Решение заданий ОП "Квантовая теория поля, теория струн и математическая физика"

Введение в теорию групп (4 семестр, М.А. Берштейн)

Коцевич Андрей Витальевич, группа Б02-920

23 мая 2021 г. Версия 12.0

Содержание

1	Определение группы. Группа перестановок.	4
2	Абелевы группы. Действие группы на множестве.	6
3	Теорема Лагранжа, классы сопряженности, нормальные подгруппы, полупрямое произведение.	9
4	Разные конструкции.	13
5	Представления групп.	15
6	Унитарность. Характеры представлений.	22
7	Разные конструкции. Группа $SO(2)$.	27
8	Группы Ли, алгебры Ли.	37
9	Симметричные тензоры. Группы ${\it Ли}\ SO(3),\ SU(2).$	40
10	Представления алгебры $\mathfrak{su}(2)$.	44
11	Представления групп $SO(3)$ и $SU(2)$.	45
12	Представления более общих групп Ли.	62

Введение

Все задания, которые я присылаю, выполнены и написаны мной самостоятельно!

1 Определение группы. Группа перестановок.

Упражнение 1.1. a) $\alpha = (1,3,5)(2,4,7), \beta = (1,4,7)(2,3,5,6).$

$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 5 & 7 & 6 & 2 & 1 \\ 7 & 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 6 & 4 & 3 \end{pmatrix} \tag{1}$$

$$\alpha\beta = (1,7,3)(2,5,6,4)$$
 (2)

б)

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 6 & 4 & 7 & 2 & 1 & 3
\end{pmatrix} = (1, 5, 2, 6)(3, 4, 7)$$
(3)

где ord σ – порядок элемента σ .

Задача 1.2. a)

Предложение 1. Любая транспозиция является нечётной перестановкой.

Доказательство. Пусть σ – транспозиция. По определению транспозиции:

$$\sigma = \begin{pmatrix} 1 & \dots & a & \dots & b & \dots & n \\ 1 & \dots & b & \dots & a & \dots & n \end{pmatrix}$$
 (5)

Число инверсий $|\sigma|=1+2(b-a-1)$, т.к. инверсиями будут следующие пары чисел: первое число из множества чисел между a и b (их b-a-1 штук), второе число из множества $\{a,b\}$ (таких инверсий 2(b-a-1) штук), а также a и b (1 инверсия). Тогда по определению σ является нечётной перестановкой.

б) Для начала докажем следующее предложение:

Предложение 2. Умножение на транспозицию меняет чётность перестановки.

$$\sigma = \begin{pmatrix} 1 & \dots & a & \dots & b & \dots & n \\ 1 & \dots & b & \dots & a & \dots & n \end{pmatrix}$$
 (6)

Транспозицию σ можно разложить в элементарные транспозиции. Их количество: 1+2(b-a-1) (b-a-1) элементарную транспозицию нужно сделать, чтобы a и b стали соседними, потом 1 транспозицию, чтобы поменять их местами, и ещё b-a-1, чтобы вернуть a и b на новое место). Каждая элементарная транспозиция меняет чётность, значит нечётное их число также меняет чётность.

Теорема 3. Пусть перестановка разложена в произведение транспозиций. Тогда её чётность равна чётности количества этих транспозиций.

Доказательство. Пусть количество транспозиций k. Докажем утверждение по индукции. База: k=0 (0 транспозиций дают чётную перестановку). Прежположим, что для k-1 утверждение верно. Тогда для k утверждение верно, т.к. домножение на транспозицию меняет чётность перестановки (по предложению 2), а числа k-1 и k также имеют противоположные чётности.

в) Пусть $\sigma = (i_1, ..., i_d)$. Разложим σ в произведение транспозиций: $\sigma = (i_1, i_d)(i_1, i_{d-1})...(i_1, i_2)$. Всего d-1 транспозиций. Если число транспозиций d-1 чётно, то и σ чётная (по теореме 3); если d-1 нечётно, то и σ нечётная ($|\sigma|=d-1$). Таким образом, если d и σ имеют противоположные чётности.

Задача 1.3. Ответ на вопрос про собственные числа даёт характеристическое уравнение:

$$\det(R(\sigma) - \lambda E) = 0 \tag{7}$$

Пусть перестановка σ расладывается в произведение циклов $\sigma = \prod_{i=1}^l \sigma_i$, где все σ_i – циклы, l – их число.

Определение 4. *Циклический тип перестановки* – данные о том, сколько циклов каждой длины присутствует в разложении перестановки через циклы.

Пусть длина цикла σ_i равна k_i , количество циклов длины k в произведении равно m_k . Разумеется, $\sum_{i=1}^l k_i = \sum_{k=1}^n m_k k = n$. Характеристическое уравнение инвариантно относительно выбора базиса. Значит выберем его так, чтобы матрица стала блочно-диагональной матрицей с блоками $R(\sigma_i)$, соответствующими i циклу:

$$R(\sigma) = \begin{pmatrix} R(\sigma_1) & 0 & \dots & 0 \\ 0 & R(\sigma_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & R(\sigma_l) \end{pmatrix}$$
(8)

Матрица $R(\sigma_i)_{k_i \times k_i}$ будет выглядеть так:

$$R(\sigma_i) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$(9)$$

$$\det(R(\sigma) - \lambda E) = \prod_{i=1}^{l} \det(R(\sigma_i) - \lambda E)$$
(10)

Определитель посчитаем, раскрыв по первому столбцу:

$$\begin{vmatrix}
-\lambda & 1 & 0 & \dots & 0 & 0 \\
0 & -\lambda & 1 & \dots & 0 & 0 \\
0 & 0 & -\lambda & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & -\lambda & 1 \\
1 & 0 & 0 & \dots & 0 & -\lambda
\end{vmatrix} = (-\lambda) \begin{vmatrix}
-\lambda & 1 & \dots & 0 \\
0 & -\lambda & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & -\lambda
\end{vmatrix} + (-1)^{k_i - 1} \begin{vmatrix}
1 & 0 & \dots & 0 \\
-\lambda & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 1
\end{vmatrix}$$
(11)

$$\det(R(\sigma_i) - \lambda E) = (-\lambda)(-\lambda)^{k_i - 1} + (-1)^{k_i - 1} = (-1)^{k_i}(\lambda^{k_i} - 1)$$
(12)

$$\det(R(\sigma) - \lambda E) = \prod_{i=1}^{l} (-1)^{k_i} (\lambda^{k_i} - 1) = (-1)^{\sum_{i=1}^{l} k_i} \prod_{i=1}^{l} (\lambda^{k_i} - 1) = (-1)^n \prod_{i=1}^{l} (\lambda^{k_i} - 1)$$
 (13)

Сгруппируем множители:

$$\det(R(\sigma) - \lambda E) = (-1)^n \prod_{k=1}^n (\lambda^k - 1)^{m_k} = 0$$
 (14)

Теперь мы можем выписать все собственные значения. Как видно, все λ_k – корни из 1 степени k:

$$\lambda_{k,t} = \exp\left(\frac{2\pi t}{k}i\right), \quad t \in \{0, ..., k-1\}$$
(15)

 m_k – количество $\lambda_{k,0},...,\lambda_{k,k-1}$. Всего собственных значений $\sum_{k=1}^n m_k k = n$, как и должно быть (матрица $n \times n$ содержит n комплексных собственных чисел).

Задача 1.4 (*). Для начала заметим, что при n=1 перестановка всего одна – тождественная. Для неё нет понятия инверсии, т.к. для нет i и j (i < j). Элемент всего 1 и 2 разных выбрать нельзя.

Далее будем рассматривать случай $n \geq 2$ (обычно такой случай сразу и рассматривается). Пусть число чётных перестановок n_1 , число нечётных n_2 . Домножим все чётные перестановки на любую транспозицию (например, (1, 2)). Все они станут нечётными, а значит $n_1 \leq n_2$. Делая то же самое с нечётными перестановками, получим неравенство $n_2 \leq n_1$. Таким образом, в группе S_n число чётных перестановок равно числу нечётных: $n_1 = n_2 = \frac{n!}{2}$ (n! чётен при $n \geq 2$).

2 Абелевы группы. Действие группы на множестве.

Упражнение 2.1. а) В группе $Z_{10}^* = \{1, 3, 7, 9\}$ 2 элемента имеют порядок 4: 3 ($3^4 = 81 = 1 \mod 10$) и 7 ($7^4 = 2401 = 1 \mod 10$), а значит $Z_{10}^* \simeq C_4$ (по предложению 3 лекции 2).

б) $Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. Группа не является циклической, поскольку в ней не существует элемента, степени которого порождают всю группу (порядка 8): ord 1 = 1, ord 2 = 4, ord 4 = 2, ord 7 = 4, ord 8 = 4, ord 11 = 2, ord 13 = 4, ord 14 = 2.

Упражнение 2.2. |G|=48 — порядок группы симметрий куба. По теореме 12 лекции 2: $|Gx||G_x|=|G|=48$.

а) Пусть $x \in X$ – произвольное ребро. Симметриями оно может быть переведено в любое другое, а значит |Gx|=12 (в кубе 12 рёбер). $|G_x|=\frac{|G|}{|Gx|}=4$. Найдём эти 4 симметрии: тождественное, поворот на 180° вокруг прямой l, проходящей через центр ребра x и центр его противоположного на и эти повороты со симметрией относительно плоскости, проходящей через l и параллельной 2 граням куба. Повороты образуют группу, изоморфную C_2 (два поворота на 180° эквивалентны тождественному), симметрии тоже. Таким образом,

$$G_x \simeq C_2 \times C_2 \simeq D_2$$
 (16)

б) Пусть $x \in X$ – произвольная грань. Симметриями она может быть переведена в любую другую, а значит |Gx| = 6 (в кубе 6 граней). $|G_x| = \frac{|G|}{|Gx|} = 8$. Найдём эти 8 симметрий. Это будет группа симметрий квадрата (диэдра D_4): тождественное, повороты на 90° , 180° , 270° вокруг прямой l, проходящей через центр грани x и центр её противоположной и эти повороты со симметрией относительно плоскости, проходящей через l и параллельной 2 граням куба. Таким образом,

$$G_x \simeq D_4 \simeq C_2 \ltimes C_4$$
 (17)

Упражнение 2.3. Порядок группы S_3 : $|S_3| = 3! = 6$. По теореме 12 лекции 2: $|S_3x||S_{3x}| = |S_3| = 6$. Следовательно, стабилизатор группы S_{3x} (являющийся подгруппой S_3 по предложению 10 лекции 2), имеет порядок, являющийся делителем 6. Всего 4 варианта: 1, 2, 3, 6.

$$S_{3x} = \{ g \in S_3 | gxg^{-1} = x \}$$
(18)

Найдём элементы g, удовлетворяющие соотношению $gxg^{-1}=x$. Домножим на g справа:

$$gx = xg \tag{19}$$

Среди таких g могут быть: e (eg = ge = g), x ($xx = x^2$), x^{-1} ($xx^{-1} = x^{-1}x = e$). Их уже 3 штуки. Рассмотрим несколько случаев:

1. $e=x=x^{-1}$. С e коммутирует любой элемент группы, следовательно $|S_{3e}|=6$ и

$$\boxed{S_{3e} = S_3} \tag{20}$$

Со всей группой в S_3 коммутирует только e (это будет показано в п. 2), а значит при $x \neq e \mid S_{3x} < 6 \mid$. Из этого и того, что варианта всего 4 (1, 2, 3, 6) следует, что при $x \neq e \mid S_{3x} \leq 3 \mid$.

2. $x = x^{-1} \to x^2 = e$. Такими элементами являются транспозиции: (1,2), (1,3), (2,3). Может оказаться, что порядок их стабилизаторов не 2, а 3. Проверим, что транспозиции с другими элементами не коммутируют на примере (1,2) (для (1,3) и (2,3) всё аналогично):

$$(1,2)(1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix} = (1,3,2) \neq (1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1,3)(1,2)$$
 (21)

$$(1,2)(2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 3 & 1 \end{pmatrix} = (1,2,3) \neq (1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (2,3)(1,2)$$
 (22)

$$(1,2)(1,2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{pmatrix} = (2,3) \neq (1,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1,2,3)(1,2)$$
 (23)

$$(1,2)(1,3,2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix} = (1,3) \neq (2,3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (1,3,2)(1,2)$$
 (24)

Следовательно $|S_{3_{(1,2)}}| = |S_{3_{(1,3)}}| = |S_{3_{(2,3)}}| = 2$ и

$$S_{3_{(1,2)}} = \{e, (1,2)\}, \quad S_{3_{(1,3)}} = \{e, (1,3)\}, \quad S_{3_{(2,3)}} = \{e, (2,3)\}$$
 (25)

3. $e \neq x \neq x^{-1}$. Такими элементами являются оставшиеся циклы длины 3: (1,2,3), (1,3,2) $((1,2,3)^{-1}=(1,3,2))$. Значит, $|S_{3_{(1,2,3)}}|=|S_{3_{(1,3,2)}}|=3$ (мы уже предоставили 3 разных g, а больше быть не может) и

$$S_{3_{(1,2,3)}} = S_{3_{(1,3,2)}} = \{e, (1,2,3), (1,3,2)\}$$
(26)

Таким образом, мы рассмотрели все 6 перестановок и нашли их стабилизаторы. Определение орбиты:

$$S_3 x = \{ y \in S_3 | \exists g \in S_3 : y = g x g^{-1} \}$$
 (27)

Рассмотрим также 3 случая:

1. $x=e, |S_{3e}|=6$: $|S_{3e}|=\frac{|S_3|}{|S_{3e}|}=1$. Значит нужно найти единственный элемент $y\in S_3e$: $y=geg^{-1}=gg^{-1}=e$.

$$S_3 e = \{e\}$$
 (28)

2. Транспозиции, $|S_{3x}| = 2$: $|S_3x| = \frac{|S_3|}{|S_{3x}|} = 3$. Значит нужно найти 3 элемента $y \in S_3x$: $y = gxg^{-1}$. Для примера возьмём x = (1,2). g = (1,2): $y = (1,2)(1,2)(1,2)^{-1} = (1,2)$; g = (1,3): $y = (1,3)(1,2)(1,3)^{-1} = (2,3)$; g = (2,3): $y = (2,3)(1,2)(2,3)^{-1} = (1,3)$. Все 3 различных элемента y найдены. Орбиты (1,3) и (2,3) точно такие же по предложению 11 лекции 2 (они пересекаются, а значит должны совпадать).

$$S_3(1,2) = S_3(1,3) = S_3(2,3) = \{(1,2), (1,3), (2,3)\}$$
(29)

3. Циклы длины 3, $|S_{3x}|=3$: $|S_3x|=\frac{|S_3|}{|S_{3x}|}=2$. Значит нужно найти 2 элемента $y\in S_3x$: $y=gxg^{-1}$. Для примера возьмём x=(1,2,3). g=(1,2,3): $y=(1,2,3)(1,2,3)(1,2,3)^{-1}=(1,2,3)$; g=(1,2): $y=(1,2)(1,2,3)(1,2)^{-1}=(1,3,2)$. Оба различных элемента y найдены. Орбита (1,3,2) точно такая же по предложению 11 лекции 2 (они пересекаются, а значит должны совпадать).

$$S_3(1,2,3) = S_3(1,3,2) = \{(1,2,3), (1,3,2)\}$$
(30)

Множество орбит:

$$S_3/S_3 = \{ \{e\}, \{(1,2), (1,3), (2,3)\}, \{(1,2,3), (1,3,2)\} \}$$
(31)

Задача 2.4. Пусть |G| = 54 — абелева группа. Найдём все возможные такие группы. Воспользуемся теоремой 7 лекции 2:

$$G = C_{n_1} \times \dots \times C_{n_l} \tag{32}$$

При этом $\prod_{i=1}^{l} n_i = 54$. Разложим 54 на простые множители: $54 = 2 \cdot 3^3$. Воспользуемся теоремой 7 лекции 2 для того, чтобы найти все неизоморфные группы:

- 1. Группа $C_2 \times C_{27} \simeq C_{54}$ (т.к. НОД(2,27)=1).
- 2. Группа $C_2 \times C_3 \times C_9 \simeq C_6 \times C_9$ (т.к. НОД(2,3) = 1).
- 3. Группа $C_2 \times C_3 \times C_3 \times C_3 \times C_3 \simeq C_6 \times C_3 \times C_3$ (т.к. НОД(2, 3) = 1).

Всего 3 неизоморфные абелевы группы (они неизоморфны, поскольку $HOД(3,3) = 3 \neq 1$).

Задача 2.5.

Предложение 5. Для любой точки $x \in X$ стабилизатор G_x является подгруппой в G.

Доказательство. Проверим свойства подгруппы:

- 1. Пусть $g_1, g_2 \in G_x$, тогда $g_1x = x$, $g_2x = x$. $(g_1g_2)x = g_1(g_2x) = g_1x = x$, поэтому $g_1g_2 \in G_x$.
- 2. Пусть $g \in G_x$, тогда gx = x. $x = g^{-1}gx = g^{-1}x$, поэтому $g^{-1} \in G_x$.

3 Теорема Лагранжа, классы сопряженности, нормальные подгруппы, полупрямое произведение.

Упражнение 3.1.

Предложение 6.

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, \phi_{a_2^{-1}}(b_1) b_2)$$
(33)

Полупрямое произведение, заданное формулой (33) является группой.

Доказательство. Проверим свойства группы:

1. Ассоциативность:

$$\begin{array}{lll} ((a_1,b_1)\cdot(a_2,b_2))\cdot(a_3,b_3) &=& (a_1a_2,\phi_{a_2^{-1}}(b_1)b_2)\cdot(a_3,b_3) \\ &=& (a_1a_2a_3,\phi_{a_3^{-1}}(\phi_{a_2^{-1}}(b_1))\phi_{a_3^{-1}}(b_2)b_3) \\ &=& (a_1a_2a_3,\phi_{a_3^{-1}}(\phi_{a_2^{-1}}(b_1))\phi_{a_3^{-1}}(b_2)b_3) \\ &=& (a_1a_2a_3,\phi_{a_3^{-1}a_2^{-1}}(b_1)\phi_{a_3^{-1}}(b_2)b_3). \\ &(a_1,b_1)\cdot((a_2,b_2)\cdot(a_3,b_3)) &=& (a_1,b_1)\cdot(a_2a_3,\phi_{a_3^{-1}}(b_2)b_3) \\ &=& (a_1a_2a_3,\phi_{a_3^{-1}a_2^{-1}}(b_1)\phi_{a_3^{-1}}(b_2)b_3). \end{array}$$

2. Существование единицы (e, e):

$$(a,b) \cdot (e,e) = (ae, \phi_{e^{-1}}(b)e) = (a,b).$$

 $(e,e) \cdot (a,b) = (ea, \phi_{e^{-1}}(e)b) = (a,b).$

3. Существование обратного $(a^{-1}, \phi_a(b^{-1}))$:

$$(a,b) \cdot (a^{-1}, \phi_a(b^{-1})) = (aa^{-1}, \phi_a(b)\phi_a(b^{-1})) = (e,e).$$

$$(a^{-1}, \phi_a(b^{-1})) \cdot (a,b) = (a^{-1}a, \phi_{a^{-1}}(\phi_a(b^{-1}))b) = (e,e).$$

Задача 3.2. a)

Предложение 7. Пусть G – группа движений, сохраняющих правильный тетраэдр. Действие G на множестве вершин тетраэдра задаёт изоморфизм G и S_4 .

Доказательство. Для доказательства изоморфизма выпишем соответствие между перестановками различных циклических типов в S_4 и различными движениями, сохраняющими правильный тетраэдр:

 $1. \ e$ (единичный, $1 \ \text{шт.}$) – тождественное движение (ничего не делает с тетраэдром).

- 2. (a,b) (транспозиции, 6 шт.) отражение относительно плоскости π , проходящей через ребро (вершины которого остаются на месте) и центр противопложного ребра (вершины которого меняются местами).
- 3. (a,b)(c,d) (произведение транспозиций, 3 шт.) повороты на π вокруг прямой l_1 , проходящей через центры противоположных рёбер (вершины которых и будут меняться местами).
- 4. (a,b,c) (цикл длины 3, 8 шт.) поворот на $2\pi/3$ или $4\pi/3$ вокруг прямой l_2 , проходящей через вершину и центр противоположной грани (вершины этой грани и будут циклически меняться).
- 5. (a, b, c, d) (цикл длины 4, 6 шт.) зеркальный повороте на $\pi/2$ с прямой l_3 , проходящей через середины двух противоположных ребер и плоскостью симметрии, проходящей через середины остальных ребер.

Таким образом, построено однозначное соответствие между перестановками и движениями, сохраняющее групповые операции, а значит изоморфизм групп построен.

По предложению 7 лекции 3 перестановки сопряжены тогда и только тогда, когда имеют одинаковую циклическую структуру. А значит классами сопряжённости являются 5 видов движения, описанных выше.

б) В G_0 будут входить движения вида 1, 3 и 4 (см. список выше), поскольку среди них нет отражений и зеркальных поворотов. Всего 12 штук. Поскольку G_0 состоит из классов сопряжённости, то она нормальна. Также можно заметить, что она изоморфна знако-переменной группе A_4 , которая является нормальной подгруппой S_4 .

Проверим, какие классы сопряжённости из G перейдут в G_0 . Конечно, класс $\{e\}$ сохранится. Класс, состоящий из произведений транспозиций сохранится также, поскольку из одного произведения можно получить остальные 2 при сопряжениях с циклами длины 3. $(1,3,4)(1,2)(3,4)(1,3,4)^{-1}=(1,4)(2,3), (1,4,3)(1,2)(3,4)(1,4,3)^{-1}=(1,3)(2,4)$ (это все случаи, если учесть, что $(1,3,4)^{-1}=(1,4,3)$) (для сокращения записи циклы написаны в A_4 , а не в G_0).

Рассмотрим циклы длины 3. $|G_0|=12$, а значит класс сопряжённости (орбита) не может состоять из 8 элементов (12 на 8 не делится). В G_0 невозможно получить каждый цикл длины 3 из каждого, т.е. циклы длины 3 создадут 2 класса сопряжённости в G_0 , которые соответствуют поворотам на $\frac{2\pi}{3}$ и $\frac{4\pi}{3}$ вокруг прямой, проходящей через вершину и центр противоположной грани тетраэдра (по 4 в каждом классе): $\{(1,2,3),(1,4,2),(1,3,4),(2,4,3)\},\{(1,3,2),(1,2,4),(2,3,4),(1,4,3)\}$ (для сокращения записи циклы написаны в A_4 , а не в G_0).

Таким образом, всего будет 4 класса сопряженности в G_0 (и соответственно в A_4).

Задача 3.3. а) Группой симметрии правильного n-угольника является группа диэдра D_n (n поворотов и n осевых отражений). Основания могут поменяться местами при помощи отражения относительно плоскости π , проходящей через середины боковых рёбер. Тождественная симметрия (которая ничего не делает с призмой) и отражение образуют группу C_2 . Поскольку все симметрии из D_{nh} можно представить в виде произведения элементов групп D_n и C_2 , группы D_n и C_2 коммутативны и пересечение групп тривиально (по e), то

$$D_{nh} = D_n \times C_2 \tag{34}$$

$$|D_{nh}| = |D_n| \cdot |C_2| = 4n$$
 (35)

Порядок можно было получить проще: только при 2 симметриях вершина x переходит сама в себя (тождественная и отражение относительно плоскости, проходящей через x). Значит $G_x = 2$. Любая вершина при симметриях может перейти в любую, значит Gx = 2n.

$$\left| |D_{nh}| = |G_x| \cdot |Gx| = 4n \right| \tag{36}$$

б)

$$D_{3h} \simeq D_3 \times C_2 \simeq C_3 \ltimes C_2 \times C_2 \tag{37}$$

Сначала докажем следующее предложение:

Предложение 8. D_6 изоморфно $D_3 \times C_2$.

Доказательство. Заметим, что D_6 – группа симметрий правильного шестиугольника, а его вершины являются вершинами двух равносторонних треугольников. Группа симметрии правильного треугольника – D_3 . Один треугольник можно перевести в другой при помощи поворота на π вокруг прямой l, проходящей через центр шестиугольника и перпендикулярной его плоскости. Тождественная симметрия и такой поворот образуют C_2 . Поскольку все симметрии из D_6 можно представить в виде произведения элементов групп D_3 и C_2 , группы D_3 и C_2 коммутативны и пересечение групп тривиально (по e), то утверждение доказано.

Учтём, что $D_{3h} \simeq D_3 \times C_2$ и получим

$$\boxed{D_{3h} \simeq D_3 \times C_2 \simeq D_6} \tag{38}$$

- **Задача 3.4.** а Движения получаются четырёх видов: трансляции относительно векторов решетки, симметрии относительно горизонтальных и вертикальных осей и центральные симметрии относительно точек половинной решётки (повороты на π вокруг прямой, проходящей через центр решётки перпендикулярно ей, можно получить из симметрий).
 - 1. Группа трансляций T порождена сдвигами на порождающие вектора решётки e_1 и e_2 . Её элемент:

$$t_{n_1, n_2, n_3, n_4}: \begin{cases} x_1 \to x_1 + n_1 e_1 + n_2 e_2 \\ x_2 \to x_2 + n_3 e_1 + n_4 e_2 \end{cases}, \quad n_i \in \mathbb{Z}$$
 (39)

2. Общая симметрия относительно вертикальных осей:

$$s_{l_1, l_2, l_3, l_4}^v : \begin{cases} x_1 \to -x_1 + l_1 e_1 + l_2 e_2 \\ x_2 \to x_2 + l_3 e_1 + l_4 e_2 \end{cases}, \quad l_i \in \mathbb{Z}$$
 (40)

где x_1, x_2 – координаты вектора x.

3. Общая симметрия относительно горизонтальных осей:

$$s_{k_1,k_2,k_3,k_4}^h : \begin{cases} x_1 \to x_1 + k_1 e_1 + k_2 e_2 \\ x_2 \to -x_2 + k_3 e_1 + k_4 e_2 \end{cases}, \quad k_i \in \mathbb{Z}$$
 (41)

4. Общая центральная симметрия:

$$s_{m_1, m_2, m_3, m_4} : \begin{cases} x_1 \to -x_1 + m_1 e_1 + m_2 e_2 \\ x_2 \to -x_2 + m_3 e_1 + m_4 e_2 \end{cases}, \quad m_i \in \mathbb{Z}$$
 (42)

Предложение 9. Подгруппа Т является нормальной

Доказательство. При сопряжениях с движениями любых видов трансляция перейдёт в трансляцию (коэффициенты перед x_1 и x_2 будут либо 1, либо $(-1)^2 = 1$, а значит $x \to x + a$, где a – некоторый вектор с целыми координатами).

Движения различных типов (T, 3) вида симметрий) – 4 класса смежности по T. Факторгруппа G/T состоит из 4 элементов:

1.

$$e = t_{0,0,0,0} : x \to x \tag{43}$$

2.

$$s_{0,0,0,0}^v: \begin{cases} x_1 \to -x_1 \\ x_2 \to x_2 \end{cases}$$
 (44)

3.

$$s_{0,0,0,0}^h: \begin{cases} x_1 \to x_1 \\ x_2 \to -x_2 \end{cases}$$
 (45)

4.

$$s_{0,0,0,0}: x \to -x$$
 (46)

Такая факторгруппа $G/T \simeq C_2 \times C_2$ (таблицы умножения совпадают). Рассмотрим подгруппу G_0 движений, сохраняющих начало координат.

Пусть G_0 – подгруппа движений, сохраняющих начало координат. Группа $G \simeq G_0 \ltimes T$, G_0 действует на T следующим образом: $\phi_e(t_{n_1,n_2,n_3,n_4}) = t_{n_1,n_2,n_3,n_4}, \ \phi_{s_0^v}(t_{n_1,n_2,n_3,n_4}) = t_{-n_1,-n_2,n_3,n_4}, \ \phi_{s_0^h}(t_{n_1,n_2,n_3,n_4}) = t_{n_1,n_2,-n_3,n_4}$:

$$\phi_e(t_{n_1,n_2,n_3,n_4})(x) = et_{n_1,n_2,n_3,n_4}e(x) = t_{n_1,n_2,n_3,n_4}(x)$$

$$\phi_{s_0^v}(t_{n_1,n_2,n_3,n_4})(x_1,x_2)^T = s_{0,0,0,0}^v t_{n_1,n_2,n_3,n_4} s_{0,0,0,0}^v (x_1,x_2)^T = s_{0,0,0,0}^v t_{n_1,n_2,n_3,n_4} (-x_1,x_2)^T = s_{0,0,0,0}^v (-x_1+n_1e_1+n_2e_2,x_2+n_3e_1+n_4e_2)^T = (x_1-n_1e_1-n_2e_2,x_2+n_3e_1+n_4e_2)^T = t_{-n_1,-n_2,n_3,n_4}(x)$$

$$\phi_{s_0^h}(t_{n_1,n_2,n_3,n_4})(x_1,x_2)^T = s_{0,0,0,0}^h t_{n_1,n_2,n_3,n_4} s_{0,0,0,0}^h (x_1,x_2)^T = s_{0,0,0,0}^h t_{n_1,n_2,n_3,n_4} (x_1,-x_2)^T = s_{0,0,0,0}^h (x_1+n_1e_1+n_2e_2,-x_2+n_3e_1+n_4e_2)^T = (x_1+n_1e_1+n_2e_2,x_2-n_3e_1-n_4e_2)^T = t_{n_1,n_2,-n_3,-n_4}(x)$$

$$\phi_{s_0}(t_{n_1,n_2,n_3,n_4})(x_1,x_2)^T = s_{0,0,0,0}t_{n_1,n_2,n_3,n_4}s_{0,0,0,0}(x_1,x_2)^T = s_{0,0,0,0}t_{n_1,n_2,n_3,n_4}(-x_1,-x_2)^T = s_{0,0,0,0}(-x_1+n_1e_1+n_2e_2,-x_2+n_3e_1+n_4e_2)^T = (x_1-n_1e_1-n_2e_2,x_2-n_3e_1-n_4e_2)^T = t_{-n_1,-n_2,-n_3,-n_4}(x_1,x_2)^T$$

6)* Найдём классы сопряжённости в G. Они также будут совпадать с 4 типами движений: трансляции и 3 симметрии (см. список выше), поскольку невозможно получить из движения одного типа сопряжением движение другого типа (т.к. при сопряжениях знак при x_1 и x_2 меняется чётное число раз: 0 (если то, чем мы сопрягаем не меняет там знак) или 2 (если то, чем мы сопрягаем меняет там знак)). Т.е. если например трансляция не меняла знаки при x_1 и x_2 . то и при сопряжении чем угодно менять знак не будет; если симметрия меняла знак при x_1 и не меняла при x_2 , то и при сопряжении чем угодно будет менять при x_1 и не будет при x_2 . Т.е. всего 4 класса сопряжённости (трансляции и 3 вида симметрий).

4 Разные конструкции.

Задача 4.1. Пусть φ – гомоморфизм из S_4 в S_3 . По предложению 2 лекции 4 Ker φ – нормальная подгруппа в S_4 . Значит, $\operatorname{Ker} \varphi$ является объединением каких-то классов сопряжённости. $|S_4|=4!=24,\ |S_3|=3!=6.$ Тогда по предложению 5 лекции 4 $|S_4|=|{\rm Ker}\ \varphi||S_3|,$ откуда $|\text{Ker }\varphi|=\frac{|S_4|}{|S_3|}=4.$ Классы сопряжённости S_4 рассмотрены в задаче 3.2. Всего 2 класса имеют мощность, не превышающую 4: $\{e\}$ и $\{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$, они и будут составлять ядро (их суммарная мощность равна 4): Ker $\varphi = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$ Воспользуемся действием S_4 на пространстве многочленов от четырёх переменных вида P= $x_1x_2 + x_3x_4$, переставляя переменные. Ещё есть 2 многочлена такого вида, не равные P: $Q = x_1x_3 + x_2x_4$ и $R = x_1x_4 + x_2x_3$. Все элементы ядра соответствуют перестановке $P \to P$, $Q \to Q, R \to R \ (\varphi(\text{Ker } \varphi) = e)$. Транспозиции (1,2), (3,4) соответствуют перестановке (Q,R) $(\varphi((1,2)) = \varphi((3,4)) = (Q,R))$. Транспозиции (1,3), (2,4) соответствуют перестановке (P,R) $(\varphi((1,3)) = \varphi((2,4)) = (P,R))$. Транспозиции (1,4), (2,3) соответствуют перестановке (P,Q) $(\varphi((1,4)) = \varphi((2,3)) = (P,Q))$. Циклы длины 3(1,3,2), (1,4,3), (1,2,4), (2.3.4) соответствуют перестановке (P,Q,R) $(\varphi((1,3,2)) = \varphi((1,4,3)) = \varphi((1,2,4)) = \varphi((2,3,4)) = (P,Q,R))$. Циклы длины 3 (1,2,3),(1,3,4),(1,4,2),(2,4,3) соответствуют перестановке (P,R,Q) $(\varphi((1,3,2))=$ $\varphi((1,4,3)) = \varphi((1,2,4)) = \varphi((2,3,4)) = (P,R,Q)$. Циклы длины 4 (1,2,4,3), (1,3,4,2) соответствуют перестановке (P,Q) $(\varphi((1,2,4,3)) = \varphi((1,3,4,2)) = (P,Q))$. Циклы длины 4 (1,2,3,4), (1,4,3,2) соответствуют перестановке (P,R) $(\varphi((1,2,3,4)) = \varphi((1,4,3,2)) = (P,R)).$ Циклы длины 4(1,3,2,4), (1,4,2,3) соответствуют перестановке (Q,R) $(\varphi((1,3,2,4)) = \varphi((1,4,2,3)) =$ (Q,R)). Таким образом, построено отображение из S_4 в S_3 . Оно сюръективно, поскольку $\operatorname{Im} \varphi = S_3$. Также $\forall a, b \in S_4 \varphi(ab) = \varphi(a)\varphi(b)$, поскольку a переставит индексы в многочленах (этому соответствует перестановка многочленов $\varphi(a)$), b переставит индексы в многочленах (этому соответствует перестановка многочленов $\varphi(b)$), а перестановке индексов ab соответствует перестановка многочленов $\varphi(ab)$. Значит φ – действительно сюръективный гомоморфизм из S_4 в S_3 .

Ядро гомоморфизма:

$$Ker \varphi = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$$
(47)

Задача 4.2. Рассмотрим две подгруппы \mathbb{C}^* : \mathbb{R}_+ и U(1) (унитарная группа порядка 1 – подгруппа комплексных чисел, по модулю равных 1 (на комплексной плоскости это окружность радиуса 1): $U(1) = \{z \in \mathbb{C} : |z| = 1, z = \exp(i\theta)\}$). \mathbb{R}_+ и U(1) коммутируют (комплексные числа коммутируют при умножении). $\mathbb{R}_+ \cap U(1) = \{1\}$ (луч из центра окружности пересекается с окружностью в 1 точке). $\mathbb{C}^* = \mathbb{R}_+ \cdot U(1)$ (любое комплексное число представимо в экспотенциальной форме: $z = r \exp(i\theta)$). Тогда по предложению 7 лекции 4: $\mathbb{C}^* \simeq \mathbb{R}_+ \times U(1)$. По предложению 10 лекции 4:

$$\boxed{\mathbb{C}^*/\mathbb{R}_+ \simeq U(1)} \tag{48}$$

Задача 4.3. а) Любой элемент D_n может быть представлен в виде r^b или sr^b . Найдём классы сопряжённости r^b .

$$r^{a}r^{b}r^{-a} = r^{b}, \quad sr^{a}r^{b}(sr^{a})^{-1} = sr^{a+b}r^{-a}s^{-1} = sr^{b}s^{-1} = r^{-b}$$
 (49)

Таким образом, если n – чётное, то классы сопряжённости: $\{e\}, \{r, r^{-1}\}, \{r^2, r^{-2}\}, ..., \{r^{\frac{n}{2}}\}$ $(\frac{n}{2}+1$ штук); если n – нечётное, то классы сопряжённости: $\{e\}, \{r, r^{-1}\}, \{r^2, r^{-2}\}, ..., \{r^{\frac{n-1}{2}}, r^{-\frac{n-1}{2}}\}$ $(\frac{n+1}{2}$ штук).

Найдём классы сопряжённости sr^b .

$$r^{a}sr^{b}r^{-a} = r^{a}sr^{b-a} = sr^{b-2a}, \quad sr^{a}sr^{b}(sr^{a})^{-1} = sr^{a}sr^{b-a}s = sr^{2a-b}$$
 (50)

Таким образом, если n – чётное, то классы сопряжённости: $\{sr, sr^3, ..., sr^{n-1}\}$ (b нечётное) и $\{s, sr^2, ..., sr^{n-2}\}$ (b чётное); если n – нечётное, то класс сопряжённости 1 (не зависит от чётности b): $\{s, sr, ..., sr^{n-1}\}$.

б) Рассмотрим 4 возможных случая:

1.
$$x = r^a, y = r^b$$
.

$$xyx^{-1}y^{-1} = r^a r^b r^{-a} r^{-b} = r^0 = e$$
(51)

2. $x = sr^a, y = r^b$.

$$xyx^{-1}y^{-1} = sr^{a}r^{b}(sr^{a})^{-1}r^{-b} = sr^{a+b}r^{-a}s^{-1}r^{-b} = sr^{b}sr^{-b} = r^{-2b}$$
(52)

3.
$$x = r^a, y = sr^b$$
.

$$xyx^{-1}y^{-1} = r^a sr^b r^{-a} (sr^b)^{-1} = r^a sr^{-a} s = r^{2a}$$
(53)

4. $x = sr^a$, $y = sr^a$.

$$xyx^{-1}y^{-1} = sr^a sr^b (sr^a)^{-1} (sr^b)^{-1} = r^{b-a}r^{-a}sr^{-b}s = r^{2(b-a)}$$
(54)

Во всех возможных случаях коммутаторы элементов — повороты в чётной степени. При определённых a и b среди них есть r^2 , который порождает коммутант.

Если n — чётное, то коммутант состоит из всех поворотов в чётной степени:

$$\boxed{[D_n, D_n] = \{e, r^2, r^4, ..., r^{n-2}\}, \quad n = 2k, k \in \mathbb{Z}}$$
(55)

Если n – нечётное, то $r^{n-1}r^2=r^1$ и коммутант состоит из всех поворотов:

$$\boxed{[D_n, D_n] = \{e, r, r^2, ..., r^{n-1}\}, \quad n = 2k+1, k \in \mathbb{Z}}$$
(56)

B)*

Предложение 10. D_n изоморфно полупрямому произведению C_n и C_2 .

Доказательство. В группе D_n содержатся повороты (подгруппа C_n) и симметрия (подгруппа C_2). Они пересекаются только по e. Любой элемент $D_n - r^b$ или sr^b . Группа C_n является нормальной подгруппой в D_n , поскольку является объединением классов сопряжённости из D_n (см. п. а). По предложению 9 лекции 4, предложение доказано.

$$\boxed{D_n \simeq C_2 \ltimes C_n} \tag{57}$$

Задача 4.4. a)

Предложение 11. Пусть G_0 – группа собственных движений, сохраняющих куб. Действие G_0 на множестве диагоналей куба задаёт изоморфизм G_0 и S_4 .

Доказательство. Для доказательства изоморфизма выпишем соответствие между перестановками различных циклических типов в S_4 и различными собственными движениями, сохраняющими куб:

 $1. \ e$ (единичный, $1 \ \text{шт.})$ – тождественное движение (ничего не делает с кубом).

- 2. (a,b) (транспозиции, 6 шт.) повороты на π вокруг прямой l_1 , проходящей через центры противоположных рёбер.
- 3. (a,b)(c,d) (произведение транспозиций, 3 шт.) повороты на π вокруг прямой l_2 , проходящей через центры противоположных граней.
- 4. (a,b,c) (цикл длины 3, 8 шт.) поворот на $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ вокруг прямой l_3 , проходящей через диагональ куба.
- 5. (a, b, c, d) (цикл длины 4, 6 шт.) повороты на $\frac{\pi}{2}$, $\frac{3\pi}{2}$ вокруг прямой l_2 , проходящей через центры противоположных граней.

Таким образом, построено однозначное соответствие между перестановками и движениями, сохраняющее групповые операции, а значит изоморфизм групп построен.

□

б) По предложению 7 лекции 3 перестановки сопряжены тогда и только тогда, когда имеют одинаковую циклическую структуру. А значит классами сопряжённости являются 5 видов движения, описанных выше.

в)

Предложение 12. G изоморфно $G_0 \times C_2$.

Доказательство. В G тождественное движение и центральная симметрия образуют C_2 . Все движения из G можно представить в виде произведения собственных движений из G_0 и элементов C_2 . Подгруппы G_0 и C_2 коммутируюет и пересекаются только по e. По предложению 7 лекции 4 предложение доказано.

$$G \simeq G_0 \times C_2$$
 (58)

В G_0 5 классов сопряжённости, в C_2 – 2 класса ($\{e\}$ и $\{r\}$). Пусть $x=(g_x,c_x)\in G_0\times C_2$, $y=(g_y,c_y)\in G_0\times C_2$. Найдём классы сопряжённости в $G_0\times C_2$.

$$xyx^{-1} = (g_x, c_x)(g_y, c_y)(g_x, c_x)^{-1} = (g_xg_yg_x^{-1}, c_xc_yc_x^{-1})$$
(59)

Как видно, если g_x и g_y сопряжены и c_x и c_y сопряжены, то и (g_x, c_x) и (g_y, c_y) сопряжены и наоборот. Т.е. классы сопряжения произведения групп – произведения классов сопряжённости этих групп. Поэтому число классов сопряжённости $2 \cdot 5 = 10$.

5 Представления групп.

Упражнение 5.1. а) Регулярное представление C_3 :

$$e \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad r \to \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad r^2 \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 (60)

Найдём инвариантные подпространства в этом представлении (кроме тривиальных $\{0\}$ и \mathbb{C}^3). Для этого найдём собственные векторы матриц $\rho(r)$ и $\rho(r^2)$ (для единичной матрицы любой вектор собственный с собственным значением 1).

$$\det(\rho(r) - \lambda E) = \begin{vmatrix} -\lambda & 0 & 1\\ 1 & -\lambda & 0\\ 0 & 1 & -\lambda \end{vmatrix} = -\lambda^3 + 1 = 0$$

$$(61)$$

$$\lambda_0 = 1, \lambda_1 = e^{\frac{2\pi i}{3}}, \lambda_2 = e^{\frac{4\pi i}{3}}$$
 (62)

$$\lambda_0 = 1 : \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} h_{01} \\ h_{02} \\ h_{03} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \to h_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (63)

$$\lambda_{1} = e^{\frac{2\pi i}{3}} : \begin{pmatrix} -e^{\frac{2\pi i}{3}} & 0 & 1\\ 1 & -e^{\frac{2\pi i}{3}} & 0\\ 0 & 1 & -e^{\frac{2\pi i}{3}} \end{pmatrix} \begin{pmatrix} h_{11}\\ h_{12}\\ h_{13} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \to h_{1} = \begin{pmatrix} 1\\ e^{\frac{4\pi i}{3}}\\ e^{\frac{2\pi i}{3}} \end{pmatrix}$$
(64)

$$\lambda_{2} = e^{\frac{4\pi i}{3}} : \begin{pmatrix} -e^{\frac{4\pi i}{3}} & 0 & 1\\ 1 & -e^{\frac{4\pi i}{3}} & 0\\ 0 & 1 & -e^{\frac{4\pi i}{3}} \end{pmatrix} \begin{pmatrix} h_{21}\\ h_{22}\\ h_{23} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \to h_{2} = \begin{pmatrix} 1\\ e^{\frac{2\pi i}{3}}\\ e^{\frac{4\pi i}{3}} \end{pmatrix}$$
(65)

Заметим, что эти же вектора и значения являются собственными и для $\rho(r^2)$:

$$\rho(r^2)h_0 = \lambda_0 h_0, \quad \rho(r^2)h_1 = \lambda_2 h_1, \quad \rho(r^2)h_2 = \lambda_1 h_2$$
(66)

Таким образом,

$$V_0 = \left\langle \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\rangle, \quad V_1 = \left\langle \begin{pmatrix} 1\\e^{\frac{4\pi i}{3}}\\e^{\frac{2\pi i}{3}} \end{pmatrix} \right\rangle, \quad V_2 = \left\langle \begin{pmatrix} 1\\e^{\frac{2\pi i}{3}}\\e^{\frac{4\pi i}{3}} \end{pmatrix} \right\rangle$$
(67)

являются одномерными инвариантными представлениями.

$$\mathbb{C}^3 = V_0 \oplus V_1 \oplus V_2 \tag{68}$$

Разложим представление C_n в сумму R_j :

- 1. B V_0 : $R_0(e) = 1$, $R_0(r) = 1$, $R_0(r^2) = 1$.
- 2. B V_1 : $R_1(e) = 1$, $R_1(r) = e^{\frac{2\pi i}{3}}$, $R_1(r^2) = e^{\frac{4\pi i}{3}}$.
- 3. B V_2 : $R_2(e) = 1$, $R_2(r) = e^{\frac{4\pi i}{3}}$, $R_2(r^2) = e^{\frac{2\pi i}{3}}$.

Заметим, что для R_i можно записать общую формулу:

$$R_j(r^m) = e^{\frac{2\pi i}{n}mj} \tag{69}$$

$$R = R_0 \oplus R_1 \oplus R_2 \tag{70}$$

б) В базисе h_0, h_1, h_2 :

$$\rho(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{4\pi i}{3}} \end{pmatrix}, \quad \rho(r^2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{4\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{2\pi i}{3}} \end{pmatrix} \tag{71}$$

Матрица перехода к этому базису:

$$\varphi = \begin{pmatrix} 1 & 1 & 1\\ 1 & e^{\frac{4\pi i}{3}} & e^{\frac{2\pi i}{3}}\\ 1 & e^{\frac{2\pi i}{3}} & e^{\frac{4\pi i}{3}} \end{pmatrix}$$
 (72)

Предложение 13. Характеры сопряжённых элементов равны.

Доказательство.

$$\operatorname{tr}(\rho(gxg^{-1})) = \operatorname{tr}(\rho(g)\rho(x)\rho(g^{-1})) = \operatorname{tr}(\rho(g)\rho(x)\rho(g)^{-1}) = \operatorname{tr}(\rho(g)\rho(g)^{-1}\rho(x)) = \operatorname{tr}(\rho(x))$$

б)

$$U_2 = \left\{ \sum_{i=1}^3 x_i e_i | \sum_{i=1}^3 x_i = 0 \right\}$$
 (73)

Воспользуемся базисом:

$$e' = e_1 - e_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad e'' = e_1 - e_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 (74)

Любой вектор может быть выражен через базисные вектора:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -x_2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - x_3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = -x_2 e' - x_3 e'' \tag{75}$$

Выпишем, во что будут переходить e' и e'' при домножении слева на $\rho(g)$ (из перестановочного представления): $\rho(e)e'=(1,-1,0)^T=e'$, $\rho(e)e''=(1,0,-1)^T=e''$, $\rho((1,2))e'=(-1,1,0)^T=-e'$, $\rho((1,2))e''=(0,1,-1)^T=e''-e'$, $\rho((1,3))e'=(0,-1,1)^T=e'-e''$, $\rho((1,3))e''=(-1,0,1)^T=-e''$, $\rho((2,3))e'=(1,0,-1)^T=e''$, $\rho((2,3))e''=(1,-1,0)^T=e'$, $\rho((1,2,3))e''=(0,1,-1)^T=e''-e'$, $\rho((1,2,3))e''=(-1,1,0)^T=-e''$, $\rho((1,3,2))e''=(-1,0,1)^T=-e''$, $\rho((1,3,2))e''=(0,-1,1)^T=e''-e''$. Представление U_2 :

$$e \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad (1,2) \to \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \quad (1,3) \to \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$
 (76)

$$(2,3) \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (1,2,3) \rightarrow \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad (1,3,2) \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
 (77)

в) Тривиальное представление:

$$\rho(g) = 1 \to \boxed{\chi_V(g) = \text{Tr } 1 = 1}$$
(78)

Перестановочное представление S_3 задаётся матрицами ($\rho(g)e_x=e_{gx}$):

$$e \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1,2) \to \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1,3) \to \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 (79)

$$(2,3) \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad (1,2,3) \to \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad (1,3,2) \to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
(80)

$$\chi_V(e) = 3, \quad \chi_V((a,b)) = 1, \quad \chi_V((a,b,c)) = 0$$
(81)

Регулярное представление $(ge_x = e_{gx})$.

 $|S_3|=6$. Рассмотрим пространство $V=\mathbb{C}^6$. Элементы S_3 представим в виде: e=(1,0,0,0,0,0), (1,2)=(0,1,0,0,0,0), (2,3)=(0,0,1,0,0), (1,3)=(0,0,0,1,0,0), (1,2,3)=(0,0,0,0,1,0), (1,3,2)=(0,0,0,0,0,1).

Все матрицы регулярного представления состоят из 0 и 1, в каждой строке и столбце по одной 1. Если характер элемента не равен 0, то на диагонали по крайней мере есть одна 1. Пусть она будет стоять на m месте. Это значит, что $ge_m = e_m$, что может быть только при g = e. Следовательно, при $g \neq e$ характер $\rho(g)$ равен 0.

$$\chi_V(e) = 6, \quad \chi_V(g) = 0, \ g \neq e$$
(82)

 $Представление U_2$:

$$\chi_V(e) = 2, \quad \chi_V((a,b)) = 0, \quad \chi_V((a,b,c)) = -1$$
 (83)

Задача 5.3. а) R_{α} – вращение трёхмерного пространства относительно некоторой оси на угол α . В базисе, в котором один из базисных векторов (\vec{k}) проходит через эту ось, R_{α} записывается в виде

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix} \tag{84}$$

$$trR_{\alpha} = 2\cos\alpha + 1$$
 (85)

Такой след будет иметь матрица R_{α} в любом базисе, поскольку следы сопряжённых матриц равны.

 S_{α} — зеркальный поворот — композиция вращения трёхмерного пространства относительно некоторой оси на угол α и отражения относительно плоскости перпендикулярной этой оси. В базисе, в котором один из базисных векторов (\vec{k}) проходит через эту ось, S_{α} записывается в виде

$$S_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & -1 \end{pmatrix} \tag{86}$$

$$trS_{\alpha} = 2\cos\alpha - 1 \tag{87}$$

Такой след будет иметь матрица S_{α} в любом базисе, поскольку следы сопряжённых матриц равны.

- б) Выпишем следы матриц ρ_3 для всех симметрий, сохраняющих правильный тетраэдр:
 - 1. е (единичный, 1 шт.) тождественное движение (ничего не делает с тетраэдром).

$$trR_0 = 2\cos 0 + 1 = 3 \tag{88}$$

$$\chi_{\mathbb{R}^3}(e) = 3 \tag{89}$$

2. (a,b) (транспозиции, 6 шт.) — отражение относительно плоскости π , проходящей через ребро (вершины которого остаются на месте) и центр противопложного ребра (вершины которого меняются местами).

$$trS_0 = 2\cos 0 - 1 = 1\tag{90}$$

$$\chi_{\mathbb{R}^3}((a,b)) = 1 \tag{91}$$

3. (a,b)(c,d) (произведение транспозиций, 3 шт.) – повороты на π вокруг прямой l_1 , проходящей через центры противоположных рёбер (вершины которых и будут меняться местами).

$$tr R_{\pi} = 2\cos \pi + 1 = -1 \tag{92}$$

$$\chi_{\mathbb{R}^3}((a,b)(c,d)) = -1$$
(93)

4. (a,b,c) (цикл длины 3, 8 шт.) — поворот на $2\pi/3$ или $4\pi/3$ вокруг прямой l_2 , проходящей через вершину и центр противоположной грани (вершины этой грани и будут циклически меняться).

$$\operatorname{tr}R_{\frac{2\pi}{3}} = \operatorname{tr}R_{\frac{4\pi}{3}} = 2\cos\frac{2\pi}{3} + 1 = 0 \tag{94}$$

$$\chi_{\mathbb{R}^3}((a,b,c)) = 0$$
(95)

5. (a, b, c, d) (цикл длины 4, 6 шт.) – зеркальный повороте на $\pi/2$ с прямой l_3 , проходящей через середины двух противоположных ребер и плоскостью симметрии, проходящей через середины остальных ребер.

$$trS_{\frac{\pi}{2}} = 2\cos\frac{\pi}{2} - 1 = -1 \tag{96}$$

$$\chi_{\mathbb{R}^3}((a,b,c,d)) = -1$$

$$(97)$$

- в) Выпишем следы матриц ρ_4 для всех вращений, сохраняющих куб:
 - 1. е (единичный, 1 шт.) тождественное движение (ничего не делает с кубом).

$$trR_0 = 2\cos 0 + 1 = 3\tag{98}$$

$$\chi_{\mathbb{R}^3}(e) = 3 \tag{99}$$

2. (a,b) (транспозиции, 6 шт.) – повороты на π вокруг прямой l_1 , проходящей через центры противоположных рёбер.

$$tr R_{\pi} = 2\cos \pi + 1 = -1 \tag{100}$$

$$\chi_{\mathbb{R}^3}((a,b)) = -1 \tag{101}$$

3. (a,b)(c,d) (произведение транспозиций, 3 шт.) — повороты на π вокруг прямой l_2 , проходящей через центры противоположных граней.

$$trR_{\pi} = 2\cos\pi + 1 = -1\tag{102}$$

$$\chi_{\mathbb{R}^3}((a,b)(c,d)) = -1$$
 (103)

4. (a,b,c) (цикл длины 3, 8 шт.) – поворот на $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ вокруг прямой l_3 , проходящей через диагональ куба.

$$\operatorname{tr}R_{\frac{2\pi}{3}} = \operatorname{tr}R_{\frac{4\pi}{3}} = 2\cos\frac{2\pi}{3} + 1 = 0 \tag{104}$$

$$\chi_{\mathbb{R}^3}((a,b,c)) = 0 \tag{105}$$

5. (a,b,c,d) (цикл длины 4, 6 шт.) – повороты на $\frac{\pi}{2}$, $\frac{3\pi}{2}$ вокруг прямой l_2 , проходящей через центры противоположных граней.

$$\operatorname{tr}R_{\frac{\pi}{2}} = \operatorname{tr}R_{\frac{3\pi}{2}} = 2\cos\frac{\pi}{2} + 1 = 1 \tag{106}$$

$$\chi_{\mathbb{R}^3}((a,b,c,d)) = 1$$

$$\tag{107}$$

Задача 5.4. а)

Предложение 14. Для любой группы G коммутант является нормальной подгруппой.

Доказательство. Коммутант группы порождён коммутаторами её элементов [x, y]. А значит любой элемент коммутанта можно представить в виде $[x_1, y_1]...[x_l, y_l]$.

$$\forall g, x, y \in G, \quad g(xy)g^{-1} = (gxg^{-1})(gyg^{-1}) \tag{108}$$

$$\forall g, x, y \in G, \quad g[x,y]g^{-1} = gxyx^{-1}y^{-1}g^{-1} = gxg^{-1}gyg^{-1}gx^{-1}g^{-1}gy^{-1}g^{-1} = [gxg^{-1}, gyg^{-1}]$$

Используем выведенные выше равенства:

$$g([x_1,y_1]...[x_l,y_l])g^{-1} = (g[x_1,y_1]g^{-1})...(g[x_l,y_l]g^{-1}) = [gx_1g^{-1},gy_1g^{-1}]...[gx_lg^{-1},gy_lg^{-1}] \in [G,G]$$

Значит,
$$[G,G]$$
 является нормальной подгруппой. \square

б)*

Предложение 15. Для любой группы G фактор по коммутанту является коммутативной группой.

Доказательство. Пусть $x[G,G], y[G,G] \in G/[G,G]$.

$$(x[G,G])(y[G,G]) = xy[G,G] = xy[y^{-1},x^{-1}][G,G] = yx[G,G] = (y[G,G])(x[G,G])$$
(109)

Значит, G/[G,G] является коммуативной группой.

Задача 5.5. a)

Предложение 16. Единственные одномерные представления симметрической группы - это тривиальное представление и знаковое представление.

Доказательство. Пусть ρ — одномерное представление S_n . Любая транспозиция имеет порядок 2, значит должна переходить либо в 1, либо в —1. Рассмотрим 2 случая:

1. \exists транспозиция $\alpha: \rho(\alpha) = 1$. Все транспозиции лежат в одном классе сопряжённости, значит $\forall \beta \in S_n$ и $\gamma \in S_n$ можно написать $\alpha = \gamma \beta \gamma^{-1}$.

$$\rho(\alpha) = \rho(\gamma\beta\gamma^{-1}) = \rho(\gamma)\rho(\beta)\rho(\gamma^{-1}) = \rho(\gamma)\rho(\gamma^{-1})\rho(\beta) = \rho(\gamma\gamma^{-1}\beta) = \rho(\beta)$$
 (110)

Значит любая транспозиция переходит в 1. Любой элемент S_n может быть представлен в виде произведения транспозиций. Значит любой элемент S_n переходит в 1 и ρ — тривиальное представление.

2. \exists транспозиция $\alpha: \rho(\alpha) = -1$. Значит любая транспозиция переходит в -1 (по аналогии с предыдущим пунктом). Любой элемент S_n может быть представлен в виде произведения m транспозиций (чётность элемента равна чётности их количества m по предложению 3). Значит любой элемент S_n переходит в свою чётность $(-1)^m$ и ρ – знаковое представление.

б)*

Предложение 17. Коммутант группы S_n – это A_n .

Доказательство. Любой тройной цикл является коммутатором:

$$(a,b,c) = (b,c)(a,b)(b,c)(a,b) = [(b,c),(a,b)]$$
(111)

Значит, любой тройной цикл лежит в коммутанте. Коммутатор любых двух перестановок чётен, поэтому $[S_n, S_n] \subseteq A_n$. Рассмотрим случаи произведения двух транспозиций:

1.

$$(a,b)(a,b) = e = (a,b,c)(c,b,a)$$
 (112)

2.

$$(a,b)(a,c) = (a,c,b), \quad b \neq c$$
 (113)

3.

$$(a,b)(c,d) = (a,d,b)(a,d,c)$$
 (114)

Таким образом, произведение транспозиций — цикл длины 3 или произведение циклов длины 3. Т.к. любой элемент A_n раскладывается в чётное число транспозиций, то, разбив транспозиции на пары и заменив на циклы длины 3, любой элемент A_n выражается через циклы длины 3. Значит A_n порождена циклами длины 3 и $A_n \subseteq [S_n, S_n]$. Таким образом, $[S_n, S_n] = A_n$.

6 Унитарность. Характеры представлений.

Упражнение 6.1.

a)

Предложение 18. Вектор $e_1 \otimes f_1 + e_2 \otimes f_2$ не является разложимым.

Доказательство. Докажем от противного. Предположим, что $\exists \ v = \sum_i a^i e_i, \ u = \sum_i b^j f_j$:

$$v \otimes u = e_1 \otimes f_1 + e_2 \otimes f_2 \tag{115}$$

Подставим v и u:

$$a^{1}b^{1}e_{1} \otimes f_{1} + a^{2}b^{1}e_{2} \otimes f_{1} + a^{2}b^{1}e_{2} \otimes f_{1} + a^{2}b^{2}e_{2} \otimes f_{2} = e_{1} \otimes f_{1} + e_{2} \otimes f_{2}$$

$$(116)$$

$$a^1b^1 = a^2b^2 = 1, \quad a^1b^2 = a^2b^1 = 0$$
 (117)

Из правых уравнений следует, что в каждой паре из a^1, b^2 и a^2, b^1 есть хотя бы 1 нуль. Противоречие с левыми уравнениями.

б) Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$.

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{12} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}$$
(118)

$$\operatorname{tr} A \otimes B = a_{11}b_{11} + a_{11}b_{22} + a_{22}b_{11} + a_{22}b_{22}, \quad \operatorname{tr} A = a_{11} + a_{22}, \quad \operatorname{tr} B = b_{11} + b_{22}$$
 (119)

$$tr A \otimes B = tr A \cdot tr B \tag{120}$$

Задача 6.2. а) Классы сопряжённости групп D_n описаны в задаче 4.3, п. а. В D_7 5 классов сопряжённости: $\{e\}$, $\{r^{-1}, r^1\}$, $\{r^2, r^{-2}\}$, $\{r^3, r^{-3}\}$, $\{sr^b\}$. Значит и число неприводимых представлений равно 5. Найдём их размерности: $|D_7| = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 = 14$. Единственный возможный вариант: $d_1 = d_2 = 1$, $d_3 = d_4 = d_5 = 2$.

Найдём все одномерные представления (их всего 2). Коммутанты D_n описаны в задаче 4.3, п. б. $[D_7, D_7] = \{e, r, r^2, ..., r^6\}$. Факторгруппа $D_7/[D_7, D_7] \simeq \mathbb{Z}_2$, т.е. $|D_7/[D_7, D_7]| = |\mathbb{Z}_2| = 2$ (ещё раз получаем, что всего 2 одномерных неприводимых представления). Любое одномерное неприводимое представление – представление фактора по коммутанту. Первое одномерное неприводимое представление – *тривиальное*: все элементы D_7 переходят в 1.

$$\rho_1(r) = \rho_1(s) = 1$$
 (121)

Для отражений верно, что $(sr^b)^2 = sr^bsr^b = r^{-b}r^b = e$. Поэтому $\rho(sr^b)^2 = \rho((sr^b)^2) = \rho(e) = 1$ и $\rho(sr^b) = \pm 1$. $\rho(sr^b) = 1$ соответствует тривиальному представлению, а $\rho(sr^b) = -1$ – второму одномерному представлению. Т.е. во втором одномерном представлении все повороты перейдут в 1, а отражения – в -1.

$$\rho_2(r) = 1, \quad \rho_2(s) = -1$$
(122)

б) Найдём 3 оставшихся двумерных неприводимых представления. Для них должны выполняться тождества: $\rho(r^b)^7 = \rho((r^b)^7) = \rho(e) = 1$ (матрицы поворота), $\rho(sr^b)^2 = \rho((sr^b)^2) = \rho(e) = 1$ (матрица отражения), $\rho(r)\rho(s)\rho(r)\rho(s) = \rho(rsrs) = \rho(e) = 1$.

$$\rho_3(r) = \begin{pmatrix} \cos\frac{2\pi}{7} & -\sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7} \end{pmatrix}, \quad \rho_3(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (123)

$$\rho_4(r) = \begin{pmatrix} \cos\frac{4\pi}{7} & -\sin\frac{4\pi}{7} \\ \sin\frac{4\pi}{7} & \cos\frac{4\pi}{7} \end{pmatrix}, \quad \rho_4(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (124)

$$\rho_5(r) = \begin{pmatrix} \cos\frac{6\pi}{7} & -\sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7} \end{pmatrix}, \quad \rho_5(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(125)$$

	e^{1}	r^1, r^{-1}	r^2, r^{-2}	r^3, r^{-3}	sr^{b} 7
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	1	1	1	-1
$\chi^{(3)}$	2	$2\cos\frac{2\pi}{7}$	$2\cos\frac{4\pi}{7}$	$2\cos\frac{6\pi}{7}$	0
$\chi^{(4)}$	2	$2\cos\frac{4\pi}{7}$	$2\cos\frac{6\pi}{7}$	$2\cos\frac{2\pi}{7}$	0
$\chi^{(5)}$	2	$2\cos\frac{6\pi}{7}$	$2\cos\frac{2\pi}{7}$	$2\cos\frac{4\pi}{7}$	0

Таблица 1: Таблица характеров группы D_7

Ещё раз проверим, что все найденные представления являются неприводимыми. Для этого воспользуемся критерием $\langle \chi^{(i)}, \chi^{(i)} \rangle = 1$:

$$\langle \chi^{(1)}, \chi^{(1)} \rangle = \frac{1}{14} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 7 \cdot 1) = 1$$
 (126)

$$\langle \chi^{(2)}, \chi^{(2)} \rangle = \frac{1}{14} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 7 \cdot 1) = 1$$
 (127)

$$\langle \chi^{(3)}, \chi^{(3)} \rangle = \frac{1}{14} (1 \cdot 4 + 2 \cdot 4 \cos^2 \frac{2\pi}{7} + 2 \cdot 4 \cos^2 \frac{4\pi}{7} + 1 \cdot 4 \cos^2 \frac{6\pi}{7} + 7 \cdot 0) = 1$$
 (128)

$$\langle \chi^{(4)}, \chi^{(4)} \rangle = \frac{1}{14} (1 \cdot 4 + 2 \cdot 4 \cos^2 \frac{4\pi}{7} + 2 \cdot 4 \cos^2 \frac{6\pi}{7} + 1 \cdot 4 \cos^2 \frac{2\pi}{7} + 7 \cdot 0) = 1$$
 (129)

$$\langle \chi^{(5)}, \chi^{(5)} \rangle = \frac{1}{14} (1 \cdot 4 + 2 \cdot 4 \cos^2 \frac{6\pi}{7} + 2 \cdot 4 \cos^2 \frac{2\pi}{7} + 1 \cdot 4 \cos^2 \frac{4\pi}{7} + 7 \cdot 0) = 1$$
 (130)

В приведённых выше равенствах использовано, что:

$$\cos^{2}\frac{2\pi}{7} + \cos^{2}\frac{4\pi}{7} + \cos^{2}\frac{6\pi}{7} = \frac{\left(e^{i\frac{2\pi}{7}} + e^{-i\frac{2\pi}{7}}\right)^{2}}{4} + \frac{\left(e^{i\frac{4\pi}{7}} + e^{-i\frac{4\pi}{7}}\right)^{2}}{4} + \frac{\left(e^{i\frac{6\pi}{7}} + e^{-i\frac{6\pi}{7}}\right)^{2}}{4} = \frac{1}{4}\left(e^{i\frac{4\pi}{7}} + e^{-i\frac{4\pi}{7}} + 2 + e^{i\frac{8\pi}{7}} + 2 + e^{i\frac{12\pi}{7}} + e^{-i\frac{12\pi}{7}} + 2\right) = \frac{1}{4}\left(5 + e^{-i\frac{12\pi}{7}}\left(1 + e^{i\frac{4\pi}{7}} + e^{i\frac{8\pi}{7}} + \dots + e^{i\frac{24\pi}{7}}\right)\right) = \frac{5}{4} + \frac{e^{-i\frac{12\pi}{7}}}{4}\frac{e^{4\pi i} - 1}{e^{i\frac{4\pi}{7}} - 1} = \frac{5}{4} \quad (131)$$

где в предпоследнем равенстве использована формула для суммы геометрической прогрессии.

Задача 6.3. Классы сопряжённости S_4 описаны в задаче 3.2, п. а и в задаче 4.4, п. а и б. Всего классов сопряжённости 5, значит и неприводимых представлений 5. Найдём их размерности: $|S_4| = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 = 24$. У S_n всего 2 одномерных неприводимых представления: тривиальное и знаковое (см. задачу 5.5, п.а), значит $d_1 = d_2 = 1$, $d_3, d_4, d_5 > 1$. Найдём размерности остальных. Единственный возможный вариант: $d_3 = d_4 = 3$, $d_5 = 2$.

Трёхмерные представления S_4 рассмотрены в задаче 5.3, п. б и в: ρ_3 получено из изоморфизма S_4 и группы симметрий тетраэдра, ρ_4 — из изоморфизма S_4 и группы вращений куба.

Характеры двумерного произведения ρ_5 можно найти из следствия 1 предложения 9 лекции 6:

$$\chi_{\text{reg}} = d_1 \chi^{(1)} + d_2 \chi^{(2)} + d_3 \chi^{(3)} + d_4 \chi^{(4)} + d_5 \chi^{(5)} \rightarrow \chi^{(5)} = \frac{1}{2} (\chi_{\text{reg}} - \chi^{(1)} - \chi^{(2)} - 3\chi^{(3)} - 3\chi^{(4)})$$
(132)

Характер регулярного произведения можно найти из предложения 8 лекции 6:

$$\chi_{\text{reg}}(e) = |S_4| = 24, \quad \chi_{\text{reg}}(g) = 0, \ g \neq e$$
(133)

$$\chi^{(5)}(e) = \frac{1}{2}(24 - 1 - 1 - 3 \cdot 3 - 3 \cdot 3) = 2 = d_5$$
(134)

$$\chi^{(5)}((a,b)) = \frac{1}{2}(0 - 1 + 1 - 3 \cdot 1 - 3 \cdot (-1)) = 0$$
(135)

$$\chi^{(5)}((a,b)(c,d)) = \frac{1}{2}(0-1-1-3\cdot(-1)-3\cdot(-1)) = 2$$
(136)

$$\chi^{(5)}((a,b,c)) = \frac{1}{2}(0 - 1 - 1 - 3 \cdot 0 - 3 \cdot 0) = -1$$
(137)

$$\chi^{(5)}((a,b,c,d)) = \frac{1}{2}(0-1+1-3\cdot(-1)-3\cdot1) = 0$$
(138)

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	-1	1	1	-1
$\chi^{(3)}$	3	1	-1	0	-1
$\chi^{(4)}$	3	-1	-1	0	1
$\chi^{(5)}$	2	0	2	-1	0

Таблица 2: Таблица характеров группы S_4

Проверим соотношения ортогональности между характерами:

$$\langle \chi^{(1)}, \chi^{(1)} \rangle = \frac{1}{24} (1 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot 1) = 1$$
 (139)

$$\langle \chi^{(1)}, \chi^{(2)} \rangle = \frac{1}{24} (1 - 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 1 - 6 \cdot 1) = 0$$
 (140)

$$\langle \chi^{(1)}, \chi^{(3)} \rangle = \frac{1}{24} (1 \cdot 3 + 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 - 6 \cdot 1) = 0$$
 (141)

$$\langle \chi^{(1)}, \chi^{(4)} \rangle = \frac{1}{24} (1 \cdot 3 - 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 0$$
 (142)

$$\langle \chi^{(1)}, \chi^{(5)} \rangle = \frac{1}{24} (1 \cdot 2 + 6 \cdot 0 + 3 \cdot 2 - 8 \cdot 1 + 6 \cdot 0) = 0$$
 (143)

$$\langle \chi^{(2)}, \chi^{(2)} \rangle = \frac{1}{24} (1 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot 1) = 1$$
 (144)

$$\langle \chi^{(2)}, \chi^{(3)} \rangle = \frac{1}{24} (1 \cdot 3 - 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 0$$
 (145)

$$\langle \chi^{(2)}, \chi^{(4)} \rangle = \frac{1}{24} (1 \cdot 3 + 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 - 6 \cdot 1) = 0$$
 (146)

$$\langle \chi^{(2)}, \chi^{(5)} \rangle = \frac{1}{24} (1 \cdot 2 + 6 \cdot 0 + 3 \cdot 2 - 8 \cdot 1 + 6 \cdot 0) = 0$$
 (147)

$$\langle \chi^{(3)}, \chi^{(3)} \rangle = \frac{1}{24} (1 \cdot 9 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 1$$
 (148)

$$\langle \chi^{(3)}, \chi^{(4)} \rangle = \frac{1}{24} (1 \cdot 9 - 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 - 6 \cdot 1) = 0$$
 (149)

$$\langle \chi^{(3)}, \chi^{(5)} \rangle = \frac{1}{24} (1 \cdot 6 + 6 \cdot 0 - 3 \cdot 2 - 8 \cdot 0 + 6 \cdot 0) = 0$$
 (150)

$$\langle \chi^{(4)}, \chi^{(4)} \rangle = \frac{1}{24} (1 \cdot 9 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 1$$
 (151)

$$\langle \chi^{(4)}, \chi^{(5)} \rangle = \frac{1}{24} (1 \cdot 6 - 6 \cdot 0 - 3 \cdot 2 - 8 \cdot 0 + 6 \cdot 0) = 0$$
 (152)

$$\langle \chi^{(5)}, \chi^{(5)} \rangle = \frac{1}{24} (1 \cdot 4 + 6 \cdot 0 + 3 \cdot 4 + 8 \cdot 1 + 6 \cdot 0) = 1$$
 (153)

Рассмотрим $\rho_6 = \rho_3 \otimes \rho_4$. По предложению 5 лекции 6 получим:

$$\chi^{(6)} = \chi^{(4)} \cdot \chi^{(5)} \tag{154}$$

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	$(a, b, c, d)^{-6}$
$\chi^{(6)}$	9	-1	1	0	-1

Воспользуемся алгоритом разложения на неприводимые:

$$\chi^{(6)} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi^{(6)} \rangle$$
 (155)

$$a_1 = \frac{1}{24}(1 \cdot 9 - 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 - 6 \cdot 1) = 0$$
(156)

$$a_2 = \frac{1}{24}(1 \cdot 9 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 1 \tag{157}$$

$$a_3 = \frac{1}{24}(1 \cdot 27 - 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = 1$$
 (158)

$$a_4 = \frac{1}{24}(1 \cdot 27 + 6 \cdot 1 - 3 \cdot 1 + 8 \cdot 0 - 6 \cdot 1) = 1$$
(159)

$$a_5 = \frac{1}{24}(1 \cdot 18 + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 0 - 6 \cdot 0) = 1$$
 (160)

Таким образом, получаем разложение:

$$V_6 = V_2 \oplus V_3 \oplus V_4 \oplus V_5 \tag{161}$$

Задача 6.4.

Предложение 19 (Второе соотношение ортогональности для характеров). Для любых двух классов сопряжённости C_i , C_j , где $i \le i, j \le k$ верно:

$$\sum_{\alpha=1}^{k} \chi^{(\alpha)}(h_i) \overline{\chi^{(\alpha)}(h_j)} = \delta_{i,j} \frac{|G|}{|C_i|}$$
(162)

Доказательство. Разложим γ_i по базису $\chi^{(\alpha)}$:

$$\gamma_i = \sum_{\alpha=1}^k \gamma_i^{(\alpha)} \chi^{(\alpha)},\tag{163}$$

где γ_i^{α} можно найти по формуле

$$\gamma_i^{(\alpha)} = \langle \chi^{(\alpha)}, \gamma_i \rangle = \frac{1}{|G|} \sum_{j=1}^k \overline{\chi^{(\alpha)}(h_j)} \gamma_i(h_j)$$
 (164)

Воспользуемся определением характеристической функции γ_i :

$$\gamma_i(h_j) = \delta_{i,j} \tag{165}$$

Тогда в сумме останутся $|C_i|$ слагаемых $\chi^{(\alpha)}(h_i)$:

$$\gamma_i^{(\alpha)} = \frac{|C_i|}{|G|} \overline{\chi^{(\alpha)}(h_i)} \tag{166}$$

Подставим в (163):

$$\gamma_i = \sum_{\alpha=1}^k \frac{|C_i|}{|G|} \overline{\chi^{(\alpha)}(h_i)} \chi^{(\alpha)} = \frac{|C_i|}{|G|} \sum_{\alpha=1}^k \overline{\chi^{(\alpha)}(h_i)} \chi^{(\alpha)}$$

$$\tag{167}$$

$$\gamma_i(h_j) = \frac{|C_i|}{|G|} \sum_{\alpha=1}^k \overline{\chi^{(\alpha)}(h_i)} \chi^{(\alpha)}(h_j) = \delta_{i,j}$$
(168)

$$\sum_{\alpha=1}^{k} \overline{\chi^{(\alpha)}(h_i)} \chi^{(\alpha)}(h_j) = \delta_{i,j} \frac{|G|}{|C_j|}$$
(169)

Поменяем индексы i и j местами:

$$\sum_{\alpha=1}^{k} \chi^{(\alpha)}(h_i) \overline{\chi^{(\alpha)}(h_j)} = \delta_{i,j} \frac{|G|}{|C_i|}$$
(170)

7 Разные конструкции. Группа SO(2).

Упражнение 7.1 (*).

Предложение 20. Пусть A – матрица, состоящая из одного экорданова блока размера $n \times n$, n > 1 с собственным значением $\lambda \in \mathbb{C}$. Матрица $\exp(\alpha A)$ не будет диагональной при любом $\alpha \in \mathbb{C}$, $\alpha \neq 0$. При $\lambda \neq 0$ матрица A^k не будет диагональной при любом $k \in \mathbb{N}$.

Доказательство. Жорданова клетка A:

$$A = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

$$(171)$$

$$A = \lambda E + B \tag{172}$$

где B – нильпонентная матрица: $B^n = 0$. Домножение B^i на B сдвигает «диагональ единиц» на одну позицию вверх. Найдём экспоненту матрицы B:

$$e^{B} = E + \sum_{i=1}^{n-1} \frac{B^{i}}{i!} = \begin{pmatrix} 1 & 1 & \frac{1}{2} & \dots & \frac{1}{(n-2)!} & \frac{1}{(n-1)!} \\ 0 & 1 & 1 & \dots & \frac{1}{(n-3)!} & \frac{1}{(n-2)!} \\ 0 & 0 & 1 & \dots & \frac{1}{(n-4)!} & \frac{1}{(n-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$(173)$$

$$e^{\alpha B} = E + \sum_{i=1}^{n-1} \frac{(\alpha B)^i}{i!} = \begin{pmatrix} 1 & \alpha & \frac{\alpha^2}{2} & \dots & \frac{\alpha^{n-2}}{(n-2)!} & \frac{\alpha^{n-1}}{(n-1)!} \\ 0 & 1 & \alpha & \dots & \frac{\alpha^{n-3}}{(n-3)!} & \frac{\alpha^{n-2}}{(n-2)!} \\ 0 & 0 & 1 & \dots & \frac{\alpha^{n-4}}{(n-4)!} & \frac{\alpha^{n-3}}{(n-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & \alpha \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$(174)$$

$$e^{\alpha A} = e^{\alpha \lambda E} e^{\alpha B} = e^{\alpha \lambda} e^{\alpha B} = e^{\alpha \lambda} e^{\alpha B} = e^{\alpha \lambda} \begin{pmatrix} 1 & \alpha & \frac{\alpha^2}{2} & \dots & \frac{\alpha^{n-2}}{(n-2)!} & \frac{\alpha^{n-1}}{(n-1)!} \\ 0 & 1 & \alpha & \dots & \frac{\alpha^{n-3}}{(n-3)!} & \frac{\alpha^{n-2}}{(n-2)!} \\ 0 & 0 & 1 & \dots & \frac{\alpha^{n-4}}{(n-4)!} & \frac{\alpha^{n-3}}{(n-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & \alpha \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$(175)$$

Данная матрица не является диагональной при $\alpha \neq 0$.

$$A^{k} = (\lambda E + B)^{k} = \sum_{i=1}^{\min(k, n-1)} C_{k}^{i} \lambda^{n-i} B^{i} = \begin{pmatrix} \lambda^{k} & C_{k}^{1} \lambda^{k-1} & C_{k}^{2} \lambda^{k-2} & \dots & C_{k}^{n-2} \lambda^{k-n+2} & C_{k}^{n-1} \lambda^{k-n+1} \\ 0 & \lambda^{k} & C_{k}^{1} \lambda^{k-1} & \dots & C_{k}^{n-3} \lambda^{k-n+3} & C_{k}^{n-2} \lambda^{k-n+2} \\ 0 & 0 & \lambda^{k} & \dots & C_{k}^{n-4} \lambda^{k-n+4} & C_{k}^{n-3} \lambda^{k-n+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda^{k} & C_{k}^{1} \lambda^{k-1} \\ 0 & 0 & 0 & \dots & 0 & \lambda^{k} \end{pmatrix}$$

где подразумевается, что $C_k^i=0$ при i>k. При $k\ge 1$ и $\lambda\ne 0$ матрица A^k не диагональна. \qed

Задача 7.2. а) Классы сопряжённости групп D_n описаны в задаче 4.3, п. а. В D_6 6 классов сопряжённости: $\{e\}$, $\{r^{-1}, r^1\}$, $\{r^2, r^{-2}\}$, $\{r^3\}$, $\{sr^{2b}\}$, $\{sr^{2b+1}\}$. Значит и число неприводимых представлений равно 6. Найдём их размерности: $|D_6| = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = 12$. Единственный возможный вариант: $d_1 = d_2 = d_3 = d_4 = 1$, $d_5 = d_6 = 2$. Найдём все одномерные представления (их всего 4). Коммутанты D_n описаны в задаче 4.3, п. б. $[D_6, D_6] = \{e, r^2, r^4\}$. Факторгруппа $D_6/[D_6, D_6] \simeq C_2 \times C_2$, т.е. $|D_6/[D_6, D_6]| = |C_2 \times C_2| = 4$ (ещё раз получаем, что всего 4 одномерных неприводимых представления). Любое одномерное неприводимое представление – представление фактора по коммутанту. Первое одномерное неприводимое представление – m привиальное: все элементы D_6 переходят в 1.

$$\rho_1(r) = \rho_1(s) = 1$$
 (176)

Для отражений верно, что $(sr^b)^2 = sr^bsr^b = r^{-b}r^b = e$. Поэтому $\rho(sr^b)^2 = \rho((sr^b)^2) = \rho(e) = 1$ и $\rho(sr^b) = \pm 1$. $\rho(sr^b) = 1$ соответствует тривиальному представлению, а $\rho(sr^b) = -1$ – второму одномерному представлению. Т.е. во втором одномерном представлении все повороты перейдут в 1, а отражения – в -1.

$$\rho_2(r) = 1, \quad \rho_2(s) = -1$$
 (177)

Произведение двух нечётных поворотов – чётный поворот. Поэтому все чётные повороты можно перевести в 1, а нечётные – в –1. Отражения sr^{2b} можно перевести в 1, а sr^{2b+1} – в –1 (третье представление) или наоборот (четвёртое представление). При этом будут выполняться необходимые тождества: $\rho(r^ar^b) = \rho(r^{a+b}), \ \rho(r^asr^b) = \rho(sr^{b-a}) = \rho(sr^{a+b}) = \rho(sr^{a+b})$.

$$\rho_3(r^2) = 1, \quad \rho_3(r) = -1, \quad \rho_3(sr^2) = 1, \quad \rho_3(sr) = -1$$
 (178)

$$\rho_4(r^2) = 1, \quad \rho_4(r) = -1, \quad \rho_4(sr^2) = -1, \quad \rho_4(sr) = 1$$
 (179)

Найдём 2 оставшихся двумерных неприводимых представления. Для них должны выполняться тождества: $\rho(r^b)^6 = \rho((r^b)^6) = \rho(e) = 1$ (матрицы поворота), $\rho(sr^b)^2 = \rho((sr^b)^2) = \rho(e) = 1$ (матрица отражения), $\rho(r)\rho(s)\rho(r)\rho(s) = \rho(rsrs) = \rho(e) = 1$.

$$\rho_5(r) = \begin{pmatrix} \cos\frac{2\pi}{6} & -\sin\frac{2\pi}{6} \\ \sin\frac{2\pi}{6} & \cos\frac{2\pi}{6} \end{pmatrix}, \quad \rho_5(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (180)

$$\rho_6(r) = \begin{pmatrix} \cos\frac{4\pi}{6} & -\sin\frac{4\pi}{6} \\ \sin\frac{4\pi}{6} & \cos\frac{4\pi}{6} \end{pmatrix}, \quad \rho_6(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (181)

Ещё раз проверим, что все найденные представления являются неприводимыми. Для этого воспользуемся критерием $\langle \chi^{(i)}, \chi^{(i)} \rangle = 1$:

$$\langle \chi^{(1)}, \chi^{(1)} \rangle = \frac{1}{12} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 + 3 \cdot 1 + 3 \cdot 1) = 1$$
 (182)

$$\langle \chi^{(2)}, \chi^{(2)} \rangle = \frac{1}{12} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 + 3 \cdot 1 + 3 \cdot 1) = 1$$
 (183)

	e^{1}	r^1, r^{-1}	r^2, r^{-2}	r^{3} 1	sr^{2b} 3	sr^{2b+1} 3
$\chi^{(1)}$	1	1	1	1	1	1
$\chi^{(2)}$	1	1	1	1	-1	-1
$\chi^{(3)}$	1	-1	1	-1	1	-1
$\chi^{(4)}$	1	-1	1	-1	-1	1
$\chi^{(5)}$	2	1	-1	-2	0	0
$\chi^{(6)}$	2	-1	-1	2	0	0

Таблица 3: Таблица характеров группы D_6

$$\langle \chi^{(3)}, \chi^{(3)} \rangle = \frac{1}{12} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 + 3 \cdot 1 + 3 \cdot 1) = 1$$
 (184)

$$\langle \chi^{(4)}, \chi^{(4)} \rangle = \frac{1}{12} (1 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 1 + 3 \cdot 1 + 3 \cdot 1) = 1$$
 (185)

$$\langle \chi^{(5)}, \chi^{(5)} \rangle = \frac{1}{12} (1 \cdot 4 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 4 + 3 \cdot 0 + 3 \cdot 0) = 1$$
 (186)

$$\langle \chi^{(6)}, \chi^{(6)} \rangle = \frac{1}{12} (1 \cdot 4 + 2 \cdot 1 + 2 \cdot 1 + 1 \cdot 4 + 3 \cdot 0 + 3 \cdot 0) = 1$$
 (187)

б) Группа D_{nh} рассмотрена в задаче 3.3, п. а. $D_{nh} = D_n \times C_2$. По теореме 1 лекции 7 все неприводимые представления D_{6h} можно получить как $\rho^{D_6} \boxtimes \rho^{C_2}$, где ρ^{D_6} и ρ^{C_2} – неприводимые представления D_6 и C_2 соответственно. В группе C_2 всего 2 элемента: e и r, каждый из которых является классом сопряжённости. Значит всего 2 неприводимых представления. Найдём их размерности: $|C_2| = d_1^2 + d_2^2 = 2$. Единственный возможный вариант: $d_1 = d_2 = 1$.

$$\rho_1(e) = 1, \quad \rho_1(r) = 1$$
(188)

$$\rho_2(e) = 1, \quad \rho_2(r) = -1$$
(189)

	e^{1}	r , 1
$\chi^{(1)}$	1	1
$\chi^{(2)}$	1	-1

Таблица 4: Таблица характеров группы C_2

$$\dim(V \otimes U) = \dim V \cdot \dim U \tag{190}$$

Значит для получения двумерных неприводимых представлений нужно перемножить два двумерных представления D_6 с двумя одномерными представлениями C_2 . Получится всего 4 двумерных подпространства D_{6h} .

Их характеры можно найти по формуле

$$\chi_{\rho^{D_6 \boxtimes \rho^{C_2}}}(g^{D_6}, g^{C_2}) = \chi_{\rho^{D_6}}(g^{D_6}) \cdot \chi_{\rho^{C_2}}(g^{C_2}), \tag{191}$$

где $g^{D_6} \in D_6$ и $g^{C_2} \in C_2$.

	$(e, e)^{-1}$	$(r^1, e), (r^{-1}, e)^2$	$(r^2, e), (r^{-2}, e)^2$	$(r^3, e)^{-1}$	$(sr^{2b},e)^3$	$(sr^{2b+1},e)^3$
$\chi_{\rho_5^{D_6}\boxtimes \rho_1^{C_2}}$	2	1	-1	-2	0	0
$\chi_{\rho_6^{D_6}\boxtimes \rho_1^{C_2}}$	2	-1	-1	2	0	0
	$(e,r)^{-1}$	$(r^1,r), (r^{-1},r)^2$	$(r^2,r), (r^{-2},r)^2$	$(r^3, r)^{-1}$	$(sr^{2b}, r)^{3}$	$(sr^{2b+1},r)^3$
$\chi_{\rho_5^{D_6}\boxtimes \rho_1^{C_2}}$	2	1	-1	-2	0	0
$\chi_{\rho_6^{D_6}\boxtimes \rho_1^{C_2}}$	2	-1	-1	2	0	0
	$(e,e)^{-1}$	$(r^1, e), (r^{-1}, e)^2$	$(r^2, e), (r^{-2}, e)^2$	$(r^3, e)^{-1}$	$(sr^{2b},e)^3$	$(sr^{2b+1},e)^{3}$
$\chi_{\rho_5^{D_6}\boxtimes \rho_2^{C_2}}$	2	1	-1	-2	0	0
$\chi_{\rho_6^{D_6}\boxtimes \rho_2^{C_2}}$	2	-1	-1	2	0	0
	$(e,r)^{-1}$	$(r^1,r), (r^{-1},r)^2$	$(r^2,r), (r^{-2},r)^2$	$(r^3, r)^{-1}$	$(sr^{2b}, r)^{3}$	$(sr^{2b+1},r)^{3}$
$\chi_{\rho_5^{D_6}\boxtimes \rho_2^{C_2}}$	-2	-1	1	2	0	0
$\chi_{\rho_6^{D_6}\boxtimes \rho_2^{C_2}}$	-2	1	1	-2	0	0

Таблица 5: Двумерные неприводимые представления D_{6h}

Задача 7.3. Классы сопряжённости A_4 описаны в задаче 3.2, п. б. Всего классов сопряжённости 4, значит и неприводимых представлений 4. Найдём их размерности: $|A_4| = d_1^2 + d_2^2 + d_3^2 + d_4^2 = 12$. Единственный возможный вариант: $d_1 = d_2 = d_3 = 1$, $d_4 = 3$. Найдём все одномерные представления. Для этого найдём коммутант A_4 . В A_4 всего 4 коммутантельности.

Найдём все одномерные представления. Для этого найдём коммутант A_4 . В A_4 всего 4 коммутатора, они порождают коммутант: $[A_4, A_4] = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$. Факторгруппа $A_4/[A_4, A_4] \simeq \mathbb{Z}_3$, т.е. $|A_4/[A_4, A_4]| = |\mathbb{Z}_3| = 3$ (ещё раз получаем, что всего 2 одномерных неприводимых представления). Любое одномерное неприводимое представление – представление фактора по коммутанту. Первое одномерное неприводимое представление – *тривиальное*: все элементы A_4 переходят в 1.

$$\rho_1(g) = 1, \quad \forall g \in A_4 \tag{192}$$

Второе одномерное неприводимое представление – циклы из группы (1,2,3) переходят в корень 3 степени из 1 $(e^{i\frac{2\pi}{3}})$, циклы из группы (1,3,2) – в другой корень 3 степени из 1 $(e^{i\frac{4\pi}{3}})$ (квадрат цикла из группы (1,2,3) равен циклу из группы (1,3,2) и наоборот). Произведения транспозиций (a,b)(c,d) перейдут в 1, поскольку произведение циклов длины 3 из разных группы равно произведению транспозиций и $\rho((a,b)(c,d)) = e^{i\frac{2\pi}{3}}e^{i\frac{4\pi}{3}} = 1$.

$$\rho_2((a,b)(c,d)) = 1, \quad \rho_2((1,2,3)) = e^{i\frac{2\pi i}{3}}, \quad \rho_2((1,3,2)) = e^{i\frac{4\pi i}{3}}$$
(193)

Третье одномерное неприводимое представление — циклы из группы (1,2,3) переходят в корень 3 степени из 1 $(e^{i\frac{4\pi}{3}})$, циклы из группы (1,3,2) — в другой корень 3 степени из 1 $(e^{i\frac{2\pi}{3}})$ (квадрат цикла из группы (1,2,3) равен циклу из группы (1,3,2) и наоборот). Произведения транспозиций (a,b)(c,d) перейдут в 1, поскольку произведение циклов длины 3 из разных группы равно произведению транспозиций и $\rho((a,b)(c,d)) = e^{i\frac{2\pi}{3}}e^{i\frac{4\pi}{3}} = 1$.

$$\rho_3((a,b)(c,d)) = 1, \quad \rho_2((1,2,3)) = e^{i\frac{4\pi i}{3}}, \quad \rho_2((1,3,2)) = e^{i\frac{2\pi i}{3}}$$
(194)

где через (1,2,3) обозначены все циклы длины 3, содержащиеся в одном с (1,2,3) классе сопряжённости, через (1,3,2) аналогично.

Трёхмерное неприводимое представление A_4 можно получить как ограничение трёхмерных неприводимых представлений S_4 на A_4 (они сольются в одно).

	e^{1}	$(a,b)(c,d)^3$	$(1,2,3)^4$	$(1,3,2)^4$
$\chi^{(1)}$	1	1	1	1
$\chi^{(2)}$	1	1	$e^{i\frac{2\pi}{3}}$	$e^{i\frac{4\pi}{3}}$
$\chi^{(3)}$	1	1	$e^{i\frac{4\pi}{3}}$	$e^{i\frac{2\pi}{3}}$
$\chi^{(4)}$	3	-1	0	0

Таблица 6: Таблица характеров группы A_4

Ещё раз проверим, что все найденные представления являются неприводимыми. Для этого воспользуемся критерием $\langle \chi^{(i)}, \chi^{(i)} \rangle = 1$:

$$\langle \chi^{(1)}, \chi^{(1)} \rangle = \frac{1}{12} (1 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 + 4 \cdot 1) = 1$$
 (195)

$$\langle \chi^{(2)}, \chi^{(2)} \rangle = \frac{1}{12} (1 \cdot 1 + 3 \cdot 1 + 4 \cdot e^{i\frac{4\pi}{3}} + 4 \cdot e^{i\frac{2\pi}{3}}) = 1$$
 (196)

$$\langle \chi^{(3)}, \chi^{(3)} \rangle = \frac{1}{12} (1 \cdot 1 + 3 \cdot 1 + 4 \cdot e^{i\frac{2\pi}{3}} + 4 \cdot e^{i\frac{4\pi}{3}}) = 1$$
 (197)

$$\langle \chi^{(4)}, \chi^{(4)} \rangle = \frac{1}{12} (1 \cdot 9 + 3 \cdot 1 + 4 \cdot 0 + 4 \cdot 0) = 1$$
 (198)

Разложим ограничения неприводимых представлений S_4 на A_4 :

	e^{1}	$(a,b)(c,d)^{-3}$	$(1,2,3)^4$	$(1,2,3)^4$
$\bar{\chi}^{(1)}$	1	1	1	1
$\bar{\chi}^{(2)}$	1	1	1	1
$\bar{\chi}^{(3)}$	3	-1	0	0
$\bar{\chi}^{(4)}$	3	-1	0	0
$\bar{\chi}^{(5)}$	2	2	-1	-1

Таблица 7: Ограничение неприводимых представлений S_4 на A_4

Как видно,

$$\bar{\chi}^{(1)} = \bar{\chi}^{(2)} = \chi^{(1)}$$
 (199)

$$\bar{\chi}^{(3)} = \bar{\chi}^{(4)} = \chi^{(4)}$$
 (200)

Разложим $\bar{\chi}^{(5)}$ при помощи алгоритма разложения на неприводимые:

$$\bar{\chi}^{(5)} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi^{(5)} \rangle$$
 (201)

$$a_1 = \frac{1}{12}(1 \cdot 2 + 3 \cdot 2 - 4 \cdot 1 - 4 \cdot 1) = 0$$
 (202)

$$a_2 = \frac{1}{12} \left(1 \cdot 2 + 3 \cdot 2 - 4 \cdot e^{i\frac{2\pi}{3}} - 4 \cdot e^{i\frac{4\pi}{3}} \right) = 1$$
 (203)

$$a_3 = \frac{1}{12} \left(1 \cdot 2 + 3 \cdot 2 - 4 \cdot e^{i\frac{4\pi}{3}} - 4 \cdot e^{i\frac{2\pi}{3}} \right) = 1$$
 (204)

$$a_4 = \frac{1}{12}(1 \cdot 6 - 3 \cdot 2 - 4 \cdot 0 - 4 \cdot 0) = 0 \tag{205}$$

Таким образом, двумерное пространство оказалось приводимым:

$$\bar{\chi}^{(5)} = \chi^{(2)} + \chi^{(3)} \tag{206}$$

Задача 7.4. а)

Предложение 21. Порядок группы вращений додекаэдра G_0 равен 60.

Доказательство. Пусть x – произвольная грань додекаэдра. Симметриями она может быть переведена в любую другую, а значит |Gx| = 12 (в додекаэдре 12 граней). Вращения, переводящие грань додекаэдра (правильный пятиугольник) в себя, образуют группу C_5 . $|G_x| = |C_5| = 5$. Таким образом,

$$|G_0| = |G_x||Gx| = 60$$
(207)

- б) Различные собственными движения, сохраняющие додекаэдр:
 - 1. Id (1 шт.) тождественное движение (ничего не делает с додекаэдром).
 - 2. r_1 (12 шт., порядок 5) повороты на $\pm \frac{2\pi}{5}$ вокруг прямых l_1 , проходящих через центры противоположных граней.
 - 3. r_2 (12 шт., порядок 5) повороты на $\pm \frac{4\pi}{5}$ вокруг прямых l_1 , проходящих через центры противоположных граней.
 - 4. r_3 (20 шт., порядок 3) повороты на $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ вокруг прямых l_2 , проходящих через противоположные вершины.
 - 5. r_4 (15 шт., порядок 2) повороты на π вокруг прямых l_3 , проходящих через середины противоположных рёбер.

B)

Предложение 22. G_0 изоморфна группе чётных перестановок A_5 .

Доказательство. Для доказательства изоморфизма выпишем соответствие между перестановками различных циклических типов в A_5 5 тетраэдров и различными движениями, сохраняющими додекаэдр:

- $1. \ e \ ($ единичный, $1 \ \text{шт.}) \text{Id}.$
- 2. (1,2,3,4,5), (1,2,4,5,3), (1,2,5,3,4), (1,3,2,5,4), (1,3,4,2,5), (1,3,5,4,2), (1,4,2,3,5), (1,4,3,5,2), (1,4,5,2,3), (1,5,2,4,3), (1,5,3,2,4), (1,5,4,3,2) (циклы длины 5, 12 шт.) r_1 .
- 3. $(1,2,3,5,4), (1,2,4,3,5), (1,2,5,4,3), (1,3,2,4,5), (1,3,4,5,2), (1,3,5,2,4), (1,4,2,5,3), (1,4,3,2,5), (1,4,5,3,2), (1,5,2,3,4), (1,5,3,4,2), (1,5,4,2,3) (циклы длины 5, 12 шт.) <math>-r_2$.
- 4. (a, b, c) (циклы длины 3, 20 шт.) r_3 .
- 5. (a,b)(c,d) (произведение транспозиций, 15 шт.) r_4 .

Таким образом, построено однозначное соответствие между перестановками и движениями, сохраняющее групповые операции, а значит изоморфизм групп построен.

 Γ)

Предложение 23. Группа всех симметрий додекаэдра G изоморфна группе $C_2 \times A_5$.

Доказательство. В G тождественное движение и центральная симметрия образуют C_2 . Все движения из G можно представить в виде произведения собственных движений из G_0 и элементов C_2 . Подгруппы G_0 и C_2 коммутируюет и пересекаются только по e. По предложению 7 лекции 4 предложение доказано.

д)

Предложение 24. Группы S_5 и $C_2 \times A_5$ не изоморфны.

Доказательство. В группе S_5 максимальный порядок среди всех элементов 6 (у элементов (a,b,c)(d,e). В группе $C_2 \times A_5$ есть элемент порядка 10 (у элементов ((a,b,c,d,e),s), где s — центальная симметрия). Значит, эти группы изоморфными быть не могут.

Задача 7.5. По предложению 7 лекции 3 перестановки сопряжены тогда и только тогда, когда имеют одинаковую циклическую структуру. Значит, в S_5 всего 7 классов сопряжённости: $\{e, (a, b), (a, b, c), (a, b, c, d), (a, b, c, d, e), (a, b), (c, d), (a, b, c), (d, e)\}.$

Рассмотрим перестановочное представление S_5 . Оно имеет два нетривиальных подпредставления

$$U_1 = \{ \sum_{i=1}^{5} x_i e_i | x_1 = x_2 = \dots = x_5 \}, \quad U_2 = \{ \sum_{i=1}^{5} x_i e_i | \sum_{i=1}^{5} x_i = 0 \}$$
 (208)

$$\mathbb{C}^5 = U_1 \oplus U_2 \tag{209}$$

Любое одномерное представление неприводимо. Докажем, что U_2 также является неприводимым. Для этого воспользуемся базисом:

$$e' = e_1 - e_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e'' = e_1 - e_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
 (210)

$$e''' = e_1 - e_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad e'''' = e_1 - e_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$
 (211)

Любой вектор может быть выражен через базисные вектора:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = -x_2 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} - x_3 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} - x_4 \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} - x_5 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$
 (212)

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = -x_2 e' - x_3 e'' - x_4 e''' - x_5 e''''$$
(213)

Представление U_2 :

$$e \to \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (1,2) \to \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (1,2,3) \to \begin{pmatrix} -1 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(1,2)(3,4) \rightarrow \begin{pmatrix} -1 & -1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (1,2,3)(4,5) \rightarrow \begin{pmatrix} -1 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 (215)

Характер представления U_2 :

	e^{1}	$(a,b)^{10}$	$(a, b, c)^{20}$	$(a, b, c, d)^{30}$	$(a, b, c, d, e)^{-24}$	$(a,b)(c,d)^{-15}$	$(a, b, c)(d, e)^{-20}$
$\chi^{(4)}$	4	2	1	0	-1	0	-1

Проверим, что все представление U_2 являются неприводимыми. Для этого воспользуемся критерием $\langle \chi^{(i)}, \chi^{(i)} \rangle = 1$:

$$\langle \chi^{(4)}, \chi^{(4)} \rangle = \frac{1}{120} (1 \cdot 16 + 10 \cdot 4 + 20 \cdot 1 + 30 \cdot 0 + 24 \cdot 1 + 15 \cdot 0 + 20 \cdot 1) = 1$$
 (216)

Таким образом, пятимерное перестановочное произведение разложено в прямую сумму двух неприводимых:

$$\boxed{\mathbb{C}^5 = U_1 \oplus U_2} \tag{217}$$

Задача 7.6. а)* Проверим, какие классы сопряжённости из S_5 перейдут в A_5 . Конечно, класс $\{e\}$ сохранится. 2 класса, состоящие из произведений транспозиций и циклов длины 3, сохранятся также.

Рассмотрим циклы длины 5. $|A_5|=60$, а значит класс сопряжённости (орбита) не может состоять из 24 элементов (60 на 24 не делится). В A_5 невозможно получить каждый цикл длины 5 из каждого, т.е. циклы длины 5 создадут 2 класса сопряжённости в A_5 , которые соответствуют поворотам на $\pm \frac{2\pi}{5}$ и $\pm \frac{4\pi}{5}$ вокруг прямых, проходящих через центры противоположных граней додекаэдра (по 12 в каждом классе): $\{(1,2,3,4,5),(1,2,4,5,3),(1,2,5,3,4),(1,3,2,5,4),(1,3,4,2,5),(1,3,5,4,2),(1,4,2,3,5),(1,4,3,5,2),(1,4,5,2,3),(1,5,2,4,3),(1,5,3,2,4),(1,5,4,3,2)\};$ $\{(1,2,3,5,4),(1,2,4,3,5),(1,2,5,4,3),(1,3,2,4,5),(1,3,4,5,2),(1,3,5,2,4),(1,4,2,5,3),(1,4,3,2,5),(1,4,5,3,2),(1,5,2,3,4),(1,5,3,4,2),(1,5,4,2,3)\}.$

Таким образом, всего будет 5 классов сопряженности в A_5 .

- б) 3 различных неприводимых представления группы A_5 :
 - 1. Тривиальное одномерное преставление. Все элементы A_5 переходят в 1.
 - 2. Первое трёхмерное представление, соответствующее вращениям додекаэдра:

$$e \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (a, b, c) \to \begin{pmatrix} \cos\frac{2\pi}{3} & -\sin\frac{2\pi}{3} & 0 \\ \sin\frac{2\pi}{3} & \cos\frac{2\pi}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (a, b)(c, d) \to \begin{pmatrix} \cos\pi & -\sin\pi & 0 \\ \sin\pi & \cos\pi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(1, 2, 3, 4, 5) \to \begin{pmatrix} \cos\frac{2\pi}{5} & -\sin\frac{2\pi}{5} & 0 \\ \sin\frac{2\pi}{5} & \cos\frac{2\pi}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (1, 2, 3, 5, 4) \to \begin{pmatrix} \cos\frac{4\pi}{5} & -\sin\frac{4\pi}{5} & 0 \\ \sin\frac{4\pi}{5} & \cos\frac{4\pi}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3. Второе трёхмерное представление, соответствующее вращениям додекаэдра (соответствует другому способу нумерования тетраэдров):

$$e \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (a, b, c) \to \begin{pmatrix} \cos\frac{2\pi}{3} & -\sin\frac{2\pi}{3} & 0 \\ \sin\frac{2\pi}{3} & \cos\frac{2\pi}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (a, b)(c, d) \to \begin{pmatrix} \cos\pi & -\sin\pi & 0 \\ \sin\pi & \cos\pi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(1, 2, 3, 4, 5) \to \begin{pmatrix} \cos\frac{4\pi}{5} & -\sin\frac{4\pi}{5} & 0 \\ \sin\frac{4\pi}{5} & \cos\frac{4\pi}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (1, 2, 3, 5, 4) \to \begin{pmatrix} \cos\frac{2\pi}{5} & -\sin\frac{2\pi}{5} & 0 \\ \sin\frac{2\pi}{5} & \cos\frac{2\pi}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

в) Классы сопряжённости A_5 описаны в п. а. Всего классов сопряжённости 5, значит и неприводимых представлений 5. Найдём их размерности: $|A_5| = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 = 60$. Единственный возможный вариант: $d_1 = 1$, $d_2 = d_3 = 3$, $d_4 = 4$, $d_5 = 5$.

Единственное одномерное представление ρ_1 – тривиальное. Оба трёхмерных представления ρ_2 и ρ_3 A_5 рассмотрены в п. б. Четырёхмерное представление в A_5 ρ_4 – ограничение представления U_2 (см. задачу 7.5) на A_5 .

Характеры пятимерного произведения ρ_5 можно найти из следствия 1 предложения 9 лекции 6:

$$\chi_{\text{reg}} = d_1 \chi^{(1)} + d_2 \chi^{(2)} + d_3 \chi^{(3)} + d_4 \chi^{(4)} + d_5 \chi^{(5)} \to \chi^{(5)} = \frac{1}{5} (\chi_{\text{reg}} - \chi^{(1)} - 3\chi^{(2)} - 3\chi^{(3)} - 4\chi^{(4)})$$
(218)

Характер регулярного произведения можно найти из предложения 8 лекции 6:

$$\chi_{\text{reg}}(e) = |A_5| = 60, \quad \chi_{\text{reg}}(g) = 0, \ g \neq e$$
(219)

$$\chi^{(5)}(e) = \frac{1}{5}(60 - 1 - 3 \cdot 3 - 3 \cdot 3 - 4 \cdot 4) = 5 = d_5$$
(220)

$$\chi^{(5)}((a,b,c)) = \frac{1}{5}(0 - 1 - 3 \cdot 0 - 3 \cdot 0 - 4 \cdot 1) = -1$$
 (221)

$$\chi^{(5)}((a,b)(c,d)) = \frac{1}{5}(0-1-3\cdot(-1)-3\cdot(-1)-4\cdot0) = 1$$
 (222)

$$\chi^{(5)}((1,2,3,4,5)) = \frac{1}{5}(0-1-3\cdot(1+2\cos\frac{2\pi}{5})-3\cdot(1+2\cos\frac{4\pi}{5})-4\cdot(-1)) = 0 \quad (223)$$

$$\chi^{(5)}((1,2,3,5,4)) = \frac{1}{5}(0-1-3\cdot(1+2\cos\frac{4\pi}{5})-3\cdot(1+2\cos\frac{2\pi}{5})-4\cdot(-1)) = 0 \quad (224)$$

В последних 2 уравнениях использовано равенство:

$$\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = \frac{e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}}{2} + \frac{e^{i\frac{4\pi}{5}} + e^{-i\frac{4\pi}{5}}}{2} = \frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{i\frac{4\pi}{5}} + e^{-i\frac{4\pi}{5}}) = \frac{e^{-i\frac{4\pi}{5}}}{2}\frac{e^{i\frac{8\pi}{5}} - 1}{e^{i\frac{2\pi}{5}} - 1} = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{4\pi}{5}}) = \frac{e^{-i\frac{4\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{4\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{4\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{4\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}}) = \frac{e^{-i\frac{2\pi}{5}}}{2}e^{i\frac{2\pi}{5}} - 1 = -\frac{1}{2}(e^{i\frac{2\pi}{5}} + e^{-i\frac{2\pi}{5}} +$$

Таблица характеров A_5 :

	e^{1}	$(a, b, c)^{20}$	$(1,2,3,4,5)^{-12}$	$(1,2,3,5,4)^{-12}$	$(a,b)(c,d)^{-15}$
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	3	0	$1 + 2\cos\frac{2\pi}{5}$	$1 + 2\cos\frac{4\pi}{5}$	-1
$\chi^{(3)}$	3	0	$1 + 2\cos\frac{4\pi}{5}$	$1 + 2\cos\frac{2\pi}{5}$	-1
$\chi^{(4)}$	4	1	-1	-1	0
$\chi^{(5)}$	5	-1	0	0	1

Таблица 8: Таблица характеров группы A_5

Проверим представления на неприводимость, для этого воспользуемся критерием $\langle \chi^{(i)}, \chi^{(i)} \rangle = 1$:

$$\langle \chi^{(1)}, \chi^{(1)} \rangle = \frac{1}{60} (1 \cdot 1 + 20 \cdot 1 + 12 \cdot 1 + 12 \cdot 1 + 15 \cdot 1) = 1$$
 (226)

$$\langle \chi^{(2)}, \chi^{(2)} \rangle = \frac{1}{60} \left(1 \cdot 9 + 20 \cdot 0 + 12 \cdot \left(1 + 2\cos\frac{2\pi}{5} \right)^2 + 12 \cdot \left(1 + 2\cos\frac{4\pi}{5} \right)^2 + 15 \cdot 1 \right) = 1 \tag{227}$$

$$\langle \chi^{(3)}, \chi^{(3)} \rangle = \frac{1}{60} \left(1 \cdot 9 + 20 \cdot 0 + 12 \cdot \left(1 + 2 \cos \frac{4\pi}{5} \right)^2 + 12 \cdot \left(1 + 2 \cos \frac{2\pi}{5} \right)^2 + 15 \cdot 1 \right) = 1 \tag{228}$$

Неприводимость $\chi^{(4)}$ проверена в задаче 7.5.

$$\langle \chi^{(5)}, \chi^{(5)} \rangle = \frac{1}{60} (1 \cdot 25 + 20 \cdot 1 + 12 \cdot 0 + 12 \cdot 0 + 15 \cdot 1) = 1$$
 (229)

8 Группы Ли, алгебры Ли.

Упражнение 8.1. Перемножим матрицы:

$$\begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} e^{i\alpha a} & e^{i\alpha b} \\ e^{-i\alpha c} & e^{i\alpha d} \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} a & e^{2i\alpha b} \\ e^{-2i\alpha}c & d \end{pmatrix}$$

Рассматривая a, b, c, d как координаты в четырёхмерном пространстве, получим

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow e^{2i\alpha} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \rightarrow e^{-2i\alpha} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Тогда для $e^{i\alpha} \in U(1)$ верно, что

$$\rho(e^{i\alpha}) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & e^{2i\alpha} & 0 & 0 \\
0 & 0 & e^{-2i\alpha} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(230)

Характер этого перестановочного представления:

$$\chi(\alpha) = 2 + e^{2i\alpha} + e^{-2i\alpha} \tag{231}$$

$$\chi(\alpha) = 2(1 + \cos 2\alpha) \tag{232}$$

Все неприводимые представления абелевых групп одномерны. Неприводимые представления U(1) были рассмотрены на лекции 7:

$$\chi^{(k)}(\alpha) = e^{ik\alpha} \tag{233}$$

Разложение характера в ряд Фурье:

$$\chi = \sum_{k=-\infty}^{\infty} c_k \chi^{(k)}, \quad c_k = \frac{1}{2\pi} \int_{0}^{2\pi} \chi(\alpha) \overline{\chi^{(k)}(\alpha)} d\alpha$$
 (234)

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} (2 + e^{2i\alpha} + e^{-2i\alpha}) e^{-ik\alpha} d\alpha$$
 (235)

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} (2 + e^{2i\alpha} + e^{-2i\alpha}) d\alpha = \frac{1}{2\pi} (2 \cdot 2\pi) = 2$$
 (236)

$$c_{\pm 2} = \frac{1}{2\pi} \int_{0}^{2\pi} (2 + e^{2i\alpha} + e^{-2i\alpha}) e^{\mp 2i\alpha} d\alpha = \frac{1}{2\pi} (2\pi) = 1$$
 (237)

Все остальные $c_k = 0$ как интегралы по целому числу периодов от синусов и косинусов.

$$\chi = 2\chi^{(0)} + \chi^{(-2)} + \chi^{(2)}$$
(238)

Задача 8.2. Группа унитарных матриц U(n) состоит из таких матриц $g_{n\times n}\in U(n)$, что $g^*g=gg^*=E.$ $g=(g_1,g_2,...,g_n).$ Распишем условие $gg^*=E$ через столбцы $g_i:$ $g_i\bar{g_j}^T=\delta_{ij}.$ При i=j: $g_i\bar{g_i}^T=|g_i|^2=1$ – всего n вещественных уравнений; при $i\neq j:$ $g_i\bar{g_j}^T=0$ – всего $\frac{n(n-1)}{2}$ комплексных или n(n-1) вещественных уравнений. Всего вещественных уравнений:

$$n + n(n-1) = n^2$$
 (239)

Рассмотрим все возможные гладкие кривые $g(t) \in U(n)$, где g(0) = E. При малых t эта кривая имеет вид g(t) = E + At + o(t), где A = g'(0). $gg^* = (E + At + o(t))(E + A^*t + o(t)) = E + (A + A^*)t + o(t) = E$, значит $A + A^* = 0$. Всё $T_E U(n)$ состоит из таких A, значит $T_E U(n)$ – пространство антиэрмитовых матриц размера $n \times n$.

Предложение 25. $T_EU(n)$ замкнуто относительно коммутатора.

Доказательство. Пусть $A, B \in T_E U(n)$, тогда $A^* = -A, B^* = -B$.

$$[A, B] + [A, B]^* = AB - BA + (AB - BA)^* = AB - BA + B^*A^* - A^*B^* = AB - BA + BA - AB = 0$$

Значит, $[A, B] \in T_E U(n)$ и $T_E U(n)$ замкнуто относительно коммутатора.

Задача 8.3. а)

Предложение 26. Алгебра $\mathcal{J}u \mathfrak{so}(3,\mathbb{R})$ изоморфна алгебре векторов \mathbb{R}^3 .

Доказательство. Для матриц [A, B] = AB - BA. Алгебра Ли $\mathfrak{so}(3, \mathbb{R})$ состоит из всех кососимметричных матриц размера 3×3 (пример 1, п. в лекции 8). Базис в $\mathfrak{so}(3, \mathbb{R})$:

$$I_{1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad I_{2} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad I_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
 (240)

$$[I_1, I_2] = I_3, \quad [I_1, I_3] = -I_2, \quad [I_2, I_3] = I_1$$
 (241)

Структурные константы:

$$c_{ij}^k = \epsilon_{ijk} \tag{242}$$

Для векторов в \mathbb{R}^3 коммутатор – векторное произведение. Пусть e_1, e_2, e_3 – базис в \mathbb{R}^3 .

$$[e_i, e_j] = \epsilon_{ijk} e_k \tag{243}$$

Структурные константы:

$$c_{ij}^k = \epsilon_{ijk} \tag{244}$$

б)

Предложение 27. Алгебра Ли $\mathfrak{su}(2)$ изоморфна алгебре $\mathfrak{so}(3,\mathbb{R})$.

Доказательство. Пусть $g \in SU(2)$, тогда $gg^* = E$ и $\det g = 1$. Рассмотрим малое приращение

$$g = E + t\delta g + o(t), \quad t \in \mathbb{R}$$
 (245)

Подставим это в уравнение на g:

$$(E + t\delta g + o(t))(E + t\delta g + o(t))^* = (E + t\delta g + o(t))(E + t\delta g^* + o(t)) = E + t(\delta g + \delta g^*) + o(t) = E$$

$$\det g = 1 + t \operatorname{tr} \delta g + o(t) = 1 \tag{246}$$

$$\delta g = -\delta g^*, \quad \text{tr } \delta g = 0$$
 (247)

Таким образом, алгебра Ли $\mathfrak{su}(2)$ состоит из антиэрмитовых матриц с нулевым следом. Пусть $A \in \mathfrak{su}(2)$, тогда общий вид такой матрицы

$$A = \begin{pmatrix} ia_1 & a_2 + ia_3 \\ -a_2 + ia_3 & -ia_1 \end{pmatrix} = a_1 \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + a_2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
(248)

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2i \\ 2i & 0 \end{pmatrix}$$
 (249)

Базис в $\mathfrak{su}(2)$:

$$I_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad I_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad I_3 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 (250)

$$[I_1, I_2] = I_3, \quad [I_1, I_3] = -I_2, \quad [I_2, I_3] = I_1$$
 (251)

Структурные константы:

$$c_{ij}^k = \epsilon_{ijk} \tag{252}$$

B)*

Предложение 28. Алгебра Ли $\mathfrak{sl}(2,\mathbb{R})$ не изоморфна алгебре $\mathfrak{so}(3,\mathbb{R})$.

Доказательство. Алгебра Ли $\mathfrak{sl}(2,\mathbb{R})$ состоит из всех матриц размера 2×2 с нулевым следом. Базис в $\mathfrak{sl}(2,\mathbb{R})$:

$$I_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 (253)

$$[I_1, I_2] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
(254)

Т.е. коммутатор $[I_1, I_2]$ пропорционален I_2 , чего точно не может быть в векторном произведении.

9 Симметричные тензоры. Группы Π и $SO(3),\ SU(2).$

Упражнение 9.1.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad A \otimes A = \begin{pmatrix} a_{11}A & a_{12}A \\ a_{21}A & a_{22}A \end{pmatrix} = \begin{pmatrix} a_{11}^2 & a_{11}a_{12} & a_{11}a_{12} & a_{22}^2 \\ a_{11}a_{21} & a_{11}a_{22} & a_{12}a_{21} & a_{12}a_{22} \\ a_{11}a_{21} & a_{12}a_{21} & a_{11}a_{22} & a_{12}a_{22} \\ a_{21}^2 & a_{21}a_{22} & a_{21}a_{22} & a_{22}^2 \end{pmatrix}$$
(255)

Пусть e_1, e_2 – базис в векторном пространстве V. Базисные векторы пространства $V \otimes V$:

$$e_1 \otimes e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad e_1 \otimes e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 \otimes e_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_2 \otimes e_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 (256)

$$S^{2}V = \langle e_{1} \otimes e_{1}, e_{1} \otimes e_{2} + e_{2} \otimes e_{1}, e_{2} \otimes e_{2} \rangle \tag{257}$$

$$A \otimes A(e_1 \otimes e_1) = \begin{pmatrix} a_{11}^2 \\ a_{11}a_{21} \\ a_{11}a_{21} \\ a_{21}^2 \end{pmatrix} = a_{11}^2 e_1 \otimes e_1 + a_{11}a_{21}(e_1 \otimes e_2 + e_2 \otimes e_1) + a_{21}^2 e_2 \otimes e_2$$
 (258)

$$A \otimes A(e_1 \otimes e_2 + e_2 \otimes e_1) = \begin{pmatrix} 2a_{11}a_{12} \\ a_{11}a_{22} + a_{12}a_{21} \\ a_{11}a_{22} + a_{12}a_{21} \\ 2a_{21}a_{22} \end{pmatrix} = 2a_{11}a_{12}e_1 \otimes e_1 + (a_{11}a_{22} + a_{12}a_{21})(e_1 \otimes e_2 + e_2 \otimes e_1) + 2a_{21}a_{22}e_2 \otimes e_2$$

$$(259)$$

$$A \otimes A(e_2 \otimes e_2) = \begin{pmatrix} a_{12}^2 \\ a_{12}a_{22} \\ a_{12}a_{22} \\ a_{22}^2 \end{pmatrix} = a_{12}^2 e_1 \otimes e_1 + a_{12}a_{22} (e_1 \otimes e_2 + e_2 \otimes e_1) + a_{22}^2 e_2 \otimes e_2$$
 (260)

Таким образом, S^2A можно задать матрицей:

$$S^{2}A = \begin{pmatrix} a_{11}^{2} & 2a_{11}a_{12} & a_{12}^{2} \\ a_{11}a_{21} & a_{11}a_{22} + a_{12}a_{21} & a_{12}a_{22} \\ a_{22}^{2} & 2a_{21}a_{22} & a_{22}^{2} \end{pmatrix}$$

$$(261)$$

$$tr S^2 A = a_{11}^2 + a_{11}a_{22} + a_{12}a_{21} + a_{22}^2$$
(262)

$$\Lambda^2 V = \langle e_1 \otimes e_2 - e_2 \otimes e_1 \rangle \tag{263}$$

$$A \otimes A(e_1 \otimes e_2 - e_2 \otimes e_1) = \begin{pmatrix} 0 \\ a_{11}a_{22} - a_{12}a_{21} \\ a_{12}a_{21} - a_{11}a_{22} \\ 0 \end{pmatrix} = (a_{11}a_{22} - a_{12}a_{21})(e_1 \otimes e_2 - e_2 \otimes e_1)$$
 (264)

Таким образом, $\Lambda^2 A$ можно задать матрицей:

$$\Lambda^2 A = (a_{11}a_{22} - a_{12}a_{21}) \tag{265}$$

$$\operatorname{tr} \Lambda^2 A = a_{11} a_{22} - a_{12} a_{21} \tag{266}$$

Как видно, предложение 3 лекции 9 в данном упражнении выполняется (tr $A=a_{11}+a_{22}$, tr $A^2=a_{11}^2+2a_{12}a_{21}+a_{22}^2$):

$$\operatorname{tr} S^2 A = \frac{1}{2} ((\operatorname{tr} A)^2 + \operatorname{tr} A^2), \quad \operatorname{tr} \Lambda^2 A = \frac{1}{2} ((\operatorname{tr} A)^2 - \operatorname{tr} A^2)$$
 (267)

Упражнение 9.2. Пусть $g \in SU(2)$, тогда

$$g = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}, \quad |a|^2 + |b|^2 = 1 \tag{268}$$

$$\begin{cases} a = a_0 + ia_3, \\ b = a_2 + ia_1. \end{cases} \to g = a_0 E + ia_1 \sigma_1 + ia_2 \sigma_2 + ia_3 \sigma_3$$
 (269)

где
$$\sigma_1=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right),\,\sigma_2=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right),\,\sigma_3=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$
 – матрицы Паули.

Пусть $a_0 = \cos \alpha$ и $a_1^2 + a_2^2 + a_3^2 = \sin^2 \alpha$. Введём n_j так, что $a_j = n_j \sin \alpha$ и $\vec{n} = (n_1, n_2, n_3)$.

$$g = E\cos\alpha + i\sin\alpha(\vec{n}, \vec{\sigma}) \tag{270}$$

Разложим $\exp(i\alpha(\vec{n}, \vec{\sigma}))$ в ряд Тейлора:

$$\exp(i\alpha(\vec{n},\vec{\sigma})) = \sum_{n=0}^{\infty} \frac{(i\alpha(\vec{n},\vec{\sigma}))^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n} (\vec{n},\vec{\sigma})^{2n}}{(2n)!} + i\sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n+1} (\vec{n},\vec{\sigma})^{2n+1}}{(2n+1)!}$$
(271)

$$(\vec{n}, \vec{\sigma})^2 = n_1^2 \sigma_1^2 + n_2^2 \sigma_2^2 + n_3^2 \sigma_3^2 + n_1 n_2 (\sigma_1 \sigma_2 + \sigma_2 \sigma_1) + n_1 n_3 (\sigma_1 \sigma_3 + \sigma_3 \sigma_1) + n_2 n_3 (\sigma_2 \sigma_3 + \sigma_3 \sigma_2)$$
(272)

$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij} \to (\vec{n}, \vec{\sigma})^2 = n_1^2 \sigma_1^2 + n_2^2 \sigma_2^2 + n_3^2 \sigma_3^2 = (n_1^2 + n_2^2 + n_3^2)E = E$$
 (273)

$$(\vec{n}, \vec{\sigma})^{2n} = E, \quad (\vec{n}, \vec{\sigma})^{2n+1} = (\vec{n}, \vec{\sigma})$$
 (274)

Подставим (274) в (271):

$$\exp(i\alpha(\vec{n}, \vec{\sigma})) = \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n} E}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n \alpha^{2n+1}(\vec{n}, \vec{\sigma})}{(2n+1)!} = E \cos \alpha + i \sin \alpha(\vec{n}, \vec{\sigma})$$
(275)

Таким образом,

$$g = \exp(i\alpha(\vec{n}, \vec{\sigma})), \quad \forall g \in SU(2)$$
(276)

Задача 9.3. a)

$$g = E\cos\alpha + i\sin\alpha(\vec{n}, \vec{\sigma}) \tag{277}$$

$$g^{-1} = g^* = (E\cos\alpha + i\sin\alpha(\vec{n}, \vec{\sigma}))^* = E\cos\alpha - i\sin\alpha(\vec{n}, \vec{\sigma}^*)$$
(278)

$$g^{-1} = E \cos \alpha - i \sin \alpha(\vec{n}, \vec{\sigma})$$
 (279)

6) $g = \exp(i\alpha\sigma_3) = E\cos\alpha + i\sin\alpha\sigma_3, \quad g^{-1} = E\cos\alpha - i\sin\alpha\sigma_3 \tag{280}$

Рассмотрим действие g на базисе $i\sigma_1$, $i\sigma_2$, $i\sigma_3$ алгебры Ли $\mathfrak{su}(2)$.

 $gi\sigma_1g^{-1} = (E\cos\alpha + i\sin\alpha\sigma_3)i\sigma_1(E\cos\alpha - i\sin\alpha\sigma_3) = i\sigma_1\cos^2\alpha + i\sigma_3\sigma_1\sigma_3\sin^2\alpha - \sin\alpha\cos\alpha\sigma_3\sigma_1 + \sin\alpha\cos\alpha\sigma_1\sigma_3 = i\sigma_1(\cos^2\alpha - \sin^2\alpha) - 2i\sigma_2\sin\alpha\cos\alpha = i\sigma_1\cos2\alpha - i\sigma_2\sin2\alpha$

 $gi\sigma_2 g^{-1} = (E\cos\alpha + i\sin\alpha\sigma_3)i\sigma_2(E\cos\alpha - i\sin\alpha\sigma_3) = i\sigma_2\cos^2\alpha + i\sigma_3\sigma_2\sigma_3\sin^2\alpha - \sin\alpha\cos\alpha\sigma_3\sigma_2 + \sin\alpha\cos\alpha\sigma_2\sigma_3 = i\sigma_2(\cos^2\alpha - \sin^2\alpha) - 2i\sigma_1\sin\alpha\cos\alpha = i\sigma_2\cos2\alpha + i\sigma_1\sin2\alpha$

$$gi\sigma_3 g^{-1} = (E\cos\alpha + i\sin\alpha\sigma_3)i\sigma_3(E\cos\alpha - i\sin\alpha\sigma_3) = i\sigma_3\cos^2\alpha + i\sigma_3^3\sin^2\alpha - \sin\alpha\cos\alpha + \sin\alpha\cos\alpha = i\sigma_3$$

Таким образом, матрица присоединённого действия

$$A = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha & 0 \\ -\sin 2\alpha & \cos 2\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (281)

соответствует повороту на 2α вокруг оси, проходящей через $i\sigma_3$. Это преообразование является ортогональным:

$$AA^T = E (282)$$

в) Покажем, что присоединённое представление сохраняет скалярное произведение: $(A, B) = c \operatorname{Tr} AB$, где $c = \operatorname{const}$:

$$(gAg^{-1}, gBg^{-1}) = c\operatorname{Tr}(gAg^{-1}gBg^{-1}) = c\operatorname{Tr}(gABg^{-1}) = c\operatorname{Tr}(AB) = (A, B)$$
 (283)

Найдём c. Вычислим скалярные произведения базисных векторов: $(i\sigma_j, i\sigma_k) = -2c\delta_{jk} = 1$. Тогда $c = -\frac{1}{2}$.

Поскольку преобразование сохраняет скалярное произведение, то оно является ортогональным.

 Γ

Предложение 29. Полученный гомоморфизм φ из группы SU(2) в SO(3) является сюръективным.

Доказательство. По аналогии с п. а, действия $g = \exp(i\alpha\sigma_j)$ являются поворотами на 2α вокруг оси, проходящей через $i\sigma_j$. Из таких поворотов состоит любой элемент SO(3), а значит гомоморфизм φ сюръективен.

$$\operatorname{Ker} \varphi = \{ g \in SU(2) : gi\sigma_j g^{-1} = i\sigma_j \}$$
(284)

$$\cos 2\alpha = 1 \to \alpha = \pi n, n \in \mathbb{Z} \to g = \cos \pi n = (-1)^n E \tag{285}$$

$$\operatorname{Ker} \varphi = \{E, -E\} \simeq C_2$$
(286)

Задача 9.4. а) Естественный базис алгебры Ли $\mathfrak{so}(n)$:

$$J_{ab} = E_{ab} - E_{ba} \tag{287}$$

$$[J_{ab}, J_{cd}] = [E_{ab} - E_{ba}, E_{cd} - E_{dc}] = (E_{ab} - E_{ba})(E_{cd} - E_{dc}) - (E_{cd} - E_{dc})(E_{ab} - E_{ba}) =$$

$$= E_{ab}E_{cd} - E_{ba}E_{cd} - E_{ab}E_{dc} + E_{ba}E_{dc} - E_{cd}E_{ab} + E_{dc}E_{ab} + E_{cd}E_{ba} - E_{dc}E_{ba} =$$

$$= \delta_{bc}E_{ad} - \delta_{ac}E_{bd} - \delta_{bd}E_{ac} + \delta_{ad}E_{bc} - \delta_{ad}E_{cb} + \delta_{ac}E_{db} + \delta_{bd}E_{ca} - \delta_{bc}E_{da} =$$

$$= \delta_{bc}(E_{ad} - E_{da}) + \delta_{ad}(E_{bc} - E_{cb}) + \delta_{ac}(E_{db} - E_{bd}) + \delta_{bd}(E_{ca} - E_{ac}) \quad (288)$$

$$[J_{ab}, J_{cd}] = \delta_{bc}J_{ad} + \delta_{ad}J_{bc} + \delta_{ac}J_{db} + \delta_{bd}J_{ca}$$
(289)

б)*

Предложение 30. Алгебра Ли $\mathfrak{so}(4)$ изоморфна прямой сумме $\mathfrak{so}(3) \oplus \mathfrak{so}(3)$.

Доказательство. Естественный базис алгебры Ли $\mathfrak{so}(4)$: $J_{12}, J_{13}, J_{14}, J_{23}, J_{24}, J_{34}$. Пусть

$$J_1 = \frac{1}{2}(J_{12} + J_{34}), \quad J_2 = \frac{1}{2}(J_{14} + J_{23}), \quad J_3 = \frac{1}{2}(J_{13} - J_{24})$$
 (290)

$$J_1' = \frac{1}{2}(J_{12} - J_{34}), \quad J_2' = \frac{1}{2}(J_{13} + J_{24}), \quad J_3' = \frac{1}{2}(J_{14} - J_{23})$$
 (291)

$$[J_1, J_2] = \frac{1}{4}([J_{12}, J_{14}] + [J_{34}, J_{14}] + [J_{12}, J_{23}] + [J_{34}, J_{23}]) = \frac{1}{4}(J_{42} + J_{13} + J_{13} + J_{42}) = \frac{1}{2}(J_{13} - J_{24}) = J_3$$

$$[J_1, J_3] = \frac{1}{4}([J_{12}, J_{13}] + [J_{34}, J_{13}] - [J_{12}, J_{24}] - [J_{34}, J_{24}]) = \frac{1}{4}(J_{32} + J_{41} - J_{14} - J_{23}) = -\frac{1}{2}(J_{14} - J_{23}) = -J_2$$

$$[J_2, J_3] = \frac{1}{4}([J_{14}, J_{13}] + [J_{23}, J_{13}] - [J_{14}, J_{24}] - [J_{23}, J_{24}]) = \frac{1}{4}(J_{34} + J_{12} + J_{12} + J_{34}) = \frac{1}{2}(J_{12} + J_{34}) = J_1$$

Следовательно,

$$[J_i, J_j] = \epsilon_{ijk} J_k \to \langle J_1, J_2, J_3 \rangle \simeq \mathfrak{so}(3)$$
(292)

$$[J'_1, J'_2] = \frac{1}{4}([J_{12}, J_{13}] + [J_{12}, J_{24}] - [J_{34}, J_{13}] - [J_{34}, J_{24}]) = \frac{1}{4}(-J_{23} + J_{14} + J_{14} - J_{23}) = \frac{1}{2}(J_{14} - J_{23}) = J'_3$$

$$[J'_1, J'_3] = \frac{1}{4}([J_{12}, J_{14}] - [J_{34}, J_{14}] - [J_{12}, J_{23}] + [J_{34}, J_{23}]) = \frac{1}{4}(-J_{24} - J_{13} - J_{13} - J_{24}) = -\frac{1}{2}(J_{13} + J_{24}) = -J'_2$$

$$[J_2', J_3'] = \frac{1}{4}([J_{13}, J_{14}] + [J_{24}, J_{14}] - [J_{13}, J_{23}] - [J_{24}, J_{23}]) = \frac{1}{4}(-J_{34} + J_{12} + J_{12} - J_{34}) = \frac{1}{2}(J_{12} - J_{34}) = J_1'$$

Следовательно,

$$[J'_i, J'_j] = \epsilon_{ijk} J'_k \to \langle J'_1, J'_2, J'_3 \rangle \simeq \mathfrak{so}(3)$$

$$[J_1, J'_1] = \frac{1}{4} ([J_{12}, J_{12}] + [J_{34}, J_{12}] - [J_{12}, J_{34}] - [J_{34}, J_{34}]) = 0$$
(293)

$$[J_1, J_2'] = \frac{1}{4}([J_{12}, J_{13}] + [J_{34}, J_{13}] + [J_{12}, J_{24}] + [J_{34}, J_{24}]) = \frac{1}{4}(-J_{23} - J_{14} + J_{14} + J_{23}) = 0$$

$$[J_1, J_3'] = \frac{1}{4}([J_{12}, J_{14}] + [J_{34}, J_{14}] - [J_{12}, J_{23}] - [J_{34}, J_{23}]) = \frac{1}{4}(-J_{24} + J_{13} - J_{13} + J_{24}) = 0$$

$$[J_2, J_1'] = \frac{1}{4}([J_{14}, J_{12}] + [J_{23}, J_{12}] - [J_{14}, J_{34}] - [J_{23}, J_{34}]) = \frac{1}{4}(J_{24} - J_{13} - J_{13} - J_{24}) = 0$$

$$[J_{2}, J_{2}'] = \frac{1}{4}([J_{14}, J_{13}] + [J_{23}, J_{13}] + [J_{14}, J_{24}] + [J_{23}, J_{24}]) = \frac{1}{4}(J_{34} + J_{12} - J_{12} - J_{34}) = 0$$

$$[J_{2}, J_{3}'] = \frac{1}{4}([J_{14}, J_{14}] + [J_{23}, J_{14}] - [J_{14}, J_{23}] - [J_{23}, J_{23}]) = 0$$

$$[J_{3}, J_{1}'] = \frac{1}{4}([J_{13}, J_{12}] - [J_{24}, J_{12}] - [J_{13}, J_{34}] + [J_{24}, J_{34}]) = \frac{1}{4}(J_{23} + J_{14} - J_{14} - J_{23}) = 0$$

$$[J_{3}, J_{2}'] = \frac{1}{4}([J_{13}, J_{13}] - [J_{24}, J_{13}] + [J_{13}, J_{24}] - [J_{24}, J_{24}]) = 0$$

$$[J_{3}, J_{3}'] = \frac{1}{4}([J_{13}, J_{14}] - [J_{24}, J_{14}] - [J_{13}, J_{23}] + [J_{24}, J_{23}]) = \frac{1}{4}(-J_{34} - J_{12} + J_{12} + J_{34}) = 0$$

Следовательно,

$$[J_i, J_i'] = 0 (294)$$

Таким образом,

$$\mathfrak{so}(4) \simeq \mathfrak{so}(3) \oplus \mathfrak{so}(3)$$
 (295)

10 Представления алгебры $\mathfrak{su}(2)$.

Задача 10.1. а)

Предложение 31. $J_+J_- = -J^2 - J_3^2 - iJ_3$.

Доказательство.

$$J^2 = -J_1^2 - J_2^2 - J_3^2, \quad J_+ = J_1 + iJ_2, \quad J_- = J_1 - iJ_2$$
 (296)

$$J_{+}J_{-} = (J_{1} + iJ_{2})(J_{1} - iJ_{2}) = J_{1}^{2} - iJ_{1}J_{2} + iJ_{2}J_{1} + J_{2}^{2} = J_{1}^{2} + J_{2}^{2} - i[J_{1}, J_{2}]$$
(297)

$$J_{+}J_{-} = -J^{2} - J_{3}^{2} - iJ_{3}$$
(298)

б)

$$J_{+}J_{-} = \operatorname{diag}(a_{j-1}b_{j}, a_{j-2}b_{j-1}, ..., a_{-j}b_{1-j}, 0)$$
(299)

Подставим доказанное в п. а равенством $J_+J_-=-J^2-J_3^2-iJ_3$ и $b_{m+1}=-\bar{a}_m$:

$$\operatorname{diag}(a_{j-1}b_j, a_{j-2}b_{j-1}, \dots, a_{-j}b_{1-j}, 0) = -J^2 - J_3^2 - iJ_3$$
(300)

$$\operatorname{diag}(-|a_{j-1}|^2, -|a_{j-2}|^2, ..., -|a_{-j}|^2, 0) = \operatorname{diag}(-\lambda - j^2 - j, ..., -\lambda + j^2 + j = 0)$$
(301)

$$|a_{i-1-k}|^2 = \lambda + j - k - (j-k)^2 = 2j - k - k^2 + 2jk = 2j(k+1) - k(k+1)$$
(302)

$$|a_{i-1-k}| = \sqrt{(2j-k)(k+1)} \tag{303}$$

Домножим векторы ортонормированного базиса на фазу, чтобы $a_m^2 \in \mathbb{R}$.

$$a_{j-1-k} = \pm \sqrt{(2j-k)(k+1)}$$
(304)

Задача 10.2. По предложению 6 лекции 10 характеры неприводимых представлений π_j группы SU(2) равны:

$$\chi_j(\varphi) = \frac{\sin((2j+1)\varphi)}{\sin \varphi} \tag{305}$$

$$\chi_{\pi_{\frac{1}{2}}\otimes\pi_{\frac{1}{2}}}(\varphi)=\chi_{\frac{1}{2}}^2(\varphi)=\frac{\sin^2 2\varphi}{\sin^2 \varphi}=\frac{2(1+\cos 2\varphi)\sin \varphi}{\sin \varphi}=\frac{2\sin \varphi+\sin 3\varphi-\sin \varphi}{\sin \varphi}=\frac{\sin \varphi+\sin 3\varphi}{\sin \varphi}$$

$$\chi_{\pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}}}(\varphi) = \chi_0(\varphi) + \chi_1(\varphi) \tag{306}$$

Таким образом, $\pi_{\frac{1}{2}}\otimes\pi_{\frac{1}{2}}$ раскладывается как

$$\boxed{\pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}} = \pi_0 \oplus \pi_1} \tag{307}$$

Задача 10.3.

Предложение 32. Представление π_j , в котором действие генераторов iJ_3 , J_+ , J_- задано формулами:

$$iJ_{3} \to \begin{pmatrix} j & 0 & \dots & 0 & 0 \\ 0 & j-1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -j+1 & 0 \\ 0 & 0 & \dots & 0 & -j \end{pmatrix},$$
(308)

$$J_{+} \to \begin{pmatrix} 0 & a_{j-1} & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & a_{-j} \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}, \quad J_{-} \to \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ b_{j} & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & b_{1-j} & 0 \end{pmatrix}, \tag{309}$$

является неприводимым.

Доказательство. Пусть $U \subset V$ – инвариантное относительно iJ_3, J_+, J_- подпространство, $u_1, ..., u_t$ – его базис. Разложим векторы u_i по базису $v_{\lambda,k}$:

$$u_i = \sum_{k=-j}^{j} h_k v_{\lambda,k} \tag{310}$$

В лекции 10 показано, что J_+ нильпотентный, поэтому \exists минимальное n: $J_+^n u_i = 0$.

$$J_{+}^{n-1}u_{j} = hv_{\lambda,j} \in U \to v_{\lambda,j} \in U$$
(311)

Применением J_- из $v_{\lambda,j}$ можно получить все $v_{\lambda,k}$. Таким образом, U=V и в V нет инвариантных подпространств и представление π_j является неприводимым.

11 Представления групп SO(3) и SU(2).

Упражнение 11.1. a) В задаче 10.2 показано, что

$$\pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}} = \pi_0 \oplus \pi_1$$
 (312)

По предложению 3 лекции 11 $\pi_{\frac{1}{2}}\otimes(\pi_0\oplus\pi_1)=\pi_{\frac{1}{2}}\oplus\pi_{\frac{1}{2}}\oplus\pi_{\frac{3}{2}}$. Таким образом,

$$\boxed{\pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}} = \pi_{\frac{1}{2}} \oplus \pi_{\frac{1}{2}} \oplus \pi_{\frac{3}{2}}}$$
(313)

б) По предложению 3 лекции 11

$$\pi_0 \otimes \pi_j = \pi_j, \quad \pi_{\frac{1}{2}} \otimes \pi_j = \pi_{j+\frac{1}{2}} \oplus \pi_{j-\frac{1}{2}}, \quad j > 0$$
 (314)

При тензорном умножении $\pi_{\frac{1}{2}}$ на себя образуется π_0 . Далее при умножении на $\pi_{\frac{1}{2}}$ π_0 пропадает (превращается в $\pi_{\frac{1}{2}}$). После этого π_0 вновь образуются из произведений $\pi_{\frac{1}{2}} \otimes \pi_{\frac{1}{2}}$. Затем они пропадут и т.д. Т.е. наличие π_0 определяется чётностью степени $\pi_{\frac{1}{2}}$: при нечётных степенях кратность равна 0. Поскольку 101 – нечётное число, то кратность вхождения тривиального представления в $\pi_{\frac{1}{2}}^{101}$ равна 0.

Задача 11.2. а) Произвольный многочлен $\mathbb{C}[x_1, x_2, x_3]_0$:

$$P_0(x_1, x_2, x_3) = a_1 (315)$$

$$\Delta P_0 = 0 \to H_0 = \mathbb{C}[x_1, x_2, x_3]_0, H_0 = \langle 1 \rangle$$
 (316)

$$\boxed{\dim H_0 = 1}$$
(317)

Произвольный многочлен $\mathbb{C}[x_1, x_2, x_3]_1$:

$$P_1(x_1, x_2, x_3) = a_1 x_1 + a_2 x_2 + a_3 x_3 \tag{318}$$

$$\Delta P_1 = 0 \to H_1 = \mathbb{C}[x_1, x_2, x_3]_0, H_1 = \langle x_1, x_2, x_3 \rangle$$
 (319)

$$\overline{\dim H_1 = 3} \tag{320}$$

Произвольный многочлен $\mathbb{C}[x_1, x_2, x_3]_2$:

$$P_2(x_1, x_2, x_3) = a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 + a_4 x_1 x_2 + a_5 x_1 x_3 + a_6 x_2 x_3$$
(321)

$$\Delta P_2 = 2a_1 + 2a_2 + 2a_3 \tag{322}$$

$$H_2 = \mathbb{C}[x_1, x_2, x_3]_2$$
 при $a_1 + a_2 + a_3 = 0$ (323)

$$H_2 = \langle x_1^2 - x_2^2, x_1^2 - x_3^2, x_1 x_2, x_2 x_3, x_1 x_3 \rangle$$
 (324)

$$\boxed{\dim H_2 = 5} \tag{325}$$

Произвольный многочлен $\mathbb{C}[x_1, x_2, x_3]_3$:

$$P_3(x_1, x_2, x_3) = a_1 x_1^3 + a_2 x_2^3 + a_3 x_3^3 + a_4 x_1^2 x_2 + a_5 x_1 x_2^2 + a_6 x_1^2 x_3 + a_7 x_1 x_3^2 + a_8 x_2^2 x_3 + a_9 x_2 x_3^2 + a_{10} x_1 x_2 x_3 + a$$

$$\Delta P_3 = 6a_1x_1 + 6a_2x_2 + 6a_3x_3 + 2a_4x_2 + 2a_5x_1 + 2a_6x_3 + 2a_7x_1 + 2a_8x_3 + 2a_9x_2$$
 (326)

$$H_3 = \mathbb{C}[x_1, x_2, x_3]_3$$
 при
$$\begin{cases} 3a_1 + a_5 + a_7 = 0, \\ 3a_2 + a_4 + a_9 = 0, \\ 3a_3 + a_6 + a_8 = 0. \end{cases}$$
 (327)

$$H_3 = \langle x_1(x_2^2 - x_3^2), x_2(x_1^2 - x_3^2), x_3(x_1^2 - x_2^2), x_1(x_1^2 - 3x_2^2), x_2(x_2^2 - 3x_1^2), x_3(x_3^2 - x_1^2), x_1x_2x_3 \rangle$$
(328)

$$\overline{\dim H_3 = 7} \tag{329}$$

б)

Предложение 33. Оператор Лапласа Δ является инвариантным относительно действия группы SO(3).

Доказательство. Группа SO(3) действует на пространстве $\mathbb{C}[x_1, x_2, x_3]_n$ по формуле

$$P(x_1, x_2, x_3) \to P((x_1, x_2, x_3)g)$$
 (330)

Это можно переписать в виде:

$$x'_{j} = \sum_{i=1}^{3} x_{i} g_{ij}, \quad \sum_{j=1}^{3} g_{ij} (g_{jk})^{T} = \sum_{j=1}^{3} g_{ij} g_{kj} = \delta_{ik}$$
 (331)

$$\frac{\partial^2}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\sum_{j=1}^3 \frac{\partial x_j'}{\partial x_i} \frac{\partial}{\partial x_j'} \right) = \sum_{j,k=1}^3 \frac{\partial x_k'}{\partial x_i} \frac{\partial x_j'}{\partial x_i} \frac{\partial^2}{\partial x_j' \partial x_k'} = g_{ik} g_{ij} \frac{\partial^2}{\partial x_j' \partial x_k'}$$
(332)

$$\Delta = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_i^2} = \sum_{i=1}^{3} g_{ik} g_{ij} \sum_{i,k=1}^{3} \frac{\partial^2}{\partial x_j' \partial x_k'} = \delta_{jk} \sum_{i,k=1}^{3} \frac{\partial^2}{\partial x_j' \partial x_k'} = \sum_{i}^{3} \frac{\partial^2}{\partial x_j'^2} = \Delta'$$
 (333)

Таким образом, оператор Лапласа Δ является инвариантным относительно действия группы SO(3).

Следствие 34. Пространства H_n являются инвариантными подпространствами относительно группы SO(3).

Доказательство. Пусть $P(x_1, x_2, x_3) \in H_n$, тогда $\Delta P = 0$. По предложению 33: $\Delta' P = \Delta P = 0$, значит $P(x_1', x_2', x_3') \in H_n$ и пространства H_n являются инвариантными подпространствами относительно группы SO(3).

в)

Предложение 35. Отображение

$$t_{i_1...i_n} \to P(x) = t_{i_1...i_n} x_{i_1}...x_{i_n}$$
 (334)

осуществляет изоморфизм между пространством симметричных бесследовых тензоров в $S^n\mathbb{C}^3$ и пространством гармонических полиномов степени n.

Доказательство. Поскольку все операции линейные, то отображение является гомоморфизмом. Рассмотрим многочлен

$$P(x_1, x_2, x_3) = \sum_{i_1, \dots, i_n = 1}^{3} t_{i_1, \dots, i_n} x_{i_1} \dots x_{i_n}$$
(335)

$$\Delta P(x_1, x_2, x_3) = \sum_{i_1, \dots, i_n = 1}^{3} t_{i_1, \dots, i_n} \sum_{i=1}^{3} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} x_{i_1} \dots \bar{x}_{i_j} \dots \bar{x}_{i_k} \dots x_{i_n} \delta_{i, i_j} \delta_{i, i_k},$$
(336)

где \bar{x}_{i_i} обозначает, что множителя x_{i_i} нет.

$$\Delta P(x_1, x_2, x_3) = \sum_{i_1, \dots, i_n = 1}^{3} t_{i_1, \dots, i_n} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} x_{i_1} \dots \bar{x}_{i_j} \dots \bar{x}_{i_k} \dots x_{i_n} \delta_{i_j, i_k}$$
(337)

$$\Delta P(x_1, x_2, x_3) = 0 \Leftrightarrow \sum_{i_j, i_k = 1}^{3} t_{i_1, \dots, i_n} \delta_{i_j, i_k} = 0 \,\forall j, k \in \{1, \dots, n\}$$
(338)

Условие справа означает бесследовость тензора $t_{i_1,...,i_n}$. Тензор $t_{i_1,...,i_n}$ симметричен, поскольку в P от перемены мест множителей произведение не меняется. Отображение между пространством симметричных бесследовых тензоров в $S^n\mathbb{C}^3$ и пространством гармонических полиномов степени n взаимно-однозначно, поскольку по коэффициентам $t_{i_1,...i_n}$ многочлен восстанавливается единственным образом. И наоборот, по многочлену легко выписать тензор $t_{i_1,...,i_n}$. Таким образом, показан изоморфизм между пространством симметричных бесследовых тензоров в $S^n\mathbb{C}^3$ и пространством гармонических полиномов степени n.

$$\mathbb{C}[x_1, x_2, x_3]_n = \{x_1^{b_1} x_2^{b_2} x_3^{b_3}\}, \quad b_1 + b_2 + b_3 = n \tag{339}$$

Найдём число таких $x_1^{b_1}x_2^{b_2}x_3^{b_3}$. Оно равно количество способов поставить 2 перегородки между n+3 элементами. Всего мест между элементами для перегородок равно n+2. Следовательно,

$$\dim \mathbb{C}[x_1, x_2, x_3]_n = C_{n+2}^2 = \frac{(n+1)(n+2)}{2}$$
(340)

Предложение 36. Оператор Лапласа $\Delta: \mathbb{C}[x_1,x_2,x_3]_n \to \mathbb{C}[x_1,x_2,x_3]_{n-2}$ является сюръективным отображением.

Доказательство. Произвольный многочлен P_n :

$$P_n(x_1, x_2, x_3) = \sum_{b_1 + b_2 + b_3 = n} c_{b_1, b_2, b_3} x_1^{b_1} x_2^{b_2} x_3^{b_3}$$
(341)

Пусть $m = \max(b_1, b_2, b_3)$. Пусть без ограничения общности $m = b_1$. Докажем утверждение методом математической индукции:

1. Проверим, что оно верно для m=n. Произвольный многочлен $\mathbb{C}[x_1,x_2,x_3]_n$:

$$P_n(x_1, x_2, x_3) = a_1 x_1^n (342)$$

Соответствующий ему многочлен P_{n+2} из $\mathbb{C}[x_1, x_2, x_3]_{n+2}$: $\Delta P_{n+2} = P_n$:

$$P_{n+2}(x_1, x_2, x_3) = \frac{a_1 x_1^{n+2}}{(n+2)(n+1)}$$
(343)

Значит, утверждение верно при m = n.

2. Предположим, что утверждение верно для $m \ge k$:

$$\forall P_n(x_1, x_2, x_3) : \max(b_1, b_2, b_3) \ge k \ \exists \ P_{n+2}(x_1, x_2, x_3) : \Delta P_{n+2} = P_n \tag{344}$$

3. Проверим, что оно верно для m = k - 1.

$$P_n(x_1, x_2, x_3) = \sum_{b_1 + b_2 + b_3 = n} c_{b_1, b_2, b_3} x_1^{b_1} x_2^{b_2} x_3^{b_3}, \quad \max(b_1, b_2, b_3) = k - 1$$
 (345)

 $b_1 = k - 1, b_2 \le k - 1, b_3 \le k - 1.$

$$\Delta(x_1^{k+1}x_2^{b_2}x_3^{b_3}) = (k+1)kx_1^{k-1}x_2^{b_2}x_3^{b_3} + b_2(b_2-1)x_1^{k+1}x_2^{b_2-2}x_3^{b_3} + b_3(b_3-1)x_1^{k+1}x_2^{b_2}x_3^{b_3-2}$$

По предположению индукции $\exists P'_{n+2}(x_1,x_2,x_3): \Delta P'_{n+2}=b_2(b_2-1)x_1^{k+1}x_2^{b_2-2}x_3^{b_3}+b_3(b_3-1)x_1^{k+1}x_2^{b_2}x_3^{b_3-2},$ поскольку $\max(k+1,b_2-2,b_3)=\max(k+1,b_2,b_3-2)=k+1\geq k.$

$$x_1^{k-1}x_2^{b_2}x_3^{b_3} = \Delta \left(\frac{x_1^{k+1}x_2^{b_2}x_3^{b_3}}{(k+1)k} - P'_{n+2} \right)$$
(346)

А значит и

$$\forall P_n(x_1, x_2, x_3) : \max(b_1, b_2, b_3) = k - 1 \ \exists \ P_{n+2}(x_1, x_2, x_3) : \Delta P_{n+2} = P_n \tag{347}$$

В п. в показан изоморфизм между пространством симметричных бесследовых тензоров в $S^n\mathbb{C}^3$ и пространством H_n . По предложению 1 лекции 9 размерность пространства симметричных тензоров в $S^n\mathbb{C}^3$:

$$\dim S^n \mathbb{C}^3 = C_{n+2}^2 \tag{348}$$

Условие бесследовости:

$$\delta_{i_j i_k} t_{i_1 \dots i_j \dots i_k \dots i_n} = 0 \tag{349}$$

Число уравнений равно числу способов выбрать 2 из n элементов: C_n^2

$$\dim H_n = \dim S^n \mathbb{C}^3 - C_n^2 = \frac{(n+1)(n+2)}{2} - \frac{n(n-1)}{2}$$
(350)

$$\overline{\dim H_n = 2n+1} \tag{351}$$

Задача 11.3. a)

$$V = \langle e_+, e_- \rangle, \quad S^2 V = \langle e_+ \otimes e_+, \frac{1}{\sqrt{2}} (e_+ \otimes e_- + e_- \otimes e_+), e_- \otimes e_- \rangle$$
 (352)

$$\langle \pi_1 \otimes \pi_{\frac{1}{2}} \simeq S^2 V \otimes V = \langle e|_+ \otimes e_+ \otimes e_+, e_+ \otimes e_+ \otimes e_-, \frac{1}{\sqrt{2}} (e_+ \otimes e_- \otimes e_+ + e_- \otimes e_+ \otimes e_+),$$
$$\frac{1}{\sqrt{2}} (e_+ \otimes e_- \otimes e_- + e_- \otimes e_+ \otimes e_-), e_- \otimes e_- \otimes e_+, e_- \otimes e_- \otimes e_- \rangle$$

Пусть $e_1 = e_+ \otimes e_+ \otimes e_+, \ e_2 = e_+ \otimes e_+ \otimes e_-, \ e_3 = \frac{1}{\sqrt{2}} (e_+ \otimes e_- \otimes e_+ + e_- \otimes e_+ \otimes e_+),$ $e_4 = \frac{1}{\sqrt{2}} (e_+ \otimes e_- \otimes e_- + e_- \otimes e_+ \otimes e_-), \ e_5 = e_- \otimes e_- \otimes e_+, \ e_6 = e_- \otimes e_- \otimes e_-.$

$$J_{+}(e_{+} \otimes e_{+} \otimes e_{+}) = 0, \quad J_{+}(e_{+} \otimes e_{+} \otimes e_{-}) = e_{+} \otimes e_{+} \otimes e_{+}$$
 (353)

$$J_{+}\left(\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{+}+e_{-}\otimes e_{+}\otimes e_{+})\right)=\sqrt{2}(e_{+}\otimes e_{+}\otimes e_{+})$$
(354)

$$J_{+}\left(\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{-}+e_{-}\otimes e_{+}\otimes e_{-})\right)=\sqrt{2}(e_{+}\otimes e_{+}\otimes e_{-})+\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{+}+e_{-}\otimes e_{+}\otimes e_{+})$$

$$J_+(e_-\otimes e_-\otimes e_+)=e_+\otimes e_-\otimes e_++e_-\otimes e_+\otimes e_+,\quad J_+(e_-\otimes e_-\otimes e_-)=e_+\otimes e_-\otimes e_-+e_-\otimes e_+\otimes e_-+e_-\otimes e_+\otimes e_-\otimes e_+$$

$$J_{+} = \begin{pmatrix} 0 & 1 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(355)

$$J_{-}(e_{+}\otimes e_{+}\otimes e_{+}) = -e_{-}\otimes e_{+}\otimes e_{+} - e_{+}\otimes e_{-}\otimes e_{+} - e_{+}\otimes e_{+}\otimes e_{-}$$

$$J_{-}(e_{+} \otimes e_{+} \otimes e_{-}) = -e_{+} \otimes e_{-} \otimes e_{-} - e_{-} \otimes e_{+} \otimes e_{-}$$

$$(356)$$

$$J_{-}\left(\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{+}+e_{-}\otimes e_{+}\otimes e_{+})\right)=-\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{-}+e_{-}\otimes e_{+}\otimes e_{-})-\sqrt{2}e_{-}\otimes e_{-}\otimes e_{+}\otimes e_{-}\otimes e_{+}\otimes e_{-}\otimes e_{+}\otimes e_{-}\otimes e$$

$$J_{-}\left(\frac{1}{\sqrt{2}}(e_{+}\otimes e_{-}\otimes e_{-}+e_{-}\otimes e_{+}\otimes e_{-})\right)=-\sqrt{2}e_{-}\otimes e_{-}\otimes e_{-}$$
(357)

$$J_{+}(e_{-} \otimes e_{-} \otimes e_{+}) = -e_{-} \otimes e_{-} \otimes e_{-}, \quad J_{-}(e_{-} \otimes e_{-} \otimes e_{-}) = 0$$
 (358)

$$J_{-} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ -\sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sqrt{2} & -1 & 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{2} & -1 & 0 \end{pmatrix}$$
(359)

$$iJ_3(e_+ \otimes e_+ \otimes e_+) = \frac{3}{2}(e_+ \otimes e_+ \otimes e_+), \quad iJ_3(e_+ \otimes e_+ \otimes e_-) = \frac{1}{2}(e_+ \otimes e_+ \otimes e_-)$$
 (360)

$$iJ_3(\frac{1}{\sqrt{2}}(e_+\otimes e_-\otimes e_+ + e_-\otimes e_+\otimes e_+)) = \frac{1}{2\sqrt{2}}(e_+\otimes e_-\otimes e_+ + e_-\otimes e_+\otimes e_+)$$
(361)

$$iJ_3(\frac{1}{\sqrt{2}}(e_+ \otimes e_- \otimes e_- + e_- \otimes e_+ \otimes e_-)) = -\frac{1}{2\sqrt{2}}(e_+ \otimes e_- \otimes e_- + e_- \otimes e_+ \otimes e_-)$$
 (362)

$$iJ_3(e_- \otimes e_- \otimes e_+) = -\frac{1}{2}(e_- \otimes e_- \otimes e_+), \quad iJ_3(e_- \otimes e_- \otimes e_-) = -\frac{3}{2}(e_- \otimes e_- \otimes e_-) \quad (363)$$

$$iJ_{3} = \begin{pmatrix} \frac{3}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{3}{2} \end{pmatrix}$$

$$(364)$$

б) По предложению 3 лекции 11:

$$\pi_1 \otimes \pi_{\frac{1}{2}} = \pi_{\frac{1}{2}} \oplus \pi_{\frac{3}{2}} \simeq S^3 V \oplus V$$
 (365)

Значит, V и S^3V являются инвариантными подпространствами.

$$S^{3}V = \langle e_{+} \otimes e_{+} \otimes e_{+}, \frac{1}{\sqrt{3}} (e_{+} \otimes e_{+} \otimes e_{-} + e_{+} \otimes e_{-} \otimes e_{+} + e_{-} \otimes e_{+} \otimes e_{+}),$$

$$\frac{1}{\sqrt{3}} (e_{+} \otimes e_{-} \otimes e_{-} + e_{-} \otimes e_{+} \otimes e_{-} + e_{-} \otimes e_{-} \otimes e_{+}), e_{-} \otimes e_{-} \otimes e_{-} \rangle$$

Выразим базисные векторы в S^3V через базисные векторы в $S^2V\otimes V$ из п. а:

$$e_1' = e_+ \otimes e_+ \otimes e_+ = e_1 \tag{366}$$

$$e_2' = \frac{1}{\sqrt{3}}(e_+ \otimes e_+ \otimes e_- + e_+ \otimes e_- \otimes e_+ + e_- \otimes e_+ \otimes e_+) = \frac{e_2}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_3$$
 (367)

$$e_3' = \frac{1}{\sqrt{3}}(e_+ \otimes e_- \otimes e_- + e_- \otimes e_+ \otimes e_- + e_- \otimes e_- \otimes e_+) = \sqrt{\frac{2}{3}}e_4 + \frac{e_5}{\sqrt{3}}$$
(368)

$$e_4' = e_- \otimes e_- \otimes e_- = e_6 \tag{369}$$

$$S^{3}V = \langle e_{1}, \frac{e_{2}}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_{3}, \sqrt{\frac{2}{3}}e_{4} + \frac{e_{5}}{\sqrt{3}}, e_{6} \rangle$$
(370)

Дополним e'_1 , e'_2 , e'_3 e'_4 до базиса векторами e_2 и e_5 при помощи ортогонализации Грама-Шмидта. Вектор e_2 выбран, т.к. он ортогонален всем векторам, кроме e'_2 :

$$\tilde{e}_5' = e_2 - \frac{(e_2, e_2')}{(e_2', e_2')} e_2' = e_2 - \frac{1}{\sqrt{3}} \left(\frac{e_2}{\sqrt{3}} + \sqrt{\frac{2}{3}} e_3 \right) = \frac{2e_2 - \sqrt{2}e_3}{3}$$
(371)

$$e_5' = \frac{\tilde{e}_5'}{(\tilde{e}_5', \tilde{e}_5')} = \sqrt{\frac{2}{3}}e_2 - \frac{e_3}{\sqrt{3}}$$
(372)

Вектор e_5 выбран, т.к. он оротонален всем векторам, кроме e_3' :

$$\tilde{e}_{6}' = e_{5} - \frac{(e_{5}, e_{3}')}{(e_{3}', e_{3}')}e_{3}' = e_{5} - \frac{1}{\sqrt{3}}\left(\sqrt{\frac{2}{3}}e_{4} + \frac{e_{5}}{\sqrt{3}}\right) = \frac{2e_{5} - \sqrt{2}e_{4}}{3}$$
(373)

$$e_6' = \frac{\tilde{e}_6'}{(\tilde{e}_6', \tilde{e}_6')} = \sqrt{\frac{2}{3}}e_5 - \frac{e_4}{\sqrt{3}}$$
(374)

Рассмотрим действие генераторов $J_+,\ J_-,\ iJ_3$ в новом базисе.

$$J_{+}(e'_{1}) = J_{+}(e_{1}) = 0, \quad J_{+}(e'_{2}) = J_{+}\left(\frac{e_{2}}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_{3}\right) = \sqrt{3}e_{1} = \sqrt{3}e'_{1}$$
 (375)

$$J_{+}(e_{3}') = J_{+}\left(\sqrt{\frac{2}{3}}e_{4} + \frac{e_{5}}{\sqrt{3}}\right) = 2\sqrt{\frac{2}{3}}e_{3} + \frac{2}{\sqrt{3}}e_{2} = 2e_{2}', \quad J_{+}(e_{4}') = J_{+}(e_{6}) = e_{5} + \sqrt{2}e_{4} = \sqrt{3}e_{3}'$$

$$J_{+}(e_{5}') = J_{+}\left(\sqrt{\frac{2}{3}}e_{2} - \frac{e_{3}}{\sqrt{3}}\right) = \sqrt{\frac{2}{3}}e_{1} - \sqrt{\frac{2}{3}}e_{1} = 0$$

$$J_{+}(e_{6}') = J_{+}\left(\sqrt{\frac{2}{3}}e_{5} - \frac{e_{4}}{\sqrt{3}}\right) = \frac{e_{3}}{\sqrt{3}} - \sqrt{\frac{2}{3}}e_{2} = -e_{5}'$$

$$(376)$$

Как видно, $J_+(e_6')=-e_5'$. Нужно, чтобы $J_+(e_6')=e_5'$, поэтому поменяем знак e_6' :

$$e_6' = \frac{e_4}{\sqrt{3}} - \sqrt{\frac{2}{3}}e_5 \tag{377}$$

$$J_{-}(e'_{1}) = J_{-}(e_{1}) = -\sqrt{3}e'_{2}, \quad J_{-}(e'_{2}) = J_{-}\left(\frac{e_{2}}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_{3}\right) = -2e'_{3}$$
 (379)

$$J_{-}(e_{3}') = J_{-}\left(\sqrt{\frac{2}{3}}e_{4} + \frac{e_{5}}{\sqrt{3}}\right) = -\sqrt{3}e_{4}, \quad J_{-}(e_{4}') = J_{-}(e_{6}) = 0$$
(380)

$$J_{-}(e_{5}') = J_{-}\left(\sqrt{\frac{2}{3}}e_{2} - \frac{e_{3}}{\sqrt{3}}\right) = -e_{6}', \quad J_{-}(e_{6}') = J_{-}\left(\sqrt{\frac{2}{3}}e_{5} - \frac{e_{4}}{\sqrt{3}}\right) = 0$$
 (381)

$$iJ_3(e_1') = iJ_3(e_1) = \frac{3}{2}e_2', \quad iJ_3(e_2') = iJ_3\left(\frac{e_2}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_3\right) = \frac{1}{2}e_2'$$
 (383)

$$iJ_3(e_3') = iJ_3\left(\sqrt{\frac{2}{3}}e_4 + \frac{e_5}{\sqrt{3}}\right) = -\frac{1}{2}e_4, \quad iJ_3(e_4') = iJ_3(e_6) = -\frac{3}{2}e_4$$
 (384)

$$iJ_3(e_5') = iJ_3\left(\sqrt{\frac{2}{3}}e_2 - \frac{e_3}{\sqrt{3}}\right) = \frac{1}{2}e_5', \quad iJ_3(e_6') = iJ_3\left(\sqrt{\frac{2}{3}}e_5 - \frac{e_4}{\sqrt{3}}\right) = -\frac{1}{2}e_6'$$
 (385)

$$iJ_{3} = \begin{pmatrix} \frac{3}{2} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0\\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{3}{2} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix}$$

$$(386)$$

$$V = \langle \sqrt{\frac{2}{3}}e_2 - \frac{e_3}{\sqrt{3}}, \frac{e_4}{\sqrt{3}} - \sqrt{\frac{2}{3}}e_5 \rangle$$
 (387)

в)* 3j символы Вигнера — коэффиценты разложения одного базиса по другому:

$$v_{j,m} = \sum_{j,m} C_{j,m}^{j_1,m_1,j_2,m_2} v_{j_1,m_1} \otimes v_{j_2,m_2}, \quad j_1 = 1, j_2 = \frac{1}{2}$$
(388)

$$v_{\frac{3}{2},\frac{3}{2}} = e_1' = e_1 = e_+ \otimes e_+ \otimes e_+ = v_{1,1} \otimes v_{\frac{1}{2},\frac{1}{2}}$$
(389)

$$C_{\frac{3}{2},\frac{3}{2}}^{1,1,\frac{1}{2},\frac{1}{2}} = 1$$
 (390)

$$v_{\frac{3}{2},\frac{1}{2}} = e_2' = \frac{e_2}{\sqrt{3}} + \sqrt{\frac{2}{3}}e_3 = \frac{1}{\sqrt{3}}e_+ \otimes e_+ \otimes e_- + \sqrt{\frac{2}{3}}\frac{1}{\sqrt{2}}(e_+ \otimes e_- + e_- \otimes e_+) \otimes e_+$$
(391)

$$v_{\frac{3}{2},\frac{1}{2}} = \frac{1}{\sqrt{3}}v_{1,1} \otimes v_{\frac{1}{2},-\frac{1}{2}} + \sqrt{\frac{2}{3}}v_{1,0} \otimes v_{\frac{1}{2},\frac{1}{2}}$$
(392)

$$C_{\frac{3}{2},\frac{1}{2}}^{1,1,\frac{1}{2},-\frac{1}{2}} = \frac{1}{\sqrt{3}}, \quad C_{\frac{3}{2},\frac{1}{2}}^{1,0,\frac{1}{2},\frac{1}{2}} = \sqrt{\frac{2}{3}}$$
(393)

$$v_{\frac{3}{2},-\frac{1}{2}} = e_3' = \sqrt{\frac{2}{3}}e_4 + \frac{e_5}{\sqrt{3}} = \frac{1}{\sqrt{3}}e_- \otimes e_- \otimes e_+ + \sqrt{\frac{2}{3}}\frac{1}{\sqrt{2}}(e_+ \otimes e_- + e_- \otimes e_+) \otimes e_-$$
(394)

$$v_{\frac{3}{2},-\frac{1}{2}} = \frac{1}{\sqrt{3}}v_{1,-1} \otimes v_{\frac{1}{2},\frac{1}{2}} + \sqrt{\frac{2}{3}}v_{1,0} \otimes v_{\frac{1}{2},-\frac{1}{2}}$$
(395)

$$C_{\frac{3}{2},\frac{1}{2}}^{1,-1,\frac{1}{2},\frac{1}{2}} = \frac{1}{\sqrt{3}}, \quad C_{\frac{3}{2},\frac{1}{2}}^{1,0,\frac{1}{2},-\frac{1}{2}} = \sqrt{\frac{2}{3}}$$
(396)

$$v_{\frac{3}{2},-\frac{3}{2}} = e_4' = e_6 = e_- \otimes e_- \otimes e_- = v_{1,-1} \otimes v_{\frac{1}{2},-\frac{1}{2}}$$
(397)

$$C_{\frac{3}{2},-\frac{3}{2}}^{1,-1,\frac{1}{2},-\frac{1}{2}} = 1$$
 (398)

$$v_{\frac{3}{2},\frac{1}{2}} = e_5' = \sqrt{\frac{2}{3}}e_2 - \frac{e_3}{\sqrt{3}} = \sqrt{\frac{2}{3}}e_+ \otimes e_+ \otimes e_- - \frac{1}{\sqrt{3}}\frac{1}{\sqrt{2}}(e_+ \otimes e_- + e_- \otimes e_+) \otimes e_+$$
(399)

$$v_{\frac{3}{2},\frac{1}{2}} = \sqrt{\frac{2}{3}}v_{1,1} \otimes v_{\frac{1}{2},-\frac{1}{2}} - \frac{1}{\sqrt{3}}v_{1,0} \otimes v_{\frac{1}{2},\frac{1}{2}}$$

$$\tag{400}$$

$$C_{\frac{3}{2},\frac{1}{2}}^{1,1,\frac{1}{2},-\frac{1}{2}} = \sqrt{\frac{2}{3}}, \quad C_{\frac{3}{2},\frac{1}{2}}^{1,0,\frac{1}{2},\frac{1}{2}} = -\frac{1}{\sqrt{3}}$$
(401)

$$v_{\frac{3}{2},-\frac{1}{2}} = e_6' = \frac{e_4}{\sqrt{3}} - \sqrt{\frac{2}{3}}e_5 = -\sqrt{\frac{2}{3}}e_- \otimes e_- \otimes e_+ + \frac{1}{\sqrt{3}}\frac{1}{\sqrt{2}}(e_+ \otimes e_- + e_- \otimes e_+) \otimes e_-$$
(402)

$$v_{\frac{3}{2},-\frac{1}{2}} = -\sqrt{\frac{2}{3}}v_{1,-1} \otimes v_{\frac{1}{2},\frac{1}{2}} + \frac{1}{\sqrt{3}}v_{1,0} \otimes v_{\frac{1}{2},-\frac{1}{2}}$$

$$\tag{403}$$

$$C_{\frac{3}{2},-\frac{1}{2}}^{1,-1,\frac{1}{2},\frac{1}{2}} = -\sqrt{\frac{2}{3}}, \quad C_{\frac{3}{2},-\frac{1}{2}}^{1,0,\frac{1}{2},-\frac{1}{2}} = \frac{1}{\sqrt{3}}$$
(404)

Задача 11.4 (*). а) Соответствие между перестановками различных циклических типов в S_4 и различными собственными движениями, сохраняющими куб (см. задачу 4.4):

- $1. \ e$ (единичный, $1 \ \text{шт.}$) тождественное движение (ничего не делает с кубом).
- 2. (a,b) (транспозиции, 6 шт.) повороты на π вокруг прямой l_1 , проходящей через центры противоположных рёбер.
- 3. (a,b)(c,d) (произведение транспозиций, 3 шт.) повороты на π вокруг прямой l_2 , проходящей через центры противоположных граней.
- 4. (a,b,c) (цикл длины 3, 8 шт.) поворот на $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ вокруг прямой l_3 , проходящей через диагональ куба.
- 5. (a,b,c,d) (цикл длины 4, 6 шт.) повороты на $\frac{\pi}{2},\frac{3\pi}{2}$ вокруг прямой l_2 , проходящей через центры противоположных граней.

Таблица характеров группы S_4 (см. задачу 6.3):

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	$(a, b, c, d)^{-6}$
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	-1	1	1	-1
$\chi^{(3)}$	3	1	-1	0	-1
$\chi^{(4)}$	3	-1	-1	0	1
$\chi^{(5)}$	2	0	2	-1	0

$$\chi_{\pi_2}(R(\alpha)) = e^{-2i\alpha} + e^{-i\alpha} + 1 + e^{i\alpha} + e^{2i\alpha} = 1 + 2\cos\alpha + 2\cos2\alpha \tag{405}$$

$$\chi_{\pi_2}(R(0)) = 1 + 2 + 2 = 5 \tag{406}$$

$$\chi_{\pi_2}(R(\pi)) = 1 - 2 + 2 = 1 \tag{407}$$

$$\chi_{\pi_2}\left(R\left(\frac{2\pi}{3}\right)\right) = 1 - 1 - 1 = -1$$
(408)

$$\chi_{\pi_2}\left(R\left(\frac{\pi}{2}\right)\right) = 1 + 0 - 2 = -1$$
(409)

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	$(a, b, c, d)^{-6}$
χ_{π_2}	5	1	1	-1	-1

Разложим χ_{π_2} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_2} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_2} \rangle$$
(410)

$$a_1 = \frac{1}{24}(1 \cdot 5 + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot (-1)) = 0$$
(411)

$$a_2 = \frac{1}{24}(1 \cdot 5 + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot 1) = 0$$
(412)

$$a_3 = \frac{1}{24}(1 \cdot 15 + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = 1 \tag{413}$$

$$a_4 = \frac{1}{24}(1 \cdot 15 + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = 0$$
(414)

$$a_5 = \frac{1}{24}(1 \cdot 10 + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 1 + 6 \cdot 0) = 1 \tag{415}$$

$$\chi_{\pi_2} = \chi^{(3)} + \chi^{(5)} \tag{416}$$

б)

$$\chi_{\pi_n}(R(\alpha)) = \sum_{i=-n}^n e^{ij\alpha} = \frac{e^{-in\alpha}(e^{i(2n+1)\alpha} - 1)}{e^{i\alpha} - 1} = \frac{e^{i(n+1)\alpha} - e^{-in\alpha}}{e^{i\alpha} - 1} = \frac{e^{i(n+\frac{1}{2})\alpha} - e^{-i(n+\frac{1}{2})\alpha}}{e^{\frac{i\alpha}{2}} - e^{-\frac{i\alpha}{2}}}$$

$$\chi_{\pi_n}(R(\alpha)) = \frac{\sin(n + \frac{1}{2})\alpha}{\sin\frac{\alpha}{2}} = \sin n\alpha \frac{\cos\frac{\alpha}{2}}{\sin\frac{\alpha}{2}} + \cos n\alpha \tag{417}$$

$$\chi_{\pi_n}(R(0)) = 2n + 1 \tag{418}$$

$$\chi_{\pi_n}(R(\pi)) = \begin{cases} 1, & n = 2k \\ -1, & n = 2k+1 \end{cases} \quad k \in \mathbb{Z}$$
 (419)

$$\chi_{\pi_n} \left(R \left(\frac{2\pi}{3} \right) \right) = \begin{cases} 1, & n = 3k \\ 0, & n = 3k + 1 \\ -1, & n = 3k + 2 \end{cases}$$
 (420)

$$\chi_{\pi_n}\left(R\left(\frac{\pi}{2}\right)\right) = \begin{cases} 1, & n = 4k, 4k+1\\ -1, & n = 4k+2, 4k+3 \end{cases} \quad k \in \mathbb{Z}$$
 (421)

Рассмотрим все случаи:

1. $n = 12k, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	1	1	1	1

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(422)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot 1) = \frac{n}{12} + 1 \tag{423}$$

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot (-1)) = \frac{n}{12}$$
 (424)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n}{4}$$
 (425)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n}{4}$$
 (426)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot (-1) + 6 \cdot 0) = \frac{n}{6}$$
 (427)

$$\chi_{\pi_n} = \chi^{(1)} \left(\frac{n}{12} + 1 \right) + \chi^{(2)} \frac{n}{12} + (\chi^{(3)} + \chi^{(4)}) \frac{n}{4} + \chi^{(5)} \frac{n}{6}$$
(428)

2. $n = 12k + 1, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	-1	-1	0	1

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
 (429)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n-1}{12}$$
 (430)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-1}{12}$$
 (431)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-1}{4}$$
 (432)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+3}{4}$$
 (433)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot 0 + 6 \cdot 0) = \frac{n-1}{6}$$
 (434)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n-1}{12} + \chi^{(2)} \frac{n-1}{12} + \chi^{(3)} \frac{n+3}{4} + \chi^{(4)} \frac{n+3}{4} + \chi^{(5)} \frac{n-1}{6}$$
(435)

3. $n = 12k + 2, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	1	1	-1	-1

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(436)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot (-1)) = \frac{n-2}{12}$$
 (437)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot 1) = \frac{n-2}{12}$$
 (438)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n+2}{4}$$
 (439)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-2}{4}$$
 (440)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 1 + 6 \cdot 0) = \frac{n+4}{6}$$
 (441)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n-2}{12} + \chi^{(2)} \frac{n+2}{12} + \chi^{(3)} \frac{n+2}{4} + \chi^{(4)} \frac{n-2}{4} + \chi^{(5)} \frac{n+4}{6}$$
(442)

4. $n = 12k + 3, k \in \mathbb{Z}$.

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
 (443)

$$a_1 = \frac{1}{24} (1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 1 + 6 \cdot (-1)) = \frac{n-3}{12}$$
 (444)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 1 + 6 \cdot 1) = \frac{n+9}{12}$$
 (445)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+1}{4}$$
 (446)

$$a_4 = \frac{1}{24} (1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n+1}{4}$$
 (447)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot (-1) + 6 \cdot 0) = \frac{n-3}{6}$$
 (448)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n-3}{12} + \chi^{(2)} \frac{n+9}{12} + \chi^{(3)} \frac{n+1}{4} + \chi^{(4)} \frac{n+1}{4} + \chi^{(5)} \frac{n-3}{6}$$
(449)

5. $n = 12k + 4, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	1	1	0	1

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^{5} a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(450)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+8}{12}$$
 (451)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-4}{12}$$
 (452)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n}{4}$$
 (453)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n}{4}$$
 (454)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 0 + 6 \cdot 0) = \frac{n+2}{6}$$
 (455)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n+8}{12} + \chi^{(2)} \frac{n-4}{12} + \chi^{(3)} \frac{n}{4} + \chi^{(4)} \frac{n}{4} + \chi^{(5)} \frac{n+2}{6}$$
(456)

6. $n = 12k + 5, k \in \mathbb{Z}$.

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$

$$\tag{457}$$

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot (-1) + 6 \cdot 1) = \frac{n-5}{12}$$
 (458)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot (-1) + 6 \cdot (-1)) = \frac{n-5}{12}$$
 (459)

$$a_3 = \frac{1}{24} (1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-1}{4}$$
 (460)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+3}{4}$$
 (461)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot 1 + 6 \cdot 0) = \frac{n+1}{6}$$
 (462)

$$\chi_{\pi_n} = (\chi^{(1)} + \chi^{(2)}) \frac{n-5}{12} + \chi^{(3)} \frac{n-1}{4} + \chi^{(4)} \frac{n+3}{4} + \chi^{(5)} \frac{n+1}{6}$$
(463)

7. $n = 12k + 6, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	1	1	1	-1

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(464)

$$a_1 = \frac{1}{24} (1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot (-1)) = \frac{n+6}{12}$$
 (465)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 1 + 6 \cdot 1) = \frac{n+6}{12}$$
 (466)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n+2}{4}$$
 (467)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-2}{4}$$
 (468)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot (-1) + 6 \cdot 0) = \frac{n}{6}$$
 (469)

$$\chi_{\pi_n} = (\chi^{(1)} + \chi^{(2)}) \frac{n+6}{12} + \chi^{(3)} \frac{n+2}{4} + \chi^{(4)} \frac{n-2}{4} + \chi^{(5)} \frac{n}{6}$$
(470)

8. $n = 12k + 7, k \in \mathbb{Z}$.

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$

$$\tag{471}$$

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-7}{12}$$
 (472)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n+5}{12}$$
 (473)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+1}{4}$$
 (474)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n+1}{4}$$
 (475)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot 0 + 6 \cdot 0) = \frac{n-1}{6}$$
 (476)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n-7}{12} + \chi^{(2)} \frac{n+5}{12} + (\chi^{(3)} + \chi^{(4)}) \frac{n+1}{4} + \chi^{(5)} \frac{n-1}{6}$$
(477)

9. $n = 12k + 8, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	1	1	-1	1

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
 (478)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot 1) = \frac{n+4}{12}$$
 (479)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot (-1) + 6 \cdot (-1)) = \frac{n-8}{12}$$
 (480)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n}{4}$$
 (481)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n}{4}$$
 (482)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 1 + 6 \cdot 0) = \frac{n+4}{6}$$
 (483)

$$\left| \chi_{\pi_n} = \chi^{(1)} \frac{n+4}{12} + \chi^{(2)} \frac{n-8}{12} + \chi^{(3)} \frac{n}{4} + \chi^{(4)} \frac{n}{4} + \chi^{(5)} \frac{n+4}{6} \right|$$
(484)

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^{-3}$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	-1	-1	1	1

10. $n = 12k + 9, k \in \mathbb{Z}$.

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(485)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 1 + 6 \cdot 1) = \frac{n+3}{12}$$
 (486)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 1 + 6 \cdot (-1)) = \frac{n+3}{12}$$
 (487)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-1}{4}$$
 (488)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+3}{4}$$
 (489)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot (-1) + 6 \cdot 0) = \frac{n-3}{6}$$
 (490)

$$\chi_{\pi_n} = (\chi^{(1)} + \chi^{(2)}) \frac{n+3}{12} + \chi^{(3)} \frac{n-1}{4} + \chi^{(4)} \frac{n+3}{4} + \chi^{(5)} \frac{n-3}{6}$$
(491)

11. $n = 12k + 10, k \in \mathbb{Z}$.

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^3$	(a,b,c) ⁸	$(a, b, c, d)^{6}$
χ_{π_n}	2n + 1	1	1	0	-1

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(492)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n+2}{12}$$
 (493)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+2}{12}$$
 (494)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot 1) = \frac{n+2}{4}$$
 (495)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n-2}{4}$$
 (496)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot 2 + 8 \cdot 0 + 6 \cdot 0) = \frac{n+2}{6}$$
(497)

$$\chi_{\pi_n} = (\chi^{(1)} + \chi^{(2)}) \frac{n+2}{12} + \chi^{(3)} \frac{n+2}{4} + \chi^{(4)} \frac{n-2}{4} + \chi^{(5)} \frac{n+2}{6}$$
(498)

	e^{1}	$(a,b)^{6}$	$(a,b)(c,d)^{-3}$	$(a, b, c)^{-8}$	(a, b, c, d) 6
χ_{π_n}	2n + 1	-1	-1	-1	-1

12. $n = 12k + 11, k \in \mathbb{Z}$.

Разложим χ_{π_n} при помощи алгоритма разложения на неприводимые:

$$\chi_{\pi_n} = \sum_{i=1}^5 a_i \chi^{(i)}, \quad a_i = \langle \chi^{(i)}, \chi_{\pi_n} \rangle$$
(499)

$$a_1 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot (-1) + 3 \cdot (-1) + 8 \cdot (-1) + 6 \cdot (-1)) = \frac{n-11}{12}$$
 (500)

$$a_2 = \frac{1}{24}(1 \cdot (2n+1) + 6 \cdot 1 + 3 \cdot (-1) + 8 \cdot (-1) + 6 \cdot 1) = \frac{n+1}{12}$$
 (501)

$$a_3 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot (-1) + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot 1) = \frac{n+1}{4}$$
 (502)

$$a_4 = \frac{1}{24}(1 \cdot (6n+3) + 6 \cdot 1 + 3 \cdot 1 + 8 \cdot 0 + 6 \cdot (-1)) = \frac{n+1}{4}$$
 (503)

$$a_5 = \frac{1}{24}(1 \cdot (4n+2) + 6 \cdot 0 + 3 \cdot (-2) + 8 \cdot 1 + 6 \cdot 0) = \frac{n+1}{6}$$
 (504)

$$\chi_{\pi_n} = \chi^{(1)} \frac{n-11}{12} + \chi^{(2)} \frac{n+1}{12} + (\chi^{(3)} + \chi^{(4)}) \frac{n+1}{4} + \chi^{(5)} \frac{n+1}{6}$$
 (505)

12 Представления более общих групп Ли.

Задача 12.1. a)

$$g = \begin{pmatrix} e^{i\varphi_1} & 0 & 0\\ 0 & e^{-i\varphi_1 + i\varphi_2} & 0\\ 0 & 0 & e^{-i\varphi_2} \end{pmatrix}$$
 (506)

$$\chi_V(g) = e^{i\varphi_1} + e^{-i\varphi_1 + i\varphi_2} + e^{-i\varphi_2}$$
(507)

Из лекции 12:

$$\chi_{\Lambda^2 V}(g) = e^{-i\varphi_1} + e^{i\varphi_1 - i\varphi_2} + e^{i\varphi_2}$$

$$\tag{508}$$

$$\chi_{V \otimes \Lambda^2 V} = \chi_V \chi_{\Lambda^2 V} = (e^{i\varphi_1} + e^{-i\varphi_1 + i\varphi_2} + e^{-i\varphi_2})(e^{-i\varphi_1} + e^{i\varphi_1 - i\varphi_2} + e^{i\varphi_2})$$
 (509)

$$\chi_{V \otimes \Lambda^2 V} = 3 + e^{2i\varphi_1 - i\varphi_2} + e^{i(\varphi_1 + \varphi_2)} + e^{-2i\varphi_1 + i\varphi_2} + e^{-i\varphi_1 + 2i\varphi_2} + e^{-i(\varphi_1 + \varphi_2)} + e^{i\varphi_1 - 2i\varphi_2}$$
 (510)

$$\left| \chi_{V \otimes \Lambda^{2} V} = 3 + 2\cos(2\varphi_{1} - \varphi_{2}) + 2\cos(\varphi_{1} - 2\varphi_{2}) + 2\cos(\varphi_{1} + \varphi_{2}) \right|$$
 (511)

б) Генераторами группы SU(3) являются матрицы Гелл-Манна:

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (512)

$$\lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 (513)

$$\lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 (514)

$$g\lambda^{1}g^{-1} = \begin{pmatrix} 0 & e^{i(2\varphi_{1}-\varphi_{2})} & 0\\ e^{i(-2\varphi_{1}+\varphi_{2})} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad g\lambda^{2}g^{-1} = \begin{pmatrix} 0 & -ie^{i(2\varphi_{1}-\varphi_{2})} & 0\\ ie^{i(-2\varphi_{1}+\varphi_{2})} & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

$$g\lambda^3 g^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad g\lambda^4 g^{-1} = \begin{pmatrix} 0 & 0 & e^{i(\varphi_1 + \varphi_2)} \\ 0 & 0 & 0 \\ e^{-i(\varphi_1 + \varphi_2)} & 0 & 0 \end{pmatrix}$$

$$g\lambda^5 g^{-1} = \begin{pmatrix} 0 & 0 & -ie^{i(\varphi_1 + \varphi_2)} \\ 0 & 0 & 0 \\ ie^{-i(\varphi_1 + \varphi_2)} & 0 & 0 \end{pmatrix}, \quad g\lambda^6 g^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e^{-i(\varphi_1 - 2\varphi_2)} \\ 0 & e^{i(\varphi_1 - 2\varphi_2)} & 0 \end{pmatrix}$$

$$g\lambda^{7}g^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -ie^{-i(\varphi_{1}-2\varphi_{2})} \\ 0 & ie^{i(\varphi_{1}-2\varphi_{2})} & 0 \end{pmatrix}, \quad g\lambda^{8}g^{-1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$g\lambda^{1}g^{-1} = \cos(2\varphi_{1} - \varphi_{2})\lambda^{1} - \sin(2\varphi_{1} - \varphi_{2})\lambda^{2}$$

$$(515)$$

$$g\lambda^2 g^{-1} = \sin(2\varphi_1 - \varphi_2)\lambda^1 + \cos(2\varphi_1 - \varphi_2)\lambda^2 \tag{516}$$

$$q\lambda^3 q^{-1} = \lambda^3 \tag{517}$$

$$g\lambda^4 g^{-1} = \cos(\varphi_1 + \varphi_2)\lambda^4 - \sin(\varphi_1 + \varphi_2)\lambda^5$$
(518)

$$g\lambda^5 g^{-1} = \sin(\varphi_1 + \varphi_2)\lambda^4 + \cos(\varphi_1 + \varphi_2)\lambda^5 \tag{519}$$

$$g\lambda^6 g^{-1} = \cos(2\varphi_2 - \varphi_1)\lambda^6 - \sin(2\varphi_2 - \varphi_1)\lambda^7 \tag{520}$$

$$g\lambda^7 g^{-1} = \sin(2\varphi_2 - \varphi_1)\lambda^6 + \cos(2\varphi_2 - \varphi_1)\lambda^7 \tag{521}$$

$$g\lambda^8 g^{-1} = \lambda^8 \tag{522}$$

Присоединённое представление:

Характер присоединённого представления SU(3):

$$\chi_{Ad_g} = 2(1 + \cos(2\varphi_1 - \varphi_2) + \cos(\varphi_1 - 2\varphi_2) + \cos(\varphi_1 + \varphi_2))$$
 (524)

в)* Как видно из п. а и б ($\chi_{\rm triv} = 1$ – характер тривиального):

$$\chi_{V \otimes \Lambda^2 V} = \chi_{Ad_g} + \chi_{\text{triv}}$$
 (525)

Задача 12.2. а) Базис в алгебре Ли $\mathfrak{so}(3,1)$:

Найдём структурные константы в этом базисе:

$$[J_i, J_j] = \sum_k a_{ij}^k J_k, \quad [K_i, K_j] = \sum_k b_{ij}^k J_k, \quad [J_i, K_j] = \sum_k b_{ij}^k K_k$$
 (526)

$$[J_1, J_2] = J_1 J_2 - J_2 J_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = i J_3$$
 (527)

$$[J_1, J_3] = J_1 J_3 - J_3 J_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = -iJ_2$$
 (528)

$$a_{ij}^k = i\epsilon_{ijk} \tag{530}$$

$$[K_1, K_2] = K_1 K_2 - K_2 K_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = -iK_3$$
 (531)

$$[K_1, K_3] = K_1 K_3 - K_3 K_1 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = i K_2$$
 (532)

$$b_{ij}^k = -i\epsilon_{ijk} \tag{534}$$

$$[J_1, K_2] = J_1 K_2 - K_2 J_1 = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} = iK_3$$
 (535)

$$[J_1, K_3] = J_1 K_3 - K_3 J_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = -iK_2$$
 (536)

$$c_{ij}^k = i\epsilon_{ijk}$$
 (538)

б)

Предложение 37. *Алгебры* $\mathfrak{so}(3,1)$ *u* $\mathfrak{sl}(2,\mathbb{C})$ *изоморфны.*

Доказательство. Для доказательства изоморфизма проверим совпадение структурных констант в $\mathfrak{so}(3,1)$ и $\mathfrak{sl}(2,\mathbb{C})$. Структурные константы в $\mathfrak{so}(3,1)$ (см. п. а):

$$[J_i, J_j] = i\epsilon_{ijk}J_k, \quad [K_i, K_j] = -i\epsilon_{ijk}K_k, \quad [J_i, K_j] = i\epsilon_{ijk}K_k \tag{539}$$

Естественный базис в $\mathfrak{sl}(2,\mathbb{C})$: e,h,f,ie,if,ih, где

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
 (540)

Выберем в $\mathfrak{sl}(2,\mathbb{C})$ базис из

$$k = \frac{1}{2}(e+f) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad l = \frac{h}{2} = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad m = \frac{1}{2}(e-f) = \frac{1}{2}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$[k, l] = -m, \quad [k, m] = -l, \quad [l, m] = k$$
 (541)

Соответствие между базисами: $k \to iJ_1, \ l \to iJ_2, \ m \to iJ_3, \ ik \to K_1, \ il \to K_2, \ im \to K_3.$

Задача 12.3. $\gamma_1, \gamma_2, ..., \gamma_N$ – образующие, которые удовлетворяют соотношениям:

$$\gamma_a \gamma_b + \gamma_b \gamma_a = \delta_{a,b} \tag{542}$$

$$J_{ab} = \gamma_a \gamma_b, \quad a \neq b \tag{543}$$

$$[J_{ab}, J_{cd}] = \gamma_a \gamma_b \gamma_c \gamma_d - \gamma_c \gamma_d \gamma_a \gamma_b = \gamma_a \gamma_b \gamma_c \gamma_d - \gamma_c (\delta_{ad} - \gamma_a \gamma_d) \gamma_b = \gamma_a \gamma_b \gamma_c \gamma_d - \gamma_c \delta_{ad} \gamma_b + \gamma_c \gamma_a (\delta_{bd} - \gamma_b \gamma_d) = (\gamma_a \gamma_b \gamma_c - \gamma_c \gamma_a \gamma_b) \gamma_d + J_{ca} \delta_{bd} - \gamma_c \gamma_b \delta_{ad} = (\gamma_a \gamma_b \gamma_c - (\delta_{ca} - \gamma_a \gamma_c) \gamma_b) \gamma_d + J_{ca} \delta_{bd} + J_{bc} \delta_{ad}$$

$$+ J_{ca} \delta_{bd} + J_{bc} \delta_{ad}$$
 (544)

$$[J_{ab}, J_{cd}] = J_{ad}\delta_{bc} + J_{db}\delta_{ac} + J_{ca}\delta_{bd} + J_{bc}\delta_{ad}$$
(545)

Задача 12.4. а) V — четырёхмерное представление алгебры $\mathfrak{so}(4)$. $\mathfrak{so}(4)\simeq\mathfrak{su}(2)\oplus\mathfrak{su}(2)$, значит

$$\chi_V = \chi_{\mathfrak{su}(2)} + \chi_{\mathfrak{su}(2)} \tag{546}$$

$$\chi_V = e^{i\varphi_1} + e^{-i\varphi_1} + e^{i\varphi_2} + e^{-i\varphi_2} \tag{547}$$

$$\chi_V = 2\cos\varphi_1 + 2\cos\varphi_2 \tag{548}$$