Co można znaleźć w potęgach dwójki?

Piotr Idzik vil02@o2.pl

Karlsruhe, Katowice, 15.03.2021

Sformułowanie problemu

Zawieranie sie liczb

Definicja 1

Niech $a,b\in\mathbb{N}$. Mówimy, że liczba a zawiera liczbę b, jeżeli reprezentacja dziesiętna liczby b jest podłańcuchem reprezentacji dziesiętnej liczby a.

- ▷ liczba 128 zawiera liczby 12 oraz 28,
- ▷ liczba 128 nie zawiera liczby 18.

Sformułowanie problemu
Potegi dwóiki

Rozważmy ciąg $(2^n)_{n\in\mathbb{N}}$, tzn. liczby 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, Zauważmy, że

- \triangleright 28 zawiera się w $2^7 = 128$,
- \triangleright 314 zawiera się w $2^{74} = 18889465931478580854784$,
- ightharpoonup 31415 zawiera się w $2^{144} = 22300745198530623141535718272648361505980416,$
- \triangleright 70000000 zawiera się w 2^{9452} ,
- \triangleright 2000000000 zawiera się w 2^{100824} .

Czy prawdą jest, że dla dowolnej liczby $n\in\mathbb{N}$ istnieje taki wykładnik $w\in\mathbb{N}$, że liczba 2^w zawiera liczbę n?

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 2^y . Kolor niebieski oznacza, że 2^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 3^y . Kolor niebieski oznacza, że 3^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 4^y . Kolor niebieski oznacza, że 4^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 5^y . Kolor niebieski oznacza, że 5^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 6^y . Kolor niebieski oznacza, że 6^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 7^y . Kolor niebieski oznacza, że 7^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 8^y . Kolor niebieski oznacza, że 8^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 9^y . Kolor niebieski oznacza, że 9^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 10^y . Kolor niebieski oznacza, że 10^y zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w 11^y . Kolor niebieski oznacza, że 11^y zaczyna się liczbą x.

Twierdzenie 3

Niech $p \in \mathbb{N}$ będzie takie, że $p \neq 10^r$, $r \in \mathbb{N}$. Wówczas dla dowolnej liczby $n \in \mathbb{N}$ istnieje taki wykładnik $w \in \mathbb{N}$, że liczba p^w zawiera liczbę n.

Lemat 4

Niech $p \in \mathbb{N}$ będzie takie, że $\log_{10} p \in \mathbb{R} \setminus \mathbb{Q}$. Wówczas dla dowolnej liczby $n \in \mathbb{N}$ istnieje taki wykładnik $w \in \mathbb{N}$, że liczba p^w rozpoczyna się liczbą n.

Lemat 5

 $\log_{10} p \in \mathbb{Q}$ wtedy i tylko wtedy, gdy $p = 10^r$, dla pewnego $r \in \mathbb{N}_0$.

Twierdzenie 6

Jeżeli $\frac{r_A}{r_B} = \frac{a}{b}$, NWD(a,b) = 1, to po wykonaniu b obrotów przez koło A (a obrotów przez koło B) znaczniki będą w tym samym położeniu.

Część ułamkowa liczby

Definicja 7

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$.

Część ułamkowa liczby

Definicja 7

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$.

$$\triangleright |\pi| = 3$$
,

$$\triangleright \lfloor 15 \rfloor = 15$$
,

Definicja 7

Cześć ułamkowa liczby

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$.

 $\it Część\ ułamkową\ liczby\ x\ definiujemy\ wzorem$

$$\{x\} = x - \lfloor x \rfloor \tag{1}$$

$$\triangleright \lfloor \pi \rfloor = 3$$
,

$$\triangleright \lfloor 15 \rfloor = 15$$
,

Część ułamkowa liczby

Definicja 7

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$. Część ułamkową liczby x definiujemy wzorem

$$\{x\} = x - \lfloor x \rfloor \in [0, 1). \tag{1}$$

$$\triangleright \lfloor \pi \rfloor = 3$$
,

$$\triangleright \lfloor 15 \rfloor = 15$$
,

Część ułamkowa liczby

Definicja 7

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$. Część ułamkowa liczby x definiujemy wzorem

$$\{x\} = x - \lfloor x \rfloor \in [0, 1). \tag{1}$$

$$hd \left\lfloor \pi
ight
floor = 3$$
, $\left\{ \pi
ight\} = 0.14159265\ldots$,

$$\triangleright \ \lfloor 15 \rfloor = 15, \ \{15\} = 0,$$

Definicja 7

Cześć ułamkowa liczby

Niech $x \in \mathbb{R}$. Częścią całkowitą liczby x nazywamy największą liczbę całkowitą nie większą niż x i oznaczamy symbolem $\lfloor x \rfloor$.

 $\it Część\ ułamkową\ liczby\ x\ definiujemy\ wzorem$

$$\{x\} = x - \lfloor x \rfloor \in [0, 1). \tag{1}$$

$$\triangleright \ \lfloor \pi \rfloor = 3, \ \{\pi\} = 0.14159265 \ldots,$$

$$\triangleright [15] = 15, \{15\} = 0,$$

$$\triangleright |-4,25| = -5, \{-4,25\} = 0,75.$$

Przygotowania do dowodu lematu 4
Część ułamkowa liczby

Część ułamkowa liczby

Przykład 9

$$\left\{\frac{5}{7}\right\} = \frac{5}{7}$$

Część ułamkowa liczby

Część ułamkowa liczby

Przykład 9

Część ułamkowa liczby

Część ułamkowa liczby

Część ułamkowa liczby

Część ułamkowa liczby

Przykład 9

$$\left\{7 \cdot \frac{5}{7}\right\} = 0$$

Część ułamkowa liczby

Część ułamkowa liczby

Przykład 10

Rozważmy ciąg $(\{n\pi\})_{n\in\mathbb{N}}$.

Twierdzenie 11 ([2, 4])

Jeżeli $\gamma \in \mathbb{R} \setminus \mathbb{Q}$, to ciąg $(\{n\gamma\})_{n \in \mathbb{N}}$ jest gęsty w przedziałe [0,1], tzn. dowolny punkt przedziału [0,1] może zostać dowolnie dokładnie przybliżony wyrazami ciągu $(\{n\gamma\})_{n \in \mathbb{N}}$.

$$10^w = s \iff \log_{10} s = w,$$

Logarytmy dziesiętne

$$10^w = s \iff \log_{10} s = w,$$

$$\rhd \ \log_{10}100 = 2 \text{, bo } 10^2 = 100 \text{,}$$

Przygotowania do dowodu lematu 4
Logarytmy dziesiętne

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\triangleright \log_{10} 2 = 0.30102..., \log_{10} 3 = 0.47712..., \log_{10} 4 = 0.60205...$$

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\, \triangleright \, \log_{10} 2 = 0.30102 \ldots, \log_{10} 3 = 0.47712 \ldots, \log_{10} 4 = 0.60205 \ldots \stackrel{\mathsf{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q},$$

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\, \triangleright \, \log_{10} 2 = 0.30102 \ldots, \log_{10} 3 = 0.47712 \ldots, \log_{10} 4 = 0.60205 \ldots \stackrel{\text{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q} \text{,}$$

$$\triangleright 10^{\log_{10} \alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\, \triangleright \, \log_{10} 2 = 0.30102\ldots, \log_{10} 3 = 0.47712\ldots, \log_{10} 4 = 0.60205\ldots \stackrel{\mathsf{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q},$$

$$\triangleright 10^{\log_{10} \alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^{\log_{10} p^w} = p^w \quad (p, w \in \mathbb{N}),$$
 (2)

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\rhd \ \log_{10} 2 = 0,\!30102\ldots,\log_{10} 3 = 0,\!47712\ldots,\log_{10} 4 = 0,\!60205\ldots \stackrel{\mathsf{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q},$$

$$\triangleright 10^{\log_{10} \alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^{\log_{10} p^w} = p^w \quad (p, w \in \mathbb{N}), \tag{2}$$

$$10^{w_1+w_2} = 10^{w_1} \cdot 10^{w_2} \quad (w_1, w_2 \in \mathbb{R}),$$
(3)

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\rhd \ \log_{10} 2 = 0,\!30102\ldots,\log_{10} 3 = 0,\!47712\ldots,\log_{10} 4 = 0,\!60205\ldots \stackrel{\mathsf{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q},$$

$$\triangleright 10^{\log_{10} \alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^{\log_{10} p^w} = p^w \quad (p, w \in \mathbb{N}), \tag{2}$$

$$10^{w_1+w_2} = 10^{w_1} \cdot 10^{w_2} \quad (w_1, w_2 \in \mathbb{R}),$$
(3)

$$\triangleright \log_{10} x_1 x_2 = \log_{10} x_1 + \log_{10} x_2 \quad (x_1, x_2 > 0),$$

$$10^w = s \iff \log_{10} s = w,$$

$$\triangleright \log_{10} 100 = 2$$
, bo $10^2 = 100$,

$$\triangleright \log_{10} 10^{\alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$\rhd \ \log_{10} 2 = 0.30102\ldots, \log_{10} 3 = 0.47712\ldots, \log_{10} 4 = 0.60205\ldots \stackrel{\mathsf{Lemat 5}}{\in} \mathbb{R} \setminus \mathbb{Q},$$

$$\triangleright 10^{\log_{10} \alpha} = \alpha \quad (\alpha \in \mathbb{R}),$$

$$10^{\log_{10} p^w} = p^w \quad (p, w \in \mathbb{N}), \tag{2}$$

$$10^{w_1+w_2} = 10^{w_1} \cdot 10^{w_2} \quad (w_1, w_2 \in \mathbb{R}),$$
(3)

$$\log_{10} x_1 x_2 = \log_{10} x_1 + \log_{10} x_2 \quad (x_1, x_2 > 0),$$

$$\log_{10} p^w = w \log_{10} p \quad (p, w \in \mathbb{N}).$$

$$(4)$$

Dowód lematu 4.

$$p^{w} \stackrel{\text{(2)}}{=} 10^{\log_{10} p^{w}} \stackrel{\text{(4)}}{=} 10^{w \log_{10} p} \stackrel{\text{(1)}}{=} 10^{\lfloor w \log_{10} p \rfloor + \{w \log_{10} p\}}$$

$$\stackrel{\text{(3)}}{=} \underbrace{10^{\lfloor w \log_{10} p \rfloor}}_{10...0} \cdot 10^{\{w \log_{10} p\}}.$$

$$> 10^{\log_{10} 1,2345} = 1,2345,$$

$$> 10^{\log_{10} c_1, c_2 c_3 c_3 \dots c_l} = c_1, c_2 c_3 c_3 \dots c_l.$$

Niech $n=c_1c_2c_3\ldots c_l$, wobec twierdzenia 11 istnieje $w>\frac{l}{\log_{10}p}$ takie, że $\{w\log_{10}p\}$ jest wystarczająco dobrym przybliżeniem $\log_{10}c_1,c_2c_3c_3\ldots c_l$.

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

$$\triangleright (\{n \log_{10} 2\})_{n \in \mathbb{N}} \leadsto (2^n)_{n \in \mathbb{N}},$$

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

$$\triangleright \left(\left\{ n \log_{10} 2 \right\} \right)_{n \in \mathbb{N}} \leadsto \left(2^n \right)_{n \in \mathbb{N}},$$

$$\triangleright \left(\left\{ n^k \log_{10} 2 \right\} \right)_{n \in \mathbb{N}} \leadsto \left(2^{n^k} \right)_{n \in \mathbb{N}},$$

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

Jeżeli $\{\log_{10} a_k\}_{k\in\mathbb{N}}$ jest gęsty w przedziałe [0,1], to ciąg $(a_k)_{k\in\mathbb{N}}$ zawiera wszystkie liczby.

Persi Diaconis.

The distribution of leading digits and uniform distribution mod 1. *The Annals of Probability*, 5(1):72–81, Feb 1977.

Wacław Sierpiński.

O wartości asymptotycznej pewnej sumy.

Rozprawy Akademii Umiejętności w Krakowie, Wydział mat. przyrod., 50:1–10, 1910.

Ivan. M. Vinogradov.

On the distribution of products of prime numbers and the numerical function of Möbius.

Izv. Akad. Nauk SSSR, Ser. Mat., 12:341-350, 1948.

Hermann Weyl.

Über die gleichverteilung von zahlen mod. eins.

Mathematische Annalen, 77(3):313-352, Sep 1916.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w y^2 . Kolor niebieski oznacza, że y^2 zaczyna się liczbą x.

Rysunek: Punkt (x,y) jest zaznaczony na czerwono, jeżeli x zawiera się w y^3 . Kolor niebieski oznacza, że y^3 zaczyna się liczbą x.

Symulacje komputerowe dla innych ciągów $n! = 1 \cdot 2 \cdot \ldots \cdot n, \quad (n \in \mathbb{N}), \ 0! = 1$

Rysunek: Punkt (x, y) jest zaznaczony na czerwono, jeżeli x zawiera się w y!. Kolor niebieski oznacza, że y! zaczyna się liczbą x.

Dowód lematu 5.

Załóżmy, że $\log_{10}p=\frac{a}{b}$, dla pewnych $a,b\in\mathbb{N}$. Wówczas $10^{\frac{a}{b}}=p$, stąd $10^a=p^b$, i ponadto $2^a5^a=p^b$. Zatem $p=2^r5^s$, dla pewnych $r,s\in\mathbb{N}$. Pozostaje pokazać, że r=s. Istotnie, $2^{rb}5^{sb}=2^a5^a$, skąd a=rb=sb, więc r=s. A zatem $p=2^r5^r=10^r$.