Programme de transport – Fiche méthode concise

1. Solution initiale: Coin Nord-Ouest

Procédé:

- 1. Placer le maximum possible dans la case (1,1) : min(offre, demande).
- 2. Si offre épuisée, passer à la ligne suivante (même colonne).
- 3. Si demande satisfaite, passer à la colonne suivante (même ligne).
- 4. Répéter jusqu'à remplir tout le tableau.

Exemple:

	1	2	3	4	5	6	ai
I	9	9					18
Ш	2		28	2			32
III			4	10			14
IV				4	5		9
bj	9	11	28	6	14	5	73

2. Solution initiale: Coût minimum (Houthaker)

Procédé:

- 1. Repérer la case de coût minimum.
- 2. Placer le maximum possible (min(offre, demande)).
- 3. Rayer ligne/colonne épuisée, recommencer sur le coût min restant.
- 4. Répéter jusqu'à remplir tout le tableau.

3. Dégénérescence

- Si le nombre d'affectations < m+n-1, il faut ajouter une case fictive (0 unité, coût 0).
- Cette case doit être placée de façon à ne pas créer de circuit fermé dans le tableau d'affectation (sinon, la solution n'est pas valide pour la méthode des potentiels).
- Astuce : placer le zéro fictif dans une case vide qui ne ferme pas de boucle/cycle.

4. Méthode des potentiels (amélioration)

Procédé:

- 1. Calculer les potentiels Ui (lignes) et Vj (colonnes) :
 - Pour chaque case occupée, écrire Ui + Vj = cij.
 - Fixer arbitrairement un Ui ou Vj (ex: U1 = 0).
 - Résoudre le système pour trouver tous les Ui et Vj.
- 2. Calculer les coûts marginaux : $\delta ij = cij (Ui + Vj)$ pour chaque case vide.

- 3. Si tous $\delta ij \ge 0$, solution optimale.
- 4. Sinon, choisir la case de δij le plus négatif, tracer le cycle d'amélioration, ajuster les flux.
- 5. Recommencer jusqu'à optimalité.