Case study DA

K.Vinay balaji reddy

2211cs010276 group-4

In [88]: import pandas as pd

df = pd.read_excel("MIDMARKS.xlsx")

df

	ат									
Out[88]:		S.NO	SECTION	DV	M-II	PP	BEEE	FL	FIMS	
	0	1.0	ALPHA	12	0	17	9	19	15	
	1	2.0	ALPHA	19	12	16	16	18	3	
	2	3.0	ALPHA	18	14	18	18	18	16	
	3	4.0	ALPHA	15	9	19	17	19	15	
	4	5.0	ALPHA	18	17	19	19	20	18	
	•••									
	713	NaN	ZETA	19	8	8	19	17	18	
	714	NaN	ZETA	12	1	7	10	20	8	
	715	NaN	ZETA	17	6	14	14	17	18	
	716	NaN	ZETA	12	1	6	7	15	12	
	717	NaN	ZETA	19	14	17	16	20	19	

718 rows × 8 columns

Importing pandas and reading Excel file data

In [90]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 718 entries, 0 to 717
Data columns (total 8 columns):
    Column Non-Null Count Dtype
    S.NO
             601 non-null
0
                            float64
1
    SECTION 691 non-null object
          716 non-null object
             716 non-null object
716 non-null object
3 M-II
    BEEE
            716 non-null object
             715 non-null
                            object
7
             716 non-null
                            object
    FIMS
dtypes: float64(1), object(7)
memory usage: 45.0+ KB
```

Shows Execl Data info

```
In [92]: df[df['DV'].isnull()]
Out[92]:
            S.NO SECTION
                           DV M-II
                                               FL FIMS
                                     PP BEEE
        564 565.0
                    SIGMA NaN
                                         NaN NaN
                                                   NaN
                               NaN NaN
        601
                                                   NaN
             NaN
                     NaN NaN NaN
                                         NaN NaN
```

Filtering rows where 'DV' subject column is null

```
In [94]: df.rename(columns={'M-II':'M2'}, inplace=True)
df
```

Out[94]:		S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS
	0	1.0	ALPHA	12	0	17	9	19	15
	1	2.0	ALPHA	19	12	16	16	18	3
	2	3.0	ALPHA	18	14	18	18	18	16
	3	4.0	ALPHA	15	9	19	17	19	15
	4	5.0	ALPHA	18	17	19	19	20	18
	•••								
	713	NaN	ZETA	19	8	8	19	17	18
	714	NaN	ZETA	12	1	7	10	20	8
	715	NaN	ZETA	17	6	14	14	17	18
	716	NaN	ZETA	12	1	6	7	15	12
	717	NaN	ZETA	19	14	17	16	20	19

718 rows × 8 columns

Renaming column 'M-II' to 'M2' in dataframe

```
In [96]: columns_to_convert = ['DV', 'M2', 'PP', 'BEEE', 'FL', 'FIMS']
for col in columns_to_convert:
    df[col] = pd.to_numeric(df[col], errors='coerce')

df['Total'] = df['DV'] + df['M2'] + df['PP'] + df['BEEE'] + df['FL'] + df['FIMS'
df
```

Out[96]:		S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total
	0	1.0	ALPHA	12.0	0.0	17.0	9.0	19.0	15.0	72.0
	1	2.0	ALPHA	19.0	12.0	16.0	16.0	18.0	3.0	84.0
	2	3.0	ALPHA	18.0	14.0	18.0	18.0	18.0	16.0	102.0
	3	4.0	ALPHA	15.0	9.0	19.0	17.0	19.0	15.0	94.0
	4	5.0	ALPHA	18.0	17.0	19.0	19.0	20.0	18.0	111.0
	•••		•••							
	713	NaN	ZETA	19.0	8.0	8.0	19.0	17.0	18.0	89.0
	714	NaN	ZETA	12.0	1.0	7.0	10.0	20.0	8.0	58.0
	715	NaN	ZETA	17.0	6.0	14.0	14.0	17.0	18.0	86.0
	716	NaN	ZETA	12.0	1.0	6.0	7.0	15.0	12.0	53.0
	717	NaN	ZETA	19.0	14.0	17.0	16.0	20.0	19.0	105.0

718 rows × 9 columns

```
In [97]: df['PERCENTAGE'] = (df['Total'] /120)*100
        print(df)
            S.NO SECTION
                           DV
                                M2
                                      PP
                                         BEEE
                                                 FL FIMS Total
                                                                 PERCENTAGE
                               0.0 17.0
             1.0
                  ALPHA 12.0
                                         9.0 19.0 15.0
                                                           72.0
                                                                  60.000000
             2.0
                  ALPHA 19.0 12.0 16.0
                                         16.0
                                               18.0
                                                     3.0
                                                           84.0
                                                                  70.000000
             3.0
                  ALPHA 18.0 14.0 18.0 18.0 18.0 16.0 102.0
                                                                  85.000000
            4.0 ALPHA 15.0
                              9.0 19.0 17.0 19.0 15.0
                                                          94.0
                                                                  78.333333
             5.0
                  ALPHA 18.0 17.0 19.0 19.0 20.0 18.0 111.0
                                                                  92.500000
                    . . .
                         . . .
             . . .
       713
            NaN
                   ZETA 19.0
                              8.0
                                     8.0
                                        19.0
                                              17.0 18.0
                                                           89.0
                                                                  74.166667
       714
             NaN
                   ZETA 12.0
                               1.0
                                     7.0 10.0
                                               20.0
                                                    8.0
                                                           58.0
                                                                  48.333333
       715
             NaN
                   ZETA 17.0
                               6.0
                                    14.0
                                          14.0
                                               17.0
                                                     18.0
                                                           86.0
                                                                  71.666667
       716
                   ZETA 12.0
                               1.0
                                    6.0
                                         7.0 15.0 12.0
                                                          53.0
             NaN
                                                                  44.166667
       717
                   ZETA 19.0 14.0 17.0 16.0 20.0 19.0 105.0
                                                                  87.500000
             NaN
```

[718 rows x 10 columns]

Calculating percentage based on 'Total' column values

```
In [99]: def assign_grade(percentage):
    if percentage >= 90:
        return 'A'
    elif percentage >= 80:
        return 'B'
    elif percentage >= 70:
        return 'C'
    elif percentage >= 60:
        return 'D'
    else:
        return 'F'
```

```
df['GRADE'] = df['PERCENTAGE'].apply(assign_grade)
df
```

Out[99]:		S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	PERCENTAGE	GRADE
	0	1.0	ALPHA	12.0	0.0	17.0	9.0	19.0	15.0	72.0	60.000000	D
	1	2.0	ALPHA	19.0	12.0	16.0	16.0	18.0	3.0	84.0	70.000000	С
	2	3.0	ALPHA	18.0	14.0	18.0	18.0	18.0	16.0	102.0	85.000000	В
	3	4.0	ALPHA	15.0	9.0	19.0	17.0	19.0	15.0	94.0	78.333333	С
	4	5.0	ALPHA	18.0	17.0	19.0	19.0	20.0	18.0	111.0	92.500000	Α
	•••											•••
	713	NaN	ZETA	19.0	8.0	8.0	19.0	17.0	18.0	89.0	74.166667	С
	714	NaN	ZETA	12.0	1.0	7.0	10.0	20.0	8.0	58.0	48.333333	F
	715	NaN	ZETA	17.0	6.0	14.0	14.0	17.0	18.0	86.0	71.666667	С
	716	NaN	ZETA	12.0	1.0	6.0	7.0	15.0	12.0	53.0	44.166667	F
	717	NaN	ZETA	19.0	14.0	17.0	16.0	20.0	19.0	105.0	87.500000	В

718 rows × 11 columns

Assigning grades based on percentage values in dataframe

Counting grade frequencies for 'BETA' section in dataframe

Counting grade frequencies for 'ALPHA' section in dataframe

Counting grade frequencies for 'EPSILON' section in dataframe

Counting grade frequencies for 'GAMMA' section in dataframe

Counting grade frequencies for 'OMEGA' section in dataframe

```
In [111... df[df['SECTION'] == 'SIGMA']['GRADE'].value_counts()
```

Counting grade frequencies for 'SIGMA' section in dataframe

Counting grade frequencies for 'ZETA' section in dataframe

```
a_grades = df[df['GRADE'] == 'A']
In [115...
          a_grades['SECTION'].value_counts()
Out[115... SECTION
          ALPHA
                    23
          OMEGA
                    20
          SIGMA
                   20
          BETA
                    10
          GAMMA
          DELTA
                    5
          EPSILON
          Name: count, dtype: int64
```

Counting sections with 'A' grades in dataframe

```
In [117... df.plot.line(x='BEEE',y='Total',color='blue')
    plt.title("Line Graph of BEEE subject")
    plt.ylabel("Total")
    plt.show()
```

Line Graph of BEEE subject

Plotting line graph of 'BEEE' vs 'Total' values

```
import matplotlib.pyplot as plt
df.plot.line(x='DV',y='Total',color='red')
plt.title("Line Graph of DV subject")
plt.ylabel("Total")
plt.show()
```

Line Graph of DV subject

Plotting line graph of 'DV' vs 'Total' values

In [121... DF=df.sort_values("Total",ascending=True)
DF

Out[121...

	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	PERCENTAGE	GRADE
190	191.0	DELTA	5.0	0.0	1.0	1.0	10.0	5.0	22.0	18.333333	F
611	NaN	NaN	2.0	0.0	0.0	3.0	10.0	9.0	24.0	20.000000	F
635	NaN	ZETA	9.0	0.0	2.0	2.0	3.0	9.0	25.0	20.833333	F
357	358.0	EPSILON	9.0	0.0	2.0	3.0	11.0	1.0	26.0	21.666667	F
636	NaN	ZETA	9.0	0.0	5.0	3.0	4.0	5.0	26.0	21.666667	F
•••											
628	NaN	ZETA	17.0	3.0	8.0	16.0	15.0	NaN	NaN	NaN	F
650	NaN	ZETA	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	F
669	NaN	ZETA	16.0	6.0	NaN	NaN	8.0	9.0	NaN	NaN	F
673	NaN	ZETA	2.0	NaN	0.0	0.0	2.0	1.0	NaN	NaN	F
705	NaN	ZETA	16.0	0.0	11.0	16.0	20.0	NaN	NaN	NaN	F

718 rows × 11 columns

4

Sorting dataframe by 'Total' in ascending order

Out[123		index	S.NO	SECTION	DV	M2	PP	BEEE	FL	FIMS	Total	PERCENTAGE	G
	0	0	1.0	ALPHA	12.0	0.0	17.0	9.0	19.0	15.0	72.0	60.000000	
	1	20	21.0	ALPHA	4.0	2.0	5.0	3.0	16.0	9.0	39.0	32.500000	
	2	25	26.0	ALPHA	6.0	10.0	10.0	11.0	13.0	10.0	60.0	50.000000	
	3	27	28.0	ALPHA	5.0	4.0	3.0	12.0	13.0	5.0	42.0	35.000000	
	4	29	30.0	ALPHA	8.0	2.0	11.0	10.0	13.0	12.0	56.0	46.666667	
	•••												
	227	700	NaN	ZETA	17.0	7.0	7.0	12.0	13.0	9.0	65.0	54.166667	
	228	701	NaN	ZETA	15.0	4.0	3.0	13.0	14.0	13.0	62.0	51.666667	
	229	710	NaN	ZETA	18.0	1.0	6.0	12.0	11.0	9.0	57.0	47.500000	
	230	714	NaN	ZETA	12.0	1.0	7.0	10.0	20.0	8.0	58.0	48.333333	
	231	716	NaN	ZETA	12.0	1.0	6.0	7.0	15.0	12.0	53.0	44.166667	
	232 rd	ows × 1	2 colum	nns									

Filtering rows where 'Total' is between 25 and 75

```
In [125... df.plot.scatter(x = 'FIMS', y = 'Total',color='green',s=30)
    plt.title("Scatter Plot for FIMS subject")
Out[125... Text(0.5, 1.0, 'Scatter Plot for FIMS subject')
```

file:///C:/Users/vinay/Downloads/Mid marks.html

Scatter Plot for FIMS subject

Creating scatter plot for 'FIMS' vs 'Total' values

```
In [127... df['M2'].plot(kind='pie',subplots=True,figsize=(8,8))
    plt.title("Pie Chart of M2 subject")
```

Out[127... Text(0.5, 1.0, 'Pie Chart of M2 subject')

Pie Chart of M2 subject

Creating pie chart for 'M2' subject data distribution

```
In [132... df.boxplot(by='DV', column =['Total'], grid = False,color='orange')
    plt.title("Boxplot of DV")
    plt.ylabel("Total")
    plt.show()
```


Creating boxplot to visualize 'Total' distribution by 'DV'

```
In [134...

df.boxplot(by='M2', column =['Total'], grid = False,color='green')
plt.title("Boxplot of M2")
plt.ylabel("Total")
plt.show()
```


Creating boxplot to visualize 'Total' distribution by 'M2

```
In [136... plt.hist(df['DV'],color='red',edgecolor='white',bins=9)
    plt.xlabel("Marks scored in DV subject")
    plt.ylabel("Students")
    plt.title("Histogram of DV subject")
```

Out[136... Text(0.5, 1.0, 'Histogram of DV subject')

Histogram of DV subject

Creating histogram to visualize 'DV' subject marks distribution

In [138...

df.plot()
plt.show()

Plotting all columns in the dataframe for visualization

```
In [141... df['BEEE'].plot(kind='pie', subplots=True, figsize=(8,8))
    plt.title("Pie Chart of BEEE subject")
```

Out[141... Text(0.5, 1.0, 'Pie Chart of BEEE subject')

Pie Chart of BEEE subject

Creating pie chart for 'BEEE' subject data distribution

```
In [145... plt.hist(df['DV'], color='green', bins=8)
    plt.ylim(0, 250)
    plt.xlabel("Marks scored in DV")
    plt.ylabel("No. of students")
    plt.title("Histogram of DV")
    plt.show()
```


Creating histogram to visualize 'DV' subject marks distribution

```
In [148... plt.hist(df['BEEE'], color='yellow', bins=8)
    plt.ylim(0, 250)
    plt.xlabel("Marks scored in BEEE")
    plt.ylabel("No. of students")
    plt.title("Histogram of BEEE")
    plt.show()
```


Creating histogram to visualize 'BEEE' subject marks distribution

In []: