# Word-Level Polynomial Abstraction From Circuits Using Gröbner Bases

#### Tim Pruss

Graduate Student
Electrical and Computer Engineering, University of Utah
pruss.tim@gmail.com

Master's Thesis Proposal

## Agenda

- Focus
  - Extraction of word-level representations of Galois field circuits
- Motivation
  - Galois fields, hardware applications & their abstraction
- Target problems
  - Given a Galois field  $\mathbb{F}_{2^k}$  and circuit C, with k-bit inputs and outputs
  - ullet Derive a polynomial representation for C over  $f: \mathbb{F}_{2^k} o \mathbb{F}_{2^k}$
  - Word-level abstraction as a canonical polynomial representation
- Approach: Computer Algebra Techniques
  - Nullstellensatz + Gröbner basis methods + Elimination ordering
  - Challenge: Complexity of Gröbner basis algorithm
  - Proposed Contribution: An approach based on the FGLM algorithm to obviate the Gröbner basis computation for extraction of the canonical polynomial representation.

#### Motivation

- Wide applications of Galois field circuits
  - Cryptography: RSA, Elliptic Curve Cryptography (ECC)
  - Error Correcting Codes, Digital Signal Processing, etc.
- Bugs in hardware can leak secret keys [Biham et al., "Bug Attacks", Crypto 2008]
- Data-path size in ECC crypto-systems can be very large
  - In  $\mathbb{F}_{2^k}$ , k = 163, 233, ... (NIST standard)
  - ECC-point addition for encryption, decryption, authentication
  - Custom arithmetic architectures hard to verify
  - Synthesized circuits are "easier" to verify
- Why use computer algebra?
  - Algebraic nature (finite field) of the computation (polynomial)
  - Abstraction infeasible with contemporary verification tools

## Applications in Elliptic Curve Cryptography



Figure : Montgomery multiplier over  $GF(2^k)$ 

- Main operations in ECC rely on point additions and doubling operations on elliptic curves over Galois fields
- Multiplication and iterative squaring operations are usually implemented using custom-designed Galois field multipliers
- Given a hierarchically designed Montgomery multiplier, we will first extract polynomials AR, BR, ABR from the sub-circuit blocks.
- We can then apply our approach at a higher-level, to extract the function of the entire circuit.

#### Galois Field Overview

**Galois field**  $\mathbb{F}_q$  is a finite field with q elements,  $q=p^k$ 

- Commutative Ring with unity, associate, distributive laws
- Closure property:  $+, -, \times$ , inverse  $(\div)$
- $\mathbb{F}_p \equiv (\mathbb{Z} \pmod{p})$ , where p = prime, is a field
  - $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$

Our interest:  $\mathbb{F}_q = \mathbb{F}_{2^k}$ , i.e.  $q = 2^k$ 

- $\mathbb{F}_{2^k}$ : k-dimensional extension of  $\mathbb{F}_2$ 
  - k-bit bit-vector, AND/XOR arithmetic

To construct  $\mathbb{F}_{2^k}$ 

- $\bullet \ \mathbb{F}_{2^k} \equiv \mathbb{F}_2[x] \ (\mathsf{mod} \ P(x))$
- $P(x) \in \mathbb{F}_2[x]$ , irreducible polynomial of degree k



# Field Elements: e.g. $\mathbb{F}_8$

Consider: 
$$\mathbb{F}_{2^3} = \mathbb{F}_2[x] \pmod{x^3 + x + 1}$$

$$A \in \mathbb{F}_2[x]$$

A 
$$(\text{mod } x^3 + x + 1) = a_2 x^2 + a_1 x + a_0$$
. Let  $P(\alpha) = 0$ :

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 0, 0, 0 \rangle = 0$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 0, 0, 1 \rangle = 1$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 0, 1, 0 \rangle = \alpha$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 0, 1, 1 \rangle = \alpha + 1$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 1, 0, 0 \rangle = \alpha^2$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 1, 0, 1 \rangle = \alpha^2 + 1$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 1, 1, 0 \rangle = \alpha^2 + \alpha$$

• 
$$\langle a_2, a_1, a_0 \rangle = \langle 1, 1, 1 \rangle = \alpha^2 + \alpha + 1$$

# Multiplication in GF(2<sup>4</sup>)

#### Input:

$$A = (a_3 a_2 a_1 a_0)$$

$$B = (b_3 b_2 b_1 b_0)$$

$$A = a_0 + a_1 \cdot \alpha + a_2 \cdot \alpha^2 + a_3 \cdot \alpha^3$$

$$B = b_0 + b_1 \cdot \alpha + b_2 \cdot \alpha^2 + b_3 \cdot \alpha^3$$

Irreducible Polynomial:

$$P = (11001)$$
  
 $P(x) = x^4 + x^3 + 1$ ,  $P(\alpha) = 0$ 

Result:

$$A \times B \pmod{P(x)}$$

# Multiplication over $GF(2^4)$

| ×                     |                       |             |                       | а <sub>3</sub><br>b <sub>3</sub> | a <sub>2</sub><br>b <sub>2</sub> | $egin{aligned} a_1 \ b_1 \end{aligned}$ | а <sub>0</sub><br>b <sub>0</sub> |
|-----------------------|-----------------------|-------------|-----------------------|----------------------------------|----------------------------------|-----------------------------------------|----------------------------------|
|                       |                       |             |                       | a₃ · b₀                          | $a_2 \cdot b_0$                  | $a_1 \cdot b_0$                         | $a_0 \cdot b_0$                  |
|                       |                       |             | $a_3 \cdot b_1$       | $a_2 \cdot b_1$                  | $a_1 \cdot b_1$                  | $a_0 \cdot b_1$                         |                                  |
|                       | <i>a</i> <sub>3</sub> | $\cdot b_2$ | $a_2 \cdot b_2$       | $a_1 \cdot b_2$                  | $a_0 \cdot b_2$                  |                                         |                                  |
| a <sub>3</sub> · b    | $a_{2}$               | $\cdot b_3$ | $a_1 \cdot b_3$       | $a_0 \cdot b_3$                  |                                  |                                         |                                  |
| <i>s</i> <sub>6</sub> |                       | <i>S</i> 5  | <i>S</i> <sub>4</sub> | <b>s</b> 3                       | <i>s</i> <sub>2</sub>            | $s_1$                                   | <i>s</i> <sub>0</sub>            |

In polynomial expression:

$$S = s_0 + s_1 \cdot \alpha + s_2 \cdot \alpha^2 + s_3 \cdot \alpha^3 + s_4 \cdot \alpha^4 + s_5 \cdot \alpha^5 + s_6 \cdot \alpha^6$$

S should be further reduced  $\pmod{P(x)}$ 

# Multiplication over $GF(2^4)$

$$s_4 \cdot \alpha^4 \pmod{\alpha^3 + \alpha + 1} = s_4 \cdot \alpha^3 + s_4$$
  
 $s_5 \cdot \alpha^5 \pmod{\alpha^3 + \alpha + 1} = s_5 \cdot \alpha^3 + s_5 \cdot \alpha + s_5$   
 $s_6 \cdot \alpha^6 \pmod{\alpha^3 + \alpha + 1} = s_6 \cdot \alpha^3 + s_6 \cdot \alpha^2 + s_6 \cdot \alpha + s_6$ 

$$G = g_0 + g_1 \cdot \alpha + g_2 \cdot \alpha^2 + g_3 \cdot \alpha^3$$

#### A Mathematical Problem

- Given circuit implementation C of a function  $f: Y = \mathcal{F}(A)$  over  $\mathbb{F}_{2^k}$  and given P(x), s.t.  $P(\alpha) = 0$ .
  - Primary Input:  $A = \{a_0, ..., a_{k-1}\}$ 
    - Note: we allow multiple primary inputs.
    - i.e.  $f: Y = \mathcal{F}(A, B, ...)$
  - Primary Output  $Z = \{z_0, \ldots, z_{k-1}\}$
  - $A = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_{k-1} \alpha^{k-1}$
  - $Z = z_0 + z_1 \alpha + \cdots + z_{k-1} \alpha^{k-1}$
- What is the specification  $Y = \mathcal{F}(A)$  of C?

#### Mathematically:

- ullet Model the circuit (gates) as polynomials  $\{f_1,\ldots,f_s\}\in \mathbb{F}_{2^k}[x_1,\ldots,x_d]$
- Polynomial specification becomes  $Y + \mathcal{F}(A)$
- $Y + \mathcal{F}(A)$  vanishes on the variety of  $V(f_1, \ldots, f_s)$

#### **Example Formulation**



Model circuit as polynomials in  $\mathbb{F}_2 \subset \mathbb{F}_{2^k}$ :

$$z_0 = s_0 + s_3 \implies f_1 : z_0 + s_0 + s_3$$
 $s_0 = a_0 \cdot b_0 \implies f_2 : s_0 + a_0 \cdot b_0$ 
 $\vdots$ 
 $A + a_0 + a_1 \alpha, \quad B + b_0 + b_1 \alpha, \quad Z + z_0 + z_1 \alpha$ 

# Computer Algebra Terminology

Let 
$$\mathbb{F}_q = GF(2^k)$$
:

- $\mathbb{F}_q[x_1,\ldots,x_n]$ : ring of all polynomials with coefficients in  $\mathbb{F}_q$
- Given a set of polynomials:
  - $f, f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$
  - Find solutions to  $f_1 = f_2 = \cdots = f_s = 0$
- Variety: Set of ALL solutions to a given system of polynomial equations:  $V(f_1, \ldots, f_s)$ 
  - In  $\mathbb{R}[x,y]$ ,  $V(x^2+y^2-1) = \{all \ points \ on \ circle : x^2+y^2-1=0\}$
  - In  $\mathbb{R}[x]$ ,  $V(x^2 + 1) = \emptyset$
  - In  $\mathbb{C}[x]$ ,  $V(x^2+1) = \{(\pm i)\}$
- Variety depends on the ideal generated by the polynomials.
- Reason about the Variety by analyzing the Ideals

## Ideals in Rings

#### Definition

Ideals of Polynomials: Let  $f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ . Let

$$J = \langle f_1, f_2 \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s \}$$

 $J=\langle f_1,f_2\ldots,f_s\rangle$  is an ideal generated by  $f_1,\ldots,f_s$  and the polynomials are called the generators.

#### Definition

**Vanishing Ideal:** For any subset V of  $\mathbb{F}_q^d$ , the ideal of polynomials that vanish on V, called the *vanishing ideal of* V, is defined as:

$$I(V) = \{ f \in \mathbb{F}_q[x_1, \dots, x_d] : \forall \mathbf{a} \in V, f(\mathbf{a}) = 0 \}.$$

If a polynomial f vanishes on a variety V, then  $f \in I(V)$ .



#### **Example Formulation**



- Polynomials for all the gates:  $f_1, \ldots, f_s$ ; ideal  $J = \langle f_1, \ldots, f_s \rangle$
- Circuit polynomial function:  $f: Z = A \times B$
- f "agrees with" all solutions to  $f_1 = \cdots = f_s = 0$
- f vanishes on variety  $V_{\mathbb{F}_{2^k}}(J)$ ?

# Strong Nullstellensatz over $\mathbb{F}_q$

#### **Definition**

**Vanishing Polynomials:** Polynomials of the form  $\{x^q - x\}$  over  $\mathbb{F}_q$ . Let  $F_0 = \{x_1^q - x_1, \dots, x_d^q - x_d\}$ , then  $J_0 = \langle x_1^q - x_1, \dots, x_d^q - x_d \rangle$  is the ideal of all vanishing polynomials in  $\mathbb{F}_q[x_1, \dots, x_d]$ .

- For any Galois field  $\mathbb{F}_q$ , let  $J\subseteq \mathbb{F}_q[x_1,\ldots,x_d]$  be an ideal, and let  $J_0=\langle x_1^q-x_1,\ldots,x_d^q-x_d\rangle$  be the ideal of all vanishing polynomials.
- Let  $V_{\mathbb{F}_q}(J)$  denote the variety of J over  $\mathbb{F}_q$ .
- Then,  $I(V_{\mathbb{F}_q}(J)) = J + J_0 = J + \langle x_1^q x_1, \dots, x_d^q x_d \rangle$ .

#### Our Problem Formulation

Given circuit C which implements a polynomial function  $Y = \mathcal{F}(A)$  over  $\mathbb{F}_q[x_1,\ldots,x_n]$ 

- $Y + \mathcal{F}(A)$  is the polynomial specification of C
- $J = \langle f_1, f_2 \dots, f_s \rangle$ , Polynomials from the design
- $J_0 = \langle x_1^q x_1, \dots, x_n^q x_n \rangle$ , Vanishing polynomials generated
- $J + J_0 = \langle f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n \rangle$ ; Variety  $V(J + J_0) =$  circuit configuration
- $Y + \mathcal{F}(A) \in J + J_0$

Our problem: Find the polynomial specification  $Y + \mathcal{F}(A) \in (J + J_0)$ Requires the computation of a Gröbner basis of  $J + J_0$ 

## Specification Abstraction Requires a Gröbner Basis

- Different generators can generate the same ideal
- $\langle f_1, \cdots, f_s \rangle = \cdots = \langle g_1, \cdots, g_t \rangle$
- Some generators are a "better" representation of the ideal
- A Gröbner basis is a "canonical" representation of an ideal

Given  $F=\{f_1,f_2,\cdots,f_s\}$ , Compute a Gröbner Basis  $G=\{g_1,g_2,\cdots,g_t\}$ , such that  $I=\langle F\rangle=\langle G\rangle$ 

$$V(F) = V(G)$$

# Buchberger's Algorithm Computes a Gröbner Basis

#### Buchberger's Algorithm

INPUT : 
$$F = \{f_1, \dots, f_s\}$$
  
OUTPUT :  $G = \{g_1, \dots, g_t\}$   
 $G := F$ ;  
REPEAT  
 $G' := G$   
For each pair  $\{f, g\}, f \neq g$  in  $G'$  DO  
 $S(f, g) \xrightarrow{G'}_{+} r$   
IF  $r \neq 0$  THEN  $G := G \cup \{r\}$   
UNTIL  $G = G'$ 

$$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g$$

L = LCM(Im(f), Im(g)), Im(f): leading monomial of f

# Complexity of Gröbner Basis and Term Orderings

- For  $J \subset \mathbb{F}_q[x_1, \dots, x_n]$ , Complexity  $GB(J + J_0) : q^{O(n)}$
- GB complexity very sensitive to term ordering
- A term order has to be imposed for systematic polynomial computation

Let 
$$f = 2x^2yz + 3xy^3 - 2x^3$$

- LEX x > y > z:  $f = -2x^3 + 2x^2yz + 3xy^3$
- DEGLEX x > y > z:  $f = 2x^2yz + 3xy^3 2x^3$
- DEGREVLEX x > y > z:  $f = 3xy^3 + 2x^2yz 2x^3$

Recall, S-polynomial depends on term ordering:

$$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g;$$
  $L = LCM(lm(f), lm(g))$ 



#### Elimination Theorem

- Let  $J \subset \mathbb{F}_q[x_1, \dots, x_d]$  be an ideal
- Let G be a Gröbner basis of J with respect to a lex ordering where  $x_1 > x_2 > \cdots > x_d$ .
- Then for every  $0 \le l \le d$ :
  - The set  $G_l = G \cap \mathbb{F}_q[x_{l+1}, \dots, x_d]$  is a Gröbner basis of the *l*th elimination ideal  $J_l$ .

The Ith elimination ideal does not contain variables  $x_1, \ldots, x_I$ , nor do the generators of it.

## Elimination Term Ordering Example

- Let ideal  $I = \langle f_1, f_2, f_3 \rangle$  where
  - $f_1 = x^2 + y + z 1$
  - $f_2 = x + y^2 + z 1$
  - $f_3 = x + y + z^2 1$
- The Gröbner basis of I with lex order (x > y > z) is
  - $g_1 = x + y + z^2 1$
  - $g_2 = y^2 y z^2 + z$
  - $g_3 = 2yz^2 + z^4 z^2$
  - $g_4 = z^6 4z^4 + 4z^3 z^2$
- Notice that  $g_2$  and  $g_3$  only contain variables y and z
  - Eliminates variable x
- ullet Similarly,  $g_4$  only contains the variable z and eliminates x and y

#### Abstraction Term Ordering

Derived from applying elimination theorem to our problem set

- ullet Given a circuit C implementing  $Y=\mathcal{F}(A)$  over  $\mathbb{F}_q$
- Using the variable order  $x_1 > x_2 > \cdots > x_d > Y > A$ 
  - $x_1, \ldots, x_d$  are the circuit polynomials
- Impose a lex term order > on the polynomial ring  $R = \mathbb{F}_q[x_1, \dots, x_d, Y, A].$
- This elimination term order > is defined as the Abstraction Term Order.
- If we compute a Gröbner basis G of ideal  $(J + J_0)$  using the abstraction term order >
  - G will contain the vanishing polynomial  $A^q A$  as the only polynomial with only A as the support variable
  - G will contain a polynomial of the form  $Y + \mathcal{F}(A)$
  - $Y + \mathcal{F}(A)$  is a unique, canonical, polynomial representation of C over  $\mathbb{F}_q$

#### Abstraction Term Order Example



$$(z_0 > z_1 > r_0 > s_0 > s_3 > s_1 > s_2 > a_0 > a_1 > b_0 > b_1 > Z > A > B)$$

$$f_1: s_0 + a_0 \cdot b_0; \quad f_2: s_1 + a_0 \cdot b_1; \quad f_3: s_2 + a_1 \cdot b_0; \quad f_4: s_3 + a_1 \cdot b_1$$
  
 $f_5: r_0 + s_1 + s_2; \quad f_6: z_0 + s_0 + s_3; \quad f_7: z_1 + r_0 + s_3; \quad f_8: a_0 + a_1\alpha + A$   
 $f_9: b_0 + b_1\alpha + B; \quad f_{10}: z_0 + z_1\alpha + Z$ 

$$J = \langle f_1, \ldots, f_{10} \rangle$$

#### Abstraction Term Order Example



$$(z_0 > z_1 > r_0 > s_0 > s_3 > s_1 > s_2 > a_0 > a_1 > b_0 > b_1 > Z > A > B)$$

$$f_{11}: a_0^2 + a_0;$$
  $f_{12}: a_1^2 + a_1\alpha;$   $f_{13}: b_0^2 + b_0;$   $f_{14}: b_1^2 + b_1;$   $f_{15}: s_0^2 + s_0;$   $f_{16}: s_1^2 + s_1;$   $f_{17}: s_2^2 + s_2;$   $f_{18}: s_3^2 + s_3;$   $f_{19}: r_0^2 + r_0;$   $f_{20}: z_0^2 + z_0$   $f_{21}: z_1^2 + z_1;$   $f_{22}: A^4 + A;$   $f_{23}: B^4 + B;$   $f_{24}: Z^4 + Z$ 

$$J_0 = \langle f_{11}, \dots, f_{24} \rangle$$



#### Abstraction Term Order Example



 $(z_0>z_1>r_0>s_0>s_3>s_1>s_2>a_0>a_1>b_0>b_1>Z>A>B)$ Compute the Gröbner basis, G, of  $\{J+J_0\}$  with respect to abstraction term ordering >.  $G=\{g_1,\ldots,g_{14}\}$ 

$$g_1: B^4 + B;$$
  $g_2: b_0 + b_1\alpha + B;$   $g_3: a_0 + a_1\alpha + A;$   $g_4: A^4 + A;$   $g_5: s_0 + s_1\alpha + s_2(\alpha + 1) + Z;$   $g_6: r_0 + s_1 + s_2;$   $g_7: z_1 + r_0 + s_3$   $g_7: z_0 + z_1\alpha + Z;$   $g_9: \mathbf{Z} + \mathbf{A} * \mathbf{B};$   $g_{10}: b_1 + B^2 + B;$   $g_{11}: a_1 + A^2 + A$   $g_{12}: s_3 + a_1b_1;$   $g_{13}: s_2 + a_1b_1\alpha + a_1B;$   $g_{14}: s_1 + a_1b_1\alpha + b_1A$ 

## Complexity of Gröbner Basis over Abstraction Term Ordering

Table : Runtime of Gröbner Basis Computation

| Word Size (k) | Number of Polynomials (d) | Time (minutes)     |
|---------------|---------------------------|--------------------|
| 16            | 1,871                     | 2.4                |
| 24            | 3, 135                    | 12                 |
| 32            | 5, 549                    | 22.6               |
| 40            | 8, 587                    | 266                |
| 48            | 12, 327                   | NA (Out of Memory) |

- Mastrovito multiplier circuits
- ullet Extract Boolean gate-level operators J and vanishing polynomials  $J_0$
- ullet Compute Gröbner basis of  $J+J_0$  with respect to our term order >
  - ullet Resulting Gröbner basis contains a polynomial Y+A imes B
- Gröbner basis computed using Singular's "slimgb" command
  - Run on a 64-bit Ubuntu machine with a 2.4GHz CPU and 8Gb of RAM
  - Unable to perform Gröbner basis computations of multipliers beyond

## FGLM Algorithm

- Takes as input a Gröbner basis,  $G_1$ , and two monomial term orderings,  $>_a$  and  $>_b$ .
  - $G_1$  must be a Gröbner basis over term ordering  $>_a$
- ullet Converts  $G_1$  to a Gröbner basis over term ordering  $>_b$

#### Applying FGLM to our approach:

- ullet Given a circuit C which performs  $Y=\mathcal{F}(A)$  over  $\mathbb{F}_{2^k}$
- Find the Gröbner basis,  $G_1$ , of  $\{J+J_0\}$  in a convenient term ordering
- Using FGLM, convert  $G_1$  to a Gröbner basis,  $G_2$ , over abstraction term ordering >
- $G_2$  will contain a polynomial  $Y + \mathcal{F}(A)$

## Gröbner Basis of $J + J_0$ Without Computation

#### Past contribution by Lv:

- ullet Given a circuit C which implements  $Y=\mathcal{F}(A)$  over  $\mathbb{F}_{2^k}$
- Using the lex variable order  $Y > A > x_1 > x_2 > \cdots > x_d$ 
  - Where x<sub>1</sub>...x<sub>d</sub> are bit-level circuit variables in reverse topographical order
- $J + J_0$  is itself a Gröbner basis

No Gröbner basis computation necessary!

We denote this term order as  $>_1$ 

## Variable Term Order $>_1$ Example



$$(Z > A > B > z_0 > z_1 > r_0 > s_0 > s_3 > s_1 > s_2 > a_0 > a_1 > b_0 > b_1)$$

- Same J and  $J_0$  as shown previously
- $J + J_0$  denote a Gröbner basis over term ordering  $>_1$

## Proposed Approach

Proposed approach to extract a unique polynomial representation  $Y = \mathcal{F}(A)$  of circuits over  $F_{2^k}$  while obviating Gröbner basis calculation:

- Let C be a circuit performs the function  $f: \mathbb{B}^k \to \mathbb{B}^k$
- Extract the polynomials from the circuit (ideal J) and vanishing polynomials (ideal  $J_0$ )
- Assign the monomial ordering  $>_1$ ; this makes  $J+J_0$  a minimal Gröbner basis,  $G_1$
- Use the FGLM algorithm to transform  $G_1$  to a Gröbner basis,  $G_2$ , over abstraction ordering >
- $G_2$  will contain a polynomial in the form of  $Y + \mathcal{F}(A)$ , where Y is the word output and A is the word input of the circuit
  - $Y + \mathcal{F}(A)$  is the unique polynomial representation for C over  $f : \mathbb{F}_{2^k} \to \mathbb{F}_{2^k}$

## FGLM Algorithm Overview

- FGLM starts by taking the least monomial in our abstraction term ordering, A.
- Starting with m = 0, it computes  $[A^m \mod G_1]$ 
  - Stores the remainder, r
- Checks to see if the remainder is a combination of any previous remainders calculated thus far.
- If so, it adds this representation to  $G_2$  and moves on to the next monomial, else it increments m.

How exactly FGLM computes if r is a combination of previous remainders, and how it finds this combination, is still being investigated

# FGLM Algorithm Example

- $A^0 = 1$
- $A^1 = a_0 + a_1 \alpha$
- $A^2 = a_0 + a_1 \cdot (\alpha + 1)$
- $A^3 = a_0 \cdot a_1 + a_0 + a_1$
- $A^4 = a_0 + a_1 \alpha = A$

 $A^4$  can be composed of A, so  $A + A^4$  is added to Gröbner basis

- $B^1 = b_0 + (\alpha) \cdot b_1$
- $B^2 = b_0 + (\alpha + 1) \cdot b_1$
- $B^3 = b_0 \cdot b_1 + b_0 + b_1$
- $B^4 = b_0 + (\alpha) \cdot b_1 = B$

 $B^4$  can be composed of B, so  $B + B^4$  is added to Gröbner basis

- $Z^1 = a_0 \cdot b_0 + a_0 \cdot b_1 \cdot \alpha + a_1 \cdot b_0 \cdot \alpha + a_1 \cdot b_1 \cdot \alpha^2$ =  $(a_0 + a_1 \cdot \alpha) \cdot (b_0 + b_1 \cdot \alpha) = A \cdot B$
- $Z + A \cdot B$  is added to Gröbner basis

#### FGLM-Related Research

- FGLM continues to convert every monomial to the new term order
- ullet However, we only care about the word-level variables found in the  $Y+\mathcal{F}(A)$  polynomial
- We can make the FGLM more efficient for our approach by restricting it to only compute the word-level variables
- Singular contains an FGLM implementation ('fglm' command)
  - Propose to modify Singular's implementation

## **Proposed Contributions**

- Explore the implementation of Singular's FGLM algorithm.
- Develop an efficient CAD tool FGLM implementation which only performs ordering conversions on the required monomials.
- Research the complexity and feasibility of our given approach over large circuits.
- Apply the approach to elliptic curve cryptography circuits particularly hierarchically designed multipliers and point addition circuits.

## Proposed Timeline

- Spring 2013: Research FGLM algorithm in more detail. Study and analyze the source code of Singular's FGLM implementation.
- Early Summer 2013: Develop modified FGLM implementation. Run experiments on circuits of various sizes using proposed approach with the modified FGLM algorithm.
- Late Summer 2013: Evaluate data. Write Thesis.

#### **OLD STUFF**

## Our Discovery: Gröbner Basis of $J + J_0$

Using Our Topological Term Order:

- $F = \{f_1, \dots, f_s\}$  is a Gröbner Basis of  $J = \langle f_1, \dots, f_s \rangle$
- $F_0 = \{x_1^q x_1, \dots, x_n^q x_n\}$  is also a Gröbner basis of  $J_0$
- But we have to compute a Gröbner Basis of  $J + J_0 = \langle f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n \rangle$
- We show that  $\{f_1, f_2, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$  is a Gröbner basis!!
- From our circuit:  $f_i = x_i + P$
- Only pairs to consider:  $S(f_i, x_i^q x_i)$  in Buchberger's Algorithm:

$$S(f_i, x_i^q - x_i) \xrightarrow{J}_+ P^q - P \xrightarrow{J_0}_+ 0$$

Conclusion: Our term order makes  $\{f_1,\ldots,f_s,x_1^q-x_1,\ldots,x_n^q-x_n\}$  a Gröbner Basis



### Lv's Term Order: Already a Gröbner basis



- Every gate:  $f_i: x_i + P \in J$
- Every vanishing polynomial:  $x_i^q x_i \in J_0$

$$S(f_i, x_i^q - x_i) \xrightarrow{J} P^q - P \xrightarrow{J_0} 0$$
  
$$\{f_1, \dots, f_s, x_1^q - x_1, \dots, x_n^q - x_n\} \text{ is a Gr\"{o}bner basis}$$

# Our Overall Approach

- Given the circuit, perform reverse topological traversal
- Derive the term order to represent the polynomials for every gate
- The set:  $\{F, F_0\} = \{f_1, \dots, f_s, x_1^q x_1, \dots, x_n^q x_n\}$  is a Gröbner Basis
- Obtain:  $f \xrightarrow{F,F_0} r$
- If r = 0, the circuit is correct
- If  $r \neq 0$ , then r contains only the primary input variables
- ullet Any SAT assignment to r 
  eq 0 generates a counter-example
- Counter-example found in no time as r is simplified by Gröbner basis reduction

### Prior Work

Wienand et al CAV'2008: Similar approach for verification of integer multipliers

- Works over rings  $\mathbb{Z}_{2^k}$
- ullet They derive the same term order:  $f \stackrel{F}{\longrightarrow}_+ g$
- Then the circuit is correct if g is a vanishing polynomial;  $g \in F_0$  over  $\mathbb{Z}_{2^k}$
- But they do not investigate if  $F, F_0$  is a Gröbner basis....

Mukopadhyaya, TCAD 2007 (< 16-bit circuits), our own approach VLSI Design 2012, other theorem proving papers....

BLUVERI from IBM, A. Lvov, et al., FMCAD 2012.

## Polynomial Interpolation from Circuits



- Circuit:  $f: \mathbb{B}^k \to \mathbb{B}^k$
- $f: \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k}$  or  $f: \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k}$
- Interpolate a polynomial from the circuit: Y = F(A)
- $A = a_0 + a_1 \alpha + \dots + a_{k-1} \alpha^{k-1}, \quad Y = y_0 + y_1 \alpha + \dots + y_{k-1} \alpha^{k-1}$
- Compute Gröbner basis of circuit polynomials with Elimination order: circuit-variables > Y > A
- Obtain Y = F(A) as a unique, canonical, polynomial representation from the circuit

## Polynomial Interpolation from Circuits



Hierarchical Interpolation

- Partition the circuit into sub-circuits
- Interpolate Polynomials  $F_1, F_2, \ldots$  from Partitions
- Re-compute Gröbner basis of  $\{F_1, F_2, \dots\}$
- Eliminate internal variables to obtain Y = F(A)

#### Conclusions

- Formal Verification of large Galois Field circuits
- Computer algebra approach:
  - Nullstellensatz+Gröbner Bases methods
  - ullet Engineering o a term order to obviate Gröbner basis computation
  - Can verify upto 163-bit circuits
  - NIST specified 163-bit field.... practical verification!
- Our approach relies only on polynomial division
- ullet Complexity of polynomial division: Polynomial in the size of  $f_1,\ldots,f_s$
- Almost the same time to catch bugs
- Conventional approaches fail miserably.....
- Future Work: Verify sequential GF-arithmetic Circuits
  - State-space traversal: Quantifier Elimination over Gröbner Basis

## Typical Sequential Circuit



- Primary input(s): x, primary output(s): Z
- Pseudo inputs:  $\{s_0, s_1, \dots, s_{k-1}\}$
- ullet Pseudo outputs:  $\{t_0,t_1,\ldots,t_{k-1}\}$

## A FSM Example





Figure : Corresponding Gate-level Circuit

### Breadth-First Traversal Algorithm

## **ALGORITHM 1:** Breadth-first Traversal Algorithm

```
Input: Transition functions \Delta, initial state S^0 from 0 = reached = S^0;

repeat

i \leftarrow i + 1;

to^i \leftarrow \operatorname{Img}(\Delta, from^{i-1});

new^i \leftarrow to^i \cap \overline{reached};

reached \leftarrow reached \cup new^i;

from^i \leftarrow new^i;

until new^i == 0;

return reached
```

Image function, states intersection, union and complement in this algorithm will be implemented in computer algebra and algebraic geometry.

### Implement Image Function in Computer Algebra

- State variables (word-level) S, T and sets of states such as from<sup>i</sup>, to<sup>i</sup> can always be represented as varieties of ideals.
- ullet Boolean operators can always be converted to operations in  $\mathbb{F}_2$

| Boolean operator | operation in $\mathbb{F}_2$ |  |  |
|------------------|-----------------------------|--|--|
| ā                | 1 + a                       |  |  |
| a and b          | ab                          |  |  |
| a or b           | a+b+ab                      |  |  |
| $a \oplus b$     | a+b                         |  |  |

Table : Some Boolean operators and corresponding operations in  $\mathbb{F}_2$ 

 An elimination ideal can be built from circuit gates, pseudo input/output word definition and vanishing polynomials

## Implement Image Function in Computer Algebra(2)

Elimination ideal to model Image function for example STG:

Transition functions (bit-level):

$$f_1$$
:  $t_0 - (\overline{x} \text{ and } \overline{s_0} \text{ and } \overline{s_1}) \text{ or } (s_0 \text{ and } s_1)$   
 $f_2$ :  $t_1 - (\overline{s_0} \text{ and } x) \text{ or } (s_0 \text{ and } \overline{s_1})$ 

Word variable definitions:

$$f_3: S - s_0 - s_1 \alpha$$
  
 $f_4: T - t_0 - t_1 \alpha$ 

• Vanishing polynomials:  $f_6: x^2 - x$ ;  $f_7: t_0^2 - t_0$ ;  $f_8: t_1^2 - t_1$ ;  $f_9: S^4 - S$ ;  $f_{10}: s_0^2 - s_0$ ;  $f_{11}: s_1^2 - s_1$ ;  $f_{12}: T^4 - T$ 

Add the current state (for example, add initial states in first iteration  $f_5:S$ ), compute Gröbner basis for ideal  $J=\langle f_1,\ldots,f_{12}\rangle$  under elimination term order

intermediate bit-level signals > bit-level primary inputs/ outputs > S > T

result will include a univariate polynomial about next states T.

## Algebraic Geometry Concepts

#### Definition

(**Sum of Ideals**) If I and J are ideals in  $k[x_1, \ldots, x_n]$ , then the **sum** of I and J, denoted by I + J, is the set

$$I+J=\{f+g\mid f\in I \text{ and } g\in J\}.$$

Furthermore, if  $I = \langle f_1, \dots, f_r \rangle$  and  $J = \langle g_1, \dots, g_s \rangle$ , then  $I + J = \langle f_1, \dots, f_r, g_1, \dots, g_s \rangle$ .

#### Definition

(**Product of Ideals**) If I and J are ideals in  $k[x_1, \ldots, x_n]$ , then the **product** of I and J, denoted by  $I \cdot J$ , is defined to be the ideal generated by all polynomials  $f \cdot g$  where  $f \in I$  and  $g \in J$ . Furthermore, let  $I = \langle f_1, \ldots, f_r \rangle$  and  $J = \langle g_1, \ldots, g_s \rangle$ , then

$$I \cdot J = \langle f_i g_i \mid 1 \leq i \leq r, 1 \leq j \leq s \rangle.$$

## Algebraic Geometry Concepts(2)

#### Definition

(**Quotient of Ideals**) If I and J are ideals in  $k[x_1, \ldots, x_n]$ , then I: J is the set

$$\{f \in k[x_1, \ldots, x_n] \mid f \cdot g \in I, \forall g \in J\}$$

and is called the **ideal quotient** of I by J.

Concepts are adopted by following theorems:

#### Theorem

If I and J are ideals in  $k[x_1, ..., x_n]$ , then  $\mathbf{V}(I+J) = \mathbf{V}(I) \cap \mathbf{V}(J)$  and  $\mathbf{V}(I \cdot J) = \mathbf{V}(I) \cup \mathbf{V}(J)$ .

#### Theorem

If I, J are ideals with only one generator, then  $\mathbf{V}(I:J) = \mathbf{V}(I) - \mathbf{V}(J)$ .

### New Traversal Algorithm using Algebraic Geometry

### ALGORITHM 2: Algebraic Geometry based Traversal Algorithm

```
Input: Input-output circuit characteristic polynomial ideal I_{ckt}, initial state polynomial \mathcal{F}(S) from<sup>0</sup> = reached = \mathcal{F}(S); repeat i \leftarrow i+1; to^i \leftarrow \mathsf{GB} \ \mathsf{w/} \ \mathsf{elimination} \ \mathsf{term} \ \mathsf{order} \langle I_{ckt}, from^{i-1} \rangle; new^i \leftarrow \mathsf{generator} \ \mathsf{of} \ \langle to^i \rangle + (\langle T^4 - T \rangle : \langle reached \rangle); reached \leftarrow \mathsf{generator} \ \mathsf{of} \ \langle reached \rangle \cdot \langle new^i \rangle; from^i \leftarrow new^i (S \setminus T); until \ new^i == 1; return \ reached
```

## Example Executing New Traversal Algorithm

State encodings are mapped to varieties of ideals, e.g.:

$$\{00,01\} \to \{0,1\} = V_{\mathbb{F}_{2^2}}(\langle T^2 + T \rangle)$$
  
 $\{01,10,11\} \to \{1,\alpha,1+\alpha\} = V_{\mathbb{F}_{2^2}}(\langle T^3 + 1 \rangle)$ 

- Iteration 0: Assume initial state is  $\{00\} \rightarrow \{0\}$
- Iteration 1:  $reached = from^0 = 0 = V_{\mathbb{F}_{2^2}}(\langle S \rangle), to^1 = \{1, \alpha\} = V_{\mathbb{F}_{2^2}}(\langle T^2 + (1 + \alpha)T + \alpha \rangle), new^1 = to^1, reached = \{0, 1, \alpha\} = V_{\mathbb{F}_{2^2}}(\langle T^3 + (1 + \alpha)T^2 + \alpha T \rangle)$
- Iteration 2:  $from^1 = new^1(S \setminus T) = \{1, \alpha\} = V_{\mathbb{F}_{2^2}}(\langle S^2 + (1+\alpha)S + \alpha \rangle), to^2 = \{0, \alpha\} = V_{\mathbb{F}_{2^2}}(\langle T^2 + \alpha T \rangle), new^2 = 1, Terminate$
- Return reached =  $\{0, 1, \alpha\} = V_{\mathbb{F}_{2^2}}(\langle T^3 + (1+\alpha)T^2 + \alpha T \rangle)$

## An Application – Sequential Galois Arithmetic Circuits Verification



Figure : 5-bit Normal Basis Angew's Sequential Multiplier with Parallel Output (SMPO)

#### SMPO Protocol

- Initial  $R_0 = R_1 = R_2 = R_3 = R_4 = 0$
- Clock 1  $R_0 = a_1b_0, R_1 = b_2(a_1 + a_4), R_2 = b_4(a_0 + a_1), R_3 = b_1(a_4 + a_0), R_4 = b_3(a_1 + a_3)$
- Clock 2  $R_0 = b_3(a_1 + a_3) + a_0b_4, R_1 = a_1b_0 + b_1(a_0 + a_3), R_2 = b_2(a_1 + a_4) + b_3(a_4 + a_0), R_3 = b_4(a_0 + a_1) + b_0(a_3 + a_4), R_4 = b_1(a_4 + a_0) + b_2(a_0 + a_2)$
- . . .
- Clock 5  $R_0 = c_0, R_1 = c_1, R_2 = c_2, R_3 = c_3, R_4 = c_4$ , i.e.  $R = A \cdot B$ .

### Compose Elimination Ideal for 5-bit SMPO

An elimination ideal for the first clock cycle:

Gate descriptions:

$$a_1 + a_4 + c_1$$
,  $a_1 + a_0 + c_2$ ,  $a_0 + a_4 + c_3$ ,  $a_1 + a_3 + c_4$ ,  $a_1b_0 + r_4 + R_0$ ,  $c_1b_2 + r_0 + R_1$ ,  $c_2b_4 + r_1 + R_2$ ,  $c_3b_1 + r_2 + R_3$ ,  $c_4b_3 + r_3 + R_4$ ;

- Word-level variables:  $A + a_0\alpha^5 + a_1\alpha^{10} + a_2\alpha^{20} + a_3\alpha^9 + a_4\alpha^{18}, B + b_0\alpha^5 + b_1\alpha^{10} + b_2\alpha^{20} + b_3\alpha^9 + b_4\alpha^{18}, r + r_0\alpha^5 + r_1\alpha^{10} + r_2\alpha^{20} + r_3\alpha^9 + r_4\alpha^{18}, R + R_0\alpha^5 + R_1\alpha^{10} + R_2\alpha^{20} + R_3\alpha^9 + R_4\alpha^{18};$
- Vanishing polynomials:  $a_0^2 + a_0$ ,  $a_1^2 + a_1$ ,  $a_2^2 + a_2$ ,  $a_3^2 + a_3$ ,  $a_4^2 + a_4$ ,  $b_0^2 + b_0$ ,  $b_1^2 + b_1$ ,  $b_2^2 + b_2$ ,  $b_3^2 + b_3$ ,  $b_4^2 + b_4$ ,  $r_0^2 + r_0$ ,  $r_1^2 + r_1$ ,  $r_2^2 + r_2$ ,  $r_3^2 + r_3$ ,  $r_4^2 + r_4$ ,  $R_0^2 + R_0$ ,  $R_1^2 + R_1$ ,  $R_2^2 + R_2$ ,  $R_3^2 + R_3$ ,  $R_4^2 + R_4$ ,  $c_1^2 + c_1$ ,  $c_2^2 + c_2$ ,  $c_3^2 + c_3$ ,  $c_4^2 + c_4$ ,  $A^{32} + A$ ,  $B^{32} + B$ ,  $r^{32} + r$ ,  $R^{32} + R$ ;
- Feedback input: r<sub>in</sub>.

### Fast Abstraction without GB computation

#### **Definition**

A lexicographic order constrained by following relation  $>_r$ : "circuit variables ordered reverse topologically" > "designated word-level output" > "word-level inputs" is called the *Refined Abstraction Term Order (RATO)*.

### Example

The elimination ideal for 5-bit SMPO could be rewritten under RATO:

$$(R_0, R_1, R_2, R_3, R_4) > (r_0, r_1, r_2, r_3, r_4)$$
  
>  $(c_1, c_2, c_3, c_4, b_0, b_1, b_2, b_3, b_4)$   
>  $(a_0, a_1, a_2, a_3, a_4) > R > r > (A, B)$ 

Under RATO, most polynomials have relatively prime leading terms/monomials (which means  $Spoly \xrightarrow{J+J_0} + 0$ ) except one pair: word-level polynomial corresponding to outputs and its leading bit-level variable's gate description polynomial.

## Example

Candidate pair for 5-bit SMPO is  $(f_w, f_g), f_w = R_0 + r_4 + b_0 \cdot a_1, f_g = R_0 \alpha^5 + R_1 \alpha^{10} + R_2 \alpha^{20} + R_3 \alpha^9 + R_4 \alpha^{18} + R$ . Result after reduction is an abstraction:

$$Spoly(f_{w}, f_{g}) \xrightarrow{J+J_{0}} + r_{1} + (\alpha)r_{2} + (\alpha^{4} + \alpha^{2})r_{3} + (\alpha^{3} + \alpha^{2})r_{4} + (\alpha^{3})b_{1}a_{1} + (\alpha^{4} + \alpha^{2})b_{1}a_{2} + (\alpha^{3} + \alpha + 1)b_{1}a_{3} + (\alpha^{3} + \alpha)b_{1}a_{4} + (\alpha + 1)b_{1}A + (\alpha^{4} + \alpha^{2} + \alpha)b_{2}a_{1} + (\alpha^{4} + \alpha^{3} + \alpha^{2} + \alpha)b_{2}a_{4} + (\alpha^{3} + \alpha^{2} + 1)b_{3}a_{1} + (\alpha)b_{3}a_{3} + (\alpha^{2} + \alpha + 1)b_{4}a_{1} + (\alpha + 1)b_{4}a_{2} + (\alpha^{4} + \alpha^{2})b_{4}a_{3} + (\alpha^{4} + \alpha^{3} + \alpha + 1)b_{4}a_{4} + (\alpha^{3} + 1)b_{4}A + (\alpha^{4} + \alpha^{3} + \alpha^{2} + 1)a_{1}B + (\alpha^{4} + \alpha^{3} + \alpha^{2} + 1)R$$

## Bit-Level Variable Substitution (BLVS)

Use Gaussian elimination style approach, eliminate other bit-level variables except for one.

### Example

**Objective**: Abstract polynomial  $a_i + \mathcal{G}_i(A)$  from

 $f_0: a_0\alpha^5+a_1\alpha^{10}+a_2\alpha^{20}+a_3\alpha^9+a_4\alpha^{18}+A$ . Eliminate variable  $a_0$  by operation

$$f_1 = f_0 \times \alpha^5 + f_0^2 :$$

$$a_1 + (\alpha)a_2 + (\alpha^4 + \alpha^2)a_3 + (\alpha^3 + \alpha^2)a_4 + (\alpha^4 + \alpha^3 + \alpha^2 + 1)A^2 + (\alpha^2 + \alpha)A$$

Recursively eliminate  $a_1$  from  $f_1$ ,  $a_2$  from  $f_2$ , etc.

## Bit-Level Variable Substitution (BLVS) (2)

#### Example

For 5-bit SMPO example, the result is

$$\begin{cases} a_0 &= (\alpha+1)A^{16} + (\alpha^4 + \alpha^3 + \alpha)A^8 + (\alpha^3 + \alpha^2)A^4 \\ &+ (\alpha^4 + 1)A^2 + (\alpha^2 + 1)A \end{cases}$$

$$a_1 &= (\alpha^2 + 1)A^{16} + (\alpha + 1)A^8 + (\alpha^4 + \alpha^3 + \alpha)A^4 \\ &+ (\alpha^3 + \alpha^2)A^2 + (\alpha^4 + 1)A \end{cases}$$

$$a_2 &= (\alpha^4 + 1)A^{16} + (\alpha^2 + 1)A^8 + (\alpha + 1)A^4 \\ &+ (\alpha^4 + \alpha^3 + \alpha)A^2 + (\alpha^3 + \alpha^2)A \end{cases}$$

$$a_3 &= (\alpha^3 + \alpha^2)A^{16} + (\alpha^4 + 1)A^8 + (\alpha^2 + 1)A^4 \\ &+ (\alpha + 1)A^2 + (\alpha^4 + \alpha^3 + \alpha)A \end{cases}$$

$$a_4 &= (\alpha^4 + \alpha^3 + \alpha)A^{16} + (\alpha^3 + \alpha^2)A^8 + (\alpha^4 + 1)A^4 \\ &+ (\alpha^2 + 1)A^2 + (\alpha + 1)A \end{cases}$$

By substitution of bit-level variables in remainder from RATO, get next state abstraction  $R + \mathcal{F}(A, B)$ 

## Results Comparing to SAT/ABC/BDD

|           | Word size of the operands k-bits |      |        |    |  |  |  |
|-----------|----------------------------------|------|--------|----|--|--|--|
| Solver    | 11                               | 18   | 23     | 33 |  |  |  |
| Lingeling | 593                              | TO   | TO     | TO |  |  |  |
| ABC       | 6.24                             | TO   | TO     | TO |  |  |  |
| BDD       | 0.1                              | 11.7 | 1002.4 | TO |  |  |  |

Table : Runtime for verification of bug-free SMPO circuits over  $\mathbb{F}_{2^k}$  for SAT, ABC and BDD based methods. TO= timeout of 14 hrs

### Results from our approach

| Operand size k    | 36    | 66    | 82    | 89    | 100    |
|-------------------|-------|-------|-------|-------|--------|
| #variables        | 183   | 333   | 413   | 448   | 503    |
| #polynomials      | 2700  | 8910  | 13694 | 16109 | 20300  |
| #terms            | 12996 | 43626 | 67322 | 79299 | 100100 |
| Runtime(bug-free) | 113   | 3673  | 15117 | 28986 | 50692  |
| Runtime(buggy)    | 118   | 4320  | 15226 | 31571 | 58861  |

Table : Runtime (given in seconds) for verification of bug-free and buggy Angew's SMPO circuits over  $\mathbb{F}_{2^k}$  using our approach