Example Suppose $U_1, U_2, ..., U_{1000}$ are independent continuous uniform random variables, with U_1 uniformly distributed on [0,5].

So $\mu = E(X_j) = \frac{5}{2}$ and $\sigma^2 = Var(X_j) = \frac{25}{12}$.

Find an approximation to the probability that $U_1 + ... + U_{1000} \le 2550$. $P(U_1 + ... + U_{1000} \le 2550) = P(U_1 + ... + U_{1000} - (0000)(f_2)) \le \frac{2550 - (1000)(5_2)}{\sqrt{1000}(25_{12})}$ by $CuT \approx P(7 \le 1.09)$ $= F_2(1.09)$ = 0.8621

Notice we do not know how the sum U, t... + U, wo is distributed so this problem would be hopeless without CLT.