+ 0 0 0

Conjugate

Plus

+ y is the conjugate of y . For example, +3j4 is 3j_4 .

+ is defined as in elementary arithmetic, and is extended to complex numbers as usual.

Verb

- 0 0 0

Negate

Minus

-y is the negative of y . That is, it is defined as 0 - y . Thus, -2 0 _2 is _2 0 2 .

- is defined as in elementary arithmetic, and is extended to complex numbers as usual.

Verb

Signum

Times

*y is _1 if y is negative, 0 if it is zero, 1 if it is positive; more generally, *y is the intersection of the unit circle with the line from the origin through the argument y in the complex plane.

* denotes multiplication, defined as in elementary mathematics and extended to complex numbers as usual.

Verb

% 0 0 0

Reciprocal

Divided by

% y is the reciprocal of y , that is, 1%y .

x % y is division of x by y as defined in elementary math, except that 0%0 is 0 .

Verb

Self-Classify

Equal

=y classifies x=y is 1 if xthe items of is equal to the nub of y y , and is (that is, ~.y) according to equality with the items of y , producing a boolean table of shape #~.y by #y .

otherwise 0 .

Verb

> 0 0 0

Open

Larger Than

Open is the inverse of box, that is, ><y is y . When applied to an open array (that has no boxed elements). open has no effect. Opened atoms are brought to a common shape.

x>y is 1 if x is tolerantly larger than y . Tolerance t is provided by >!.t .

Verb

< _ 0 0

Box

Less Than

<y is an atomic encoding of y . The less than y . result has rank 0, and is tolerance t . $decoded\ by\ >\ .$

x<y is 1 if x is tolerantly <!.t uses

Verb

+. 0 0 0

Real / Imaginary GCD (Or)

+.y yields a two-element list of the real and imaginary parts of its argument. For 3 is 30.

x+.y is the greatest common divisor of x and y . If the arguments are boolean (0 or 1), the functions +. and example, +.3j5 *. are equivalent is 3 5, and +. to logical or and and. The function -. similarly restricted is not.

Verb

Nub Sieve Not Equal

~:y is the $x\sim:y$ is 1 if xboolean list b is tolerantly such that b#y unequal to y . is the nub of у.

Verb

0 0 0

Magnitude

Residue

|y| == %:y*+y.

The familiar use of residue is in determining the remainder on dividing a non-negative integer by a positive.

Verb

1

Tally

Copy

#y is the number of

If the arguments have an equal items in y . number of items, then x#y copies +/x items from y, with $i\{x$ repetitions of item $i{y}$. Otherwise, if one is an atom it is repeated to make the item count of the arguments eaual.

Verb

1

Integers

Index Of

The shape of i.y is ly , and its atoms are the first */ly non-negative integers. A neaative element in y causes reversal of the atoms along the corresponding axis.

Verb

If rix is the rank of an item of x, then the shape of the result of x i. y is (-rix)}. \$y . Each atom of the result is either #x or the index of the first occurrence among the items of x of the corresponding rix-cell of y .

000

Roll

? y yields a uniform random selection from the population i.y if y is a positive integer, or from the interval of numbers greater than 0 and less than 1 if y is 0.

Deal

x?yisa list of x items randomly chosen without repetition from i.y .

Verb

Reverse

Rotate

 y reverses the order of the items of у.

xl.y rotates successive axes of y by successive elements of х.

Verb

Head

{.y selects the leading item of y , or an item of fills if y has no items; that is, {.y ==

0{1{.y .

If x is an atom, $x{.y}$ takes from y an interval of Ix items; beginning at the front if xis positive, ending at the tail if it is

negative.

Take

Verb

m/ u/

Insert

u/y applies the dyad u between the items of y . m/y inserts successive verbs from the gerund m between items of y, extending m cyclically as required. Thus, +`*/i.6 is 0+1*2+3*4+5 .

Table

If x and y are numeric lists, then x */ y is their multiplication table.

Adverb

m\ u\ _

Prefix

u\y has #y items resulting from applying u to each of the prefixes $k{\{.y\ ,\ for\ k\ from\ }$ 1 to #y . m\y applies successive verbs from the gerund m to the prefixes of y , extending m cyclically as required.

Adverb

Infix

If x>:0 , the items of x u\ y result from applying u to each infix of length x . If x<0 , u is applied to nonoverlapping infixes of length Ix , including any
final shard. x m∖ y applies successive verbs from the gerund ${\bf m}$ to the infixes of y , extending m cyclically as required.

u~ _ ru lu

Reflexive

u~ y == y u y . For example, $^{\sim}$ 3 is 27, and +/ ∼ i. n is an

addition table.

 \sim commutes or crosses connections to arguments: x u~ y == y u x.

Passive

Adverb