Decisión en ambiente de Riesgo

<u>Árboles de Decisión</u>

Pedro L. Luque

Dept. Estadística e Inv.Operativa

Actualizado: 2020-12-09

1 / 18

Decisión en Ambiente de Riesgo

- Decisor
- Alternativas: $a_1,\ldots,a_i,\ldots,a_k$
- Estados de la Naturaleza $w_1, \dots, w_j, \dots, w_n$
 - Con probabilidades de ocurrencia:

$$P(w_1) = p_1, \dots, P(w_j) = p_j, \dots, P(w_n) = p_n$$

• Criterio de evaluación o valoración

Tabla de decisión en Ambiente de Riesgo

3 / 18

• Resultado esperado mejor alternativa (REMA o RER)

$$\overline{\left[REMA = RER = E(a_i^*)
ight]}
ightarrow Mejor\left\{E(a_i) \mid i = 1, \ldots, k
ight\}
ightarrow \overline{\left[a_i^*
ight]}$$

Resultado esperado con información perfecta (REIP)

$$REIP = \sum_{j=1}^n v_j^* p_j$$

• Valor esperado de la información perfecta (VEIP o REII)

$$\overline{VEIP = REIP - REMA}$$

Tabla de decisión en Decisión bajo Riesgo

Benef./Costos Pr	$ob. \mid p_1$	 p_{j}	 p_n	
Alt. / Estad	$os. \mid w_1$	 w_{j}	 w_n	
a_1	v_{11}	 v_{1j}	 v_{1n}	$oxed{egin{array}{l} oxed{eta} E(a_1) = \sum_{j=1}^n v_{1j} \cdot p_j \end{array}}$
<u>:</u>	:	 ÷	 :	$dash egin{aligned} dash \ dash \ E(a_i) &= \sum_{j=1}^n v_{ij} \cdot p_j \ ightarrow REMA = E(a_i^*) \end{aligned}$
a_i	v_{i1}	 v_{ij}	 v_{in}	$igg o E(a_i) = \sum_{j=1}^n v_{ij} \cdot p_j \ o REMA = E(a_i^*)$
:	:	 ÷	 :	$egin{array}{c} dots \ ightarrow E(a_k) = \sum_{j=1}^n v_{kj} \cdot p_j \end{array}$
a_k	v_{k1}	 v_{kj}	 v_{kn}	$igg o E(a_k) = \sum_{j=1}^n v_{kj} \cdot p_j$
	v_1^*	 v_j^*	 v_n^*	$ ightarrow REIP = \sum_{j=1}^n v_j^* \cdot p_j$
				$ ightarrow VEIP = REIP - REMA = \sum_{j=1}^n v_j^* \cdot p_j - E(a_i^*)$

- La última fila recoge las mejores valoraciones por columna
 - o El máximo en caso de ganancias o beneficios
 - o El mínimo en caso de costos o pérdidas
- En caso de costos, habría que tener cuidado al interpretar el **VEIP** ya que sería negativo.

5 / 18

ÁRBOLES DE DECISIÓN

- Nodo de decisión: se representa con un cuadrado
- Nodo de riesgo: se representa con un círculo
- Nodo de valoración: se representa con un triángulo

Representación decisión en ambiente de riesgo

Benef. / Costos Prob	$ p_1 $		pi		p_n		$\Delta = v11$
Alt. / Estados			•				$P(Ej)=pj \rightarrow \Delta = v1j$ $P(En)=pn$
·	+				-	$\rightarrow E(a_1) = \sum_{j=1}^n v_{1j} \cdot p_j$	$\Delta = v1n$
a_1	I oli	***	v _{lj}	""	olu		$P(E1)=p1$ $\Delta = vi1$
:	:		:		;	:	ND1 ai \rightarrow NRi $\stackrel{P(Ej)=pj}{P(En)=pn} \rightarrow \Delta = vij$
a_i	v_{i1}		v_{ij}		v_{in}	$\rightarrow E(a_i) = \sum_{j=1}^n v_{ij} \cdot p_j$	$\Delta = vin$
:	:		:		:		$P(E1)=p1 \qquad \Delta = vk1$ $NRk \qquad P(Ei)=pi$
, n						$\rightarrow E(a_k) = \sum_{j=1}^n v_{kj} \cdot p_j$	$P(E_{i})=p_{i}$ $P(E_{i})=p_{i}$ $\Delta = vki$
a_k	UK]		vkj	•••	Ukn	$\neg L(u_k) - \angle j=1$ $v_{kj} \cdot p_j$	$\Delta = vkn$

7 / 18

Resolución Árboles de Decisión básica (1/3)

Resolución Árboles de Decisión básica (2/3)

9/18

Resolución Árboles de Decisión básica (3/3)

Resolución de árboles de decisión

Resolución de derecha a izquierda

- Diferentes etapas en las que decidir
- Diferentes fuentes de estados de la naturaleza (¿en distintos niveles?)

- las alternativas son: A1, A2, A3, A4 y A5,
- y los estados de la naturaleza son: E1 y E2 (conjunto estados de riesgo 1); E3 y E4 (conjunto estados de riesgo 2); y E5 y E6 (conjunto estados de riesgo 3).

11 / 18

Funciones de Utilidad

Función de utilidad

Definición: Una función $u:R\to R$ es función de utilidad si es estrictamente creciente (o creciente) tal que:

$$a_i > a_j$$
 si y sólo si $E(u(a_i)) > E(u(a_j))$

$$a_i \sim a_j$$
 si y sólo si $E(u(a_i)) = E(u(a_j))$

Nota importante: se supone en todo este apartado que trabajamos con "beneficios o ganancias".

13 / 18

Clasificación de los decisores según la función de utilidad

- Un Decisor es **PRECAVIDO** (aversión al riesgo) si su función de utilidad u(x) es **cóncava**.
- Un Decisor es **NEUTRO** si su función de utilidad u(x) es **lineal**.
- Un Decisor es **ARRIESGADO** si su función de utilidad u(x) es **convexa**.

Equivalente cierto de una función de utilidad "u"

$$EC = t^* \text{ tal que } u(t^*) = E(u(Y))$$

Es la cantidad de dinero t^{st} que le reporta al decisor la misma utilidad que enfrentarse a la lotería.

15 / 18

FUNCIÓN AVERSIÓN LOCAL AL RIESGO

$$r(t) = rac{-u''(t)}{u'(t)}$$

Observando la **función de aversión local al riesgo**, o la relación entre **la utilidad esperada** comparada con el **equivalente cierto**, un *DECISOR* puede ser

- **PRECAVIDO**: r(t) > 0 equivale a E[Y] > EC.
- NEUTRO: r(t) = 0 equivale a E[Y] = EC.
- ARRIESGADO: r(t) < 0 equivale a E[Y] < EC.

PRIMA DE RIESGO

$$PR = \underbrace{E(Y)}_{VEM(l)} - EC$$

Observando la **prima de riesgo**, un *DECISOR* puede ser

• PRECAVIDO: PR > 0

• NEUTRO: PR = 0

• ARRIESGADO: PR < 0

17 / 18

Gracias!

Transparencias creadas con el paquete R xaringan.

La magia llega de la mano de remark.js, knitr, y R Markdown.