Measure Space

by 刘成锴

Mainly about σ -algebras, π -systems, and measures

Definitions of algebra, σ -algebra

Algebra on S

A collection Σ_0 of subsets of S is called an **algebra** on S if

(i)
$$S \in \Sigma_0$$

(ii)
$$F \in \Sigma_0 \Rightarrow F^c := S ackslash F \in \Sigma_0$$

(iii)
$$F, G \in \Sigma_0 \Rightarrow F \cup G \in \Sigma_0$$

Thus, an algebra on S is a family of subsets of S stable under finitely many set operations.

(对有限次集合运算封闭)

σ -algebra on S

A collection Σ of subsets of S is called a σ -algebra on S if

- 1. Σ is an algebra on S
- 2. if $F_n \in \Sigma (n \in \mathbf{N})$ then $\bigcup_n F_n \in \Sigma$

Thus, a σ -algebra on S is a family of subsets of S 'stable under any countable collection of set operations'.

(对任意多次集合运算封闭)

Measurable space

A pair (S, Σ) is called a **measurable space**.

Borel σ -algebras, $\mathcal{B}(S), \mathcal{B} = \mathcal{B}(\mathbf{R})$

Definition

 $\mathcal{B}(S)$ is the σ -algebra generated by the family of open subsets of S.

$$\mathcal{B}(S) := \sigma(\text{open sets})$$

A standard Shorthand $\mathcal{B}:=\mathcal{B}(\mathbf{R})$

A Theorem

The collection $\pi(\mathbf{R}) := \{(-\infty,x] | x \in \mathbf{R} \}$, then

$$\mathcal{B} = \sigma(\pi(\mathbf{R}))$$

The proof is on the book.

additive

Let μ_0 be a non-negative **set function**: $\mu_0:\Sigma_0 o[0,\infty]$

Then μ_0 is called **additive** if $\mu_0(\emptyset) = 0$ and, for $F, G \in \Sigma_0$, $F \cap G = \emptyset$,

$$\mu_0(F \cup G) = \mu_0(F) + \mu_0(G)$$

Measure Space (S, Σ, μ)

 μ is a **measure** on measurable space (S,Σ) and μ is countably additive.

finite and σ -finite

finite

if $\mu(S) < \infty$

σ -finite

if there is a sequence $(S_n:n\in {f N})$ of elements of Σ such that

$$\mu\left(S_{n}
ight)<\infty(orall n\in\mathbf{N}) ext{ and } \bigcup S_{n}=S$$

Probability measure, probability triple 概率测度,概率空间

Measure μ is called a **probability measure** if

$$\mu(S) = 1$$

and (S, Σ, μ) is then called a **probability triple**.

π -system

Definition

$$I_1,I_2\in\mathcal{I}\quad\Rightarrow\quad I_1\cap I_2\in\mathcal{I}$$

that is, a family of sbsets of S stable under finite intersection.

Uniqueness Lemma

 μ_1,μ_2 are measures on (S,Σ) such that $\mu_1(S)=\mu_2(S)<\infty$ and $\mu_1=\mu_2$ on \mathcal{I} , then

$$\mu_1 = \mu_2 \text{ on } \Sigma$$

The proof is in A1.4 on the book.

Corollary

If two probability measures agree on a π -system, then they agree on the σ -algebra generated by that π -system.

Carathéodory's Extension Theorem

Let S be a set, let Σ_0 be an algebra on S, and let

$$\Sigma := \sigma(\Sigma_0)$$

If μ_0 is a *countably additive* map $\mu_0:\Sigma_0\to[0,\infty]$, then there exists a measure μ on (S,Σ) such that

$$\mu = \mu_0 \text{ on } \Sigma_0$$

If $\mu_0(S) < \infty$, then by Uniqueness Lemma, this extension is *unique* - an algebra is a π -system.

Lebesgue Measure Leb on ((0, 1], $\mathcal{B}(0,1]$)

Let S=(0,1]. For $F\subseteq S$, say that $F\in \Sigma_0$ if F may be written as a finite union

$$F = (a_1, b_1] \cup \ldots \cup (a_r, b_r]$$

where $r\in {f N}, 0\leq a_1\leq b_1\leq \cdots \leq a_r\leq b_r\leq 1.$ Then Σ_0 is an algebra on (0,1] and

$$\Sigma := \sigma(\Sigma_0) = \mathcal{B}(0,1]$$

Let

$$\mu_0(F) = \sum_{k \le r} \left(b_k - a_k\right)$$