

Image Forgery Detection using EfficientNets and Multi-attentional Methods at different levels of JPEG Compression

Marcelo Galindo 葛洋晴 Student ID: 108006205

Table of contents

01 Motivation and Objectives

Research motivations and purpose of the work.

Current State of Related Research

The Current State of Related Research and Comparison, and Important Contributions of the Project.

03 Research Methodology

Design Principles, Research Methods and Steps.

Experiments and Results

System Implementation and Experiments, Efficiency Evaluation and Results.

Motivation and Objectives

Research motivations and purpose of the work.

Motivations

- Deep learning allows the creation of realistic images and videos.
- Threat to privacy, identity and trust.
- Social media amplifies it.
- Compression introduces noise and visual artifacts.
- Decrease in robustness for higher degree of compression

[1] Clark, B. (2018, February 21). Deepfakes algorithm nails Donald Trump in most convincing fake yet. TNW | Artificial-Intelligence. https://thenextweb.com/news/deepfakes-algorithm-nails-donald-trump-in-mostconvincing-fake-yet

Current State of Related Research

The Current State of Related Research and Comparison, and Important Contributions of the Project.

Limitations of Meso4:

- Issues in distinguishing between real and fake.
- Fails to adapt to unseen forgery types.
- Struggles with generalization

Figure Block Diagram of the Meso4 network Architecture and Inception Layer from Inception4.

EfficientNet Principles

• Optimize both accuracy and computational efficiency (measured in FLOPS).

$$OPT(m) = ACC(m) \times \left(\frac{FLOPS(m)}{T}\right)^{w}$$

With w: hyperparameter (define at -0.07).

Example:

OPT(m) = ACC(m) ×
$$\left(\frac{2,000,000,000}{1,500,000,000}\right)^{-0.07}$$

Trade-off between accuracy and efficiency. By setting ACC as 85%, by scaling down, the optimization score for model m is approximately 0.831.

EfficientNets Principles

Depth (d): $α^{φ}$ Width (w): $β^{φ}$ Resolution (r): $γ^{φ}$

Computational cost (measured in FLOPS) increases approximately by 2^{ϕ}

EfficientNet	Width	Depth	Resolution	Dropout	FLOPS
В0	1.0	1.0	224	0.2	0.39B
B1	1.0	1.1	240	0.2	0.70B
B2	1.1	1.2	260	0.3	1.0B
В3	1.2	1.4	300	0.3	1.8B
<mark>B4</mark>	1.4	1.8	380	0.4	4.2B
B5	1.6	2.2	456	0.4	9.9B
В6	1.8	2.6	528	0.5	19B
В7	2.0	3.1	600	0.5	37B
B8	2.2	3.6	672	0.5	89.5B
L2	4.3	5.3	800	0.5	-

EfficientNets

Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Comparison results

Detector	Backbone			Fac	ceForensi	eForensics++			
	Buckbone	FF-c23	FF-c40	FF-DF	FF-F2F	FF-FS	FF-NT	Avg	
Meso4	MesoNet	0.6077	0.5920	0.6771	0.6170	0.5946	0.5701	0.6097	
Mesolncept	MesoNet	0.7583	0.7278	0.8542	0.8087	0.7421	0.6517	0.7571	
EffNetB4	Efficient	0.9567	0.8150	0.9757	0.9758	0.9797	0.9308	0.9389	
EffNetB4*	Efficient	*	*	0.9806	0.9870	0.9708	0.9531	0.9729	
Detectors Overall Gain									
EffNetB4 vs I	EffNetB4*	*	*	+0.4%	+1%	-0.8%	+2%	+3%	
Meso4 vs EffNetB4*		37.29%	<mark>39.50%</mark>	<mark>29.86%</mark>	35.88%	37.62%	38.30%	<mark>36.32%</mark>	
MesoIncept vs EffNetB4*		22.23%	25.92%	12.15%	16.71%	<mark>22.87%</mark>	30.14%	22.23%	

Research Methodology

Design Principles, Research Methods and Steps.

Dataset: FaceForensics++

Dataset: FaceForensics++								
Material	Original	FF-DF	FF-F2F	FF-FS	FF-NT	Total		
Videos	1000	1000	1000	1000	1000	5000		
Frames	32	32	32	32	32*	160,000		

^{*}NeuralTextures to achieve Data Augmentation more frames were extracted after.

Dataset: FaceForensics++

JPEG Compression with MozJPEG

[1] Li, Z.-N., Drew, M. S., & Liu, J. (2021). Fundamentals of Multimedia. Springer International Publishing. https://doi.org/10.1007/978-3-030-62124-7, [4] Libjpeg-turbo | About / A Study on the Usefulness of DCT Scaling and SmartScale. (n.d.). Retrieved May 27, 2024, from https://libjpeg-turbo.org/About/SmartScale

Compression examples

c40 PSNR: 57.47 SSIM: 0.99

c85 PSNR: 34.086 SSIM: 0.842

c90 PSNR: 32.987 SSIM: 0.638

c95 PSNR: 30.277 SSIM: 0.603

EfficientNet-B4, main attention method

Figure 2. Structure of MBConv and Fused-MBConv.

Experiments and Results

Efficiency Evaluation and Results.

Training

Google Colaboratory as main environment:

- Interactive notebook capabilities.
- Google Colab's L4 GPU (53 GB RAM, 22.5 GB GPU).
- Limited amount of computer units and allowed runtime.
- Save a checkpoint every 500 iterations, mitigates the lost progress and to save disk space.
- $5 \sim 10$ epochs per run.

End results

Compression			Dataset				
	FF-DF	FF-F2F	FF-FS	FF-NT	Avg		
c23 & c40	0.987	0.986	0.992	0.953	0.9799		
c85 & c90	0.883	0.930	0.916	0.718	0.8623		
After utilizing the methods							
c85 & c90	0.91	0.938	0.94	0.756	0.8864		
Improvement	+3%	+0.91%	+2.64%	+5.43%	~ +3%		

Compression		Dataset				
	FF-DF	FF-F2F	FF-FS	FF-NT	Avg	
All datasets*	0.928	0.897	0.937	0.734	0.874	

IMPORTANT CONTRIBUTIONS

- 1) Enhanced Deepfake Detection Accuracy
- 2) Robustness Under Compression
- 3) Comprehensive Data Augmentation
- 4) Efficient Training and Checkpointing

Q&A

1. What is the influence of compression rate on detection accuracy in your results?

End results

Compression			Dataset				
	FF-DF	FF-F2F	FF-FS	FF-NT	Avg		
c23 & c40	0.987	0.986	0.992	0.953	0.9799		
c85 & c90	0.883	0.930	0.916	0.718	0.8623		
After utilizing the methods							
c85 & c90	0.91	0.938	0.94	0.756	0.8864		
Improvement	+3%	+0.91%	+2.64%	+5.43%	~ +3%		

Compression		Dataset				
	FF-DF	FF-F2F	FF-FS	FF-NT	Avg	
All datasets*	0.928	0.897	0.937	0.734	0.874	

tradeoff exists?

EfficientNet-B4, main attention method

Figure 2. Structure of MBConv and Fused-MBConv.

Let's go to our Q&A

Email: chelogalma@gmail.com