TRINITY COLLEGE

FACULTY OF ENGINEERING, MATHEMATICS AND SCIENCE

SCHOOL OF MATHEMATICS

JF Mathematics

Trinity Term 2013

JF Theoretical Physics

JF Two Subject Mod

MA1123 — Analysis I

Tuesday, April 30

RDS

14.00 - 17.00

Prof. D. O'Donovan

ANSWER ALL QUESTIONS:

All questions carry equal marks.

Formulae & Tables tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

- 1. (a) Define function, and state the vertical and horizontal line tests, if $f: \mathbb{R} \to \mathbb{R}$
 - (b) Define what it means for $f(x) : \mathbb{R} \to \mathbb{R}$ to be continuous at x = a. What is a jump discontinuity?
 - (c) Use the definition of limit to show $\lim_{x\to 2} x^2 = 4$
 - (d) Let f(x) = |x| , find f'(0) or show that it does not exist.
- 2. (a) Find the quadratic approximation to $\sqrt{8.9}$
 - (b) Find $\frac{dy}{dx}$ if

i.
$$y = \ln \cos^2(x^3 + 2)$$

ii.
$$y = x^3 \ln x \cos x \exp x$$

iii.
$$x^2y + y^3x + \cos(xy) = xy$$

iv.
$$x = \ln t^2, y = \cos(t^3 + t)$$

- (c) Let $f(x) = x^3 2x^2 4x + 8$. Find where f(x) is increasing, decreasing, concave up, concave down, has local extrema, and points of inflection. Use this information to sketch the function.
- 3. (a) State Rolle's Theorem and the Mean Value Theorem.
 - (b) Use the Mean Value Theorem to prove that if f'(x)=g'(x), for all x, then $f(x)=g(x)+{\rm constant}$
 - (c) A circular swimming pool has a twelve foot radius, and can be filled to a maximum depth of 4 feet. Water enters the pool at a rate of 9 gallons per minute. How quickly is the depth of the water in the pool changing? How long does it take to fill the pool?
- 4. (a) State how $\int_a^b f(x) dx$ is defined in terms of Riemann Sums
 - (b) Integrate the following.

i.
$$\int \ln x dx$$

ii.
$$\int x \cos x^2 dx$$

iii.
$$\int x \cos x dx$$

iv.
$$\int \frac{1}{x^2 + x + 1} dx$$
 v.
$$\int \frac{x}{(x - 1)(x - 2)} dx$$
 vi.
$$\int \frac{1}{(x - 1)^2 (x^2 + 1)} dx$$

- 5. (a) Find the area of the region bounded by $y=\sin x$, $y=\cos x$ between x=0 and $x=\pi$.
 - (b) What is an improper integral?
 - (c) Find the volume of the solid of revolution gotten by revolving the region bounded by $y=x^3, y=0$, and x=1 about the x-axis, first by the method of disks, and then by the method of cylindrical shells.
- 6. (a) Define $\lim_{n\to\infty} a_n = L$, and $\sum_{n=1}^{\infty} a_n = S$.
 - (b) Prove that if $\lim_{n\to\infty}a_n=L_1$ and $\lim_{n\to\infty}b_n=L_2$, then $\lim_{n\to\infty}(a_n+b_n)=L_1+L_2$.
 - (c) Do the following series converge or diverge? Give reasons.

i.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

ii.
$$\sum_{n=1}^{\infty} \frac{n-1}{n^2+2n-1}$$

iii.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

iv.
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$