Homework 6

Due: Friday Oct. 22, by 11:59pm, via Gradescope

- Failure to submit homework correctly will result in a zero on the homework.
- Homework must be in LaTeX. Submit the pdf file to Gradescope.
- Problems assigned from the textbook come from the 5th edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
 - 1. (12 points) Section 4.3 # 32, 33, 36

Solution: # 32. **Proof** Let c be any real root of a polynomial with rational coefficients. That is, P(c) = 0, where

$$P(x) = \sum_{k=0}^{n} a_k x^k$$

and $a_k \in \mathbb{Q}$. We know that $a_k = \frac{r_k}{s_k}$ where r_k and s_k are integers and $s_k \neq 0$ for $k = 0, 1, 2, \ldots n$. We multiply the equation P(c) = 0 by $s_0 s_2 \cdots s_n$. We obtain

$$\sum_{k=0}^{n} a_k s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_n c^k = 0$$

Notice that Q(c) = 0 where Q(x) is the polynomial

$$\sum_{k=0}^{n} a_k s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_n x^k$$

The real numbers $a_k s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_n$ are integers for $k = 0, 1, 2, \dots n$. Therefore c is the root of a polynomial with integer coefficients \square

#33(a)
$$(x-r)(x-s) = x^2 + (r+s)x + rs$$
.

If both r and s are odd, then r + s is even (property 2) and rs is odd (property 3).

If both r and s are even, then r + s is even (property 2) and rs is even (property 1).

If one is even and the other is odd, then r + s is odd (property 5) and rs is even (property 4).

- (b) Since -1253 is odd, it follows that r and s must have different parity. However, if r and s have different parity, then rs must be even. Hence rs cannot equal 255.
- # 36. Cannot start a universal proof with explicit rationals r = 1/4 and s = 1/2.

2. (12 points) Section 4.4 # 28-30, 37

#28 This is false.

Let a = 25, b = 5 and c = 5. Then a|bc however a|b and a|c are both false.

29. This is true.

Proof: Let a and b be any integers that satisfy a|b. By the definition of divisibility b=ka for some integer k. Therefore $b^2=(ka)^2=k^2a^2$. Set $t=k^2$. Then $b^2=ta^2$. Since t is an integer, it follows that $a^2|b^2$

#30. This is false. Let a=-25 and n=5. Then $a|n^2$ and $a \le n$. However a|n is false.

#37. No solution provided.

- 3. (6 points) Section 4.4 # 45, 48. We should all know the decimal representation of a non-negative integer.
 - # 45. **Proof:** Let n be any integer whose decimal representation ends in 5. Then

$$n = \sum_{l=0}^{k} d_l 10^l$$

where the decimal digits d_l are integers 0-9 and $d_0 = 5$. Notice that $10^l = 2^l 5^l$ for l = 1, 2, ... k. Therefore

$$n = 5 + \sum_{l=1}^{k} d_l 10^l = 5 \left(1 + \sum_{l=1}^{k} d_l 2^l 5^{l-1} \right)$$

Since

$$t = 1 + \sum_{l=1}^{k} d_l 2^l 5^{l-1}$$

is an integer, we have n = 5t. It follows that 5 divides $n \square$

#48. Let n be any integer where the sum of its digits are divisible by 3. Then

$$n = \sum_{l=0}^{k} d_l 10^l$$

where 3 divides $d_0 + d_1 + \cdots + d_k$. Note that 3 divides $10^l - 1$ for $l = 1, 2, \dots k$. Therefore

$$n = \sum_{l=0}^{k} d_l 10^l = d_0 + \sum_{l=1}^{k} d_l (10^l - 1 + 1)$$
$$= d_0 + \sum_{l=1}^{k} d_l (10^l - 1) + \sum_{l=1}^{k} d_l$$
$$= \sum_{l=1}^{k} d_l (10^l - 1) + \sum_{l=0}^{k} d_l$$

Set

$$t = \sum_{l=1}^{k} d_l (10^l - 1)$$
$$s = \sum_{l=0}^{k} d_l$$

Notice that 3 divides t since 3 divides $10^l - 1$ for l = 1, 2, ...k. 3 also divides s, since s is the sum of the digits in n. Therefore 3 divides t + s, that is 3 divides $n \square$

4. (9 points) Section 4.5 # 12, 17, 21

#12. Not sure if I am prove this the best way. But here ya go!!

Proof: Let N be the number of days between DayT and DayN. By the Quotient-Remainder Theorem, we have

$$N = 7q + r \tag{1}$$

where q and r are unique integers and $0 \le r < 7$.

Case 1: r = 0, therefore DayT = DayN. Add DayT to (1). Then DayT + N = 7q + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

Case 2: r = 1, therefore DayN = DayT + 1 . Add DayT to (1). Then DayT + N = 7q + 1 + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

Case 3: r=2, therefore DayN = DayT + 2 . Add DayT to (1). Then DayT + N = 7q+2+DayT=7q+DayN. Therefore (DayT + N) mod 7=DayN.

Case 4: r = 3, therefore DayN = DayT + 3 . Add DayT to (1). Then DayT + N = 7q + 3 + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

Case 5: r = 4, therefore DayN = DayT + 4 . Add DayT to (1). Then DayT + N = 7q + 4 + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

Case 6: r = 1, therefore DayN = DayT + 5 . Add DayT to (1). Then DayT + N = 7q + 5 + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

Case 7: r = 1, therefore DayN = DayT + 6 . Add DayT to (1). Then DayT + N = 7q + 6 + DayT = 7q + DayN. Therefore (DayT + N) mod 7 = DayN.

17. **Proof:** Let n be any integer.

Case 1: Assume that n is an even integer. Then n=2k for some integer k. Therefore $n^2-n+3=4k^2-2k+3=4k^2-2k+2+1=2(2k^2-k+1)+1$. Set $t=(2k^2-k+1)$. Since t is an integer and $n^2-n+3=2t+1$, it follows n^2-n+3 is odd.

Case 2: Assume that n is an even integer. Then n = 2m + 1 for some integer m. Therefore $n^2 - n + 3 = 4m^2 + 4m + 1 - 2m - 1 + 3 = 4m^2 + 2m + 3 = 4m^2 + 2m + 2 + 1 = 2(2m^2 + m + 1) + 1$. Set $t = (2m^2 + m + 1)$. Since t is an integer and $n^2 - n + 3 = 2t + 1$, it follows $n^2 - n + 3$ is odd.

21. **Proof:** We know that b = 12q + 5 for some integer q. Therefore, $8b = 12 \cdot 8 \cdot q + 40 = 12 \cdot 8 \cdot q + 36 + 4 = 12(8q + 3) + 4$. Set t = 8q + 3. Then 8b = 12t + 4 and by the uniqueness in the Quotient-Remainder Theorem, it follows that $8b \mod 12 = 4$.

- 5. (9 points) Section 4.5 # 25, 31(a), 33
 - # 25. **Proof:** Let a and b be any integers that satisfy $a \mod 7 = 5$ and $b \mod 7 = 6$. Then a = 7q + 5 and b = 7k + 6 where q and k are integers. We multiple ab and obtain

$$ab = 49qk + 42q + 35k + 30$$
$$= 49qk + 42q + 35k + 28 + 2$$
$$= 7(7qk + 6q + 5k + 4) + 2$$

Set t = 7qk + 6q + 5k + 4. Then ab = 7t + 2 and by the uniqueness in the Quotient-Remainder Theorem it follows that $ab \mod 7 = 2 \square$.

- #31(a). **Proof:** Let m and n be any integers.
- Case 1: m and n are both odd. Then by property 2 it follows that m + n and m n are even.
- Case 2: m and n are both even. Then by property 1 it follows that m+n and m-n are both even.
- Case 3: m and n have different parity. Then properties 5 and 6 it follows that m+n and m-n are odd.

Therefore m+n and m-n are either both even or both odd \square

- #33. **Proof**: Let a, b and c be any integers such that a b is even and b c is even. Since a c = (a b) + (b c) it follows that a c is the sum of two even integers. Then by property 1 it follows that a c is even \square
- 6. (9 points) Section 4.5 # 38, 42, 47.
 - # 38. **Proof:** Let m be any integer. Then by the Quotient-Remainder Theorem we have m = 5q + r where $0 \le r \le 5...$
 - Case 1: Assume that r = 0. Then $m^2 = 25q^2 = 5t$ where t = 5q.
 - Case 2: Assume that r = 1. Then $m^2 = 25q^2 + 10q + 1 = 5(5q^2 + 2q) + 1 = 5t + 1$ where $t = 5q^2 + 2q$.
 - Case 3: Assume that r = 2. Then $m^2 = 25q^2 + 20q + 4 = 5(5q^2 + 4q) + 4 = 5t + 1$ where $t = 5q^2 + 4q$.
 - Case 4: Assume that r = 3. Then $m^2 = 25q^2 + 30q + 9 = 25q^2 + 30q + 5 + 4 = 5(5q^2 + 6q + 1) + 4 = 5t + 1$ where $t = 5q^2 + 6q + 1$.
 - Case 5: Assume that r = 3. Then $m^2 = 25q^2 + 40q + 16 = 25q^2 + 40q + 15 + 1 = 5(5q^2 + 8q + 3) + 1 = 5t + 1$ where $t = 5q^2 + 8q + 3$.

Notice that in all of the cases above, $m^2 = 5t + r$ for some integer t and r is 0, 1, or 4

42. This is an if and only if. This will require us to prove the following two if-then statements

- 1. For all real numbers r and $c \ge 0$, if $-c \le r \le c$, then $|r| \le c$.
- 2. For all real numbers r and $c \ge 0$, if $|r| \le c$, then $-c \le r \le c$.

Proof of 1.: Let r be any real number and c be any non-negative number which satisfy $-c \le r \le c$.

Case 1: Assume that r is non-negative. Then r = |r|. Therefore $-c \le |r| \le c$. Therefore $|r| \le c$.

Case 2: Assume that r < 0. Then -r = |r|. Since $-c \le r \le c$ we multiply by -1 and obtain $-c \le -r \le c$. Therefore $-c \le |r| \le c$, that is $|r| \le c \square$

Proof of 2: Let r be any real number and c be any non-negative number which satisfy $|r| \leq c$. By Lemma 4.5.4. we know that $-|r| \leq r \leq |r|$. Therefore $-|r| \leq r \leq c$. Notice that $|r| \leq c$ implies $-c \leq -|r|$. Therefore $-c \leq r \leq c$

47. Set $r = m \mod d$ and $s = n \mod d$.

Theorem. d-r-s

Proof: By the Quotient Remainder Theorem we know that m = dq + r and n = dq' + s. Therefore m - n = d(q = q') + r - s. We also know that m - n = ds for some integer s. Therefore $ds = d(q - q') + r - s \rightarrow d(s - q + q') = r - s$. Set t = s - q - q', then t is an integer (since integers are closed under addition). Therefore d divides r-s \square