3-Heterocyclyl-substituted benzoyl derivatives

5 The present invention relates to 3-heterocyclyl-substituted benzoyl derivatives of the formula I

10
$$\begin{array}{c} O & R^1 & N & X \\ R^{15} & & & & \\ R^{2} & & & & \\ R^{2} & & & & \\ R^{3} & & & & \\ \end{array}$$

where the variables have the following meanings:

 $\begin{array}{c} {\mathbb R}^1, \ {\mathbb R}^2 & \text{are hydrogen, nitro, halogen, cyano, } C_1\text{-}C_6\text{-}alkyl, \\ C_1\text{-}C_6\text{-}haloalkyl, } C_1\text{-}C_6\text{-}alkoxy, } C_1\text{-}C_6\text{-}haloalkyl, \\ C_1\text{-}C_6\text{-}alkylthio, } C_1\text{-}C_6\text{-}haloalkylthio, \\ C_1\text{-}C_6\text{-}alkylsulfinyl, } C_1\text{-}C_6\text{-}haloalkylsulfinyl, \\ C_1\text{-}C_6\text{-}alkylsulfonyl or } C_1\text{-}C_6\text{-}haloalkylsulfonyl; \\ \end{array}$

R3 is hydrogen, halogen or C₁-C₆-alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl, di(C₁-C₄-alkyl), c₁-C₄-alkyl, [2,2-di(C₁-C₄-alkyl)-1-hydrazinol-C₁-C₄-alkyl, C₁-C₆-alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylhio, C₁-C₄-alkylhio, C₁-C₄-alkylhio, C₁-C₄-alkylhio, C₁-C₄-alkylhio, C₁-C₄-alkoxy, C₁-C₄-alkylhio, C₁-C₄-alkoxy, C₁-C₄-alkylhio, C₁-C₄-alkoxylhio, C₁-C₄-alkylhio, C₁-C₄-bloxylhio, C₁-C₄-alkylhio, C₁-C₄-bloxylhio, C₁-C₄-bloxylhio, C₁-C₄-bloxylhio, C₁-C₄-alkylhio, C₁-C₄-bloxylhio, C

40 fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

45 or

		2
	R ⁴ and R ⁵	together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is
5		unsubstituted or substituted by C ₁ -C ₄ -alkyl;
	or	
10	\mathbb{R}^4 and \mathbb{R}^5	together with the corresponding carbon form a carbonyl or thiocarbonyl group;
	R ⁶	is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;
15	R ⁷	is hydrogen or C ₁ -C ₄ -alkyl;
	R8	is C ₁ -C ₄ -alkyl;
20	х	is O, S, NR^9 , CO or $CR^{10}R^{11}$;
	Y	is O, S, NR ¹² , CO or CR ¹³ R ¹⁴ ;
25	\mathbb{R}^9 , \mathbb{R}^{12}	are hydrogen or C ₁ -C ₄ -alkyl;
30	R ¹⁰ , R ¹¹ ,	$R^{13},\ R^{14}$ are hydrogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ }C_1\text{-}C_4\text{-}alkoxycarbonyl,\ }C_1\text{-}C_4\text{-}haloalkoxycarbonyl\ }or$ $CONR^7R^8;$
	or	
35	R ⁴ and R ⁹	or $\rm R^4$ and $\rm R^{10}$ or $\rm R^5$ and $\rm R^{12}$ or $\rm R^5$ and $\rm R^{13}$ together form a $\rm C_2$ -C_6-alkanediyl chain which can be mono- to tetrasubstituted by $\rm C_1$ -C_4-alkyl and/or interrupted by

oxygen or by a nitrogen which is unsubstituted or substituted by C1-C4-alkyl;

40 R15 is a pyrazole of the formula II which is linked in the 4-position

3 **P**16

II

where

10 R16 is C1-C6-alkyl;

is H or SO₂R¹⁷;

15 R17 is C1-C4-alkyl, C1-C4-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, 20 C1-C4-alkoxy or C1-C4-haloalkoxy;

> R18 is hydrogen or C1-C6-alkyl;

25 where X and Y are not simultaneously oxygen or sulfur;

with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-v1)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-30 benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-

1,3-dimethyl-5-hydroxy-1H-pyrazole and

35 4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

or the agriculturally useful salts thereof.

40 The invention furthermore relates to processes and intermediates for the preparation of compounds of the formula I, to compositions comprising them, and to the use of these derivatives or compositions comprising them for the control of harmful plants.

Pyrazol-4-yl-benzoyl derivatives have been disclosed in the literature, for example in WO 96/26206.

However, the herbicidal properties of the compounds which have been known to date and their compatibility properties regarding crop plants are only moderately satisfactory.

It is an object of the present invention to provide novel, in particular herbicidally active, compounds which have improved properties.

We have found that this object is achieved by the 3-hetero-cyclyl-substituted benzoyl derivatives of the formula I and by 15 their herbicidal activity.

We have furthermore found herbicidal compositions which comprise the compounds I and which have a very good herbicidal activity. Moreover, we have found processes for the preparation of these 20 compositions and methods of controlling undesirable vegetation using the compounds I.

Depending on the substitution pattern, the compounds of the formula I can contain one or more chiral centers, in which case they exist as enantiomer or diastereomer mixtures. The present invention relates to the pure enantiomers or diastereomers and to the mixtures thereof.

The compounds of the formula I may also exist in the form of their agriculturally useful salts, the type of salt generally being of no importance. In general, suitable salts are the salts of those cations or the acid addition salts of those acids whose cations, or anions, respectively, do not adversely affect the herbicidal activity of the compounds I.

Suitable cations are, in particular, ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the transition

40 metals, preferably manganese, copper, zinc and iron, and also ammonium, it being possible in this case, if desired, for one to four hydrogen atoms to be replaced by C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl,

hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, phenyl or benzyl, preferably

45 ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium,

2-(2-hydroxyeth-1-oxy)eth-1-ylammonium,

di (2-hydroxyeth-1-yl) ammonium, trimethylbenzylammonium, in addition phosphonium ions, sulfonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfonium and sulfoxonium ions, preferably tri(C1-C4-alkvl)sulfoxonium.

5

Anions of useful acid addition salts are mainly chloride. bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, nitrate, hydrogen carbonate. carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and 10 the anions of C_1 - C_4 -alkanoic acids, preferably formate, acetate, propionate and butyrate.

The organic moieties mentioned for the substituents R1-R18 or as radicals on phenyl rings are collective terms for individual enumerations of the individual group members. All hydrocarbon chains, ie. all alkyl, haloalkyl, cyanoalkyl, alkoxy, haloalkoxy, alkyliminooxy, alkylcarbonyloxy, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl,

- haloalkylsulfonyl, alkoxycarbonyl, haloalkoxycarbonyl, alkenyloxy, alkynyloxy, dialkylamino, dialkylhydrazino, alkoxyalkyl, hydroxyalkoxyalkyl, dialkoxyalkyl, alkylthioalkyl, dialkylaminoalkyl, dialkylhydrazinoalkyl, alkyliminooxyalkyl, alkoxycarbonylalkyl and alkoxyalkoxy moieties, can be
- straight-chain or branched. Unless otherwise specified, halogenated substituents preferably have attached to them one to five identical or different halogen atoms. The meaning of halogen is in each case fluorine, chlorine, bromine or iodine.
- 30 Other examples of meanings are:
- C1-C4-alkyl and the alkyl moieties of di-(C1-C4-alkoxy)- $C_1-C_4-alkyl$, $[2,2-di(C_1-C_4-alkyl)-1-hydrazino]-C_1-C_4-alkyl$, C1-C6-alkyliminooxy-C1-C4-alkyl, hydroxy-C1-C4-alkoxy-35 C1-C4-alkyl and C1-C4-alkylcarbonyloxy: for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;
- C1-C6-alkyl: C1-C4-alkyl as mentioned above and, for example, 40 pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 45

2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl,

2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethvl-3-methvlpropvl;

- C1-C4-haloalkyl: a C1-C4-alkyl radical as mentioned above 5 which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl,
- dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 10 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl,
- 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 15 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl,
- 20 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl and nonafluorobutyl;
- C1-C6-haloalkyl: C1-C4-haloalkyl as mentioned above and, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 25 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl and dodecafluorohexvl:
- 30 -C1-C4-cyanoalkyl: for example cyanomethyl, 1-cyanoeth-1-yl, 2-cyanoeth-1-y1, 1-cyanoprop-1-y1, 2-cyanoprop-1-y1, 3-cyanoprop-1-yl, 1-cyanoprop-2-yl, 2-cyanoprop-2-yl, 1-cyanobut-1-yl, 2-cyanobut-1-yl, 3-cyanobut-1-yl, 4-cyanobut-1-yl, 1-cyanobut-2-yl, 2-cyanobut-2-yl, 1-cyanobut-3-yl, 2-cyanobut-3-yl, 1-cyano-2-methylprop-3-yl, 35 2-cyano-2-methylprop-3-yl, 3-cyano-2-methylprop-3-yl and 2-cyanomethylprop-2-yl;
- C_1-C_4 -alkoxy and the alkoxy moieties of di-(C_1-C_4 -alkoxy)-40 C1-C4-alkyl and hydroxy-C1-C4-alkoxy-C1-C4-alkyl: for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy and 1,1-dimethylethoxy;
- C1-C6-alkoxy: C1-C4-alkoxy as mentioned above and, for 45 example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methoxylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy,

25

30

2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethvl-2-methvlpropoxy:

C1-C4-haloalkoxy: a C1-C4-alkoxy radical as mentioned above which is partially or fully substituted by fluorine. 10 chlorine, bromine and/or iodine, for example fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 15 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 20 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy,

1-(chloromethyl)-2-chloroethoxy,

1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy and nonafluorobutoxy;

C1-C6-haloalkoxy: C1-C4-haloalkoxy as mentioend above and, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy,

6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy and dodecafluorohexoxy:

C1-C6-alkyliminooxy and the C1-C6-akyliminooxy moieties of C1-C6-alkyliminooxy-C1-C4-alkyl: for example methyliminooxy, 35 ethyliminooxy, 1-propyliminooxy, 2-propyliminooxy, 1-butyliminooxy, 2-butyliminooxy, 2-methylprop-1-yliminooxy, 1-pentyliminooxy, 2-pentyliminooxy, 3-pentyliminooxy, 3-methylbut-2-yliminoxy, 2-methylbut-1-yliminooxy, 3-methylbut-1-yliminooxy, 1-hexyliminooxy, 2-Hexyliminooxy, 40 3-hexyliminooxy, 2-methylpent-1-yliminooxy, 3-methylpent-1-yliminooxy, 4-methylpent-1-yliminooxy, 2-ethylbut-1-yliminooxy, 3-ethylbut-1-yliminooxy,

2,3-dimethylbut-1-yliminooxy, 3-methylpent-2-yliminooxy,

4-methylpent-2-yliminooxy and 3,3-dimethylbut-2-yliminooxy; 45

- C₁-C₄-alkylthio: for example methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio and 1,1-dimethylethylthio;
- 5 C₁-C₆-alkylthio: C₁-C₄-alkylthio as mentioned above and, for example, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio,
- 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio,
 4-methylpentylthio, 1,1-dimethylbutylthio,
 1,2-dimethylbutylthio, 1,3-dimethylbutylthio,
 2,2-dimethylbutylthio, 2,3-dimethylbutylthio,
 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio,
 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio,
 1-ethyl-1-methylpropylthio and 1-ethyl-2-methylpropylthio;
- C1-C4-haloalkylthio: a C1-C4-alkylthio radical as mentioned above, which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorodifluoromethylthio, bromodifluoromethylthio, 2-fluorethylthio, 2-chloroethylthio, 2-bromoethylthio,
- 2,2,2-trifluoroethylthio, 2,2,2-trichloroethylthio,
 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio,
 2,2-dichloro-2-fluoroethylthio, pentafluoroethylthio,
 2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio,
 3-chloropropylthio, 2-bromopropylthio, 3-bromopropylthio,
 2,2-difluoropropylthio, 2,3-difluoropropylthio,
 2,3-dichloropropylthio, 3,3,3-trifluoropropylthio,

2-iodoethylthio, 2,2-difluoroethylthio,

heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio,
1-(chloromethyl)-2-chloroethylthio,
1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio,
4-chlorobutylthio, 4-bromobutylthio and nonafluorobutylthio;

3.3.3-trichloropropylthio, 2,2,3,3,3-pentafluoropropylthio,

- C₁-C₆-haloalkylthio: C₁-C₄-haloalkylthio as mentioned above and, for example, 5-fluoropentylthio, 5-chloropentylthio,
 5-bromopentylthio, 5-iodopentylthio, undecafluoropentylthio,
 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio,
 6-iodohexylthio and dodecafluorohexylthio;
- C₁-C₆-alkylsulfinyl (C₁-C₆-alkyl-S(=0)-): for example 45 methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl,

```
pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl,
       3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl,
       1-ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl,
       1,2-dimethylpropylsulfinyl, hexylsulfinyl,
 5
       1-methylpentylsulfinyl, 2-methylpentylsulfinyl,
       3-methylpentylsulfinyl, 4-methylpentylsulfinyl,
       1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl,
       1,3-dimethylbutylsulfinyl, 2,2-dimethylbutylsulfinyl,
       2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl,
10
       1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl,
       1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl,
       1-ethvl-1-methvlpropvlsulfinvl and
       1-ethyl-2-methylpropylsulfinyl;
15 _
       C1-C6-haloalkylsulfinyl: a C1-C6-alkylsulfinyl radical as
       mentioned above which is partially or fully substituted by
       fluorine, chlorine, bromine and/or iodine, for example
       fluoromethylsulfinyl, difluoromethylsulfinyl,
       trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl,
20
       bromodifluoromethylsulfinyl, 2-fluoroethylsulfinyl,
       2-chloroethylsulfinyl, 2-bromoethylsulfinyl,
       2-iodoethylsulfinyl, 2,2-difluoroethylsulfinyl,
       2,2,2-trifluoroethylsulfinyl, 2,2,2-trichloroethylsulfinyl,
       2-chloro-2-fluoroethylsulfinyl,
25
       2-chloro-2,2-difluoroethylsulfinyl,
       2,2-dichloro-2-fluoroethylsulfinyl, pentafluoroethylsulfinyl,
       2-fluoropropylsulfinyl, 3-fluoropropylsulfinyl,
       2-chloropropylsulfinyl, 3-chloropropylsulfinyl,
       2-bromopropylsulfinyl, 3-bromopropylsulfinyl,
30
       2,2-difluoropropylsulfinyl, 2,3-difluoropropylsulfinyl,
       2,3-dichloropropylsulfinyl, 3,3,3-trifluoropropylsulfinyl,
       3,3,3-trichloropropylsulfinyl,
       2,2,3,3,3-pentafluoropropylsulfinyl,
       heptafluoropropylsulfinyl,
35
       1-(fluoromethyl)-2-fluoroethylsulfinyl,
       1-(chloromethyl)-2-chloroethylsulfinyl,
       1-(bromomethy1)-2-bromoethy1sulfiny1, 4-fluorobuty1sulfiny1,
       4-chlorobutylsulfinyl, 4-bromobutylsulfinyl,
       nonafluorobutylsulfinyl, 5-fluoropentylsulfinyl,
40
       5-chloropentylsulfinyl, 5-bromopentylsulfinyl,
       5-iodopentylsulfinyl, undecafluoropentylsulfinyl,
       6-fluorohexvlsulfinvl, 6-chlorohexvlsulfinvl,
       6-bromohexylsulfinyl, 6-iodohexylsulfinyl and
       dodecafluorohexylsulfinyl;
```

- 10 C_1-C_6 -alkylsulfonyl (C_1-C_6 -alkyl-S(=0)₂-): for example methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl, 5 pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonvl, 1,1-dimethylpropylsulfonvl. 1,2-dimethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 10 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutylsulfonyl, 1-ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 15 1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl and 1-ethyl-2-methylpropylsulfonyl; C1-C6-haloalkylsulfonyl: a C1-C6-alkylsulfonyl radical as mentioned above which is partially or fully substituted by 20 fluorine, chlorine, bromine and/or iodine, for example fluoromethylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2-fluoroethylsulfonyl, 2-chloroethylsulfonyl, 2-bromoethylsulfonyl, 25 2-iodoethylsulfonyl, 2,2-difluoroethylsulfonyl, 2,2,2-trifluoroethylsulfonyl, 2-chloro-2-fluoroethylsulfonyl, 2-chloro-2,2-difluoroethylsulfonyl, 2,2-dichloro-2-fluoroethylsulfonyl, 2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl, 30 2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl, 2-chloropropylsulfonyl, 3-chloropropylsulfonyl, 2-bromopropylsulfonyl, 3-bromopropylsulfonyl, 2,2-difluoropropylsulfonyl, 2,3-difluoropropylsulfonyl, 2,3-dichloropropylsulfonyl, 3,3,3-trifluoropropylsulfonyl, 35 3,3,3-trichloropropylsulfonyl, 2,2,3,3,3-pentafluoropropylsulfonyl, heptafluoropropylsulfonyl, 1-(fluoromethyl)-2-fluoroethylsulfonyl, 1-(chloromethyl)-2chloroethylsulfonyl, 1-(bromomethyl)-2-bromoethylsulfonyl, 40 4-fluorobutylsulfonyl, 4-chlorobutylsulfonyl, 4-bromobutvlsulfonvl, nonafluorobutvlsulfonvl,
- 5-bromopentylsulfonyl, 5-iodopentylsulfonyl, 6-fluorohexylsulfonyl, 6-bromohexylsulfonyl, 6-iodohexylsulfonyl and dodecafluorohexylsulfonyl;

5-fluoropentylsulfonyl, 5-chloropentylsulfonyl,

```
- C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl; for example methoxycarbonyl,
ethoxycarbonyl, propoxycarbonyl, 1-methylethoxycarbonyl,
butoxycarbonyl, 1-methylpropoxycarbonyl,
2-methylpropoxycarbonyl and 1,1-dimethoxycarbonyl;
```

- C₁-C₄-haloalkoxycarbonyl: a C₁-C₄-alkoxycarbonyl as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethoxycarbonyl, difluoromethoxycarbonyl.
- trifluoromethoxycarbonyl, chlorodifluoromethoxycarbonyl, bromodifluoromethoxycarbonyl, 2-fluoroethoxycarbonyl, 2-chloroethoxycarbonyl, 2-bromoethoxycarbonyl, 2-iodoethoxycarbonyl, 2,2-difluoroethoxycarbonyl, 2,2,2-trifluoroethoxycarbonyl,
 - 2-chloro-2-fluoroethoxycarbonyl,
 - 2-chloro-2,2-difluoroethoxycarbonyl,
 - 2,2-dichloro-2-fluoroethoxycarbonyl,
 - 2,2,2-trichloroethoxycarbonyl, pentafluoroethoxycarbonyl,
 - 2-fluoropropoxycarbonyl, 3-fluoropropoxycarbonyl,
- 20 2-chloropropoxycarbonyl, 3-chloropropoxycarbonyl,
 - 2-bromopropoxycarbonyl, 3-bromopropoxycarbonyl,
 - 2,2-difluoropropoxycarbony1, 2,3-difluoropropoxycarbony1,
 2,3-dichloropropoxycarbony1, 3,3,3-trifluoropropoxycarbony1,
 - 3,3,3-trichloropropoxycarbonyl,
- 25 2,2,3,3,3-pentafluoropropoxycarbonyl,
 - heptafluoropropoxycarbonyl, 1-(fluoromethyl)-2-fluoroethoxycarbonyl,
 - 1-(chloromethyl)-2-chloroethoxycarbonyl,
 - 1-(bromomethy1)-2-bromoethoxycarbony1,
- 30 4-fluorobutoxycarbonyl, 4-chlorobutoxycarbonyl,
 - 4-bromobutoxycarbonyl and 4-iodobutoxycarbonyl;
 - C₃-C₆-alkenyloxy: for example prop-1-en-1-yloxy,
- prop-2-en-1-yloxy, 1-methylethenyloxy, buten-1-yloxy, buten-2-yloxy, buten-3-yloxy, 1-methylprop-1-en-1-yloxy, 2-methylprop-1-en-1-yloxy, 1-methylprop-2-en-1-yloxy, 2-methylprop-2-en-1-yloxy, penten-1-yloxy, penten-2-yloxy, penten-3-yloxy, penten-4-yloxy, 1-methylbut-1-en-1-yloxy,
- 2-methylbut-1-en-1-yloxy, 3-methylbut-1-en-1-yloxy,
 1-methylbut-2-en-1-yloxy, 2-methylbut-2-en-1-yloxy,
 3-methylbut-2-en-1-yloxy, 1-methylbut-3-en-1-yloxy,
 2-methylbut-3-en-1-yloxy, 3-methylbut-3-en-1-yloxy,
 1,1-dimethylprop-2-en-1-yloxy, 1,2-dimethylprop-1-en-1-yloxy,
- 45 1,2-dimethylprop-2-en-1-yloxy, 1-ethylprop-1-en-2-yloxy, 1-ethylprop-2-en-1-yloxy, hex-1-en-1-yloxy, hex-2-en-1-yloxy, hex-3-en-1-yloxy, hex-5-en-1-yloxy, 1-methylpent-1-en-1-yloxy, 2-methylpent-1-en-1-yloxy,

i: loš

```
3-methylpent-1-en-1-yloxy, 4-methylpent-1-en-1-yloxy,
        1-methylpent-2-en-1-vloxy, 2-methylpent-2-en-1-vloxy,
        3-methylpent-2-en-1-yloxy, 4-methylpent-2-en-1-yloxy,
        1-methylpent-3-en-1-vloxy, 2-methylpent-3-en-1-vloxy,
 5
        3-methylpent-3-en-1-yloxy, 4-methylpent-3-en-1-yloxy,
        1-methylpent-4-en-1-vloxy, 2-methylpent-4-en-1-vloxy,
       3-methylpent-4-en-1-yloxy, 4-methylpent-4-en-1-yloxy,
        1,1-dimethy1but-2-en-1-vloxy, 1,1-dimethy1but-3-en-1-vloxy.
       1,2-dimethy1but-1-en-1-yloxy, 1,2-dimethy1but-2-en-1-yloxy,
10
       1,2-dimethylbut-3-en-1-yloxy, 1,3-dimethylbut-1-en-1-yloxy,
       1,3-dimethylbut-2-en-1-yloxy, 1,3-dimethylbut-3-en-1-yloxy,
       2,2-dimethylbut-3-en-1-yloxy, 2,3-dimethylbut-1-en-1-yloxy,
       2,3-dimethylbut-2-en-1-yloxy, 2,3-dimethylbut-3-en-1-yloxy,
       3,3-dimethylbut-1-en-1-yloxy, 3,3-dimethylbut-2-en-1-yloxy,
15
       1-ethvlbut-1-en-1-vloxv, 1-ethvlbut-2-en-1-vloxv,
       1-ethylbut-3-en-1-yloxy, 2-ethylbut-1-en-1-yloxy,
       2-ethylbut-2-en-1-yloxy, 2-ethylbut-3-en-1-yloxy,
       1,1,2-trimethylprop-2-en-1-vloxy,
       1-ethyl-1-methylprop-2-en-1-vloxy,
20
       1-ethyl-2-methylprop-1-en-1-yloxy and
       1-ethy1-2-methylprop-2-en-1-yloxy;
       C3-C6-alkynyloxy: for example prop-1-vn-1-vloxy,
       prop-2-vn-1-vloxy, but-1-vn-1-vloxy, but-1-vn-3-vloxy,
25
       but-1-yn-4-yloxy, but-2-yn-1-yloxy, pent-1-yn-1-yloxy,
       pent-1-yn-3-yloxy, pent-1-yn-4-yloxy, pent-1-yn-5-yloxy,
       pent-2-yn-1-yloxy, pent-2-yn-4-yloxy, pent-2-yn-5-yloxy,
       3-methylbut-1-yn-3-yloxy, 3-methylbut-1-yn-4-yloxy,
       hex-1-yn-1-yloxy, hex-1-yn-3-yloxy, hex-1-yn-4-yloxy,
30
       hex-1-vn-5-v1oxv,
                          hex-1-vn-6-vloxv, hex-2-vn-1-vloxv,
       hex-2-yn-4-yloxy,
                          hex-2-yn-5-yloxy, hex-2-yn-6-yloxy,
       hex-3-yn-1-yloxy, hex-3-yn-2-yloxy,
       3-methylpent-1-yn-1-yloxy, 3-methylpent-1-yn-3-yloxy,
       3-methylpent-1-yn-4-yloxy, 3-methylpent-1-yn-5-yloxy,
35
       4-methylpent-1-yn-1-yloxy, 4-methylpent-2-yn-4-yloxy and
       4-methylpent-2-vn-5-vloxy;
       di(C1-C4-alkyl)amino: for example N.N-dimethylamino.
       N, N-diethylamino, N, N-dipropylamino,
40
       N, N-di (1-methylethyl) amino, N, N-dibutylamino,
       N, N-di (1-methylpropyl) amino, N, N-di (2-methylpropyl) amino,
       N.N-di(1,1-dimethylethyl)amino, N-ethyl-N-methylamino,
       N-methyl-N-propylamino, N-methyl-N-(1-methylethyl)amino,
```

N-butyl-N-methylamino, N-methyl-N-(1-methylpropyl)amino,
N-methyl-N-(2-methylpropyl)amino,
N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino,
N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino,

```
13
```

```
N-ethyl-N-(1-methylpropyl)amino,
        N-ethvl-N-(2-methvlpropvl)amino.
       N-ethyl-N-(1,1-dimethylethyl)amino,
       N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino,
       N-(1-methylpropyl)-N-propylamino.
       N-(2-methylpropyl)-N-propylamino,
       N-(1,1-dimethylethyl)-N-propylamino,
       N-butyl-N-(1-methylethyl)amino,
       N-(1-methylethyl)-N-(1-methylpropyl)amino,
10
       N-(1-methylethyl)-N-(2-methylpropyl)amino.
       N-(1,1-dimethylethyl)-N-(1-methylethyl)amino,
       N-butvl-N-(1-methylpropyl)amino.
       N-butyl-N-(2-methylpropyl)amino,
       N-butyl-N-(1,1-dimethylethyl)amino,
15
       N-(1-methylpropyl)-N-(2-methylpropyl)amino,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino and
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino;
        [2,2-di(C1-C4-alkyl)-1-hydrazino], and the dialkylhydrazino
20
       moieties of [2,2-di(C1-C4-alkyl)-1-hydrazino]-C1-C4-alkyl: for
       example 2,2-dimethylhydrazino-1, 2,2-diethylhydrazino-1,
       2,2-dipropylhydrazino-1, 2,2-di(1-methylethyl)-1-hydrazino,
       2,2-dibutylhydrazino-1, 2,2-di(1-methylpropyl)-1-hydrazino,
       2,2-di(2-methylpropyl)-1-hydrazino,
25
       2,2-di(1,1-dimethylethyl)-1-hydrazino,
       2-ethyl-2-methyl-1-hydrazino, 2-methyl-2-propyl-1-hydrazino,
       2-methyl-2-(1-methylethyl)-1-hydrazino,
       2-buty1-2-methyl-1-hydrazino,
       2-methyl-2-(1-methylpropyl)-1-hydrazino,
30
       2-methyl-2-(2-methylpropyl)-1-hydrazino,
       2-(1,1-dimethylethyl)-2-methyl-1-hydrazino,
       2-ethyl-2-propyl-1-hydrazino,
       2-ethyl-2-(1-methylethyl)-1-hydrazino,
       2-buty1-2-ethy1-1-hydrazino,
35
       2-ethyl-2-(1-methylpropyl)-1-hydrazino,
       2-ethyl-2-(2-methylpropyl)-1-hydrazino,
       2-ethyl-2-(1,1-dimethylethyl)-1-hydrazino,
       2-(1-methylethyl)-2-propyl-1-hydrazino,
       2-buty1-2-propy1-1-hydrazino,
40
       2-(1-methylpropyl)-2-propyl-1-hydrazino,
       2-(2-methylpropyl)-2-propyl-1-hydrazino,
       2-(1,1-dimethylethyl)-2-propyl-1-hydrazino,
       2-butyl-2-(1-methylethyl)-1-hydrazino,
       2-(1-methylethyl)-2-(1-methylpropyl)-1-hydrazino,
45
       2-(1-methylethyl)-2-(2-methylpropyl)-1-hydrazino,
       2-(1,1-dimethylethyl)-2-(1-methylethyl)-1-hydrazino,
       2-butyl-2-(1-methylpropyl)-1-hydrazino,
```

```
2-buty1-2-(2-methylpropy1)-1-hydrazino,
        2-buty1-2-(1,1-dimethylethyl)-1-hydrazino.
        2-(1-methylpropyl)-2-(2-methylpropyl)-1-hydrazino.
        2-(1,1-dimethylethyl)-2-(1-methylpropyl)-1-hydrazino and
 5
        2-(1,1-dimethylethyl)-2-(2-methylpropyl)-1-hydrazino;
        di(C_1-C_4-alkyl) amino-C_1-C_4-alkyl: C_1-C_4-alkyl which is
        substituted by di(C1-C4-alkyl)amino as mentioned above, for
        example N, N-dimethylaminomethyl, N, N-diethylaminomethyl,
10
        N, N-dipropylaminomethyl, N, N-di(1-methylethyl) aminomethyl.
        N, N-dibutylaminomethyl, N, N-di(1-methylpropyl)aminomethyl,
        N, N-di(2-methylpropyl)aminomethyl.
        N, N-di(1, 1-dimethylethyl) aminomethyl,
        N-ethyl-N-methylaminomethyl, N-methyl-N-propylaminomethyl,
15
       N-methyl-N-(1-methylethyl)aminomethyl.
       N-butvl-N-methvlaminomethvl.
       N-methyl-N-(1-methylpropyl)aminomethyl,
       N-methyl-N-(2-methylpropyl)aminomethyl,
       N-(1,1-dimethylethyl)-N-methylaminomethyl,
20
       N-ethyl-N-propylaminomethyl,
       N-ethyl-N-(1-methylethyl)aminomethyl.
       N-butyl-N-ethylaminomethyl,
       N-ethyl-N-(1-methylpropyl)aminomethyl,
       N-ethyl-N-(2-methylpropyl)aminomethyl, N-ethyl-N-(1,1-di-
25
       methylethyl) aminomethyl,
       N-(1-methylethyl)-N-propylaminomethyl.
       N-butyl-N-propylaminomethyl,
       N-(1-methylpropyl)-N-propylaminomethyl.
       N-(2-methylpropyl)-N-propylaminomethyl,
30
       N-(1,1-dimethylethyl) - N-propylaminomethyl, N-butyl-N-
        (1-methylethyl) aminomethyl,
       N-(1-methylethyl)-N-(1-methylpropyl)aminomethyl,
       N-(1-methylethyl)-N-(2-methylpropyl)aminomethyl,
       N-(1,1-dimethylethyl)-N-(1-methylethyl)aminomethyl,
35
       N-butyl-N-(1-methylpropyl)aminomethyl,
       N-butyl-N-(2-methylpropyl)aminomethyl, N-butyl-N-
        (1,1-dimethylethyl) aminomethyl,
       N-(1-methylpropyl)-N-(2-methylpropyl)aminomethyl,
       N-(1,1-dimethylethyl)-N-(1-methylpropyl)aminomethyl,
40
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)aminomethyl,
       2-(N, N-dimethylamino) ethyl, 2-(N, N-diethylamino) ethyl,
       2 - (N, N-dipropylamino) ethyl,
       2-[N, N-di(1-methylethyl)aminolethyl,
       2-[N,N-dibutylamino]ethyl,
45
       2 - [N, N-di(1-methylpropyl)amino]ethyl,
       2-[N,N-di(2-methylpropyl)amino]ethyl, 2-[N,N-di(1,1-
       dimethylethyl)amino]ethyl, 2-[N-ethyl-N-methylamino]ethyl,
```

```
15
```

```
2 - [N-methyl-N-propylamino]ethvl,
       2 - [N-methyl-N-(1-methylethyl)amino]ethyl,
       2-[N-butyl-N-methylamino]ethyl,
       2 - [N-methyl-N-(1-methylpropyl)aminolethyl,
 5
       2-[N-methyl-N-(2-methylpropyl)amino]ethyl,
       2-[N-(1,1-dimethylethyl)-N-methylamino]ethyl,
       2-[N-ethvl-N-propylamino]ethvl.
       2-[N-ethvl-N-(1-methvlethvl)aminolethvl.
       2-[N-butyl-N-ethylamino]ethyl,
10
       2-[N-ethyl-N-(1-methylpropyl)aminolethyl,
       2-[N-ethyl-N-(2-methylpropyl)amino]ethyl,
       2-[N-ethyl-N-(1,1-dimethylethylamino]ethyl,
       2-[N-(1-methylethyl)-N-propylamino]ethyl,
       2-[N-butyl-N-propylamino]ethyl,
15
       2-[N-(1-methylpropyl)-N-propylamino]ethyl,
       2-[N-(2-methylpropyl)-N-propylamino]ethyl,
       2-[N-(1,1-dimethylethyl)-N-propylamino]ethyl,
       2-[N-butyl-N-(1-methylethyl)amino]ethyl,
       2 - [N-(1-methylethyl) -N-(1-methylpropyl)amino]ethyl,
20
       2-[N-(1-methylethyl)-N-(2-methylpropyl)amino]ethyl.
       2-[N-(1,1-dimethvlethvl)-N-(1-methvlethvl)aminolethvl.
       2 - [N-butyl-N-(l-methylpropyl)amino]ethyl,
       2 - [N-butyl-N-(2-methylpropyl)amino]ethyl,
       2 - [N-butyl-N-(1,1-dimethylethyl)amino]ethyl,
25
       2-[N-(1-methylpropyl)-N-(2-methylpropyl)aminolethyl,
       2-[N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino]ethyl,
       2-[N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino]ethyl,
       3-(N, N-dimethylamino)propyl, 3-(N, N-diethylamino)propyl,
       4-(N, N-dimethylamino) butyl und 4-(N, N-diethylamino) butyl;
30
       C1-C4-alkoxy-C1-C4-alkyl: C1-C4-alkyl which is substituted by
       C1-C4-alkoxy as mentioned above, for example methoxymethyl,
       ethoxymethyl, propoxymethyl, (1-methylethoxy) methyl,
       butoxymethyl, (1-methylpropoxy) methyl,
35
       (2-methylpropoxy) methyl, (1,1-dimethylethoxy) methyl,
       2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(propoxy)ethyl,
       2-(1-methylethoxy)ethyl, 2-(butoxy)ethyl,
       2-(1-methylpropoxy)ethyl, 2-(2-methylpropoxy)ethyl,
       2-(1,1-dimethylethoxy)ethyl, 2-(methoxy)-propyl,
40
       2-(ethoxy) propyl, 2-(propoxy) propyl,
       2-(1-methylethoxy)propyl, 2-(butoxy)propyl,
       2-(1-methylpropoxy)propyl, 2-(2-methylpropoxy)propyl,
       2-(1,1-dimethylethoxy)propyl, 3-(methoxy)propyl,
       3-(ethoxy)-propyl, 3-(propoxy)propyl,
45
       3-(1-methylethoxy)propyl, 3-(butoxy)propyl,
       3-(1-methylpropoxy)propyl, 3-(2-methylpropoxy)propyl,
       3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl,
```

```
16
```

- 2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxy)butyl, 2-(butoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl, 3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl, 5 3-(1-methylethoxy)butyl, 3-(butoxy)butyl, 3-(1-methylpropoxy)butyl, 3-(2-methylpropoxy)butyl, 3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)butyl, 4-(propoxy)butyl, 4-(1-methylethoxy)butyl, 4-(butoxy)butyl, 4-(1-methylpropoxy)butyl, 10 4-(2-methylpropoxy)butyl and 4-(1,1-dimethylethoxy)butyl; C_1-C_4 -alkylthio- C_1-C_4 -alkyl: C_1-C_4 -alkyl which is substituted by C1-C4-alkylthio as mentioned above, for example methylthiomethyl, ethylthiomethyl, propylthiomethyl, 15 (1-methylethylthio) methyl, butylthiomethyl, (1-methylpropylthio) methyl, (2-methylpropylthio) methyl, (1,1-dimethylethylthio) methyl, 2-methylthioethyl, 2-ethylthioethyl, 2-(propylthio)ethyl, 2-(1-methylethylthio)ethyl, 2-(butylthio)ethyl, 20 2-(1-methylpropylthio)ethyl, 2-(2-methylpropylthio)ethyl, 2-(1,1-dimethylethylthio)ethyl, 2-(methylthio)propyl, 3-(methylthio)propyl, 2-(ethylthio)propyl, 3-(ethylthio)propyl, 3-(propylthio)propyl, 3-(butylthio)propyl, 4-(methylthio)butyl, 4-(ethylthio)butyl, 25 4-(propylthio)butyl and 4-(butylthio)butyl; C1-C4-alkoxycarbonyl-C1-C4-alkyl: C1-C4-alkyl which is substituted by C_1-C_4 -alkoxycarbonyl as mentioned above, for example methoxycarbonylmethyl, ethoxycarbonylmethyl, 30 propoxycarbonylmethyl, (1-methylethoxycarbonyl)methyl, butoxycarbonylmethyl, (1-methylpropoxycarbonyl)methyl, (2-methylpropoxycarbonyl) methyl, (1,1-dimethylethoxycarbonyl)methyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxycarbonyl)ethyl, 35 2-(1-methylethoxycarbonyl)ethyl, 2-(butoxycarbonyl)ethyl, 2-(1-methylpropoxycarbonyl)ethyl, 2-(2-methylpropoxycarbonyl)ethyl, 2-(1,1-dimethylethoxycarbonyl)ethyl, 2-(methoxycarbonyl)propyl, 2-(ethoxycarbonyl)propyl, 40 2-(propoxycarbonyl)propyl, 2-(1-methylethoxycarbonyl)propyl, 2-(butoxycarbonyl)propyl, 2-(1-methylpropoxycarbonyl)propyl, 2-(2-methylpropoxycarbonyl)propyl, 2-(1,1-dimethylethoxycarbonyl)propyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl,
- 45 3-(propoxycarbonyl)propyl, 3-(1-methylethoxycarbonyl)propyl, 3-(butoxycarbonyl)propyl, 3-(1-methylpropoxycarbonyl)propyl,

3-(2-methylpropoxycarbonyl)propyl,

```
3-(1,1-dimethylethoxycarbonyl)propyl,
       2-(methoxycarbonyl)butyl, 2-(ethoxycarbonyl)butyl,
       2-(propoxycarbonyl)butyl, 2-(1-methylethoxycarbonyl)butyl,
       2-(butoxycarbonyl)butyl, 2-(1-methylpropoxycarbonyl)butyl,
       2-(2-methylpropoxycarbonyl)butyl.
       2-(1,1-dimethylethoxycarbonyl)butyl,
       3-(methoxycarbonyl)butyl, 3-(ethoxycarbonyl)butyl,
       3-(propoxycarbonyl)butyl, 3-(1-methylethoxycarbonyl)butyl,
       3-(butoxycarbonyl)butyl, 3-(1-methylpropoxycarbonyl)butyl,
10
       3-(2-methylpropoxycarbonyl)butyl,
       3-(1,1-dimethylethoxycarbonyl)butyl, 4-(methoxycarbonyl)-
       butyl, 4-(ethoxycarbonyl)butyl, 4-(propoxycarbonyl)butyl,
       4-(1-methylethoxycarbonyl)butyl, 4-(butoxycarbonyl)butyl,
       4-(1-methylpropoxy)butoxy, 4-(2-methylpropoxy)butoxy und
15
       4-(1,1-dimethylethoxycarbonyl)butyl;
       C1-C4-alkoxy-C2-C4-alkoxy: C2-C4-alkoxy which is substituted
       by C1-C4-alkoxy as mentioned above, for example
       2-(methoxy)ethoxy, 2-(ethoxy)ethoxy, 2-(propoxy)ethoxy,
20
       2-(1-methylethoxy)ethoxy, 2-(butoxy)ethoxy,
       2-(1-methylpropoxy)ethoxy, 2-(2-methylpropoxy)ethoxy,
       2-(1,1-dimethylethoxy)ethoxy, 2-(methoxy)propoxy,
       2-(ethoxy)propoxy, 2-(propoxy)propoxy,
       2-(1-methylethoxy)propoxy, 2-(butoxy)propoxy,
25
       2-(1-methylpropoxy)propoxy, 2-(2-methylpropoxy)propoxy,
       2-(1,1-dimethylethoxy) propoxy, 3-(methoxy) propoxy,
       3-(ethoxy)propoxy, 3-(propoxy)propoxy,
       3-(1-methylethoxy)propoxy, 3-(butoxy)propoxy,
       3-(1-methylpropoxy) propoxy, 3-(2-methylpropoxy) propoxy,
30
       3-(1,1-dimethylethoxy)propoxy, 2-(methoxy)butoxy,
       2-(ethoxy)butoxy, 2-(propoxy)butoxy,
       2-(1-methylethoxy) butoxy, 2-(butoxy) butoxy,
       2-(1-methylpropoxy)butoxy, 2-(2-methylpropoxy)butoxy,
       2-(1.1-dimethylethoxy)butoxy, 3-(methoxy)butoxy, 3-(ethoxy)-
35
       butoxy, 3-(propoxy) butoxy, 3-(1-methylethoxy) butoxy,
       3-(butoxy) butoxy, 3-(1-methylpropoxy) butoxy,
       3-(2-methylpropoxy) butoxy, 3-(1,1-dimethylethoxy) butoxy,
       4-(methoxy) butoxy, 4-(ethoxy) butoxy, 4-(propoxy) butoxy,
       4-(1-methylethoxy) butoxy, 4-(butoxy) butoxy,
40
       4-(1-methylpropoxy)butoxy, 4-(2-methylpropoxy)butoxy and
       4-(1,1-dimethylethoxy)butoxy;
       C2-C6-alkanedivl: for example ethane-1,2-divl,
       propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl and
45
       hexane-1,6-diyl;
```

- C₃-C₈-cycloalkyl: for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;
- All phenyl rings are preferably unsubstituted or have attached to 5 them one to three halogen atoms and/or a nitro group, a cyano radical and/or one or two methyl, trifluoromethyl, methoxy or trifluoromethoxy substituents.
- 10 Preference is given to the 3-heterocyclyl-substituted benzoyl derivatives of the formula I where the variables have the following meanings:
- $\begin{array}{lll} R^1, \ R^2 & \text{are hydrogen, nitro, halogen, cyano, C_1-C_6-alkyl,} \\ 15 & C_1$-$C_6$-haloalkyl, C_1-C_6-alkoxy, C_1-C_6-haloalkylthio,} \\ & C_1$-$C_6$-alkylthio, C_1-C_6-haloalkylsulfinyl,} \\ & C_1$-$C_6$-alkylsulfinyl, C_1-C_6-haloalkylsulfonyl,} \\ & C_1$-$C_6$-alkylsulfonyl or C_1-C_6-haloalkylsulfonyl,} \end{array}$
- 20 R³ is hydrogen, halogen or C₁-C₆-alkyl;
- R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl)

 25 [2,2-di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, C₁-C₆-alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio,
- di(C₁-C₄-naloalkoxy, C₁-C₄-ralkyltnio, C₁-C₄-naloalkyltnio, di(C₁-C₄-naloalkyl) amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups:

 35
- nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

45

or

		19
	R ⁴ and R ⁵	together with the corresponding carbon form a carbonyl or thiocarbonyl group;
5	is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;	
	R ⁷	is hydrogen or C_1 - C_4 -alkyl;
10	R ⁸	is C ₁ -C ₄ -alkyl;
	х	is O, S, NR^9 , CO or $CR^{10}R^{11}$;
15	У	is O, S, NR^{12} , CO or $CR^{13}R^{14}$;
	R ⁹ , R ¹²	are hydrogen or C ₁ -C ₄ -alkyl;
20	R ¹⁰ , R ¹¹ ,	$R^{13},\ R^{14}$ are hydrogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ }C_1\text{-}C_4\text{-}alkoxycarbonyl,\ }C_1\text{-}C_4\text{-}haloalkoxycarbonyl\ }or\ CONR^7R^8;$
25	or	
	R ⁴ and R ⁹	or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a $C_2\text{-}C_6\text{-}alkanediyl$ chain which can be mono- to tetrasubstituted by $C_1\text{-}C_4\text{-}alkyl$ and/or interrupted by
30		oxygen or by a nitrogen which is unsubstituted or substituted by $C_1 \cdot C_4 \cdot alkyl$;
	R ¹⁵	is a pyrazole of the formula II which is linked in the 4-position
35		R18
		N N O II
40		R16 Z

where

45 R16 is $C_1-C_6-alkyl$;

20 Z is H or SO_2R^{17} ;

R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

10 R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously oxygen or sulfur;

15 with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-y1)4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,
4-[2-chloro-3-(4,5-dihydroisoxazol-3-y1)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,
4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-y1)-4-methyl20 sulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,
4-[2-chloro-3-(4,5-dihydrothiazol-2-y1)-4-methylsulfonylbenzoyl]1,3-dimethyl-5-hydroxy-1H-pyrazole and
4-[2-chloro-3-(thiazoline-4,5-dion-2-y1)-4-methylsulfonyl-

benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;
25
or the agriculturally useful salts thereof.

- With a view to the use of the compounds of the formula I according to the invention as herbicides, the variables preferably have the following meanings, in each case alone or in combination:
- R1, R2 are nitro, halogen, cyano, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, 35 C1-C6-alkylthio, C1-C6-haloalkylthio, C1-C6-alkylsulfinyl, C1-C6-haloalkylsulfinyl, C1-C6-alkylsulfonyl or C1-C6-haloalkylsulfonyl; especially preferably nitro, halogen such as, for example, chlorine and bromine, C1-C6-alkyl such as, for 40 example, methyl and ethyl, C1-C6-alkoxy such as, for example, methoxy and ethoxy, C1-C6-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C1-C6-alkylthio such as, for example, methylthio and ethylthio, C1-C6-alkylsulfinyl such as, for example, 45 methylsulfinyl and ethylsulfinyl, C1-C6-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and

propylsulfonyl or $C_1 \cdot C_6$ -haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl;

5 R3 is hydrogen;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl, di(C₁-C₄-alkyl) amino-C₁-C₄-alkyl,

10 $[2,2-\operatorname{di}(C_1-C_4-\operatorname{alkyl})\operatorname{hydrazino-1}]-C_1-C_4-\operatorname{alkyl},$

 C_1-C_6 -alkyliminooxy- C_1-C_4 -alkyl, C_1-C_4 -alkoxycarbonyl- C_1-C_4 -alkyl,

C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy.

15 C_1 -C₄-cyanoalkyl, C_3 -C₈-cycloalkyl, C_1 -C₄-alkoxy, C_1 -C₄-alkoxy- C_2 -C₄-alkoxy, C_1 -C₄-haloalkoxy,

C₁-C₄-alkylthio, C₁-C₄-haloalkylthio,

 $\text{di}(C_1\text{-}C_4\text{-}\text{alkyl})\,\text{amino, COR}^6, \text{ phenyl or benzyl, it being possible for the two last-mentioned substituents to be$

partially or fully halogenated and/or to have attached to them one to three of the following groups:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy

or C₁-C₄-haloalkoxy;

25 or

40

20

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

 R^4 is especially preferably hydrogen, $C_1 \cdot C_4$ -alkyl, $C_1 \cdot C_4$ -haloalkyl, $C_1 \cdot C_4$ -alkoxycarbonyl or $CONR^7R^8$;

35 R⁵ is especially preferably hydrogen or C₁-C₄-alkyl;

or \mathbb{R}^4 and \mathbb{R}^5 especially preferably form a $\mathbb{C}_2\text{-}\mathbb{C}_6$ -alkanediyl

chain which can be mono- to tetrasubstituted by $C_1 \cdot C_4 \cdot alkyl$ and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted

by C_1-C_4 -alkyl;

 $\label{eq:R6} {\tt R6} \qquad \qquad {\tt is} \ {\tt C_1-C_4-alkyl}, \ {\tt C_1-C_4-alkoxy} \ {\tt or} \ {\tt NR}^7 {\tt R8};$

45 R⁷ is hydrogen or C_1 - C_4 -alkyl;

 R^8 is C_1-C_4 -alkyl;

X is O. S. NR9. CO or CR10R11;

Y is O, S, NR^{12} or $CR^{13}R^{14}$;

R9, R12 are hydrogen or C1-C4-alkyl;

10 R¹⁰, R¹¹, R¹³, R¹⁴ are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -haloalkoxycarbonyl or $CONR^7R^8;$

or 15

20

25

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a $C_2 \cdot C_6 \cdot alkanediyl$ chain which can be mono- to tetrasubstituted by $C_1 \cdot C_4 \cdot alkyl$ and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by $C_1 \cdot C_4 \cdot alkyl$;

Z is H or SO_2R^{17} ;

R17 is C1-C4-alkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups:

nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy;

35
R18 is hydrogen or C1-C6-alkyl;
especially preferably hydrogen or methyl.

The following embodiments of the 3-heterocyclyl-substituted 40 benzoyl derivatives of the formula I must be emphasized:

 In a preferred embodiment of the 3-heterocycly1-substituted benzoyl derivatives of the formula I, Z is SO₂R¹⁷.

25

30

35

40

Especially preferred are the 3-heterocyclyl-substituted benzovl derivatives of the formula I. where R^{18} is

- hydrogen.

 Also especially preferred are 3-heterocycly1-substituted benzoyl derivatives of the formula I, where R¹⁸ is methy1.
- 10 * Particularly preferred are 3-heterocylyl-substituted benzoyl derivatives of the formula I, where R^{17} is $$C_1\hbox{-}C_4\hbox{-}alkyl.$$
- In a further preferred embodiment of the 3-heterocyclylsubstituted benzoyl derivatives of the formula I, Z is hydrogen.
 - Especially preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where X is oxygen and Y is CR¹³R¹⁴.
 - * Particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where
 - R⁴ is halogen, nitro, C₁-C₄-alkyl,
 C₁-C₄-alkoxy-C₁-C₄-alkyl,
 C₁-C₄-alkoxy-C₁-C₄-alkyl,
 C₁-C₄-alkylthio-C₁-C₄-alkyl,
 C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl,
 C₁-C₄-qyanoalkyl, C₃-C₈-qycloalkyl, C₁-C₄-alkoxy,
 C₁-C₄-Alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy,
 C₁-C₄-alkylthio, C₁-C₄-haloalkylthio,
 di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it
 being possible for the two last-mentioned
 substituents to be partially or fully
 halogenated and/or to have attached to them one
 to three of the following groups:
 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,
 C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;
 - R^5 is hydrogen or C_1 - C_4 -alkyl;

or

 R^4 and R^5 together form a $C_2 \cdot C_6$ -alkanediyl chain which can be mono- to tetrasubstituted by $C_1 \cdot C_4$ -alkyl and/or which can be interrupted by

oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

or 5

10

15

20

25

30

35

R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

- Extraordinarily preferred are 3-heterocyclylsubstituted benzoyl derivatives of the formula I where
- R⁴ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;
- R5 is hydrogen or C1-C4-alkyl;

or

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

- Especially extraordinarily preferred are
 3-heterocyclyl-substituted benzoyl derivatives of the
 formula I where R¹⁸ is hydrogen.
- * Also particularly preferred are
 45 3-heterocyclyl-substituted benzoyl derivatives of the
 formula I where R⁴ and R⁵ are hydrogen.

10

15

20

25

30

35

40

25

 Extraordinarily preferred are 3-heterocycly1-substituted benzoyl derivatives of the formula I where R¹⁸ is hydrogen.

Especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R1 is nitro, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-alkoxy such as, for example, methoxy and ethoxy, C₁-C₆-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁-C₆-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C₁-C₆-haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl;

Also especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R² is nitro, halogen such as, for example, chlorine and bromine, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁-C₆-alkylthio such as, for example, methylthio and ethylthio, C₁-C₆-alkylsulfinyl such as, for example, methylsulfinyl and ethylsulfinyl, C₁-C₆-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C₁-C₆-haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

Also especially extraordinarily preferred is 4-[2-chloro-3-(4,5-dihydroisoxazol-3-y1)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

15

20

25

30

35

Also especially extraordinarily preferred are the agriculturally useful salts of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methvl-5-hydroxy-1H-pyrazole, in particular the alkali metal salts, such as, for example, lithium, sodium and potassium, and the ammonium salts, it being possible in this case, if desired, for one to four hydrogen atoms to be replaced by C1-C4-alkyl, hydroxy-C1-C4-alkyl, $C_1-C_4-alkoxy-C_1-C_4-alkyl$, hydroxy- $C_1-C_4-alkyl$ alkoxy-C1-C4-alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy)eth-1-ylammonium, di(2-hvdroxveth-1-vl)ammonium. trimethylbenzylammonium.

 Also extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R¹⁸ is methyl.

Especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R¹ is nitro, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-alkoxy such as, for example, methoxy and ethoxy, C₁-C₆-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁-C₆-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C₁-C₆-haloalkylsulfonyl, for example trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

Also especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R² is nitro, halogen such as, for example, chlorine and bromine, C₁·C₆-alkyl such as, for example, methyl and ethyl, C₁·C₆-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁·C₆-alkylthio such as, for example,

45

methylthio and ethylthio, C_1 - C_6 -alkylsulfinyl such as, for example, methylsulfinyl and ethylsulfinyl, C_1 - C_6 -alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C_1 - C_6 -haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

10

5

Also especially preferred are 3-heterocycly1-substituted benzoyl derivatives of the formula I where

15 X is S, NR^9 , CO or $CR^{10}R^{11}$;

or

Y is O. S. NR12 or CO.

20

* Particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R¹⁸ is hydrogen.

25

Also particularly preferred are 3-heterocyclylsubstituted benzoyl derivatives of the formula I where R¹⁸ is C₁-C₆-alkyl.

following groups:

30

 Extraordinarily preferred are 3-heterocyclylsubstituted benzoyl derivatives of the formula I where

35

R4 is halogen, cyano, nitro, C₁-C₄-alkyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl,
C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl,
C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl,
C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl,
C₁-C₄-clkoxy, C₁-C₄-alkoxy-C₁-C₄-alkoxy,
C₁-C₄-haloalkoxy, C₁-C₄-alkylthio,
C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino,
COR⁶, phenyl or benzyl, it being possible
for the two last-mentioned substituents to
be partially or fully halogenated and/or to
have attached to them one to three of the

40

10

15

20

25

30

28

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R5 is hydrogen or C1-C4-alkyl;

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

or

- $\rm R^4$ and $\rm R^9$ or $\rm R^4$ and $\rm R^{10}$ or $\rm R^5$ and $\rm R^{12}$ or $\rm R^5$ and $\rm R^{13}$ together form a $\rm C_2 \cdot C_6$ -alkanediyl chain which can be mono- to tetrasubstituted by $\rm C_1 \cdot C_4$ -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by $\rm C_1 \cdot C_4 \cdot alkyl$.
- Also particularly preferred are 3-heterocyclylsubstituted benzoyl derivatives of the formula I where
- X is S, NR⁹ or CO

or

- Y is O, NR^{12} or CO.
 - Extraordinarily preferred are 3-heterocyclylsubstituted benzoyl derivatives of the formula I where

R⁴ is halogen, cyano, nitro, C₁-C₄-alkyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl,
C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl,
C₁-C₄-alkylthio-C₁-C₄-alkyl,
C₁-C₄-cyanoalkyl, C₃-C₈-cycloalkyl,
C₁-C₆-alkoxy, C₁-C₄-alkoxy-C₁-G₄-alkoxy,
C₁-C₄-haloalkoxy, C₁-C₄-alkylthio,

40

35

1.0

15

20

25

 C_1-C_4 -haloalkylthio, di(C_1-C_4 -alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C_1-C_4 -Alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

 R^5 is hydrogen or C_1-C_4 -alkyl;

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

or

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² or R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

35

30

40

Particularly extraordinarily preferred are the compounds Ia1 (\triangleq I where R¹ = Cl, R² = SO₂CH₃, R³ = H, R¹⁶, R¹⁸ = CH₃, Z=H), in particular the compounds of Table 1.

15 Table 1

	No.	X	R⁴	R ⁵	TY
	la1.1	CH ₂	Н	CH₃	0
	la1.2	CH ₂	H	H	0
20	la1.3	C(CH ₃) ₂	H	H	0
	la1.4	CH ₂	Н	C ₂ H ₅	0
	la1.5	CH ₂	CH ₃	ĊH₃	0
	la1.6	CH(CH ₃)	Н	CH ₃	0
	la1.7	CH(C₂H₅)	Н	CH ₃	0
25	la1.8	CH[CH(CH ₃) ₂]	Н	H	0
25	la1.9	CH ₂	H	CH(CH ₃) ₂	0
	la1.10	CH(C₂H₅)	Н	C ₂ H ₅	0
	la1.11	CH_(CH ₂) ₄ —	H	0
	la1.12	C=O	CH₃	CH ₃	0
2.0	la1.13	C=O	Н	C ₂ H ₅	0
30	la1.14	C=O	C ₂ H ₅	C ₂ H ₅	0
	la1.15	C=O	Н	Н	0
	la1.16	C=O	Н	CH ₃	0
	la1.17	CH ₂	Н	CH ₃	S
	la1.18	C(CH ₃) ₂	Н	H	S
35	la1.19	CH ₂	Н	C ₂ H ₅	S
	la1.20	CH ₂	CH ₃	CH ₃	S
	la1.21	CH(CH₃)	Н	CH ₃	S
	la1.22	CH(C ₂ H ₅)	H	CH ₃	S
	Ta1.23	CH(C ₂ H ₅)	H	C ₂ H ₅	S
40	la1.24	CH(CH ₂)₄—	Н	S
	la1.25	CH[CH(CH ₃) ₂]	H	Н	S
	la1.26	CH ₂	H	CH(CH ₃) ₂	S
	la1.27	CH ₂	H	CH₃	NH
	la1.28	CH ₂	H	Н	NH
45	la1.29	C(CH ₃) ₂	H	Н	NH
	la1.30	CH ₂	H	C₂H ₅ -	NH
	la1.31	CH₂	CH ₃	CH₃	NH

DOYHBOOK IREYOO

No. X	31					
Ia1.33		No.	X	R ⁴	R ⁵	TY
1a1.33			CH(CH ₃)	H	CH ₃	T NH
Ia1.35				Н	CH ₃	NH
Ia1.36 CH CH(CH ₃) ₂	5		CH(C ₂ H ₅)		C ₂ H ₅	NH
Ia1.37			-CH-((CH ₂) ₄ —	H	NH
Iai.38 CH ₂ H CH ₃ NCH ₃ Iai.39 CH ₂ H H NCH ₃ Iai.40 C(CH ₃) ₂ H H NCH ₃ Iai.41 CH ₂ H C ₂ H ₅ NCH ₃ Iai.41 CH ₂ CH ₃ CH ₃ CH ₃ NCH ₃ Iai.42 CH ₂ CH ₃ CH ₃ NCH ₃ Iai.43 CH(CH ₃) H CH ₃ NCH ₃ Iai.44 CH(C ₂ H ₅) H CH ₃ NCH ₃ Iai.45 CH[CH(CH ₃) ₂] H H NCH ₃ NCH ₃ Iai.46 CH ₂ H CH(CH ₃) ₂ NCH ₃ Iai.47 CH(C ₂ H ₅) H C ₂ H ₅ NCH ₃ Iai.49 CH ₂ H CH ₃ NC ₂ H ₅ Iai.50 CH ₂ H CH ₃ NC ₂ H ₅ Iai.50 CH ₂ H CH ₃ NC ₂ H ₅ Iai.51 C(CH ₃) ₂ H H NC ₂ H ₅ Iai.52 CH ₂ H CH ₃ NC ₂ H ₅ Iai.53 CH ₂ CH ₃ CH ₃ NC ₂ H ₅ Iai.55 CH(C ₂ H ₆) H CH ₃ NC ₂ H ₅ Iai.55 CH(C ₂ H ₆) H CH ₃ NC ₂ H ₅ Iai.56 CH(CH ₃) ₂ H H CH ₃ NC ₂ H ₅ Iai.56 CH(CH ₃) ₂ H H CH ₃ NC ₂ H ₅ Iai.56 CH(C ₂ H ₆) H CH ₃ NC ₂ H ₅ Iai.57 CH ₂ H CH ₃ NC ₂ H ₅ Iai.58 CH(C ₂ H ₆) H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ CH ₂ H CH ₃ NC ₂ H ₅ Iai.59 CH ₂ CH ₂ CH ₂ CH ₃ NC ₂ H ₅ Iai.59 CH ₂ CH ₃ CH ₃ NC ₂ H ₅ Iai.59 CH ₂ CH ₃ CH ₃ CH ₃ NC ₂ H ₅ Iai.60 CH ₂ CH ₃ CH				H		NH
a1.38					CH(CH ₃) ₂	
101,39			CH ₂		CH ₃	NCH ₃
a1.41	10		CH ₂		H	NCH ₃
Iai.42			C(CH ₃) ₂			NCH ₃
1.1.43			CH ₂			NCH ₃
15					CH ₃	NCH ₃
131.45 CH CH(CH ₃) ₂			CH(CH ₃)			NCH ₃
Ia1.46	15					
			CH[CH(CH ₃) ₂]			NCH₃
131.48			CH ₂			NCH ₃
a1.49						
Ia1.50			_C	H-(CH ₂) ₄		
Ia1.51	20		CH ₂			
Ia1.52	1		CH ₂			
a1.53			C(CH ₃) ₂			
a1.54	-		CH ₂			
25	- 1					NC ₂ H ₅
Ia1.56 CH CH CH ₃) ₂	25					
a1.57	ŀ					
1a1.58	ŀ					
1 1.59	ŀ					
A	-					NC ₂ H ₅
Ia1.61	30		CHo			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H				-	
Ia1.63	ŀ					
Ia1.64	-		CHICH(CHa)a		_	
1a1.65 CCH ₃ (C ₂ H ₅)	ŀ		C(CH ₂) ₂			
Ia1.66 CCH ₃ [CH(CH ₃) ₂] =O S Ia1.67 CH ₂ =O NH Ia1.68 CH(CH ₃) =O NH Ia1.69 CH(C ₂ H ₅) =O NH Ia1.70 CH[CH(CH ₃) ₂] =O NH Ia1.71 C(CH ₃) ₂ =O NH Ia1.72 CCH ₃ (C ₂ H ₅) =O NH Ia1.73 CCH ₃ (CH(CH ₃) ₂] =O NH Ia1.74 CH ₂ =O NCH ₃ Ia1.75 CH(CH ₃) =O NCH ₃ Ia1.76 CH(C ₂ H ₅) =O NCH ₃ Ia1.76 CH(C ₂ H ₅) =O NCH ₃	35	Ja1.65				
$ \begin{vmatrix} \text{la1.67} & \text{CH}_2 & = \text{O} & \text{NH} \\ \text{la1.68} & \text{CH(CH}_3) & = \text{O} & \text{NH} \\ \text{la1.69} & \text{CH(C2H}_5) & = \text{O} & \text{NH} \\ \text{la1.70} & \text{CH[CH(CH}_3)_2] & = \text{O} & \text{NH} \\ \text{la1.71} & \text{C(CH}_3)_2 & = \text{O} & \text{NH} \\ \text{la1.72} & \text{CCH}_3(\text{C}_2\text{H}_5) & = \text{O} & \text{NH} \\ \text{la1.73} & \text{CCH}_3(\text{CH}_3)_2] & = \text{O} & \text{NH} \\ \text{la1.74} & \text{CH}_2 & = \text{O} & \text{NCH}_3 \\ \text{la1.75} & \text{CH(CH}_3)_2 & = \text{O} & \text{NCH}_3 \\ \text{la1.76} & \text{CH(C2H}_5) & = \text{O} & \text{NCH}_3 \\ \text{la1.76} & \text{CH(C2H}_5) & = \text{O} & \text{NCH}_3 \\ \end{vmatrix} $	ŀ	la1.66	CCHICHCHAN			
$ \begin{vmatrix} \text{Ia1.68} & \text{CH(CH}_3) & = \text{O} & \text{NH} \\ \text{Ia1.69} & \text{CH(C}_2\text{H}_5) & = \text{O} & \text{NH} \\ \text{Ia1.70} & \text{CH(CH(CH}_3)_2) & = \text{O} & \text{NH} \\ \text{Ia1.71} & \text{C(CH}_3)_2 & = \text{O} & \text{NH} \\ \text{Ia1.72} & \text{CCH}_3(\text{C}_2\text{H}_5) & = \text{O} & \text{NH} \\ \text{Ia1.73} & \text{CCH}_3(\text{CH}_3)_2 & = \text{O} & \text{NH} \\ \text{Ia1.74} & \text{CH}_2 & = \text{O} & \text{NCH}_3 \\ \text{Ia1.75} & \text{CH(CH}_3)_2 & = \text{O} & \text{NCH}_3 \\ \text{Ia1.75} & \text{CH(CH}_3)_2 & = \text{O} & \text{NCH}_3 \\ \text{Ia1.76} & \text{CH(C}_2\text{H}_5) & = \text{O} & \text{NCH}_3 \\ \end{tabular} $	r	Ta1.67		=	=0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r	la1.68	CH(CH ₃)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	Ta1.69	CH(C ₂ H ₅)	=	=0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	Ta1.70	CH[CH(CH ₃) ₂]	=	<u>-0</u>	NH
	- 1	la1.71	C(CH ₃) ₂			NH
	F		CCH ₃ (C ₂ H ₅)			NH
45	T	la1.73	CCH ₃ [CH(CH ₃) ₂]	=	=0	NH
Ta1.76 $CH(C_2H_5)$ =0 NCH ₃				=	=O	NCH ₃
	45					
					_	
[a1.77 CH[CH(CH3)2] = O NCH3		la1.77	CH[CH(CH ₃) ₂]		O	NCH ₃

32 No. X R4 R5 a1.78 C(CH₃)₂ =0 NCH₃ la1.79 CCH₃(C₂H₅) =0 NCH₃ ССНаСН(СНа) эт a1.80 =0 NCH₃ la1.81 O COOCH₂ H CH la1.82 O COOC₂H₅ H CH₂ la1.83 O CONHCH₂ H CH la1.84 O CON(CH₃)₂ H CH₂ la1.85 O 10 CONHC₂H₅ H CH₂ la1.86 O CON(C2H5)2 H CH a1.87 O CH₃ H CH2 la1.88 O C₂H₅ CH2 la1.89 O CH(CH₃)₂ H CH2 la1.90 0 15 COC2H5 H CH la1.91 O CH₂CN H CH₂ la1.92 O CH2N(CH3)2 H CH₂ la1.93 O CH2ON=C(CH3)2 H CH2 la1.94 O CH(OC2H5)2 CH₂ la1.95 O CH(OCH₃)₂ 20 H CH₂ la1.96 O CH₃ CH₃ CH la1.97 \overline{a} CH₃ C₂H₅ CH₂ la1.98 O C₂H₅ CH2 la1.99 O -(CH₂)₄-CH2 la1.100 O -(CH₂)₂-O-(CH₂)₂-25 CH la1.101 O H -(CH₂)₃--CHla1.102 0 -(CH₂)₄--CH-la1.103 O CH₃ CHCH₃ la1.104 S =0 \circ CH₂ la1.105 =S 30 S Ta1.106 CH(CH₂) =S S la1.107 CH(C₂H₅) =S S la1.108 C(CH₃)₂ =S Ŝ la1.109 O =0 NH Ta1.110 O =0 NCH₃ 35 la1.111 O CH₃ NH a1.112 O C₂H₅ H NH la1.113 O CH₃ CH₃ NH la1.114 O C₂H₅ NH Ta1.115 O CH₃ Ħ NCH₃ la1.116 40 O C₂H₅ H NCH₃ la1.117 O CH₃ CH₃ NCH₃ la1.118 O C₂H₅ C₂H₅ NCH₃ la1.119 NH =0 NH la1.120 NH =0 NCH₃ la1.121 NCH₃ =0 NH la1.122 NCH₃ =0 NCH₂

33					
No.	X	R ⁴	R ⁵	Y	
la1.123	NC ₂ H ₅	=	=0	NH	
la1.124	NC ₂ H ₅	=	= O	NC ₂ H ₅	

In addition, the following benzoyl derivatives of the formula I are particularly extraordinarily preferred:

 $_{\rm 10}$ - The compounds Ia2.1-Ia2.124, which differ from the corresponding compounds Ia1.1-Ia1.124 by the fact that $\rm R^{16}$ is ethyl and $\rm R^{18}$ is hydrogen.

20

Also particularly extraordinarily preferred are the compounds Ib1 (\cong I where R¹, R² = C1, R³ = H, R¹⁶, R¹⁸ = CH₃, Z = H) in particular the compounds of Table 2

35 Table 2

	No.	X	R ⁴	R ⁵	Y
	151.1	CH ₂	н	CH₃	0
40	lb1.2	CH ₂	Н	Н	0
40	lb1.3	C(CH ₃) ₂	H	Н	0
	lb1.4	CH ₂	H	C ₂ H ₅	0
	lb1.5	CH ₂	CH₃	CH₃	0
	lb1.6	CH(CH ₃)	н	CH₃	0
45	lb1.7	CH(C ₂ H ₅)	H	CH₃	0
	lb1.8	CH[CH(CH ₃) ₂]	H	H	0
	lb1.9	CH ₂	H	CH(CH ₃) ₂	0
	1b1.10	CH(C ₂ H ₅)	Н	C ₂ H ₅	0

			34		
	No.	X	R ⁴	R ⁵	TY
	Ib1.11	-CH	I-(CH ₂) ₄ -	Н н	
	Tb1.12	C=O	CH ₃		0
	5 151.13		H H	CH ₃	0
	Ib1.14	C=O	C ₂ H ₅	C ₂ H ₅	0
	161.15	C=O	H H	C₂H₅ H	0
	lb1.16		 	CH ₃	0
	lb1.17		H	CH ₃	0
10	ь1.18	CH ₂	 	H H	S
	lb1.19	C(CH ₃) ₂	H	H	S
	lb1.20	CH ₂	H	C ₂ H ₅	S
	lb1.21	CH ₂	CH ₃	CH ₃	S
	lb1.22	CH(CH ₃)	H H	CH ₃	S
15	lb1.23	CH(C ₂ H ₅)	 	CH ₃	S
13	lb1.24	CH(C ₂ H ₅)	H	СПЗ	S
	lb1.25	-CH-	-(CH ₂) ₄	C ₂ H ₅	S
	lb1.26	CH[CH(CH ₃) ₂]	H	H	S
	lb1.27	CH ₂	 	CH(CH ₃) ₂	S
20	lb1.28	CH ₂	 	CH(CH ₃) ₂ CH ₃	S
20	lb1.29	CH ₂	 	H CH ₃	NH
	lb1.30	C(CH ₃) ₂	 	 	NH
	Ib1.31	CH ₂	 	C ₂ H ₅	NH
	lb1.32	CH ₂	CH ₃	CH ₃	NH
	lb1.33	CH(CH ₃)	H	CH ₃	NH
25	lb1.34	CH(C ₂ H ₅)	T H	CH ₃	NH NH
	lb1.35	CH(C ₂ H ₅)	T H	C ₂ H ₅	NH
	lb1.36	-CH-	(CH ₂) ₄ —	H H	NH
	lb1.37	CH[CH(CH ₃) ₂]	Т Н	H	NH
	lb1.38	CH ₂	H	CH(CH ₃) ₂	NH
30	lb1.39	CH ₂	H	CH ₃	NCH ₃
	lb1.40	CH ₂	H	H	NCH ₃
	lb1.41	C(CH ₃) ₂	H	H	NCH ₃
	lb1.42	CH ₂	Н	C ₂ H ₅	NCH ₃
	lb1.43	CH ₂	CH₃	CH ₃	NCH ₃
35	lb1.44	CH(CH₃)	H	CH ₃	NCH ₃
	lb1.45	CH(C ₂ H ₅)	H	CH ₃	NCH ₃
	lb1.46	CH[CH(CH3)2]	Н	H	NCH ₃
	lb1.47	CH ₂	Н	CH(CH ₃) ₂	NCH ₃
ı	lb1.48	CH(C₂H₅)	H	C ₂ H ₅	NCH ₃
40	lb1.49	_CI	T-(CH ₂) ₄ -	H	NCH ₃
- 1	lb1.50	CH ₂	Н	CH ₃	NC ₂ H ₅
L	lb1.51	CH ₂	H	H	NC ₂ H ₅
L	lb1.52	C(CH ₃) ₂	H	Н	NC ₂ H ₅
L	lb1.53	CH ₂	H	C ₂ H ₅	NC ₂ H ₅
15	lb1.54	CH ₂	CH₃	CH ₂	NC ₂ H ₅
	lb1.55	CH(CH ₃)	Н	CH ₃	NC ₂ H ₅
L	ן מכ.ועו	CH(C ₂ H ₅)	H	CH ₃	NC ₂ H ₅

			33		
	No.	X	R ⁴	R ⁵	Y
	Tb1.57	CH[CH(CH ₃) ₂]	Н н	 	NC ₂ H ₅
	lb1.58	CH ₂	 	CH(CH ₃) ₂	NC ₂ H ₅
5	lb1.59	CH(C ₂ H ₅)	H	C ₂ H ₅	NC ₂ H ₅
	lb1.60		CH-(CH ₂) ₄ -	H H	NC ₂ H ₅ NC ₂ H ₅
	lb1.61	CH ₂	(=1.2)4	=0 '''	
	lb1.62	CH(CH ₂)		=0	S
	lb1.63	CH(C ₂ H ₅)		=0	S
10	lb1.64	CH[CH(CH ₃) ₂]		=0	S
	lb1.65	C(CH ₃) ₂		=0	S
	lb1.66	CCH ₃ (C ₂ H ₅)		=0	S
	lb1.67	CCH3[CH(CH3)2]	 	=0	S
	lb1.68	CH ₂		=0	NH
15	lb1.69	CH(CH ₃)	 	=0	NH
13	lb1.70	CH(C ₂ H ₅)		=0	NH
	lb1.71			=0	NH
	lb1.72	C(CH ₃) ₂		=0	NH
	lb1.73	CCH ₃ (C ₂ H ₅)		=0	NH
20	lb1.74	CCH ₃ [CH(CH ₃) ₂]		=0	NH
20	lb1.75	CH ₂		=0	NCH ₃
	lb1.76	CH(CH ₃)		=0	NCH ₃
	lb1.77	CH(C₂H ₅)		=0	
	lb1.78	CH[CH(CH ₃) ₂]		=0	NCH ₃
25	lb1.79	C(CH ₃) ₂		=0	NCH ₃
23	lb1.80	CCH ₃ (C ₂ H ₅)		=0	NCH₃
	lb1.81 lb1.82			=0	NCH ₃
	lb1.82	0	COOCH ₃	IH	CH ₂
	lb1.83	0	COOC₂H ₅	Н	CH ₂
30	lb1.85	- 0	CONHCH3	H	CH ₂
	lb1.86	0	CON(CH ₃) ₂ CONHC ₂ H ₅	H	CH ₂
	lb1.87	- 6 -	$CONHC_2H_5$ $CON(C_2H_5)_2$	Н	CH ₂
- 1	lb1.88	0	CH ₃	H	CH ₂
	lb1.89	- 0	C ₂ H ₅	H	CH ₂
35	lb1.90	ŏ	CH(CH ₃) ₂	H	CH ₂
İ	Tb1.91	Ö	COC ₂ H ₅	H	CH ₂
ŀ	lb1.92	ŏ	CH ₂ CN	H	CH ₂
İ	lb1.93	Ö	CH ₂ N(CH ₃) ₂	H	CH ₂
ŀ	lb1.94	Ö	CH ₂ ON=C(CH ₃) ₂	H	CH ₂
40	lb1.95	0	CH(OC ₂ H ₅) ₂	H	CH ₂
	lb1.96	0	CH(OCH ₃) ₂	H	CH ₂ CH ₂
f	lb1.97	0	CH ₃	CH ₃	CH ₂
r	lb1.98	0	CH ₃	C ₂ H ₅	CH ₂
ı	lb1.99	0	C ₂ H ₅	C ₂ H ₅	CH ₂
* 7	lb1.100	0		H ₂) ₄ —	CH ₂
	b1.101	0	-(CH ₂) ₂ -(D-(CH ₂) ₂	CH ₂
	b1.102	0	H `	-(CH ₂) ₃ CH-	5.1.2
				, _{2/3} 0,1	

			36		
	No.	X	R ⁴	R ⁵	Y
	161.103	0	H	-(CH ₂) ₄ -	
	Tb1.104	0	CH ₃	H H	
5	1b1.105	0	H	 	CHCH ₃
	Ib1.106	S		=0	CH ₂
	lb1.107	CH ₂		=S	
	lb1.108	CH(CH₃)		=S	S
	lb1.109	CH(C ₂ H _E)		=S	S
10	lb1.110	C(CH ₃) ₂		-3 =\$	
	Ib1.111	0 "	=0		S NH
	lb1.112	0	=0		
	Ib1.113	0	CH ₃	Т	NCH ₃
	lb1.114	0	C ₂ H ₅	H	NH
15	Ib1.115	0	CH ₃	CH ₃	NH
13	Ib1.116	0	C ₂ H ₅	C ₂ H ₅	NH
	7b1.117	0	CH ₃	H 62H5	NH
	Tb1.118	0	C ₂ H ₅	H	NCH ₃
	1b1.119	Ō	CH ₃		NCH ₃
	Ib1.120	0	C ₂ H ₅	CH ₃ C ₂ H ₅	NCH ₃
20	Tb1.121	NH			NCH ₃
	lb1.122	NH	=0		NH
	161.123	NCH ₃		-O -O	NCH ₃
	lb1.124	NCH ₃		=0	NH
25	lb1.125	NC ₂ H ₅		=0	NCH₃
	lb1.126	NC ₂ H ₅			NH
L			L	-0	NC ₂ H ₅

In addition, the following 3-heterocyclyl-substituted benzoyl derivatives of the formula I are particularly extraordinarily 30 preferred:

35

40

- The compounds Ib2.1-Ib2.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^2 is nitro.

5

10

20

30

- The compounds Ib3.1-Ib3.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl and R^2 is methylsulfonyl.

lb3

- The compounds Ib4.1-Ib4.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is hydrogen and R^2 is methylsulfonyl.

$$\begin{array}{c|c} H_3C & & N-X \\ N & N & N \\ \vdots & \vdots & \vdots \\ CH_3 & & SO_2CH_3 \end{array}$$

lb4

35 - The compounds Ib5.1-Ib5.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl and R^2 is methylsulfonyl.

lb5

20

25

30

40

38
- The compounds Ib6.1-Ib6.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl.

- The compounds Ib7.1-Ib7.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro.

$$\begin{array}{c|c} H_3C & NO_2 & N-X \\ N & NO_2 & N-X \\ N & OH & CI \\ \end{array}$$

- The compounds Ib8.1-Ib8.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethy1.

The compounds Ib9.1-Ib9.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio.

The compounds Ib10.1-Ib10.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl.

lb10

lb11

lb12

Ib13

25

- The compounds Ib11.1-Ib11.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethylsulfonyl.

- The compounds Ib12.1-Ib12.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methoxy and \mathbb{R}^2 is methylsulfonyl.

30 - The compounds Ib13.1-Ib13.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl.

The compounds Ib14.1-Ib14.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R² is methylsulfonyl and R³ is methyl.

20

25

H₃C CI N R⁵
N OH CH₃ SO₂CH₃

The compounds Ib15.1-Ib15.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl and R^3 is chlorine.

lb14

lb15

lb16

lb17

15 H₃C CI N X R⁵
OH CI SO₂CH₃

The compounds Ib16.1-Ib16.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl and R^3 is chlorine.

 $\begin{array}{c|c} H_3C & CH_3 & N-X \\ N & N & CH_3 & N-X \\ CH_3 & CH_3 & N-X \\ CH_4 & N-X \\ CH_5 & N-X \\$

30 The compounds Ib17.1-Ib17.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl and R³ is methyl.

35 H₃C O CH₃ N N R
N OH CH₃ SO₂CH₃

The compounds Ib18.1-Ib18.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl.

- The compounds Ib19.1-Ib19.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl and R^2 is hydrogen.

lb18

lb19

- The compounds Ib20.1-Ib20.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is methyl and R^2 is nitro.

30 - The compounds Ib21.1-Ib21.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl and R^{18} is hydrogen.

40 - The compounds Ib22.1-Ib22.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro and R¹⁸ is hydrogen.

lb22

15

25

42 NO₂ ĊНа

The compounds Ib23.1-Ib23.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methy1, R^2 is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib24.1-Ib24.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is hydrogen, R2 is methylsulfonyl and R18 is hydrogen.

30 -The compounds Ib25.1-Ib25.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl, R2 is methylsulfonyl and R18 is hydrogen.

40 The compounds Ib26.1-Ib26.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methylsulfonyl and R18 is hydrogen.

lb26

lb27

25

The compounds Ib27.1-Ib27.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R1 is nitro and R18 is hydrogen. 10

The compounds Ib28.1-Ib28.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is 20 trifluoromethyl and R18 is hydrogen.

$$\begin{array}{c} O \\ CI \\ N \\ CH_3 \end{array}$$

The compounds Ib29.1-Ib29.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio and R18 is hydrogen.

40 The compounds Ib30.1-Ib30.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl and R18 is hydrogen.

25

The compounds Ib31.1-Ib31.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is 10 trifluoromethylsulfonyl and R18 is hydrogen.

The compounds Ib32.1-Ib32.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is 20 methoxy, R2 is methylsulfonyl and R18 is hydrogen.

The compounds Ib33.1-Ib33.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl and R18 is hydrogen.

40 The compounds Ib34.1-Ib34.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R^3 is methyl and R^{18} is hydrogen.

15

25

35

40

45

N N OH CH₃ SO₂CH₃

N' N OH CH₃ SO₂CH₃

lb34

lb35

lb36

lb37

- The compounds Ib35.1-Ib35.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is chlorine and R^{18} is hydrogen.

- The compounds Ib36.1-Ib36.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is chlorine and R^{18} is hydrogen.

The compounds Ib37.1-Ib37.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is methyl and R¹8 is hydrogen.

- The compounds Ib38.1-Ib38.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methyl and \mathbb{R}^{18} is hydrogen.

lb38

25

45

The compounds Ib39.1-Ib39.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is hydrogen and R¹⁸ is hydrogen.

- The compounds Ib40.1-Ib40.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is nitro and R^{18} is hydrogen.

 $_{\rm 30}$ - The compounds Ib41.1-Ib41.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, R¹6 is ethyl and R¹8 is hydrogen.

The compounds Ib42.1-Ib42.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹6 is ethyl and R¹8 is hydrogen.

15

25

30

35

40

45

CH₃ N-X R⁴
N N SO₂CH₃

The compounds Ib43.1-Ib43.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is hydrogen, R² is methylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

lb42

20 - The compounds Ib44.1-Ib44.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is trifluoromethyl, R² is methylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

- The compounds Ib45.1-Ib45.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

- The compounds Ib46.1-Ib46.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is nitro, \mathbb{R}^{16} is ethyl and \mathbb{R}^{18} is hydrogen.

lb46

25

 $\bigcap_{\substack{N \\ C_2H_5}} \bigcap_{OH} \bigcap_{C_1} \bigcap_{H_5} \bigcap_{$

The compounds Ib47.1-Ib47.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethy1, R¹⁶ is ethyl and R¹⁸ is hydrogen.

The compounds Ib48.1-Ib48.126, which differ from the
 corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylthio, R¹⁶ is ethyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CI \\ N \\ N \\ C_2H_5 \end{array} \begin{array}{c} N - X \\ R^5 \\ SCH_3 \end{array}$$

30 - The compounds Ib49.1-Ib49.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl, R^{16} is ethyl and R^{18} is hydrogen.

40 - The compounds Ib50.1-Ib50.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

25

35

40

The compounds Ib51.1-Ib51.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R2 is methylsulfonyl, R16 is ethyl and R18 is hydrogen.

The compounds Ib52.1-Ib52.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, R16 is ethyl and R18 is hydrogen.

30 The compounds Ib53.1-Ib53.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R3 is methyl, R16 is ethyl and R18 is hydrogen.

The compounds Ib54.1-Ib54.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R3 is chlorine, R16 is ethyl and R18 is 45 hydrogen.

15

25

30

35

40

lb54

The compounds Ib55.1-Ib55.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methyl, R2 is methylsulfonyl, R3 is chlorine, R16 is ethyl and R18 is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N-X \\ \hline N & C_2H_5 & CI \\ \hline \end{array}$$

The compounds Ib56.1-Ib56.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is methylsulfonyl, R3 is methyl, R16 is ethyl and Ris is hydrogen.

The compounds Ib57.1-Ib57.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R16 is ethyl and R18 is hydrogen.

The compounds Ib58.1-Ib58.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R^2 is hydrogen, R^{16} is ethyl and R^{18} is hydrogen. 45

lb58

lb59

25

45

- The compounds Ib59.1-Ib59.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is nitro, R^{16} is ethyl and R^{18} is hydrogen.

- The compounds Ib60.1-Ib60.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CI & N - X & R^4 \\ \hline N & N & SO_2CH_3 \\ \hline C_3H_7 & SO_2CH_3 \end{array}$$

 30 - The compounds Ib61.1-Ib61.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $\rm R^2$ is nitro, $\rm R^{16}$ is n-propyl and $\rm R^{18}$ is hydrogen.

40 - The compounds Ib62.1-Ib62.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

15

25

30

lb62

The compounds Ib63.1-Ib63.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is hydrogen, R2 is methylsulfonyl, R16 is n-propyl and R18 is 10 hvdrogen.

lb63

The compounds Ib64.1-Ib64.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is trifluoromethyl, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

lb64

The compounds Ib65.1-Ib65.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methylsulfonyl, R16 is n-propyl and R18 is hydrogen.

35

lb65

The compounds Ib66.1-Ib66.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, R16 is n-propyl and R18 is hydrogen.

45

15

25

53

The compounds Ib67.1-Ib67.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 trifluoromethyl, R16 is n-propyl and R18 is hydrogen.

lb66

lb67

lb68

lb69

The compounds Ib68.1-Ib68.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylthio, R16 is n-propyl and R18 is hydrogen.

30 -The compounds Ib69.1-Ib69.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfinyl, R16 is n-propyl and R18 is hydrogen.

35 40

The compounds Ib70.1-Ib70.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is trifluoromethylsulfonyl, R16 is n-propyl and R18 is hydrogen.

25

30

40

The compounds Ib71.1-Ib71.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R2 is methylsulfonyl, R16 is n-propyl and R18 is hydrogen.

20 -The compounds Ib72.1-Ib72.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, R16 is n-propyl and R18 is hydrogen.

lb72

The compounds Ib73.1-Ib73.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R3 is methyl, R16 is n-propyl and R18 is hydrogen. 35

The compounds Ib74.1-Ib74.126, which differ from the corresponding compounds Ibl.1-Ibl.126 by the fact that R2 is 45 methylsulfonyl, R^3 is chlorine, R^{16} is n-propyl and R^{18} is hydrogen.

15

25

30

35

40

lb74

O CI N R⁴
R⁵
R⁵
C₃H₇ OH CI SO₂CH₃

The compounds Ib75.1-Ib75.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is chlorine, R¹6 is n-propyl and R¹8 is hydrogen.

 $\begin{array}{c|c} O & CH_3 & N-X \\ \hline N & N-X \\ N & N-X \\ OH & CI \\ \end{array}$

20 - The compounds Ib76.1-Ib76.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is methyl, R¹6 is n-propyl and R¹8 is hydrogen.

 $\begin{array}{c|c} O & CH_3 & N-X \\ \hline N & CH_3 & N-X \\ \hline N & CH_3 & SO_2CH_3 \\ \hline C_3H_7 & CH_3 & CH_3 \\ \end{array}$

- The compounds Ib77.1-Ib77.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^{16} is n-propyl and R^{18} is hydrogen.

The compounds Ib78.1-Ib78.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is hydrogen, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

lb78

lb79

25

40

45

- The compounds Ib79.1-Ib79.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is nitro, R¹6 is n-propyl and R¹8 is hydrogen.

The compounds Ib80.1-Ib80.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is n-propyl and R^{18} is hydrogen.

30 - The compounds Ib81.1-Ib81.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

The compounds Ib82.1-Ib82.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is n-butyl and R^{18} is hydrogen.

15

25

30

35

40

The compounds Ib83.1-Ib83.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

lb82

$$\begin{array}{c|c}
O & CH_3 & N - X \\
N & R_5
\end{array}$$

$$\begin{array}{c|c}
O & CH_3 & N - X \\
N & R_5
\end{array}$$

$$\begin{array}{c|c}
O & CH_3 & N - X \\
N & R_5
\end{array}$$

$$\begin{array}{c|c}
O & CH_3 & N - X \\
N & R_5
\end{array}$$

20 - The compounds Ib84.1-Ib84.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is hydrogen, R^2 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

 The compounds Ib85.1-Ib85.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is trifluoromethyl, R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

- The compounds Ib86.1-Ib86.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

15

20

25

SO₂CH₃ N-X R⁵

lb86

- The compounds Ib87.1-Ib87.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is n-butyl and R^{18} is hydrogen.

NO2 N-X R4

lb87

- The compounds Ib88.1-Ib88.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

 $\bigcap_{\substack{N\\C_dH_g}} \bigcap_{OH} \bigcap_{CF_3} \bigcap_{F_3} \bigcap_{CF_3} \bigcap_{CF_$

!b88

30 - The compounds Ib89.1-Ib89.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylthio, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

35

$$\bigcap_{\substack{N\\C_4H_9}} \bigcap_{OH} \bigcap_{SCH_3} \bigcap_{SCH_3}$$

lb89

The compounds Ib90.1-Ib90.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $\rm R^2$ is methylsulfinyl, $\rm R^{16}$ is n-butyl and $\rm R^{18}$ is hydrogen.

45

25

30

10 - The compounds Ib91.1-Ib91.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

 $\begin{array}{c|c} O & CI & N-X \\ \hline N & N-X \\ \hline N & OH \\ \hline C_2H_9 & SO_2CF_3 \end{array}$

The compounds Ib92.1-Ib92.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

O OCH₃ N X R⁴
N OH SO₂CH₃

The compounds Ib93.1-Ib93.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

40 CI N-X R^4 R^5 $SO_2C_2H_5$

- The compounds Ib94.1-Ib94.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R³ is methyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

20

25

30

40

60 lb94

The compounds Ib95.1-Ib95.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 methylsulfonyl, R3 is chlorine, R16 is n-butyl and R18 is hydrogen.

lb95

15

The compounds Ib96.1-Ib96.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is methylsulfonyl, R3 is chlorine, R16 is n-butyl and R18 is hydrogen.

Ib96

The compounds Ib97.1Ib97.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 35 methyl, R2 is methylsulfonyl, R3 is methyl, R16 is n-butyl and R18 is hydrogen.

lb97

45 -The compounds Ib98.1-Ib98.126, which differ from the corresponding compounds $\mbox{Ib1.1-Ib1.126}$ by the fact that \mbox{R}^1 is methyl, R16 is n-butyl and R18 is hydrogen.

lh98

25

The compounds Ib99.1-Ib99.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methyl, R2 is hydrogen, R16 is n-butyl and R18 is hydrogen.

The compounds Ib100.1-Ib100.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is nitro, R16 is n-butyl and R18 is hydrogen.

The compounds Ib101.1-Ib101.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R16 is n-butyl and R18 is hydrogen.

40 The compounds Ib102.1-Ib102.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R16 is iso-butyl and R18 is hydrogen.

25

30

40

- The compounds Ib103.1-Ib103.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is iso-butyl and R^{18} is hydrogen.

- The compounds Ib104.1-Ib104.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

- The compounds Ib105.1-Ib105.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is hydrogen, \mathbb{R}^2 is methylsulfonyl, \mathbb{R}^{16} is iso-butyl and \mathbb{R}^{18} is hydrogen.

- The compounds Ib106.1-Ib106.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is trifluoromethyl, R² is methylsulfonyl, R¹6 is iso-butyl and R¹8 is hydrogen.

25

The compounds Ib107.1-Ib107.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

- The compounds Ib108.1-Ib108.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

30 - The compounds Ib109.1-Ib109.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethy1, R^{16} is iso-buty1 and R^{18} is hydrogen.

40 - The compounds Ib110.1-Ib110.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio, R^{16} is iso-butyl and R^{18} is hydrogen.

15

25

lb110

lb112

64 ĊH。CH(CH。)。

The compounds Ib111.1-Ib111.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 methylsulfinyl, R16 is iso-butyl and R18 is hydrogen.

lb111 CH,CH(CH,),

The compounds Ib112.1-Ib112.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is trifluoromethylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

CH,CH(CH,),

30 _ The compounds Ib113.1-Ib113.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methoxy, R2 is methylsulfonyl, R16 is iso-butyl and R18 is hydrogen.

35 lb113 40 ĊH,CH(CH3),

The compounds Ib114.1-Ib114.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, R16 is iso-butyl and R18 is hydrogen.

lb114

15

25

30

OH SO₂C₂H₅

The compounds Ib115.1-Ib115.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is methyl, R^{16} is iso-butyl and R^{18} is hydrogen.

O CI N R4 Ib115

20 - The compounds Ibl16.1-Ibl16.126, which differ from the corresponding compounds Ibl.1-Ibl.126 by the fact that R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is iso-butyl and R^{18} is hydrogen.

O CI N-X R4 Ib116

The compounds Ibl17.1-Ibl17.126, which differ from the corresponding compounds Ibl.1-Ibl.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is chlorine, R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

The compounds Ibl18.1-Ibl18.126, which differ from the corresponding compounds Ibl.1-Ibl.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is methyl, R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

5

10

20

- The compounds Ibl19.1-Ibl19.126, which differ from the corresponding compounds Ibl.1-Ibl.126 by the fact that R^1 is methyl, R^{16} is iso-butyl and R^{18} is hydrogen.

lb119

The compounds Ib120.1-Ib120.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is hydrogen, R^{16} is iso-butyl and R^{18} is hydrogen.

30

lb120

- The compounds Ib121.1-Ib121.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methyl, \mathbb{R}^2 is nitro, \mathbb{R}^{16} is iso-butyl and \mathbb{R}^{18} is hydrogen.

40

45

20

25

30

45

 The compounds Ib122.1-Ib122.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

- The compounds Ib123.1-Ib123.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is methylsulfonyl and R^2 is trifluoromethyl.

The compounds Ib124.1-Ib124.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^2 is trifluoromethyl, and R^{18} is hydrogen.

The compounds Ib125.1-Ib125.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R² is trifluoromethyl, R¹6 is n-propyl and R¹8 is hydrogen.

30

35

40

45

grasmi.

The compounds Ib126.1-Ib126.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R² is trifluoromethyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

68

5 SO₂CH₃ N-X R⁴ Ib126

The compounds Ib127.1-Ib127.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R² is trifluoromethyl, R¹6 is iso-butyl and R¹8 is hydrogen.

SO₂CH₃N-X NOH CF₃ R⁴ Ib127

The compounds Ib128.1-Ib128.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R² is trifluoromethyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

O SO₂CH₃ N-X R⁴

N N CF₃

- The compounds Ib129.1-Ib129.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is nitro and \mathbb{R}^2 is methylsulfonyl.

H₃C NO₂ N-X R⁴ Ib129

- The compounds Ib130.1-Ib130.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is nitro, \mathbb{R}^2 is methy1sulfonyl and \mathbb{R}^{18} is hydrogen.

lb130

$$\begin{array}{c|c}
 & O & NO_2 & N-X & R^4 \\
\hline
 & N & N & SO_2 Me \\
\hline
 & OH & SO_2 Me
\end{array}$$

 The compounds Ib131.1-Ib131.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, R² is methylsulfonyl, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & NO_2 & NO_2 \\ \hline N & NO_2 & NO_2 \\$$

The compounds Ib132.1-Ib132.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfony1, R^{16} is n-butyl and R^{18} is hydrogen.

35 - The compounds Ib133.1-Ib133.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

20

30

70

The compounds Ib134.1-Ib134.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, R2 is methylsulfonyl, R16 is ethyl and R18 is hydrogen.

5 10 lb134

The compounds Ib135.1-Ib135.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R18 is hydrogen.

lb135

The compounds Ib136.1-Ib136.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R16 is 25 ethyl and R18 is hydrogen.

lb136

The compounds Ib137.1-Ib137.126 which differ from the 35 corresponding compounds Ib1.1-Ib1.126 by the fact that Z is methylsulfonyl and R18 is hydrogen.

40 OSO,CH, lb137

45 _ The compounds Ib138.1-Ib138.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, Z is methylsulfonyl and R18 is hydrogen.

15

25

3.0

35

40

45

71 lb138 OSO,CH,

The compounds Ib139.1-Ib139.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 nitro, Z is methylsulfonyl and R18 is hydrogen.

lb139 OSO,CH3

The compounds Ib140.1-Ib140.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is methylsulfonyl , Z is methylsulfonyl and R18 is hydrogen.

> lb140 OSO,CH3

The compounds Ib141.1-Ib141.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methylsulfonyl, Z is methylsulfonyl and R18 is hydrogen.

lb141 OSO,CH3

The compounds Ib142.1-Ib142.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, Z is methylsulfonyl and R18 is hydrogen.

15

25

40

The compounds Ib143.1-Ib143.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R¹ is methoxy, R² and Z are methylsulfonyl and R¹8 is hydrogen.

- The compounds Ib144.1-Ib144.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

30 - The compounds Ib145.1-Ib145.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

 The compounds Ib146.1-Ib146.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

15

25

30

40

45

73 lb146 OSO,CH,

The compounds Ib147.1-Ib147.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 nitro, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib148.1-Ib148.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is methylsulfonyl, R16 is ethyl, Z is methylsulfonyl and R18 is hydrogen.

The compounds Ib149.1-Ib149.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methylsulfonyl, R16 is ethyl, Z is methylsulfonyl and R18 is hydrogen. 35

The compounds Ib150.1-Ib150.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

15

25

30

35

40

45

74 lb150 OSO,CH,

The compounds Ib151.1-Ib151.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R2 is methylsulfonyl, R16 is ethyl, Z is methylsulfonyl and R18 is hydrogen.

lb151

The compounds Ib152.1-Ib152.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

lb152

The compounds Ib153.1-Ib153.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is methylsulfonyl.

lb153

The compounds Ib154.1-Ib154.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 and Z are methylsulfonyl.

lb154

25

75 SO,CH, OSO,CH,

The compounds Ib155.1-Ib155.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 nitro and Z is methylsulfonyl.

The compounds Ib156.1-Ib156.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 and Z are methylsulfonyl.

30 -The compounds Ib157.1-Ib157.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 and Z are methylsulfonyl.

40 The compounds Ib158.1-Ib158.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro and Z is methylsulfonyl.

5

The compounds Ib159.1-Ib159.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is 10 methoxy, R2 and Z are methylsulfonyl.

The compounds Ib160.1-Ib160.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl and Z is methylsulfonyl.

$$\begin{array}{c|c} H_3C & O & CI & N-X \\ N & N & SO_2CH_3 & SO_2C_2H_5 \end{array}$$

30 -The compounds Ib161.1-Ib161.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is ethylsulfonyl and R18 is hydrogen.

40 The compounds Ib162.1-Ib162.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is ethylsulfonyl and R18 is hydrogen.

10

15

25

30

N SO₂Cl₃ SO₂CH₃

lb162

The compounds Ib163.1-Ib163.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, Z is ethylsulfonyl and R^{18} is hydrogen.

O CI N-X R⁴
N NO₂
CH₃ OSO₂C₂H₅

lb163

The compounds Ib164.1-Ib164.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

O CH₃ N X R SO₂CH₃ SO₂CH₃

lb164

- The compounds Ib165.1-Ib165.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methylsulfonyl, Z is ethylsulfonyl and \mathbb{R}^{18} is hydrogen.

35 O SO₂CH₃ N-X R⁵
N O SO₂C₂H₅

lb165

The compounds Ib166.1-Ib166.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, Z is ethylsulfonyl and R¹⁸ is hydrogen.

25

30

40

78 OSO₂C₂H₅

lb166

The compounds Ib167.1-Ib167.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R2 is methylsulfonyl, Z is ethylsulfonyl and R18 is hydrogen.

lb167

20 -The compounds Ib168.1-Ib168.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 and Z are ethylsulfonyl and R18 is hydrogen.

lb168

OSO₂C₂H₅

The compounds Ib169.1-Ib169.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R16 is ethyl, Z is ethylsulfonyl and R18 is hydrogen.

35 lb169

The compounds Ib170.1-Ib170.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R16 is ethyl, Z is ethylsulfonyl and R18 is hydrogen.

15

25

30

35

40

lb170

OSO₂C₂H₅ SO₂CH₃

- The compounds Ib171.1-Ib171.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib172.1-Ib172.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

- The compounds Ib173.1-Ib173.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methylsulfonyl, \mathbb{R}^{16} is ethyl, Z is ethylsulfonyl and \mathbb{R}^{18} is hydrogen.

- The compounds Ib174.1-Ib174.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

15

25

30

35

40

lb174

The compounds Ib175.1-Ib175.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, R¹6 is ethyl, Z is ethylsulfonyl and R¹8 is hydrogen.

20 - The compounds Ib176.1-Ib176.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & CI & N-X \\ \hline N & \\ N & \\ C_2H_5 & OSO_2C_2H_5 \end{array}$$
 Ib176

- The compounds $\mbox{Ib177.1-Ib177.126}$, which differ from the corresponding compounds $\mbox{Ib1.1-Ib1.126}$ by the fact that Z is ethylsulfonyl.

$$H_3C$$
 O
 CI
 N
 R^4
 $OSO_2C_2H_5$
 CI
 R^5

- The compounds Ib178.1-Ib178.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl and Z is ethylsulfonyl.

20

25

30

35

40

10 - The compounds Ib179.1-Ib179.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro and Z is ethylsulfonyl.

The compounds Ib180.1-Ib180.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl and Z is ethylsulfonyl.

H₃C CH₃ N R⁴ Ib180

- The compounds Ib181.1-Ib181.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methylsulfonyl and Z is ethylsulfonyl.

H₃C SO₂CH₃ N-X R⁴ (b181 CH₃ CH₃ OSO₂C₂H₅

- The compounds Ib182.1-Ib182.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro and Z is ethylsulfonyl.

15

25

35

40

82 H₃C NO₂ N-X R⁴ Ib182 N N CH₃ OSO₂C₂H₅

- The compounds Ib183.1-Ib183.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl and Z is ethylsulfonyl.

lb183

The compounds Ib184.1-Ib184.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 and Z are ethylsulfonyl.

 $\begin{array}{c|c} H_3C & & CI & N-X\\ \hline N & & & \\ CIL & & & \\ OSO_2C_2H_5 & & \\ \end{array}$

lb184

30 - The compounds Ib185.1-Ib185.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

O CI N-A-R4

lb185

The compounds Ib186.1-Ib186.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

The compounds Ib187.1-Ib187.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 nitro, Z is iso-propylsulfonyl and R18 is hydrogen.

The compounds Ib188.1-Ib188.126, which differ from the 20 corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methyl, R2 is methylsulfonyl, Z is iso-propylsulfonyl and R18 is hydrogen.

30 The compounds Ib189.1-Ib189.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is methylsulfonyl, Z is iso-propylsulfonyl and \mathbb{R}^{18} is hydrogen.

35
$$O$$
 SO_2CH_3 $N-X$ P^4 P^5 $OSO_2CH(CH_3)_2$

The compounds Ib190.1-Ib190.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, Z is iso-propylsulfonyl and R18 is hydrogen.

15

25

30

35

40

The compounds Ib191.1-Ib191.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R^2 is methylsulfonyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

20 -The compounds Ib192.1-Ib192.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, Z is iso-propylsulfonyl and R18 is hydrogen.

lb192 OSO₂CH(CH₃),

The compounds Ib193.1-Ib193.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is iso-propylsulfonyl and R18 is hydrogen.

The compounds Ib194.1-Ib194.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} 45 is hydrogen.

15

25

30

35

40

85 lb194 SO,CH, OSO,CH(CH,),

The compounds Ib195.1-Ib195.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is 10 nitro, R16 is ethyl, Z is iso-propylsulfonyl and R18 is hvdrogen.

> lb195 OSO,CH(CH,),

20 The compounds Ib196.1-Ib196.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R2 is methylsulfonyl, R16 is ethyl, Z is iso-propylsulfonyl and R18 is hydrogen.

lb196 OSO₂CH(CH₃)₂

The compounds Ib197.1-Ib197.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

lb197 OSO₂CH(CH₃)₂

The compounds Ib198.1-Ib198.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is 45 nitro, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

15

25

30

35

40

45

The compounds Ib199.1-Ib199.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N-X\\ \hline N & N-X\\ \hline N & OSO_2CH(CH_3)_2 \end{array}$$

20 - The compounds Ib200.1-Ib200.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

- The compounds Ib201.1-Ib201.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is n-propylsulfonyl and R¹⁸ is hydrogen.

- The compounds Ib202.1-Ib202.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^2 is methylsulfonyl, Z is n-propylsulfonyl and \mathbb{R}^{18} is hydrogen.

15

25

30

35

- The compounds Ib203.1-Ib203.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & CI & N-X \\ \hline N & NO_2 \\ \hline CH_3 & OSO_2C_3H_7 \end{array}$$
 Ib203

- The compounds Ib204.1-Ib204.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

- The compounds Ib205.1-Ib205.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that \mathbb{R}^1 is methylsulfonyl, Z is n-propylsulfonyl and \mathbb{R}^{18} is hydrogen.

The compounds Ib206.1-Ib206.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is n-propylsulfonyl and R^{18} is hydrogen.

45

15

25

30

45

OSO₂C₃H₇

lb206

The compounds Ib207.1-Ib207.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is 10 methoxy, R2 is methylsulfonyl, Z is n-propylsulfonyl and R18 is hydrogen.

lb207

20 _ The compounds Ib.208.1-Ib208.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, Z is n-propylsulfonyl and R18 is hydrogen.

lb208

The compounds Ib209.1-Ib209.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R16 is ethyl, Z is n-propylsulfonyl and R18 is hydrogen.

35 lb209 40

The compounds Ib210.1-Ib210.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is methylsulfonyl, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

15

25

30

35

The compounds Ib211.1-211.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

O CI N-X R4
N NO₂
C₂H₆ OSO₂C₄H₇

The compounds Tb212.1-Tb212.126, which differ from the corresponding compounds Ib1.1-Tb1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹6 is ethyl, Z is n-propylsulfonyl and R¹8 is hydrogen.

O CH₃ N X R R S S O₂ CH₃

The compounds Ib213.1-Ib213.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R¹⁶ is ethyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

45

weer.

lb211

lb210

lb212

lb213

 The compounds Ib214.1-Ib214.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, R¹⁶ is ethyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

5

10

The compounds Ib215.1-Ib215.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, R¹6 is ethyl, Z is n-propylsulfonyl and R¹8 is hydrogen.

The compounds Ib216.1-Ib216.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

30

20

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ N \\ N \\ C_2H_5 & OSO_2C_3H_7 & SO_2C_2H_5 \end{array}$$

35

The compounds Ib217.1-Ib217.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is n-butylsulfonyl and R18 is hydrogen.

40

20

30

35

45

The compounds Ib218.1-Ib218.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is n-butylsulfonyl and \mathbb{R}^{18} is hydrogen.

5 10 `oso,c₄н₉ lb218

The compounds Ib219.1-Ib219.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, Z is n-butylsulfonyl and R18 is hydrogen.

lb 219

The compounds Ib220.1-Ib220.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is 25 methyl, $\ensuremath{\mathbb{R}}^2$ is methylsulfonyl, Z is n-butylsulfonyl and $\ensuremath{\mathbb{R}}^{18}$ is hydrogen.

lb220

The compounds Ib221.1-Ib221.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is n-butylsulfonyl and R18 is hydrogen.

40 OSO₂C₄H₉ lb221

20

30

The compounds Ib222.1-Ib222.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is n-buty1sulfonyl and R^{18} is hydrogen.

 lb222

- The compounds Ib223.1-Ib223.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

lb223

- The compounds Ib224.1-Ib224.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

O CI N-X R4

lb224

35 - The compounds Ib225.1-Ib225.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

40 CI N-X R⁴ Ib225

- The compounds Ib226.1-Ib226.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

5

10

20

The compounds Ib227.1-Ib227.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, R¹⁶ is ethyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

O CI N X F N NO₂ NO₂ P₅ lb227

lb229

The compounds Ib228.1-Ib228.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

30

35

The compounds Ib229.1-Ib229.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

45

20

30

35

40

The compounds Ib230.1-Ib230.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R1 is nitro, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

5 OSO₂C₄H₉ 10

The compounds Ib231.1-Ib231.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R2 is methylsulfonyl, R16 is ethyl, Z is n-butylsulfonyl and R18 is hydrogen.

lb231

lb230

$$\bigcap_{\substack{N\\C_2H_5}} \bigcap_{OSO_2C_4H_9} \bigcap_{SO_2CH_3} \bigcap_{R_5}$$

The compounds Ib232.1-Ib232.126, which differ from the 25 corresponding compounds Ib1.1-Ib1.126 by the fact that R2 is ethylsulfonyl, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

lb232

The compounds Ib233.1-Ib233.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is iso-butylsulfonyl and R18 is hydrogen.

20

25

30

95

The compounds Ib234.1-Ib234.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

lb234

- The compounds Ib235.1-Ib235.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

 $\begin{array}{c|c} O & CI & N-X \\ \hline N & NO_2 \\ \hline CH_3 & OSO_2CH_2CH(CH_3)_2 \end{array}$

The compounds Ib236.1-Ib236.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

OSO₂CH₃ N-X H⁴ Ib236

35 The compounds Ib237.1-Ib237.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

40 SO₂CH₃ N-X R⁴ Ib237 CI CI CH₃ OSO₂CH₂CH(CH₃)₂

45 - The compounds Ib238.1-Ib238.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, Z is iso-butylsulfonyl and R¹8 is hydrogen.

15

25

30

35

40

The compounds Ib239.1-Ib239.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, Z is iso-butylsulfonyl and R¹8 is hydrogen.

lb238

lh239

OCH₃ N-X R⁴

NN SO₂CH₃

OSO₂CH₂CH(CH₃)₂

20 - The compounds Ib240.1-Tb240.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$

The compounds Ib241.1-Ib241.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

O CI N-X H⁴
N N CI H⁵
OSO₂CH₂CH(CH₃)₂

The compounds Ib242.1-Ib242.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

15

25

30

35

40

The compounds Ib243.1-Ib243.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

DD243

20 - The compounds Ib244.1-Ib244.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib245.1-Ib245.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

O SO₂CH₃ N-X R⁴
N N C₂H₅ OSO₂CH₂CH(CH₃)₂

- The compounds Ib246.1-Ib246.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

 $\bigcap_{\substack{N\\N\\C_2H_5}} \bigcap_{OSO_2CH_2CH(CH_3)_2} \bigcap_{R^5} \bigcap_{R^5}$

lb246

The compounds Ib247.1-Ib247.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

OCH₃ N-X P₅ SO₂CH₃ SO₂CH₃ C₂H₅ OSO₂CH₃CH(CH₂)₂ lb247

The compounds Ib248.1-Ib248.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

25

30

35

5

10

15

lb248

- The compounds Ib249.1-Ib249.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is phenylsulfonyl and R^{18} is hydrogen.

40

45

lb249

- The compounds Ib250.1-Ib250.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is phenylsulfonyl and R^{18} is hydrogen.

10

15

25

30

N OSO₂C₆H₅ SO₂CH₃

lb250

The compounds Ib251.1-Ib251.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, Z is phenylsulfonyl and R^{18} is hydrogen.

lb251

O CH₃ N X R₅
N N SO₂CH₃ SO₂CH₃

The compounds Ib252.1-Ib252.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

lb252

lb253

The compounds Ib253.1-Ib253.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is ethyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

35

40

 The compounds Ib254.1-Ib254.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

15

25

30

35

40

The compounds Ib255.1-Ib255.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib256.1-Ib256.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

- The compounds Ib257.1-Ib257.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is p-toluenesulfonyl and R^{18} is hydrogen.

- The compounds Ib258.1-Ib258.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, Z is p-toluenesulfonyl and R¹⁸ is hydrogen.

15

25

30

35

40

- The compounds Ib259.1-Ib259.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, Z is p-toluenesulfonyl and R¹8 is hydrogen.

The compounds Ib260.1-Ib260.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is p-toluenesulfonyl and R¹⁸ is hydrogen.

The compounds Ib261.1-Ib261.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

The compounds Ib262.1-Ib262.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is ethyl, Z is p-toluenesulfonyl and R¹⁸ is hydrogen.

5

10

- The compounds Ib263.1-Ib263.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R¹6 is ethyl, Z is p-toluenesulfonyl and R¹8 is hydrogen.

lb263

20

25 - The compounds Ib264-Ib264.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is

hydrogen.

30

35

ethylsulfonyl, R16 is ethyl, Z is p-toluenesulfonyl and R18 is

Also particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where:

- is halogen, C₁-C₆-alkyl, C₁-C₆-alkylthio or C₁-C₆-alkylsulfonyl; in particular chlorine, methyl, methylthio or methylsulfonyl;
- 45
 R² is hydrogen, nitro, halogen, C₁-C₆-alkylthio,
 C₁-C₆-alkylsulfinyl or C₁-C₆-alkylsulfonyl;

in particular hydrogen, nitro, chlorine, methylthio, methylsulfinyl, methylsulfonyl, ethylsulfonyl or propylsulfonyl;

5 R3 is hydrogen:

R4, R5 are hydrogen, halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-alkylthio or COR6; in particular hydrogen, fluorine, methyl, ethyl, propyl.

10 trifluoromethyl, chloromethyl, 1-chloroeth-1-vl, methoxy, ethoxy, ethylthio or ethoxycarbonyl;

· or

15 R^4 and R^5 together form a $C_2\text{-}C_6\text{-alkanediyl}$ chain which can be mono- to polysubstituted by C1-C4-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C1-C4-alkyl;

20 R6 is C1-C4-alkoxy; in particular ethyl;

х is O or CR10R11:

25 Y is O. S or CR13R14:

 ${\rm R}^{10},~{\rm R}^{11},~{\rm R}^{13},~{\rm R}^{14}$ are hydrogen, ${\rm C}_1\text{-}{\rm C}_4\text{-alkyl}$ or ${\rm C}_1\text{-}{\rm C}_4\text{-haloalkyl};$ in particular hydrogen, methyl or chloromethyl;

30 or

 ${\tt R}^{\tt 5}$ and ${\tt R}^{\tt 13}$ together form a ${\tt C}_2\text{-}{\tt C}_6\text{-alkanediyl}$ chain which can be mono- to polysubstituted by C1-C4-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C1-C4-alkyl;

35 in particular 1,3-propanediyl;

R16 is C1-C6-alkyl; in particular methyl, ethyl, propyl, 2-methylpropyl or 40 butyl;

is H or SO2R17; \mathbf{z}

R17 is C1-C4-alkvl;

45 in particular methyl, ethyl, propyl or 2-methylpropyl;

with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,
4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and 4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

10 and the agriculturally useful salts thereof; in particular alkali metal salts and ammonium salts.

The 3-heterocyclyl-substituted benzoyl derivatives of the formula I are obtainable by various routes, for example by the following process:

Process A:

Reaction of pyrazoles of the formula II (where Z = H) with an 10 activated benzoic acid III α or a benxoic acid III β , which is preferably activated in situ to give the acylating product and subsequently subjecting the latter to a rearrangement reaction.

L¹ is a nucleophilically displaceable leaving group such as halogen, eg. bromine, chlorine, hetaryl, eg. imidazolyl, pyridyl, carboxylate, eg. acetate, trifluoroacetate, and the like.

The activated benzoic acid can be employed directly, as in the case of the benzoyl halides, or it can be prepared in situ, for example with dicyclohexylcarbodiimide,

10 triphenylphosphine/azodicarboxylic ester, 2-pyridine disulfide/triphenylphosphine, carbonyldiimidazole and the like.

It may be advantageous to carry out the acylation reaction in the presence of a base. The reactants and the auxiliary base are 15 expediently employed in equimolar amounts. A small excess of the auxiliary base, for example 1.2 to 1.5 mol equivalents based on II, may be advantageous under certain circumstances.

Suitable auxiliary bases are tertiary alkylamines, pyridine or 20 alkali metal carbonates. Examples of solvents which can be used are chlorinated hydrocarbons such as methylene chloride, 1,2-dichloroethane, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ethers such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, polar aprotic 25 solvents such as acetonitrile, dimethylformamide, dimethyl

25 solvents such as acetonitrile, dimethylformamide, dimethyl sulfoxide, or esters such as ethyl acetate, or mixtures of these.

If benzoyl halides are employed as activated carboxylic acid component, it may be expedient to cool the reaction mixture to 0-10°C when adding this reactant. The mixture is subsequently stirred at 20 · 100°C, preferably at 25 · 50°C, until the reaction is complete. Work-up is carried out in the customary manner, for example the reaction mixture is poured into water and the product of value is extracted. Especially suitable solvents for this purpose are methylene chloride, diethyl ether and ethyl acetate. After the organic phase has been dried and the solvent removed.

the crude ester can be employed without further purification for the rearrangement reaction.

Rearrangement of the esters to give the compounds of the formula I is expediently carried out at from 20 to 40°C in a solvent and in the presence of a base and, if appropriate, with the aid of a cyano compound as catalyst.

Examples of solvents which can be used are acetonitrile, methylene chloride, 1,2-dichlorethane, dioxane, ethyl acetate, toluene or mixtures of these. Preferred solvents are acetonitrile and dioxane

Suitable bases are tertiary amines such triethylamine, pyridine, or alkali metal carbonates such as sodium carbonate, potassium carbonate, all of which are preferably employed in equimolar amounts or up to a fourfold excess, based on the ester.

- Triethylamine or alkali metal carbonate are preferably used, but by preference in a ratio of twice the equimolar amount based on the ester.
- Suitable cyano compounds are inorganic cyanides such as sodium cyanide, potassium cyanide, and organic cyano compounds such as acetone cyanohydrin, trimethylsilyl cyanide. They are employed in an amount of from 1 to 50 mol percent, based on the ester.

 Substances which are preferably employed are acetone cyanohydrin or trimethylsilyl cyanide, for example in an amount of from 5 to 15, preferably 10, mol percent, based on the ester.
- Work-up can be effected in a manner known per se. For example, the reaction mixture is acidified with dilute mineral acid, such 25 as 5% strength hydrochloric acid or sulfuric acid, and extracted with an organic solvent, eg. methylene chloride or ethyl acetate. The organic extract can be extracted with 5-10% strength alkali metal carbonate solution, eg. sodium carbonate or potassium carbonate solution. The aqueous phase is acidified, and the
- 30 precipitate which forms is filtered off with suction and/or extracted with methylene chloride or ethyl acetate, dried and concentrated. (Examples of the synthesis of esters from hydroxypyrazoles and of
- the rearrangement of the esters are mentioned, for example, in 35 EP-A 282 944 and US 4 643 757).

Process B:

Reaction of 3-heterocyclyl-substituted benzoyl derivatives of 40 the formula I (where Z = H) with a compound of the formula V (where Z = 50 c, 17):

5

$$R^{18}$$
 N
 N
 N
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 I (where $Z = SO_2R^{17}$)

- $20~L^2$ is a nucleophilically displaceable leaving group, such as halogen, eg. bromine, chlorine, hetaryl, eg. imidazolyl, pyridyl, sulfonate, eg. $OSO_2R^{17}.$
- The compounds of the formula V can be employed directly such as, for example, in the case of the sulfonyl halides or sulfonic anhydrides, or they can be prepared in situ, for example activated sulfonic acids (by means of sulfonic acid and dicyclohexylcarbodiimide, carbonyldiimidazole and the like).
- As a rule, the starting compounds are employed in an equimolar ratio. However, it may also be advantageous to employ an excess of one or the other component.
- 35 It may be advantageous to carry out the reaction in the presence of a base. The reactants and the auxiliary base are expediently employed in equimolar ratios. An excess of the auxiliary base, for example 1.5 to 3 mol equivalents, based on II, may be advantageous under certain circumstances.

Suitable auxiliary bases are tertiary alkylamines such as triethylamine or pyridine, alkali metal carbonates, eg. sodium carbonate or potassium carbonate, and alkali metal hydrides, eg. sodium hydride. Triethylamine and pyridine are preferably used.

25

3.0

40

(45-50°---

110

Examples of suitable solvents are chlorinated hydrocarbons such as methylene chloride or 1,2-dichlorethane, aromatic hydrocarbons, eg. toluene, xylene or chlorobenzene, ethers such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or 5 dioxane, polar aprotic solvents such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters such as ethyl acetate, or mixtures of these.

As a rule, the reaction temperature is in the range of from 0°C to 10 the boiling point of the reaction mixture.

Work-up can be effected in a manner known per se to give the product.

Those pyrazoles of the formula II (where Z = H) which are used as starting materials and which are not already known can be prepared by processes known per se (for example EP-A 240 001 and J. Prakt. Chem. 315, 383 (1973)).

Novel 3-heterocycly1-substituted benzoic acid derivatives of the formula III

III

are those where the variables have the following meanings:

35 R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,
C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or
C₁-C₆-haloalkylsulfonyl;

R3 is hydrogen, halogen or C1-C6-alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl,
di(C₁-C₄-alkyl)amino-C₁-C₄-alkyl,
[2,2-di(C₁-C₄-alkyl)hydrazino-1]-C₁-C₄-alkyl,
C₁-C₆-alkyliminooxy-C₁-C₄-alkyl,

111 C1-C4-alkoxycarbonyl-C1-C4-alkyl, C1-C4-alkylthio-C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-cyanoalkyl, C3-C8-cycloalkyl, C1-C4-alkoxy, C_1-C_4 -alkoxy- C_2-C_4 -alkoxy, C_1-C_4 -haloalkoxy, hydroxyl, 5 C1-C4-alkylcarbonyloxy, C1-C4-alkylthio, C1-C4-haloalkylthio, di(C1-C4-alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following 10 nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-haloalkoxy; or 15 ${\tt R}^4$ and ${\tt R}^5$ together form a ${\tt C}_2\text{-}{\tt C}_6\text{-alkanediyl}$ chain which can be mono- to tetrasubstituted by C1-C4-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C1-C4-alkyl; 20 or ${\tt R}^4$ and ${\tt R}^5$ together with the corresponding carbon form a carbonyl 25 or a thiocarbonyl group; R6 is hydrogen, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4-alkoxy-C2-C4-alkoxy, C1-C4-haloalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy or NR7R8; 30 R7 is hydrogen or C1-C4-alkvl; R8 is C1-C4-alkyl; 35 Х is O, S, NR9, CO or CR10R11; Y Y is O, S, NR12, CO or CR13R14; R^9 , R^{12} are hydrogen or C1-C4-alkyl; \mathbb{R}^{10} , \mathbb{R}^{11} , \mathbb{R}^{13} , \mathbb{R}^{14} are hydrogen, \mathbb{C}_1 - \mathbb{C}_4 -alkyl, \mathbb{C}_1 - \mathbb{C}_4 -haloalkyl,

C1-C4-alkoxycarbonyl, C1-C4-haloalkoxycarbonyl or CONR7R8;

45 or

30

112

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² or R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R¹⁹ is hydroxyl or a radical which can be removed by hydrolysis;

with the exception of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate, methyl 2-chloro-3-(4,5-dihydroxazol-2-yl)-4-methylsulfonylbenzoate and methyl 2,4-dichloro-3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)-benzoate.

Examples of radicals which can be removed by hydrolysis are alkoxy, phenoxy, alkylthio and phenylthio radicals which are unsubstituted or substituted, halides, hetaryl radicals which are bonded via nitrogen; amino, imino radicals which are unsubstituted or substituted, and the like.

Preferred are 3-heterocyclyl-substituted benzoic acid halides of the formula III α' , where $L^{1'}$ = halogen (\triangleq III where R^{19} = halogen)

 $L^{1} \xrightarrow{Q} R^{1} \xrightarrow{N} X \xrightarrow{R^{4}} R^{5}$

ΙΙΙα΄

35 where the variables ${\mbox{R}}^1$ to ${\mbox{R}}^5$, X and Y have the meanings given under the formula III and

L1' is halogen, in particular chlorine or bromine.

40 Equally preferred are 3-heterocycly1-substituted benzoic acids of the formula IIIβ (☐ III where R¹⁹ = hydroxy1)

20

ΙΙΙβ

 $10\,$ where the variables R^1 to $R^5,~X$ and Y have the meanings given under formula III.

Equally preferred are 3-heterocycly1-substituted benzoic esters of the formula III γ (\cong III where R¹⁹ = C₁-C₆-alkoxy)

ΙΙΙγ

25 where the variables R^1 to R^5 , X and Y have the meanings given under formula III and

 L^3 is C_1-C_6 -alkoxy.

The specially preferred embodiments of the 3-heterocyclyl-substituted benzoic acid derivatives of the formula III with regard to the variables R¹ to R⁵, X and Y correspond to those of the 3-heterocyclyl-substituted benzoyl derivatives of the formula T.

Also preferred are 3-heterocyclyl-substituted benzoic acid derivatives of the formula III, where:

- 40 R1 is halogen, C1-C6-alkyl, C1-C6-alkylthio or C1-C6-alkylsulfonyl; in particular chlorine, methyl, methylthio or methylsulfonyl; extraordinarily preferably chlorine;
- 45
 R² is hydrogen, nitro, halogen, C₁-C₆-alkylthio,
 C₁-C₆-alkylsulfinyl or C₁-C₆-alkylsulfonyl;

in particular hydrogen, nitro, chlorine, methylthio, methylsulfinyl, methylsulfonyl, ethylsulfonyl or propylsulfonyl; extraordinarily preferably hydrogen, chlorine, methylthio, methylsulfonyl, ethylsulfonyl or

5 methylthio, methylsulfonyl, ethylsulfonyl or propylsulfonyl;

methoxycarbonyl or ethoxycarbonyl;

R³ is hydrogen;

10 R⁴, R⁵ are hydrogen, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, hydroxyl, C₁-C₄-alkylcarbonyloxy, C₁-C₄-alkylthio or COR⁶; in particular hydrogen, fluorine, methyl, ethyl, propyl, trifluoromethyl, chloromethyl, 2-chloroeth-1-yl, methoxy, ethoxy, 2-methylprop-1-oxy, hydroxyl, methylcarbonyloxy, ethylthio, formyl, methylcarbonyl, methoxycarbonyl; extraordinarily preferably hydrogen, fluorine, methyl, ethyl, trifluoromethyl, chloromethyl, 2-chloroeth-1-yl, methoxy, ethoxy, 2-methylprop-1-oxy, hydroxyl, methylcarbonyloxy, ethylthio, formyl, methylcarbonyl,

or

25

R⁴ and R⁵ together form a C₂·C₆-alkanediyl chain which can be mono- to polysubstituted by C₁·C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁·C₄-alkyl;
30 in particular 1,4-butanediyl, 2-oxo-1,5-pentanediyl;

or

 R^4 and R^5 together with the corresponding carbon atoms form a 35 carbonyl group

R6 is hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy; in particular hydrogen, methyl, methoxy or ethoxy;

40 X is O. S. CO. CR¹⁰R¹¹;

Y is O, S, CR¹³R¹⁴;

 R^{10} , R^{11} , R^{13} , R^{14} are hydrogen, $C_1 \cdot C_4$ -alkyl, $C_1 \cdot C_4$ -haloalkyl or $C_1 \cdot C_4$ -alkoxycarbonyl; in particular hydrogen, methyl, chloromethyl or methoxycarbonyl:

5 or

 R^5 and R^{13} together form a C_2 - C_6 -alkanediyl chain which can be mono- to polysubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; in particular 1.3-propanediyl;

R¹⁹ is hydroxyl, halogen or C₁-C₆-alkoxy; 15 in particular hydroxyl, chlorine, methoxy or ethoxy;

with the exception of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate, methyl 2-chloro-3-(4,5-dihydro-oxazol-2-yl)-4-methylsulfonylbenzoate and methyl 2,4-dichloro-20 3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)benzoate.

The benzoyl halides of the formula IIIa' (where L1' = C1, Br) can be prepared in a manner known per se by reacting the benzoic acids of the formula IIIB with halogenating reagents such as thionyl chloride, thionyl bromide, phosgene, diphosgene, triphosgene, oxalyl chloride or oxalyl bromide.

The benzoic acids of the formula III β can be prepared in a known manner from the corresponding esters of the formula III γ (L³ = C₁-C₆-alkoxy) by means of acid or basic hydrolysis.

Equally, the benzoic acids of the formula III β can be obtained by reacting corresponding bromine- or iodine-substituted compounds 45 of the formula V, with carbon monoxide and water under elevated

pressure in the presence of a palladium, nickel, cobalt or rhodium transition metal catalyst and a base.

Furthermore, it is possible to convert compounds of the formula V into the corresponding nitriles of the formula VI by a Rosenmund-von Braun reaction (cf., for example, Org. Synth. Vol III (1955), 212) and to convert these nitriles into the compounds of the formula IIIß by subsequent hydrolysis.

30 The esters of the formula IIIy can be obtained by reacting arylhalogen compounds or arylsulfonates of the formula VII, where L⁴ is a leaving group such as bromine, iodine, triflate, fluorosulfonyloxy and the like with heterocyclyl stannates (Stille couplings), heterocyclyl-boron compounds (Suzuki couplings) or heterocyclyl-zinc compounds (Negishi reaction) VIII, where M is Sn(C₁-C₄-alkyl)₃, B(OH)₂, ZnHal (where Hal = chlorine, bromine) and the like, respectively, in a manner known per se (cf., for example, Tetrahedron Lett. 27 (1986), 5269) in

the presence of a palladium or nickel transition metal catalyst

40 and in the presence or absence of a base.

25

30

35

10 (where L^4 = Br, I, (where M = $Sn(C_1 \cdot C_4 \cdot Alkyl)_3$, OSO_2CF_3 , $B(OH)_2$, ZnHal, OSO_2F) where Hal is Cl or Br)

Equally, it is possible to obtain esters of the formula III γ by synthesizing the heterocycle which is bonded in the 3-position.

20 For example, 1,2,4-oxadiazolin-3-yl derivatives (III7 where X=O, Y=NH) can be prepared from amidoximes of the formula IX by condensation with aldehydes or ketones (cf., for example, Arch. Phar. 326 (1993), 383-389).

Thioamides of the formula X are suitable precursors for 2-thiazolinyl derivatives I (where $X=CR^{10}R^{11}$, Y=S) (cf., for example, Tetrahedron 42 (1986), 1449-1460).

2-Oxazolinyl, 2-thiazolinyl and 2-imidazolinyl derivatives (III γ where X=CR¹⁰R¹¹, Y=O or Y=S or Y=NH) are accessible from the carboxylic acids of the formula XI (cf., for example, Tetrahedron Let. 22 (1981), 4471-4474).

1,3-Thiazol-5(4H)-thion-2-yl (cf., for example, Helv. Chim. Acta
69 (1986), 374-388) and 5-oxo-2-imidazolin-2-yl derivatives (cf.,
for example, Heterocycles 29 (1989), 1185-1189) (III where
X=CR¹⁰R¹¹, Y=S or Y=NH) can be prepared by processes known from
the literature from carboxylic acid halides of the formula XII
where Hal is halogen, in particular from carboxylic acid
chlorides.

40

The oximes of the formula XIII can be converted into 4,5-dihydroisoxazol-3-yl derivatives (IIIy where X=O, Y=CR13R14) in a manner known per se via the hydroxamic acid chlorides XIV as intermediates. From the latter, nitrile oxides are prepared in situ, and these nitrile oxides react with alkenes to give the desired products (cf., for example, Chem. Ber. 106 (1973), 3258-3274). 1,3-Dipolar cycloaddition reactions of chlorosulfonyl isocyanate with nitrile oxides yield 1,2,4-oxadiazolin-5-on-3-yl derivatives (IIIY where X=O, Y=NH) (cf., for example, Heterocycles 27 (1988), 683-685).

40 The aldehydes of the formula XIV can be converted into 2,4-dihydro-1,2,4-triazol-3-on-5-yl derivatives (IIIY where X=NR⁹, X=NR¹²) via the semicarbazones as intermediates (cf., for example, J. Heterocyclic Chem. 23 (1986), 881-883).

10 2-Imidazolinyl derivatives (IIIy where X=CR¹⁰R¹¹, Y=NH) can also be prepared from benzonitriles of the formula XV using known methods (cf., for example, J. Org. Chem. 52 (1987), 1017-1021).

1,3-Dipolar cycloaddition reactions of diazoalkanes or nitriloimines with arylalkenes of the formula XVI can be used for synthesizing 3-pyrazolinyl derivatives (IIIY where X=NH, Y=CHR¹³).

35 (where X=NH, Y=CHR¹³)

The bromine- or iodine-substituted compounds of the formula V which are used as starting compounds can be obtained from corresponding anilines by methods similar to those known from the literature, for example by Sandmeyer reaction, and the anilines, in turn, are synthesized by reducing suitable nitro compounds. The bromine-substituted compounds of the formula V can additionally be obtained by direct bromination of suitable starting materials (cf. Monatsh. Chem. 99 (1968), 815-822).

The nitriles of the formula VI can be obtained as described above. Equally, it is possible to synthesize them from corresponding anilines by means of a Sandmeyer reaction.

- 5 The starting compounds of the formula VII are known (cf., for example, Coll. Czech. Chem. Commun. 40 (1975), 3009-3019) or can be prepared readily by a suitable combination of known syntheses.
- For example, the sulfonates VII (L⁴ = OSO₂CF₃, OSO₂F) can be obtained from the corresponding phenols, which, in turn, are known (cf., for example, EP-A 195 247) or can be prepared by known methods (cf., for example, Synthesis 1993, 735-762).
- 15 The halogen compounds VII (L^4 = C1, Br or I) can be obtained, for example, from the corresponding anilines of the formula XIX by a Sandmeyer reaction.
- The amidoximes of the formula IX, the thioamides of the formula X 20 and the carboxylic acids of the formula XI can be synthesized from the nitriles of the formula XV in a manner known per se.
- Furthermore, it is possible to prepare the carboxylic acids of the formula XI from the aldehydes of the formula XIV by known processes (cf., for example, J. March, Advanced Organic Chemistry, 3rd edition (1985), p. 629 et seq., Wiley-Interscience Publication).
- 30 The carboxylic acid halides of the formula XII can be obtained from the corresponding carboxylic acids of the formula XI by methods similar to standard processes.
- The oximes of the formula XIII are advantageously obtained by 35 reacting aldehydes of the formula XIV with hydroxylamine in a manner known per se (cf., for example, J. March, Advanced Organic Chemistry, 3rd ed. (1985), pp. 805-806, Wiley-Interscience Publication).
- 40 Those aldehydes of the formula XIV which are not already known can be prepared by methods similar to known processes. Thus, they can be synthesized from methyl compounds of the formula XVII by means of bromination, for example with N-bromosuccinimide or 1,3-dibromo-5,5-dimethylhydantoin, followed by oxidation (cf.
- 45 Synth. Commun. 22 (1992), 1967 1971).

The oximes of the formula XIII can also be converted into nitriles of the formula XV by processes which are known per se (cf., for example, J. March, Advanced Organic Chemistry, 3rd ed. (1985), pp. 931-932, Wiley-Interscience Publication).

Arylalkenes of the formula XVI can be synthesized starting from the halogen compounds or sulfonates of the formula VII (L⁴ = Br, Cl, OSO₂CF₃, OSO₂F) by, inter alia, Heck reaction with olefins in the presence of a palladium catalyst (cf., for example, Heck, Palladium Reagents in Organic Synthesis, Academic Press, London 1985; Synthesis 1993, 735 - 762).

$$L_{1} \xrightarrow{R_{1}} R_{2} \xrightarrow{R_{2}} L_{3} \xrightarrow{R_{1}} R_{1} \xrightarrow{R_{2}} R_{1} \xrightarrow{R_{1}} R_{1} \xrightarrow{R_{2}} R_{2} \xrightarrow{R_{1}} R_{2} \xrightarrow{R_{2}} R_{2} \xrightarrow{R_{1}} R_{2} \xrightarrow{R_{2}} R_{2$$

Preparation examples:

- 5 4-[2-Chloro-3-(4,5-dihydroisoxazol-3-y1)-4-methylsulfonyl-benzoyl]-5-hydroxy-1-methyl-1H-pyrazole (compound 3.35)
- 43.60 g (0.13 mol) of 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride in 375 ml of anhydrous dioxane and 13.56 g (0.134 mol) of triethylamine in 375 ml of anhydrous dioxane are simultanouesly added dropwise at room temperature under a protective gas atmosphere to a solution 12.74 g (0.13 mol) of 5-hydroxy-1-methylpyrazole and 300 ml of anhydrous dioxane. After the reaction mixture had been stirred for 2 hours at room temperature, it was filtered through silica gel and the residue was washed with dioxane. The eluate was concentrated in vacuo to approxmately 500 ml, and 17.94 g (0.13 mol) of dried, finely powdered potassium carbonate were added. After the mixture had been refluxed for 6 hours, the
 - 0 Solvent was distilled off in vacuo and the residue was taken up in approximately 700 ml of water. Insoluble constituents were filtered off, and the pH of the filtrate was brought to 2 3 by slow addition of 10% strength hydrochloric acid. The precipitate which formed was filtered off with suction. This gave 46.16 g
- 25 (92% of theory) of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-5-hydroxy-1-methyl-1H-pyrazole. (m.p. > 250°C)
- Table 3 shows the above compound and, in addition, other 3-heterocyclyl-substituted benzoyl derivatives of the formula I which were prepared, or can be prepared, in a similar manner (if the end products had not precipitated upon acidification with 10% strength hydrochloric acid, they were extracted with ethyl acetate or dichloromethane; the organic phase was subsequently
- 35 dried and concentrated in vacuo):

40

R2 K
R. R. R. R. R. R. R. R. R. R. R. R. R. R
N N N N N N N N N N N N N N N N N N N
R18

Table 3:

125			
Physical data m.p. [°C];	116 - 117	148 - 151	0.95(t); 1.32(m); 1.62(t); 1.92(quin); 3.30(t); 3.78(quar); 4.17(t); 4.61(t); 7.42(d); 7.48(m).
R18	田	E	н
2	н	н	C ₂ H ₅ SO ₂
R16	n-C4H9	i-C4H9	n-C4H9
¥	CH2	CH2	СН2
R5	н	H	н
R4	н	Н	н
×	0	0	0
R3	н	H	н
R ²	CJ	CJ	ប៊
R1	CJ	CI	C1
No. R ¹	3.1 Cl	3.2 Cl	3.3

			126						
Physical data m.p. [°C];	0.96(d); 1.21(d); 2.33(m); 2.48(m); 3.30(t); 3.67(d); 3.97(d); 4.58(t); 7.42(d); 7.50(m).	0.97(t); 1.20(d); 1.96(m); 2.49(m); 3.30(t); 3.68(d); 4.12(t); 4.59(t); 7.42(d); 7.49(d); 7.52(s).	0.97(t), 1.12(d); 1.63(t); 1.94(m); 3.29(t); 3.76(q); 4.14(t); 4.60(t); 7.42(d); 7.48(d); 7.51(s).	70 - 75	65 - 70	230 - 235	210 - 215	95 - 100	70 - 75
R18	H	н	н	н	н	н	H	H	н
2	i-C ₄ H ₉ SO ₂	i-C ₄ H ₉ SO ₂	C2H5SO ₂	Н	н	н	Н	н	C2H5SO2
R16	i-C4H9	n - C ₃ H ₇	n-C ₃ H ₇	CH ₃	C ₂ H ₅	CH3	C ₂ H ₅	n-C ₃ H ₇	CH3
×	CH ₂	CH ₂	СН2	CH2	CH2	CH_2	CH2	CH_2	$_{ m CH}_{ m Z}$
R5	H	н	н	H	н	н	н	Н	Н
R4	н	н	н	COOC2H5	COOC2H5	CH3	CH3	CH3	CH3
×	0	0	0	0	0	0	0	0	0
R3	н	н	н	Н	Н	Н	Н	Н	н
R.2	C1	C1	C.I	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
\mathbb{R}^1	C1	C1	C1	C1	C1	CI	CJ	CJ	IJ
No.	3.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11	3.12 Cl

		_												27													
Physical	data m.p. [°C];	"H NMK [0 1n ppm]	78 - 83	1,24(2d); 1.53(t);	2.52(m); 3.05(dd);	3.29(s); 3.52(dd);	3.73(d); 4.24(q),	5.05(m); 7.49(s);	7.66(d); 8.18(d).	0.96(t); 1.53(d);	1.68(t);	1.95(sext);	3.07(dd); 3.32(s);	3.58(dd);	3.86(quart);	4.15(t); 5.03(m);	7.46(d); 7.64(d);	8.18(d).	220 - 225	82 - 86	00 00	/0 - 75	68 - 73	7	45 - 50	220 - 225	170 - 175
R18			H	н						Н									н	H	F	=	×	10	s ;	E	H
Z			C2H55O2	i-C4H9SO2						$C_2H_5SO_2$									щ	Н	h	=	н	я	: :	6	Н
R16		-H-O	C2445	C_2H_5						n-C ₃ H ₇									CH3	C ₂ H ₅	n-C ₂ H ₂		n-C4H9	i-CAHo	E.	5	C2H5
×		Ę.	7	CH2						CH2				_				5	Cm ₂	CH ₂	E,	1 5	Cn2	CH2	£	, E	777
R5		12	;	II.					ŀ	Ę								5	5	CH ₃	£	+	C. 13	CH3	=	†	
R4		Ë	, [Ē					150	E E								H.	£	CH3	CH ₃	Ę	5	CH ₃	C2H5	CoHe	5
×		0	0	>						>								c		0	0	0		0	0	0	
R3		H	17	=					12	=								H]:	E	н	H	:	E.	Ħ	E	1
R2		SO ₂ CH ₃	SOCH	2.2.23					SO ₂ CH ₂	57.72.2								SO2CH3	100	э02СН3	SO ₂ CH ₃	SO ₂ CH ₃	00.01	2U2CH3	SO ₂ CH ₃	SO ₂ CH ₃	
\mathbb{R}^1		CJ	Ü						C									CI	5	3	Į.	CJ	5	3	C	CJ	
No.		3.13	3.14						3.15									3.16	3 17	-	3.18	3.19	3 20	7.50	3.21 Cl	3.22	

					128		
Physical data m.p. [°C];	65 - 70	55 - 60	58 - 63	78 - 83	0.94(t); 1.19(d); 1.22(t); 1.38(m); 1.74(b); 1.91(m); 2.53(m); 3.26(s); 4.45(t); 3.76(d); 4.18(t); 4.62(t); 7.45(s); 7.64(d); 8.16(d); 9.13(d); 9.1	0.96 (d); 1.21 (d); 2.33 (m); 2.51 (m); 3.28 (s); 3.44 (L); 3.75 (d); 3.99 (d); 4.61 (L); 7.66 (d); 8.17 (d).	0.97(d); 1.66(t); 2.36(m); 3.29(s); 3.43(t); 3.82(q); 3.99(d); 4.60(t); 7.47(s); 7.68(d); 8.18(d).
R18	H	H	H	æ	ж	н	H
7	н	н	н	C2H5SO2	i - C4H9SO2	i-C ₄ H ₉ SO ₂	C ₂ H ₅ SO ₂
R16	n-C3H7	n-C4H9	i-C4H9	n-C ₄ H ₉	n-C4H9	i - C ₄ H ₉	i -C₄H9
×	CH2	CH2	CH ₂	$_{ m CH_2}$	СН2	СН2	CH2
R2	Н	Н	Н	Н	н	ш	н
R4	Н	н	н	Н	н	ш	н
×	0	0	0	0	0	0	0
К3	H	н	н	н	н	н	н
R ²	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	s0 ₂ сн ₃
R1	CJ	CJ	CJ	C1	C1	CI	C1
No.	3.23	3.24	3.25	3.26	3.27 C1	3.28 CI	3.29

				129							
Physical data m.p. [°C];	1.68(t); 3.29(s); 3.43(t); 3.78(q); 3.92(s); 3.63(t); 7.46(s); 7.62(d); 8.17(a);	1.23(d); 2.53(m); 3.28(s); 3.43(t); 3.70(d); 3.91(s); 4.61(d); 3.91(s); 7.66(d); 8.10(d);	119 - 121	115 - 117	217 - 218	> 250	125 - 128	78 - 83	1.52(t); 1.68(t); 3.29(s); 3.43(t); 3.82(q); 4.24(q); 4.63(q); 8.74(s); 7.65(d); 8.77(d)	> 200	220 - 223
R18	Ħ	ш	=	£	, =	Ħ	H	Н	H	H	н
27	C2H5SO2	i-C4H9SO2	H	H	H	н	H	n-C ₃ H ₇ SO ₂	C2H5SO2	H	Н
R16	СН3	СН3	n-C3H7	CH ₃	C2H5	CH ₃	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	CH3	CH3
×	CH ₂	CH ₂	CH2	CH2	CH ₂	CH2	CH ₂	CH ₂	CH ₂	CH2	CH2
R5	н	н	H	H	н	н	н	Н	н	CH ₃	Н
R4	н	н	н	н	н	Ħ	н	H	н	CH ₃	СН3
×	0	0	0	0	0	0	0	0	0	0	0
R3	н	н	н	н	н	Н	н	H	н	н	Н
R2	SO ₂ CH ₃	s0 ₂ сн ₃	C1	CJ	NO ₂	SO ₂ CH ₃	C1	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅
R1	IJ	C1	C1	CJ	CJ	CJ	디	CJ	C1	김	디
No.	3.30	3.31	3,32	3,33	3.34	3.35	3.36	3.37	3.38	3.39	3.40

		130						
> 230	1.12(t); 1.53(d); 1.76(quin); 3.18(dd); 3.38(t); 3.55(dd); 3.73(s); 5.04(m); 5.55(s,br.); 7.37(s); 7.68(d); 8.13(d);	1.07(t); 1.50(m); 1.78(quin); 3.07(dd); 3.39(t); 3.55(dd); 4.12(t); 5.08(m); 7.38(s); 7,69(d); 8.11(d)		1.33(s); 3.40(s); 4.17(s); 7.43(s); 7.79(d): 8.04(d)	218 - 220	193	> 230	170 - 175
H	II.	H	н	н	H	H	н	н
H	н	ш	н	Ħ	Na+	K+	Li+	NH4+
C2H5	CH ₃	C2H5	CH ₃	СН3	C2H5	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅
CH ₂	СН2	СН2	0	0	CH2	CH ₂	CH2	CH ₂
Ħ	н	н	H	н	E	н	н	н
СН3	СН3	СН3	Н	н	н	н	Ħ	Н
0	0	0	CH2	C (CH ₃) ₂	0	0	0	0
Н	н	н	н	E	н	Н	н	н
SO ₂ C ₂ H ₅	SO ₂ -n-C ₃ H ₇	80 ₂ -n-C ₃ H ₇	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
IJ	CI	C1	CJ	CI	딥	CI	디	디
3.41	3.42	3.43	3.44	3.45 a)	3.46	3.47	3.48	3.49
	C1 SO ₂ C ₂ H ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H	C1 SO ₂ C ₂ H ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H H CH ₃ CH ₃ CH ₃ H H H H CH ₃ CH ₃ CH ₃ H H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ H H H CH ₃ CH ₃ CH ₃ CH ₃ H H CH ₃ CH	C1 SO ₂ C ₂ H ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H L.12(L), 1.53(d); C1 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ CC ₂ H ₅ H H L.12(L), 1.53(d); 1.76(quin); 3.18(dd); 3.38(L); 3.55(dd); 3.78(d); 5.55(L,br.); C1 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H L.07(L), 1.50(m); C1 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H L.07(L), 1.50(m); 3.07(dd); 3.39(L); 5.60(m); 7.78(m); 7.78(m); 7.88(d); 7.78(m);	21 SO ₂ CH ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t).1.53(d); 21 SO ₂ CH ₂ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t).1.53(d); 3.18(d); 3.38(t); 3.38(C1 SO ₂ C ₂ H ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H L.12(L); 1.53(d); C1 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ CH ₅ H H L.12(L); 1.53(d); 1.76(quin); 1.76(quin); 1.76(quin); 3.86(d); 3.38(t); 3.55(d); 3.73(s); 5.55(s,br.); 7.37(s); 7.88(d); 8.13(d); 7.88(d); 1.78(quin); 1.78(quin); 1.78(quin); 2.18(quin); 2.21 SO ₂ CH ₃ H CH ₂ CH ₃ H H L.07(t); 1.50(m); 1.78(quin); 3.07(dd); 3.33(t); 3.07(dd); 3.33(t); 3.08(dd); 4.12(t); 3.08(m); 7.38(s); 4.17(s); 7.43(s); 7.79(d); 8.04(s); C1 SO ₂ CH ₃ H H O CH ₃ H O CH ₃ H H L.33(s); 3.40(s); C1 SO ₂ CH ₃ H C(CH ₃) ² H H O CH ₃ H H L.33(s); 7.43(s); C2 SO ₂ CH ₃ H C(CH ₃) ² H H O CH ₃ H H L.33(s); 7.43(s); C3 SO ₂ CH ₃ H C(CH ₃) ² H H O CH ₃ H H L.33(s); 7.43(s); C4 SO ₂ CH ₃ H C(CH ₃) ² H H O CH ₃ H H L.33(s); 7.43(s);	21 SO ₂ CH ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.17(t); 1.50(m); 21 SO ₂ CH ₃ H CH ₂ CH ₃ H CH ₂ C ₂ H ₅ H H 1.07(t); 1.50(m); 22 SO ₂ CH ₃ H CH ₂ H O CH ₃ H O CH ₃ H O CH ₃ H D CH ₃ SO ₂ CH ₃ H D CH ₃ SO ₂ CH ₃ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H CCH ₃ D CCH ₃ H CCH ₃ C ₂ H ₅ Na ⁺ H B CCH ₃ SO ₂ CH ₃ H CCH ₃ CCH ₃ CCH ₃ CCH ₃ H CCH ₃	21 SO ₂ CH ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.17(t); 1.50(m); 21 SO ₂ CH ₃ H CH ₂ CH ₃ H CH ₂ C ₂ H ₅ H H 1.07(t); 1.50(m); 22 SO ₂ CH ₃ H CH ₂ H O CH ₃ H O CH ₃ H D CH ₃ SO ₂ CH ₃ H D CH ₃ SO ₂ CH ₃ H CH ₂ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ H D CH ₃ C ₂ H ₅ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ H D CH ₃ C ₂ H ₅ D CH ₃ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ D CH ₃ H CH ₃ C ₂ H ₅ D CH ₃ H D CH ₃ C ₂ H ₅ D CH ₃ H D CH ₃ SO ₂ CH ₃ H CH ₃ C ₂ H ₅ D CH ₃ H D CH ₃ C ₂ H ₅ D CH ₃ D C	21 SO ₂ CH ₅ H O CH ₃ H CH ₂ C ₂ H ₅ H H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.12(t); 1.53(d); 21 SO ₂ -n-C ₃ H ₇ H O CH ₃ H CH ₂ C ₂ H ₅ H H 1.176(quin); 22 SO ₂ CH ₃ H CH ₂ CH ₃ H CH ₂ C ₂ H ₅ H H 1.07(t); 1.50(m); 23 SO ₂ CH ₃ H C(CH ₃) H C C(H ₃) H CH ₂ C ₂ H ₅ H H 1.178(quin); 24 SO ₂ CH ₃ H C(CH ₃) H C C(H ₃) H CH ₂ C ₂ H ₅ H H 1.13(s); 3.40(s); 25 SO ₂ CH ₃ H C(CH ₃) H C C(H ₃) H C C(H ₃ C ₂ H ₅ H C C(H ₃) H C C(H ₃) H C C(H ₃) H C C(H ₃ C ₂ H ₅

									13	1							
Physical	data m.p. [°C]; ¹ H NMR få in noml	> 240	206 - 214	200 Z14	057	1.27(t); 1.36(s);	3.41(q); 4.01(q); 4.18(s); 7.47(s); 7.83(d): 8.07(d)	99-104	95-100	230-235	190-195	95-100	< 230	198-200	215-218	213-215	186-190
R18		Ξ	: =	: =	H	Н		Ξ	H	ж	н	H	=	H	Ξ	Ξ	H
Z		Na+	K+	Li+	+ PHN	Н		Н	H	H	H	н	H	H	H	Н	н
R16		CH3	CH3	CH3	CH ₃	C ₂ H ₅		C2H5	CH3	CH3	C ₂ H ₅	C ₂ H ₅	CH ₃	C ₂ H ₅	CH3	C ₂ H ₅	CH3
Х		CH ₂	CH,	CH2	CH2	0		3CH-	3СН-	CH2	CH ₂	CH2	CH2	CH ₂	CH ₂	CH2	CH2
R5		H	H	Н	Н	н		- (CH ₂) ₃ CH-	- (CH ₂) 3CH-	-4	- 4	CH2) 2	CH3	CH3	H	н	E
R4		H	н	H	н	н		н	н	- (CH ₂) 4-	- (CH ₂) ₄ -	- (CH ₂) ₂ 0 (CH ₂) ₂	CH ₃	CH ₃	H	н	Н
×		0	0	0	0	C(CH3)2		0	0	0	0	0	0	0	0	0	0
R3		н	н	н	H	н		н	Ħ	н	H	н	н	н	Н	н	H
R ²		SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃		SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅	SO2C2H5	SO2-n-C3H7
\mathbb{R}^1		딩	ដ	ដ	IJ	CJ		CI	CJ	CJ	C1	CI	C1	C1	C	C1	CJ
No.		3.50	3.51	3.52	3.53	3.54	i	3.55	3.56	3.57	3.58	3.59	3.60	3.61	3.62	3.63	3.64

			_			132					
Physical data m.p. [oc]; 1H-NMR få in poun]	84-86	90-06	20.00	50-55	3.18-3.99(11H); 5.78(1H); 7.50(1H); 7.81(1H); 8.09(1H)	1.52(3H); 3.30-4.12(8H); 4.36(1H); 4.93(1H); 7.49(1H); 7.81(1H);	1.27(3H); 1.55(3H); 3.28-4.02(7H); 4.37(1H); 4.92(1H); 7.48(1H); 7.80(1H); 8.07(1H);	132-135	95-100	1.16(3H); 1.27(3H); 3.20-4.00(9H); 5.89(1H); 7.50(1H);	7.82(IH); 8.07(IH). 200-205
R18	Ξ	:=	=	: ::	н	H	ж	Œ	H	H	н
22	н	н	'n	н	н	н	æ	H	н	н	K+
R16	C2H5	Ę	Æ	C2H5	CH ₃	CH ₃	C ₂ H ₅	CH3	CH ₃	C ₂ H ₅	C2H5
Ā	CH ₂	CH ₂	CH2	CH ₂	CH ₂	сисн2с1	СНСН2С1	0	CH2	CH ₂	CH ₂
R5	æ	H ₂) ₂ -	C ₂ H ₅	C2H5	H	Ħ	н	H	æ	н	C_2H_5
R4	н	-(CH ₂) ₂ O(CH ₂) ₂ -	C2H5	C2H5	0СН3	СН3	CH3	н	OC2H5	OC2H5	C ₂ H ₅
×	0	0	0	0	0	0	0	C(CH ₃) ₂	0	0	0
R3	H	Ħ	Ξ	ж	ж	н	æ	ж	Η	н	Ξ
R ²	SO ₂ -n-C ₃ H ₇	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
R1	CJ	CJ	CJ	ເງ	CI	73	C1	បី	CJ	C1	C1
No.	3.65	3.66	3.67	3.68	3.69	3.70	3.71	3.72	3.73	3.74	3.75

											_	1	33		_											
	Physical data m.p. [cc];	120-122	150 150	132-138	1/2-1/6	1.29(t): 2.56(s):	3.28(t); 3.93(q);	4.49(t); 7.40(s);	. (5) 66: / (5) 65:	78-8/	1.44(t); 2.50(s);	3.49(t); 4.09(q);	4.53(t); 7.35(m);	/:40(d); /:62(d).	81-85	151-153	1.28(t): 2.82(s):	3.40(m); 3.92(m);	4.52(t); 7.45(s);	7.82(d); 8.10(d).	205-210	173-179	1 43(+), 9 51(2).	3 59(t): 4 08(x):	4.51(t); 7.22(d);	7.41(s); 7.50(d).
	R18	ı	=	:	1 12		ж		:	=		×			H	н		b	4		ж	н	T		=	
	13	m	1	: 1	: H		н		n	:		н			Œ	н		п	:		н	Н			r:	
	R16	CH3	CoHe	CH,	î E		C ₂ H ₅ .		CoHr	C72		C2H5		1	CH3	CH ₃		CoHe	C***		CH3	C2H5		:	C2H5	
	¥	0	CH2	CH2	GH,		CH ₂		CH'n			Ø		::0	CH2	CH2		CH	9		CH ₂	S			o.	
	R5	H	£	£	H		Ξ		Ξ			н		:	=	н		Η			н	ж		:	=	
	R4	Н	CH3	CH3	CH ₃		н		CH2C1			Н		10.00	LUZUA	Н		н			ж	ш		þ	:	
	×	C(CH3)2	0	0	0		0		0			CH2		0	,	0		0			0	CH2		Œ,	7	
L	R3	н	н	н	H		н		Н			Ħ		'n	:	H		Ħ			E	×		:1	:	1
	R2	SO ₂ C ₂ H ₅	SO2-n-C3H7	SO2-n-C3H7	SO2-n-C3H7		SCH ₃		SO ₂ CH ₃			ж		SOCH	5722	SCH ₃		SOCH ₃			SO ₂ CH ₃	CJ		SCH	Î	
	R1	5	ᄗ	2	ដ		ij		CI			CH3		5	Ī	5		김			CH3	CJ		5		
	No.	3.76	3.77	3.78	3.79		3.80		3.81			3.82		3.83		3.84		3.85		, 0 ,	3.86	3.87		3.88		

								1	34									
Physical data m.p. [oc];	1.50(t); 3.28(s); 3.62(t); 4.10(q); 4.49(t); 7.36(s); 7.68(d); 8.19(d)	174-180	77-83					183-184		183-184	195-196	199-200	230-233	102-107	80-85			200
R18	н	Œ	æ	æ	=	æ	H	н	H	H	H	×	H	Ħ	н	=	н	н
22	н	н	н	н	Н	æ	H	н	н	H	н	н	н	н	H	н	н	+NH2 (CH3) 2
R16	C ₂ H ₅	C2H5	CH ₃	CH3	C ₂ H ₅	CH ₃	C2H5	C2H5	CH ₃	C2H5	CH3	C2H5	CH3	C2H5	CH3	CH ₃	C2H5	CH3
>=	62	CH ₂	CH2	CH ₂	CH2	CH2	CH ₂	CHCH ₃	CH ₂	CH ₂	CH2	CH2	СИСИЗ	CH ₂	CH ₂	CH2	CH2	CH2
R5	æ	Н	Н	H	н	Ľъι	Œ	н	н	н	н	н	æ	æ	æ	ж	H	н
\mathbb{R}^4	н	Н	CH2C1	Ē	Ē	Ŀ	Ŀı	CH ₃	CF3	CF3	SC2H5	SC2H5	CH ₃	CHC1 (CH3)	CHC1 (CH ₃)	n-C ₃ H ₇	n-C ₃ H ₇	н
×	CH2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R3	H	ш	Ħ	н	Н	Н	H	н	н	н	н	н	×	н	н	н	Ħ	ш
R ²	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	$\mathrm{SO}_2\mathrm{CH}_3$	SO ₂ CH ₃	302CH3	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO2CH3	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
R1	C1	CH3	C1	CI	CI	C1	CI	C1	C1	CJ	CJ	CJ	Cl	CI	C1	CJ	CJ	디
7											_	_	_	_	_	_	_	

3.96

3.95

3.94

3.91 3.92 3.93

3.90

3.89

No.

3.100

3.99

3.101 3.102 3.103 3.104 3.105 3.106

				135		
Physical data m.p. [°C]; ¹ H-NMR [δ in ppm]	187	180	2.33(s); 2.51(s); 3.40(t); 3.70(s); 4.58(t); 5.15(brs); 7.21(s); 7.31(d); 7.42(d).	1.38(t); 2.33(s); 2.49(s); 3.41(t); 4.10(q); 4.58(t); 7.25(s); 7.32(d); 7.41(d); 7.82(brs).	0i1	oil
R18	H	н	æ	н	H	H
2	*NH ₂ (CH ₂ CH ₂ OH)	*NH3 (CH2CH2 OCH2CH2OH)	Н	н	H	н
R16	CH3	CH ₃	СН3	C ₂ H ₅	CH3	C2H5
Y	CH2	CH2	CH ₂	CH ₂	CH2	CH2
R5	н	н	ж	н	н	н
R4	Н	Н	ш	ж	Н	н
×	0	0	0	0	0	0
В3	ш	н	н	н	Ħ	Н
R2	SO ₂ CH ₃	SO ₂ CH ₃	SCH ₃	SCH_3	SO ₂ CH ₃	SO ₂ CH ₃
R1	CI	CJ	SCH ₃	SCH ₃	SO ₂ CH ₃	SO ₂ CH ₃
No.	3.107	3.108	3.109	3.110	3.111 SO ₂ CH ₃	3.112 SO ₂ CH ₃

a) Prepared from 2-chloro-1-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoyl chloride with two equivalents of potassium carbonate.

The syntheses of some starting materials are given below:

2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.5)

Step a) 2-Chloro-3-methyl-4-methylthioacetophenone

- 1.0 A solution of 157 g (2 mol) of acetyl chloride in 420 mol of 1,2-dichlorethane was added dropwise to a suspension of 286 g (2.14 mol) of aluminum trichloride in 420 ml of 1,2-dichloroethane at 15-20°C . A solution of 346 g (2 mol) of 2-chloro-6-methylthiotoluene in 1 l of 15 1,2-dichlorethane was subsequently added dropwise. After the reaction mixture had been stirred for 12 hours, it was poured into a mixture of 3 1 of ice and 1 1 of concentrated HCl. The mixture was extracted with methylene chloride, and the organic phase was washed with 20 water, dried with sodium sulfate and concentrated. The residue was distilled in vacuo. This gave 256 g (60% of theory) of 2-chloro-3-methyl-4-methylthioacetophenone.
- 25 Step b) 2-Chloro-3-methyl-4-methylsulfonylacetophenone
- 163.0 g (0.76 mol) of 2-chloro-3-methyl-4methylthioacetophenone were dissolved in 1.5 l of glacial acetic acid, 18.6 g of sodium tungstate were added, and 30 173.3 g of a 30% strength hydrogen peroxide solution were added dropwise with cooling. Stirring was continued for 2 days and the mixture was subsequently diluted with water. The solid which had precipitated was filtered off with suction, washed with water and dried. This gave 164.0 g 35 (88% of theory) of 2-chloro-3-methyl-4-methylsulfonylacetophenone.

(m.p.: 110-111°C)

(m.p.: 46°C)

- 40 Step c) 2-Chloro-3-methyl-4-methylsulfonylbenzoic acid
- 82 g (0.33 mol) of 2-chloro-3-methyl-4-methylsulfonylacetophenone were dissolved in 700 ml of dioxane, and 1 1 of a 12.5% strength sodium hypochlorite solution 45 was added at room temperature. Stirring was continued for 1 hour at 80°C. After cooling, two phases formed, of which the bottom phase was diluted with water and

acidifed weakly. The solid which had precipitated was filtered off with suction, washed with water and dried. This gave 60 g (73% of theory) of 2-chloro-3-methyl-4-methylsulfonylbenzoic acid.

5 (m.p.: 230-231°C)

Step d) Methyl 2-chloro-3-methyl-4-methylsulfonylbenzoate

100 g (0.4 mol) of 2-chloro-3-methyl-4-methyl-10 sulfonylbenzoic acid were dissolved in 1 1 of methanol and hydrogen chloride gas was passed in for 5 hours at reflux temperature. The mixture was subsequently concentrated. This gave 88.5 g (84% of theory) of methyl 2-chloro-3-methyl-4-methylsulfonylbenzoate. 15

(m.p.: 107-108°C)

- Step e) Methyl 3-bromomethyl-2-chloro-4-methylsulfonylbenzoate
- 20 82 g (0.1 mol) of methyl 2-chloro-3-methyl-4-methylsulfonylbenzoate are dissolved in 2 1 of tetrachloromethane, and 56 g (0.31 mol) of N-bromosuccinimide are added in portions with exposure to light. The reaction mixture was filtered, the filtrate 25 was concentrated, and the residue was taken up in 200 ml of methyl tert-butyl ether. The solution was treated with petroleum ether and the solid which had precipitated was filtered off with suction and dried. This gave 74.5 g (70% of theory) of methyl 3-bromomethyl-2-

30 chloro-4-methylsulfonylbenzoate.

(m.p.: 74-75°C)

Step f) Methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate

35 A solution of 41.0 g (0.12 mol) of methyl 3-bromomethy1-2-chloro-4-methylsulfonylbenzoate in 250 ml of acetonitrile was treated with 42.1 g (0.36 mol) of N-methylmorphline N-oxide. The batch was stirred for 12 hours at room temperature and subsequently 40 concentrated, and the residue was taken up in ethyl

acetate. The solution was extracted with water, dried with sodium sulfate and concentrated. This gave 31.2 g (94% of theory) of methyl 2-chloro-3-formyl-4methylsulfonvlbenzoate

45 (m.p.: 98-105°C)

138

- Step g) 2-Chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoic acid
- 5 15.00 g (54 mmol) of methyl 2-chloro-3-formyl-4-methyl-sulfonylbenzoate and 4,20 g (60 mmol) of hydroxylamine hydrochloride were taken up in 300 ml of methanol, and a solution of 3.18 g (30 mmol) of sodium carbonate in 80 ml of water was added dropwise. After the mixture had been stirred for 12 hours at room temperature, the methanol was distilled off, the residue was diluted with water and
- stirred for 12 hours at room temperature, the methanol
 was distilled off, the residue was diluted with water and
 the mixture was extracted with diethyl ether. After the
 organic phase had been dried, the solvent was removed.
 This gave 14.40 g (91% of theory) of methyl
 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate
- 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate. (m.p.: 126-128°C).
 - Step h) Methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate (compound 4.3)
- Ethylene was passed for 30 minutes at 15-20°C into a solution of 158.0 g (0.54 mol) of methyl 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate and 1 l of dichloromethane. After 1.6 g of sodium acetate had been added, 454 ml of sodium hypochlorite solution were added dropwise at 10°C while simultaneously passing in ethylene. Ethylene was subsequently passed in at 10°C for a further 15 minutes. After the mixture had been stirred for 12 hours, the phases were separated, and the organic phase was washed with water, dried and concentrated. This gave 156.5 g (90% of theory) of methyl 2-chloro-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzo
- (1H NMR (δ in ppm): 3.24 (s); 3.42 (t); 3.99 (s); 4.60 (t); 7.96 (d); 8.10 (d)).
 - Step i) 2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic acid (compound 4.4)
- A solution of 32.8 g of sodium hydroxide, dissolved in 330 ml of methanol, was slowly added dropwise to a mixture of 170.0 g (0.54 mol) of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate and 1 l of methanol at 40-45°C. The suspension was stirred for 5 hours at 50°C. After the solvent had been distilled

off, the residue was taken up in 1.5 l of water, and the aqueous phase was extracted three times with ethyl

15

20

35

40

45

139

acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. The combined organic phases were subsequently washed to neutrality with water, dried and concentrated. This gave 148.8 g (91% of theory) of 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoic acid.

(iH NMR (δ in ppm): 3.26 (s); 3.45 (t); 4.63 (t); 8.15 (s); 8.53 (s, br)).

10
Step j) 2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.5)

74.8 g (0.63 mol) of thionyl chloride in 50 ml of dry toluene were added dropwise at 50°C to a solution of 139.0 g of 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic acid, 1 ml of dimethylformamide and 1 l of dry toluene. After the mixture had been heated for 6 hours at 110°C, the solvent was distilled off. This gave 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonylbenzoyl chloride in quantitative yield. (1H NMR (8 in ppm): 3.25 (s); 3.46 (t); 4.62 (t); 8.21 (dd)).

25 2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.39)

Step a) Methyl 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-30 3-yl)-4-methylsulfonylbenzoate (compound 4.25)

Propene was passed for 30 minutes at room temperature into a solution of 15.0 g (52 mmol) of methyl 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate and 200 ml of dichloromethane. After 1.6 g of sodium acetate had been added, 42.8 ml of sodium hypochlorite solution were added dropwise at room temperature while simultaneously passing in propene. Propene was subsequently passed in for a further 15 minutes at room temperature. After the mixture had been refluxed for 3 hours, it was stirred for 12 hours at room temperature, propene was again passed in for 5 hours under reflux, and the mixture was stirred for a further 12 hours at room temperature. After the phases had been separated, the organic phase was washed with water, dried and concentrated. This gave 15.5 g (89% of theory) of methyl 2-chloro-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-

sulfonylbenzoate. (m.p.: 130-135°C).

Step b) 2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-5 sulfonvlbenzoic acid (compound 4.26)

A solution of 3.52 g (88 mmol) of sodium hydroxide,

dissolved in 100 ml of methanol, was slowly added dropwise to a mixture of 15.00 g (45 mmol) of methyl 10 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate and 200 ml of methanol. The suspension was stirred for 48 hours at room temperature. After the solvent had been distilled off, the residue was taken up in water, and the aqueous phase was washed three times 15 with ethyl acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. The combined organic phases were subsequently washed to neutrality with water, dried and concentrated. This gave 13.20 g (92% of theory) of 2-chloro-3-(5-20 methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic

(m.p.: 173-178°C).

25 Step c) 2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonylbenzoyl chloride (compound 4.39)

5.7 g (51 mmol) of thionyl chloride were added dropwise at room temperture to a solution of 13.0 g (41 mmol) of 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonylbenzoic acid, 1 ml of dimethylformamide and 250 ml of dry toluene. The mixture was subsequently refluxed until the reaction was complete. After cooling, the solvent was distilled off. This gave 14.2 g of 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylbenzoyl chloride in quantitative yield.

2-Chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methyl-sulfonylbenzoyl chloride

Step a) Methyl 2-chloro-3-hydroxycarbonyl-4-methyl-sulfonylbenzoate

45 13.8 g (0.11 mol) of sodium hydrogen phosphate monohydrate in 170 ml of water, 49.3 g (0.43 mol) of 30% strength hydrogen peroxide solution and 66.2 g (0.59 mol)

10

15

25

30

141

of 80% strength aqueous sodium chlorite solution were added in succession at 5°C to a solution of 115.3 g (0.42 mol) of methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate in 2000 ml of acetonitrile. The reaction solution was subsequently stirred for 1 hour at 5°C and for 12 hours at room temperature. The pH was then brought to 1 with 10% strength hydrochloric acid, and 1500 ml of aqueous 40% strength sodium hydrogen sulfite solution were added. After the mixture had been stirred for 1 hour at room temperature, the aqueous phase was extracted three times with ethyl acetate. The combined organic phases were washed with sodium hydrogen sulfite solution and dried. After the solvent had been distilled off, 102.0 g of methyl 2-chloro-3-hydroxycarbonyl-4methylsulfonylbenzoate were obtained. (1H NMR (δ in ppm): 3.34 (s); 3.93 (s); 8.08 (s): 14.50 (s, br.).)

Step b) Methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate

2 drops of dimethylformamide and 11.9 g (0.1 mol) of thionyl chloride were added to a solution of 6.0 g (0.021 mol) of methyl 2-chloro-3-hydroxycarbonyl-4-methylsulfonylbenzoate and 50 ml of dry toluene. The solution was refluxed for 4 hours. After the solvent had been removed in vacuo, 6.2 g of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate were obtained. (1 H NMR (3 in ppm): 3.21 (s); 4.02 (s); 8.02 (d); 8.07 (d).)

A solution of 7.80 g (25 mmol) of methyl
2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate was
added dropwise at 0.5°C to a solution of 4.54 g (50 mmol)
of 2,2-dimethylethanolamine in 40 ml of dichloromethane.
After the reaction solution had been stirred for 6 hours
at room temperature, it was extracted three times with
water, dried and concentrated. This gave 8.20 g (80% of
theory) of methyl 2-chloro-3-(1'-hydroxy-2',2'dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate.
(m.p.: 70-72°C).

142

- Step d) Methyl 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate
- A mixture of 6.9 g (20 mmol) of methyl

 2-chloro-3-(1'-hydroxy-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate and 5 ml of thionyl
 chloride was stirred for 6 hours at room temperature. The
 solution was diluted with 50 ml of dichloromethane and
 subsequently concentrated. The residue was dissolved in
 20 ml of dichloromethane. The addition of cyclohexane
 resulted in a crystalline precipitate which was filtered
- resulted in a crystalline precipitate which was filtered off with suction and dried. This gave 6.4 g (88% of theory) of methyl 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate.
- Step e) 2-Chloro-3-(4',4'-dimethyl-4',5'-dihydroxazol-2-yl)-4-methylsulfonylbenzoic acid (compound 4,38)
- A solution of 5.82 g (15 mmol) of methyl 20 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl) - 4 - methylsulfonylbenzoate and 0.81 g (20 mmol) of sodium hydroxide in 80 ml of methanol was stirred for 8 hours at room temperture. After the solvent had been distilled off, the residue was taken up in water 25 and the mixture was washed three times with ethyl acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. After the organic phase had been dried, the 3.0 solvent was removed in vacuo. This gave 3.10 g (56% of theory) of 2-chloro-3-(4',4'-dimethyl-4',5'dihydrooxazol-2-yl)-4-methylsulfonylbenzoic acid. (1H NMR (δ in ppm): 1.34 (s): 3.40 (s): 4.13 (s): 8.07
- 35
 Step f) 2-Chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)4-methylsulfonylbenzovl chloride.
- A solution of 3.00 g (9 mmol) of 2-chloro-3-(4',4'-dimethyl-4',5'-dihydrooxazol-2-yl)-4-methylsulfonyl-benzoic acid, 1.43 g of thionyl chloride and 1 drop of dimethylformamide in 80 ml of dry toluene was refluxed for 3 hours. After cooling, the solvent was distilled off in vacuo. This gave 3.43 g (86% of theory) of 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-

4-methylsulfonylbenzoyl chloride.

(s); 13.95 (s, br)).

production of the control of the con

20

25

30

143

Methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-y1)-4-methylsulfonylbenzoate (compound 4.22)

Step a) Methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate

Ammonia was passed for 2 hours into a solution of 15.0 g (48 mmol) of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate and 300 ml of dry dioxane. The precipitate formed was filtered off with suction and the filtrate was concentrated. This gave 15.2 g of methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate in quantitative yield.

15 Step b) Methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-y1)4-methylsulfonylbenzoate

9.80 g (75 mmol) of chlorocarbonylsulfenyl chloride were added dropwise to a solution of 4.37 g (15 mmol) of methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate in 150 ml of dry toluene. After the mixture had been stirred for 48 hours under reflux, the solvent was removed in vacuo and the residue was chromatographed on silica gel (eluent: ethyl acetate/cyclohexane = 1/1). This gave 3.70 g (70% of theory) of methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-yl)-4-methylsulfonylbenzoate.

Methyl 2-chloro-4-methylsulfonyl-3-(4,5-dihydrooxazol-3-yl)-benzoate (compound 4.41)

At room temperature, 41.8 g (0.41 mol) of triethylamine and then 31.1 g (0.10 mol) of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate in 150 ml of toluene were added dropwise to 26.6 g (0.13 mol) of 1-amino-2-bromoethane hydrobromide in

- 35 500 ml of toluene. The mixture was heated under reflux for 5 hours and then stirred at room temperature for 12 hours, another 5.0 g (0.02 mol) of 1-amino-2-bromoethane hydrobromide were added and the mixture was heated under reflux for 7.5 hours. The reaction mixture was allowed to cool, diluted with ethyl
- 40 acetate, washed with water, dried and concentrated. The residue was then recrystallized from methyl tert-butyl ether/ethyl acetate. 14.5 g (46% of theory) of methyl 2-chloro-4-methyl-sulfonyl-3-(4,5-dihydrooxazol-2-yl)benzoate were obtained.
- 45 2-Chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic acid (compound 4.60)

25

30

35

144

Step a) Methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate

7.3 g (102 mmol) of 2-methoxy-1-propene, 28 ml of sodium 5 hypochlorite solution (12.5% strength) and a spatula-tip of sodium acetate were added successively to 10.0 g (34 mmol) of methyl 2-chloro-3-(hydroxyiminomethyl)-4-methylsulfonylbenzoate in 200 ml of methylene chloride. The mixture was stirred at room temperature for 12 hours, 10 the solvent was removed and the residue was taken up in ethyl acetate, washed with water, dried and concentrated. The residue was chromatographed over silica gel (eluent: cyclohexane:ethyl acetate = 3:2). This gave 5.8 g (47% of theory) of methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate. 15 (mp.: 100-105°C)

Step b) 2-Chloro-3-(5-methoxy-5-methy1-4,5-dihydroisoxazol-3-y1)-4-methylsulfonylbenzoate

At reflux temperature, 5.5 g (15.0 mmol) of methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate in 100 ml of pyridine were added dropwise to 5.0 g (37.5 mmol) of lithium iodide in 200 ml of pyridine. The mixture was stirred at this temperature for 4 hours and then cooled, the solvent was distilled off and the residue was taken up in toluene and reconcentrated. The residue was subsequently admixed with water and washed with methylene chloride, and the pH was adjusted to 1 using hydrochloric acid. The aqueous phase was extracted with methylene chloride and the resulting organic phase was dried and concentrated. This gave 4.7 g (90% of theory) of 2-chloro-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate. (mp.: 40-45°C)

Methyl 2-chloro-3-(2-methyl-2H-1,3,4-dioxazol-5-yl)-4-methyl-sulfonylbenzoate (compound 4.44)

40 8.0 g (27.4 mmol) of methyl 2-chloro-3-(hydroxyiminomethyl)-4-methylsulfonylbenzoate in 150 ml of methylene chloride were admixed dropwise with 16.0 g (27.4 mmol) of a 12.5% strength sodium hypochlorite solution, and a spatula-tip of sodium acetate was added. After 1 hour, 34.4 g (0.74 mol) of acetaldehyde were

45 added a little at a time within a period of 36 hours, and the mixture was slowly heated to 55°C. The mixture was subsequently stirred at room temperature for 48 hours, washed with water,

dried and concentrated. The residue was then taken up in methylene chloride, 10.0 g (0.23 mol) of acetaldehyde and a spatula-tip of sodium acetate were added and the mixture was heated under reflux for 8 hours. After 72 hours, a further 10.0 g 5 (0.23 mol) of acetaldehyde were added and the mixture was stirred at room temperature. The mixture was subsequently washed with water, dried and concentrated. The residue was passed through silica gel (eluent: isopropanol:cyclohexane = 1:9). This gave 5.0 g (55% of theory) of methyl 2-chloro-3-(2-methyl-10 2H-1,3,4-dioxazol-5-yl)-4-methylsulfonylbenzoate.

Table 4 which follows lists the compounds which have been described above and also further benzoic acid derivatives of the formula III which were prepared, or can be prepared, by a similar 15 method.

146

III

	Physical data m.p. [°C];	TH NMK (0 1n ppm)	3.29 (t); 3.91 (s); 4.58 (t); 7.46 (d); 7.83 (d).	3.28 (t); 4.60 (t); 7.02 (s, br); 7.46 (d); 7.98 (d).	3.24 (s); 3.42 (t); 3.99 (s); 4.60 (t); 7.96 (d); 8.10 (d).	3.26 (s); 3.45 (t); 4.63 (t); 8.15 (s); 8.53 (s, br).	3.25 (s); 3.46 (t); 4.62 (t); 8.21 (dd).	1.31 (s); 4.16 (s); 7.69 (d); 7.90 (d); 13.8 (s. br).
	R19		осн3	НО	OCH ₃	НО	5	НО
	ы		CH ₂	CH2	CH2	CH2	СН2	0
	R5		н	H	н	н	н	Н
	R4		н	н	н	н	н	н
	×		0	0	0	0	0	C(CH ₃) ₂
-	FZ		Ħ	Н	н	н	н	н
-	1K2		C1	C1	SO ₂ CH ₃	SO ₂ СН ₃	SO ₂ CH ₃	Cl
-	4	I	IJ	C1	C1	C1	C1	ដ
1	<u>.</u>		4.1 C1	4.2 Cl	4.3 C1	4.4 Cl	4.5 Cl	4.6 Cl

Table 4:

1
370
2 \$594
-80
12
123
m
21
lab.
113
111
10.
San San
15%

						147					
Physical data m.p. [cc]; 1H NWR [ô in ppm]	1.25 (t); 1.57 (s); 3.21 (s); 3.42 (q); 3.99 (s); 7.94 (d); 8.07 (d).	1.13 (t); 1.47 (s); 3.15 (s); 3.43 (q); 8.06 (s); 13.8 (s, br).	1.28 (t); 3.41 (m); 4.02 (s); 4.62 (t); 7.95 (d); 8.06 (d).	137-140	1.26 (t); 1.53 (d); 3.06 (dd); 3.42 (q); 3.49 (dd); 5.05 (m); 7.95 (d); 8.07 (d).	140-143	3.30 (s); 3.98 (s); 4.11 (t); 4.55 (t); 7.97 (d); 8.08 (d).	3.38 (s); 4.00 (t); 4.46 (t); 8.08 (s).	3.30 (s); 3.35 (t); 4.15 (s, br); 4.50 (t); 8.05 (s).	0.95 (t); 1.47 (s); 1.58 (quin); 3.12 (s); 3.31 (s); 3.43 (t); 3.93 (s); 8.09 (dd).	0.93 (t); 1.47 (s); 1.58 (quin); 3.15 (s); 3.42 (t); 8.05 (s).
R19	оснз	НО	осн3	НО	осн3	НО	оснз	но	НО	осн3	НО
7	CH2	CH2	CH ₂	CH2	СН2	CH2	0	0	CH2	CH2	CH2
R5	СН3	CH3	н	Н	Ħ	Н	н	н	н	CH3	СН3
R4	CH ₃	CH ₃	Н	Н	CH3	CH ₃	Н	н	н	CH3	CH ₃
×	0	0	0	0	0	0	CH2	CH ₂	0	0	0
В3	н	н	Н	н	н	н	н	н	н	н	H
$ m R^2$	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅	$SO_2C_2H_5$	SO ₂ C ₂ H ₅	SO ₂ C ₂ H ₅	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO2-n-C3H7	SO2-n-C3H7
R1	CJ	C1	CI	C1	CI	CJ	CJ	CJ	C1	C1	C.
No.	4.7	4.8	4.9	4.10	4.11	4.12	4.13	4.14	4.15	4.16	4.17

						1	48					
Physical data m.p. [°C]; ¹ H NMR [ô in ppm]	0.92 (t); 1.55 (quin); 3.39 (m); 3.93 (s); 4.50 (t); 8.08 (dd).	148-150	0.93 (t); 1.49 (d); 1.58 (quin); 2.94 (dd); 3.42 (m); 3.93 (s); 4.97 (m); 8.10 (dd).	0.94 (t); 1.39 (d); 1.58 (quin); 2.96 (dd); 3.50 (m); 4.95 (m); 8.05 (s).	3.24 (s); 4.02 (s); 8.14 (dd).	118-121		130-135	173-178	1.57 (s); 3.18 (s); 3.27 (s); 4.01 (s); 7.97 (d); 8.12 (d).	1.48 (s); 3.15 (s); 3.34 (s); 8.08 (dd).	0.97 (t); 1.72 (m); 3.10 (dd); 3.32 (s); 3.37 (dd); 4.72 (m); 8.08 (dd).
R19	осн3	НО	оснз	НО	OCH ₃	OCH ₃	НО	OCH ₃	НО	осн3	НО	осн3
74	CH ₂	CH2	CH ₂	CH ₂	0	CH ₂	CH ₂	CH2	CH ₂	CH2	CH2	CH2
R5	Ħ	н	н	н		Н	Н	Н	Н	СН3	CH3	н
R4	н	Н	CH3	СН3	0=	COOC ₂ H ₅	COOC ₂ H ₅	CH3	CH3	CH ₃	СНЗ	C_2H_5
×	0	0	0	0	Ω.	0	0	0	0	0	0	0
В3	Н	Н	н	н	Ή	н	Н	H	Н	н	Н	н
R ²	SO ₂ -n-C ₃ H ₇	SO ₂ -n-C ₃ H ₇	SO ₂ -n-C ₃ H ₇	SO ₂ - n - C ₃ H ₇	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
R1	CJ	C	C1	C1	C1	CI	CI	C.I	$_{\rm CI}$	ប	IJ	IJ
No.	4.18	4.19	4.20	4.21	4.22	4.23	4.24	4.25	4.26	4.27	4.28	4.29

					149					
Physical data m.p. [cc]; 1H NWR [δ in ppm]	1.57 (m); 1.81 (m); 2.21 (m); 3.20 (s); 4.02 (s); 4.32 (t); 5.35 (dd); 7.92 (d); 8.18 (d).	1.72 (m); 2.01 (m); 3.27 (s); 4.24 (t); 5.23 (dd); 8.05 (d); 8.15 (d); 13.8 (s, br).	2.00 (m); 3.23 (s); 3.27 (s), 3.72 (m); 4.00 (s); 7.96 (d); 8.04 (d).	78-83	1.78 (m); 2.24 (m); 3.27 (s); 3.36 (s); 3.98 (s); 7.94 (d); 8.12 (d).	1.76 (m); 2.05 (m); 3.30 (s); 3.33 (s); 8.09 (dd).	1.00 (t); 1.85 (m); 3.13 (s); 3.27 (s); 3.98 (s); 7.94 (d); 8.11 (d).	0.91 (t); 1.76 (m); 3.12 (s); 3.33 (s); 8.07 (dd); 13.75 (s, br).	1.34 (s); 3.40 (s); 4.13 (s); 8.07 (s); 13.95 (s, br).	
R ¹⁹	OCH ₃	Ħ	оснз	НО	осн3	НО	0СН3	НО	НО	CI
X	· (CH ₂) ₃ -CH-	· (СН ₂) ₃ -СН -	CH2	CH ₂	CH2	CH2	CH ₂	CH ₂	0	CH ₂
R5	- (CH ₂	- (CH ₂	(CH ₂) ₂ -	CH2) 2-	4-	4 -	C ₂ H ₅	C ₂ H ₅	н	Н
R4	н	н	- (CH ₂) ₂ -0- (CH ₂) ₂ -	- (CH ₂) ₂ -0- (CH ₂) ₂ -	- (CH ₂) ₄ -	- (CH ₂) ₄ -	C_2H_5	C ₂ H ₅	н	CH3
X	0	0	0	0	0	0	0	0	C (CH ₃) ₂	0
В3	н	н	н	н	Н	н	н	н	н	н
R ²	SO ₂ CH ₃	$\mathrm{SO}_2\mathrm{CH}_3$	so ₂ сн ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	so ₂ сн ₃	SO ₂ CH ₃	SO ₂ CH ₃
R1	Cl	C1	C1	CJ	C1	CI	CI	C1	C1	C1
No.	4.30	4.31	4.32	4.33	4.34	4.35	4.36	4.37	4.38	4.39

	-					120						
Physical Data m.p. [cC]; 1H-NMR [ð in ppm]	> 260	3.29 (3H); 3.96 (3H): 4.12 (2H); 4.55 (2H); 7.98 (1H); 8.09 (1H).	202-203	1.05 (3H); 1.35 (3H); 3.19 (3H); 4.01 (3H); 4.09 (2H); 4.35 (2H); 5.06 (1H); 5.77 (1H); 8.08 (1H); 8.17 (1H).	1.78 (3H); 3.30 (3H); 3.98 (3H); 6.40 (1H); 8.08 (1H); 8.15 (1H).	80-85	1.65 (3H); 3.27 (3H); 3.50 (2H); 4.00 (3H); 4.22 (1H); 4.88/5.08 (1H); 7.99 (1H); 8.12 (1H).	100-105	180-185	1.30 (3H); 2.75 (2H); 3.25 (1H); 3.34 (3H); 3.78 (1H); 3.94 (3H); 6.22 (1H); 8.15 (2H).	65-67	1.01 (3H); 1.28 (3H); 3.33 (4H); 3.96 (3H); 4.98 (1H); 8.12 (1H); 8.20 (1H).
R19	но	OCH ₃	OCH ₃	ОСИЗ	OCH ₃	OCH ₃	0СН3	но	НО	осн3	НО	осн3
Y	0	0	CH ₂	СИСО2СИ3	0	СНСН3	СНСН2С1	CHCH ₂ C1	CHCH ₃	CH2	CH2	СНСН3
. R5	н	н	н	н	Н	Н	Н	н	н	H	Н	Н
R4	н	н	Н	СООМе	CH3	СНО	СН3	CH ₃	CHO	$\mathrm{SC_2H_5}$	SC ₂ H ₅	СН3
×	CH2	СН2	0	0	0	0	0	0	0	0	0	0
R ³	н	Н	Н	н	Н	н	н	Н	н	Н	Н	H
R ²	SO ₂ CH ₃	SO ₂ CH ₃	SCH ₃	SO ₂ CH ₃	SO2CH3	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃
R1	CJ	CI	CI	CI	CI	ij	CI	C1	CJ	C1	CI	CJ
No.	4.40	4.41	4.42	4.43	4.44	4.45	4.46	4.47	4.48	4.49	4.50	4.51

								15	51								
Physical Data m.p. [°C]; 1H-NWR [ô in ppm]	68-75	105-110		45-50	9-09	1.63 (3H); 3.23 (3H); 3.50 (2H); 3.99 (3H); 4.25 (1H); 4.83/5.03 (1H); 7.96 (1H); 8.13 (1H).	1.56 (3H); 3.33 (3H); 3.43 (2H); 4.36 (1H); 4.93 (1H); 8.10 (2H).	100-105	40-45	9-09		2.36 (3H); 3.25 (3H); 3.66 (2H); 4.01 (3H); 5.20 (1H); 8.01 (1H); 8.12 (1H).	156	170			142-143
R ¹⁹	но	OCH ₃	НО	НО	но	оснз	HO	OCH ₃	но	OCH ₃	НО	осн3	OCH ₃	но	OCH ₃	но	9СН3
>	СНСН3	CH2	CH ₂	CH ₂	CH2	СН2	CH2	CH2	CH2	CH ₂	CH2	CH2	CH2	CH ₂	CH ₂	CH2	CH2
R5	н	н	н	н	Н	Н	н	OCH ₃	осн3	ососн3	н	Н	н	н	ы	Ŀ	н
R4	CH3	ососнз	Н	0СОСН3	OCH ₃	снсі (сн ₃)	СНС1 (СН3)	CH3	CH ₃	CF3	Н	соснз	CF3	CF3	EL.	Œ,	ł.
×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
К3	Н	Н	Н	н	н	н	Н	Н	Н	Н	Н	Н	Ħ	Н	н	ж	Н
R2	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO_2CH_3	SO ₂ CH ₃	SCH ₃	SO ₂ ме	SO ₂ CH ₃	SO ₂ CH ₃	SO2CH3	SO2CH3	SO ₂ CH ₃
R1	CI	C1	Cl	Cl	CI	CI	CJ	C1	CI	CI	CI	CJ	C1	C1	CJ	CJ	CI
No.	4.52	4.53	4.54	4.55	4.56	4.57	4.58	4.59	4.60	4.61	4.62	4.63	4.64	4.65	99.4	4.67	4.68

		_								52					
Physical Data m.p. [cc]; lH-NMR [δ in ppm]		107-110	60-65	105-110	155-160		112-120	3.38 (s); 3.56 (d); 3.79 (d); 8.16 (s); 8.67 (s, br).	130-135	1.25 (s); 3.05 (dd); 3.34 (s); 3.45 (dd); 6.17 (m); 8.08 (s).	1.01 (d); 1.28 (d); 3.35 (m); 3.96 (s); 4.99 (m); 8.12 (d); 8.20 (d).	68-75	1.30 (t); 2.77 (q); 3.25 (dd); 3.34 (s); 3.78 (dd); 3.94 (s); 6.22 (m), 8.24 (s).	65-67	1.28 (t); 2.30 (s); 2.46 (s); 3.28 (t); 4.31 (q); 4.45 (t); 7.42 (d); 7.68 (d).
R19	НО	OCH ₃	НО	OCH ₃	OCH ₃	OCH ₃	OCH ₃	но	OCH ₃	но	оснз	НО	осн3	НО	осн2сн3
¥	CH2	CH ₂	CH ₂	CH ₂	CH2	S	EX.	CH2	CH2	CH ₂	СИСИЗ	СИСИЗ	CH2	CH2	CH ₂
R5	Н	Н	н	н	н	н	н	но	Н	н	н	Н	Н	Н	Н
R4	Ē.	CH2C1	CH2C1	OCH ₃	0C2H5	н	Н	CF3	0-t-C4H9	0-t-C ₄ H ₉	СН3	CH3	SC ₂ H ₅	SC ₂ H ₅	н
×	0	0	0	0	0	CH2	C=0	0	0	0	0	0	0	0	0
R3	н	н	Ξ	Ξ	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	н
R ²	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	Н	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SO ₂ CH ₃	SCH ₃
R1	IJ	CI	C1	CI	CJ	CJ	CH3	C1	CI	Cl	CI	CI	C1	C	SCH ₃
No.	4.69	4.70	4.71	4.72	4.73	4.74	4.75	4.76	4.77	4.78	4.79	4.80	4.81	4.82	4.83

	T	Т
Physical Data m.p. [oC]; 1H-NMR [ô in ppm]	2.32 (s); 2.48 (s); 3.28 (t); 4.42 (t); 7.48 (d); 7.64 (d); 13.2 (s).	3.25 (s); 3.35 (s); 3.44 (t); 8.05 (d); 8.45 (d).
R19	но	но
*	CH2	CH2
R5	Н	Н
R4	Н	н
×	0	0
_R 3	Н	н
R ²	SCH ₃	SO ₂ CH ₃
R1	4.84 SCH ₃	4.85 SO ₂ CH ₃
No.	4.84	4.85

The 3-heterocyclyl-substituted benzoyl derivatives of the formula I and their agriculturally useful salts are suitable as herbicides, both in the form of isomer mixtures and in the form of the pure isomers. The herbicidal compositions comprising compounds of the formula I effect very good control of vegetation on non-crop areas, especially at high rates of application. In crops such as wheat, rice, maize, soybeans and cotton they act against broad-leaved weeds and grass weeds without damaging the crop plants substantially. This effect is observed especially at low rates of application.

Depending on the application method in question, the compounds of the formula I, or herbicidal compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

- 20 Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus
- 25 sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus
- 30 lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum,
- 35 Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.
- Moreover, the compounds of the formula I can also be used in crops which tolerate the action of herbicides due to breeding including genetic engineering methods.
- 45 The compounds of the formula I, or the herbicidal compositions comprising them, can be employed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, also

highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for spreading or granules, by means of spraying, atomizing, dusting, spreading or pouring. The use forms depend on the 5 intended purposes; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention.

- The herbicidal compositions comprise a herbicidally active amount of at least one compound of the formula I or of an agriculturally useful salt of I and auxiliaries conventionally used for the formulation of crop protection products.
- Suitable inert auxiliaries are essentially:
 mineral oil fractions of medium to high boiling point such as
 kerosene and diesel oil, furthermore coal tar oils and oils of
 vegetable or animal origin, aliphatic, cyclic and aromatic
 hydrocarbons, eg. paraffins, tetrahydronaphthalene, alkylated
 naphthalenes and their derivatives, alkylated benzenes and their
 derivatives, alcohols such as methanol, ethanol, propanol,
 butanol and cyclohexanol, ketones such as cyclohexanone, strongly

polar solvents, eg. amines such as N-methylpyrrolidone and water.

- 25 Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agent,
- 30 tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetting agent, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and these concentrates are suitable for dilution with water.
- Suitable surfactants (adjuvants) are the alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, eg. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, of alkyl- and alkylaryl sulfonates, of
- 40 alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and of fatty alcohol glycol ether, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene, or of the naphthalenesulfonic acids, with phenol and
- 45 formaldehyde, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl, tribûtylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl

NMR spectrum).

5

156

alcohol, fatty alcohol ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.

- 10 Granules, eg. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, 15 lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic material, fertilizers such as ammonium sulfate. ammonium phosphate, ammonium nitrate, ureas and products of
- vegetable origin such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders or other solid carriers.

The concentrations of the compounds of the formula I in the ready-to-use products can be varied within wide ranges. In general, the formulations comprise approximately from 0.001 to 25 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient. The active ingredients are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to

- 30 The formulation examples below illustrate the preparation of such products:
- I. 20 parts by weight of the compound No. 3.2 are dissolved in a mixture composed of 80 parts by weight of alkylated 35 benzene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide and 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 40 100,000 parts by weight of water and finely distributing it
- therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.
- 20 parts by weight of the compound No. 3.9 are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide and 1 mol of

157

isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.

- III. 20 parts by weight of the active ingredient No. 3.10 are dissolved in a mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction 10 of boiling point 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active
- 15 ingredient.
- IV. 20 parts by weight of the active ingredient No. 3.16 are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalenesulfonate, 17 parts by weight of the 20 sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which compries 0.1% by weight of the active 25 ingredient.
- v. 3 parts by weight of the active ingredient No. 3.21 are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the 30 active ingredient.
- 20 parts by weight of the active ingredient No. 3.22 are VI. mixed intimately with 2 parts by weight of calcium 35 dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.
- 40 VII. 1 part by weight of the active ingredient No. 3.34 is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor 45 oil. This gives a stable emulsion concentrate.

158

VIII. 1 part by weight of active ingredient No. 3.35 is dissolved in a mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol[®] EM 31 (= nonionic emulsifier based on ethoxylated castor oil). This gives a stable emulsion concentrate.

The compounds of the formula I, or the herbicidal compositions comprising them, can be applied pre- or post-emergence. If the active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spray apparatus, in such a way that they come into as little contact as possible, if any, with the leaves of the sensitive crop plants while reaching the leaves of undesirable plants which grow underneath, or the bare soil (post-directed, lay-by).

Depending on the intended aim of the control measures, the season, the target plants and the growth stage, the application rates of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0 kg/ha of active substanz (a.s.).

To widen the spectrum of action and to achieve synergistic effects, the 3-heterocyclyl-substituted benzoyl derivatives of 25 the formula I can be mixed and applied jointly with a large number of representatives of other groups of herbicidally or growth-regulatory active ingredients. Suitable components in mixtures are, for example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its

- 30 derivativés, aminotriazoles, anilides, aryloxy-/hetaryloxyalkanic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-(hetaroyl/aroyl)-1,3-cyclohexandiones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives, carbamates, quinolinecarboxylic acid and its
- 35 derivatives, chloroacetanilides, cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofuranes, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas,
- 40 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines,
- 45 pyridinecarboxylic acid and its derivatives, pyrimidyl ethers,

sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolcarboxamides and uracils.

Moreover, it may be advantageous to apply the compounds of the 5 formula I, alone or in combination with other herbicides, in the form of a mixture with additional other crop protection agents, for example with pesticides or agents for controlling phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for 10 treating nutritional and trace element deficiencies.

Non-phytotoxic oils and oil concentrates can also be added.

Use Examples

- The herbicidal action of 3-heterocyclyl-substituted benzoyl derivatives of the formula I was demonstrated by the following greenhouse experiments:
- 20 The culture containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as substrate. The seeds of the test plants were sown separately for each species.
- For the pre-emergence treatment, the active ingredients, suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants unless this was adversely affected by the active ingredients.
- For the post-emergence treatment, the test plants were grown to a plant height of from 3 to 15 cm, depending on the plant habit, and only then treated with the active ingredients which had been suspended or emulsified in water. To this end, the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted
- 40 into the test containers a few days prior to treatment. The rate of application for the post-emergence treatment was 31.2 or 15.6 g/ha a.s. (active substance).

Depending on the species, the plants were kept at from 10 to 25°C and 20 to 35°C, respectively. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

Evaluation was carried out using a scale of from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts, and 0 means no damage or normal course of growth.

10

1

The plants used in the greenhouse experiments belonged to the following species:

.5	Scientific name	Common name
	Chenopodium album	lambsquarters (goosefoot)
	Setaria faberii	giant foxtail
	Sinapsis alba	white mustard
0	Solanum nigrum	black nightshade
	Triticum aestivum	wheat
	Zea mays	Indian corn

25 Compound 3.33 (Table 3) was very effective against the abovementioned mono- and dicotyledonous harmful plants and was well tolerated in winter wheat and maize when applied post-emergence at rates of application of 31.2 and 15.6 g/ha, respectively.

30

35

40

45