α) Η εξίσωση (1) είναι της μορφής $x^2+y^2+Ax+By+\Gamma=0$, για να παριστάνει κύκλο μόνο όταν $A^2+B^2-4\Gamma>0$, όπου A=-4κ, B=-2κ και $\Gamma=4$.

Άρα
$$A^2 + B^2 - 4\Gamma = 16\kappa^2 + 4\kappa^2 - 16 = 20\kappa^2 - 16$$
 και

$$20\kappa^2 - 16 \ > 0 \Longleftrightarrow \kappa^2 > \frac{4}{5} \Longleftrightarrow |\kappa| > \frac{2\sqrt{5}}{5} \Longleftrightarrow \kappa < -\frac{2\sqrt{5}}{5} \ \acute{\eta} \ \kappa > \frac{2\sqrt{5}}{5}.$$

β) Η εξίσωση (1) είναι μία παραμετρική εξίσωση με παράμετρο κ και κ $\epsilon\left(-\infty,-\frac{2\sqrt{5}}{5}\right)$ U $\left(\frac{2\sqrt{5}}{5},+\infty\right)$.

Για κάθε κ $\epsilon\left(-\infty,-\frac{2\sqrt{5}}{5}\right)$ U $(\frac{2\sqrt{5}}{5},+\infty)$ έχουμε έναν κύκλο με κέντρο $K\left(-\frac{A}{2},-\frac{B}{2}\right)$, δηλαδή με $K(2\kappa,\kappa)$ και ακτίνα $\rho=\frac{\sqrt{A^2+B^2-4\Gamma}}{2}=\frac{\sqrt{20\kappa^2-16}}{2}.$

γ) Τα κέντρα των κύκλων που προκύπτουν από την (1) παραμετρική εξίσωση, από το ερώτημα β) έχουν συντεταγμένες $(2\kappa,\kappa)$, δηλαδή $x=2\kappa$ και $y=\kappa$.

Άρα $x=2y \Leftrightarrow x-2y=0$ (2), δηλαδή τα κέντρα ανήκουν στην εξίσωση ευθείας (2).

δ) Για $\kappa=1$ η εξίσωση (1) γίνεται $x^2+y^2-4x-2y+4=0$, με κέντρο K(2,1) και ακτίνα $\rho=1$.

Σε ορθοκανονικό σύστημα αξόνων σχεδιάζουμε τον παραπάνω κύκλο.

Η ευθεία που είναι εφαπτομένη στον κύκλο στο σημείο Γ είναι η ευθεία που είναι κάθετη στο τμήμα $K\Gamma=\rho$ και παράλληλη στον άξονα x'x, γιατί K και Γ έχουν την ίδια τετμημένη. Άρα έχει εξίσωση y=2.