

Techniques and Tools for Fast Fault Injection Simulations of RISC-V Processors at RTL

Johannes Geier, Daniel Mueller-Gritschneder, and Ulf Schlichtmann

Checkpoint Restore Boot with Masking (CMSK)

─ Motivation: Evaluating Soft Error Resilience

Functional Safety (FuSa)

- Fault Tolerance / Fault Detection
- Fault Model: Random
- Example: Cosmic and Package Radiation, EMF
- Statistic Evaluation (ISO-26262)
- Metrics: Silent Data Corruption (SDC), Detectable Unrecoverable Error (DUE)

Security

- Fault Detection
- Fault Model: **Targeted**
- Example: Fault Injection Attack, DFA
- Verification against Attack Vectors
- Metrics: e.g., Attack Feasibility

[3] SDC Rates MiBench w/ Software Implemented Hardware Fault Tolerance

Setup:

- Same as CRB. Pre-recorded checkpoints ① from reference simulation
- Add a dummy Reference CPU core

Warm-up:

fault injection point 🗲

Cooldown:

- After injection during cooldown, load û into dummy Reference CPU core
- Perform masking check with a bit-wise comparison of sequential logic: $\mu(t) \bigoplus \mu_{ref}(t) \stackrel{!}{=} \emptyset$
- → Additional 15-25% save for uniformly sampled experiments

vRTLmod: Verilator RTL Fault Injection Modification

vRTLmod Flow [1]

Usage of vRTLmod Output in Virtual Platform without *masking* [1,2]. With *masking checks* (this work).

Input: Cycle-accurate SystemC/C++ models of Verilog RTL Ouput: Fault Injectable vRTL (vRTLmod)

- Source-Code transformation on vRTL (LLVM/Clang Frontend Tool)
- Automatic insertion of injection expressions in source code
- Small overhead (ca. 10%) compared to plain vRTL
- Integrate as Module in Transaction-level Virtual Platform SoC

Experimental Results

Experimental Setup:

- Simple SoC with cv32e40p^a RISC-V rv32imac core as fault injection target
- Running Embench™ IoT benchmark programs
- Average simulation time $\overline{t_s}$ and classification of experiments conducted on differently configured RTL FI. Checkpoint interval of 10,000 clock cycles. 11,000 equal experiments per benchmark and configuration combination.

Fault Classification:

MSK Fault masked and detected with CMSK feature

DUE Detectable Unrecoverable Error (exceptions, bus faults, timeouts)

SDC Silent Data Corruption

pLAT Potentially Latent, i.e., not an SDC, MSK, or DUE

benchmark	CC[K]	config	$\overline{t_s}$	save[%]	MSK	[%]	DUE	[%]	SDC	[%]	pLAT	[%]
aha-mont64	18.5	RTL	0.75	-	0	0.00	199	1.81	567	5.15	10,234	93.0
aha-mont64	18.5	CRB	0.56	25.3	0	0.00	199	1.81	567	5.15	10,234	93.0
aha-mont64	18.5	CMSK	0.48	36.0	2,821	25.65	199	1.81	567	5.15	7,413	67.4
huffbench	276	RTL	10.9	-	0	0.00	478	4.35	223	2.03	10,299	93.6
huffbench	276	CRB	5.91	45.8	0	0.00	478	4.35	223	2.03	10,299	93.6
huffbench	276	CMSK	3.62	66.8	4,875	44.32	478	4.35	223	2.03	5,424	49.3
picojpeg	720	RTL	28.1	-	0	0.00	248	2.25	71	0.65	10,681	97.1
picojpeg	720	CRB	13.8	50.9	0	0.00	248	2.25	71	0.65	10,681	97.1
picojpeg	720	CMSK	7.25	74.2	5,592	50.84	248	2.25	71	0.65	5,089	46.3
a M Coutoobi et al	"Noor Th	roobold DIC		CO Mith DOD I	Tytopolog	for Coolo	bla laT F	- ndnaint	Dovisos	" :n IFF	- Transactio	no on \/or

Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713, Oct. 2017, doi: 10.1109/TVLSI.2017.2654506. Embench™. 2024. url: https://github.com/embench

Checkpoint Restore Boot (CRB)

Setup:

fault-free reference simulation

Warm-up:

fault injection point

Cooldown:

Execute simulation until the end

State-of-the-art and widely used technique to accelerate FI simulations. → Around 50% save for uniformly distributed experiments

Publications

- [1] J. Geier and D. Mueller-Gritschneder. 2023. "vRTLmod: An LLVM based Open-source Tool to Enable Fault Injection in Verilator RTL Simulations." In 20th ACM International Conference on Computing Frontiers (CF '23). Association for Computing Machinery, (May 2023). DOI: 10.1145/3587135.3591435
- [2] S.Pircher, J. Geier, J. Danner, D. Mueller-Gritschnedern and A. Wachter-Zeh. 2023. "Key-recovery fault injection attack on the classic McEliece KEM. In Code-Based Cryptography". In Code-Based Cryptography. Jean-Christophe Deneuville, editor. Springer Nature Switzerland, Cham, 37–61. ISBN: 978-3-031-29689-5
- [3] U. Sharif, D. Mueller-Gritschneder, U. Schlichtmann. Compas: Compiler-assisted Software-implemented Hardware Fault Tolerance for RISC-V. In 2022 11th Mediterranean Conference on Embedded Computing (MECO), 1-4- DOI: 10.1109/MECO55406.2022.9797144.

