Fonksiyonun Grafiğinin (Eğrisinin) Glzimi

y=f(x) fonksiyon kuralı ile verilen bir fonksiyonun egrisini çizmek isin genel olarak aşağıdaki incelemeler yapılır:

- 1° Fonksiyonun tanım aralığı bulunur. Tanım aralığının uç nohtalarında limitler araştırılarak asimtotlar belirlenir.
- 2° f'(x) türevi hesaplanır. f'(x) türevini sıfır veya tanımsız yapan kritik nolutalar belirlenir. Bu türevin isaret tablosu oluşturularak fo.nun artan ve azalan olduğu aralıklar ve (varsa) ekstremumlar bulunur.
- 3° f'(x) hesoplanır. f'(x) türevini sifir veya tanımsız yapan kritik nolutalar belirlenir, bu türevin isonet tablosuna bakarak fo.nun konvehs ve konkav olduğu oralıklar, (vorsa) büküm nolutaları bulunur.
- 4 Özel nolutabar (eğrinin eksenleri kestiği nolutabar, ekstremum ve bülüm nolutalarının ordinatları bulunur.
- 5° Gerek duyulduğunda eğri ile asimtatlarının durumu (eğrinin yatay ve eğik asimptatunu kesip kesmediği) incelenir ve bazı dikhate değer nolutalardaki teğetler belirlenir.
- 6° By bilgiler bir tablada toplanır.
- 7° Tabloya bakarak fonksiyonun grafiği (eprisi) fizilir.

Not: f'(x) = 0 yapan x. icin elestremum f'(x) in isoretine bahvack da behirlenebilir. $f'(x_0) = 0$ ihen $f'(x_0) < 0$ ise x. da maksimum, $f'(x_0) > 0$ ise x. da bir minimum vardır. $f'(x_0)$ tanımsız then bu x.²ın öncesinde ve sonrasında f'(x) türevinin isaretleri farhlı ise burası yine bir ekstremumdur. (bkz. f(x) = |ln x| fonlusiyonunun x = 1 dehi f'(1-) ne f'(1+) türevlerinin isareti.)

Nota devam: Eger $f'(x_0) = 0$ veya $f'(x) = tanimsing(x_0 \in A)$ (2) ihen $f''(x_0)$ ve $f''(x_0)$ solden ve safdan türevleri farhlı isarette ise xo nolutosında daha dağrusu (xo, $f(x_0)$) nolutasında fonlusiyonun bir bülüm nolutası vardır.

Ornek (1) $f(x) = \frac{x}{x-1}$ fonksiyonunu inceleyip, grafiğini fiziniz. 1° $f(1) = \frac{1}{1-1} = \frac{1}{0} = \tan \sin z$ old. Tanım aralığı $A = (-\infty, 1) U(1, +\infty)$ dur. $\lim_{x \to +\infty} \frac{x}{x-1} = 1$ old. y=1 yatay əsimptot, $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x}{x-1} = -\infty$ we $\lim_{x \to 1^+} \frac{x}{x-1} = +\infty$ olup x=1 düşey əsimptotbur.

 $2^{\circ} f'(x) = \frac{1 \cdot (x-1) - x \cdot (1)}{(x-1)^{2}} = \frac{-1}{(x-1)^{2}} < 0 \text{ der } \forall x \in A \text{ is in}$ Yand fonksiyon daima azalandır. Dolayısuyla ekstremum yoktur. $(\text{Yani } f'(x) = 0 \text{ yapan } x \in A \text{ yoktur. } f'(1) = \text{tanımsız, fakat } x = 1 \text{ tanım}$ aralığında olmadığından ekstremumdan söz edilemez.)

 $f'(x) = \frac{0 \cdot (x-1)^2 - (-1) \cdot 2(x-1)}{(x-1)^4} = \frac{+2(x-1)}{(x-1)^4} = \frac{2}{(x-1)^3} \text{ dir.}$ $(f'(x)) = 0 \text{ liken } f''(x) = 0 \text{ yapan } x \in A \text{ yolutur. } f'(1) = \text{tanims}; \text{ liken } f''(1) \text{ de tanims}; \text{ then } x \in A \text{ olderundan billium nolutos}; \text{ yolutur.}$

4° Özel nolutələr olarak sadece x=0 isin f(0)=0 =0 olup eşrimiz 0(0,0) bəşlangış nolutərindən geser. (Məhsimum, minimum, bölüm noktaları olmadığındar, bəşlə özel nəlutələr sözkənusy deşildir)

Örnek ② y=f(x)=x. lnx fo.nunu inceleyip grafizini çiziniz.

1° f(x)=x. lnx fo.ny x>0 için tenımlıdır. $A=(0,+\infty)$ dur.

len x.lnx = lnx lnx ∞ lin ∞ lin ∞ = ln ∞ = ∞ = ∞ + ∞ | ∞ |

= $\lim_{x\to 0^+} (-x) = 0$ dir.

lim $x.\ln x = \infty.\infty = \infty$ dur. Ejik əsimptot əbəbilir. m eğimine bakılırsa; $m = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x \ln x}{x} = \lim_{x \to \infty} \ln x = -\infty$ əlup eğik əsimptot yoktur.

2° $f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = 1 + \ln x$ olup $f'(x) = 0 \iff 1 + \ln x = 0 \cdot day$ $x = \frac{1}{e} \text{ with nowadar.} \qquad f'(x) = \frac{1}{e} + \infty$ $\min_{min} f'(x) = 0 \iff 1 + \ln x = 0 \cdot day$

 $x_s = \frac{1}{e} \in (0, \infty)$ lying bir minimum vardin $x_s = \frac{1}{e}$ den once fonksiyon azələn, $x_s = \frac{1}{e}$ den sonra for artandin

 3° $f'(x) = (1+\ln x)' = \frac{1}{x}$ olup $\forall x > 0$ için $f'(x) = \frac{1}{x} > 0$ old. fonksiyon tanım ərəliğində dəimə əsəğiyə konkav (qukur)dir. (Yəni epri əsəğiyə doğru torbalanmaktadır, sişkinlik əsəğiyə doğrudur.) yani kollor yulumya doğrudur.)

4 Özel noldalar; $x=0^+$ isin $y=0^-$ dir (bkz (1) moddesi) $x=\frac{1}{e}$ isin $f(\frac{1}{e})=\frac{1}{e}.\ln\frac{1}{e}=\frac{1}{e}.(-1)=-\frac{1}{e}$ dir.

Ayrıca 0x-eksenini kestiği nohtada y=0 olecapınden y=0 iqin 0=x. In $x \Rightarrow 0=$ lun $x \Rightarrow x=1$ olmalıdır. Yani $1^{1}=1$ den x=1 de egri 0x-eksenini keser.

Öhnek 3 f(x) = x. ex fo. nunu incelegip grafiqui siziniz 1° Tanım aralığı A=(-∞,0)U(0,+∞) dur. lim x. ex = -00 ve lim x. ex =+00 dup egik asimptot olabilir $m = \lim_{x \to \mp \infty} \frac{y}{x} = \lim_{x \to \mp \infty} \frac{x \cdot e^{\frac{1}{x}}}{x} = e^{\frac{1}{x}} = 1$ dir. (Epikasimp. epimi m=1 dir.) $\eta = \lim_{x \to \overline{100}} (y - mx) = \lim_{x \to \overline{100}} [x \cdot e^{-1}x] = \lim_{x \to \overline{100}} x (e^{-1}) = 0$ $=\lim_{x\to\mp\infty}\frac{e^{\frac{1}{x}}}{\frac{1}{x}}=\left\{-\frac{1}{x}=t,\frac{1}{x}=-t\atop x\to\mp\infty\right\}=\lim_{t\to\infty}\frac{e^{t-1}}{-t}=-1$ olup egih əsimptotu [y=x-1] dağrusudur. (Not: $e^{\frac{2l}{2}} + \frac{u^2}{1!} + \frac{u^2}{2!} + \dots + \frac{2l^n}{n!} + \dots$ Maclaurin $e^{-\frac{1}{2}} = 1 + \frac{-\frac{1}{2}}{1!} + \frac{(-\frac{1}{2})^2}{2!} + \frac{(-\frac{1}{2})^2}{2!} + \dots$ olup $y = f(x) = x \cdot \left(1 - \frac{1}{x} + \frac{1}{2x^2} - \frac{1}{6x^3} + \cdots\right) = x - 1 + \frac{1}{2x} - \frac{1}{6x^2} + \cdots$ $x \to \pm \infty$ Ifin $f(x) = x-1+\frac{1}{2x}-\frac{1}{6x^2} \approx x-1$ slup exite asimptot y=x-1 clarak da bulunabilir.) $\lim_{x\to 0} x \cdot e^{\frac{-1}{2}x} = \lim_{x\to 0^{-}} \frac{e^{\frac{1}{2}x}}{\frac{e^{\frac{1}{2}x}}{2}} = \lim_{x\to 0^{-}} \frac{e^{\frac{1}{2}x}}{2} = \lim_{x\to 0^{-}} \frac{e^{\frac{1}{2}x}}{2} = \lim_{x\to 0^{$ Yani llm $y = -\infty$ olup x = 0 düsey asimptot.

2° $f'(x) = 1 \cdot e^{\frac{1}{x}} + x \cdot \frac{1}{x^2} \cdot e^{\frac{1}{x}} = (1 + \frac{1}{x}) \cdot e^{\frac{1}{x}} = \frac{x+1}{x} \cdot e^{\frac{1}{x}}$ dir. x+1 = 0 dan $x_0 = -1$ lifty f'(-1) = 0 olup $x_0 = -1$ bir kritik noktadır. x = 0 için f'(0) = tanımsız olup $x_0 = 0$ da bir kritik noktadır. Ancak bu $x_0 = 0$ nolutosı tanım aralığında bulunmadığından elistremumdan söz edilemez. Öle yandan $x_0 = -1$ da türevin isəreti $\frac{x+1}{x}$ den arastırılır. Zira $e^{\frac{x}{x}} > 0$ dur dalma.

lun x. ex = 0.0 = 0 du.

X=0 Düşey Asimp.

(8)

Örnek 3'e devam: 5' Grafigi asagıdaki gibidir:

Örnek (4): y=f(x)=x·ex fontslyonunu inceleyip eprisini siziniz

1° Tanım aralığı A=(-∞,+∞) dur.

 $\lim_{x\to -\infty} (x.\bar{e}^x) = \lim_{x\to -\infty} \frac{x}{\bar{e}^x} = \frac{-\infty}{+0} = -\infty$ dur. Egik asımtot olabilir.

 $m = \lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \frac{x \cdot \bar{e}^x}{x} = \lim_{x \to -\infty} \bar{e}^x = +\infty$ olup egik asimptot yok.

 $\lim_{x\to\infty} x \cdot e^{\frac{2}{2}} \stackrel{\text{dim}}{=} \frac{x}{e^{2}} \stackrel{\text{dim}}{=} \frac{1}{e^{2}} = 0 \text{ olip} \underbrace{y=0}_{y=tay \text{ as imptot.}}$

2° $y'=f(x)=(x.\bar{e}^x)'=1.\bar{e}^x+x.(-1).\bar{e}^x=(1-x).\bar{e}^x$ olup $f'(x)=0 \iff (1-x).\bar{e}^x=0 \implies 1-x=0 \implies x_0=1 \text{ kriffik}$ notable. The transfer is a retirement is a retirement of the max is a retirement of the

 $y''=f''(x)-\left[(1-x)\cdot e^{x}\right]'=\left[-1+(1-x)(-1)\right]e^{x}=(x-2)\cdot e^{x}$ slup $x_{1}=2$ ifin f''(2)=0 dir. $f''(x)=(x-2)\cdot e^{x}$ türevinin işareti' $\forall x\in\mathbb{R}$ ifin $e^{x}>0$ old. (x-2) farpanına başlıdır. f''(2)<0 ve $f''(2^{+})>0$ olduşundan $x_{1}=2$ de fonksiyonun bir büküm noklası vərdir.

 $f(0)=0.\overline{e}^0=\frac{0}{e^0}=\frac{0}{1}=0$ olup egri O(0,0) origininden geger $\infty=1$ de f'(1)=0 olup max. ward. Buradahi maksimum deger $f(1)=1.\overline{e}^1=e$ olup egri (1,e) de maksimumdan geger. Bühüm nalutası da $f(2)=2.\overline{e}^2=\frac{2}{e^2}$ alup, $(2,\frac{2}{e^2})$ nalutasıdır.

6° Grafizi;

Ornek(5) $y=f(x)=\frac{x^3+2}{x}=x^2+\frac{2}{x}$ fonkstyonunu inceleyip eprisini qiziniz. $A=(-\infty,0)U(0,+\infty)$ dur. $\lim_{x\to +\infty} \left(x^2+\frac{2}{x}\right)=+\infty$ elup egik asimtot alabitir. (Aslında pay ile payda arasındahi derece forki 1 olsaydı eğik aslımptot olundu. Bursda eğilsel admptot yani bu problem igin parabolik kol vor. Yani sonsuzda formun egrist ile yezt parabolünün kollare birbirine yallosiyor.) $m = \lim_{x \to \mp \infty} \frac{y}{x} = \lim_{x \to \mp \infty} \frac{x^3 + 2}{x \cdot x} = \lim_{x \to \mp \infty} \frac{x^3 + 2}{x^2} = \mp \infty$ olup egik asimptot yok. $f(x) = \frac{x^3+2}{x} = x^2 + \frac{2}{x}$ olup $x \to \mp \infty$ ising 2 terimi sifira yalılastığından f(x) = x+2 x x=y dir. Yani y=2 paraboli bu fo.nun epitsinin asimptotik egrisidir (parabolik koludur.) $\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} \frac{x^3+2}{x} = -\infty \quad \text{ve} \quad \lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} \frac{x^3+2}{x} = +\infty$ oldugundan x=0 doprusu (Oy-ekseni) düşey asimptottur. 2° $y'=f(x)=(x^2+\frac{2}{x})'=2x-\frac{2}{x^2}=\frac{2(x^3-1)}{x^2}=\frac{2(x-1)(x^2+x+1)}{x^2}$ olup $f'(x) = 0 \Rightarrow x=1$ isin f'(1) = 0 dir. Boşlus kök yolur. Ayrıca payda x=0 isin sıfır old. f'(0)=tanımsızdır. Ancak bu nolutada fonlistyon tanımsız aldığundan dikliste olunmaz. Ayrıca x+x+1>0 der (000 olduğundan) poydo x2>0 der (x + 0 inin) bolaysugle fox tirevinin issreti (x-1) Garpanindan lognaldam, o halde x=1 de fonksigonun

bir minimumy var.

NOT: Bu notların hazırlanmasında Genel Matematik -I (H.Arıkan-Ö.F.Gözükızıl-İ.Özgür) ve Yüksek Matematik Cilt-I (H. Halilov-A.Alemdaroğlu ve Mehmet Can) kitaplarından yararlanılmıştır.