dde Poisson2D

September 28, 2023

1 Poisson equation over an L-shaped domain

We solve

$$-u_{xx}-u_{yy}=1,\qquad \Omega=[-1,1]^2\backslash[0,1]^2$$

with Dirichlet boundary conditions everywhere,

$$u(x,y) = 0,$$
 $(x,y) \in \partial \Omega.$

Please see DeepXDE doc for fuller details.

```
[1]: import deepxde as dde
     def pde(x, y):
         dy_xx = dde.grad.hessian(y, x, i=0, j=0)
         dy_y = dde.grad.hessian(y, x, i=1, j=1)
         return -dy_xx - dy_yy - 1
     def boundary(_, on_boundary):
         return on_boundary
     geom = dde.geometry.Polygon([[0, 0], [1, 0], [1, -1], [-1, -1], [-1, 1], [0,_{\sqcup}
      41]])
     bc = dde.icbc.DirichletBC(geom, lambda x: 0, boundary)
     data = dde.data.PDE(geom, pde, bc, num_domain=1200, num_boundary=120,__
     ⇔num_test=1500)
     net = dde.nn.FNN([2] + [50] * 4 + [1], "tanh", "Glorot uniform")
     model = dde.Model(data, net)
     model.compile("adam", lr=0.001)
     model.train(iterations=20000)
     model.compile("L-BFGS")
     losshistory, train_state = model.train()
     dde.saveplot(losshistory, train_state, issave=True, isplot=True)
```

Using backend: pytorch

Other supported backends: tensorflow.compat.v1, tensorflow, jax, paddle.

paddle supports more examples now and is recommended.

Warning: Polygon.uniform_points not implemented. Use random_points instead.

Compiling model...

Training model...

Step	Train loss	Test loss	Test metric
0	[9.15e-01, 5.93e-02]	[9.13e-01, 5.93e-02]	[]
1000	[2.79e-04, 3.00e-03]	[2.11e-04, 3.00e-03]	[]
2000	[1.14e-04, 2.84e-03]	[8.72e-05, 2.84e-03]	[]
3000	[1.09e-04, 2.58e-03]	[7.95e-05, 2.58e-03]	[]
4000	[1.94e-04, 2.13e-03]	[1.46e-04, 2.13e-03]	[]
5000	[2.70e-04, 1.60e-03]	[2.16e-04, 1.60e-03]	[]
6000	[2.73e-04, 1.05e-03]	[2.37e-04, 1.05e-03]	[]
7000	[1.82e-04, 4.42e-04]	[1.31e-04, 4.42e-04]	[]
8000	[1.12e-04, 2.55e-04]	[9.07e-05, 2.55e-04]	[]
9000	[1.19e-04, 1.95e-04]	[1.23e-04, 1.95e-04]	[]
10000	[1.28e-04, 1.67e-04]	[1.29e-04, 1.67e-04]	[]
11000	[7.40e-05, 1.44e-04]	[6.20e-05, 1.44e-04]	[]
12000	[3.42e-05, 1.37e-04]	[2.75e-05, 1.37e-04]	[]
13000	[2.77e-05, 1.37e-04]	[2.16e-05, 1.37e-04]	[]
14000	[2.55e-05, 1.30e-04]	[1.92e-05, 1.30e-04]	[]
15000	[2.98e-05, 1.31e-04]	[2.41e-05, 1.31e-04]	[]
16000	[6.45e-05, 1.31e-04]	[5.24e-05, 1.31e-04]	[]
17000	[8.38e-05, 1.31e-04]	[7.53e-05, 1.31e-04]	[]
18000	[2.01e-05, 1.19e-04]	[1.42e-05, 1.19e-04]	[]
19000	[4.77e-05, 1.21e-04]	[4.66e-05, 1.21e-04]	[]
20000	[2.42e-05, 1.17e-04]	[1.82e-05, 1.17e-04]	[]

Best model at step 18000: train loss: 1.40e-04 test loss: 1.34e-04

test metric: []

Compiling model...

Training model...

Step	Train loss	Test loss	Test metric
20000	[2.42e-05, 1.17e-04]	[1.82e-05, 1.17e-04]	[]
21000	[1.35e-05, 5.03e-05]	[1.50e-05, 5.03e-05]	[]

^{&#}x27;compile' took 0.000060 s

^{&#}x27;train' took 141.981709 s

^{&#}x27;compile' took 0.000178 s

```
[9.47e-06, 1.97e-05]
22000
                                  [1.14e-05, 1.97e-05]
                                                          23000
          [6.20e-06, 1.06e-05]
                                  [9.44e-06, 1.06e-05]
                                                          [4.46e-06, 7.46e-06]
                                  [7.63e-06, 7.46e-06]
                                                          24000
25000
          [3.46e-06, 6.58e-06]
                                  [7.91e-06, 6.58e-06]
                                                          [3.45e-06, 6.58e-06]
                                  [7.90e-06, 6.58e-06]
26000
          [3.44e-06, 6.58e-06]
27000
                                  [7.89e-06, 6.58e-06]
                                                          28000
          [3.44e-06, 6.57e-06]
                                  [7.88e-06, 6.57e-06]
                                                          [3.43e-06, 6.57e-06]
                                  [7.87e-06, 6.57e-06]
29000
                                                          [3.43e-06, 6.56e-06]
                                  [7.86e-06, 6.56e-06]
                                                          30000
          [3.43e-06, 6.56e-06]
                                  [7.85e-06, 6.56e-06]
                                                          31000
          [3.43e-06, 6.56e-06]
                                  [7.85e-06, 6.56e-06]
                                                          32000
          [3.42e-06, 6.55e-06]
                                  [7.84e-06, 6.55e-06]
                                                          33000
          [3.42e-06, 6.55e-06]
                                  [7.83e-06, 6.55e-06]
                                                          34000
                                                          35000
          [3.42e-06, 6.55e-06]
                                  [7.82e-06, 6.55e-06]
```

Best model at step 35000:

train loss: 9.97e-06
test loss: 1.44e-05
test metric: []

Saving loss history to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/loss.dat \dots

Saving training data to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/train.dat \dots

Saving test data to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/test.dat ...

^{&#}x27;train' took 133.421110 s

[]: