Kodutöö esitamise tähtaeg: 3. detsember, 23:59

Graaf

Graaf on abstraktne andmestruktuur, mis koosneb **tippudest** (vertices) ning nendevahelistest **servadest** (edges).

Joonis 1: Graaf

Graafi implementatsioonid põhinevad tavaliselt kas **naabrusmaatriksil** (adjacency matrix) või **naabrus-** järjenditel (adjacency lists).

Eelneva graafi naabrusmaatriks, kus-1tähistab serva puudumist, on järgmine:

	s	a	b	\mathbf{c}	d	e	f	t
s	-1	1	4	-1	-1	-1	-1	-1
\mathbf{a}	1	-1	-1	7	2	-1	-1	-1
b	4	-1	-1	-1	5	-1	-1	-1
\mathbf{c}	-1	7	-1	-1	-1	-1 -1 -1 2 -1 -1 -1	4	1
d	-1	2	5	-1	-1	-1	1	-1
e	-1	-1	-1	2	-1	-1	-1	1
f	-1	-1	-1	4	1	-1	-1	2
\mathbf{t}	-1	-1	-1	-1	-1	1	2	-1

Joonis 2: Naabrusmaatriks

Paneme tähele, et kuigi see maatriks määrab üheselt ära graafi, siis arvestatav osa maatriksi väljadest tähistavad serva puudumist.

Eelneva graafi naabrusjärjendid on:

S	(s,a,1)	(s,b,4)		
\mathbf{a}	(s,a,1)	(a, c, 7)	(a,d,2)	
b	(s,b,4)	(b,d,5)		
\mathbf{c}	(a,c,7)	(c,e,2)	(c,f,4)	(c,t,1)
d	(a,d,2)	(b,d,5)	(d,f,1)	
e	(c,e,2)	(e,t,1)		
f	(c,f,4)	(d,f,1)	(f,t,2)	
\mathbf{t}	(c,t,1)	(e,t,1)	(f,t,2)	

Joonis 3: Naabrusjärjendid

Kasutades üht neist kahest ideest, lahendada järgmine ülesanne:

```
Ülesanne 1 (40%)
Implementeerida graaf vastavalt liidesele Graph.
```

Lühimad teed graafis

Sageli kasutame graafe nii, et servaga seotud väärtust võib tõlgendada kui kaugust kahe tipu vahel. Sellisel juhul tõuseb tihti esile järgnev probleem – leida lühima kaugusega teed graafi tipust v kõikidesse teistesse graafi tippudesse.

Loengus olete tutvunud mitme algoritmiga selle probleemi lahendamiseks: Floyd-Warhsalli algoritm, Bellman-Fordi algoritm ja Dijkstra algoritm.

Kasutades üht kolmest ülalmainitud algoritmist, lahendada järgmine ülesanne. 60 % saamiseks tuleb ülesanne lahendada Dijkstra algoritmi kasutades. Kasutades Floyd-Warhsalli või Bellman-Fordi algoritmi, on võimalik saada 40%.

```
Ülesanne 2 (40\% - 60\%)
```

 $Implementeerida\ l\"{u}himate\ teede\ leidmise\ algoritm\ vastavalt\ liidesele\ \textit{ShortestPathsFromVertex}.$

Liidesed on kättesaadavad aaddressil https://github.com/ut-aa/aa2016-lab7.