Topic 8: The LCD Screen

Bilal Arain

Reference: The slides were originally prepared by Dr Luis Mejias

Outline

Revisit last week's lecture (Topic 7)

- Writing to the LCD screen in the teensy board
- Reviewing cab202_teensy graphics library

Revisiting Topic 7

Revisiting Topic 7

Turning an LED on/off

Used Buttons to turn LED on/off

LED example and bitwise shifts in more details

LED=Light Emitting Diode

Schematic

Datasheets

Programming the device

Nokia 5110 LCD screen The PCD8544 LCD Controller/driver

- 48×84 pixel monochrome display.
- Build-in back-light
- Interfaces to microcontrollers via serial bus interface
- The controller has a small amount of RAM which holds the pixel data for display
- Recommended reading
- Learning Resources→Microcontrollers→Nokia5110-LCD-Screen.pdf (PCD8544 Data Sheet).

The PCD8544 LCD Controller/driver

SCE = Chip Select

RST = Reset

DC = Mode select

DIN = Serial data in (MOSI)

SCLK = Serial clock

LED = backlight supply

Teensy schematic

Port C, pin 7 → LCD backlight.

Port F, pin $7 \rightarrow LCD$ Serial Clock pin.

Port B, pin 6 → LCD Serial Data Input pin.

Port B, pin 5 → LCD Serial Data/Command pin.

Port B, pin $4 \rightarrow LCD$ Reset pin.

Port D, pin $7 \rightarrow LCD$ Chip Select pin.

CRICOS No. 000213J

http://ww1.microchip.com/downloads/en/devicedoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Summary.pdf

LCD Pin	Notes
Vcc	3.3V Vcc
GND	GND
SCE	Chip select pin. Low: The start of data transmission High: SCLK clock pulses have no effect
RST	Reset to default configuration.
D/C	Data/Command Pin Low: means incoming data must be interpreted as a command. High: means incoming data is pixel data to be displayed
DIN	Serial Data input pin
SCK	Serial Clock Pin
LED	Backlight

CRICOS No. 000213J

Reference: LCD data sheet, Fig 10, p12

new byte

We will use software routines (libraries) that take cake of the low level Interaction with the LCD

A library called: cab202_teensy.a

However, we will also show you how to write directly to the screen.

000213J

Fig.11 Serial bus protocol - transmission of several bytes.

What is a library? cab202_teensy.a

- A library in C is a group of functions and declarations, exposed for use by other programs. The library therefore consists of an interface expressed in a .h file (named the "header") and an implementation expressed in a .c file.
- Like a .zip file, they're just a bag of object files containing functions,
 of course with a table of contents in front giving the address of each
 name.
- They can be static or dynamic.
 - Static are joined to the main program at compiling
 - Dynamic are referenced at compiling, but aren't used until runtime

Our graphics library cab202_teensy.a

- Provides a high level interface (functions) to write characters on the LCD screen.
- Similar to zdk, it will allows us to draw characters on the screen.
- How it is used?
 - Include "graphics.h" and "lcd.h" in your main.
 - Include cab202_teensy directory in your makefile (see blackboard topic 8)
 - Use library functions

Our graphics library cab202_teensy.a

- Useful functions (graphics.h)
 - void show_screen(void);
 - Copy content entire screen buffer to the LCD
 - void clear_screen(void);
 - Clear/reset all the screen
 - void draw_pixel(int x, int y, colour_t colour);
 - Draw a pixel on the screen using FG or BG colours
 - void draw_line(int x1, int y1, int x2, int y2, colour_t colour);
 - Draw a line from (x1,y1) to (x2,y2) using FG or BG colours
 - void draw_char(int top_left_x, int top_left_y, char character, colour_t colour);
 - Draw a single character using FG or BG colours. Position is referenced to the top left corner of the character
 - void draw_string(int top_left_x, int top_left_y, char *text, colour_t colour);
 - Draw a string of character. Position is referenced to the top left corner of the character

Our graphics library cab202_teensy.a

- Useful functions (lcd.h)
 - Void lcd_init(uint8_t contrast);
 - Initialise the screen with a value for contrast
 - void lcd_write(uint8_t dc, uint8_t data);
 - Write a byte of data to the screen
 - void lcd_clear(void);
 - Clear the screen (clear the pixels)
 - void lcd_position(uint8_t x, uint8_t y);
 - Set the address (position cursor) at the address x,y (see lecture notes Pixel data storage section)

```
Port D, pin 7 \rightarrow LCD Chip Select pin.
Port B, pin 4 \rightarrow LCD Reset pin.
Port F, pin 7 \rightarrow LCD Serial Clock pin.
Port B, pin 6 \rightarrow LCD Serial Data Input pin.
Port B, pin 5 \rightarrow LCD Serial Data/Command pin.
macros.h
#define SET_OUTPUT(portddr, pin)
#define SET_BIT(reg, pin)
#define CLEAR BIT(reg, pin)
lcd.h
#define DCPIN 5 // PORTB
#define RSTPIN 4 // PORTB
#define DINPIN 6 // PORTB
#define SCKPIN 7 // PORTF
#define SCEPIN 7 // PORTD
```

```
/oid lcd init(uint8 t contrast) {
       SET OUTPUT(DDRD, SCEPIN);
       SET OUTPUT(DDRB, RSTPIN);
       SET OUTPUT(DDRB, DCPIN);
       SET OUTPUT(DDRB, DINPIN);
       SET OUTPUT(DDRF, SCKPIN);
       CLEAR_BIT(PORTB, RSTPIN);
       SET BIT(PORTD, SCEPIN);
       SET BIT(PORTB, RSTPIN);
       lcd write(LCD C, 0x21); // Enable LCD extended command set
       lcd write(LCD C, 0x80 | contrast ); // Set LCD Vop (Contrast)
       lcd write(LCD C, 0x04);
       lcd write(LCD C, 0x13); // LCD bias mode 1:48
       lcd write(LCD C, 0x0C); // LCD in normal mode.
       lcd write(LCD C, 0x20); // Enable LCD basic command set
       lcd write(LCD C, 0x0C);
       lcd write(LCD C, 0x40); // Reset row to 0
       lcd write(LCD C, 0x80); // Reset column to 0
```


Command bytes write to the LCD

```
// LCD Command and Data
#define LCD_C 0
#define LCD_D 1
```

```
void lcd init(uint8 t contrast) {
       // Set up the pins connected to the LCD as outputs
       SET OUTPUT(DDRD, SCEPIN);
       SET OUTPUT(DDRB, RSTPIN);
       SET OUTPUT(DDRB, DCPIN);
       SET OUTPUT(DDRB, DINPIN);
       SET OUTPUT(DDRF, SCKPIN);
       CLEAR BIT(PORTB, RSTPIN);
       SET BIT(PORTD, SCEPIN);
       SET BIT(PORTB, RSTPIN);
       lcd write(LCD C, 0x21); // Enable LCD extended command set
       lcd write(LCD C, 0x80 | contrast ); // Set LCD Vop (Contrast)
       lcd write(LCD C, 0x04);
       lcd write(LCD C, 0x13); // LCD bias mode 1:48
       lcd write(LCD_C, 0x0C); // LCD in normal mode.
       lcd write(LCD C, 0x20); // Enable LCD basic command set
       lcd write(LCD C, 0x0C);
       lcd_write(LCD_C, 0x40); // Reset row to 0
       lcd write(LCD C, 0x80); // Reset column to 0
```

INSTRUCTION	D/C	COM	IMAND	BYTE	DESCRIPTION					
		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(H = 0 or 1) Either instruction set										
NOP	0	0	0	0	0	0	0	0	0	no operation
Function set	0	0	0	1	0	0	PD	V	Н	power down control; entry mode; extended instruction set control (H)
Write data	1	D7	D6	D5	D4	D3	D2	D1	D0	writes data to display RAM
(H = 0) Basic instruction set										
Display control	0	0	0	0	0	1	D	0	E	sets display configuration
Set Y address of RAM	0	0	1	0	0	0	Y2	Y1	Y0	sets Y-address of RAM; $0 \le Y \le 5$
Set X address of RAM	0	1	X6	X 5	X4	X3	X2	X1	X0	sets X-address part of RAM; $0 \le X \le 83$
(H = 1) Extended instruction set										
Temperature control	0	0	0	0	0	0	1	TC1	TC0	set Temperature Coefficient (TCx)
Bias system	0	0	0	0	1	0	BS2	BS1	BS0	set Bias System (BSx). Determined by number of multiplexed planes. This unit has MUX == 1:48, so the appropriate value for Bias is 3. See page 16 of data sheet.
Set VOP	0	1	VOP6	VOP5	VOP4	VOP3	VOP2	VOP1	VOP0	write VOP to register; sets the operating voltage; 0 ≤ VOP ≤ 127 == 0x7f. Provides adjustable contrast.

Interpretation:

BIT	0	1
PD	chip is active	chip is in Power-down mode
V	horizontal addressing	vertical addressing
Н	use basic instruction set	use extended instruction set
D and E		
00	display blank	
10	normal mode	
01	all display segments on	
11	inverse video mode	
TC1 and TC0		
00	VLCD temperature coefficient 0	
01	VLCD temperature coefficient 1	
10	VLCD temperature coefficient 2	
11	VLCD temperature coefficient 3	

Function set 0b00100001 = 0x21

Section 8 of the data sheet (pages 14–16).


```
void lcd write(uint8 t dc, uint8 t data) {
       // Set the DC pin based on the parameter 'dc' (Hint: use the WRITE BIT macro)
       WRITE BIT(PORTB, DCPIN, dc);
       // Pull the SCE/SS pin low to signal the LCD we have data
       CLEAR BIT(PORTD, SCEPIN);
       // Write the byte of data using "bit bashing"
       for(int i = 7; i >= 0; i--) {
               CLEAR BIT(PORTF, SCKPIN);
                if((data>>i) & (1 == 1)) {
                        SET BIT(PORTB, DINPIN);
                } else {
                        CLEAR BIT(PORTB, DINPIN);
                SET BIT(PORTF, SCKPIN);
       // Pull SCE/SS high to signal the LCD we are done
       SET BIT(PORTD, SCEPIN);
```

Example of using lcd_write

```
void show_screen(void) {
    // Reset our position in the LCD RAM
    lcd_position(0, 0);

    // Iterate through our buffer and write each byte to the LCD.
    for ( int i = 0; i < LCD_BUFFER_SIZE; i++ ) {
        lcd_write(LCD_D, screen_buffer[i]);
    }
}</pre>
```



```
void lcd_clear(void) {
    // For each of the bytes on the screen, write an empty byte
    for (int i = 0; i < LCD_X * LCD_Y / 8; i++) {
        lcd_write(LCD_D, 0x00);
    }
}

void lcd_position(uint8_t x, uint8_t y) {
        lcd_write(LCD_C, (0x40 | y )); // Reset row to 0
        lcd_write(LCD_C, (0x80 | x )); // Reset column to 0
}</pre>
```

To understand lcd_position function, we need to know how pixel data is stored in RAM

LCD screen coordinates

- Each bank contains a horizontal band of pixels which stretches from the left to right side of the display.
- The pixels are arranged in vertical blocks of 8, and each block of 8 pixels is packed into a byte.
- Every time we write data to the LCD display we replace a complete block of 8 pixels

- To write an 8-bit block of pixel data (pixel_block) at screen coordinates (px,py)
- Get the cursor position:

```
x = px;
y = py / 8;
```

Move LCD internal cursor:

```
LCD_CMD(lcd_set_function, lcd_instr_basic | lcd_addr_horizontal);
LCD_CMD(lcd_set_x_addr, x);
LCD_CMD(lcd_set_y_addr, y);
```

Write the byte value:

```
LCD_DATA(pixel_block);
```


Teensy Let's write some code

- Draw characters
 - TeensyBlank.c
- Draw a line
 - TeensyLines.c
- Changing contrast
 - ContrastDemo.c
 - Additional examples are provide on blackboard under Topic 8.

Summary

- Key learning topics:
 - Basic working principle of the LCD
 - cab202_teensy library
- Example programs