Application of Contour Integration: Laplace and Fourier Inversions ChE641, IIT Kanpur

haplace Tonansform 17 wed to solve ordinary differential egms. (ODE:) (1): defined s.t f(t) = 0 $t \le 0$ [Initial value $f(t) \neq 0$ t > 0] broblems" f(t) 丰0

t: time (red variable).

15. haplace variable - complex in general.

Triverse Laplace transform.

The rapid trong prime.

The first parameter of the first parameter

Im(s) Nline of integration in inverse transform.

Example 1: Inverse Laplace transform of
$$f(s) = \frac{1}{(s+1)(s+2)}$$

Two fixes at $(s-1)$ $(s-2)$ $(s-1)$ $(s+1)$ $f(s)$ est $(s+1)$ est

Example: 2 haplace Inverse of
$$F(s) = \frac{1}{s^2(s+1)^2}$$
Two beard order below at $s = 0$, $s = -1$

Res($s = 0$) = $\frac{1}{1!} \frac{d}{ds} \left(\frac{e^{st}}{(s+1)^2} \right)_{s=0} = \frac{1}{(s+1)^2} \left| \frac{d}{s} \left(\frac{e^{st}}{(s+1)^2} \right)_{s=0} = \frac{1}{(s+1)^3} \left| \frac{e^{st}}{s^2} \right|_{s=0} = \frac{1}{(s+1)^3} \left| \frac{e^{st}}{s^2} \right|_{s=0} = \frac{1}{1!} \left| \frac{e^{st}}{s^$

$$f(t) = (t-2) + (2+t)e^{t}$$
 Verify: $t=0$, $f(t=0) = 0$.

(3=0) is a branch foint. Inverse Laplace Transform of est no holos!! the brank foint at origin. "Second Bromwich Parth" Second Bromwich contour So we are left with: $\frac{d}{ds} = 0 = \int_{c}^{c} + \int_$ $\int_{0-i\omega}^{\infty} e^{st} \frac{1}{\sqrt{s}} ds = \int_{0}^{\infty} \int_{0}^{\infty$ Along DG: $S = Ye^{i\pi} = -Y$; $JS = VYe^{i\pi/2} = iJY$ $\int_{DG}^{clt} \frac{1}{\sqrt{s}} ds = \int_{-\infty}^{0} \frac{e^{-Yt}}{i\sqrt{Y}} (-dY) = -t\int_{0}^{\infty} e^{-Yt} x^{-1/2} dY$ Along $HF: S = Ye^{i\pi} = -Y$, $JS = Y'L e^{-i\pi/2} = -iJY$ $\int_{VF}^{est} \frac{1}{\sqrt{s}} ds = \int_{0}^{\infty} \frac{e^{-Yt}}{\sqrt{s}} dx = \int_{0}^{\infty} \frac{e^{-Yt}}{-iJY} dx = -iJYe^{-2iJY} dx$

