PROJECT FLOW AND REQUIREMENTS

- Please prepare your project in R Markdown in the <u>following format</u> which is described in this document.
- "Clear comments before and after every little step" and "clear data visualizations with desriptions" will make good points.
- <u>Don't ever put the whole data</u> in the project report!! If you want to show your data, please just show the first rows (6-10); or use summaries- data visualization techniques instead of data itself.
- Write your names in the author part.
- Put your final docs (Project report as an html and a short video of no more than 10 minutes) in dys.
- You will be graded as: (82p following steps; 10p report clarity and quality, 10p video presentation) ©

1. (3p) Data:

Please find your original dataset or datasets; and describe your data in the first step.

2. (3p) Exploratory and descriptive data analysis:

Use "Exploratory and descriptive data analysis". Talk about your categorical and quantitative data or your ordinal variables etc. Write down your comments.

3. (3p) Data Visualization:

Use at least 4 diffrerent "data visualization techniques" and talk about your data further (distribution, outliers, variability, etc). Use at least 2 of the visualizations to compare two groups (like female/male; smoker/non-smoker etc).

4. (3p) Central Limit Theorem:

Choose one of your variables. Write down your own function which proves the central limit theorem (CLT): show that whatever the distribution is, the sampling data will be distributed normally. (have a look at the example in Statistics_Lecture_5, page9)

5. (3p) Confidence Intervals:

Build 2 confidence intervals and make "clear comments" about your findings.

6. (3p) Transformation:

Try to make one transformation (log transformation, Box-Cok transformation, etc) for one of your quantitative variables, which is not normally distributed; but will be normal or more normal, after the transformation.

7. (2p every item) Single t-test (Welch t-test or Wilcoxon rank-sum test)

Implement a single t-test for one of your "normally or not-normally distributed" variable:

a. Aim

In words, what is your objective here?

b. Hypothesis and level of significance:

Write your hypothesis in scientific form and determine the level of singnificance.

c. Assumption Check:

Check the required assumptions and "comment on each of them is a must!".

d. Indicate "which test you choose" "for what reason"

e. Result:

Give the output of the test and write down the result (ex: since p value is less than alpha, I reject the null hypothesis).

f. Conclusion:

You got your result in item e. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

g. What can be Type-1 and Type-2 error here?

8. (2p every item) Paired t-test:

a. Aim

In words, what is your objective here?

b. Hypothesis and level of significance:

Write your hypothesis in scientific form and determine the level of singnificance.

c. Assumption Check:

Tell why you use the paired t test, and Check the required assumptions. "comment on each of them is a must!".

d. Result:

Give the output of the test and write down the result (ex: since p value is less than alpha, I reject the null hypothesis).

e. Conclusion:

You got your result in item d. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

9. (2p every item) Fisher's exact test for count data

a. Aim

In words, what is your objective here?

b. Hypothesis and level of significance:

Write your hypothesis in scientific form and determine the level of singnificance.

c. Result:

Give the output of the test and write down the result (since p value is less than alpha, I reject the null hypothesis).

d. Conclusion:

You got your result in item c. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

e. Odds Ratio:

Comment about the odds ratio, what does it indicate?

10. (2p every item) ANOVA and Tukey Test

a. Aim

In words, what is your objective here?

b. Hypothesis and level of significance:

Write your hypothesis in scientific form and determine the level of singnificance.

c. Assumption Check:

Check the required assumptions. "comment on each of them is a must!".

d. Result of ANOVA:

Give the output of the test and write down the result (ex:since p value is less than alpha, I reject the null hypothesis)

e. Conclusion of ANOVA:

You got your result in item d. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

f. Result of Tukey:

Give the output of the test and write down the result (ex:since p value is less than alpha, I reject the null hypothesis)

g. Conclusion of Tukey:

You got your result in item f. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

11. (2p every item) Multiple Linear Regression

a. Aim

In words, what is your objective here?

b. Regression Equation:

Multiple linear regression (MLR) is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. Which ones are your explanatory variables and which one is your response variable? Write down the equation of your regression using those variables.

c. Hypothesis and level of significance:

Write your hypothesis in scientific form and determine the level of singnificance.

d. Find the Best Model:

Use step function and find the best model, describe the reason which makes it the best one.

e. Assumption Check:

Check the required assumptions, "comment on each of them is a must!".

f. Result:

Give the output of the best model and write down the result.

g. Conclusion:

You got your result in item f. Write down the conclusion of your result, in such a way that, the reader who doesn't know any statistics can understand your findings.

h. Prediction:

Think of a new X variable, or variables (just make it up). Use your best model in order to predict the new Y variable for those X variables.

ZEYNEP FILIZ EREN