RACINES CARRÉES

I) RACINE CARRÉE D'UN NOMBRE POSITIF

1) Rappels

• Le carré d'un nombre est toujours positif :

$$(-5)^2 = 25$$
 ; $(10^{-1})^2 =$; $(-10^{-5})^2 =$

• Deux nombres opposés ont le même carré:

$$(-5)^2 = 5^2$$
 ; $(-x)^2 =$

$$(3-x)^2 =$$

Quelques « carrés parfaits » :0; 1;

2) Diagonale d'un rectangle

Ex : Soit ABCD un rectangle tel que : AB = 3 et BC = 2.

Déterminons AC:

ABCD est un rectangle, donc le triangle ABC est rectangle en B. Donc, d'après le théorème de Pythagore dans ce triangle :

$$AC^2 =$$

AC est donc le nombre positif dont le carré est

Ce nombre est compris entre 3 et 4 car $3^2 = 9$ et $4^2 = 16$ On le note $\sqrt{13}$

D'après la calculatrice $\sqrt{13} \approx 3.605551275$

3) Définition:

La racine carrée d'un nombre positif a est le nombre positif dont le carré est a. On la note \sqrt{a} .

Remarques:

- $\sqrt{0} = 1$; $\sqrt{1} = 1$; $\sqrt{4} = 2$; $\sqrt{9} = 3$; $\sqrt{16} = 4$; ...
- A savoir par cœur : $\sqrt{2} \approx 1,414$ et $\sqrt{3} \approx 1,732$
- $\sqrt{-5}$ n'est pas défini car aucun nombre n'a pour carré -5.
- a doit être positif et \sqrt{a} est toujours positif.
- L'équation $x^2=25$ admet deux solutions : $\sqrt{25}$ est celle des deux solutions qui est positive.

II) RÈGLES DE CALCUL

1) Racine et carré

• Si $a \ge 0$ alors $(\sqrt{a})^2 =$

• Si $a \ge 0$ alors $\sqrt{(a^2)} =$, mais si $a \le 0$ alors $\sqrt{(a^2)} =$ Ex: $\sqrt{(2^2)} =$, mais $\sqrt{((-2)^2)} =$

2) Somme ou différence

- Il n'y a malheureusement aucune règle générale permettant de simplifier $\sqrt{a+b}$ ou $\sqrt{a-b}$!
- En revanche, si $a \ge 0$ et $b \ge 0$ alors $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ Ex : $\sqrt{9+4} =$, et $\sqrt{9} + \sqrt{4} =$

Démonstration:

a et b étant positifs, on a :

$$(\sqrt{a+b})^2 = (\sqrt{a+\sqrt{b}})^2 =$$

or une racine est toujours positive ou nulle donc:

donc:

or des nombres positifs sont dans le même ordre que leurs carrés donc :

3) Produit

• Si
$$a \ge 0$$
 et $b \ge 0$ alors $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$
Ex : $\sqrt{9 \times 4} =$, et $\sqrt{9} \times \sqrt{4} =$

Démonstration:

a et b étant positifs, on a :

$$(\sqrt{a \times b})^2 = (\sqrt{a} \times \sqrt{b})^2 =$$

donc:

or des nombres positifs qui ont le même carré sont égaux donc :

4) Quotient

• Si
$$a \ge 0$$
 et $b > 0$ alors $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Démonstration:

a et b étant positifs et b non nul, on a :

$$\left(\sqrt{\frac{a}{b}}\right)^2 = \left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{1}{\sqrt{a}}$$

donc:

or des nombres positifs qui ont le même carré sont égaux

donc:

p26: 103, 105, 108 p28: 135 p30: 155

p79:28 p80:54 p81:58

p82:79

III) DANS LES EXERCICES

1) Mettre sous la forme $a\sqrt{b}$

Ex :
$$A = \sqrt{300} =$$

2) Réduire

Ex:
$$B = \sqrt{18} + \sqrt{50} - \sqrt{32} + \sqrt{200}$$

3) Écrire sans racine au dénominateur

Ex :
$$C = \frac{1}{\sqrt{3}} =$$

Ex:
$$D = \frac{\sqrt{2}}{\sqrt{2}-1} =$$

Remarque : Ôter les racines au dénominateur ne simplifie pas toujours l'écriture de l'expression mais permet d'avoir facilement un ordre de

grandeur du résultat : $C \approx$ et $D \approx$

p49: 16, 32, 33

p26:104

p28:138

p30:157,158

algo

p26:109

p93: TP (Héron)