Statistical Methods in AI (CS7.403)

Lecture-2: ML Workflow, Data Representations, Basic Data Transformations, Data Visualization

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

- Update on one-time bonus rule for assignments
 - You are allowed to use a maximum of 3 days for assignment extensions
 - NEW: You can split them across assignments, BUT each usage needs to be at least 1 day
 - you can use the assignment extension bonus for at most
 3 of your assignments

- Tutorial (11.40a 1.05p Saturday)
 - SH2 (ONLY FOR THIS WEEK)
 - H-205 (NEXT WEEK ONWARDS)
- TOPICS: Python, Pandas, Jupyter notebook, Colab, Plotting tools.
- Bring your (fully charged) laptops.
- Ask questions.

- IMPORTANT: All assignments/projects will need to submitted via Github Classroom
- Tutorial
 - Git
 - Github
- Ask questions.

- TAs will share SMAI Course Calendar on Moodle
- You can add it to your MS Teams Calendar
- Will contain assignment release/due/eval dates
- Will contain exam paper showing dates

Queries

- Post queries on Moodle
- Helps all (many may have same question)
- Do not DM TAs!

 Do <u>not</u> use Python libraries for assignments unless explicitly allowed/specified.

Additionally ...

- Spending time <u>everyday</u> on material covered in class helps
 - Take notes
 - Revise
 - Reflect
- Ask if you wish to take something down, but slide is no longer on screen

Course TAs

Meghana (SERC, CSE4) Rudransh (CVIT, CSE4) Sriram (C2S2, CSE4) Veda Nivas (CSE4) Vanshita (CSE4) Harshavardhan (CVIT, CSE4-DD) Vedansh (CogSci, CSE4-DD) Arghya (CogSci, CSE4-DD) Sanika (HSRC, CSE4-DD)

Lecture Outline

- ML Workflow
- Data Representations
- Basic Data Transformations
- Data Visualization

Workflow of a Machine Learning Problem

- Detect spam email
- Predict value of a stock
- Predict effect of advertising on sales
- Drive car 'safely' without human intervention
- Translate text from one language to another
- Sentiment Analysis

. ...

Workflow of a Machine Learning Problem

No Data, no ML!

Detect spam email

Business Email Sample

this month. You will

To: "Anna Jones" <arnaiones@buzzie.com >

- Predict value of a stock

- Predict effect of advertising on sales

- Drive car safely without human intervention

https://inai.iiit.ac.in/bodhyaan.html

Data can be multi-modal and may need to be 'synchronized'

- Translate text from one language to another

Three fundamental questions

- What data to collect ?
- How to collect ?
- How much to collect ?

May be too little in quantity

- May be too much in quantity
 - Limitations on system end (compute, storage)

Not all of it relevant

```
C A https://api.mailgun.net/v2/domains/mailgun.com/messages/WvJIMTFiZ
 Received: "by luna.mailgun.net with HTTP; Fri, 26 Feb 2016 20:12:03 +0000",
 stripped-signature: "",
 Message-Id: "<20160226201203.54979.26875@mailgun.com>",
 from: "Sample Email <me@mailgun.com>",
 sender: "me@mailqun.com",
 recipients: "anton@mailgunhg.com",
 Subject: "Test Message",
 Content-Transfer-Encoding: "7bit",
 attachments: [ ].
 To: "anton@mailgunhq.com",
 stripped-html: "Testing some Mailgun awesomness!",
 content-id-map: { },
 stripped-text: "Testing some Mailgun awesomness!",
 From: "Sample Email <me@mailgun.com>",
+ message-headers: [...],
 Mime-Version: "1.0".
 Content-Type: "text/plain; charset="ascii"",
 body-plain: "Testing some Mailgun awesomness!",
 subject: "Test Message"
```

- Often not directly usable
 - Filter (needed data)
 - Transform (to numerical data)

```
https://api.mailgun.net/v2/domains/mailgun.com/messages/WyJIMTFiZ
 Received: "by luna.mailgun.net with HTTP: Fri, 26 Feb 2016 20:12:03 +0000".
 stripped-signature: "",
 Message-Id: "<20160226201203.54979.26875@mailgun.com>".
 from: "Sample Email <me@mailgun.com>",
 sender: "me@mailqun.com",
 recipients: "anton@mailgunhg.com",
 Subject: "Test Message",
 Content-Transfer-Encoding: "7bit".
 attachments: [ ],
 To: "anton@mailgunhg.com".
 stripped-html: "Testing some Mailgun awesomness!",
 content-id-map: { },
 stripped-text: "Testing some Mailgun awesomness!",
 From: "Sample Email <me@mailgun.com>",
+ message-headers: [...],
 Mime-Version: "1.0",
 Content-Type: "text/plain; charset="ascii"",
 body-plain: "Testing some Mailgun awesomness!",
 subject: "Test Message"
```

Three fundamental questions

- What data to collect ?
- How to collect ?
- How much to collect ?

Sample v/s Population

Data Sampling

STRATIFIED SAMPLING

Important to understand how the dataset has been created

Are our samples 'representative' of the population?

Sampling Techniques

https://research-methodology.net/sampling-in-primary-data-collection/

Workflow of a Machine Learning Problem

Taxonomy of data variables

Taxonomy of data

Taxonomy of data

Taxonomy of data

QUANTITATIVE DATA:

Taxonomy of data

- # of CPU cores
- # of courses taken in a semester
- # of times word 'sale' appears in a document

Taxonomy of data

Samples and Features

Ultimately, all data needs to be quantitative

Taxonomy of data: Qualitative → Quantitative

Taxonomy of data: Qualitative → Quantitative

Numerical encoding of categorical variables

Original data:					
id	Color				
1	White				
2	Red				
3	Black				
4	Purple				
5	Gold				

Numerical encoding of categorical variables

Orig	inal data:	One	e-hot en	coding	g forma	t:	
id	Color	id	White	Red	Black	Purple	Gold
1	White	1	1	0	0	0	0
2	Red	2	0	1	0	0	0
3	Black	3	0	0	1	0	0
4	Purple	4	0	0	0	1	0
5	Gold	5	0	0	0	0	1

Numerical encoding of categorical variables

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```


Encoding Choices

- One-hot
- Numerical
 - Equal
 - Unequal/Weighted
- Binary
- Target*

Q

How should a binary attribute be encoded?

Example: PlayTennis dataset

lem	perature	Hur	nidity	W	indy	Pla
	Hot	Н	ligh	F	alse	N
	Hot	H	ligh	Т	rue	N
	Hot	H	ligh	F	alse	Ye
	Mild	No	rmal	F	alse	Ye
	Mild		rmal		alse	5

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
		***		*44

Example: Contact Lenses dataset

No patient id

Age is not a number!

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Sometimes data can be missing

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80		True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
100	***	***	200	1000

→ Unknown or unrecorded

... or incorrect

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	t IL	60608	Conflicts
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	Connicts
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	
	1	Does not ob	ey	1	Cor	nflict	

... deal with reality out there !

... deal with reality out there!

Data imputation

- Approaches that aim to estimate missing data
- Options
 - Remove sample
 - Fill with 0
 - Fill with constant
 - Fill with a statistical measure (mean, median, mode)
 - Do nothing. Use a learning method which can handle missing data.

Lecture Outline

- ML Workflow
- Data sample Representations
- Basic Data Transformations
- Data Visualization

Samples, Features, Labels

Data Sample Representations

Data Representations

Feature Extraction (FE)

Def: Feature Extraction (FE) is any algorithm that transformation raw data into features that can be used as an input for a learning algorithm.

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

15

Feature-based, Hierarchical Data Representations

Data – a probability-based perspective

The basis for Statistical Learning Theory

- Domain described by random variables (r.v.)
 - X = {apple, grape}
 - $b_i \in [1,5]$
- Data = Instantiation of some or all r.v.'s in the domain

Data: a probabilistic perspective

Proposed Cleaned Dataset

	DBAName	Address	City	State	Zip
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608

Marginal Distribution of Cell Assignments

Cell	Possible Values	Probability
10.7%	60608	0.84
t2.Zip	60609	0.16
14 67	Chicago	0.95
t4.City	Cicago	0.05
HA DDANI	John Veliotis Sr.	0.99
t4.DBAName	Johnnyo's	0.01

Other important aspects of data

- Mode of collection
 - Passive ('sense')
 - Active ('explore, sense, repeat')

- Statistical assumptions on data
 - i.i.d (independent and identically distributed)
 - Online (e.g. time-series data)