Séquence 01 - TP01 - Îlot 03

Lycée Dorian Renaud Costadoat Françoise Puig

Mesures physiques

Référence S01 - TP01 - I03

Compétences

Description Déterminer des caractéristiques par la mesure physique

Système Ressort

Problématique du TP:

Déterminer les caractéristiques d'un ressort.

MODELISER |

Modèle du ressort élastique

Dans un premier temps, on considèrera que le ressort utilisé dans cette expérience peut être modélisé comme un ressort élastique pur.

Question 1 : Déterminer la raideur pure d'un ressort qui nécessite un effort de traction F pour s'allonger d'une longueur ΔL . On rappelle que la raideur d'un ressort s'exprime en $N.m^{-1}$.

Une masse m_1 est suspendue à un ressort de raideur K, sa longueur mesurée est L_1 . Une masse m_2 est suspendue à ce ressort (en remplacement de la précédente), sa longueur est maintenant L_2 .

Question 2 : Déterminer la raideur de ce ressort en fonction de L_1 , L_2 , m_1 et m_2 . Prendre toutes les hypothèses nécessaire à la mise en équation du problème.

Une masse m_3 est suspendue à ce ressort (en remplacement de la précédente), sa longueur est maintenant L_3 .

EXPERIMENTER

Vérification de la raideur pure d'un ressort

Question 3: Suspendre une masse m_1 à un ressort et mesurer sa longueur.

Question 4: Suspendre une masse m_2 à un ressort et mesurer sa longueur.

Question 5 : Suspendre une masse m_3 à un ressort et mesurer sa longueur.

ANALYSER

Déterminer le comportement élastique d'un ressort

Question 6 : A l'aide des résultats expérimentaux et des résultats de la question 2, déterminer la raideur K du ressort.

- MODELISER -

Modèle du ressort élastique/amortisseur

Le modèle du ressort va maintenant évoluer afin de prendre en compte le coefficient d'amortissement du ressort. Pour cela, un fichier python modele_ressort.py doit être ouvert avec le logiciel Spyder. Il permet de tracer le comportement d'un ressort amorti en fonction des paramètres suivants :

- la durée de la mesure (s),
- la raideur du ressort $(N.m^{-1})$,
- la masse suspendue (kg),
- le coefficient d'amortissement $(N.m^{-1}.s)$.

Question 7 : Définir l'influence de chacun de ces paramètres sur la courbe tracée.

EXPERIMENTER

Mesure de la trajectoire amortie du ressort

Question 8 : Filmer le mouvement du ressort après avoir lâché la masse (le ressort doit être en position de repos au départ).

Question 9 : Utiliser un logiciel de traitement pour déterminer la position de la masse en fonction du temps.

ANALYSER -

Identifier le coefficient d'amortissement du ressort

Question 10: A partir des relevés expérimentaux et du programme python modele_ressort.py, déterminer le coeffcient d'amortissement du ressort.

1 Correction

Question 2: $K=\frac{(m_1-m_2).g}{L_1-L_2}$, l'accélération de pesanteur est choisie égale à $9.81m.s^{-2}$.

