垃圾回收器性能测试

GC类型	堆大小	测试次数	生成对象	运行时间	MinorGC 次数	MinorGC 平均时间	MajorGC 次数	MajorGC 平均时间	FullGC 次数	FullGC 平均时间	CMS 平均时间	G1GC 平均时间	ООМ
Serial GC	512M	3	11344	1.036s	10	14ms	7	36ms	4	40ms	-	-	-
	4096M	3	16764	1.074s	4	60ms	0	0ms	0	0ms	-	-	-
Parallel GC	512M	3	10273	1.053s	30	3.6ms	-	-	15	29ms	-	-	-
	4096M	3	18978	0.933s	4	30ms	-	-	0	0ms	-	-	-
CMS GC	512M	3	11821	1.093s	14	15ms	8	31ms	-	-	3ms	-	-
	4096M	3	16719	1.033s	5	50ms	0	0ms	-	-	0ms	-	-
G1 GC	512M	3	11377	3.27s	-	-	-	-	-	-	-	17ms	-
	4096M	3	18558	0.21s	-	-	-	-	-	-	-	15ms	-

对每种垃圾回收器都进行了测试,得出以下结论:

- 1.在小内存环境适合用并行垃圾回收器,回收速率高且内存使用率也基本和其他垃圾回收器持平;
- **2**.大内存环境下,明显能看出来并行垃圾回收器相对于串行垃圾回收器的性能要好,而且内存使用率也比较高;
- **3**.CMS与G1在小内存环境下表现不是很突出,G1的回收次数太多,CMS回收次数较少,但是每次GC 执行时间较长,基本与并行GC持平;
- **4**.在大内存环境,CMS与G1均有所提升,但是总的来说G1的回收机制会促使非常适合用于大内存环境,整体内存利用率与性能都很高,CMS因为YGC使用的是PerNew,所以还是串行的,效率就低很多了。

总结:

小内存环境下可以使用ParallelGC或者CMS垃圾回收器,CMS不会产生STW,但是要合理的分配CPU资源,以免聪明反被聪明误;大内存环境推荐使用G1,因为G1在整体测试表现得真的很优秀。