

ITESM CAMPUS PUEBLA

Multiprocesadores

Verificación cualitativa de los diferentes tipos de hardware de proveedores de cómputo en la nube

Integrantes

A01732079 Benjamín Gutiérrez Padilla A01731489 Asiel Harim Trejo Leyva A01731592 Alejandra Oliva Dávila A01730763 Nicolás González Albo Méndez

Profesor:

Dr. Emmanuel Torres Rios

23 de noviembre del 2021

Especificaciones de Máquinas

Equipo	Núcleos	RAM	SO	Procesador
Google Cloud	2	4	Debian 10	Intel
Digital Ocean	2	4	CentOS 8	Intel
AWS	1	1	Ubuntu 18.04	Intel
Azure	2	4	Ubuntu 20.04	Intel
PC de Benjamín	6	8	Windows 10 Home	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
PC de Asiel	2	8	MacOS Catalina	2.5 GHz Dual-Core Intel Core i5
PC de Ale	2	8	Windows 10 Home	Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz
MacBook Pro 2019 de Nicolás	4 physical, 8 virtual with hyperthr eading	8	MacOS Mojave	2.4 GHz Intel Core i5

Gráficas

Google Cloud

Algoritmo 1 (Integral)

Digital Ocean

Algoritmo 1 (Integral)

AWS

Algoritmo 1 (Integral)

Azure

Algoritmo 1 (Integral)

Algoritmo 2 (Gray)

PC de Benjamín

Algoritmo 1 (Integral)

PC de Asiel

Algoritmo 1 (Integral)

Algoritmo 2 (Gray)

PC de Ale

Algoritmo 1 (Integral)

MBP de Nicolás

Algoritmo 1 (Integral)

Algoritmo 2 (Gray)

Tabla de resultados

Equipo	Algoritmo 1 (Integral)	Algoritmo 2 (Gray)	Algoritmo 3 (Blur)
Google Cloud	0.45815400 (2)	0.318331 (1)	2.443805 (1)
Digital Ocean	0.384019 (126)	0.283763 (1)	2.452668 (1)
AWS	1.416833 (15)	0.337797 (1)	2.566028 (1)
Azure	0.503136 (108)	0.370774 (1)	2.637223 (1)
PC de Benjamín	0.106 (160)	0.32319 (1)	3.405 (1)
PC de Asiel	0.302434 (131)	3.582761 (1)	7.532828 (1)
PC de Ale	0.314 (46)	0.968989 (1)	7.291 (1)
MBP de Nicolás	0.111918 (143)	3.076903 (1)	4.598785 (1)

^{*}Todos los valores son en segundos

Conclusiones

Analizando los resultados, se puede observar que las máquinas virtuales tuvieron un mejor desempeño que las computadoras personales de los miembros del equipo en dos de los tres algoritmos utilizados en este proyecto. Algo a remarcar es que los algoritmos donde destacan mejor las máquinas virtuales fueron aquellos relacionados con la manipulación de imágenes. Además que en ambos algoritmos de imágenes, tanto las computadoras personales físicas como las máquinas virtuales en la nube tuvieron su mejor desempeño cuando se utilizó un solo thread.

La computación en la nube trae grandes beneficios, entre ellos el que puedas crear en cualquier momento una máquina virtual dedicada con los recursos de CPU, RAM y almacenamiento bajo demanda sin ningún problema. El costo por hora de una máquina virtual puede ser tanto una ventaja como una desventaja, ya que si la máquina virtual solo

se crea para compilar y ejecutar el programa, y después se elimina al instante de acabado dicho proceso, el costo sería muy bajo; pero por otro lado, si se planea el que la instancia persista por un largo tiempo y tiene recursos similares a los de una computadora física, el costo por mes podría resultar muy elevado, por lo que en ese tipo de situaciones sería más conveniente comprar un equipo físico.