Package 'door'

June 28, 2025

Type Package

Title Design of Clinical Trials with the Desirability of Outcome Ranking Methodology

Version 0.0.1

Description Statistical methods and related graphical representations for the Desirability of Outcome Ranking (DOOR) methodology. The DOOR is a paradigm for the design, analysis, interpretation of clinical trials and other research studies based on the patient centric benefit risk evaluation. The package provides functions for generating summary statistics from individual level/summary level datasets, conduct DOOR probability-based inference, and visualization of the results. For more details of DOOR methodology, see ``Handbook of Generalized Pairwise Comparisons", Chapter 13 <doi:10.1201/9781003390855>. For more explanation of the statistical methods and the graphics, see the technical document and user manual of the DOOR 'Shiny' apps at https://methods.bsc.gwu.edu.

Imports dplyr, tidyr, ggplot2, forestplot, scales, methods, labeling

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Collate 'DOOR.R' 'door_summary.R' 'calc_doorprob.R' 'check.HLP.R' 'check.homog.R' 'create.U.R' 'create.Z.ZF.R' 'data.R' 'door_barplot.R' 'var_pi.R' 'door_ci.R' 'door_test.R' 'forest_plot.R' 'mph.fit.R' 'mph.summary.R' 'num.deriv.fct.R' 'partial_credit_analysis.R' 'partial_credit_plots.R'

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Depends R (>= 3.5)

NeedsCompilation no

Author Yijie He [aut, cre], Qihang Wu [ctb], Toshimitsu Hamasaki [ctb]

Maintainer Yijie He <yih148@gwu.edu>

2 calc_doorprob

Repository CRAN

Date/Publication 2025-06-28 17:20:02 UTC

Contents

	calc_doorprob	2
	door_barplot	3
	door_ci	4
	door_component_barplot	5
	door_component_forestplot	
	door_cumulative_forestplot	7
	door_summary	
	door_test	9
	halperin_ci	10
	inv_tanh_ci	11
	mock_raw_data	12
	partial_credit_analysis	13
	partial_credit_biplot	14
	partial_credit_contour_plot	14
	pseudo_score_ci	15
	var_pi	17
Index		18

calc_doorprob

Calculate DOOR probability

Description

For summary level data, y1 and y2 should be given. For individual level data, a summary_obj should be given.

Usage

```
calc_doorprob(
  y1 = NULL,
  y2 = NULL,
  data_type = c("freq", "prop"),
  summary_obj = NULL
)
```

y1	A vector of proportion or frequency distribution for group 1
y2	A vector of proportion or frequency distribution for group 2
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
summary_obj	A object returned by door_summary(); Alternative input for y1 and y2

door_barplot 3

Value

DOOR probability

See Also

```
door_summary()
```

Examples

door_barplot

Create DOOR summary barplot

Description

Create DOOR summary barplot

Usage

```
door_barplot(
   y1 = NULL,
   y2 = NULL,
   summary_obj = NULL,
   data_type = c("freq", "prop")
)
```

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1,
	group 2. The entries should be ordered from most desirable to least desirable
summary_obj	An object returned by door_summary(); Alternative input for y1 and y2
data_type	Either "freq" for frequency input or "prop" for proportion input when using y1
	and y2

door_ci

Value

a ggplot object

Examples

```
y1 = c(60, 30, 10)

y2 = c(50, 40, 10)

door_barplot(y1, y2)
```

door_ci

Calculate confidence intervals for DOOR probability

Description

This is a wrapper function for all CI calculation functions

Usage

```
door_ci(
   y1 = NULL,
   y2 = NULL,
   n1 = NULL,
   n2 = NULL,
   summary_obj = NULL,
   conf_level = 0.95,
   data_type = c("freq", "prop"),
   ci_method = c("all", "halperin", "ps_h", "tanh"),
   ...
)
```

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
summary_obj	A object returned by individual_to_summary(); Alternative input for y1 and y2 $$
conf_level	Confidence level
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
ci_method	One of "all" for all available methods, "halperin" for Halperin et al. (1989)'s method, "ps_h" for pseudo-score approach for Halperin's method, "tanh" for inverse hyperbolc tangent transformed method
• • •	Additional parameters passed for calculating pseudo-score type confidence interval

```
door_component_barplot
```

Value

List of CIs

See Also

```
halperin_ci(), pseudo_score_ci()
```

Examples

```
door_ci(c(60,30,10), c(50,40,10), ci_method = "all")
```

door_component_barplot

Create DOOR component barplot

Description

Create DOOR component barplot

Usage

```
door_component_barplot(
  comp_table = NULL,
  n1 = NULL,
  n2 = NULL,
  summary_obj = NULL,
  data_type = c("freq", "prop")
)
```

Arguments

comp_table A DOOR component table

n1, n2 Sample sizes of group 1, group 2

 $summary_obj \qquad An object \ returned \ by \ individual_to_summary(); Alternative \ input \ for \ comp_table.$

data_type Either "freq" for frequency input or "prop" for proportion input if "comp_table"

is used

Value

A ggplot object

```
comp_table = data.frame(compname = c("A", "B"), trt = c(30, 20), ctr = c(40, 25)) door_component_barplot(comp_table = comp_table, n1 = 100, n2 = 100)
```

```
door_component_forestplot
```

Create DOOR component forest plot

Description

Create DOOR component forest plot

Usage

```
door_component_forestplot(
  comp_table = NULL,
  y1 = NULL,
  y2 = NULL,
  n1 = NULL,
  n2 = NULL,
  data_type = c("freq", "prop"),
  summary_obj = NULL,
  conf_level = 0.95,
  ci_method = c("halperin", "ps_h", "ps_tanh")
)
```

Arguments

comp_table	a data frame of DOOR components. See example.
y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
data_type	Either "freq" for frequency input or "prop" for proportion input when using y1 and y2
summary_obj	An object returned by individual_to_summary(); Alternative input for y1 and y2 $$
conf_level	confidence level
ci_method	method for confidence interval calculation; one of "halperin", "ps_h", "ps_tanh"

Value

a forest plot object

```
comp_table = data.frame(compname = c("A", "B"), trt = c(30, 20), ctr = c(40, 25)) y1 = c(60, 30, 10) y2 = c(60, 30, 10) door_component_forestplot(comp_table = comp_table, y1 = y1, y2 = y2)
```

```
door_cumulative_forestplot
```

Generate cumulative DOOR forest plot

Description

Generate cumulative DOOR forest plot

Usage

```
door_cumulative_forestplot(
   y1 = NULL,
   y2 = NULL,
   n1 = NULL,
   n2 = NULL,
   data_type = c("freq", "prop"),
   summary_obj = NULL,
   conf_level = 0.95,
   ci_method = c("halperin", "ps_h", "tanh")
)
```

Arguments

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
summary_obj	An object returned by individual_to_summary(); Alternative input for y1 and y2 $$
conf_level	confidence level
ci_method	methods for calculating confidence interval

Value

a forestplot object

```
y1 = c(60, 30, 10)

y2 = c(50, 40, 10)

door_cumulative_forestplot(y1, y2)
```

8 door_summary

door_summary	Summarize individual level data into summary level data

Description

Transform an individual level dataset that contains DOOR outcome variable and treatment/intervention variable to summary level. By default, the levels of the DOOR outcome is ordered from 1 to K.

Usage

```
door_summary(
  data,
  trtVar,
  doorVar,
  trtCodes,
  trtLabels = NULL,
  compVars = NULL,
  decreasing = FALSE
)
```

Arguments

data	Data frame that includes DOOR outcome variable and treatment variable at individual level
trtVar	Variable name of treatments
doorVar	Variable name of DOOR outcome; the doorVar should be numeric
trtCodes	A numeric vector contains the codes for interventions in $trtVar$, ordered by $c(trt, ctr)$
trtLabels	An optional vector contains the intervention labels for $trtCodes$, ordered by $c(trt, ctr)$
compVars	An optional character vector of variable names of DOOR components
decreasing	A logical value indicating the order of desirability of the DOOR levels. By default, smaller value represents better outcomes

Value

An object of DOOR outcome distribution summary

door_test 9

```
compVars = c("infectious complications", "clinical failure", "death"))
```

door_test

Hypothesis testing for the DOOR probability

Description

Hypothesis testing for the DOOR probability

Usage

```
door_test(
  y1 = NULL,
  y2 = NULL,
  n1 = NULL,
  n2 = NULL,
  summary_obj = NULL,
  data_type = c("freq", "prop"),
  null_value = 0.5,
  alternative = c("two.sided", "less", "greater")
)
```

Arguments

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
summary_obj	An object returned by individual_to_summary(); Alternative input for y1 and y2 $$
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
null_value	A number specifying the hypothesized value of the DOOR probability
alternative	A character describing the alternative hypothesis

Value

A htest object containing information of hypothesis test of DOOR probability

See Also

```
door_summary()
```

10 halperin_ci

Examples

```
y1 <- c(60, 30, 10)

y2 <- c(50, 40, 10)

door_test(y1 = y1, y2 = y2)

## Hypothesis test for DOOR probability

## data: y1 and y2

## WMW statistic = 1.2372, p-value = 0.216

## alternative hypothesis: true is not equal to 0.5

## sample estimates:

## DOOR probability

## 0.545
```

halperin_ci

Calculate confidence interval of DOOR probability based on Halperin et al. (1989)'s method

Description

Calculate confidence interval of DOOR probability based on Halperin et al. (1989)'s method

Usage

```
halperin_ci(
  y1 = NULL,
  y2 = NULL,
  n1 = NULL,
  n2 = NULL,
  data_type = c("freq", "prop"),
  summary_obj = NULL,
  conf_level = 0.95
)
```

Arguments

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if data_type = "prop"
data_type	Either "freq" for frequency input or "prop" for proportion input when using y1 and y2 $$
summary_obj	A object returned by door_summary(); Alternative input for y1 and y2
conf_level	Confidence level

Value

Halperin et al. (1989)'s CI

inv_tanh_ci 11

References

reference

See Also

```
door_ci()
```

Examples

```
y1 = c(60, 30, 10)

y2 = c(50, 40, 10)

halperin_ci(y1, y2)

## $halperin_ci

## [1] 0.4734504 0.6147386
```

inv_tanh_ci

Calculate confidence interval of DOOR probability based on inverse hyperbolic tangent transformation of Wald-type CI

Description

Calculate confidence interval of DOOR probability based on inverse hyperbolic tangent transformation of Wald-type CI

Usage

```
inv_tanh_ci(
  y1 = NULL,
  y2 = NULL,
  n1 = NULL,
  n2 = NULL,
  data_type = c("freq", "prop"),
  summary_obj = NULL,
  conf_level = 0.95
)
```

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
summary_obj	A object returned by individual_to_summary(); Alternative input for y1 and y2 $$
conf_level	Confidence level

12 mock_raw_data

Value

Inverse hyperbolic tangent transformation CI

See Also

```
door_ci()
```

Examples

```
inv_tanh_ci(c(60,30,10), c(50,40,10))
```

mock_raw_data

Mock Raw Data

Description

A mock data that contains examples of a raw dataset of DOOR outcomes, treatment information, and DOOR components

Usage

```
data(mock_raw_data)
```

Format

A data frame with 55 observations with the following columns

ARM, Arm text Codes and labels of treatment arm

DOOR, DOORtext Codes and labels of DOOR outcome

clinical failure, clinical failure text Codes and labels for one of the DOOR components

infectious complications, infectious complications text Codes and labels for one of the DOOR components

death, death text Codes and labels for one of the DOOR components

Weight IPW weights

Duration Tie breaker

partial_credit_analysis 13

```
partial_credit_analysis
```

Partial credit analysis for DOOR

Description

Partial credit analysis for DOOR

Usage

```
partial_credit_analysis(
  grade_key,
  y1 = NULL,
  y2 = NULL,
  n1 = NULL,
  n2 = NULL,
  summary_obj = NULL,
  data_type = c("freq", "prop"),
  ci_method = "halperin",
  conf_level = 0.95,
  ...
)
```

Arguments

grade_key	A numeric vector of grade key or a dataframe contains columns of grade keys
y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
summary_obj	An object returned by door_summary(); Alternative input for y1 and y2
data_type	Either "freq" for frequency input or "prop" for proportion input when using y1 and y2 $$
ci_method	Specify the type of CI for DOOR probability given a grade key. The default is "halperin" for Halperin et al. (1989)'s method. Other options include "ps_h" for pseudo-score approach for Halperin's method and "tanh" for inverse hyperbolc tangent transformed method
conf_level	Confidence level
	Optional additional parameters if ci_method = "ps_h"

Value

An object containing information of partial credit analysis given grade keys

Examples

```
grade.key <- c(100, 80, 60, 40, 0)
y1 <- c(60, 30, 20, 10, 5)
y2 <- c(50, 40, 10, 20, 5)
partial_credit_analysis(grade_key = grade.key, y1 = y1, y2 = y2)
```

partial_credit_biplot Partial credit plot

Description

Partial credit plot

Usage

```
partial_credit_biplot(pc_object, ...)
```

Arguments

```
pc_object an object returned by partial_credit_analysis()
... additional arguments for other functions
```

Value

a plot object

Examples

```
grade.key <- c(100, 60, 0)
y1 <- c(60, 30, 10)
y2 <- c(50, 40, 10)
pc_object <- partial_credit_analysis(grade_key = grade.key, y1 = y1, y2 = y2)
partial_credit_biplot(pc_object)
```

```
partial_credit_contour_plot
```

Generate contour plot for partial credit analysis

Description

The contour plot is for sensitivity analysis. Currently it supports given DOOR outcome categories of three or four. The contour plot assigns every combinations of grade keys given a DOOR outcome distribution

pseudo_score_ci 15

Usage

```
partial_credit_contour_plot(
   y1 = NULL,
   y2 = NULL,
   n1 = NULL,
   n2 = NULL,
   summary_obj = NULL,
   data_type = c("freq", "prop"),
   pc_inc = 10,
   contour_inc = 1
)
```

Arguments

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
summary_obj	An object returned by individual_to_summary(); Alternative input for y1 and y2 $$
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
pc_inc	Increment of partial credits
contour_inc	Increment of contour lines

Value

A graph object

Examples

```
y1 <- c(60, 30, 10)
y2 <- c(50, 40, 10)
partial_credit_contour_plot(y1, y2)
```

pseudo_score_ci

Calculate pseudo score type confidence interval of DOOR probability

Description

Some code of this function is adpated from the now-archived CRAN package "cta", originally authored by Joseph B. Lang. The original package was licensed under GPL-2, and the adapted code complies with this license.

pseudo_score_ci

Usage

```
pseudo_score_ci(
   y1 = NULL,
   y2 = NULL,
   n1 = NULL,
   n2 = NULL,
   summary_obj = NULL,
   data_type = c("freq", "prop"),
   cil = 0.4,
   ciu = 0.6,
   conf_level = 0.95,
   epsilon = 1e-04,
   maxiter = 100
)
```

Arguments

y1, y2	Numeric vectors of DOOR proportion or frequency distribution for group 1, group 2. The entries should be ordered from most desirable to least desirable
n1, n2	Sample sizes of group 1, group 2; must be specified if method = "prop"
summary_obj	A object returned by individual_to_summary(); Alternative input for y1 and y2 $$
data_type	Either "freq" for frequency input or "prop" for proportion input when using $y1$ and $y2$
cil, ciu	Initial guesses of lower and upper limit, respectively
conf_level	Confidence level
epsilon	Convergence tolerance. Default to 1e-4
maxiter	Maximum iteration

Value

pseudo-score type CI and the number of iterations to calculate the lower bound and upper bound

See Also

```
door_ci()
```

```
pseudo_score_ci(c(60,30,10), c(50,40,10))
```

var_pi

var_p1 Variance of DOOR probability	var_pi	Variance of DOOR probability	
-------------------------------------	--------	------------------------------	--

Description

Calculate multiple types of variances of DOOR probability

Usage

```
var_pi(p1, p2, n1, n2)
```

Arguments

p1	Vector of DOOR outcome proportion distribution for group 1
p2	Vector of DOOR outcome proportion distribution for group 2
n1	Sample size of group 1
n2	Sample size of group 2

Value

DOOR probability, Wald-type variance, exact variance, Halperin variance; theta for Halperin method

Index

```
* datasets
    mock_raw_data, 12
\verb|calc_doorprob|, 2
door_barplot, 3
door\_ci, 4
door_ci(), 11, 12, 16
door_component_barplot, 5
door_component_forestplot, 6
door_cumulative_forestplot, 7
door_summary, 8
door_summary(), 3, 9
door_test, 9
halperin_ci, 10
halperin_ci(), 5
inv_tanh_ci, 11
mock_raw_data, 12
partial_credit_analysis, 13
partial_credit_biplot, 14
partial_credit_contour_plot, 14
pseudo_score_ci, 15
pseudo_score_ci(), 5
var_pi, 17
```