6 Predictive Coding

- 6.1 Lossless Predictive Coding
- 6.2 Optimum 2D Linear Prediction
- 6.3 JPEG-LS Lossless Compression Standard
- 6.4 Differential Pulse Code Modulation (DPCM)

6.1 Lossless Predictive Coding

Prediction signal p[n] is calculated from x[n] using previous samples

- Prediction error e[n] has reduced statistical dependencies between adjacent samples
- Entropy coding of prediction error typically under assumption of iid property

Receiver can reconstruct x[n] from e[n] without loss

Linear Predictor

Linear predictor: weighted superposition of past *N* samples

$$p[n] = \sum_{i=1}^{N} a_i x[n-i]$$

Predictor design: minimize MSE between original signal and its prediction

$$E\{e^{2}[n]\} = E\{(x[n] - p[n])^{2}\} = E\{(x[n] - \sum_{i=1}^{N} a_{i}x[n-i])^{2}\}$$

by setting

$$\frac{\partial}{\partial a_i} E\{e^2[n]\} = 0 \quad \text{for} \quad i = 1, 2, \dots, N$$

Minimization using $\varphi_{xx}[k] = E\{x[n+k]x[n]\}$ yields Wiener-Hopf equation

$$\underbrace{ \begin{bmatrix} \varphi_{xx}[1] \\ \varphi_{xx}[2] \\ \vdots \\ \varphi_{xx}[N] \end{bmatrix}}_{\boldsymbol{\varphi}_{xx}} = \underbrace{ \begin{bmatrix} \varphi_{xx}[0] & \varphi_{xx}[1] & \cdots & \varphi_{xx}[N-1] \\ \varphi_{xx}[1] & \varphi_{xx}[0] & \cdots & r_{xx}[N-2] \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{xx}[N-1] & \varphi_{xx}[N-2] & \cdots & \varphi_{xx}[0] \end{bmatrix}}_{\boldsymbol{\varphi}_{xx}} \cdot \underbrace{ \begin{bmatrix} a[1] \\ a[2] \\ \vdots \\ a[N] \end{bmatrix}}_{\boldsymbol{\alpha}}$$

which are solved by Toeplitz matrix inversion: $a = \Phi_{xx}^{-1} \varphi_{xx}$

Linear Predictor (cont.)

Variance of prediction error

$$\sigma_e^2 = \sigma_x^2 - \sum_{i=1}^N a_i \varphi_{xx}[i]$$

$$= \sigma_x^2 - \boldsymbol{\varphi}_{xx}^T \boldsymbol{a} = \sigma_x^2 - \underbrace{\boldsymbol{\varphi}_{xx}^T \boldsymbol{\varphi}_{xx}^{-1} \boldsymbol{\varphi}_{xx}}_{\geq 0}$$

$$\sigma_x^2: \text{ variance of source signal}$$

Prediction gain of linear prediction $G = 10 \log_{10} \frac{\sigma_{\chi}^2}{\sigma_{\rho}^2}$ [dB]

Practical aspects in predictive coding

- Prediction error PMF for images in case of linear prediction is typically Laplacian, i.e. first order entropy is reduced such that simple VLC can profit
- Minimization of prediction error entropy instead of MSE leads to similar results
- Sensitivity to transmission errors, remedy by periodical PCM refresh
- Initialization of predictor (e.g. for first row in a picture) by mean value, zero in case of Laplacian PMF

Example for Prediction Error

1D scan line prediction

Original image and prediction error

Histogram of original and prediction error

6.2 Optimum 2D Linear Predictor

Image signals can take advantage of 2D prediction:

 \Rightarrow Wiener-Hopf equations are solved for 2D signal x[m, n] in causal neighborhood, e.g. by reordering pixels into 1D vector $x_0, x_1, x_2, ...$

Example: image "Lena", 512×512 pixels, 8 bpp

 \Rightarrow Optimal minimum MSE 2D linear predictor using neighborhood x_1, x_2 , and x_3

a_1	a_2	a_3	H(X)	H(E)
0.59	-0.43	0.83	7.23 bit	4.30 bit

X has approx. uniform PMF, prediction error E is approx. Laplacian distributed

Demo 6a "Spatial Prediction"

6.3 JPEG-LS Lossless Compression Standard

Formal notation: ISO/IEC 14495-1 and ITU-T T.87

- Based on LOCO-I ("low complexity compression of images") from HP Labs
- Significantly differs from lossless mode of original JPEG

Principle: predictive coding with non-linear predictor

- Context-adaptive Golomb coding of prediction error
- 365 different 2D coding contexts based on pixel differences on causal neighborhood
- Switchable to 1D run-length coding

Near-lossless mode extension

• Allowing maximum deviation of p grey levels from original sample x

$$||x - \hat{x}||_{\infty} = \max |x - \hat{x}| \le p$$

JPEG-LS Block Diagram

Block diagram using 2D spatial prediction and mode decision

[Source: Weinberger, Seroussi, Sapiro, IEEE Transactions on Image Processing, Vol. 9, August 2000]

JPEG-LS Non-Linear Predictor

$$P = \begin{cases} \min(x_1, x_3) & \text{if } x_2 = \max(x_1, x_2, x_3) \\ \max(x_1, x_3) & \text{if } x_2 = \min(x_1, x_2, x_3) \\ x_1 - x_2 + x_3 & \text{else} \end{cases}$$

⇒ Result: horizontal or vertical directional prediction along dominant spatial image structure

JPEG-LS Context Labeling

Quantization of prediction error

• Each of three difference Δ_{ij} is quantized to 1 out of 9 different indices using default thresholds 3, 7, 21

Labeling using quantized errors

 Results in 9³ =729 context which are reduced to 365 exploiting sign symmetries

Run-length coding mode

• Switch to run-length coding mode if all Δ_{ij} are equal to zero

6.4 Differential Pulse Code Modulation (DPCM)

Reconstruction error is solely determined by quantization error

Prediction error: e[n] = x[n] - p[n]

Quantization error: $e_q[n] = \hat{e}[n] - e[n]$

Reconstruction: $\hat{x}[n] = \hat{e}[n] + p[n]$

Total error: $\hat{x}[n] - x[n] = \hat{e}[n] + p[n] - x[n] = \hat{e}[n] - e[n] = e_q[n]$

Signal Distortions in DPCM Coding

Granular noise

Random noise in flat picture areas

Slope overload

- Blur of high-contrast edges
- Moiré patterns in periodic structures

Edge busyness

Jittery appearance of edges

Error propagation

 Transmission errors are propagated due to prediction

Example of Intraframe DPCM Coding

Principle: use previously transmitted 2D picture neighborhood for prediction

Causal image area used for prediction

Example: linear prediction a = 0, b = 0.25, c = 0.25, d = 0.5, Lloyd-Max quantizer

prediction error coding: 1bit/pixel

edge busyness

3 bit/pixel

slope overload

granular noise

2 bit/pixel

Coding Gain of DPCM

High-rate distortion-rate function under assumption of MSE criterion

$$d(R) \cong \varepsilon^2 \sigma_X^2 2^{-2R}$$

In case of DPCM, only prediction error with variance σ_E^2 has to be coded:

$$d_{\mathrm{DPCM}}(R) \cong \varepsilon_E^2 \sigma_E^2 2^{-2R}$$

Prediction gain for DPCM coding defined as

$$G_{\text{DPCM}} = \frac{d_{\text{X}}(R)}{d_{E}(R)} = \frac{\varepsilon_{X}^{2} \sigma_{X}^{2}}{\varepsilon_{E}^{2} \sigma_{E}^{2}}$$

Scaling factor ϵ^2

	Shannon $D(R)$	Lloyd – Max	Entropy coded
Uniform	$\frac{6}{\pi e} \cong 0.703$	1	1
Laplacian	$\frac{\mathrm{e}}{\pi} \cong 0.865$	$\frac{9}{2} = 4.5$	$\frac{e^2}{6} \cong 1.232$
Gaussian	1	$\frac{\sqrt{3}\pi}{2} \cong 2.721$	$\frac{\pi e}{6} \cong 1.423$

Predictive Coding - Summary

- Predictive coding widely used for lossy as well as lossless image coding
- Solve Wiener-Hopf equations for optimum linear predictor
- JPEG-LS based on 2D non-linear predictor
- DPCM coding gain: prediction reduces variance and shapes distribution
- Coding distortions are granular noise, edge busyness, and slope overload

