Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L. Chuang

Chris Doble

May 2024

Contents

Ι	Fu	Fundamental concepts Introduction and overview														1							
1	Intr															1							
	1.2	Quant	tum	bits																			1
		1.2.1	M	ultiple	e Bits																		2
	1.3	3 Quantum Computation											3										
		1.3.1	Si	$ngle \zeta$	ubit	Gat	es																3
		1.3.2																					

Part I

Fundamental concepts

1 Introduction and overview

1.2 Quantum bits

- The special states $|0\rangle$ and $|1\rangle$ form an orthonormal basis and are known as **computational basis states**.
- A quantum bit (qubit) is a linear combination of the computational basis states

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

where α and β are complex numbers.

• When we measure a qubit we either get $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$. Thus, $|\alpha|^2 + |\beta|^2 = 1$ and a qubit can be thought of as a unit vector in a two-dimensional complex vector space.

• If a qubit is in the state

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

there's a 50/50 chance of measuring $|0\rangle$ or $|1\rangle$.

• If we let

$$\alpha = e^{i\gamma} \cos \frac{\theta}{2}$$

and

$$\beta = e^{i\gamma} e^{i\varphi} \sin \frac{\theta}{2}$$

then

$$|\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta$$
$$= \cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}$$
$$= 1$$

so the qubit is still normalised and it can be written

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle\right).$$

It turns out that $e^{i\gamma}$ has no observable effects and we can effectively write

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle.$$

This defines a point on a three-dimensional sphere known as the **Bloch** sphere where θ and φ take on their usual roles in a spherical coordinate system.

• Before measurement a qubit is in a linear combination of $|0\rangle$ and $|1\rangle$ but when measured you get one or the other and the state of the system changes to match the measured result.

1.2.1 Multiple Bits

• A two qubit system has four computational basis state $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$ so the general expression for the state of such a system is

$$|\psi\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle.$$

• If you were to measure the first qubit, you would get $|0\rangle$ with probability $|\alpha_{00}|^2 + |\alpha_{01}|^2$ and the system would be left in the state

$$|\psi\rangle = \frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}},$$

i.e. it is renormalised such that the normalisation condition still holds.

1.3 Quantum Computation

1.3.1 Single Qubit Gates

• The quantum NOT changes $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$. It acts linearly on superpositions of those states, i.e. it turns $\alpha |0\rangle + \beta |1\rangle$ into $\beta |0\rangle + \alpha |1\rangle$. If a quantum state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is written in vector notation as

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

then the quantum NOT gate can be expressed in matrix form as

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

- In order to preserve the normalisation condition, matrix representations of quantum gates must be unitary, i.e. $M^{\dagger}M = I$ where I is the identity matrix.
- An arbitrary unitary 2x2 matrix can be decomposed into a finite set of other 2x2 matrices. This means an arbitrary single qubit gate can be generated by a finite set of other gates.

1.3.2 Multiply Qubit Gates

• The controlled-NOT or CNOT gate is a multi-qubit gate that has two input qubits known as the control qubit and the target qubit. If the control qubit is set to $|0\rangle$ the target qubit is left alone, but if it's set to $|1\rangle$ the target qubit is flipped. Another way of writing this is $|A,B\rangle \to |A,A\oplus B\rangle$ where \oplus is modulo-two addition. Yet another way of writing this is in matrix form

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

where the first column describes what happens to the $|00\rangle$ basis state, etc.

- Other classical gates like NAND or XOR can't be represented as quantum gates as they're irreversibile. For example, given the output $A \oplus B$ from an XOR gate it's not possible to determine what the inputs A and B were.
- Any multiple qubit logic gate may be composed from CNOT and single qubit gates.

3