HW3 Solution

2. a) From the full form of the Friedmann equation:
$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{|2|c^{2}}{|R|^{2}a(t)}$$

$$\mathcal{E}(t) = \frac{3c^2}{8\pi G} H(t)^2 + \left(\frac{3c^2}{8\pi G} \frac{c^2}{R_{3a}(t)}\right) R$$
using $g = \frac{\varepsilon}{c^2}$:

So if
$$R=-1$$
, $p < pc$ (mgative curvature)
if $R=0$, $p=pc$ (flat)
if $R=+1$, $p>pc$ (positive curvature)

Ryden 4.2

In general:
$$\ddot{a} = -\frac{4\pi G}{3c^{\circ}} \left(\varepsilon + 3P \right)$$

where $\varepsilon + P$ have matter + radiation contributions.

In Einsteins static univers Λ components are added.

 $\ddot{a} = -\frac{4\pi G}{3c^{\circ}} \left(\varepsilon_{m} + \varepsilon_{r} + \varepsilon_{h} + 3 \left(P_{m} + P_{r} + P_{h} \right) \right)$

we know $P = \omega \varepsilon_{h}$ where $\omega = 0$ for matter (mon-relativistic) $\omega = \frac{1}{3}$ for radiation $\omega = \frac{1}{3}$ for radiation

 $= \frac{3}{3} = -\frac{4\pi G}{3c^{\circ}} \left(\varepsilon_{m} + \varepsilon_{r} + \varepsilon_{h} + 3 \left(0 + \varepsilon_{h}^{\prime} - \varepsilon_{h} \right) \right)$
 $= -\frac{4\pi G}{3c^{\circ}} \left(\varepsilon_{m} + 2\varepsilon_{r} - 2\varepsilon_{h} \right)$

we know $\varepsilon_{h} = \frac{c^{\circ} \Lambda}{3\pi G} = \frac{c^{\circ}}{3\pi G} \cdot \frac{1}{3\pi G} = \frac{pc^{\circ}}{2}$

and $\varepsilon_{m} = \frac{mc^{\circ}}{V} = pc^{\circ}$
 $= \frac{3}{3} = -\frac{4\pi G}{3c^{\circ}} \left(pc^{\circ} + 2\varepsilon_{r} - 2 \left(\frac{pc^{\circ}}{2} \right) \right) = \frac{8\pi G}{3c^{\circ}} \varepsilon_{r}$

Since à is negative, the Universe is decelerating.

$$P = 3.10^{-12} h_{2}/m^{2}$$

$$R_{0} = \frac{c}{\sqrt{4\pi G \rho^{2}}} = \frac{2.898 \times 10^{8} m/s}{(4\pi 6.67 \times 10^{-10} m)^{3} \cdot 3 \times 10^{22} kg/s)^{2}} = \frac{1.89 \times 10^{22} m}{(4\pi 6.67 \times 10^{-10} m)^{3} \cdot 3 \times 10^{22} kg/s)^{2}} = \frac{1.89 \times 10^{22} m}{3 \times 10^{22} m/s} \times \frac{1 \text{yr}}{17 \times 10^{23} \text{s}} = \frac{126 \text{ Gyr}}{126 \text{ Gyr}}$$