Department of Computer Science Kasetsart University Lab 7 Periodic noise Asst.Prof.Dr. Pakaket Wattuya

2D Discrete Fourier Transform

MATLAB functions	Example
[M,N] = size(X)	Return the sizes of each dimension of array X in a vector $[M,N]$.
Y = fftshift(X)	Shift zero-frequency component to center of spectrum.
X = ifftshift(Y)	Inverse FFT shift
imshow(I,[])	displays the grayscale image I, scaling the display based on the range of pixel values in I

Periodic noise generation

$$f(x, y) = 127 + (A \cdot \cos\left[\frac{2\pi(ux + vy)}{M}\right] + A \cdot \sin\left[\frac{2\pi(ux + vy)}{N}\right])$$

where u and v are x-axis and y-axis spatial frequency parameters, respectively; A is an amplitude; M and N is a dimension of input image.

'freehdw_noisy.bmp': u = 60, v = 40, A = 64

'jupitergray_noisy.bmp': u = 40, v = 0, A = 64u = 0, v = 40, A = 64

```
READ INPUT: imNoisy = imread('freehdw_noisy.bmp');
fftR = fft2(imNoisy);
figure(1); imshow(log(abs(fftshift(fftR))),[]);
```

PERIODIC NOISE PATTERN

brightSpikes = fft_noise_amplitude > amplitudeThreshold;

figure(); imshow(fftshift(brightSpikes),[]);