תכנון וניתוח אלגוריתמים

הרצאה 22 מסלולים קצרים לפי בלמן פורד Bellman – Ford

מציאת משקל המסלולים הקצרים ביותר מקודקוד מקור יחיד.

- G=(V,E) מכוון גרף G=(V,E) מכוון עם פונקצית משקל $W:E \longrightarrow R$
 - ♦כלומר, לכל קשת מתאימים משקל ממשי.
 - ♦להלן מספר דרישות לצורך ביצוע האלגוריתם.
- ,(a_{ij}) מיוצג בעזרת מטריצת סמיכות \diamondsuit
 - : מוגדרת כדלקמן ₪


```
igotimes aij=  \begin{cases} E_{ij}\left((i,j) \ \text{ (aught of } i=j \ \text{ (i.j.)} \end{cases} \right) & \text{ (i.j.)} \end{cases}  acilita de diej אם igotimes אחרת
```

ב. [v] הוא משקל המסלול הקצר ביותר מקודקוד v מקור v לקודקוד v מקור v

- ⇒בגרף אין מעגלים בעלי משקל שלילי.
- עבור כל קודקוד v, נגדיר:v כמסלול עבור כל קודקוד v, נגדיר:v בהנחה הקצר ביותר מקודקוד מקור v לקודקוד v, בהנחה שהמסלול מכיל לא יותר מv קשתות.

- מאחר ש- a_{1j} מתאר את משקל המסלול המינימלי a_{1j} הזמני העובר דרך הקשת מקודקוד מקור $\frac{1}{2}$ לקודקוד $\frac{1}{2}$
- זו הערכה תחילית הכי טובה שאפשר לתת כאורךj המסלול המינימלי מקודקוד מקור לכל קודקוד

:מיוצגת על ידי מטריצת סמיכות הבאה

קודקוד יעד	1	2	3	4
קודקוד מקור				
	4	10	15	8
2	∞	0	~	3
3	8	-8	0	8
16.01.2020	∞	thms ⊚ Dr Reuven Hotoveli, 2	8	0

	V קודקוד	1	2	3	4
The State of the S	d ⁽¹⁾ [j]	0	10	15	∞

שים לב, למרות ש 4=4 קיבל את מים לב, למרות ש 4=4 הערך 0.

- והם $|\mathbf{v}|=n$ והם שמספר הקודקודים בגרף הינו $|\mathbf{v}|=n$ ממוספרים באופן אקראי מאחד ועד
- על כל המסלולים הקצרים ביותר האפשריים כל כל המסלולים הקצרים ביותר האפשריים $1 \le K \le n$ מקודקוד מקור $1 \le K \ne j$ ו $1 \le K \ne j$
 - כל מסלול כזה מכיל לא יותר מ m קשתות.

 $K \neq j$ ו $1 \leq K \leq n$, עבור A_{kj} נתבונן על הקשת A_{kj} (אם הקשת לא קיימת אז במטריצת הסמיכות בכל מקרה מופיע ערך ∞ , המציין שהקשת לא קיימת.) A_{kj} נקבל:

- ?ובכן מה קיבלנו?
- עובר דרך j העובר קיבלנו מסלול מקודקוד מקור 1 לקודקוד j העובר דרך לא יותר מ-הקודקוד 1 ובסך הכל המסלול הזה עובר דרך לא יותר מ- $d^{(m)}[1]+a_{1j}$ (m+1)
- עובר j קיבלנו מסלול מקודקוד מקור 1 לקודקוד j העובר דרך לא דרך הקודקוד 2 ובסך הכל המסלול הזה עובר דרך לא יותר מ- m+1) קשתות . משקל המסלול הוא: $d^{(m)}[2]+a_{2j}$

- עובר j העובר הקובלנו מסלול מקודקוד מקור 1 לקודקוד j העובר דרך לא דרך הקודקוד 3 ובסך הכל המסלול הזה עובר דרך לא יותר מ- j (m+1) קשתות משקל המסלול הוא: $d^{(m)}[3] + a_{3j}$
 - עובר דרך j קיבלנו מסלול מקודקוד מקור 1 לקודקוד j העובר דרך המסלול הזה עובר דרך לא יותר הקודקוד j ובסך הכל המסלול הזה עובר דרך לא יותר משקל j (m+1) קשתות משקל המסלול הוא: $d^{(m)}[K] + a_{Ki}$

n

 $\min\{ d^{(m)}[K] + a_{Kj} \}$ K=1 לכן הביטוי הבאף ♦

K≠j לכל ♦

- j מתאר את משקל המסלול הקצר מקודקוד מקור 1 לקודקוד אשר מכיל לא יותר מ- (m+1) קשתות.
 - אך יתכן שהביטוי $d^{(m)}[j]$, אשר מתאר את המשקל של $\delta^{(m)}[j]$ אשר מכיל לא המסלול הקצר מקודקוד מקור 1 לקודקוד j אשר מכיל לא יותר מm קשתות , בעל ערך יותר קטן מאשר המסלול שמכיל לכל היותר m) קשתות.

$$d_{j}^{(m+1)} = \min\{d_{j}^{(m)}, \min_{k \neq j}\{d_{k}^{(m)} + a_{kj}\}\}$$

 $.2 \le j \le n$ כאשר, j כאשר לכל קודקוד (כאשר \diamond

- ◊ מאחר שהרשת לא מכילה מעגלים בעלי משקל שלילי
 אזי משקל המסלול הקצר ביותר מכל קודקוד v לעצמו
 (מסלול מעגלי) הינו אפס.
- ♦ לאור זאת אם בגרף יש n קודקודים אזי המסלול הפשוט , שהינו מסלול קצר, מכיל לא יותר מ- (n-1) קשתות.

:עבור n=4 בגרף הבא ♦ לדוגמא, עבור

3 קל לראות כי המסלול הקצר יכול להכיל לכל היותר קשתות.

- מכאן נסיק כי : d_j משקל המסלול הקצר ביותר $d_j^{(n-1)}$ מאחר שאם מקודקוד מקור לקודקוד j הינו |V|=n בגרף |V|=n קודקודים אזי המסלול הקצר מקודקוד מקור לקודקוד j מכיל לכל היותר j היותר j שתות.
- $\mathbf{d}_{j}^{(1)}$ נמצא את $\mathbf{d}_{j}^{(1)}$ נמצא את $\mathbf{d}_{j}^{(2)}$ נמצא את $\mathbf{d}_{j}^{(2)}$ וכן הלאה עד , $\mathbf{d}_{j}^{(2)}$ שנגיע ל $\mathbf{d}_{j}^{(n-1)}$.
 - סכעת נסכם את האלגוריתם של בלמן- פורד. ♦

- <u>צעד 1</u> **◊**
- $d^{(1)}[1] \leftarrow 0 \ 1.1 \diamondsuit$

 $Pa[1] \leftarrow nil 1.3$

- j=2...מר בצע: j=2...ו לכל קודקוד j=2...
- •

 $d^{(1)}[j] \leftarrow a[1][j]$

- •
- j=2...מר בצע: j=2...ו לכל קודקוד j, כאשר j

•

 $Pa[j] \leftarrow 1$ אז בצע: (1,j) אם קיימת קשת

Pa[j]←'__' :אחרת בצע

- 2 צעד ♦
- בצע: m=1...n-2 לכל 2.1 ♦
- בצע: j=2... לכל קודקוד j=2... כאשר 2.1.1
- בצע: K=2..n וגם $K\neq j$ כאשר $K\neq j$ בצע: 2.1.1.1
 - temp \leftarrow min $\{d^{(m)}[K] + a[K][j] \}$
 - :אז בצע: temp< d^(m)[j] אז בצע: 2.1.1.2
 - $Pa[j] \leftarrow K$ 2.1.1.2.1
 - $d^{(m+1)}[j] \leftarrow temp 2.1.1.2.2$
 - $d^{(m+1)}[j] \leftarrow d^{(m)}[j]$ אחרת בצע:

- .1 שקודקוד מקור הינו קודקוד ◊
- עבתהליך התיאור של האלגוריתם סמוך לכל קודקוד ∨של הגרף המכוון מופיעים שני מספרים :
- הימני מייצג את אורך המסלול הקצר ביותר מקודקוד מקור מייצג את אורך המסלול הקצר ביותר מקודקוד מקור (d[v]).

לאחר צעד 1 של האלגוריתם תמונת הרשת הינה: ♦

ע קודקוד	1	2	3	4
d[v]	0	4	2	∞

|V|=n=4 מאחר וברשת זו מספר הקודקודים הוא מאחר וברשת זו מספר הלולאה המרכזית (2.1) תתבצע פעמיים בלבד.

 $\mathbf{m}=2$ ופעם שניה כאשר $\mathbf{m}=1$ פעם אחת כאשר

- 4 :אוא 1 דרך קודקוד 1 הוא: 4 ₪
- 3 :אוא 3 דרך קודקוד 3 הוא: 3 סמשקל המסלול מ- 1 ל- 2 דרך קודקוד
- ∞ משקל המסלול מ- 1 ל- 2 דרך קודקוד \diamond
 - $\min\{4,3,\infty\}=3$ אך
 - min{d[2]≡4,3}=3 ולכן ◊

- 2 לומר קיים מסלול מקודקוד מקור 1 לקודקוד⇒ העובר דרך קודקוד3 העובר דרך קודקוד
- אורכו של המסלול הוא 3 והוא עובר דרך לא יותר 🍣 מ- 2 קשתות.
 - [3,3] אי לכך נצמיד לקודקוד 2 תג

משקל המסלול המינימלי "ההורה"

בחינת המסלול ₪

משקל המסלול הזמני הקצר שמצאנו עד כה 0 קודקוד ∞ ∞ מקור

16.01.2020

Algorithms © Dr Reuven Hotoveli, 2020

- 2 :משקל המסלול מ- 1 ל- 3 דרך קודקוד 1 הוא: ◊
- 5 :הוא: 2 דרך קודקוד 2 הוא: 5 סמשקל המסלול מ- 1 ל- 3 דרך קודקוד 2
- ∞ :משקל המסלול מ- 1 ל- 3 דרך קודקוד 4
 - ⇒ קל לראות כי:
 - דרך המינימום את משיגים את כלומר משיגים דרך $\min \{2,5,\infty\}=2$ ♦ קודקוד 1.
 - $\min\{d[3]\equiv 2, 2\}=2$ אך

- אורכו של המסלול הוא 2, כך שהמסלול עובר דרך לא יותר 🍣 מ- 2 קשתות.
 - .[1,2] אי לכך נצמיד לקודקוד 3 תג ◊

אורך המסלול המינימלי ה"הורה"

1 - אגב, במקרה זה לא קיימת הקשת (1,1). לכן המסלול מ- √ ל- 3 עובר דרך קשת אחת והיא (1,3).

- ∞ משקל המסלול מ- 1 ל- 4 דרך קודקוד \bullet
- ∞ :הוא: 2 משקל המסלול מ- 1 ל- 4 דרך קודקוד
- 4 :א: 4 דרך קודקוד 4 הוא: ♦ משקל המסלול מ- 1 ל- 4 דרך קודקוד 4
 - $\min\{\infty,\infty,4\}=4$ כי: Φ
 - כלומר משיגים את המינימום דרך קודקוד 3.
- אך =4 $=\infty$, $=\infty$, =

⇒בתום האיטרציה הראשונה תמונת המצב הינה:

♦לסיכום האיטרציה הראשונה, להלן אורכי המסלולים
 הקצרים מקודקוד מקור (1) לכל קודקוד אחר (V):

v קודקוד	1	2	3	4
$d^{(2)}[v]$	0	3	2	4

$1 \rightarrow 2$ בחינת המסלול \diamond

- 4 :אוא: 1 המסלול מ- 1 ל- 2 דרך קודקוד 1 הוא: ♦
- 3 :אוא: 3 משקל המסלול מ- 1 ל- 2 דרך קודקוד 3
- 2 :אוא 4 דרך קודקוד 4 המסלול מ- 1 ל- 2 דרך קודקוד 4
 - min{4,3,2}=2 כי: ♦
 - . 4 כלומר משיגים את המינימום דרך קודקוד
 - $\min\{d[2]\equiv 3,2\}=2$ אך

- 2 לומר קיים מסלול מקודקוד מקור 1 לקודקוד
 העובר דרך קודקוד 4.
- אורכו של המסלול הוא 2, כך שהמסלול עובר דרך \$\left\\$ לא יותר מ- 3 קשתות.

[4,2] : אי לכך נצמיד לקודקוד 2 תג

אורך המסלול המינימלי "ההורה"

$1 \longrightarrow 3$ בחינת המסלול \diamond

- 2 :משקל המסלול מ- 1 ל- 3 דרך קודקוד 1 הוא: ◊
- 4 :אוא 2 דרך קודקוד 2 הוא: ♦
- ∞ אוא: 4 משקל המסלול מ- 1 ל- 3 דרך קודקוד \bullet
 - $\min\{2,4,\infty\}=2$ כי: 0
 - .1 כלומר משיגים את המינימום דרך קדקוד €
 - $\min\{d[3]\equiv 2,2\}=2$ אך
- ♦ כלומר אין שיפור באורך המסלול הקצר, משקל המסלול הקצר העובר דרך לכל היותר 3 קשתות הוא לא יותר קטן מאשר המסלול הקצר העובר דרך לכל היותר 2 קשתות.

- ∞ משקל המסלול מ- 1 ל- 4 דרך קודקוד 1 הוא: א
- ∞ משקל המסלול מ- 1 ל- 4 דרך קודקוד 2 הוא:
- 4 :אוא: 3 דרך קודקוד 3 הוא: 4 סמשקל המסלול מ- 1 ל- 4 דרך קודקוד 3 הוא: 4
 - $\min\{\infty,\infty,4\}=4$ כי: Φ
 - כלומר משיגים את המינימום דרך הקודקוד 3.
- אך $\min\{d[4]=4,4\}=4$ והתג שעל הקודקוד 4 לא $\min\{d[4]=4,4\}=4$ השתנה.

כתום האיטרציה השניה תמונת המצב הינה:

♦ לסיכום האיטרציה השנייה, להלן אורכי המסלולים(v): הקצרים מקודקוד מקור (1) לכל קודקוד אחר

L.N. FEB. 20.	v קודקוד	1	2	3	4
SALES TO S	$d^{(3)}[v]$	0	2	2	4

- v = v אז המסלול | V | = n = 4 אז המסלול מאחר מאחר שמספר הקודקודים | V | אז המסלול מקודקוד מקור (1) לקודקוד א, לכל $v \neq 1$, לכל (1) לקודקוד מקור מקור (1) לקודקוד מקור (1) ל
 - (1) להלן אורכי המסלולים הקצרים מקודקוד מקור (1)◊ לכל קודקוד ע בגרף :

v קודקוד	1	2	3	4
משקל המסלול הקצר	0	2	2	4

- ♦ מסלולים אלו לא ניתנים לשיפור ולכן הם נקראים מסלולים אופטימליים.
 - כאמור בעזרת המערך Pa ניתן לקבוע מהו המסלול עצמו, למשל עבור המסלול 2 → → 1 המסלול הינו
 מהסוף להתחלה) קודם קודקוד 2, "ההורה" של קודקוד 3; הינו קודקוד 4, "ההורה" של קודקוד 4 הינו קודקוד 1 אין "ההורה" של קודקוד 3 הינו קודקוד 1 אין "הורה" כיוון שהוא המקור.
 - $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$ לכן המסלול הינו \diamond

- ◊נראה זאת בדרך השלילה: נניח שניתן להריץ
 אלגוריתם בלמן פורד על גרף לא מכוון.
 - : ניקח את הגרף הבא

: תמונת המצב בהתחלה היא

[nil,0] [1,-2]
-2 2

: אחר כך נקבל את התמונה הבאה

[2,-4] [1,-2]

וכן הלאה.

◊ כך אפשר להמשיך ללא סוף הלוך וחזור על הקשת השלילית והאלגוריתם נתקע בלולאה אינסופית. לכן נקבע שהאלגוריתם לא יפעל על גרף לא מכוון.

$$G = (V,E)$$
 נתון גרף \diamondsuit

. O (
$$|V|$$
) דורש זמן 1 צעד \bullet

. O (
$$|V|^3$$
) דורש זמן $\frac{2}{2}$

for
$$m \rightarrow O(|V|)$$

for
$$j \rightarrow O(|V|)$$

for
$$k \rightarrow O(|V|)$$

- עם פונקצית משקל G=(V,E) עם פונקצית משקל פענה: נתון גרף מכוון
 - נריץ על גרף זה אלגוריתם של בלמן W: E o R פורד.
 - ע בגרף כאמור אורך המסלול הקצר של צומת כלשהו v בגרף כאמור אורך המסלול הקצר של צומת כלשהו d d v הינו d d v הינו d d v .
 - הרשת מכילה מעגל שלילי אם ורק אם
 - עבור קודקוד כלשהו $d^{(n)}[v] < d^{(n-1)}[v]$

ניסוח אחר של האלגוריתם בלמן פורד

- ⇒ האלגוריתם מחזיר ערך בוליאני המציין אם קיים או לא קייםבגרף מעגל בעל משקל שלילי שניתן להגיע אליו מן המקור.
 - אם קיים מעגל כזה האלגוריתם מודיע שלא קיים פתרון ♦ לבעיה.
 - ♦ אם לא קיים מעגל כזה האלגוריתם יוצר את המסלולים הקצרים ביותר ואת משקליהם.

המשך הניסוח

do

- ♦ Bellman-Ford(G,w,s)
- ♦ 1. INITIALIZE-SINGLE-SOURCE(G,s)
- $\diamond 2$. for i $\leftarrow 1$ to |V|-1 do
- for each edge $(u, v) \in E$ do Relax(u,v,w)
- \diamond 3. for each edge $(u, v) \in E$
- if d[v] > d[u] + w(u,v)
- then return FALSE
- ♦4. return TRUE

- **♦** INITIALIZE-SINGLE-SOURCE(G,s)
- \triangleright 1. for each vertex $v \in V$ do
- \diamond 1.1 d[v] $\leftarrow \infty$
- $\diamond 2. d[s] \leftarrow 0$

. ע שר "קודם" קודקוד "הוא
$$\pi[v]$$
 הוא ∞

$$\pi[v]$$

המשך ניסוח חדש

: (relaxation) טכניקת ההקלה

- ♦ RELAX(u,v,w)
- \diamond 1. if d[v] > d[u] + w(u,v) then

- משפט 3 בודק אם קיים מעגל בעל משקל שלילי ומחזיר את הערך הבוליאני המתאים.
 - ⇒ קל לראות שסיבוכיות זמן הריצה של האלגוריתם היא:
 O(VE)