```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("Titanic-Dataset.csv")

df=pd.read_csv("Titanic-Dataset.csv")
```

_		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4	5	0	3	Allen. Mr. William Henrv	male	35.0	0	0	373450	8.0500	NaN	S	>

Next steps: Generate code with df View recommended plots New interactive sheet

df.describe()

} ▼		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.shape

→ (891, 12)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	COTAINIS (COC	ai iz coiumns).	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)
memoi	ry usage: 83.	7+ KB	

print(df.isnull().sum())

	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0

```
Embarked 2
   dtype: int64

plt.figure(figsize=(10, 6))
sns.heatmap(df.isnull(), cmap='viridis', cbar=False, yticklabels=False)
plt.title("Missing Values in Titanic Dataset")
plt.show()
```


Fare

Cabin

0 687


```
sns.barplot(x="Sex", y="Survived", data=df, palette="coolwarm")
plt.xticks([0, 1], ["Male", "Female"])
plt.title("Survival Rate by Gender")
plt.show()
```

<ipython-input-65-d96d199a67b0>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.barplot(x="Sex", y="Survived", data=df, palette="coolwarm")


```
plt.figure(figsize=(10, 5))
sns.kdeplot(df[df["Survived"] == 1]["Age"], shade=True, label="Survived", color="green")
sns.kdeplot(df[df["Survived"] == 0]["Age"], shade=True, label="Did Not Survive", color="red")
```


Start coding or $\underline{\text{generate}}$ with AI.

emb_unique=df["Embarked"].unique()
print(emb_unique)

→ ['S' 'C' 'Q' nan]

ports=pd.get_dummies(df.Embarked,prefix='Embarked',dtype=int)
ports.head()

₹		Embarked_C	Embarked_Q	Embarked_S	
	0	0	0	1	ılı
	1	1	0	0	
	2	0	0	1	
	3	0	0	1	
	4	0	0	1	

Next steps: Generate code with ports View recommended plots New interactive sheet

df=df.join(ports)

df.drop(['Embarked'],axis=1,inplace=True)

df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked_C	Embarked_Q	Embarked_S
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	0	0	1
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	1	0	0
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	0	0	1
	4				Futrelle,										>

Next steps: Generate code with df View recommended plots New interactive sheet

df.Sex=df.Sex.map({'male':0,'female':1})

df['Sex']

```
\overrightarrow{\Rightarrow}
              Sex
         0
                 0
         1
                 1
         2
         3
                 0
        886
                 0
        887
                 1
        888
       889
                 0
       890
                 0
      891 rows × 1 columns
```

#splitting the data
Y=df.Survived.copy()
X=df.drop(['Survived'],axis=1)

Removing Unnecessary attributes

X.drop(['Cabin','Ticket','Name','PassengerId'],axis=1, inplace=True)

X.isnull().sum()

- 1004

```
X.Age.fillna(X.Age.mean(),inplace=True)

→ <ipython-input-77-d9dd57ff4da2>:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained as:
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method(\{col: value\}, inplace=True)' or df[col] = df[col]
       X.Age.fillna(X.Age.mean(),inplace=True)
    4
X.isnull().values.any()
→ False
#importing libraries for model building
from sklearn.model_selection import train_test_split
#slpitting the data
\label{lem:continuous} X\_train, X\_test, Y\_train, Y\_test=train\_test\_split(X,Y,test\_size=0.2,random\_state=7)
#importing regression libraries
from sklearn.linear_model import LogisticRegression
#initializing a name
model = LogisticRegression()
#Fitting data to the mode
model.fit(X\_train,Y\_train)
    /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (\mbox{max\_iter}) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression ① ②
     LogisticRegression()
model.score(X_train,Y_train)
→ 0.8089887640449438
plt.figure(figsize=(10, 6))
sns.heatmap(X.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
plt.title("Feature Correlation Heatmap")
```

plt.show()

#predict on the model
Y_pred_test=model.predict(X_test)
Y_pred_test

Y_test

→		Survived
7	25	0
8	361	0
5	528	0
	46	0
6	627	1
8	309	1
3	305	1
5	38	0
8	325	0
8	374	1

179 rows × 1 columns

#importing metrics to check accuracy
from sklearn.metrics import accuracy_score
print('Model accuracy score: {0:0.4f}'.format(accuracy_score(Y_test,Y_pred_test)))

→ Model accuracy score: 0.7542

```
from sklearn.metrics import roc_curve, auc

y_prob = model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(Y_test, y_prob)
roc_auc = auc(fpr, tpr)

plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, label=f'ROC Curve (area = {roc_auc:.2f})', color='blue')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend()
plt.show()
```


Start coding or generate with AI.