上海交通大学试卷(A卷)

(2013 至 2014 学年第二学期)

一、选择题(20分,每小题2分)

1. 本征半导体的载流子浓度与温度的关系: ()
A. 成指数关系; B. 成线性关系; C. 成对数关系; D. 成平方关系
2. 半导休的导电性能受哪种物理现象的影响最小: ()
A. 空气压力; B. 温度; C. X 射线辐射; D. 磁场
3. 杂质半导体中多子和少子受温度的影响关系
A. 多子浓度受温度的影响小, 少子浓度受温度的影响大;
B. 多子浓度受温度的影响大, 少子浓度受温度的影响小;
C. 多子浓度受温度的影响小, 少子浓度受温度的影响小;
D. 多子浓度受温度的影响大,少子浓度受温度的影响大;
4. 生在未外加电压的 PN 结中,对载流子的描述那个是正确的: ()
A. 存在多子的扩散运动、少子的漂移运动,两者数量正好相等,达到动态平衡
B. 只存在多子的扩散运动, 无少子的漂移运动;
C. 只存在少子的扩散运动, 无多子的漂移运动;
D. 存在少子的扩散运动、多子的漂移运动,两者数量正好相等,达到动态平衡
5. PN 结击穿时那种说法是不正确的: ()
A. 在高掺杂的情况下,因耗尽层宽度很窄,产生的击穿通常是齐纳击穿;
B. 在掺杂浓度低的情况下, 耗尽层宽度较宽, 产生的击穿通常是雪崩击穿;
C. 雪崩击穿的电压温度系数是正的, 齐纳击穿的电压温度系数是负的;
D. 雪崩击穿的电压温度系数是负的, 齐纳击穿的电压温度系数是正的;
6. 二极管的最高工作频率是由于作用决定的
A. 其 PN 结电容; B. 击穿电压; C. 工作电流; D. 导通压降
7, 使晶体管工作在放大状态的外部条件是: ()
A. 发射结正向偏置,集电结反向偏置; B. 发射结反向偏置,集电结正向偏置;
C. 发射结正向偏置,集电结正向偏置; D. 发射结反向偏置,集电结反向偏置;
8. 温度对二极管的正向导通压降的影响: ()
A. 正温度系数,温度升高 1℃,正向导通压增加约 2-2.5mV;

- B. 负温度系数,温度升高 1℃,正向导通压降下降约 2-2.5mv;
- C. 与温度关系不大. 导通压降变化是随机的;
- D. 与温度无关, 正向导通压降不变。
- 9. 绝缘栅型场效应管的栅源极电阻通常在哪个数量级: ()

A. $10^{3} \Omega$; B. $10^{6} \Omega$; C. $10^{7} \Omega$; D. $10^{10} \Omega$

10. 有一种线性稳压电源叫 LDO (低压差输出的稳压电源), 其电压调整管是由 ()构成的。

A. NPN 晶体管; B. PNP 晶体管; C. 达林顿晶体管; D. MOS 管

- 二、填空题(20分,每格0.5分)
- 1. 某管子的工作电路如下左图所示, 其输出特性曲线如下右图所示:

2. 晶体管放大电路如下左图所示,其输出特性曲线如下右图所示,由于电路参数的变化,使其静态工作点从Q1到Q4发生相应的变化,假定管子的饱和压降UCES=0.7V:

当静态工作点由 Q1 移到 Q2 是_		变化造成的;
当静态工作点由 Q2 移到 Q3 是		变化造成的;
当静态工作点由 Q3 移到 Q4 是		变化造成的;
从输出电压的角度看,	(选填 Q1-Q4) 最容易产生截止失真	;最容易产生饱和
失真;最大不失真	输出电压 Uom 最大,约为	V, 对于图中 Q4,
Vcc=K Ω		
3. 晶体管的共基、共射、共集放	大电路中,电路既能放大时	电流又能放大电压,输入电
阻居三种电路之中,输出电阻较	大,频带较窄;电路只能放	故大电流不能放大电压,是
三种接法中输入电阻最大、输出	电阻最小,并具有电压跟随的特点。	,该电路常用于多级电压放
大电路级(部分)和	级(部分):电路只能	能放大电压不能放大电流,
输入电阻小,特性是三種	中电路中最好的。	
4. 场效应管与晶体管(双极型管) 相比,组成的放大器电路中,	具有高输入电阻的特
点,管电路噪声低,	管电路温度稳定差,	管电路抗辐射能力差。
5. 双极性晶体管共射放大电路中	,静态工作点对放大倍数的影响,	在保证无失真的情况下,发
射极电流变大,放大倍数变	(大或小);同样不失真情况¯	下,升高电源电压,放大倍
数变,通频带变	•	
6. 晶体管中存在三个频率参数,	分别是 fα, fβ, ft 其大小从小到	大排列是。
7. 放大电路引入负反馈后,	放大倍数稳定性,频	i带,非线性失真,
从输入方面,负反馈降	峰低输入电阻,负反馈提	高输入电阻; 从输出方面
负反馈增大输出电阻,	负反馈减少输出电阻。	

- 三、(15分)在下图分析及连线,完成:
- 1. 连线,要求使电路具有电压放大功能,同时具有较高的输入电阻,较低的输出电阻;
- 2. 使得电路的放大倍数为 $|\dot{A}_u| = \frac{\dot{v}o}{\dot{v}i} = 30$,则 Rf 应取多少?
- 3. T1T2 组成的电路名称是什么,简述其工作原理,对管子有什么要求?
- 4. 电路中 D1D2 的作用是什么?
- 5. 若 T1T2 管子的饱和压降为 1V,Vcc=16V 最大不失真输出输出电压的幅值为多少? R_L =10 Ω ,最大输出功率多少?
- 6. 结合问题 2、5,此时最大输入电压的幅值为多少?

四、 $(10\, \text{分})$ 推导下图的输入 u_i 与输出 u_o 的关系式,其中 C1=C2=C,并说明电路具有什么功能。

五、(15分)分析计算下图电路

- 1. A1 组成的是什么电路, 画出其输入 uo 输出 uo1 的关系曲线;
- 2. A2 组成电路是什么电路,写出其输入 u_{o1} 和输出 u_{o} 之间的关系式;
- 3. 说明整个电路的功能,写出输出 uo 信号的频率计算公式;
- 4. 在同一时间轴上, 定性画出 uo1 和 uo 的波形;
- 5. 如何改变输出 uo 的幅值,如何改变输出的频率?

六、(10 分)下图中,Dz 的稳压电压为 Uz=4V,晶体管的饱和管压降为 1V,R1R2 为如图所示:

- 1. 求输出电压的 Uo 的表达式;
- 2. 说明电路中输出电压 Uo 的稳定的工作原理及电路的功能;
- 3. 若输入电压为 U_I =12V,输出 U_0 为 8V, R_L =8 Ω ,功率管 T 能提供足够的电流(未饱和), R1R2 如何取值?电路的输入功率为多少,输出功率(R_L 负载消耗功率)为多少?管子 T 的耗散功率多少,电路的效率为多少?(假定运放 A、电阻 R1、R2、R,二极管 Dz 的消耗功率忽略不计)

七、(10分)分析下图电路,回答下列问题:

- 1. 图中 m 为何电路?
- 2. 图中 A1 组成的部分有何功能?
- 3. 图中 A2 组成的部分有何功能?
- 4. 图中 A3 组成的部分有何功能?
- 5. 图中 A4 组成的部分有何功能?
- 6. 整个电路有何功能?

