EEE-521 Sinyaller ve Sistemler Uygulama-II

Dr. Öğr. Üyesi: H. Oktay ALTUN

Teslim: 4/11/2018-23:55

İsim ve Soyisim:
Numara:
Sinyaller ve Sistemler dersi uygulama ödevleri, MATLAB programlama bilginizi bir üst seviyeye
taşımayı ve MATLAB'da ayrık ve sürekli zamnalı sinyallerin nasıl oluştuğunu, sinyaller üzerinde
ne tür işlemlerin yapılabileceğini ve sinyalleri nasıl analiz edileceğini öğretmeyi hedeflemektedir.
Not: Bu uygulamanın tüm adımları MATLAB'da yazılacaktırm dosyalarınızı Github'a
yükleyip dersin asistanı ile paylaşınız.

- 1. Aşağıda sinyal işlemede yaygın kullanılan periyodik ve periyodik olmayan sinyaller verilmiştir. Bu sinyalleri MATLAB'da oluşturunuz ve grafiklerini çiziniz.
 - (a) 100 kHz'lik bir örnekleme frekansı ile 100 Hz'lik genliği +1/-1 aralığında değişen bir testere dişi (sawtooth) dalgası üretiniz ve grafiğini çiziniz.
 - (b) 1 MHz'lik bir örnekleme frekansı ile 20 Hz'lik genliği +1/-1 aralığında değişen kare periyodik (square periodic wave) bir sinyal üretiniz ve grafiğini çiziniz.
 - (c) 100 kHz'lik bir örnekleme frekansı ile genişliği 100 ms olan periyodik olmayan üçgen (*Triangular Aperiodic Pulse*) bir sinyal üretiniz ve grafiğini çiziniz.
 - (d) 10 kHz'lik bir örnekleme frekansı ile genişliği 50 ms olan periyodik olmayan kare (*Rectangular Aperiodic Pulse*) bir sinyal üretiniz ve grafiğini çiziniz.
 - (e) 10 MHz'lik bir örnekleme frekansı ile bant genişliği 0.5, frekansı 50 kHz olan ve tepe noktası -60 dB düşen bir periyodik olmayan (*Gaussian RF pulse*) sinyal üretiniz ve grafiğini çiziniz.
 - (f) 200 GHz'lik bir örnekleme frekansı ile 7.5 ns'lik aralıklarla tekrarlayan ve genişliği 2 ns olan 2 GHz'lik periyodik dikdörtgen pulse (*Rectangular Train*)bir sinyali üretiniz ve grafiğini çiziniz.

- (g) 50 kHz'lik bir örnekleme frekansı ile her milisaniyede 0.6 katıyla sönümlenen 10 kHz'lik bir periyodik Gaussian pulse (*Gaussian Train*) sinyali üretiniz ve grafiğini çiziniz.
- 2. Birim basamak, birim dürtü ve birim rampa sinyallerini sürekli ve ayrık zamanlı olarak MATLAB'da üretip grafiklerini subplot komutu ile tek bir grafikte gösteriniz.
- 3. Örnekleme frekansı 1 kHz olan ve 20 Hz'lik sürekli zamanlı periyodik kosinüs ve sinüs sinyallerini üretip grafiklerini çiziniz. $x_1[n] = cos(2 \cdot \pi \cdot \frac{n}{36})$ ve $x_2[n] = sin(2 \cdot \pi \cdot \frac{n}{36})$ ayrık zamanlı sinyalinin grafiğini çiziniz.
- 4. $g(t)=t\cdot(t^2+3)$ sinyalinin çift ve tek parçalarının grafiğini çiziniz. **İpucu:** $g_{even}(t)=\frac{(g(t)+g(-t))}{2},\ g_{odd}(t)=\frac{(g(t)-g(-t))}{2}$
- 5. $x[n]=(0.9)^{|n|}\cdot\sin(2\cdot\pi\cdot\frac{n}{4})$ ayrık zamanlı sinyalinin enerjisini hesaplayınız. İpucu: $E_x=\sum_{-\infty}^{\infty}\mid x[n]\mid^2$
- 6. Frekansı 1 kHz olan analog sinüs ve kosinüs sinyallerini üretip, örnekleme frekansı 2 kHz ve 50 kHz olarak örnekleyiniz ve grafiklerini çiziniz.
- 7. $x[n] = 4 + \cos(2 \cdot \pi \cdot \frac{n}{24})$ ayrık zamanlı kosinüs sinyalini üretip, n=2 ve n=10 örnekleme aralığı ile örnekleyip grafiklerini çiziniz.

Page 2 Versiyon: 1.1