ОПРЕДЕЛЕНИЕ ЭНЕРГИИ α -ЧАСТИЦЫ ПО ВЕЛИЧИНЕ СВОБОДНОГО ПРОБЕГА

Выполнил: Грошев М.А. Б01-206 **Цель работы:** Измерить пробег альфа-частиц в воздухе тремя способами: с помощью торцевого счетчика Гейгера, сцинтеляционнного счетчика и ионизационной камеры.

1 Теоретические сведения

В качестве источника альфа-частиц используется 239 Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которы- ми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

Выполняя строгие математические выкладки, можно получить следующее значение длины пробега α -частицы

$$R \sim \frac{M}{z^2} v_0^2 \tag{1}$$

Однако на практике, полученные эксперементальные данные соответствуют следующей зависимости

$$R = 0.32E^{\frac{3}{2}} \tag{2}$$

2 Описание экспериментальной установки

2.1 Счетчик Гейгера

Рис. 1: Схема торцевого счетчика Гейгера

Для определения пробега альфа-частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы (рис.), в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить альфа-частицы. Рабочее напряжение счетчика указано на установке.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика. Счетчик не может быть придвинут к препарату ближе чем на 10 мм, т. к. между источником и счетчиком установлен коллиматор, изготовленный из плотно сжатых металлических трубок. Отверстия трубок пропускают к счетчику только те альфа-частицы, которые вылетают из источника почти перпендикулярно его поверхности.

2.2 Сцинтилляционый счетчик

Рис. 2: Схема устройства ионизационной камера

Установка состоит из цилиндрической камеры, на дне которой на- ходится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя (рис.). Оптический контакт ФЭУ-стекло обеспечивается тонким сло- ем вазелинового масла.

2.3 Ионизационная камера

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами (схема камеры приведена на рис.). Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения (в нашем случае это источник альфа-частиц $^{239}_{94}$ Pu), заполним

объем камеры воздухом и начнем постепенно увеличивать разность потенциалов между электродами. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным, т. е. «выйдет на плато». Предельный ток I_0 будет равен $I_0=n_0e$, где n_0 — число пар ионов, образуемых в секунду в объеме камеры, а e— заряд электрона.

Рис. 3: Схема устройства ионизационной камера

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. Так как средняя энергия ионизации атомов воздуха составляет около 30 эВ, то альфа-частица с энергией 3 МэВ образует на своем пути около 10^5 электронов, им соответствует заряд $1,6\cdot 10^{-14}$ Кл. Чтобы столь малое количество заряда, создаваемое проходящей через камеру одной альфа-частицей, вызывало измеряемое напряжение, емкость C должна быть мала.

Так как подвижность электронов примерно в 1000 раз больше подвижности ионов, то подбором параметров RC-цепочки можно выделить импульсы тока, соответствующие только возникающей электронной компоненте. Реально регистрация электронной компоненты импульса тока обеспечивается при величине постоянной времени RC- цепочки в несколько микросекунд. Если число проходящих через камеру альфачастиц достаточно велико, то можно регистрировать не заряд, а величину возникающего тока, которая, естественно, пропорциональна интенсивности альфа-частиц. В токовом режиме величину постоянной времени RC-цепочки устанавливают равной нескольким секундам, а работающую в этом режиме камеру называют токовой.

При изменении давления в камере ионизационный ток меняется так, как это показано на рис.. При небольших давлениях газа альфа-частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается. Для определения давления P_0 чаще всего пользуются методом экстраполяции (полученная таким методом величина называется экстраполированным пробегом), продолжая наклонный и горизонтальный участки кривой до пересечения. Найденный таким образом пробег затем должен быть приведен к нормальному давлению и температуре $15^{\circ}C$.

3 Ход работы

Запишем окружающие параметры:

$$T_{\rm k} = 298~K$$

$$P_{\kappa} = 1,03 \; \mathrm{Atm}$$

3.1 Счетчик Гейгера

Таблица 1: Зависимость числа частиц от давления

N	t, c	l, mm
1226	85.3	0
1269	93.0	0.25
1352	85.6	0.5
1415	85.4	1
1337	85.4	1.75
1401	85.5	2
1313	85.6	2.5
1242	85.2	3
1227	85.1	4
1184	85.2	5
1228	85.2	6
1170	85.4	6.25
1072	86.3	6.5
1033	85.4	7
986	85.0	7.25
919	85.2	7.5
757	85.6	7.75
521	87.0	8
457	85.3	8.25
302	86.1	8.5
142	86.2	8.75
82	86.2	9
46	97.5	9.25
24	90.6	9.5

Таблица 2: y = ax + b

	Estimate	Standard Error
a	-0,59	0,03
b	53,7	0,2

Экстраполируем полученую прямую до пересечения с осью абсцисс. Отсюда получаем экстраполированную длину пробега

$$R_9 = \frac{b}{a} \approx 9,1 \pm 0,3 \text{ cm}$$

$$R_{
m s}' =
ho R_{
m s} = (1, 11 \pm 0, 04) \cdot 10^{-3} \; {
m г/cm}^2$$

Среднюю длину пробега оценим как $R_{\rm cp} \cong 8, 2 \pm 0, 2$ см $R'_{\rm cp} = \rho R_{\rm cp} = (1,01\pm0,02)\cdot 10^{-3}~{\rm r/cm}^2$

Энергию таких альфа-частицы можно оценить по эмпирической формуле

$$E_{
m 9} = \left(rac{R_{
m 9}}{0,32}
ight)^{2/3} pprox 9, 3 \pm 0, 2 \; {
m MэВ}$$
 $E_{
m cp} = \left(rac{R_{
m cp}}{0,32}
ight)^{2/3} pprox 8, 7 \pm 0, 2 \; {
m MэB}$

3.2 Сцинтеляционный счетчик

Таблица 3: Зависимость числа частиц от давления

P, mmHg	$ < N >_3 $
25	3760
60	3278
110	2473
160	1394
210	507
260	173
310	31
360	3
410	3
460	4
510	3
560	3
610	3
660	3

Таблица 4: y = ax + b

	Estimate	Standard Error
a	-19.7	0,6
b	4605	26

Таблица 5: Значения давлений

$P_{\rm cp}$, мм.рт.ст	$P_{\text{экстр}}$, мм.рт.ст
110 ± 4	234 ± 2

Так как пробег $R_0=9$ см задается размером камеры, приведем его к н.у.:

$$R_{
m 9} = R_l rac{
ho_0}{
ho_k} = R_0 rac{P_{
m 9} T_k}{P_k T_0} pprox (2.9 \pm 0, 1) \; {
m cm}$$

$$R'_{
m s} pprox (3,55\pm0,16)\cdot 10^{-3} \; {
m r/cm}^2$$

Энергию такой альфа-частицы можно оценить по формуле (1)

$$E_{
m 9} = \left(rac{R_{
m 9}}{0,32}
ight)^{2/3} pprox 4,3 \pm 0,1 \; {
m MэB}$$

Оценим значение среднего пробега частицы

$$R_{\rm cp} = R_l \frac{\rho_0}{\rho_k} = R_0 \frac{P_{\rm cp} T_k}{P_k T_0} \approx (1.3 \pm 0, 1) \; {
m cm}$$

$$R'_{\rm cp} \approx (1,59 \pm 0,14) \cdot 10^{-3} \; {\rm f/cm}^2$$

3.3 Ионизационная камера

Таблица 6: Зависимость тока от давления

P, mmHg	I, pA
25	0.05
60	0.62
110	1.45
160	2.27
210	3.14
260	4.03
310	4.95
360	5.81
410	7.01
460	8.05
510	9.11
530	9.52
550	9.96
560	10.01
580	10.20
610	10.20
640	10.15
660	10.15
690	10.05
710	10.00
730	9.95

Построил две прямых, соответствующих линейным участкам графика.

Таблица 7: Параметры апроксимирующих прямых

Участок графика (по оси х)	a	b
$x \in [0, 550]$	$0,0188 \pm 0,0003$	-0.66 ± 0.05
$x \in [550, 750]$	$0,0018 \pm 0,0002$	11.31 ± 0.01

Их пересечение дает нам значение

$$P_0 = \frac{b_2 - b_1}{a_1 - a_2} \approx (581 \pm 17) \text{ MM.pt.ct}$$
 (3)

Так как пробег $R_0=5$ см задается размером камеры, приведем его к н.у.:

$$R_{\text{norm}} = R_l \frac{\rho_0}{\rho_k} = R_0 \frac{P_0 T_k}{P_k T_0} \approx (3.9 \pm 0, 1) \text{ cm}$$
 (4)

$$R'_{\rm norm} \approx (4,75 \pm 0,12) \cdot 10^{-3} \, {\rm r/cm}^2$$

Энергию такой альфа-частицы можно оценить по формуле (1)

$$R = 0.32E^{\frac{3}{2}}$$

$$E_{\rm norm} = \left(\frac{R_{\rm norm}}{0.32}\right)^{2/3} \approx 5.3 \pm 0.1 \text{ M}{\circ}\text{B}$$

4 Вывод

В работе был измерен пробег альфа-частиц от 239 Pu с помощью ионизационной камеры, счетчика Гейгера, сцинтеляционного счетчика . Также была проверена эмперическая зависимость (1) зависимости энергии частицы от длины пробега. По полученным данным была определена энергия α -частиц.

- 1. При работе с счетчиком Гегера пробег оказался равным $l_e=9,1\pm0,3$ см, что является большой величиной. Такие результаты могут быть обусловлены неаккуратным снятием исходных значений, которые получались коллегами
- 2. При работе с сцинтеляционным счетчиком пробег получился равным $l_e = 2,9 \pm 0,1$ см, сравнивая по указанию из лабника с длиной пробега при энергии 5,15 м Θ в(l = 3,4 см), но по нашим подсчётам оценочная энергия равна $4,3 \pm 0,1$ МэВ, что соответствует длине пробега (l = 2,7 см), что соответствует действительности.
- 3. При работе с ионизационной камерой пробег и энергия получились близкими к ожидаемым: 5.3 ± 0.1 МэВ против табличных 5.244МэВ.