CSE 471: MACHINE LEARNING

Learning from Examples

Outline

- Forms of learning
- Model Selection and Optimization
- The Theory of Learning
- Linear Regression and Classification
- Nonparametric Models
- Ensemble Learning
- Developing Machine Learning Systems

Machine Learning

- A computer program is said to learn from
 - experience E (not in traditional algorithm e.g. Dijkstra algorithm)
- with respect to some class of
 - task T and performance measure P if its
 - performance at tasks in T
 - as measured by P
 - improves with experience E (not in traditional algorithm)

Material to cover in next 7 weeks

- Book
 - Artificial Intelligence A Modern Approach (4th Edition)
 - Stuart J. Russell and Peter Norvig
 - Misc. notes/blog posts
- Content
 - See course outline

Learning from Examples

- Supervised Learning
 - Labeled observations
 - Classification vs. Regression
- Unsupervised Learning
 - Unlabeled observations
 - Clustering

Learning from Examples

- Reinforcement Learning
 - Reward & punishment scheme
 - Example: Learning from a chess game
 - Win → Reward
 - Loss → Punishment
 - Agent itself determines what actions were fruitful!

Datasets & Validations

- Datasets
 - Training set
 - Validation set
 - □ Test set
- Validations
 - Validation Test
 - K-fold cross validation Test
 - Independent Test

The hypothesis space (H)

- How do we choose a hypothesis space
 - Prior knowledge
 - Exploratory data analysis
 - Visualizations
 - histograms
 - scatter plots
 - Box plots
 - Etc.
- Consistent Hypothesis
 - Gives correct answer for the data point

The hypothesis space (H)

Finding hypotheses to fit data. **Top row**: four plots of best-fit functions from four different hypothesis spaces trained on data set 1. **Bottom row**: the same four functions, but trained on a slightly different data set (sampled from the same f(x) function).

Example: Will we wait for a table?

- ALTERNATE: whether there is a suitable alternative restaurant nearby.
- 2. BAR: whether the restaurant has a comfortable bar area to wait in.
- 3. FRI/SAT: true on Fridays and Saturdays.
- 4. HUNGRY: whether we are hungry right now.
- PATRONS: how many people are in the restaurant (values are None, Some, and Full).
- **6. PRICE:** the restaurant's price range (\$, \$\$, \$\$\$).
- 7. RAINING: whether it is raining outside.
- **8. RESERVATION:** whether we made a reservation.
- 9. TYPE: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WAITESTIMATE: host's wait estimate: 0 10, 10 30, 30 60, or >60 minutes.

Will we wait for a table?

Example	Input Attributes										Output
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0 - 10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0 - 10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = Na$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = Nc$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Ye$

How to select the best attribute?

Choosing attribute tests

$$ext{Entropy:} \quad H(V) = \sum_k P(v_k) \log_2 rac{1}{P(v_k)} = -\sum_k P(v_k) \log_2 P(v_k).$$

B(q) is the entropy of a Boolean random variable that is true with probability q

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q)).$$

The entropy of the output variable on the whole set

$$H(Output) = Bigg(rac{p}{p+n}igg).$$

Choosing attribute tests

$$Remainder(A) = \sum_{k=1}^d rac{p_k + n_k}{p+n} Bigg(rac{p_k}{p_k + n_k}igg).$$

Information Gain

$$Gain(A) = B\left(\frac{p}{p+n}\right) - Remainder(A).$$

The learning curve

Confusion Matrix

Predicted Class

WillWait = True WillWait = False

WillWait = True 4 (TP) 2 (FN)

WillWait = False 3 (FP) 3 (TN)

https://en.wikipedia.org/wiki/Confusion_matrix

Actual Class

Performance Metrics

- Accuracy,
- Sensitivity (Recall)
- Specificity
- Precision
- □ F1-score
- □ MCC
- □ Etc.

Useful Resources

- Learning From Data (MOOC @ CALTECH)
 - Prof. Yaser Abu-Mostafa
- Machine Learning (Coursera Course)
 - Prof. Andrew Ng
- Essence of Linear Algebra
 - Grant Sanderson (3Blue1Brown)
- Practice and Compete at Kaggle
- Learn Python