

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

Which of the following statements are true? Check all that apply.

- lacksquare In unsupervised learning, the training set is of the form $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$ without labels $y^{(i)}.$
- Clustering is an example of unsupervised learning.
- In unsupervised learning, you are given an unlabeled dataset and are asked to find "structure" in the data.
- Clustering is the only unsupervised learning algorithm.

Machine Learning

Clustering

K-means algorithm

K-means algorithm

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ Repeat { for i=1 to m $c^{(i)} := \text{index (from 1 to } K) \text{ of cluster centroid}$ $\text{closest to } x^{(i)} \qquad \text{with } ||x^{(i)} - ||x|||^2$ for k=1 to K $\Rightarrow \mu_k := \text{average (mean) of points assigned to cluster } k$ $\text{constant } ||x^{(i)} - ||x^{(i)}||^2$ for k=1 to K $\text{constant } ||x^{(i)} - ||x^{(i)}||^2$ for k=1 to K $\text{constant } ||x^{(i)} - ||x^{(i)}||^2$ for k=1 to K $\text{constant } ||x^{(i)} - ||x^{(i)}||^2$ $\text{constant } ||x^{(i)} - ||x^{(i)}||^2$ Suppose you run k-means and after the algorithm converges, you have: $c^{(1)}=3, c^{(2)}=3, c^{(3)}=5, \dots$

Which of the following statements are true? Check all that apply.

The third example $x^{(3)}$ has been assigned to cluster 5.

- \square The first and second training examples $x^{(1)}$ and $x^{(2)}$ have been
- $\hfill\Box$ The first and second training examples $x^{(1)}$ and $x^{(2)}$ have been assigned to the same cluster.
- The second and third training examples have been assigned to the same cluster.
- $\hfill \Box$ Out of all the possible values of $k\in\{1,2,\ldots,K\}$ the value k=3 minimizes $\|x^{(2)}-\mu_k\|^2.$

K-means for non-separated clusters

S,M,L

Machine Learning

Clustering Optimization objective

K—means optimization objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

$$\mu_k$$
 = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

$$\mu_{c^{(i)}}$$
 = cluster centroid of cluster to which example $x^{(i)}$ has been assigned $x^{(i)} \rightarrow 5$ $x^{(i)} = x^{(i)}$

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster essignment step (ii) c(1) c(2) .... c(n) \in Repeat {
               c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                         closest to x^{(i)}
          for k = 1 to K
                \mu_k := average (mean) of points assigned to cluster k
```

Suppose you have implemented k-means and to check that it is running correctly, you plot the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ as a function of the number of iterations. Your plot looks like this:

The algorithm is working correctly.

The learning rate is too large.

- The algorithm is working, but k is too large.
- It is not possible for the cost function to sometimes increase. There must be a bug in the code.

No. of iterations

Machine Learning

Clustering

Random initialization

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

K=2

Should have K < m

Randomly pick K training examples.

Set μ_1, \dots, μ_K equal to these K examples. $\mu_1 = \chi_1$

Local optima

Random initialization

```
For i = 1 to 100 { Randomly initialize K-means. Run K-means. Get c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K. Compute cost function (distortion) J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Which of the following is the recommended way to initialize k-means?

- igcup Pick a random integer i from $\{1,\ldots,k\}$. Set $\mu_1=\mu_2=\cdots=\mu_k=x^{(i)}.$
- igcup Pick k distinct random integers i_1,\ldots,i_k from $\{1,\ldots,k\}$.

Set
$$\mu_1 = x^{(i_1)}, \mu_2 = x^{(i_2)}, \dots, \mu_k = x^{(i_k)}$$
.

 $lacksymbol{lack}$ Pick k distinct random integers i_1,\ldots,i_k from $\{1,\ldots,m\}$.

Set
$$\mu_1 = x^{(i_1)}, \mu_2 = x^{(i_2)}, \dots, \mu_k = x^{(i_k)}$$
.

Set every element of $\mu_i \in \mathbb{R}^n$ to a random value between – ϵ and ϵ , for some small ϵ .

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Suppose you run k-means using k = 3 and k = 5. You find that the cost function J is much higher for k = 5 than for k = 3. What can you conclude?

- This is mathematically impossible. There must be a bug in the code.
- \bigcirc The correct number of clusters is k = 3.
- In the run with k = 5, k-means got stuck in a bad local minimum. You should try re-running k-means with multiple random initializations.
- In the run with k = 3, k-means got lucky. You should try re-running k-means with k = 3 and different random initializations until it performs no better than with k = 5.

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

