Formalisation – Emploi du temps

Coudray - Julien - Tran

19 novembre 2013

Formalisation des données

- L'ensemble des cours du semestre est représenté par $W_{i,j}$ tels que i la semaine donnée sur le semestre et j le créneau dans la semaine compris entre 0 et 10.
- L'ensemble des professeurs P_n est représenté par un mot binaire regroupant leurs disponibilités dans la semaine, tel que n compris entre 0 et μ , avec μ le nombre de professeurs dans l'école.
- L'ensemble des promotions est représenté par G_m avec m compris entre 0 et ν , avec ν le nombre de promotion dans l'école.
- Pour chaque promotion G_m , un tableau W_i lui est associé dans lequel nous allons retrouver pour un créneau occupé : l'enseignant P_x , la matière X_i et le numéro du cours.
- Un tableau de correspondance entre les matières et les professeurs.

Ebauche d'une solution pour une semaine et une promo donnée

- Nous isolons tous P_n ayant un seul bit à 1. La disponibilité du professeur étant unique, nous le plaçons sur le créneau.
- On met à jour les mots binaires pour chaque P_n
- Une fois qu'il n'y a plus de P_n avec 1 seul bit à 1 on peut lancer le programme de résolution glouton.

Résolution du problème avec instance partielle

- Pour un cours que l'on a veut rajouter dans un emploi du temps on sélectionne la semaine à partir de laquelle on veut le placer (solution au plus tôt).
- On trouve un créneau pour la classe sur cette période
- On regarde si il y a un prof capable d'enseigner cette matière et disponible sur ce même créneau.

Correspondance professeurs-créneaux

Créneaux Professeurs	$W_{i,1}$	$W_{i,2}$	$W_{i,3}$	$W_{i,4}$	$W_{i,5}$	$W_{i,6}$	$W_{i,7}$	$W_{i,8}$	$W_{i,9}$	$W_{i,10}$	$W_{i,11}$
P_1	1	0	0	1	1	0	1	1	1	0	0
P_2	0	1	0	1	1	1	1	0	0	0	1
P_3	0	1	1	1	0	0	0	0	0	1	0

 $P_1 = \langle 10011011100 \rangle$

 $P_2 = <01011110001>$

 $P_3 = <01110000010>$

Correspondance professeurs-matières

P	Matières Professeurs	C++	Algèbre	Analyse
-	P_1	1	0	0
	P_2	0	1	0
	P_3	0	1	1