Equation assignment sequence for variable \hat{n}^d

no	var	equ	quations	token
16	2	-	t:: port variable	
15	15	_	r_x :: port variable	
14	21	_	V:: port variable	
13	17	-	r_z :: port variable	
12	16	_	r_y :: port variable	
11	19	_	U:: port variable	energy
10	18	_	n:: port variable	mass
9	9	_	$P_N S_A S$:: port variable	
8	1	_	F:: port variable	
7	36	20	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	
6	53	36	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	energy, mass
5	80	63	$A_{y,z_N} := r_{y_N} \cdot r_{z_N}$	
4	70	53	$k_{xNS}^d := k_{xNS}^d$	energy, mass
3	24	9	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	energy, mass
2	87	70	$\hat{n}_{AS}^d := A_{y,z_N} \odot \left(-k_{xNS}^d \right) \cdot F_{NS,AS} \overset{NS}{\star} \mu_{NS}$	energy
1	10	6	$F_{NS,AS} := F_{N,A} \odot P_{NS,AS}$	
0	88	71	$\hat{n}_{NS}^d := F_{NS,AS} \stackrel{AS}{\star} \hat{n}_{AS}^d$	energy