12. Quadrature. Present your solution to Exercise 6.4.

Numerical Analysis E2021

Institute of Mathematics
Aalborg University

Numerical Analysis E2021

Motivation

Quadrature Hules

Let $f: [a,b] \to \mathbb{R}$. We seek to compute the value

$$\int_{a}^{b} f(x)dx$$

- ▶ The integrand f(x) may be known only at certain points, such as obtained by sampling.
- ► A formula for the integrand may be known, but it may be difficult or impossible to find an antiderivative that is an elementary function.
 - ► Example: $\exp -x^2$.
- It may be easier to compute a numerical approximation than to compute the antiderivative.

Quadrature rules

Numerical Analysis E2021

Motivation

Quadrature Rules

Basic rules:

- ► Midpoint rule $M = hf\left(\frac{a+b}{2}\right)$,
- ► Trapezoid rule $T = h^{\frac{f(a)+f(b)}{2}}$,
- ► Simpson's rule $S = \frac{h}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b)).$

Composite Simpson's rule

Numerical Analysis E2021

Motivatio

Quadrature Rules

Let d = (a+c)/2 and e = (c+b)/2. Apply Simpson's rule to each subinterval to obtain a quadrature rule over [a, b]:

$$S_2 = \frac{h}{12}(f(a) + 4f(d) + 2f(c) + f(e) + f(c)).$$

Both S and S_2 are of order 4, but the S_2 step size is half the S step size, so S_2 is roughly 2^4 times as accurate. Thus, a combination Q is obtained by solving

$$Q - S = 16(Q - S_2),$$

which yields

$$Q = S_2 + (S_2 - S)/15.$$

MATLAB demo of exercise 6.4.