Feuille d'exercice n° 09 : Calcul matriciel

Exercice 1 () Effectuer les produit de matrices suivants.

1)
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix}$ 3) $\begin{pmatrix} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{pmatrix}$

Exercice 2 () Pour
$$\theta \in \mathbb{R}$$
, on définit $A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculer $A^n(\theta)$ pour tout $n \in \mathbb{Z}$.

Exercice 3 ($^{\otimes}$) Soit $n \in \mathbb{N}^*$. On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique si tous les coefficients de A sont positifs ou nuls et si la somme des coefficients de chaque ligne de A est égale à 1.

Montrer que le produit de deux matrices stochastiques est une matrice stochastique.

Exercice 4 (Pour chacune de ces matrices, déterminer si elle est inversible et, le cas échéant, donner son inverse.

1)
$$A = \begin{pmatrix} 4 & -1 & 0 \\ 2 & 0 & 1 \\ 3 & 3 & -4 \end{pmatrix}$$
 2) $B = \begin{pmatrix} -2 & 3 & 1 \\ 1 & -2 & 0 \\ 2 & -1 & -1 \end{pmatrix}$ 3) $C = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Exercice 5 (
$$\bigcirc$$
) Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et soit $B = A - I_3$.

- 1) Calculer B^2 , B^3 , puis en déduire la valeur de B^n pour tout entier naturel n.
- 2) Développer $(B+I_3)^n$ par la formule du binôme et simplifier.
- 3) En déduire A^n pour tout entier naturel n.
- 4) La relation précédente est-elle aussi valable pour les entiers n négatifs ?

Exercice 6 Soit $a, b \in \mathbb{C}$.

- 1) Trouver les matrices qui commutent avec $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}$.
- **2)** De même avec $B = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$.

Exercice 7 ($^{\circ}$) Soit $a,b,c,d,e,f\in\mathbb{C}$. On considère la matrice suivante :

$$M = \left(\begin{array}{cccc} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{array}\right).$$

- 1) Calculer M^2, M^3, M^4 et M^5 .
- 2) Pouvez-vous calculer M^n pour tout $n \in \mathbb{N}$? Et pour tout $n \in \mathbb{Z}$?

Exercice 8 (
$$^{\circ}$$
) Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1) Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 .
- $\mathbf{2}$) En déduire que A est inversible et déterminer son inverse.

Exercice 9 Soit $n \in \mathbb{N}^*$. Déterminer l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que :

$$\forall H \in \mathscr{M}_n(\mathbb{R}), MH = HM.$$

Exercice 10 Soit
$$M = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \\ 4 & 2 & 2 \end{pmatrix}$$
.

1) Déterminer une matrice L_1 triangulaire inférieure et une matrice U triangulaire supérieure telles que $L_1M = U$.

Indication : on écrira L_1 comme produit de matrices d'opérations élémentaires.

- 2) Déterminer une matrice L triangulaire inférieure telle que M=LU.
- 3) Résoudre les systèmes suivants :

$$\mathbf{a)} \ MX = \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$

$$\mathbf{b)} \ MX = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{c)} \ MX = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}$$

