Transformada rápida de Fourier

Parte I

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Outline

Multiplicación de polinomios

Transformada discreta de Fourier

Outline

Multiplicación de polinomios

Transformada discreta de Fourier

Representación de un polinomio

Sea p(x) un polinomio no nulo de coeficientes racionales.

La representación canónica de p(x) es:

$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$

donde $n \ge 1$, $a_{n-1} \ne 0$ y el grado de p(x) es n-1.

- Utilizamos el grado n-1 para dar énfasis a que estos polinomios poseen n coeficientes.
- Si bien trabajaremos con polinomios de coeficientes racionales, vamos a evaluarlos usando números reales y complejos.

Representamos p(x) a través de una **tupla** (a_0, \ldots, a_{n-1}) **de largo** n.

■ También podemos representar p(x) como una tupla $(a_0, \ldots, a_{n-1}, 0, \ldots, 0)$ de largo m > n donde cada término x^i tiene coeficiente 0 si $i \ge n$.

Suma de polinomios

La suma de dos polinomios (a_0,\ldots,a_{n-1}) y (b_0,\ldots,b_{n-1}) es un polinomio (c_0,\ldots,c_{n-1}) tal que:

$$c_i = a_i + b_i$$
 para $i \in \{0, \dots, n-1\}$

Consideramos a la suma y multiplicación de números en $\mathbb C$ como las operaciones básicas a contar.

¿ Cuál es la complejidad de este algoritmo ?

R: O(n)

Multiplicación de polinomios

La multiplicación de dos polinomios (a_0, \ldots, a_{n-1}) y (b_0, \ldots, b_{n-1}) es un polinomio (c_0, \ldots, c_{2n-2}) tal que:

$$c_i = \sum_{k,\ell \in \{0,\dots,n-1\} \colon k+\ell=i} a_k \cdot b_\ell$$
 para $i \in \{0,\dots,2n-2\}$

¿ Cuál es la complejidad de realizar esta operación ?

 $R: O(n^2)$

¿ Podemos realizar esta operación en un orden menor ?

Una representación alternativa de un polinomio

Un polinomio p(x) de grado n-1 se puede representar de manera única a través de **un conjunto de** n **pares de puntos-valores**:

$$p(x) \mapsto \{(v_0, p(v_0)), (v_1, p(v_1)), \dots, (v_{n-1}, p(v_{n-1}))\},\$$

suponiendo que $v_i \neq v_j$ para $i \neq j$.

Ejemplo

El polinomio $p(x) = 1 + x + x^2$ es representado de manera única a través del conjunto de pares de puntos-valores:

$$\{(0,1),(1,3),(2,7)\}$$

y también a través del conjunto de pares de puntos-valores:

$$\{(-2,3),(0,1),(5,31)\}$$

¿ Por qué esto es cierto ?

R: Investigar matriz de Vandermonde

Una representación alternativa de un polinomio

Un polinomio p(x) de grado n-1 también se puede representar de manera única a través de un conjunto de pares de puntos-valores con m>n elementos:

$$p(x) \mapsto \{(v_0, p(v_0)), \ldots, (v_{n-1}, p(v_{n-1})), (v_n, p(v_n)), \ldots, (v_{m-1}, p(v_{m-1}))\},$$

Ejemplo

suponiendo que $v_i \neq v_i$ para $i \neq j$.

El polinomio p(x) = 1 + 2x es representado de manera única a través del conjunto de pares de puntos-valores:

$$\{(0,1),(1,3),(2,5)\}$$

y también a través del conjunto de pares de puntos-valores:

$$\{(-2,-3),(0,1),(5,11),(7,15)\}$$

¿Por qué es útil la representación basada en puntos-valores?

Sean p(x) y q(x) dos polinomios de grado n-1 representados por

$$p(x) \mapsto \{(v_0, p(v_0)), \dots, (v_{n-1}, p(v_{n-1}))\}$$
$$q(x) \mapsto \{(v_0, q(v_0)), \dots, (v_{n-1}, q(v_{n-1}))\}.$$

¿ Cuál será la **representación** de
$$r(x) = p(x) + q(x)$$
 ?

R:
$$r(x) \mapsto \{(v_0, p(v_0) + q(v_0)), \dots, (v_{n-1}, p(v_{n-1}) + q(v_{n-1}))\}$$

¿ Cómo lo hacemos para
$$s(x) = p(x) \cdot q(x)$$
 ?

¿Por qué es útil la representación basada en puntos-valores?

Suponga que se agrega n puntos a las representaciones de p(x) y q(x):

$$\{(v_0, p(v_0)), \dots, (v_{n-1}, p(v_{n-1})), (v_n, p(v_n)), \dots, (v_{2n-1}, p(v_{2n-1}))\}$$

$$\{(v_0, q(v_0)), \dots, (v_{n-1}, q(v_{n-1})), (v_n, q(v_n)), \dots, (v_{2n-1}, q(v_{2n-1}))\}$$

El polinomio $s(x) = p(x) \cdot q(x)$ es representado por:

$$\{(v_0, p(v_0) \cdot q(v_0)), \dots, (v_{2n-1}, p(v_{2n-1}) \cdot q(v_{2n-1}))\}$$

Podemos sumar y multiplicar polinomios en tiempo O(n) si están representados por pares de puntos-valores (y por los mismos puntos).

La situación hasta ahora

 $p(x) \mapsto \{(v_0, p(v_0)), \dots, (v_{2n-1}, p(v_{2n-1}))\}$ $q(x) \mapsto \{(v_0, q(v_0)), \dots, (v_{2n-1}, q(v_{2n-1}))\}$

La situación hasta ahora

De la representación canónica a la de puntos-valores

Ejercicio

Dado un polinomio p(x) de grado n en su representación canónica y un punto v, de un algoritmo que calcule p(v) en tiempo O(n)

Podemos entonces pasar de la representación canónica a la de puntos-valores en tiempo $O(n^2)$.

¿ Cómo podemos pasar de la representación de puntos-valores a la representación canónica ?

De la representación puntos-valores a la canónica

Sea p(x) un polinomio de grado n-1 dado por una representación punto-valores:

$$\{(v_0, p(v_0)), \dots, (v_{n-1}, p(v_{n-1})), (v_n, p(v_n)), \dots, (v_{m-1}, p(v_{m-1}))\},$$
 donde $m \ge n$.

Podemos pasar a la representación canónica de p(x) utilizando fórmula de Lagrange:

$$p(x) = \sum_{i=0}^{m-1} p(v_i) \cdot \left(\prod_{j \in \{0, \dots, m-1\} : j \neq i} \frac{(x - v_j)}{(v_i - v_j)} \right)$$

De la representación puntos-valores a la canónica

Ejercicio

Dado un polinomio p(x) representando por el conjunto de punto-valores $\{(v_0, p(v_0)), \ldots, (v_{2n-1}, p(v_{2n-1}))\}$, muestre que la fórmula de Lagrange permite construir la forma canónica de p(x) en tiempo $O(n^2)$

Todavía no tenemos un algoritmo más rápido para multiplicar polinomios

La solución: la transformada rápida de Fourier

$$\begin{array}{c|c} \hline p(x) \mapsto (a_0, \ldots, a_{n-1}) \\ q(x) \mapsto (b_0, \ldots, b_{n-1}) \\ \hline \\ O(n^2) \\ \hline \\ p(x) \mapsto \{(v_0, p(v_0)), \ldots, (v_{2n-1}, p(v_{2n-1}))\} \\ q(x) \mapsto \{(v_0, q(v_0)), \ldots, (v_{2n-1}, q(v_{2n-1}))\} \\ \hline \\ Q(n) \\ \hline \\ p(x) \cdot q(x) \mapsto (c_0, \ldots, c_{2n-2}) \\ \hline \\ O(n \cdot \log_2(n)) \\ \hline \end{array}$$

Outline

Multiplicación de polinomios

Transformada discreta de Fourier

La solución: la transformada rápida de Fourier

La transformada rápida de Fourier nos va a permitir entonces calcular la multiplicación de dos polinomios de grado n-1 en tiempo $O(n \cdot \log_2(n))$

■ La idea clave es cómo elegir los puntos v_0, \ldots, v_{2n-1} cuando se calcula la representación como punto-valores de un polinomio de grado n-1

Los **números complejos** y las **raíces de la unidad** juegan un papel fundamental en la definición de la transformada rápida de Fourier.

La fórmula de Euler

Teorema

Para todo número real x:

$$e^{ix} = \cos(x) + i\sin(x)$$

Podemos representar entonces a $e^{i\theta}$ como un vector $(\cos(\theta),\sin(\theta))$ en el plano complejo.

 $\mathbf{e}^{i\theta}$ es un vector unitario: $||e^{i\theta}|| = \cos^2(\theta) + \sin^2(\theta) = 1$

La fórmula de Euler: interpretación geométrica

La fórmula de Euler: las raíces de la unidad

Dado $n \ge 1$, queremos encontrar las n raíces del polinomio $p(x) = x^n - 1$

- Sabemos que este polinomio tiene *n* raíces en los números complejos.
- Llamamos a estos elementos las *n*-raíces de la unidad.

El componente básico para definir las *n*-raíces de la unidad:

$$\omega_n = e^{\frac{2\pi i}{n}}$$

La fórmula de Euler: las raíces de la unidad

Las *n*-raíces de la unidad son ω_n^0 , ω_n^1 , ω_n^2 , ..., ω_n^{n-1}

Si $k \in \{0, \dots, n-1\}$, tenemos que:

$$(\omega_n^k)^n = ((e^{\frac{2\pi i}{n}})^k)^n$$

$$= ((e^{\frac{2\pi i}{n}})^n)^k$$

$$= (e^{2\pi i})^k$$

$$= (\cos(2\pi) + i\sin(2\pi))^k$$

$$= 1^k$$

$$= 1$$

La fórmula de Euler: las raíces de la unidad

Además, si $0 \le k \le \ell \le n-1$, entonces:

$$\begin{split} \omega_n^k &= \omega_n^\ell \quad \Rightarrow \quad (e^{\frac{2\pi i}{n}})^k = (e^{\frac{2\pi i}{n}})^\ell \\ &\Rightarrow \quad (e^{\frac{2\pi i}{n}})^{\ell-k} = 1 \\ &\Rightarrow \quad (e^{\frac{2\pi (\ell-k)i}{n}}) = 1 \\ &\Rightarrow \quad \cos\left(\frac{2\pi (\ell-k)}{n}\right) + i\sin\left(\frac{2\pi (\ell-k)}{n}\right) = 1 \\ &\Rightarrow \quad \cos\left(\frac{2\pi (\ell-k)}{n}\right) = 1 \\ &\Rightarrow \quad \cos\left(\frac{2\pi (\ell-k)}{n}\right) = 1 \\ &\Rightarrow \quad \frac{\ell-k}{n} = 0 \qquad \qquad \text{puesto que } 0 \leq \frac{\ell-k}{n} \leq \frac{n-1}{n} \\ &\Rightarrow \quad \ell=k \end{split}$$

Por lo tanto: $\omega_n^0, \ldots, \omega_n^{n-1}$ son elementos distintos

Raíces de la unidad: ejemplos

Ejemplo

¿Cuáles son las raíces del polinomio $x^4 - 1$?

Considerando $\omega_4=e^{\frac{2\pi i}{4}}=e^{\frac{\pi}{2}i}$, tenemos que las 4-raíces de la unidad son:

$$\omega_4^0 = 1$$

$$\omega_4^1 = e^{\frac{\pi}{2}i} = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = i$$

$$\omega_4^2 = (e^{\frac{\pi}{2}i})^2 = e^{\pi i} = \cos(\pi) + i\sin(\pi) = -1$$

$$\omega_4^3 = (e^{\frac{\pi}{2}i})^3 = e^{\frac{3\pi}{2}i} = \cos(\frac{3\pi}{2}) + i\sin(\frac{3\pi}{2}) = -i$$

Raíces de la unidad: otro ejemplo

Ejemplo

Representación geométrica:

¿Cuáles son las raíces del polinomio x^5-1 ? Considerando $\omega_5=e^{\frac{2\pi i}{5}}$, tenemos que las 5-raíces de la unidad son 1, $e^{\frac{2\pi i}{5}}$, $e^{\frac{4\pi i}{5}}$, $e^{\frac{6\pi i}{5}}$ y $e^{\frac{8\pi i}{5}}$

