Convolutional Networks for Computer Vision

Roberto Paredes

Centro de Investigación
Pattern Recognition and Human Language Technologies
Universidad Politécnica de Valencia

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Reshape Layers
- Special Layers
- Convolutional Networks

Introduction

 \bullet Deep Learning \to Bridge the gap between raw representation and categories

Introduction

ImageNet Challenge

Introduction. Image to text

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Introduction. Image to text example

Introduction. Image to text example (unrolled)

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Special Layers
- Reshape Layers
- Convolutional Networks

- The simplest case:
 - Size of input image: $I_R \times I_C$
 - Size of kernel: $k_r \times k_c$
 - Size of output image: $O_R \times O_C$
 - $O_R = (I_R k_r) + 1$
 - $O_C = (I_C k_c) + 1$
 - Convolution cost: $O_R \times O_C \times k_r \times k_c$

- Padding, same output size than input size
 - $O_R = I_R$
 - $O_C = I_C$
 - Add a frame of $k_r/2 \times k_c/2$ of 0's to the input image
- Stride, jump scanning the input image
- In general:
 - $O_R = \lfloor (I_R + 2 * pad k_r) / stride_r + 1 \rfloor$
 - $O_C = \lfloor (I_C + 2 * pad k_c) / stride_c + 1 \rfloor$

• The general case:

Input: Images (2D)

Apply more than one kernel (3D)

Output: Maps (3D)

• The general case:

Input: Maps (3D)

• Apply more than one kernel (4D)

Output: Maps (3D)

- Implementation tricks: LOWERING
 - A convolution becomes a standard multiplication I × K
- Implementation tricks: Multi-threading
 - For instance, split the batch into different threads
- Implementation tricks: FFT
 - A convolution is a multiplication in the frecuency domain
- Implementation tricks: Winograd algorithm:
 - A fast method to obtain the convolution with less multiplication and adition operations

Convolution Operator as a layer

- Input map M = 3, $O_R = 32$ and $O_C = 32$
- Kernels N = 64, $K_r = 3$ and $k_c = 3$
- By default a convolutional layer as N bias

Output map sizes?

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Reshape Layers
- Special Layers
- Convolutional Networks

Pooling Operator

- The main goal is to reduce the size of the maps:
 - Reduce the computational cost
 - Deal with multiscale
 - Capture higher level features

Pooling Operator

Maxpool and Average Pool

Average Pooling

Max Pooling

Normally stride = size

Pooling Operator

Results after applying several pooling operators:

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Reshape Layers
- Special Layers
- Convolutional Network

Reshape Layers

- The goal of the reshape layer is to present the maps to the next layers Fully Connected layers
- The maps become a raw vector and the spatial relationship is not considered
- After the reshape several hidden layers can be stacked to reach the output layer, conforming a Convolutional Network:

Reshape Layers - Exercise

- Given the following CNN, How many parameters (weights) are?
- Where is the big amount of parameters?

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Reshape Layers
- Special Layers
- Convolutional Networks

Special Layers - Cat Layers

- A layer that cat in depth the maps of the layers that are connected to
- The sizes of the maps must be equivalent
- Used in the Inception Model (GoogleNet)

Special Layers - Agregation Layers

- Similar to cat layers
- A layer that sum the maps of the layers that are connected to
- The size and number of maps must be the same
- Used on the Residual Nets (Microsoft Research)

Index

- Introduction
- Convolution Operator
- Pooling Operator
- Reshape Layers
- Special Layers
- Convolutional Networks

Convolutional Networks - AlexNet

ILSVRC 2012 Winner

Convolutional Networks - GoogleNet

ILSVRC 2014 Winner

• http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

Convolutional Networks - GoogleNet

Inception model

Convolutional Networks - OxfordNet (VGG)

• ILSVRC2014 2nd, but best single model

• http://arxiv.org/pdf/1409.1556v6.pdf

Convolutional Networks - ResidualNet (MSR)

ILSVRC 2015 Winner

• http://arxiv.org/pdf/1512.03385v1.pdf

Convolutional Networks - ResidualNet (MSR)

Residual

