

Análise Matemática II (2012/2013)

Exame de Recurso

28/06/2013

Duração: 3h

Nome:

Número:

Curso:

Resolva cada parte numa folha de teste diferente.

Parte I

1. Considere a função $f(x,y) = \left(\frac{y}{x-2y}, e^{xy}, \ln(x^2+1)\right)$.

- (a) Determine o domínio da função f e diga, justificando, se é um conjunto compacto.
- (b) Diga, justificando, o conjunto dos pontos onde a função dada é contínua.
- (c) Calcule, caso exista, $\lim_{(x,y)\to(0,0)} f(x,y)$.
- 2. Considere $E \subset \mathbb{R}^3$ definido por

$$E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 4y^2 + 3z^2 - 8 = 0\}.$$

- (a) Determine o plano tangente a E no ponto (2, 1, 0).
- (b) Justifique que numa vizinhança de (2,1,0) é possível escrever $y=\varphi\left(x,z\right)$ onde φ é uma função de classe \mathcal{C}^{1} .
- (c) Calcule o diferencial $D\varphi(2,0)$.

Parte II

- 3. Determine os valores máximo e mínimo da função f(x,y)=xy quando (x,y) pertence à elipse $4x^2+y^2=4$.
- 4. Calcule, aplicando o Teorema de Green,

$$\oint_C (x^2 + y^2) \, dx - 2xy \, dy,$$

onde C é a fronteira da região limitada pelos gráficos de $y=\sqrt{x},\ y=0$ e x=4, percorrida no sentido dos ponteiros do relógio.

5. Calcule

$$\iiint\limits_{D} \sqrt{x^2 + y^2} dx dy dz$$

onde D é a região dentro do cilindro $x^2+y^2=4$, entre os planos z=-2 e z=4 e com $x\geq 0$.

Parte III

6. Determine a massa e a primeira coordenada do centro de massa.de uma placa homogénea com a forma do conjunto

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 < y < x + 2\}.$$

7. Considere o campo vectorial $F: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$F(x, y, z) = (3z - \sin x, x^2 + e^y, y^3 - \cos z)$$

e a superfície S dada por

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - x^2 - y^2, z > 1\},$$

com normal unitária apontando para fora.

- (a) Parametrize a superfície S.
- (b) Considere C o bordo da superfície S. Aplicando o Teorema de Stokes calcule o trabalho realizado por F ao longo de C.

BOM TRABALHO!