EPITA

Mathématiques

Examen S1B2-SR

Suites réelles

durée: 1 heure 30

Janvier 2025

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 30 points. La note sera ramenée à une note sur 20 par règle de 3
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 6 exercices. — La rigueur de votre rédaction sera prise en compte dans la note.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1: suites adjacentes (7 points)

Soient les suites (u_n) et (v_n) définies par : $u_0=2, \ v_0=3$ et $\forall \ n\in\mathbb{N}, \ u_{n+1}=\frac{3u_n+2v_n}{5}$ et $v_{n+1}=\frac{2u_n+3v_n}{5}$. Soit (w_n) définie pour tout entier $n\in\mathbb{N}$ par : $w_n=v_n-u_n$.

1.	Étude de la suite (w_n) .
	(a) Montrer que la suite (w_n) est géométrique. Préciser sa raison.
	(b) En déduire l'expression de w_n en fonction de n .
	(c) De la question précédente, trouver le signe de la suite (w_n) .
2	
2.	En utilisant la question précédente, montrer que les suites (u_n) et (v_n) sont adjacentes.

4. S	$poit (x_n) = (u_n + v_n).$
(a	Exprimer x_{n+1} en fonction de x_n . En déduire l'expression de x_n en fonction de n .
(b) En déduire la limite de (u_n) et la limite de (v_n) .
	cice 2 : étude d'une suite (5 points)
	vice 2 : étude d'une suite (5 points) uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$.
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$.
la s	· · · · · · · · · · · · · · · · · · ·
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .
la s	uite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \sum_{k=n}^{2n-1} \frac{1}{k}$. tudier la monotonie (sens de variation) de la suite (u_n) .

2.	En encadrant chaque terme de la somme, montrer que pour tout $n \in \mathbb{N}^*$, $\frac{n}{2n-1} \le u_n \le 1$.
3.	En déduire que (u_n) est bornée en précisant explicitement un majorant et un minorant.
4.	Peut-on en déduire si (u_n) converge? Si oui, donner un encadrement de sa limite ℓ le plus précis possible que les données de l'exercice le permettent.
кe	ercice 3 : comparaison de suites (7,5 points)
1.	Soient (u_n) et (v_n) deux suites réelles ne s'annulant pas. Rappeler la définition de : $u_n = o(v_n)$, $(u_n) = O(v_n)$ et $u_n \sim v_n$ en $+\infty$.

	omparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en citant utes les comparaisons possibles et en justifiant vos réponses.				
(a)	$u_n = -n^3 + n - 2$ et $v_n = -2n^2 + n$.				
(b)	$u_n = e^n + \sqrt{n} \text{ et } v_n = e^n + e^{-n}.$				
(c)	$u_n = 3^n + 6 \text{ et } v_n = 5^n - 1.$				

Exercice 4 : cours (3 points)

(i	(u_n) une suite.
1.	Rappeler la définition de : « (u_n) est bornée »
2.	Montrer que : (u_n) converge $\implies (u_n)$ bornée.
3.	Le réciproque est-elle vraie? Justifier.
4.	Énoncer la contraposée de la proposition de la question 2.

Exercice 5 : suite récurrente (4,5 points)

Soit (u_n) définie pour tout $n \in$	$\mathbb{N} \text{ par } u_{n+1} = 1 + \frac{1}{4}u_n^2 \text{ avec } u_0 = \frac{1}{4}u_n^2$	3 2 .	
	e la suite (u_n) . (Vous chercherez à fa		alculez).
2. Montrer par récurrence	que $\forall n \in \mathbb{N} \ 1 < u < 2$		
2. Wonder par recurrence	que : $m \in \mathbb{N}, 1 \setminus \omega_n \setminus 2$.		
			7
3. Peut-on en déduire le co	omportement de (u_n) en $+\infty$? Si la	suite converge, trouver sa limit	e. Justifier.

Exercice 6: suites extraites (3 points)

Considérons la suite $(u_n) = \left(\sin\left(\frac{n\pi}{3}\right)\right)$.

1. Que vaut la suite (u_{3n}) ?

2. Vers quoi converge la suite (u_{6n+1}) ?

3. La suite (u_n) est-elle convergente? Justifier en citant proprement un résultat de votre cours.