CAPSTONE PROJECT

ANSARI ZAID
MAY A BATCH

CRICKET WIN PREDICTION

Table of content

1) INTRODUCTION	
Brief introduction of problem statement and the need of solving it	1
2) Exploratory data analysis and business implications	1
Head of the data	2
Data dictionary	2, 3
Shape of the data	3
Duplicates	3
Description of the data	3, 4
Information about the data	
Univariate analysis	
Hygiene check of the data	
Box plot for continuous variables	
Count plot for categorical variables	
Bivariate analysis	
Business insights from exploratory data analysis	16
3) Data cleaning and preprocessing	16
Approach used for identifying and treating missing values and outlier'	
Variables transformation	19
4) Model building	20, 21
Logistic regression using stats model	21, 22
Decision tree classifier(CART)	22, 23
Random forest	23
Artificial neural network	23
Efforts to improve model performance	23, 25
5) Model validation	25
Model validation done on test set	
Logistic regression	25, 26
Random forest	26, 27
Decision tree(CART)	27, 28
Artificial neural network	28, 29
Interpretation of the models	29, 30
6) Final recommendation given to BCCI	30 31

List of figures

figure 1: Box plot of continuous variables	6
figure 2: Count plot of categorical variables	8
figure 3: Correlation plot	9
figure 4: Pair plot	
figure 5: Scatter plot	
figure 6: Box plot of extra bowls opponents	11
figure 7: Box plot of extra bowls bowled	
figure 8: Bar plot of player highest wicket	
figure 9: count plot of average team age	
figure 10: Stack bar plot of offshore	
figure 11: Stack bar plot of First selection	
figure 12: count plot of all-rounder in team	
figure 13: count plot of opponents	
figure 14: count plot of match light type	
figure 15: Count plot of player scored zero	
figure 16: Box plot after removal of outliers	
figure 17: roc auc curve of logistic regression using grid s	
figure 18: roc auc curve of RF model using grid search	
figure 19: roc auc of DT model for test set	
figure 20: roc auc of ANN model for test set	

List of tables

Table	1: Interpretation	of all the models	29
Iable	T. IIIICI DI CLALIDI	i di ali the illudeis	······

FINAL BUSINESS REPORT

1) INTRODUCTION

BCCI has hired an external analytics consulting firm for data analytics. The major objective of this tie up is to extract actionable insights from the historical match data and make strategic changes to make India win. Primary objective is to create Machine Learning models which correctly predicts a win for the Indian Cricket Team. Once a model is developed then you have to extract actionable insights and recommendation.

Also, below are the details of the next 5 matches, India is going to play. You have to predict the result of the matches and if you are getting prediction as a Loss then suggest some changes and re-run your model again until you are getting Win as a prediction. You cannot use the same strategy in the entire series, because opponent will get to know your strategy and they can come with counter strategy. Hence for all the below 5 matches you have to suggest unique strategies to make India win. The suggestions should be in-line with the variables that have been mentioned in the given data set. Do consider the feasibility of the suggestions very carefully as well.

- 1 Test match with England in England. All the match are day matches. In England, it will be rainy season at the time to match.
- 2 T20 match with Australia in India. All the match are Day and Night matches. In India, it will be winter season at the time to match.
- 2 ODI match with Sri Lanka in India. All the match are Day and Night matches. In India, it will be winter season at the time to match

NEED OF THE PROJECT AND BUSINESS UNDERSTANDING

Need of the project is to create an automated product which creates strategies and in future whichever team we are playing in against it will show the strategy. As soon as the match is decided with the opponent the product will tell the strategy. It will show the strategy based on the model built on past data we have. In future whichever team is in with similar characteristics we can predict the result

Most of the cricket bookies uses win prediction. Over 90 percent of the cricket betting tips goes on to win. The top bookies have a success rate of prediction over 80%. Over 81% of the bets we can recommend to cricket fans who turned out to be the winner rather than losing. Most of the cricket fans can refer to this URL and also make recommended predictions

https://www.thetopbookies.com/betting-tips/cricket

The automated product we created can be sold on different platforms. For example, we can sell this product to BCCI so that it can benefit them by changing the characteristics accordingly in order to win the match. We can also sell this automated product on soccer platform by simply changing the characteristics of the data

2) EXPLORATORY DATA ANAYSIS AND BUSINESS IMPLICATIONS

VISUAL INSPECTION OF THE DATA

HEAD OF THE DATA

Ga	me_number	Result	Avg_team_Age	Match_I	ight_type	Match_format E	lowlers_in_team	Wicket_kee	eper_in_team	All_rounder	_in_team	First_selection
0	Game_1	Loss	18.0)	Day	ODI	3.0		1		3.0	Bowling
1	Game_2	Win	24.0)	Day	T20	3.0		1		4.0	Batting
2	Game_3	Loss	24.0	Day	and Night	T20	3.0		1		2.0	Bowling
3	Game_4	Win	24.0)	NaN	ODI	2.0		1		2.0	Bowling
4	Game_5	Loss	24.0		Night	ODI	1.0		1		3.0	Bowling
	***					***	***					***
2925	Game_2926	Win	30.0)	Day	T20	3.0		1		4.0	Batting
2926	Game_2927	Win	30.0)	Day	ODI	4.0		1		3.0	Bowling
2927	Game_2928	Win	30.0	Day	and Night	ODI	4.0		1		3.0	Bowling
2928	Game_2929	Win	30.0		Day	ODI	4.0		1		3.0	Batting
2929	Game_2930	Win	30.0)	Day	ODI	4.0		1		3.0	Batting
2930 row	s × 23 colum	nns										
Opponen	t Season	Audier	nce number	Offshore	Max ru	n_scored_1over	Max wicket ta	ken 1ove	r Extra bow	vis bowled	Min rur	n given 1over
Srilanka			9940.0	No		13.0				0.0		2
Zimbabwe	Summer		8400.0	No		12.0		1	1	0.0		0
Zimbabwe	e NaN		13146.0	Yes		14.0		4	4	0.0		0
Kenya	Summer		7357.0	No		15.0		4	4	0.0		2
Srilanka	Summer		13328.0	No		12.0		4	4	0.0		0
South Africa			33950.0	No		15.0		3	3	8.0		0
Kenya			19663.0	No		14.0		4	4	8.0		2
Pakistar	n Rainy		39823.0	Yes		14.0		4	4	10.0		2
Kenya	a Rainy		14007.0	No		14.0		2	2	20.0		2
Kenya	a Rainy		20839.0	No		12.0		4	4	4.0		5
Min_run	_scored_10	ver M	lax_run_giver	_1over	extra_b	owls_opponent	player_highe	st_run P	layers_scor	ed_zero	olayer_hi	ighest_wicket
		3.0		6.0		0		54.0		3		1
		3.0		6.0		0		69.0		2		1
		3.0		6.0		0		69.0		3		1
		3.0		6.0		0		73.0		3		1
		3.0		6.0		0		80.0		3		1
		3.0		6.0		3		50.0		3		2
		3.0		6.0		2		52.0		2		1
		4.0		10.0		2		80.0		3		2
		3.0		6.0		3		98.0		3		1
		3.0		6.0		3		62.0		1		1
		5.0		0.0		3		02.0				

DATA DICTIONARY

Variables	Description
Game_number	Unique ID for each match
Result	Final result of the match
Avg_team_Age	Average age of the playing 11 players for that match
Match_light_type	type of match: Day, night or day & night
Match_format	Format of the match: T20, ODI or test
Bowlers_in_team	how many full time bowlers has been player in the team
Wicket_keeper_in_team	how many full time wicket keeper has been player in the team
All_rounder_in_team	how many full time all-rounder has been player in the team
First_selection	First inning of team: batting or bowling
Opponent	Opponent team in the match
Season	What is the season of the city, where match has been played
Audience_number	Total number of audience in the stadium
Offshore	Match played within country or outside of the country
Max_run_scored_1over	Maximum run scored in 1 over by team
Max_wicket_taken_1over	Maximum wicket taken in 1 over by team
Extra_bowls_bowled	Total number of extras bowled by team
Min_run_given_1over	Minimum run given by the bowler in one over
Min_run_scored_1over	Minimum run scored in 1 over by team
Max_run_given_1over	Maximum run given by the bowler in one over
extra_bowls_opponent	Total number of extras bowled by opponent
player_highest_run	Highest score in the match by one player
Players_scored_zero	Number of player out on zero run
player_highest_wicket	Highest wickets taken by single player in match

SHAPE OF THE DATA

(2930, 23)

There are 2930 number of rows and 23 columns

DUPLICATES

There are no duplicates entries

DESCRIPTION OF THE DATA

	Avg_team_Age	Bowlers_in_team	Wicket_keeper_in_team	All_rounder_in_team	Audience_number	Max_run_scored_1over	Max_wicket_taken_1over
count	2833.000000	2848.000000	2930.0	2890.000000	2.849000e+03	2902.000000	2930.000000
mean	29.242852	2.913624	1.0	2.722491	4.626796e+04	15.199862	2.713993
std	2.264230	1.023907	0.0	1.092699	4.859958e+04	3.661010	1.080623
min	12.000000	1.000000	1.0	1.000000	7.063000e+03	11.000000	1.000000
25%	30.000000	2.000000	1.0	2.000000	2.036300e+04	12.000000	2.000000
50%	30.000000	3.000000	1.0	3.000000	3.434900e+04	14.000000	3.000000
75%	30.000000	4.000000	1.0	4.000000	5.787600e+04	18.000000	4.000000
max	70.000000	5.000000	1.0	4.000000	1.399930e+06	25.000000	4.000000
4							

(8, 15)

Extra_bowls_bowled	Min_run_given_1over	Min_run_scored_1over	Max_run_given_1over	extra_bowls_opponent	player_highest_run	Players_scored_zero	player_highest_wicket
2901.000000	2930.000000	2903.000000	2896.000000	2930.000000	2902.000000	2930.000000	2930.000000
11.252671	1.952560	2.762659	8.669199	4.229693	65.889387	2.730034	2.063481
7.780829	1.678332	0.705759	5.003525	3.626108	20.331614	0.710708	1.107440
0.000000	0.000000	1.000000	6.000000	0.000000	30.000000	1.000000	1.000000
6.000000	0.000000	2.000000	6.000000	2.000000	48.000000	2.000000	1.000000
10.000000	2.000000	3.000000	6.000000	3.000000	66.000000	3.000000	2.000000
15.000000	3.000000	3.000000	9.250000	7.000000	84.000000	3.000000	3.000000
40.000000	6.000000	4.000000	40.000000	18.000000	100.000000	4.000000	5.000000
1)

(8, 15)

UNDERSTANDING THE ATTRIBUTES

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2930 entries, 0 to 2929
Data columns (total 23 columns):
#
     Column
                             Non-Null Count Dtype
___
0
     Game number
                              2930 non-null
                                              object
                                              object
 1
     Result
                              2930 non-null
 2
     Avg team Age
                             2833 non-null
                                             float64
 3
     Match_light_type
                             2878 non-null
                                              object
                            2860 non-null
     Match_format
 4
                                              object
 5
     Bowlers in team
                             2848 non-null
                                              float64
     Wicket_keeper_in_team 2930 non-null
 6
                                              int64
    All_rounder_in_team 2890 non-null First_selection 2871 non-null
 7
                                              float64
     First_selection
 8
                                             object
 9
     Opponent
                              2894 non-null
                                              object
 10
    Season
                              2868 non-null
                                              object
    Audience_number
                             2849 non-null
                                              float64
 11
    Offshore 2866 non-null
Max_run_scored_1over 2902 non-null
 12
                                              object
 13
                                              float64
    Max_wicket_taken_1over 2930 non-null
 14
                                              int64
15 Extra_bowls_bowled 2901 non-null 16 Min_run_given_1over 2930 non-null
                                              float64
                                              int64
 17
    Min run scored 1over 2903 non-null
                                              float64
                            2896 non-null
                                              float64
 18 Max_run_given_1over
     extra_bowls_opponent
                              2930 non-null
                                              int64
 19
     player_highest_run
 20
                              2902 non-null
                                              float64
 21
    Players_scored_zero
                             2930 non-null
                                              object
 22 player_highest_wicket 2930 non-null
                                              object
dtypes: float64(9), int64(4), object(10)
memory usage: 526.6+ KB
```

There are 10 variables having object data types

There are 13 variables having integer and float data types

A) UNIVARIATE ANALYSIS

HYGIENE CHECK OF THE DATA

```
unique count of Match_format
['ODI' 'T20' 'Test' '20-20' nan]

We merge '20-20' with the 'T20'

unique count of First_selection
['Bowling' 'Batting' 'Bat' nan]

We merge 'Bat' with the 'Batting'

unique count of Players_scored_zero
[3 2 1 4 'Three']

unique count of player_highest_wicket
[1 2 3 4 'Three' 5]
```

We replace 'three' with the integer value 3 and convert the data type from object to numerical

figure 1: box plot of continuous variables

Variable **avg_team_age** is close to normal distribution as mean and median are similar though it has outliers

Variable **Bowlers_in_team** is normally distributed as mean and median are almost same, no outliers are present

Variable **All_rounder_in_team** is slightly left skewed as there is difference in mean and median and also 75 percentile and the maximum value are equal, no outliers are present

Variable audience_number is right skewed as mean is effected due to outliers present

Variable Max_run_scored_1over is slightly right skewed, no outliers are present

Variable **Max_wicket_taken_1over** is slightly left skewed as mean is less than median and also 75 percentile and the maximum value are same, no outliers are present

Variable Extra_bowls_bowled is right skewed as mean is higher than median, outliers are present

Variable **Min_run_given_1over** is close to normal and minimum value and 25 percentile are equal, no outliers are present

Variable **Min_run_scored_1over** is slightly left skewed, 50 and 75 percentile are equal, no outliers are present

Variable **Max_run_given_1over** is right skewed, minimum value,25,50 percentile have same values, outliers are present

Variable extra_bowls_opponent is right skewed, outliers are present

Variable player_highest_run is normally distributed, no outliers are present

Variable **Players_scored_zero** is slightly left skewed, 50 and 75 percentile have the same value, no outliers are present

Variable player_highest_wicket is normally distributed, minimum value and 25 percentile are equal

Skewness

Avg_team_Age	5.068403
Bowlers_in_team	-0.296492
All_rounder_in_team	-0.335012
Audience_number	15.782867
Max_run_scored_1over	0.838907
Max_wicket_taken_1over	-0.305597
Extra_bowls_bowled	1.132432
Min_run_given_1over	0.433859
Min_run_scored_1over	-0.568821
Max_run_given_1over	2.692147
extra_bowls_opponent	0.916295
player_highest_run	-0.031472
Players_scored_zero	-0.505491
player_highest_wicket	1.026090
dtype: float64	

figure 2: count plot of categorical variables

Match_light_type: The number of matches played during the day is the highest and the lowest matches played during the night

Match_format: The number of ODI matches played is the highest and the lowest played is for the test format

First selection: The highest number of the matches played with bowling first and lowest with the batting as the first selection

Opponent: highest number of matches are played against south Africa and lowest matches played against Australia

Season: highest number of matches are played during rainy season and lowest matches are played during winter season

Offshore: Less matches are played offshore, most of the matches are played on the home ground

Result: Among all the matches most of the matches are won, less matches are lost

B) BIVARIATE ANALYSIS

CORRELATION PLOT

FIGURE 3: CORRELATION PLOT

Variables **extra bowls bowled** and **Players_highest_wicket** has the highest correlation 0.78.

Variables **Audience number** and **Players_highest_wicket** has the strong correlation 0.68.

Variables **Maximum runs given in one over** and **extra bowls opponents** has the correlation of 0.65

Variables **Maximum runs given in one over** and **extra bowls bowled** has the correlation of 0.61

FIGURE 5: Scatter plot

It shows the linear relationship between maximum run given in one over and extra bowls bowled. Highest value of both the variables result in loss

figure 6: box plot

The median of extra bowls opponents is higher for win, If the extra bowls opponents is higher than 16 then India will win the match as per the data set

if the extra bowls opponents are higher than 10 then chances of winning the match is more

figure 7: Box plot

As per data when you bowl 40 extra bowls India is definitely will lose the match

figure 8: bar plot

The chances of winning the match is high when the wicket taken by a single player is 2

figure 9: bar plot

India has the highest win with average team age at 30

figure 10: Bar plot

The performance of the Indian team is good when played on the home ground

figure 11: bar plot

Most of the matches are won when selected to bowl first

figure 12: Bar plot

Winning percentage is higher when matches are played with 3 to 4 all-rounders in the team

figure 13: bar plot

India team is performing well against west indies, Bangladesh, England and Pakistan as the winning rate is high

India team wining rate is less against south Africa, srilanka, Zimbabwe and Australia

figure 14: bar plot

Indian team has a good performance in ODI format as compared to both the formats

Winning rate is higher in ODI format and lesser in T20 and test

figure 15: bar plot

Indian team has the highest wining rate when there are 3 player scored zero and lowest when there is one player scored zero

Business insights from analysis

- Variables maximum runs given in one over and extra bowls bowled have a good relation which results in win or loss of the match. More number of runs given in one over and extra bowls bowled chances of losing is high
- Variable extra bowls opponent can add value to the prediction. More extra bowls opponent more is chance of the winning
- Variable offshore also predict the win. If the number of matches played on home ground are more chances of winning is high
- Variable first selection also impact on the result. If the first selection is bowling the chances of winning is high
- Variable all-rounder in team has impact on the result. Having 3 to 4 all-rounders in the team may result into win

3) DATA CLEANING AND PREPROCESSING

Approach used for identifying and treating missing values and outliers

Approach used for identifying missing values is is null condition

Game_number	0
Result	0
Avg_team_Age	97
Match_light_type	52
Match_format	70
Bowlers_in_team	82
Wicket_keeper_in_team	0
All_rounder_in_team	40
First_selection	59
Opponent	36
Season	62
Audience_number	81
Offshore	64
Max_run_scored_1over	28
Max_wicket_taken_1over	0
Extra_bowls_bowled	29
Min_run_given_1over	0
Min_run_scored_1over	27
Max_run_given_1over	34
extra_bowls_opponent	0
player_highest_run	28
Players_scored_zero	0
player_highest_wicket	0
dtype: int64	

For numerical variable

Variable **Avg_team_Age** has 97 missing values and is replaced by the median value as the variable is normally distributed mean and median are same

Variable **Bowlers_in_team** has 82 missing value and is replaced by the mean value as the variable is slightly left skewed

Variable **All_rounder_in_team** has 40 missing value and is replaced by the median value as the variable is slightly left skewed

Variable **Audience_number** has 81 missing value and is replaced by the median value as the variable is right skewed

Variable Max_run_scored_lover has 28 missing values and is replaced by the median value

Variable Extra_bowls_bowled has 29 missing value and is replaced by the median value

Variable Min_run_scored1over has 27 missing value and is replaced by the median value

Variable Max_run_given_1over has 34 missing values and is replaced by the median value

Variable player_highest_run has 28 missing values and is replaced by the median value

For categorical variable

Variable **Match_light_type** has 52 missing values and it is replaced by the mode value the most occurring value

Variable Match_format has 70 missing values and it is replaced by the mode

Variable First_selection has 59 missing values and it is replaced by the mode

Variable **Opponent** has 36 missing values and it is replaced by the mode

Variable **Season** has 62 missing values and it is replaced by the mode

Variable **Offshore** has 64 missing values and it is replaced by the mode

Outliers treatment

Outliers have effect on mean. It increases the mean. If it is a distance based calculations, then the modelling may be effected. So it is necessary to treat outliers

Box plot is used to find the outliers

Variables avg_team_age, audience number, extra bowls bowled, maximum run given in one over, extra bowls opponent have outliers.

Inter quantile range (IQR) method is used to treat the outliers

IQR = Q3 - Q1

Q1 is the first quantile which is 25 percentile

Q3 is the third quantile which is 75 percentile

Lower limit = Q1 - 1.5*IQR

Upper limit = Q3 + 1.5*IQR

Outliers are capped to the upper and lower limit

After treating outliers,

figure 16: box plot after outlier treatment

Variable transformation

Variable player scored zero and player highest wicket was an object data type it is convert into integer data type

Variable game number and wicket keeper in team has been as it does not add any value to the analysis

4) Model building

Data using one hot encoding

Avg.	_team_Age	Bowlers_in_to	eam All_	rounder_in_te	am Audie	ence_numb	oer Max_r	un_s	cored_1over	Max.	_wicket_taken_1	over E	Extra_b	owls_bowled
0	30.0		3.0		3.0	9940	0.0		13.0			3.0		0.0
1	30.0		3.0		4.0	8400	0.0		12.0			1.0		0.0
2	30.0		3.0		2.0	13146	6.0		14.0			4.0		0.0
3	30.0		2.0		2.0	735	7.0		15.0			4.0		0.0
4	30.0		1.0		3.0	13328	8.0		12.0			4.0		0.0
Min_run_	given_1ove	r Min_run_sco	red_1over	Max_run_giv	ven_1over	extra_bow	/ls_oppone	nt pl	layer_highest_	run	Players_scored_	zero p	olayer_l	nighest_wicket
	2.	0	3.0		6.0		0	.0	,	54.0		3.0		1.0
	0.	0	3.0		6.0		0	.0	(69.0		2.0		1.0
	0.	0	3.0		6.0		0	.0	(69.0		3.0		1.0
	2.	0	3.0		6.0		0	.0	-	73.0		3.0		1.0
	0.	0	3.0		6.0		0	.0	;	80.0		3.0		1.0
Result	Match_li	ght_type_Day	Match_I	ight_type_D and Nig		_light_ty	pe_Night	Mat	ch_format_C	DI	Match_format_	T20 N	Match_	format_Test
0		1			0		0			1		0		0
1		1			0		0			0		1		0
0		0			1		0			0		1		0
1		1			0		0			1		0		0
0		0			0		1			1		0		0
Firet ea	lection Bat	ting First sole	ction Boy	vling Oppon	ont Austral	lia Onnon	ent Bangl	adoch	Opponent	Engla	and Opponent_i	Konya	Onnor	ont Dakietan
11131_36	lection_bai	0	Ction_Bov		ent_Austru	0	ient_bangi	(Liigid		0	Оррог	
		1		0		0		0			0	0		0
		0		1		0		0			0	0		0
		0		1		0		0			0	1		0
		0		1		0		0			0	0		0
Opponen	t_South	pponent_Srilan	ka Oppoi	nent_West O	pponent_Zi	mbabwe	Season_Ra	iny	Season_Sumn	ner	Season_Winter	Offsho	re_No	Offshore_Yes
	Africa 0		1	Indies 0		0		0		1	- 0		1	
	0		0	0		1		0		1	0		1	0
	0		0	0		1		1		0	0		0	1
	0		0	0		0		0		1	0		1	0
	0		1	0		0		0		1	0		1	0
	-			-				-						

shape of the data (2930,37)

Data using label encoding

Avg_team_Age	Bowlers	s_in_team	All_rour	der_in_team	Audien	ce_number	Max_run_	scored	_1over Ma	x_wicket_taken_1over	Extra_bowls_bowled
30.0		3.0		3.0		9940.0			13.0	3.0	0.0
30.0		3.0		4.0		8400.0			12.0	1.0	0.0
30.0		3.0		2.0		13146.0			14.0	4.0	0.0
30.0		2.0		2.0		7357.0			15.0	4.0	0.0
30.0		1.0		3.0		13328.0			12.0	4.0	0.0
Min_run_given_1o	ver Min	_run_score	d_1over	Max_run_give	n_1over	extra_bowls	_opponent	player_	_highest_rui	Players_scored_zero	player_highest_wicket
	2.0		3.0		6.0		0.0		54.0	3.0	1.0
	0.0		3.0		6.0		0.0		69.0	2.0	1.0
	0.0		3.0		6.0		0.0		69.0	3.0	1.0
	2.0		3.0		6.0		0.0		73.0	3.0	1.0
	0.0		3.0		6.0		0.0		80.0	3.0	1.0
Match_light_	_type	Match_	format	First_se	lection	Oppon	ent Se	ason	Offshor	re	
	0		0		1		6	1		0	
	0		1		0)	8	1		0	
	1		1		1		8	0		1	
	0		0		1		3	1		0	
	2		0		1		6	1		0	

Shape of the data (2930,21)

We split the result with all independent variables

We then split the data into 70 and 30. 70 for training and 30 for testing using train test split

Building various model

1 logistic regression using stats model

For logistics regression one hot encoding is done

Logistic regression model internally uses linear equation to find the intercept and coefficient and then it is converted to the classes using activation function. It uses sigmoid curve to calculate the probability depending on the defined threshold. Any value greater than threshold will be considered as 1 and the value less than threshold will be considered as 0. Threshold value is usually 0.5 and it can be adjusted accordingly. It uses log of odds to convert into the probability. Log of odds is the linear equation having intercept and coefficient.

Logit Regression Results

	Logic Kegressio	II NESUICS				
B						
Dep. Variable:		. Observation	ns:		930	
Model:		Residuals:		29	900	
Method:		Model:			29	
•	31 May 2022 Ps			0.25		
Time:	12:59:23 Lo	_	:	-971.		
converged:		-Null:		-1299		
Covariance Type:	nonrobust LL	R p-value:		7.077e-1	118	
	coef	std err	z	P> z	[0.025	0.975]
Avg_team_Age	-0.1074	0.048	-2.234	0.025	-0.202	-0.013
Bowlers_in_team	-0.0322	0.058	-0.555		-0.146	0.081
All_rounder_in_team	0.3381	0.054			0.232	0.444
Audience_number	2.67e-06	6.77e-06	0.394	0.693	-1.06e-05	1.59e-05
Max_run_scored_1over	0.0241	0.016	1.467	0.142	-0.008	0.056
Max_wicket_taken_1over	0.1737	0.054	3.231	0.001	0.068	0.279
Extra_bowls_bowled	0.0567	0.016	3.560	0.000	0.025	0.088
Min_run_given_1over	0.2330	0.060	3.854	0.000	0.114	0.351
Min_run_scored_1over	0.2621	0.083	3.174	0.002	0.100	0.424
Max_run_given_1over	-0.1418	0.042	-3.416	0.001	-0.223	-0.060
extra_bowls_opponent	0.1444	0.028	5.111	0.000	0.089	0.200
player_highest_run	-0.0007	0.003	-0.254	0.800	-0.006	0.005
Players_scored_zero	0.5206	0.080	6.474	0.000	0.363	0.678
player_highest_wicket	-0.1148	0.185	-0.621	0.535	-0.477	0.247
Match_light_type_Day and	Night -0.6757	0.137	-4.927	0.000	-0.945	-0.407
Match_light_type_Night	0.7951	0.244	3.255	0.001	0.316	1.274
Match_format_T20	0.5067	0.405	1.250	0.211	-0.288	1.301
Match_format_Test	1.3228	1.326	0.997	0.319	-1.277	3.922
First_selection_Bowling	-0.2514	0.122	-2.059	0.040	-0.491	-0.012
Opponent_Bangladesh	2.3718	1.378	1.722	0.085	-0.328	5.072
Opponent_England	2.7566	1.364	2.020	0.043	0.082	5.431
Opponent_Kenya	2.1283	1.338	1.590	0.112	-0.495	4.751
Opponent_Pakistan	2.6804	1.365	1.963	0.050	0.005	5.356
Opponent_South Africa	1.8050	1.364	1.324	0.186	-0.867	4.478
Opponent_Srilanka	1.3367	1.337	1.000	0.317	-1.283	3.956
Opponent_West Indies	3.6085	1.481	2.436	0.015	0.705	6.512
Opponent_Zimbabwe	0.9704	1.367	0.710	0.478	-1.709	3.650
Season_Summer	-0.9185	0.129	-7.129	0.000	-1.171	-0.666
Season_Winter	0.2839	0.172	1.653	0.098	-0.053	0.621
Offshore Ves	-1 6736	0 124	-13 543	9 999	-1 916	-1 431

0.000

0.124 -13.543

-1.431

-1.916

Significant variables are whose p value is less than alpha which is 0.05

-1.6736

Avg_team_Age

Offshore_Yes

All_rounder_in_team

Max_wicket_taken_1over

Extra_bowls_bowled

Min_run_given_1over

Min_run_scored_1over

Max_run_given_1over

Extra_bowls_opponent

Players_scored_zero

Match_light_type_Day and Night

 $Match_light_type_Night$

Season_Summer

Offshore_yes

2 Decision tree classifier (CART)

For decision tree we use label encoding

Parameters used for building model

```
Criterion = 'gini'

Max_depth = 'none'

Min_sample_leaf = '1'

Min_sample_split = '2'

Max_features = None
```

3 Random forest classifier

Making random forest model using random forest classifier with parameters estimator which is number of trees, max_features which is the number of variables, min_sample_leaf is the minimum sample of the terminal node, minimum_sample_split is the minimum split of the parent node and fitting the data in the model.

Parameters used for model building

```
n_estimators = 100
max_features=7
random_state =0
```

4 Artificial neural network

To build artificial neural networks first we need to scale both training and testing data By using MLP classifier we pass the parameters

Hidden_layer_sizes: it consists of number of perceptron's and each perceptron are connected to the inputs.

max_iter: weights are adjusted at every iteration and the losses are reduced.

Solver: solver gradient method is used for calculation of weights.

Tolerance: tolerance of losses at every iteration.

Parameters used for model building

```
hidden_layer_sizes=100,
max_iter=2500,
solver='sgd',
verbose=True,
random_state=0,
tol=0.01
```

Efforts to improve the model performance

Logistic regression using stats model

Taking threshold as 0.5

If the value is greater than 0.5 it is will be 1 and less than 0.5 it will 0

To increase the precision value, we need to decrease the false positive cases we can do by shifting the threshold point to the right

In this case precision value should be high, so we reduce the false positive rate by shifting the threshold value from 0.5 to 0.6

Taking threshold as 0.6

If the value is greater than 0.6 it is will be 1 and less than 0.6 it will 0

We can further increase the precision value we shifting the threshold from 0.6 to 0.7

Taking threshold as 0.7

We can consider threshold point as 0.7 where we get the maximum precision value which is 0.91 and lower false positive cases

We can use this threshold point for predictions

Ensemble modeling

Random forest model uses ensemble technique

Random forest using grid search. Grid search cross validation is a technique to find the best combination of parameters

Getting the best parameters using grid search

```
{'max_depth': 7,
  'max_features': 7,
  'min_samples_leaf': 30,
  'min_samples_split': 90,
  'n_estimators': 100}
```

Decision tree model (CART) using regularisation

Parameters used in model building

```
criterion='gini'

max_depth=10

min_samples_leaf=30

min_samples_split=300
```

Feature importance

	Imp
player_highest_wicket	0.320525
Offshore	0.311881
Extra_bowls_bowled	0.165018
Min_run_given_1over	0.074466
Min_run_scored_1over	0.052626
All_rounder_in_team	0.030320
Audience_number	0.026602
Max_run_scored_1over	0.011541
player_highest_run	0.007021
Match_light_type	0.000000
Season	0.000000
Opponent	0.000000
First_selection	0.000000
Match_format	0.000000
Avg_team_Age	0.000000
Players_scored_zero	0.000000
Bowlers_in_team	0.000000
Max_run_given_1over	0.000000
Max_wicket_taken_1over	0.000000
extra_bowls_opponent	0.000000

Artificial neural network using grid search

After using grid search cross validation, we get best parameters

{'hidden_layer_sizes': 50, 'max_iter': 2500, 'solver': 'sgd', 'tol': 0.01}

5) Model validation

Model validation is done on the test set by checking the performance metrics of each models

As the data is imbalance we cannot select the accuracy we need to select precision as false positive cases are not accepted

Logistic regression using stats model

Confusion metrics

Classification report

	precision	recall	f1-score	support
0	0.52	0.57	0.54	145
1	0.91	0.90	0.90	734
accuracy			0.84	879
macro avg	0.71	0.73	0.72	879
weighted avg	0.85	0.84	0.84	879

Area under curve

figure 17: roc auc curve of logistic regression using grid search for test

AUC: 0.80

Random forest

Confusion metrics after grid search for test set

[28, 117] [7, 727]

Classification report for test set

	precision	recall	f1-score	support
0	0.80	0.19	0.31	145
1	0.86	0.99	0.92	734
accuracy			0.86	879
macro avg	0.83	0.59	0.62	879
weighted avg	0.85	0.86	0.82	879

ROC AUC curve

figure 18: roc auc curve of RF model using grid search

Area under Curve is 0.7920980926430516

Decision tree model (CART) using regularisation

Confusion metrics for test set

[43, 102]
[45, 689]

Classification report for test set

	precision	recall	f1-score	support
0	0.49	0.30	0.37	145
1	0.87	0.94	0.90	734
accuracy			0.83	879
macro avg	0.68	0.62	0.64	879
weighted avg	0.81	0.83	0.82	879

AUC ROC curve for test set

figure 19: roc auc of DT model for test set

AUC: 0.717

Artificial neural network

Confusion metrics for test set

Classification report for test set

	precision	recall	f1-score	support
0	0.00	0.00	0.00	145
1	0.84	1.00	0.91	734
accuracy			0.84	879
macro avg	0.42	0.50	0.46	879
weighted avg	0.70	0.84	0.76	879

AUC ROC curve

figure 20: roc auc of ANN model for test set

Interpretation of the models

Table 1: interpretations of all the models

Accuracy AUC Precision Recall F1 score	logistic Trai	n(sm) 0.87 0.85 0.93 0.92 0.92	logistic	0. 0. 0.	sm) C/ .84 .80 .91 .90	ART train 0.8 0.8 0.8 0.9	35 32 38 94	test 0.83 0.72 0.87 0.94 0.90	\
Accuracy AUC Precision Recall F1 score	RANDOM FOREST	train 0.86 0.87 0.87 0.99	RANDOM	FOREST	test 0.86 0.79 0.86 0.99 0.92	NEURAL	NETWORK	train 0.84 0.50 0.84 1.00 0.91	\
Accuracy AUC Precision Recall F1 score	NEURAL NETWOR	K test 0.84 0.50 0.84 1.00 0.91							

Logistic regression using stats model

Accuracy is 0.87 and 0.84 for train and test set

As false positive cases are not acceptable. Hence precision is important. It has precision 0.93 and 0.91 for train and test set. It is right fit model.

Area under curve for train and test is 0.85 and 0.80

CART model

Accuracy is 0.85 and 0.83 for train and test set

As false positive cases are not acceptable. Hence precision is important. It has precision 0.88 and 0.87 for train and test set. It is right fit model.

Area under curve for train and test is 0.82 and 0.72

RANDOM FOREST

Accuracy is 0.86 and 0.86 for train and test set

As false positive cases are not acceptable. Hence precision is important. It has precision 0.87 and 0.86 for train and test set. It is right fit model.

Area under curve for train and test is 0.87 and 0.79

Artificial neural network

Accuracy is 0.84 and 0.84 for train and test set

As false positive is not acceptable. Hence precision is important. It has precision 0.84 and 0.84 for train and test set. It is right fit model.

Area under curve for train and test is 0.5 and 0.5

From above all the models we select logistic regression using stats model. It has highest accuracy and precision value. Logistic regression using stats model gives us approach to make the strategy by making changes to the values of the variables with respect to the coefficient

6) Final recommendations given to the BCCI

1 Test match with England in England. All the match are day matches. In England, it will be rainy season at the time to match.

Strategy to be followed

Average team age: Team average age should not be above 34. above age 34 we may lose the match

All-rounder's in team: There should be at least 3 all-rounders' in team

First selection: The first selection should be bowling

Bowlers in team: There should be at least one bowler in the team

Players scored zero: There should be no player scored zero

2 T20 match with Australia in India. All the match are Day and Night matches. In India, it will be winter season at the time to match.

1st Strategy to be followed

Average team age: Team average age should be 31. If it is greater 31 then we may lose the match All-rounder's in team: There should be at least 3 all-rounders' in team, less than 3 all-rounders may

lose the match

First selection: The first selection should be bowling **Bowlers in team**: There should be 3 bowlers in team

Extra bowls opponents: It should be greater than 14. if it is 14 we may lose the match

Maximum runs given in one over: It should be less than 9 runs. If it 9 or greater then we may lose

the match

Player scored zero: There should be at least 2 players scored zero

2nd Strategy to be followed

Average team age: Team average age should be 32. If it is greater than 32 we may lose the match.

All rounder's in team: There should be at least one all-rounder's in team. Playing with no all

rounders can lose the match

First selection: The first selection should be batting **Bowlers in team:** There should be 2 bowlers in team

Extra bowls opponents: It should be greater than 14. If it is 14 we may lose the match

Maximum runs given in one over: It should not be greater than 4. If it is greater than 4 then we may

lose the match

Player scored zero: There should be at least 3 players scored zero

2 ODI match with Sri Lanka in India. All the match are Day and Night matches. In India, it will be winter season at the time to match.

1st strategy to be followed

Average team age: Team average age should be less than 36. if it is 36 we may lose the match

All-rounder's in team: There should be at least 2 all-rounder's in team.

First selection: The first selection should be bowling **Bowlers in team:** There should be 2 bowlers in team

Maximum runs given in one over: It should be less than 13. If it is 13 or greater than that we may

lose the match

Extra bowls opponents: It should be greater than 4. If it is 5 we may lose the match

Player scored zero: We should be having at least two player scored zero. With one players scored

zero we may lose the match

2nd strategy to be followed

Average team age: Team average age should be 34. If it is greater than 34 we may lose the match

All-rounder's in team: There should be at least 3 all rounder's in team.

First selection: The first selection should be batting **Bowlers in team:** There should be 3 bowlers in team

Maximum runs given in one over: It should be 23. more than 23 runs will result into lost **Extra bowls opponents:** It should be greater than 19. If it is 19 we may lose the match

Player scored zero: We should be having at least one player scored zero. With no players scored zero

we may lose the match