

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

A61M 1/10, 1/12

(11) Numéro de publication internationale: WO 99/04833

(43) Date de publication internationale: 4 février 1999 (04:02.99)

(21) Numéro de la demande internationale: PCT/FR98/01631

(22) Date de dépôt international: 23 juillet 1998 (23.07.98)

(30) Données relatives à la priorité: 97/09428 24 juillet 1997 (24.07.97) FR

(71) Déposant (pour tous les Etats désignés sauf US): COMMIS-SARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75015 Paris (FR).

(72) Inventeurs: et

- (75) Inventeurs/Déposants (US seulement): GRUSS, Jean-Antoine [FR/FR]; 8, rue du Progrès, F-38170 Seyssinet (FR). SERRE-COMBE, Pierre [FR/FR]; 2b, chemin de Maupertuis, F-38240 Meylan (FR). BOUVIER, Alain [FR/FR]; Pré Chabert, F-38420 Revel (FR). GANDJBAKHCH, Iraj [FR/FR]; 12, boulevard Galiéni, F-94170 Le Perreux-sur-Marne (FR). GUILMET, Daniel [FR/FR]; 24, rue du Général Appert, F-75116 Paris (FR). SQUARA, Pierre [FR/FR]; 18, boulevard du Lac, F-95880 Enghien (FR).
- (74) Mandataire: BREVATOME; 25, rue de Ponthieu, F-75008 Paris (FR).

(81) Etats désignés: JP, US, brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

- (54) Title: VENTRICULAR CARDIAC AID DEVICE WITH COUNTER-PULSATION
- (54) Titre: DISPOSITIF D'ASSISTANCE CARDIAQUE VENTRICULAIRE A CONTRE-PULSATION

(57) Abstract

The invention concerns a ventricular cardiac aid device with counter-pulsation, comprising the following implanted elements: an aortic sleeve (1) placed on the ascending aorta (10) and capable of producing a counter-pulsation on the blood in the aorta by the effect of an intermediate fluid flowing into the sleeve; an electrohydraulic actuator (2) acting upon the intermediate fluid for producing said counter-pulsation; a compliance chamber (3) for accommodating the variation in volume of the intermediate fluid when the actuator (2) is operating; electric supply means for powering the electrohydraulic actuator (2).

(57) Abrégé

L'invention concerne un dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants: un manchon aortique (1) lacé sur l'aorte descendante (10) et apte à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire pénétrant dans le manchon, un actionneur électro-hydraulique (2) exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation, une chambre de compliance (3) permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de l'actionneur (2), des moyens d'alimentation électrique pour alimenter l'actionneur électro-hydraulique (2).

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

			_				n.5 p
AL	Albanie	es	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Paso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgar ie	HU.	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA.	Ukraine
BR	Brésil	, IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélanus	IS ·	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon .	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU ·	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		20000WC
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan.	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	Li	Liechtenstein	SD	Soudan	•	
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie .	LR	Libéria	SG	Singapour		

WO 99/04833 PCT/FR98/01631

DISPOSITIF D'ASSISTANCE CARDIAQUE VENTRICULAIRE A CONTRE-PULSATION

Domaine technique

5

10

La présente invention concerne un dispositif d'assistance cardiaque ventriculaire à contre-pulsation. Ce dispositif permet d'agir comme système de stockage et de génération d'énergie hydraulique pulsative. Il est conçu pour être utilisé comme composant d'un appareil autonome d'assistance cardiaque fonctionnant en contre-pulsation.

Etat de la technique antérieure

15

20

25

30

35

Les dispositifs d'assistance cardiaque actuellement utilisés, tels système que le NOVACOR® NP 100 de la société BAXTER et le HEARTMATE® IP société TCI utilisent une pompe cardiaque comprenant un actionneur et une chambre souple poche. La chambre souple se remplit ou périodiquement de sang sous l'action de l'actionneur. Cet actionneur est soit un électro-aimant, soit un moteur électrique avec transformation, au moyen d'une du mouvement circulaire fourni par le moteur électrique en mouvement linéaire. L'action mécanique se sur la poche (en polyuréthanne) placée dérivation sur le ventricule gauche du patient. Des valves, permettant une circulation unidirectionnelle du sang, sont placées à l'entrée et à la sortie de la poche.

Ces dispositifs posent un certain nombre de problèmes. Leur fonctionnement, en parallèle avec le coeur natif, entraîne un fonctionnement non synergique de celui-ci avec pour conséquence, dans la plupart des

15

20

une dégradation des fonctions du coeur. dispositif d'assistance doit donc suppléer en totalité au ventricule gauche du patient ce qui, associé à un rendement moyen des actionneurs, implique une puissance électrique élevée (de l'ordre de 25 W). Il en résulte 5 que l'alimentation électrique nécessaire pour assurer une autonomie d'une journée doit être fournie par des batteries relativement volumineuses, non implantables dans le corps humain. Ces batteries sont extérieures au corps. Elles sont portées en bandoulière la liaison électrique avec le dispositif ceinture, implanté se faisant par un câble transcutané.

Ces dispositifs causent aussi des micro ou macro-thromboembolismes qui sont dus notamment à grande surface d'échange synthétique et à la conception hydraulique induisant des zones de turbulence ou de stase. Les actionneurs et les vannes induisent un bruit important, entraînant une gêne pour le patient et son entourage. La sécurité de ces dispositifs est sujette à caution. Une déchirure de la poche peut entraîner une hémorragie ou une embolie gazeuse. Une panne quelconque peut .avoir des conséquences fatales en quelques secondes car le coeur natif ne travaille plus.

La mise en place d'un tel dispositif 25 nécessite une circulation extracorporelle totale ainsi qu'une incision de l'apex du coeur pour la pose d'une canule. Ces opérations sont toujours invalidantes pour le coeur natif.

connaît également des projets 30 dispositifs utilisant des muscles squelettiques tels latissimus dorsi en tant qu'actionneur. muscle peut être enroulé autour de l'aorte (aortomyoplastie) ou du coeur (cardiomyoplastie). peut également actionner indirectement une poche à sang à l'aide d'une transformation mécanique ou hydraulique. 35

Le muscle est dans ce cas actionné périodiquement à l'aide d'un appareil de type stimulateur de manière à exercer une action mécanique sur le système cardiovasculaire. Ces dispositifs présentent un certain nombre d'inconvénients. Leur mise en place nécessite une opération chirurgicale lourde et invalidante pour patient déjà affaibli. La transformation physiologique du muscle pour le rendre apte à fonctionnement cyclique rapide nécessite un apprentissage de plusieurs semaines, ce qui fait que le 10 dispositif d'assistance cardiaque n'est pas opérationnel immédiatement après l'opération. opérations sous anesthésie générale sont nécessaires pour mettre en place définitivement le système. 15 des problèmes de fatigue du muscle peuvent terme, apparaître. Enfin, l'efficacité du système du point de vue de la mortalité à long terme est controversée.

Il a également été proposé, en particulier dans le brevet US-A-5 290 227, de placer une pompe 20 centrifuge en série sur l'aorte montante fonctionnant en phase avec le coeur natif. Le fonctionnement de la pompe dans cette partie de l'aorte permet de bien alimenter le cerveau et le haut du corps les ramifications aboutissent à la . crosse aortique. Cependant, la mise en place de la pompe 25 centrifuge nécessite une circulation extra-corporelle totale, toujours invalidante. Les artères coronaires gauche et droite étant situées immédiatement en sortie du coeur après la valve aortique, et donc en amont de la turbine d'assistance, le fonctionnement en systole ...30 de la pompe centrifuge provoque une diminution de la pression coronaire et donc un déficit coronaire gauche et surtout droit.

On connaît étalement des pompes centrifuges 35 placées en dérivation sur le ventricule gauche. Ces

dispositifs permettent potentiellement une meilleure fiabilité du fait de l'absence de diaphragme ou de sac en matériau polymère dont la tenue dans le temps, avec des sollicitations répétées, est problématique. De plus, ils permettent également s'affranchir du délicat problème constitué l'a compensation en pression résultant des variations de volume des poches. Néanmoins, sérieux problèmes de subsistent concernant : la fiabilité des roulements ou des paliers, des problèmes de thrombus sur les paliers, 10 des problèmes de bruit, la nécessité d'une circulation extra-corporelle pour la mise en place de dispositifs. En outre, une panne de la pompe peut entraîner un fonctionnement en circuit fermé du coeur car il n'y a pas de valve. De plus, il y a risque de 15 coagulation dans la branche en dérivation.

On connaît par ailleurs des dispositifs d'assistance cardiaque fonctionnant en contre-pulsation. Les pompes à ballonnet intra-aortique 20 (IABP) sont utilisées cliniquement depuis les années 1960 en récupération de choc cardiaque. Le ballonnet est inséré dans l'aorte du patient, généralement par l'artère fémorale. Une console extérieure permet de gonfler et de dégonfler le ballonnet, avec de l'hélium, en synchronisme avec le coeur. Le ballonnet est gonflé 25 en diastole et dégonflé en systole. Le dégonflage du ballonnet diminue la post-charge du coeur qui, de ce fait, éjecte plus de sang. Le gonflage du ballonnet en diastole remonte la pression aortique et force le sang 30 dans le circuit artériel. Néanmoins, les IABP ne sont pas adaptés à une assistance à long terme pour au moins deux raisons. D'une part, le ballonnet n'y résisterait d'un point de vue mécanique. D'autre part, fonctionnement nécessite une console et un stockage de gaz externe peu compatible avec une vie normale. 35

₃₈. 25

30

35

plus, le passage percutané des tubulures pneumatiques constitue une source d'infection importante.

On peut aussi utiliser l'aortomyoplastie pour exercer l'action de contre-pulsation, en enroulant un muscle squelettique (généralement le latissimus dorsi) autour de l'aorte. Ce procédé présente les inconvénients mentionnés plus haut quant à l'utilisation des muscles squelettiques. De plus, on peut craindre une lésion de la paroi aortique à cause des compressions répétées de l'aorte.

L'article de A. KANTROWITZ et al. intitulé
"A Mechanical Auxiliary Ventricle. Histologic Responses
to Long-term, Intermittent Pumping in Calves", paru
dans la revue Trans. Am. Soc. Artif. Intern. Organs,

Vol. 41, pages M340-M345, 1995, décrit un projet
expérimenté chez l'animal. Un ballon extra-aortique est
mis en action selon le même principe que l'IABP. Ce
système présente toujours l'inconvénient de nécessiter
une source d'énergie pneumatique portable, mais
extérieure.

D'autres projets, utilisant le principe de la contre-pulsation, ont été divulgués. Ils sont décrits dans les documents WO 93/05827, EP-A-0 216 042, WO 92/08500 et US-A-4 979 936.

Dans US-A-4 938 766, R.K. JARVIK décrit des implantés sur l'aorte et réalisant un dispositifs stockage hydraulique passif avec transfert d'énergie hydraulique entre la phase systole et la diastole. Les systèmes de stockage décrits sont soit mécaniques (à l'aide d'une structure ressort), magnétiques l'aide d'aimants permanents). (à dispositifs n'ont apparemment pas été testés pratiquement. De toutes façons, le gain réel de débit cardiaque devrait être limité, les dispositifs n'apportant aucune énergie au système cardiaque.

10

20

Exposé de l'invention

Pour remédier aux inconvénients de l'art antérieur mentionnés ci-dessus, on propose, selon la présente invention, un dispositif d'assistance cardiaque utilisant les éléments suivants :

- une prothèse aortique réalisant l'action de contre-pulsation sur l'aorte. Cette prothèse se présente sous la forme d'un manchon aortique placé sur l'aorte descendante et dans lequel circule le sang.
- un fluide intermédiaire extérieur au manchon, assurant la compression cyclique du manchon en phase diastolique et procurant l'effet de contrepulsation.
- un actionneur électro-hydraulique transformant de l'énergie électrique stockée en une énergie hydraulique délivrée au fluide intermédiaire.
 - une chambre de compensation, encore appelée chambre de compliance, permettant d'accommoder la variation de volume de liquide intermédiaire.
 - un dispositif de stockage d'énergie électrique permettant l'autonomie énergétique complète du dispositif d'assistance cardiaque.
- un système de transmission d'énergie et 25 de données entre l'extérieur et l'intérieur du corps permettant la recharge des batteries et le télécontrôle du dispositif.

L'invention a donc pour objet un dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants :

- des moyens aptes à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire,

- un actionneur électro-hydraulique exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation,
- des moyens d'alimentation électrique pour 5 alimenter l'actionneur électro-hydraulique,

caractérisé en ce que :

- les moyens aptes à réaliser une action de contre-pulsation sont constitués d'un manchon aortique placé sur l'aorte descendante et dans lequel pénètre le fluide intermédiaire,
 - le dispositif comprend en outre une chambre de compliance permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de l'actionneur.
- Selon une première variante de réalisation, le manchon aortique est inséré sur l'aorte descendante. Dans ce cas, le manchon aortique peut comprendre une membrane tubulaire en matériau souple, se substituant à un tronçon de l'aorte, la membrane étant enfermée à l'intérieur d'une coque rigide scellée sur l'aorte de manière à définir une chambre annulaire autour de la membrane, le fluide intermédiaire pénétrant dans la chambre annulaire par un orifice prévu dans la coque.
- Selon une deuxième variante de réalisation,

 le manchon aortique est rapporté sur l'aorte descendante. Dans ce cas, le manchon aortique peut comprendre un élément en matériau souple enserrant l'aorte et constituant un volume fermé avec un orifice pour l'introduction du fluide intermédiaire, le manchon comprenant également une coque rigide pour contenir ledit élément en matériau souple.
 - L'actionneur peut être une pompe centrifuge. Il peut aussi utiliser un ferrofluide comme élément moteur.

Les moyens d'alimentation électrique peuvent comprendre une ou plusieurs batteries rechargeables.

De préférence, le dispositif comprend en outre des moyens implantés permettant la réception d'un signal électromagnétique de recharge de ladite batterie.

Il peut aussi comprendre en outre des moyens implantés permettant une transmission de données par induction ou par rayonnement infrarouge avec un appareil externe.

La chambre de compliance peut comporter des moyens permettant d'introduire, alors que la chambre de compliance est déjà implantée, du gaz pour la charger ou la décharger.

Brève description des dessins

- L'invention sera mieux comprise et d'autres 20 avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- la figure 1 représente un dispositif 25 d'assistance cardiaque ventriculaire à contre-pulsation selon la présente invention et représenté en position sur un patient,
- la figure 2 représente un manchon aortique selon la présente invention, inséré sur 30 l'aorte descendante du patient,
 - la figure 3 représente un manchon aortique selon la présente invention, rapporté sur l'aorte descendante du patient,
- la figure 4 est une vue en coupe selon 35 l'axe IV-IV de la figure 3,

30

35

- la figure 5 représente un autre manchon aortique selon la présente invention, rapporté sur l'aorte descendante du patient.

5 <u>Description détaillée de modes de réalisation de</u> l'invention

Le dispositif d'assistance cardiaque représenté à la figure 1 comprend un manchon aortique 1 10 placé sur l'aorte descendante 10 du patient, électro-hydraulique 2, actionneur une chambre de compliance 3 et un circuit électrique 4 comprenant une plusieurs batteries d'alimentation. L'actionneur électro-hydraulique 2 est en communication de fluide 15 avec le manchon aortique 1 grâce au conduit souple 5. Il est également en communication de fluide avec la chambre de compliance 3 grâce au conduit souple 6. Le 4 électrique alimente l'actionneur électro-hydraulique 2 grâce au cordon électrique 7.

Tous ces éléments sont bien sûr réalisés dans des matériaux biocompatibles.

Le manchon aortique 1 est décrit plus en détail à la figure 2 qui est une vue partiellement. En coupe afin de montrer l'intérieur du manchon. Comme le montre la figure 2, ce manchon aortique se substitue à un tronçon de l'aorte. Il comprend une membrane située entre deux extrémités tubulaires 12 et 13 destinées à être greffées sur des parties correspondantes de l'aorte. La membrane 11 est matériau souple. Le manchon aortique 1 comprend aussi une coque rigide 14, de forme générale cylindrique, scellée de manière étanche sur les extrémités tubulaires 12 et 13. Entre la coque rigide 14 l'ensemble constitué par la membrane 11 et extrémités tubulaires 12 et 13 existe donc un espace

annulaire allongé 15. Le conduit souple 5 (voir la figure 1) aboutit dans cet espace annulaire 15.

Le manchon aortique réalise l'action de contre-pulsation sur le sang sous l'effet du fluide intermédiaire introduit dans l'espace annulaire 15 grâce au conduit souple 5. Sur la figure 2, la membrane 11 a été représentée en traits pleins pendant la phase systolique, c'est-à-dire pendant que le fluide intermédiaire reflue vers l'actionneur. La membrane est figurée en traits mixtes pendant la phase diastolique, c'est-à-dire pendant que le fluide intermédiaire afflue vers l'espace annulaire 15.

Ce type de manchon (manchon prothétique) doit présenter une compliance plus faible que celle de l'aorte naturelle de manière à diminuer la post-charge 15 du coeur et à augmenter son éjection, donc son débit. Par contre, la compliance ne doit pas non plus être nulle. Elle peut être typiquement de l'ordre de 1 à 3.10⁸ Pa.m³. La compliance peut être réalisée à la source, c'est-à-dire au niveau du manchon prothétique, 20 en donnant une certaine élasticité à celui-ci. Ceci peut être réalisé par exemple à l'aide de renforts métalliques surmoulés dans la paroi de la membrane 11 formant ressort, tels que les renforts. 16. 25 compliance peut aussi être reportée plus loin dans la chaîne d'actionnement, après le fluide intermédiaire, intégrée au niveau de l'actionneur électro-hydraulique.

Un autre exemple de manchon aortique est décrit à la figure 3 dans une vue en perspective. Contrairement au manchon aortique décrit précédemment, ce manchon est rapporté sur la partie descendante de l'aorte 9 et non pas inséré dans l'aorte. Le manchon 20, représenté à la figure 3, comprend un élément 21 en matériau souple prenant ici la forme d'un fourreau

lorsqu'il est enroulé autour de l'aorte 10. Cet élément souple constitue un volume fermé dans lequel aboutit le conduit souple 5. Une coque rigide 22 enserre l'élément 21 pour que cet élément puisse agir directement sur l'aorte en fonction de la pression qu'exerce le fluide intermédiaire. Comme le montre la figure 4, la coque rigide 22 possède une articulation 23 et un fermoir 24 facilitant sa mise en place.

Un autre exemple de manchon 10 rapporté est représenté en vue partiellement en coupe sur la figure 5. Dans cet exemple, l'élément 31 en matériau souple prend la forme d'un serpentin lorsqu'il est enroulé autour de l'aorte 10. Cet élément souple constitue, un volume fermé dans lequel aboutit conduit souple 5. Une coque rigide 32, analogue à la 15 coque 22 des figures 3 et 4, enserre l'élément 31 de manière que l'action du fluide intermédiaire s'exerce directement sur l'aorte.

Les manchons aortiques inséré et rapporté 20 ne présentent pas les mêmes propriétés et utilisation se fera en fonction des conditions d'implantation. Par rapport à un manchon inséré, manchon rapporté permet d'obtenir hémo-compatibilité excellente puisqu'il n'y a pas de 25 matériau synthétique en contact avec le sang. implantation est simplifiée puisqu'il est possible de l'installer, et éventuellement de le retirer sans léser l'aorte et les artères intercostales. De plus, aucune interruption du flux sanguin n'est nécessaire durant l'intervention. Par contre, on ne fait que remonter la 30 pression diastolique sans pour autant augmenter compliance artérielle globale, ce qui est favorable au niveau synergique pour le coeur et limite l'augmentation du débit sanguin. Enfin, il y a, à la

longue, un risque de léser par compression la paroi aortique.

Le fluide intermédiaire assure la compression vers l'intérieur du manchon aortique et donc du circuit artériel.

Le volume du circuit artériel est diminué en phase diastolique, et augmenté en phase systolique, assurant ainsi l'augmentation du débit sanguin effet physiologique sur le coeur. Ce fluide 10 intermédiaire est préférentiellement du sérum physiologique, ou un substitut du sang, tel que DEXTRAN®, de manière à ne pas créer de problème en cas de fuite de ce fluide à l'intérieur du corps ou dans le circuit artériel.

L'actionneur électro-hydraulique 2 permet de réaliser l'apport d'énergie hydraulique au manchon aortique grâce au fluide intermédiaire. L'actionneur peut avantageusement utiliser des ferrofluides comme élément moteur. Cet actionneur peut aussi être constitué par une pompe centrifuge.

La chambre de compliance 3 (ou chambre de compensation), représentée sur la figure 1, permet de compenser les variations de volume du fluide intermédiaire. Elle est remplie d'un gaz tel que de l'air, de l'argon, de l'azote, du SF6. Les variations 25 de volume du fluide intermédiaire dans l'actionneur entraînent, suivant le type d'actionneur électro-hydraulique, des variations du volume de gaz présent dans l'actionneur. La chambre de compliance permet d'accommoder ces variations de volume dans le 30 corps humain, sans communication physique l'extérieur.

Il peut être prévu un accès à l'intérieur de la chambre de compliance grâce à un tube souple 8, par exemple en polymère de silicone, reliant

10

l'intérieur de la chambre de compliance à une chambre 9, par exemple en polyoxyméthylène, pourvue d'un septum par exemple en silicone. On peut alors charger ou recharger en gaz, par voie transcutanée, la chambre de compliance.

Le . dispositif d'assistance cardiaque ventriculaire selon l'invention est complètement autonome grâce à une ou plusieurs batteries rechargeables implantées dans le corps. La ou batteries sont logées dans le circuit électrique 4.

Une autonomie de 24 heures minimum peut être assurée grâce, d'une part au principe même dispositif en contre-pulsation qui fonctionne synergie avec le coeur, et nécessite peu d'énergie, d'autre part grâce à un bon rendement de l'actionneur 15 couplé à des batteries performantes. Typiquement, une énergie électrique de l'ordre de 2 W est nécessaire au fonctionnement du dispositif. Compte tenu rendements, une autonomie de 24 heures nécessite des batteries au Cd-Ni d'un poids d'environ 1,2 kg (énergie massique 40 Wh/kg) ou des batteries lithium-ion d'un poids d'environ 0,8 kg (énergie massique 60 Wh/kg), ce qui est compatible avec une implantation complète.

Le dispositif peut aussi être pourvu d'un système de télé-alimentation et de télécontrôle. 25 système assure la recharge des batteries implantées préférentiellement durant les périodes de repos patient, ainsi que la transmission de données et télécontrôle du dispositif. Les techniques 30 transmission de données par induction ou par infrarouge sont bien connues et ont été expérimentées avec succès chez l'animal. Un tel système est représenté sur la figure 1. Il comprend un organe 40 situé juste sous la peau du patient et assurant deux rôles vis-à-vis d'un. 35 appareil externe 41. L'organe 40, relié au circuit

électrique 4 par le cordon électrique 42, peut être récepteur d'une onde électromagnétique permettant de charger par induction les batteries logées dans le circuit électrique 4. Il peut être émetteur de données fournies sous forme de signaux électriques par un dispositif logé dans le circuit électrique 4 et transmettant des informations sur l'état du dispositif d'assistance cardiaque et sur l'état du patient.

La présente invention procure les avantages 10 suivants. L'utilisation d'un fluide intermédiaire permet de découpler 1e manchon aortique l'actionneur, donc de mieux répartir les volumes implantés, et de ne pas trop solliciter mécaniquement l'aorte. Elle procure une grande fiabilité du fait qu'il n'y a pas de pièces mécaniques mobiles, donc pas 15 de risque d'usure, de grippages, etc. L'implantation ne nécessite pas de circulation extra-corporelle totale, d'incision dans l'apex, opérations toujours invalidantes pour le coeur natif. Le dispositif est 20 intrinsèquement sûr, une panne du dispositif n'entraînant aucun risque de coagulation du sang et de thrombo-embolisme, ni aucune diminution du i sanguin assurée par le coeur naturel. Une éventuelle déchirure du manchon aortique fatigue par n'entraînerait pas de conséquences fâcheuses, 25 fluide extérieur au manchon est hémocompatible assure une double barrière d'étanchéité. De plus, compensation de pression se faisant en interne, les risques de complications infectieuses dues au passage d'un tuyau percutané sont supprimées. La conception du 30 dispositif en contre-pulsation permet un fonctionnement en synergie avec le coeur, ce qui n'est pas le cas de la plupart des dispositifs d'assistance actuels qui fonctionnent en dérivation complète du ventricule. On peut espérer plus de cas de récupération des fonctions 35

10

du coeur natif, parce que le coeur travaille dans de meilleures conditions, et que le dispositif favorise la perfusion coronaire. Dans ces conditions, le dispositif est conçu pour pouvoir être enlevé aisément. Les bruits fonctionnement sont plus faibles que pour dispositifs actuels, amenant une qualité de meilleure pour le patient et son entourage. Le patient bénéficie d'une meilleure qualité de vie du fait d'une implantation complète du dispositif d'assistance cardiaque, en particulier il n'a plus besoin de sacoches ou de ceinture externe pour y loger les batteries d'alimentation.

20

REVENDICATIONS

- 1. Dispositif d'assistance cardiaque ventriculaire à contre-pulsation, comprenant les éléments implantés suivants :
- des moyens aptes à réaliser une action de contre-pulsation sur le sang circulant dans l'aorte sous l'effet d'un fluide intermédiaire,
 - un actionneur électro-hydraulique (2) exerçant son action sur le fluide intermédiaire pour réaliser ladite action de contre-pulsation,
 - des moyens d'alimentation électrique pour alimenter l'actionneur électro-hydraulique (2),

caractérisé en ce que :

- les moyens aptes à réaliser une action de 15 contre-pulsation sont constitués d'un manchon aortique (1, 20, 30) placé sur l'aorte descendante (10) et dans lequel pénètre le fluide intermédiaire,
 - le dispositif comprend en outre une chambre de compliance (3) permettant d'accommoder la variation de volume du fluide intermédiaire au cours du fonctionnement de l'actionneur (2).
 - 2. Dispositif selon la revendication 1, caractérisé en ce que le manchon aortique (1) est inséré sur l'aorte descendante (10).
- 25 3. Dispositif selon la revendication caractérisé en ce que le manchon aortique (1) comprend une membrane tubulaire (11) en matériau souple, se substituant à un tronçon de l'aorte, la membrane étant enfermée à l'intérieur d'une coque rigide (14) scellée 30 sur l'aorte de manière à définir une chambre annulaire (15)autour de la membrane (11),le intermédiaire pénétrant dans la chambre annulaire par un orifice prévu dans la coque (14).

25

30

- 4. Dispositif selon la revendication 1, caractérisé en ce que le manchon aortique (20,30) est rapporté sur l'aorte descendante (10).
- 5. Dispositif selon la revendication caractérisé en ce que le manchon aortique 5 (20,30)comprend un élément en matériau souple (21, 31)enserrant l'aorte et constituant un volume fermé avec un orifice pour l'introduction du fluide intermédiaire, manchon comprenant également une coque (22,32) pour contenir ledit élément en matériau souple. 10
 - 6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'actionneur (2) est une pompe centrifuge.
- 7. Dispositif selon l'une quelconque des 15 revendications 1 à 5, caractérisé en ce que l'actionneur (2) utilise un ferrofluide comme élément moteur.
 - 8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens d'alimentation électrique comprennent au moins une batterie rechargeable.
 - 9. Dispositif selon la revendication 8, caractérisé en ce qu'il comprend en outre des moyens implantés (40) permettant la réception d'un signal électromagnétique de recharge de ladite batterie.
 - 10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend en outre des moyens implantés (40) permettant une transmission de données par induction ou par rayonnement infrarouge avec un appareil externe (41).
 - 11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la chambre de compliance comporte des moyens (8,9) permettant d'introduire, alors que la chambre de compliance est déjà implantée, du gaz pour la charger ou la recharger.

- 12. Dispositif selon la revendication 3, caractérisé en ce que ladite membrane (11) est pourvue de renforts flexibles (16).
- 13. Dispositif selon la revendication 5, 5 caractérisé en ce que l'élément en matériau souple (31) du manchon aortique est susceptible d'être enroulé autour de l'aorte (10) à la façon d'un serpentin.
 - 14. Dispositif selon la revendication 5, caractérisé en ce que l'élément en matériau souple (21) du manchon aortique est susceptible d'être enroulé autour de l'aorte (10) à la façon d'un fourreau.
- 15. Dispositif selon l'une quelconque des revendications 5, 13 et 14, caractérisé en ce que la coque rigide (22,32) comprend une articulation (23) et un moyen de fermeture (24) permettant de la disposer autour de l'élément en matériau souple (21,31) pour le contenir.

FIG. 1

FIG. 4

INTERNATIONAL SEARCH REPORT

Interr nal Application No PCT/FR 98/01631

CLASSIFICATION OF SUBJECT MATTER
PC 6 A61M1/10 A61M A61M1/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 **A61M** Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y US 3 911 898 A (LEACHMAN, JR.) 1,4,5,8, 14 October 1975 11,14 see column 2, line 57 - column 6, line 11 see figure 1 . Υ . US 4 979 936 A (STEPHENSON ET AL.) 1,4,5,8, 25 December 1990 11,14 cited in the application see column 6, line 15 - column 9, line 10 see figures 1-5 Α WO 93 05827 A (MEDTRONIC, INC.) 1-3 1 April 1993 see page 10, line 24 - page 12, line 27 see page 17, line 16 - line 21 see figure 1 χl Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance. cited to understand the principle or theory underlying the "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 6 November 1998 13/11/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Schönleben, J

INTERNATIONAL SEARCH REPORT

Inter Inal Application No
PCT/FR 98/01631

Category '	Citation of document, with indication, wh	nere appropriate, of the relevant passages	Relevant to claim No.
Α	<u> </u>	FELD) 31 January 1991	6
A	US 4 650 485 A (DEL see abstract	LLA SALA) 17 March 1987	7
	ATOMIQUE) 27 Septem	MMISSARIAT A L'ENERGIE ber 1996 - page 8, line 16	8-10
	·		-
			Teta
			-
	+		
			**
		·	

INTERNATIONAL SEARCH REPORT

....ormation on patent family members

Interr. 1al Application No PCT/FR 98/01631

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication date
US 3911898	Α	14-10-1975	US 3911897 A	14-10-1975
US 4979936	Α	25-12-1990	NONE	
WO 9305827	A	01-04-1993	US 5222980 A AU 672368 B AU 2576492 A CA 2119135 A DE 69207913 D DE 69207913 T EP 0605544 A JP 6510686 T	29-06-1993 03-10-1996 27-04-1993 01-04-1993 07-03-1996 22-08-1996 13-07-1994 01-12-1994
DE 4020120		31-01-1991	DE 59107192 D EP 0464973 A JP 5076592 A US 5346458 A	15-02-1996 08-01-1992 30-03-1993 13-09-1994
US 4650485	Α	17-03-1987	NONE	
FR 2731910	Α	27-09-1996	NONE	

RAPPORT DE RECHERCHE INTERNATIONALE

Dema Internationale No

PCT/FR 98/01631 A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 A61M1/10 A61M1/ A61M1/12 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 A61M Documentation consultée autre que la documentationminimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche C. DOCUMENTS CONSIDERES COMME PERTINENTS Catégorie 1 Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no, des revendications visées Y US 3 911 898 A (LEACHMAN, JR.) 1,4,5,8, 14 octobre 1975 11,14 voir colonne 2, ligne 57 - colonne 6, ligne 11 voir figure 1 Υ US 4 979 936 A (STEPHENSON ET AL.) 1,4,5,8, 25 décembre 1990 11,14 cité dans la demande voir colonne 6, ligne 15 - colonne 9, ligne 10 voir figures 1-5 WO 93 05827 A (MEDTRONIC, INC.) Α 1 - 31 avril 1993 voir page 10, ligne 24 - page 12, ligne 27 voir page 17, ligne 16 - ligne 21 voir figure 1 X Voir la suite du cadre C pour la finde la liste des documents Les documents de families de brevets sont indiqués en annexe Catégories spéciales de documents cités: "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique perlinent, mais cité pour comprendre le principe "A" document définissant l'état général de latechnique, non considéré comme particulièrement pertinent ou la théorie constituant la base de l'invention document antérieur, mais publié à la date dedépôt international ou après cette date "X" document particulièrement pertinent; l'invention revendiquée ne peut document pouvant jeter un doute sur une revendcation de prionté ou cité pour déterminer la date depublication d'une être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lersque le document est associé à un ou plusieurs autres autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se rélérant à une divulgation orale, à un usage, à une exposition ou tous autres moyens documents de même nature, cette combinaison étant évidente pour une personne du métier document publié avant la date de dépôtinternational, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même familiede brevets Date à laquelle la recherche internationale a étéeffectivement achevée Date d'expédition du présent rapport de recherche internationale 6 novembre 1998 13/11/1998 Nom et adresse postale de l'administrationchargée de la recherche internationale Fonctionnaire autorisé Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Fax: (+31-70) 340-3016

Schönleben, J

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 98/01631

C (enite) C	OCUMENTS CONSIDERES COMME PERTINENTS		PCT/FR 98	3/01631	
Catégorie	identification des documents cités, avec.le cas échéar	no. des revendica	ions visées		
A	DE 40 20 120 A (AFFELD) 31 j voir colonne 1, ligne 3 - li voir figure 1	anvier 1991 gne 43		6	
١	US 4 650 485 A (DELLA SALA) voir abrégé	17 mars 1987		7	
	FR 2 731 910 A (COMMISSARIAT ATOMIQUE) 27 septembre 1996 voir page 6, ligne 35 - page voir figure 1			8-10	
• •	r 		-		
	·		-		·
				•	
	•		-		
}			•		
ľ					W.C.
ļ					-
ŀ					
		·			
		•			
	•		÷.	• ≒ ,	
		•			
			,		
.					
İ		·			

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs au., inembres de familles de brevets

Dema Internationale No PCT/FR 98/01631

Document brevet c au rapport de recher		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 3911898	А	14-10-1975	US 3911897 A	14-10-1975
US 4979936	Α	25-12-1990	AUCUN	
WO 9305827	A	01-04-1993	US 5222980 A AU 672368 B AU 2576492 A CA 2119135 A DE 69207913 D DE 69207913 T EP 0605544 A JP 6510686 T	29-06-1993 03-10-1996 27-04-1993 01-04-1993 07-03-1996 22-08-1996 13-07-1994 01-12-1994
DE 4020120	Α .	31-01-1991	DE 59107192 D EP 0464973 A JP 5076592 A US 5346458 A	15-02-1996 08-01-1992 30-03-1993 13-09-1994
US 4650485	Α	17-03-1987	AUCUN	
FR 2731910	Α	27-09-1996	AUCUN	