PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-135988

(43) Date of publication of application: 17.05.1994

(51)Int.Cl.

CO7H 19/067 CO7H 19/073

(21)Application number: 04-308094

(71)Applicant: TOAGOSEI CHEM IND CO LTD

(22)Date of filing:

22.10.1992

(72)Inventor: HORIE YOUJI

YOSHIDA MASAO

(54) NUCLEOTIDE DERIVATIVE

(57) Abstract:

PURPOSE: To provide a novel compound useful for the chemical synthesis of oligonucleotides, facilitating protecting group removing reactions, exhibiting proper stability also during basic treatments performed in the synthetic reaction operations, and capable of being readily purified.

CONSTITUTION: A compound of the formula (R1 is H, trityl, alkoxytrityl, n- butyryl; R2 is H; R3 is H, OH), e.g. 5'-0-(4,4'-dimethoxytrityl)-N4-(n-butyryl)-2'- deoxycytidine. The compound of the formula is produced e.g. by protecting the 3',5'-hydroxyl groups of 2'-deoxycytidine with trimethylsilyl chloride, reacting the protected product with n-butyl chloride, selectively removing the protecting groups of the 3',5'-hydroxyl groups with ammonia water, reacting the obtained intermediate product with 4,4'-dimethoxytrityl chloride without purifying the intermediate product, and finally removing the n-butyryl group from the produced protected nucleotide having the n-butyryl group as the protecting group of the amino group on the outside of the ring.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(43)公開日 平成6年(1994)5月17日

(51)Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 7 H 19/067 19/073

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

(22)出願日

特願平4-308094

平成 4年(1992)10月22日

(71)出願人 000003034

東亞合成化学工業株式会社

東京都港区西新橋1丁目14番1号

(72)発明者 堀江 洋慈

茨城県つくば市大久保2番東亞合成化学工

業株式会社つくば研究所内

(72)発明者 吉田 ▲祇▼生

茨城県つくば市大久保2番東亞合成化学工

業株式会社つくば研究所内

(54)【発明の名称】 ヌクレオシド誘導体

(57)【要約】

(修正有)

【目的】 オリゴヌクレオチドの化学的合成において有 用性を有し生化学の分野で広く利用される、ヌクレオシ ド誘導体を提供する。

【構成】 シトシンのアミノ基がn-ブチリル基で保護されている式(I)のヌクレオシド誘導体。

H N CH₃

〔式中、 R^1 はH、トリチル基、アルコキシトリチル基 またはn - ブチリル基を; R^2 はH; R^3 はHまたはO Hを表わす。〕

【効果】 ヌクレオシド誘導体は、その3'-水酸基と

各種リン酸化剤を作用させることにより、オリゴヌクレオチド合成用のモノヌクレオチドユニットを合成することが可能であり、コハク酸無水物と作用させカルボキシル基を導入し、更に、反応基を有する固相単体と縮合反応を行い、ヌクレオシド担持サポートを合成することもできるうえに脱保護も容易である。

【特許請求の範囲】

【請求項1】 次の式(1)で示されるヌクレオシド 誘導体。

【化1】

但し式中、R'は水素原子、トリチル基、アルコキシト リチル基またはn-ブチリル基を表わし、R*は水素原 20 される場合、それに応じられないという欠点を有してい 子、R¹ は水素原子または水酸基を表わす。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なヌクレオシド誘 導体に関するもので、本発明のヌクレオシド誘導体は、 オリゴヌクレオチドの化学的合成において有用性を有し 生化学の分野で広く利用されるものである。

[0002]

【従来の技術】化学的にオリゴヌクレオチドを合成する 方法としては、モノヌクレオチドユニットの糖部分の 3'、5'水酸基の縮合反応を経てリン酸エステル結合を 生成させる方法がとられている。この合成方法は、モノ ヌクレオチドユニットに何を用いるかによって大きく3 種類に大別されるが、いずれの方法においても、5'あ るいは3'水酸基から誘導されたリン酸部分と他方の水 酸基のみを縮合反応に関与させ、それ以外の反応性基を この縮合反応に関与させずに行わればならない方法であ る。従って、使用する核酸塩基(プリンまたはピリミジ ン)が有するアミノ基、イミノ基、ケト基、水酸基等に 終了の後、縮合反応生成物中の保護基を脱離させる(脱 保護する) ことにより目的の配列を有するオリゴヌクレ オチドを得る方法がとられている。この際に用いられる 核酸塩基の環外アミノ基の保護基としては、具体的には 核酸塩基がアデニンまたはシトシンの場合はベンゾイル 基、p-アニソイル基もしくはフェノキシアセチル基 が、また核酸塩基がグアニンであるときはイソブチリル 基等が挙げられ、これらの保護基を脱離させる方法、す なわち脱保護法としては、濃アンモニア水を55℃にお いて、8-15時間作用させるという方法が一般的であ 50 る。

【0003】現在採用されている以上の様な保護基の除 去法は、長時間を要することに加えて、縮合反応生成物 が塩基性条件下に長時間暴露されることによる、インタ ーヌクレオチド結合切断等の副反応を伴い、目的物の単 離収量の低下を招くという欠点を有しているものであ る。この為、より温和な条件で容易に除去できる保護基 の開発が検討され、種々の保護基がこれまでに開発され ている。それらの中でもアデニンまたはグアニンに対す 10 るフェノキシアセチル基またはジメチルホルムアミジン 基、シトシンに対するイソプチリル基が特に優れている とされている。その中で、シトシンの環外アミノ基の保 護基としてイソブチリル基の利用は盛んに行われている が、2'-デオキシシチジンを出発物質とし保護基を導入 する反応の収率は2段階で45%程度 (Schulhof J. C. et. al., Nucleic Acids Res., 1987, 15, 397) と低 いうえに、核酸合成に用いられる他の保護基(例えばフ ェノキシアセチル基等)と比べ、イソブチリル基の脱保 護速度のみが遅く、温和な条件(例えば室温下)を要求 る。また、アミジン化モノヌクレオシド類は、シリカゲ ルカラムクロマトグラフィーによる精製ができないた め、再沈澱法による精製のみが可能と報告されているが (Zemlicka J. et. al., Collect. Crech. Chem. Commu n., 1966, 31, 3198; McBride L. J. et. al., J. Am. Chem. Soc., 1986, 108, 2040 等)、モノヌクレオシド 類は、固有の結晶形を殆ど有しないため、この精製法で は不純物の混入が起こり易く、再現性も低く、大量の有 機溶媒を要することも大きな問題として存在する。

[0004]

30

【発明が解決しようとする課題】本発明の目的は、合成 収率の向上を可能とし、温和な条件での保護基の除去が 可能で副生成物の生成が少なく、精製も容易なヌクレオ シド誘導体の提供、すなわち、従来よりも脱保護が容易 に完了し、且つ合成反応操作中にしばしば用いられる塩 基処理中にも適度の安定性を有し、精製も容易なヌクレ オシド誘導体の提供にある。

[0005]

【課題を解決するための手段】本願発明者らは、シトシ は保護基を導入して反応への関与を防止し、全縮合反応 40 ンーアミノ基の保護基としてのn-ブチリル基が上記の 要求に応えるものであることを見出し、本発明を完成し

> 【0006】すなわち、本発明は、下式(1)で表わさ れるヌクレオシド誘導体に関するものである。

[0.007]

【化2】

【0008】但し式中、R¹ は水素原子、トリチル基、アルコキシトリチル基またはn-ブチリル基を表わし、R¹ は水素原子、R² は水素原子または水酸基を表わす。

【0009】〇ヌクレオシド誘導体

本発明のヌクレオシド誘導体は、前記式(1)で表わさ 20 れるものであって、シトシンのアミノ基がnーブチリル基で保護されている点に最大の特徴を有するものである。前記式(1)におけるR¹のアルコキシトリチル基としては、低級アルコキシトリチル基、特にメトキシトリチル基、さらに具体的には4-メトキシトリチル基、4,4'-ジメトキシトリチル基等を挙げることができる。

【0010】O合成方法

本発明のヌクレオシド誘導体は、従来公知の方法で合成 し得るが、前記式(I)におけるR1,R1,R1が水素原子 であるアミノ保護体を、いわゆる in situ で合成した 後、これを精製することなく次の反応に用いて合成する ことができ、その点も本発明が有する特長の一つであ る。即ち、Jones 等の方法(J. Am. Chem. Soc., 1982, 104, 1316) に従い、3',5'-トリメチルシリル体、次 いで31,51-トリメチルシリル化アミノ基保護体を合成。 した後、適当な方法で脱トリメチルシリル化を行い、得 られたアミノ基保護ヌクレオシドを精製しないで次のト リチル化反応に用いるものである。この方法によれば、 アミノ基保護誘導体等の中間体を単離、精製するための 手間を省くことができるだけでなく、その過程で生ずる 目的物の損失を最小限に抑えることができる。例えば本 発明の1つの目的物である5'-0-(4,4'-ジメトキシ トリチル)-N'-(n-プチリル)-2'-デオキシシチジン $(R^1 = 4, 4' - ジメトキシトリチル、R', R' = 水素原$ 子)は、2'-デオキシシチジンを出発物質とし、3'.5' 水酸基にトリメチルシリルクロリドによる中間保護を施 した後、n-ブチリルクロリドを作用させ、少量の水で 反応を停止した後、アンモニア水で3',5'水酸基の保

原子)を得る。との一連の合成は、中間生成物(R¹,R³, R³=水素原子)をカラムクロマトグラフィー等に分離、精製するだけで、更に精製等の操作を加えることなく、4,4°-ジメトキシトリチルクロリドを作用させ、シリカゲルカラムクロマトグラフィーにより分離、精製することにより、nーブチリル基を環外アミノ基の保護基として有する保護ヌクレオシド(R¹=4,4'-ジメトキシトリチル、R¹,R³=水素原子)が全収率95%で得られる。得られた保護ヌクレオシド(R¹=4,4'-ジメトキシトリチル、R¹,R³=水素原子)を、各種塩基性条件下、脱保護反応を行ったところ、容易に脱保護が完了した。例えば、室温下、過剰量の30%アンモニア水/ビリジン=1/1で6時間、同2/1で1.5時間で脱保護が完了した。

[0011]

【作用】本発明のアミノ基の保護基としてn-ブチリル 基を有する誘導体は、理由は不明であるが合成時の副生 成物の生成が少なく、著しく高い収率で合成することを 可能にするとともに、アルカリによる脱保護が容易に進 むという画期的な作用を示すものである。

[0012]

【実施例】

実施例1

2 '-デオキシシチジンモノ塩酸塩(0.53g、2 mmol)を ビリジン(5ml)で2回共沸し、アルゴン雰囲気下、室温 にて乾燥ピリジン(10ml)を加え攪拌した。この懸濁液 にトリメチルシリルクロリド(1.23 ml、10 mmol)を加 え30分間攪拌し、更にn-ブチリルクロリド(0.25m 1、2.4mmo1)を加え90分攪拌した後水(1m1)を加え反 30 応を停止し、1/2程度濃縮する。この溶液に氷浴中、 28%アンモニア水(1m1)を加え10分間攪拌した。過 剰のアンモニア水と溶媒を留去し、エタノールを加え、 中間生成物(R¹,R¹,R¹=水素原子)とビリジン塩酸塩 を得た。この混合物を、ビリジン(5 m1)で3回共沸し、 アルゴン雰囲気下、室温にて、乾燥ピリジン(10ml)に 溶解し、4,4'-ジメトキシトリチルクロリド(0.68 g、2mmol)を加え2時間撹拌した。メタノール(2ml) を加え反応を停止し、溶媒を留去した。残査をクロロホ ルム(20m1)に溶解し、飽和炭酸水素ナトリウム水で中 和した後、クロロホルムで抽出(20m1×3回)し、水で 洗浄後無水硫酸ナトリウムで乾燥した。溶媒を留去し、 カラムクロマトグラフィーにて分離精製し、5'-O-(4,4'-ジメトキシトリチル)-N'-(n-ブチリル)-2' -デオキシシチジンを1.00 g得た(収率:2'-デオキ シシチジンモノ塩酸塩に対して95%)。得られた5'-O-(4,4'-y) + y2'-デオキシシチジンのNMRチャートのケミカルシフ ト、IRチャートの波数およびシリカゲル薄層クロマト グラフィーの移動度を以下に示す

護基を選択的に除去し、中間生成物(R¹,R²,R³=水素 50 ¹H-NMR(CDC1,)δ:9.00(brs、1H、

5

NH) 8.26 (s, 1H, 6H) 8.13 (s, 1H, 5H)

7.52-7.10 (m, 9H, ArH)

6.82 (d, J = 9 Hz, 4 H, ArH)

6.29 (t, J = 6 Hz, 1 H, 1'H)

4.69-4.38 (m, 1H, 3'H)

4.30-4.03 (m, 1H, 4'H)

3.81 (s, 6H, OCH,)

3.57-3.30 (m, 2H, 5 H)

3.02-2.43 (m, 2H, 2'H)

 $2.37 (t, J=7Hz, 2H, COCH_2)$

1.67 (sext, J = 7 Hz, 2 H, $C H_1$)

 $0.94 (t, J = 7 Hz, 3H, CH_1)$

IR (KBr, cm⁻¹):3369.9 2962.9 1

720.7 1653.1

 $1\ 5\ 6\ 0\ .6\quad 1\ 4\ 9\ 2\ .1\quad 1\ 3\ 9\ 2\ .7\quad 1\ 3\ 1\ 4\ .6$

1251.9 1177.7 1094.7 1034.9

*828.5 790.9

シリカゲル薄層クロマトグラフィー (CHC1,: CH,

OH = 10:1

Rf:0.42

[0013]

【発明の効果】本発明のヌクレオシド誘導体は、その3'-水酸基と各種リン酸化剤を作用させることにより、オリゴヌクレオチド合成用のモノヌクレオチドユニットを合成することが可能であり、コハク酸無水物と作用させカルボキシル基を導入し、更に、反応基を有する固相単体と縮合反応を行い、ヌクレオシド担持サポートを合成することもできるという優れた効果を奏するものであり、さらに、脱保護が容易であるという効果も奏するものである。

【図面の簡単な説明】

【図1】実施例1で得られた本発明のヌクレオシド誘導体、5'-O-(4,4'-ジメトキシトリチル)-N'-(n-ブチリル)-2'-デオキシシチジンの1<math>Rチャートである。

【図1】

