Sparse multiplication of multivariate polynomials

Joris van der Hoeven

CNRS, LIX, Parts in joint work with Grégoire Lecerf

RTCA, ENS Lyon June 27, 2023

Part I

Statement of the problem

$$\mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$
$$x^e := x_1^{e_1} \cdots x_n^{e_n}$$

$$\mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$
$$x^e := x_1^{e_1} \cdots x_n^{e_n}$$

Sparse polynomials

$$f = c_1 x^{e_1} + \cdots + c_t x^{e_t}.$$

$$\mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$
$$x^e := x_1^{e_1} \cdots x_n^{e_n}$$

Sparse polynomials

$$f = c_1 x^{e_1} + \cdots + c_t x^{e_t}.$$

Sparse multiplication

Given sparse $g, h \in \mathbb{K}[x]$, compute f := gh.

$$\mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$$
$$x^e := x_1^{e_1} \cdots x_n^{e_n}$$

Sparse polynomials

$$f = c_1 x^{e_1} + \cdots + c_t x^{e_t}.$$

Sparse multiplication

Given sparse $g, h \in \mathbb{K}[x]$, compute f := gh.

Complexity in terms of t_f , t_g , t_h , $d := \deg R$, and n.

Coefficient ring or field K

- A field from analysis such as $\mathbb{K} = \mathbb{C}$.
- A discrete field such as $\mathbb{K} = \mathbb{Q}$ or a finite field $\mathbb{K} = \mathbb{F}_q$.

Coefficient ring or field K

- A field from analysis such as $\mathbb{K} = \mathbb{C}$.
- A discrete field such as $\mathbb{K} = \mathbb{Q}$ or a finite field $\mathbb{K} = \mathbb{F}_q$.

Complexity model

- Algebraic versus bit complexity.
- Deterministic versus probabilistic.
- Theoretic (asymptotic) versus practical complexity.

Coefficient ring or field K

- A field from analysis such as $\mathbb{K} = \mathbb{C}$.
- A discrete field such as $\mathbb{K} = \mathbb{Q}$ or a finite field $\mathbb{K} = \mathbb{F}_q$.

Complexity model

- Algebraic versus bit complexity.
- Deterministic versus probabilistic.
- Theoretic (asymptotic) versus practical complexity.

How sparse?

- Weakly sparse: total degrees d of the order $O(\log t)$.
- Normally sparse: total degrees d of the order $t^{O(1)}$.
- Super sparse: total degrees of order d with $\log t = o(\log d)$.

Remark

 $t_f \approx t_g t_h \implies$ naive multiplication performs best.

Remark

 $t_f \approx t_g t_h$ \Longrightarrow naive multiplication performs best.

Our focus

- Fast algorithms when $t_f \ll t_g t_h$.
- · Weakly or normally sparse setting.
- $\mathbb{K} = \mathbb{F}_p$ (in practice, $p \approx 2^{48}$, possibly an FFT prime).

Remark

 $t_f \approx t_q t_h \implies$ naive multiplication performs best.

Our focus

- Fast algorithms when $t_f \ll t_g t_h$.
- Weakly or normally sparse setting.
- $\mathbb{K} = \mathbb{F}_p$ (in practice, $p \approx 2^{48}$, possibly an FFT prime).

Note

- Packing of exponents $e = (e_1, ..., e_n)$ important in practice.
- $\mathbb{K} = \mathbb{Z}$ and $\mathbb{K} = \mathbb{Q}$ recovered using Chinese remaindering.
- Extensible to $\mathbb{K} = \mathbb{C}$ using similar techniques.

Part II

The geometric sequence approach

- $\alpha \in \mathbb{K}^n$ is such that we can efficiently recover $e \in \mathbb{N}^n$ from α^n .
- (an upper bound for) t is known and that $1, ..., \alpha^{2t-1}$ pairwise distinct.

- $\alpha \in \mathbb{K}^n$ is such that we can efficiently recover $e \in \mathbb{N}^n$ from α^n .
- (an upper bound for) t is known and that $1, ..., \alpha^{2t-1}$ pairwise distinct.

Evaluate

Compute $g(\alpha^k)$ and $h(\alpha^k)$ for k = 0,...,2t-1.

- $\alpha \in \mathbb{K}^n$ is such that we can efficiently recover $e \in \mathbb{N}^n$ from α^n .
- (an upper bound for) t is known and that $1, ..., \alpha^{2t-1}$ pairwise distinct.

Evaluate

Compute $g(\alpha^k)$ and $h(\alpha^k)$ for k = 0,...,2t-1.

Multiply

Multiply $f(\alpha^k) := g(\alpha^k) h(\alpha^k)$ for k = 0,...,2t-1.

- $\alpha \in \mathbb{K}^n$ is such that we can efficiently recover $e \in \mathbb{N}^n$ from α^n .
- (an upper bound for) t is known and that $1, ..., \alpha^{2t-1}$ pairwise distinct.

Evaluate

Compute $g(\alpha^k)$ and $h(\alpha^k)$ for k = 0,...,2t-1.

Multiply

Multiply $f(\alpha^k) := g(\alpha^k) h(\alpha^k)$ for k = 0,...,2t-1.

Interpolate

Recover f from $f(1), f(\alpha), ..., f(\alpha^{2t-1})$.

- $\alpha \in \mathbb{K}^n$ is such that we can efficiently recover $e \in \mathbb{N}^n$ from α^n .
- (an upper bound for) t is known and that $1, ..., \alpha^{2t-1}$ pairwise distinct.

Evaluate

Compute $g(\alpha^k)$ and $h(\alpha^k)$ for k = 0,...,2t-1.

Multiply

Multiply $f(\alpha^k) := g(\alpha^k) h(\alpha^k)$ for k = 0,...,2t-1.

Interpolate

Recover f from $f(1), f(\alpha), ..., f(\alpha^{2t-1})$.

Complexity

 $O(M(t) \log t)$ in most favorable case (using tangent Graeffe).

Part III

The cyclic extension approach

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t}$$

Idea 9/28

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t}$$

Main idea (univariate case)

For $r \ge t$ evaluate f and xf' at $\bar{x} \in \mathbb{F}_p[x]/(x^r-1)$, which yields

$$f \operatorname{rem}(x^{r}-1) = c_{1} x^{e_{1}\operatorname{rem}r} + \dots + c_{t} x^{e_{t}\operatorname{rem}r}$$

 $(xf') \operatorname{rem}(x^{r}-1) = c_{1}e_{1}x^{e_{1}\operatorname{rem}r} + \dots + c_{t}e_{t}x^{e_{t}\operatorname{rem}r}$

Match corresponding terms to find the e_i and next the c_i

Idea 9/28

$$f = c_1 x^{e_1} + \dots + c_t x^{e_t}$$

Main idea (univariate case)

For $r \ge t$ evaluate f and xf' at $\bar{x} \in \mathbb{F}_p[x]/(x^r-1)$, which yields

$$f \operatorname{rem}(x^{r}-1) = c_{1} x^{e_{1}\operatorname{rem}r} + \dots + c_{t} x^{e_{t}\operatorname{rem}r}$$

 $(xf') \operatorname{rem}(x^{r}-1) = c_{1}e_{1}x^{e_{1}\operatorname{rem}r} + \dots + c_{t}e_{t}x^{e_{t}\operatorname{rem}r}$

Match corresponding terms to find the e_i and next the c_i

Note

If we interpolate $f \in \mathbb{Q}[x]$ modulo many primes $p_1, ..., p_k$, then the exponents e_i need only be determined modulo p_1

Example

$$f = 18 x^{250} + 33 x^{232} + 2 x^{197} + x^{152} + 7 x^{121} + 4 x^{118} + 11 x^{63} + 28$$

$$f = 18 x^{250} + 33 x^{232} + 2 x^{197} + x^{152} + 7 x^{121} + 4 x^{118} + 11 x^{63} + 28$$

Evaluation modulo x¹⁰-1

$$f = 18x^{0} + 33x^{2} + 2x^{7} + x^{2} + 7x^{1} + 4x^{8} + 11x^{3} + 28$$

$$= 4x^{8} + 2x^{7} + 11x^{3} + (33 + 1)x^{2} + 7x^{1} + (28 + 18)x^{0}$$

$$xf' = 4500x^{0} + 7656x^{2} + 394x^{7} + 152x^{2} + 847x^{1} + 472x^{8} + 693x^{3} + 0$$

$$= 472x^{8} + 394x^{7} + 693x^{3} + (7656 + 152)x^{2} + 847x^{1} + (4500 + 0)x^{0}$$

$$f = 18x^{250} + 33x^{232} + 2x^{197} + x^{152} + 7x^{121} + 4x^{118} + 11x^{63} + 28$$

Evaluation modulo $x^{10}-1$

$$f = 18 x^{0} + 33 x^{2} + 2 x^{7} + x^{2} + 7 x^{1} + 4 x^{8} + 11 x^{3} + 28$$

$$= 4 x^{8} + 2 x^{7} + 11 x^{3} + (33 + 1) x^{2} + 7 x^{1} + (28 + 18) x^{0}$$

$$xf' = 4500 x^{0} + 7656 x^{2} + 394 x^{7} + 152 x^{2} + 847 x^{1} + 472 x^{8} + 693 x^{3} + 0$$

$$= 472 x^{8} + 394 x^{7} + 693 x^{3} + (7656 + 152) x^{2} + 847 x^{1} + (4500 + 0) x^{0}$$

Quotients for $p = 3 \times 2^{30} + 1$

$$\frac{472}{4}$$
 = 118, $\frac{394}{2}$ = 197, ..., $\frac{4500}{46}$ = 700266505, ...

$$f = 18x^{250} + 33x^{232} + 2x^{197} + x^{152} + 7x^{121} + 4x^{118} + 11x^{63} + 28$$

$$f = 18x^{250} + 33x^{232} + 2x^{197} + x^{152} + 7x^{121} + 4x^{118} + 11x^{63} + 28$$

$$f = 18x^{250} + 33x^{232} + 2x^{197} + x^{152} + 7x^{121} + 4x^{118} + 11x^{63} + 28$$

Probabilistic analysis

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Throwing t balls in r boxes

• Probability that a ball ends up in a box of its own:

$$\left(1-\frac{1}{r}\right)^{t-1} \approx \left(1-\frac{1}{r}\right)^t = e^{\log\left(1-\frac{1}{r}\right)t} = e^{\left(-\frac{1}{r}-\frac{1}{2r^2}+\cdots\right)t} \approx e^{-t/r}$$

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Throwing t balls in r boxes

Probability that a ball ends up in a box of its own:

$$\left(1-\frac{1}{r}\right)^{t-1} \approx \left(1-\frac{1}{r}\right)^t = e^{\log\left(1-\frac{1}{r}\right)t} = e^{\left(-\frac{1}{r}-\frac{1}{2r^2}+\cdots\right)t} \approx e^{-t/r}$$

• $e^{-t/r}T$ non-colliding terms in f(x) rem (x^r-1) on average

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Throwing t balls in r boxes

• Probability that a ball ends up in a box of its own:

$$\left(1-\frac{1}{r}\right)^{t-1} \approx \left(1-\frac{1}{r}\right)^t = e^{\log\left(1-\frac{1}{r}\right)t} = e^{\left(-\frac{1}{r}-\frac{1}{2r^2}+\cdots\right)t} \approx e^{-t/r}$$

• $e^{-t/r}T$ non-colliding terms in f(x) rem (x^r-1) on average

Computational cost

• Evaluating f(x), xf'(x) modulo $x^r - 1 \xrightarrow{\text{ops in } \mathbb{F}_p} 3M(r) + O(r)$

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Throwing t balls in r boxes

• Probability that a ball ends up in a box of its own:

$$\left(1-\frac{1}{r}\right)^{t-1} \approx \left(1-\frac{1}{r}\right)^t = e^{\log\left(1-\frac{1}{r}\right)t} = e^{\left(-\frac{1}{r}-\frac{1}{2r^2}+\cdots\right)t} \approx e^{-t/r}$$

• $e^{-t/r}T$ non-colliding terms in f(x) rem (x^r-1) on average

Computational cost

- Evaluating f(x), xf'(x) modulo $x^r 1 \xrightarrow{\text{ops in } \mathbb{F}_p} 3M(r) + O(r)$
- Expected number of correct terms $\rightarrow e^{-t/r}t$

Heuristic assumption

The distribution of $e_i \mod r$ is uniform in $\mathbb{Z}/r\mathbb{Z}$

Throwing t balls in r boxes

• Probability that a ball ends up in a box of its own:

$$\left(1-\frac{1}{r}\right)^{t-1} \approx \left(1-\frac{1}{r}\right)^t = e^{\log\left(1-\frac{1}{r}\right)t} = e^{\left(-\frac{1}{r}-\frac{1}{2r^2}+\cdots\right)t} \approx e^{-t/r}$$

• $e^{-t/r}T$ non-colliding terms in f(x) rem (x^r-1) on average

Computational cost

- Evaluating f(x), xf'(x) modulo $x^r 1 \xrightarrow{\text{ops in } \mathbb{F}_p} 3M(r) + O(r)$
- Expected number of correct terms $\rightarrow e^{-t/r}t$
- Cost proportional to $e^{t/r} r \Rightarrow maximal efficiency for <math>r \approx t$

Part IV

FFT-based approach

Choice of p and r

- Take p to be smooth, e.g. p-1 is a product of many small primes.
- Take $r \approx t$ such that $r \mid (p-1)$.
- Now $x^r 1 = (x 1)(x \omega) \cdots (x \omega^{r-1})$ for some $\omega \in \mathbb{F}_p$.

Idea 14/28

Choice of p and r

- Take p to be smooth, e.g. p-1 is a product of many small primes.
- Take $r \approx t$ such that $r \mid (p-1)$.
- Now $x^r 1 = (x 1)(x \omega) \cdots (x \omega^{r-1})$ for some $\omega \in \mathbb{F}_p$.

Boosting the cyclic extension approach

Compute gh modulo x^r-1 using two DFTs and one inverse DFT.

Idea 14/28

Choice of p and r

- Take p to be smooth, e.g. p-1 is a product of many small primes.
- Take $r \approx t$ such that $r \mid (p-1)$.
- Now $x^r 1 = (x 1)(x \omega) \cdots (x \omega^{r-1})$ for some $\omega \in \mathbb{F}_p$.

Boosting the cyclic extension approach

Compute gh modulo x^r-1 using two DFTs and one inverse DFT.

Complex coefficients

- Also works "approximately" over \mathbb{C} by taking $\omega = e^{2\pi i/r}$.
- C.f. "sparse Fourier transforms", special cases of "compressed sensing".

Rough summary

Geometric sequences

Cyclic extensions

FFT-based approach

General

 $O(M(t)\log t)$

3 e M(t) + O(t)

eM(t) + O(t)

Known exponents

 $O(M(t) \log t)$

eM(t) + O(t)

 $^{1}/_{2}$ e M(t) + O(t)

Rough summary

Geometric sequences
Cyclic extensions

General Known
$$O(M(t) \log t)$$
 $O(3 e M(t) + O(t) e M(t)$

$$3 e M(t) + O(t)$$
 $e M(t) + O(t)$ $e M(t) + O(t)$

$$O(M(t) \log t)$$

$$eM(t) + O(t)$$

$$^{1}/_{2}$$
 e M(t) + O(t)

Notes

Rough summary

	General	Known exponents
Geometric sequences	$O(M(t)\log t)$	$O(M(t)\log t)$
Cyclic extensions	3eM(t)+O(t)	eM(t) + O(t)
FFT-based approach	eM(t) + O(t)	$^{1}/_{2}$ e M(t) + O(t)

Notes

• Heuristic/expected complexities in terms of operations in \mathbb{F}_p .

Rough summary

	General	Known exponents
Geometric sequences	$O(M(t)\log t)$	$O(M(t)\log t)$
Cyclic extensions	3eM(t)+O(t)	eM(t) + O(t)
FFT-based approach	eM(t) + O(t)	$^{1}/_{2}$ e M(t) + O(t)

Notes

- Heuristic/expected complexities in terms of operations in \mathbb{F}_p .
- Discarded dependence on d and n.

Part V

Multiplication of sparse polynomials

Example

$$g = xy^5 + 3xy^6z - 2x^8y^{10} + x^{10}y^{14}z^3$$

$$h = 2 + yz + 3x^2y^4z^3$$

$$f = gh = 3x^{12}y^{18}z^6 + x^{10}y^{15}z^4 + 9x^3y^{10}z^4 + 3x^3y^9z^3 - 4x^{10}y^{14}z^3 + 3xy^7z^2 + 7xy^6z - 2x^8y^{11}z + 2xy^5 - 4x^8y^{10}$$

Multiplication of sparse polynomials

Example

$$g = xy^5 + 3xy^6z - 2x^8y^{10} + x^{10}y^{14}z^3$$

$$h = 2 + yz + 3x^2y^4z^3$$

$$f = gh = 3x^{12}y^{18}z^6 + x^{10}y^{15}z^4 + 9x^3y^{10}z^4 + 3x^3y^9z^3 - 4x^{10}y^{14}z^3 + 3xy^7z^2 + 7xy^6z - 2x^8y^{11}z + 2xy^5 - 4x^8y^{10}$$

Idea

• For "random" $(\alpha, \beta, \gamma) \in \mathbb{N}^3$, evaluate $f(u^{\alpha}, u^{\beta}, u^{\gamma})$ modulo $u^r - 1$

Example

$$g = xy^5 + 3xy^6z - 2x^8y^{10} + x^{10}y^{14}z^3$$

$$h = 2 + yz + 3x^2y^4z^3$$

$$f = gh = 3x^{12}y^{18}z^6 + x^{10}y^{15}z^4 + 9x^3y^{10}z^4 + 3x^3y^9z^3 - 4x^{10}y^{14}z^3 + 3xy^7z^2 + 7xy^6z - 2x^8y^{11}z + 2xy^5 - 4x^8y^{10}$$

Idea

- For "random" $(\alpha, \beta, \gamma) \in \mathbb{N}^3$, evaluate $f(u^{\alpha}, u^{\beta}, u^{\gamma})$ modulo $u^r 1$
- Three directions $(\alpha_i, \beta_i, \gamma_i)_{i=1,2,3}$ instead of a single one \rightarrow smaller r

Example

$$g = xy^5 + 3xy^6z - 2x^8y^{10} + x^{10}y^{14}z^3$$

$$h = 2 + yz + 3x^2y^4z^3$$

$$f = gh = 3x^{12}y^{18}z^6 + x^{10}y^{15}z^4 + 9x^3y^{10}z^4 + 3x^3y^9z^3 - 4x^{10}y^{14}z^3 + 3xy^7z^2 + 7xy^6z - 2x^8y^{11}z + 2xy^5 - 4x^8y^{10}$$

Idea

- For "random" $(\alpha, \beta, \gamma) \in \mathbb{N}^3$, evaluate $f(u^{\alpha}, u^{\beta}, u^{\gamma})$ modulo $u^r 1$
- Three directions $(\alpha_i, \beta_i, \gamma_i)_{i=1,2,3}$ instead of a single one \rightarrow smaller r

Assumption

Exponents already known

 p_k : probability for a ball to end up in a drawer with k balls

 p_k : probability for a ball to end up in a drawer with k balls

$$p_1 = \left(1 - \frac{1}{r}\right)^{t-1} = e^{(t-1)\log(1 - \frac{1}{\tau t})} = e^{-\frac{1}{\tau} + O(\frac{1}{t})} = e^{-\frac{1}{\tau}} + O(\frac{1}{t})$$

 p_k : probability for a ball to end up in a drawer with k balls

$$p_{1} = \left(1 - \frac{1}{r}\right)^{t-1} = e^{(t-1)\log(1 - \frac{1}{\tau t})} = e^{-\frac{1}{\tau} + O(\frac{1}{t})} = e^{-\frac{1}{\tau}} + O\left(\frac{1}{t}\right)$$

$$p_{k} = {t-1 \choose k-1} \frac{1}{r^{k-1}} \left(1 - \frac{1}{r}\right)^{t-k} = \frac{e^{-\frac{1}{\tau}}}{(k-1)!\tau^{k-1}} + O\left(\frac{1}{t}\right)$$

 $p_{i,k}$ proportion of balls in a drawer with k balls at start of turn i

$$\sigma_i = p_{i,0} + p_{i,1} + p_{i,2} + \cdots$$

$$p_{i+1,j} = \sum_{k \geq \max(2,j)} \frac{j}{k} \lambda_{j,k} p_{i,k} \qquad \lambda_{j,k} = {k \choose j} \pi_i^{k-j} (1-\pi_i)^j \qquad \pi_i = \left(2 - \frac{p_{i,1}}{\sigma_i}\right) \frac{p_{i,1}}{\sigma_i}$$

	p _{i,k}	k = 1	2	3	4	5	6	7	σ_i
$\tau = \frac{1}{2}$	i = 1	0.13534	0.27067	0.27067	0.18045	0.09022	0.03609	0.01203	1.00000
	2	0.06643	0.25063	0.18738	0.09340	0.03491	0.01044	0.00260	0.64646
	3	0.04567	0.21741	0.13085	0.05251	0.01580	0.00380	0.00076	0.46696
	4	0.03690	0.18019	0.08828	0.02883	0.00706	0.00138	0.00023	0.34292
	5	0.03234	0.13952	0.05443	0.01416	0.00276	0.00043	0.00006	0.24371
	6	0.02869	0.09578	0.02811	0.00550	0.00081	0.00009	0.00001	0.15899
	7	0.02330	0.05240	0.01033	0.00136	0.00013	0.00001	0.00000	0.08752
	8	0.01428	0.01823	0.00193	0.00014	0.00001	0.00000	0.00000	0.03459
	9	0.00442	0.00249	0.00009	0.00000	0.00000	0.00000	0.00000	0.00700
	10	0.00030	0.00005	0.00000	0.00000	0.00000	0.00000	0.00000	0.00035
	11	0.00000	0.000000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Gain with respect to previous approach

Expected number of evaluations: 3 t instead of et

Gain with respect to previous approach

Expected number of evaluations: 3 t instead of et

How small can we take τ ?

$$0,407264 < \tau_{crit} < 0,407265$$

Gain with respect to previous approach

Expected number of evaluations: 3 t instead of et

How small can we take τ ?

$$0,407264 < \tau_{crit} < 0,407265$$

$$M_{\mathbb{K}}^{\text{sparse}}(t) \leq_{\text{heuristic}} 1,221795 M_{\mathbb{K}}^{\circ}(t) + O(t)$$

Gain with respect to previous approach

Expected number of evaluations: 3 t instead of et

How small can we take τ ?

$$0,407264 < \tau_{crit} < 0,407265$$

$$M_{\mathbb{K}}^{\text{sparse}}(t) \leq_{\text{heuristic}} 1,221795 M_{\mathbb{K}}^{\circ}(t) + O(t)$$

Non-generic case of polynomials in *n* variables of total degree *d*

n	2	2	2	3	3	3	4	4	5	7	10
d	100	250	1000	25	50	100	20	40	20	15	10
S	5151	31626	501501	3276	23426	176853	10626	135751	53130	170544	184756
3τ	1.14	1.14	1.14	1.14	1.14	1.14	1.11	1.14	1.14	1.17	1.20

Part VI

Implementation in Mathemagix

Vintage version

• Interpreted language + C++ libraries.

Vintage version

• Interpreted language + C++ libraries.

Version 1

- Compiler (with bugs) + C++ libraries.
- Mathemagix library for symbolic computation.

Vintage version

• Interpreted language + C++ libraries.

Version 1

- Compiler (with bugs) + C++ libraries.
- Mathemagix library for symbolic computation.

Version 2

- Compiler (with less bugs) + C++ libraries.
- C++ libraries \rightarrow Mathemagix libraries (work in progress).

Timings sparse multiplication

 $\mathbb{K} = \mathbb{F}_p$ where p is an FFT prime >2⁴⁸. Time in seconds as a function of $t := t_f$.

Sparse versus dense multiplication

Ratio with respect to dense multiplication with product of same size t.

Percentage of time spent on DFTs

Percentage as a function of size t of the product.

Thank you!

http://www.T_EX_{MACS}.org