

D-MNSV6-X8 说明书 v1.8

D-MNSV6-X8

磁导航传感器

使用手册

竭诚感谢您使用本公司的产品

本手册就产品的使用方法与安全事项进行说明

*熟读本手册,并在使用过程中注意安全。

*保留本手册, 放在合适的地方以便随时查阅。

更新日期: 2021年7月

目录

1	安全	4
	1. 1	安全警告事项4
2	产品	概要5
	2. 1	外观5
	2. 2	外观尺寸图5
3	端口	特性和功能8
	3. 1	IO 输出特性8
	3. 2	功能配置9
4	RS-2	32 接口 MODBUS-RTU 协议 11
	4. 1	RS-232 连接11
	4. 2	MODBUS-RTU 通讯协议11
	4. 3	MODBUS-RTU 通讯协议寄存器表13
	4. 4	MODBUS-RTU 协议示例14
5	点检	和故障排查15
	5. 1	点检内容15
	5. 2	故障排除16
6	AGV	系统构架举例
	6. 1	单驱动控制方案17
	6. 2	双驱动控制方案18
7	规格	参数
8	售后	
	8. 1	质保期限20
	8. 2	质保范围20
	8. 3	免责范围20

安全注意 阅读本手册后,请妥善保管以便查阅。

提醒 在操作时使您能正确使用产品时,所务必遵守的相关使用的事。

1 安全

1.1 安全警告事项

这里提示的注意事项,其目的是为了使您能安全、正确地使用产品,并防患于未然,以免给您和他人造成危害和损伤。请您对其内容充分理解以后再使用本产品。

注意

请勿在爆炸性气体环境、易燃性气体环境、腐蚀性环境、容易沾水的场所以及可燃物附近使用本产品,否则有可能引起火灾或致伤。设置、连接、运转、操作、检查、故障诊断作业请由有适当资格的人实施,否则有可能引起火灾、致伤或造成产品损坏。

设置

请将传感器设置在机框内, 否则有可能导致设备损坏。

连接

电源输入电压请务必控制在额定范围内,否则有可能引起火灾。请按照连接图进行连接,否则有可能引起火灾。请勿强行弯曲、拉扯或夹住电缆线,否则有可能引起火灾。请按指定尺寸使用电缆线,否则有可能引起火灾。请遵守驱动器螺丝的紧固转矩,否则有可能引起火灾或造成装置破损。

保养·检查

保养、检查请务必在切断电源后进行,否则有可能致伤。 进行绝缘电阻测量、绝缘耐压测试时,请勿接触否则有可能引起触电。

修理・拆解・改造

请勿对传感器进行拆解或改造,否则有可能致伤或造成装置破损。要检查内部或修理时,请与本公司联系。

2 产品概要

D-MNSV6-X8 是专为 AGV 磁条导航设计的磁导航传感器。通过 D-MNSV6-X8 传感器感应的磁条磁场信号后,输出开关量信号,给主控器提供所需要的磁条信号。

产品构成

型号	输入电源	输出信号类型	功能
D-MNSV6-X8	DC 9V to 28V	NPN	8 点信号输出
FC-14P 连接线 0.7M			信号延长线

2.1 外观

2.2 外观尺寸图

磁导航传感器安装方向

磁条

磁条

磁条

磁导航传感器安装与设置注意

磁导航传感器建议采取此方式安装固定板可提供一定的防护作用

磁条传感器固定板,请选用铝质材质或不锈钢 禁止使用磁性金属(铁钴镍)

磁导航传感器安装位置

为更好控制效果,建议 L/D=1.5

安装条件	 磁导航传感器固定板需使用非磁性材料 磁导航传感器背景磁场强度应低于 2 高斯
使用环境	使用周围温度: -20~80℃ 使用环境湿度: 80% RH以下(不结霜和露)
使用气体环境	禁止在腐蚀性, 可燃性气体尘埃环境使用

3 端口特性和功能

3.1 IO 输出特性

脚号	名称	注释	排线颜色
1 脚	VCC	输入电源(9-28V)正极	褐
2 脚	GND	输入电源(9-28V)负极	红
3 脚	TX	RS-232 通讯 TX 脚	橙
4 脚	RX	RS-232 通讯 RX 脚	黄
5 脚	S1	NPN 开漏输出(检测点1)	绿
6 脚	S2	NPN 开漏输出(检测点2)	蓝
7 脚	S3	NPN 开漏输出(检测点3)	紫
8 脚	S4	NPN 开漏输出(检测点4)	灰
9 脚	S5	NPN 开漏输出(检测点5)	白
10 脚	S6	NPN 开漏输出(检测点 6)	黑
11 脚	S7	NPN 开漏输出(检测点7)	褐
12 脚	S8	NPN 开漏输出(检测点8)	红
13 脚	DO	厂家使用,请悬空	橙
14 脚	GND	输入电源(9-28V)负极	黄

3.2 功能配置

■ 确认磁导航传感器配置连接

■ 接通电源,配置磁导航传感器参数

通过 PC 端软件配置磁导航传感器参数,具体操作请查看配置软件说明。参数设置完成后,配置载入传感器,等待提示成功后,重启磁导航传感器即可。

■ 磁导航传感器参数列表

参数名称	参数	默认参数和说明	
检测磁极模式	S 极	默认N极	
12 477 844 100 100 27	N 极	my C of IT WC	
传感器温度	只读参数	只读参数	
灵敏度	1-13 级	越高级约灵敏	
占 品	变化 232 输出(参数有变化即输出)	T	
自动输出	连续 232 输出(间隔 7ms 持续输出)	无	

■ 通讯不成功

如果不能通讯成功请检查以下部分

- 1) 确认磁导航传感器已经正常提供 DC 9-28V 电源;
- 2)确认 USB 转 RS232 串口线驱动安装和端口配置正确,或者换一个 RS232 通讯模块尝试。
- 3) 确认计算机已经正确安装配置软件和运行环境;
- 4) 若以上确认无误后,依然无法解决,请尝试更换一台 PC 端,再重试;
- 5) 若以上确无误认后,依然无法解决问题,请联系广州联网科技售后技术支持。

■ 传感器磁场校准

传感器出厂前已经校准好,一般无需用户自行校准,校准功能请谨慎使用。

4 RS-232 接口 MODBUS-RTU 协议

参数	参数信息	默认设定
通信方式	点对点	
接受/发送方式	全双工通讯模式	
通信 ID	1-255	1
通信速率	115200 bps	115200 bps
数据位	8 位	8 位
校验位	无校验	无校验
停止位	1 位	1 位

4.1 RS-232 连接

RS-232 配置连线

对应接线								
传感器	14 脚 GND	4 脚 RXD	3 脚 TXD	1 脚 VCC	GND			
232 模块	GND	TXD	RXD					
电源				电源 +	电源 -			

4.2 MODBUS-RTU 通讯协议

■ 功能码 03H: 读寄存器值

主机发送:

1	2	3	4	5	6	7	8
ADR	03Н	起始寄存器 高字节	起始寄存 器低字节	寄存器数 高字节	寄存器数低 字节	CRC 低字节	CRC 高字节

第1字节ADR: 从机地址码(=001~255)

第2字节03H: 读寄存器值功能码

第3、4字节:要读的寄存器开始地址

要读 FCC 下挂仪表,

第5、6字节: 要读的寄存器数量

第7、8字节:从字节1到6的CRC16校验

从机回送:

1	2	3	4, 5	6、7	M−1、 M	M+1	M+2
ADR	03Н	字节总数	寄存器数据1	寄存器数据 2	 寄存器数据 M	CRC 低字节	CRC 高字节

第1字节 ADR: 从机地址码(=001~255)

第2字节03H: 返回读功能码

第3字节:从4到M(包括4及M)的字节总数

第4到M字节:寄存器数据

第 M+1、M+2 字节: 从字节 1 到 M 的 CRC16 校验和

当从机接收错误时,从机无回送

■ 功能码 06H: 写单个寄存器值

主机发送:

1	2	3	4	5	6	7	8
ADR	06Н	寄存器高字 节地址	寄存器低字 节地址	数据高字 节	数据低字 节	CRC 码低 字节	CRC 码高 字节

当从机接收正确时,从机回送:

1	2	3	4	5	6	7	8
ADR	06Н	寄存器高字 节地址	寄存器低字 节地址	数据高字 节	数据低字 节	CRC 码低 字节	CRC 码高 字节

当从机接收错误时, 从机无回送。

■ 功能码 10H: 连续写多个寄存器值

主机发送:

1	2	3	4	5	6	7
ADR			起始寄存器低字节地址		寄存器数量 低字节	数据字节总数

8,9	10,11	N,N+1	N+2	N+3
寄存器数据	寄存器数据	寄存器数据 M	CRC 码低字 节	CRC 码低字 节

当从机接收正确时,从机回送:

1	2	3	4	5	6	7	8
ADR	10H	寄存器高字 节地址	寄存器低字 节地址	寄存器数 量高字节	寄存器数 量低字节	CRC 码低 字节	CRC 码高 字节

当从机接收错误时,从机无回送。

■ 功能码 20H: 空磁场校准

主机发送:

1	2	3	4	5	6	7	8
ADR	20Н	00Н	00Н	00Н	00Н	CRC 码低 字节	CRC 码高 字节

当从机接收正确时,从机回送:

1	2	3	4	5	6	7	8
ADR	20H	00Н	00Н	00Н	00Н	CRC 码低 字节	CRC 码高 字节

当从机接收错误时,从机无回送。

■ 功能码 21H: 均匀磁场校准

主机发送:

1	2	3	4	5	6	7	8
ADR	21	00Н	00Н	00Н	00Н	CRC 码低 字节	CRC 码高 字节

当从机接收正确时,从机回送:

1	2	3	4	5	6	7	8
ADR	21	00Н	00Н	00Н	00Н	CRC 码低 字节	CRC 码高 字节

当从机接收错误时,从机无回送。

4.3 MODBUS-RTU 通讯协议寄存器表

地址	内容说明	是否只读
00Н	第1路无磁场状态值(2字节浮点数)	
01H	第2路无磁场状态值(2字节浮点数)	
02H	第3路无磁场状态值(2字节浮点数)	
03H	第 4 路无磁场状态值(2 字节浮点数)	
04H	第5路无磁场状态值(2字节浮点数)	
05H	第6路无磁场状态值(2字节浮点数)	
06H	第7路无磁场状态值(2字节浮点数)	
07H	第8路无磁场状态值(2字节浮点数)	
08H	预留	
09Н	预留	
OAH	预留	
OBH	预留	
0CH	预留	
ODH	预留	
0EH	预留	
0FH	预留	
10H	第1路均匀磁场状态值(2字节浮点数)	
11H	第2路均匀磁场状态值(2字节浮点数)	
12H	第3路均匀磁场状态值(2字节浮点数)	
13H	第 4 路均匀磁场状态值(2 字节浮点数)	
14H	第5路均匀磁场状态值(2字节浮点数)	
15H	第6路均匀磁场状态值(2字节浮点数)	
16H	第7路均匀磁场状态值(2字节浮点数)	
17H	第8路均匀磁场状态值(2字节浮点数)	
18H	预留	
19H	预留	
1AH	预留	

1BH	预留	
1CH	预留	
1DH	预留	
1EH	预留	
1FH	预留	
20H	第1路检测值(低1字节整数)+第2路检测值(高1字节整数)	√
21H	第3路检测值(低1字节整数)+第4路检测值(高1字节整数)	√
22H	第5路检测值(低1字节整数)+第6路检测值(高1字节整数)	√
23H	第7路检测值(低1字节整数)+第8路检测值(高1字节整数)	√
24H	预留	√
25H	预留	√
26H	预留	√
27H	预留	√
28H	8路开关量输出(1字节无符号整数)	√
29H	实时传感器温度(2字节整数)	√
2AH	预留	
2BH	预留	
	RS-232 的波特率 (2 字节整数)	
2CH	0:4800 1:9600 2:14400 3:19200 4:38400 5:56000 6:57600 7:115200	
	8:128000 9:256000	
2DH		
2EH		
2FH	自动输出模式(2字节整数)	
_111	0: 无自动输出 5: 232 变化输出 6: 232 持续输出	
	基本设置(2字节整数)	
30H	Obit = 0:S 极模式 Obit = 1:N 极模式	
	1bit=0:滤波关 1bit=1:滤波开	
31H	触发系数(2字节整数)	
32H	差值系数(2字节整数)	
33H	RS-232 基于 MODBUS 的设备 ID(1 字节无符号整数)	
34H	出厂日期	√

4.4 MODBUS-RTU 协议示例

访问开关量数据协议:

 $0x01\ 0x03\ 0x00\ 0x28\ 0x00\ 0x01\ 0x04\ 0x02$

访问模拟量数据协议:

0x01 0x03 0x00 0x20 0x00 0x08 0x45 0xC6

设置 232 变化自动输出协议:

 $0x01 \ 0x06 \ 0x00 \ 0x2F \ 0x00 \ 0x05 \ 0x78 \ 0x00$

设置 232 持续自动输出协议:

 $0x01\ 0x06\ 0x00\ 0x2F\ 0x00\ 0x06\ 0x38\ 0x01$

取消串口自动输出协议:

0x01 0x06 0x00 0x2F 0x00 0x00 0xB8 0x03

5. RS-232 自动输出协议

变化输出模式: 当检测数值每变化一次开关量的值立即输出当前值

连续输出模式:每间隔7ms发送一次当前开关量的值

参数	参数信息	默认设定
通信方式	点对点	
接受/发送方式	全双工/半双工通讯模式	
通信 ID	1-255	01
RS-232 通信速率	115200 bps	115200 bps
RS-232 数据位	8 位	8 位
RS-232 校验位	无校验	无校验
RS-232 停止位	1 位	1 位

格式:

MODBUS 设备 ID	功能码	寄存器高字 节地址	寄存器低字节地址	数据高字 节	数据低字节	CRC 码低字 节	CRC 码高字节
XXH	ABH	00Н	28Н	ХХН	ХХН	ХХН	XXH

数据低字节: 第1-8 路开关量输出

6 点检和故障排查

6.1 点检内容

由于 AGV 是运动设备,设备是处于震动环境下运行的,为保证产品能够稳定无故障运行的, 所以需要对设备进行定期点检,点检内容。

建议点检周期: 3个月

检查外壳固定螺母 松紧度

检查端子松紧度和端口部分线材状况

6.2 故障排除

当本产品出现异常故障和不能正常运行的情况下, 请先参考故障列表进行排查。

故障现象	检查和确定	处理措施
LED 不亮	1) 检查电源电压是否正常; 2) 检查 VCC, GND 线序是否正确。	1) 给予正确电压电源; 2) 纠正线序;
信号不连续	1)检查设置感应极性是否有与磁条极性匹配; 2)传感器是距离磁条的距离是否小于 15mm。	1)调整配置参数; 2)调整安装位置。
无信号	1)安装高度是否超过 50mm; 2)检查设置感应极性是否有与磁条极性匹配;	 1) 调整配置参数; 2) 调整安装位置。

7 AGV 系统构架举例

7.1 单驱动控制方案

单驱动方案示意图, 单驱动方案一般是 6 轮结构, 用于牵引式或者背负式 AGV;

7.2 双驱动控制方案

双驱动方案示意图

8 规格参数

产品一般规格

项目		规格
	环境温度	-20~+80℃ (无结冰)
	环境湿度	80%以下(无结露)
使用环境	标高	海拔 1000m 以下
	介质环境	无腐蚀性,可燃性气体或尘埃等、不可在含有放射性物质、强磁场以及真空等特殊 环境中使用
	振动	不可施加连续振动或过度冲击
	环境温度	-25~+70℃ (无结冰)
保存环境	环境湿度	85%以下(无结露)
	标高	海拔 1000m 以下

磁导航传感器通用规格

~ A 1 加 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
项目	规格
输入电源	额定电压: DC 9-28V 额定电流: 55mA ※传感器具备电源反接保护
通信功能	■ RS-232 通信 通信速率: 115200 bps
磁点间距	1 Omm
感应灵敏度	0–255
信号响应	通讯状态:以上位机发送询问数据为准,响应小于 8ms。
适用磁条规格	30mm 宽
安装条件	建议使用铝合金或者不锈钢。
填充材质	硅胶
外壳材质	铝合金
防护等级	IP54

9 售后

9.1 质保期限

D-MNSV6-X8 提供限期质保, 质保期间因产品本身品质问题, 设计缺陷等原因造成的不能正常使用的, 我们将免费进行售后维护。

■保固期: 自出售起1年。

9.2 质保范围

产品在质保期内,属于质保条件范围内的,我们将免费进行维修或者更换。

- ■本产品质保及售后只限在中国大陆境内;
- ■由于运输途中造成的产品开箱无法正常使用;
- ■产品本身元器件损坏造成的无法正常工作:
- ■产品设计缺陷造成无法正常使用;

9.3免责范围

产品在使用过程中请注意以下条件范围内, 我们将不提供无偿售后和质保。

- ■未正确按照说明书安装产品,造成产品损坏;
- ■在不适合的环境和条件下使用本产品,造成产品损坏;
- ■因不遵循产品说明书规范操作导致产品的损坏;
- ■未经本公司允许,擅自拆解或维修产品;
- ■自然灾害,火灾等不可抗拒的外界力造成的产品损坏。

广州联网科技有限公司

广东省广州市天河区车陂西路 212 号前

进商务中心七层 777 室

020-82011771

www.gzlwkj.com