

Ù&@^œ^¦ £ Q&È		G€»Á/ã¦oÁ, Đị ÁÙ^ã;{ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ĝi ãÁÜæ&\ ĝi *ÁÛ^•♂{	
	Ü^]¦^•^} ææãç^ÁÔæ∮&` ææã[}•ÁËÄŒÜÔÒÁIËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

9мах	=	3.00	pst
g_{MIN}	=	1.75	psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 20.62 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.91$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.05	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM		1.05 (<i>Pressure</i>) 1.65	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T. =	0.00	$C_4 = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	2		
M4	Outer	M15	5		
M8	Inner	M16A	Ą		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35 ksi	
Φ =	0.90	
S _v =	0.02 in ³	
Ë =	10100 ksi	
$I_y =$	33.25 in ⁴	
A =	0.38 in^2	
g =	0.45 lbs/	/ft
$M_y =$	0.006 k-ft	
P _n =	0.036 k	
M _{y allowable} =	0.046 k-ft	
P _{n allowable} =	11.813 k	
Utilization =	<u>13%</u>	

A cross brace kit is required every 14 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	338.76	<u>1651.36</u>	k
Compressive Load =	<u>1962.83</u>	1523.45	k
Lateral Load =	4.40	764.86	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23441.2 in-lbs Resisting Force Required = 781.37 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1302.29 lbs to resist overturning. Minimum Width = <u>22 in</u> in Weight Provided = Sliding Force = 176.37 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 440.94 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 176.37 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{\text{22 in}} = \frac{23 \text{ in}}{\text{24 in}} = \frac{25 \text{ in}}{\text{1994 lbs}} = \frac{24 \text{ in}}{\text{2086 lbs}} = \frac{25 \text{ in}}{\text{2086 lbs}}$

ASD LC		1.0D	+ 1.0S			1.0D+	+ 0.6W		1	.0D + 0.75L +	0.6D + 0.6D + 0.6D		+ 0.6W			
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	740 lbs	740 lbs	740 lbs	740 lbs	555 lbs	555 lbs	555 lbs	555 lbs	916 lbs	916 lbs	916 lbs	916 lbs	-152 lbs	-152 lbs	-152 lbs	-152 lbs
FB	541 lbs	541 lbs	541 lbs	541 lbs	489 lbs	489 lbs	489 lbs	489 lbs	731 lbs	731 lbs	731 lbs	731 lbs	-759 lbs	-759 lbs	-759 lbs	-759 lbs
F _V	65 lbs	65 lbs	65 lbs	65 lbs	318 lbs	318 lbs	318 lbs	318 lbs	283 lbs	283 lbs	283 lbs	283 lbs	-353 lbs	-353 lbs	-353 lbs	-353 lbs
P _{total}	3275 lbs	3366 lbs	3456 lbs	3547 lbs	3037 lbs	3128 lbs	3219 lbs	3309 lbs	3641 lbs	3732 lbs	3822 lbs	3913 lbs	285 lbs	339 lbs	394 lbs	448 lbs
M	479 lbs-ft	479 lbs-ft	479 lbs-ft	479 lbs-ft	611 lbs-ft	611 lbs-ft	611 lbs-ft	611 lbs-ft	785 lbs-ft	785 lbs-ft	785 lbs-ft	785 lbs-ft	570 lbs-ft	570 lbs-ft	570 lbs-ft	570 lbs-ft
е	0.15 ft	0.14 ft	0.14 ft	0.13 ft	0.20 ft	0.20 ft	0.19 ft	0.18 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	2.00 ft	1.68 ft	1.45 ft	1.27 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft									
f _{min}	294.6 psf	291.3 psf	288.2 psf	285.4 psf	251.4 psf	249.9 psf	248.6 psf	247.3 psf	294.5 psf	291.1 psf	288.1 psf	285.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	419.9 psf	411.1 psf	403.1 psf	395.6 psf	411.3 psf	402.9 psf	395.2 psf	388.1 psf	499.9 psf	487.6 psf	476.4 psf	466.0 psf	207.8 psf	144.0 psf	124.8 psf	116.8 psf

Maximum Bearing Pressure = 500 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 308.0 \text{ ft-lbs}$

Resisting Force Required = 336.05 lbs S.F. = 1.67

Weight Required = 560.08 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		22 in		22 in			22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	87 lbs	239 lbs	82 lbs	343 lbs	1044 lbs	339 lbs	25 lbs	70 lbs	24 lbs	
F _V	4 lbs	3 lbs	0 lbs	18 lbs	17 lbs	1 lbs	1 lbs	1 lbs	0 lbs	
P _{total}	2555 lbs	2707 lbs	2551 lbs	2693 lbs	3393 lbs	2688 lbs	747 lbs	792 lbs	746 lbs	
М	6 lbs-ft	5 lbs-ft	0 lbs-ft	31 lbs-ft	25 lbs-ft	2 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.01 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.31 ft	1.83 ft	1.83 ft	1.81 ft	1.82 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	
f _{min}	276.8 sqft	293.5 sqft	278.2 sqft	282.8 sqft	361.1 sqft	292.4 sqft	80.9 sqft	85.8 sqft	81.3 sqft	
f _{max}	280.7 psf	297.2 psf	278.4 psf	304.8 psf	379.3 psf	294.1 psf	82.1 psf	86.9 psf	81.4 psf	

Maximum Bearing Pressure = 379 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.510 k	Maximum Axial Load =	1.225 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>27%</u>	Utilization =	<u>22%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.331 k	Maximum Axial Load =	0.036 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>6%</u>	Utilization =	<u>0%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.047 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_{b} = 93.00 \text{ in}$$

$$J = 0.427$$

$$193.965$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{\theta_{b}}\right)$$

$$1.6Dc$$
S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 28.8 \text{ ksi}$$

3.4.16

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 93.00 \text{ in}$$

$$J = 0.427$$

$$210.771$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_1 = 28.6$$

3.4.16

$$b/t = 37.95$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

h/t = 37.95

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$k_x Bbr$$

$$C_0 = 40.784$$

 $C_0 = 39.216$
 $S2 = \frac{k_1 B b r}{m D b r}$
 $S2 = 79.7$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L S t = 28.8 \text{ ksi}$
 $\phi F_L S t = 498305 \text{ mm}^4$
 $\phi F_L S t = 498305 \text{ mm}^4$

1.791 k-ft

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

 $M_{max}St =$

3.4.9

b/t =6.6 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =37.95 S1 = 12.21 S2 = 32.70 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$ $\phi F_L =$ 21.4 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.42 \text{ ksi}$$

$$A = 620.02 \text{ mm}^2$$

$$0.96 \text{ in}^2$$

$$P_{\text{max}} = 20.59 \text{ kips}$$

0.0

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.30 \\ & 21.5728 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.7 \text{ ksi}$

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.30 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.7 \text{ ksi}$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\theta_{v}$$
 2

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

3.4.18

h/t =

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

4.29

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

29.7 ksi

37.77 mm

0.589 in³

 $lx = 364470 \text{ mm}^4$ 0.876 in⁴

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

Sy=

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

$M_{max}St = 1.459 \text{ k-ft}$ Compression

y =

Sx=

φF_LSt=

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70

$\phi F_L = 28.2 \text{ ksi}$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\phi_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - 1.17}{\theta_b} \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2 \\ \text{S1} &= & 1.1 \\ S2 &= & C_t \\ \text{S2} &= & 141.0 \\ \phi \text{F}_{\text{L}} &= & 1.17 \phi \text{yFcy} \end{aligned}$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$V = 15 \text{ mm}$$

0.163 in³

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \psi = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{SI}$

Sx=

 $M_{max}St = 0.423 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b Fty}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$\left(B_{C} - \frac{\theta_{y}}{2} F_{C} Y\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$51 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

$$\varphi$$
F_L= 38.9

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{\text{max}}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

29.8

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

3.4.16

 $\phi F_L =$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

0.096 in⁴

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$82^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k \cdot Rn$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$k_1Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.4 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.411 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 1$$
 $k_1 Bhr$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 $\lambda = 1.41804$ r = 0.437 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.77853$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 13.5508 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 13.55 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 6.80 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-60.802	-60.802	0	0
2	M16	V	-95.545	-95.545	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	122.761	122.761	0	0
2	M16	V	57.906	57.906	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	138.276	2	322.151	1	0	5	0	1	0	1	0	1
2		min	-184.518	3	-387.256	3	128	1	0	3	0	1	0	1
3	N7	max	0	15	527.602	1	058	15	0	15	0	1	0	1
4		min	184	1	-70.784	3	-1.497	1	003	1	0	1	0	1
5	N15	max	0	15	1509.873	1	.579	1	.001	1	0	1	0	1
6		min	-1.917	1	-260.584	3	285	3	0	3	0	1	0	1
7	N16	max	553.88	2	1171.888	1	183	10	0	1	0	1	0	1
8		min	-588.35	3	-1270.279	3	-33.163	3	0	3	0	1	0	1
9	N23	max	0	15	527.371	1	3.385	1	.006	1	0	1	0	1
10		min	184	1	-70.349	3	.123	15	0	15	0	1	0	1
11	N24	max	138.742	2	327.591	1	33.408	3	.002	1	0	1	0	1
12		min	-184.595	3	-384.491	3	.033	10	0	3	0	1	0	1
13	Totals:	max	828.844	2	4386.477	1	0	1					·	
14		min	-957.772	3	-2443.744	3	0	12						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	373.974	1	.644	4	.728	1	0	15	0	3	0	1
2			min	-366.873	3	.152	15	046	3	001	1	0	1	0	1
3		2	max	374.08	1	.602	4	.728	1	0	15	0	1	0	15
4			min	-366.793	3	.143	15	046	3	001	1	0	10	0	4
5		3	max	374.187	1	.561	4	.728	1	0	15	0	1	0	15
6			min	-366.713	3	.133	15	046	3	001	1	0	3	0	4
7		4	max	374.293	1	.52	4	.728	1	0	15	0	1	0	15
8			min	-366.634	3	.123	15	046	3	001	1	0	3	0	4
9		5	max	374.4	1	.478	4	.728	1	0	15	0	1	0	15
10			min	-366.554	3	.113	15	046	3	001	1	0	3	0	4
11		6	max	374.506	1	.437	4	.728	1	0	15	0	1	0	15
12			min	-366.474	3	.104	15	046	3	001	1	0	3	0	4
13		7	max	374.613	1	.396	4	.728	1	0	15	0	1	0	15
14			min	-366.394	3	.094	15	046	3	001	1	0	3	0	4
15		8	max	374.719	1	.355	4	.728	1	0	15	0	1	0	15
16			min	-366.314	3	.084	15	046	3	001	1	0	3	0	4
17		9	max	374.826	1	.313	4	.728	1	0	15	0	1	0	15
18			min	-366.234	3	.075	15	046	3	001	1	0	3	0	4
19		10	max	374.932	1	.272	4	.728	1	0	15	0	1	0	15
20			min	-366.154	3	.065	15	046	3	001	1	0	3	0	4
21		11	max	375.039	1	.231	4	.728	1	0	15	.001	1	0	15
22			min	-366.074	3	.055	15	046	3	001	1	0	3	0	4
23		12	max	375.145	1	.19	4	.728	1	0	15	.001	1	0	15
24			min	-365.994	3	.046	15	046	3	001	1	0	3	0	4
25		13	max	375.252	1	.148	4	.728	1	0	15	.001	1	0	15
26			min	-365.914	3	.036	15	046	3	001	1	0	3	0	4
27		14	max	375.359	1	.107	4	.728	1	0	15	.001	1	0	15
28			min	-365.834	3	.026	15	046	3	001	1	0	3	0	4
29		15	max	375.465	1	.073	2	.728	1	0	15	.001	1	0	15
30			min	-365.755	3	.014	12	046	3	001	1	0	3	0	4
31		16	max	375.572	1	.041	2	.728	1	0	15	.002	1	0	15
32			min	-365.675	3	005	3	046	3	001	1	0	3	0	4
33		17	max	375.678	1	.009	10	.728	1	0	15	.002	1	0	15
34			min	-365.595	3	03	1	046	3	001	1	0	3	0	4
35		18	max	375.785	1	013	15	.728	1	0	15	.002	1	0	15
36			min	-365.515	3	062	1	046	3	001	1	0	3	0	4
37		19	max		1	022	15	.728	1	0	15	.002	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC y	y-y Mome		z-z Mome	. LC
38			min	-365.435	3	099	4	046	3	001	1	0	3	0	4
39	M3	1_	max	66.398	2	1.795	4	023	15	00	15	.002	1	0	4
40			min	-98.261	9	.423	15	687	1	0	1	0	15	0	15
41		2	max	66.33	2	1.618	4	023	15	0	15	.002	1	0	4
42			min	-98.317	9	.381	15	687	1	0	1	0	15	0	15
43		3	max	66.262	2	1.44	4	023	15	0	15	.002	1	0	2
44		.	min	-98.374	9	.339	15	687	1	0	1	0	15	0	3
45		4	max	66.194	2	1.262	4	023	15	0	15	.002	1	0	15
46		-	min	-98.43	9	.297	15	687	1	0	1	0	15	0	4
47		5	max	66.127	2	1.085	4	023	15	0	15	.001	1	0	15
48			min	-98.487	9	.256	15	687	1	0	1	0	15	0	4
49		6	max	66.059	2	.907	4	023	15	0	15	.001	1	0	15
50		7	min	-98.543	9	.214	15	687	1	0	1	0	15 1	0	15
51 52			max	65.991 -98.6	9	.729 .172	4 15	023 687	15	0 0	15	.001 0	15	0 0	4
53		8	min max	65.923	2	.552	4	023	15	0	15	.001	1	0	15
54		0	min	-98.657	9	.13	15	687	1	0	1	0	15	0	4
55		9	max	65.855	2	.374	4	023	15	0	15	0	1	0	15
56		- 3	min	-98.713	9	.089	15	687	1	0	1	0	15	001	4
57		10	max	65.787	2	.196	4	023	15	0	15	0	1	<u></u> 0	15
58		10	min	-98.77	9	.047	15	687	1	0	1	0	15	001	4
59		11	max	65.719	2	.03	2	023	15	0	15	0	1	0	15
60			min	-98.826	9	003	3	687	1	0	1	0	15	001	4
61		12	max	65.652	2	037	15	023	15	0	15	0	1	0	15
62		·-	min	-98.883	9	159	4	687	1	0	1	0	15	001	4
63		13	max	65.584	2	078	15	023	15	0	15	0	1	0	15
64			min	-98.939	9	337	4	687	1	0	1	0	12	001	4
65		14	max	65.516	2	12	15	023	15	0	15	0	1	0	15
66			min	-98.996	9	514	4	687	1	0	1	0	12	001	4
67		15	max	65.448	2	162	15	023	15	0	15	0	1	0	15
68			min	-99.052	9	692	4	687	1	0	1	0	3	0	4
69		16	max	65.38	2	204	15	023	15	0	15	0	15	0	15
70			min	-99.109	9	869	4	687	1	0	1	0	1	0	4
71		17	max	65.312	2	245	15	023	15	0	15	0	15	0	15
72			min	-99.166	9	-1.047	4	687	1	0	1	0	1	0	4
73		18	max	65.244	2	287	15	023	15	0	15	0	15	0	15
74		10	min	-99.222	9	-1.225	4	687	1	0	1	0	1	0	4
75		19	max	65.176	2	329	15	023	15	0	15	0	15	0	1
76			min	-99.279	9	-1.402	4	687	1	0	1	0	1	0	1
77	M4	1	max	526.437	1	0	1	058	15	0	1	0	3	0	1
78		_		-71.658		0	1	-1.641	1	0	1	0	1	0	1
79		2		526.502	1	0	1	058	15	0	1	0	15	0	1
80		3			3	0	1	-1.641	1	0	1 1	0	15	0	1
81 82		<u> </u>		526.567	1	0	1	058 -1.641	15	0 0	1	0	1	0 0	1
83		4	min	-71.561 526.632	<u>3</u> 1	0	1	058	15	0	1	0	15	0	1
84		+	min	-71.512	3	0	1	-1.641	1	0	1	0	1	0	1
85		5		526.696	1	0	1	058	15	0	1	0	15	0	1
86		- 5		-71.464	3	0	1	-1.641	1	0	1	0	1	0	1
87		6	max		1	0	1	058	15	0	1	0	15	0	1
88			min	-71.415	3	0	1	-1.641	1	0	1	0	1	0	1
89		7		526.826	1	0	1	058	15	0	1	0	15	0	1
90				-71.366	3	0	1	-1.641	1	0	1	0	1	0	1
91		8		526.89	1	0	1	058	15	0	1	0	15	0	1
92			min	-71.318	3	0	1	-1.641	1	0	1	001	1	0	1
93		9	max		1	0	1	058	15	0	1	0	15	0	1
94			min	-71.269	3	0	1	-1.641	1	0	1	001	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	527.02	1_	0	1	058	15	0	1	0	15	0	1
96			min	-71.221	3	0	1	-1.641	1	0	1	001	1	0	1
97		11	max	527.085	1	0	1	058	15	0	1	0	15	0	1
98			min	-71.172	3	0	1	-1.641	1	0	1	001	1	0	1
99		12	max		1	0	1	058	15	0	1	0	15	0	1
100			min	-71.124	3	0	1	-1.641	1	0	1	002	1	0	1
101		13		527.214	1	0	1	058	15	0	1	0	15	0	1
102		10	min	-71.075	3	0	1	-1.641	1	0	1	002	1	0	1
103		14	max		1	0	1	058	15	0	1	0	15	0	1
104		17			3	0	1	-1.641	1	0	1	002	1	0	1
		15	min				•		_	_			_		
105		15	max		1	0	1	058	15	0	1	0	15	0	1
106		1.0	min		3_	0	1	-1.641	1_	0	1	002	1	0	1
107		16	max		_1_	0	1	058	15	0	1	0	15	0	1
108			min	-70.93	3	0	1	-1.641	1	0	1	002	1	0	1
109		17	max		_1_	0	_1_	058	15	0	1	0	15	0	1
110			min	-70.881	3	0	1	-1.641	1	0	1	002	1	0	1
111		18	max	527.537	1	0	1	058	15	0	1	0	15	0	1
112			min	-70.833	3	0	1	-1.641	1	0	1	003	1	0	1
113		19	max		1	0	1	058	15	0	1	0	15	0	1
114		'		-70.784	3	0	1	-1.641	1	0	1	003	1	0	1
115	M6	1		1223.049	1	.638	4	.264	1	0	1	<u>.005</u>	3	0	1
116	IVIO			-1197.667	3	.151	15	127	3	0	15	0	1	0	1
		2							1		1	0	3		15
117		2		1223.155	1_	.596	4	.264	_	0				0	
118				-1197.587	3_	.142	15	127	3	0	15	0	11	0	4
119		3		1223.262	_1_	.555	4	.264	1	0	1	0	2	0	15
120				-1197.507	3	.132	15	127	3	0	15	0	15	0	4
121		4		1223.368	<u>1</u>	.514	4	.264	1	0	1	0	1	0	15
122			min	-1197.427	3	.122	15	127	3	0	15	0	12	0	4
123		5		1223.475	1	.473	4	.264	1	0	1	0	1	0	15
124			min	-1197.347	3	.113	15	127	3	0	15	0	3	0	4
125		6	max	1223.581	1	.431	4	.264	1	0	1	0	1	0	15
126			min	-1197.267	3	.103	15	127	3	0	15	0	3	0	4
127		7		1223.688	1	.39	4	.264	1	0	1	0	1	0	15
128				-1197.187	3	.093	15	127	3	0	15	0	3	0	4
129		8		1223.794	1	.349	4	.264	1	0	1	0	1	0	15
130				-1197.107	3	.084	15	127	3	0	15	0	3	0	4
		9	_				2			-			_		
131		9		1223.901	1_	.316		.264	1	0	1	0	1	0	15
132		4.0		-1197.028	3	.074	15	127	3	0	15	0	3	0	4
133		10		1224.007	_1_	.284	2	.264	1	0	1	0	1	0	15
134			min	-1196.948	3	.064	15	127	3	0	15	0	3	0	4
135		11	max	1224.114	_1_	.252	2	.264	1	0	1	0	1	0	15
136				-1196.868	3	.052	12	127	3	0	15	0	3	0	4
137		12	max	1224.221	1	.219	2	.264	1	0	1	0	1	0	15
138			min	-1196.788	3	.036	12	127	3	0	15	0	3	0	4
139		13		1224.327	1	.187	2	.264	1	0	1	0	1	0	15
140				-1196.708	3	.02	12	127	3	Ö	15	0	3	0	4
141		14		1224,434	1	.155	2	.264	1	0	1	0	1	0	15
142		17		-1196.628	3	0	3	127	3	0	15	0	3	0	4
143		15		1224.54	<u> </u>	.123	2	.264	1	0	1	0	1	0	15
		13		-1196.548						-					
144		40			3	025	3	127	3	0	15	0	3	0	4
145		16		1224.647	1_	.091	2	.264	1	0	1	0	1	0	15
146				-1196.468	3_	049	3	127	3	0	15	0	3	0	2
147		17		1224.753	_1_	.059	2	.264	1_	0	1	0	1	0	15
148				-1196.388	3	073	3	127	3	0	15	0	3	0	2
149		18		1224.86	1	.026	2	.264	1	0	1	0	1	0	15
150			min	-1196.308	3	097	3	127	3	0	15	0	3	0	2
151		19		1224.966	1	006	2	.264	1	0	1	0	1	0	15
										-		-			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
152			min	-1196.228	3	121	3	127	3	0	15	0	3	0	2
153	M7	1	max	330.663	2	1.794	4	.014	1	0	2	0	2	0	2
154			min	-265.128	3	.423	15	003	10	0	3	0	3	0	12
155		2	max	330.595	2	1.617	4	.014	1	0	2	0	2	0	2
156			min	-265.179	3	.381	15	003	10	0	3	0	3	0	3
157		3	max	330.528	2	1.439	4	.014	1	0	2	0	2	0	2
158			min	-265.229	3	.339	15	003	10	0	3	0	3	0	3
159		4	max	330.46	2	1.261	4	.014	1	0	2	0	2	0	2
160			min	-265.28	3	.297	15	003	10	0	3	0	3	0	3
161		5	max	330.392	2	1.084	4	.014	1	0	2	0	2	0	15
162			min	-265.331	3	.256	15	003	10	0	3	0	3	0	4
163		6	max		2	.906	4	.014	1	0	2	0	2	0	15
164			min	-265.382	3	.214	15	003	10	0	3	0	3	0	4
165		7	max	330.256	2	.728	4	.014	1	0	2	0	2	0	15
166			min	-265.433	3	.172	15	003	10	0	3	0	3	0	4
167		8	max	330.188	2	.551	4	.014	1	0	2	0	2	0	15
168			min	-265.484	3	.13	15	003	10	0	3	0	3	001	4
169		9	max	330.12	2	.373	4	.014	1	0	2	0	2	0	15
170			min	-265.535	3	.089	15	003	10	0	3	0	3	001	4
171		10	max	330.052	2	.217	2	.014	1	0	2	0	2	0	15
172			min	-265.586	3	.043	12	003	10	0	3	0	3	001	4
173		11	max		2	.078	2	.014	1	0	2	0	2	0	15
174			min	-265.637	3	045	3	003	10	0	3	0	3	001	4
175		12	max		2	037	15	.014	1	0	2	0	2	0	15
176		1-	min	-265.688	3	16	4	003	10	0	3	0	3	001	4
177		13	max		2	078	15	.014	1	0	2	0	2	0	15
178		10	min	-265.738	3	338	4	003	10	0	3	0	3	001	4
179		14	max	329.781	2	12	15	.014	1	0	2	0	2	0	15
180		1 1 7	min	-265.789	3	515	4	003	10	0	3	0	3	001	4
181		15	max	329.713	2	162	15	.014	1	0	2	0	2	0	15
182		15	min	-265.84	3	693	4	003	10	0	3	0	3	0	4
183		16	max		2	204	15	.014	1	0	2	0	2	0	15
184		10	min	-265.891	3	871	4	003	10	0	3	0	3	0	4
185		17	max	329.577	2	246	15	.014	1	0	2	0	2	0	15
186		1 '	min	-265.942	3	-1.048	4	003	10	0	3	0	3	0	4
187		18	max	329.51	2	287	15	.014	1	0	2	0	2	0	15
188		10	min	-265.993	3	-1.226	4	003	10	0	3	0	3	0	4
189		19	max	329.442	2	329	15	.014	1	0	2	0	2	0	1
190		13	min	-266.044	3	-1.404	4	003	10	0	3	0	3	0	1
191	M8	1		1508.708	_ <u></u>	0	1	.768	1	0	1	0	15	0	1
192	IVIO			-261.458		0	1	273	3	0	1	0	1	0	1
193		2		1508.773		0	1	.768	1	0	1	0	1	0	1
194			min		3	0	1	273	3	0	1	0	3	0	1
195		3		1508.838	<u> </u>	0	1	.768	1	0	1	0	1	0	1
196		3	min	-261.361	3	0	1	273	3	0	1	0	3	0	1
197		4		1508.902	<u> </u>	0	1	.768	1	0	1	0	1	0	1
198		+		-261.312	3	0	1	273	3	0	1	0	3	0	1
		E												_	_
199		5		1508.967	1	0	1	.768	1	0	1	0	1	0	1
200		6		-261.264	3	0		273	3	0		0	3	0	-
201		6		1509.032	1	0	1	.768	1	0	1	0	1	0	1
202		7	min		3	0		273	3	0	-	0	3	0	•
203		7		1509.097	1	0	1	.768	1	0	1	0	1	0	1
204				<u>-261.166</u>		0	1	273	3	0	1	0	3	0	1
205		8		1509.161	1_	0	1	.768	1	0	1	0	1	0	1
206			min	-261.118	3	0	1	273	3	0	1	0	3	0	1
207		9		1509.226	1	0	1	.768	1	0	1	0	1	0	1
208			min	-261.069	3	0	1	273	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	1509.291	1	0	1	.768	1	0	1	0	1	0	1
210			min	-261.021	3	0	1	273	3	0	1	0	3	0	1
211		11	max	1509.355	1	0	1	.768	1	0	1	0	1	0	1
212			min	-260.972	3	0	1	273	3	0	1	0	3	0	1
213		12	max	1509.42	1	0	1	.768	1	0	1	0	1	0	1
214			min	-260.924	3	0	1	273	3	0	1	0	3	0	1
215		13	max	1509.485	1	0	1	.768	1	0	1	0	1	0	1
216			min	-260.875	3	0	1	273	3	0	1	0	3	0	1
217		14	max	1509.55	1	0	1	.768	1	0	1	0	1	0	1
218			min	-260.827	3	0	1	273	3	0	1	0	3	0	1
219		15		1509.614	1	0	1	.768	1	0	1	0	1	0	1
220			min	-260.778	3	0	1	273	3	0	1	0	3	0	1
221		16	max	1509.679	1	0	1	.768	1	0	1	.001	1	0	1
222			min	-260.73	3	0	1	273	3	0	1	0	3	0	1
223		17	max	1509.744	1	0	1	.768	1	0	1	.001	1	0	1
224			min	-260.681	3	0	1	273	3	0	1	0	3	0	1
225		18	max	1509.808	1	0	1	.768	1	0	1	.001	1	0	1
226			min	-260.633	3	0	1	273	3	0	1	0	3	0	1
227		19	max	1509.873	1	0	1	.768	1	0	1	.001	1	0	1
228			min	-260.584	3	0	1	273	3	0	1	0	3	0	1
229	M10	1	max		1	.634	4	005	15	.001	1	0	1	0	1
230	-		min	-353.465	3	.151	15	152	1	0	3	0	3	0	1
231		2	max	385.509	1	.593	4	005	15	.001	1	0	1	0	15
232			min	-353.385	3	.141	15	152	1	0	3	0	3	0	4
233		3	max	385.615	1	.551	4	005	15	.001	1	0	1	0	15
234			min	-353.305	3	.132	15	152	1	0	3	0	3	0	4
235		4	max		1	.51	4	005	15	.001	1	0	1	0	15
236			min	-353.225	3	.122	15	152	1	0	3	0	3	0	4
237		5	max	385.828	1	.469	4	005	15	.001	1	0	1	0	15
238			min	-353.145	3	.112	15	152	1	.001	3	0	3	0	4
239		6	max		1	.428	4	005	15	.001	1	0	2	0	15
240			min	-353.066	3	.102	15	152	1	0	3	0	3	0	4
241		7	max	386.041	1	.386	4	005	15	.001	1	0	2	0	15
242			min	-352.986	3	.093	15	152	1	0	3	0	3	0	4
243		8	max	386.148	1	.345	4	005	15	.001	1	0	15	0	15
244			min	-352.906	3	.083	15	152	1	0	3	0	3	0	4
245		9	max		1	.304	4	005	15	.001	1	0	15	0	15
246			min	-352.826	3	.073	15	152	1	0	3	0	3	0	4
247		10	max	386.361	1	.263	4	005	15	.001	1	0	15	0	15
248		'	min	-352.746	3	.064	15	152	1	0	3	0	3	0	4
249		11		386.468		.221	4	005	15	.001	1	0	15		15
250			min		3	.054	15	152	1	0	3	0	1	0	4
251		12		386.574	1	.18	4	005	15	.001	1	0	15	0	15
252		12	min		3	.044	15	152	1	0	3	0	1	0	4
253		13	max		1	.139	4	005	15	.001	1	0	15	0	15
254		10	min	-352.506	3	.035	15	152	1	0	3	0	1	0	4
255		14		386.787	1	.105	2	005	15	.001	1	0	15	0	15
256		17	min		3	.019	1	152	1	0	3	0	1	0	4
257		15	max		1	.073	2	005	15	.001	1	0	15	0	15
258		13	min	-352.346	3	013	1	152	1	0	3	0	1	0	4
259		16			1	.041	2	005	15	.001	1	0	15	0	15
260		10	min		3	045	1	152	1	0	3	0	1	0	4
261		17	max		1	.009	10	152 005	15	.001	1	0	15	0	15
262		17	min		3	077	1	005 152	15	.001	3	0	1	0	4
		18			1	077	12	152 005	15	-	1	0	15		15
263 264		10	max	-352.107	3	014 11	12	005 152	15	.001 0	3	0	1	0	4
		10	min						-					0	
265		19	max	387.32	1	024	15	005	15	.001	1	0	15		15

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]		_		_	LC	z-z Mome	
266			min	-352.027	3	142	1	152	1	0	3	0	1_	0	4
267	<u>M11</u>	1	max	66.1	2	1.8	4	.805	1_	.001	1_	0	3	0	4
268			min	-98.158	9	.423	15	.016	12	0	15	002	1	0	15
269		2	max	66.033	2	1.622	4	.805	1	.001	1_	0	3	0	4
270			min	-98.215	9	.382	15	.016	12	0	15	002	1	0	12
271		3	max	65.965	2	1.445	4	.805	1	.001	1_	0	3	0	2
272			min	-98.271	9	.34	15	.016	12	0	15	002	1	0	3
273		4	max	65.897	2	1.267	4	.805	1	.001	1	0	3	0	15
274			min	-98.328	9	.298	15	.016	12	0	15	002	1	0	3
275		5	max	65.829	2	1.09	4	.805	1	.001	1	0	3	0	15
276			min	-98.384	9	.256	15	.016	12	0	15	001	1	0	4
277		6	max	65.761	2	.912	4	.805	1	.001	1	0	3	0	15
278			min	-98.441	9	.215	15	.016	12	0	15	001	1	0	4
279		7	max	65.693	2	.734	4	.805	1	.001	1	0	3	0	15
280			min	-98.497	9	.173	15	.016	12	0	15	001	1	0	4
281		8	max	65.625	2	.557	4	.805	1	.001	1	0	3	0	15
282			min	-98.554	9	.131	15	.016	12	0	15	0	1	0	4
283		9	max	65.558	2	.379	4	.805	1	.001	1	0	3	0	15
284			min	-98.61	9	.089	15	.016	12	0	15	0	1	001	4
285		10	max	65.49	2	.201	4	.805	1	.001	1	0	3	0	15
286			min	-98.667	9	.048	15	.016	12	0	15	0	1	001	4
287		11	max	65.422	2	.03	2	.805	1	.001	1	0	3	0	15
288			min	-98.724	9	021	3	.016	12	0	15	0	1	001	4
289		12	max	65.354	2	036	15	.805	1	.001	1	0	3	0	15
290			min	-98.78	9	154	4	.016	12	0	15	0	1	001	4
291		13	max	65.286	2	078	15	.805	1	.001	1	0	3	0	15
292		10	min	-98.837	9	332	4	.016	12	0	15	0	2	001	4
293		14	max	65.218	2	119	15	.805	1	.001	1	0	3	0	15
294		17	min	-98.893	9	509	4	.016	12	0	15	0	10	001	4
295		15	max	65.15	2	161	15	.805	1	.001	1	0	1	0	15
296		13	min	-98.95	9	687	4	.016	12	0	15	0	15	0	4
297		16	max	65.083	2	203	15	.805	1	.001	1	0	1	0	15
298		10	min	-99.006	9	865	4	.016	12	0	15	0	15	0	4
299		17	max	65.015	2	245	15	.805	1	.001	1	0	1	0	15
300		17	min	-99.063	9	-1.042	4	.016	12	0	15	0	15	0	4
301		18		64.947	2	286	15	.805	1	.001	1	0	1		15
		10	max			-1.22			12		15		15	0	
302		40	min	-99.119	9		15	.016		0		0		0	4
303		19	max	64.879	2	328		.805	1	.001	1	.001	1_	0	1
304	N440	4	min	-99.176	9	-1.398	4	.016	12	0	15	0	15	0	
305	M12	1	max		1	0	1	3.707	1	0	1	0	1	0	1
306			mın		3	0	1	.123	15	0	1	0	3	0	1
307		2	max		1	0	1	3.707	1	0	1	0	1	0	1
308			min	-71.174	3	0	1	.123	15	0	1	0	15	0	1
309		3		526.335	1	0	1	3.707	1	0	1	0	1	0	1
310			min	-71.126	3	0	1	.123	15	0	1	0	15	0	1
311		4	max		1	0	1	3.707	1	0	1	.001	1	0	1
312			min	-71.077	3	0	1	.123	15	0	1_	0	15	0	1
313		5	max		1	0	1	3.707	1	0	1	.001	1	0	1
314			min	-71.029	3	0	1	.123	15	0	1	0	15	0	1
315		6	max		1	0	1	3.707	1	0	1	.002	1	0	1
316			min	-70.98	3	0	1	.123	15	0	1	0	15		1
317		7	max		1_	0	1	3.707	1	0	1	.002	1	0	1
318			min	-70.932	3	0	1	.123	15	0	1	0	15	0	1
319		8	max		1	0	1	3.707	1	0	1	.002	1	0	1
320			min	-70.883	3	0	1	.123	15	0	1	0	15	0	1
321		9	max	526.724	1	0	1	3.707	1	0	1	.003	1	0	1
322			min	-70.835	3	0	1	.123	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
323		10	max	526.788	1	0	1	3.707	1	0	1	.003	1	0	1
324			min	-70.786	3	0	1	.123	15	0	1	0	15	0	1
325		11	max	526.853	1	0	1	3.707	1	0	1	.003	1	0	1
326			min	-70.738	3	0	1	.123	15	0	1	0	15	0	1
327		12	max	526.918	1	0	1	3.707	1	0	1	.004	1	0	1
328			min	-70.689	3	0	1	.123	15	0	1	0	15	0	1
329		13	max	526.982	1	0	1	3.707	1	0	1	.004	1	0	1
330			min	-70.64	3	0	1	.123	15	0	1	0	15	0	1
331		14	max	527.047	1	0	1	3.707	1	0	1	.004	1	0	1
332			min	-70.592	3	0	1	.123	15	0	1	0	15	0	1
333		15	max	527.112	1	0	1	3.707	1	0	1	.005	1	0	1
334			min	-70.543	3	0	1	.123	15	0	1	0	15	0	1
335		16	max	527.177	1	0	1	3.707	1	0	1	.005	1	0	1
336			min	-70.495	3	0	1	.123	15	0	1	0	15	0	1
337		17	max	527.241	1	0	1	3.707	1	0	1	.005	1	0	1
338			min	-70.446	3	0	1	.123	15	0	1	0	15	0	1
339		18	max	527.306	1	0	1	3.707	1	0	1	.006	1	0	1
340			min	-70.398	3	0	1	.123	15	0	1	0	15	0	1
341		19	max	527.371	1	0	1	3.707	1	0	1	.006	1	0	1
342			min	-70.349	3	0	1	.123	15	0	1	0	15	0	1
343	M1	1	max	130.459	1	345.226	3	-2.44	15	0	1	.143	1	.014	1
344			min	4.36	15	-374.1	1	-72.262	1	0	3	.005	15	011	3
345		2	max	130.555	1	345.029	3	-2.44	15	0	1	.127	1	.095	1
346			min	4.389	15	-374.363	1	-72.262	1	0	3	.004	15	086	3
347		3	max	110.168	1	7.025	9	-2.417	15	0	12	.11	1	.175	1
348			min	3.982	15	-21.474	3	-71.985	1	0	1	.004	15	159	3
349		4	max	110.263	1	6.806	9	-2.417	15	0	12	.094	1	.175	1
350			min	4.01	15	-21.67	3	-71.985	1	0	1	.003	15	154	3
351		5	max	110.359	1	6.587	9	-2.417	15	0	12	.079	1	.175	1
352			min	4.039	15	-21.867	3	-71.985	1	0	1	.003	15	15	3
353		6	max	110.454	1	6.369	9	-2.417	15	0	12	.063	1	.175	1
354			min	4.068	15	-22.064	3	-71.985	1	0	1	.002	15	145	3
355		7	max	110.55	1	6.15	9	-2.417	15	0	12	.048	1	.176	1
356			min	4.097	15	-22.261	3	-71.985	1	0	1	.002	15	14	3
357		8	max	110.645	1	5.931	9	-2.417	15	0	12	.032	1	.176	1
358			min	4.126	15	-22.458	3	-71.985	1	0	1	.001	15	135	3
359		9	max		1	5.713	9	-2.417	15	0	12	.016	1	.177	1
360			min	4.155	15	-22.654	3	-71.985	1	0	1	0	15	13	3
361		10	max	110.836	1	5.494	9	-2.417	15	0	12	0	1	.177	1
362			min	4.183	15	-22.851	3	-71.985	1	0	1	0	10	125	3
363		11		110.932		5.275	9	-2.417	15	0	12	0	12	.178	1
364			min	4.212	15	-23.048	3	-71.985	1	0	1	015	1	12	3
365		12	max		1	5.057	9	-2.417	15	0	12	0	12	.178	1
366			min	4.241	15	-23.245	3	-71.985	1	0	1	03	1	115	3
367		13	max	111.123	1	4.838	9	-2.417	15	0	12	001	12	.179	1
368			min	4.27	15	-23.442	3	-71.985	1	0	1	046	1	11	3
369		14		111.218	1	4.619	9	-2.417	15	0	12	002	15	.18	1
370			min	4.299	15	-23.638	3	-71.985	1	0	1	062	1	105	3
371		15	max		1	4.401	9	-2.417	15	0	12	003	15	.183	2
372			min	4.327	15	-23.835	3	-71.985	1	0	1	077	1	1	3
373		16	max		2	29.032	10	-2.44	15	0	1	003	15	.187	2
374			min	-31.322	3	-88.051	3	-72.586	1	0	12	094	1	094	3
375		17	max		2	28.813	10	-2.44	15	0	1	004	15	.197	1
376			min	-31.25	3	-88.248	3	-72.586	1	0	12	109	1	075	3
377		18	max	-4.369	15	423.966	1	-2.498	15	0	3	004	15	.107	1
378		0	min	-130.051	1	-155.852	3	-74.334	1	0	1	126	1	042	3
379		19	max	-4.34	15	423.704	1	-2.498	15	0	3	005	15	.015	1
010		10	παλ	7.07	10	720.704		۷۲۵۵	וטו		J	.000	ı	.010	

Model Name

Schletter, Inc.HCV

1100

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

381 M5 1 max 287.955 1 1139.088 3 067 10 0 1 .004 1 .382 min 8.311 12 -1234.801 1 -29.812 3 0 3 0 10 - 3 0 10 - 0 1 0 2 3 0 3 0 10 - 0 3 0 10 - 0 1 0 2 3 0 3 0 10 - 0 1 0 2 3 0 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003	008 .022 028 .24 225 .503 467 .507 452 .512 437 .517 421 .521 406 .526 39	3 3 1 1 3 1 3 1 3 1 3 1 3
382 min 8.311 12 -1234.801 1 -29.812 3 0 3 0 10 -383 383 2 max 288.051 1 1138.891 3 067 10 0 1 0 2 384 min 8.359 12 -1235.064 1 -29.812 3 0 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 003 3 0 2 389 009 3 008 3 397 2 0 1 008 3 397 2 0 1 008 3 397 3	028 .24 225 .503 467 .507 452 .512 437 .517 421 .521 406 .526 39	1 1 3 1 3 1 3 1 3 1 3
383 2 max 288.051 1 1138.891 3 067 10 0 1 0 2 384 min 8.359 12 -1235.064 1 -29.812 3 0 3 003 3 - 385 3 max 220.713 1 8.766 9 3.391 3 0 3 0 2 . 386 min 5.818 10 -70.687 3 397 2 0 1 009 3 - 387 4 max 220.809 1 8.547 9 3.391 3 0 3 0 2 . 388 min 5.898 10 -70.883 3 397 2 0 1 008 3 - 389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 . 391 6 max 221 1 8.11 9 3.391 </td <td>.24 225 .503 467 .507 452 .512 437 .517 421 .521 406 .526 39</td> <td>1 3 1 3 1 3 1 3 1 3</td>	.24 225 .503 467 .507 452 .512 437 .517 421 .521 406 .526 39	1 3 1 3 1 3 1 3 1 3
384 min 8.359 12 -1235.064 1 -29.812 3 0 3 003 3 303 3 397 2 0 3 003 3 009 3 397 2 0 1 009 3 397 2 0 1 009 3 397 2 0 1 009 3 397 2 0 1 009 3 388 3 397 2 0 1 009 3 388 3 397 2 0 1 008 3 388 3 397 2 0 1 008 3 388 3 397 2 0 1 008 3 388 3 397 2 0 1 008 3 397 2 0 1 008 3 397 3 0 3 0 2 397	225 .503 467 .507 452 .512 437 .517 421 .521 406 .526 39	3 1 3 1 3 1 3 1 3 1
385 3 max 220.713 1 8.766 9 3.391 3 0 3 0 2 386 min 5.818 10 -70.687 3 397 2 0 1 009 3 - 387 4 max 220.809 1 8.547 9 3.391 3 0 3 0 2 388 min 5.898 10 -70.883 3 397 2 0 1 008 3 - 389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 390 min 5.977 10 -71.08 3 397 2 0 1 008 3 - 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2	.503 467 .507 452 .512 437 .517 421 .521 406 .526 39	1 3 1 3 1 3 1 3
386 min 5.818 10 -70.687 3 397 2 0 1 009 3 397 387 4 max 220.809 1 8.547 9 3.391 3 0 3 0 2 388 min 5.898 10 -70.883 3 397 2 0 1 008 3 389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 390 min 5.977 10 -71.08 3 397 2 0 1 008 3 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 392 min 6.057 10 -71.277 3 397 2 0 1 007 3	467 .507 452 .512 437 .517 421 .521 406 .526 39	3 1 3 1 3 1 3 1
387 4 max 220.809 1 8.547 9 3.391 3 0 3 0 2 . 388 min 5.898 10 -70.883 3 397 2 0 1 008 3 - 389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 . 390 min 5.977 10 -71.08 3 397 2 0 1 008 3 - 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 . 392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	.507 452 .512 437 .517 421 .521 406 .526 39	1 3 1 3 1 3
388 min 5.898 10 -70.883 3 397 2 0 1 008 3 397 389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 390 min 5.977 10 -71.08 3 397 2 0 1 008 3 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 394 min 6.136 10 -71.474 3 397 2 0 1 006 3	452 .512 437 .517 421 .521 406 .526 39	3 1 3 1 3
389 5 max 220.904 1 8.328 9 3.391 3 0 3 0 2 . 390 min 5.977 10 -71.08 3 397 2 0 1 008 3 - 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 . 392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	.512 437 .517 421 .521 406 .526 39	1 3 1 3 1
390 min 5.977 10 -71.08 3 397 2 0 1 008 3 - 391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 . 392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	437 .517 421 .521 406 .526 39	3 1 3 1
391 6 max 221 1 8.11 9 3.391 3 0 3 0 2 . 392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	.517 421 .521 406 .526 39	1 3 1
392 min 6.057 10 -71.277 3 397 2 0 1 007 3 - 393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	421 .521 406 .526 39	3
393 7 max 221.095 1 7.891 9 3.391 3 0 3 0 2 . 394 min 6.136 10 -71.474 3 397 2 0 1 006 3 -	.521 406 .526 39	1
394 min 6.136 10 -71.474 3397 2 0 1006 3 -	406 .526 39	
	.526 39	
395 8 max 221 191 1 7 672 0 3 391 3 0 3 0 2	39	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
396 min 6.216 10 -71.671 3397 2 0 1005 3	E24	3
397 9 max 221.286 1 7.454 9 3.391 3 0 3 0 2 .	.531	1
398 min 6.296 10 -71.867 3397 2 0 1005 3 -	375	3
399 10 max 221.382 1 7.235 9 3.391 3 0 3 0 10 .	.536	1
400 min 6.375 10 -72.064 3397 2 0 1004 3 -	359	3
401 11 max 221.477 1 7.016 9 3.391 3 0 3 0 10	.54	1
402 min 6.455 10 -72.261 3397 2 0 1003 3 -	343	3
403 12 max 221.573 1 6.798 9 3.391 3 0 3 0 10 .	.545	1
404 min 6.534 10 -72.458 3397 2 0 1003 3 -	328	3
405 13 max 221.668 1 6.579 9 3.391 3 0 3 0 10	.55	1
406 min 6.614 10 -72.655 3397 2 0 1002 1 -	312	3
407	.556	1
408 min 6.694 10 -72.851 3397 2 0 1002 1 -	296	3
409 15 max 221.859 1 6.142 9 3.391 3 0 3 0 15 .	.561	1
	28	3
411 16 max 294.178 2 175.309 2 3.365 3 0 1 0 3 .	.566	1
412 min -102.649 3 -264.805 3407 2 0 15001 1 -	263	3
413 17 max 294.274 2 175.047 2 3.365 3 0 1 0 3 .	.569	1
414 min -102.577 3 -265.002 3407 2 0 15 0 1 -	205	3
	.272	1
416 min -288.735 1 -511.63 3097 2 0 1 0 2 -	095	3
417	.016	3
418 min -288.639 1 -511.827 3097 2 0 1 0 2	03	1
	.014	1
	011	3
421 2 max 129.949 1 345.013 3 94.196 1 0 3003 12 .	.095	1
	086	3
	.175	1
	159	3
	.175	1
	154	3
	.175	1
	15	3
	.175	1
	145	3
	.176	1
432 min 4.267 15 -22.203 3 1.004 12 0 15041 1	14	3
	.176	1
434 min 4.296 15 -22.4 3 1.004 12 0 15026 1 -	135	3
435 9 max 110.714 1 5.687 9 68.024 1 0 1 .005 3 .	.177	1
436 min 4.324 15 -22.597 3 1.004 12 0 15011 1		3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
437		10	max	110.809	1	5.468	9	68.024	1	0	1	.005	3	.177	1
438			min	4.353	15	-22.794	3	1.004	12	0	15	0	2	125	3
439		11	max	110.905	1	5.249	9	68.024	1	0	1	.018	1	.178	1
440			min	4.382	15	-22.99	3	1.004	12	0	15	0	15	12	3
441		12	max	111	1	5.031	9	68.024	1	0	1	.033	1	.178	1
442			min	4.411	15	-23.187	3	1.004	12	0	15	.001	15	115	3
443		13	max	111.096	1	4.812	9	68.024	1	0	1	.048	1	.179	1
444			min	4.44	15	-23.384	3	1.004	12	0	15	.002	15	11	3
445		14	max	111.191	1	4.593	9	68.024	1	0	1	.062	1	.18	1
446			min	4.468	15	-23.581	3	1.004	12	0	15	.002	15	105	3
447		15	max	111.287	1	4.375	9	68.024	1	0	1	.077	1	.183	2
448			min	4.497	15	-23.778	3	1.004	12	0	15	.003	15	1	3
449		16	max	82.905	2	28.679	10	68.76	1	0	15	.093	1	.187	2
450			min	-31.416	3	-88.458	3	1.022	12	0	1	.003	15	094	3
451		17	max	83	2	28.461	10	68.76	1	0	15	.108	1	.197	1
452			min	-31.344	3	-88.655	3	1.022	12	0	1	.004	15	075	3
453		18	max	-4.36	15	423.967	1	72.436	1	0	1	.124	1	.107	1
454			min	-129.769	1	-155.85	3	1.249	12	0	3	.004	15	042	3
455		19	max	-4.331	15	423.704	1	72.436	1	0	1	.14	1	.015	1
456			min	-129.673	1	-156.047	3	1.249	12	0	3	.005	15	008	3
457	M13	1	max	94.403	1	373.509	1	-4.338	15	.014	1	.142	1	0	1
458			min	3.323	15	-345.199	3	-129.839	1	011	3	.005	15	0	3
459		2	max	94.403	1	263.644	1	-3.323	15	.014	1	.043	1	.253	3
460			min	3.323	15	-243.57	3	-99.38	1	011	3	.001	15	274	1
461		3	max	94.403	1	153.779	1	-2.308	15	.014	1	.002	3	.419	3
462			min	3.323	15	-141.94	3	-68.92	1	011	3	029	1	454	1
463		4	max	94.403	1	43.914	1	-1.293	15	.014	1	0	12	.498	3
464		7	min	3.323	15	-40.311	3	-38.461	1	011	3	075	1	539	1
465		5	max	94.403	1	61.318	3	278	15	.014	1	002	12	.489	3
466		J	min	3.323	15	-65.951	1	-8.002	1	011	3	095	1	53	1
467		6	max	94.403	1	162.947	3	22.458	1	.014	1	002	12	.392	3
468			min	3.323	15	-175.817	1	.252	12	011	3	089	1	426	1
469		7	max	94.403	1	264.577	3	52.917	1	.014	1	002	12	.208	3
470			min	3.323	15	-285.682	1	1.242	12	011	3	002 057	1	227	1
		0		94.403	1	366.206	3	83.377	1		1	.002	1		1
471 472		8	max	3.323		-395.547	1	2.232	12	.014	3	0	3	.066	3
		0	min		15					011				063	
473 474		9	max	94.403 3.323	1	467.835 -505.412	3	113.836	12	.014 011	3	.087 .002	12	.454 422	3
		10	min	94.403	<u>15</u> 1	569.465	-	3.223 144.295	1	.012		.002 .198	1	.937	
475		10	max				3		12		1		12		3
476		11	min	3.323	15	<u>-615.277</u> 505.412		4.213 -3.105		014		.006 .083		869	
477		11	max	72.49	1	-467.835	1		12	.011	3		1	.454	1
478		10	min	2.44	15		3	-113.227	12	014	1	0	3	422	3
479		12	max	72.49	1 1 5	395.547	1	-2.115	12	.011 014	3	.001	3	.066	3
480 481		10	min	2.44 72.49	15	-366.206 285.682	3	-82.768 -1.124	12		3	003 002	15	063 .208	
		13			1		1			.011					3
482		4.4	min	2.44	15	-264.577	3	-52.308	1	014	1	059	1	227	1
483		14	max	72.49	1	175.817	1	108	3	.011	3	003	15	.392	3
484		4.5	min	2.44	15	-162.947	3	-21.849	1	014	1	091	1_	426	1
485		15	max	72.49	1	65.951	1	8.611	1	.011	3	003	15	.489	3
486		40	min	2.44	15	-61.318	3	.3	15	014	1	097	1	53	1
487		16	max	72.49	1	40.311	3	39.07	1	.011	3	002	12	.498	3
488			min	2.44	15	-43.914	1	1.315	15	014	1	076	1	539	1
489		17	max	72.49	1	141.94	3	69.529	1	.011	3	0	12	.419	3
490			min	2.44	15	-153.779	1	2.33	15	014	1	03	1	454	1
491		18		72.49	1	243.57	3	99.989	1_	.011	3	.043	1_	.253	3
492			min	2.44	15	-263.644	1	3.345	15	014	1	.001	15	274	1
493		19	max	72.49	_1_	345.199	3	130.448	1	.011	3	.143	1	0	1

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
494			min	2.44	15	-373.509	1	4.36	15	014	1	.005	15	0	3
495	M16	1	max	-1.248	12	424.316	1	-4.331	15	.008	3	.14	1	0	1
496			min	-72.189	1	-156.067	3	-129.685	1	015	1	.005	15	0	3
497		2	max	-1.248	12	299.492	1	-3.316	15	.008	3	.041	1	.115	3
498			min	-72.189	1	-110.285	3	-99.226	1	015	1	.001	15	312	1
499		3	max	-1.248	12	174.668	1	-2.301	15	.008	3	0	12	.19	3
500			min	-72.189	1	-64.503	3	-68.766	1	015	1	031	1	516	1
501		4	max	-1.248	12	49.844	1	-1.286	15	.008	3	003	15	.226	3
502			min	-72.189	1	-18.721	3	-38.307	1	015	1	077	1	612	1
503		5	max	-1.248	12	27.061	3	271	15	.008	3	003	15	.222	3
504			min	-72.189	1	-74.98	1	-7.847	1	015	1	097	1	602	1
505		6	max	-1.248	12	72.843	3	22.612	1	.008	3	003	15	.179	3
506			min	-72.189	1	-199.804	1	.411	12	015	1	091	1	483	1
507		7	max	-1.248	12	118.625	3	53.071	1	.008	3	002	15	.097	3
508			min	-72.189	1	-324.628	1	1.401	12	015	1	058	1	258	1
509		8	max	-1.248	12	164.407	3	83.531	1	.008	3	.002	2	.076	1
510			min	-72.189	1	-449.452	1	2.391	12	015	1	002	3	025	3
511		9	max	-1.248	12	210.189	3	113.99	1	.008	3	.086	1	.517	1
512			min	-72.189	1	-574.276	1	3.382	12	015	1	.001	12	186	3
513		10	max	-2.498	15	-15.62	15	144.45	1	0	15	.197	1	1.065	1
514			min	-74.115	1	-699.1	1	-6.749	3	015	1	.006	12	387	3
515		11	max	-2.498	15	574.276	1	-3.526	12	.015	1	.086	1	.517	1
516			min	-74.115	1	-210.189	3	-113.707	1	008	3	.002	12	186	3
517		12	max	-2.498	15	449.452	1	-2.536	12	.015	1	.001	2	.076	1
518			min	-74.115	1	-164.407	3	-83.248	1	008	3	0	3	025	3
519		13	max	-2.498	15	324.628	1	-1.546	12	.015	1	002	12	.097	3
520			min	-74.115	1	-118.625	3	-52.788	1	008	3	058	1	258	1
521		14	max	-2.498	15	199.804	1	555	12	.015	1	003	12	.179	3
522			min	-74.115	1	-72.843	3	-22.329	1	008	3	09	1	483	1
523		15	max	-2.498	15	74.98	1_	8.13	1	.015	1	003	12	.222	3
524			min	-74.115	1	-27.061	3	.28	15	008	3	096	1	602	1
525		16	max	-2.498	15	18.721	3	38.59	1	.015	1	002	12	.226	3
526			min	-74.115	1	-49.844	1_	1.295	15	008	3	076	1	612	1
527		17	max	-2.498	15	64.503	3	69.049	1	.015	1	0	12	.19	3
528			min	-74.115	1	-174.668	1_	2.31	15	008	3	03	1	516	1
529		18	max	-2.498	15	110.285	3	99.509	1	.015	1	.043	1	.115	3
530			min	-74.115	1	-299.492	1_	3.325	15	008	3	.001	15	312	1
531		19	max	-2.498	15	156.067	3	129.968	1	.015	1	.142	1	0	1
532			min	-74.115	1	-424.316	1	4.34	15	008	3	.005	15	0	3
533	M15	1_	max	0	2	2.7	4	.029	3	0	1	0	1	0	1
534			min	-34.946	3	0	2	034	1	0	3	0	3	0	1
535		2	max	0	2	2.4	4	.029	3	0	1	0	1	0	2
536			min	-35.006	3	0	2	034	1	0	3	0	3	001	4
537		3	max	0	2	2.1	4	.029	3	0	1	0	1	0	2
538			min	-35.066	3	0	2	034	1	0	3	0	3	002	4
539		4	max	0	2	1.8	4	.029	3	0	1	0	1	0	2
540			min	-35.125	3	0	2	034	1	0	3	0	3	003	4
541		5	max	0	2	1.5	4	.029	3	0	1	0	1	0	2
542			min	-35.185	3	0	2	034	1	0	3	0	3	004	4
543		6	max	0	2	1.2	4_	.029	3	0	1	0	1	0	2
544			min	-35.245	3	0	2	034	1	0	3	0	3	004	4
545		7	max	0	2	.9	4	.029	3	0	1	0	3	0	2
546			min	-35.304	3	0	2	034	1	0	3	0	1	005	4
547		8	max	0	2	.6	4	.029	3	0	1	0	3	0	2
548			min	-35.364	3	0	2	034	1	0	3	0	1	005	4
549		9	max	0	2	.3	4	.029	3	0	1	0	3	0	2
550			min	-35.424	3	0	2	034	1	0	3	0	1	005	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	
551		10	max	0	2	0	1	.029	3	0	1_	0	3	0	2
552			min	-35.483	3	0	1	034	1	0	3	0	1	006	4
553		11	max	0	2	0	2	.029	3	0	1_	0	3	0	2
554			min	-35.543	3	3	4	034	1	0	3	0	1	005	4
555		12	max	0	2	0	2	.029	3	0	1	0	3	0	2
556			min	-35.603	3	6	4	034	1	0	3	0	1	005	4
557		13	max	0	2	0	2	.029	3	0	1	0	3	0	2
558			min	-35.662	3	9	4	034	1	0	3	0	1	005	4
559		14	max	0	2	0	2	.029	3	0	1	0	3	0	2
560			min	-35.722	3	-1.2	4	034	1	0	3	0	1	004	4
561		15	max	0	2	0	2	.029	3	0	1	0	3	0	2
562			min	-35.782	3	-1.5	4	034	1	0	3	0	1	004	4
563		16	max	0	2	0	2	.029	3	0	1	0	3	0	2
564			min	-35.841	3	-1.8	4	034	1	0	3	0	1	003	4
565		17	max	0	2	0	2	.029	3	0	1	0	3	0	2
566			min	-35.901	3	-2.1	4	034	1	0	3	0	1	002	4
567		18	max	0	2	0	2	.029	3	0	1	0	3	0	2
568			min	-35.961	3	-2.4	4	034	1	0	3	0	1	001	4
569		19	max	0	2	0	2	.029	3	0	1	0	3	0	1
570			min	-36.02	3	-2.7	4	034	1	0	3	0	1	0	1
571	M16A	1	max	797	10	2.7	4	.022	1	0	3	0	3	0	1
572			min	-35.514	3	.635	15	012	3	0	1	0	1	0	1
573		2	max	731	10	2.4	4	.022	1	0	3	0	3	0	15
574			min	-35.454	3	.564	15	012	3	0	1	0	1	001	4
575		3	max	665	10	2.1	4	.022	1	0	3	0	3	0	15
576			min	-35.395	3	.494	15	012	3	0	1	0	1	002	4
577		4	max	598	10	1.8	4	.022	1	0	3	0	3	0	15
578			min	-35.335	3	.423	15	012	3	0	1	0	1	003	4
579		5	max	532	10	1.5	4	.022	1	0	3	0	3	0	15
580			min	-35.275	3	.353	15	012	3	0	1	0	1	004	4
581		6	max	466	10	1.2	4	.022	1	0	3	0	3	001	15
582			min	-35.216	3	.282	15	012	3	0	1	0	1	004	4
583		7	max	4	10	.9	4	.022	1	0	3	0	3	001	15
584			min	-35.156	3	.212	15	012	3	0	1	0	1	005	4
585		8	max	333	10	.6	4	.022	1	0	3	0	3	001	15
586			min	-35.096	3	.141	15	012	3	0	1	0	1	005	4
587		9	max	267	10	.3	4	.022	1	0	3	0	3	001	15
588		3	min	-35.037	3	.071	15	012	3	0	1	0	1	005	4
589		10	max	201	10	0	1	.022	1	0	3	0	3	003	15
590		10	min	-34.977	3	0	1	012	3	0	1	0	1	006	4
591		11	max		10	071	15	.022	1	0	3	0	3	001	15
592		- 1 1	min	-34.917	3	3	4	012	3	0	1	0	1	005	4
593		12	max	068	10	141	15	.022	1	0	3	0	3	003	15
594		12		-34.858		141	4	012	3	0	1	0	1	005	4
		12	min		3			.022	1			0	2		_
595		13	max	002	10	212 9	15	012	3	0	1	0	4	001 005	15
596		4.4	min	-34.798	3		4					_			4
597		14	max	.065	10	282	15	.022	1	0	3	0	1	001	15
598		4.5	min	-34.738	3	-1.2	4	012	3	0	1	0	3	004	4
599		15	max	.131	10	353	15	.022	1	0	3	0	1	0	15
600		40	min	-34.679	3	-1.5	4	012	3	0	1	0	3	004	4
601		16	max	.197	10	423	15	.022	1	0	3	0	1	0	15
602			min	-34.619	3	-1.8	4	012	3	0	1	0	3	003	4
603		17	max	.263	10	494	15	.022	1	0	3	0	1	0	15
604			min	-34.559	3	-2.1	4	012	3	0	1	0	3	002	4
605		18	max	.33	10	564	15	.022	1	0	3	0	1	0	15
606			min	-34.5	3	-2.4	4	012	3	0	1	0	3	001	4
607		19	max	.396	10	635	15	.022	_ 1	0	3	0	1	0	1

Model Name

Schletter, Inc.HCV

нсу

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-34.44	3	-2.7	4	012	3	0	1	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.008	2	.014	1	-3.657e-5	15	NC	3	NC	3
2			min	003	3	007	3	0	3	-1.086e-3	1	4394.829	2	2424.162	1
3		2	max	.003	1	.007	2	.013	1	-3.506e-5	15	NC	3	NC	3
4			min	003	3	006	3	0	3	-1.042e-3	1	4763.78	2	2623.705	1
5		3	max	.003	1	.006	2	.012	1	-3.356e-5	15	NC	3	NC	3
6			min	003	3	006	3	0	3	-9.976e-4	1	5197.02	2	2858.688	1
7		4	max	.003	1	.006	2	.011	1	-3.205e-5	15	NC	3	NC	3
8			min	002	3	006	3	0	3	-9.532e-4	1	5709.119	2	3137.713	1
9		5	max	.002	1	.005	2	.01	1	-3.054e-5	15	NC	3	NC	3
10			min	002	3	005	3	0	3	-9.088e-4	1	6319.237	2	3472.264	1
11		6	max	.002	1	.005	2	.009	1	-2.904e-5	15	NC	1	NC	3
12			min	002	3	005	3	0	3	-8.645e-4	1	7052.973	2	3877.947	1
13		7	max	.002	1	.004	2	.008	1	-2.753e-5	15	NC	1	NC	2
14			min	002	3	005	3	0	3	-8.201e-4	1	7945.163	2	4376.419	1
15		8	max	.002	1	.004	2	.007	1	-2.602e-5	15	NC	1	NC	2
16			min	002	3	005	3	0	3	-7.757e-4	1	9044.26	2	4998.461	1
17		9	max	.002	1	.003	2	.006	1	-2.451e-5	15	NC	1	NC	2
18			min	002	3	004	3	0	3	-7.313e-4	1	NC	1	5789.062	1
19		10	max	.002	1	.003	2	.005	1	-2.301e-5	15	NC	1	NC	2
20			min	001	3	004	3	0	3	-6.87e-4	1	NC	1	6816.191	1
21		11	max	.001	1	.002	2	.004	1	-2.15e-5	15	NC	1	NC	2
22			min	001	3	004	3	0	3	-6.426e-4	1	NC	1	8186.671	1
23		12	max	.001	1	.002	2	.003	1	-1.999e-5	15	NC	1	NC	1
24			min	001	3	003	3	0	3	-5.982e-4	1	NC	1	NC	1
25		13	max	.001	1	.002	2	.003	1	-1.849e-5	15	NC	1	NC	1
26			min	0	3	003	3	0	3	-5.539e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.002	1	-1.698e-5	15	NC	1	NC	1
28			min	0	3	002	3	0	3	-5.095e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	.001	1	-1.547e-5	15	NC	1	NC	1
30			min	0	3	002	3	0	3	-4.651e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	-1.396e-5	15	NC	1	NC	1
32			min	0	3	002	3	0	3	-4.207e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-1.246e-5	15	NC	1	NC	1
34			min	0	3	001	3	0	3	-3.764e-4	1_	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-1.095e-5	15	NC	1	NC	1
36			min	0	3	0	3	0	12	-3.32e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-8.345e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.876e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.322e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1	3.944e-6	12	NC	1	NC	1
41		2	max	0	9	0	2	0	12	1.663e-4	1	NC	1_	NC	1
42			min	0	2	0	3	0	1	5.497e-6	15	NC	1	NC	1
43		3	max	0	9	0	2	0	12		1_	NC	1_	NC	1
44			min	0	2	002	3	0	1	6.653e-6	15	NC	1	NC	1
45		4	max	0	9	0	2	0	12	2.344e-4	1_	NC	1_	NC	1
46			min	0	2	002	3	001	1	7.809e-6	15	NC	1	NC	1
47		5	max	0	9	0	2	0	12	2.685e-4	1	NC	1	NC	1
48			min	0	2	003	3	001	1	8.965e-6	15	NC	1	NC	1
49		6	max	0	9	0	2	0	3	3.026e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1	1.012e-5	15	NC	1	NC	1
51		7	max	0	9	.001	2	0	3	3.367e-4	1_	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
52			min	0	2	004	3	0	1	1.128e-5	15	NC	1_	NC	1
53		8	max	0	9	.001	2	0	3	3.708e-4	<u>1</u>	NC	_1_	NC	1
54			min	0	2	005	3	0	1	1.243e-5	15	NC	1	NC	1
55		9	max	0	9	.002	2	0	3	4.048e-4	1_	NC	1_	NC	1_
56			min	0	2	006	3	0	1	1.359e-5	15	NC	1	NC	1
57		10	max	0	9	.002	2	0	1	4.389e-4	1_	NC	1_	NC	1
58			min	0	2	006	3	0	15	1.474e-5	15	NC	1	NC	1
59		11	max	0	9	.003	2	.001	1	4.73e-4	1	NC	1	NC	1
60			min	0	2	007	3	0	15	1.59e-5	15	NC	1	NC	1
61		12	max	0	9	.003	2	.002	1	5.071e-4	1	NC	1_	NC	1
62			min	0	2	007	3	0	15	1.706e-5	15	NC	1	NC	1
63		13	max	0	9	.004	2	.003	1	5.412e-4	1_	NC	1	NC	1
64			min	0	2	007	3	0	15	1.821e-5	15	NC	1	NC	1
65		14	max	0	9	.005	2	.003	1	5.753e-4	1	NC	1	NC	1
66			min	0	2	007	3	0	15	1.937e-5	15	9570.672	2	NC	1
67		15	max	0	9	.006	2	.004	1	6.093e-4	1	NC	3	NC	1
68			min	0	2	008	3	0	15	2.052e-5	15	8086.666	2	NC	1
69		16	max	0	9	.007	2	.005	1	6.434e-4	1	NC	3	NC	2
70			min	0	2	008	3	0	15	2.168e-5	15	6928.368	2	9500.865	1
71		17	max	0	9	.008	2	.006	1	6.775e-4	1	NC	3	NC	2
72			min	0	2	008	3	0	15	2.284e-5	15	6015.812	2	8202.277	1
73		18	max	.001	9	.009	2	.006	1	7.116e-4	1	NC	3	NC	2
74			min	0	2	008	3	0	15		15	5291.002	2	7248.677	1
75		19	max	.001	9	.01	2	.007	1	7.457e-4	1	NC	3	NC	2
76			min	0	2	008	3	0	15	2.515e-5	15	4711.647	2	6533.94	1
77	M4	1	max	.003	1	.009	2	0	15		15	NC	1	NC	2
78			min	0	3	007	3	005	1	-9.085e-4	1	NC	1	3666.994	1
79		2	max	.002	1	.008	2	0	15		15	NC	1	NC	2
80			min	0	3	006	3	005	1	-9.085e-4	1	NC	1	3999.91	1
81		3	max	.002	1	.008	2	0	15		15	NC	1	NC	2
82			min	0	3	006	3	004	1	-9.085e-4	1	NC	1	4396.154	1
83		4	max	.002	1	.007	2	0	15	-3.023e-5	15	NC	1	NC	2
84			min	0	3	006	3	004	1	-9.085e-4	1	NC	1	4872.426	
85		5	max	.002	1	.007	2	0	15	-3.023e-5	15	NC	1	NC	2
86			min	0	3	005	3	004	1	-9.085e-4	1	NC	1	5451.477	1
87		6	max	.002	1	.006	2	0	15		15	NC	1	NC	2
88			min	0	3	005	3	003	1	-9.085e-4	1	NC	1	6164.949	
89		7	max	.002	1	.006	2	0	15		15	NC	1	NC	2
90			min	0	3	005	3	003	1	-9.085e-4	1	NC	1	7057.917	1
91		8	max	.002	1	.005	2	0		-3.023e-5	•	NC	1	NC	2
92			min	0	3	004	3	002		-9.085e-4		NC	1	8196.385	
93		9	max	.001	1	.005	2	0		-3.023e-5		NC	1	NC	2
94		Ť	min	0	3	004	3	002	1	-9.085e-4	1	NC	1	9680.203	
95		10	max	.001	1	.004	2	0	15	-3.023e-5	15	NC	1	NC	1
96		10	min	0	3	003	3	002	1	-9.085e-4	1	NC	1	NC	1
97		11	max	.001	1	.004	2	0	15	-3.023e-5	15	NC	1	NC	1
98			min	0	3	003	3	001	1	-9.085e-4	1	NC	1	NC	1
99		12	max	0	1	.003	2	0	15	-3.023e-5	15	NC	1	NC	1
100		12	min	0	3	003	3	001	1	-9.085e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0	15		•	NC	1	NC	1
102		13	min	0	3	002	3	0	1	-9.085e-4	1	NC	1	NC	1
103		14	max	0	1	.002	2	0	15		•	NC	1	NC	1
104		14	min	0	3	002	3	0	1	-9.085e-4	1	NC	1	NC	1
105		15		0	1	.002	2	0	15	-3.023e-5	15	NC NC	1	NC NC	1
106		10	max	0	3	002	3	0	1	-9.085e-4	1 <u>1</u>	NC NC	1	NC NC	1
107		16		0	1	002 .001	2	0	15	-9.085e-4 -3.023e-5		NC NC	1	NC NC	1
		10	max												
108			min	0	3	001	3	0	1	-9.085e-4	<u> 1</u>	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	0	2	0	15	-3.023e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-9.085e-4	1	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-3.023e-5	15	NC	1	NC	1
112			min	0	3	0	3	0	1	-9.085e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-3.023e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-9.085e-4	1	NC	1	NC	1
115	M6	1	max	.01	1	.024	2	.004	1	1.987e-4	3	NC	3	NC	2
116			min	01	3	019	3	003	3	2.554e-6	10	1372.28	2	7794.929	
117		2	max	.009	1	.023	2	.004	1	1.933e-4	3	NC	3	NC	2
118			min	009	3	018	3	002	3	1.846e-6	10	1465.013	2	8452.291	1
119		3	max	.009	1	.021	2	.004	1	1.879e-4	3	NC	3	NC	2
120		- 3	min	009	3	017	3	002	3	1.137e-6	10	1570.853	2	9231.51	1
		1													1
121		4	max	.008	1	.02	2	.003	1	1.825e-4	3	NC	3_	NC	
122		_	min	008	3	016	3	002	3	4.291e-7	10	1692.419	2	NC	1
123		5_	max	.008	1	.018	2	.003	1	1.771e-4	3	NC 4000 004	3	NC	1
124			min	008	3	015	3	002	3	-2.792e-7	10	1833.084	2	NC	1
125		6	max	.007	1	.017	2	.003	1	1.717e-4	3_	NC	3	NC	1
126			min	007	3	014	3	002	3	-9.874e-7	10	1997.264	2	NC	1
127		7	max	.007	1	.015	2	.002	1	1.664e-4	3	NC	3	NC	1
128			min	007	3	013	3	002	3	-3.539e-6	2	2190.85	2	NC	1
129		8	max	.006	1	.014	2	.002	1	1.61e-4	3	NC	3	NC	1
130			min	006	3	012	3	001	3	-7.177e-6	2	2421.88	2	NC	1
131		9	max	.006	1	.012	2	.002	1	1.556e-4	3	NC	3	NC	1
132			min	005	3	011	3	001	3	-1.082e-5	2	2701.608	2	NC	1
133		10	max	.005	1	.011	2	.001	1	1.502e-4	3	NC	3	NC	1
134		10	min	005	3	01	3	001	3	-1.445e-5	2	3046.296	2	NC	1
135		11	max	.004	1	.01	2	.001	1	1.448e-4	3	NC	3	NC	1
136			min	004	3	009	3	0	3	-1.809e-5	2	3480.333	2	NC	1
137		12	max	.004	1	.008	2	0	1	1.394e-4	3	NC	3	NC	1
138		12	min	004	3	008	3	0	3	-2.173e-5	2	4042.049	2	NC	1
139		13	max	.003	1	.007	2	0	1	1.34e-4	3	NC	3	NC	1
		13			3		3		3	-2.537e-5					1
140		4.4	min	003		007		0			2	4795.323	2	NC NC	1
141		14	max	.003	1	.006	2	0	1	1.286e-4	3_	NC	3_	NC	$\frac{1}{4}$
142			min	003	3	006	3	0	3	-2.901e-5	2	5855.131	2	NC	1
143		15	max	.002	1	.004	2	0	1	1.232e-4	3_	NC	3_	NC	1
144			min	002	3	005	3	0	3	-3.265e-5	2	7451.412	2	NC	1
145		16	max	.002	1	.003	2	0	1	1.179e-4	3_	NC	_1_	NC	1
146			min	002	3	003	3	0	3	-3.629e-5	2	NC	1_	NC	1
147		17	max	.001	1	.002	2	0	1	1.125e-4	3	NC	1_	NC	1
148			min	001	3	002	3	0	3	-3.993e-5	2	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	1.071e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-4.356e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.017e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-4.72e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.146e-5	2	NC	1	NC	1
154			min	0	1	0	1	0	1	-4.653e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.933e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-3.506e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.836e-5	<u> </u>	NC	1	NC	1
158				0	2	003	3	0	1	-2.36e-5	3	NC	1	NC	1
		4	min		3		2			1.738e-5		NC NC	1		1
159		4	max	0		.004		0	3		1			NC NC	
160		-	min	0	2	005	3	0	1	-1.214e-5	3	NC NC	1_	NC NC	1
161		5	max	0	3	.005	2	0	3	1.64e-5	1_	NC 0007.040	3	NC	1
162			min	0	2	006	3	0	1	-6.708e-7	3	8607.816	2	NC	1
163		6	max	0	3	.007	2	0	3	1.542e-5	1_	NC	3	NC	1
164			min	001	2	008	3	0	1	4.473e-7	15	6898.406	2	NC	1
165		7	max	.001	3	.008	2	.001	3	2.226e-5	3	NC	3	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
166			min	001	2	009	3	0	1	4.778e-7		5729.571	2	NC	1
167		8	max	.001	3	.009	2	.001	3	3.372e-5	3	NC	3	NC	1
168			min	001	2	011	3	0	1	-2.579e-6	2	4872.834	2	NC	1
169		9	max	.001	3	.011	2	.001	3	4.519e-5	3	NC	3	NC	1
170		10	min	002	2	012	3	0	1	-6.013e-6	2	4214.353	2	NC	1
171		10	max	.002	3	.012	2	.001	3	5.665e-5	3	NC	3	NC	1
172		44	min	002	2	013	3	001	1	-9.447e-6	2	3691.025	2	NC NC	1
173		11	max	.002	3	.014	2	.001	3	6.812e-5	3_	NC 2004 050	3	NC	1
174		40	min	002	2	015	3	001	1	-1.288e-5	2	3264.953	2	NC NC	1
175		12	max	.002	3	.016	3	.002	3	7.958e-5 -1.632e-5	2	NC 2911.88	3	NC NC	1
176 177		13	min	002 .002	3	016	2	001 .002	3			NC	3	NC NC	1
178		13	max	002	2	.018 017	3	002	1	9.105e-5 -1.975e-5	2	2615.442	2	NC NC	1
179		14	max	.002	3	.017 .019	2	.002	3	1.025e-4	3	NC	3	NC NC	1
180		14	min	003	2	018	3	002	1	-2.318e-5	2	2364.1	2	NC	1
181		15	max	.002	3	.021	2	.002	3	1.14e-4	3	NC	3	NC	1
182		10	min	003	2	019	3	002	1	-2.662e-5	2	2149.415	2	NC	1
183		16	max	.003	3	.023	2	.002	3	1.254e-4	3	NC	3	NC	1
184		10	min	003	2	019	3	002	1	-3.005e-5	2	1965.021	2	NC	1
185		17	max	.003	3	.025	2	.001	3	1.369e-4	3	NC	3	NC	1
186			min	003	2	02	3	002	1	-3.349e-5	2	1805.997	2	NC	1
187		18	max	.003	3	.028	2	.001	3	1.484e-4	3	NC	3	NC	1
188			min	004	2	021	3	002	1	-3.692e-5	2	1668.466	2	NC	1
189		19	max	.003	3	.03	2	.001	3	1.598e-4	3	NC	3	NC	1
190			min	004	2	022	3	002	1	-4.035e-5	2	1549.328	2	NC	1
191	M8	1	max	.007	1	.028	2	.002	1	-1.616e-6	10	NC	1	NC	2
192			min	001	3	019	3	0	3	-1.256e-4	3	NC	1	7971.675	1
193		2	max	.007	1	.026	2	.002	1	-1.616e-6	10	NC	1	NC	2
194			min	001	3	018	3	0	3	-1.256e-4	3	NC	1	8691.304	1
195		3	max	.006	1	.025	2	.002	1	-1.616e-6	10	NC	1_	NC	2
196			min	001	3	017	3	0	3	-1.256e-4	3	NC	1	9548.022	1
197		4	max	.006	1	.023	2	.002	1	-1.616e-6	10	NC	_1_	NC	1
198			min	001	3	016	3	0	3	-1.256e-4	3	NC	1_	NC	1
199		5	max	.006	1	.022	2	.002	1	-1.616e-6	10	NC	_1_	NC	1
200		_	min	0	3	015	3	0	3	-1.256e-4	3	NC	_1_	NC	1
201		6	max	.005	1	.02	2	.001	1	-1.616e-6	<u>10</u>	NC	_1_	NC	1
202			min	0	3	014	3	0	3	-1.256e-4	3	NC	1_	NC	1
203		7	max	.005	1	.018	2	.001	1	-1.616e-6	10	NC	1_	NC	1
204			min	0	3	013	3	0	3	-1.256e-4	3_	NC	_1_	NC	1
205		8	max	.004	1	.017	2	.001	1		10	NC NC	1_	NC NC	1
206			min	0	3	012	3	0		-1.256e-4		NC NC	1	NC NC	1
207		9	max	.004	1	.015	2	0	1	-1.616e-6		NC NC	1	NC NC	1
208		10	min	<u> </u>	3	011 014	2	0	1	-1.256e-4	<u>3</u>	NC NC	<u>1</u> 1	NC NC	1
210		10	max	004 0	3	.014 01	3	<u> </u>	3	-1.616e-6 -1.256e-4	<u>10</u>	NC NC	1	NC NC	1
211		11	min max	.003	1	.012	2	0	1	-1.236e-4 -1.616e-6	10	NC NC	1	NC NC	1
212		11	min	0	3	009	3	0	3	-1.016e-6	3	NC	1	NC	1
213		12	max	.003	1	.011	2	0	1	-1.616e-6		NC	1	NC	1
214		12	min	<u>.003</u>	3	007	3	0	3	-1.016e-6	3	NC	1	NC	1
215		13		.002	1	.009	2	0	1	-1.616e-6	10	NC	1	NC	1
216		13	max min	0	3	006	3	0	3	-1.016e-6	3	NC NC	1	NC NC	1
217		14	max	.002	1	.008	2	0	1	-1.616e-6	10	NC	1	NC	1
218		17	min	0	3	005	3	0	3	-1.256e-4	3	NC	1	NC	1
219		15	max	.002	1	.006	2	0	1	-1.616e-6	10	NC	1	NC	1
220		10	min	0	3	004	3	0	3	-1.256e-4	3	NC	1	NC	1
221		16	max	.001	1	.005	2	0	1	-1.616e-6	10	NC	1	NC	1
222		1.0	min	0	3	003	3	0	3	-1.256e-4	3	NC	1	NC	1
									_				_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
223		17	max	0	1	.003	2	0	1	-1.616e-6	10	NC	_1_	NC	1
224			min	0	3	002	3	0	3	-1.256e-4	3	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-1.616e-6	10	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-1.256e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-1.616e-6	<u>10</u>	NC	_1_	NC	1
228	1440	1	min	0	1	0	1	0	1	-1.256e-4	3	NC NC	1_	NC NC	1
229	M10	1	max	.003	1	.008	2	0	3	9.488e-4	1_	NC 4400.40	3	NC	1
230		 	min	003	3	007	3	002	1	-2.053e-4	3	4400.19	2	NC NC	1
231		2	max	.003	1	.007	2	0	3	8.999e-4	1	NC	3	NC NC	1
232		2	min	003	3	006	2	002	1	-1.995e-4 8.509e-4	3	4769.706 NC	2	NC NC	1
233		3	max	.003 003	3	.006 006	3	0 002	3	-1.937e-4	<u>1</u> 3	5203.63	3	NC NC	1
235		4	min	.003	1	006 .006	2	<u>002</u> 0	3	8.02e-4		NC	3	NC NC	1
236		4	max	002	3	006	3	002	1	-1.879e-4	<u>1</u> 3	5716.562	2	NC NC	1
237		5		.002	1	.005	2	<u>002</u> 0	3	7.53e-4	<u>ა</u> 1	NC	3	NC NC	1
238		+ 5	max	002	3	005	3	001	1	-1.821e-4	3	6327.705	2	NC	1
239		6	max	.002	1	.005	2	0	3	7.041e-4	1	NC	1	NC	1
240		+	min	002	3	005	3	001	1	-1.763e-4	3	7062.713	2	NC	1
241		7	max	.002	1	.004	2	0	3	6.551e-4	1	NC	1	NC	1
242			min	002	3	005	3	001	1	-1.705e-4	3	7956.505	2	NC	1
243		8	max	.002	1	.004	2	0	3	6.062e-4	1	NC	1	NC	1
244			min	002	3	005	3	001	1	-1.647e-4	3	9057.645	2	NC	1
245		9	max	.002	1	.003	2	0	3	5.572e-4	1	NC	1	NC	1
246			min	002	3	004	3	0	1	-1.59e-4	3	NC	1	NC	1
247		10	max	.002	1	.003	2	0	3	5.083e-4	1	NC	1	NC	1
248			min	001	3	004	3	0	1	-1.532e-4	3	NC	1	NC	1
249		11	max	.001	1	.002	2	0	3	4.593e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-1.474e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	4.104e-4	1	NC	1	NC	1
252			min	001	3	003	3	0	1	-1.416e-4	3	NC	1	NC	1
253		13	max	.001	1	.002	2	0	3	3.614e-4	1_	NC	1_	NC	1
254			min	0	3	003	3	0	1	-1.358e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	00	3	3.125e-4	_1_	NC	_1_	NC	1
256			min	0	3	002	3	0	1	-1.3e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	2.635e-4	1_	NC	_1_	NC	1
258			min	0	3	002	3	0	1	-1.242e-4	3	NC	1_	NC	1
259		16	max	0	1	0	2	0	3	2.146e-4	1_	NC	1_	NC	1
260		+	min	0	3	002	3	0	1	-1.184e-4	3	NC	1_	NC	1
261		17	max	0	1	0	2	0	3	1.656e-4	1	NC	_1_	NC	1
262		40	min	0	3	001	3	0	1	-1.126e-4	3	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0		1.167e-4		NC NC	1_	NC NC	1
264		10	min	0	3	0	3	0	1	-1.069e-4	3	NC NC	1_	NC NC	1
265 266		19	max	0	1	0	1	<u> </u>	1	6.771e-5	1_2	NC NC	1	NC NC	1
267	M11	1	min	<u> </u>	1	<u> </u>	1	0	1	-1.011e-4 4.65e-5	3	NC NC	1	NC NC	1
268	IVI I I		max min	0	1	0	1	0	1	-3.248e-5	1	NC NC	1	NC NC	1
269		2	max	0	9	0	2	0	1	3.327e-5	3	NC	1	NC	1
270		+-	min	0	2	0	3	0	3	-9.313e-5	1	NC	1	NC	1
271		3	max	0	9	0	2	0	10	2.003e-5	3	NC	1	NC	1
272		-	min	0	2	002	3	0	3	-1.538e-4	1	NC	1	NC	1
273		4	max	0	9	<u>002</u> 0	2	0	10		3	NC	1	NC	1
274			min	0	2	002	3	0	3	-2.144e-4	1	NC	1	NC	1
275		5	max	0	9	0	2	0	10		•	NC	1	NC	1
276			min	0	2	003	3	0	1	-2.751e-4	1	NC	1	NC	1
277		6	max	0	9	<u>003</u>	2	0	15		15	NC	1	NC	1
278			min	0	2	004	3	001	1	-3.357e-4	1	NC	1	NC	1
279		7	max	0	9	.001	2	0		-1.329e-5	15	NC	1	NC	1
			man			.001			0						

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
280			min	0	2	005	3	002	1	-3.964e-4	1_	NC	1_	NC	1
281		8	max	0	9	.001	2	00		-1.538e-5	<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	003	1_	-4.571e-4	_1_	NC	1_	NC	1
283		9	max	0	9	.002	2	0	15		15	NC	1_	NC NC	1
284		40	min	0	2	006	3	004	1_	-5.177e-4	1_	NC NC	1_	NC NC	1
285		10	max	0	9	.002	2	0	15	-1.955e-5	<u>15</u>	NC NC	1	NC 0070 070	2
286		44	min	0	2	006	3	005	1	-5.784e-4	1_	NC NC	1_	9272.676	1
287		11	max	0	9	.003	3	0	15	-2.164e-5	<u>15</u>	NC NC	1	NC 7655.575	2
288 289		12	min	0	9	007		006 0		-6.39e-4	1_	NC NC	1	NC	2
290		12	max min	0	2	.003 007	3	007	15	-2.372e-5 -6.997e-4	<u>15</u> 1	NC NC	1	6486.111	1
291		13	max	0	9	.007	2	007 0	15	-0.997e-4 -2.581e-5	15	NC NC	1	NC	2
292		13	min	0	2	00 4	3	008	1	-7.603e-4	1	NC NC	1	5614.168	
293		14	max	0	9	.005	2	008	15	-2.79e-5	15	NC	1	NC	2
294		14	min	0	2	007	3	009	1	-8.21e-4	1	9583.857	2	4948.514	1
295		15	max	0	9	.006	2	<u>009</u>	15	-2.998e-5	15	NC	3	NC	2
296		10	min	0	2	008	3	01	1	-8.816e-4	1	8096.695	2	4431.105	1
297		16	max	0	9	.007	2	0	15	-3.207e-5	15	NC	3	NC	2
298		· ·	min	0	2	008	3	011	1	-9.423e-4	1	6936.177	2	4023.629	1
299		17	max	0	9	.008	2	0	15	-3.415e-5	15	NC	3	NC	2
300			min	0	2	008	3	012	1	-1.003e-3	1	6022.033	2	3700.061	1
301		18	max	.001	9	.009	2	0	15	-3.624e-5	15	NC	3	NC	3
302			min	0	2	008	3	013	1	-1.064e-3	1	5296.071	2	3442.33	1
303		19	max	.001	9	.01	2	0	15	-3.833e-5	15	NC	3	NC	3
304			min	0	2	008	3	014	1	-1.124e-3	1	4715.871	2	3237.728	1
305	M12	1	max	.003	1	.009	2	.012	1	9.739e-4	1	NC	1	NC	3
306			min	0	3	007	3	0	15	3.372e-5	15	NC	1	1639.004	1
307		2	max	.002	1	.008	2	.011	1	9.739e-4	1_	NC	1_	NC	3
308			min	0	3	006	3	0	15	3.372e-5	15	NC	1_	1787.353	
309		3	max	.002	1	.008	2	.01	1	9.739e-4	1_	NC	1_	NC	3
310			min	0	3	006	3	0	15	3.372e-5	15	NC	1	1963.943	1
311		4	max	.002	1	.007	2	.009	1	9.739e-4	_1_	NC	_1_	NC	3
312		_	min	0	3	006	3	0	15	3.372e-5	15	NC	1_	2176.217	1
313		5	max	.002	1	.007	2	.008	1	9.739e-4	1_	NC	_1_	NC	3
314			min	0	3	005	3	0	15	3.372e-5	15	NC	1_	2434.314	1
315		6	max	.002	1	.006	2	.007	1	9.739e-4	1_	NC	1	NC	3
316		-	min	0	3	005	3	0	15	3.372e-5	15	NC	1_	2752.339	1
317		7	max	.002	1	.006	2	.006	1	9.739e-4	1_	NC	1	NC 0450.00	3
318			min	0	3	005	3	0	15	3.372e-5	<u>15</u>	NC NC	1_	3150.38	1
319 320		8	max	.002	3	.005	3	.005	1	9.739e-4 3.372e-5	1_	NC NC	1	NC 3657.854	3
			min			004	2	0		9.739e-4		NC NC			2
321		9	max min	.001 0	3	.005 004	3	.004 0	15	9.739e-4 3.372e-5	<u>1</u> 15	NC NC	<u>1</u> 1	NC 4319.26	1
323		10		.001	1	004 .004	2	.004	1	9.739e-4		NC NC	1	NC	2
324		10	max min	.001	3	003	3	<u>.004</u>	15	3.372e-5	<u>1</u> 15	NC NC	1	5204.558	
325		11	max	.001	1	.004	2	.003	1	9.739e-4	1	NC	1	NC	2
326			min	0	3	003	3	0	15	3.372e-5	15	NC	1	6428.981	1
327		12	max	0	1	.003	2	.002	1	9.739e-4	1	NC	1	NC	2
328		12	min	0	3	003	3	0	15	3.372e-5	15	NC	1	8193.553	
329		13	max	0	1	.003	2	.002	1	9.739e-4	1	NC	1	NC	1
330		10	min	0	3	002	3	0	15	3.372e-5	15	NC	1	NC	1
331		14	max	0	1	.002	2	.001	1	9.739e-4	1	NC	1	NC	1
332			min	0	3	002	3	0	15	3.372e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	9.739e-4	1	NC	1	NC	1
334		'	min	0	3	002	3	0	15	3.372e-5	15	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	9.739e-4	1	NC	1	NC	1
336			min	0	3	001	3	0	15		15	NC	1	NC	1
					_		_			3.0.200			_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	9.739e-4	_1_	NC	_1_	NC	1
338			min	0	3	0	3	0	15	3.372e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	0	1_	9.739e-4	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	3.372e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	9.739e-4	1_	NC		NC	1
342	D.4.4	1	min	0	1	0	1	0	1	3.372e-5	15	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.006	3	.023	3	.001	3	1.567e-2	1_	NC	1_	NC NC	1
344			min	007	2	028	1	005	1	-1.438e-2	3	NC NC	1_	NC NC	1
345		2	max	.006	3	.013	3	0	3	7.446e-3	1	NC 2544.00	4	NC 020C 0F4	2
346		2	min	007	2	015	1	<u>01</u>	1	-7.115e-3	3	3541.86 NC	1	8396.051	2
347		3	max	.006 007	3	.003 003	3	0 014	1	1.565e-5 -6.212e-4	<u>3</u>	1831.876	<u>4</u> 1	NC 5090.975	
349		4	min	.007	3	003 .007	1	014 0	3	1.884e-5	3	NC	<u> </u>	NC	2
350		4	max	007	2	005	3	016	1	-5.189e-4	1	1295.784	1	4212.122	1
351		5	max	.006	3	.016	1	<u>010</u> 0	3	2.202e-5	3	NC	5	NC	2
352		-	min	007	2	012	3	016	1	-4.166e-4	1	1038.123	1	4043.72	1
353		6	max	.006	3	.023	1	0	3	2.52e-5	3	NC	5	NC	2
354			min	007	2	017	3	015	1	-3.143e-4	1	892.513	1	4325.28	1
355		7	max	.006	3	.029	1	0	3	2.839e-5	3	NC	5	NC	2
356			min	007	2	021	3	013	1	-2.12e-4	1	804.383	1	5146.843	1
357		8	max	.006	3	.033	1	0	3	3.157e-5	3	NC	5	NC	2
358			min	007	2	024	3	011	1	-1.097e-4	1	751.042	1	7056.205	
359		9	max	.006	3	.035	1	0	3	3.476e-5	3	NC	5	NC	1
360			min	007	2	025	3	008	1	-9.31e-6	2	721.897	1	NC	1
361		10	max	.006	3	.036	1	0	3	9.49e-5	1	NC	5	NC	1
362			min	007	2	025	3	005	1	3.477e-6	15	712.063	1	NC	1
363		11	max	.006	3	.035	1	0	3	1.972e-4	1	NC	5	NC	1
364			min	008	2	024	3	001	1	6.894e-6	15	720.059	1	NC	1
365		12	max	.006	3	.033	1	.002	1	2.995e-4	1	NC	5	NC	2
366			min	008	2	022	3	0	15	1.031e-5	15	747.19	1	8161.411	1
367		13	max	.006	3	.029	1	.004	1	4.018e-4	1_	NC	5	NC	2
368			min	008	2	019	3	0	15	1.373e-5	15	798.107	1_	5669.259	
369		14	max	.006	3	.023	1	.006	1_	5.041e-4	_1_	NC	5_	NC	2
370			min	008	2	015	3	0	15	1.715e-5	15		1_	4649.058	
371		15	max	.006	3	.015	1	.007	1	6.064e-4	1_	NC	5_	NC	2
372			min	008	2	01	3	0	15	2.057e-5		1023.756	<u>1</u>	4282.421	1
373		16	max	.006	3	.006	1	.007	1	6.805e-4	_1_	NC	5	NC	2
374		1	min	008	2	004	3	0	15	2.306e-5		1272.541	_1_	4413.787	1
375		17	max	.006	3	.002	3	.005	1	8.322e-5	1_	NC 4700 405	4_	NC FOOT COA	2
376		40	min	008	2	005	2	0	15	3.499e-6	15	1786.465	1_	5295.631	1
377		18	max	.006	3	.01	3	.002	1	8.845e-3		NC	4	NC ocoo oco	2
378		10	min	008	2	017	1	0	15	-3.293e-3	3	3443.067	1_1	8689.363	
379		19	max	.006	3	.018	3	0	3	1.778e-2 -6.679e-3	1	NC NC	<u>1</u> 1	NC NC	1
380	M5	1	min	008	2	031	3	003			3	NC NC	1	NC NC	1
381 382	CIVI	<u> </u>	max min	.018 024	3	.069 085	1	.001 005	1	6.855e-7 4.254e-8	<u>3</u>	NC NC	1	NC NC	1
383		2	max	.018	3	.039	3	.002	3	5.137e-5	3	NC	5	NC	1
384			min	024	2	03 <u>9</u> 047	1	002 005	1	-8.444e-5	1	1200.261	1	NC NC	1
385		3	max	.018	3	.01	3	.003	3	1.011e-4	3	NC	5	NC	1
386		J	min	024	2	011	1	004	1	-1.677e-4	1	617.77	1	NC	1
387		4	max	.018	3	.021	1	.003	3	9.954e-5	3	NC	5	NC	1
388			min	024	2	013	3	004	1	-1.574e-4	1	435.844	1	NC	1
389		5	max	.018	3	.047	1	.003	3	9.799e-5	3	NC	15	NC	1
390			min	024	2	033	3	003	1	-1.472e-4	1	348.364	1	NC	1
391		6	max	.018	3	.069	1	.003	3	9.645e-5	3	NC	15	NC	1
392			min	024	2	048	3	003	1	-1.369e-4	1	298.846	1	NC	1
393		7	max	.018	3	.086	1	.004	3	9.49e-5	3	NC	15	NC	1
			max	.010		.000	•	.001		550					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
394			min	024	2	059	3	003	1	-1.267e-4	1_	268.778	1_	NC	1
395		8	max	.018	3	.098	1	.003	3	9.335e-5	3	NC	15	NC	1_
396			min	024	2	067	3	003	1	-1.164e-4	1_	250.459	1_	NC	1
397		9	max	.018	3	.106	1	.003	3	9.18e-5	3	NC	15	NC	1
398			min	024	2	071	3	002	1	-1.062e-4	1_	240.289	1_	NC	1
399		10	max	.018	3	.108	1	.003	3	9.025e-5	3	NC	<u>15</u>	NC	1
400			min	024	2	072	3	002	1	-9.592e-5	1	236.6	1	NC	1
401		11	max	.018	3	.106	1	.003	3	8.871e-5	3	NC	15	NC	1
402			min	024	2	069	3	002	1	-8.568e-5	1	238.868	1	NC	1
403		12	max	.018	3	.098	1	.003	3	8.716e-5	3	NC	15	NC	1
404			min	024	2	064	3	002	1	-7.543e-5	1	247.507	1	NC	1
405		13	max	.018	3	.086	1	.002	3	8.561e-5	3	NC	15	NC	1
406			min	024	2	055	3	002	1	-6.518e-5	1	264.047	1	NC	1
407		14	max	.018	3	.069	1	.002	3	8.406e-5	3	NC	15	NC	1
408			min	024	2	043	3	002	1	-5.493e-5	1	291.872	1	NC	1
409		15	max	.018	3	.046	1	.002	3	8.251e-5	3	NC	5	NC	1
410			min	024	2	029	3	002	1	-4.468e-5	1	338.273	1	NC	1
411		16	max	.018	3	.018	1	.001	3	7.868e-5	3	NC	5	NC	1
412			min	024	2	012	3	002	1	-4.168e-5	1	420.788	1	NC	1
413		17	max	.018	3	.007	3	0	3	2.045e-5	3	NC	5	NC	1
414			min	024	2	014	1	002	1	-2.112e-4	1	593.283	1	NC	1
415		18	max	.018	3	.029	3	0	3	9.712e-6	3	NC	5	NC	1
416			min	024	2	053	1	003	1	-1.082e-4	1	1149.835	1	NC	1
417		19	max	.018	3	.051	3	0	3	0	15	NC	1	NC	1
418			min	024	2	094	1	003	1	-1.308e-7	3	NC	1	NC	1
419	M9	1	max	.006	3	.023	3	0	3	1.438e-2	3	NC	1	NC	1
420	1110		min	007	2	029	1	006	1	-1.567e-2	1	NC	1	NC	1
421		2	max	.006	3	.013	3	0	3	7.128e-3	3	NC	4	NC	2
422			min	007	2	015	1	001	1	-7.703e-3	1	3542.729	1	9713.806	1
423		3	max	.006	3	.003	3	.002	1	1.109e-4	1	NC	4	NC	2
424			min	007	2	003	1	0	3	3.907e-6	15	1832.337	1	6029.749	1
425		4	max	.006	3	.007	1	.004	1	2.499e-5	1	NC	5	NC	2
426		_	min	007	2	005	3	0	3	-1.699e-6		1296.107	1	5106.978	1
427		5	max	.006	3	.016	1	.004	1	2.791e-6	10	NC	5	NC	2
428			min	007	2	012	3	001	3	-6.097e-5	1	1038.368	1	5057.824	1
429		6	max	.006	3	.023	1	.003	1	-4.261e-6		NC	5	NC	2
430		_	min	007	2	017	3	001	3	-1.469e-4	1	892.708	1	5669.392	1
431		7	max	.006	3	.029	1	.002	1	-7.695e-6		NC	5	NC	2
432		+-	min	007	2	029	3	002	3	-2.329e-4	1	804.543	1	7314.288	1
433		8		.006	3	.033	1	002 0	2	-2.329e-4 -1.06e-5	15	NC	5	NC	1
434		-	max	007	2	024	3	002	3	-3.189e-4		751.175	1	NC	1
		9	min		3		1	_				NC		NC	1
435 436		9	max	.006 007	2	.035 025	3	003	10	-1.35e-5 -4.048e-4	<u>15</u>		<u>5</u> 1	NC	1
437		10			3		1	003 0	15	-4.046e-4 -1.64e-5	15	722.01 NC	5	NC NC	1
		10	max	.006		.036	_	_			<u>15</u>		<u> </u>		1
438		11	min	007	2	025	3	006	1 1 5	-4.908e-4	1_	712.159	•	NC NC	
439		11	max	.006	3	.035	1	0	15	-1.93e-5	<u>15</u>	NC 700.44	5	NC 0007.000	2
440		40	min	008	2	025	3	009	1	-5.767e-4	1_	720.14	<u>1</u>	9237.998	1
441		12	max	.006	3	.033	1	0	15	-2.22e-5	<u>15</u>	NC 747.050	5	NC	2
442		4.0	min	008	2	023	3	011	1_	-6.627e-4	_1_	747.258	_1_	5995.502	1_
443		13	max	.006	3	.029	1	0	15	-2.51e-5	<u>15</u>	NC	5_	NC 1001	2
444			min	008	2	<u>019</u>	3	013	1_	-7.487e-4	1_	798.164	1_	4661.005	1
445		14	max	.006	3	.023	1	0	15	-2.8e-5	<u>15</u>	NC	5	NC	2
446			min	008	2	01 <u>5</u>	3	015	1	-8.346e-4	<u>1</u>	883.051	_1_	4054.217	1_
447		15	max	.006	3	.015	1	0	15	-3.09e-5	15	NC	5_	NC	2
448			min	008	2	01	3	015	1	-9.206e-4	1	1023.79	1	3871.929	1
449		16	max	.006	3	.006	1	0	15	-3.304e-5	15	NC	5_	NC	2
450			min	008	2	004	3	014	1	-9.847e-4	1	1272.565	1	4088.443	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
451		17	max	.006	3	.003	3	0	15 -1.087e-5	12	NC	_4_	NC	2
452			min	008	2	005	2	012	1 -5.293e-4	<u>1</u>	1786.499	<u>1</u>	4990.47	1
453		18	max	.006	3	.01	3	0	15 3.301e-3	3_	NC	4_	NC	2
454			min	008	2	017	1	008	1 -9.071e-3	1_	3443.126	1_	8293.421	1
455		19	max	.006	3	.018	3	0	3 6.679e-3	3	NC	1	NC	1
456			min	008	2	031	1	002	1 -1.778e-2	1	NC	1	NC	1
457	M13	1	max	.006	1	.023	3	.006	3 4.003e-3	3	NC	1	NC	1
458			min	0	3	029	1	007	2 -4.991e-3	1	NC	1	NC	1
459		2	max	.006	1	.167	3	.039	1 4.831e-3	3	NC	5	NC	2
460			min	001	3	185	1	0	10 -6.053e-3	1	1190.053	1	4274.732	1
461		3	max	.006	1	.284	3	.098	1 5.66e-3	3	NC	5	NC	3
462			min	001	3	313	1	.003	15 -7.114e-3	1	653.951	1	1802.279	1
463		4	max	.006	1	.358	3	.148	1 6.489e-3	3	NC	5	NC	3
464			min	001	3	394	1	.005	15 -8.176e-3	1	509.049	1	1213.125	
465		5	max	.006	1	.38	3	.172	1 7.317e-3	3	NC	5	NC	3
466		+ -	min	001	3	419	1	.006	15 -9.238e-3	1	476.698	1	1048.226	1
467		6	max	.006	1	.351	3	.163	1 8.146e-3	3	NC	5	NC	3
468		10		001	3	388	1	.006	15 -1.03e-2	1	516.928	1	1104.167	1
		7	min		1		3	.124			NC	5	NC	3
469		+ /	max	.006	_	.281			. 0.00 0	3				
470		_	min	001	3	314	1	.002	10 -1.136e-2	1_	651.957	1_	1446.737	1
471		8	max	.006	1	.191	3	.064	1 9.803e-3	3	NC 004.00	5_	NC	2
472			min	001	3	216	1	004	10 -1.242e-2	1_	991.36	1_	2683.504	1
473		9	max	.005	1	.107	3	.017	3 1.063e-2	3	NC	4	NC NC	1
474			min	001	3	126	1	013	2 -1.348e-2	1_	1901.743	1_	NC	1
475		10	max	.005	1	.069	3	.018	3 1.146e-2	3_	NC	_4_	NC	1_
476			min	001	3	085	1	024	2 -1.455e-2	1_	3271.358	1_	NC	1
477		11	max	.005	1	.107	3	.021	3 1.063e-2	3	NC	4_	NC	1
478			min	001	3	126	1	012	2 -1.348e-2	1	1901.744	1	NC	1
479		12	max	.005	1	.191	3	.07	1 9.804e-3	3	NC	5	NC	3
480			min	001	3	216	1	004	10 -1.242e-2	1	991.36	1	2476.965	1
481		13	max	.005	1	.281	3	.13	1 8.976e-3	3	NC	5	NC	5
482			min	001	3	314	1	.002	10 -1.136e-2	1	651.957	1	1373.333	1
483		14	max	.005	1	.351	3	.17	1 8.147e-3	3	NC	5	NC	5
484			min	001	3	388	1	.006	15 -1.03e-2	1	516.928	1	1060.029	
485		15	max	.005	1	.38	3	.179	1 7.319e-3	3	NC	5	NC	3
486			min	001	3	419	1	.006	15 -9.237e-3	1	476.699	1	1011.773	1
487		16	max	.005	1	.358	3	.154	1 6.491e-3	3	NC	5	NC	3
488		1	min	001	3	394	1	.005	15 -8.175e-3	1	509.05	1	1173.371	1
489		17	max	.005	1	.284	3	.102	1 5.663e-3	3	NC	5	NC	3
490			min	001	3	313	1	.004	15 -7.114e-3	1	653.952	1	1741.441	1
491		18		.005	1	.167	3	.04	1 4.834e-3	3	NC	5	NC	2
492		10	min	001	3	185	1	0	10 -6.052e-3	1	1190.054	1	4103.852	
493		19	max	.005	1	.023	3	.006	3 4.006e-3	3	NC	1	NC	1
494		13	min	001	3	028	1	007	2 -4.99e-3	1	NC	1	NC	1
494	M16	1	max	.002	1	028 .018	3	.006	3 5.234e-3	1	NC NC	1	NC NC	1
495	IVI I O		min	<u>.002</u>	3	031	1	008	2 -3.048e-3	3	NC NC	1	NC NC	1
		2									NC NC		NC NC	-
497		2	max	.002	3	.085	3	.041	1 6.382e-3	<u>1</u>	1048.492	5		2
498		2	min	0		208	1	102	10 -3.648e-3	3		1_	4019.433	
499		3	max	.002	1	.14	3	.102	1 7.529e-3	1	NC F7C 044	5_4	NC	3
500		A	min	0	3	354	1	.004	15 -4.248e-3	3	576.211	1_	1723.564	
501		4	max	.002	1	.175	3	.154	1 8.677e-3	1_	NC 440,005	5_	NC 4400,000	3
502		+	min	0	3	<u>446</u>	1	.005	15 -4.849e-3	3	448.605	_1_	1168.203	
503		5	max	.002	1	.186	3	.178	1 9.824e-3	1_	NC 100.00T	5	NC 1011	3
504			min	0	3	474	1	.006	15 -5.449e-3	3	420.207	<u>1</u>	1011.96	1
505		6	max	.002	1	.175	3	.169	1 1.097e-2	1_	NC	5	NC	5
506			min	0	3	439	1	.006	15 -6.049e-3	3	455.877	1_	1065.278	
507		7	max	.002	1	.145	3	.128	1 1.212e-2	1_	NC	5	NC	3

Model Name

: Schletter, Inc. : HCV

....

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Sol		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
5510	508			min	0	3	354	1	.002	10	-6.649e-3	3	575.455	1_	1389.304	
511			8													
512												_				
			9			-										
515			40													
516			10													
516			11													
518						_										
518			12													-
520			12													
S20			13											•		
521			13													
522			14									_		•		
523			17			-										1
525			15											_		3
525																
526			16													
527																1
528			17					3						5		3
Secondary Color						3				15		3				
530			18		.003	1	.085	3	.039	1	6.384e-3	1		5		
532	530			min	0	3	208		0	10		3	1048.493	1	4185.822	1
Table Tabl	531		19	max	.003	1	.018	3	.006	3	5.237e-3	1	NC	1	NC	1
534	532			min	0	3	031	1	008	2	-3.044e-3	3	NC	1	NC	1
535	533	M15	1	max	0	1	0	1	0	1		3		1_		1
S36				min	0	-	0		0	1		2			NC	1
537 3 max 0 3 01 15 .004 1 1.314e-3 3 NC 15 NC 1 538 min 0 10 042 4 003 3 -1.42e-3 1 2385.774 4 NC 1 540 min 0 10 061 4 006 3 -2.093e-3 1 1636.78 4 8345.246 1 541 5 max 0 3 018 15 .013 1 2.307e-3 3 5433.376 15 NC 4 542 min 0 10 078 4 01 3 -2.767e-3 1 1277.196 4 5471.546 1 542 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024			2		0				.001			3		5		1
538 min 0 10 042 4 003 3 -1.42e-3 1 2385.774 4 NC 1 539 4 max 0 3 014 15 .008 1 1.81e-3 3 6963.098 15 NC 3 540 min 0 10 061 4 006 3 -2.093e-3 1 1636.78 4 8345.246 1 541 5 max 0 3 018 15 .013 1 2.307e-3 3 5433.376 15 NC 4 542 min 0 10 078 4 01 3 -2.767e-3 1 1277.196 4 5471.56 1 543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>•</td><td></td><td>•</td><td></td><td></td></t<>				min						3		•		•		
539 4 max 0 3 014 15 .008 1 1.81e-3 3 6963.098 15 NC 3 540 min 0 10 061 4 006 3 -2.039e-3 1 1636.78 4 8345.246 1 541 5 max 0 3 018 15 .013 1 2.307e-3 3 5433.376 15 NC 4 542 min 0 10 078 4 011 3 -2.767e-3 1 277.196 4 5471.546 1 543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0			3_													
540 min 0 10 061 4 006 3 -2.093e-3 1 1636.78 4 8345.246 1 541 5 max 0 3 018 15 .013 1 2.307e-3 3 5433.376 15 NC 4 542 min 0 10 078 4 01 3 -2.767e-3 1 1277.196 4 5471.546 1 543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10												•				
541 5 max 0 3 018 15 .013 1 2.307e-3 3 5433.376 15 NC 4 542 min 0 10 078 4 01 3 -2.767e-3 1 1277.196 4 5471.546 1 543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0			4_							_	1.81e-3					
542 min 0 10 078 4 01 3 -2.767e-3 1 1277.196 4 5471.546 1 543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10			-		<u> </u>							_				
543 6 max 0 3 022 15 .019 1 2.803e-3 3 4572.76 15 NC 4 544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 max 0 3			5								2.307e-3					
544 min 0 10 092 4 015 3 -3.44e-3 1 1074.896 4 3981.098 1 545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10																
545 7 max 0 3 024 15 .024 1 3.299e-3 3 4055.213 15 NC 4 546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 min 0 10			Ь													_
546 min 0 10 104 4 019 3 -4.114e-3 1 953.238 4 3110.479 1 547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10			7													
547 8 max 0 3 026 15 .03 1 3.796e-3 3 3744.607 15 NC 4 548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15																_
548 min 0 10 113 4 024 3 -4.787e-3 1 880.226 4 2563.579 1 549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10			0													
549 9 max 0 3 028 15 .035 1 4.292e-3 3 3577.421 15 NC 4 550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.790E-3</td> <td></td> <td></td> <td></td> <td></td> <td></td>			0								3.790E-3					
550 min 0 10 118 4 028 3 -5.461e-3 1 840.926 4 2205.851 1 551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10			a													
551 10 max 0 3 028 15 .039 1 4.788e-3 3 3524.531 15 NC 4 552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15			-													
552 min 0 10 12 4 031 3 -6.134e-3 1 828.494 4 1969.785 1 553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10			10													
553 11 max 0 3 028 15 .042 1 5.284e-3 3 3577.421 15 NC 5 554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10 105 4 034 3 -8.155e-3 1 953.238 4 1721.082 1 560 min 0 10 093 4			10													
554 min 0 10 118 4 034 3 -6.808e-3 1 840.926 4 1819.955 1 555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10 105 4 034 3 -8.155e-3 1 953.238 4 1721.082 1 559 14 max 0 3 022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10			11									_				
555 12 max 0 3 026 15 .043 1 5.781e-3 3 3744.607 15 NC 5 556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10 105 4 034 3 -8.155e-3 1 953.238 4 1721.082 1 559 14 max 0 3 022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10 093 4 032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3 018																
556 min 0 10 113 4 035 3 -7.481e-3 1 880.226 4 1738.77 1 557 13 max 0 3 024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10 105 4 034 3 -8.155e-3 1 953.238 4 1721.082 1 559 14 max 0 3 022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10 093 4 032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3 018 15 .034 1 7.27e-3 3 5433.376 15 NC 4			12													
557 13 max 0 3024 15 .042 1 6.277e-3 3 4055.213 15 NC 5 558 min 0 10105 4034 3 -8.155e-3 1 953.238 4 1721.082 1 559 14 max 0 3022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10093 4032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3018 15 .034 1 7.27e-3 3 5433.376 15 NC 4																1
558 min 0 10 105 4 034 3 -8.155e-3 1 953.238 4 1721.082 1 559 14 max 0 3 022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10 093 4 032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3 018 15 .034 1 7.27e-3 3 5433.376 15 NC 4			13							-		_				5
559 14 max 0 3 022 15 .039 1 6.773e-3 3 4572.76 15 NC 5 560 min 0 10 093 4 032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3 018 15 .034 1 7.27e-3 3 5433.376 15 NC 4			-							3						
560 min 0 10 093 4 032 3 -8.828e-3 1 1074.896 4 1774.335 1 561 15 max 0 3 018 15 .034 1 7.27e-3 3 5433.376 15 NC 4			14													
561 15 max 0 3 018 15 .034 1 7.27e-3 3 5433.376 15 NC 4																
			15		<u> </u>											
562 min 0 10078 4027 3 -9.502e-3 1 1277.196 4 1926.043 1											-9.502e-3		1277.196			
563 16 max 0 3014 15 .025 1 7.766e-3 3 6963.098 15 NC 4			16		0			15		1		3				
564 min 0 10062 4019 3 -1.018e-2 1 1636.78 4 2250.992 1					0		062			3				4	2250.992	1

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
565		17	max	Ō	3	01	15	.013	1	8.262e-3	3	NC	15	NC	4
566			min	0	10	043	4	009	3	-1.085e-2	1	2385.774	4	2983.872	1
567		18	max	0	3	005	15	.004	3	8.759e-3	3	NC	5	NC	4
568			min	0	10	022	4	008	2	-1.152e-2	1	4688.414	4	5311.981	1
569		19	max	0	3	.004	3	.021	3	9.255e-3	3	NC	1	NC	1
570			min	0	10	004	1	025	2	-1.22e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.007	3	3.14e-3	3	NC	1	NC	1
572			min	0	3	002	1	008	2	-3.76e-3	1	NC	1	NC	1
573		2	max	0	10	005	15	.005	1	3.001e-3	3	NC	5	NC	2
574			min	0	3	022	4	001	10	-3.577e-3	1	4688.414	4	9202.613	1
575		3	max	0	10	01	15	.014	1	2.861e-3	3	NC	15	NC	4
576			min	0	3	042	4	004	3	-3.394e-3	1	2385.774	4	5201.746	1
577		4	max	0	10	014	15	.02	1	2.721e-3	3	6963.098	15	NC	4
578			min	0	3	061	4	008	3	-3.211e-3	1	1636.78	4	3951.916	1
579		5	max	0	10	018	15	.024	1	2.582e-3	3	5433.376	15	NC	4
580			min	0	3	078	4	01	3	-3.028e-3	1	1277.196	4	3408.695	1
581		6	max	0	10	022	15	.027	1	2.442e-3	3	4572.76	15	NC	4
582			min	0	3	092	4	012	3	-2.845e-3	1	1074.896	4	3169.305	1
583		7	max	0	10	024	15	.028	1	2.302e-3	3	4055.213	15	NC	4
584			min	0	3	104	4	013	3	-2.662e-3	1	953.238	4	3107.267	1
585		8	max	0	10	026	15	.027	1	2.163e-3	3	3744.607	15	NC	4
586			min	0	3	113	4	013	3	-2.479e-3	1	880.226	4	3178.915	1
587		9	max	0	10	028	15	.026	1	2.023e-3	3	3577.421	15	NC	4
588			min	0	3	118	4	012	3	-2.296e-3	1	840.926	4	3377.545	1
589		10	max	0	10	028	15	.023	1	1.883e-3	3	3524.531	15	NC	4
590			min	0	3	12	4	011	3	-2.113e-3	1	828.494	4	3722.541	1
591		11	max	0	10	028	15	.02	1	1.744e-3	3	3577.421	15	NC	4
592			min	0	3	118	4	009	3	-1.93e-3	1	840.926	4	4263.275	1
593		12	max	0	10	026	15	.017	1	1.604e-3	3	3744.607	15	NC	4
594			min	0	3	112	4	008	3	-1.747e-3	1	880.226	4	5097.804	1
595		13	max	0	10	024	15	.013	1	1.464e-3	3	4055.213	15	NC	3
596			min	0	3	104	4	006	3	-1.564e-3	1	953.238	4	6420.759	
597		14	max	0	10	022	15	.01	1	1.325e-3	3	4572.76	15	NC	2
598			min	0	3	092	4	004	3	-1.381e-3	1	1074.896	4	8649.48	1
599		15	max	0	10	018	15	.006	1	1.185e-3	3	5433.376	<u> 15</u>	NC	1_
600			min	0	3	077	4	003	3	-1.198e-3	1	1277.196	4	NC	1
601		16	max	0	10	014	15	.003	1	1.045e-3	3	6963.098	15	NC	1
602			min	0	3	06	4	001	3	-1.016e-3	2	1636.78	4	NC	1
603		17	max	0	10	01	15	.001	1	9.055e-4	3	NC	15	NC	1
604			min	0	3	041	4	0	3	-8.578e-4	2	2385.774	4	NC	1
605		18	max	0	10	005	15	0	4	7.658e-4	3	NC	5	NC	1
606			min	0	3	021	4	0	2	-6.999e-4	2	4688.414	4	NC	1
607		19	max	0	1	0	1	0	1	6.261e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-5.421e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.