PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

MAT1610-15 - Luis Arias - Laarias@uc.cl

Ayudantía 2

Continuidad

Problema 1

- a) Demuestre que existe $x \in \mathbb{R}$ tal que $\cos(x) = x$
- b) Sea f una función continua en [0,2] tal que f(0)=f(2). Demuestre que existe $x\in[0,1]$ tal que f(x)=f(x+1)

Problema 2

a) Calcular a y b para que la función f(x) sea continua

$$f(x) = \begin{cases} 2x+1 & si & x < -2\\ ax^2 + bx & si & -2 \le x \le 4\\ x-4 & si & x > 4 \end{cases}$$

Problema 3

Estudie la continuidad de la función f en toda la recta real

$$f(x) = \begin{cases} \frac{x^2}{2x+1} & x \le -1\\ x^2 - 2 & x > -1 \end{cases}$$

Problema 4

Determine el valor de $p \in \mathbb{R}$ de manera que que la función:

$$f(x) = \frac{x^6 + (1+x^2)^3}{x^p}$$

tenga una asíntota horizontal

Problema 5

Demuestre que:

$$f(x) = 3x - 2 + \cos\left(\frac{\pi}{2}x\right)$$

posee al menos una raíz real.

Problema 6

Sean $f,g:[a,b]\to\mathbb{R}$ continuas, tal que $f(a)\neq f(b)$. Además f(a)=-g(b) y f(b)=-g(a). Pruebe que existe $c\in[a,b]$ tal que f(c)=-g(c)

Problema 7

Dadas las funciones f y g definidas por f(x) = x - 2 y $g(x) = x^2 + x$, calcule:

$$\lim_{x \to 2} \frac{(f \circ g)(x-1)}{(g \circ f)(x)}$$