CENG 483

Introduction to Computer Vision

Spring 2018-2019

Take Home Exam 1 Content Based Image Retrieval Student Random ID: 70

Please fill in the sections below only with the requested information. If you have additional things you want the mention, you can use the last section. Please note that all of the results in this report should be given for the **validation set**.

1 Grayscale Histogram

In this section, give your results only for grid level 1.

- Pick 5 different quantization levels and give your mAP results for each of them.
- What do you think caused the difference between mAP for these?

I evaluated the given queries with the dataset by using grayscale histogram with 8 different quantization levels (i.e. bin counts) for grid level 1. Mean Average Precisions (mAP) of each quantization level are below:

Figure 1: Mean Average Precision with different quantization levels for grid level 1 grayscale histogram

Bin	mAP
2	0.02276
4	0.08175
8	0.16273
16	0.18619
32	0.17984
64	0.17641
128	0.18151
256	0.17693

Table 1: Mean Average Precision with different quantization levels for grid level 1 grayscale histogram

It is obvious that lower quantization levels such as 1, 2, 4 have lower mAP as each bin corresponds to large interval of grayscaled value, and this doens't result in distinguishing the differences in different

images. I've expected same result with large number of bin count such as 256; however, 256 bin count has slight difference with the best configuration in this part. 256 bin count's mAP is 0.17693 whereas the best configuration which is 16 bin count's mAP is 0.18619.

2 3D RGB Histogram

In this section, give your results only for grid level 1.

- Pick 5 different quantization levels and give your mAP results for each of them.
- What do you think caused the difference between mAP for these?

Figure 2: Mean Ave	rage P	recis	sion v	vith di	if-
ferent quantization	levels	for	grid	level	1
gradient histogram					

Bin	mAP
2	0.15246
4	0.32950
8	0.38451
16	0.38512
32	0.35201
64	0.27919

Table 2: Mean Average Precision with different quantization levels for grid level 1 gradient histogram

3 Gradient Histogram

- Which method did you use for obtaining the gradients? Explain the steps of the method briefly.
- Visualize some of your intermediate results (filtered versions of the image).
- Pick 3 different quantization levels for your histogram and give your mAP results for each of them.

2

• What do you think caused the difference between mAP for these?

Horizontal-Filter-1:
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 Horizontal-Filter-1: $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

Horizontal-Filter-1:
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Vertical-Filter-0:
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Vertical-Filter-0:
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$
 Vertical-Filter-1:
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Figure 3: Example image from the dataset

Figure 4: Horizontally, vertically filtered images and their blend, Filter-0

Figure 5: Horizontally, vertically filtered images and their blend, Filter-1

Figure 6: Mean Average Precision with different quantization levels and filters for grid level 1 gradient histogram

Bin	Filter	mAP
2	0	0.01051
	1	0.01530
4	0	0.04294
4	1	0.03795
6	0	0.10854
	1	0.11364
12	0	0.20549
12	1	0.20891
24	0	0.25805
24	1	0.25502
36	0	0.27627
	1	0.26988
72	0	0.30302
14	1	0.29787
360	0	0.32188
300	1	0.32813

Table 3: Mean Average Precision with different quantization levels and filters for grid level 1 gradient histogram

Before starting the next section, please pick up the best configuration for three properties above and continue with them.

4 Grid Based Feature Extraction

Give your mAP for all of the configurations below.

4.1 level 1

- grayscale histogram:
- 3d rgb histogram:
- gradient histogram:

Figure 7: Best configurations of different features for grid level 1 in case of Mean Average Precision

4.2 level 2

- grayscale histogram:
- 3d rgb histogram:
- gradient histogram:

	Bin	Feature	mAP
	16	Grayscale	0.18619
	16	3D Color	0.38512
ĺ	360	Gradient	0.32813

Table 4: Best configurations of different features for grid level 1 in case of Mean Average Precision

Figure 8: Best configurations of different features for grid level 2 in case of Mean Average Precision

4.3 level 3

- grayscale histogram:
- 3d rgb histogram:
- gradient histogram:

Figure 9: Best configurations of different features for grid level 3 in case of Mean Average Precision

Bin	Feature	mAP
16	Grayscale	0.25874
16	3D Color	0.35405
360	Gradient	0.33385

Table 5: Best configurations of different features for grid level 2 in case of Mean Average Precision

Bin	Feature	mAP
16	Grayscale	0.26052
16	3D Color	0.27730
360	Gradient	0.27822

Table 6: Best configurations of different features for grid level 3 in case of Mean Average Precision

Figure 10: Mean Average Precision comparision among different features in different grid levels with level 1 best configurations

Level	Bin	Feature	mAP
	16	Grayscale	0.18619
1	16	3D Color	0.38512
	360	Gradient	0.32813
	16	Grayscale	0.25874
2	16	3D Color	0.35405
	360	Gradient	0.33385
	16	Grayscale	0.26052
3	16	3D Color	0.27730
	360	Gradient	0.27822

Table 7: Mean Average Precision comparision table of different features with different grid levels with their level 1 best configurations

4.4 questions

- What do you think cause the difference between the results?
- How did you combine the histograms in level 2 and 3? What would you think the difference between to simply sum them and to concatenate them?

5 Your Best Configuration

- You may try different combinations including changing parameters above and even combining different methods. Simply give your best mAP for the validation set:
- Explain your setup for this best mAP. How can we reproduce your result using your code?
- Give some visual ranking results:
- Explain mean average precision in your own words:

6 Additional Comments and References

(if there any)