

Asia's Largest

Al & Cloud Conference 2024

15 - 16, November 2024

Chennai Trade Center, Chennai

It's me

Preetish Kakkar

Senior Computer Graphics Engineer at Adobe

About Me

With over 15 years in software engineering, my expertise spans computer graphics, AR/VR, and machine learning, specializing in advanced rendering techniques and optimization. I am the author of The Modern Vulkan Cookbook, an industry resource on Vulkan programming. My career includes key contributions to companies like Adobe, Microsoft, and MathWorks, where I led projects in real-time rendering, virtual/augmented reality, and high-performance simulations. Passionate about developing innovative solutions in 3D graphics, I bring a deep technical foundation in Vulkan, Metal, and OpenGL, with a focus on efficient, visually stunning applications.

Agenda

- ❖ Need for High -Performance Rendering in AR/VR/XR
- Rendering engine core components
- Cross-Platform Development for AR/VR/XR
- System Architecture Overview
- Al in Rendering
- NeRF and Gaussian Splatting
- Diffusion Models
- Future Trends in AR/VR/XR Rendering

Rendering in AR/VR/XR

Low Latency Requirements / High Frame Rates

Complex 3D Environments

Rendering engine core components

Resource Manager

Compute Shader

Fragment Shader

Vertex Shader

Ray tracing overview

Rasterization overview

Position objects and the camera in the world

Compute position of objects relative to the camera

Project objects onto the screen

Sample triangle coverage

Interpolate triangle attributes

Sample texture maps

Rendering pipeline

Graphics Pipeline = Abstract Drawing Machine

CS184/284A Ren Ng

Cross-Platform

Cross-Platform: Introducing bgfx

10010 01010

*

A A

Cross-Platform Capability

Bgfx operates seamlessly across different platforms, making it versatile for developers.

Core Principles and Benefits

Understanding the core principles of Bgfx aids developers in leveraging its full potential in graphics programming.

Unified Rendering Interface

It provides a consistent interface for rendering, facilitating cross-platform compatibility.

Focus on 3D Graphics

•It is specifically designed to cater to the needs of 3D graphics applications, enhancing visual experiences.

Low-Level API Abstraction

Bgfx abstracts the complexities of low-level graphics APIs, allowing for easier programming.

System Architecture

Al in Rendering

Text-to-3D

a small saguaro cactus planted in a clay pot

a ripe strawberry

NeRF

Diffusion models

- A generative model that learns to create data by iteratively refining noise into meaningful images or 3d content
- Starts with pure noise and progressively removes noise over multiple steps.
- Examples are Text-toimage generation (e.g., DALL-E, Stable Diffusion, Midjourney).
- Can be used for Image synthesis, inpainting, and enhancement

Diffusion model process

Diffusion Model Process

- Key concept in Diffusion Modelling is that if we could build a learning model which can learn the systematic decay of information due to noise, then it should be possible to reverse the process and therefore, recover the information back from the noise
- The diffusion process has a forward process which adds noise to the image and a reverse process which takes away noise from the image.
- In the forward diffusion process, gaussian noise is introduced successively until the data becomes all noise.
- The reverse/ reconstruction process undoes the noise by learning the conditional probability densities using a neural network model

Diffusion model applications

An astronaut riding a horse in a photorealistic style

Text to Image

Text to Video

"A photo of a sitting dog"

Image Editing using Text prompt

Diffusion model applications

Text-to-3D generation

text prompt

> a train engine made out of clay

Material decomposition

> a cat made of silver

> a cat made

of rock

Relighting in different environments

THANK YOU!

Preetish Kakkar

Questions?

