

Universidade Tecnológica Federal do Paraná

Engenharia de Computação

PROJETO DE UM CONTROLADOR ATRAVÉS DE ESPAÇO DE ESTADOS

Alunos: Gabriel Finger Conte João Vitor Garcia Carvalho Maria Eduarda Pedroso

Professor orientador: Adalberto Zanatta Neder Lazarini

Apucarana

Novembro/2023

Universidade Tecnológica Federal do Paraná

Engenharia de Computação

PROJETO DE UM CONTROLADOR ATRAVÉS DE ESPAÇO DE ESTADOS

Relatório do Projeto 03, apresentado à disciplina de Controle Digital do Curso de Engenharia de Computação da UTFPR - Campus Apucarana, como requisito parcial para obtenção de nota no semestre.

Alunos: Gabriel Finger Conte João Vitor Garcia Carvalho Maria Eduarda Pedroso

Professor orientador: Adalberto Zanatta Neder Lazarini

Apucarana

Novembro/2023

SUMÁRIO

1. RESUMO	3
2. INTRODUÇÃO	
2.1. Objetivos	
3. METODOLOGIA	
3.1. Modelagem em Espaço de Estados	
3.2. Análise da Estabilidade de Sistemas	10
3.3. Análise de Controlabilidade do Sistema	11
3.4. Projeto do Controlador de Regulação em Espaço de Estados	12
3.5. Projeto do Controlador de Rastreio em Espaço de Estados	13
3.6. Parâmetros De Desempenho	15
3.7. Componentes do Diagrama de Blocos	16
4. RESULTADOS E DISCUSSÃO	17
5. CONSIDERAÇÕES FINAIS	24
6. REFERÊNCIAS BIBLIOGRÁFICAS	26

1. RESUMO

Este relatório descreve o projeto de controle para um sistema de Motor de Corrente Contínua (CC) utilizando o modelo de espaço de estados. O sistema é representado pelas equações diferenciais descritas na atividade, considerando parâmetros específicos para resistência da armadura (R_a), indutância da armadura (L_a), constante de torque do motor (K_t), constante de força contra-eletromotriz (K_a), coeficiente de atrito viscoso (b), momento de inércia do motor (J), entre outros. Os passos do projeto incluem a verificação da controlabilidade do sistema através da matriz de controlabilidade, a análise da resposta ao impulso e degrau em malha aberta, a alocação de polos para regulação, a simulação da resposta do sistema regulado a partir de condições iniciais e para uma entrada degrau. Além disso, são determinados os ganhos para o sistema de rastreio, seguido pela simulação da resposta do sistema de rastreio para uma entrada degrau e uma entrada arbitrária. Os resultados obtidos fornecem uma compreensão abrangente do comportamento dinâmico do sistema em resposta a diferentes condições iniciais e tipos de entradas. O controle adequado é alcançado através da alocação de polos, garantindo estabilidade e desempenho satisfatório para os objetivos de regulação e rastreio.

Palavras-chave: Motor de Corrente Contínua, Controle de Sistemas Dinâmicos, Espaço de Estados, Alocação de Polos, Resposta ao Impulso, Resposta ao Degrau.

2. INTRODUÇÃO

Os Motores de Corrente Contínua (CC) representam uma presença significativa em diversas áreas da sociedade, inicialmente caracterizados por um controle rudimentar e pouco eficaz. Contudo, o avanço da tecnologia e do conhecimento científico propiciou o desenvolvimento de novas técnicas e ferramentas de controle, ampliando consideravelmente as possibilidades de aplicação desses motores.

Neste relatório, é minuciosamente descrito um projeto de controle voltado para a regulação e rastreamento da velocidade angular de um Motor de Corrente Contínua (CC). O escopo abrange desde a modelagem do sistema em espaço de estados até a efetiva implementação prática dos controladores propostos, utilizando e validando os conceitos e métodos de controle adquiridos na disciplina de Controle Digital.

Os objetivos do projeto, detalhados na seção subsequente, oferecem uma abordagem abrangente, explorando diversos aspectos do sistema, desde sua estabilidade até o comportamento sob distintas condições operacionais. Para atingir esses objetivos, empregou-se uma metodologia baseada na utilização do software Matlab como ferramenta principal para a implementação prática dos conceitos teóricos.

Ao longo do relatório, destaca-se a exploração da representação gráfica dos sistemas através de diagramas de blocos, utilizando a ferramenta Simulink. Isso proporciona uma visualização clara da interação entre os diferentes componentes do sistema. Adicionalmente, os resultados obtidos são apresentados por meio de gráficos, enriquecendo a compreensão e visualização do comportamento do sistema, assim como os resultados dos controladores projetados.

Concluindo, o projeto de controle evidencia sucesso ao expandir as capacidades dos Motores de Corrente Contínua (CC), superando suas limitações

iniciais. A aplicação de técnicas avançadas e ferramentas modernas não apenas permitiu a regulação eficiente, mas também possibilitou o rastreamento preciso da velocidade angular.

2.1. Objetivos

O propósito fundamental deste estudo é realizar uma análise aprofundada e desenvolver um controlador destinado à regulação geral, bem como outro destinado ao rastreamento da velocidade angular de um Motor de Corrente Contínua (CC), cuja representação esquemática está ilustrada na Figura 1.

Figura 1 - Diagrama Esquemático do Motor CC

Fonte: Lazarini (2023a)

O sistema em questão, conforme delineado no guia experimental, é meticulosamente modelado em espaço de estados, conforme expresso pela Equação 1, tal como indicado por Lazarini (2023a). Esta equação incorpora uma série de parâmetros essenciais, formando a base para o entendimento e aprimoramento do sistema:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \begin{bmatrix} -\frac{b}{J} & \frac{K_t}{J} \\ -\frac{K_g}{La} & -\frac{R_a}{La} \end{bmatrix} \begin{bmatrix} \omega(t) \\ \mathbf{i_a}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{La} \end{bmatrix} \mathbf{u}(t)$$
(1)

- b: coeficiente de atrito viscoso [N. m. s], considerado como 0, 2 N. m. s para o atual sistema;
- J: momento de inércia do motor $[kg. m^2]$, considerado como $0,05 kg. m^2$ para o atual sistema;
- K_t : constante de torque do motor [N. m/A], considerado como 0,03 N. m/A para o atual sistema;
- K_g : constante de força contra-eletromotriz [V/(rad/s)], considerado como $0,07\ V/(rad/s)$ para o atual sistema;
- L_a : indutância da armadura [H], considerado como 0, 8 H para o atual sistema;
- R_a : resistência da armadura [Ω], considerado como 3 Ω para o atual sistema;
- $i_a(t)$: corrente de armadura [A], considerado um dos estados do sistema;
- $\omega(t)$: velocidade angular do motor [rad/s], considerado um dos estados do sistema bem como a saída de interesse para o controlador de rastreio.

Dentro do escopo do projeto de controle, foram estabelecidos objetivos específicos com base no roteiro da prática. Esses objetivos incluem:

- Matriz de Controlabilidade:
 - Determinar a matriz de controlabilidade do sistema para avaliar se o mesmo é controlável.
- Resposta Impulsiva e Entrada degrau em Malha Aberta:
 - Analisar a resposta impulsiva e a resposta à entrada degrau do sistema em malha aberta para compreender o comportamento dinâmico inicial.

- ightharpoonup Ganhos k_1 e k_2 para Alocação de Polos no Sistema Regulado:
 - \circ Calcular os ganhos k_1 e k_2 para alocar os polos do sistema regulado, permitindo que sejam posicionados em locais desejados, desde que o sistema permaneça estável.
- > Resposta do Sistema Regulado a Condições Iniciais [105 0]:
 - Analisar a resposta do sistema regulado a partir das condições iniciais
 [105 0], abrangendo todos os estados.
- Resposta do Sistema Regulado a uma Entrada degrau de 105 rad/s:
 - Avaliar a resposta do sistema regulado para uma entrada degrau de 105 rad/s.
- ightharpoonup Ganhos $k_{_1}$, $k_{_2}$ e h para Alocação de Polos no Sistema de Rastreio:
 - o Determinar os ganhos k_1 , k_2 e h para alocar os polos no sistema de rastreio, garantindo estabilidade e comportamento satisfatório.
- > Resposta do Sistema de Rastreio a uma Entrada degrau de 105 rad/s:
 - Analisar a resposta do sistema de rastreio de referência para uma entrada degrau de 105 rad/s.
- > Resposta do Sistema de Rastreio a uma Entrada Arbitrária:
 - Investigar a resposta do sistema de rastreio de referência para uma entrada arbitrária definida, podendo ser uma onda quadrada, senoidal ou qualquer sinal escolhido, e analisar o comportamento do sistema em função dessa entrada.

Esses objetivos abrangentes visam explorar e compreender diversos aspectos do sistema de controle proposto, desde sua controlabilidade até seu desempenho em diferentes cenários de entrada e condições iniciais.

3. METODOLOGIA

O presente trabalho foi desenvolvido utilizando os conceitos e técnicas estudados durante as aulas da disciplina. Bem como foi empregado o uso do software Matlab, de modo a facilitar e automatizar grande parte dos procedimentos matemáticos e analíticos, conforme será detalhado a seguir.

3.1. Modelagem em Espaço de Estados

Com o progresso da tecnologia e o aumento do poder computacional, a resolução de Equações Diferenciais Ordinárias (EDOs) por métodos iterativos tornou-se não apenas possível, mas também altamente eficaz. Esse avanço abriu caminho para uma abordagem mais abrangente na modelagem e descrição de sistemas, onde as EDOs são empregadas para considerar simultaneamente todas as entradas e saídas do sistema de controle. Diferentemente da abordagem convencional, que busca funções de transferência específicas para cada saída desejada, o sistema modelado agora pode manifestar tanto estabilidade quanto instabilidade, dependendo da saída desejada, ou até mesmo apresentar casos em que o cálculo da função de transferência é impraticável. (LAZARINI, 2023b)

A partir dessa capacidade, desenvolveu-se o método de modelagem em espaço de estados, operando no domínio do tempo. Esse método visa determinar, analisar e controlar o comportamento de um conjunto mínimo ou de interesse de variáveis associadas às características físicas do sistema. Essas variáveis, denominadas variáveis de estado, são representadas por um vetor de estados x(t).

O princípio subjacente aos sistemas de controle é gerenciar a situação futura de todas ou parte das variáveis de estado do sistema. Matematicamente, isso é realizado por meio do uso de derivadas, que representam a taxa de variação dos

estados para estimar sua situação futura. Todas essas derivadas são agrupadas em um vetor de derivadas x(t).

Podemos assim, com o auxílio de algumas matrizes específicas, descrever os sistemas em espaços de estados através da descrição da relação dos parâmetros do sistema com as derivadas do mesmo, bem como determinar a saída do sistema levando em conta os estados que se deseja controlar e a influência direta que cada um dos estados afeta, levando aos seguintes equacionamentos apresentados por Assunção e Teixeira (2016). Sendo melhor vizualizado pela sua representação em diagrama de blocos presente na Figura 2.

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t) \tag{2}$$

$$y(t) = Cx(t) + Du(t)$$
 (3)

- A Matriz de Parâmetros, descreve as relações entre os estados do sistema ao longo do tempo, incorporando dinâmicas internas e interações entre componentes.
- B Matriz de Entrada, modela o efeito das entradas externas na evolução dos estados do sistema, representando a influência das variáveis de entrada no comportamento dinâmico.
- C Matriz de Saída: geralmente representada como um vetor. No caso ideal de interesse em todos os estados, C é uma matriz identidade do tamanho do vetor x, mostrando como os estados são mapeados para a saída.
- D Matriz de Influência da Entrada: em situações específicas, como distúrbios externos, D quantifica a influência direta dessas entradas na saída.
 Geralmente, é zero, indicando impacto mínimo das entradas externas diretamente na saída.
- u(t) Sinal de entrada no domínio do tempo: representa a influência externa ou a entrada aplicada no sistema dinâmico.

Figura 2 - Representação em diagrama de blocos de um sistema em espaço de estados

Fonte: (ASSUNÇÃO; TEIXEIRA, 2016)

No ambiente do software Matlab, é possível descrever sistemas em espaços de estado para posterior manipulação. Para isso, é necessário inicialmente declarar as matrizes A, B, C e D que caracterizam o sistema e, em seguida, passá-las como parâmetros para a função ss(A,B,C,D). Essa função retorna um objeto representando o sistema em espaço de estados, permitindo sua manipulação.

Agora, é possível realizar diversas operações, como verificar a resposta do sistema sem controle a uma entrada impulsiva com a função *impulse(sistema)* ou a uma entrada degrau com a função *step(sistema)*.

3.2. Análise da Estabilidade de Sistemas

A análise da estabilidade de sistemas é um componente crucial no processo de descrição e modelagem desses sistemas. Tradicionalmente, a determinação da estabilidade baseava-se na análise dos polos da função de transferência, considerando sistemas estáveis apenas quando apresentavam polos negativos.

No entanto, ao lidar exclusivamente com Equações Diferenciais Ordinárias (EDOs) e carecendo das funções de transferência, torna-se imperativo converter a equação que descreve os estados do sistema em uma função de transferência. Assunção e Teixeira (2016) ressaltam que, ao calcular os determinantes de (s.I-A), onde I é uma matriz identidade do mesmo tamanho que A, obtemos os polos da função de transferência.

A resolução desta equação para s resulta nos autovalores da matriz A, delineando a resposta natural do sistema. Esses autovalores indicam a evolução das variáveis de estado ao longo do tempo sem considerar a entrada externa, fornecendo uma análise fundamental para compreender a estabilidade e dinâmica inerentes ao sistema em espaço de estados.

Vale destacar que a estabilidade é determinada exclusivamente pela matriz A, excluindo a influência da matriz B. Enquanto a matriz B está associada à entrada, o foco reside na avaliação da estabilidade do sistema em relação à sua característica natural, dependendo única e integralmente de A.

Para conduzir essa análise, a utilização da equação eig(A) no Matlab é uma ferramenta eficaz, permitindo encontrar os autovalores da matriz, ou seja, os polos do sistema.

3.3. Análise de Controlabilidade do Sistema

Compreendemos a capacidade de modelar e determinar a estabilidade de um sistema em espaço de estados. No entanto, um aspecto adicional de importância crucial precisa ser abordado: a controlabilidade do sistema. Este conceito refere-se à viabilidade de construir um sinal de controle u(t) capaz de transferir o sistema do estado atual para qualquer outro estado final em um intervalo finito de tempo.

Para avaliar essa possibilidade, recorremos ao método da matriz de controlabilidade, aqui referido como Ctrl e detalhado por Assunção e Teixeira (2016). A construção da matriz Ctrl segue a estrutura descrita pela Equação (4).

$$C_{trl} = [B:A:A^2B:...:A^{n-1}B]$$
 (4)

Do ponto de vista conceitual, a controlabilidade do sistema requer que a matriz Ctrl seja linearmente independente. Ao retomarmos os princípios fundamentais das matrizes, lembramos que, se o determinante de uma matriz for

diferente de zero, consideramos a matriz como linearmente independente. Portanto, concluímos que, para garantir a controlabilidade do sistema, o determinante de Ctrl deve ser diferente de zero.

3.4. Projeto do Controlador de Regulação em Espaço de Estados

Aplicando a técnica de realimentação com múltiplas saídas, é possível utilizar ganhos distintos (representados por kn) em cada saída do sistema. Essa abordagem permite valorizar diferentes características do sistema de maneira individual, focando no comportamento desejado para cada saída. A combinação desses ganhos forma um novo vetor, denominado K.

A primeira estratégia de controle abordada é justamente a realimentação de estados, aplicando uma matriz de ganhos K. Essa abordagem possibilita posicionar os polos do sistema conforme desejado, contudo, é fundamental verificar a controlabilidade do sistema antes de projetar o controlador. O sistema é usualmente descrito pela equação (2), contudo ao realizar a realimentação com as saídas, a entrada u(t) torna-se:

$$u(t) = -K * x(t),$$

sendo K e x(t) vetores, com sinal negativo devido à realimentação negativa. Isso leva à expressão

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) - BK\mathbf{x}(t)$$

e, consequentemente a

$$\dot{\mathbf{x}}(t) = \mathbf{x}(t)(A - BK),$$

facilitando a visualização por meio do diagrama de blocos da Figura 3. (ASSUNÇÃO; TEIXEIRA, 2016)

Para determinar os polos da função de transferência do sistema, é dado não mais apenas pelos autovalores da matriz A, mas pelos autovalores da matriz (A - BK) que agora multiplica o vetor de entradas x(t), sendo essa chamada de A_n

. Com isso, ajustando os ganhos do sistema, podemos posicionar os polos do mesmo nas posições desejadas ao igualá-los os autovalores de A_{π} :

$$det(s.I - A_n) = (s + p1)(s + p2)...(s + pn)$$

Tal processo é simplificado no software do Matlab através da função *acker()*, a qual recebe como parâmetros as matrizes A e B do sistema, bem como uma lista das posições desejadas para os polos. Retornando assim uma lista com os ganhos necessários para posicionar os polos do sistema no local desejado.

O controlador proporcional assume a função de controle de regulação ao focar na estabilidade do sinal de saída, sem a obrigatoriedade de seguir referências externas. Essa abordagem destina-se a conduzir o sistema de volta a um ponto específico após a ocorrência de distúrbios, utilizando um valor de referência em vez de depender de um sinal de referência externo. (LAZARINI, 2023b)

Figura 3 - Representação em diagrama de blocos de um sistema em espaço de estados com controlador de regulação

3.5. Projeto do Controlador de Rastreio em Espaço de Estados

Um controle de rastreio é empregado quando o objetivo é seguir um sinal de referência específico. Para sistemas com uma única entrada e uma saída, a introdução de um controlador proporcional-integral (PI) é comum. No entanto, em

sistemas com múltiplas entradas e saídas (MIMO), o PI é modificado para acomodar essa complexidade.

Nesse contexto, ao invés de considerarmos apenas u(t) como a entrada, incorporamos um ganho H à integral do erro, que é a diferença entre o valor de referência e a saída do sistema. É importante destacar que, embora a realimentação dos estados na planta permaneça, a realimentação integrada através do ganho integral H está vinculada apenas à saída.

A dimensão da matriz de ganhos H é determinada pela dimensão da matriz C, que representa os estados de saída considerados. Dessa forma, a formulação do sinal de controle torna-se

$$u(k) = stateFeedback(Kx(k)) + Hq(k),$$

onde q(k) é a integral do erro (referência - o que está sendo medido).

Considerando o q(k) como um estado adicional, surge a necessidade de definir a sua derivada em relação ao tempo, dada por $\frac{dq(k)}{dt} = r(t) - y(t)$. Esse adicional conduz à concepção de um Sistema Aumentado, onde o estado agora acopla o estado q(k). Assim, o sinal de entrada torna-se a referência, proporcionando uma descrição mais abrangente e apropriada do sistema em espaço de estados. Com essa abordagem, os ganhos são calculados exclusivamente com base nas equações apresentadas em (5) (ANGELICO et al., UTFPR).

$$\begin{bmatrix} \dot{x}(t) \\ \dot{q}(t) \end{bmatrix} = \begin{bmatrix} A + BK & BH \\ -C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ q(t) \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} r(t)$$

$$y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ q(t) \end{bmatrix} \tag{5}$$

Figura 4 - Representação em diagrama de blocos de um sistema em espaço de estados com controlador de rastreio

Fonte: Princípios de Controle (ANGELICO et al., UTFPR).

3.6. Parâmetros De Desempenho

Conforme apresentado por Caun (2022) existem vários, dentre eles os mais relevantes para o presente projeto são:

- Percentual de Ultrapassagem (Ms): representado no Matlab como Overshoot,
 é um coeficiente que mede a porcentagem pela qual a resposta do sistema excederá o valor de referência em seu pico máximo.
- Tempo de subida (ts): indica o tempo necessário para que a resposta do sistema aumente seu valor de 10% para 90% do seu valor final, geralmente medido em segundos (s).
- Tempo de estabelecimento (t_e) : indica o tempo necessário para que a resposta do sistema comece a oscilar e estabilizar-se dentro de uma faixa de 2% do seu valor final, geralmente medido em segundos (s).
- Erro em Regime Permanente: é a diferença constante entre a resposta desejada e a resposta real do sistema, quando o tempo tende para o infinito.
 Representa a disparidade estabelecida entre o comportamento do sistema e a referência, após as transições transitórias terem se dissipado.

3.7. Componentes do Diagrama de Blocos

Além das expressões e manipulações matemáticas, podemos representar graficamente os sistemas através de diagramas de blocos. Através deste, é possível visualizar e simplificar a representação dos sistemas e como as diferentes partes do mesmo interagem. Para melhor entendimento, os blocos relevantes para o trabalho atual são descritos brevemente na Tabela 1.

Tabela 1 - Descrição dos blocos utilizados no diagrama de blocos do projeto

Bloco	Função
$ \begin{vmatrix} \dot{x} = Ax + Bu \\ y = Cx + Du \end{vmatrix} $	Representa o sistema descrito em espaço de estados.
*1>>>	Representa a multiplicação do sinal por um ganho K.
X	Soma de sinais, com a polaridade indicada em cada entrada.
	Representa uma entrada degrau.
—	Permite a visualização da forma de onda dos sinais conectados.
*	Recebe um sinal de entrada único e distribui suas componentes para canais específicos.
$\frac{1}{s}$	Produz a integral do sinal de entrada como saída.

Fonte: autoria própria

Fonte dos símbolos gráficos: App Simulink.

Este conjunto de blocos proporciona uma representação gráfica clara e abrangente dos elementos essenciais do sistema, facilitando a análise e compreensão do comportamento dinâmico por meio do diagrama de blocos.

4. RESULTADOS E DISCUSSÃO

Ao estruturar o sistema em espaço de estados através da Equação 1 e empregar os parâmetros iniciais conforme delineado nos objetivos, obtivemos o modelo representativo no Matlab, como demonstrado na Figura 5. Para uma compreensão mais aprofundada do código, convém consultar o Anexo I deste relatório.

Figura 5: Matrizes que descrevem o sistema em espaço de estados, criado com a função ss().

Continuous-time state-space model.

Fonte: autoria própria pelo Matlab

A análise dos autovalores da matriz A do sistema sem controle revelou polos em -3,875±0,192i. Dado que a parte real dos polos é negativa, o sistema exibe uma

estabilidade natural. Adicionalmente, antes de prosseguirmos para o design dos controladores, é crucial avaliar a controlabilidade do sistema. Aplicamos a Equação (4) às matrizes do sistema, resultando na matriz de controlabilidade visualizada na Figura 6.

Figura 6: Matriz de controlabilidade do sistema.

CtrbMatrix = 2×2 0 0.7500 1.2500 -4.6875

Fonte: autoria própria pelo Matlab

Ao calcular o determinante desta matriz, obtivemos aproximadamente -0,9375. Esse resultado nos permite concluir, conforme delineado na metodologia, que a matriz de controlabilidade é linearmente independente, indicando a controlabilidade do sistema do Motor CC.

Antes de nos aprofundarmos no design dos controladores, é pertinente examinar o comportamento impulsivo e a resposta ao degrau do sistema. Essa análise será fundamental para futuras comparações com o sistema controlado.

Figura 7: Ilustração da resposta do sistema sem controle a uma entrada impulsiva.

Fonte: autoria própria com o Matlab

Analisando a resposta impulsiva, observa-se que a velocidade angular do motor cresce no início do primeiro gráfico da Figura 7 até atingir um ponto máximo, retornando em seguida a 0 rad/s. Esse comportamento sugere que o sistema é estável em resposta a uma entrada impulsiva, corroborando a validade do modelo de descrição do sistema. Esse padrão é consistente com a expectativa de um breve acionamento do motor, evidenciando-se pela rápida transição e subsequente retorno à estabilidade.

Além disso, é perceptível que, devido a essa transição abrupta característica do impulso, a resposta impulsiva da corrente, ilustrada no segundo gráfico da Figura 7, apresenta um pico inicial, seguido por um retorno à amplitude de 0A. Esse fenômeno é conforme o esperado segundo os princípios da física, uma vez que a aplicação de um impulso resulta em uma rápida variação na corrente, culminando na observação desse pico inicial, seguido pela restauração da condição inicial de corrente zero. Essa dinâmica ressalta a resposta aguda do sistema a estímulos impulsivos e destaca a coerência do modelo com as leis fundamentais da física.

Figura 8: Ilustração da resposta do sistema sem controle a uma entrada degrau.

Fonte: autoria própria com o Matlab

Ao aplicar uma entrada degrau, observa-se, pelo primeiro gráfico da Figura 8, que a velocidade angular do motor CC exibe uma resposta estável, possivelmente super ou criticamente amortecida, estabilizando em 0,0498 rad/s. No entanto, esse estado, crucial para o controle de rastreio, revela uma perda de energia significativa, refletida por um erro em regime permanente de 95,02% em relação ao sinal de entrada. Essa considerável disparidade indica a necessidade imperativa de um controlador de rastreio. Vale ressaltar que o tempo de subida foi de aproximadamente 0,864s, enquanto o tempo de estabelecimento foi de 1,5s.

Para a corrente, conforme ilustrado no segundo gráfico da Figura 8, o comportamento assemelha-se ao da velocidade angular, porém com uma resposta mais rápida e menor perda de sinal em comparação com a entrada degrau. O tempo de subida foi de 0,582s, com um tempo de estabelecimento de 1,03s. A corrente se estabiliza em torno de 0,332 A, indicando um erro em regime permanente relativamente menor, aproximadamente de 66,80%.

Com o intuito de estabelecer o ganho K para o controlador de regulação, foram testados alguns conjuntos de polos para analisar a resposta e verificar qual obteve o melhor desempenho. Em um primeiro momento foi simulado com os pólos em -5 e -7, obtendo os valores 3.93 e 3.4 para os ganhos K1 e K2, respectivamente. O resultado desta simulação obteve um erro em regime permanente, perante uma entrada degrau de amplitude 56 rad/s, no valor de 1.2, conforme é possível observar na Figura 9. Então foi feita outra simulação, mas desta vez com polos em -9 e -11. Nesta simulação obteve-se os ganhos de 46.6 e 9.8 para K1 e K2, respectivamente, e com um erro de regime permanente de 0.42, garantindo uma performance melhor que a outra simulação.

A resposta ao degrau de amplitude 56 rad/s do sistema de controle de regulação está descrita na Figura 10. Nela é possível analisar o comportamento decrescente do sistema por conta da entrada e a tendência a ficar no valor mais próximo de zero. Também é possível analisar o erro obtido na reta branca no gráfico, com o auxílio da ferramenta do Simulink, observa-se que o erro é no valor de 0.42.

FIGURA 9: Resposta Sistema de Controle de Regulação, Polos -5 e -7

Fonte: Autoria Própria

Figura 10: Resposta do Sistema de Controle de Regulação

Fonte: Autoria Própria

Ainda no tocante ao sistema de controle por regulação, foi simulado o mesmo sistema, com os ganhos obtidos pela alocação de pólos em -9 e -11, para uma entrada de amplitude de 105 rad/s, conforme demonstrado na Figura 11. Na figura é possível observar o comportamento esperado do sistema de regulação, no entanto há uma alteração no valor do erro, desta vez seu valor é de 0.8, que para o sistema objetivo deste projeto, está satisfatório.

Figura 11: Resposta do Sistema de Controle, degrau 105 rad/s

Fonte: Autoria Própria

No tocante ao sistema de controle de rastreio, foram obtidos os autovalores do sistema, criado um sistema de equações igualando eles à valores arbitrários e solucionado para obter os valores dos ganhos K1, K2 e H. Em um primeiro momento, o sistema de equações foi igualado ao conjunto {-1,-3,-5}, obtendo os valores 3.93, 1, 20 para os ganhos K1, K2 e H, respectivamente. No entanto, a resposta deste sistema demora 5 segundos para chegar em um valor perto da referência, um degrau de 105 rad/s, conforme demonstra a Figura 12.

Na intenção de melhorar o desempenho deste controlador, foram trocados o conjunto de valores o qual os autovalores foram igualados para {-3,-5,-7}, resultando nos ganhos de 35.93, 5.8 e 140 para K1, K2 e H, respectivamente. O desempenho deste controlador, em relação ao tempo de resposta, foi de 2 segundos, conforme descrito na Figura 13, obtendo um aprimoramento no controlador.

100 80 40 20 0 1 2 3 4 5 6 7 8 9 10

Figura 12: Resposta Sistema de Controle de Rastreio, Conjunto {-1,-3,-5}

Fonte: Autoria Própria

Figura 13: Resposta Sistema de Controle de Rastreio, Conjunto {-3,-5,-7}

Fonte: Autoria Própria

Por fim, foi avaliado o desempenho do controlador para um entrada PWM de largura de pulso de 4 segundos, em um ciclo de 50% de atividade com uma amplitude de 50 rad/s. A resposta do sistema está descrita na Figura 14, onde é possível observar a rápida resposta do sistema em relação à entrada, mantendo o tempo de resposta obtido na simulação anterior.

5. CONSIDERAÇÕES FINAIS

O projeto de controle para o sistema de Motor de Corrente Contínua (CC) proporcionou uma abordagem abrangente para analisar e regular o comportamento dinâmico do sistema. A verificação da controlabilidade do sistema foi essencial para garantir a eficácia da estratégia de controle proposta. A matriz de controlabilidade revelou-se de ordem completa, indicando que o sistema é totalmente controlável, possibilitando a aplicação de técnicas de controle apropriadas.

A análise da resposta ao impulso e degrau em malha aberta ofereceu insights valiosos sobre o comportamento natural do sistema, destacando a importância de um controle adequado para atingir os objetivos desejados. A alocação de polos para a regulação permitiu a determinação dos ganhos do controlador, proporcionando estabilidade e resposta transitória desejada.

Os resultados das simulações para o sistema regulado a partir de condições iniciais e para uma entrada degrau demonstraram a eficácia do controle projetado em manter o sistema em condições desejáveis. A análise da resposta do sistema em

malha fechada evidenciou a capacidade de controlar a velocidade angular do motor, indicando um desempenho robusto diante de perturbações.

Para o sistema de rastreio, a alocação de polos adequada proporcionou uma resposta satisfatória para uma entrada degrau, evidenciando a capacidade do sistema em seguir referências externas de forma precisa. Além disso, a simulação para uma entrada arbitrária demonstrou a flexibilidade do controle em lidar com diferentes tipos de entradas, contribuindo para a versatilidade do sistema.

Em suma, o projeto de controle alcançou com sucesso os objetivos propostos, fornecendo uma estratégia eficiente para a regulação e rastreio do Motor de Corrente Contínua.

6. REFERÊNCIAS BIBLIOGRÁFICAS

LAZARINI, Adalberto Z. N. Projeto 3. 2023. Disponível em:

https://moodle.utfpr.edu.br/pluginfile.php/2761971/mod_resource/content/2/Projeto_
CD Espa%C3%A7o Estados 2023 2.pdf>. Acesso em: 08 de dez. de 2023.

LAZARINI, Adalberto Z. N. Aula presencial sobre Controle em Espaço de Estados. UTFPR - Campus Apucarana, 2023.

ASSUNÇÃO, E.; TEIXEIRA, M. C. M. Controle Linear II. 2016. Ilha Solteira – SP. Disponível em:

https://moodle.utfpr.edu.br/pluginfile.php/2919491/mod_resource/content/1/Apostila_Controle_Linear_II.pdf. Acesso em 08 de dez. de 2023.

ANGELICO, B. A.; SCALASSARA, P. R.; VARGAS, A. N. Princípios de Controle. UTFPR, Brasil. Disponível em:

https://moodle.utfpr.edu.br/pluginfile.php/2939420/mod_resource/content/1/principioscap14_v2.pdf>. Acesso em 08 de dez. de 2023.

CAUN, Rodrigo da Ponte. Controle Digital: Projetos de Sistemas de Controle Digital [Apresentação de slides]. 2022. Disponível em:

https://moodle.utfpr.edu.br/pluginfile.php/2732781/mod_resource/content/1/CD67A_slides_Caun_Cap6.pdf. Acesso em 08 de dez. de 2023.

Anexo I - Código do Projeto dos Controladores no Matlab

% Obs: O código fora adaptado para cada um dos polos considerados, havendo a necessidade de alteração manual caso deseje-se reproduzir os os resultados

% Parâmetros do Sistema

J = 0.05; % Momento de inércia do motor (kg.m^2)

b = 0.2; % Coeficiente de atrito viscoso (N.m.s)

Kg = 0.07; % Constante de força contra-eletromotriz (V/rad/s)

Kt = 0.03; % Constante de torque do motor (N.m/A)

Ra = 3; % Resistência da armadura (ohms)

La = 0.8; % Indutância da armadura (H)

% Matrizes de estados

A = [-b/J, Kt/J;

-Kg/La, -Ra/La]; % Matriz A do sistema de estados

% Como os polos da matriz A do sistema sem controle apresentam parte real

% negativa, o sistema é naturalmente estável, apresentando um caráter

% oscilatório amortecido devido à presença das componentes complexas.

polosSemControle = eig(A)

B = [0; 1/La]; % Matriz B do sistema de estados

C = eye(2); % Matriz de saída C (observa diretamente os estados)

D = [0; 0]; % Matriz de transmissão direta (feedforward)

% Matriz de Controlabilidade

CtrbMatrix = ctrb(A, B)

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Apucarana Bacharelado em Engenharia de Computação

% Calculando o determinante da matriz de controlabilidade, de modo a
% verificar se a mesma é lineramente independente (LI)
detCtrbMatrix = det(CtrbMatrix);
disp("Como o determinante != 0, é LI")
% Cria um objeto que representa o sistema
system = $ss(A, B, C, D)$
% Resposta Impulsiva do sistema sem controle
impulse(system)
% Resposta à Entrada Degrau do sistema sem controle
step(system)
desired_poles_reg = [-5, -8]; % Escolha dos polos desejados
K_reg = acker(A, B, desired_poles_reg); % Determinação dos ganhos k1 e k2 de regulação
% Separação dos ganhos de regulação em variáveis distintas
k1_reg = K_reg(1)
k2_reg = K_reg(2)
% Definição das variáveis simbólicas para determinação dos ganhos do
% controlador de rastreio
syms k1 k2 h
% Matriz de ganhos do controlador de rastreio
K = [k1, k2];

h_rastreio = double(kras.h(1))

Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Apucarana Bacharelado em Engenharia de Computação


```
% Altera C para rastrear apenas a saída desejada
C_rastreio = [1, 0]; % Seleciona apenas a saída w (velocidade angular)
% Determina a nova matriz A de rastreio
An = [A - B * K, B * h; -C_rastreio, 0];
% Determina os autovalores
autoVal = eig(An);
% Determina os polos desejados:
desired_poles_rastreio = [-1, -2, -3];
% Associa as equações dos autovalores aos valores dos polos desejados
autoVal = [autoVal(1) == desired_poles_rastreio(1),...
       autoVal(2) == desired_poles_rastreio(2),...
       autoVal(3) == desired_poles_rastreio(3)];
% Pede para ele resolver as equações, como um sistema de equações
kras = solve(autoVal(1), autoVal(2), autoVal(3));
% Traduz os resultados para o controlador de rastreio
k1_rastreio = double(kras.k1(1))
k2_rastreio = double(kras.k2(1))
```