4. Край сферической линзы

Широкий пучок монохроматических параллельных лучей падает из вакуума перпендикулярно на плосковыпуклую и плосковогнутую сферическую поверхность с показателем преломления n.

- 4.1 Определите максимальную сферическую аберрацию $\Delta F = |F F_1|$ вдоль главной оптической оси для двух поверхностей.
- 4.2 Предложите способы устранения сферической аберрации для сферической поверхности раздела двух сред с разными показателями преломления.

Примечание:

- F параксиальный фокус (фокус для узкого пучка лучей вблизи оси.
- F₁ краевой фокус (фокус для крайних лучей пучка)

Задача 11-2

В данной задаче рассмотрим известное явление фотоэффекта немного глубже, чем в обычном школьном курсе физики.

Важной характеристикой фотоэффекта, которая пригодится нам в задаче, является его квантовый выход *Y*, представляющий собой отношение числа вылетающих с поверхности электронов к числу падающих фотонов. Квантовый выход, вообще говоря, зависит от многих параметров: материала поверхности, угла падения излучения, частоты падающего излучения и прочих. В данной задаче можете считать квантовый выход постоянной величиной во всех пунктах, за исключением последнего вопроса. Также отметим, что будем рассматривать только одно12тонный и одноэлектронный фотоэффект.

Напомним, одним их простых примеров конфигурации электромагнитного поля является плоская волна. Для плоской волны плотность энергии электромагнитного поля, то есть энергию в единице объема, можно рассчитать по формуле $w=\frac{s_0E_0^2}{2}$, где E_0 – амплитуда напряженности электрического поля, изменяющейся со временем по гармоническому закону, ε_0 – электрическая постоянная.

Некоторые физические постоянные: скорость света $c = 3.0 \cdot 10^8$ м/с, постоянная Планка $h = 6.63 \cdot 10^{-34}$ Дж·с, электрическая постоянная $\varepsilon_0 = 8.85 \cdot 10^{-12}$ Ф/м, заряд электрона $e = 1.6 \cdot 10^{-19}$ Кл.

Рассмотрим следующий классический эксперимент по регистрации фотоэффекта. На металлическую пластину падает плоская электромагнитная волна, модуль вектора напряженности которой в каждой точке меняется со временем по закону: $E(t) = E_0 \cos(\omega t + \varphi_0)$, где амплитуда $E_0 = 15$ В/м, угловая частота $\omega = 9.5 \cdot 10^{15}$ рад/с, φ_0 – некоторая начальная фаза (назовем данную волну пробной). Полученная в этом случае зависимость силы тока в цепи от напряжения представлена на рисунке 2. Основные характеристики, используемые для описания вольт-амперной характеристики фотоэлемента, это задерживающее напряжение U_3 (обратное напряжение, при котором ток в цепи прекращается) и ток насыщения I_{max} (максимальный ток при данном освещении пластины).

Рисунок 3 - Схема эксперимента

Рисунок 4 - Зависимость силы тока в цепи от напряжения при освещении пластины пробной волной

1. Меняем волну

- 1.1. Пусть теперь на пластину падает плоская волна, модуль вектора напряженности которой со временем меняется по закону $E(t) = E_1 \cos(\omega t + \varphi_0)$, где новая амплитуда равна $E_1 = 25$ В/м, ω как у пробной волны. Определите задерживающее напряжение и ток насыщения.
- 1.2. Пусть теперь на пластину падает плоская волна, модуль вектора напряженности которой со временем меняется по закону $E(t) = E_0 \cos(\omega' t + \varphi_0)$, где новая угловая частота равна $\omega' = 8.0 \cdot 10^{15}$ рад/с, E_0 как у пробной волны. Определите задерживающее напряжение и ток насыщения.

2. Сложные волны

- 2.1. Определите задерживающее напряжение и ток насыщения, если на пластину падает волна, модуль вектора напряженности которой изменяется со временем следующим образом:
 - 2.1.а) $E(t) = E_0 \cos(\omega_1 t + \varphi_1) \cos(\omega_2 t + \varphi_2)$, где угловые частоты: $\omega_1 = 9,50 \cdot 10^{15}$ рад/с, $\omega_2 = 1,5 \cdot 10^{14}$ рад/с.

2.1.b) $E(t) = E_0 \left(1 + \cos \omega t \right) \cos(\omega t + \varphi_0),$

 E_0 , ω – как у пробной волны.

2.2. Примерно изобразите на графиках зависимости тока в цепи от приложенного напряжения для случаев 2.1.a и 2.1.b. Отметьте на них ключевые значения соответствующих величин.

3. Квантовый выход

- 3.1. Площадь пластины, на которую падает пробная волна, $S=0.05 \text{ м}^2$, при этом освещение падает под углом $\alpha=30^\circ$ к поверхности (см. рис. 1). Используя имеющиеся данные, определите квантовый выход Y фотоэффекта.
- 3.2. Вообще говоря, зависимость квантового выхода от частоты излучения весьма существенна, и пренебрегать ей можно, разве что, в модельных задачах. Для измерения данной зависимости пластину, описанную в пункте 3.1, освещали электромагнитными волнами различной частоты и постоянной амплитуды: $E_{\tau}(t) = E_{\tau} \cos(\omega_{\tau} t + \omega_{\tau})$ где E_{τ} по-прежнему равно 15 R/м. Полученные значения

 $E_i(t) = E_0 \cos(\omega_i t + \varphi_0)$, где E_0 по-прежнему равно 15 В/м. Полученные значения задерживающего напряжения и тока насыщения представлены в таблице 1.

Используя имеющиеся данные, постройте приближенный график зависимости квантового выхода фотоэффекта от частоты падающего излучения в максимально возможном диапазоне частот.

№ опыта	<i>U</i> ₃ , B	I _{max} , мкА
1	0,7	1,5
2	1,3	4,5
3	1,7	5,5
4	2,0	6,0
5	2,4	6,5
6	2,8	6,6
7	3,1	6,5
8	3,8	6,3

Таблица 1 – Результаты измерений задерживающего напряжения и тока насыщения

Задача 11-3

С развитием технологий появляются все новые материалы с удивительными свойствами. Два таких метаматериала рассматриваются в данной задаче.

Часть 1. Переменная диэлектрическая проницаемость.

- 1.1.1 Плоский конденсатор состоит из двух металлических параллельных пластин площади S, находящимися на расстоянии h друг от друга. Пространство между пластинами заполнено двумя слоями диэлектрика (толщины этих слоев одинаковы) с диэлектрическими проницаемостями \mathcal{E}_1 и \mathcal{E}_2 . Найдите емкость такого конденсатора.
- 1.1.2 На внешние металлические пластины подают постоянное напряжение U_0 . Найдите поверхностные плотности зарядов на пластинах σ_0 и на границе раздела диэлектриков σ'

