CHAPITRE

1

CORPS DES NOMBRES RÉELS

Nous admettrons que, devant les insuffisances du corps $\mathbb Q$, on a su définir un nouveau corps appelé «corps des nombres réels» et noté $\mathbb R$, contenant $\mathbb Q$ comme sous-corps et encore muni d'une relation d'ordre prolongeant celle définie sur $\mathbb Q$. Nous allons en énumérer les propriétés et montrer qu'elles se retrouvent aussi dans d'autres ensembles.

1.1 Ensembles usuels

§1 Opérations algébriques

Il y a tout d'abord un groupe de formule purement algébriques relatives aux deux opérations fondamentales ; elle s'appliquent aux nombres rationnels, aux nombres réels et aux nombres complexes et expriment que, muni de ces deux opérations, $\mathbb R$ ou $\mathbb C$ est, comme $\mathbb Q$, un corps comme on dit en algèbre :

l'addition vérifie les règles suivantes :

Axiome 1

L'ensemble $\mathbb R$ est muni d'une première loi de composition interne, l'**addition** notée « + », qui possède les propriétés suivantes:

• L'addition des nombres réels est associative

$$\forall (x, y, z) \in \mathbb{R}^3, (x + y) + z = x + (y + z).$$

On note cette somme x + y + z.

• L'ensemble ℝ des nombres réels possède un **élément neutre pour l'addition**. Cet élément est noté 0:

$$\forall x \in \mathbb{R}, x + 0 = 0 + x = x.$$

• Pour tout nombre réel x, il existe un nombre réel x' tel que x + x' = 0 (x' est unique).

$$\forall x \in \mathbb{R}, \exists x' \in \mathbb{R}, x + x' = 0.$$

Le nombre x' est noté -x et est appelé l'**opposé** de x.

• La loi de composition interne « + » est **commutative** dans \mathbb{R} :

$$\forall (x, y) \in \mathbb{R}^2, x + y = y + x.$$

L'ensemble \mathbb{R} est muni d'une second loi de composition interne, la **multiplication**, notée ou bien «×» ou bien, plus simplement par juxtaposition. À tout couple (x, y) de nombres réels, cette loi fait correspondre le nombre réel $z = x \times y = xy$.

• La multiplications des nombres réels est associative.

$$\forall (x, y, z) \in \mathbb{R}^3, x(yz) = (xy)z = xyz.$$

• Le nombre réel 1, qui est différent de 0, est neutre pour la multiplication.

$$\forall x \in \mathbb{R}, x \times 1 = 1 \times x = x.$$

• Tout nombre réel sauf 0 admet un inverse pour la multiplication.

$$\forall x \in \mathbb{R} \setminus \{0\}, \exists x' \in \mathbb{R}, xx' = x'x = 1.$$

x' est appelé l'**inverse** de x; on le note $\frac{1}{x}$ ou x^{-1} .

• La multiplication dans \mathbb{R} est une opération **commutative**.

$$\forall (x, y) \in \mathbb{R}^2, xy = yx.$$

De plus, ces propriétés sont liées par la propriété de **distributivité** de la la multiplication par rapport à l'addition :

$$\forall (x, y, z) \in \mathbb{R}^3, x.(y + z) = x.y + x.z \text{ et } (x + y).z = x.z + y.z.$$

Notation

$$\mathbb{R}^* = \mathbb{R} \setminus \{0\}.$$

Définition 2

Dans l'ensemble $\mathbb R$ des nombre réels, l'opération réciproque de l'addition est définie par l'application

$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}
(a,b) \mapsto b + (-a)$$

On note cette loi de composition interne par le signe «-», et on l'appelle la soustraction.

Remarque

- 1. La loi «+» est associative. La loi «-» n'est pas associative.
- **2.** La loi «+» est commutative. La loi «-» n'est pas commutative.
- 3. La loi «+» admet dans ℝ un élément neutre. La loi «−» n'admet pas dans ℝ d'élément neutre.

Définition 3

$$\begin{array}{ccc}
\mathbb{R} \times \mathbb{R}^* & \to & \mathbb{R} \\
(a,b) & \mapsto & a \times \frac{1}{b}
\end{array}$$

Le **quotient** x de a par b est noté $x = \frac{a}{b} = a/b$.

Théorème 4

La nullité du produit de deux nombres réels implique celle d'un facteur au moins:

$$\forall (x, y) \in \mathbb{R}^2, xy = 0 \iff (x = 0 \text{ ou } y = 0).$$

Plus généralement, pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un au moins des facteurs soit nul.

Démonstration. Supposons x = 0, puisque x = 0 = 0 + 0 = x + x,

$$xy = (x + x)y = xy + xy$$

et donc

$$xy - (xy) = 0 = xy + xy - (xy) = xy.$$

Ainsi xy = 0. En supposant y = 0, on aurait démontré de même que xy = 0. Réciproquement, supposons

$$x \neq 0$$
 et $xy = 0$;

le nombre x, n'étant pas nul, admet un inverse $\frac{1}{x}$; xy étant nul, on a

$$\frac{1}{x}(xy) = \frac{1}{x} \times 0 = 0;$$

le premier membre devient par associativité:

$$\left(\frac{1}{x} \times x\right) \times y = 1 \times y = y.$$

On a donc y = 0. En supposant $y \neq 0$ et xy = 0, on aurait démontré de même que x = 0.

Exemple 5

Déterminer les réels $x \in \mathbb{R}$ vérifiant

$$x^2 - 5x + 6 = 0$$
.

On peut écrire

$$x^2 - 5x + 6 = (x - 2)(x - 3).$$

Ainsi

$$x^{2} - 5x + 6 = 0 \iff (x - 2)(x - 3) = 0$$
$$\iff \boxed{x - 2 = 0 \text{ ou } x - 3 = 0}$$

§2 Les entiers naturels

Parmi les nombres réels, les premiers que l'on étudie sont les nombres entiers naturels, qui servent à dénombrer les ensembles physiques, à «compter».

Définition 6

On désigne par N l'ensemble des entiers naturels:

$$\mathbb{N} = \{ 0, 1, 2, 3, \dots \}.$$

Proposition 7

L'addition des entiers possède les propriétés suivantes:

- 1. L'addition est une loi de composition interne dans \mathbb{N} . Si m et n sont deux entiers naturels; on sait que leur somme est une entier $m + n \in \mathbb{N}$.
- **2.** L'addition étant associative dans \mathbb{R} , elle est a fortiori associative dans \mathbb{N} .

$$\forall (x, y, z) \in \mathbb{N}^3, (x + y) + z = x + (y + z) = x + y + z.$$

- 3. L'addition dans \mathbb{R} admet le nombre 0 comme élément neutre; puisque 0 est une entier naturel, il est l'élément neutre pour l'addition dans \mathbb{N} .
- **4.** L'addition dans \mathbb{N} est commutative puisque, dans \mathbb{R} , elle est commutative.

La multiplication des entiers possède les propriétés suivantes:

- 1. La multiplication est une loi de composition interne dans \mathbb{N} . Si m et n sont deux entiers naturels; on sait que leur produit est une entier $m \times n \in \mathbb{N}$.
- **2.** La multiplication étant associative dans \mathbb{R} , elle est a fortiori associative dans \mathbb{N} .

$$\forall (x, y, z) \in \mathbb{N}^3, (xy)z = x(yz) = xyz.$$

- 3. La multiplication dans \mathbb{R} admet le nombre 1 comme élément neutre; puisque 1 est une entier naturel, il est l'élément neutre pour la multiplication dans \mathbb{N} .
- **4.** La multiplication dans \mathbb{N} est commutative puisque, dans \mathbb{R} , elle est commutative.
- 5. La multiplication dans $\mathbb N$ est distributive par rapport à l'addition, puisqu'elle l'est dans $\mathbb R$

$$\forall (x, y, z) \in \mathbb{N}^3, x.(y + z) = x.y + x.z \ et (x + y).z = x.z + y.z.$$

Remarque

L'opposé d'un nombre réel x est le le nombre -x. Soit n un entier naturel non nul; le nombre -n n'appartient pas à \mathbb{N} . L'ensemble \mathbb{N} possède donc des éléments (par exemple le nombre 2) qui n'admettent pas d'opposé dans \mathbb{N} .

Proposition 8

- 1. Le seul élément ayant un opposé pour l'addition dans \mathbb{N} est 0.
- 2. Le seul élément ayant un inverse pour la multiplication dans \mathbb{N} est 1.

Notation

 $\mathbb{N}^{\star} = \mathbb{N} \setminus \{0\}.$

§3 Les entiers relatifs

Définition 9

On désigne par Z l'ensemble des entiers relatifs

$$\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, -3, \dots \}.$$

Proposition 10

- 1. L'addition est une loi de composition interne dans \mathbb{Z} .
- **2.** L'addition est associative dans \mathbb{Z} .
- 3. L'addition admet 0, élément de \mathbb{Z} comme élément neutre.
- **4.** L'addition est commutative dans \mathbb{Z} .
- 5. Tout entier relatif admet pour opposé un entier relatif.
- **6.** La multiplication est une loi de composition interne dans \mathbb{Z} .
- 7. La multiplication est associative dans \mathbb{Z} .
- 8. La multiplication admet 1, élément de \mathbb{Z} comme élément neutre.
- **9.** La multiplication est commutative dans \mathbb{Z} .
- 10. La multiplication dans \mathbb{Z} est distributive par rapport à l'addition.

Proposition 11

Les seuls éléments ayant un inverse pour la multiplication dans \mathbb{Z} sont 1 et -1.

§4 Les nombres rationnels

L'opération inverse de la multiplication dans \mathbb{Z} (division) n'est pas toujours définie : $\frac{2}{3}$ n'a pas de sens dans \mathbb{Z} . L'introduction des nombres rationnels pallie ce défaut.

La *construction* de $\mathbb Q$ n'est pas au programme, l'important est de garder à l'esprit les principales propriétés de $\mathbb Q$. L'ensemble $\mathbb Q$ est donc supposé connu (ou construit), il contient $\mathbb Z$, et ses éléments sont appelés **nombres rationnels**.

Définition 12

L'ensemble $\mathbb Q$ des nombres rationnels est l'ensemble des nombres réels x représentés par $\frac{p}{q}$, avec p appartenant à $\mathbb Z$ et q appartenant à $\mathbb Z\setminus\{0\}$.

$$\mathbb{Q} = \left\{ \begin{array}{c|c} \frac{p}{q} & p \in \mathbb{Z} \text{ et } q \in \mathbb{Z} \setminus \{0\} \end{array} \right\}.$$

Notation

$$\mathbb{Q}^{\star} = \mathbb{Q} \setminus \{0\}.$$

À tout couple $(a, b) \in \mathbb{Z} \times \mathbb{Z}^*$ correspond un nombre rationnel écrit sous la forme de **fraction** $\frac{a}{b}$, et tout nombre rationnel s'écrit de cette manière. Une telle écriture n'est pas unique, vu la propriété suivante :

Proposition 13

Si $a, c \in \mathbb{Z}$ et $b, d \in \mathbb{Z}^*$,

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc.$$

Proposition 14

1. L'addition dans \mathbb{Q} est une loi de composition interne. On a

$$\frac{p}{q} + \frac{p'}{q'} = \frac{pq' + qp'}{qq'}.$$

- **2.** L'addition est associative, commutative dans Q.
- 3. Le nombre 0 appartient à \mathbb{Q} est élément neutre pour l'addition.
- **4.** Le nombre rationnel $\frac{p}{q}$ a pour opposé $\frac{-p}{q}$.
- 5. La multiplication dans $\mathbb Q$ est une loi de composition interne. On a

$$\frac{p}{q} \times \frac{p'}{q'} = \frac{pp'}{qq'}.$$

- **6.** La multiplication est associative, commutative dans Q.
- 7. Le nombre 1 appartient à \mathbb{Q} est élément neutre pour la multiplication.
- **8.** Tout nombre rationnel non nul a un inverse dans \mathbb{Q} . Si $p \neq 0$, $\frac{p}{q}$ a pour inverse $\frac{q}{p}$.

Remarque

On calcule dans \mathbb{Q} comme dans \mathbb{R} .

Exemple 15

Il existe des nombres réels non rationnels, appelés **irrationnels**: $\sqrt{2}$, e, π sont irrationnels. Ces exemples seront développés ultérieurement.

1.2 RELATION D'ORDRE SUR \mathbb{R}

Nous savons déjà comment comparer deux nombres écrits en représentation décimale : on regarde les signes, puis la partie principale (devant la virgule), puis éventuellement les décimales successives¹.

¹Écrivez l'algorithme en toutes lettres.

§1 Ordre total sur \mathbb{R}

Définition 16

L'ensemble \mathbb{R} est muni d'une relation notée \leq . Cette relation entre deux réel, $x \leq y$, ou $y \geq x$, se lit x est inférieur ou égal à y, x est au plus égal à y, y est supérieur ou égal à y, y est au moins égal à y.

Cette relation englobe le cas d'égalité; pour l'exclure on utilise la relation x < y qui se lit «x est strictement inférieur à y», ou «y est strictement supérieur à x».

$$x < y \iff x \le y \text{ et } x \ne y.$$

On a donc

$$x \le y \iff x < y \text{ ou } x = y.$$

Notation

$$\begin{array}{lll} \mathbb{R}_{+} = \{ \ x \in \mathbb{R} \mid x \geq 0 \ \} & \mathbb{R}_{-} = \{ \ x \in \mathbb{R} \mid x \leq 0 \ \} & \mathbb{R}^{\star} = \{ \ x \in \mathbb{R} \mid x > 0 \ \} & \mathbb{R}_{-}^{\star} = \{ \ x \in \mathbb{R} \mid x < 0 \ \} & \end{array}$$

Proposition 17

On dit que la relation \leq est une **relation d'ordre total** sur \mathbb{R} , ce qui signifie que

• La relation \leq sur \mathbb{R} est **réflexive**:

$$\forall x \in \mathbb{R}, x \leq x.$$

• La relation \leq sur \mathbb{R} est antisymétrique:

$$\forall (x, y) \in \mathbb{R}^2, (x \le y \ et \ y \le x) \implies x = y.$$

• La relation $\leq sur \mathbb{R}$ est transitive:

$$\forall (x, y, z) \in \mathbb{R}^3, (x \le y \ et \ y \le z) \implies x \le z.$$

• La relation \leq sur \mathbb{R} est totale:

$$\forall (x, y) \in \mathbb{R}^2, x \le y \text{ ou } y \le x.$$

Test 18

- La relation < sur \mathbb{R} est-elle réflexive?
- La relation < sur \mathbb{R} est-elle transitive?
- La relation $< sur \mathbb{R}$ est-elle totale?
- \times_\times_\tag{\text{\text{La relation}}} La relation < sur \text{\text{\text{R} est-elle antisymétrique?}}

§2 Compatibilité de l'ordre et des opérations

On a les trivialités fort utiles suivantes.

Proposition 19

1. Pour comparer deux nombres réels, on peut étudier le signe de leur différence.

$$\forall (x, y) \in \mathbb{R}^2, x \le y \iff y - x \ge 0.$$

2. La relation d'ordre sur \mathbb{R} est compatible avec l'addition.

$$\forall (x, y, z) \in \mathbb{R}^3, x \le y \iff x + z \le y + z.$$

3. La relation d'ordre sur \mathbb{R} est compatible avec la multiplication par les réels positifs.

$$\forall (x, y, z) \in \mathbb{R}^3, (z \ge 0 \ et \ x \le y) \implies xz \le yz.$$

Nous n'insisterons jamais assez sur le piège tendu par l'assertion 19.3. En effet, on voit encore des gens affirmer

$$\frac{a}{b} \le 1 \implies a \le b,$$

sans prendre garde au signe de b.

Lemme 20

Soit $x \ge 0$ et $y \ge 0$, alors

$$x \le y \iff x^2 \le y^2$$
 et $x < y \iff x^2 < y^2$.

En d'autre termes, on dit que la fonction $x \mapsto x^2$ est strictement croissante sur $[0, +\infty[$.

Démonstration. Si $x \le y$, alors

$$x \times x \le x \times y \qquad \qquad \therefore x \ge 0$$

$$\le y \times y \qquad \qquad \therefore y \ge 0.$$

Si $x \le y$ est faux, c'est-à-dire y < x, alors nécessairement x > 0 et

$$y \times y \le x \times y \qquad \qquad \because y \ge 0$$

$$< x \times x \qquad \qquad \because x > 0.$$

c'est-à-dire $x^2 \le y^2$ est faux.

Les assertion $(x \le y)$ et $(x^2 \le y^2)$ ont donc même valeur de vérité, on peut donc écrire

$$x < y \iff x^2 \le y^2$$
.

La seconde équivalence se prouve de manière analogue (ou plus rapidement avec un peu de logique).

§3 Valeur absolue

Définition 21

Pour $x \in \mathbb{R}$, on appelle **valeur absolue** de x le réel

$$|x| = \max\{x, -x\} = \begin{cases} -x & x \le 0\\ x & x \ge 0 \end{cases}$$

Proposition 22

Soient x, y des réels et $a \in \mathbb{R}_+$.

- 1. On $a |x| \ge 0$; de plus |x| = 0 si et seulement si x = 0.
- 2. $|xy| = |x| \cdot |y|$; en particulier |-x| = |x|.
- 3. $|x| = |y| \iff (x = y \text{ ou } x = -y).$
- 4. $|x| \le a \iff -a \le x \le a$.
- $5. |x| < a \iff -a < x < a.$

- **6.** $\sqrt{x^2} = |x| \ et \ |x|^2 = x^2$.
- 7. Si $x \neq 0$, alors $\left| \frac{y}{x} \right| = \frac{|y|}{|x|}$.
- 8. Si $n \in \mathbb{N}$, alors $|x^n| = |x|^n$.
- **9.** $\max(x, y) = \frac{1}{2}(x + y + |x y|).$
- **10.** $\min(x, y) = \frac{1}{2}(x + y |x y|).$

Il est important de savoir manipuler les inégalités avec valeurs absolues, par exemple

$$|x - a| \le \epsilon \iff a - \epsilon \le x \le a + \epsilon$$

 $|x| \ge M \iff x \ge M \text{ ou } x \le -M.$

Remarque

Géométriquement, |x - a| représente la distance entre x et a sur la «droite des réels».

Proposition 23

Inégalité triangulaire

Soient $x, y \in \mathbb{R}$. Alors

$$|x + y| \le |x| + |y|$$

De plus, |x + y| = |x| + |y| si et seulement si $xy \ge 0$.

Étant donné $(x_1, ..., x_n) \in \mathbb{R}^n$, une récurrence immédiate montre que l'on a toujours l'inégalité

$$\left| \sum_{k=1}^{n} x_k \right| \le \sum_{k=1}^{n} |x_k|.$$

Corollaire 24

Soient $x, y \in \mathbb{R}$ *. Alors*

$$||x| - |y|| \le |x \pm y| \le |x| + |y|$$

§4 Axiome d'Archimède

Proposition 25

Caractère archimédien de $\mathbb R$

Pour tout réel x, il existe un entier $n \in \mathbb{Z}$ tel que n > x.

Démonstration. Si $x = n_0, \alpha_1 \alpha_2 \dots \ge 0$, alors on vérifie facilement que $n = n_0 + 1$ convient. Si $x = -n_0, \alpha_1 \alpha_2 \dots < 0$, alors $n = -n_0$ (ou même 0) convient.

§5 Densité

Proposition 26

- Si x et y sont deux réels tels que x < y, alors il existe un nombre rationnel, et même un nombre décimal z, tel que x < z < y.
- Si x et y sont deux réels tels que x < y, alors il existe un nombre irrationnel, tel que x < z < y.

§6 Partie entière

Définition 27

Soit $x \in \mathbb{R}$. Il existe un unique $n \in \mathbb{Z}$ tel que

$$n \le x < n + 1$$
.

On l'appelle **partie entière** de x et on le note |x| ou E(x).

Remarque

• La double inégalité $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$ s'écrit également

$$x - 1 < |x| \le x$$
.

• La partie entière de x est donc le plus grand entier inférieur ou égal à x. Autrement dit,

$$\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (n \le x \implies n \le \lfloor x \rfloor).$$

Exemples 28

1.
$$[\pi] =$$

5.
$$|-23.8| =$$

4.
$$[-5] =$$

La partie entière n'est ni «l'entier sans la virgule», ni «l'entier le plus proche».

Proposition 29

1. La partie entière d'un réel est un entier

$$\forall x \in \mathbb{R}, |x| \in \mathbb{Z}.$$

2. Les nombres entiers sont les seuls égaux à leurs parties entières

$$\forall x \in \mathbb{R}, |x| = x \iff x \in \mathbb{Z}.$$

3. $\forall x \in \mathbb{R}, \forall m \in \mathbb{Z}, |x+m| = |x| + m$.

Remarque

La notation $\lceil x \rceil$ est également utilisée en informatique. C'est le plus petit entier supérieur ou égal à x. On a donc

$$\lceil x \rceil = \begin{cases} \lfloor x \rfloor + 1 & : x \notin \mathbb{Z} \\ \lfloor x \rfloor & : x \in \mathbb{Z} \end{cases}$$

§7 Valeur approchée d'un réel

Rappel

Un nombre décimal est un nombre rationnel de la forme $\frac{a}{10^p}$ avec $a \in \mathbb{Z}$ et $p \in \mathbb{N}$. L'ensemble des nombres décimaux se note \mathbb{D} .

Soit $x \in \mathbb{R}$ et $p \in \mathbb{N}$. On a

$$|x \times 10^p| \le x \times 10^p < |x \times 10^p| + 1$$

D'où, en divisant chaque membre par 10^p on trouve

$$\frac{\left\lfloor x\times 10^p\right\rfloor}{10^p}\leq x<\frac{\left\lfloor x\times 10^p\right\rfloor}{10^p}+\frac{1}{10^p}.$$

Proposition 30

Soit $x \in \mathbb{R}$ *et* $p \in \mathbb{N}$. *Alors*

- 1. $\frac{\lfloor x \times 10^p \rfloor}{10^p}$ est un nombre décimal approchant x à 10^{-p} près par défaut.
- 2. $\frac{\lfloor x \times 10^p \rfloor + 1}{10^p}$ est un nombre décimal approchant x à 10^{-p} près par excès.

On peut donc approcher n'importe quel nombre réel aussi près que l'on souhaite par des nombres décimaux. 2

Exemple 31

Le nombre de Neper e = 2.7182818284590 ... peut être successivement encadré par

$2 \le e < 3$	valeurs approchées à 10^0 près par défaut et par excès.
$2.7 \le e < 2.8$	valeurs approchées à 10^{-1} près par défaut et par excès.
$2.71 \le e < 2.72$	valeurs approchées à 10^{-2} près par défaut et par excès.
$2.718 \le e < 2.719$	valeurs approchées à 10^{-3} près par défaut et par excès.
$2.7182 \le e < 2.7183$	valeurs approchées à 10^{-4} près par défaut et par excès.

²En anticipant la notion de suite, on dit souvent que tout nombre réel est limite d'une suite de rationnels.

§8 Partie bornée

Définition 32

Soit A une partie de \mathbb{R} .

• On dit qu'un réel M est un majorant de A si

$$\forall x \in A, x \leq M$$
.

On dit alors que la partie A est majorée.

• On dit qu'un réel m est un minorant de A si

$$\forall x \in A, m \leq x$$
.

On dit alors que la partie A est **minorée**.

• Une partie majorée et minorée est dite bornée.

La valeur absolue permet de caractériser facilement les parties bornées de R.

Proposition 33

Une partie A de R est bornée si et seulement si

$$\exists \mu \in \mathbb{R}_+, \forall x \in A, |x| \leq \mu.$$

Exemple 34

- R ______.
- [0,1]
-]0,1]_____.

Remarque

- Lorsqu'il existe, le maximum (resp. minimum) de A est un majorant (resp. minorant) de A.
- Lorsque M majore A, tout réel $M' \ge M$ majore aussi A.
- Lorsque m minore A, tout réel $m' \le m$ minore aussi A.

§9 Plus grand élément, plus petit élément

Définition 35

Soit *A* une partie de \mathbb{R} .

• On dit que a est le plus grand élément de A ou le maximum de A si

$$a \in A$$
 et $\forall x \in A, x \le a$

Lorsqu'il existe, le plus grand élément de A se note max(A).

• On dit que a est le plus petit élément de A ou le minimum de A si

$$a \in A$$
 et $\forall x \in A, a \le x$

Lorsqu'il existe, le plus petit élément de A se note min(A).

L'ensemble A n'admet pas nécessairement de plus grand élément. Néanmoins, si il existe, c'est le **seul** élément de A ayant cette propriété ; car si on a aussi $x \le b$ pour tout $x \in A$, alors $a \le b$ et $b \le a$, d'où b = a.

1.3 LE PREMIER DEGRÉ

Voici quelques rappels au sujet de problèmes du premier degré.

§1 L'équation ax + b = 0

On considère l'équation ax + b = 0 où $a, b \in \mathbb{R}$ et l'inconnue est $x \in \mathbb{R}$. On note \mathcal{S} l'ensemble des solution de cette équation.

• Si $a \neq 0$, l'équation a une solution unique -b/a.

$$ax + b = 0 \iff x = -\frac{b}{a}.$$

On a $S = \{ -b/a \}$.

- Si a = 0,
 - si $b \neq 0$, l'équation n'a pas de solution. On a $\mathcal{S} = \emptyset$.
 - si b = 0, tout nombre réel en est solution. On a $\mathcal{S} = \mathbb{R}$.

§2 Système linéaire «2 × 2»

Commençons par deux équations très simples,

$$2x - y = 1 \tag{1.1}$$

$$x + y = 5. ag{1.2}$$

Nous pouvons interpréter ce système par lignes ou par colonnes.

La première approche consiste à s'intéresser séparément à chaque équation (les *lignes*). L'équation 2x - y = 1 est représentée par une droite dans le plan (Oxy). La seconde équation x + y = 5 est représentée par une seconde droite.

La seconde approche est de s'intéresser aux *vecteurs colonnes* du membre de gauche qui produisent le vecteur du membre de droite. Les deux équations s'écrivent sous forme d'un seule *équation vectorielle*:

$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Le problème est alors de trouver la combinaison de vecteurs du membre de gauche qui produit le vecteur du membre de droite.

Les vecteurs (2, 1) et (-1, 1) sont représentés en gras. Les inconnues sont les scalaires x et y qui multiplient les vecteurs colonne. L'idée est d'additionner 2 fois la colonne 1 et 3 fois la colonne 2. Géométriquement, on trouve un parallélogramme. De manière algébrique, cela produit le bon vecteur (1, 5), second membre de notre équation. Ce qui confirme la solution x = 2, y = 3.

Définition 36

Le déterminant du système

$$\begin{cases} ax +by = u \\ cx +dy = v \end{cases}$$

est le réel ad - bc, noté $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Théorème 37

On considère le système

$$\begin{cases} ax +by = u \\ cx +dy = v \end{cases}$$

- 1. $Si \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$, alors le système admet une et une seule solution.
- 2. $Si \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$, alors
 - le système admet aucune solution
 - ou bien le système admet une infinité de solutions.

Exemples 38

Résoudre les systèmes suivants

1.
$$\begin{cases} -3x & +y & = 9 \\ 4x & -3y & = -17 \end{cases}$$

2.
$$\begin{cases} -3x + y = 9 \\ 6x -2y = -1 \end{cases}$$

3.
$$\begin{cases} -3x + y = 9 \\ 6x -2y = -18 \end{cases}$$

1.4 Puissances, racines

§1 Puissances entières

Définition 39

- Pour tout $a \in \mathbb{R}$, $a^0 = 1$.
- Pour tout $a \in \mathbb{R}$, et $n \in \mathbb{N}^*$, $a^n = a \cdot a \dots a$ (n facteurs).
- Pour tout $a \in \mathbb{R}^*$, et $n \in \mathbb{N}^*$, $a^{-n} = \frac{1}{a^n}$.

Proposition 40

Pour tous $a, b \in \mathbb{R}$ *et* $p, q \in \mathbb{N}$:

1.
$$a^p \cdot a^q = a^{p+q}$$
;

2.
$$a^p/a^q = a^{p-q}$$
;

3. Si
$$a \neq 0$$
, $a^{-p} = 1/a^p = (1/a)^p$;

4.
$$(a^p)^q = a^{pq}$$
;

5.
$$a^p b^p = (ab)^p$$
;

6.
$$a^p/b^p = (a/b)^p$$
;

7.
$$a > 1$$
 et $p < q \implies a^p < a^q$;

8.
$$0 < a < 1$$
 et $p < q \implies a^p > a^q$;

9.
$$p > 0$$
 et $0 < a < b \implies a^p < b^p$;

10.
$$p < 0$$
 et $0 < a < b \implies a^p > b^p$.

Ceci reste valable pour a, b $\in \mathbb{R}^*$ *et p, q* $\in \mathbb{Z}$.

Proposition 41

Pour tous $a, b \in \mathbb{R}$,

$$a^2 = b^2 \iff |a| = |b| \iff (a = b \text{ ou } a = -b).$$

§2 Racines

Définition 42

Étant donnée $a \in \mathbb{R}_+$, il existe un réel positif unique dont le carré est égale à a. On l'appelle la **racine carrée arithmétique** de a et on la note \sqrt{a} .

Plus généralement, pour tout $a \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$, $\sqrt[n]{a}$ ou $a^{1/n}$ est l'unique réel positif b tel que $b^n = a$.

Proposition 43

- 1. Pour tout $x \in \mathbb{R}$, $\sqrt{x^2} = |x|$.
- 2. Pour tous $a \ge 0$ et $b \ge 0$, $\sqrt{ab} = \sqrt{a}\sqrt{b}$.
- 3. Pour tous $a \ge 0$ et b > 0, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Racine n-ième d'un nombre réel

La racine carrée principale de 25, notée $\sqrt{25}$, est la racine carrée positive de 25, c'està-dire 5. La notion de racine carrée principale est définie ainsi.

Proposition 44

Soient $n \in \mathbb{N}^*$ et x un réel. Il existe au plus un réel y du même signe que x tel que

$$v^n = x$$
.

Lorsqu'un tel réel existe, on l'appelle la racine n-ième principale de x et on note

$$y = \sqrt[n]{x}$$
.

Si n = 2, on note \sqrt{x} au lieu de $\sqrt[2]{x}$.

Exemple 45

Évaluer les radicaux suivants.

1.
$$\sqrt{36}$$
.

3.
$$\sqrt[3]{\frac{125}{64}}$$
.
4. $\sqrt[5]{-32}$.
5. $\sqrt[4]{-81}$.

4.
$$\sqrt[5]{-32}$$

2.
$$-\sqrt{36}$$
.

5.
$$\sqrt[4]{-8}$$

Démonstration. 1.
$$\sqrt{36} = 6$$
 car 6 et 36 sont ≥ 0 et $6^2 = 36$

2.
$$-\sqrt{36} = -6$$
.

3.
$$\sqrt[3]{\frac{125}{64}} = \frac{5}{4} \operatorname{car} \left(\frac{5}{4}\right)^3 = \frac{5^3}{4^3} = \frac{125}{64}$$
.

4.
$$\sqrt[5]{-32} = -2 \operatorname{car} (-2)^5 = -32.$$

5. $\sqrt[4]{-81}$ n'a pas de sens car il n'existe aucun réel y tel que $y^4 = -81$.

Second degrée **§3**

Dans les rappels ci-dessous, $a, b, c \in \mathbb{R}$ et $a \neq 0$.

On considère l'équation

$$ax^2 + bx + c = 0, \quad x \in \mathbb{R}.$$
 (E)

On pose $\Delta = b^2 - 4ac$; ce nombre est appelé le **discriminant** du trinome.

- Si $\Delta > 0$, (E) a deux solutions $\frac{-b \sqrt{\Delta}}{2a}$ et $\frac{-b + \sqrt{\Delta}}{2a}$;
- Si $\Delta = 0$, (E) a une et une seule solution $\frac{-b}{2a}$;
- Si $\Delta < 0$, (E) n'a pas de solutions.

Signe du trinome $ax^2 + bx + c$

• Si $\Delta > 0$:

x		$\frac{-b-\sqrt{\Delta}}{2a}$		$\frac{-b+\sqrt{\Delta}}{2b}$	
$ax^2 + bx + c$	sgn(a)	0	$-\operatorname{sgn}(a)$	0	sgn(a)

• Si $\Delta = 0$:

X		$\frac{-b}{2a}$	
$ax^2 + bx + c$	sgn(a)	0	sgn(a)

• Si $\Delta < 0$: partout le signe de a.

Pour résumé: $ax^2 + bx + c$ a le signe de a, sauf éventuellement entre ses racines.

CHAPITRE

CONTENTS

I	Cor	orps des nombres réels					
	1.1	Ensen	nbles usuels				
		§1	Opérations algébriques				
		§2	Les entiers naturels				
		§ 3	Les entiers relatifs				
		§4	Les nombres rationnels				
	1.2	1.2 Relation d'ordre sur \mathbb{R}					
		§ 1	Ordre total sur \mathbb{R}				
		§2	Compatibilité de l'ordre et des opérations				
		§ 3	Valeur absolue				
		§4	Axiome d'Archimède				
		§5	Densité				
		§ 6	Partie entière				
		§7	Valeur approchée d'un réel				
		§ 8	Partie bornée				
		§ 9	Plus grand élément, plus petit élément				
	1.3	Le pre	emier degré				
		§1	L'équation $ax + b = 0$				
		§2	Système linéaire $\langle 2 \times 2 \rangle$				
1.4	1.4	Puissa	ances, racines				
		§1	Puissances entières				
		§2	Racines				
		82	Second degrée				