

MM54HC42/MM74HC42 BCD-to-Decimal Decoder

General Description

This decoder utilizes advanced silicon-gate CMOS technology. Data on the four input pins select one of the 10 outputs corresponding to the value of the BCD number on the inputs. An output will go low when selected, otherwise it remains high. If the input data is not a valid BCD number all outputs will remain high. The circuit has high noise immunity and low power consumption usually associated with CMOS circuitry, yet also has speeds comparable to low power Schottky TTL (LS-TTL) circuits, and is capable of driving 10 LS-TTL equivalent loads.

All inputs are protected from damage due to static discharge by diodes to $\mbox{$V_{CC}$}$ and ground.

Features

- Typical propagation delay: 15 ns
- Wide supply range: 2V-6V
- Low quiescent current: 80 μA (74HC)
- Fanout of 10 LS-TTL loads

Connection Diagram

VCC A B C D 9 8 7 16 15 14 13 12 11 10 9 1 2 3 4 5 6 GND OUTPUTS OUTPUTS Top View

Truth Table

No.	Inputs				Outputs									
	D	С	В	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Η	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Η	Η	Н	Н	Н	Η	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	I
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
8	Н	L	L	L	Н	Н	Н	Н	Η	Н	Н	Н	L	Н
9	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Ι
	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
INVALID	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

H=High Level, L=Low Level

Order Number MM54HC42 or MM74HC42

Logic Diagram

TL/F/5301-2

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per pin (\pm 50 mA
Storage Temperature Range (TST	-65° C to $+150^{\circ}$ C

Power Dissipation (P_D)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Operating Conditions

	•			
		Min	Max	Units
Supply Vo	oltage (V _{CC})	2	6	V
DC Input (V _{IN} , V ₀	or Output Voltage _{OUT})	0	V_{CC}	V
Operating	Temp. Range (T _A)			
MM74H	HC	-40	+85	°C
MM54H	HC	-55	+125	°C
Input Rise	e or Fall Times			
(t_r, t_f)	$V_{CC} = 2.0V$		1000	ns
	$V_{CC} = 4.5V$		500	ns
	$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Typ Guaranteed Limits		Limits	
V _{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	٧
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	٧
	Input Voltage**		4.5V		1.35	1.35	1.35	V
	·		6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum High Level	V _{IN} = V _{IH} or V _{IL}						
	Output Voltage	I _{OUT} ≤20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		V _{IN} =V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Minimum Low Level	V _{IN} =V _{IH} or V _{IL}						
	Output Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	٧
			4.5V	0	0.1	0.1	0.1	٧
			6.0V	0	0.1	0.1	0.1	V
		V _{IN} =V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		15	25	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ \ \text{to 6.0V}, \ C_L = 50 \ \ \text{pF}, \ t_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V 4.5V 6.0V	75 17 15	150 30 26	189 38 32	224 45 38	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		62				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

 $\textbf{Note 5:} \ \ C_{PD} \ \ \text{determines the no load dynamic power consumption, } \ P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{$

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408