Unsupervised Image-to-Image Translation Networks

NIPS 2017

Motivation

In the unpaired data setting,

p(zebras)

p(horses)

Joint distribution p(zebras, horses) = Infinite set!

Shared Latent Space Assumption

$$z = E_1^*(x_1) = E_2^*(x_2)$$

Unpaired 데이터셋이지만, X1 도메인과 X2 도메인 내 특정 이미지끼리 Latent code z를 share 한다고 가정

$$x_1 = G_1^*(z)$$

 $F_{1\to 2}^*(x_1) = G_2^*(E_1^*(x_1))$
 $x_1 = F_{2\to 1}^*(F_{1\to 2}^*(x_1))$

Implementation of Shared Latent

$$z \to h \ \stackrel{\stackrel{}{\ }}{\stackrel{}{\ }} \ \begin{array}{c} x_1 \\ x_2 \end{array} \qquad G_1^* \equiv G_{L,1}^* \circ G_H^*$$

G_H => high level generation (realization of z) G_L => low level generation (actual image formation)

Ex)
 z = car in front, trees in back
 h = car/tree occupy the following pixels
 x = domain specific color (pixel value)

Method 1 (1->1)

VAE 세팅

(assumption: The latent space Z is conditionally independent and Gaussian with unit variance)

Reparameterization trick (test 때는 sampling 없이)

$$\eta \sim \mathcal{N}(\eta|0, I)$$
$$z_1 = E_{\mu, 1}(x_1) + \eta$$

Loss

hiddens = self.encode(images)
if self.training == True:
 noise = Variable(torch.randn(hiddens.size()).cuda(hiddens.data.get_device()))
 images_recon = self.decode(hiddens + noise)
else:
 images_recon = self.decode(hiddens)

$$\mathcal{L}_{\text{VAE}_1}(E_1, G_1) = \lambda_1 \text{KL}(q_1(z_1|x_1)||p_{\eta}(z)) - \lambda_2 \mathbb{E}_{z_1 \sim q_1(z_1|x_1)}[\log p_{G_1}(x_1|z_1)] \qquad p_{\eta}(z) = \mathcal{N}(z|0, I)$$

$$\mathcal{L}_{\text{VAE}_2}(E_2, G_2) = \lambda_1 \text{KL}(q_2(z_2|x_2)||p_{\eta}(z)) - \lambda_2 \mathbb{E}_{z_2 \sim q_2(z_2|x_2)}[\log p_{G_2}(x_2|z_2)]. \quad q_1(z_1|x_1) \equiv \mathcal{N}(z_1|E_{\mu,1}(x_1), I)$$

Method 2 (1->2)

아직까지는 Latent space는 공유하나, $z=E_1^*(x_1)=E_2^*(x_2)$ 가 보장되지 않음

$$\mathcal{L}_{\text{CC}_{1}}(E_{1}, G_{1}, E_{2}, G_{2}) = \lambda_{3} \text{KL}(q_{1}(z_{1}|x_{1})||p_{\eta}(z)) + \lambda_{3} \text{KL}(q_{2}(z_{2}|x_{1}^{1\to 2}))||p_{\eta}(z)) - \lambda_{4} \mathbb{E}_{z_{2} \sim q_{2}(z_{2}|x_{1}^{1\to 2})}[\log p_{G_{1}}(x_{1}|z_{2})]$$

$$\mathcal{L}_{\text{CC}_2}(E_2, G_2, E_1, G_1) = \lambda_3 \text{KL}(q_2(z_2|x_2)||p_{\eta}(z)) + \lambda_3 \text{KL}(q_1(z_1|x_2^{2\to 1}))||p_{\eta}(z)) - \lambda_4 \mathbb{E}_{z_1 \sim q_1(z_1|x_2^{2\to 1})}[\log p_{G_2}(x_2|z_1)].$$

 \mathcal{Z} : shared latent space

Method 3 (GAN objective)

Latent space가 아니라, fake_x2와 real_x2의 distribution을 최대한 가깝게 하기 위한 method

$$\mathcal{L}_{GAN_1}(E_1, G_1, D_1) = \lambda_0 \mathbb{E}_{x_1 \sim P_{\mathcal{X}_1}} [\log D_1(x_1)] + \lambda_0 \mathbb{E}_{z_2 \sim q_2(z_2|x_2)} [\log(1 - D_1(G_1(z_2)))]$$
 (5)

$$\mathcal{L}_{GAN_2}(E_2, G_2, D_2) = \lambda_0 \mathbb{E}_{x_2 \sim P_{\mathcal{X}_2}}[\log D_2(x_2)] + \lambda_0 \mathbb{E}_{z_1 \sim q_1(z_1|x_1)}[\log(1 - D_2(G_2(z_1)))]. \tag{6}$$

Overall loss

$$\min_{E_1, E_2, G_1, G_2} \max_{D_1, D_2} \mathcal{L}_{\text{VAE}_1}(E_1, G_1) + \mathcal{L}_{\text{GAN}_1}(E_1, G_1, D_1) + \mathcal{L}_{\text{CC}_1}(E_1, G_1, E_2, G_2)$$

$$\mathcal{L}_{\text{VAE}_2}(E_2, G_2) + \mathcal{L}_{\text{GAN}_2}(E_2, G_2, D_2) + \mathcal{L}_{\text{CC}_2}(E_2, G_2, E_1, G_1).$$

Result

Figure 4: Dog breed translation results.

Figure 5: Cat species translation results.

Figure 6: Attribute-based face translation results.

1. Conclusion 내용:

The translation model is unimodal due to The Gaussian latent space assumption 이 가정을 하는 당위성이 뭔지를 모르겠음.

추후 multimodality를 가능하게 하는 모델을 만들겠다 함.

⇒ 애초에 후속 페이지를 염두에 두고 작성한 페이퍼인듯.

Multimodal Unsupervised Image-to-Image Translation

ECCV 2018

Idea

- Shared latent space (From UNIT)
- Separated latent space (Content, Style)

- Multimodal output (many to many setting is reasonable)
- Exemplar

Method 1: Within-domain (AE)

(a) Within-domain reconstruction

Image Reconstruction

$$\mathcal{L}_{\text{recon}}^{x_1} = \mathbb{E}_{x_1 \sim p(x_1)}[||G_1(E_1^c(x_1), E_1^s(x_1)) - x_1||_1]$$

Method 2 : Cross-domain(translation)

Latent Reconstruction

$$\mathcal{L}_{\text{recon}}^{c_1} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[||E_2^c(G_2(c_1, s_2)) - c_1||_1]$$
 (2)

$$\mathcal{L}_{\text{recon}}^{c_1} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[||E_2^c(G_2(c_1, s_2)) - c_1||_1]$$

$$\mathcal{L}_{\text{recon}}^{s_2} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)}[||E_2^s(G_2(c_1, s_2)) - s_2||_1]$$
(3)

where $q(s_2)$ is the prior $\mathcal{N}(0, \mathbf{I})$, $p(c_1)$ is given by $c_1 = E_1^c(x_1)$ and $x_1 \sim p(x_1)$.

(b) Cross-domain translation

Total loss

$$\mathcal{L}_{\text{GAN}}^{x_2} = \mathbb{E}_{c_1 \sim p(c_1), s_2 \sim q(s_2)} [\log(1 - D_2(G_2(c_1, s_2)))] + \mathbb{E}_{x_2 \sim p(x_2)} [\log D_2(x_2)]$$

$$\min_{E_1, E_2, G_1, G_2} \max_{D_1, D_2} \mathcal{L}(E_1, E_2, G_1, G_2, D_1, D_2) = \mathcal{L}_{\text{GAN}}^{x_1} + \mathcal{L}_{\text{GAN}}^{x_2} + \lambda_x (\mathcal{L}_{\text{recon}}^{x_1} + \mathcal{L}_{\text{recon}}^{x_2}) + \lambda_c (\mathcal{L}_{\text{recon}}^{c_1} + \mathcal{L}_{\text{recon}}^{c_2}) + \lambda_s (\mathcal{L}_{\text{recon}}^{s_1} + \mathcal{L}_{\text{recon}}^{s_2})$$

- + perceptual loss(instance norm(real_A), instance norm(fake_B))
- => content가 올바로 유지되고 있는가

Question

- 1. 우리는 N(0,1)에 맞춰주는 세팅 (KL div.) 없이 style을 encoding하였다. 어떻게 노말에서 샘플링이 가능한가?
- 2. Shared Content Space라고 하는데, 정작 domain 간 서로 다른 encoder를 사용한다. 어떻게 된 것인가?

Details

Fig. 3. Our auto-encoder architecture.

$$AdaIN(z, \gamma, \beta) = \gamma \left(\frac{z - \mu(z)}{\sigma(z)}\right) + \beta$$

Qualitative test

Question

1. Normal에서 sampling한다고 하는데, 그 지점이 전 슬라이드 Details에서 어디일까

Ablation study

Fig. 4. Qualitative comparison on edges \rightarrow shoes. The first column shows the input and ground truth output. Each following column shows 3 random outputs from a method.

Quantitative result

	edges -	\rightarrow shoes	$\mathrm{edges} \to \mathrm{handbags}$			
	Quality	Diversity	Quality	Diversity		
UNIT [15]	37.4%	0.011	37.3%	0.023		
CycleGAN [8]	36.0%	0.010	40.8%	0.012		
CycleGAN* [8] with noise	29.5%	0.016	45.1%	0.011		
MUNIT w/o \mathcal{L}_{recon}^x	6.0%	0.213	29.0%	0.191		
MUNIT w/o $\mathcal{L}_{\text{recon}}^c$	20.7%	0.172	9.3%	0.185		
MUNIT w/o $\mathcal{L}_{\text{recon}}^{s}$	28.6%	0.070	24.6%	0.139		
MUNIT	50.0%	0.109	50.0%	0.175		
BicycleGAN [11] [†]	56.7%	0.104	51.2%	0.140		
Real data	N/A	0.293	N/A	0.371		

	CycleGAN		CycleGAN* with noise		UNIT		MUNIT	
	CIS	IS	CIS	IS	CIS	IS	CIS	IS
house cats \rightarrow big cats	0.078	0.795	0.034	0.701	0.096	0.666	0.911	0.923
big cats \rightarrow house cats	0.109	0.887	0.124	0.848	0.164	0.817	0.956	0.954
house cats \rightarrow dogs	0.044	0.895	0.070	0.901	0.045	0.827	1.231	1.255
$dogs \rightarrow house cats$	0.121	0.921	0.137	0.978	0.193	0.982	1.035	1.034
$\mathrm{big}\;\mathrm{cats}\to\mathrm{dogs}$	0.058	0.762	0.019	0.589	0.094	0.910	1.205	1.233
$dogs \rightarrow big cats$	0.047	0.620	0.022	0.558	0.096	0.754	0.897	0.901
Average	0.076	0.813	0.068	0.762	0.115	0.826	1.039	1.050

CIS: Multimodal (diverse outputs from a single input image)

IS: High-quality