Ferienkurs - Lineare Algebra

Philipp Gadow

03. März 2014

I Grundbegriffe

Gruppenaxiome

- G0 $a, b \in G \Rightarrow a \cdot b \in G \quad \forall a, b \in G$
- G1 $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in G$ (Assoziativität)
- G2.1 $\exists e \in G : a \cdot e = e \cdot a = a \quad \forall a \in G \text{ (neutrales Element)}$
- G2.2 $\exists e \in G : \forall a \in G \quad \exists a^{-1} \in G : a \cdot a^{-1} = a^{-1} \cdot a = e \text{ (inverses Element)}$

Untergruppentest

- G0 G' ist nicht leer, $G' \neq \emptyset$.
- G1 $a, b \in G' \Rightarrow a \cdot b \in G'$
- G2 $a \in G' \Rightarrow a^{-1} \in G'$

Vektorraumaxiome

- V1 (V, +) ist eine abelsche Gruppe mit Nullelement $\vec{0}$ und inversem Element -v.
- V2 $\forall \lambda, \mu \in K \text{ und } v, w \in V$:
 - a) $(\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v)$
 - b) $1 \cdot v = v$
 - c) $(\lambda + \mu) \cdot v = (\lambda \cdot v) + (\mu \cdot v)$
 - d) $\lambda \cdot (v + w) = (\lambda \cdot v) + (\lambda \cdot w)$

${\bf Untervektor raum test}$

UV1 $W \neq \emptyset$

UV2 $v, w \in W \Rightarrow v + w \in W$ (Abgeschlossenheit bzgl. Addition)

UV3 $v \in W, \lambda \in K \Rightarrow \lambda \cdot v \in W$ (Abgeschlossenheit bzgl. Multiplikation mit Skalaren)

Lineare Unabhängigkeit

$$\vec{0} = \sum_{i=1}^{n} \lambda_i v_i \Rightarrow \lambda_1 = 0, \dots, \lambda_n = 0$$

Basis

B1
$$\operatorname{Span}_K(v_1,\ldots,v_n)=V$$

B2 (v_1, \ldots, v_n) sind linear unabhängig.

Algebraische Strukturen

Komm. Gr. +	Ass.	(a+b)+c=a+(b+c)			1	
	Komm.	a+b=b+a	Ring	kommutativer Ring	r Ring mit	
	Neutr.	$\exists \ 0: 0+a=a+0=a$				er
Ko	Inv.	$\exists -a: a+(-a)=0$				
	Distr.	$(a+b) \cdot c = a \cdot c + b \cdot c$		mut	ative	Körper
Komm. Gr.	Ass.	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$		kom	kommutativer	X
	Komm.	$a \cdot b = b \cdot a$			Kom	
	Neutr.	$\exists 1: 1 \cdot a = a \cdot 1 = a$				
Ko	Inv.	$\exists \; a^{-1}: a\cdot a^{-1}=1$				

Aufgaben

Gruppen

Aufgabe 1

Gegeben sei die Menge der symmetrischen 2×2 -Matrizen

$$S_2 = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} | a, b, c \in \mathbb{R} \right\}$$

- a) Zeigen Sie: $(S_2, +)$ ist eine kommutative Gruppe
- b) Zeigen Sie: $(S_2, +, \cdot)$ mit der komponentenweise definierten Skalarmultiplikation

$$\lambda \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} = \begin{pmatrix} \lambda \cdot a & \lambda \cdot b \\ \lambda \cdot b & \lambda \cdot c \end{pmatrix}$$

ist ein R-Vektorraum. Welche Dimension besitzt dieser?

Aufgabe 2

Beweisen Sie folgende Aussagen: Ist (G,\cdot) eine Gruppe, so gilt $\forall a,b,x,y\in G$:

1.
$$(a^{-1})^{-1} = a$$
 $(a \cdot b)^{-1} = b^{-1}a^{-1}$

2.
$$a \cdot x = a \cdot y \Rightarrow x = y$$
 $x \cdot a = y \cdot a \Rightarrow x = y$

3.
$$a \cdot x = b$$
 eindeutig lösbar durch $x = a^{-1} \cdot b$
 $y \cdot a = b$ eindeutig lösbar durch $y = b \cdot a^{-1}$

Aufgabe 3

Beweisen Sie folgende Aussagen für eine (nicht notwendigerweise abelsche) Gruppe (G, \circ) :

- a) Für jedes neutrale Element $e \in G$ gilt $a \circ e = e \circ a$, $\forall a \in G$, d.h. jedes linksneutrale Element e ist auch rechtsneutral. Daher spricht man auch einfach von einem neutralen Element.
- b) Aus $a^{-1} \circ a = e$ folgt jeweils auch $a \circ a^{-1} = e$, d.h. jedes linksinverse Element a^{-1} ist auch rechtsinvers. Deshalb spricht man auch einfach von einem inversen Element.
- c) Es gibt genau ein neutrales Element $e \in G$. Bereits aus $x \circ a = a$ oder $a \circ x = a$ für ein $a \in G$ folgt x = e.
- d) Zu jedem $a \in G$ gibt es genau ein inverses Element $a^{-1} \in G$.

Hinweis: Beweisen Sie zuerst b), dann a), c) und d).

Vektorräume

Aufgabe 4

Gegeben sind ein Untervektorraum U eines K-Vektorraums V und Elemente $u, w \in V$. Welche der folgenden Aussagen sind richtig?

- 1. Sind u und w nicht in U, so ist auch u + w nicht in U.
- 2. Sind u und w nicht in U, so ist u + w in U.
- 3. Ist u in U, nicht aber w, so ist u + w nicht in U.

Aufgabe 5

Geben Sie zu folgenden Teilmengen des \mathbb{R} -Vektorraums \mathbb{R}^3 an, ob sie Untervektorräume sind und begründen Sie dies:

a)
$$U_1 := \{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3 | v_1 + v_2 = 2 \}$$

b)
$$U_2 := \{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3 | v_1 + v_2 = v_3 \}$$

c)
$$U_3 := \{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3 | v_1 \cdot v_2 = v_3 \}$$

d)
$$U_4 := \{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3 | v_1 = v_2 \text{ oder } v_1 = v_3 \}$$

Aufgabe 6

Begründen Sie, dass für jedes $n \in \mathbb{N}$ die Menge

$$U := \{ u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in \mathbb{R}^n | u_1 + \dots + u_n = 0 \}$$

einen \mathbb{R} -Vektorraum bildet und bestimmen Sie eine Basis und die Dimension von U.

Aufgabe 7

Welche der folgenden Teilmengen des $\mathbb{R}^{\mathbb{R}-1}$ sind Untervektorräume? Begründen Sie Ihre Aussagen.

- a) $U_1 := \{ f \in \mathbb{R}^{\mathbb{R}} | f(1) = 0 \}$
- b) $U_2 := \{ f \in \mathbb{R}^{\mathbb{R}} | f(0) = 1 \}$
- c) $U_3 := \{ f \in \mathbb{R}^{\mathbb{R}} | f \text{ hat höchstens endlich viele Nullstellen} \}$
- d) $U_4 := \{ f \in \mathbb{R}^{\mathbb{R}} | \text{ für höchstens endlich viele } x \in \mathbb{R} \text{ ist } f(x) \neq 0 \}$
- e) $U_5 := \{ f \in \mathbb{R}^{\mathbb{R}} | f \text{ ist monoton wachsend} \}$

Basis und Dimension

Aufgabe 8

Prüfen Sie, ob die Menge

$$B := \{ v_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \} \subset \mathbb{R}^{2 \times 2}$$

eine Basis des $\mathbb{R}^{2\times 2}$ bildet.

Aufgabe 9

Bestimmen Sie eine Basis des von der Menge

$$X = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} \right\}$$

erzeugten Untervektorraums $\operatorname{Span}_{\mathbb{R}}(X) \subset \mathbb{R}^4$.

Aufgabe 10

Gegeben seien folgende Polynome aus $V = \mathbb{R}[z]_3$ (dem Vektorraum der Polynome über \mathbb{R} mit maximalem Grad 3):

$$p_1(z) := z^3 - 2z^2 + 4z + 1$$
 $p_2(z) := 2z^3 - 3z^2 + 9z - 1$
 $p_3(z) := z^3 + 6z - 5$ $p_4(z) := 2z^3 - 5z^2 + 7z + 5$.

Es sei $U := \operatorname{Span}_{\mathbb{R}}(p_1(z), p_2(z), p_3(z), p_4(z)).$

- a) Bestimmen Sie eine Basis B von U.
- b) Zeigen Sie, dass $z^2+z-3\in U$ und ermitteln Sie eine Basisdarstellung von z^2+z-3 bezüglich der Basis B aus a).

 $^{{}^{1}\}mathbb{R}^{\mathbb{R}}$ bezeichnet die Menge aller Abbildungen $f:\mathbb{R}\to\mathbb{R}$.