Real Analysis Lecture Notes

George Z. Miao

2023 Spring

Chapter 1

\mathbb{R} eal number

1.1 Field Properties

1. +

- Communitive: $\forall x, y \in \mathbb{R}. \ x + y = y + x$
- Associative: $\forall x, y, z \in \mathbb{R}$. (x + y) + z = x + (y + z)
- Identity: $\exists 0 \in \mathbb{R}. \ \forall x \in \mathbb{R}. \ x + 0 = x$
- Additive inverse: $\forall x \in \mathbb{R}. \ \exists -x \in \mathbb{R}. \ x + (-x) = 0$

2. •

- Communitive
- Associative
- Identity: $1 \neq 0$
- Multiplicative inverse: $\exists x^{-1} = \frac{1}{x}. \ x \cdot \frac{1}{x} = 1.$
- Distributive law: $\forall a, b, c \in \mathbb{R}$. $a \cdot (b+c) = ab + ac$

Theorem 1.1.1. *If* a + x = a *then* x = 0

Proof. Add -a to both side:

$$-a + a + x = -a + a$$
$$(-a + a) + x = (-a + a)$$
$$0 + x = 0$$
$$x = 0$$

Theorem 1.1.2. *If* a + x = 0 *then* x = -a

Proof.

$$\exists -a \in \mathbb{R}. (-a+a) + x = -a+0$$
$$0 + x = -a$$
$$x = -a$$

Theorem 1.1.3. $\forall a \in \mathbb{R}. \ a \cdot 0 = 0$

Proof. Consider

$$a + a \cdot 0 = a \cdot 1 + a \cdot 0$$

$$= a \cdot (1 + 0)$$

$$= a \cdot 1$$

$$= a \Rightarrow a \cdot 0 = 0$$

Theorem 1.1.4. $\forall a \in \mathbb{R}. \ (-1)a = -a$

Proof. Consider

$$a + (-1)a = a \cdot 1 + a(-1)$$

= $a(1 + (-1))$
= $a \cdot 0$
= 0

By theorem 1.1.2

$$(-1)a = -1$$

1.2 Order

A relation < on $\mathbb{R} \times \mathbb{R}$ satisfying

1. Trichotomy: $\forall a.b \in \mathbb{R}$. one and only one is true:

$$a = b, \ a < b, \ b < a$$

- 2. Transitivity: $\forall a, b, c \in \mathbb{R}$., if a < b and b < c then a < c.
- 3. Addictive property: $\forall a, b, c \in \mathbb{R}$., if a < b then a + c < b + c.
- 4. Multiplicative property: $\forall a, b, c \in \mathbb{R}$.
 - (i) if a < b and c > 0 then ac < bc
 - (ii) if a < b and c < 0 then ac > bc

Theorem 1.2.1. $\forall a \in \mathbb{R} \setminus \{0\} . a^2 > 0$

Proof. Since $a \neq 0$, by Trichotomy, a > 0 or a < 0.

- If a > 0, then by $Mp_{(i)}$, $a^2 > a \cdot 0 = 0$, $a^2 > 0$
- If a < 0, then by $Mp_{(ii)}$, $a^2 > a \cdot 0 = 0$, $a^2 > 0$

1.2. ORDER 5

Theorem 1.2.2. If a > 0 then $a^{-1} = \frac{1}{a} > 0$

Proof. $a^{-1} \neq 0$.

(i) If $a^{-1} = 0$ then $a \cdot a^{-1} = 0$, contradiction.

(ii) If $a^{-1} < 0$, by $Mp_{(ii)}$

$$a^{-1} \cdot a < 0$$
$$1 < 0$$

contradiction.

So by Trichotomy, $a^{-1} > 0$.

Theorem 1.2.3. If 0 < a < 1, then $0 < a^2 < a < 1$

Proof. By $Mp_{(i)}$

$$0 \cdot a < a \cdot a < a \cdot 1$$
$$0 < a^2 < a$$

Definition 1.2.1 (Square root). For a > 0 there is $\sqrt{a} > 0$ such that $(\sqrt{a})^2 = a$

Theorem 1.2.4. *If* 0 < a < 1 *then* $0 < a < \sqrt{a} < 1$

Proof. First prove $\sqrt{a} < 1$

- (i) If $\sqrt{a} > 1$ then $\sqrt{a} > 0$. By $Mp_{(i)}$, $(\sqrt{a})^2 > \sqrt{a} > 1$, a > 1, contradiction.
- (ii) If $\sqrt{a} = 1$ then $a = (\sqrt{a})^2 = 1$, contradiction.

By Trichotomy, $0 < \sqrt{a} < 1$. By $Mp_{(i)}$

$$0 \cdot \sqrt{a} < \sqrt{a} \cdot \sqrt{a} < \sqrt{a} \cdot 1$$
$$0 < a < \sqrt{a} < 1$$

Theorem 1.2.5. If $0 \le a < b$ and $0 \le c < d$ then ac < bd

Proof.

- When a = 0 or c = 0, ac = 0. And 0 < b and 0 < d so by $Mp_{(i)}$, 0 < bd, so ac < bd.
- Now consider 0 < a < b and 0 < c < d. By $Mp_{(i)}$, 0 < ac < bc and 0 < bc < bd. By transitivity, ac < bd.

Theorem 1.2.6. *If* a > 1 *then* $a > \sqrt{a} > 1$

Proof.

$$0 < \frac{1}{a} < 1$$

$$0 < \frac{1}{a} < \sqrt{\frac{1}{a}} < 1$$

$$a > \sqrt{a} > 1$$

Theorem 1.2.7. $a, b \ge 0$ then $\sqrt{a}, \sqrt{b} \ge 0$, then $(\sqrt{a} - \sqrt{b})^2 \ge 0$

1.3 Absolute Value Function

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Note. if x < 0, by $Mp_{(ii)}$, (-1)x > 0, -x > 0.

Theorem 1.3.1. |a| = |-a|

Proof. By Trichotomy

(i)
$$a > 0$$
: $|a| = a$, and $-a < 0$, $|-a| = a$

Theorem 1.3.2. |ab| = |a| |b|

Theorem 1.3.3 (Fundamental Theorem Of Absolute Values). $|a| < M \iff -M < a < M$ *Proof.*

- 1. Assume |a| < M, to prove that -M < a < M.
 - if $a \ge 0$, then |a| = a, $0 \le a < M$. Since 0 < M, -M < 0, -M < a < M.
 - if a < 0, then |a| = -a, 0 < -a < M, M > 0 > a > -M, so -M < a < M.
- 2. Assume -M < a < M, to prove that |a| < M.
 - if $a \ge 0$ then |a| = a < M.
 - if a < 0 then |a| = -a. Since M > -a > -M, M > |a|.

Theorem 1.3.4 (1st Triangle Inequality). $|a+b| \le |a| + |b|$ *Proof.*

$$|a| \le |a|$$

$$-|a| \le a \le |a|$$

$$|b| \le |b|$$

$$-|b| \le b \le |b|$$

$$-|a| - |b| \le a + b \le |a| + |b|$$

$$|a + b| \le |a| + |b|$$

Theorem 1.3.5 (2nd Triangle Inequality). $||a| - |b|| \le |a - b|$ *Proof.*

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$|a| - |b| \le |a - b|$$

$$|b| = |b - a + a| \le |b - a| + |a|$$

$$-|b - a| \le |a| - |b|$$

$$||a| - |b|| \le |a - b|$$

Theorem 1.3.6. If $|a| < \epsilon$ for $\epsilon > 0$ then a = 0

Proof. Suppose |a|>0. set $\epsilon=\frac{|a|}{2}>0$, then $|a|>\epsilon$. Contradiction. So |a|=0, a=0.

7

1.4 Supremum and Infimum

Let $E \subseteq \mathbb{R}, E \neq \emptyset$.

Definition 1.4.1 (Bounded above). $\exists M \in \mathbb{R}. \ \forall x \in E. \ x < M. \ M$ is the upper bound.

Definition 1.4.2 (Supremum).

- (i) $\forall x \in E. \ x \leq \sup E$
- (ii) If M is a upper bound of E, then $\sup E \leq M$ (Or, no $M \leq \sup E$ is an upper bound)

Definition 1.4.3 (Bounded below). $\exists M \in \mathbb{R}. \ \forall x \in E. \ x > M. \ M$ is the lower bound.

Definition 1.4.4 (Infimum).

- (i) $\forall x \in E. \ x > \inf E$
- (ii) If M is a lower bound of E, then $\inf E \geq M$

Ex 1.4.1.
$$E = [0,1] = \{x \mid 0 \le x \le 1\}, \sup E = 1, \inf E = 0$$

Ex 1.4.2.
$$E = (0,1) = \{x \mid 0 < x < 1\}, \sup E = 1, \inf E = 0$$

Proof. Show if M<1 then it's not an upper bound, therefore all upper bound of E greater or equal to 1. If $\frac{1}{2} < M < 1$ then

$$M = \frac{M+M}{2} < \frac{M+1}{2} < \frac{1+1}{2} = 1$$

We have $\frac{M+1}{2} \in E, \frac{M+1}{2} > M$, M is not an upper bound. Therefore all upper bounds M must be ≥ 1 . So, by def, $\sup E = 1$.

Theorem 1.4.1. If $s = \sup E$ and $r = \sup E$ then s = r

Proof. $s \le$ all upper bounds, r is an upper bound, $s \le r$. $r \le$ all upper bounds, s is an upper bound, $r \le s$. Therefore, by Trichotomy, s = r.

Theorem 1.4.2. If $a \in E$, and a is an upperbound for E then $\sup E = a$.

Proof. a satisfies (i) for being a sup. Since $a \in E$. If M is a upperbound of E, a < M. a satisfies (ii) for being a sup. So $a = \sup E$.

Definition 1.4.5. M is **not** an upperbound for E means $\exists x \in E$. x > M.

Theorem 1.4.3. For E, sup E exists, $\epsilon > 0$.

$$\sup E - \epsilon < \sup E$$

So $\sup E - \epsilon$ is not an upperbound, meaning $\exists x \in E$. $\sup E - \epsilon < x \leq \sup E$.

Ex 1.4.3. Let A be an nonempty, bounded set, c > 0. $B = \{x = ca, a \in A\}$. Prove that $\sup B = c \cdot \sup A$

Proof. By compeleteness, $\sup A$ exists. $\forall x \in B$. $\exists a \in A$. $x = c \cdot a$. Since $a \leq \sup A$ we have $x = ca \leq c \cdot \sup A$. So $c \cdot \sup A$ is an upperbound of B. By compeleteness, $\sup B$ exists. Follows that $\sup B \leq c \cdot \sup A$. Now, since $\sup B$ is an upperbound of B,

$$\forall x \in B. \ x \le \sup B$$
$$\forall a \in A. \ ca \le \sup B$$
$$a \le \frac{\sup B}{c}$$

So $\frac{\sup B}{c}$ is an upperbound for A, entails $\frac{\sup B}{c} \ge \sup A$, namely $\sup B \ge c \cdot \sup A$. So $\sup B = c \cdot \sup A$.

Ex 1.4.4. Let A, B be nonempty, bounded sets. What is $\sup(A - B)$

$$sup(A - B) = sup(A + (-B))$$
$$= sup(A) + sup(-B)$$
$$= sup(A) - inf(B)$$

1.5 Completeness

Definition 1.5.1. If $E \subseteq \mathbb{R}$, $E \neq \emptyset$ and E is bounded above then $\sup E$ exists. (is a real number)

Ex 1.5.1. *For rational number:*

$$E = \left\{ \frac{n}{m} \in \mathbb{Q} \mid \frac{n}{m} < \pi \right\}, \sup E = \pi \notin \mathbb{Q}$$

So \mathbb{Q} is not complete.

Definition 1.5.2 (sup \mathbb{Z}). *if* $E \subseteq \mathbb{Z} \subseteq \mathbb{R}$, *and* sup E *exists, then* sup $E \subseteq E$.

1.6 Archimedean Principle (AP)

Definition 1.6.1. For all $a, b \in \mathbb{R}$, a > 0, there is an $N \subseteq \mathbb{N}$ s.t. Na > b.

Proof.

- 1. If a > b, then N = 1
- 2. If $a \leq b$ then let

$$E = \{k \in \mathbb{N} \mid ka < b\}$$

Since $a \le b$, $k = 1 \in E$, so E is not empty, $k \in E \Rightarrow k \le \frac{b}{a}$, $\frac{b}{a}$ is an upper bound of E. By Completeness, $\sup E$ exists. Call $n = \sup E$. By $\sup \mathbb{Z}$, $n \in E$. Now n+1 is not in E, therefore (n+1)a > b. Set N = n+1.

1.7 Density of \mathbb{Q} in \mathbb{R}

Definition 1.7.1 (Density). $\forall a, b \in \mathbb{R}$. $a < b, \exists r \in \mathbb{Q}$. a < r < b.

Proof. By A.P. then there is an $N \subseteq \mathbb{N}$ s.t. $\frac{1}{N} < b - a$. Let

$$E = \left\{ k \in \mathbb{Z} \mid \frac{k}{n} \le a \right\}$$

E is nonempty, bounded above by Na. By Completeness, $\sup E$ exists. By $\sup \mathbb{Z}$, $\sup E \in E$. Set $n = \sup E$, then

$$n+1 \notin E$$

$$\frac{n+1}{n} > a$$

$$\frac{n}{n} \le a < \frac{n+1}{n}$$

$$= \frac{n}{n} + \frac{1}{n} < a+b-a = b$$

$$a < \frac{n+1}{n} < b$$

let $r = \frac{n+1}{n} \in \mathbb{Q}$.

1.8 Reflection

Definition 1.8.1 (-E). $E \subseteq R$. Let $-E = \{a \mid a = -x, x \in E\}$.

Theorem 1.8.1. If $\sup E$ exists, then $\inf(-E)$ exists, and equals to $-\sup E$.

Proof. Since $\sup E$ exists,

$$\forall x \in E. \ x \le \sup E$$
$$\forall x \in E. \ -x > -\sup E$$
$$\forall a \in -E. \ a \ge -\sup E$$

So $-\sup E$ is a lower bound for -E.

$$\begin{aligned} &\forall a \in -E. \ a \geq M \\ &\forall a \in -E. \ -a \leq -M \\ &\forall x \in E. \ x \leq -M \end{aligned}$$

Therefore $\sup E \leq -M$, $-\sup E \geq M$.

1.9 Monotonicity

Theorem 1.9.1. If $A \subseteq B$, $A \neq \emptyset$, $\sup B$ exists, then $\sup A \leq \sup B$.

Proof. If $a \in A \subseteq B$ then $a \in B$, $a \le \sup B$. $\sup B$ is an upperbound for A. By Completeness $\sup A$ exists and $\sup A \le \sup B$.

Theorem 1.9.2. *If* $A \subseteq B$, $A \neq \emptyset$, and inf B exists, then inf $A \ge \inf B$.

Definition 1.9.1 (Sup and Inf of any set). *Let* $E \subseteq \mathbb{R}$.

- For $E \neq \emptyset$, If E is not bounded above by any number, then $\sup E = \infty$. If E is not bounded below by any number, then $\inf E = -\infty$.
- For $E = \emptyset$, $\sup E = -\infty$, $\inf E = \infty$.

Chapter 2

Sequences on $\mathbb R$

2.1 Limits of Sequences

Definition 2.1.1 (Limit).

$$\lim_{n \to \infty} x_n = L \iff \forall \epsilon > 0. \ \exists N. \ n \ge N \to |x_n - L| < \epsilon$$

Theorem 2.1.1. If $x_n \to L$ as $n \to \infty$ then all subsets also converge to L.

Theorem 2.1.2. If $x_n \to L$ as $n \to \infty$ then $\{x_n\}$ is bounded

$$\forall n \in \mathbb{N}. \ \exists M. \ |x_n| \leq M$$

Ex 2.1.1. True or False. If x_n converges then $\frac{x_n}{n}$ converges.

Answer. True. $\lim_{n\to\infty} \frac{x_n}{n} = 0$.

Proof. Consider, since $\forall n \in \mathbb{N}. \ |x_n| \leq M$, without lost of generality, M > 0.

$$\frac{|x_n|}{n} \le \frac{M}{n}$$

Given $\epsilon > 0$. By A.P, $\exists N \in \mathbb{N}$. so that $M < N\epsilon$.

$$\forall n \ge M. \left| \frac{x_n}{n} - 0 \right| \le \frac{M}{n} \le \frac{M}{N} < \epsilon$$

Ex 2.1.2. True or False. If x_n does not converge, then $\frac{x_n}{n}$ does not converge.

Answer. False. Consider $x_n = (-1)^n$. x_n does not converge but $\frac{x_n}{n} \to 0$ as $n \to \infty$.

Proof. Given $\epsilon > 0$. By A.P, $\exists N \in \mathbb{N}. \ 1 < N\epsilon$. For $n \geq N$ we get

$$\left| \frac{(-1)^n}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} < \epsilon$$

Theorem 2.1.3. $\frac{\pi}{\sqrt{n}} \to 1$ as $n \to \infty$

Proof. Given $\epsilon > 0$. By A.P., $\exists N \in \mathbb{N}. \ \pi^2 < N \cdot \epsilon^2$.

$$\frac{\pi^2}{N} < \epsilon^2$$

$$\frac{\pi}{\sqrt{N}} < \epsilon$$

For all $n \ge N$ we get

$$\left|1 + \frac{\pi}{\sqrt{n}} - 1\right| = \frac{\pi}{\sqrt{n}} \le \frac{\pi}{\sqrt{N}} < \epsilon$$

Theorem 2.1.4. Assume that $x_n \to 1$ as $n \to \infty$, then

$$\lim_{n \to \infty} \frac{\pi x_n - 2}{x_n} = \pi - 2$$

Proof. By assumption, take $\epsilon = \frac{1}{2}$, there exists N so that $\forall n \geq N$. $|x_n - 1| \leq \frac{1}{2}$, gives $\frac{1}{2} < x_n < \frac{3}{2}$.

$$\left| \frac{\pi x_n - 2}{x_n} - (\pi - 2) \right| = \left| \frac{\pi x_n - 2}{x_n} - \frac{(\pi - 2)x_n}{x_n} \right|$$

$$= \left| \frac{2x_n - 2}{x_n} \right|$$

$$= \frac{2}{|x_n|} |x_n - 1|$$

$$\le 4 |x_n - 1|$$

By assumption, for any $\epsilon > 0$, $|x_n - 1| < \frac{\epsilon}{4}$

$$\left| \frac{\pi x_n - 2}{x_n} - (\pi - 2) \right| < \epsilon$$

Theorem 2.1.5 (Comparison). If $x_n \to x$ and $y_n \to y$ as $n \to \infty$ and if $x_n \le y_n$ for $n \ge N_0$ then $x \le y$.

Proof. Suppose not, x > y. For $\epsilon = \frac{x-y}{2} > 0$, then there is N_1 s.t. $n \ge N_1 \to |x_n - x| < \frac{x-y}{2}$ and N_2 s.t. $n \ge N_2 \to |y_n - y| < \frac{x-y}{2}$.

$$\frac{x+y}{2} = x - \frac{x-y}{2} < x_n$$

$$y_n < \frac{x-y}{2} + y = \frac{x+y}{2}$$

$$y_n < \frac{x+y}{2} < x_n \text{ for } n > \max(N_1, N_2)$$

Ex 2.1.3. True or False. If $x_n \to \infty$ as $n \to \infty$ then $\frac{1}{x_n} \to \infty$.

Answer. False. $x_n = -\frac{1}{n}$

Theorem 2.1.6. If $x_n \ge 0$ and $x_n \ge 0$ as $n \to \infty$ then $\sqrt{x_n} \to \sqrt{x}$ as $n \to \infty$.

Proof. Since $x_n \ge 0$ by comparison $x \ge 0$.

• If x=0, consider $|\sqrt{x_n}-0|=\sqrt{x_n}$ since $x_n\to 0$, given $\epsilon>0$ there is an N so that $n\geq N\to |x_n-0|<\epsilon^2$. $x_n<\epsilon^2$, $\sqrt{x_n}<\epsilon$, $|\sqrt{x_n}-0|<\epsilon$.

• If x > 0, consider

$$\left| \sqrt{x_n} - \sqrt{x} \right| = \left| (\sqrt{x_n} - \sqrt{x}) \frac{\sqrt{x_n} + \sqrt{x}}{\sqrt{x_n} + \sqrt{x}} \right|$$
$$= \frac{|x_n - x|}{\sqrt{x_n} + \sqrt{x}}$$
$$\leq \frac{|x_n - x|}{\sqrt{x}}$$

Given $\epsilon > 0$ then there is an N s.t.

$$n \ge N \to |x_n - x| < \sqrt{x}\epsilon$$

So

$$\left|\sqrt{x_n} - \sqrt{x}\right| \le \frac{|x_n - x|}{\sqrt{x}} < \frac{\epsilon\sqrt{x}}{\sqrt{x}} = \epsilon$$

Theorem 2.1.7. If $x \in \mathbb{R}$ then there is a sequence r_n from \mathbb{Q} s.t. $r_n \to x$ as $x \to \infty$.

Proof. For $n \in \mathbb{N}$ by density of \mathbb{Q} there is an $r_n \in \mathbb{Q}$ with

$$x - \frac{1}{n} < r_n < x + \frac{1}{n} \iff 0 \le |r_n - x| < \frac{1}{n}$$

By squeeze theorem,

$$|r_n - x| \to 0$$
 as $n \to \infty \iff r_n \to x$ as $n \to \infty$

2.2 Increasing and decreasing

Definition 2.2.1 (Increasing). $\{x_n\}$ is increasing means $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. If $x_n < x_{n+1}$ then strictly increasing.

Definition 2.2.2 (Decreasing). $\{x_n\}$ is decreasing means $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$. If $x_n > x_{n+1}$ then strictly decreasing.

Theorem 2.2.1 (Monotone Convergence Theorem). If x_n is increasing and bounded above, then $x_n \to \sup \{x_1, x_2, \dots\}$ as $n \to \infty$.

Proof. Given $\epsilon > 0$, there is an $x_n \in E = \{x_1, x_2, \dots\}$ so that

$$\sup E - \epsilon < x_n \le \sup E < \sup E + \epsilon$$

for $n \geq N$, $x_N \leq x_n$, so

$$\sup E - \epsilon < x_N \le x_n < \sup E + \epsilon \iff |x_n - \sup E| < \epsilon$$

Ex 2.2.1. If 0 < |a| < 1 then $a^n \to 0$ as $n \to \infty$

Proof. Consider $|a^n-0|=|a|^n$, to prove $|a|^n\to 0$ as $n\to\infty$. Here, 0<|a|<1, $|a|^2<|a|$. If $|a|^n<|a|^{n+1}$ then $|a|^{n+1}<|a|^{n+2}$. By induction, $|a|^{n+1}<|a|^n$ for all $n\in\mathbb{N}$. $|a|^n$ is decreasing and bounded below by 0. By MCT, $|a|^n\to L$ as $n\to\infty$. Now note that

$$|a|^{2n} = |a|^n |a|^n \to L \cdot L = L^2 \text{ as } n \to \infty$$

But $|a|^{2n}$ is the subseq of every terms of $|a|^n$. By the subsequence theorem,

$$|a|^{2n} \to L \text{ as } n \to \infty$$

Therefore $L^2 = L$, gives that L = 0, 1. Since |a| < 1 and $|a|^n$ is decreasing, L = 0.

Ex 2.2.2. If a > 0 then $a^{1/n} \to 1$ as $n \to \infty$

Proof. For a > 1 and n < m,

$$a^n < a^m$$

Take the $\frac{1}{mn}$ root, we get

$$(a^{n})^{\frac{1}{mn}} < (a^{m})^{\frac{1}{mn}}$$

$$a^{\frac{1}{m}} < a^{\frac{1}{n}}$$

$$1 < a^{\frac{1}{n+1}} < a^{\frac{1}{n}}$$

 $a^{\frac{1}{n}}$ is decreasing and bounded below by 1. By the MCT, $a^n \to L$ as $n \to \infty$. But

$$a^{\frac{1}{2}n} = \sqrt{a^{\frac{1}{n}}} \to \sqrt{L}$$

Therefore $L = \sqrt{L}$, $L^2 = L$, L = 1, 2. Since it's bounded below by 1, L = 1.

Ex 2.2.3. If $0 < x_1 < 1$, $x_{n+1} = 1 - \sqrt{1 - x_n}$ for $n \in \mathbb{N}$, prove that x_n converges and find the limit.

Proof. Induct on x_n

Base case.

$$\begin{split} x_2 &= 1 - \sqrt{1 - x_1} \\ 0 &< x_1 < 1 \\ 0 &> -x_1 > -1 \\ 1 &> 1 - x_1 > 0 \\ 1 &> \sqrt{1 - x_1} > 1 - x_1 > 0 \\ -1 &< -\sqrt{1 - x_1} < x_1 - 1 < 0 \\ 0 &< 1 - \sqrt{1 - x_1} < x_1 < 1 \\ x_2 &< x_1 < 1 \end{split}$$

Inductive step. Suppose $0 < x_n < 1$ repeat the argument with x_1 replaced by x_n ,

$$0 < x_{n+1} < x_n < 1$$

By induction the sequence is decreasing and is bounded below by 0. Therefore by MCT it converges. Now find the L. $x_n \to L$ as $n \to \infty$.

$$L = 1 - \sqrt{1 - L}$$

$$\sqrt{1 - L} = 1 - L$$

$$1 - L = 1, 0$$

$$L = 1, 0$$

$$\Rightarrow L = 0$$

Ex 2.2.4. $x_0 > 0$ and $x_n = \frac{3}{2} + \frac{2}{3}x_{n-1}$ for $n \in \mathbb{N}$. Show x_n converges and find the limit.

Proof.

$$x_1 = \frac{2}{3} + \frac{2}{3}x_0 < \frac{1}{3}x_0 + \frac{2}{3}x_0 = x_0$$
$$2 < x_1 < x_0$$

If $2 < x_{n+1} < x_n$ then the same arg gives $2 < 2_{x+2} < x_{n+1}$. By induction, x_n converses and bounded below by 2. By MCT, $x_n \to L$ as $n \to \infty$. Now find L.

$$L = \frac{2}{3} + \frac{2}{3}L$$
$$L = 2$$

Ex 2.2.5. $x_0 < 3$, $x_n = \frac{3}{7} + \frac{6}{7}x_{n-1}$, prove it converges and find the limit.

Proof.

$$x_0 = \frac{1}{7}x_0 + \frac{6}{7}x_0 < \frac{3}{7} + \frac{6}{7}x_0 = x_1 < \frac{3}{7} + \frac{18}{7} = 3$$
$$x_n = \frac{1}{7}x_n + \frac{6}{7}x_n < \frac{3}{7} + \frac{6}{7}x_n = x_{n+1} < \frac{3}{7} + \frac{18}{7} = 3$$

 x_n is increasing and bounded above. By MCT, $x_n \to L$ as $n \to \infty$. Taking the limit in

$$x_n = \frac{3}{7} + \frac{6}{7}x_{n-1}$$

We get

$$L = \frac{3}{7} + \frac{6}{7}L$$
$$L = 3$$

Chapter 3

Functions on \mathbb{R}

3.1 Limits

Definition 3.1.1. Let I be an open interval, $a \in I$, $\hat{I} = I \setminus \{a\}$, $f: \hat{I} \to \mathbb{R}$. $\lim_{x \to a} f(x) = L$ means

$$\forall \epsilon > 0. \ \exists \delta > 0. \ \forall x \in \hat{I}. \ (0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon)$$

Ex 3.1.1. $f(x) = mx + b, a \in \mathbb{R}$

Answer. $\lim_{x\to a} f(x) = mx + b$

Ex 3.1.2. $f(x) = x^3 + x + 1$, prove $\lim_{x\to 2} f(x) = 11$

Proof. For |x-2| < 1, 1 < x < 3 and $|x^2 + 2x + 5| \le 20$. For |x-2| < 1 we have

$$|x^3 + x + 1 - 11| \le |x^2 + 2x + 5| |x - 2| \le 20 |x - 2|$$

Given $\epsilon > 0$, let $\delta = \min(1, \frac{\epsilon}{20})$. For $0 < |x - 2| < \delta$ we get

$$|x^3 + x + 1 - 11| \le 20 |x - 2| < 20 \cdot \frac{\epsilon}{20} = \epsilon$$

Definition 3.1.2 (Sequential Characterization of Limits). Let x_n be sequence from \hat{I} ,

$$\lim_{x \to a} f(x) = L \iff \lim_{n \to \infty} x_n = a \to \lim_{n \to \infty} f(x_n) = L$$

Definition 3.1.3 (Polynomial). $n \in \mathbb{N}$, a polynomial of defgree N

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{n} x_k x^k, \quad a_n \neq 0$$

Theorem 3.1.1.

$$\lim_{x \to x_0} P(x) = P(x_0)$$

Proof. Recall

$$\lim_{x \to x_0} mx + b = mx_0 + b$$

So,

$$\lim_{x \to x_0} x^2 = \lim_{x \to x_0} x \lim_{x \to x_0} x = x_0 \cdot x_0 = x_0^2$$

$$\lim_{x \to x_0} x^3 = \lim_{x \to x_0} x^2 \lim_{x \to x_0} x = x_0^2 \cdot x_0 = x_0^3$$

If $\lim_{x\to x_0} x^n = x_0^n$ then

$$\lim_{x \to x_0} x^{n+1} = \lim_{x \to x_0} x^n \lim_{x \to x_0} x = x_0^n \cdot x_0 = x_0^{n+1}$$

By induction $\lim_{x\to x_0} x^n = x_0^n$ for all $n\in\mathbb{N}$. For $P_n(x) = a_0 + a_1x + \cdots + a_nx^n$,

$$\lim_{x \to x_0} P_n(x) = \lim_{x \to x_0} a_0 + \lim_{x \to x_0} a_1 x + \dots + \lim_{x \to x_0} a_n x^n$$

$$= a_0 + a_1 x_0 + \dots + a_n x_0^n$$

$$= P_n(x_0)$$

Definition 3.1.4 (Rational Function). P(x) and Q(x) are polynomials with $Q(x) \neq 0$, then a rational function R is

$$R(x) = \frac{P(x)}{Q(x)} = \frac{\sum_{k=0}^{n} a_k x^k}{\sum_{k=0}^{m} b_k x^k}$$

Theorem 3.1.2.

$$\lim_{x \to x_0} R(x) = \frac{\lim_{x \to x_0} P(x)}{\lim_{x \to x_0} Q(x)} = \frac{P(x_0)}{Q(x_0)}, \quad Q(x_0) \neq 0$$

Theorem 3.1.3. If P(x) and Q(x) are polynomials with $deg(P) \leq deg(Q)$. Then

$$\lim \frac{P(x)}{Q(x)} = \begin{cases} 0 & \deg(P) < \deg(Q) \\ a_n/b_n & \deg(P) = \deg(Q) \end{cases}$$

Proof. For m > n

$$\lim_{x \to \infty} \frac{\left(a_n x^n + \dots + a_0\right)}{\left(b_m x^m + \dots + b_0\right)} \frac{\frac{1}{x_m}}{\frac{1}{x_m}}$$

$$= \lim_{x \to \infty} \frac{\left(\frac{a_n x^n}{x^m} + \dots + \frac{a_0}{x^m}\right)}{\left(\frac{b_m x^m}{x^m} + \dots + \frac{b_0}{x^m}\right)}$$

$$= \frac{0 + \dots + 0}{b_m + 0 + \dots + 0} = 0$$

3.2 Convergence and Divergence

Definition 3.2.1 (Convergence). $\lim_{x\to\infty} f(x) = L$ means

$$\forall \epsilon > 0. \ \exists N. \ x > N \Rightarrow |f(x) - L| < \epsilon$$

 $\lim_{x\to-\infty} f(x) = L$ means

$$\forall \epsilon > 0. \ \exists N. \ x < N \Rightarrow |f(x) - L| < \epsilon$$

Definition 3.2.2 (Divergence). $\lim_{x\to\infty} f(x) = \infty$ *means*

$$\forall M. \; \exists N. \; x > N \Rightarrow f(x) > M$$

 $\lim_{x\to-\infty} f(x) = -\infty$ means

$$\forall M. \; \exists N. \; x < N \Rightarrow f(x) < M$$

Definition 3.2.3 (One-sided limit). $\lim_{x\to a^+} f(x) = \infty$ means,

$$\forall M. \ \exists \delta > 0. \ a < x < a + \delta \Rightarrow f(x) > M$$

 $\lim_{x\to a^-} f(x) = -\infty$ means,

$$\forall M. \ \exists \delta > 0. \ a - \delta < x < a \Rightarrow f(x) < M$$

Ex 3.2.1. Prove

$$\lim_{x \to -\infty} \frac{2x^2 + x + 5}{3x} = -\infty$$

Proof. Consider

$$\frac{2x^2 + x + 5}{3x} < \frac{1}{3}x$$

we want

$$\frac{1}{3}x < -(|M| + 1)$$

$$x < -3(|M| + 1)$$

Given M. Let N = -3(|M| + 1). For x < N we get

$$\frac{2x^2 + x + 5}{4x} < \frac{1}{3}x < \frac{1}{3}N = \frac{1}{3}(-3)(|M| + 1) = -(|M| + 1) < -|M| \le M$$

Ex 3.2.2. *To prove*

$$\lim_{x \to 1^+} \frac{2x}{x^3 - 1} = +\infty$$

Proof. Consider

$$\frac{2x}{x^3-1} = \frac{2x}{(x-1)(x^2+x+1)} = \frac{1}{x-1} \cdot \frac{2x}{x^2+x+1} > \frac{1}{x-1} \cdot \frac{2}{7} \quad \text{for } 1 < x < 2$$

We want

$$\frac{1}{x-1}\cdot\frac{2}{7}>|M|+1$$

Given M, let $\delta = min(1, \frac{2}{7(|M|+1)})$ for $0 < x - 1 < \delta$. We get

$$\frac{2\delta}{x^3-1} > \frac{1}{x-1} \cdot \frac{2}{7} > \frac{7(|M|+1)}{2} \cdot \frac{2}{7} = |M|+1 > |M| \geq M$$

3.3 Continuity

Definition 3.3.1 (Continuity). $E \subseteq \mathbb{R}$, $f : E \to \mathbb{R}$, $a \in E$.

$$\lim_{x \to a} f(x) = f(a) \iff \forall \epsilon > 0. \ \exists \delta > 0. \ \forall x \in E. \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

- f is continuous at a
- If f is continuous at every point $a \in E$, then f is said to be continuous on E

Theorem 3.3.1 (Extreme Value Theorem). f is continuous on [a, b], then

$$\exists x_m, x_M \in [a, b]. \ \forall x \in [a, b]. \ f(x_m) \le f(x) \le f(x_M)$$

Proof. f([a,b]) is a nonempty set, then $\sup f([a,b])$ and $\inf f([a,b])$ exists. By definition of sup, there exists $y_n \in f([a,b])$ with $y_n \to \sup f([a,b])$ as $n \to \infty$, therefore there are $x_n \in [a,b]$ with $f(x_n) = y_n$. By B-W there is $x_{n_k} \to x_M \in [a,b]$. By continuity, $f(x_{n_k}) \to f(x_M)$, $y_{n_k} \to \sup f([a,b])$, gives that $f(x_M) = \sup f([a,b])$. Similarly, $f(x_m) = \inf f([a,b])$.

Theorem 3.3.2 (Intermediate Value Theorem). If f is cont on [a,b] and if y is any value between f(a) and f(b) then there is a c between a,b with f(c)=y.

Proof. Suppose without lost of generality, f(a) < y < f(b). Since f is cont at a, for $\epsilon = \frac{y - f(a)}{2} > 0$ there is a $\delta > 0$ so that $x \in [a,b]$, $|x-a| < \delta \Rightarrow |f(x) - f(a)| < \frac{y - f(a)}{2}$, so $f([a,a+\delta])$ is bounded above by g. Let $E = \{t \mid f([a,t))\}$ is bounded above by g. Consider $\sup E$, exists by Completeness. E is nonempty f(t) = f(t) = f(t) sup f(t) = f(t). By Continuity, f(t) = f(t) sup f

If $f(\sup E) = y$, done. If $f(\sup E) < y$, then by Continuity of f at $\sup E$, for $\epsilon = \frac{y - f(\sup E)}{2}$ there is a $\hat{\delta} > 0$ such that

$$|x - a| < \hat{\delta} \Rightarrow \left| f(x) - f(\sup E) < \frac{y - \sup E}{2} \right|$$

 $f(x) < \frac{y + \sup E}{2} < y$ for all $x \in (\sup E - \delta, \sup E + \delta)$. Contradiction.

Ex 3.3.1. If f is continuous on [a,b] = I then f(I) = J is a closed bounded interval.

Proof. By the extreme value theorem, $\exists x_m, x_M \in [a, b]$. so that $\forall x \in [a, b]$. $f(x_m) \leq f(x) \leq f(x_M)$. This shows that

$$f([a,b]) \leq [f(x_m), f(x_M)]$$

Let $f(x_m) < y < f(x_M)$. By the IVT there is an x between x_m, x_M with y = f(x). This shows

$$[f(x_m), f(x_M)] \subseteq f([a, b])$$

which means

$$J = [f(x_m), f(x_M)]$$

Ex 3.3.2. f, g are cont on [a,b] with f(a) < g(a) and f(b) > g(b). Shows that $\exists c \in [a,b]$. f(c) = g(c)

Proof. Consider h(x) = f(x) - g(x). Then h(a) < 0 < h(b). By IVT, there is a c between a, b with h(c) = 0. This shows that f(c) = g(c).

3.4 Uniform continuity

Definition 3.4.1 (Uniform Continuity). $f: E \to \mathbb{R}$ is uniform continuous means

$$\forall \epsilon > 0. \ \exists \delta > 0. \ \forall x, y \in E. \ |x - y| < \delta \Rightarrow [f(x) - f(y) < \epsilon]$$

Theorem 3.4.1. If $f: E \to \mathbb{R}$ is unif cont, x_n from E is Cauchy, then $f(x_n)$ is Cauchy.

Ex 3.4.1. $f(x) = \frac{1}{x}$ is not unif cont on (0, 1)

Proof. Let $x_n = \frac{1}{n+1}, n \in \mathbb{N}$,

$$x_n \in (0,1)$$
$$x_n \to 0 \text{ as n } n \to \infty$$

therefore x_n is Cauchy. If f(x) = 1/x were unif cont then $f(x_n)$ is Cauchy, and therefore converges. But $f(x_n) = \frac{1}{1/n+1} = n+1$ which diverges to ∞ , contradiction, therefore f(x) = 1/x is not unif cont.

Theorem 3.4.2. f cont on [a, b], f is uniformly continuous on [a, b]

Theorem 3.4.3. f cont on (a, b), f is uniformly continuous iff

$$\lim_{x\to a^+} f(x)$$

 $\lim_{x\to b^-} f(x)$ exists

Proof. (of \Rightarrow) Let $x_n \in (a,b)$ with $x_n \to a$ as $n \to \infty$. x_n is Cauchy. Then $f(x_n)$ is Cauchy. Therefore there exists L s.t. $f(x_n) \to L$ as $x \to \infty$. Let $y_n \in (a,b)$ with $y_n \to a$ as $n \to \infty$. Similarly, there exists K s.t. $f(y_m) \to K$ as $m \to \infty$. Consider

$$|L - K| = |L - f(x_n) + f(x_n) - f(y_m) + f(y_m) - K|$$

= $|L - f(x_n)| + |f(x_n) - f(y_m)| + |f(y_m) - K|$

Given $\epsilon > 0$,

$$\exists N_1. \ n \ge N_1 \Rightarrow |L - f(x_n)| < \frac{\epsilon}{3}$$
$$\exists N_2. \ m \ge N_2 \Rightarrow |f(y_m) - K| < \frac{\epsilon}{3}$$
$$\exists \delta > 0. \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{3}$$

For this δ , there is an N_3 such that

$$n \ge N_3 \Rightarrow |x_n - a| < \frac{1}{2}\delta$$

And there is an N_4 such that

$$m \ge N_4 \Rightarrow |y_m - a| < \frac{1}{2}\delta$$

Then for $n, m \ge \max(N_3, N_4)$

$$|x_n - y_m| = |x_n - a + a - y_m|$$

$$\leq |x_n - a| + |a - y_m|$$

$$< \frac{1}{2}\delta + \frac{1}{2}\delta = \delta$$

This gives

$$\forall \epsilon > 0. \ |L - K| < \epsilon$$
$$L = K$$

So for any sequence $x_n \in (a,b)$ with $x_n \to a$, $f(x_n) \to L$. By SCL

$$\lim_{x \to a^+} f(x) = L$$

Similarly,

$$\lim_{x \to b^{-}} f(x) = K$$

Theorem 3.4.4. If f(x) satisfies on E

$$|f(x) - f(y)| \le C|x - y|$$

Then f is unif cont on E.

Proof. Given $\epsilon > 0$ let $\delta = \epsilon/C > 0$ and for $|x - y| < \delta$ we get

$$|f(x) - f(y)| \le C|x - y| < C \cdot \frac{\epsilon}{C} = \epsilon$$

Theorem 3.4.5. g(x) = |x| is uniformly continuous

Proof. Consider

$$||x| - |y|| \le |x - y|$$

Given $\epsilon > 0$, let $\delta = \epsilon$ for $|x - y| < \delta$ we get $||x| - |y|| \le |x - y| < \delta = \epsilon$

Ex 3.4.2. $f(x) = x \log(1/x)$ on (0,1). Is it unif cont on (0,1)?

Answer.

$$\begin{split} \lim_{x \to 0^+} x \log \left(\frac{1}{x} \right) &= \lim_{x \to 0^+} \frac{\log \left(\frac{1}{x} \right)}{1/x} \\ &= \lim_{x \to 0^+} \frac{-\frac{x^{-2}}{x-1}}{-x^{-2}} \\ &= \lim_{x \to 0^+} x \\ &= 0 \\ \lim_{x \to 1^-} x \log \left(\frac{1}{x} \right) &= 0 \end{split}$$

It is uniformly continuous.

Ex 3.4.3. Use the definition to prove that $f(x) = 3x^2 + x + 5$ is unif cont on [1, 4]

Proof. Consider

$$|f(x) - f(y)| = |3x^2 + x + 5 - (3y^2 + y + 5)|$$

$$= |3(x^2 - y^2) + x - y|$$

$$= |3(x + y)(x - y) + x - y|$$

$$= |x - y| |3(x + y) + 1|$$

$$\leq 25 |x - y|$$

Given $\epsilon>0$, let $\delta=\frac{\epsilon}{25}.$ For $|x-y|<\delta,$ we get

$$|f(x) - f(y)| \le 25 |x - y| < 25 \cdot \frac{\epsilon}{25} = \epsilon$$

Ex 3.4.4. f(x) = x is unif cont on (1,0) since |f(x) - f(y)| = |x - y|. Given $\epsilon > 0$, let $\delta = \epsilon$, then $|x - y| < \delta \Rightarrow |f(x) - f(y)| = |x - y| < \epsilon$

Theorem 3.4.6. $f,g:E\to\mathbb{R}$ are unif cont <u>and bounded</u>, $f\cdot g:E\to\mathbb{R}$ is unif cont.

Proof. Since f, g are bounded, $\exists M, K > 0$. s.t.

$$\forall x \in E. |f(x)| \le M$$

 $\forall x \in E. |g(x)| \le K$

Consider

$$|f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)|$$

$$\leq |g(x)| |f(x) - f(y)| + |f(y)| |g(x) - g(y)|$$

$$\leq K |f(x) - f(y)| + M |g(x) - g(y)|$$

Given $\epsilon > 0$ there is δ_1, δ_2 s.t.

$$\forall x, y \in E. |x - y| < \delta_1 \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{2K}$$

$$\forall x, y \in E. |x - y| < \delta_2 \Rightarrow |g(x) - g(y)| < \frac{\epsilon}{2M}$$

Let $\delta = \min(\delta_1, \delta_2)$. If $|x - y| < \delta$, we get

$$\begin{split} |f(x)g(x) - f(y)g(y)| &\leq K \left| f(x) - f(y) \right| + M \left| g(x) - g(y) \right| \\ &< K \cdot \frac{\epsilon}{2K} + M \cdot \frac{\epsilon}{2M} \\ &= \epsilon \end{split}$$

Chapter 4

Differentiability on $\mathbb R$

4.1 Derivative

Definition 4.1.1 (Derivative). I is an open interval of \mathbb{R} , $a \in I$, $f : I \to \mathbb{R}$. f is differentiable at a means

$$\exists f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

4.2 Differentiability

Definition 4.2.1 (Differentiability). If f is differentiable at every point of I, then f is differentiable on I. We have $f': I \to \mathbb{R}$. If I' is continuous on I then we say that $f \in C^1(I)$.

Definition 4.2.2. o(h) means $\lim_{h\to 0} \frac{o(h)}{h} = 0$, and it goes to zero faster than h as $h\to 0$.

Theorem 4.2.1. h is not o(h)

Theorem 4.2.2. If f is differentiable at a, then

$$f(a+h) - f(a) - f'(a)h = o(h)$$
, for $|h| < \delta$

Proof.

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - f'(a)h}{h} = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} - f'(a) \right) = 0$$

Remark 4.2.1. f(a+h) = f(a) + f'(a)h + o(h)

Theorem 4.2.3. If $\exists m. \ f(a+h) - f(a) - mh = o(h)$, f is differentiable at a and f'(a) = m *Proof.*

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a) - mh + mh}{h}$$
$$= \lim_{h \to 0} \left(\frac{o(h)}{h} + m\right)$$
$$= m$$

Theorem 4.2.4. f differentiable at a implies f is continuous at a

Proof. Note that

$$\lim_{x \to a} f(x) = f(a) \iff \lim_{x \to a} (f(x) - f(a)) = 0$$

Consider

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot (x - a)$$
$$= f'(a) \cdot 0 = 0$$

Remark 4.2.2. If f is not continuous at a, then f is not differentiable at a

Ex 4.2.1. f(x) = |x| is not differentiable at x = 0.

Proof. $\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{|h|}{h}$, does not exist.

Ex 4.2.2. f is not differentiable at x = 0.

$$f(x) = \begin{cases} x \sin(1/x) & x \neq 0 \\ 0 & x \neq 0 \end{cases}$$

Ex 4.2.3.

$$f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Answer. At a=0, $\lim_{h\to 0}\frac{h^2\sin(1/h)}{h}=\lim_{h\to 0}h\sin(1/h)=0$. But $f\notin C^1(\mathbb{R})$.

Theorem 4.2.5. f, g differentiable at a implies f + g, fg are differentiable at a. Moreover

$$(f \cdot q)'(a) = f'(a)q(a) + f(a)q'(a)$$

Ex 4.2.4. True or False. $f = g^2$, f is differentiable on [a, b] implies g is differentiable on (a, b).

Answer. False. Let

$$g(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$$

g is nowhere continuous so nowhere differentiable. But f(x) = 1 and differentiable on [a, b].

Ex 4.2.5. True or False. f is differentiable on (a, b] and

$$\frac{f(x)}{x-a} \to 1 \text{ as } x \to a^+$$

then f is uniformly continuous on (a, b)

Answer. True. $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} \frac{f(x)}{x-a}(x-a) = 1 \cdot 0 = 0$. Since $\lim_{x\to b^-} f(x) = f(b)$. By uniformly continuous theorem, f is uniformly continuous on [a,b].

Theorem 4.2.6. For $f(x) = x^n$, $n \in \mathbb{N}$. $f'(x) = nx^{n-1}$

Proof.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$= \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})}{x - a}$$

$$= \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})$$

$$= a^{n-1} + a^{n-2} \cdot a + \dots + a \cdot a^{n-2} + a^{n-1}$$

$$= na^{n-1}$$

$$f'(x) = nx^{n-1}$$

Theorem 4.2.7. $f(x) = \frac{1}{x^n} = x^{-n}$, $n \in \mathbb{N}$, $x \neq 0$. $f'(x) = -nx^{-n-1}$

Proof.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} \frac{\frac{1}{x^n} - \frac{1}{a^n}}{x - a}$$

$$= \lim_{x \to a} \frac{\frac{-(x^n - a^n)}{x - a}}{\frac{a^n x^n}{x - a}}$$

$$= \lim_{x \to a} \frac{-(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})}{a^n x^n}$$

$$= \frac{-na^{n-1}}{a^{2n}}$$

$$= -na^{-n-1}$$

$$f'(x) = -nx^{-n-1}$$

Theorem 4.2.8. $f:(0,\infty)\to\mathbb{R}$, $f(x)-f(y)=f\left(\frac{x}{y}\right)$, f(1)=0. Then

(a) If f is continuous at 1, f is continuous on $(0, \infty)$.

Proof. Since f is continuous at 1,

$$\forall \epsilon > 0. \ \exists \delta > 0. \ (|x-1| < \delta \Rightarrow |f(x) - f(1)| < \epsilon)$$

Let $a \in (0, \infty)$, consider

$$|f(x) - f(a)| = \left| f\left(\frac{x}{a}\right) \right| < \epsilon \text{ when } \left| \frac{x}{a} - 1 \right| < \delta_1$$

Given $\epsilon > 0$, let $\delta = a\delta_1$. If $|x - a| < \delta$ then $f(x) - f(a) < \epsilon$

(b) If f is differentiable at 1, f is differentiable on $(0, \infty)$.

Proof. Since *f* is differentiable at 1

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to a} \frac{f(x)}{x - 1}$$

Let $a \in (0, \infty)$, consider

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{f\left(\frac{x}{a}\right)}{x - a} = \lim_{x \to a} \frac{f\left(\frac{x}{a}\right)}{a\left(\frac{x}{a} - 1\right)} = \frac{1}{a} \lim_{x \to a} \frac{f\left(\frac{x}{a}\right)}{\frac{x}{a} - 1} = \frac{1}{a}f'(1)$$

Definition 4.2.3 (Local Maximum and Minimum). $f: I \to \mathbb{R}$, I is an open interval. f has a local maximum at c means

$$\exists \delta > 0. |x - c| < \delta \Rightarrow f(x) \le f(c)$$

f has a local minimum at c means

$$\exists \delta > 0. |x - c| < \delta \Rightarrow f(x) \ge f(c)$$

Theorem 4.2.9. If f has an local maximum at c and is differentiable at c, then f'(c) = 0.

Proof.

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}$$
$$f(c+h) - f(c) \le 0$$

Definition 4.2.4 (Even and Odd Function). $f:(-a,a)\to\mathbb{R}$. f is **even** means f(x)=f(-x). f is **odd** means f(-x)=-f(x)

Theorem 4.2.10. f is differentiable on (-a, a). f is odd implies f' is even.

Proof.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h}$$

$$= \lim_{h \to 0} \frac{-f(x-h) + f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x-h) - f(x)}{-h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= f'(x)$$

Theorem 4.2.11 (Chain Rule). $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$, $f(A) \subseteq B$. f is differentiable at $a \in A$, g is differentiable at $b \in f(a)$. Then $g \circ f$ is differentiable at a and $(g \circ f)'(a) = g'(f(a))f'(a)$

Proof. By definition,

$$f(a + h) = f(a) + f'(a)h + o(h)$$

$$g(b + k) = g(b) + g'(b)k + o(k)$$

$$(g \circ f)(a + h) = g(f(a + h))$$

$$= g(f(a) + f'(a)h + o(h))$$

Let k = f'(a)h + o(h)

$$= g(b+k)$$
= $g(b) + g'(b)k + o(k)$
= $g(b) + g'(b)f'(a)h + g'(b)o(h) + o(h)$
= $(g \circ f)(a) + (g \circ f)'(a)h + o(h)$

4.3 The Mean Value Theorem

Theorem 4.3.1 (Mean Value Theorem). $f:[a,b] \to \mathbb{R}$. f is continuous on [a,b], differentiable on (a,b). Then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$

Theorem 4.3.2. If f is continuous on [a,b] and differentiable on (a,b) and f'(x) > 0 for all $x \in (a,b)$ then f is strictly increasing.

Proof. For $x, y \in (a, b)$ with x < y, apply MVT to f on $[x, y] \subseteq [a, b]$. Then

$$\exists c \in (x, y). \ f(y) - f(x) = f'(c)(y - x) > 0$$

Theorem 4.3.3. If f is continuous on [a,b] and differentiable on (a,b) and f'(x)=0 for all $x \in (a,b)$ then f is a constant function.

Proof. For $x, y \in (a, b)$ with x < y, apply MVT to f on $[x, y] \subseteq [a, b]$. Then

$$\exists c \in (x, y). \ f(y) - f(x) = f'(c)(y - x) = 0$$

Corollary 4.3.1. f, g continuous on [a, b], differentiable on (a, b) and f'(x) = g'(x) for all $x \in (a, b)$, then $\forall x \in [a, b]$. g(x) = f(x) + c.

Proof. Let h(x) = g(x) - f(x). h is continuous on [a,b], differentiable on (a,b) and h'(x) = g'(x) - f'(x) = 0 for all $x \in (a,b)$. By the previous theorem, h is a constant function. Then g(x) = f(x) + c for some $c \in \mathbb{R}$. \square

Theorem 4.3.4 (Generalized Mean Value Theorem). If f, g are continuos on [a, b] and differentiable on (a, b) then $\exists c \in (a, b)$. with

$$(f(b) - f(a)) \cdot g'(c) = (g(b) - g(a)) \cdot f'(c)$$

Proof. Let

$$h(x) = (f(b) - f(a))(g(x) - g(a)) - (g(b) - g(a))(f(x) - f(a))$$

h is continuous on [a, b], differentiable on (a, b). h(a) = h(b) = 0.

$$h'(x) = (f(b) - f(a)) \cdot g'(c) - (g(b) - g(a)) \cdot f'(c)$$

Apply Rolle's Theorem to h on [a, b]. Then h'(c) = 0 for some $c \in (a, b)$.

Theorem 4.3.5. If f is increasing on [a, b], then for all $c \in [a, b)$

$$f(c+) = \lim_{x \to c+} f(x)$$
 exists

For all $c \in (a, b]$

$$f(c-) = \lim_{x \to c+} f(x)$$
 exists

When $f(c+) \neq f(c-)$, then f is not continuous at c. A jump discontinuity j(c) = f(c+) - f(c-).

Proof. Let $c \in [a,b)$. Consider the set f((c,b)), since f is increasing , this set is bounded below by f(c). Call $f(c+) = \inf f((c,b))$. For any $\epsilon = \frac{1}{n}$ there is a point $f(x_n) \in f((c,b))$, then

$$f(c+) \le f(x_n) < f(c+) + \frac{1}{n}$$

by Squeeze Theorem, $f(x_n) \to f(c+)$ as $n \to \infty$. Given $\epsilon > 0$ there exists N so that

$$n \ge N \Rightarrow |f(x_n) - f(c+) < \epsilon|$$

Since $x_n \in (c,b)$, $c < x_n$, $f(c+) \le f(x_n)$, $0 \le f(x_n) - f(c+) < \epsilon$. For $c < x < x_n$, $f(x) \le f(x_n)$ since f is increasing. Then

$$0 \le f(x) - f(c+) \le f(x_n) - f(c+) < \epsilon$$

Let $\delta = x_n - c$, for $c < x < c + \delta$ we have $|f(x) - f(c+)| < \epsilon$.

Theorem 4.3.6. If f is monotone on [a, b] that f has at most a countable set of jump discontinuity.

Proof. For increasing function f, recall at a jump discontinuity, $c \in (a,b)$, j(c) = f(c+) - f(c-). If there are discontinuity at c and $\cap c \in (a,b)$ with $c < \cap c$, $f(c+) \le f(\cap c-)$. For $K \in \mathbb{N}$ let $E_k = \left\{c \in (a,b) \mid j(c) < \frac{1}{k}\right\}$. If there are \mathbb{N} then

$$N \cdot \frac{1}{k} \le \sum_{i=1}^{\infty} j(c_i) \le f(b) - f(a)$$

$$\Rightarrow N \le k \cdot (f(b) - f(a))$$

$$\Rightarrow E_k \text{ is finite}$$

then $E = \bigcup_{k=1}^{\infty} E_k$ is all jump discontinuity. E is at most countable.

Ex 4.3.1. *Prove that* $1 + x < e^x$ *for* x > 0

Proof. Let $f(x) = e^2 - (1+x)$, f(0) = 0, $f'(x) = e^x - 1$. f' is continuous and differentiable on $[0, \infty)$. $f''(x) = e^x > 0$ for all $x \in \mathbb{R}$. g is strictly increasing, for 0 < x, g(0) < g(x), $0 < e^x - 1$, then f is strictly increasing. For 0 < x, f(0) < f(x), $e^x - (1+x) > 0$, $e^x > 1+x$.

Ex 4.3.2. *Prove that* $(1 + x)^x \le 1 + \alpha x$, *for* $0 < \alpha \le 1$ *and* $x \ge 0$.

Proof. When $\alpha = 1$, $1 + x \le 1 + x$. Set $f(x) = (1 + x)^{\alpha}$ is continuous and differentiable for $0 < \alpha \le 1$, $x \ge 0$.

$$f'(x) = \alpha (1+x)^{\alpha-1}$$

For x > 0, apply MVT for f on [0, x].

$$\exists c \in (0, x). \ f(x) - f(0) = f'(c) \cdot x$$
$$(1+x)^{\alpha} - 1 = \alpha (a+c)^{\alpha-1} \cdot x < \alpha \cdot x$$
$$(1+x)^{\alpha} < \alpha \cdot x$$

4.4 Taylor's Theorem and L'Hospital's Rule

Observe If f is differentiable on (a, b) and x, x_0 are two points from (a, b), apply MVT to f. From x to x_0 , then $\exists c \in [x, x_0]$. $f(x) - f(x_0) = f'(c)(x - x_0)$, or $f(x) = f'(c)(x - x_0) + f(x_0)$.

Definition 4.4.1 (Taylor's Polynomial). *If* f *is* $n \in \mathbb{N}$ *times differentiable on* (a,b) *then*

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

is the Taylor's Polynomial of degree n.

Theorem 4.4.1 (Taylor's). If f is n + 1 times differentiable on (a, b) then

$$f(x) = P_n(x) + \underbrace{\frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}}_{R_n(x)}$$

where $R_n(x)$ is the error in approximating f(x) by $P_n(x)$.

Proof. Let

$$G(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)(x-t)^{k}}{k!}$$

is continuou and differentiable on the interval from x to x_0 . Then

$$G(x) = 0, \ G(x_0) = f(x) - P_n(x), \ G'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n$$

Now let

$$H(t) = \frac{(x-t)^{n+1}}{(n+1)!}$$

is continuou and differentiable on the interval from x to x_0 . Then

$$H(x) = 0, \ H(x_0) = \frac{(x - x_0)^{n+1}}{(n+1)!}, \ H'(t) = -\frac{(x - t)^n}{n!}$$

Apply the GMVT to G, H on the interval from x to x_0 . Then there exists $c \in (x, x_0)$ such that

$$(G(x) - G(x_0))H'(c) = (H(x) - H(x_0))G'(c)$$

$$(f(x) - P_n(x))\frac{(x - c)^n}{n!} = \frac{(x - x_0)^{n+1}}{(n+1)!} \cdot \frac{f^{(n+1)}(c)}{n!}(x - c)^n$$

$$f(x) - P_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} \cdot f^{(n+1)}(c)$$

$$f(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} \cdot f^{(n+1)}(c) + P_n(x)$$

Ex 4.4.1. $f(x) = e^x$, $x_0 = 0$

Answer.

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$
$$= \sum_{k=0}^{n} \frac{x^k}{k!}$$

For some $c \in (0, x)$

$$R_n(x) = \frac{f^{(n+1)}}{(n+1)!}x^{n+1} = \frac{e^c x^{n+1}}{(n+1)!}$$

If $-1 \le x \le 1$, then

$$|R_n(x)| \le \frac{e}{(n+1)!} < .000009$$

Ex 4.4.2. $f(x) = \sin x$, $x_0 = 0$

Answer.

$$\begin{split} P_{2n+1}(x) &= \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} \\ R_{2n+1}(x) &= \frac{f^{(2n+2)}(c)}{(2n+2)!} x^{2n+2} \end{split} \tag{for some } c \in (0,x))$$

For $-1 \le x \le 1$, when n = 4

$$|R_9(x)| < .00000003$$

Ex 4.4.3. What is

$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots - \frac{x^{4n-1}}{(4n-1)!}$$

Answer.

$$\sin(x) = P_{4n-1}(x) + R_{4n-1}(x)$$

Ex 4.4.4. $f(x) = \log x, \ x = 1$

Answer.

$$f^{(k)}(1) = (-1)^{k+1}(k-1)!$$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!}(x-1)^k$$

$$= \sum_{k=1}^n \frac{f^{(k)}(1)}{k!}(x-1)^k$$

$$= \sum_{k=1}^n \frac{(-1)^{k+1}}{k}(x-1)^k$$

$$R_n(x) = f^{n+1}(c)(n+1)!(n-1)^{n+1}$$

$$= \frac{\frac{(-1)^{n+2}n!}{(n+1)!}(x-1)^{n+1}}{(n+1)!}(x-1)^{n+1}$$

$$= \frac{(-1)^{n+2}}{(n+1)^2c^{n+1}}(x-1)^{n+1}$$

Theorem 4.4.2 (L'Hospital's Rule). I is an open interval, a is in I and is an endpoint of I. f, g are differentiable on I with $f(x) \neq 0 \neq g'(x)$ for all $x \in I$.

$$\lim_{\substack{x\to a\\x\in I}}f(x)=\lim_{\substack{x\to a\\x\in I}}g(x)=0 \text{ or } \infty \quad \Longrightarrow \quad \lim_{\substack{x\to a\\x\in I}}\frac{f'(x)}{g'(x)}=B\in \bar{\mathbb{R}}=\lim_{\substack{x\to a\\x\in I}}\frac{f(x)}{g(x)}$$

Proof.

(Easy case) $a \in \mathbb{R}$

$$\lim_{\substack{x \to a \\ x \in I}} f(x) = \lim_{\substack{x \to a \\ x \in I}} g(x) = 0$$

Define f(a) = g(a) = 0. Then for any $x \in I$, f, g are continuos and differentiable on the interval from a to x. Apply GMVT to f, g on the interval from a to x, then there exists $c \in (a, x)$ such that

$$(f(x) - f(a))g'(c) = (g(x) - g(a))f'(c)$$

$$\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}$$

$$\lim_{\substack{x \to a \\ x \in I}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ x \in I}} \frac{f'(c_x)}{g'(c_x)} = \lim_{\substack{c_x \to a \\ x \in I}} \frac{f'(c_x)}{g'(c_x)} = B$$

(Harder case) $a = +\infty$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

Given $\epsilon > 0$, $\exists N > 0$ so that

$$x > N \Rightarrow |f(x) - 0| < \epsilon$$

 $\Rightarrow |g(x) - 0| < \epsilon$

So for $y = \frac{1}{x}$

$$y < \frac{1}{N} \Rightarrow \Rightarrow \left| f\left(\frac{1}{y}\right) - 0 \right| < \epsilon$$

$$\Rightarrow \left| g\left(\frac{1}{y}\right) - 0 \right| < \epsilon$$

$$\lim_{y \to 0^+} g(1/y) = 0 = \lim_{y \to 0^+} g(1/y)$$

$$\lim_{y \to 0^+} \frac{f'(1/y) \cdot \frac{1}{-y^2}}{g'(1/y) \cdot \frac{1}{-y^2}} = \lim_{y \to 0^+} \frac{f'(1/y)}{g'(1/y)} = B$$