МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Лабораторная работа №3.2.5 Свободные и вынужденные колебания в электрическом контуре

> Работу выполнил Лохматов Арсений Игоревич Козярский Алексей Сергеевич Б03-303

1 Теоретическая часть

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре.

Оборудование: осциллограф АКТАКОМ ADS-6142H, генератор сигналов специальной формы АКИП-3409/4, магазин сопротивления МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

1.1 Экспериментальная установка

Схема установки для исследования колебаний приведена на рисунке 1.

Рис. 1: Схема установки для исследования вынужденных колебаний

Колебательный контур состоит из постоянной индуктивности L с активным сопротивлением R_L , переменной емкости C и сопротивления R. Картина колебаний напряжения на емкости наблюдается на экране осциллографа. Для возбуждения затухающих колебаний используется генератор сигналов. Сигнал с генератора поступает через конденсатор C_1 на вход колебательного контура. Данная емкость необходима чтобы выходной импеданс (сопротивление) генератора был много меньше импеданса колебательного контура и не влиял на процессы, проходящие в контуре.

При изучении свободно затухающих колебаний генератор специальных сигналов на вход колебательного контура подает периодические короткие импульсы, которые заряжают конденсатор C. За время между последовательными импульсами происходит разрядка конденсатора через резистор и катушку индуктивности. Напряжение на конденсаторе U_C поступает на вход канала 1(X) электронного осциллографа. Для наблюдения фазовой картины затухающих колебаний на канал 2(Y) подается напряжение с резистора R (пунктирная линия на схеме установки), которое пропорционально току I ($I \sim \frac{dU_C}{dt}$).

При изучении возбужденных колебаний на вход колебательного контура подается синусоидальный сигнал. С помощью осциллографа возможно измерить зависимость амплитуды возбужденных колебаний в зависимости от частоты внешнего сигнала, из которого возможно определить добротность колебательного контура. Альтернативным способом расчета добротности контура является определение декремента затухания по картине установления возбужденных колебаний. В этом случае генератор сигналов используется для подачи цугов синусоидальной формы.

2 Практическая часть

В работе предлагается исследовать параллельный колебательный контур несколькими способами:

- 1. Изучение свободных колебаний в электрическом контуре;
 - (а) Определение зависимости периода свободных колебаний контура от емкости;
 - (b) Определение зависимости логарифмического декремента затухания от сопротивления;
 - (с) Определение критического сопротивления контура;
- 2. Изучение вынужденных колебаний в электрическом контуре;
 - (а) Построение резонансных кривых колебательного контура: АЧХ и ФЧХ;
 - (b) Изучение процесса установления и затуханий колебаний;
 - (c) Определение декремента затухания колебательного контура по нарастанию колебаний и по их затуханию;
- 3. Определение добротности контура различными способами.

2.1 Подготовка приборов к работе

- 1. Подключили генератор специальных сигналов к входу 1(X) осциллографа;
- 2. Установили на генераторепоследовательность импульсов, выставили длительность импульсов 10, частоту повторения импульсов 100, амплитуду сигнала 20. Подали сигнал на осциллограф;
- 3. Получили на осциллографе статическое изображение периодических сигналов;
- 4. Собрали электрическую схему согласно рис. 7.

2.2 Измерение периодов свободных колебаний

- 1. Установили на магазине сопротивлений величину R=0, на магазине индуктивностей L=100, на магазине ёмкостей величину C=0. Не смотря на это контур сам по себе обладает некоторым минимальным значением ёмкости C_0 , благодаря которому в контуре реализуются свободные колебания. При этом затухание обеспечивается наличием активного сопротивления в магазине индуктивностей R_L . Получили на экране осциллографа картину свободных затухающих колебаний.
- 2. Подобрали частоту развёртки осциллографа, при которой расстояние между импульсами генератора занимает почти весь экран;
- 3. Измерили с помощью осциллографа период затухающих колебаний.

$$T_{\text{затух}} = 66 \text{мc}$$

4. По периоду колебаний определили нулевую ёмкость колебательного контура. Это значение является минимальным для магазина ёмкостей и его необходимо учитывать при дальнеших расчётах.

$$T_0=2\pi\sqrt{LC_0}\longrightarrow C_0=rac{T^2}{4\pi^2L}pprox 0.0011$$
мк Φ

5. Изменяем ёмкость проведём измерения периодов. Результаты занесём в таблицу 1. Так же рассчитаем теоретические значения периодов по формуле Томсона и построим график $T_{\rm exp} = f(T_{\rm theor}).$

$C+C_0$, мк Φ	T_{exp} , MKC	T_{th} , MKC	au,%
0.0011	66	65.9	0.15
0.0021	91	91.1	0.06
0.0031	110	110.6	0.57
0.0041	127	127.2	0.18
0.0051	143	141.9	0.77
0.0061	156	155.2	0.52
0.0071	168	167.4	0.34
0.0081	179	178.8	0.1

Таблица 1: Экспериментальные и теоретические значения периодов колебаний

Рис. 2: Теоретические и экспериментальные значения периодов исследуемых колебаний

В последнем столбце рассчитаем отклонение экспериментального значения от теоретического по формуле $\tau = \frac{|T_{th} - T_{exp}|}{T_{th}} \cdot 100\%$. Отклонение получилось очень маленькое, что говорит о высокой точности измерений. Метод наименьших квадратов аппроксимирует наш график, погрешность определения угла наклона составляет $\sigma_{\alpha} = 0.139\%$.

$$\alpha = 1.002217 \pm 0.001387$$

2.3 Критическое сопротивление и декремент затухания

1. Приняв L = 100м Γ н, рассчитаем емкость C^* , при которой собственная частота колебаний $\nu_0 = \frac{1}{2\pi \sqrt{LC^*}}$ составляет 6.5к Γ ц.

$$\nu_0 = \frac{1}{2\pi\sqrt{LC^*}} \iff C^* = \frac{1}{(4\pi^2L\nu_0)} = \frac{1}{(4\pi^2\cdot 100\cdot 10^{-3}\cdot 6.5^2\cdot 10^6)} \approx 5.995\text{H}\Phi$$

Для выбранных L и C^* рассчитаем критическое сопротивление контура $R_{\rm cr}$ по формуле:

$$R_{\rm cr} = 2\sqrt{\frac{L}{C^*}} = 2 \cdot \sqrt{\frac{100 \cdot 10^{-3}}{5.995 \cdot 10^{-9}}} \approx 8168.4 \text{Om}.$$

2. Установим на магазине емкость, близкую к рассчитанной критической и запишите ее значение:

$$C_{\text{now}} = 6 \text{H}\Phi.$$

Увеличивая сопротивление R от нуля до $R_{\rm cr}$, наблюдаем картину затухающих колебаний на экране осциллографа. Определим сопротивление магазина, при котором колебательный режим переходит в апериодический.

$$R_{\text{aper}} = 5500 \text{Om}.$$

3. Установим сопротивление $(0.05-0.25)\cdot R_{cr}$. Получим на экране картину затухающих колебаний. Для расчета логарифмического декремента затухания Θ измерим амплитуды, разделенные целым числом периодов n, воспользуемся формулой:

$$\Theta = \frac{1}{n} \cdot \ln \frac{U_m}{U_{m+n}} = \ln \frac{U_m}{U_{m+1}},$$
при $n = 1$.

$R_{\rm BH}$, Om	$R = R_{\text{вн}} + R_L$, Ом	$\theta = \ln \frac{U_k}{U_{k+1}}$	$Q = \frac{\pi}{\theta}$	σ_Q
$204 \ (0,025R_{cr})$	204 + 43 = 247	0.210	14.959	0.299
$408 (0,05R_{cr})$	408 + 43 = 451	0.386	8.139	0.163
$816 \ (0, 1R_{cr})$	816 + 43 = 854	0.684	4.593	0.092
$2042 (0, 25R_{cr})$	2042 + 43 = 2085	1.123	2.798	0.056

Таблица 2: Декремент затухания свободных колебаний

Погрешность определения декремента затухания состоит из погрешности определения напряжения. Мы пользовались цифровым осциллографом ADS-6142H, в паспорте которого указано принять систематическую ошибку $\sim 2\%$.

Построим график зависимости $\frac{1}{\theta^2} = f(\frac{1}{R^2})$. Так как

$$\theta = \ln\left(\frac{U_k}{U_{k+1}}\right) = \gamma T = \gamma \frac{2\pi}{\omega_1} \iff \theta^2 = \gamma^2 \frac{4\pi^2}{\omega_1^2} = \gamma^2 \frac{4\pi^2}{\omega_0^2 - \gamma^2} \iff \frac{1}{\theta^2} = \frac{1}{4\pi^2} \cdot \left(\frac{\omega_0^2}{\gamma^2} - 1\right) = \frac{1}{4\pi^2} \cdot \left(\frac{4L}{CR^2} - 1\right)$$

то зависимость должна получиться линейной:

$$\frac{1}{\theta^2} = \frac{1}{R^2} \cdot \frac{L}{C\pi^2} - \frac{1}{4\pi^2}.$$

Запишем общий вид линейной функции:

$$y = a \cdot x + b$$
,

если принять обозначения $x=\frac{1}{R^2}$ и $y=\frac{1}{\theta^2}$, то получим, что $a=\frac{L}{C\pi^2}$ - угловой коэффициент функции, $b=-\frac{1}{4\pi^2}$ - сдвиг по оси ординат.

Рис. 3: Зависимость декремента затухания от суммарного сопротивления

Аппроксимацию проводили с помощью метода наименьших квадратов, получили:

$$a = (136.151 \pm 1.875) \cdot 10^4 Om^2;$$

 $b = 0.282 \pm 0.161.$

Рассчитаем R_{cr}^{lab} по формуле:

$$R_{cr}^{lab} = 2\pi \sqrt{\frac{\Delta x}{\Delta y}} = 2\pi \sqrt{a} = 2\pi \sqrt{136.151 \cdot 10^4} = 7331.457 \pm 860.361Om.$$

Видим, что с учётом погрешности, высчитанной с помощью метода наименьших квадратов, полученное значение совпадает с рассчитанным ранее теоретическим R_{cr} .

2.4 Свободные колебания на фазовой плоскости

- 1. Введём сопротивление $R \approx 0.05 \cdot R_{cr} \approx 408 Om$ на магазине. Подадим на канал 2(Y) осциллографа падение напряжения с резистора.
- 2. Для одновременного наблюдения осциллограмм тока и напряжения свободных затухающих колебаний переведём осциллограф в двухканальный режим. Подберём масштабы по вертикали и частоту развертки по горизонтали так, чтобы оба сигнала были представлены на временном интервале, слегка превышающем период повторения импульсов с генератора.
- 3. Подберём частоту повторения импульсов на генераторе так, чтобы расстояние между импульсами было порядка характерного времени затухания свободных колебаний (эта частота составляет 400-500 Гц, у нас получилось 450).
- 4. Для наблюдения затухающих колебаний на фазовой плоскости отключим развертку по времени. Меняя чувствительность каналов, подберём масштаб спирали, удобный для измерений. Зарегистрируем спираль.

При том же значении C_{now} , что и в секции 2.3, наблюдайте за изменением спирали при увеличении сопротивления $(0.05-0.25)\cdot R_{cr}$. Для определения декремента затухания Θ измерим координаты пересечения витков спирали с одной из осью координат, разделенные целым числом периодов n, для значений сопротивлений, выбранных в секции 2.3.

R	с, Ом	n	U_k , дел	U_{k+n} , дел	θ	Q	σ_Q
	408	5	18	4	0.301	10.44	0.731
2	2042	2	10	1	1.151	2.73	0.191

Таблица 3: Определение добротности на фазовой плоскости

Поскольку количество делений фиксировали мы, а не прибор, то относительную погрешность погрешность определения добротности можем принять равной $\epsilon_Q = 0.07$.

2.5 Исследование резонансных кривых

- 1. Для наблюдения вынужденных колебаний переведём осциллограф в одноканальный режим просмотра (выключить режим XY).
- 2. Переведём генератор специальных сигналов в режим подачи синусоидального сигнала.
- 3. Выставим значение емкости C^* из секции 2.3, а сопротивление R1 из значений зафиксированных в секции 2.3.

Рис. 4: Схема установки для исследования АЧХ и ФЧХ

- 4. С помощью переходника и коаксиальных кабелей подайте сигнал с генератора одновременно на колебательный контур и на канал 2 осциллографа (см. рисунок 4). Добейтесь того чтобы на экране осциллографа можно было наблюдать одновременно два сигнала: сигнал, взятый с колебательного контура, на первом канале и первоначальный сигнал на втором канале.
- 5. Убедились, что на экране осциллографа при частотах близких к резонансным наблюдается устойчивый синусоидальный сигнал.
- 6. Изменяя частоту генератора вблизи резонансной частоты и наблюдая синусоиду на первом канале на экране осциллографа, убедились, что амплитуда колебаний максимальна при достижении резонансной частоты. Определите ее значение:

$$\nu_{res}^1=6610\Gamma$$
ц.

7. Снимем АЧХ и ФЧХ колебательного контура вблизи резонанса.

$$\Delta \phi = 2\pi \cdot \nu \cdot \Delta x$$

АЧХ:

Построим график по данным из таблицы в координатах $y = \frac{U}{U_0}, x = \frac{\nu}{\nu_0}$.

Определим добротность по графику. $Q = \frac{\omega_0}{2\Delta\Omega}$, где $2\Delta\Omega$ - ширина резонансной кривой на уровне $U = \frac{U_0}{\sqrt{2}}$.

$$\implies 2\Delta\Omega = 0.0999 \implies Q = \frac{0.98}{0.099} = 9.81$$

ν, Гц	U, B	Δx , MKC	$\Delta \phi, \cdot \pi$
6980.0	9.2	15.2	0.976
6932.6	9.6	15.6	1.038
6885.3	10.4	18.4	1.318
6837.9	10.6	20.0	1.45
6790.5	11.0	21.6	1.613
6743.1	11.4	24.8	1.906
6695.8	11.8	27.2	2.149
6648.4	12.4	29.6	2.44
6610.0	13.2	32.4	2.827

ν , Гц	U, B	Δx , MKC	$\Delta \phi, \cdot \pi$
6553.6	12.8	36.4	3.053
6506.3	12.6	40.0	3.279
6458.9	11.4	42.8	3.151
6411.5	11.0	46.0	3.244
6364.1	10.2	49.2	3.194
6316.8	9.4	51.6	3.064
6269.4	9.0	55.2	3.115
6225.4	8.2	57.2	2.92

Таблица 4: АЧХ и ФЧХ для $R_1 = 451~{
m Om}$

ФЧХ:

Построим график по данным из таблицы в координатах $y=\phi, x=\frac{\nu}{\nu_0}.$

Проведем горизонтальную линию через уровень, где наблюдается резонанс ($\approx \frac{\pi}{2}$). Затем отразим одну половину относительно этой прямой и измерим приблизительно ширину на расстоянии $\frac{\pi}{4}$ от резонанса. Тогда:

$$\Longrightarrow Q = \frac{1.35}{0.07 \cdot \pi} = 6.139.$$

Рис. 5: АЧХ при R = 451 Om

Рис. 6: Φ ЧХ при R = 451 Ом

2.6 Определение теоретического значения добротности

Рассчитаем теоретическое значение добротности через параметры контура L, C и R.

$$\theta = \ln \frac{A(t)}{A(t+T)} = \ln \frac{A_0 e^{-\beta t}}{A_0 e^{-\beta (t+T)}} = \ln e^{\beta T} = \beta T;$$

$$Q = \frac{\pi}{\theta} = \frac{\pi}{\beta T} = \frac{\pi}{\frac{R}{2L} \frac{2\pi}{\omega_1}} = \frac{L}{R} \omega_1 = \frac{L}{R} \sqrt{\omega_0^2 - \beta^2} = \frac{L}{R} \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} = \frac{1}{2} \sqrt{\frac{4L}{CR^2} - 1}.$$

При значениях L=100м Γ н, C=6н Φ и R=451Ом, добротность контура принимает значение $Q=\frac{1}{2}\sqrt{\frac{4\cdot100\cdot10^{-3}}{6\cdot10^{-9}\cdot451^2}-1}=9.038(\epsilon=0.27\%)$. При значениях L=100м Γ н, C=6н Φ и R=2085Ом, добротность контура принимает значение $Q=\frac{1}{2}\sqrt{\frac{4\cdot100\cdot10^{-3}}{6\cdot10^{-9}\cdot2085^2}-1}=1.893(\epsilon=0.27\%)$.

2.7 Определение активного сопротивления

Определим активное сопротивление R_L магазина идуктивностей с помощью измерителя LCRна различных частотах.

ν , Гц	R_L , Om
50	43.32
500	43.58
1500	44.72

Таблица 5: Показания измерителя LCR

По полученным данным построим график зависимости активного сопротивления магазина индуктивности от частоты генератора колебаний.

Теперь нетрудно вычислить активное сопротивление при частоте генератора, например, $\nu=100\Gamma$ ц.

$$R_{L100\Gamma_{\rm II}} = 43.293 \pm 0.121 \,\mathrm{Om}(\epsilon = 0.27\%).$$

Рис. 7: *График зависимости активного сопротивления катушки от частоты генератора ко*лебаний

3 Вывод

В данной лабораторной работе мы исследовали свободные и вынужденные колебания в электрическом контуре и различными способами находили его добротность.

Итоговая таблица:

R, (Ом	f(L,C,R)	$f(\theta)$	Фаз. спираль	АЧХ	ΦЧХ
45	1	$9.038 \pm 0,024$	8.139 ± 0.163	10.44 ± 0.731	9.81	6.139
204	42	$1.893 \pm 0,005$	2.798 ± 0.056	2.73 ± 0.191		

3.1 Приложение

