

Digital Logic

Vikram Padman

Agenda

. .

Reading Lis

WAWG

DI C

- .

_ _

CI ve SI

Activity

Digital Logic

CS6133 - Computer Architecture I

Vikram Padman

Polytechnic Institute of New York University

vikram@poly.edu

Agenda

Digital Log

Vikram Padman

Agenda

Reca

Reading Li

۱۸/Δ۱۸/

v v /-tv v

D.L.C

c c

Т.А

S.C.

- Recap
- Reading List
- Where Are We Going?
- Opinion of the property of
- Combinatorial Building Blocks
- Timing Analysis
- Synchronous Building Blocks
- Combinatorial vs Synchronous Logic
- Activity

Recap

Digital Log

Vikram Padman

Agend

rtecup

Reading L

MANAIC

VVAVVG

D 1 C

- -

I.A

61 6

- Hierarchical and Layered design
- Binary Numbers, Addition and Subtraction
- Logic Gates
- Digital Discipline

Reading List

Digital Log

Vikram Padman

Agenda

кесар

Reading List

WAWG

D.L.C

cc

T ^

S.C.

Activity

• "Digital Design and Computer Architecture", Chapter 2, chapter 3 section 3.1-3.3 and 3.5, chapter 5 section 5.1 and 5.2

Digital Logi

Vikram Padman

Agenda

кесар

Reading Lis

WAWG

DI /

. .

- .

SC

CI vs SI

Activity

• Why are we looking at digital electronics?

Digital Log

Vikram Padman

Agenda

Reading Lis

WAWG

DI (

C

- .

61 61

- Why are we looking at digital electronics?
 - Charles Babbage built a mechanical computer.

Digital Log

Vikram Padman

Agend

кесар

Reading Lis

WAWG

D.L.

C.C

T.A

S.C.

C.L. vs 5.L

- Why are we looking at digital electronics?
 - Charles Babbage built a mechanical computer.
 - ② John Von Newman and A.M.Turing theorized an electronic Digital computer, which we use today.

Digital Log

Vikram Padman

Agend

B # 11

١٨/٨١٨/٢

٠....

C.C.

T.A

. . .

- Why are we looking at digital electronics?
 - Charles Babbage built a mechanical computer.
 - ② John Von Newman and A.M.Turing theorized an electronic Digital computer, which we use today.
- We are here to understand how a digital computers work and we will do that by:
 - Understanding the fundamental of digital logic circuits
 - Building a small CPU with a handful of instructions

Digital Logic Circuits

Digital Logi

Vikram Padman

Agend

тесар

Reading Lis

WAWG

DI (

D.L.

- .

.

C 1 S

Activity

A digital logic circuit is composed of

- Functional Specifications
 - Inputs
 - Outputs
- 2 Timing Specifications

Digital Logic Circuits

Digital Logi

Vikram Padman

Agend

_ .. .

WAWG

D.L.C

D.L.

C.C.

...

C.L. vs S.

Activit

- Functional and Timing Specifications
- Nodes

Input Ports: A, B, C

Output Ports: Y, Z

Internal Wires: n1

- Oircuit Elements or Components
 - E1, E2, E3
 - Internal elements are digital circuits by themselves

Digital Logic Circuits Type of Digital Logic Circuits

Digital Logi

Vikram Padman

Agend

кесар

Reading Lis

\\/\\\/C

D L C

0.2.

. .. .

CLVSS

Activit^e

Combinatorial Circuits

- Memoryless
- Only current input values determine outputs
- Synchronous or Sequential Circuits
 - Has memory
 - Current and previous input values determine future outputs

Combinatorial Components/Elements

Digital Log

Vikram Padman

Agenda

кесар

Reading Lis

WAWG

VVAVVG

D.L.

C.C.

C.B.I

Τ Λ

C.L. vs S.I

- Boolean equations are used to specify outputs in terms of inputs
- Example:

$$\begin{array}{c}
A \\
B \\
C_{\text{in}}
\end{array}$$
 $\begin{array}{c}
C \\
C_{\text{out}}
\end{array}$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Rules of Combinatorial Components/Elements

Digital Logi

Vikram Padman

Agenda

Reading List

WAW

D.L.C

C.C.

Intro C.B.B

T.A.

S.C.

C.L. vs S.

- Every component within a combinatorial element is also combinatorial
- Every internal node (or wire) is an input and connects to exactly one output
- The component does not contain cyclic paths

Combinatorial Building Blocks Logic Gates

- Fundamental building blocks that are used in all digital electronic devices.
- Logic gates are used to build general purpose components (such as Adder / Subtractors, MUX / DEMUX ...etc)
 - General purpose components are then used to build larger, function specific, components such as arithmetic and logic unit, control unit and various type of memories.
 - Many function specific components are assembled together to make a microprocessor, I/O HUB, SRAM ... etc
- Completeness Theorem: NAND or NOR gate could be used to build any boolean function.

Combinatorial Building Blocks Multiplexer

Digital Logi

Vikram Padman

Agenda

Recap

eading Lis

WAWG

VVAVVG

C.C.

T.A.

S.C.

C.L. vs S.I

- Select between one of N inputs to connect to output
- A control signal of size log₂(N) bit(s) is used for selection

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Combinatorial Building Blocks Multiplexer

Digital Log

Vikram Padman

Agenda

Recap

Reading Li

\\/\\\/*C*

DIC

C.C.

Intro C.B.B.

s c

C.L. vs S.L

Activity

Using Logic Gates

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
-1	-1		- 1

Using Tristates

$$Y = D_0 \overline{S} + D_1 S$$

Combinatorial Building Blocks Multiplexer - 4 to 1 MUX

Digital Logi

Vikram Padman

Agenda

Recap

Reading Lis

WAWG

D.I. C

C.C.

Intro

- .

s c

C.L. vs S.I

Combinatorial Building Blocks Multiplexer - Look Up Table

Digital Logi

Vikram Padman

Agenda

Recar

Reading Lie

MANAIC

VVAVVG

C.C.

Intro C.B.B

T.A.

S.C.

C.L. vs S.I

Activity

Using the MUX as a Look Up Table (LUT) ¹

Α	В	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
	Y = AB		

¹Fundamental block in a FPGA

Combinatorial Building Blocks De-Multiplexer or Decoders

Digital Logi

Vikram Padman

Agenda

Recap

Reading List

WAWG

DIC

Intro

Intro C.B.B

T.A.

C 1 C

- **N** inputs to 2^N outputs
- One-hot outputs: One one output is "Active" at any given time

	A_1	A_0	<i>Y</i> ₃	Y_2	Y_1	Y_0
•	0	0	0	0	0	1
	0	1	0	0	1	0
	1	0	0	1	0	0
	1	1	1	0	0	0

Combinatorial Building Blocks De-Multiplexer or Decoders

Digital Logi

Vikram Padman

Agenda

Recar

Pooding Lie

\A/A\A/C

WAWG

C.C. Intro

C.B.B.

C.L. vs S.l

ctivity

<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0

Using Logic Gates

Combinatorial Building Blocks De-Multiplexer or Decoders

Digital Logi

Vikram Padman

Agenda

Recai

\\/\\\C

D.L.

Intro

ΤΛ

s c

C.L. vs S.L

ctivity

Logic Function using De-MUX/Decoder

• Which gate is being implemented here?

MUX/DEMUX

Digital Log

Vikram Padman

Agenda

Recap

Reading Lis

 $M/\Delta M/G$

DI.

C.C.

Intro C.B.B.

. . .

C.L. vs S.I

Activity

Lets consider the following ternary statements:

O = (A > B) ? A : B

A = (I > 1) ? I : 0

B = (I < 1) ? I : 0

Encoders / Decoders

Digital Logi

Vikram Padman

Agenda

Recap

Reading Lis

WAWG

D.L.O

Intro

T.A.

. . .

Adder

Digital Log

Vikram Padman

Agenda

Recap

Reading Lie

\\/*(*

D.L.

C.C. Intro

C.B.B.

1.....

C.L. vs S.I

Inputs			Outputs		
Cin	Α	В	Sum	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Subtractor

Digital Log

Vikram Padman

Recap Reading Lis

WAWG

C.C.

Intro C.B.B.

T.A. S.C.

C.L. vs S.L

- A full adder could be used for subtraction by converting the negative number into a 2's complement number.
- For example lets say we want to perform sum = A B we could convert this into sum = A + (notB + 1)

Timing Analysis

Digital Logi

Vikram Padman

Agenda

Recap

eading Lis

\A/A\A/C

.....

D.L.C

C.C.

T.A.

S.C.

C.L. vs S.

Activity

Propagation delay between input and output

Timing Analysis

Digital Logi

Vikram Padman

Agenda Recap

Reading Lis

WAWG D.L.C

C.C.

T.A.

C.L. vs S.I

- ullet Propagation Delay: t_{pd} is the max delay from input to output
- ullet Contamination Delay: t_{cd} us the min dalay from input to output

Timing Analysis Propagation & Contamination Delay

Digital Log

Vikram Padman

Agend

пссар

Reading Li

WAWG

C C

T.A.

3.C.

- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reason why t_{pd} & t_{cd} may be different:
 - Inputs may have different rise and fall time
 - Circuits slow down when hot and speed up when cold

Timing Analysis Propagation & Contamination Delay

Digital Logi

Vikram Padman

Agenda

WAWG

D.L.C

C.C.

T.A.

C.L. vs S.I

- Critical Path: Long path from input to output
- Short Path: Shortest path from input to output

Timing Analysis Glitches

Digital Logi

Vikram Padman

Agenda

кесар

Reading Lis

M/MM/C

VVAVVG

J.2..

C.C.

T.A.

S.C

C.L. vs S.I

Activity

Synchronous or Sequential Circuits

Digital Log

Vikram Padmar

Recap Reading Lis

WAWG D.L.C

C.C.

S.C.

C.L. vs S.L Activity

- Output of sequential logic depends on the current and prior input values - it has memory
- Some Definitions:
 - **State**: All information about a circuit necessary to explain its future behaviour
 - Latches and Flip-Flops: State elements that store one binary bit
 - Synchronous Circuit: Combinational logic followed by a bank of flip-flops

Synchronous or Sequential Logic Synchronous Circuit & State Elements

Digital Logi

Vikram Padman

Agend

.....

Reading Lis

NAWG

D.L.C

T A

S.C.

Activity

Synchronous Circuit:

- Gives sequence to events
- Has short-term memory
- Uses feedback from output to store information

State Element:

- The current state of a circuit influences its future behavior
- State elements store the current state
- Types of State Elements:
 - Bistable Circuit
 - SR Latch
 - D Latch
 - D Flip-Flop & Registers

Synchronous or Sequential Logic D Flip-Flop & Registers

Digital Logi

Vikram Padman

Agenda

Recap

Reading Lie

14/414/C

VVAVVG

DIC

cc

- ,

S.C.

C.L. V3 J

CLK	D	D	S	R	Q	\bar{Q}
0	Х	X	0	0	Qpre	Q _{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0
(b)						

Synchronous or Sequential Logic D Flip-Flop & Registers

Digital Log

Vikram Padman

Agenda Recap Reading List WAWG D.L.C

T.A.

C.L. vs S.L.

 A flip-flop is a basic memory element built using logic gates. It is used to store state information

- A notation for time: Lets say t is the current time and t+1 is the very next moment in future, t is usually specified in seconds, ms, us, ns, ps ...etc
- A register is a flip-flop triggered by a clock (CLK)

Synchronous or Sequential Logic Clock Generators and Dividers

Digital Logi

Vikram Padman

Agenda Recap

Reading List

C.C. T.A.

S.C.

- A Clock Generator produces the "CLK", the timing signal
- In Digital logic, a square wave with 50% duty cycle and constant period, or frequency, is used for clock input
- Dedicated circuit is used to generate precise clock signal
- A clock divider or multiplier generates several phase aligned clock signals from a single clock input and each output frequency could be some multiple of input frequency

Combinatorial vs Synchronous or Sequential Logic

Digital Logi

Vikram Padmar

Agend

тесар

Reading Lis

WAWG

c c

ТА

S.C.

C.L. vs S.L.

Combinatorial Logic Synchronous Logic Combinatorial o Synchronous Logic

Combinatorial Logic

- Memoryless
- Only current input values determine outputs
- Synchronous or Sequential Logic
 - Has memory
 - Current and previous input values determine outputs

Combinatorial Logic

Digital Logi

Vikram Padman

Agend

тесар

Reading Lis

\Λ/Δ\Λ/C

D 1 6

T.A.

. . .

Cambinatania

Logic Synchronous Logic

Logic Combinatorial Synchronous Logic

Activity

A boolean equation is implemented using combinatorial logic

Combinatorial Logic

Digital Log

Vikram Padman

Agenda

WAWG

_ . _

c

T A

CI vs SI

Combinatorial

Synchronous
Logic
Combinatorial ve
Synchronous

- A boolean equation is implemented using combinatorial logic
- Combinatorial logic contains logic gates, adders, multipliers, encoders ... etc.

Combinatorial Logic

- A boolean equation is implemented using combinatorial logic
- Combinatorial logic contains logic gates, adders, multipliers, encoders ... etc.
- The output depend on the current state of the input

Synchronous Logic

Digital Logi

Vikram Padman

Agenda

кесар

Reading Lis

\Λ/Δ\Λ/G

WAWG

D.L.C

C.C

T.A

S.C.

C.L. VS 3.L

Logic

Synchronous Logic

Combinatorial v Synchronous Logic

Activity

• Uses both register and combinatorial logic

Synchronous Logic

Digital Log

Vikram Padman

Agend

тесар

Reading Lis

WAWG

D.L.C

C.C.

T.A

C1 C

Combinatoria Logic

Synchronous Logic

Combinatorial Synchronous Logic

- Uses both register and combinatorial logic
- Registers are used to synchronize timing

Combinatorial vs Synchronous Logic

Logic

Week 3 Activity 1

Digital Logi

Vikram Padman

Agenda Recap Reading List WAWG

D.L.C C.C. T.A. S.C.

C.L. vs S.l

Activity

For activities 1 & 2 you should use slow_adder project file.

O Design Analysis:

- List and explain the types of logic gates used in adder_16 and its sub-modules
- You have been tasked to build a 64-bit adder/subtractor. Could you use adder_16 as a sub-module to build a 64-bit adder/subtractor? If yes, how? if not, why?
- What is the maximum frequency (fmax) at which slow_adder will run reliably? Does it run at the same speed in all temperatures (OC and 85C)? If not, why?
- What is "out_reg" and its purpose? Give detailed description of this component.

Week 3 Activity 2

Digital Log

Vikram Padman

Agend

Reading Li

WAWG

DIC

cc

- .

S.C.

Activity

Functional Analysis:

- How does adder_16 perform subtraction?
- List, explain and write function specification for each sub-module within adder_16.
- What is the use of "Cout", an output of adder_16, and does it confirm to functional specification? If not, why? and how could you fix it?

Week 3 Activity 3 & 4

Digital Log

Vikram Padman

Recap

Reading Lis

WAWG

C.C.

T.A.

C.L. vs S.L

Activity

Use fast_adder project for the activities 3 & 4.

Timing Analysis:

- By design, how many logic levels are there in adder16?
- How fast (MHz) is the clock running in fast_adder?
- Open Does fast_adder meet fmax requirements? If not, why?

Redesign:

- Redesign fast_adder, in paper, to meet timing requirement.
- Implement your modification using Quartus II software and test it in DEO-Nano. You should make sure that your new design meets timing requirement before downloading it to DEO-Nano.