Binary Decision Diagrams

Seminarski rad u okviru kursa Automatsko rezonovanje Matematički fakultet

Milana Kovačević Ivan Ristović

jul 2018.

Binary Decision Diagrams (u daljem tekstu BDD) i njihova poboljšanja su strukture podataka za reprezentaciju bulovskih funkcija. Iako u osnovi slični binarnim drvetima, rešavaju problem velikog broja čvorova u drvetu uklanjajući redundantne grane (za bulovsku funkciju sa n argumenata, broj mogućih puteva u binarnom drvetu od korena do lista je 2^n , dok je broj čvorova znatno veći). U ovom radu ćemo detaljnije opisati intuiciju iza BDD struktura, načine za konstrukciju BDD, kao i ROBDD - redukovana i uredjena BDD. Ovaj rad će pratiti implementacija BDD u jeziku C++, uz prateće delove koda na nekim mestima.

[1]

Sadržaj

1	Bulovske funkcije	2
2	Binarna drveta odlučivanja	2
3	Binary Decision Diagrams	4
Li	Literatura	

1 Bulovske funkcije

Bulovske funkcije su funkcije koje primaju bulovske argumente i vraćaju bulovsku vrednost. Bulovske vrednosti mogu biti true ili false. U nastavku ćemo sa 1 označavati true, a sa 0 false, što je uobičajena konvencija.

Za bulovsku funkciju sa n bulovskih argumenata, postoji 2^n mogućih ulaza. Pošto je povratna vrednost takodje bulovskog tipa, zaključujemo da postoji 2^{2^n} različitih bulovskih funkcija sa n argumenata, što se vidi iz sledeće jednakosti:

$$\underbrace{2*2*2*\cdots*2}_{2^n} = 2^{2^n}$$

Funkcije koje primaju neoznačeni broj u opsegu $[0, 2^n - 1]$ se mogu zameniti sa n bulovskih funkcija sa n argumenata. Kao primer, neka je data funkcija F koja prima i vraća neoznačeni ceo broj. Zamenjujemo funkciju F bulovskim funkcijama f_i , gde $i = 0, 1, \ldots, n-1$. Argumenti funkcije f_i su n binarnih cifara broja, dok je povratna vrednost f_i vrednost i-te binarne cifre rezultata funkcije F. Drugim rečima, svaka od funkcija f_i računa jednu cifru rezultata. Kao konkretan primer, s obzirom da su neoznačeni brojevi u računarima zauzimaju obično 32 bita, funkciju:

```
unsigned F(unsigned n);
```

možemo zameniti sa 32 bulovske funkcije:

```
bool f0(bool n0, bool n1, bool n2, ..., bool n31);
bool f1(bool n0, bool n1, bool n2, ..., bool n31);
...
bool f31(bool n0, bool n1, bool n2, ..., bool n31);
```

Naravno, moramo se uveriti da su cifre rezultata zaista jednake izlazima bulovskih funkcija. Jedan način za verifikaciju rezultata je primena obe tehnike nad svim mogućim ulazima i poredjenje dobijenih rezultata. Medjutim, čak i za ovako jednostavne funkcije reč je o oko 4 milijarde (2^{32}) mogućih ulaza. Drugi način je da se ove funkcije prikažu putem nekih struktura podataka, i da se funkcije porede tako što se porede njihove reprezentacije preko tih strukture. Drugim rečima, posmatramo funkcije kao podatke. U poglavljima koji slede će biti više reči o strukturama podataka koje se koriste za predstavljanje bulovskih funkcija. Takodje, u narednim poglavljima pod terminom funkcija ćemo podrazumevati bulovske funkcije, ukoliko to nije drugačije naznačeno.

2 Binarna drveta odlučivanja

Binarna drveta odlučivanja su u osnovi jako slična binarnim drvetima. Na ovom nivou radimo sa bulovskim funkcijama. Neka je dato n promenljivih x_1, x_2, \ldots, x_n koje predstavljaju ulaze u funkciju f. U korenom čvoru testiramo jednu promenljivu (bez umanjenja opštosti, krenućemo redom, te neka je to x_1). U zavisnosti od vrednosti te promenljive formiraju se dva pod-drveta - jedno u kome je $x_1 = 0$ (nisko pod-drvo), a drugo u kome je $x_1 = 1$ (visoko pod-drvo). U

svakom pod-drvetu se rekurzivno testiraju ostale promenljive na isti način. Do listova se dolazi kada više nema preostalih ulaznih promenljivih. Posmatrajući jedan put od korena do lista, dobijamo valuaciju za skup $\{x_1, \ldots, x_n\}$.

Uzmimo za primer funkciju:

```
bool f_and(bool x1, bool x2) { return x1 x2; }
```

Matematički zapis ove funkcije bi bio $x_1 \wedge x_2$. Binarno drvo odlučivanja za ovu funkciju je dat na slici 2.1. Polazeći od promenljive x_1 , formiramo dve grane na osnovu toga da li je $x_1 = 0$ ili $x_1 = 1$. Od sada pa u buduće ćemo grane u kojima je vrednost 0 crtati isprekidanom linijom, a grane u kojima je vrednost 1 punom linijom, zarad preglednosti.

Slika 2.1: Binarno drvo odlučivanja za funkciju \wedge

Slično se mogu definisati i ostale korisne funkcije, na primer $f_{or} (\lor)$ i $f_{xor} (\oplus)$, sa dijagramima na slici 2.2:

```
bool f_or(bool x1, bool x2) { return x1 || x2; }

bool f_xor(bool x1, bool x2) {
    return (x1 && !x2) || (!x1 && x2); 
}
```


Slika 2.2: Binarna drveta odlučivanja za funkcije \vee i \oplus , redom

 $[\]overline{\ }^1$ Ne možemo koristiti operator $\hat{\ }$ jer on operiše nad promenljivima tipa int, a ne bool.

Binarna drveta odlučivanja imaju neke ve
oma loše osobine. Najveći problem je njihova veličina. Binarno drvo z
anulaznih promenljivih će imati 2^{n-1} unutrašnjih čvorova
i 2^n listova.

Uprkos tome, postoje i neke dobre osobine, pre svega kanoničnost. Ukoliko testiramo promenljive uvek u istom redosledu (tada se binarno drvo odlučivanja naziva uredjeno), onda je drvo jedinstveno za svaku funkciju. Stoga se test ekvivalencije dve funkcije svodi na testiranje ekvivalentnosti njivohih binarnih drveta odlučivanja. Nažalost, zbog velikog broja čvorova u drvetima, problem je eksponencijalne složenosti u odnosu na broj ulaznih parametara.

Kako bi se rešio problem eksplozije broja čvorova u drvetu, formiraju se unapredjenja binarnih drveta odlučivanja - binarni dijagrami odlučivanja (BDD). O njima će biti više reči u poglavlju koje sledi.

3 Binary Decision Diagrams

Binary Decision Diagrams (u daljem tekstu BDD) su unapredjenje binarnih drveta odlučivanja. Prvo unapredjenje je uklanjanje redundantnih grana u drvetu. Na primer, posmatrajmo funkciju \wedge definisanu u poglavlju 2. U niskom pod-drvetu obe grane koje polaze od promenljive x_2 vode ka vrednosti 0, stoga nije potrebno ispitivati vrednost x_2 ². Ovakvom redukcijom se dobija drvo na slici 3.1.

Slika 3.1: Binary Decision Diagram za funkciju \wedge

Drugo unapredjenje je dozvoljavanje deljenja identičnih pod-drveta. Ponovo, kako bi čitalac bolje razumeo šta ovo zapravo znači, dajemo primer. Posmatrajmo funkciju koja ima povratnu vrednost 1 ukoliko postoji neparan broj ulaznih promenljivih sa vrednošću 1, a 0 inače. Štaviše, pretpostavimo da imamo četiri ulazne promenljive x_1, x_2, x_3 i x_4 . Binarno drvo odlučivanja za ovakvu funkciju bi imalo 15 (2^4-1) unutrašnjih čvorova i 16 (2^4) listova. Medjutim, BDD za ovu funkciju ima samo 7 unutrašnjih čvorova i samo dva lista (slika 3.2).

 $^{^2}$ tzv. $lenjo\ izračunavanje$

 ${\bf Slika~3.2:~BDD}$ za funkciju parnosti četiri argumenta

Literatura

[1] BDD. on-line at: https://www.cs.cmu.edu/~fp/courses/15122-f10/lectures/19-bdds. pdf.