СВТ Численное решение 2D-уравнения Лапласа

Арсений Е. Грознецкий

22-е Мая 2025 года

Содержание

1	Постановка задачи	2
2	Метод решения	2
3	Эксперименты	9
4	Выволы	.5

1 Постановка задачи

Требуется численно решить двумерную краевую задачу Дирихле для уравнения Лапласа:

$$\begin{cases} -\Delta u(x,y) = f(x,y), & (x,y) \in \Omega = (0;1) \times (0;1) \\ u|_{\partial\Omega} = g \end{cases}$$

Протестировать программу требуется на функции $u(x) = \sin(x)\sin(5y)$. Таким образом, правая часть в системе равна $f(x,y) = -\Delta u(x,y) = 26\sin(x)\sin(5y)$.

2 Метод решения

Аппроксимация уравнения Лапласа

Решение краевой задачи нужно искать с помощью метода конечных разностей. В квадрате $[0;1] \times [0;1]$ вводится равномерная сетка $\{x_{ij}\}_{i,j=0}^N$, где $x_{ij}=(ih,jh),\ h=1/N$ - шаг сетки. Вводятся дискретные неизвестные $y_{ij}=u(x_{ij}),\ i,j=0,1,2,...,N$. В каждой точке $x_{ij},\ i,j=1,...,N-1$ лапласиан функции приближается формулой конечных разностей по пяти точкам:

$$\Delta u(x_{i,j}) \approx \frac{y_{i-1,j} - 2y_{i,j} + y_{i+1,j}}{h^2} + \frac{y_{i,j-1} - 2y_{i,j} + y_{i,j+1}}{h^2}$$

Таким образом, получается дискретная аппроксимация уравнения:

$$-\frac{y_{i-1,j} - 2y_{i,j} + y_{i+1,j}}{h^2} - \frac{y_{i,j-1} - 2y_{i,j} + y_{i,j+1}}{h^2} = f(x_{i,j}) \Longrightarrow$$

$$\frac{1}{h^2} (4y_{i,j} - y_{i-1,j} - y_{i+1,j} - y_{i,j-1} - y_{i,j+1}) = f(x_{i,j})$$

Решение системы

Так как для сетки с числом разбиений N количество неизвестных равно $(N-1)^2$, матрица системы Ay=b будет иметь порядок $(N-1)^2$. В каждой строке матрицы A будет не более 5 ненулевых элементов. С учётом граничных условий матрица для дискретного решения принимает вид

$$\frac{1}{h^2}Ay = b, \quad A = \|a_{r,c}\|_{r,c=1}^{(N-1)^2}$$

Обозначим $a_{(i,j),(k,l)}=a_{(i-1)(N-1)+j,(k-1)(N-1)+l},$ где i,j,k,l=1,...,N-1 - коеффициент при $y_{k,l}$ в шаблоне для приближения $-\Delta u(x_{i,j}).$ Тогда для всех i,j=1,...,N-1:

- $a_{(i,i),(i,j)} = 4$
- если $i \geq 2$, то $a_{(i,j),(i-1,j)} = -1$

- если $i \leq N-1$, то $a_{(i,j),(i+1,j)} = -1$
- если $j \geq 2$, то $a_{(i,j),(i,j-1)} = -1$
- если $i \leq N-1$, то $a_{(i,j),(i,j+1)} = -1$

Аналогично обозначим $b_{(i,j)}=b_{(i-1)(N-1)+j},$ где i,j=1,...,N-1 - требуемое значение $-\Delta u(x_{i,j})$ с учётом граничных условий. Тогда для всех i,j=1,...,N-1:

$$b_{(i,j)} = f(ih, jh) + \dots$$

- $+\frac{g(0,jh)}{h^2}$, если i=1
- $+\frac{g(1,jh)}{h^2}$, если i=N-1
- $+\frac{g(ih,0)}{h^2}$, если j=0
- $+\frac{g(ih,1)}{h^2}$, если j=N-1

Данная система решается методом BiCGStab с предобуславливателем INNER MPTILUC при помощи функций из пакета INMOST.

3 Эксперименты

На графике можно видеть зависимость С-нормы и L2-нормы невязки от N. Относительная и абсолютная точности в методе были установлены равными 10^{-12} , параметр drop tolerance был установлен равным 0.005.

Рис. 1: Сходимость решения задачи Дирихле по разным метрикам.

Из графика видно, что обе нормы ошибки решения уменьшаются с уменьшением шага сетки.

На следующих двух графиках изображена зависимость времени, затраченного на итерации, и общего времени решения задачи от размера сетки N.

Рис. 2: Время решения задачи Дирихле.

Точное и численное решения изображены на графике ниже.

Рис. 3: Решение

4 Выводы

Написаны функции для численного решения двумерного уравнения Лапласа, протестированы на функции $u(x,y)=\sin(x)\cos(5y)$, построены графики норм ошибок, числа итераций и времени и приведена таблица с результатами экспериментов.