Introduction
Mathematical models
Measurement techniques
Other possible modeling approaches
Outlook

Diffusion processes in the extracellular space

Fredrik E. Pettersen

June 16, 2013

Contents

- Introduction
- Mathematical models
- Measurement techniques
- 4 Other possible modeling approaches
- Outlook

Brief introduction to the brain

Cells in the brain

Neurons:

Signal processing

Structure of a Typical Neuron

Neuroglia:

Janitorial tasks

The extracellular space

- Space surrounding neurons and neuroglia
- Accounting for $\sim 20\%$ of total brain volume
- Important for transport of nutrients, medicines etc.

Figure: Extracellular space marked as dark grey.

Basic diffusion

The basic diffusion equation reads

$$\frac{\partial C}{\partial t} = D\nabla^2 C \tag{1}$$

Einstein relations

$$D = \frac{k_B T}{6\pi \eta r}$$
 (2)
$$\langle r^2 \rangle = 2dDt$$
 (3)

$$\langle r^2 \rangle = 2dDt \tag{3}$$

Diffusion in ECS

Network simulations:

- Verification against experimental results
- Local field potential
- Extracellular conductance

$$\sigma = \frac{cq}{k_B T} D \tag{4}$$

$$\nabla \cdot (\sigma(\mathbf{r}) \nabla \phi(\mathbf{r}, t)) = -C(\mathbf{r}, t)$$

Modified diffusion equation

A modified version of the basic diffusion equation is needed to account for

- Sources
- Uptake of diffusing molecules
- evt. bulk flow (absent below)

This new equation reads

$$\frac{\partial C}{\partial t} = D^* \nabla^2 C + \frac{s}{\alpha} - k' C \quad (5) \qquad \qquad \lambda = \sqrt{\frac{D}{D^*}}$$

Numerical simulations

This will be addressed in the Molecular Dynamics part.

Optical measurements

TMA⁺ measurements

Radiotracer measurements

Diffusion Tensor Imaging

Molecular dynamics

Random walks

Random walks

Introduction
Mathematical models
Measurement techniques
Other possible modeling approaches
Outlook