Application linéaires : exercices

I Applications linéaires

A Proportionnalité

Exercice Dilution

Quelle quantité d'alcool à 70° dois-je mette dans 1 L l'alcool a 90 ° pour diluer 75 °?

B Calcul matriciel

Exercice Des calculs de produits

Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

$$1. \ A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad B = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right)$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$

Exercice Commutant

Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice Annulateur

On considère les matrices $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Calculer AB, AC. Que constate-t-on? La matrice A peut-elle être inversible? Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$ telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice Produit non commutatif

Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice Matrices stochastiques en petite taille

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si la somme des coefficients sur chaque colonne de A est égale à 1. Démontrer que le produit de deux matrices stochastiques est une matrice stochastique si n = 2. Reprendre la question si $n \leq 1$.

Exercice Puissance n-ième, par récurrence

Calculer la puissance n-ième des matrices suivantes :

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right), \ B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right).$$

Exercice Puissance n-ième - avec la formule du binôme

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice Puissance n-ième - avec un polynôme annulateur

- 1. Pour $n \geq 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Exercice Inverser une matrice sans calculs!

- 1. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Montrer que $A^2 = 2I_3 A$, en déduire que A est inversible et calculer
- 2. Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$. Calculer $A^3 A$. En déduire que A est inversible puis déterminer A^{-1} .
- 3. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer $A^2 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice Inverse avec calculs!

Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right), \quad B = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{array}\right).$$

Exercice Matrice nilpotente

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \geq 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

\mathbf{C} Applications linéaires

Exercice Applications linéaires ou non?

Dire si les applications suivantes sont des applications linéaires :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x+y, x-2y, 0)$;
- 2. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x+y, x-2y, 1)$; 3. $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x^2 y^2$; 4. $f: \mathbb{R}[X] \to \mathbb{R}^2$, $P \mapsto (P(0), P'(1))$.

Exercice Définie par une base

On considère dans \mathbb{R}^2 les trois vecteurs u=(1,1), v=(2,-1) et w=(1,4).

- 1. Démontrer que (u, v) est une base de \mathbb{R}^2 .
- 2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(u) = (2, 1), f(v) = (1, -1) et f(w) = (5, a)?

II Images et noyaux 3

Exercice Du local au global...

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que $f^{n_x}(x) = 0$. Montrer qu'il existe un entier n tel que $f^n = 0$.

D Dualité

Exercice Application linéaire définie sur les matrices

Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

II Images et noyaux

Exercice Noyau et image

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x,y) = (x + y, x - y, x + y).$$

Déterminer le noyau de f, son image. f est-elle injective? surjective?

Exercice Application linéaire donnée par l'image d'une base

Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(e_1) = -2e_1 + 2e_3$$
, $u(e_2) = 3e_2$, $u(e_3) = -4e_1 + 4e_3$.

- 1. Déterminer une base de ker u. u est-il injectif? peut-il être surjectif? Pourquoi?
- 2. Déterminer une base de Im u. Quel est le rang de u?
- 3. Montrer que $E = \ker u \bigoplus \operatorname{Im} u$.

Exercice Noyau prescrit?

Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; \ x = y = z = t\}$. Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice A noyau fixé

Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,0,0) et v=(1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Exercice Application linéaire à contraintes

Montrer qu'il existe un unique endomorphisme f de \mathbb{R}^4 tel que, si (e_1, e_2, e_3, e_4) désigne la base canonique, alors on a

- 1. $f(e_1) = e_1 e_2 + e_3$ et $f(2e_1 + 3e_4) = e_2$.
- 2. $\ker(f) = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + z = 0 \text{ et } x + 3y t = 0\}.$

Exercice Espace vectoriel des polynômes de dimension infinie

1. Montrer que l'application $\phi \mid \mathbb{K}[X] \longrightarrow \mathbb{K} \times \mathbb{K}[X]$ est un isomorphisme.

2. En déduire que $\mathbb{K}[X]$ est de dimension infinie.

III Matrices par blocs

Exercice *, Trace du produit tensoriel de deux matrices

Pour $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_p(\mathbb{R})$, on définit le produit tensoriel de A et B par

$$A \otimes B = \left(\begin{array}{ccc} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \dots & a_{n,n}B \end{array}\right).$$

Quelle est la taille de la matrice $A \otimes B$? Démontrer que $tr(A \otimes B) = tr(A)tr(B)$.

Exercice **, Matrices de Walsh

La suite de matrices de Walsh, $(W_n)_{n\in\mathbb{N}}$, est définie par :

$$W_0 = (1)$$
 et $\forall n \in \mathbb{N} : W_{n+1} = \begin{pmatrix} W_n & W_n \\ W_n & -W_n \end{pmatrix}$.

Déterminer la taille de W_n et calculer w_n^2 , pour tout $n \in \mathbb{N}$.

Exercice **, Déterminant d'une matrice triangulaire supérieur par blocs

On définit par blocs une matrice A par $A=\begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$ où A, B et C sont des matrices carrées de formats respectifs n, p et q avec p+q=n. Montrer que $\det(A)=\det(B)\times\det(C)$.

IV Symétrie et projection

Exercice Noyau et image

On considère
$$s \mid \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (x+2y,-y).$$

- 1. Montrer que s est une symétrie. Préciser ses éléments caractéristiques.
- 2. Démontrer $p = \frac{\text{Id} + s}{2}$ est une projection.

Exercice Noyau et image

On considère les espaces $F=\{(x,y,z)\in\mathbb{R}^3|x+2y+z=0\text{ et }2x+y-z=0\}$ et $G=\{(x,y,z)\in\mathbb{R}^3|x+y+2z=0\}$.

- 1. Déterminer une base de F, puis démontrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2. Soit p la projection sur F parallèlement à G et $(x, y, z) \in \mathbb{R}^3$. Déterminer les coordonnées de p(x, y, z). Déterminer la matrice de p dans la base canonique. Même question avec q la projection sur G parallèlement à F.

Exercice

Soit E un espace vectoriel et p, q deux projecteurs de E tels que $p \neq 0, q \neq 0$ et $p \neq q$. Démontrer que (p, q) est une famille libre de $\mathcal{L}(E)$.

Exercice

Soient E_1, \ldots, E_n des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_n = E$. On note p_i le projecteur sur E_i parallèlement à $\bigoplus_{j \neq i} E_j$.

Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et $p_1 + \cdots + p_n = \mathrm{Id}_E$.

Soit $\mathbb{R}_2[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. On définit l'application ϕ par :

$$\phi \mid \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto P - P'$$

où P' est le polynôme dérivé de P.

- 1. Démontrer que ϕ est un endomorphisme.
- 2. Démontrer que ϕ est un automorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer l'inverse de ϕ .

Correction:

- 1. 2 solutions:
 - (a) Définie : L'application ϕ est bien définie car $deg(P P') \leq deg(P)$.
 - Linéaire : soit $P, Q \in \mathbb{R}_2[X]$ et soit $\lambda, \mu \in \mathbb{R}$.

$$\phi(\lambda P + \mu Q) = (\lambda P + \mu Q) - (\lambda P + \mu Q)' = \lambda (P - P') + \mu (Q - Q') = \lambda \phi(P) + \mu \phi(Q)$$

- (b) Les applications, identité $\mathrm{Id}_{\mathbb{R}_2[X]}: P \mapsto P$ et dérivée $\psi: P \mapsto P'$, sont linéaires. Comme $\mathcal{L}(R_2[X])$ est un espace vectoriel, ϕ est une application linéaire car combinaison linéaire de $\mathrm{Id}_{\mathbb{R}_2[X]}$ et ψ .
- 2. 2 solutions:
 - (a) Comme ϕ est un endomorphisme d'un espace vectoriel de dimension finie, il suffit de démontrer que ϕ est injective, soit $\operatorname{Ker} \phi = \{0_{\mathbb{R}_2[X]}\}$.

Montrons que $\{0_{\mathbb{R}_2[X]}\}\subset \operatorname{Ker} \dot{\phi}$.

Ker ϕ est un espace vectoriel donc il contient l'élément neutre.

Montrons que Ker $\phi \subset \{0_{\mathbb{R}_2[X]}\}$.

Soit $P \in \text{Ker } \phi$, c'est à dire que $\phi(P) = 0_{\mathbb{R}_2[X]}$. Soit P = P'. D'où $P = 0_{\mathbb{R}_2[X]}$.

(b) Déterminons la matrice de l'endomorphisme de ϕ dans la base canonique, $\mathcal{B} = (1, X, X^2)$ de $\mathbb{R}_2[X]$.

$$[\phi]_{\mathcal{B}} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \text{ car } \phi(X^i) = X^i - iX^{i-1}.$$

Comme $\det([\phi]_{\mathcal{B}}) = 1$, produit des coefficients de la diagonale pour une matrice triangulaire supérieur, $[\phi]_{\mathcal{B}}$ est inversible, donc ϕ est bijectif.

- 3. 2 solutions:
 - (a) L'application dérivée $\psi: P \mapsto P'$, est nilpotente car $\psi^3 = 0$. Comme ψ et $\mathrm{Id}_{\mathbb{R}_2[X]}$ commutent, on a

$$\mathrm{Id}_{\mathbb{R}_{2}[X]} = \mathrm{Id}_{\mathbb{R}_{2}[X]}^{3} - \psi^{3} = (\mathrm{Id}_{\mathbb{R}_{2}[X]} - \psi) \circ (\mathrm{Id}_{\mathbb{R}_{2}[X]} + \psi + \psi^{2}) = \phi \circ (\mathrm{Id}_{\mathbb{R}_{2}[X]} + \psi + \psi^{2}).$$

Donc l'inverse de ϕ est $\phi^{-1} = (\operatorname{Id}_{\mathbb{R}_2[X]} + \psi + \psi^2)$.

(b) Déterminons l'inverse de matrice de l'endomorphisme de ϕ par la méthode du pivot de Gauss :

$$(L2) \leftarrow (L2) + 2(L3) \qquad \begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$(L1) \leftarrow (L1) + (L2) \qquad \begin{pmatrix} 1 & -1 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 2 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \\ 1 & 0 & 0 & | & 1 & 1 & 2 \\ 0 & 1 & 0 & | & 0 & 1 & 2 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

D'où
$$\phi^{-1}(1) = 1$$
, $\phi^{-1}(X) = 1 + X$ et $\phi^{-1}(X^2) = 2 + 2X + X^2$. Soit $\phi^{-1} = (\operatorname{Id}_{\mathbb{R}_2[X]} + \psi + \psi^2)$.