12. Vektorer

Her har skal vi jobbe med vektorer i planet. Vektorer er nyttige til å beskrive avstander og retning til f. eks en bevegelse. I fysikk er det gjerne sentralt å fortelle om hvilken retning kraften virker. Derfor blir beregninger med vektorer nyttige i fysikk og en del tekniske fag.

12.1. Vektorer og skalar

Vi skiller mellom størrelser med eller uten retning:

Skalar: størrelser <u>uten</u> retning; tid lengde, areal, temperatur osv.

Vektorer: størrelser med retning; kraftvektor, fartsvektor osv.

Eksempler:

To vektorer er like dersom vektorene har samme retning og er like lange.

Eksempel $\vec{a} = \vec{b}$ (merk vektorene er like selv om de ikke er tegnet på samme plass)

To vektorer er parallelle dersom vektorene har samme eller motsatt retning.

Eksempel: Se \vec{u} og \vec{v} , på bildet over.

Vi kan også skrive \overrightarrow{AB} , dersom vi mener vektoren som går fra punkt A til punkt B.

En vektor med lengde 0, kaller vi *nullvektor*: $\vec{0}$.

12.2. Sum og differanse av vektorer

Addisjon:

Når vi skal addere to vektorer $\vec{u} + \vec{v}$, parallell forskyver vi den siste vektoren; \vec{v} slik at den starter der \vec{u} slutter. Summen er da vektoren som går fra startpunktet til \vec{u} , og slutter i endepunktet til \vec{v} . (blå vektor på figuren)

1

Addisjon av flere vektorer, gjør vi tilsvarende ved å knytte neste vektor i endepunktet til den forrige.

Vektor differanse

Subtraksjon: Er det samme som addisjon med $-\vec{v}$. Dvs vektoren som er like lang som \vec{v} , men som har motsatt retning.

Vektordifferanse, metode nr. 2

Vi vil nå definere differansen \vec{v} - \vec{v} mellom to vektorer \vec{v} og \vec{v} .

Dette kan vi gjøre på to måter.

Metode 2:

Vi tegner vektorene u og v med samme utgangspunkt i A.

Vektoren \vec{u} - \vec{v} (blå vektor) går fra endepunkt for \vec{v} til endepunkt for \vec{u} .

¥

Produkt av tall og vektor

Skrivemåte for lengden til en vektor: $|\vec{a}|$ - absoluttverdien til vektoren

Merk
$$\left| \vec{a} \right| = \left| -\vec{a} \right|$$

Multiplikasjon med skalar

$$t \cdot \vec{a} \qquad |t \cdot \vec{a}| = |t| \cdot |\vec{a}|$$

har samme retning som \vec{a} , t > 0

har motsatt retning av \vec{a} , t < 0

$$t(\vec{a} + \vec{b}) = t \cdot \vec{a} + t \cdot \vec{b}$$

Eksempler:

Regneregler for vektorer

$$t(\vec{a} + \vec{b}) = t \cdot \vec{a} + t \cdot \vec{b}$$
$$s \cdot \vec{a} + t \cdot \vec{a} = (s + t) \cdot \vec{a}$$
$$s(t \cdot \vec{a}) = (s \cdot t) \vec{a}$$

$$3\left(2\vec{a} + \vec{b}\right) = 6\vec{a} + 3\vec{b}$$

12.3. Vektorer på koordinatform

Enhetsvektorer i planet skriver vi gjerne som

$$x - \text{retning} \qquad \overrightarrow{e_2} \qquad y - \text{retning}$$

I andre læreverk finner dere også enhetsvektorer skrevet med x og y som indeks, men betydningen er den samme. Kjært barn – mange navn.

Vi skriver
$$\overrightarrow{a} = 3\overrightarrow{e_1} + 1 \cdot \overrightarrow{e_2} = [3,1]$$

Skrivemåten $\vec{a} = 3\vec{e_1} + \vec{e_2}$ kaller vi <u>komponentform</u>

Skrivemåten $\vec{a} = [3,1]$ kaller vi vektor på koordinatform. Den er kort og grei, når vi vet hva som menes.

NB Det er viktig å bruke rett parentes.

Skriver vi (3,1) betyr det ett punkt, mens skriver vi [3,1] betyr dette en vektor.

Når du skal tegne en vektor i koordinatsystemet, velger du fritt startpunktet. (husk vektorer kan flyttes – uten å endre verdi). Men tegner du vektoren med start i origo vil endepunktet til vektoren komme i punktet med samme koordinater.

Tegner du vektoren [3,1] med start i origo vil endepunktet være (3,1).

Merk at to vektorer er like, dersom både x- koordinat og y- koordinat er like!

12.4. Regning med vektorkoordinater

Regneregler:

$$\vec{a} + \vec{b} = \begin{bmatrix} a_x, a_y \end{bmatrix} + \begin{bmatrix} b_x, b_y \end{bmatrix} = \begin{bmatrix} a_x + b_x, a_y + b_y \end{bmatrix}$$

$$\vec{a} - \vec{b} = \begin{bmatrix} a_x, a_y \end{bmatrix} - \begin{bmatrix} b_x, b_y \end{bmatrix} = \begin{bmatrix} a_x - b_x, a_y - b_y \end{bmatrix}$$

$$t \cdot \vec{a} = t \cdot \begin{bmatrix} a_x, a_y \end{bmatrix} = \begin{bmatrix} ta_x, ta_y \end{bmatrix}$$

Eksempler:

$$\vec{a} = [1, -3] \qquad \vec{b} = [-2, 3]$$

$$\vec{a} + \vec{b} = [1, -3] + [-2, 3] = [-1, 0]$$

$$\vec{a} - b = [1, -3] - [-2, 3] == [3, -6]$$

$$2 \cdot \vec{a} = 2 \cdot [1, -3] = [2, -6]$$

Sjekk gjerne selv ved å tegne figur.

12.5. Vektoren mellom to punkter

Vektoren fra origo ut til et punkt P(x, y) er gitt ved $\overrightarrow{OP} = [x, y]$

Rekkefølgen på bokstavene sier noe om retning, starter i Origo slutter i P. Tegn pil i enden!

Formel for vektorer mellom to punkter:

Denne formelen bruker vi for å regne ut koordinatene til en vektor mellom to punkter.

Gitt punktet A(
$$x_1,y_1$$
) og punktet B(x_2,y_2), er:
 $\overrightarrow{AB} = [x_2 \cdot x_1, y_2 \cdot y_1]$

Vi skal her se hvordan vi finner koordinatene til en vektor mellom to vilkårlige punkter.

La punktet A ha koordinatene (x_1,y_1) og la punktet B ha koordinatene (x_2,y_2) For å finne koordiatene til AB skal vi uttrykke vektoren ved hjelp av vektorer som starter i origo.

Figuren gir oss at
$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB} \Rightarrow \overrightarrow{AB} = \overrightarrow{OB} \cdot \overrightarrow{OA}$$

Siden punktene A og B har koordinatene (x_1,y_1) og (x_2,y_2) , får vi:

Dette gir
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= [x_1, y_1] \text{ og } \overrightarrow{OB} = [x_2, y_2]$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= [x_2, y_2] - [x_1, y_1]$$

$$= [x_2 \cdot x_1, y_2 \cdot y_1] \text{ Begynn på nytt}$$

Eksempel: Finn koordinatene til vektoren mellom punktene P(1,2) Q(-1,3)

$$\overrightarrow{PQ} = \begin{bmatrix} -1 - 1, 3 - 2 \end{bmatrix} = \begin{bmatrix} -2, 1 \end{bmatrix}$$
 Sjekk gjerne på figur ved å telle!

12.6. Lengde og avstand

Lengde – absoluttverdi til en vektor: $|\vec{v}|$

Husk Pytagoras setning ...

$$\left| \vec{v} \right| = \sqrt{x^2 + y^2}$$
 for $\vec{v} = [x, y]$

Eksempler:

$$\vec{u} = [3, 2]$$
 $|\vec{u}| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$

$$\vec{v} = [-3, 7]$$
 $|\vec{v}| = \sqrt{(-3)^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58}$

$$\vec{w} = [a, 3a]$$
 $|\vec{w}| = \sqrt{a^2 + 9a^2} = \sqrt{10a^2} = |a|\sqrt{10}$

Pass på at "tall" vi "tar ut av rottegnet" må være positivt.

Eksempel: Bestem vektorer mellom hjørnene og lengder i en trekant, gitt ved.

Regner her uten benevning, men pass på at alle lengder har samme benevning – bestemt av koordinatsystemet.

b) Lengder
$$\left| \overrightarrow{AB} \right| = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}$$

$$\left| \overrightarrow{BC} \right| = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}$$

$$\left| \overrightarrow{CA} \right| = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}$$

$$A(1,1)$$
, $B(7,3)$ og $C(3,5)$

a) Bestem koordinatene til \overrightarrow{AB} , \overrightarrow{BC} og \overrightarrow{CA} .

$$\overrightarrow{AB} = [7-1, 3-1] = [6, 2]$$

$$\overrightarrow{BC} = [3-7,5-3] = [-4,2]$$

$$\overrightarrow{CA} = [1-3, 1-5] = [-2, -4]$$

(Test
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} =$$

= $\begin{bmatrix} 6,2 \end{bmatrix} + \begin{bmatrix} -4,2 \end{bmatrix} + \begin{bmatrix} -2,-4 \end{bmatrix} = \begin{bmatrix} 0,0 \end{bmatrix}$

Stemmer! Vi er tilbake til A.)

12.7. Parallelle vektorer

Parallelle vektorer

$$|\vec{u}| |\vec{v}|$$
 dersom det finnes en $t \neq 0$ slik at $|\vec{u}| = t \cdot \vec{v}$

Eksempel

La
$$\vec{u} = \begin{bmatrix} 4, -2 \end{bmatrix}$$
 $\vec{v} = \begin{bmatrix} -6, 3 \end{bmatrix}$, er de parallelle?
 $\vec{u} = t \cdot \vec{v}$
 $\begin{bmatrix} 4, -2 \end{bmatrix} = t \begin{bmatrix} -6, 3 \end{bmatrix}$ må stemme både i x- og y-retning
 $4 = -6t$ \land $-2 = 3t$
 $t = \frac{-4}{6} = -\frac{2}{3}$ \land $t = -\frac{2}{3}$ dvs parallelle

Vi kan bruke idéen parallelle vektorer for å bestemme om tre punkter ligger på linje.

Oppg. Finn ut om punktene A(-1,-1), B(1,3) og C(4,9) ligger på en linje. Dersom punktene ligger på en linje, må vektoren fra A til B og vektoren fra A til C være parallell. <u>Tegn gjerne en figur på kladd for å se ide bak løsningen.</u>

$$\overrightarrow{AB} = [1-(-1), 3-(-1)] = [2,4]$$

 $\overrightarrow{AC} = [4-(-1), 9-(-1)] = [5,10]$

Ser at $\frac{5}{2} \cdot \overrightarrow{AB} = \overrightarrow{AC}$ Med andre ord kan vi si at punktene ligger på samme linje.

12.8. Parallelle vektorer uten koordinater Dekomponering

Med dekomponering, mener vi å skrive en vektor som en sum av to <u>ikke</u> parallelle vektorer. Se figur.

Det er alltid mulig å dekomponere på en entydig måte dersom de to vektorene ikke er parallelle.

Dekomponering, horisontal og vertikal komponent

Ofte er det hensiktsmessig å dekomponere en vektor i en horisontal komponent og en vertikal komponent (se figur).

> $\vec{u_1}$ er horisontal komponent til \vec{u} . $\vec{u_2}$ er vertikal komponent til \vec{u} . Fra figuren ser vi også at $\vec{u} = \vec{u_1} + \vec{u_2}$.

Komponentene i horisontal og vertikal retning uttrykker vi gjerne ved hjelp av en enhetsvektor i horisontal retning $\vec{e_1}$, og en enhetsvektor i vertikal retning $\vec{e_2}$ slik figuren viser.

Vi kan da skrive;

Siden \overrightarrow{u} er parallell med $\overrightarrow{e_1}$, fins det et tall x slik at $\overrightarrow{u_1} = x \cdot \overrightarrow{e_1}$, og siden $\overrightarrow{u_2}$ er parallell med $\overrightarrow{e_2}$, fins det et tall y slik at $\overrightarrow{u_2} = y \cdot \overrightarrow{e_2}$

Generelt for en fritt valgt vektor \vec{u} fins det et tall x og y slik at $\vec{u} = x \cdot \vec{e_1} + y \cdot \vec{e_2}$

Parallelle vektorer: $\vec{u} \parallel \vec{v}$ dersom $\vec{u} = t \cdot \vec{v}$

Parallelle vektorer har samme (eller motsatt) retning, men kan gjerne ha ulik lengde.

Eksempel:

La \vec{a} og \vec{b} være to vektorer som ikke er parallelle.

Er
$$\vec{u} = 2\vec{a} - 3\vec{b}$$
 $\vec{v} = -6\vec{a} + 9\vec{b}$ parallelle?
 $t\vec{u} = \vec{v}$
 $t\left(2\vec{a} - 3\vec{b}\right) = -6\vec{a} + 9\vec{b}$ Vektorene er like om
 $2t\vec{a} - 3t\vec{b} = -6\vec{a} + 9\vec{b}$ Vektorene er like om
 $2t = -6$ \land $-3t = 9$
 $t = -3$ \land $t = \frac{9}{-3} = -3$
Vi ser at $-3 \cdot \vec{u} = \vec{v}$ $\vec{u} \parallel \vec{v}$

Finner vi ikke en felles t – verdi, er vektorene ikke parallelle.