Algorithms PA 3 Report B11901123 電機三 張甡源

Data Structure

1. Edge Storage

```
vector<Edge> edges;
```

- Uses a vector to store Edge structs
- Each Edge struct contains:
 - source vertex
 - o destination vertex
 - edge weight
- 2. Adjacency List

```
vector<vector<int> > adjacencyList;
```

- Vector of vectors
- Outer vector size = number of vertices
- Inner vector size = neighboring vertices of that vertex
- Used for cycle detection
- 3. Disjoint Set

```
class DisjointSet {
  vector<Node> nodes;
  ...
}
```

- The graph size is stored in vertexCount
- Graph type (directed/undirected) is stored in graphType
- Each Node contains a parent pointer
- Do path compression
- Do union and find operations

Algorithm

Undirected Graph (Similar to Reversed Kruskal's algorithm)

- 1. Sort edges by descending weight
- 2. For each edge:
 - If vertices already connected in disjoint set: remove edge and add weight to total
 - If not connected: keep edge and merge vertices in disjoint set
- 3. Create Maximum Spanning Tree (connected, acyclic)

<u>Directed Graph</u> (Undirected graph implementation + cosideration of removed edges)

- 1. Edges removed from undirected phase
- 2. For each removed edge:
 - If weight negative: keep it removed

- If weight positive:
 - o Add back to graph
 - o Check for cycles using DFS
 - o If create cycle: keep it removed
 - o If no cycle: add back to tree and subtract weight from total
- 3. Create weakly connected, acyclic tree and minimizes total weight of removed edges

<u>Time Complexity</u> (E: number of edges, V: number of vertices)

- 1. undirected graph:
 - C++ library sort => O(ElogE)
 - Initialization of disjoint set \Rightarrow O(V)
 - For O(E) edges, findRoot and merge=> E × O(α (V)) = O(E α (V))

Total =>
$$O(ElogE + V + E\alpha(V)) \approx O(ElogE + V)$$

- 2. directed graph:
 - Undirected graph process \Rightarrow O(ElogE + V)
 - Iterate through all removed edges \Rightarrow O(E)
 - For O(E) edges, add edge to adjacency list and check for cycles using DFS

$$\Rightarrow$$
 O(E× (E + V)) = O(E² + EV)

$$Total => O(ElogE + V + E + E^2 + EV) = O(E^2 + EV)$$

Results

Case	type	Removed edges' total weight
public_case_0	d	5
public_case_1	u	21
public_case_2	u	-3330
public_case_3	u	-21680
public_case_4	d	0
public_case_7	d	-10515
public_case_8	d	-71075

Findings

- 1. Two-phase approach for directed graphs
 - Phase 1 uses modified Kruskal's Algorithm
 - Phase 2 applies directed-specific processing
 - Shows how classic algorithms can be adapted and combined to solve complex problems!

2. Data Structure Optimization:

- Initial implementation used simple adjacency matrix with O(V2) space
- Then tried linked list which was memory efficient but slow for access
- Finally optimized to current version using:
 - Vector-based adjacency lists for O(V+E) space efficiency
 - o Disjoint sets with path compression for near O(1) operations
 - o Combined approach provides optimal balance of space and time complexity
- Structure improvement of space-time trade-offs