1. Metodologia

A metodologia utilizada para o desenvolvimento do programa pra visualização dos modelos de vegetação pode ser dividida em duas partes: processo de modelagem das árvores e o processo de elaboração do programa. A partir de agora quando falarmos árvores, estamos nos referindo a árvores, arbusto ou gramínea(tipos de vegetação que estão presentes no programa). Para facilitar a visualização do resultado foi definido que tal seria uma imagem vetorial, e não simplesmente escalar. Tal decisão se deu devido a necessidade da imagem poder aumentar a medida que se queira, aprimorando a compreensão da análise do resultado. A forma vetorial escolhida foi SVG¹, pois esta segue os padrões XML² e havia um grande conjunto de suporte para tal formato. Tal formato pode ser lido por padrão por diversos navegadores de internet. A linguagem de programação utilizada foi JAVA³ e para podermos manipular o formato SVG foi utilizado o plugin Batik⁴ instalado na plataforma Eclipse⁵. Poderemos ver com um pouco mais de clareza, a partir dos subitens seguintes, as informações repassadas.

- 1- SVG Scalable Vector Graphics é uma recomendação W3C e define uma gramática XML para ricos gráficos 2D.
- 2- XML- Linguagem de marcação que está se tornando um padrão para fim em diversas áreas.
- 3- JAVA- Linguagem de programação mais utilizada no mundo e ainda em grande expansão.
- 4- Batik ferramenta baseada em Java para o uso de SVG, manipulação, visualização e geração.
- 5- Eclipse- plataforma de desenvolvimento de software.
- 6- Photoshop- ferramenta de edição avançada de imagem.
- 7- Potrace- ferramenta para conversão de arquivos bmp em arquivos do tipo eps, svg, potscript, pdf.
- 8- Inkscape- ferramenta de edição de imagens em forma de vetores.

1.1. Processo de modelagem

O processo de modelagem ocorreu exatamente em dois passos: o primeiro seria definir a figura no qual um dado modelo iria ser semelhante e transformá-la em um desenho, em geral os modelos repassados eram fotos encontradas em livros da área; e o segundo foi transformar tais desenhos no formato desejado, ou seja, para o nosso caso, SVG. O passo de definir quais as figuras a serem utilizadas foi de responsabilidade de Ana Claudia Malhado, enquanto que o restante da modelagem foi encaminhado por Rodolfo da Costa. Visando um modelo final visualmente agradável e havendo muitas tecnologias que poderiam ser exploradas, teve-se que fazer uma perfeita combinação entre a forma de transformação para desenho e a transformação para SVG. Para a transformação da foto em desenho foi utilizado a ferramenta Photoshop⁶ na versão CS 3 desenvolvido pela Adobe. E depois de muitos testes a melhor ferramenta para a vetorização do desenho foi o Potrace⁷ na versão 1.8 desenvolvida por Peter Selinger. A ferramenta da Adobe foi a usada devido ao seu poder na edição de imagens. E foi escolhido a ferramenta de Sellinger por dois motivos, um por ser um projeto GNU(General Public License) e outra pela qualidade final do desenho, após vetorização os modelos pareciam

estar estilizados. Na Figura 1.1.1 pode-se ver com clareza como ficaria a estilização de um modelo após sua vetorização, o modelo a seguir serviu de base para o modelo pf1.

O Potrace é um bom, porém limitado programa, o resultado de suas transformações é um vetor em preto e branco e quando a imagem está muito carregada de informação este não consegue detalhar no resultado final. Por isso respondendo a idéia da perfeita combinação, com o Photoshop retiramos da foto apenas o contorno da arvore e este era salvo em formato bmp, formato que o Potrace lia. O Potrace como já dito fez o papel de vetorizar um desenho escalar. O processo era feito através do console do Windows com linhas de comando especificas do programa. Após o processo de vetorização entra a parte de colorização do modelo. Tal colorização foi feita através da ferramenta chamada Inkscape⁸ na versão 0.46 um projeto GNU. Tal ferramenta tem o poder completo que precisávamos para poder criar o modelo SVG, uma única ferramenta podendo fazer todo o processo. Tal procedimento não foi escolhido devido a facilidade de conversão da ferramenta Potrace e a forma estilizada na qual a transformação fica. O programa Inkscape também foi utilizado para retoques nos modelos, pequenas edições e nomeação de cada nó para facilitar o uso junto ao Java. Como cada modelo é um XML, tornou-se necessário esta nomeação devido a necessidade de se manipular partes especificas do modelo, por exemplo se quiséssemos manipular apenas o tronco. Isto tornou o programa menos expansível, ou seja para conter novos modelos este teria que seguir um conjunto de padrões pré-estabelecidos tanto na parte de modelagem, quanto na parte de edição de código.

1.1.1.0s Modelos

Como dito anterior, o processo de geração dos modelos se resumi em: ter uma figura do futuro modelo em forma de foto ou algo parecido, extrair desta, tornando-o um desenho contornado apenas, vetorizar esse desenho e por fim preencher com cor o modelo. Esse ciclo foi o padrão para a maioria dos modelos, salvo alguns onde tem outro modelo como base e pequenas alterações para diferenciação. Neste tópico vamos demonstrar para cada modelo como o mesmo chegou em sua forma final, vetor, sendo a forma colorida será apresentada no fim para todos os modelos.

a) Modelos pft1, pft2 e pft5

Os modelos seguem o mesmo padrão de desenho se diferenciando por cor e tamanhos padrões, tiveram algumas alterações para melhor serem trabalhados. Tiveram como base a imagem(foto) vista em Figura 1.1.1.1

Figura 1.1.1.1

A edição de contorno pode ser vista Figura 1.1.1.2

Figura 1.1.1.2

b) Modelos pft3 e pft 8

Os modelos seguem o mesmo padrão, se diferenciam apenas por um aumento de galhos e espaçamento dos mesmos, alterando também a cor para evidenciar diferenças. Tiveram como base a imagem (foto) vista na Figura 1.1.1.3

Figura 1.1.1.3

A edição de contorno pode ser vista em Figura 1.1.1.4 para o pft 3 e em Figura 1.1.1.5 para o pft 8

Figura 1.1.1.4

Figura 1.1.1.5

c) Modelo pft 4

O modelo segue a idéia da imagem(foto) vista em Figura 1.1.1.6, porém para melhor visualização teve alterações consideráveis sendo apenas uma representação da foto.

Figura 1.1.1.6

A edição de contorno e alterações relatadas pode ser vista em Figura 1.1.1.7

Figura 1.1.1.7

d) Modelos pft 6 e pft 7

Os modelos tem como base a imagem(foto) vista em Figura 1.1.1.8, com a adição de um tronco característico para os modelos, diferem entre si na cor.

Figura 1.1.1.8

A edição de contorno e alterações relatadas pode ser vista em Figura 1.1.1.9

Figura 1.1.1.9

e) Modelo pft 9

O modelo teve poucas alterações em relação a sua imagem base. A imagem(foto) base do modelo pode ser vista em Figura 1.1.1.10

Figura 1.1.1.10

A edição de contorno pode ser vista em Figura 1.1.1.11

Figura 1.1.1.11

f) Modelo pft 10

O modelo tem como base a imagem(foto) vista em Figura 1.1.1.12, com a adição de um tronco característico para o modelo e pequenas alterações.

Figura 1.1.1.12

A edição de contorno e as alterações relatadas pode ser vista em Figura 1.1.1.13

Figura 1.1.1.13

g) Modelo pft 11

O modelo teve poucas alterações em relação a sua imagem base. A imagem (foto) base do modelo pode ser vista em Figura 1.1.1.14, nesta figura tem um conjunto de gramineas. A figura teve que ser bem trabalhada devido a falta de qualidade da imagem passada.

Figura 1.1.1.14

A edição de contorno pode ser vista em Figura 1.1.1.15

Figura 1.1.1.15

h) Modelo pft 12

O modelo teve poucas alterações em relação a sua imagem base. A imagem(foto) base do modelo pode ser vista em Figura 1.1.1.16. A figura teve que ser bem trabalhada devido a falta de qualidade da imagem passada.

Figura 1.1.1.16

A edição de contorno pode ser vista em Figura 1.1.1.17

Figura 1.1.1.17

i) Todos os modelos em suas versões finais.

Após todos os passos já relatados acima cada modelo passou a ser um desenho representativo em forma de vetor e com coloração característica. A versão vetor de todos os modelos pode ser vista na Figura 1.1.1.18. Interessante notar nesta figura também é a relação de tamanho de cada modelo. Os modelos estão em ordem do tipo funcional, indo de pft1 ao pft 12.

Figura 1.1.1.18

1.2. Processo de elaboração do programa.

Como dito anteriormente a linguagem de programação utilizada para a edição do programa foi Java, editado na plataforma Eclipse somado ao plugin Batik. Falando um pouco sobre o Batik, ele tem o poder de gerar e manipular objetos svg. Mesmo sabendo que existe funções características que fazem a manipulação destes objetos, tipo escala e translação, foi criada nossas próprias funções, similares e particulares do programa. Pois só assim podia-se ter total controle de como e sobre quem usar tais funções.