UNCLASSIFIED

AD NUMBER		
AD826221		
NEW LIMITATION CHANGE		
TO Approved for public release, distribution unlimited		
FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; FEB 1968. Other requests shall be referred to NASA, Marshall Space Flight Center, Huntsville, AL.		
AUTHORITY		
USAEDC ltr, 12 Jul 1974		

J-2 ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TEST J4-1801-07)

C. E. Pillow ARO, Inc.

FEBRUARY 1968

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

LARGE ROCKET FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

ALTITUDE DEVELOPMENTAL TESTING OF THE J-2 ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TEST J4-1801-07)

C. E. Pillow ARO, Inc.

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

AF - AEDC Arnold AFS Tenn

AND AND THE SECOND SECO

FOREWORD

The work reported herein was sponsored by the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) under System 921E, Project 9194.

The results of the tests presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Contract AF40(600)-1200. Program direction was provided by NASA/MSFC; engineering liaison was provided by North American Aviation, Inc., Rocketdyne Division, manufacturer of the J-2 rocket engine, and Douglas Aircraft Company, manufacturer of the S-IVB stage. The testing reported herein was conducted on September 1, 1967, in Propulsion Engine Test Cell (J-4) of the Large Rocket Facility (LRF) under ARO Project No. KA1801. The manuscript was submitted for publication on November 2, 1967.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U. S. Government subject to approval of NASA, Marshall Space Flight Center (I-E-J), or higher authority. Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Harold Nelson, Jr.
Captain, USAF
AF Representative, LRF
Directorate of Test

Leonard T. Glaser Colonel, USAF Director of Test

ABSTRACT

Four firings of the Rocketdyne J-2 rocket engine were conducted in Test Cell J-4 of the Large Rocket Facility. These firings were accomplished during test period J4-1801-07 at pressure altitudes ranging from 89,000 to 106,000 ft at engine start. The objectives of these S-IVB/S-V firings included the evaluation of the effect of start tank energy on the oxidizer pump spin speed and the effect of thrust chamber temperature on the fuel pump high level stall margin. Firing 07A was conducted with 12 experimental oxidizer pump primary seal drain tubes attached to the engine. The accumulated firing duration for this test period was 66.5 sec.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

CONTENTS

		Page
	ABSTRACT	iii
	NOMENCLATURE	vii
	INTRODUCTION	1
	APPARATUS	1 8
	PROCEDURE	9
	SUMMARY OF RESULTS	15
	REFERENCES	16
	APPENDIXES	
	A TOOMY A MICORO	
I. II	LLUSTRATIONS	
Figu	re	
1.	Test Cell J-4 Complex	19
2.	Test Cell J-4, Artist's Conception	20
3.	Engine Details	21
4.	1 0 , -	22
_	Engine Schematic	22
5.		23
6.	Engine Start Logic Schematic	24
7.	Engine Start and Shutdown Sequence	2
8.	,	
	Start Tank, and Helium Tank	27
9.		2.0
	Drain Tubes	29
10.	Thrust Chamber Temperature History, Pre-Firing 07A	32
		34
11.	Crossover Duct Temperature History, Pre-Firing 07A	32
1 9		
12.		33
13.	Fuel Pump Start Transient Performance, Firing 07A	37

Figure		Page
14.	Engine Ambient and Combustion Chamber Pressure Histories, Firing 07A	38
15.	Crossover Duct Temperature History, Pre-Firing 07B	38
16.	Engine Transient Operation, Firing 07B	39
17.	Thrust Chamber Temperature History, Pre-Firing 07B	43
18.	Engine Ambient and Combustion Chamber Pressure Histories, Firing 07B	44
19.	Thrust Chamber Temperature History, Pre-Firing 07C	45
20.	Crossover Duct Temperature History, Pre-Firing 07C	45
21.	Engine Transient Operations, Firing 07C	46
22.	Fuel Pump Start Transient Performance, Firing 07C	50
23.	Engine Ambient and Combustion Chamber Pressure Histories, Firing 07C	51
24.	Crossover Duct Temperature History, Pre-Firing 07D	52
25.	Engine Transient Operation, Firing 07D	53
26.	Thrust Chamber Temperature History, Pre-Firing 07D	55
27.	Engine Ambient and Combustion Chamber Pressure Histories, Firing 07D	56
28.	Experimental Oxidizer Pump Primary Seal Drain Tubes, Post-Test Condition	57
II. TA	BLES	
	I. Major Engine Components	60
	II. Summary of Engine Orifices	61
]	III. Engine Modifications (between Tests J4-1801-06 and J4-1801-07)	62
]	IV. Engine Component Replacements (between Tests	62

	v.	Engine Purge and Component Conditioning Sequence					
	VI.	Summary of Test Requirements and Results 64					
	VII.	Engine Valve Timings 65					
	VIII.	Engine Performance Summary 66					
III.	INST	RUMENTATION 67					
IV.	MET	HODS OF CALCULATIONS (PERFORMANCE					
	PRO	GRAM)					
NOMENCLATURE							
Α		Area, in. ²					
ASI		Augmented spark igniter					
ES Engine start, designated as the time that the helium con and ignition phase solenoids are energized		Engine start, designated as the time that the helium control and ignition phase solenoids are energized					
GG		Gas generator					
MO	V	Main oxidizer valve					
STD	V	Start tank discharge valve					
t ₀		Defined as the time at which the opening signal is applied to the start tank discharge valve solenoid					
VSC		Vibration safety counts, defined as engine vibration in excess of 150 g rms in a 960- to 6000-Hz frequency range					
SUBS	SCRIPT	s					
f		Force					
m		Mass					
t.		Throat					

SECTION I

Testing of the Rocketdyne J-2 rocket engine (S/N J-2052) using an S-IVB battleship stage has been in progress since July 1966 at AEDC in support of the J-2 engine application on the Saturn IB and Saturn V launch vehicles for the NASA Apollo Program. The four firings reported herein were conducted during test period J4-1801-07 on September 1, 1967, in Propulsion Engine Test Cell (J-4) (Figs. 1 and 2, Appendix I) of the Large Rocket Facility (LRF) to evaluate J-2 engine S-IVB/S-V fuel pump high level stall characteristics, to investigate the effect of start tank energy on the oxidizer turbine spin speed, and to evaluate the performance of the experimental oxidizer pump primary seal drain tubes. These firings were accomplished at pressure altitudes ranging from 89,000 to 106,000 ft (geometric pressure altitude, Z, Ref. 1) at engine start.

Data collected to accomplish the test objectives are presented herein. Copies of all data obtained during this test have been previously supplied to the sponsor, and copies are on file at AEDC. The results of the previous test period are presented in Ref. 2.

SECTION II

2.1 TEST ARTICLE

The test article was a J-2 rocket engine (Fig. 3) designed and developed by Rocketdyne Division of North American Aviation, Inc. The engine uses liquid oxygen and liquid hydrogen as propellants and has a thrust rating of 225,000 lbf at an oxidizer-to-fuel mixture ratio of 5.5. An S-IVB battleship stage was used to supply propellants to the engine. A schematic of the battleship stage is presented in Fig. 4.

Listings of major engine components and engine orifices for this test period are presented in Tables I and II, respectively (Appendix II). Al. engine modifications and component replacements performed since the previous test period are presented in Tables III and IV, respectively. The thrust chamber heater blankets were in place during this test period, although they were not utilized. Experimental oxidizer pump primary seal drain tubes were installed for this test period to evaluate a proposed modification to the S-II and S-IVB stage engines on vehicle AS-501.

2.1.1 J-2 Rocket Engine

The J-2 rocket engine (Figs. 3 and 5 through 9, Ref. 3) features the following major components:

1. Thrust Chamber - The tubular-walled, bell-shaped thrust chamber consists of an 18.6-in.-diam combustion chamber (8.0 in. long from the injector mounting to the throat inlet) with a characteristic lenght (L*) of 24.6 in., a 170.4-in. throat area, and a divergent nozzle with an expansion ratio of 27.1. Thrust chamber length (from the injector flange to the nozzle exit) is 107 in. Cooling is accomplished by the circulation of engine fuel flow downward from the fuel manifold through 180 tubes and then upward through 360 tubes to the injector.

*

Charles and Control of

- 2. Thrust Chamber Injector The injector is a concentric-orificed (concentric fuel orifices around the oxidizer post orifices), porous-faced injector. Fuel and oxidizer injector orifice areas are 25.0 and 16.0 in.², respectively. The porous material, forming the injector face, allows approximately 3.5 percent of total fuel flow to transpiration cool the face of the injector.
- 3. Augmented Spark Igniter The augmented spark igniter unit is mounted on the thrust chamber injector and supplies the initial energy source to ignite propellants in the main combustion chamber. The augmented spark igniter chamber is an integral part of the thrust chamber injector. Fuel and oxidizer are ignited in the combustion area by two spark plugs.
- 4. Fuel Turbopump The turbopump is composed of a two-stage turbine-stator assembly, an inducer, and a seven-stage axial-flow pump. The pump is self lubricated and nominally produces, at rated conditions, a head rise of 35,517 ft (1225 psia) of liquid hydrogen at a flow rate of 8414 gpm for a rotor speed of 26,702 rpm.
- 5. Oxidizer Turbopump The turbopump is composed of a two-stage turbine-stator assembly and a single-stage centrifugal pump. The pump is self lubricated and nominally produces, at rated conditions, a head rise of 2117 ft (1081 psia) of liquid oxygen at a flow rate of 2907 gpm for a rotor speed of 8572 rpm.
- 6. Gas Generator The gas generator consists of a combustion chamber containing two spark plugs, a pneumatically operated control valve containing oxidizer and fuel poppets, and an injector assembly. The oxidizer and fuel poppets provide a fuel lead to the gas generator combustion chamber. The high energy

gases produced by the gas generator are directed to the fuel turbine and then to the oxidizer turbine (through the turbine crossover duct) before being exhausted into the thrust chamber at an area ratio (A/A_t) of approximately 11.

- 7. Propellant Utilization Valve The motor-driven propellant utilization valve is mounted on the oxidizer turbopump and bypasses liquid oxygen from the discharge to the inlet side of the pump to vary engine mixture ratio.
- 8. Propellant Bleed Valves The pneumatically operated fuel and oxidizer bleed valves provide pressure relief for the boiloff of propellants trapped between the battleship stage prevalves and main propellant valves at engine shutdown.
- 9. Integral Hydrogen Start Tank and Helium Tank The integral tanks consist of a 7258-in. ³ sphere for hydrogen with a 1000-in. ³ sphere for helium located within it. Pressurized gaseous hydrogen in the start tank provides the initial energy source for spinning the propellant turbopumps during engine start. The helium tank provides a helium pressure supply to 'ne engine pneumatic control system.
- 10. Oxidizer Turbine Bypass Valve The pneumatically actuated oxidizer turbine bypass valve provides control of the fuel turbine exhaust gases directed to the oxidizer turbine in order to control the oxidizer-to-fuel turbine spinup relationship. The fuel turbine exhaust gases which bypass the oxidizer turbine are discharged into the thrust chamber.
- 11. Main Oxidizer Valve The main oxidizer valve is a pneumatically actuated, two-stage, butterfly-type valve located in the oxidizer high pressure duct between the turbopump and the main injector. The first-stage actuator positions the main oxidizer valve at the 14-deg position to obtain initia! thrust chamber ignition; the second-stage actuator ramps the main oxidizer valve full open to accelerate the engine to main-stage operation.
- 12. Main Fuel Valve The main fuel valve is a pneumatically actuated butterfly-type valve located in the fuel high pressure duct between the turbopump and the fuel manifold.
- 13. Pneumatic Control Package The pneumatic control package controls all pneumatically operated engine valves and purges.
- 14. Electrical Control Assembly The electrical control assembly provides the electrical logic required for proper sequencing of engine components during operation.

15. Primary and Auxiliary Flight Instrumentation Packages - The instrumentation packages contain sensors required to monitor critical engine parameters. The packages provide environmental control for the sensors.

2.1.2 Experimental Oxidizer Pump Primary Seal Drain Tubes

Experimental oxidizer pump primary seal drain tubes were attached to the thrust chamber for this test period, specifically to be evaluated during firing 07A. The drain tubes tested were the following (Fig. 9):

- 1. Drain discharge tube orificed for 100-scfm gasecus oxygen flow, tube 9,
- 2. Drain discharge tube orificed for 100-scim gaseous oxygen flow, tube 12,
- 3. Two drain discharge tubes provided with pressure transducers, tubes 10 and 11, and
- 4. Eight drain discharge tubes of various cap configurations and open at the other end, tubes 1 through 8.

Gaseous oxygen was supplied to tubes 9 and 12 from a facility source at a constant upstream pressure of 45 ± 5 psia. A copper cap was soldered to the discharge end of tubes 9 and 12 (Fig. 9c). The copper caps extended approximately 3 in. beyond the thrust chamber exit into the exhaust plume (Fig. 9a).

Drain discharge tubes 10 and 11 were provided with pressure transducers as shown in Fig. 9a. The exits of these tubes were sealed with stainless steel coin-type caps, silver soldered to the tube ends (Fig. 9c). Both caps extended approximately 3 in. beyond the thrust chamber exit into the exhaust plume (Fig. 9a). A rectangular section was cut out and soldered back into the side of tube 11 to form a blowout port, as shown in Fig. 9c.

There were four different configurations proposed for sealing the discharge end of the oxidizer pump primary seal drain tube. Tubes 1 through 8 were approximately 8 in. long and open at one end. The exits of these tubes were sealed and extended approximately 3 in. beyond the thrust chamber exit into the exhaust plume (Fig. 9b). Each of these tubes were sealed as follows:

Tube Number	Description
1	Stainless steel coin-type cap, soldered, with blowout port
2	Stainless steel coin-type cap, soldered, with blowout port
3	Copper cap, silver soldered
4	Copper cap, silver soldered
5	Stainless steel coin-type cap, soldered
6	Stainless steel coin-type cap, soldered
7	Copper cap, tinned before silver soldering
8	Copper cap, silver soldered

2.1.3 S-IVB Battleship Stage

The S-IVB battleship stage is approximately 22 ft in diameter and 49 ft long and has a maximum propellant capacity of 46,000 lb of liquid hydrogen and 199,000 lb of liquid oxygen. The propellant tanks, fuel above oxidizer, are separated by a common bulkhead. Propellant prevalves, in the low pressure ducts (external to the tanks) interfacing the stage and the engine, retain propellant in the stage until being admitted into the engine to the main propellant valves and serve as emergency engine shutoff valves. Propellant recirculation pumps in both fuel and oxidizer tanks are utilized to circulate propellants through the low pressure ducts and turbopumps before engine start to stabilize hardware temperatures near normal operating levels and to prevent propellant temperature stratification. Vent and relief valve systems are provided for both propellant tanks.

Pressurization of the fuel and oxidizer tanks was accomplished by facility systems using hydrogen and helium, respectively, as the pressurizing gases. The engine-supplied gaseous hydrogen for fuel tank pressurization during S-IVB flight was routed to the facility vent system.

2.2 TEST CELL

Test Cell J-4, Fig. 2, is a vertically oriented test unit designed for static testing of liquid-propellant rocket engines and propulsion

systems at pressure altitudes of 100,000 ft. The basic cell construction provides a 1.5-million-lbf-thrust capacity. The cell consists of four major components (1) test capsule, 48 ft in diameter and 82 ft in height, situated at grade level and containing the test article; (2) spray chamber, 100 ft in diameter and 250 ft in depth, located directly beneath the test capsule to provide exhaust gas cooling and dehumidification; (3) coolant water, steam, nitrogen (gaseous and liquid), hydrogen (gaseous and liquid), and liquid oxygen and gaseous helium storage and delivery systems for operation of the cell and test article; and (4) control building containing test article controls, test cell controls, and data acquisition equipment. Exhaust machinery is connected with the spray chamber and maintains a low pressure before and after the engine firing and exhausts the products of combustion from the engine firing. Before a firing, the facility steam ejector, in series with the exhaust machinery, provides a pressure altitude of 100,000 ft in the test capsule. A detailed description of the test cell is presented in Ref. 4.

The battleship stage and the J-2 engine were oriented vertically downward on the centerline of the diffuser-steam ejector assembly. This assembly consisted of a diffuser duct (20 ft in diameter by 150 ft in length), a centerbody steam ejector within the diffuser duct, a diffuser insert (13.5 ft in diameter by 30 ft in length) at the inlet to the diffuser duct, and a gaseous nitrogen annular ejector above the diffuser insert. The diffuser insert was provided for dynamic pressure recovery of the engine exhaust gases and to maintain engine ambient pressure altitude (attained by the steam ejector) during the engine firing. The annular ejector was provided to suppress steam recirculation into the test capsule during steam ejector shutdown. The test cell was also equipped with (1) a gaseous nitrogen purge system for continuously inerting the normal air in-leakage of the cell; (2) a gaseous nitrogen repressurization system for raising test cell pressure, after engine cutoff, to a level equal to spray chamber pressure and for rapid emergency inerting of the capsule; and (3) a spray chamber liquid nitrogen supply and distribution manifold for initially inerting the spray chamber and exhaust ducting and for increasing the molecular weight of the hydrogen-rich exhaust products.

An engine component conditioning system was provided for temperature conditioning engine components. The conditioning system utilized a liquid hydrogen-helium heat exchanger to provide cold helium gas for component conditioning. Engine components requiring temperature conditioning were the thrust chamber and the crossover duct. Cold helium was routed internally through the crossover duct and tubular-walled thrust chamber.

2.3 INSTRUMENTATION

Instrumentation systems were provided to measure engine, stage, and facility parameters. The engine instrumentation was comprised of (1) flight instrumentation for the measurement of critical engine parameters and (2) facility instrumentation which was provided to verify the flight instrumentation and to measure additional engine parameters. The flight instrumentation was provided and calibrated by the engine manufacturer; facility instrumentation was initially calibrated and periodically recalibrated at AEDC. Appendix III contains a list of all measured test parameters and the locations of selected sensing points.

Pressure measurements were made using strain-gage-type pressure transducers. Temperature measurements were made using resistance temperature transducers and thermocouples. Oxidizer and fuel turbopump shaft speeds were sensed by magnetic pickup. Fuel and oxidizer flow rates to the engine were measured by turbine-type flow-meters which are an integral part of the engine. The propellant recirculation flow rates were also monitored with turbine-type flowmeters. Engine side loads were measured with dual-bridge, strain-gage-type load cells which were laboratory calibrated before installation. Vibrations were measured by accelerometers mounted on the oxidizer injector dome and on the turbopumps. Primary engine and stage valves were instrumented with linear potentiometers and limit switches.

The data acquisition systems were calibrated by (1) precision electrical shunt resistance substitution for the pressure transducers, load cells, and resistance temperature transducer units; (2) voltage substitution for the thermocouples; (3) frequency substitution for shaft speeds and flowmeters; and (4) frequency-voltage substitution for accelerometers.

The types of data acquisition and recording systems used during this test period were (1) a multiple-input digital data acquisition system. (MicroSADIC®) scanning each parameter at 40 samples per second and recording on magnetic tape, (2) single-input, continuous-recording FM systems recording on magnetic tape, (3) photographically recording galvanometer oscillographs, (4) direct-inking, null-balance potentiometer-type X-Y plotters and strip charts, and (5) optical data recorders. Applicable systems were calibrated before each test (atmospheric and altitude calibrations). Television cameras, in conjunction with video tape recorders, were used to provide visual coverage during an engine firing, as well as for replay capability for immediate examination of unexpected events.

2.4 CONTROLS

Control of the J-2 engine, battleship stage, and test cell systems during the terminal countdown was provided from the test cell control room. A facility control logic network was provided to interconnect the engine control system, major stage systems, the engine safety cutoff system, the observer cutoff circuits, and the countdown sequencer. A schematic of the engine start control logic is presented in Fig. 6. The sequence of engine events for a normal start and shutdown is presented in Fig. 7.

SECTION III PROCEDURE

Preoperational procedures were begun several hours before the test period. All consumable storage systems were replenished, and engine inspections, leak checks, and drying procedures were conducted. Propellant tank pressurants and engine pneumatic and purge gas samples were taken to ensure that specification requirements were met. Chemical analysis of propellants was provided by the propellant suppliers. Facility sequence, engine sequence, and engine abort checks were conducted within a 24-hr time period before an engine firing to verify the proper sequence of events. Facility and engine sequence checks consisted of verifying the timing of valves and events to be within specified limits; the abort checks consisted of electrically simulating engine malfunctions to verify the occurrence of an automatic engine cutoff signal. A final engine sequence check was conducted immediately preceding the test period.

Oxidizer dome, gas generator oxidizer injector, and thrust chamber jacket purges were initiated before evacuating the test cell. After completion of instrumentation calibrations at atmospheric conditions, the test cell was evacuated to approximately 0.5 psia with the exhaust machinery, and instrumentation calibrations at altitude conditions were conducted. Immediately before loading propellants on board the vehicle, the cell and exhaust-ducting atmosphere was inerted. At this same time, the cell nitrogen purge was initiated for the duration of the test period, except for the engine firing. The vehicle propellant tanks were then loaded, and the remainder of the terminal countdown was conducted. Temperature conditioning of the thrust chamber and turbine crossover duct system was accomplished as required, using the facility-supplied engine component conditioning system. Table V presents the engine purge operations during the terminal countdown and immediately following the engine firing.

SECTION IV RESULTS AND DISCUSSION

4.1 TEST SUMMARY

Four firings of the J-2 rocket engine (S/N J-2052) were conducted on September 1, 1967, in support of S-IVB/S-V test objectives. These firings were obtained at pressure altitudes ranging from 89,000 to 106,000 ft at engine start. The accumulated total firing duration of this test period was 66.5 sec.

Thermal conditioning of the thrust chamber and turbine crossover duct system was accomplished to simulate predicted thermal conditions for (1) an S-IVB/S-V first burn mission and (2) an S-IVB/S-V one orbit (80-min) restart mission. Flight AS-501 prevalve sequencing (auxiliary logic start sequence) for a J-2 engine first burn mission was utilized for firing 07A. The oxidizer pump primary seal drain simulation tubes, in support of the S-II and S-IVB stages of vehicle AS-501, were operated during firing 07A. Firing 07D was terminated at t₀ + 1.253 sec by the engine safety cutoff system because of a gas generator outlet temperature of 2425°F.

Conditioning targets for engine components and the measured test conditions at engine start are presented in Table VI. Start and shutdown times of selected engine valves are presented in Table VII. The pump inlets, start tank, and helium tank pressure and temperature conditions at engine start are shown in Fig. 8. Specific test objectives and a brief summary of results obtained from each firing are presented as follows:

Firing Test Objectives

07A Evaluate the effect of warmest (-80°F) predicted thrust chamber on fuel pump high level stall characteristics for an S-IVB/S-V first burn mission; operate oxidizer pump primary seal drain simulation tubes.

Results

A minimum fuel pump stall margin of 650 gpm was measured in the region above 17,500 rpm. Less than 5 psia was measured in tubes 10 and 11 during the firing after the caps burned off.

Firing	Test Objectives	Results
97B	Evaluate the effect of minimum start tank energy (-300°F, 1200 psia) on oxidizer turbine spin speed for an S-IVB one orbit (80-min) restart.	The maximum oxidizer turbine spin speed during start tank discharge was approximately 3800 rpm.
07C	Evaluate the effects of minimum start tank energy and cold crossover duct (-100°F) on fuel pump high level stall margin and thrust chamber pressure buildup time.	A minimum fuel pump stall margin of 650 gpm was measured in the region above 17,500 rpm. Buildup time to a chamber pressure of 550 psia was 2.630 sec.
07D	Evaluate the effects of maximum start tank energy (-300°F, 1300 psia) on the oxidizer turbine spin speed for an S-IVB one orbit (80-min) restart.	The maximum oxidizer turbine spir. speed during start tank discharge was 4000 rpm. The firing was terminated at $t_0+1.253$ sec because of a gas generator outlet temperature of 2425°F.

The presentation of the test results in the following sections will consist of a discussion of each engine firing. The data presented will be those recorded on the digital data acquisition system, except as noted.

4.2 TEST RESULTS

4.2.1 Firing J4-1801-07A

The duration of firing 07A was for a programmed 30 sec. A 3-sec fuel lead preceded the firing. Flight AS-501 prevalve sequencing (auxiliary logic start sequence) for a J-2 engine first burn mission was utilized. Pre-fire thermal conditioning histories of the thrust chamber and crossover duct are shown in Fig. 10 and 11, respectively.

Start and shutdown transient data for selected primary engine parameters are shown in Fig. 12. Initial main oxidizer valve second-stage movement occurred at $t_0 + 0.986$ sec with thrust chamber ignition occurring 1.032 sec after t_0 . Engine vibration (VSC) of 3 msec was recorded beginning 1.032 sec after t_0 . The gas generator outlet temperature peak was 1470°F. Main chamber pressure reached 550 psia at $t_0 + 2.020$ sec.

Transient fuel pump head/flow data were documented and are compared with the stall inception line provided by the engine manufacturer in Fig. 13. A conservative fuel pump stall margin of 650 gpm was measured at approximately 19,000 rpm.

Engine ambient and combustion chamber pressure histories are shown in Fig. 14. The effect of the propellant utilization valve excursion on combustion chamber pressure was an increase from 680 to 780 psia at approximately $t_0 + 12.5$ sec. The engine ambient pressure was 0.195 (96,000 ft) at engine start.

Selected engine valve data during the start and shutdown transients are shown in Table VII. All valve operating times were normal.

Engine steady-state performance data are presented in Table VIII. The data presented were computed using the Rocketdyne PAST 640 modification zero performance computer program. Engine test measurements required by the program and the program computations are presented in Appendix IV.

The oxidizer pump primary seal drain simulation tubes were operated during firing 07A and are discussed in Section 4.2.5.

4.2.2 Firing J4-1801-07B

A successful one orbit (80-min) restart simulation firing was accomplished for a programmed 5-sec duration. An 8-sec fuel lead preceded the firing. This firing was conducted 19 min after engine cutoff of firing 07A in order to provide turbine and crossover duct temperatures (Fig. 15), equivalent to predicted orbital engine restart temperatures 80-min after first burn cutoff. A summary of test requirements and results is presented in Table VI.

Start and shutdown transient data for selected primary engine parameters are shown in Fig. 16. Thrust chamber ignition occurred at $t_0 + 0.947$ sec with the initial main oxidizer valve second-stage movement at $t_0 + 1.080$ sec. No engine vibration (VSC) was recorded. The initial gas generator outlet temperature peak was 2120°F with a second peak of 2155°F. Pre-fire temperature history of the thrust chamber is shown in Fig. 17. The maximum spin speed of the oxidizer pump during start tank discharge was 3800 rpm.

Selected engine valve data during the start and shutdown transients are shown in Table VII. All valve operating times were normal.

Engine ambient and combustion chamber pressure histories are shown in Fig. 18. Ambient pressure at engine start was 0.263 psia (89,000 ft).

4.2.3 Firing J4-1801-07C

Firing 07C was successfully accomplished for a programmed 30-sec duration. An 8-sec fuel lead preceded the firing. Start requirements resulted in a restart mission with minimum starting energy. A summary of engine start requirements and test results is presented in Table VI. Pre-fire temperature histories of the thrust chamber and the turbine crossover duct system are shown in Figs. 19 and 20, respectively.

· corrected by the contract of the property of the party of the contraction of the contra

Engine start and shutdown transient data of selected primary engine parameters are shown in Fig. 21. The initial movement of the main oxidizer valve second stage occurred at $t_0 + 1.015$ sec with thrust chamber ignition occurring at $t_0 + 1.070$ sec. Engine vibration (VSC) of 24 msec was recorded beginning at $t_0 + 1.070$ sec. The gas generator outlet temperature peaked to 1565°F.

Transient fuel pump head/flow data were documented and are compared with the stall inception line provided by the engine manufacturer in Fig. 22. A conservative fuel pump stall margin of 650 gpm was measured at approximately 19,000 rpm.

Selected engine valve data during the start and shutdown transients are shown in Table VII. All valve operating times were normal.

Engine ambient and combustion chamber pressure histories are shown in Fig. 23. The chamber pressure increase from 600 to 775 psia reflects the propellant utilization valve excursion at $t_0 + 10$ sec. The ambient pressure at engine start was 0.122 psia (106,000 ft).

Engine steady-state performance data are presented in Table VIII and indicate that engine operation was nominal. The data presented were computed using the Rocketdyne PAST 640 modification zero performance computer program. Engine test measurements required by the program and the program computations are presented in Appendix IV.

4.2.4 Firing J4-1801-07D

Firing 07D was a programmed 5-sec duration, one orbit (80-min) restart simulation. An 8-sec fuel lead preceded the firing. This firing was conducted 19 min after engine cutoff of firing 07C in order to provide turbine and crossover duct temperatures (Fig. 24) equivalence

to predicted orbital engine restart temperatures 80 min after first burn cutoff. A summary of engine start requirements and results is presented in Table VI.

Start and shutdown transient data for selected primary engine parameters are shown in Fig. 25. Thrust chamber ignition occurred at $t_0 + 0.919$ sec with initial main oxidizer valve second-stage movement at $t_0 + 1.140$ sec. No engine vibration (VSC) was recorded. Pre-fire temperature history of the thrust chamber is shown in Fig. 26. The maximum spin speed of the oxidizer pump during start tank discharge was 4000 rpm. Comparison of firing 07D with firing 07B shows that a 100-psia increase in start tank pressure yielded a 200-rpm increase in the maximum oxidizer pump spin speed during start tank discharge.

A premature engine cutoff occurred at $t_0+1.253$ sec because of a high gas generator outlet temperature of 2425°F. This temperature resulted from the high oxidizer pump spin speed during start tank discharge.

Engine ambient and combustion chamber pressure histories are shown in Fig. 27. The ambient pressure at engine start was 0.122 psia (106,000 ft).

4.2.5 Experimental Oxid:zer Pump Primary Seal Drain Tubes

The S-II and S-IVB stage engines of vehicle AS-501 will experience static pump inlet pressure increases because of vehicle acceleration during the boost phase of flight. An excessive oxidizer pump primary seal leakage of gaseous oxygen is predicted as a result of this increased static pressure. The present drain configuration will allow this leakage to be exhausted into the vehicle interstage compartments, presenting a potential explosion hazard. A proposed modification to the seal drain, to eliminate leakage during the boost phase, involved extending the drain into the engine exhaust jet and sealing the discharge end. Normal draining of the oxidizer pump primary seal should occur after the engine exhaust gases burned off the sealing cap.

Two of the experimental drain tubes, tubes 9 and 12, were supplied with gaseous oxygen from a facility source to simulate maximum (100-scfm) and minimum (100-scim) predicted leakage flow rates. The purposes of these tubes were to verify that end cap ejection and burn characteristics were satisfactory under the influence of the gaseous oxygen flows.

Pressure measurement data from firing 07A indicated that the cap on tube 9 burned off at approximately t_0 + 6 sec; the cap on tube 12 burned off approximately 1.5 sec later. The pressures measured in the discharge

end of tubes 9 and 12 decayed to about 5 and 1 psia, respectively, after the caps burned off. Close-range motion-picture data from firing 07A revealed that the caps separated cleanly from the tubes and were propelled almost vertically downward by the engine exhaust. No further burning of the tubes with the gaseous oxygen resulted after the caps were ejected.

Two experimental drain tubes, tubes 10 and 11, were instrumented to measure pressure recovery after the caps burned off. The purpose of these tubes was to determine the dynamic pressure recovery of the engine exhaust gases in the seal drain tube after the cap burned off. A significant pressure recovery in the drain tube could force hydrogen-rich exhaust gases into the oxidizer pump. Pressure measurement data from firing 07A indicated that the caps on tubes 10 and 11 burned off at approximately $t_0 + 3$ sec. The pressure in tubes 10 and 11 decayed below 1 psia immediately after the caps burned off. The pressure in tube 11, which was provided with a blowout port, remained less than 1 psia for the duration of firing 07A. However, the pressure in tube 10 increased very gradually throughout firing 07A and at engine cutoff was approximately 5 psia.

The eight additional experimental drain tubes were attached to the thrust chamber to determine the burnoff characteristics of four different methods of sealing the modified drain tubes. The post-test examination revealed that the tubes with stainless steel, coin-type caps were eroded significantly, whereas the copper-capped tubes showed no apparent erosion.

4.3 POST-TEST INSPECTION

Post-test inspection of the J-2 engine revealed that the gas generator outlet temperature probe had been eroded and required replacing. This is the first inspection of this probe since test J4-1801-04. Further inspection revealed that the first-stage fuel turbine blades were eroded slightly but not sufficiently to require replacement of the turbopump assembly.

Post-test photographs of the experimental oxidizer pump primary seal drain tubes (Fig. 28) were taken after four firings had been completed. The photographs show that the stainless steel tubes were eroded significantly. The copper-capped discharge tubes showed no signs of erosion.

SECTION V SUMMARY OF RESULTS

The results of these four firings of the J-2 engine conducted on September 1, 1967, in Test Cell J-4 are summarized as follows:

- 1. A first burn mission (firing 07A) with a -80°F thrust chamber yielded a conservative fuel pump stall margin of 650 gpm at approximately 19,000 rpm.
- 2. Minimum start tank energy (-140°F, 1250-psia) on a first orbit (80-min) restart mission (firing 07C) resulted in a conservative fuel pump stall margin of 650 gpm at about 19,000 rpm.
- 3. First orbit (80-min) restart (firing 07B) crossover duct temperature (169°F) and minimum start tank energy (-300°F, 1200-psia) produced a maximum oxidizer pump spin speed of 3800 rpm during start tank discharge.
- 4. An increase in start tank pressure of 100 psia (from 1200 psia and -300°F to 1300 psia and -300°F) resulted in a 200-rpm increase in the oxidizer pump spin speed during start tank discharge on comparable one orbit (80-min) engine restart firings.
- Firing 07D was prematurely cut off at $t_0 + 1.253$ sec because of a high gas generator outlet temperature of 2425°F. This temperature resulted from the high oxidizer pump spin speed (4000-rpm) during start tank discharge.
- 6. Discharge pressures of less than 1 psia were measured for the firing duration in the copper-capped oxidizer pump primary seal drain tubes, tubes 9 and 12, after the caps burned off.
- 7. A pressure of less than 1 psia was measured for the firing duration in the stainless steel, coin-type, capped tube with a blowout port (tube 11), after the cap burned off. The pressure in tube 10, without a blowout port, increased from less than 1 psia to a level of 5 psia at engine cutoff, after the cap burned off.

REFERENCES

- 1. Dubin, M., Sissenwine, N., and Wexler, H. <u>U. S. Standard</u>
 Atmosphere, 1962. December 1962.
- Vetter, N. R. "Altitude Developmental Testing of the J-2 Rocket Engine in Propulsion Engine Test Cell (J-4) (Test J4-1801-06)." AEDC-TR-67-215, January 1968.
- 3. "J-2 Rocket Engine, Technical Manual Engine Data." R-3825-1, August 1965.
- 4. Test Facilities Handbook (6th Edition). "Large Rocket Facility,
 Vol. 3." Arnold Engineering Development Center,
 November 1966.

APPENDIXES

- I. ILLUSTRATIONS
- II. TABLES

The contraction of the contracti

- III. INSTRUMENTATION
- IV. METHODS OF CALCULATIONS (PERFORMANCE PROGRAM)

Fig. 1 Test Cell J.4 Complex

Fig. 2 Test Cell J-4, Artist's Conception

The state of the s

والإنجاعة والمعارضة والمعارضة والأنجاب والمعارضة والمعار

Fig. 3 Engine Details

Fig. 4 S-IVB Battleship Stage/J-2 Rocket Engine Schematic

the party of a state of the

the state of the second state of the second seconds and the seconds of the seconds.

Fig. 5 Engine Schematic

Fig. 6 Engine Start Logic Schematic

The state of the s

a. Start Sequence

b. Shutdown Sequence

Fig. 7 Engine Start and Shutdown Sequence

¹Nominal Occurrence Time (Function of Prevalves Opening Time)

c. "Normal" Start Sequence

 $^{^{1}}$ Three-sec Fuel Lead (S-IVB/S-V First Burn)

d. "Auxiliary" Start Sequence

Fig. 7 Concluded

²One-sec Fuel Lead (S-II/S-V and S-IVB/S-IB)

 $^{^{3}}$ Eight-sec Fuel Lead (S-IVB/S-V and S-IB Orbital Restart)

Fig. 8 Engine Start Conditions for Pump Inlets, Start Tank, and Helium Tank

Fig. 8 Concluded

a. Drain Simulation Tubes, 8 through 12 Fig. 9 Experimental Oxidizer Pump Primary Seal Drain Tubes

b. Drain Simulation Tubes, 1 through 8

Fig. 9 Continued

c. Cap Configurations Fig. 9 Concluded

Fig. 10 Thrust Chamber Temperature History, Pre-Firing 07A

Fig. 11 Crossover Duct Temperature History, Pre-Firing 07A

Fig. 12 Engine Transient Operation, Firing 07A

TIME, SEC

d. Thrust Chamber Oxidizer System, Cutoff
Fig. 12 Continued

e. Gas Generator Injector Pressures, Start

f. Gas Generator Chamber Pressure and Temperature, Start Fig. 12 Continued

g. Gas Generator Injector Pressures, Cutoff

h. Gas Generator Chamber Pressure and Temperature, Cutoff
Fig. 12 Concluded

Fig. 13 Fuel Pump Start Transient Performance, Firing 07A

Fig. 14 Engine Ambient and Combustion Chamber Pressure Histories, Firing 07A

Fig. 15 Crossover Duct Temperature History, Pre-Firing 07B

a. Thrust Chamber Fuel System, Start

b. Thrust Chamber Oxidizer System, Start Fig. 16 Engine Transient Operation, Firing 07B

d. Thrust Chamber Oxidizer System, Cutoff

Fig. 16 Continued

e. Gas Generator Injector Pressures, Start

f. Gas Generator Chamber Pressure and Temperature, Start Fig. 16 Continued

g. Gas Generator Injector Pressures, Cutoff

h. Gas Generator Chamber Pressure and Temperature, Cutoff
Fig. 16 Concluded

Fig. 17 Thrust Chamber Temperature nistory, Pre-Firing 078

Fig. 18 Engine Ambient and Combustion Chamber Pressure Histories, Firing 07B

The state of the s

Fig. 19 Thrust Chamber Temperature History, Pre-Firing 07C

Fig. 20 Crossover Duct Temperature History, Pre-Firing 07C

b. Thrust Chamber Oxidizer System, Start
Fig. 21 Engine Transient Operations, Firing 97C

c. Thrust Chamber Fuel System, Cutoff

d. Thrust Chamber Oxidizer System, Cutoff

Fig. 21 Continued

e. Gas Generator Injector Pressures, Start

f. Gas Generator Chamber Pressure and Temperature, Start

Fig. 21 Continued

g. Gas Generator Injector Pressures, Cutoff

h. Gas Generator Chamber Pressure and Temperature, Cutoff

Fig. 21 Concluded

Fig. 22 Fuel Pump Start Transient Performance, Firing 07C

Fig. 23 Engine Ambient and Combustion, Chamber Pressure Histories, Firing 07C

a. Thrust Chamber Fuel System, Start and Cutoff

b. Thrust Chamber Oxidizer System, Start and CutoffFig. 25 Engine Transient Operation, Firing 07D

c. Gas Generator Injector Pressures, Start and Cutoff

d. Gas Generator Chamber Pressure and Temperature, Start and Cutoff
Fig. 25 Concluded

Fig. 26 Thrust Chamber Temperature History, Pre-Firing 07D

A CANADA CANADA

Fig. 27 Engine Ambient and Combustion Chamber Pressure Histories, Firing 07D

Fig. 28 Experimental Oxidizer Pump Primary Seal Drain Tubes, Post-Test Condition

Fig. 28 Continued

Fig. 28 Concluded

TABLE ! MAJOR ENGINE COMPONENTS

Part Name	P/N	S/N
Thrust Chamber Body	206600-31	4076553
Thrust Chamber Injector Assembly	208021-11	4084917
Fuel Turbopump Assembly	459000-181	406 2085
Oxidizer Turbopump Assembly	458175-71	6623549
Start Tank	303439	0064
Augmented Spark Igniter	206280-21	3661349
Gas Generator Fuel Injector and Combustor	308360-11	4066541
Pneumatic Control Assembly	556947	4079720
Electrical Control Package	502670-11	4081748
Primary Flight Instrumentation Package	703685	4078716
Auxiliary Flight Instrumentation Package	703680	4078718
Main Fuel Valve	40912C	4056924
Main Oxidizer Valve	409969	4072594
Gas Generator Control Valve	309040	4074190
Start Tank Discharge Valve	306875	4079062
Oxidizer Turbine Bypass Valve	409940	4048489
Propellant Utilization Valve	251351-11	4068944
Main-Stage Control Valve	558069	8313568
Ignition Phase Control Valve	558069	8275775
Helium Control Valve	106012000	3793-0
Start Tank Vent and Relief Valve	557828-X2	4046446
Helium Tank Vent Valve	106012000	342277
Fuel Bleed Valve	309034	4077749
Oxidizer Bleed Valve	309029	4077746
Augmented Spark Igniter Oxidizer Valve	308880	4077205
P/A Purge Control Valve	557823	4073021
Start Tank Fill/Refill Valve	558000	4079001
Fuel Flowmeter	251225	4077752
Oxidizer Flowmeter	251216	4074114
Fuel Injector Temperature Transducer	NA5-27441	12401
Restartable Ignition Detect Probe	XEOR915389	211

TABLE II SUMMARY OF ENGINE ORIFICES

· State of the sta

Orifice Name	Part Number	Diameter	Installation Date	Comments
Main Oxidizer Valve Closing Control	410437	8.65 scfm	August 28, 1967	RFD*-AEDC 17-1-67 Supplement
Gas Generator Fuel	RD251-4107	0.480 in.	August 18, 1967	FTP † Replacement
Gas Generator Oxidizer	RD251-4106	0.281 in.	August 18, 1967	FTP Replacement
Oxidizer Turbine Bypass Nozzle	RD273-8002	1.571 in.	July 31, 1967	RFD-AEDC 58-67
Oxidizer Turbine Exhaust Orifice	RD251-9004	10.0 in.	January 18, 1967	Size Verification
Augmented Spark Igniter Oxidizer	406361 None	0.137 i 0.125 in.	August 10, 1967	RFD-AEDC-62-67

*RFD - Rocketdyne Field Directive

† FTP - Fuel Turbopump Assembly

TABLE III ENGINE MODIFICATIONS (BETWEEN TESTS J4-1801-06 AND J4-1801-07)

Modification .Jumber	Completion Date	Description of Modification
RFD*-64-67	August 30, 1967	Installation of Oxidizer Pump Primary Seal Drain Simulation System
	August 30, 1967	Augmented Spark Igniter Ignition Detect Probe Depth Increased 0.085 in. to Return Probe Depth to the Standard

^{*}RFD - Rocketdyne Field Directive

TABLE IV ENGINE COMPONENT REPLACEMENTS (BETWEEN TESTS J4-1801-06 AND J4-1801-07)

Replacement	Completion Date	Component Replaced
UCR*-007397	August 23, 1967	Gas Generator Outlet Tem- perature Transducer

^{*}UCR - Unsatisfactory Condition Report

TABLE V ENGINE PURGE AND COMPONENT CONDITIONING SEQUENCE

+ 10		F1 sec (Suppl.ed by Engine Helium Tanl during Start and Cutoff Trans.lents)			ingme iff					
0 .		Engine during & Cutoff T	//////////////////////////////////////		On at Engme	(10 min				
- 10 t -	nin		On at Engine Cutoff	per			15 mm///			
- 20 t -	Manimum Following Recirculation 1 to 3 min		đ	Main-Stage Oper (Supplied Progine Prog						1
Time, min t - 30 t -	2-min Minimum Following Recirculation 1 to 3 n			231					//////////////////////////////////////	
Time - 40 t	-2		45 min////////////////////////////////////							
- 50 t	Propellant Drop									
- 60 t	Propel			1	//////////////////////////////////////		ļ			
- 70 t	10,min	715 min////		15 min///	In Addition to					
- 80 t					In Ac					
+		·								
	Helium, 82 - 125 psia 50 - 200°F (Nominal) 6 scfm at Customer Connect	Nitrogen, 400 ± 25 psig 50 - 200°F (Mınimum) 230 scfm	Nitrogen, 400 - 450 paig 100 - 200°F (Nominal) 200 scfm	Helium, 400 ± 25 psig Ambient Temperature 2600 - 7000 scfm	Hellum, 40 - 60 psig 50 - 200°F (Nominal) 60 scfm	Hellum; 12 - 14 psig 50 - 200°F (Nominal) 10 scfm	Helium; 1000 psig -300 F to Ambient 10 - 20 lbm/min	Oxidizer; 35 to 48 psia -288 to -286 F Fuel; 28 to 46 psia -424 to -416*F	Hydrogen; 1200 to 1400 psia -300 to -140°F Helium, 1700 to 3250 psia -300 to -140°F	Helium, -300°F to Ambient
	Turbopump and Gas Generator Purge (Purge Manifold System)	Oxidizer Dome and Gas Generator Liquid Oxygen Injector (Engine Pneumatic System)	Oxidizer Dome (Facility Line to Port CO3A)	Oxidizer Turbopump Intermediate Seal Cavity (Engine Pneumatic System)	Thrust Chamber Jacket	(Customer Connect) Panel	Thrust Chamber Temperature Conditioning	Pump Inlet Pressure and Temperature Conditioning	Hydrogen St. rt Tank and Helium Tank Pressure and Tem- perature Conditioning	Crossover Duct Temperature Conditioning

Conditioning temperature to be maintained for the last 15 min of pre-fire.

TABLE VI SUMMARY OF TEST REQUIREMENTS AND RESULTS

Firing Number, J4-1801-			07	٨	07	В	07	c	07	D
Paring Number, 94-1801-			Target	Actual	Target	Actual	Target	Actual	Target	Actual
Time of Day, hr/Firing Date			1113/Septen	ber 1, 1967	1132/Septem	ber 1, 1967	1405/Septem	ber 1, 1967	1424/Septem	ber 1, 1967
Pressure Altitude at Figine Star	(Ref 1)		100, 000	96,000	100,000	89,000	100,000	106,000	100,000	106 000
Firing Duration, sec			30	30 070	5	5 087	30	30.070	5	1 253
Fuel Pump Inlet Conditions	Pressur	e, psia	28 ± 1	29 6	28 ± 1	27 8	28 ± 1	28 2	28 ± 1	27 9
at Engine Start	Temper	ature, 'F	-421 4 ± 0 4	-421 1	-421 4 ± 0 4	-420 6	-421 4 ± 0 4	-421.2	-421.4 ± 0 4	-420.4
Oxidizer Pump Inlet Conditions	Pressur	e, psia	35 ± 1	35, 4	48 ± 1	47 6	35 ± 1	35. 7	48 ± 1	47 9
at Figure Start	Temper	ature, °F	-294 0±0 4	-293 8	-295 3 ± 0 4	-295 3	-294 0 ± 0 4	-295.0	-295 3 ± 0 4	-295 9
Start Tank Conditions at	Pressur	e, psia	1250 ± 10	1248	1200 ± 10	1207	1250 ± 10	1245	1300 ± 10	1300
Engine Start	Temper	ature, "F	-140 ± 10	-142	-300 ± 10	-301	-140 ± 10	-142	-300 ± 10	-299
Helium fank Conditions at	Pressur	е, рыа		2660		2270		2300		2275
Engine Start	Temper	ature, °F		-144		-294		-145		-296
Thrust Chamber Temperature	Throat ((TSC2-19)	-80 ± 15	-93	-,	53	-100 ± 15	-100	7,00	49
Conditions at Engine Start, *F	Average	,		-112		35		-103		30
Canada - Duct Towns		TFTD-2	-100 ± 15	-101		408	-100 ± 15	-105		445
Crossover Duct Temperature Conditions at Engine Start, *F		TFTD-3	-100 ± 15	-107	170 + 15	169	-100 ± 15	-131	170 + 15	180
		TFTD-8	-100 ± 15	-81	<u>*</u>	375	-100 ± 15	-91		384
Main Oxidizer Valve Closing Con Line Temperature at Engine State				21		22		13	***	22
Main Oxidizer Valve Second-Sta Temperature at Engine Start, *F		or		-94	٠-	-130		-46	>	-100
Preumatic Control Package Tem at Engine Start, *F	perature		-,	58	**	41		16		10
Fuel Lead Time, sec 0			3 0 ± 0 1	3 010	8 0 ± 0 1	8 003	80±01	8 004	80±01	8 004
Propellant in Engine Time, min			60	61		12	20	25		12
Propellant Recirculation Time,	min		10	11	10	12	10	14	10	12
Prevalve Sequencing Logic			Auxiliary	Auxiliary	Normal	Normal	Normal	Normal	Normal	Normal
Gas Generator Oxid or Supply I Temperature at Engine Start, *F		TOBS-2A		34		- 24	**	36		-17
Start Tank Disch-*ge Valve Body Temperature at 'ingine Start, *F				10	**	1	,	-34		-30
Gas Generator Control Valve Bo Temperature at Engine Start, *F				49		8		2		-27
Vibration Safety Count Duration Occurrence Fime (sec) from to		ıd	ÿ	3 1 032			*/*	24	;;; / _:	
Gas Generator Outlet	In	itial Peak		1470		2120		1565		2425
Temperature, *F	<u> </u>	cond Pear				2155				
Thrust Chamber Ignition Time, (Pc = 100 psia) (Ref to)				1 032		0 947		1 070		0 919
Main Oxidizer Valve Second-Sta Movement, sec (Ref. to)	ge Initial			0 986		1 080	4.1	1.015		1. 140
Main-Stage Pressure No 2, see	c (Ref to	Ø		1 770		1 624		2.005		
550-psia Chamber Pressure Att (Ref. to) ©	ained, sec	·		2 020		1, 931		2 630		
Propellant Utilization Valve Pos ingine Start, deg (Engine Start to + 10 sec)			Null Closed	Null Closed	Орег	Open	Open Closed	Open Closed	Open	Open

Notes

Data reduced from oscillogram

Component conditioning to be maintained within limits for last 15 min before engine start

TABLE VII ENGINE VALVE TIMINGS

The second secon

												Start	4											
Firing		Start 1	fank Disc	Start Tank Discharge Valve	lve		Fu	Main Fuel Valvo		Main Os Fir	Main Oxidizer Valve First Stage	Valve	Main Ox Seco	Main Oxidizer Valve Second Stage	alve	Gas Fue	Gas Generator Fuel Poppet	or	Gas	Gas Generator Oxidizer Poppet	or Pet	Oxidia	Oxidizer Turbine Bypass Valve	bine
J4-1801-	Time	Valve	Time Valve Valve Time of Delay Opening of	Time	Valve Delay	Valve Valve Time Delay Closing of		Valve Delny C	Valve Valve Delny Opening	Time	Valve Delay C	Valve Valve Delay Opening	Time Valve Valve Time Valve Valve of Delay Opening of Delay Opening	Valve Delay G		Time Valve Valve of Delay Opening	Valve Valve Delay Opening		Time Valve Valve Time of Delay Opening of	/alve Delay (Valve Valve Delay Opening	Time	Valve Delay	Valve
	Opening Time.	Time,	Time,	Closing	Time, sec	Time,	ime, Time, Opening lsec sec Signal	Time,	Time, Time, C	Signal	Time, sec	Opening Time, Time, Opening Signal sec sec Signal	Opening 1 Signal	Time,	Time,	Time, Time, Opening Time, Time, sec sec	Time,		Opening Time, Time, Closing Time, Time, Signal sec. Sec. Signal sec. sec	rime,	Time,	Closing	Tume,	Time, sec
07A	0	0 145	0 145 0 136	0,446	0 085	0 085 0 253	-3.010 0 050 0 067	3 050		850 0 911 0		0 020	0.448 0 540 1 716	0 540	1 716	0.446 0 110 0 020	0110		0 446 0 166 0 058	991 0	0 058	0 446 0 250	0 250	0 280
07B	0	0.150	0.150 0.134	0 445	0.095	. 095 0 253	-8.003 0 050 0 064	0 00 0		0 445 0 056	950 0	0 056	0 445 0,625 1 750	0,625	1 750	0 445 0 116 0 020	9110	0 0 0 0	0 445 0.182 0 064	0. 182	0 064	0 445 0 332	232	0 287
01C	0	0.142	0.142 0 138	0.445	0.099	. 099 0. 240	-8 004 0.050 0 056	0.050		0 445 0 054		0 046	0 445 0 570 1 645	0 570	1 645	0 445 0 108 0 025	901 0		0 445 0.170 0 062	0.170	0 062	0 445 0 239	0 239	0 284
α <i>τ</i> 0	0	0.157	0.157 0 146	0 445	860 0	098 0 257	-8 004 0 050 0.061	0 0 0		0 445 0 055 0 050	0 055		0 445	0 695		0 445 0 114 0 024	0 114	0 024	0 445 0 188 0.070	0 188	0.020	0 445	0 230	0 288
Pre-Fire Final Sequence	0	0 097	0 108	0 0 0 0 0 0 0 444	0	0, 250	092 0.250 -1 009 0 043 0 069	0 043	690 0	940 0 044 0 048	0 047	940 0	0 444 0.552 1 629 0 444 0 077 0 034	0,552	1 629	0 444	0 077	0 034	0 444 0 132 0 052	0 132	0 052	0 444 0 219	0 219	0, 299

							S	Shutdown							
Firing	Mai	Main Fuel Valve	/alve	Oxid	Main Oxidizer Valve	lve	Gas Fue	Gas Generator Fuel Poppet	, to	S C	Gas Generator Oxidizer Poppet	ator	Oxid	Oxidizer Turbine Bypass Valve	bine
J4-1801-	Time of Closing Signal	Valve Delay Tirre,	Time Valve Valve of Delay Closing Closing Time, Time, Signal sec.	Time of Closing Signal	Valve Delay Time,	Valve Valve Delay Closing Time, Time,	Time Valve Valve Time of Delay Closing Of Closing Time, Time, Closing Signal sec sec Signal	Valve Delay Time,	Valve Valve Delay Closing Time, Time,	Time of Closing Signal	Valve Delay Time,		Valve Time Valve Closing of Delay Time, Opening Time, sec Signal sec	Valve Delay Time,	Valve Valve Delay Opening Time, Time,
07A	30 070	0.122	0 316	30 070	0.080	30 070 0.080 0 175	30.070 0 075	0 075	0.010	30 070	0 033	0 011	30 070 0 265	0 265	0 550
07B	5 087	0.113	0 305	5 087	990 0	5 087 0 066 0.180	5.087 0 075 0 016	0 075	0 016	5.087	0 035	0 035 0.016	5.087 0 230	0 230	0.496
07C	30 070	0 110	0 285	30.070	0 073	0.166	30.070 0 073 0.166 30 070 0 072	0 072	910.0	30 070	0.033	0.014	30 070 0.264	0.264	0,540
070	1.253	0, 104	0 294	1, 253	0 020	0 020 0.065	1.253	0.080	0.018	1.253	0 040	0 018	1 253	0 155	0 570
Pre-Fire Final Sequence	ı	0 089	9.372 0 089 0.247	9, 372 0, 062 0 131	0.062	0 131	9.372	0 080	0 00 0 00 0	9 372 0 014 0 052	\$70 O	0 052	9 372 0, 235	0, 235	0 587

Notes 1. All valve signal times are referenced to to

2 Valve delay time is the time required for initial valve movement after the valve "open" or "closed".
3 Final sequence check is conducted without propollants and within 12 hr before testing.

TABLE VIII ENGINE PERFORMANCE SUMMARY

Firing Number	J4-1801-		07A	(07C
		Site	Normalized	Site	Normalized
Overall Engine Performance	Thrust, lbf Chamber Pressure, psia Mixture Ratio Fuel Weight Flow, lbm/sec Oxidizer Weight Flow, lbm/sec Total Weight Flow, lbm/sec	226,000 765 5.412 82.80 448.08 530.88	225,000 756 5.381 82.08 441.63 523.71	226,000 762 5.398 82.89 447.4 530.29	223, 000 751 5. 377 81. 85 440. 2 522. 01
Thrust Chamber Performance	Mixture Ratio Total Weight Flow, lbm/sec Characteristic Velocity, ft/sec	5.612 523.83 8007	5.582 516.71 8014	5.597 523.28 7985	5.578 515.07 7989
Fuel	Pump Efficiency, percent Pump Speed, rpm	73.7 26,923	73.7 26,714	73.5 26,864	73.5 26,667
Turbopump Performance	Turbine Efficiency, percent Turbine Pressure Ratio Turbine Inlet Temperature, °F Turbine Weight Flow, lbm/sec	59.4 7.44 1255 7.05	59. 2 7. 44 1232 7. 00	59.3 7.45 1244 7.01	59. 2 7. 44 1222 6. 94
Oxidizer	Pump Efficiency, percent Pump Speed, rpm	80.3 8308	80. 2 8431	80, 2 8490	80. 1 8419
Turbopump Performance	Turbine Efficiency, percent Turbine Pressure Ratio Turbine Inlet Temperature, °F Turbine Weight Flow, lbm/sec	46.5 2.68 782 6.12	46.3 2.68 765 6.08	46.5 2.67 773 6.09	46.3 2.67 759 6.03
Gas Generator Performance	Mixture Ratio Chamber Pressure, psia	0, 972 658	0.958 652	0.966 654	0.953 645

Notes 1 Site data are calculated from test data.

- Normalized data are corrected to standard pump inlet and engine ambient pressure conditions.
 Input data are test data averaged from 29 to 30 sec.
 Site and normalized data were computed using the Rocketdyne PAST 640 modification zero computer program.

APPENDIX III INSTRUMENTATION

The instrumentation for AEDC test J4-1801-07 is tabulated in Table III-1. The location of selected major engine instrumentation is shown in Fig. III-1.

TABLE III-1
INSTRUMENTATION LIST

AEDC Code	Parameter	Tap No.	Range	Micro- SADIC	Magnetic Tape	Oscillo- graph	Strip Chart	X-Y Plotter
	Current		amp					
ICC	Control		0 to 30	x		x		
IIC	Ignition		0 to 30	x		×		
	Event							
EECL	Engine Cutoff Lockin		On/Off					
EECO	Engine Cutoff Signal		On/Off	x x	x	x x		
EES	Engine Start Command		On/Off	x	^	x		
EFBVC	Fuel Bleed Valve Closed Limit		Open/Closed	x				
EFJT EFPVC/O	Fuel Injector Temperature Fuel Prevalve Closed/Open Limit		On/Off	x		x		
EHCS	Heliam Control Solenoid		Closed/Open On/Off	x x		×		
EID	Ignition Detected		On/Off	x		x x		
EIPCS	Ignition Phase Control Solenoid		On/Off	x		x		
EMCS EMP-1	Main-Stage Control Solenoid		On/Off	x		x		
EMP-2	Main-Stage Pressure No. 1 Main-Stage Pressure No. 2		Oi /Off On/Off	X		x		
EOBVC	Oxidizer Bleed Valve Closed Limit		Open/Closed	x x		x		
EOPVC	Oxidizer Prevalve Closed Limit		Closed	x		x		
EOPVO	Oxidizer Prevalve Open Limit		Open	x		x		
ESTDCS	Start Tank Discharge Control Solenoid		0.104					
			On/Off	Y	x	x		
	Sparks	•						
RASIS-1	Augmented Spark Igniter Spark							
RASIS-2	No. 1		On/Off			x		
RA515-2	Augmented Spark Igniter Spark No. 2		On/Off					
RGGS-1	Gas Generator Spark No 1		On/Off			x x		
RGGS-2	Gas Generator Spark No 2		On/Off			×		
	Flows		gnm					
QF-1A	Fuel	LDD	gpm					
QF-2	Fuel	I FF PFFA	0 to 9000 0 to 9000	λ X		×		
QF-2SD	Fuel Flow Stall Approach		0 10 0000	^	x	x		
	Monitor		0 to 9000	x		x		
QFRP QO-1A	Fuel Recirculation		0 to 160					
QO-1A QO-2	Oxidizer Oxidizer	POF POFA	0 to 3000 0 to 3000	x	_	x		
QORP	Oxidizer Recirculation	IOIA	0 to 50	x x	x	x	x	
	Forces			••			^	
FSP-1			<u>16f</u>					
FSY-1	Side Load (Pitch) Side Load (Yaw)		±20,000	x		x		
	Side Bodd (Taw)		±20,000	x		×		
	Heat Flow							
	Heat Flux		Sr. cm ²					
RTCEP	Radiation Thrust Chamber		51. 011.					
RICEI	Exhaust Plume		0 to 7	x				
			0.00	^				
	Position		Percent Open					
LFVT	Main Fuel Valve		0 to 100	x		x		
LGGVT LOTBVT	Gas Generator Valve		0 to 100	x		x		
LOVT	Oxidizer Turbine Bypass Valve Main Oxidizer Valve		0 to 100 0 to 100	x		x		
LPUTOP	Propellant Utilization Valve		0 to 100	x x	x	x	x	
LSTDVT	Start Tank Discharge Valve		0 to 100	x		x x	^	
	Pressure		neis					
PA1			psia_					
PA1 PA2	Test Cell Test Cell		0 to 0.5 0 to 1.0	x		^		
PA3	Test Cell		0 to 5.0	x x	x		x	
PC-1P	Thrust Chamber	CG1	0 to 1000	x			×	
PC-3	Thrust Chamber	CG1A	0 to 1000	x	x	x		
PCASI-2	Augumented Spark Igniter Chamber	īC1	0.4- 1000					
PCGG-1P	Gas Generator Chamber	IG1	0 to 1000	x				
	Pressure		0 to 1000	×	x	x		
PCGG-2	Gaz Generator Chamber	GG1A	0 to 1000	x				

TABLE III-1 (Continued)

AEDC		Тар		Micro-	Magnetic	Oscillo-	Strip	X-Y
Code	Parameter	No.	Range	SADIC	Tape	graph	Chart	Plotter
	Pressur <u>e</u>		psia					
PFASLJ	Augmented Spark Igniter Fuel		Pole					
	Injection		0 to 1000	x				
PFJ-1A PFJ-2	Main Fuel Injection Main Fuel Injection	CF2 CF2A	0 to 1000 0 to 1000	x x	x	x		
PFJGG-1A	Gas Generator Fuel Injection	GF4	0 to 1000	x	•			
PFJGG-2	Gas Generator Fuel Injection	GF4	0 to 1000	x		x		
PFMI	Fuel Jacket Inlet Manufold	CF1	0 to 2000	x				
PFOI-1A	Fuel Pump Palance Rictor Carity	HF2 PF5	0 to 1000	x x				
PFPC-1A PFPD-1P	Fuel Pump Balance Piston Cavity Fuel Pump Discharge	PF3	0 to 1000 0 to 1500	×				
PFPD-2	Fuel Pump Discharge	.ºF2	0 to 1500	x	x	x		
PFPI-1	Fuel Pump Inlet		0 to 100	x				x
PFPI-2	Fuel Pump Inlet		0 to 200	x				×
PFPI-3 PFPS-1P	Fuel Pump Inlet Fuel Pump Interstage	PF6	0 to 200 0 to 200	×	x	x		
PFRPO	Fuel Recirculation Pump Outlet		0 to 60	x				
PFRPR	Fuel Recirculation Fump Return		0 to 50	x				
PFST-1P	Fuel Start Tank	TFI	0 to 1500	x		x		
PFST-2 PFUT	Fuel Start Tank Fuel Tank Ullage	TF1	0 to 1500 0 to 160	x x				x
PFVI	Fuel Tank Repressurization Line		0 10 101	•				
	Nozzle Inlet		0 to 1000	x				
PFVL	Fuel Tank Repressurization Line							
DUDOMO	Nozzle Throat		0 to 1000	X				
PHECMO PHEOP	Pneumatic Control Module Outlet Oxidizer Recirculation Pump		0 to 750	x				
rincor	Purge		0 to 150	x				
PHES	Helium Supply		0 to 5000	x				
PHET-1P	Helium Tank	NN1	0 to 3500	4		x		
PHET-2	Helium Tank	NN1	0 to 3500 0 to 75)	×				x
PHRO-1A POBSC	Helium Regulator Outlet Oxidizer Bootstrap Conditioning	NN2	0 to 50	x x	x			
POBV	Gar Generator Oxidizer Bleed		0.00 00	-				
	Valve	GO2	0 to 2000	x				
POJ-1A	Main Oxidizer Injection	CO3	0 to 1000	x				
POJ-2	Main Oxidizer Injection	CO3A	0 to 1000	X		x x		
POJGG-1A POJGG-2	Gas Generator Oxidizer Injection Gas Generator Oxidizer injection	GO5 GO5	0 to 1000 0 to 1000	x x				
POPBC-1A	Oxidizer Pump Bearing Coolant	PO7	0 to 500	x				
POPD-1P	Oxidizer Pump Discharge	PO3	0 to 1500	x				
POPD-2	Oxidizer Pump Discharge	PO2	0 to 1500	x	x	x		
POPI-1	Oxidizer Pump Inlet		0 to 100	x x				x x
POPI-2 POPI-3	Oxidizer Pump Inlet Oxidizer Pump Inlet		0 to 200 0 to 100	^		x		•
POPSC-1A	Oxidizer Pump Primary Seal							
	Cavity	PO6	0 to 50	x				
POPSD-H1	LO2 Pump Seal Drain Simulator		0 to 50	x				
POPSD-H2	(High Flow) LO2 Pump Seal Drain Simulator		0 to 50	×				
POPSD-L1	(High Flow) LO ₂ Pump Seal Drain Simulator		0 to 50	x				
POPSD-L2	(Low Flow) LO2 Pump Seal Drain Simulator		0 to 50	x				
	(Low Flow)							
POPSD-P1	LO2 Pump Seal Drain Simulator (Plugged)		0 to 50	x				
POPSD-P2	LO2 Pump Seal Drain Simulator (Plugged)		0 to 50	x				
PORPO	Oxidizer Recirculation Pump Outlet		0 to 115	x				
PORPR	Oxidizer Recirculation Pump							
POTI-1A	Return Oxidizer Turbine Inlet	TG3	0 to 100 0 to 200	x x				
POTO-1A	Oxidizer Turbine Outlet	TG4	0 t 100	x				
POUT	Oxidizer Tank Ullage		0 to 100	x				
POVCC	Main Oxidizer Valve Closing Control		0 to 500	x	×			
POVI	Oxidizer Tank Repressurization Line Nozzle Inlet		0 to 1000	x				
POVL	Oxidizer Tank Repressurization							
	Line Nozzle Throat		0 to 1000	x				

TABLE III-1 (Continued)

AEDC Code	Parameter	Tap No.	Range	Micro- SADIC	Magnetic Tape	Oscillo- graph	Strip Chart	X-Y Plotter
	Pressure		<u>reia</u>					
PFUvI-1A	Propellant Utilization Valve Inlet	PO8	0 to 1000	x				
PPUVO-1A	Propellant Utilization Valve Outlet	PO9	0 to 500	^				
PTCFJP	Thrust Chamber Fuel Jacket							
PTCP	Purge Thrust Chamber Purge		0 to 100	×				
PTPP	Turbopump and Gas Generator		0 to 15	x				
	Purge		0 to 250	x				
	Speeds		rpm					
NFP-1P	Fuel Pump	PFV	0 to 30,000	x	x	x		
NFRP NOP-1P	Fuel Recirculation Pump	DOM	0 to 15,000	x				
NORP	Oxidizer Pump Oxidizer Recirculation Pump	POV	0 to 12,000 0 to 15,000	x x	×	×		
	·							
	Temperatures		<u>•</u> F					
TA1 TA2	Test Cell (North) Test Cell (East)		-50 to +800	X				
TA3	Test Cell (South)		-50 to +800 -50 to +800	x x				
TA4	Test Cell (West)		-50 to +800	x				
TAIP-1A	Auxiliary Instrument Package		-300 to +200	×				
TBHR-1 TBHR-2	Helium Regulator Body (North Side)		-100 to +50	x				
IBHK-2	Helium Regulator Body (South Side)		-100 to +50	x			_	
TBPM	Bypass Manifold		-325 to +200	x			x	
TBSC	Oxidizer Bootstrap Conditioning		-350 to +150	x			•	
TCLC	Main Oxidizer Valve Closing Control Line Conditioning		-325 to +200	x				
LECP-1P	Electrical Controls Package	NST1A	-300 to +200	x			x	
TFASLJ	Augmented Spark Igniter Fuel							
TFASIL-1	Injection Augmented Spark Igniter Line	IFT1	-425 to +100 -300 to +200	x		x		
TFASIL-2	Augmented Spark Igniter Line		-300 to +300	x x			x x	
TFBV-1A	Fuel Bleed Valve	GFT1	-425 to -375	x				
TFD-1 TFJ-1P	Fire Detection	CITATEO	0 to 1000	x			x	
TFPB-1A	Main Fuel Injection Fuel Pump Bearing	CFT2	-425 to +250 -425 to -325	x x	x	×		
TFPD-1P	Fuel Pump Discharge	PFT1	-425 to -400	x	x	x		
TFPD-2	Fuel Pump Discharge	PFT1	-425 to -400	x				
TFPDD TFPI-1	Fuel Pump Discharge Duct Fuel Pump Inlet		-320 to +300 -425 to -400	x x				_
TFPI-2	Fuel Pump Inlet		-425 to -400	×				x x
TFRPO	Fuel Recirculation Pump Outlet		-425 to -410	x				
TFRPR	Fuel Recirculation Pump Return Line		-425 to -250	_				
TFRT-1	Fuel Tank		-425 to -410	x x				
TFRT-2	Fuel Tank		-425 to -410	x				
TFST-1P	Fuel Start Tank	TFT1	-350 to +100	x				
TFST-2 TFTD-1	Fuel Start Tank Fuel Turbine Discharge Duct	TFT1	-350 to +100 -200 to +800	x x				x
TFTD-1R	Fuel Turbine Discharge		200 10 100	-				
mann a	Collector		-200 to +900	x				
TFTD-2 TFTD-3	Fuel Turbine Discharge Duct Fuel Turbine Discharge Duct		-200 to +1000 -200 to +1000	x			×	
TFTD-3R	Fuel Turbine Discharge Line		-200 to +900	x			^	
TFTD-4	Fuel Turbine Discharge Duct		-200 to +1000	x				
TFTD-4R	Fuel Turbine Discharge Line		-200 to +900	x				
TFTD-5 TFTD-6	Fuel Turbine Discharge Duct Fuel Turbine Discharge Duct		-200 to +1400 -200 to +1400	x x				
TFTD-7	Fuel Turbine Discharge Duct		-200 to +1400	x				
TFTD-8	Fuel Turbine Discharge Duct		-200 to +1400	x			×	
TFTI-1P TFTO	Fuel Turbine Inlet Fuel Turbine Outlet	TFT1	0 to 1800 0 to 1800	x			×	
TGGO-1A	Gas Generator Outlet	TFT2 G3T1	0 to 1800	x x		x		
THET-1P	Helium Tank	NAT1	-350 to +100	×				×
TMOVC	Main Oxidizer Valve Actuator		- 292 4 000					
TNODP	Conditioning LO ₂ Dome Purge		-325 to +200 0 to -300	x x				
TOBS-1	Oxidizer Bootstrap Line		-300 to +250	×				
TOBS-2	Oxidizer Bootstrap Line		-300 to +250	x				

TABLE III-1 (Continued)

AEDC Code	Parameter	Tap No.	Range	Micro- SADIC	Magnetic Tape	Oscillo- graph	Strip Chart	X-Y Plotter
	Temperatures		<u>•</u> F					
TOBS-2A	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-2B	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-3	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-4	Oxidizer Bootstrap Line		-300 to +250	x				
TOBSCI	Oxidizer Bootstrap Conditioning Inlet		0 to 100	x				
TOBSCO	Oxidizer Bootstrap Conditioning		0.10.100	^				
	Outlet		0 to 100	x				
TOBV-1A	Oxidizer Bleed Valve	GOT2	-300 to -250	x				
TOPB-1A	Oxidizer Pump Bearing Coolant	POT4	-300 to -250	x				
TOPD-1P	Oxidizer Pump Discharge	POT3	-300 to -250	×	x	x	x	
TOPD-2 TOPDS	Oxidizer Pump Discharge Oxidizer Pump Discharge Skin	POT3	-300 to -250 -300 to -100	x x				
TOPI-1	Oxidizer Pump Inlet		-310 to -270	×				x
TOPI-2	Oxidizer Pump Inlet		-310 to -270	x				x
TOPSD-H1	Oxidizer Pump Seal Drain							
	Simulator (High Flow)		0 to 500	x				
TOPSD-H2	Oxidizer Pump Seal Drain		0.4- 500					
TOPSD-L1	Simulator (High Flow) Oxidizer Pump Seal Drain		0 to 500	x				
TOT DD-D1	Simulator (Low Flow)		C to 500	×				
TOPSD-L2	Oxidizer Pump Seal Drain			-				
	Simulator (Low Flow)		0 to 5u0	x				
TORPO	Oxidizer Recirculation Pump							
	Outlet		-300 to -250	x				
TORPR	Oxidizer Recirculation Pump Return		-300 to -140					
TORT-1	Oxidizer Tank		-300 to -287	x x				
TORT-3	Oxidizer Tank		-300 to -287	,				
TOTI-1P	Oxidizer Turbine nlet	TGT3	0 to 1200	x			x	
TOTO-1P	Oxidizer Turbine Oc ⁺¹ et	TGT4	0 to 1000	x				
TOVL	Oxidizer Tank Repressurization							
TPCC	Line Nozzle Throat		-300 to +100	×				
TPIP-1P	Pre-Chill Controller Primary Instrument Package		-425 to -300 -300 to +200	λ X				
TPPC	Pneumatic Package Conditioning		-325 to +200	x				
TSC2-1	Thrust Chamber Skin		-300 to +500	x				
TSC2-2	Thrust Chamber Skin		-300 to +500	x				
TSC2-3	Thrust Chamber Skin		-300 to +500	x				
TSC2-4	Thrust Chamber Skin		-300 to +500	x				
TSC2-5 TSC2-6	Thrust Chamber Skin Thrust Chamber Skin		-300 to +500 -300 to +500	x x				
TSC2-7	Thrust Chamber Skin		-300 to +500	x				
TSC2-8	Thrust Chamber Skin		-300 to +500	x				
TSC2-9	Thrust Chamber Skin		-300 to +500	x				
TSC2-10	Thrust Chamber Skin		-300 to +500	x				
TSC2-11	Thrust Chamber Skin		-300 to +500	X				
TSC2-12 TSC2-13	Thrust Chamber Skin Thrust Chamber Skin		-300 to +500 -300 to +500	x x			x	
TSC2-14	Thrust Chamber Skin		-300 to +500	x			•	
TSC2-15	Thrust Chamber Skin		-300 to +500	x				
TSC2-16	Thrust Chamber Skin		-300 to +500	x				
TSC2-17	Thrust Chamber Skin		-300 to +500	x				
TSC2-18	Thrust Chamber Skin		-300 to +500	x				
TSC2-19 TSC2-20	Thrust Chamber Skin Thrust Chamber Skin		-300 to +500 -300 to +500	x x			x	
TSC2-21	Thrust Chamber Skin		-300 to +500	×				
TSC1-22	Thrust Chamber Skin		-300 to +500	x				
TSC2-23	Thrus: Chamber Skin		-300 to 1500	x				
TSC2-24	Thrust Chamber Skin		-300 to +500	x				
TSECP	Engine Control Package Skin		-50 to +250	×				
TSGGOC TSOB	Gas Generator Opening Control Po Oxidizer Bootstrap Shroud Skin	ort	-350 to +100 -200 to +100	x x				
TSOVAL-1	Oxidizer Valve Closing Control Li	ne	-200 to +100	x				
TSOVAL-2	Oxidizer Valve Closing Control Li		-200 to +100	x			×	
TSOVC-1	Oxidizer Valve Actuator Cap		-325 to +150	x				
TSOVC-2	Oxidizer Valve Actuator Filter Flo		-325 to +150	x				
TSPIP	Primary Instrument Package Skin		-50 to +250	x				
TSTC	Start Tank Conditioning Start Tank Discharge Valve Openin		-350 to +150	x				
TSTDVOC	Control Port	*6	-350 to +100	x				

TABLE III-1 (Concluded)

AEDC		Ţaņ		Micro-	Magnetic	Oscillo	Strip	X-Y
Code	Parameter	No.	Range	SADIC	Tape	greph	Chart	Plotter
	Temperatures		<u>•</u> F					
TTC-1P	Thrust Chamber Jacket (Control)	CS1	-425 to +500	x				
TTCEP-1	Thrust Chamber Exit		-425 to +500	×				
TXOC	Crossover Duct Conditioning		-325 to +200	×				
	Vibrations		<u>g¹s</u>					
UFPR	Fuel Pump Radial 90 deg		±200		x			
UOPR	Oxidizer Pump Radial 90 deg		±200		×			
UTCD-1	Thrust Chamber Dome		±500		×	×		
UTCD-2	Thrust Chamber Dome		±500		x	×		
UTCD-3	Thrust Chamber Dome		±500		×	×		
U1VSC	No. 1 Vibration Safety Counts		On/Off			×		
U2VSC	No. 2 Vibration Safety Counts		On/Off			x		
	Voltage		volts					
VCB	Control Bus		0 to 36	×		x		
VIB	Ignition Bus		0 to 36	×		x		
VIDA	Ignition Detect Amplifier		9 to 16	×		x		
VPUTEP	Propellant Utilization Valve							
	Excitation		0 to 5	×				

a. Engine Pressure Tap Locations Fig. 111-1 Instrumentation Locations

b. Engine Temperature, Flow, and Speed Instrumentation Locations Fig. III-1 Continued

THE PARTY AND ADDRESS OF THE PARTY AND ASSESSED.

Fig. III-1 Continued

d. Start Tank Discharge Valve
Fig. III-1 Continued

THE PARTY OF THE P

Top View

e. Helium Regulator Fig. III-1 Continued

g. Oxidizer Pump Primary Seal Drain Simulation Tubes Fig. 111-1 Concluded

APPENDIX IV METHODS OF CALCULATIONS (PERFORMANCE PROGRAM)

TABLE IV-1 PERFORMANCE PROGRAM DATA INPUTS

Item No.	Parameter
1	Thrust Chamber (Injector Face) Pressure, psia
2	Thrust Chamber Fuel and Oxidizer Injection Pressures, psia
3	Thrust Chamber Fuel Injection Temperature, °F
4	Fuel and Oxidizer Flowmeter Speeds, Hz
5	Fuel and Oxidizer Engine Inlet Pressures, psia
6	Fuel and Oxidizer Pump Discharge Pressures, psia
7	Fuel and Oxidizer Engine Inlet Temperatures, °F
8	Fuel and Oxidizer (Main Valves) Temperatures, °F
9	Propellant Utilization Valve Center Tap Voltage, volts
10	Propellant Utilization Valve Position, volts
11	Fuel and Oxidizer Pump Speeds, rpm
12	Gas Generator Chamber Pressure, psia
13	Gas Generator (Bootstrap Line at Bleed Valve) Temperature, °F
14	Fuel* and Oxidizer Turbine Inlet Pressure, psia
15	Oxidizer Turbine Discharge Pressure, psia
16	Fuel and Oxidizer Turbine Inlet Temperature, °F
17	Oxidizer Turbine Discharge Temperature, °F

^{*}At AEDC, fuel turbine inlet pressure is calculated from gas generator chamber pressure.

NOMENCLATURE

A Area, in.²

B Horsepower, hp

C* Characteristic velocity, ft/sec

Cp Specific heat at constant pressure, Btu/lb/°F

D Diameter, in.

H Head, ft

h Enthalpy, Btu/lbm

M Molecular weight

N Speed, rpm

P Pressure, psia

Q Flow rate, gpm

R Resistance, \sec^2/ft^3 -in.²

r Mixture ratio

T Temperature, °F

TC* Theoretical characteristic velocity, ft/sec

W Weight flow, lb/sec

Z Pressure drop, psi

β Ratio

 γ Ratio of specific heats

 η Efficiency

θ Degrees

ho Density, lb/ft^3

SUBSCRIPTS

A Ambient

AA Ambient at thrust chamber exit

B Bypass nozzle

BIR Bypass nozzle inlet (Rankine)

BNI Bypass nozzle inlet (total)

C Thrust chamber

CF Thrust chamber, fuel

CO Thrust chamber, oxidizer

CV Thrust chamber, vacuum

E Engine

EF Engine fuel

EM Engine measured

EO Engine oxidizer

EV Engine, vacuum

e Exit

em Exit measured

F Thrust

FIT Fuel turbine inlet

FM Fuel measured

FY Thrust, vacuum

f Fuel

G Gas generator

GF Gas generator fuel

GO Gas generator oxidizer

H1 Hot gas duct No. 1

H1R Hot gas duct No. 1 (Rankine)

H2R Hot gas duct No. 2 (Rankine)

IF Inlet fuel

IO Inlet oxidizer

ITF Isentropic turbine fuel

ITO Isentropic turbine oxidizer

N Nozzle

NB Bypass nozzle (throat)

NV Nozzle, vacuum

O Oxidizer

OC Oxidizer pump calculated

OF Outlet fuel pump

OFIS Outlet fuel pump isentropic

OM Oxidizer measured

OO Oxidizer outlet

PF Pump fuel

PO Pump oxidizer

PUVO Propellant utilization valve oxidizer

RNC Ratio bypass nozzle, critical

SC Specific, thrust chamber

SCV Specific thrust chamber, vacuum

SE Specific, engine

SEV Specific, engine vacuum

T Total

 ${\bf T_O}$ Turbine oxidizer

TEF Turbine exit fuel

TEFS Turbine exit fuel (static)

TF Fuel turbine

TIF Turbine inlet fuel (total)

TIFM Turbine inlet, fuel, measured

TIFS Turbine inlet fuel isentropic

TIO Turbine inlet oxidizer

t Throat

V Vacuum

v Valve

XF Fuel tank repressurant

XO Oxidizer tank repressurant

PERFORMANCE PROGRAM EQUATIONS

MIXTURE RATIO

Engine

$$r_{E} = \frac{w_{EO}}{w_{EF}}$$

$$W_{EO} = W_{OM} - W_{XO}$$

$$W_{EF} = W_{FM} - W_{XF}$$

$$W_{E} = W_{EO} + W_{EF}$$

Thrust Chamber

$$r_{C} = \frac{w_{CO}}{w_{CF}}$$

$$w_{CO} = w_{OM} - w_{XO} - w_{GO}$$

$$w_{CF} = w_{FM} - w_{XF} - w_{GF}$$

$$w_{XO} = 0.8 \text{ lb/sec}$$

$$w_{KF} = 1.8 \text{ lb/sec}$$

$$w_{GO} = w_{T} - w_{GF}$$

$$w_{GF} = \frac{w_{T}}{1 + r_{G}}$$

$$w_{T} = \frac{P_{TIF} A_{TIF} K_{7}}{TC *_{TIF}}$$

$$k_{7} = 32.1.4$$

$$w_{C} = w_{CO} + w_{CF}$$

CHARACTERISTIC VELOCITY

Thrust Chamber

$$C^* = \frac{K_7 P_c A_t}{W_C}$$

$$K_7 = 32.174$$

DEVELOPED PUMP HEAD

Flows are normalized by using the following inlet pressures, temperatures, and densities.

$$P_{IO} = 39 psia$$

$$\rho_{1O} = 70.79 \text{ lb/ft}^3$$

$$\rho_{\rm IF} = 4.40 \; \rm lb/ft^3$$

$$T_{10} = -295.212 \, ^{\circ}F$$

$$T_{IF} = -422.547 \, ^{\circ}F$$

Oxidizer

$$H_{O} = K_{4} \left(\frac{P_{OO}}{\rho_{OO}} - \frac{P_{IO}}{\rho_{IO}} \right)$$

$$K_4 = 144$$

 ρ = National Bureau of Standards Values f (P,T)

Fuel

$$H_f = 778.16 \Delta hoffs$$

$$\Delta h_{OFIS} = h_{OFIS} - h_{IF}$$

$$h_{OFIS} = f(P,T)$$

$$h_{IF} = f(P,T)$$

PUMP EFFICIENCIES

Fuel, Isentropic

$$\eta_{\rm f} = \frac{\text{hofis} - \text{hif}}{\text{hof} - \text{hif}}$$

$$hoF = f(PoF, ToF)$$

Oxidizer, Isentropic

$$\eta_{O} = \eta_{OC} Y_{O}$$

$$\eta_{OC} = K_{40} \left(\frac{Q_{PO}}{N_O} \right)^2 + K_{50} \left(\frac{Q_{PO}}{N_O} \right) + K_{60}$$

$$K_{40} = 5.0526$$

$$K_{50} = 3.8611$$

$$K_{60} = 0.0733$$

$$Y_0 = 1.000$$

TURBINES

Oxidizer, Efficiency

$$\eta_{TO} = \frac{B_{TO}}{B_{ITO}}$$

$$B_{TO} = K_5 \frac{W_{PO} H_0}{\eta_0}$$

$$K_5 = 0.001818$$

$$W_{PO} = W_{OM} + W_{PUVO}$$

$$W_{PUVO} = \sqrt{\frac{Z_{PUVO} \rho_{OO}}{R_v}}$$

$$Z_{PUVO} = A + B (P_{OO})$$

$$A = -1597$$

$$B = 2.3828$$

$$IF P_{OO} \ge 1010 \text{ Set } P_{OO} = 1010$$

In R = A₃ + B₃ (
$$\theta_{PUVO}$$
) + C (θ_{PUVO})³ + D₃ (e)
$$+ E_3 (\theta_{PUVO}) (e) + F_3 \left[(e) \frac{\theta_{PUVO}}{7} \right]^2$$

$$A_3 = 5.5659 \times 10^{-1}$$
 $B_3 = 1.4997 \times 10^{-2}$
 $C_3 = 7.9413 \times 10^{-6}$
 $D_3 = 1.2343$
 $E_3 = -7.2554 \times 10^{-2}$
 $F_3 = 5.0691 \times 10^{-2}$
 $\theta_{PUVO} = 16.5239$

Fuel, Efficiency

$$\eta_{TF} = \frac{B_{TF}}{B_{ITF}}$$

$$B_{ITF} = K_{10} \Delta h_{f} W_{T}$$

$$\Delta h_{f} = h_{TIF} - h_{TEF}$$

$$B_{TF} = B_{PF} = K_{5} \left(\frac{W_{PF} H_{f}}{\eta_{f}}\right)$$

$$W_{PF} = W_{FM}$$

$$K_{10} = 1.4148$$

$$K_{5} = 0.001818$$

Oxidizer, Developed Horsepower

$$B_{TO} = B_{PO} + K_{56}$$

$$B_{PO} = K_5 \frac{W_{PO} H_O}{\eta_O}$$

$$K_{56} = -15$$

THE PARTY OF THE P

Fuel, Developed Horsepower

$$BTF = BPF$$

$$B_{PF} = K_5 \frac{W_{PF} H_f}{\eta_f}$$

$$W_{PF} = W_{FM}$$

Fuel, Weight Flow

$$W_{TF} = W_{T}$$

Oxidizer Weight Flow

$$W_{TO} = W_{T} - W_{B}$$

$$W_{B} = \left[\frac{\frac{2K_{7} + 2}{\gamma_{H_{2}-1}}}{(P_{RNC})} (P_{RNC})^{\frac{2}{\gamma_{H_{2}}}}\right]^{\frac{1}{2}} \left[\frac{\frac{\gamma_{H_{2}-1}}{\gamma_{H_{2}}}}{(P_{RNC})}\right] \frac{A_{NB} P_{BNI}}{(R_{H_{2}}T_{BIR})^{\frac{1}{2}}}$$

$$P_{RNC} = f (\beta_{NB}, \gamma_{H2})$$

$$\beta_{NB} = \frac{D_{NB}}{D_B}$$

$$\gamma_{\rm H\,2}$$
, $M_{\rm H\,2}=f(T_{\rm H\,2R},\,R_{\rm G})$

$$A_{NB} = K_{13} D_{NB}$$

$$K_{13} = 0.7854$$

$$T_{BIR} = T_{TIO} + 460$$

$$P_{BNI} = P_{TEFS}$$

PTEFS = Iteration of PTEF

$$P_{TEF} = P_{TEFS} \left[1 + K_8 \left(\frac{W_T}{P_{TEFS}} \right)^2 \frac{T_{H2R}}{D^4_{TEF} M_{H2}} \left(\frac{\gamma_{H2-1}}{\gamma_{H2}} \right) \right]^{\frac{\gamma_{H2}}{\gamma_{H2}-1}}$$

$$K_8 = 38.8983$$

GAS GENERATOR

Mixture Ratio

$$r_G = D_1 (T_{H1})^3 + C_1 (T_{H1})^2 + B_1 (T_{H1}) + A_1$$
 $A_1 = 0.2575$
 $B_1 = 5.586 \times 10^{-4}$
 $C_1 = -5.332 \times 10^{-9}$
 $D_1 = 1.1312 \times 10^{-11}$
 $T_{H1} = T_{TIFM}$

Flows

$$TC*_{TIF} = D_{2} (T_{H1})^{3} + C_{2} (T_{H1})^{2} + B_{2} (T_{H1}) + A_{2}$$

$$A_{2} = 4.4226 \times 10^{3}$$

$$B_{2} = 3.2267$$

$$C_{2} = -1.3790 \times 10^{-3}$$

$$D_{2} = 2.6212 \times 10^{-7}$$

$$P_{TIF} = P_{TIFS} \left[1 + K_{8} \left(\frac{W_{T}}{P_{TIFS}} \right)^{2} \frac{T_{H1R}}{D^{4}_{TIF} M_{H1}} \frac{\gamma_{H1} - 1}{\gamma_{H1}} \right]^{\frac{\gamma_{H1} - 1}{\gamma_{H1} - 1}}$$

$$K_{8} = 38.8983$$

Note: PTIF is determined by iteration.

 $T_{HIR} = T_{TIF}$

 M_{H1} , Y_{H1} , C_p , $r_{H1} = f (T_{HIR}, r_G)$

Security Classification							
DOCUMENT CONTROL DATA - R & D							
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)							
1. ORIGINATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION						
Arnold Engineering Development Center	er,	UNCLASSIFIED					
ARO, Inc., Operating Contractor,		26. GROUP N/A					
Arnold AF Station, Tennessee		N/A					
3. REPORT TITLE							
ALTITUDE DEVELOPMENTAL TESTING OF THE J-2 ROCKET ENGINE IN PROPULSION ENGINE TEST CELL $(J-4)$ (TEST $J4-1801-07$)							
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) September 1, 1967 - Interim Report							
C. E. Pillow, ARO, Inc.							
6. REPORT DATE	74. TOTAL NO. OF	PAGES	7b. NO. OF REFS				
February 1968	95		4				
Se. CONTRACT OR GRANT NO AF40 (600) -1200	9a. ORIGINATOR'S	REPORT NUMB	ER(S)				
b. PROJECT NO. 9194		-67-255					
c System 921E	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)						
d.	N/A						
10. DISTRIBUTION STATEMENT Subject to special export controls; transmittal to for-							
eign governments or foreign nationals requires approval of NASA, Mar-							
shall Space Flight Center (I-E-J), Huntsville, Alabama. Transmittal							
outside of DOD requires approval of NASA, Marshall Space Flight Center							
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY						
(I-E-J), Huntsville, Alabama.	NASA, Marshall Space Flight						
Aveilable in DDC	Center (I-E-J),						

13. ABSTRACT

Available in DDC.

The state of the s

Four firings of the Rocketdyne J-2 rocket engine were conducted in Test Cell J-4 of the Large Rocket Facility. These firings were accomplished during test period J4-1801-07 at pressure altitudes ranging from 89,000 to 106,000 ft at engine start. The objectives of the test included the evaluation of the effect of start tank energy on the oxidizer pump spin speed and the effect of thrust chamber temperature on the fuel pump high level stall margin. Firing 07A was conducted with 12 experimental oxidizer pump primary seal drain tubes attached to the engine. The accumulated firing duration for this test period was 66.5 sec.

Huntsville, Alabama

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

DD FORM 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

14. KEY WORDS	LIN	LINK A		LINK B		FINK C	
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT	
J-2 rocket engine							
ignition effects							
temperature							
stall							
gas generator							
fuel pump							
Saturn							
Apollo							
simulated altitude tests							
	1						
				1			
				,			
				}			
		i		 			
	}						
		}					
]					

UNCLASSIFIED
Security Classification