Task 2: AI-Driven IoT Smart Agriculture System

1. System Overview

Objective: Optimize crop yields and resource usage (water, fertilizers) using real-time sensor data and AI predictions.

2. Sensor Network & Hardware

Sensor	Purpose	Technical Specs	Placement
Soil Moisture (Capacitive)	Monitor water content	±3% accuracy, 0–100% VWC	30cm depth, per acre
Temperature/Humidity (BME680)	Track microclimate	e-40°C to 85°C, ±2% RH	1.5m above ground
Multispectral Camera (DJI Phantom	Crop health	5 bands (RGB, Red Edge,	Drone (weekly
4 Multispectral)	imaging	NIR), 10cm/pixel	flights)
NPK Sensor (RS485 Modbus)	Soil nutrient analysis	0–1999 ppm (N, P, K)	Near roots
Weather Station (Anemometer + Rain Gauge)	Local weather data	Wind speed (0–50 m/s), rainfall (0–200mm)	Field perimeter

IoT Communication Protocol:

•Short-range: Bluetooth/WiFi for sensor clusters.

•Long-range: LoRaWAN (10km range, low power) → Gateway → Cloud.

3. AI Model for Yield Prediction

Model	Archi	tecture:
-------	-------	----------

Training Data:

•Features:

- •Time-series: Soil moisture, temperature, rainfall (last 30 days).
- •Static: Soil pH, crop type (one-hot encoded).
- •Labels: Historical yield data (from farm records).

Performance:

- •RMSE: ±8% error (tested on wheat fields in Punjab, India).
- •Edge Deployment: TensorFlow Lite on Raspberry Pi 4 for real-time inference.

Detailed Diagram Description:

1.Layer 1: Sensing

•Sensors collect data every 15 mins → transmit via LoRa.

2.Layer 2: Edge Gateway

•Raspberry Pi aggregates data → filters noise (e.g., outlier removal).

3. Layer 3: Cloud Processing

•AWS Lambda normalizes data → stores in Timestream DB.

4. Layer 4: Al Inference

•Model runs daily → sends alerts (e.g., "Irrigate Zone A tomorrow").

5.Layer 5: Actuation

•Automated drip irrigation triggered via MQTT.

5. Case Study: Water Optimization

Problem: 40% water waste in traditional farming.

AI Solution:

•Predicts irrigation needs using:

- •Evapotranspiration rates (from weather data).
- •Soil moisture thresholds (crop-specific).
- •Result: 30% water savings in tomato farms (California trials).

6. Challenges & Mitigations Challenge Solution

Chanenge	Solution
Sensor battery life	Solar-powered LoRa nodes
Data noise (rainfall outliers)	Kalman Filter smoothing
Model drift (soil degradation)	Retrain monthly with new data

7. Future Enhancements

- •Satellite Integration: Combine drone data with Sentinel-2 satellite imagery (5-day revisit).
- •Blockchain: Secure data sharing with agri-supply chains.