

Introduction to Reinforcement Learning

Lecture 6. Summary

Sungjoon Choi, Korea University

Markov Process

• A **Markov chain** is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event (aka Markov property).

• Random variable: S_t (state)

Markov Reward Process

Now, we obtain rewards as we move to states.

- We have two random variables.
 - State: S_t
 - Reward: R_t
- Since the reward is a random variable, we take expectation to compute the reward function.
 - Reward function: $r(s) = \mathbb{E}[R_{t+1} | S_t = s]$

Markov Decision Process

- Formally, an MDP is a tuple (S, A, P, R, d):
 - A set of states $s \in S$.
 - A set of actions $a \in A$
 - A state transition function (or matrix)

•
$$P(s'|s,a) = P(S_{t=1} = s | S_t = s, A_t = a)$$

$$\bullet P_{sas'} = P(s'|s,a)$$

- A reward function
 - $r(s) = \mathbb{E}[R_{t+1} | S_t = s]$
 - It depends on both state and action.
- An initial state distribution d

Summary

Bellman Equation

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) Q^{(s)}(s, a)$$

$$Q_{\pi}(s, a) = \sum_{s'} [r(s, a, s') + \gamma V_{\pi}(s')] P(s'|s, a)$$

$$V_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \left[r(s, a, s') + \gamma V_{\pi}(s') \right] P(s' \mid s, a)$$

$$Q_{\pi}(s, a) = \sum_{s'} \left[r(s, a, s') + \gamma \sum_{a'} Q_{\pi}(s', a') \pi(a' | s') \right] P(s' | s, a)$$

Bellman Optimality Equation

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} [r(s, a, s') + \gamma V^*(s')] P(s'|s, a)$$

$$V^*(s) = \max_{a} \sum_{s'} \left[r(s, a, s') + \gamma V^*(s') \right] P(s'|s, a)$$

$$Q^*(s, a) = \sum_{s'} \left[r(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right] P(s'|s, a)$$

$$\pi^*(a \mid s) = \arg \max_{a'} Q^*(s, a')$$

Q-Value Iteration

- Start from the random initial V_0
- For all states $s \in S$:

$$Q_k(s, a) = \sum_{s'} \left[r(s, a, s') + \gamma V_k(s') \right] P(s'|s, a)$$
$$V_{k+1}(s) = \max_{a'} Q_k(s, a')$$

We now have an explicit form of the policy:

$$\pi_{k=1}(a \mid s) = 1 \text{ for } a = \arg \max_{a'} Q_k(s, a')$$

Note that this policy is deterministic.

Policy Iteration

- Step 1: Policy evaluation: Evaluate V_{π} .
- Step 2: Policy improvement: Generate π' where $V_{\pi'} \geq V_{\pi}$.

- Policy iteration is often more effective that value iteration, why?
 - It if often the case that a policy function reaches the optimal policy (policy iteration) much sooner than a value function reaches the optimal value function (value iteration).
 - In many cases, we are more interested in finding the optimal policy function rather than the optimal value function.

DP vs. MC vs. TD vs. SARSA

Dynamic Programming

$$V_{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \left[r(s, a, s') + \gamma V_k(s') \right] P(s' \mid s, a)$$

Temporal Difference Learning

$$V_{k+1}(s) = V_k(s) + \alpha (r(s, a, s') + \gamma V_k(s') - V_k(s))$$

Monte-Carlo Learning

$$V_{k+1}(s) = V_k(s) + \alpha \left(G_t - V_k(s) \right)$$

SARSA

$$\widehat{Q}\left(s_{t}, a_{t}\right) \leftarrow \widehat{Q}\left(s_{t}, a_{t}\right) + \alpha \left(r_{t+1} + \gamma \widehat{Q}\left(s_{t+1}, a_{t+1}\right) - \widehat{Q}\left(s_{t}, a_{t}\right)\right)$$

Q-Learning

On-Policy vs. Off-Policy Learning

- On-Policy Learning (MC, SARSA)
 - Learn the value of the policy π using the episodes sampled from π .
- Off-Policy Learning
 - Learn the value of the policy π using the episodes sampled from any arbitrary μ .
- Why is off-policy learning important?
 - Off-policy methods enable learning from observing humans or other agents.
 - Re-use experiences generated from old polices (experience replay).
 - Learn the optimal policy while following other exploratory policy.

Summary

Markov Decision Process

Model-Free Methods

Policy Evaluation

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \left[r(s, a, s') + \gamma V_k(s') \right] P(s' \mid s, a)$$

TD Learning

$$V_{k+1}(s) \leftarrow V_{k+1}(s) + \alpha \left(r(s, a, s') + \gamma V_k(s') - V_k(s) \right)$$

Q-Policy Iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} \left[r(s,a,s') + \gamma \sum_{a'} Q_k(s',a') \pi(a'|s') \right] P(s'|s,a) \left| Q_{k+1}(a,a) \leftarrow Q_k(s,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s,a) \right) \right| Q_{k+1}(a,a) \leftarrow Q_k(s,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s,a) \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s',a') - Q_k(s',a') \right) Q_{k+1}(a,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s'$$

SARSA

$$Q_{k+1}(a,a) \leftarrow Q_k(s,a) + \alpha \left(r(s,a,s') + \gamma Q_k(s',a') - Q_k(s,a) \right)$$

Q-Value Iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} \left[r(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] P(s'|s, a)$$

Q-Learning

$$\left| Q_{k+1}(a,a) \leftarrow Q_k(s,a) + \alpha \left(r(s,a,s') + \gamma \max_{a'} Q_k(s',a') - Q_k(s,a) \right) \right|$$

Deep Q Network (DQN)

• (Stable) Update Rule

$$L(\theta) = \sum_{i} \left(r_i + \gamma \max_{a'} Q(s_i', a'; \theta^-) - Q(s_i, a_i; \theta) \right)^2$$

- Delayed update
 - For numerical stability, slowly update the target network
 - θ^- : previous parameter (for the Q estimation)
 - θ : current parameter to update
- Other tricks
 - Gradient clipping
 - Input normalization

Double Deep Q Network (DDQN)

Recall the original DQN loss function

$$L(\theta) = \sum_{i} \left(r_i + \gamma \max_{a'} Q(s_i', a'; \theta^-) - Q(s_i, a_i; \theta) \right)^2$$

- Note that the function for selecting the current optimal action and evaluating the optimal action is the same $Q(s, a; \theta^{-})$.
- It often leads to over-optimism of the Q function.
- To resolve this issue,

$$L(\theta) = \sum_{i} \left(r_i + \gamma Q(s_i', \arg \max_{a'} Q(s_i', a'; \theta); \theta^-) - Q(s_i, a_i; \theta) \right)^2$$
Target

Prediction

Prioritized Experience Replay (PER)

- The intuition is to give more emphasis on unfitted data.
- Implementation is simple:
 - Sample k transitions from the experience replay from $j \sim P(j) = p_j^\alpha / \sum_i p_i^\alpha$

where
$$p_i = |r_i + \gamma Q(s_i', \arg\max_{a'} Q(s_i', a'; \theta); \theta^-) - Q(s_i, a_i; \theta)|$$
.

The (weighted) update rule is:

$$L(\theta) = \sum_{i} w_{i} \left(r_{i} + \gamma Q(s'_{i}, \arg \max_{a'} Q(s'_{i}, a'; \theta); \theta^{-}) - Q(s_{i}, a_{i}; \theta) \right)^{2}$$
where $w_{i} = \left(\frac{1}{n \cdot p_{i}} \right)^{\beta} / \max(w)$.

Dueling Architecture

- The main idea is to separate Q(s, a) into V(s) and A(s, a) which is the advantage.
- Advantage function

•
$$Q_{\pi}(s,a) = V_{\pi}(s) + A_{\pi}(s,a)$$

$$\underset{a'}{\bullet} \arg \max_{a'} A(s, a') = \arg \max_{a'} Q(s, a')$$

How to compute the gradients

$$abla_{ heta} \eta(\pi_{ heta}) =
abla_{ heta} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R_t | \pi_{ heta} \right]$$

Policy Gradient Theorem:

$$\nabla_{\theta} \eta(\pi_{\theta}) = \frac{1}{(1 - \gamma)} \sum_{s} \rho_{\pi_{\theta}} \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)$$
$$\nabla_{\theta} \eta(\pi_{\theta}) \approx \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) Q_{\pi_{\theta}}(s_{t}, a_{t})$$

• Note that we only require the gradient of $\pi_{\theta}(\cdot)$ not $Q^{\pi_{\theta}}(\cdot)!$

Trust Region Policy Optimization

$$\max_{\theta_{i+1}} L_{\pi_{\theta_i}}(\pi_{\theta_{i+1}}) = \mathbb{E}_{s \sim \rho_{\pi_{\theta_i}}, a \sim \pi_{\theta_i}} \left[\frac{\pi_{\theta_{i+1}}(a \mid s)}{\pi_{\theta_i}(a \mid s)} A_{\pi_{\theta_i}}(s, a) \right]$$
subject to $D_{KL}^{\rho}(\pi_{\theta}, \pi_{\theta_{i+1}}) \leq \delta$

- In summary,
 - TRPO is a minorization maximization framework for RL.
 - Interpretation of the trust region method:
 - 1. Update policy distribution slowly
 - 2. Consider the geometry of the distribution space
 - There are two approximations: 1) $\mathbb{E}_{s\sim \rho_{\pi'}}\Rightarrow \mathbb{E}_{s\sim \rho_{\pi}}$ and 2) $D_{KL}^{\max}\Rightarrow D_{KL}^{\rho}$

Proximal Policy Optimization (Adaptive KL Penalty)

The TRPO objective is:

$$\max_{\theta} \mathbb{E}\left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}\hat{A}_t\right] \text{ s.t. } D_{KL}^{\rho}\left[\pi_{old}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)\right] \leq \delta$$

The unconstrained objective of TRPO is:

$$L(\theta) = \max_{\theta} \mathbb{E} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{old}}(a_t | s_t)} \hat{A}_t - \beta D_{KL}^{\rho} \left[\pi_{\theta_{old}}(\cdot | s_t), \pi_{\theta}(\cdot | s_t) \right] \right]$$

• The proposed adaptive KL penalty method is to adaptively change β by checking

$$d = \mathbb{E}_t \left[D_{KL}[\pi_{\theta_{old}}, \pi_{\theta}] \right]$$
:

• If
$$d < d_{targ}/1.5$$
, $\beta \leftarrow \beta/2$

• If
$$d > d_{targ} \times 1.5$$
, $\beta \leftarrow \beta \times 2$

Soft Actor-Critic

- SAC learns three functions: $V_{\psi}(s)$, $Q_{\theta}(s,a)$, and $\pi_{\phi}(a \mid s)$.
- For learning $V_{\psi}(s)$:

$$J_{V}(\boldsymbol{\psi}) = \mathbb{E}_{s_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\boldsymbol{\psi}}(s_{t}) - \mathbb{E}_{a_{t} \sim \boldsymbol{\pi_{\phi}}} \left[\boldsymbol{Q_{\theta}}(s_{t}, a_{t}) - \log \boldsymbol{\pi_{\phi}}(a_{t} | s_{t}) \right] \right)^{2} \right]$$

where actions are being sampled from the current policy $\pi_{\phi}(a \mid s)$ not from the replay.

• For learning $Q_{\theta}(s, a)$:

$$J_{\underline{Q}}(\boldsymbol{\theta}) = \mathbb{E}_{(s_t, a_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(\underline{Q}_{\boldsymbol{\theta}}(s_t, a_t) - \hat{Q}(s_t, a_t) \right)^2 \right] \text{ where } \hat{Q}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} \left[\underline{V}_{\psi}(s_{t+1}) \right]$$

• For learning $\pi_{\phi}(a \mid s)$:

$$J_{\pi}(\phi) = \mathbb{E}_{s_t \sim \mathcal{D}} \left[D_{KL} \left(\frac{\pi_{\phi}(\cdot \mid s_t) \| \frac{\exp\left(Q_{\theta}(s_t, \cdot)\right)}{Z_{\theta}(s_t)} \right) \right]$$

If we reparameterize the stochastic policy $a_t = f_{\phi}(\epsilon_t; s_t)$ where ϵ_t is sampled from some distribution,

$$J_{\pi}(\phi) = \mathbb{E}_{s_t \sim D, \epsilon_t \sim \mathcal{N}} \left[\log \frac{\pi_{\phi}}{\sigma} \left(f_{\phi}(\epsilon_t; s_t) \mid s_t \right) - Q_{\theta} \left(s_t, f_{\phi}(\epsilon_t; s_t) \right) \right]$$

Augmented Random Search

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

- 1: **Hyperparameters:** step-size α , number of directions sampled per iteration N, standard deviation of the exploration noise ν , number of top-performing directions to use b (b < N) is allowed Use top b search directions. only for V1-t and V2-t)
- 2: Initialize: $M_0 = \mathbf{0} \in \mathbb{R}^{p \times n}$, $\mu_0 = \mathbf{0} \in \mathbb{R}^n$, and $\Sigma_0 = \mathbf{I}_n \in \mathbb{R}^{n \times n}$, j = 0.
- 3: while ending condition not satisfied do
- Sample $\delta_1, \delta_2, \dots, \delta_N$ in $\mathbb{R}^{p \times n}$ with i.i.d. standard normal entries.
- Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies

V1:
$$\begin{cases} \pi_{j,k,+}(x) = (M_j + \nu \delta_k) x \\ \pi_{j,k,-}(x) = (M_j - \nu \delta_k) x \end{cases}$$
V2:
$$\begin{cases} \pi_{j,k,+}(x) = (M_j + \nu \delta_k) \frac{\operatorname{diag}(\Sigma_j)^{-1/2}(x - \mu_j)}{\operatorname{diag}(\Sigma_j)^{-1/2}(x - \mu_j)} \end{cases}$$
 Input normalization

- for $k \in \{1, 2, ..., N\}$.

 Sort the directions δ_k by $\max\{r(\pi_{j,k,+}), r(\pi_{j,k,-})\}$ denote by $\delta_{(k)}$ the k-th largest direction, and by $\pi_{i,(k),+}$ and $\pi_{i,(k),-}$ the corresponding policies.
- Make the update step:

$$M_{j+1} = M_j + rac{lpha}{\log_R} \sum_{k=1}^{\boxed{b}} \left[r(\pi_{j,(k),+}) - r(\pi_{j,(k),-}) \right] \delta_{(k)},$$

where σ_R is the standard deviation of the 2b rewards used in the update step.

- **V2**: Set μ_{j+1} , Σ_{j+1} to be the mean and covariance of the 2NH(j+1) states encountered from the start of training.²
- 9: $j \leftarrow j + 1$
- 10: end while

Thank You

ROBOT INTELLIGENCE LAB