77	Test Point 64 - Prime, Bank, Mixed Outlet Temperatures 127
78	Test Group 2.5 - Response to Set Point Changes 128
79	Test Group 2.6 - Response to Set Point Changes 129
80	Test Group 2.7 - Response to Set Point Changes 130
81	Test Group 2.8 - Response to Set Point Changes 131
82	Test Group 2.5 - Flow and Temperature Response to Set Point Changes
83	Test Group 2.6 - Flow and Temperature Response to Set Point Changes
84	Test Group 2.7 - Flow and Temperature Response to Set Point Changes
85	Test Group 2.8 - Flow and Temperature Response to Set Point Changes

FIGURE	<u>PAGE</u>
8 6	Test Points 52D, E - Panel Flow Rates
87	Test Point 32 - Stabilized Temperatures
88	Test Point 33 - Stabilized Temperatures
89	Test Point 45 - Stabilized Temperatures
90	Test Point 46 - Stabilized Temperatures 140
91	Test Point 37 - Stabilized Temperatures
92	Test Point 38 - Stabilized Temperatures
93	Test Point 39 - Stabilized Temperatures
94	Test Point 62 - Stabilized Temperatures
95	Test Point 62 - Tube Temperatures After Cold Soak 145
96	Test Point 48 - Stabilized Temperatures 146
97	Test Point 49 - Stabilized Temperatures
98	Test Point 43 - Stabilized Temperatures 148
99	Comparison of Plumbing Arrangements
100	Comparison of Plumbing Arrangements
101	Comparison of Test Points 16 and 43 151
102	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 47
103	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 19
104	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 50
105	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 17A-18
106	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 36-36A
107	Coldest Tube Temperatures at Start of Heat Load Transient - Test Point 60
108	Test Point 47 - Total, Prime, Bank Flowrates 158
109	Test Point 47 - Leg Flowrates During Transient 159
110	Test Point 47 - Bank and Prime Inlet and Outlet Temperatures, Mixed Outlet Temperature
111	Test Point 47 - Outlet Temperatures of Panels 1, 2, 3, 4 161
112	Test Point 47 - Outlet Temperatures of Panels 5, 6, 7, 8 162

FIGURE		PAGE
113	Test Point 19 - Total, Bank, Prime Flowrates	163
114	Test Point 19 - Bank Flowrates	164
115	Test Point 19 - Prime Flowrates	165
116	Test Point 19 - Bank Inlet and Outlet Temps, Panels 2, 6 Outlet Temps	166
117	Test Point 19 - Panels 1, 2, 3, 4 Bank Outlet Temperatures.	167
118	Test Point 19 - Panels 5, 6, 7, 8 Bank Outlet Temperatures.	168
119	Test Points 47, 19 - Test Summary	169
120	Test Point 50 - Panel 2 Recovery	170
121	Test Point 50 - Panel 3 Recovery	171
122	Test Point 50 - Panel 5 Recovery	172
123	Test Point 50 - Panel 6 Recovery	173
124	Test Point 50 - Comparison of Tube 3 Temperatures During Recovery	174
125	Test Point 50 - Comparison of Panel Flow Rates	175
126	Test Point 17A - 18 - Leg Flowrates During Recovery	176
127	Test Point 36A - Panels 2, 5, 6 Flowrates	177
128	Leg Flow Rate Plots for Test Point 60-51	178
129	Test Point 31 - Stabilized Temperatures	179
130	Test Point 36 - Stabilized Temperatures	180
131	Test Point 36A - Stabilized Temperatures	181
132	Test Point 2-1 - Stabilized Temperatures	182
133	Test Point 2-2 - Stabilized Temperatures	183
134	Test Point 2 - Flow Rates	184
135	Test Point 2 - Panel and Mixed Outlet Temperatures	185
136	Comparison of Simulated Low α/ϵ Coating Test Results and Analysis	186

LIST OF TABLES

<u>TABLE</u>	<u>!</u>	PAGE
1	Three Week Test Timeline	23
2	Test Group 1 - Simulated Baseline System Tests	25
3	Group 2 - Two-Sided Radiation Tests	27
4	Group 3 - Design Data Tests	29
5	Simulated Baseline System Test Summary	31
6	Test Group 1.1 Summary	32
7	Test Group 1.2 Summary	33
8	Test Group 1.3 Summary	35
9	Test Group 1.4 Summary	37
10	Test Group 1.5 Summary	38
11	Test Group 1.6 Summary	41
12	Test Group 1.7 Summary	43
13	Two Sided Radiation Test Summary	44
14	Summary of Set Point Changes (Two-Sided Radiation)	45
15	Summary of Alternative Plumbing Test Points	46 -
16	Summary of Heat Load Transient Test Points	47
17	Summary of Simulated Low α/ϵ Coating Tests	48
18	Extrapolation of Test Data to Baselin Configuration	49

1.0 SUMMARY

A three-week test of a Modular Radiator System (MRS) was conducted in the Space Environment Simulation Laboratory (SESL) at the Johnson Space Center (JSC) during the time period March 5 through 23, 1973. The tests were designed to investigate the validity of the "modular" approach to space radiator system design for Space Shuttle and future applications by yathering performance data on various systems comprised of different numbers of identical panels, subject to nominal and extreme heat loads and environments. Both one-sided and two-sided radiation was tested, and engineering data was gathered on simulated low α/ϵ coatings and system response to changes in outlet temperature control point.

The results of the testing showed system stability throughout nominal orbital transients, unrealistically skewed environments, freeze-thaw transients, and rapid changes in outlet temperature control point. Various alternative panel plumbing arrangements were tested with no significant changes in performance being observed.

With the MRS panels arranged to represent the Shuttle baseline system, a maximum heat rejection of 76,600 BTU/hr was obtained in segmented tests under the expected worst case design environments. The minimum heat rejection was 8260 BTU/hr in a cold environment. Testing of an alternate smaller two-sided radiation configuration yielded a maximum heat rejection of 52,931 BTU/hr under the maximum design environments and a minimum of 4163 BTU/hr in a cold environment.

2.0 INTRODUCTION

This report presents data from the Modular Radiator System Shuttle Configuration Tests conducted in the NASA-Johnson Space Center thermal vacuum facility (Chamber A) from 5 March 1973, through 23 March 1973. The tests were conducted under the supervision of the Crew Systems Division of JSC. Vought Systems Division of LTV Aerospace Corporation designed, manufactured, and instrumented the radiator panels and flow bench used to supply the radiator system. The chamber facilities, environment simulation and data gathering and reduction were supplied by NASA-JSC.

2.1 Test Objectives

The general test objectives were:

- 1. Provide data which will support detail design of Space Shuttle radiators by defining performance limitations with environments and fluid temperatures characteristic of shuttle operation.
- 2. Demonstrate performance of eight modular radiator panels in a variety of series and parallel flow arrangements with balanced and unbalanced panel environments.
- 3. Demonstrate that the modular radiator system performance range of capabilities satisfies Shuttle requirements.
- 4. Demonstrate general modular radiator system operational capability in a thermal-vacuum environment.
- 5. Investigate test performance of various candidate shuttle radiator panel arrangements to support analytical predictions.
- 6. Provide data for verification/correlation of math model predictions.

The test was divided into three major groups with specific objectives as follows:

- GROUP 1 SIMULATED SHUTTLE BASELINE SYSTEM One-Sided Radiators
 - o Demonstrate performance of the Rockwell International Corporation (RIC) baseline Shuttle configuration with a variety of heat loads and thermal environments.

GROUP 2 - TWO-SIDED RADIATORS

o Demonstrate performance of radiator portion of weight optimum radiator-water heat rejection system under

simulated 78° inclination and 0° inclination orbits.

o Investigate radiator system response to step changes in outlet temperature control point.

GROUP 3 - DESIGN DATA

- o Compare performance of radiator systems plumbed in various alternative arrangements.
- o Evaluate engine ing design adequacy of the panels.
- o Evaluate performance with simulated low α/ϵ coatings.
- o Demonstrate system parallel flow stability with skewed environments.
- o Demonstrate system performance during transition between high and low heat loads (freezing and thawing) in various parallel/series flow arrangements with balanced and unbalanced environments.

Four basic Shuttle configurations were approximated during the test. The four configurations have been analyzed in a recent Shuttle radiator design optimization study (Reference 1) which permitted the use of water evaporation to supplement radiator heat rejection when needed. The four configurations and corresponding flow loops are illustrated in Figure 1.

The baseline configuration (3) with 1436 ft² of effective area can reject the Shuttle heat loads without supplemental water evaporation. For each cargo bay door, two panels are permanently attached to the aft door segments and four more panels are mounted back-to-back and separately deployed from the forward door segment. The 12 panels are identified as A through L on Figure 1.

Configurations 1 and 2 require supplemental water evaporation to satisfy shuttle heat rejection requirements, but all panels are permanently attached to (and supported by) cargo bay door segments. Configurations 1 and 2 differ only in the deployment angle of the forward doors. The eight panels are identified ABCD, GHIF and the environments are similar to those of Panels ABCD, GHIF of Configuration 3.

Configuration 4 consists of four panels which are separately deployed from the forward cargo bay door segments. The panels are uninsulated so that they radiate from both sides. The analytical trade study indicated that, with supplemental water evaporation, this concept yielded a weight optimum design. The four panels are identified as M, N, O and P since the two-sided configuration

does not correspond to any panels in the other three configurations.

2.2 Mission Environments Simulated

Figures 2 and 3 show the various mission environments which were simulated during the testing. In addition, deep space cold soaks and severely skewed (unrealistic) environments were simulated. Detailed values for the environments are presented in the section on avaluation of results and in Appendix A.

3.0 TEST ARTICLE AND INSTRUMENTATION

3.1 Panel Description

The Modular Radiator System (MRS) for this test consisted of eight 6 ft x 12 ft flat panels arranged in flow patterns similar to those being considered for the Space Shuttle. Each panel consists of extruded tubes welded to 0.02 inch aluminum sheet on 6.0 inch centers in a U-shaped pattern as shown in Figure 4. The over/under tube arrangement (Figure 4) provides for completely redundant flow passages, but only the "under" passage was used in this test. Thorough thermal vacuum testing of two of the panels has previously been performed (Reference 2) and all eight panels and the flow bench were checked out in the VSD thermal vacuum chamber prior to the Chamber A tests to insure satisfactory operation of all equipment and verify all operational procedures. (Reference 3)

The eight panels were installed in Chamber A as shown in Figures 5 and 6. Figures 7 through 9 show the panel being insulated, the plumbing insulation and the insulated panels. The environment simulators were installed directly below the radiator panels and wrapped in superinsulation as shown in Figure 10 for the one-sided and two-sided radiation tests.

3.2 System Description

The MRS achieves heat load control by varying the flow split between a "prime" and "bank" circuit as shown for a typical panel arrangement on Figure 11. The flow split was controlled during the test by a valve which sensed the mixed outlet of the prime and main circuits and compared it to a desired set point temperature. During periods of low load, the majority of the flow was routed to the prime tubes of each ranel, and the bank was allowed to stagnate (freeze), thus reducing the effective panel area. As the load increased, more flow is routed to the bank, and the panels begin to destagnate (thaw) from the inside out (i.e., the shortest tubes destagnate first).

Two different mixing valves were used during the test to control the prime and main mixed temperature. A thermally actuated valve supplied by Pyrodyne was used during some portions of the test (mostly during transients). This valve has a fixed set point of 47-49°F.

The second valve used an electro-mechanical valve and control unit originally designed for use in the Skylab Apollo Telescope Mount (ATM) coolant

loop. The valve control unit was modified by LTV to provide outlet temperature control points of 40°, 50°, and 70°. The Skylab requirement for leakage through the ATM valve "closed" side is much higher than that required for MRS testing. Thus, additional restriction was added manually by LTV test personnel during various phases of the test, such that the leak rate was reduced to approximately 1% of full flow.

Figure 12 shows the test system schematic and instrumentation location. All valves inside the chamber are remotely controlled to permit a wide variety of series/parallel flow arrangements. Some valves external to the chamber used to provide for flowmeter isolation for servicing and repair and an additional temperature control valve (the ATM valve) are not shown on Figure 12.

3.3 Instrumentation

The Al series thermocouples (panel inlet and outlet temperatures) and flow measurements shown on Figure 12 are considered critical for evaluating system performance. The Al temperatures are backed up by Brown Recorder thermocouples and the flowmeter arrangement (total flow plus flow in each leg) is such that with the loss of any one flowmeter all flows are still known. In addition to the critical fluid temperatures, each panel has 37 thermocouples attached to the external tubes as shown in Figure 13. These temperatures and the panel pressure drop measurements are desirable but not consi ared critical to the conduct of the test.

Figures 14 through 17 show the LTV flow bench and equipment used to supply the radiator system with the desired fluid temperatures and flow.

During the third week of testing it was observed that the inlets to the prime tubes inside the chamber were reading approximately 9°F higher than the prime inlet outside the chamber. With chamber cold walls it did not seem reasonable that a net heat gain of this magnitude could occur. Starting with day 79 approximately 2230 hours the back-up thermocouples for Aloud through Aloud were recorded on the miscellaneous channels, MS0003 through MS0036. The MS data agreed well with the measurements outside the chamber. Subsequent to the test it was discovered that a dissimilar thermocouple connector inside the chamber was used for Aloud through Alould. During the first two weeks of testing the chamber walls were warm and the thermocouple connector did not affect the readings. However, during the third week the

chamber walls were cold and a temperature gradient in the connector produced an EMF which affected the readings. A survey of the Al and MS readings after 2230 on day 79 indicated that the Al readings averaged 8.5°F high. This value was subtracted from all Al0003 through Al0014 data between day 78, 0735 hours and day 79, 1110 for determining the radiator performance.

3.4 Environment Simulation

The environment was simulated by a temperature controlled panel located immediately below the radiator panels as indicated in the sketch of Figure 10. A freon 11 loop and a liquid nitrogen loop flowing in separate tubes were used to control the panel temperatures. Design, installation and operation of the environment panels were provided by the Space Environment Simulation Laboratory (SESL) division of NASA-JSC. The radiator panel absorbed heat was determined by SESL engineers based on the simulator and radiator temperatures including the effect of reflected energy.

Appendix A shows the absorbed heat for each radiator panel at the stable conditions. Transient environment data is not available at this time. During the initial 5 test points the simulated environment was high because SESL engineers used a radiator panel emissivity of 0.85 to determine the heat absorbed. VSD used 0.92 in the pre-test computer analysis. Gier-Dunkle tests of 5 paint samples by NASA indicated a "near normal" emissivity of 0.913. Correcting to hemispherical emissivity yields 0.865 to 0.89. A value of 0.90 was used to determine all the environments shown in Appendix A. TP-5 (Test Point - 5) environments were set based on the revised emissivity of 0.90, resulting in lower values than used in TP-1. TP-1 and TP-5 are segments of the baseline system and together simulate one side of the cargo bay doors. This explains why the environments for this test sequence were inconsistent.

4.0 TEST DESCRIPTION

The original test plan called for three separate test weeks with differer panel and plumbing configurations each week. In order to make maximum use of available test time the test chamber pumpdown was to be initiated at mid ight each Sunday and the test completed in time for repressurization and required test article reconfiguration by midnight the next Friday. However, a failure of the environment simulator during the first week of testing required a revision of the test timelines including chamber repressurization and pumpdown in the middle of the week one and week three tests. The revised test plan satisfied all major test objectives although the test time was reduced.

4.1 Test Description by Week

During the first week the panels were insulated on one side and two flow loop arrangements tested to investigate the performance of segments of configurations 1, 2, and 3. Flow loop α (Figure 18) is used to simulate the top panels on one cargo bay door for configurations 1 and 2; all of the panels of configuration 2 with a low α/ϵ coating; and 1/4 of the upward facing panels combined with all of the downward facing panels of configuration 3.

Flow loop β (Figure 19) simulates the parallel to series flow setup of the baseline system for one cargo bay door. One half of the upward panel area and all of the downward facing area are simulated for this test arrangement. Since the flow loop of Figure 18 simulates all upward facing panels of configuration 3, the outlet temperature at point X (after one half of the upward facing panels) is used at the inlet temperature for corresponding conditions with flow loop β (Figure 19). The temperature at point Y (after 3/4 of the upward facing panels) is used as the inlet temperature for corresponding conditions with the arrangement of Figure 20 which simulates the outlet leg of both cargo be doors. Figures 21 and 22 summarize the first week test configurations and flow of testing.

After 5 test points were completed in the first week, a freon 11 line surviving the IR simulator failed causing a pressure wave in the chamber to blow the insulation blankets off of panels 3 and 4 and partially off of panels 2 and 7. Figure 23 shows the insulation on the panels after the freon 11 line failure. It was decided that no further useful testing could be accomplished with the panels exposed to the chamber warm walls so the chamber was repressurized and

the blankets and line repaired. The test timelines were revised to reflect the reduced test time due to the chamber repress, repair time and pumpdown. During the first test sequence after pumpdown, another IR panel line failed (Zone 2) and blew the insulation blanket partially off of panel 2. The flow arrangement was modified to use panel 6 and 8 instead of 2 and 4 in the α flow loop and one orbit simulation completed before another IR panel line failed and blew the insulation off of panel 8 and partially off of 6 and 7. Figure 24 shows the location of the insulation blankets after the second and third IR panel line failures. Four additional planned test points were completed with revised flow configurations and degraded insulation on panels 2, 6, and 7. Two additional test points were devised to investigate system performance during the transition from low to high heat loads and with the panels under widely different environments.

The second week of testing was revised to complete the originally planned week 1 test points and a portion of the planned third week tests. The third week of testing was planned to investigate three more flow loops (Figures 25, 26 and 27) to demonstrate versatility of flow arrangements, the effect of panel isolation, panel shadowing, and limitations on performance. Freeze-thaw characteristics of panels connected in various parallel/series flow arrangements were also obtained during these tests. Figure 28 summarizes the second week configurations.

Based on anomaly study results of the IR panel failures, the requested environments for the remaining tests were also revised so that the cyclic environments did not require alternate freon 11 and LN₂ in the simulator panels. All major third week objectives were accomplished during the second portion of the second week.

For the third week of testing, the insulation was configured to simulate the cargo bay door and the performance of configuration 4, (two-sided radiation) investigated with flow loop γ (Figure 29). This flow loop simulates the radiators on both sides of the forward 30 ft. of the cargo bay and represents the full radiator system when expendable water is used to supplement the radiator heat rejection. All planned test sequences and objectives were accomplished for this configuration. Excess test time at the end of the week was utilized to investigate the system performance in other than the analytical "worst case" orbits.

Table 1 presents the complete 3 week test timelines in the order the tests were run. Appendix B presents more detailed test timelines compiled from the weekly status reports prepared by VSD.

4.2 Summary of Testing by Objective

The sixty-one test points run during the three-week test series have been divided into three major groups as follows:

- Group 1 Simulated Baseline System
 - . Sun in Cargo Bay, $\beta = 78^{\circ}$ environment
 - . Skewed environments
 - . Cold soak and recovery
- Group 2 Two-Sided Radiator System
 - . Sun in Cargo Bay, $\beta = 78^{\circ}$ environment
 - . $\beta = 0^{\circ}$ environment
 - . Cold soak and recovery
- Group 3 Design Data
 - . Low α/ϵ coating simulation
 - . Response to set point changes
 - . Alternative plumbing arrangements

5.0 TEST RESULTS

The results presented in this section are catagorized by major objective topic as presented in Section 4.2. Section 5.1 presents simulated baseline results, Section 5.2 presents two-sided radiator results, and Section 5.3 contains results from other test points designed to obtain engineering data.

Each major group has been further subdivided to include test points which together form the baseline system or are directly comparable to each other. Tables 2 through 4 present the test point groupings and an index showing the page numbers for the test data for each subgroup. The test results presented include a summary of the test conditions and overall results, steady-state performance maps showing temperatures and flow rates for each stabilized condition and appropriate transient data and calculated heat rejection as required. The complete set of test data is presented in Volume IV of this report.

5.1 Baseline System

į

The results of Test Groups 1.1 through 1.8 (refer to Table 2) are displayed in this section. Table 5 summarizes the results of these groups (18 test points) and Tables 6 through 12 present a summary chart for each goup. Figures 30 through 55 present detail data for each test point.

Table 5 shows the test data heat rejection for the simulated baseline system. For those test points which simulate half of the system the
average heat rejection over the orbit is doubled to get the system heat rejection. It is assumed that as one side of the system is at the maximum heat
rejection the other side is at the minimum so that the orbital average of one
side is approximately the same as the total system. Table 5 indicates that
test groups 1.1 through 1.5 do not reject the desired heat loads. The difference
in heat rejected and heat load for test groups 1.6 and 1.7 is due to the outlet temperature control point and slight differences between the main and
prime system flow splits between the test segments. The fact that test groups
1.1 through 1.5 do not reject the heat load is attributed to two reasons.
First, although the total test area agrees with the baseline area, the distribution between the top panels and the cavity panels is different. Second,
the test environments are generally higher than desired resulting in a lower
heat rejection.

The test and baseline areas are:

	TEST	BASELINE
Top Panels	1152	1030
Cavity Panels	288	410
Total	1440 Ft ²	1440 Ft ²

The baseline heat rejection can be estimated by adjusting the test heat rejection on the top panels and cavities by the differences in areas. Table 18 presents the results of this analysis for test groups 1.1, 1.2 and 1.5. The extrapolated results are close to the desired heat rejection for test groups 1.1 and 1.2 indicating that with lower environments the heat load could be met. The results for test group 1.5 indicate that the baseline system as tested will not reject the system heat load with the sun in cavity orientation. A flow reversal valve which routes the flow through the hot cavity panels first then to the top panels or a flow proportioning valve to route the flow to the cold cavity would improve heat rejection for this orientation.

The low heat rejection for test groups 1.3 and 1.4 is attributed to higher than desired environments. For example, the comparison of test points 5 and 8 shown in Figure 55 indicates that the high environment on panels 1, 3, 5 and 7, test point 8, caused the inlet to the cavity panels (panels ϵ and ϵ and ϵ to be the same for both test points and resulted in the same outlet temperatures.

5.2 Two-Sided Radiation Tests

The environment and heat load simulation for this test group was very good. No data is available at this time on the transient environments but the maximum and minimum points agreed well with the desired values.

Test groups 2.1 through 2.4 examined the performance of the radiator portion of the analytically determined weight optimum radiator/water heat rejection system. Table 13 summarizes the test results of these test groups and Figures 56 through 86 present the temperature maps and pertinent transient temperature and flow rate plots. Test points 21 and 22 yield comparable results for steady state and cyclical environments. As indicated by Table 13, the test heat rejection rate for TP-21 would require an additional 20,296 BTU/hr of heat rejection by water evaporation to reject the imposed heat load of

Farmer !

69,722 BTU/hr. This is above the nomial 16 lb/hr maximum previously established by analysis for the evaporation device. An examination of the environments for this test point indicates that the steady environments requested were too high. The cyclic environments used for TP-22 varied between 133 and 158 for one side of the cargo bay and 171 and 131 (90° out of phase) for the other side. Therefore the constant environment of 160 BTU/hr-ft² on all panels used in TP-21 is not representative of the design conditions. This data point is valuable as a steady maximum heat rejection case for thermal model correlation. TP-22 indicates a maximum evaporation heat load of 17,864 BTU/hr which is close to the nominal 16 lb/hr rate. It should also be noted that the maximum heat rejection occurred during TP-27 which represents a sun in cavity orientation. This is in direct contrast to the baseline system which indicated that the sun in cavity orbit is the worst case condition.

Calculated heat rejection rates (Table 13) for the initial seven test points were approximately 10 percent lower than the pre-test predictions (a maximum deviation of 3000 BTU/hr). Heat rejection rates for the low load tests were different from the simulated loads and predictions due to slight differences in the outlet control point. The differences in the predicted and test heat rejection for the high and intermediate loads could be caused by several factors. The total heat absorbed by the radiators was higher than used in the predictions due to the effect of the warm chamber floor and the radiant interchange between the insulation blankets which face each other (panels 2, 4, 5, and 7). The pretest analysis to determine the angle between the blankets and the panels indicated that an angle of 42° is desired for the outward facing blankets and 48° for the blankets that face each other. The actual test configuration had all blankets at approximately 45°. It is estimated that the effect of the warm chamber floor and the LN2 walls adds 3.3 to 7.2 BTU/hr-ft 2 for a chamber floor temperature of 0°F and -100°F respectively (LN2 walls at -280°F). Real time computer analyses were conducted during the test with 3-4 BTU/hr-ft² added to the observed test environments from the IR simulator panels. The effect on outlet temperature for test points 21 and 22 are:

	TP-21	TP-22
Pretest Analysis		
Outlet temp, °F	74	67.1-70.9
Q _{ABS} , BTU/hr-ft ²	160	133-158 171-130
Real Time Analysis		77. 100
Outlet Temp	76.2	68.8-72.0
QABS	164.8	135-165 174-132
Test Results		
Outlet Temp	78	71-74
QABS	?	?

It is seen that radiator performance is very sensitive to environments in this range. A change in absorbed heat from 158 to 165 BTU/hr-ft² increases the equivalent radiation sink temperature approximately 6°F from 51 to 57°F.

Another possible reason for the lower than anticipated panel heat rejection is that the effective radiation from the simulated cavity could be lower than the pre-test analysis value. Previous cavity analyses of the actual shuttle configuration including the effect of the curved surfaces indicated that the effective area of the cavity panel was 67% of the actual panel area. It was originally planned to conduct the test with 33% of the panel covered with an insulation blanket to simulate the cavity. However, a late NASA requirement that the test configuration be more geometrically representative of the Shuttle required the analysis to determine the angle between the flat test panels and insulation blankets that would yield an effective area of 67% of the panel area. Due to time limitations this analysis was based on the simplifying assumption that considered the radiator panel as one isothermal node and the blanket as one isothermal node. More detailed multi-node analyses may indicate a lower effective radiation from the test cavity.

Test group 2.4 examined the weight optimum radiator system performance in a simulated 0° inclination orbit. These orbits have been analytically shown to be not as severe as the 78° inclination orbits tested in test group 2.1. A comparison of the results verifies that less water evaporation is required for test point 22. However, the peak outlet temperature occurs during TP-61 indicating that the maximum instantaneous water evaporation rate is during this orbit. This is important in sizing the evaporation system. The test data

indicates a maximum water evaporation device heat load of 19,048 BTU/hr. An examination of the transient test environments to insure that they are representative of the orbit and an analytical verification of the results is required before a definite design criteria is established. The maximum and minimum test environments were lower than requested (a maximum deviation of 5.0 BTU/hr) indicating that the actual peak outlet temperature could be higher than the test data.

Groups 2.5 through 2.8 are included in the two-sided radiation test subgroup, although these tests were primarily intended to test system outlet temperature set point change response. Table 14 summarizes the test results of test groups 2.5 through 2.8. Figures 78 through 81 show the transient heat rejection resulting from the change in set point temperature and flow rate and outlet temperature plots. As shown by Figures 78 through 81 the changes in radiator heat rejection are accomplished in five minutes or less, indicating that the water evaporation device to be used with the radiator system should have a fast response time. As previously mentioned, the flow control valve used to control the mixed outlet temperature required some manual override to maintain the desired outlet. This accounts for the loss in outlet control observed in some cases immediately after a change in set point. The test data indicates that the radiator system's ability to supply a controlled outlet temperature of 40°F to 70°F is limited only by the response time of the control valve. With the control point set at 70°F the main outlet temperature is less than 40°F, due to reduced flow, even at high load and hot environment. (The load/environment must be such that the radiator system is capable of obtaining a 40°F outlet of course.) When the set point is changed to 40°F the control valve routes more flow through the main system and the first slug of cold main fluid immediately lowers the mixed outlet to 40°F. With the control point maintained at 40°F, the prime outlet remains approximately 3°F below the inlet temperature even at low loads in the coldest environment. When the set point is increased to say 70°F, the first slug of hot prime fluid immediately increases the mixed outlet.

The maximum observed change in heat load was from approximately 45,000 to 70,000 BTU/hr (Test Points 53-54 and 56-59). This 25,000 BTU/hr change under the maximum load conditions is above the anticipated change in

load when the excess fuel cell water is used to top off the radiator system (10,000-16,000 BTU/hr). Test points 52D and 52E obtained the maximum observed heat rejection ratio of 7.7: 1.0 (2600 to 20,000 BTU/hr). Test point 52 had a lower than desired heat rejection because the simulated heat load was low due to limited test equipment heater power for the prime system.

There were no observed flow instabilities (Figures 82 through 85) due to the rapid changes in flow rates for the cold and skewed environments. Figure 86 shows a typical flow rate response, indicating equal flow distribution in the four parallel flow paths.

5.3 Design Data

The test points grouped under design data include those intended to investigate (1) alternative plumbing configurations (Test Groups 3.1 through 3.3), (2) response to heat load transients and recoveries of frozen panels (Test Groups 3.4 and 3.5), and (3) low α/ϵ coating simulation (Test Groups 3.6 and 3.7).

Alternative Plumbing Arrangements

Table 15 summarizes the alternative plumbing test points and Figures 87 through 98 present the temperature maps for these test points.

A comparison of the heat rejection per unit area (Q/A) is shown in Figure 99 for panels plumbed in 4, 5 and 8 parallel paths. This data indicates that with equal panel inlet/outlet temperatures (TP-32, 33 and 45), the Q/A variation is 51.0 to 55.4 BTU/hr-ft². TP-46 has a Q/A of 62.5 BTU/hr-ft², but also has a higher outlet temperature indicating a higher average radiating temperature. Therefore, a direct comparison between TP-46 and TP-32, 33 and 45 cannot be made. It is concluded that changing the panel plumbing from 4 to 8 parallel paths results in approximately an 8 percent decrease in heat rejection capability. This agrees with previous analytical studies (pre-test predictions which were made for an inlet temperature of 111°F instead of 165°F).

The effect of different plumbing configurations for the cavity panels of the baseline system is shown in Figure 100. TP-48 and 49 indicate no difference in system performance. The difference between TP-20 and TP-48 and 49 is attributed to differences in environments. The test results again indicate that the plumbing arrangement does not affect the system performance.

Test points 37, 38 and 39 were intended to provide a compar.son of plumbing arrangements under low load operation. However, an evaluation of the results (Figures 91, 92 and 93 indicates that the test conditions chosen for these test points were incorrect. The environment of 11° BTU/hr-ft² on all panels except 7 and 8 with an inlet temperature of 53°F resulted in heat rejection only in panels 7 and 8. The other panels actually absorbed heat. Under the test conditions no difference in panel 7 and 8 performance was observed and the isolation of panel 8 merely reduced the system heat rejection by approximately one-half.

The only other comparison of low load plumbing rrangements is provided by test points 16 and 43. As shown on Figure 101, test point 16 heat rejection was lower than test point 43. This is attributed to differences in the mixed outlet control point rather than better low load capabilities of the test point 16 plumbing configuration. A comparison of the main outlet temperatures, indicates that during test point 43 the panels got colder than during test point 16, although neither test point approached the limit of -211°F. This is due to different environments (the test points were not originally designed for comparison).

The test data are inconclusive as to the best plumbing arrangement to obtain the lowest load. It is expected that a flow arrangement with all panels in series would have a lower load capability than all panels in parallel since the downstream panels would have a lower inlet temperature and lower average temperature in the series arrangement. No test data was obtained under limit conditions to verify this hypothesis.

Heat Load Transients

A total of 6 heat load transients with five different flow configurations were conducted (Test Groups 3.4 and 3.5). A summary of the heat load transient test points is shown on Table 16. Panel temperatures prior to the recovery and panel flow rates and outlet temperatures during the recovery are presented i. Figures 102 through 128. Minimum-maximum-minimum and maximum-minimum-maximum heat load transients were tested with different environments on parallel panels. A maximum of five parallel panels with a hot environment on one panel and cold environments on the other four have been tested. All flow arrangements operated satisfactorily, with no observed flow instabilities. Figures 102 through 107 show the coldest tube temperature taken

from the 37 panel thermocouples (Figure 13) at the minimum heat load condition just prior to the start of the transient to the high heat load condition. This data indicates the number of tubes which must be thawed during the transient.

Figures 107 and 114 show the flow rates in parallel flow paths during the heat load transients for test points 47 and 19 respectively. As indicated, there were no flow instabilities observed during either transient. The flow discontinuity shown on Figure 109 at 1600 hours is due to a flowmeter failure.

Figures 120 through 124 show the recovery transient of each tube of panels 2, 3, 5 and 6 during test point 50. A comparison of tube 3 temperatures during the test point 50 recovery, given on Figure 124, shows the transient characteristics of five panels plumbed in parallel. At the start of this transient four of the five parallel panels had six tubes frozen (Figure 104). Panel 1 had a high environment (approximately 125 BTU/hr-ft²) and did not freeze any tubes, thus demonstrating flow stability with partially frozen and free flowing panels in parallel. Further evidence of this stability is indicated by the fact that all panels show a recovery trend throughout the transient even though the panels do not thaw out at the same time due to differences in initial temperatures (Panel 5 was the coldest panel), environments and/or panel inlet temperature and flow rates. The last panel to recover (Panel 5) lags the initial panel recovery by approximately 20 minutes. The exception to the consistent recovery trend is shown by a comparison of tube temperatures of panels 2 and 3 (Figures 120 and 121). Panels 2 and 3 appear to be recovering at approximately the same rates when Pane: 3 abruptly experiences a trend reversal for a short period of time. This is believed to be caused by Panel 2 tubes thawing first'and momentarily taking the majority of the flow (in effect starving Panel 3) due to the reduced pressure drop caused by more tubes flowing. The recovery trend is quickly re-established however, indicating the system stability.

rest group 3.5 was designed to investigate the heat load transient under cold environments. As indicated on Figure 105, only panel four was frozen during test point 17A-18. Panel two had one tube that was frozen, but due to the degraded panel insulation, the heat leak to the warm chamber walls kept the other tubes above the freezing point. Figure 126 illustrates the flow stability of panels in two parallel flow paths during the heat load transient. The flow blips between 0 and 0100 hours are caused by surges in the total flow.

Figures 127 and 128 demonstrate the flow stability of panels in three and four parallel flow paths respectively. As shown by Figures 105 and 106 both the upstream and downstream panels had frozen tubes and there were different number of frozen tubes at the start of the transient. For example, both panels 6 and 8 had eight frozen tubes at the start of test point 60-51, whereas the parallel panels 2 and 4 had only one and five tubes frozen. Simulated Low α/ϵ Coatings

The low α/ϵ coating performance was simulated by reducing the absorbed heats to the analytically determined values and ratioing the test panel areas by the ratio of emissivities ($\epsilon_{\text{white paint}}$ / $\epsilon_{\text{desired}}$ = .9/.76). Table 17 summarizes the results of this group of tests and the test panel and simulated areas. Test points 31, 36 and 36A represented one-half of the analysis configuration 2 under steady environments and test point 2 represented the full configuration 2 with cyclical environments. Figures 129 through 133 present temperature maps for test groups 3.5 and 3.6. Figures 134 and 135 show the flow rate and outlet temperature variations for the simulated orbit of test point 2.

Figure 136 compares the results of the simulated low α/ϵ coating tests to the analysis results of reference 1. Test point 2 compares very favorably with the analysis while test point 31 indicates a higher required evaporation than predicted. This is attributed to the fact that the test was conducted with steady rather than cyclical environments.

6.0 CONCLUSIONS

The modular radiator system operated flawlessly during three weeks of testing, accumulating over 300 hours of operation in a thermal-vacuum environment with no problems. Performance data has been obtained for Rockwell's baseline system and the weight optimum system for a variety of known environments and heat loads representative of the shuttle design conditions. Design data for alternate plumbing arrangements, heat load transient capabilities and simulated low α/ϵ coating operation have also been obtained. All test objectives have been met.

The maximum observed baseline system heat rejection was 76,600 BTU/hr obtained in segmented tests, and 52,931 BTU/hr for the weight optimum system. The minimum observed heat rejection was 8260 BTU/hr for the baseline system and 4163 BTU/hr for the weight optimum system. The test results indicate the applicability of the MKS to the Shuttle; however several differences between the test and baseline panels should be examined in future testing. These differences include: the panel size, the panel aspect ratio (length to width), and the reach (maximum distance between frozen and non-frozen tubes during low load). It is also recommended that future testing include the effect of backside and edge heat leaks.

The concept of modular radiator panels used to "build" a system to the required area was demonstrated by obtaining operating data for panels plumbed in eight different series/parallel arrangements with skewed and balanced environments representing eight different situations. Each of the test panels provided the same performance under similar heat loads and environments.

A total of 17 test points were made to collect design data to support detail design of the shuttle radiators. The test data indicates that any convenient plumbing arrangement can be used (up to eight panels in parallel) with only a slight degradation in performance due to low panel flows (laminar flow heat transfer coefficients). The transition between the minimum and maximum heat rejection rates was demonstrated for a variety of series/parallel flow configurations with balanced and unbalanced environments. No unstable flow conditions were observed during any of the tests.

The simulated low α/ϵ coating tests indicates that the MRS should operate satisfactorily with a low α/ϵ coating and that the performance is in

the range used in previous heat rejection system weight optimization studies.

Data for thermal model correlation has been obtained by recording total system and individual panel inlet and outlet and tube temperatures, flow rates and pressure drops for approximately 302 hours of testing. A preliminary comparison of pre-test predictions and test data indicates that the system model used in previous analytical studies is adequate. The results of a more detailed correlation analysis are reported in Volume III of this report.

7.0 REFERENCES

- 1. Howell, H. R., et.al., "Space Shuttle Heat Rejection System Optimization Study", LTV Memorandum No. 2-53002/73IM-8, 26 January 1973.
- 2. Dietz, J. B., et.al., "Modular Radiator System Development for Shuttle and Advanced Spaces: ft", American Society of Mechanical Engineers Paper No. 72-ENAv-34, August 1972.
- 3. Howell, H. R., "Modular Radiator System Dallas Checkout Test Results", LTV Report No. T169-27, 9 October 1973.

TABLE I
THREE WEEK TEST TIMELINE

DATE	DAY	TEST POINT	BEGIN	END
5 March 1973	64	1	1525	1855
		1 A	1855	2020
		2	2020	01 46(da y 65)
6 March 1973	65	3	0146	0445
		4	0445	0600
		Chamber Down	0948	1700
7 March 1973	56	5	1700	1920
8 March 1973	67	8	0020	0430
		10	0430	0755
		12	0755	1115
		17	1115	1525
		17A	2050	2256
		18	2300	0340(day 68)
9 March 1973	68	19	0740	1140
12 March 1973	71	47	1108	2025
13 March 1973	72	14	0000	0315
		14A	0315	0615
		16	0730	1040
		20	- 1040	1515
		11	1515	1830
		Chamber Down	1830	1400(day 73)
14 March 1973	73	31	1400	1525
		32	1525	1825
		33	1825	1920
	•	48	1920	2210
		49	2210	2330
		37	2330	0210(day 74)
15 March 1973	74	38	0210	0300
		39	0300	0400
		45	0400	0615
		46	0615	0745

TABLE I (CONT'D)

DATE	DAY	TEST POINT	BEGIN	END
15 March 1973	74	50	0745	1900
		43	1900	2335
		36	2335	0600(day 75)
16 March 1973	75	36A	0600	0955
19 March 1973	78	21	0736	1000
		22	1000	1340
		23	1340	1720
		24	1720	2025
		25	2025	2330
		26	2330	0130(day 79)
20 March 1973	79	27	0130	0250
		28	0250	0525
		29	0525	1110
		62	1110	0045
21 March 1973	80	57	0045	0420
		58	0420	0735
		60	0735	1140
		51	1646	1735
		52	1735	1920
	-	52A	1920	2031
		52B	2031	2105
		52C	2105	2200
		52D	2200	2336
		52 E	2336	0205(day 81)
22 March 1973	81	53A	0205	060 5
		53	0605	0715
		54	0715	0825
		55	0825	9:20
		56	0920	1105
		59	1105	1210
		63	1800	2144
		64	2300	0200(day 82)
23 March 1973	82	61	0200	0630

TABLE 2

32 80 35 85 93 95 33 88 938 92 8 8 37 8 Insulation 30% off Panel 2 off Panel config. used 5 2 Degraded insulation panels 2 and 7 point 30% REMARKS test Insulation 8 às of Ha]f Same 15.2 INLET TEMP. (°F) 115 115 166 142 100 96 171 7 TEST GROUP 1 - SIMULATED BASELINE SYSTEM TESTS (BTU/hrft²) 135.8 140.1 15.6-57.3 124.4 124.3 31.4-55.4; 78.5-35.35 28.36 171.9-31.6 28.8-153.3 135.59 124.4 14 8-79.5 137.49 .39.23 30 30/180 31.55 35.62 27.5 AVERAGE ENVIRONMENT (BTU/hrft²) 130 20-60; 80-20 30 180-20 20-180 130 0-0 130 130 330 88 808 Top Cavities (Stdy) Sun on C.B. Cyclical Cav. Sun on Cargo
Bay
Sun on C.B.
Cyclical Cav. Sun on Cargo
Bay
Sun on C.B.
Cyclical Cay. Sun on Cargo Bay on Cargo Top panels with sun in cavity Sun on C.B. Alternating Top Cold Cavity Top Alternating Top Hot Cavity CASE Bay Sun à. CON-FIG. ຜົ a, Ø Ø a ರ a Ø Ø Ø A Ħ Ø TEST PT. 14A 5A 12 ₹ 20 20 = LO. က 4 ω Sun in Cavity
Hot & Cold
cavities separately
& together with
steady & cyclical
Env. 70,000 BTU/hr Sun in C.B. one CBD Sim. (1/2 of system) 70,000 BTU/hr one CBD sim. (1/2 of system) 80,000 BTU/hr Sun in C.B. one CBD both cavities sim. 57,700 BTU/hr Sun in C.B. one CBD sim. 42,000 BTU/hr DESCRIPTION Sun in C.B. TEST GROUP 1.5 1.2 7.3 <u>-</u> 7.4

TABLE 2 CONT'D

			ALLAGE ENTINONIEN				DATA
+100+	7		DESIRED	ACTUAL	INLET		č
PT.	FIG.	CASE	(BTU/hrft ²)		(°F)	REMARKS	PAGE
Sun on belly 17 one CBD and	a	Top Panel away from sun	20		55.3		41
17A	8		20 0	? 4.2	15		00 [
16	а	Cavity Alternat.	20-70 70-20	32.8-59.1 55.9-29	-91		101
10	a	Top panels away from sun	20	35.62	171	Sun in cavity environment approx. equal to belly to sun for top panels.	43 91
18	В	Belly to sun	20	28.4			<u>\$</u>
				•			
		17 α 17 α 17 α 19 β β 18 β β β β β β β β β β β β β β β β	17 a Top 17 a Top 17 a Top 10 a Top 18 Bell 18 Bell 19 a fron	TEST CON- PT. FIG. CASE 17 a Top Panel away 17 a Top Panel away 16 a Cavity to Space 16 a Cavity 10 a Top panels away from sun 18 Belly to sun Cavity to space Cavity to space	17 α Top Panel away 20 17 α Top Panel away 20 17 β Tom Sun 20 16 α Cavity to Space 0 16 α Cavity 20-70 10 α Top panels away 20 18 β Belly to sun 20 Cavity to space 0 20 α Top panels away 20 20 α Top panels α Top pane	TEST CON- TEST CON- TEST CON- TIG. CASE (BTU/Inrft²) (BTU/Inrft²) 17 α Top Panel away 20 24.6 17A β Top 20 20 7 Top 20 4.2 16 α Cavity to Space 0 4.2 10 α Top panels away 20 35.62 18 β Belly to sun 20 28.4 Cavity to space 0 7.8	TEST CON- CASE CA

TABLE 3
GROUP 2 - TWO-SIDED RADIATION TESTS

				AVERAG	AVERAGE ENVIRONMENT	1			DATA
TOJ.		TECT	200		DESIRED	ACTUAL	INLET		S
GROUP	DESCRIPTION	7 E	FIG.	CASE	(BTU/hrft ²)	$(BTU/hrft^2)$	(PF)	REMARKS	PAGE
2.1	Twn-sided fwd 30' only-sun on cargo bay full system	21	٨	Sun on cargo bay	160	160.79	163.2	Steady environments too high to represent design conditions	106
	78° simulation orbit	22	γ	Left side Right side	136-161	132.4-161.6	162.7	70,000 BTU/hr load	107
		23	۸	Left side Right side	136-161	131.1-159.4 169-128.3	141.3	57,700 BTU/hr load	110
		24	γ	Left side Right side	1 1	125-155.2 166-125.5	115.5	42,000 BTU/irr	113
		25	٨	Left side Right side	136-161	127-152.3	65.3	31,000 BTU/hr	115
2.2	Two-sided, sun in cavity 78° orbit	26	٨	Hot side Cold side	174	168.8 67.3	117.3	42,000 BTU/hr	44 117
		27	٨	Hot side Cold side	174	171.5	164.9	70,000 BTU/hr	115
		28	γ	Hot side Cold side	174	167	52.4	7,000 BTU/hr	119
2.3	Two-sided, belly to sun 78° orbit	29	У	Left side Right side	22-40 40-22	21.5-39.4 36.9-25.4	52.4	7,000 BTU/hr	44 120
2.4	Subsolar orbit	19	λ	see	results section	ψ	167	Sun oriented - belly to sun	44 122
		ಜ	γ	Variable - see re	results section	Ę	167	Earth oriented - cargo bay to earth	124
		64	γ	Variable - see re	results section		167	Sun oriented - cavity to sun	126

TABLE 3 CONT'D

			AVERAG	AVERAGE ENVIRONMENT		ŀ		DATA
	TECT	NO.		DESTRED		INCE		Š
DESCRIPTION	PT.	FIG.	CASE	(BTU/hrft ²)	(BTU/hrft ²)	(F)	REMARKS	PAGE
Response to set	57	γ	Deep space	0		53	Set point 40	45
point changes at	28	y	Deep space	0	2.9	53	Set point 50	128,132
	9	γ	Deep space	0	3.73	53	Set point 40	
Response to set	51	λ	Deep space	0			Set point 40	45,
point changes at high loads, low env.	52	٨	Deep space	0	7.7		Set point 50°F limited flow bench htr power prevented maintaining desired heat load	129,133
Response to set	52A	γ	Deep space	0	5	75	Set point 50°	45,
point changes at	52B	٨	Deep space	0	5.2	75	Set point 40°	130,134
	520	^	Deep space	0	4.9	75	Set point 50°	
	52D	χ	Deep space	0	3.3	75	Set point 70°	136
	52E	χ	Deep space	0	5.2	75	Set point 40°	
Response to set	53A	>	Hot cavity	130	120			45,
point changes at			Cold cavity	0	11	163.3	Set point 40°	131,135
high load, skewed environment	53	^	Hot cavity	130	121.8	163.3	Set noint 70°	
	22	λ,	Hot cavity	130	126.6			
			Cold cavity	0	14.1	163.0	Set point 40°	
	55	>	Hot cavity	130	126.4			
			רטות כמאורא	00.5	7.41	104.0	ser point so	
	8	<u> </u>	Cold cavity	0	10.48	163.0	Set point 70°	
	59	γ	Hot cavity	130	126.8			
			Cold cavity	0	14.6	163.2	Set point 40°	

TABLE 4 GROUP 3 - DESIGN DATA TESTS

DATA	8	PAGE	46,149	138	139	140	46 141	142	143	144	46, 150	147	148	47,169 152,158	153,163	154,170	
		REMARKS	RIC Baseline	Aft 30' in parallel Fwd 30' in parallel	All in parallel	Compare with TP45 for effect of high flow rate	RIC baseline	Aft 30' in parallel Fwd 30' in parallel	One panel isolated; demonstrate flow stability	Super low load	Compare with TP 20	Compare with TP 20; Each cavity panel in series with a top panel.	Compare with TP 16; Each cavity panel in series with a top panel.		Panel 8 insulation completely gone.		
10.10	TEMP	(°F)	165.2	164.1	162.7	162.7	53	53	53.0	45	100	100	-14.1	53 162 53	162 53 162	45.6 to 160.4	
l.		$(BTU/hrft^2)$		129.65	128.79	129.8	110/25	110.4/25.1	110/7/26.6	2.7	129.05 29.7/81.2	128.5 29.6/76.6	8.35 10.1/51.4	125.4/7.3	See Text	130.4	
AVERAGE ENVIRONMENT	DESIRED	$(BTU/hrft^2)$	130	130	130	130	110/25	110/25	110/25	0	130	130 20/80	20 20/80	130/0	See Text	130	
AVERAG		CASE	Sun on Cargo Bay	Sun on Cargo Bay	Sun on Cargo Bay	Cargo Bay to sun	Sun 45° to Cargo Bay 7,8 shadowed	Sun 45° to Cargo Bay 7,8 shadowed	Sun 45° to Cargo Bay 7 shadowed	Panels shadowed	Sun on Cargo Bay Cavity	Sun on Cargo Bay Cavity	Cargo Bay cold Cavity	Sun on C.B. 1/2 of panels shaded	No realistic case	One panel hot	
	S	FIG.	λ	Ø	v	4,7,8	1	v	δ (-8)	γ	Ø	y	λ	ø	a	4,7,8	
	TEST	PT.	32	33	45	46	37	38	39	62	48	49	43	47	61	20	
		DESCRIPTION	Compare inlet sec-	tion of RIC base- line (top panels	alternative	plumbing arrange- ments. High load	Same as 4.1 Low load				Compare outlet section of RIC base	line (fwd 30' and cavity) with alter native plumbing.		Max-Min transient with skewed en- vironment			
	TECT	GROUP	3.1			•	3.2				3.3			3.4	7		

TABLE 4 CONT'D

			u			_	ω	1 9			ဖ	
DATA	8	PAGE	47			156,177	157,178	48 179,186	180	181	48 182,186	
		REMARKS					Exceeded heat load simulation capability of prime system flow bench unable to maintain inlet temp/flow at desired levels throughout transient.	Max Load - Hot Env.	Min Load - Cold Env.	Max Load - Cold Env.	Max Load - Hot Env.	
	TEMP	(°F)			56.3	to 159.8	53 to 159	162.1	56.3	159.8		
	ACTUAL	$(810/hrft^2)$		7.8	13.47		3.73-12.71	58.6/52.2	3.87	13.47	See Text	·
AVERAGE ENVIRONMENT	DESIRED	$(BTU/hrft^2)$	20	0	0		0	60/52	0	0	Variable See Text	
AVERAG		CASE	Belly to Sun	Cavity to space	Panels shaded		Panels shaded	Hot Side	Cold Side	Cold Side	Sun on Cargo Bay	•
	200	FIG.	Я		٨	-1,3	٨	, r -1,3	γ -1,3	γ -1,3	d,	
	TECT	PT.	17A-18		36-36A		60-51	31	36	36A	2	
		DESCRIPTION	Max-Min transients	with cold environ-	ments			Analysis config. 2 (fwd 30' lowered	in front of wing) 1/2 of System	simulated, 10W a/e coating	Analysis config. 2 weight optimum low α/ϵ coating, full system simulated	
	TECT	GROUP	3.5					3.6			3.7	·

TABLE 5 SIMULATED BASELINE SYSTEM TEST SUMMARY

			•				•
SYSTEM HEAT REJECTED 1000 BTU/HR	72.5-68.4	65.7-61.6	50.5 - 48.2	39.7 - 2 9 .5	64.5 - 61.3	8.3	69.1
BTU/HR TOP	130 (135.6)	130 (137.5)	130 (139.2)	130 (135.8)	30) (35.6)	20) (24.6)	20 (35.¢)
ENVIRONMENT, BTU/HR CAVITY TOP	0-60 (14.8-59)	0-60 (14.8-59)	3-42 ; 61-0 (31-51);(60-35)	0-60 (15.6-57.3)	216-20; 20-21c 30 (172-32);(29-153) (35.6)	70-20 ; 20-70 20 (56-29) ; (33-59) (24.6)	0-20 (7-28)
SIMULATED ORBIT SUN ON	83	83	CB	83	CAVITY	BELLY	BELLY
JAD J/HR ACTUAL	79.4	70.5	57.4	41.6	66.8	9.6	72.
HEAT LOAD 1000 BTU/HR DESIRED ACTUAL	80	70	57.7	42	70	7	70
TEST GROUP	1.1	1.2	1 3	1.4	1.5	1.6	1.7

TEST GROUP 1.1 SUMMARY

TEST CONDITIONS

•	▶ TEST POINT 1A	DESIRED	ACTUAL
	Average Environment, BTU/hr-ft2 Inlet Temperature, °F	130	135.6
	Simulated Heat Load, BTU/hr-ft2	80,000	80, 618
•	TEST POINT 5A		
	Average Environment on Top Cargo Bay Door Panels(1,3,5&7) BTU/hr-ft ² Average Transient Environment On Cavity Panels, BTU/hr-ft ²	130	124.4
	Panel 6 Panel 8	09-0 0-60	13.8-58.7 15.8-59.3
	Inlet Temp (From TP-1A) °F Total Flow (From TP-1A) °F-1b/hr	118	114
	Simulated Heat Load (From TP-1A) BTU/hr	21,600	20,385
ES	EST RESULTS	PREDICTED	ACTUAL
•	TEST POINT 1A	:	
	Temperature at Location "X", "F Heat Rejection to Location "X", BTU/hr TECT DOINT EA	117.4	118 36,920
	Main Outlet Temperature, °F	39.3-60.1	43.7-61.6
•	TOTAL HEAT REJECTED, BTU/hr	80,000-68,400	72,540-60,428

REMARKS

- Requirements for TP-5 and TP-5A were so similar that iP-5 was actually used for TP-5A
 Heat load simulation was good
 Higher than desired absorbed fluxes caused higher than predicted system outlet temperatures
 Only one orbit was simulated before environment simulator failed. (Start-up transients may affect first orbit)

TABLE 7 TEST GROUP 1.2 SUMMARY

TEST CONDITIONS

ACTUAL 137.5 163.6 1074.5 69,940	124.4 13.8-58.7 15.8-100.2 114 1107.6 20,385	ACTUAL	114 30,050 43.7-61.6 35,620-31,508 65,670-61,558
DESIRED 130 162.4 1100 70,000	r-ft ² 130 0-60 0-60 114 1074.5 19,860	PREDICTED	111.1 32.8-58.8 70,000-59,300
o TEST POINT 1: Average Environment, BTU/hr-ft ² Inlet Temperature, °F Total Flowrate, 1b/hr Simulated Heat Load, BTU/hr	o TEST POINT 5: Average Environment on Top Cargo Bay Door Panels (1,3,5,&7) BTU/hr-ft ² Average Transient Environment on Cavity Panels, BTU/hr-ft ² Average Transient Environment on Cavity Panels, BTU/hr-ft ² Inlet Temperature (From TP-1), °F Total Flow (From TP-1), 1b/hr Simulated Heat Load (From TP-1), BTU/hr	TEST RESULTS	o TEST POINT 1: Temperature @ Location "X", °F Heat Rejection to Location "X", BTU/hr TEST POINT 5: Main Outlet Temperature, °F Heat Rejection, BTU/hr o TOTAL HEAT REJECTION, BTU/hr (Test Points 1 and 5)

TABLE 7 (Cont'd)

TEST GROUP 1.2

REMARKS

- Heat load simulation was good.
- Higher than desired absorbed fluxes caused higher than predicted system outlet temperatures.
- Only one orbit was simulated before environment simulator failed (start-up transients may affect first orbit)

TABLE 8

TEST GROUP 1.3 SUMMARY

ठ
10NS
-
2
CONDI
—
ES

•	TEST POINT 3:	DESIRED	ACTUAL
	Average Environment, BTU/hr-ft ² Inlet Temperature, ⁰ F Total Flow Rate, lb/hr Simulated Heat Load, BTU/hr	130 142.1 110.0 57,700	139.2 142.1 1120.3 58,000
•	TEST POINT 20:		
	Average Environment on Top Cargo Bay Door Panels	130	124.7
	Average Transient Environment on Lavity Panels BIU/nr-ft Panels 2 & 4 Panels 6 & 8	3-42 61-0	30.6-56.5 79.7-35.0
	Inlet Temp (from TP-3), ^O F Total Flow Rate (from TP-3), lb/hr Simulated Heat Load (from TP-3), BTU/hr	101 2240.6 34,200	101 2201 33,600
TES	TEST RESULTS		
•	TEST POINT 3:	PREDICTED	ACTUAL
•	Temperature @ Location Y, OF Heat Rejection to Location Y, BTU/hr TEST POINT 20:	£6	101 24,524
	Main Outlet Temperature, ^O F Heat Rejection, BTU/hr	42.5-45.8	54.2-57.4 25,987-23,721

TABLE 8 (Cont'd)

TEST GROUP 1.3

PREDICTED ACTUAL

Total Heat Rejected, BTU/hr (TP 3 and 20)

56,193-54,839

50,511-48,245

REMARKS

Heat Load Simulation was good.

Higher than desired absorbed fluxes caused higher than predicted system outlet temperatures.

Mix temperature varies less than $5^0 \mathrm{F}$ with cyclic environments, while individual outlet segments vary $10-150 \mathrm{F}$.

TABLE O

TEST GROUP 1.4 SUMMARY

TEST CONDITIONS

TEST POINT 4

		DES IRED	ACTUAL
	Average Environment, BTU/hr-ft ² Inlet Temperature, ^{OF} Total Flow Rate, lb/hr Simulated Heat Load, BTU/hr	130 116.2 1100 42,000	135.8 116 1119.4 42,400
•	TEST POINT 8		
	Average Environment on Cargo Bay Panels (1, 3, 5, & 7) BTU/hr-ft ² Average Transient Environment on Cavity Panels, BTU/hr-ft ²	130	140.1
	Panel 2 Panel 4	0-60	15 3-56.6 15 9-58.0
	Inlet Temperature (from TP4) ^O F Total Flow (From TP-4) lb/hr Simulated Heat Load (from TP-4) BTU/hr	96 1119.4 31,200	95 1108. 30,400
TEST	TEST RESULTS	PREDICTED	ACTUAL
0	TEST POINT 4 Temperature @ "X", °F Heat Rejection to Location X, BTU/hr	92.3	95 11,446
0	TEST POINT 8 Main Outlet Temperature, °F Heat Rejection, BTU/hr	25.6-56.3	42.7-62.5 28,204-18,078
0	TOTAL HEAT REJECTED, BTU/hr		39,650-29,524
DEMADIVE	מאכ		

REMARKS

Heat load simulation was good. Higher than desired absorbed fluxes caused higher than predicted system outlet temperatures.

TABLE 10

TEST GROUP 1.5 SUMMARY

TEST CONDITIONS

ACTUAL	35.6 Main = 163.6 Prime=161.8 551 70,283	27.5 181.4 TM= 15.2	7011 7011 70113-	31.55 7.65 TM= 15.8		30 180 30 18.4	
DESIRED	30 162.4 550 70,000	30 216 TM= 16.3 TP= 154.3		30 TM= 20		30 216 7M= 16.4 TM= 16.4	19-135:4 2204 15225
	TEST POINT 10 Average Environment, BTU/hr-ft ² Inlet Temperature, ⁰ F Total Flow Rate, ¹ b/hr Simulated Heat Load, BTU/hr	TEST POINT 11 Average Environment, BTU/hr-ft ² -Panels 1,3,5,7 Average Envir. Panels 2 & 4 Inlet Temp. (from TP10) ^o F	Total Flow (from TP 10) lb/hr Simulated Heat Load, BTU/hr	Average Environment, Panels 1, 3,5, 7 BTU/hr-ft ² Average Environment, Panels 2 & 4 Inlet Temp. (from TP10) ^o F	Total Flow (from TP10) 1b/hr Simulated Heat Load, BTU/hr	Average Environment, Panels 1, 3, 5 & 7 Average Environment, Panels 2 & 4 Average Environment, Panels 6 & 8 Inlet Temp. (from Y TP10)OF	Total Flow (from TP10) 1b/hr Simulated Heat Load, BTU/hr

TABLE 10 (CONT'D) TEST GROUP 1.5 SUMMARY

Í

	TEST POINT 14A	DESIRED 30	<u>ACTUAL</u> 25.36
	Average Environment Panels 1, 3, 7, 7 blu/nr Average Environment Panels 2 & 4 6 & 8	216-20 20-216	171.9-31.6 28.8-153.3
	Inlet Temp., °F (From Y TP-10)	TM = -16.4 TD = 152.4	TM = 20 Tp = 152
	Total Flow (From TP-10) Simulated Heat Load, BTU/hr	2204 15225	, 2231 11695
TES	TEST RESULTS	PREDICTED	ACTUAL
0	o TEST POINT 10		
	Temp @ X, °F	$T_{M} = 11.2$ $T_{D} = 154.2$	16.3 154.3
	Temp @ Y, °F	TM = 20.4	-16.4 152.4
	Heat Rejection to Location X, BTU/hr Heat Rejection to Location Y, BTU/hr		22,479(1/2 of systam) 55,000
0	TEST POINT 11		
	Outlet Temp., °F	46.6	34.3 98.
	Heat Rejection, BTU/hr		-2150(1/2 of system)
0	Total Heat Rejected by TP-10,11	20,518	20,329(Hot Cavity)
0	TEST POINT 12		
	Outlet Temp., °F	-75.9 141.5	-65. 144
	Heat Rejection, BTU/hr		12,192(1/2 of system)
0	Total Heat Rejected by TP-10,12	35,675	34,671(Cold Cavity)
0			55,000(Full System)
0	TEST POINT 14		
	Outlet Temp, °F	$T_{M} = 6.2$ $T_{D} = 134.6$	13.1 133.3
	Heat Rejection, BTU/hr		4505
0	Total Haat Rejected TP-10,14	59,458	59,505

TABLE 10 (CONT'D)

TEST GROUP 1.5 SUMMARY

ACTUAL

	<	c
	< <u> </u>	
		5
		יי
	<)

Outlet Temperature, °F

Heat Rejection, BTU/hr

o TOTAL HEAT REJECTED BY TP-10, 14A

-4.9 — 8.7 139.2 143 6275 - 9520

61,275-64,520

REMARKS

- Heat load simulation for TP-11 and TP-14 was not adequate because the main/prime flow split did not match TP-10. TP-11 had the majority of flow through the main system.
- Flow split between main and prime for TP-10 was based on pre-test analyses to match flow split in TP-12. 0
- o Environment simulation for sun in cavity was low.

TABLE 11

TEST GROUP 1.6 SUMMARY

TEST CONDITIONS

	DESIRED	ACTUAL
TEST POINT 17 Average Environment, BTU/hr-ft ² Inlet Temperature, ^O F	20 53	74.6 55.3
Total Flow Rate, lb/hr Simulated Heat Load, BTU/hr	550 7000	1p= 53.2 566 7358
TEST POINT 17A Average Environment on Panels 1,3,5,7, bTU/hr-ft ² Average Environment on panels 2 & 4 Inlet Temperature, ⁰ F	20 0 TM=. 82.2	29.7 4.2 51.6
Total Flow Rate, lb/hr Simulated Heat Load, BTU/hr	10 10 10 10 10 10 10 10	32.7 1180.6 7340
TEST POINT 16 Average Environment on Panels 1, 3, 5, 7,BTU/hr-ft ² Average Cyclic Environment on Panels	20	20.1
2 & 4 6 & 8	70-20 20-70	56-29 32,75-59
Inlet Temp, ^O F	TM= 49.2	-18.7
Total Flow	1P 2264	2224
Simulated Heat Load, BTU/hr	5.769	4467

TABLE 11 (CONT'D)
TEST GROUP 1.6 SUMMARY

TES	TEST RESULTS	PREDICTED	ACTUAL
0	o TEST POINT 17		
	Temperature at X, °F	TM = -121	-84.
	Temperature at Y, °F	7.06 = di	-91
	Heat Rejection to Location X, BTU/hr Heat Rejection to Location Y, BTU/hr		5100 5740
0	TEST POINT 17A		
	Outlet Temp., °F		-152.3
	Heat Rejection, BTU/hr		3160
c	Total Heat Rejected by 17 and 17A		8260
0	TEST POINT 16		
	Outlet Temp., °F	•	- 37.8 - -40
	Heat Rejection, BTU/hr		3726 - 3555
0	Total Heat Rejected by 17 and 16		9466 - 9295

REMARKS

o Pre-Test predictions for test points 17A (β configuration) and 16 (alpha) were not made under the conditions of the test.

o Heat load simulation for TP-17A and 16 was not good.

o Environment simulation was good.

TEST GROUP 1.7 SUMMARY TABLE 12

TEST CONDITIONS

20 35.6 162.4 Tw 163.6 750 Tp= 161.8	70,000 70,283 20 28,35 0 6.8 TM 16.3 15.2		Tw = 152.3 Actual 16.3 Tp = 152.3
 TEST POINT 10 Average Environment, BTU/hr-ft² Inlet Temp., OF Total Flow Rate, 1h/hr 	Simulated Heat oad, BTU/hr TEST POINT 18 Average Environment on Panels 1, 3,5,7, (BTU/hg-ft ²) Average Environment on Panels 2 & 4, BTU/hr-ft Inlet Temp., OF	Total Flow, 1b/hr Simulated Heat Load, BTU/hr TEST RESULTS	 TEST POINT 10 Temperature @ location "X", ^OF TEST POINT 18 Outlet Temp, ^OF Total Heat Rejected, TP-10 and 18, BTU/hr

REMARKS

— Test Point 10 used for sun on belly - Average Environments for top of Cargo Bay for Sun on Cavity
(approximately 30 BTU/hr-ft²) are similar to Sun on Belly (approximately 20 BTU/hr-ft²).

TABLE 13 TWO SIDED RADIATION TEST SUMMARY

	TOTAL HEAT REJECTED BTU/HR	Actual	49426	52931 51196	43289 41423	33508 32339	25229 23552	39990	61255	3375	4163	51782 7 08 30	53100 70864	60678 70024	
	TOTA REJE BTU	Predicted	21670	55570 53529	46473 44363	35344 33135	27104	41910	61736	7500	: 6967 6837				
TEST RESULTS	ATURES	Actual	828	71 - 17 71 - 17	64.7 67.9	59.5	49 +52.1 54.2 +55.3	8.4.8	59.5	4. 7. 4. 6.9	-107.9 101.9	14.2 \$\rightarrow 75 \\ 145 \rightarrow 75	-4.9 \$ 73.0 150.6 \$ 111.0	0.8 \$\Psi \ 50.0 \\ 121.0 \\ 1	
	OUTLET TEMPERATURES	Predicted	15	Th = 66.8	60.8 86.7	53.1	47	40.9	55.55	0.2 51.1	-132.3				
Ī	ITED CAD IR	Actual	69722	09069	56674	41925	30400	42667	71517	3499	5962	70830	70864	70024	
	SIMULATED HEAT LCAD BTU/HR	Desired	70K	70K	57.7K	42K	. 31K	42K	70K	X	¥ 	70K	70K	80	
	FLOW	Actual	2212	2201	2122	2214	2202	2203	2227	2238	2206	2214	22 34	2212	
	TOTAL FLOW	Destred	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	5200	5:00	
TEST CONDITIONS	INLET TEMPERATURE"F	Actual	163.2	162.7	141.3	115.5	95.3	117.3	164.9	7m=52.4 Tp=45.1	Tm 50.0 Tp 46.3	183.6	164.6	162.7	
TEST CO	INLET TEMP	Destred	162.4	162.4	142.1	116.2	1.96	116.2	162.4	3	ន	162.4	162.4	162.4	
!			160.79	170.3 - 128.3	169 -	166 - 125.5	165.3 - 124.8	67.3	67.2	58.5	36.85- 25.4	167.5	31.7	31.8	
	AVERAGE ENVIRONMENTS BTU/AR-FT2	ACTUAL PANELS 1-4 5-8	160.79	132.4-	131 <u>-</u> 159.4	125 -	152.3	168.8	171.5	167	1.5-39.4	54.7 - 169.4	31.9 - 151.5	49.7 - 170.5	
	AVERAGE E Btu/hr	PANELS 5-8	92	171-130	171-130		171-130	70	70	29	40-22	59.5 -	23.3 - 156.3	73.2	
1		DESTRED PANELS 1-4 5-8	160	133-158 171-130	133-158 171-130	133-158 171-130	133-158 171-130	174	174	174	22-40	59.5 - 171.5	23.3 - 156.4	51.4 - 171.5	
		Test Point	23	22	23	24	52	5 6	a	28	53	9	83	3	
		Test Group	2.1					2.2			2.3	2.4			

TABLE 14

SUMMARY OF SET POINT CHANGES (TWO-SIDED RADIATION)

REJECTED BTU/HR)	7.56	12.78	7.48	69.51	35.67	16.15	19.48	14.95	2.61	20.65	45.66	70.53	66.51	45.44	70.50
HEAT (1000	I	12		69	35	16	15	17	CU	50	4	02	99	45	02
(^O F) MIXED	9.04	50	40.6	39.5	50	46.9	40.6	50	70	39.5	67.9	40.6	50	68.9	39.5
OUTLET TEMP IN PRIME	50	50	50	149	109	72	72	72	77	7	130	137	151	130	135
OUTI	-137	-125	-132	-38	-109	-157	-157	-159	57	-139	-19	24	16	.20	56
FLOW RATE (LB/HR) IN PRIME	1945	2010	1919	488	1557	1881	1881	1380	1958	1868	1273	275	510	1273	566
FLOW (LB/ MAIN	134	5.7	136	1379	647	275	337	243	22.9	385	970	1950	1727	957	1975
INLET F (^O F) PRIME	53	52.3	53	157.6	113	75	75	75.7	7,7	74.3	133.7	155.5	162	134.3	154
IN TEMF MAIN	59.3	-18	59.3	159	113	73	73	72.5	56	73	163.3	163	164	163	163.2
AVERAGE ENY. (BTU/HR FT ²)	3.8	2.9	3.7	12.7	7.6	5.0	5.2	4.9	3.3	5.2	121.8/10.65	126.6/14.1	126.4/14.2	122.7/10.5	126.8/14.6
SET POINT	04	50	04	04	50	50	C†	50	0,1	O;	70	도	50	70	01
TEST POINT	57	58	99	51	52	52 A	52B	520	520	52E	53	54	55	55	59
TEST		2.5		9.0		<u></u>	J	2.7	1		- 	-	'-		

TABLE 15 SUMMARY OF ALTERNATIVE PLUMBING TEST POINTS

HEAT REJECTED (1000 BTU/HR)	31.9	30.7	29.8	22.5	5.6	6.6	3.4	6.0	23.2	.) 22.4	5.5
AVERAGE ENVIRONMENT (BTU/MR FT2)	129.8	129.7	128.8	129.8	110.0 (top) 109.9-25.0 (cav.)	110.7 (top) 109.5-25.1 (cav.)	110.4 (top) 111.1-25.0 (cav.)	2.7	129.1 (top) 29.6-81.1 (cav.)	128.5 (top) 29.5-76.6 (cav.)	8.35 (top) 10.1-51.4 (cav.)
MAIN FLOWRATE (LB/HR)	2223	2174	2158	2198	1466	1466	2211	14.2	2130	2161	149
MAIN INLET TEMPERATURE (°F)	165	164.1	161.1	162.7	52.1	53.2	53.2	53.7	130	100	-14.1
CONFIGURATION	>	60	ω	6-4,7,8	,	40	6 - ≺	>	40	> -	>
TEST POINTS	32	33	45	46	37	38	39	62	48	6,	43
TEST GROUP	3.1				3.2				3.3		

TABLE 16 SUMMARY OF HEAT LOAD TRANSIENT TEST POINTS

į

HEAT REJECTION RANGE-BTU/HR	6248/67786/5654	67860/ 6495/ 67596	2789/43530	1580/12412	2668/36049	7178/69373
MAIN OUTLET TEMP. RANGE - °F	-8.3/27.9/8.7	72/17.4/72	4.2/89.0	-152.3/-64.2	-146.5/-22.2	-130.5/-35.0
INLET TEMP RANGE - °F	51.6/160./50.5	162.7/52.1/161.6	45.6/162.7	47.9/154.3	47.9/164.6	53/159
AVG. ENVIRONMENTS BTU/HR	125.4 (Panels 1-4) 7.3 (Panels 5-8)	Variable (12.9-171)*	10.5 (Panels 2,3,5 & 6)	26.2(Panels 1,3,5,7) 5.5(Panels 2 & 4)	13.5	3.7/12.7
TEST POINT	47	19	20	17A-18	36-36A	60 - 51
TEST GROUP	3.4			3.5		

* Panels 2, 6, 7 and 8 environments not known exactly due to degraded insulation blanket configuration.

TABLE 17 SUMMARY OF SIMULATED LOW α/ϵ COATING TESTS

NG HR)				
CALCULATED WATER BOILING REQUIRED(LB/HR)	6.62	•	ı	14. n8
HEAT REJECTED (BTU/HR)	67,392	5,336	72,098	51,265 -
HEAT LOAD BTU/HR	74,012	5,336	72,098	66,803
SIMULATED AREA FT2	512(half of system)	512	512	682
ACTUAL AREA FT2	432	432	432	576
AVERAGE ENVIRGNMENT (3TU/AR FT2) PANEL FLUX	58.6 52.2	4.8 3.6	14.8	60.2-65.2 38.4-78 71.1-45.7
AVERAGE E (3TU/A PANEL	2,4,5	2,4,5 6,7,8	2,4,5 6,7,8	1,5 2,3,4 6,7,8
FLOW	γ - 1,3	۲ - ۱,3	γ - 1,3	ಕ
TEST POINT	33	36	36A	2
TEST GROUP POINT	3.6		48	3.7

TABLE 18 EXTRAPOLATION OF TEST DATA TO BASELINE CONFIGURATION

			TEST CONDITIONS		TES	TEST RESULTS		SH EXTR	IUTTLE VE APOLATED	SHUTTLE VEHICLE EXTRAPOLATED RESULTS
TEST GROUP	TEST POINT	HEAT LOAD	PORTION OF SYS SIMULATED	ORBIT (SUN ON)	AVERAGE SYS. TOTAL HEAT REJ.	TOP OF CARGO BAY COOR QREJ	CAVITY QREJ	TOP CBD QREJ	CAVITY QREJ	AVERAGE SYS TOTAL QREJ
1.1	1A,5	79.4	1/2	CB	71.8	25.0	10.9	22.4	15.5	76.6
1.2	1,5	70.5	1/2	83	63.6	20.9	10.9	18.7	15.5	68.4
1.5	10,11 & 10,12	55.0	1/2(Each ca- vity tested separately)	Cavity (Const Env.)	55.0	64.6	-13.6/	57.8	-19.4/	44.5
	10,14	62.8	Full .	Cavity (Const Env.)	58.5	9.99	-11.4/	52.2	-16.2/	40.7
	10,14A	61.3*	Full	Cavity (Cyclic Env.)	61.3	67.4	-10.4/	54.6	-14.8/	45.9
									-	-

All Values In 1000 BTU/HR

* Outlet Control Point = 49°F

SHUTTLE CONFIGURATIONS SIMULATED BY TEST ARTICLE

SUN ORIENTED, CAVITY TO SUN EARTH ORIENTED, BELLY TO EARTH EARTH ORIENTED, CARGO BAY TO EARTH **7** 275

FIGURE 3

 β = 0° orbits simulated

t SWOOT

UNCOATED RADIATOR PANEL

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TWO SIDED

FIGURE 10

DETAIL OF INSULATION ON PANELS AND ENVIRONMENT SIMULATOR

FTGURE 11

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR RELIEF MUE SET AT 3 M PSI (·) -80 -600 PSI SUPPLY € 30 £00 RV 1-24 X B WATER TANA -llocelelecel STEEL FLOWMETER SPECIFICATIONS MUNE SPECIFICATIONS 000000000000 ACCUM TMESBERR! 2 85 6 જુકામાં માર્યા છે. * RF * THEB I 1461 12 SPPER .049 WALE W 90 12 4 IN 12 CHECK ALVE OTY 100 FROM USED ON GAA NEA NEXT ASSEMBLY FROM MATERIAL MATERIAL S FOLDOUT FRAME

FIGURE 13

THERMOCOUPLE LOCATIONS ON PANEL

FIGURE 14

LITY INSTRUMENTATION - POWER SUPPLY, STRIP CHART RECORDERS, CRT DISPLAY

1000

REPRODUCIBILITY OF THE POOR ORIGINAL PAGE IS POOR

FLOW LOOP &

EFFECTIVE AREAS

SIMULATES SHUTTLE $\Sigma(G) \rightarrow (J) = 4 \times 133 = 532 \text{ FT}^2$ $\Sigma(1) \rightarrow (8) = 8 \times 72 = 576 \text{ FT}^2$

DATA FOR POINTS riangledapsilon AND riangledapsilon WILL BE USED AS INLET TEMPERATURES IN OTHER TESTS

FLOW LOOP B

EFFECTIVE Σ 5, 7, 6, 8 = 288 UP
AREAS Σ 4, 2 = 144 DOWN
432 TOTAL

FLOW LOOP α_3

(A)

(1)

SIMULATES SHUTTLE

 Σ B/2, D/2, H/2, J/2 = 266 UP Σ E, F, K, L = 372 DOWN 638

Σ 1, 3, 5, 7 = 288 UP Σ 2, 4, 6, 8 = 288 DOWN 576

TEST

EFFECTIVE AREAS:

70 ..

FIGURE 21 SUMMARY OF WEEK 1 FLOW CONFIGURATIONS TO SIMULATE BASELINE LHUTTLE

FIGURE 22

FLOW OF TESTING DURING WEEK 1

FIGURE 25

FLOW LOOP Y

EFFECTIVE AREAS

TEST

SIMULATES SHUTTLE

(\$\(\Delta\) = (8) = 8 x 72 = 576 T2 \$\(\Sigma\) B, D, H, J = 4 x 133 = 532 FT2

FLOW LOOP & **@ ©** @ Œ

2200 LB/HR

 $\begin{array}{c}
\text{TEST} \\
\hline
\Sigma \oplus \rightarrow \bullet \\
\hline
\bullet & 576 \text{ FT}^2
\end{array}$ EFFECTIVE AREAS:

SIMULATED SHUTTLE Σ (B), (D), (J) = 632 FT²

FIGURE 27 FLOW LOOP &

OUTLET Cavity OR CIMMARY OF WEEK 2 FLOW CONFIGURATIONS <u>က်:</u> FIGURF 28 THIS ... WITH PANELS PLUMBED CONFIGURATION AS SHOWN P

FROM THE FORWARD 30 FT OF THE RADIATORS

79

FIGURE 30
TEST POINT LA - STABILIZED TEMPERATURES

FIGURE 31
TEST POINT 5A - MIXED AND MAIN CUTLET TEMPERATURES

TIGURE 32

TEST POINT 5A - LEG FLOW RATES AND OUTLET TEMPERATURES

FIGURE 33
TEST POINT 1 - STABILIZED TEMPERATURES

FIGURE 34
TEST POINT 3 - STABILIZED TEMPERATURES

FIGURE 35
TEST POINT 20 - MIXED OUTLET AND LEG
OUTLET TEMPERATURES

FIGURE 36
TEST POINT 20 - LEG FLOW RATES

FIGURE 37
TEST POINT 4 - STABILIZED TEMPERATURES

FIGURE 38

TEST POINT 8 - MIXED AND MAIN OUTLET TEMPERATURES

C - 2

FIGURE 39

i.

TEST POINT 8 - INLET TEMPERATURES
OUTLET TEMPERATURES

FIGURE: 40

TEST POINT 8 - LEG AND TOTAL FLOW RATES

•

.

; ;

į

•

ì

FIGURE 41
TEST POINT 10 - STABILIZED TEMPERATURES

FIGURE 42

TEST POINT 1: - STABILIFED TEMPERATURES

FIGUPE 43
TUST POINT 12 - STABILIZED TEMPERATURES

FIGURE 44
TEST POINT 14 - STAPILIZED TEMPERATURES

FIGURE 45
TEST POINT 14, 14A - INLET TEMPERATURE,
PRIME, BANK AND MIXED OUTLET TEMPERATURES

FIGURE 46

TEST POINT 14, 14A - BANK TUBE OUTLET TEMPERATURES, FANELS 2 AND 6

FIGURE 47
TEST POINT 14, 14A - TOTAL, BANK, PRIME FLOW RATES

FIGURE 48
TEST POTNT 14, 14A - LEG FLOW RATES

FIGURE 49
TEST POINT 17 - STABILIZED TEMPERATURES

FIGURE 50
TEST POINT 17A - STABILIZED TEMPERATURES

FIGURE 51
TEST POINT 16-1 - STABILIZED TEMPERATURES

FIGURE 52
TEST POINT 16-2 - STABILIZED TEMPERATURES

FIGURE

TEST POINT 16 - PANEL 2 AND 6 OUTLET TEMPERATURES, MIXED OUTLET TEMPERATURES, MIXED OUTLET TEMPER TURE

FIGURE 54
TEST POINT 18 - STABILIZED TEMPERATURES

COMPARISON OF TEST POINTS 5 AND 8 INFLUTICE OF ENVIRONMENT ON PERFORMANCE FIGURE 55

I

- The state of the

FICHE 58

Mary Control of the C .

Tout Mixed 74 Tout Prime 72 Tout Bank 74 T Prime 70 'T Prime 95

-

FIGURE 59
TEST POINT 22 - PANEL AND MIXED OUTLETS

Bank Flow 598 T Frime 88 T Bank 88 Bank F. Ow 592 Tin Benk 140.2 Tin Prime 142.1 TEST POINT 23-1 - STABILIZED TEMPERATURES FIGURE 60 T Bank 98 T Prime 97 Flow Prime 14.8 Flow Bank 2198 Benk Flow 574 Bank Flow

T Bank 55.3 T Prine 73 Prine T Bank T Prime 63.7 T Benk 58 14 Tout Mixed 64.7 Tout Prime 67.9 Tout Bank 64.7 T Prime 74 T Bank 75 T Benk 71 T Benk 94 T Prime T Prine

FIGURE 62
TEST POINT 23 - PANEL AND MIXED OUTLET
TEMPERATURES

T Bank 45.8 T Prine 64.7 T Prime 80 T Bank Benk Flow 589 T Benk 50 T Prime 55.3 75 Benk Flow 577 TEST POINT 24-1 - STABILIZED TEMPERATURES T Prime T Bank Tin Prime 116 Tin Benk 116 Tout Prime 58.4 Tout Mixed 56.3 Tout Bank 55.3 FIGURE 63 T Prime 65.8 T Bank 66.8 Flow Bank 2198 Flow Prime 15.8 T Prire 86 Bank Flow 9,19 9.19 T Prime 85 Bark Flow T Benk 80 T Prine T Bank

から

;

.....

FIL JRE 65

Towns of the second

,

barranes,

į

:

and the second of the second s

FIGURE 66

-

TEST POINT 25-2 - STABILIZED TEMPERATURE

FIGURE 67

I

TEST POINT 26 - STABILIZED TEMPERATURES

FIGURE **68** TEST POINT 27 - STABILIZED TEMPERATURES

į

Transport Transport Transport Transport Transport

FIGURE 69 TEST POINT 28 - STABILIZED TEMPERATURES

FIGURE 70

I

I ...

The state of the s

:

1

TEST POINT 29-2 - STABILIZED TEMPERATURES

Bank Flow 32 Flow Prime 1048 T Prime 52.1 T Bank -77.1 Bank Flow Tin Prime 46.9 Tin Benk 50 T Prime 53.2 T Bank -1-11 2113 Flow Bank 93 Flow Prime Bank Flow Flow prime 1031 Benk Flow

FIGURE 72
TEST POINT 61 - FLOW RATES

FIGURE 73
TEST POINT 61 - PRIME, BANK, MIXED
OUTLET TEMPERATURE

E

FIGURE 74
TEST POINT 63 - FLOWRATES

Ē

FIGURE 75
TEST POINT 63 - PRIME, BANK AND MIXED
OUTLET TEMPERATURES

FIGURE 76
TEST POINT 64 - FLOW RATES

FIGURE 77
TEST POINT 64 - PRIME, BANK, MIXED
OUTLET TEMPERATURES

= 159°F COLD ENVIRONMENT 19:30 TEST GROUP 2.6-RESPONSE TO SET POINT CHANCES 19:00 18:00 8 8 8 40 HEAT REJECTED BTU/HR X 10^{-3}

129

CUANTIN CIVIL

FIGURE 79

TIME - HOURS:MIN DAY 80

FIGURE 83
TEST GROUP 2.6 - FLOW AND TEMPERATURE RESPONSE TO SET POINT CHANGES

TIME - HOURS (DAY 80)

FIGURE 84
TEST GROUP 2.7 FLOW AND TEMPERATURE RESPONSE TO SET POINT CHANGES

TEST POINTS 52D, H - PANEL FICK RATES FIGURE 86

- ----

FIGURE 88

ACTION OF THE PERSON OF THE PE

--

FIGURE 89

一 一

TEST POINT 45 - STABILIZED TEMPERA-TURES

FIGURE 90

TEST POINT 46 - STABILIZED TEMPERA-TURES

-

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR Temp Main 11 Tenr Main 55.3 emp Prine 52.1 Flow Prime 402 90 Flow Main Flow Main_ Temp Prime Temp Main Temp Main 56.3 Temp Prime 52.4 Temp Main 9.9 Temp Prime 55.3 39.5 TEST POINT 37 - STABILIZED TEMPERA-TURES 354 Tout Prime 49.0 Tout Main 34.3 Tin Prime 49.0 Temp Mixed Prime and Main Flow Main 1466* Tin Main 52.1 Flow Prime Flow Main FIGURE 91 Temp Main 56.3 Temp Prime 56.3 Temp Main 55.3 Temp Prime 53.2 Flow Prime 755 Temp Prime Tem: Main Flow Prime Flow Main Temp Main 55.3 Temp Prine 55.3 Temp Prine 53.2 Temp Main 55.3 Flow Prime 376 354 Flow Main Flow Frime Flow Main 101

;

.

:

FIGURE 92

The state of the s

:

· manding

TEST POINT 38 - STABILIZED TEMPERA-TURES

;

...

: :

- - -

Temp Fring 15.3 Flow Main 4// Temp Natr. Ø ૭ Temp Frime Tomi Nain Flow Prime Flow Wain_ Tem: Main 56.3 Tem: Prime 55.3 Temp Pain 35.3 Temp Prime 52.1 Flow Main 473 Flow Prime 9 - STABILIZED TEMPERA-TURES Taris 2710 53.2 Temp Main 46.9 TIn Wain 53.8 Tin Prime 50.0 ľ.) Temp Main 55.3 Temp Prime 55.3 Temp Main 55.3 Temp Prime 52.1 low Main 567 Flow Prime 15.3 Flow Main 2211 TEST POINT N Tenp Prime Tomp Main Tenn Prime 55.3 Temp Mein 54.2 Flow Main 594 Temp Nain Flow Prime Flow Main

FIGURE 93

1

Fixed Main and Prime 46.9

· 小小の間であるとのは動物のでは一般を変えない。 というない かんかん しょうしゅんかん

FIGURE 94 TEST POINT 62 - STABILIZED TEMPERATURES

Ī

Table 1 and 1 and 1

T

FIGURE 95 TEST POINT 62 TUBE TEMPERATURES AFTER COLD SOAK

FIGURE 96

I

Ī

I

Ī

一 一

11 11 1 大樓子 無

mande field rate days a phanes to some can't work

I

FIGURE 99
COMPARISON OF PLUMBING ARRANGEMENTS

CONFIGURATION	TEST POINT	AVG ENV. BTU/HR FT ²	INLET TEMP °F	OUTLET TEMP °F	HEAT REJECTION BTU/HR	Q/A BTU/HR FT ²
	32	129.8	165.2	111.0	31,909	55.4
	33	129.6	164.1	110.0	30,679	53.4
	4 5	128.8	161.1	112.	29,408	51.0
	46	129.8	162.7	123.8	22,492	62.5

FIGURE 100 COMPARISON OF PLUMBING ARRANGEM:NTS

TEST POINT 20	TO TO THE TOTAL PROPERTY OF THE TOTAL PROPER	54.2 - 57.4	24,307-26,165	2124-2136	124.3 35.7-56.4 (Cyclic
TEST POINT	100°F TOP	59.5	22,437	2161	128.5 29.5-76.6 (Steady)
TEST POINT	E and S	59.5	R 23,258	2136	T 129.1 29.6-81.1 (Steady)
31	1001	MAIN OUTLET, °F	TOTAL HEAT REJECTED, BTU/HR	TOTAL MAIN FLOW, LB/HR	AVG. ENVIRONMENT TOP CAVITY

FIGURE 101 COMPARISON OF TEST POINTS 16 AND 43

	AVG. ENVIRONMENT, BTU/HR-FT ²	
TEST POINT 16	PANELS	
	1, 3, 5, 7	20.1
	284	56 - 29
	8 8 9	32.75 - 59
	MAIN INLET, °F	-18.7
	PRIME INLET, °F	51.6
1 3 4 2	MAIN OUTLET, °F	-10.6
	MIXED OUTLET, °F	44.8
	Q _{REJ} , BTU/HR	2190
5, +12100 +014	AVG. ENVIRONMENT, BTU/HR-FT2	
IEST PUINT 45	PANELS	
L	1, 2, 5, 6	8.35
	3 & 4	1.01
	7 & 8	51.4
	MAIN INLET, °F	-14.2
	PRIME INLET, °F	53.2
	MAIN OUTLET, °F	-80.5
	MIXED OUTLET, °F	40.6
	Q _{REJ} , BTU/HR	5487

FIGURE 102 COLDEST TUBE TEMPERATURES AT START OF HEAT LOAD TRANSIENT - TEST POINT 47

TUBE NUMBER

FIGURE 103

FIGURE 104

HRF NIMKFR

TUBE NUMBER

FIGURE 106

FIGURE 107 COLDEST TUBE TEMPERATURE AT START OF HEAT LOAD TRANSIENT - TEST POINT 60

FIGURE 108

TEST POINT 47 - TOTAL, PRIME, BANK
FLOWRATES

TEST POINT 47 - LEG FLOWRATES DURING TRANSIENT

FIGURE 110

TEST POINT 47 - BANK AND PRIME INLET AND OUTLET TEMPERATURES, MIXED OUTLET TEMPERATURE

FIGURE]]]

TEST POINT 47 - OUTLET TEMPERATURES OF PANELS 1, 2, 3, 4

FIGURE 112
TEST POINT 47 - OUTLET TEMPERATURE OF PANELS 5, 6, 7, 8

FIGURE 114 TEST POINT 19 - BANK FLOWRATES

FIGURE 115
TEST POINT 19 - PRIME FLOWRATES

FIGURE 116

TEST POINT 19 - BANK INLET AND OUTLET TEMPS, PANELS 2, 6 CUTLET TEMPS

FIGURE 117

TEST POINT 19 - PANELS 1, 2, 3, 4 BANK OUTLET TEMPERATURES

FIGURE 118

TEST POINT 19 - PANELS 5, 6, 7, 8 BANK OUTLET TEMPERATURES

-- PANEL #7 MAIN TUBE OUTLET; T/C #AJ0034

200

S -- PANEL #8 MAIN TÜBE OUTLET; T/C #AJ0035

* -- PANEL #6 MAIN TUBE OUTLET; I/C #AJ0027

FIGURE 119

TEST POINTS 47, 19 - TEST SUMMARY

TEST POINT	ENVIRONMENT (BTU! ET #2)	INLET TEMP(0F)	FLOW RATE DESIRED (ACTUAL)	OUTLET TEMP (^O F)	HEAT REJECTED (1000 BTU/hr)
47	124. 92 10. 95 124. 125. 7. 3 5 127. 628 5. 8 5 125. 125. 125	51.6 160 1 50.5	1100	Main Prime 49 † 131.6 † 46.9	4,3 67,4 ↓ 3.7
81	114.3 35.10 120.5 31.10 16.5 126-126-12	162.7 	2200 (2163)	72 † 17. 4 † 72	51.3 9.6 50.9

	c #0020	C #0022 C #0024 C #0025 C #0025	C #0027	
	UBE #10; T/ UBE #09; T/	TUBE #07; T/ TUBE #06; T/ TUBE #05; T/ TUBE #04; T/	UBE #00 I	
				17:50
				17:40 Y 74 [HRS]
RECOVERY		C C C C C C C C C C C C C C C C C C C		I7:30 EDURING DA
FIGURE 120 50 - PANEL 2	* " (6)			17:20 D TEST TIM
POLINT				
	39 TURE			171
	WERA	(A)		
	170			

Table page eight.

	, ,	: :				,	•
: 	. : : .		019	6020 0021 0022 0023	0024 0025 9926	0002	•
· •	· · · · · · · · · · · · · · · · · · ·			00# 0/		C C	
• •		· !				F F	<u>.</u>
			01	#03 #03 #04	# # # 0.5 4.03	0 0	
			T U B B	TUBE TUBE TUBE	TUBE	TU TU E	
					1 1 1		00
• • •	11 II					7) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	11
1	1	F 0 0.	S. K.	• • • • • • • • • • • • • • • • • • • •			30.00
RECOVERY		11/2 11/2 10/2 10/2 10/2 10/2 10/2 10/2	c by h				17:4
, - w							V V
RE 12		First.	Se Con	o he			7:30 NG D
FIGURE				Elect			D C C C C C C C C C C C C C C C C C C C
TOLINE				100	E COL		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
TSST			* or e		W + Joe	C C C	8. T H = .
		• • • •		S. W. C.	e la	A COL	3 ED
				· • • • • • • • • • • • • • • • • • • •			E LA
· · · · · · · · · · · · · · · · · · ·			• · · • • • • ·				1 1 1
				;			00
			5	ا بنا بنا الله الله ا		6	•
· · · · · · ·				*	ώ·····	<u> </u>	ф
					γ/ ₁		
				# H H	op/		
				E P E P P P P P P P P P P P P P P P P P			
				TEMPERATURE:			

i -						19	0 7	0021	23	24	. 92	27	0.28			
					. .	000	0.0	#002 #002	00#	#005	#002	#002	0 () 6 :	• • • • • • • • • • • • • • • • • •	.	•
ī	•				I	T/C	1/C	0/E	T/C	1/C) / L	1/C	1 / C		.	
1						:01	.:60		. 90	05;	33.	0.2:		· · ·		· · -
<u> </u>						· · · · ·	45 2	 	ш		*	ii (ы ы			
					<u>.</u>	TUB	TUBE	T C B	TUB	TUBE	TUBE	TUB	TUS			
								}			- 1-				50	
·				O. N.	1			• •		.+ . •					17	
• • • • • • • • • • • • • • • • • • •	· . <u></u> .		Till C	C		"	N.	· Co			•			•	:	
and a second control of the second	•					· ·				· · · · · ·			· 		7.0	Σ. δ.
			L.			c		0							7	4
	•		Ţ			1					Ţ	-		<u> </u>	":	A V
- 				\$ 6. 8.	1 %			,d 	\c,	0	0		. i .	<u> </u>	30	Ö
-	VERY						0	1		E	ેલ		1		int	URI
	RECOVERY			1 3		10		15			C	, or		Ĭ	-:	Ö. ⊥
<u> </u>	9 닭			- 1	7	-		7	·····		77	-5		<u></u> 	7:2	FI
α.	PANEL			• 	- 00						× +	7 C	الم الم	ĬĬ.	֡֡֡֡֡֞֜֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	TEST.
FIGU	50 -							W. W	e	e:	-	. Ji		Q A		ධ ධ
	POINT		i		1		**		S	8	`e,		4.5	1	17:1	LAPS
- 	Test PC											:	: : †			伍,
• • •	Ĕ							• • ± • • • • • • •								-
													. 1	*	12.	•
12 2 2 2					<u> </u>	<u>: : . : . : </u>	} -}					19.			60	
			1					. ·	· +-							
				1				ATURE]								
								ERA!				1:		11.	<u> : : : : : : : : : : : : : : : : : : :</u>	
						•		TEMPERA: [DEG F]								
		:		,		•	• • •				•	• • •		• • •		
	i 1		•	•	} .		: ,	73	•	: :	• •				: !.	

FIGURE 124

TEST POINT 50 - COMPARISON OF TUBE 3 TEMPURATURES DURING RECOVERY

FIGURE 125 TEST POINT 50 - COMPARISON OF PANEL FLOW RATES

K-M 10 X 10 TO THE CENTIMETER 46 1513

18 X 25 CM.

KEUFFEL & ESSER CO.

TIME - HOURS (DAY 80) 1/3 2/4 5/7 6/8 Panel Panei Panel Panel LFOM - FB/HB

FIGURE 128 LEG FLOW RATES FOR TEST POINT 60-51

Temp Mixed Prime and Main 46.9

FICURE 129

Ī.

. . . .

FIGURE 130

を を とき

Temp Mixed Prime and Main 40.6

1

FIGURE 132
TEST POINT 2-1 - STABILIZED TEMPERATURES

FIGUT: 133
TEST POINT 2-2 - STABILIZED
TEMPERATURES

FIGURE 134

TEST POINT 2 - FLOW RATES

PLOW;	
HIGH PI	
NIV	
9	
FLOW BENCH	
ł	
*	

rrow;
H 7 H
*
CKT
TUBE CKT
MAIN F/M
ŀ
0

FLOW;	
ктен	
**	
 + MAIN TUBE CKT F/M #FM0058	***

2250

2000

1.

3:00	[HRS]
1	65
-	•8
2:00	64
	DAYS
1:00	DURING
	TIME
24:00	TEST
1000 1:00 23:00 24:00 1:00 2:00 3:0	RLAPSED TEST TIME DURING DAYS 64 & 65 [HRS]
1000	

FIGURE 135

TEST POINT 2 - PANEL AND MIXED OUTLET TEMPERATURES

0 -- PANEL #6 4AIN TUBE OUTLET; T/C #AJ0027

100

+ -- PYRODYNE VALVE MAIN TUBE INCET; T/C #AJ0037

ELAPSED TEST TIME DURING DAYS 64 6 65 [HRS]

23:00 24:00 1:00 2:00 3:

22:00

FIGURE 136

COMPARISON OF SIMULATED LOW α/ε COATING TEST RESULTS AND ANALYSIS

APFENDIX A
ENVIRONMENT SUMMARY

TEST	T	IME				AVG I	R ABSOR	BED BY	PANEL	- 	
POINT	DAY	HR	MIN	1	2	3	4	5	6	7	8
1	64	18	55	137.6	137.5	137.3	137.0	137.5	137.4	138.2	137.4
AF	64	20	00	135	136.6	133.6	135.6	136.4	136.6	135.4	135.5
2 Low	65	01	45	60.8	39.2	39.7	36.2	59.6	71.4	71.6	70.3
2 High	65	01	05	65.6	76.7	76.9	8 0.5	64.8	45.1	45.8	46.1
5-1	66	19	05	122.4		119.3		125.1	13.8	125.4	15.8
5-2	66	18	00	125.1		122.6		124.5	58.7	131.0	593
8-1	67	04	30	138.4	15.3	140.1	15.9	141.2		141.2	
8-2	67	03	40	138.4	56.6	140	58	141.2		140.1	
10	67	07	55	45.1		34.8	30			32.6	
12	67	11	15	32.8	7.4	31.8	7.9	30.7		31	
3	65	04	45	135.3	136	139.7	136	142.6	138.2	141.8	144.2
4	65	06	00	132.6	140.5	135.5	134.7	134.5	139.4	134.9	134.4
17	67	15	25	28.8		26.6	21.2			21.8	
17A	67	::3	00	26.4	5.1	25.1	3.4			21.7	4.2
18	68	03	40	31.7	6.5	28. 6	7.2	26.6	12.9	26.5	4.4
19-1	68	05	30	114.6	15.1	119.6	18.7	39.8	175.2	34.5	113.9
19-2	68	09	30	112.3	8.5	120	11.9	25.9	157	24.4	110.4
19-3	68	11	40	116	15	121.9	18.8	39.6	180.6	34.4	126.6
47 Low	71	14	50	126.2	126.6	125.0	129.6	5.8	2.8	3.5	2.95
47 High	71	17	55	127.4	124.6	122.3	125.5	20.4	8.6	13.97	10. <i>7</i> 8
47 Low	71	20	30	126.3	124.0	124.9	127.7	6.6	3.8	4.5	3.8
14	72	03	15	30	180	30	180	30	30	30	30
14A High	72	06	15	30.3	172.2	30.7	171.6	30.9	31.4	9.4	26.2
14A Low	72	05	35	30.4	33.3	30.8	29.9	30.9	154.4	9.5	152.1
16-1	72	09	55	25.2	561	25.4	556	25.6	32.1	4.0	33.5
16-2	72	09	10	25.4	28.2	25.4	29.7	25.6	63.1	4.0	55.0
20-1	72	12	45	126.8	30.6	124.7	32.9	123.5	79.7	127.1	74.6
20-2	72	13	35	123.5	56.5	124.6	56.4	122.7	32.3	123.0	39.1
20-3	72	14	20	126.8	30.1	126.3	32	127.6	76.4	127.2	78.1
20-4	72	15	10	123.5	53.2	120.5	55.5	125.1	33.5	120.6	36.5

APPENDIX A (Cont'd)

TEST	TIME					AVG I	R ABSOR	BED BY	PANEL	·	
POINT	DAY	HR	MIN	1	2	3	4	5	6	7	8
11	72	18	30	28.5	180.4	28	182.3	23.5		29.2	
31	73	15	25	120.6	59.3	120.7	55.3	61.2	51.7	52.3	52.5
32	73	18	25	130.5	129.3	130.8	130.2	129.1	128.5	130.8	129.6
33	73	19	20	128.7	129	130.3	131.2	129.0	129.2	78.7	129.8
48	73	22	10	128.1	128.5	29.5	29.8	130.5	129.1	78.7	83.6
49	73	23	30	127.5	128.4	29.5	29.5	128.8	129.3	78.2	75
37	74	02	10	110.5	109.6	770	109.8	110.5	109.3	25.1	24.9
38	74	03	00	110.3	111.7	111.1	109.7	110.5	109.2	25.3	24.8
39	74	04	00	109.8	110.5	110.7	110.7	110.6	111.7	26.6	
45	74	06	15	129.4	129	130.1	128.9	128.3	127.2	129.3	128.1
46	74	07	45	130.5	130.3	130.5	118.5	128.3	129.4	118.4	118.8
50-1	74	13	55	125.6	6.2	6.4	120.5	6.3	5.9	118.9	120.5
50-2	74	17	05	126.5	3.2	3.2	119.6	3.4	3.2	118.8	119.3
50-3	74	19	00	139.2	20	18.7	119.7	18.7	19.1	118.8	118.2
43	74	23	00	19.1	4.6	3.5	16.7	4.7	5.0	46.4	56.4
36	75	06	00	113.4	4.8	119.6	2.9	4.8	4.6	3.0	3.1
36A	75	10	00	118.7	17.6	110.1	10.1	16.7	17.0	9.6	9.8
21	78	10	00	161.6	161.7	161.1	161.5	158.6	161.6	159.3	160.9
22 Low	78	13	30	162.5	161.6	161	161.3	128.9	127.6	128.1	128.6
22 High	78	12	30	132.2	132.4	131.5	133.6	168.9	169.5	168.8	173.8
23 Low	78	14	50	159	160	159	159.5	127	127	129	130
23 High	78	15	40	130	130.7	129.9	133.7	171	167	171	167
24 Low	78	19	20	155.6	154	154	157	124	129	127	122
24 High	78	20	10	126	124	125	125	168	163	166	167
25 Low	78	21	45	126	125.4	127.3	129.4	165.7	167.5	167.4	163.7
25 High	78	22	35	151.1	151.2	153.3	153.5	119.5	126.2	124.7	128.9
26	79	10	30	167	169	168	171	65	67	68	69
27	79	02	50	170	170	172	174	66	67	68.8	67
28	79	05	25	164.8	167	164.7	171.5	66.7	69.1	68.7	69.4
29-1	79	09	35	37.3	40.6	40.3	39.5	2Ū.5	21.3	22.1	22.1
29-2	79	10	20	24.3	25.3	25.3	26.7	37.5	38.3	35.2	36.4

APPENDIX A (Cont'd)

TEST	ŢŢ	ME			AVG IR ABJORBED BY PANEL						
POINT	DAY	HR	MIN	1	2	3	4	5	6	7	8
62	80	00	45	2.6	3.1	2.4	2.6	2.9	2.9	2.6	2.3
57	80	04	20	4.5	5.2	2.8	3.1	5.4	4.0	3.1	2.6
58	80	07	35	2.7	2.9	2.5	2.7	2.8	2.6	2.0	2.4
60	80	11	40	4.5	5.0	2.8	3.0	5.3	3.8	3.0	2.4
51	80	17	35	16.5	16.8	8.8	9.2	16.0	16.3	9.0	9.1
52	80	13	20	93	10.3	5.3	5.5	10.0	10.2	5.3	5.4
52A	90	20	30	6.3	6.5	3.4	3.6	6.6	6.6	3.5	3.4
52B	80	21	00	6.5	7.0	3.4	3.7	6.8	6.9	3.6	3.6
52C	80	21	55	6.3	6.5	3.2	3.5	6.2	6.3	3.5	3.4
52D	80	23	35	3.5	3.7	2.9	3.0	3.9	3.6	2.9	2.9
52E	81	02	05	6.7	6.9	3.3	3.9	6.9	7.0	3.7	^.4
53	81	07	15	126.5	125.7	120.7	114.2	14.0	14.0	7.4	7.2
54	81	08	25	130.2	128.6	124.1	123.4	17.5	17.6	10.7	10.6
55	81	09	20	129.9	128.2	123.7	123.8	17.6	18.2	10.5	10.5
56	81	11	05	124.8	124.8	119.8	121.5	13.9	13.7	7.3	7.0
59	81	12	10	129.3	128.7	124.9	124.1	17.3	18.7	11.1	11.1
63A	81	18	55	151.1	151.2	151.1	151.3	151.8	151	151.1	150.8
63B	81	19	30	135.1	134.3	135.4	134.7	38.1	40.3	29.3	30.6
63C	81	20	15	38.2	37.3	27.9	28.8	35.6	36.5	26.7	27.9
63D	81	21	00	37.2	36.7	28.3	28.5	140.6	133.3	139.2	136.6
63E	81	21	44	151.8	152.9	153	156.2	152.9	149	149	149.8
64A	81	23	45	133.1	133.2	132.4	132.7	34.9	36.7	27.3	28.2
64B	82	00	20	49.5	47.7	51.2	50.2	46.0	34.2	25.8	26.1
64C	82	01	02	171.2	172.5	161.5	176.8	60.2	58.1	58.9	59. 3
64D	82	01	25	142.5	143.5	140.3	144.3	71.9	69.3	70.9	72.3
64E	82	02	00	134.1	135.3	133.6	132.9	35.2	36.5	22.7	28.3
61A	82	04	15	57.5	59.1	58.9	58.8	167.6	167.6	166.6	164.6
61B	82	05	00	54.4	55.0	54.4	55.0	59.7	55.3	58.4	54.9
61C	82	05	55	169.2	171.4	161.5	175.6	57.3	55.2	59.3	62.4
61D	82	06	30	158.8	153.0	160.5	161.4	162	160.8	149.4	167.3

MITERIDIX B: WEEKLY TEST REPORTS

9 March 1973

MRS Shuttle Test Operations Report # 1

The first of three planned weeks of test operations were successfully completed on 9 March 1973. Because of facility leakage and flux simulator problems and resulting damage to insulation blankets, test time available was severly restricted and all objectives were not accomplished. Testing in the first week configuration will therefore be continued next week to accomplish these objectives which are related to investigation of the Baseline flow arrangement operation.

General test operations are summarized below.

	Date (day)	Time	Activity
5	Marcn 1973	(64)00.00 Hrs.	Test team on station.
		03:15	Chamber inspection .
		05:00	Start pumpdown.
		06:05	Chamber back to ambient to fix leak.
		06:25	Start pumpdown.
		07:15	Start MRS flow set-up.
		11:24	Other chamber leakage repaired.
		12:59-13:3	1 Ace down
		15:10-16:2	2 Observed erratic pattern of prime
			tube panel inlet and outlet
			temperatures increased flow from
			approximately 17 Lb/Hr to 335 Lb/Hr.
			and established good pattern
			returned flow to normal. Problem due
			to thermal domination by line heat
			leaks at very low flow rates. Acceptance
			because prime heat rejected only 1%
			of total heat rejected under these
			conditions.
		15:25	2.5×10^{-5} to 10^{-4} torr chamber pressure.

MRS Shuttle Test Operations Report # 1 (continued - page -2-)

inuea - page -2-)	
5 March 1973(64) 16:57	Temporarily lost all flux simulators.
	Chamber pressure 2 to 4 X 10 ⁻⁵ torr
	(DTP requires 1 X 10 ⁻⁵ torr).
	4 X 10 ⁻⁵ torr acceptable for this
	secuence because mean free path is
	4.5 ft at 130°F or approximately 10
	times distance between radiator and flux
	simulator.
18:55	Complete first test point (#1).
20:20	Complete test point 1A.
6 March 1973 ₍₆₅₎ 01:46	Complete test point 2(cyclic environment)
03:17 to	03:3€ Ace down
04:45	Complete test point 3.
06:00	Complete test point 4.
07:39	Pyrodyne valve control to 47 ⁰ to 49 ⁰ F
	activate ATM valve to achieve 40°F control.
09:23	Inlet conditions achieved for test point 5
	stabalization.
09:48	Flux simulator 4 sprung a frecn 11 leak.
10:41	Insulation blankets blown off of panel
	3 and 4 and partially off of panel 7.
12:45	Checkout pyrodyne valve-increasing back
	pressure from 100 psi to 200 psi does not
	affect set point. Also, checked out ATM
	valve. Data on voice tape.
14:50	Chamber repress started.
24:00	Timeline revisions resolved for reduced
	available test time this week. SESL
	used 0.85 assumed panel emmissivity in
	setting up desired fluxes and LTV used
	0.92 in pre-test predictions.

MRS Shuttle Test Operations (continued - Page -3-) 6 March 1973 (65)

5 paint samples have been shipped from Dallas for measurement by SESL. (Results of measurements made later in this week indicate 0.913 emmissivity, but this is a "near normal" value. Correcting to "Hemispherical" emmissivity yields 0.89. A 0.9 radiosity model that SESL has available should prove adequate for flux simulation analysis). Start pumpdown.

7 March 1973 (66)04:03

10:25

Freon 1.1 leak at zone 2 IR simulation. Change flow arrangement to flow through panels 5 and 8 instead of 2 and 4.

19:20

Completed one cycle of TP5 -- Leak developed in IR simulation F-11 zone 8 -- Blew insulation off of panel 8, and slightly off of 6, 7 -- insulation now covers approximately 70% of panel 2

8 March 1973 (67)00:20

Started test point 8 using panels 4 and 2. Revised test plans to achieve maximum useful data with existing facility test set-up.

04:30

Completed test point 8 (β configuration) with degraded insulation on panel 2 and slight degradtion on panel 7.

07:55

Completed test point 10 with a single series flow path through panels 1, 3, 4 and 7 (one half of ∝ configuration) instead of the desired pair of series flow paths 1, 3, 4, 2 and 5, 7, 6, 8. Data is acceptable to satisfy objectives.

MRS Shuttle Test Operations (continued - Page -4-)

8 March 1973(67) 11:15

Completed test point 12 (B configuration) with degraded insulation.

15:25 Completed test point 17 (one half of A configuration).

20:50 Cooldown was speeded up by shutting main flow cff for approximately 4 hours. Flow was momentarily cycled on and off twice during this period to insure that local freezing could not occur at a possible heat short. Flow set up to 14 Lb/Hr. in main at 20:50. Data on voice tape.

22:56 Completed test point 17 a (B configuration) with LN2 environment on panels 2 and 4. Approximately 5 tubes frozen on panel 4 but degraded insulation prevents proper freezing pattern on panel 2. With 15 Lb/Hr. main flow (-1520 outlet) and 1154 lb/Hr. prime flow (49°F cutlet). Mixed temperature would be approximately 47°F. This agrees with pyrodyne valve control point. (Actual mixed temperature is 47°F, but this is coincidence because mixed inlets at valve are approximately +25 main and +470F prime due to line heat leaks). Excessive heat leaks at low flow rates yield the following main inlet and outlet pattern for panels 4 and2; 4 inlet -65°F, 4 outlet -150°F, 2 inlet -118°F, 2 outlet - 152° F.

Approx.

23:00

Started 3 hour recovery ramp of inlet temperature. Frozen tubes thawed out at expected rate of approximately one every 10 minutes during first hour of recovery. Data on voice tape.

MRS Shuttle Test Operations (continued - Page - 5-)

9 March (+	o8) 02:04	Activate ATM val v e to achieve desired 40°F set point for test point 18.
	03:40	Test point 19 complete (\$\beta\$ configuration).
	11:40	Test point 19 completed (Full ∞ configura-
	,	tion), with degraded insulation. Prior
		to this test point panel 8 was completely
		uncovered for long period with LN2 flux
		simulation on one side. Average panel
		temperature of -90° F indicated that
		chamber environment in this region of the
		chamber must be approximately 55-60 BTU/Hr
		ft ² . Analysis of this data may be used
		to establish actual environments on panel
		8 during test point 19.

14:00

Approx. Photographs from top of chamber obtained at LTV request to document condition of blankets prior to repress.

19:40 Post test in pection -- blankets did blow around during repress. Damage to failed simulator panels at inlet manifolds.

Radiator panels OK.

Signed: R. J. Tufte 9 March 1973

MRS SHUTTLE TEST OPERATIONS REPORT #2

The second of three planned weeks of test operations was successfully completed on March 16, 1973. Due to flux simulator problems in the first week of testing some of the first week's test points were carried over into the second week's schedule allowing baseline objectives to be accomplished. The planned second week's objectives were for the two sided operation of the panels. Since the important nature of the two sided operation, it was decided to move the second week's configuration to the third week of testing to inable completion of test objectives. All major third week objectives were accomplished during the second portion of the second week. Flux simulation data is being processed much quicker and all data is now available (Friday) on the second week of testing. General test operations are summarized below.

12 March 1973 (day 71)

00:00	Test team on station
2:00	Start pump down
2:19	Freon leak detected - secure pump down
3:22	Start pump down
5:58	2 x 10-1 torr chamber pressure

Stopped flow in MRS to allow coldsoak 6:30-11:35 Flow started for approx. 5 min every 30 min to preven

- 6:30-11:35 Flow started for approx. 5 min every 30 min to prevent freezing of connecting lines
- 11:08 4 x 10⁻⁶ torr chamber pressure
- Panel 6 has 5 to 6 tubes frozen

 Panel 8 has flow in all tubes. Suspected ion gage suppling heat source due to bad insulation. Main flow of lll. set by Pyrodyne valve mixing to 45°F. Analytical mix of panel outlet temperatures is 42°F.
- 14:50 Stabilization reached for TP47A
- 15:00 Start 2 hour ramp to 162°F
- 15:30 Panel 6 thawed
- 15:40 Flowmeter 54 went out
- 15:54 Shut down main flow to replace FM0054 with FM0056
- 16:04 Main flow back up
- 17:00 CRT at flow bench went out
- 17:28 CRT back on line

18:00	Stabilization reached for TP47B
20:25	Complete inlet temperature stabilization after 2 hour
	down transient (TP47C)
20:46	Prime bypass via V46 to stay under 325 psi pressure red line
21:00	Pyrodyne valve oscillating, cut oscillations by cutting down
	main valve
22:55	All flux simulators operating with Freon
23:08	Shut off main flow to allow panels to cool faster
23:32	Re-initiate main flow
23:50	Potential problems on TP (21-1400)
	(1) insufficient power in 10kw heater to achieve 152° inlet
	on prime at high flow rates.
	(2) insufficient GSE heat exchanger to achieve -16°F on main
	due to high flow.
	(3) flux simulator #7 cannot maintain temperature control.
3.2 Marcal	1072 (1 go)
	h 1973 (day 72)
03:15	Stabilization reached for TP-14. Main inlet temperature
	cycling between 23.7 and 20.5. Flux simulator 7 set to LN ₂
06.15	for freon loop trouble shooting
06:15	Two 90 minute cycles completed for TP-15. Start inlet temp
07.20	& IR transients to TP-16 conditions
07:30	Cycle started for TP-16
08:40	FCE reported a Freon leak
09:50	Flowmeters for panels 1 and 5 were not on line. No flow distribution
	measurements for this TP.
10.40	Freon 17 pump on panel 7 reported fixed
10:40	Completed TP-16; V-45 was open during TP-16; prime flow bypass
10.46	to obtain 2200 lb/iii
12:46	FM0042 and FM0047 went out
15:15	Completed TP-20 - cyclic ag
19 44	Setup β for 21-1100; fixed the two flowmeters
17:30	Inlet temp cycling \pm 5° in response to coldpack cycle with full heater bypas:
18:30	Completed TP-11; start repress

14 March	1973 (day 73)	
01:32	Chamber door open	
06:30	Start pump down. Lines have been changed and system pressure checked.	
08:50	Panel 7 ΔP measurement bad	
09:40	Antificial flow balance was performed at ambient conditions with all	
	panels flowing. Total flow = 2200 lb/hr	
	Switched back to y-1,-3 and 1100 lb/hr	
10:40	Activate Pyrodyne valve to reduce prive flow to 20-30 lb/hr	
10:45	Pyrodyne valve restricted total flowrate to 200 lb/hr; took it cut	
	of circuit	
11:15	Trouble reported with FM46	
11:24	FM46 fixed	
14:00	IR fluxes low on panels 7 and 8 started bringing up to correct positions.	
	This test point demonstrates the low α/ϵ coating on the total cargo bay	
	door area with the forward doors opened farther than aft doors (different	
	sun angle) will accomplish approximately 70k heat load in direct sunlight.	
15:25	Completed TP-31 (γ -1,-3 panels)	
17:00	IR zones set to 130 BTU/hr-ft ²	
18:25	Completed TP-32 (y configuration)	
19:20	Completed TP-33 (δ configuration)	
22:10	Completed TP-48 (& configuration)	
23:30	Completed TP-49 (y configuration)	
	Proceed to TP-37	
15 March 1973 (day 74)		
02:10	Completed TP-37 (y configuration)	
03:00	Completed TP-38 (6 configuration)	
04:00	Completed TP-39 (& minus panel 8)	
	Switched to ε configuration	
	Balanced flow artificially. ΔP readings indicated that panel	
	3 flow was high. IR panels putting 130 BTU/hr-ft ² on all panels.	
05:10	Flowmeter 47 is out	
06:15	Completed TP-45	
	Isolated panels 4,7, and 8 and rebalanced flows	
07:45	Completed TP-46 (ϵ minus 4,7, and 8)	
	Proceed to TP-50 (ε minus 4,7,8, panels)	
	LN ₂ on panels 2,3,5,6	
	Panel 1 hot	

15 March 1973 (Continued)		
13:55	Stabilization reached for TP-50, but no panels were frozen.	
	The 7k load plus one panel environment load being dumped	
	by 4 panels in cold environment requires 180 lb/hr tain flow.	
	Form new test point to enable freezing of panels for recovery	
	to high load conditions. New inlet temp set at 43-45°F.	
15:00	Flow set to 20 lb/hr to main with occasional off and on	
	sequences of 1 minute for freezing conditions to occur.	
15:40	The 4 cold panels (2,3,5,6) show consistant edge effect with	
	outer tube approx. 10° warmer than 3rd and 5th tubes in	
	from edge. Probably due to inadequate insulation. Blankets	
	conducting too much heat to panels. This is consistant with	
	earlier problem on panel 8.	
16:00	Setup to re-establish flow - increase gain 10 times on AP	
	transducers to obtain positive flow indication at startup.	
16:07	Positive flow indication on all 4 cold panels - return ΔP	
	transducers to proper gain	
17:05	Completed TP50A	
17:10	Startup 50°/hr transient ramp - 7 to 8 tubes frozen on each	
	cold panel.	
17:24	ATM valve in system	
	Panel 3 thawed approx. 30 min. after start of transient	
	Panel 2 & 6 thawed approx. 40 to 45 min. after start of transient	
	Panel 5 thawed approx. 55 min. after start of transient	
18:10	One hour of ramp completed; all panels thawed.	
	Step inlet temp to 162.4°F	
19:00	Completed TP-50 (c minus 4,7,8)	
	Proceed to TP-43	
23:35	Completed TP-43 (γ configuration)	
	Proceed to TP-36 LN ₂ on all flowing panels	
16 March 1973 (day 75)		
06:00	Completed TP-36 (γ minus 1,3)	
06:15	Start up ramp j six tubes frozen at outlet manifold	
07:18	Start increase in inlet temperature to 162.4°F	

07:36

C2.F5

Flowmeter 56 is out

(r 1) it 4 1" (v inue] 3)

MRS SHUTTLE TEST OPERATIONS REPORT #3

The third of three planned weeks of test operations was successfully completed on March 23, 1973. The two sided operation in Gamma configuration originally planned for the second week was performed this week due to the previous IR simulator problems which occurred in the first week's testing. New test points were added during the week to insure a full week of testing. These points were in addition to the ATM valve controlling to set point changes which were added to the test timeline just prior to the test. General test operations are summarized below.

19 March 1973 (Day 78)

- 00:00 Test team on station
- 01:45 Start pump down
- 04:23 Flow on-start establishing inlet temp
- 07:36 1.0 x 10^{-5} torr
- 10:00 Completed TP21; inlet temp 1-2°F high
- 10:30 Start IR cycle Environments stable
- 11:15 Restart Environment
- 13:40 Completed TP22; High point -12:35 Low point 13:30
- 15:46 Corrected flux simulators
- 15:50 Chamber pressure 1.5 x 10⁻⁶ Lunar Deck = 230°K
- 17:20 Completed TP23; Low main outlet at 14:50, High main outlet at 15:40
- 20:25 Completed TP24; Low at 19:20, High at 20:10
- 20:42 Lunar Deck = 220°K. Could possibly account for slight (2-4°F) increase in main outlet. This adds about 3 to 6 BTU/hr-ft² to the panel from reflection offshields.
- 23:30 Completed TP25; had some tad flux on Panel 2 for last half cycle. High at 21:45; Low at 22:35

20 March 1973

- 01:30 Completed TP26
- 02:50 Completed TP27
- 03:30 ATM valve used to control to 40°F for TP28
- 05:25 Completed TP28
- 06:00 ATM valve can't control to 40°F; switch to manual bypass required to get to 40°F
- 06:45 IRS stable; start 30 min hold
- 07:15 Start IRS transient
- 07:32 Freon to LN2 HX froze on zone 1 IR simulator
- 08:55 Valve to HX is still frozen; zone l avg. temperature -29°F should be -60°F
- 09:20 IR zone 1 has full control
- 11:00 IR zones 1 and 5 are out
- 11:10 Completed TP29; high 9:35, low 10:20

Approx.

- 16:00 Total flow was reduced to 2000 lb/hr from 2200 lb/hr to stay within red line limit of pressure gauge on flow bench.
- 18:45 Since approx. 16:00 we have been trouble shooting inconsistent AI and AJ thermocouple temperature data.
- 22:16 All in chamber redundant temperature measurements will be put on MS data channels 3 through 36.

21 March 1973

- 01:10 Inlet temperatures stable for TP57
- 04:20 Completed TP57
 ATM valve set to control to 50°F
- 04:36 Set ATM valve to 40°F then back to 50°F to see if valve will reduce the flow from 130 to 10 lb/hr (main). Cannot control to 10 lb/hr because of leakage characteristic of valve.
- 07:35 Completed TP 58
- 08:08-08:14 ACE is down
- 11:40 Completed TP60
- 12:00 Start Transient
- 13:36 Popped circuit breaker on prime heater-reset

- 21 March 1973 (Continued)
- 13:38 Prime outlet dropped in response to reduced power; valve cut main flow from 900 to 700 lb/hr to compensate
- 13:55 Lost prime circuit breaker again
- 13:57 Prime outlet dropping due to reduction of power
- 14:00 14:47 Kept blowing circuit breaker; installing 60 amp breaker
- 16:46 Inlet temperatures stable at 162°F on both prime and main; end of ramp
- 17:35 Completed TP51; (we are operating with ATM valve)
- 18:06 Lower inlet temperature to 116°F
- 19:20 Completed TP52; lower inlet temperature to 75°F
- 20:31 Completed TP52A; change set point to 40°F
- 21:05 Completed TP52B
- 21:08 Change set point to 50°F
- 22:00 Completed TP52C; change set point to 70°F
- 23:36 Completed TP52D; change set point to 40°F
- 22 March 1973
- 02:05 Completed TP52E
- 04:00 Set inlet temperature to 162°F
- 06:05 Change set point to 70°F
- 07:15 Completed TP53; change to 40°F set point
- 08:25 Completed TP54; change set point to 50°F
- 09:20 Completed TP55; change set point to 70°F
- 11:05 Completed TP56; change set point to 40°F
- 12:10 Completed TP59
- 13:00 18:00 IRS panels are low on freon cause delay until they can be refilled
- 18:25 IR panels have reached desired fluxes
- 18:55 Start cycle, completed TP63 (0° point)
- 19:30 Completed TP63 (90° point)
- 20:15 Completed TP63 (180° point)
- 21:00 Completed TP63 (270° point)
- 21:44 Completed TP63 Repeat (360° point)
- 23:10 Start cycle per deviation 96

- 22 March 1973 (Continued)
- 23:45 Completed TP64 (90° point)
- 23 Parch 1973
- 00:.9 NTE reported pump on IR panel 5 has quit. Going on with cycle letting panel 5 drift.
- 00:20 Completed TP64 (180° point)
- 01:00 Completed TP64 (270° point). The environments were not what was desired but can be calculated.
- Ol: 5 Completed TP64 (360° point)
- 02::0 Completed second 90° point, correlated well with 64. Proceed to TP 61
- 03:09 Pump on IR5 went out again
- 04:(0 Pump is back on, but IRS is having trouble with the LN₂ supply to their heat exchanger
- 64:15 Completed TP61A (90° point)
- t5:00 Completed TP61B (180° point)
- 05:55 Completed TP61C (270° point)
- Completed TP61D (360° point) Started repress sequence.