第二題:村長選舉 (Election)

問題敘述

某村莊的村民於每年元旦晚上都會聚集在廣場舉辦慶典,在慶典中大家盡情歡唱,並在慶典結束前進行村長選舉以及祈福儀式。

根據前一年農作物豐收的情形,現任村長會決定一個序列 $(a_1,a_2,...,a_{n-1})$ 。選舉時,共有 n 個成年村民(包括現任村長)參加並圍成一個圓圈,由現任村長開始依順時針方向依序編號:1,2,...,n。選舉村長的方式如下:先從 1 號村民開始,順時針數 a_1 個人次,數到的那位村民就被淘汰並離開圓圈,接著從剛離開的村民的下一個人開始,順時針數 a_2 個人次,數到的那位村民也被淘汰並離開圓圈,依此類推,直到最後只剩下一位村民,那個人就成為新任村長。

舉例來說,如果n=6,而且序列為(2,3,5,7,11)。那麼先從1號村民開始,數 $a_1=2$ 個人次,數到2號,2號村民離開,剩下1號、3號、4號、5號及6號村民;接著從3號村民開始,數 $a_2=3$ 個人次,數到5號,5號村民離開,剩下1號、3號、4號及6號村民;接著從6號村民開始,數 $a_3=5$ 個人次,數到6號,6號村民離開,剩下1號、3號及4號村民;接著從1號村民開始,數 $a_4=7$ 個人次,數到1號,1號村民離開,剩下3號及4號村民;最後從3號開始,數 $a_5=11$ 個人次,數到3號,3號村民離開,只剩下4號村民,因此4號村民成為新任村長。

祈福儀式也很簡單,把剛才被淘汰的村民依照淘汰的順序排成一排,然後一起跳舞祈福。 以前述序列為例,這個順序就會是 2,5,6,1,3,4。

今年有外地來的記者採訪,因為畫面美觀的關係,現任村長想要好好地修改這個序列,讓跳祈福舞蹈的某幾位村民被依照指定位置安排。不過修改這個序列需要模擬淘汰的過程,令村長相當痛苦。聰明的你,可以幫他寫支程式不斷更新序列,並且判斷以現在的序列進行選舉的話,祈福儀式中某個位置的村民編號嗎?

輸入格式

第一行有兩個正整數 n, m,代表參加村長選舉的村民人數、以及現任村長修改序列或進行詢問的次數。

第二行有 n-1 個正整數 $a_1, a_2, ..., a_{n-1}$ 代表初始的序列 $(1 \le a_i \le 10^9)$ 。

第三行開始共有m行,第i行可能包含兩個或三個數字:若輸入格式為1ix,則代表村長將序列中第i個數字換成了x($1 \le x \le 10^9$)。若輸入格式為2k,則代表村長想要知道若以當前序列進行村長選舉,第k個被淘汰的村民編號為何(也就是祈福舞蹈第k個位置的村民編號, $1 \le k \le n$)。

輸出格式

對於每一個格式為 2 k 的詢問,輸出對應之村民編號於獨立一行。

輸入範例 1	輸出範例 1
6 3	2
2 3 5 7 11	5
2 1	6
2 2	
2 3	

輸入範例 2	輸出範例 2
6 3	3
2 3 5 7 11	1
2 5	
1 4 3	
2 5	

輸入範例 3	輸出範例 3
9 5	6
2 8 8 2 5 2 5 2	7
2 9	4
1 4 333333	
2 9	
1 4 66666	
2 9	

評分說明

本題共有5個子任務,條件限制如下所示。每一子任務含有多筆測試資料,該組所有測 試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1 30	20	$2 \le n, m \le 10^5$,而且形如 $1 i \times$ 開頭的所有操作保證比 $2 k$
	30	操作早出現。
2	5	$2 \le n, m \le 100$
3	20	$2 \le n \le 100 \cdot 1 \le m \le 10^5$
4	20	$2 \le n \le 10^5$, $1 \le m \le 100$
5	25	$2 \le n \le 10^5 \cdot 1 \le m \le 10^4$