ST451 Bayesian Machine Learning Week 8

Exercises

1. Verify that each step of a Gibbs Sampler can be viewed as a Metropolis Hastings algorithm with acceptance probability of 1. For each step you can consider the proposal that draws θ_i from $\pi(\theta_i|y,\theta_{-1})$ and keeps θ_{-i} to its current value, hence $q(\theta^{(*)}|\theta^{(t)}) = \pi(\theta_i^{(*)}|\theta_{-i},y)$.

Note: The notation in this exercise may be complicated. Feel free to skip it and move to the next one, the main purpose is to complement the slides.

- 2. Let $y = (y_1, \ldots, y_n)$ be a r.s. from a $N(\mu, v)$ where v is distributed according to an IGamma($\frac{\nu}{2}, \frac{\nu}{2}\sigma^2$). The parameter ν is assumed to be known. Finalise the model with an improper prior on μ, σ^2 , $\pi(\mu, \sigma^2) \propto 1$.
 - (a) Write down the posterior up to proportionality.
 - (b) Specify the details needed to construct a Gibbs sampler to draw from the posterior of μ , v and σ^2 .
 - (c) Generate 200 numbers from the model above with $\mu = 0$, $\sigma^2 = 1$, v = 1 and $\nu = 20$, and set these numbers as $y = (y_1, \dots, y_{200})$. Write a Python script to run 10,000 iterations of the Gibbs sampler derived in the previous part based on the data you generated.
 - (d) Provide posterior summaries and traceplots for μ , ν and σ^2 .
 - (e) Repeat with PyMC3 and compare the results with the previous part.