

MAKE school

ARRAYS & LINKED LISTS

ARRAYS

Contiguous piece of memory

Same size storage space at each index

Static - Memory allocated once, size can't change

Dynamic - New memory allocated, array copied to grow

Equation to find memory location for index 4?

Address Size
$$A[0] = 2000$$
 $S = 6$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $A[i] = A[0] + S * i$
 $A[4] = 2000 + 4 * 6$
 $A[4] = 2024$

ARRAY RUNTIME

Access Element via Index

O(1)

Insert or Delete Element (Beginning, Mid)

O(n)

Insert or Delete Element (End)

O(1)

LINKED LISTS

Not contiguous piece of memory

Differing size storage space at each index

Dynamic - New (small) piece of memory allocated

No need to copy the whole thing like an array

LINKED LISTS

LINKED LISTS

LINKED LIST RUNTIME

Access Element via Index

O(n)

Insert or Delete Element (Beginning)

O(1)

Insert or Delete Element (Middle)

O(n)

Insert or Delete Element (End)

O(n)

A LINKED LIST IS LIKE A FREIGHT TRAIN

