Integrated Beacon Receiver

William Harmon Rochester Institute of Technology Advisors: Frank Lind, Jim Marchese Software Radio Beacon Receiver Project Overview

• Radio Signals that travel through the Ionosphere are affected by Ionospheric Structures

• Satellite Beacons have been used for many years to study these structures

lonosphere

- New Three-Frequency CERTO beacons
 - 150.012 MHz, 400.032 MHz, 1066.752 MHz

Antenna

Hardware/Software Boundary

Satellites

Integrated Beacon Receiver Project Goals

- Create a Tuner to Convert Beacon Signals for Digitization by the MIDAS-M System
- Challenges
 - RX Frequencies over a Wide Range (150-1067 MHz)
 - Narrow Band CW Tone
 - Doppler Shift of Signal due to Satellite Motion
 - Frequency Stability, Phase Stability
 - Relative Channel Phase Delay
 - Phase Coherence
 - Calibration

Link Budget

Transmitter Power Antenna Gain

Free Space Loss

$$FSL = \left(\frac{4\pi d}{\lambda}\right)^2$$
$$= \left(\frac{4\pi df}{c}\right)^2$$

Doppler Shift

$$f' = f + \frac{fv}{c}$$

Example: 150.012 MHz COSMIC CERTO Signal (Altitude of 800km)

TX Power: +30 dBm

TX Antenna Gain: +4 dBi

Free Space Loss: -134 dB

RX Antenna Gain: +5 dBi

+ Cable Loss: -0.7 dB

At Analog Input: -95.7 dBm

Preamp Gain: +22.5 dB

Wideband Filter: -3 dB

+ Beacon Tuner: +45 dB

At Digital RX Input: -31.2 dBm

Doppler Shift (\sim 7.5 km/s): Frequency shifts \pm 3.5 kHz

Example Satellite Pass

Receiver Architecture

Tuner Simulations

- What was Simulated?
 - Dynamic range
 - Gain
 - Noise Figure
 - Selectivity
- Evaluate Tuner Architectures and Performance
- Results of simulations
 - Tuner can receive all beacon signals
 - Typical RFI can be tolerated
 - Low Noise figure
 - Led to a Refined Final Design of all Stages

Example Tuner Simulation

Future Work

- Five boards have been fabricated
- Assembly Underway
- Electrical Testing & Firmware Programming
- Tuner Performance Testing
- Testing with Real Satellite Beacon Signals
- Higher level integration on future design
- Use of Tuner with other MIDAS-M Applications
- Deployment of Beacon Tuners at Field Sites

Special Thanks To

- Project Supervisors
 - Frank Lind
 - Jim Marchese
 - Phil Erickson
 - Bill Rideout
 - Anthea Coster
- Software/Hardware Support
 - Ching Lue
 - Will Rogers
- Project Teammates
 - Harendra Guturu
 - Damian Ancukiewicz
- Software Providers
 - Alanix/Eagleware
 - Altium Designer Pro
 - Altera Quartus II