Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 16 - 16/06/2025

Transformaciones lineales en espacios con producto interno

Funcionales lineales

Sea V un espacio vectorial sobre $\mathbb K$ con producto interno. Llamamos una funcional lineal a una transformación lineal de la siguiente forma:

$$T:V\to\mathbb{K}$$

Ejemplo

Sea $w \in V$, definimos la función:

$$f_w(v) = \langle v, w \rangle$$

Esta es una funcional lineal.

Lema

Sea V un espacio vectorial con producto interno.

Si
$$\langle v, w \rangle = \langle v, w' \rangle$$
 $\forall v \in V$, entonces $w = w'$

Demostración

Partamos de la hipótesis:

Teorema de representación de Riesz

Sea V un espacio vectorial con producto interno, tal que dim(V) = n. Si $T : V \to \mathbb{K}$ es una funcional lineal entonces existe un único $w \in V$ tal que $T(v) = \langle v, w \rangle \quad \forall v \in V$. Llamamos a $w \in V$ el representante de Riesz de la funcional lineal T

Demostración

Primero probamos la unicidad del representante de Riesz:

Supongamos que existen dos vectores $w, w' \in V$ tales que $T(v) = \langle v, w \rangle = \langle v, w' \rangle \quad \forall v \in V$. Entonces, usando el lema que probamos anteriormente, w = w'

Ahora, tenemos que probar que efectivamente existe un vector $w \in V$ que cumple con las propiedades mencionadas.

Consideremos $\mathcal{B} = \{e_1, \dots, e_n\}$ una base ortonormal del espacio V. Entonces, dado un vector $v \in V$, podemos descomponerlo de la siguiente forma:

$$v = \left\langle v, e_1 \right\rangle e_1 + \ldots + \left\langle v, e_n \right\rangle e_n = \sum_{i=1}^n \left\langle v, e_i \right\rangle e_i$$

Por lo tanto:

$$T(v) = \sum_{i=1}^{n} \left\langle v, e_i \right\rangle T(e_i) = \sum_{i=1}^{n} \left\langle v, \overline{T(e_i)} e_i \right\rangle = \left\langle v, \sum_{i=1}^{n} \overline{T(e_i)} e_i \right\rangle$$

Y observemos que $\sum_{i=1}^n \overline{T(e_i)}e_i \in V$, por lo que llamando $w = \sum_{i=1}^n \overline{T(e_i)}e_i$, escribimos a T(v) como $\langle v,w \rangle$ $\forall v \in V$ (pues consideramos $v \in V$ cualquiera).

Adjunta de una transformación lineal

Sean V,W dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} , ambos con producto interno: $\langle\cdot,\cdot\rangle_V$ y $\langle\cdot,\cdot\rangle_W$. Consideramos una transformación $T:V\to W$ una transformación lineal.

Decimos que T tiene adjunta si existe una función $T^*:W\to V$ tal que:

$$\left\langle T(v),w\right\rangle _{W}=\left\langle v,T^{\ast}(w)\right\rangle _{V}\quad\forall v\in V\quad\forall w\in W$$

Teorema

Sean V,W espacios vectoriales sobre el mismo cuerpo $\mathbb K$ de dimensión finita, $\left<\cdot,\cdot\right>_V,\left<\cdot,\cdot\right>_W$ productos internos sobre V, W. Entonces toda transformación lineal $T: V \to W$ tiene una transformación lineal adjunta $T^*: W \to V$

Demostración

Para probar el teorema, tenemos que probar las siguientes tres partes:

- 1. Unicidad
- 2. Existencia
- 3. T^* es una transformación lineal

Unicidad

Supongamos que existen $T_1^*: W \to V$ y $T_2^*: W \to V$ tales que:

$$\begin{array}{ll} 1. \ \left\langle T(v), w \right\rangle_W = \left\langle v, T_1^*(w) \right\rangle_V & \forall v \in V \quad \forall w \in W \\ 2. \ \left\langle T(v), w \right\rangle_W = \left\langle v, T_2^*(w) \right\rangle_V & \forall v \in V \quad \forall w \in W \end{array}$$

2.
$$\langle T(v), w \rangle_W = \langle v, T_2^*(w) \rangle_V \quad \forall v \in V \quad \forall w \in W$$

Por lo tanto deducimos que:

$$\left\langle v,T_{1}^{*}(w)\right\rangle _{V}=\left\langle v,T_{2}^{*}(w)\right\rangle _{V}\quad\forall v\in V\quad\forall w\in W$$

Y usando el lema anterior concluimos que:

$$T_1^*(w) = T_2^*(w) \quad \forall w \in W$$

Por lo tanto $T_1^* = T_2^*$

Existencia

Dado $w \in W$ construimos el funcional lineal $f_w : V \to \mathbb{K}$ definido por:

$$f_w(v) = \left\langle T(v), w \right\rangle_W \quad \forall v \in V$$

Por el teorema de Riesz, existe un único $T^*(w) \in V$ tal que:

$$f_w(v) = \langle v, T^*(w) \rangle_V$$

Entonces, para cada $w \in W$ tenemos $T^*(w) \in V$ tal que:

$$\left\langle T(v),w\right\rangle _{W}=f_{w}(v)=\left\langle v,T^{*}(w)\right\rangle _{V}\quad\forall v\in V$$

Por lo tanto $T^*:W\to V$ es una adjunta de $T:V\to W$

T^{\ast} es una transformación lineal

Consideremos $w_1, w_2 \in W$ y $\alpha \in \mathbb{K}$. Se cumple $\forall v \in V$:

$$\begin{split} \left\langle v, T^*(\alpha w_1 + \beta w_2) \right\rangle_V &= \left\langle T(v), \alpha w_1 + \beta w_2 \right\rangle_W \\ &= \overline{\alpha} \left\langle T(v), w_1 \right\rangle_W + \overline{\beta} \left\langle T(v), w_2 \right\rangle_W \\ &= \overline{\alpha} \left\langle v, T^*(w_1) \right\rangle_V + \overline{\beta} \left\langle v, T^*(w_2) \right\rangle_V \\ &= \left\langle v, \alpha T^*(w_1) + \beta T^*(w_2) \right\rangle_V \end{split}$$

Entonces por el lema anterior:

$$T^*(\alpha w_1 + \beta w_2) = T^*(w_1) + \beta T^*(w_2)$$