WO2005121177

Publication Title:

ANTI-IL-13 ANTIBODIES AND COMPLEXES

Abstract:

Abstract of WO 2005121177

(A2) Translate this text Anti-IL-13 antibodies, crystals of anti-IL-13 antibodies, IL-13 polypeptide/anti-IL-13 antibody complexes, crystals of IL-13 polypeptide/anti-IL-13 antibody complexes, IL-13Ralpha1 polypeptide/IL-13 polypeptide/anti-IL-13 antibody complexes, crystals of IL-13Ralpha1 polypeptide/IL-13 polypeptide/anti-IL-13 antibody complexes, and related methods and software systems are disclosed.

Courtesy of http://v3.espacenet.com

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 December 2005 (22.12.2005)

PCT

(10) International Publication Number WO 2005/121177 A2

(51) International Patent Classification⁷: C07K 16/00

(21) International Application Number:

PCT/US2005/020334

(22) International Filing Date: 9 June 2005 (09.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/578,736 9 June 2004 (09.06.2004) US 60/578,473 9 June 2004 (09.06.2004) US 60/581,375 22 June 2004 (22.06.2004) US

(71) Applicant (for all designated States except US): WYETH [US/US]; 5 Giralda Farms, Madison, NJ 07940 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LIN, Laura, Long [US/US]; 50 Golden Ball Road, Weston, MA 02493 (US). PARRIS, Kevin, D. [US/US]; 112 Woodbine Street, Auburndale, MA 02466 (US). TAM, Amy, Sze, Pui [US/US]; 29 Sturges Street, Medford, MA 02155 (US). TAN, Xiang-Yang [US/US]; 811 Gazebo Circle, Reading, MA 01867 (US). SHANE, Tania [US/US]; 332 Winchester Str., Newton, MA 02461 (US). DUMAS, John (US). WILHELM, James, M. [US/US]; 447 Marlborough Street, Boston, MA 02115 (US). STAHL, Mark [US/US]; 36 N. Hancock St., Lexington, MA 02420 (US).

MOSYAK, Lidia [US/US]; 92 Littlefield Road, Newton, MA 02459 (US). HU, Zhixiang.

- (74) Agents: DALEY, Sean, P. et al.; Fish & Richardson P.C., 225 Franklin Street, Boston, MA 02110-2804 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANTI-IL-13 ANTIBODIES AND COMPLEXES

(57) Abstract: Anti-IL-13 antibodies, crystals of anti-IL-13 antibodies, IL-13 polypeptide/anti-IL-13 antibody complexes, crystals of IL-13 polypeptide/anti-IL-13 antibody complexes, IL-13Rα1 polypeptide/IL-13 polypeptide/IL-13 antibody complexes, crystals of IL-13Rα1 polypeptide/IL-13 polypeptide/IL-13 antibody complexes, and related methods and software systems are disclosed.

ANTI-IL-13 ANTIBODIES AND COMPLEXES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Number 60/578,736, filed June 9, 2004, U.S. Provisional Patent Application No. 60/578,473, filed June 9, 2004, and U.S. Provisional Patent Application No. 60/581,375 filed June 22, 2004. The contents of each of these applications are incorporated herein by reference in their entirety.

TECHNICAL FIELD

10

15

20

25

30

5

The invention relates to anti-IL-13 antibodies, crystals of anti-IL-13 antibodies, IL-13 polypeptide/anti-IL-13 antibody complexes, crystals of IL-13 polypeptide/anti-IL-13 antibody complexes, IL-13Rα1 polypeptide/IL-13 polypeptide/anti-IL-13 antibody complexes, crystals of IL-13Rα1 polypeptide/IL-13 polypeptide/anti-IL-13 antibody complexes, and related methods and software systems.

BACKGROUND

Interleukin-13 (IL-13) is a pleiotropic cytokine involved in immune response conditions, such as atopy, asthma, allergy, and inflammatory response. The role of IL-13 in immune response is facilitated by its effect on cell-signaling pathways. For example, IL-13 can promote B cell proliferation, induce B cells to produce IgE, and down regulate the production of proinflammatory cytokines. IL-13 can also increase expression of VCAM-1 on endothelial cells, and enhance expression of class II MHC antigens and various adhesion molecules on monocytes.

IL-13 function is mediated through an interaction with its receptor on hematopoietic and other cell types. The human IL-13 receptor (IL-13R) is a heterodimer that includes the interleukin-4 receptor α chain, IL-4R α , and the IL-13 binding chain, IL-13R α 1. The association of IL-13 with its receptor induces the activation of STAT6 (signal transducer and activation of transcription 6) and JAK1 (Janus-family kinase) through a binding interaction with the IL-4R α chain. IL-13R α 2, which may be found on the cell surface or in soluble form in the circulation,

binds to IL-13 with high affinity but does not mediate cellular responses to IL-13. It is thought to function as a decoy receptor.

SUMMARY

In one aspect, the invention features a crystalline antibody. The crystalline antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

5

10

15

20

25

30

In another aspect, the invention features a crystalline composition that includes an antibody. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

In a further aspect, the invention features a crystalline complex that includes an IL-13 polypeptide and an antibody. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

In another aspect, the invention features a crystalline complex that includes an IL-13R α 1 polypeptide and an IL-13 polypeptide.

In yet another aspect, the invention features a method that includes using a three-dimensional model of an antibody to design an agent that interacts with an IL-13 polypeptide. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

In another aspect, the invention features a method that includes using a three-dimensional model of an IL-13 polypeptide to design an agent that interacts with the IL-13 polypeptide.

In another aspect, the invention features a method that includes using a three-dimensional model of an IL-13 polypeptide bound to an IL-13R α 1 polypeptide to design an agent that interacts with the IL-13 polypeptide.

In another aspect, the invention features a method that includes selecting an agent by performing rational drug design with a three-dimensional structure of a crystalline complex that includes an IL-13 polypeptide; contacting the agent with an IL-13 polypeptide; and detecting the ability of the agent to bind the IL-13 polypeptide.

In a further aspect, the invention features a method that includes contacting an IL-13 polypeptide with an antibody to form a composition; and crystallizing the composition to form a crystalline complex in which the antibody is bound to the IL-13 polypeptide. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-

13 antibody, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

In another aspect, the invention features a method that includes contacting an IL-13 polypeptide with an antibody and an IL-13Rα1 polypeptide to form a composition, and crystallizing the composition to form a crystalline complex in which the antibody and the IL-13Rα1 polypeptide are each bound to the IL-13 polypeptide. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

5

10

15

20

25

30

In another aspect, the invention features a software system that includes instructions for causing a computer system to accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody including an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody. The instructions also cause the computer system to accept information relating to a candidate agent and to determine binding characteristics of the candidate agent to the IL-13 polypeptide. The determination of binding characteristics is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

In another aspect, the invention features a computer program residing on a computer readable medium. A plurality of instructions is stored on the computer readable medium. When the instructions are executed by one or more processors, the one or more processors will accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody being an anti-IL-13 polypeptide or a Fab fragment of an anti-IL-13 antibody; accept information relating to a candidate agent; and determine binding characteristics of the candidate agent to the IL-13 polypeptide. Determination of the binding characteristics is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

In another aspect, the invention features a method that includes accepting information relating to the structure of an IL-13 polypeptide bound to an antibody and modeling the binding characteristics of the IL-13 polypeptide with a candidate agent. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody. The method of accepting information and modeling the binding characteristics is implemented by a software system.

In another aspect, the invention features a computer program residing on a computer readable medium containing a plurality of instructions. When the instructions are executed by one or more processors, the one or more processors will accept information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody being an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody; and model the binding characteristics of the IL-13 polypeptide with a candidate agent.

5

10

15

20

25

30

In another aspect, the invention features a software system, that includes instructions for causing a computer system to accept information relating to the structure of an IL-13 polypeptide bound to an antibody, and model the binding characteristics of the IL-13 polypeptide with a candidate agent. The antibody is an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

In another aspect, the invention features a crystalline antibody. The antibody is capable of binding to a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

In a further aspect, the invention features a crystalline composition that includes an antibody capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

In another aspect, the invention features a crystalline complex that includes an IL-13 polypeptide and an antibody. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

In yet another aspect, the invention features a crystalline complex that includes an IL-13 polypeptide, an IL-13Ra1 polypeptide, and an antibody. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds in vivo.

In another aspect, the invention features a method that includes using a three-dimensional model of an antibody to design an agent that interacts with an IL-13 polypeptide. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

In another aspect, the invention features a method that includes contacting an IL-13 polypeptide with an antibody to form a composition; and crystallizing the composition to form a crystalline complex in which the antibody is bound to the IL-13 polypeptide. The antibody is capable of binding a site of an IL-13 polypeptide to

which an IL-4R polypeptide binds *in vivo*, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

In yet another aspect, the invention features a method that includes contacting an IL-13 polypeptide with an antibody and an IL-13Rα1 polypeptide to form a composition, and crystallizing the composition to form a crystalline complex in which the antibody and the IL-13Rα1 polypeptide are each bound to the IL-13 polypeptide. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

5

10

15

20

25

30

In another aspect, the invention features a software system that includes instructions for causing a computer system to accept information relating to a structure of an IL-13 polypeptide bound to an antibody, accept information relating to a candidate agent, and determine binding characteristics of the candidate agent to the IL-13 polypeptide. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds in vivo. The determination of binding characteristics of the candidate agent is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

In another aspect, the invention features a computer program residing on a computer readable medium containing a plurality of instructions. When the instructions are executed by one or more processors, the one or more processors will accept information relating to a structure of an IL-13 polypeptide bound to an antibody, accept information relating to a candidate agent; and determine the binding characteristics of the candidate agent to the IL-13 polypeptide. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds in vivo. Determination of the binding characteristics of the candidate agent is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent

In another aspect, the invention features a method that includes accepting information relating to the structure of an IL-13 polypeptide bound to an antibody and modeling the binding characteristics of the IL-13 polypeptide with a candidate agent. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*. The method of accepting information and modeling the binding characteristics is implemented by a software system.

In another aspect, the invention features a computer program residing on a computer readable medium containing a plurality of instructions. When the instructions are executed by one or more processors, the one or more processors will accept information relating to the structure of an IL-13 polypeptide bound to an antibody and model the binding characteristics of the IL-13 polypeptide with a candidate agent. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

5

10

15

20

25

30

In another aspect, the invention features a software system that includes instructions for causing a computer system to accept information relating to the structure of an IL-13 polypeptide bound to an antibody and model the binding characteristics of the IL-13 polypeptide with a candidate agent. The antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds in vivo.

In another aspect, the invention features a method of modulating IL-13 activity in a subject. The method includes using rational drug design to select an agent that is capable of modulating IL-13 activity, and administering a therapeutically effective amount of the agent to the subject.

In a further aspect, the invention features a method of treating a subject having a condition associated with IL-13 activity. The method includes using rational drug design to select an agent that is capable of effecting IL-13 activity, and administering a therapeutically effective amount of the agent to the subject.

In another aspect, the invention features a method of prophylactically treating a subject susceptible to a condition associated with IL-13 activity. The method includes determining that the subject is susceptible to the condition associated with IL-13 activity, using rational drug design to select an agent that is capable of effecting IL-13 activity, and administering a therapeutically effective amount of the agent to the subject.

Structural information of a polypeptide or a corresponding ligand can lead to a greater understanding of how the polypeptide functions *in vivo*. For example, knowledge of the structure of a protein or a corresponding ligand can reveal properties that facilitate the interaction of the protein with its ligands, including other proteins, antibodies, effector molecules (*e.g.*, hormones), and nucleic acids. Structure based modeling can be used to identify ligands capable of interacting with an IL-13

polypeptide, thus eliminating the need for screening assays, which can be expensive and time-consuming. Structural information can also be used to direct the modification of a ligand known to interact with IL-13 to generate an alternative ligand with more desirable properties, such as tighter binding or greater specificity.

5

10

15

20

25

30

The study of the interaction between an anti-IL-13 antibody and an IL-13 polypeptide and between an IL-13 polypeptide and its receptor can facilitate the design or selection of ligands (e.g., drugs) for modulating the activity of IL-13 in vivo. Such studies can therefore be useful for designing therapeutic agents. Activity assays indicated that mAb13.2 blocked IL-13 function in vitro and in vivo (see Examples 1 and 2 below), including the use of an antibody to identify IL-13-binding agents capable of disturbing the normal function of the protein. Accordingly, it is believed that the crystal structures of the mAb13.2Fab fragment, the human IL-13/mAb13.2 Fab fragment complex, and the human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex (see Tables 10-12 below) can be useful for designing or identifying agents that can interact with IL-13 and the IL-13 receptor polypeptide, IL-13Rα1. Such agents may be useful in modulating the activity of IL-13 in immune response conditions, such as, for example, asthma (e.g., nonallergic asthma, or allergic asthma, which is sometimes referred to as chronic allergic airway disease), chronic obstructive pulmonary disorder (COPD), airway inflammation, eosinophilia, fibrosis and excess mucus production (e.g., cystic fibrosis, pulmonary fibrosis, and allergic rhinitis), inflammatory and/or autoimmune conditions of the skin (e.g., atopic dermatitis), inflammatory and/or autoimmune conditions of the gastrointestinal organs (e.g., inflammatory bowel disease (IBD) and/or Crohn's disease), liver (e.g., cirrhosis), inflammatory and/or autoimmune conditions of the blood vessels or connective tissue (e.g., scleroderma), and tumors or cancers (e.g., soft tissue or solid tumors), such as Hodgkin's lymphoma, glioblastoma, and lymphoma.

Other features and advantages of the invention will be apparent from the accompanying drawings and description, and from the claims. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference. In case of conflict, the present application, including definitions, will control.

DESCRIPTION OF DRAWINGS

FIG. 1A is the amino acid sequence of the light chain of the mAb13.2 Fab (fragment antigen binding) fragment (SEQ ID NO:1).

FIG. 1B is the amino acid sequence of the heavy chain of mAb13.2 Fab fragment (SEQ ID NO:2).

5

10

15

20

25

30

FIG. 2A is the amino acid sequence of full-length human IL-13 (Swiss-Prot Accession No. P35225) (SEQ ID NO:3). The signal peptide cleavage site is indicated by a slash. Alpha helices A, B, C, and D are underlined. Helix A is defined by amino acids 25-42; helix B is defined by amino acids 62-71; helix C is defined by amino acids 78-89; and helix D is defined by amino acids 112-127.

FIG. 2B is the amino acid sequence of human IL-13 (SEQ ID NO:4) following cleavage of the signal peptide. Alpha helices A, B, C, and D are underlined. Helix A is defined by amino acids 6-23; helix B is defined by amino acids 43-52; helix C is defined by amino acids 59-70; helix D is defined by amino acids 93-108.

FIG. 3 is a ribbon diagram illustrating the crystal structure of mAb13.2 Fab fragment (left) with the processed form of human IL-13 (right) (see FIG. 2B). The light chain of mAb13.2 Fab fragment is shown in dark shading, and the heavy chain in light shading. Helices A, B, C, and D of the IL-13 structure are indicated.

FIG. 4 is a graph illustrating the kinetic parameters of three different anti-IL-13 antibodies (mAb13.2, mAb13.4, and mAb13.9) binding to human IL-13 as determined by Biacore analyses. Kinetic constants for mAb13.2 are also shown.

FIG. 5 is a graph illustrating the binding of biotinylated mAb13.2 to recombinant and native human IL-13. ELISA plates were coated with anti-FLAG M2 antibody. The binding of FLAG-human IL-13 was detected with biotinylated mAb13.2 and streptavidin-peroxidase. This binding could be competed with native human IL-13 isolated from mitogen activated, Th2-skewed, cord blood mononuclear cells (triangles); and recombinant human IL-13 (diamonds). There was no detectable binding of recombinant murine IL-13 (circles) to mAb13.2.

FIG. 6 is a graph illustrating the effect of mAb13.2 and the known inhibitor rhuIL-13R α 2 on the bioactivity of human IL-13. "cpm" is the measure of ³H-thymidine taken up into TF1 cells grown in the presence of IL-13 and varying concentrations of mAb13.2 or rhuIL-13R α 2 (x-axis).

FIG. 7A is a graph illustrating the effect of recombinant human IL-13 and IL-4 on CD23 expression on CD11b+ monocytes. The monocytes were normal peripheral blood mononuclear cells (PBMCs) harvested from a healthy donor. The cells were treated overnight with 1 ng/mL recombinant human IL-13 or IL-4, then assayed for CD23 expression by flow cytometry.

FIG. 7B is a graph illustrating the effect of mAb13.2 on IL-13-induced CD23 expression on CD11b+ monocytes.

5

10

15

20

25

30

FIG. 7C is a graph illustrating the effect of mAb13.2 on IL-4 - induced CD23 expression on CD11b+ monocytes.

FIG. 8 is a graph illustrating the effect of mAb13.2 on IL-13-dependent IgE production by human B cells. PBMC from a healthy donor were stimulated with PHA and IL-13. After 3 weeks, each well was assayed for IgE concentrations by ELISA. PHA + IL-13 increased the frequency of IgE-producing B cell clones. This effect was inhibited by mAb13.2, but not by an IL-13 specific nonneutralizing antibody (mAb13.8) or by control mouse IgG (msIgG).

FIG. 9A is a Western blot detecting phosphorylated STAT6 protein from HT-29 human epithelial cells treated with the indicated concentration of IL-13 for 30 min at 37° C.

FIG. 9B is a histogram from flow cytometry experiments that measured the level of cellular phosphorylated STAT6 protein following treatment with IL-13. The shift in phospho-STAT6 staining intensity upon treatment with IL-13 is indicated by the lightly shaded trace.

FIG. 9C is a panel of histograms from flow cytometry experiments that measured the level of cellular phosphorylated STAT6 protein following treatment with a sub-optimal concentration of human IL-13 and the indicated antibody. Cells treated with IL-13 and antibody are indicated by the bold trace. Shaded histograms indicate untreated cells. In addition to mAb13.2, an IL-13 specific nonneutralizing antibody (mAb13.8) and a control mouse IgG1 were also tested.

FIG. 10 is a graph demonstrating the percentage of eosinophils detected in BAL from Cynomolgus monkeys sensitized to *Ascaris suum* following lung segmental challenge with *Ascaris* antigen. Twenty-four hours before challenge, animals had been administered mAb13.2 i.v. (diamonds) or left untreated (circles). Triangles represent mAb13-2-treated and re-challenged with Ascaris at three months

post-Ab administration. Eosinophils were detected by flow cytometry using depolarized side scatter analysis.

5

10

15

20

25

30

FIG. 11A is a graph showing that unlabeled mAb13.2 (diamonds) or mAb13.2 Fab fragments (circles) could compete for binding with biotinylated mAb13.2 in an ELISA assay. An "irrelevant antibody" (monoclonal antibody mAb13.8, which binds IL-13 but does not neutralize its activity) (asterisks) could not compete for binding. Competitor concentration is expressed as picomole (pM) antibody or Fab.

FIG. 11B is a graph showing that unlabeled mAb13.2 (diamonds) or mAb13.2 Fab fragment (circles) could compete for binding with biotinylated mAb13.2 in an ELISA assay. An "irrelevant antibody" (monoclonal antibody mAb13.8) (asterisks) could not compete for binding. Competitor concentration is expressed as picomole (pM) binding sites, assuming two binding sites per intact IgG and one binding site per Fab fragment.

FIG. 12A is a graph showing that mAb13.2 (diamonds) and mAb13.2 Fab fragment (circles) inhibited IL-13-dependent TF1 cell division. "Competitor concentration" is mAb13.2 and mAb13.2 Fab fragment concentration, and concentration is represented as pM competitor binding sites, assuming two binding sites per intact IgG and one binding site per Fab fragment.

FIG. 12B is a graph showing that mAb13.2 (diamonds) and mAb13.2 Fab fragment (circles) inhibited IL-13 CD23 expression on human PBMCs. Competitor concentration is mAb13.2 and mAb13.2 Fab fragment concentration, and the concentration is represented as pM competitor binding sites, assuming two binding sites per intact IgG and one binding site per Fab fragment.

FIG. 13 is the DNA sequence of the expression vector pAL-981 (SEQ ID NO:5), including a human IL-13 cDNA insert (hIL13coli). The cDNA sequence encoding IL-13 is underlined. Restriction sites Nde1 (nucleotide position 2722) and Xba1 (nucleotide position 3070) flank the cDNA sequence.

FIG. 14 is the amino acid sequence of human IL-13Rα1 (Swiss-Prot Accession No. P78552) (SEQ ID NO:12).

FIG. 15 is a ribbon diagram illustrating the structure of the mAb13.2 Fab/IL-13/IL-13Rα1 trimeric complex.

FIG. 16 is a ribbon diagram illustrating the interaction between IL-13 and Ig domain 1 of IL-13R α 1.

FIG. 17 is a ribbon diagram illustrating the interaction between IL-13 and Ig domain 3 of IL-13R α 1.

DETAILED DESCRIPTION

The structure of the antigen binding fragment (Fab) of a murine monoclonal anti-IL-13 antibody, mAb13.2, was discovered by X-ray crystallography (see Table 10 below). The crystal structures of human IL-13 complexed with the mAb13.2 Fab fragment, and of human IL-13 complexed with both the mAb13.2 Fab fragment and an IL-13Rα1 polypeptide fragment were also discovered by X-ray crystallography (See Tables 11 and 12 below, respectively).

5

10

15

20

25

30

FIGs. 1A and 1B provide amino acid sequence information for the light and heavy chain polypeptides of the mAb13.2 Fab fragment. FIGs. 2A and 2B provide amino acid sequence information for human IL-13. FIG. 3 provides structural information for a crystal of a human IL-13/mAb13.2 Fab fragment complex. The mAb13.2 Fab fragment binds to the IL-4R (IL-4Rα) binding domain of human IL-13, which includes the amino acids Ser7, Thr8, Ala9, Glu12, Leu48, Glu49, Ile52, Asn53, Arg65, Met66, Ser68, Gly69, Phe70, Cys71, Pro72, His73, Lys74, and Arg86 as defined by SEQ ID NO:4.

FIG. 14 provides amino acid sequence information for the human IL-13 receptor polypeptide, human IL-13Rα1. FIGs. 15, 16, and 17 provide structural information for a crystal of a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. In addition to the interaction described above between human IL-13 and the mAb13.2 Fab fragment, human IL-13 forms two contacts with the human IL-13Rα1 polypeptide, one with Ig domain 1 of the human IL-13Rα1 polypeptide, and a second with the Ig domain 3 of the human IL-13Rα1 polypeptide. The interaction with Ig domain 1 involves residues Thr88, Lys89, Ile90, and Glu91 of human IL-13 as defined by SEQ ID NO:4, and residues Lys76, Lys77, Ile78, and Ala79 of the human IL-13Rα1 polypeptide, as defined by SEQ ID NO:12 (see FIG. 16). The interaction with Ig domain 3 involves residues Arg11, Glu12, Leu13, Ile14, Glu15, Lys104, Lys105, Leu106, Phe107, and Arg108 of human IL-13 as defined by SEQ ID NO:4, and residues Ile254, Ser255, Arg256, Lys318, Cys320, and Tyr321 of the human IL-13Rα1 polypeptide as defined by SEQ ID NO:12 (see FIG. 17).

In general, a crystal of the mAb13.2 Fab fragment can be prepared as desired. Typically, the process includes first isolating the mAb13.2 Fab fragment, and then

forming a crystal that contains that mAb13.2 Fab fragment. In some embodiments, a crystal containing the mAb13.2 Fab fragment can be prepared as follows. The intact antibody is cleaved with an appropriate proteolytic enzyme (e.g., papain), and the mAb13.2 Fab fragment is isolated from the Fc (Fragment crystallizable) fragment. The isolated mAb13.2 Fab fragment is disposed in an appropriate solution, and the solution is crystallized. The solution can contain, for example, one or more polymers (e.g., polyethylene glycol (PEG)), one or more salts (e.g., potassium sulfate) and optionally one or more organic solvents. The crystals can be grown by various methods, such as, for example, sitting or hanging drop vapor diffusion. In general, crystallization can be performed at a temperature of from about 4°C to 60°C (e.g., from about 4°C to about 45°C, such as at about 4°C, about 15°C, about 18°C, about 20°C, about 25°C, about 30°C, about 32°C, about 35°C, about 37°C). Structural data describing a crystal of the mAb13.2 Fab fragment can be obtained, for example, by Xray diffraction. X-ray diffraction data can be collected using a variety of means in order to obtain structural coordinates. Suitable X-ray sources include rotating anodes and synchrotron sources (e.g., Advanced Light Source (ALS), Berkeley, California; or Advanced Photon Source (APS), Argonne, Illinois). In certain embodiments, X-rays for generating diffraction data can have a wavelength of from about 0.5 Å to about 1.6 Å (e.g., about 0.7 Å, about 0.9 Å, about 1.0 Å, about 1.1 Å, about 1.3 Å, about 1.4 Å, about 1.5 Å, about 1.6 Å). Suitable X-ray detectors include area detectors and/or charge-couple devices (CCDs) can be used as the detector(s).

5

10

15

20

25

30

In general, a crystal of the mAb13.2 Fab fragment can diffract X-rays to a resolution of about 3.5 Å or less (e.g., about 3.2 Å or less, about 3.0 Å or less, about 2.8 Å or less, about 2.5 Å or less, about 2.4 Å or less, about 2.3 Å or less, about 2.2 Å or less, about 2.1 Å or less, about 2.0 Å or less, about 1.9 Å or less, about 1.8 Å or less, about 1.7 Å or less, about 1.6 Å or less, about 1.5 Å or less, about 1.4 Å or less). In some embodiments, a crystal of the mAb13.2 Fab fragment can diffract X-rays to a resolution of from about 1.6 Å to about 2.5 Å (e.g., from about 1.8 Å to about 2.2 Å).

In certain embodiments, a crystal of the mAb13.2 Fab fragment can be orthorhombic with space group P2₁2₁2₁, and unit cell dimensions a= 54.4, b= 98.0, c=108.5, and $\alpha=\beta=\gamma=90$ °C.

In general, a complex including human IL-13 and the mAb13.2 Fab fragment can be prepared and crystallized as desired. In some embodiments, the process is as

follows. Human IL-13 is expressed from a DNA plasmid. The expression can be driven by a promoter, such as an inducible promoter. Human IL-13 can be expressed as a fusion protein with a suitable tag (e.g., to facilitate isolation of human IL-13 from cells), such as a glutathione-S-transferase (GST), myc, HA, hexahistidine, or FLAG tag. A fusion protein can be cleaved at a protease site engineered into the fusion protein, such as at or near the site of fusion between the polypeptide and the tag. Human IL-13 can be mixed with the mAb13.2 Fab fragment prior to purification (e.g., prior to cleavage of a polypeptide tag), or human IL-13 can be mixed with the mAb13.2 Fab fragment after purification. In some embodiments, the mAb13.2 Fab fragment can be mixed with human IL-13 prior to purification and again following purification. In some embodiments, human IL-13 polypeptide and the mAb13.2 Fab fragment are combined in a solution for collecting spectral data for the complex, NMR data for the complex, or for growing a crystal of the complex. The solution can contain, for example, one or more salts (e.g., a potassium salt), one or more polymers (e.g., polyethylene glycol (PEG)), and/or one or more organic solvents. Crystals can be grown by various methods, such as, for example, sitting or hanging drop vapor diffusion. In general, crystallization can be performed at about 16°C to 24°C (e.g., about 17°C to 23°C, or 18°C to 21°C).

5

10

15

20

25

30

Structural information for a crystal of a human IL-13/mAb13.2 Fab fragment complex can be obtained by X-ray diffraction. In general, a crystal of a human IL-13/mAb13.2 Fab fragment complex can diffract X-rays to a resolution of about 3.5 Å or less (e.g., about 3.2 Å or less, about 3.0 Å or less, about 2.8 Å or less, about 2.5 Å or less, about 2.4 Å or less, about 2.3 Å or less, about 2.2 Å or less, about 2.1 Å or less, about 2.0 Å or less, about 1.9 Å or less, about 1.8 Å or less, about 1.7 Å or less, about 1.6 Å or less, about 1.5 Å or less, about 1.4 Å or less). In some embodiments, a crystal of a human IL-13/mAb13.2 Fab fragment complex can diffract X-rays to a resolution of from about 1.6 Å to about 2.5 Å (e.g., from about 1.8 Å to about 2.2 Å).

In certain embodiments, a crystal of a human IL-13/mAb13.2 Fab fragment complex can be cubic with space group P2₁3, and unit cell dimensions a= b= c= 125.3, and $\alpha=\beta=\gamma=90$ °C. The structure of the complex can be solved to a resolution of 1.8 Å.

In general, a complex including human IL-13, the mAb13.2 Fab fragment, and a human IL-13R α 1 polypeptide can be prepared and crystallized as desired. In some

embodiments, the process is as follows. A human IL-13Rα1 polypeptide is expressed from a DNA plasmid in the yeast strain *Pichia pastoris*, such that the expressed polypeptide is glycosylated. Expression from the DNA plasmid can be driven by a promoter, such as an inducible promoter. The human IL-13Rα1 polypeptide can be expressed as a fusion protein with a suitable tag (*e.g.*, to facilitate isolation of the human IL-13Rα1 polypeptide from cells), such as a glutathione-S-transferase (GST), myc, HA, hexahistidine, or FLAG tag. A fusion protein can be cleaved at a protease site engineered into the fusion protein, such as at or near the site of fusion between the polypeptide and the tag. The human IL-13Rα1 polypeptide can be mixed with human IL-13 to form a complex, and then the polypeptides of the complex can be deglycosylated by treatment with an enzyme such as endoglycosidase H. The mAb13.2 Fab fragment can be added to the deglycosylated complex to form a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab complex.

5

10

15

20

25

30

In some embodiments, the human IL-13Rα1, human IL-13, and mAb13.2 Fab fragment are combined in a solution for collecting spectral data for the complex, NMR data for the complex, or for growing a crystal of the complex. The solution can contain, for example, one or more salts (*e.g.*, a potassium salt), one or more polymers (*e.g.*, polyethylene glycol (PEG)), and/or one or more organic solvents. Crystals can be grown by various methods, such as, for example, sitting or hanging drop vapor diffusion. In general, crystallization can be performed at about 16°C to 24°C (*e.g.*, about 17°C to 23°C, or 18°C to 21°C).

Structural information for a crystal of a human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex can be obtained by X-ray diffraction. In general, a crystal of a human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex can diffract X-rays to a resolution of about 3.5 Å or less (e.g., about 3.2 Å or less, about 3.0 Å or less, about 2.8 Å or less, about 2.5 Å or less, about 2.4 Å or less, about 2.3 Å or less, about 2.2 Å or less, about 2.1 Å or less, about 2.0 Å or less, about 1.9 Å or less, about 1.8 Å or less, about 1.7 Å or less, about 1.6 Å or less, about 1.5 Å or less, about 1.4 Å or less). In some embodiments, a crystal of a human IL-13/mAb13.2 Fab fragment complex can diffract X-rays to a resolution of from about 1.6 Å to about 2.5 Å (e.g., from about 1.8 Å to about 2.2 Å).

In certain embodiments, a crystal of a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex can be cubic with space group I4, and unit cell

dimensions a= b=164.9 Å, c= 74.8 Å, and $\alpha=\beta=\gamma=90^{\circ}\text{C}$. The structure of the complex can be solved to a resolution of 2.2 Å.

5

10

15

20

25

30

X-ray diffraction data of a crystal of the mAb13.2 Fab fragment, human IL-13/mAb13.2 Fab fragment complex, or human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex can be used to obtain the structural coordinates of the atoms in the antibody or the complex. The structural coordinates are Cartesian coordinates that describe the location of atoms in three-dimensional space in relation to other atoms in the complex. As an example, the structural coordinates listed in Table 10 are the structural coordinates of a crystalline mAb13.2 Fab fragment. These structural coordinates describe the location of atoms of the mAb13.2 Fab fragment in relation to each other. As another example, the structural coordinates listed in Table 11 are the structural coordinates of a crystalline human IL-13/mAb13.2 Fab fragment complex. These structural coordinates describe the location of atoms of the human IL-13 in relation to each other, the location of atoms in the human IL-13 in relation to the atoms in the mAb13.2 Fab fragment, and the location of atoms in the mAb13.2 Fab fragment in relation to each other. As yet another example, the structural coordinates listed in Table 12 are the structural coordinates of a crystalline human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. These structural coordinates describe the location of atoms of the IL-13Ra1 polypeptide in relation to each other, the location of atoms in the human IL-13Rα1 polypeptide in relation to the atoms in human IL-13, the location of atoms in human IL-13 in relation to each other, the location of atoms in human IL-13 in relation to the atoms in the mAb13.2 Fab fragment and the location of atoms in the mAb13.2 Fab fragment in relation to each other.

The structural coordinates of a crystal can be modified by mathematical manipulation, such as by inversion or integer additions or subtractions. As such, structural coordinates are relative coordinates. As an example, structural coordinates describing the location of atoms in the mAb13.2 Fab fragment are not specifically limited by the actual x, y, and z coordinates of Table 10. As another example, structural coordinates describing the location of atoms in the human IL-13 bound to the mAb13.2 Fab fragment are not specifically limited by the actual x, y, and z coordinates of Table 11. As yet another example, structural coordinates describing the location of atoms in the human IL-13 bound to both the mAb13.2 Fab fragment and

the human IL-13R α 1 polypeptide are not specifically limited by the actual x, y, and z coordinates of Table 12.

5

10

15

20

25

30

The structural coordinates of the mAb13.2 Fab fragment or human IL-13/mAb13.2 Fab fragment complex or human IL-Ra1 polypeptide/human IL-13/mAb 13.2 Fab fragment complex can be used to derive a representation (e.g., a two dimensional representation or three dimensional representation) of the mAb13.2 Fab fragment, a fragment of the mAb13.2 Fab fragment, human IL-13, a fragment of human IL-13, the human IL-13Rα1 polypeptide, a fragment of the IL-13Rα1 polypeptide, the human IL-13/mAb13.2 Fab fragment complex or human IL-Rα1 polypeptide/human IL-13/mAb 13.2 Fab fragment complex, or a fragment of either complex. Such a representation can be useful for a number of applications, including, for example, the visualization, identification and characterization of an active site of the polypeptide. In certain embodiments, a three-dimensional representation can include the structural coordinates of the mAb13.2 fragment according to Table 10 \pm a root mean square deviation from the alpha carbon atoms of amino acids of about 1.5 Å or less (e.g., about 1.0 Å or less, or about 0.5 Å or less). In other embodiments, a three-dimensional representation can include the structural coordinates of a human IL-13/mAb13.2 Fab fragment complex according to Table 11 ± a root mean square deviation from the alpha carbon atoms of amino acids of not more than about 1.5 Å (e.g., not more than about 1.0 Å, not more than about 0.5 Å or less). In yet other embodiments, a three-dimensional representation can include the structural coordinates of a human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex according to Table 12 ± a root mean square deviation from the alpha carbon atoms of amino acids of not more than about 1.5 Å (e.g., not more than about 1.0 Å, not more than about 0.5 Å or less). Root mean square deviation (rms deviation, or rmsd) is the square root of the arithmetic mean of the squares of the deviations from the mean, and is a way of expressing deviation or variation from structural coordinates. Conservative substitutions of amino acids can result in a molecular representation having structural coordinates within the stated root mean square deviation. For example, two molecular models of polypeptides that differ from one another by conservative amino acid substitutions can have coordinates of backbone atoms within a stated rms deviation, such as less than about 1.5 Å (e.g., less than about about 1.0 Å, less than about 0.5 Å). Backbone atoms of a polypeptide include

the alpha carbon (C_{α} or CA) atoms, carbonyl carbon (C) atoms, and amide nitrogen (N) atoms.

5

10

15

20

25

30

Various software programs allow for the graphical representation of a set of structural coordinates to obtain a representation of a molecule or molecular complex, such as the mAb13.2 Fab fragment or the human IL-13/mAb13.2 Fab fragment complex or the human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. In general, such a representation should accurately reflect (relatively and/or absolutely) structural coordinates, or information derived from structural coordinates, such as distances or angles between features. The representation can be a twodimensional figure, such as a stereoscopic two-dimensional figure, or an interactive two-dimensional display (e.g., a computer display that can display different faces of the molecule or molecular complex), or an interactive stereoscopic two-dimensional display. An interactive two-dimensional display can be, for example, a computer display that can be rotated to show different faces of a polypeptide, a fragment of a polypeptide, a complex and/or a fragment of a complex. In some embodiments, the representation is a three-dimensional representation. As an example, a threedimensional model can be a physical model of a molecular structure (e.g., a ball-andstick model). As another example, a three dimensional representation can be a graphical representation of a molecular structure (e.g., a drawing or a figure presented on a computer display). A two-dimensional graphical representation (e.g., a drawing) can correspond to a three-dimensional representation when the two-dimensional representation reflects three-dimensional information, for example, through the use of perspective, shading, or the obstruction of features more distant from the viewer by features closer to the viewer. In some embodiments, a representation can be modeled at more than one level. As an example, when the three-dimensional representation includes a polypeptide, such as human IL-13 bound to the mAb13.2 Fab fragment, the polypeptide can be represented at one or more different levels of structure, such as primary structure (amino acid sequence), secondary structure (e.g., α-helices and βsheets), tertiary structure (overall fold), and quaternary structure (oligomerization state). The heavy and light chain polypeptides of the mAb13.2 Fab fragment can also be represented at the one or more different structural levels. A representation can include different levels of detail. For example, the representation can include the relative locations of secondary structural features of a protein without specifying the

positions of atoms. A more detailed representation could, for example, include the positions of atoms.

5

10

15

20

25

30

In some embodiments, a representation can include information in addition to the structural coordinates of the atoms in the mAb13.2 Fab fragment, the human IL-13/mAb13.2 Fab fragment complex, or the human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. For example, a representation can provide information regarding the shape of a solvent accessible surface, the van der Waals radii of the atoms of the model, and the van der Waals radius of a solvent (e.g., water). Other features that can be derived from a representation include, for example, electrostatic potential, the location of voids or pockets within a macromolecular structure, and the location of hydrogen bonds and salt bridges.

An agent that interacts with the mAb13.2 Fab fragment, human IL-13, or the human IL-13Rα1 polypeptide can be identified or designed by a method that includes using a representation of the mAb13.2 Fab fragment, a human IL-13, a human IL-13Rα1 polypeptide, a human IL-13/mAb13.2 Fab fragment complex, or a human IL-13-Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. Exemplary types of representations include the representations discussed above. In some embodiments, the representation can be of an analog polypeptide, polypeptide fragment, complex or fragment of a complex. A candidate agent that interacts with the representation can be designed or identified by performing computer fitting analysis of the candidate agent with the representation. In general, an agent is a molecule. Examples of agents include polypeptides, nucleic acids (including DNA or RNA), or small molecules (e.g., small organic molecules). An agent can be a ligand, and can act, for example, as an agonist or antagonist. An agent that interacts with a polypeptide (e.g., human IL-13, human IL-13Rα1 polypeptide) can interact transiently or stably with the polypeptide. The interaction can be mediated by any of the forces noted herein, including, for example, hydrogen bonding, electrostatic forces, hydrophobic interactions, and van der Waals interactions.

As noted above, X-ray crystallography can be used to obtain structural coordinates of an mAb13.2 Fab fragment, a human IL-13/mAb13.2 Fab fragment complex, or a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. However, such structural coordinates can be obtained using other techniques including NMR techniques. Additional structural information can be

obtained from spectral techniques (e.g., optical rotary dispersion (ORD), circular dichroism (CD)), homology modeling, and computational methods such as those that include data from molecular mechanics or from dynamics assays).

5

10

15

20

25

30

In some embodiments, the X-ray diffraction data can be used to construct an electron density map of the mAb13.2 Fab fragment, the human IL-13/mAb13.2 Fab fragment complex, or the human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex. The electron density map can be used to derive a representation (e.g., a two dimensional representation or a three dimensional representation) of the mAb13.2 Fab fragment, a fragment of the mAb13.2 Fab fragment, human IL-13 or a fragment of human IL-13, the human IL-13Rα1 polypeptide or a fragment of the human IL-13Ra1 polypeptide, the human IL-13/mAb13.2 Fab fragment complex, the human IL-13Ra1 polypeptide/human IL-13/mAb13.2 Fab fragment complex, or a fragment of either complex. Creation of an electron density map typically involves using information regarding the phase of the X-ray scatter. Phase information can be extracted, for example, either from the diffraction data or from supplementing diffraction experiments to complete the construction of the electron density map. Methods for calculating phase from X-ray diffraction data include, without limitation, multiwavelength anomalous dispersion (MAD), multiple isomorphous replacement (MIR), multiple isomorphous replacement with anomalous scattering (MIRAS), single isomorphous replacement with anomalous scattering (SIRAS), reciprocal space solvent flattening, molecular replacement, or a combination thereof. These methods generate phase information by making isomorphous structural modifications to the native protein, such as by including a heavy atom or changing the scattering strength of a heavy atom already present, and then measuring the diffraction amplitudes for the native protein and each of the modified cases. If the position of the additional heavy atom or the change in its scattering strength is known, then the phase of each diffracted X-ray can be determined by solving a set of simultaneous phase equations. The location of heavy atom sites can be identified using a computer program, such as SHELXS (Sheldrick, Institut Anorg. Chemie, Göttingen, Germany), and diffraction data can be processed using computer programs such as MOSFLM, SCALA, SOLOMON, and SHARP ("The CCP4 Suite: Programs for Protein Crystallography," Acta Crystallogr. Sect. D, 54:905-921, 1997; deLa Fortelle and Brigogne, Meth.

Enzym. 276:472-494, 1997). Upon determination of the phase, an electron density map of the complex can be constructed.

5

10

15

20

25

30

The electron density map can be used to derive a representation of a polypeptide, a complex, or a fragment of a polypeptide or complex by aligning a three-dimensional model of a polypeptide or complex (e.g., a complex containing a polypeptide bound to an antibody) with the electron density map. The alignment process results in a comparative model that shows the degree to which the calculated electron density map varies from the model of the previously known polypeptide or the previously known complex. The comparative model is then refined over one or more cycles (e.g., two cycles, three cycles, four cycles, five cycles, six cycles, seven cycles, eight cycles, nine cycles, ten cycles) to generate a better fit with the electron density map. A software program such as CNS (Brunger et al., Acta Crystallogr. <u>D54</u>:905-921, 1998) can be used to refine the model. The quality of fit in the comparative model can be measured by, for example, an R_{work} or R_{free} value. A smaller value of R_{work} or R_{free} generally indicates a better fit. Misalignments in the comparative model can be adjusted to provide a modified comparative model and a lower R_{work} or R_{free} value. The adjustments can be based on information relating to human IL-13, human IL-13Rα1, the mAb13.2 Fab fragment, the previously known polypeptide and/or the previously known complex. Such information includes, for example, estimated helical or beta sheet content, hydrophobic and hydrophilic domains, and protein folding patterns, which can be derived, for example, from amino acid sequence, homology modeling, and spectral data. As an example, in embodiments in which a model of a previously known complex of a polypeptide bound to a ligand is used, an adjustment can include replacing the ligand in the previously known complex with the mAb13.2 fragment. As another example, in certain embodiments, an adjustment can include replacing an amino acid in the previously known polypeptide with the amino acid in the corresponding site of human IL-13. When adjustments to the modified comparative model satisfy a best fit to the electron density map, the resulting model is that which is determined to describe the antibody or polypeptide or complex from which the X-ray data was derived (e.g., the human IL-13/mAb13.2 Fab fragment complex). Methods of such processes are disclosed, for example, in Carter and Sweet, eds., "Macromolecular Crystallography" in Methods in Enzymology, Vol. 277, Part B, New York: Academic Press, 1997, and

articles therein, e.g., Jones and Kjeldgaard, "Electron-Density Map Interpretation," p. 173, and Kleywegt and Jones, "Model Building and Refinement Practice," p. 208.

5

10

15

20

25

30

In some embodiments, a representation of the mAb13.2 Fab fragment can be derived by aligning a previously determined structural model of a different (but similar) antibody Fab fragment (e.g., a 2E8 Fab antibody fragment, Protein Databank Identification No. 12E8) with the electron density map of the mAb13.2 Fab fragment derived from X-ray diffraction data. A representation of a human IL-13/mAb13.2 Fab fragment complex can subsequently be derived by aligning the previously determined structural model of the mAb13.2 Fab fragment with the electron density map of the complex. A representation of a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex can subsequently be derived by aligning the previously determined structural model of the human IL-13/mAb13.2 Fab fragment complex with the electron density map of the human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex

A machine, such as a computer, can be programmed in memory with the structural coordinates of the mAb13.2 Fab fragment, a human IL-13/mAb13.2 Fab fragment complex, or a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 Fab fragment complex together with a program capable of generating a three-dimensional graphical representation of the structural coordinates on a display connected to the machine. Alternatively or additionally, a software system can be designed and/or utilized to accept and store the structural coordinates. The software system can be capable of generating a graphical representation of the structural coordinates. The software system can also be capable of accessing external databases to identify compounds (e.g., polypeptides) with similar structural features as human IL-13 or human IL-13Rα1, and/or to identify one or more candidate agents with characteristics that may render the candidate agent(s) likely to interact with human IL-13 or human IL-13Rα1. The software system can also be capable of accessing external databases to identify compounds that interact with human IL-13 or human IL-13Rα1 by virtue of the knowledge of the structure of the mAb13.2 Fab fragment, or human IL-13Rα1 polypeptide, and its interaction with human IL-13.

A machine having a memory containing structure data or a software system containing such data can aid in the rational design or selection of IL-13 ligands, such as agonists or antagonists. For example, such a machine or software system can aid in

the evaluation of the ability of an agent to associate with human IL-13, can aid in the modeling of compounds or proteins related by structural or sequence homology to human IL-13, or can aid in the evaluation of the ability of an agent to interfere with the bioactivity of human IL-13. A bioactivity of human IL-13can be any effect that the polypeptide elicits on or in a cell or tissue *in vivo* or *in vitro*. Exemplary bioactivities of human IL-13 are described herein, such as in Examples 1 and 2.

5

10

15

20

25

30

A machine having a memory containing structure data or a software system containing such data can aid in the rational design or selection of IL-13R α 1 ligands, such as agonists or antagonists. For example, such a machine or software system can aid in the evaluation of the ability of an agent to associate with a human IL-13R α 1 polypeptide, can aid in the modeling of compounds or proteins related by structural or sequence homology to a human IL-13R α 1 polypeptide, or can aid in the evaluation of the ability of an agent to interfere with the bioactivity of a human IL-13R α 1 polypeptide. A bioactivity of a human IL-13R α 1 polypeptide can be any affect that the polypeptide elicits on or in a cell or tissue *in vivo* or *in vit*ro. Exemplary bioactivities of human IL-13R α 1 are described herein, such as in Example 3.

The machine can produce a representation (e.g., a two dimensional representation or a three dimensional representation) of the mAb13.2 Fab fragment or a fragment of the mAb13.2 Fab fragment, human IL-13 or a fragment of human IL-13, a human IL-13Rα1 polypeptide or a fragment of a human IL-13Rα1 polypeptide, a human IL-13/mAb13.2 Fab fragment complex, a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 fab fragment complex, or a fragment of either complex. A software system, for example, can cause the machine to produce such information. The machine can include a machine-readable data storage medium including a data storage material encoded with machine-readable data. The machinereadable data can include structural coordinates of atoms of the mAb13.2 Fab fragment or atoms of a fragment of the mAb13.2 Fab fragment, atoms of human IL-13 or atoms of a fragment of human IL-13, atoms of a human IL-13/mAb13.2 Fab fragment complex, atoms of a human IL-13Ra1 polypeptide/human IL-13/mAb13.2 fab fragment complex, or atoms of either complex. Machine-readable storage media including data storage material can include conventional computer hard drives, floppy disks, DAT tape, CD-ROM, DVD, and other magnetic, magneto-optical, optical, and other media which may be adapted for use with a computer. The machine can also

have a working memory for storing instructions for processing the machine-readable data, as well as a central processing unit (CPU) coupled to the working memory and to the machine-readable data storage medium for the purpose of processing the machine-readable data into the desired three-dimensional representation. Finally, a display can be connected to the CPU so that the three-dimensional representation may be visualized by the user. Accordingly, when used with a machine programmed with instructions for using the data (e.g., a computer loaded with one or more programs of the sort described herein) the machine is capable of displaying a graphical representation (e.g., a two dimensional graphical representation, a three-dimensional graphical representation) of any of the polypeptides, polypeptide fragments, complexes, or complex fragments described herein.

A display (e.g., a computer display) can show a representation of the mAb13.2 Fab fragment or a fragment of the mAb13.2 Fab fragment, human IL-13 or a fragment of human IL-13, a human IL-13Rα1 polypeptide or a fragment of a human IL-13Rα1 polypeptide, a human IL-13/mAb13.2 Fab fragment complex, a human IL-13Rα1 polypeptide/human IL-13/mAb13.2 fab fragment complex, or a fragment of either complex. The representation can also include an agent bound to human IL-13 or the human IL-13Rα1 polypeptide, or the user can superimpose a three-dimensional model of an agent on the representation of human IL-13 or the human IL-13Rα1 polypeptide. The agent can be an agonist (e.g., a candidate agonist) of human IL-13 or human IL-13Rα1, or an antagonist (e.g., a candidate antagonist) of human IL-13 or human IL-13Rα1. In some embodiments, the agent can be a known compound or fragment of a compound. In certain embodiments, the agent can be a previously unknown compound, or a fragment of a previously unknown compound.

The user can inspect the resulting representation. A representation of the mAb13.2 Fab fragment or fragment of the mAb13.2 Fab fragment, human IL-13 or fragment of the human IL-13, the human IL-13Ra1 polypeptide or fragment of the human IL-13Ra1 polypeptide, the human IL-13/mAb13.2 Fab fragment complex, the human IL-13Ra1 polypeptide/human IL-13/mAb13.2 fab fragment complex, or the fragment of either complex can be generated, for example, by altering a previously existing representation of such polypeptides and polypeptide complexes. For example, there can be a preferred distance, or range of distances, between atoms of the antibody and atoms of the human IL-13 when considering a new representation of

5

10

15

20

25

30

a complex or fragment of a complex. In another example, there can be a preferred distance, or range of distances, between atoms of the human IL-13 and the human IL-13Rα1 polypeptide when considering a new representation of a complex or fragment of a complex. Distances longer than a preferred distance may be associated with a weak interaction between the agent and active site (e.g., the site of IL-13 receptor binding (such as to an IL-13Ra1 receptor polypeptide or an IL-4 receptor polypeptide) on the IL-13 polypeptide). Distances shorter than a preferred distance may be associated with repulsive forces that can weaken the interaction between the agent and the polypeptide. A steric clash can occur when distances between atoms are too short. A steric clash occurs when the locations of two atoms are unreasonably close together, for example, when two atoms are separated by a distance less than the sum of their van der Waals radii. If a steric clash exists, the user can adjust the position of the agent relative to the human IL-13 (e.g., a rigid body translation or rotation of the agent), until the steric clash is relieved. The user can adjust the conformation of the agent or of the human IL-13 in the vicinity of the agent in order to relieve a steric clash. Steric clashes can also be removed by altering the structure of the agent, for example, by changing a "bulky group," such as an aromatic ring, to a smaller group, such as to a methyl or hydroxyl group, or by changing a rigid group to a flexible group that can accommodate a conformation that does not produce a steric clash. Electrostatic forces can also influence an interaction between an agent and a polypeptide (such as the part of the polypeptide that interacts with a receptor polypeptide, e.g., a human IL-13Rα1 polypeptide or a human IL-4R polypeptide). For example, electrostatic properties can be associated with repulsive forces that can weaken the interaction between the agent and the IL-13 polypeptide. Altering the charge of the agent, e.g., by replacing a positively charged group with a neutral group can relieve electrostatic repulsion. Similar processes can be performed to design an agent that interacts with a human IL-13Rα1 polypeptide, such as in the vicinity of interaction between the human IL-13Rα1 polypeptide and human IL-13.

Forces that influence binding strength between the mAb13.2 Fab fragment and human IL-13 can be evaluated in the polypeptide/agent model. Likewise, forces that influence binding strength between human IL-13 and the human IL-13R α 1 polypeptide can be evaluated in the polypeptide/agent model. These can include, for example, hydrogen bonding, electrostatic forces, hydrophobic interactions, van der

Waals interactions, dipole-dipole interactions, π-stacking forces, and anion-π interactions. The user can evaluate these forces visually, for example by noting a hydrogen bond donor/acceptor pair arranged with a distance and angle suitable for a hydrogen bond. Based on the evaluation, the user can alter the model to find a more favorable interaction between the human IL-13, or human IL-13Rα1 polypeptide, and the agent. Altering the model can include changing the three-dimensional structure of the polypeptide without altering its chemical structure, for example by altering the conformation of amino acid side chains or backbone dihedral angles. Altering the model can include altering the position or conformation of the agent, as described above. Altering the model can also include altering the chemical structure of the agent, for example by substituting, adding, or removing groups. For example, if a hydrogen bond donor on the human IL-13 is located near a hydrogen bond donor on the agent, the user can replace the hydrogen bond donor on the agent with a hydrogen bond acceptor.

The relative locations of the agent and the human IL-13, or their conformations, can be adjusted to find an optimized binding geometry for a particular agent to the IL-13 polypeptide. Likewise, the relative locations of the agent and the human IL-13Rα1 polypeptide can be adjusted to find an optimized binding geometry for a particular agent to the human IL-13Rα1 polypeptide. An optimized binding geometry is characterized by, for example, favorable hydrogen bond distances and angles, maximal electrostatic attractions, minimal electrostatic repulsions, the sequestration of hydrophobic moieties away from an aqueous environment, and the absence of steric clashes. The optimized geometry can have the lowest calculated energy of a family of possible geometries for a human IL-13 /antibody complex, or a human IL-13/receptor complex. An optimized geometry can be determined, for example, through molecular mechanics or molecular dynamics calculations.

A series of representations of human IL-13 bound to different agents can be generated. Likewise, a series of representations of a human IL-13Rα1 polypeptide bound to different agents can be generated. A score can be calculated for each representation. The score can describe, for example, an expected strength of interaction between human IL-13 and the agent. The score can reflect one of the factors described above that influence binding strength. The score can be an

aggregate score that reflects more than one of the factors. The different agents can be ranked according to their scores.

Steps in the design of the agent can be carried out in an automated fashion by a machine (e.g., a computer). For example, a representation of human IL-13, or a human IL-13Ra1 polypeptide can be programmed in the machine, along with representations of candidate agents. The machine can find an optimized binding geometry for each of the candidate agents to the site of receptor binding, and calculate a score to determine which of the agents in the series is likely to interact most strongly with human IL-13, or the human IL-13Ra1 polypeptide.

5

10

15

20

25

30

A software system can be designed and/or implemented to facilitate these steps. Software systems (e.g., computer programs) used to generate representations or perform the necessary fitting analyses include, but are not limited to: MCSS, Ludi, QUANTA, Insight II, Cerius2, CHARMm, and Modeler from Accelrys, Inc. (San Diego, CA); SYBYL, Unity, FleXX, and LEAPFROG from TRIPOS, Inc. (St. Louis, MO); AUTODOCK (Scripps Research Institute, La Jolla, CA), GRID (Oxford University, Oxford, UK); DOCK (University of California, San Francisco, CA); and Flo⁺ and Flo99 (Thistlesoft, Morris Township, NJ). Other useful programs include ROCS, ZAP, FRED, Vida, and Szybki from Openeye Scientific Software (Santa Fe, NM); Maestro, Macromodel, and Glide from Schrodinger, LLC (Portland, OR); MOE (Chemical Computing Group, Montreal, Quebec), Allegrow (Boston De Novo, Boston, MA), CNS (Brunger, et al., Acta Crystall. Sect. D 54:905-921, 1997) and GOLD (Jones et al., J. Mol. Biol. 245:43-53, 1995. The structural coordinates can also be used to visualize the three-dimensional structure of human IL-13 using MOLSCRIPT, RASTER3D, or PYMOL (Kraulis, J. Appl. Crystallogr. 24: 946-950, 1991; Bacon and Anderson, J. Mol. Graph. 6: 219-220, 1998; DeLano, The PYMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA).

The agent can, for example, be selected by screening an appropriate database, can be designed *de novo* by analyzing the steric configurations and charge potentials of an unbound human IL-13, or unbound human IL-13Rα1 polypeptide, in conjunction with the appropriate software systems, and/or can be designed using characteristics of known cytokine ligands. The agent can be tested for an ability to block binding of IL-13 to an IL-4R polypeptide, such as IL-4Rα, or an IL-Rα1 polypeptide. An agent can be designed for binding to human IL-13 or to the human

IL-13Rα1 polypeptide. The method can be used to design or select agonists or antagonists of human IL-13 or a human IL-Rα1 polypeptide. A software system can be designed and/or implemented to facilitate database searching, and/or agent selection and design.

5

10

15

20

25

Once an agent has been designed or identified, it can be obtained or synthesized and further evaluated for its affect on human IL-13 activity or on human IL-13R α 1 activity. The agent can be evaluated by contacting it with human IL-13 and assaying IL-13 bioactivity, or by contacting it with a human IL-13Ra1 polypeptide and assaying IL-13Ra1 bioactivity. A method for evaluating the agent can include an activity assay performed in vitro or in vivo. An activity assay can be a cell-based assay, for example. Depending upon the action of the agent on human IL-13 or the human IL-13Rα1 polypeptide, the agent can act either as an agonist or antagonist of human IL-13 or IL-13Rα1 activity. An agonist will cause human IL-13 or human IL-13Rα1 polypeptide to have the same or similar activity, and an antagonist will inhibit a normal function of human IL-13 or the human IL-13Rα1 polypeptide. An agent can be contacted with the human IL-13 in the presence of an anti-IL-13 antibody (e.g., mAb13.2 or mAb13.2 Fab) or a human IL-13 receptor (e.g., an IL-4R polypeptide, such as a human IL-4R α polypeptide, or an IL-13R polypeptide, such as a human IL-13Ra1 polypeptide) to determine whether or not the agent inhibits binding of the antibody or the receptor to the human IL-13 polypeptide. In some embodiments, the agent will inhibit binding of one kind of receptor to human IL-13, but will not inhibit binding of another kind of receptor. For example, an agent can inhibit binding of a human IL-13 polypeptide to a human IL-4R polypeptide (e.g., the IL-4R α chain), but not a human IL-13R α 1 polypeptide. Likewise, a different agent can inhibit binding of human IL-13 to an IL-13R α 1 polypeptide but not to a human IL-4R polypeptide. In another embodiment, the agent will inhibit binding of the IL-13 polypeptide to a human IL 4R polypeptide (e.g., the IL-4R α chain) and a human IL-13R α 1 polypeptide. A crystal containing human IL-13 bound to the identified agent can be grown and the structure determined by X-ray crystallography. A second agent can be designed or identified based on the interaction of the first agent with human IL-13. Various molecular analysis and rational drug design techniques are further disclosed in, for example, U.S. Patent Nos. 5,834,228, 5,939,528 and 5,856,116, as well as in PCT Application No. PCT/US98/16879, published as WO 99/09148.

30

While certain embodiments have been described, other embodiments are also contemplated.

As an example, while embodiments involving human IL-13, the mAb13.2 Fab fragment, and a human IL-13Rα1 polypeptide have been described, more generally, any IL-13 polypeptide, any IL-13Rα1 polypeptide, and/or any anti-IL-13 antibody can be used.

5

10

15

20

25

30

As an example, while embodiments have been described that involve human IL-13 and a human IL-13Rα1 polypeptide, more generally any IL-13 polypeptide and any IL-13Rα1 polypeptide can be used. For example, an IL-13 polypeptide or an IL-13Rα1 polypeptide can originate from a nonmammalian or mammalian species. Exemplary nonhuman mammals include, a nonhuman primate (such as a monkey or ape), a mouse, rat, goat, cow, bull, pig, horse, sheep, wild boar, sea otter, cat, or dog. Exemplary nonmammalian species include chicken, turkey, shrimp, alligator, or fish.

Further, an IL-13 polypeptide or an IL-13Rα1 polypeptide can generally be a full-length, mature polypeptide, including the full-length amino acid sequence of any isoform or processed form of an IL-13 polypeptide or IL-13Rα1 polypeptide. An isoform is any of several multiple forms of a protein that differ in their primary structure. Full-length IL-13 can be referred to as the precursor form of the protein. Full-length IL-13 has a signal peptide cleavage site. The IL-13 polypeptide can be the processed polypeptide, such as following cleavage of the signal peptide.

A human IL-13 polypeptide typically has at least one active site for interacting with a receptor polypeptide (e.g., an IL-4R polypeptide, an IL-13α1 polypeptide). An IL-13 polypeptide can include three active sites for interacting with two different receptor polypeptides. An anti-IL-13 antibody can be capable of binding to at least one of the active sites. In general, an active site can include a site of receptor polypeptide binding, or a site of phosphorylation, glycosylation, alkylation, acylation, or other covalent modification. An active site can include accessory binding sites adjacent or proximal to the actual site of binding that may affect activity upon interaction with the ligand. An active site of a human IL-13 polypeptide can include amino acids of SEQ ID NO:4. For example, an active site of a human IL-13 polypeptide can include one or more of amino acids Ser7, Thr8, Ala9, Glu12, Leu48, Glu49, Ile52, Asn53, Arg65, Ser68, Gly69, Phe70, Cys71, Pro72, His73, Lys74, and Arg86 as defined by the amino acid sequence of SEQ ID NO:4 (FIG. 2B). In some

embodiments, an agent can interact to within about 2.0Å or less (*e.g.*, about 1.5Å or less, about 1.0Å or less) of one or more amino acids Glu49, Asn53, Gly69, Pro72, His73, Lys74, and Arg86 of IL-13, as defined by the amino acid sequence of SEQ ID NO:4. In one alternative, an active site of a human IL-13 polypeptide can include one or more of amino acids Arg11, Glu12, Leu13, Ile14, Glu15, Lys104, Lys105, Leu106, Phe107, and Arg108 as defined by the amino acid sequence of SEQ ID NO:4. In another alternative, an active site of a human IL-13 polypeptide can include one or more of amino acids Thr88, Lys89, Ile90, and Glu91 as defined by the amino acid sequence of SEQ ID NO:4. A human IL-13 polypeptide can include one, two, or all three of the active sites described above.

A human IL-13Rα1 polypeptide typically has at least one active site for interacting with a polypeptide ligand (e.g., a human IL-13 polypeptide). An anti-IL-13Rα1 antibody can be capable of binding to at least one of the active sites. In general, an active site can include a site of polypeptide ligand binding, or a site of phosphorylation, glycosylation, alkylation, acylation, or other covalent modification. An active site can include accessory binding sites adjacent or proximal to the actual site of binding that may affect activity upon interaction with the ligand. An active site of a human IL-13Rα1 polypeptide can include amino acids of SEQ ID NO:12. For example, an active site of a human IL-13Rα1 polypeptide can include one or more of amino acid residues Ile254, Ser255, Arg256, Lys318, Cys320, and Tyr321 as defined by the amino acid sequence of SEQ ID NO:12. In one alternative, an active site of a human IL-13Rα1 polypeptide can include one or more of amino acid residues Lys76, Lys77, Ile78, and Ala79 as defined by the amino acid sequence of SEQ ID NO:12. A human IL-13Rα1 polypeptide can include one or both of these active sites.

The numbering of the amino acids of a human IL-13 polypeptide, a human IL-13Rα1 polypeptide, and the heavy and light chains of an anti-IL-13 antibody, such as mAb13.2 Fab, may be different than that set forth here, and may contain certain conservative amino acid substitutions, additions or deletions that yield the same three-dimensional structure as those defined by Table 10, ± an rmsd for backbone atoms of less than 1.5 Å, or by Table 11, ± an rmsd for backbone atoms of less than 1.5 Å, or by Table 12, ± an rmsd for backbone atoms of less than 1.5 Å. For example, the numbering of a human IL-13 processed polypeptide may be different than that set forth in FIG. 2B, and the sequence of the IL-13 may contain conservative amino acid

substitutions but yield the same structure as that defined by the coordinates of Table 11 and illustrated in FIG. 3 or the same structure as that defined by the coordinates of Table 12 and illustrated in FIGs. 15,16 and 17. Corresponding amino acids and conservative substitutions in other isoforms or analogs are easily identified by visual inspection of the relevant amino acid sequences or by using commercially available homology software programs (e.g., MODELLAR, MSI, San Diego, CA).

5

10

15

20

25

30

An analog is a polypeptide having conservative amino acid substitutions. Conservative substitutions are amino acid substitutions that are functionally or structurally equivalent to the substituted amino acid. A conservative substitution can include switching one amino acid for another with similar polarity, or steric arrangement, or belonging to the same class (e.g., hydrophobic, acidic or basic) as the substituted amino acid. Conservative substitutions include substitutions having an inconsequential effect on the three-dimensional structure of an anti-IL-13 antibody or a human IL-13 polypeptide/anti-IL-13 antibody complex or a human IL-13Ra1 polypeptide/human IL-13 polypeptide/anti-IL-13 antibody complex with respect to identification and design of agents that interact with the polypeptide (e.g., an IL-13 polypeptide, an IL-13Ra1 polypeptide), as well as for molecular replacement analyses and/or for homology modeling.

While examples have been described in which an anti-IL-13 antibody is derived from a mouse, more generally any anti-IL-13 antibody can be used. For example, an anti-IL-13 antibody can originate from a human, mouse, rat, hamster, rabbit, goat, horse, or chicken.

As another example, while embodiments have been described in which an anti-IL-13 antibody is generated by a certain method, other methods may also be used. For example, an anti-IL-13 antibody can be generated by first preparing polyclonal antisera by immunization of female BALB/c mice with recombinant or native human IL-13. Sera can be screened for binding to human IL-13 by an assay such as ELISA. Splenocytes from a mouse demonstrating high serum antibody titers can be fused with a myeloma cell line, such as the P3X63_AG8.653 myeloma cell line (ATCC, Manassas, VA), and plated in selective media. Fusions can be isolated following multiple rounds of subcloning by limiting dilution and the fusions can be screened for the production of antibodies that have a binding affinity to human IL-13.

An anti-IL-13 antibody can be polyclonal or monoclonal. An antibody that binds IL-13 can be a fragment of an antibody, such as a Fab fragment.

5

10

15

20

25

30

In general, intact antibodies, also known as immunoglobulins, are tetrameric glycosylated proteins composed of two light (L) chains of approximately 25 kDa each and two heavy (H) chains of approximately 50 kDa each. Each light chain is composed of an N-terminal variable (V) domain (VL) and a constant (C) domain (CL). Each heavy chain is composed of an N-terminal V domain (VH), three or four C domains (CHs), and a hinge region. The CH domain most proximal to VH is designated as CH1. The VH and VL domain consist of four regions of relatively conserved sequence called framework regions, which form a scaffold for three regions of hypervariable sequence (complementarity determining regions, CDRs). The CDRs contain most of the residues responsible for specific interactions with the antigen. CDRs are referred to as CDR1, CDR2, and CDR3. Accordingly, CDR constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on the light chain are referred to as L1, L2, and L3 (see Table 4, for example). The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of antibody structure, see Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, eds. Harlow et al. (1988). The smallest antigen-binding fragment is the Fv (Fragment variable), which consists of the VH and VL domains. The Fab (fragment antigen binding) fragment consists of the VH-CH1 and VL-CL domains covalently linked by a disulfide bond between the constant regions.

Accordingly, in one aspect, this application features an antibody or an antigenbinding fragment thereof, that binds to and/or neutralizes, IL-13. The antibody or fragment thereof can also be a human, humanized, chimeric, or *in vitro*-generated antibody. In one embodiment, the anti-IL-13 antibody or fragment thereof is a humanized antibody. The antibody includes one or more CDRs that has a backbone conformation of a CDR described in Table 10 ± a root mean square deviation (RMSD) of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms, Table 11 ± an RMSD of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms, or Table 12 ± an RMSD of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms. For example, one, two, or three of the CDRs of the light chain variable domain (e.g., particularly in CDR1, or in at least two CDRs, e.g., CDR1 and CDR3, CDR1 and CDR2, or in all three CDRs) have an RMSD of not

more than 1.5, 1.2, 1.1, or 1.0 Angstroms, relative to those structures. In one embodiment, the antibody or antigen binding fragment thereof includes a variable domain that, as a whole, has a backbone conformation of a CDR described in Table 10 ± a root mean square deviation (RMSD) of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms, Table 11 ± an RMSD of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms, or Table 12 ± an RMSD of not more than 1.5, 1.2, 1.1, or 1.0 Angstroms. The variable domain can also be at least at least 70%, 80%, 85%, 87%, 90%, 92%, 93%, 95%, 96%, 97%, 98%, or 99% identical to an antibody described herein, e.g., in the CDR region and/or framework regions. The antibody can be used, e.g., in a method of treatment described herein.

5

10

15

20

25

30

Anti-IL-13 antibodies are disclosed, for example, in U.S. Provisional Patent Application No. 60/578,473, filed June 9, 2004, U.S. Provisional Patent Application No. 60/581,375 filed June 22, 2004, and U.S. Patent Application No. _____ [Attorney Docket: AM101493] (Kasaian *et al.*), filed on even date herewith, each of which is incorporated herein by reference.

The following examples are illustrative and are not intended as limiting.

EXAMPLES

Example 1. Generation and functional analysis of mAb13.2. To generate an antibody that recognizes IL-13, polyclonal antisera were prepared by immunization of female BALB/c mice with recombinant human IL-13 (R&D Systems, Minneapolis, MN). Sera were screened for binding to human IL-13 by ELISA. Splenocytes from a mouse demonstrating high serum antibody titers were fused with the P3X63_AG8.653 myeloma cell line (ATCC, Manassas, VA), and plated in selective media. Fusions were isolated with three rounds of subcloning by limiting dilution and screened for the production of antibodies that had a binding affinity to human IL-13. Three monoclonal antibodies were capable of binding IL-13 and neutralizing and/or inhibiting its bioactivity. The monoclonal antibody mAb13.2 (IgG1κ) was the subject of further analysis.

Several assays were performed to confirm that the murine monoclonal antibody mAb13.2 binds with high affinity and specificity to human IL-13. First, Biacore analysis confirmed that mAb13.2 had a rapid on-rate, slow off-rate, and high affinity for binding to human IL-13 (FIG. 4).

tested, including native IL-13 derived from cord blood T cells (FIG. 5). To perform the assays with recombinant human IL-13, ELISA plates were coated with anti-FLAG M2 antibody. The binding of recombinant FLAG-tagged human IL-13 was detected with biotinylated mAb13.2 and streptavidin-peroxidase. This binding could be competed with native human IL-13 isolated from mitogen activated, TH2-skewed, cord blood mononuclear cells and with recombinant human IL-13 (FIG. 5). Recombinant murine IL-13 could not compete for binding with mAb13.2. Unlabeled mAb13.2 and unlabeled mAb13.2 Fab were also able to compete for binding to the flag-tagged IL-13 with biotinylated mAb13.2 (FIG. 11A). The IL-13 specific nonneutralizing monoclonal antibody mAb13.8 could not compete with biotinylated mAb13.2 binding.

The ability of mAb13.2 to neutralize IL-13 bioactivity *in vitro* was confirmed using a TF1 bioassay, human peripheral blood monocytes, and human peripheral blood B cells. In the presence of suboptimal concentrations of IL-13, the proliferation of cells of the human erythroleukemic TF1 cell line can be made IL-13-dependent. The TF1 cell line was starved for cytokine, then exposed to a suboptimal concentration (3 ng/mL) of recombinant human IL-13 in the presence of varying concentrations of purified mouse mAb13.2 or the soluble inhibitor rhuIL-13Rα2. Cells were incubated for three days, and ³H-thymidine incorporation over the final four hours was determined by liquid scintillation counting. At suboptimal IL-13 concentrations (3 ng/mL), mAb13.2 caused a dose-dependant inhibition of TF1 proliferation (FIG. 6 and FIG. 12A). The IC₅₀ for this effect, 250 pM, is comparable to the IC₅₀ of rhuIL-13Rα2. The mAb13.2 Fab also inhibited CD23 expression human PBMCs.

Human PBMCs respond to IL-13 or IL-4 by increasing cell-surface expression of low affinity IgE receptor (CD23) in a dose-dependent manner (see FIG. 7A). Monocytes (CD11b⁺) were therefore used to confirm the ability of mAb13.2 to neutralize IL-13 bioactivity. CD11b⁺ monocytes were treated for 12 hours with 1 ng/mL recombinant human IL-13 (FIG. 7B) or IL-4 (FIG. 7C) in the presence of the indicated concentration of purified mouse mAb13.2. Cells were then harvested and stained with CyChrome-labeled anti-CD11b antibodies and PE-labeled anti-CD23 antibodies. Labeling was detected by flow cytometry. The mAb13.2 inhibited IL-13-

induced CD23 expression (FIG. 7B; see also FIG. 12B), but did not inhibit IL-4-induced CD23 expression (FIG. 7C).

5

10

15

20

25

30

The effects of mAb13.2 were also tested in a model of IL-13-induced IgE production by human peripheral blood B cells. In response to IL-13 and the T cell mitogen, phytohemaglutinin (PHA), human B cells undergo an Ig isotype switch recombination to IgE, resulting in higher IgE levels in culture. This effect can be seen as an increased frequency of IgE-producing B cells. To examine the effect of mAb13.2 on IL-13-dependent IgE production in B cells, PBMCs from a healthy donor were cultured in microtiter wells in the presence of autologous irradiated PBMC as feeders, and stimulated with PHA and IL-13. After 3 weeks, each well was assayed for IgE by ELISA. PHA + IL-13 increased the frequency of IgE-producing B cell clones. This effect was inhibited by mAb13.2, but not by mAb13.8 (binds IL-13 but does not neutralize), or by irrelevant mouse IgG:mAb13.2 efficiently blocked this effect of IL-13 on cultured B cells (FIG. 8).

Finally, the ability of mAb13.2 to block an early cellular response to IL-13 was tested by examining effects on signal transducer and activator of transcription (STAT) 6 phosphorylation. Upon IL-13 interaction with its cell surface receptor, STAT6 dimerizes, becomes phosphorylated, and translocates from the cytoplasm to the nucleus, where it activates transcription of cytokine-responsive genes (Murata et al., J. Biol. Chem. 270:30829-36, 1995). Specific antibodies against phosphorylated STAT6 can detect this activation by Western blot or flow cytometry within 30 min of IL-13 exposure. To test the effect of mAb13.2 on IL-13 dependent STAT6 phosphorylation, cells of the HT-29 human epithelial cell line were treated with the indicated concentration of IL-13 for 30 minutes at 37°C. Phospho-STAT6 was detected in cell lysates by Western blot (FIG. 9A) or by flow cytometry (FIGs. 9B and 9C). In the experiment illustrated in FIG. 9B, cells were treated with a saturating concentration of IL-13 for 30 minutes at 37°C and then fixed, permeabilized, and stained with an Alexa-Fluor 488-labeled mAb against phospho-STAT6. In the experiment illustrated in FIG. 9C, cells were treated with a suboptimal concentration of IL-13 in the presence or absence of an antibody, fixed and stained as described above. Flow cytometry results revealed that mAb13.2 blocked STAT6 phosphorylation, whereas mAb13.8 and the control mouse IgG1 had no effect.

Example 2: Murine monoclonal antibody mAb13.2 neutralizes IL-13 bioactivity in vivo. The ability of mouse mAb13.2 to neutralize IL-13 activity in vivo was tested using a model of antigen-induced airway inflammation in Cynomolgus monkeys naturally allergic to Ascaris suum. In this model, challenge of an allergic monkey with Ascaris suum antigen results in an influx of inflammatory cells, especially eosinophils, into the airways. To test the ability of mAb13.2 to prevent this influx of cells, the antibody was administered 24 hours prior to challenge with Ascaris suum antigen. On the day of challenge, a baseline lavage sample was taken from the left lung. The antigen was then instilled intratracheally into the right lung. Twentyfour hours later, the right lung was lavaged, and the bronchial alveolar lavage (BAL) fluid from animals treated intravenously with 8 mg/kg ascites purified mAb13.2 were compared to BAL fluid from untreated animals. Eosinophil counts increased in 4 of 5 untreated animals following challenge, as compared to 1 of 6 animals treated with mAb13.2 (FIG. 10). The percent BAL eosinophils was significantly increased for the untreated group (p<0.02), but not for the antibody-treated group. These results confirmed that mAb13.2 effectively prevents airway eosinophilia in allergic animals challenged with an allergen.

5

10

15

20

25

30

The average serum half-life of mouse mAb13.2 was less than one week in the monkeys. At the 3-month time point, when all traces of mAb13.2 would have been gone from the serum, mAb13.2-treated animals were rechallenged with *Ascaris suum* to confirm the *Ascaris* responsiveness of those individuals. Two of six monkeys in the treated group were found to be nonresponders.

Example 3: Murine monoclonal antibody mAb13.2 binds to a region of IL-13 that normally binds to IL-4Rα. IL-13 bioactivity is mediated through a receptor complex consisting of the IL-13Rα1 and IL-4Rα chains. The cytokine first undergoes a relatively low affinity interaction with IL-13Rα1 on the surface of cells. This complex then recruits IL-4Rα to form the high affinity receptor (Zurawski *et al.*, *EMBO J.* 12:2663, 1993; Zurawski *et al.*, *J. Biol. Chem.* 270:23869, 1995). Signaling through the IL-4Rα chain involves phosphorylation of STAT6, which can be monitored as one of the earliest cellular responses to IL-13 (Murata *et al.*, *J. Biol. Chem.* 270:30829-36, 1995). Several approaches, such as epitope mapping, X-ray crystallography, and further Biacore analysis, were used to elucidate the interaction

between murine mAb13.2 antibody and human IL-13, and further determine the basis for the IL-13 neutralizing effects of this antibody.

5

10

15

20

25

30

Epitope mapping and X-ray crystallography analysis indicated that mAb13.2 binds to the C-terminal region of IL-13 helix C, i.e., the IL-4R binding region (see below). To confirm this analysis, the interaction between mAb13.2 and IL-13 was analyzed with a Biacore chip. This analysis was done in several formats. First, IL-4R was bound to the Biacore chip, and a complex of IL-13 prebound to IL-13Rα1 was flowed over the chip. In the absence of mAb13.2, formation of a tri-molecular complex could be demonstrated. However, addition of mAb13.2 to the mixture of IL-13 prebound to IL-13Rα1 prevented binding to IL-4R on the chip. Second, mAb13.2 was immobilized on the chip and bound IL-13 was added in solution phase. Although IL-13Rα1 was found to interact with the bound IL-13, no interaction of IL-4R with bound IL-13 was detected. Third, it was demonstrated that mAb13.2 could bind to IL-13 that was bound to IL-13Rα1-Fc or IL-13Rα1 monomer immobilized on the chip. These observations indicate that mAb13.2 does not inhibit IL-13 interaction with IL-13Rα1 but disrupts the interaction of IL-13Rα1 with IL-4Rα. This disruption is thought to prevent formation of the IL-13 signaling complex. These observations provided a model for the neutralization activity of this antibody.

The *in vitro* demonstration of a complex of mAb13.2 with IL-13 and IL-13Ra1 suggests that mAb13.2 could potentially be bound to receptor-associated IL-13 at the cell surface. In order to determine whether cell-bound mAb13.2 could be detected under conditions of saturating receptor-bound IL-13, the HT-29 human epithelial cell line was loaded with IL-13 at 4°C and tested for antibody binding. No cell-bound mAb could be detected by flow cytometry. This observation, together with the demonstration that mAb13.2 is a potent neutralizer of IL-13 bioactivity, indicated that normal functioning of the IL-13 receptor is disrupted by mAb13.2.

Example 4: Crystal structure of anti-IL-13 antibody mAb13.2 Fab fragment. Monoclonal antibody mAb13.2 from mouse ascites was purified using a Protein A affinity column. The mouse ascites was diluted 2X with Protein A binding buffer (50mM Tris-HCl, 500mM NaCl, pH 8.0) and filtered through a 0.2 mm filter unit. The filtered solution was applied to a Poros Protein A column (Applied Biosystems, Framingham, MA) equilibrated with the binding buffer at 4°C. The column was

washed with the binding buffer, and the IgG was eluted using 100 mM Glycine (pH 3.0). The eluted IgG was neutralized immediately with 1M Tris-HCl at pH 8.0.

5

10

15

20

25

30

The Fab fragment was prepared by digesting the IL-13 monoclonal IgG with activated papain (Sigma, St. Louis, MO). Papain was activated by diluting the stock enzyme solution with the digestion buffer (50mM Tris-HCl, 50mM NaCl, 20mM EDTA and 20 mM Cysteine, pH 7.5) on ice to give a final papain concentration of 1mg/mL. Cleavage of IgG was performed by incubation with activated papain at a ratio of 100:1 w/w in papain digestion buffer for 7-8 hours at 37°C. The reaction was stopped by dialysis in 50 mM Tris-HCl (pH 7.5) overnight at 4°C. The dialyzed solution was loaded onto a tandem Poros HS/Protein A column equilibrated with 50 mM Tris-HCl (pH 7.5) at 4°C to remove the papain and the Fc fragment. The flowthrough of the tandem columns containing the Fab fragment was then loaded onto a hydroxylapatite column (Bio-Rad, Hercules, CA) equilibrated with 1 mM Sodium Phosphate and 20 mM Tris-HCl, pH 7.5, and eluted with a 1 mM to 125 mM Sodium Phosphate gradient at 25°C. The eluted Fab fragment solution was dialyzed overnight in 50 mM Tris-HCl (pH 8.0) at 4°C. After dialysis, the solution was loaded onto a Poros HQ column equilibrated with 50 mM Tris-HCl (pH 8.0). The flow-through was collected and ammonium sulfate was adjusted to a final concentration of 1.5 M before loading onto a Polypropyl Aspartamide column (Nest Group, Southborough, MA). The Fab fragment was eluted from the column with a 1.5 to 0 M ammonium sulfate gradient at 25°C. The protein was dialyzed in 50 mM Tris-HCl (pH 8.0) at 4°C.

The isolated mAb13.2 antibody and mAb13.2 Fab fragment were tested for their ability to inhibit IL-13 bioactivity. In one assay, purified mAb13.2 and mAb13.2 Fab fragment were tested for their ability to compete for binding with biotinylated mAb13.2 in an ELISA assay. ELISA plates were coated with anti-FLAG M2 antibody. The binding of FLAG-human IL-13 was detected with biotinylated mAb13.2 and streptavidin-peroxidase. Both the intact antibody and the Fab fragment were able to compete for binding, while the IL-13-specific nonneutralizing antibody mAb13.8 could not compete for binding (FIGs. 11A and 11B).

In other assays, purified mAb13.2 and mAb13.2 Fab fragment were tested for their ability to inhibit IL-13-dependent TF1 cell proliferation and IL-13-dependent CD23 expression on PBMCs. TF1 cells were incubated with 3 ng/mL recombinant human IL-13 as described in Example 1. The cells were treated with increasing

concentrations of purified mAb13.2 or mAb13.2 Fab, and cell proliferation was monitored as described. Both the intact antibody and the Fab fragment inhibited IL-13-dependent TF1 cell proliferation (FIG. 12A). To test the effect of the isolated proteins on CD23 expression, PBMCs were incubated with 1 ng/mL recombinant human IL-13 as described in Example 1. The monocytes were treated with increasing concentrations of mAb13.2 or mAb13.2 Fab, and CD23 expression was monitored by flow cytometry as described above. The purified intact antibody and the purified Fab fragment were each capable of inhibiting IL-13-dependent CD23 expression (FIG. 12B).

5

10

15

20

For crystallization, purified mAb13.2 Fab was prepared at a concentration of 12.6 mg/mL in a solution of 50 mM Tris (pH 8.0) and 50 mM NaCl. One microliter of protein solution was mixed with 1 μ l of crystallization solution (20% PEG 3350, 200 mM K₂SO₄) (Hampton Research, Aliso Viejo, CA), and the crystals formed at about 18° C by the hanging drop method of vapor diffusion.

Data from crystals for the mAb13.2 Fab fragment were collected on beamline 5.0.2 at the Advanced Light Source (ALS) (Berkley, CA) using an ADSC Quantum-4 CCD detector. A single crystal, vitrified at -180°C, was used for each data set. The data were processed using DENZO and Scalepack (Otwinowski and Minor, *Methods Enzymol.* 276: 307-326, 1997) and the statistics from data collection and data refinement are shown in Tables 1 and 2 below, respectively.

Table 1. Statistics for Data Collection and Phase Determination

Data Collection	mAb13.2 Fab	mAb13.2/IL-13 Fab
Crystal system	Orthorhombic	Cubic
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 3
Unit cell dimensions	a=54.442, b=97.961,	a=b=c=125.261,
	c=108.469, α = β = γ =90.0°	$\alpha=\beta=\gamma=90.0^{\circ}$
Data collection .	-180°C	-180°C
temperature		
Number of crystals	1	1
Radiation Source	ALS, Berkeley, CA	ALS, Berkeley, CA
Wavelength (Å)	$\lambda = 1.0 \text{ Å}$	$\lambda = 1.0 \text{ Å}$
Resolution range(Å)	50-2.8 Å	50-1.8 Å
Maximum resolution (Å)	2.8 Å	1.8 Å
R _{merge} ^a (%)	8.2% (38.4%)	6.7% (48.6%)
% complete	100% (100%)	99.9% (99.0%)
total reflections	98,254	561,539
unique reflections	14,903	57,656
$I/\sigma(I)$	23.3 (4.8)	26.6 (2.8)

^a $R_{\text{merge}} = \sum |I_h - \langle I_h \rangle| / \sum I_h$, where $\langle I_h \rangle$ is the average intensity over symmetry equivalents. Number in parentheses reflects statistics for the last shell.

Table 2. Structure Refinement Statistics

5

10

15

20

Data Collection	mAb13.2Fab	mAb13.2 Fab/IL-13
Model for molecular replacement	2E8 Fab (12E8.pdb)	mAb13.2 Fab; soln.
		structure of IL-13 ^b
Maximum Resolution (Å)	2.8 Å	1.8 Å
$R_{work}^{a}(\%)$	25.9 %	20.3 %
R _{free} (%)	30.7 %	23.5 %

 $^aR_{work} = \sum ||F_{obs}| - |F_{calc}|| \sum |F_{obs}|$, R_{free} is equivalent to R_{work} , but calculated for a randomly chosen 5% of reflections that are omitted from the refinement process.

^bMoy et al., J. Mol. Biol. <u>310</u>:219-230, 2001.

The structure of mAb13.2 Fab was solved by molecular replacement using the program AMORE (Navaza, *Acta Crystallogr*. <u>A50</u>:157-163, 1994). The structure of the monoclonal 2E8 Fab antibody fragment (PDB code 12E8) was used as the probe. Prior to refinement, 5% of the data were randomly selected and designated as an R_{free} test set to monitor the progress of the refinement. The structure of the mAb13.2 Fab was then rebuilt within QUANTA (Accelrys, San Diego, CA) utilizing a series of omit maps. Following six cycles of refinement with CNS (Brunger *et al.*, *Acta Crystallogr*. <u>D54</u>: 905-921, 1998) and rebuilding using QUANTA, the refinement converged with a model that contained the mAb13.2 Fab and 41 water molecules at

an R_{cryst} of 25.9% and an R_{free} of 30.7%. The structure refinement statistics are shown in Table 2. The crystal structure coordinates are shown in Table 10.

5

10

15

20

25

30

Example 5. Crystal structure of mAb13.2 Fab/IL-13 Complex. Recombinant IL-13 (Swiss-Prot Accession Number P35225) and mAb13.2 Fab were purified for crystallization. Recombinant IL-13 was purified as follows. *E. coli* K12 strain GI934 was used for expression of Human IL-13. GI934 is an ilvG derivative of GI724 (LaVallie *et al.*, *Bio/Technology* 11:187-193, 1993) that contains specific deletions in the two *E. coli* proteases *omp*T and *omp*P. Specifically, this strain contains the bacteriophage I repressor (cI) gene stably integrated into the chromosomal ampC locus. The cI gene is transcriptionally regulated by a synthetic *Salmonella typhimurium* trp promoter. *E.coli* expression vector pAL-981, a derivative of pAL-781 (Collins-Racie, *et al.*, *Bio/Technology* 13:982-987, 1995), was used as the basis for construction of a Human IL-13 expression vector.

A cDNA of the human IL-13 gene was generated from synthetic oligonucleotide duplexes designed to possess silent changes from human IL-13 cDNA (Accession number NM_002188) that was optimized for E.coli codon usage and increased AT content at the 5' end of the gene. Three sets of complementary duplexes of synthetic oligonucleotides corresponding to amino acids Gly21 to Asn132 of the human IL-13 amino acid (SEQ ID NO:3) (FIG. 2A) were used to construct the mature region of human IL-13, which is the amino acid sequence of processed IL-13 (SEQ ID NO:4). The E. coli optimized complementary oligonucleotides of duplex 1 were 5'-TATGGGTCCAGTTCCACCATCTACTGCTCTGCGTGAACTGATTGAAGAACTGGT TAACATCACCCAGAACCAGAAAGCTCCGCTGTGTAACGGTTCCATGGTTTGGTCCAT CAACCTG-3' (SEQ ID NO:6) with complement 5'-CAGCGGTCAGGTTGATGGACCAAACCATGGAACCGTTACACAGCGGAGCTTTCTG GTTCTGGGTGATGTTAACCAGTTCTTCAATCAGTTCACGCAGAGCAGTAGATGGTGG (SEQ ID NO:7); duplex 2 were AACTGGACCCA-3 5'-ACCGCTGGTATGTACTGTGCAGCTCTGGAATCCCTGATCAACGTTTCTGGTTGC TCTGCTATCGAAAAAACCCAGCGTATGCTGTCTGGTTTCTGCCCGCACAAAGTTTCC GCTGGTCAG-3' (SEQ ID NO:8) with complement 5'-GAGGAGAACTGACCAGCGGAAACTTTGTGCGGGCAGAAACCAGACAGCATACGC TGGGTTTTTTCGATAGCAGAGCAACCAGAAACGTTGATCAGGGATTCCAGAGCTGCA CAGTACATAC-3' (SEQ ID NO:9); and duplex 3 were

5'-TTCTCCTCTGCACGTTCGTGACACCAAAATCGAAGTTGCTCAGTTCGTAAAA GACCTGCTGCACCTGAAAAAACTGTTCCGTGAAGGTCGTTTCAACTAATAAT-

3' (SEQ ID NO:10) with complement

5

10

15

20

25

30

5'-CTAGATTATTAGTTGAAACGACCTTCACGGAACAGTTTTTTCAGGTGCAGCAGC AGGTCTTTTACGAACTGAGCAACTTCGATTTTGGTGTCACGAACGTGCAGA-3' (SEQ ID NO:11).

The complement (bottom) strand of the first and second duplexes and the top strand of the second and third duplexes were phosphorylated independently. The complementary strands were combined, and each duplex mix was heated to 90°C and then slowly cooled to allow annealing of the duplexes. The first and last duplexes respectively encoded the restriction endonucleases NdeI and XbaI to allow for cloning into an NdeI, XbaI digested and gel purified expression vector pAL-981. All restriction digests, enzymatic phosphorylation of oligonucleotides, DNA fragment isolations and ligations were carried out as described in Sambrook *et al.*, 1989. "Molecular Cloning, a Laboratory Manual, second edition," Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Ligation mixtures were transformed into electrocompetent GI934 as described (LaVallie *et al.*, *Methods Mol Biol.* 205:119-140, 2003). Ligation of the three sets of oligonucleotide duplexes into pAL-981 created plasmid pALHIL13-981. All synthetic oligonucleotides were sequence confirmed after cloning into the expression vector.

The resulting plasmid pALHIL13-981 was transformed into GI934. Optimal growth temperature of the culture for production of human IL-13 from plasmid pALHIL13-981 was determined empirically. Fermentor medium consisted of 1% casamino-acids, 1.75% w/v glucose, 50mM KH₂PO₄, 15mM (NH₄)₂SO₄, 30mM Na₃.citrate.2H₂0, 20mM MgSO₄, 100μg/ml ampicillin, DM trace metals (300μM FeCl₃, 29μM ZnCl₃, 36μM CoCl₂, 25μM Na₂MoO₄, 20μM CaCl₂, 22μM CuCl₂, 24μM H₃BO₃), and was adjusted to pH 7 with NH₄OH. A 10L fermentor was inoculated to A₅₅₀ 0.00005 with a fresh culture of GI934 containing pALHIL13-981 grown in Fermentor medium at 30°C. The fermentor culture was grown at 30°C to A₅₅₀ of 1.2, then the temperature was adjusted to 37°C, and the culture was allowed to grow to A₅₅₀ of 7.5. Induction of protein synthesis from the pL promoter was initiated and the culture with the addition of tryptophan to 500μg/ml. The culture was grown at

37°C for 4.25 hours before harvesting the cells by centrifugation. The sequence of the expression vector is shown in FIG. 13 (SEQ ID NO:5).

The protein was essentially completely insoluble. Cells were broken with a microfluidizer and insoluble IL-13 was collected and dissolved at about 2 mg/mL in 50 mM Ches (pH 9), 6 M Guanidine-HCl, 1 mM EDTA, 20 mM DTT. The solution was diluted 20-fold into 50 mM Ches (pH 9), 3 M guanidine-HCl, 100 mM NaCl, 1 mM oxidized glutathione, and dialyzed twice against ten volumes of 20 mM Mes (pH 6). Following clarification by centrifugation, IL-13 was adsorbed to SP-Sepharose and eluted with a gradient of NaCl in Mes buffer. Final purification was by size-exclusion chromatography in 40 mM sodium phosphate, 40 mM NaCl on Superdex 75.

The mAb13.2 Fab was purified as described in Example 4.

5

10

15

20

25

30

The Fab:IL-13 complex was prepared by combining the two in a molar ratio of about 1:1. IL-13 (50 μM in 40 mM MES and 40 mM NaCl, pH 6.0) and mAb13.2 Fab (50 μM in 50 mM Tris.HCl, pH 8.0) were mixed together to give a final complex concentration of 50 μM. The complex was further purified by a Superdex 75 size exclusion column (Amersham Biosciences, Piscataway, NJ) equilibrated with 50 mM Tris-HCl and 300 mM NaCl, pH 8.0, at 25°C. The purified complex was dialyzed in 50 mM Tris-HCl and 50 mM NaCl, pH 8.0, before setting up the crystallization.

For crystallization, purified mAb13.2 Fab/II-13 complex was prepared at a concentration of 11.3 mg/mL in a solution of 50 mM Tris (pH 8.0) and 50 mM NaCl. One microliter of protein solution was mixed with 1 µl of crystallization solution (20% PEG 3350, 50 mM ZnOAc) (Hampton Research, Aliso Viejo, CA). The crystals formed at 18°C by vapor diffusion by the hanging drop method.

Data from the crystal of the mAb13.2 Fab/IL-13 complex were collected on beamline 5.0.2 at the ALS (Berkley, CA) using an ADSC Quantum-4 CCD detector. A single crystal, vitrified at -180°C, was used for the data set. The data were processed using DENZO and Scalepack (Otwinowski and Minor, *Methods Enzymol*. 276: 307-326, 1997). The statistics from data refinement are shown in Table 2. The crystal sructure coordinates are shown in Table 11.

Crystals of the binary mAb13.2Fab/IL-13 complex diffracted to 1.8 Å using synchrotron radiation. The structure of the complex was solved by molecular replacement using the program AMORE, and using the crystal structure of the

data were randomly selected and designated as an R_{free} test to monitor the progress of the refinement. This structure of the mAb13.2 Fab was then rebuilt within QUANTA using a series of omit maps. During this process, extra density was observed near the hypervariable regions, and these regions sharpened after each cycle of rebuilding. After the Fab fragment had been rebuilt, the NMR structure of IL-13 (Moy *et al.*, *J. Mol. Biol.* 310:219-230, 2001) was rotated into the density adjacent to the hypervariable regions. Following three cycles of refinement with CNS (Accelrys, San Diego, CA) and rebuilding within QUANTA, the refinement converged with a model that contained one molecule of the mAb13.2 Fab, one molecule of IL-13, one acetate molecule, three zinc ions, and 465 water molecules at an R_{cryst} of 20.3% and R_{free} of 23.5%. The refinement statistics are shown in Table 2.

5

10

15

20

25

30

In the mAb13.2/IL-13 crystalline complex, residues 1-211 of the Fab light chain were visible, while residues 212, 213, and 214 were not observed in the density. For the heavy chain, residues 1-127 and 133-210 were modeled into the density, and no density was observed for residues 128 to 132. For IL-13, residues 7-21, 26-78, and 81-109 were visible and residues 1-6, 22-25, 79, and 80 were disordered. Several residues modeled as smaller residues due to inadequate electron density X-ray experiments (see Table 5).

There were three zinc molecules from the crystallization buffer that were found bound in this structure. None of them were involved in interactions between the IL-13 and Fab molecules. Two of the zinc molecules were involved in contacts between molecules in the asymmetric unit and symmetry related copies of the proteins, and thus they were important for crystallization of this complex. Zinc1 was coordinated to Fab light chain residues Glu27 and Glu97, and residues Glu189 and His193 of a symmetry related copy of the light chain (amino acids numbered according to SEQ ID NO:1 (FIG. 1A)). Zinc2 was coordinated to IL-13 residues His84 and Asp87, and residues Asp98 and His102 of a symmetry related copy of IL-13. Zinc3 was coordinated to IL-13 residues Glu12 and Glu15 with water molecules as other ligands (amino acids numbered according to SEQ ID NO:4 (FIG. 2B)).

The residues of IL-13 interacting with the mAb13.2 Fab fragment were located at

C alpha helix of IL-13 with the CDR loops of the antibody. Hydrogen bond interactions were observed to exist between the Fab and IL-13 residues Glu49, Asn53, Gly69, Pro72, His73, Lys74, and Arg86. The N-terminal tip of helix A was within van der Waals distances of the Fab fragment. These interactions are summarized in Tables 3 and 4.

5

Table 3. H-bond Interactions between IL-13 and Fab 13.2

		IL-13 ^a			Fab 13.2			
	Residu	ie	atom	Residue	Chothia ^b	SEQ ID ^c	Atom	Distance
5	Glu	49I	OE1	Asn	30AL	31L	ND2	2.87Å
	Glu	49I	OE2	Tyr	98H	101H	OH	2.69
	Glu	49I	OE2	Tyr	99H	102H	OH	2.54
	Asn	53I	OD1	Lys	30DL	34L	NZ	2.74
	Gly	69I	0	Ser	53H	53H	N	2.91
10	Pro	72I	0	Tyr	98H	101H	N	3.10
	His	73I	ND1	Asp	94L	98L	OD1	2.87
	His	73I	NE2	Ser	50H	50H	OG	2.75
	Lys	74I	NZ	Asn	30AL	31L	OD1	2.95
	Lys	74I	NZ	Asn	92L	96L	OD1	2.61
15	Arg	86I	NH1	Tyr	30BL	32L	OH	3.16
	Arg	86I	NH2	Tvr	30BL	32L	OH	2.93

^aAmino acid residues are numbered according to the processed form of IL-13 (SEQ ID NO:4). "I" indicates amino acid of IL-13.

^bAmino acid residues correspond to SEQ ID NO:1 (for light chain residues, "L") or SEQ ID NO:2 (for heavy chain residues, "H"), and are numbered according to the Chothia numbering system (Al-Lazikani *et al.*, *Jour. Mol. Biol.* 273:927-948, 1997).

^cAmino acid residues are numbered according to the numbering of SEQ ID NO:1 (for light chain residues, "L") or SEQ ID NO:2 (for heavy chain residues, "H").

Table 4. van der Waals Type Interactions between IL-13 and Fab 13.2

	IL-13		Fab 13	3.2			
	Residu	ıe ^a	Residu	1e	Chothia ^b	SEQ ID	CDR_
5	Ser	7I	Ile		30H	30H	CDR-H1
	Thr	8I	Ile		30H	30H	CDR-H1
	Ala	9I	Ile		30H	30H	CDR-H1
	Ala	9I	Ser		53H	53H	CDR-H2
	Glu	12I	Пе		30H	30H	CDR-H1
10	Glu	12I	Ser		31H	31H	CDR-H1
	Leu	48I	Tyr		98H	101H	CDR-H3
	Glu	49I	Tyr		98H	101H	CDR-H3
	Glu	49I	Asn		30AL	31L	CDR-L1
	Glu	49I	Tyr		99H	102H	CDR-H3
15	Ile	52I	Tyr		99H	102H	CDR-H3
	Ile	52I	Tyr		99H	102H	CDR-H3
	Ile	52I	Tyr		99H	102H	CDR-H3
	Ile	52I	Arg		50L	54L	CDR-L2
	Ile	52I	Tyr		99H	102H	CDR-H3
20	Ile	52I	Lys		30DL	34L	CDR-L1
	Asn	53I	Lys		30DL	34L	CDR-L1
	Asn	53I	Lys		30DL	34L	CDR-L1
	Asn	53I	Lys		30DL	34L	CDR-L1
	Arg	65I	Phe		100H	103H	CDR-H3
25	Arg	65I	Asp		96H	99H	CDR-H3
	Met	66I	Ser		31H	31H	CDR-H1
	Ser	68I	Asp		96H	99H	CDR-H3
	Ser	68I	Phe		100H	103H	CDR-H3
	Gly	69I	Ser		31H	31H	CDR-H1
30	Gly	69I	Ala		33H	33H	CDR-H1
	Gly	69I	Ser		53H	53H	CDR-H2
	Gly	69I	Ser		52H	52H	CDR-H2
	Phe	70 I	Ser		53H	53H	CDR-H2
	Phe	70I	Ser		52H	52H	CDR-H2
35	Cys	71I	Tyr		98H	101H	CDR-H3
	Pro	72I	Ala		33H	33H	CDR-H1
	Pro	72I	Leu		95H	98H	CDR-H3
	Pro	72I	Ser		52H	52H	CDR-H2
	Pro	72I	Tyr		58H	58H	CDR-H2
40	Pro	72I	Tyr		98H	101H	CDR-H3
	Pro	72I	Gly		97H	100H	CDR-H3
	Pro	72I	Trp		96L	100L	CDR-L3
	His	73I	Asp		94L	98L	CDR-L3
	His	73I	Trp		96L	100L	CDR-L3
45	His	73I	Trp		47H	47H	~~~
	His	73I	Leu		95H	98H	CDR-H3
	His	73I	Tyr	58H		58H	CDR-H2
	His	73I	Ser	50H		50H	CDR-H2
	His	73I	Tyr	98H		101H	CDR-H3

Lys	74I	Tyr	98H	101H	CDR-H3
Lys	74I	Asn	30AL	31L	CDR-L1
Lys	74I	Asn	92L	96L	CDR-L3
Arg	86I	Tyr	30BL	32L	CDR-L1

^aAmino acid residues are numbered according to the processed form of IL-13 (SEQ ID NO:4). "I" indicates amino acid of IL-13.

5

10

15

20

25

30

35

40

45

Table 5. Residues mis-modeled due to inadequate electron density

^c Sequence ^c Mod	eled As
Lys Ala	
Lys Ala	
Gln Ala	
Glu Ala	
Leu Ala	
Lys Ala	
Lys Ala	
Gln Ala	
Lys Ala	
•	
Lys Ala	
•	
Arg Ala	
Glu Ala	
	Lys Ala Lys Ala Gln Ala Glu Ala Leu Ala Lys Ala Lys Ala Lys Ala Gln Ala Lys Ala Lys Ala Ala Arg Ala

^a "HC" is heavy chain (SEQ ID NO:2); "LC" is light chain (SEQ ID NO:1); "I" is IL-13 processed (SEQ ID NO:4).

FIG. 3 is a ribbon diagram illustrating the co-crystal structure of mAb13.2 Fab with human IL-13. The light chain of mAb13.2 Fab is shown in dark shading, and the heavy chain in light shading. The IL-13 structure is shown at right. The figure depicts the interaction of the C alpha helix of IL-13 with the CDR loops of the antibody. The major residues of mAb13.2 heavy chain that make hydrogen bond contacts with IL-13 are SER50 (CDR2), SER53 (CDR2), TYR101 (CDR3), and

^bAmino acid residues correspond to SEQ ID NO:1 (for light chain residues, "L") or SEQ ID NO:2 (for heavy chain residues, "H"), and are numbered according to the Chothia numbering system (Al-Lazikani *et al.*, *Jour. Mol. Biol.* 273:927-948, 1997). See Tables 6 and 7.

^cAmino acid residues are numbered according to the numbering of SEQ ID NO:1 (for light chain residues, "L") or SEQ ID NO:2 (for heavy chain residues, "H").

^bAmino acid residues correspond to SEQ ID NO:1 (for light chain residues, "LC") or SEQ ID NO:2 (for heavy chain residues, "HC"), and are numbered according to the Chothia numbering system (Al-Lazikani *et al.*, *Jour. Mol. Biol.* 273:927-948, 1997). See Tables 6 and 7.

^cAmino acid residues are numbered and identified according to the numbering of SEQ ID NO:1 (for light chain residues, "LC"), SEQ ID NO:2 (for heavy chain residues, "HC"), or SEQ ID NO:4 (for residues of the IL-13 processed polypeptide, "I").

TYR102 (CDR3). The major residues of mAb13.2 heavy chain that make van der Waals contacts with IL-13 are ILE30 (CDR1), SER31 (CDR1), ALA33 (CDR1), TRP47, SER50 (CDR2), SER52 (CDR2), SER53 (CDR2), TYR58 (CDR2), LEU98 (CDR3), ASP99 (CDR3), GLY100 (CDR3), TYR101 (CDR3), TYR102 (CDR3), and PHE103 (CDR3) (see Table 4; amino acids numbered according the numbering of SEQ ID NO:2 (FIG. 1B)).

5

10

15

20

25

According to the amino acid numbering of SEQ ID NO:1 (FIG. 1A), the major residues of mAb13.2 light chain that make hydrogen bond contacts with IL-13 are ASN31 (CDR1), TYR32 (CDR1), LYS34 (CDR1), ASN96 (CDR3), and ASP98 (CDR3). The major residues of mAb13.2 light chain that make van der Waals contacts with IL-13 are ASN31 (CDR1), TYR32 (CDR1), LYS34 (CDR1), ARG54 (CDR2), ASN96 (CDR3), ASP98 (CDR3), and TRP100 (CDR3) (see Table 4).

Various numbering schemes have evolved to describe the amino acid residues of the heavy and light chain polypeptides of an antibody. The Kabat and Chothia schemes number the amino acid residues linearly accept in the defined CDR region of the polypeptide, where insertions are noted. The Kabat system (Kabat *et al.*, NIH Publ. No. 91-3242, 5th ed., vols. 1-3, Dept. of Health and Human Services, 1991) defines the location of the heavy and light chain CDRs by sequence variability, while the Chothia system (Al-Lazikani *et al.*, *Jour. Mol. Biol.* 273:927-948, 1997) defines the location structurally by loop regions. Because of the different placement of the CDR insertions, the numbering of the amino acids in the heavy chain and light chain can vary between the two systems. The notation of amino acid insertions causes each of these numbering systems to deviate from the linear numbering. Tables 6 and 7 align the amino acid sequences of the light and heavy chains, respectively, of mAb13.2Fab according to these three different numbering schemes (Kabat, Chothia, and linear numbering).

Table 6. Amino acid sequence of the light chain of mAb13.2Fab according to the linear (SEQ ID NO:1), Chothia and Kabat numbering systems.^a

Residue	Linear Sequence Number	Chothia Structure Number	Kabat Sequence Number
D	1	1	1
I	2	2	2
V	3	3	3
L	4	4	4
${f T}$	5	5	5
Q	6	6	6
S	7	7	7
P	8	8	8
A	9	9	9
S	10	10	10
L	11	11	11
A	12	12	12
V	13	13	13
S	14	14	14
L	15	15	15
G	16	16	16
Q	17	17	17
R	18	18	18
A	19	19	19
${f T}$	20	20	20
I	21	21	21
s	22	· 22	22
C	23	23	23
K	24	24	24
A	25	25	25
S	26	26	26
E	27	27	27
S	28	28	27A
V	29	29	27B
D	30	30	27C
N	31	30A	27D
Y	32	30B	28
G	33	30C	29
K	34	30D	30
S	35	31	31
L	36	32	32

M	37	33	33
H	38	34	34
W	39	35	35
Y	40	36	36
Q	41	37	37
Q	42	38	38
K	43	39	39
P	44	40	40
G	45	41	41
Q	46	42	42
S	47	43	43
P	48	44	44
K	49	45	45
L	50	46	46
L	51	47	47
I	52	48	48
Y	53	49	49
R	54	50	50
A	55	51	51
S	56	52	52
N	57	53	53
L	58	54	54
E	59	55	55
S	60	56	56
G	61	57	57
I	62	58	58
P	63	59	59
A	64	60	60
R	65	61	61
F	66	62	62
S	67	63	63
G	68	64	64
S	69	65	65
G	70	66	66
S	71	67	67
R	72	68	68
${f T}$	73	69	69
D	74	70	70
F	75 	71	71
${f T}$	76	72 70	72 73
L	77	73 74	73 74
\mathbf{T}	78 	74 75	74 75
I	79	75 70	75 76
N	80	76	76 50
			20

P	81	77	77
V	82	78	78
E	83	79	79
A	84	80	80
D	85	81	81
D	86	82	82
V	87	83	. 83
A	88	84	84
${f T}$	89	85	85
Y	90	86	86
Y	91	87	87
C	92	88	88
Q	93	89	89
Q	94	90	90
S	95	91	91
N	96	92	92
E	97	93	93
D	98	94	94
P	99	95	95
M	100	96	96
${f T}$	101	97	97
F	102	98	98
G	103	99	99
G	104	100	100
G	105	101	101
T	106	102	102
K	107	103	103
L	108	104	104
E	109	105	105
I	110	106	106
K	111	107	107
<u>R</u>	<u>112</u>	<u>108</u>	<u>108</u>
A	113	109	109
D	114	110	110
A	115	111	111
A	116	112	112
P	117	113	113
${f T}$	118	114	114
V	119	115	115
S	120	116	116
I	121	117	117
F	122	118	118
P	123	119	119
P	124	120	120
			<i>E</i> 1

	S	125	121	121
	S	126	122	122
	E	127	123	123
	Q	128	124	124
	L	129	125	125
	T	130	126	126
	S	131	127	127
	G	132	128	128
	G	133	129	129
	A	134	130	130
	S	135	131	131
	V	136	132	132
	V	137	133	133
	C	138	134	134
	F	139	135	135
	L	140	136	136
	N	141	137	137
	N	142	138	138
	F	143	139	139
	Y	144	140	140
	P	145	141	141
	K	146	142	142
	D	147	143	143
	I	148	144	144
	N	149	145	145
	V	150	146	146
	K	151	147	147
	M	152	148	148
	K	153	149	149
	I	154	150	150
	D	155	151	151
	G	156	152	152
	S	157	153	153
	E	158	154	154
	R	159	155	155
	Q	160	156	156
	N	161	157	157
	G	162	158	158
	V	163	159	159
	L	164	160	160
	N	165	161	161
	S	166	162	162
	W	167	163	163
1	T	168	164	164

D	169	165	165
Q	170	166	166
D	171	167	167
S	172	168	168
K	173	169	169
D	174	170	170
S	175	171	171
${f T}$	176	172	172
Y	177	173	173
S	178	174	174
M	179	175	175
S	180	176 ·	176
S	181	177	177
${f T}$	182	178	178
L	183	179	179
${f T}$	184	180	180
L	185	181	181
${f T}$	186	182	182
K	187	183	183
D	188	184	184
E	189	185	185
Y	190	186	186
E	191	187	187
R	192	188	188
H	193	189	189
N	194	190	190
S	195	191	191
Y	196	192	192
${f T}$	197	193	193
C	198	194	194
E	199	195	195
A	200	196	196
${f T}$	201	197	197
H	202	198	198
K	203	199	199
${f T}$	204	200	200
S	205	201	201
\mathbf{T}	206	202	202
S	207	203	203
P	208	204	204
I	209	205	205
V	210	206	206
K	211	207	207
S	212	208	208
			53

F	213	209	209
N	214	210	210
R	215	211	211
N	216	212	212
E	217	213	213
C	218	214	214

^aBold font indicates an insertion in the linear sequence according to the Chothia or Kabat numbering system. Bold and underlined residue indicates an insertion as determined by X-ray data.

Table 7. Amino acid sequence of the heavy chain of mAb13.2Fab according to the linear (SEQ ID NO:2), Chothia and Kabat numbering systems.^a

Residue	<u>Linear</u> <u>Sequence</u> <u>Number</u>	Chothia Structure Number	<u>Kabat</u> <u>Sequence</u> <u>Number</u>
E	1	1	1
V	2	2	2
K	3	3	3
L	4	4	4
V	5	5	5
E	6	6	6
S	7	7	7
G	8	8	8
G	9	9	9
G	10	10	10
L	11	11	11
V	12	12	12
K	13	13	13
P	14	14	14
G	15	15	15
G	16	16	16
S	17	17	17
L	18	18	18
K	19	19	19
L	20	20	20
S	21	21	21
C	22	22	22
A	23	23	23
A	24	24	24
S	25	25	25
G	26	26	26
F	27	27	27
T	28	28	28
F I	29 30	29 30	29 30
S	31	31	31
Y	32	32	32
A	33	33	33
M	34	34	34
S	35	35	35

W	36	36	36
V	37	37	37
R	38	38	38
Q	39	39	39
T	40	40	40
P	41	41	41
E	42	42	42
K	43	43	43
R	44	44	44
L	45	45	45
E	46	46	46
M	47	47	47
V	48	48	48
A	49	49	49
S	50	50	50
I	51	51	51
S	52	52	52
S	53	53	53
G	54	54	54
G	55	55	55
N	56	56	56
T	57	57	57
Y	58	58	58
Y	59	59	59
P	60	60	60
D	61	61	61
s	62	62	62
V	63	63	63
K	64	64	64
G	65	65	65
R	66	66	66
F	67	67	67
${f T}$	68	68	68
I	69	69	69
S	70	70	70
R	71	71	71
D	72	72	72

N	73	73	73
A	74	74	74
R	75	75	75
N	76	76	76
I	77	77	77
L	78	78	78
Y	79	79	79
L	80	80	80
Q	81	81	81
M	82	82	82
s	83	82A	82A
s	84	82B	82B
L	85	82C	82C
R	86	83	83
S	87	84	84
E	88	85	85
D	89	86	86
T	90	87	87
A	91	88	88
M	92	89	89
Y	93	90	90
Y	94	91	91
C	95	92	92
A	96	93	93
R	97	94	94
L	98	95	95
D	99	96	96
G	100	97	97
Y	101	98	98
Y	102	99	99
F	103	100	100
G	104	100A	100A
F	105	100B	100B
A	106	101	101
Y	107	102	102
W	108	103	103
G	109	104	104

Q	110	105	105
G	111	106	106
T	112	107	107
L	113	108	108
V	114	109	109
A	115	110	110
V	116	111	111
S	117	112	112
A	118	113	113
A	119	114	114
<u>K</u>	<u>120</u>	<u>115</u>	<u>115</u>
T	121	116	116
${f T}$	122	117	117
P	123	118	118
P	124	119	119
S	125	120	120
V	126	121	121
Y	127	122	122
P	128	123	123
Ŀ	129	124	124
A	130	125	125
P	131	126	126
G	132	127	127
S	133	128	128
A	. 134	129	129
A	135	130	130
Q	136	131	131
${f T}$	137	132	132
N	138	133	133
s	139	134	134
M	140	135	135
V	141	136	136
${f T}$	142	137	137
L	143	138	138
G	144	139	139
С	145	140	140
L	146	141	141

V	147	142	142
K	148	143	143
G	149	144	144
Y	150	145	145
F	151	146	146
P	152	147	147
E	153	148	148
P	154	149	149
Λ	155	150	150
${f T}$	156	151	151
V	157	152	152
${f T}$	158	153	153
W	159	154	154
N	160	155	155
S	161	156	156
G	162	157	157
S	163	158	158
L	164	159	159
S	165	160	160
S	166	161	161
G .	167	162	162
V	168	163	163
H	169	164	164
T	170	165	165
F	171	166	166
P	172	167	167
A	173	168	168
V	174	169	169
L	175	170	170
E	176	171	171
S	177	172	172
D	178	173	173
L	179	174	174
Y	180	175	175
${f T}$	181	176	176
L	182	177	177
S	183	178	178

184	179	179
185	180	180
186	181	181
187	182	182
188	183	183
189	184	184
190	185	185
191	186	186
192	187	187
193	188	188
194	189	189
195	190	190
196	191	191
197	192	192
198	193	193
199	194	194
200	195	195
201	196	196
202	197	197
203	198	198
204	199	199
205	200	200
206	201	201
207	202	202
208	203	203
209	204	204
210	205	205
211	206	206
212	207	207
213	208	208
214	209	209
215	210	210
	185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	185 180 186 181 187 182 188 183 189 184 190 185 191 186 192 187 193 188 194 189 195 190 196 191 197 192 198 193 199 194 200 195 201 196 202 197 203 198 204 199 205 200 206 201 207 202 208 203 209 204 210 205 211 206 212 207 213 208 214 209

^aBold font indicates an insertion in the linear sequence according to the Chothia or Kabat numbering system. Bold and underlined residue indicates an insertion as determined by X-ray data.

Example 6. Crystal Structure of the Trimeric Complex of Interleukin-13, Il-13 receptor α1, and the Binding Domain of the Inhibitory antibody mAb13.2 Fab.

The extracellular domain (residues 27-342; see FIG. 14) of IL-13Ra1 was expressed with a 6xHis tag fused at the C-terminus (Aman *et al., J. Biol. Chem.* 271:29265-29270, 1996). Expression was performed in the yeast *Pichia pastoris*. The recombinant protein was purified to homogeneity by affinity chromatography over NiNTA-agarose (Qiagen) followed by anion exchange chromatography over HiTrap Q Sepharose HP (Pharmacia, Amersham Pharmacia Biotech, UK) and gel filtration chromatography over Superdex-75 (Pharmacia).

5

10

15

20

25

30

The human IL-13 (amino acid residues 1 to 113) (SEQ ID NO:4) was expressed and purified as described in example 5.

A complex containing IL-13 and IL-13Rα1 was was formed by mixing the receptor with a slight excess of IL-13. Following confirmation of complex formation by analytical size-exclusion chromatography, the complex was treated with endoglycosidase Hf (endoHf) (25,000 units/mL) for 90 minutes at 37°C. The deglycosylated complexes were applied to a concanavalin A (conA)-Sepharose column to remove protein with uncleaved oligosaccharides, and the remaining complexes were applied to a NiNTA column to remove EndoHf. The purified complexes were purified to homogeneity by gel filtration chromatography over Superdex-200 (GE Healthcare, formerly Amersham Biosciences, Piscatway, NJ). Formation of 1:1 complexes of IL-13 and IL-13Rα1 was confirmed by native polyacrylamide gel electrophoresis and size exclusion chromatography prior to crystal screening.

mAb13.2 Fab was purified as described in example 4.

Crystals of a complex of IL-13, IL-13R α 1, and mAb13.2 Fab were grown at 18°C by vapor diffusion in hanging drops containing 10 mg/ml protein complex, 13% PEG-MME 2000 and 100 mM HEPES (pH 7.0). Crystals appeared in several weeks, but did not reach maximal size for several months. The crystals had the symmetry of space group I4 with unit cell dimensions a = 164.9 Å, b = 164.9 Å, and c = 74.8 Å. Prior to data collection, crystals were briefly transferred to 10% ethylene glycol plus mother liquor and flash cooled in liquid nitrogen. Throughout data collection, the crystal was maintained at 100K. Data were collected at the 5.0.1 beam line at the Advanced Light Source, Berkeley, California. Intensities were integrated and scaled

using DENZO (Otwinowski and Minor, Methods Enzymol. 276:307-326, 1997) and SCALA ("CCP4," Acta Cryst <u>D50</u>:760-763, 1994).

5

10

15

20

The structure was solved by molecular replacement using the coordinates of the mAb13.2 Fab/IL-13 complex (Table 11). Initial phases were improved by solvent flattening using Solomon as implemented in CCP4 ("CCP4," Acta Cryst D50:760-763, 1994). Rigid body refinement within CCP4 was used to obtain an initial model. Experimental maps with continuous density were obtained, and an initial model was constructed using QUANTA (Accelrys, Inc., San Diego, CA) and refined against data from 30 to 2.2 Å with CNS (Brunger et al., Acta Cryst. D54:905-921, 1998). The final refined model, which includes polypeptide chains of IL-13Ra1 (residues 6-314), mAb13.2 Fab (light chain residues 1-213 and heavy chain residues 1-213) and IL-13 (residues 6-112), as well as 123 water molecules, has a working R-value of 24.4% and a free R-value of 27.2%. Statistics for data collection and refinement are shown in Tables 8 and 9. There were no backbone torsion angles outside of the allowed regions of the Ramachandran plot. Structural figures were generated using PYMOL (DeLano, "The PYMOL Molecular Graphics System" (2002) DeLano Scientific, San Carlos, CA) and Ribbons (Carson, J.Appl.Cryst. 24:958-961, 1991). The structural coordinates are provided in Table 12. The following residues of IL-13Ra1 had no density beyond the C-beta atom and the coordinates for each were truncated to reflect that ambiguity: 81E, 93R, 104T, 105N, 111S, 112I, 122E, 124D, 150R, 151T, 157N, 165R, 168E, 169K, 174E, 195S, 196S, 197F, 305D, 306T, 339K, 110P, 200Q, 203Q, 204I, 209N, 212K, 213I, 214K, 240N, 279E, 284N, and 293N.

Table 8. Statistics for Data Collection and Phase Determination

Data Collection	IL-13/mAb13.2 Fab/IL-13Rα1
Crystal system	Tetragonal
Space group	I 4
Unit cell dimensions	a=b=164.9 Å, c = 74.8 Å,
	$\alpha=\beta=\gamma=90.0^{\circ}$
Data collection temperature	100K
Number of crystals	1
Radiation Source	ALS, Berkeley, CA
Wavelength (Å)	$\lambda = 1.0 \text{ Å}$
Resolution range(Å)	30-2.2 Å
Maximum resolution (Å)	2.2 Å
R _{merge} ^a (%)	6.7% (48.6%)
% complete	99.9% (99.0%)
total reflections (free)	42298 (2110)
unique reflections	40188
I/σ(I)	26.6 (2.8)

^a $R_{\text{merge}} = \sum |I_h - \langle I_h \rangle| / \sum I_h$, where $\langle I_h \rangle$ is the average intensity over symmetry equivalents. Number in parentheses reflects statistics for the last resolution shell (2.8 Å -2.7 Å).

Table 9. Structure Refinement Statistics

5

10

15

20

Data Collection	IL-13/mAb13.2 Fab/IL-13Rα1
Model for molecular replacement	mAb13.2 Fab/IL-13
Maximum Resolution (Å)	2.2 Å
R _{work} ^a (%)	24.4 %
R _{free} (%)	27.2 %

 $[^]aR_{work} = \sum ||F_{obs}| - |F_{calc}||/\sum |F_{obs}|$, R_{free} is equivalent to R_{work} , but calculated for a randomly chosen 6.4% of reflections that are omitted from the refinement process.

There are two points of substantial interaction between IL-13 and IL-13Rα1. One interaction is between Ig domain 1 and a portion of the loop connecting helices C and D of the cytokine while the other interaction is between Ig domain 3 of the receptor and helices A and D of IL-13 (see FIG. 15).

The interaction between Ig domain 1 of IL-13Ra1 and IL-13 results in the formation of an extended beta sheet spanning the two molecules. Residues Thr88, Lys89, Ile90 and Glu91 of IL-13 (SEQ ID NO:4) form a beta strand that interacts with residues Lys76, Lys77, Ile78 and Ala79 of the receptor (SEQ ID NO:12) (See FIG. 16). Additionally, the side chain of Met33 of IL-13 extends into a hydrophobic pocket that is created by the side chains of these adjoining strands.

The predominant feature of the interaction with Ig domain 3 is the insertion of a hydrophobic residue (Phe107) of IL-13 into a hydrophobic pocket in Ig domain 3 of

the receptor IL-13R α 1. The hydrophobic pocket of IL-13R α 1 is formed by the side chains of residues Leu319, Cys257, Arg256 and Cys320 (FIG. 17). The interaction with Phe107 of IL-13 results in an extensive set of Van der Waals interactions between amino acid residues Ile254, Ser255, Arg256, Lys318, Cys320, and Tyr321 of IL-13R α 1 (SEQ ID NO:12) and amino acid residues Arg11, Glu12, Leu13, Ile14, Glu15, Lys104, Lys105, Leu106, Phe107 and Arg108 of IL-13 (SEQ ID NO:4) (See FIG. 17).

5

		<u>Table</u>	10.	Struc	cture	coor	dinates	of mAb13	3.2 Fabª	ь			
		#	Name	Res.	Chain	Res	# x	Y	Z	occ	В	SegI	D Ele
5	ATOM ATOM	1 2	N CA	ASP I			5.849 5.758	-2.062 -0.620	0.182 0.381		66.67 65.86	Ŀ	N
•	ATOM	3	C	ASP I			7.071	0.081	0.023		58.91	r F	C
	ATOM	4	Ö	ASP I			8.115	-0.534	-0.151		57.75	r.	o
	ATOM	5	CB	ASP I			5.413	-0.362	1.849		70.47	L	č
40	ATOM	6	CG	ASP I			6.620	-0.695	2.715	1.00	75.61	L	Ċ
10	MOTA	7		ASP I			7.623	-1.136	2.154		80.71	L	0
	ATOM ATOM	8 9		ASP I			6.547	-0.509	3.927		87.49	L	0
	ATOM	10	N CA	ILE I			6.981 8.171	$1.415 \\ 2.181$	-0.125		52.10	L	N
	ATOM	11	C	ILE I			8.900	2.695	-0.476 0.767		40.08 42.02	L L	C C
15	ATOM	12	Õ	ILE I			8.355	3.411	1.598		48.63	L	Ö
	ATOM	13	CB	ILE I	2		7.740	3.360	-1.351		42.36	L	č
	ATOM	14		ILE I			7.395	2.872	-2.761		38.52	L	č
	MOTA	15		ILE I			8.895	4.371	-1.472		36.85	L	C
20	ATOM ATOM	16 17	N	ILE I VAL I			7.183	4.027	-3.741		31.90	L	C
20	ATOM	18	CA	VAL I			10.170 10.965	2.268 2.713	0.899 2.037		43.87 41.50	ŗ	N
	ATOM	19	C	VAL I			11.652	4.052	1.752		39.10	L L	C
	ATOM	20	Ō	VAL I			12.512	4.166	0.888		45.89	L	C O
	MOTA	21	CB	VAL I			12.016	1.642	2.333		42.05	L	Č
25	ATOM	22		VAL I			12.810	2.022	3.582	1.00		L	C
	ATOM ATOM	23 24		VAL I			11.342	0.302	2.559		39.67	L	C
	ATOM	25	N CA	LEU I			11.341 12.027	4.998 6.277	2.628		40.82	Ţ	N
	ATOM	26	C	LEU I			12.991	6.250	2.650 3.819		39.96 40.04	L L	C
30	ATOM	27	ō	LEU I			12.615	5.894	4.936		41.74	r r	C O
	ATOM	28	CB	LEU I	4		11.036	7.412	2.857		38.52	L	č
	ATOM	29	CG	LEU I			9.763	7.348	2.031		38.66	L	Č
	ATOM	30		LEU I			9.007	8.640	2.245		50.64	L	С
35	ATOM ATOM	31 32	N CD2	LEU I			10.094 14.234	7.164	0.562			Ŀ	C
00	MOTA	33	CA	THR I			15.233	6.630 6.639	3.567 4.622		38.94 41.89	Ļ	N
	ATOM	34	C	THR L			15.751	8.050	4.829		46.14	L L	C
	ATOM	35	0	THR L			16.433	8.595	3.962		53.43	L	ŏ
40	ATOM	36	CB	THR L			16.397	5.730	4.243		39.78	L	С
40	ATOM ATOM	37 38		THR L			15.896	4.411	3.995		53.91	L	0
	ATOM	39	N CGZ	GLN L			17.430 15.429	5.688 8.664	5.347 5.959		41.58 43.43	Ļ	C
	MOTA	40	ĈA	GLN L			15.925	10.015	6.179		44.62	L L	N C
	MOTA	41	C	GLN L			17.355	9.954	6.681		46.70	L	Č
45	ATOM	42	0	GLN L			17.758	8.989	7.326		45.08	. L	ŏ
	ATOM	43	CB	GLN L			15.052	10.780	7.179		44.41	L	C
	ATOM ATOM	44 45	CG	GLN L			13.596	10.849	6.764		37.31	Ţ	C
	ATOM	46	CD OE1	GLN L			12.796 11.606	11.858 11.679	7.553 7.762		27.04	Ŀ	C
50	MOTA	$\frac{1}{47}$		GLN L			13.441	12.929	7.979		41.69 38.94	L L	N O
	ATOM	48	N	SER L			18.117	10.993	6.364		49.55	L	N
	ATOM	49	CA	SER L			19.511	11.091	6.763		49.16	L	ĉ
	ATOM	50	C	SER L			19.823	12.568	6.912		44.38	L	C
55	MOTA MOTA	51 52	O	SER L	7		19.517	13.358	6.033		48.04	Ļ	0
00	ATOM	53	CB OG	SER L	7 7		20.399 21.712	10.483 10.254	5.676 6.152		51.89 68.31	L	C
	ATOM	54	N	PRO L			20.426	12.960	8.037		44.47	L L	O
	MOTA	55		PRO L	8		20.799	12.057	9.120		47.06	Ŀ	C N
	MOTA	56	C	PRO L	8		19.607	11.777	10.028		50.00	L	č
60	ATOM	57	0	PRO L	8		18.452	11.965	9.640	1.00	56.56	L	0
	MOTA	58 50		PRO L	8		21.883	12.838	9.841	1.00		L	C
	MOTA MOTA	59 60		PRO L	8		21.358	14.219	9.760	1.00		L	C
	MOTA	61		ALA L	8 9		20.911 19.905	14.323 11.341	8.317 11.244	$1.00 \\ 1.00$		L	C
65	ATOM	62		ALA L	9		18.883	11.033	12.244 12.215	1.00		L L	C
	MOTA	63	С	ALA L	9		18.728	12.221	13.136	1.00		L	C
	MOTA	64		ALA L	9		17.619	12.564	13.539	1.00	34.10	L	ŏ
	MOTA	65	CB	ALA L	9		19.289	9.824	12.993	1.00	36.31	L	Ċ

	N										
	ATOM	66	N	SER L	10	19.856	12.841	13.471	1.00 33.73	L	N
	MOTA	67	CA	SER L	10	19.885	14.006	14.345	1.00 34.21	L	С
	ATOM	68	C	SER L	10	20.660	15.103	13.656	1.00 30.61	L	C
	MOTA	69	0	SER L	10	21.478	14.840	12.786	1.00 37.19	L	0
5	ATOM	70	CB	SER L	10	20.562	13.673	15.663	1.00 39.85	$oldsymbol{r}$	C
•	ATOM	71	OG	SER L	10	19.863	12.647	16.323	1.00 58.43	L	0
	ATOM	72	N	LEU L	11	20.428	16.335	14.069	1.00 29.18	L	N
	ATOM	73	CA	LEU L	11	21.094	17.449	13.441	1.00 29.44	L	C
		74 74	C	LEU L	11	21.199	18.558	14.468	1.00 34.45	L	C
•	MOTA			LEU L	11	20.206	18.914	15.099	1.00 38.49	L L	ō
0	ATOM	75	O		11	20.245	17.919	12.270	1.00 38.78	L	Č
	MOTA	76	CB	LEU L		20.243	19.031	11.368	1.00 34.38	L	č
	ATOM	77	CG	LEU L	11		18.572	10.671	1.00 54.90	L	Č
	MOTA	78			11	22.005			1.00 34.90	r L	C
	ATOM	79		rea r	11	19.669	19.346	10.345		r r	И
15	MOTA	80	N	ALA L	12	22.394	19.110	14.643	1.00 39.63		
	ATOM	81	$^{\rm CA}$	ALA L	12	22.798	20.159	15.575	1.00 36.46	Ĩ	C
	MOTA	82	C	ALA L	12	23.247	21.418	14.832	1.00 35.24	r L	C
	MOTA	83	0	ALA L	12	24.322	21.485	14.251	1.00 40.47	L	0
	MOTA	84	CB	ALA L	12	23.946	19.620	16.429	1.00 39.40	L	C
20	MOTA	85	N	VAL L	13	22.357	22.428	14.831	1.00 33.94	L	N
	ATOM	86	CA	VAL L	13	22.652	23.673	14.132	1.00 44.79	L	C
	MOTA	87	C	VAL L	13	22.485	24.889	15.047	1.00 43.03	L	C
	ATOM	88	O	VAL L	13	21.747	24.879	16.023	1.00 42.07	$oldsymbol{T}$	0
	ATOM	89	CB	VAL L	13	21.698	23.787	12.942	1.00 42.44	$\mathbf L$	C
25	ATOM	90		VAL L	13	21.877	25.143	12.258	1.00 42.25	L	C
20	MOTA	91		VAL L	13	21.977	22 ⁻ .680	11.942	1.00 56.66	${f r}$	С
	ATOM	92	N	SER L	14	23.242	25.953	14.719	1.00 46.49	L	N
	ATOM	93	CA	SER L	14	23.145	27.177	15.505	1.00 50.99	L	C
		94	C	SER L	14	22.219	28.196	14.839	1.00 46.51	L	С
20	MOTA	95	ŏ	SER L	14	22.091	28.269	13.624	1.00 51.52	L	0
30	ATOM	96	-	SER L	14	24.549	27.765	15.650	1.00 51.18	L	Ċ
	ATOM		CB		14	25.514	26.791	15.246	1.00 60.81	Ĺ	ō
	ATOM	97	OG	SER L	15	21.527	28.976	15.688	1.00 41.47	L	Ŋ
	MOTA	98	N	LEU L		20.600	29.971	15.160	1.00 43.66	- L	Ĉ
	ATOM	99	CA	LEU L	15		30.669	13.918	1.00 43.12	Ŀ	č
35	ATOM	100	C	LEU L	15	21.164	30.953	13.816	1.00 50.89	L	õ
	MOTA	101	0_	LEU L	15	22.350			1.00 45.45	L	ç
	ATOM	102	CB	LEU L	15	20.325	30.998	16.261 17.394	1.00 45.45	r.	Č
	MOTA	103	CG	LEU L	15	19.470	30.425			L	č
	ATOM	104		LEU L	15	19.079	31.484	18.428	1.00 50.28		
40	MOTA	105		LEU L	15	18.162	29.810	16.896	1.00 48.82	L	C N
	ATOM	106	N	GLY L	16	20.308	31.017	12.967	1.00 39.34	ŗ	
	MOTA	. 107	CA	GLY L	16	20.763	31.757	11.807	1.00 37.83	$ar{ extbf{L}}$	C
	ATOM	108	С	GLY L	16	21.510	30.955	10.764	1.00 36.32	Ŀ	C
	MOTA	109	0	GLY L	16	21.802	31.473	9.683	1.00 45.28	$ ilde{ extbf{r}}$	0
45	ATOM	110	N	GLN L	17	21.826	29.702	11.068	1.00 30.61	Ľ	N
	MOTA	111	CA	GLN L	17	22.537	28.872	10.111	1.00 33.76	L	C
	MOTA	112	C	GLN L	17	21.545	28.158	9.215	1.00 32.65	L	Ċ
	MOTA	113	0	GLN L	17	20.361	28.471	9.220	1.00 33.30	L	0
	MOTA	114	CB	GLN L	17	23.417	27.851	10.833	1.00 34.75	L	С
50	ATOM	115	CG	GLN L	17	24.397	28.480	11.798	1.00 50.05	L	C
	MOTA	116	CD	GLN L	17	25.314	29.478	11.117	1.00 50.98	L	C
	ATOM	117	OE1		17	25.594	30.556	11.658	1.00 48.45	\mathbf{L}	0
	ATOM	118	NE2		17	25.793	29.125	9.927	1.00 32.88	L	N
	ATOM	119	N	ARG L	18	22.034	27.197	8.440	1.00 34.50	L	N
55	MOTA	120	CA	ARG L	18	21.179	26.442	7.543	1.00 29.75	L	C
33	MOTA	121	C	ARG L	18	21.281	24.969	7.864	1.00 33.92	L	C
	ATOM	122	Ö	ARG L	18	22.350	24.464	8.186	1.00 40.96	L	0
		123	CB	ARG L	18	21.586	26.678	6.094	1.00 32.75	L	C
	MOTA				18	20.989	25.701	5.105	1.00 27.81	L	Č
00	ATOM	124	CG	ARG L		21.450	26.041	3.706	1.00 37.23	L	Ċ
60	MOTA	125	CD	ARG L	18	22.909	26.054	3.700	1.00 56.95	L	Ŋ
	ATOM	126	NE	ARG L	18			2.488	1.00 52.86	Ĺ	Ĉ
	MOTA	127	CZ	ARG L	18	23.569	26.457		1.00 48.42	L	N
	MOTA	128		L ARG L	18	22.909	26.891	1.419	1.00 46.42	L	N
	MOTA	129		ARG L		24.898	26.415	2.465			
65	MOTA	130	N	ALA L		20.148	24.287	7.787	1.00 34.89	L	N
	MOTA	131	CA	ALA L		20.080	22.869	8.054	1.00 31.86	L	C
	MOTA	132	C	ALA L		19.525		6.799	1.00 32.59	L,	C
	ATOM	133	0	ALA L		18.621		6.185	1.00 37.78	Ŀ	0
	MOTA	134	CB	ALA L	19	19.156	22.605	9.222	1.00 26.13	L	С

	ATOM ATOM ATOM	135 136 137	CA C	THR L THR L THR L	20 20 20	20.074 19.577 19.269	21.093 20.410 18.979	6.405 5.228 5.602	1.00 36.27 1.00 41.54 1.00 44.55	L L	С С И
	MOTA	138	0	THR L	20	20.070	18.313	6.237	1.00 58.65	L	0
5	MOTA MOTA	139 140	CB OG1	THR L	20 20	20.595 20.875	20.402 21.745	4.063 3.657	1.00 39.53 1.00 50.92	L L	C
	ATOM	141	CG2	THR L	20	20.021	19.672	2.874	1.00 37.47	L	С
	MOTA MOTA	142 143	N CA	ILE L ILE L	21 21	18.090 17.700	18.512 17.151	5.222 5.516	1.00 45.42 1.00 38.44	L L	N C
10	MOTA	144	С	ILE L	21	17.582	16.407	4.195	1.00 38.28	L	C
	ATOM ATOM	145 146	O CB	ILE L ILE L	21 21	17.236 16.348	16.989 17.103	3.157 6.291	1.00 39.74 1.00 43.11	L L	0
	MOTA	147	CG1	ILE L	21	16.521	17.747	7.666	1.00 44.22	L	C
15	ATOM ATOM	148 149	CG2 CD1	ILE L	21 21	15.886 15.320	15.653 17.550	6.483 8.582	1.00 47.73 1.00 56.67	L L	C C
15	ATOM	150	И	SER L	22	17.885	15.115	4.251	1.00 33.33	L	N
	ATOM ATOM	151 152	CA C	SER L SER L	22 22	17.834 16.856	14.257 13.114	3.083 3.290	1.00 32.47 1.00 27.07	L L	C
	ATOM	153	Ö	SER L	22	16.629	12.685	4.419	1.00 27.07	Ľ	0
20	ATOM	154	CB	SER L	22 22	19.235 19.185	13.703 12.604	2.783 1.886	1.00 30.96 1.00 38.42	L L	C
	ATOM ATOM	155 156	OG N	SER L CYS L	23	16.278	12.604	2.184	1.00 38.42	L	И
	ATOM	157	CA	CYS L	23	15.327 15.568	11.538 10.763	2.177 0.892	1.00 32.07 1.00 33.68	L L	C
25	ATOM ATOM	158 159	C O	CYS L	23 23	15.552	11.328	-0.198	1.00 33.68	L	Ö
	ATOM	160	CB	CYS L	23	13.881	12.066	2.201	1.00 34.20	L	C
	MOTA MOTA	161 162	SG N	CYS L LYS L	23 24	12.480 15.838	10.881 9.473	$2.134 \\ 1.021$	1.00 42.49 1.00 32.63	L L	S N
00	ATOM	163	CA	LYS L	24	16.029	8.646	-0.154	1.00 35.47	L	C
30	ATOM ATOM	164 165	C	LYS L LYS L	$\begin{array}{c} 24 \\ 24 \end{array}$	14.977 14.765	7.548 6.858	-0.163 0.839	1.00 38.09 1.00 41.45	L L	C
	MOTA	166	CB	LYS L	24	17.431	8.040	-0.184	1.00 39.20	L	C
	ATOM ATOM	167. 168	CG CD	LYS L LYS L	24 24	18.489 18.571	8.954 10.293	-0.787 -0.064	1.00 58.69 1.00 73.72	L L	C C
35	MOTA	169	CE	LYS L	24	19.889	11.004	-0.356	1.00 82.49	L	C
	ATOM ATOM	170 171	NZ N	LYS L ALA L	24 25	21.089 14.308	$10.292 \\ 7.409$	0.216 -1.298	1.00 65.38 1.00 34.05	L	N
	MOTA	172	CA	ALA L	25	13.275	6.407	-1.455	1.00 36.52	L	C
40	ATOM ATOM	173 174	C O	ALA L ALA L	25 25	13.775 14.534	5.221 5.379	-2.274 -3.224	1.00 37.06 1.00 40.67	L L	C O
.0	MOTA	175	CB	ALA L	25	12.049	7.023	-2.121	1.00 32.09	L	C
	ATOM ATOM	176 177	N CA	SER L SER L	26 26	13.334 13.698	$4.034 \\ 2.804$	-1.886 -2.556	1.00 36.30 1.00 39.67	L L	G M
	MOTA	178	C	SER L	26	13.130	2.728	-3.973	1.00 44.72	L	C
45	ATOM ATOM	179 180	O CB	SER L SER L	26 26	13.625 13.165	1.969 1.630	-4.798 -1.756	1.00 51.00 1.00 45.86	L L	0
	MOTA	181	OG	SER L	26	11.749	1.670	-1.717	1.00 46.37	L	ŏ
	MOTA MOTA	182 183	N CA	GLU L	27 27	12.088 11.449	3.508 3.510	-4.248 -5.562	1.00 42.93 1.00 36.19	L L	C
50	ATOM	184	C	GLU L	27	11.029	4.915	-5.964	1.00 35.89	L	С
	MOTA MOTA	185 186	O CB	GLU L GLU L	27 27	10.712 10.215	5.737 2.602	-5.113 -5.549	1.00 44.15 1.00 33.03	L L	C
	MOTA	187	CG	GLU L	27	10.513	1.112	-5.429	1.00 38.92	L	С
55	ATOM ATOM	188 189	CD OE1	GLU L	27 27	9.253 8.952	$0.263 \\ -0.214$	-5.329 -4.217	1.00 34.14 1.00 56.00	L L	C
33	MOTA	190	OE2		27	8.556	0.070	-6.354	1.00 49.04	L	0
	ATOM ATOM	191 192	N CA	SER L SER L	28 28	11.016 10.659	5.184 6.527	-7.266 -7.708	1.00 42.57 1.00 44.76	L L	С И
	ATOM	193	CA	SER L	28	9.234	6.901	-7.290	1.00 49.62	L	C
60	ATOM	194	O	SER L	28 28	8.288 10.784	6.144 6.578	-7.465 -9.232	1.00 45.16 1.00 45.04	L L	C
	ATOM ATOM	195 196	CB OG	SER L SER L	28	10.814	7.940	-9.657	1.00 43.90	L	Ö
	MOTA	197	N	VAL L	29	9.161	8.098	-6.720	1.00 51.26	L	N
65	ATOM ATOM	198 199	CA C	VAL L VAL L	29 29	7.875 7.302	8.643 9.645	-6.291 -7.303	1.00 48.35 1.00 49.03	L L	C C
	MOTA	200	0	VAL L	29	6.536	10.541	-6.971	1.00 53.81	L	0
	MOTA MOTA	201 202	CB CG1	VAL L	29 29	8.080 8.959	9.339 8.479	-4.945 -4.041	1.00 45.09 1.00 45.73	L L	C
	ATOM	203		VAL L	29	8.743	10.687	-5.153	1.00 39.01	L	C

	ATOM	204	N	ASP L	30		.725	9.490 10.482	-8.572 -9.561	1.00 50.49 1.00 51.89	L L	N C
	ATOM ATOM	205 206	CA C	ASP L ASP L	30 30		.314		-10.314	1.00 55.22	L L	C
	ATOM	207	Õ	ASP L	30		.895		-10.735	1.00 56.81	L	0
5	MOTA	208	CB	ASP L	30		.466		-10.547	1.00 58.57	Ŀ	C
	ATOM	209	CG	ASP L	30		.368		-10.050	1.00 71.03 1.00 85.53	L	C
	MOTA	210		ASP L ASP L	30 30		.806 .613	12.590 11.864	-10.882 -8.849	1.00 85.55	L L	0
	MOTA MOTA	$\frac{211}{212}$	N N	ASP L	30A		.107	11.007		1.00 62.31	L	N
10	ATOM	213	CA	ASN L	30A		.880		-11.174	1.00 66.21	L	C
	MOTA	214	C	ASN L	30A		.739		-12.440	1.00 72.19	L	C
	MOTA	215	0	ASN L	30A		.151		-12.450	1.00 71.91	L	0
	ATOM	216	CB	ASN L ASN L	30A 30A		.684 .425		-10.255 -10.956	1.00 71.89 1.00 77.18	L L	C
15	ATOM ATOM	217 218	CG OD1	ASN L	30A		.716		-11.583	1.00 79.23	L	ŏ
13	ATOM	219		ASN L	30A		.172		-10.878	1.00 82.39	L	N
	MOTA	220	N	TYR L	30B		.340		-13.532	1.00 79.09	L	N
	ATOM	221	CA	TYR L	30B		.180		-14.806	1.00 84.64	L L	C
00	ATOM	222	C	TYR L TYR L	30B 30B		.879 .403		-14.807 -15.380	1.00 80.89 1.00 78.21	L L	C
20	ATOM ATOM	223 224	O CB	TYR L	30B		.684		-15.066	1.00 92.55	L	Č
	ATOM	225	CG	TYR L	30B		.049		-15.306	1.00106.94	L	C
	MOTA	226	CD1		30B	_	.960		-14.270	1.00124.67	Ŀ	C
	MOTA	227	CD2		30B		.530		-16.562	1.00117.46	L	C
25	ATOM	228 229	CE1 CE2		30B 30B		.349		-14.482 -16.777	1.00130.56 1.00130.84	L L	C
	MOTA MOTA	230	CEZ	TYR L	30B		.839		-15.744	1.00132.90	L	č
	ATOM	231	OH	TYR L	30B		.224		-15.945	1.00133.30	L	0
	MOTA	232	N	GLY L	30C		.015		-14.087	1.00 77.39	L	N
30	ATOM	233	CA	GLY L	30C		790	14.419 15.119	-14.111 -12.749	1.00 76.49 1.00 75.11	L L	C
	ATOM ATOM	234 235	C	GLY L	30C 30C		.823 .533	16.093	-12.749	1.00 77.11	L L	Ö
	ATOM	236	N	LYS L	30D		.991		-11.818	1.00 67.87	L	N
	MOTA	237	CA	LYS L	30D		.920	15.263	-10.510	1.00 58.91	L	C
35	ATOM	238	C	LYS L	30D		.254	14.295	-9.367	1.00 54.18	Ŀ	C
	ATOM	239	0	LYS L	30D		.840 L.509	13.143 15.831	-9.350 -10.333	1.00 53.39 1.00 59.26	L L	C
	ATOM ATOM	$\frac{240}{241}$	CB CG	LYS L LYS L	30D 30D		1.209	16.960	-10.333 -11.324	1.00 53.20	L	č
	ATOM	242	CD	LYS L	30D		3.211	17.978	-10.767	1.00 82.67	L	C
40	ATOM	243	CE	LYS L	30D	3	3.066	19.212	-11.664	1.00 98.60	L	C
	ATOM	244	NZ	LYS L	30D		2.785		-13.035	1.00108.42	Ŀ	N
	ATOM	245	N	SER L	31		7.027	14.777 13.961	-8.402 -7.261	1.00 48.70 1.00 48.64	L L	N C
	ATOM ATOM	246 247	CA C	SER L SER L	31 31		7.420 5.407	14.075	-6.127	1.00 46.46	L	C
45	ATOM	248	Ö	SER L	31		5.195	15.156	-5.571	1.00 46.13	L	0
	ATOM	249	CB	SER L	31		3.798	14.391	-6.760	1.00 44.76	L	C
	MOTA	250	OG	SER L	31		734	14.408	-7.818	1.00 48.15	L	O
	MOTA	251	N	LEU L LEU L	32 32		5.777 1.796	12.956 12.950	-5.788 -4.717	1.00 40.47 1.00 36.96	L L	C N
50	MOTA MOTA	252 253	CA C	LEU L	32	5	5.501	12.689	-3.393	1.00 38.57	L	Č
00	ATOM	254	ŏ	LEU L	32		5.338	11.645	-2.772	1.00 40.41	L	0
	MOTA	255	CB	LEU L	32		3.734	11.895	-5.002	1.00 37.94	Ļ	C
	ATOM	256	CG	LEU L	32		3.205	12.103 11.241	-6.424 -6.665	1.00 38.09 1.00 40.08	L L	C
55	MOTA MOTA	257 258		LEU L	32 32		L.975 2.883	13.574	-6.625	1.00 40.00	r L	c
55	ATOM	259	N	MET L	33		5.288	13.675	-2.982	1.00 39.42	L	N
	MOTA	260	CA	MET L	33	7	7.069	13.631	-1.756	1.00 35.69	L	C
	MOTA	261	C	MET L	33		5.618	14.837	-0.949	1.00 36.17	Γ	C
00	ATOM	262	0	MET L	33		5.480	15.921	-1.503	1.00 39.26 1.00 35.25	L L	C
60	MOTA MOTA	263 264	CB CG	MET L MET L	33 33		3.567 9.519	13.741 13.699	-2.109 -0.937	1.00 29.04	ŗ Ľ	C
	MOTA	265	SD	MET L	33		9.186	12.324	0.219	1.00 63.78	L	S
	ATOM	266	CE	MET L	33	9	9.514	10.867	-0.802	1.00 61.41	L	C
. –	ATOM	267	N	HIS L	34		6.383	14.659	0.347	1.00 32.55	L	N
65	MOTA	268	CA	HIS L	34 34		5.930 6.689	15.773 15.799	1.181 2.506	1.00 30.96	L L	C
	ATOM ATOM	269 270	C O	HIS L HIS L	34 34		7.011	14.747	3.052	1.00 37.96	L	ŏ
	ATOM	271	СВ	HIS L	34	4	4.426	15.649	1.485	1.00 31.51	L	C
	MOTA	272	CG	HIS L	34	:	3.588	15.261	0.307	1.00 13.71	L	С

	ATOM	273	ND1	HIS L	34	3.397	16.087	-0.780	1.00 26.36		ь :	ът
	ATOM	274		HIS L	34	2.882						N
								0.051	1.00 18.42			С
	MOTA	275		HIS L	34	2.609		-1.654	1.00 16.76]	L I	С
	ATOM	276	NE2	$\mathtt{HIS}\ \mathtt{L}$	34	2.282	14.304	-1.173	1.00 28.77	Ī	ւ :	N
5	ATOM	277	N	TRP L	35	6.958	16.992	3.030	1.00 30.35			
•	ATOM	278										N
			CA	TRP L	35	7.665		4.299	1.00 28.13			C
	ATOM	279	С	TRP L	35	6.826	17.615	5.487	1.00 30.86]	Ľ, (С
	MOTA	280	0	TRP L	35	6.030		5.367	1.00 31.74			ō
	ATOM	281		TRP L		8.877						
			CB		35			4.145	1.00 25.50]		С
10	ATOM	282	CG	TRP L	35	9.953	17.475	3.293	1.00 33.54]	L (C
	ATOM	283	CD1	TRP L	35	10.085	17.629	1.954	1.00 22.15	7	ն (Ċ
	MOTA	284	CD2		35							
						11.064		3.722	1.00 41.05			С
	ATOM	285	NE1	TRP L	35	11.211	16.981	1.513	1.00 39.93]	L]	N
	ATOM	286	CE2	TRP L	35	11.833	16.386	2.579	1.00 39.83	7		C
15	ATOM	287	CE3		35	11.483						
15								4.960	1.00 37.32		<u>ن</u> (C
	ATOM	288	CZ2	TRP L	35	13.004	15.613	2.633	1.00 34.89]	L (С
	ATOM	289	CZ3	TRP L	35	12.648	15.406	5.010	1.00 39.53	1		С
	ATOM	290	CH2		35	13.391	15.134					
								3.856	1.00 25.23			С
	ATOM	291	N	TYR L	36	7.023	17.006	6.650	1.00 26.93]	L 1	N
20	ATOM	292	CA	TYR L	36	6.299	17.433	7.823	1.00 24.56	1		С
	ATOM	293	C	TYR L	36	7.218					-	\tilde{a}
								8.968	1.00 27.73			C
	MOTA	294	О	TYR L	36	8.359		9.054	1.00 29.41]		0
	ATOM	295	CB	TYR L	36	5.338	16.353	8.281	1.00 27.13	1	. (С
	ATOM	296	CG	TYR L	36	4.349		7.222	1.00 28.84			Č
OF												_
25	ATOM	297	CD1		36	4.703	15.072	6.206	1.00 32.70	1	· (С
	ATOM	298	CD2	TYR L	36	3.060	16.470	7.230	1.00 29.19	1	<u> </u>	С
	ATOM	299	CE1	TYR L	36	3.800	14.706	5.233	1.00 29.50			Č
	MOTA	300	CE2		36	2.146		6.262	1.00 32.05	. 1		С
	ATOM	301	CZ	TYR L	36	2.516	15.230	5.269	1.00 28.90	1	· (C
30	ATOM	302	OH	TYR L	36	1.587	14.852	4.331	1.00 31.16	I		Ō
	ATOM	303		GLN L	37	6.703						
			N					9.832	1.00 25.72	1		N
	ATOM	304	ca	GLN L	37	7.419	19.131	11.003	1.00 29.42	I	. (C
	ATOM	305	C	GLN L	37	6.540	18.825	12.198	1.00 27.20	I		С
	ATOM	306	Ō	GLN L	37	5.335		12.169				
05									1.00 30.38			0
35	ATOM	307	CB	GLN L	37	7.671	20.633	10.950	1.00 30.13	I	· (C
	ATOM	308	CG	GLN L	37	8.155	21.194	12.281	1.00 39.28	I	. (С
	ATOM	309	CD	GLN L	37	8.177	22.707	12.306	1.00 36.66	Ī		
												C
	ATOM	310	OE1		37	7.154		12.088	1.00 38.84	I	. (0
	ATOM	311	NE2	GLN L	37	9.340	23.285	12.581	1.00 29.96	I	5 1	N
40	ATOM	312	N	GLN L	38	7.145		13.245	1.00 27.64	I		N
	ATOM	313										
			CA	GLN L	38	6.405		14.437	1.00 26.94	I		С
	ATOM	314	C	GLN L	38	7.194	18.490	15.623	1.00 27.28	I	٠ (C
	MOTA	315	0	GLN L	38	8.193	17.898	16.021	1.00 29.54	I	. (0
	ATOM	316	СB	GLN L	38	6.152						
45							16.481	14.549	1.00 22.51	I		C
45	MOTA	317	CG	GLN L	38	5.437	16.082	15.834	1.00 29.24	I	٠ (C
	ATOM	318	$^{\rm CD}$	GLN L	38	5.113	14.604	15.891	1.00 29.24	I	. (C
	ATOM	319	OE1	GLN L	38	5.880	13.760	15.419	1.00 32.49	Ī		ŏ
			NE2									
	ATOM	320			38	3.974		16.486	1.00 39.87	I		и.
	ATOM	321	N	LYS L	39	6.737	19.614	16.166	1.00 28.43	I	. 1	N
50	ATOM	322	CA	LYS L	39	7.363	20.232	17.324	1.00 26.31	I		C
	ATOM	323	C	LYS L	39	7.019		18.546				
									1.00 31.47	I		C
	MOTA	324	0	LYS L	39	5.937	18.810	18.634	1.00 32.57	I	. (0
	ATOM	325	$^{\mathtt{CB}}$	LYS L	39	6.848	21.660	17.495	1.00 25.15	I		С
	ATOM	326	CG	LYS L	39	7.064		16.277	1.00 21.42		` }	ă
r- r-								10.277		I	, (C
55	MOTA	327	$^{\mathrm{CD}}$	LYS L	39	6.510		16.515	1.00 25.95	Ι	, (С
	ATOM	328	CE	LYS L	39	6.913	24.841	15.418	1.00 25.49	I		С
	ATOM	329	NZ	LYS L	39	6.500		15.764	1.00 41.94			
										I		N
	ATOM	330	N	PRO L	40	7.938		19.513	1.00 33.67	I	. 1	N
	ATOM	331	CA	PRO L	40	7.732	18.575	20.737	1.00 37.29	I		C
60	ATOM	332	C	PRO L	40	6.400		21.429	1.00 42.79	Ī		
55								01 B01				C
	ATOM	333	0	PRO L	40	6.055	20.011	21.724	1.00 40.43	I		0
	ATOM	334	$^{\mathrm{CB}}$	PRO L	40	8.939	18.950	21.587	1.00 42.86	I		С
	ATOM	335	CG	PRO L	40	9.983	19.257	20.560	1.00 39.77	Ī		C
0.5	ATOM	336	CD	PRO L	40	9.222	20.062	19.553	1.00 29.92	I		С
65	ATOM	337	N	GLY L	41	5.648	17.790	21.668	1.00 43.78	I	. 1	N
	ATOM	338	CA	GLY L	41	4.367	17.929	22.326	1.00 46.56	I		Ċ
		339					10 222	21 202				
	ATOM		C	GLY L	41	3.223	18.220	21.383	1.00 43.68	I		C
	MOTA	340	0	GLY L	41	2.105	18.424	21.834	1.00 49.55	I	, (0
	ATOM	341	N	GLN L	42	3.483	18.235	20.080	1.00 41.00	I		N
						J • ±03			41.00			

	ATOM ATOM	342 343	CA C	GLN L	42 42	2.429	18.509 17.439	19.113 18.031	1.00 40.68 1.00 42.38	L	C
	ATOM ATOM	344 345	O CB	GLN L GLN L	42 42	2.975 2.674	16.410 19.858	18.059 18.449	1.00 40.20 1.00 44.01	Ţ.	0
5	ATOM	346	CG	GLN L	42	2.908	20.997	19.419	1.00 53.32	L L	C
	MOTA	347	CD	GLN L	42	3.214	22.303	18.716	1.00 47.80	L	Č
	MOTA	348	OE1		42	3.430	23.330	19.351	1.00 82.52	L	ŏ
	ATOM	349	NE2		42	3.234	22.267	17.387	1.00 57.98	L	N
40	ATOM	350	N	SER L	43	1.420	17.689	17.071	1.00 41.14	L	N
10	ATOM	351 352	CA	SER L	43	1.211	16.757	15.972	1.00 42.56	Ŀ	C
	ATOM ATOM	353	C	SER L SER L	43 43	1.930 2.415	17.230 18.359	14.710 14.633	1.00 40.84 1.00 43.67	L	C
	ATOM	354	СВ	SER L	43	-0.280	16.509	15.699	1.00 43.67	L L	0
	ATOM	355	OG	SER L	43	-0.200	17.872	15.663	1.00 40.39	r L	C
15	ATOM	356	N	PRO L	44	2.018	16.367	13.702	1.00 35.42	L	Ŋ
	ATOM	357	CA	PRO L	44	2.705	16.792	12,484	1.00 36.10	Ē	Ĉ
	MOTA	358	C	PRO L	44	2.094	18.026	11.826	1.00 33.06	L	C
	ATOM	359	0_	PRO L	44	0.923	18.322	12.007	1.00 41.89	L	0
20	ATOM	360	CB	PRO L	44	2.623	15.550	11.601	1.00 34.17	Ŀ	C
20	ATOM ATOM	361 362	CG CD	PRO L PRO L	44 44	$2.704 \\ 1.734$	14.448	12.595	1.00 33.70	L	C
	ATOM	363	И	LYS L	45	2.912	14.925 18.747	13.662 11.071	1.00 33.48 1.00 37.41	L L	C
	ATOM	364	CA	LYS L	45	2.661	20.000	10.405	1.00 37.41	r L	N C
	ATOM	365	C	LYS L	45	3.136	19.899	8.972	1.00 36.14	L	Č
25	ATOM	366	0	LYS L	45	4.278	19.559	8.691	1.00 43.37	L	ŏ
	ATOM	367	CB	LYS L	45	3.438	21.096	11.136	1.00 36.87	L	С
	ATOM	368	CG	LYS L	45	2.712	22.442	11.101	1.00 30.75	L	С
	ATOM ATOM	369 370	CD	LYS L LYS L	45 45	3.574	23.580	11.651	1.00 63.53	Ŀ	C
30	ATOM	371	NZ	LYS L	45 45	2.736 3.328	24.707 25.128	12.264 13.533	1.00 73.22	L	C
00	ATOM	372	N	LEU L	46	2.387	20.252	7.929	1.00 86.98 1.00 38.47	L L	N N
	ATOM	373	ĈA	LEU L	46	2.905	20.250	6.558	1.00 30.47	r L	C
	MOTA	374	C	LEU L	46	3.715	21.512	6.282	1.00 27.56	Ŀ	C
	ATOM	375	0	LEU L	46	3.325	22.604	6.679	1.00 30.41	L	ō
35	ATOM	376	CB	LEU L	46	1.745	20.151	5.561	1.00 30.51	L	C
	ATOM	377	CG	LEU L	46	2.062	20.048	4.063	1.00 32.20	L	C
	MOTA MOTA	378 379		LEU L LEU L	46	2.843	18.751	3.752	1.00 33.50	Ŀ	C
	ATOM	380	N N	LEU L	46 47	$0.750 \\ 4.848$	20.068 21.354	3.305	1.00 23.20	L	C
40	ATOM	381	CA	LEU L	47	5.721	22.482	5.610 5.288	1.00 28.53 1.00 28.04	L L	N C
	ATOM	382	C	LEU L	47	5.890	22.620	3.776	1.00 28.70	L	C
	MOTA	383	0	LEU L	47	5.701	23.694	3.195	1.00 29.81	L	ŏ
	ATOM	384	CB	LEU L	47	7.100	22.267	5.894	1.00 25.65	L	Ĉ
45	ATOM	385	CG	LEU L	47	7.289	21.941	7.367	1.00 27.87	L	С
45	ATOM	386	CD1		47	8.738	21.534	7.578	1.00 38.37	L	C
	ATOM ATOM	387 388	CD2 N	LEU L ILE L	47 48	6.923 6.274	23.136 21.517	8.223 3.148	1.00 32.83	L T	C
	MOTA	389	CA	ILE L	48	6.479	21.499	1.716	1.00 28.34 1.00 27.51	L L	N N
	ATOM	390	C	ILE L	48	5.664	20.340	1.225	1.00 26.97	L	C
50	MOTA	391	0	ILE L	48	5.583	19.325	1.916	1.00 23.95	L	ŏ
	MOTA	392	CB	ILE L	48	7.981	21.227	1.336	1.00 30.58	L	C
	ATOM	393		ILE L	48	8.896	22.342	1.865	1.00 16.40	L	C
	MOTA	394	CG2		48	8.112	21.058	-0.173	1.00 30.40	L	С
55	ATOM ATOM	395 396	N	ILE L TYR L	48 49	8.731	23.661	1.216	1.00 27.58	Ŀ	C
00	ATOM	397	CA	TYR L	49	5.047 4.260	20.499 19.424	0.052 -0.568	1.00 26.36 1.00 28.37	L L	И
	ATOM	398	C	TYR L	49	4.706	19.327	-2.021	1.00 28.37	r r	C
	ATOM	399	ō	TYR L	49	5.155	20.318	-2.604	1.00 27.84	L	õ
	MOTA	400	CB	TYR L	49	2.752	19.692	-0.488	1.00 26.55	L	Č
60	ATOM	401	CG	TYR L	49	2.286	20.901	-1.257	1.00 28.05	L	C
	ATOM	402	CD1		49	1.996	20.824	-2.614	1.00 26.50	L	C
	MOTA	403	CD2		49	2.134	22.127	-0.625	1.00 31.29	L	C
	ATOM	404	CE1 CE2		49	1.570	21.921	-3.308	1.00 9.37	Ŀ	C
65	ATOM ATOM	405 406	CEZ	TYR L TYR L	49 49	$1.711 \\ 1.429$	23.225 23.121	-1.317	1.00 22.71	L r	C
	ATOM	407	OH	TYR L	49	1.429	23.121 24.244	-2.656 -3.339	1.00 21.56 1.00 29.15	L L	C
	ATOM	408	N	ARG L	50	4.586	18.121	-2.580	1.00 29.13	L	<i>1</i> 1 O
	MOTA	409	CA	ARG L	50	4.996	17.807	-3.944	1.00 31.83	L	C
	ATOM	410	C	ARG L	50	6.452	18.210	-4.163	1.00 30.16	L	č

ATOM 411 O ARG L 50												
ATOM 414 CD ANG L 50 2.570 18.007 -6.937 1.00 38.86 L C C ANG L 15 NO ANG L 50 2.570 18.007 -7.6937 1.00 42.11 L C C ATOM 415 NE ANG L 50 2.570 18.007 -7.6937 1.00 42.11 L C C ATOM 415 NE ANG L 50 1.632 19.209 -7.664 1.00 47.83 L N A ATOM 414 N.12 NE ANG L 50 1.632 19.209 -7.664 1.00 47.783 L L C C ATOM 418 NE ANG L 50 1.632 19.209 -7.666 1.00 57.85 L L C C ATOM 418 NE ANG L 50 1.632 19.209 -7.666 1.00 57.85 L L C C ATOM 419 N ALA L 51 1.736 17.735 -3.278 1.00 59.09 L L N ATOM 419 N ALA L 51 1.736 17.735 -3.278 1.00 59.09 L C C ATOM 420 CA ALA L 51 9.225 19.452 -3.079 1.00 24.07 L N ATOM 421 C ALA L 51 9.225 19.452 -3.079 1.00 24.07 L N ATOM 421 C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C C ALA L 51 9.225 19.452 19.452 19.452 10.00 32.99 L C C ALA L 51 9.225 19.452 19.45		MOTA	411	0	ARG L	50	6.785	18.943	-5.091	1.00 36.35	L	0
ATOM 415 CD ARG L 50		MOTA	412	CB	ARG L	50	4.075	18.489	~4.965	1.00 35.34	L	C
ATOM		MOTA	413	CG	ARG L	50	3.869	17.654	-6.233	1.00 38.86	L	
5 ATOM 415 NE ARG L 50												
ATOM 416 CZ ARG L 50 1.635 20.202 -7.586 1.00 61.81 L C AROM 417 NH ARG L 50 0.058 19.948 -6.929 1.00 75.42 L N ATOM 418 NH2 ARG L 50 1.777 21.357 -8.225 1.00 59.09 L L N ATOM 418 NH2 ARG L 51 7.316 17.773 -8.225 1.00 59.09 L C N ATOM 419 N ALA L 51 7.316 17.773 -8.225 1.00 24.07 L N ATOM 420 CA ALA L 51 18.33 18.031 -3.357 1.00 24.07 L N ATOM 421 CA ALA L 51 19.226 19.00 19.00 10.00 22.30 L C ALA L 51 19.226 19.00 1	=											
ATOM 417 NH1 ARG L 50 0 0.508 19.948 -6.929 1.00 75.42 L N ATOM 419 N ALA L 50 17.77 21.357 -8.225 1.00 59.09 L N ATOM 419 N ALA L 51 7.316 17.735 -8.225 1.00 59.09 L N ATOM 421 C ALA L 51 1.7.316 17.735 18.019 -3.357 1.00 26.078 L N ATOM 421 C ALA L 51 1.875 18.019 -3.357 1.00 26.078 L C ATOM 421 C ALA L 51 1.9.235 18.019 -3.357 1.00 32.99 L C ATOM 421 C ALA L 51 1.9.235 19.452 -3.078 1.00 32.99 L C ATOM 422 C ALA L 51 1.9.235 19.452 -3.078 1.00 32.99 L C ATOM 424 C ALA L 51 1.9.235 19.452 -3.358 1.00 32.99 L C ATOM 425 C A SER L 52 1.9.24 19.521 -3.346 1.00 32.30 L C ATOM 424 C S ER L 52 1.9.24 19.521 -3.346 1.00 32.30 L C ATOM 425 C S ER L 52 1.9.24 19.521 -3.346 1.00 32.30 L C ATOM 426 C SER L 52 8.177 22.306 -3.194 1.00 31.91 L C ATOM 427 O SER L 52 8.177 23.006 -3.194 1.00 31.91 L C ATOM 428 C S SER L 52 10.106 22.167 -4.422 1.00 31.84 L C ATOM 429 C S SER L 52 10.106 22.167 -4.422 1.00 31.84 L C ATOM 429 C S SER L 52 9.479 22.322 -5.677 1.00 37.85 L C ATOM 430 N ASN L 53 6.906 22.760 -2.779 1.00 32.30 L C ATOM 431 C ASN L 53 5.790 32.3222 -5.677 1.00 32.30 L C ATOM 432 C ASN L 53 5.790 32.3222 -5.677 1.00 32.30 L C ATOM 433 C ASN L 53 5.790 32.3222 -5.677 1.00 37.85 L C ATOM 435 C ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 436 C ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 437 NDZ ASN L 53 4.596 23.255 -3.100 10.00 24.55 L C ATOM 438 C B SSN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 430 C B SSN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 430 C B SSN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 430 C B SSN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 437 NDZ ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 440 C LEU L 54 4.596 23.255 -4.622 1.00 19.61 L C ATOM 440 C LEU L 54 4.596 23.255 -3.10 1.00 23.59 L N ATOM 440 C LEU L 54 4.596 23.255 -3.10 1.00 23.59 L N ATOM 440 C LEU L 54 4.596 23.255 -3.10 1.00 23.59 L N ATOM 440 C LEU L 54 4.596 23.255 -3.10 1.00 32.70 L C ATOM 440 C C LEU L 54 54 5.650 25.916 1.00 32.70 L C ATOM 445 C G G G G G G G G G G G G G G G G G G	3											
ATOM 418 MHZ ARG L 50												
ARTOM 419 N ALA L 51 7, 316 17,735 -3.278 1.00 24.07 L N												
AROM A210 CA ALA L 51 S. 735 18.019 -3.357 1.00 26.98 L C AROM A22 C ALA L 51 10.230 19.621 -2.383 1.00 32.99 L C AROM A22 C ALA L 51 10.230 19.621 -2.383 1.00 32.33 L C AROM A24 N SER L 52 8.560 20.483 -3.600 1.00 32.360 L C AROM A25 C C SER L 52 8.560 20.483 -3.600 1.00 32.36 L C AROM A26 C SER L 52 8.167 32.004 21.10 32.36 L C AROM A26 C SER L 52 8.167 32.004 21.10 32.36 L C AROM A26 C SER L 52 8.167 32.004 21.10 32.36 L C AROM A27 C SER L 52 8.167 32.004 21.10 32.33 L C AROM A27 C SER L 52 20.106 22.126 -3.195 1.00 34.91 L C AROM A27 C AROM A29 OG SER L 52 20.106 22.126 -3.195 1.00 34.91 L C AROM A31 C AROM A31 C AROM L 53 5.944 23.3838 -2.609 1.00 24.50 L C AROM A32 C AROM L 53 5.944 23.3838 -2.609 1.00 24.50 L C AROM A35 C AROM L 53 5.620 23.362 -0.289 1.00 24.50 L C AROM A35 C AROM L 53 5.620 23.362 -0.289 1.00 24.50 L C AROM A35 C AROM L 53 4.586 23.255 -4.622 1.00 19.61 L C AROM A36 C AROM A35 C AROM A35 C AROM A35 C AROM A36 C AROM A37 C AROM A37 C AROM A38 R AROM A37 C AROM A38 R AROM A38 R AROM A38 R AROM A38 R AROM A39 R AROM A39 R AROM A30												
ATOM 421 C		MOTA	419	N	ALA L	51					L	
ATOM 421 C ALA L 51 9.225 19.452 -3.079 1.00 32.99 L C ATOM 423 CO ALA L 51 19.230 19.621 -2.383 1.00 32.33 L CO ATOM 424 N SER L 52 9.084 17.566 -4.698 1.00 23.60 L C ATOM 425 CA SER L 52 9.084 21.821 -3.346 1.00 32.36 L N ATOM 425 CA SER L 52 9.084 21.821 -3.346 1.00 33.41 L C ATOM 426 C SER L 52 9.084 21.821 -3.346 1.00 33.41 L C ATOM 427 C SER L 52 8.572 21.37 24.391 1.00 34.94 L C ATOM 427 C SER L 52 8.572 21.37 24.391 1.00 34.34 L C ATOM 428 C SER L 52 8.572 21.37 24.391 1.00 34.394 L C ATOM 428 C SER L 52 8.572 21.37 24.391 1.00 34.394 L C ATOM 429 C SER L 52 9.084 21.821 -3.436 1.00 34.394 L C ATOM 429 C SER L 52 9.094 21.821 -3.433 1.00 34.394 L C ATOM 429 C SER L 52 9.094 21.821 2.00 -2.779 1.00 32.30 L N ATOM 420 C A ASN L 53 5.791 24.229 -1.513 1.00 34.394 L C ATOM 420 C A ASN L 53 5.791 24.229 -1.513 1.00 34.394 L C ATOM 421 C A ASN L 53 5.791 24.229 -1.153 1.00 24.50 L C ATOM 431 C A ASN L 53 5.791 24.229 -1.153 1.00 24.50 L C ATOM 431 C A ASN L 53 5.791 24.229 -1.153 1.00 24.50 L C ATOM 434 C B ASN L 53 4.602 23.395 -3.140 1.00 33.31 L C C ATOM 435 C ASN L 53 4.602 23.395 -3.140 1.00 33.31 L C C ATOM 435 ND ASN L 53 4.602 23.395 -3.140 1.00 33.31 L C C ATOM 435 ND ASN L 53 4.602 23.395 -3.140 1.00 33.31 L C C ATOM 437 ND ASN L 53 4.408 24.233 -5.336 1.00 39.42 L C ATOM 438 N L 53 4.408 24.233 -5.336 1.00 39.42 L C ATOM 438 N L SEU L 54 5.839 25.525 -0.869 1.00 23.59 L N ATOM 430 C ALBU L 54 5.839 25.525 -0.869 1.00 37.53 L C C ATOM 430 C ALBU L 54 5.839 25.525 -0.869 1.00 37.53 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 33.33 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 33.23 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 31.23 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 31.23 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 31.23 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 31.23 L C C ATOM 440 C LBU L 54 5.839 25.525 -0.869 1.00 31.23 L C C ATOM 445 C C C C C C C C C C C C C C C C C C)	MOTA	420	CA	ALA L	51	8.735	18.019	-3.357	1.00 26.98	L	C
ATOM		MOTA		С	ALA L	51	9.225	19.452	-3.079	1.00 32.99	L	C
APPOIN									-2.383		L	
ATOM												
ATOM												
ATOM 426 C SER L 52 8.137 23.006 -3.194 1.00 31.91 L C O ATOM 427 O SER L 52 10.106 22.167 -4.422 1.00 34.94 L C O ATOM 428 CB SER L 52 10.106 22.167 -4.422 1.00 34.94 L C O ATOM 429 CG SER L 52 9.479 22.322 -5.677 1.00 37.85 L C O ATOM 430 N ASN L 53 6.906 22.760 -2.779 1.00 32.30 L N ATOM 431 CA ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 432 C ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 C ASN L 53 5.620 23.362 -0.289 1.00 37.53 L C ATOM 434 CB ASN L 53 5.620 23.362 -0.289 1.00 37.53 L C ATOM 435 CG ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C ATOM 436 ODL ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 437 NDZ ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 23.59 L N ATOM 439 N LEU L 54 5.630 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 23.59 L N ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 C LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.00 11.46 L C ATOM 445 CG LEU L 54 6.595 2.266 291 3.065 1.00 32.59 L N ATOM 446 N GLU L 55 3.840 25.195 1.906 30.60 2.20 L C ATOM 447 CD LEU L 54 6.253 27.310 0.700 1.00 11.00 11.46 L C ATOM 448 C CD LEU L 54 6.595 2.266 2.210 1.00 32.59 L C ATOM 445 C CD LEU L 54 6.595 2.266 2.210 1.00 32.59 L C ATOM 445 C CD LEU L 55 2.260 2.269 1.3065 1.00 32.79 L C ATOM 447 CO LEU L 55 2.260 2.269 2.266 2.206 1.00 32.79 L C ATOM 448 C CD LEU L 55 2.260 2.260 2.206 1.00 32.79 L C ATOM 445 C CD LEU L 55 2.260 2.260 2.206 1.00 32.79 L C ATOM 445 C CD LEU L 55 2.260 2.260 2.206 1.00 32.79 L C ATOM 445 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 445 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 455 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 450 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 450 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 450 C CD LEU L 55 2.260 2.260 2.260 1.00 32.79 L C ATOM 45	_											
ATOM 428 CB SER L 52 10.106 22.167 -4.422 1.00 31.84 L C C ATOM 429 OG SER L 52 10.106 22.167 -4.422 1.00 31.84 L C C ATOM 430 N ASN L 53 6.906 22.322 -5.677 1.00 37.85 L O ATOM 431 CA ASN L 53 6.906 22.322 -5.677 1.00 37.85 L O ATOM 431 CA ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 432 C ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 O ASN L 53 5.942 22.92 -1.153 1.00 32.30 L N ATOM 433 O ASN L 53 5.942 22.92 -1.153 1.00 32.30 L N ATOM 433 O ASN L 53 5.942 22.94 22.9 -1.153 1.00 37.53 L O ATOM 435 CG ASN L 53 4.602 23.355 -3.140 1.00 37.53 L O ATOM 435 CG ASN L 53 4.602 23.355 -3.140 1.00 37.53 L O ATOM 435 CG ASN L 53 4.602 23.355 -3.140 1.00 37.53 L O ATOM 435 CG ASN L 53 4.506 23.255 -4.622 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 13.31 L C ATOM 438 N LEU L 54 54 5.636 25.935 0.395 1.00 39.42 L O ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 18.53 L N ATOM 439 CA LEU L 54 5.636 25.935 0.396 1.00 13.79 L N ATOM 440 C LEU L 54 5.636 25.935 0.396 1.00 13.79 L N ATOM 440 C LEU L 54 6.253 27.310 0.242 1.00 13.23 L N ATOM 442 CB LEU L 54 6.253 27.310 0.242 1.00 13.46 L C ATOM 444 CD1 LEU L 54 6.195 27.789 2.150 1.00 10.0 41.6 L C ATOM 444 CD1 LEU L 54 6.195 27.89 2.150 1.00 10.0 41.6 L C ATOM 446 CD2 LEU L 54 6.595 29.256 2.306 1.00 23.59 L C ATOM 447 CD2 LEU L 55 2.450 25.231 2.306 1.00 23.59 L C ATOM 448 CD2 LEU L 55 2.450 25.231 2.379 1.00 10.0 41.6 L C ATOM 449 C CD2 LEU L 55 2.450 25.195 1.966 1.00 32.72 L N ATOM 446 CD2 LEU L 55 2.450 25.195 1.966 1.00 32.72 L N ATOM 447 CD CD2 LEU L 55 2.450 25.231 2.379 1.00 10.0 41.6 L C ATOM 448 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.98 L C C ATOM 449 C CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.99 L C C ATOM 450 CD2 LEU L 55 2.450 25.231 2.379 1.00 33.9	2											
ATOM 428 CB SER L 52 10.106 22.167 -4.422 1.00 31.84 L C C ATOM 430 N ASN L 53 6.906 22.760 -2.779 1.00 32.30 L N ATOM 431 CA ASN L 53 6.906 22.760 -2.779 1.00 32.30 L N ATOM 431 CA ASN L 53 6.906 22.760 -2.779 1.00 32.30 L N ATOM 432 C ASN L 53 5.944 23.838 -2.609 1.00 32.30 L N ATOM 432 C ASN L 53 5.944 23.838 -2.609 1.00 37.53 L C ATOM 433 CA ASN L 53 5.944 23.838 -2.629 1.00 37.53 L C ATOM 435 CC ASN L 53 4.602 23.362 -0.289 1.00 37.53 L C ATOM 435 CC ASN L 53 4.602 23.365 -0.289 1.00 37.53 L C ATOM 435 CC ASN L 53 4.602 23.365 -3.140 1.00 13.31 L C ATOM 436 OD1 ASN L 53 4.602 23.365 -3.140 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 19.63 L N ATOM 438 N LEU L 54 5.859 25.525 -0.869 1.00 39.42 L O ATOM 440 C LEU L 54 5.859 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 39.42 L O ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 10.01 1.1 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 10.01 1.1 L C ATOM 445 CD LEU L 54 6.255 2.256 2.256 1.206 1.00 32.72 L N ATOM 446 N GLU L 55 3.860 27.789 1.250 1.00 30.446 L C ATOM 447 CA GLU L 55 3.860 27.789 1.250 1.00 30.559 L C ATOM 448 C C GLU L 55 3.860 25.2531 1.900 30.559 L C ATOM 448 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C ATOM 448 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C ATOM 449 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1.900 30.554 L C C ATOM 445 C C GLU L 55 5 2.450 25.231 1												
ATOM		ATOM		0							L	
ATOM 431 CA ASIN L 53 6,906 22.760 -2.779 1.00 32.30 L N ATOM 432 C ASIN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 O ASIN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 O ASIN L 53 5.791 24.229 -1.153 1.00 28.28 L C ATOM 434 CB ASIN L 53 5.620 23.362 -0.289 1.00 37.53 L O ATOM 435 CG ASIN L 53 4.602 23.395 -3.140 1.00 13.31 L C ATOM 436 OD1 ASIN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 437 ND2 ASIN L 53 4.408 24.233 -5.336 1.00 19.61 L C ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 39.42 L O ATOM 439 CA LEU L 54 5.839 25.525 -0.869 1.00 19.73 L C ATOM 440 C LEU L 54 5.839 25.525 -0.869 1.00 23.599 L N ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 O LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 444 CD LEU L 54 6.195 27.789 1.800 34.46 L O ATOM 444 CD LEU L 54 6.195 27.789 1.100 10.41 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 10.01 11.46 L C ATOM 444 CD LEU L 54 6.195 27.789 2.150 1.00 0.04 1 L C ATOM 446 N G LU L 55 2.450 29.256 2.306 1.00 23.599 L N ATOM 446 N GLU L 55 2.450 25.2316 0.700 10.01 1.46 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.450 25.2316 0.00 23.599 L C ATOM 446 N GLU L 55 2.2450 26.533 1.906 1.00 32.72 L N ATOM 447 CA GLU L 55 2.2450 25.2316 1.00 32.72 L N ATOM 448 C GLU L 55 2.2450 25.2316 1.00 32.72 L N ATOM 447 CA GLU L 55 2.2450 25.231 1.906 1.00 40.41 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 40.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 40.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 40.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 40.02 L C ATOM 450 CB GLU L 55 0.2450 2.9450 2.9450 1.00 33.98 L C ATOM 450 CB GLU L 55 0.2450 2.9450 2.9450 1.00 33.99 L C ATOM 450 CB GLU L 55 0.2450 2.9450 1.00 33.99 L C ATOM 450 CB GLU L 55 0.2450 2.9450 1.00 33.99 L C ATOM 450 CB GLU L 55 0.2450 2.9450 1.00 33.99 L		MOTA	428	CB	SER L	52	10.106	22.167	-4.422	1.00 31.84	L	С
ATOM 431 CA ASN L 53 6.906 22.760 -2.779 1.00 32.30 L N ATOM 432 C ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 O ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 O ASN L 53 5.791 24.229 -1.153 1.00 28.28 L C ATOM 434 CB ASN L 53 5.620 23.362 -0.289 1.00 37.53 L O ATOM 435 CG ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C ATOM 436 OD1 ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.408 24.233 -5.336 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 18.53 L N ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 23.599 L N ATOM 439 CA LEU L 54 5.650 25.916 0.519 1.00 23.599 L N ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 O LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD1 LEU L 54 6.253 27.310 0.700 10.01 11.46 L C ATOM 444 CD1 LEU L 54 6.259 27.789 2.150 1.00 10.41 L C ATOM 446 N G LU L 55 2.450 29.256 2.306 1.00 23.599 L N ATOM 448 CG LEU L 54 6.259 27.789 2.150 1.00 10.41 L C ATOM 446 N GLU L 55 3.8840 25.195 1.966 1.00 32.72 L N ATOM 447 CA GLU L 55 2.450 29.256 2.306 1.00 23.599 L C ATOM 448 C CD LEU L 55 3.8840 25.195 1.966 1.00 32.72 L N ATOM 448 C CD LEU L 55 3.8840 25.195 1.966 1.00 32.72 L N ATOM 449 C CD LEU L 55 3.8840 25.195 1.966 1.00 32.72 L N ATOM 449 C CD LEU L 55 2.450 25.231 2.379 1.00 40.00 10.41 L C ATOM 448 C CD LEU L 55 2.450 25.231 2.379 1.00 40.00 10.41 L C ATOM 448 C CD LEU L 55 2.450 25.231 2.379 1.00 40.00 10.41 L C ATOM 448 C CD LEU L 55 3.8840 25.195 1.966 1.00 32.72 L N ATOM 449 C CD LEU L 55 2.450 25.231 1.90 40.00 20.82 L C ATOM 449 C CD LEU L 55 2.2450 26.636 2.808 1.00 40.00 L L C ATOM 450 CD CD LU L 55 2.2450 26.636 2.808 1.00 40.00 L L C ATOM 450 CD CD LU L 55 2.2860 27.482 3.137 1.00 40.00 L L C ATOM 450 CD CD LU L 55 2.2860 27.482 3.137 1.00 40.00 L L C ATOM 450 CD CD LU L 55 2.2860 27.482 3.137 1.00 40.00 L L C ATOM 450 CD SER L 56 0.432 28.685 2.2868 1.00 33.98 L C ATOM 450 CD SER L 56 0.432 28.286 2.808 1.00 47.94 L C ATOM 450 CD SER L 56 0.432 28.286 2.808 1.0		ATOM	429	OG	SER L	52	9.479	22.322	-5.677	1.00 37.85	L	0
ATOM 431 CA ASN L 53 5.944 23.838 -2.609 1.00 24.50 L C ATOM 433 C ASN L 53 5.791 24.229 -1.153 1.00 28.28 L C ATOM 434 CB ASN L 53 5.620 23.362 -0.289 1.00 37.53 L O ATOM 435 CB ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C ATOM 436 CB ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C ATOM 436 DD1 ASN L 53 4.602 23.395 -4.622 1.00 19.61 L C ATOM 437 ND2 ASN L 53 4.408 24.233 -5.336 1.00 39.42 L O ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 39.42 L O ATOM 439 CA LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 441 C LEU L 54 3.338 26.555 0.242 1.00 31.23 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 443 CG LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 445 CD2 LEU L 54 6.255 27.789 2.150 1.00 34.46 L C ATOM 446 CD1 LEU L 54 6.253 27.310 0.700 1.00 10.41 L C ATOM 447 CA GLU L 55 2.840 25.195 1.966 1.00 32.75 L C ATOM 446 CD1 LEU L 55 6.830 25.195 1.966 1.00 32.75 L C ATOM 447 CA GLU L 55 2.840 25.195 1.966 1.00 32.75 L C ATOM 449 C GLU L 55 2.840 25.195 1.966 1.00 32.75 L C ATOM 449 C GLU L 55 2.460 25.195 1.966 1.00 32.75 L C ATOM 449 C GLU L 55 2.480 25.195 1.966 1.00 32.75 L C ATOM 445 CB GLU L 55 2.480 25.195 1.966 1.00 32.75 L C ATOM 445 CB GLU L 55 2.480 25.195 1.966 1.00 32.75 L C ATOM 445 CB GLU L 55 2.880 24.273 3.555 1.00 44.62 L C ATOM 450 CB GLU L 55 2.840 25.195 1.966 1.00 32.72 L N ATOM 450 CB GLU L 55 2.880 24.273 3.555 1.00 32.72 L N ATOM 450 CB GLU L 55 2.880 24.273 3.555 1.00 33.98 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.880 24.273 3.33 3.30 1.00 33.98 L C ATOM 450 CB GLU L 55 0.880 24.273 0.285 1.00 40.01 L C ATOM 450 CB GLU L 55 0.285 2.888 1.00 39.72 L C ATOM 450 CB GLU L 55 0.285 2.289 24.273 3.30 3.300 1.00 33.99 L C ATOM 450 CB GLU L 55 0.285 2.289 24.273 3.30 3.300 1.00 33.99 L C ATOM 450 CB GLU L 55 0.285 2.289 24.273 3	3	ATOM		N	ASN L	53	6.906	22.760	-2.779	1.00 32.30	L	N
ATOM 432 C ASN L 53 5.791 24.229 -1.153 1.00 28.28 L C C ATOM 433 O ASN L 53 4.602 23.362 -0.289 1.00 37.53 L O ATOM 434 CB ASN L 53 4.602 23.355 -4.622 1.00 19.61 L C C ATOM 435 OD ASN L 53 4.602 23.255 -4.622 1.00 19.61 L C C ATOM 436 OD ASN L 53 4.408 24.233 -5.336 1.00 39.42 L O ATOM 437 ND2 ASN L 53 4.408 24.233 -5.336 1.00 39.42 L O ATOM 438 N LSU L 54 5.650 25.916 0.519 1.00 18.53 L N ATOM 439 CA LSU L 54 5.650 25.916 0.519 1.00 19.73 L C C ATOM 440 C LSU L 54 5.650 25.916 0.519 1.00 19.73 L C C ATOM 441 O LSU L 54 4.622 32.555 0.242 1.00 31.23 L C C ATOM 441 O LSU L 54 4.629 25.939 0.896 1.00 31.23 L C C ATOM 441 C LSU L 54 4.629 25.939 0.896 1.00 31.23 L C C ATOM 442 CB LSU L 54 6.159 27.789 2.150 1.00 10.41 L C C ATOM 444 CD1 LSU L 54 6.159 27.789 2.150 1.00 10.41 L C C ATOM 444 CD1 LSU L 54 6.195 27.789 2.150 1.00 10.41 L C C ATOM 444 CD1 LSU L 54 6.555 29.256 2.326 1.00 31.23 L C C ATOM 442 CD1 LSU L 54 6.595 29.256 2.306 1.00 20.82 L C ATOM 446 CD2 LSU L 54 6.595 29.256 2.306 1.00 20.82 L C ATOM 447 CD1 LSU L 55 3.840 25.195 1.00 20.82 L C ATOM 448 CD LSU L 55 2.450 25.231 2.379 1.00 36.55 1.00 22.72 L C ATOM 449 O GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 450 CD2 LSU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 450 CD2 LSU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 450 CD2 LSU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 451 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 451 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 451 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 450 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 451 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 452 CD GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 453 C G GLU L 55 2.869 27.482 3.117 1.00 50.47 L C C ATOM 450 CD GLU L 55 2.860 27.882 3.110 1.00 41.65 L C C ATOM 450 CD GLU L 55 2.860 27.882 3.10 0.00 31.00 51.00 50.47 L C C ATOM 450 CD GLU L 55 2.860 27.882 3.10 0.00 31.00 51.10 C C ATOM 450 CD GLU L 55 2.860 27.882 3.10 0.00 31.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.00 51.0	-										Τ.	C
ATOM 433 O ASN L 53 5.620 23.362 -0.289 1.00 37.53 L O C ATOM 444 CB ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C C ATOM 435 CG ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C C ATOM 436 OD1 ASN L 53 4.4596 23.255 -4.622 1.00 19.61 L C C ATOM 437 ND2 ASN L 53 4.4813 22.040 -5.110 1.00 18.53 L N ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 23.559 L N ATOM 439 CA LEU L 54 5.839 25.525 -0.869 1.00 23.559 L N ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C C ATOM 441 O LEU L 54 4.169 25.939 0.896 1.00 31.23 L C C ATOM 441 O LEU L 54 4.169 25.939 0.896 1.00 31.23 L C C ATOM 444 CB LEU L 54 4.169 25.939 0.896 1.00 31.23 L C C ATOM 444 CB LEU L 54 6.595 27.789 2.150 1.00 10.41 L C ATOM 444 CD1 LEU L 54 6.595 27.789 2.150 1.00 10.41 L C ATOM 444 CD1 LEU L 54 6.595 29.256 2.306 1.00 20.22 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 20.22 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 20.22 L C ATOM 447 CA GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 O GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 O GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 O GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 O GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.313 1.00 50.47 L O O ATOM 450 O GLU L 55 0.088 24.310 0.098 1.00 3												
ATOM 434 CB ASN L 53 4.602 23.395 -3.140 1.00 13.31 L C C ATOM 435 CG ASN L 53 4.596 23.255 -4.622 1.00 19.61 L C C ATOM 437 ND2 ASN L 53 4.408 24.233 -5.336 1.00 39.42 L O N ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 18.53 L N ATOM 438 N LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 O LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CDL LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CDL LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 445 CD2 LEU L 54 6.195 27.789 2.150 1.00 23.59 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 446 N GLU L 55 2.450 25.231 2.379 1.00 32.72 L N ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 32.72 L N ATOM 449 O GLU L 55 2.450 25.231 2.379 1.00 33.99 L C ATOM 449 C GLU L 55 2.450 25.231 2.379 1.00 33.99 L C ATOM 45 CB GLU L 55 2.450 25.231 2.379 1.00 33.99 L C ATOM 45 CB GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L C C ATOM 455 O SER L 56 0.259 28.168 3.254 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.775 1.00 48.75 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.73 L D ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.73 L D ATOM 458 O SER L 56 0.432 28.266 2.258 1.00 39.73 L D ATOM 458 O SER L 56 0.432 28.266 2 4.758 1.00 39.73 L D ATOM 458 O SER L												
S									7 1 4 0			
ATOM 436 ODI ASN L 53 4.408 24.233 -5.336 1.00 39.42 L O ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 23.59 L N ATOM 439 CA LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 O LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD1 LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 445 CD2 LEU L 54 6.195 29.256 2.306 1.00 23.59 L C ATOM 446 CD1 LEU L 54 6.195 29.256 2.306 1.00 23.59 L C ATOM 446 CD1 LEU L 55 5 3.840 25.195 1.966 1.00 32.72 L N ATOM 446 CD LEU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 447 CA GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 0 GLU L 55 2.266 27.482 3.137 1.00 50.47 L O ATOM 449 0 GLU L 55 2.2860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 2.2860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB GLU L 55 0.883 24.310 1.00 41.65 L C ATOM 450 CB	_											
ATOM 437 ND2 ASN L 53 4.813 22.040 -5.110 1.00 18.53 L N ATOM 438 N LEU L 54 5.859 25.525 -0.869 1.00 23.59 L N ATOM 440 C LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 441 0 LEU L 54 4.169 25.939 0.896 1.00 34.46 L O ATOM 442 CB LEU L 54 6.155 7.739 0.896 1.00 34.46 L O ATOM 442 CB LEU L 54 6.195 27.789 2.150 1.00 11.46 L C ATOM 443 CG LEU L 54 6.195 27.789 2.150 1.00 11.46 L C ATOM 444 CD1 LEU L 54 6.253 27.310 0.700 1.00 10.41 L C ATOM 444 CD1 LEU L 54 6.595 29.256 2.306 1.00 23.59 L C ATOM 445 CD2 LEU L 54 6.595 29.256 2.306 1.00 20.82 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 447 CA GLU L 55 2.465 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.042 26.636 2.808 1.00 44.62 L C ATOM 449 O GLU L 55 2.860 27.842 3.137 1.00 50.47 L C ATOM 450 CB GLU L 55 2.889 24.273 3.555 1.00 33.98 L C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OEI GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 39.72 L C ATOM 456 CA SER L 56 0.259 28.168 3.253 1.00 39.72 L C ATOM 457 OE SER L 56 0.432 28.262 4.758 1.00 39.79 L O ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.79 L O ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 450 CB SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 28.262 4.758 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 29.322 8.807 1.00 37.99 L O ATOM 460 C G SER L 56 0.432 29.322 8.807 1.00 37.99 L O ATOM 46	5											
ATOM 438 N LEU L 54 5.839 25.525 -0.869 1.00 23.59 L N ATOM 439 CA LEU L 54 5.650 25.916 0.519 1.00 19.73 L C ATOM 440 C LEU L 54 4.169 25.939 0.896 1.00 31.23 L C ATOM 441 O LEU L 54 6.253 27.310 0.700 1.00 31.23 L C ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 443 CG LEU L 54 6.253 27.310 0.700 1.00 11.46 L C ATOM 444 CD1 LEU L 54 7.125 26.991 3.065 1.00 23.59 L C ATOM 445 CD2 LEU L 54 7.125 26.991 3.065 1.00 23.59 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 23.59 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 23.59 L C ATOM 448 C GLU L 55 3.840 25.195 1.966 1.00 23.59 L C ATOM 449 O GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 36.54 L C ATOM 449 C GLU L 55 2.860 27.482 3.137 1.00 36.54 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.62 L C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 453 0E1 GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 453 0E1 GLU L 55 0.096 23.783 3.130 1.00 41.65 L C ATOM 455 0E2 GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 455 0E2 GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 455 0E2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 457 0E2 GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 455 N SER L 56 0.259 28.168 3.253 1.00 61.09 L O ATOM 457 C SER L 56 0.259 28.168 3.246 1.00 47.94 L O ATOM 458 0 SER L 56 0.259 28.168 3.246 1.00 47.94 L O ATOM 457 C SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 0E3 SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 0E3 SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 0E3 SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 6.405 1.00 37.39 L N ATOM 460 O G SER L 56 0.403 27.270 6.405 1.00 37.39 L N ATOM 460 O G SER L 56 0.403 27.270 6.405 1.00 37.39 L N ATOM 460 O G SER L 56 0.403 27.270 6.406 1.00 37.39 L C ATOM 460												
ATOM		MOTA	437	ND2	ASN L	53	4.813		-5.110	1.00 18.53	L	N
ATOM		MOTA	438	N	LEU L	54	5.839	25.525	-0.869	1.00 23.59	L	N
ATOM		MOTA	439	CA	LEU L	54	5,650	25.916	0.519	1.00 19.73	L	C
ATOM 441 O LEU L 54 3.338 26.555 0.242 1.00 34.46 L O ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 10.41 L C ATOM 443 CG LEU L 54 6.195 27.789 2.150 1.00 10.41 L C ATOM 444 CD1 LEU L 54 7.125 26.991 3.065 1.00 23.59 L C ATOM 445 CD2 LEU L 54 6.595 29.256 2.306 1.00 20.82 L C C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 447 CA GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.477 L O ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.477 L O ATOM 450 CB GLU L 55 2.889 24.273 3.555 1.00 33.98 L C ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OB1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OB2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 457 C SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 41.16 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 47.94 L O ATOM 450 CB SER L 56 0.432 28.262 4.758 1.00 37.97 L C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 460 OG SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 460 CG SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 460 CG SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 461 N GLY L 57 0.690 29.617 6.733 1.00 37.39 L N ATOM 463 N GLY L 57 0.690 29.617 6.733 1.00 37.39 L N ATOM 464 N GLY L 57 0.690 29.617 6.733 1.00 37.99 L C ATOM 468 O GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 467 C GLY L 58 5.298 1.288 7 0.00 37.39 L C ATOM 468 O GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 468 O GLY L 57 0.690 29.584 6.452 1.00 37.39 L N ATOM 468 C GLY L 58 5.298 1.288 7 0.00 37.39 L N ATOM 468 C G LLE L 58 5.298 1.288 7 0.00 37.39 L C ATOM 468 C G LLE L 58 5.298 1.288 7 0.00 37.39 L C ATOM 470 C G LLE L 58 5.298 29.584 6.452 1.00 38.81 L C C ATOM 470 C G LLE L 58 5.298 29.588 6 8.288 1.00 33.81 L C C ATOM 470 C G LLE L 58 5.298 29.588 6 8.288 1.00 33.81 L C C ATOM 470 C C ROL L 59 6.	0											
ATOM 442 CB LEU L 54 6.253 27.310 0.700 1.00 1.146 L C ATOM 443 CG LEU L 54 6.195 27.789 2.150 1.00 10.41 L C C ATOM 444 CD1 LEU L 54 7.125 26.991 3.065 1.00 23.59 L C ATOM 445 CD2 LEU L 54 6.595 29.256 2.306 1.00 23.59 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 446 N GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 C GLU L 55 2.462 26.636 27.482 3.137 1.00 50.47 L O GLU L 55 2.289 24.273 3.555 1.00 33.98 L C ATOM 451 CG GLU L 55 2.880 27.482 3.137 1.00 50.47 L O GLU L 55 2.289 24.273 3.555 1.00 33.98 L C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 OLG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OLG GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OLZ GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OLZ GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 461 N GLY L 57 0.690 29.267 7.280 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.267 7.280 1.00 37.39 L N ATOM 463 C GLY L 57 0.690 29.267 7.280 1.00 37.39 L N ATOM 466 CA LIE L 58 4.912 29.322 8.487 1.00 48.99 L O ATOM 469 CB LIE L 58 4.912 29.322 8.487 1.00 48.99 L O ATOM 469 CB LIE L 58 4.912 29.322 8.487 1.00 37.90 L C ATOM 469 CB LIE L 58 4.912 29.322 8.487 1.00 37.39 L O ATOM 469 CB LIE L 58 4.912 29.322 8.487 1.00 37.39 L O ATOM 469 CB LIE L 58 3.809 26.051 6.745 1.00 33.81 L C C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 33.81 L C C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 33.81 L C C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 33.81 L C C ATOM 470 CG1 LLE L 5	J											
ATOM 444 CD1 LEU L 54 6.195 27.789 2.150 1.00 10.41 L C C ATOM 444 CD1 LEU L 54 7.125 26.991 3.065 1.00 23.59 L C C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 23.59 L C ATOM 446 N GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 447 CA GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 449 O GLU L 55 2.042 26.636 2.808 1.00 44.62 L C ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 448 C GLU L 55 2.8860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 455 N SER L 56 0.728 26.865 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.728 26.865 2.752 1.00 48.75 L N ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 OG SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 OG SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 OG SER L 56 0.403 27.270 5.475 1.00 40.01 L C ATOM 450 CG GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 460 OG SER L 56 0.403 27.270 5.475 1.00 40.01 L C ATOM 461 N GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.280 29.322 8.487 1.00 37.39 L N ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 38.10 L C ATOM 466 C GLY L 57 2.280 29.322 8.487 1.00 38.10 L C ATOM 467 C GLY L 58 5.241 30.064 6.452 1.00 33.29 L C ATOM 468 O LLE L 58 3.809 26.051 6.745 1.00 41.88 L N ATOM 468 C GLY L 57 2.280 29.322 8.487 1.00 36.39 L C ATOM 467 C GLY L 58 5.241 30.064 6.452 1.00 37.39 L C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 37.39 L C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 37.39 L C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 33.29 L C ATOM 470 CG1 LLE L 58 3.809 26.051 6.745 1.00 37.66 L C ATOM 473 N PRO L 58 8.257 29.974 0.074 8.355 1.00 39.78 L C ATOM 475 C PRO L 59 8.000 30.700 7.114 1.00 35.70 L C ATOM 478 C												
ATOM												
S												
ATOM 447 CA GLU L 55 3.840 25.195 1.966 1.00 32.72 L N ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.042 26.636 2.808 1.00 44.62 L C ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.47 L O ATOM 450 CB GLU L 55 2.886 27.482 3.137 1.00 50.47 L O ATOM 451 CG GLU L 55 2.886 24.273 3.555 1.00 33.98 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OE2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 455 N SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 450 OS SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 451 N GLY L 57 0.690 29.617 6.733 1.00 37.39 L N ATOM 461 N GLY L 57 0.690 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.464 5.298 1.00 37.39 L N ATOM 465 N GLY L 57 0.690 29.517 6.733 1.00 38.10 L C ATOM 465 N GLY L 57 0.690 29.517 6.733 1.00 38.10 L C ATOM 465 N GLY L 57 0.690 29.517 6.733 1.00 38.10 L C ATOM 465 N GLY L 57 0.690 29.584 6.452 1.00 37.90 L C ATOM 465 N LIE L 58 4.312 28.507 6.869 1.00 37.90 L C ATOM 466 CA LIE L 58 5.298 28.507 6.869 1.00 33.29 L C ATOM 467 C LIE L 58 5.298 28.507 6.869 1.00 33.29 L C ATOM 467 C LIE L 58 5.298 28.507 6.869 1.00 33.29 L C ATOM 467 C LIE L 58 5.298 28.507 6.869 1.00 33.29 L C ATOM 467 C LIE L 58 5.298 1.88.867 6.411 1.00 41.88 L N ATOM 468 N LIE L 58 5.298 1.88.867 6.411 1.00 41.88 L N ATOM 467 C LIE L 58 6.191 28.867 6.411 1.00 41.95 L C ATOM 470 CG1 LIE L 58 6.191 28.867 6.411 1.00 41.95 L C ATOM 470 CG1 LIE L 58 6.191 28.507 6.869 1.00 33.81 L C ATOM 470 CG1 LIE L 58 6.191 28.507 6.525 1.00 30.39 L C ATOM 470 CG1 LIE L 58 6.191 29.584 6.452 1.00 36.39 L C ATOM 470 CG1 LIE L 58 6.191 29.586 8.238 1.00 37.90 L C ATOM 470 CG1 LIE L 58 6.191 29.594 7.361 1.00 35.74 L N ATOM 471 CG2 LIE L 58 6.191 29.594 7.361 1.00 37.66 L C ATOM 472 CDR LL 5												
ATOM 448 C GLU L 55 2.450 25.231 2.379 1.00 36.54 L C ATOM 448 C GLU L 55 2.042 26.636 27.482 3.137 1.00 50.47 L O O ATOM 449 O GLU L 55 2.860 27.482 3.137 1.00 50.47 L O O ATOM 450 CB GLU L 55 2.860 27.482 3.137 1.00 33.98 L C ATOM 451 CG GLU L 55 2.880 27.482 3.137 1.00 33.98 L C ATOM 451 CG GLU L 55 0.883 24.273 3.555 1.00 33.98 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OE1 GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O O ATOM 454 OE2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O O ATOM 454 OE2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O O ATOM 455 ON SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.432 28.262 4.758 1.00 39.72 L C O ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C O ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 37.39 L N ATOM 463 C GLY L 57 0.690 29.617 6.733 1.00 37.99 L C ATOM 463 C GLY L 57 2.280 29.256 7.280 1.00 37.99 L C ATOM 466 CA ILE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.99 L C ATOM 467 C ILE L 58 5.298 2.8487 1.00 49.95 L O ATOM 467 C ILE L 58 5.298 2.8487 1.00 40.95 L C ATOM 467 C ILE L 58 5.298 2.8487 1.00 40.95 L C ATOM 467 C ILE L 58 5.298 2.8487 1.00 40.95 L C ATOM 467 C ILE L 58 6.191 28.867 6.411 1.00 41.88 L N ATOM 468 O ILE L 58 6.191 28.867 6.411 1.00 37.99 L C ATOM 467 C ILE L 58 6.191 28.867 6.411 1.00 37.99 L C ATOM 470 CG1 ILE L 58 6.191 28.867 6.411 1.00 37.99 L C ATOM 470 CG1 ILE L 58 6.191 29.974 7.361 1.00 33.29 L C ATOM 470 CG1 ILE L 58 6.191 29.974 7.361 1.00 35.74 L N ATOM 470 CG1 ILE L 58 6.191 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 8.000 30.700 5.835 1.00 33.978 L C ATOM 473 N PRO L 59 8.200 30.700 5.835 1.00 33.798 L C ATOM 474 CA PRO L 59 8.200 30.700 5.835 1.00 33.796 L C ATOM 474 CA PRO	5	MOTA	445	CD2	LEU L	54	6.595	29.256	2.306	1.00 20.82		C
ATOM 448 C GLU L 55 2.042 26.636 2.808 1.00 44.62 L C ATOM 449 O GLU L 55 2.289 24.273 3.555 1.00 33.98 L C C ATOM 450 CB GLU L 55 2.289 24.273 3.555 1.00 33.98 L C C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OE2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 455 N SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.590 29.617 6.733 1.00 37.90 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 466 CA ILLE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 466 CA ILLE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 468 O ILLE L 58 5.298 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILLE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILLE L 58 5.2981 28.867 6.411 1.00 22.67 L C ATOM 470 CG1 ILLE L 58 5.2981 28.867 6.411 1.00 22.67 L C ATOM 471 CG2 ILLE L 58 6.191 26.817 6.745 1.00 23.574 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.00 35.70 L C		ATOM	446	N	GLU L	55	3.840	25.195	1.966	1.00 32.72	L	N
ATOM 448 C GLU L 55 2.042 26.636 2.808 1.00 44.62 L C ATOM 449 O GLU L 55 2.289 24.273 3.555 1.00 33.98 L C C ATOM 450 CB GLU L 55 2.289 24.273 3.555 1.00 33.98 L C C ATOM 451 CG GLU L 55 0.883 24.310 4.148 1.00 41.02 L C ATOM 452 CD GLU L 55 0.883 24.310 4.148 1.00 41.65 L C ATOM 453 OE1 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 454 OE2 GLU L 55 0.148 23.949 1.945 1.00 54.51 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 455 N SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 450 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 OG SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 460 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.590 29.617 6.733 1.00 37.90 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 466 CA ILLE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 466 CA ILLE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 468 O ILLE L 58 5.298 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILLE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILLE L 58 5.2981 28.867 6.411 1.00 22.67 L C ATOM 470 CG1 ILLE L 58 5.2981 28.867 6.411 1.00 22.67 L C ATOM 471 CG2 ILLE L 58 6.191 26.817 6.745 1.00 23.574 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 478 CG PRO L 59 8.000 30.700 5.835 1.00 41.00 35.70 L C		ATOM	447	CA	GLU L	55	2.450	25.231	2.379	1.00 36.54	L	С
ATOM											L	
ATOM												
ATOM 451 CG GLU L 55	^											
ATOM 452 CD GLU L 55 -0.096 23.783 3.130 1.00 41.65 L C ATOM 453 OE1 GLU L 55 -1.080 23.168 3.533 1.00 61.09 L O ATOM 454 OE2 GLU L 55 -1.080 23.168 3.533 1.00 61.09 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 460 OG SER L 56 -1.453 27.637 1.636 1.00 57.19 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 48.99 L O ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 33.29 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 33.81 L C ATOM 469 CB ILE L 58 3.809 26.051 6.745 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 23.54 L C ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 23.574 L N ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 476 O PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.207 30.927 8.353 1.00 31.36 L C	U											
ATOM 453 OE1 GLU L 55												
ATOM 454 OE2 GLU L 55 -1.080 23.168 3.533 1.00 61.09 L O ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 459 CB SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 461 N GLY L 57 0.600 29.4617 6.733 1.00 40.01 L C ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 37.39 L N ATOM 463 C GLY L												
5 ATOM 455 N SER L 56 0.728 26.885 2.752 1.00 48.75 L N ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 47.94 L O ATOM 460 OG SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 2.056 29.526 7.280 1.00 37.90 L C ATOM 465 N <		ATOM	453	OE1	GLU L	55	0.148				L	0
ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 460 OG SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 461 N GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 465 N LLE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 40.95 L O ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.574 L C ATOM 473 C CPRO L 59 8.000 30.700 5.835 1.00 39.78 L C ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.207 30.927 8.355 1.00 31.36 L C ATOM 478 CG PRO L 59 8.207 30.927 8.355 1.00 31.36 L C ATOM 477 CB PRO L 59 8.207 30.927 8.355 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C		ATOM	454	OE2	GLU L	55	-1.080	23.168	3.533	1.00 61.09	L	0
ATOM 456 CA SER L 56 0.259 28.168 3.246 1.00 41.16 L C ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 460 OG SER L 56 -1.453 27.637 1.636 1.00 57.19 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.207 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L	5	ATOM	455	N	SER L	56	0.728	26.885	2.752	1.00 48.75	L	N
ATOM 457 C SER L 56 0.432 28.262 4.758 1.00 39.72 L C ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 460 OG SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 8.207 29.534 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 8.257 29.530 5.525 1.00 39.78 L O			456	CA	SER L	56	0.259	28.168	3.246	1.00 41.16	L	C
ATOM 458 O SER L 56 0.403 27.270 5.475 1.00 47.94 L O ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C C ATOM 460 OG SER L 56 -1.453 27.637 1.636 1.00 57.19 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 37.66 L C ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 476 O PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.927 8.353 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.000 30.700 5.835 1.00 31.36 L C												
ATOM 459 CB SER L 56 -1.214 28.307 2.875 1.00 40.01 L C ATOM 460 OG SER L 56 -1.453 27.637 1.636 1.00 57.19 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 48.89 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 22.67 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 37.66 L C ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 8.257 29.530 5.525 1.00 39.78 L O												_
0 ATOM 460 OG SER L 56 -1.453 27.637 1.636 1.00 57.19 L O ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 463 C GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C												
ATOM 461 N GLY L 57 0.576 29.464 5.298 1.00 37.39 L N ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O 5 ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.000 30.700 5.835 1.00 31.36 L C ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L C ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	0											
ATOM 462 CA GLY L 57 0.690 29.617 6.733 1.00 38.10 L C ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L C ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L C ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	U											
ATOM 463 C GLY L 57 2.056 29.256 7.280 1.00 37.90 L C ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.257 29.530 5.525 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 8.257 29.530 5.525 1.00 31.36 L C												
ATOM 464 O GLY L 57 2.280 29.322 8.487 1.00 48.99 L O ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 6.197 29.974 7.361 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
5 ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C		ATOM	463	С	GLY L	57		29.256	7.280	1.00 37.90	L	C
5 ATOM 465 N ILE L 58 2.981 28.867 6.411 1.00 41.88 L N ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C		ATOM	464	0	GLY L	57	2.280	29.322	8.487	1.00 48.99	L	0
ATOM 466 CA ILE L 58 4.312 28.507 6.869 1.00 33.29 L C ATOM 467 C ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	5			N			2.981			1.00 41.88	L	N
ATOM 468 O ILE L 58 5.290 29.584 6.452 1.00 36.39 L C ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	_											
ATOM 468 O ILE L 58 5.241 30.064 5.327 1.00 40.95 L O ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
ATOM 469 CB ILE L 58 4.761 27.151 6.280 1.00 33.81 L C ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
0 ATOM 470 CG1 ILE L 58 3.809 26.051 6.745 1.00 22.67 L C ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
ATOM 471 CG2 ILE L 58 6.191 26.817 6.748 1.00 28.57 L C ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
ATOM 472 CD1 ILE L 58 3.785 25.886 8.238 1.00 23.54 L C ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	U											
ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C 5 ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C				CG2								
ATOM 473 N PRO L 59 6.197 29.974 7.361 1.00 35.74 L N ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C 5 ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C		ATOM	472	CD1	ILE L	58	3.785	25.886	8.238	1.00 23.54	L	C
ATOM 474 CA PRO L 59 7.214 31.007 7.114 1.00 37.66 L C ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C										1.00 35.74	L	
5 ATOM 475 C PRO L 59 8.000 30.700 5.835 1.00 41.02 L C ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
ATOM 476 O PRO L 59 8.257 29.530 5.525 1.00 39.78 L O ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	5											
ATOM 477 CB PRO L 59 8.107 30.927 8.353 1.00 31.36 L C ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C	J											
ATOM 478 CG PRO L 59 7.221 30.346 9.394 1.00 35.70 L C												
ATOM 479 CD PRO L 59 6.436 29.304 8.649 1.00 32.20 L C												
		MOTA	479	CD	PRO L	59	6.436	29.304	8.649	1.00 32.20	با	C

	ATOM ATOM ATOM ATOM	481	N CA C	ALA L ALA L ALA L ALA L	60 60 60	8.393 9.138 10.609 11.470	31.736 31.493 31.228 31.852	5.095 3.868 4.141 3.546	1.00 44.34 1.00 41.55 1.00 39.49 1.00 42.78	r r	N C C
5	ATOM ATOM ATOM ATOM ATOM		CB N CA C	ALA L ARG L ARG L ARG L ARG L	60 61 61 61 61	8.987 10.892 12.270 12.397 13.152	32.655 30.314 29.941 28.428 27.848	2.895 5.065 5.350 5.355 6.127	1.00 42.73 1.00 41.36 1.00 36.65 1.00 30.32 1.00 32.09	L L L L	С С С
10	MOTA MOTA MOTA	489 490 491 492	CB CG CD NE	ARG L ARG L ARG L ARG L	61 61 61 61	12.774 11.819 12.451 11.723 11.822	30.563 30.552 31.161 30.730 29.512	6.664 7.806 9.057 10.249 10.774	1.00 35.38 1.00 39.45 1.00 42.92 1.00 55.59 1.00 47.56	L L L L	C C C
15	ATOM ATOM ATOM ATOM ATOM	495 496 497	NH2 N CA	ARG L ARG L PHE L PHE L	61 61 62 62	12.725 10.997 11.638 11.614	28.668 29.127 27.810 26.365	10.312 11.734 4.453 4.260	1.00 50.56 1.00 51.77 1.00 28.28 1.00 25.29 1.00 22.96	L L L	N N C C
20	ATOM ATOM ATOM ATOM ATOM	498 499 500 501 502		PHE L PHE L PHE L PHE L	62 62 62 62 62	11.638 11.133 10.343 10.393 11.066	26.072 26.860 25.784 25.672 24.623	2.755 1.970 4.883 6.379 6.983	1.00 33.28 1.00 31.62 1.00 25.29 1.00 22.72	L L L	0 0 0
25	ATOM ATOM ATOM ATOM ATOM	503 504 505 506 507	CE1	PHE L PHE L PHE L PHE L SER L	62 62 62 62 63	9.767 11.110 9.809 10.478 12.205	26.617 24.526 26.522 25.483 24.953	7.182 8.365 8.561 9.154 2.333	1.00 24.93 1.00 41.78 1.00 30.52 1.00 23.52 1.00 23.17	L L L L	C C C N
30	ATOM ATOM ATOM ATOM	508 509 510 511	CA C O CB	SER L SER L SER L SER L	63 63 63 63	12.238 12.633 13.326 13.227 14.579	24.676 23.247 22.629 25.617 25.316	0.902 0.612 1.402 0.198 0.539	1.00 30.22 1.00 27.52 1.00 33.38 1.00 38.88 1.00 46.56	L L L L	00000
35	MOTA ATOM ATOM MOTA MOTA	512 513 514 515 516	OG N CA C	SER L GLY L GLY L GLY L	64 64 64	12.212 12.563 12.896 12.524	22.724 21.357 21.134 21.935	-0.531 -0.861 -2.328 -3.180	1.00 24.58 1.00 30.22 1.00 33.27 1.00 36.12	L L L	N C C O N
40	ATOM ATOM ATOM ATOM ATOM	517 518 519 520 521	N CA C O CB	SER L SER L SER L SER L SER L	65 65 65 65	13.610 13.961 14.327 14.558 15.120	19.728 18.256 17.561	-2.624 -4.000 -4.147 -3.160 -4.487	1.00 33.35 1.00 38.52 1.00 36.43 1.00 42.08 1.00 37.34	L L L L	0000
45	ATOM ATOM ATOM ATOM ATOM ATOM	522 523 524 525 526 527	OG N CA C O	SER L GLY L GLY L GLY L GLY L SER L	65 66 66 66 66	16.285 14.366 14.684 13.681 12.821	20.339 17.798 16.421 15.847 16.550	-3.742 -5.395 -5.690 -6.671 -7.178 -6.954	1.00 50.72 1.00 33.13 1.00 31.58 1.00 36.03 1.00 37.03 1.00 39.41	L L L L L	И С О И
50	ATOM ATOM ATOM ATOM ATOM	528 529 530 531 532	CA C O CB OG	SER L SER L SER L SER L SER L	67 67 67 67 67	12.885 13.192 14.104 13.042 14.309	13.900 12.420 12.000 14.423 14.105	-7.855 -7.790 -7.076 -9.284 -9.835	1.00 44.59 1.00 49.82 1.00 48.37 1.00 48.35 1.00 56.59	L L L	00000
55	ATOM ATOM ATOM ATOM ATOM	533 534 535 536 537	N CA C O CB	ARG L ARG L ARG L ARG L ARG L	68 68 68 68	12.421 12.605 12.825 11.904 13.806	10.183 9.569 9.098 9.887	-8.531 -8.578 -7.185 -6.533 -9.475	1.00 52.66 1.00 54.25 1.00 47.35 1.00 45.82 1.00 61.56 1.00 72.12	L L L	и с с
60	MOTA MOTA MOTA MOTA MOTA	538 539 540 541 542	CG CD NE CZ NHI	ARG L ARG L ARG L ARG L I ARG L	68 68 68 68	13.389 13.851 14.580 14.440 13.684	8.145 7.503 6.171 5.491	-11.319 -10.223 -10.089 -10.928	1.00 89.41 1.00103.03 1.00112.09 1.00118.70	L L L L	C N C
65	ATOM ATOM ATOM ATOM ATOM ATOM	543 544 545 546 547 548	NH2 N CA C O CB	2 ARG L THR L THR L THR L THR L THR L	68 69 69 69 69	15.095 14.068 14.349 15.110 15.193	9.569 9.946 9.743 9.316	-4.364 -3.217	1.00 40.89 1.00 39.24	r r r r	и С С С
						70					

						14					
	ATOM	549		1 THR L		16.296		-6.375	1.00 58.12	L	0
	ATOM ATOM	550 551	CG:	2 THR L ASP L		14.218 15.678			1.00 45.58	L	С
	ATOM	552	CA			16.414			1.00 44.06 1.00 44.09	L	N
5	MOTA	553	С	ASP L	70	15.686			1.00 42.38	L L	C
	MOTA	554		ASP L		15.227	13.618	-4.507	1.00 41.69	L	ŏ
	ATOM ATOM	555 556	CB CG	ASP L ASP L		17.829			1.00 52.55	L	C
	ATOM	557		L ASP L		18.757 19.971		-4.248 -4.428	1.00 58.23 1.00 72.20	L	C
10	ATOM	558		2 ASP L		18.296		-4.426	1.00 72.20	L L	0
	ATOM	559	N	PHE L	71	15.599	13.417	-2.286	1.00 31.65	Ľ	N
	ATOM ATOM	560 561	CA C	PHE L PHE L	71	14.999	14.688	-1.908	1.00 28.67	L	С
	MOTA	562	0	PHE L	71 71	15.713 16.458	15.299 14.650	-0.705 0.018	1.00 28.28	L	C
15	ATOM	563	СВ	PHE L	71	13.526		-1.567	1.00 33.98 1.00 25.73	L L	С 0
	ATOM	564	CG	PHE L	71	12.839	13.782	-2.718	1.00 32.61	Ŀ	Č
	MOTA MOTA	565 566		L PHE L PHE L	71 71	12.658	12.404	-2.703	1.00 28.95	L	С
	ATOM	567		l PHE L	71	12.364 11.994		-3.776 -3.752	1.00 22.54	L	C
20	ATOM	568		PHE L	71	11.696	13.912	-4.823	1.00 43.28 1.00 33.39	L L	G
	ATOM	569	CZ	PHE L	71	11.510	12.535	-4.816	1.00 23.28	L	č
	ATOM ATOM	570 571	N CA	THR L	72	15.490	16.609	-0.532	1.00 23.10	L	N
	ATOM	572	CA	THR L	72 72	16.108 15.271	17.295 18.488	$0.591 \\ 1.041$	1.00 30.26 1.00 28.38	L	C
25	MOTA	573	ō	THR L	72	14.699	19.228	0.249	1.00 28.38	L L	C
	ATOM	574	CB	THR L	72	17.496	17.769	0.155	1.00 25.36	Ŀ	č
	ATOM ATOM	575 576	OG1 CG2		72	17.355	18.682	-0.936	1.00 51.91	L	0
	ATOM	577	N CG2	LEU L	72 73	18.335 15.178	16.574 18.634	-0.303 2.372	1.00 41.87	L	C
30	MOTA	578	CA	LEU L	73	14.474	19.780	2.920	1.00 31.36 1.00 30.10	L L	C N
	ATOM	579	C	LEU L	73	15.456	20.784	3.522	1.00 28.13	L	C
	ATOM ATOM	580 581	0	LEU L	73	16.310	20.454	4.334	1.00 30.08	L	0
	ATOM	582	CB CG	LEU L	73 73	13.509 13.010	19.274 20.393	3.996 4.915	1.00 37.24	L	C
35	ATOM	583		LEU L	73	11.826	21.151	4.313	1.00 24.15 1.00 21.16	L L	C
	MOTA	584		LEU L	73	12.540	19.880	6.277	1.00 25.70	L	C
	ATOM ATOM	585 586	N	THR L	74	15.395	22.054	3.158	1.00 34.02	L	N
	ATOM	587	CA C	THR L	74 74	16.418 15.816	23.013 24.170	$3.610 \\ 4.400$	1.00 29.77	ŗ	C
40	ATOM	588	ŏ	THR L	$7\overline{4}$	14.888	24.170	3.978	1.00 31.14 1.00 43.23	Ľ L.	C
	ATOM	589	CB	THR L	74	17.016	23.586	2.382	1.00 29.59	P.	č
	ATOM ATOM	590 591	OG1	THR L	74	17.206	22.556	1.474	1.00 42.71	L	0
	ATOM	592	N N	ILE L	74 75	18.371 16.364	$24.266 \\ 24.361$	2.641 5.587	1.00 10.54	L	C
45	ATOM	593	CA	ILE L	75	15.775	25.436	6.333	1.00 34.45 1.00 41.45	L L	C N
	ATOM	594	C	ILE L	75	16.807	26.527	6.632	1.00 41.83	L	č
	ATOM ATOM	595 596	0	ILE L	75	17.713	26.346	7.402	1.00 43.17	${f L}$	_
	ATOM	597	CB CG1	ILE L	75 75	15.112 15.596	24.818 25.432	7.549 8.817	1.00 44.27 1.00 44.83	L	C
50	MOTA	598	CG2		75	15.370	23.303	7.635	1.00 49.07	L L	C
	ATOM	599		ILE L	75	14.424	25.873	9.656	1.00 34.16	ī.	č
	$\begin{array}{c} {\tt ATOM} \\ {\tt ATOM} \end{array}$	600 601	N CA	ASN L ASN L	76	16.646	27.635	5.919	1.00 40.24	L	N
	ATOM	602	CA	ASN L	76 76	17.489 16.652	28.819 30.087	5.986 6.164	1.00 35.58	L	C
55	ATOM	603	ŏ	ASN L	76	15.850	30.465	5.317	1.00 39.86 1.00 46.58	L L	C O
	ATOM	604	$^{\mathrm{CB}}$	ASN L	76	18.282	28.894	4.679	1.00 36.33	L L	č
	ATOM	605	CG	ASN L	76	19.497	29.764	4.867	1.00 39.90	L	C
	ATOM ATOM	606 607		ASN L ASN L	76 76	19.789 20.225	30.248 29.964	5.957 3.756	1.00 40.70	L	0
60	ATOM	608	N	PRO L	77	16.833	30.740	7.330	1.00 38.22 1.00 38.97	L L	N
	ATOM	609	CA	PRO L	77	17.746	30.270	8.355	1.00 42.09	L	N C
	MOTA	610 611	C	PRO L	77	17.024	29.423	9.410	1.00 41.44	L	С
	ATOM ATOM	611 612	O CB	PRO L PRO L	77 77	15.813 18.294	29.239 31.528	9.389 9.020	1.00 46.26	L	0
65	MOTA	613	CG	PRO L	77	17.252	32.636	8.840	1.00 43.72 1.00 34.23	L L	C C
	ATOM	614	CD	PRO L	77	16.244	31.990	7.769	1.00 40.31	L	C
	MOTA	615 616	N	VAL L	78 70	17.828	28.875	10.340	1.00 38.94	L	N
	ATOM ATOM	616 617	CA C	VAL L VAL L	78 78	17.249 16.892	28.098 29.001	11.432	1.00 32.51	I.	C
		J ,	-	v.iid Li	, 0	10.032	49.001	12.617	1.00 37.03	L	С

	ATOM ATOM	618 619	O VAL L CB VAL L	78 78	17.467 18.276	30.059 27.052	12.828 11.871	1.00 39.75 1.00 28.69	L L	0 C
	ATOM	620	CG1 VAL L	78	17.923	26.534	13.267	1.00 19.40	L	C
	ATOM	621	CG2 VAL L	78	18.292	25.890	10.894	1.00 29.97	L	C
5	MOTA	622	N GLU L	79	15.874	28.566	13.386	1.00 38.02	L	N
	MOTA	623	CA GLU L	79	15.482	29.378	14.537	1.00 27.34	L L	C
	ATOM	624	C GLU L	79 79	$15.120 \\ 14.910$	28.517 27.315	15.754 15.657	1.00 34.89 1.00 38.06	L	C O
	ATOM	625 626	O GLU L CB GLU L	79 79	14.282	30.235	14.130	1.00 16.08	L	č
10	ATOM ATOM	627	CG GLU L	79	14.702	31.568	13.507	1.00 50.15	_ L	Č
10	ATOM	628	CD GLU L	79	13.474	32.414	13.257	1.00 65.88	L	C
	ATOM	629	OE1 GLU L	79	13.604	33.478	12.669	1.00 80.47	L	0
	MOTA	630	OE2 GLU L	79	12.388	31.997	13.658	1.00 78.67	Ŀ	0
	ATOM	631	N ALA L	80	15.115	29.190	16.923	1.00 39.01	Ē	Ŋ
15	ATOM	632	CA ALA L	80	14.912	28.483	18.188	1.00 34.33	L	C
	ATOM	633	C ALA L	80	13.650	27.611 26.506	18.188 18.717	1.00 39.68 1.00 52.15	L L	0
	MOTA	634	O ALA L CB ALA L	80 80	13.626 14.823	29.530	19.299	1.00 28.88	r r	Ċ
	ATOM ATOM	635 636	CB ALA L N ASP L	81	12.588	28.135	17.590	1.00 38.66	Ī.	N
20	ATOM	637	CA ASP L	81	11.303	27.455	17.561	1.00 40.47	L	C
20	ATOM	638	C ASP L	81	11.194	26.376	16.478	1.00 36.22	L	C
	ATOM	639	O ASP L	81	10.126	25.821	16.228	1.00 41.23	L	0
	ATOM	640	CB ASP L	81	10.196	28.505	17.410	1.00 42.43	Ē	C
	MOTA	641	CG ASP L	81	8.824	27.892	17.263	1.00 57.83 1.00 69.72	L L	C
25	ATOM	642	OD1 ASP L	81	8.398 8.173	27.135 28.172	$18.170 \\ 16.231$	1.00 68.60	L	Ö
	ATOM ATOM	643 644	OD2 ASP L N ASP L	81 82	12.305	26.064	15.838	1.00 30.22	L	Ŋ
	ATOM	645	CA ASP L	82	12.273	25.043	14.817	1.00 28.43	L	C
	MOTA	646	C ASP L	82	12.670	23.660	15.349	1.00 29.30	L	C
30	ATOM	647	O ASP L	82	12.728	22.691	14.589	1.00 27.94	L	0
	MOTA	648	CB ASP L	82	13.165	25.454	13.643	1.00 31.74	Ţ.	C
	ATOM	649	CG ASP L	82	12.662	26.704	12.950	1.00 31.05 1.00 45.58	L L	C
	ATOM	650	OD1 ASP L	82	11.432	26.853 27.533	12.823 12.521	1.00 45.58	L	0
O.E.	ATOM	651 652	OD2 ASP L N VAL L	82 83	13.488 12.952	27.553	16.646	1.00 28.22	L	И
35	MOTA MOTA	653	N VAL L CA VAL L	83	13.293	22.263	17.201	1.00 33.72	L	Ĉ
	ATOM	654	C VAL L	83	12.097	21.348	16.997	1.00 28.29	Ŀ	C
	MOTA	655	O VAL L	83	10.978	21.655	17.417	1.00 20.55	L	0
	MOTA	656	CB VAL L	83	13.637	22.313	18.717	1.00 34.51	L	C
40	MOTA	657	CG1 VAL L	83	14.877	23.162	18.932	1.00 57.28	L	C
	ATOM	658	CG2 VAL L	83	12.471	22.856	19.516 16.337	1.00 38.24 1.00 27.89	L L	N
	MOTA	659	N ALA L	84 84	12.348 11.303	20.225 19.274	16.033	1.00 27.89	L	Ç
	MOTA ATOM	660 661	CA ALA L C ALA L	84	11.903	18.093	15.293	1.00 25.39	L	Ċ
45	ATOM	662	O ALA L	84	13.117	18.001	15.103	1.00 25.68	L	0
	MOTA	663	CB ALA L	84	10.265	19.940	15.150	1.00 22.54	L	C
	MOTA	664	N THR L	85	11.042	17.171	14.893	1.00 34.15	Ŀ	\widetilde{N}
	MOTA	665	CA THR L	85	11.492	16.045	14.104	1.00 37.68	L	C
	MOTA	666	C THR L	85	10.798 9.630	16.295 16.689	12.773 12.740	1.00 36.49 1.00 36.43	L L	Ö
50	ATOM ATOM	667 668	O THR L CB THR L	85 85	11.065	14.685	14.705	1.00 36.97	Ľ	č
	ATOM	669	OG1 THR L	85	11.703	14.518	15.974	1.00 43.47	L	Ō
	MOTA	670	CG2 THR L	85	11.483	13.540	13.799	1.00 18.61	L	С
	ATOM	671	N TYR L	86	11.531	16.094	11.685	1.00 29.71	Ŀ	Ŋ
55	ATOM	672	CA TYR L	86	11.001	16.324	10.362	1.00 19.30	Ŀ	C
	MOTA	673	C TYR L	86	10.879	15.017	9.616 9.588	1.00 22.60 1.00 26.94	L L	C
	MOTA	674	O TYR L	86 86	11.814 11.917	14.226 17.306	9.621	1.00 20.34	Ľ	Č
	ATOM ATOM	675 676	CB TYR L CG TYR L	86	11.931	18.678	10.264	1.00 17.43	L	Č
60	MOTA	677	CD1 TYR L	86	12.627	18.908	11.430	1.00 9.96	L	C
50	ATOM	678	CD2 TYR L	86	11.183	19.726	9.734	1.00 18.42	L	С
	ATOM	679	CE1 TYR L	86	12.574	20.136	12.054	1.00 25.73	L	C
	ATOM	680	CE2 TYR L	86	11.126	20.951	10.347	1.00 10.31	L	C
	MOTA	681	CZ TYR L	86	11.823	21.153	11.509	1.00 24.98 1.00 26.22	L T.	C
65	2 00016	682	OH TYR L	86	11.772	22.378	12.137	1.00 40.44	L	0
	ATOM			07	0 771	1/ 707	9 012	1 00 25 84	Τ.	N
	MOTA	683	N TYR L	87 87	9.721	14.787 13.550	9.012 8.275	1.00 25.84 1.00 29.22	L L	N C
				87 87 87	9.721 9.495 9.097	14.787 13.550 13.742	9.012 8.275 6.828	1.00 25.84 1.00 29.22 1.00 29.46 1.00 34.41	L L	C N

	MOTA	687	CB TYR L	87	8.370	12.715	8.897	1.00 30.13	L	С
	ATOM	688	CG TYR L	87	8.442	12.448	10.381	1.00 37.49	L	C
	MOTA	689	CD1 TYR L	87	8.122	13.440	11.304	1.00 23.56	$\widetilde{ ilde{ ilde{L}}}$	č
	ATOM	690	CD2 TYR L	87	8.755	11.180				Č
_							10.857	1.00 20.61	L	C
5	MOTA	691	CE1 TYR L	87	8.108	13.168	12.651	1.00 30.25	L	С
	ATOM	692	CE2 TYR L	87	8.742	10.900	12.201	1.00 29.15	L	C
	MOTA	693	CZ TYR L	87	8.418	11.894	13.093	1.00 38.77	L L	č
	MOTA	694	OH TYR L	87	8.411	11.612	14.438	1.00 53.01	L	0
	ATOM	695	N CYS L	88	9.646	12.909	5.949	1.00 36.95	Ŀ	N
10	MOTA	696	CA CYS L	88	9.243	12.950	4.555	1.00 36.03	L	Ĉ
										C
	ATOM	697	C CYS L	88	8.105	11.924	4.423	1.00 34.89	L	C
	MOTA	698	O CYS L	88	7.938	11.047	5.271	1.00 39.85	L	0
	MOTA	699	CB CYS L	88	10.407	12.624	3.600	1.00 32.83	L	C
	ATOM	700	SG CYS L	88	11.475	11.173	3.916	1.00 43.40		č
									L	S
15	MOTA	701	N GLN L	89	7.302	12.058	3.380	1.00 30.65	${f L}$	N
	MOTA	702	CA GLN L	89	6.192	11.151	3.167	1.00 30.50	L	C
	MOTA	703	C GLN L	89	5.920	11.109	1.675	1.00 32.47	L	č
	MOTA	704	O GLN L	89	5.987	12.129	0.995	1.00 32.80	L	0
	MOTA	705	CB GLN L	89	4.961	11.652	3.945	1.00 30.53	L	С
20	ATOM	706	CG GLN L	89	3.695	10.818	3.821	1.00 22.52	L	C
	ATOM	707	CD GLN L	89	2.779	11.312	2.724	1.00 21.93		
						77.277			L	C
	MOTA	708	OE1 GLN L	89	2.455	12.494	2.670	1.00 30.39	L	0
	MOTA	709	NE2 GLN L	89	2.349	10.408	1.843	1.00 37.87	L	N
	ATOM	710	N GLN L	90	5.647	9.921	1.159	1.00 31.97	L	N
25	MOTA	711	CA GLN L	90	5.364					
25						9.794	-0.260	1.00 38.12	L	С
	MOTA	712	C GLN L	90	3.872	9.464	-0.365	1.00 39.89	${f L}$	C
	MOTA	713	O GLN L	90	3.246	8.993	0.575	1.00 41.18	L	0
	MOTA	714	CB GLN L	90	6.352	8.823	-0.923	1.00 31.71	ī.	č
	MOTA	715	CG GLN L	90	6.391	7.458	~0.303	1.00 40.36	L	C
30	MOTA	716	CD GLN L	90	5.263	6.565	-0.773	1.00 39.74	L	C
	MOTA	717	OE1 GLN L	90	4.831	6.655	-1.921	1.00 36.34	L	0
	MOTA	718	NE2 GLN L	90	4.765	5.711	0.116	1.00 46.02		
									L	N.
	MOTA	719	N SER L	91	3.353	9.760	-1.570	1.00 36.91	L	N
	MOTA	720	CA SER L	91	1.948	9.472	~1.784	1.00 41.30	L	С
35	ATOM	721	C SER L	91	1.791	8.953	-3.225	1.00 39.89	L	Č
00										
	MOTA	722	O SER L	91	0.731	9.043	-3.842	1.00 44.63	L	0
	MOTA	723	CB SER L	91	1.013	10.688	-1.596	1.00 40.49	L	C
	ATOM	724	OG SER L	91	1.407	11.742	-2.446	1.00 44.85	L	0
	MOTA	725	N ASN L	92	2.877	8.390	~3.735			
40								1.00 40.08	L	N
40	MOTA	726	CA ASN L	92	2.896	7.879	-5.091	1.00 40.12	L	С
	MOTA	727	C ASN L	92	2.465	6.427	~5.208	1.00 41.27	Ŀ	С
	MOTA	728	O ASN L	92	1.930	6.019	-6.234	1.00 39.94	L	ō
	MOTA									
		729	CB ASN L	92	4.291	8.044	-5.676	1.00 42.77	\mathbf{L}	C'
	MOTA	730	CG ASN L	92	4.349	7.649	-7.118	1.00 45.02	L	C
45	MOTA	731	OD1 ASN L	92	3.502	8.057	-7.911	1.00 47.49	L	0
	MOTA	732	ND2 ASN L	92	5.344	6.842	~7.473	1.00 58.39	Ĺ	
										N
	MOTA	733	N GLU L	93	2.711	5.644	-4.166	1.00 41.39	$\mathbf{L}_{\mathbf{I}}$	N
	MOTA	734	CA GLU L	93	2.326	4.236	-4.167	1.00 48.66	L	C
	MOTA	735	C GLU L	93	1.677	3.914	-2.829	1.00 48.42	L	С
50	MOTA	736	O GLU L	93	1.986	4.537	-1.821	1.00 50.64	Ľ	ŏ
-										
	MOTA	737	CB GLU L	93	3.553	3.328	-4.338	1.00 55.59	L	С
	MOTA	738	CG GLU L	93	4.476	3.649	-5.515	1.00 62.95	L	C
	MOTA	739	CD GLU L	93	3.974	3.106	-6.838	1.00 78.92	L	Č
	MOTA	740	OE1 GLU L	93						
					4.737	3.164	-7.832	1.00 84.87	L	0
55	MOTA	741	OE2 GLU L	93	2.821	2.623	-6.887	1.00 81.56	L	0
	MOTA	742	N ASP L	94	0.774	2.943	-2.822	1.00 49.35	L	N
	MOTA	743	CA ASP L	94	0.121	2.531	-1.588	1.00 51.37		
									L	C
	MOTA	744	C ASP L	94	0.883	1.323	-1.053	1.00 50.25	L	C
	MOTA	745	O ASP L	94	1.332	0.473	-1.823	1.00 50.31	L	0
60	ATOM	746	CB ASP L	94	-1.334	2.158	-1.856	1.00 49.09	Ĺ	č
~ •			CG ASP L							
	MOTA	747		94	-2.158	3.346	-2.316	1.00 69.28	L	C
	MOTA	748	OD1 ASP L	94	~1.734	4.029	~3.280	1.00 79.28	L	0
	MOTA	749	OD2 ASP L	94	-3.229	3.597	-1.717	1.00 83.48	L	0
	MOTA	750	N PRO L	95	1.047	1.234	0.275	1.00 46.17	L	Ŋ
65										
65	MOTA	751	CA PRO L	95	0.553	2.202	1.255	1.00 45.81	L	C
	MOTA	752	C PRO L	95	1.474	3.404	1.368	1.00 44.56	L	C
	MOTA	753	O PRO L	95	2.689	3.244	1.381	1.00 49.31	L	Ō
	MOTA	754	CB PRO L	95	0.532	1.389	2.535	1.00 49.20		
									L	C
	MOTA	755	CG PRO L	95	1.764	0.558	2.379	1.00 42.46	L	С

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	756 757 758 759 760 761	CD N CA C O CB	PRO L TRP L TRP L TRP L TRP L	95 96 96 96 96	1.691 0.898 1.692 2.572 2.085 0.783	0.095 4.600 5.814 5.666 5.410 7.032	0.950 1.446 1.575 2.798 3.898 1.716	1.00 44.07 1.00 39.90 1.00 33.94 1.00 32.06 1.00 34.49 1.00 33.74	L L L L L	C N C C O C
10	ATOM ATOM ATOM ATOM ATOM	762 763 764 765 766	CG	TRP L TRP L TRP L TRP L TRP L	96 96 96 96 96	0.087 0.093 -0.764 -0.702 -1.239	7.384 6.667 8.515 7.273 8.411	0.438 -0.717 0.202 -1.654 -1.115	1.00 40.68 1.00 32.69 1.00 45.95 1.00 35.93 1.00 35.73	L L L L	С С С
15	ATOM ATOM ATOM ATOM	767 768 769 770	CE3 CZ2 CZ3 CH2	TRP L TRP L TRP L TRP L	96 96 96 96	-1.169 -2.094 -2.022 -2.473	9.605 9.346 10.538 10.401	0.978 -1.674 0.416 -0.897	1.00 46.81 1.00 44.57 1.00 41.43 1.00 42.28	L L L L	ממממ
10	ATOM ATOM ATOM ATOM	771 772 773 774	N CA C	THR L THR L THR L THR L	97 97 97 97	3.874 4.810 5.530 5.689	5.830 5.661 6.928 7.888	2.605 3.702 4.159 3.400	1.00 22.72 1.00 20.77 1.00 25.09 1.00 34.55	L L L	N C C O
20	ATOM ATOM ATOM ATOM	775 776 777 778	CB OG1 CG2 N	THR L	97 97 97 98	5.821 6.443 5.123 5.934	4.568 4.876 3.263 6.931	3.350 2.106 3.179 5.423	1.00 12.22 1.00 27.43 1.00 16.82 1.00 23.17	L L L	C C N
25	ATOM ATOM ATOM ATOM	779 780 781 782	CA C O CB	PHE L PHE L PHE L	98 98 98 98	6.630 8.092 8.446 6.026	8.067 7.744 6.612 8.457	6.002 6.256 6.588 7.350	1.00 26.77 1.00 34.08 1.00 40.23 1.00 26.01	L L L L	0000
30	ATOM ATOM ATOM	783 784 785 786	CD2 CE1	PHE L PHE L PHE L	98 98 98 98	4.716 3.546 4.648 2.331	9.169 8.471 10.534 9.109 11.192	7.263 7.010 7.506 7.009 7.506	1.00 23.16 1.00 21.59 1.00 22.33 1.00 17.66 1.00 30.19	L L L	מטטט
35	ATOM ATOM ATOM	787 788 789 790	CE2 CZ N CA	PHE L GLY L GLY L	98 98 99 99	3.428 2.263 8.944 10.346 10.449	10.476 8.748 8.532 8.396	7.260 6.112 6.389 7.895	1.00 36.03 1.00 37.98 1.00 37.48 1.00 34.91	L L L	C N C
	MOTA MOTA ATOM ATOM	791 792 793 794	C O N CA	GLY L GLY L GLY L	99 99 100 100	9.557 11.532 11.726 11.894	8.831 7.792 7.594 8.862	8.622 8.362 9.784 10.587	1.00 38.68 1.00 36.84 1.00 36.30 1.00 34.70	L L L	О И С
40	MOTA MOTA MOTA	795 796 797 798	C N CA	GLY L GLY L GLY L	100 101 101	11.850 12.096 12.244	8.808 9.993 11.267 11.761	11.809 9.914 10.611 10.964	1.00 37.11 1.00 37.37 1.00 34.43 1.00 31.97	L L L L	O N C
45	ATOM ATOM ATOM ATOM	799 800 801 802 803	C N CA C	GLY L GLY L THR L THR L THR L	101 102 102	13.650 14.584 13.809 15.099 14.966	10.981 13.075 13.630 14.643	11.156 11.045 11.447 12.590	1.00 31.95 1.00 26.36 1.00 26.88 1.00 33.12	L L L L	0 N C
50	ATOM ATOM ATOM ATOM ATOM	804 805 806 807	O CB OG1 CG2	THR L THR L THR L	102 102 102	14.243 15.736 16.027 17.044	15.628 14.302 13.300 14.985	12.513 10.231 9.256 10.641	1.00 43.00 1.00 27.40 1.00 42.19 1.00 27.02	L L L	0 0 0
55	ATOM ATOM ATOM ATOM	808 809 810 811	N CA O	LYS L LYS L LYS L LYS L	103 103 103 103	15.680 15.643 16.573 17.748	14.344 15.234 16.435 16.307	13.691 14.845 14.655 14.345	1.00 34.75 1.00 37.63 1.00 34.36 1.00 42.52	L L L L	и С С
60	ATOM MOTA ATOM ATOM	812 813 814 815	CB CG CD CE	LYS L LYS L LYS L	103 103 103	16.069 14.997 15.610 14.873	14.433 14.419 14.460 13.561	16.075 17.165 18.567 19.566	1.00 39.61 1.00 60.51 1.00 81.15 1.00 89.92 1.00 87.84	L L L L	Z C C C Z
0.5	ATOM ATOM ATOM ATOM	816 817 818 819	NZ N CA C	LYS L LEU L LEU L	104 104 104	15.498 15.990 16.781 16.987 16.046	13.689 17.639 18.856 19.533 19.828	20.882 14.815 14.684 16.045 16.770	1.00 87.84 1.00 35.10 1.00 36.62 1.00 33.72 1.00 39.22	L L L L	N C C
65	ATOM ATOM ATOM ATOM ATOM	820 821 822 823 824		LEU L LEU L LEU L LEU L LEU L	104 104 104	16.046 16.027 16.698 18.031 15.830	19.791 21.156 21.069 22.140	13.731 13.559 12.812 12.772	1.00 40.97 1.00 36.66 1.00 43.72 1.00 37.07	L L L	0000
						776					

	MOTA MOTA MOTA MOTA	825 826 827 828	N CA C O	GLU L 105 GLU L 105 GLU L 105 GLU L 105	5	18.238 18.596 19.421 20.169	19.751 20.461 21.719 21.804	16.437 17.664 17.371 16.404	1.00 41.16 1.00 40.54 1.00 37.89 1.00 40.95	L L L	С И
5	ATOM ATOM ATOM ATOM ATOM	829 830 831 832 833	CB CG CD OE1 OE2	GLU L 10	5	19.387 20.901 21.554 21.525 22.080	19.507 19.663 19.582 20.570 18.519	18.564 18.407 19.768 20.491 20.101	1.00 42.35 1.00 73.68 1.00 84.81 1.00 80.17 1.00 87.53	L L L L	C C C O O N
10	MOTA MOTA MOTA MOTA MOTA	834 835 836 837 838	N CA C O CB	ILE L 100	5 5	19.229 19.880 21.054 20.938 18.833	22.737 24.019 24.258 24.188 25.123	18.229 17.981 18.933 20.148 18.154	1.00 36.04 1.00 42.09 1.00 43.14 1.00 41.05 1.00 37.55	r r r	N C C
15	ATOM ATOM ATOM ATOM ATOM	839 840 841 842 843	CG1 CG2 CD1 N CA		5 5 7	18.110 19.520 16.795 22.235 23.426	25.383 26.432 24.610 24.505 24.732	16.829 18.579 16.726 18.331 19.142	1.00 47.08 1.00 49.18 1.00 53.81 1.00 43.16 1.00 42.21	r r r	С С И С
20	ATOM ATOM ATOM ATOM	844 845 846 847	C O CB CG	LYS L 10 LYS L 10 LYS L 10 LYS L 10 LYS L 10	7 . 7 7	23.359 23.424 24.645 24.960 26.185	26.065 27.140 24.716 23.313 23.302	19.892 19.311 18.219 17.696 16.778	1.00 45.78 1.00 52.84 1.00 43.56 1.00 41.44 1.00 36.40	L L L L	00000
25	MOTA ATOM ATOM ATOM ATOM ATOM	848 849 850 851 852	CE NZ N CA	LYS L 10 LYS L 10 LYS L 10 LYS L 10	7 7 8 8	26.513 27.650 23.271 23.241	21.899 21.965 25.992 27.168 27.279	16.261 15.344 21.213 22.068 22.779	1.00 60.78 1.00 61.58 1.00 51.53 1.00 46.01 1.00 51.04	L L L	C N C C
30	ATOM ATOM ATOM ATOM ATOM	853 854 855 856 857	C O CB CG CD	LYS L 10 LYS L 10 LYS L 10 LYS L 10 LYS L 10	8 8 8	24.585 25.443 22.125 22.058 21.059	26.395 27.015 28.136 27.871	22.653 23.106 24.099 25.178	1.00 52.80 1.00 40.77 1.00 40.59 1.00 24.84	L L L	0000
35	MOTA MOTA MOTA MOTA	858 859 860 861 862	CE NZ N CA C	LYS L 10 LYS L 10 ALA L 10 ALA L 10	8 9 9	21.135 22.525 24.774 26.000 25.841	28.956 29.139 28.370 28.567 27.746	26.237 26.754 23.513 24.273 25.539	1.00 44.44 1.00 37.04 1.00 52.73 1.00 52.89 1.00 52.68	r r r	N C C
40	ATOM ATOM ATOM ATOM ATOM	863 864 865 866 867	O CB N CA C	ALA L 10 ALA L 10 ASP L 11 ASP L 11	9 .0 .0	24.728 26.177 26.944 26.902 26.142	27.608 30.033 27.200 26.392 27.082	26.052 24.626 26.039 27.252 28.385	1.00 47.67 1.00 55.47 1.00 52.11 1.00 48.45 1.00 47.36	L L L L	О С О
45	MOTA MOTA MOTA	868 869 870 871	O CB CG OD:	ASP L 11 ASP L 11 ASP L 11 L ASP L 11	.0 .0 .0 .0	26.241 28.320 29.003 28.396 30.160	28.294 26.060 25.027 24.574 24.663	28.580 27.715 26.829 25.826 27.147	1.00 43.93 1.00 43.82 1.00 58.57 1.00 54.58 1.00 62.28	L L L L	0 0 0 0
50	MOTA MOTA MOTA MOTA MOTA	872 873 874 875 876 877	N CA C O CB	2 ASP L 11 ALA L 13 ALA L 13 ALA L 13 ALA L 13 ALA L 13	.1 .1 .1 .1	25.368 24.592 24.644 24.586 23.148	26.294 26.797 25.726 24.530 27.052	29.120 30.246 31.315 31.005 29.832	1.00 44.56 1.00 39.67 1.00 44.68 1.00 49.08 1.00 31.81	r r r	С С И
55	ATOM ATOM ATOM ATOM ATOM	878 879 880 881	N CA C O CB	ALA L 1: ALA L 1: ALA L 1: ALA L 1: ALA L 1:	.2 .2 .2 .2	24.773 24.825 23.429 22.647 25.758	26.152 25.227 25.074 26.029 25.749	32.569 33.694 34.249 34.276 34.772	1.00 46.60 1.00 39.75 1.00 41.14 1.00 43.49 1.00 36.82	L L L L	С С С
60	MOTA MOTA MOTA MOTA MOTA	882 883 884 885 886	N CA C O	PRO L 1: PRO L 1: PRO L 1: PRO L 1:	L3 L3 L3 L3	23.090 21.778 21.460 22.357	23.862	34.696 35.265 36.542 37.263	1.00 38.43 1.00 39.80 1.00 37.82 1.00 39.66	L L L L	и С С
65	MOTA ATOM ATOM ATOM ATOM ATOM	887 888 889 890 891 892	N CA C	PRO L 1 PRO L 1 THR L 1	13 13 14 14 14	21.868 23.329 23.973 20.168 19.667 19.180 18.103	21.868 22.689 24.487 25.151 23.966	35.833 34.749 36.793 37.983 38.801	1.00 35.81 1.00 40.04 1.00 35.18 1.00 38.10 1.00 40.59	L L L L	C C N C C
	MOTA	893	J	ד רד ידודי							

	ATOM	894	СВ	THR L		18.476	26.033	37.650	1.00 40.4		L	С
	ATOM ATOM	895 896	OG1 CG2	THR L	114	18.814	26.882	36.555	1.00 56.0		L	0
	ATOM	897	N CG2		114 115	18.088 19.966	26.872 23.555	38.835 39.787	1.00 39.9		Ē	C
5	ATOM	898	ČA	VAL L		19.604	22.388	40.574	1.00 40.8		L L	N C
	ATOM	899	C	VAL L	115	18.839	22.704	41.840	1.00 40.0		Ŀ	ď
	ATOM	900	0		115	19.175	23.638	42.557	1.00 49.0		L	ŏ
	ATOM	901	CB		115	20.855	21.587	40.936	1.00 34.5		L	C
10	MOTA MOTA	902 903	CG1		115	20.461	20.220	41.428	1.00 34.9		L	C
10	ATOM	904	N	SER L		21.767 17.797	21.478 21.926	39.724 42.110	1.00 34.5 1.00 42.2		L	C
	ATOM	905	CA	SER L		16.997	22.124	43.314	1.00 42.2		L L	N C
	MOTA	906	С	SER L		16.432	20.781	43.768	1.00 44.2		Ŀ	C
	ATOM	907	0		116	15.787	20.071	42.994	1.00 43.6		L	ŏ
15	ATOM ATOM	908	CB	SER L		15.867	23.137	43.063	1.00 44.7	_	L	C
	ATOM	909 910	OG N	SER L ILE L	116	14.936 16.690	22.668 20.445	42.114	1.00 40.3		Ŀ	0
	ATOM	911	CA	ILE L		16.259	19.178	45.030 45.611	1.00 45.4 1.00 43.5		L	N
	ATOM	912	C	ILE L		14.991	19.319	46.444	1.00 43.3		L L	C
20	MOTA	913	0	ILE L		14.690	20.395	46.934	1.00 49.2		L	ŏ
	ATOM	914	СВ	ILE L		17.390	18.586	46.475	1.00 41.5		L	Č
	${f ATOM}$	915 916	CG1 CG2			17.039	17.160	46.902	1.00 42.5		L	C
	ATOM	917		ILE L ILE L		17.645 18.205	19.484 16.384	47.658 47.448	1.00 33.2 1.00 24.0		L	C
25	ATOM	918	N	PHE L		14.250	18.225	46.598	1.00 24.0		L L	C N
	ATOM	919	CA	PHE L		13.001	18.247	47.347	1.00 39.9		L	G
	ATOM	920	C	PHE L		12.783	17.035	48.247	1.00 42.6	-	L	č
	ATOM ATOM	921	O	PHE L		12.931	15.895	47.812	1.00 40.7		L	0
30	ATOM	922 923	CB CG	PHE L PHE L		11.814 11.817	18.355	46.387	1.00 35.4		L	C
00	ATOM	924		PHE L		12.716	19.600 19.753	45.553 44.514	1.00 34.5 1.00 18.8	-	L L	C
	ATOM	925	CD2		118	10.912	20.621	45.806	1.00 30.7		ь Г	C
	MOTA	926	CE1		118	12.717	20.894	43.741	1.00 32.1		Ē	C
05	ATOM	927	CE2			10.909	21.771	45.031	1.00 31.2	2	L	Č
35	ATOM ATOM	928 929	CZ	PHE L		11.815	21.905	43.995	1.00 25.1		L	С
	ATOM	930	N CA	PRO L PRO L		12.421 12.169	17.278 16.224	49.523 50.512	1.00 47.9		L	N
	ATOM	931	C	PRO L		10.819	15.591	50.312	1.00 47.9 1.00 48.2		L L	C C
	ATOM	932	0	PRO L		10.000	16.180	49.507	1.00 54.1		L	Ö
40	ATOM	933	CB	PRO L		12.151	16.985	51.840	1.00 48.8		L	Ċ
	ATOM	934	CG	PRO L	-	12.940	18.236	51.547	1.00 44.7	-	L	C
	ATOM ATOM	935 936	CD N	PRO L :	119 120	12.467	18.597	50.180	1.00 43.8		L	C
	ATOM	937	CA	PRO L		10.570 9.312	14.385 13.665	50.738 50.524	1.00 45.7 1.00 42.2		L	N
45	MOTA	938	C	PRO L	-	8.133	14.384	51.149	1.00 42.2		L L	C
	ATOM	939	0		120	8.243	14.972	52.224	1.00 41.7		L	ŏ
	ATOM	940	CB	PRO L :		9.552	12.322	51.206	1.00 42.9		L	C
	ATOM ATOM	941 942	CG CD	PRO L		11.046	12.173	51.177	1.00 53.9		L	C
50	ATOM	943	И	PRO L :		11.516 7.000	13.562 14.333	51.506 50.464	1.00 48.0 1.00 51.3		L	C
	ATOM	944	CA	SER L		5.783	14.941	50.970	1.00 52.6		L L	N C
	ATOM	945	С	SER L	121	5.304	14.072	52.132	1.00 54.3		L	Č
	ATOM	946	0	SER L		5.426	12.842	52.102	1.00 56.7		L	ŏ
55	ATOM ATOM	947	CB	SER L		4.714	14.972	49.878	1.00 47.4		L	C
55	ATOM	948 949	OG N	SER L 3		$4.352 \\ 4.775$	13.655 14.711	49.491	1.00 54.1		L	0
	ATOM	950	CA	SER L		$\frac{4.775}{4.270}$	13.971	53.168 54.317	1.00 60.00 1.00 59.80		L L	N
	ATOM	951	C	SER L		3.155	13.072	53.802	1.00 56.6		L L	C
	MOTA	952	0	SER L 3		2.985	11.939	54.251	1.00 61.42		L	Ö
60	MOTA	953	CB	SER L 3		3.710	14.938	55.351	1.00 64.43	3	L	Č
	ATOM	954	OG	SER L 1		2.595	15.630	54.816	1.00 74.50		L	0
	ATOM ATOM	955 956	N CA	GLU L 1		$2.407 \\ 1.298$	13.597	52.838	1.00 52.93		L	N
	ATOM	957	CA	GLU L 1		1.298 1.745	12.884 11.552	52.225 51.657	1.00 54.30		L L	C
65	ATOM	958	Ö	GLU L 1		1.092	10.532	51.858	1.00 57.02		L L	C O
	MOTA	959	CB	GLU L 1	l.23	0.691	13.745	51.129	1.00 56.56		L	Č
	MOTA	960	CG	GLU L 1		0.287	15.109	51.631	1.00 70.52	2	L	С
	ATOM ATOM	961 962	CD OF1	GLU L 1		-0.272	15.981	50.545	1.00 89.26		L	C
	WI OIL	202	OUT	GLU L 1	LZJ	-1.246	15.550	49.890	1.00 82.90)	L	0

	Th .deser									
	ATOM	963	OE2	GLU L 123	0.266	17.095	50.351	1.00 95.75	I	. 0
	MOTA	964	N	GLN L 124	2.856	11.556	50.935	1.00 55.07	Ī	
	MOTA	965	CA	GLN L 124	3.357	10.311	50.384	1.00 54.12	I	
	ATOM	966	C	GLN L 124	3.868	9.459	51.532	1.00 52.45	I	
5	ATOM	967	0	GLN L 124	3.770	8.229	51.505	1.00 49.04	I	
	MOTA	968	CB	GLN L 124	4.490	10.568	49.401	1.00 55.78	I	
	MOTA	969	CG	GLN L 124	5.223	9.297	49.028	1.00 56.57	I	
	MOTA	970	CD	GLN L 124	6.372	9.546	48.103	1.00 50.07	I	r c
	MOTA	971		GLN L 124	6.949	10.636	48.087	1.00 46.99	I	· 0
10	ATOM	972	NE2	GLN L 124	6.730	8.534	47.329	1.00 51.34	I	N
	MOTA	973	M	LEU L 125	4.421	10.131	52.537	1.00 52.12	I	L N
	ATOM	974	CA	LEU L 125	4.955	9.455	53.708	1.00 55.42	I	
	MOTA	975	С	LEU L 125	3.856	8.732	54.463	1.00 62.18	I	r C
	ATOM	976	0	LEU L 125	4.020	7.573	54.852	1.00 63.10	I	
15	ATOM	977	CB	LEU L 125	5.655	10.456	54.626	1.00 51.50	I	
	ATOM	978	CG	LEU L 125	7.041	10.877	54.130	1.00 58.49	I	G C
	ATOM	979		LEU L 125	7.614	11.993	54.997	1.00 55.80	I	
	MOTA	980		LEU L 125	7.955	9.657	54.132	1.00 41.53	I	
	ATOM	981	N	THR L 126	2.728	9.405	54.666	1.00 67.91	I	
20	ATOM	982.	CA	THR L 126	1.625	8.772	55.374	1.00 74.12	I	
	ATOM	983	Ğ	THR L 126	1.338	7.457	54.665	1.00 72.07	I	
	MOTA	984	0_	THR L 126	0.825	6.519	55.259	1.00 74.16	I	
	ATOM	985	CB	THR L 126	0.341	9.643	55.362	1.00 74.87	I	
05	ATOM	986		THR L 126	-0.109	9.818	54.015	1.00 89.50	I	
25	MOTA	987	CG2		0.604	11.004	55.982	1.00 77.06	Ī	
	ATOM	988	N	SER L 127	1.690	7.401	53.386	1.00 73.54	I	
	ATOM	989	CA	SER L 127	1.476	6.210	52.574	1.00 74.09	Ī	
	ATOM	990	C	SER L 127	2.543	5.136	52.794	1.00 71.41	I	
30	ATOM	991	0	SER L 127	2.361	3.990	52.400	1.00 68.13	ī	
30	ATOM	992	CB	SER L 127	1.434	6.597	51.093	1.00 75.35	I	
	ATOM ATOM	993 994	OG	SER L 127	1.480	5.449	50.265	1.00 79.24	I	
	ATOM		N	GLY L 128	3.655	5.508	53.417	1.00 67.28	Ī	-
	ATOM	995 996	CA	GLY L 128	4.709	4.542	53.670	1.00 63.17	Ĩ	
35	ATOM	997	C	GLY L 128 GLY L 128	5.868	4.598	52.670	1.00 61.71	I	
33	MOTA	998	O	GLY L 129	6.795	3.799	52.708	1.00 55.67	I	
	ATOM	999	N CA	GLY L 129	5.776 6.789	5.630 5.742	51.815	1.00 60.01	I	
	ATOM	1000	CA	GLY L 129	7.540	7.051	50.784 50.994	1.00 51.52	I	
	ATOM	1001	Ö	GLY L 129	7.077	7.031	51.711	1.00 54.47 1.00 56.91	I I	
40	MOTA	1001	N	ALA L 130	8.711	7.162	50.390	1.00 36.91	I.	-
40	MOTA	1003	CA	ALA L 130	9.509	8.360	50.512	1.00 43.26	L	
	ATOM	1004	C	ALA L 130	10.162	8.574	49.169	1.00 44.36	L	
	ATOM	1005	ŏ	ALA L 130	10.851	7.697	48.658	1.00 44.31	ī	
	ATOM	1006	ČВ	ALA L 130	10.563	8.188	51.586	1.00 51.51	Ī	
45	ATOM	1007	N	SER L 131	9.915	9.733	48.581	1.00 44.50	Ī	
	MOTA	1008	CA	SER L 131	10.498	10.057	47.297	1.00 40.37	Ī	
	ATOM	1009	C	SER L 131	11.226	11.385	47.391	1.00 43.32	Ī	_
	ATOM	1010	0	SER L 131	10.664	12.402	47.807	1.00 48.95	I	
	MOTA	1011	CB	SER L 131	9.419	10.114	46.214	1.00 38.70	I	
50	MOTA	1012	OG	SER L 131	8.904	8.820	45.949	1.00 36.52	L	
	ATOM	1013	N	VAL L 132	12.497	11.354	47.032	1.00 38.46	L	
	MOTA	1014	CA	VAL L 132	13.311	12.543	47.049	1.00 34.22	I	
	MOTA	1015	C	VAL L 132	13.461	12.881	45.579	1.00 39.02	L	
	ATOM	1016	0	VAL L 132	13.935	12.066	44.797	1.00 42.97	L	
55	MOTA	1017	СВ	VAL L 132	14.666	12.237	47.658	1.00 38.34	I	
	MOTA	1018	CG1	VAL L 132	15.373	13.520	48.062	1.00 35.88	L	
	ATOM	1019	CG2	VAL L 132	14.473	11.310	48.833	1.00 45.84	L	
	MOTA	1020	N	VAL L 133	13.023	14.070	45.191	1.00 35.71	L	
	MOTA	1021	CA	VAL L 133	13.118	14.457	43.799	1.00 35.51	L	
60	ATOM	1022	C	VAL L 133	14.107	15.610	43.629	1.00 35.39	L	
	MOTA	1023	0	VAL L 133	14.332	16.406	44.537	1.00 32.94	L	
	MOTA	1024	CB	VAL L 133	11.716	14.809	43.225	1.00 23.82	L	C
	ATOM	1025		VAL L 133	11.857	15.359	41.830	1.00 27.79	L	C
	ATOM	1026		VAL L 133	10.822	13.581	43.226	1.00 38.91	L	C
65	ATOM	1027	N	CYS L 134	14.724	15.667	42.460	1.00 38.30	L	ı N
	ATOM	1028	CA	CYS L 134	15.705	16.689	42.189	1.00 41.29	L	C
	MOTA	1029	C	CYS L 134	15.527	17.183	40.758	1.00 42.64	L	C
	MOTA	1030	0	CYS L 134	15.368	16.388	39.829	1.00 43.51	L	
	MOTA	1031	CB	CYS L 134	17.102	16.104	42.397	1.00 38.37	L	C

	MOTA MOTA	1032 1033	SG CYS L 134 N PHE L 135	18.395 15.519	17.355 18.502	42.642 40.590	1.00 65.37 1.00 42.83 1.00 38.04	L L L	S N C
	ATOM ATOM	1034 1035	CA PHE L 135 C PHE L 135	15.365 16.669	19.106 19.732	39.270 38.820	1.00 35.38	L	č
5	ATOM	1036	O PHE L 135	17.424	20.277	39.616	1.00 38.80	L	0
	ATOM	1037	CB PHE L 135	14.276	20.193	39.268	1.00 34.74 1.00 31.55	L L	C
	ATOM	1038 1039	CG PHE L 135 CD1 PHE L 135	12.878 12.434	19.664 18.652	39.381 38.546	1.00 31.33	Ľ.	Č
	ATOM ATOM	1040	CD2 PHE L 135	11.995	20.197	40.313	1.00 35.76	L	C
10	ATOM	1041	CE1 PHE L 135	11.132	18.177	38.635	1.00 31.56	L	C
	ATOM	1042	CE2 PHE L 135	10.690	19.726 18.711	40.408 39.563	1.00 27.93 1.00 30.83	L L	C
	ATOM ATOM	$1043 \\ 1044$	CZ PHE L 135 N LEU L 136	10.261 16.926	19.620	37.530	1.00 30.83	L	N
	ATOM	1044	CA LEU L 136	18.103	20.184	36.907	1.00 31.58	L	С
15	ATOM	1046	C LEU L 136	17.500	20.856	35.680	1.00 35.59	Ŀ	C
	MOTA	1047	O LEU L 136	17.302 19.096	20.232 19.076	34.638 36.522	1.00 34.85 1.00 29.55	L L	0
	ATOM ATOM	1048 1049	CB LEU L 136 CG LEU L 136	19.090	18.497	37.674	1.00 29.59	L	Č
	ATOM	1050	CD1 LEU L 136	19.073	17.684	38.639	1.00 28.48	\mathbf{L}	C
20	MOTA	1051	CD2 LEU L 136	21.050	17.626	37.114	1.00 33.08	L	C
	MOTA	1052	N ASN L 137	17.183 16.554	22.134 22.851	35.815 34.723	1.00 35.66 1.00 35.50	L L	N C
	MOTA MOTA	1053 1054	CA ASN L 137 C ASN L 137	17.380	23.822	33.891	1.00 30.57	L	č
	ATOM	1055	O ASN L 137	18.269	24.511	34.382	1.00 31.68	L	0
25	MOTA	1056	CB ASN L 137	15.321	23.563	35.260	1.00 39.89	L	C
	ATOM	1057	CG ASN L 137 OD1 ASN L 137	14.334 13.480	22.601 23.001	35.894 36.681	1.00 35.35 1.00 34.80	L L	Ö
	MOTA MOTA	1058 1059	ND2 ASN L 137	14.444	21.328	35.545	1.00 34.00	Ŀ	N
	ATOM	1060	N ASN L 138	17.042	23.843	32.609	1.00 33.92	L	N
30	MOTA	1061	CA ASN L 138	17.607	24.760	31.601	1.00 38.60	L L	C
	MOTA	1062	C ASN L 138 O ASN L 138	19.153 19.819	24.748 25.738	31.533 31.809	1.00 41.40 1.00 48.42	L L	Ö
	ATOM ATOM	1063 1064	O ASN L 138 CB ASN L 138		26.173	31.913	1.00 36.37	L	Č
	MOTA	1065	CG ASN L 138	15.615	26.150	32.093	1.00 34.07	T.	C
35	MOTA	1066	OD1 ASN L 138		26.138	33.205	1.00 52.45 1.00 45.49	L L	N O
	MOTA	1067 1068	ND2 ASN L 138 N PHE L 139		26.139 23.640	30.951 31.136	1.00 45.49	L	N
	MOTA MOTA	1069	CA PHE L 139		23.590	31.028	1.00 36.96	$^{ m L}$	C
	MOTA	1070	C PHE L 139	21.584	23.275	29.577	1.00 38.99	L	C
40	ATOM	1071	O PHE L 139	20.727	22.950	28.756 31.992	1.00 31.96 1.00 34.96	L L	0 C
	ATOM ATOM	1072 1073	CB PHE L 139 CG PHE L 139		22.529 21.174	31.814	1.00 34.30	Ľ	Č
	ATOM	1074	CD1 PHE L 139		20.373	30.746	1.00 28.85	L	С
	ATOM	1075	CD2 PHE L 139		20.726	32.677	1.00 30.19	L	C
45	MOTA	1076	CE1 PHE L 139 CE2 PHE L 139		19.152 19.504	30.533 32.476	1.00 26.26 1.00 29.02	L L	C
	ATOM ATOM	1077 1078	CE2 PHE L 139		18.712	31.401	1.00 29.39	L	č
	MOTA	1079	N TYR L 140	22.865	23.389	29.257	1.00 44.67	L	N
	MOTA	1080	CA TYR L 140	23.308	23.105	27.908	1.00 42.78 1.00 42.60	L L	C
50	MOTA	1081 1082	C TYR L 140 O TYR L 140		22.904 23.667	27.884 28.495	1.00 42.80	Ľ.	Ö
	ATOM ATOM	1082	CB TYR L 140		24.244	26.960	1.00 39.66	L	С
	ATOM	1084	CG TYR L 140	23.239		25.519	1.00 38.62	L	C
	MOTA	1085	CD1 TYR L 140		24.074	25.057	1.00 38.52 1.00 41.68	L L	C
55	MOTA MOTA	1086 1087	CD2 TYR L 140 CE1 TYR L 140		23.465 23.722	24.645 23.780	1.00 40.62	L	Ğ
	MOTA	1088	CE2 TYR L 140			23.353	1.00 42.88	L	С
	ATOM	1089	CZ TYR L 140	23.910	23.233	22.927	1.00 48.74	L -	C
	MOTA	1090	OH TYR L 140		22.864 21.883	21.651 27.148	1.00 52.93 1.00 43.92	L L	Ŋ
60	MOTA MOTA	1091 1092	N PRO L 141 CA PRO L 141			26.365	1.00 46.65	Ĺ	Ĉ
	ATOM	1093	C PRO L 141			27.185	1.00 49.80	L	C
	MOTA	1094	O PRO L 143	L 23.702	19.934	28.414	1.00 56.01	L	0
	MOTA	1095	CB PRO L 143			25.414 26.256	1.00 45.66 1.00 41.16	r F	G G
65	MOTA MOTA	1096 1097	CG PRO L 14: CD PRO L 14:			26.236	1.00 41.10	L	C
	ATOM	1098	N LYS L 14:			26.494	1.00 47.16	L	N
	MOTA	1099	CA LYS L 14:	22.055	18.059	27.073	1.00 50.49	L	C
	ATOM	1100	C LYS L 14:	2 22.714	16.954	27.908	1.00 49.27	L	С

					••"						
	ATOM	1101	. 0	LYS L 142		22.068	16.216	28.642	1.00 52.27		_
	MOTA	1102		LYS L 142		21.248	17.439		1.00 32.27	I	_
	ATOM	1103	CG	LYS L 142		22.141	16.757		1.00 63.02	I. I	_
	ATOM	1104	CD	LYS L 142		21.345	15.845		1.00 58.35	L	_
5	MOTA	1105	CE	LYS L 142		21.853	15.899		1.00 73.15	ī	_
	MOTA	1106	NZ	LYS L 142		23.168	15.269		1.00 96.24	Ī	_
	MOTA	1107	N	ASP L 143		24.044	16.825		1.00 50.43	L	
	ATOM	1108		ASP L 143		24.763	15.768		1.00 55.24	ī	
	ATOM	1109	С	ASP L 143		25.076	16.163	29.902	1.00 53.06	L	_
10	MOTA	1110		ASP L 143		25.811	17.102	30.180	1.00 60.12	L	_
	MOTA	1111	СВ	ASP L 143		26.070	15.493	27.705	1.00 58.45	L	_
	MOTA	1112	CG	ASP L 143		25.787	14.678	26.452	1.00 74.50	L	
	MOTA	1113		L ASP L 143		25.958	15.224	25.362	1.00 87.12	L	
15	MOTA	1114		2 ASP L 143		25.432	13.507	26.575	1.00 96.79	L	0
15	ATOM ATOM	1115	N	ILE L 144		24.460	15.425	30.845	1.00 49.84	L	N
	ATOM	1116 1117	CA	ILE L 144		24.740	15.678	32.255	1.00 43.94	L	С
	MOTA	1118	C	ILE L 144		24.481	14.437	33.110	1.00 44.67	L	C
	ATOM	1119	CB	ILE L 144 ILE L 144		23.746	13.529	32.743	1.00 46.34	L	
20	ATOM	1120	CG1			23.852	16.828	32.730	1.00 47.26	L	
	MOTA	1121	CG2			24.187 22.377	17.188	34.181	1.00 39.55	L	
	ATOM	1122		. ILE L 144		23.503	16.390	32.685	1.00 27.85	L	
	ATOM	1123	N	ASN L 145		25.153	18.480 14.402	34.636	1.00 37.00	L	_
	ATOM	1124	ČA	ASN L 145		24.977	13.263	34.274 35.167	1.00 47.86	L	
25	ATOM	1125	C	ASN L 145		24.543	13.703	36.565	1.00 56.19	L	
	ATOM	1126	ō	ASN L 145		24.971	14.722	37.097	1.00 48.41 1.00 51.90	Ļ	_
	ATOM	1127	CB	ASN L 145		26.308	12.514	35.257	1.00 51.90	ŗ	
	MOTA	1128	CG	ASN L 145		26.692	11.994	33.896	1.00 79.58	L	
	MOTA	1129		ASN L 145		25.875	11.463	33.148	1.00 74.98	L	C
30	ATOM	1130		ASN L 145		27.992	12.137	33.582	1.00 74.98	L L	
	ATOM	1131	N	VAL L 146		23.627	12.907	37.144	1.00 47.14	F.	
	MOTA	1132	CA	VAL L 146		23.220	13.153	38.521	1.00 41.80	L	N C
	ATOM	1133	С	VAL L 146		23.646	12.000	39.432	1.00 41.27	Ŀ	C
	MOTA	1134	0	VAL L 146		23.665	10.840	39.043	1.00 41.13	L	0
35	MOTA	1135	CB	VAL L 146		21.700	13.305	38.550	1.00 38.57	L	Č
	MOTA	1136	CG1	VAL L 146		21.222	13.420	39.996	1.00 48.70	L	C
	ATOM	1137	CG2	VAL L 146		21.291	14.552	37.788	1.00 52.23	L	č
	MOTA	1138	\mathbf{N}	LYS L 147		24.019	12.322	40.657	1.00 39.29	L	N
40	ATOM	1139	ca	LYS L 147		24.434	11.308	41.580	1.00 43.68	L	Ĉ
40	ATOM	1140	C	LYS L 147		23.757	11.587	42.893	1.00 43.43	L	Č
	ATOM	1141	0	LYS L 147		23.829	12.680	43.439	1.00 47.08	L	ŏ
	ATOM	1142	CB	LYS L 147		25.952	11.402	41.744	1.00 43.41	L	Ċ
	ATOM	1143	CG	LYS L 147		26.521	10.238	42.559	1.00 49:00	L	Ċ
45	ATOM	1144	CD	LYS L 147		27.994	10.448	42.918	1.00 69.56	L	Č
45	ATOM	1145	CE	LYS L 147		28.883	10.597	41.679	1.00 79.19	L	C
	MOTA	1146	NZ	LYS L 147		29.949	11.561	41.950	1.00 85.36	L	N
	ATOM	1147	N	TRP L 148		23.051	10.591	43.410	1.00 49.19	L	N
	ATOM ATOM	1148	CA	TRP L 148		22.371	10.756	44.682	1.00 45.19	L	C
50	ATOM	1149 1150	C	TRP L 148		23.305	10.250	45.751	1.00 45.91	Ŀ	C
00	ATOM	1151	O CB	TRP L 148		24.076	9.322	45.529	1.00 43.97	L	0
	ATOM	1152	CG	TRP L 148 TRP L 148		21.065	9.964	44.727	1.00 39.66	${f L}$	C
	ATOM	1153		TRP L 148		19.940 19.564	10.601	43.968	1.00 42.61	L	С
	ATOM	1154		TRP L 148		19.029	10.346	42.677	1.00 33.06	Ļ	С
55	ATOM	1155	NE1	TRP L 148		18.469	11.586	44.464	1.00 42.82	L	C
	MOTA	1156	CE2	TRP L 148		18.121	11.107 11.879	42.344	1.00 30.84	Ŀ	N
	MOTA	1157	CE3	TRP L 148		18.887	12.247	43.422	1.00 35.66	L	C
	ATOM	1158	CZ2	TRP L 148		17.086	12.807	45.687	1.00 32.84	L	C
	MOTA	1159	CZ3	TRP L 148		17.858	13.162	43.570	1.00 29.88	L	C
60	ATOM	1160		TRP L 148		16.971	13.434	45.831 44.778	1.00 40.22 1.00 26.01	L	C
	ATOM	1161	N	LYS L 149		23.241	10.883	46.911		Ŀ	C
	ATOM	1162	CA	LYS L 149		24.072	10.504	48.036	1.00 47.40 1.00 41.22	L	И
	ATOM	1163	C	LYS L 149		23.260	10.572	49.313		L	C
	MOTA	1164	ŏ	LYS L 149		22.582	11.560	49.554	1.00 39.97 1.00 49.04	L	C
65	ATOM	1165	СВ	LYS L 149		25.267	11.454	48.162	1.00 49.04	L L	0
	ATOM	1166	CG	LYS L 149		26.501	11.060	47.373	1.00 35.13	L	C
	MOTA	1167	CD	LYS L 149		27.679	11.917	47.817	1.00 45.37	Ľ	C
	MOTA	1168	CE	LYS L 149		28.982	11.466	47.181	1.00 70.51	L	C
	ATOM	1169	NZ	LYS L 149		30.156	12.182	47.759	1.00 67.81	L	N
										_	*

H AND A 's and and and and a dear one one one one one of the B

	р чен ч	. ,								
	ATOM	1170	N ILE L	150	23.309	9.524	50.122	1.00 38.16	L	N
	ATOM	1171	CA ILE L		22.606	9.544	51.396	1.00 38.62	L	C
	MOTA	1172	C ILE I		23.624	9.285	52.498	1.00 39.38	ŗ	C
	ATOM	1173	O ILE L		24.240	8.227	52.546	1.00 42.34	L	0
5	MOTA	1174	CB ILE I		21.501	8.485	51.476	1.00 35.52	L	C
	ATOM	1175	CG1 ILE I		20.483	8.700	50.351	1.00 34.00	L	C
	ATOM	1176	CG2 ILE I		20.834	8.565	52.845	1.00 30.49	L	C
	ATOM	1177	CD1 ILE I		19.319	7.730	50.350	1.00 21.56	L	C
	MOTA	1178	N ASP I		23.799	10.263	53.379	1.00 42.16	L	N
10	ATOM	1179	CA ASP I		24.763	10.162	54.468	1.00 43.08 1.00 47.39	· <u>L</u>	C
	MOTA	1180	C ASP I		26.175	9.985	53.920	1.00 47.39	L L	0
	ATOM	1181	O ASP I		26.964	9.180	54.422	1.00 33.21	L L	C
	ATOM	1182	CB ASP I		24.408 23.255	9.001 9.328	55.395 56.307	1.00 38.76	L	C
4-	MOTA	1183 1184	CG ASP I		22.800	10.490	56.289	1.00 53.05	L	ŏ
15 .	ATOM ATOM	1185	ODI ASF I		22.806	8.434	57.048	1.00 49.41	L	ŏ
	ATOM	1186	N GLY I		26.477	10.744	52.873	1.00 48.87	L	N
	ATOM	1187	CA GLY I		27.819	10.665	52.287	1.00 46.37	L	C
	ATOM	1188	C GLY I		27.938	9.582	51.203	1.00 49.77	L	C
20	MOTA	1189	O GLY I		28.783	9.629	50.322	1.00 58.18	L	0
	ATOM	1190	N SER I		27.077	8.554	51.312	1.00 48.01	L	N
	MOTA	1191	CA SER I	153	27.163	7.440	50.371	1.00 52.83	L	C
	ATOM	1192	C SER I	153	26.357	7.694	49.095	1.00 45.68	L	С
	ATOM	1193	O SER I	153	25.294	8.299	49.106	1.00 49.11	L	0
25	ATOM	1194	CB SER I		26.634	6.189	51.082	1.00 54.79	L	C
	MOTA	1195	OG SER I		27.612	5.715	52.009	1.00 69.58	ŗ	0
	MOTA	1196	N GLU I		26.929	7.245	47.963	1.00 43.38	L	N
	ATOM	1197	CA GLU I		26.197	7.333	46.703	1.00 50.29	Ŀ	C
	ATOM	1198	C GLU I		25.117	6.253	46.615	1.00 49.87 1.00 56.57	L L	C
30	ATOM	1199	O GLU I		25.273 27.194	5.136 7.167	47.088 45.553	1.00 36.57	L	č
	MOTA	1200 1201	CB GLU I		26.582	6.459	44.340	1.00 43.07	L	Č
	ATOM	1201	CD GLU I		27.464	6.677	43.126	1.00 72.03	L	č
	MOTA MOTA	1202	OE1 GLU I		28.674	6.584	43.252	1.00 56.01	Ĺ	Õ
35	ATOM	1204	OE2 GLU I		26.928	6.957	42.059	1.00 70.34	L	ō
55	ATOM	1205	N ARG I		23.977	6.589	46.019	1.00 49.27	L	N
	MOTA	1206	CA ARG I		22.910	5.615	45.804	1.00 47.42	L	C
	ATOM	1207	C ARG I		22.739	5.463	44.293	1.00 48.15	L	C
	ATOM	1208	O ARG I		22.790	6.446	43.554	1.00 49.72	L	0
40	MOTA	1209	CB ARG I	i 155	21.584	6.075	46.418	1.00 45.78	L	С
	MOTA	1210	CG ARG I	155	21.489	5.965	47.938	1.00 46.29	L	С
	MOTA	1211	CD ARG I		21.711	4.544	48.452	1.00 44.74	L	C
	MOTA	1212	NE ARGI		21.593	4.481	49.908	1.00 46.03	L	N
	MOTA	1213	CZ ARG I		20.450	4.313	50.565	1.00 47.68	L	C
45	MOTA	1214	NH1 ARG I		19.314	4.173	49.902	1.00 57.00	L	N
	MOTA	1215	NH2 ARG I		20.434	4.323	51.888	1.00 44.35 1.00 47.00	L L	N N
	ATOM	1216	N GLN I		22.559	4.230	43.836	1.00 47.00	r L	G
	MOTA	1217 1218	CA GLN I		22.375 21.002	3.956 3.359	42.416 42.205	1.00 48.51	L	Č
50	MOTA MOTA	1218	O GLN		20.343	3.585	41.197	1.00 47.82	L L	ŏ
30	ATOM	1220		i 156	23.392	2.933	41.914	1.00 57.57	L	Č
	MOTA	1221		156	24.813	3.404	41.730	1.00 69.42	L	C
	MOTA	1222		156	25.459	2.736	40.522	1.00 87.97	L	С
	ATOM	1223	OE1 GLN		25.401	1.514	40.364	1.00 94.85	L	0
55	ATOM	1224	NE2 GLN		26.072	3.541	39.658	1.00 96.03	L	N
	MOTA	1225		ւ 157	20.584	2.583	43.188	1.00 50.75	L	N
	MOTA	1226		ւ 157	19.323	1.881	43.134	1.00 56.06	L	C
	MOTA	1227		L 157	18.104	2.729	43.475	1.00 51.01	\mathbf{L}	C
	MOTA	1228		և 157	18.185	3.662	44.263	1.00 54.53	Ŀ	0
60	ATOM	1229		L 157	19.434	0.668	44.060	1.00 63.75	L	C
	MOTA	1230		L 157	20.754	-0.097	43.856	1.00 77.57	L	C
	ATOM	1231	OD1 ASN		20.935	-0.797	42.852	1.00 83.50	L	O N
	MOTA	1232	ND2 ASN		21.689	0.060	44.800 42.852	1.00 79.77 1.00 46.82	L L	N
C.E.	ATOM	1233		L 158	16.978 15.743	2.402 3.113	42.852	1.00 46.62	L L	C
65	MOTA MOTA	1234 1235		ն 158 ն 158	15.631	$\frac{3.113}{4.514}$	42.556	1.00 33.11	L	Č
	ATOM	1236		ь 158 ь 158	14.882	5.328	43.086	1.00 37.66	L	ŏ
	ATOM	1237		ь 159	16.364	4.818	41.496	1.00 33.40	L	N
	MOTA	1238		L 159	16.278	6.143	40.921	1.00 37.20	L	C

	ь			8 **						
	ATOM	1239	C VAL L 1	59	15.794	6.096	39.489	1.00 39.79	L	С
	_			.59	16.196	5.238	38.717	1.00 50.88	L	0
	ATOM	1240						1.00 37.60	ī.	č
	MOTA	1241	CB VAL L 1		17.631	6.855	40.954			Č
	ATOM	1242	CG1 VAL L 1		18.728	5.839	41.060	1.00 41.29	Ŀ	
5	ATOM	1243	CG2 VAL L 1	.59	17.804	7.709	39.689	1.00 35.05	${f L}$	С
	MOTA	1244	N LEU L 1	.60	14.903	7.012	39.142	1.00 40.63	L	N
	ATOM	1245		.60	14.381	7.088	37.792	1.00 40.01	L	С
	MOTA	1246	C LEU L 1		14.539	8.525	37.298	1.00 35.48	L	C
	MOTA	1247	O LEU L 1		14.189	9.473	37.996	1.00 35.80	L	0
40					12.920	6.621	37.755	1.00 41.10	L	č
10	ATOM	1248	CB LEU L 1			5.138	38.108	1.00 47.84	Ľ	Č
	ATOM	1249		.60	12.712					
	MOTA	1250	CD1 LEU L 1	.60	11.223	4.831	38.132	1.00 64.80	Ţ	C
	MOTA	1251	CD2 LEU L 1		13.380	4.229	37.103	1.00 43.08	L	C
	MOTA	1252	N ASN L 1	.61	15.110	8.661	36.104	1.00 33.90	L	N
15	MOTA	1253	CA ASN L 1	.61	15.383	9.949	35.479	1.00 32.64	${f L}$	C
	ATOM	1254		.61	14.524	10.192	34.260	1.00 33.50	Ŀ	С
	ATOM	1255		.61	14.149	9.265	33.559	1.00 38.43	L	0
	ATOM	1256		61	16.828	10.007	35.003	1.00 38.36	L	С
		1257	CG ASN L 1		17.823	9.762	36.101	1.00 37.26	L	C
	ATOM				17.839	10.463	37.111	1.00 40.06	L	ŏ ¹
20	ATOM	1258	OD1 ASN L 1					1.00 32.15	L	И
	ATOM	1259	ND2 ASN L 1		18.678	8.769	35.902	1.00 32.13	L	N
	MOTA	1260	N SER L 1		14.249	11.452	33.976			
	ATOM	1261	CA SER L 1		13.462	11.777	32.800	1.00 26.43	L	C
	ATOM	1262	C SER L 1	L62	14.027	13.040	32.153	1.00 28.89	Ŀ	C
25	MOTA	1263	O SER L 1	L62	14.447	13.956	32.845	1.00 33.59	L	0
	ATOM	1264	CB SER L 1	L62	12.006	11.972	33.194	1.00 22.50	\mathbf{L}	С
	ATOM	1265	OG SER L 1	L62	11.191	11.991	32.046	1.00 37.37	L	0
	ATOM	1266	N TRP L 1		14.054	13.088	30.829	1.00 33.44	L	N
	ATOM	1267	CA TRP L 1		14.586	14.262	30.131	1.00 28.63	L	C
30	ATOM	1268	C TRP L 1		13.556	14.875	29.206	1.00 27.81	L	С
30			O TRP L 1		12.871	14.167	28.468	1.00 33.25	L	Ö
	ATOM	1269			15.817	13.888	29.293	1.00 28.11	Ē	č
	ATOM	1270				13.331	30.084	1.00 30.72	L	č
	ATOM	1271	CG TRP L 1		16.950					Ċ
	MOTA	1272		163	18.060	13.999	30.514	1.00 34.81	L	
35	MOTA	1273		163	17.093	11.981	30.534	1.00 37.12	Ŀ	C
	MOTA	1274	NE1 TRP L 1		18.886	13.146	31.201	1.00 31.24	L	N
	ATOM	1275	CE2 TRP L 1	163	18.317	11.899	31.227	1.00 36.59	L	C
	ATOM	1276	CE3 TRP L 1	163	16.304	10.829	30.419	1.00 42.13	L	С
	ATOM	1277	CZ2 TRP L 3	163	18.774	10.712	31.801	1.0044.40	L	С
40	ATOM	1278		163	16.761	9.644	30.996	1.00 49.83	L	C
-10	ATOM	1279	CH2 TRP L		17.983	9.598	31.675	1.00 29.31	L	C
	MOTA	1280	N THR L		13.463	16.199	29.235	1.00 27.83	L	N
		1281	CA THR L		12.531	16.916	28.377	1.00 29.47	L	C
	MOTA				13.180	17.119	27.013	1.00 27.57	Ī.	č
45	MOTA	1282	C THR L			16.911	26.867	1.00 32.97	L	ŏ
45	MOTA	1283	O THR L		14.379			1.00 32.57	L	č
	ATOM	1284	CB THR L		12.215	18.292	28.955			Ö
	\mathbf{MOTA}	1285	OG1 THR L		13.429	19.023	29.111	1.00 25.23	L	-
	MOTA	1286	CG2 THR L		11.549	18.165	30.299	1.00 33.20	Ŀ	C
	MOTA	1287	N ASP L	165	12.393	17.499	26.009	1.00 32.30	L	N
50	MOTA	1288	CA ASP L	165	12.966	17.780	24.690	1.00 37.75	\mathbf{L}	C
	MOTA	1289	C ASP L :	165	13.614	19.155	24.807	1.00 34.76	L	C
	MOTA	1290	O ASP L	165	13.493	19.815	25.832	1.00 41.05	L	0
	ATOM	1291	CB ASP L		11.890	17.835	23.597	1.00 44.29	L	C
	ATOM	1292	CG ASP L		11.479	16.464	23.105	1.00 45.32	L	C
EE			OD1 ASP L		10.645	15.818	23.769	1.00 54.61	L	Ō
55	MOTA	1293			11.998	16.033	22.052	1.00 65.66	L	ŏ
	MOTA	1294	OD2 ASP L				23.772	1.00 34.89	L	Ŋ
	MOTA	1295	N GLN L		14.294	19.615			L	C
	MOTA	1296	CA GLN L		14.921	20.923	23.884	1.00 33.11		
	MOTA	1297	C GLN L		13.882	22.031	23.890	1.00 34.33	L	C
60	MOTA	1298	O GLN L		12.917	22.001	23.126	1.00 40.73	L	0
	ATOM	1299	CB GLN L	166	15.927	21.130	22.754	1.00 32.34	L	C
	MOTA	1300	CG GLN L		16.566	22.492	22.716	1.00 25.94	${f L}$	C
	ATOM	1301	CD GLN L		17.735	22.524	21.767	1.00 24.29	L	С
	ATOM	1302	OE1 GLN L		17.691	21.915	20.703	1.00 29.03	L	0
65	ATOM	1303	NE2 GLN L		18.789	23.234	22.141	1.00 39.54	L	N
50	ATOM	1304	N ASP L		14.084	23.000	24.775	1.00 36.26	Ŀ	N
		1304	CA ASP L		13.244	24.183	24.911	1.00 37.77	Ē	Ĉ
	MOTA				13.133	24.919	23.578	1.00 38.98	Ĺ	č
	ATOM	1306					22.826	1.00 45.84	, L	Ö
	MOTA	1307	O ASP L	T 0 \	14.089	25.044	22.020	T.00 49.04	ш	0

	 ATOM	1308	СВ	ASP L	167	13.869	25.102	25.965	1.00 39.01	L	C
	ATOM	1309	CG	ASP L		12.825	26.104	26.438	1.00 50.62	L	C
	ATOM	1310		ASP L		11.843	25.665	27.041	1.00 61.30	L L	
	-	1311		ASP L			27.301	26.214	1.00 65.60		0
_	MOTA					13.003				r L	0
5	ATOM	1312	N	SER L		11.907	25.373	23.265	1.00 39.91	r P	N
	ATOM	1313	CA	SER L		11.711	26.041	21.985	1.00 36.41	Ŀ	C
	ATOM	1314	C	SER L		12.002	27.542	22.067	1.00 36.74	Ŀ	C
	ATOM	1315	0_	SER L		11.965	28.267	21.082	1.00 42.82	L	0
	MOTA	1316	CB	SER L		10.268	25.802	21.535	1.00 34.55	L	C
10	MOTA	1317	OG	SER L		10.172	24.514	20.922	1.00 38.70	L	0
	MOTA	1318	N	LYS L		12.279	28.009	23.301	1.00 41.00	L	N
	MOTA	1319	$^{\rm CA}$	LYS L		12.476	29.440	23.491	1.00 40.71	L	C
	MOTA	1320	С	LYS L		13.938	29.810	23.746	1.00 44.31	L	C
	MOTA	1321	0	LYS L	169	14.524	30.641	23.065	1.00 47.38	L	0
15	MOTA	1322	$^{\rm CB}$	LYS L	169	11.596	29.896	24.654	1.00 50.40	L	C
	MOTA	1323	CG	LYS L	169	10.226	30.371	24.164	1.00 64.25	L	C
	MOTA	1324	CD	LYS L	169	9.232	30.585	25.307	1.00 92.37	L	C
	MOTA	1325	CE	LYS L	169	7.980	31.351	24.858	1.00 99.86	L	C
	MOTA	1326	NZ	LYS L	169	7.425	32.101	25.987	1.00 94.60	L	N
20	ATOM	1327	N	ASP L	170	14.514	29.200	24.799	1.00 45.97	L	N
	ATOM	1328	CA	ASP L		15.922	29.466	25.091	1.00 46.90	L	C
	ATOM	1329	C	ASP L		16.813	28.255	24.790	1.00 43.28	L	C
	MOTA	1330	Ō	ASP L		17.967	28.170	25.193	1.00 47.78	L	Õ
	ATOM	1331	ĊВ	ASP L		16.053	29.878	26.560	1.00 48.00	L	Č
25	ATOM	1332	CG	ASP L		15.574	28.743	27.455	1.00 48.03	L	č
	ATOM	1333		ASP L		15.499	27.620	26.962	1.00 51.45	L	ō
	ATOM	1334		ASP L		15.296	28.988	28.627	1.00 84.97	L	ŏ
	ATOM	1335	N	SER L		16.209	27.271	24.096	1.00 46.86	Ŀ	N
	MOTA	1336	CA	SER L		16.983	26.133	23.607	1.00 48.35	L	Č
30	ATOM	1337	C	SER L		17.845	25.485	24.692	1.00 48.37	L L	Č
50	ATOM	1338	Õ	SER L		19.057	25.351	24.563	1.00 55.99	L	Õ
	ATOM	1339	СВ	SER L		17.872	26.628	22.467	1.00 45.20	L	C
	ATOM	1340	OG	SER L		17.053	26.974	21.348	1.00 43.20	L	0
				THR L		17.189	25.100	25.803		L	
25	MOTA	1341	N	THR L				26.856	1.00 51.34 1.00 44.78		N
35	MOTA	1342	CA			17.921	24.407			L	C
	ATOM	1343	C	THR L		17.399	22.982	27.059	1.00 42.17	L	C
	MOTA	1344	O	THR L		16.466	22.535	26.405	1.00 45.97	ŗ	0
	ATOM	1345	CB	THR L		17.783	25.207	28.152	1.00 37.85	L	C
40	ATOM	1346	OG1			16.404	25.512	28.370	1.00 57.23	\tilde{r}	0
40	MOTA	1347	CG2			18.577	26.517	28.050	1.00 33.68	L	C
	ATOM	1348	N	TYR L		17.892	22.288	28.069	1.00 44.08	Ŀ	N
	MOTA	1349	CA	TYR L		17.364	20.993	28.442	1.00 40.50	L	C
	MOTA	1350	C	TYR L		17.228	20.919	29.947	1.00 40.14	L	C
	MOTA	1351	0	TYR L		18.070	21.432	30.679	1.00 40.88	L	0
45	ATOM	1352	CB	TYR L		18.299	19.877	28.014	1.00 32.40	L	C
	MOTA	1353	CG	TYR L		18.551	19.773	26.544	1.00 38.44	L	C
	ATOM	1354	CD1			19.528	20.542	25.931	1.00 23.34	L	C
	MOTA	1355	CD2		173	17.886	18.818	25.781	1.00 30.45	L	C
	ATOM	1356	CE1		173	19.847	20.347	24.605	1.00 23.64	L	C
50	MOTA	1357	CE2			18.194	18.623	24.468	1.00 23.61	L	C
	MOTA	1358	CZ	TYR L		19.179	19.382	23.884	1.00 31.64	L	C
	MOTA	1359	OH	TYR L	173	19.533	19.124	22.587	1.00 50.61	L	0
	ATOM	1360	N	SER L	174	16.172	20.261	30.396	1.00 32.25	L	N
	MOTA	1361	CA	SER L	174	15.932	20.103	31.810	1.00 33.25	L	C
55	MOTA	1362	C	SER L		15.820	18.624	32.103	1.00 31.14	L	C
	MOTA	1363	0	SER L	174	15.363	17.840	31.270	1.00 35.74	L	0
	ATOM	1364	CB	SER L		14.644	20.817	32.210	1.00 34.96	L	С
	ATOM	1365	OG	SER L		14.723	22.191	31.872	1.00 44.21	L	Ō
	ATOM	1366	N	MET L		16.264	18.235	33.283	1.00 32.45	L	N
60	ATOM	1367	CA	MET L		16.185	16.848	33.665	1.00 33.65	L	Ĉ
•	ATOM	1368	C	MET L		15.658	16.798	35.083	1.00 36.03	L	Č
	ATOM	1369	ŏ	MET L		15.931	17.675	35.895	1.00 37.60	L	ŏ
	ATOM	1370	CB	MET L		17.555	16.169	33.576	1.00 34.51	r 1	Č
	ATOM	1371	CG	MET L		18.065	15.622	34.890	1.00 34.31	L	C
65	ATOM	1372	SD	MET L		18.885	14.022	34.685	1.00 50.79	L	s
00		1372		MET L		17.718	12.956		1.00 50.79	r L	C
	ATOM		CE			14.872	15.769	35.395	1.00 31.77	r r	
	ATOM	1374	N	SER L				35.352	1.00 38.28		N
	ATOM	1375	CA	SER L		14.285	15.553	36.650		L L	C
	ATOM	1376	С	SER L	T / O	14.794	14.211	37.167	1.00 33.00	Ţī	C

	ATOM ATOM ATOM	1377 1378 1379	O CB OG	SER L SER L SER L	176 176	14.9 12.7 12.1	66 40	13.256 15.526 15.055	36.38 36.53 37.68	10 80	1.00	25.85	L L	0 C 0
5	ATOM ATOM ATOM ATOM	1380 1381 1382 1383	N CA C O	SER L	177 177 177 177	15.0 15.5 14.7 14.5	09 87	14.137 12.887 12.492 13.325	38.4° 39.00 40.34 41.2°	60 49	1.00	34.20 31.30 30.60 34.61	L L L	0 C N
10	ATOM ATOM ATOM	1384 1385 1386	CB OG N	SER L SER L THR L	177 177 178	17.0 17.4 14.5	04 80 00	12.939 11.618 11.205	39.30 39.25 40.46	06 57 80	1.00 1.00 1.00	22.17 35.64 28.83	L L L	С О И
	ATOM ATOM ATOM ATOM	1387 1388 1389 1390	CA C O CB	THR L THR L THR L	178 178	13.7 14.3 14.5 12.3	78 27	10.744 9.497 8.460 10.452	41.6 42.2 41.6 41.2	87 44	1.00 1.00	28.12 33.56 34.19 29.07	L L L L	000
15	ATOM ATOM ATOM	1391 1392 1393		THR L	178 178	11.7 11.5 14.7	00 26 17	11.620 10.050 9.609	40.73 42.53 43.5	26 20 65	1.00 1.00 1.00	34.69 38.66 37.13	L L L	О С О
20	ATOM ATOM ATOM	1394 1395 1396 1397	CA C O CB	LEU L LEU L LEU L	179 179	15.2 14.1 13.8 16.5	.33 :03	8.478 8.072 8.813 8.852	44.3 45.2 46.2 45.0	94 19	1.00	37.36 38.67 46.22 38.33	L L L L	000
	ATOM ATOM ATOM ATOM	1398 1399 1400	CG CD1	LEU L	179 179	16.9 16.8 18.3	37 37	7.711 6.398 7.964	46.0 45.2 46.5	13 65	1.00 1.00	39.81 36.12 42.75	L L L	2000
25	MOTA MOTA MOTA	1401 1402 1403	N CA C	THR L THR L THR L	180 180	13.5 12.4 13.0	78 17	6.905 6.453 5.573	45.0 45.9 47.0	47 59	1.00	40.70 46.91	L L L	C C
30	ATOM ATOM ATOM ATOM	1404 1405 1406 1407	O CB OG1 CG2		180 180	13.8 11.4 10.9 10.2	20 83	4.712 5.660 6.437 5.338	46.8 45.1 44.0 46.0	55 33	1.00 1.00	55.35 42.81 53.11 40.36	L L L	0000
	ATOM ATOM ATOM	1408 1409 1410	N CA C	LEU L LEU L	181 181	12.5 12.8 11.6	02 896 526	5.796 5.043 4.660	48.2 49.4 50.1	64 40 61	1.00 1.00 1.00	44.68 38.18 42.65	L L L	C C M
35	ATOM ATOM ATOM ATOM	1411 1412 1413 1414	O CB CG	LEU L LEU L LEU L	181 181	10.5 13.7 14.8 15.4	20 354	5.241 5.920 6.721 7.699	49.9 50.3 49.7 50.7	75 50	1.00 1.00	47.04 36.56 35.79 23.79	L L L	0000
40	ATOM ATOM ATOM	1415 1416 1417	-	LEU L THR L THR L	181 182	15.9 11.7 10.5	929 716	5.772 3.675 3.276	49.2 51.0 51.8	43 44	1.00 1.00	48.44 49.61 45.22	L L L	C N C
45	ATOM ATOM ATOM	1418 1419 1420	C O CB	THR L THR L THR L	182 182	10.6 11.7 10.7	717 733	4.266 4.776 1.838	53.0 53.3 52.4	36 23	1.00 1.00		L L L	0 0 0
45	MOTA MOTA MOTA MOTA	1421 1422 1423 1424	OG1 CG2 N CA		182 183	11.8 10.9 9.5 9.4	914 507	1.786 0.832 4.540 5.472	53.2 51.3 53.6 54.7	08 62	1.00	53.75 50.23 45.54 48.11	L L L	N C
50	ATOM ATOM ATOM	1425 1426 1427	C O CB	LYS L LYS L	183 183 183	10.4 10.8 8.0	181 369 049	5.104 5.951 5.521	55.8 56.7 55.3	98 11 87	1.00 1.00 1.00	51.20 49.30 43.28	L L L	0 0
55	MOTA MOTA MOTA MOTA	1428 1429 1430 1431	CG CD CE NZ	LYS L LYS L LYS L LYS L	183 183	7.8 6.6 6.7 5.6	517 771	6.643 6.417 5.152 4.941	56.3 57.2 58.0 59.0	55 89	1.00 1.00	40.50 66.92 77.94 73.24	L L L L	И С С
33	ATOM ATOM ATOM	1432 1433 1434	N CA C	ASP L ASP L ASP L	184 184	10.9 11.8 13.2	913 311	3.843 3.416 3.930	55.9 56.9 56.7	17 84 63	1.00 1.00 1.00	52.45 53.02 48.73	L L L	С С И
60	MOTA MOTA MOTA	1435 1436 1437	O CB CG	ASP L ASP L	184 184	13.8 11.8 10.7	309 705	4.649 1.885 1.407	57.5 57.0 57.9	27 60	1.00	51.85 57.50 71.44	L L L	0000
65	MOTA MOTA MOTA MOTA	1438 1439 1440 1441		ASP L ASP L GLU L GLU L	184 185	10.0 10.4 13.8 15.1	160 332	2.257 0.205 3.497 3.944	58.6 58.0 55.6 55.3	21 35	1.00	66.16 81.91 43.10 42.13	L L L	С 0 0
	MOTA MOTA MOTA	1442 1443 1444	C O CB	GLU L GLU L	185 185 185	15.2 16.2 15.5	286 246 566	5.470 6.060 3.406	55.3 55.8 53.9	34 13 43	1.00 1.00 1.00	45.22 50.22 43.08	L L L	С С
	MOTA	1445	CG	GLU L	185	16.9	145	3.889	53.4	92	T.00	22.88	L	С

	ATOM	1446	CD GLU L	185	18.015	3.077	54.186	1.00 39.62	L	С
	-									
	ATOM	1447		185	17.699	2.384	55.144	1.00 47.97	L	0
	ATOM	1448	OE2 GLU L	185	19.166	3.140	53.756	1.00 53.07	L	0
	ATOM	1449	N TYR L	186	14.262	6.113	54.741	1.00 42.12	L	N
-										
5	MOTA	1450	CA TYR L		14.233	7.570	54.754	1.00 40.44	L	C
	MOTA	1451	C TYR L	186	14.366	8.112	56.179	1.00 40.33	L	C
	ATOM	1452	O TYR L		15.068	9.081	56.442	1.00 46.64		
									L	0
	MOTA	1453	CB TYR L	186	12.909	8.028	54.140	1.00 41.32	L	С
	ATOM	1454	CG TYR L	186	12.823	9.514	54.177	1.00 38.85	L	C
40										č
10	MOTA	1455	CD1 TYR L		13.822	10.281	53.582	1.00 29.72	L	C
	MOTA	1456	CD2 TYR L	186	11.778	10.146	54.851	1.00 37.41	L	С
	ATOM	1457	CE1 TYR L		13.779	11.665	53.663	1.00 28.90	L	Ċ
										_
	MOTA	1458	CE2 TYR L	186	11.740	11.529	54.940	1.00 32.41	L	C
	MOTA	1459	CZ TYR L	186	12.739	12.287	54.358	1.00 30.10	L	C
45		1460	OH TYR L		12.710	13.665	54.446			
15	MOTA								L	0
	MOTA	1461	N GLU L	187	13.695	7.510	57.147	1.00 44.49	L	N
	MOTA	1462	CA GLU L	187	13.790	7.981	58.520	1.00 46.87	L	C
	ATOM	1463	C GLU L		15.085	7.549	59.202	1.00 48.70	L	C
	ATOM	1464	O GLU L	187	15.510	8.156	60.176	1.00 50.91	L	0
20	ATOM	1465	CB GLU L	187	12.573	7.503	59.306	1.00 42.22	L	C
20										~
	ATOM	1466	CG GLU L		11.368	8.395	59.085	1.00 62.96	L	C
	ATOM	1467	CD GLU L	187	10.044	7.666	59.223	1.00 86.23	L	C
	ATOM	1468	OE1 GLU L	187	9.906	6.832	60.150	1.00 80.19	L	0
	MOTA	1469		187	9.135	7.943	58.405	1.00 94.40	L	0
25	ATOM	1470	N ARG L	188	15.725	6.512	58.675	1.00 46.28	L	N
	ATOM	1471	CA ARG L		16.965	6.029	59.252	1.00 44.52	L	C
										_
	MOTA	1472	C ARG L	188	18.131	6.934	58.890	1.00 46.66	L	C
	MOTA	1473	O ARG L	188	19.235	6.767	59.406	1.00 52.73	L	0
		1474			17.269	4.623	58.754			
	ATOM							1.00 48.29	L	C
30	MOTA	1475	CG ARG L	188	16.216	3.585	59.050	1.00 58.26	L	С
	MOTA	1476	CD ARG L	188	16.723	2.255	58.545	1.00 65.07	L	С
	ATOM	1477	NE ARG L		18.049	2.009	59.098	1.00 63.58	L	N
	ATOM	1478	CZ ARG L	188	18.257	1.507	60.307	1.00 66.13	L	C
	ATOM	1479	NH1 ARG L	188	17.220	1.187	61.069	1.00 54.33	L	N
0.5										
35	ATOM	1480	NH2 ARG L		19.496	1.357	60.761	1.00 56.10	L	N
	ATOM	1481	N HIS L	189	17.890	7.882	57.993	1.00 44.20	L	N
	ATOM	1482	CA HIS L		18.897	8.764	57.427	1.00 42.62	L	С
	ATOM	1483	C HIS L	189	18.505	10.231	57.645	1.00 45.89	L	C
	ATOM	1484	O HIS L	189	17.414	10.556	58.093	1.00 46.26	L	0
40	ATOM	1485		189	19.037	8.429	55.935	1.00 45.73	L	Č
40										Č
	MOTA	1486	CG HIS L	189	19.693	7.071	55.785	1.00 40.19	L	С
	ATOM	1487	ND1 HIS L	189	20.953	6.813	56.208	1.00 51.00	L	N
	ATOM	1488		189	19.093	5.857	55.443	1.00 59.83	L	Ĉ
	MOTA	1489		189	21.100	5.477	56.140	1.00 47.50	L	С
45	ATOM	1490	NE2 HIS L	189	20.000	4.877	55.685	1.00 61.66	L	N
	ATOM	1491		190	19.455	11.138	57.354	1.00 50.73	L	N
	ATOM	1492		190	19.221	12.519	57.748	1.00 55.47	L	C
	ATOM	1493	C ASN L	190	19.747	13.531	56.728	1.00 53.43	L	С
	MOTA	1494	O ASN L		19.229	14.627	56.573	1.00 62.98	L	0
50										
50	ATOM	1495	CB ASN L		19.865	12.710	59.122	1.00 57.60	L	C
	ATOM	1496	CG ASN L	190	20.194	14.160	59.395	1.00 71.59	\mathbf{L}	C
	ATOM	1497	OD1 ASN L	190	19.343	14.991	59.710	1.00 84.26	L	0
	ATOM	1498	ND2 ASN L		21.512	14.435	59.365	1.00 74.56	L	N
	ATOM	1499	N SER L	191	20.835	13.144	56.039	1.00 48.57	L	N
55	ATOM	1500	CA SER L		21.348	13.985	54.965	1.00 48.43	L	Ĉ
55										
	ATOM	1501	C SER L		21.082	13.358	53.597	1.00 48.76	L	C
	MOTA	1502	O SER L	191	21.648	12.330	53.245	1.00 49.95	L	0
		1503			22.855	14.138	55.160			
	MOTA		CB SER L					1.00 48.79	Ē	C
	ATOM	1504	OG SER L		23.356	15.077	54.204	1.00 58.59	L	0
60	ATOM	1505	N TYR L	192	20.292	14.056	52.790	1.00 48.13	L	N
	ATOM	1506			20.040	13.643	51.414	1.00 45.11		Ĉ
			CA TYR L						L	٢
	MOTA	1507	C TYR L	192	20.650	14.655	50.465	1.00 42.96	L	C
	ATOM	1508	O TYR L		20.321	15.835	50.508	1.00 38.34	L	0
										\simeq
	ATOM	1509	CB TYR L		18.537	13.507	51.187	1.00 45.18	L	C
65	ATOM	1510	CG TYR L	192	17.948	12.438	52.077	1.00 42.77	L	C
	ATOM	1511	CD1 TYR L		17.896	12.600	53.459	1.00 22.56	L	C
										~
	ATOM	1512	CD2 TYR L		17.518	11.239	51.546	1.00 38.31	L	C
	ATOM	1513	CE1 TYR L	192	17.442	11.597	54.275	1.00 25.40	L	C
	ATOM	1514	CE2 TYR L		17.061	10.231	52.357	1.00 44.54	L	Č
	111 011	-	J. 111 L		11.001	_U.2JI	22.337	1 1.04	ш	•

	MOTA	1515	CIT	TYR L	100	17 000	10 410	E2 710	1 00 27 00	~	~
	ATOM	1516	CZ OH	TYR L		17.026 16.567	10.412	53.718	1.00 37.89	I	-
	MOTA	1517	N	THR L		21.551	9.387 14.175	54.500 49.614	1.00 32.01 1.00 45.21	Ţ	
	ATOM	1518	CA	THR L		22.250	15.023	48.673	1.00 45.21	I	
5	MOTA	1519	C	THR L		22.230	14.665	47.212	1.00 44.18	I I	
•	ATOM	1520	õ	THR L		22.003	13.501	46.824	1.00 45.22	L	
	MOTA	1521	СВ	THR L		23.756	15.056	48.993	1.00 47.97	I	
	ATOM	1522	OG1			24.036	16.172	49.837	1.00 49.86	I	
	MOTA	1523	CG2			24.587	15.168	47.717	1.00 56.55	Ī	
10	ATOM	1524	N	CYS L		21.958	15.708	46.407	1.00 45.78	Ī	
. •	ATOM	1525	CA	CYS L		21.804	15.595	44.971	1.00 45.45	I.	
	ATOM	1526	C	CYS L		22.924	16.422	44.319	1.00 41.02	ī	
	ATOM	1527	O	CYS L		23.002	17.627	44.525	1.00 44.64	Ĩ	
	ATOM	1528	CB	CYS L		20.411	16.118	44.584	1.00 45.40	Ī	
15	ATOM	1529	SG	CYS L		20.133	16.300	42.804	1.00 69.21	Ī	
	MOTA	1530	N	GLU L	195	23.798	15.772	43.551	1.00 39.80	ī	
	ATOM	1531	CA	GLU L	195	24.909	16.467	42.893	1.00 42.67	I	
	MOTA	1532	С	GLU L	195	24.837	16.414	41.366	1.00 41.70	I	
	ATOM	1533	0	GLU L	195	24.670	15.347	40.782	1.00 36.42	I	
20	MOTA	1534	CB	GLU L	195	26.246	15,869	43.326	1.00 46.01	I	
	MOTA	1535	CG	GLU L		26.367	15.583	44.810	1.00 64.77	I	
	ATOM	1536	CD	GLU L		27.797	15.282	45.221	1.00 73.00	L	
	ATOM	1537	OE1			28.569	14.796	44.364	1.00 56.32	I	0
	ATOM	1538		GLU L		28.145	15.522	46.401	1.00 72.72	L	. 0
25	MOTA	1539	N	ALA L		24.990	17.568	40.723	1.00 40.13	I	
	ATOM	1540	CA	ALA L		24.938	17.639	39.267	1.00 42.38	L	
	MOTA	1541	C	ALA L		26.315	17.873	38.670	1.00 47.42	L	
	ATOM	1542	0	ALA L		27.060	18.740	39.123	1.00 45.43	L	
00	ATOM	1543	CB	ALA L		23.990	18.747	38.827	1.00 40.85	L	
30	ATOM	1544	N	THR L		26.644	17.096	37.642	1.00 54.27	L	
	ATOM	1545	CA	THR L		27.938	17.210	36.976	1.00 56.97	L	
	ATOM	1546	C	THR L		27.707	17.576	35.519	1.00 52.12	L	
	ATOM	1547	0	THR L		27.154	16.795	34.756	1.00 54.86	L	_
35	MOTA MOTA	1548 1549		THR L		28.723	15.879	37.032	1.00 60.44	L	
33			OG1			28.656	15.329	38.357	1.00 55.79	L	
	ATOM ATOM	1550 1551		THR L		30.177	16.113	36.668	1.00 66.98	L	-
	ATOM	1552	N CA	HIS L		28.135 27.958	18.770 19.255	35.141 33.783	1.00 52.54	L	
	ATOM	1553	C	HIS L		29.244	19.233	33.703	1.00 49.05	L	-
40	ATOM	1554	Ö	HIS L		29.244	20.490	34.143	1.00 50.31 1.00 51.38	L	
-10	ATOM	1555	СВ	HIS L		26.769	20.226	33.750	1.00 31.38	L	
	ATOM	1556	CG		198	26.396	20.692	32.376	1.00 48.32	I.	
	MOTA	1557		HIS L		26.284	19.834	31.302	1.00 55.30	L	
	ATOM	1558		HIS L		26.068	21.921	31.912	1.00 45.28	L	
45	MOTA	1559		HIS L		25.904	20.515	30.236	1.00 64.72	L	
	ATOM	1560		HIS L		25.764	21.783	30.579	1.00 54.41	L	
	ATOM	1561	N	LYS L		29.501	19.917	32.025	1.00 54.03	L	
	MOTA	1562	CA	LYS L		30.708	20.526	31.484	1.00 53.00	L	
	ATOM	1563	С	LYS L		30.883	21.998	31.851	1.00 55.09	Ŀ	
50	ATOM	1564	0	LYS L	199	31.990	22.529	31.768	1.00 59.80	L	
	ATOM	1565	CB	LYS L		30.735	20.383	29.965	1.00 51.53	L	
	MOTA	1566	CG	LYS L		29.631	21.136	29.262	1.00 54.50	L	
	ATOM	1567	$^{\rm CD}$	LYS L		29.886	21.211	27.768	1.00 69.27	L	
	MOTA	1568	CE	LYS L		31.152	21.991	27.463	1.00 89.21	L	
5 5	ATOM	1569	NZ	LYS L		31.310	22.208	25.993	1.00 98.42	L	N
	MOTA	1570	N	THR L		29.807	22.662	32.256	1.00 52.50	L	N
	MOTA	1571	CA	THR L		29.900	24.074	32.613	1.00 55.94	L	С
	ATOM	1572	C	THR L		30.727	24.351	33.871	1.00 59.72	L	
66	ATOM	1573	0	THR L		30.788	25.486	34.347	1.00 66.15	L	
60	ATOM	1574	CB	THR L		28.513	24.686	32.803	1.00 48.37	L	
	MOTA	1575	OG1			27.731	23.834	33.643	1.00 59.04	L	
	ATOM	1576		THR L		27.830	24.864	31.473	1.00 53.65	L	
	ATOM	1577	N	SER L		31.359	23.313	34.407	1.00 62.13	L	
GE.	ATOM	1578	CA	SER L		32.188	23.453	35.599	1.00 63.39	L	
65	MOTA	1579	C	SER L		32.916	22.159	35.938	1.00 61.33	Ŀ	
	ATOM	1580	O CB	SER L		32.604	21.089	35.409	1.00 60.64	L	
	MOTA MOTA	1581 1582	CB	SER L		31.341	23.885	36.792	1.00 61.74	L	
	ATOM	1582	OG N	SER L THR L		30.356 33.892	22.917 22.273	37.086	1.00 76.78	L	_
	TT OIL	100	τA	7 111/ TJ	404	55.054	44.413	36.828	1.00 63.77	L	N

	MOTA	1584	CA THR L 2		21.131	37.267	1.00 68.80	Ŀ	C
	ATOM	1585 1586	C THR L 2 O THR L 2	34.141 32 34.216	20.557 19.353	38.568 38.808	1.00 69.42 1.00 69.26	L L	C O
	ATOM ATOM	1585		34.216 36.158	21.536	37.473	1.00 72.06	L	C
5	ATOM	1588	OG1 THR L 2		22.783	38.188	1.00 66.18	L	ō
J	ATOM	1589	CG2 THR L 2		21.665	36.123	1.00 68.77	L	C
	ATOM	1590	N SER L 2		21.427	39.409	1.00 71.13	L	N
	MOTA	1591	CA SER L 2		20.997	40.673	1.00 74.47	L	C
	MOTA	1592	C SER L 2		20.732	40.462	1.00 71.15	L	C
10	MOTA	1593	O SER L 2		21.524	39.832	1.00 69.36	L	0
	ATOM	1594	CB SER L 2		22.078 23.358	41.743 41.274	1.00 76.75 1.00 81.99	L L	C O
	ATOM ATOM	1595 1596	OG SER L 2 N PRO L 2		19.605	40.979	1.00 67.69	P T	И
	ATOM	1597	CA PRO L 2		19.297	40.808	1.00 62.61	Ľ	Ĉ
15	ATOM	1598		204 28.712	20.237	41.606	1.00 56.97	L	Ċ
	ATOM	1599	O PRO L 2		20.610	42.722	1.00 62.74	L	0
	MOTA	1600	CB PRO L 2		17.853	41.296	1.00 56.97	L	С
	MOTA	1601	CG PRO L 2		17.821	42.393	1.00 66.29	T	C
	ATOM	1602		204 31.687	18.554	41.765	1.00 70.41	Ŀ	C
20	MOTA	1603	_	205 27.588	20.627 21.509	41.016 41.678	1.00 51.68 1.00 46.32	L L	C N
	ATOM ATOM	1604 1605	CA ILE L 2 C ILE L 2		20.662	42.696	1.00 45.80	r r	č
	ATOM	1606	O ILE L 2		19.801	42.333	1.00 40.05	L	ŏ
	ATOM	1607	CB ILE L 2		22.094	40.672	1.00 45.71	L	C
25	MOTA	1608	CG1 ILE L 2	205 26.431	22.817	39.578	1.00 42.60	. L	С
	ATOM	1609	CG2 ILE L 2		23.039	41.371	1.00 48.15	Ŀ	C
	MOTA	1610	CD1 ILE L 2		23.579	38.620	1.00 57.30	L	C
	MOTA	1611	N VAL L 2 CA VAL L 2		20.909 20.118	43.972 45.017	1.00 42.27 1.00 45.01	L L	C N
30	ATOM ATOM	1612 1613	CA VAL L 2 C VAL L 2		20.803	45.743	1.00 43.48	L	C
30	ATOM	1614	O VAL L 2		21.965	46.114	1.00 54.37	L	ō
	MOTA	1615	CB VAL L 2		19.666	46.058	1.00 42.29	L	С
	ATOM	1616	CG1 VAL L 2		18.715	47.046	1.00 48.63	L	С
	MOTA	1617	CG2 VAL L 2		18.992	45.358	1.00 38.47	Ŀ	C
35	MOTA	1618	N LYS L 2		20.064	45.931	1.00 41.43	L	Ŋ
	ATOM	1619	CA LYS L 2		20.569	46.631	1.00 45.71 1.00 45.03	L L	C C
	MOTA	1620 1621	C LYS L 2 O LYS L 2		19.478 18.302	47.584 47.238	1.00 45.03	L	Ö
	MOTA MOTA	1622	CB LYS L 2		20.886	45.654	1.00 49.37	L	č
40	ATOM	1623	CG LYS L 2		22.063	44.750	1.00 55.07	L	Ċ
	MOTA	1624	CD LYS L 2		23.357	45.532	1.00 64.96	L	C
	MOTA	1625	CE LYS L 2		24.505	44.598	1.00 71.81	L	C
	MOTA	1626	NZ LYS L 2		25.798	45.310	1.00 78.53	Ţ	N
4=	ATOM	1627	N SER L 2		19.859	48.787 49.747	1.00 44.02 1.00 49.80	L L	N C
45	MOTA MOTA	1628 1629	CA SER L 2 C SER L 2		18.856 19.432	50.931	1.00 49.80	L L	Č
	ATOM	1630	O SER L 2		20.627	51.198	1.00 53.70	Ľ	õ
	MOTA	1631	CB SER L 2		18.103	50.243	1.00 53.51	L	C
	MOTA	1632	OG SER L 2	208 23.078	19.005	50.763	1.00 59.07	Ŀ	0
50	MOTA	1633	N PHE L 2		18.550	51.646	1.00 51.91	Ŀ	N
	ATOM	1634	CA PHE L 2		18.933	52.822	1.00 51.34	L	C
	MOTA	1635	C PHE L 2		17.894	53.923 53.688	1.00 49.64 1.00 54.59	L L	C O
	ATOM ATOM	1636 1637	O PHE L 2 CB PHE L 2		16.815 19.038	52.464	1.00 34.39	L	č
55	ATOM	1638	CG PHE L 2		17.728	52.091	1.00 46.90	$ar{ ilde{ ilde{L}}}$	č
00	ATOM	1639	CD1 PHE L 2		16.836	53.064	1.00 37.57	L	C
	ATOM	1640	CD2 PHE L 2		17.380	50.761	1.00 53.34	L	C
	ATOM	1641	CE1 PHE L 2		15.625	52.714	1.00 47.31	Ē	C
	MOTA	1642	CE2 PHE L 2		16.172	50.411	1.00 36.37	L	C
60	ATOM	1643	CZ PHE L 2	209 15.469	15.296	51.386	1.00 34.65	ь Г	C
	MOTA	1644	N ASN L 2		18.228 17.302	55.131 56.242	1.00 49.60 1.00 46.61	L	C N
	MOTA MOTA	1645 1646	CA ASN L 2 C ASN L 2		17.008	56.761	1.00 48.63	L	Ċ
	MOTA	1647	O ASN L 2		17.912	57.130	1.00 43.72	L	õ
65	MOTA	1648	CB ASN L		17.888	57.343	1.00 42.76	L	С
-	MOTA	1649	CG ASN L 2	210 20.935	17.681	57.073	1.00 60.02	L	С
	MOTA	1650	OD1 ASN L		17.059	57.864	1.00 69.23	L	O
	MOTA	1651	ND2 ASN L		18.185	55.935	1.00 75.72	L L	N
	ATOM	1652	N ARG L	211 16.835	15.732	56.762	1.00 50.53	n	7/4

	ATOM	1653	CA	ARG L	211	15.531	15.302	57.231	1.00 54.11		т	α
											L	C
	MOTA	1654	С	ARG L		15.280	15.835	58.631	1.00 62.11		L	C
	MOTA	1655	0	ARG L	211	14.147	16.169	58.983	1.00 63.88		L	0
	MOTA	1656	CB	ARG L	211	15.468	13.781	57.247	1.00 53.56		L	C
5	ATOM	1657	ĊĠ	ARG L		14.114	13.211	57.586	1.00 44.47			
5											L	C
	ATOM	1658	$^{\mathrm{CD}}$	ARG L		14.210	11.713	57.614	1.00 54.91		L	C
	ATOM	1659	NE	ARG L	211	15.231	11.291	58.565	1.00 58.23		L	N
	MOTA	1660	CZ	ARG L		15.003	11.066	59.855	1.00 72.82		_ L	C
	ATOM	1661		ARG L		13.779	11.217	60.349	1.00 73.06		L	N
10	ATOM	1662	NH2	ARG L	211	16.001	10.703	60.653	1.00 62.59		L	N
	MOTA	1663		ARG L		16.349	15.915	59.421	1.00 69.05		_ L	Ö
			0211			10.545	10.010	JJ. 421	1.00 05.05			U
	TER	1664		ARG L								
	ATOM	1665	N	GLU H	1	-11.229	28.751	10.621	1.00 71.36		H	Ν
	ATOM	1666	ÇA	GLU H	1	-10.037	28.156	11.214	1.00 65.32		H	C
15		1667		GLU H		-10.186	26.642	11.378				
15	MOTA		C						1.00 58.26		H	C
	ATOM	1668	0	GLU H	1	-10.717	26.147	12.364	1.00 57.65		H	0
	ATOM	1669	CB	GLU H	1	-9.807	28.808	12.578	1.00 63.19		H	C
	ATOM	1670	CG	GLU H		-9.166	27.849	13.582	1.00 71.03		H	Č
	ATOM	1671	$^{\rm CD}$	GLU H	1	-9.800	28.047	14.940	1.00 87.73		H	С
20	MOTA	1672	OE1	GLU H	1	-9.507	29.044	15.584	1.00 95.88		H	0
	MOTA	1673	OE2	GLU H	1	-10.586	27.192	15.346	1.00 96.84		H	0
		1674	-									
	MOTA		N	VAL H		-9.728	25.874	10.404	1.00 56.34			N
	MOTA	1675	ca	VAL H	2	-9.825	24.427	10.381	1.00 45.11		H	С
	ATOM	1676	С	VAL H	2	-9.533	23.838	11.759	1.00 40.35		H	C
25	ATOM	1677	ŏ	VAL H		-8.616	24.234	12.465	1.00 44.32			
25											H	0
	ATOM	1678	CB	VAL H		-8.839	23.903	9.338	1.00 46.79		H	С
	MOTA	1679	CG1	VAL H	2	-8.720	22.384	9.446	1.00 37.72		H	C
	ATOM	1680	CG2	VAL H		-9.339	24.265	7.948	1.00 32.94		H	Č
	MOTA	1681	N	LYS H		-10.391	22.889	12.155	1.00 39.63		H	N
30	MOTA	1682	$^{\rm CA}$	LYS H	3	-10.299	22.350	13.496	1.00 40.75		H	C
	MOTA	1683	С	LYS H	3	-10.578	20.850	13.492	1.00 38.29		H	C
	MOTA	1684	ŏ	LYS H		-11.632	20.381	13.091	1.00 46.18			
											H	0
	ATOM	1685	$^{\mathrm{CB}}$	LYS H		-11.363	23.068	14.323	1.00 42.35		H	C
	MOTA	1686	CG	LYS H	3	-11.099	23.026	15.829	1.00 53.48		H	C
35	ATOM	1687	CD	LYS H		-12.072	23.935	16.584	1.00 97.53		H	C
00												
	ATOM	1688	CE	LYS H		-12.025	23.731	18.102	1.00126.21		H	C
	MOTA	1689	NZ	LYS H	3	-12.982	24.629	18.743	1.00139.14		H	N
	ATOM	1690	N	LEU H		-9.564	20.084	13.906	1.00 36.69		H	N
	MOTA	1691	$^{\rm CA}$	LEU H		-9.766	18.650	13.973	1.00 31.82		H	С
40	ATOM	1692	С	LEU H	4	-9.672	18.147	15.411	1.00 36.95		H	C
	MOTA	1693	0	LEU H	4	-8.625	18.185	16.044	1.00 35.06	•	H	0
	ATOM	1694	ČВ	LEU H		-8.723	17.970	13.083	1.00 27.41			
											H	C
	ATOM	1695	CG	LEU H		-8.916	18.323	11.603	1.00 23.69		H	C
	MOTA	1696	CD1	LEU H	4	-7.819	17.725	10.718	1.00 29.88		H	C
45	MOTA	1697		LEU H		-10.246	17.817	11.041	1.00 23.22		H	С
		1698				-10.765	17.696	16.007				
	ATOM		N	VAL H					1.00 43.69			N
	MOTA	1699	ca	VAL H		-10.733	17.251	17.385	1.00 41.35	;	H	C
	ATOM	1700	С	VAL H	5 5	-11.037	15.772	17.453	1.00 38.94		H	C
	ATOM	1701	0	VAL H	5	-12.140	15.350	17.142	1.00 42.95		H	0
50					5							
50	MOTA	1702	CB	VAL H		-11.757	18.027	18.225	1.00 37.98		H	C
	ATOM	1703	CG1	VAL H	5	-11.835	17.437	19.607	1.00 40.24		H	С
	MOTA	1704	CG2	VAL H	5	-11.357	19.487	18.296	1.00 32.84			C
	ATOM	1705	N	GLU H		-10.044	14.987	17.842	1.00 38.45			
												N
	MOTA	1706	$^{\rm CA}$	GLU H	6	-10.251	13.552	18.025	1.00 43.30		H	C
55	MOTA	1707	С	GLU H	6	-10.849	13.238	19.398	1.00 47.18		H	С
	MOTA	1708	0	GLU H		-11.081	14.111	20.225	1.00 53.60			Ō
	MOTA	1709	CB	GLU H		-8.899	12.855	17.872	1.00 38.50		H	С
	MOTA	1710	CG	GLU H	6	-8.397	12.874	16.428	1.00 34.54		H	C
	MOTA	1711	CD	GLU H		-7.318	13.922	16.284	1.00 28.64			C
60	ATOM	1712		GLU H		-6.427	13.847	15.454	1.00 39.15			Ö
												
	MOTA	1713	OE2			-7.420	14.934	17.168	1.00 29.23			0
	MOTA	1714	N	SER H	7	-11.141	11.940	19.613	1.00 51.21]	H	N
	ATOM	1715	CA	SER H		-11.734	11.542	20.886	1.00 53.01			C
05	ATOM	1716	, C	SER H		-12.123	10.061	20.902	1.00 53.06			C
65	MOTA	1717	0	SER H		-12.030	9.347	19.912	1.00 44.63]	H	0
	MOTA	1718	CB	SER H	7	-12.975	12.403	21.122	1.00 54.35	1		С
	MOTA	1719	ŌĠ	SER H		-13.927	12.149	20.088	1.00 45.65			ŏ
	MOTA	1720	N	GLY H		-12.533	9.597	22.098	1.00 55.02			N
	ATOM	1721	ca	GLY H	8	-12.996	8.217	22.227	1.00 56.76]	H	С

	ATOM	1722	С	GLY H	8	-11.834	7.227	22.355	1.00 53.98	F	I C
	ATOM	1723	0	GLY H	8	-11.927	6.062	21.992	1.00 55.04	H	
	ATOM	1724	N	GLY H	9	-10.697	7.741	22.861	1.00 48.90	H	-
	ATOM	1725	CA	GLY H	9	-9.519	6.888	22.992	1.00 49.84		
p==										H	
5	ATOM	1726	C	GLY H	9	-9.206	6.567	24.456	1.00 53.72	F	
	ATOM	1727	0	GLY H	9	-9.129	7.434	25.316	1.00 60.05	F	I 0
	ATOM	1728	N	GLY H	10	-9.060	5.256	24.731	1.00 47.72	H	I N
	ATOM	1729	CA	GLY H	10	-8.739	4.834	26.090	1.00 52.62	F	
		1730		GLY H	10		3.502				
	ATOM		C			-7.985		26.101	1.00 53.34	Η	_
10	MOTA	1731	0	GLY H	10	-7.434	3.054	25.105	1.00 53.79	H	O I
	ATOM	1732	N	LEU H	11	-7.938	2.883	27.295	1.00 51.02	H	I N
	ATOM	1733	CA	LEU H	11	-7.249	1.610	27.428	1.00 42.34	H	
	ATOM	1734	C	LEU H	11	-8.119	0.453	26.940	1.00 43.65	H	
	ATOM	1735	0	LEU H	11	-9.337	0.448	27.066	1.00 44.21	H	
15	ATOM	1736	CB	LEU H	11	-6.895	1.413	28.903	1.00 50.20	H	I C
	ATOM	1737	CG	LEU H	11	-6.087	0.137	29.144	1.00 36.24	H	I C
	ATOM	1738	CD1	LEU H	11	-4.725	0.166	28.443	1.00 43.75	H	
	ATOM	1739		LEU H	11	-5.801	-0.113	30.625	1.00 59.31	H	
		1740			12		-0.533				
	ATOM		N	VAL H		-7.453		26.324	1.00 42.94	H	
20	ATOM	1741	CA	VAL H	12	-8.179	-1.712	25.883	1.00 43.16	H	
	ATOM	1742	С	VAL H	12	-7.340	-2.973	26.063	1.00 47.66	F	I C
	ATOM	1743	0	VAL H	12	-6.127	-2.931	26.226	1.00 57.83	H	
	ATOM	1744	CB	VAL H	12	-8.535	-1.535	24.407	1.00 40.29	H	
	ATOM	1745		VAL H	12	-9.134	-2.832	23.862	1.00 46.80	H	
25	MOTA	1746	CG2	VAL H	12	-9.542	-0.414	24.245	1.00 49.39	H	I C
	ATOM	1747	N	LYS H	13	-8.035	-4.121	26.078	1.00 45.71	H	I N
	ATOM	1748	CA	LYS H	13	-7.316	-5.381	26.174	1.00 43.89	н	
	ATOM	1749	C	LYS H	13	-7.121	-6.008	24.793	1.00 40.39	H	
•	_	1750		LYS H	13						
00	ATOM		0			-7.975	-5.934	23.920	1.00 46.98	H	
30	MOTA	1751	CB	LYS H	13	-8.117	-6.324	27.071	1.00 45.28	H	
	ATOM	1752	CG	LYS H	13	-7.818	-6.100	28.554	1.00 67.37	IH.	r C
	ATOM	1753	CD	LYS H	13	-8.511	-4.851	29.102	1.00 88.33	H	
	ATOM	1754	CE	LYS H	13	-7.655	-4.105	30.133	1.00 80.99	H	
	ATOM	1755	NZ	LYS H	13	-6.458	-3.569	29.486	1.00 58.40		
05										H	
35	MOTA	1756	N	PRO H	14	-5.976	-6.651	24.544	1.00 38.88	H	
	ATOM	1757	ca	PRO H	14	-5.784	-7.265	23.231	1.00 38.32	H	ı c
	MOTA	1758	C	PRO H	14	-6.971	-8.123	22.837	1.00 44.46	H	
	ATOM	1759	Õ	PRO H	14	-7.434	-8.952	23.617	1.00 52.99	H	
	ATOM	1760	СВ	PRO H	14	-4.496	-8.076	23.401	1.00 37.38		
40										H	
40	MOTA	1761	CG	PRO H	14	-4.370	-8.249	24.877	1.00 40.42	H	
	ATOM	1762	$^{\rm CD}$	PRO H	14	-4.849	-6.948	25.435	1.00 35.01	H	I C
	MOTA	1763	N	GLY H	15	-7.466	-7.903	21.624	1.00 45.67	H	Į N
	ATOM	1764	CA	GLY H	15	-8.601	-8.653	21.119	1.00 39.69	Н	
	ATOM	1765	C	GLY H	15	-9.828	-7.770	21.103	1.00 42.73	H	
45		1766		GLY H		-10.789					
45	ATOM		0		15		-8.044	20.389	1.00 43.42	H	
	MOTA	1767	N	GLY H	16	-9.782	-6.688	21.875	1.00 44.16	H	
	MOTA	1768	ca	GLY H	16	-10.913	-5.781	21.952	1.00 43.39	H	I C
	ATOM	1769	C	GLY H	16	-11.219	-4.862	20.775	1.00 45.04	H	C C
	MOTA	1770	0	GLY H	16	-10.566	-4.890	19.721	1.00 34.85	Н	
50	ATOM	1771	N	SER H	17	-12.238	-4.030	20.986	1.00 45.85		
30										H	
	MOTA	1772	CA	SER H	17	-12.700	-3.076	19.994	1.00 44.23	H	
	ATOM	1773	С	SER H	17	-12.735	-1.670	20.566	1.00 42.88	H	t C
	MOTA	1774	0	SER H	17	-12.910	-1.477	21.762	1.00 43.45	H	0 1
	ATOM	1775	CB	SER H	17	-14.090	-3.463	19.513	1.00 44.97	Н	
55	ATOM	1776	OG	SER H	17	-14.056	-4.768	18.969	1.00 64.66	H	
55											
	MOTA	1777	N	LEU H	18	-12.582	-0.690	19.688	1.00 43.61	H	
	ATOM	1778	ca	LEU H	18	-12.573	0.704	20.084	1.00 42.03	H	C
	ATOM	1779	С	LEU H	18	-13.007	1.516	18.861	1.00 39.52	H	
	ATOM	1780	Ō	LEU H	18	-12.778	1.094	17.721	1.00 39.63	Н	
60											
60	ATOM	1781	CB	LEU H	18	-11.155	1.083	20.512	1.00 43.41	H	
	MOTA	1782	CG	LEU H	18	-10.925	2.488	21.051	1.00 42.39	H	
	MOTA	1783	CD1	LEU H	18	-11.722	2.666	22.321	1.00 43.36	H	C
	ATOM	1784		LEU H	18	-9.449	2.701	21.308	1.00 59.30	H	
	ATOM	1785	N	LYS H	19	-13.640	2.665	19.090	1.00 36.47	H	
6E											
65	MOTA	1786	CA	LYS H	19	-13.988	3.483	17.933	1.00 42.76	H	
	MOTA	1787	С	LYS H	19	-13.744	4.971	18.198	1.00 40.99	Н	
	ATOM	1788	0	LYS H	19	-14.288	5.562	19.121	1.00 42.24	H	
	ATOM	1789	СВ	LYS H	19	-15.465	3.247	17.608	1.00 43.96	H	
	ATOM	1790	CG	LYS H	19	-15.854	3.803	16.236	1.00 56.00	H	
	WT OLI	1120	CG	TITO U	J. 7	-10.004	5.003	TO.720	4.00 50.00	н	

	MOTA	1791	CD	LYS H	19	-17.256	4.416	16.235	1.00 45.68	H	C
	ATOM	1792	CE	LYS H	19	-18.247	3.614	15.384	1.00 59.48	H	C
	MOTA	1793	NZ	LYS H	19	-19.100	4.529	14.629	1.00 51.55	H	N
	ATOM	1794	N	LEU H	20	-13.082	5.326	17.249	1.00 39.79	H	N
5	ATOM	1795	CA	LEU H	20	-12.538	6.662	17.450	1.00 36.68	H	C
5									1.00 34.74		
	ATOM	1796	C	LEU H	20	-13.376	7.653	16.679		H	Č
	ATOM	1797	0	LEU H	20	-14.020	7.303	15.694	1.00 33.37	H	0
	MOTA	1798	CB	LEU H	20	-11.096	6.779	16.945	1.00 40.64	H	С
	ATOM	1799	CG	LEU H	20	-9.905	6.022	17.535	1.00 41.11	H	C
10	MOTA	1800		LEU H	20	-8.614	6.271	16.759	1.00 61.71	H	C
10	ATOM	1801		LEU H	20	-9.778	6.454	18.977	1.00 35.59	H	č
	/										
	MOTA	1802	N	SER H	21	-13.497	9.005	16.927	1.00 33.19	H	N
	MOTA	1803	CA	SER H	21	-14.281	9.919	16.122	1.00 40.56	H	C
	ATOM	1804	С	SER H	21	-13.489	11.202	15.983	1.00 42.41	H	C
15	ATOM	1805	0	SER H	21	-12.563	11.461	16.753	1.00 44.66	H	0
	MOTA	1806	CB	SER H	21	-15.634	10.204	16.768	1.00 34.42	H	C
	ATOM	1807	ŌĠ	SER H	21	-15.449	10.839	18.008	1.00 46.92	H	ŏ
	ATOM	1808	N	CYS H	22	-13.846	11.997	14.988	1.00 37.06	H	
											N
	MOTA	1809	CA	CYS H	22	-13.155	13.242	14.739	1.00 38.14	H	C
20	ATOM	1810	C	CYS H	22	-14.158	14.285	14.346	1.00 31.54	H	C
	MOTA	1811	0	CYS H	22	-14.810	14.172	13.318	1.00 30.64	H	0
	ATOM	1812	CB	CYS H	22	-12.135	13.057	13.612	1.00 43.73	H	C
	MOTA	1813	SG	CYS H	22	-11.198	14.513	13.004	1.00 55.55	H	S
	MOTA	1814	N	ALA H	23	-14.284	15.298	15.190	1.00 32.03	H	N
25		1815		ALA H	23	-15.187	16.402	14.926	1.00 32.05	H	
25	ATOM		CA								C
	MOTA	1816	C	ALA H	23	-14.445	17.364	14.002	1.00 39.56	H	C
	ATOM	1817	0	ALA H	23	-13.378	17.893	14.348	1.00 37.69	H	0
	MOTA	1818	CB	ALA H	23	-15.552	17.089	16.220	1.00 38.17	H	С
	ATOM	1819	N	ALA H	24	-14.992	17.572	12.814	1.00 36.81	H	N
30	MOTA	1820	CA	ALA H	24	-14.362	18.465	11.867	1.00 31.76	H	C
00	ATOM	1821	C	ALA H	24	~15.091	19.800	11.857	1.00 34.30	H	č
					24	-16.200	19.910	12.368	1.00 34.50		
	MOTA	1822	0	ALA H						H	0
	MOTA	1823	CB	ALA H	24	-14.379	17.836	10.481	1.00 29.25	H	С
	MOTA	1824	N	SER H	25	-14.456	20.811	11.275	1.00 45.22	H	N
35	MOTA	1825	CA	SER H	25	-15.040	22.146	11.173	1.00 45.48	H	C
	ATOM	1826	C	SER H	25	-14.022	23.142	10.638	1.00 45.04	H	C
	MOTA	1827	Ō	SER H	25	-12.823	22.995	10.862	1.00 48.34	H	Ó
	ATOM	1828	ČВ	SER H	25	-15.509	22.637	12.535	1.00 45.05	H	č
40	ATOM	1829	OG	SER H	25	-14.401	22.994	13.327	1.00 38.97	H	0
40	ATOM	1830	N	GLY H	26	-14.510	24.163	9.943	1.00 43.04	H	M
	ATOM	1831	CA	GLY H	26	-13.627	25.181	9.417	1.00 36.80	H	C
	MOTA	1832	C	GLY H	26	-13.361	24.980	7.951	1.00 38.49	H	C
	MOTA	1833	0	GLY H	26	-12.549	25.684	7.362	1.00 52.85	H	0
	MOTA	1834	N	PHE H	27	-14.035	24.007	7.356	1.00 37.93	Ħ	N
45	ATOM	1835	CA	PHE H	27	-13.856	23.745	5.946	1.00 34.05	H	C
.0	MOTA	1836	C	PHE H	27	-15.015	22.930	5.427	1.00 36.91	H	Č
						-15.759	22.343				
	ATOM	1837	0	PHE H	27			6.206	1.00 39.00	H	0
	MOTA	1838	CB	PHE H	27	~12.522	23.017	5.670	1.00 33.34	H	C
	MOTA	1839	CG	PHE H	27	-12.394	21.675	6.329	1.00 17.41	H	C
50	MOTA	1840	CD1	PHE H	27	-12.133	21.570	7.691	1.00 25.29	H	C
	MOTA	1841	CD2	PHE H	27	-12.547	20.512	5.586	1.00 15.22	H	C
	MOTA	1842	CE1		27	-12.030	20.319	8.304	1.00 21.74	H	C
	ATOM	1843	CE2		27	-12.447	19.265	6.188	1.00 8.67	H	Ċ
		1844	CZ	PHE H	27	-12.188	19.167	7.547	1.00 16.97		Č
	ATOM									H	
55	MOTA	1845	N	THR H	28	-15.168	22.907	4.108	1.00 38.20	H	N
	MOTA	1846	CA	THR H	28	-16.238	22.176	3.457	1.00 35.35	H	C
	MOTA	1847	C	THR H	28	-15.956	20.675	3.520	1.00 35.62	H	C
	MOTA	1848	0	THR H	28	-15.657	20.042	2.510	1.00 41.35	H	0
	MOTA	1849	CB	THR H	28	-16.349	22.645	2.007	1.00 37.46	H	C
60	MOTA	1850	OG1		28	-16.428	24.074	1.989	1.00 41.29	Н	Ō
00	MOTA	1851	CG2	THR H	28	-17.575	22.066	1.340	1.00 44.03	H	č
	MOTA	1852	N	PHE H	29	-16.063	20.130	4.728	1.00 34.25	H	N
	MOTA	1853	CA	PHE H	29	-15.818	18.721	5.042	1.00 34.22	H	C
	MOTA	1854	C	PHE H	29	-16.163	17.674	3.979	1.00 34.25	H	C
65	ATOM	1855	0	PHE H	29	-15.391	16.755	3.730	1.00 47.37	H	0
	MOTA	1856	CB	PHE H	29	-16.530	18.390	6.356	1.00 33.13	H	C
	ATOM	1857	CG	PHE H	29	-16.417	16.954	6.771	1.00 30.33	H	Ċ
	MOTA	1858		PHE H	29	-17.427	16.055	6.481	1.00 33.76	H	Č
		1859		PHE H	29	-15.298	16.505	7.462	1.00 38.72	H	C
	MOTA	TOJ 2	CDZ	CHE D	43	-13.270	70.202	1.404	1.00 20.74	11	

					_						
	MOTA	1860	CE1 P		29	-17.325	14.740	6.872	1.00 41.24	H	С
	MOTA	1861		HE H	29	-15.189	15.193	7.855	1.00 25.21	H	C
	MOTA	1862		HE H	29	-16.205	14.307	7.560	1.00 31.25	H	C
	MOTA	1863		LE H	30	-17.316	17.813	3.347	1.00 35.57	H	N
5	MOTA	1864		LE H	30	-17.752	16.875	2.324	1.00 36.50	H	C
	ATOM	1865	C I	LE H	30	-16.860	16.824	1.080	1.00 38.95	H	C
	MOTA	1866	O I:	LE H	30	-16.809	15.809	0.376	1.00 40.39	H	0
	MOTA	1867	CB I	LE H	30	-19.182	17.220	1.867	1.00 36.84	H	С
	MOTA	1868	CG1 I	LE H	30	-19.637	16.259	0.770	1.00 35.17	H	C
10	ATOM	1869	CG2 I	LE H	30	-19.225	18.663	1.356	1.00 36.84	H	C
	ATOM	1870		LE H	30	-21.038	16.515	0.308	1.00 43.88	H	Č
	ATOM	1871	-	ER H	31	-16.153	17.907	0.795	1.00 33.28	H	N
	ATOM	1872		ER H	31	-15.332	17.915	-0.403	1.00 37.16	H	C
	ATOM	1873		ER H	31	-13.914	17.386	-0.236	1.00 38.76	H	Č
15	ATOM	1874		ER H	31	-13.159	17.306	-1.208	1.00 39.05	н	Õ
10	ATOM	1875		ER H	31	-15.304	19.319	-1.010	1.00 33.72	H	č
	ATOM	1876		ER H	31	-16.600	19.717	-1.417	1.00 41.28	H	ŏ
	ATOM	1877		YR H	32	-13.570	17.001	0.988	1.00 37.10	H	N
	ATOM	1878		YR H	32	-12.240	16.483	1.273	1.00 37.10	H	C
20	MOTA	1879		YR H	32	-12.172	14.998	1.621	1.00 35.75	H	C
20	ATOM	1880		YR H	32	-13.125	14.414	2.126	1.00 35.73	H	Ö
	ATOM	1881		YR H	32	-11.622	17.265	2.419	1.00 33.07	н	c
		1882		YR H	32	-11.220	18.657	2.056	1.00 31.67		
	ATOM									H	C
05	MOTA	1883		YR H	32	-10.063	18.895	1.343	1.00 40.11	H	C
25	ATOM	1884	_	YR H	32	-11.997	19.735	2.418	1.00 27.93	H	C
	ATOM	1885		YR H	32	-9.692	20.165	0.998	1.00 30.26	H	C
	ATOM	1886		YR H	32	-11.633	21.001	2.082	1.00 43.25	H	C
	ATOM	1887		YR H	32	-10.475	21.214	1.368	1.00 39.71	H	C
	ATOM	1888		YR H	32	-10.103	22.493	1.026	1.00 65.73	H	0
30	MOTA	1889		LA H	33	-11.024	14.399	1.326	1.00 33.25	H	N
	MOTA	1890		LA H	33	-10.781	13.010	1.657	1.00 35.61	Н	Ç
	MOTA	1891		LA H	33	-10.282	13.125	3.084	1.00 36.27	H	C.
	ATOM	1892		LA H	33	-9.672	14.131	3.446	1.00 31.77	H	0
	MOTA	1893	CB A	LA H	33	-9.707	12.433	0.779	1.00 28.41	H	C
35	MOTA	1894		ET H	34	-10.556	12.116	3.899	1.00 33.27	H	N
	MOTA	1895	CA M	ET H	34	-10.120	12.147	5.283	1.00 28.49	H	C
	MOTA	1896	C M	ET H	34	-9.231	10.958	5.555	1.00 28.00	H	C
	MOTA	1897	O M	ET H	34	-9.373	9.917	4.921	1.00 27.81	H	0
	MOTA	1898	CB M	ET H	34	-11.324	12.147	6.226	1.00 31.24	H	С
40	MOTA	1899	CG M	ET H	34	-12.122	13.436	6.180	1.00 30.32	H	С
	MOTA	1900	SD M	ET H	34	-11.099	14.933	6.419	1.00 39.20	H	S
	MOTA	1901	CE M	ET H	34	-10.854	14.939	8.175	1.00 17.55	H	С
	MOTA	1902	N S	ER H	35	-8.308	11.113	6.497	1.00 28.90	H	N
	MOTA	1903	CA S	ER H	35	-7.391	10.035	6.808	1.00 24.89	H	С
45	MOTA	1904	C S	ER H	35	-7.009	9.890	8.265	1.00 33.44	H	С
	ATOM	1905	o s	ER H	35	-7.102	10.828	9.045	1.00 35.02	H	0
	MOTA	1906	CB S	ER H	35	-6.118	10.200	5.990	1.00 21.68	H	C
	MOTA	1907	og s	ER H	35	-6.378	10.012	4.612	1.00 32.05	H	0
	MOTA	1908	N T	RP H	36	-6.591	8.686	8.631	1.00 34.43	H	N
50	MOTA	1909	CA T	RP H	36	-6.130	8.441	9.980	1.00 31.01	H	С
	MOTA	1910	C T	RP H	36	-4.651	8.041	9.863	1.00 33.80	H	C
	ATOM	1911		RP H	36	-4.286	7.210	9.029	1.00 38.52	H	0
	ATOM	1912		RP H	36	-6.945	7.324	10.643	1.00 30.03	H	C
	ATOM	1913		RP H	36	-8.340	7.724	11.080	1.00 24.72	H	Č
55	ATOM	1914		RP H	36	-9.498	7.546	10.386	1.00 25.13	H	Č
00	MOTA	1915		RP H	36	-8.710	8.348	12.319	1.00 27.37	H	Č
	ATOM	1916		RP H	36	-10.565	8.016	11.112	1.00 29.30	H	N
	ATOM	1917		RP H	36	-10.109	8.512	12.303	1.00 25.16	H	Ĉ
	ATOM	1918		RP H	36	-7.994	8.780	13.443	1.00 32.09	H	C
60	ATOM	1919		RP H	36	-10.809	9.089	13.365	1.00 32.03	H	C
00		1920			36	-8.687	9.355	14.501	1.00 22.13	H	~
	MOTA	1920		RP H			9.502				C
	MOTA	1921		RP H	36	-10.081		14.454	1.00 18.64	H	C
	ATOM	1922		AL H	37	-3.802	8.664	10.670	1.00 28.90	H	N
GE.	MOTA	1923		AL H	37	-2.369	8.367	10.672	1.00 28.13	H	C
65	ATOM	1924		AL H	37	-1.922	8.214	12.115	1.00 27.45	H	С
	ATOM	1925		AL H	37	-2.258	9.032	12.968	1.00 32.69	H	0
	ATOM	1926		AL H	37	-1.537	9.507	10.052	1.00 23.26	H	C
	ATOM	1927	CG1 V		37	-0.087	9.102	9.998	1.00 29.09	H	C
	ATOM	1928	CG2 V	аь Н	37	-2.043	9.846	8.670	1.00 31.03	H	C

	MOT:A	1929	N	ARG H	3 8	-1.164	7.178	12.414	1.00 26.98	H	N
	MOTA	1930	CA	ARG H	38	-0.736	7.018	13.796	1.00 31.26	H	Ċ
	MOTA	1931	С	ARG H	38	0.766	7.128	13.979	1.00 34.92	H	С
	MOTA	1932	0	ARG H	38	1.539	7.100	13.011	1.00 36.42	H	0
5	ATOM	1933	CB	ARG H	38	-1.218	5.685	14.357	1.00 30.82	H	С
	MOTA	1934	CG	ARG H	38	-0.548	4.505	13.732	1.00 32.29	H	С
	ATOM	1935	CD	ARG H	38	-1.297	3.253	14.078	1.00 31.61	H	C
	MOTA MOTA	1936 1937	NE	ARG H	38 38	-0.684	2.082 0.855	13.471 13.568	1.00 45.30 1.00 49.14	H	N
10	MOTA	1938	CZ	ARG H ARG H	38	-1.174 -2.288	0.833	14.256	1.00 49.14	H H	C N
10	ATOM	1939		ARG H	38	-0.556	-0.155	12.971	1.00 39.29	H	N
	MOTA	1940	N	GLN H	39	1.161	7.297	15.237	1.00 34.35	H	N
	MOTA	1941	CA	GLN H	39	2.564	7.394	15.600	1.00 36.21	H	Ĉ
	ATOM	1942	С	GLN H	39	2.768	6.396	16.714	1.00 32.94	H	Č
15	MOTA	1943	0	GLN H	39	2.097	6.442	17.739	1.00 36.86	H	0
	MOTA	1944	СВ	GLN H	39	2.902	8.804	16.073	1.00 35.48	H	C
	MOTA	1945	CG	GLN H	39	4.375	9.038	16.273	1.00 40.46	H	C
	MOTA	1946	CD CE1	GLN H	39	4.718	10.507	16.381	1.00 30.97	H	C
20	ATOM ATOM	1947 1948	OE1 NE2		39 39	4.023 5.798	11.276 10.903	17.039 15.742	1.00 46.87	H	O
20	ATOM	1948	NEZ N	THR H	40	3.681	5.468	16.498	1.00 39.13 1.00 32.21	H H	N
	MOTA	1950	CA	THR H	40	3.951	4.444	17.485	1.00 32.21	H	_ C
	ATOM	1951	C	THR H	40	4.794	5.034	18.596	1.00 36.27	H	Č
	MOTA	1952	0	THR H	40	5.338	6.131	18.466	1.00 33.90	Н	Ō
25	ATOM	1953	CB	THR H	40	4.707	3.278	16.860	1.00 25.60	H	C
	MOTA	1954	OG1		40	6.056	3.676	16.592	1.00 30.95	H	0
	ATOM	1955	CG2		40	4.049	2.867	15.552	1.00 19.81	H	C
	MOTA	1956	N	PRO H	41	4.891	4.319	19.721	1.00 43.34	H	И
30	MOTA MOTA	1957 1958	CA C	PRO H PRO H	41 41	$5.674 \\ 7.119$	4.853 5.054	20.826 20.383	1.00 42.33 1.00 40.47	H H	C
30	MOTA	1959	Ö	PRO H	41	7.882	5.837	20.938	1.00 46.47	H	Ö
	ATOM	1960	ČВ	PRO H	41	5.609	3.858	21.983	1.00 46.00	H	č
	MOTA	1961	CG	PRO H	41	4.463	2.890	21.713	1.00 44.54	H	Č
	ATOM	1962	CD	PRO H	41	4.124	3.171	20.174	1.00 37.36	H	C
35	MOTA	1963	N	GLU H	42	7.491	4.257	19.367	1.00 39.84	H	N
	ATOM	1964	CA	GLU H	42	8.779	4.449	18.727	1.00 39.67	H	С
	MOTA	1965	C	GLU H	42	8.724	5.653	17.788	1.00 39.72	H	C
	MOTA	1966	0	GLU H	42	9.627	5.927	17.009	1.00 38.24	H	0
40	MOTA MOTA	1967 1968	CB CG	GLU H	42 42	9.119 9.167	3.172 1.932	17.953 18.853	1.00 43.69 1.00 59.11	H H	C
40	ATOM	1969	CD	GLU H	42	7.786	1.324	18.945	1.00 78.32	H	C
	MOTA	1970		GLU H	42	7.323	0.767	17.959	1.00 71.16	H	ŏ
	ATOM	1971		GLU H	42	7.189	1.394	20.020	1.00 93.36	Н	ŏ
	ATOM	1972	N	LYS H	43	7.571	6.354	17.856	1.00 37.86	H	N
45	ATOM	1973	CA	LYS H	43	7.470	7.658	17.210	1.00 31.78	H	C
	MOTA	1974	C	LYS H	43	7.569	7.568	15.691	1.00 30.82	H	C
	ATOM	1975	O	LYS H	43	7.922	8.523	15.010	1.00 34.06	H	0
	ATOM ATOM	1976 1977	CB CG	LYS H LYS H	43 43	8.596 8.330	8.534 8.971	17.748 19.189	1.00 30.63 1.00 45.46	H H	C
50	ATOM	1978	CD	LYS H	43	9.247	10.113	19.627	1.00 83.82	H	Č
	ATOM	1979	CE	LYS H	43	10.474	9.615	20.395	1.00 96.13	H	Č
	ATOM	1980	NZ	LYS H	43	10.052	9.064	21.680	1.00 87.58	H	N
	MOTA	1981	N	ARG H	44	7.156	6.442	15.122	1.00 29.41	H	N
	ATOM	1982	CA	ARG H	44	7.087	6.323	13.668	1.00 29.46	H	C
55	ATOM	1983	Č	ARG H	44	5.640	6.520	13.204	1.00 33.48	H	C
	ATOM	1984	0	ARG H	44	4.710	5.953	13.787	1.00 37.98	H	0
	ATOM	1985 1986	CB	ARG H	44	7.574	4.951 4.701	13.197	1.00 31.50	H	C
	ATOM ATOM	1987	CG CD	ARG H ARG H	44 44	9.044 9.456	3.351	13.379 12.802	1.00 35.58 1.00 56.91	H H	C
60	MOTA	1988	NE	ARG H	44	9.904	3.439	11.412	1.00 71.87	H	И
	ATOM	1989	CZ	ARG H	44	10.966	4.139	11.007	1.00 70.52	H	C
	MOTA	1990		ARG H	$\frac{1}{4}$	11.989	4.322	11.832	1.00 72.59	H	Ŋ
	ATOM	1991		ARG H	44	10.995	4.672	9.785	1.00 65.12	H	Ŋ
	MOTA	1992	N	LEU H	45	5.457	7.315	12.150	1.00 30.81	H	N
65	ATOM	1993	CA	LEU H	45	4.131	7.577	11.597	1.00 23.62	H	C
	ATOM	1994	C	LEU H	45	3.688	6.488	10.611	1.00 28.24	H	C
	ATOM	1995	0	LEU H	45	4.461	6.058	9.767	1.00 26.20	H	0
	MOTA	1996	CB	LEU H	45	4.131	8.938	10.898	1.00 18.00	H	C
	MOTA	1997	CG	LEU H	45	4.392	10.152	11.794	1.00 19.88	H	С

	ATOM	1998	CD1	LEU H	45	4.867	11.310	10.938	1.00 24.54		Н	С
	ATOM	1999			45	3.131	10.522	12.590	1.00 14.97		H	C
	ATOM ATOM	2000 2001	N CA	GLU H GLU H	46 46	$2.445 \\ 1.924$	6.038 5.022	10.725 9.818	1.00 28.38 1.00 26.32		H H	N C
5	ATOM	2001	C	GLU H	46	0.508	5.374	9.344	1.00 26.58		H	Č
•	ATOM	2003	ō	GLU H	46	-0.411	5.473	10.152	1.00 33.14		H	0
	MOTA	2004	CB	GLU H	46	1.874	3.638	10.496	1.00 35.21	•	H	C
	MOTA	2005		GLU H	46	2.847 2.785	3.393 1.943	11.668 12.231	1.00 49.18 1.00 64.81		H H	C
10	ATOM ATOM	2006 2007	CD OE1	GLU H	46 46	1.691	1.473	12.630	1.00 67.38		H	Ö
10	ATOM	2007		GLU H	46	3.844	1.269	12.280	1.00 52.21		H	ŏ
	MOTA	2009	N	TRP H	47	0.327	5.577	8.045	1.00 30.57		H	N
	ATOM	2010	CA	TRP H	47	-1.012	5.751	7.500	1.00 25.48		H	C
45	MOTA	2011	C	TRP H	47 47	-1.886 -1.548	4.524 3.393	7.770 7.443	1.00 30.87 1.00 32.26		H H	C
15	ATOM ATOM	2012 2013	O CB	TRP H	47	-0.885	5.991	5.996	1.00 32.25		H	č
	ATOM	2014	CG	TRP H	47	-2.202	5.841	5.341	1.00 23.75		H	C
	MOTA	2015	CD1	TRP H	47	-3.297	6.729	5.426	1.00 36.84		H	C
	ATOM	2016	CD2	TRP H	47	-2.617	4.754	4.481	1.00 23.08		H	C
20	ATOM ATOM	2017 2018	NE1 CE2	TRP H	47 47	-4.364 -3.948	6.308 5.025	$4.697 \\ 4.078$	1.00 39.41 1.00 27.40		H H	C N
•	MOTA	2019	CE2	TRP H	47	-1.989	3.594	4.036	1.00 23.52		H	Č
	ATOM	2020	CZ2	TRP H	47	-4.609	4.142	3.240	1.00 16.46		H	C
	MOTA	2021	CZ3	TRP H	47	-2.651	2.710	3.200	1.00 22.42		H	C
25	MOTA	2022	CH2	TRP H VAL H	47 48	-3.972 -3.034	$2.986 \\ 4.778$	2.803 8.426	1.00 27.75 1.00 35.93		H H	C N
	MOTA ATOM	2023 2024	N CA	VAL H	48	-3.887	3.671	8.844	1.00 33.96		H	C
	ATOM	2025	C	VAL H	48	-5.099	3.492	7.925	1.00 31.29		H	C
	MOTA	2026	0	VAL H	48	-5.503	2.386	7.586	1.00 34.83		H	0
30	MOTA	2027	CB	VAL H	48	-4.355	3.947	10.273	1.00 31.31 1.00 45.32		H H	C
	ATOM ATOM	2028 2029		VAL H VAL H	48 48	-5.379 -3.171	2.896 3.907	10.698 11.221	1.00 40.07		п Н	C
	ATOM	2030	N	ALA H	49	-5.715	4.632	7.555	1.00 32.57		H	N
	MOTA	2031	CA	ALA H	49	-6.900	4.560	6.706	1.00 30.97		H	C
35	MOTA	2032	C	ALA H	49	-7.176	5.889	5.996	1.00 31.41		H	C
	MOTA	2033	O	ALA H ALA H	49 49	-6.710 -8.093	$6.947 \\ 4.181$	6.399 7.585	1.00 35.89 1.00 27.71		H H	C
	MOTA MOTA	2034 2035	CB N	SER H	50	-7.942	5.801	4.915	1.00 28.70		H	N
	ATOM	2036	CA	SER H	50	-8.289	6.962	4.113	1.00 31.27		H	C
40	MOTA	2037	С	SER H	50	-9.629	6.737	3.442	1.00 33.01		H	C
	ATOM	2038	0	SER H	50	-9.863	5.703	2.820	1.00 33.77		H H	C
	MOTA MOTA	2039 2040	CB OG	SER H SER H	50 50	-7.229 -6.021	7.220 7.678	3.036 3.604	1.00 29.77 1.00 36.87		H	Ö
	ATOM	2040	И	ILE H	51	-10.508	7.717	3.575	1.00 31.73		H	N
45	MOTA	2042	CA	ILE H	51	-11.828	7.646	2.978	1.00 30.25		H	C
	MOTA	2043	C	ILE H	51	-11.958	8.838	2.032	1.00 33.02		H	C
	MOTA	2044 2045	O CB	ILE H	51 51	-11.591 -12.919	9.966 7.695	2.380 4.079	1.00 35.69 1.00 29.54		H H	0
	MOTA MOTA	2045	CG1		51	-14.287	7.379	3.479	1.00 26.92		H	Č
50	ATOM	2047	CG2		51	-12.925	9.051	4.754	1.00 23.38	3	H	C
	ATOM	2048		ILE H	51	-15.356	7.192	4.510	1.00 38.16		H	C
	ATOM	2049 2050	N CA	SER H SER H	52 52	-12.450 -12.533	8.600 9.725	0.828 -0.096	1.00 32.29 1.00 37.72		H H	N C
	ATOM ATOM	2050	CA	SER H	52	-12.333	10.368	-0.060	1.00 40.73		H	Č
55	ATOM	2052	ŏ	SER H	52	-14.793	9.998	0.712	1.00 35.28		H	0
	MOTA	2053	CB	SER H	52	-12.218	9.216	-1.504	1.00 41.62		H	C
	MOTA	2054	OG	SER H	52	-13.410	8.701	-2.095	1.00 45.13 1.00 47.25		H H	O
	ATOM ATOM	2055 2056	N CA	SER H SER H	53 53	-14.093 -15.357	11.396 12.121	-0.908 -0.908	1.00 47.25		H	C N
60	ATOM	2057	C	SER H	53	-16.543	11.198	-1.204	1.00 49.75		H	Č
	MOTA	2058	0	SER H	53	-17.655	11.384	-0.725	1.00 53.93		H	0
	ATOM	2059	CB	SER H	53	-15.271	13.217	-1.969	1.00 52.83		H	C
	ATOM	2060	OG	SER H	53	-14.297 -16.279	14.184 10.189	-1.575 -2.056	1.00 58.40 1.00 45.24		H H	<i>N</i> O
65	ATOM ATOM	2061 2062	N CA	GLY H	54 54	-10.279 -17.355	9.296	-2.474	1.00 43.24		H	C
-	ATOM	2063	C	GLY H	54	-17.537	8.118	-1.512	1.00 55.63	3	H	С
	ATOM	2064	0	GLY H	54	-18.380	7.250	-1.697	1.00 61.25		H	O
	MOTA	2065	N	GLY H	55 55	-16.673	8.082	$-0.479 \\ 0.505$	1.00 53.22 1.00 54.53		H H	N C
	ATOM	2066	CA	GLY H	55	-16.775	7.009	0.505	1.00 34.5.	•	11	

	MOTA	2067	С	GLY H	55	-16.009	5.760	0.062	1.00 55.03	F	H C
	ATOM	2068	0	GLY H	55	-16.062	4.710	0.688	1.00 63.61	F	
	MOTA	2069	N	ASN H	56	-15.076	5.866	-0.905	1.00 50.20	F	-
	ATOM	2070	CA	ASN H	56	-14.132	4.775	-1.117	1.00 53.18		i C
5	MOTA	2071	C	ASN H	56	-13.066	4.733	-0.020	1.00 51.97		H C
J	ATOM	2072		ASN H	56		5.729	0.321	1.00 52.37		
			O			-12.441				F	
	MOTA	2073	CB	ASN H	56	-13.471	4.973	-2.482	1.00 61.77		H C
	MOTA	2074	CG	ASN H	56	-14.484	4.728	-3.571	1.00 70.16	ŀ	
	MOTA	2075		ASN H	56	-14.773	5.591	-4.395	1.00 79.19		1 O
10	MOTA	2076		ASN H	56	-15.032	3.501	-3.570	1.00 83.81	ŀ	
	MOTA	2077	\boldsymbol{N}	THR H	57	-12.896	3.534	0.568	1.00 48.61	F	ı N
	MOTA	2078	ca	THR H	57	-11.950	3.401	1.670	1.00 40.92	F	H C
	ATOM	2079	C	THR H	57	-10.671	2.672	1.248	1.00 38.31	F	I C
	MOTA	2080	0	THR H	57	-10.627	1.959	0.254	1.00 40.67	F	O E
15	MOTA	2081	CB	THR H	57	-12.638	2.631	2.801	1.00 40.83	F	
	MOTA	2082	OG1		57	-13.012	1.335	2.329	1.00 42.11	F	
	MOTA	2083	CG2		57	-13.899	3.379	3.251	1.00 23.85		i Č
	MOTA	2084	N	TYR H	58	-9.590	2.906	1.978	1.00 40.21		H N
	MOTA	2085	CA	TYR H	58	-8.307	2.302	1.653	1.00 38.47	ŀ	
20	ATOM	2086	CA	TYR H	58	-7.600	2.013	2.962	1.00 37.26		
20						-7.653	2.816	3.888			
	MOTA	2087	O	TYR H	58				1.00 39.78		OF
	ATOM	2088	CB	TYR H	58	-7.448	3.246	0.803	1.00 37.94		H C
	MOTA	2089	CG	TYR H	58	-8.165	3.856	-0.374	1.00 45.00		H C
	MOTA	2090	CD1		58	-9.022	4.937	-0.200	1.00 38.69		H C
25	MOTA	2091	CD2		58	-7.996	3.350	-1.661	1.00 42.28		H C
	MOTA	2092	CE1		58	-9.688	5.497	-1.265	1.00 48.56	F	
	MOTA	2093	CE2	TYR H	58	-8.664	3.904	-2.737	1.00 45.82	F	H C
	MOTA	2094	CZ	TYR H	58	-9.510	4.979	-2.531	1.00 50.99	ŀ	I C
	MOTA	2095	OH	TYR H	58	-10.205	5.537	-3.582	1.00 45.05	F	OF
30	MOTA	2096	N	TYR H	59	~6.923	0.871	3.023	1.00 38.15	F	H N
	ATOM	2097	CA	TYR H	59	-6.228	0.448	4.229	1.00 36.23		H C
	MOTA	2098	C	TYR H	59	-4.923	-0.272	3.956	1.00 35.97		H C
	ATOM	2099	Ö	TYR H	59	-4.744	-0.877	2.910	1.00 41.66		i O
	MOTA	2100	СВ	TYR H	59	-7.114	-0.521	4.990	1.00 32.92		H C
35	ATOM	2101	CG	TYR H	59	-8.483	0.001	5.308	1.00 33.05		H C
33											
	MOTA	2102	CD1		59	-8.692	0.811	6.410	1.00 26.16		H C
	MOTA	2103	CD2		59	-9.578	-0.351	4.531	1.00 21.88		H C
	ATOM	2104	CE1		59	-9.949	1.248	6.738	1.00 28.20		H C
	MOTA	2105	CE2		59	-10.839	0.087	4.851	1.00 30.66		H C
40	ATOM	2106	CZ	TYR H	59	-11.018	0.883	5.961	1.00 27.82	ŀ	H C
	MOTA	2107	oh	TYR H	59	-12.274	1.296	6.325	1.00 47.49	F	O E
	MOTA	2108	N	PRO H	60	~3.983	-0.209	4.901	1.00 42.07	F	\mathbf{N}
	MOTA	2109	CA	PRO H	60	-2.717	-0.912	4.691	1.00 42.47	F	i C
	MOTA	2110	C	PRO H	60	-3.021	-2.380	5.039	1.00 42.12	F	H C
45	MOTA	2111	0	PRO H	60	-3.990	-2.667	5.748	1.00 34.35	F	OF
	MOTA	2112	CB	PRO H	60	-1.787	-0.282	5.728	1.00 37.68	F	T C
	ATOM	2113	CG	PRO H	60	-2.423	0.998	6.070	1.00 38.55		i C
	MOTA	2114	CD	PRO H	60	-3.881	0.718	6.039	1.00 41.23		i C
	ATOM	2115	N	ASP H	61	-2.213	-3.314	4.556	1.00 46.33	Ī	
50	MOTA	2116	CA	ASP H	61	-2.466	-4.702	4.904	1.00 53.50	F	
00	ATOM	2117	C	ASP H	61	-2.319	-4.842	6.415	1.00 52.80	ŀ	
		2118			61	-2.773	-5.818		1.00 52.80		1 0
	MOTA		O	ASP H				7.006		F	
	MOTA	2119	CB	ASP H	61	-1.467	-5.625	4.219	1.00 56.53	ŀ	
	MOTA	2120	CG	ASP H	61	-1.512	-5.513	2.722	1.00 72.07	F	
55	MOTA	2121		ASP H	61	-2.632	-5.429	2.161	1.00 70.71	F	
	MOTA	2122	OD2	ASP H	61	-0.421	-5.524	2.110	1.00 91.21	F	4 O
	MOTA	2123	N	SER H	62	-1.672	-3.849	7.016	1.00 52.97	F	H N
	MOTA	2124	CA	SER H	62	-1.359	-3.808	8.438	1.00 48.81	F	I C
	MOTA	2125	С	SER H	62	-2.619	-3.866	9.309	1.00 49.13	F	
60	MOTA	2126	0	SER H	62	-2.612	-4.355	10.431	1.00 48.28	F	
	MOTA	2127	ĊВ	SER H	62	-0.589	-2.516	8.718	1.00 50.55	- F	
	ATOM	2128	ŌĠ	SER H	62	-0.528	-2.299	10.127	1.00 60.82	F	
	ATOM	2129	N	VAL H	63	-3.723	-3.309	8.770	1.00 45.57	ŀ	
	ATOM	2130	CA	VAL H	63	-4.947	-3.243	9.562	1.00 39.30	ŀ	
65	ATOM	2131	CA	VAL H	63	-6.183	-3.685	8.770	1.00 37.75	F	
55		2132					-3.711	9.267			
	MOTA		O CP	VAL H	63	-7.301 E 120			1.00 37.52	I-	
	MOTA	2133	CB	VAL H	63	-5.128	-1.800	10.039	1.00 42.39	F	
	MOTA	2134		VAL H	63	-3.887	-1.349	10.809	1.00 34.90	F	
	MOTA	2135	CG2	VAL H	63	-5.337	-0.882	8.849	1.00 31.97	F	G C

	ATOM ATOM	2136 2137	N CA	LYS H LYS H	64 64	-5.959	~4.004	7.482	1.00 40.88	Н	N
	ATOM	2138	CA	LYS H	64	-7.068 -7.836	-4.431 -5.603	6.636 7.254	1.00 47.29 1.00 47.68	H H	C
_	ATOM	2139	0	LYS H	64	-7.266	-6.604	7.666	1.00 46.11	H	0
5	MOTA MOTA	$2140 \\ 2141$	CB CG	LYS H LYS H	64 64	-6.501 -7.097	~4.839 ~4.021	5.275 4.128	1.00 49.64 1.00 59.25	H H	C
	ATOM	2142	CD	LYS H	64	-6.884	-4.688	2.768	1.00 71.56	H	č
	ATOM	2143	CE	LYS H	64	-5.402	-4.805	2.398	1.00 81.53	H	C
10	ATOM ATOM	$2144 \\ 2145$	NZ N	LYS H GLY H	64 65	-4.916 -9.165	-3.520 -5.387	$1.899 \\ 7.295$	1.00 49.44 1.00 47.28	H H	N
10	MOTA	2146	CA	GLY H	65	-10.047	-6.409	7.845	1.00 47.28	H	C N
	MOTA	2147	C	GLY H	65	-10.249	-6.226	9.351	1.00 42.83	H	С
	ATOM ATOM	2148 2149	N O	GLY H ARG H	65 66	-11.115 -9.381	-6.832 -5.381	9.971 9.942	1.00 50.95 1.00 43.96	H	0
15	MOTA	2150	CA	ARG H	66	-9.459	-5.142	11.380	1.00 43.96	H H	C M
	ATOM	2151	Ç	ARG H	66	-9.991	-3.739	11.703	1.00 43.62	H	C
	ATOM ATOM	2152 2153	O CB	ARG H ARG H	66 66	-10.440	-3.458 -5.306	12.806 11.960	1.00 49.65	H	0
	ATOM	$\frac{2153}{2154}$	CG	ARG H	66	-8.054 -7.998	-6.360	13.065	1.00 46.94 1.00 35.48	H H	C
20	ATOM	2155	CD	ARG H	66	-6.616	-7.012	13.160	1.00 36.46	H	C
	ATOM ATOM	2156 2157	$_{ m CZ}$	ARG H ARG H	66 66	-5.577 -5.142	-6.084 -5.162	12.704 13.584	1.00 43.95	H	N
	ATOM	2158		ARG H	66	-5.142 -5.650	-5.116	13.384 14.802	1.00 50.13 1.00 43.60	H H	N
	MOTA	2159		ARG H	66	-4.169	-4.317	13.229	1.00 44.39	H	N
25	MOTA MOTA	2160 2161	N CA	PHE H	67 67	-9.864 -10.226	-2.799 -1.396	10.773 10.999	1.00 44.77	H	И
	ATOM	2162	CA	PHE H	67	-11.197	-0.910	9.919	1.00 40.21 1.00 41.98	H H	C
	ATOM	2163	0	PHE H	67	-11.115	~1.327	8.755	1.00 40.85	H	0
30	ATOM ATOM	2164 2165	CB CG	PHE H PHE H	67 67	-8.972	~0.505	10.932	1.00 35.58	H	C
30	ATOM	2166		PHE H	67 67	-8.052 -7.966	-0.631 -1.803	12.101 12.826	1.00 34.08 1.00 46.65	H H	C
	ATOM	2167	CD2	PHE H	67	-7.234	0.428	12.457	1.00 34.35	H	C
	MOTA	2168		PHE H	67	-7.074	-1.916	13.890	1.00 47.26	H	C
35	MOTA MOTA	2169 2170	CE2 CZ	PHE H PHE H	67 67	-6.344 -6.263	0.327 -0.847	13.512 14.231	1.00 28.12 1.00 36.89	H H	C
	ATOM	2171	N	THR H	68	-12.103	-0.015	10.294	1.00 36.98	H	й
	ATOM	2172	CA	THR H	68	-12.990	0.490	9.266	1.00 39.60	H	C
	ATOM ATOM	2173 2174	C O	THR H	68 68	-13.142 -13.517	$1.991 \\ 2.515$	$9.400 \\ 10.441$	1.00 37.70 1.00 33.56	H H	0
40	MOTA	2175	СВ	THR H	68	-14.353	-0.178	9.438	1.00 38.69	H	č
	ATOM	2176	OG1		68	-14.194	-1.595	9.356	1.00 38.20	H	0
	ATOM ATOM	2177 2178	N N	THR H	68 69	-15.300 -12.783	0.271 2.695	8.319 8.317	1.00 40.05 1.00 35.22	H H	N C
	ATOM	2179	CA	ILE H	69	-12.986	4.133	8.310	1.00 33.39	H	Č
45	ATOM	2180	C	ILE H	69	-14.365	4.494	7.763	1.00 29.12	H	C
	MOTA MOTA	2181 2182	O CB	ILE H ILE H	69 69	-14.922 -11.907	$3.843 \\ 4.772$	6.887 7.441	1.00 35.88 1.00 27.05	H H	0
	ATOM	2183		ILE H	69	-12.088	6.295	7.426	1.00 28.35	H	č
F0	ATOM	2184		ILE H	69	-12.050	4.263	5.996	1.00 39.66	H	C
50	ATOM ATOM	2185 2186	N	ILE H SER H	69 70	-10.819 -14.928	7.041 5.556	7.837 8.356	1.00 19.70 1.00 30.01	H H	N C
	MOTA	2187	ĈA.	SER H	70	-16.200	6.073	7.882	1.00 32.13	H	Ĉ
	ATOM	2188	C	SER H	70	-16.299	7.561	8.199	1.00 36.01	H	C
55	ATOM ATOM	2189 2190	O CB	SER H SER H	70 70	-15.622 -17.325	8.076 5.310	9.079 8.588	1.00 41.38 1.00 25.57	H H	C
	ATOM	2191	OG	SER H	70	-17.077	5.312	9.995	1.00 41.99	H	ŏ
	ATOM	2192	N	ARG H	71	-17.245	8.171	7.500	1.00 35.84	H	N
	MOTA MOTA	$2193 \\ 2194$	CA C	ARG H ARG H	71 71	-17.510 -18.987	9.585 9.900	7.679 7.764	1.00 34.27 1.00 33.22	H H	C
60	ATOM	2195	Õ	ARG H	71	-19.806	9.240	7.142	1.00 35.22	H	ŏ
	ATOM	2196	CB	ARG H	71	-16.894	10.356	6.508	1.00 31.22	H	C
	ATOM ATOM	2197 2198	CG CD	ARG H ARG H	71 71	-17.360 -16.570	9.860 10.499	5.147 4.049	1.00 24.64 1.00 24.11	H H	C C
	ATOM	2199	NE	ARG H	71	-16.406	11.925	4.319	1.00 24.11	H	N
65	MOTA	2200	CZ	ARG H	71	-15.497	12.703	3.739	1.00 13.51	H	C
	MOTA MOTA	2201 2202		ARG H ARG H	71 71	-14.654 -15.416	12.209 13.972	$2.838 \\ 4.090$	1.00 21.43 1.00 32.61	H H	N
	ATOM	2203	N	ASP H	72	-19.324	10.907	8.556	1.00 37.54	H	N
	MOTA	2204	CA	ASP H	72	-20.700	11.355	8.676	1.00 37.74	н	C

	-											
	ATOM	2205	С	ASP H	72	-20.669	12.790	0 1 1 1	1 00 26 70			
	ATOM	2206						8.141	1.00 36.70		H	С
			0	ASP H	72	-20.260	13.724	8.842	1.00 29.75		H	0
	ATOM	2207	CB	ASP H	72	-21.150	11.342	10.129	1.00 41.57		H	С
	ATOM	2208	CG	ASP H	72 .	-22.622	11.677	10.284	1.00 48.19		H	C
5	ATOM	2209	OD1	ASP H	72	-23.145	12.522	9.518	1.00 49.97		H	ŏ
	ATOM	2210		ASP H	72	-23.257	11.103	11.194				
	ATOM								1.00 56.29		H	0
		2211	N	ASN H	73	-21.077	12.950	6.884	1.00 36.00		H	N
	ATOM	2212	ca	ASN H	73	-21.075	14.252	6.237	1.00 34.23		H	С
	ATOM	2213	C	ASN H	73	-22.025	15.261	6.837	1.00 38.06		H	Č
10	ATOM	2214	0	ASN H	73	-21.655	16.419	7.034	1.00 42.98		H	
	ATOM	2215	СВ	ASN H	73	-21.341						0
							14.098	4.748	1.00 35.94		H	C
	ATOM	2216		ASN H	73	-20.148	13.534	4.017	1.00 28.67		H	С
	ATOM	2217	OD1	ASN H	73	-19.034	13.567	4.523	1.00 38.30		H	0
	ATOM	2218	ND2	ASN H	73	-20.369	13.027	2.817	1.00 40.69		H	N
15	ATOM	2219	N	ALA H	74	-23.246	14.837	7.135	1.00 40.21			
	ATOM	2220		ALA H	74						H	N
						-24.205	15.747	7.736	1.00 39.70		H	C
	ATOM	2221		ALA H	74	-23.633	16.275	9.046	1.00 43.05		H	C
	ATOM	2222	0	ALA H	74	-23.592	17.484	9.275	1.00 44.60		H	0
	ATOM	2223	CB	ALA H	74	-25.509	15.038	7.988	1.00 42.51		H	Č
20	ATOM	2224		ARG H	75	-23.173	15.364	9.900				
	ATOM	2225							1.00 43.49		H	N
		_		ARG H	75	-22.618	15.759	11.190	1.00 40.90		H	C
	ATOM	2226		ARG H	75	-21.177	16.231	11.119	1.00 37.75		H	С
	ATOM	2227	0	ARG H	75	-20.691	16.835	12.072	1.00 33.26		H	Ō
	ATOM	2228	CB	ARG H	75	-22.701	14.607	12.201	1.00 45.03		H	
25	ATOM	2229		ARG H	75	-24.098						C
20							14.287	12.709	1.00 61.37		H	С
	ATOM	2230		ARG H	75	-24.062	13.295	13.873	1.00 60.10		H	C
	ATOM	2231		ARG H	75	-23.498	13.905	15.074	1.00 78.94	1	H	N
	ATOM	2232	CZ	ARG H	75	-23.312	13.272	16.232	1.00 84.66		H	C
	ATOM	2233	NH1	ARG H	75	-22.787	13.929	17.268	1.00 58.25			
30	ATOM	2234		ARG H	75	-23.647					H	N
00							11.988	16.357	1.00 80.63		H	N
	ATOM	2235		ASN H	76	-20.504	15.964	9.999	1.00 35.22]	H	N
	ATOM	2236	CA	ASN H	76	-19.094	16.334	9.829	1.00 33.97	1	H	C
	ATOM	2237	C	ASN H	76	-18.212	15.584	10.823	1.00 36.07		H	Č
	ATOM	2238		ASN H	76	-17.391	16.184	11.516				
35	ATOM	2239							1.00 35.74		H	0
55				ASN H	76	-18.884	17.834	10.030	1.00 32.35]	H	C
	MOTA	2240		ASN H	76	-19.332	18.642	8.847	1.00 38.66]	H	C
	ATOM	2241	OD1	ASN H	76	-18.695	19.630	8.474	1.00 45.80	1	H	0
	ATOM	2242	ND2	ASN H	76	-20.423	18.221	8.231	1.00 48.96		H	N
	ATOM	2243		ILE H	77	-18.390						
40							14.272	10.898	1.00 36.71		H	N
40	ATOM	2244		ILE H	77	-17.600	13.476	11.804	1.00 32.46	J	H	C
	ATOM	2245	C	ILE H	77	-16.944	12.340	11.050	1.00 35.64	J	F	C
	MOTA	2246	0	ILE H	77	-17.548	11.725	10.174	1.00 35.33		H	ō
	MOTA	2247		ILE H	77	-18.464	12,901	12.946	1.00 40.83			
	ATOM	2248		ILE H	77						H	C
45						-19.212	14.038	13.651	1.00 44.32	1	F	C
45	ATOM	2249		ILE H	77	-17.578	12.170	13.962	1.00 40.40	I	Ŧ	С
	\mathbf{ATOM}	2250	CD1	ILE H	77	-20.069	13.586	14.813	1.00 46.94	F	H	C
	MOTA	2251	N	LEU H	78	-15.692	12.079	11.406	1.00 40.62		- H	N
	ATOM	2252		LEU H	78	-14.882	11.020	10.806	1.00 37.20			
	ATOM	2253		LEU H				11 054			F	C
~0					78	-14.783	9.910	11.854	1.00 36.25		F	C
50	MOTA	2254		LEU H	78	-14.611	10.187	13.039	1.00 41.81	F	Ŧ	0
	ATOM	2255	CB :	LEU H	78	-13.486	11.575	10.478	1.00 30.31	I	Ŧ	C
	MOTA	2256	CG :	LEU H	78	-12.471	10.688	9.765	1.00 14.90		Ī	č
	MOTA	2257		LEU H	78	-12.957	10.314	8.404				ä
									1.00 28.76	F		C
~-	MOTA	2258	CDZ .	LEU H	78	-11.163	11.414	9.673	1.00 31.63	F	Ŧ	С
55	ATOM	2259	N '	TYR H	79	-14.885	8.658	11.426	1.00 35.10	F	I	N
	ATOM	2260	CA '	TYR H	79	-14.814	7.539	12.364	1.00 29.30	I		C
	ATOM	2261		TYR H	79	-13.764	6.504	12.031	1.00 29.91	Ī		
	ATOM	2262		TYR H	79	-13.455						C
							6.258	10.864	1.00 32.26	F		0
00	MOTA	2263		TYR H	79	-16.155	6.803	12.428	1.00 28.95	F	I	C
60	ATOM	2264		TYR H	79	-17.303	7.636	12.910	1.00 37.13	F	I	C
	MOTA	2265		TYR H	79	-17.389	8.038	14.236	1.00 19.81	F		č
	ATOM	2266		TYR H	79	-18.290	8.047	12.030	1.00 36.50			2
	MOTA	2267				10 400				F		C
				TYR H	79	-18.426	8.830	14.668	1.00 44.55	F		С
05	ATOM	2268		TYR H	79	-19.333	8.841	12.453	1.00 35.59	F	I	C
65	MOTA	2269	CZ (TYR H	79	-19.401	9.230	13.769	1.00 40.18	F		C
	ATOM	2270		TYR H	79	-20.456	10.014	14.181	1.00 44.04	F		ŏ
	MOTA	2271		LEU H	80	-13.221	5.897	13.076				
	MOTA								1.00 32.78	F		Ñ
		2272		LEU H	80	-12.272	4.816	12.911	1.00 33.37	I.	i	C
	MOTA	2273	C I	LEU H	80	-12.681	3.719	13.889	1.00 39.11	F	I	C

	MOTA MOTA MOTA	2274 2275 2276	O LEU H CB LEU H CG LEU H	80	-12.510 -10.833 -9.905	3.861 5.248 4.066	15.100 13.202 12.850	1.00 42.27 1.00 27.32 1.00 29.89	Н Н Н	0 C
5	ATOM ATOM ATOM	2277 2278 2279	CD1 LEU F CD2 LEU F N GLN F	H 80 H 81	-10.141 -8.445 -13.261	3.684 4.396 2.641	11.396 13.096 13.368	1.00 29.23 1.00 21.87 1.00 37.58	H H H	С С С
10	ATOM ATOM ATOM ATOM ATOM ATOM	2280 2281 2282 2283 2284 2285	CA GLN F C GLN F C GLN F CB GLN F CG GLN F CD GLN F	H 81 H 81 H 81 H 81	-13.588 -12.477 -11.955 -14.898 -15.181 -16.017	1.586 0.589 0.295 0.949 -0.381 -0.128	14.268 14.176 13.108 13.804 14.504 15.737	1.00 35.42 1.00 35.75 1.00 38.97 1.00 32.22 1.00 46.99 1.00 63.73	н н н н н	
15	ATOM ATOM ATOM ATOM ATOM	2286 2287 2288 2289 2290	OE1 GLN H NE2 GLN H N MET H CA MET H C MET H	81 82 82	-16.772 -15.848 -12.046 -10.916 -11.369	0.824 -1.048 0.146 -0.759 -2.034	15.842 16.707 15.350 15.462 16.171	1.00 73.22 1.00 54.60 1.00 38.89 1.00 38.00 1.00 41.10	H H H H	C N O
20	ATOM ATOM ATOM ATOM ATOM	2291 2292 2293 2294 2295	O MET H CB MET H CG MET H SD MET H CE MET H	82 82 82	-12.060 -9.786 -9.219 -7.917 -8.890	-1.982 -0.079 1.170 1.992 2.540	17.192 16.236 15.554 16.522 17.888	1.00 42.49 1.00 40.92 1.00 40.95 1.00 43.01 1.00 36.86	н н н н	000000000000000000000000000000000000000
25	ATOM ATOM ATOM ATOM ATOM	2296 2297 2298 2299 2300	N SER H CA SER H C SER H O SER H CB SER H	82A 82A 82A 82A	-10.994 -11.395 -10.238 -9.323	-3.182 -4.446 -5.431 -5.335	15.621 16.214 16.242 15.431	1.00 39.35 1.00 42.12 1.00 43.14 1.00 41.79	н н н н	N C O
30	ATOM ATOM ATOM ATOM	2301 2302 2303 2304	OG SER H N SER H CA SER H C SER H	82A 82B 82B 82B	-12.561 -12.101 -10.293 -9.247 -7.940	-5.052 -5.716 -6.381 -7.383 -6.652	15.428 14.258 17.173 17.304 17.535	1.00 42.50 1.00 50.18 1.00 40.74 1.00 45.65 1.00 44.33	Н Н Н Н	C O N C C
35	ATOM ATOM ATOM ATOM ATOM	2305 2306 2307 2308 2309	O SER H CB SER H OG SER H N LEU H CA LEU H	82B 82B 82C 82C	-6.946 -9.129 -10.320 -7.934 -6.730	-6.935 -8.213 -8.914 -5.717 -4.932	16.866 16.018 15.721 18.480 18.739	1.00 51.78 1.00 44.47 1.00 53.60 1.00 40.37 1.00 44.23	Н Н Н Н	0 C O
40	ATOM ATOM ATOM ATOM ATOM	2310 2311 2312 2313 2314	C LEU H O LEU H CB LEU H CG LEU H CD1 LEU H	82C 82C 82C	-5.498 -5.581 -7.032 -7.982 -8.308	-5.720 -6.625 -3.824 -2.753 -1.699	19.171 19.992 19.756 19.194 20.243	1.00 42.91 1.00 48.40 1.00 47.83 1.00 48.91 1.00 42.50	H H H H	מסטטט
45	ATOM ATOM ATOM ATOM ATOM	2315 2316 2317 2318 2319	CD2 LEU H N ARG H CA ARG H C ARG H O ARG H	82C 83 83 83	-7.340 -4.354 -3.055 -2.213 -2.434	-2.116 -5.361 -5.936 -4.938 -3.735	17.969 18.590 18.895 19.694 19.663	1.00 41.96 1.00 40.80 1.00 36.37 1.00 35.99 1.00 47.57	H H H H	C N C
50	ATOM ATOM ATOM ATOM	2320 2321 2322 2323	CB ARG H CG ARG H CD ARG H NE ARG H	83 83 83 83	-2.359 -3.236 -2.544 -3.470	-6.300 -7.145 -7.435 -8.063	17.577 16.646 15.304 14.349	1.00 47.57 1.00 36.69 1.00 40.16 1.00 34.89 1.00 58.83	н н н н	О С С
55	ATOM ATOM ATOM ATOM ATOM	2324 2325 2326 2327 2328	CZ ARG H NH1 ARG H NH2 ARG H N SER H CA SER H	83 83	-3.033 -1.820 -3.825 -1.201 -0.376	-8.224 -7.821 -8.810 -5.519 -4.674	13.083 12.741 12.177 20.361	1.00 64.19 1.00 74.93 1.00 64.50 1.00 41.54	н н н	C N N
	ATOM ATOM ATOM ATOM	2329 2330 2331 2332	C SER H O SER H CB SER H OG SER H		0.260 0.646 0.759 0.202	-4.674 -3.585 -2.511 -5.531 -6.382	21.201 20.332 20.774 21.817 22.817	1.00 46.15 1.00 43.60 1.00 47.14 1.00 41.31 1.00 61.14	н н н н	0000
60	ATOM ATOM ATOM ATOM	2333 2334 2335 2336	N GLU H CA GLU H C GLU H O GLU H	85 85 85 85	0.378 1.098 0.219 0.678	-3.916 -3.027 -1.927 -1.027	19.031 18.121 17.521 16.823	1.00 45.78 1.00 44.02 1.00 41.37 1.00 47.91	н н н н	0 0 0
65	MOTA MOTA MOTA MOTA MOTA	2337 2338 2339 2340 2341	CB GLU H CG GLU H CD GLU H OE1 GLU H OE2 GLU H	85 85 85 85 85	1.709 1.944 0.951 0.500 0.597	-3.873 -5.318 -6.200 -7.173 -5.873	17.006 17.438 16.728 17.318 15.599	1.00 47.56 1.00 66.27 1.00 83.88 1.00 92.64 1.00 78.20	H H H H	00000
	ATOM	2342	N ASP H	86	-1.099	-2.034	17.767	1.00 34.93	H	N

ATOM 2346 CB ASP H 86	51 H C 52 H O 58 H O 58 H C 53 H C 53 H C 53 H C 53 H C 53 H C
ATOM 2350 N THR H 87 -1.010 0.021 19.375 1.00 28. ATOM 2351 CA THR H 87 -0.869 0.995 20.448 1.00 28. ATOM 2352 C THR H 87 -0.116 2.236 19.965 1.00 25. ATOM 2353 O THR H 87 1.070 2.202 19.660 1.00 29. ATOM 2354 CB THR H 87 -0.080 0.324 21.576 1.00 32. ATOM 2355 OG1 THR H 87 -0.724 -0.899 21.940 1.00 45.	.8 H N .8 H C .3 H C .3 H O .53 H C .72 H O .87 H C .87 H C
ATOM 2353 O THR H 87 1.070 2.202 19.660 1.00 29. ATOM 2354 CB THR H 87 -0.080 0.324 21.576 1.00 32. ATOM 2355 OG1 THR H 87 -0.724 -0.899 21.940 1.00 45.	03 H O 53 H C 72 H O 87 H C 59 H N
	59 H N
ATOM 2356 CG2 THR H 87 -0.022 1.242 22.800 1.00 28. 15 ATOM 2357 N ALA H 88 -0.856 3.356 19.858 1.00 30.	
ATOM 2358 CA ALA H 88 -0.225 4.581 19.382 1.00 28. ATOM 2359 C ALA H 88 -1.188 5.769 19.418 1.00 27. ATOM 2360 O ALA H 88 -2.368 5.636 19.717 1.00 30.	71 H C)7 H O
ATOM 2361 CB ALA H 88 0.252 4.343 17.949 1.00 23. 20 ATOM 2362 N MET H 89 -0.652 6.953 19.137 1.00 28. ATOM 2363 CA MET H 89 -1.458 8.155 19.096 1.00 25.	18 H N
ATOM 2363 CA MET H 89 -1.458 8.155 19.096 1.00 25. ATOM 2364 C MET H 89 -2.140 8.117 17.736 1.00 23. ATOM 2365 O MET H 89 -1.489 7.900 16.713 1.00 26.	34 H C
ATOM 2366 CB MET H 89 -0.571 9.383 19.192 1.00 19.	08 H C
ATOM 2368 SD MET H 89 -2.161 11.144 20.648 1.00 35.	92 H S
ATOM 2370 N TYR H 90 -3.453 8.295 17.721 1.00 24.	81 H N
ATOM 2371 CA TYR H 90 -4.190 8.274 16.464 1.00 28. 30 ATOM 2372 C TYR H 90 -4.611 9.683 16.032 1.00 35.	61 H C
ATOM 2373 O TYR H 90 -5.294 10.401 16.776 1.00 38.	
ATOM 2374 CB TYR H 90 -5.408 7.349 16.583 1.00 26. ATOM 2375 CG TYR H 90 -5.038 5.894 16.487 1.00 21.	
ATOM 2376 CD1 TYR H 90 -4.360 5.256 17.523 1.00 21.	33 H C
35 ATOM 2377 CD2 TYR H 90 -5.308 5.170 15.337 1.00 23.	
ATOM 2378 CE1 TYR H 90 -3.957 3.940 17.416 1.00 13. ATOM 2379 CE2 TYR H 90 -4.910 3.853 15.215 1.00 32.	
ATOM 2379 CE2 TYR H 90 -4.910 3.853 15.215 1.00 32. ATOM 2380 CZ TYR H 90 -4.235 3.244 16.256 1.00 32.	
ATOM 2381 OH TYR H 90 -3.826 1.944 16.120 1.00 31.	42 H O
40 ATOM 2382 N TYR H 91 -4.199 10.063 14.821 1.00 29	
ATOM 2383 CA TYR H 91 -4.482 11.386 14.277 1.00 27	
ATOM 2384 C TYR H 91 -5.437 11.423 13.105 1.00 30 ATOM 2385 O TYR H 91 -5.311 10.607 12.193 1.00 30	
ATOM 2386 CB TYR H 91 -3.190 12.026 13.781 1.00 25	
45 ATOM 2387 CG TYR H 91 -2.193 12.378 14.848 1.00 36	
ATOM 2388 CD1 TYR H 91 -2.378 13.493 15.653 1.00 30 ATOM 2389 CD2 TYR H 91 -1.057 11.601 15.049 1.00 24	
ATOM 2389 CD2 TYR H 91 -1.057 11.601 15.049 1.00 24 ATOM 2390 CE1 TYR H 91 -1.471 13.821 16.616 1.00 21	
ATOM 2391 CE2 TYR H 91 -0.149 11.929 16.011 1.00 20	
50 ATOM 2392 CZ TYR H 91 -0.365 13.039 16.790 1.00 19	
ATOM 2393 OH TYR H 91 0.536 13.375 17.763 1.00 38 ATOM 2394 N CYS H 92 -6.396 12.352 13.120 1.00 34	
ATOM 2394 N CYS H 92 -6.396 12.352 13.120 1.00 34 ATOM 2395 CA CYS H 92 -7.249 12.514 11.941 1.00 39	
ATOM 2396 C CYS H 92 -6.598 13.624 11.120 1.00 31	38 H C
55 ATOM 2397 O CYS H 92 -6.025 14.575 11.661 1.00 25	53 H O
ATOM 2398 CB CYS H 92 -8.737 12.860 12.245 1.00 35 ATOM 2399 SG CYS H 92 -9.256 14.091 13.507 1.00 69	
ATOM 2399 SG CYS H 92 -9.256 14.091 13.507 1.00 69 ATOM 2400 N ALA H 93 -6.644 13.474 9.810 1.00 22	
ATOM 2401 CA ALA H 93 -6.063 14.464 8.942 1.00 23	14 H C
60 ATOM 2402 C ALA H 93 -6.899 14.620 7.692 1.00 31	52 H C
ATOM 2403 O ALA H 93 -7.472 13.654 7.178 1.00 37	
111,011 11 10 11 11 11 11 11 11 11 11 11 11	
ATOM 2406 CA ARG H 94 -7.718 16.112 5.993 1.00 27	88 H C
65 ATOM 2407 C ARG H 94 -6.723 15.771 4.885 1.00 30	
ATOM 2408 O ARG H 94 -5.586 16.244 4.902 1.00 35	06 H O
ATOM 2409 CB ARG H 94 -8.105 17.583 5.924 1.00 26 ATOM 2410 CG ARG H 94 -9.146 17.905 4.880 1.00 32	56 H C 06 H C
ATOM 2410 CG ARG H 94 -9.146 17.905 4.880 1.00 32 ATOM 2411 CD ARG H 94 -9.449 19.387 4.883 1.00 29	

	MOTA	2412	NE	ARG H	94	-8.508	20.149	4.068	1.00 43.56	H	N
	ATOM	2413	CZ	ARG H		-8.502	21.476	3.986	1.00 30.83	H	Ċ
	MOTA	2414		ARG H		-9.380			1.00 32.80		
							22.189	4.671		H	N
_	ATOM	2415		ARG H		-7.626	22.089	3.208	1.00 26.74	H	N
5	MOTA	2416	N	LEU H		-7.134	14.922	3.949	1.00 28.97	H	N
	MOTA	2417	CA	LEU H	95	-6.369	14.534	2.771	1.00 29.42	H	C
	MOTA	2418	C	LEU H		-6.686	15.429	1.571	1.00 34.07	H	č
	ATOM	2419	ŏ	LEU H		-7.687	15.275	0.885	1.00 43.12		
										H	0
	MOTA	2420	CB	LEU H		-6.703	13.077	2.438	1.00 31.81	H	C
10	MOTA	2421	CG	LEU H		-5.882	12.539	1.263	1.00 17.92	H	C
	MOTA	2422	CD1	LEU H	95	-4.381	12.512	1.564	1.00 33.14	H	C
	MOTA	2423	CD2	LEU H		-6.265	11.111	0.872	1.00 43.38	H	. Ç
	ATOM	2424		ASP H		-5.805					
			N				16.423	1.356	1.00 33.38	H	N
	MOTA	2425	CA	ASP H		-5.991	17.315	0.218	1.00 26.87	H	C
15	MOTA	2426	C	ASP H	96	-5.736	16.588	-1.105	1.00 28.04	H	С
	MOTA	2427	0	ASP H	96	-5.942	17.112	-2.191	1.00 31.10	H	0
	ATOM	2428	CB	ASP H		-5.021	18.489	0.367	1.00 20.28	H	č
	MOTA	2429	CG	ASP H		-5.550	19.449	1.425			~
									1.00 35.23	H	C
	MOTA	2430		ASP H		-6.142	18.967	2.392	1.00 43.82	H	0
20	MOTA	2431	OD2	ASP H	96	-5.368	20.655	1.276	1.00 34.55	H	0
	MOTA	2432	N	GLY H	97	-5.233	15.345	-0.982	1.00 35.21	H	N
	MOTA	2433	CA	GLY H	97	-4.929	14.566	-2.178	1.00 34.98	H	Ċ
	MOTA	2434	C	GLY H		-3.509	13.995	-2.126	1.00 36.60		~
				-						H	C
	ATOM	2435	0	GLY H		-2.829	14.030	-1.109	1.00 55.18	H	0
25	MOTA	2436	\mathbf{N}	TYR H	98	-3.080	13.414	-3.264	1.00 31.33	H	N
	MOTA	2437	CA	TYR H	98	-1.726	12.873	-3.319	1.00 36.60	H	C
	MOTA	2438	C	TYR H		-0.732	13.899	-3.869	1.00 38.11	H	Č
	ATOM	2439	õ	TYR H		0.479	13.718	-3.839			
									1.00 38.31	H	0
	ATOM	2440	CB	TYR H		-1.735	11.616	-4.192	1.00 33.71	H	C
30	MOTA	2441	CG	TYR H	98	-2.226	11.936	~5.559	1.00 38.48	H	,C
	ATOM	2442	CD1	TYR H	98	-1.549	12.869	-6.342	1.00 60.19	H	C
	MOTA	2443		TYR H		-3.278	11.206	-6.116	1.00 58.17	H	č
											<u>_</u>
	ATOM	2444	CE1			-1.902	13.051	-7.672	1.00 61.07	H	C
	MOTA	2445	CE2			-3.636	11.395	-7.442	1.00 66.49	H	C
35	MOTA	2446	CZ	TYR H	98	-2.954	12.313	-8.218	1.00 62,63	H	C
	MOTA	2447	OH	TYR H	98	-3.289	12.487	-9.547	1.00 51.32	H	ō
	ATOM	2448	N	TYR H		-1.290	14.993	-4.421			
									1.00 34.57	H	N
	MOTA	2449	CA	TYR H		-0.439	16.056	-4.942	1.00 28.11	H	C
	ATOM	2450	C	TYR H	99	0.077	16.958	-3.819	1.00 30.06	H	C
40	MOTA	2451	0	TYR H	99	1.129	17.576	-3.918	1.00 45.17	H	0
	MOTA	2452	СВ	TYR H		-1.259	16.882	-5.933	1.00 35.30	H	Č
	ATOM	2453	CG	TYR H							
						-1.157	16.291	-7.294	1.00 45.25	H	C
	MOTA	2454	CD1			-2.191	16.474	-8.208	1.00 50.19	H	C
	ATOM	2455	CD2	TYR H	99	-0.026	15.565	~7.666	1.00 67.32	H	C
45	MOTA	2456	CE1	TYR H	99	-2.090	15.946	-9.487	1.00 61.69	H	C
	MOTA	2457	CE2			0.070	15.028	-8.941	1.00 66.78	H	č
	ATOM	2458	CZ	TYR H		-0.958	15.211				
								-9.847	1.00 61.53	H	C
	MOTA	2459	OH	TYR H		-0.889		-11.107	1.00 64.87	H	0
	MOTA	2460	N	PHE H	100	-0.868	16.958	-2.882	1.00 28.36	H	N
50	MOTA	2461	CA	PHE H	100	-0.843	17.912	-1.771	1.00 33.08	H	C
	ATOM	2462	C	PHE H		-0.564	17.528	-0.313	1.00 32.51	H	Č
	ATOM	2463	ŏ	PHE H		-0.409	18.414	0.510			
									1.00 28.93	H	0
	MOTA	2464	СВ	PHE H		-2.152	18.702	-1.836	1.00 35.07	H	C
	MOTA	2465	CG	PHE H	100	-2.589	19.002	~3.244	1.00 40.19	H	C
55	MOTA	2466	CD1	PHE H	100	-1.920	19.958	-4.007	1.00 42.98	H	C
	MOTA	2467		PHE H		-3.604	18.264	-3.841	1.00 32.65	H	Č
	ATOM	2468									
				PHE H		-2.256	20.160	-5.326	1.00 38.55	H	C
	MOTA	2469	CE2	PHE H		-3.942	18.464	-5.164	1.00 22.61	H	C
	MOTA	2470	$^{\rm cz}$	PHE H	100	-3.272	19.407	~5.906	1.00 34.08	H	C
60	ATOM	2471	N	GLY H	100A	-0.513	16.243	0.023	1.00 32.84	H	N
-	MOTA	2472	CA		100A	-0.246	15.859	1.403	1.00 24.07	H	Ĉ
	ATOM	2473	Č		100A	-1.375	15.977	2.433	1.00 31.86	H	C
	MOTA	2474	0		100A	-2.508	16.393	2.147	1.00 31.43	H	0
	MOTA	2475	N	PHE H	100B	-1.062	15.565	3.656	1.00 31.62	H	N
65	MOTA	2476	CA		100B	-2.009	15.648	4.756	1.00 30.23	H	Ĉ
	ATOM	2477	C		100B	-1.848	17.067	5.278	1.00 28.52	H	č
	MOTA	2478	0		100B	-0.932	17.358	6.045	1.00 32.67	H	0
	MOTA	2479	СВ		100B	-1.681	14.617	5.845	1.00 35.30	H	C
	MOTA	2480	CG	PHE H	100B	-1.841	13.186	5.394	1.00 37.11	H	С

	ATOM ATOM	2481 2482	CD1 PH		100B 100B	-0.723 -3.104	12.391 12.641	5.124 5.211	1.00 28.90 1.00 27.19		H H	C
	ATOM	2483			100B	-0.864	11.089	4.682	1.00 27.19		H	C
	ATOM	2484			100B	-3.252	11.329	4.766	1.00 27.20		H	Č
5	ATOM	2485			100B	-2.136	10.556	4.502	1.00 31.15		H	C
	MOTA	2486		AH		-2.758	17.933	4.833	1.00 27.56		H	N
	ATOM ATOM	2487 2488		AH		-2.760 -3.142	19.355 19.783	5.154 6.570	1.00 25.66 1.00 25.19		H	C
	ATOM	2489		AH		-2.666	20.790	7.069	1.00 25.19		H H	C
10	ATOM	2490		AH		-3.625	20.072	4.150	1.00 29.91		H	Č
	MOTA	2491		R H		-4.008	19.038	7.226	1.00 27.89		H	N
	ATOM	2492		RH		-4.398	19.414	8.574	1.00 25.32		H	C
	MOTA MOTA	2493 2494		RH		-4.423 -4.814	18.174 17.104	9.432 8.968	1.00 24.39		H	C
15	ATOM	2495		RH		-5.769	20.098	8.557	1.00 30.42 1.00 23.33		H H	C
	ATOM	2496		RH		-5.724	21.484	7.938	1.00 32.18		H	C
	MOTA	2497		RH		-5.415	22.610	8.716	1.00 28.43		H	C
	MOTA	2498		RH		-5.923	21.662	6.565	1.00 26.31		H	C
20	ATOM ATOM	2499 2500		RH		-5.306 -5.812	23.843 22.896	8.158 5.995	1.00 10.30		H	C
20	ATOM	2501		RH		-5.512	23.990	6.794	1.00 16.36 1.00 34.64		H H	C
	ATOM	2502		RH		-5.400	25.246	6.222	1.00 30.08		H	ŏ
	ATOM	2503		PH		-3.981	18.319	10.675	1.00 24.24		H	Ŋ
05	ATOM	2504		PH		-3.950	17.213	11.608	1.00 28.55		H	C
25	ATOM ATOM	2505 2506		P H		-4.657 -4.653	17.635 18.811	12.888 13.249	1.00 30.13 1.00 37.40		H	C
	MOTA	2507		PH		-2.504	16.839	13.249 11.947	1.00 37.40		H H	C
	ATOM	2508		PH		-1.662	16.413	10.790	1.00 25.38		H	Č
	MOTA	2509		PH		-1.428	17.107	9.634	1.00 18.65		H	С
30	ATOM	2510		PH		-0.956	15.178	10.665	1.00 30.58		H	C
	ATOM ATOM	2511 2512		PH		-0.630 -0.330	16.374 15.183	8.797 9.403	1.00 21.56 1.00 25.47		H	N
	ATOM	2513		PH		-0.796	14.065	11.495	1.00 28.45		H H	C
	ATOM	2514		PH		0.436	14.123	8.956	1.00 15.55		H	C
35	MOTA	2515		PH		-0.027	13.003	11.044	1.00 24.57	•	H	C
	MOTA	2516		PH		0.574	13.039	9.786	1.00 26.41		H	C
	ATOM ATOM	2517 2518		Y H		-5.268 -5.920	16.677 16.993	13.573 14.825	1.00 30.49		H	N
	ATOM	2519		YH		-3.920 -4.886	16.815	15.917	1.00 23.23 1.00 24.33		H H	C
40	MOTA	2520		ΥH		-3.728	16.546	15.617	1.00 26.49		H	ŏ
	MOTA	2521		NH		-5.304	16.936	17.173	1.00 31.05		H	N
	MOTA	2522		NH		-4.403	16.809	18.313	1.00 30.94		H	C
	ATOM ATOM	2523 2524		NH		-4.074 -3.222	15.370 15.124	18.673 19.524	1.00 34.31		H	C
45	ATOM	2525		NH		-5.011	17.478	19.536	1.00 41.91 1.00 35.51		H H	C O
	ATOM	2526		NH		-6.191	18.384	19.228	1.00 52.15		H	Č
	MOTA	2527		NH		-7.414	18.042	20.070	1.00 68.67		H	C
	ATOM	2528	OE1 GL			-8.035	18.926	20.681	1.00 61.17		H	0
50	ATOM ATOM	2529 2530	NE2 GL N GL	X H		-7.770 -4.755	16.752 14.420	20.105 18.051	1.00 55.73 1.00 32.59		H H	N
QU	ATOM	2531		YH		-4.490	13.026	18.354	1.00 32.33		H	C M
	ATOM	2532	C GL	ΥH	106	-5.137	12.508	19.633	1.00 28.80		H	č
	MOTA	2533		ΥH		-5.420	13.258	20.567	1.00 30.10		H	0
EE	ATOM	2534		RH		-5.384	11.209	19.668	1.00 29.41		H	Ŋ
55	ATOM ATOM	2535 2536		R H R H		-6.034 -5.319	$10.448 \\ 9.124$	20.736 21.007	1.00 33.14 1.00 33.83		H H	C
	MOTA	2537		RH		-5.018	8.343	20.117	1.00 33.79		H	C O
	MOTA	2538		RH		-7.494	10.180	20.360	1.00 30.92		H	č
	MOTA	2539		RH		-8.205	9.778	21.533	1.00 42.28		H	0
60	MOTA	2540		RH		-7.572	9.043	19.335	1.00 32.35		H	C
	ATOM ATOM	2541 2542		H U		-5.026 -4.162	8.902 7.789	22.299 22.653	1.00 34.93 1.00 39.45		H H	И
	ATOM	2543		UH		-4.162	6.471	22.836	1.00 39.45		H H	C
	MOTA	2544		UH		-5.874	6.358	23.592	1.00 40.38		H	Ö
65	MOTA	2545	CB LE	H U	108	-3.419	8.155	23.936	1.00 39.65		H	C
	ATOM	2546		UH		-1.902	8.119	23.750	1.00 20.00		H	C
	ATOM ATOM	2547 2548	CD1 LE			-1.186 -1.292	9.177 6.767	24.596 24.127	1.00 20.00 1.00 20.00		H H	C
	MOTA	2549		L H		-4.448	5.462	22.077	1.00 20.00		H	N
	_			-			· -	• •			-	

	ATOM ATOM	2550 2551 2552	CA C O	VAL H VAL H	109 109	-4.950 -3.831 -2.822	4.107 3.173 2.980	22.268 22.733 22.068	1.00 38.50 1.00 41.95 1.00 45.65	Н Н Н	0 C
5	ATOM ATOM ATOM ATOM	2553 2554 2555 2556	CG2 N	VAL H VAL H VAL H ALA H	109 109 110	-5.504 -5.974 -6.670 -4.054	3.612 2.169 4.478 2.495	20.935 21.083 20.494 23.856	1.00 34.93 1.00 36.26 1.00 27.03 1.00 41.78	н н н н	C C N
10	ATOM ATOM ATOM ATOM	2557 2558 2559 2560 2561	CA C O CB	ALA H ALA H ALA H	110 110 110	-3.117 -3.807 -4.881 -2.478	1.467 0.132 0.069 1.940	24.311 24.542 25.135 25.620	1.00 44.45 1.00 42.44 1.00 43.07 1.00 44.04	н н н н	0000
15	ATOM ATOM ATOM ATOM ATOM	2562 2563 2564 2565	N CA C O CB	VAL H VAL H VAL H VAL H	111 111 111	-3.181 -3.591 -2.668 -1.552 -3.684	-0.937 -2.301 -3.122 -3.511	24.070 24.195 25.091 24.737	1.00 43.71 1.00 46.41 1.00 48.72 1.00 51.00	н н н н	N C O
20	ATOM ATOM ATOM ATOM	2566 2567 2568 2569	CG1	VAL H VAL H SER H	111 111 112	-4.683 -4.189 -3.189	-2.843 -3.970 -1.718 -3.346	22.793 22.741 21.897 26.316	1.00 46.04 1.00 52.67 1.00 36.76 1.00 53.18	н н н	и С С
20	ATOM ATOM ATOM ATOM	2570 2571 2572 2573	CA C O CB	SER H SER H SER H SER H	112 112 112	-3.314 -4.756 -5.722 -2.838 -1.412	-3.814 -4.215 -3.626 -2.698 -2.761	27.691 28.024 27.567 28.621	1.00 60.09 1.00 63.11 1.00 62.24 1.00 59.39	н н н н	0 0 0
25	ATOM ATOM ATOM ATOM	2574 2575 2576 2577	N CA C	ALA H ALA H ALA H ALA H	113 113 113	-4.857 -3.631 -3.050	-5.297 -5.952 -5.274	28.734 28.814 29.241 30.476	1.00 68.30 1.00 69.58 1.00 64.05 1.00 66.57	н н н н	0 N C
30	ATOM ATOM ATOM ATOM	2578 2579 2580 2581	O CB N CA C	ALA H ALA H ALA H ALA H	113 114 114	-1.951 -2.631 -3.851 -3.501	-4.735 -5.866 -5.290 -4.512	30.471 28.085 31.555 32.735	1.00 67.66 1.00 61.17 1.00 74.52 1.00 75.18	н н н н	O N C
35	ATOM ATOM ATOM	2582 2583 2584	O CB N	ALA H ALA H ALA H	114 114 115	-4.589 -5.200 -2.174 -4.843	-3.481 -2.905 -3.801 -3.279	33.031 32.145 32.469 34.333	1.00 73.15 1.00 75.45 1.00 81.16 1.00 20.00	н н н н	С О С И
10	ATOM ATOM ATOM ATOM	2585 2586 2587 2588	CA C O CB	ALA H ALA H ALA H ALA H	115 115 115	-5.951 -5.508 -4.381 -6.590	-2.416 -0.977 -0.703 -3.008	34.716 34.986 35.374 35.973	1.00 20.00 1.00 20.00 1.00 20.00 1.00 20.00	н н н н	C C C
40	ATOM ATOM ATOM ATOM	2589 2590 2591 2592	N CA C O	THR H THR H THR H THR H	116 116	-6.447 -6.197 -5.902 -6.514	-0.042 1.360 1.553 0.955	34.728 35.045 36.534 37.408	1.00 48.17 1.00 49.91 1.00 53.54 1.00 61.76	н н н н	И С О
45	ATOM ATOM ATOM ATOM	2593 2594 2595 2596	CB OG1 CG2 N		116 116	-7.435 -8.157 -8.353 -4.893	2.174 2.541 1.345 2.401	34.652 35.832 33.753 36.803	1.00 51.97 1.00 59.75 1.00 67.33 1.00 55.71	Н Н Н Н	И О С
50	ATOM ATOM ATOM	2597 2598 2599 2600	CA C O CB	THR H THR H THR H THR H	117 117 117	-4.516 -4.807 -4.390 -3.019	2.673 4.128 5.068 2.381	38.185 38.569 37.905 38.325	1.00 52.96 1.00 52.33 1.00 54.24 1.00 54.81	Н Н Н	0000
55	ATOM ATOM ATOM ATOM ATOM	2601 2602 2603 2604	OG1 CG2 N CA	THR H PRO H PRO H	117 118 118	-2.778 -2.561 -5.242 -5.168	1.015 2.616 4.836 6.296	37.979 39.771 39.028 39.166	1.00 57.21 1.00 68.96 1.00 53.98 1.00 50.39	H H H	C N
60	ATOM ATOM ATOM	2605 2606 2607 2608	C O CB CG	PRO H PRO H PRO H	118 118 118	-3.872 -3.247 -6.392 -6.424	6.738 5.971 6.611 5.452	39.851 40.578 40.004 40.935	1.00 51.76 1.00 52.75 1.00 53.07 1.00 53.57	н н н н	2000
60	ATOM ATOM ATOM ATOM	2609 2610 2611 2612	CD N CA C	PRO H PRO H PRO H	119 119 119	-6.187 -3.460 -2.234 -2.362	4.277 7.992 8.518 9.092	40.010 39.634 40.231 41.640	1.00 56.15 1.00 50.77 1.00 51.99 1.00 57.32	н н н н	C N C
65	ATOM ATOM ATOM ATOM	2613 2614 2615 2616	O CB CG CD	PRO H PRO H PRO H	119 119 119	-3.462 -1.824 -3.141 -3.998	9.238 9.590 10.178 8.943	42.177 39.237 38.879 38.645	1.00 60.85 1.00 47.61 1.00 45.24 1.00 53.33	Н Н Н Н	0000
	ATOM ATOM	2617 2618	N CA	SER H SER H		-1.206 -0.984	9.410 10.062	42.220 43.505	1.00 57.59 1.00 52.71	H H	C

5	ATOM ATOM ATOM ATOM ATOM	2619 2620 2621 2622 2623	C O CB OG N	SER H 120 SER H 120 SER H 120 SER H 120 VAL H 121	-(-(-1).150).994).264 L.175).788	11.331 11.313 9.075 8.049 12.470	43.342 42.911 44.427 44.829 43.667	1.00 50.89 1.00 55.25 1.00 56.41 1.00 63.45 1.00 48.38	H H H H	[[[[0 0 0
	MOTA MOTA MOTA MOTA	2624 2625 2626 2627	CA C O CB	VAL H 121 VAL H 121 VAL H 121 VAL H 121	(~(~1).121).459).246 L.141	13.749 14.315 14.717 14.727	43.460 44.758 45.677 42.872	1.00 45.09 1.00 47.52 1.00 50.74 1.00 42.48	F F F	I I I	0000
10	MOTA MOTA MOTA	2628 2629 2630 2631	CG1 CG2 N CA	VAL H 121 VAL H 121 TYR H 122 TYR H 122	-2	0.418 2.052 1.803 2.482	15.856 14.002 14.298 14.867	42.140 41.898 44.822 45.978	1.00 41.61 1.00 38.28 1.00 48.88 1.00 46.62	H H H	I I I	C N C
15	MOTA ATOM ATOM ATOM	2632 2633 2634 2635	C O CB CG	TYR H 122 TYR H 122 TYR H 122 TYR H 122		3.043 3.566 3.622 3.084	16.256 16.512 13.924 12.561	45.663 44.587 46.372 46.632	1.00 49.87 1.00 52.32 1.00 42.13 1.00 39.14	I	I I I	0000
20	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2636 2637 2638 2639 2640 2641	CD1 CD2 CE1 CE2 CZ OH	TYR H 122 TYR H 122 TYR H 122		2.084 3.566 1.560 3.049 2.055	12.381 11.462 11.118 10.197 10.022 8.763	47.583 45.921 47.816 46.160 47.106 47.359	1.00 33.27 1.00 26.44 1.00 39.62 1.00 41.31 1.00 39.35 1.00 46.83]]]]	I I I I I	CCCCCON
25	ATOM ATOM ATOM ATOM ATOM	2642 2643 2644 2645 2646	N CA C O CB	PRO H 123 PRO H 123 PRO H 123 PRO H 123 PRO H 123		2.944 3.453 4.960 5.514 2.683	17.168 18.536 18.606 17.917 19.271	46.634 46.513 46.720 47.581 47.595	1.00 49.83 1.00 48.21 1.00 50.86 1.00 55.89 1.00 52.97]]]	H H H H	0000
30	ATOM ATOM ATOM ATOM	2647 2648 2649 2650	CG CD N CA	PRO H 123 PRO H 123 LEU H 124 LEU H 124		2.564 2.201 5.626 7.066 7.407	18.226 16.986 19.432 19.575 20.984	48.667 47.893 45.923 46.038 46.455	1.00 51.62 1.00 43.80 1.00 49.83 1.00 52.27 1.00 48.73		H H H H H	C C C
35	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2651 2652 2653 2654 2655 2656		LEU H 124 LEU H 124 LEU H 124 LEU H 124 LEU H 124 LEU H 124		7.380 7.767 7.671 8.332 8.326	21.915 19.224 17.772 17.628 16.840	45.648 44.715 44.212 42.853 45.212	1.00 48.20 1.00 56.15 1.00 53.01 1.00 48.39 1.00 59.89		H H H H H	00000
40	ATOM ATOM ATOM ATOM ATOM	2657 2658 2659 2660 2661	N CA C O CB	ALA H 125 ALA H 125 ALA H 125 ALA H 125 ALA H 125		7.717 8.080 9.551 0.094 7.241	21.118 22.389 22.353 21.295 22.631	47.739 48.337 48.710 49.017 49.580	1.00 50.01 1.00 52.85 1.00 54.62 1.00 52.85 1.00 58.29		H H H H H	и С С
45	ATOM ATOM ATOM ATOM	2662 2663 2664 2665	N CA C O	PRO H 126 PRO H 126 PRO H 126 PRO H 126	1 1 1	0.221 1.639 1.834 0.808	23.514 23.574 23.154 23.018 25.040	48.676 49.027 50.475 51.175 48.803	1.00 53.35 1.00 54.53 1.00 56.27 1.00 61.53 1.00 53.66		H H H H H	и С С
50	ATOM ATOM ATOM ATOM ATOM	2666 2667 2668 2669 2670	N	PRO H 126 PRO H 126 PRO H 126 PRO H 126 THR H 132	1 1 1	9.705 12.997 16.845	25.727 24.858 22.974 30.323 30.845	49.091 48.370 50.894 49.326 48.416	1.00 60.53 1.00 48.22 1.00 62.11 1.00131.55 1.00132.47		H H H H H	0 0 0
55	ATOM ATOM ATOM ATOM ATOM	2671 2672 2673 2674 2675	CA C O CB OG3		1 1 3	L6.091 L5.683 L4.472 L4.446	32.322 33.228 30.679 31.461	48.094 48.815 49.089 50.283	1.00130.65 1.00132.15 1.00132.60 1.00134.97		H H H H H	0000
60	MOTA ATOM ATOM MOTA MOTA	2676 2677 2678 2679 2680	CG2 N CA C O	ASN H 133 ASN H 133 ASN H 133 ASN H 133 ASN H 133		L4.250 L6.828 L7.281 L7.045 L7.646	29.214 32.548 33.902 34.267 33.716	49.466 46.981 46.666 45.195 44.283	1.00131.87 1.00126.17 1.00123.00 1.00118.12 1.00118.63		H H H H	И С С
65	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2681 2682 2683 2684 2685 2686 2687	CB CG OD:	ASN H 133 ASN H 133 1 ASN H 133 2 ASN H 133 SER H 134 SER H 134 SER H 134		18.787 19.063 18.749 19.650 16.086 15.901	33.958 34.983 34.801 36.111 35.203 35.788 35.123	46.968 48.039 49.212 47.602 44.979 43.649 42.828			H H H H H H	ССОИИСС
	114 014	_00,	_									

	n m∪M	2688	0	SER H 134	14.092	35.767	42.048	1.00 96.71	Н	0
	ATOM ATOM	2689	CB	SER H 134	17.225	35.729	42.888	1.00102.40	H	č
	ATOM	2690	ŌĞ	SER H 134	17.391	36.936	42.142	1.00 92.26	H	0
	ATOM	2691	N	MET H 135	14.681	33.758	42.950	1.00 85.97	H	N
5	MOTA	2692	CA	MET H 135	13.640	33.007	42.214	1.00 75.45	H	C
	MOTA	2693	C	MET H 135	13.234	31.737	42.977	1.00 68.66	H	C
	MOTA	2694	0	MET H 135	13.837	31.393	44.037	1.00 67.11	H H	0
	ATOM	2695 2696	CB	MET H 135 MET H 135	14.158 13.679	32.619 33.454	40.827 39.620	1.00 78.16 1.00 87.38	п Н	C
10	MOTA MOTA	2697	CG SD	MET H 135	11.912	33.393	39.425	1.00 37.33	H	S
10	ATOM	2698	CE	MET H 135	11.764	33.473	37.638	1.00 95.09	H	č
	MOTA	2699	N	VAL H 136	12.396	30.924	42.576	1.00 66.53	H	N
	ATOM	2700	CA	VAL H 136	11.862	29.787	43.312	1.00 64.38	H	С
	MOTA	2701	C	VAL H 136	11.450	28.655	42.383	1.00 60.86	H	C
15	ATOM	2702	0	VAL H 136	10.794	28.881	41.369	1.00 60.52	H	0
	MOTA	2703	CB	VAL H 136	10.649	30.194	44.185	1.00 63.71	H	C
	MOTA	2704		VAL H 136	10.017 11.092	28.972 31.164	44.813 45.262	1.00 66.52 1.00 70.97	H H	G G
	MOTA MOTA	2705 2706	N N	VAL H 136 THR H 137	11.032	27.444	42.607	1.00 70.37	H	N
20	ATOM	2707	CA	THR H 137	11.265	26.333	41.842	1.00 55.89	H	Ĉ
_0	ATOM	2708	C	THR H 137	10.464	25.399	42.735	1.00 52.85	H	С
	ATOM	2709	0	THR H 137	10.980	24.867	43.714	1.00 51.83	H	0
	MOTA	2710	CB	THR H 137	12.358	25.492	41.165	1.00 54.09	H	C
	MOTA	2711	OG1		12.942	26.229	40.087	1.00 48.58	H	0
25	MOTA	2712	CG2	THR H 137 LEU H 138	11.772 9.195	24.201 25.219	40.637 42.404	1.00 57.49 1.00 50.91	H H	N C
	ATOM ATOM	2713 2714	CA	LEU H 138	8.350	24.318	43.162	1.00 51.88	H	Č
	MOTA	2715	C	LEU H 138	8.027	23.184	42.220	1.00 49.95	H	č
	ATOM	2716	ō	LEU H 138	8.260	23.294	41.012	1.00 53.08	H	0
30	MOTA	2717	CB	LEU H 138	7.071	25.016	43.622	1.00 50.53	H	C
	MOTA	2718	CG	LEU H 138	7.313	26.155	44.613	1.00 46.88	H	C
	MOTA	2719		LEU H 138	5.996	26.848	44.934	1.00 62.88	H	C
	ATOM	2720		CLY H 138	7.944 7.498	25.611 22.091	45.870 42.753	1.00 75.29 1.00 47.47	H H	C N
35	ATOM ATOM	2721 2722	N CA	GLY H 139	7.197	20.974	41.887	1.00 46.51	Н	C
33	ATOM	2723	C	GLY H 139	5.959	20.195	42.244	1.00 47.53	H	Ċ
	ATOM	2724	ŏ	GLY H 139	5.297	20.467	43.235	1.00 48.18	H	0
	MOTA	2725	N	CYS H 140	5.663	19.205	41.414	1.00 52.13	H	N
	MOTA	2726	CA	CYS H 140	4.503	18.351	41.592	1.00 54.83	H	C
40	ATOM	2727	C	CYS H 140	4.940	16.925	41.247	1.00 49.40	H	C
	MOTA MOTA	2728 2729	O CB	CYS H 140 CYS H 140	5.633 3.377	16.698 18.813	40.250 40.655	1.00 44.99 1.00 57.10	H H	0
	ATOM	2730	SG	CYS H 140	1.704	18.276	41.141	1.00 76.47	H	s
	ATOM	2731	N	LEU H 141	4.548	15.969	42.081	1.00 46.30	H	N
45	MOTA	2732	CA	LEU H 141	4.910	14.580	41.850	1.00 42.12	H	C
	MOTA	2733	ď	LEU H 141	3.646	13.734	41.662	1.00 40.17	H	G
	ATOM	2734	0_	LEU H 141	2.882	13.523	42.601	1.00 39.80 1.00 46.51	H	0
	MOTA	2735 2736	CB CG	LEU H 141 LEU H 141	5.735 6.288	14.055 12.631	43.031 42.945	1.00 46.51	H H	C
50	MOTA MOTA	2737		LEU H 141	7.259	12.570	41.784	1.00 55.61	H	Ğ
00	ATOM	2738		LEU H 141	7.002	12.237	44.232	1.00 52.23	H	Ċ
	MOTA	2739	N	VAL H 142	3.440	13.268	40.432	1.00 38.37	H	N
	MOTA	2740	CA	VAL H 142	2.291	12.450	40.068	1.00 37.81	H	C
	MOTA	2741	C	VAL H 142	2.758	10.999	39.994	1.00 43.46	H	C
55	ATOM	2742	0	VAL H 142	3.168	10.522	38.935	1.00 44.35	H H	0
	MOTA	$\frac{2743}{2744}$	CB CC1	VAL H 142 L VAL H 142	1.729 0.661	12.889 11.913	38.695 38.221	1.00 37.90 1.00 34.13	H	C
	MOTA MOTA	2745		2 VAL H 142	1.149	14.283	38.799	1.00 29.37	H	č
	MOTA	2746	N	LYS H 143	2.684	10.292	41.118	1.00 45.16	H	N
60	MOTA	2747	CA	LYS H 143	3.163	8.920	41.167	1.00 41.48	H	C
	MOTA	2748	C	LYS H 143	2.141	7.798	40.999	1.00 46.30	H	C
	ATOM	2749	0	LYS H 143	1.027	7.834	41.549	1.00 45.34	H	0
	MOTA	2750	CB	LYS H 143	3.939	8.711	42.467	1.00 43.20	H H	C
6F	MOTA MOTA	2751 2752	CG CD	LYS H 143 LYS H 143	4.963 5.743	7.582 7.500	42.413 43.720	1.00 41.99 1.00 42.24	H H	G G
65	ATOM	2753	CE	LYS H 143	6.993	6.653	43.720	1.00 52.65	H	č
	MOTA	2754	NZ	LYS H 143	6.693	5.280	43.090	1.00 67.31	H	Ň
	MOTA	2755	N	GLY H 144	2.549	6.791	40.233	1.00 47.62	H	N
	ATOM	2756	CA	GLY H 144	1.704	5.640	39.988	1.00 52.58	H	С

	"ATOM	2757	С	GLY H	1/1/	0.369	5.882	39.299	1.00 55.82	Н	C
											-
	MOTA	2758	0	GLY H		-0.560	6.422	39.890	1.00 63.65	H	_
	MOTA	2759	\mathbf{N}	TYR H	145	0.283	5.482	38.037	1.00 52.96	H	N
	ATOM	2760	ca	TYR H	145	-0.942	5.599	37.259	1.00 46.96	H	C
5	MOTA	2761	С	TYR H	145	-0.820	4.849	35.930	1.00 44.52	H	C
	MOTA	2762	0	TYR H	145	0.277	4.623	35.418	1.00 43.14	H	
	MOTA	2763	СB	TYR H		-1.302	7.062	37.002	1.00 41.24	H	
	ATOM	2764	CG	TYR H		-0.336	7.807	36.121	1.00 54.18	H	
	MOTA	2765	CD1			0.721	8.522	36.670	1.00 52.12	H	
10	MOTA	2766	CD2	TYR H		-0.501	7.827	34.740	1.00 37.28	H	
	MOTA	2767		TYR H	145	1.586	9.246	35.871	1.00 48.23	H	
	MOTA	2768	CE2	TYR H	145	0.358	8.543	33.934	1.00 45.82	H	C
	MOTA	2769	CZ	TYR H	145	1.399	9.258	34.506	1.00 53.37	H	
	MOTA	2770	OH	TYR H		2.232	10.020	33.716	1.00 51.96	н	
15	ATOM	2771	N	PHE H		-1.963	4.454	35.385	1.00 47.52	H	
13		2772			146	-2.002	3.718	34.133	1.00 40.66	H	
	MOTA		CA								
	MOTA	2773	C	PHE H		-3.418	3.793	33.579	1.00 38.13	H	
	MOTA	2774	0	PHE H		-4.387	3.717	34.324	1.00 37.80	H	
	MOTA	2775	CB	PHE H		-1.600	2.266	34.387	1.00 32.65	H	
20	MOTA	2776	CG	PHE H	146	-1.391	1.468	33.139	1.00 40.82	H	C
	MOTA	2777	CD1	PHE H	146	-2.463	0.908	32.463	1.00 41.99	H	
	ATOM	2778	CD2			-0.119	1.288	32.625	1.00 38.82	H	
	MOTA	2779		PHE H		-2.266	0.188	31.305	1.00 39.34	H	
	MOTA	2780	CE2			0.080	0.567	31.460	1.00 32.29	H	
05											
25	ATOM	2781	CZ	PHE H		-0.995	0.019	30.804	1.00 28.82	H	
	ATOM	2782	N	PRO H		-3.554	3.994	32.262	1.00 41.70	H	
	MOTA	2783	CA	PRO H		-2.444	4.151	31.325	1.00 39.65	H	
	MOTA	2784	C	PRO H	147	-2.207	5.630	31.123	1.00 41.99	H	C
	MOTA	2785	0	PRO H	147	-2.689	6.456	31.898	1.00 39.17	H	. 0
30	ATOM	2786	CB	PRO H	147	-2.986	3.507	30.068	1.00 41.33	н	
	MOTA	2787	ĊĠ	PRO H		-4.403	4.014	30.077	1.00 36.45	H	
		2788	CD	PRO H		-4.829	3.857	31.530	1.00 45.61	H	
	ATOM										
	ATOM	2789	N	GLU H		-1.459	5.961	30.080	1.00 40.49	H	
	MOTA	2790	$^{\rm CA}$	GLU H		-1.200	7.352	29.770	1.00 42.77	H	_
35	MOTA	2791	С	GLU H		-2.481	7.814	29.103	1.00 48.73	H	
	MOTA	2792	0	GLU H	148	-3.292	6.993	28.683	1.00 56.82	H	. 0
	ATOM	2793	CB	GLU H	148	-0.021	7.464	28.809	1.00 41.73	H	С
	MOTA	2794	CG	GLU H	148	1.342	7.286	29.473	1.00 44.10	H	C
	ATOM	2795	CD	GLU H		1.914	8.593	30.018	1.00 54.54	H	
40	ATOM	2796	OE1			1.268	9.240	30.872	1.00 49.74	H	
40	ATOM	2797	OE2			3.021	8.977	29.584	1.00 48.09	H	
	ATOM	2798	N	PRO H		-2.698	9.131	29.018	1.00 48.93	H	
	MOTA	2799	CA	PRO H		-1.771	10.127	29.533	1.00 46.06	H	
	ATOM	2800	С	PRO H		-2.349	10.712	30.808	1.00 46.54	H	
45	ATOM	2801	0	PRO H	149	-3.262	10.155	31.410	1.00 52.02	H	
	MOTA	2802	CB	PRO H	149	-1.760	11.148	28.424	1.00 47.59	H	C
	MOTA	2803	CG	PRO H	149	-3.227	11.241	28.133	1.00 35.29	H	C
	ATOM	2804	CD	PRO H		-3.673	9.775	28.118	1.00 46,53	H	
	MOTA	2805	N	VAL H		-1.797	11.845	31.199	1.00 46.48	H	
50	ATOM	2806	CA	VAL H		-2.239	12.617	32.336	1.00 48.36	H	
JU											
	ATOM	2807	C	VAL H		-1.769	13.975	31.976	1.00 51.53	H	
	ATOM	2808	0	VAL H		-0.866	14.111	31.166	1.00 49.48	H	
	ATOM	2809	CB	VAL H		-1.528	12.172	33.638	1.00 46.55	H	
	MOTA	2810	CG1	VAL H	150	-2.023	10.810	34.129	1.00 52.35	H	C
55	ATOM	2811	CG2	VAL H	150	-0.022	12.133	33.442	1.00 45.34	H	C
	MOTA	2812	N	THR H		-2.457	14.985	32.493	1.00 53.87	H	
	ATOM	2813	CA	THR H		-2.050	16.343	32.179	1.00 52.79	H	
	MOTA	2814	C	THR H		-1.853	17.094	33.467	1.00 53.87	H	
						-2.467		34.480		H	
00	MOTA	2815	0	THR H			16.801		1.00 58.71		
60	MOTA	2816	CB	THR H		-3.167	17.041	31.389	1.00 49.68	H	
	MOTA	2817		THR H		-4.169	17.497	32.300	1.00 68.43	H	
	ATOM	2818	CG2	THR H	151	-3.814	16.082	30.390	1.00 50.57	H	
	MOTA	2819	N	VAL H		-0.916	18.052	33.417	1.00 54.84	H	
	MOTA	2820	CA	VAL H		-0.653	18.890	34.576	1.00 52.95	H	
65	ATOM	2821	C	VAL H		-0.556	20.338	34.132	1.00 52.63	H	
	ATOM	2822	Ö	VAL H		0.044	20.670	33.121	1.00 50.48	H	
	ATOM	2823		VAL H		0.672	18.465	35.236	1.00 51.86	H	
			CB CC1						1.00 31.86		
	MOTA	2824		VAL H		0.613	17.013	35.714			
	MOTA	2825	CG2	VAL H	T27	1.840	18.631	34.275	1.00 53.57	H	C

	ATOM ATOM ATOM	2826 2827 2828	N CA C	THR H THR H THR H	153	-1.249. -1.215 -0.947	21.203 22.630 23.377	34.887 34.594 35.880	1.00 53.77 1.00 56.85 1.00 59.60	H	I C
	ATOM	2829	ŏ	THR H		-1.146	22.862	36.971	1.00 59.00	H H	_
5	MOTA	2830	CB	THR H		-2.589	23.061	34.048	1.00 58.09	H	
*	ATOM	2831		THR H		-3.610	22.721	34.987	1.00 63.79	H	_
	ATOM ATOM	2832 2833	CG2 N	THR H		-2.889 -0.428	22.371 24.607	32.711	1.00 53.38	F	
	ATOM	2834	CA		154	-0.428	25.388	35.743 36.943	1.00 58.56 1.00 59.00	H H	
10	ATOM	2835	C		154	-1.058	26.617	36.985	1.00 65.51	H	
	ATOM	2836	0	TRP H		-1.090	27.437	36.077	1.00 68.44	I:	
	MOTA	2837	CB	TRP H		1.310	25.839	36.936	1.00 58.83	H	
	ATOM ATOM	2838 2839	CG CD1	TRP H		2.220	24.700 23.892	37.226	1.00 63.23	H	-
15	ATOM	2840	CD1		154	2.867 2.606	23.892	36.276 38.526	1.00 63.79 1.00 55.01	H H	
, ,	ATOM	2841	NE1			3.610	22.909	36.827	1.00 52.78	H	
	MOTA	2842	CE2			3.457	23.068	38.283	1.00 53.67	H	
	ATOM	2843	CE3			2.315	24.533	39.802	1.00 48.82	H	
20	ATOM ATOM	2844 2845	CZ2 CZ3			3.988 2.848	22.352 23.811	39.320 40.856	1.00 47.95 1.00 41.43	H	
	ATOM	2846		TRP H		3.692	22.703	40.610	1.00 41.43	H	
	ATOM	2847	N	ASN H		-1.843	26.698	38.075	1.00 67.18	H	
	ATOM	2848	CA	ASN H		-2.816	27.773	38.189	1.00 70.56	H	C
25	ATOM ATOM	2849 2850	C O	ASN H ASN H		-3.788	27.780	37.006	1.00 69.10	H	
2.0	ATOM	2851	CB	ASN H		-4.096 -2.065	28.808 29.103	36.419 38.255	1.00 71.27 1.00 70.76	H H	
	ATOM	2852	CG	ASN H		-1.537	29.314	39.652	1.00 70.70	H	
	MOTA	2853		ASN H	155	-2.077	28.814	40.634	1.00 71.53	H	
00	ATOM	2854		ASN H		-0.448	30.098	39.732	1.00 64.39	H	
30	ATOM ATOM	2855 2856	N CA	SER H SER H		-4.242 -5.245	26.570 26.483	36.631 35.576	1.00 71.92 1.00 71.41	H	-
	ATOM	2857	C	SER H		-4.670	26.875	34.212	1.00 71.41	H H	_
	ATOM	2858	Ō	SER H		-5.371	26.975	33.212	1.00 74.08	H	
	ATOM	2859	CB	SER H		-6.398	27.417	35.949	1.00 74.57	Н	
35	MOTA	2860	OG	SER H		-6.915	27.040	37.226	1.00 75.73	Н	_
	ATOM ATOM	2861 2862	N CA	GLY H		-3.349 -2.698	27.138 27.495	34.201 32.944	1.00 69.68 1.00 67.44	H H	
	ATOM	2863	C	GLY H		-2.203	28.945	32.952	1.00 70.86	H	
	ATOM	2864	0	GLY H		-1.597	29.433	32.006	1.00 67.86	H	
40	ATOM	2865	N	SER H		-2.527	29.647	34.058	1.00 74.60	H	-
	ATOM ATOM	2866 2867	CA C	SER H SER H		-2.075 -0.548	31.029 31.120	34.216 34.273	1.00 82.23 1.00 82.78	H	-
	ATOM	2868	Ö	SER H		0.060	32.135	33.958	1.00 82.78 1.00 85.81	H H	-
	ATOM	2869	CB	SER H		-2.678	31.578	35.513	1.00 83.01	H	
45	ATOM	2870	OG	SER H		-2.040	30.961	36.632	1.00 99.77	H	
	ATOM ATOM	2871 2872	N CA	LEU H LEU H		0.069 1.525	30.015	34.734	1.00 82.52	H	
	ATOM	2873	CA	LEU H		2.021	29.954 29.704	34.677 33.252	1.00 82.36 1.00 86.99	H H	-
	ATOM	2874	ŏ	LEU H	159	2.025	28.590	32.747	1.00 79.57	H	
50	ATOM	2875	CB	LEU H		1.993	28.822	35.593	1.00 81.28	H	С
	MOTA MOTA	2876 2877	CG CD1	LEU H		1.795	29.147	37.075	1.00 79.39	H	
	ATOM	2878		LEU H		2.518 2.313	28.155 30.535	37.989 37.455	1.00 93.68 1.00 62.45	H H	
	ATOM	2879	N	SER H		2.414	30.808	32.585	1.00 02.43	H	
55	ATOM	2880	CA	SER H	160	2.816	30.704	31.185	1.00 96.23	H	
	ATOM	2881	C	SER H		3.963	29.706	31.006	1.00 92.96	H	C
	ATOM ATOM	2882 2883	O CB	SER H SER H		3.782 3.255	28.495 32.089	30.993	1.00 88.20 1.00102.14	H	
	ATOM	2884	OG	SER H		3.409	32.948	30.707 31.837	1.00102.14	H H	
60	ATOM	2885	N	SER H	161	5.176	30.264	30.814	1.00 89.77	H	
	MOTA	2886	CA	SER H	161	6.356	29.411	30.734	1.00 86.56	H	C
	ATOM	2887	C	SER H		7.054	29.317	32.093	1.00 77.91	H	
	ATOM ATOM	2888 2889	O CB	SER H SER H		6.63 <u>4</u> 7.309	29.900 30.008	33.083 29.700	1.00 71.05 1.00 92.32	H	
65	ATOM	2890	OG	SER H		7.193	29.283	28.475	1.00 92.32	H H	
	MOTA	2891	N	GLY H	162	8.133	28.513	32.130	1.00 69.90	н	
	ATOM	2892	CA	GLY H		8.873	28.369	33.379	1.00 63.56	H	С
	ATOM ATOM	2893 2894	C O	GLY H		8.509 9.024	27.071	34.104	1.00 59.46	H	
	AT ON	40J 4	J	ם זות	4.02	J.U44	26.747	35.165	1.00 61.58	H	0

	ATOM	2895	N	VAL H	163	7.550	26.337	33.511	1.00 56.46	F	ı N	
	MOTA	2896	CA	VAL H		7.159	25.060	34.093	1.00 51.91		I C	
	MOTA	2897	C	VAL H		7.695	23.886	33.267	1.00 46.10		ı c	
	ATOM	2898	õ	VAL H		7.597	23.847	32.048	1.00 54.99		- 0	
5	MOTA	2899	ČВ	VAL H		5.632	25.007	34.142	1.00 56.36		ı c	
3	MOTA	2900		VAL H		5.049	26.077	33.222	1.00 41.84		i C	
		2901		VAL H		5.145	23.641	33.693	1.00 37.01		-	
	MOTA								1.00 37.01		-	
	ATOM	2902	N	HIS H		8.321	22.926	33.973			I N	
	MOTA	2903	CA	HIS H		8.861	21.764	33.277	1.00 38.20		I C	
10	MOTA	2904	C	HIS H		8.049	20.502	33.578	1.00 39.02		H C	
	ATOM	2905	0	HIS H		7.976	20.032	34.706	1.00 45.91		O I	
	MOTA	2906	CB	HIS H		10.313	21.577	33.717	1.00 47.41		H C	
	MOTA	2907	CG	HIS H		11.186	22.595	33.029	1.00 50.39		H C	
	MOTA	2908	ND1	HIS H	164	11.185	22.791	31.687	1.00 44.32	I	I	
15	ATOM	2909	CD2	HIS H	164	12.121	23.462	33.604	1.00 55.52	I	H C	
	MOTA	2910		HIS H		12.100	23.754	31.461	1.00 48.81	F	H C	
	MOTA	2911	NE2	HIS H	164	12.675	24.174	32.590	1.00 54.09	I	H N	
	MOTA	2912	N	THR H	165	7.370	19.928	32.580	1.00 38.94	I	H N	
	MOTA	2913	ca	THR H	165	6.670	18.686	32.816	1.00 34.58	I	H C	
20	MOTA	2914	C	THR H		7.399	17.560	32.128	1.00 34.70	I	H C	
	ATOM	2915	Õ	THR H		7.479	17.480	30.909	1.00 36.98		O E	
	ATOM	2916	ČВ	THR H		5.254	18.805	32.243	1.00 29.54		H C	
	MOTA	2917	OG1			4.542	19.815	32.962	1.00 26.80		O	
	MOTA	2918	CG2			4.511	17.466	32.408	1.00 30.37		H C	
25	ATOM	2919	N	PHE H		8.006	16.715	32.970	1.00 33.46		i N	
20	ATOM	2920	CA	PHE H		8.843	15.652	32.438	1.00 30.02		H C	
	ATOM	2921	C	PHE H		8.045	14.422	32.045	1.00 34.42		H C	
		2922	0	PHE H		7.017	14.068	32.608	1.00 34.42			
	ATOM	2923		PHE H		9.859	15.259	33.516	1.00 30.92			
20	ATOM		CB			10.715	16.432	33.877	1.00 30.92			
30	ATOM	2924	CG	PHE H							H C	
	ATOM	2925		PHE H		11.915	16.636	33.210	1.00 29.02		H C	
	MOTA	2926		PHE H		10.295	17.316	34.855	1.00 31.79		H C	
	ATOM	2927		PHE H		12.682	17.749	33.512	1.00 31.45		H C	
	MOTA	2928	CE2			11.072	18.429	35.148	1.00 24.79		H C	
35	MOTA	2929	$^{\rm CZ}$	PHE H		12.266	18.654	34.478	1.00 30.14		H C	
	MOTA	2930	N	PRO H		8.539	13.777	31.009	1.00 39.29		H N	
	MOTA	2931	$^{\rm CA}$	PRO H		7.977	12.558	30.445	1.00 42.13		H C	
	MOTA	2932	С	PRO H		7.936	11.450	31.506	1.00 47.73		H C	
	MOTA	2933	0	PRO H	167	8.821	11.347	32.335	1.00 56.66	I	O E	
40	ATOM	2934	CB	PRO H	167	8.910	12.175	29.309	1.00 45.03	I	H C	
	MOTA	2935	ÇG	PRO H	167	9.508	13.500	28.826	1.00 46.59	I	H C	
	MOTA	2936	CD	PRO H	167	9.720	14.174	30.268	1.00 34.51]	H C	,
	MOTA	2937	N	ALA H	168	6.837	10.656	31.518	1.00 45.33	I	H N	i
	ATOM	2938	CA	ALA H	168	6.700	9.658	32.569	1.00 42.85	I	H C	,
45	ATOM	2939	С	ALA H	168	7.589	8.447	32.291	1.00 42.34	1	H C	
	MOTA	2940	Ó	ALA H		7.978	8.165	31.165	1.00 39.56]	O F	
	ATOM	2941		ALA H		5.236	9.220	32.623	1.00 37.42	I	H C	
	ATOM	2942	N	VAL H		7.951	7.746	33.381	1.00 41.75		H N	
	ATOM	2943	CA	VAL H		8.708	6.508	33.239	1.00 41.72		H C	
50	MOTA	2944	CB	VAL H		9.960	6.609	34.111	1.00 45.04		H Č	
•	ATOM	2945		VAL H		10.743	5.299	34.055	1.00 58.27		H C	
	MOTA	2946		VAL H		10.845	7.742	33.624	1.00 43.30		i Č	
	MOTA	2947	0	VAL H		7.107	5.322	34.609	1.00 47.89		O E	
	MOTA	2948	N	LEU H		8.029	4.209	32.879	1.00 47.24		H N	
55		2949	CA	LEU H		7.293	2.994	33.196	1.00 47.57		H C	
55	MOTA			LEU H					1.00 47.57			
	MOTA	2950	C			8.099	2.072	34.110				
	ATOM	2951	O	LEU H		9.213	1.663	33.813	1.00 53.71		O E	
	ATOM	2952	CB	LEU H		6.966	2.273	31.889	1.00 49.56		H C	
	MOTA	2953	CG	LEU H		5.944	1.151	32.084	1.00 43.50		H C	
60	MOTA	2954		LEU H		4.717	1.614	32.875	1.00 47.61		H C	
	MOTA	2955		LEU H		5.417	0.594	30.761	1.00 40.91		H C	
	ATOM	2956	N	GLU H		7.509	1.787	35.285	1.00 55.65		H N	
	MOTA	2957	CA	GLU H		8.159	0.876	36.217	1.00 68.14		H C	
_	MOTA	2958	С	GLU H		7.197	-0.226	36.666	1.00 67.74		H C	
65	ATOM	2959	0	GLU H		6.098	0.029	37.140	1.00 65.41		O F	
	ATOM	2960	CB	GLU H		8.626	1.686	37.428	1.00 72.43		H C	
	MOTA	2961	CG	GLU H		9.934	1.159	38.021	1.00 91.59		H C	
	MOTA	2962	$^{\rm CD}$	GLU H		10.146	1.768	39.388	1.00120.67		H C	
	MOTA	2963	OE1	GLU H	171	11.228	1.613	39.940	1.00130.29	1	O E	ŀ

	MOTA	2964		GLU H			.216	2.391	39.899	1.00122.92	H	0
	ATOM	2965	N	SER H			.611	-1.486	36.449	1.00 72.50	H	N
	MOTA	2966	CA	SER H			.698	-2.576	36.764	1.00 78.89	H	C
	ATOM	.2967	C	SER H	172	5	.564	-2.629	35.737	1.00 79.78	H	С
5	MOTA	2968	0	SER H	172	5	.392	-3.582	34.986	1,00 87,21	H	0
	ATOM	2969	CB	SER H	172	6	.099	-2.293	38,141	1,00 79,72	H	C
	MOTA	2970	OG	SER H	172		.766	-1.804	37.968	1.00 80.07	H	ō
	ATOM	2971	N	ASP H			.739	-1.563	35.781	1.00 74.99	H	N
	ATOM	2972	CA	ASP H			.654	-1.391	34.824			
10		2973								1.00 72.78	H	C
10	ATOM		C	ASP H			.866	-0.123	35.157	1.00 65.42	H	C
	ATOM	2974	0_	ASP H			.678	0.008	34.893	1.00 59.35	H	0
	MOTA	2975	CB	ASP H			.748	-2.625	34.859	1.00 81.69	H	С
	ATOM	2976	CG	ASP H	173	2	.371	-3.008	33.430	1.00 97.36	H	С
	ATOM	2977	OD1	ASP H	173	2	.070	-2.099	32.654	1.00108.23	H	0
15	ATOM	2978	OD2	ASP H	173	2	.357	-4.193	33,120	1,00106.64	H	Ō
	ATOM	2979	N	LEU H	174		.586	0.813	35.796	1.00 63.54	H	Ň
	ATOM	2980	CA	LEU H			.969	2.059	36.232	1.00 55.65	H	Ç
	ATOM	2981	C	LEU H			.798	3.286	35.812	1.00 51.40		
	ATOM	2982		LEU H							H	C
00			O				.019	3.255	35.734	1.00 54.33	H	0
20	ATOM	2983	CB	LEU H			.819	2.014	37.760	1.00 54.66	H	C
	MOTA	2984	CG	LEU H			.767	0.993	38.222	1.00 48.08	H	С
	ATOM	2985		LEU H			.941	0.589	39.689	1.00 53.16	H	C
	MOTA	2986	CD2	LEU H		0	.335	1.512	38.091	1.00 59.23	H	C
	ATOM	2987	N	TYR H	175	3	.150	4.419	35.548	1.00 43.17	H	N
25	MOTA	2988	CA	TYR H	175	3	.870	5.631	35.150	1.00 41.68	H	C
	ATOM	2989	C	TYR H			.025	6.621	36.287	1.00 40.74	H	č
	ATOM	2990	ŏ	TYR H			.233	6.637	37.226	1.00 36.93	H	ŏ
	ATOM	2991	СВ	TYR H			.156	6.354	33.997			
										1.00 47.72	H	C
00	ATOM	2992	CG	TYR H			.166	5.631	32.667	1.00 53.98	H	C
30	MOTA	2993		TYR H			.346	5.452	31.955	1.00 51.27	H	C
	ATOM	2994	CD2				.992	5.105	32.137	1.00 47.22	H	С
	MOTA	2995	CE1	TYR H	175	4	.354	4.764	30.754	1.00 58.28	H	С
	ATOM	2996	CE2	TYR H	175	1	.992	4.418	30.948	1.00 54.50	H	C
	MOTA	2997	CZ	TYR H	175	3	.171	4.243	30.257	1.00 55.81	Н	Ċ
35	ATOM	2998	OH	TYR H			.166	3.509	29.089	1.00 41.75	H	ŏ
-	ATOM	2999	N	THR H			.058	7.452	36.171	1.00 41.73	H	
	ATOM	3000		THR H			.362					N
			CA					8.499	37.139	1.00 38.73	H	C
	ATOM	3001	C	THR H			.921	9.671	36.350	1.00 41.82	H	C
	ATOM	3002	0	THR H			.933	9.528	35.645	1.00 36.33	H	0
40	ATOM	3003	$^{\rm CB}$	THR H			.468	8.094	38.131	1.00 41.02	H	C
	MOTA	3004	OG1	THR H	176	6.	.251	6.754	38.592	1.00 49.99	H	0
	MOTA	3005	CG2	THR H	176	6	.480	9.045	39.310	1.00 36.35	H	C
	MOTA	3006	N	LEU H	177	5	.268	10.822	36.439	1.00 38.99	Н	N
	ATOM	3007	CA	LEU H	177		.783	11.982	35.743	1.00 33.71	H	C
45	ATOM	3008	C	LEU H			.070	12.988	36.820	1.00 32.17	H	č
	ATOM	3009	ŏ	LEU H			.689	12.796	37.962	1.00 32.19	H	ŏ
	ATOM	3010	СВ	LEU H			.779	12.526	34.729	1.00 30.29		
											H	C
	MOTA	3011	CG	LEU H	177		.660	13.499	35.078	1.00 31.11	H	C
	ATOM	3012	CDI	LEU H	T / /		.186	14.867	35.498	1.00 32.05	H	C
50	ATOM	3013		LEU H			.830	13.652	33.831	1.00 37.80	H	С
	ATOM	3014	N	SER H			.751	14.060	36.463	1.00 37.29	H	N
	MOTA	3015	CA	SER H	178	7.	.105	15.065	37.440	1.00 36.26	H	C
	ATOM	3016	C	SER H	178	6.	.994	16.416	36.761	1.00 40.62	H	C
	MOTA	3017	0	SER H			.258	16.532	35.562	1.00 37.73	H	ō
55	ATOM	3018	СВ	SER H			.534	14.831	37.906	1.00 33.83	H	Č
-	ATOM	3019	OG	SER H			.654					
		3020						15.142	39.273	1.00 53.70	H	0
	ATOM		N	SER H			.600	17.437	37.511	1.00 35.74	H	N
	ATOM	3021	CA	SER H			.437	18.737	36.871	1.00 36.88	H	C
	MOTA	3022	C	SER H			.953	19.862	37.767	1.00 39.97	H	C
60	ATOM	3023	0	SER H			.677	19.929	38.957	1.00 43.93	H	0
	ATOM	3024	CB	SER H	179	4.	.951	18.948	36.573	1.00 41.66	H	C
	ATOM	3025	OG	SER H			.812	19.938	35.551	1.00 41.44	H	ō
	MOTA	3026	N	SER H			.770	20.740	37.161	1.00 44.77	H	И
	ATOM	3027	ČA	SER H			.376	21.808	37.101	1.00 47.17	H	
65	ATOM	3028	C	SER H			.933	23.189	37.460	1.00 47.17		C
33		3028									H	C
	MOTA		O	SER H			.776	23.451	36.275	1.00 56.63	H	0
	ATOM	3030	CB	SER H			. 893	21.679	37.813	1.00 46.70	H	C
	ATOM	3031	OG	SER H			300	22.191	36.544	1.00 39.66	H	0
	ATOM	3032	N	H LAV	181	7.	.692	24.080	38.438	1.00 54.79	H	N

	ATOM ATOM ATOM	3033 3034 3035	CA C O	VAL H 1 VAL H 1	181 181	7.318 8.212 8.466	26.458 26.375	38.796 39.990	1.00 50.47	H H	I C
5	ATOM ATOM ATOM ATOM	3036 3037 3038 3039	CG N	1 VAL H 1 2 VAL H 1 THR H 1	181 181 182	5.862 5.748 5.365 8.750	25.673 26.985	40.024 37.951	1.00 47.12 1.00 39.28	H H H	1 C
10	ATOM ATOM ATOM ATOM	3040 3041 3042 3043	CA C O CB	THR H 1 THR H 1	L82 L82	9.638 8.954 8.259 10.948	28.427 29.788 30.134 28.523	38.599 38.586 37.629	1.00 48.08 1.00 51.63	H H H	1 C
15	ATOM ATOM ATOM ATOM	3044 3045 3046 3047		1 THR H 1 2 THR H 1 VAL H 1	182 182 183	11.621 11.855 9.161	27.264 29.590 30.555	37.831 38.363 39.653	1.00 51.81 1.00 29.17 1.00 56.66	H H H	C N
	MOTA MOTA MOTA	3048 3049 3050	С О СВ	VAL H 1 VAL H 1 VAL H 1	.83 .83 .83	8.566 9.449 10.231 7.199	31.882 32.755 32.257 31.834	39.791 40.650 41.454 40.508	1.00 57.17 1.00 59.90 1.00 59.55 1.00 58.93	н н н н	CO
20	ATOM ATOM ATOM ATOM	3051 3052 3053 3054		1 VAL H 1 2 VAL H 1 PRO H 1 PRO H 1	.83 .84	6.271 7.403 9.329 10.142	30.839 31.475 34.080 34.990	39.826 41.971 40.496 41.300	1.00 61.72 1.00 41.35 1.00 66.40 1.00 66.49	н н н	C C N
25	MOTA MOTA MOTA MOTA	3055 3056 3057 3058	C O CB CG	PRO H 1 PRO H 1 PRO H 1	.84 .84 .84	9.825 8.738 9.673	34.725 34.249 36.367	42.765 43.093 40.841	1.00 67.25 1.00 66.00 1.00 64.64	н н н н	C O
	ATOM MOTA MOTA	3059 3060 3061	CD N CA	PRO H 1 PRO H 1 SER H 1 SER H 1	84 85	9.314 8.552 10.779 10.586	36.132 34.825 35.012 34.790	39.408 39.491 43.640 45.061	1.00 71.49 1.00 70.81 1.00 66.78 1.00 67.40	н н н	N C C
30	ATOM ATOM ATOM ATOM	3062 3063 3064	C O CB	SER H 1 SER H 1 SER H 1	85 85	9.352 8.673 11.827	35.537 35.081 35.245	45.572 46.492 45.817	1.00 72.49 1.00 73.45 1.00 66.63	н н н н	C 0
35	ATOM ATOM ATOM	3065 3066 3067 3068	OG N CA C	SER H 1 SER H 1 SER H 1 SER H 1	86 86	12.993 9.061 7.904 6.633	34.763 36.689 37.461 36.611	45.181 44.977 45.399 45.310	1.00 65.52 1.00 72.88 1.00 76.17	н н н	C N O
40	ATOM ATOM ATOM	3069 3070 3071	O CB OG	SER H 1 SER H 1 SER H 1	86 86 86	6.016 7.768 8.710	36.312 38.737 38.758	46.336 44.554 43.495	1.00 78.37 1.00 80.30 1.00 75.54 1.00 64.86	н н н н	0000
40	ATOM ATOM ATOM ATOM	3072 3073 3074 3075	N CA C O	PRO H 18 PRO H 18 PRO H 18 PRO H 18	87 87	6.246 5.051 4.756	36.185 35.367 34.323	44.089 43.859 44.928	1.00 75.34 1.00 69.64 1.00 66.91	Н Н Н	N C C
45	ATOM ATOM ATOM	3076 3077 3078	CB CG CD	PRO H 18 PRO H 18 PRO H 18	87 87	3.648 5.332 6.029 6.996	34.269 34.736 35.838 36.358	45.451 42.502 41.782 42.829	1.00 68.67 1.00 71.74 1.00 71.69 1.00 78.09	н н н н	0 0 0
50	MOTA MOTA ATOM ATOM	3079 3080 3081 3082	N CA C	ARG H 18 ARG H 18 ARG H 18	88 88	5.745 5.568 6.649	33.496 32.446 32.600	45.251 46.255 47.319	1.00 65.41 1.00 66.06 1.00 71.72	H H H	C N
00	ATOM ATOM ATOM	3082 3083 3084 3085	CB CB CD	ARG H 18 ARG H 18 ARG H 18 ARG H 18	38 38	7.776 5.680 4.610 4.956	32.982 31.070 30.050 29.292	47.017 45.583 45.956 47.212	1.00 73.68 1.00 63.16 1.00 47.34	H H H	С С
55	ATOM ATOM ATOM	3086 3087 3088	NE CZ NH1	ARG H 18 ARG H 18 ARG H 18	38 38 38	6.371 6.941 6.221	28.942 28.200 27.717	47.242 48.185 49.188	1.00 42.91 1.00 58.37 1.00 63.59 1.00 58.02	H H H H	С И С И
60	ATOM ATOM ATOM ATOM	3089 3090 3091 3092	NH2 N CA C	ARG H 18 PRO H 18 PRO H 18 PRO H 18	39 39	8.239 6.324 5.021	27.947 32.290 31.810	48.132 48.581 49.055	1.00 75.00 1.00 73.56 1.00 76.25	H H H	N N C
	ATOM ATOM ATOM	3093 3094 3095	O CB CG	PRO H 18 PRO H 18 PRO H 18	39 39	4.006 3.307 5.400 6.524	32.893 32.775 30.964 31.757	49.415 50.421 50.263 50.848	1.00 80.21 1.00 86.41 1.00 76.00 1.00 75.53	Н Н Н Н	0 0 0
65	ATOM ATOM ATOM	3097 3098	CD N CA	PRO H 18 SER H 19 SER H 19	39 90 90	7.346 3.915 2.963	32.143 33.940 35.010	49.633 48.603 48.879	1.00 74.81 1.00 80.77 1.00 82.18	H H H	С С С
	ATOM ATOM ATOM	3100	C O CB	SER H 19 SER H 19 SER H 19	0	1.719 0.702 3.578	34.817 35.464 36.377	48.030 48.254 48.571	1.00 81.86 1.00 81.36 1.00 83.27	Н Н Н	C C

	ATOM	3102	OG	SER H	190	3.707	36.570	47.174	1.00 87.49	,	Ħ	0
	ATOM	3102	N	GLU H		1.811	33.924	47.052	1.00 81.18			N
	ATOM	3104	CA	GLU H		0.694	33.642	46.162	1.00 80.63			C
	ATOM	3105	C	GLU H		0.523	32.143	45.934	1.00 82.13			č
5	MOTA	3106	ō	GLU H		1.465	31.447	45.558	1.00 80.46	3		0
	ATOM	3107	СВ	GLU H	191	0.903	34.334	44.820	1.00 81.67	3		С
	MOTA	3108	CG	GLU H		0.887	35.844	44.879	1.00 78.66			С
	ATOM	3109	CD	GLU H		1.138	36.466	43.518	1.00 84.10			C
	MOTA	3110	OE1			0.440	36.081	42.552	1.00 79.16			0
10	ATOM	3111	OE2	GLU H		2.028	37.338	43.417	1.00 84.64			0
	MOTA	3112	N	THR H		-0.697 -1.035	31.665 30.254	46.150 45.998	1.00 82.97 1.00 82.00			Ŋ
	ATOM ATOM	3113 3114	CA C	THR H		-0.683	29.609	44.663	1.00 82.00			C C
	MOTA	3115	Ö	THR H		-1.405	29.767	43.679	1.00 80.71			Ö
15	ATOM	3116	СВ	THR H		-2.536	30.021	46.230	1.00 80.05			Č
	ATOM	3117	OG1			-2.869	30.370	47.577	1.00 88.12			Ō
	MOTA	3118	CG2	THR H	192	-2.895	28.569	45.978	1.00 78.28	;	H	C
	MOTA	3119	N	VAL H		0.426	28.877	44.636	1.00 75.98			N
	ATOM	3120	CA	VAL H		0.836	28.165	43.432	1.00 68.25			Č
20	MOTA	3121	C	VAL H		0.149	26.807	43.529	1.00 65.36			C
	MOTA	3122	0	VAL H		0.328 2.360	26.087 27.972	44.509 43.384	1.00 64.64 1.00 66.83			С О
	ATOM ATOM	3123 3124	CB CC1	VAL H VAL H		2.718	27.022	42.265	1.00 70.86			C
	ATOM	3125		VAL H		3.046	29.313	43.170	1.00 66.13			C
25	MOTA	3126	N	THR H		-0.644	26.455	42.525	1.00 64.29			N
	ATOM	3127	CA	THR H		-1.364	25.190	42.575	1.00 65.18			C
	MOTA	3128	C	THR H	194	-1.173	24.250	41.390	1.00 63.54			C
	MOTA	3129	0	THR H		-1.145	24.670	40.237	1.00 64.27			0
	MOTA	3130	CB	THR H		-2.869	25.437	42.752	1.00 65.84			C
30	ATOM	3131	OG1			-3.085	26.186	43.952	1.00 67.51			0
	MOTA	3132 3133	CG2	THR H		-3.622 -1.068	24.110 22.964	42.825 41.702	1.00 67.60 1.00 60.79			N
	ATOM ATOM	3134	N CA	CYS H		-0.878	21.930	40.699	1.00 61.12			Ç.
	ATOM	3135	C	CYS H		-2.215	21.268	40.365	1.00 57.72			Č
35	ATOM	3136	ŏ	CYS H		-2.912	20.771	41.248	1.00 56.12			ŏ
	MOTA	3137	CB	CYS H		0.124	20.891	41.222	1.00 60.88			C
	ATOM	3138	SG	CYS H		0.445	19.499	40.098	1.00 74.47		H	S
	MOTA	3139	N	ASN H		-2.559	21.265	39.081	1.00 52.67			N
	MOTA	3140	CA	ASN H		-3.807	20.682	38.606	1.00 53.59			C
40	MOTA	3141	C	ASN H		-3.467	19.433	37.787	1.00 52.35 1.00 51.73			C
	MOTA MOTA	3142 3143	O CB	ASN H ASN H		-2.757 -4.535	19.523 21.701	36.785 37.728	1.00 51.73			0
	MOTA	3144	CG	ASN H		-4.395	23.130	38.247	1.00 62.00			C
	MOTA	3145	OD1			-4.161	24.061	37.472	1.00 67.81			ŏ
45	MOTA	3146		ASN H		-4.541	23.310	39.556	1.00 65.11		H	N
	MOTA	3147	N	VAL H		-3.982	18.276	38.199	1.00 49.58		H	N
	MOTA	3148	CA	VAL H		-3.689	17.016	37.512	1.00 46.57		H	C
	ATOM	3149	C	VAL H		-4.930	16.190	37.159	1.00 48.56			Č
E0	MOTA	3150 3151	0	H JAV		-5.888 -2.750	16.135 16.143	37.925 38.381	1.00 53.48 1.00 44.48			C
50	MOTA MOTA	3152	CB	VAL H VAL H		-2.750 -2.412	14.851	37.666	1.00 39.07			C
	MOTA	3153		VAL H		-1.495	16.923	38.718	1.00 37.49		H	Č
	ATOM	3154	N	ALA H		-4.897	15.532	36.002	1.00 49.52			N
	ATOM	3155	CA	ALA H		-6.021	14.717	35.551	1.00 48.53			C
55	ATOM	3156	C	ALA H		-5.610	13.434	34.832	1.00 51.07			C
	MOTA	3157	0	ALA H		-4.711	13.441	33.993	1.00 55.91			0
	MOTA	3158	СВ	ALA H		-6.910	15.543	34.643	1.00 48.57			C
	MOTA	3159	N	HIS H		-6.281	12.336	35.174	1.00 54.83 1.00 51.27			N
60	MOTA MOTA	3160 3161	CA C	HIS H		-6.037 -7.384	11.031 10.385	34.561 34.250	1.00 51.27			G G
00	ATOM	3162	Ö	HIS H		-7.882	9.555	35.002	1.00 46.18			Ö
	ATOM	3163	СВ	HIS H		-5.218	10.138	35.496	1.00 47.91			č
	MOTA	3164	CG	HIS H		-5.003	8.745	34.982	1.00 42.99			Č
	MOTA	3165		HIS H		-5.849	7.699	35.281	1.00 52.90		H	N
65	MOTA	3166		HIS H		-4.026	8.221	34.203	1.00 52.68			C
	MOTA	3167	CE1	HIS H	199	-5.403	6.593	34.713	1.00 50.68			C
	MOTA	3168		HIS H		-4.297	6.882	34.053	1.00 47.65			N
	ATOM	3169	N	PRO H		-7.989 -9.277	10.778 10.323	33.120 32.593	1.00 58.59 1.00 60.75			C
	MOTA	3170	CA	PRO H	∠∪∪	-9.277	10.343	24.333	T.00 00.75			_

	a										
	ATOM	3171	С	PRO H	200	-9.504	8.822	32.689	1.00 60.27	Н	С
	MOTA	3172	0	PRO H		~10.551	8.376	33.152	1.00 64.21	H	0
	MOTA	3173	CB	PRO H	200	-9.236	10.800	31.146	1.00 61.93	H	C
	ATOM	3174	CG	PRO H	200	-8.483	12.082	31.255	1.00 60.39	H	C
											
5	MOTA	3175	$^{\rm CD}$	PRO H		-7.342	11.699	32.167	1.00 60.10	H	C
	MOTA	3176	\mathbf{N}	ALA H	201	-8.523	8.047	32.244	1.00 57.28	H	N
	MOTA	3177	CA	ALA H	201	-8.632	6.600	32.269	1.00 57.95	H	C
									-		
	ATOM	3178	C	ALA H		-9.267	6.127	33.578	1.00 64.27	H	C
	ATOM	3179	0	ALA H	201	-9.869	5.054	33.641	1.00 67.28	H	0
10	MOTA	3180	CB	ALA H	201	-7.263	5.979	32.079	1.00 53.21	H	С
10		3181		SER H		-9.135	6.936	34.620	1.00 64.03	H	Ŋ
	MOTA		N								
	MOTA	3182	ca	SER H	202	-9.708	6.603	35.912	1.00 67.56	H	C
	MOTA	3183	C	SER H	202	~10.529	7.790	36.400	1.00 71.63	H	C
	MOTA	3184	Õ	SER H		-11.048	7.783	37.516	1.00 75.10	H	· Ö
15	ATOM	3185	$^{\mathrm{CB}}$	SER H		-8.602	6.301	36.919	1.00 68.02	H	С
	MOTA	3186	OG	SER H	202	-7.878	7.475	37.234	1.00 60.70	H	0
	MOTA	3187	N	SER H		-10.639	8.809	35.552	1.00 73.88	H	N
	ATOM	3188	ca	SER H		-11.383	10.014	35.887	1.00 75.67	H	Ċ
	ATOM	3189	C	SER H	203	-10.951	10.512	37.253	1.00 70.02	H	С
20	MOTA	3190	0	SER H	203	-11.738	10.537	38.190	1.00 70.12	H	0
20								35.888			
	MOTA	3191	CB	SER H		-12.888	9.732		1.00 81.76	H	C
	ATOM	3192	OG	SER H	203	-13.367	9.502	34.571	1.00 92.44	H	0
	MOTA	3193	N	THR H	204	-9.690	10.908	37.353	1.00 69.13	H	N
	MOTA	3194	CA	THR H		-9.129	11.395	38.602	1.00 68.07	H	Ċ
25	MOTA	3195	C	THR H		-8.638	12.825	38.462	1.00 69.60	H	C
	MOTA	3196	0	THR H	204	-7.549	13.069	37.955	1.00 75.93	H	0
	ATOM	3197	СB	THR H		-7.941	10.523	39.038	1.00 67.90	H	C
	MOTA	3198	OG1	THR H	204	-8.377	9.169	39.197	1.00 69.69	H	0
	ATOM	3199	CG2	THR H	204	-7.367	11.021	40.346	1.00 68.98	H	C
30	MOTA	3200	N	LYS H		-9.444	13.779	38.899	1.00 71.84	H	N
30											
	MOTA	3201	CA	LYS H		-9.041	15.171	38.824	1.00 72.92	H	C
	MOTA	3202	C	LYS H	205	-8.508	15.512	40.206	1.00 70.26	H	C
	ATOM	3203	0	LYS H		-9.036	15.027	41.200	1.00 70.61	H	0
	MOTA	3204	CB	LYS H		-10.240	16.055	38.479	1.00 76.81	H	C
35	MOTA	3205	CG	LYS H	205	-9.928	17.541	38.480	1.00 93.84	Ħ	C
	ATOM	3206	CD	LYS H	205	-11.159	18.374	38.140	1.00119.23	H	C
		3207				-10.866	19.875	38.218	1.00127.13	H	č
	ATOM		CE	LYS H							
	MOTA	3208	NZ	LYS H	205	-10.500	20.334	39.593	1.00118.10	H	N
	MOTA	3209	N	VAL H	206	-7.455	16.323	40.273	1.00 71.24	H	N
40	ATOM	3210	CA	VAL H		-6.865	16.710	41.554	1.00 65.47	H	C
40											
	MOTA	3211	С	VAL H		-6.097	18.015	41.458	1.00 66.88	H	C
	ATOM	3212	0	VAL H	206	-5.419	18.270	40.464	1.00 63.59	H	0
	MOTA	3213	CB	VAL H	206	-5.879	15.648	42.080	1.00 60.18	H	C
								43.341			Č
	ATOM	3214		VAL H		-5.211	16.151		1.00 59.04	H	
45	MOTA	3215	CG2	VAL H		-6.595	14.354	42.363	1.00 58.52	H	C
	ATOM	3216	N	ASP H	207	-6.211	18.835	42.502	1.00 70.84	H	N
	ATOM	3217		ASP H		-5.512	20.119	42.581	1.00 72.83	H	Ċ
	ATOM	3218	С	ASP H	207	-4.636	20.118	43.832	1.00 72.60	H	С
	ATOM	3219	0	ASP H	207	-5.119	19.821	44.927	1.00 75.84	H	0
50	MOTA	3220	CB	ASP H		-6.511	21.278	42.659	1.00 71.33	H	C
-00											
	ATOM	3221	CG	ASP H		-7.287	21.477	41.364	1.00 77.68	H	C
	MOTA	3222	OD1	. ASP H	207	-6.681	21.899	40.354	1.00 80.92	H	0
	MOTA	3223	002	ASP H	207	-8.508	21.207	41.352	1.00 90.49	H	0
								43.672			
	MOTA	3224	N	LYS H		-3.353	20.439		1.00 71.66	H	N
55	ATOM	3225	CA	LYS H	208	-2.431	20.471	44.805	1.00 67.72	H	C
	MOTA	3226	С	LYS H	208	-1.774	21.829	45.029	1.00 67.29	H	C
							22.387			H	
	MOTA	3227	0	LYS H		-1.123		44.143	1.00 60.51		0
	ATOM	3228	CB	LYS H	208	-1.348	19.408	44.645	1.00 61.97	H	C
	MOTA	3229	CG	LYS H		-1.885	18.004	44.650	1.00 70.11	H	C
60		3230		LYS H		-2.596	17.706	45.952	1.00 79.56	H	Č
OU.	MOTA		CD								
	MOTA	3231	CE	LYS H		-1.633	17.728	47.136	1.00 79.20	H	C
	MOTA	3232	NZ	LYS H	208	-2.313	17.296	48.397	1.00 74.65	H	N
	MOTA	3233	N	LYS H		-1.959	22.348	46.235	1.00 68.04	H	N
	MOTA	3234	$^{\mathrm{CA}}$	LYS H		-1.396	23.624	46.632	1.00 68.05	H	C
65	MOTA	3235	C	LYS H	209	-0.056	23.336	47.309	1.00 68.52	H	C
	ATOM	3236	Ö	LYS H		0.067	22.404	48.111	1.00 68.41	H	0
										H	
	MOTA	3237	CB	LYS H		-2.364	24.326	47.594	1.00 69.90		č
	MOTA	3238	CG	LYS H		-1.838	25.586	48.257	1.00 66.76	H	C
	ATOM	3239	CD	LYS H		-2.792	26.024	49.348	1.00 78.35	H	С
											_

	ATOM MOTA	3240 3241	CE NZ		1 209 1 209	-2.194 -3.031	27.115 27.382	50.220 51.432	1.00 94.10 1.00 96.38	H H	C N
	ATOM	3242	N		1 210 1 210	0.948	24.135	46.975	1.00 69.42	H	N
5	ATOM ATOM	3243 3244	CA C		1 210	2.323 2.654	23.907 24.760	47.378 48.593	1.00 69.31 1.00 73.85	H H	C
Ū	ATOM	3245	ŏ	ILE E	I 210	2.905	25.965	48.538	1.00 72.23	H	ŏ
	MOTA	3246	CB		I 210	3.289	24.189	46.204	1.00 63.42	H	C
	ATOM ATOM	3247 3248	CG1	ILE H		2.763 4.654	23.606 23.519	44.883 46.467	1.00 55.85 1.00 53.59	H	C
10	ATOM	3249		ILE I		2.724	22.077	44.880	1.00 33.39	H H	C
	TER	3250	022	ILE I	f 210	21,21			2.00 12.00		Ŭ
	MOTA	3251	$s_{_}$	SO4		-12.465	8.279	-5.420	1.00139.70	Z	ន
	MOTA	3252	05	SO4		-11.496 -13.354	7.532	-4.640	1.00128.34	Z	0
15	MOTA MOTA	3253 3254	02 03	SO4 2		-13.354 -11.721	9.016 8.960	-4.584 -6.420	1.00133.20 1.00143.54	Z Z	0
	MOTA	3255	04	SO4		-13.284	7.173	-6.136	1.00137.69	Z	ŏ
	TER	3256		SO4							
	MOTA ATOM	3257 3258	0	HOH I		6.642 28.229	26.255 27.688	11.504 14.335	1.00 44.22 1.00 47.65	W	0
20	MOTA	3259	. 0	HOH I		4.085	20.721	15.240	1.00 47.85	W	0
	MOTA	3260	Ö	нон Т		-2.722	25.529	5.319	1.00 43.81	W	ŏ
	MOTA	3261	0	Т НОН		-0.482	15.335	20.340	1.00 56.36	W	0
	MOTA ATOM	3262 3263	0	HOH I		-9.832 -1.203	15.976 25.888	-2.164 -0.428	1.00 56.06 1.00 50.40	W	0
25	MOTA	3264	0	HOH I		-10.065	13.544	33.937	1.00 50.40	W	0
	MOTA	3265	ŏ	HOH I		-4.782	15.152	-5.651	1.00 58.18	W	ŏ
	MOTA	3266	0	нон г		-3.602	22.705	2.193	1.00 48.13	W	0
	ATOM ATOM	3267 3268	0	HOH I		-11.748 12.028	12.731 16.121	-2.744 18.701	1.00 46.32 1.00 41.71	W	0
30	MOTA	3269	Ö	HOH I		3.379	-3.325	0.685	1.00 44.58	W	0
	MOTA	3270	Ō	HOH I		17.930	21.064	55.610	1.00 32.59	. W	Ŏ
	ATOM	3271	0	HOH !		-0.999	21.444	1.050	1.00 39.37	W	0
	ATOM ATOM	3272 3273	0	HOH I		-7.188 11.612	20.691 6.022	15.900 14.835	1.00 58.62 1.00 63.80	. W.	0
35	ATOM	3273	0	HOH I		-21.984	9.843	5.129	1.00 63.80	W W	0
	MOTA	3275	ŏ	нон у		-13.113	~7.726	18.949	1.00 55.85	W	ŏ
	MOTA	3276	0	HOH Y		11.899	30.835	17.167	1.00 51.40	W	0
	ATOM ATOM	3277 3278	0	HOH I		5.068 10.249	4.550 11.292	7.254 38.205	1.00 66.68 1.00 65.97	W	0
40	ATOM	3279	ŏ	HOH I		8.242	27.276	13.281	1.00 40.53	M	ő
	MOTA	3280	Ō	HOH V	W 24	27.126	25.654	13.317	1.00 36.28	W	Ö
	ATOM	3281	0	HOH I		-2.011	21.099	11.221	1.00 36.94	W	0
	ATOM ATOM	3282 3283	0	HOH I		4.152 3.465	$14.440 \\ 8.412$	$20.408 \\ 20.717$	1.00 44.38 1.00 36.27	W	0
45	ATOM	3284	ŏ	HOH I		-3.739	26.158	-0.964	1.00 59.49	W	ŏ
	ATOM	3285	0	HOH !		8.758	15.447	18.540	1.00 58.26	W	0
	ATOM	3286	0	HOH !		11.634	3.618	7.590	1.00 64.90	W	0
	ATOM ATOM	3287 3288	0	HOH I		9.169 21.365	11.593 7.678	35.533 8.159	1.00 53.91 1.00 56.30	W.	0
50	ATOM	3289	ŏ	HOH 1		1.667	26.705	-2.342	1.00 34.36	W	ŏ
	MOTA	3290	0	HOH 1		-0.777	2.920	-5.893	1.00 54.04	W	0
	MOTA MOTA	3291 3292	0	HOH I		-1.979 6.580	6.414 2.378	-4.690 7.003	1.00 86.59 1.00 56.10	W	0
	MOTA	3293	Ö	HOH !		8.782	3.265	5.256	1.00 35.26	M	0
55	ATOM	3294	Ö	HOH		16.061	8.450	10.733	1.00 59.25	W	ŏ
	MOTA	3295	0	HOH !		29.645	4.189	52.482	1.00 54.67	W	0
	MOTA MOTA	3296 3297	0	HOH Y		20.575 -22.962	4.765 11.039	61.334 19.094	1.00 68.62 1.00 73.88	W	0
	ATOM	3298	0	HOH '		-21.174	11.687	21.368	1.00 73.88	W	0
60	ATOM	3299	ō	HOH		-18.934	22.014	5.912	1.00 60.22	W	ŏ
	ATOM	3300	0	HOH		10.166	1.139	9.698	1.00 47.40	M	0
	MOTA MOTA	3301 3302	0	HOH '		-16.050 16.088	3.113 23.610	11.263 39.697	1.00 37.96 1.00 46.51	W	0
	ATOM	3302	0	HOH !		2.897	30.138	2.027	1.00 48.31	W	0
65	ATOM	3304	ŏ	HOH '	w 48	24.057	1.224	45.686	1.00 48.96	M	ŏ
	MOTA	3305	0	HOH '		23.165	21.916	7.479	1.00 66.86	W	0
	MOTA MOTA	3306 3307	0	HOH '		-11.702 -12.219	14.692 -0.922	$23.074 \\ 1.076$	1.00 50.02 1.00 43.82	M	0
	MOTA	3308	ŏ	HOH '		12.391	12.245	37.897	1.00 49.94	W	ő

	•-										
	ATOM	3309	0	HOH W	53	4.767	11.266	29.449	1.00 43.95	W	0
	MOTA	3310	0	HOH W	54	-3.099	21.164	48.329	1.00 58.57	W	0
	MOTA	3311	0	HOH W	55	12.781	10.766	29.425	1.00 53.41	W	0
	ATOM	3312	0	HOH W	56	14.923	28.548	3.207	1.00 58.18	W	0
5	MOTA	3313	0	HOH W	57	16.115	16.431	-9.571	1.00 69.88	W	0
	MOTA	3314	0	HOH W	58	21.324	3.649	64.100	1.00 72.27	W	0
	MOTA	3315	0	HOH W	59	23.726	4.646	63.378	1.00 57.04	W	0
	ATOM	3316	0	HOH W	60	2.050	32.040	3.673	1.00 51.78	W	0
	MOTA	3317	0	HOH W	61	2.457	33.745	5.919	1.00 56.71	W	0
10	MOTA	3318	0	HOH W	62	8.951	-2.545	-6.773	1.00 54.15	W	0
	MOTA	3319	0	HOH W	63	-6.141	27.599	9.560	1.00 51.61	W	0
	ATOM	3320	0	HOH W	64	10.484	22.284	28.826	1.00 50.78	W	0
	TER	3321		HOH W	64						

15

20

^aAmino acids residues of the light (L) and heavy (H) chains are numbered according to the Chothia numbering system shown in Tables 6 and 7, respectively. ^bColumns are labeled according to Protein Data Bank Format, Version 2.2

Table 11. Structure coordinates of human IL-13/mAb13.2 Faba, b

	Table II.	# #	Jamo	Por	Ch:	ain Res	#	X	<u>ин 111-1.</u> У	Z	occ	- В	SegID	Fla
		# 1	vaille	RED.	C116	alli ves	11	Λ	Ţ	Д	occ	ь	Segin	DTE
	ATOM	1	N	ASP		1		.935		103.296		32.51	L	M
5	ATOM	2	CA	ASP		1		.850		102.305		31.66	L	C
	ATOM	3	C	ASP		1		.682		102.873		33.17	Ŀ	C
	ATOM ATOM	4 5	O CB	ASP ASP		1 1		.895 .401		104.096 102.115		35.13 32.59	L L	0
	ATOM	6	CG	ASP		1		.478		101.733		38.56	r L	Ğ
10	ATOM	7		ASP		1		.953		101.564		32.48	L	ŏ
	ATOM	8		ASP		1		.273	-5.483	101.616	1.00	40.42	L	0
	MOTA	9	N	ILE		2		.224		101.987	1.00	28.09	L	N
		10	CA	ILE		2		.045		102.451		25.55	$ar{ extbf{r}}$	C
4.5		11	C	ILE ILE		2		.091 .173		102.909 102.186		24.79 23.23	L L	C
15		12 13	O CB	ILE		2 2		.965		102.100		24.03	r L	C
		$\frac{13}{14}$	CG1			2		.822	-2.608			23.16	Ĺ	č
		15	CG2	ILE		2		.837	-0.288	101.800		21.56	L	C
	ATOM :	16	CD1	ILE		2 2		.903	-2.205	99.809		25.01	L	С
20		17	N	VAL		3		.345		104.091		19.63	Ŀ	N
		18	CA	VAL		3		.480	0.748			23.36	Ŀ	C
		19 20	C O	VAL VAL		3 3		.211 .377		104.535 104.919		20.65 17.60	L L	C O
		21	CB	VAL		3		.136		106.139		25.72	Ľ	Ç
25		22		VAL		3		.351		106.702		18.81	L	С
		23		VAL		3		.339	-0.857		1.00	24.17	L	C
		24	N	LEU		4		.508		104.059		14.42	L	\tilde{N}
		25	CA	LEU		4		.161		103.883		18.70	L	C
20		26 27	C O	LEU LEU		$\frac{4}{4}$.546 .327		104.877 104.897		18.25 17.11	L L	0
30		28	CB	LEU		4		.915		102.460		17.37	L	Č
		29	CG	LEU		4		.456	4.027			18.48	L	Č
		30		LEU		4	21	.321	4.756	99.972	1.00	21.81	L	C
		31	CD2	LEU		4		.892				10.40	L	C
35		32	N	THR		5		.397	5.948			17.41	L	N
		33	CA	THR		5		.896	6.865 8.274	106.687 106.385		16.63 15.60	L L	C C
		34 35	C O	THR THR		5 5		.375 .582	8.522			18.70	L	Õ
		36	CB	THR		5		.394	6.433			20.60	Ŀ	č
40		37		THR		5		.969	5.078			20.77	L	Ō
	MOTA	38	CG2	THR	L	5		.809				10.87	L	C
		39	N	GLN		6		.429	9.174			14.48	L	N
		40	CA	GLN		6		.786	10.551 11.432			19.27 20.35	L L	C C
45		41 42	C O	GLN GLN		6 6		.774	11.432 11.191		1.00		L	Ö
40		43	СВ	GLN		6		.848		104.796		15.21	L	Č
		$\frac{1}{4}$	CG	GLN		6		.026			1.00	18.45	L	C
	MOTA	45	$^{\mathtt{CD}}$	GLN		6		.185		102.327		11.83	L	С
		46		GLN		6		.438		101.640		18.94	L	0
50		47		GLN		6		.304 .629		102.179 107.115		17.09 22.15	L L	N
		48 49	N CA	SER SER		7 7		.659		108.226		23.60	L	C
		50	C	SER		7		.105		107.717		22.73	L	č
		51	Ö	SER		7		.919		106.800		20.83	L	0
55	MOTA	52	CB	SER	L	7		.626		109.313		21.45	L	C
		53	OG	SER		7		.935		108.812		36.06	L	0
		54	N	PRO		8		.476		108.238		21.92	L	N
		55 56	CA C	PRO PRO		8 8		.388		109.237 108.500		17.23 18.60	L L	C C
60		57	Ö	PRO		8		.129		107.288		18.30	L	ŏ
00		58	СВ	PRO		8		.352		109.770		16.36	Ľ	Č
		59	CG	PRO		8	20	.657	18.012	108.547	1.00	15.96	L	C
	ATOM	60	CD	PRO		8		.871		107.933		16.22	L	C
0.7		61	N	ALA		9		.992		109.217		21.69	L	N
65		62 63	CA C	ALA ALA		9 9		.728		108.575 107.883		20.93 23.87	L L	C C
		64	0	ALA		9		.597		106.847		23.97	L L	ŏ
	ATOM	65	СВ	ALA		9		.664		109.609		16.15	Ľ	Č

		M GDD T 10	16.645	17.501 108.463	1.00 23.97	L	N
	ATOM ATOM	66 N SER L 10 67 CA SER L 10		18.779 107.890	1.00 23.55	ŗ	Ĉ
	MOTA	68 C SER L 10	17.394	19.757 108.162	1.00 20.78	L	C
	ATOM	69 O SER L 10		19.669 109.245	1.00 20.28	$ ilde{ extbf{r}}$	0
5	MOTA	70 CB SER L 10		19.288 108.657	1.00 19.45 1.00 36.04	L L	C
	MOTA	71 OG SER L 10		20.370 107.960 20.652 107.203	1.00 36.04 1.00 16.86	L	И
	ATOM	72 N LEU L 11 73 CA LEU L 11		21.642 107.298	1.00 10.36	Ľ	Ç
	ATOM ATOM	73 CA LEU L 11 74 C LEU L 11		22.969 106.760	1.00 17.41	Ŀ	Ĉ
10	ATOM ATOM	75 O LEU L 11	17.601	22.996 105.724	1.00 20.59	L	0
10	ATOM	76 CB LEU L 11		21.175 106.395	1.00 21.77	L	C
	ATOM	77 CG LEU L 11		22.165 106.165	1.00 24.51	L	C
	ATOM	78 CD1 LEU L 11		22.491 107.531	1.00 36.89	Ŀ	C
	MOTA	79 CD2 LEU L 11		21.573 105.281	1.00 37.85	L	C N
15	ATOM	80 N ALA L 12		24.079 107.460	1.00 16.76 1.00 17.17	L L	C
	ATOM	81 CA ALA L 12		25.373 106.956 26.247 106.827	1.00 17.17	L	Č
	MOTA	82 C ALA L 12 83 O ALA L 12		26.279 107.755	1.00 10.24	Ŀ	Ö
	MOTA MOTA	83 O ALA L 12 84 CB ALA L 12		26.062 107.931	1,00 12.64	L	Č
20	ATOM	85 N VAL L 13		26.909 105.698	1.00 13.87	L	N
20	MOTA	86 CA VAL L 13		27.848 105.538	1.00 13.69	L	C
	ATOM	87 C VAL L 13		29.106 104.907	1.00 17.25	Ŀ	C
	MOTA	88 O VAL L 13		29.117 104.336	1.00 21.72	L	0
	MOTA	89 CB VAL L 13		27.286 104.656	1.00 15.08 1.00 10.62	L L	C
25	MOTA	90 CG1 VAL L 13		25.958 105.301 27.096 103.157	1.00 10.62 1.00 9.18	L L	C
	ATOM	91 CG2 VAL L 13 92 N SER L 14		30.202 105.000	1.00 15.71	L	N
	MOTA MOTA	92 N SER L 14 93 CA SER L 14		31.440 104.326	1.00 14.91	L	C
	ATOM	94 C SER L 14	20.796	31.365 102.849	1.00 14.49	L	С
30	ATOM	95 O SER L 14	21.709	30.635 102.423	1.00 13.93	L	0
•	MOTA	96 CB SER L 14	21.203	32.682 104.941	1.00 11.69	Ē	C
	MOTA	97 OG SER L 14	20.999	32.727 106.352	1.00 18.48	L	0
	ATOM	98 N LEU L 15	20.079	32.137 102.048	1.00 13.89 1.00 16.79	L L	C N
	MOTA	99 CA LEU L 15	20.330 21.824	32.173 100.620 32.522 100.384	1.00 16.79 1.00 17.38	Ľ	Č
35	MOTA	100 C LEU L 15	22.354	33.409 101.025	1.00 21.74	L	ō
	ATOM ATOM	101 O LEU L 15 102 CB LEU L 15	19.462	33.258 99.927	1.00 14.69	L	С
	MOTA	102 CG LEU L 15	17.926	32.958 99.764	1.00 34.86	L	С
	MOTA	104 CD1 LEU L 15	17.184	34.159 99.090	1.00 44.91	L	C
40	ATOM	105 CD2 LEU L 15		31.665 98.905	1.00 32.56	<u>r</u>	C
	ATOM	106 N GLY L 16		31.805 99.483	1.00 16.14	L	C N
	MOTA	107 CA GLY L 16		32.089 99.144 31.323 99.964	1.00 12.82 1.00 14.60	L L	c
	MOTA	108 C GLY L 16		31.323 99.964 31.335 99.602	1.00 14.00	L	õ
45	ATOM	109 O GLY L 10 110 N GLN L 13		30.683 101.063	1.00 10.34	L	N
45	MOTA MOTA	111 CA GLN L 1		29.914 101.882	1.00 12.15	L	C
	MOTA	112 C GLN L 1		28.502 101.325	1.00 13.53	L	С
	ATOM	113 O GLN L 1	24.873	28.108 100.371	1.00 14.77	L	0
	ATOM	114 CB GLN L 1		29.775 103.318	1.00 17.40	L	G G
50	MOTA	115 CG GLN L 1		31.111 104.106	1.00 10.18 1.00 17.90	L L	C
	ATOM	116 CD GLN L 1		30.902 105.540 30.187 105.905	1.00 17.90	L	Ö
	MOTA	117 OE1 GLN L 1' 118 NE2 GLN L 1'		31.478 106.386	1.00 4.74	Ľ	Ŋ
	MOTA MOTA	118 NE2 GLN L 1' 119 N ARG L 1		27.763 101.953	1.00 13.19	L	N
55	ATOM	120 CA ARG L 1		26.389 101.515	1.00 15.63	L	C
00	ATOM	121 C ARG L 1		25.437 102.374	1.00 15.34	Ŀ	C
	ATOM	122 O ARG L 1		25.619 103.595	1.00 19.40	L	0
	ATOM	123 CB ARG L 1		26.066 101.682	1.00 15.02	L	C
	MOTA	124 CG ARG L 1		24.566 101.572	1.00 25.18 1.00 39.56	L L	C
60	MOTA	125 CD ARG L 1		24.166 102.211 24.654 101.453	1.00 39.56	L	И
	ATOM	126 NE ARG L 1		25.885 101.533	1.00 04.48	L	Ç
	ATOM	127 CZ ARG L 1 128 NH1 ARG L 1		26.777 102.353	1.00 86.83	L	Ŋ
	MOTA MOTA	128 NH1 ARG L 1 129 NH2 ARG L 1		26.225 100.788	1.00 82.59	L	N
65	MOTA	130 N ALA L 1		24.396 101.752	1.00 17.11	L	N
	ATOM	131 CA ALA L 1	24.505	23.379 102.489	1.00 12.89	Ŀ	C
	MOTA	132 C ALA L 1	25.198	22.031 102.204	1.00 16.54	L	C
	MOTA	133 O ALA L 1		21.713 101.026	1.00 22.79	L	0
	ATOM	134 CB ALA L 1	23.054	23.294 101.953	1.00 14.85	L	C

			·m· -	****						
	ATOM	135	N	THR L	20	25.476	21.265 103.249	1.00 14.17	L	N
	ATOM	136		THR L	20	26.096	19.960 103.054	1.00 15.56	L	Ĉ
							18.934 103.752	1.00 15.65		
	ATOM	137		THR L	20	25.227			Ŀ	C
	ATOM	138	0	THR L	20	24.813	19.126 104.923	1.00 20.89	Ŀ	0
5	MOTA	139	CB	THR L	20	27.533	19.985 103.630	1.00 17.90	L	C
	MOTA	140	OG1	THR L	20	28.291	20.901 102.832	1.00 23.27	L	0
	MOTA	141	CG2	THR L	20	28.202	18.608 103.594	1.00 20.09	L	С
	ATOM	142	N	ILE L	21	24.896	17.877 103.035	1.00 14.46	L	N
	ATOM	143	CA	ILE L	21	24.066	16.841 103.610	1.00 18.34	L	Ĉ
40							15.504 103.500	1.00 10.54	L	
10	ATOM	144	C	ILE L	21	24.760				С
	ATOM	145	0	ILE L	21	25.495	15.251 102.542	1.00 18.26	L	0
	MOTA	146	CB	ILE L	21	22.648	16.809 103.010	1.00 19.09	L	C
	MOTA	147	CG1	ILE L	21	22.648	16.401 101.575	1.00 29.56	L	C
	MOTA	148	CG2	ILE L	21	21.985	18.173 103.154	1.00 23.73	L	С
15	ATOM	149	CD1	ILE L	21	21.219	16.545 100.967	1.00 37.88	L	С
,0	ATOM	150	N	SER L	22	24.559	14.651 104.492	1.00 15.94	L	N
			CA	SER L	22	25.286	13.391 104.429	1.00 20.98	L	Ĉ
	ATOM	151							L	Č
	MOTA	152	C	SER L	22	24.467	12.148 104.321	1.00 18.51		
	MOTA	153	0	SER L	22	23.269	12.123 104.622	1.00 20.37	L	0
20	\mathbf{MOTA}	154	CB	SER L	22	26.244	13.290 105.598	1.00 17.26	L	С
	MOTA	155	OG	SER L	22	25.516	13.126 106.775	1.00 38.04	${f L}$	0
	ATOM	156	N	CYS L	23	25.107	11.099 103.822	1.00 15.15	L	N
	MOTA	157	CA	CYS L	23	24.383	9.833 103.656	1.00 19.93	L	C
	ATOM	158	C	CYS L	23	25.370	8.749 104.099	1.00 19.09	L	C
25	MOTA	159	ŏ	CYS L	23	26.497	8.706 103.609	1.00 24.06	Ē	ŏ
25						24.047	9.641 102.175	1.00 18.33	L	č
	ATOM	160	CB	CYS L	23		-		L	
	MOTA	161	SG	CYS L	23	23.310	8.045 101.699	1.00 19.01		S
	MOTA	162	N	LYS L	24	24.961	7.869 105.013	1.00 19.81	L	N
	ATOM	163	$^{\rm CA}$	LYS L	24	25.876	6.835 105.490	1.00 21.44	L	C
30	ATOM	164	C	LYS L	24	25.312	5.482 105.148	1.00 19.45	${f L}$	C
	MOTA	165	0	LYS L	24	24.168	5.216 105.416	1.00 17.29	L	0
	MOTA	166	CB	LYS L	24	26.089	6.960 107.018	1.00 20.14	L	С
	ATOM	167	CG	LYS L	24	26.987	5.848 107.576	1.00 38.35	L	С
	ATOM	168	CD	LYS L	24	27.320	6.037 109.086	1.00 55.69	L	Ċ
35	ATOM	169	CE	LYS L	24	28.358	7.158 109.343	1.00 65.78	L	č
33					24	27.749	8.535 109.135	1.00 73.97	Ĺ	N
	MOTA	170	NZ	LYS L						
	ATOM	171	N	ALA L	25	26.122	4.613 104.564	1.00 16.58	Ŀ	И
	MOTA	172	CA	ALA L	25	25.595	3.290 104.192	1.00 20.95	L	C
	MOTA	173	С	ALA L	25	26.021	2.214 105.224	1.00 20.06	L	С
40	ATOM	174	0	ALA L	25	27.130	2.293 105.753	1.00 21.66	L	0
	MOTA	175	CB	$\mathtt{ALA}\ \mathtt{L}$	25	26.141	2.885 102.822	1.00 16.44	${f L}$	C
	MOTA	176	N	SER L	26	25.176	1.214 105.434	1.00 20.89	${f L}$	N
	MOTA	177	CA	SER L	26	25.502	0.134 106.403	1.00 24.53	L	С
	ATOM	178	C	SER L	26	26.614	-0.805 105.917	1.00 24.48	L	С
45	MOTA	179	ō	SER L	26	27.258	-1.521 106.720	1.00 25.97	L	0
.0	MOTA	180	ČВ	SER L	26	24.234	-0.680 106.758	1.00 20.85	L	C
	ATOM	181	OG	SER L	26	23.577	-1.189 105.615	1.00 24.47	_ L	õ
		182			27	26.848	-0.797 104.598	1.00 25.23	L	N
	MOTA		N	GLU L			-1.606 103.971	1.00 22.24	Ŀ	Č
	ATOM	183	CA	GLU L	27	27.889				
50	MOTA	184	C	GLU L	27	28.484	-0.723 102.886	1.00 22.04	Ŀ	C
	ATOM	185	0	GLU L	27	27.831	0.237 102.428	1.00 25.83	Ŀ	0
	MOTA	186	CB	GLU L	27	27.293	-2.881 103.288	1.00 16.57	L	C
	MOTA	187	CG	GLU L	27	26.251	-3.624 104.048	1.00 17.06	L	С
	MOTA	188	CD	GLU L	27	25.816	-4.858 103.275	1.00 25.63	L	С
55	ATOM	189	OE1	GLU L	27	24.831	-5.516 103.672	1.00 18.33	占	0
	MOTA	190	OE2	GLU L	27	26.515	-5.132 102.264	1.00 23.85	L	0
	MOTA	191	N	SER L	28	29.698	-1.029 102.455	1.00 23.92	Ŀ	N
	ATOM	192	ČA	SER L	28	30.355	-0.237 101.412	1.00 20.04	L	Ĉ
					28	29.562	-0.293 100.128	1.00 21.07	L	č
00	MOTA	193	C	SER L						
60	ATOM	194	0	SER L		28.967	-1.329 99.782	1.00 23.98	L	0
	MOTA	195	CB	SER L	28	31.779	-0.778 101.121	1.00 18.95	L	C
	ATOM	196	OG	SER L	28	32.408	-0.078 100.037	1.00 28.13	ŗ	0
	MOTA	197	N	VAL L	29	29.570	0.798 99.383	1.00 18.22	Ŀ	N
	MOTA	198	$^{\rm CA}$	VAL L	29	28.829	0.788 98.103	1.00 17.79	L	С
65	MOTA	199	C	VAL L	29	29.840	0.937 96.981	1.00 19.59	L	C
	ATOM	200	0	VAL L	29	29.465	1.207 95.837	1.00 22.01	L	0
	MOTA	201	СВ	VAL L	29	27.766	1.940 98.010	1.00 17.51	L	С
	MOTA	202		VAL L	29	26.675	1.740 99.072	1.00 12.98	L	C
	ATOM	203		VAL L	29	28.441	3.326 98.172	1.00 16.63	L	Č
	224 024		202							-

		001					0 700		4 00 17 00		_	
	MOTA	204	N	ASP L	30	31.127	0.708	97.279	1.00 17.33			N
	MOTA	205	CA	ASP L	30	32.178	0.849	96.268	1.00 18.23			C
	MOTA	206	C	ASP L	30	32.339	-0.453	95.497	1.00 19.53	-		C
_	ATOM	207	0	ASP L	30	32.219	-1.559	96.071	1.00 26.39			0
5	ATOM	208	CB	ASP L	30	33.534	1.153	96.908	1.00 12.12			C
	ATOM	209	CG	ASP L	30	33.662	2.592	97.326	1.00 22.31			C
	MOTA	210		ASP L	30	34.761	2.975	97.764	1.00 29.89			0
	MOTA	211		ASP L	30	32.676	3.331	97.208	1.00 18.13			0
	MOTA	212	N	ASN L	30A	32.617	-0.316	94.206	1.00 20.90			N
10	ATOM	213	CA	ASN L	30A	32.797	-1.499	93.344	1.00 22.44			C
	ATOM	214	C	ASN L	30A	34.090	-1.203	92.623	1.00 23.21			C
	ATOM	215	0	ASN L	30A	34.141	-0.339	91.735	1.00 25.31			0
	MOTA	216	CB	ASN L ASN L	30A	31.693	-1.594	92.283	1.00 20.72			C
4.5	MOTA	217 218	CG		30A 30A	31.884	-2.785 -3.934	91.384 91.852	1.00 24.84 1.00 24.37			С О
15	MOTA MOTA	219	ND2	ASN L ASN L	30A	31.800 32.149	-3.934 -2.530	90.071	1.00 24.37			И
		220			30B	35.161	-2.330 -1.861	93.051	1.00 23.26			N
	MOTA	221	N	TYR L	30B	36.460	-1.651	92.445	1.00 23.88			C
	ATOM ATOM	222	CA C	TYR L TYR L	30B	36.823	-0.230	92.173	1.00 21.04			Č
20	ATOM	223	0	TYR L	30B	37.123	0.166	91.038	1.00 21.35			õ
20	MOTA	224	CB	TYR L	30B	36.567	-2.494	91.176	1.00 21.55			Č
	ATOM	225	CG	TYR L	30B	36.520	-3.965	91.534	1.00 26.67		L	C
	ATOM	226	CD1		30B	37.580	-4.556	92.215	1.00 17.83			Č
	ATOM	227	CD2	TYR L	30B	35.427	-4.754	91.211	1.00 30.04			č
25	ATOM	228	CE1		30B	37.542	-5.890	92.556	1.00 28.99		L	Č
	ATOM	229	CE2	TYR L	30B	35.375	-6.104	91.553	1.00 38.10			Č
	MOTA	230	CZ	TYR L	30B	36.445	-6.657	92.229	1.00 32.14		Li	C
	MOTA	231	OH	TYR L	30B	36.429	-7.974	92.591	1.00 34.61			0
	MOTA	232	N	GLY L	30C	36.774	0.560	93.236	1.00 20.14		L	N
30	MOTA	233	CA	GLY L	30C	37.178	1.951	93.126	1.00 21.20	:	L	C
	MOTA	234	С	GLY L	30C	36.101	2.933	92.676	1.00 25.36			C
	MOTA	235	0	GLY L	30C	36.355	4.122	92.635	1.00 29.51			0
	MOTA	236	N	LYS L	30D	34.925	2.437	92.306	1.00 22.83			N
	MOTA	237	$^{\mathrm{CA}}$	LYS L	30D	33.833	3.328	91.845	1.00 23.04			С
35	ATOM	238	С	LYS L	30D	32.767	3.306	92.943	1.00 22.36			C
	ATOM	239	0	LYS L	30D	32.407	2.230	93.382	1.00 17.33			0
	ATOM	240	CB	LYS L	30D	33.195	2.807	90.554	1.00 24.66			C
	ATOM	241	CG	LYS L	30D	33.949	3.156	89.277	1.00 29.64			C
40	ATOM	242 243	CD	LYS L LYS L	30D 30D	35.097 34.641	2.195 0.783	88.997 88.732	1.00 26.58 1.00 21.88			C C
40	ATOM ATOM	243	CE NZ	LYS L	30D	35.869	-0.054	88.518	1.00 21.33			N
	ATOM	245	N	SER L	31	32.263	4.488	93.362	1.00 16.41			N
	ATOM	246	CA	SER L	31	31.266	4.493	94.450	1.00 14.47			C
	ATOM	247	C	SER L	31	29.876	4.552	93.817	1.00 12.87			Č
45	ATOM	248	Ö	SER L	31	29.559	5.508	93.135	1.00 17.73			ō
	ATOM	249	CB	SER L	31	31.528	5.718	95.369	1.00 13.31			C
	MOTA	250	OG	SER L	31	32.772	5.543	96.018	1.00 9.74		L	0
	MOTA	251	\mathbf{N}	LEU L	32	29.068	3.533	94.047	1.00 14.84	:	L	N
	MOTA	252	CA	LEU L	32	27.737	3.444	93.414	1.00 15.21			С
50	MOTA	253	С	LEU L	32	26.661	4.109	94.271	1.00 15.33			С
	ATOM	254	0	LEU L	32	25.759	3.444	94.743	1.00 15.90			0
	ATOM	255	CB	LEU L	32	27.410	1.946	93.122	1.00 14.19		L	C
	ATOM	256	CG	LEU L	32	28.528	1.268	92.240	1.00 16.68			C
EE	MOTA	257		LEU L	32	28.098	-0.113	91.812	1.00 19.02			C
55	MOTA	258		LEU L	32	28.841	2.115	90.956	1.00 16.75			C
	ATOM ATOM	259 260	N CA	MET L MET L	33 33	26.805 25.858	5.422 6.243	94.446 95.228	1.00 15.14 1.00 15.51			C
	ATOM	261	CA	MET L	33	25.424	7.400	94.306	1.00 13.31			C
	ATOM	262	o	MET L	33	26.268	8.060	93.664	1.00 14.69			Ö
60	MOTA	263	CB	MET L	33	26.522	6.857	96.482	1.00 16.89			Č
00	ATOM	264	CG	MET L	33	25.438	7.575	97.437	1.00 11.58			č
	ATOM	265	SD	MET L	33	24.457	6.317	98.203	1.00 25.28			Š
	ATOM	266	CE	MET L	33	25.482	5.831	99.589	1.00 11.25			č
	ATOM	267	N	HIS L	34	24.114	7.621	94.239	1.00 11.24			Ŋ
65	ATOM	268	CA	HIS L	34	23.566	8.649	93.369	1.00 10.81			С
	ATOM	269	C	HIS L	34	22.672	9.529	94.235	1.00 13.28			С
	ATOM	270	0	HIS L	34	22.163	9.062	95.283	1.00 7.46			0
	ATOM	271	CB	HIS L	34	22.709	7.988	92.278	1.00 9.21			C
	ATOM	272	CG	HIS L	34	23.392	6.816	91.619	1.00 19.51		L	С

					**** ******						
	ATOM	273	ND1	HIS L	34	24.568	6.950	90.896	1.00 18.89	I	. NT
	ATOM	274		HIS L	34	23.061	5.501	91.562			
		275		HIS L					1.00 19.95	I	
	ATOM				34	24.932	5.770	90.429	1.00 8.56	I	-
_	MOTA	276		HIS L	34	24.037	4.874	90.815	1.00 18.35	I	\sim N
5	MOTA	277	N	TRP L	35	22.478	10.770	93.806	1.00 11.97	I	ı N
	MOTA	278	ca	TRP L	35	21.658	11.731	94.603	1.00 14.22	I	
	ATOM	279	C	TRP L	35	20.557	12.321	93.730	1.00 14.57	Ī	
	ATOM	280	ŏ	TRP L	35						
						20.793	12.665	92.577	1.00 13.68	I	_
	ATOM	281	CB	TRP L	35	22.525	12.914	95.123	1.00 12.34	I	, C
10	ATOM	282	CG	TRP L	35	23.529	12.532	96.148	1.00 18.11	I	G C
	ATOM	283	CD1	TRP L	35	24.842	12.167	95.941	1.00 13.80	I	
	ATOM	284	CD2		35	23.346	12.610	97.560	1.00 15.53		
										Ī	
	ATOM	285	NE1		35	25.491	12.027	97.158	1.00 7.32	I	
	ATOM	286	CE2	TRP L	35	24.588	12.302	98.164	1.00 10.41	I	, C
15	MOTA	287	CE3	TRP L	35	22.242	12.928	98.381	1.00 22.77	I	
	ATOM	288	CZ2	TRP L	35	24.756	12.300	99.551	1.00 16.39	I	
	ATOM	289	CZ3		35	22.396	12.933	99.730	1.00 10.74		
										I	
	ATOM	290	CH2		35	23.643	12.622	100.320	1.00 11.41	I	-
	ATOM	291	N	TYR L	36	19.362	12.470	94.306	1.00 13.73	I	ı N
20	ATOM	292	ca	TYR L	36	18.212	13.005	93.593	1.00 13.32	I	, C
	ATOM	293	C	TYR L	36	17.614	14.178	94.360	1.00 12.87	I	
	ATOM	294	Ó	TYR L	36	17.681	14.233	95.579	1.00 11.74	Ī	
	ATOM	295	СВ	TYR L		17.081					
					36		11.942	93.464	1.00 13.04	I	
	ATOM	296	CG	TYR L	36	17.545	10.667	92.771	1.00 11.47	I	
25	ATOM	297	CD1	TYR L	36	18.207	9.660	93.488	1.00 9.50	I	, C
	ATOM	298	CD2	TYR L	36	17.398	10.526	91.391	1.00 12.45	E	
	ATOM	299	CE1		36	18.739	8.534	92.820	1.00 12.96	I	
		300									
	ATOM		CE2		36	17.907	9.414	90.729	1.00 10.42	L	
	ATOM	301	CZ	TYR L	36	18.578	8.436	91.445	1.00 12.56	L	, C
30	MOTA	302	OH	TYR L	36	19.180	7.385	90.768	1.00 13.38	L	. 0
	ATOM	303	N	GLN L	37	16.981	15.072	93.620	1.00 10.25	I	
	ATOM	304	CA	GLN L	37	16.254	16.180	94.252	1.00 11.70	Ī	
	ATOM	305	C	GLN L	37	14.783	15.956	93.941	1.00 13.16	L	
	MOTA	306	0	GLN L	37	14.444	15.606	92.794	1.00 17.26	L	, 0
35	MOTA	307	CB	GLN L	37	16.649	17.515	93.600	1.00 10.59	L	C
	ATOM	308	CG	GLN L	37	15.845	18.749	94.028	1.00 10.72	I	
	MOTA	309	CD	GLN L	37	16.206	19.926	93.103	1.00 15.26		
										L	
	MOTA	310	OE1		37	15.916	19.885	91.887	1.00 16.02	L	. 0
	ATOM	311	NE2	GLN L	37	16.857	20.947	93.659	1.00 13.48	L	N
40	ATOM	312	N	GLN L	38	13.916	16.212	94.921	1.00 17.77	L	N
	ATOM	313	CA	GLN L	38	12.470	16.140	94.680	1.00 20.77	L	
	ATOM	314	C	GLN L	38	11.804	17.343	95.326	1.00 21.40		
				-						L	
	ATOM	315	0	GLN L	38	11.828	17.509	96.563	1.00 22.63	L	_
	MOTA	316	CB	GLN L	38	11.835	14.901	95.313	1.00 19.42	L	, C
45	MOTA	317	CG	GLN L	38	10.354	14.805	94.968	1.00 13.86	L	ı C
	MOTA	318	CD	GLN L	38	9.748	13.498	95.491	1.00 19.68	L	
	MOTA	319	OE1		38	10.122	13.011	96.545	1.00 14.26	L	
										-	_
	ATOM	320		GLN L	38	8.834	12.935	94.726	1.00 19.99	L	
	MOTA	321	N	LYS L	39	11.254	18.170	94.457	1.00 24.73	L	N
50	MOTA	322	CA	LYS L	39	10.505	19.355	94.879	1.00 26.95	Ŀ	C
	ATOM	323	C	LYS L	39	9.047	18.965	95.083	1.00 31.28	L	
	ATOM	324	Ō	LYS L	39	8.492	18.004	94.493	1.00 27.67		
										L	
	ATOM	325	CB	LYS L	39	10.624	20.467	93.817	1.00 25.37	L	
	ATOM	326	CG	LYS L	39	12.024	20.994	93.607	1.00 28.24	L	
55	ATOM	327	$^{\rm CD}$	LYS L	39	12.109	21.962	92.440	1.00 25.89	L	C
	ATOM	328	CE	LYS L	39	13.525	22.460	92.197	1.00 41.55	_ L	
	ATOM	329	NZ	LYS L	39	13.723	23.040	90.805			
								90.005	1.00 39.62	Ŀ	
	ATOM	330	N	PRO L	40	8.384	19.708	95.969	1.00 37.71	L	
	MOTA	331	ca	PRO L	40	6.984	19.511	96.310	1.00 40.24	L	
60	MOTA	332	C	PRO L	40	6.129	19.315	95.045	1.00 37.39	L	
	MOTA	333	0	PRO L	40	6.226	20.104	94.122	1.00 35.53	P _	
	ATOM	334	СВ	PRO L	40			97.036			
						6.637	20.819		1.00 44.21	ŗ	
	ATOM	335	CG	PRO L	40	7.926	21.168	97.729	1.00 42.86	r	
	MOTA	336	CD	PRO L	40	8.954	20.888	96.653	1.00 39.12	L	C
65	MOTA	337	N	GLY L	41	5.363	18.230	95.002	1.00 36.74	L	
	ATOM	338	CA	GLY L	41	4.506	17.946	93.862	1.00 36.85	L	
	ATOM	339	C	GLY L	41	5.202	17.572	92.568	1.00 35.88	L	
	ATOM	340	0	GLY L	41	4.576	17.503	91.523	1.00 35.09	L	
	ATOM	341	N	GLN L	42	6.510	17.325	92.626	1.00 35.27	L	N

	MOTA MOTA	342 343	CA GLN L	42 42	7.237 7.856			1.00 28.24 1.00 25.86		r c
	ATOM ATOM	344 345	O GLN L	42 42	7.921	15.047	92.697	1.00 25.25		r o
5	ATOM		CG GLN L	42 42	8.386 7.950		91.124 90.729	1.00 29.72 1.00 34.63		. c
	ATOM		CD GLN L	42	9.127	20.234	90.242	1.00 45.60		ت . 2 م
	MOTA ATOM		OE1 GLN L NE2 GLN L	42 42	8.965	21.421	90.002	1.00 50.47		5 6
	MOTA		N SER L	43	10.303 8.340	19.639 15.026	90.094 90.506	1.00 47.27 1.00 22.44		<u>N</u>
10	ATOM	351	CA SER L	43	8.985	13.744	90.587	1.00 22.44		C N
	MOTA MOTA		C SER L	43	10.490	13.988	90.930	1.00 21.02	Ī	_
	ATOM		O SER L CB SER L	43 43	10.986 8.831	15.104 13.041	90.802	1.00 19.00	I	0
	MOTA		OG SER L	43	9.851	13.443	89.213 88.334	1.00 24.31 1.00 31.71	I	-
15	ATOM		N PRO L	44	11.186	12.953	91.401	1.00 19.03	I	_
	MOTA ATOM		CA PRO L C PRO L	44 44	12.619 13.403	13.056	91.738	1.00 19.57	I	ı C
	MOTA		O PRO L	44	12.971	13.344 12.997	90.454 89.339	1.00 19.17 1.00 17.27	I	_
00	ATOM		CB PRO L	44	12.963	11.675	92.304	1.00 20.33	I	_
20	MOTA MOTA		CG PRO L	44 44	11.568	11.163	92.901	1.00 14.26	I	C
	ATOM		N ALA L	45	10.630 14.576	11.645 13.942	91.786 90.603	1.00 17.98 1.00 14.94	I	_
	MOTA	364	CA ALA L	45	15.400	14.217	89.428	1.00 14.94	I I	
25	ATOM		C ALA L	45	16.833	13.921	89.846	1.00 15.71	Ī	
20	MOTA MOTA		O ALA L	45 45	17.287 15.300	14.318	90.927	1.00 14.34	I	0
	MOTA		N LEU L	46	17.545	15.702 13.285	89.000 88.948	1.00 17.79 1.00 15.14	Ţ	_
	ATOM		CA LEU L	46	18.948	12.903	89.212	1.00 11.85	I.	
30	MOTA MOTA		C LEU L O LEU L	46 46	19.841	14.154	89.206	1.00 12.85	L	C
00	ATOM		CB LEU L	46	19.825 19.416	14.944 11.894	88.247 88.107	1.00 12.83 1.00 9.18	L	
	MOTA	373 (CG LEU L	46	20.875	11.408	88.320	1.00 9.18 1.00 8.52	L L	_
	ATOM		CD1 LEU L	46	21.074	10.591	89.660	1.00 8.06	L	
35	ATOM ATOM		CD2 LEU L N LEU L	46 47	21.269	10.533	87.111	1.00 7.61	L	C
	MOTA		CA LEU L	47	20.630 21.578	14.323 15.439	90.277 90.384	1.00 11.81 1.00 11.37	Ŀ	
	ATOM		C LEU L	47	23.038	15.014	90.150	1.00 11.37	L L	-
	ATOM ATOM		O LEU L	47	23.774	15.649	89.393	1.00 13.32	L	0
40	ATOM		CG LEU L	47 47	21.556 20.215	15.997 16.587	91.789 92.289	1.00 11.40 1.00 11.75	L	_
	MOTA	382 (CD1 LEU L	47	20.362	16.812	93.810	1.00 11.75	L L	_
	ATOM ATOM		CD2 LEU L	47	19.911	17.879	91.522	1.00 4.80	L	č
	ATOM		N ILE L CA ILE L	48 48	23.422 24.800	13.952 13.468	90.856	1.00 12.53	L	N
45	MOTA	386 (C ILE L	48	24.821	11.953	90.883 90.754	1.00 10.52 1.00 14.33	L L	C
	ATOM		O ILE L	48	24.066	11.263	91.443	1.00 16.13	L	Ö
	MOTA MOTA		CB ILE L CG1 ILE L	48	25.444	13.826	92.281	1.00 11.93	· L	Ċ
	ATOM		CG2 ILE L	48 48	25.465 26.842	15.351 13.136	92.495 92.431	1.00 9.28 1.00 11.58	L	C
50	MOTA	391 C	CD1 ILE L	48	26.422	16.165	91.519	1.00 14.29	L L	C C
	ATOM ATOM	392 N 393 C		49	25.651	11.424	89.860	1.00 12.80	L	Ŋ
	ATOM	394 C		49 49	25.698 27.118	9.977 9.484	89.790 90.107	1.00 14.45	L	C
	MOTA	395 C	O TYR L	49	28.114	10.177	89.869	1.00 13.75 1.00 14.87	L L	C
55	ATOM		CB TYR L	49	25.223	9.449	88.419	1.00 6.50	Ľ	č
	ATOM ATOM		CG TYR L	49 49	26.079 27.100	9.899	87.246	1.00 14.44	L	С
	ATOM		D2 TYR L	49	25.840	9.105 11.131	86.733 86.646	1.00 9.63 1.00 20.17	L	C
00	MOTA	400 C	CE1 TYR L	49	27.876	9.531	85.632	1.00 20.17	L L	C
60	ATOM ATOM		CE2 TYR L	49	26.620	11.584	85.542	1.00 22.28	L	С
	ATOM		CZ TYR L OH TYR L	49 49	27.624 28.372	10.778 11.257	85.049	1.00 20.57	L	C
	MOTA	404 N		50	27.176	8.279	83.987 90.648	1.00 19.11 1.00 14.11	L L	O
65	ATOM		A ARG L	50	28.461	7.617	90.962	1.00 16.52	r r	N C
65	MOTA ATOM	406 C 407 O		50 50	29.311	8.530	91.871	1.00 16.04	L	C
	ATOM		B ARG L	50	30.480 29.228	8.795 7.293	91.583 89.673	1.00 14.95 1.00 12.62	Ŀ	0
	MOTA	409 C	G ARG L	50	30.084	5.998	89.784	1.00 12.62	L L	C
	ATOM	410 C	D ARG L	50	30.933	5.820	88.460	1.00 11.26	Ĺ	Č

	 7. (TIOM	// 1	NE ADC I	50	30.073	5.942	87.252	1.00 23.52	L	N
	ATOM ATOM	$\frac{411}{412}$	NE ARG L		30.543	6.227	86.037	1.00 20.37	L	C
	ATOM	413	NH1 ARG L		31.852	6.404	85.858	1.00 26.18	L	N
	ATOM	414	NH2 ARG L		29.727	6.354	85.003	1.00 18.24	L	N
5	MOTA	415	N ALA L		28.621	9.031	92.901	1.00 14.01	L	N
	MOTA	416	CA ALA L		29.125	9.886	93.975	1.00 14.19	Ŀ	C
	ATOM	417	C ALA L		29.531	11.309	93.680	1.00 16.63	L	C
	ATOM	418	O ALA I		29.255	12.190	94.481 94.727	1.00 15.01 1.00 6.77	L L	O C
10	MOTA MOTA	419 420	CB ALA L N SER L		30.288 30.119	9.177 11.555	92.509	1.00 14.35	L	N
10	ATOM	421	CA SER L		30.652	12.887	92.214	1.00 12.90	L	Ç
	ATOM	422	C SER L		30.437	13.427	90.815	1.00 10.83	L	Č
	ATOM	423	O SER I		30.884	14.542	90.504	1.00 9.89	L	0
	MOTA	424	CB SER L		32.179	12.851	92.476	1.00 5.64	L	С
15	ATOM	425	OG SER L		32.747	11.797	91.672	1.00 19.18	L	0
	ATOM	426	N ASN I		29.747	12.677	89.962	1.00 10.80	L	N
	ATOM	427	CA ASN I		. 29.575	13.143	88.561	1.00 6.02 1.00 13.29	L L	G G
	MOTA	428	C ASN I		28.301 27.228	13.953 13.468	88.439 88.813	1.00 15.29	L	Ö
20	ATOM ATOM	429 430	O ASN I		29.461	11.954	87.630	1.00 9.04	L	č
20	MOTA	431	CG ASN I		30.756	11.172	87.594	1.00 15.97	L	Č
	ATOM	432	OD1 ASN I		31.787	11.705	87.178	1.00 24.43	L	0
	MOTA	433	ND2 ASN I	53	30.730	9.948	88.079	1.00 23.89	L	N
	MOTA	434	N LEU I		28.443	15.143	87.880	1.00 12.27	L	$\widetilde{\mathbf{N}}$
25	MOTA	435	CA LEU I		27.296	16.075	87.725	1.00 11.19	Ţ	C
	ATOM	436	C LEU I		26.438 26.928	15.659 15.572	86.539 85.400	1.00 13.26 1.00 17.40	L L	C
	MOTA MOTA	437 438	O LEU I		27.866	17.498	87.499	1.00 17.40	L	č
	ATOM	439	CG LEU I		26.793	18.590	87.336	1.00 9.35	L	č
30	ATOM	440	CD1 LEU I		26.013	18.667	88.688	1.00 11.24	L	C
- •	MOTA	441	CD2 LEU I	54	27.473	20.001	86.935	1.00 10.06	L	C
	MOTA	442	N GLU I		25.152	15.437	86.792	1.00 13.19	L	N
	ATOM	443	CA GLU I		24.271	15.056	85.715	1.00 13.50	Ŀ	C
	ATOM	444	C GLU I		24.099	16.206	84.684	1.00 16.40 1.00 16.66	L L	C
35	ATOM	445	O GLU I		23.952 22.935	17.356 14.633	85.035 86.323	1.00 17.40	r r	Ċ
	ATOM ATOM	446 447	CB GLU I		21.891	14.257	85.238	1.00 17.40	L	č
	MOTA	448	CD GLU I		22.174	12.930	84.538	1.00 21.37	L	Č
	MOTA	449	OE1 GLU I		23.189	12.227	84.879	1.00 29.09	Ŀ	0
40	ATOM	450	OE2 GLU I		21.366	12.583	83.642	1.00 14.35	Ŀ	0
	MOTA	451	N SER I		24.141	15.873	83.390	1.00 18.45	Ŀ	N
	MOTA	452	CA SER I		23.959	16.910	82.370	1.00 21.02	L	C
	MOTA	453	C SER I		22.660 21.610	17.692 17.089	82.628 82.907	1.00 20.45 1.00 23.00	L L	C
45	ATOM ATOM	454 455	O SER I		23.893	16.260	80.972	1.00 23.30	L	č
-10	ATOM	456	OG SER I		23.696	17.280	79.990	1.00 35.05	L	ŏ
	ATOM	457	N GLY		22.735	19.017	82.564	1.00 16.05	L	N
	ATOM	458	CA GLY I	57	21.540	19.832	82.794	1.00 15.79	L	C
	MOTA	459	C GLY I		21.383	20.336	84.219	1.00 17.48	Ŀ	C
50	ATOM	460	O GLY I		20.604	21.239	84.470	1.00 20.76	L	O
	ATOM	461	N ILE I		22.130	19.758 20.199	85.154 86.559	1.00 15.63 1.00 13.54	L L	C N
	MOTA MOTA	462 463	CA ILE I		22.077 23.210	21.225	86.775	1.00 13.54	L	č
	ATOM	464	O ILE		24.353	20.972	86.376	1.00 15.41	L	ŏ
55	ATOM	465	CB ILE		22.321	18.985	87.479	1.00 16.14	L	C
	MOTA	466	CG1 ILE I		21.248	17.925	87.205	1.00 10.84	L	C
	MOTA	467	CG2 ILE I		22.293	19.433	88.957	1.00 14.42	L	C
	ATOM	468	CD1 ILE I		19.771	18.436	87.373	1.00 7.96	Ŀ	C
	MOTA	469	N PRO		22.933	22.351	87.471	1.00 16.57	L	N
60	MOTA	470	CA PRO I		24.011	23.324	87.650	1.00 15.02 1.00 17.68	L L	G G
	ATOM	471 472	C PRO 1		25.127 24.888	22.857 22.119	88.586 89.551	1.00 17.88	r r	0
	MOTA MOTA	473	O PRO I		23.296	24.567	88.181	1.00 20.01	L	č
	ATOM	474	CG PRO		22.119	24.013	88.932	1.00 14.55	Ĺ	č
65	ATOM	475	CD PRO		21.702	22.766	88.166	1.00 16.37	L	С
	MOTA	476	N ALA	ւ 60	26.342	23.352	88.335	1.00 15.03	Ľ	Ŋ
	MOTA	477	CA ALA		27.482	22.936	89.141	1.00 15.80	L	C
	ATOM	478	C ALA		27.443	23.436	90.588	1.00 16.37	L, L	O C
	ATOM	479	O ALA	L 60	28.370	23.164	91.349	1.00 14.10	т	J

	ATOM	480	CB	ALA L	60	28.828	23.389	9 88.439	1.00 19.03	L	~
	ATOM	481	N	ARG L		26.382			1.00 13.86	L L	C N
	ATOM	482	CA	ARG L		26.259	24.48	5 92.408	1.00 12.66	L	Č
5	ATOM ATOM	483 484	C O	ARG L		26.076			1.00 13.33	\mathbf{r}	Č
3	ATOM	485	CB	ARG L		26.222	23.166		1.00 11.62	L	0
	MOTA	486	CG	ARG L	61	25.015 24.958	25.355 26.567		1.00 10.50	Ŀ	C
	ATOM	487	CD	ARG L		23.759	27.528		1.00 21.56 1.00 34.92	L L	C
	MOTA	488	NE	ARG L	61	22.428	27.036		1.00 20.51	L	C N
10	MOTA	489	CZ	ARG L	61	21.594	26.438		1.00 19.50	Ľ	C
	ATOM	490		L ARG L	61	21.952	26.279		1.00 20.76	$\widetilde{\mathbf{L}}$	Ŋ
	ATOM	491 492		2 ARG L	61	20.455	25.955		1.00 18.94	L	N
	ATOM ATOM	492	N CA	PHE L	62	25.682	22.086		1.00 11.06	L	N
15	ATOM	494	CA	PHE L	62 62	25.545 26.816	20.771 19.968		1.00 13.46	L	C
	ATOM	495	ŏ	PHE L	62	27.282	19.875		1.00 14.58	L	C
	ATOM	496	ĊВ	PHE L	62	24.378	19.988		1.00 14.64 1.00 10.25	L L	0
	MOTA	497	CG	PHE L	62	23.019	20.612		1.00 10.23	L L	C C
	ATOM	498		PHE L	62	22.359	20.344		1.00 14.57	L L	C
20	ATOM	499		PHE L	62	22.478	21.533	91.929	1.00 11.67	$\widetilde{\mathbf{L}}$	č
	MOTA	500		PHE L	62	21.175	20.994		1.00 9.15	L	Č
	ATOM ATOM	501 502	CE2 CZ	PHE L	62	21.248	22.220		1.00 5.02	L	С
	ATOM	503	N	SER L	62 63	20.631 27.354	21.932		1.00 15.51	L	C
25	MOTA	504	CA	SER L	63	28.542	19.375 18.518		1.00 13.28	ŗ	И
	MOTA	505	C	SER L	63	28.450	17.384	94.817	1.00 16.69 1.00 16.93	L L	C
	MOTA	506	0	SER L	63	27.740	17.512		1.00 13.99	. L	0 C
	MOTA	507	CB	SER L	63	29.841	19.326		1.00 20.80	. L	Č
20	ATOM	508	OG	SER L	63	29.864	19.821	95.383	1.00 15.22	ī	ŏ
30	MOTA MOTA	509	N	GLY L	64	29.176	16.290		1.00 15.15	L	N
	MOTA	510 511	CA C	GLY L	64 64	29.112	15.214		1.00 12.85	L	C
	ATOM	512	Ö	GLY L	64 64	30.474 31.363	14.689		1.00 17.05	L	C
	MOTA	513	N	SER L	65	30.657	14.813 14.097		1.00 20.04	L	0
35	ATOM	514	CA	SER L	65	31.927	13.486		1.00 14.74 1.00 17.90	L L	N
	MOTA	515	C	SER L	65	31.709	12.310		1.00 17.90	r r	C
	ATOM	516	0	SER L	65	30.597	12.056		1.00 10.29	L	0
	ATOM	517	CB	SER L	65	32.914	14.491	98.011	1.00 17.37	L	č
40	ATOM ATOM	518	OG	SER L	65	32.304	14.967	99.193	1.00 31.08	Ŀ	0
40	ATOM	519 520	N CA	GLY L	66 66	32.795	11.582	98.630	1.00 17.49	L	N
	ATOM	521	C	GLY L	66	32.711 33.145	10.462 9.168	99.551 98.886	1.00 12.08	L	C
	MOTA	522	ŏ	GLY L	66	33.445	9.144	97.696	1.00 17.57 1.00 20.81	F	C
	ATOM	523	N	SER L	67	33.215	8.099	99.673	1.00 20.81	L L	O N
45	MOTA	524	CA	SER L	67	33.591	6.784	99.170	1.00 17.33	L	C
	ATOM	525	C	SER L	67	33.241		100.287	1.00 18.00	L	č
	MOTA MOTA	526 527	0	SER L	67	32.990		101.444	1.00 16.60	L	0
	ATOM	528	CB OG	SER L SER L	67 67	35.103	6.694	98.886	1.00 14.43	L	C
50	ATOM	529	И	ARG L	68	35.792 33.193	6.817 4.550		1.00 15.13	$ar{\mathbf{L}}$	0
	ATOM	530	CA	ARG L	68	32.875		99.906 100.793	1.00 18.02 1.00 21.90	L	N
	MOTA	531	C	ARG L	68	31.494	3.545	101.440	1.00 21.90	L L	C
	ATOM	532	0	ARG L	68	30.486	3.175	100.813	1.00 22.85	L	C O
p= p=	ATOM	533	CB	ARG L	68	34.003	3.352	101.843	1.00 22.76	Ŀ	Č
55	ATOM	534	CG	ARG L	68	35.389		101.227	1.00 26.60	L	č
	ATOM ATOM	535 536	CD	ARG L	68	36.416		102.374	1.00 48.13	L	С
	ATOM	537	NE CZ	ARG L ARG L	68 68	37.790	3.179	101.986	1.00 67.04	L	N
	ATOM	538		ARG L	68 68	38.466 37.902	4.289	102.301 103.019	1.00 77.72	L	C
60	ATOM	539	NH2	ARG L	68	39.737		103.019	1.00 74.08	L	N
	MOTA	540	N	THR L	69	31.431		102.691	1.00 83.92 1.00 24.77	L	N
	ATOM	541	CA	THR L	69	30.144		103.374	1.00 24.77	L L	C N
	MOTA	542	C	THR L	69	29.698	5.545	103.712	1.00 26.51	L	C
85	ATOM	543	0	THR L	69	28.592	5.726	104.182	1.00 28.14	L	ŏ
65	ATOM ATOM	544 545	CB OC1	THR L	69	30.158	3.306	104.710	1.00 26.91	L	Č
	ATOM	545 546		THR L	69 69	31.166	3.856	105.554	1.00 27.96	L	0
	ATOM	547	N	ASP L	70	30.523 30.517		104.424 103.434	1.00 25.31	, L	C
	ATOM	548	CA	ASP L	70	30.158		103.434	1.00 20.56 1.00 22.63	L	N
						- 3,230	,,,,,,,	200.000	1.00 44.03	Þ	C

	~	E40	C ASP L	70	30.238	8 863 ·	102.615	1.00 20.68	L	С
	ATOM ATOM	549 550	C ASP L O ASP L	70	31.290	9.031	102.016	1.00 26.56	L	õ
	ATOM	551	CB ASP L	70	31.118	8.435	104.889	1.00 26.74	L	С
	ATOM	552	CG ASP L	70	31.033		106.173	1.00 33.17	L	C
5	ATOM	553	OD1 ASP L	70	30.028		106.878 106.428	1.00 45.62 1.00 48.35	L L	0
	ATOM	554	OD2 ASP L N PHE L	70 71	31.954 29.124		100.428	1.00 48.33	Ľ L	N
	ATOM ATOM	555 556	CA PHE L	71	29.041		101.185	1.00 18.07	L	Ĉ
	MOTA	557	C PHE L	71	28.411		101.605	1.00 16.31	L	C
10	ATOM	558	O PHE L	71	27.691	11.797		1.00 14.04	L	0
	ATOM	559	CB PHE L	71	28.138	-	100.109	1.00 16.27	L	C
	ATOM	560	CG PHE L	71	28.709	8.463	99.614	1.00 15.39	L L	C
	MOTA	561	CD1 PHE L CD2 PHE L	71 71	28.523 29.579	7.284 8.462	100.325 98.525	1.00 11.66 1.00 7.25	L	C
15	ATOM ATOM	562 563	CE1 PHE L	71	29.223	6.062	99.951	1.00 12.24	L	č
13	ATOM	564	CE2 PHE L	71	30.268	7.301	98.153	1.00 7.98	L	C
	MOTA	565	CZ PHE L	71	30.084	6.092	98.878	1.00 8.50	L	C
	ATOM	566	N THR L	72	28.624		100.801	1.00 17.20	Ŀ	Й
	ATOM	567	CA THR L	72	27.998		101.081	1.00 17.62	L L	C C
20	MOTA	568	C THR L O THR L	72 72	27.575 28.196	14.675 14.435	99.751 98.717	1.00 19.31 1.00 20.88	L L	Ö
	ATOM ATOM	569 570	O THR L CB THR L	72	28.964		101.770	1.00 15.55	L	č
	ATOM	571	OG1 THR L	72	30.058		100.913	1.00 23.82	L	0
	ATOM	572	CG2 THR L	72	29.542		103.030	1.00 15.82	L	С
25	MOTA	573	N LEU L	73	26.493	15.457	99.807	1.00 19.72	L	N
	ATOM	574	CA LEU L C LEU L	73 73	26.030 26.217	16.236 17.677	98.663 99.201	1.00 16.55 1.00 14.66	L L	C
	MOTA MOTA	575 576	C LEU L	73 73	25.783		100.322	1.00 14.00	L	ŏ
	MOTA	577	CB LEU L	73	24.513	15.996	98.415	1.00 12.04	L	C
30	ATOM	578	CG LEU L	73	23.862	16.933	97.412	1.00 15.16	L	C
	MOTA	579	CD1 LEU L	73	24.364	16.622	95.971	1.00 7.12	L	C
	ATOM	580	CD2 LEU L	73	22.333 26.779	16.778 18.549	97.425 98.366	1.00 10.12 1.00 15.06	L L	N C
	ATOM ATOM	581 582	N THR L	74 74	27.001	19.931	98.745	1.00 14.50	L	Ĉ
35	MOTA	583	C THR L	74	26.271	20.792	97.744	1.00 16.15	L	C
	MOTA	584	O THR L	74	26.297	20.513	96.532	1.00 20.55	L	0
	ATOM	585	CB THR L	74	28.497	20.274	98.756	1.00 14.01	L	C
	ATOM	586	OG1 THR L	74	29.136 28.719	19.508 21.793	99.777 99.068	1.00 10.91 1.00 8.51	L L	C O
40	ATOM ATOM	587 588	CG2 THR L N ILE L	74 75	25.520	21.784	98.233	1.00 16.30	r r	N
40	ATOM	589	CA ILE L	75	24.842	22.717	97.352	1.00 16.67	L	C
	ATOM	590	C ILE L	75	25.515	24.052	97.687	1.00 20.52	L	C
	MOTA	591	O ILE L	75	25.481	24.501	98.855	1.00 21.73	ŗ	0
4=	ATOM	592	CB ILE L	75 75	23.331 22.756	22.809 21.387	97.656 97.597	1.00 20.98 1.00 14.60	L L	C
45	MOTA MOTA	593 594	CG1 ILE L CG2 ILE L	75 75	22.643	23.703	96.641	1.00 14.00	L	č
	ATOM	595	CD1 ILE L	75	21.239	21.348	97.963	1.00 10.72	L	C
	ATOM	596	N ASN L	76	26.085	24.703	96.691	1.00 18.75	L	N
	MOTA	597	CA ASN L	76	26.803	25.941	97.025	1.00 18.83	L	C
50	MOTA	598	C ASN L	76 76	27.022 27.640	26.797 26.378	95.789 94.829	1.00 19.14 1.00 20.66	L L	O C
	MOTA MOTA	599 600	O ASN L CB ASN L	76	28.159	25.535	97.655	1.00 20.07	L	Č
	MOTA	601	CG ASN L	76	28.920	26.738	98.205	1.00 20.61	L	C
	MOTA	602	OD1 ASN L	76	28.302	27.682	98.681	1.00 20.96	L	0
55	MOTA	603	ND2 ASN L	76	30.244	26.690	98.175	1.00 25.64	ŗ	N
	MOTA	604	N PRO L	77	26.467 25.632	28.005 28.644	95.757 96.793	1.00 22.23 1.00 22.24	L L	C N
	MOTA MOTA	605 606	CA PRO L C PRO L	77 77	24.205	28.126	96.665	1.00 22.29	L	Č
	ATOM	607	O PRO L	77	23.721	27.852	95.567	1.00 23.37	L	0
60	ATOM	608	CB PRO L	77	25.651	30.135	96.414	1.00 20.03	L	C
	MOTA	609	CG PRO L	77	25.601	30.058	94.807	1.00 18.01	L	C
	ATOM	610	CD PRO L	77	26.621	28.854	94.560 97.794	1.00 19.60 1.00 19.30	L L	C N
	MOTA MOTA	611 612	N VAL L CA VAL L	78 78	23.516 22.086	28.051 27.650	97.794	1.00 15.86	L	C
65	MOTA	613	C VAL L	78	21.237	28.809	97.198	1.00 15.02	L	С
	ATOM	614	O VAL L	78	21.528	30.006	97.458	1.00 18.62	L	0
	MOTA	615	CB VAL L	78	21.659	27.342	99.240	1.00 10.76	L	C
	ATOM	616	CG1 VAL L	78	20.108	27.338	99.344 99.691	1.00 15.65 1.00 8.70	L L	C
	MOTA	617	CG2 VAL L	78	22.225	25.962	22.02L	1.00 0.70		C

	ATOM	618	n glu	L 79		20.229	28.482	96.385	1.00 15.66	L	N
	MOTA	619	CA GLU	ь 79		19.303	29.452	95.777	1.00 15.48 1.00 19.00	L L	C
	ATOM		C GLU			17.890 17.679	29.108 28.011	96.280 96.728	1.00 19.00 1.00 18.75	L L	Ö
5	MOTA MOTA		CB GLU			19.341	29.354	94.257	1.00 16.52	L	C
Ū	ATOM	623	CG GLU	ь 79)	20.703	29.701	93.731	1.00 17.33	Ŀ	C
	ATOM		CD GLU			20.771 21.811	29.892 30.362	92.198 91.749	1.00 31.97 1.00 36.07	L L	C
	MOTA MOTA		OE1 GLU OE2 GLU			19.829	29.549	91.476	1.00 19.91	L	ŏ
10	ATOM		N ALA			16.946	30.041	96.179	1.00 17.42	L	N
10	ATOM		CA ALA			15.594	29.804	96.728	1.00 15.69	L	C
	MOTA		C ALA			14.941	28.596	96.125	1.00 17.37	L	C
	MOTA		O ALA			14.202 14.655	27.902 31.034	96.797 96.432	1.00 20.28 1.00 17.81	L L	C
4.5	ATOM ATOM		CB ALA N ASP			15.181	28.374	94.839	1.00 17.01	L	N
15	MOTA		CA ASP	_		14.492	27.254	94.184	1.00 20.13	L	C
	ATOM		C ASP	L 8:		15.083	25.903	94.533	1.00 18.90	L	C
	ATOM	635	O ASP			14.614	24.889	93.991	1.00 22.61	Ŀ	O C
	MOTA	636	CB ASP			14.467 13.575	27.444 26.430	92.658 91.938	1.00 20.21 1.00 34.87	L L	Č
20	MOTA	637 638	CG ASP OD1 ASP			12.398	26.284	92.319	1.00 48.81	L	ŏ
	ATOM ATOM	639	OD1 ASP			14.054	25.764	90.982	1.00 50.24	L	0
	MOTA	640	N ASP			16.057	25.871	95.453	1.00 16.98	L	N
	MOTA	641	CA ASP			16.640	24.587	95.887	1.00 15.01	L L	C
25	ATOM	642	C ASP			15.839 16.144	23.921 22.779	97.038 97.470	1.00 15.72 1.00 19.30	L	ŏ
	MOTA MOTA	643 644	O ASP CB ASP			18.088	24.761	96.328	1.00 13.58	L	C
	ATOM	645	CG ASP			19.016	25.236	95.161	1.00 19.81	L	C
	ATOM	646	OD1 ASP	г 8	2	18.685	25.119	93.925	1.00 15.99	L	0
30	MOTA	647	OD2 ASP			20.081	25.777	95.531 97.553	1.00 22.54 1.00 15.10	L L	O N
	MOTA	648	N VAL			14.810 14.008	24.609 23.957	98.617	1.00 13.10	L	Ĉ
	ATOM ATOM	649 650	CA VAL			13.427	22.662	98.020	1.00 17.36	L	C
	ATOM	651	O VAL			12.820	22.650	96.948	1.00 17.48	L	0
35	MOTA	652	CB VAL	r 8	3	12.914	24.905	99.174	1.00 15.94	ŗ	C
	ATOM	653	CG1 VAL			13.604	25.942	100.046	1.00 23.49 1.00 25.18	L L	C
	ATOM	654	CG2 VAL			12.227 13.651	25.582 21.576	98.130 98.738	1.00 25.18 1.00 15.63	L	N
	ATOM ATOM	655 656	N ALA		4	13.272	20.269	98.218	1.00 14.84	r L	C
40	ATOM	657	C ALA	_	$\overline{4}$	13.732	19.240	99.214	1.00 15.55	L	C
	MOTA	658	O ALA		4	14.336	19.576	100.253	1.00 15.84	L	0
	ATOM	659	CB ALA		4	14.071	20.056 17.959	96.900 98.930	1.00 14.40 1.00 15.71	L L	C N
	MOTA	660 661	N THR		5 5	13.416 13.960	16.888	99.739	1.00 15.45	L	Ĉ
45	ATOM ATOM	662	C THR		5	15.005	16.210	98.843	1.00 15.12	L	С
-10	MOTA	663	O THR	L 8	5	14.727	15.967	97.667	1.00 15.93	L	0
	ATOM	664	CB THR		5	12.845	15.855	100.140	1.00 17.03	L L	C O
	ATOM	665	OG1 THR		5 5	11.920 13.470	14.657	101.021 100.918	1.00 22.01 1.00 8.72	L	č
50	MOTA MOTA	666 667	CG2 THR		6	16.183	15.916	99.411	1.00 14.04	L	N
50	ATOM	668	CA TYR		6	17.268	15.309	98.667	1.00 13.13	L	C
	MOTA	669	C TYP	E L S	6	17.447	13.879	99.156	1.00 16.69	L	С
	MOTA	670	O TYP		6	17.458	13.637 16.109	100.330 98.896	1.00 18.94 1.00 11.97	L L	O C
EE	MOTA	671 672	CB TYF		6	18.564 18.443	17.491	98.305	1.00 11.60	L	č
55	MOTA MOTA	673	CD1 TYF		6	17.811	18.516	98.981	1.00 7.53	L	C
	MOTA	674	CD2 TYF	3 L. S	6	18.872	17.734	97.006	1.00 12.00	L	C
	ATOM	675	CE1 TYF		6	17.590	19.772	98.364	1.00 11.09	L	C
	ATOM	676	CE2 TYP		6	18.678	18.955 19.968	96.389 97.056	1.00 11.34 1.00 17.23	L L	C
60	ATOM	677 678	OH TYP		16 16	18.043 17.888	21.177	96.447	1.00 17.23	L	ŏ
	MOTA MOTA	679	N TYP		37	17.559	12.936	98.214	1.00 16.92	L	N
	ATOM	680	CA TYP	ιь 8	37	17.721	11.533	98.587	1.00 13.58	Ŀ	C
	MOTA	681	C TYI	7 L, 8	37	19.002	10.935		1.00 12.86	L L	O C
65	ATOM	682	O TY		37 37	19.326 16.618	11.195 10.684		1.00 18.14 1.00 6.47	L	C
	MOTA MOTA	683 684	CB TYI		3 <i>1</i> 37	15.235	11.018		1.00 18.98	Ĺ	C
	MOTA	685	CD1 TY		37	14.461	11.985	97.824	1.00 11.56	Ŀ	C
	ATOM	686	CD2 TY	яь а	37	14.684	10.318	99.518	1.00 14.13	L	С
						100					

	2001	607	and	DISTEN T	07	12 150	10 000	00 046	1 00 15 50	-	~
	MOTA	687	CE1	TYR L	87	13.156	12.228	98.246	1.00 15.50	L	C
	MOTA	688	CE2	TYR L	87	13.358	10.572	99.941	1.00 7.09	L	C
	-										
	ATOM	689	CZ	TYR L	87	12.621	11.510	99.306	1.00 17.61	L	C
	ATOM	690	OH	TYR L	87	11.313	11.799	99.716	1.00 18.17	I.	
_											
5	MOTA	691	\mathbf{N}	CYS L	88	19.673	10.099	98.850	1.00 9.84	L	N
	MOTA	692	CA	CYS L	88	20.813	9.367	98.272	1.00 14.40	I	
											_
	ATOM	693	С	CYS L	88	20.235	7.961	97.902	1.00 15.10	· <u>T</u>	, C
	ATOM	694	0	CYS L	88	19.136	7.592	98.357	1.00 18.42	L	. 0
	MOTA	695	CB	CYS L	88	21.962	9.241	99.263	1.00 12.72	L	C
10	\mathbf{ATOM}	696	sg	CYS L	88	21.464	8.575	100.910	1.00 16.04	I	S
	ATOM	697	N	GLN L	89	20.944	7.220	97.041	1.00 11.35	I	
	ATOM		TA	רד אזרדי	09	20.544				1.	
	ATOM	698	$^{\rm CA}$	GLNL	89	20.468	5.917	96.588	1.00 9.96	L	C
	MOTA	699	С	GLN L	89	21.692	5.101	96.156	1.00 13.56	L	C
	MOTA	700	0	GLN L	89	22,591	5.652	95.507	1.00 14.17	L	
15	ATOM	701	CB	GLN L	89	19.561	6.138	95.392	1.00 9.47	L	C
	MOTA	702	CG	GLN L	89	18.988	4.858	94.748	1.00 8.43	L	
	MOTA	703	$^{\rm CD}$	$\operatorname{GLN} L$	89	19.713	4.527	93.433	1.00 12.81	L	C
	ATOM	704	OE1	GLN L	89	19.766	5.348	92.490	1.00 13.05	I	0
	ATOM	705	NE2	GLN L	89	20.250	3.310	93.364	1.00 7.99	L	N
20	ATOM	706	N	GLN L	90	21.744	3.825	96.542	1.00 12.73	L	N
	MOTA	707	CA	GLN L	90	22.913	2.994	96.196	1.00 11.36	L	
	ATOM	708	С	GLN L	90	22.517	1.939	95.194	1.00 12.24	L	C
		709	0	GLN L	90	21.399	1.436	95.209	1.00 8.64	I	
	MOTA									1.	
	MOTA	710	CB	GLN L	90	23.527	2.285	97.415	1.00 9.81	L	C
05											. ~
25	ATOM	711	CG	GLN L	90	22.598	1.298	98.110	1.00 14.99	L	C
	MOTA	712	CD	GLN L	90	22.598	-0.129	97.521	1.00 18.05	L	C
	MOTA	713	OE1	GLN L	90	23.545	-0.566	96.864	1.00 15.88	L	. 0
	MOTA	714	NE2	GLN L	90	21.518	-0.858	97.800	1.00 20.57	L	
	ATOM	715	N	SER L	91	23.473	1.641	94.322	1.00 13.95	L	N
00											
30	MOTA	716	$^{\rm CA}$	SER L	91	23.290	0.693	93.251	1.00 19.79	L	
	MOTA	717	C	SER L	91	24.352	-0.403	93.325	1.00 18.67	L	C
	MOTA	718	0	SER L	91	24.611	-1.040	92.298	1.00 19.36	L	. 0
	ATOM	719	CB	SER L	91	23.441	1.425	91.887	1.00 15.12	L	
	MOTA	720	OG	SER L	91	22.237	2.067	91.586	1.00 33.42	L	. 0
25											
35	MOTA	721	N	ASN L	92	24.930	-0.634	94.510	1.00 16.12	L	
	ATOM	722	$^{\rm CA}$	ASN L	92	25.989	-1.659	94.620	1.00 15.63	L	C
	ATOM	723	С	ASN L	92	25.422	-3.053	94.890	1.00 14.30	L	C
	MOTA	724	0	ASN L	92	26.015	-4.064	94.460	1.00 16.71	L	
	MOTA	725	CB	ASN L	92	27.040	-1.288	95.676	1.00 15.71	L	C
40											
40	MOTA	726	CG	ASN L	92	28.307	-2.149	95.545	1.00 14.45	L	C
	MOTA	727	OD1	ASN L	92	28.831	-2.324	94.450	1.00 27.57	L	. 0
	MOTA	728	ND2	ASN L	92	28.770	-2.700	96.656	1.00 25.93	L	, N
	MOTA	729	N	GLU L	93	24.279	~3.143	95.562	1.00 16.66	I	
	ATOM	730	$^{\mathrm{CA}}$	GLU L	93	23.643	-4.433	95.783	1.00 16.68	L	ı C
45		731		GLU L	93	22.164	-4.332	95.540		7	
45	MOTA		C						1.00 18.74	L	
	MOTA	732	0	GLU L	93	21.542	-3.325	95.804	1.00 20.03	I	0
	ATOM	733	CB	GLU L	93	23.772	-4.934	97.261	1.00 20.26	L	, C
	MOTA	734	CG	GLU L	93	25.164	~5.095	97.612	1.00 24.66	L	C
	MOTA	735	CD	GLU L	93	25.373	~5.930	98.887	1.00 27.35	L	
50	MOTA	736	OE1	GLU L	93	24.422	-6.153	99.638	1.00 20.40	I	. 0
	ATOM	737	OE2	GLU L	93	26.517	-6.309	99.032	1.00 31.57	L	. 0
	MOTA	738	N	ASP L	94	21.584	-5.438	95.123	1.00 20.63	L	N
											1 1/
	MOTA	739	$^{\rm CA}$	ASP L	94	20.123	-5.480	94.983	1.00 17.16	I	C
	ATOM	740	С	ASP L	94	19.620	-5.956	96.366	1.00 16.50	L	
55	MOTA	741	0	ASP L	94	20.278	-6.748	97.008	1.00 21.43	L	. 0
00											
	MOTA	742	CB	ASP L	94	19.746	-6.525	93.962	1.00 18.30	L	C
		743	CG		94	20.195	~6.159	92.573	1.00 22.97	L	C
	ATOM			ASP L							
	ATOM	744	OD1	ASP L	94	20.453	-4.967	92.336	1.00 31.49	L	. 0
	MOTA	745	OD2	ASP L	94	20.255	-7.058	91.718	1.00 33.23	L	
60	MOTA	746	N	PRO L	95	18.473	-5.447	96.836	1.00 18.36	I	
55											
	ATOM	747	CA	PRO L	95	17.663	-4.449	96.112	1.00 15.59	L	
		748				18.313	-3.067	96.210		I	Č
	ATOM		С	PRO L	95				1.00 15.03		
	MOTA	749	0	PRO L	95	18.880	-2.731	97.243	1.00 15.51	L	0
											~
	MOTA	750	CB	PRO L	95	16.325	-4.466	96.865	1.00 15.24	L	C
65	ATOM	751	CG	PRO L	95	16.748	~4.764	98.308	1.00 19.84	L	
~~								00.000			· ~
	MOTA	752	$^{\rm CD}$	PRO L	95	17.832	~5.859	98.104	1.00 18.49	L	
	MOTA	753	N	TRP L	96	18.190	-2.249	95.169	1.00 12.53	L	
	ATOM	754	$^{\rm CA}$	TRP L	96	18.751	-0.916	95.285	1.00 11.43	L	C
		755	C	TRP L	96	17.888	-0.227	96.339	1.00 15.42	I	
	ATOM	155	C	11/2 17	90	11.000	-0.221	90.333	T.00 TJ.47	1	

	ATOM	756	0	TRP L	96	16.668	-0.463	96.364	1.00	16.13	L	O
	ATOM	757	СВ	TRP L	96	18.596	-0.141	93.994	1.00	6.29	L L	č
	MOTA	758	CG	TRP L	96	19.497	-0.624	92.924	1.00	18.26	L	C
_	ATOM	759	CD1		96	20.292	-1.701	92.954	1.00	23.00	L	C
5	MOTA	760	CD2	TRP L	96 96	19.694	0.007	91.657	1.00	15.27	L	C
	ATOM ATOM	761 762	NE1 CE2	TRP L	96 96	21.009 20.650	-1.785 -0.744	91.775 90.964	1.00 1.00	15.73 22.20	L L	C N
	ATOM	763	CE3	TRP L	96	19.148	1.137	91.058		13.08	L L	C
	MOTA	764	CZ2	TRP L	96	21.092	-0.397	89.681	1.00	23.50	L	Č
10	ATOM	765	CZ3	TRP L	96	19.583	1.498	89.787	1.00		L	Č
	MOTA	766	CH2	TRP L	96	20.552	0.729	89.118	1.00	23.23	L	C
	MOTA	767	N	THR L	97	18.521	0.636	97.153	1.00	14.07	L	N
	ATOM	768	CA	THR L	97	17.784	1.306	98.212	1.00	14.31	L	C
4 -	MOTA	769	C	THR L	97	18.051	2.804	98.229 97.707	1.00	16.18	L	C
15	ATOM ATOM	770 771	O CB	THR L	97 97	19.063 18.160	3.276 0.742	99.570	1.00	18.79 13.49	L L	0
	ATOM	772	OG1		97	19.588	0.742	99.618	1.00	17.28	Ľ	Õ
	MOTA	773	CG2	THR L	97	17.561	-0.728	99.749	1.00	10.34	L	Č
	ATOM	774	N	PHE L	98	17.119	3.515	98.851	1.00	16.74	\mathbf{L}	N
20	MOTA	775	CA	PHE L	98	17.173	4.966	98.957	1.00	15.24	L	C
	MOTA	776	C	PHE L	98	17.292	5.386	100.417	1.00	14.99	L	C
	ATOM	777	O	PHE L	98 98	16.795 15.898	4.676 5.572	101.313 98.435		13.01	L	0
	MOTA MOTA	778 779	CB CG	PHE L	98 98	15.898	5.522	96.435	1.00 1.00	12.91 13.58	L L	C
25	MOTA	780		PHE L	98	15.204	4.390	96.335	1.00	11.52	L	č
	ATOM	781		PHE L	98	16.004	6.648	96.173	1.00	10.32	L	Č
	MOTA	782	CE1	PHE L	98	14.981	4.388	94.966	1.00	10.75	L	C
	ATOM	783	CE2		98	15.770	6.644	94.808	1.00	13.28	L	C
	ATOM	784	CZ	PHE L	98	15.259	5.503	94.217		15.23	L	C
30	ATOM	785	N	GLY L	99 99	17.984 18.027	6.511 7.055	100.661	1.00 1.00	13.55 10.54	L L	N
	MOTA MOTA	786 787	CA C	GLY L	99	16.637	7.610	102.027 102.318	1.00	12.58	F F	C
	ATOM	788	Ö	GLY L	99	15.796	7.735	101.424	1.00	9.94	L	ŏ
	ATOM	789	N		100	16.424	8.022	103.565	1.00	12.36	L	N
35	ATOM	790	CA	GLY L	100	15.147	8.553	103.982	1.00	8.70	L	C
	MOTA	791	С	GLY L	100	14.891		103.583		15.60	L	C
	ATOM	792	0	GLY L	100	13.803	10.533	103.828	1.00	17.49	L	0
	MOTA	793	N		101	15.910	10.695	103.040	1.00	15.34	$\bar{\mathbf{r}}$	N
40	ATOM ATOM	794 795	CA C	GLY L	101 101	15.662 16.100	12.053 13.108	102.574 103.567	1.00	18.81 17.29	L L	C
40	ATOM	796	Ö	GLY L	101	16.100	12.868	104.775	1.00	18.50	L	õ
	ATOM	797	Ŋ	THR L	102	16.577	14.239	103.050	1.00	15.70	L	N
	MOTA	798	CA	THR L	102	16.963	15.383	103.902	1.00	13.96	L	C
	ATOM	799	С	THR L		16.243	16.556	103.300	1.00	12.46	L	C
45	ATOM	800	0	THR L		16.358		102.080	1.00	11.12	L	0
	ATOM ATOM	801 802	CB OG1	THR L	102	18.526 19.194	15.654 14.618	103.915 104.653	1.00	13.19 18.45	L L	C
	ATOM	803	CG2			18.813		104.578	1.00	7.06	P D	Č
	ATOM	804	N	LYS L		15.488		104.130		11.45	L	Ŋ
50	MOTA	805	CA	LYS L		14.756		103.615	1.00	13.95	L	C
	ATOM	806	C	LYS L		15.578		103.729		12.14	L	C
	MOTA	807	0	LYS L		16.098		104.795		16.90	Ţ.	0
	ATOM	808	CB	LYS L		13.411 12.759		104.360 103.933		11.00 25.30	L L	C
55	ATOM ATOM	809 810	CG CD	LYS L LYS L		11.185		103.933		32.62	P D	C
55	ATOM	811	CE	LYS L		10.533		105.063		42.65	L	Č
	ATOM	812	NZ	LYS L		9.000		104.966		51.76	L	N
	MOTA	813	N	LEU L		15.689		102.641		11.40	L	N
	MOTA	814	CA	LEU L		16.470		102.700		14.03	L	C
60	ATOM	815	C	LEU L		15.472		102.763		16.12	L	C
	ATOM	816	0	LEU L		14.494		101.964		19.86	L	0
	ATOM ATOM	817 818	CB CG	LEU L		17.316 18.153		101.444 101.382		17.08 15.21	L L	C
	ATOM	819		LEU L		19.243		101.362		14.42	L	C
65	MOTA	820		LEU L		18.758	23.351	99.967		21.88	L	Č
	ATOM	821	N	GLU L	105	15.738	23.838	103.669	1.00	19.74	L	N
	MOTA	822	CA	GLU L		14.883		103.776		23.03	Ŀ	C
	MOTA	823	C	GLU L		15.777		103.798		21.66	Ŀ	C
	ATOM	824	0	GLU L	102	16.995	26.152	104.094	T.00	23.85	P	0

	ATOM ATOM	825 826	CB	GLU L	105 105		.058 .822	24.996 24.033	5 105.0 3 104.8		1.00	20.70 42.64	Ļ	C
	ATOM	827	CD		105		991	23.732			1.00		L L	C
-	ATOM ATOM	828	OE1		105		550	23.403			1.00		L	0
5	ATOM	829 830	OE2 N	ILE L	105 106		.772 .167	23.799	9 105.9 9 103.5		1.00	35.54 19.49	L L	O
	ATOM	831	ĈA		106		897		103.4			18.78	T.	N C
	ATOM	832	C	ILE L		15.	594	29.515				18.92	L	C
10	ATOM ATOM	833 834	O CB		106 106		423 454	29.655 29.520				17.74	L	0
.0	ATOM	835			106		651	28.723				18.45 23.36	L L	C
	MOTA	836	CG2	ILE L	106	16.	165	30.884	102.2	287		17.39	L	č
	ATOM	837		ILE L			082		100.7			11.46	L	C
15	ATOM ATOM	838 839	N CA	LYS L LYS L	107		622 391	30.020) 105.3 ! 106.5			18.87 18.21	L L	N
	MOTA	840	CB	LYS L			507	30.812				13.40	L	C
	MOTA	841	C		107	16.	341	32.312	105.9	53	1.00		L	č
	ATOM	842	0	LYS L			316		105.3			26.63	L	0
20	ATOM ATOM	843 844	N CA	ARG L ARG L	108		208	34.375	. 106.0 5 105.5		1.00	24.68 23.09	L L	C N
	MOTA	845	C		108		597	35.310			1.00		L	C
	MOTA	846	0	ARG L		14.	547	34.974	107.8		1.00		L	0
	MOTA MOTA	847 848	CB CG	ARG L			151		104.3			19.08	Ŀ	C
25	MOTA		CD	ARG L ARG L	108 108		735 672	33.971 34.639			1.00	22.27 21.24	L L	C
	ATOM	850	NE		108		420	36.012	_		1.00		L	И
	ATOM	851	CZ	ARG L			862	36.858			1.00		L	C
	MOTA MOTA	852 853	NH1 NH2				555 614	36.441 38.120		-	1.00		L	И
30	MOTA	854	N	ALA L			245	36.539				20.00 22.10	L L	N
	MOTA	855	CA	ALA L	109	13.	729	37.503			1.00		r	C
	ATOM	856	C	ALA L			312	37.142				28.19	L	C
	MOTA MOTA	857 858	O CB	ALA L ALA L			497 730	36.641 38.883			1.00	28.86 19.28	L	0
35	MOTA	859	N	ASP L			904	37.545				24.17	L L	N C
	MOTA	860	CA	ASP L	110		526		109.2	94	1.00	21.56	L	Č
	MOTA	861	C	ASP L			516	37.934				23.66	L	C
	MOTA MOTA	862 863	O CB	ASP L ASP L			784 297	39.005	107.8 110.6		1.00	22.76 19.33	L L	0
40	ATOM	864	CG	ASP L			020	37.003			1.00		L L	G
	MOTA	865		ASP L		11.	593	35.921	111.4	58	1.00	25.30	L	ŏ
	MOTA MOTA	866 867		ASP L ALA L			969		112.9			38.99	L	0
	ATOM	868	N CA	ALA L			357 330	37.305	108.1			21.57 17.99	L L	C M
15	MOTA	869	C	ALA L			960	37.587				20.07	L	ç
	MOTA	870	0	ALA L			625		108.1	.63	1.00	22.24	L	0
	MOTA MOTA	871 872	CB N	ALA L ALA L			398 147		105.8 108.1			11.33	L	C
	ATOM	873	CA	ALA L			860		108.7			18.94 18.42	L L	C N
50	MOTA	874	C	ALA L	112		873		107.8			20.56	L	C
	ATOM	875	0	ALA L			869		106.6			25.17	L	0
	MOTA MOTA	876 877	CB N	ALA L PRO L			221 957		109.3			15.77 19.48	Ļ	C
	ATOM	878	CA	PRO L			994		107.4			17.01	L L	C N
55	MOTA	879	C	PRO L	113	-0.	051	37.193	106.8	95		17.50	L	č
	ATOM	880	0	PRO L			427		107.5			21.67	L	0
	MOTA ATOM	881 882	CB CG	PRO L PRO L			352 478		108.2°			16.83 10.92	L	C
	MOTA	883	CD	PRO L			853		109.6			17.62	L L	G G
30	ATOM	884	N	THR L	114	-0.	511	36.947	105.6	79	1.00	21.82	L	N
	ATOM	885 886	CA	THR L			625		105.1			21.62	ŗ	C
	ATOM ATOM	886 887	C O	THR L THR L			839 946		105.3 104.7			24.80 25.84	L L	C
	ATOM	888	CB	THR L			439		104.7			24.03	T Tr	С О
35	ATOM	889	OG1	THR L	114	-0.	309	38.827	103.4	60	1.00	25.12	L	0
	ATOM	890 891	CG2				655	38.604				15.64	Ļ	C
	ATOM ATOM	891 892	N CA	VAL L VAL L			752 897		106.25 106.65			22.00 21.60	L L	C N
	ATOM	893	C	VAL L			170		105.94			23.51	L	G

	ATOM ATOM ATOM	894 895 896	O CB CG1	VAL L VAL L VAL L	115 115 115	-6.455 -5.104 -6.171		L05.906 L08.159 L08.620	1.00	22.67 18.30 18.51	L L L	000
_	ATOM	897		VAL L	115	-3.743	36.262 1	L08.930	1.00	15.64	L	C
5	MOTA MOTA	898 899	N CA	SER L SER L		-6.920 -8.177	35.878 1 36.131 1	105.413	1.00	21.18 19.67	Ŀ	N
	ATOM	900	C	SER L		-9.200		104.073	1.00		L L	C
	MOTA	901	0	SER L		-8.878	33.963 1	.05.281	1.00	19.14	L	0
10	ATOM ATOM	902 903	CB OG	SER L SER L		-8.003 -6.991	35.930 1 36.777 1			16.47	$\tilde{\mathbf{r}}$	C
10	ATOM	904	И	ILE L		-10.438		L02.687 L05.478		31.49 18.42	L L	N O
	MOTA	905	CA	ILE L	117	-11.452	34.627 1	.05.968	1.00	19.19	L	Ĉ
	MOTA	906 907	C	ILE L		-12.594	34.564 1			18.21	Ŀ	C
15	ATOM ATOM	908	O CB	ILE P		-12.884 -11.980	35.572 1 35.028 1	104.306 107.384	1.00		L L	C
	ATOM	909	CG1	ILE L	117	-12.950	33.964 1			16.18	L	Č
	MOTA	910	CG2			-12.633	36.421 1		1.00		L	C
	ATOM ATOM	911 912	CD1 N		117 118	-13.317 -13.211		.09.365 .04.839	1.00	21.53 16.84	L L	C N
20	MOTA	913	ĈA	PHE L		-14.262	33.214 1		1.00		L	C
	MOTA	914	C	PHE L		-15.490	32.512 1	04.373		19.74	L	C
	ATOM ATOM	915 916	O CB	PHE L	118	-15.406 -13.776	31.427 1 32.382 1	.04.918	1.00	24.08	L	0
	MOTA	917	CG	PHE L	118	-12.558		02.032		16.32 19.49	L L	C
25	MOTA	918	CD1	PHE L	118	-11.308	32.634 1			23.15	Ĺ	Č
	MOTA	919 920	CD2		118	-12.653		.00.964		16.22	Ŀ	C
	ATOM ATOM	921	CE1 CE2			-10.145 -11.486	33.225 1 34.395 1	.02.011		27.60 18.98	L L	C
	ATOM	922	CZ	PHE L	118	-10.252	34.104 1		1.00	19.75	r r	c
30	MOTA	923	N	PRO L		-16.671	33.102 1			24.09	L	N
	ATOM ATOM	924 925	CA C	PRO L		-17.866 -18.187	32.401 1 31.236 1	.04.643	1.00		L	C
	ATOM	926	Õ		119	-17.649	31.105 1			22.99 25.33	L L	C
	ATOM	927	CB	PRO L	119	-18.993	33.441 1			21.57	L	Č
35	MOTA	928	CG	PRO L		-18.289	34.768 1			24.58	L	С
	ATOM ATOM	929 930	CD N	PRO L PRO L		-16.957 -19.111		.03.742	1.00		L	C
	ATOM	931	CA	PRO L		-19.548		.04.207 .03.454	1.00	24.97 20.35	L L	С И
	MOTA	932	C	PRO L	120	-20.169	29.766 1	.02.153		22.34	L	č
40	ATOM	933	0	PRO L		-20.757		.02.165		27.53	L	0
	MOTA MOTA	934 935	CB CG	PRO L		-20.626 -20.336		.04.336 .05.688	1.00	21.43 24.10	L L	C
	ATOM	936	CD	PRO L		-19.783		.05.534	1.00	26.50	L	C
45	MOTA	937	N	SER L		-20.021		.01.055		26.13	L	N
45	MOTA MOTA	938 939	, CA C	SER L SER L		-20.559 -22.061		99.739		28.80	L	C
	ATOM	940	Ö	SER L		-22.508		99.748 .00.482		30.89 28.98	L L	C
	MOTA	941	CB	SER L	121	-19.906		98.591		29.25	Ĩ.	č
50	ATOM	942	OG	SER L		-20.172		98.686		28.45	L	0
50	MOTA MOTA	943 944	N CA	SER L SER L		-22.831 -24.266		98.916 98.862		33.37 34.56	L L	C N
	ATOM	945	C	SER L		-24.432		98.360		30.86	Ĺ	G
	MOTA	946	0	SER L		-25.288	27.470	98.811		31.28	${f L}$	0
55	MOTA MOTA	947 948	CB OG	SER L SER L		-24.935 -24.460		97.903 96.600		36.90	Ţ.	C
-	ATOM	949	И	GLU L		-23.571		97.436		48.86 28.18	L L	N O
	MOTA	950	CA	GLU L	123	-23.659	26.408	96.936		33.35	L	C
	ATOM	951	C	GLU L		-23.564		98.042		30.77	L	C
60	MOTA MOTA	952 953	O CB	GLU L		-24.316 -22.554		98.049 95.913		28.32 35.48	L L	С О
	ATOM	954	ĊĠ	GLU L		-22.812		94.643		49.39	L	C
	MOTA	955	CD	GLU L		-22.019	28.188	94.524		60.63	L	Č
	ATOM ATOM	956 957	OE1 OE2			-22.009		95.522		60.83	Ţ	0
65	ATOM	957 958	N N	GLU L GLN L		-21.405 -22.619		93.434 98.978		60.19 30.73	L L	И О
	MOTA	959	CA	GLN L	124	-22.495		00.046		27.46	L	C.
	ATOM	960	C	GLN L	124	-23.678	24.587 1	01.005	1.00	25.19	L	C
	MOTA MOTA	961 962	O CB	GLN L		-24.172		01.459		25.43	L	0
	7 OI1	J U Z	CD	GLN L	404	-21.142	24.693 1	00.82/	T.00	28.38	L	С

	MOTA	0.63	aa	OT N T 124		-21.002	02 700 101 0	200	1 00 17 60		
		963	CG	GLN L 124			23.700 101.9		1.00 17.62	L	С
	MOTA	964	CD	GLN L 124		-19.695	23.785 102.7	732	1.00 19.12	L	C
	ATOM	965	OE1	GLN L 124		-19.129	24.872 102.8		1.00 20.58		
										L	0
	MOTA	966	NE2	GLN L 124		-19.218	22.628 103.2	260	1.00 14.19	L	\mathbf{N}
5	ATOM	967	N	LEU L 125		-24.128	25.781 101.3	221	1.00 23.58	L	N
•											
	MOTA	968	ca	LEU L 125		-25.255	25.923 102.2	446	1.00 26.99	L	С
	ATOM	969	C	LEU L 125		-26.482	25.150 101.7	714	1.00 31.07	L	С
	MOTA	970		LEU L 125							
			0			-27.160	24.439 102.4		1.00 31.01	L	0
	ATOM	971	CB	LEU L 125		-25.574	27.404 102.4	142	1.00 21.80	L	C
10	ATOM	972	CG	LEU L 125		-24.497	28.130 103.2				~
10									1.00 26.32	L	C
	ATOM	973	CD1	LEU L 125		-24.696	29.650 103.2	236	1.00 8.36	L	C
	MOTA	974	CD3	LEU L 125		-24.556	27.611 104.6		1.00 20.84		
										L	С
	MOTA	975	N	THR L 126		-26.753	25.264 100.4	124	1.00 33.07	L	N
	ATOM	976	CA	THR L 126		-27.880	24.508 99.8	276	1.00 35.65	L	
4											С
15	\mathbf{MOTA}	977	С	THR L 126		-27.736	22.993 100.1	109	1.00 38.92	L	С
	ATOM	978	0	THR L 126		-28.733	22.282 100.0	141	1.00 45.16	L	0
	ATOM	979	CB	THR L 126		-28.021	24.678 98.3	3/6	1.00 37.07	L	C
	MOTA	980	OG1	THR L 126		-26.987	23.913 97.7	745	1.00 49,44	L	0
	MOTA	981	CG2	THR L 126		-27.929					
									1.00 27.81	L	C
20	ATOM	982	N	SER L 127		-26.517	22.483 100.3	366	1.00 38.10	L	N
	MOTA	983	CA	SER L 127		-26.319	21.040 100.5		1.00 34.68		
										L	С
	ATOM	984	C	SER L 127		-26.420	20.705 102.0)55	1.00 34.07	L	C
	MOTA	985	0	SER L 127		-26.321	19.533 102.4	178	1.00 39.83	L	0
	ATOM	986	CB	SER L 127		-24.949	20.596 100.0	J94	1.00 34.83	L	C
25	ATOM	987	OG	SER L 127		-24.807	20.845 98.7	713	1.00 44.79	Ľ	0
	MOTA	988				-26.596					
			N	GLY L 128			21.730 102.8		1.00 29.72	L	N
	ATOM	989	CA	GLY L 128		-26.717	21.469 104.2	259	1.00 34.23	L	C
	MOTA	990	С	GLY L 128		-25.440	21,697 105.0	130	1.00 36.19	L	
									· · · · · · · · · · · · · · · · · · ·		C
	ATOM	991	0	GLY L 128		-25.456	21.612 106.2	264	1.00 40.26	L	0
30	MOTA	992	N	GLY L 129		-24.353	22.020 104.3	326	1.00 33.03	L	N
	MOTA	993	CA	GLY L 129		-23.092	22.207 105.0	109	1.00 31.52	L	C
	ATOM	994	С	GLY L 129		-22.632	23.635 105.1	01	1.00 30.69	L	С
	MOTA	995	0	GLY L 129		-23.196	24.524 104.4	153	1.00 28.36	L	O.
	ATOM	996	N	ALA L 130		-21.609	23.859 105.9	927	1.00 29.57	L	N
35											
30	MOTA	997	CA	ALA L 130		-21.095	25.205 106.1	747	1.00 29.07	L	С
	ATOM	998	С	ALA L 130		-19.650	25.164 106.5	583	1.00 27.65	L	C
	MOTA	999	ō	ALA L 130		-19.376	25.016 107.7				
									1.00 32.06	L	0
	\mathbf{ATOM}	1000	CB	ALA L 130		-21.909	25.940 107.2	211	1.00 25.02	L	С
	ATOM	1001	N	SER L 131		-18.732	25.329 105.6				
									1.00 26.55	L	И
40	ATOM	1002	CA	SER L 131		-17.320	25.336 105.9	98	1.00 23.33	L	C
	MOTA	1003	C	SER L 131		-16.890	26.778 105.9	221	1.00 23.98	L	Č
										-	
	MOTA	1004	0	SER L 131		-17.229	27.504 104.9	148	1.00 27.26	L	0
	ATOM	1005	CB	SER L 131		-16.504	24.489 105.0	005	1.00 18.37	L	С
	MOTA	1006	OG	SER L 131		-16.912	23.139 105.0	JUT	1.00 24.81	L	0
45	\mathbf{ATOM}	1007	N	VAL L 132		-16.156	27.213 106.9	955	1.00 20.02	L	N
	ATOM	1008	CA	VAL L 132		-15.639	28.556 107.0				
									1.00 22.56	L	С
	MOTA	1009	C	VAL L 132		-14.114	28.368 106.8	324	1.00 19.29	L	C
	MOTA	1010	0	VAL L 132		-13.500	27.522 107.5	500	1.00 17.72	L	ō
	ATOM	1011	CB	VAL L 132		-15.862	29.175 108.4		1.00 23.70	L	C
50	ATOM	1012	CG1	VAL L 132		-15.461	30.666 108.3	372	1.00 19.40	L	С
	ATOM	1013		VAL L 132		-17.369	29.077 108.8		1.00 21.15		
										L	С
	ATOM	1014	N	VAL L 133		-13.531	29.141 105.9	14	1.00 18.23	L	N
	MOTA	1015	CA	VAL L 133		-12.110	28.959 105.5		1.00 16.84	L	C
	ATOM	1016	C	VAL L 133		-11.267	30.201 105.8	370	1.00 16.55	L	C
55	MOTA	1017	0	VAL L 133		-11.670	31.324 105.6	386	1.00 13.84	L	0
	MOTA	1018	CB	VAL L 133		-11.935	28.585 104.0		1.00 16.50	L	C
	ATOM	1019	CG1	VAL L 133		-10.401	28.419 103.7	41	1.00 12.48	L	С
	ATOM	1020			•		27.202 103.7				
			CGZ	VAL L 133		-12.729			1.00 11.93	L	C
	MOTA	1021	N	CYS L 134		-10.052	29.967 106.3	318	1.00 16.38	L	N
60	ATOM	1022	CA	CYS L 134		-9.164					
50							31.037 106.6		1.00 17.53	L	С
	ATOM	1023	С	CYS L 134		-7.833	30.655 105.9	38	1.00 16.58	L	C
	MOTA	1024	ō	CYS L 134		-7.335	29.561 106.2		1.00 14.98		
										L	0
	ATOM	1025	CB	CYS L 134		-8.948	31.072 108 <i>.</i> 1	.08	1.00 16.98	L	C
	MOTA	1026	SG	CYS L 134		-7.928	32.442 108.6		1.00 39.38	L	S
ee.											
65	MOTA	1027	N	PHE L 135		-7.314	31.512 105.0		1.00 15.50	L	N
	MOTA	1028	CA	PHE L 135		-5.972	31.311 104.4	79	1.00 15.01	L	С
	ATOM	1029	C	PHE L 135		-5.009	32.262 105.2		1.00 17.04	L	С
	ATOM	1030	0	PHE L 135		~5.343	33.413 105.4	182	1.00 18.37	L	0
	ATOM	1031	ČВ	PHE L 135		-5.953	31.730 102.9				
	771 OIJ	T 0 7 T	CL	רכד ע שייי		-3.333	24.120 TO7.3	1	1.00 15.31	L	C

	, ATOM	1032	CG PHE L 1		-6.719	30.784 102.083	1.00 12.44	L	_
	MOTA	$1033 \\ 1034$	CD1 PHE L 1 CD2 PHE L 1		-6.530 -7.604	29.429 102.170 31.263 101.147	1.00 12.71 1.00 14.37	L L	
	ATOM ATOM	1034	CE1 PHE L 1		-7.221	28.534 101.341	1.00 16.73	L	
5	ATOM	1036	CE2 PHE L 1		-8.312	30.383 100.294		L	
-	ATOM	1037			-8.121	29.008 100.399		L	
	MOTA	1038	N LEU L 1		-3.795	31.794 105.502		L L	
	ATOM	1039 1040	CA LEU L 1	L36	-2.784 -1.633	32.558 106.211 32.347 105.252		L	
10	ATOM ATOM	1041		L36 L36	-1.013	31.271 105.214		ī	
10	ATOM	1042		136	-2.528	31.937 107.580	1.00 15.90	L	C
	MOTA	1043	CG LEU L		-3.800	31.929 108.451		L	
	MOTA	1044		136	-4.513	30.583 108.271		I.	
4	MOTA	1045	CD2 LEU L		-3.447 -1.385	32.085 109.904 33.363 104.444		I I	
15	ATOM	1046 1047	N ASN L CA ASN L		-0.421	33.204 103.397		I	
•	MOTA ATOM	1047	CA ASN L		0.894	33.961 103.467		Ī	
	MOTA	1049	O ASN L		0.972	35.032 104.011	1.00 24.05	I	
	ATOM	1050	CB ASN L		-1.084	33.523 102.061		Ī	
20	MOTA	1051		137	-2.092	32.423 101.574		I I	
	MOTA	1052	OD1 ASN L :		-2.866 -2.097	32.668 100.681 31.263 102.196		I	
	ATOM ATOM	1053 1054	ND2 ASN L		1.932	33.348 102.874		Ī	
	MOTA	1055	CA ASN L		3.265	33.911 102.768		I	ı G
25	MOTA	1056	C ASN L	138	3.928	34.495 104.025		I	
	MOTA	1057	O ASN L		4.332	35.646 104.061		I	
	MOTA	1058	CB ASN L		3.237 2.971	34.913 101.603 34.225 100.280		I	
	MOTA MOTA	1059 1060	CG ASN L OD1 ASN L		1.863	33.812 100.006		Ī	
30	ATOM	1061	ND2 ASN L		4.008	34.077 99.461		I	
00	ATOM	1062	N PHE L		4.073	33.665 105.062		·	-
	MOTA	1063	CA PHE L	139	4.691	34.064 106.294		I	
	ATOM	1064	C PHE L		6.009	33.355 106.496		I	
05	MOTA	1065 1066	O PHE L	139	6.316 3.727	32.417 105.788 33.800 107.512		I	
35	ATOM ATOM	1067	CG PHE L		3.218	32.377 107.633		Ī	
	ATOM	1068	CD1 PHE L		3.931	31.434 108.325		I	, C
	MOTA	1069	CD2 PHE L	139	2.004	32.004 107.061		I	
	MOTA	1070	CE1 PHE L		3.490	30.139 108.459		I	
40	ATOM	1071	CE2 PHE L CZ PHE L		$\frac{1.530}{2.278}$	30.697 107.197 29.753 107.894		I	
	ATOM ATOM	1072 1073	CZ PHE L N TYR L		6.803	33.847 107.430		Ī	
	MOTA	1074		140	8.085	33.240 107.797	7 1.00 20.95	I	r C
	ATOM	1075	C TYR L	140	8.437	33.747 109.186	_	I	
45	MOTA	1076	O TYR L		8.305	34.940 109.476		I	
	MOTA	1077	CB TYR L		9.215 10.461	33.612 106.810 32.818 107.134		I	
	MOTA MOTA	1078 1079	CG TYR L CD1 TYR L		11.314	33.233 108.144		I	<u>-</u> .
	MOTA	1080	CD2 TYR L	140	10.719	31.607 106.502	2 1.00 19.61	I	r c
50	MOTA	1081	CE1 TYR L		12.376	32.481 108.53		1	
	MOTA	1082	CE2 TYR L		11.797	30.823 106.903		I	
	MOTA	1083	CZ TYR L	140	12.615 13.684	31.290 107.930 30.527 108.384	1.00 16.01 1.00 20.60]]	
	MOTA MOTA	1084 1085	OH TYR L N PRO L		8.867	32.855 110.084			Z N
55	ATOM	1086	CA PRO L		9.072	31.399 109.97		. 1	r C
	MOTA	1087	C PRO L	141	7.800	30.595 109.882			r C
	MOTA	1088	O PRO L		6.705	31.153 109.92	3 1.00 22.66		. 0
	ATOM	1089	CB PRO L		9.887	31.054 111.22' 32.054 112.19'			T C
60	ATOM	1090 1091	CG PRO L CD PRO L		9.422 9.306	33.344 111.40			r C
60	ATOM ATOM	1091	N LYS L		7.957	29.281 109.76			L N
	ATOM	1093	CA LYS L		6.803	28.390 109.52	5 1.00 22.07	1	L C
	MOTA	1094	C LYS L	142	5.852	28.206 110.70			r C
	ATOM	1095	O LYS L		4.730	27.743 110.52			r C
65	ATOM	1096	CB LYS L		7.291 7.871	27.011 109.17 26.341 110.40			r C
	ATOM ATOM	1097 1098	CG LYS L	1.42	8.364	24.905 110.12			r c
	ATOM	1099	CE LYS L		9.132	24.425 111.36	9 1.00 47.96]	r c
	ATOM	1100	NZ LYS L		9.840	23.118 111.17	5 1.00 68.01	J	r n

ATOM 1102 CA ASP L 143		ATOM	1101	N	ASP L	143	6.286	28.540	111.908	1.00	22.51	L	N
ATOM 1104 C ASP L 143													
S		ATOM	1103	С		143	4.215	29.252	113.125	1.00	23.08	L	
ATOM 1106 CG ASP L 143 7.574 27.689 114.178 1.00 27.57 L C ATOM 1107 ASP L 143 8.549 28.452 113.962 1.00 27.57 L C ATOM 1108 OD2 ASP L 143 7.660 26.448 114.240 1.00 35.11 L N ATOM 1109 OD2 ASP L 144 3.885 28.567 113.388 1.00 21.65 L C C ATOM 1110 CA LEE L 1444 1.885 28.567 113.388 1.00 21.65 L C C ATOM 1111 CA LEE L 1444 1.885 28.567 113.388 1.00 21.65 L C C ATOM 1112 CB LEE L 1444 1.485 29.993 111.951 1.00 23.73 L C ATOM 1114 CG LEE L 1444 1.486 29.993 111.951 1.00 23.73 L C ATOM 1115 CG2 LEE L 1444 0.978 28.814 111.995 1.00 20.91 L C ATOM 1116 CG2 LEE L 1444 0.978 28.814 111.199 1.00 21.02 L C ATOM 1117 A ASN L 145 -0.164 29.493 114.744 1.00 23.75 L C ATOM 1117 A ASN L 145 -0.164 29.493 114.744 1.00 23.75 L C ATOM 1118 C ASN L 145 -2.531 29.541 115.032 1.00 28.20 L C ATOM 1120 C ASN L 145 -2.531 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.531 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.231 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.231 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.231 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.231 29.541 115.032 1.00 28.20 L C ATOM 1122 CG ASN L 145 -2.231 29.541 115.032 1.00 28.20 L C ATOM 1125 CG ATOM 1126 CA VALL L 146 -3.293 29.481 114.979 1.00 26.85 L N ATOM 1126 CA VALL L 146 -3.293 29.481 114.979 1.00 26.85 L N ATOM 1126 CA VALL L 146 -3.293 29.481 114.979 1.00 26.85 L N ATOM 1133 CG VALL L 146 -3.293 29.481 114.939 1.00 24.01 L C ATOM 1133 CG VALL L 146 -3.293 29.481		ATOM	1104	0	ASP L	143		30.472	113.035			L	0
APOM 1107 ODI ASP 1 143 8.549 28.452 113.962 1.00 27.511 L O APOM 1108 ODI ASP L 143 7.660 26.448 114.240 1.00 27.511 L O APOM 1110 O T.LE L 144 3.018 28.659 113.301 1.00 22.13 L N APOM 1111 O T.LE L 144 0.733 28.773 114.084 1.00 22.38 L C APOM 1111 O T.LE L 144 0.733 28.773 114.084 1.00 22.38 L C APOM 1111 O T.LE L 144 0.743 28.773 114.084 1.00 22.38 L C APOM 1115 O T.LE L 144 0.748 29.39 114.084 1.00 22.38 L C APOM 1115 O T.LE L 144 0.456 31.143 111.976 1.00 20.91 L C APOM 1115 OCI T.LE L 144 0.324 31.861 10.617 1.00 23.82 L C APOM 1116 ODI T.LE L 144 0.324 31.861 10.617 1.00 23.82 L C APOM 1117 O ASN L 145 -1.252 28.793 115.442 1.00 29.96 L C APOM 1112 O ASN L 145 -1.252 28.793 115.442 1.00 29.96 L C APOM 1120 O ASN L 145 -2.530 30.760 114.907 1.00 29.90 L C APOM 1122 O ASN L 145 -2.530 30.760 114.907 1.00 29.90 L C APOM 1122 O ASN L 145 -2.530 30.760 114.907 1.00 29.90 L C APOM 1124 APOM 1124 APOM 1124 APOM 124 APOM 125 APOM 125 APOM 125 APOM 126 APOM 126 APOM 127 APOM 127 APOM 128 APOM 129 APOM 120 APOM	5	MOTA		CB	ASP L	143		28.301	114.353			L	
AROM 1108 OD2 ASP L 143 7.660 26.448 14.240 1.00 35.11 L O AROM 1109 N ILE L 144 1.855 29.567 113.387 1.00 22.165 L C AROM 1111 O ILE L 144 1.855 29.567 113.387 1.00 22.165 L C AROM 1111 O ILE L 144 0.724 27.530 114.087 1.00 22.39 L C AROM 1112 O ILE L 144 0.724 27.530 114.087 1.00 22.39 L C AROM 1113 O ILE L 144 0.724 27.530 114.087 1.00 25.88 L O O AROM 1115 O ILE L 144 0.456 O AROM 1115 O ILE L 144 0.456 O AROM 1115 O ILE L 144 O AROM 1115 O ILE L 144 O AROM 1115 O ILE L 144 O AROM ILE O AROM ILE O ILE L 144 O AROM ILE O AROM ILE O ILE L 144 O AROM ILE O AROM													
APOM													
10													
APOM	40											_	
APOM	10												
ATOM													
ATOM				_									
15												L	
ATOM	15	MOTA	1115	CG2	ILE L	144				1.00	21.02	L	C
ATOM 1118 CA ASN L 145 -1.252 28.793 115.442 1.00 29.06 L C C ATOM 1120 C ASN L 145 -2.531 29.541 115.032 1.00 28.27 L C C ATOM 1121 CB ASN L 145 -2.530 30.760 114.907 1.00 29.90 L O C ATOM 1122 CG ASN L 145 -1.031 28.854 116.956 1.0 31.88 L C C ATOM 1122 CG ASN L 145 -1.031 28.854 116.956 1.0 31.88 L C C ATOM 1122 ND 1124 ND2 ASN L 145 -1.031 28.854 116.956 1.0 64.13 L O ATOM 1125 N VAL L 146 -2.455 28.192 118.780 1.0 064.13 L O ATOM 1126 CA VAL L 146 -2.455 28.192 114.797 1.00 26.85 L N ATOM 1126 CA VAL L 146 -4.855 29.391 114.379 1.00 24.01 L C ATOM 1127 C VAL L 146 -5.892 28.978 114.379 1.00 24.01 L C ATOM 1128 O VAL L 146 -5.903 27.838 115.829 1.00 25.28 L O ATOM 1120 CB VAL L 146 -5.255 28.862 112.986 1.00 22.10 L C ATOM 1130 CG1 VAL L 146 -5.255 28.862 112.986 1.00 22.10 L C ATOM 1131 CG2 VAL L 146 -6.686 29.332 112.602 1.00 20.92 L C ATOM 1133 CA LYS L 147 -6.713 29.932 115.788 1.00 20.98 L N ATOM 1133 CA LYS L 147 -9.153 31.253 115.542 1.00 23.41 L C ATOM 1134 C LYS L 147 -9.153 31.253 115.542 1.00 23.41 L C ATOM 1136 CB LYS L 147 -9.153 31.253 115.542 1.00 23.41 L C ATOM 1136 CB LYS L 147 -9.153 31.253 115.542 1.00 34.97 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1136 CB LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.09 1.00 34.97 L C ATOM 1136 CB LYS L 147 -8.480 30.104 119.09 1.00 34.97 L C ATOM 1136 CB LYS L 147 -8.480 30.104 119.09 1.00 34.97 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.09 1.00 34.97 L C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1135 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1136 CB LYS L 147 -8.480 30.104 119.09 1.00 34.97 L C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C C ATOM 1156 CB LYS L 148 -1.148 -1.12.05 CB 1.00 20.29 L C C ATOM 1156 CB LYS L 148 -1.148 -1.12.05 CB 1.00 20.29													
ATOM													
ATOM 1120													
ATOM 1121 CB ASN L 145 -1.031 28.854 146.956 1.00 31.88 L C ATOM 1122 CG ASN L 145 -1.901 27.857 117.722 1.00 50.47 L C ATOM 1123 ODI ASN L 145 -2.445 28.192 118.780 1.00 64.13 L O ATOM 1124 ND2 ASN L 145 -2.029 26.627 117.201 1.00 26.85 L N ATOM 1125 N VAL L 146 -3.595 28.796 114.797 1.00 26.85 L N ATOM 1127 C VAL L 146 -3.595 28.796 114.797 1.00 24.01 L C ATOM 1128 O VAL L 146 -5.892 28.978 115.396 1.00 21.85 L C ATOM 1129 CB VAL L 146 -5.892 28.978 115.396 1.00 25.28 L O ATOM 1129 CB VAL L 146 -5.595 28.862 112.986 1.00 22.10 L C ATOM 1131 CG2 VAL L 146 -5.595 28.862 112.986 1.00 20.92 L C ATOM 1131 CG2 VAL L 146 -6.686 29.332 112.602 1.00 20.92 L C ATOM 1133 CA LYS L 147 -6.713 29.932 115.788 1.00 20.98 L N ATOM 1133 CA LYS L 147 -7.780 29.647 116.932 1.00 20.98 L N ATOM 1135 CB LYS L 147 -9.099 30.151 116.083 1.00 20.29 L C ATOM 1135 CB LYS L 147 -9.599 30.151 116.083 1.00 20.29 L C ATOM 1136 CB LYS L 147 -9.593 31.253 115.542 1.00 17.79 L C ATOM 1136 CB LYS L 147 -9.594 30.402 118.034 1.00 20.97 L C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 17.79 L C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1136 CB LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 34.97 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 34.97 L C ATOM 1140 CD TRP L 148 -10.139 29.328 116.116 1.00 20.17 L N ATOM 1141 N TRP L 148 -10.139 29.328 116.116 1.00 20.17 L C ATOM 1145 CB TRP L 148 -10.139 29.328 116.116 1.00 20.299	20												
ATOM 1122 CG ASN L 145 -1.901 27.857 117.722 1.00 50.47 L C ATOM 1123 OD1 ASN L 145 -2.445 28.192 118.780 1.00 64.13 L C ATOM 1125 N VAL L 146 -3.595 28.796 114.797 1.00 26.85 L N ATOM 1126 CA VAL L 146 -3.595 28.796 114.797 1.00 26.85 L N ATOM 1127 C VAL L 146 -5.892 28.978 115.396 1.00 21.85 L C ATOM 1128 O VAL L 146 -5.892 28.978 115.396 1.00 21.85 L C ATOM 1129 CB VAL L 146 -5.893 27.838 115.829 1.00 25.28 L O ATOM 1130 CG1 VAL L 146 -5.893 27.838 115.829 1.00 25.28 L O ATOM 1131 CG2 VAL L 146 -6.686 29.332 112.602 1.00 29.94 L C ATOM 1132 N LYS L 147 -6.713 29.932 115.788 1.00 29.40 L C ATOM 1133 CA LYS L 147 -7.780 29.647 116.732 1.00 23.41 L C ATOM 1134 C LYS L 147 -9.999 30.151 116.083 1.00 20.99 L N ATOM 1136 CB LYS L 147 -9.999 30.151 116.083 1.00 20.29 L C ATOM 1136 CB LYS L 147 -9.999 30.151 116.083 1.00 20.29 L C ATOM 1136 CB LYS L 147 -9.999 30.151 116.083 1.00 20.29 L C ATOM 1136 CB LYS L 147 -9.999 30.151 116.083 1.00 20.29 L C ATOM 1138 CD LYS L 147 -9.8480 30.104 119.109 1.00 34.97 L C ATOM 1138 CD LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1138 CD LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 50.25 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 50.25 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 50.25 L C ATOM 1140 NZ LYS L 148 -10.139 29.328 16.116 1.00 20.177 L C ATOM 1140 NZ LYS L 148 -10.139 29.328 16.116 1.00 20.217 L C ATOM 1145 CB TRP L 148 -12.	20												
ATOM 1123 ODI ASN L 145 -2.029 26.627 117.201 1.00 46.82 L N													
25													
ATOM		MOTA	1124	ND2	ASN L	145		26.627	117.201	1.00	46.82	L	N
ATOM	25	ATOM											
ATOM													
ATOM													
ATOM													
ATOM 1131 CG2 VAL L 146	30			_									
ATOM 1132 N LYS L 1476.713 29.932 115.788 1.00 20.98 L N ATOM 1133 CA LYS L 1477.780 29.647 116.732 1.00 23.41 L C C ATOM 1135 CB LYS L 1479.099 30.151 116.083 1.00 20.29 L C C ATOM 1135 CB LYS L 1479.099 30.151 116.083 1.00 20.29 L C C ATOM 1135 CB LYS L 1479.099 30.151 116.083 1.00 19.81 L C ATOM 1135 CB LYS L 1479.504 30.402 118.034 1.00 19.81 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1138 CD LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C C ATOM 1139 CE LYS L 147 -6.825 30.891 120.876 1.00 50.25 L C C ATOM 1139 CE LYS L 147 -6.825 30.891 120.876 1.00 50.25 L C C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 59.80 L N ATOM 1141 N TRP L 148 -10.139 29.328 116.116 1.00 20.17 L N ATOM 1142 CA TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1143 C TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1144 CB TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1145 CB TRP L 148 -12.122 28.657 114.890 1.00 15.88 L C ATOM 1146 CB TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1146 CB TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1149 NEL TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1149 NEL TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CB2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CB2 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1151 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1151 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CB2 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1151 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.25 L C ATOM 1151 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.26 L N ATOM 1155 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.29 L C ATOM 1155 CB3 TRP L 148 -11.855 29.085 112.337 1.00 22.89 L N ATOM 1155 CB3 TRP L 148 -12.26 29.35 19.09 18.375 1.00 22.89 L N ATOM 1156 CB3 TRP L 148 -12.26 29.35 19.09 18.375 1.00 22.89 L N ATOM 1156 CB3 TRP L 148 -12.26 29.35 19.09 18.375 1.00 22.02 L C ATOM	00												
ATOM													
ATOM					LYS L	147				1.00	23.41	L	C
ATOM 1136 CB LYS L 147 -7.504 30.402 118.034 1.00 19.81 L C ATOM 1137 CG LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1138 CD LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1139 CE LYS L 147 -6.825 30.891 120.876 1.00 59.25 L C ATOM 1140 NZ LYS L 147 -6.825 30.891 120.876 1.00 59.80 L N ATOM 1141 N TRP L 148 -10.139 29.328 116.116 1.00 20.17 L N ATOM 1141 N TRP L 148 -11.445 29.785 115.629 1.00 18.95 L C ATOM 1143 C TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1144 O TRP L 148 -12.325 30.181 116.806 1.00 21.21 L C ATOM 1145 CB TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1146 CG TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1146 CG TRP L 148 -12.122 28.657 114.890 1.00 15.88 L C ATOM 1146 CD TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1147 CD1 TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1149 NE1 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1149 NE1 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1151 CE3 TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.24 L N ATOM 1150 CEZ TRP L 148 -11.855 29.085 112.337 1.00 22.25 L C ATOM 1155 N LYS L 149 -15.431 32.431 115.803 1.00 25.88 L C C ATOM 1155 N LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1155 N LYS L 149 -15.437 33.215 116.623 1.00 22.99 L C ATOM 1155 N LYS L 149 -15.437 33.215 116.623 1.00 22.90 L C ATOM 1150 CEZ LYS L 149 -15.437 33.215 116.623 1.00 22.90 L C ATOM 1150 CEZ LYS L 149 -15.437 33.215 116.623 1.00 22.90 1 L C ATOM 1151 CE LYS L 149 -15.437 33.759 120.883 1.00 25.88 L O ATOM 1160 CE LYS L 149 -15.437 33.759 120.883 1.00 25.88 L O ATOM 1161 CD LYS L 149 -15.4				С									
ATOM 1138 CD LYS L 147 -8.480 30.104 119.109 1.00 34.97 L C ATOM 1138 CD LYS L 147 -8.242 31.037 120.294 1.00 50.25 L C ATOM 1139 CE LYS L 147 -6.825 30.891 120.876 1.00 56.37 L C ATOM 1140 NZ LYS L 147 -6.704 31.817 122.085 1.00 59.80 L N ATOM 1141 N TRP L 148 -10.139 29.328 116.116 1.00 20.17 L N ATOM 1141 N TRP L 148 -11.445 29.785 115.629 1.00 18.95 L C ATOM 1143 C TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1144 O TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1145 CB TRP L 148 -12.362 29.785 115.629 1.00 18.95 L C ATOM 1144 O TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1145 CB TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1145 CB TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1145 CB TRP L 148 -12.362 19.559 117.838 1.00 20.59 L O ATOM 1146 CG TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1147 CD1 TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1149 NEI TRP L 148 -10.513 27.487 113.208 1.00 16.655 L C ATOM 1149 NEI TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1150 CE2 TRP L 148 -11.285 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.285 29.085 112.337 1.00 22.24 L N ATOM 1151 CE3 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1153 CZ3 TRP L 148 -12.2756 30.111 112.040 1.00 14.25 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 29.29 L C ATOM 1155 C LYS L 149 -13.174 31.215 116.623 1.00 29.29 L C ATOM 1157 C LYS L 149 -13.3675 32.909 118.375 1.00 22.89 L N ATOM 1156 CA LYS L 149 -13.3675 32.909 118.375 1.00 22.89 L N ATOM 1156 CA LYS L 149 -13.3675 32.909 118.375 1.00 22.58 L C ATOM 1164 NZ LYS L 149 -13.3675 32.909 118.375 1.00 25.88 L C ATOM 1166 CG LYS L 149 -13.3675 32.909 118.375 1.00 25.88 L C C ATOM 1166 CG LYS L 149 -13.675 32.909 118.375 1.00 25.88 L C C ATOM 1166 C LYS L 149 -13.663 32.519 118.121 1.00 20.57 L C ATOM 1166 C LYS L 149 -13.863 33.759 120.8375 1.00 25.85 L C ATOM 1166 C LYS L 149 -13.	35												
ATOM 1138 CD LYS L 147													
ATOM 1139 CE LYS L 147													
ATOM													
ATOM 1141 N TRP L 148 -10.139 29.328 116.116 1.00 20.17 L N ATOM 1142 CA TRP L 148 -11.445 29.785 115.629 1.00 18.95 L C ATOM 1143 C TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1144 O TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1145 CB TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1145 CB TRP L 148 -12.122 28.657 114.890 1.00 15.88 L C ATOM 1146 CG TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1146 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1148 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1148 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1149 Nel TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1151 CZ2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CZ2 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1155 CZ3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CA LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1155 CA LYS L 149 -13.174 31.215 116.632 1.00 22.89 L N ATOM 1155 CA LYS L 149 -13.174 31.215 116.632 1.00 22.02 L C ATOM 1158 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1156 CE LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1163 NZ LYS L 149 -13.675 32.909 118.375 1.00 22.02 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CA LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 20.57 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -1	40												
ATOM 1142 CA TRP L 148 -11.445 29.785 115.629 1.00 18.95 L C ATOM 1143 C TRP L 148 -12.362 30.181 116.806 1.00 21.21 L C ATOM 1144 O TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1145 CB TRP L 148 -12.325 29.559 117.838 1.00 20.59 L O ATOM 1146 CG TRP L 148 -12.322 28.657 114.890 1.00 15.88 L C ATOM 1146 CG TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1148 CD2 TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1148 CD2 TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1149 NE1 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1150 CE2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1151 CE3 TRP L 148 -11.087 28.513 111.284 1.00 21.655 L C ATOM 1151 CE3 TRP L 148 -11.087 28.513 111.284 1.00 21.655 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1153 CZ3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ TRP L 148 -12.884 31.546 117.655 1.00 21.94 L C ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1156 CA LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1156 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 CB LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C C ATOM 1166 CB LYS L	. •												
## ATOM			1142	CA	TRP L	148	-11.445	29.785	115.629	1.00	18.95	L	C
ATOM		MOTA		C									
ATOM 1146 CG TRP L 148 -11.490 28.422 113.546 1.00 21.74 L C ATOM 1147 CD1 TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1148 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L ATOM 1149 NE1 TRP L 148 -10.281 27.540 111.832 1.00 22.24 L N 50 ATOM 1150 CE2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1152 CZ2 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1153 CZ3 TRP L 148 -11.205 28.943 109.950 1.00 24.13 L C ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1155 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.577 L C ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.577 L C ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.577 L C ATOM 1166 C TLE L 150 -18.803 31.908 116.995 1.00 19.42 L C ATOM 1166 C TLE L 150 -18.803 32.519 118.121 1.00 20.577 L C ATOM 1166 C TLE L 150 -18.803 32.519 118.121 1.00 20.577 L C ATOM 1167 O ILE L 150 -18.803 31.592 119.232 1.00 22.05 L C ATOM 1167 O ILE L 150 -18.752 30.516 116.639 1.00 17.66 L C													
ATOM 1148 CD2 TRP L 148 -10.513 27.487 113.208 1.00 16.65 L C ATOM 1148 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1149 NE1 TRP L 148 -10.281 27.540 111.832 1.00 22.24 L N 150 ATOM 1150 CE2 TRP L 148 -10.281 27.540 111.832 1.00 22.24 L N 150 CE2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1152 CZ2 TRP L 148 -11.205 28.943 109.950 1.00 24.13 L C ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CH2 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1155 CA LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1155 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1161 CD LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1166 C T LE L 150 -16.534 31.808 116.995 1.00 19.42 L C ATOM 1166 C T LE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C T LE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C T LE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C T LE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1168 CB TLE L 150 -18.527 30.516 116.639 1.00 17.66 L C	45			_									
ATOM 1148 CD2 TRP L 148 -11.855 29.085 112.337 1.00 22.15 L C ATOM 1149 NE1 TRP L 148 -10.281 27.540 111.832 1.00 22.24 L N S ATOM 1150 CE2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 24.13 L C ATOM 1152 CZ2 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -12.106 29.955 109.676 1.00 19.03 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1159 CB LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 17.66 L C													
ATOM 1149 NE1 TRP L 148 -10.281 27.540 111.832 1.00 22.24 L N ATOM 1150 CE2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L ATOM 1152 CZ2 TRP L 148 -11.205 28.943 109.950 1.00 24.13 L C ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1154 CH2 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.50 L C ATOM 1150 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1165 CA ILE L 150 -16.534 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -16.534 31.808 116.995 1.00 19.42 L C ATOM 1167 O ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 CB ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 CB ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C													_
50 ATOM 1150 CE2 TRP L 148 -11.087 28.513 111.284 1.00 21.65 L C ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1152 CZ2 TRP L 148 -11.205 28.943 109.950 1.00 24.13 L C ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1154 CH2 TRP L 148 -12.106 29.955 109.676 1.00 19.03 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1150 CB LYS L 149 -13.675 32.909 118.375 1.00 25.88 L O ATOM 1160 CG LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N TLE L 150 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N TLE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1168 CB TLE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB TLE L 150 -18.735 31.982 119.232 1.00 20.57 L C													
ATOM 1151 CE3 TRP L 148 -12.756 30.111 112.040 1.00 14.25 L C ATOM 1152 CZ2 TRP L 148 -11.205 28.943 109.950 1.00 24.13 L C ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1155 N LYS L 149 -12.106 29.955 109.676 1.00 19.03 L C 55 ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1159 CB LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1160 CG LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C TLE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C TLE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1166 C TLE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L	50	ATOM											
ATOM 1153 CZ3 TRP L 148 -12.884 30.542 110.716 1.00 20.29 L C ATOM 1154 CH2 TRP L 148 -12.106 29.955 109.676 1.00 19.03 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.427 31.917 116.932 1.00 22.50 L C ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1165 CA ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N ATOM 1166 C ILE L 150 -16.534 31.563 117.575 1.00 22.57 L C ATOM 1166 C ILE L 150 -18.735 31.982 119.232 1.00 22.05 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O				CE3									C
ATOM 1154 CH2 TRP L 148 -12.106 29.955 109.676 1.00 19.03 L C ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L													
55 ATOM 1155 N LYS L 149 -13.174 31.215 116.623 1.00 22.89 L N ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 66 ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L													
ATOM 1156 CA LYS L 149 -14.124 31.636 117.655 1.00 21.94 L C ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 66 ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L													
ATOM 1157 C LYS L 149 -15.427 31.917 116.932 1.00 22.02 L C ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1168 CB ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L	55												
ATOM 1158 O LYS L 149 -15.431 32.431 115.803 1.00 25.88 L O ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1161 CD LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1162 CE LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1163 NZ LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1164 N ILE L 150 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1166 C ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													
ATOM 1159 CB LYS L 149 -13.675 32.909 118.375 1.00 22.50 L C ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													
60 ATOM 1160 CG LYS L 149 -12.456 32.712 119.265 1.00 29.41 L C ATOM 1161 CD LYS L 149 -11.972 34.038 119.890 1.00 36.17 L C ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													
ATOM 1162 CE LYS L 149 -10.853 33.759 120.883 1.00 47.79 L C ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C	60			CG			-12.456			1.00	29.41	L	C
ATOM 1163 NZ LYS L 149 -10.191 35.022 121.349 1.00 58.02 L N ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C				CD	LYS L	149						L	C
ATOM 1164 N ILE L 150 -16.534 31.563 117.575 1.00 21.85 L N 65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													
65 ATOM 1165 CA ILE L 150 -17.842 31.808 116.995 1.00 19.42 L C ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													
ATOM 1166 C ILE L 150 -18.603 32.519 118.121 1.00 20.57 L C ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C	65												
ATOM 1167 O ILE L 150 -18.735 31.982 119.232 1.00 22.05 L O ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C	00												
ATOM 1168 CB ILE L 150 -18.527 30.516 116.639 1.00 17.66 L C													

	14 ······· 14							
	ATOM	1170	CG2 ILE L 150	-20.013	30.809 116.281	1.00 15.45	L	С
		1171	CD1 ILE L 150	-18,484	28.535 114.955	1.00 5.50	L	Č
	ATOM				33.734 117.831	1.00 20.49	Ŀ	N
	MOTA	1172	N ASP L 151	-19.030				
	ATOM	1173	CA ASP L 151	-19.715	34.559 118.815	1.00 20.94	L	C
5	MOTA	1174	C ASP L 151	-18.815	34.701 120.052	1.00 24.12	L	С
_	ATOM	1175	O ASP L 151	-19.304	34.789 121.189	1.00 24.25	L	0
		1176	CB ASP L 151	-21.059	33.894 119.175	1.00 19.59	L	С
	ATOM				34.129 118.102	1.00 25.62	Ŀ	č
	ATOM	1177	CG ASP L 151	-22.132	34.129 110.102			
	MOTA	1178	OD1 ASP L 151	-21.968	35.055 117.272	1.00 27.32	L	0
10	MOTA	1179	OD2 ASP L 151	-23.152	33.416 118.110	1.00 31.24	L	0
	ATOM	1180	N GLY L 152	-17.493	34.685 119.850	1.00 19.02	L	N
	ATOM	1181	CA GLY L 152	-16.617	34.845 120.990	1.00 23.51	L	С
				-16.141	33.602 121.724	1.00 28.41		Ċ
	ATOM	1182	C GLY L 152					
	MOTA	1183	O GLY L 152	-15.242	33.688 122.577	1.00 32.84	L	0
15	ATOM	1184	N SER L 153	-16.732	32.458 121.438	1.00 28.85	L	N
	ATOM	1185	CA SER L 153	-16.307	31.209 122.065	1.00 29.03	L	С
	ATOM	1186	C SER L 153	-15.417	30.391 121.122	1.00 28.97	L	C
				-15.757	30.161 119.960	1.00 26.39	L	O
	MOTA	1187				1.00 25.23	L	č
	ATOM	1188	CB SER L 153	-17.505	30.360 122.471			
20	MOTA	1189	OG SER L 153	-18.196	31.006 123.519	1.00 30.72	L	0
	MOTA	1190	N GLU L 154	-14.283	29.942 121.643	1.00 28.12	L	N
	ATOM	1191	CA GLU L 154	-13.380	29.141 120.842	1.00 31.33	L	C
	MOTA	1192	C GLU L 154	-14.031	27.826 120.432	1.00 31.48	L	С
				-14.753	27.175 121.200	1.00 35.29	Ŀ	ō
	MOTA	1193	O GLU L 154					
25	MOTA	1194	CB GLU L 154	-12.091	28.879 121.635	1.00 32.78		C
	ATOM	1195	CG GLU L 154	-11.053	28.084 120.877	1.00 40.84	L	C
	MOTA	1196	CD GLU L 154	-9.769	27.927 121.683	1.00 43.42	L	С
	MOTA	1197	OE1 GLU L 154	-9.576	28.679 122.656	1.00 47.11	L	0
		1198	OE2 GLU L 154	-8.966	27.061 121.335	1.00 52.41	L	0
	ATOM					1.00 28.45	Ŀ	N
30	ATOM	1199	N ARG L 155	-13.793	27.435 119.196			
	MOTA	1200	CA ARG L 155	-14.309	26.189 118.675	1.00 30.91	L	C
	MOTA	1201	C ARG L 155	-13.115	25.406 118.252	1.00 32.16	L	- C
	ATOM	1202	O ARG L 155	-12.374	25.876 117.405	1.00 32.66	L	0
	MOTA	1203	CB ARG L 155	-15.183	26.419 117.448	1.00 28.52	L	C
0-			CD ANG D 155		27.231 117.799	1.00 37.92	L	Č
35	MOTA	1204	CG ARG L 155	-16.380				
	MOTA	1205	CD ARG L 155	-17.336	26.438 118.698	1.00 31.38	L	C
	MOTA	1206	NE ARG L 155	-18.612	27.118 118.747	1.00 33.65	L	. N
	MOTA	1207	CZ ARG L 155	-19.691	26.762 118.062	1.00 17.41	\mathbf{L}_{t}	С
	MOTA	1208	NH1 ARG L 155	-19.685	25.711 117.260	1.00 27.68	L	N
40			NH2 ARG L 155	-20.780	27.482 118.185	1.00 25.10	L	N
40	ATOM	1209	*			1.00 34.52	Ĺ	N
	MOTA	1210	N GLN L 156	-12.935	24.221 118.829			
	MOTA	1211	CA GLN L 156	-11.788	23.395 118.478	1.00 35.80	L	C
	ATOM	1212	C GLN L 156	-12.127	22.210 117.605	1.00 36.43	L	С
	ATOM	1213	O GLN L 156	-11.293	21.749 116.805	1.00 39.56	L	0
45	ATOM	1214	CB GLN L 156	-11.078	22.906 119.743	1.00 33.20	L	С
40		1215	CG GLN L 156		24.010 120.664	1.00 47.03	L	С
	MOTA					1.00 57.66	Ľ	č
	MOTA	1216	CD GLN L 156					-
	ATOM	1217	OE1 GLN L 156	~10.360	22.685 122.634	1.00 72.71	Ē	0
	MOTA	1218	NE2 GLN L 156	-8.643	23.981 121.977	1.00 63.16	L	N
50	MOTA	1219	N ASN L 157		21.698 117.723	1.00 38.17	L	N
	ATOM	1220	CA ASN L 157			1.00 38.15	L	С
				-14.121		1.00 35.01	L	C
	ATOM	1221	C ASN L 157	-14.121	20.000 115.374	1.00 34.08	Ĺ	Õ
	\mathtt{MOTA}	1222	O ASN L 157					
	MOTA	1223	CB ASN L 157			1.00 43.26	L	Ç
55	MOTA	1224	CG ASN L 157	~14.457	19.007 118.785	1.00 57.31	L	C
	MOTA	1225	OD1 ASN L 157	-15.297		1.00 74.40	L	0
			ND2 ASN L 157			1.00 54.46	L	N
	ATOM	1226	NDZ ASN L 157	12.007		1.00 32.01	Ŀ	N
	MOTA	1227	N GLY L 158					
	MOTA	1228	CA GLY L 158			1.00 26.62	Ŀ	C
60	MOTA	1229	C GLY L 158	-13.389	21.035 112.359	1.00 26.13	L	C
-	ATOM	1230	O GLY L 158			1.00 26.96	L	0
		1231	N VAL L 159			1.00 22.23	L	N
	MOTA					1.00 23.71	L	Ĉ
	MOTA	1232	CA VAL L 159					
	MOTA	1233	C VAL L 159			1.00 25.37	L	G
65	MOTA	1234	O VAL L 159			1.00 34.95	L	0
	ATOM	1235	CB VAL L 159	-10.376	22.820 113.140	1.00 19.67	ь	C
	MOTA	1236	CG1 VAL L 159			1.00 26.30	L	C
	MOTA	1237	CG2 VAL L 159			1.00 16.36	L	C
						1.00 29.08	L	Ŋ
	MOTA	1238	N LEU L 160	-9.094	77.401 TIO.012	1.00 49.00	اساد	7./

	ATOM	1239	CA LEU L 160	-8.948	20.728 109.219	1.00 29.44 1.00 24.79	L	C C
	MOTA	1240	C LEU L 160	-7.885	21.763 108.832	1.00 24.79 1.00 25.27	L L	0
	ATOM	1241	O LEU L 160	-8.238	22.824 108.320 20.233 107.946	1.00 25.27	r L	C
-	ATOM	1242	CB LEU L 160 CG LEU L 160	-9.658 -8.866	19.400 106.916	1.00 23.33	Ŀ	Č
5	MOTA	$\frac{1243}{1244}$	CG LEU L 160	-9.801	18.461 106.149	1.00 38.99	Ŀ	č
	MOTA MOTA	1245	CD2 LEU L 160	-8.126	20.321 105.949	1.00 53.32	Ĺ	Č
	ATOM	1245	N ASN L 161	-6.625	21.455 109.089	1.00 21.11	L	N
	MOTA	1247	CA ASN L 161	-5.543	22.387 108.800	1.00 19.49	L	C
10	ATOM	1248	C ASN L 161	-4,602	21.752 107.801	1.00 18.69	L	C
10	ATOM	1249	O ASN L 161	-4.409	20.538 107.838	1.00 21.55	L	0
	ATOM	1250	CB ASN L 161	-4.759	22.717 110.086	1.00 19.31	L	C
	ATOM	1251	CG ASN L 161	-5.511	23.651 111.029	1.00 12.67	L	C
	ATOM	1252	OD1 ASN L 161	-6.298	24.476 110.607	1.00 21.51	L	0
15	ATOM	1253	ND2 ASN L 161	-5.232	23.539 112.311	1.00 27.96	· L	N
	MOTA	1254	N SER L 162	-4.045	22.557 106.886	1.00 17.66	L	N
	ATOM	1255	CA SER L 162	-3.099	22.029 105.898	1.00 20.32	Ē	C
	MOTA	1256	C SER L 162	-2.031	23.129 105.737	1.00 20.31	Ŀ	C
	ATOM	1257	O SER L 162	-2.347	24.344 105.761	1.00 20.48	L	0
20	MOTA	1258	CB SER L 162	-3.766	21.771 104.569 21.096 103.721	1.00 19.36 1.00 30.64	L L	C O
	MOTA	1259	OG SER L 162	-2.842 -0.776	22.711 105.539	1.00 30.64	L	И
	ATOM	1260 1261	N TRP L 163 CA TRP L 163	0.320	23.662 105.444	1.00 22.30	L	C
	MOTA MOTA	1262	C TRP L 163	1.127	23.380 104.181	1.00 16.75	Ĺ	Č
25	ATOM	1263	O TRP L 163	1.325	22.217 103.821	1.00 20.55	L	ō
20	ATOM	1264	CB TRP L 163	1.231	23.485 106.662	1.00 13.33	L	C
	ATOM	1265	CG TRP L 163	0.544	23.657 108.029	1.00 22.80	L	C
	MOTA	1266	CD1 TRP L 163	0.495	24.786 108.763	1.00 19.32	L	С
	ATOM	1267	CD2 TRP L 163	-0.167	22.651 108.791	1.00 26.71	L	С
30	ATOM	1268	NE1 TRP L 163	-0.199	24.560 109.945	1.00 30.77	L	N
	MOTA	1269	CE2 TRP L 163	-0.614	23.259 109.977	1.00 26.86	L	C
	MOTA	1270	CE3 TRP L 163	-0.463	21.302 108.575	1.00 32.13	Ļ	C
	MOTA	1271	CZ2 TRP L 163	-1.350	22.569 110.961	1.00 26.97	Ļ	C
	MOTA	1272	CZ3 TRP L 163	-1.199	20.595 109.565	1.00 31.68	L L	C
35	ATOM	1273	CH2 TRP L 163	-1.629	21.243 110.738	1.00 37.55	P P	N
	MOTA	1274	N THR L 164	1.600	24.416 103.506 24.192 102.285	1.00 19.49 1.00 18.40	Г Г	C
	MOTA	1275	CA THR L 164 C THR L 164	2.412 3.871	24.192 102.283	1.00 18.40	L	Č
	MOTA	1276 1277	C THR L 164 O THR L 164	4.263	24.324 103.801	1.00 18.48	Ŀ	ŏ
40	MOTA MOTA	1278	CB THR L 164	2.367	25.378 101.286	1.00 16.10	L	Č
40	ATOM	1279	OG1 THR L 164	2.767	26.598 101.961	1.00 22.69	_ L	ō
	ATOM	1280	CG2 THR L 164	0.978	25.562 100.694	1.00 20.82	L	C
	MOTA	1281	N ASP L 165	4.664	23.505 101.739	1.00 22.96	L	N
	ATOM	1282	CA ASP L 165	6.095	23.397 101.939	1.00 23.19	\mathbf{L}	C
45	MOTA	1283	C ASP L 165	6.590	24.820 101.584	1.00 18.88	L	C
	MOTA	1284	O ASP L 165	5.850	25.633 101.007	1.00 18.60	L	0
	MOTA	1285	CB ASP L 165	6.699	22.432 100.915	1.00 30.01	Ŀ	Č
	MOTA	1286	CG ASP L 165	6.309	20.986 101.155	1.00 40.64	Ļ	C
	MOTA	1287	OD1 ASP L 165	5.882	20.384 100.158	1.00 52.97	L	0
50	MOTA	1288	OD2 ASP L 165	6.452	20.460 102.298	1.00 38.53 1.00 13.81	r r	N O
	ATOM	1289	N GLN L 166	7.848 8.415	25.089 101.885 26.424 101.625	1.00 13.81	Ľ	C
	MOTA	1290	CA GLN L 166 C GLN L 166	8.333	26.806 100.156	1.00 12.21	Ľ	C
	MOTA MOTA	1291 1292	C GLN L 166 O GLN L 166	8.604	26.014 99.290	1.00 16.65	Ŀ	õ
55	ATOM	1293	CB GLN L 166	9.845	26.458 102.164	1.00 12.35	L L	č
55	MOTA	1294	CG GLN L 166	10.442	27.875 102.139	1.00 12.75	L	C
	MOTA	1295	CD GLN L 166	11.704	27.936 102.959	1.00 16.64	L	С
	MOTA	1296	OE1 GLN L 166	12.504	26.974 102.995	1.00 22.95	L	0
	ATOM	1297	NE2 GLN L 166	11.900	29.050 103.628	1.00 15.16	L	N
60	MOTA	1298	N ASP L 167	7.920	28.036 99.874	1.00 15.54	L	N
	MOTA	1299	CA ASP L 167	7.768	28.520 98.523	1.00 17.06	L	С
	ATOM	1300	C ASP L 167	9.168	28.649 97.864	1.00 17.69	Ŀ	C
	ATOM	1301	O ASP L 167	10.151	29.093 98.482	1.00 17.79	Ŀ	0
	MOTA	1302	CB ASP L 167	7.095	29.908 98.508	1.00 13.53	L	C
65	MOTA	1303	CG ASP L 167	6.785	30.356 97.119	1.00 22.46	L	C
	ATOM	1304	OD1 ASP L 167	5.750	29.917 96.602	1.00 24.43	L	0
	MOTA	1305	OD2 ASP L 167	7.597	31.127 96.514	1.00 25.80 1.00 21.93	L L	N O
	MOTA	1306	N SER L 168	9.191 10.385	28.257 96.607 28.290 95.761	1.00 21.93	r L	G 1/4
	ATOM	1307	CA SER L 168	10.363	40.290 33.10I	I	11	•

										_	
	ATOM	1308	C	SER L		10.858	29.659	95.322	1.00 23.47		C
	MOTA	1309	0		168	11.999	29.782	94.879	1.00 25.30		
	ATOM	1310	CB	SER L		10.133	27.465	94.480	1.00 17.84		
_	ATOM	1311	OG	SER L		10.011	26.117	94.892	1.00 38.05		
5	MOTA	1312	N	LYS L		10.005 10.397	30.657 31.989	95.398 94.958	1.00 20.43		
	ATOM	1313	CA	LYS L		10.337	32.922	96.114	1.00 20.10		
	ATOM ATOM	1314 1315	C C	LYS L		11.610	33.623	96.145	1.00 19.99		
	ATOM	1316	CB	LYS L		9.319	32.574	94.021	1.00 21.29		
10	MOTA	1317	CG	LYS L		9.239	31.821	92.667	1.00 30.1		
10	ATOM	1318	CD	LYS L		8.116	32.333	91.773	1.00 44.03		
	MOTA	1319	CE	LYS L		8.244	31.763	90.356	1.00 57.38	3 ь	C
	ATOM	1320	NZ	LYS L		7.258	32.403	89.414	1.00 70.7		
	MOTA	1321	N	ASP L	170	9.699	32.972	97.083	1.00 23.10		
15	ATOM	1322	CA	ASP L		9.915	33.914	98.176	1.00 20.43		
	MOTA	1323	C	ASP L		10.240	33.309	99.528	1.00 22.49		
	MOTA	1324	0	ASP L		10.345	34.018		1.00 24.0		
	MOTA	1325	CB	ASP L		8.719	34.874	98.269	1.00 23.5		
	MOTA	1326	CG	ASP L		7.420	34.180	98.769	1.00 28.5		
20	ATOM	1327		ASP L		7.457 6.362	33.006 34.859	99.213 98.753	1.00 28.25 1.00 32.05		
	MOTA	1328		ASP L SER L		10.437	31.980	99.555	1.00 32.0		
	MOTA ATOM	1329 1330	N CA	SER L		10.854	31.272		1.00 19.5		
	MOTA	1331	C	SER L	171	9.905	31.416		1.00 18.9		
25	MOTA	1332	ŏ	SER L		10.332	31.277		1.00 20.8		
20	ATOM	1333	СB	SER L		12.260		101.193	1.00 16.8		
	MOTA	1334	ŌĠ	SER L		13.092	31.639	100.049	1.00 22.6	4 L	0
	MOTA	1335	N	THR L		8.629	31.627	101.661	1.00 17.1		
	ATOM	1336	CA	THR L	172	7.634		102.747	1.00 17.2		
30	MOTA	1337	C	THR L		6.824		102.837	1.00 15.1		
	ATOM	1338	0	THR L	172	6.950		101.988	1.00 13.2		
	MOTA	1339	СВ	THR L		6.619		102.488	1.00 15.9		
	ATOM	1340		THR L		5.904		101.251	1.00 24.2		
	MOTA	1341	CG2			7.382		102.381	1.00 10.4		
35	MOTA	1342	N	TYR L		5.959		103.849 104.100	1.00 14.8 1.00 13.9		
	MOTA	1343	CA	TYR L		5.091 3.666		104.100	1.00 15.9		
	ATOM ATOM	1344 1345	C.	TYR L		3.442	31.018		1.00 11.8		
	ATOM	1345	CB	TYR L		5.366		105.488	1.00 12.0		
40	ATOM	1347	CG	TYR L		6.732	28.076		1.00 19.9		
40	ATOM	1348	CD1			7.827	28.832		1.00 18.4	_	
	ATOM	1349	CD2			6.937	26.749		1.00 12.6	3 L	
	MOTA	1350	CE1			9.092		106.067	1.00 28.5		
	ATOM	1351	CE2			8.216		105.287	1.00 20.2		
45	MOTA	1352	CZ	TYR L		9.276		105.713	1.00 20.8		
	MOTA	1353	OH	TYR L		10.530		105.841	1.00 31.8		
	ATOM	1354	N			2.706	28.892	103.891	1.00 17.0	8 L	N
	ATOM	1355	CA	SER L		1.281		103.906	1.00 14.7 1.00 15.2		
50	MOTA	1356	C	SER L		0.465 0.924		104.737	1.00 13.2		
50	ATOM ATOM	1357 1358	O CB	SER L		0.770		102.491	1.00 16.5		
	ATOM	1359	OG	SER L		1.300		101.906	1.00 16.1		
	MOTA	1360	N	MET L		-0.753		105.046	1.00 16.1		
	ATOM	1361	CA	MET L		-1.562		105.762	1.00 13.0	1 I	
55	ATOM	1362	C	MET L		-3.020		105.431	1.00 14.5		, C
	MOTA	1363	0	MET L		-3.417	28.949	105.198	1.00 17.5		
	MOTA	1364	CB	MET L		-1.381		107.296	1.00 13.6		
	ATOM	1365	CG	MET L		-2.422		108.210	1.00 11.5		
	ATOM	1366	SD	MET L		-2.089		109.942	1.00 19.8		
60	MOTA	1367	CE	MET L		-3.279		110.822	1.00 19.3		
	MOTA	1368	N	SER L		-3.803		105.418	1.00 12.1		
	ATOM	1369	CA	SER I		-5.268		105.196	1.00 12.4		
	ATOM	1370	C	SER L		-5.934 5.486		106.436	1.00 14.5 1.00 13.6		
65	MOTA	1371	0	SER L		-5.486 -5.673		108.909	1.00 13.6		
65	MOTA	1372 1373	CB	SER I SER I		-5.673 -7.084		103.962	1.00 16.8		
	MOTA MOTA	1374	OG N	SER L		-6.986		106.972	1.00 14.3		
	ATOM	1375	CA	SER I		-7.641		108.128	1.00 14.3		
	ATOM	1376	C	SER I		-9.113		107.753	1.00 16.2		

												_
	ATOM	1377	0	SER L	177	-9.583		107.371		19.72	Ŀ	0
	MOTA	1378	CB	SER L	177	-7.412	26.992	109.379	1.00	10.63	Ŀ	C
	MOTA	1379	OG	SER L	177	-7.994	26.377	110.518	1.00	18.28	<u> </u>	0
	ATOM	1380	N	THR L	178	-9.823	25.089	107.862	1.00	18.72	L)	N
5	ATOM	1381	CA	THR L	178	-11.227	25.063	107.512	1.00	19.80	L L	C
•	ATOM	1382	C	THR L		-12.029	24.577	108.721		19.45	L	C
	ATOM	1383	ŏ	THR L		-11.728		109.262		19.44	L	0
	ATOM	1384	ČВ	THR L		-11.483		106.371		17.81	_ L	C
	ATOM	1385	OG1			-10.737		105.195		20.86	_ L	Õ
10		1386	CG2	THR L		-12.952		106.014		20.63	L L	č
10	MOTA			LEU L		-13.001		100.014		16.56	L	Й
	MOTA	1387 1388	N	LEU L		-13.874		110.279		19.50	L	C
	ATOM		CA							19.78	L L	C
	MOTA	1389	Ğ	LEU L		-15.197		109.628		19.78		
	MOTA	1390	0_	LEU L		-15.884		108.957			L	0
15	ATOM	1391	CB	LEU L		-14.157		111.207		18.74	<u></u>	C
	MOTA	1392	CG	LEU L		-15.233		112.315		19.17	L	C
	MOTA	1393		LEU L		-14.778		113.287		22.85	L -	C
	MOTA	1394	CD2	LEU L		-15.411		113.049		13.61	L	С
	ATOM	1395	N	THR L		-15.558		109.836		16.39	L	N
20	MOTA	1396	$^{\rm CA}$	THR L	180	-16.778		109.226		22.47	L	С
	MOTA	1397	С	THR L	180	-17.911	22.551	110.243		22.40	L	С
	ATOM	1398	0	THR L	180	-17.733	22.007	111.335	1.00	22.24	L	0
	ATOM	1399	CB	THR L	180	-16.510	21.437	108.450	1.00	24.69	L	C
	ATOM	1400	OG1	THR L	180	-15.554	21.720	107.419	1.00	28.70	L	0
25	ATOM	1401	CG2	THR L	180	-17.819	20.902	107.799	1.00	25.60	L	C
	ATOM	1402	N	LEU L	181	-19.061	23.109	109.883	1.00	25.76	L	N
	ATOM	1403	CA	LEU L	181	-20.256	23.079	110.722	1.00	23.80	L	C
	ATOM	1404	C	LEU L		-21.404	22.595	109.874	1.00	22.40	L	С
	MOTA	1405	ŏ		181	-21.281		108.654	1.00	27.54	L	0
30	MOTA	1406	СВ	LEU L		-20.618		111.158		20.99	L	C
00	MOTA	1407	CG	LEU L		-19.507		111.691		21.11	L	C
	MOTA	1408		LEU L		-19.910		111.792		18.26	L	Č
	ATOM	1409		LEU L		-19.133		113.056		35.93	_ L	Č
	MOTA	1410	N	THR L		-22.537	22.342			21.49	_ L	N
35	MOTA	1411	ČA	THR L		-23.734		109.771		21.66	L	Ċ
33	MOTA	1412	C		182	~24.299		109.392		18.67	L L	č
		1413	Ö		182	-23.964		110.009		17.07	Ŀ	õ
	ATOM	1414	CB		182	-24.819		110.648		20.54	L	č
	ATOM	1415			182	-25.233		111.724		19.08	L	ŏ
40	MOTA		OG1		182	-24.250		111.210		19.23	L	č
40	ATOM	1416	CG2		183	-25.161		108.377		22.53	L	N
	MOTA	1417	N			-25.817		107.953		27.93	L	C
	ATOM	1418	CA	LYS L		-26.611		109.111		28.40	L	Č
	ATOM	1419	C		183		26.367			28.75	L	Õ
4.5	ATOM	1420	0		183	-26.590				24.85	L L	C
45	ATOM	1421	CB	LYS L		-26.777		106.814				C
	MOTA	1422	CG	LYS L		-27.654		106.442		38.68	L	G
	MOTA	1423	CD	LYS L		-28.739		105.465		51.46	Ŀ	-
	ATOM	1424	CE	LYS L	183	-29.711		105.066		61.22	L T	C
	MOTA	1425	NZ	LYS L		-29.183		103.976		65.88	L	N
50	MOTA	1426	N	ASP L		-27.335		109.825		28.42	L T	N
	ATOM	1427	CA	ASP L		-28.132		110.967	1.00	30.29	L	C
	MOTA	1428	C	ASP L		-27.275		112.047		27.78	Ţ.	Ç
	MOTA	1429	0	ASP L		-27.641		112.605		26.36	L	0
	MOTA	1430	CB	ASP L		-28.909		111.550		32.41	L	C
55	MOTA	1431	CG	ASP L		-30.029		110.615		47.03	L	C
	MOTA	1432	OD1	. ASP L	184	-30.432		109.744		50.38	L	0
	MOTA	1433	OD2	ASP L	184	-30.492		110.752		57.39	L	0
	ATOM	1434	N	GLU L	185	-26.126		112.341		26.34	L	N
	MOTA	1435	CA	GLU L		-25.239	25.406	113.396		22.33	L	C
60	MOTA	1436	С	GLU L	185	-24.726	26.743	112.905	1.00	21.73	L	C
	MOTA	1437	0	GLU L	185	-24.747	27.754	113.623	1.00	19.74	L	0
	ATOM	1438	ĊВ	GLU L		-24.076		113.729	1.00	22.69	L	C
	MOTA	1439	CG	GLU L		-22.917		114.549		23.70	L	C
	MOTA	1440	CD	GLU L		-23.294		116.017		24.94	L	Č
65	MOTA	1441	OE1			-24.490		116.384		27.91	L	Ö
	ATOM	1442	OE2			-22.395		116.802		27.17	L	Ö
	ATOM	1443	N	TYR L		-24.296		111.637		20.59	L	Ň
	MOTA	1444	CA	TYR L		-23.812		111.033		20.72	L	Ĉ
	ATOM	1445	C	TYR L		-24.884		111.135		21.32	L	č
	2 2 T OLT	- 4 - 4	_			_ 1.501			,			-

	ATOM ATOM	1446 1447	O TYR L 186 CB TYR L 186	-24.594 -23.443	30.251 111.475 27.769 109.565	1.00 19.97 1.00 21.88	L L	O C
	ATOM	1448	CG TYR L 186	-23.034	29.037 108.828	1.00 20.13	L	С
	ATOM	1449	CD1 TYR L 186	-21.856	29.713 109.171	1.00 16.10	L	C
5	ATOM	1450	CD2 TYR L 186	-23.841	29.589 107.835	1.00 13.47	\mathbf{L}	C
	MOTA	1451	CE1 TYR L 186	-21.492	30.928 108.541	1.00 22.60	L	C
	ATOM	1452	CE2 TYR L 186	-23.480	30.800 107.198	1.00 21.66	L	C
	ATOM	1453	CZ TYR L 186	-22.298	31.458 107.569 32.657 107.007	1.00 17.38 1.00 26.12	L L	Ö
10	ATOM	1454 1455	OH TYR L 186 N GLU L 187	-21.907 -26.145	28.732 110.882	1.00 26.58	L	N
10	ATOM ATOM	1456	CA GLU L 187	-27.213	29.744 110.959	1.00 28.79	L	Ĉ
	MOTA	1457	C GLU L 187	-27.671	30.156 112.367	1.00 26.96	L	C
	ATOM	1458	O GLU L 187	-28.433	31.112 112.532	1.00 28.18	L	0
	MOTA	1459	CB GLU L 187	-28.403	29.304 110.087	1.00 29.15	${f L}$	С
15	ATOM	1460	CG GLU L 187	-28.097	29.587 108.603	1.00 38.89	Ļ	C
	MOTA	1461	CD GLU L 187	-29.007	28.858 107.603	1.00 54.73	L	C
	ATOM	1462	OE1 GLU L 187	-28.892	29.178 106.397	1.00 54.75 1.00 57.19	L L	0
	ATOM	1463	OE2 GLU L 187 N ARG L 188	-29.806 -27.167	27.966 107.994 29.462 113.385	1.00 37.19	L	И
20	ATOM ATOM	1464 1465	N ARG L 188 CA ARG L 188	-27.107	29.793 114.769	1.00 23.86	Ŀ	Ĉ
20	MOTA	1466	C ARG L 188	-26.523	30.771 115.368	1.00 26.95	Ŀ	Č
	ATOM	1467	O ARG L 188	-26.692	31.203 116.517	1.00 32.94	L	0
	MOTA	1468	CB ARG L 188	-27.455	28.527 115.636	1.00 25.29	L	C
	MOTA	1469	CG ARG L 188	-28.633	27.610 115.410	1.00 18.49	L	C
25	MOTA	1470	CD ARG L 188	-28.685	26.568 116.464	1.00 20.66	Ŀ	C
	ATOM	1471	NE ARG L 188	-27.676	25.523 116.368	1.00 22.08 1.00 31.05	L L	N C
	MOTA	1472	CZ ARG L 188 NH1 ARG L 188	-27.839 -28.973	24.357 115.741 24.060 115.106	1.00 31.03	L	N
	MOTA MOTA	$\frac{1473}{1474}$	NH1 ARG L 188 NH2 ARG L 188	-26.897	23.438 115.816	1.00 20.64	Ŀ	N
30	ATOM	1475	N HIS L 189	-25.492	31.149 114.613	1.00 27.14	L	N
00	MOTA	1476	CA HIS L 189	-24.505	32.053 115.171	1.00 23.85	L	C
	MOTA	1477	C HIS L 189	-24.228	33.199 114.218	1.00 24.26	L	С
	MOTA	1478	O HIS L 189	-24.560	33.131 113.040	1.00 20.63	L	0
	MOTA	1479	CB HIS L 189	-23.256	31.239 115.485	1.00 21.82	Ŀ	C
35	MOTA	1480	CG HIS L 189	-23.474	30.234 116.589	1.00 23.43	L L	N C
	ATOM	1481	ND1 HIS L 189		30.610 117.912 28.904 116.570	1.00 18.19 1.00 16.28	r r	C
	ATOM ATOM	1482 1483	CD2 HIS L 189 CE1 HIS L 189		29.561 118.670	1.00 13.06	L	Č
	MOTA	1484	NE2 HIS L 189		28.504 117.885	1.00 15.13	L	N
40	ATOM	1485	N ASN L 190		34.250 114.735	1.00 24.89	L	N
	MOTA	1486	CA ASN L 190		35.390 113.884	1.00 26.57	L	С
	MOTA	1487	C ASN L 190		35.834 113.572	1.00 25.07	Ŀ	ď
	MOTA	1488	O ASN L 190		36.240 112.473	1.00 18.65	L	0
	ATOM	1489	CB ASN L 190		36.593 114.472	1.00 33.07 1.00 44.22	L L	C
45	MOTA	1490 1491	CG ASN L 190 OD1 ASN L 190		37.786 113.535 37.657 112.341	1.00 44.22	L	0
	ATOM ATOM	1492	ND2 ASN L 190		38.956 114.065	1.00 38.66	Ŀ	Ŋ
	MOTA	1493	N SER L 191		35.798 114.568	1.00 24.96	L	N
	MOTA	1494	CA SER L 191	-19.696	36.279 114.426	1.00 24.15	L	С
50	MOTA	1495	C SER L 191		35.123 114.233	1.00 23.44	L	C
	ATOM	1496	O SER L 191			1.00 25.33	Ŀ	0
	MOTA	1497	CB SER L 191		37.056 115.696	1.00 20.64	L	C
	ATOM	1498	OG SER L 191		37.707 115.570 35.164 113.130	1.00 34.95 1.00 20.47	L L	N O
55	MOTA	1499 1500	N TYR L 192 CA TYR L 192			1.00 20.47	L	Ç
55	ATOM ATOM	1501	C TYR L 192		34.729 112.770	1.00 22.19	Ŀ	č
	MOTA	1502	O TYR L 192			1.00 24.10	L	0
	ATOM	1503	CB TYR L 192			1.00 17.62	L	C
	MOTA	1504	CG TYR L 192	-18.679		1.00 23.22	L	C
60	ATOM	1505	CD1 TYR L 192			1.00 22.59	Ŀ	C
	MOTA	1506	CD2 TYR L 192			1.00 18.19	L	C
	ATOM	1507	CE1 TYR L 192			1.00 18.75	L _i	C
	MOTA	1508	CE2 TYR L 192			1.00 21.05 1.00 22.71	L L	C
65	MOTA MOTA	1509 1510	CZ TYR L 192 OH TYR L 192			1.00 22.71	L	ŏ
00	ATOM	1511	N THR L 193			1.00 22.36	Ľ	N
	MOTA	1512	CA THR L 193		34.774 113.604	1.00 24.41	L	C
	MOTA	1513	C THR L 193	-12.233	33.758 113.480	1.00 24.10	L	C
	MOTA	1514	O THR L 193		32.698 114.063	1.00 27.37	L	0

		** ******							
	ATOM	1515	CB THR L	193	-13.187	35.495 114.971	1.00 23.16	L	С
	MOTA	1516	OG1 THR L		-14.157	36.553 115.064	1.00 21.75	L	ō
			CG2 THR L		-11.784	36.009 115.147	1.00 24.75	Ĺ	č
	MOTA	1517							
	ATOM	1518	M . CAR F		-11.215	34.108 112.690	1.00 22.54	L	N
5	MOTA	1519	CA CYS L		-9.983	33.318 112.457	1.00 26.58	L	C
	MOTA	1520	C CYS L	194	-8.897	34.154 113.238	1.00 26.19	L	C
	MOTA	1521	O CYS L	194	-8.706	35.294 112.848	1.00 24.23	L	0
		1522	•		-9.561	33.391 110.919	1.00 24.94	L	č
	ATOM								
	MOTA	1523	SG CYS L		-8.068	32.434 110.661	1.00 42.81	L	S
10	MOTA	1524	N GLU L		-8.283	33.639 114.320	1.00 24.48	L	N
	MOTA	1525	CA GLU L	195	-7.182	34.334 115.024	1.00 29.59	\mathbf{L}	C
	ATOM	1526	C GLU L	195	-5.844	33.609 114.798	1.00 30.32	L	C
	ATOM	1527	O GLU L		-5.736	32.409 115.054	1.00 32.34	L	ŏ
					-7.426	34.400 116.545	1.00 32.34	Ĺ	
	MOTA	1528							C
15	ATOM	1529	CG GLU L		-8.541	35.343 116.918	1.00 36.24	L	C
	ATOM	1530	CD GLU L	195	-8.662	35.481 118.422	1.00 40.41	L	C
	MOTA	1531	OE1 GLU L	195	-7.813	34.889 119.126	1.00 37.64	L	0
	MOTA	1532	OE2 GLU L		-9.588	36.176 118.878	1.00 45.58	L	0
	ATOM	1533	N ALA L		-4.832	34.351 114.356	1.00 29.64	L	Ň
00							1.00 28.09	L	
20	MOTA	1534	CA ALA L		-3.507	33.789 114.084			Ç
	MOTA	1535	C ALA L		-2.409	34.420 114.908	1.00 28.54	L	C
	ATOM	1536	O ALA L		-2.284	35.642 114.929	1.00 30.56	L	0
	ATOM	1537	CB ALA L	196	-3.153	33.991 112.624	1.00 29.68	L	C
	ATOM	1538	N THR L		-1.607	33.592 115.568	1.00 29.39	L	N
25	ATOM	1539	CA THR L		-0.473	34.125 116.305	1.00 32.75	L	Ċ
25									
	ATOM	1540	C THR L		0.759	33.583 115.564	1.00 31.12	Ŀ	Ğ
	MOTA	1541	O THR L		0.832	32.420 115.140	1.00 28.19	L	0
	MOTA	1542	CB THR L	197	-0.477	33.711 117.796	1.00 34.20	\mathbf{L}	C
	ATOM	1543	OG1 THR L	197	-0.216	32.310 117.927	1.00 37.75	L	0
30	ATOM	1544	CG2 THR L		-1.827	34.046 118.406	1.00 33.92	L	Ċ
30					1.711	34.469 115.370	1.00 30.73	L	N
	MOTA	1545	N HIS L						
	MOTA	1546	CA HIS L		2.919	34.147 114.605	1.00 27.74	L	C
	ATOM	1547	C HIS L	198	4.036	34.915 115.289	1.00 28.66	L	C
	MOTA	1548	O HIS L	198	3.788	35.879 116.009	1.00 26.28	L	0
35	ATOM	1549	CB HIS L	198	2.719	34.651 113.168	1.00 24.97	L	С
00	MOTA	1550	CG HIS L		3.864	34.340 112.254	1.00 23.60	L	č
	ATOM	1551	ND1 HIS L		4.789	35.292 111.880	1.00 26.74	L,	N
	MOTA	1552	CD2 HIS L		4.259	33.179 111.670	1.00 23.17	L	С
	MOTA	1553	CE1 HIS L	198	5.706	34.729 111.110	1.00 22.18	L	C
40	MOTA	1554	NE2 HIS L	198	5.410	33.448 110.968	1.00 17.91	L	N
	MOTA	1555	N LYS L		5.268	34.499 115.058	1.00 28.46	L	N
	MOTA	1556	CA LYS L		6.391	35.179 115.711	1.00 30.45	ī	Ĉ
								L	
	MOTA	1557	C LYS L		6.336	36.684 115.519	1.00 30.56		G
	MOTA	1558	O LYS L		6.784	37.429 116.387	1.00 34.50	L	0
45	MOTA	1559	CB LYS L	199	7.707	34.633 115.116	1.00 31.22	L	С
	MOTA	1560	CG LYS L	199	9.034	35.296 115.576	1.00 33.02	L	C
	MOTA	1561	CD LYS L			34.717 114.743	1.00 31.75	L	C
		1562	CE LYS L		11.548	35.183 115.205	1.00 26.57	Ē	č
	ATOM		CE 1110 I	100		24 725 114 206	1.00 25.57		
	ATOM	1563	NZ LYS L		12.553	34.725 114.206		Ŀ	N
50	MOTA	1564	N THR L		5.783	37.135 114.393	1.00 30.74	L	N
	ATOM	1565	CA THR L	200	5.785	38.554 114.042	1.00 30.39	L	C
	MOTA	1566	C THR L	200	4.916	39.445 114.890	1.00 36.75	I,	C
	ATOM	1567	O THR L		4.831	40.651 114.626	1.00 40.22	L	0
		1568	CB THR L		5.430	38.783 112.541	1.00 30.63	L	č
	MOTA								
55	MOTA	1569	OG1 THR L		4.283	37.982 112.176	1.00 34.17	Ļ	0
	MOTA	1570	CG2 THR L	200	6.642	38.347 111.650	1.00 26.33	L	C
	MOTA	1571	N SER L	201	4.240	38.842 115.875	1.00 42.72	L	N
	MOTA	1572	CA SER L		3.444	39.601 116.831	1.00 43.91	L	C
	ATOM	1573	C SER L		2.855	38.728 117.916	1.00 47.57	L	Ċ
60									~
60	ATOM	1574	O SER L		2.126	37.756 117.644	1.00 50.70	L	0
	MOTA	1575	CB SER L		2.328	40.364 116.130	1.00 43.23	L	C
	ATOM	1576	OG SER L		1.711	41.223 117.077	1.00 48.62	L	0
	ATOM	1577	N THR L		3.160	39.073 119.157	1.00 52.05	L	N
	ATOM	1578	CA THR L		2.652	38.344 120.314	1.00 56.48	Ī.	Ĉ
G.E.									G
65	MOTA	1579	C THR L		1.097	38.311 120.322	1.00 56.15	Ŀ	
	ATOM	1580	O THR L		0.468	37.332 120.756	1.00 56.79	Ļ	0
	MOTA	1581	CB THR L	202	3.147	39.041 121.586	1.00 59.00	L	C
	MOTA	1582	OG1 THR L		4.517	39.445 121.400	1.00 62.75	L	. O.
	MOTA	1583	CG2 THR L		3.065	38.103 122.770	1.00 63.28	L	C
	WI OIL	7000	~~~ 1111\ JJ		2.003	JULIU IIII 170			_

		4504			000	0 404	20 200 110 04	- 4 00 54 07	-	37
	ATOM	1584	N	SER L		0.494	39.399 119.845		Ţ	$\widetilde{\mathbf{N}}$
	MOTA	1585	CA	SER L		-0.965	39.544 119.772		L	C
	MOTA	1586	C		203	-1.454	38.958 118.442		L	С
	ATOM	1587	0	SER L	203	-0.916	39.279 117.37		L	0
5	MOTA	1588	CB	SER L	203	-1.298	41.013 119.79	1 1.00 54.28	L	С
	MOTA	1589	OG	SER L	203	-0.510	41.642 118.792	2 1.00 58.41	L	0
	MOTA	1590	N	PRO L	204	-2.522	38.151 118.47	7 1.00 47.34	L	N
	ATOM	1591	. CA	PRO L		-3.014	37.553 117.233		L	С
	ATOM	1592	C	PRO L		-3.502	38.506 116.169		L	Č
10	MOTA	1593	Ö		204	-3.898	39.613 116.45		- L	Õ
10		1594		PRO L		-4.137	36.635 117.71		r L	č
	ATOM		CB						L	G
	MOTA	1595	CG	PRO L		-4.723	- ,			
	MOTA	1596	$^{\rm CD}$	PRO L		-3.435	37.849 119.59		Ţ	C
	MOTA	1597	И	ILE L		-3.460	38.043 114.92		L	N
15	ATOM	1598	$^{\mathrm{ca}}$	ILE L		-3.986	38.796 113.78		L	C
	\mathbf{MOTA}	1599	С	ILE L		-5.428	38.239 113.75		L	C
	MOTA	1600	0	ILE L	205	-5.641	37.013 113.78		L	0
	MOTA	1601	CB	ILE L	205	-3.219	38.432 112.47	1 1.00 34.55	L	C
	ATOM	1602	CG1	ILE L	205	-1.814	39.073 112.50	3 1.00 31.34	L	C
20	MOTA	1603	CG2	ILE L	205	-3.974	38.938 111.24	8 1.00 24.01	L	C
	ATOM	1604	CD1			-0.939	38.666 111.29	0 1.00 42.44	L	С
	ATOM	1605	N	VAL L		-6.396	39.139 113.73		L	N
	ATOM	1606	CA	VAL L		-7.813	38.759 113.78		L	C
	MOTA	1607	C	VAL L		-8.582	39.102 112.52		L	č
OE.		1608	Ö	VAL L		-8.531	40.234 112.08		Ŀ	ŏ
25	ATOM			VAL L		-8.485	39.495 115.01		L	č
	ATOM	1609	CB						L	
	MOTA	1610		VAL L		-9.979	39.144 115.10			C
	MOTA	1611		VAL L		-7.782	39.060 116.32		L	C
	MOTA	1612	N	LYS L		-9.259	38.127 111.90		L	N
30	MOTA	1613	ca	LYS L		-10.088	38.410 110.71		Ŀ	C
	MOTA	1614	C			-11.472	37.832 111.03		L	C
	MOTA	1615	0	LYS L		-11.585	36.737 111.56		· L	0
	ATOM	1616	CB	LYS L	207	-9.560	37.756 109.45	0 1.00 23.08	L	C
	MOTA	1617	CG	LYS L	207	-8.259	38.397 109.00	2 1.00 32.25	L	C
35	MOTA	1618	CD	LYS L	207	-8.452	39.818 108.44	4 1.00 39.96	L	C
	MOTA	1619	CE	LYS L		-7.059	40.481 108.24	5 1.00 45.64	L	C
	ATOM	1620	NZ	LYS L		-7.248	41.837 107.67		L	N
	MOTA	1621	N	SER L		-12.515	38.553 110.69		L	N
	MOTA	1622	CA	SER L		-13.865	38.071 111.04		L	Ċ
40	ATOM	1623	CA	SER L		-14.875	38.506 110.05		L	č
40				SER L		-14.619	39.407 109.26		L	ŏ
	MOTA	1624	0						L	č
	MOTA	1625	CB	SER L		-14.363				
	MOTA	1626	OG	SER L		-13.384	38.712 113.36		L	0
	ATOM	1627	N	PHE L		-16.051	37.880 110.10		L	
45	MOTA	1628	CA	PHE L		-17.173	38.342 109.30		L	C
	MOTA	1629	C	PHE L	209	-18.428	38.049 110.12		L	C
	MOTA	1630	0	PHE L		-18.387	37.253 111.05		L	0
	MOTA	1631	CB	PHE L	209	-17.269	37.664 107.93	9 1.00 16.13	L	С
	MOTA	1632	CG	PHE L	209	-17.620	36.198 108.00	0 1.00 26.94	L	
50	MOTA	1633	CD1	PHE L	209	-18.955	35.765 108.03	9 1.00 26.84	L	С
	ATOM	1634	CD2			-16.606	35.241 108.00	0 1.00 31.15	L	C
	MOTA	1635		PHE L		-19.254	34.404 108.07	2 1.00 27.00	上	C
	MOTA	1636	CE2			-16.897	33.895 108.02		L	
	ATOM	1637	CZ	PHE L		-18.229	33.464 108.06		L	
55	ATOM	1638	N	ASN L		-19.522	38.737 109.81		L	
55			CA	ASN L		-20.809	38.497 110.47		L	
	MOTA	1639					37.868 109.43		L	
	ATOM	1640	C	ASN L		-21.715				
	ATOM	1641	0	ASN L		-21.804	38.326 108.30		L	
	MOTA	1642	CB	ASN L		-21.424	39.789 110.98		Ŀ	
60	MOTA	1643	CG	ASN L		-20.647	40.358 112.13	1 1.00 41.97	Ĩ,	
	MOTA	1644		. ASN L		-20.232	39.624 113.02		L	
	ATOM	1645	ND2	ASN L	210	-20.427	41.673 112.11		L	
	MOTA	1646	N	ARG L	211	-22.349	36.779 109.81	0 1.00 34.50	L	
	MOTA	1647	CA	ARG L	211	-23.225	36.076 108.89		L	
65	ATOM	1648	C	ARG L		-24.255	37.088 108.36		L	
	ATOM	1649	Ó	ARG L		-24.483	37.085 107.12	9 1.00 47.09	L	
	MOTA	1650	ČВ	ARG L		-23.897	34.874 109.60		L	C
	MOTA	1651	CG	ARG L		-24.800	33.985 108.72		L	
	ATOM	1652	CD	ARG L		-25.278	32.779 109.47		L	

	- 5024	1.650	3.777	3 D.C. T	011	05 000	22 106	110 705	1 00 30 30	т	ВT
	MOTA	1653 1654	CZ NE	ARG L ARG L		-25.888 -27.142		110.725 110.849	1.00 38.28 1.00 44.67	L	N C
	ATOM ATOM	1655		ARG L		-27.142		109.786	1.00 48.24	L	N
	ATOM	1656	NH2		211	-27.568		112.027	1.00 46.31	L	N
5	ATOM	1657		ARG L		-24.796		109.158	1.00 43.58	Ē	õ
Ü	TER	1658	Q		211	21.75				_	_
	MOTA	1659	N	GLU H	1	13.634	16.019	73.396	1.00 37.05	н	N
	ATOM	1660	CA	GLU H	1	13.497	15.897	74.879	1.00 37.26	H	C
	MOTA	1661	С	GLU H	1	12.992	14.523	75.281	1.00 32.62	H	С
10	MOTA	1662	0	GLU H	1	12.103	13.972	74.644	1.00 31.05	H	0
	ATOM	1663	CB	GLU H	1	12.537	16.969	75.411	1.00 39.07	H	C
	MOTA	1664	CG	GLU H	1	11.930	16.635	76.750	1.00 56.68	Н	C
	MOTA	1665	CD	GLU H	1	11.585	17.889	77.553	1.00 73.84	H	C
	MOTA	1666		GLU H	1	11.488	17.807	78.805	1.00 77.86	H	0
15	ATOM	1667	OE2		1	11.417	18.958	76.922	1.00 78.38 1.00 30.97	H	O
	MOTA	1668	N	H JAV	2	13.548 13.122	13.973 12.653	76.355 76.833	1.00 30.97	H H	C N
	MOTA ATOM	1669 1670	CA C	VAL H	2 2	11.817	12.857	77.557	1.00 25.45	H	č
	ATOM	1671	Ö	VAL H	2	11.670	13.778	78.359	1.00 28.52	H	ŏ
20	MOTA	1672	ČВ	VAL H	2	14.101	12.061	77.867	1.00 21.49	H	č
	ATOM	1673		VAL H	2	13.467	10.846	78.519	1.00 20.68	Н	Ċ
	ATOM	1674	CG2	VAL H	2	15.439	11.700	77.205	1.00 23.15	H	С
	MOTA	1675	N	ALA H	3	10.865	11.994	77.290	1.00 25.40	H	N
	MOTA	1676	CA	ALA H	3	9.593	12.073	77.975	1.00 28.29	H	С
25	MOTA	1677	C	ALA H	3	9.089	10.661	78.373	1.00 26.97	H	C
	ATOM	1678	0	ALA H	3	9.185	9.698	77.593	1.00 29.48	H	0
	MOTA	1679	CB	ALA H	3	8.549	12.845	77.052	1.00 27.69	H	C
	MOTA	1680	N	LEU H	4	8.609 8.061	10.538 9.287	79.612 80.137	1.00 24.22 1.00 20.89	H H	C N
30	ATOM	1681 1682	CA C	LEU H	4 4	6.689	9.658	80.678	1.00 20.89	H	Č
30	MOTA MOTA	1683	Ö	LEU H	4	6.584	10.514	81.590	1.00 27.07	H	ŏ
	ATOM	1684	СВ	LEU H	4	8.916	8.766	81.302	1.00 22.55	H	Ğ
	ATOM	1685	CG	LEU H	$\tilde{4}$	10.384	8.474	80.837	1.00 17.66	H	Ċ
	ATOM	1686		LEU H	4	11.151	8.000	82.071	1.00 17.39	H	С
35	MOTA	1687	CD2	LEU H	4	10.446	7.366	79.750	1.00 23.92	H	C
	MOTA	1688	N	VAL H	5	5.639	9.005	80.176	1.00 24.40	H	N
	ATOM	1689	CA	VAL H	-5	4.290	9.364	80.620	1.00 20.43	H	C
	MOTA	1690	C	VAL H	5	3.513	8.155	81.167	1.00 20.69	H	Č
	MOTA	1691	0_	VAL H	5	3.095	7.262	80.397	1.00 23.26	H	0
40	ATOM	1692	CB	VAL H	5	3.505	9.990 10.282	79.464	1.00 17.37 1.00 12.65	H H	C C
	MOTA ATOM	1693 1694		VAL H	5 5	$\frac{2.092}{4.204}$	11.263	79.925 78.989	1.00 12.03	H	ä
	ATOM	1695	N CGZ	GLU H	6	3.282	8.143	82.474	1.00 18.23	H	Ŋ
	ATOM	1696	CA	GLU H	6	2.590	6.997	83.074	1.00 21.02	H	Ĉ
45	MOTA	1697	C	GLU H	6	1.080	7.101	83.005	1.00 24.64	H	C
	ATOM	1698	Ō	GLU H	6	0.535	8.187	82.930	1.00 24.72	H	0
	MOTA	1699	CB	GLU H	6	2.948	6.778	84.539	1.00 23.51	H	C
	MOTA	1700	CG	GLU H	6	4.498	6.643	84.825	1.00 22.40	H	C
	MOTA	1701	CD	GLU H	6	5.121	7.975	85.129	1.00 24.00	H	Č
50	MOTA	1702	OE1		6	4.652	9.035	84.652	1.00 22.51	H	0
	ATOM	1703	OE2		6	6.169	7.956	85.930 82.993	1.00 20.14 1.00 25.35	H H	O
	MOTA	1704	N	SER H	7 7	0.426 -1.051	5.954 5.957	83.008	1.00 23.33	H	N C
	MOTA MOTA	1705 1706	CA C	SER H SER H		-1.494	4.639	83.623	1.00 23.70	H	g
55	ATOM	1707	Ö	SER H		-0.669	3.750	83.870	1.00 23.79	H	ŏ
00	ATOM	1708	СВ	SER H		-1.625	6.137	81.602	1.00 24.31	H	č
	MOTA	1709	OG	SER H		-1.219	5.109	80.733	1.00 29.67	H	0
	ATOM	1710	N	GLY H	8	-2.793	4.535	83.926	1.00 24.57	H	N
	MOTA	1711	CA	GLY H	8	-3.309	3.306	84.479	1.00 26.40	H	C
60	MOTA	1712	С	GLY H		-3.483	3.239	85.973	1.00 27.67	H	C
	MOTA	1713	0	GLY H		-3.994	2.242	86.485	1.00 32.68	H	0
	ATOM	1714	N	GLY H		-3.071	4.256	86.714	1.00 26.70	H	N
	MOTA	1715	CA	GLY H		-3.267	4.106	88.133	1.00 30.26 1.00 31.53	H H	C
65	MOTA	1716 1717	C O	GLY H		-4.736 -5.554	$4.366 \\ 4.742$	88.505 87.658	1.00 34.39	H	Ö
UO	MOTA MOTA	1718	N	GLY H		-5.050	4.186	89.771	1.00 26.64	H	И
	MOTA	1719	CA	GLY H		-6.399	4.406	90.224	1.00 24.06	H	Ĉ
	MOTA	1720	C	GLY H		-6.617	3.606	91.474	1.00 28.46	H	č
	ATOM	1721	Ö	GLY H		-5.670	3.135	92.107	1.00 29.65	H	0

	*										
	MOTA	1722	N LEU H	11	-7.89	3.418	91.830	1.00 27.81		H	N
	MOTA	1723	CA LEÙ H	11	-8.24		93.050	1.00 26.68		H	Ċ
	ATOM	1724	C LEU H	11	-8.46		92.762	1.00 29.79		H	č
	MOTA	1725	O LEU H	11	-9.13		91.790	1.00 23.73			
5	ATOM	1726	CB LEU H	11						H	0
3					-9.55		93.616	1.00 27.46		H	C
	ATOM	1727	CG LEU H	11	-10.21		94.829	1.00 30.78		H	С
	MOTA	1728	CD1 LEU H	11	-9.38		96.069	1.00 21.39		H	C
	MOTA	1729	CD2 LEU H	11	-11.57		95.076	1.00 26.61		H	C
	MOTA	1730	N VAL H	12	-7.97	0.362	93.641	1.00 31.51		H	N
10	MOTA	1731	CA VAL H	12	-8.14	-1.062	93.408	1.00 31.17		H	C
	MOTA	1732	C VAL H	12	-8.34		94.747	1.00 29.15		H	č
	MOTA	1733	O VAL H	12	-7.77		95.722	1.00 29.56		H	
		1734									0
	MOTA		CB VAL H	12	-6.87		92.693	1.00 32.00		H	C
	MOTA	1735	CG1 VAL H	12	-5.59		93.539	1.00 28.63		H-	C
15	MOTA	1736	CG2 VAL H	12	-7.04		92.482	1.00 29.00		H	C
	MOTA	1737	N LYS H	13	-9.17	5 -2.723	94.826	1.00 28.70		H	N
	MOTA	1738	CA LYS H	13	-9.36	3 -3.342	96.115	1.00 31.56		H	C
	MOTA	1739	C LYS H	13	-8.21	-4.272	96.474	1.00 30.38		H	Č
	MOTA	1740	O LYS H	13	-7.51		95.618	1.00 33.11		H	õ
20	MOTA	1741	CB LYS H	13	-10.69		96.145	1.00 33.11			
20	ATOM	1742		13						H	C
					-11.89		95.773	1.00 41.91		H	C
	MOTA	1743	CD LYS H	13	-13.18		96.279	1.00 51.54		H	C
	MOTA	1744	CE LYS H	13	-14.38		95.690	1.00 65.14		H	C
	MOTA	1745	NZ LYS H	13	-14.44	7 ~3.378	94.190	1.00 58.25		H	N
25	MOTA	1746	N PRO H	14	-8.00	5 -4.494	97.763	1.00 28.47		H	N
	MOTA	1747	CA PRO H	14	-6.93	5 -5.398	98.191	1.00 27.81		H	C
	MOTA	1748	C PRO H	14	-7.15		97,499	1.00 30.73		H	č
	ATOM	1749	O PRO H	$\frac{14}{14}$	-8.30		97.382	1.00 33.00		H	ŏ
	ATOM	1750	CB PRO H	14	-7.16		99.686	1.00 27.15		H	č
30	ATOM	1751									
30			CG PRO H	14	-7.81		100.033	1.00 25.33		H	C
	ATOM	1752	CD PRO H	14	-8.68		98.901	1.00 24.23		H	C
	MOTA	1753	N GLY H	15	-6.07		97.087	1.00 31.50		H	N
	MOTA	1754	CA GLY H	15	-6.14	-8.694	96.398	1.00 26.43		H	C
	MOTA	1755	C GLY H	15	-6.40	2 -8.471	94.922	1.00 31.35		H	C
35	MOTA	1756	O GLY H	15	-6.34	3 -9.393	94.114	1.00 37.77		H	0
	MOTA	1757	N GLY H	16	-6.65		94.547	1.00 30.42		H	N
	MOTA	1758	CA GLY H	16	-6.92		93.159	1.00 30.36		H	Ĉ
	ATOM	1759	C GLY H	16	-5.67		92.275	1.00 30.40		H	Č
	MOTA	1760	O GLY H	16	-4.55		92.740				
40								1.00 33.82		H	0
40	ATOM	1761	N SER H	17	-5.91		91.007	1.00 27.09		H	N
	MOTA	1762	CA SER H	17	-4.89		89.970	1.00 31.01		H	C
	MOTA	1763	C SER H	17	-5.03		89.249	1.00 33.12		H	C
	\mathbf{MOTA}	1764	O SER H	17	-6.11	3 ~4.506	89.210	1.00 35.49		H	0
	MOTA	1765	CB SER H	17	-5.03	-7.527	88.925	1.00 29.40		Ħ	C
45	MOTA	1766	OG SER H	17	-4.51	-8.733	89.433	1.00 40.23		H	0
	MOTA	1767	N LEU H	18	-3.93		88.635	1.00 29.11		H	Ň
	MOTA	1768	CA LEU H	18	-3.96		87.892	1.00 31.40		H	Ĉ
	MOTA	1769	C LEU H	18	-2.73		86.979	1.00 28.04		H	Č
	ATOM	1770	O LEU H	18	-1.70		87.384	1.00 28.04			
50										H	0
50	ATOM	1771	CB LEU H	18	-3.90		88.882	1.00 36.05		H	С
	MOTA	1772	CG LEU H	18	-4.09		88.311	1.00 36.13		H	C
	MOTA	1773	CD1 LEU H	18	-5.51		87.716	1.00 32.11		H	С
	MOTA	1774	CD2 LEU H	18	-3.91	0.228	89.402	1.00 41.12		H	C
	MOTA	1775	N LYS H	19	-2.83	3 -2.822	85.789	1.00 23.49		H	N
55	MOTA	1776	CA LYS H	19	-1.67		84.915	1.00 23.15		H	Ĉ
	ATOM	1777	C LYS H	19	-1.35		84.578	1.00 26.43		H	Č
	ATOM	1778	O LYS H	19	-2.20						
							84.062	1.00 25.06		H	0
	ATOM	1779	CB LYS H	19	-1.91		83.593	1.00 24.43		H	C
	ATOM	1780	CG LYS H	19	-0.62		82.771	1.00 28.16		H	C
60	MOTA	1781	CD LYS H	19	-0.87		81.551	1.00 27.11		H	C
	MOTA	1782	CE LYS H	19	0.438		80.971	1.00 37.87		H	C
	MOTA	1783	NZ LYS H	19	0.22	7 ~5.854	79.670	1.00 50.80	:	H	N
	MOTA	1784	N LEU H	20	-0.120		84.881	1.00 25.63		H	N
	ATOM	1785	CA LEU H	20	0.33		84.587	1.00 23.09		H	C
65	MOTA	1786	C LEU H	20	1.119		83.293	1.00 21.89		H	č
	MOTA	1787	O LEU H	20	1.81		82.969	1.00 23.58		H	ŏ
	ATOM	1788	CB LEU H	20	1.27		85.707	1.00 23.38		n H	Ċ
	ATOM	1789	CG LEU H	20	0.799		87.143	1.00 22.80			Č
										H	C
	ATOM	1790	CD1 LEU H	20	1.85	1.306	88.119	1.00 30.17]	H	C

	MOTA	1791	CD2	LEU H	20	-0.538	1.505	87.267	1.00 26.07	H	С
	ATOM	1792	N	SER H	21	1.050	1.558	82.595	1.00 19.29	H	Ŋ
								-	1.00 22.08		
	MOTA	1793	CA	SER H	21	1.749	1.754	81.359		H	C
	MOTA	1794	С	SER H	21	2.636	2.978	81.440	1.00 24.30	H	С
5	ATOM	1795	0	SER H	21	2.353	3.911	82.195	1.00 27.22	H	0
•	ATOM	1796	ČВ	SER H	21	0.748	1.964	80.229	1.00 21.00	H	č
	ATOM	1797	QG	SER H	21	0.011	0.761	80.030	1.00 34.43	H	0
	\mathbf{MOTA}	1798	N	CYS H	22	3.661	2.991	80.608	1.00 21.98	H	N
	MOTA	1799	CA	CYS H	22	4.571	4.125	80.536	1.00 20.64	н	C
40					22	4.981	4.313	79.090	1.00 21.24		
10	ATOM	1800	C	CYS H						H	Ç
	MOTA	1801	0	CYS H	22	5.646	3.437	78.532	1.00 27.26	H	0
	ATOM	1802	CB	CYS H	22	5.802	3.897	81.424	1.00 21.02	H	С
	ATOM	1803	SG	CYS H	22	6.992	5.249	81.188	1.00 29.58	H	s
	MOTA	1804	N	ALA H	23	4.556	5.436	78.489	1.00 17.76	H	N
15	MOTA	1805	ca	ALA H	23	4.855	5.821	77.114	1.00 20.00	H	C
	MOTA	1806	С	ALA H	23	6.179	6.585	77.077	1.00 23.26	H	С
	ATOM	1807	ŏ	ALA H	23	6.306	7.663	77.655	1.00 25.72	H	ŏ
	MOTA	1808	CB	ALA H	23	3.739	6.738	76.544	1.00 17.81	H	C
	\mathbf{MOTA}	1809	\mathbf{N}	ALA H	24	7.133	6.073	76.318	1.00 24.36	H	N
20	MOTA	1810	CA	ALA H	24	8.427	6.705	76.290	1.00 25.28	H	C
	ATOM	1811	C	ALA H	24	8.741	7.270	74.950	1.00 26.13	H	č
	MOTA	1812	0	ALA H	24	8.397	6.679	73.921	1.00 27.39	H	0
	MOTA	1813	CB	ALA H	24	9.480	5.704	76.687	1.00 25.98	H	C
	MOTA	1814	N	SER H	25	9.407	8.414	74.946	1.00 24.17	H	N
25	ATOM	1815	CA	SER H	25	9.761	9.022	73.680	1.00 26.47	H	
25											
	MOTA	1816	С	SER H	25	11.004	9.896	73.855	1.00 26.46	H	
	MOTA	1817	0	SER H	25	11.383	10.242	74.967	1.00 28.62	H	0
	MOTA	1818	CB	SER H	25	8.583	9.889	73.200	1.00 27.45	H	C
		1819		SER H	25	8.344	10.935	74.132	1.00 24.69	H	
	MOTA		OG								-
30	MOTA	1820	N	GLY H	26	11.678	10.210	72.769	1.00 22.55	H	N
	MOTA	1821	CA	GLY H	26	12.807	11.111	72.911	1.00 20.54	H	С
	MOTA	1822	С	GLY H	26	14.151	10.470	73.084	1.00 24.32	Ħ	C
								73.294	1.00 24.89	H	Õ
	MOTA	1823	0	GLY H	26	15.139	11.176				
	MOTA	1824	N	PHE H	27	14.199	9.141	73.028	1.00 21.93	H	
35	MOTA	1825	CA	PHE H	27	15.482	8.426	73.112	1.00 20.14	H	С
	MOTA	1826	C	PHE H	27	15.297	7.067	72.471	1.00 21.32	н	C
	MOTA	1827	0	PHE H	27	14.152	6.622	72.250	1.00 23.00	H	0
	ATOM	1828	$^{\rm CB}$	PHE H	27	15.964	8.301	74.591	1.00 20.36	H	
	MOTA	1829	CG	PHE H	27	15.035	7.491	75.504	1.00 18.12	H	C
40	MOTA	1830		PHE H	27	15.278	6.164	75.788	1.00 10.19	H	
40								76.058			
	MOTA	1831	CD2		27	13.905	8.073		1.00 18.20	H	
	ATOM	1832	CE1	PHE H	27	14.417	5.404	76.613	1.00 15.96	H	
	MOTA	1833	CE2	PHE H	27	13.028	7.329	76.893	1.00 21.16	H	C
	ATOM	1834	CZ	PHE H	27	13.276	6.009	77.174	1.00 9.67	H	Ċ
45											
45	MOTA	1835	N	THR H	28	16.400	6.358	72.225	1.00 20.96	H	
	MOTA	1836	ca	THR H	28	16.307	5.056	71.570	1.00 20.74	H	С
	MOTA	1837	С	THR H	28	15.937	4.013	72.549	1.00 22.28	H	C
	MOTA	1838	Ō	THR H	28	16.775	3.363	73.126	1.00 25.49	H	
	MOTA	1839	СВ	THR H	28	17.610	4.727	70.871	1.00 17.35	H	C
50	MOTA	1840	OG1	THR H	28	17.834	5.747	69.902	1.00 22.02	H	0
	MOTA	1841	CG2	THR H	28	17.527	3.399	70.157	1.00 21.93	H	C
	MOTA	1842	N	PHE H	29	14.636	3.854	72.730	1.00 20.12	H	
							3.034	72.750			
	MOTA	1843	CA	PHE H	29	14.092	2.922	73.707	1.00 19.24	H	
	MOTA	1844	С	PHE H	29	14.698	1.534	73.827	1.00 20.34	H	C
55	MOTA	1845	0	PHE H	29	15.023	1.081	74.937	1.00 22.88	H	0
-	MOTA	1846	ČВ	PHE H	29	12.568	2.808	73.476	1.00 18.98	H	
											č
	MOTA	1847	CG	PHE H	29	11.821	2.069	74.551	1.00 18.94	H	
	MOTA	1848	CD1	PHE H	29	11.547	2.681	75.784	1.00 17.20	H	
	MOTA	1849	CD2		29	11.337	0.774	74.328	1.00 17.93	H	C
60	MOTA	1850	CE1		29	10.802	1.996	76.752	1.00 20.22	H	
00											\sim
	MOTA	1851	CE2		29	10.587	0.086	75.316	1.00 20.54	H	
	MOTA	1852	CZ	PHE H	29	10.330	0.704	76.515	1.00 7.20	H	C
	MOTA	1853	N	ILE H	30	14.872	0.847	72.699	1.00 22.05	H	
	MOTA	1854	CA	ILE H	30	15.393	-0.520	72.753	1.00 24.80	H	
GE.											~
65	ATOM	1855	С	ILE H	30	16.752	-0.688	73.403	1.00 22.06	H	
	MOTA	1856	0	ILE H	30	17.027	-1.775	73.909	1.00 23.49	H	
	MOTA	1857	CB	ILE H	30	15.488	-1.222	71.350	1.00 23.26	H	
	ATOM	1858	CG1		30	16.369	-0.396	70.424	1.00 23.10	H	
	ATOM	1859	CG2	ILE H	30	14.061	-1.412	70.768	1.00 32.12	H	С

	T CM	1060	CD1 TTE H	30	16.802	-1.136	69.186	1.00 38.83	Н	С
	ATOM ATOM	1860 1861	CD1 ILE H N SER H	31	17.546	0.377	73.443	1.00 18.26	- H	N
	MOTA	1862	CA SER H	31	18.890	0.261	74.003	1.00 18.45 1.00 18.69	H H	C C
_	MOTA MOTA	1863 1864	C SER H O SER H	31 31	18.984 20.041	0.503 0.256	75.508 76.089	1.00 21.46	H	Ö
5	ATOM	1865	CB SER H	31	19.874	1.206	73.291	1.00 14.50	H	C
	ATOM	1866	OG SER H	31	20.169	0.722	71.962	1.00 31.45	H	N
	MOTA	1867	N TYR H	32 32	17.883 17.886	$0.952 \\ 1.240$	76.124 77.549	1.00 18.03 1.00 14.33	H H	C
10	ATOM ATOM	1868 1869	CA TYR H C TYR H	32 32	17.152	0.280	78.441	1.00 15.02	H	Č
10	MOTA	1870	O TYR H	32	16.115	-0.302	78.076	1.00 14.37	H	0
	ATOM	1871	CB TYR H	32	17.310	2.665	77.818	1.00 13.79 1.00 17.16	H H	C
	ATOM	1872	CG TYR H CD1 TYR H	32 32	18.198 18.203	3.793 4.142	77.298 75.943	1.00 17.10	H	C
15	MOTA MOTA	1873 1874	CD1 TYR H CD2 TYR H	32	19.042	4.487	78.156	1.00 14.56	Н	C
13	ATOM	1875	CE1 TYR H	32	19.020	5.152	75.457	1.00 17.45	H	C
	MOTA	1876	CE2 TYR H	32	19.882	5.505	77.679	1.00 20.18 1.00 23.49	H H	C
	ATOM	1877	CZ TYR H	32 32	19.857 20.666	5.828 6.850	76.330 75.863	1.00 23.49	Н	ŏ
20	MOTA MOTA	1878 1879	OH TYR H N ALA H	33	17.698	0.140	79.651	1.00 14.42	H	N
20	ATOM	1880	CA ALA H	33	17.057	-0.615	80.695	1.00 14.51	H	C
	MOTA	1881	C ALA H	33	15.993	0.394	81.252	1.00 14.39 1.00 12.17	H H	O C
	ATOM	1882	O ALA H CB ALA H	33 33	16.123 18.055	1.624 -1.001	81.104 81.806	1.00 12.17	H	č
25	MOTA MOTA	1883 1884	CB ALA H N MET H	34	14.949	-0.140	81.862	1.00 16.84	H	N
20	MOTA	1885	CA MET H	34	13.874	0.700	82.416	1.00 16.36	H	C
	MOTA	1886	C MET H	34	13.439	0.188	83.758 84.086	1.00 15.55 1.00 13.11	H H	O C
	ATOM	1887 1888	O MET H CB MET H	34 34	13.601 12.651	-0.987 0.697	81.474	1.00 15.11	H	ç
30	ATOM ATOM	1889	CG MET H	34	12.887	1.223	80.071	1.00 14.09	H	C
00	ATOM	1890	SD MET H	34	13.108	3.014	79.968	1.00 20.48	H	S
	MOTA	1891	CE MET H	34	11.533	3.688 1.053	80.662 84.546	1.00 7.18 1.00 16.91	H H	C N
	MOTA	1892 1893	N SER H CA SER H	35 35	12.790 12.374	0.616	85.875	1.00 19.04	H	ĉ
35	ATOM ATOM	1894	C SER H	35	11.092	1.306	86.348	1.00 18.31	H	C
00	ATOM	1895	O SER H	35	10.620	2.251	85.722	1.00 24.04	H	0
	MOTA	1896	CB SER H	35	13.451	0.992	86.951 86.723	1.00 14.30 1.00 22.00	H H	C
	MOTA	1897 1898	OG SER H N TRP H	35 36	14.755 10.567	0.386 0.771	87.440	1.00 12.01	H	Ň
40	MOTA MOTA	1899	CA TRP H	36	9.448	1.383	88.154	1.00 12.95	H	C
40	ATOM	1900	C TRP H	36	9.970	1.598	89.590	1.00 18.28	H	C C
	ATOM	1901	O TRP H	36	10.611 8.232	0.709 0.467	90.210 88.231	1.00 16.01 1.00 14.71	H H	G
	MOTA MOTA	1902 1903	CB TRP H	36 36	7.503	0.323	86.885	1.00 21.41	H	C
45	ATOM	1904	CD1 TRP H	36	7.705	~0.669	85.937	1.00 9.67	H	C
	MOTA	1905	CD2 TRP H		6.505	1.203	86.345	1.00 18.07 1.00 23.74	H H	C N
	MOTA	1906		36 36	6.897 6.144	-0.430 0.698	84.856 85.078	1.00 23.74	H	Ç
	MOTA MOTA	1907 1908	CE2 TRP H CE3 TRP H		5.874	2.365	86.817	1.00 4.98	H	C
50	ATOM	1909	CZ2 TRP H		5.177	1.314	84.267	1.00 16.74	H	C
	MOTA	1910	CZ3 TRP H		4.929	2.981 2.456	86.022 84.745	1.00 19.83 1.00 18.46	H H	C
	MOTA	1911 1912	CH2 TRP H N VAL H		4.582 9.660	2.430	90.138	1.00 19.29	H	N
	MOTA MOTA	1913	CA VAL H		10.093	3.115	91.481	1.00 19.64	H	C
55	MOTA	1914		37	8.845	3.770	92.101	1.00 19.14	H	C
	ATOM	1915			8.269	4.629 4.180	91.495 91.436	1.00 19.32 1.00 20.61	H H	0
	ATOM	1916 1917			11.249 11.648	4.586	92.880	1.00 17.50	H	Č
	ATOM ATOM	1918			12.488	3.563	90.693	1.00 17.13	H	C
60	ATOM	1919	N ARG H	38	8.492	3.378	93.319	1.00 16.77	H	N
	MOTA	1920			7.287 7.630	3.953 4.775	93.923 95.146	1.00 15.98 1.00 18.04	H H	C
	MOTA	1921 1922			8.684	4.773		1.00 16.62	H	Ο.
	ATOM ATOM	1923			6.282	2.840	94.307	1.00 16.85	H	С
65	ATOM	1924	CG ARG H	38	6.772	1.938		1.00 8.21	H H	C C
	MOTA	1925			5.789 6.272	0.730 -0.154		1.00 11.19 1.00 14.89	H	И
	MOTA MOTA	1926 1927			5.688	-1.319		1.00 22.76	H	C
	MOTA	1928			4.620	-1.693		1.00 24.06	H	N

	ATOM	1929	NH2 ARG H	38	6.132	-2.078 97.948	1.00 23.16	Н	N
	MOTA	1930 1931	N GLN H CA GLN H	39 39	6.722 6.952	5.687 95.494 6.530 96.674	1.00 18.48 1.00 22.51	H H	N C
	ATOM ATOM	1932	CA GLN H	39	5.681	6.398 97.560	1.00 26.22	H	č
5	ATOM	1933	O GLN H	39	4.589	6.703 97.106	1.00 29.41	H	0
	MOTA	1934 1935	CB GLN H CG GLN H	39 39	7.135 7.516	7.993 96.242 8.855 97.445	1.00 20.08 1.00 14.71	H H	C
	ATOM ATOM	1936	CG GLN H CD GLN H	39	8.012	10.206 97.003	1.00 17.69	H	Č
	ATOM	1937	OE1 GLN H	39	7.450	10.799 96.080	1.00 22.74	H	0
10	ATOM	1938	NE2 GLN H	39	9.069	10.709 97.657 5.960 98.790	1.00 18.94 1.00 25.08	H H	N
	ATOM ATOM	1939 1940	N THR H CA THR H	40 40	5.873 4.759	5.695 99.685	1.00 25.08	H	C
	MOTA	1941	C THR H	40	4.186	6.999 100.217	1.00 33.51	H	C
	MOTA	1942	O THR H	40	4.780	8.083 100.063	1.00 32.02	H	0
15	ATOM ATOM	1943 1944	CB THR H OG1 THR H	40 40	5.216 6.209	4.895 100.892 5.658 101.561	1.00 31.26 1.00 31.13	H H	C O
	ATOM	1945	CG2 THR H	40	5.773	3.512 100.514	1.00 25.76	H	č
	MOTA	1946	N PRO H	41	3.022	6.913 100.873	1.00 36.66	H	N
00	ATOM	1947	CA PRO H	41 41	2.477 3.443	8.172 101.383 8.778 102.402	1.00 36.86 1.00 34.19	H H	C
20	ATOM ATOM	1948 1949	C PRO H O PRO H	41	3.458	9.974 102.614	1.00 34.19	H	Õ
	ATOM	1950	CB PRO H	41	1.129	7.754 101.986	1.00 37.38	H	C
	ATOM	1951	CG PRO H	41	0.734	6.506 101.085 5.790 101.047	1.00 40.44 1.00 34.79	H H	C C
25	MOTA MOTA	1952 1953	CD PRO H N GLU H	41 42	2.088 4.267	7.959 103.020	1.00 34.79	H	И
20	ATOM	1954	CA GLU H	42	5.212	8.508 103.978	1.00 31.61	H	С
	MOTA	1955	C GLU H	42	6.439	9.112 103.280	1.00 30.07	H H	C
	MOTA MOTA	1956 1957	O GLU H CB GLU H	42 42	7.333 5.637	9.576 103.954 7.449 104.982	1.00 28.54 1.00 35.54	H H	C O
30	ATOM	1958	CG GLU H	42	4.441	6.687 105.587	1.00 46.36	Н	С
	MOTA	1959	CD GLU H	42	3.822	5.712 104.591	1.00 59.41	н	C
	ATOM	1960 1961	OE1 GLU H OE2 GLU H	42 42	$\frac{4.424}{2.748}$	4.635 104.358 6.039 104.027	1.00 59.82 1.00 63.05	H H	0
	ATOM ATOM	1962	N LYS H	43	6.428	9.133 101.944	1.00 25.52	H	N
35	MOTA	1963	CA LYS H	43	7.505	9.712 101.126	1.00 24.37	H	C
	ATOM	1964	C LYS H	43 43	8.755 9.754	8.881 100.935 9.391 100.407	1.00 24.96 1.00 22.88	H H	C C
	ATOM ATOM	1965 1966	O LYS H CB LYS H	43	7.938	11.087 101.655	1.00 27.09	H	č
	MOTA	1967	CG LYS H	43	7.326	12.215 100.938	1.00 34.74	H	C
40	MOTA	1968	CD LYS H	43	5.872	12.299 101.209	1.00 51.35 1.00 51.99	H H	C C
	MOTA MOTA	1969 1970	CE LYS H NZ LYS H	43 43	5.123 3.689	12.594 99.921 12.833 100.223	1.00 51.99 1.00 50.46	H	N
	MOTA	1971	N ARG H	44	8.717	7.612 101.318	1.00 25.07	H	N
	MOTA	1972	CA ARG H	44	9.917	6.778 101.151	1.00 27.51	H	C C
45	ATOM ATOM	1973 1974	C ARG H O ARG H	44 44	9.887 8.816	6.273 99.709 5.960 99.168	1.00 27.18 1.00 23.86	H H	0
	ATOM	1975	CB ARG H	44	9.897	5.561 102.080	1.00 30.75	H	Č
	ATOM	1976	CG ARG H	44	9.672	5.841 103.567	1.00 44.30	H	C
50	MOTA	1977 1978	CD ARG H NE ARG H	44 44	10.839 12.097	6.497 104.317 5.755 104.254	1.00 61.82 1.00 70.52	H H	C N
50	ATOM ATOM	1979	CZ ARG H	44	13.093	5.869 105.139	1.00 63.42	H	C
	MOTA	1980	NH1 ARG H	44	12.985	6.684 106.193	1.00 51.27	H	N
	MOTA	1981	NH2 ARG H	44	14.233 11.057	5.217 104.925 6.234 99.095	1.00 41.30 1.00 21.99	H H	N N
55	MOTA MOTA	1982 1983	N LEU H	45 45	11.181	5.768 97.723	1.00 23.75	H	C
	MOTA	1984	C LEU H	45	11.637	4.287 97.779	1.00 22.20	H	C
	ATOM	1985	O LEU H	45	12.519	3.933 98.550	1.00 21.33 1.00 20.46	H H	С О
	MOTA MOTA	1986 1987	CB LEU H CG LEU H	45 45	12.238 11.743	6.607 96.978 8.037 96.592	1.00 26.46	Ħ	C
60	MOTA	1988	CD1 LEU H	45	12.981	8.967 96.324	1.00 19.17	H	C
	MOTA	1989	CD2 LEU H	45	10.849	8.021 95.337	1.00 7.95	H	C
	ATOM ATOM	1990 1991	N GLUH CA GLUH	46 46	11.037 11.398	3.465 96.940 2.041 96.915	1.00 21.98 1.00 26.58	H H	С
	ATOM	1992	C GLU H	46	11.450	1.571 95.478	1.00 21.11	H	č
65	MOTA	1993	O GLU H	46	10.467	1.731 94.751	1.00 22.21	H	0
	ATOM	1994	CB GLU H	46 46	10.311 10.123	1.189 97.635 1.593 99.117	1.00 28.65 1.00 49.98	H H	C C
	ATOM ATOM	1995 1996	CD GLU H	46 46	8.955	0.846 99.817	1.00 49.98	H	C
	ATOM	1997	OE1 GLU H	46	8.157	0.180 99.090	1.00 54.94	H	0
					142				

	ATOM	1998	OE2	GLU H	46	8.861		101.080	1.00 76.63	H	
•	MOTA ATOM	1999 2000	N CA	TRP H	47 47	12.586 12.708	$1.015 \\ 0.485$	95.071 93.728	1.00 16.27 1.00 17.07	H	
	ATOM	2001	C	TRP H	47	11.769	-0.762	93.679	1.00 15.27	H	C C
5	ATOM ATOM	2002 2003	O CB	TRP H	47 47	11.792 14.181	-1.584 0.092	94.592 93.501	1.00 18.79 1.00 19.17	H	
	MOTA	2003	CG	TRP H	47	14.181	-0.878	92.324	1.00 19.17	H	
	MOTA	2005		TRP H	47	14.232	-0.609	90.978	1.00 8.71	H	C C
10	MOTA MOTA	2006 2007	CD2 NE1	TRP H	47 47	14.708 14.425	-2.240 -1.758	92.432 90.246	1.00 15.94 1.00 15.37	H H	
10	ATOM	2007	CE2	TRP H	47	14.728	-2.771	91.121	1.00 13.37	H	
	MOTA	2009	CE3	TRP H	47	14.987	-3.087	93.520	1.00 19.49	H	C C
	MOTA MOTA	2010 2011	CZ2 CZ3	TRP H TRP H	47 47	15.021 15.280	-4.120 -4.440	90.864 93.257	1.00 17.65 1.00 11.79	H	
15	ATOM	2012	CH2	TRP H	47	15.293	-4.929	91.945	1.00 16.64	H	
	MOTA	2013	N	VAL H	48	10.976	-0.857	92.613	1.00 16.40	H	I N
	MOTA MOTA	2014 2015	CA C	VAL H VAL H	48 48	9.980 10.328	-1.935 -2.961	92.400 91.316	1.00 20.27 1.00 17.27	H	
	MOTA	2016	ŏ	VAL H	48	9.966	-4.116	91.442	1.00 17.49	H	
20	MOTA	2017	CB	VAL H	48	8.602	-1.279	92.038	1.00 21.34	H	C C
	MOTA MOTA	2018 2019		VAL H VAL H	48 48	7.611 8.052	-2.301 -0.607	91.498 93.274	1.00 24.15 1.00 24.24	H H	_
	MOTA	2020	N	ALA H	49	11.034	-2.548	90.263	1.00 16.96	H	
05	ATOM	2021	CA	ALA H	49	11.346	-3.493	89.194	1.00 17.77	H	
25	MOTA MOTA	2022 2023	C O	ALA H ALA H	49 49	12.206 12.109	-2.877 -1.657	88.154 87.912	1.00 19.92 1.00 24.74	H H	
	MOTA	2024	CB	ALA H	49	10.021	-3.962	88.495	1.00 16.94	H	r C
	ATOM ATOM	2025 2026	N CA	SER H SER H	50 50	12.980 13.807	-3.721 -3.266	87.465 86.363	1.00 21.88 1.00 21.57	H H	
30	MOTA	2027	C	SER H	50	13.754	-4.316	85.265	1.00 21.78	H	
	ATOM	2028	0	SER H	50	13.545	-5.502	85.563	1.00 23.60	H	0
	MOTA MOTA	2029 2030	CB OG	SER H SER H	50 50	15.272 15.460	-3.137 -2.078	86.774 87.683	1.00 21.45 1.00 21.58	H H	
	MOTA	2031	N	ILE H	51	13.900	-3.849	84.036	1.00 20.05	H	
35	MOTA	2032	CA	ILE H	51	14.003	~4.754	82.858	1.00 17.96	H	
	MOTA MOTA	2033 2034	C O	ILE H	51 51	15.172 15.269	-4.273 -3.087	81.999 81.682	1.00 17.53 1.00 19.16	H H	_
	ATOM	2035	СВ	ILE H	51	12.679	-4.795	82.058	1.00 17.66	H	t C
40	ATOM ATOM	2036 2037	CG1 CG2		51 51	12.796 12.325	~5.869 ~3.407	80.958 81.427	1.00 23.68 1.00 8.10	H H	
40	ATOM	2038	CD1		51	11.433	-6.214	80.376	1.00 15.41	H	
	ATOM	2039	N	SER H	52	16.100	-5.176	81.625	1.00 14.90	H	
	ATOM ATOM	2040 2041	CA C	SER H SER H	52 52	17.264 16.899	-4.790 -4.630	80.816 79.352	1.00 15.78 1.00 16.46	H	_
45	MOTA	2042	ō	SER H	52	15.815	-5.022	78.940	1.00 22.00	H	
	ATOM ATOM	2043 2044	CB OG	SER H	52 52	18.384 17.962	-5.853 -7.063	80.913	1.00 15.21	H	
	ATOM	2045	N	SER H SER H	53	17.786	-4.068	80.253 78.558	1.00 20.35 1.00 18.03	H	
	ATOM	2046	CA	SER H	53	17.515	~3.925	77.129	1.00 20.13	H	T C
50	ATOM ATOM	2047 2048	С О	SER H SER H	53 53	17.441 16.774	-5.342 -5.539	76.528 75.518	1.00 22.74 1.00 26.71	H H	
	MOTA	2049	CB	SER H	53	18.645	-3.160	76.445	1.00 20.15	H	
	ATOM	2050	OG	SER H	53	19.898	-3.829	76.632	1.00 16.33	H	
55	MOTA MOTA	2051 2052	N CA	GLY H	54 54	18.102 18.041	-6.314 -7.697	77.160 76.676	1.00 22.48 1.00 18.24	H H	
	MOTA	2053	C	GLY H	54	16.805	-8.441	77.176	1.00 22.94	H	
	ATOM	2054	O	GLY H	54	16.562	~9.593	76.800	1.00 22.69	H	
	MOTA ATOM	2055 2056	N CA	GLY H	55 55	16.017 14.806	-7.799 -8.434	78.044 78.547	1.00 20.19 1.00 15.12	H	
60	ATOM	2057	C	GLY H	55	14.880	-9.146	79.888	1.00 21.67	H	C C
	ATOM ATOM	2058 2059	N O	GLY H ASN H	55 56	13.904 16.014	-9.788 -9.067	80.282 80.586	1.00 25.28 1.00 21.16	H	
	MOTA	2060	CA	ASN H	56	16.144	-9.673	81.915	1.00 23.73	H	
05	ATOM	2061	C	ASN H	56	15.330	-8.806	82.892	1.00 23.78	H	C C
65	ATOM ATOM	2062 2063	O CB	ASN H ASN H	56 56	15.336 17.589	-7.577 -9.632	82.747 82.392	1.00 27.58 1.00 29.97	H H	
	ATOM	2064	CG	ASN H	56	18.530	-10.453	81.518	1.00 35.89	H	
	MOTA	2065		ASN H	56 56		-10.418	81.706	1.00 35.43	H	_
	ATOM	2066	NDZ	ASN H	56	11.9/3	-11.194	80.591	1.00 24.91	H	I N

	ATOM	2067	N	THR H	57	14.711	-9.435	83.889	1.00 19.38	н	N
	ATOM	2068	CA	THR H	57	13.896	-8.717	84.883	1.00 16.47	H	C
	ATOM	2069	С	THR H	57	14.475	-8.890	86.270	1.00 19.01	H	С
	MOTA	2070		THR H	57	15.104	-9.903	86.583	1.00 21.14	H	0
5	MOTA	2071	-	THR H	57	12.389	-9.200	84.886	1.00 17.39	H	C
	MOTA	2072		THR H	57	12.332	-10.589	85.205	1.00 25.30	H	0
	MOTA	2073		THR H	57	11.732	-8.970	83.551	1.00 16.69 1.00 20.35	H H	C N
	ATOM	2074	N	TYR H	58 50	14.232 14.754	~7.896 ~7.889	87.129 88.475	1.00 20.33	H	G 1/
40	ATOM	2075	CA	TYR H TYR H	58 58	13.674	-7.248	89.364	1.00 17.82	H	Č
10	ATOM ATOM	2076 2077	C	TYR H	58	13.013	-6.261	88.947	1.00 13.98	H	Ö
	ATOM	2078	CB	TYR H	58	16.014	-7.016	88.550	1.00 16.91	Н	Č
	ATOM	2079	CG	TYR H	58	17.033	-7.287	87.445	1.00 21.18	H	C
	ATOM	2080		TYR H	58	16.817	-6.817	86.147	1.00 20.25	H	C
15	ATOM	2081		TYR H	58	18.224	-7.945	87.722	1.00 24.53	H	C
	MOTA	2082		TYR H	58	17.759	-6.965	85.163	1.00 17.16	H	Ç
	ATOM	2083		TYR H	58	19.180	-8.128	86.727	1.00 32.42	H	C
	ATOM	2084	CZ	TYR H	58	18.932	-7.613	85.451 84.482	1.00 33.73 1.00 41.39	H H	O C
	ATOM	2085	OH	TYR H	58	19.898	-7.689 -7.798	90.562	1.00 41.39 1.00 17.63	H	N
20	ATOM	2086 2087	N CA	TYR H TYR H	59 59	13.553 12.533	-7.347	91.504	1.00 17.03	H	Ç
	MOTA MOTA	2088	CA	TYR H	59	12.996	-7.474	92.932	1.00 18.44	H	č
	ATOM	2089	ŏ	TYR H	59	13.779	-8.349	93.253	1.00 24.99	H	0
	ATOM	2090	СВ	TYR H	59	11.246	-8.248	91.436	1.00 20.01	H	C
25	MOTA	2091	CG	TYR H	59	10.633	-8.429	90.072	1.00 22.20	H	Č
	MOTA	2092	CD1	TYR H	59	10.936	-9.532	89.290	1.00 14.53	H	C
	ATOM	2093	CD2	TYR H	59	9.755	-7.477	89.562 88.033	1.00 22.20 1.00 14.82	H	C C
	MOTA	2094	CE1	TYR H	59 59	10.389 9.194	-9.687 -7.616	88.314	1.00 14.02	H	č
30	ATOM ATOM	2095 2096	CE2 CZ	TYR H TYR H	59 59	9.528	-8.736	87.549	1.00 25.21	H	č
30	ATOM	2097	OH	TYR H	59	8.996	-8.828	86.300	1.00 27.97	H	O
	MOTA	2098	N	PRO H	60	12.501	-6.605	93.836	1.00 17.68	Ħ	N
	ATOM	2099	CA	PRO H	60	12.912	-6.760	95.234	1.00 18.52	H	С
	MOTA	2100	С	PRO H	60	11.941	-7.853	95.838	1.00 23.43	H	C
35	MOTA	2101	0	PRO H	60	10.854	-8.097	95.286	1.00 21.98	H	0
	MOTA	2102	CB	PRO H	60	12.634	-5.379	95.835 95.085	1.00 19.08 1.00 17.15	H H	C C
	MOTA	2103	CG	PRO H	60 60	11.354 11.714	-4.978 -5.373	93.638	1.00 17.13	H	ç
	MOTA MOTA	2104 2105	CD N	PRO H ASP H	61	12.307	-8.462	96.962	1.00 22.56	H	Ŋ
40	ATOM	2105	CA	ASP H	61	11.431	-9.496	97.562	1.00 23.00	H	C
70	ATOM	2107	C	ASP H	61	10.045	-8.987	97.911	1.00 23.44	H	С
	ATOM	2108	0	ASP H	61	9.095	-9.743	97.919	1.00 26.44	H	0
	ATOM	2109	CB	ASP H	61	12.083		98.815	1.00 22.98	H	C
	MOTA	2110	CG	ASP H	61	13.287		98.504	1.00 27.24 1.00 27.26	H H	C
45	ATOM	2111		ASP H	61	14.042 13.482		99.439 97.327	1.00 27.26 1.00 28.00	п Н	ő
	MOTA	2112 2113	N N	ASP H SER H	61 62	9.912		98.170	1.00 27.64	H	Ň
	MOTA MOTA	$\frac{2113}{2114}$	CA	SER H	62	8.598		98.526	1.00 24.00	H	C
	ATOM	2115	C	SER H	62	7.551		97.437	1.00 22.42	H	С
50	MOTA	2116	Õ	SER H	62	6.345	-7.272	97.716	1.00 22.71	H	0
	MOTA	2117	CB	SER H	62	8.751		98.863	1.00 22.99	H	C
	ATOM	2118	OG	SER H	62	9.242		97.736	1.00 22.44	H	O
	MOTA	2119	N	VAL H	63	7.967		96.176 95.130	1.00 23.61 1.00 26.04	H H	C N
	MOTA	2120	CA	VAL H	63 63	6.968 7.147		94.193	1.00 20.04	H	C
55	ATOM ATOM	$\frac{2121}{2122}$	C O	VAL H VAL H	63	6.301		93.346	1.00 28.27	H	ŏ
	MOTA	2123	СВ	VAL H	63	6.819		94.214	1.00 25.05	H	С
	ATOM	2124		VAL H	63	6.701		95.086	1.00 19.86	H	С
	ATOM	2125		VAL H	63	7.978		93.224	1.00 22.12	H	C
60	MOTA	2126	N	LYS H	64	8.263		94.325	1.00 34.01	H	$\widetilde{\mathbf{N}}$
	MOTA	2127	CA	LYS H	64	8.553	-10.649	93.477	1.00 37.73	H	C
	ATOM	2128	C	LYS H	64		-11.666	93.629	1.00 36.21 1.00 40.72	H H	C O
	MOTA	2129	O	LYS H	6 <u>4</u> 6 <u>4</u>	0.985	-11.943 -11.288	94.732 93.897	1.00 40.72	H	C
65	MOTA	2130 2131	CB CG	LYS H LYS H	64 64	10 493	-12.165	92.823	1.00 49.69	H	C
00	MOTA MOTA	2132	CD	LYS H	64	11.595	-12.977	93.447	1.00 67.46	H	Č
	MOTA	2133	CE	LYS H	64	12.336	-13.781	92.388	1.00 84.78	H	С
	ATOM	2134	NZ	LYS H	64	12.931	15.014	93.018	1.00 92.94	H	N
	MOTA	2135	N	GLY H	65	6.967	-12.177	92.504	1.00 34.99	H	N

	- TIOM	2126	07 OT 37	11 6	55	5 07 <i>6</i>	-13.134	92,522	1.00 33.39	Н	ı c
	ATOM ATOM	2136 2137	CA GLY		55		-12.447	92.308	1.00 33.65	H	
	ATOM	2138	O GLY		55		-13.076	91.859	1.00 40.69	Н	
	ATOM	2139	N ARG		6	4.471	-11.147	92.609	1.00 29.54	H	
5	MOTA	2140	CA ARG	н 6	6	3.222	-10.420	92.455	1.00 23.99	Н	
	MOTA	2141	C ARG	_	6	3.205	-9.377	91.343	1.00 27.36	H	
	ATOM	2142	O ARG		6	2.144	-9.079 -9.740	90.802 93.767	1.00 26.62 1.00 24.49	H H	
	ATOM	2143	CB ARG		66 66	2.872 2.673	-10.671	94.956	1.00 24.49	H	
10	ATOM ATOM	$2144 \\ 2145$	CG ARG	_	56	2.156	-9.875	96.177	1.00 26.28	H	
10	ATOM	2145	NE ARG		56	3.013	-8.738	96.549	1.00 26.58	H	
	ATOM	2147	CZ ARG		56	2.590	-7.468	96.631	1.00 23.28	H	C C
	ATOM	2148	NH1 ARG		56	1.325	-7.156	96.356	1.00 20.50	H	
	MOTA	2149	NH2 ARG		56	3.429	-6.513	97.026	1.00 23.33	H	
15	ATOM	2150	N PHE		57	4.377	-8.805	91.041	1.00 28.25 1.00 28.94	H	
	ATOM	2151	CA PHE		57	4.527 5.356	-7.775 -8.293	90.002 88.845	1.00 28.94	H H	
	MOTA MOTA	2152 2153	C PHE		57 57	6.344	-8.982	89.047	1.00 28.35	H	
	ATOM	2154	CB PHE		57 57	5.291	-6.533	90.563	1.00 32.76	. Н	
20	MOTA	2155	CG PHE		57	4.496	-5.690	91.510	1.00 35.90	H	ı C
	MOTA	2156	CD1 PHE		57	3.336	-6.190	92.108	1.00 32.82	H	
	ATOM	2157	CD2 PHE		57	4.934	-4.407	91.843	1.00 27.67	H	
	MOTA	2158	CE1 PHE		57	2.620	-5.421	93.032 92.758	1.00 37.74 1.00 34.67	H.	
0.5	MOTA	2159	CE2 PHE		57 57	4.236 3.081	-3.644 -4.138	93.358	1.00 34.67	H	
25	MOTA MOTA	2160 2161	N THE		58	4.962	-7.937	87.637	1.00 28.82	F	
	MOTA	2162	CA THE		68	5.726	-8.301	86.457	1.00 29.24	H	ı C
	MOTA	2163	C THE	ιн 6	58	5.964	-7.073	85.574	1.00 28.81	F	
	MOTA	2164	O THE		68	5.009	-6.399	85.175	1.00 29.95	H	
30	ATOM	2165	CB THE		68	4.940	-9.382	85.611 86.463	1.00 31.63 1.00 28.51	F F	
	ATOM	2166 2167	OG1 THE		68 68	4.660 5.735	-10.484 -9.824	84.396	1.00 23.31	ŀ	
	ATOM ATOM	2168	N ILE		69	7.227	-6.779	85.268	1.00 24.66	F	
	MOTA	2169	CA ILE		69	7.546	-5.666	84.369	1.00 25.58	F	
35	MOTA	2170	C ILE		69	7.756	-6.235	82.965	1.00 27.22	H	
	MOTA	2171	O ILF		69	8.245		82.839	1.00 31.09		0 I
	MOTA	2172	CB ILI		69	8.852	-4.947	84.841	1.00 26.43	ŀ	
	MOTA	2173	CG1 ILE		69 69	9.127 10.060	-3.732 -5.907	83.959 84.829	1.00 18.67 1.00 28.93	F	H C
40	MOTA MOTA	2174 2175	CG2 ILE		69	10.299		84.578	1.00 22.12		i C
40	ATOM	2176	N SEI		70	7.369		81.924	1.00 24.59		H N
	ATOM	2177	CA SEI		70	7.542	-5.962	80.560	1.00 20.35		H C
	MOTA	2178	C SE		70	7.651		79.670	1.00 20.76		H C
	ATOM	2179	O SEI		70	7.380		80.110	1.00 22.20 1.00 18.01		H C
45	MOTA	2180 2181	CB SEI		70 70	6.326 5.148		80.156 80.171	1.00 18.01		H O
	MOTA MOTA	2181	OG SEI		70 71	8.080		78.430	1.00 21.74		H N
	ATOM	2183	CA ARC		71	8.197		77.546	1.00 22.80	F	H C
	MOTA	2184	C ARC		71	7.718	-4.155	76.155	1.00 25.05		H C
50	MOTA	2185			71	7.855		75.693	1.00 28.88		O E
	ATOM	2186	CB ARG		71	9.679		77.440	1.00 22.32 1.00 17.63		H C
	ATOM	2187			71 71	10.654 12.132		76.878 77.230	1.00 17.83		H C
	MOTA MOTA	2188 2189	_		71	12.522		76.577	1.00 26.63		H N
55	ATOM	2190			71	13.529		76.974	1.00 20.51		H C
•••	ATOM	2191	NH1 ARG		71	14.253	-2.413	78.030	1.00 13.73		H N
	MOTA	2192	NH2 AR	3 Н	71	13.792		76.324	1.00 17.61		H N
	MOTA	2193			72	7.190		75.464	1.00 24.41		H N
00	MOTA	2194			72 73	6.788		74.094 73.272	1.00 24.18 1.00 25.45		H C
60	MOTA MOTA	2195 2196			72 72	7.709 7.498		73.272	1.00 25.45		H O
	ATOM	2196			72	5.333		73.865	1.00 27.17		H Č
131	MOTA	2198			72	4.914	-3.198	72.416	1.00 30.78	1	H C
	MOTA	2199	OD1 AS	РН	72	5.759	-2.993	71.510	1.00 33.98		H O
65	MOTA	2200	OD2 AS		72	3.741		72.194	1.00 38.58		H O
	ATOM	2201			73	8.752		72.711 71.912	1.00 26.35 1.00 29.04		H C
	MOTA	2202 2203			73 73	9.720 9.235		70.569	1.00 29.04		H C
	MOTA MOTA	2204			73 73	9.895		69.945	1.00 28.40		H O

	ATOM	2205	CB	ASN H	73	10.958	-3.246	71.675	1.00 31.88		**	~
	ATOM	2206				11.812	-3.396				H	C
	ATOM	2207		1 ASN H					1.00 32.53		H	C
						11.632	-2.669	73.912	1.00 42.74		H	0
_	ATOM	2208		2 ASN H		12.759	-4.319	72.877	1.00 33,41		H	N
5	MOTA	2209	N	ALA H	74	8.076	-2.276	70.115	1.00 32.65		H	
	ATOM	2210	CA	ALA H	74	7.595	-1.739					N
	MOTA	2211	C	ALA H		6.852			1.00 32.57		H	C
	ATOM	2212					-0.422	69.164	1.00 33.69		H	C
			0	ALA H		6.922	0.547	68.421	1.00 31.16		H	0
	MOTA	2213	CB	ALA H	74	6.660	-2.771	68.187	1.00 29.62		H	Č
10	ATOM	2214	N	ARG H	75	6.189	-0.399	70.311	1.00 32.12			
	MOTA	2215	CA	ARG H		5.408	0.758				H	N
	MOTA	2216	C	ARG H				70.729	1.00 32.75		H	C
						6.097	1.695	71.737	1.00 29.96		H	C
	ATOM	2217	0	ARG H		5.565	2.771	72.030	1.00 28.48		H	Ō
	ATOM	2218	CB	ARG H	75	4.071	0.276	71.327	1.00 35.04		H	
15	ATOM	2219	CG	ARG H	75	3.111	-0.412	70.334				C
	MOTA	2220	CD	ARG H	75	1.825			1.00 40.61		H	C
	ATOM						-0.875	71.046	1.00 61.45		H	C
		2221	NE	ARG H	75	0.853	-1.612	70.224	1.00 68.33		H	N
	MOTA	2222	CZ	ARG H	75	1.029	-2.841	69.731	1.00 69.94		Н	Ċ
	ATOM	2223	NH:	L ARG H	75	2.157	-3.513	69.950	1.00 60.61			
20	ATOM	2224	MHO	ARG H	75	0.045	-3.419				H	N
	ATOM	2225	N					69.040	1.00 70.68		H	N
				ASN H	76	7.271	1.307	72.249	1.00 27.39		H	N
	ATOM	2226	CA	ASN H	76	7.995	2.149	73.236	1.00 22.45		H	С
	MOTA	2227	C	ASN H	76	7.114	2.344	74.461	1.00 24.26		H	Č
	ATOM	2228	0	ASN H	76	6.883	3.462	74.915	1.00 27.85			
25	ATOM	2229	CB	ASN H	76	8.347	3.546				H	0
	ATOM	2230						72.680	1.00 22.88		H	C
			CG	ASN H	76	9.606	3.558	71.780	1.00 30.19		H	С
	ATOM	2231		ASN H	76	10.162	4.622	71.501	1.00 45.69		H	0
	ATOM	2232	ND2	ASN H	76	10.045	2.411	71.354	1.00 27.13		H	N
	MOTA	2233	N	ILE H	77	6.624	1.251	75.001				
30	MOTA	2234	ĈA	ILE H	77				1.00 20.55		H	N
	ATOM					5.783	1.289	76.166	1.00 21.43		H	C
		2235	C	ILE H	77	6.347	0.293	77.178	1.00 26.35		H	С
	ATOM	2236	0	ILE H	77	6.750	-0.825	76.833	1.00 27.67		H	ō
	ATOM	2237	CB	ILE H	77	4.314	0.848	75.819	1.00 25.31			
	MOTA	2238	CG1		77	3.752	1.702				H	C
35	ATOM	2239	CG2					74.674	1.00 31.02		H	С
00					77	3.455	0.930	77.069	1.00 24.50		H	C
	MOTA	2240	CDI	. ILE H	77	2.332	1.304	74.167	1.00 18.41		H	С
	ATOM	2241	\mathbf{N}	LEU H	78	6.381	0.703	78.436	1.00 27.91		H	N
	MOTA	2242	CA	LEU H	78	6.874	-0.106	79.528				
	ATOM	2243	Č	LEU H	78				1.00 24.89		H	С
40	ATOM	2244				5.645	-0.396	80.365	1.00 24.76		H	C
40			0	LEU H	78	4.866	0.506	80.598	1.00 25.50		H	0
	MOTA	2245	CB	LEU H	78	7.851	0.727	80.405	1.00 24.49		H	C
	ATOM	2246	CG	LEU H	78	8.376	0.043	81.650	1.00 18.05		H	Č
	MOTA	2247	CD1	LEU H	78	9.449	-1.026	81.241	1.00 27.00			
	ATOM	2248		LEU H	78	9.068					H	С
45	ATOM	2249		TYR H			1.102	82.532	1.00 15.70		H	C
40			N		79	5.484	-1.630	80.833	1.00 26.11		H	N
	ATOM	2250	CA	TYR H	79	4.330	-1.997	81.662	1.00 25.62		H	C
	MOTA	2251	C	TYR H	79	4.720	-2.514	83.014	1.00 27.75		H	č
	ATOM	2252	0	TYR H	79	5.827	-3.036	83.193	1.00 29.83			
	ATOM	2253	CB	TYR H	79	3.525			1.00 29.83		H	0
50	ATOM	2254					-3.156	80.994	1.00 22.60		H	С
00			CG	TYR H	79	2.952	-2.791	79.652	1.00 27.08		H	С
	ATOM	2255		TYR H	79	3.565	-3.195	78.479	1.00 20.92		H	C
	MOTA	2256	CD2	TYR H	79	1.791	-2.020	79.556	1.00 24.64		H	Č
	ATOM	2257		TYR H	79	3.048	-2.848	77.247				~
	ATOM	2258	CES	TYR H	79				1.00 24.71		H	C
55	ATOM					1.277	-1.668	78.323	1.00 21.72		H	C
33		2259	CZ	TYR H	79	1.908	-2.084	77.173	1.00 24.82		H	С
	ATOM	2260	OH	TYR H	79	1.423	-1.711	75.935	1.00 21.43		H	ō
	ATOM	2261	N	LEU H	80	3.779	-2.429	83.964	1.00 25.48			
	ATOM	2262	CA	LEU H	80	3.947	-3.007	05.204			H	N
	MOTA	2263	C	LEU H				85.272	1.00 25.75		H	C
60					80	2.592	-3.669	85.596	1.00 27.57		H	С
00	ATOM	2264	0	LEU H	80	1.599	-2.983	85.835	1.00 34.28		H	0
	MOTA	2265	CB	LEU H	80	4.245	-1.992	86.409	1.00 25.22		H	Č
	ATOM	2266	CG	LEU H	80	4.468	-2.735	87.754	1.00 25.22			
	MOTA	2267		LEU H	80						H	С
						5.836	-3.504	87.721	1.00 18.29		H	C
e E	ATOM	2268		LEU H	80	4.552	-1.721	88.992	1.00 20.69		H	C
65	MOTA	2269	N	GLN H	81	2.550	-4.993	85.563	1.00 30.10		H	N
	MOTA	2270	CA	GLN H	81	1.318	-5.716	85.905	1.00 32.07		H	
	MOTA	2271	C	GLN H	81	1.409	-6.033	87.376				C
	MOTA	2272	ŏ	GLN H	81				1.00 30.52		H	C
	ATOM	2273				2.379	-6.674	87.832	1.00 30.77]	H	0
	TI OH	4413	CB	GLN H	81	1.224	-7.029	85.104	1.00 34.27]	H	С

	ATOM	2274	CG GLN H	81	0.084	-7.955	85.580	1.00 36.03	Н	С
	MOTA	2275	CD GLN H	81	-1.266	-7.341	85.316	1.00 40.10	H	C
	ATOM	2276	OE1 GLN H	81	-2.047	-7.096	86.248	1.00 35.51	H	0
-	ATOM	2277	NE2 GLN H	81	-1.543 0.428	-7.047 -5.573	84.053 88.153	1.00 29.75 1.00 29.32	H H	N N
5	MOTA MOTA	2278 2279	N MET H CA MET H	82 82	0.426		89.579	1.00 23.52	H	Č
	ATOM	2279	C MET H	82	-0.719		89.911	1.00 33.42	H	Č
	ATOM	2281	O MET H	82	-1.784		89.386	1.00 37.22	H	ō
	ATOM	2282	CB MET H	82	0.305	-4.526	90.380	1.00 32.57	H	С
10	ATOM	2283	CG MET H	82	1.424	-3.501	90.097	1.00 34.83	H	C
	MOTA	2284	SD MET H	82	1.236		91.036	1.00 41.35	H	S
	MOTA	2285	CE MET H	82	0.076		90.153	1.00 21.34	H	C
	MOTA	2286	N SER H	82A	-0.500		90.789	1.00 33.87	H	N
	ATOM	2287	CA SER H	82A	-1.553		91.161 92.664	1.00 32.69 1.00 30.35	H H	C
15	ATOM	2288 2289	C SER H O SER H	82A 82A	-1.455 -0.448		93.253	1.00 30.33	H	Ö
	MOTA MOTA	2290	CB SER H	82A	-1.309		90.445	1.00 30.90	H	č
	ATOM	2291	OG SER H	82A	-0.074		90.886	1.00 39.97	H	Ō
	ATOM	2292	N SER H	82B	-2.456		93.270	1.00 30.11	H	N
20	MOTA	2293	CA SER H	82B	-2.532		94.738	1.00 32.59	H	С
	MOTA	2294	C SER H	82B	-2.084		95.464	1.00 34.41	H	Ċ
	ATOM	2295	O SER H	82B	-1.256		96.386	1.00 34.38	H	0
	MOTA	2296	CB SER H	82B	-1.670		95.249 94.545	1.00 31.62 1.00 39.73	H H	C O
05	MOTA	2297	OG SER H	82B 82C	-1.941 -2.646		95.050	1.00 34.50	H	N
25	MOTA MOTA	2298 2299	N LEU H	82C	-2.300		95.687	1.00 34.52	H	Č
	ATOM	2300	C FER H	82C	-2.677		97.154	1.00 33.77	н	Ċ
	ATOM	2301	O LEU H	82C	-3.731		97.563	1.00 36.50	H	0
	ATOM	2302	CB LEU H	82C	-2.965	-4.745	94.923	1.00 31.33	H	С
30	ATOM	2303	CG LEU H	82C	-2.300		93.556	1.00 29.69	H	C
	MOTA	2304	CD1 LEU H	82C	-3.142		92.586	1.00 14.81	H	C
	ATOM	2305	CD2 LEU H	82C	-0.928			1.00 22.96 1.00 37.50	H H	C N
	ATOM	2306	N ARG H	83 83	-1.794 -1.967		97.953 99.404	1.00 37.30	п Н	C
35	MOTA MOTA	2307 2308	CA ARG H C ARG H	83	-2.044			1.00 37.20	H	č
35	MOTA	2309	O ARG H	83	-1.641			1.00 34.41	H	õ
	ATOM	2310	CB ARG H	83	-0.753		100.115	1.00 35.83	H	C
	MOTA	2311	CG ARG H	83	-0.474	-7.134	99.749	1.00 44.13	H	С
	MOTA	2312	CD ARG H	83	0.963		100.035	1.00 58.61	H	С
40	MOTA	2313	NE ARG H	83	1.255			1.00 65.92	H	N
	MOTA	2314	CZ ARG H	83	2.452			1.00 68.29 1.00 66.48	H H	N C
	MOTA	2315	NH1 ARG H NH2 ARG H	83 83	3.467 2.628		100.328	1.00 76.67	H	N
	ATOM ATOM	2316 2317	NH2 ARG H N SER H	84	-2.518		100.887	1.00 33.54	H	N
45	MOTA	2318	CA SER H	84	-2.634		101.209	1.00 31.43	H	C
-10	ATOM	2319	C SER H	84	-1.268		101.096	1.00 30.46	H	C
	ATOM	2320	O SER H	84	-1.188		100.617	1.00 27.90	H	0
	ATOM	2321	CB SER H	84	-3.223		102.606	1.00 32.69	H	C
	MOTA	2322	OG SER H	84	-2.303		103.617	1.00 45.64	H	O NT
50	ATOM	2323	N GLU H	85	-0.218 1.174		101.491	1.00 27.55 1.00 28.67	H H	C N
	ATOM ATOM	2324 2325	CA GLU H C GLU H	85 85	1.693		100.071	1.00 27.89	H	Č
	ATOM	2326	O GLU H	85	2.72			1.00 31.91	H	ŏ
	MOTA	2327	CB GLU H	85	2.15	3 -2.463	102.036	1.00 28.80	H	C
55	ATOM	2328	CG GLU H	85	1.71	-3.123	103.296	1.00 46.74	H	C
	MOTA	2329	CD GLU H	85	0.84	4 -4.321	103.003	1.00 56.38	Н	C
	MOTA	2330	OE1 GLU H	85	1.39		102.632	1.00 62.51	H	0
	MOTA	2331	OE2 GLU H	85	-0.38		103.105	1.00 56.24	H	0
00	ATOM	2332	N ASP H	86	1.03			1.00 25.29 1.00 25.71	H H	C N
60	MOTA	2333	CA ASP H	86 86	1.429			1.00 25.71	H	Ç
	ATOM ATOM	2334 2335	C ASP H O ASP H	86 86	1.07		96.147	1.00 25.68	H	ŏ
	ATOM	2336	CB ASP H	86	0.90			1.00 26.58	H	Č
	MOTA	2337	CG ASP H	86	1.41		96.877	1.00 32.52	H	C
65	MOTA	2338	OD1 ASP H	86	0.58	6 -4.562	96.763	1.00 30.42	H	0
	MOTA	2339	OD2 ASP H	86	2.62			1.00 29.99	H	0
	MOTA	2340	N THR H	87	0.07			1.00 23.93	H	N
	MOTA	2341	CA THR H	87 87	-0.53			1.00 23.44 1.00 22.23	H H	C C
	ATOM	2342	C THR H	87	0.66	1 3.163	0 91.090	1.00 44.43	п	C

	MOTA	2343	0	THR H	87	1.447	3.314	98.591	1.00 21.36	H	0 1
	ATOM	2344	CB	THR H	87	-1.458	2.654	98.956	1.00 26.73	H	
	ATOM	2345	OG1		87	-2.623	1.808	98.992	1.00 26.03		-
	ATOM	2346	CG2		87	-1.881				H	
5	MOTA						4.145	98.709	1.00 28.47	H	
3		2347	N	ALA H	88	0.722	3.845	96.568	1.00 19.07	H	I N
	ATOM	2348	ca	ALA H	88.	1.889	4.717	96.354	1.00 17.45	H	
	MOTA	2349	C	ALA H	88	1.815	5.404	95.052	1.00 21.75	H	
	ATOM	2350	0	ALA H	88	0.972	5.103	94.182	1.00 21.21	H	
	ATOM	2351	ČВ	ALA H	88	3.162					
10							3.843	96.361	1.00 14.94	H	C
10	ATOM	2352	N	MET H	89	2.746	6.358	94.868	1.00 22.41	H	I N
	ATOM	2353	$^{\rm CA}$	MET H	89	2.827	7.001	93.570	1.00 24.72	н	
	ATOM	2354	С	MET H	89	3.794	6.092	92.835	1.00 22.60	н	
	ATOM	2355	Ō	MET H	89	4.839	5.790	93.399	1.00 26.75		
	MOTA	2356	ČВ	MET H	89					H	
4 ==						3.516	8.378	93.679	1.00 24.18	H	
15	ATOM	2357	CG	MET H	89	3.623	9.117	92.352	1.00 24.57	H	C
	MOTA	2358	SD	MET H	89	2.092	9.565	91.500	1.00 31.14	H	
	ATOM	2359	$^{\rm CE}$	MET H	89	1.586	10.985	92.556	1.00 17.32	H	
	MOTA	2360	N	TYR H	90	3.478	5.699	91.598	1.00 19.66		
	MOTA	2361	ĈA	TYR H	90					H	
20						4.390	4.838	90.830	1.00 18.76	H	
20	ATOM	2362	C	TYR H	90	5.026	5.618	89.717	1.00 19.48	H	C
	ATOM	2363	0	TYR H	90	4.343	6.131	88.836	1.00 18.22	Н	
	ATOM	2364	CB	TYR H	90	3.643	3.600	90.214	1.00 16.54	Н	
	MOTA	2365	CG	TYR H	90	3.375	2.566	91.286	1.00 14.14	H	
	ATOM	2366		TYR H	90	4.172					
25							1.427	91.392	1.00 9.33	H	
25	MOTA	2367		TYR H	90	2.376	2.772	92.251	1.00 22.63	H	С
	ATOM	2368	CE1		90	3.988	0.522	92.425	1.00 15.98	H	C
	MOTA	2369	CE2	TYR H	90	2.197	1.887	93.285	1.00 13.30	Н	
	ATOM	2370	CZ	TYR H	90	3.009	0.760	93.361	1.00 24.24	H	
	ATOM	2371	OH	TYR H	90	2.835	-0.114	94.384			
30	MOTA								1.00 21.02	H	
30		2372	N	TYR H	91	6.368	5.669	89.721	1.00 20.31	H	N
	ATOM	2373	CA	TYR H	91	7.094	6.384	88.651	1.00 17.12	H	С
	MOTA	2374	С	TYR H	91	7.769	5.400	87.681	1.00 19.92	Н	
	ATOM	2375	0	TYR H	91	8.393	4.441	88.121	1.00 18.18		
	ATOM	2376	ČВ	TYR H						H	
05					91	8.251	7.216	89.226	1.00 15.44	H	
35	ATOM	2377	CG	TYR H	91	7.793	8.338	90.138	1.00 17.08	H	С
	MOTA	2378	CD1	TYR H	91	7.818	8.208	91.507	1.00 9.66	H	
	ATOM	2379	CD2	TYR H	91	7.339	9.525	89.589	1.00 15.29	H	_
	ATOM	2380	CE1		91	7.408	9.260	92.338	1.00 16.34		č
	MOTA	2381	CE2							H	
40					91	6.901	10.577	90.398	1.00 15.56	H	С
40	ATOM	2382	CZ	TYR H	91	6.944	10.446	91.755	1.00 21.42	H	С
	MOTA	2383	OH	TYR H	91	6.544	11.517	92.547	1.00 8.81	H	
	ATOM	2384	N	CYS H	92	7.650	5.733	86.397	1.00 21.55	H	
	MOTA	2385	CA	CYS H	92	8.311	5.065	85.278	1.00 21.33		
	ATOM	2386								H	
45			C	CYS H	92	9.709	5.751	85.270	1.00 20.94	H	
45	MOTA	2387	0	CYS H	92	9.771	6.959	85.435	1.00 20.43	H	0
	MOTA	2388	CB	CYS H	92	7.602	5.498	83.987	1.00 18.81	H	
	MOTA	2389	SG	CYS H	92	8.429	4.801	82.569	1.00 32.60	H	
	MOTA	2390	N	ALA H	93	10.805	5.022	85.095	1.00 18.52		
	ATOM	2391	CA	ALA H						H	N
EO					93	12.107	5.684	85.085	1.00 15.79	H	C
50	ATOM	2392	C	ALA H	93	13.066	5.019	84.068	1.00 15.40	H	C
	ATOM	2393	0	ALA H	93	13.031	3.780	83.898	1.00 20.16	H	
	MOTA	2394	CB	ALA H	93	12.737	5.604	86.462	1.00 16.78	H	č
	ATOM	2395	N	ARG H	94	13.898	5.821	83.402			
	ATOM	2396	CA						1.00 15.89	H	N
EE				ARG H	94	14.873	5.224	82.480	1.00 17.43	H	С
55	ATOM	2397	C	ARG H	94	16.031	4.849	83.374	1.00 17.10	H	C
	MOTA	2398	0	ARG H	94	16.607	5.705	84.058	1.00 16.11	H	0
	MOTA	2399	CB	ARG H	94	15.325	6.211	81.417	1.00 13.45	H	č
	ATOM	2400	CG	ARG H	94	16.050	5.523	00 330			Č
								80.238	1.00 15.86	H	C
00	ATOM	2401	CD	ARG H	94	16.477	6.566	79.242	1.00 13.79	H	C
60	ATOM	2402	NE	ARG H	94	17.730	7.229	79.580	1.00 17.29	H	N
	ATOM	2403	CZ	ARG H	94	18.301	8.146	78.818	1.00 20.35	H	Ċ
	ATOM	2404		ARG H	94	17.705	8.549	77.664	1.00 13.04		
	ATOM	2405		ARG H	94					H	N
						19.520	8.602	79.142	1.00 15.82	H	N
05	ATOM	2406	N	LEU H	95	16.397	3.565	83.350	1.00 19.09	H	N
65	MOTA	2407	CA	LEU H	95	17.469	3.079	84.217	1.00 17.64	H	C
	ATOM	2408	C	LEU H	95	18.737	3.085	83.375	1.00 19.46	H	Č
	A'TOM	2409	0	LEU H	95	18.912	2.219	82.515	1.00 20.81	H	
	MOTA	2410	СВ	LEU H	95	17.117					0
							1.676	84.700	1.00 16.97	H	C
	ATOM	2411	CG	LEU H	95	18.301	1.013	85.430	1.00 19.81	H	C

	ATOM	2412	CD1 LEU H	951	18.891	2.007	86.390	1.00 26.56	H	C
	MOTA	2413	CD2 LEU H	95	17.837	-0.192	86.136	1.00 17.57	H	C
	MOTA	2414	N ASP H	96	19.597	4.078	83.580	1.00 18.64	H	N
	ATOM	2415	CA ASP H	96	20.811	4.187	82.758	1.00 18.97	H	С
5	MOTA	2416	C ASP H	96	21.900	3.220	83.242	1.00 18.94	H	С
•	ATOM	2417	O ASP H	96	22.915	3.065	82.569	1.00 14.63	H	0
	ATOM	2418	CB ASP H	96	21.338	5.617	82.723	1.00 20.09	Н	Č
	ATOM	2419	CG ASP H	96	20.502	6.519	81.755	1.00 19.58	H	č
	MOTA	2420	OD1 ASP H	96	19.319	6.184	81.578	1.00 26.69	H	Õ
40					21.002	7.513	81.224	1.00 20.03	H	ŏ
10	ATOM	2421	OD2 ASP H	96	21.663	2.627	84.402	1.00 15.66	H	И
	MOTA	2422	N GLY H	97						
	ATOM	2423	CA GLY H	97	22.574	1.601	84.922	1.00 16.17	H	C
	MOTA	2424	C GLY H	97	23.126	1.821	86.310	1.00 16.48	H	C
	MOTA	2425	O GLY H	97	23.064	2.935	86.841	1.00 14.75	H	0
15	ATOM	2426	N TYR H	98	23.737	0.782	86.887	1.00 12.61	H	N
	MOTA	2427	CA TYR H	98	24.259	0.958	88.226	1.00 13.48	H	C
	MOTA	2428	C TYR H	98	25.374	2.029	88.271	1.00 14.66	H	C
	MOTA	2429	O TYR H	98	25.598	2.639	89.299	1.00 15.42	Н	0
	ATOM	2430	CB TYR H	98	24.709	-0.385	88.870	1.00 15.11	H	C
20	MOTA	2431	CG TYR H	98	25.762	-1.194	88.104	1.00 12.19	H	C
	MOTA	2432	CD1 TYR H	98	27.123	-1.116	88.450	1.00 18.17	H	С
	ATOM	2433	CD2 TYR H	98	25.384	-2.089	87.124	1.00 12.48	н	С
	ATOM	2434	CE1 TYR H	98	28.089	-1.955	87.822	1.00 18.60	н	C
	ATOM	2435	CE2 TYR H	98	26.330	-2.917	86.489	1.00 8.78	H	Č
25	MOTA	2436	CZ TYR H	98	27.651	-2.853	86.838	1.00 9.46	H	č
25		2437	OH TYR H	98	28.553	-3.723	86.277	1.00 13.71	H	ŏ
	MOTA			99	26.025	2.308	87.154	1.00 10.25	H	Ŋ
	MOTA	2438			27.038	3.382	87.160	1.00 10.23	H	Ç
	ATOM	2439	CA TYR H	99			86.874	1.00 11.42	н	č
	ATOM	2440	C TYR H	99	26.476	4.782				
30	ATOM	2441	O TYR H	99	27.213	5.755	86.930	1.00 11.93	H	0
	MOTA	2442	CB TYR H	99	28.127	3.102	86.073	1.00 9.58	H	C
	MOTA	2443	CG TYR H	99	29.112	2.030	86.522	1.00 11.24	H	Č
	ATOM	2444	CD1 TYR H	99	29.940	2.265	87.613	1.00 16.63	H	C
	MOTA	2445	CD2 TYR H	99	29.206	0.785	85.850	1.00 15.72	H	C
35	MOTA	2446	CE1 TYR H	99	30.872	1.295	88.063	1.00 17.96	H	C
	ATOM	2447	CE2 TYR H	99	30.145	-0.222	86.275	1.00 20.42	H	C
	ATOM	2448	CZ TYR H	99	30.951	0.069	87.386	1.00 16.74	H	C
	MOTA	2449	OH TYR H	99	31.813	-0.917	87.795	1.00 14.93	H	0
	MOTA	2450	N PHE H	100	25.185	4.855	86.518	1.00 14.05	H	N
40	ATOM	2451	CA PHE H		24.563	6.095	86.063	1.00 12.94	H	C
	MOTA	2452	C PHE H		23.283	6.544	86.789	1.00 15.00	H	C
	ATOM	2453	O PHE H		22.930	7.725	86.705	1.00 16.90	н	0
	ATOM	2454	CB PHE H		24.268	5.977	84.529	1.00 13.53	Н	C
	ATOM	2455	CG PHE H		25.550	5.835	83.677	1.00 12.84	H	Č
45	MOTA	2456	CD1 PHE H		25.918	4.597	83.136	1.00 12.65	н	Ċ
40	MOTA	2457	CD2 PHE H		26.353	6.921	83.426	1.00 15.24	н	č
	ATOM	2458	CE1 PHE H		27.068	4.469	82.358	1.00 12.14	Ĥ	č
					27.515	6.797	82.639	1.00 14.00	H	č
	MOTA	2459	CE2 PHE H		27.862	5.563	82.110	1.00 12.32	H	č
FO	MOTA	2460				5.615	87.466	1.00 13.85	H	N
50	MOTA	2461	N GLY H		22.604					
	ATOM	2462	CA GLY H		21.381	5.986	88.197	1.00 12.56	H	C
	MOTA	2463	C GLY H		20.108	6.047	87.364	1.00 13.56	H	C
	MOTA	2464	O GLY H		20.105	5.714	86.192	1.00 16.72	H	0
	MOTA	2465	N PHE H		19.013	6.516	87.980	1.00 14.22	H	N
55	ATOM	2466	CA PHE H		17.722	6.639	87.266	1.00 16.09	H	C
	MOTA	2467	C PHE H	100B	17.797	8.041	86.665	1.00 19.51	H	C
	MOTA	2468	O PHE H	100B	17.537	9.028	87.347	1.00 18.58	H	0
	MOTA	2469	CB PHE H	100B	16.579	6.550	88.321	1.00 15.67	H	C
	MOTA	2470	CG PHE H		16.435	5.181	88.952	1.00 17.58	H	С
60	MOTA	2471	CD1 PHE H	100B	16.614	5.011	90.323	1.00 12.85	H	С
	ATOM	2472	CD2 PHE H	100B	16.074	4.069	88.177	1.00 13.17	H	С
	ATOM	2473	CE1 PHE H		16.444	3.764	90.923	1.00 13.91	Н	Ċ
	ATOM	2474	CE2 PHE H		15.903	2.799	88.792	1.00 12.44	H	Č
	ATOM	2475	CZ PHE H		16.083	2.656	90.155	1.00 9.26	H	č
65	ATOM	2475	N ALA H		18.098	8.123	85.364	1.00 20.24	H	Ŋ
U.J			CA ALA H		18.375	9.418	84.778	1.00 20.24	H	Ĉ
	ATOM	2477			17.175	10.278	84.391	1.00 17.03	H	Č
	MOTA	2478	C ALA H		17.295	11.489	84.348	1.00 17.03	H	Ö
	MOTA	2479	O ALA H	101 101					H	č
	MOTA	2480	CB ALA H	TOT	19.295	9.264	83.594	1.00 13.65	п	C

	ATOM	2481	И	TYR H	102	16.043	9.647	84.130	1.00 18.14	Н	i N
	ATOM	2482	ĈA	TYR H		14.816	10.361	83.745	1.00 17.04	Н	I C
	ATOM	2483	C	TYR H	102	13.645	9.693	84.420	1.00 17.35	H	
	ATOM	2484	0	TYR H		13.572	8.471	84.472	1.00 14.92	H	
5	ATOM	2485	CB	TYR H		14.593	10.296	82.235	1.00 17.95	H	
	ATOM	2486	CG	TYR H		15.585	11.140	81.523 81.028	1.00 20.25 1.00 20.01	H H	
	MOTA	2487 2488	CD1 CD2			16.757 15.402	10.591 12.513	81.456	1.00 20.01	H	
	ATOM ATOM	2489	CE1	TYR H		17.747	11.421	80.471	1.00 16.24	H	
10	MOTA	2490	CE2	TYR H		16.372	13.343	80.911	1.00 15.52	H	
	ATOM	2491	CZ	TYR H		17.537	12.782	80.419	1.00 17.92	H	
	MOTA	2492	OH	TYR H	102	18.475	13.602	79.832	1.00 32.99	H	
	MOTA	2493	N	TRP H		12.728	10.512	84.921	1.00 17.03	H	
	MOTA	2494	CA	TRP H		11.564	10.003	85.632	1.00 17.00	H	
15	ATOM	2495	C	TRP H		10.299	10.565	85.009 84.472	1.00 15.31 1.00 18.72	H H	
	ATOM ATOM	2496 2497	O CB	TRP H		10.306 11.595	11.676 10.459	87.110	1.00 18.72	H	
	ATOM	2498	CG	TRP H		12.760	9.947	87.947	1.00 22.42	H	
	ATOM	2499		TRP H		14.090	10.198	87.721	1.00 10.35	F	
20	MOTA	2500	CD2			12.685	9.164	89.135	1.00 13.24	H	
	MOTA	2501	NE1			14.852	9.613	88.706	1.00 24.99	F	
	MOTA	2502	CE2			14.024	8.968	89.590	1.00 11.38	F	
	ATOM	2503	CE3			11.623	8.607	89.878 90.710	1.00 13.12 1.00 9.14	<u> </u>	
O.E.	MOTA	2504 2505	CZ2 CZ3			14.328 11.925	8.251 7.888	91.015	1.00 13.82	ŀ	
25	ATOM ATOM	2506	CH2			13.281	7.709	91.426	1.00 13.97	Ī	
	MOTA	2507	N	GLY H		9.216	9.792	85.071	1.00 16.98	F	
	MOTA	2508	CA	GLY H	104	7.947	10.303	84.542	1.00 20.03	ŀ	
	MOTA	2509	С	GLY H		7.258	11.169	85.604	1.00 22.00	ŀ	
30	MOTA	2510	0	GLY H		7.886	11.535	86.606	1.00 22.60	0 F	
	ATOM	2511	N	ALA H		5.979	11.508	85.400	1.00 24.52 1.00 23.39	I I	-
	MOTA	2512 2513	CA C	ALA H ALA H		5.284 4.649	12.344 11.524	86.356 87.468	1.00 23.39	ŀ	
	ATOM ATOM	2514	Ö	ALA H		4.218	12.078	88.465	1.00 24.75	F	
35	ATOM	2515	СВ	ALA H		4.185	13.220	85.606	1.00 24.94		H C
	ATOM	2516	N	GLY H		4.600	10.191	87.314	1.00 21.97	F	H N
	ATOM	2517	CA	GLY H		4.128	9.196	88.266	1.00 23.66		I C
	MOTA	2518	С	GLY H		2.610	9.025	88.183	1.00 23.03		H C
40	MOTA	2519	0	GLY H		1.872	9.910	87.772	1.00 24.09	H	
40	MOTA	2520 2521	N CA	THR H		2.160 0.727	7.813 7.542	88.554 88.566	1.00 22.71 1.00 21.91		H C
	MOTA MOTA	2522	CA	THR H		0.306	6.924	89.901	1.00 21.11		H C
	MOTA	2523	ŏ	THR H		0.862	5.939	90.367	1.00 18.20		O E
	ATOM	2524	ĊВ	THR H		0.421	6.574	87.423	1.00 27.94	I	H C
45	MOTA	2525	OG1			-0.995	6.432	87.297	1.00 33.93		0 E
	MOTA	2526	CG2			1.030	5.202	87.728	1.00 17.61		H C
	ATOM	2527	N	LEU H		-0.687 -1.066	7.564 7.139	90.541 91.886	1.00 24.58 1.00 25.53		H N
	MOTA MOTA	2528 2529	CA C	LEU H		-1.862	5.831	91.887	1.00 21.65		H C
50	MOTA	2530	Ö	LEU H		-2.801	5.630	91.129	1.00 23.64		O E
	ATOM	2531	ČВ	LEU H		-1.900	8.252	92.519	1.00 30.90		H C
	MOTA	2532	CG	LEU H	108	-1.075	9.150	93.442	1.00 20.00		H C
	MOTA	2533		LEU H		-1.415	10.631	93.266	1.00 20.00		H C
	MOTA	2534		LEU H		-1.299	8.835	94.921	1.00 20.00		H C
55	MOTA	2535	N	VAL H VAL H		-1.423 -2.177	4.903 3.669	92.760 92.946	1.00 22.28 1.00 22.76		H C
	MOTA ATOM	2536 2537	CA C	VAL H		-2.662	3.531	94.390	1.00 25.97		H C
	ATOM	2538	Ö	VAL H		-1.892	3.509	95.340	1.00 22.42		O H
	ATOM	2539	СB	VAL H		-1.276	2.487	92.593	1.00 22.61		H C
60	MOTA	2540		VAL H		-1.965	1.180	92.982	1.00 12.42		H C
	MOTA	2541	CG2	VAL H	109	-0.991	2.473	91.104	1.00 15.97		H C
	MOTA	2542	N	ALA H		-3.995	3.473	94.541	1.00 27.50		H N
	MOTA	2543	CA	ALA H		-4.549	3.344	95.883	1.00 34.16		H C
65	ATOM	2544 2545	C O	ALA H ALA H		-5.218 -6.145	$1.984 \\ 1.604$	96.096 95.393	1.00 30.55 1.00 28.32		H O
,	MOTA MOTA	2545	CB	ALA H		-5.561	4.471	96.092	1.00 28.32		H C
	MOTA	2547	N	VAL H		-4.788	1.231	97.090	1.00 29.84		H N
	ATOM	2548	CA	VAL H	111	-5.337	~0.096	97.338	1.00 31.80		H C
	ATOM	2549	C	VAL H	111	-6.192	0.068	98.562	1.00 31.94	3	H C

	ATOM	2550	0	VAL H 11	.1	-5.686	0.211	99.660	1.00 31	65	Н	0
	ATOM	2551	CB	VAL H 11	1	-4.207	-1.118	97.630	1.00 34		H	C
	MOTA	2552				-4.820	-2.488	97.985		.41	H	C
-	ATOM	2553		VAL H 11		-3.279 -7.506	-1.246	96.368 98.345	1.00 27 1.00 33		H H	C N
5	MOTA MOTA	2554 2555	N CA	SER H 11 SER H 11		-7.506 -8.423	$0.047 \\ 0.257$	98.343	1.00 33		н	C
	ATOM	2556	CA	SER H 11		-9.780	-0.337	99.112	1.00 36		H	Č
	ATOM	2557	ŏ	SER H 11		-10.182	-0.482	97.946	1.00 37		H	Ö
	MOTA	2558	CB	SER H 11	L2	-8.603	1.761	99.645	1.00 32		H	C
10	MOTA	2559	OG	SER H 11	L2	-9.559	2.071			5.84	H	0
	MOTA	2560	N	ALA H 11	L3	-10.487	-0.646	100.169	1.00 38	1.14	H	N
	ATOM	2561 2562	CA	ALA H 11 ALA H 11		-11.824 -12.805	-1.173 0.001	100.013 99.959	1.00 41		H H	C
	MOTA MOTA	2563	0	ALA H 11		-13.983	-0.202	99.665		2.01	H	Ö
15	ATOM	2564	ČВ	ALA H 1		-12.160		101.202	1.00 43		Н	Č
	MOTA	2565	N	ALA H 13		-12.325	1.216	100.256		5.04	H	N
	MOTA	2566	CA	ALA H 1		-13.182	2.403	100.240		2.22	H	C
	ATOM	2567	C	ALA H 11		-13.707	2.673 2.218	98.847 97.839	1.00 34	1.27 5.90	H H	C
20	ATOM ATOM	2568 2569	O CB	ALA H 13		-13.135 -12.458	3.611			7.25	н Н	C
20	MOTA	2570	И	ALA H 1		-14.798	3.431	98.796		1.74	H	N
	ATOM	2571	CA	ALA H 1		-15.460	3.725	97.537	1.00 3	7.80	H	C
	MOTA	2572	С	ALA H 1		-15.153	5.077	96.946	1.00 3		H	C
	MOTA	2573	0_	ALA H 1		-15.027	6.068	97.652		4.30	H	0
25	MOTA	2574 2575	CB	ALA H 1: THR H 1:		-16.987 -15.090	3.584 5.101	97.707 95.622	1.00 39		H H	N C
	ATOM ATOM	2576	N. CA	THR H 1	16	-14.834	6.322	94.882	1.00 32		H	C
	ATOM	2577	C	THR H 1		-15.916	7.317	95.224	1.00 3		H	C
	ATOM	2578	0	THR H 1		-17.121	6.985	95.198	1.00 3		H	0
30	MOTA	2579	CB	THR H 1		-14.893	6.044	93.385	1.00 32		H	C
	ATOM	2580	OG1	THR H 1:		~13.832	5.138 7.314	93.046 92.582	1.00 4:		H H	0
	ATOM ATOM	2581 2582	CG2 N	THR H 1:		-14.752 -15.514	8.528	95.594	1.00 3		H	И
	MOTA	2583	CA	THR H 1		~16.507	9.569	95.901	1.00 34		H	Ĉ
35	ATOM	2584	C	THR H 1		-16.052	10.810	95.193	1.00 3	2.82	H	C
	MOTA	2585	0	THR H 1		-14.886	11.181	95.309	1.00 3		H	0
	ATOM	2586	CB	THR H 1		-16.597	9.867	97.385	1.00 3		H	C
	MOTA	2587	OG1	THR H 1:		-16.771 -17.789	8.640 10.765	98.098 97.652	1.00 3	9.01	H H	C O
40	MOTA ATOM	2588 2589	CG2 N	PRO H 1		-16.949	11.457	94.426		3.70	H	N
40	ATOM	2590	CA	PRO H 1		-16.564	12.668	93.702	1.00 3		H	Ĉ
	ATOM	2591	С	PRO H 1		-16.494	13.861	94.655	1.00 3		H	C
	MOTA	2592	0	PRO H 1		-17.221	13.927	95.623		0.13	H	0
45	ATOM	2593	CB	PRO H 1		~17.684 ~18.908	12.821 12.369	92.664 93.472	1.00 3		H H	C
45	MOTA MOTA	2594 2595	CG CD	PRO H 1		-18.372	11.132	94.206	1.00 3		H	G
	ATOM	2596	N	PRO H 1		-15.633	14.837	94.362	1.00 3		H	N
	ATOM	2597	CA	PRO H 1	19	-15.571	15.983	95.273	1.00 3		H	C
	MOTA	2598	C	PRO H 1	19	-16.672	16.985	95.043	1.00 3		H	C
50	ATOM	2599	O	PRO H 1		-17.268	17.024	93.972	1.00 3		H H	C
	ATOM ATOM	2600 2601	CB CG	PRO H 1 PRO H 1		-14.241 -14.176	16.620 16.379	94.924 93.413	1.00 3		H	Č
	MOTA	2602	CD	PRO H 1		-14.588	14.917	93.327	1.00 3		H	č
	MOTA	2603	N	SER H 1		-16.914	17.818	96.050	1.00 3		H	N
55	ATOM	2604	CA	SER H 1		-17.822	18.941	95.888	1.00 2		H	C
	MOTA	2605	C	SER H 1		-16.869	20.135	95.805	1.00 2		H	C
	MOTA	2606 2607	0	SER H 1 SER H 1		-16.006 -18.763	20.275 19.081	96.642 97.078	1.00 2		H H	С О
	MOTA MOTA	2608	CB OG	SER H 1		-19.749	18.049	97.009	1.00 3		H	ŏ
60	ATOM	2609	N	VAL H 1		-17.007	20.969	94.776	1.00 2		H	N
	MOTA	2610	CA	VAL H 1	21	-16.132	22.120	94.603	1.00 2	0.71	H	С
	ATOM	2611	С	VAL H 1	21	-16.877	23.374		1.00 2		H	C
	MOTA	2612	0	VAL H 1		-17.939	23.654		1.00 2		H	0
65	MOTA MOTA	2613 2614	CB CG1	VAL H 1 VAL H 1		-15.651 -14.748	22.195 23.381	93.124 92.927	1.001 1.001		H H	C
65	ATOM	2615		VAL H 1		-14.936	20.859	92.738	1.00 1		H	č
	ATOM	2616	N	TYR H 1		-16.349	24.129	95.962	1.00 2		H	N
	ATOM	2617	CA	TYR H 1	22	-17.044	25.341	96.426	1.00 2	4.88	H	C
	ATOM	2618	С	TYR H 1		-16.203	26.561	96.279	1.00 2	4.68	H	С

											_
	ATOM	2619	O TYR H	122	-15.032	26.548	96.577	1.00 2		H	O ~
	MOTA	2620	CB TYR H		-17.433	25.221	97.904	1.00 2		H	Ĉ
	ATOM	2621	CG TYR H		-18.344	24.069	98.199		9.23	H	C
	ATOM	2622	CD1 TYR H		-19.571	23.951	97.546		5.06	H	C
5	MOTA	2623	CD2 TYR H		-18.003	23.103	99.135	1.00 2		H	C
	MOTA	2624	CE1 TYR H		-20.425	22.898	97.825		1.10	H	C
	ATOM	2625	CE2 TYR H		-18.861	22.040	99.426	1.00 2		H	C
	ATOM	2626	CZ TYR H		-20.059	21.950	98.767	1.00 2		H	G
	ATOM	2627	OH TYR H		-20.912	20.895	99.028	1.00 3 1.00 2		H	0
10	ATOM	2628	N PRO H		-16.812	27.668	95.855 95.685	1.00 2		H H	C N
	MOTA	2629	CA PRO H		-16.066	28.906	97.011	1.00 2		n H	C
	MOTA	2630	C PRO H O PRO H		~15.828 ~16.675	29.629 29.601	97.899	1.00 2		H	Ö
	MOTA	2631	O PRO H CB PRO H		-16.971	29.723	94.767	1.00 2		H	ç
45	ATOM	2632			~18.354	29.723	95.265	1.00 2		H	č
15	ATOM ATOM	2633 2634	CG PRO H CD PRO H	123	~18.245	27.839	95.513	1.00 2		H	č
	ATOM	2635	N LEU H		-14.671	30.279	97.127	1.00 2		H	Ŋ
	ATOM	2636	CA LEU H		-14.326	31.043	98.325	1.00 2		Н	C
	ATOM	2637	C LEU H		-14.143	32.505	97.922	1.00 2		H	Ċ
20	MOTA	2638	O LEU H		-13.148	32.883	97.270	1.00 2	8.59	H	0
	MOTA	2639	CB LEU H		-13.026	30.503	98.959	1.00 2	4.13	H	С
	ATOM	2640	CG LEU H	124	-13.138	29.021	99.352	1.00 2	5.03	H	C
	MOTA	2641	CD1 LEU H		-11.734	28.606	99.873	1.00 1		H	C
	MOTA	2642	CD2 LEU H	124	-14.254	28.781	100.416	1.00 1		H	C
25	ATOM	2643	N ALA H		-15.139	33.328	98.272	1.00 3		H	Ñ
	ATOM	2644	CA ALA H	125	-15.087	34.755	97.956	1.00 3		H	Č
	ATOM	2645	C ALA H		-15.210	35.537	99.281	1.00 3		H	C
	ATOM	2646	O ALA H		~15.840	35.057	100.198	1.00 3 1.00 3		H H	C O
00	ATOM	2647	CB ALA H		-16.260	35.102 36.744	97.030 99.375	1.00 3		п Н	N
30	MOTA	2648	N PRO H CA PRO H		-14.621 -14.664	37.596	100.585	1.00 4		H	Ç
	MOTA MOTA	2649 2650	CA PRO H C PRO H		-16.007	38.205	100.986	1.00 5		H	č
	ATOM	2651	O PRO H		-16.816	38.560	100.135		3.07	H	ŏ
	MOTA	2652	CB PRO H		~13.650	38.697	100.281	1.00 4		H	Č
35	ATOM	2653	CG PRO H		-13.593	38.733	98.735	1.00 4		H	C
00	ATOM	2654	CD PRO H		-13.652	37.277	98.392	1.00 4	7.77	H	С
	ATOM	2655	N GLY H		-16.210	38.352	102.299	1.00 5	8.90	H	N
	MOTA	2656	CA GLY H	127	-17.427	38.964		1.00 6		H	C
	MOTA	2657	C GLY H	127	-17.313	40.472	102.691	1.00 6	55.56	H	C
40	MOTA	2658	O GLY H		-16.226	40.950		1.006		H	0
	MOTA	2659	OXT GLY H		-18.294	41.197	102.962	1.00 6		H	0
	MOTA	2660	N ASN H		-7.670	46.717	99.327	1.00 6		H	N
	MOTA	2661	CA ASN H		-6.184	46.774	99.368	1.00 5		H	C
	ATOM	2662	C ASN H		-5.627	46.469 46.230	98.005 97.068	1.00 5		H H	C
45	MOTA	2663	O ASN H CB ASN H		-6.373 -5.588		100.384	1.00 6		H	ç
	MOTA MOTA	2664 2665	CB ASN H		-6.609		101.017	1.00 6		H	č
	MOTA	2666	OD1 ASN H		-6.246		101.820	1.00 7		H	ŏ
	MOTA	2667	ND2 ASN H		-7.882		100.680	1.00 8		H	N
50	MOTA	2668	N SER H		-4.312	46.486	97.891	1.00 4		H	N
	ATOM	2669	CA SER H		-3.669	46.251	96.611	1.00 4		H	C
	MOTA	2670	C SER H		-4.089	44.941	95.952	1.00 4		H	C
	MOTA	2671	O SER H		-4.406	44.914	94.760	1.00 3		H	0
	MOTA	2672	CB SER H		-2.146	46.294	96.819	1.00 4		H	C
55	ATOM	2673	OG SER H		-1.411	45.905	95.669	1.00 5		H	0
	MOTA	2674	N MET H		-4.095	43.852	96.725	1.00 4		H	N
	MOTA	2675	CA MET H		-4.446	42.512	96.186	1.00 3		H	C
	ATOM	2676	C MET H		-5.703	41.912	96.823	1.00 3		H H	C
00	ATOM	2677	O MET H		-6.094	42.315	97.901 96.461	1.00 3		H	C
60	MOTA	2678 2679	CB MET H		-3.300 -1.919	41.536 41.970	95.966	1.00 3		H	C
	ATOM		SD MET H		-1.916	42.012	94.167	1.00 4		H	s
	ATOM ATOM	2680 2681	CE MET H		-1.602	40.237	93.761	1.00 4	15.32	H	Č
	ATOM	2682	N VAL H		-6.345	40.956	96.158	1.00 2	29.30	H	Й
65	ATOM	2683	CA VAL H		-7.479	40.275	96.789	1.00 2	29.61	H	С
	ATOM	2684	C VAL H	136	-7.179	38.760	96.714	1.00 2		H	C
	MOTA	2685	O VAL H	136	-6.608	38.289	95.727	1.00 2		H	0
	MOTA	2686	CB VAL H	136	-8.853	40.549	96.112	1.00 2		H	C
	MOTA	2687	CG1 VAL H	136	-8.827	40.116	94.635	1.00 3	30.30	H	С

	ATOM	2688	CG2 VAL H 13	5	-9.967	39.759	96.854	1.00 19.18		H	С
	ATOM	2689	N THR H 13'		-7.508	38.028	97.776	1.00 26.58			
	ATOM	2690								H	N
			CA THR H 13		-7.299	36.573	97.756	1.00 27.60		H	С
	ATOM	2691	C THR H 13		-8.644	35.855	97.592	1.00 29.30		H	C
5	ATOM	2692	O THR H 13	7	-9.628	36.183	98.269	1.00 28.40		H	0
	MOTA	2693	CB THR H 137	7	-6.612	36.148	99.044	1.00 26.81		H	
	MOTA	2694	OG1 THR H 13								C
					-5.301	36.741	99.081	1.00 29.61		H	0
	MOTA	2695	CG2 THR H 13		-6.425	34.610	99.115	1.00 27.58		H	C
	ATOM	2696	N LEU H 138	3	-8.696	34.910	96.665	1.00 28.45		H	N
10	ATOM	2697	CA LEU H 138		-9.875	34.117	96.390	1.00 23.40			
	ATOM	2698								H	C
			C LEU H 138		-9.475	32.658	96.580	1.00 23.57		H	C
	ATOM	2699	O LEU H 138	3	-8.305	32.326	96.795	1.00 25.01		H	0
	MOTA	2700	CB LEU H 138	3	-10.312	34.265	94.935	1.00 23.55		H	Č
	ATOM	2701	CG LEU H 138		-10.498						_
4 ==						35.735	94.482	1.00 30.56		H	C
15	MOTA	2702	CD1 LEU H 138		-10.849	35.826	92.950	1.00 19.69]	H	С
	MOTA	2703	CD2 LEU H 138	3	-11.628	36.350	95.312	1.00 35.20		H	C
	ATOM	2704	N GLY H 139)	-10.444	31.776	96.475	1.00 19.26		H	N
	ATOM	2705	CA GLY H 139								
					-10.060	30.370	96.580	1.00 21.12		H	C
	MOTA	2706	C GLY H 139		-11.156	29.404	96.169	1.00 22.32	1	H	C
20	MOTA	2707	O GLY H 139)	-12.255	29.823	95.796	1.00 19.43	1	H	0
	ATOM	2708	N CYS H 140		-10.847	28.117	96.262	1.00 19.11		H	N
	ATOM	2709	CA CYS H 140								
					-11.784	27.040	95.972	1.00 23.52		H	C
	MOTA	2710	C CYS H 140		-11.571	25.947	97.001	1.00 23.22]	H	C
	ATOM	2711	O CYS H 140)	-10.418	25.607	97.321	1.00 22.91	1	H	0
25	ATOM	2712	CB CYS H 140	}	-11.557	26.447	94.562	1.00 25.73		H	č
	ATOM	2713	SG CYS H 140								
					-12.544	27.321	93.297	1.00 44.80		H	S
	MOTA	2714	N LEU H 141		-12.676	25.397	97.521	1.00 21.53]	H	N
	MOTA	2715	CA LEU H 141	_	-12.622	24.289	98.512	1.00 20.48	1	H	C
	ATOM	2716	C LEU H 141		-13.066	23.030	97.777	1.00 18.89		H	
30	ATOM	2717									C
30			O LEU H 141		-14.169	23.004	97.193	1.00 22.71]	H	0
	ATOM	2718	CB LEU H 141		-13.598	24.560	99.692	1.00 17.17	1	H	С
	ATOM	2719	CG LEU H 141	_	-13.729	23.490	100.794	1.00 25.38		H	C
	MOTA	2720	CD1 LEU H 141		-12.371	23.264	101.553	1.00 25.22			ä
										H	C
~~	ATOM	2721	CD2 LEU H 141		-14.797	23.935	101.790	1.00 21.03	1	H	C
35	ATOM	2722	N VAL H 142	2	-12.205	22.007	97.771	1.00 15.03	1	-1	N
	ATOM	2723	CA VAL H 142	2	-12.486	20.744	97.075	1.00 15.13		H	C
	ATOM	2724	C VAL H 142		-12.671	19.721	98.187				
		2725						1.00 18.32		H	C
	ATOM		O VAL H 142		-11.708	19.140	98.693	1.00 19.22	I	H	0
	ATOM	2726	CB VAL H 142	<u>.</u>	-11.293	20.370	96.194	1.00 16.12	I	Ŧ	C
40	ATOM	2727	CG1 VAL H 142	:	-11.611	19.084	95.365	1.00 16.05		H	C
	MOTA	2728	CG2 VAL H 142		-11.007	21.534	95.233	1.00 16.52			
										Ī	C
	ATOM	2729	N LYS H 143		-13.938	19.463	98.512	1.00 19.22		Ŧ	N
	ATOM	2730	CA LYS H 143	,	-14.254	18.650	99.664	1.00 23.50	F	-I	C
	ATOM	2731	C LYS H 143	,	-14.891	17.303	99.486	1.00 23.95		I	Ċ
45	ATOM	2732	O LYS H 143		-15.787	17.124	98.656	1.00 28.68	Ī		ŏ
. •	ATOM	2733									
					-15.156		100.574	1.00 21.98	ŀ	Ŧ	C
	MOTA	2734	CG LYS H 143	•	-15.507	18.917	101.941	1.00 25.06	I	-I	С
	ATOM	2735	CD LYS H 143	,	-16.282	19.991	102.758	1.00 28.37	F	-T	C
	MOTA	2736	CE LYS H 143		-16.877		104.058	1.00 28.90	Ī		č
50	ATOM	2737	NZ LYS H 143		-15.810						
00						10.790	104.927	1.00 44.68	F		N
	ATOM	2738	N GLY H 144		-14.419		100.312	1.00 24.19	F	Ŧ	N
	ATOM	2739	CA GLY H 144		-14.944	15.038	100.379	1.00 26.62	F	1	С
	MOTA	2740	C GLY H 144		-14.856	14.128	99.180	1.00 27.65	F		Č
	MOTA	2741	O GLY H 144								
EE					-15.897	13.622	98.714	1.00 30.78	F		0
55	MOTA	2742	N TYR H 145		-13.635	13.914	98.690	1.00 26.76	F	I	N
	ATOM	2743	CA TYR H 145	,	-13.398	13.016	97.550	1.00 27.17	F	Ŧ	C
	ATOM	2744	C TYR H 145		-12.535	11.814	97.920	1.00 29.53	F		č
	ATOM	2745	O TYR H 145				00 070				
					-11.889	11.802	98.970	1.00 25.98	ŀ		0
	MOTA	2746	CB TYR H 145		-12.743	13.759	96.378	1.00 24.08	ŀ	ł	С
60	MOTA	2747	CG TYR H 145		-11.357	14.306	96.683	1.00 28.06	I	Ŧ	C
	MOTA	2748	CD1 TYR H 145		-10.204	13.586	96.338	1.00 30.37	Î		Č
	ATOM	2749	CD2 TYR H 145		-11.196						~
						15.553	97.283	1.00 22.50	F		С
	MOTA	2750	CE1 TYR H 145		_. -8.897	14.112	96.575	1.00 25.17	F	I	C
	ATOM	2751	CE2 TYR H 145		-9.926	16.061	97.539	1.00 20.82	I-	I	C
65	MOTA	2752	CZ TYR H 145		-8.793	15.356	97.184	1.00 28.20	H		Č
	MOTA	2753									
					-7.553	15.864	97.461	1.00 17.93	H		0
	MOTA	2754	N PHE H 146		-12.555	10.780	97.056	1.00 31.05	H	I	N
	MOTA	2755	CA PHE H 146		-11.737	9.586	97.264	1.00 31.43	H	Į.	C
	MOTA	2756	C PHE H 146		-11.753	8.812	95.960	1.00 32.08	I.		Č
					,	0.014	55.500	JZ.00	r		_

	ATOM MOTA	2757 2758	O PHE H 146 CB PHE H 146	-12.805 -12.306	8.697 8.690	95.328 98.359	1.00 36.16 1.00 29.02	H H	
	MOTA	2759	CG PHE H 146	-11.379	7.556	98.767	1.00 27.00	H	
_	ATOM	2760	CD1 PHE H 146	-10.421	7.740	99.757 98.121	1.00 22.36 1.00 27.68	H H	_
5	MOTA	2761	CD2 PHE H 146	-11.440 -9.550	6.334 6.755	100.091	1.00 27.00	H	
	MOTA	2762 2763	CE1 PHE H 146 CE2 PHE H 146	-10.541	5.323	98.464	1.00 27.29	H	
	ATOM ATOM	2763	CZ PHE H 146	-9.600	5.530	99.443	1.00 22.36	H	
	MOTA	2765	N PRO H 147	-10.591	8.321	95.527	1.00 27.57	H	
10	ATOM	2766	CA PRO H 147	-9.315	8.477	96.209	1.00 26.64	H	
	ATOM	2767	C PRO H 147	-8.572	9.704	95.669	1.00 26.21	H	
	MOTA	2768	O PRO H 147	-9.112	10.443	94.866	1.00 25.89	H	
	MOTA	2769	CB PRO H 147	-8.582	7.214	95.806	1.00 23.36	H	
	ATOM	2770	CG PRO H 147	-8.879	$7.172 \\ 7.467$	94.377 94.332	1.00 25.94 1.00 26.74	H H	
15	ATOM	2771 2772	CD PRO H 147 N GLU H 148	-10.416 -7.335	9.901	96.128	1.00 26.28	H	
	MOTA MOTA	2773	CA GLU H 148	-6.490	10.963	95.562	1.00 29.14	H	
	ATOM	2774	C GLU H 148	-6.174	10.431	94.162	1.00 28.26	Н	
	ATOM	2775	O GLU H 148	-6.178	9.219	93.951	1.00 32.81	H	
20	ATOM	2776	CB GLU H 148	-5.206	11.084	96.344	1.00 27.60	H	
	MOTA	2777	CG GLU H 148	-5.450	11.628	97.701	1.00 28.15	H	
	ATOM	2778	CD GLU H 148	-4.209	12.176	98.294 98.735	1.00 46.58 1.00 56.93	H H	
	MOTA	2779 2780	OE1 GLU H 148 OE2 GLU H 148	-3.378 -4.080	11.332 13.441	98.294	1.00 30.93	H	
25	MOTA MOTA	2781	N PRO H 149	-5.806	11.313	93.216	1.00 28.64	H	
20	ATOM	2782	CA PRO H 149	-5.671	12.760	93.426	1.00 26.39	H	C
	ATOM	2783	C PRO H 149	-6.724	13.569	92.707	1.00 24.55	H	
	MOTA	2784	O PRO H 149	-7.597	13.026	92.035	1.00 23.88	H	
	ATOM	2785	CB PRO H 149	-4.314	13.034	92.809	1.00 28.35	H H	
30	ATOM	2786	CG PRO H 149	-4.455	12.232 10.913	91.462 91.932	1.00 20.74 1.00 28.56	H	
	MOTA	2787 2788	CD PRO H 149 N VAL H 150	-5.192 -6.627	14.890	92.868	1.00 23.29	H	
	ATOM ATOM	2789	CA VAL H 150	-7.448	15.809	92.113	1.00 19.21	H	
	ATOM	2790	C VAL H 150	-6.429	16.769	91.532	1.00 24.23	H	
35	ATOM	2791	O VAL H 150	-5.306	16.897	92.035	1.00 26.42	H	
	ATOM	2792	CB VAL H 150	-8.414	16.651	92.944	1.00 18.09	H	
	MOTA	2793	CG1 VAL H 150	-9.577	15.751	93.478	1.00 17.95	H H	
	MOTA	2794	CG2 VAL H 150	-7.665	17.369 17.441	94.096 90.471	1.00 10.71 1.00 24.63	H	
40	MOTA	2795 2796	N THR H 151 CA THR H 151	-6.811 -5.939	18.436	89.935	1.00 24.03	H	
40	ATOM ATOM	2797	C THR H 151	-6.700	19.742	90.049	1.00 28.78	H	
	MOTA	2798	O THR H 151	-7.915	19.765	89.869	1.00 26.29	H	
	MOTA	2799	CB THR H 151		18.153	88.481	1.00 31.70	H	
	ATOM	2800	OG1 THR H 151		18.052	87.694	1.00 43.95	H	
45	MOTA	2801	CG2 THR H 151		16.859	88.402	1.00 36.27	H H	
	MOTA	2802	N VAL H 152		20.808 22.127	90.364 90.436	1.00 26.62 1.00 25.23	H	-
	ATOM ATOM	2803 2804	CA VAL H 152 C VAL H 152		23.161	89.630	1.00 23.23	H	
	MOTA	2805	O VAL H 152	-4.544	23.228	89.792	1.00 27.04	H	
50	MOTA	2806	CB VAL H 152	-6.625	22.623	91.897	1.00 25.96	H	
	MOTA	2807	CG1 VAL H 152	-7.340	24.014	91.930	1.00 22.70	H	
	MOTA	2808	CG2 VAL H 152		21.609	92.784	1.00 25.04	I.	
	MOTA	2809	N THR H 153		23.915	88.736 88.048	1.00 20.60 1.00 23.67	H	
EE	ATOM	2810	CA THR H 153		24.996 26.211	88.132	1.00 23.07	I.	
55	MOTA MOTA	2811 2812	C THR H 153		26.061	88.565	1.00 25.71	F	
	ATOM	2813	CB THR H 153		24.659	86.551	1.00 24.28	F	ı C
	ATOM	2814	OG1 THR H 153	-6.632	24.412	85.889	1.00 25.91	F	
	MOTA	2815	CG2 THR H 153		23.435	86.450	1.00 19.31	ŀ	
60	MOTA	2816	N TRP H 154		27.393	87.752	1.00 28.43	ŀ	
	MOTA	2817	CA TRP H 154		28.600	87.754 86.342	1.00 32.03 1.00 30.20	I I	
	MOTA	2818	C TRP H 154		29.195 29.288	85.689	1.00 30.20	ŀ	
	MOTA MOTA	2819 2820	O TRP H 154			88.748	1.00 23.01	Ī	
65	ATOM	2821	CG TRP H 154			90.185	1.00 33.79	ŀ	I C
	MOTA	2822	CD1 TRP H 154		28.406	90.998	1.00 25.73	I	ı C
	MOTA	2823	CD2 TRP H 154	-7.800			1.00 32.12		i C
	MOTA	2824	NE1 TRP H 154				1.00 21.18 1.00 27.40		A N
	MOTA	2825	CE2 TRP H 154		28.900	92.239	1.00 47.40	Г	
				1 7 1					

	ATOM	2826	CE3	TRP H		-8.964	30.231	90.693	1.00 25.24		Н	C
	ATOM ATOM	2827 2828	CZ2 CZ3	TRP H		-8.608 -9.929	29.024 30.352	93.254 91.705	1.00 29.44 1.00 30.04		H H	C
	MOTA	2829	CH2	TRP H	154	-9.737	29.748	92.972	1.00 24.77		H	Č
5	MOTA	2830	N	ASN H		-8.144	29.560	85.867	1.00 30.30		H	N
	ATOM ATOM	2831 2832	CA C	ASN H ASN H		-8.219 -7.488	30.047 29.181	84.479 83.443	1.00 37.67 1.00 37.85		H	C
	MOTA	2833	Ö	ASN H		-6.758	29.686	82.593	1.00 37.83		H H	C
	MOTA	2834	СВ	ASN H	155	-7.740	31.496	84.413	1.00 34.75		H	Č
10	ATOM	2835	CG OD1	ASN H		-8.733	32.415	85.030	1.00 35.49		H	C
	ATOM ATOM	2836 2837		ASN H ASN H		-9.845 -8.376	31.980 33.683	85.382 85.170	1.00 44.08 1.00 45.82		H	O
	ATOM	2838	N	SER H		-7.712	27.876	83.528	1.00 45.82		H H	N
	ATOM	2839	CA	SER H	156 .	-7.123	26.916	82.612	1.00 36.58		H	C
15	MOTA	2840	C	SER H		-5.612	26.997	82.592	1.00 36.12		H	C
	ATOM ATOM	2841 2842	O CB	SER H SER H		-4.972 -7.672	26.657 27.141	81.592 81.200	1.00 38.51 1.00 37.40		H H	0
	ATOM	2843	OG	SER H		-9.060	26.867	81.135	1.00 37.40		H	Ö
	MOTA	2844	N	GLY H		-5.040	27.435	83.706	1.00 30.77		H	N
20	MOTA	2845	CA	GLY H		-3.601	27.547	83.803	1.00 26.68		H	C
	ATOM ATOM	2846 2847	C O	GLY H		-3.067 -1.869	28.929 29.140	83.534 83.698	1.00 29.62 1.00 27.32		H H	C
	MOTA	2848	N	SER H		-3.940	29.878	83.157	1.00 27.52		n H	N
	MOTA	2849	CA	SER H		-3.528	31.255	82.852	1.00 33.96		H	C
25	MOTA	2850	C	SER H		-3.142	32.019	84.087	1.00 36.34		H	C
	ATOM ATOM	2851 2852	O CB	SER H		-2.390 -4.652	32.981 32.041	84.026 82.153	1.00 41.32 1.00 32.92	•	H H	O C
	MOTA	2853	OG	SER H		-4.650	31.782	80.781	1.00 39.53		H	ŏ
	ATOM	2854	N	LEU H		-3.668	31.584	85.217	1.00 39.25		H	N
30	MOTA	2855 2856	CA	LEU H		-3.396	32.230	86.494	1.00 38.76		H	C
	ATOM ATOM	2857	C O	LEU H		-2.548 -3.049	31.225 30.197	87.244 87.730	1.00 36.89 1.00 39.64		H H	C
	MOTA	2858	ČВ	LEU H		-4.734	32.462	87.186	1.00 41.00		H	Č
	MOTA	2859	CG	LEU H		-4.879	33.242	88.473	1.00 45.92		H	C
35	ATOM ATOM	2860 2861		LEU H		-3.662 -6.162	34.081 34.082	88.758	1.00 44.07		H	C
	ATOM	2862	N	SER H		-0.162 -1.268	34.082	88.320 87.329	1.00 46.78 1.00 35.36		H H	C N
	MOTA	2863	CA	SER H		-0.327	30.620	87.958	1.00 37.84		H	Ĉ
40	MOTA	2864	C	SER H		0.509	31.105	89.144	1.00 34.85		H	C
40	ATOM ATOM	2865 2866	O CB	SER H SER H		0.707 0.607	30.378 30.089	90.115 86.877	1.00 35.06 1.00 39.57		H	0
	MOTA	2867	OG	SER H		1.004	28.783	87.208	1.00 54.86		H H	C
	ATOM	2868	N	SER H	161	1.037	32.308	89.080	1.00 33.71		H	N
45	MOTA	2869	CA	SER H		1.863	32.781	90.185	1.00 35.46		H	C
45	ATOM ATOM	2870 2871	C	SER H SER H		0.926 -0.237	33.209 33.538	91.324 91.084	1.00 33.85 1.00 35.17		H H	C O
	ATOM	2872	СВ	SER H		2.743	33.966	89.718	1.00 33.17		H	c
	MOTA	2873	OG	SER H		1.944	35.110	89.467	1.00 38.84		H	0
EO	MOTA	2874	N	GLY H		1.410	33.159	92.556	1.00 30.84		H	N
50	MOTA MOTA	2875 2876	CA C	GLY H		0.551 -0.598	33.550 32.579	93.666 93.971	1.00 33.82 1.00 34.76		H H	C
	MOTA	2877	ŏ	GLY H		-1.590	32.931	94.634	1.00 38.65		H	ŏ
	MOTA	2878	N	VAL H		-0.499	31.357	93.468	1.00 33.18		H	N
55	ATOM ATOM	2879 2880	CA C	VAL H		-1.520 -0.920	30.356	93.748	1.00 27.52		H	C
33	ATOM	2881	0	VAL H		0.275	29.483 29.223	94.821 94.805	1.00 27.53 1.00 27.13		H H	C
	MOTA	2882	CB	VAL H	163	-1.803	29.435	92.508	1.00 28.90		H	Č
	ATOM	2883		VAL H		-2.545	28.168	92.958	1.00 26.60		H	C
60	ATOM ATOM	2884 2885	CG2 N	VAL H HIS H		-2.650 -1.746	30.208 29.029	91.431 95.772	1.00 27.66		H	C
0 0	ATOM	2886	CA	HIS H		-1.297	28.109	96.780	1.00 25.64 1.00 22.44		H H	G M
	MOTA	2887	C	HIS H	164	-2.280	26.960	96.853	1.00 20.69		H	Č
	ATOM	2888	0	HIS H		-3.363	27.117	97.415	1.00 20.78		H	0
65	ATOM ATOM	2889 2890	CB CG	HIS H		-1.242 -0.075	28.731 29.633	98.162 98.360	1.00 19.62 1.00 29.05		H H	C
	ATOM	2891		HIS H		1.236	29.205	98.227	1.00 25.03		H	N C
	MOTA	2892	CD2	HIS H	164	-0.020	30.951	98.653	1.00 31.28		H	Ĉ
	ATOM	2893		HIS H		2.044	30.236	98.426	1.00 15.96		H	C
	MOTA	2894	NE2	HIS H	T04	1.307	31.300	98.684	1.00 26.44		H	N

						-1.932	25.808	96.287	1.00	19.73	н	N
	ATOM	2896	CA	THR H	165	-2.866	24.680	96.434	1.00		H	Ĉ
	MOTA	2897	С	THR H	165	-2.371	23.869	97.622	1.00		H	Č
	ATOM	2898	0	THR H	165	-1.277	23.330	97.589	1.00	20.05	H	0
5	MOTA	2899	CB	THR H	165	-2.913	23.856	95.113	1.00	18.44	H	C
	ATOM	2900	OG1	THR H		-3.554	24.648	94.107	1.00		H	0
	MOTA	2901	CG2	THR H		-3.750	22.575	95.299	1.00	13.68	H	C
	ATOM	2902	N	PHE H		-3.181	23.752	98.677	1.00	15.64	H	N
	ATOM	2903	CA	PHE H		-2.747	23.042	99.857	1.00		H	C
10	MOTA	2904	C	PHE H		-2.826	21.500	99.769	1.00		H	C
	ATOM	2905	0	PHE H		-3.701	20.936	99.109	1.00		H	0
	ATOM	2906	СВ	PHE H		-3.553		101.085	1.00		H	C
	ATOM	2907	CG	PHE H		-3.345	25.027		1.00		H	C
	MOTA	2908		PHE H		-3.999		100.633	1.00		H	C
15	ATOM	2909		PHE H		-2.386		102.291	1.00	7.74	H	C
	ATOM	2910		PHE H		-3.663		100.804	1.00	7.46	H	C
	MOTA	2911		PHE H		-2.056		102.470	1.00		H	C
	ATOM	2912	CZ	PHE H		-2.693		101.721	1.00		H	C
00	ATOM	2913 2914	N	PRO H		-1.914		100.440	1.00		H	N
20	ATOM ATOM	2915	CA C	PRO H		-1.971 -3.327		100.401 100.950	$\frac{1.00}{1.00}$		H H	C C
	ATOM	2916	Ö	PRO H		-3.865		100.930	1.00		п Н	Ö
	ATOM	2917	СВ	PRO H		-0.854		101.368	1.00		H	c
	ATOM	2918	CG	PRO H		0.133		101.292	1.00		H	Č
25	ATOM	2919	CD	PRO H		-0.790		101.282	1.00		H	Č
20	ATOM	2920	N	ALA H		-3.846		100.377	1.00		H	N
	ATOM	2921	ĈA	ALA H		-5.123		100.818	1.00		H	Ĉ
	MOTA	2922	C	ALA H		-4.982		102.200	1.00		H	č
	ATOM	2923	Õ	ALA H		-3.910		102.574	1.00		H	ŏ
30	ATOM	2924	CB	ALA H		-5.584	16.142	99.847	1.00		H	Č
	ATOM	2925	N	VAL H		-6.066		102.963	1.00		H	N
	MOTA	2926	CA	VAL H		-6.062		104.288	1.00		H	C
	ATOM	2927	С	VAL H		-7.177		104.330	1.00		H	Ċ
	ATOM	2928	0	VAL H	169	-8.269	15.272	103.881	1.00	27.25	H	0
35	ATOM	2929	CB	VAL H	169	-6.329		105.345	1.00	28.37	H	C
	ATOM	2930	CG1	VAL H	169	-6.454	16.372	106.715	1.00	29.42	H	C
	ATOM	2931	CG2	VAL H	169	-5.155	18.088	105.368	1.00	24.48	H	C
	ATOM	2932	N	LEU H	170	-6.868		104.896	1.00	32.34	H	N
	MOTA	2933	CA	LEU H		-7.797		104.952	1.00	32.97	H	C
40	ATOM	2934	C	LEU H		-8.536		106.248	1.00	35.04	H	C
	MOTA	2935	0	LEU H		-7.909		107.305	1.00		H	0
	ATOM	2936	CB	LEU H		-7.042		104.807	1.00		H	С
	MOTA	2937	CG	rea H		-7.913		104.914	1.00		H	C
4 -	ATOM	2938		LEU H		-8.703		103.629	1.00		H	C
45	ATOM	2939		LEU H		-7.010		105.199	1.00		H	C
	MOTA	2940	N	ALA H		-9.866		106.155	1.00		H	N
	ATOM	2941	CA	ALA H		-10.744		107.322	1.00		H	C
	ATOM	2942 2943	C	ALA H		-11.937		106.998	1.00		H	C
50	MOTA MOTA	2943	O CB	ALA H ALA H		-12.513 -11.254		105.922 107.735	1.00		H	0
50	ATOM	2945	N	SER H		-12.268		107.733	1.00		H H	C
	ATOM	2946	CA	SER H		-13.386		107.783	1.00		H	C
	MOTA	2947	C	SER H		-13.438		106.381	1.00		H	Č
	ATOM	2948	Õ	SER H		-14.468		105.680	1.00		H	õ
55	ATOM	2949	СВ	SER H		-14.693		108.097	1.00		H	č
00	ATOM	2950	OG	SER H		-14.605		109.313	1.00		H	ŏ
	ATOM	2951	N	ALA H		-12.316		105.955	1.00		H	Ň
	ATOM	2952	ĈA	ALA H	173	-12.221		104.638	1.00		H	Ĉ
	ATOM	2953	C	ALA H		-12.433		103.459	1.00		H	Č
60	ATOM	2954	Ō	ALA H		-12.644		102.354	1.00		H	ŏ
	ATOM	2955	CB	ALA H		-13.182		104.518	1.00		H	Č
	ATOM	2956	N	LEU H		-12.418		103.674	1.00		H	Ň
	ATOM	2957	CA	LEU H		-12.548		102.523	1.00		H	C
	MOTA	2958	C	LEU H	174	-11.479		102.637	1.00		H	Č
65	ATOM	2959	0	LEU H		-11.151		103.719	1.00		H	Ō
	MOTA	2960	CB	LEU H	174	-13.921		102.465	1.00	32.78	H	С
	ATOM	2961	CG	LEU H		-15.150		102.332	1.00		H	C
	MOTA	2962		LEU H		-16.442		102.384	1.00		H	C
	ATOM	2963	CD2	LEU H	174	-15.089	10.326	101.005	1.00	20.98	H	C

	ATOM ATOM ATOM	2964 2965 2966	N TYR H 1 CA TYR H 1 C TYR H 1	75 -9. 75 -10.	983 13.877 651 15.217	101.148	1.00 27.64 1.00 27.11 1.00 25.89	Н Н Н	N C C
5	ATOM ATOM ATOM ATOM	2967 2968 2969 2970	O TYR H 1 CB TYR H 1 CG TYR H 1 CD1 TYR H 1	.75 -9. .75 -8.	092 13.601 129 12.491	100.499 100.185 100.404 101.119	1.00 22.59 1.00 28.71 1.00 33.19 1.00 36.50	H H H H	0 0 0
10	ATOM ATOM ATOM	2971 2972 2973	CD2 TYR H 1 CE1 TYR H 1 CE2 TYR H 1	.75 -8. .75 -6. .75 -7.	411 11.209 065 11.654 540 10.161	99.935 101.376 100.172	1.00 30.21 1.00 36.87 1.00 42.67	Н Н Н	CCC
	ATOM ATOM ATOM	2974 2975 2976	CZ TYR H 1 OH TYR H 1 N THR H 1 CA THR H 1	.75 -5. .76 -10.	552 9.325 025 16.282	100.895 101.168 101.641 101.373	1.00 46.88 1.00 52.45 1.00 24.24 1.00 24.99	Н Н Н Н	0 N C
15	ATOM ATOM ATOM ATOM	2977 2978 2979 2980	CA THR H 1 C THR H 1 O THR H 1 CB THR H 1	.76 -9. .76 -8.	248 18.510 234 18.373	101.109 101.772	1.00 22.35 1.00 22.32 1.00 23.22	н н н	000
20	MOTA MOTA MOTA	2981 2982 2983	OG1 THR H 1 CG2 THR H 1 N LEU H 1	.76 –12. .76 –11. .77 –9.	527 17.519 531 19.677 312 19.378	0 102.692 7 102.381 8 100.112	1.00 31.74 1.00 10.30 1.00 22.69	Н Н Н	И С О
	ATOM ATOM ATOM ATOM	2984 2985 2986 2987	CA LEU H 3 C LEU H 3 C LEU H 3 CB LEU H 3	.77 -8. .77 -9.	730 21.621 895 21.750	99.559 99.205	1.00 25.06 1.00 24.30 1.00 22.61 1.00 21.57	H H H H	C C C C
25	ATOM ATOM ATOM	2988 2989 2990	CG LEU H 1 CD1 LEU H 1 CD2 LEU H 1	177 -7. 177 -7.	270 19.745 486 21.147 957 19.177	97.374 96.826 96.740	1.00 26.70 1.00 30.91 1.00 15.94	Н Н Н	С С
30	MOTA ATOM ATOM	2991 2992 2993	N SER H C CA SER H C C SER H C	L78 -8. L78 -7.	866 22.631 247 23.977 121 24.563	7 99.247 3 98.404	1.00 22.75 1.00 17.84 1.00 21.14	H H H	и С
	MOTA MOTA MOTA MOTA	2994 2995 2996 2997	O SER H COS SER SER SER SER SER SER SER SER SER SE	L78 -8. L78 -7.	998 24.067 445 24.866 328 24.876 410 25.678	5 100.475 1 101.317	1.00 24.22 1.00 13.35 1.00 13.31 1.00 17.80	Н Н Н Н	И С О
35	ATOM ATOM ATOM	2998 2999 3000	CA SER H C C SER H C	L79 -6. L79 -6.	422 26.34° 798 27.83° 983 28.190	7 96.877 5 96.921	1.00 21.55 1.00 18.82 1.00 16.75	Н Н Н	C C
40	ATOM ATOM ATOM	3001 3002 3003	CB SER H COG SER	179 -5. 180 -5.	515 25.829 567 26.519 800 28.67	94.582 7 97.141	1.00 15.41 1.00 21.64 1.00 17.88	H H H	C O N
	ATOM ATOM ATOM ATOM	3004 3005 3006 3007	CA SER H C C SER H C O SER H C CB SER H C	180 -5. 180 -4.	028 30.113 301 30.722 302 30.163 458 30.694	96.003 95.518	1.00 21.70 1.00 24.16 1.00 26.15 1.00 14.18	H H H H	000
45	ATOM ATOM ATOM ATOM	3008 3009 3010	OG SER H I N VAL H I CA VAL H I	180 -4. 181 -5.	048 30.663 809 31.862 165 32.572	1 98.488 2 95.544	1.00 22.63 1.00 24.76 1.00 28.32	Н Н Н	0 N C
50	ATOM ATOM ATOM	3011 3012 3013	C VAL H O VAL H CB VAL H	181 -5. 181 -6. 181 -5.	303 34.07 373 34.53 777 32.19	4 95.252 8 93.107	1.00 31.11 1.00 27.76 1.00 25.96	H H H	0
	ATOM ATOM ATOM	3014 3015 3016	CG1 VAL H CG2 VAL H N THR H CA THR H	$ \begin{array}{rrr} 181 & -4. \\ 182 & -4. \\ \end{array} $	239 32.58 989 32.89 211 34.81 218 36.23	0 91.965 0 94.590	1.00 24.23 1.00 28.59 1.00 32.70 1.00 34.03	Н Н Н Н	С С
55	ATOM ATOM ATOM ATOM	3017 3018 3019 3020	CA THR H C THR H O THR H CB THR H	182 -4. 182 -3.	.005 37.02 .093 36.70 .128 36.55	0 93.627 7 92.850	1.00 36.50 1.00 37.98 1.00 31.37	H H H	000
60	ATOM ATOM ATOM	3021 3022 3023	OG1 THR H CG2 THR H N VAL H	182 -3 . 182 -3 .	.283 35.72 .195 38.02 .848 38.02	0 97.033 3 96.277 5 93.405	1.00 40.50 1.00 32.65 1.00 39.24	Н Н Н	О С О
	MOTA ATOM ATOM	3024 3025 3026	CA VAL H C VAL H O VAL H	183 -5 . 183 -5 .	.783 38.81 .049 40.27 .559 40.55	8 92.535 9 93.616	1.00 37.33 1.00 40.59 1.00 43.75	Н Н Н	0 0 0
65	MOTA MOTA MOTA	3027 3028 3029	CB VAL H CG1 VAL H CG2 VAL H N PRO H	183 -5 183 -7	.858 38.32 .723 36.80 .238 38.61 .671 41.22	2 90.921 3 91.650	1.00 35.36 1.00 23.98 1.00 30.51 1.00 44.29	н н н н	и С С
	ATOM ATOM ATOM	3030 3031 3032	N PRO H CA PRO H C PRO H	184 -4	.892 42.66 .376 42.98	3 91.903	1.00 43.69 1.00 45.05	H H	C

	ATOM ATOM ATOM	3033 3034 3035	O CB CG	PRO H PRO H PRO H	184 184	-7.27 -4.38 -3.26	5 43 9 42	.516 .323 .373	91.440 90.625 90.169	$\frac{1.00}{1.00}$	45.22 43.90 42.32	н н н	0 0
5	ATOM ATOM ATOM ATOM	3036 3037 3038 3039	CD CA C	PRO H SER H SER H SER H	185 185	-3.96 -6.63 -8.02 -8.81	9 43 9 44	.020 .801 .159 .602	90.368 93.170 93.496 92.254	1.00 1.00 1.00	44.98 45.15 50.32 51.82	H H H H	C N C
10	MOTA ATOM ATOM MOTA	3040 3041 3042 3043	O CB OG N	SER H SER H SER H SER H	185 185	-9.99 -8.06 -7.31 -8.14	6 45 0 45	.277 .308 .024 .353	92.098 94.512 95.657 91.385	1.00 1.00 1.00 1.00	53.19 52.23 55.30 55.70	H H H H	И О С
	ATOM ATOM ATOM	3044 3045 3046	CA C O	SER H SER H SER H	186 186 186	-8.74 -9.40 -10.57	4 45 8 44 0 44	.896 .843 .989	90.158 89.270 88.896	1.00 1.00 1.00	58.70 61.29 61.19	H H H	0 C
15	ATOM ATOM ATOM ATOM	3047 3048 3049 3050	CB OG N CA	SER H SER H PRO H PRO H	186 187	-7.68 -6.73 -8.66 -9.08	2 47 0 43	.646 .223 .793	89.357 90.221 88.889 88.056	1.00	59.11 58.60 62.65 61.57	H H H H	О И С
20	ATOM ATOM ATOM	3051 3052 3053	C O CB	PRO H PRO H PRO H	187 187 187	-10.34 -11.04 -7.87 -6.77	9 41 2 41 2 41	.921 .382 .765	88.486 87.645 88.089 87.954	1.00 1.00 1.00		H H H	0 0 0
25	ATOM ATOM ATOM ATOM	3054 3055 3056 3057	CG CD N CA	PRO H PRO H ARG H ARG H	187 188	-7.18 -10.65 -11.84	4 43 2 41 3 41	.758 .826 .865 .137	88.953 89.779 90.192	1.00	65.51 58.01 53.46	H H H H	С И С
	ATOM ATOM ATOM ATOM	3058 3059 3060 3061	C O CB CG	ARG H ARG H ARG H	188 188	-12.86 -12.51 -11.44 -11.88	2 42 0 39	.986 .894 .920	90.932 91.687 91.041 90.466	1.00	53.17 55.75 51.65 47.14	H H H H	0000
30	ATOM ATOM ATOM	3062 3063 3064	CD NE CZ	ARG H ARG H ARG H	188 188	-13.08 -13.20 -14.09	0 38 8 38 2 38	.057 .806 .535	91.212 92.451 93.397	1.00 1.00 1.00	24.95 25.44 30.93	H H H	C N C
35	MOTA MOTA MOTA	3065 3066 3067 3068	NH1 NH2 N CA	ARG H ARG H PRO H PRO H	188 189	-14.93 -14.13 -14.16 -14.69	7 39 4 41	.526 .270 .714 .684	93.250 94.492 90.705 89.815	$\frac{1.00}{1.00}$	29.87 29.13 49.03 50.12	H H H H	N N C
	ATOM ATOM ATOM	3069 3070 3071	C O CB	PRO H PRO H PRO H	189 189	-14.84 -15.58 -16.04	4 41 2 40 5 40	.144 .532 .378	88.361 87.599 90.432	1.00 1.00 1.00	54.80 54.44 49.09	H H H	0 C
40	ATOM ATOM ATOM	3072 3073 3074 3075	CG CD N	PRO H PRO H SER H SER H	189 190	-16.48 -15.24 -14.15 -14.25	6 42 8 42	.712 .289 .220 .724	90.883 91.522 87.985 86.615	1.00 1.00	45.12 45.67 58.65 59.70	H H H H	С С С
45	MOTA MOTA MOTA	3076 3077 3078	CA C O CB	SER H SER H SER H	190 190	-14.25 -13.72 -14.32 -13.47	1 41 9 41	.670 .395 .041	85.646 84.604 86.453	1.00	60.48	H H H	000
50	ATOM ATOM ATOM ATOM	3079 3080 3081 3082	OG N CA C	SER H GLU H GLU H	191 191	-12.07 -12.57 -11.95 -12.26	3 41 4 40	.870 .101 .053 .765	86.607 85.992 85.196 85.952	1.00	60.08 57.13 55.55 53.43	H H H H	О О О
50	ATOM ATOM ATOM ATOM	3083 3084 3085	O CB CG	GLU H GLU H	191 191	-12.20 -12.05 -10.44 -10.00	8 38 8 40	.705 .691 .259	87.155 85.112 84.207	1.00	54.38 57.09 57.68	H H H	С С
55	ATOM ATOM ATOM	3086 3087 3088	OE2	GLU H GLU H GLU H THR H	191 191	-8.49 -7.77 -8.02	1 40 0 42	.571 .548 .728 .753	84.234 84.309 84.179 85.243	1.00 1.00	73.34 73.73 81.17 50.94	H H H H	O O N
60	ATOM ATOM ATOM ATOM	3089 3090 3091 3092	N CA C O	THR H THR H THR H	192 192	-12.74 -13.13 -12.01 -10.92	7 36 5 35	.498 .608	85.243 85.877 86.408 85.861	1.00 1.00	48.18 44.64 42.83	H H H	О С И
	MOTA ATOM MOTA	3093 3094 3095	CB OG1 CG2	THR H THR H THR H	192 192 192	-13.98 -13.20 -15.16	3 35 8 35 2 36	.681 .335 .508	84.920 83.770 84.481	1.00 1.00 1.00	47.39 52.75 48.68	H H H	С С
65	ATOM ATOM ATOM ATOM	3096 3097 3098 3099	N CA C O	VAL H VAL H VAL H VAL H	193 193	-12.30 -11.34 -12.10 -13.12	6 33 8 32	.884 .959 .663	87.494 88.096 88.285 88.932	1.00	38.76 35.65 30.66 30.71	H H H H	О С И
	ATOM ATOM	3100 3101	CB	VAL H VAL H	193	-10.82 -9.89	1 34	.477	89.469 90.119	1.00	36.30 40.07	H H	C

	ATOM	3102		VAL H		-10.0		35.750	89.253			36.63	H	C
	ATOM ATOM	3103 3104	N CA	THR H		-11.6 -12.2		31.584 30.298	87.698 87.766			27.25 31.84	H H	N C
	ATOM	3105	C	THR H		-11.3	13	29.199	88.150	1.	00	30.56	H	С
5	ATOM	3106	0	THR H		-10.2		29.164	87.619 86.365			35.10	H H	0
	ATOM ATOM	3107 3108	CB OG1	THR H		-12.9 -13.8		29.966 30.962	86.049			34.30 38.36	н	Ö
	ATOM	3109	CG2	THR H		-13.5		28.614	86.345			25.67	H	C
	MOTA	3110	N	CYS H		-11.6		28.313	89.081			27.97	H	И
10	ATOM ATOM	3111 3112	CA C	CYS H		-10.7 -11.2		27.222 25.979	89.424 88.670			28.84 28.13	H H	C
	ATOM	3113	ŏ	CYS H	195	-12.4		25.684	88.593	3 1.	00	31.76	H	0
	ATOM	3114	CB	CYS H		-10.7		26.924	90.934			27.33	H	C
15	ATOM ATOM	3115 3116	SG N	CYS H ASN H		-12.2 -10.3		26.220 25.273	91.586 88.077			35.64 27.69	H H	S N
15	ATOM	3117	CA	ASN H		-10.6		24.077	87.321			29.01	H	C
	MOTA	3118	C	ASN H	196	-10.2		22.871	88.114			26.91	H	C
	ATOM ATOM	3119 3120	O CB	ASN H ASN H		-9.0 -9.9		22.668 24.089	88.365 85.974			23.66 31.51	H H	C
20	ATOM	3121	CG	ASN H		-9.8		25.473	85.388			29.50	H	č
	ATOM	3122		ASN H		-8.7		26.090	85.385			25.64	H	0
	ATOM ATOM	3123 3124	ND2 N	ASN H VAL H		-10.9 -11.2		25.972 22.047	84.887 88.475			34.55 24.98	H H	N
	ATOM	3125	CA	VAL H		-10.9		20.869	89.290			23.37	H	Ĉ
25	MOTA	3126	С	VAL H		-11.3		19.582	88.587			25.84	H	C
	MOTA	3127 3128	O CB	VAL H VAL H		-12.4 -11.8		19.458 20.937	88.041 90.611			29.92 24.03	H H	0
	ATOM ATOM	3129		VAL H		-11.5		19.731	91.490			23.67	H	Č
	MOTA	3130		VAL H		-11.4		22.237	91.355			16.84	H	C
30	MOTA	3131 3132	N CA	ALA H ALA H		-10.4		18.623 17.328	88.607 88.004			28.07 29.46	H H	N C
	ATOM ATOM	3133	CA	ALA H		-10.7		16.237	88.999			29.74	H	Č
	ATOM	3134	0	ALA H	198	-9.3	76	16.314	89.732			28.58	H	0
0.5	MOTA	3135	CB	ALA H HIS H		-9.9 -11.2		17.125 15.224	86.666 89.035			31.83 32.53	H H	C N
35	MOTA MOTA	3136 3137	N CA	HIS H		-11.0		14.078	89.902			33.86	H	C
	ATOM	3138	C	HIS H	199	-11.2	232	12.847	89.032			37.42	H	C
	MOTA	3139	0	HIS H		-12.3 -12.0		12.254 14.034	88.992 90.998			41.76 32.12	H H	C O
40	MOTA MOTA	3140 3141	CB CG	HIS H		-11.9		12.867	91.895			31.49	H	Č
	ATOM	3142	ND1	HIS H	199	-12.9	52	12.004	92.184	11.		37.94	H	N
	ATOM	3143		HIS H		-10.8 -12.5		12.456 11.128	92.632 93.086			25.88 36.27	H H	C
	ATOM ATOM	3144 3145	CE1 NE2	HIS H		-11.2		11.384	93.379			27.41	H	N
45	ATOM	3146	N	PRO H		-10.1		12.430	88.34			38.60	H	N
	MOTA	3147 3148	CA	PRO H PRO H		-10.2 -11.0		11.270 10.047	87.453 87.933	_		39.66 41.49	H H	C
	MOTA MOTA	3148	С 0	PRO H		-11.8		9.493	87.180			43.64	H	Ö
	ATOM	3150	CB	PRO H	200	-8.7	757	10.945	87.218	В 1.		40.63	H	C
50	MOTA	3151	CG CD	PRO H PRO H		-8.0 -8.7		12.314 12.876	87.320 88.552			40.85 40.30	H H	C
	ATOM ATOM	3152 3153	N	ALA H		-10.7		9.620	89.16			41.88	H	N
	MOTA	3154	CA	ALA H	201	-11.3		8.424	89.70	4 1.		41.92	H	C
	MOTA	3155 3156	С	ALA H ALA H		-12.9 -13.4		8.316 7.201	89.60° 89.62			44.22 47.89	H H	C O
55	ATOM ATOM	3157	O CB	ALA H		-10.9		8.210	91.13			40.12	H	č
	MOTA	3158	N	SER H	202	-13.6	502	9.448	89.483	3 1.		42.09	H	И
	ATOM	3159	CA	SER H SER H		-15.0 -15.4		9.475 10.267	89.37			40.45 38.79	H H	C
60	ATOM ATOM	3160 3161	C O	SER H		-16.5		10.725	87.93			39.19	H	Ö
	MOTA	3162	CB	SER H	202	-15.6	582	10.171	90.59	9 1	.00	42.08	H	С
	ATOM	3163	OG	SER H		-15.3		11.576	90.61 87.24			36.22 36.91	H H	N
	MOTA MOTA	3164 3165	N CA	SER H SER H		-14.4 -14.0		10.429 11.176	86.00			40.54	H	C
65	MOTA	3166	C	SER H	203	-15.2	268	12.515	86.25	0 1	.00	38.44	H	C
	ATOM	3167	O	SER H		-16.3		12.919	85.49 85.00			40.82	H H	0 C
	ATOM ATOM	3168 3169	CB OG	SER H SER H		-15.4 -14.9		10.389 9.087	84.87			47.70	H	Ö
	ATOM	3170	N	THR H		-14.		13.222	87.28			35.03	H	N

	MOTA MOTA MOTA MOTA	3171 3172 3173 3174	CA C O CB	THR H 204 THR H 204 THR H 204 THR H 204		-15.393 -14.544 -13.329 -15.537	14.530 15.686 15.696 14.741	87.585 87.034 87.168 89.112	1.00 34.07 1.00 33.24 1.00 35.71 1.00 33.83	H	H H H	0000
5	ATOM ATOM ATOM ATOM ATOM	3175 3176 3177 3178 3179		THR H 204 THR H 204 ALA H 205 ALA H 205 ALA H 205		-16.255 -16.312 -15.204 -14.534 -15.453	13.646 15.999 16.653 17.840 18.995	89.687 89.393 86.407 85.880 86.202	1.00 35.82 1.00 34.28 1.00 34.41 1.00 38.94 1.00 40.07	I 1 1	H H H H H	0 0 0 0
10	ATOM ATOM ATOM ATOM ATOM	3180 3181 3182 3183 3184	O CB N CA	ALA H 205 ALA H 205 VAL H 206 VAL H 206 VAL H 206		-16.600 -14.322 -14.967 -15.767 -14.996	19.055 17.753 19.902 21.053 22.353	85.724 84.382 87.036 87.420 87.222	1.00 42.36 1.00 39.13 1.00 39.65 1.00 37.30 1.00 37.10]]]	H H H H H	0 C N C
15	ATOM ATOM ATOM ATOM ATOM	3185 3186 3187 3188 3189	O CB CG1	VAL H 206 VAL H 206 VAL H 206 VAL H 206 ASP H 207		-13.831 -16.186 -16.886 -17.098 -15.626	22.454 20.947 22.189 19.750 23.335	87.600 88.923 89.369 89.125 86.601	1.00 40.56 1.00 36.53 1.00 32.26 1.00 38.59 1.00 35.38	1	H H H H H	и С С
20	ATOM ATOM ATOM ATOM ATOM	3190 3191 3192 3193 3194	CA C O CB CG	ASP H 207 ASP H 207 ASP H 207 ASP H 207 ASP H 207		-14.990 -15.871 -17.040 -14.957 -14.115	24.640 25.557 25.744 25.124 24.246	86.473 87.308 86.999 85.019 84.144	1.00 37.03 1.00 35.92 1.00 39.88 1.00 37.71 1.00 39.42		H H H H H	00000
25	ATOM ATOM ATOM ATOM ATOM	3195 3196 3197 3198 3199	OD1	ASP H 207 ASP H 207 LYS H 208 LYS H 208 LYS H 208		-12.921 -14.656 -15.319 -16.095 -15.655	24.093 23.689 26.132 27.022 28.476	84.439 83.162 88.368 89.244 89.192	1.00 35.89 1.00 48.31 1.00 39.14 1.00 36.68 1.00 35.58		H H H H H	С О О
30	ATOM ATOM ATOM ATOM ATOM	3200 3201 3202 3203 3204	O CB CG CD CE	LYS H 208 LYS H 208 LYS H 208 LYS H 208 LYS H 208		-14.567 -16.005 -16.852 -17.728 -18.601	28.829 26.512 27.300 26.320 25.501	89.650 90.697 91.664 92.414 91.481	1.00 34.67 1.00 36.45 1.00 36.28 1.00 44.47 1.00 35.64	•	H H H H H	00000
35	ATOM ATOM ATOM ATOM	3205 3206 3207 3208 3209	NZ N CA C	LYS H 208 LYS H 209 LYS H 209 LYS H 209 LYS H 209		-19.805 -16.488 -16.140 -16.346 -17.343	26.271 29.339 30.757 31.368 31.090	91.120 88.609 88.547 89.952 90.597	1.00 51.91 1.00 35.32 1.00 38.07 1.00 36.98 1.00 35.14		H H H H H	N C C O
40	MOTA MOTA MOTA MOTA MOTA MOTA	3210 3211 3212 3213 3214	CB CG CD CE NZ	LYS H 209 LYS H 209 LYS H 209 LYS H 209 LYS H 209	! !	-17.057 -16.780 -18.026 -18.408 -19.364	31.497 32.990 33.806 33.666 34.788	87.562 87.526 87.127 85.683 85.268	1.00 38.43 1.00 38.76 1.00 42.22 1.00 47.62 1.00 49.98		H H H H H	C C C C
45	ATOM ATOM ATOM ATOM ATOM	3215 3216 3217 3218 3219	N CA C O CB	ILE H 210 ILE H 210 ILE H 210 ILE H 210 ILE H 210) } }	-15.398 -15.507 -16.341 -15.920 -14.079	32.176 32.814 34.106 34.951 33.178	90.408 91.720 91.545 90.751 92.307	1.00 34.13 1.00 34.36 1.00 36.70 1.00 36.92 1.00 30.96		Н Н Н Н Н	О С С
50	ATOM ATOM ATOM ATOM TER	3220 3221 3222 3223 3224	CG1 CG2 CD1	ILE H 210 ILE H 210 ILE H 210 ILE H 210 ILE H 210)) })	-13.188 -14.210 -13.895 -17.412	31.942 33.676 30.740 34.268	92.372 93.754 93.031 92.175	1.00 25.29 1.00 19.07 1.00 10.95 1.00 42.73		н н н н	0000
55	ATOM ATOM ATOM ATOM ATOM	3225 3226 3227 3228 3229	N CA C O CB	SER I SER I SER I SER I SER I	7 7 7	14.834 16.214 16.170 15.109 17.091	-3.003 -3.341 -3.928 -3.952 -2.097	64.812 65.271 66.678 67.298 65.247	1.00 41.42 1.00 43.47 1.00 40.84 1.00 48.28 1.00 40.12		I I I I	о С О
60	MOTA MOTA MOTA MOTA MOTA	3230 3231 3232 3233 3234	OG N CA C	SER I THR I STHR I STHR I		18.449 17.309 17.384 18.542 19.375	-2.441 -4.405 -5.002 -4.314 -3.666	65.503 67.177 68.513 69.246 68.616	1.00 44.19 1.00 34.11 1.00 29.26 1.00 26.30 1.00 24.38		I I I I	0 0
65	ATOM ATOM ATOM ATOM ATOM	3235 3236 3237 3238 3239	CB OG: CG: N	THR I STATE I	3 3 3 9	17.703 18.969 16.606 18.512 19.568	-6.516 -6.713 -7.253 -4.390 -3.787	68.458 67.790 67.702 70.571 71.402	1.00 28.98 1.00 27.25 1.00 36.34 1.00 21.02 1.00 23.18		I I I I	С О С С

	ATOM	3240	C ALA I	9	20.950	-4.314	70.951	1.00 24.18	I	С
	ATOM	3241	O ALA I	9	21.937	-3.569	70.892	1.00 20.92	Ī	ŏ
	MOTA	3242	CB ALA I	9	19.330	-4.175	72.849	1.00 21.47	I	C
	MOTA	3243	N FER I	10	21.013	-5.611	70.655	1.00 24.97	I	N
5	ATOM	3244	CA LEU I	10	22.307	-6.193	70.237	1.00 26.56	Ī	C
	ATOM	3245	C LEU I	10	22.751	-5.658	68.891	1.00 25.43	I	C
	MOTA MOTA	3246 3247	O LEU I CB LEU I	10 10	23.914 22.221	-5.335 -7.732	68.675 70.202	1.00 19.53 1.00 28.67	I	C O
	ATOM	3248	CG LEU I	10	23.461	-8.495	69.682	1.00 26.07	I	C
10	MOTA	3249	CD1 LEU I	10	24.700	-8.085	70.501	1.00 20.03	I	č
.0	ATOM	3250	CD2 LEU I	10	23.224	-9.990	69.854	1.00 24.04	Ī	Č
	MOTA	3251	N ARG I	11	21.798	-5.499	67.962	1.00 24.80	Ī	N
	ATOM	3252	CA ARG I	11	22.203	-4.971	66.672	1.00 27.70	I	С
	MOTA	3253	C ARG I	11	22.757	-3.549	66.827	1.00 26.39	I	C
15	ATOM	3254	O ARG I	11	23.758	-3.173	66.224	1.00 21.33	I	0
	ATOM	3255	CB ARG I	11	20.991	-4.942	65.706	1.00 29.11	I	C
	MOTA	3256 3257	CG ARG I	11 11	21.336 20.129	-4.327 -4.428	64.341 63.388	1.00 37.83 1.00 59.35	I	C
	MOTA MOTA	3258	CD ARG I NE ARG I	11	19.798	-4.426 -5.830	63.125	1.00 39.33	I	И
20	MOTA	3259	CZ ARG I	11	18.838	-6.243	62.294	1.00 87.85	Î	C
	ATOM	3260	NH1 ARG I	11	18.628	-7.546	62.116	1.00 88.83	Ī	Ŋ
	ATOM	3261	NH2 ARG I	11	18.078	-5.355	61.640	1.00 93.94	I	N
	ATOM	3262	N GLU I	12	22.046	-2.733	67.605	1.00 26.89	I	N
	MOTA	3263	CA GLU I	12	22.466	-1.355	67.799	1.00 29.03	I	C
25	MOTA	3264	C GLU I	12	23.851	-1.358	68.464	1.00 28.58	Ĭ	C
	ATOM	3265	O GLU I	12	24.695	-0.578	68.088	1.00 30.04	Ī	0
	ATOM ATOM	3266 3267	CB GLU I	12 12	$21.448 \\ 20.044$	-0.564 -0.379	68.676 68.020	1.00 31.80 1.00 32.87	I I	C
	ATOM	3268	CD GLU I	12	20.170	0.154	66.634	1.00 32.07	I	č
30	ATOM	3269	OE1 GLU I	12	20.725	1.266	66.479	1.00 53.05	Î	ŏ
	ATOM	3270	OE2 GLU I	12	19.739	-0.539	65.689	1.00 56.29	Ī	ŏ
	MOTA	3271	N LEU I	13	24.085	-2.252	69.415	1.00 26.72	I	N
	MOTA	3272	CA LEU I	13	25.411	-2.267	70.083	1.00 25.15	Ţ	C
	MOTA	3273	C LEU I	13	26.478	-2.630	69.053	1.00 23.94	I	C
35	MOTA	3274	O LEU I	13	27.532	-2.002	68.968	1.00 23.25	Ī	0
	MOTA	3275	CB LEU I	13	25.430	-3.257	71.250	1.00 19.59	Ĭ	C
	ATOM ATOM	3276 3277	CG LEU I CD1 LEU I	13 13	26.822 27.527	-3.465 -2.134	71.893 72.269	1.00 21.18 1.00 17.02	I	C
	ATOM	3277	CD1 LEU I	13	26.609	-2.154 -4.357	73.128	1.00 17.02	I	Č
40	ATOM	3279	N ILE I	14	26.169	-3.614	68.219	1.00 22.17	Ī	N
	ATOM	3280	CA ILE I	$\overline{14}$	27.151	-3.987	67.195	1.00 22.12	Ī	C
	MOTA	3281	C ILE I	14	27.462	-2.824	66.272	1.00 24.29	I	C
	MOTA	3282	O ILE I	14	28.630	-2.545	65.946	1.00 20.50	I	0
	MOTA	3283	CB ILE I	14	26.636	-5.195	66.369	1.00 22.54	I	C
45	ATOM	3284	CG1 ILE I	14	26.703	-6.427	67.261	1.00 21.93	Ï	C
	ATOM ATOM	3285 3286	CG2 ILE I	14 14	27.478 25.918	-5.405 -7.632	65.142 66.756	1.00 25.41 1.00 8.06	I I	C
	ATOM	3287	N GLU I	15	26.418	-2.123	65.839	1.00 21.20	Ī	И
	ATOM	3288	CA GLU I		26.638	-0.996	64.931	1.00 25.50	I	Ĉ
50	ATOM	3289	C GLU I	15	27.501	0.044	65.592	1.00 28.78	I	C
	MOTA	3290	O GLU I	15	28.384	0.635	64.951	1.00 27.98	I	0
	MOTA	3291	CB GLU I		25.295	-0.372	64.555	1.00 27.43	I	C
	MOTA	3292	CG GLU I	15	24.551	-1.225	63.545	1.00 42.04	Ξ	C
	ATOM	3293	CD GLU I		23.135	-0.746	63.339	1.00 54.77	I	C
55	ATOM	3294 3295	OE1 GLU I OE2 GLU I		22.369 22.795	$-1.442 \\ 0.323$	62.633 63.896	1.00 58.59 1.00 59.54	I	0
	ATOM ATOM	3296	N GLU I		27.273	0.323	66.892	1.00 25.33	I	И
	ATOM	3297	CA GLU I		28.104	1.315	67.541	1.00 26.19	Ĭ	C
	ATOM	3298	C GLU I		29.575	0.871	67.615	1.00 28.29	I	Č
60	ATOM	3299	O GLU I		30.478	1.680	67.399	1.00 29.14	I	0
	MOTA	3300	CB GLU I	16	27.565	1.649	68.961	1.00 26.31	I	C
	MOTA	3301	CG GLU I		28.461	2.581	69.830	1.00 20.48	I	С
	ATOM	3302	CD GLU I		28.623	3.961	69.264	1.00 32.83	Ī	C
C.	ATOM	3303	OE1 GLU I		27.908	4.295	68.291	1.00 40.64	I	0
65	ATOM	3304	OE2 GLU I		29.472	4.734 -0.397	69.788 67.929	1.00 43.53 1.00 28.42	I	O M
	ATOM ATOM	3305 3306	N LEU I CA LEU I		29.825 31.221	-0.397	68.009	1.00 28.42	I	N C
	ATOM	3307	C LEU I		31.904	-0.791	66.626	1.00 28.23	Ī	Č
	ATOM	3308	O LEU I		33.088	-0.550	66.527	1.00 27.73	Ī	ŏ

	n	2220	CD 7 DII 7	1 17	21 071	2 277	CO 501	1 00 26 55	_	C
	ATOM	3309	CB LEU I	17	31.271	-2.277	68.521 69.921	1.00 26.55	I	C
	ATOM	3310	CG LEU I	17 17	30.675 30.866	-2.476 -3.925	70.342	1.00 22.72 1.00 5.48	I	C
	ATOM ATOM	3311 3312	CD1 LEU I CD2 LEU I	17	31.304	-3.925 -1.516	70.342	1.00 5.48	ī	Č
5	ATOM	3313	N VAL I	18	31.121	-0.991	65.570	1.00 28.82	Ī	Ŋ
3	ATOM	3314	CA VAL I	18	31.638	-0.900	64.202	1.00 26.07	Ī	Ĉ
	ATOM	3315	C VAL I	18	32.001	0.574	64.016	1.00 27.53	Ī	Č
	ATOM	3316	O VAL I	18	33.103	0.905	63.597	1.00 28.33	I	Ó
	ATOM	3317	CB VAL I	18	30.542	-1.316	63.171	1.00 26.01	I	C
10	ATOM	3318	CG1 VAL I	18	30.970	-0.908	61.741	1.00 23.17	I	C
	ATOM	3319	CG2 VAL I	18	30.355	-2.841	63.203	1.00 25.17	I	C
	ATOM	3320	N ASN I	19	31.090	1.462	64.389	1.00 26.75	I	N
	ATOM	3321	CA ASN I	19	31.322	2.900	64.248	1.00 29.23	I	С
	ATOM	3322	C ASN I	19	32.602	3.414	64.906	1.00 32.04	I	С
15	ATOM	3323	O ASN I	19	33.333	4.206	64.313	1.00 35.66	I	0
	MOTA	3324	CB ASN I	19	30.153	3.700	64.826	1.00 25.97	I	C
	ATOM	3325	CG ASN I	19	28.965	3.675	63.923	1.00 30.76	Ī	C
	ATOM	3326	OD1 ASN I	19	29.064	3.142	62.834	1.00 41.11	I	0
	MOTA	3327	ND2 ASN I	19	27.830	4.230	64.362	1.00 36.69	Ī	N
20	ATOM	3328	N ILE I	20	32.881	2.953	66.120	1.00 33.02	I I	N
	ATOM	3329	CA ILE I	20	34.051	3.465	66.808	1.00 28.41 1.00 31.21	I	C
	ATOM	3330	C ILE I	20	35.341	$2.745 \\ 3.188$	66.514 66.974	1.00 31.21	Ī	Ö
	MOTA	3331 3332	O ILE I CB ILE I	20 20	36.404 33.808	3.522	68.353	1.00 30.21	I	C
25	ATOM	3332 3333	CB ILE I CG1 ILE I	20	33.570	$\frac{3.522}{2.114}$	68.912	1.00 27.04	Ī	č
20	ATOM ATOM	3334	CG2 ILE I	20	32.621	4.425	68.633	1.00 26.74	Ī	č
	ATOM	3335	CD1 ILE I	20	33.456	2.091	70.446	1.00 22.08	Ī	č
	MOTA	3336	N THR I	21	35.295	1.659	65.765	1.00 28.97	Ī	N
	ATOM	3337	CA THR I	21	36.542	0.961	65.468	1.00 37.12	I	C
30	ATOM	3338	C THR I	21	37.026	1.176	64.016	1.00 43.61	I	С
00	ATOM	3339	O THR I	21	38.030	0.547	63.631	1.00 41.22	I	0
	ATOM	3340	CB THR I	21	36.422	-0.551	65.744	1.00 34.69	I	С
	ATOM	3341	OG1 THR I	21	35.269	-1.073	65.083	1.00 32.38	I	0
	ATOM	3342	CG2 THR I	21	36.270	-0.797	67.257	1.00 40.35	I	C
35	ATOM	3343	OXT THR I	21	36.409	1.993	63.291	1.00 55.16	I	0
	MOTA	3344	N ALA I	26	43.997	8.557	65.207	1.00 69.33	I	N
	MOTA	3345	CA ALA I	26	44.625	7.777	66.323	1.00 68.31	I	C
	ATOM	3346	C ALA I	26	43.714	6.622	66.754	1.00 64.43	I	C
	ATOM	3347	O ALA I	26	42.506	6.636	66.515	1.00 62.57	Ī	0
40	MOTA	3348	CB ALA I	26	44.911	8.711	67.544	1.00 68.87	I	C
	ATOM	3349	N PRO I	27	44.291	5.604	67.401	1.00 61.86	I	N
	ATOM	3350	CA PRO I	27	43.464	4.466	67.845	1.00 58.39	Ţ	C
	ATOM	3351	C PRO I	27	42.411	4.863	68.889	1.00 52.46	I I	C
45	MOTA	3352 3353	O PRO I	27 27	42.542 44.481	5.887 3.486	69.578 68.436	1.00 50.21 1.00 60.58	Ī	C
45	ATOM	3354	CB PRO I CG PRO I	27	45.851	3.951	67.829	1.00 64.15	Ī	č
	MOTA MOTA	3355	CD PRO I	27	45.700	5.452	67.814	1.00 61.04	Ï	č
	ATOM	3356	N LEU I	28	41.371	4.040	68.988	1.00 44.59	Ī	N
	ATOM	3357	CA LEU I	28	40.291	4.236	69.953	1.00 38.35	I	Ĉ
50	ATOM	3358	C LEU I	28	40.815	4.411	71.393	1.00 36.55	I	C
•	MOTA	3359	O LEU I	28	41.470	3.515	71.932	1.00 33.53	I	0
	ATOM	3360	CB LEU I	28	39.361	3.039	69.898	1.00 33.20	I	С
	ATOM	3361	CG LEU I	28	38.138	3.175	70.774	1.00 34.45	I	C
	MOTA	3362	CD1 LEU I	28	37.435	4.451	70.368	1.00 31.50	I	C
55	MOTA	3363	CD2 LEU I	28	37.243	1.936	70.659	1.00 37.17	I	C
	MOTA	3364	N CYS I	29	40.517	5.546	72.026	1.00 35.16	I	N
	MOTA	3365	CA CYS I	29	40.968	5.823	73.401	1.00 36.16	I	C
	MOTA	3366	C CYS I	29	42.480	5.581	73.512	1.00 38.10	I	C
	MOTA	3367	O · CYS I	29	43.005	5.144	74.564	1.00 39.22	I	0
60	MOTA	3368	CB CYS I	29	40.268	4.916	74.411	1.00 35.11	I	С
	MOTA	3369	SG CYS I	29	38.447	4.968	74.417	1.00 37.70	I	S
	MOTA	3370	N ASN I	30	43.169	5.894	72.425	1.00 40.14	I	N
	MOTA	3371	CA ASN I	30	44.602	5.679	72.333	1.00 39.35	I	C
	MOTA	3372	C ASN I	30	45.329	5.949	73.624	1.00 36.93	I	C
65	MOTA	3373	O ASN I	30	45.210	7.017	74.208	1.00 32.09	I	0
	MOTA	3374	CB ASN I	30	45.207	6.547	71.244	1.00 43.64	I	C
	MOTA	3375	CG ASN I	30	46.711	6.362	71.155	1.00 55.59	Ī	C
	MOTA	3376	OD1 ASN I	30	47.194	5.233	70.959	1.00 62.75	I	0
	MOTA	3377	ND2 ASN I	30	47.462	7.453	71.337	1.00 51.82	I	N

	 ATOM	3378	N	GLY I	31	46.074	4.952	74.075	1.00 38.03	I	N
	MOTA	3379	CA	GLY I	31	46.821	5.085	75.306	1.00 39.13	I	C
	ATOM	3380 3381	C O	GLY I GLY I	31 31	46.164 46.842	4.380 4.002	76.488 77.439	1.00 39.21 1.00 43.77	I I	C
5	MOTA ATOM	3382	И	SER I	32	44.851	4.173	76.433	1.00 34.47	I	N
Ū	ATOM	3383	CA	SER I	32	44.168	3.551	77.558	1.00 32.83	I	C
	MOTA	3384	C	SER I	32	44.218	2.038	77.452	1.00 29.83	I	C
	ATOM	3385	O	SER I SER I	32 32	44.077 42.691	$1.493 \\ 4.023$	76.377 77.612	1.00 31.08 1.00 31.53	I I	C
10	MOTA MOTA	3386 3387	CB OG	SER I	32	42.650	5.395	77.934	1.00 34.76	Ï	ŏ
10	ATOM	3388	N	MET I	33	44.379	1.376	78.587	1.00 27.38	I	N
	ATOM	3389	CA	MET I	33	44.446	-0.073	78.662	1.00 24.36	I	C
	ATOM	3390	C	MET I	33	43.337	-0.507 0.204	79.639 80.584	1.00 25.82 1.00 26.49	I I	C
15	ATOM ATOM	3391 3392	O CB	MET I MET I	33 33	43.031 45.777	-0.501	79.265	1.00 26.43	Ī	č
13	ATOM	3393	CG	MET I	33	46.998	0.144	78.599	1.00 24.81	I	С
	MOTA	3394	SD	MET I	33	47.119	-0.525	76.995	1.00 42.00	I	S
	ATOM	3395	CE	MET I	33	47.786 42.805	-2.194 -1.705	77.366 79.425	1.00 17.53 1.00 21.73	I I	C N
20	ATOM ATOM	3396 3397	N CA	VAL I VAL I	34 34	42.805	-2.252	80.243	1.00 21.73	Ī	Ĉ
20	ATOM	3398	C	VAL I	34	42.041	-3.740	80.451	1.00 19.97	I	С
	MOTA	3399	0	VAL I	34	42.957	-4.311	79.872	1.00 21.24	Ī	0
	MOTA	3400	CB	VAL I	34	40.355	-2.169 -0.700	79.540 79.385	1.00 17.84 1.00 18.18	I	C
25	ATOM ATOM	3401 3402	CG1	VAL I	34 34	39.972 40.407	-2.897	78.187	1.00 13.18	Ī	č
25	ATOM	3403	N N	TRP I	35	41.232	-4.380	81.264	1.00 20.73	I	N
	ATOM	3404	CA	TRP I	35	41.500	-5.774	81.451	1.00 23.82	I	C
	ATOM	3405	C	TRP I	35	40.614	-6.606 -6.168	80.556 80.060	1.00 22.12 1.00 25.30	I I	С О
30	MOTA MOTA	3406 3407	O CB	TRP I TRP I	35 35	39.561 41.341	-6.148	82.905	1.00 25.50	Ï	č
30	ATOM	3408	CG	TRP I	35	40.032	-5.862	83.480	1.00 27.26	I	C
	ATOM	3409	CD1		35	38.843	-6.512	83.204	1.00 25.09	I	C
	MOTA	3410	CD2		35	39.775	-4.979	84.581 84.106	1.00 28.63 1.00 29.68	I	C N
25	MOTA MOTA	3411 3412	NE1 CE2		35 35	37.854 38.402	-6.089 -5.145	84.106	1.00 29.00	Ī	C
35	ATOM	3413	CE3		35	40.568	-4.070	85.298	1.00 27.26	Ī	C
	MOTA	3414	CZ2		35	37.820	-4.434	85.992	1.00 29.43	I	C
	MOTA	3415	CZ3		35	39.987	-3.368	86.342	1.00 33.13	I I	C
40	MOTA	3416 3417	CH2	TRP I SER I	35 36	38.623 41.057	-3.553 -7.830	86.683 80.328	1.00 30.81 1.00 22.08	I	N
40	ATOM ATOM	3418	N CA	SER I	36	40.306	-8.723	79.463	1.00 22.46	I	C
	MOTA	3419	C	SER I	36	39.083	-9.330	80.132	1.00 22.65	I	C
	ATOM	3420	0	SER I	36	39.001	-9.447	81.350	1.00 24.38 1.00 21.35	I	C
45	ATOM ATOM	3421 3422	CB OG	SER I SER I	36 36	41.211 41.750	-9.882 -10.425	79.041 80.244	1.00 21.35	Ī	Ö
45	ATOM	3423	N	ILE I	37	38.119	-9.702	79.315	1.00 22.95	Ī	N
	ATOM	3424	CA	ILE I	37		-10.426	79.841	1.00 25.36	I	C
	ATOM	3425	C	ILE I	37		-11.897	79.613	1.00 26.84 1.00 29.27	I I	C
50	MOTA MOTA	3426 3427	O CB	ILE I ILE I	37 37		-12.177 -10.086	78.737 79.094	1.00 25.27	Ī	C
50	ATOM	3428		1 ILE I	37	35.923	-9.994	77.620	1.00 34.62	Ī	С
	MOTA	3429	CG2	S IPE I	37	35.237	-8.686	79.517	1.00 30.64	I	C
	MOTA	3430		1 ILE I	37	34.699	-9.222	76.962	1.00 30.59	I	C N
EE	ATOM	3431	N	ASN I ASN I	38 38		-12.821 -14.232	80.361 80.225	1.00 30.34 1.00 34.97	I	G 74
55	ATOM ATOM	3432 3433	CA C	ASN I	38		-15.281	79.957	1.00 35.10	Ī	č
	MOTA	3434	ŏ	ASN I	38	36.406	-16.244	79.188	1.00 37.36	I	0
	MOTA	3435	СВ	ASN I	38		-14.611	81.512	1.00 39.38	I	C
00	MOTA	3436	CG		38 38		-13.645 -13.509	81.796 80.975	1.00 50.58 1.00 56.26	I	C O
60	MOTA MOTA	3437 3438		1 ASN I 2 ASN I	38	39.173	-13.305	82.949	1.00 56.07	Ī	N
	ATOM	3439	N	LEU I	39	35.064	-15.116	80.589	1.00 32.58	I	N
	MOTA	3440	CA	LEU I	39	34.009	-16.109	80.469	1.00 30.50	I	C
0.5	ATOM	3441	C	LEU I	39		-15.725	79.516 79.226	1.00 30.46 1.00 29.70	I	C 0
65	ATOM ATOM	3442 3443	O CB	LEU I	39 39		-14.539 -16.349	81.840	1.00 29.70	Ī	C
	ATOM	3444	CG		39		-16.668	82.986	1.00 35.60	I	С
	MOTA	3445	CD:	1 LEU I	39	33.523	-16.640	84.316	1.00 45.44	I	C
	ATOM	3446	CD:	2 LEU I	39	34.963	-18.037	82.724	1.00 39.91	I	С

	ATOM	3447	N	THR I	40	32.215 ~	16 720	79.028	1 00 20 11		
	ATOM	3448	CA	THR I		31.090 -			1.00 32.11	I	N
	ATOM	3449	C	THR I				78.137	1.00 36.92	I	C
	ATOM	3450	Ö			29.935 ~		78.953	1.00 36.68	I	С
5	MOTA			THR I		29.227 -		78.508	1.00 41.36	I	0
3		3451	CB	THR I		30.565 -		77.503	1.00 38.87	I	С
	MOTA	3452	OG1			30.405 ~		78.536	1.00 44.51	I	0
	MOTA	3453	CG2			31.520 ~	18.325	76.432	1.00 38.41	I	Č
	ATOM	3454	\mathbf{N}	ALA I	41	29.757 ~	-16.503	80.145	1.00 34.46	I	N
	MOTA	3455	CA	ALA I	41		16.071	81.033	1.00 35.79	Ī	C
10	MOTA	3456	C	ALA I			14.655	81.599	1.00 33.79		
	ATOM	3457	ŏ	ALA I		30.012 -	1/ 202			I	C
	MOTA	3458	СВ	ALA I				82.031	1.00 31.37	I	0
	MOTA					28.522 ~	17.069	82.189	1.00 37.14	I	C
		3459	N	GLY I		27.831 -		81.582	1.00 28.18	I	N
4.5	ATOM	3460	CA	GLY I		27.864 ~		82.100	1.00 26.16	I	С
15	ATOM	3461	С	GLY I		28.773 ~	11.607	81.290	1.00 25.89	I	C
	MOTA	3462	0	GLY I	42	29.338 ~	10.675	81.811	1.00 23.85	Ī	ŏ
	MOTA	3463	N	MET I	43		11.910	80.003	1.00 27.06	Ī	N
	ATOM	3464	CA	MET I	43		11.125	79.167	1.00 26.49		
	MOTA	3465	C	MET I			-9.613	79.089		I	C
20	ATOM	3466	ŏ	MET I					1.00 25.63	I	C
20	ATOM	3467					-8.806	79.072	1.00 24.70	I	0
			CB	MET I		29.863 -		77.726	1.00 25.09	1	C
	ATOM	3468	CG	MET I			10.946	76.823	1.00 31.87	I	C
	ATOM	3469	SD	MET I			11.571	75.102	1.00 50.36	I	S
	ATOM	3470	CE	MET I	43	29.431 -	10.913	74.580	1.00 49.83	Ī	č
25	MOTA	3471	N	TYR I	44		-9.239	78.967	1.00 23.56	Ī	N
	ATOM	3472	CA	TYR I	44		-7.799	78.843	1.00 21.86	Ī	
	MOTA	3473	С	TYR I	44		-7.096	80.124			C
	ATOM	3474	ŏ	TYR I	44		-6.028	_	1.00 19.99	I	C
	ATOM	3475	CB	TYR I	44			80.088	1.00 23.39	I	0
30	ATOM						-7.549	78.655	1.00 23.84	I	С
30		3476	CG	TYR I	44		-8.026	77.350	1.00 25.71	I	C
	ATOM	3477	CD1	-		26.263	-7.427	76.154	1.00 25.80	I	C
	ATOM	3478	CD2	_	44	24.952	-9.061	77.315	1.00 27.28	I	C
	ATOM	3479	CE1	TYR I	44	25.733	-7.842	74.947	1.00 27.01	Ī	Č
	MOTA	3480	CE2	TYR I	44	-	-9.498	76.100	1.00 22.75	Ī	Ğ
35	ATOM	3481	CZ	TYR I	44		-8.867	74.922	1.00 25.01		
	ATOM	3482	OH	TYR I	44		-9.249			I	C
	ATOM	3483	N	CYS I	45			73.690	1.00 22.75	I	0
	ATOM						-7.724	81.245	1.00 17.09	I	N
		3484	CA	CYS I	45		-7.120	82.510	1.00 17.82	I	С
40	ATOM	3485	С	CYS I	45		-7.059	82.631	1.00 16.25	I	C
40	ATOM	3486	0	CYS I	45	30.515	-6.076	83.113	1.00 21.21	I	ō
	ATOM	3487	$^{\mathtt{CB}}$	CYS I	45	27.928	-7.903	83.689	1.00 15.24	Ī	č
	ATOM	3488	SG	CYS I	45		-7.936	83.883	1.00 20.73	Ī	S
	ATOM	3489	N	ALA I	46		-8.135	82.267	1.00 18.66		
	ATOM	3490	CA	ALA I	46		-8.093	82.348		Ī	N
45	ATOM	3491	C	ALA I	46				1.00 17.71	I	C
.0	ATOM	3492					-7.009	81.432	1.00 19.91	I	C
			0	ALA I	46		-6.368	81.794	1.00 20.23	I	0
	ATOM	3493	CB	ALA I	46		-9.518	81.983	1.00 15.35	I	C
	ATOM	3494	N	ALA I	47	32.200	-6.861	80.216	1.00 23.62	I	N
	ATOM	3495	ca	ALA I	47	32.684	-5.845	79.286	1.00 22.12	I	C
50	ATOM	3496	C	ALA I	47		-4.476	79.896	1.00 21.78	Ī	č
	ATOM	3497	0	ALA I	47		-3.602	79.813	1.00 18.94		Č
	ATOM	3498	CB	ALA I	47		-5.952			I	0
	ATOM	3499	N	LEU I	48			77.927	1.00 18.65	I	C
	ATOM	3500	CA				-4.290	80.481	1.00 21.70	I	N
EE				LEU I	48	31.014 -	-2.995	81.145	1.00 21.03	I	C
55	ATOM	3501	C	LEU I	48		-2.745	82.292	1.00 21.18	I	C
	MOTA	3502	0	LEU I	48	32.589 -	-1.653	82.438	1.00 16.61	I	0
	MOTA	3503	$^{\mathrm{CB}}$	LEU I	48	29.582 -	-3.040	81.727	1.00 21.70	I	Č
	ATOM	3504	CG	LEU I	48		-1.822	82.642	1.00 13.05	Ī	C
	MOTA	3505	CD1	LEU I	48		-0.520	81.854	1.00 9.05	Ī	
60	ATOM	3506		LEU I	48		-2.056	83.235			C
	ATOM	3507	N	GLU I	49				1.00 15.13	I	C
	ATOM	3508	CA				-3.767	83.108	1.00 20.18	I	N
				GLU I	49		-3.663	84.258	1.00 19.63	I	C
	MOTA	3509	C	GLU I	49		-3.275	83.786	1.00 20.55	I	C
05	ATOM	3510	0	GLU I	49		-2.512	84.439	1.00 26.90	I	Ō
65	ATOM	3511	CB	GLU I	49	33.226 -	-5.012	85.031	1.00 17.04	I	Č
	MOTA	3512	CG	GLU I	49	31.984 -	-5.184	85.968	1.00 20.14	Ī	Č
	MOTA	3513	CD	GLU I	49		-4.123	87.040	1.00 22.52	Ī	G
	MOTA	3514		GLU I	49		-4.160	87.843	1.00 21.57	I	
	ATOM	3515		GLU I	49		-3.244	87.073			0
			~ — <i></i>			J.L. 0/0	J.44	07.073	1.00 10.29	I	0

	ATOM	3516	N	SER I	50	34.973	-3.759	82.611	1.00 18.39 1.00 18.04	I		N C
	MOTA	3517	CA	SER I	50	36.307	-3.428 -2.022	82.082 81.492	1.00 18.04	I		C
	MOTA	3518	C	SER I	50	36.368 37.235	-2.022 -1.228	81.848	1.00 18.38	I		õ
-	MOTA	3519	0	SER I SER I	50 50	36.684	-4.412	80.956	1.00 16.41	Ĩ		č
5	MOTA	3520 3521	CB OG	SER I SER I	50	37.988	-4.119	80.518	1.00 14.68	Ī		Ō
	MOTA MOTA	3521	N	LEU I	51	35.399	-1.714	80.618	1.00 19.34	I		N
	ATOM	3523	CA	LEU I	51	35.374	-0.436	79.913	1.00 17.71	I		C
	ATOM	3524	C	LEU I	51	34.994	0.798	80.754	1.00 19.46	I	:	C
10	ATOM	3525	Ö	LEU I	51	35.371	1.923	80.412	1.00 21.21]	•	0
10	ATOM	3526	СВ	LEU I	51	34.421	-0.552	78.686	1.00 16.17]		С
	ATOM	3527	CG	LEU I	51	35.014	-1.455	77.585	1.00 11.29]		C
	ATOM	3528		LEU I	51	34.002	-1.641	76.483	1.00 7.04	3		С
	ATOM	3529	CD2		51	36.271	-0.787	76.972	1.00 14.57]		С
15	ATOM	3530	N	ILE I	52	34.326	0.582	81.875	1.00 18.04]		N
	ATOM	3531	CA	ILE I	52	33.927	1.732	82.725	1.00 16.93			C
•	MOTA	3532	С	ILE I	52	35.161	2.394	83.304	1.00 17.40		[C
	MOTA	3533	0	ILE I	52	35.133	3.574	83.726	1.00 22.32		[0
	ATOM	3534	CB	ILE I	52	32.981	1.272	83.897	1.00 17.81		[C
20	MOTA	3535	CG1		52	32.253	2.493	84.538	1.00 21.78 1.00 9.73		[[C
	ATOM	3536	CG2		52	33.789	0.520	84.971	1.00 9.73 1.00 8.98		[C
	ATOM	3537		ILE I	52	31.212	3.105 1.649	83.597 83.374	1.00 22.00		[N
	ATOM	3538	Ŋ	ASN I	53	36.272 37.493	2.243	83.923	1.00 22.00		[Ĉ
0.5	ATOM	3539	CA	ASN I ASN I	53 53	38.211	3.184	82.999	1.00 21.40		[Ċ
25	ATOM	3540	C	ASN I	53	39.138	3.887	83.431	1.00 23.95		<u> </u>	ō
	ATOM	3541 3542	O CB	ASN I	53	38.459	1.157	84.358	1.00 18.16		Γ	C
	ATOM ATOM	3543	CG	ASN I	53	37.914	0.385	85.511	1.00 29.89		Γ	C
	ATOM	3544		ASN I	53	37.311	0.977	86.434	1.00 31.88		Γ	0
30	MOTA	3545		ASN I	53	38.068	-0.941	85.467	1.00 41.94		Ε	N
00	ATOM	3546	N	VAL I	54	37.781	3.241	81.733	1.00 23.83	:	ŗ	N
	ATOM	3547	CA	VAL I	54	38.471	4.131	80.784	1.00 25.45		Γ	C
	ATOM	3548	C	VAL I	54	38.204	5.591	81.101	1.00 29.82		Ι	C
	ATOM	3549	0	VAL I	54	37.062	5.987	81.206	1.00 31.49		I	0
35	MOTA	3550	CB	VAL I	54	38.064	3.832	79.306	1.00 20.94		I	C
	MOTA	3551	CG1	VAL I	54	38.791	4.820	78.352	1.00 11.51		Ī	C
	MOTA	3552	CG2	VAL I	54	38.453	2.385	78.975	1.00 17.89		I	C
	MOTA	3553	N	SER I	55	39.278	6.374	81.258	1.00 33.89		I	N
	ATOM	3554	CA	SER I	55	39.169	7.797	81.566	1.00 34.19 1.00 33.52		I I	C
40	ATOM	3555	C	SER I	55	39.539	8.646	80.383 79.553	1.00 33.52		I I	Ö
	MOTA	3556	0	SER I	55	40.396	8.279 8.161	82.724	1.00 37.31		Ī	č
	MOTA	3557	CB	SER I	55	$\frac{40.112}{40.101}$	9.570	82.724	1.00 53.86		Ī	ŏ
	MOTA	3558	OG	SER I GLY I	55 56	38.880	9.774	80.267	1.00 28.58		Ī	N
45	MOTA	3559 3560	'N CA	GLY I	56	39.231	10.704	79.205	1.00 28.05		I	C
45	ATOM ATOM	3561	CA	GLY I	56	38.958	10.276	77.774	1.00 29.97		I	С
	ATOM	3562	Ö	GLY I	56	39.636	10.722	76.851	1.00 30.95		I	0
	ATOM	3563	N	CYS I	57	37.958	9.430	77.564	1.00 27.62		I	N
	ATOM	3564	CA	CYS I	57	37.678	8.988	76.196	1.00 24.77		I	С
50	MOTA	3565	C	CYS I	57	36.192	9.169	75.867	1.00 26.27		I	C
	ATOM	3566	0	CYS I	57	35.354	8.295	76.128	1.00 27.58		I	0
	MOTA	3567	CB	CYS I	57	38.064	7.535	76.040	1.00 24.74		I	C
	MOTA	3568	SG	CYS I	57	38.040	7.007	74.290	1.00 28.66		I	S
	MOTA	3569	N	SER I	58	35.861	10.298	75.257	1.00 22.20		I	Ŋ
55	ATOM	3570	CA	SER I	58	34.449	10.516	74.948	1.00 18.10		I	C
	MOTA	3571	С	SER I	58	33.950	9.507	73.891	1.00 18.99		I	C
	ATOM	3572	0	SER I	58	32.743	9.210	73.802	1.00 20.20		I	0
	MOTA	3573	СВ	SER I	58	34.241	11.957	74.461	1.00 13.59		I	C
	MOTA	3574	OG	SER I	58	35.149	12.274	73.404	1.00 17.58		I I	N
60	ATOM	3575	N	ALA I	59	34.845	8.928	73.104	1.00 20.43 1.00 20.58		I	C
	ATOM	3576	CA	ALA I	59 50	34.351	7.992	72.058 72.583	1.00 20.38		I	C
	ATOM	3577	C	ALA I	59	33.723	6.699	72.583	1.00 23.25		Ī	Ö
	MOTA	3578	0	ALA I	59 50	32.944 35.473	6.047 7.625	71.108	1.00 24.07		Ī	č
C.F	MOTA	3579	CB	ALA I ILE I	59 60	34.084		73.804	1.00 25.09		Ī	N
65	MOTA	3580 3581	N CA	ILE I	60	33.563	5.064	74.404	1.00 25.81		I	Ĉ
	MOTA MOTA	3582	CA	ILE I	60	32.326		75.280	1.00 25.44		I	С
	MOTA	3583	Ö	ILE I	60	31.719		75.753	1.00 29.14		I	0
	MOTA	3584		ILE I		34.693		75.268	1.00 26.48		I	C

	n												
	ATOM	3585	CG1	ILE I	60	34.42	29	2.873	75.383	1.00 29		Γ	C
	ATOM	3586		ILE I	60	34.77	70	5.007	76.682	1.00 27	.68	I	C
	ATOM	3587	CD1	ILE I	60	34.78	38	2.139	74.124	1.00 35	.86	Ι	С
	ATOM	3588	N	GLU I	61	31.93	L6	6.504	75.486	1.00 27	.58	I,	N
5	ATOM	3589		GLU I	61	30.78	36	6.713	76.376	1.00 28	3.09	I	C
J	ATOM	3590		GLU I	61	29.50		6.014	75.949	1.00 23	.64	Ι	C
	ATOM	3591		GLU I	61	28.84		5.387	76.747	1.00 22	2.27	I	0
	ATOM	3592		GLU I	61	30.53		8.216	76.576	1.00 28	3.67	I	С
	MOTA	3593		GLU I	61	29.64		8.435	77.799		5.14	I	С
10	ATOM	3594	CD	GLU I	61	29.43		9.895	78.121	1.00 79	3.31	I	С
10	ATOM	3595		GLU I	61	30.4		0.575	78.443		7.35	I	0
		3596		GLU I	61	28.20		0.350	78.034	1.00 78		I	0
	MOTA			LYS I	62	29.1		6.110	74.675		2.10	Ī	N
	MOTA	3597	N CA	LYS I	62	27.9		5.485	74.230		1.59	Ī	Ċ
	ATOM	3598		LYS I		28.0		3.960	74.460		2.50	Ī	Č
15	ATOM	3599			62 62	27.0		3.348	74.913		5.76	Ī	Õ
	ATOM	3600	O	LYS I		27.0		5.788	72.749		5.19	I	Č
	MOTA	3601	CB	LYS I	62			5.255	72.179		3.62	I	Č
	MOTA	3602	CG	LYS I	62	26.4			70.789	1.00 40		Ī	Č
	ATOM	3603	CD	LYS I		26.2		5.870	70.789	1.00 40		I	Č
20	ATOM	3604	CE	LYS I	62	25.0		5.242		1.00 3		I	N
	MOTA	3605	NZ	LYS I		24.8		5.985	68.770			I	N
	MOTA	3606	N	THR I		29.1		3.350	74.157	1.00 17	5.79	I	C
	MOTA	3607	$^{\rm CA}$	THR I		29.3		1.914	74.390				C
	MOTA	3608	С	THR I		29.1		1.594	75.880	1.00 19		I I	0
25	MOTA	3609	0	THR I		28.4		0.633	76.237	1.00 18			
	MOTA	3610	CB	THR I		30.7		1.454	73.932	1.00 19		Ī	C
	ATOM	3611	OG1	THR I		30.8		1.607	72.498	1.00 24		I	0
	ATOM	3612	CG2	THR I		30.9		-0.029	74.284	1.00 1		I	C
	MOTA	3613	N	GLN I	64	29.6	66	2.414	76.786	1.00 18		I	N
30	MOTA	3614	CA	GLN I	64	29.4		2.123	78.195	1.00 1		I	C
	ATOM	3615	С	GLN I	64	27.9		2.127	78.570	1.00 1		I	C
	ATOM	3616	0	GLN I	64	27.4		1.301	79.334		7.63	I	0
	MOTA	3617	CB	GLN I	64	30.1	94	3.123	79.104	1.00 1		I	C
	ATOM	3618	CG	GLN I	64	31.7	12	3.131	78.912		1.19	I	C
35	ATOM	3619	CD	GLN I	64	32.3	43	4.307	79.685	1.00 2	0.97	I	С
	ATOM	3620		GLN I	64	31.6	56	5.290	79.958	1.00 2	6.32	I	0
	ATOM	3621	NE2	GLN I	64	33.6	17	4.184	80.081	1.00 1		I	N
	MOTA	3622	N	ARG I		27.2	12	3.077	78.002	1.00 1	6.69	I	N
	ATOM	3623	CA	ARG I		25.8		3.242	78.268	1.00 1	8.05	I	С
40	ATOM	3624	C	ARG I		24.9		2.120	77.653	1.00 2	0.85	I	C
40	ATOM	3625	Ö	ARG I		24.0		1.620	78.264	1.00 2	1.77	I	0
	ATOM	3626	ČВ	ARG I		25.3		4.587	77.714	1.00 1	7.49	I	C
	ATOM	3627	CG	ARG I		25.9		5.731	78.482	1.00 2	7.25	I	C
	ATOM	3628	CD	ARG I		25.5		7.103	77.925	1.00 3	6.17	I	C
45	MOTA	3629	NE	ARG I		26.0		8.153	78.793	1.00 4	9.27	I	N
40	MOTA	3630	CZ	ARG I		25.5		8.457	79.994	1.00 4		I	C
	MOTA	3631		ARG I		24.5		7.800	80.475	1.00 3	0.90	I	N
	ATOM	3632		ARG 3		26.1		9.417	80.718	1.00 4		I	N
	ATOM	3633	N	MET]		25.3		1.695	76.453	1.00 2		I	N
50	MOTA	3634	ČA	MET I		24.6		0.574	75.849	1.00 1		I	C
50		3635	CA	MET 3		24.9		-0.730	76.616	1.00 1		I	C
	ATOM	3636	Ö	MET 3		23.9		-1.524	76.829	1.00 1		I	0
	ATOM					25.1		0.430	74.388	1.00 1		Ī	Č
	ATOM	3637	CB	MET :		24.5		1.557	73.502	1.00 2		Ī	Č
	ATOM	3638	CG	MET				1.443	71.840	1.00 2		Ī	s
55	MOTA	3639	SD	MET		25.3		1.367	70.841	1.00 2		Ī	Č
	ATOM	3640	CE	MET :		23.8				1.00 1		Ī	N
	ATOM	3641	N	LEU		26.1		-0.951	77.060	1.00 1		I	C
	MOTA	3642	CA	LEU :		26.4		-2.129	77.880				
	ATOM	3643	C	LEU :		25.6		-2.015	79.226	1.00 1		I	C
60	MOTA	3644	0	LEU :		25.1		-3.016	79.799	1.00 1		I	0
	MOTA	3645	CB	LEU :		27.9		-2.218	78.136	1.00 1		I	C
	MOTA	3646	CG	LEU :		28.7		-2.694	76.907	1.00 1		I	C
	MOTA	3647		LEU :		30.2		-2.561	77.275	1.00 1	5.28	I	C
	MOTA	3648	CD2	LEU :		28.4		-4.176	76.515	1.00 1		I	C
65	MOTA	3649	N	SER :		25.5		-0.799	79.745	1.00 1		I	N
	ATOM	3650	CA	SER :		24.7		-0.628	80.994	1.00 1		I	C
	ATOM	3651	С	SER :		23.3		-1.021	80.848	1.00 1		I	C
	MOTA	3652	0	SER		22.6	556	-1.463	81.806	1.00 2		I	0
	ATOM	3653	CB	SER		24.8		0.834	81.481	1.00 1	5.42	I	С

	 ATOM	3654	OG	SER I	68	••	26.229	1.168	81.816	1.00 24.18		I	0
	MOTA	3655	N	GLY I	69 69		22.788 21.422	-0.863 -1.229	79.636 79.310	1.00 17.78 1.00 13.18		I	N C
	ATOM ATOM	3656 3657	CA C	GLY I	69		21.422	-2.746	79.355	1.00 15.71		Ī	č
5	ATOM	3658	ŏ	GLY I	69		20.279	-3.242	79.800	1.00 14.07		I	0
_	MOTA	3659	N	PHE I	70		22.324	-3.495	78.889	1.00 17.98		I	И
	MOTA	3660	CA	PHE I	70 70		22.265 22.523	-4.948 -5.477	78.947 80.370	1.00 18.28 1.00 18.48		I	C C
	ATOM ATOM	3661 3662	C O	PHE I	70		22.034	-6.564	80.757	1.00 18.81		Ī	ŏ
10	ATOM	3663	CB	PHE I	70		23.346	-5.574	78.019	1.00 18.99		I	C
	MOTA	3664	CG	PHE I	70		22.947	-5.624	76.570	1.00 19.17		I	C
	ATOM	3665	CD1	PHE I	70		23.433	-4.685 -6.634	75.683 76.115	1.00 13.86 1.00 14.02		I	C
	ATOM ATOM	3666 3667		PHE I	70 70		22.121 23.086	-4.746	74.297	1.00 15.78		Ī	č
15	ATOM	3668	CE2	PHE I	70		21.757	-6.719	74.732	1.00 21.48	-	I	C
	MOTA	3669	CZ	PHE I	70		22.244	-5.766	73.841	1.00 19.98		I	C
	MOTA	3670	N	CYS I	71		23.299	-4.720	81.159 82.511	1.00 15.72 1.00 19.25		I	C N
	MOTA	3671	CA	CYS I	71 71		23.613 23.288	-5.186 -4.039	83.511	1.00 19.23		Ï	Č
20	MOTA ATOM	3672 3673	C	CYS I	71		24.209	-3.472	84.088	1.00 17.72		Ī	0
20	ATOM	3674	СВ	CYS I	71		25.118	-5.443	82.612	1.00 17.63		I	C
	ATOM	3675	SG	CYS I	71		25.681	-5.978	84.268	1.00 22.27 1.00 20.43		I I	s N
	ATOM	3676	N	PRO I	72 72		22.004 21.615	-3.667 -2.570	83.656 84.563	1.00 20.43		I	C
25	ATOM ATOM	3677 3678	CA C	PRO I PRO I	72		21.849	-2.796	86.063	1.00 18.35		Ī	Č
20	MOTA	3679	ŏ	PRO I	72		22.041	-1.806	86.804	1.00 18.45		I	0
	MOTA	3680	CB	PRO I			20.124	-2.345	84.201	1.00 20.03		I	C
	ATOM	3681	CG	PRO I			19.660 20.825	-3.743 -4.260	83.874 83.006	1.00 22.09 1.00 22.41		I	C
30	ATOM ATOM	3682 3683	CD N	PRO I HIS I			21.844	-4.066	86.502	1.00 19.47		Ī	N
30	ATOM	3684	ČA	HIS I			22.089	-4.412	87.888	1.00 19.66		I	С
	ATOM	3685	C	HIS I			23.381	-5.238	87.946	1.00 21.68		I	C
	MOTA	3686	0	HIS I			23.562 20.900	-6.213 -5.199	87.207 88.485	1.00 25.46 1.00 20.83		I I	0
25	ATOM ATOM	3687 3688	CB CG	HIS I			19.672	-3.199	88.703	1.00 20.03		Ī	Č
35	ATOM	3689		HIS I			19.304	-3.876	89.943	1.00 16.76		I	N
	ATOM	3690		HIS I	73		18.770	-3.846	87.820	1.00 24.20		Ĩ	C
	MOTA	3691		HIS I			18.222	-3.109	89.811	1.00 16.41 1.00 15.39		I	C N
10	MOTA	3692		HIS I			17.878 24.275	-3.082 -4.823	88.540 88.824	1.00 15.39		Ï	N
40	ATOM ATOM	3693 3694	N CA	LYS I			25.558	-5.460	88.935	1.00 21.35		I	C
	ATOM	3695	C	LYS I			25.414	-6.919	89.274	1.00 23.89		I	C
	MOTA	3696	0	LYS I			24.528	-7.310	90.044	1.00 22.28		I	0
45	MOTA	3697	CB CG	LYS I			26.406 27.911	-4.771 -5.064	90.030 89.908	1.00 22.82 1.00 21.50		I	C
45	MOTA MOTA	3698 3699	CD	LYS I			28.751	-4.501	91.096	1.00 16.86		Ī	С
	MOTA	3700	CE	LYS I			28.597	-5.307	92.383	1.00 15.58		I	C
	'MOTA	3701	NZ	LYS I			29.438	-4.661	93.459	1.00 28.77		I	N
	ATOM	3702	N	VAL I			26.291 26.315	-7.728 -9.147	88.692 88.987	1.00 30.24 1.00 32.25		I	C N
50	MOTA MOTA	3703 3704	CA C	VAL I			27.653	-9.491	89.629	1.00 33.25		Ī	Č
	MOTA	3705	ŏ	VAL 3			28.590	-8.668	89.633	1.00 36.67		I	0
	MOTA	3706	CB	VAL]			26.106	-9.983	87.715	1.00 31.71		I	C
	MOTA	3707		VAL 3			24.737	-9.626 -9.701	87.122 86.667	1.00 30.96 1.00 37.27		I	C
55	ATOM ATOM	3708 3709	N N	VAL I SER I			27.251 27.742		90.227	1.00 37.27		Ī	N
	ATOM	3710	CA	SER J			29.010	-11.098	90.839	1.00 43.38		I	C
	ATOM	3711	C	SER I			30.110	-11.307	89.793	1.00 45.20		I	C
	MOTA	3712	0	SER :				-12.056	88.832	1.00 41.71		I	C 0
60	MOTA	3713	CB	SER :				-12.402 -12.787	91.626 92.120	1.00 45.35 1.00 51.24		I	Ö
	ATOM ATOM	3714 3715	OG N	SER I				-10.652	89.982	1.00 49.67		Ī	N
	ATOM	3716	CA	ALA :			32.375	-10.766	89.048	1.00 54.47		I	С
	MOTA	3717	C	ALA :	77		32.943	-12.175	89.034	1.00 57.42		I	C
65	ATOM	3718	0	ALA :				-12.653	88.003 89.414	1.00 59.50 1.00 51.64		I	0
	ATOM ATOM	3719 3720	CB N	ALA :			33.478 32.895	-9.766 -12.843	90.179	1.00 51.04		Ī	N
	ATOM	3721	CA	GLY :			33.412	-14.198	90.239	1.00 62.69		I	C
	ATOM	3722	C	GLY :	78		34.882	-14.206	89.849	1.00 63.55		I	С

	ATOM	3723	O GLY I		35 563	-13.090	90.291	1.00 63.76	I	0
	ATOM	3724	N SER I			-16.327	92.121	1.00 67.81	I	N
	ATOM	3725	CA SER I			-16.933	92.348	1.00 65.14	I	C
	MOTA	3726	C SER I			-16.541	91.309	1.00 61.18	I	C
[.] 5	MOTA	3727	O SER I			-16.954	91.421	1.00 60.41	I	0
	ATOM	3728	CB SER I			-18.457	92.368	1.00 65.70 1.00 69.36	I	C O
	MOTA	3729	OG SER I			-18.891 -15.751	93.492 90.310	1.00 69.36 1.00 56.70	I	N
	MOTA	3730	N SER I			-15.344	89.249	1.00 51.54	Î	Ĉ
10	ATOM ATOM	3731 3732	CA SER I			-14.090	89.610	1.00 47.03	Ī	č
10	ATOM	3733	O SER I			-12.987	89.727	1.00 44.40	I	0
	MOTA	3734	CB SER I			-15.117	87.966	1.00 52.88	I	C
	MOTA	3735	OG SER I	82		-14.947	86.868	1.00 62.13	I	0
	MOTA	3736	N LEU I		44.992		89.782	1.00 40.85	I	N
15	MOTA	3737	CA LEU I		45.839		90.182	1.00 33.26	I	C
	ATOM	3738	C LEU		45.835	-11.917	89.264 89.748	1.00 32.94 1.00 30.66	I	Ö
	ATOM	3739	O LEU I		45.828 47.287		90.310	1.00 30.00	ī	č
	ATOM	3740 3741	CB LEU I		48.279		90.838	1.00 27.09	Ī	č
20	ATOM ATOM	3742	CD1 LEU		47.939		92.295	1.00 12.16	I	C
20	ATOM	3743	CD2 LEU		49.691		90.750	1.00 24.42	I	C
	ATOM	3744	N HIS	84	45.872	-12.145	87.957	1.00 29.82	I	N
	ATOM	3745	CA HIS		45.974		86.983	1.00 29.54	Ī	C
	MOTA	3746	C HIS		44.628		86.425	1.00 29.73	I	C
25	ATOM	3747	O HIS		44.592	-9.730 -11.516	85.525 85.820	1.00 25.19 1.00 26.32	I	C O
	ATOM	3748	CB HIS CG HIS		46.850 48.157		86.250	1.00 28.45	Ī	č
	ATOM	3749 3750	CG HIS I		49.148		86.849	1.00 29.88	Ī	N
	ATOM ATOM	3751	CD2 HIS			-13.377	86.169	1.00 24.74	I	C
30	ATOM	3752	CE1 HIS			-12.144	87.123	1.00 30.46	I	С
00	ATOM	3753	NE2 HIS			-13.372	86.721	1.00 21.40	I	N
	MOTA	3754	N VAL		43.536		86.978	1.00 32.07	Ī	N
•	MOTA	3755	CA VAL		42.202		86.471	1.00 32.06	I	C
	ATOM	3756	C VAL		41.928		86.189 85.194	1.00 33.84 1.00 36.05	I	C O
35	ATOM	3757	O VAL		41.269 41.112		87.405	1.00 33.38	Ī	· Č
	MOTA	3758 3759	CB VAL CG1 VAL		41.122		88.753	1.00 33.30	Ī	č
	MOTA MOTA	3760	CG2 VAL		39.765		86.751	1.00 37.69	I	C
	ATOM	3761	N ARG		42.424		87.022	1.00 32.54	I	N
40	ATOM	3762	CA ARG		42.181	-6.974	86.794	1.00 31.61	I	C
	MOTA	3763	C ARG		43.401		86.290	1.00 31.91	I	C
	MOTA	3764	O ARG		43.435		86.319	1.00 35.23	I	0
	ATOM	3765	CB ARG		41.586		88.074 88.217	1.00 28.40 1.00 41.94	Ī	C
45	MOTA	3766	CG ARG CD ARG		40.089 39.461		89.534	1.00 41.34	Ī	Č
45	ATOM ATOM	3767 3768	CD ARG NE ARG		39.546		90.565	1.00 63.98	Ī	N
	ATOM	3769	CZ ARG		38.731		90.654	1.00 66.04	I	C
	MOTA	3770	NH1 ARG		37.746		89.784	1.00 52.07	I	N
	MOTA	3771	NH2 ARG		38.896		91.647	1.00 62.26	I	N
50	MOTA	3772	N ASP		44.409		85.790	1.00 30.34	Ī	N
	ATOM	3773	CA ASP		45.582		85.271	1.00 32.40 1.00 31.30	I	C C
	ATOM	3774	C ASP		45.118		83.964 83.192	1.00 31.30	I	Ö
	ATOM	3775	O ASP CB ASP		44.441 46.690		84.879	1.00 34.02	Ī	č
55	ATOM ATOM	3776 3777	CB ASP CG ASP		47.463		86.086	1.00 38.19	Ī	Č
55	ATOM	3778	OD1 ASP		47.145		87.260	1.00 32.90	I	0
	ATOM	3779	OD2 ASP		48.406		85.741	1.00 32.57	I	0
	MOTA	3780	N THR		45.516		83.687	1.00 30.86	Ī	N
	MOTA	3781	CA THR	I 88	45.063		82.443	1.00 31.20	I	C
60	MOTA	3782	C THR		46.075		81.321	1.00 31.74	I	C 0
	ATOM	3783	O THR		46.942		81.058 82.703	1.00 33.75 1.00 29.81	I	G
	ATOM	3784	CB THR		44.822 46.02		82.703	1.00 29.81	I	Ö
	ATOM ATOM	3785 3786	OG1 THR CG2 THR		43.76		83.782	1.00 24.42	Ï	č
65	ATOM	3787	N ALA		45.968		80.639	1.00 31.60	I	N
00	ATOM	3788	CA ALA		46.95	5 -5.362	79.608	1.00 30.00	I	C
	ATOM	3789	C ALA		46.448	3 -5.308	78.192	1.00 29.68	Ī	
	ATOM	3790	O ALA	I 89	47.20		77.282	1.00 32.56	I	
	ATOM	3791	CB ALA	I 89	47.564	4 -6.708	79.859	1.00 35.66	I	С

	n mes			**	0.0	 45.203	-4.897	77.975	1.00 26.67	I	N
	MOTA	3792	N	ILE I	90	45.203	-4.930	76.618	1.00 20.07	Ī	Ĉ
	MOTA	3793	CA	ILE I	90 90	44.399	-3.493	76.191	1.00 20.02	Ī	Ċ
	ATOM	3794	C	ILE I	90	43.796	-2.739	76.949	1.00 18.80	Ī	ō
_	MOTA	3795 3796	O CB	ILE I	90	43.309	-5.690	76.590	1.00 22.56	I	C
5	ATOM	3790 3797	CG1	ILE I	90	43.439	-7.060	77.251	1.00 27.82	I	C
	ATOM	3798	CG2	ILE I	90	42.780	-5.835	75.178	1.00 20.25	I	С
	ATOM ATOM	3799		ILE I	90	44.554	-7.915	76.695	1.00 23.97	I	С
	ATOM	3800	N	GLU I	91	44.802	-3.115	74.992	1.00 22.48	I	N
10	ATOM	3801	CA	GLU I	91	44.501	-1.768	74.513	1.00 25.02	I	С
10	ATOM	3802	C	GLU I	91	42.983	-1.709	74.241	1.00 25.25	I	С
	ATOM	3803	ŏ	GLU I	91	42.369	-2.675	73.785	1.00 24.40	I	0
	ATOM	3804	ČВ	GLU I		45.255	-1.470	73.201	1.00 26.65	I	C
	ATOM	3805	ĊĠ	GLU I	91	46.761	-1.457	73.383	1.00 43.52	I	С
15	ATOM	3806	CD	GLU I		47.501	-1.542	72.054	1.00 66.85	I	C
	MOTA	3807		GLU I		48.725	-1.840	72.074	1.00 71.43	I	0
	ATOM	3808	OE2	GLU I	91	46.853	-1.312	70.997	1.00 76.33	I	0
	ATOM	3809	N	VAL I		42.374	-0.559	74.508	1.00 20.39	I	N
	ATOM	3810	CA	VAL I	92	40.939	-0.475	74.300	1.00 22.52	Ī	C
20	ATOM	3811	С	VAL I	92	40.523	-0.874	72.888	1.00 24.09	I	C
	ATOM	3812	0	VAL I		39.571	-1.603	72.701	1.00 22.60	I	0
	MOTA	3813	CB	VAL I		40.428	0.925	74.574	1.00 24.93	I	C
	MOTA	3814		VAL I		38.923	0.968	74.198	1.00 23.93	Į	C
	MOTA	3815	CG2	VAL I		40.622	1.268	76.076	1.00 29.40	I	И
25	MOTA	3816	N	ALA I		41.241	-0.393	71.889	1.00 23.14	I	C
	MOTA	3817	CA	ALA I		40.901	-0.747	70.521	1.00 20.90 1.00 21.97	Ī	C
	MOTA	3818	C	ALA I		40.853	-2.249	70.320 69.631	1.00 21.97	Ī	Ö
	MOTA	3819	0	ALA I		39.949	-2.781	69.561	1.00 22.74	Ī	č
	MOTA	3820	CB	ALA I		41.903	-0.116 -2.953	70.883	1.00 20.31	Ī	N
30	ATOM	3821	N	ALA I		41.832	-2.933 -4.420	70.728	1.00 20.31	Ĩ	Ĉ
	ATOM	3822	CA	ALA I		41.883	-4.420 -5.113	70.728	1.00 21.47	Ī	č
	ATOM	3823	C	ALA I		40.764 40.140	-6.098	70.998	1.00 21.47	Ī.	ŏ
	ATOM	3824	0	ALA I		43.276	-4.974	71.187	1.00 23.67	I	Č
	ATOM	3825	CB	ALA I		40.483	-4.584	72.672	1.00 19.72	Ī	Ŋ
35	ATOM	3826	N	PHE I		39.426	-5.132	73.479	1.00 19.20	I	C
	MOTA	3827	CA			38.072	-5.000	72.750	1.00 20.71	I	C
	ATOM	3828	C	PHE I		37.284	-5.941	72.715	1.00 18.83	I	0
	ATOM	3829	O	PHE I		39.352	-4.371	74.805	1.00 17.19	I	C
40	MOTA	3830 3831	CB CG	PHE I		38.253	-4.836	75.695	1.00 18.73	I	C
40	MOTA	3832		L PHE 3		38.509	-5.739	76.707	1.00 19.09	I	С
	ATOM ATOM	3833		PHE		36.939	-4.365	75.517	1.00 28.45	I	C
	ATOM	3834		L PHE		37.475	-6.189	77.554	1.00 24.24	I	С
	MOTA	3835		PHE		35.914	-4.798	76.346	1.00 28.64	I	С
45	MOTA	3836	CZ	PHE		36.172	-5.706	77.360	1.00 28.20	I	C
40	MOTA	3837	N	VAL :		37.814	-3.817	72.186	1.00 21.23	I	N
	MOTA	3838	CA	VAL		36.534	-3.564	71.499	1.00 22.02	I	C
	MOTA	3839	C	VAL 3	I 96	36.412	-4.391	70.191	1.00 22.65	I	C
	MOTA	3840	Ō		I 96	35.358	-4.954	69.862	1.00 22.48	I	0
50	MOTA	3841	СВ		I 96	36.354	-2.048	71.208	1.00 22.55	I	C
	ATOM	3842	CG:	1 VAL	I 96	35.086	-1.833	70.313	1.00 18.24	Ī	C
	MOTA	3843	CG	2 VAL 3	I 96	36.164	-1.327	72.526	1.00 23.04	Ī	C
	MOTA	3844	N	ALA :	I 97	37.506	-4.495	69.452	1.00 25.04	Ī	И
	MOTA	3845	CA	ALA :		37.467	-5.306	68.235	1.00 26.44	Ī	C
55	ATOM	3846	C	ALA :	I 97	37.132	-6.762	68.567	1.00 22.96	I	C
	MOTA	3847	0		I 97	36.353	-7.388	67.886	1.00 24.45	I	
	MOTA	3848	CB	ALA	I 97	38.807	-5.233	67.515	1.00 31.87	Ī	
	MOTA	3849	N	ASP	I 98	37.709	-7.303	69.627	1.00 23.71	Ī	
	ATOM	3850	ca			37.425	-8.696	70.050	1.00 23.00	Ī	
60	ATOM	3851	C	ASP		35.979	-8.812	70.558	1.00 24.40	I	
	ATOM	3852	0	ASP	I 98	35.283	-9.795	70.294	1.00 24.30	I	0
	ATOM	3853	СВ			38.382	-9.092	71.180	1.00 19.69	I	C
	MOTA	3854				38.094	-10.465	71.749	1.00 23.36	I	C
	ATOM	3855		1 ASP		38.602		71.271	1.00 32.56	I	
65	ATOM	3856		2 ASP		37.296			1.00 25.79	I	
	MOTA	3857		LEU		35.540	-7.819		1.00 25.64	I	
	MOTA	3858	CA			34.158			1.00 23.64	I	
	ATOM	3859		LEU		33.254				I	
	ATOM	3860	0	LEU	I 99	32.302	-8.681	70.575	1.00 21.05	Т	U

	ATOM ATOM ATOM	3861 3862 3863	CB LEU I 99 CG LEU I 99 CD1 LEU I 99	33.832 -6.556 72.655 1.00 26.66 32.389 -6.402 73.163 1.00 20.95 31.978 -7.628 73.981 1.00 13.88 32.325 -5.070 73.966 1.00 24.83	I I I	С С С
5	ATOM ATOM ATOM ATOM	3864 3865 3866 3867	CD2 LEU I 99 N LEU I 100 CA LEU I 100 C LEU I 100	33.545 -7.065 69.628 1.00 25.95 32.711 -6.993 68.426 1.00 28.26 32.627 -8.366 67.732 1.00 29.60	I I I	С С И
10	ATOM ATOM ATOM ATOM	3868 3869 3870 3871	O LEU I 100 CB LEU I 100 CG LEU I 100 CD1 LEU I 100	31.560 -8.810 67.305 1.00 29.23 33.273 -5.928 67.452 1.00 30.11 32.650 -5.886 66.044 1.00 27.15 31.135 -5.727 66.148 1.00 31.05	I I I	0 0 0
15	MOTA ATOM ATOM ATOM	3872 3873 3874 3875	CD2 LEU I 100 N LEU I 101 CA LEU I 101 C LEU I 101	33.281 -4.740 65.254 1.00 26.52 33.745 -9.063 67.675 1.00 29.37 33.759 -10.388 67.038 1.00 29.29 32.817 -11.370 67.738 1.00 27.17	. I I	С И С
10	ATOM ATOM ATOM	3876 3877 3878	O LEU I 101 CB LEU I 101 CG LEU I 101	32.059 -12.118 67.095 1.00 28.05 35.207 -10.893 67.069 1.00 28.28 35.600 -12.250 66.508 1.00 32.38 37.152 -12.263 66.541 1.00 49.76	I I I	0 0 0
20	ATOM ATOM ATOM ATOM	3879 3880 3881 3882	CD1 LEU I 101 CD2 LEU I 101 N HIS I 102 CA HIS I 102	35.018 -13.410 67.313 1.00 35.45 32.870 -11.373 69.071 1.00 26.61 32.034 -12.251 69.877 1.00 27.47	I I I	C N C
25	ATOM ATOM ATOM ATOM	3883 3884 3885 3886	C HIS I 102 O HIS I 102 CB HIS I 102 CG HIS I 102	30.583 -11.798 69.756 1.00 29.67 29.681 -12.633 69.610 1.00 31.47 32.512 -12.240 71.343 1.00 24.82 33.836 -12.910 71.517 1.00 31.90	I I I	0000
	ATOM ATOM ATOM	3887 3888 3889	ND1 HIS I 102 CD2 HIS I 102 CE1 HIS I 102	34.018 -14.251 71.250 1.00 35.56 35.057 -12.422 71.843 1.00 30.43 35.291 -14.560 71.396 1.00 33.85	I I I	N C C N
30	ATOM ATOM ATOM ATOM	3890 3891 3892 3893	NE2 HIS I 102 N LEU I 103 CA LEU I 103 C LEU I 103	35.943 -13.472 71.756 1.00 40.02 30.337 -10.488 69.801 1.00 25.34 28.934 -10.065 69.640 1.00 23.49 28.346 -10.471 68.259 1.00 25.13	I I E	C C
35	MOTA MOTA MOTA	3894 3895 3896	O LEU I 103 CB LEU I 103 CG LEU I 103 CD1 LEU I 103	27.187 -10.905 68.172 1.00 25.31 28.767 -8.550 69.831 1.00 21.97 29.020 -8.116 71.296 1.00 26.35 28.850 -6.663 71.451 1.00 19.33	I I I	0 0 0
40	ATOM ATOM ATOM ATOM	3897 3898 3899 3900	CD2 LEU I 103 N LYS I 104 CA LYS I 104	28.028 -8.793 72.252 1.00 16.98 29.139 -10.363 67.198 1.00 24.74 28.632 -10.737 65.869 1.00 26.53	I I	С И С
	MOTA MOTA MOTA MOTA	3901 3902 3903 3904	C LYS I 104 O LYS I 104 CB LYS I 104 CG LYS I 104	28.329 -12.220 65.811 1.00 27.50 27.366 -12.627 65.208 1.00 28.46 29.625 -10.357 64.783 1.00 22.88 29.587 -8.914 64.413 1.00 31.89	I I I	С О С
45	ATOM ATOM ATOM	3905 3906 3907	CD LYS I 104 CE LYS I 104 NZ LYS I 104	30.631 -8.717 63.344 1.00 32.33 30.925 -7.279 63.115 1.00 59.68 32.076 -7.164 62.142 1.00 68.07	I I	И С С
50	MOTA MOTA MOTA MOTA	3908 3909 3910 3911	N ALA I 105 CA ALA I 105 C ALA I 105 O ALA I 105	29.133 -13.023 66.479 1.00 29.46 28.882 -14.450 66.534 1.00 34.23 27.563 -14.703 67.275 1.00 37.21 26.663 -15.418 66.770 1.00 39.76	I I I	О С И
	MOTA MOTA MOTA	3912 3913 3914	CB ALA I 105 N LEU I 106 CA LEU I 106	30.064 -15.163 67.232 1.00 32.11 27.411 -14.122 68.470 1.00 39.89 26.165 -14.309 69.230 1.00 38.09	I I I	N C
55	MOTA MOTA MOTA MOTA	3915 3916 3917 3918	C LEU I 106 O LEU I 106 CB LEU I 106 CG LEU I 106	24.938 -13.890 68.408 1.00 37.88 23.913 -14.550 68.431 1.00 33.66 26.194 -13.477 70.530 1.00 36.52 24.863 -13.456 71.276 1.00 42.06	I I I	0000
60	MOTA MOTA MOTA	3919 3920 3921	CD1 LEU I 106 CD2 LEU I 106 N PHE I 107	24.583 -14.853 71.860 1.00 38.67 24.917 -12.412 72.412 1.00 45.46 25.064 -12.790 67.683 1.00 38.60	I I I	C C
65	ATOM ATOM ATOM ATOM	3922 3923 3924 3925	CA PHE I 107 C PHE I 107 O PHE I 107 CB PHE I 107	23.973 -12.279 66.867 1.00 40.37 23.618 -13.276 65.764 1.00 43.78 22.436 -13.549 65.529 1.00 44.25 24.365 -10.956 66.236 1.00 37.22	I I I	C C C
30	ATOM ATOM ATOM ATOM	3926 3927 3928 3929	CG PHE I 107 CD1 PHE I 107 CD2 PHE I 107	23.271 -10.311 65.429 1.00 36.27 22.198 -9.699 66.048 1.00 46.75 23.322 -10.317 64.052 1.00 36.68 21.186 -9.098 65.296 1.00 35.59	I I I	0000
	A I OII	7223	CHI 1111 1 107			

	MOTA	3930	CE2	PHE :	107	22	.320	_9	.717	63.	299	1.00			I	C
	ATOM	3931	CZ	PHE :			.253		.109	63.	923	1.00	39.	.35	I	C
	ATOM	3932	N	ALA :					.786	65.	075	1.00			I	N
	ATOM	3933	CA	ALA :	108				1.758		993	1.00	52.	.09	I	С
=	ATOM	3934	C	ALA :	108				.034		566	1.00			I	С
5				ALA :					5.540		031	1.00			Ī	Ö
	ATOM	3935	0						5.076		280	1.00			Ī	č
	ATOM	3936	CB	ALA							659	1.00			Ī	N
	ATOM	3937	N	ALA :					5.543			1.00			Ï	C
	MOTA	3938	CA	ALA :					7.732		338				I	C
10	ATOM	3939	C	ALA :					7.549		929	1.00				
	MOTA	3940	0	ALA :					5.521		672	1.00			I	0
	MOTA	3941	CB	ALA :	I 109				3.097		470	1.00			I	C
	MOTA	3942	OXT	ALA	I 109	22	.003	-18	3.464	67.	674	1.00	70	.12	I	0
	TER	3943		ALA	I 109											
15	MOTA	3944	04	OAC		18	3.217	2:	2.918	90.	161	1.00	51	.17	S	0
.0	ATOM	3945	Č2	OAC			.505		L.950	89.	542	1.00	51	.08	S	С
	ATOM	3946	03	OAC			3.384		L.569		864	1.00	56	. 88	S	0
	ATOM	3947	C1	OAC			3.305		1.429		360	1.00	58	. 69	S	С
	TER	3948	Ç.L	OAC				, 4.		• • • • • • • • • • • • • • • • • • • •						
00			77 NT		z 1	26	5.522		5.968	101	166	1.00	26	39	\mathbf{z}	zn
20	MOTA	3949	ZN				.447	_	9.432		331	1.00			z	ZN
	MOTA	3950	ZN						0.777		988	1.00			z	ZN
	MOTA	3951	ΣN		Z 3	∠().593	•	3.777	05.	. 500	1.00	' '	.))	<i>د</i> ا	211
	TER	3952	_		Z 3	0.4				0.0	000	1 00	0	40	Ta7	0
	MOTA	3953	0	HOH			3.273		1.562		929	1.00		.42	W	0
25	MOTA	3954	0	HOH			3.494		3.183		025	1.00			M	0
	MOTA	3955	0	HOH		_	0.63		6.714		.029	1.00		.14	M	0
	MOTA	3956	0	HOH			3.09		6.849			1.00			M	0
	MOTA	3957	0	HOH	W 7	8	3.093		3.904			1.00			W	0
	ATOM	3958	0	HOH	8 W	18	3.32	9 1	5.295	86.	.054	1.00			W	0
30	ATOM	3959	0	HOH	W 9	1:	L.64:	3 1	7.561	91.	629	1.00	19	.27	W	0
•	ATOM	3960	Ö	HOH		24	1.50	3	1.519	109	.138	1.00	13	.78	W	0
	ATOM	3961	Ŏ	НОН			3.56		9.514		.581	1.00	11	.36	W	0
	ATOM	3962	Ö	HOH			1.31		0.426		.254	1.00	21	.71	W	0
	ATOM	3963	ŏ	HOH			3.62		9.471		.511	1.00	7	.65	W	0
O.E.		3964	ŏ	НОН			3.27		6.451		.834	1.00			W	0
35	ATOM						3.23		6.147			1.00			W	Ō
	ATOM	3965	0	HOH			6.16	_	0.147 0.823			1.00			W	ŏ
	ATOM	3966	0	HOH					2.988			1.00	17	97	W	ŏ
	MOTA	3967	0	HOH			7.91				.874	1.00			W	Ö
	MOTA	3968	0	HOH			2.75		9.187			1.00			W	ő
40	MOTA	3969	0	HOH			5.44		0.063		.133					Ö
	MOTA	3970	0	HOH			7.62		2.548		.823	1.00			W	
	MOTA	3971		HOH			8.77		2.300		.542	1.00			W	0
	MOTA	3972	0	HOH			0.03		1.543		.170	1.00			M	0
	MOTA	3973	0	HOH	W 24		5.81		0.831		.674	1.00			M	0
45	MOTA	3974	О	HOH	W 25		0.38		7.369		.168	1.00			M	0
	ATOM	3975	0	HOH	W 26	3	0.61	12	1.516	90	.986	1.00	24	.22	W	0
	MOTA	3976	0	HOH	W 27	1	6.02	6 3	0.411		.826				W	0
	ATOM	3977		HOH		3	9.58	6 -	2.015	82	.847	1.00			W	0
	ATOM	3978		HOH		2	2.16	5 -	7.013	84	.963	1.00	21	.19	W	0
50	ATOM	3979		HOH			1.83		1.471	. 72	.582	1.00	22	.31	W	0
00	ATOM	3980		HOH			4.56		2.175		.373	1.00	24	.90	W	0
	ATOM	3981		HOH			3.92		0.530			1.00			W	0
	MOTA	3982		HOH			4.72		5.239	102	.749	1.00			W	0
		3983		HOH			7.79		2.775	103	.123	1.00			W	0
	MOTA						8.31		4.220			1.00			W	ō
55	ATOM	3984		HOH					1.766		.413	1.00			W	ŏ
	MOTA	3985		HOH			1.58					1.00	7 2 3	10	W	ŏ
	MOTA	3986		HOH			4.52		7.870						W	ŏ
	MOTA	3987		HOH			4.25		8.013		.680					
	MOTA	3988		HOH			5.05		2.423		.326				W	0
60	MOTA	3989	0	HOH	W 40		0.59		3.706		.423				W	0
	MOTA	3990	0	HOH	W 41		1.26		0.306		.711				W	0
	ATOM	3991		HOH	W 42		1.11		5.325						W	0
	ATOM	3992		HOH		3	5.41	2 -	-7.469	9 83	.691				W	0
	MOTA	3993		HOH			9.03	6 1	.3.571	L 83	.635				W	0
65	ATOM	3994		НОН			3.46		5.887	7 100	.291	1.00	26	.02	W	0
	MOTA	3995		НОН			3.70		4.144				31	69	W	0
	MOTA	3996		HOH			2.58		4.601		.291				W	0
	ATOM	3997		HOH			2.82		7.152		.066	1.00	30	.03	W	0
	MOTA	3998		HOH			6.65		4.316						W	0
	ATOM	٥٥٥٥	, ,	11011	., 50	_										

	MOTA MOTA	3999 4000	0	HOH W 51 HOH W 52		25.145 115.275 -11.529 69.044	1.00 28.34 1.00 21.03	W W	0
	ATOM ATOM	$\frac{4001}{4002}$	0	нон w 53 нон w 54	27.250 -6.410	33.402 98.412 20.233 102.747	1.00 26.19 1.00 32.23	W W	0
5	ATOM ATOM	4003 4004	0	HOH W 55 HOH W 56	25.539 -3.623	22.652 105.834 39.874 107.173	1.00 40.60 1.00 43.07	W W	0
	ATOM	4005	0	HOH W 57	30.894	4.390 71.988	1.00 32.39	W	0
	ATOM ATOM	4006 4007	0	HOH W 58 HOH W 59	22.406 34.129	3.311 79.796 6.169 87.418	1.00 19.82 1.00 33.67	M	0
10	ATOM	4008	0	HOH W 60	-3.318	35.590 100.547	1.00 28.53	M	0
	ATOM ATOM	4009 4010	0	HOH W 61 HOH W 62	23.032 -10.710	-6.709 102.637 38.525 105.096	1.00 35.35 1.00 21.21	W	0
	MOTA	4011	ŏ	HOH W 63	17.542	8.543 106.106	1.00 28.80	W	О
15	ATOM ATOM	4012 4013	0	HOH W 64 HOH W 65	2.489 30.074	33.089 97.944 17.145 98.763	1.00 22.39 1.00 17.05	W	0
13	ATOM	4014	0	HOH W 66	-16.374	28.372 102.556	1.00 24.41	M	0
	ATOM ATOM	4015 4016	0	нон W 67 нон W 68	9.528 23.360	23.065 103.276 -5.629 91.918	1.00 39.55 1.00 29.13	W	0
	ATOM	4017	Ö	HOH W 69	10.550	28.053 110.107	1.00 18.71	M	0
20	ATOM	4018	0	HOH W 70 HOH W 71	-2.937 -16.268	25.921 114.654 35.216 117.114	1.00 30.39 1.00 36.27	W	0
	ATOM ATOM	4019 4020	0	HOH W 71 HOH W 72	23.240	-7.692 94.601	1.00 36.27	M	ŏ
	MOTA	4021	0	HOH W 73	28.558 -15.000	29.902 99.941	1.00 37.38	W	0
25	ATOM ATOM	4022 4023	0	нон W 74 нон W 75	5.317	6.861 100.111 37.793 102.522	1.00 27.16 1.00 30.41	W W	0
	MOTA	4024	0	HOH W 76	19.168	23.700 110.137	1.00 28.91	W	0
	MOTA MOTA	4025 4026	0	нон w 77 нон w 78	30.386 36.143	-10.910 84.608 7.975 79.406	1.00 32.94 1.00 29.70	W W	0
	MOTA	4027	О	HOH W 79	22.776	9.248 82.183	1.00 20.17	W	О
30	MOTA MOTA	4028 4029	0	HOH W 81 HOH W 82	37.057 28.228	-8.282 74.493 29.062 103.673	1.00 20.27 1.00 28.10	W W	0
	MOTA	4030	0	HOH W 83	-0.541	19.565 105.264	1.00 24.14	W	0
	MOTA MOTA	$\frac{4031}{4032}$	0	нон w 84 нон w 85	22.692 6.319	3.297 107.514 9.905 75.975	1.00 26.48 1.00 33.33	W	0
35	ATOM	4033	ŏ	HOH W 86	-20.077	32.736 123.087	1.00 26.22	W	Ο
	MOTA	4034 4035	0	HOH W 87 HOH W 88	2.894 16.333	-6.811 78.653 13.154 86.247	1.00 27.94 1.00 19.04	W W	0
	ATOM ATOM	4035	0	HOH W 89	-18.401	26.785 101.005	1.00 20.65	W	Ö
40	MOTA	4037	0	HOH W 90	14.178 37.756	4.497 102.132 12.396 75.146	1.00 14.84 1.00 53.57	W W	0
40	ATOM ATOM	4038 4039	0	нон w 91 нон w 92	5.996	41.146 107.575	1.00 31.31	W	ŏ
	MOTA	4040	0	HOH W 93	33.958 29.435	9.979 93.064 24.180 93.845	1.00 21.64 1.00 31.70	W W	0
	ATOM ATOM	$\frac{4041}{4042}$	0	НОН W 94 НОН W 95	-20.084	29.808 120.008	1.00 31.70	W	Ö
45	ATOM	4043	0	HOH W 96	11.886	24.347 94.949	1.00 31.14	W	0
	ATOM ATOM	$\frac{4044}{4045}$	0	нон W 97 нон W 98	20.130 13.677	-7.765 79.021 13.199 85.492	1.00 24.27 1.00 41.34	W W	0
	ATOM	4046	Ō	HOH W 100	9.428	16.898 98.102	1.00 28.31	W	0
50	ATOM ATOM	$\frac{4047}{4048}$	0	нон W 101 нон W 102	-14.681	-12.636 81.025 35.792 88.683	1.00 21.44 1.00 43.48	W W	0
	ATOM	4049	0	HOH W 103	-7.331	22.775 102.908	1.00 21.34	W	0
	ATOM ATOM	4050 4051	0	HOH W 104 HOH W 105	30.867 30.952	-3.411 103.450 7.074 82.558	1.00 17.02 1.00 30.32	W	0
	ATOM	4052	0	HOH W 106	0.055	-8.254 81.647	1.00 44.32	W	0
55	ATOM ATOM	$\frac{4053}{4054}$	0	НОН W 107 НОН W 108	24.927 -23.807	13.293 82.288 32.474 120.697	1.00 33.73 1.00 34.73	W	0
	ATOM	4055	ŏ	HOH W 109	9.549	-11.066 85.205	1.00 32.37	W	0
	ATOM ATOM	4056 4057	0	HOH W 110 HOH W 111	31.311 31.367	-4.410 95.935 -8.798 85.899	1.00 36.67 1.00 24.73	W W	0
60	MOTA	4058	ŏ	HOH W 112	-2.685	32.829 97.162	1.00 14.26	W	О
	MOTA	4059	0	HOH W 113 HOH W 114	31.508 14.725	24.004 97.423 -7.846 97.853	1.00 32.37 1.00 25.19	W	0
	ATOM ATOM	4060 4061	0	HOH W 114	-3.331	27.584 87.465	1.00 25.15	W	ŏ
05	ATOM	4062	0	HOH W 116	9.759	12.912 73.461	1.00 17.17	W	0
65	ATOM ATOM	4063 4064	0	HOH W 117 HOH W 118	-9.716 20.800	4.459 90.108 2.961 70.582	1.00 32.05 1.00 30.32	W W	0
	ATOM	4065	0	HOH W 119	18.183	35.258 107.203	1.00 25.90	Ŵ	0
	ATOM ATOM	4066 4067	0	НОН W 120 НОН W 122	14.131 13.443	35.183 110.395 31.066 92.909	1.00 31.30 1.00 28.30	W W	0

	ATOM	4068 O		нон w 123	5.710 25.002 114.636 1.00 50.47 W	0
	ATOM	4069 0		HOH W 124	-9.776 26.728 117.248 1.00 38.41 W -15.147 2.711 93.850 1.00 28.99 W	0
	MOTA	4070 O 4071 O		HOH W 125 HOH W 126	22.123 32.188 96.064 1.00 28.66 W	0 .
5	ATOM ATOM	4071 O 4072 O)	HOH W 127	18.922 7.388 72.762 1.00 31.98 W	0
5	MOTA	4073 O		HOH W 128	26.078 -10.105 80.952 1.00 33.21 W 33.351 8.652 88.931 1.00 34.31 W	ŏ
	MOTA	4074 O		HOH W 129 HOH W 130	33.136 15.710 88.777 1.00 51.57 W	0
	MOTA MOTA	4075 O		HOH W 131	2.007 37.692 103.678 1.00 36.95 W	0
10	MOTA	4077 C		HOH W 132 HOH W 133	7 880 -11 049 90.515 1.00 41.06 W	ŏ
	ATOM ATOM	4078 C		HOH W 133 HOH W 134	-11.066 28.063 82.867 1.00 45.18 W	0
	ATOM	4080 C		HOH W 135	25.936 -6.768 94.146 1.00 32.98 W	0
	MOTA	4081		HOH W 136 HOH W 137	43.370 1.669 71.874 1.00 32.04 W 1.019 6.008 79.468 1.00 40.19 W	0
15	ATOM ATOM	4082 C	_	HOH W 137	34.715 13.498 101.014 1.00 53.03 W	0
	ATOM		5	HOH W 139	22.191 11.429 81.361 1.00 41.29 W 24.467 21.102 82.091 1.00 34.83 W	0
	MOTA		5	HOH W 140 HOH W 141	15 139 37 655 103.495 1.00 28.25 W	0
20	ATOM ATOM))	HOH W 142	-11.890 15.447 104.306 1.00 26.61 W	0
20	MOTA		0	HOH W 143	32.110 -6.441 50.470 1.00 51	0
	MOTA		0	нон w 144 нон w 145	19 868 20.917 110.695 1.00 48.68 W	0
	MOTA MOTA		0 0	HOH W 146	4.529 35.844 118.732 1.00 38.17 W	0
25	MOTA	4092	Ō	HOH W 147	31.420 13.080 84.897 1.00 35.77 W 5.862 33.041 95.343 1.00 42.81 W	ŏ
	MOTA		0 0	нон W 148 нон W 149	36.227 -7.429 65.214 1.00 52.25 W	0
	MOTA MOTA		0	HOH W 150	12.533 -3.257 98.974 1.00 30.04 W	0
	MOTA		0	нон W 151 нон W 152	41.936 5.196 81.078 1.00 48.30 W 5.365 0.173 100.870 1.00 38.17 W	0
30	ATOM ATOM		0	HOH W 152	18.974 10.598 76.035 1.00 27.27 W	0
	MOTA		ŏ	HOH W 154	-11.459 23.657 81.891 1.00 44.66 W -11.643 37.549 102.792 1.00 29.06 W	ŏ
	MOTA		0	нон w 155 нон w 156	21 611 33.384 110.725 1.00 43.54 W	0
35	MOTA MOTA	$\frac{4101}{4102}$	Ö	HOH W 157	5.082 13.359 91.364 1.00 34.56 W	0
00	MOTA	4103	0	HOH W 158	-4.222 32.340 117.504 1.00 52.91 W -4.833 0.443 84.678 1.00 31.52 W	ŏ
	MOTA ATOM	4104 4105	0	НОН W 159 НОН W 160	-2.712 24.390 91.588 1.00 42.37 W	0
	ATOM	4106	Ö	HOH W 161	23.968 10.013 108.083 1.00 52.17 W 39.266 7.831 70.972 1.00 30.66 W	0
40	MOTA	4107	0	HOH W 162 HOH W 163	39.266 7.831 70.972 1.00 30.66 W -6.156 19.204 110.800 1.00 49.86 W	0
	MOTA MOTA	4108 4109	0	HOH W 164	19.098 17.380 84.173 1.00 36.03 W	0
	MOTA	4110	0	HOH W 165	13.399 33.954 93.836 1.00 36.17 W -31.448 25.540 114.441 1.00 37.50 W	ŏ
45	MOTA	$\frac{4111}{4112}$	0	нон W 166 нон W 167	13.302 14.583 106.224 1.00 21.88 W	0
45	MOTA MOTA	4113	ŏ	HOH W 169	1.752 26.748 97.241 1.00 37.67 W 27.718 0.693 62.087 1.00 46.32 W	0
	ATOM	4114	0	нон w 170 нон w 171	28 912 -5.883 98.061 1.00 45.53 W	Ō
	ATOM ATOM	4115 4116	0	HOH W 171 HOH W 172	12.144 -6.132 99.269 1.00 28.03 W	0
50	ATOM	4117	0	HOH W 173	9.713 14.070 99.156 1.00 36.36 W 44.241 3.007 80.980 1.00 55.52 W	ŏ
	MOTA	4118	0	нон w 174 нон w 175	-2.145 9.708 89.227 1.00 30.25 W	0
	MOTA MOTA	4119 4120	0	HOH W 176	21.259 13.911 103.297 1.00 46.50 W	0
	MOTA	4121	0	HOH W 177	28.628 2.356 108.048 1.00 35.93 W -3.113 20.410 91.180 1.00 49.91 W	0
55	ATOM ATOM	4122 4123	0	нон w 178 нон w 179	9.943 40.130 105.661 1.00 49.34 W	0
	ATOM	4124	ŏ	HOH W 180	-14.721 37.561 104.779 1.00 37.09 W 0.350 -13.390 93.145 1.00 42.85 W	0
	ATOM		0	нон W 181 нон W 182	-16 751 30.840 125.808 1.00 43.38 W	0
60	MOTA MOTA	4400	0	HOH W 182	5.022 10.944 94.912 1.00 36.63 W	0
00	MOTA	4128	0	HOH W 184	4/.344 -3.1/2 03.012 1.00 44 43	ŏ
	ATOM		0	НОН W 185 НОН W 186	11 422 0.781 69.608 1.00 50.67 W	0
	ATOM ATOM		0	HOH W 187	1.340 12.706 88.912 1.00 17.04 W	0
65	ATOM	4132	0	HOH W 188	9 004 12 970 81.421 1.00 51.36 W	0
	ATOM ATOM		0	нон W 189 нон W 191	30.121 9.526 83.001 1.00 30.35 W	0
	ATOM		0	нон w 192	-13.167 21.122 108.317 1.00 36.08 W -17.245 22.145 114.082 1.00 45.19 W	0
	ATOM	4136	0	нон W 193	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					173	

	ATOM	4137	0	нон w 194		0 35.80	M	0
	MOTA	4138	0	HOH W 195	25.255	0 33.67 0 35.43	W	0
	ATOM	4139	0	HOH W 196	1.000	0 26.66	W	Ö
_	ATOM	4140	0	нон w 197 нон w 198		0 43.04	M	ŏ
5	ATOM ATOM	$4141 \\ 4142$	0	HOH W 199	8.986 -7.658 77.984 1.0	0 41.83	W	0
	ATOM	4143	0	HOH W 200	-18.535 14.030 99.271 1.0	0 42.15	M	0
	ATOM	4144	ŏ	HOH W 201	35.091 -0.808 99.802 1.0		M	0
	ATOM	4145	0	HOH W 203	2.101	0 74.49	M	0
10	MOTA	4146	0	HOH W 204		0 34.52	M	0
	MOTA	4147	0	HOH W 205	10.210 10.030 1000	0 37.42 0 42.78	W	0
	MOTA	4148	0	нон w 206		00 42.78	W	ŏ
	ATOM	4149	0	нон W 207 нон W 208		0 50.13	M	ŏ
45	MOTA	4150 4151	0	HOH W 208		0 33.69	W	0
15	MOTA MOTA	4152	Ö	HOH W 212		0 37.61	W	0
	ATOM	4153	ŏ	HOH W 214		0 30.67	W	0
	MOTA	4154	ŏ	HOH W 215		0 30.32	W	0
	ATOM	4155	0	HOH W 216		00 39.11	M	0
20	MOTA	4156	0	TIOIT W		00 31.57	W	0
	MOTA	4157	0	HOH W 218		00 46.35 00 51.22	W W	Ö
	ATOM	4158	0	HOH W 219		00 63.55	W	ŏ
	ATOM	4159 4160	0	HOH W 220 HOH W 221		00 39.00	W	Ö
25	ATOM ATOM	4161	0	HOH W 221		00 62.58	W	0
20	ATOM	4162	ŏ	HOH W 223	16.250 35.597 101.623 1.0	00 29.57	W	0
	ATOM	4163	Ō	HOH W 224	20.5.2	00 41.21	W	0
	ATOM	4164	0	HOH W 225		00 39.22	W	0
	MOTA	4165	0	нон w 226	10.200	00 52.06 00 28.91	W	0
30	MOTA	4166	0	HOH W 227	=:00:		W	Ö
	ATOM	4167	0	HOH W 228 HOH W 229	20.700 22.012	00 44.90	W	ŏ
	ATOM ATOM	4168 4169	0	HOH W 239		00 47.35	W	0
	ATOM	4170	Ö	HOH W 231		00 37.92	\mathbf{W}^{c}	0
35	MOTA	4171	ŏ	HOH W 232	26.302 27.216 105.852 1.0		M	0
00	MOTA	4172	ō	HOH W 233		00 35.69	M	. 0
	ATOM	4173	0	HOH W 234		00 56.46	W	0
	MOTA	4174	0	нон w 235		00 56.82 00 46.16	W W	0
	MOTA	4175	0	нон w 236		00 40.10	W	Ö
40	MOTA	4176	0	нон w 237 нон w 238		00 32.27	M	ŏ
	MOTA MOTA	4177 4178	0	HOH W 239		00 66.22	M	0
	ATOM	4179	Ö	HOH W 240		00 38.96	W	0
	ATOM	4180	ŏ	HOH W 242	-4.347 7.089 83.943 1.	00 34.28	M	0
45	ATOM	4181	0	HOH W 244	20,000	00 35.74	M	0
	MOTA	4182	0	HOH W 245		00 98.33	W	0
	MOTA	4183	0	HOH W 246		00 60.71 00 37.52	M	0
	ATOM	4184	0	HOH W 247		00 37.52	W	ŏ
F0	MOTA	4185	0	нон w 248 нон w 249		00 42.13	W	Ō
50	ATOM ATOM	4186 4187	0	HOH W 250		00 34.13	W	0
	ATOM	4188	ŏ	HOH W 251	12.546 26.526 89.169 1.	00 75.55	W	0
	ATOM	4189	ō	HOH W 252	15.820 -5.443 71.698 1.	00 64.76	W	0
	ATOM	4190	0	HOH W 253		00 45.55	W	0
55	MOTA	4191	0	HOH W 254		00 39.90 00 43.29	W W	0
	MOTA	4192	0	HOH W 255	• • • • • • • • • • • • • • • • • • • •	00 50.06	W	ŏ
	ATOM	4193	0	HOH W 256		00 42.11	W	ŏ
	MOTA	4194 4195	0	HOH W 257 HOH W 258		00 48.63	W	Ō
60	ATOM ATOM	4196	0	HOH W 259	26.271 16.951 106.835 1.	00 28.76	W	0
00	MOTA	4197	ŏ	HOH W 260	21.231 10.692 77.782 1.	00 52.78	W	0
	ATOM	4198	ŏ	HOH W 261	8.597 31.178 114.621 1.	00 29.98	\mathbf{W}	0
	MOTA	4199	0	HOH W 263		00 49.49	W	0
	MOTA	4200	0	HOH W 264		00 43.50	W W	0
65	ATOM	4201	0	нон w 265		00 40.59	W	0
	MOTA	4202	0	HOH W 266	33.611 10.760 95.480 1. -13.163 9.376 82.701 1.	00 91.44	W	ŏ
	MOTA	4203	0	нон W 268 нон W 269	-13.163 9.376 82.761 1. -10.588 -3.736 92.548 1.	00 48.91	W	ŏ
	MOTA MOTA	4204 4205	0	HOH W 200		00 46.59	W	0
	121011		-					

						22 246 22 225	1 00 70 00	7.7	_
	ATOM	4206	0	HOH W 271	-15.610	30.916 83.905	1.00 72.20 1.00 40.04	W	0
	MOTA	4207	0	HOH W 272	8.482	-2.678 100.994 39.625 106.340	1.00 40.04	W	Ö
	MOTA	4208	0	нон w 273 нон w 274	-14.819 -15.862	27.341 124.046	1.00 32.00	W	ŏ
=	MOTA MOTA	4209 4210	0	HOH W 274	0.355	7.737 78.018	1.00 39.51	W	ŏ
5	ATOM	4211	ŏ	HOH W 275	11.649	6.543 73.332	1.00 62.29	W	Ō
	ATOM	4212	Ö	HOH W 277	13.896	1.911 70.069	1.00 36.22	W	0
	ATOM	4213	ŏ	HOH W 279	11.226	9.285 70.225	1.00 37.33	W	0
	ATOM	4214	ŏ	HOH W 280	17.596	11.506 73.709	1.00 37.13	W	0
10	ATOM	4215	ō	HOH W 281	22.601	8.046 77.458	1.00 84.20	M	0
• -	ATOM	4216	0	HOH W 282	22.007	2.832 75.959	1.00 60.94	W	0
	MOTA	4217	0	HOH W 283	14.332	0.684 101.417	1.00 26.51	W	0
	MOTA	4218	0	HOH W 284	17.488	14.803 74.520	1.00 50.25	W	0
	MOTA	4219	0	HOH W 285	11.672	12.725 82.121	1.00 31.27 1.00 49.99	M	0
15	ATOM	4220	0	HOH W 286	13.338	15.638 79.654 15.666 77.915	1.00 49.99	W	Ö
	ATOM	4221	0	HOH W 287 HOH W 288	15.476 -19.019	18.128 91.748	1.00 57.76	W	ő
	MOTA	4222	0	HOH W 289	-19.019	20.525 92.776	1.00 57.70	W	ŏ
	MOTA MOTA	4223 4224	0	HOH W 290	-21.754	17.779 92.013	1.00 70.60	M	Ö
20	ATOM	4225	ŏ	HOH W 291	-7.681	20.732 86.926	1.00 30.75	W	0
20	MOTA	4226	ŏ	HOH W 292	-18.672	16.770 99.341	1.00 72.88	M	0
	ATOM	4227	ŏ	HOH W 293	41.053	-10.007 75.389	1.00 40.19	W	0
	ATOM	4228	0	HOH W 294	15.967	34.561 95.189	1.00 32.39	M	0
	ATOM	4229	0	нон w 295	3.242	22.750 99.080	1.00 42.03	M	0
25	MOTA	4230	0	нон w 296	42.034	1.021 85.260	1.00 31.00	W	0
	MOTA	4231	0	HOH W 297	34.100	-8.318 85.997	1.00 20.43 1.00 51.52	W	0
	ATOM	4232	0	HOH W 298	26.478 34.395	33.532 95.995 6.694 89.928	1.00 51.52 1.00 53.02	W	0
	MOTA	4233	0	нон w 299 нон w 300	-0.985	37.065 99.982	1.00 39.51	W	ŏ
20	ATOM ATOM	4234 4235	0	HOH W 300	-0.252	34.259 98.319	1.00 40.18	W	ō
30	MOTA	4236	Ö	HOH W 302	1.043	37.976 101.110	1.00 50.67	W	0
	ATOM	4237	ŏ	HOH W 303	13.169	27.347 107.852	1.00 .46.98	W	0
	MOTA	4238	ŏ	HOH W 304	2.617	-8.808 82.550	1.00 34.55	W	0
	ATOM	4239	O	HOH W 306	-24.119	34.693 121.849	1.00 38.49	W	0
35	ATOM	4240	0	HOH W 307	-21.110	33.926 125.264	1.00 35.91	W	0
	ATOM	4241	0	HOH W 308	-22.717	35.450 124.405	1.00 40.22	M	0
	ATOM	4242	0	нон w 309	14.431	-7.080 100.358	1.00 40.89	W	0
	ATOM	4243	0	HOH W 310	-1.633	26.170 89.620 23.415 92.259	1.00 32.95 1.00 48.52	W	0
	ATOM	4244	0	HOH W 311	-0.715 15.583	23.415 92.259 37.247 111.051	1.00102.38	M	ő
40	MOTA	4245	0	нон W 312 нон W 313	49.127	-4.716 84.592	1.00102.30	M	ŏ
	ATOM ATOM	4246 4247	0	HOH W 315	4.543	25.776 97.442	1.00 20.30	W	ō
	ATOM	4248	Ö	HOH W 317	13.219	-2.231 96.766	1.00 26.75	W	0
	MOTA	4249	ŏ	HOH W 318	-1.027	12.136 89.956	1.00 30.29	M	0
45	ATOM	4250	0	HOH W 319	24.455	-0.869 84.238	1.00 47.96	M	0
	MOTA	4251	0	HOH W 321	7.387	26.214 95.885	1.00 43.12	M	0
	MOTA	4252	0	нон w 323	-10.121	37.815 100.499	1.00 26.17	M	0
	MOTA	4253	0	HOH W 324	44.204	-8.495 89.166	1.00 41.06 1.00 24.87	W	0
	ATOM	4254	0	HOH W 325	16.219 16.724	0.595 103.250 6.735 108.041	1.00 24.87	W	ŏ
50	ATOM	4255 4256	0	нон w 326 нон w 327	-5.658	41.985 114.043	1.00 41.88	W	Ö
	ATOM ATOM	4257	0	HOH W 327	30.517	7.926 72.820	1.00 24.86	W	Ō
	ATOM	4258	ŏ	HOH W 329	-4.229	13.443 105.886	1.00 42.46	W	0
	MOTA	4259	ŏ	HOH W 330	9.856	-2.127 98.647	1.00 29.78	W	0
55	MOTA	4260	ō	HOH W 331	32.200	13.062 101.692	1.00 46.72	W	0
	ATOM	4261	0	HOH W 332	11.618	16.977 87.587	1.00 38.22	M	0
	MOTA	4262	0	HOH W 334	13.863	35.533 100.193	1.00 38.69	W	0
	MOTA	4263	0	HOH W 335	3.202	20.353 103.614	1.00 41.76	W	0
	ATOM	4264	0	HOH W 336	-0.265	25.481 112.882	1.00 45.85 1.00 40.43	W	o
60	ATOM	4265	0	HOH W 337	33.088 -10.753	17.503 92.709 19.811 115.192	1.00 40.43	W	ŏ
	MOTA	4266	0	нон w 338 нон w 339	5.702	24.463 117.434	1.00 32.03	W	ŏ
	ATOM	4267 4268	0	HOH W 339	36.083	5.104 86.455	1.00 32.03	W	ŏ
	MOTA MOTA	4268	0	HOH W 340	45.308		1.00 43.84	W	ŏ
65	ATOM	4270	ŏ	HOH W 342	-3.013	2.927 80.584	1.00 48.18	W	0
00	ATOM	4271	ŏ	HOH W 343	-8.584	2.810 102.723	1.00 45.47	W	0
	ATOM	4272	O	HOH W 344	14.270	31.214 111.267	1.00 53.23	M	0
	MOTA	4273	0	HOH W 345	5.303	5.466 73.316	1.00 35.97	W	0
	ATOM	4274	0	нон w 346	5.884	14.859 94.569	1.00 34.36	W	0

	ATOM	4275	0	НОН W 347 НОН W 348	13.766 -10.804 94.639 1.00 37.55 28.817 -6.638 95.408 1.00 46.05	W	0
	ATOM ATOM	4276 4277	0	HOH W 349	-16.201 4.012 101.225 1.00 55.36	W	0
5	ATOM ATOM	·4278 4279	0	нон W 350 нон W 351	-11.930 40.337 106.636 1.00 34.71	M	0
	ATOM	4280 4281	0	нон w 352 нон w 353	14.848 22.833 108.104 1.00 32.58 4.331 11.520 83.240 1.00 65.30	W	0
	ATOM ATOM	4282	Ö	HOH W 354	-30.188 27.123 112.476 1.00 54.95	W	0
10	ATOM ATOM	4283 4284	0	нон w 355 нон w 356	0.831 37.120 115.463 1.00 45.14 39.804 -9.143 67.597 1.00 38.07	W	0
10	MOTA	4285	0	HOH W 357	-5.193 41.092 118.296 1.00 49.38	W W	0
	MOTA MOTA	4286 4287	0	нон w 358 нон w 359	2.404 30.953 94.996 1.00 43.81	W	0
	ATOM	4288	0	HOH W 360	5.633 -10.209 96.938 1.00 33.82 4.540 -6.167 100.513 1.00 39.66	W	0
15	ATOM ATOM	4289 4290	0	НОН W 361 НОН W 362	-19.660 12.268 100.884 1.00 27.40	W	0
	ATOM	4291	0	нон w 363	46.225 -3.464 88.101 1.00 43.37	W W	0
	ATOM ATOM	4292 4293	0	нон w 364 нон w 365	17.099 11.410 108.574 1.00 47.12	W	0
20	MOTA	4294	0	HOH W 366	26.600 2.351 110.176 1.00 37.38 -22.520 39.595 116.261 1.00 49.47	W W	0
	ATOM ATOM	4295 4296	0	нон W 367 нон W 368	0.313 25.144 94.624 1.00 40.92	W	0
	MOTA	4297	0	нон w 369 нон w 370	20.613 -10.182 77.986 1.00 37.72 22.771 6.260 79.455 1.00 47.23	W	0
25	MOTA ATOM	4298 4299	0	HOH W 371	14.209 -9.494 101.679 1.00 50.86	W	0
	ATOM	4300 4301	0	нон w 372 нон w 373	32.180 -13.182 64.680 1.00 31.90 -15.578 22.302 119.158 1.00 67.22	W	0
	MOTA MOTA	4302	ŏ	HOH ₩ 374	-5.806 33.729 119.651 1.00 78.83	W	0
30	MOTA MOTA	4303 4304	0	нон w 375 нон w 376	5.261 41.524 122.294 1.00 64.79 -26.827 27.798 95.626 1.00 52.39	W	0
30	MOTA	4305	0	HOH W 377	-0.392 20.708 96.954 1.00 47.09	W	0
	ATOM ATOM	4306 4307	0	нон w 378 нон w 379	38.359 3.116 87.840 1.00 51.46 -8.697 -6.590 90.186 1.00 37.82	M	ŏ
	ATOM	4308	0	HOH W 380	34.329 -8.438 63.764 1.00 43.15 25.046 4.206 109.068 1.00 36.85	W	0
35	ATOM ATOM	4309 4310	0	нон W 381 нон W 382	-12.307 4.812 90.954 1.00 54.83	W	0
	MOTA	4311	0	HOH W 383	22.346 0.999 109.244 1.00 55.83 20.145 33.493 94.808 1.00 33.85	W W	0
	ATOM ATOM	4312 4313	0	нон W 384 нон W 385	17.103 17.604 111.486 1.00 58.32	W	0
40	ATOM	4314	0	нон w 386 нон w 387	-19.799 34.573 91.860 1.00 30.28 14.665 36.499 114.334 1.00 75.56	W	0
	ATOM ATOM	4315 4316	0	HOH W 388	7.042 35.670 94.968 1.00 48.07	M	0
	MOTA	4317 4318	0	нон w 389 нон w 390	32.245 -16.178 70.702 1.00 49.01 10.283 21.058 100.027 1.00 84.17	W	0
45	ATOM ATOM	4319	0	HOH W 391	34.895 7.447 103.148 1.00 40.35	W	0
	MOTA MOTA	4320 4321	0	нон W 392 нон W 393	-25.110 16.204 100.371 1.00 50.31 -25.389 34.708 117.495 1.00 48.66	W	0
	ATOM	4322	ŏ	HOH W 394	11.890 21.970 101.820 1.00 68.28	W	0
50	MOTA MOTA	4323 4324	0	нон w 395 нон w 396	45.837 -5.824 89.349 1.00 28.55 -8.379 40.188 104.608 1.00 50.71	W	0
00	MOTA	4325	0	нон w 397	-2.215 0.600 81.682 1.00 55.91	W	0
	MOTA MOTA	4326 4327	0	нон w 398 нон w 399	24.028 8.821 110.407 1.00 40.67	W	0
	MOTA	4328	0	HOH W 400	4.868 30.432 91.498 1.00 63.30 -13.446 0.549 94.109 1.00 38.55	W W	0
55	ATOM ATOM	4329 4330	0	нон w 401 нон w 402	-14.032 30.272 124.462 1.00 67.33	W	0
	MOTA	4331	0	HOH W 403	-8.252 25.376 115.719 1.00 72.04 -19.618 7.134 97.108 1.00 69.74	W	0
	ATOM ATOM	4332 4333	0	нон W 404 нон W 405	43.024 -2.573 87.596 1.00 47.06	W	0
60	MOTA	4334	0	нон W 406 нон W 407	-8.280 39.609 100.109 1.00 45.22 13.386 -2.161 101.138 1.00 40.32	W	0
	ATOM ATOM	4335 4336	0	HOH W 408	1.781 -3.496 73.915 1.00 35.10	W	0
	MOTA	4337	0	нон W 409 нон W 410	-19.493 33.560 127.412 1.00 52.12 -12.357 32.930 84.450 1.00 55.63	W W	0
65	MOTA MOTA	4338 4339	0	HOH W 411	-16.396 41.453 106.252 1.00 67.78	M	0
	ATOM	4340 4341	0	HOH W 412 HOH W 413	9.259 22.383 107.628 1.00 62.67 26.452 10.638 108.233 1.00 55.75	W	0
	MOTA MOTA	4342	0	HOH W 414	3.629 26.004 108.637 1.00 32.70	W	0
	ATOM	4343	0	HOH W 415	15.226 13.844 73.002 1.00 48.60	M	0

	ATOM ATOM ATOM	4344 O 4345 O 4346 O	HOH W 416 HOH W 417 HOH W 418	1.142 27.132 93.054 1.00 41.48 -8.715 22.235 116.597 1.00 46.49 14.671 -10.428 90.692 1.00 44.76	W O W O W O W O
5	ATOM ATOM ATOM ATOM ATOM	4347 O 4348 O 4349 O 4350 O 4351 O	HOH W 419 HOH W 420 HOH W 421 HOH W 422 HOH W 423	8.057 17.800 101.961 1.00 51.89 29.708 7.490 70.081 1.00 36.19 18.102 4.689 108.132 1.00 65.88 20.158 13.014 111.569 1.00 56.69	W O W O W O
10	ATOM ATOM ATOM ATOM	4352 O 4353 O 4354 O 4355 O	HOH W 424 HOH W 425 HOH W 426 HOH W 427	24.783 24.390 107.699 1.00 68.92 33.410 -5.505 95.203 1.00 42.38 35.004 -3.766 95.192 1.00 35.89	W O W O W O
15	MOTA MOTA MOTA MOTA MOTA MOTA	4356 O 4357 O 4358 O 4359 O 4360 O	HOH W 428 HOH W 429 HOH W 430 HOH W 431 HOH W 432	31.902 10.936 83.768 1.00 50.77 20.413 14.829 81.652 1.00 86.25 32.924 22.614 95.004 1.00 57.23 17.143 27.068 92.217 1.00 41.94	W O W O W O
20	MOTA MOTA ATOM MOTA	4361 O 4362 O 4363 O 4364 O	HOH W 433 HOH W 434 HOH W 435 HOH W 436 HOH W 437	17.696 29.224 90.849 1.00 44.20 6.235 13.909 97.039 1.00 36.25 15.368 1.745 105.621 1.00 65.45 12.352 2.448 102.309 1.00 56.90 17.216 -1.654 103.171 1.00 64.25	W O W O W O W O
25	ATOM ATOM ATOM ATOM ATOM	4365 O 4366 O 4367 O 4368 O 4369 O	HOH W 438 HOH W 439 HOH W 440 HOH W 441	-24.467 21.964 97.052 1.00 59.17 6.899 37.197 100.238 1.00 53.34 -5.836 25.471 114.752 1.00 49.14 -17.656 23.630 116.338 1.00 60.48	W O W O W O W O W O
30	MOTA MOTA MOTA MOTA MOTA	4370 O 4371 O 4372 O 4373 O 4374 O	HOH W 444 HOH W 445	39.860 6.346 67.021 1.00 32.01 42.143 8.359 69.500 1.00 39.71 -8.339 -3.324 88.589 1.00 48.59 -5.439 -2.506 84.631 1.00 49.07	W O W O
35	ATOM MOTA MOTA MOTA	4375 O 4376 O 4377 O 4378 O	HOH W 447 HOH W 448 HOH W 449 HOH W 450	10.114 9.300 105.299 1.00 55.06 16.239 -12.467 79.695 1.00 48.81 12.931 14.962 82.732 1.00 55.97 15.033 16.025 83.698 1.00 55.49 10.617 15.905 83.861 1.00 54.71	W O W O W O W O
	ATOM ATOM ATOM ATOM	4379 C 4380 C 4381 C 4382 C	HOH W 452 HOH W 454 HOH W 455	10.617 15.905 83.861 1.00 54.71 -5.587 14.189 96.637 1.00 17.19 -2.694 14.148 88.813 1.00 39.38 3.241 25.419 113.472 1.00 35.59 6.666 28.248 94.111 1.00 31.20	W O W O W O
40	ATOM ATOM ATOM ATOM	4383 C 4384 C 4385 C 4386 C	HOH W 457 HOH W 458 HOH W 459	4.912 26.581 118.595 1.00 33.12 13.177 32.164 114.127 1.00 57.36 25.786 35.921 98.725 1.00 58.99 22.635 4.638 74.051 1.00 46.06	W O W O W O
45	ATOM ATOM ATOM ATOM		HOH W 461 HOH W 462 HOH W 463	17.322 37.394 105.719 1.00 31.09 -7.224 20.703 114.851 1.00 39.30 35.611 11.671 98.382 1.00 46.52 29.883 -13.953 62.902 1.00 57.02	W O W O W O
50	ATOM ATOM ATOM ATOM ATOM	4392 (4393 (4394 (HOH W 464 HOH W 465 HOH W 466 HOH W 467 HOH W 468	31.809 -8.822 91.814 1.00 48.95 -4.260 7.670 89.713 1.00 47.18 10.396 24.915 91.432 1.00 40.35 25.263 11.071 82.716 1.00 54.15	M O M O
55	MOTA MOTA MOTA	4396 4397 4398 4399	O HOH W 469 O HOH W 470 O HOH W 471 O HOH W 472	38.248 5.442 99.845 1.00 42.81 36.347 9.341 100.618 1.00 34.65 -16.914 41.482 111.141 1.00 42.00 -9.184 24.264 81.849 1.00 47.30 40.726 1.808 66.833 1.00 43.72	W O W O W O W O
60	ATOM ATOM ATOM ATOM	4401 4402 4403	O HOH W 473 O HOH W 474 O HOH W 475 O HOH W 476 O HOH W 477	31.808 -18.642 70.728 1.00 37.59 16.188 22.858 110.296 1.00 49.77 3.509 2.536 103.295 1.00 42.84 11 289 41.122 108.943 1.00 45.98	W O W O W O
65	MOTA MOTA MOTA MOTA MOTA	4405 4406 4407	O HOH W 478 O HOH W 479 O HOH W 480 O HOH W 481	36.903 -5.044 64.038 1.00 55.21 -6.947 8.034 91.049 1.00 52.73 29.751 -15.588 72.186 1.00 39.77 -19.537 40.486 107.195 1.00 44.19	M O M O
03	ATOM MOTA MOTA MOTA	4409 4410 4411	O HOH W 482 O HOH W 483 O HOH W 484 O HOH W 485	13.213 -5.095 67.720 1.00 60.90 49.568 -7.870 76.168 1.00 56.88 20.138 10.494 110.659 1.00 51.35 23.477 20.576 109.910 1.00 40.59	W O W O W O
				177	

	A.T.OM	4413	U	HOH W 486	17.274	23.443	92.256	1.00 20.56	W	_
	ATOM	4414	0	HOH W 487	-3.839	23.924	116.158	1.00 53.03	W	0
	ATOM	4415	0	HOH W 488	-9.415	30.760	123.636	1.00 52.62	W	-
	MOTA	4416	0	HOH W 489	-1.387	9.782	78.997	1.00 53.83		0
5	ATOM	4417	. 0	HOH W 490	9.922	-7.536	74.819	1.00 56.15	W	0
	ATOM	4418	0	HOH W 491	-19.282	13.510	103.374	1.00 42.49	W	0
	ATOM	4419	0	HOH W 492	5.004	29.828	93.747	1.00 45.34		0
	MOTA	4420	0	HOH W 493	17.415	-8.223	91.913	1.00 43.34	W	0
	ATOM	4421	0	HOH W 494	-12.983	20.330	105.539	1.00 54.57	W	0
10	ATOM	4422	0	HOH W 495	-7.159	22.883	83.768	1.00 46.62	W	0
	ATOM	4423	0	HOH W 496	37.991	-8.468	95.150	1.00 40.02	W W	0
	MOTA	4424	0	HOH W 497	6.698	22.515	106.540	1.00 30.24	W	0
	ATOM	4425	0	HOH W 498	0.537	27.673	90.158	1.00 31.07	W	0
	ATOM	4426	0	HOH W 499	•	-10.554	82.991	1.00 43.73	W	0
15	ATOM	4427	0	HOH W 500	-9.156	36.949	84.009	1.00 72.95	W	0
	ATOM	4428	0	HOH W 501	-33.297	21.816	110.516	1.00 49.38	W	0
	ATOM	4429	0	HOH W 502		-12.296	83.500	1.00 49.38	W	0
	ATOM	4430	0	HOH W 503	-0.797	13.710	92.437	1.00 67.43		0
	ATOM	4431	0	HOH W 504	-4.021	-6.785	82.556	1.00 66.42	W W	0
20	ATOM	4432	0	HOH W 505	39.144	-0.596	89.054	1.00 60.42	W	0
	ATOM	4433	0	HOH W 506	-4.755	-6.160	85.441	1.00 49.25	M	0
	ATOM	4434	0	HOH W 507	28.668 -	-12.917	86.013	1.00 72.20	W	0
	ATOM	4435	0	HOH W 508		13.358	85.255	1.00 72.20	W	0
	MOTA	4436	0	HOH W 509	1.611		103.500	1.00 63.21	W	0
25	MOTA	4437	0	HOH W 510	-16.935	38.862	97.751	1.00 33.21		0
	TER	4438		HOH W 510			- , . , 51	1.00 30.07	W	0

^aAmino acids residues of the light (L) and heavy (H) chains are numbered according to the Chothia numbering system as shown in Tables 6 and 7, respectively (Al-Lazikani *et al., Jour. Mol. Biol.* 273:927-948, 1997). Amino acid residues of IL-13 (I) are numbered as shown in SEQ ID NO:4 (FIG. 2B). 30

35

^bColumns are labeled according to Protein Data Bank Format, Version 2.2

Table 12. Structure coordinates of human IL-13/mAb13.2 Fab/IL-13Ra1a, b

	Table 12	•	struct	cure co	ordina	tes of huma	an 11-13	/mAb13.2	Fab/IL-I3Ral		
		#	Name	Res. Cha	ain Res#	X	Y	\mathbf{z}	occ B	SegID	
	ATOM	1	СВ	PRO I	6	27.016	30.544	-8.876	1.00 78.94	Ī	С
	ATOM	2	CG	PRO I	6	25.927	30.356	-7.827	1.00 79.11	I	C
5	ATOM	3	C	PRO I	6	28.494	28.571	-9.333	1.00 77.04	I	C
	ATOM	4	0	PRO I	6	28.955	27.658	-10.011	1.00 78.75	I	0
	ATOM	5	N	PRO I	6	26.037	28.388	-9.357	1.00 79.03	I	N
	ATOM	6	CD	PRO I	6	25.355	28.902	-8.177	1.00 78.57	Ī	C
	MOTA	7	CA	PRO I	6	27.169	29.250	-9.667	1.00 77.81	I	C
10	ATOM	8	N	SER I	7	29.158	29.102	-8.292 -7.754	1.00 73.92 1.00 70.46	I	N C
	ATOM	9	CA	SER I	7	30.314 31.594	28.399 28.866	-7.754 -8.450	1.00 70.46	I	C
	ATOM ATOM	10 11	CB OG	SER I SER I	7 7	32.433	27.732	-8.694	1.00 71.08	Ï	Ö
	ATOM	12	C	SER I	7	30.438	28.627	-6.254	1.00 68.57	Ï	č
15	ATOM	13	ŏ	SER I	ż	29.807	29.505	-5.678	1.00 68.82	Ī	ŏ
	ATOM	14	Ň	THR I	8	31.238	27.760	-5.628	1.00 64.85	I	N
	ATOM	15	CA	THR I	8	31.542	27.924	-4.220	1.00 61.35	I	C
	ATOM	16	CB	THR I	8	31.055	26.659	-3.518	1.00 60.21	I	C
	MOTA	17	OG1	THR I	8	31.602	25.526	-4.191	1.00 60.16	I	0
20	ATOM	18	CG2	THR I	8	29.525	26.585	-3.602	1.00 60.47	Ī	C
	ATOM	19	C	THR I	8	33.049	28.098	-4.021	1.00 59.39	Ĭ	C
	ATOM	20	0	THR I	8	33.866	27.692	-4.837	1.00 60.36	I	O
	ATOM	21	N	ALA I	9	33.455	28.703 28.844	-2.891 -2.652	1.00 56.29 1.00 53.24	I	C N
OF	MOTA	22	CA CB	ALA I ALA I	9 9	34.886 35.099	29.365	-2.632 -1.233	1.00 53.24	Ī	Č
25	ATOM ATOM	23 24	CD	ALA I	9	35.601	27.499	-2.836	1.00 50.08	Ī	č
	ATOM	25	Õ	ALA I	9	36.740	27.420	-3.303	1.00 48.77	Ī	ŏ
	ATOM	26	N	LEU I	10	34.896	26.425	-2.407	1.00 47.48	I	N
	ATOM	27	CA	LEU I	10	35.458	25.082	-2.467	1.00 47.12	I	C
30	ATOM	28	CB	LEU I	10	34.532	24.133	-1.702	1.00 47.12	I	C
	MOTA	29	CG	LEU I	10	35.161	22.751	-1.483	1.00 47.82	I	C
	MOTA	30		LEU I	10	36.663	22.837	-1.178	1.00 46.75	Ī	C
	MOTA	31		LEU I	10	34.533	21.987	-0.316	1.00 47.41	I	C,
	ATOM	32	C	LEU I	10	35.641	24.597	-3.910	1.00 45.94	I	O. G.
35	ATOM	33	O	LEU I	10	36.703	24.136 24.643	-4.306 -4.689	1.00 44.31 1.00 45.74	I	И
	MOTA MOTA	34 35	N CA	ARG I	11 11	34.544 34.605	24.150	-6.058	1.00 47.06	Ï	C
	ATOM	36	CB	ARG I	11	33.268	24.453	-6.736	1.00 50.47	Î	Č
	ATOM	37	CG	ARG I	11	33.168	23.828	-8.127	1.00 55.23	Ī	Č
40	ATOM	38	CD	ARG I	11	32.056	24.466	-8.967	1.00 59.66	I	C
	ATOM	39	NE	ARG I	11	32.248	24.165	-10.388	1.00 64.26	I	N
	MOTA	40	CZ	ARG I	11	31.352	23.350	-10.973	1.00 67.01	I	С
	MOTA	41	NH1		11	30.187	23.118	-10.391	1.00 67.52	I	N
	MOTA	42		ARG I	11	31.638	22.791	-12.151	1.00 66.67	Ī	N
45	ATOM	43	C	ARG I	11	35.750	24.793	-6.845	1.00 46.55	I	C
	ATOM	44	0	ARG I	11	36.517	24.134 26.135	-7.533 -6.761	1.00 47.11 1.00 46.28	I I	N O
	MOTA	45	N	GLU I	12 12	35.823 36.863	26.133	-7.497	1.00 45.28	I	C
	ATOM ATOM	46 47	CA CB	GLU I		36.654	28.346	-7.313	1.00 46.38	Ï	Č
50	ATOM	48	CG	GLU I	12	35.298	28.819	-7.850	1.00 49.26	Ī	Č
00	ATOM	49	CD	GLU I		35.349	28.900	-9.359	1.00 51.60	I	C
	ATOM	50		GLU I		36.412	29.179	-9.898	1.00 54.40	I	0
	ATOM	51	OE2	GLU I		34.312	28.700	-9.988	1.00 53.81	I	0
	ATOM	52	C	GLU I		38.261	26.436	-7.031	1.00 43.95	I	C
55	MOTA	53	О	GLU I		39.205	26.341	-7.804	1.00 44.02	Ī	0
	ATOM	54		LEU I		38.395	26.233	-5.707	1.00 43.03	I	N
	ATOM	55		LEU I		39.685	25.790	-5.186	1.00 43.21	I	C
	MOTA	56		LEU I		39.623	25.788 25.240	-3.657 -3.027	1.00 41.91 1.00 43.10	I	C
60	ATOM	57 58		LEU I LEU I		40.902 42.136	26.054	-3.419	1.00 40.08	I	Č
60	MOTA MOTA	59				40.855	25.238	-1.496	1.00 43.85	Ī	C
	ATOM	60		LEU I		40.035	24.389	-5.688	1.00 44.05	Ī	Č
	ATOM	61		LEU I		41.146	24.103	-6.105	1.00 44.32	Ī	ō
	ATOM	62		ILE I		39.045	23.485	-5.597	1.00 44.06	I	N
65	ATOM	63		ILE I		39.276	22.125	-6.074	1.00 44.78	I	C
	ATOM	64	CB	ILE I	14	37.978	21.332	-5.907	1.00 42.05	I	C
	MOTA	65		ILE I		38.090	19.996	-6.653	1.00 41.67	Ī	C
	ATOM	66	CG1	ILE I	14	37.731	21.022	-4.430	1.00 39.88	I	С

						24 224				
	ATOM	68	С	ILE I	14	36.371 39.708		1.00 38.79	I	
	ATOM	69	ŏ	ILE I	14	40.558		1.00 47.20 1.00 47.59	I	C
	ATOM	70	N	GLU I	15	39.070		1.00 47.59	I I	O
5	MOTA	71	CA	GLU I	15	39.369	23.015 -9.761	1.00 51.76	Ī	N C
	ATOM	72	CB	GLU I	15	38.372	23.943 -10.458	1.00 53.36	Ī	Č
	ATOM	73	CG	GLU I	15	36.969		1.00 57.81	Ī	č
	ATOM	74	CD	GLU I	15	36.115		1.00 61.60	I	C
10	ATOM ATOM	75 76	OE1	GLU I	15	34.896		1.00 63.74	I	0
10	ATOM	75 77	C C	GLU I GLU I	15 15	36.676	24.698 -12.394	1.00 64.24	I	0
	ATOM	78	Ö	GLU I	15	40.814 41.514	23.434 -10.041 22.839 -10.850	1.00 52.17	Ī	C
	ATOM	79	N	GLU I	16	41.252	22.839 -10.850 24.510 -9.359	1.00 53.33	I	0
	ATOM	80	CA	GLU I	16	42.665	24.891 -9.466	1.00 52.90 1.00 52.55	I	N
15	MOTA	81	CB	GLU I	16	42.895	26.165 -8.650	1.00 53.39	I	C
	MOTA	82	CG	GLU I	16	44.384	26.475 -8.463	1.00 54.58	Ī	C
	ATOM	83	CD	GLU I	16	44.954	27.031 -9.751	1.00 56.47	Ī	č
	ATOM	84		GLU I	16	44.255	27.022 -10.754	1.00 56.93	I	Ō
20	ATOM ATOM	85 86	OE2		16	46.105	27.467 -9.741	1.00 56.71	I	0
20	ATOM	87	C O	GLU I	16 16	43.630	23.796 -9.001	1.00 51.84	I	С
	ATOM	88	И	LEU I	17	44.655 43.323	23.523 -9.623 23.187 -7.842	1.00 50.16	Ī	0
	ATOM	89	CA	LEU I	17	44.193	23.187 -7.842 22.107 -7.389	1.00 53.85 1.00 54.85	I	N
	ATOM	90	СВ	LEU I	17	43.658	21.562 -6.071	1.00 55.53	I	C C
25	MOTA	91	CG	LEU I	17	43.933	22.504 -4.894	1.00 57.93	Ī	G
	MOTA	92		LEU I	17	43.907	21.778 -3.551	1.00 58.04	Ī	Č
	ATOM	93		LEU I	17	45.303	23.190 -4.990	1.00 55.21	Ī	č
	ATOM	94	C	LEU I	17	44.287	20.988 -8.437	1.00 54.64	I	C
30	ATOM ATOM	95 96	O	LEU I	17	45.326	20.369 -8.649	1.00 53.29	I	0
00	ATOM	97	N CA	VAL I VAL I	18 18	43.134 43.143	20.699 -9.068	1.00 54.67	I	N
	ATOM	98	CB	VAL I	18	43.143 41.707	19.739 -10.170 19.562 -10.669	1.00 56.02	I	C
	ATOM	99		VAL I	18	41.691	18.686 -11.919	1.00 55.67 1.00 54.36	Ī	C
	ATOM	100		VAL I	18	40.855	18.904 -9.603	1.00 54.36	I	C
35	MOTA	101	C	VAL I	18	44.016	20.241 -11.309	1.00 56.81	Ī	C
	MOTA	102	0	VAL I	18	44.779	19.508 -11.927	1.00 56.49	Ī	Ö
	MOTA	103	N	ASN I	19	43.865	21.537 -11.615	1.00 58.66	Ī	N
	ATOM	104	CA	ASN I	19	44.587	22.072 -12.767	1.00 60.24	I	C
40	ATOM	105	CB	ASN I	19	44.243	23.553 -12.930	1.00 62.77	I	C
40	ATOM ATOM	106 107	CG OD1	ASN I ASN I	19 19	44.463	23.973 -14.361	1.00 66.30	I	С
	ATOM	108		ASN I	19	45.444 43.491	24.637 -14.697 23.599 -15.222	1.00 66.87	Ī	0
	ATOM	109	C	ASN I	19	46.106	21.874 -12.654	1.00 69.04 1.00 60.76	Ī	N
	ATOM	110	Ö	ASN I	19	46.760	21.386 -13.559	1.00 60.76	I	C
45	ATOM	111	N	ILE I	20	46.681	22.301 -11.506	1.00 60.66	I	И
	MOTA	112	CA	ILE I	20	48.133	22.233 -11.369	1.00 61.31	Ī	Ĉ
	ATOM	113	CB	ILE I	20	48.598	23.170 -10.239	1.00 59.89	Ī	č
	ATOM	114		ILE I	20	48.081	24.601 -10.471	1.00 59.08	I	C
50	ATOM ATOM	115 116		ILE I	20	48.081	22.695 -8.882	1.00 58.35	I	С
00	ATOM	117	CDI	ILE I	20 20	48.507 48.665	23.649 -7.757 20.804 -11.140	1.00 53.99	Ī	C
	ATOM	118	ŏ	ILE I	20	49.846	20.527 -11.286	1.00 62.24	I	C
	ATOM	119	N	THR I	21	47.766	19.884 -10.725	1.00 62.82 1.00 64.13	I I	N O
	ATOM	120	CA	THR I	21	48.272	18.536 -10.475	1.00 67.05	Ī	C
55	ATOM	121	CB	THR I	21	47.515	17.934 -9.292	1.00 65.01	Ī	Č
	ATOM	122			21	46.110	18.119 -9.493	1.00 65.20	Ī	ŏ
	ATOM	123		THR I	21	47.934	18.634 -7.998	1.00 64.13	I	Ċ
	ATOM	124	C	THR I	21	48.149	17.601 -11.686	1.00 69.94	I	С
60	ATOM ATOM	125 126	O	THR I	21	48.386	16.404 -11.597	1.00 70.16	I	0
50	ATOM	127		GLN I GLN I	22 22	47.717 47.796	18.156 -12.833	1.00 74.84	Ī	N
	ATOM	128		GLN I	22	47.796	17.344 -14.039 18.242 -15.257	1.00 79.56	Ī	C
	ATOM	129		GLN I	22	46.107	18.696 -15.411	1.00 79.69 1.00 82.15	I	C
	ATOM	130		GLN I	22	46.038	19.891 -16.340	1.00 82.15	I	C
65	MOTA	131		GLN I	22	46.743	20.011 -17.331	1.00 85.68	I	0
	ATOM	132	NE2	GLN I	22	45.095	20.790 -15.993	1.00 84.96	Ī	N
	ATOM	133		GLN I	22	49.182	16.717 -14.144	1.00 82.23	Ī	Ĉ
	ATOM	134		GLN I	22	50.208	17.384 -14.054	1.00 82.99	I	ō
	MOTA	135	N	ASN I	23	49.204	15.378 -14.279	1.00 85.10	I	N

	A TOM	136	CA	ASN I	23	50.502	14.740	-14.456	1.00 87.69	I	С
	ATOM		CA				13.225		1.00 89.46	Ī	č
	MOTA	137	СВ	ASN I	23	50.318					
	ATOM	138	CG	ASN I	23	49.344	12.907		1.00 91.98	I	C
	MOTA	139	OD1	ASN I	23	48.554	13.754		1.00 93.28	I	0
5	MOTA	140	ND2	ASN I	23	49.394	11.647	-16.047	1.00 92.89	I	N
•	ATOM	141	C	ASN I	23	51.177	15,233		1.00 88.20	I	C
				ASN I	23	52.391		-15.826	1.00 88.08	Ī	ō
	MOTA	142	0								
	MOTA	143	N	ASN I	24	50.337	15.517	-16./46	1.00 88.98	I	N
	MOTA	144	$^{\rm CA}$	ASN I	24	50.868	16.147		1.00 89.45	I	C
10	MOTA	145	CB	ASN I	24	49.697	16.736	-18.743	1.00 89.76	I	С
	ATOM	146	CG	ASN I	24	48.615	15.708		1.00 90.73	I	С
				ASN I	24	47.436	16.026		1.00 91.03	I	Ō
	ATOM	147									
	ATOM	148		ASN I	24	49.058	14.445		1.00 90.98	I	N
	ATOM	149	С	ASN I	24	51.783	17.295	-17.596	1.00 89.22	. I	С
15	ATOM	150	0	ASN I	24	52.769	17.586	-18.259	1.00 89.67	I	0
	ATOM	151	N	LYS I	25	51.384	18.011		1.00 88.77	I	N
						52.011		-16.317	1.00 88.13	Ī	Ċ
	ATOM	152	CA	LYS I	25						
	ATOM	153	СВ	LYS I	25	51.236		-15.261	1.00 87.83	I	
	ATOM	154	CG	LYS I	25	50.573	21.287	-15.901	1.00 88.09	I	
20	ATOM	155	CD	LYS I	25	49.298	21.716	-15.180	1.00 87.96	I	C
	MOTA	156	CE	LYS I	25	48.765	23.021	-15.758	1.00 87.47	I	С
		157		LYS I	25	47.511		-15.112	1.00 87.86	I	
	ATOM		\widetilde{NZ}						1.00 87.88	Ī	
	ATOM	158	C	LYS I	25	53.479		-15.941			
	ATOM	159	0	LYS I	25	54.359	19.464	-16.732	1.00 87.93	I	
25	MOTA	160	N	ALA I	26	53.727	18.768	-14.680	1.00 87.24	I	
	MOTA	161	CA	ALA I	26	55.097	18.639	-14.190	1.00 87.03	I	C
	ATOM	162	CB	ALA I	26	55.920		-14.793	1.00 86.82	I	C
						55.156		-12.659	1.00 86.17	Ī	
	ATOM	163	C	ALA I	26						
	ATOM	164	0	ALA I	26	54.261		-12.003	1.00 86.49	I	
30	ATOM	165	N	PRO I	27	56.230	18.158	-12.104	1.00 85.00	I	
	ATOM	166	$^{\rm CD}$	PRO I	27	57.357	17.502	-12.756	1.00 84.74	I	С
	ATOM	167	CA	PRO I	27	56.407	18.123	-10.655	1.00 83.68	I	C
					27	57.843		-10.383	1.00 84.54	Ī	
	MOTA	168	CB	PRO I						Ī	
	ATOM	169	CG	PRO I	27	58.352		-11.621	1.00 85.05		
35	ATOM	170	C	PRO I	27	56.115		-10.015	1.00 82.78	I	
	ATOM	171	0	PRO I	27	56.807	20.461	-10.226	1.00 82.59	I	0
	ATOM	172	N	LEU I	28	55.012	19.496	-9.237	1.00 81.31	I	N
		173	CA	LEU I	28	54.588	20.743	-8.605	1.00 79.53	I	
	ATOM							-7.864	1.00 79.22	Ī	
	MOTA	174	СВ	LEU I	28	53.272	20.461				
40	ATOM	175	CG	LEU I	28	52.572	21.747	-7.428	1.00 78.56	I	
	MOTA	176	CD1	LEU I	28	52.267	22.680	-8.604	1.00 79.42	I	
	ATOM	177	CD2	LEU I	28	51.238	21.483	-6.732	1.00 78.52	I	C
	ATOM	178	C	LEU I	28	55.648	21.319	-7.638	1.00 78.97	I	
				LEU I	28	55.966	20.770	-6.599	1.00 78.25	Ī	
	MOTA	179	0							Ī	
45	MOTA	180	N	CYS I	29	56.233	22.451	-8.080	1.00 78.37		
	MOTA	181	$^{\rm CA}$	CYS I	29	57.063	23.311	-7.222	1.00 78.80	I	_
	MOTA	182	С	CYS I	29	58.558	22.927	-7.126	1.00 79.64	I	С
	MOTA	183	0	CYS I	29	59.399	23.724	-6.710	1.00 81.19	I	0
	MOTA	184	ČВ	CYS I	29	56.387	23.648	-5.869	1.00 78.02	I	
						55.321	25.110	-5.991	1.00 79.53	Ī	
50	MOTA	185	SG	CYS I	29						
	MOTA	186	N	ALA I	30	58.833	21.638	-7.488	1.00 79.61	I	
	MOTA	187	$^{\rm CA}$	ALA I	30	60.144	21.242	-8.025	1.00 79.88	I	
	MOTA	188	CB	ALA I	30	60.819	22.492	-8.580	1.00 79.91	I	C
	MOTA	189	C	ALA I	30	61.080	20.547	-7.032	1.00 79.67	I	
						62.298	20.718	-7.049	1.00 80.11	Ī	
55	MOTA	190	0	ALA I	30						
	MOTA	191	N	GLY I	31	60.482	19.717	-6.179	1.00 79.21	I	
	ATOM	192	$^{\rm CA}$	GLY I	31	61.112	19.428	-4.906	1.00 79.39	I	
	ATOM	193	С	GLY I	31	60.344	20.181	-3.821	1.00 78.91	I	C
	ATOM	194	ŏ	GLY I	31	59.220	19.845	-3.484	1.00 80.31	I	
60						60.988	21.238	-3.271	1.00 77.08	Ī	
60	ATOM	195	N	SER I	32						
	MOTA	196	ca	SER I	32	60.317	22.073	-2.255	1.00 75.27	I	
	ATOM	197	CB	SER I	32	59.382	23.064	-2.969	1.00 76.77	I	
	MOTA	198	OG	SER I	32	60.013	24.342	-3.017	1.00 80.23	I	
	ATOM	199	Ċ	SER I	32	59.517	21.252	-1.233	1.00 73.51	I	
GF.		200		SER I	32	58.519	20.628	-1.553	1.00 73.95	Ī	
65	ATOM		0						1.00 71.50	I	
	MOTA	201	N	MET I	33	59.990	21.253	0.035			
	ATOM	202	CA	MET I	33	59.323	20.420	1.043	1.00 68.96	I	
	MOTA	203	CB	MET I	33	60.384	19.555	1.713	1.00 69.85	I	
	ATOM	204	CG	MET I	33	61.259	18.852	0.686	1.00 70.72	1	: C
	111011										

	ATOM ATOM	205 206	SD MET I CE MET I	33 33	60.793 61.652	17.138 16.452	0.458 1.874	1.00 73.74 1.00 72.51	I	s C
	ATOM ATOM	207 208	C MET I O MET I	33 33	58.580 59.084	21.248 22.195	2.085 2.664	1.00 66.87 1.00 67.96	I	C
5	ATOM	209	N VAL I	34	57.293	20.874	2.281	1.00 64.12	I	N
	MOTA	210	CA VAL I	34	56.489	21.588	3.270	1.00 62.22	I	C
	ATOM	$\begin{array}{c} 211 \\ 212 \end{array}$	CB VAL I CG1 VAL I	34 34	55.262 55.684	22.183 23.296	2.578 1.626	1.00 62.02 1.00 60.10	I	C
	ATOM ATOM	213	CG2 VAL I	34	54.532	21.107	1.800	1.00 58.25	Ī	č
10	ATOM	214	C VAL I	34	56.029	20.700	4.450	1.00 62.11	I	C
	MOTA	215	O VAL I	34	56.054	19.479 21.355	4.372 5.548	1.00 61.47 1.00 61.68	I	N O
	ATOM ATOM	216 217	N TRP I CA TRP I	35 35	55.618 55.103	20.602	6.682	1.00 62.60	İ	Ç
	ATOM	218	CB TRP I	35	54.958	21.567	7.862	1.00 63.98	I	C
15	MOTA	219	CG TRP I	35	56.272	22.146	8.225	1.00 66.88	I	C
	MOTA MOTA	220 221	CD2 TRP I CE2 TRP I	35 35	57.297 58.343	21.517 22.460	9.027 9.190	1.00 67.70 1.00 68.28	Ì	C
	ATOM	222	CEZ TRP I	35	57.413	20.260	9.614	1.00 68.19	Ī	С
	MOTA	223	CD1 TRP I	35	56.738	23.441	7.917	1.00 66.99	I	C
20	ATOM ATOM	224 225	NE1 TRP I CZ2 TRP I	35 35	57.957 59.461	23.700 22.131	$8.466 \\ 9.942$	1.00 67.36 1.00 69.16	I	N C
	ATOM	226	CZ3 TRP I	35	58.531	19.930	10.361	1.00 68.91	I	С
	ATOM	227	CH2 TRP I	35	59.566	20.873	10.520	1.00 69.23	I	C
25	ATOM ATOM	228 229	C TRP I O TRP I	35 35	53.742 52.840	19.994 20.652	6.356 5.855	1.00 62.37 1.00 62.15	I	C O
25	ATOM	230	N SER I	36	53.617	18.680	6.609	1.00 61.20	Ĩ	N
	ATOM	231	CA SER I	36	52.275	18.095	6.574	1.00 61.84	Ī	C
	ATOM ATOM	232 233	CB SER I OG SER I	36 36	52.414 52.742	16.571 16.233	6.702 8.048	1.00 62.31 1.00 65.85	I	C
30	ATOM	234	C SER I	36	51.383	18.640	7.689	1.00 60.45	I	C
	MOTA	235	O SER I	36	51.831	19.023	8.763	1.00 60.13	I	0
	ATOM ATOM	236 237	N ILE I CA ILE I	37 37	50.069 49.138	18.705 19.284	7.388 8.348	1.00 60.87 1.00 62.76	I	N N
	ATOM	238	CB ILE I	37	48.525	20.527	7.703	1.00 60.98	I.	C
35	MOTA	239	CG2 ILE I	37	49.641	21.486	7.246	1.00 60.58	Ī	C
	ATOM ATOM	$\frac{240}{241}$	CG1 ILE I CD1 ILE I	37 37	47.726 46.656	20.118 21.150	6.461 6.106	1.00 61.47 1.00 63.20	I	C
	ATOM	242	C ILE I	37	48.015	18.316	8.735	1.00 64.55	Ī	С
	MOTA	243	O ILE I	37	47.844	17.247	8.163	1.00 64.40	I	0
40	ATOM ATOM	244 245	N ASN I CA ASN I	38 38	47.249 46.117	18.723 17.915	9.757 10.192	1.00 67.19 1.00 69.16	I I	C N
ĺ	ATOM	245	CB ASN I	38	45.872	18.200	11.675	1.00 71.48	Ī	C
	MOTA	247	CG ASN I	38	46.010	16.925	12.468	1.00 74.53	I	C
45	ATOM ATOM	248 249	OD1 ASN I ND2 ASN I	38 38	45.727 46.427	16.866 15.862	13.660 11.758	1.00 76.30 1.00 76.89	I	N
43	MOTA	250	C ASN I	38	44.853	18.237	9.387	1.00 70.38	I	, C
	MOTA	251	O ASN I	38	44.318	19.337	9.422	1.00 70.94	I	O
	ATOM ATOM	252 253	N LEU I CA LEU I	39 39	44.401 43.191	17.230 17.403	8.613 7.817	1.00 71.67 1.00 73.26	I	N C
50	MOTA	254	CB LEU I	39	43.216	16.369	6.691	1.00 71.42	I	С
	MOTA	255	CG LEU I	39	44.416	16.557	5.761	1.00 70.72	I	C C
	ATOM ATOM	256 257	CD1 LEU I CD2 LEU I	39 39	44.567 44.331	15.415 17.845	$4.753 \\ 4.944$	1.00 69.87 1.00 68.56	I	C
	ATOM	258	C LEU I	39	41.924	17.225	8.662	1.00 74.76	I	С
55	ATOM	259	O LEU I	39	40.887	16.763	8.201	1.00 75.68 1.00 76.50	I I	N O
	ATOM ATOM	260 261	N THR I CA THR I	40 40	$\frac{42.048}{40.904}$	17.574 17.441	9.956 10.850	1.00 78.30	I	C
	ATOM	262	CB THR I	40	41.422	17.074	12.241	1.00 78.89	I	С
	ATOM	263	OG1 THR I	40	40.752	17.875	13.216	1.00 80.37	I	C O
60	MOTA MOTA	264 265	CG2 THR I	40 40	42.926 40.086	17.345 18.734	12.328 10.919	1.00 80.30 1.00 78.70	Ĭ	G
	ATOM	266	O THR I	40	38.886	18.762	10.684	1.00 80.14	I	0
	MOTA	267	N ALA I	41	40.775	19.826	11.301	1.00 77.65 1.00 76.51	I I	N C
65	ATOM ATOM	268 269	CA ALA I CB ALA I	41 41	40.097 39.375	21.115 21.199	11.376 12.721	1.00 76.51	I	C
00	ATOM	270	C ALA I	41	41.083	22.276	11.238	1.00 75.39	I	С
	ATOM	271	O ALA I	41	42.295	22.105 23.491	11.220 11.101	1.00 76.85 1.00 72.26	I	O N
	MOTA MOTA	272 273	N GLY I CA GLY I	42 42	40.522 41.385	24.649	10.911	1.00 72.28	Ī	C

	 ATOM ATOM ATOM	274 C GLY I 42 275 O GLY I 42 276 N MET I 43 277 CA MET I 43	42.460 24.359 9.862 1.00 65.34 43.566 24.883 9.890 1.00 63.64 42.109 23.451 8.934 1.00 62.58 43.066 23.063 7.907 1.00 61.81	I C I O I N I C
5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	278 CB MET I 43 279 CG MET I 43 280 SD MET I 43 281 CE MET I 43 282 C MET I 43	42.560 21.786 7.235 1.00 64.31 42.556 21.887 5.709 1.00 67.10 40.973 21.412 5.002 1.00 73.29 41.014 22.487 3.561 1.00 70.95 43.264 24.166 6.865 1.00 58.78	I C I S I C I C I C I O
10	ATOM ATOM ATOM ATOM ATOM	283 O MET I 43 284 N TYR I 44 285 CA TYR I 44 286 CB TYR I 44 287 CG TYR I 44	44.344 24.362 6.323 1.00 59.66 42.164 24.878 6.554 1.00 54.94 42.293 25.974 5.602 1.00 50.88 40.996 26.785 5.604 1.00 51.73 40.009 26.173 4.671 1.00 51.67 40.411 25.757 3.403 1.00 51.08	I N I C I C I C
15	ATOM ATOM ATOM ATOM ATOM	288 CD1 TYR I 44 289 CE1 TYR I 44 290 CD2 TYR I 44 291 CE2 TYR I 44 292 CZ TYR I 44	39.505 25.139 2.552 1.00 51.62 38.687 25.980 5.071 1.00 51.42 37.779 25.371 4.217 1.00 52.73 38.183 24.952 2.963 1.00 53.13	I C I C I C
20	ATOM ATOM ATOM ATOM ATOM	293 OH TYR I 44 294 C TYR I 44 295 O TYR I 44 296 N CYS I 45 297 CA CYS I 45	37.296 24.302 2.126 1.00 54.49 43.479 26.869 5.967 1.00 48.15 44.371 27.131 5.170 1.00 45.25 43.454 27.370 7.216 1.00 48.39 44.568 28.192 7.674 1.00 49.37 45.863 27.379 7.767 1.00 49.62	I C I C I C
25	ATOM ATOM ATOM ATOM ATOM	298 C CYS I 45 299 O CYS I 45 300 CB CYS I 45 301 SG CYS I 45 302 N ALA I 46	46.953 27.854 7.477 1.00 48.36 44.212 28.771 9.046 1.00 51.15 42.721 29.792 8.999 1.00 56.43 45.720 26.119 8.223 1.00 49.15 46.898 25.272 8.376 1.00 47.97	I O I C I S I N I C
30	ATOM ATOM ATOM ATOM ATOM	303 CA ALA I 46 304 CB ALA I 46 305 C ALA I 46 306 O ALA I 46 307 N ALA I 47	46.475 23.966 9.051 1.00 47.77 47.575 24.978 7.032 1.00 47.47 48.792 24.976 6.904 1.00 47.08 46.743 24.679 6.016 1.00 45.70 47.304 24.448 4.690 1.00 46.29	I C I C
35	MOTA ATOM ATOM ATOM ATOM	308 CA ALA I 47 309 CB ALA I 47 310 C ALA I 47 311 O ALA I 47 312 N LEU I 48	46.187 23.965 3.764 1.00 44.99 47.937 25.724 4.131 1.00 46.25 48.926 25.704 3.410 1.00 46.92 47.298 26.864 4.459 1.00 45.80	I C I O I N I C
40	ATOM ATOM ATOM ATOM ATOM	313 CA LEU I 48 314 CB LEU I 48 315 CG LEU I 48 316 CD1 LEU I 48 317 CD2 LEU I 48	46.891 29.252 4.496 1.00 43.51 47.494 30.657 4.381 1.00 42.29 47.729 31.076 2.928 1.00 39.28 46.606 31.740 4.998 1.00 41.45	I C I C I C I C
45	MOTA MOTA MOTA MOTA MOTA	318 C LEU I 48 319 O LEU I 48 320 N GLU I 49 321 CA GLU I 49 322 CB GLU I 49	50.204 28.759 4.093 1.00 45.62 49.255 28.124 6.044 1.00 46.20 50.467 28.352 6.822 1.00 47.25 50.132 28.090 8.289 1.00 49.57	I ON I C
50	ATOM ATOM ATOM ATOM ATOM	323 CG GLU I 49 324 CD GLU I 49 325 OE1 GLU I 49 326 OE2 GLU I 49 327 C GLU I 49	50.461 30.375 9.167 1.00 54.88 51.143 30.341 10.181 1.00 58.35 50.587 31.239 8.300 1.00 53.85 51.617 27.442 6.388 1.00 48.23	I C I O I C I
55	ATOM ATOM ATOM ATOM ATOM	328 O GLU I 49 329 N SER I 50 330 CA SER I 50 331 CB SER I 50 332 OG SER I 50	51.255 26.371 5.662 1.00 48.38 52.363 25.494 5.298 1.00 48.77 51.909 24.047 5.493 1.00 49.02 52.793 23.175 4.786 1.00 49.21	I N I C I O I C
60	MOTA MOTA MOTA MOTA MOTA	333 C SER I 50 334 O SER I 50 335 N LEU I 51 336 CA LEU I 51 337 CB LEU I 51 338 CG LEU I 51	53.961 25.559 3.484 1.00 48.73 51.812 26.041 2.997 1.00 47.10 52.118 26.266 1.589 1.00 47.89 50.821 26.119 0.793 1.00 46.69 50.533 24.668 0.401 1.00 49.04	I O I C I C
65	MOTA MOTA MOTA MOTA MOTA	338 CG LEU I 51 339 CD1 LEU I 51 340 CD2 LEU I 51 341 C LEU I 51 342 O LEU I 51	49.442 24.556 -0.665 1.00 50.21 51.760 23.952 -0.165 1.00 46.43 52.712 27.658 1.358 1.00 48.63 53.188 27.996 0.282 1.00 48.41	I C I O

	ATOM	343	N	ILE I	52	52.637	28.491	2.413	1.00 49.30	I	N
	ATOM	344	CA	ILE I	52	53.124	29.859	2.285 3.419	1.00 50.61 1.00 49.79	I I	C
	MOTA MOTA	345 346	CB CG2	ILE I	52 52	52.519 53.293	30.688 30.428	$\frac{3.419}{4.724}$	1.00 49.21	Ī	č
5	ATOM	347	CG1	ILE I	52	52.627	32.181	3.098	1.00 48.59	I	C
_	MOTA	348	CD1		52	52.045	32.525	1.727	1.00 45.04 1.00 51.05	I	C
	ATOM	349	C	ILE I ILE I	52 52	54.652 55.268	29.931 30.958	$2.341 \\ 2.087$	1.00 51.05 1.00 53.83	Ï	Ö
	ATOM ATOM	350 351	N O	ASN I	53	55.265	28.798	2.730	1.00 51.02	I	N
10	MOTA	352	CA	ASN I	53	56.720	28.765	2.818	1.00 51.33	I	C
	MOTA	353	СВ	ASN I	53	57.111	27.732 28.261	3.876 5.244	1.00 47.60 1.00 47.65	I I	C
	ATOM ATOM	354 355	CG OD1	ASN I ASN I	53 53	56.768 57.029	29.413	5.578	1.00 47.83	Ī	ŏ
	ATOM	356		ASN I	53	56.161	27.379	6.056	1.00 45.54	I	N
15	MOTA	357	C	ASN I	53	57.360	28.407	1.475	1.00 53.53	I	C O
	ATOM	358	O	ASN I	53 54	58.573 56.533	28.418 28.020	1.313 0.484	1.00 55.03 1.00 55.95	I	N
	ATOM ATOM	359 360	N CA	VAL I VAL I	54 54	57.100	27.653	-0.810	1.00 57.77	Ī	C
	ATOM	361	CB	VAL I	54	55.997	27.031	-1.665	1.00 56.62	I	C
20	MOTA	362		VAL I	54	56.544	26.690	-3.050	1.00 53.96	I	C
	MOTA	363	CG2	VAL I VAL I	54 54	55.484 57.696	25.765 28.866	-1.006 -1.528	1.00 57.42 1.00 59.21	I	C
	ATOM ATOM	364 365	C O	VAL I	54 54	57.025	29.846	-1.826	1.00 60.15	I	0
	ATOM	366	N	SER I	55	59.016	28.790	-1.772	1.00 60.64	I	N
25	MOTA	367	CA	SER I	55	59.701	29.918 30.076	-2.390 -1.702	1.00 63.25 1.00 62.79	I	C
	ATOM ATOM	368 369	CB OG	SER I SER I	55 55	61.060 61.384	31.463	-1.600	1.00 63.77	Ī	ŏ
	MOTA	370	C	SER I	55	59.902	29.717	-3.895	1.00 63.87	I	C
	ATOM	371	0	SER I	55	60.192	28.631	-4.378	1.00 64.14	I	NO
30	ATOM	372	N	GLY I	56 56	59.683 60.020	30.814 30.814	-4.647 -6.068	1.00 65.44 1.00 67.00	I	G 10
	ATOM ATOM	373 374	CA C	GLY I	56	59.271	29.742	-6.869	1.00 67.92	I	C
	ATOM	375	Ö	GLY I	56	59.850	28.975	-7.626	1.00 68.15	Ī	0
	MOTA	376	N	CYS I	57	57.942	29.687	-6.661 -7.503	1.00 68.54 1.00 68.81	I	С
35	ATOM ATOM	377 378	CA C	CYS I	57 57	57.166 55.803	28.788 29.402	-7.865	1.00 67.61	Ī	C
	ATOM	379	Ö	CYS I	57 57	55.028	29.826	-7.003	1.00 66.76	I	0
	ATOM	380	CB	CYS I	57	56.999	27.498	-6.693	1.00 70.76	I	C S
40	MOTA	381	SG	CYS I SER I	57 58	56.071 55.726	26.192 29.762	-7.524 -9.162	1.00 75.77 1.00 65.88	I I	N
40	ATOM ATOM	382 383	N CA	SER I	58	54.578	30.538	-9.626	1.00 65.26	Ī	C
	ATOM	384	CB	SER I	58	54.958	31.236	-10.936	1.00 65.56	I	C
	MOTA	385	OG	SER I	58 50	55.073 53.319	30.270 29.687	-11.982 -9.825	1.00 66.55 1.00 64.15	I I	0
45	ATOM ATOM	386 387	C O	SER I SER I	58 58	52.266	30.169	-10.222	1.00 63.50	Ī	ŏ
40	ATOM	388	N	ALA I	59	53.455	28.375	-9.562	1.00 62.82	I	N
	MOTA	389	CA	ALA I	59	52.326	27.484	-9.813	1.00 62.09 1.00 61.09	I	C
	MOTA MOTA	390 391	CB C	ALA I ALA I	59 59	52.868 51.366	26.101 27.384	-10.175 -8.621	1.00 62.03	Ï	Č
50	ATOM	392	ŏ	ALA I	59	50.187	27.091	-8.765	1.00 61.38	I	0
	ATOM	393	N	ILE I	60	51.906	27.598	-7.403	1.00 60.60	I	N
	ATOM	394	CA	ILE I ILE I	60 60	51.033 51.743	27.514 26.744	-6.233 -5.117	1.00 61.29 1.00 62.02	I	C
	ATOM ATOM	395 396	CB CG2		60	51.743	25.284	-5.096	1.00 61.63	I	C
55	ATOM	397	CG1			53.256	26.741	-5.334	1.00 62.92	Ī	C
	MOTA	398		l ILE I		53.948	27.890	-4.598 5.721	1.00 65.77 1.00 60.92	I	C
	ATOM	399	C O	ILE I ILE I		50.602 49.867	28.887 29.018	-5.721 -4.752	1.00 60.92	Ī	ŏ
	ATOM ATOM	$\frac{400}{401}$	N	GLU I		51.112	29.943	-6.377	1.00 60.36	I	N
60	MOTA	402	CA	GLU I	61	50.752	31.274	-5.910	1.00 59.69	I	C
	ATOM	403	CB	GLU I		51.397	32.318 33.217	-6.823 -6.060	1.00 62.53 1.00 68.64	I	C
	ATOM ATOM	404 405	CG CD	GLU I GLU I		52.373 52.334	34.612	-6.640	1.00 08.04	Ī	Č
	ATOM	405	OE:			51.637	35.456	-6.093	1.00 72.04	I	0
65	MOTA	407	OE2	2 GLU I	61	53.018	34.848	-7.635	1.00 74.33	I	С О
	MOTA	408	C	GLU I		49.231 48.677	31.460 31.954	-5.849 -4.877	1.00 57.43 1.00 56.73	I	0
	MOTA MOTA	409 410	N	LYS I		48.550	31.067	-6.943	1.00 55.24	I	N
	MOTA	411	CA			47.096	31.204	-6.956	1.00 54.11	I	С

	ATOM	412	СВ	LYS I	62	46.570	30.752	-8.319	1.00 54.42	I	С
	ATOM	413	CG	LYS I	62	45.070	31.016	-8.470	1.00 55.70	Ĭ	C
	MOTA	414	CD	LYS I	62	44.591 43.078	30.848 30.621	-9.912 -10.004	1.00 57.84 1.00 58.76	I	C
5	ATOM ATOM	415 416	CE NZ	LYS I LYS I	62 62	42.630		-11.379	1.00 59.46	Ï	Ŋ
5	MOTA	417	C	LYS I	62	46.431	30.389	-5.842	1.00 51.70	I	C
	ATOM	418	ō	LYS I	62	45.442	30.790	-5.243	1.00 51.21	I	0
	ATOM	419	\mathbf{N}	THR I	63	46.985	29.185	-5.602	1.00 49.68	I	N
	MOTA	420	CA	THR I	63	46.452	28.355	-4.525	1.00 49.40 1.00 49.66	I	C
10	ATOM ATOM	421 422	CB OG1	THR I	63 63	47.196 46.853	27.021 26.299	-4.530 -5.714	1.00 49.02	Ī	ŏ
	ATOM	423	CG2		63	46.782	26.192	-3.310	1.00 48.32	Ī	C
	ATOM	424	C	THR I	63	46.625	29.037	-3.168	1.00 49.94	I	C
	ATOM	425	0	THR I	63	45.750	29.030	-2.312	1.00 49.16	ī	0
15	ATOM	426	N	GLN I	64	47.828	29.601 30.380	-2.971 -1.766	1.00 50.00 1.00 49.18	I	N N
	ATOM	427 428	CA CB	GLN I GLN I	64 64	48.064 49.444	31.026	-1.889	1.00 49.16	Ī	č
	ATOM ATOM	429	CG	GLN I	64	50.577	30.038	-1.627	1.00 50.10	Ī	Ĉ
	MOTA	430	CD	GLN I	64	51.901	30.746	-1.780	1.00 51.30	I	C
20	MOTA	431	OE1		64	52.056	31.717	-2.504	1.00 53.24	Ī	0
	MOTA	432	NE2		64	52.891	30.211 31.469	-1.040 -1.597	1.00 47.60 1.00 49.30	I	N C
	ATOM ATOM	433 434	C	GLN I GLN I	64 64	47.004 46.492	31.409 31.724	-0.516	1.00 50.23	Ī	ŏ
	ATOM	435	N	ARG I	65	46.702	32.147	-2.718	1.00 49.37	I	N
25	ATOM	436	CA	ARG I	65	45.771	33.263	-2.639	1.00 49.52	Ī	C
	ATOM	437	CB	ARG I	65	45.892	34.095	-3.919	1.00 52.37	I	C
	ATOM	438	CG	ARG I	65 65	47.116 47.199	35.013 35.977	-3.869 -5.060	1.00 55.43 1.00 58.20	Ī	Č
	ATOM ATOM	439 440	CD NE	ARG I ARG I	65	47.732	37.273	-4.625	1.00 61.26	Ī	N
30	ATOM	441	CZ	ARG I	65	49.032	37.535	-4.870	1.00 60.37	I	С
•	MOTA	442		ARG I	65	49.771	36.671	-5.541	1.00 62.13	Ī	N
	ATOM	443	NH2		65	49.595	38.624	-4.337	1.00 59.84	I	N C
	ATOM	444	C	ARG I	65 65	44.329 43.526	32.802 33.477	-2.402 -1.771	1.00 47.23 1.00 46.87	I	0
35	ATOM ATOM	445 446	N O	ARG I MET I	66	43.996	31.620	-2.951	1.00 45.98	Ī	N
33	ATOM	447	CA	MET I	66	42.650	31.105	-2.732	1.00 45.22	I	C
	ATOM	448	CB	MET I	66	42.402	29.953	-3.705	1.00 46.64	I	C
	MOTA	449	CG	MET I	66	42.429	30.420	-5.162	1.00 48.54 1.00 52.12	I	C S
40	MOTA	450	SD CE	MET I MET I	66 66	42.132 40.419	29.076 29.463	-6.318 -6.708	1.00 52.12 1.00 51.79	I	C
40	MOTA MOTA	451 452	CE	MET I	66	42.443	30.649	-1.284	1.00 43.95	Ĩ	č
	ATOM	453	Õ	MET I	66	41.389	30.829	-0.688	1.00 41.50	I	0
	MOTA	454	N	LEU I	67	43.485	30.009	-0.723	1.00 42.00	I	N
	MOTA	455	CA	LEU I	67	43.402	29.630 28.838	0.683 1.046	1.00 42.22 1.00 42.57	I	C
45	ATOM ATOM	456 457	CB CG	LEU I LEU I	67 67	44.658 44.687	27.464	0.376	1.00 44.35	Ī	Č
	ATOM	458		L LEU I		46.052	26.785	0.490	1.00 41.18	I	C
	ATOM	459	CD2	LEU I	67	43.670	26.491	0.974	1.00 42.25	Ī	C
	ATOM	460	C	LEU I	67	43.271	30.860	1.583	1.00 41.42	I	C
50	ATOM	461	O	LEU I SER I	67 68	42.550 44.034	30.875 31.912	2.572 1.231	1.00 39.85 1.00 42.67	Ï	N O
	ATOM ATOM	462 463	N CA	SER I	68	43.913	33.155	1.981	1.00 43.98	Ī	Ĉ
	ATOM	464	CB	SER I	68	44.801	34.206	1.314	1.00 43.69	I	С
	MOTA	465	OG	SER I	68	46.159	33.765	1.351	1.00 46.45	I	0
55	ATOM	466	C	SER I	68	42.460	33.632	2.008	1.00 44.59 1.00 44.55	I	C
	ATOM ATOM	467 468	N	SER I GLY I	68 69	41.994 41.747	34.271 33.322	0.909	1.00 45.22	Ī	N
	ATOM	469	CA	GLY I	69	40.335	33.675	0.838	1.00 46.25	I	С
	ATOM	470	C	GLY I	69	39.526	32.989	1.942	1.00 48.08	I	C
60	MOTA	471	0	GLY I	69	38.600	33.548	2.515	1.00 48.24	Ī	0
	ATOM	472	N	PHE I	70 70	39.880		2.206 3.249	1.00 48.01 1.00 48.55	I	C N
	ATOM	473 474	CA CB	PHE I PHE I	70 70	39.178 39.423	29.481	3.249	1.00 49.37	Ī	C
	ATOM ATOM	475	CG		70	38.521	28.958	1.939	1.00 49.79	I	C
65	ATOM	476	CD:	1 PHE I	70	39.043	28.718	0.674	1.00 47.81	I	C
	MOTA	477		2 PHE I		37.236		2.253	1.00 50.11	I	G G
	MOTA	478		1 PHE I		38.286 36.483		-0.269 1.302	1.00 47.12 1.00 49.17	I	C
	MOTA MOTA	479 480	CE:			37.006		0.041	1.00 47.05	Ī	Č
	222021	200			· -		_				

	3 5035	401 A 1011		39.674	31.371	4.644	1.00 49.59	I	С
	ATOM ATOM	481 C PHE 482 O PHE	1 70 I 70	38.995	31.218	5.651	1.00 49.43	I	0
•	MOTA	483 N CYS	I 71	40.929 41.534	31.858 32.251	4.679 5.952	1.00 50.98 1.00 51.34	I I	N C
5	MOTA MOTA	484 CA CYS 485 C CYS	I 71 I 71	42.194	33.617	5.844	1.00 49.66	I	С
5	ATOM	486 O CYS	I 71	43.418	33.763	5.815	1.00 48.07	I	0 C
	ATOM	487 CB CYS 488 SG CYS	I 71 I 71	42.572 43.274	31.188 31.439	6.320 7.967	1.00 52.25 1.00 56.38	Ī	s
	ATOM ATOM	488 SG CYS 489 N PRO		41.359	34.671	5.747	1.00 49.56	I	N
10	ATOM	490 CD PRO	I 72	39.902	34.657	5.899	1.00 48.36 1.00 49.81	I	C
	ATOM	491 CA PRO 492 CB PRO		41.820 40.606	36.017 36.853	5.495 5.112	1.00 49.81	I	č
	ATOM ATOM	492 CB PRO 493 CG PRO		39.372	36.152	5.670	1.00 48.32	I	C
	MOTA	494 C PRO	I 72	42.483	36.612	6.738	1.00 50.31 1.00 49.60	I I	C O
15	MOTA	495 O PRO 496 N HIS		43.489 41.834	37.301 36.347	6.685 7.885	1.00 49.60	Ï	N
	ATOM ATOM	496 N HIS 497 CA HIS		42.366	36.834	9.148	1.00 54.75	I	C
	MOTA	498 CB HIS	I 73	41.189	37.292	10.003	1.00 53.22 1.00 51.21	I I	C
	MOTA	499 CG HIS 500 CD2 HIS		40.877 40.029	38.728 39.238	9.705 8.718	1.00 51.21 1.00 49.78	I	č
20	ATOM ATOM	500 CD2 HIS 501 ND1 HIS		41.443	39.765	10.369	1.00 50.07	I	N
	ATOM	502 CE1 HIS	I 73	40.952	40.876	9.787 8.796	1.00 52.20 1.00 50.88	I	C N
	MOTA MOTA	503 NE2 HIS 504 C HIS		40.103 43.100	40.590 35.735	9.890	1.00 57.36	Ī	Ĉ
25	ATOM	505 O HIS		42.525	34.738	10.310	1.00 56.89	I	O
	MOTA	506 N LYS		44.419 45.102	35.908 34.981	10.022 10.900	1.00 62.03 1.00 66.84	I	C N
	ATOM ATOM	507 CA LYS 508 CB LYS		46.439	35.615	11.316	1.00 66.79	I	C
	MOTA	509 CG LYS	5 I 74	47.278	34.687	12.199	1.00 67.62	I I	C
30	ATOM	510 CD LYS		48.761 49.439	35.059 34.791	12.195 13.542	1.00 67.42 1.00 67.41	· I	Ċ
	MOTA MOTA	511 CE LYS 512 NZ LYS		49.380	35.994	14.372	1.00 66.83	I	N
	ATOM	513 C LYS	S I 74	44.235	34.707	12.135	1.00 70.71 1.00 72.13	I I	C
0.5	ATOM	514 O LYS 515 N VAI		44.166 43.487	35.504 33.581	13.065 12.071	1.00 72.13 1.00 76.53	Ī	И
35	MOTA MOTA	515 N VAI 516 CA VAI		42.976	32.997	13.308	1.00 80.60	I	C
	ATOM	517 CB VAI	L 75	41.591	32.408	13.145	1.00 80.99 1.00 80.41	I	C
	ATOM	518 CG1 VAI 519 CG2 VAI		41.658 41.258	31.357 31.684	$12.040 \\ 14.447$	1.00 80.41	Ī	Č
40	ATOM ATOM		. I 75	43.835	31.838	13.734	1.00 83.10	Ī	C
	ATOM		L T 75	43.359 45.127	30.786 31.973	14.129 13.523	1.00 84.01 1.00 86.18	I	O N
	ATOM ATOM		RI 76 RI 76	45.963	31.363	14.531	1.00 88.83	I	C
	MOTA	524 CB SE	R I 76	47.383	31.508	13.984	1.00 89.61	I	C
45	MOTA		RI 76 RI 76	47.404 45.692	30.931 32.232	12.653 15.775	1.00 89.51 1.00 90.59	I	č
	ATOM ATOM		R I 76 R I 76	45.810	33.452	15.712	1.00 91.56	I	0
	MOTA	528 N AL	A I 77	45.289	31.650	16.940 17.557	1.00 92.05 1.00 92.64	I	N C
50	MOTA MOTA		A I 77 A I 77	45.874 45.180	30.456 30.233	18.903	1.00 92.84	I	C
50	ATOM		A I 77	45.853	29.186	16.729	1.00 92.83	Ī	C
	MOTA		A I 77	44.830 47.061	28.560 28.804	16.481 16.299	1.00 92.95 1.00 93.00	I I	N O
	MOTA MOTA		Y I 78 Y I 78	47.152	27.662	15.397	1.00 92.73	I	C
55	MOTA	535 C GL	Y I 78	48.525	27.008	15.458	1.00 92.58	I	O C
	MOTA		YI 78 AI 86	48.765 52.371	26.088 15.408	16.231 13.593	1.00 93.01 1.00 92.36	I	N
	MOTA MOTA		A I 86	53.584	14.621	13.409	1.00 91.82	I	C
	MOTA	539 CB AL	A I 86	53.416	13.774	12.147	1.00 91.57 1.00 90.72	I	C
60	MOTA		A I 86 A I 86	54.820 55.786	15.513 15.407	13.278 14.021	1.00 90.72	Ī	Õ
	ATOM ATOM		P I 87	54.779	16.393	12.260	1.00 89.29	I	\mathbf{N}
	MOTA	543 CA AS	P I 87	55.907	17.291	12.040	1.00 86.83 1.00 87.75	I	C
6 5	MOTA		P I 87 P I 87	56.616 56.638		13.377 13.702	1.00 87.75	Ī	C
65	MOTA ATOM	546 OD1 AS		55.666	19.464	14.292	1.00 89.77	I	0
	MOTA	547 OD2 AS	P I 87	57.616		13.367 11.014	1.00 88.95 1.00 84.28	I I	C O
	ATOM		SP I 87 SP I 87	56.888 58.074		11.014		Ī	ŏ
	MOTA	Jaj U As	0,	106					

	ATOM	_	8	56.342	16.382	9.831	1.00 80.90	Ĭ	N
	MOTA		8	57.188	15.835	8.777 8.405	1.00 77.36 1.00 77.25	I	C
	ATOM	_	8	56.652	14.452	8.405 7.753	1.00 77.25	I	C O
	MOTA	333	88	55.390	14.602	9.668	1.00 77.90	I	Ċ
5	ATOM		88	56.458	13.608 16.739	7.543	1.00 77.01	Ī	Č
	MOTA	_	88 88	57.202 56.322	17.561	7.324	1.00 75.04	Ī	ŏ
	MOTA		39	58.272	16.591	6.740	1.00 72.57	Ĩ	N
	MOTA		39	58.389	17.409	5.540	1.00 70.36	I	C
10	MOTA MOTA		39	59.768	18.070	5.545	1.00 71.28	I	C
10	ATOM		39	59.804	19.332	6.410	1.00 72.04	I	C
	ATOM		39	60.757	20.391	5.853	1.00 72.01	I	С
	ATOM		39	60.340	21.815	6.235	1.00 72.21	I	C
	ATOM		39	61.031	22.776	5.378	1.00 73.09	I	N
15	ATOM		39	58.214	16.576	4.268	1.00 68.20	I	C
	ATOM		39	59.084	15.823	3.853	1.00 69.41	I	0
	ATOM	300	90	57.017	16.705	3.666	1.00 63.98	Ī	N
	MOTA		90	56.741	15.960	2.443	1.00 61.10	I	C
	MOTA		90	55.316	15.412	2.531	1.00 61.02	I I	C
20	ATOM		90	55.218	14.395	3.683	1.00 60.62 1.00 60.18	I	C
	ATOM		90	54.332	$16.548 \\ 16.049$	$2.824 \\ 2.958$	1.00 58.72	I	Ċ
	ATOM	-	90 90	52.892 56.883	16.844	1.202	1.00 59.31	Ī	č
4	MOTA	J	90	56.947	18.064	1.280	1.00 60.19	Ī	ŏ
05	MOTA	• • • • • • • • • • • • • • • • • • • •	91	56.980	16.263	-0.006	1.00 57.27	Ī	N
25	ATOM ATOM		91	57.016	17.108	-1.181	1.00 56.01	I	C
	ATOM	-	91	57.280	16.218	-2.392	1.00 55.94	I	С
	ATOM		91	58.646	15.539	-2.323	1.00 59.79	I	C
	ATOM		91	58.892	14.787	-3.605	1.00 61.27	I	С
30	MOTA		91	60.027	14.397	-3.857	1.00 64.11	I	0
	MOTA	580 OE2 GLU I	91	57.935	14.589	-4.343	1.00 62.33	Ξ	0
	MOTA	581 C GLU I	91	55.712	17.891	-1.355	1.00 54.80	I	C
	MOTA		91	54.647	17.524	-0.873	1.00 55.53	I	O
	MOTA		92	55.749	19.000	-2.106	1.00 53.36	I	N C
35	MOTA		92	54.578	19.821	-2.225	1.00 52.86	I	C
	MOTA		92	54.974	21.122	-2.945 -3.400	1.00 53.89 1.00 54.86	Ī	Ċ
	MOTA		92	53.780 55.646	21.945 21.999	-1.985	1.00 53.89	Ī	č
	MOTA	- - · · · · · · · · · · · · · · · · · ·	92	53.570	19.088	-3.112	1.00 52.07	Ī	Č
40	ATOM		92 92	52.365	19.039	-2.775	1.00 49.54	Ī	ŏ
40	MOTA		93	54.048	18.417	-4.204	1.00 50.82	I	N
	ATOM ATOM		93	53.158	17.505	-4.939	1.00 51.29	I	С
	ATOM		93	53.937	16.578	-5.759	1.00 51.50	I	C
	ATOM		93	52.322	16.603	-4.072	1.00 51.78	I	C
45	ATOM		93	51.159	16.417	-4.285	1.00 52.02	I	0
	ATOM	595 N GLN I	94	52.948	15.934	-3.132	1.00 51.82	I	N
	MOTA	596 CA GLN I	94	52.222	15.013	-2.307	1.00 51.43	I	C
	MOTA	597 CB GLN I	94	53.244	14.218	-1.468	1.00 51.33	Ĭ	C
	ATOM		94	52.539	13.173	-0.468	1.00 51.17 1.00 53.13	I	C
50	ATOM		94	52.073	11.932 11.461	-1.233 -1.968	1.00 53.13	Ï	Ö
	ATOM	600 OE1 GLN I	94	52.802	11.506	-1.078	1.00 52.92	Ī	N
	ATOM	601 NE2 GLN I	94 94	50.805 51.354	15.741	-1.330	1.00 52.52	Ī	Ĉ
	MOTA	602 C GLN I 603 O GLN I	94	50.272	15.741	-0.945	1.00 51.69	Ī	Ö
55	MOTA MOTA	603 O GLN I 604 N PHE I	95	51.805	16.928	-0.896	1.00 48.96	I	N
33	ATOM	605 CA PHE I	95	50.927	17.774	0.055	1.00 46.81	I	С
	ATOM	606 CB PHE I	95	51.688	19.007	0.444	1.00 44.76	I	C
	ATOM	607 CG PHE I	95	50.936	19.912	1.508	1.00 45.45	I	C
	MOTA	608 CD1 PHE I	95	51.118	19.792	2.777	1.00 45.87	I	С
60	MOTA	609 CD2 PHE I	95	49.931	20.752	1.114	1.00 45.94	I	C
	MOTA	610 CE1 PHE I	95	50.448	20.560	3.810	1.00 45.08	I	C
	ATOM	611 CE2 PHE I	95	49.271	21.524	2.109	1.00 45.21	I	C
	MOTA	612 CZ PHE I	95	49.544	21.461	3.476	1.00 44.16	I	C
	MOTA	613 C PHE I	95	49.687	18.134	-0.632	1.00 45.91 1.00 45.21	I	C
65	ATOM	614 O PHE I	95	48.534		-0.083 -1.894	1.00 45.21	I	И
	ATOM	615 N VAL I	96	49.843	18.547	-1.894 -2.577	1.00 45.24	I	C
	MOTA	616 CA VAL I	96 96	48.730 49.099		-3.820	1.00 45.79	Ī	Č
	MOTA	617 CB VAL I	96 96	47.855		-4.467	1.00 47.08	Ī	č
	MOTA	618 CG1 VAL I	96	47.000	24.213	z. ±0/	1.00 17.00		_

	ATOM	619	CG2 VAL I	96	49.696	21.210	-3.547	1.00 44.28	I	С
								1.00 47.34	Ī	
	ATOM	620	C VAL I	96	47.825	17.939	-2.988			C
	MOTA	621	O VAL I	96	46.517	18.044	-3.077	1.00 47.21	I	0
	MOTA	622	N LYS I	97	48.449	16.863	-3.353	1.00 49.09	I	N
5	ATOM	623	CA LYS I	97	47.574	15.679	-3.793	1.00 51.55	Ī	C
5										
	MOTA	624	CB LYS I	97	48.493	14.584	-4.189	1.00 54.17	I	С
	MOTA	625	CG LYS I	97	47.946	13.341	-4.887	1.00 60.40	I.	С
	ATOM	626	CD LYS I	97	49.050	12.597	-6.011	1.00 62.67	I	Č
										~
	MOTA	627	CE LYS I	97	49.068	13.410	-7.468	1.00 66.05	I	C
10	ATOM	628	NZ LYS I	97	50.343	13.646	-8.370	1.00 66.57	I	N
	ATOM	629	C LYS I	97	46.717	15.254	-2.591	1.00 51.16	I	C
	\mathbf{MOTA}	630	O LYS I	97	45.447	15.000	-2.673	1.00 50.76	I	О
	MOTA	631	N ASP I	98	47.321	15.203	-1.392	1.00 52.09	I	N
	ATOM	632	CA ASP I	98	46.501	14.772	-0.216	1.00 52.20	I	C
15	ATOM	633	CB ASP I	98	47.333	14.613	1.015	1.00 54.80	I	C
	ATOM	634	CG ASP I	98	48.374	13.440	0.980	1.00 59.19	I	C
	ATOM	635	OD1 ASP I	98	49.308	13.489	1.921	1.00 61.38	I	0
	MOTA	636	OD2 ASP I	98	48.382	12.502	0.119	1.00 61.58	Ι	0
	MOTA	637	C ASP I	98	45.449	15.883	0.089	1.00 51.39	I	C
20	ATOM	638	O ASP I	98	44.352	15.575	0.548	1.00 51.71	I	0
20										
	ATOM	639	N LEU I	99	45.774	17.198	-0.106	1.00 47.74	I	N
	ATOM	640	CA LEU I	99	44.840	18.251	0.339	1.00 47.45	I	C
	ATOM	641	CB LEU I	99	45.443	19.597	0.023	1.00 45.49	I	C
										~
	ATOM	642	CG LEU I	99	44.829	20.833	0.627	1.00 44.89	I	C
25	MOTA	643	CD1 LEU I	99	45.245	22.154	-0.015	1.00 43.60	I	C
	MOTA	644	CD2 LEU I	99	43.586	20.934	1.092	1.00 43.98	I	C
										Č
	MOTA	645	C LEU I	99	43.611	18.034	-0.533	1.00 46.93	I	
	ATOM	646	O LEU I	99	42.468	18.230	-0.102	1.00 47.46	I	0
	ATOM	647	N LEU I	100	43.851	17.760	-1.794	1.00 45.76	I	N
20					42.817	17.754	-2.807		Ī	Ĉ
30	MOTA	648	CA LEU I					1.00 44.53		
	ATOM	649	CB LEU I		43.591	17.644	-4.248	1.00 43.55	I	C
	MOTA	650	CG LEU I	100	42.669	17.411	-5.353	1.00 43.64	I	C
			CD1 LEU I		41.718	18.519	-5.349	1.00 42.86	I	Č
	MOTA	651								
	MOTA	652	CD2 LEU I	100	43.369	17.199	-6.753	1.00 40.11	I	C
35	ATOM	653	C LEU I	100	41.890	16.646	-2.616	1.00 44.86	I	C
	ATOM	654	O LEU I		40.620	16.754	-2.540	1.00 45.24	I	Õ
	ATOM	655	N LEU I	101	42.441	15.498	-2.233	1.00 45.36	I	N
	MOTA	656	CA LEU I	101	41.532	14.416	-1.832	1.00 46.01	Ι	C
		657	CB LEU I		42.304	13.119	-1.634	1.00 45.92	I	Č
	ATOM									
40	MOTA	658	CG LEU I		42.851	12.537	-2.978	1.00 45.91	I	С
	MOTA	659	CD1 LEU I	101	43.906	11.504	-2.808	1.00 46.51	I	C
	ATOM	660	CD2 LEU I		41.696	11.862	-3.903	1.00 43.07	I	C
										$\tilde{\sim}$
	MOTA	661	C LEU I		40.596	14.747	-0.682	1.00 46.66	I	C
	ATOM	662	O LEU I	101	39.288	14.481	-0.628	1.00 48.00	I	0
45	ATOM	663	N HIS I		41.150	15.486	0.214	1.00 46.69	I	N
-10									Ī	
	MOTA	664	CA HIS I		40.320	15.789	1.334	1.00 48.31		C
	MOTA	665	CB HIS I	102	41.194	16.406	2.430	1.00 51.03	I	С
	ATOM	666	CG HIS I	102	40.434	16.774	3.641	1.00 51.82	I	C
	ATOM	667	CD2 HIS I		40.061	17.963	4.107	1.00 53.23	I	C
50										
50	ATOM	668	ND1 HIS I		40.122	15.873	4.610	1.00 53.12	I	N
	MOTA	669	CE1 HIS I	102	39.380	16.456	5.518	1.00 54.50	I	C
	ATOM	670	NE2 HIS I		39.373	17.741	5.260	1.00 56.06	I	N
			MEE HILD I	102	30.373					
	MOTA	671	C HIS I		39.281	16.813	0.903	1.00 48.41	I	C
	ATOM	672	O HIS I	102	38.102	16.806	1.343	1.00 46.87	I	0
55	MOTA	673	N LEU I		39.724	17.763	0.094	1.00 48.47	I	N
55										
	\mathbf{MOTA}	674	CA LEU I		38.678	18.709	-0.307	1.00 49.56	I	C
	MOTA	675	CB LEU I	103	39.292	19.869	-1.094	1.00 48.48	I	C
	ATOM	676	CG LEU I		40.354	20.788	-0.467	1.00 49.09	Ī	Ċ
										~
	MOTA	677	CD1 LEU I		41.044	21.809	-1.341	1.00 49.00	I	C
60	MOTA	678	CD2 LEU I	103	39.733	21.564	0.838	1.00 45.10	I	C
	ATOM	679	C LEU I		37.585	18.095	-1.176	1.00 50.10	I	Ċ
	MOTA	680	O LEU I		36.461	18.432	-1.074	1.00 49.95	I	0
	ATOM	681	N LYS I	104	37.937	17.154	-2.005	1.00 50.85	I	N
	ATOM	682	CA LYS I		36.867	16.490	-2.802	1.00 50.86	I	C
CE										\tilde{a}
65	MOTA	683	CB LYS I		37.402	15.549	-3.797	1.00 49.12	I	С
	ATOM	684	CG LYS I	104	38.306	16.284	-4.777	1.00 48.40	I	С
	ATOM	685	CD LYS I	104	38.591	15.250	-5.921	1.00 47.57	I	Č
	MOTA	686	CE LYS I		39.248	15.985	-7.140	1.00 48.88	I	C
	MOTA	687	NZ LYS I	104	39.306	15.204	-8.323	1.00 47.96	I	N

	ATOM ATOM ATOM	688 689 690	C O N	LYS I LYS I LYS I	104 104 105	35.925 34.706 36.454	15.737 15.596 15.185	-1.861 -2.147 -0.819	1.00 50.92 1.00 50.71 1.00 52.08		C C C N
5	MOTA MOTA MOTA MOTA	691 692 693 694	CA CB CG CD	LYS I	105 105 105 105	35.547 36.263 35.474 36.344	14.557 13.771 13.493 13.038	0.142 1.148 2.486 3.615	1.00 54.25 1.00 56.55 1.00 60.33 1.00 63.22	-	
10	ATOM ATOM ATOM	695 696 697	CE NZ C	LYS I LYS I LYS I	105 105 105	36.799 37.722 34.658	11.582 11.200 15.480	3.364 4.601 0.879	1.00 66.16 1.00 71.27 1.00 54.66	-	E C
	ATOM ATOM ATOM ATOM	698 699 700 701	O N CA CB	LYS I LEU I LEU I	106	33.426 35.161 34.246 35.016	15.193 16.673 17.681 18.909	0.899 1.347 1.925 2.367	1.00 54.59 1.00 55.31 1.00 55.19 1.00 55.63	:	E C
15	ATOM ATOM ATOM	702 703 704	CG CD1 CD2	LEU I LEU I	106 106	36.158 36.737 35.581	18.689 20.087 18.001	3.345 3.680 4.446	1.00 56.60 1.00 56.04 1.00 56.80	-	I C
20	ATOM ATOM ATOM ATOM	705 706 707 708	C N CA		106 107	33.206 32.049 33.576 32.581	18.130 18.328 18.256 18.731	0.944 1.266 -0.333 -1.318	1.00 55.25 1.00 53.51 1.00 55.92 1.00 56.04		I C I O I C
05	ATOM ATOM ATOM	709 710 711	CB CG CD1	PHE I PHE I	107 107	33.229 32.373 32.040	18.776 19.340 20.666	-2.639 -3.734 -3.816	1.00 53.89 1.00 52.39 1.00 52.13 1.00 52.09	:	
25	ATOM ATOM ATOM ATOM	712 713 714 715	CD2 CE1 CE2 CZ	PHE I PHE I PHE I	107 107	31.786 31.227 30.982 30.726	18.487 21.177 18.929 20.235	-4.567 -4.966 -5.609 -5.871	1.00 52.09 1.00 53.21 1.00 52.54 1.00 51.78		
30	ATOM ATOM ATOM	716 717 718	О И	PHE I PHE I ARG I	107 108	31.505 30.309 31.891	17.720 17.986 16.490	-1.389 -1.382 -1.534	1.00 57.69 1.00 57.18 1.00 60.03	:	C C O
35	ATOM ATOM ATOM ATOM	719 720 721 722	CA CB CG CD	ARG I ARG I ARG I	108	30.881 31.608 30.754 31.667	15.511 14.199 12.873 11.584	-1.665 -2.008 -2.025 -2.519	1.00 63.96 1.00 65.15 1.00 67.16 1.00 68.85	-	
	MOTA MOTA MOTA	723 724 725	NE CZ NH1	ARG I ARG I ARG I	108 108 108	32.695 34.069 34.757	11.003 11.182 11.989	-1.599 -1.590 -2.451	1.00 70.00 1.00 70.81 1.00 70.77	-	E C
40	ATOM ATOM ATOM ATOM	726 727 728 729	NH2 C O N	ARG I		34.784 29.994 28.819 30.524	10.519 15.439 15.168 15.646	-0.653 -0.290 -0.358 0.926	1.00 70.34 1.00 66.09 1.00 66.77 1.00 68.31	-	E N E O E N
45	ATOM ATOM ATOM	730 731 732	CA CB CG	GLU I GLU I GLU I	109 109 109	29.675 30.552 31.156	15.629 15.413 14.032	2.113 3.334 3.348	1.00 70.48 1.00 72.41 1.00 74.96	-	T C
	ATOM ATOM ATOM ATOM	733 734 735 736	CD OE1 OE2 C	GLU I GLU I GLU I	109 109	32.329 32.637 32.937 28.905	13.680 12.428 14.563 16.948	4.311 4.269 5.045 2.276	1.00 77.15 1.00 77.91 1.00 78.45 1.00 71.26	-	
50	ATOM ATOM ATOM	737 738 739	O N CA	GLY I GLY I	109 110 110	28.156 29.031 28.285	17.047 17.967 19.190	3.145 1.442 1.716	1.00 72.42 1.00 71.47 1.00 72.78	-	E C
55	ATOM ATOM ATOM ATOM	740 741 742 743	C O N CA	GLY I GLY I ARG I ARG I	110 111	28.749 27.929 30.065 30.802	20.232 20.900 20.280 21.114	2.811 3.473 3.036 3.976	1.00 73.70 1.00 73.73 1.00 74.76 1.00 75.92		E C
	ATOM ATOM ATOM	744 745 746	CB CG CD	ARG I ARG I ARG I	111 111	31.695 30.977 31.331	20.202 18.919 18.500	4.816 5.233 6.664	1.00 76.34 1.00 77.70 1.00 79.60	-	
60	ATOM ATOM ATOM	747 748 749	NE CZ NH1		111 111	32.505 33.534 33.458	17.621 17.966 19.050	6.665 7.461 8.214	1.00 80.80 1.00 81.19 1.00 80.98	-	I N I C I N
65	ATOM ATOM ATOM ATOM	750 751 752 753	C O N	ARG I ARG I ARG I PHE I	111 111	34.641 31.650 32.822 30.996	17.219 22.165 21.971 23.297	7.470 3.253 2.955 2.931	1.00 81.56 1.00 76.69 1.00 75.67 1.00 78.04	-	I N I C I O I N
	ATOM ATOM ATOM	754 755 756	CA CB CG	PHE I PHE I PHE I	112 112	31.701 30.682 30.167	24.365 25.138 24.261	2.230 1.392 0.290	1.00 79.36 1.00 79.30 1.00 78.67	2	E C

							_	_
	ATOM	757 CD1 PHE 1 112	30.576	24.490	-1.018	1.00 78.26 1.00 78.46	I I	C C
	MOTA	758 CD2 PHE I 112	29.326	23.201 23.643	0.586 -2.030	1.00 78.46	I	C
	MOTA	759 CE1 PHE I 112 760 CE2 PHE I 112	30.147 28.901	22.357	-0.435	1.00 79.06	Ī	Č
	MOTA	760 CE2 PHE I 112 761 CZ PHE I 112	29.311	22.571	-1.744	1.00 78.48	I	С
5	ATOM ATOM	762 C PHE I 112	32.402	25.314	3.205	1.00 79.89	I	C
	ATOM	763 O PHE I 112	32.665	26.470	2.905	1.00 79.55	I	0
	ATOM	764 OXT PHE I 112	32.729	24.958	4.329	1.00 81.92 1.00109.80	I R	0
	MOTA	765 CB PRO R 33	77.296	6.508 7.071	12.091 13.466	1.00109.72	R	Č
10	MOTA	766 CG PRO R 33 767 C PRO R 33	77.634 75.600	7.448	10.489	1.00109.45	R	č
	ATOM		74.661	8.222	10.616	1.00109.75	R	0
	ATOM ATOM	768 O PROR 33 769 N PROR 33	.76.843	8.883	12.021	1.00109.73	R	N
	ATOM	770 CD PRO R 33	76.862	8.467	13.415	1.00110.08	R	C
15	ATOM	771 CA PRO R 33	76.935	7.688	11.188	1.00109.68	R R	C N
	MOTA	772 N PROR 34	75.508	6.367	9.699 9.479	1.00108.90 1.00108.56	R	C
	MOTA	773 CD PRO R 34	76.393 74.287	5.227 6.191	8.965	1.00108.17	R	Č
	ATOM	774 CA PRO R 34 775 CB PRO R 34	74.529	5.074	7.955	1.00108.27	R	С
00	ATOM ATOM	775 CB PRO R 34 776 CG PRO R 34	75.702	4.241	8.433	1.00108.37	R	C
20	MOTA	777 C PRO R 34	73.222	5.747	9.912	1.00107.50	R	C
	MOTA	778 O PROR 34	73.082	6.166	11.048	1.00107.84	R R	N O
	MOTA	779 N VAL R 35	72.413	4.851	9.403	1.00106.22 1.00105.21	R	G
	MOTA	780 CA VAL R 35	71.466	$4.319 \\ 4.467$	10.308 9.738	1.00105.21	R	č
25	MOTA	781 CB VAL R 35 782 CG1 VAL R 35	70.119	5.236	8.419	1.00104.78	R	С
	ATOM ATOM	782 CG1 VAL R 35 783 CG2 VAL R 35	69.432	3.095	9.498	1.00105.97	R	C
	ATOM	784 C VAL R 35	71.756	2.861	10.581	1.00104.36	R	C
	ATOM	785 O VAL R 35	72.155	2.089	9.684	1.00104.20	R	O N
30	ATOM	786 N THR R 36	71.618	2.545	11.858 12.159	1.00103.37 1.00101.83	R R	C
	MOTA	787 CA THR R 36	71.682 72.110	1.191 0.938	13.626	1.00101.03	R	č
	ATOM	788 CB THR R 36 789 OG1 THR R 36	73.534	0.821	13.586	1.00102.34	R	0
	ATOM ATOM	789 OG1 THR R 36 790 CG2 THR R 36	71.552	-0.439	14.041	1.00101.87	R	С
35	ATOM	791 C THR R 36	70.527	0.342	11.738	1.00100.49	R	C
00	MOTA	792 O THR R 36	69.352	0.681	11.806	1.00100.30	R R	N O
	MOTA	793 N ASN R 37	71.068	-0.838	11.402	1.00 98.77 1.00 97.02	R	C
	MOTA	794 CA ASN R 37	70.689 69.950	-1.982 -3.094	10.491 11.245	1.00 97.91	R	č
	MOTA	795 CB ASN R 37 796 CG ASN R 37	69.677	-2.566	12.592	1.00 98.59	R	C
40	MOTA MOTA	796 CG ASN R 37 797 OD1 ASN R 37	69.061	-1.530	12.693	1.00 99.04	R	0
	MOTA	798 ND2 ASN R 37	70.269	-3.216	13.594	1.00 98.75	R	И
	ATOM	799 C ASN R 37	70.302	-1.704	9.042	1.00 95.59	R R	O
	MOTA	800 O ASN R 37	71.128	-1.673	8.134 8.942	1.00 95.97 1.00 92.71	R	N
45	MOTA	801 N LEUR 38 802 CA LEUR 38	68.988 68.261	-1.564 -1.183	7.691	1.00 89.88	R	Ĉ
	MOTA	802 CA LEUR 38 803 CB LEUR 38	68.999		6.719	1.00 89.18	R	С
	ATOM ATOM	804 CG LEU R 38	67.999		5.670	1.00 88.71	R	C
	ATOM	805 CD1 LEU R 38	67.016	1.337	6.281	1.00 87.75	R	C
50	ATOM	806 CD2 LEU R 38	68.648		4.469	1.00 88.12 1.00 88.31	R R	C
	MOTA	807 C LEUR 38	67.588 68.101		6.945 5.943	1.00 88.23	R	ŏ
	ATOM	808 O LEUR 38 809 N SERR 39	66.424		7.462	1.00 86.43	R	N
	MOTA MOTA	809 N SER R 39 810 CA SER R 39	65.722		6.933	1.00 85.04	Ŕ	C
55	MOTA	811 CB SER R 39	65.446		8.104	1.00 84.80	R	C
00	MOTA	812 OG SER R 39	64.399		8.906	1.00 84.68	R	0
	MOTA	813 C SER R 39	64.391		6.246 6.301	1.00 83.83 1.00 83.04	R R	Ö
	ATOM	814 O SER R 39	63.917				R	N
	MOTA	815 N VAL R 40 816 CA VAL R 40	63.820 62.586				R	C
60	MOTA	816 CA VAL R 40 817 CB VAL R 40	62.951		3.340	1.00 81.55	R	С
	MOTA MOTA	818 CG1 VAL R 40	63.536		2.743	1.00 81.22	R	C
	MOTA	819 CG2 VAL R 40	61.713	3 -3.716	2.557		R	C
	MOTA	820 C VAL R 40	61.596				R R	C
65	MOTA	821 O VAL R 40	61.958				R	N
	ATOM	822 N SER R 41 823 CA SER R 41	60.299 59.25				R	С
	ATOM	823 CA SER R 41 824 CB SER R 41	58.69			1.00 79.25	R	С
	$f MOTA \\ MOTA$	825 OG SER R 41	57.87				R	0
	AIOM		100					

	ATOM ATOM ATOM	826 827 828	C SER R O SER R N VAL R	41 41 42	58.139 58.133 57.188	-5.936 -4.987 -6.889	4.032 3.260 4.011	1.00 78.20 1.00 78.12 1.00 77.02	R R R	C O N
5	ATOM ATOM ATOM ATOM	829 830 831 832	CA VAL R CB VAL R CG1 VAL R CG2 VAL R	42 42 42 42	56.044 56.345 55.040 57.239	-6.727 -7.421 -7.685 -6.540	3.122 1.793 1.042 0.940	1.00 75.75 1.00 75.63 1.00 74.23 1.00 75.00	R . R R R	C C C
10	ATOM ATOM ATOM	833 834 835	C VAL R O VAL R N GLU R	42 42 43	54.757 54.456 54.009	-7.294 -8.476 -6.404	3.725 3.634 4.401	1.00 75.25 1.00 76.26 1.00 74.69	R R R	C N
	ATOM ATOM ATOM ATOM	836 837 838 839	CA GLU R CB GLU R CG GLU R CD GLU R	43 43 43 43	52.690 52.364 53.535 53.105	-6.791 -5.955 -5.884 -5.130	4.879 6.118 7.101 8.339	1.00 74.33 1.00 74.91 1.00 76.67 1.00 78.12	R R R R	2000
15	ATOM ATOM ATOM	840 841 842	OE1 GLU R OE2 GLU R C GLU R	43 43 43	52.040 53.849 51.628	-4.530 -5.147 -6.569	8.320 9.319 3.802	1.00 78.66 1.00 78.91 1.00 73.28	R R R	0 0
20	ATOM ATOM ATOM ATOM	843 844 845 846	O GLUR N ASNR CA ASNR CB ASNR	43 44 44 44	51.886 50.404 49.329 49.105	-6.038 -7.036 -6.870 -5.371	2.730 4.102 3.133 2.930	1.00 72.01 1.00 73.87 1.00 73.91 1.00 74.10	R R R R	0 N C C
05	ATOM ATOM ATOM	847 848 849 850	CG ASN R OD1 ASN R ND2 ASN R C ASN R	44 44 44 44	48.598 48.998 47.676 49.681	-4.762 -3.674 -5.493 -7.528	4.211 4.615 4.861 1.798	1.00 73.66 1.00 73.71 1.00 72.65 1.00 74.25	R R R	С И С
25	ATOM ATOM ATOM ATOM	851 852 853	C ASN R O ASN R N LEU R CA LEU R	44 45 45	50.000 49.577 49.894	-7.328 -8.706 -6.724 -7.249	1.712 0.725 -0.598	1.00 74.23 1.00 74.82 1.00 74.52 1.00 73.93	R R R	0 N
30	ATOM ATOM ATOM ATOM	854 855 856 857	CB LEU R CG LEU R CD1 LEU R CD2 LEU R	45 45 45 45	48.630 48.034 46.992 49.086	-7.177 -8.558 -8.520 -9.581	-1.455 -1.742 -2.860 -2.172	1.00 75.60 1.00 77.31 1.00 76.95 1.00 77.38	R R R R	0000
35	ATOM ATOM ATOM	858 859 860	C LEU R O LEU R N CYS R	45 45 46	51.020 51.867 50.984	-6.452 -6.982 -5.124	-1.261 -1.968 -1.041	1.00 73.85 1.00 73.55 1.00 73.09	R R R	И О С
	ATOM ATOM ATOM ATOM	861 862 863 864	CA CYS R CB CYS R SG CYS R C CYS R	46 46 46 46	52.004 51.354 50.633 52.629	-4.267 -3.448 -4.496 -3.335	-1.633 -2.750 -4.034 -0.593	1.00 72.73 1.00 73.79 1.00 79.48 1.00 71.57	R R R R	C S C
40	ATOM ATOM ATOM	865 866 867	O CYS R N THR R CA THR R	46 47 47	53.638 51.964 52.489	-2.680 -3.262 -2.429	-0.821 0.575 1.650	1.00 71.95 1.00 70.15 1.00 69.21	R R R	0 N C
45	ATOM ATOM ATOM ATOM	868 869 870 871	CB THR R OG1 THR R CG2 THR R C THR R	47 47 47 47	51.529 50.203 51.918 53.886	-2.523 -2.240 -1.501 -2.880	2.836 2.387 3.909 2.078	1.00 69.25 1.00 69.24 1.00 68.49 1.00 68.94	R R R R	0000
	MOTA MOTA MOTA	872 873 874	O THR R N VAL R CA VAL R	47 48 48	54.063 54.903 56.280	-3.827 -2.190 -2.524	2.834 1.526 1.874	1.00 69.53 1.00 68.05 1.00 68.58	R R R	О И О
50	ATOM ATOM ATOM ATOM	875 876 877 878	CB VAL R CG1 VAL R CG2 VAL R C VAL R	48 48 48 48	57.128 56.460 58.510 56.831	-2.444 -1.520 -1.913 -1.570	0.603 -0.415 0.930 2.939	1.00 67.24 1.00 69.11 1.00 67.36 1.00 68.62	R R R R	0 0 0
55	MOTA ATOM MOTA	879 880 881	O VAL R N ILE R CA ILE R	48 49 49	56.755 57.366 57.817	-0.354 -2.165 -1.346	2.828 4.020 5.141	1.00 69.25 1.00 69.02 1.00 68.84	R R R	O N C
60	ATOM ATOM ATOM ATOM	882 883 884 885	CB ILE R CG2 ILE R CG1 ILE R CD1 ILE R	49 49 49 49	57.145 57.520 55.621 54.895	-1.876 -0.994 -1.837 -2.073	6.407 7.611 6.253 7.578	1.00 68.78 1.00 68.35 1.00 68.17 1.00 70.58	R R R R	0 0 0
	MOTA MOTA MOTA	886 887 888	C ILE R O ILE R N TRP R	49 49 50	59.340 59.988 59.880	-1.378 -2.402 -0.181	5.303 5.128 5.604	1.00 68.46 1.00 69.77 1.00 67.57	R R R	С О И
65	ATOM ATOM ATOM ATOM	889 890 891 892	CA TRP R CB TRP R CG TRP R CD2 TRP R	50 50 50 50	61.301 61.923 62.451 61.786	-0.080 1.007 0.431 0.431	5.915 5.035 3.778 2.493	1.00 67.76 1.00 65.27 1.00 63.09 1.00 62.66	R R R R	0 0 0
	ATOM MOTA	893 894	CE2 TRP R CE3 TRP R	50 50	62.701 60.515	-0.093 0.815	1.546 2.077	1.00 62.24 1.00 61.27	R R	C

	ATOM	895	CD1	TRP R	50	6	3.743	-0.102	3.562	1.00 63.41	R	C
		896		TRP R	50		3.958	-0.433	2.260	1.00 61.66	R	N
	ATOM					-		-0.227	0.220	1.00 62.59	R	Ĉ
	ATOM	897	CZ2	TRP R	50		2.320				R	
	ATOM	898		TRP R	50		0.133	0.678	0.754	1.00 61.70		C
5	MOTA	899		TRP R	50		1.045	0.158	-0.182	1.00 63.14	R	C
	ATOM	900	С	TRP R	50		1.514	0.280	7.383	1.00 69.60	R	C
	MOTA	901	0	TRP R	50		50.901	1.187	7.933	1.00 71.18	R	0
	ATOM	902	N	THR R	51		52.395	-0.499	8.030	1.00 71.70	R	N
	ATOM	903	CA	THR R	51	ϵ	52.717	-0.217	9.414	1.00 73.55	R	C
10	ATOM	904	CB	THR R	51	6	2.099	-1.313	10.283	1.00 72.56	R	С
	ATOM	905	OG1	THR R	51	6	52.465	-2.591	9.761	1.00 72.81	R	0
	ATOM	906	CG2	THR R	51	6	50.571	-1.190	10.271	1.00 72.22	R	C
	ATOM	907	C	THR R	51		4.221	-0.181	9.612	1.00 75.37	R	С
	ATOM	908	ŏ	THR R	51		54.995	-0.852	8.937	1.00 75.38	R	Ō
4 =				TRP R	52		54.635	0.683	10.543	1.00 77.41	R	N
15	ATOM	909	N		52		6.052	0.795	10.814	1.00 79.26	R	Ċ
	ATOM	910	CA	TRP R				1.724	9.758	1.00 79.75	R	Č
	ATOM	911	CB	TRP R	52		66.668				R	Č
	ATOM	912	CG	TRP R	52		56.114	3.093	9.875	1.00 80.89		
	MOTA	913	CD2	TRP R	52		55.067	3.675	9.057	1.00 81.56	R	C
20	MOTA	914	CE2	TRP R	52		54.989	5.051	9.392	1.00 81.99	R	C
	ATOM	915	CE3	TRP R	52		54.192	3.155	8.106	1.00 81.29	R	C
	MOTA	916	CD1	TRP R	52	(56.624	4.141	10.674	1.00 81.45	R	С
	ATOM	917	NE1	TRP R	52	(56.009	5.331	10.431	1.00 81.21	R	N
	ATOM	918	CZ2	TRP R	52	(54.052	5.864	8.772	1.00 81.96	R	С
25	ATOM	919	CZ3	TRP R	52	(53.255	3.967	7.488	1.00 81.08	R	C
	MOTA	920	CH2	TRP R	52		53.183	5.329	7.828	1.00 81.26	R	C
	MOTA	921	C	TRP R	52		56.293	1.345	12.208	1.00 80.42	R	C
	ATOM	922	ŏ	TRP R	52		55.384	1.531	13.007	1.00 79.43	R	0
		923	N	ASN R	53		57.563	1.568	12.523	1.00 82.95	R	N
00	ATOM	924		ASN R	53		57.829	2.105	13.838	1.00 85.26	R	Ĉ
30	MOTA		CA				68.545	1.040	14.660	1.00 86.57	R	č
	ATOM	925	CB	ASN R	53			0.038	15.127	1.00 88.41	R	Č
	MOTA	926	CG	ASN R	53		67.526					Ö
	MOTA	927		ASN R	53		66.721	0.304	16.014	1.00 89.46	R	
	ATOM	928	. ND2		53		67.493	-1.103	14.423	1.00 88.47	R	N
35	MOTA	929	C	ASN R	53		68.657	3.371	13.780	1.00 85.99	R	C
	MOTA	930	0	ASN R	53		69.353	3.661	12.814	1.00 84.91	R	0
	MOTA	931	N	PRO R	54	1	68.513	4.161	14.854	1.00 87.46	R	N
	ATOM	932	CD	PRO R	54		67.558	4.031	15.939	1.00 87.13	R	C
	ATOM	933	CA	PRO R	54		69.367	5.306	15.068	1.00 88.96	R	C
40	ATOM	934	CB	PRO R	54		69.022	5.900	16.433	1.00 88.51	R	C
1.0	ATOM	935	CG	PRO R	54		67.670	5.336	16.857	1.00 87.81	R	С
	ATOM	936	C	PRO R	54		70.837	4.875	15.020	1.00 91.16	R	C
	ATOM	937	ŏ	PRO R	54		71.225	3.786	15.408	1.00 91.95	R	0
	MOTA	938	N	PRO R	55		71.659	5.767	14.471	1.00 92.77	R	N
4E		939	CD	PRO R	55		71.358	7.124	14.076	1.00 92.90	R	Ċ
45	ATOM				55 55		73.060	5.474	14.196	1.00 94.38	R	Č
	ATOM	940	CA	PRO R					13.888	1.00 93.93	R	Č
	MOTA	941	CB	PRO R	55		73.751	6.798	14.112			
	MOTA	942	CG	PRO R	55		72.739	7.924		1.00 93.32 1.00 96.19	R R	C
	MOTA	943	C	PRO R	55		73.761	4.774	15.365			
50	MOTA	944	0	PRO R	55		73.823	5.288	16.474	1.00 96.51	R	0
	MOTA	945	N	CYS R	62		71.151	15.108	19.860	1.00 97.98	R	N
	MOTA	946	CA	CYS R	62		70.420	15.510	18.664	1.00 99.92	R	C
	ATOM	947	С	CYS R	62		69.057	14.816	18.581	1.00100.12	R	C
	ATOM	948	0	CYS R	62		68.951	13.597	18.581	1.00100.53	R	0
55	ATOM	949	CB	CYS R	62		71.268	15.154	17.437	1.00100.74	R	C
	ATOM	950	SG	CYS R	62		72.172	16.581	16.783	1.00104.16	R	S
	ATOM	951	N	SER R	63		68.001	15.643	18.514	1.00100.26	R	N
	ATOM	952	CA	SER R	63		66.749	15.214	17.866	1.00100.59	R	C
	ATOM	953	CB	SER R	63		65.737	16.344	18.003	1.00100.76	R	C
co					63		65.282	16.394	19.352	1.00100.96	R	Ō
60	MOTA	954	OG C	SER R	63		66.932	14.883	16.379	1.00100.67	R	č
	ATOM	955	C	SER R					15.524	1.00101.08	R	ŏ
	ATOM	956	0	SER R	63		67.014	15.751			R	
	ATOM	957	N	LEU R	64		66.995	13.572	16.071	1.00100.07		И
	MOTA	958	CA	LEU R	64		67.207	13.155	14.689	1.00 99.22	R	C
65	MOTA	959	СВ	LEU R	64		67.502	11.646	14.686	1.00 99.84	R	C
	MOTA	960	CG	LEU R	64		68.992	11.275	14.695	1.00100.27	R	C
	ATOM	961	CD1	LEU R	64		69.877	12.258	13.922	1.00100.39	R	C
	ATOM	962		LEU R	64		69.562	11.217	16.105	1.00 99.98	R	C
	MOTA	963	С	LEU R	64		65.974	13.412	13.822	1.00 98.40	R	С

							4.4.0.40	1 00 00 07	70	0
	MOTA	964 0		64	64.833	13.273 13.854	14.243 12.578	1.00 98.87 1.00 97.03	R R	N .
	ATOM	965 N		65 65	66.237 65.271	13.627	11.509	1.00 95.83	R	Ĉ
	MOTA	966 CF 967 CE		65 65	64.793	14.956	10.924	1.00 96.96	R	С
5	ATOM ATOM	967 CE 968 CG		65	63.709	15.532	11.742	1.00 97.91	R	C
5	ATOM			65	63.886	16.344	12.919	1.00 98.91	R	C
	MOTA			65	62.596	16.735	13.354	1.00 99.15	R	C
	MOTA			65	65.008	16.789	13.604	1.00 99.85 1.00 98.14	R R	C C
	ATOM			65	62.321	15.447	11.506 12.438	1.00 98.14	R	N
10	MOTA			65 CE	61.599 62.463	16.123 17.571	14.454	1.00 99.73	R	Ċ
	MOTA			65 65	64.878	17.618	14.704	1.00100.22	R	Č
	ATOM			65	63.596	18.021	15.124	1.00100.03	R	С
	ATOM ATOM	976 CI 977 C		65	65.918	12.807	10.401	1.00 93.89	R	C
15	ATOM	978 0		65	67.010	13.086	9.927	1.00 93.86	R	0
13	ATOM	979 N		66	65.219	11.735	10.013	1.00 91.56	R	N
	ATOM	980 C		66	65.711	10.896	8.942	1.00 89.74	R R	C C
	MOTA	981 C		66	65.255	9.461 9.052	9.198 10.571	1.00 89.58 1.00 89.53	R	C
	ATOM	982 C		66	65.678 64.721	8.814	11.553	1.00 89.38	R	č
20	MOTA		D1 TYR R E1 TYR R	66 66	65.108	8.450	12.831	1.00 89.14	R	C
	MOTA		D2 TYR R	66	67.034	8.931	10.887	1.00 89.34	R	C
	ATOM ATOM	200	E2 TYR R	66	67.423	8.576	12.169	1.00 89.67	R	C
	ATOM		Z TYR R	66	66.465	8.343	13.139	1.00 89.51	R	C
25	ATOM		H TYR R	66	66.843	8.009	14.424	1.00 88.93	R R	0 C
	MOTA	989 C		66	65.211	11.378	7.577 7.369	1.00 88.13 1.00 87.44	R	ŏ
	MOTA	990 O		66	64.039	11.673 11.526	6.644	1.00 87.17	R	N
	MOTA	991 N		67 67	66.168 65.773	11.892	5.291	1.00 86.53	R	C
00	MOTA		A PHE R B PHE R	67	66.753	12.949	4.779	1.00 87.70	R	C
30	ATOM ATOM		G PHE R	67	67.092	13.919	5.872	1.00 89.87	R	C
	ATOM		D1 PHE R	67	68.425	14.185	6.150	1.00 90.91	R	C
	ATOM		D2 PHE R	67	66.089	14.643	6.492	1.00 90.84	R	C
	ATOM		CE1 PHE R	67	68.756	15.197	7.037	1.00 90.97 1.00 91.55	R R	C
35	MOTA		CE2 PHE R	67	66.426	15.660 15.945	7.381 7.653	1.00 91.55 1.00 90.84	R	č
	MOTA		ZZ PHE R	67 67	67.760 65.810	10.660	4.373	1.00 85.67	R	Č
•	MOTA	1000 C		67	66.804	9.959	4.298	1.00 85.43	R	0
	ATOM ATOM	1001	_	68	64.677	10.389	3.691	1.00 84.85	R	N
40	ATOM		CA SER R	68	64.632	9.172	2.883	1.00 84.40	R	C
-10	ATOM		CB SER R	68	63.905	8.097	3.686	1.00 83.55	R R	C O
	ATOM	1005	OG SER R	68	62.503	8.380	3.682	1.00 81.92 1.00 84.96	R R	C
	ATOM		SER R	68	63.983	$9.341 \\ 10.181$	1.491 1.265	1.00 84.40	R	ŏ
	ATOM		O SER R N HIS R	68 69	63.129 64.445	8.481	0.525	1.00 86.02	R	N
45	MOTA		N HIS R CA HIS R	69	63.828	8.461	-0.821	1.00 87.66	R	С
	ATOM ATOM		CB HIS R	69	64.392	9.619	-1.656	1.00 86.85	R	C
	ATOM		CG HIS R	69	65.902	9.628	-1.623	1.00 87.47	R	C
	MOTA		CD2 HIS R	69	66.787	9.563	-2.709	1.00 87.58 1.00 87.25	R R	C N
50	MOTA		ND1 HIS R	69	66.610	9.974	-0.520 -0.934	1.00 87.23	R	C
	MOTA		CE1 HIS R	69	67.883 68.019	10.130 9.890	-2.239	1.00 87.47	R	N
	MOTA		NE2 HIS R C HIS R	69 69	64.012	7.121	-1.574	1.00 88.70	R	C
	ATOM ATOM		O HIS R	69	64.850		-1.242	1.00 88.93	R	0
55	ATOM		N PHE R	70	63.154		-2.611	1.00 90.78	R	N
00	ATOM		CA PHE R	70	63.222		-3.369	1.00 92.92	R	C
	MOTA	1020	CB PHE R	70	62.323			1.00 93.71	R R	C
	MOTA		CG PHE R	70	60.965		-4.259	1.00 95.17 1.00 95.74	R	Č
	MOTA		CD1 PHE R	70	60.568				R	č
60	ATOM		CD2 PHE R CE1 PHE R	70 70	60.045 59.237				R	č
	MOTA		CE1 PHE R	70 70	58.710				R	С
	ATOM		CZ PHE R	70 70	58.300			1.00 97.37	R	C
	ATOM ATOM		C PHE R	70	64.654		-3.771	1.00 94.26	R	C
65	ATOM		O PHE R	70	65.224				R	O
	ATOM		N GLY R	71	65.237				R R	N C
	ATOM	1030	CA GLY R	71	66.672				R	C
	ATOM		C GLY R	71 71	67.219 68.398				R	ŏ
	MOTA	1032	O GLY R	<i>/</i> T	102	, ,,,,,	. 0.004			
					102					

							7 600	6 464	1 00 05 20	TO.	λT
	ATOM	1033		ASP R	72	66.304 66.687	7.682 8.452	-6.464 -7.620	1.00 95.39 1.00 94.78	R R	С . И
	ATOM	1034		ASP R ASP R	72 72	66.031	7.782	-8.819	1.00 95.03	R	Ċ
	MOTA MOTA	1035 1036		ASP R	72	64.672	7.732	-8.383	1.00 95.22	R	č
5	ATOM	1037		ASP R	72	64.558	6.067	-8.149	1.00 95.40	R	Õ
J	ATOM	1038		ASP R	72	63.782	8.089	-8.174	1.00 95.61	R	0
	ATOM	1039		ASP R	72	66.169	9.821	-7.374	1.00 94.54	R	С
	ATOM	1040		ASP R	72	66.092	10.692	-8.226	1.00 94.60	R	0
	ATOM	1041	N 3	LYS R	73	65.708	9.868	-6.120	1.00 93.66	R	N
10	MOTA	1042		LYS R	73	65.465	11.089	-5.397	1.00 92.22	R	C
	MOTA	1043		LYS R	73	66.404	12.182	-5.890	1.00 92.75 1.00 93.40	R R	C
	MOTA	1044		LYS R	73	67.506	12.424 13.763	-4.860 -4.135	1.00 93.40	R	G
	ATOM	1045		LYS R LYS R	73 73	67.357 68.037	13.777	-2.762	1.00 93.89	R	Č
15	ATOM ATOM	$1046 \\ 1047$		LYS R	73 73	69.488	13.668	-2.911	1.00 92.82	R	N
15	ATOM	1048		LYS R	73	64.001	11.473	-5.442	1.00 90.85	R	С
	ATOM	1049		LYS R	73	63.600	12.621	-5.317	1.00 90.69	R	0
	MOTA	1050		GLN R	74	63.228	10.393	-5.600	1.00 89.30	R	N
	ATOM	1051		GLN R	74	61.805	10.441	-5.868	1.00 87.34	R	C
20	ATOM	1052		GLN R	74	61.606	9.323	-6.899 -7.787	1.00 88.25 1.00 89.67	R R	C
	MOTA	1053		GLN R	74 74	60.377 60.643	9.479 8.798	-7.787 -9.116	1.00 89.67	R	Č
	MOTA MOTA	1054 1055	_	GLN R GLN R	74 74	61.026		-10.103	1.00 92.95	R	ŏ
	ATOM	1056		GLN R	74	60.357	7.480	-9.127	1.00 91.90	R	N
25	ATOM	1057		GLN R	74	61.033	10.092	-4.588	1.00 85.48	R	C
	ATOM	1058	0	GLN R	74	61.214	9.035	-4.000	1.00 85.72	R	0
	ATOM	1059		ASP R	75	60.185	11.039	-4.128	1.00 83.23	R	N
	ATOM	1060		ASP R	75	59.332	10.746	-2.983	1.00 80.16 1.00 82.21	R R	C
00	ATOM	1061		ASP R	75 75	58.981 57.502	9.261 9.096	-3.011 -3.338	1.00 82.21	R	Ċ
30	ATOM ATOM	1062 1063		ASP R ASP R	75 75	57.164	9.141	-4.521	1.00 85.14	R	Ö
	ATOM	1063		ASP R	75 75	56.720	8.862	-2.420	1.00 84.69	R	0
	ATOM	1065		ASP R	75	60.041	11.078	-1.661	1.00 77.76	R	C
	ATOM	1066	0	ASP R	75	60.008	10.338	-0.685	1.00 76.11	R	0
35	MOTA	1067		LYS R	76	60.715	12.247	-1.666	1.00 75.72	R	N
	ATOM	1068		LYS R	76	61.444	12.689	-0.481	1.00 73.28 1.00 73.94	R R	C
	MOTA	1069		LYS R	76 76	62.046 63.136	14.065 14.004	-0.791 -1.863	1.00 73.94	R	C
	ATOM ATOM	1070 1071		LYS R	76 76	63.136	15.285	-1.911	1.00 73.77	R	č
40	ATOM	1071		LYS R	76 76	63.143	16.510	-2.309	1.00 74.55	R	C
40	ATOM	1073	-	LYS R	76	62.828	16.449	-3.735	1.00 75.61	R	N
	ATOM	1074		LYS R	76	60.526	12.788	0.730	1.00 72.29	R	C
	MOTA	1075	-	LYS R	76	59.350	13.111	0.637	1.00 71.88	R	0
	ATOM	1076		LYS R	77	61.096	12.452 12.588	1.902	1.00 70.63 1.00 69.48	R R	N C
45	ATOM	1077 1078		LYS R	77 77	60.330 59.496	11.319	3.133 3.333	1.00 67.92	R	č
	ATOM ATOM	1078		LYS R	77	58.863	11.259	4.727	1.00 67.24	R	č
	ATOM	1080		LYS R	77	57.814	10.153	4.846	1.00 66.40	R	С
	ATOM	1081		LYS R	77	56.879	10.358	6.044	1.00 66.77	R	C
50	MOTA	1082	NZ	LYS R	77	55.637	9.616	5.830	1.00 67.40	R	Ŋ
	MOTA	1083	C	LYS R	77	61.247	12.796	4.340	1.00 69.93	R	C
	MOTA	1084	0	LYS R	77	62.297	12.187 13.727	$4.479 \\ 5.215$	1.00 70.78 1.00 69.90	R R	N O
	MOTA	1085	N CA	ILE R	78 78	60.836 61.586	13.727	6.450	1.00 69.33	R	Ĉ
55	ATOM ATOM	1086 1087	CB	ILE R	78	62.195	15.319	6.435	1.00 70.19	R	č
33	MOTA	1088		ILE R	78	63.156	15.475	7.627	1.00 70.90	R	C
	ATOM	1089		ILE R	78	63.001	15.527	5.152	1.00 70.70	R	С
	ATOM	1090		ILE R	78	63.489	16.969	5.006	1.00 68.74	R	C
	MOTA	1091	C	ILE R	78	60.694	13.746	7.680	1.00 68.68	R	C
60	ATOM	1092	0	ILE R	78 70	59.701	14.435	7.869	1.00 67.88 1.00 68.91	R R	N O
	MOTA	1093	N	ALA R	79 79	61.060 60.281	12.756 12.512	8.517 9.724	1.00 68.91	R R	C
	MOTA	1094 1095	CA CB	ALA R ALA R	79 79	59.107	11.601	9.724	1.00 68.88	R	Č
•	MOTA MOTA	1095	CP	ALA R	79 79	61.129	11.860	10.819	1.00 70.08	R	č
65	ATOM	1097	Ö	ALA R	79	62.184	11.289	10.576	1.00 69.58	R	0
	MOTA	1098	N	PRO R	80	60.650	11.997	12.070	1.00 70.73	R	N
	ATOM	1099	CD	PRO R	80	59.418	12.638	12.493	1.00 70.72	R	C
	MOTA	1100	CA	PRO R		61.365	11.478	13.228	1.00 71.37 1.00 71.34	R R	C
	MOTA	1101	CB	PRO R	80	60.674	12.013	14.482	T.00 /T.34	Х	C
						104					

	ATOM ATOM	1102 1103	CG C	PRO R PRO R	80 80	59.556 61.366	12.963 9.949	14.052 13.255	1.00 71.52 1.00 71.72		R R	C
	ATOM	1104	0	PRO R	80	62.344	9.298 9.377	13.601 12.912	1.00 71.37 1.00 71.96		R R	N O
5	ATOM ATOM	1105 1106	N CA	GLU R GLU R	81 81	60.199 60.060	7.929	12.912	1.00 71.90		R	C
5	ATOM	1107	CB	GLU R	81	58.701	7.554	12.380	1.00 71.77		R	C
	ATOM	1108	C	GLU R	81	61.171	7.213	12.203	1.00 72.33		R	C
	MOTA	1109	0	GLU R	81	61.605 61.668	7.627 6.121	11.135 12.812	1.00 72.11 1.00 73.39		R R	O N
10	ATOM ATOM	$1110 \\ 1111$	N CA	THR R THR R	82 82	62.630	5.283	12.109	1.00 74.33		R	C
10	ATOM	1112	CB	THR R	82	63.531	4.607	13.136	1.00 75.38		R	C
	ATOM	1113	OG1	THR R	82	62.729	3.844	14.038	1.00 76.17		R	0
	MOTA	1114	CG2	THR R	82	64.298	5.669 4.218	13.929 11.297	1.00 75.33 1.00 73.70		R R	C
45	MOTA MOTA	1115 1116	С О	THR R	82 82	61.892 62.164	3.028	11.357	1.00 73.70		R	ŏ
15	ATOM	1117	N	ARG R	83	60.895	4.714	10.537	1.00 73.78		R	N
	ATOM	1118	CA	ARG R	83	59.978	3.835	9.819	1.00 73.66		R	C
	MOTA	1119	CB	ARG R	83	58.786 58.272	$3.593 \\ 2.154$	10.749 10.702	1.00 74.64 1.00 76.22		R R	C
20	MOTA MOTA	1120 1121	CG CD	ARG R ARG R	83 83	57.196	1.978	9.629	1.00 78.40		R	č
20	ATOM	1122	NE	ARG R	83	55.847	1.899	10.201	1.00 79.66		R	N
	MOTA	1123	CZ	ARG R	83	54.934	2.805	9.789	1.00 80.93		R	C
	ATOM	1124	NH1		83	55.312 53.636	$3.854 \\ 2.491$	9.074 9.860	1.00 80.54 1.00 80.52		R R	N
O.F.	ATOM ATOM	1125 1126	NH2 C	ARG R ARG R	83 83	59.488	4.525	8.542	1.00 30.32		R	Č
25	ATOM	1127	ŏ	ARG R	83	59.068	5.673	8.542	1.00 72.88		R	0
	MOTA	1128	N	ARG R	84	59.598	3.805	7.411	1.00 70.90		R	N
	MOTA	1129	CA	ARG R	84	59.031 60.154	4.353 4.823	6.185 5.262	1.00 69.83 1.00 69.23		R R	C
30	ATOM ATOM	1130 1131	CB CG	ARG R ARG R	84 84	59.604	5.431	3.202	1.00 68.67		R	Č
30	ATOM	1132	CD	ARG R	84	59.507	6.960	4.043	1.00 69.89		R	C
	MOTA	1133	NE	ARG R	84	58.601	7.472	3.010	1.00 67.69		R	N
	MOTA	1134	CZ	ARG R	84	59.154	8.160 8.357	1.996 1.963	1.00 66.16 1.00 63.97		R R	C N
35	ATOM ATOM	1135 1136		ARG R	84 84	60.460 58.380	8.621	1.008	1.00 66.32		R	N
33	ATOM	1137	C	ARG R	84	58.157	3.337	5.458	1.00 69.55		R	C
	ATOM	1138	0	ARG R	84	58.625	2.376	4.863	1.00 68.26		R	0
	MOTA	1139	N	SER R	85	56.836 55.906	3.565 2.676	5.554 4.881	1.00 69.16 1.00 69.24		R R	N C
40	ATOM ATOM	$1140 \\ 1141$	CA CB	SER R SER R	85 85	54.733	2.413	5.824	1.00 68.28		R	Č
40	ATOM	1142	OG	SER R	85	53.828	1.499	5.204	1.00 66.67		R	0
	MOTA	1143	С	SER R	85	55.396	3.283	3.574	1.00 69.39 1.00 69.33		R R	C
	MOTA	1144	O	SER R ILE R	85 86	55.016 55.437	$\frac{4.444}{2.458}$	3.493 2.511	1.00 69.33		R	N
45	ATOM ATOM	$\frac{1145}{1146}$	N CA	ILE R	86	54.972	2.933	1.215	1.00 71.79		R	С
40	ATOM	1147	CB	ILE R	86	56.195	3.312	0.379	1.00 71.58	•	Ř	C
	MOTA	1148	CG2		86	55.744	3.879	-0.979 1.094	1.00 72.31		R R	C
	MOTA	1149 1150	CG1 CD1		86 86	57.003 58.384	4.399 4.603	0.470	1.00 71.33 1.00 72.37		R	Č
50	MOTA MOTA	1151	C CD3	ILE R	86	54.144	1.872	0.488	1.00 72.39		R	С
	MOTA	1152	0	ILE R	86	54.496	0.701	0.413	1.00 73.22		R	O
	MOTA	1153	N	GLU R	87	52.979	2.317	-0.019 -0.758	1.00 73.42 1.00 74.10		R R	С И
	ATOM ATOM	1154 1155	CA CB	GLU R GLU R	87 87	52.108 50.672	$\frac{1.411}{1.900}$	-0.736	1.00 73.40		R	Č
55	ATOM	1156	CG	GLU R		49.632	0.876	-1.028	1.00 75.07		R	C
-	ATOM	1157	CD	GLU R		48.275	1.302	-0.517	1.00 75.32		R	C
	ATOM	1158		L GLU R		47.877	0.841 2.136	0.543 -1.165	1.00 76.51 1.00 74.90		R R	0
	MOTA MOTA	1159 1160	OE2 C	2 GLU R GLU R		47.644 52.467	1.398	-2.246	1.00 75.06		R	č
60	ATOM	1161	Ö	GLU R		51.997	2.201	-3.041	1.00 75.38		R	0
	ATOM	1162	N	VAL R	. 88	53.367	0.464	-2.601	1.00 76.09		R	N
	MOTA	1163	CA	VAL R		53.874	$0.431 \\ 0.746$	-3.967 -3.908	1.00 77.64 1.00 77.48		R R	C
	ATOM ATOM	1164 1165	CB CB	VAL R 1 VAL R		55.369 56.029	0.746	-5.245	1.00 77.35		R	C
65	ATOM	1166		2 VAL R		55.580	2.216	-3.591	1.00 78.41		R	С
= =	MOTA	1167	С	VAL R	. 88	53.667	-0.949	-4.611	1.00 78.83		R	C
	MOTA	1168	O	VAL R		53.779 53.310	-1.982 -0.918	-3.975 -5.909	1.00 79.09 1.00 79.58		R R	O N
	ATOM ATOM	1169 1170	N CD	PRO R PRO R		53.310	0.231		1.00 79.45		R	Ĉ
	Y TOM	,0	ر. ت	_ 1.0 1								

	ATOM ATOM	1171 1172	CA CB	PRO R PRO R	89 89	53.177 52.607	-2.154 -1.797	-6.677 -8.049	1.00 80.36 1.00 79.98	R R	C
	MOTA	1173	CG	PRO R	89	52.642	-0.279	-8.214 -6.830	1.00 80.10 1.00 80.61	R R	C
_	ATOM ATOM	1174 1175	C O	PRO R PRO R	89 89	54.529 55.539	-2.853 -2.256	-7.177	1.00 80.05	R	Ö
5	ATOM	1176	N	LEU R	90	54.535	-4.163	-6.517	1.00 82.18	R	N
	ATOM	1177	CA	LEU R	90	55.798	-4.893	-6.473	1.00 83.61	R R	C
	ATOM	1178	CB	LEU R	90	55.669 56.915	-5.986 -6.102	-5.411 -4.531	1.00 83.45 1.00 83.26	R	C
10	ATOM ATOM	1179 1180	CG CD1	LEU R LEU R	90 90	58.057	-5.205	-5.012	1.00 82.85	R	C
10	ATOM	1181	CD2	LEU R	90	56.649	-5.716	-3.077	1.00 83.25	R	C
	MOTA	1182	C	LEU R	90	56.149	-5.531	-7.818	1.00 84.45	R	C
	MOTA	1183	0	LEU R	90	56.305	-6.740 -4.678	-7.946 -8.851	1.00 84.45 1.00 85.73	R R	N O
45	ATOM ATOM	$\frac{1184}{1185}$	N CA	ASN R ASN R	91 91	56.249 56.525		-10.180	1.00 86.79	R	C
15	ATOM	1186	CB	ASN R	91	55.775	-4.350	-11.198	1.00 87.26	R	C
	ATOM	1187	CG	ASN R	91	54.294		-11.082	1.00 87.64	R R	C
	ATOM	1188		ASN R	91	53.855 53.504	-5.727 -3.552	-10.799 -11.309	1.00 88.26 1.00 88.14	R	N
20	MOTA MOTA	1189 1190	ND2 C	ASN R ASN R	91 91	58.026	-5.224	-10.486	1.00 87.60	R	C
20	ATOM	1191	Ö	ASN R	91	58.464	-5.525	-11.588	1.00 87.91	R	0
	MOTA	1192	N	GLU R	92	58.824	-4.841	-9.468	1.00 88.44	R R	N C
	MOTA	1193	CA	GLU R	92	60.272 60.628	-4.903 -4.319	-9.638 -11.005	1.00 89.44 1.00 91.03	R	C
OF.	MOTA MOTA	1194 1195	CB CG	GLU R GLU R	92 92	60.945	-2.825	-10.947	1.00 92.82	R	C
25	ATOM	1196	CD	GLU R	92	60.923	-2.262	-12.349	1.00 94.79	R	C
	MOTA	1197	OE1		92	61.180	-1.078	-12.510	1.00 95.91	R R	0
	MOTA	1198	OE2		92	60.644 61.038	-3.020 -4.180	-13.277 -8.523	1.00 95.77 1.00 89.16	R	č
30	ATOM ATOM	1199 1200	C O	GLU R GLU R	92 92	60.486	-3.467	-7.695	1.00 89.19	R	0
30	ATOM	1201	N	ARG R	93	62.364	-4.423	-8.510	1.00 88.70	R	N
	MOTA	1202	CA	ARG R	93	63.203	-3.932	-7.420	1.00 88.39	R R	C
	ATOM	1203	CB	ARG R	93	64.665 62.939	-4.113 -2.465	-7.829 -7.066	1.00 87.82 1.00 87.79	R	C
05	ATOM ATOM	$\frac{1204}{1205}$	C	ARG R ARG R	93 93	62.856	-1.587	-7.915	1.00 87.40	R	ō
35	ATOM	1205	N	ILE R	94	62.769	-2.230	-5.749	1.00 87.29	R	N
	ATOM	1207	CA	ILE R	94	62.664	-0.862	-5.252	1.00 86.37	R R	C
	MOTA	1208	CB	ILE R	94	61.253 61.094	-0.652 0.802	-4.696 -4.220	1.00 86.45 1.00 86.59	R	Č
40	MOTA MOTA	$\frac{1209}{1210}$	CG2 CG1		94 94	60.207	-0.907	-5.784	1.00 86.32	R	С
40	ATOM	1211	CD1		94	58.881	-1.413	-5.208	1.00 86.05	R	C
	ATOM	1212	C	ILE R	94	63.695	-0.604	-4.147	1.00 85.38 1.00 84.68	R R	C
	MOTA	1213	0	ILE R	94 95	63.836 64.457	$-1.364 \\ 0.492$	-3.198 -4.319	1.00 85.21	R	N
45	ATOM ATOM	$1214 \\ 1215$	N CA	CYS R CYS R	95 95	65.507	0.790	-3.358	1.00 85.65	R	C
45	ATOM	1216	C	CYS R		65.252	2.112	-2.629	1.00 85.09	R	C
	MOTA	1217	0	CYS R	95	64.956	3.144	-3.216	1.00 86.18	R R	C
	MOTA	1218	CB SG	CYS R CYS R		66.840 67.232	0.862 -0.692	-4.097 -4.935	1.00 85.94 1.00 87.89	R	s
50	$oxdot{MOTA}$	1219 1220	N	LEU R		65.336	2.029	-1.288	1.00 83.68	R	N
00	MOTA	1221	CA	LEU R	96	65.177	3.219		1.00 82.89	R	C
	MOTA	1222	CB	LEU R		64.174	2.881 4.096		1.00 83.32 1.00 84.29	R R	C
	MOTA	$\frac{1223}{1224}$	CG CD1	LEU R L LEU R		63.814 62.885	3.732		1.00 84.58	R	С
55	ATOM ATOM	1225		LEU R		65.036	4.766	2.130	1.00 84.50	R	C
-	ATOM	1226	C	LEU R	96	66.513	3.625		1.00 82.63	R	C
	ATOM	1227	0	LEU R		67.326	2.802		1.00 82.88 1.00 81.96	R R	N
	MOTA	1228	N CA	GLN R GLN R		66.746 67.965	4.949 5.448		1.00 81.67	R	Ĉ
60	ATOM ATOM	1229 1230	CB	GLN R		68.768	6.217		1.00 82.00	R	С
	ATOM	1231	CG	GLN R	. 97	68.849	5.471	_1.553	1.00 83.05	R	C
	MOTA	1232	CD	GLN R		69.895	6.119 7.298		1.00 84.66 1.00 85.58	R R	C
	MOTA	1233 1234	OE:			70.197 70.450	5.278		1.00 85.66	R	N
65	MOTA MOTA	1234		GLN R		67.641	6.363	2.015	1.00 81.37	R	С
00	ATOM	1236	0	GLN R	97	66.796	7.246	1.945	1.00 81.46	R	O
	ATOM	1237	N	VAL F		68.323	6.104 6.848		1.00 80.64 1.00 80.06	R R	N C
	MOTA	1238 1239		VAL F VAL F		67.991 67.544	5.854		1.00 79.37	R	č
	ATOM	1433	دري	A 7-7-1	.)			_			

	 ATOM	1240	CG1	VAL R	98	67.098	6.608	6.681	1.00 79.32	R	С
	ATOM	1241		VAL R	98	66.385	5.026	4.909	1.00 78.50	R	C
	ATOM	1242	C	VAL R	98	69.157 70.318	7.690 7.298	4.880 4.862	1.00 81.16 1.00 81.24	R R	C O
5	ATOM ATOM	$\frac{1243}{1244}$	N O	VAL R GLY R	98 99	68.812	8.909	5.331	1.00 81.88	R	И
5	ATOM	1245	CA	GLY R	99	69.837	9.776	5.891	1.00 82.68	R	С
	ATOM	1246	С	GLY R	99	69.464	10.232	7.305	1.00 84.10	R	C
	ATOM	1247	0	GLY R	99	68.411	9.924	7.841	1.00 83.64	R	0
	ATOM	1248	N	SER R		70.396	10.959 11.415	7.931 9.284	1.00 85.90 1.00 87.83	R R	N C
10	ATOM ATOM	1249 1250	CA CB	SER R SER R		70.121 70.710	10.397	10.265	1.00 87.83	R	Č
	ATOM	1251	OG	SER R		71.800	9.715	9.644	1.00 88.31	R	ŏ
	ATOM	1252	C	SER R	100	70.709	12.796	9.550	1.00 89.25	R	C
	ATOM	1253	0	SER R	100	71.786	13.162	9.082	1.00 89.46	R	0
15	MOTA	1254	N	GLN R		69.936	13.598	10.288	1.00 91.48	R	N
	ATOM	1255	CA	GLN R GLN R		70.425 70.213	14.879 15.904	10.717 9.576	1.00 93.60 1.00 94.44	R R	C
	ATOM ATOM	1256 1257	CB CG	GLN R		71.127	17.132	9.692	1.00 96.46	R	Č
	ATOM	1258	CD	GLN R		71.264	17.819	8.347	1.00 98.38	R	Ċ
20	MOTA	1259	OE1	_		72.104	18.676	8.125	1.00 98.68	R	0
	MOTA	1260	NE2			70.364	17.416	7.428	1.00 99.02	R	N
	ATOM	1261	C	GLN R		69.730	15.338	11.984 12.548	1.00 94.64 1.00 94.60	R R	C
	ATOM	1262 1263	N O	GLN R CYS R		68.847 70.231	14.680 16.468	12.548	1.00 94.00	R	N
25	MOTA MOTA	1264	CA	CYS R		69.461	17.283	13.413	1.00 98.14	R	Ĉ
20	ATOM	1265	C	CYS R		68.847	18.509	12.703	1.00 98.53	R	C
	MOTA	1266	0	CYS R		69.462	19.202	11.916	1.00 98.75	R	0
	ATOM	1267	CB	CYS R		70.380	17.718	14.572	1.00100.07	R R	C S
00	MOTA	1268	SG	CYS R SER R		71.772 67.548	16.589 18.696	14.795 12.995	1.00103.24 1.00 98.95	R R	N
30	MOTA MOTA	1269 1270	N CA	SER R		66.595	19.624	12.355	1.00 99.38	R	Ĉ
	ATOM	1271	CB	SER R		66.606	20.940	13.115	1.00 98.08	R	C
	ATOM	1272	OG	SER R		65.536	20.923	14.065	1.00 96.68	R	0
	MOTA	1273	C	SER R		66.688	19.831	10.821	1.00 99.93	R	C
35	MOTA	1274	0	SER R		67.649	20.353 19.195	10.244 10.439	1.00 99.98 1.00 99.96	R R	N O
	MOTA MOTA	1275 1276	CA N	THR R		65.642 65.032	19.704	9.178	1.00 99.76	R	C
	ATOM	1277	CB	THR R		64.043	20.795	9.529	1.00100.10	R	Č
	ATOM	1278	č	THR R		66.026	20.149	8.072	1.00100.47	R	C
40	MOTA	1279	0	THR R		65.699	20.769	7.076	1.00100.37	R	0
	MOTA	1280	·N	ASN R		67.276	19.782	7.996	1.00100.21	Ŕ	N
	MOTA	1281	CA	ASN R		68.419 69.653	20.151 19.323	7.115 7.589	1.00 99.27 1.00 97.89	R R	C
	MOTA MOTA	1282 1283	CB	ASN R ASN R		68.288	19.916	5.567	1.00 99.40	R	č
45	MOTA	1284	ŏ	ASN R		67.455	19.207	5.023	1.00100.19	R	0
	MOTA	1285	N	PRO R		72.314	16.855	4.636	1.00100.55	R	N
	MOTA	1286	CA	PRO R		72.840	15.913	5.617	1.00100.45	R	C
	MOTA	1287	CB	PRO R		71.986	14.672 15.072	5.770 5.036	1.00101.19 1.00101.27	R R	C
50	MOTA MOTA	1288 1289	C C	PRO R PRO R		73.978 74.344	15.403	3.916	1.00101.62	R	ŏ
50	ATOM	1290	И	SER R		74.750	14.116	5.919	1.00100.19	R	N
	MOTA	1291	CA	SER R	111	75.399	13.143	5.074	1.00 99.29	R	C
	MOTA	1292	CB	SER R		76.872	13.512	4.960	1.00 97.71	R	C
	MOTA	1293	C	SER R		75.341	11.764 11.461	5.668 6.807	1.00 98.69 1.00 98.52	R R	C
55	MOTA MOTA	1294 1295	N O	SER R ILE R		75.754 74.746	10.922	4.840	1.00 99.04	R	N
	MOTA	1296	CA	ILE R		75.165	9.539	4.751	1.00 99.58	R	C
	MOTA	1297	CB	ILE R		76.692	9.451	4.699	1.00 99.70	R	С
	MOTA	1298	C	ILE R		74.419	8.805	3.609	1.00 99.23	R	C
60	MOTA	1299	0	ILE R		74.281	9.299	2.486	1.00100.32 1.00 97.67	R	O M
	MOTA	1300	N	LEU R		73.927 72.906	7.616 7.051	3.933 3.045	1.00 97.67	R R	N C
	MOTA MOTA	1301 1302	CA CB	LEU R LEU R	113	72.900	7.791	1.691	1.00 93.23	R	Č
	ATOM	1302	CG	LEU R	113	72.331	9.214	1.777	1.00 92.82	R	С
65	ATOM	1304	CD1	L LEU R	113	71.476	9.616	0.561	1.00 91.70	R	C
	MOTA	1305		LEU R		71.410	9.399	3.013	1.00 91.48	R	C
	ATOM	1306	C	LEU R		73.160	5.560	2.873 2.154	1.00 93.45 1.00 93.20	R R	C
	ATOM	1307 1308	N O	LEU R VAL R	11 <i>/</i>	74.056 72.380	5.139 4.736	3.637	1.00 93.20	R	И
	ATOM	7200	TA	A 5277 7/		, 2.500	2.750	2.337			

										_	
	ATOM	1309	CA V	VAL R 114	72.514	3.279	3.525	1.00 90.61		R R	C C
	MOTA			VAL R 114	72.534	2.706	4.935	1.00 89.74 1.00 89.47	E 7	R	C
	MOTA			VAL R 114	72.373	3.859 1.750	5.915 5.134	1.00 88.54		R	Č
	MOTA			VAL R 114	71.374 71.342	2.683	2.746	1.00 90.72		R	Ċ
5	MOTA			VAL R 114	70.199	2.822	3.164	1.00 91.38		R	0
	ATOM		O]	VAL R 114 GLU R 115	71.712	2.188	1.554	1.00 90.13	3	R	N
	ATOM		N	GLU R 115	70.695	1.671	0.650	1.00 89.00		R	C
	ATOM		CA CB	GLU R 115	71.318		-0.742	1.00 89.83		R	C
10	ATOM ATOM			GLU R 115	70.350		-1.858	1.00 92.8		R	C
10	ATOM			GLU R 115	71.063		-3.189	1.00 94.83		R	C
	ATOM		OE1	GLU R 115	72.217		-3.213	1.00 95.98		R R	0
	ATOM			GLU R 115	70.456	2.217	-4.199	1.00 96.13 1.00 87.3		R R	C
	MOTA			GLU R 115	70.185	0.306	1.110 1.660	1.00 87.3		R	ŏ
15	ATOM	1323		GLU R 115	70.909	-0.514 0.096	0.916	1.00 85.6		R	Ň
	MOTA			LYS R 116	68.874 68.332	-1.235	1.126	1.00 84.1	7	R	С
	ATOM	1325		LYS R 116 LYS R 116	67.757	-1.337	2.534	1.00 83.5		R	С
	MOTA	1326		LYS R 116	67.431	-2.785	2.904	1.00 83.4	4	R	С
00	MOTA	1327 1328	CD	LYS R 116	67.624	-3.735	1.718	1.00 84.4		R	C
20	ATOM ATOM	1329	CE	LYS R 116	68.553	-4.910	2.046	1.00 85.5		R	C
	ATOM	1330	NZ	LYS R 116	69.779	-4.808	1.255	1.00 85.5		R	C N
	MOTA	1331	С	LYS R 116	67.248	-1.545	0.097	1.00 83.7	3 7 ·	R R	Ö
	MOTA	1332	0	LYS R 116	66.214	-0.904	$0.017 \\ -0.747$	1.00 83.6 1.00 83.5	2	R	N
25	ATOM	1333	N	CYS R 117	67.530	-2.544 -2.801	-1.795	1.00 83.4		R	C
	MOTA	1334	CA	CYS R 117	66.550 65.652	-3.988	-1.441	1.00 82.8		R	С
	MOTA	1335	C	CYS R 117 CYS R 117	65.897	-4.726	-0.495	1.00 82.3		R	0
	MOTA	1336 1337	O CB	CYS R 117	67.306	-3.088	-3.094	1.00 84.0	2	R	C
20	ATOM ATOM	1338	SG	CYS R 117	68.355	-1.705	-3.595	1.00 86.0		R	s
30	ATOM	1339	N	ILE R 118	64.545	-4.039	-2.208	1.00 82.7		R	N
	MOTA	1340	CA	ILE R 118	63.714	-5.216	-2.171	1.00 82.4		R	C C
	ATOM	1341	СВ	ILE R 118	62.480	-5.009	-1.286	1.00 81.3 1.00 80.8		R R	C
	MOTA	1342	CG2		61.646	-3.807	-1.763 -1.436	1.00 80.7		R	Č
35	MOTA	1343	CG1		61.620	-6.260 -6.308	-0.523	1.00 80.7		R	Č
	MOTA	1344	CD1		60.414 63.304	-5.663	-3.565	1.00 83.5		R	C
	MOTA	1345	C	ILE R 118 ILE R 118	62.966	-4.886	-4.439	1.00 82.6	58	R	0
	MOTA	1346 1347	N O	SER R 119	63.361	-6.981	-3.749	1.00 85.3	39	R	N
40	MOTA MOTA	1348	CA	SER R 119	63.152	-7.476	-5.110	1.00 87.6		R	C
40	MOTA	1349	CB	SER R 119	64.288	-8.446	-5.451	1.00 87.4		R	C
	MOTA	1350	OG	SER R 119	65.357	-7.750	-6.088	1.00 88.6	04 11	R R	O C
	MOTA	1351	С	SER R 119	61.834	-8.220	-5.234	1.00 89.3 1.00 89.3	1.1 2.7	R	Ö
	MOTA	1352	0	SER R 119	61.298	-8.757 -8.233	-4.272 -6.467	1.00 90.	5.5	R	Ň
45	MOTA	1353	N	PRO R 120	61.292 61.793	-7.579	-7.673	1.00 90.		R	C
	MOTA	1354	CD	PRO R 120 PRO R 120	60.061	-8.965	-6.760	1.00 91.		R	С
	MOTA	1355 1356	CA CB	PRO R 120	59.837	-8.901	-8.271	1.00 91.	34	R	С
	MOTA ATOM	1357	CG	PRO R 120	61.078	-8.283	-8.926	1.00 90.	81	R	C
50	ATOM	1358	C	PRO R 120	60.195	-10.427	-6.337	1.00 93.	40	R	C
00	ATOM	1359	Õ	PRO R 120	61.246	-10.897	-5.963	1.00 93.	ον 2Τ	R R	O N
	ATOM	1360	N	PRO R 121	59.052	-11.126	-6.319	1.00 94. 1.00 95.		R	C
	ATOM	1361	CD	PRO R 121	57.679	-10.642	-6.320 -6.186			R	Č
	ATOM	1362	CA	PRO R 121	59.U3I	-12.588 -13.050	-6.133			R	C
55	ATOM	1363	CB	PRO R 121	57.363	-11.825	-5.792			R	С
	MOTA	1364	CG	PRO R 121 PRO R 121	59 710	-13.314	-7.354	1.00 96.	27	R	C
	MOTA	1365 1366	C	PRO R 121	60.232	-12.728	-8.290	1.00 96.	65	R	0
	MOTA MOTA	1367	N	GLU R 122	59.712	-14.654	-7.263	1.00 96.		R	N
60	MOTA	1368	CA	GLU R 122	60.466	-15.436	-8.239		64	R	C
00	MOTA	1369	CB	GLU R 122	60.754	-16.811	-7.647	1.00 98.	TΩ	R	C
	MOTA	1370	C	GLU R 122	59.750	-15.566	-9.580		0.3 1.6	R R	0
	ATOM	1371	0	GLU R 122	58.765	-14.900	-9.861	1.00 98. 1.00 98.	3.3 T.0	R	N
	MOTA	1372	N	GLY R 123	60.290	-16.456 -16.367	-11 Q/A		34	R	Ĉ
65	MOTA	1373	CA		59.903	-16.367 -14.924	-12 276		41	R	Č
	ATOM	1374		GLY R 123 GLY R 123	60.036	-14.096	-11.527	1.00 97.	99	R	0
	ATOM	1375 1376		ASP R 124	59.740	-14.604	-13.517	1.00 98.	66	R	N
	ATOM ATOM	1377		401	59.442	-15.503	-14.620	1.00 98.	.83	R	С
	A 1 OM	±317	O£1		108						

					_	-
	ATOM	1378 C	B ASP K 124	59.960 -16.929 -14.423 1.00 98.61 59.663 -14.888 -15.999 1.00 98.97	R R	C C
	ATOM	1379 C	404	59 298 -15.411 -17.040 1.00 98.84	R	0
	ATOM ATOM	1380 O 1381 N	PRO R 125	60.276 - 13.683 - 15.943 1.00 99.06	R R	N C
5	ATOM	1382 C	D PRO R 125	60.842 -13.053 -14.762 1.00 99.07 60.488 -12.806 -17.076 1.00 99.15	R	C
	MOTA		A PRO R 125 B PRO R 125	61.557 -11.780 -16.757 1.00 98.98	R	C
	MOTA MOTA		G PRO R 125	61.684 -11.758 -15.228 1.00 99.03	R R	C
	MOTA	1386 C	PRO R 125	59.183 -12.245 -17.658 1.00 98.89 58.874 -11.068 -17.541 1.00 98.69	R	ŏ
10	MOTA	1387 C		58.446 -13.145 -18.351 1.00 98.52	R	N
	ATOM ATOM		CA GLUR 126	57.012 -12.938 -18.505 1.00 98.29	R R	C C
	ATOM	1390 C	CB GLU R 126	56.502 -13.566 -19.812 1.00 99.27 56.541 -12.662 -21.043 1.00102.26	R	C
	MOTA		CG GLU R 126 CD GLU R 126	55.852 -11.335 -20.795 1.00105.09	R	C
15	ATOM ATOM		DE1 GLU R 126	54.628 -11.301 -20.704 1.00106.59	R R	0
	ATOM	1394 (DE2 GLU R 126	56.540 -10.316 -20.869 1.00105.98 56.272 -13.649 -17.392 1.00 97.16	R	Č
	MOTA		C GLU R 126 C GLU R 126	56.659 -13.635 -16.227 1.00 97.88	R	0
20	ATOM ATOM		N SER R 127	55.187 -14.322 -17.835 1.00 95.40	R R	N C
20	MOTA		CA SER R 127	54.401 -15.089 -16.897 1.00 93.82 55.389 -15.802 -15.987 1.00 93.96	R	č
	MOTA		CB SER R 127 OG SER R 127	56.514 -14.940 -15.779 1.00 94.37	R	0
	ATOM ATOM		C SER R 127	53.518 -14.151 -16.082 1.00 92.55 52.410 -14.462 -15.681 1.00 92.49	R R	C
25	MOTA		O SER R 127	52.410 -14.462 -15.681 1.00 92.49 54.072 -12.966 -15.792 1.00 91.22	R	N
	MOTA MOTA		N ALA R 128 CA ALA R 128	53.280 -11.874 -15.294 1.00 89.83	R	C
	ATOM		CB ALA R 128	54.233 -10.749 -14.877 1.00 90.27 52.291 -11.385 -16.357 1.00 89.00	R R	C
	MOTA		C ALA R 128 O ALA R 128	52.291 -11.385 -16.357 1.00 89.00 52.593 -11.270 -17.547 1.00 89.71	R	0
30	MOTA MOTA		O ALA R 128 N VAL R 129	51.043 -11.174 -15.890 1.00 87.77	R R	N C
	MOTA		CA VAL R 129	50.001 -10.665 -16.765 1.00 86.32 48.672 -10.733 -16.005 1.00 86.35	R	C
	MOTA		CB VAL R 129 CG1 VAL R 129	48 937 -11.160 -14.558 1.00 86.60	R	C
35	MOTA MOTA		CG2 VAL R 129	48.001 -9.372 -16.008 1.00 87.18	R R	C C
33	ATOM		C VAL R 129	50.293 -9.209 -17.159 1.00 84.92 51.181 -8.563 -16.623 1.00 84.48	R	Ö
	ATOM	1414	O VAL R 129 N THR R 130	49 543 -8.723 -18.164 1.00 83.78	R	N
	ATOM ATOM	1415 1416	CA THR R 130	49.720 -7.344 -18.604 1.00 83.06	R R	C
40	MOTA	1417	CB THR R 130	50.487 -7.341 -19.933 1.00 83.42 49.697 -7.975 -20.935 1.00 85.56	R	ŏ
	MOTA	1418 1419	OG1 THR R 130 CG2 THR R 130	51.791 -8.120 -19.765 1.00 84.04	R	C
	MOTA MOTA	1420	C THR R 130	48.388 -6.605 -18.755 1.00 82.58 47.346 -7 176 -19.059 1.00 81.67	R R	C
	ATOM	1421	O THR R 130	47.346 -7.176 -19.059 1.00 81.67 48.453 -5.287 -18.472 1.00 82.27	R	N
45	MOTA MOTA	1422 1423	N GLU R 131 CA GLU R 131	47.280 -4.438 -18.639 1.00 81.66	R	C
	ATOM	1424	CB GLU R 131	46.754 -4.623 -20.063 1.00 84.16 47.786 -4.215 -21.115 1.00 87.93	R R	C
	ATOM	1425	CG GLU R 131 CD GLU R 131	47.786 -4.215 -21.115 1.00 87.93 47.177 -4.323 -22.494 1.00 89.79	R	С
50	MOTA MOTA	1426 1427	OE1 GLU R 131	46.187 -5.025 -22.643 1.00 91.97	R R	0
50	ATOM	1428	OE2 GLU R 131	47.707 -3.706 -23.417 1.00 90.84 46.192 -4.785 -17.621 1.00 79.25	R	č
	MOTA	1429	C GLU R 131 O GLU R 131	45.052 -5.087 -17.952 1.00 78.94	R	0
	ATOM ATOM	1430 1431	N LEU R 132	46.601 - 4.772 - 16.340 1.00 76.59	R R	N C
55	MOTA	1432	CA LEU R 132	45.667 -5.109 -15.275 1.00 74.32 46.444 -5.852 -14.186 1.00 72.56	R	С
	MOTA	1433 1434	CB LEU R 132 CG LEU R 132	45.695 -5.895 -12.852 1.00 72.22	R	C
	MOTA MOTA	1435	CD1 LEU R 132	44.557 -6.918 -12.857 1.00 70.16	R R	C C
	MOTA	1436	CD2 LEU R 132	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	Č
60	MOTA	1437 1438	C LEU R 132 O LEU R 132	45.555 -3.191 -13.812 1.00 73.40	R	0
	MOTA MOTA	1439	N GLN R 133	43.829 -3.521 -15.225 1.00 74.00	R R	N C
	MOTA	1440	CA GLN R 133	42 967 -1.312 -15.759 1.00 76.12	R	С
e E	MOTA		CB GLN R 133 CG GLN R 133	42.873 -1.889 -17.172 1.00 79.10	R	C
65	ATOM ATOM		CD GLN R 133	43.181 -0.798 -18.172 1.00 81.25	R R	C
	ATOM	1444	OE1 GLN R 133	44 499 -0.562 -18.329 1.00 81.66	R	N
	ATOM ATOM		NE2 GLN R 133 C GLN R 133	41.702 -2.801 -14.184 1.00 71.52	R	С
	AIOM	. 1770	<u> </u>	100		

ATOM ATOM ATOM	1447 1448 1449	N CYS R 134 CA CYS R 134	41.232 39.920	-3.744 -14.665 -2.078 -13.152 -2.382 -12.597	1.00 72.04 1.00 68.85 1.00 66.75	R R R	С И О
ATOM ATOM ATOM ATOM	1451 1452 1453	O CYS R 134 CB CYS R 134 SG CYS R 134	39.351 40.101 41.160	-0.096 -13.109 -2.704 -11.113 -4.144 -10.850	1.00 63.78 1.00 68.38 1.00 70.34	R R R	0 C S
ATOM ATOM ATOM ATOM	1454 1455 1456 1457	CA ILE R 135 CB ILE R 135	36.651 35.924 34.513	-0.466 -12.585 -0.554 -13.929 0.051 -13.804	1.00 58.36 1.00 57.94 1.00 54.74	R R R	N C
ATOM ATOM ATOM	1458 1459 1460	CD1 ILE R 135 C ILE R 135	36.044 35.652	0.094 -16.383 -0.668 -11.443	1.00 58.96 1.00 57.95	R R R R	0000
ATOM ATOM ATOM	1462 1463 1464	N TRP R 136 CA TRP R 136 CB TRP R 136	35.325 34.426 34.890	0.439 -10.754 0.325 -9.612 1.306 -8.532	1.00 56.24 1.00 56.61 1.00 55.50	R R R	и С С
ATOM ATOM ATOM ATOM	1465 1466 1467 1468	CD2 TRP R 136 CE2 TRP R 136	34.362 33.698	1.749 -6.011 1.024 -4.991 3.007 -5.728	1.00 54.02 1.00 54.07 1.00 55.35	R R R	CC
ATOM ATOM ATOM	1469 1470 1471	NE1 TRP R 130 CZ2 TRP R 130	33.229 33.579	-0.260 -5.572 1.569 -3.722	1.00 54.86 1.00 54.29	R R	C N C
ATOM ATOM ATOM	1473 1474 1475	CH2 TRP R 130 C TRP R 130 O TRP R 130	34.101 32.972 32.566	2.830 -3.454 0.614 -10.000 1.751 -10.199	1.00 54.57 1.00 56.90 1.00 58.05	R R R	C C
ATOM ATOM ATOM	1477 1478	CA HIS R 13' CB HIS R 13'	30.800 30.303	-0.466 -10.142 -0.300 -10.621 -1.640 -11.161 -1.874 -12.533	1.00 56.91 1.00 56.03 1.00 55.23 1.00 54.71	R R R	N C C
MOTA MOTA MOTA	1480 1481 1482	CD2 HIS R 13' ND1 HIS R 13' CE1 HIS R 13'	7 30.191 7 32.201 7 32.312	-2.030 -13.744 -2.030 -12.764 -2.281 -14.080	1.00 55.22 1.00 55.84 1.00 55.03	R R R	C N C N
MOTA MOTA	1484 1485 1486	C HIS R 13	7 29.840 7 29.586	$ \begin{array}{rrr} 0.183 & -9.529 \\ -0.487 & -8.535 \\ 1.415 & -9.739 \end{array} $	1.00 56.49 1.00 58.18 1.00 56.21	R R R	0 C
MOTA ATOM MOTA	1487 1488 1489	CB ASN R 13 CG ASN R 13	26.999 25.749	$ \begin{array}{rrr} 1.050 & -9.197 \\ 1.805 & -8.827 \end{array} $	1.00 57.44 1.00 58.23 1.00 60.13	R R	0 0 0 0
ATOM ATOM ATOM ATOM	1491 1492 1493	ND2 ASN R 13 C ASN R 13 O ASN R 13	8 25.729 8 28.559 8 27.689	3.095 -9.205 1.952 -7.426 1.976 -6.563	1.00 59.12 1.00 58.33 1.00 57.09	R R R	И С О
ATOM ATOM ATOM	1494 1495 1496	CA LEU R 13 CB LEU R 13	9 30.374 9 29.862	1.919 -5.763 3.163 -5.020	1.00 60.87 1.00 59.70	R R	И С С
MOTA MOTA	1498 1499 1500	CD1 LEU R 13 CD2 LEU R 13 C LEU R 13	9 29.998 9 31.841 9 29.939	5.673 -4.669 4.582 -5.839 0.651 -5.005	1.00 57.96 1.00 58.45 1.00 62.49	R R R	C C C
MOTA MOTA	1502 1503	N SER R 14 CA SER R 14	0 29.775 0 29.161	-0.460 -5.765 -1.676 -5.226	1.00 63.81 1.00 65.20	R R R	О И С С
ATOM ATOM ATOM	1505 1506 1507	OG SER R 14 C SER R 14 O SER R 14	0 26.752 0 30.048 0 30.173	-1.372 -5.276 -2.920 -5.404 -3.762 -4.521	1.00 68.36 1.00 65.22 1.00 66.71	R R R	0 C 0
MOTA MOTA MOTA	1509 1510	CA TYR R 14 CB TYR R 14	1 31.504 1 30.764	-4.140 -6.975 $-5.360 -7.555$	1.00 64.42 1.00 65.04	R R R R	N C D
ATOM ATOM ATOM	1512 1513 1514	CD1 TYR R 14 CE1 TYR R 14 CD2 TYR R 14	1 31.014 1 30.470 1 28.984	-5.507 -10.064 -5.399 -11.345 -4.600 -9.136	1.00 66.95 1.00 67.61 1.00 67.12	R R R R	0000
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1448 ATOM 1449 ATOM 1450 ATOM 1451 ATOM 1453 ATOM 1453 ATOM 1455 ATOM 1455 ATOM 1455 ATOM 1455 ATOM 1456 ATOM 1457 ATOM 1458 ATOM 1460 ATOM 1461 ATOM 1462 ATOM 1463 ATOM 1463 ATOM 1466 ATOM 1466 ATOM 1466 ATOM 1467 ATOM 1468 ATOM 1469 ATOM 1470 ATOM 1471 ATOM 1472 ATOM 1473 ATOM 1474 ATOM 1475 ATOM 1478 ATOM 1478 ATOM 1480 ATOM 1481 ATOM 1482 ATOM 1483 ATOM 1484 ATOM 1488 ATOM 1488 ATOM 1488 ATOM 1488 ATOM 1488 ATOM 1489 ATOM 1490 ATOM 1491 ATOM 1491 ATOM 1492 ATOM 1493 ATOM 1496 ATOM 1497 ATOM 1497 ATOM 1497 ATOM 1498 ATOM 1498 ATOM 1499 ATOM 1491 ATOM 1491 ATOM 1491 ATOM 1492 ATOM 1493 ATOM 1496 ATOM 1497 ATOM 1497 ATOM 1497 ATOM 1498 ATOM 1499 ATOM 1500 ATOM 1501 ATOM 1501 ATOM 1508 ATOM 1508 ATOM 1509 ATOM 1509 ATOM 1501	ATOM 1448 N CYS R 134 ATOM 1449 CA CYS R 134 ATOM 1450 C CYS R 134 ATOM 1451 O CYS R 134 ATOM 1451 O CYS R 134 ATOM 1452 CB CYS R 134 ATOM 1453 SG CYS R 134 ATOM 1455 CA LLE R 135 ATOM 1455 CA LLE R 135 ATOM 1456 CB ILE R 135 ATOM 1457 CG2 ILE R 135 ATOM 1457 CG2 ILE R 135 ATOM 1459 CD1 ILE R 135 ATOM 1450 C ILE R 135 ATOM 1461 O ILE R 135 ATOM 1461 O ILE R 135 ATOM 1462 CB TRP R 136 ATOM 1463 CA TRP R 136 ATOM 1464 CB TRP R 136 ATOM 1465 CG TRP R 136 ATOM 1466 CD2 TRP R 136 ATOM 1466 CD2 TRP R 136 ATOM 1467 CE2 TRP R 136 ATOM 1469 CD1 TRP R 136 ATOM 1470 NE1 TRP R 136 ATOM 1470 NE1 TRP R 136 ATOM 1471 CZZ TRP R 136 ATOM 1472 CZZ TRP R 136 ATOM 1474 C TRP R 136 ATOM 1476 N HIS R 137 ATOM 1478 CB HIS R 137 ATOM 1481 ND1 HIS R 137 ATOM 1482 CE1 HIS R 137 ATOM 1484 C HIS R 137 ATOM 1485 O HIS R 137 ATOM 1486 CB ASN R 138 ATOM 1487 CA ASN R 138 ATOM 1488 CB ASN R 138 ATOM 1489 CG ASN R 138 ATOM 1490 OD1 ASN R 138 ATOM 1491 ND2 ASN R 138 ATOM 1492 C ASN R 138 ATOM 1493 O ASN R 138 ATOM 1494 N LEU R 13 ATOM 1496 CB LEU R 13 ATOM 1497 CG LEU R 13 ATOM 1498 CD1 LEU R 13 ATOM 1499 CD2 LEU R 13 ATOM 1499 CD2 LEU R 13 ATOM 1499 CD2 LEU R 13 ATOM 1490 CD3 ASN R 138 ATOM 1496 CB SER R 14 ATOM 1500 C LEU R 13 ATOM 1497 CG LEU R 13 ATOM 1498 CD1 LEU R 13 ATOM 1498 CD1 LEU R 13 ATOM 1498 CD1 LEU R 13 ATOM 1496 CB SER R 14 ATOM 1500 C SER R 14 ATOM 1500	ATOM 1448 N CYS R 134 41.232 ATOM 1449 CA CYS R 134 39.920 ATOM 1451 O CYS R 134 39.351 ATOM 1451 O CYS R 134 40.101 ATOM 1453 SG CYS R 134 41.160 ATOM 1454 N LLE R 135 37.670 ATOM 1455 CA LLE R 135 37.670 ATOM 1455 CA LLE R 135 36.651 ATOM 1455 CA LLE R 135 36.651 ATOM 1455 CB LLE R 135 36.651 ATOM 1455 CB LLE R 135 36.661 ATOM 1455 CB LLE R 135 36.661 ATOM 1455 CB LLE R 135 36.6684 ATOM 1459 CD1 LLE R 135 36.6684 ATOM 1459 CD1 LLE R 135 36.6684 ATOM 1465 CB LLE R 135 35.221 ATOM 1461 O LLE R 135 35.221 ATOM 1462 N TRP R 136 35.325 ATOM 1465 CG TRP R 136 34.890 ATOM 1465 CG TRP R 136 34.890 ATOM 1466 CD2 TRP R 136 34.890 ATOM 1466 CD2 TRP R 136 34.890 ATOM 1467 CE2 TRP R 136 33.698 ATOM 1469 CD1 TRP R 136 33.698 ATOM 1469 CD1 TRP R 136 33.698 ATOM 1470 NE1 TRP R 136 33.229 ATOM 1471 CZ2 TRP R 136 33.693 ATOM 1470 NE1 TRP R 136 33.229 ATOM 1471 CZ2 TRP R 136 33.229 ATOM 1474 C TRP R 136 32.972 ATOM 1475 O TRP R 136 32.972 ATOM 1476 N HIS R 137 30.800 ATOM 1477 CA HIS R 137 30.800 ATOM 1478 CB HIS R 137 30.801 ATOM 1488 CB LEU R 139 ATOM 1488 CB ATOM 1489 CD HIS R 137 30.8975 ATOM 1488 CB ASN R 138 26.999 ATOM 1488 CB ASN R 138 26.999 ATOM 1489 CD ASN R 138 26.999 ATOM 1489 CD ASN R 138 26.999 ATOM 1499 CD ASN R 138 26.999 ATOM 1499 CD ASN R 138 26.999 ATOM 1499 CD ASN R 138 27.689 ATOM 1499 CD LEU R 139 30.344 ATOM 1495 CA EEU R 139 30.374 ATOM 1496 CB LEU R 139 30.374 ATOM 1497 CG SER R 140 29.775 ATOM 1490 CD ASN R 138 26.999 ATOM 1491 CO ASN R 138 27.989 ATOM 1491 CG SER R 140 29.775 ATOM 1492 CD ASN R 138 26.999 ATOM 1493 C ASN R 138 26.999 ATOM 1496 CB LEU R 139 30.374 ATOM 1497 CG SER R 140 29.775 ATOM 1498 CD LEU R 139 30.374 ATOM 1496 CB LEU R 139 30.374 ATOM 1496 CB LEU R 139 30.374 ATOM 1496 CB LEU R 139 29.998 ATOM 1496 CB EEU R 139 30.374 ATOM 1504 CB SER R	ATOM	AROM 1449 CA CYS R 134	AROM 1448 N CYS R 134 41.232 -2.078 -13.152 1.00 68.85 R AROM 1459 CA CYS R 134 38.950 -1.204 -12.765 1.00 64.75 R AROM 1451 O CYS R 134 38.950 -1.204 -12.765 1.00 64.75 R AROM 1451 O CYS R 134 39.951 -0.996 -13.109 1.00 63.78 R AROM 1452 CB CYS R 134 40.101 -2.704 -11.113 1.00 68.38 R AROM 1453 SG CYS R 134 40.101 -2.704 -11.113 1.00 68.38 R AROM 1454 N ILLE R 135 34.101 -4.144 -1.01 1.00 68.38 R AROM 1455 CB CYS R 134 40.101 -2.704 -11.113 1.00 68.38 R AROM 1456 N ILLE R 135 36.661 -1.046 -1.2551 1.00 58.36 R AROM 1456 CB ILLE R 135 35.96 -0.554 -1.3929 1.00 57.94 R AROM 1457 CG2 ILE R 135 34.513 0.051 -13.804 1.00 57.95 R AROM 1458 CG1 ILE R 135 36.664 0.235 -15.002 1.00 57.95 R AROM 1459 CD1 ILE R 135 36.044 0.235 -15.002 1.00 57.95 R AROM 1461 O ILE R 135 35.562 -0.668 1.1443 1.00 57.95 R AROM 1462 N TRR R 136 35.214 -1.773 -11.154 1.00 57.95 R AROM 1463 CR TRR R 136 34.406 0.335 -10.61 1.00 57.95 R AROM 1463 CR TRR R 136 34.406 0.335 -10.61 1.00 57.95 R AROM 1466 CD TRR R 136 34.406 0.335 -0.632 1.00 57.95 R AROM 1467 CC2 TRR R 136 34.408 0.335 -0.632 1.00 55.50 R AROM 1468 CG3 TRR R 136 34.436 0.335 -0.632 1.00 55.50 R AROM 1466 CD TRR R 136 34.436 0.335 -0.632 1.00 55.50 R AROM 1467 CC2 TRR R 136 34.436 0.335 -0.632 1.00 55.50 R AROM 1468 CG3 TRR R 136 34.436 1.00 5.96 -8.532 1.00 56.24 R AROM 1467 CC2 TRR R 136 34.362 1.749 -6.011 1.00 54.02 R AROM 1469 CD1 TRR R 136 33.638 1.004 -4.991 1.00 54.02 R AROM 1469 CD1 TRR R 136 33.638 1.004 0.00 57.57 R AROM 1469 CD1 TRR R 136 33.532 0.00 0.949 -6.010 1.00 54.02 R AROM 1470 CR3 TRR R 136 33.509 0.00 0.99 -1.00 54.02 R AROM 1470 CR3 TRR R 136 33.509 0.00 0.99 -1.00 57.00 57.50 R AROM 1470 CR3 TRR R 136 33.656 I.00 0.00 57.57 R AROM 1470 CR3 TRR R 136 33.500 0.00 0.00 0.00 0.00 57.50 5.00 R AROM 1470 CR3 TRR R 136 33.500 0.00 0.00 0.00 0.00 57.50 5.00 R AROM 1470 CR3 TRR R 136 33.500 0.00 0.00 0.00 0.00 55.00 58.05 R AROM 1470 CR3 TRR R 136 33.500 0.00 0.00 0.00 0.00 55.00 58.05 R AROM 1470 CR3 TRR R 136 33.500 0.00 0.00 0.00 0.00 55.00 58.05 R AROM 1470 CR3

	ATOM ATOM ATOM	1516 CZ 1517 OH 1518 C		29.187 -4.867 -11.512 1.00 69.06 R 28.686 -4.663 -12.784 1.00 70.63 R 32.562 -3.673 -7.969 1.00 64.10 R	0 C
5	ATOM ATOM ATOM ATOM	1519 O 1520 N 1521 CA 1522 CB	TYR R 141 MET R 142 MET R 142	32.363 -2.768 -8.768 1.00 62.44 R 33.729 -4.322 -7.860 1.00 63.99 R 34.866 -3.989 -8.702 1.00 65.48 R 36.087 -3.829 -7.792 1.00 67.21 R	. N . C . C
10	ATOM ATOM ATOM ATOM ATOM	1522 CG 1524 SE 1525 CE 1526 C	MET R 142 MET R 142 MET R 142 MET R 142	37.378 -3.604 -8.578 1.00 70.81 R 38.408 -2.330 -7.838 1.00 77.72 R 37.167 -1.030 -7.767 1.00 73.36 R 35.114 -5.094 -9.727 1.00 66.17 R 35.148 -6.274 -9.414 1.00 66.91	. s . c
	ATOM ATOM ATOM	1527 O 1528 N 1529 CF		35.148 -6.274 -9.414 1.00 66.91 35.228 -4.675 -10.996 1.00 66.36 35.483 -5.639 -12.054 1.00 67.05 34.401 -5.434 -13.123 1.00 67.92	R N R C
15	ATOM ATOM ATOM ATOM	1530 CF 1531 CC 1532 CF 1533 CF	G LYS R 143 D LYS R 143	34.352 -6.571 -14.136 1.00 69.19 34.202 -6.060 -15.569 1.00 71.27 33.224 -6.905 -16.390 1.00 71.16	2 C
20	MOTA ATOM ATOM ATOM ATOM	1534 NZ 1535 C 1536 O 1537 N	LYS R 143 LYS R 143 LYS R 143	36.885 -5.425 -12.641 1.00 66.66 37.241 -4.354 -13.113 1.00 65.97 37.717 -6.477 -12.519 1.00 67.07	R C R O R N
25	MOTA MOTA MOTA	1538 C 1539 C 1540 O	A CYS R 144 CYS R 144 CYS R 144	39.334 -7.295 -14.192 1.00 68.24 38.754 -8.366 -14.315 1.00 68.16 40.022 -6.762 -11.845 1.00 68.98	R C R C R C
	ATOM ATOM ATOM ATOM	1541 C 1542 S 1543 N 1544 C	G CYS R 144 SER R 145 A SER R 145	39.869 -5.642 -10.436 1.00 71.30 40.189 -6.811 -15.106 1.00 69.43 40.555 -7.578 -16.284 1.00 71.06	R S R N R C R C
30	ATOM ATOM ATOM ATOM		1 1 5	38.849 -6.438 -17.578 1.00 70.80 42.055 -7.818 -16.286 1.00 73.04 42.769 -7.484 -15.352 1.00 74.36	R O R C R O
35	MOTA MOTA MOTA	1549 N 1550 C 1551 C	TRP R 146 CA TRP R 146 CB TRP R 146	43.959 -8.386 -17.558 1.00 76.46 44.624 -8.758 -16.236 1.00 74.01	R Ñ R C R C R C
40	ATOM ATOM ATOM ATOM	1553 C 1554 C 1555 C	CD2 TRP R 146 CE2 TRP R 146 CE3 TRP R 146	43.481 -10.743 -14.999 1.00 70.76 43.658 -12.150 -14.994 1.00 69.26 42.532 -10.170 -14.162 1.00 69.78	R C R C R C R C
	MOTA MOTA MOTA	1557 N 1558 C	CD1 TRP R 146 NE1 TRP R 146 CZ2 TRP R 146 CZ3 TRP R 146	44.718 -12.484 -15.980 1.00 69.89 42.907 -12.940 -14.138 1.00 69.54 41.777 -10.959 -13.310 1.00 70.52	R N R C R C
45	MOTA MOTA MOTA MOTA	1560 C 1561 C	CH2 TRP R 146 C TRP R 146 O TRP R 146	41.967 -12.353 -13.296 1.00 70.22 44.364 -9.384 -18.607 1.00 78.90 43.596 -10.217 -19.071 1.00 78.80	R C R C R O R N
50	ATOM ATOM ATOM	1563 I 1564 0 1565 0	N LEU R 147 CA LEU R 147 CB LEU R 147 CG LEU R 147	46.095 -10.155 -20.040 1.00 84.15 46.536 -9.336 -21.253 1.00 84.22 45.336 -8.822 -22.059 1.00 84.97	R C R C R C
	MOTA MOTA MOTA	1567 1568	CD1 LEU R 147 CD2 LEU R 147 C LEU R 147	45.717 -7.748 -23.080 1.00 84.53 44.630 -9.929 -22.834 1.00 84.27 47.217 -11.057 -19.564 1.00 85.74	R C R C R C R O
55	MOTA MOTA MOTA	1571 1572	O LEU R 147 N PRO R 148 CD PRO R 148 CA PRO R 148	47.344 -12.163 -20.303 1.00 87.39 46.558 -12.564 -21.455 1.00 87.86 48 403 -13.171 -20.129 1.00 88.19	R N R C R C
60	MOTA MOTA MOTA MOTA	1574 1575	CB PRO R 148 CG PRO R 148 C PRO R 148	47.965 -14.454 -20.828 1.00 88.40 46.691 -14.155 -21.610 1.00 88.42 49.756 -12.659 -20.686 1.00 89.62	R C R C R C R O
	MOTA MOTA MOTA	1577 1578 1579	O PRO R 148 N GLY R 149 CA GLY R 149	49.806 -11.662 -21.387	R N R C R C
65	MOTA MOTA MOTA MOTA	1581 1582 1583	O GLY R 149 N ARG R 150 CA ARG R 150	54.234 -12.169 -21.354 1.00 94.74 53.062 -13.955 -22.026 1.00 93.01 54.181 -14.608 -22.661 1.00 92.26	R O R N R C R C
	MOTA		CB ARG R 150	54.955 -13.873 -23.754 1.00 91.41	-

	ATOM ATOM	1585 1586	C ARG R 15 O ARG R 15		-16.106 -16.717		1.00 91.84 1.00 92.36	R R	C 0
	ATOM	1587	N THR R 15			-21.738 -21.146	1.00 90.45 1.00 89.19	R R	N C
5	ATOM ATOM	1588 1589	CA THR R 15		-18.215	-19.955	1.00 88.80	R	G
Ū	ATOM	1590	C THR R 15	1 53.030	-17.751		1.00 87.94	R	C
	MOTA	1591 1592	O THR R 15 N ASN R 15	1 52.703	-17.915 -21.051	-19.507	1.00 88.05 1.00 85.88	R R	NO
	ATOM ATOM	1592	N ASN R 15 CA ASN R 15	7 45.112	-20.618	-14.145	1.00 84.20	R	Ĉ
10	ATOM	1594	CB ASN R 15	7 44.314	-21.852	-13.723	1.00 84.00	R	C
	ATOM	1595	C ASN R 15 O ASN R 15		-19.634 -19.808		1.00 82.50 1.00 82.32	R R	C
	MOTA MOTA	1596 1597	O ASN R 15 N TYR R 15		-18.554		1.00 79.53	R	N
	MOTA	1598	CA TYR R 15		-17.413		1.00 77.43	R	C
15	MOTA	1599	CB TYR R 15			-12.968 -14.214	1.00 76.44 1.00 75.20	R R	C
	ATOM ATOM	1600 1601	CG TYR R 15 CD1 TYR R 15			-15.442	1.00 74.38	R	С
	ATOM	1602	CE1 TYR R 1	8 45.492		-16.622	1.00 74.67	R	C
20	ATOM	1603 1604	CD2 TYR R 15 CE2 TYR R 15			-14.174 -15.356	1.00 75.41 1.00 75.52	R R	C
20	ATOM ATOM	1604	CZ TYR R 1		-16.109	-16.571	1.00 75.14	R	č
	MOTA	1606	OH TYR R 1	8 47.584		-17.752	1.00 76.43	R	0
	ATOM	1607 1608	C TYR R 15		-17.356 -17.732	-10.910 -10.921	1.00 75.97 1.00 75.96	R R	C
25	ATOM ATOM	1609	N THR R 1	9 44.406	-16.859	-9.850	1.00 74.64	R	N
	ATOM	1610	CA THR R 1		-16.313	-8.746	1.00 73.18	R	C
	MOTA MOTA	1611 1612	CB THR R 1! OG1 THR R 1!			-7.471 -7.690	1.00 73.25 1.00 73.03	R R	C O
	MOTA	1613	CG2 THR R 1			-6.329	1.00 72.72	R	C
30	MOTA	1614	C THR R 1	•		-8.503	1.00 71.48	R R	C
	MOTA MOTA	1615 1616	O THR R 1	_	-14.475 -14.036	-8.413 -8.456	1.00 71.07 1.00 69.18	R R	N
	ATOM	1617	CA LEU R 1		-12.640	-8.082	1.00 67.26	R	C
	ATOM	1618	CB LEU R 1			-8.887 -8.500	1.00 66.01 1.00 63.77	R R	C
35	MOTA MOTA	1619 1620	CG LEU R 1			-9.625	1.00 63.77	R	C
	MOTA	1621	CD2 LEU R 1	50 41.328	-9.945	-7.286	1.00 61.91	R	C
	ATOM	1622	C LEUR 1			-6.590 -6.047	1.00 66.34 1.00 65.01	R R	C
40	ATOM ATOM	1623 1624	O LEUR 1 N TYR R 1			-5.927	1.00 66.57	R	N
	MOTA	1625	CA TYR R 1	43.678		-4.522	1.00 66.28	R	C
	MOTA	1626 1627	CB TYR R 1 CG TYR R 1		-11.973 -13.444	-3.713 -3.882	1.00 66.76 1.00 68.38	R R	C
	ATOM ATOM	1628	CD1 TYR R 1		-13.864	-4.886	1.00 68.35	R	С
45	ATOM	1629	CE1 TYR R 1		-15.212	-5.022	1.00 69.74	R	C
	MOTA MOTA	1630 1631	CD2 TYR R 1 CE2 TYR R 1		-14.394 -15.739	-2.979 -3.120	1.00 69.17 1.00 69.18	R R	C
	ATOM	1632	CZ TYR R 1			-4.154	1.00 69.89	R	C
	ATOM	1633	OH TYR R 1	51 46.083		-4.369	1.00 70.29	R	0
50	ATOM ATOM	1634 1635	C TYR R 1 O TYR R 1			-4.413 -5.258	1.00 65.45 1.00 64.16	R R	С 0
	ATOM	1636	N TYR R 1	52 42.954	-9.480	-3.355	1.00 64.72	R	N
	ATOM	1637	CA TYR R 1			-3.159 -3.938	1.00 66.48 1.00 65.27	R R	C
55	MOTA MOTA	1638 1639	CB TYR R 1 CG TYR R 1				1.00 63.27	R	C
00	ATOM	1640	CD1 TYR R 1	52 39.795	-7.315	-2.288	1.00 61.94	R	C
	ATOM	1641	CE1 TYR R 1 CD2 TYR R 1				1.00 61.74 1.00 62.34	R R	C
	MOTA MOTA	1642 1643	CE2 TYR R 1				1.00 60.23	R	С
60	MOTA	1644	CZ TYR R 1	62 37.979	-8.896	-2.274	1.00 60.10	R	C
	ATOM	1645	OH TYR R 1				1.00 58.65 1.00 68.03	R R	C 0
	ATOM ATOM	1646 1647	C TYR R 1 O TYR R 1		-8.431	-0.884	1.00 67.34	R	0
	ATOM	1648	N TRP R 1	63 43.337	7 -6.564	-1.311	1.00 69.63	R	N
65	ATOM ATOM	1649 1650	CA TRP R 1 CB TRP R 1				1.00 71.19 1.00 71.77	R R	C
	ATOM	1651	CG TRP R 1	63 44.603		2.122	1.00 71.55	R	C
	ATOM	1652	CD2 TRP R 1	63 45.077	7 -4.565	2.603	1.00 71.76	R	C
	MOTA	1653	CE2 TRP R 1	63 44.873	3 -4.558	4.011	1.00 71.73	R	С

								_	~
	ATOM	1654	CE3 IKL K T02	45.624	-3.452	1.985	1.00 72.15 1.00 71.65	R R	C C
	ATOM	1655	CD1 TRP R 163	44.145	-6.563	3.247 4.401	1.00 71.03	R	N
	MOTA		NE1 TRP R 163	44.281 45.232	-5.856 -3.438	4.748	1.00 72.72	R	C
	MOTA		CZ2 TRP R 163 CZ3 TRP R 163	45.982	-2.334	2.723	1.00 72.41	R	C
5	ATOM		CZ3 TRP R 163 CH2 TRP R 163	45.778	-2.329	4.115	1.00 72.89	R	C
	ATOM ATOM		C TRP R 163	42.820	-4.677	0.156	1.00 72.31	R	C
	ATOM		O TRP R 163	43.177	3.0-0	-0.642	1.00 72.04	R R	N O
	ATOM		N HIS R 164	41.961	-4.446	1.146	1.00 73.99 1.00 76.09	R	C
10	ATOM	1663	CA HIS R 164	41.637	-3.058 -2.794	1.506 1.057	1.00 70.05	R	č
	MOTA		CB HIS R 164	40.202 39.841	-2.794 -1.359	1.320	1.00 78.45	R	C
	MOTA		CG HIS R 164 CD2 HIS R 164	40.543	-0.215	0.941	1.00 78.66	R	С
	ATOM	1666	ND1 HIS R 164	38.685	-0.978	1.921	1.00 78.84	R	N
4.5	MOTA	1667 1668	CE1 HIS R 164	38.691	0.369	1.887	1.00 77.98	R	C
15	MOTA MOTA	1669	NE2 HIS R 164	39.792	0.853	1.305	1.00 78.68	R	N C
	MOTA	1670	C HIS R 164	41.748	-2.882	3.018	1.00 76.77 1.00 77.29	R R	Ö
	MOTA	1671	O HIS R 164	41.503	-3.805	3.773 3.483	1.00 77.29	R	N
	MOTA	1672	N ARG R 165	42.179	-1.699 -1.632	4.928	1.00 77.00	R	C
20	MOTA	1673	CA ARG R 165 CB ARG R 165	42.376 42.925	-0.263	5.317	1.00 77.22	R	С
	ATOM	1674		41.073	-1.920	5.680	1.00 80.09	R	C
	MOTA	1675 1676	C ARG R 165 O ARG R 165	41.038	-2.137	6.877	1.00 80.16	R	0
	MOTA MOTA	1677	N SER R 166	39.956	-1.909	4.929	1.00 81.21	R	N C
25	MOTA	1678	CA SER R 166	38.685	-2.195	5.589	1.00 82.09 1.00 82.11	R R	C
20	ATOM	1679	CB SER R 166	37.532	-1.790	4.665 5.425	1.00 82.11	R	ŏ
	MOTA	1680	OG SER R 166	36.554 38.567	-1.082 -3.676	5.946	1.00 83.27	R	C
	MOTA	1681	C SER R 166 O SER R 166	37.607	-4.135	6.554	1.00 83.85	R	0
	MOTA	1682	4 CD	39.580	-4.444	5.517	1.00 83.51	R	N
30	ATOM ATOM	1683 1684	N LEUR 167 CA LEUR 167	39.570	-5.871	5.804	1.00 83.71	R	C
	ATOM	1685	CB LEU R 167	39.571	-6.633	4.480	1.00 84.23	R R	C
	ATOM	1686	CG LEUR 167	38.694	-5.962	3.422	1.00 84.47 1.00 84.80	R	C
	MOTA	1687	CD1 LEU R 167	39.283	-6.081	2.015 3.353	1.00 85.44	R	Č
35	ATOM	1688	CD2 LEU R 167	37.288 40.770	-6.558 -6.292	6.650	1.00 84.08	R	С
	MOTA	1689	C LEUR 167 O LEUR 167	41.704	-5.535	6.885	1.00 84.12	R	. 0
	MOTA	1690 1691	O LEUR 167 N GLUR 168	40.699	-7.540	7.146	1.00 84.44	R	N
	MOTA MOTA	1691	CA GLUR 168	41.780	-8.060	7.970	1.00 84.36	R	C
40	ATOM	1693	CB GLU R 168	41.167	-9.007	9.000	1.00 83.89	R R	C
40	ATOM	1694	C GLUR 168	42.805	-8.814	7.124	1.00 84.52 1.00 84.96	R	ŏ
	MOTA	1695	O GLU R 168	44.001		7.171 6.400	1.00 84.09	R	N
	MOTA	1696	N LYS R 169	42.272	-10.648	5.594	1.00 83.45	R	C
	MOTA	1697	CA LYS R 169 CB LYS R 169	42.898		6.008	1.00 83.34	R	C
45	MOTA	1698 1699	CB LYS R 169 C LYS R 169	42.830	-10.475	4.108	1.00 82.71	R	C
	MOTA MOTA	1700	O LYS R 169	41.740	-10.102	3.691	1.00 83.06	R	N
	MOTA	1701	N ILE R 170	43.881	-10.711	3.315	1.00 81.31 1.00 80.46	R R	C
	MOTA	1702	CA ILE R 170	43.701	-10.725	1.882 1.273	1.00 79.74	R	č
5 0	MOTA	1703	CB ILE R 170	44.982	-11.284 -11.438	-0.252	1.00 79.29	R	C
	ATOM	1704	CG2 ILE R 170 CG1 ILE R 170	46.135	-10.307	1.515	1.00 79.81	R	С
	MOTA	1705	CG1 ILE R 170 CD1 ILE R 170	47.446	-11.014	1.859		R	C
	ATOM ATOM	1706 1707	C ILE R 170	42.504	1 -11.587	1.506		R	C
55	MOTA	1708		42.231	L -12.629	2.089		R R	N O
30	ATOM	1709	N HIS R 171	41.736	-11.076	0.529		R	Ĉ
	MOTA	1710	CA HIS R 171	40.563	L -11.808	0.038 -0.014		R	č
	ATOM	1711		39.3/3	3 -10.829 4 -10.796	1.332		R	С
	MOTA		CG HIS R 171	30.004	7 - 11.354			R	С
60	MOTA			39.17	5 -10.114	2.395	1.00 81.10	R	N
	MOTA			38.26	0 -10.249	3.376		R	C
	MOTA MOTA			37.21	5 -10.986	2.991		R	N
	ATOM		C HIS R 171	40.79	3 -12.475	-1.345		R R	C
65	ATOM		8 O HIS R 171	41.75	2 - 12.194	-2.063		R	N
	ATOM	1719		39.89	1 -13.443 9 -14.228	-1.669 -2.91		R	Ċ
	ATOM			39.33 30.70	9 -14.226 9 -15.694	-2.481	L 1.00 85.66	R	C
	MOTA			41.09	5 - 16.484			R	С
	MOTA	1722	CG GLIN IC 1/2	203					
				/111					

	ATOM	1723	CD GLN R 1		8 -17.862	-1.831	1.00 87.26	R	C
	ATOM ATOM	1724 1725	OE1 GLN R 1' NE2 GLN R 1'			-2.282 -0.781	1.00 86.59 1.00 86.84	R R	N O
_	ATOM	1726	C GLN R 1			-3.826	1.00 85.75	R	C
5	ATOM ATOM	1727 1728	O GLN R 1' N CYS R 1'			-3.434 -5.085	1.00 86.57 1.00 87.06	R R	N O
	ATOM	1729	CA CYS R 1	3 37.94	17 -13.228	-6.011	1.00 88.58	R	C
	ATOM ATOM	1730 1731	C CYS R 1' O CYS R 1'			-6.734 -7.055	1.00 89.45 1.00 89.20	R R	C O
10	ATOM	1731	CB CYS R 1			-7.026	1.00 88.12	R	č
	MOTA	1733	SG CYS R 1			-8.320	1.00 88.29	R	S
	MOTA MOTA	1734 1735	N GLUR 1'CA GLUR 1'			-6.935 -7.092	1.00 91.09 1.00 93.06	R R	C N
	ATOM	1736	CB GLU R 1	4 35.51	L5 -16.4 76	-5.655	1.00 92.78	R	C
15	ATOM	1737	C GLUR 1		94 -16.121	-7.778	1.00 94.86	R	C
	ATOM ATOM	1738 1739	O GLUR 1' N ASNR 1'			-7.070 -9.167	1.00 95.21 1.00 96.51	R R	N O
	MOTA	1740	CA ASN R 1	5 34.64	19 -15.056	-10.196	1.00 98.10	R	С
20	MOTA MOTA	$1741 \\ 1742$	CB ASN R 1' CG ASN R 1'		02 -13.645 L9 -13.789	-10.052 -9.833	1.00 97.69 1.00 98.11	R R	C
20	ATOM	1743	OD1 ASN R 1		$\frac{13.763}{11}$		1.00 98.85	R	ŏ
	MOTA	1744	ND2 ASN R 1		23 -13.187	-8.731	1.00 97.61	R	N
	MOTA MOTA	1745 1746	C ASN R 1'O ASN R 1'		94 -15.623 93 -16.274		1.00 98.91 1.00 99.60	R R	C
25	MOTA	1747	N ILE R 1	6 35.93	35 -15.304	-12.313	1.00 99.69	R	N
	ATOM	1748 1749	CA ILE R 1'CB ILE R 1'				1.00100.40 1.00101.08	R R	C
	ATOM ATOM	1750	CG2 ILE R 1				1.00101.79	R	С
	MOTA	1751	CG1 ILE R 1				1.00100.88	R	C
30	ATOM ATOM	1752 1753	CD1 ILE R 1				1.00101.03	R R	C C
	ATOM	1754	O ILE R 1	6 38.47	71 -15.481	-14.194	1.00100.09	R	0
	ATOM	1755	N PHE R 1				1.00100.98	R R	N
35	ATOM ATOM	1756 1757	CA PHE R 1 CB PHE R 1				1.00101.31	R R	C
•	MOTA	1758	CG PHE R 1	7 34.89	96 -12.665	-16.040	1.00103.06	R	С
	ATOM ATOM	1759 1760	CD1 PHE R 1 CD2 PHE R 1				1.00103.48 1.00103.36	R R	C
	ATOM	1761	CE1 PHE R 1				1.00103.30	R	С
40	ATOM	1762	CE2 PHE R 1				1.00103.34	R	C
	ATOM ATOM	1763 1764	CZ PHE R 1 C PHE R 1				1.00103.07 1.00101.05	R R	C
	ATOM	1765	O PHE R 1	77 34.6	70 -14.993	-18.554	1.00100.84	R	0
45	MOTA	1766 1767	N ARG R 1 CA ARG R 1				1.00101.03 1.00101.14	R R	N C
45	ATOM ATOM	1768	CB ARG R 1				1.00101.04	R	С
	ATOM	1769	CG ARG R 1		51 -15.629		1.00101.47	R	C
	ATOM ATOM	1770 1771	CD ARG R 1 NE ARG R 1		45 -16.797 83 -17.951		1.00102.67 1.00104.10	R R	C N
50	MOTA	1772	CZ ARG R 1	78 38.99	91 -18.243	-23.433	1.00104.33	R	C
	MOTA	1773 1774	NH1 ARG R 1 NH2 ARG R 1		21 -18.048 99 -18.428		1.00104.55 1.00104.03	R R	N N
	ATOM ATOM	1775	C ARG R 1		51 -13.580		1.00101.18	R	Č
	MOTA	1776	O ARG R 1		70 -13.903		1.00101.57	R	0
55	ATOM ATOM	1777 1778	N GLUR1 CA GLUR1	79 36.6. 79 35.7'	38 -12.501 73 -11.734	-21.117	1.00100.71 1.00100.14	R R	N C
	ATOM	1779	CB GLU R 1	79 35.4	05 -10.413	-21.330	1.00100.45	R	C
	ATOM	1780	CG GLU R 1		99 -10.453		1.00100.59	R R	C
60	ATOM ATOM	1781 1782	CD GLU R 1 OE1 GLU R 1			-20.073 -19.891	1.00100.07	R R	0
00	ATOM	1783	OE2 GLU R 1	79 32.5	12 -8.909	-19.746	1.00 99.84	R	0
	ATOM	1784	C GLUR1		55 -11.453 33 -10.331	-23.353	1.00 99.72 1.00 99.74	R R	C C
	ATOM ATOM	1785 1786	O GLUR1 N GLYR1		92 -12.538		1.00 98.92	R	N
65	ATOM	1787	CA GLY R 1	37.4	21 -12.461	-25.343	1.00 97.33	R	C
	ATOM ATOM	1788 1789	C GLY R 1 O GLY R 1		12 -13.017 87 -14.171		1.00 96.44 1.00 96.81	R R	C
	ATOM	1790	N GLN R 1	39.8	18 -12.151	-25.221	1.00 95.64	R	N
	ATOM	1791	CA GLN R 1	31 41.1	90 -12.569	-24.929	1.00 94.60	R	С

	 ATOM ATOM ATOM	1792 1793 1794	CB GLN R 181 CG GLN R 181 CD GLN R 181	42.135 -11.897 -25.932 1.00 93.48 43.453 -12.656 -26.116 1.00 91.79 44.435 -11.767 -26.849 1.00 91.05	R C R C	3
5	ATOM ATOM ATOM ATOM	1795 1796 1797 1798	OE1 GLN R 181 NE2 GLN R 181 C GLN R 181 O GLN R 181	45.600 -12.075 -27.043 1.00 90.47 43.907 -10.593 -27.251 1.00 91.76 41.594 -12.197 -23.501 1.00 94.47 42.564 -12.693 -22.947 1.00 94.04 40.835 -11.252 -22.922 1.00 93.91		N.
10	ATOM ATOM ATOM ATOM ATOM	1799 1800 1801 1802 1803	N TYR R 182 CA TYR R 182 CB TYR R 182 CG TYR R 182 CD1 TYR R 182	41.114 -10.850 -21.550 1.00 92.81 40.414 -9.515 -21.292 1.00 93.02 40.892 -8.460 -22.224 1.00 92.82 39.960 -7.756 -22.982 1.00 92.48	R C R C R C	0 0 0
15	ATOM ATOM ATOM	1804 1805 1806	CE1 TYR R 182 CD2 TYR R 182 CE2 TYR R 182	40.309 -6.563 -23.595 1.00 92.44 42.199 -7.976 -22.127 1.00 93.13 42.553 -6.787 -22.749 1.00 92.71	R (с С
13	ATOM ATOM ATOM	1807 1808 1809	CZ TYR R 182 OH TYR R 182 C TYR R 182	41.613 -6.079 -23.476 1.00 92.01 41.935 -4.857 -24.029 1.00 91.15 40.586 -11.879 -20.547 1.00 92.26	R (С О С
20	ATOM ATOM ATOM ATOM	1810 1811 1812 1813	O TYR R 182 N PHE R 183 CA PHE R 183 CB PHE R 183	39.683 -12.660 -20.826 1.00 92.36 41.217 -11.890 -19.356 1.00 91.37 40.649 -12.619 -18.222 1.00 90.25 41.700 -13.609 -17.704 1.00 90.91	R I R C	O N C C
25	ATOM ATOM ATOM	1814 1815 1816	CG PHE R 183 CD1 PHE R 183 CD2 PHE R 183	41.817 -14.796 -18.620 1.00 91.41 42.561 -14.689 -19.789 1.00 91.78 41.313 -16.027 -18.226 1.00 91.12	R (с с с
	MOTA MOTA MOTA	1817 1818 1819	CE1 PHE R 183 CE2 PHE R 183 CZ PHE R 183	42.812 -15.822 -20.556	R R	000
30	ATOM ATOM ATOM ATOM	1820 1821 1822 1823	C PHE R 183 O PHE R 183 N GLY R 184 CA GLY R 184	40.918 -10.596 -16.931 1.00 88.98 39.199 -11.934 -16.373 1.00 87.72 38.721 -10.948 -15.388 1.00 86.34	R R R	C N O
35	MOTA MOTA MOTA	1824 1825 1826	C GLY R 184 O GLY R 184 N CYS R 185	38.097 -11.592 -14.131 1.00 85.86 38.003 -12.806 -14.001 1.00 86.34 37.690 -10.718 -13.175 1.00 85.14 37.169 -11.211 -11.888 1.00 83.61	R R	0 N C
	ATOM ATOM ATOM	1827 1828 1829	CA CYS R 185 C CYS R 185 O CYS R 185 CB CYS R 185	37.169 -11.211 -11.888 1.00 83.61 36.513 -10.091 -11.058 1.00 81.56 37.072 -9.024 -10.855 1.00 81.30 38.351 -11.784 -11.104 1.00 85.14	R R	000
40	ATOM ATOM ATOM ATOM	1830 1831 1832 1833	CB CYS R 185 SG CYS R 185 N SER R 186 CA SER R 186	37.842 -12.999 -9.871 1.00 89.00 35.267 -10.349 -10.589 1.00 78.90 34.553 -9.318 -9.830 1.00 76.87	R R R	S N C
45	ATOM ATOM ATOM	1834 1835 1836	CB SER R 186 OG SER R 186 C SER R 186	33.162 -9.134 -10.442 1.00 75.93 33.288 -8.740 -11.808 1.00 75.39 34.414 -9.655 -8.338 1.00 76.01 34.220 -10.797 -7.939 1.00 77.16	R R	0000
	ATOM ATOM ATOM	1837 1838 1839 1840	O SER R 186 N PHE R 187 CA PHE R 187 CB PHE R 187	34.220 -10.797 -7.939 1.00 77.16 $34.558 -8.610 -7.499 1.00 74.92$ $34.277 -8.787 -6.077 1.00 74.79$ $35.596 -9.010 -5.328 1.00 73.25$	R R	C C
50	ATOM ATOM ATOM ATOM	1841 1842 1843	CG PHE R 187 CD1 PHE R 187 CD2 PHE R 187	36.588 -7.932 -5.661 1.00 72.03 37.503 -8.143 -6.686 1.00 70.77 36.720 -6.833 -4.825 1.00 71.76	R R	000
55	MOTA MOTA MOTA MOTA	1844 1845 1846 1847	CE1 PHE R 187 CE2 PHE R 187 CZ PHE R 187 C PHE R 187	38.562 -7.262 -6.861 1.00 70.31 37.785 -5.952 -5.009 1.00 70.79 38.709 -6.164 -6.023 1.00 70.25 33.533 -7.590 -5.486 1.00 75.47	R R R R	ממממ
	ATOM ATOM ATOM	1848 1849 1850	O PHE R 187 N ASP R 188 CA ASP R 188	33.632 -6.461 -5.948 1.00 75.75 32.732 -7.881 -4.446 1.00 76.38 31.943 -6.820 -3.832 1.00 77.29	R R R	ОИС
60	MOTA MOTA MOTA	1851 1852 1853 1854	CB ASP R 188 CG ASP R 188 OD1 ASP R 188 OD2 ASP R 188	30.992 -7.454 -2.819 1.00 77.97 29.933 -8.252 -3.559 1.00 79.71 29.265 -9.057 -2.910 1.00 79.83 29.792 -8.069 -4.765 1.00 80.40	R R R R	0 0 0
65	ATOM ATOM ATOM	1855 1856 1857	C ASP R 188 O ASP R 188 N LEU R 189	32.812 -5.775 -3.137 1.00 78.25 33.707 -6.088 -2.352 1.00 77.98 32.531 -4.502 -3.479 1.00 79.81 33.321 -3.580 -2.691 1.00 81.28	R R R R	О И С
	ATOM ATOM ATOM	1858 1859 1860	CB LEU R 189	34.356 -2.914 -3.632 1.00 79.95 35.761 -2.840 -3.015 1.00 78.56	R R	C

	I	75 648 _1 751 _3.654 1.00 77.86	R C
	ATOM 1861 CD1 LEU R 189	36.646 -1.731 -1.516 1.00 78.01	R C
	ATOM 1862 CD2 LEU R 189	33.742 2.541 -2.088 1.00 83.89	R C
	711011 D 100	32.422 -1.413 -2.462 1.00 85.14	R O R N
5	ATOM 1865 N THR R 190	31.455 -5.001 - 756 1 00 80 32	R C
3	ATOM 1866 CA THR R 190	30.489 -2.231 0.767 1.00 90.54	R C
	ATOM 1867 CB THR R 190 ATOM 1868 OG1 THR R 190	28.694 -3.084 -2.088 1.00 92.85	R O R C
	ATOM 1868 OG1 THR R 190 ATOM 1869 CG2 THR R 190	28.164 -1.538 -0.343 1.00 90.98	R C
10	ATOM 1870 C THR R 190	30.043 4.00 1 00 00 03	r O
10	ATOM 1871 O THR R 190	30.407 -0.782 0.535 1.00 91.79	R N
	ATOM CAR TAKE B 101	30.894 0.095 1.314 1.00 92.71	R C R C
	ATOM 1874 CB LYS R 191	32.426 -0.031 1.665 1.00 92.75 33.388 -0.275 0.516 1.00 93.39	R C
15	ATOM 1875 CG LYS R 191	33.300 0.27 1 00 04 00	R C
.0	ATOM 1876 CD LYS R 191	24.659 -0.069 2.504 1.00 94.65	R C
	H1011 101	36.364 0.035 2.909 1.00 95.24	R N R C
	ATOM 1879 C LYS R 191	30.462 1.359 0.829 1.00 93.00	R O
20	ATOM 1880 O LYS R 191	30.002 1.001 1.873 1.00 93.44	R N
	ATOM 1881 N VAL R 192 ATOM 1882 CA VAL R 192	21 280 2 942 2 087 1.00 93.53	R C
	111011 1000 CD 173T D 102	31.435 3.571 0.713 1.00 93.72	R· C R C
	ATOM 1884 CG1 VAL R 192	30.322 4.534 0.286 1.00 92.98 32.731 4.246 0.833 1.00 93.28	R C
25	ATOM 1885 CG2 VAL R 192	30.690 3.764 3.176 1.00 93.63	R C
	ATOM 1886 C VAL R 192 ATOM 1887 O VAL R 192	29.651 3.300 3.700 1.00 93.63	R O R N
	ATOM 1887 O VAL R 192 ATOM 1888 N SER R 195	34.830 5.067 5.044 1.00 93.32	R N R C
	ATTOM 1889 CA SER R 195	33.300 3.62 7 141 1 00 92 62	R C
30	ATOM 1890 CB SER R 195	37 171 6 115 5.185 1.00 92.89	R C
	ATOM 1891 C SER R 195 ATOM 1892 O SER R 195	37.818 7.054 5.590 1.00 92.98	R O R N
	ATOM 1893 N SER R 196	37.582 5.349 4.160 1.00 92.61	R C
	ATOM 1894 CA SER R 196	38.282 5.902 3.006 1.00 92.21 39.563 6.681 3.449 1.00 92.18	R C
35	ATOM 1895 CB SER R 196	38.603 4.704 2.105 1.00 92.05	R C
	ATOM 1896 C SER R 196 ATOM 1897 O SER R 196	38.832 3.608 2.597 1.00 91.91	R O R N
	ATOM 1898 N PHE R 197	38.653 4.865 0.787 1.00 91.69 38.379 6.028 0.271 1.00 89.94	R C
	ATOM 1899 CA PHE R 197	39.573 6.751 -0.864 1.00 89.28	R C
40	ATOM 1900 CB PHE R 197	40.855 5.709 0.058 1.00 89.62	R C
	A1011 2302	41.507 6.163 -0.868 1.00 89.86	R O R N
	ATOM 1903 N PHE R 198	41.500 2.500 2.501 1.00 87 68	R C
	ATOM 1904 CA PHE R 198	42.333 3.415 2.196 1.00 88.99	R C
45	ATOM 1905 CB PHE R 198	42.938 4.418 3.273 1.00 90.06	R C R C
	ATOM 1906 CG PHE R 198 ATOM 1907 CD1 PHE R 198	42.004 4.407 4.300 1.00 90.80	R C
	ATTOM 1908 CD2 PHE R 198	44.000 0000 - 000 1 00 01 06	R C
	ATOM 1909 CE1 PHE R 198	44 105 6 111 4.405 1.00 90.95	R C
50	ATOM 1910 CE2 PHE R 198 ATOM 1911 CZ PHE R 198	43.260 6.120 5.439 1.00 91.49	R C R C
	7TOM 1912 C PHE R 198	42.231 2.909 -0.085 1.00 86.57 41.270 2.156 0.109 1.00 86.67	R O
	ATOM 1913 O PHE R 198	41.270 2.156 0.109 1.00 86.67 43.093 2.726 -1.119 1.00 84.73	R N
	ATOM 1914 N GLU R 199	42 683 1.886 -2.249 1.00 82.61	R C R C
55	ALULA CT T D 100	43.575 2.234 -3.415 1.00 83.35	R C R C
	ATOM 1917 CG GLU R 199	40.040	R C
	ATOM 1918 CD GLU R 199	46 028 3 143 -2.922 1.00 91.39	R O
	ATOM 1919 OE1 GLU R 199 ATOM 1920 OE2 GLU R 199	45.020 4.943 -4.082 1.00 88.27	R O
60	A1011 - 0111 D 100	42.773 0.369 -1.990 1.00 79.66	R C R O
	ATOM 1922 O GLU R 199	43.549 -0.104 -1.171 1.00 80.10	R N
	ATOM 1923 N GLN R 200	42 204 -1 807 -2 879 1.00 75.22	R C
	ATOM 1924 CA GLN R 200	41.174 -2.437 -3.820 1.00 74.17	R C
65	222 D 200	43.612 -1.900 -3.458 1.00 73.89	R C R O
	ATTOM 1927 O GLN R 200	43.967 -1.288 -4.445 1.00 73.99 44.285 -2.810 -2.734 1.00 72.01	R N
	ATOM 1928 N HIS R 201	44.285 -2.810 -2.734 1.00 72.01 45.391 -3.514 -3.381 1.00 69.70	R C
	ATOM 1929 CA HIS R 201	43.334 0.0	
		206	

				46 851 -3.159 -3.012 1.00 72.07	R (С
	MOTA	1930 CE		46.851 -3.159 -3.012 1.00 72.07 47.274 -3.528 -1.597 1.00 74.38		C
	MOTA	1931 CG		46.774 -2.989 -0.388 1.00 75.58		C
	ATOM		02 HIS R 201 01 HIS R 201	48 592 -3.870 -1.379 1.00 75.68		N
_	MOTA MOTA		E1 HIS R 201	48 907 -3.380 -0.174 1.00 75.89		C
5	MOTA	1935 NE	E2 HIS R 201	47.848 -2.827 0.437 1.00 76.65		N
	MOTA	1936 C	HIS R 201	45.003 -4.779 -4.170 1.00 67.12 44.002 -5.417 -3.872 1.00 65.87		С О
	MOTA	1937 O	HIS R 201	==.002 1 00 CE 76		N
	MOTA	1938 N	SER R 202	45.751 -5.050 -5.270 1.00 65.76 45.327 -6.188 -6.091 1.00 65.49		C
10	ATOM	1939 CZ		44.495 -5.649 -7.263 1.00 65.59		С
	ATOM	1940 CF		43.098 -5.779 -6.969 1.00 66.07		0
	MOTA	1941 OC 1942 C		46 535 -6.973 -6.619 1.00 65.89		C
	ATOM ATOM	1942 C		47.599 -6.431 -6.871 1.00 64.15		0
15	MOTA	1944 N		46.327 -8.302 -6.744 1.00 66.75		N C
10	ATOM	1945 C	A GLN R 203	47.399 -9.168 -7.251 1.00 67.38 48.204 -9.679 -6.053 1.00 66.69	R	C
	MOTA	1946 C		10.20		Č
	MOTA	1947 C		46.855 -10.371 -8.053 1.00 68.36 45.854 -10.977 -7.702 1.00 66.91	R	Ō
	MOTA	1948 O		47.509 -10.732 -9.173 1.00 70.11	R	N
20	MOTA	1949 N 1950 C		47.017 -11.891 -9.892 1.00 72.85	R	C
	MOTA MOTA	1951 C		46.510 -11.420 -11.254 1.00 71.76	R	C
	MOTA	1952 C		48.130 -12.914 -10.099 1.00 74.05	R R	C O
	ATOM	1953 O	ILE R 204	49.095 -12.693 -10.811 1.00 73.69 47.999 -14.052 -9.402 1.00 75.96	R	N
25	ATOM	1954 N		47.333	R	C
	MOTA		A MET R 205	48.967 -15.105 -9.673 1.00 78.62 49.965 -15.225 -8.509 1.00 79.44	R	C
	MOTA		B MET R 205 G MET R 205	49 402 -15.843 -7.222 1.00 81.81	R	C
	MOTA MOTA		G MET R 205 D MET R 205	50.703 -16.108 -6.007 1.00 82.92	R	S
30	MOTA		E MET R 205	49.674 -16.308 -4.546 1.00 82.58	R	C
50	ATOM	1960 C	MET R 205	48.319 -16.438 -10.013 1.00 79.83 47 111 -16.605 -10.058 1.00 79.06	R R	0
	ATOM	1961 C		47.111	R	N
	MOTA	1962 N	VAL R 206	49.208 -17.383 -10.328 1.00 81.92 48.799 -18.755 -10.495 1.00 84.18	R	C
	MOTA		CA VAL R 206 CB VAL R 206	49.721 -19.384 -11.537 1.00 84.11	R	C
35	MOTA	1964 C	CB VAL R 206 CG1 VAL R 206	49.508 -18.739 -12.903 1.00 84.53	R	C
	MOTA MOTA	1966	CG2 VAL R 206	51.157 -19.192 -11.105 1.00 84.63	R	C
	ATOM		C VAL R 206	48.967 -19.544 -9.205 1.00 85.81	R R	C
	ATOM		O VAL R 206	49.967 -19.462 -8.501 1.00 85.71 47.908 -20.307 -8.873 1.00 87.72	R	N
40	MOTA		N LYS R 207	=7.500 = 5.00 00 00	R	C
	MOTA		CA LYS R 207 CB LYS R 207	48.237 -21.691 -8.645 1.00 89.82 46.928 -22.445 -8.381 1.00 88.83	R	C
	MOTA		CB LYS R 207 CG LYS R 207	45.916 -21.599 -7.591 1.00 87.18	R	C
	MOTA MOTA		CD LYS R 207	44 806 -21.024 -8.473 1.00 84.32	R.	C
45	ATOM		CE LYS R 207	43.626 -21.989 -8.659 1.00 83.21	R R	C N
0	ATOM		NZ LYS R 207	42.370 -21.243 -8.795 1.00 81.54 48.838 -22.108 -9.996 1.00 91.87	R	C
	MOTA		C LYS R 207	48.838 -22.108 -9.996 1.00 91.87 48.713 -21.364 -10.971 1.00 92.75	R	Ō
	MOTA		O LYS R 207 N ASP R 208	49.540 -23.245 -10.062 1.00 93.36	R	N
EO	MOTA MOTA		N ASP R 208 CA ASP R 208	49 966 -24.006 -8.913 1.00 94.52	R	C
50	ATOM		CB ASP R 208	49.743 -25.487 -9.287 1.00 95.14	R	C
	ATOM	1981	CG ASP R 208	50.314 -26.476 -8.267 1.00 94.52 50.551 -26.079 -7.124 1.00 95.08	R R	Ö
	MOTA	1982	OD1 ASP R 208	30.332	R	ŏ
	MOTA		OD2 ASP R 208	50.425 -27.653 -8.606 1.00 94.46 51.439 -23.684 -8.693 1.00 95.30	R	Č
55	MOTA	_	C ASP R 208 O ASP R 208	52.313 -24.168 -9.392 1.00 95.25	R	0
	MOTA		000	51.688 -22.736 -7.775 1.00 95.46	R	N
	MOTA MOTA		N ASN R 209 CA ASN R 209	53.074 -22.593 -7.285 1.00 95.80	R	C
	MOTA	1988	CB ASN R 209	53.647 -23.981 -6.970 1.00 95.91	R	C
60	MOTA	1989	C ASN R 209	53.914 -21.882 -8.310 1.00 95.80	R R	0
	MOTA	1990	O ASN R 209	55.114 -21.672 -8.150 1.00 96.45 53.272 -21.535 -9.471 1.00 94.72	R	И
	MOTA		N ALA R 210	53.272 -21.535 -9.471 1.00 94.72 53.984 -20.679 -10.372 1.00 94.16	R	Ĉ
	MOTA		CA ALA R 210	55.324 -20.490 -9.802 1.00 93.34	R	С
0.5	MOTA		CB ALA R 210 C ALA R 210	54.173 -21.188 -11.727 1.00 94.18	R	C
65	MOTA		O ALA R 210	54.019 -22.340 -12.136 1.00 94.20	R	0
	ATOM ATOM		N GLY R 211	54.350 -20.070 -12.407 1.00 94.38	R R	С И
	MOTA		CA GLY R 211	55.687 -19.730 -12.616 1.00 94.63 55.979 -18.821 -13.853 1.00 95.21	R R	C
	MOTA		C GLY R 211			
				207		

	ATOM	1999	0	GLY R	211	57.147	-18.479	-14.185	1.00 96.27		R	0
		2000		LYS R			-18.419					
	ATOM		N						1.00 94.97		R	N
	MOTA	2001	CA	LYS R		53.509	-18.475	-14.380	1.00 94.25		R	C
	ATOM	2002	CB	LYS R	212	52.637	-18.475	-15.650	1.00 94.92	*	R	C
5	ATOM	2003	C	LYS R		53.083		-13.420	1.00 93.59		R	Č
9												
	MOTA	2004	0	LYS R					1.00 93.83		R	0
	ATOM	2005	N	ILE R	213	53.894	-17.246	-12.371	1.00 92.42		R	N
	ATOM	2006	CA	ILE R	213	54.088	-15.920	-11.881	1.00 91.16		R	C
	MOTA	2007	CB	ILE R			-16.057		1.00 91.36		R	C
10	ATOM	2008	C	ILE R	213	55.216	-15.382	-12.781	1.00 90.27		R	C
	MOTA	2009	0	ILÉ R	213	55 931	-16.146	-13 391	1.00 91.19		R	0
	ATOM	2010	N	LYS R		55.449		-12.885	1.00 88.61		R	N
	ATOM	2011	ca	LYS R	214	55.517	-13.243	-11.735	1.00 86.29		R	C
	ATOM	2012	CB	LYS R	214	56.288	-12.003	-12.189	1.00 86.22		R	C
4.5												ă
15	MOTA	2013	С	LYS R		54.163		-11.268	1.00 84.26		R	С
	ATOM	2014	0	LYS R	214	53.269	-12.542	-12.049	1.00 84.28		R	0
	ATOM	2015	N	PRO R	215	53.988	-12.879	9.968	1.00 81.59		R	N
				PRO R				-8.962				
	ATOM	2016	CD			54.698			1.00 80.19		R	C
	MOTA	2017	ca	PRO R	215	52.980		-9.392	1.00 79.54		R	С
20	ATOM	2018	CB	PRO R	215	53.302	-11.929	-7.903	1.00 80.09		R	C
	ATOM	2019	CG	PRO R		54.360		-7.554	1.00 80.43		R	Ċ
												_
	MOTA	2020	C	PRO R		53.026			1.00 77.50		R	С
	ATOM	2021	0	PRO R	215	54.099	-10.107	-10.259	1.00 77.69		R	0
	ATOM	2022	N	SER R		51.828		-10.616	1.00 75.99		R	N
0.5												
25	ATOM	2023	ca	SER R		51.660		-11.042	1.00 74.40		R	С
	ATOM	2024	CB	SER R	216	51.054	-8.795	-12.451	1.00 74.52		R	C
	ATOM	2025	OG	SER R	216	51.361		-13.070	1.00 75.58		R	0
	MOTA	2026	С	SER R		50.712	-8.058	-10.081	1.00 73.20		R	С
	ATOM	2027	0	SER R	216	49.594	-8.459	-9.784	1.00 72.12		R	0
30	MOTA	2028	N	PHE R	217	51.253	-6.957	-9.506	1.00 72.00		R	N
••	ATOM	2029		PHE R		50.463	-6.155	-8.580	1.00 71.16		R	
			CA									C
	ATOM	2030	CB	PHE R	217	51.351	-5.718	-7.410	1.00 71.05		R	C
	MOTA	2031	CG	PHE R	217	52.005	-6.881	-6.740	1.00 71.64		R	С
	ATOM	2032		PHE R		53.247	-7.331	-7.192	1.00 72.43		R	Č
												~
35	MOTA	2033	CD2	PHE R	217	51.379	-7.498	-5.662	1.00 71.96		R	,C
	MOTA	2034	CE1	PHE R	217	53.872	-8.369	-6.543	1.00 71.92		R	С
	ATOM	2035	CE2			52.024		-5.008	1.00 72.65		R	Ċ
												~
	ATOM	2036	CZ	PHE R	217	53.284		-5.431	1.00 72.45		R	С
	MOTA	2037	С	PHE R	217	49.876	-4.897	-9.226	1.00 69.71		R	C
40	ATOM	2038	ō	PHE R		50.434		-10.167	1.00 69.81		R	ŏ
40												
	MOTA	2039	N	ASN R		48.709		-8.796	1.00 69.22		R	N
	ATOM	2040	$^{\rm CA}$	ASN R	218	48.378	-3.039	-9.002	1.00 67.82		R	С
	MOTA	2041	CB	ASN R	218	47.499		-10.262	1.00 68.56		R	С
	MOTA	2042	CG	ASN R		47.411		-11.083	1.00 69.14		R	C
45	MOTA	2043	OD1	ASN R	218	46.282	-1.290	-11.316	1.00 68.24		R	0
	MOTA	2044	ND2	ASN R	218	48.550	-1.234	-11.638	1.00 69.11		R	N
		2045	C			47.685			1.00 67.04		R	ĉ
	MOTA			ASN R				-7.829				
	MOTA	2046	0	ASN R		46.882		-7.054	1.00 67.27		R	0
	MOTA	2047	N	ILE R	219	47.882	-1.008	-7.739	1.00 65.28		R	N
50	ATOM	2048	CA	ILE R		47.072		-6.782	1.00 62.22		R	C
50												\tilde{a}
	MOTA	2049	CB	ILE R		47.889		-6.154	1.00 61.26		R	С
	MOTA	2050	CG2	ILE R	219	47.089	1.423	-5.015	1.00 60.00		R	С
	ATOM	2051	CG1			49.245		-5.849	1.00 60.74		R	C
												ă
	MOTA	2052	CD1			49.142		-4.532	1.00 61.59		R	C
55	MOTA	2053	С	ILE R	219	45.912	0.453	-7.427	1.00 60.80		R	C
	MOTA	2054	0	ILE R	219	46.063	1.318	-8.100	1.00 60.85		R	0
		2055		VAL R		44.725		-6.972	1.00 59.05			
	ATOM		N								R	N
	MOTA	2056	ca	VAL R		43.615		-7.625	1.00 58.49		R	С
	MOTA	2057	CB	VAL R	220	42.595	-0.222	-7.732	1.00 58.24		R	С
60	ATOM	2058		VAL R		41.264		-7.943	1.00 57.03		R	Č
00												~
	MOTA	2059		VAL R		42.879		-8.784	1.00 58.45		R	С
	MOTA	2060	C	VAL R	220	43.046	1.823	-6.630	1.00 59.18		R	С
	ATOM	2061	Ō	VAL R		42.640		-5.576	1.00 58.01		R	Ō
	MOTA	2062	N	PRO R		43.019		-6.931	1.00 59.22		R	N
65	MOTA	2063	$^{\rm CD}$	PRO R	221	43.756	3.682	-8.065	1.00 59.51		R	С
	MOTA	2064	CA	PRO R		42.377		-6.016	1.00 59.09		R	С
	MOTA	2065	CB	PRO R		43.035		-6.332	1.00 59.17		R	Ċ
												۲
	MOTA	2066	CG	PRO R		43.602		-7.714	1.00 60.65		R	С
	ATOM	2067	С	PRO R	221	40.916	4.053	-6.228	1.00 58.55		R	С

	ATOM	2068	0	PRO R 2	221	40.365	3.642	-7.271	1.00 5	57.97	R	0
	ATOM	2069	N	LEU R 2		40.307	4.324	-5.110		8.65	R	N
	MOTA	2070	CA	LEU R 2		38.862	4.396	-4.976		59.43	R	С
_	MOTA	2071	CB	LEU R 2		38.401	3.880	-3.581		59.09	R	C
5	ATOM	2072 2073	CG	LEU R 2		38.866 38.159	2.400	-3.381 -2.020		59.86 59.90	R R	C
	ATOM ATOM	2073		LEU R 2		38.159	2.093 1.312	-2.020 -4.282		59.54	R R	C
	ATOM	2075	C	LEU R 2		38.335	5.826	-5.198		59.51	R	Č
	ATOM	2076	ō	LEU R 2		37.141	6.194	-4.797		50.14	R	Ō
10	MOTA	2077	N	THR R 2		39.177	6.628	-5.887		59.04	R	N
	ATOM	2078	CA	THR R 2		38.769	8.017	-6.126	1.00 6		R	C
	ATOM	2079	CB OC1	THR R 2		39.803 41.112	8.955 8.701	-5.469 -6.077	1.006	58.81	R	C
	MOTA MOTA	2080 2081	OG1 CG2	THR R 2		39.943	8.602	-3.942	1.00 5		R R	С О
15	MOTA	2082	C	THR R 2		38.586	8.352	-7.661		51.12	R	č
	ATOM	2083	ō	THR R 2		38.600	9.585	-7.991	1.00 6		R	Ō
	MOTA	2084	N	SER R 2		38.761	7.327	-8.481		50.44	R	N
	ATOM	2085	CA	SER R 2		38.631	7.431	-9.949		50.05	R	C
20	ATOM ATOM	2086 2087	CB OG	SER R 2		39.940 40.975		-10.698 -10.323	1.00 5	59.15	R R	C
20	ATOM	2087	C	SER R 2		38.190		-10.509	1.00		R	C
	ATOM	2089	ŏ	SER R 2		37.994	5.195	-9.813		50.32	R	ō
	MOTA	2090	N	ARG R 2		37.989		-11.805	1.00	50.24	R	N
	MOTA	2091	CA	ARG R		37.473		-12.554		50.06	R	С
25	ATOM	2092	CB	ARG R		38.651		-12.686	1.00		R	C
	ATOM ATOM	2093 2094	CG CD	ARG R 2		39.769 41.050		-13.915 -13.667		52.36 54.74	R R	C
	ATOM	2095	NE	ARG R		40.782		-14.166		58.21	R	N
	ATOM	2096	CZ	ARG R 2		40.836		-15.433		59.76	R	C
30	ATOM	2097	NH1			41.215		-16.406	1.00		R	N
	ATOM	2098	NH2			40.462		-15.754		58.97	R	Ŋ
	MOTA	2099	C	ARG R		36.261 36.180		-11.811 -11.400	1.00	58.98 58.24	R R	C
	ATOM ATOM	$2100 \\ 2101$	N O	ARG R 2		35.242		-11.400	1.00 5		R R	NO
35	MOTA	2102	CA	VAL R		33.963		-11.138		57.67	R	C
	ATOM	2103	CB	VAL R		33.581	5.553	-9.962		57.05	R	Č
	ATOM	2104		VAL R		32.230	5.098	-9.412	1.00 5		R	С
	ATOM	2105		VAL R		34.626	5.400	-9.019		56.30	R	C
40	MOTA	2106	C	VAL R 2		32.929 32.683		-12.171 -12.594	1.00 5	57.20 57.69	R R	C
40	ATOM ATOM	2107 2108	N O	LYS R		32.277		-12.432	1.00		R	И
	ATOM	2109	CA	LYS R		31.173		-13.343		55.34	R	Ĉ
	MOTA	2110	CB	LYS R		31.412	2.625	-14.480		56.41	R	C
	MOTA	2111	CG	LYS R 2		30.200		-15.576		58.70	R	С
45	ATOM	2112	CD	LYS R		30.323		-16.396		50.42	R	C
	ATOM ATOM	2113 2114	CE NZ	LYS R		29.315 29.788		-17.612 -18.509	1.00 (R R	C N
	ATOM	2115	C	LYS R		29.725		-12.754	1.00		R	C
	ATOM	2116	ŏ	LYS R		29.399		-12.202	1.00 !		R	ŏ
50	MOTA	2117	N	PRO R	228	28.953		-12.738	1.00 5		R	N
	ATOM	2118	CD	PRO R		29.263		-13.221	1.00 5		R	C
	MOTA	$2119 \\ 2120$	CA	PRO R		27.716 27.255		-12.075 -12.135	1.00 5		R R	C
	ATOM ATOM	2121	CB CG	PRO R :		28.408		-12.135 -12.531	1.00 !		R	C
55	ATOM	2122	C	PRO R		26.782		-12.908	1.00		R	Č
	ATOM	2123	0	PRO R		26.949	3.618	-14.112	1.00 5		R	0
	MOTA	2124	N	ASP R		25.778		-12.223	1.00		R	\mathbf{N}
	ATOM	2125	CA	ASP R		24.575		-12.833	1.00 5		R	C
60	ATOM ATOM	2126 2127	CB CG	ASP R		23.619 23.773		-11.626 -11.364	1.00 !		R R	C
00	ATOM	2128		ASP R		22.857		-11.364 -10.684	1.00		R	0
	ATOM	2129	OD2	ASP R	229	24.745		-11.874	1.00		R	ŏ
	MOTA	2130	C	ASP R		23.875		-13.620	1.00		R	C
	MOTA	2131	0	ASP R	229	24.155		-13.521	1.00 9		R	0
65	ATOM	2132	N	PRO R		22.902		-14.361	1.00 5		R	N
	MOTA	$2133 \\ 2134$	CD	PRO R		22.655 22.149		-14.865 -15.096	1.00 !		R R	C
	MOTA MOTA	2134	CA CB	PRO R		21.618		-16.264	1.00		R	C
	ATOM	2136	CG	PRO R		21.439		-15.823	1.00		R	Č

							_	~
	MOTA	2137	C PRO R 230	21.032	5.316 -14.361	1.00 50.11	R	C
	MOTA	2138	O PRO R 230	20.585	4.913 -13.309	1.00 49.02	R	0
	MOTA	2139	N PRO R 231	20.645	6.470 -14.824	1.00 49.41	R	N
	MOTA	2140	CD PRO R 231	21.209	7.201 -15.948	1.00 47.62 1.00 49.23	R R	C
5	MOTA	2141	CA PRO R 231	19.558	7.155 -14.158	1.00 49.23	R	C
	MOTA	2142	CB PRO R 231	19.820	8.559 -14.487	1.00 48.87	R	C
	MOTA	2143	CG PRO R 231	20.363	8.402 -15.906	1.00 50.36	R	Č
	MOTA	2144	C PRO R 231	18.225	6.726 -14.621 5.913 -15.535	1.00 30.30	R	ŏ
	ATOM	2145	O PRO R 231	18.108	7.294 -14.050	1.00 51.65	R	N
10	ATOM	2146	N HIS R 232	17.184	6.777 -14.461	1.00 55.01	R	Ĉ
	ATOM	2147	CA HIS R 232	15.898 15.326	5.916 -13.298	1.00 58.75	R	Č
	ATOM	2148	CB HIS R 232 CG HIS R 232	16.040	4.570 -13.111	1.00 64.23	R	Ċ
	MOTA	2149	CG HIS R 232 CD2 HIS R 232	17.226	4.301 -12.418	1.00 66.01	R	Č
4.5	MOTA	2150	ND1 HIS R 232	15.509	3.378 -13.508	1.00 66.21	R	N
15	ATOM	$2151 \\ 2152$	CE1 HIS R 232	16.394	2.428 -13.135	1.00 66.33	R	C
	MOTA	2152	NE2 HIS R 232	17.424	2.951 -12.477	1.00 67.23	R	N
	ATOM ATOM	2154	C HIS R 232	14.984	7.987 -14.716	1.00 54.86	R	С
	ATOM	2155	O HIS R 232	14.789	8.823 -13.855	1.00 55.11	R	0
20	ATOM	2156	N ILE R 233	14.490	8.130 -15.957	1.00 55.90	R	N
20	ATOM	2157	CA ILE R 233	13.668	9.309 -16.230	1.00 57.90	R	С
	ATOM	2158	CB ILE R 233	13.488	9.425 -17.746	1.00 55.99	R	С
	ATOM	2159	CG2 ILE R 233	12.523	10.592 -18.052	1.00 54.70	R	С
	ATOM	2160	CG1 ILE R 233	14.820	9.768 -18.450	1.00 54.05	R	С
25	ATOM	2161	CD1 ILE R 233	14.821	9.352 -19.932	1.00 51.18	R	C
	ATOM	2162	C ILE R 233	12.296	9.207 -15.516	1.00 59.58	R	C
	ATOM	2163	O ILE R 233	11.658	8.168 -15.524	1.00 60.77	R	0
	ATOM	2164	N LYS R 234	11.885	10.306 -14.815	1.00 62.94	R	N
	MOTA	2165	CA LYS R 234	10.553	10.308 - 14.137	1.00 66.66	R	C
30	MOTA	2166	CB LYS R 234	10.612	11.067 -12.787	1.00 67.92	R	C
	MOTA	2167	CG LYS R 234	11.368	10.348 -11.657	1.00 71.28	R	C
	MOTA	2168	CD LYS R 234	11.312	11.168 -10.373	1.00 73.35	R	C
	MOTA	2169	CE LYS R 234	11.778	10.430 -9.129	1.00 75.77	R R	И
	MOTA	2170	NZ LYS R 234	12.379	11.410 -8.240	1.00 77.02	R R	C
35	MOTA	2171	C LYS R 234	9.421	10.914 -15.004	1.00 68.02 1.00 68.12	R	o
	MOTA	2172	O LYS R 234	8.393	10.292 -15.238	1.00 69.38	R	И
	MOTA	2173	N ASN R 235	9.597	12.200 -15.425	1.00 09.38	R	Ĉ
	MOTA	2174	CA ASN R 235	8.652	12.746 -16.405 13.438 -15.735	1.00 72.11	R	Č
	ATOM	2175	CB ASN R 235	7.476	13.450 -16.725	1.00 75.24	R	č
40	ATOM	2176	CG ASN R 235	6.324 5.944	12.424 -17.277	1.00 77.18	R	ŏ
	ATOM	2177	OD1 ASN R 235		14.635 -16.867	1.00 75.83	R	N
	ATOM	2178	ND2 ASN R 235 C ASN R 235		13.669 -17.448	1.00 72.52	R	ĉ
	MOTA	2179			14.173 -17.321	1.00 73.58	R	0
45	ATOM ATOM	2180 2181	O ASN R 235 N LEU R 236		13.806 -18.543	1.00 72.32	R	N
45	ATOM	2182	CA LEU R 236		14.830 -19.552	1.00 72.18	R	C
	ATOM	2183	CB LEU R 236		14.173 -20.879	1.00 71.35	R	С
	ATOM	2184	CG LEU R 236		13.126 -20.782	1.00 70.86	R	C
	ATOM	2185	CD1 LEU R 236		12.196 -21.988	1.00 69.29	R	С
50	ATOM	2186	CD2 LEU R 236		13.777 -20.782	1.00 70.35	R	C
00	ATOM	2187	C LEU R 236		15.666 -19.730	1.00 72.55	R	C
	MOTA	2188	O LEU R 236		15.210 -19.575	1.00 72.54	R	0
	ATOM	2189	N SER R 237	7.699	16.922 -20.088	1.00 72.99	R	N
	ATOM	2190	CA SER R 237	6.545	17.784 -20.314	1.00 74.18	R	C
55	ATOM	2191	CB SER R 237		18.006 -18.979	1.00 72.83	R	C
	MOTA	2192	OG SER R 237		18.620 -18.060	1.00 72.56	R	0
	MOTA	2193	C SER R 237		19.125 -20.925	1.00 76.06	R	C
	MOTA	2194	O SER R 23	8.116	19.510 -20.949	1.00 76.03	R	0
	MOTA	2195	N PHE R 238	5.936	19.820 -21.477	1.00 77.57	R	й
60	MOTA	2196	CA PHE R 238		21.066 -22.176	1.00 79.64	R	C
	ATOM	2197	CB PHE R 238	5.311	21.142 -23.399	1.00 77.79	R	C
	ATOM	2198	CG PHE R 23	5.618	20.018 -24.344	1.00 76.60	R	C
	MOTA	2199	CD1 PHE R 23	4.694	18.993 -24.509	1.00 75.57	R	C
	MOTA	2200	CD2 PHE R 23		20.072 -25.139	1.00 76.20	R	C
65	MOTA	2201	CE1 PHE R 23		18.029 -25.485	1.00 74.70	R	C
	MOTA	2202	CE2 PHE R 23		19.100 -26.117	1.00 75.82	R	C
	MOTA	2203	CZ PHE R 23		18.079 -26.297	1.00 75.62	R	C
	MOTA	2204	C PHE R 23				R	C
	MOTA	2205	O PHE R 23	5.041	22.374 -20.523	1.00 82.54	R	J

	ATOM	2206	N HIS R 2		6.933 [,]	23.247 -21.387	1.00 84.05	R	N
	ATOM ATOM	2207 2208	CA HIS R 2 CB HIS R 2		6.730 7.562	24.522 -20.723 24.539 -19.451	1.00 86.76 1.00 88.55	R R	C
2	MOTA	2209	CG HIS R 2		8.087	25.935 -19.238	1.00 90.57	R	С
5	MOTA	2210	CD2 HIS R 2		9.335	26.327 -18.739	1.00 91.49	R	C
	MOTA	$2211 \\ 2212$	ND1 HIS R 2 CE1 HIS R 2		7.373 8.164	27.051 -19.528 28.090 -19.201	1.00 91.70 1.00 92.58	R R	C N
	MOTA ATOM	2213	NE2 HIS R 2		9.347	27.689 -18.726	1.00 92.38	R	N
	ATOM	2214	C HIS R 2		7.180	25.668 -21.621	1.00 87.52	R	C
10	ATOM	2215	O HIS R 2		8.347	25.994 -21.715	1.00 87.44	R	0
	MOTA ATOM	2216 2217	N ASN R 2 CA ASN R 2		6.204 6.572	26.256 -22.310 27.235 -23.314	1.00 88.29 1.00 88.24	R R	С И
	ATOM	2218	CB ASN R		7.705	28.079 -22.739	1.00 88.25	R	Č
	MOTA	2219	C ASN R 2	240	7.026	26.486 -24.568	1.00 88.02	R	С
15	ATOM	2220	O ASN R		6.444	25.488 -24.980	1.00 88.51	R	O M
	MOTA ATOM	2221 2222	N ASP R 2 CA ASP R 2		8.086 8.400	26.970 -25.210 26.251 -26.430	1.00 87.16 1.00 86.30	R R	N C
	ATOM	2223	CB ASP R		8.645	27.275 -27.532	1.00 87.95	R	C
40	ATOM	2224	CG ASP R		7.339	28.063 -27.722	1.00 87.67	R	C
20	ATOM ATOM	2225 2226	OD1 ASP R 2		6.295 7.367	27.510 -27.353 29.216 -28.150	1.00 88.15 1.00 88.12	R R	0
	ATOM	2227	C ASP R		9.531	25.218 -26.253	1.00 85.04	R	Č
	MOTA	2228	O ASP R		10.205	24.828 -27.191	1.00 85.17	R	0
0.5	MOTA	2229 2230	N ASPR		9.583	24.714 -25.000 23.872 -24.616	1.00 82.57 1.00 80.06	R R	N
25	ATOM ATOM	2231	CA ASP R CB ASP R		10.706 11.390	24.580 -23.455	1.00 80.08	R	C
	MOTA	2232	CG ASP R		12.185	25.775 -23.943	1.00 81.48	R	Ċ
	MOTA	2233	OD1 ASP R		12.368	25.864 -25.151	1.00 81.91	R	0
30	ATOM ATOM	223 <u>4</u> 2235	OD2 ASP R C		12.603 10.272	26.595 -23.124 22.492 -24.112	1.00 81.63 1.00 78.44	R R	0
30	MOTA	2236	O ASP R		9.123	22.088 -24.167	1.00 79.46	R	Ö
	MOTA	2237	N LEUR	243	11.276	21.763 -23.574	1.00 75.69	R	N
	ATOM	2238	CA LEU R		11.000	20.446 -23.006 19.394 -24.018	1.00 73.52 1.00 72.84	R R	G G
35	MOTA MOTA	2239 2240	CB LEU R C		11.458 10.788	18.034 -23.804	1.00 72.09	R	C
00	ATOM	2241	CD1 LEU R		11.612	16.882 -24.382	1.00 71.29	R	C
	MOTA	2242	CD2 LEU R		10.574	17.709 -22.327	1.00 72.11	R	C
	ATOM ATOM	2243 2244	C LEUR C		11.741 12.963	20.241 -21.680 20.186 -21.631	1.00 72.81 1.00 73.08	R R	C
40	ATOM	2245	N TYR R		10.928	20.170 -20.611	1.00 71.27	R	N
	MOTA	2246	CA TYR R		11.479	19.957 -19.278	1.00 70.19	R	C
	MOTA	2247	CB TYR R CG TYR R		$10.477 \\ 11.149$	20.516 -18.267 20.761 -16.963	1.00 72.06 1.00 74.30	R R	G G
	MOTA MOTA	2248 2249	CG TYR R CD1 TYR R		12.307	21.534 -16.907	1.00 74.30	R	C
45	ATOM	2250	CE1 TYR R	244	12.891	21.829 -15.679	1.00 76.01	R	C
	ATOM	2251	CD2 TYR R		10.590	20.273 -15.782	1.00 75.12	R	C
	ATOM ATOM	2252 2253	CE2 TYR R CZ TYR R		11.178 12.323	20.559 -14.558 21.329 -14.503	1.00 74.79 1.00 75.92	R R	C
	ATOM	2254	OH TYR R	244	12.891	21.640 -13.282	1.00 75.92	R	0
50	ATOM	2255	C TYR R		11.696	18.468 -18.999	1.00 68.92	R	C
	ATOM ATOM	2256 2257	O TYR R N VAL R		10.784 12.972	17.653 -19.015 18.115 -18.762	1.00 67.48 1.00 68.19	R R	N O
	ATOM	2258	CA VAL R		13.238	16.721 -18.435	1.00 66.99	R	Ċ
	MOTA	2259	CB VAL R	245	14.344	16.187 -19.341	1.00 67.14	R	C
55	ATOM	2260	CG1 VAL R CG2 VAL R		14.629 13.902	14.717 -19.009 16.280 -20.790	1.00 65.54 1.00 65.15	R R	G G
	ATOM ATOM	2261 2262	C VAL R		13.573	16.529 -16.954	1.00 66.24	R	Č
	ATOM	2263	O VAL R	245	14.270	17.314 -16.315	1.00 66.44	R	0
00	ATOM	2264	N GLN R		12.997	15.441 -16.403	1.00 65.56	R	И
60	ATOM ATOM	2265 2266	CA GLN R CB GLN R		13.115 11.739	15.140 -14.975 15.396 -14.333	1.00 65.49 1.00 67.51	R R	C
	ATOM	2267	CG GLN R		11.831	15.846 -12.870	1.00 70.06	R	C
	ATOM	2268	CD GLN R		10.691	16.796 -12.544	1.00 71.11	R	C
65	MOTA MOTA	2269 2270	OE1 GLN R NE2 GLN R		9.698 10.872	16.922 -13.247 17.488 -11.400	1.00 70.54 1.00 70.86	R R	N
0.5	ATOM	2271	C GLN R	246	13.551	13.684 -14.765	1.00 64.64	R	Ĉ
	ATOM	2272	O GLN R		13.068	12.760 -15.412	1.00 65.52	R	0
	ATOM	2273	N TRP R		14.536	13.493 -13.858	1.00 63.78 1.00 62.34	R R	N C
	MOTA	2274	CA TRP R	4± /	15.092	12.144 -13.688	1.00 02.34	K	C

		16.108 11.890 -14.805 1.00 61.18	R C
	ATOM 2275 CB TRP R 247 ATOM 2276 CG TRP R 247	17.394 12.599 -14.573 1.00 60.79	R C R C
	ATOM 2277 CD2 TRP R 247 ATOM 2278 CE2 TRP R 247	19.140 14.100 -14.767 1.00 60.10	R C R C
5	ATOM 2279 CE3 TRP R. 247	18.522 12.107 -13.876 1.00 60.74	R C
	ATOM 2281 NE1 TRP R 247	19.596 12.942 -13.960 1.00 59.43 19.780 15.266 -15.160 1.00 58.49	R N R C
	ATOM 2282 CZ2 TRP R 247 ATOM 2283 CZ3 TRP R 247	17.783 15.957 -16.349 1.00 57.78	R C R C
10	ATOM 2284 CH2 TRP R 247	15.735 11.884 -12.316 1.00 62.27	R C
	ATOM 2286 O TRP R 247	16.012 12.776 -11.535 1.00 61.13	R O R N
	ATOM 2287 N GLU R 248	16.487 10.148 -10.767 1.00 64.61	R C R C
15	ATOM 2289 CB GLU R 248	15.536 9.101 -10.183 1.00 66.82 16.044 8.487 -8.879 1.00 72.44	R C
	ATOM 2290 CG GLU R 248 ATOM 2291 CD GLU R 248	15.069 7.423 -8.426 1.00 75.78	R C R O
	ATOM 2292 OE1 GLU R 248	14.483 6.766 -9.286 1.00 77.17	R O R C
20	ATOM 2294 C GLU R 248	17.881 9.547 -10.959 1.00 63.40 18.079 8.578 -11.678 1.00 62.30	R O
	ATOM 2295 O GLU R 248 ATOM 2296 N ASN R 249	18.882 10.192 -10.330 1.00 63.16	R N R C
	ATOM 2297 CA ASN R 249	21 207 10.669 -9.845 1.00 61.84	R C
25	ATOM 2299 CG ASN R 249	21.375 11.809 -10.817 1.00 61.58 21.437 11.627 -12.030 1.00 61.61	R O
	ATOM 2300 OD1 ASN R 249 ATOM 2301 ND2 ASN R 249	21.469 13.026 -10.253 1.00 61.70	R N R C
	ATOM 2302 C ASN R 249	19.469 8.000 -8.814 1.00 63.48	R O
30	ATOM 2304 N PRO R 250	21.409 7.584 -9.878 1.00 63.57 22.444 7.800 -10.874 1.00 63.27	R C
	ATOM 2305 CD PRO R 250 ATOM 2306 CA PRO R 250	21.674 6.361 -9.133 1.00 64.11	R C R C
	ATOM 2307 CB PRO R 250	23 260 6 432 -11.023 1.00 63.95	R C
35	ATOM 2309 C PRO R 250	21.840 6.661 -7.639 1.00 65.15	R C R O
	ATOM 2310 O PRO R 250 ATOM 2311 N GLN R 251	21.135 5.861 -6.818 1.00 66.03	R N R C
	ATOM 2312 CA GLN R 251	20.367 4.987 -4.687 1.00 69.33	R C
40	ATOM 2314 CG GLN R 251	19.467 5.423 -3.526 1.00 74.19	R C R C
	ATOM 2315 CD GLN R 251 ATOM 2316 OE1 GLN R 251	17.614 4.144 -2.674 1.00 76.89	R O R N
	ATOM 2317 NE2 GLN R 251	22 406 6 500 -4.729 1.00 63.78	R C
45	ATOM 2319 O GLN R 251	22.511 7.392 -3.905 1.00 63.33	R O R N
	ATOM 2320 N ASN R 252 ATOM 2321 CA ASN R 252	24.780 5.877 -4.463 1.00 60.52	R C R C
	ATOM 2322 CB ASN R 252	25.678	R C
50	ATOM 2324 OD1 ASN R 252	25.580 2.328 -4.860 1.00 58.57	R O R N
	ATOM 2325 ND2 ASN R 252 ATOM 2326 C ASN R 252	25.513 7.161 -4.868 1.00 60.26	R C R O
	ATOM 2327 O ASN R 252	26.552 7.522 -4.312 1.00 59.23 25.003 7.814 -5.924 1.00 59.77	R N
55	ATOM 2329 CA PHE R 253	25.624 9.048 -6.322 1.00 59.18	R C R C
00	ATOM 2330 CB PHE R 253	26.911 7.957 -8.123 1.00 55.92	R C R C
	ATOM 2332 CD1 PHE R 253	26.452 6.655 -8.263 1.00 55.78 28.269 8.256 -8.278 1.00 55.39	R C
60	ATOM 2333 CD2 PHE R 253 ATOM 2334 CE1 PHE R 253	27.360 5.635 -8.533 1.00 55.18	R C R C
00	ATOM 2335 CE2 PHE R 253	28.712 5.920 -8.691 1.00 56.84	R Ċ
	ATOM 2337 C PHE R 253	24.723 10.189 -6.034 1.00 59.89 23.509 10.088 -5.964 1.00 61.22	R O
65	ATOM 2338 O PHE R 253 ATOM 2339 N ILE R 254	25.384 11.301 -5.843 1.00 60.15	R N R C
00	ATOM 2340 CA ILE R 254	25.335 12.928 -4.205 1.00 62.03	R C
	ATOM 2342 CG2 ILE R 254	26.791 12.411 -4.197 1.00 63.18 25.389 14.447 -4.172 1.00 62.64	R C R C
	ATOM 2343 CG1 ILE R 254	212	

	7 (110) (2244	CD1	TT 13 13 25	= 1	26.001	14.971	-2.876	1.00 62.24	R	С
	ATOM ATOM	2344 2345	CDI	ILE R 25		24.926	13.483	-6.590	1.00 59.07	R	Č
	ATOM	2346	Õ	ILE R 25		25.969	13.482	-7.255	1.00 59.16	R	0
	ATOM	2347	Ň	SER R 25		23.996	14.309	-6.862	1.00 58.74	R	N
5	MOTA	2348	CA	SER R 25		23.956	15.080	-8.086	1.00 58.94	R	C
	MOTA	2349	CB	SER R 25		22.644	15.831	-8.045	1.00 58.94	R	C
	MOTA	2350	OG	SER R 25		22.458	16.746	-9.147	1.00 62.51 1.00 58.42	R R	C
	ATOM	2351	C	SER R 25		25.122 25.599	15.995 16.070	-8.454 -9.628	1.00 58.42 1.00 58.51	R	Ö
40	ATOM	2352 2353	O N	SER R 25		25.583	16.759	-7.484	1.00 57.50	R	N
10	ATOM ATOM	2354	CA	ARG R 25		26.653	17.643	-7.758	1.00 55.75	R	Ĉ
	ATOM	2355	CB	ARG R 25		26.808	18.702	-6.582	1.00 57.39	R	C
	ATOM	2356	CG	ARG R 25		27.236	18.154	-5.258	1.00 58.42	R	С
	ATOM	2357	CD	ARG R 25	56	27.694	19.178	-4.274	1.00 58.58	R	C
15	ATOM	2358	NE	ARG R 2		27.686	18.482	-2.990	1.00 60.41	R	N
	ATOM	2359	CZ	ARG R 2		26.577	18.201	-2.279	1.00 60.88	R R	C N
	ATOM	2360	NH1	ARG R 2		25.360	18.530 17.611	-2.655 -1.141	1.00 59.81 1.00 60.03	R	N
	ATOM	2361 2362	NH2	ARG R 2		26.693 27.938	16.926	-8.025	1.00 53.84	R	C
20	MOTA MOTA	2363	C C	ARG R 2		28.885	17.569	-8.396	1.00 52.44	R	ŏ
20	ATOM	2364	N	CYS R 2		27.983	15.636	-7.866	1.00 52.68	R	N
	ATOM	2365	CA	CYS R 2		29.166	14.845	-8.206	1.00 52.72	R	С
	ATOM	2366	C	CYS R 2	57	29.178	14.290	-9.641	1.00 51.14	R	C
	MOTA	2367	0	CYS R 2	57	30.145	13.655	-10.058	1.00 50.47	R	0
25	ATOM	2368	CB	CYS R 2		29.186	13.673	-7.249	1.00 54.19	R R	C S
	ATOM	2369	SG	CYS R 2		29.650 28.143	14.132	-5.568 -10.377	1.00 60.74 1.00 48.40	R	N
	ATOM	2370 2371	N CA	LEU R 2		27.918	13.913	-11.614	1.00 47.82	R	Ċ
	ATOM ATOM	2372	CB	LEU R 2		26.655		-11.529	1.00 46.62	R	Č
30	MOTA	2373	CG	LEU R 2		26.504		-10.673	1.00 47.57	R	C
00	ATOM	2374		LEU R 2		25.160		-10.859	1.00 48.25	R	C
	ATOM	23.75	CD2	LEU R 2		27.535		-11.209	1.00 45.86	R	C
	ATOM	2376	С	LEU R 2		27.783		-12.653	1.00 47.12	R	C
	MOTA	2377	0	LEU R 2		27.275		-12.364	1.00 46.63	R R	N
35	MOTA	2378	N	PHE R 2		28.101 27.739	15.318	-13.826 -15.113	1.00 45.55 1.00 45.70	R	C
	MOTA	2379 2380	CA CB	PHE R 2 PHE R 2		28.971		-15.963	1.00 46.66	R	č
	ATOM ATOM	2381	CG	PHE R 2		29.726	17.012		1.00 49.54	R	Č
	ATOM	2382		PHE R 2		29.244	17.725	-14.274	1.00 49.69	R	C
40	ATOM	2383	CD2			30.981	17.457		1.00 50.86	R	C
	MOTA	2384	CE1			29.902		-13.682	1.00 50.58	R	C
	MOTA	2385	CE2			31.690	18.722		1.00 50.28	R	C
	ATOM	2386	CZ	PHE R 2		31.152		-14.260 -15.962	1.00 50.45 1.00 46.12	R R	C
45	MOTA	2387	C	PHE R 2 PHE R 2		26.845 26.928		-15.914	1.00 46.40	R	ŏ
45	MOTA MOTA	2388 2389	O N	TYR R 2		26.097	15.063		1.00 45.23	R	Ñ
	ATOM	2390	CA	TYR R 2		25.091		-17.606	1.00 45.84	R	C
	ATOM	2391	CB	TYR R 2		23.650	14.675	-17.082	1.00 46.70	R	С
	ATOM	2392	CG	TYR R 2	60	23.579		-15.612	1.00 49.36	R	C
50	MOTA	2393	CD1			23.861		-15.000	1.00 50.50	R	C
	MOTA	2394	CE1			23.852		-13.479	1.00 52.78 1.00 49.26	R R	C
	ATOM	2395	CD2			23.241 23.133		-14.809 -13.473	1.00 49.20	R	C
	ATOM ATOM	2396 2397	CE2 CZ	TYR R 2		23.544		-12.762	1.00 53.08	R	Č
55	ATOM	2398	OH	TYR R 2		23.422		-11.316	1.00 56.10	R	Ō
00	ATOM	2399	C	TYR R 2		25.158	14.463	-19.098	1.00 45.82	R	С
	ATOM	2400	O	TYR R 2	260	25.518		-19.703	1.00 46.96	R	0
	ATOM	2401	N	GLU R 2		24.649		-19.772	1.00 45.39	R	N
	MOTA	2402	CA	GLU R 2		24.356		-21.222	1.00 44.70	R	C
60	ATOM	2403	CB	GLU R 2		25.294		-21.907	1.00 42.68 1.00 46.04	R R	C
	ATOM	2404	CG	GLU R 2		26.123 27.233	10 67 <i>6</i>	-22.942 -23.736	1.00 48.58	R	C
	MOTA	2405 2406	CD OF 1	GLUR 2 LGLUR 2		28.384		-23.750	1.00 48.48	R	ŏ
	ATOM ATOM	2406	OE			26.918		-24.307	1.00 50.76	R	ŏ
65	ATOM	2407	C	GLU R 2		22.852	13.311	-21.527	1.00 44.68	R	C
-	ATOM	2409	ō	GLU R 2		22.356	12.280	-21.353	1.00 44.51	R	0
	ATOM	2410	N	VAL R 2		22.148		-22.026	1.00 43.07	R	И
	ATOM	2411	CA	VAL R 2		20.816		-22.348	1.00 44.29	R	C
	ATOM	2412	CB	VAL R 2	262	20.003	15.258	-21.830	1.00 43.85	R	С

	MOTA	2413	CG1 VAL R 26		15.075 -22.070	1.00 43.87	R	C
	MOTA	2414	CG2 VAL R 26		15.536 -20.345	1.00 43.73	R	C
	MOTA	2415	C VAL R 26		14.112 -23.893	1.00 45.69	R	C
	MOTA	2416	O VAL R 26		15.105 -24.535	1.00 45.95	R	0
5	ATOM	2417	N GLU R 26		12.971 -24.382	1.00 47.42	R	N
	ATOM	2418	CA GLU R 26		12.647 -25.633	1.00 49.96	R	C
	ATOM	2419	CB GLU R 26		11.119 -25.870 10.749 -27.461	1.00 51.56 1.00 53.01	R R	C
	ATOM	2420	CG GLU R 26		9.223 -27.656	1.00 55.42	R	C
10	MOTA	$2421 \\ 2422$	CD GLU R 26 OE1 GLU R 26		8.628 -28.122	1.00 56.59	R	ŏ
10	MOTA MOTA	2423	OE2 GLU R 26		8.513 -27.239	1.00 57.62	R	ŏ
	ATOM	2424	C GLU R 26		12.852 -26.019	1.00 50.75	R	č
	ATOM	2425	O GLU R 26		12.312 -25.460	1.00 48.99	R	Õ
	ATOM	2426	N VAL R 26		13.621 -27.087	1.00 52.50	R	N
15	ATOM	2427	CA VAL R 26		13.878 -27.641	1.00 54.11	R	C
.0	ATOM	2428	CB VAL R 26		15.309 -27.377	1.00 53.62	R	C
	ATOM	2429	CG1 VAL R 26		15.521 -27.633	1.00 51.79	R	C
	ATOM	2430	CG2 VAL R 26	16.569	15.771 -25.785	1.00 52.95	R	C
	MOTA	2431	C VAL R 26		13.636 -29.117	1.00 55.80	R	Ç
20	MOTA	2432	O VAL R 26		14.292 -29.756	1.00 56.07	R	0
	MOTA	2433	n ASN R 26		12.729 -29.615	1.00 58.16	R	N
	MOTA	2434	CA ASN R 26		12.533 -31.017	1.00 61.43	R	C
	MOTA	2435	CB ASN R 26		11.064 -31.500	1.00 60.70	Ŕ	C
	MOTA	2436	CG ASN R 26		10.489 -31.183	1.00 61.63 1.00 61.76	R R	C
25	ATOM	2437	OD1 ASN R 26		11.218 -30.646 9.190 -31.394	1.00 61.76	R	N
	ATOM	2438	ND2 ASN R 26		13.023 -31.342	1.00 63.85	R	C
	MOTA MOTA	2439 2440	C ASN R 26 O ASN R 26		12.831 -30.585	1.00 64.60	R	ŏ
	ATOM	2441	O ASN R 26 N ASN R 26		13.722 -32.460	1.00 66.73	R	N
30	ATOM	2442	CA ASN R 26		14.154 -33.058	1.00 69.50	R	Ĉ
30	ATOM	2443	CB ASN R 26		15.589 -33.554	1.00 71.22	R	Č
	ATOM	2444	CG ASN R 26		16.255 -33.675	1.00 73.17	R	C
	MOTA	2445	OD1 ASN R 26		15.938 -34.546	1.00 74.20	R	0
	ATOM	2446	ND2 ASN R 26		17.204 -32.755	1.00 73.74	R	N
35	ATOM	2447	C ASN R 26		13.248 -34.221	1.00 71.29	R	С
	ATOM	2448	O ASN R 26	6 12.975	13.234 -35.275	1.00 70.99	R	0
	ATOM	2449	N SER R 26		12.431 -33.987	1.00 73.90	R	N
	MOTA	2450	CA SER R 26		11.511 -35.034	1.00 76.24	R	C
	MOTA	2451	CB SER R 26		10.618 - 34.462	1.00 76.17	R	C
40	MOTA	2452	OG SER R 26		10.204 -33.149	1.00 78.71	R	0
	MOTA	2453	C SER R 26		12.269 -36.255	1.00 77.66	R	C
	ATOM	2454	O SER R 26		11.773 -37.370	1.00 78.45 1.00 79.01	R R	N
	MOTA	2455	N GLN R 26 CA GLN R 26		13.507 -35.990 14.312 -37.060	1.00 79.01	R	C
45	MOTA MOTA	2456 2457	CA GLN R 26 CB GLN R 26		15.459 -36.429	1.00 83.07		Č
45	ATOM	2457	CG GLN R 26		15.013 -35.922	1.00 86.65	R	č
	ATOM	2459	CD GLN R 26		16.235 -35.535	1.00 88.88	R	č
	MOTA	2460	OE1 GLN R 26		16.191 -35.127	1.00 89.31	R	Ō
	MOTA	2461	NE2 GLN R 26		17.380 -35.696	1.00 89.89	R	N
50	ATOM	2462	C GLN R 26		14.852 -38.017	1.00 81.08	R	С
	MOTA	2463	O GLN R 26		14.664 -39.228	1.00 81.44	R	0
	ATOM	2464	N THR R 26	9 11.368	15.591 -37.453	1.00 80.39	R	N
	ATOM	2465	CA THR R 26		16.091 -38.304	1.00 78.88	R	C
	MOTA	2466	CB THR R 26		17.415 -37.738	1.00 79.42	R	C
55	MOTA	2467	OG1 THR R 26		17.219 - 36.420	1.00 79.08	R	0
	MOTA	2468	CG2 THR R 26		18.446 -37.673	1.00 78.99	R	C
	MOTA	2469	C THR R 26		15.049 -38.477	1.00 77.19	R	C
	MOTA	2470	O THR R 26		14.995 -39.482	1.00 76.91	R	0
	ATOM	2471	N GLUR 2		14.183 -37.451	1.00 75.45	R R	N
60	ATOM	2472	CA GLUR 2			1.00 73.85 1.00 76.06	R	C
	MOTA	2473	CB GLU R 2			1.00 70.00	R	C
	MOTA	2474	CG GLU R 2		11.241 -39.154 10.783 -40.487	1.00 79.07	R	C
	MOTA	2475	CD GLU R 2' OE1 GLU R 2'			1.00 80.02	R	Ö
65	ATOM ATOM	2476 2477	OE2 GLU R 2			1.00 81.18	R	ŏ
00	ATOM	2477	C GLU R 2'			1.00 71.07	R	č
	ATOM	2479	O GLUR 2			1.00 69.75	R	Ö
	ATOM	2480	N THR R 2'			1.00 68.27	R	\mathbf{N}
	ATOM	2481	CA THR R 2			1.00 66.22	R	С
	= "							

	ATOM	2482	СВ	THR R	2.11	±6.966	16.889 -35.574	1.00 67.03	т	R C
	ATOM	2483	OG1			17.016	17.518 -36.856	1.00 69.01		R C
	ATOM	2484	CG2	THR R		18.059	17.487 -34.685	1.00 66.87		R C
	MOTA	2485	C	THR R		17.481	14.743 -34.389	1.00 63.55		. C
5	MOTA	2486	0	THR R	271	16.584	14.416 -33.623	1.00 62.52		3 0
	MOTA	2487	N	HIS R	. 272	18.743	14.504 -34.137	1.00 62.01		R N
	MOTA	2488	CA	HIS R	272	19.355	13.780 -33.016	1.00 60.41		R C
	ATOM	2489	CB	HIS R	272	20.146	12.614 -33.522	1.00 60.09		R C
	ATOM	2490	CG	HIS R		20.925	11.930 -32.476	1.00 64.26		R C
10	MOTA	2491		HIS R		20.641	11.652 -31.186	1.00 65.40	F	R C
	ATOM	2492		HIS R		22.234	11.563 - 32.644	1.00 66.46	F	R N
	MOTA	2493		HIS R		22.721	11.079 -31.508	1.00 66.77	F	R C
	MOTA	2494		HIS R		21.753	11.080 -30.622	1.00 65.74	F	R N
	ATOM	2495	C	HIS R		20.212	14.860 -32.362	1.00 58.50	F	R C
15	ATOM	2496	0	HIS R		21.117	15.411 - 32.924	1.00 57.95	F	R O
	ATOM	2497	N	ASN R		19.853	15.196 -31.198	1.00 56.75		S N
	ATOM	2498	CA	ASN R		20.636	16.051 -30.290	1.00 56.29	F	
	MOTA	2499	CB	ASN R		19.719	17.140 -29.794	1.00 57.24		R C
20	MOTA MOTA	2500 2501	CG OD1	ASN R		19.529 18.437	18.290 -30.791	1.00 59.20		S C
20	ATOM	2501		ASN R		20.618	18.683 -31.010 18.821 -31.401	1.00 60.99	F	
	ATOM	2502	C	ASN R		21.205	18.821 -31.401 15.359 -28.972	1.00 61.33 1.00 54.78		N S
	ATOM	2504	Õ	ASN R		20.592	14.472 -28.332	1.00 54.78	F	R C
	ATOM	2505	N	VAL R		22.395	15.849 -28.533	1.00 54.00	F	-
25	MOTA	2506	CA	VAL R		23.079	15.410 -27.426	1.00 49.18	F	
	ATOM	2507	CB	VAL R		24.216	14.505 -27.781	1.00 49.10	F	
	MOTA	2508		VAL R		24.845	14.060 -26.519	1.00 47.67	F	_
	ATOM	2509		VAL R		23.756	13.114 -28.509	1.00 47.62	F	
	ATOM	2510	С	VAL R	274	23.485	16.648 -26.596	1.00 48.00	F	
30	ATOM	2511	0	VAL R	274	24.321	17.401 -27.074	1.00 48.15	F	
	MOTA	2512	N	PHE R	275	22.898	16.838 -25.430	1.00 46.02	F	
	MOTA	2513	CA	PHE R		23.223	17.997 -24.604	1.00 46.97	F	S C
	MOTA	2514	CB	PHE R		22.043	18.598 -23.942	1.00 45.65	F	₹ C
	MOTA	2515	CG	PHE R		21.058	19.190 -24.895	1.00 47.42	F	
35	MOTA	2516		PHE R		20.129	18.361 -25.638	1.00 46.46	F	
	ATOM	2517		PHE R		21.162	20.508 -25.191	1.00 46.21	F	
	ATOM	2518		PHE R		19.178	18.931 -26.577	1.00 46.27	F	
	ATOM	2519		PHE R		20.316	21.057 -26.240	1.00 45.90	F	_
40	MOTA	2520	CZ	PHE R		19.245	20.320 -26.842	1.00 46.37	F	
40	ATOM ATOM	2521 2522	C	PHE R		24.080	17.489 -23.421	1.00 48.11	F	
	ATOM	2523	N	TYR R		23.804 25.205	16.462 -22.790 18.120 -23.289	1.00 47.90	F	
	ATOM	2524	CA	TYR R		26.132	17.892 -22.206	1.00 48.11 1.00 49.41	A A	-
	ATOM	2525	CB	TYR R		27.556	18.113 -22.781	1.00 49.41	F	-
45	ATOM	2526	CG	TYR R		28.687	17.896 -21.890	1.00 52.00	F	
	ATOM	2527	CD1			29.180	18.909 -21.024	1.00 53.82	F	
	ATOM	2528	CE1			30.356	18.592 -20.072	1.00 54.29	F	
	ATOM	2529	CD2	TYR R	276	29.218	16.669 -21.773	1.00 52.53	F	
	ATOM	2530	CE2			30.255	16.322 -20.863	1.00 53.11	R	
50	ATOM	2531	CZ	TYR R	276	30.780	17.252 -19.988	1.00 54.24	R	
	MOTA	2532	OH	TYR R		31.868	16.862 -19.341	1.00 56.13	R	
	MOTA	2533	С	TYR R		25.880	18.902 -21.133	1.00 49.44	R	S C
	MOTA	2534	0	TYR R		26.056	20.049 -21.242	1.00 47.42	R	0
	ATOM	2535	N	VAL R		25.490	18.395 -19.987	1.00 51.00	R	
55	ATOM	2536	CA	VAL R		25.051	19.280 -18.964	1.00 52.54	R	
	ATOM	2537	CB	VAL R		23.458	19.284 -18.838	1.00 53.05	R	
	MOTA	2538		VAL R		22.640	18.569 -19.923	1.00 51.02	R	
	MOTA	2539		VAL R		22.965	19.091 -17.483	1.00 52.55	R	
60	MOTA	2540	C	VAL R		25.751	19.142 -17.613	1.00 54.64	R	
60	ATOM ATOM	$2541 \\ 2542$	O NT	VAL R		25.862 26.333	18.026 -17.077	1.00 53.39	R	
			N	GLN R			20.223 -17.123	1.00 57.64	R	
	ATOM ATOM	2543 2544	CA CB	GLN R		27.081 28.210	20.216 -15.792	1.00 60.92	R	
	ATOM	2545	CG	GLN R		28.210	21.082 -15.824 21.292 -17.239	1.00 62.64	R cr	
65	ATOM	2546	CD	GLN R		30.278	21.646 -17.406	1.00 66.68 1.00 68.72	R R	
	ATOM	2547	OE1	GLN R		31.062	21.601 -16.435	1.00 69.80	r R	
	MOTA	2548	NE2	GLN R		30.682	22.000 -18.645	1.00 69.14	R	
	ATOM	2549	C	GLN R		26.264	20.455 -14.545	1.00 61.75	R	
	ATOM	2550	ŏ	GLN R		26.522	20.013 -13.532	1.00 61.88	R	
										_

	" ATOM	2551	N	GLU R 279	25.160	21.102 -14.739	1.00 63.48	R	N
	ATOM	2552	CA	GLU R 279	24.333	21.641 -13.721	1.00 65.20	R	C
	MOTA	2553	CB	GLU R 279	24.469	23.152 -13.731	1.00 65.02 1.00 66.40	R R	C
-	ATOM	2554 2555	C	GLU R 279 GLU R 279	22.905 22.318	21.254 -14.034 21.601 -15.055	1.00 66.33	R	Ö
5	ATOM ATOM	2556	И	ALA R 280	22.345	20.440 -13.145	1.00 68.12	R	N
	ATOM	2557	CA	ALA R 280	20.986	20.030 -13.386	1.00 70.55	R	C
	MOTA	2558	CB	ALA R 280	20.995	18.527 -13.699	1.00 68.51	R R	C
	ATOM	2559	C	ALA R 280	20.177 19.634	20.253 -12.142 19.327 -11.575	1.00 72.94 1.00 72.68	R	Ö
10	MOTA MOTA	2560 2561	И О	ALA R 280 LYS R 281	20.159	21.537 -11.689	1.00 75.96	R	N
	ATOM	2562	CA	LYS R 281	19.418	21.812 -10.474	1.00 79.54	R	C
	ATOM	2563	СВ	LYS R 281	19.816	23.160 -9.886	1.00 79.86	R	C
	MOTA	2564	CG	LYS R 281	19.897	23.025 -8.363	1.00 80.01	R	C
15	MOTA	2565	CD	LYS R 281	20.945 22.361	23.937 -7.726 23.389 -7.882	1.00 79.40 1.00 79.46	R R	C
	MOTA	2566 2567	CE NZ	LYS R 281 LYS R 281	23.266	24.502 -8.130	1.00 79.43	R	N
	MOTA MOTA	2568	C	LYS R 281	17.923	21.719 -10.689	1.00 82.08	R	C
	MOTA	2569	ŏ	LYS R 281	17.290	22.454 -11.445	1.00 81.67	R	0
20	MOTA	2570	N	CYS R 282	17.338	20.710 -10.049	1.00 84.54	R	N
	MOTA	2571	CA	CYS R 282	15.930	20.563 -10.411 21.633 -9.740	1.00 86.72 1.00 88.49	R R	C
	MOTA	2572 2573	C O	CYS R 282 CYS R 282	15.074 14.287	21.367 -8.834	1.00 89.72	R	ŏ
	MOTA MOTA	2574	CB	CYS R 282	15.473	19.183 -9.941	1.00 86.35	R	C
25	MOTA	2575	SG	CYS R 282	14.708	18.208 -11.254	1.00 88.45	R	S
	MOTA	2576	N	GLU R 283	15.265	22.886 -10.178	1.00 90.11	R	И
	MOTA	2577	CA	GLU R 283	14.567 14.600	23.943 -9.463 23.581 -7.981	1.00 92.03 1.00 92.46	R R	C
	MOTA	2578 2579	CB CG	GLU R 283 GLU R 283	14.683	24.814 -7.078	1.00 93.73	R	Č
30	ATOM ATOM	2580	CD	GLU R 283	13.454	25.660 -7.294	1.00 95.07	R	C
00	ATOM	2581	OE1	GLU R 283	13.554	26.872 - 7.195	1.00 95.36	R	0
	MOTA	2582		GLU R 283	12.407	25.093 -7.596	1.00 95.10	R R	0
	ATOM	2583	C	GLU R 283	15.219 16.389	25.319 -9.637 25.531 -9.343	1.00 93.03 1.00 93.42	R R	0
25	MOTA	2584 2585	N O	GLU R 283 ASN R 284	14.440	26.266 -10.203	1.00 94.22	R	Ŋ
35	ATOM ATOM	2586	CA	ASN R 284	13.147	25.899 -10.787	1.00 95.83	R	С
	ATOM	2587	CB	ASN R 284	12.279	27.158 -10.865	1.00 95.79	R	C
	ATOM	2588	C	ASN R 284	13.304	25.291 -12.185	1.00 97.36	R R	C O
4.0	ATOM	2589	0	ASN R 284	14.158 12.396	24.452 -12.440 25.707 -13.095	1.00 98.00 1.00 98.24	R	И
40	MOTA MOTA	2590 2591	N CD	PRO R 285 PRO R 285	12.412	25.484 -14.529	1.00 98.86	R	Ĉ
	ATOM	2592	CA	PRO R 285	11.267	26.543 -12.732	1.00 99.16	R	C
	ATOM	2593	CB	PRO R 285	10.547		1.00 98.54	R	C
	MOTA	2594	CG	PRO R 285	11.139		1.00 98.67 1.00 99.89	R R	C
45	ATOM	2595	C	PRO R 285 PRO R 285	10.275 10.314		1.00 99.89	R	Õ
	ATOM ATOM	2596 2597	N O		9.353		1.00100.79	R	Ŋ
	MOTA	2598	CA	GLU R 286	8.546		1.00102.10	R	C
	ATOM	2599	CB	GLU R 286	8.208		1.00103.19	R	C
50	MOTA	2600	CG	GLU R 286	9.398		1.00106.31 1.00109.22	R R	C
	MOTA	2601	CD	GLU R 286 1 GLU R 286	9.043 8.023		1.00109.22	R	Õ
	MOTA MOTA	2602 2603	OE:		9.891		1.00109.63	R	0
	ATOM	2604	C.	GLU R 286	7.297		1.00101.95	R	C
55	MOTA	2605	0	GLU R 286	6.579		1.00102.44	R	O
	MOTA	2606	N	PHE R 287	7.049		1.00101.53 1.00101.39	R R	N C
	MOTA	2607 2608	CA	PHE R 287 PHE R 287	6.017 6.246		1.00101.33	R	č
	MOTA MOTA	2609	CB CG		5.519		1.00100.24	R	C
60	ATOM	2610		1 PHE R 287	5.083	26.324 -13.787	1.00100.27	R	C
	MOTA	2611	CD	2 PHE R 287	5.407		1.00 99.82	R	C
	ATOM	2612		1 PHE R 287	4.554		1.00100.42 1.00 99.79	R R	C
	MOTA	2613	CE		4.877 4.453		1.00 99.79	R R	C
65	MOTA MOTA	2614 2615	CZ C	PHE R 287	6.231		1.00101.27	R	С
00	ATOM	2616	Õ	PHE R 287	5.662	22.768 -10.455	1.00101.94	R	0
	MOTA	2617	N	GLU R 288	7.071		1.00100.02	R	N
	MOTA	2618	CA		7.559		1.00 98.61 1.00 98.36	R R	C
	ATOM	2619	СВ	GLU R 288	8.364	. 20.000 -I3.IO3	1.00 20.30	14	Ŭ

	ATOM	2620	CG	GLU R	200	0	.288	21 662	-14.287	1 00	96.79	ъ	~
												R	C
	ATOM	2621	CD	GLU R			.189	21.296	-15.253		96.23	R	C
	ATOM	2622	OE1	GLU R	288	6	.418	20.383	-14.968	1.00	95.74	R	0
	ATOM	2623	OE2	GLU R	288	7	.114	21.939	-16.289	100	95.82	R	0
5	ATOM	2624	С	GLU R			.475		-10.695		98.28	R	č
Ū	ATOM	2625		GLU R									
			0	-			.806	21.999	-10.105		99.09	R	0
	ATOM	2626	\mathbf{N}	ASN R	293	1.5	.776	13.988	-4.556	1.00	96.30	R	N
	ATOM	2627	CA	ASN R	293	1.6	.678	13.056	-5.247	1 00	94.19	R	C
	ATOM	2628	СВ	ASN R			.082	11.655					
4.0									-5.105		94.17	R	C
10	ATOM	2629	C	ASN R			.848	13.400	-6.723	1.00	93.16	R	C
	ATOM	2630	0	ASN R	293	17	.584	12.788	-7.497	1.00	93.06	R	0
	ATOM	2631	N	THR R		16	.059	14.403	-7.132		91.21	R	N
	ATOM	2632	CA										
				THR R			.794	14.564	-8.540		89.29	R	C
	ATOM	2633	CB	THR R	294	14	.284	14.787	-8.711	1.00	89.60	R	C
15	ATOM	2634	OG1	THR R	294	13	.617	13.719	-8.060	1.00	90.25	R	0
	ATOM	2635	CG2			13	.874	14.837			89.47	R	
													C
	ATOM	2636	C	THR R			.596	15.682	-9.162		87.98	R	С
	MOTA	2637	0	THR R	294	17	.329	16.461	-8.558	1.00	88.24	R	0
	ATOM	2638	N	SER R	295	1.6	.502	15.680	-10.483	1 00	85.90	R	N
20	ATOM	2639	CA	SER R			.297		-11.209				
20											83.53	R	C
	ATOM	2640	CB	SER R		T8	.671		-11.391	1.00	83.77	R	C
	ATOM	2641	OG	SER R	295	19	.141	15.529	-10.111	1.00	83.53	R	0
	MOTA	2642	C	SER R	2.95	16	.643	16.780	-12.538	1 00	81.72	R	C
	ATOM	2643	ŏ	SER R			.926						
0.5									-12.998		81.17	R	0
25	MOTA	2644	N	CYS R			.885	17.964	-13.112	1.00	80.55	R	N
	ATOM	2645	$^{\rm CA}$	CYS R	296	16	.281	18.168	-14.431	1.00	79.65	R	C
	ATOM	2646	С	CYS R	296	16	.939		-15.191		77.11	R	Č
	ATOM	2647	0	CYS R			.746		-14.657		76.87	R	0
	ATOM	2648	$^{\mathtt{CB}}$	CYS R	296	14	.793	18.467	-14.245	1.00	82.55	R	C
30	ATOM	2649	SG	CYS R	296	14	.487	19,494	-12.793	1.00	87.30	R	S
	ATOM	2650	N	PHE R			.583		-16.478		74.68	R	Ñ
	MOTA	2651	ca	PHE R			.301		-17.437		72.94	R	C
	ATOM	2652	CB	PHE R	297	18	.463	19.266	-17.930	1.00	69.47	R	C
	ATOM	2653	CG	PHE R	297	18	.954	19.781	-19.242	1.00	66.15	R	C
35	ATOM	2654		PHE R			.634		-19.284		-		~
33											64.52	R	C
	ATOM	2655	CD2				.663		-20.408	1.00	65.09	R	С
	ATOM	2656	CE1	PHE R	297	20	.028	21.514	-20.507	1.00	63.49	R	C
	ATOM	2657	CE2	PHE R	297	19	.061	19 625	-21.633	1 00	64.98	R	C
	ATOM	2658	CZ	PHE R									
40							.742		-21.686		63.88	R	C
40	MOTA	2659	C	PHE R		16	.370	20.482	-18.598	1.00	73.41	R	C
	ATOM	2660	0	PHE R	297	15	.776	19.621	-19.241	1.00	73.80	R	0
	ATOM	2661	N	MET R	298	16	.197		-18.807		74.36	R	N
	MOTA	2662	CA	MET R			.244		-19.825		74.98	R	C
	MOTA	2663	CB	MET R	298	14	.809		-19.491	1.00	78.07	R	C
45	MOTA	2664	CG	MET R	298	13	.351	23.736	-19.032	1.00	81.75	R	C
	ATOM	2665	SD	MET R	298	12	.238		-20.368		87.08	R	s
									-19.817				
	ATOM	2666	CE	MET R			.798				85.81	R	С
	ATOM	2667	C	MET R		15	.850	22.186	-21.235	1.00	73.57	R	С
	MOTA	2668	0	MET R	298	16	.835	22.840	-21.542	1.00	72.23	R	0
50	ATOM	2669	N	VAL R			.243		-22.087		73.62	R	N
	ATOM	2670	CA	VAL R			.682						
									-23.476		74.43	R	C
	MOTA	2671	CB	VAL R	299	15	.274	19.896	-24.016	1.00	74.27	R	C
	ATOM	2672	CG1	VAL R	299	15	.621	19.794	-25.502	1.00	73.21	R	C
	ATOM	2673		VAL R			.969		-23.253		73.35		Č
EE												R	C
55	ATOM	2674	C	VAL R			.984		-24.307		75.41	R	C
	ATOM	2675	0	VAL R	299	13	.754	22.362	-24.417	1.00	76.00	R	0
	ATOM	2676	N	PRO R	300	15	.766	23 256	-24.877	1 00	76.10	R	N
	ATOM	2677	CD	PRO R			.231	23 367	-24.920				
											75.65	R	C
	ATOM	2678	ca	PRO R			.182		-25.621	1.00	76.85	R	C
60	ATOM	2679	CB	PRO R	300	16	.211	25.445	-25.714	1.00	75.84	R	C
	ATOM	2680	CG	PRO R	300		.584		-25.326		76.48	R	Č
	ATOM	2681	Č	PRO R			.788						
									-27.029		77.72	R	C
	ATOM	2682	0	PRO R			.439		-27.659		77.18	R	0
	ATOM	2683	N	GLY R	301	13	.653	24.369	-27.508	1.00	79.03	R	N
65	ATOM	2684	CA	GLY R			.330		-28.925		80.40	R	Ċ
	ATOM	2685		GLY R									
			C				.452		-29.217		82.28	R	C
	ATOM	2686	0	GLY R			.762		-30.061		82.07	R	0
	ATOM	2687	\mathbf{N}	VAL R	302	11.	.340	22.803	-28.482	1.00	83.95	R	N
	ATOM	2688	CA	VAL R			.336		-28.727		86.24	R	Ĉ
				, 10	2 3 23		- 550		20.121	 00	00.44	1.	·

	ATOM 2689 CB VAL R 302	10.530 20.719 -27.697 1.00 85.51 10.253 19.323 -28.323 1.00 84.83	R C R C
	ATOM 2690 CG1 VAL R 302	10.253 19.323 -20.325 1.00 84.47	R C R C
	ATOM 2692 C VAL R 302	8.905 22.505 29.002 1.00 88.68	R O
5	ATOM 2693 O VAL R 302 ATOM 2694 N LEU R 303	7.882 21.462 -28.616 1.00 90.03	R N R C
	ATOM 2695 CA LEU R 303	6.591 21.538 23.422 1.00 92.45	R C
	ATOM 2696 CB LEU R 303	7.913 20.421 -31.277 1.00 93.46	R C R C
10	AUDIN 2698 CD1 LEU R 303	7.925 15.110 22 104 1 00 93 79	R C
10	ATOM 2699 CD2 LEU R 303	5.161 21.816 -28.787 1.00 92.36	R C R O
	ATOM 2701 O LEU R 303	5.009 22.832 -28.151 1.00 92.58 4.117 20.908 -28.913 1.00 92.77	R N
	ATOM 2702 N PRO R 304	2.701 21.191 -29.072 1.00 93.52	R C R C
15	ATOM 2704 CA PRO R 304	4.243 19.458 -28.646 1.00 92.92	R C R C
	ATOM 2705 CB PRO R 304	1.005 20.024 -28.339 1.00 93.42	R C
	ATOM 2706 CG PRO R 304 ATOM 2707 C PRO R 304	4.280 18.542 -29.935 1.00 92.84	R C R O
20	ATIOM 2708 O PRO R 304	5.300 17.532 -30.664 1.00 92.50	R N
	ATOM 2709 N ASP R 305	5 465 18.034 -32.072 1.00 91.71	R C R C
	ATOM 2711 CB ASP R 305	6.433 16.389 -32.066 1.00 90.87	R C
	ATOM 2712 C ASP R 305	7 420 16.623 -32.600 1.00 91.22	R O R N
25	ATTOM 2714 N THR R 306	6.020 16.044 -30.999 1.00 89.25 6.861 15.107 -30.538 1.00 87.16	R C
	ATOM 2715 CA THR R 306	6 120 15.104 -29.244 1.00 87.79	R C R C
	ATOM 2717 C THR R 306	6.536 14.110 -31.632 1.00 85.00	R O
30	ATOM 2718 O THR R 306	6.647 12.740 -31.554 1.00 83.46	R N R C
	ATOM 2720 CA LEU R 307	7.670 12.045 -30.710 1.00 81.38	R C R C
	ATOM 2721 CB LEU R 307	7 911 9.727 -30.735 1.00 84.50	R C
	ATOM 2722 CG LEU R 307 ATOM 2723 CD1 LEU R 307	7.057 9.946 -29.505 1.00 85.37	R C R C
35	ATOM 2724 CD2 LEU R 307	7.478 8.434 31.112 1.00 78.72	R C
	ATOM 2725 C LEU R 307 ATOM 2726 O LEU R 307	9 802 12.910 -31.602 1.00 77.76	R O R N
	ATOM 2727 N ASN R 308	9.241 13.110 -29.379 1.00 74.87 10.604 13.198 -28.882 1.00 70.88	R C
40	ATOM 2728 CA ASN R 308	10.764 14.553 -28.180 1.00 71.05	R C R C
	ATOM 2730 CG ASN R 308	10.584 15.600 25.100 1 00 69 42	R O
	ATOM 2731 OD1 ASN R 308	9.330 16.145 -29.307 1.00 72.76	R N R C
45	AUDOM 2733 C ASN R 308	10.837 12.039 -27.921 1.00 67.32	R O
70	ATOM 2734 O ASN R 308	11 943 11.335 -28.154 1.00 63.68	R N R C
	ATOM 2736 CA THR R 309	12.474 10.361 -27.219 1.00 60.57	R C
	ATOM 2737 CB THR R 309	11 548 8.609 -28.443 1.00 61.79	R O R C
50	ATOM 2739 CG2 THR R 309	13.202 8.074 -26.978 1.00 60.41	R C
	ATOM 2740 C THR R 309	14.518 11.399 -27.106 1.00 56.57	R O R N
	ATOM 2742 N VAL R 310	13.719 10.662 -25.207 1.00 54.47	R C
55	ATOM 2743 CA VAL R 310	14.650 12.236 -23.544 1.00 51.82	R C R C
	ATOM 2745 CG1 VAL R 310	13.410 12.691 -23.283 1.00 52.41	r C
	ATOM 2746 CG2 VAL R 310	15 498 9.854 -23.760 1.00 52.00	R C R O
00	ATOM 2747 C VAL R 310 ATOM 2748 O VAL R 310	14.832 8.965 -23.452 1.00 51.06	R O R N
60	ATOM 2749 N ARG R 311	17 636 9 044 -22.827 1.00 50.34	R C
	ATOM 2750 CA ARG R 311	18.382 8.071 -23.685 1.00 49.77	R C R C
	ATOM 2752 CG ARG R 311	10 225 5 951 -24.887 1.00 48.25	R C
65	ATOM 2753 CD ARG R 311	19.164 6.449 -25.845 1.00 48.40	R N R C
	ATTOM 2755 CZ ARG R 311	20.094 5.686 -26.333 1.00 47.77	R N
	ATOM 2756 NH1 ARG R 311	20.286 4.483 -25.817 1.00 47.01 20.930 6.183 -27.166 1.00 44.86	R N
	ATOM 2757 NH2 ARG R 311	218	

							_	~
	ATOM		C ARG R 311	18.638	9.873 -22.106	1.00 50.05 1.00 50.01	R R	C O
	MOTA		O ARG R 311		10.849 -22.564 9.397 -20.972	1.00 30.01	R	N
	MOTA		N ILE R 312	19.005 20.054	10.009 -20.194	1.00 48.58	R	Ĉ
-	MOTA MOTA		CA ILE R 312 CB ILE R 312	19.425	10.760 -18.938	1.00 48.15	R	С
5	ATOM		CG2 ILE R 312	20.437	11.526 -18.285	1.00 45.62	R	C
	MOTA		CG1 ILE R 312	18.335	11.630 -19.384	1.00 47.07	R	C
	MOTA		CD1 ILE R 312	17.552	12.196 -18.148	1.00 47.91 1.00 47.90	R R	C C
	MOTA		C ILE R 312	21.130	9.104 -19.668 8.075 -19.145	1.00 47.30	R	Õ
10	ATOM		O ILE R 312 N ARG R 313	20.812 22.397	9.485 -19.792	1.00 46.57	R	N
	MOTA		N ARG R 313 CA ARG R 313	23.455	8.761 -19.035	1.00 46.06	R	С
	MOTA MOTA		CB ARG R 313	24.443	8.114 -20.054	1.00 45.95	R.	C
	ATOM		CG ARG R 313	25.120	8.994 -20.854	1.00 43.85	R	C
15	ATOM		CD ARG R 313	25.770	8.153 -22.104	1.00 45.64	R	C N
	MOTA		NE ARG R 313	26.641	8.967 -22.942 8.467 -23.644	1.00 47.51 1.00 48.52	R R	C
	MOTA		CZ ARG R 313	27.615 27.780	7.223 -23.634	1.00 48.93	R	N
	ATOM		NH1 ARG R 313 NH2 ARG R 313	28.440	9.211 -24.327	1.00 48.72	R	N
00	MOTA MOTA	2776 2777	NH2 ARG R 313 C ARG R 313	24.216	9.675 ~18.156	1.00 46.35	R	С
20	ATOM	2778	O ARG R 313	24.101	10.926 -18.315	1.00 44.37	R -	0
	MOTA	2779	N VAL R 314	25.221	9.158 -17.462	1.00 45.29	R	N
	MOTA	2780	CA VAL R 314	25.783	9.929 -16.364	1.00 45.74 1.00 46.13	R R	C
	MOTA	2781	CB VAL R 314	24.867	9.539 -15.130 9.400 -13.942	1.00 47.48	R	č
25	MOTA	2782	CG1 VAL R 314 CG2 VAL R 314	25.561 23.644	10.474 -15.035	1.00 44.87	R	Ċ
	MOTA	2783 2784	C VAL R 314	27.213	9.495 -16.103	1.00 45.86	R	С
	ATOM ATOM	2785	O VAL R 314	27.549	8.410 -16.273	1.00 45.19	R	0
	ATOM	2786	N LYS R 315	28.012	10.410 -15.597	1.00 45.17	R	N
30	ATOM	2787	CA LYS R 315	29.411	10.186 -15.205	1.00 45.60 1.00 45.36	R R	C C
	MOTA	2788	CB LYS R 315	30.396	10.453 -16.373 11.871 -16.660	1.00 47.28	R	č
	MOTA	2789	CG LYS R 315 CD LYS R 315	30.500 31.601	12.117 -17.811	1.00 47.54	R	Ċ
	ATOM	2790 2791	CD LYS R 315 CE LYS R 315	31.724	13.600 -18.055	1.00 48.20	R	C
35	MOTA MOTA	2792	NZ LYS R 315	32.778	13.957 -19.216	1.00 47.70	R	\vec{n}
55	MOTA	2793	C LYS R 315	29.860	10.915 -14.049	1.00 44.27	R	C
	ATOM	2794	O LYS R 315	29.239	11.844 -13.662	1.00 45.27 1.00 43.47	R R	N O
	MOTA	2795	N THR R 316	30.993	10.563 -13.451 11.337 -12.235	1.00 43.47	R	Ĉ
	ATOM	2796	CA THR R 316	31.399 32.394	10.587 -11.331	1.00 42.26	R	Č
40	MOTA	2797 2798	CB THR R 316 OG1 THR R 316	33.362	10.177 -12.194	1.00 42.09	R	0
	ATOM ATOM	2799	CG2 THR R 316	31.767	9.355 -10.816	1.00 40.88	R	C
	ATOM	2800	C THR R 316	32.110	12.606 -12.705	1.00 43.10	R	C
	MOTA	2801	O THR R 316	32.803	12.506 -13.640	1.00 41.11 1.00 43.52	R R	N O
45	ATOM	2802	N ASN R 317	31.873 32.661	13.816 -12.092 14.997 -12.130	1.00 45.32	R	Ĉ
	MOTA	2803	CA ASN R 317 CB ASN R 317	32.123	16.013 -10.778	1.00 46.56	R	C
	MOTA ATOM	$2804 \\ 2805$	CB ASN R 317 CG ASN R 317	31.132	16.678 -11.276	1.00 50.66	R	C
	MOTA	2806	OD1 ASN R 317	31.227	16.780 -12.543	1.00 54.75	R	0
50	ATOM	2807	ND2 ASN R 317	30.170	17.164 -10.603	1.00 51.29 1.00 47.72	R R	C N
	ATOM	2808	C ASN R 317	34.136	14.786 -11.786 13.899 -11.074		R	ŏ
	MOTA	2809	O ASN R 317 N LYS R 318	34.335 34.945	15.799 -11.916	1.00 48.90	R	N
	MOTA	2810 2811	N LYS R 318 CA LYS R 318	36.301	15.935 -11.309	1.00 50.22	R	С
55	ATOM ATOM	2812	CB LYS R 318	37.303	16.666 -12.338	1.00 52.02	R	C
50	ATOM	2813	CG LYS R 318	37.001	18.223 -12.395		R	C
	ATOM	2814	CD LYS R 318	38.028	19.020 -13.178	1.00 56.69 1.00 60.37	R R	C
	ATOM	2815	CE LYS R 318	37.332	19.973 -14.178 21.279 -14.250		R	N
(0.5	ATOM	2816	NZ LYS R 318	38.027 36.319	16.583 -9.871		R	C
60	ATOM	2817	C LYS R 318 O LYS R 318	37.357	16.477 -9.205		R	0
	MOTA MOTA	2818 2819	O LYS R 318 N LEU R 319	35.118	16.836 -9.312	1.00 49.14	R	N
	ATOM	2820	CA LEU R 319	34.979	17.469 -8.010		R	C
	MOTA	2821	CB LEU R 319	33.815	18.468 -8.032		R	C
65	MOTA	2822	CG LEU R 319	33.842	19.321 -9.298		R R	C
	ATOM	2823	CD1 LEU R 319	32.549	20.109 -9.435 20.362 -9.298		R	Ç
	MOTA	2824	CD2 LEU R 319 C LEU R 319	34.945 34.826			R	C
	MOTA		C LEU R 319 O LEU R 319	35.153	16.826 -5.671		R	0
	ATOM	2020	0 1110 11 313	210				

							45 000		4 00 70		_	
	ATOM	2827	N	CYS R	-	34.255	15.280	-7.087	1.00 52.		R	N
	MOTA	2828	CA		320	34.143	14.287	-6.015	1.00 54.		R	C
	MOTA	2829	C	CYS R		35.100	13.111	-6.283	1.00 54.	-	R	C
	MOTA	2830	0_	CYS R		35.793	12.594	-5.408	1.00 54.		R	0
5	MOTA	2831	CB	CYS R		32.670	13.787	-5.987	1.00 54.		R	C
	MOTA	2832	SG	CYS R		31.444	15.094	-5.670	1.00 55.		R	S
	MOTA	2833	N	TYR R		35.052	12.647	-7.540	1.00 55.		R	\widetilde{N}
	MOTA	2834	CA	TYR R		35.921	11.566	-7.924	1.00 57.		R	C
	MOTA	2835	CB	TYR R		35.038	10.437	-8.520	1.00 57.		R	C
10	MOTA	2836	CG	TYR R		34.109	9.835	-7.496	1.00 57.		R	C
	MOTA	2837	CD1			34.556	8.880	-6.570	1.00 58.		R	C
	MOTA	2838	CE1			33.703	8.424	-5.563	1.00 58.		R	C
	MOTA	2839	CD2			32.779	10.271	-7.435	1.00 57.		R	C
	MOTA	2840	CE2			31.940	9.831	-6.417	1.00 58.		R	C
15	ATOM	2841	CZ	TYR R		32.377	8.910	-5.496	1.00 58.		R	C
	ATOM	2842	OH	TYR R		31.560	8.536	-4.446	1.00 60.		R	0
	MOTA	2843	C	TYR R		36.869	12.128	-8.981	1.00 58. 1.00 59.		R	C
	MOTA	2844	0	TYR R		37.605	13.095	-8.757 -10.162	1.00 60.		R R	0
00	MOTA	2845	N	GLU R		36.780 37.583	11.530 12.049	-10.162	1.00 60.		R	N C
20	ATOM	2846	CA	GLU R		38.796	11.128	-11.231 -11.294	1.00 62.		R	G
	MOTA	2847	CB	GLU R GLU R		39.983		-11.294 -12.070	1.00 70.		R	c
	ATOM	2848 2849	CD	GLU R		41.272		-11.396	1.00 74.		R	G
	MOTA	2850	OE1			42.167		-12.082	1.00 77.		R	Ö
25	MOTA ATOM	2851	OE2			41.371		-10.186	1.00 76.		R	ŏ
23	ATOM	2852	C	GLU R		36.754		-12.512	1.00 61.		R	č
	ATOM	2853	Ö	GLU R		35.916		-12.684	1.00 61.		R	ŏ
	ATOM	2854	N	ASP R		36.944		-13.403	1.00 62.		R	N
	MOTA	2855	CA	ASP R		36.259			1.00 61.		R	Ĉ
30	ATOM	2856	CB	ASP R		36.043	14.277		1.00 61.		R	č
50	ATOM	2857	CG	ASP R		35.390	14.308	-16.635	1.00 62.		R	Č
	ATOM	2858		ASP R		35.228	13.261	-17.257	1.00 61.		R	ŏ
	ATOM	2859		ASP R		35.086			1.00 62.		R	ō
	MOTA	2860	C	ASP R		37.139	12.053	-15.616	1.00 60.		R	Ċ
35	MOTA	2861	ō	ASP R		37.947		-16.354	1.00 61.		R	Ö
•	ATOM	2862	N	ASP R		36.753	10.813	-15.617	1.00 59.	09	R	N
	ATOM	2863	CA	ASP R	324	37.332	9.795	-16.458	1.00 59.	54	R	C
	MOTA	2864	CB	ASP R		37.447	8.433	-15.700	1.00 58.	18	R	С
	MOTA	2865	CG	ASP R	324	38.404	8.540		1.00 58.	12	R	C
40	MOTA	2866		ASP R		39.614	8.828		1.00 55.		R	0
	ATOM	2867	OD2	ASP R		37.944	8.405	-13.275	1.00 57.		R	0
	MOTA	2868	·C	ASP R		36.554		-17.764	1.00 59.		R	C
	MOTA	2869	0	ASP R		36.891		-18.629	1.00 59.		R	0
	MOTA.	2870	N	LYS R		35.502	10.483	-17.906	1.00 59.		R	N
45	ATOM	2871	CA	LYS R		34.622			1.00 58.		R	C
	MOTA	2872	CB	LYS R		35.382		-20.361	1.00 59.		R	C
	ATOM	2873	CG	LYS R		36.262		-20.325	1.00 63.		R	C
	ATOM	2874	CD	LYS R		36.858		-21.703	1.00 65.		R	C
	ATOM	2875	CE	LYS R		37.800		-21.724	1.00 68. 1.00 70.		R	C
50	ATOM	2876	NZ	LYS R		37.884 34.087		-23.087 -19.095	1.00 70.		R R	C N
	ATOM	2877	C	LYS R LYS R		33.972		-20.135	1.00 58.		R	Õ
	ATOM	2878 2879	N O	LEU R		33.803		-17.897	1.00 55.		R	N
	ATOM ATOM	2880	CA	LEU R		33.319		-17.802	1.00 52.		R	C
55	ATOM	2881	CB	LEU R		33.986		-16.573	1.00 54.		R	č
33	ATOM	2882	CG	LEU R		34.495		-16.818	1.00 55.		R	Č
	ATOM	2883	CD1			34.879		-15.523	1.00 57.		R	č
	ATOM	2884	CD2			33.462		-17.512	1.00 54.		R	č
	ATOM	2885	C	LEU R		31.808	6.992		1.00 50.		R	č
60	ATOM	2886	Õ	LEU R		31.281		-16.536	1.00 48.		R	Õ
00	ATOM	2887	N	TRP R		31.102	7.012		1.00 47.		R	N
	ATOM	2888	CA	TRP R		29.654			1.00 47.		R	Ĉ
	ATOM	2889	CB	TRP R		29.148		-20.138	1.00 44.		R	C
	ATOM	2890	CG	TRP R		29.596		-20.562	1.00 42.		R	C
65	ATOM	2891	CD2			29.042		-20.137	1.00 40.		R	C
	ATOM	2892	CE2			29.664	11.088	-20.904	1.00 40.		R	C
	ATOM	2893	CE3	TRP R	327	28.087		-19.188	1.00 38.		R	C
	ATOM	2894	CD1			30.540		-21.567	1.00 38.		R	C
	ATOM	2895	NE1	. TRP R	327	30.616	10.435	-21.836	1.00 39.	52	R	N

	ATOM	2896	CZ2			29.329	12.415 -20.704	1.00 38.74	R	C
	ATOM	2897	CZ3			27.747	11.747 -18.988	1.00 38.32	R	
	ATOM	2898	CH2	TRP F	327	28.375	12.752 -19.752	1.00 39.26	R	
	MOTA	2899	C	TRP F	327	28.982	5.859 -18.245	1.00 48.40	R	
5	ATOM	2900	0	TRP F	327	29.460	4.746 -18.442	1.00 48.70	R	
	ATOM	2901	N	SER F	328	27.844	6.041 -17.554	1.00 48.50	R	_
	ATOM	2902	CA	SER F		26.995	4.889 -17.304	1.00 49.05	R	
	ATOM	2903	CB	SER F		25.930	5.296 -16.287	1.00 46.82	R	
	ATOM	2904	OG	SER F		24.983	6.165 -16.912	1.00 46.96	R	
10	ATOM	2905	Ċ	SER F		26.326	4.464 -18.609	1.00 49.92		-
	ATOM	2906	ŏ	SER F		26.388	5.155 -19.623	1.00 49.92	R	_
	ATOM	2907	N	ASN F		25.712	3.267 -18.579		R	_
	ATOM	2908	CA	ASN F		24.870	2.894 -19.704	1.00 49.23	R	
	ATOM	2909	CB	ASN F		24.267	1.523 -19.395	1.00 48.88	R	
15	ATOM	2910	CG	ASN F				1.00 49.16	R	_
10	ATOM	2911		ASN F		25.347	0.476 -19.454	1.00 50.84	R	
	ATOM	2912		ASN F		26.343	0.615 -20.156	1.00 51.96	R	
	ATOM	2913	C			25.126	-0.613 -18.698	1.00 49.44	R	N
		2914		ASN F		23.743	3.915 -19.869	1.00 48.95	R	C
20	ATOM		0	ASN F		23.352	4.605 -18.938	1.00 48.39	R	0
20	ATOM	2915	N	TRP F		23.240	4.032 -21.113	1.00 48.80	R	N
	ATOM	2916	CA	TRP F		22.086	4.893 -21.323	1.00 48.88	R	C
	ATOM	2917	CB	TRP F		21.711	4.851 -22.808	1.00 48.23	R	C
	ATOM	2918	CG	TRP F		22.688	5.621 -23.615	1.00 47.23	R	C
0.5	ATOM	2919	CD2			22.784	7.064 -23.719	1.00 47.22	R	C
25	ATOM	2920	CE2			23.799	7.348 -24.670	1.00 46.29	R	C
	ATOM	2921	CE3			22.123	8.119 -23.095	1.00 46.83	R	C
	ATOM	2922	CD1			23.645	5.091 -24.508	1.00 47.29	R	C
	ATOM	2923	NE1			24.333	6.058 -25.170	1.00 47.42	R	N
	ATOM	2924	CZ2	TRP R	330	24.116	8.662 -24.973	1.00 45.44	R	C
30	ATOM	2925	CZ3	TRP R	330	22.440	9.433 -23.398	1.00 46.73	R	Č
	ATOM	2926	CH2	TRP R	330	23.448	9.704 -24.340	1.00 44.89	R	Ċ
	ATOM	2927	С	TRP R	330	20.902	4.414 -20.481	1.00 48.65	R	č
	ATOM	2928	0	TRP R	330	20.674	3.224 -20.306	1.00 50.55	R	ŏ
	ATOM	2929	N	SER R	331	20.152	5.378 -19.917	1.00 49.56	R	N
35	ATOM	2930	CA	SER R	331	18.928	4.997 -19.225	1.00 50.78	R	Č
	ATOM	2931	CB	SER R		18.324	6.262 -18.613	1.00 49.15	R	G
	ATOM	2932	OG	SER R		17.739	7.052 -19.650	1.00 47.98	R	Ö
	ATOM	2933	C	SER R		17.935	4.392 -20.213	1.00 53.51		
	ATOM	2934	ō	SER R		18.126	4.413 -21.421	1.00 54.38	R	C
40	ATOM	2935	N	GLN R		16.863	3.797 -19.663		R	0
	ATOM	2936	CA	GLN R		15.769		1.00 55.70	R	N
	ATOM	2937	CB	GLN R		14.796	3.410 -20.539 2.547 -19.739	1.00 58.54	R	C
	ATOM	2938	CG	GLN R		15.428		1.00 59.23	R	C
	ATOM	2939	CD	GLN R			1.227 -19.293	1.00 63.58	R	C
45	ATOM	2940				15.638	0.339 -20.497	1.00 66.03	R	C
40		2941	OE1			14.717	-0.152 -21.127	1.00 68.61	R	0
	MOTA		NE2			16.935	0.132 -20.801	1.00 66.39	R	N
	ATOM	2942	C	GLN R		15.071	4.664 - 21.056	1.00 58.92	R	С
	ATOM	2943	0	GLN R		15.113	5.728 - 20.452	1.00 58.59	R	0
50	ATOM	2944	N	GLU R		14.454	4.539 - 22.238	1.00 59.74	R	N
50	ATOM	2945	CA	GLU R		13.906	5.743 -22.834	1.00 61.05	R	C
	MOTA	2946	CB	GLU R		13.842	5.582 -24.354	1.00 60.90	R	C
	MOTA	2947	CG	GLU R		13.447	4.175 -24.795	1.00 63.18	R	C
	ATOM	2948	CD	GLU R		13.527	4.097 -26.303	1.00 64.95	R	C
	MOTA	2949	OE1			12.589	4.523 -26.962	1.00 65.07	R	0
55	ATOM	2950	OE2			14.549	3.637 -26.810	1.00 65.85	R	0
	MOTA	2951	С	GLU R	333	12.531	6.097 -22.286	1.00 61.41	R	С
	MOTA	2952	0	GLU R	333	11.874	5.339 -21.585	1.00 62.10	R	ŏ
	MOTA	2953	N	MET R	334	12.146	7.340 -22.587	1.00 61.90	R	N
	MOTA	2954	CA	MET R	334	10.780	7.764 -22.370	1.00 63.08	R	C
60	ATOM	2955	CB	MET R		10.672	8.375 -20.973	1.00 63.01	R	Č
	MOTA	2956	CG	MET R		9.392	9.195 -20.797	1.00 63.17	R	C
	ATOM	2957	SD	MET R		9.099	9.651 -19.083	1.00 65.16	R	s
	ATOM	2958	CE	MET R		9.266	8.012 -18.359	1.00 62.36	R	C
	ATOM	2959	C	MET R		10.413	8.803 -23.418	1.00 62.36		
65	ATOM	2960	Õ	MET R		11.200	9.678 -23.756	1.00 63.76	R	C
	ATOM	2961	Ŋ	SER R		9.262	8.748 -24.104	1.00 63.38	R	O
	ATOM	2962	CA	SER R		8.835	9.719 -25.151	1.00 64.91	R	N
	ATOM	2963	CB	SER R		8.655	9.130 -26.526		R	C
	ATOM	2964	OG	SER R		8.514		1.00 66.23	R	C
		~ J U =	-	~ L. I	555	0.714	7.778 -26.432	1.00 68.31	R	0

	ATOM ATOM ATOM	2965 2966 2967	C SER R O SER R N ILE R	335	7.623 7.164 7.284		4.740 3.583 5.565	1.00 67.14 1.00 66.71 1.00 68.37	R R R	С О И
5	ATOM ATOM ATOM	2968 2969 2970	CA ILE R CB ILE R CG2 ILE R	336 336	6.234 6.666 7.733	13.696 -2 14.619 -2	5.362 4.423 5.063 4.079	1.00 70.69 1.00 70.06 1.00 69.34 1.00 69.89	R R R	0000
10	ATOM ATOM ATOM ATOM	2971 2972 2973 2974	CG1 ILE R CD1 ILE R C ILE R O ILE R	336 336	5.485 5.781 5.835 6.690	15.765 -2	3.018 6.728	1.00 69.89 1.00 69.80 1.00 73.10 1.00 73.37	R R R	0 0 0
	ATOM ATOM ATOM	2975 2976 2977	N GLY R CA GLY R C GLY R	337 337 337	4.574 3.906 3.582	14.093 -2 12.991 -2	8.991	1.00 75.30 1.00 77.98 1.00 80.70	R R R	N C
15	ATOM ATOM ATOM ATOM	2978 2979 2980 2981	O GLY R N LYS R CA LYS R CB LYS R	338 338	3.771 3.080 2.940 1.772	13.348 -3	1.351	1.00 80.91 1.00 83.73 1.00 86.40 1.00 87.18	R R R	С И О
20	ATOM ATOM ATOM	2982 2983 2984	CG LYS R CD LYS R CE LYS R	338 338 338	2.124 2.463 2.614	9.953 -3 8.709 -3 7.349 -3	1.819 0.943 1.841	1.00 88.18 1.00 89.20 1.00 90.05	R R R	C C
	ATOM ATOM ATOM ATOM	2985 2986 2987 2988	NZ LYS R C LYS R O LYS R N LYS R	338 338	3.830 3.012 3.053 3.244	12.883 -3	2.718 2.821 3.092	1.00 90.07 1.00 87.92 1.00 88.32 1.00 89.43	R R R	И С О И
25	ATOM ATOM ATOM	2989 2990 2991	CA LYS R CB LYS R C LYS R	339 339	2.989 3.608 3.687	11.514 -3 12.487 -3 10.064 -3	5.098 6.108	1.00 90.66 1.00 90.65 1.00 91.59	R R R	CCC
30	ATOM ATOM ATOM	2992 2993 2994	O LYS R OXT LYS R CB ASP L	339 1	4.948 2.966 45.108	9.031 -3 47.536 1	5.171 4.894 .9.263	1.00 92.23 1.00 92.68 1.00 55.28	R R L	0 0 0
	ATOM ATOM ATOM ATOM	2995 2996 2997 2998	CG ASP L OD1 ASP L OD2 ASP L C ASP L	1 1 1	43.772 43.684 42.739 47.516	46.206 2 47.833 1	.9.777 :0.486 .9.390	1.00 57.07 1.00 58.59 1.00 58.03 1.00 53.88	L L L	0 0 0
35	ATOM ATOM ATOM	2999 3000 3001	O ASP L N ASP L CA ASP L	1 1 1	48.114 45.989 46.148	47.863 1 46.823 2 46.658 1	.9.920 1.353 .9.903	1.00 53.80 1.00 54.39 1.00 53.85	L L L	O N C
40	ATOM ATOM ATOM ATOM	3002 3003 3004 3005	N ILE L CA ILE L CB ILE L CG2 ILE L	2 2 2 2	48.035 49.273 49.731 50.966	47.069 1 46.111 1	.8.249 .7.763 .6.746	1.00 53.02 1.00 51.46 1.00 51.89 1.00 50.86	L L L L	И С С
	ATOM ATOM ATOM	3006 3007 3008	CG1 ILE L CD1 ILE L C ILE L	2 2 2 2	50.075 50.600 49.161	44.848 1 43.743 1	.7.388 .6.271 .7.264	1.00 51.86 1.00 52.35 1.00 50.87	L L L	0 0 0
45	MOTA MOTA ATOM	3009 3010 3011	O ILE L N VAL L CA VAL L	2 3 3	48.216 50.048 50.093	49.374 1 50.795 1	.6.492 .7.741 .7.349	1.00 52.29 1.00 49.99 1.00 47.23	L L	O N C
50	ATOM ATOM ATOM ATOM	3012 3013 3014 3015	CB VAL L CG1 VAL L CG2 VAL L C VAL L	3 3 3 3	50.385 50.543 49.243 51.288	53.219 1 51.541 1	.8.564 .8.192 .9.551 .6.439	1.00 45.72 1.00 40.75 1.00 44.61 1.00 46.87	L L L	C
	ATOM ATOM ATOM	3016 3017 3018	O VAL L N LEU L CA LEU L	3 4 4	52.288 51.115 52.177	50.411 1 51.549 1 51.740 1	.6.719 .5.306 .4.342	1.00 47.44 1.00 45.47 1.00 46.51	L L	O N C
55	ATOM ATOM ATOM	3019 3020 3021	CB LEU L CG LEU L CD1 LEU L	4 4 4	51.794 51.205 50.966	49.853 1 49.673 1	.2.801 .2.683 .1.414	1.00 46.37 1.00 47.87 1.00 47.17	L L	
60	MOTA MOTA MOTA MOTA	3022 3023 3024 3025	CD2 LEU L C LEU L O LEU L N THR L	4 4 4 5	52.111 52.378 51.514 53.595	53.271 1 53.995 1	.3.310 .4.306 .4.010 .4.404	1.00 47.09 1.00 45.92 1.00 45.62 1.00 45.95	L L L	C 0
	MOTA MOTA MOTA	3026 3027 3028	CA THR L CB THR L OG1 THR L	5 5 5	54.023 54.812 53.831	55.006 1 55.199 1 54.993 1	.4.373 .5.705 .6.770	1.00 46.85 1.00 46.65 1.00 47.07	r F	C C
65	MOTA MOTA MOTA	3029 3030 3031	CG2 THR L C THR L O THR L	5 5 6	55.159 54.846 55.915	55.321 1 54.893 1	L5.835 L3.123 L3.007	1.00 45.76 1.00 46.19 1.00 47.94	L L L	C 0
	MOTA MOTA	3032 3033	N GLN L CA GLN L	6 6	54.395 55.271		12.249 11.051	1.00 45.30 1.00 44.84	L	

	ATOM	3034	СВ	GLN L	6	54.334	56.787	9.868	1.00 44.65	L	С
	ATOM	3035	CG	GLN L	6	53.377	55.566	9.584	1.00 42.77	L	C
	MOTA	3036	CD	GLN L	6	52.678	55.622	8.399	1.00 43.26	Ŀ	C
_	ATOM	3037	OE1	GLN L	6	51.527	55.138	8.442	1.00 40.72	L	0
5	ATOM ATOM	3038 3039	NE2 C	GLN L GLN L	6 6	53.311 56.164	56.196 57.684	7.285 11.332	1.00 40.31 1.00 44.60	L L	N C
	ATOM	3040	0	GLN L	6	55.834	58.708	12.138	1.00 44.62	L	ŏ
	ATOM	3041	N	SER L	7	57.360	57.613	10.803	1.00 44.40	L	N
	ATOM	3042	CA	SER L	7	58.136	58.881	10.869	1.00 44.64	L	С
10	MOTA	3043	CB	SER L	7	59.139	58.836	11.990	1.00 45.02	Ŀ	C
	ATOM	3044	OG G	SER L	7	59.810	57.747	12.082 9.567	1.00 43.10 1.00 44.16	L L	0
	ATOM ATOM	3045 3046	C	SER L SER L	7 7	58.931 59.211	58.984 57.952	9.367	1.00 44.16	L	C
	ATOM	3047	N	PRO L	8	59.208	60.157	9.001	1.00 44.18	L	N
15	ATOM	3048	CD	PRO L	8	59.790	60.409	7.682	1.00 42.55	L	С
	MOTA	3049	CA	PRO L	8	58.763	61.394	9.582	1.00 44.95	Ŀ	C
	MOTA	3050	CB	PRO L	8	59.465	62.429	8.780	1.00 45.54	L	C
	ATOM ATOM	3051 3052	CG C	PRO L PRO L	8 8	59.469 57.272	61.921 61.528	7.428 9.399	1.00 43.82 1.00 46.33	L L	C
20	ATOM	3052	Ö	PRO L	8	56.761	60.744	8.659	1.00 45.84	L	ŏ
20	ATOM	3054	N	ALA L	9	56.624	62.578	9.923	1.00 46.67	L	N
	ATOM	3055	CA	ALA L	9	55.199	62.817	9.692	1.00 47.31	L	С
	MOTA	3056	CB	ALA L	9	54.666	63.799	10.774	1.00 44.86	L	C
05	MOTA	3057	C	ALA L	9	54.997 53.994	63.494 63.269	8.291 7.637	1.00 47.65 1.00 47.24	L L	C
25	ATOM ATOM	3058 3059	N O	ALA L SER L	9 10	55.954	64.256	7.850	1.00 47.24	L	N
	ATOM	3060	CA	SER L	10	55.865	64.857	6.396	1.00 47.27	L	C
	ATOM	3061	CB	SER L	10	55.188	66.124	6.377	1.00 47.86	L	C
	ATOM	3062	OG	SER L	10	55.940	67.005	7.153	1.00 52.42	L	0
30	ATOM	3063	C	SER L	10	57.249 58.220	65.126 65.199	5.893 6.713	1.00 46.24 1.00 45.57	L L	C
	ATOM ATOM	3064 3065	N O	SER L LEU L	10 11	57.436	65.116	4.556	1.00 45.55	L	N
	ATOM	3066	ĈA	LEU L	11	58.696	65.349	4.051	1.00 47.02	L	Ċ
	ATOM	3067	CB	LEU L	11	59.677	64.273	4.174	1.00 46.19	L	C
35	MOTA	3068	CG	LEU L	11	59.455	62.842	3.681	1.00 48.73	Ł	C
	MOTA	3069		LEU L	11	58.223	62.745	3.064	1.00 48.29	L	C
	MOTA MOTA	3070 3071	CD2 C	LEU L LEU L	11 11	60.627 58.582	62.242 65.890	2.868 2.664	1.00 47.04 1.00 47.80	L L	C
	ATOM	3071	0	LEU L	11	57.628	65.515	2.026	1.00 49.05	L	ŏ
40	MOTA	3073	N	ALA L	12	59.590	66.695	2.255	1.00 48.67	L	N
	MOTA	3074	CA	ALA L	12	59.682	67.388	0.926	1.00 49.18	L	C
	MOTA	3075	CB	ALA L	12	59.624	68.839	1.108	1.00 47.86	L	C
	MOTA	3076 3077	C	ALA L ALA L	12 12	61.038 62.069	66.951 66.973	0.353 1.136	1.00 49.73 1.00 50.03	L L	C
45	ATOM ATOM	3077	O N	VAL L	13	61.019	66.499	-0.936	1.00 30.03	L	И
40	ATOM	3079	CA	VAL L	13	62.096	65.902	-1.610	1.00 49.56	Ŀ	Ĉ
	MOTA	3080	CB	VAL L	13	61.867	64.417	-1.751	1.00 50.10	L	С
	MOTA	3081		VAL L	13	63.090	63.700	-2.535	1.00 49.03	Ŀ	C
50	MOTA	3082		VAL L VAL L	13	61.881 62.081	63.650 66.387	-0.385 -3.096	1.00 48.49 1.00 49.81	L L	C
50	ATOM ATOM	3083 3084	C O	VAL L	13 13	60.965	66.532	-3.673	1.00 48.90	L	Ö
	MOTA	3085	Ň	SER L	14	63.266	66.552	-3.698	1.00 51.08	L	N
	ATOM	3086	CA	SER L	14	63.372	67.112	-5.090	1.00 52.59	${f L}$	C
	MOTA	3087	CB	SER L	14	64.664	67.798	-5.413	1.00 53.64	L	C
55	ATOM	3088	OG	SER L	14	65.034 63.196	68.809 66.058	-4.530 -6.019	1.00 57.54 1.00 52.19	L L	C
	ATOM ATOM	3089 3090	C	SER L SER L	$\frac{14}{14}$	63.395	64.859	-5.695	1.00 50.20	r L	Ö
	ATOM	3091	N	LEU L	15	62.698	66.434	-7.134	1.00 53.27	L	N
	ATOM	3092	CA	LEU L	15	62.574	65.390	-8.237	1.00 54.53	L	С
60	ATOM	3093	CB	LEU L	15	62.142	66.024	-9.524	1.00 55.40	L	C
	ATOM	3094	CG	LEU L	15	60.716	66.501	-9.429	1.00 58.56	Ŀ	C
	ATOM ATOM	3095 3096		LEU L	15 15	59.911 60.005	67.289 65.204	-10.574 -9.238	1.00 58.01 1.00 60.27	L L	C
	ATOM	3096	CD2	LEU L	15	63.914	64.654	-8.459	1.00 55.55	L	C
65	ATOM	3098	ŏ	LEU L	15	64.930	65.289	-8.375	1.00 55.36	L	0
	ATOM	3099	N	GLY L	16	63.795	63.337	-8.663	1.00 56.75	L	N
	ATOM	3100	CA	GLY L	16	64.822	62.284	-8.802	1.00 58.63	Ŀ	C
	ATOM	3101	C	GLY L	16 16	65.683 66.674	61.943 61.253	-7.633 -7.795	1.00 60.16 1.00 61.71	L L	C
	MOTA	3102	0	GLY L	ΤO	00.0/4	01.200	-1.133	T.00 OT./I	L	J

	3.000	2102	NT.	CIT NT T	17	C 1	E 121	62.607	-6.519	1.00 60.61	т	ът
	ATOM	3103	N	GLN L	17		5.434				L	N
	ATOM	3104	CA	GLN L	17	6.	5.963	62.217	-5.216	1.00 60.86	L	C
	MOTA	3105	CB	GLN L	17	6.	5.978	63.455	-4.328	1.00 61.98	L	C
	ATOM	3106	ĊĠ	GLN L	17	_	6.931	64.635	-4.734	1.00 63.16	L	Č
_												
5	MOTA	3107	CD	GLN L	17		8.419	64.089	-5.008	1.00 65.17	L	C
	ATOM	3108	OE1	GLN L	17	6.	9.148	63.567	-4.073	1.00 65.16	L	0
	ATOM	3109	NE2	GLN L	17	6	8.787	64.108	-6.313	1.00 64.55	L	N
	MOTA	3110	C	GLN L	17		5.173	61.036	-4.565	1.00 60.56	L	С
	MOTA	3111	0	GLN L	17	6	4.239	60.498	-5.052	1.00 60.18	L	0
10	ATOM	3112	N	ARG L	18		5.618	60.659	-3.379	1.00 60.22	L	N
10												
	MOTA	3113	CA	ARG L	18		5.179	59.485	-2.698	1.00 60.54	L	C
	ATOM	3114	$^{\mathrm{CB}}$	ARG L	18	6	6.356	58.697	-2.216	1.00 62.33	L	C
	MOTA	3115	CG	ARG L	18	6	5.975	57.341	-1.777	1.00 66.77	L	C
								56.520				
	ATOM	3116	$^{\rm CD}$	ARG L	18		7.139		-1.168	1.00 68.42	L	C
15	ATOM	3117	NE	ARG L	18	6'	7.633	57.422	-0.155	1.00 71.65	L	N
	ATOM	3118	CZ	ARG L	18	6	8.200	57.067	0.931	1.00 73.04	上	С
					18		8.376	55.781	1.210	1.00 74.42	L	N
	ATOM	3119	NH1									
	MOTA	3120	NH2	ARG L	18	6	8.597	58.027	1.771	1.00 73.52	L	N
	MOTA	3121	C	ARG L	18	6	4.423	59.827	-1.432	1.00 59.73	L	C
20		3122	ō	ARG L	18		4.878	60.597	-0.565	1.00 59.95	L	0
20	ATOM											
	MOTA	3123	N	ALA L	19		3.285	59.225	-1.304	1.00 57.66	L	N
	MOTA	3124	CA	ALA L	19	6:	2.597	59.398	-0.115	1.00 56.97	L	С
	ATOM	3125	CB	ALA L	19	6	1.261	59.878	-0.465	1.00 56.41	L	C
	MOTA	3126	С	ALA L	19		2.473	58.120	0.563	1.00 56.01	L	C
25	MOTA	3127	0	ALA L	19	6	2.181	57.057	-0.083	1.00 55.90	L	0
	ATOM	3128	N	THR L	20	6	2.553	58.230	1.861	1.00 54.57	L	N
								57.145	2.729	1.00 54.71	L	Ĉ
	MOTA	3129	$^{\mathrm{CA}}$	THR L	20		2.530					
	ATOM	3130	CB	THR L	20	6	3.976	56.984	3.320	1.00 55.31	L	С
	MOTA	3131	OG1	THR L	20	6	4.811	56.247	2.349	1.00 58.52	L	О
20		3132	CG2	THR L	20	_	3.997	55.982	4.450	1.00 54.15	L	C
30	ATOM											
	ATOM	3133	С	THR L	20		1.488	57.301	3.965	1.00 54.23	L	С
	ATOM	3134	0	THR L	20	6	1.495	58.250	4.662	1.00 55.01	L	0
	ATOM	3135	N	ILE L	21		0.594	56.353	4.184	1.00 52.55	L	N
	MOTA	3136	CA	ILE L	21		9.478	56.571	5.138	1.00 51.39	L	C
35	ATOM	3137	CB	ILE L	21	5	8.267	56.531	4.332	1.00 51.03	L	C
	ATOM	3138	CG2	ILE L	21		7.101	56.522	5.229	1.00 50.72	L	С
											L.	Č
	MOTA	3139	CG1		21		8.199	57.829	3.513	1.00 50.62		
	ATOM	3140	CD1	ILE L	21	5	6.828	57.893	2.664	1.00 51.38	L	С
	ATOM	3141	С	ILE L	21	5	9.550	55.393	6.102	1.00 50.89	L	C
40		3142		ILE L	21		9.654	54.245	5.588	1.00 50.75	L	Ö
40	ATOM		0									
	ATOM	3143	N	SER L	22		9.500	55.604	7.412	1.00 48.72	L	N
	MOTA	3144	CA	SER L	22	5	9.530	54.455	8.218	1.00 49.28	L	C
	ATOM	3145	СВ	SER L	22		0.870	54.319	8.753	1.00 50.79	L	C
										1.00 54.83		
	MOTA	3146	OG	SER L	22		1.230	55.479	9.171		L	0
45	ATOM	3147	С	SER L	22	5	8.395	54.153	9.139	1.00 48.61	L	C
	ATOM	3148	0	SER L	22	5	7.519	55.017	9.484	1.00 48.61	L	0
									-	1.00 48.09	L	N
	ATOM	3149	N	CYS L	23		8.280	52.943	9.516			
	ATOM	3150	ca	CYS L	23		7.217	52.634	10.437	1.00 49.40	L	C
	MOTA	3151	С	CYS L	23	5	7.811	51.946	11.667	1.00 49.17	L	C
50	ATOM	3152	ŏ	CYS L	23		8.420	50.962	11.568	1.00 50.55	L	0
50										1.00 47.98		
	MOTA	3153	CB	CYS L	23		6.230	51.648	9.696		L	C
	ATOM	3154	SG	CYS L	23	5	4.576	51.056	10.342	1.00 52.95	L	S
	ATOM	3155	N	LYS L	24		7.261	52.210	12.742	1.00 48.85	L	N
						Ē	7.583			1.00 49.76		ä
	MOTA	3156	$^{\rm CA}$	t LYS L	24			51.323	14.012		Ŀ	C
55	MOTA	3157	$^{\rm CB}$	t LYS L	24	5	8.391	52.158	14.922	1.00 50.72	Ŀ	С
	ATOM	3158	CG	LYS L	24	5	8.429	51.726	16.593	1.00 52.19	Ŀ	C
					24		9.897	51.577	16.954	1.00 55.36	L	Ċ
	MOTA	3159	CD	LYS L								_
	ATOM	3160	CE	LYS L	24		0.182	50.188	17.675	1.00 56.92	L	С
	MOTA	3161	NZ	LYS L	24	6	1.602	49.679	17.499	1.00 58.53	L	N
60		3162	C	LYS L	24		6.402	50.795	14.619	1.00 49.31	L	C
60	ATOM											
	ATOM	3163	0	LYS L	24		5.435	51.454	14.980	1.00 49.16	L	0
	MOTA	3164	N	ALA L	25	5	6.376	49.572	14.892	1.00 49.30	L	N
	ATOM	3165	CA	ALA L	25		5.234	49.028	15.546	1.00 49.48	L	С
											Ŀ	č
	ATOM	3166	СВ	ALA L	25		4.953	47.724	14.762	1.00 47.96		C
65	ATOM	3167	С	ALA L	25	5	5.445	48.694	17.022	1.00 50.20	L	С
	ATOM	3168	0	ALA L	25		6.480	48.267	17.399	1.00 49.44	L	0
		3169		SER L	26		4.398	48.740	17.797	1.00 51.08	_ L	N
	ATOM		N									
	MOTA	3170	ca	SER L	26		4.567	48.567	19.242	1.00 53.13	L	C
	MOTA	3171	CB	SER L	26	5	3.332	49.105	19.920	1.00 52.28	L	C
				— -								

	ATOM MOTA	3172 3173	OG C	SER L SER L	26 26	52.243 54.774	48.435 47.175 46.923	19.292 19.632 20.721	1.00 52.65 1.00 55.40 1.00 55.86	L L L	0 C 0
	MOTA	3174 3175	O N	SER L GLU L	26 27	55.013 54.637	46.243	18.729	1.00 56.96	L	N
5	ATOM ATOM	3176	CA	GLU L	27	54.838	44.861	18.928	1.00 57.52	L	С
J	ATOM	3177	CB	GLU L	27	53.453	44.334	19.153	1.00 60.89	L	C
	ATOM	3178	CG	GLU L	27	53.153	43.582	20.429	1.00 66.03	L	C
	ATOM	3179	CD	GLU L	27	52.824	44.531	21.585	1.00 70.45	L L	0
	ATOM	3180	OE1	GLU L	27	51.607	44.914	21.710 22.334	1.00 73.02 1.00 72.02	F F	
10	MOTA	3181	OE2	GLU L	27	53.793 55.191	44.893 44.233	17.624	1.00 56.33	L	
	ATOM	3182	C	GLU L GLU L	27 27	54.884	44.731	16.612	1.00 54.86	L	
	ATOM	3183 3184	N O	SER L	28	55.715	43.027	17.631	1.00 56.67	L	
	ATOM ATOM	3185	CA	SER L	28	56.161	42.382	16.351	1.00 55.27	L	
15	ATOM	3186	CB	SER L	28	56.723	41.077	16.656	1.00 53.96	L	
	ATOM	3187	OG	SER L	28	57.529	40.535	15.622	1.00 56.49	Ŀ	
	ATOM	3188	C	SER L	28	55.000	42.100	15.481	1.00 54.43	L L	
	ATOM	3189	0	SER L	28	54.124	41.630	15.977 14.141	1.00 54.12 1.00 53.99	T.	
	ATOM	3190	N	VAL L	29	55.162 54.170	42.207 41.736	13.189	1.00 53.99	Ŀ	
20	ATOM	3191	CA	VAL L VAL L	29 29	53.760	42.905	12.246	1.00 52.07	L	
	MOTA MOTA	3192 3193	CB CG1	VAL L	29	53.450	44.030	13.131	1.00 50.61	L	
	ATOM	3194		VAL L	29	54.794	43.332	11.216	1.00 50.81	L	
	MOTA	3195	C	VAL L	29	54.684	40.567	12.449	1.00 55.43	Ŀ	
25	MOTA	3196	0	VAL L	29	54.029	40.128	11.565	1.00 55.80	L	
	MOTA	3197	N	ASP L	30A	55.823	39.964	12.809	1.00 55.85 1.00 56.24	L L	
	MOTA	3198	CA	ASP L	30A	56.207 57.610	38.724 38.437	12.097 12.307	1.00 56.24	L	
	ATOM	3199	CB	ASP L ASP L	30A 30A	58.540	39.376	11.585	1.00 57.40	L	
20	MOTA MOTA	3200 3201	CG OD1	ASP L	30A	59.709	39.192	11.915	1.00 63.22	L	
30	ATOM	3202		ASP L	30A	58.262	40.297	10.706	1.00 60.76	L	
	ATOM	3203	C	ASP L	30A	55.441	37.453	12.548	1.00 55.44	L	
	ATOM	3204	0	ASP L	30A	55.032	37.344	13.692	1.00 54.11	L	
	MOTA	3205	N	ASN L	30B	55.172	36.561	11.637	1.00 56.01	I.	
35	MOTA	3206	CA	ASN L	30B	54.376	35.290	11.874 11.102	1.00 56.75 1.00 57.19	I	
	ATOM	3207	CB	ASN L	30B	53.122 52.338	35.263 33.978	11.310	1.00 57.15	Ī	
	ATOM	3208 3209	CG OD1	ASN L ASN L	30B 30B	52.062	33.581	12.461	1.00 56.40	Ī	
	ATOM ATOM	3210	ND2		30B	52.051	33.231	10.119	1.00 56.26	I	n N
40	MOTA	3211	C	ASN L	30B	55.197	34.018	11.810	1.00 57.63	T	
40	ATOM	3212	ō	ASN L	30B	55.549	33.299	12.907	1.00 59.38	I	
	ATOM	3213	N	TYR L	30C	55.972	33.851	10.826	1.00 58.12	I	
	MOTA	3214	CA	TYR L	30C	56.966	32.728	11.255 10.871	1.00 57.56 1.00 59.59	I	
	MOTA	3215	CB	TYR L	30C 30C	56.393 55.804	31.318 30.433	11.997	1.00 62.38	Ī	
45	ATOM	3216 3217	CG CD1	TYR L TYR L	30C	56.575	29.521	12.651	1.00 63.98	I	
	ATOM ATOM	3218	CE1		30C	56.062	28.868	13.663	1.00 65.37	I	
	ATOM	3219	CD2		30C	54.516	30.530	12.335	1.00 62.73		. Č
	MOTA	3220	CE2		30C	53.994		13.359	1.00 65.31	I	
50	MOTA	3221	CZ	TYR L	30C	54.751		14.043	1.00 66.28 1.00 67.53	I	
	MOTA	3222	OH	TYR L	30C	54.177		15.161 10.322	1.00 56.78	I	
	ATOM	3223	C	TYR L	30C	58.014 57.979		9.221	1.00 56.52	Ī	
	MOTA	3224 3225	O N	TYR L GLY L	30C 30D	58.707		10.516	1.00 55.18	I	
55	MOTA MOTA	3226	N CA	GLY L	30D	59.595		9.451	1.00 53.84	I	ь с
55	ATOM	3227	C	GLY L	30D	58.974	35.386	8.429	1.00 53.10		L C
	ATOM	3228	0	GLY L	30D	59.696		7.594	1.00 52.98	I	
	ATOM	3229	N	LYS L	30E	57.655		8.425	1.00 52.44		L N L C
	MOTA	3230	CA	LYS L		57.221		7.395	1.00 51.96 1.00 53.54		L C
60	ATOM	3231	CB	LYS L		56.282 56.499		6.222 5.741	1.00 53.34		r C
	MOTA	3232	CG	LYS L LYS L		55.680		6.760	1.00 52.44		r c
	ATOM	3233 3234	CD	LYS L		56.238		6.799	1.00 53.21		ь с
	ATOM ATOM	3234	NZ	LYS L		55.917	30.965	7.780	1.00 52.68]	r n
65	ATOM	3236	Č	LYS L		56.619	37.756	8.105			r c
	ATOM	3237	0	LYS L	30E	56.010			1.00 51.31		L O
	MOTA	3238	N	SER L		56.795		7.602			L N
	MOTA	3239				56.368					r c
	MOTA	3240	СВ	SER L	31	57.408	3 41.265	0.194	T.00 #1.TO	•	

	7 MOM	2011	OC CER I	31	58.776	40.786	8.489	1.00 49.94	L	0
	ATOM ATOM	3241 3242	OG SER L C SER L	31	55.073	40.596	7.675	1.00 46.30	L	č
	ATOM	3243	O SER L	31	55.007	40.931	6.496	1.00 47.15	L	0
	ATOM	3244	N LEU L	32	54.082	40.732	8.542	1.00 45.54	L	N
5	MOTA	3245	CA LEU L	32	52.707	40.890	8.042	1.00 44.95	<u>r</u>	C
	MOTA	3246	CB LEU L	32	51.658	40.126	8.959	1.00 43.45	Ľ	C
	MOTA	3247	CG LEU L	32	51.951	38.635	9.078	1.00 42.44	L L	C
	MOTA	3248	CD1 LEU L	32	50.943	37.801	9.742	1.00 40.43 1.00 40.35	L	C
	ATOM	3249	CD2 LEU L	32	52.063 52.494	38.084 42.421	7.588 8.128	1.00 40.33	L	G
10	MOTA	3250	C LEU L	32 32	51.620	42.421	8.861	1.00 45.96	L	ŏ
	ATOM ATOM	3251 3252	O LEU L N MET L	33	53.135	43.182	7.215	1.00 44.68	L	N
	ATOM	3253	CA MET L	33	53.114	44.629	7.195	1.00 46.62	L	C
	ATOM	3254	CB MET L	33	54.453	45.212	7.636	1.00 48.40	L	С
15	ATOM	3255	CG MET L	33	54.706	46.723	7.347	1.00 51.53	L	C
	MOTA	3256	SD MET L	33	53.565	47.476	8.816	1.00 57.60	L	S
	MOTA	3257	CE MET L	33	54.234	47.188	10.430	1.00 55.27	ŗ	C
	MOTA	3258	C MET L	33	52.978	44.924	5.655	1.00 45.90	L	C
	ATOM	3259	O MET L	33	53.599	44.269	$\frac{4.780}{5.33}$	1.00 45.80 1.00 43.80	L L	N
20	ATOM	3260	N HIS L	34	52.113 51.930	45.875 46.321	5.332 3.910	1.00 43.80	L	C
	MOTA	3261	CA HIS L	34 34	50.514	45.888	3.633	$1.00 \ 42.70$	Ĺ	č
	ATOM ATOM	3262 3263	CB HIS L	34	50.190	44.505	4.049	1.00 41.65	Ľ	Ċ
	ATOM	3264	CD2 HIS L	34	49.217	44.047	4.864	1.00 44.21	L	С
25	ATOM	3265	ND1 HIS L	34	50.838	43.400	3.574	1.00 42.76	L	N
	ATOM	3266	CE1 HIS L	34	50.297	42.330	4.140	1.00 43.50	${f L}$	С
	MOTA	3267	NE2 HIS L	34	49.304	42.711	4.907	1.00 42.79	Ŀ	N
	ATOM	3268	C HIS L	34	51.890	47.798	3.859	1.00 42.81	Ŀ	C
	MOTA	3269	O HIS L	34	51.722	48.488	4.923	1.00 44.23	L	O NT
30	MOTA	3270	N TRP L	35	52.117	48.370	2.676	1.00 41.84 1.00 41.57	, L L	N C
	ATOM	3271	CA TRP L	35	52.202 53.559	49.815 50.142	$2.481 \\ 2.025$	1.00 41.37	L	C
	ATOM	3272	CB TRP L	35 35	54.525	50.142	3.172	1.00 40.40	L	č
	ATOM ATOM	3273 3274	CG TRP L	35 35	54.944	51.224	3.971	1.00 41.73	Ľ	Č
35	ATOM	3275	CE2 TRP L	35	56.052	50.760	4.800	1.00 41.68	L	C
33	MOTA	3275	CE3 TRP L	35	54.491	52.502	4.165	1.00 40.10	L	C
	ATOM	3277	CD1 TRP L	35	55.573	49.170	3.306	1.00 41.34	L	C
	ATOM	3278	NE1 TRP L	35	56.439	49.548	4.300	1.00 41.83	L	\mathbf{N}
	MOTA	3279	CZ2 TRP L	35	56.704	51.592	5.736	1.00 41.45	Ŀ	Ç
40	ATOM	3280	CZ3 TRP L	35	55.082	53.332	5.309	1.00 41.11	L	C
	MOTA	3281	CH2 TRP L	35	56.169	52.825	6.002	1.00 41.44	L	C
	MOTA	3282	C TRP L	35	51.210	50.279	$1.457 \\ 0.372$	1.00 42.23 1.00 43.53	L L	C
	MOTA	3283	O TRP L	35	51.012 50.489	49.567 51.384	$\frac{0.372}{1.725}$	1.00 40.06	L	N
45	MOTA	3284 3285	N TYR L CA TYR L	36 36	49.548	51.881	0.769	1.00 39.58	Ĺ	Ĉ
45	ATOM ATOM	3286	CB TYR L	36	48.068	51.823	1.298	1.00 38.10	L	Ċ
	ATOM	3287	CG TYR L	36	47.633	50.524	1.872	1.00 39.65	${f L}$	C
	ATOM	3288	CD1 TYR L	36	48.018	50.099	3.040	1.00 37.47	L	C
	MOTA	3289	CE1 TYR L	36	47.728	48.721	3.438	1.00 37.52	L	C
50	MOTA	3290	CD2 TYR L	36	47.005	49.647	1.020	1.00 36.92	\mathbf{L}	C
	ATOM	3291	CE2 TYR L	36	46.662	48.284	1.426	1.00 36.87	Ŀ	C
	MOTA	3292	CZ TYR L	36	47.070	47.850	2.651	1.00 37.75	Ŀ	C
	MOTA	3293	OH TYR L	36	46.782	46.544	3.043	1.00 39.29 1.00 40.31	L L	O C
	ATOM	3294	C TYR L	36 36	49.883	53.400 54.086	0.509 1.359	1.00 40.31	L	ŏ
55	MOTA	3295	O TYR L N GLN L	36 37	50.509 49.535	53.818	-0.725	1.00 39.96	L	Ŋ
	MOTA MOTA	3296 3297	N GLN L CA GLN L	3 <i>7</i> 37	49.704	55.158	-1.255	1.00 40.83	L	Ċ
	ATOM	3298	CB GLN L	37	50.186	55.133	-2.658	1.00 39.79	L	C
	MOTA	3299	CG GLN L	37	50.494	56.431	-3.274	1.00 42.07	L	С
60	MOTA	3300	CD GLN L		51.024	56.484	-4.754	1.00 44.50	${f L}$	С
•	ATOM	3301	OE1 GLN L	37	50.377	56.066	-5.645	1.00 47.36	L	0
	MOTA	3302	NE2 GLN L		52.180	57.013	-4.930	1.00 43.45	L	N
	MOTA	3303	C GLN L	37	48.324	55.765	-1.490	1.00 40.88	Ŀ	C
	MOTA	3304	O GLN L		47.497	55.064	-2.111	1.00 39.82	L T.	O
65	MOTA	3305	N GLN L		48.031	56.962	-0.927	1.00 41.63 1.00 42.50	L L	N C
	ATOM	3306	CA GLN L		46.767	57.644 57.803	-1.200 0.033	1.00 42.30	r L	C
	MOTA	3307	CB GLN L		45.989 44.570	58.433	-0.190	1.00 42.20	L	C
	ATOM ATOM	3308 3309	CG GLN L		43.661	58.451	1.068	1.00 42.42	Ĺ	č
	AT OH	5505	لل ۱۱۰۰ می	50						

	ATOM	3310	OE1 GL	N L	38	44.153	58.584	2.191	1.00 40.92	L	0
	ATOM				38	42.275	58.205	0.809	1.00 41.03	<u>r</u>	N
	ATOM			N L	38	47.132	59.057	-1.704	1.00 43.48	<u> </u>	C
	ATOM			N L	38	47.433	59.962	-0.961	1.00 43.75	L	O
5	ATOM	3314	N LY	S L	39	47.003	59.229	-2.988	1.00 45.16	L L	C N
•	ATOM	3315		ZS L	39	47.000	60.502	-3.632	1.00 46.88	L	C
	ATOM	3316		KS L	39	47.079	60.354	-5.121	1.00 48.09 1.00 50.07	L L	Ċ
	ATOM	-		ZS L	39	48.104	59.370	-5.531 -6.952	1.00 53.52	L	č
	MOTA			KS L	39	48.627	59.508 58.426	-7.919	1.00 56.25	L	Č
10	ATOM			YS L	39	48.304	58.420	-8.719	1.00 56.24	L	N
	ATOM			YS L	39	49.534 45.820	61.324	-3.269	1.00 47.86	L	C
	MOTA			YS L	39	44.811	60.782	-2.807	1.00 47.17	L	0
	ATOM			YS L	39	45.967	62.651	-3.375	1.00 48.23	L	N
	MOTA			RO L	40 40	47.119	63.387	-3.934	1.00 48.78	L	С
15	ATOM			RO L	40	44.892	63.548	-3.036	1.00 48.38	L	C
	MOTA			RO L · RO L	40	45.487	64.858	-3.472	1.00 49.68	L	С
	ATOM			RO L	40	46.955	64.694	-3.202	1.00 50.16	\mathbf{L}	C
	ATOM			RO L	40	43.592	63.400	-3.829	1.00 48.85	L	C
00	ATOM ATOM	3329	-	RO L	40	43.605	63.329	-5.042	1.00 48.79	L	0
20	ATOM			LY L	41	42.472	63.239	-3.114	1.00 49.59	Г	N
	ATOM	3331		LYL	41	41.156	62.982	-3.786	1.00 50.02	L	C
	ATOM	3332		LY L	41	40.830	61.537	-4.182	1.00 50.71	L	C
	ATOM	3333	-	LY L	41	39.765	61.195	-4.532	1.00 50.67	L	0
25	ATOM	3334	-	LN L	42	41.824	60.716	-4.258	1.00 50.87	Ŀ	N
20	ATOM	3335		LN L	42	41.796	59.300	-4.507	1.00 51.75	L	C
	ATOM	3336		LN L	42	43.039	59.072	-5.281	1.00 52.91	L	C
•	ATOM	3337		LN L	42	42.948	59.658	-6.822	1.00 55.22	Ţ	C
	ATOM	3338	CD G	LN L	42	44.150	59.256	-7.607	1.00 56.68	L	0
30	ATOM	3339	OE1 G	LN L	42	44.755	60.170	-8.261	1.00 58.21	L L	И
	MOTA	3340	NE2 G	LN L	42	44.623	57.918	-7.519	1.00 57.44	r L	C
131	ATOM	3341	C G	LN L	42	41.764	58.317	-3.141	1.00 50.97 1.00 51.08	L	Ö
	MOTA	3342		LN L	42	41.808	58.707	-2.045	1.00 51.08	L	N
	MOTA	3343		ER L	43	41.523	57.062	-3.326	1.00 49.33	L	Č
35	MOTA	3344		ER L	43	41.337	56.114	-2.324 -2.712	1.00 50.00	L L	č
	MOTA	3345		ER L	43	40.209	55.257 54.393	-3.771	1.00 52.62	L	ó
	ATOM	3346		ER L	43	40.679		-2.199	1.00 46.70	L	č
	MOTA	3347		SER L	43	42.800	55.404 55.641	-3.047	1.00 45.07	L	Ö
	ATOM	3348		SER L	43	43.674	54.829	-1.039	1.00 46.29	L	N
40	MOTA	3349		PRO L	44	43.118 42.200	54.695	0.070	1.00 47.19	L	
	MOTA	3350		PRO L	44	44.345	54.129	-0.843	1.00 46.37	L	
	MOTA	3351		PRO L	44	44.180	53.413	0.387	1.00 46.52	L	
	MOTA	3352		PRO L	44	43.084	54.301	1.176	1.00 47.07	L	C
	ATOM	3353		PRO L	44	44.586	53.048	-1.945	1.00 46.83	L	
45	MOTA	3354		PRO L	44	43.649	52.520	-2.368	1.00 47.16	L	O
	MOTA	3355			45	45.807		-2.306	1.00 46.19	L	
	ATOM	3356 3357		LYS L	45	46.236	51.816	-3.267	1.00 47.13	L	
	ATOM ATOM	3358		LYS L	45	46.560		-4.574	1.00 46.21	L	
EO	ATOM	3359		LYS L	45	47.534		-5.593	1.00 49.79	L	
50	MOTA	3360		LYS L	45	47.328		-7.044	1.00 53.61	I	
	ATOM	3361		LYS L	45	48.384		-8.178	1.00 55.08	I	
	MOTA	3362		LYS L	45	48.007	51.167	-9.072	1.00 59.14	Ī	
	MOTA	3363		LYS L	45	47.439		-2.780	1.00 46.15	I	
55	MOTA	3364		LYS L	45	48.367	51.601	-2.208		Ī	
55	MOTA	3365		LEU L	46	47.439		-3.087		I	
	MOTA	3366		LEU L	46	48.420	48.871			Ī	
	MOTA	3367		LEU L	46	47.967				I	
	ATOM	3368		LEU L	46	49.091	46.349			I	
60	ATOM	3369		LEU L	46	49.245	46.386			I	
50	MOTA	3370		LEU L	46	48.519	44.936		1.00 43.61	I	
	ATOM	3371		LEU L	46	49.719	48.986			I	
	MOTA			LEU L		49.784					
	MOTA			LEU L		50.822	49.188	-2.491	1.00 43.91		
65	ATOM			LEU L		52.11				I	
00	ATOM			LEU L		52.82				1	i C
	ATOM		CG	LEU L	47	52.34		-2.865	1.00 45.79		r C
	ATOM		CD1	LEU L	47	53.21			1.00 43.54		r C
	ATOM			LEU L	47	52.64	5 52.217	-4.259	1.00 44.99	J	r C

								1.00 43.22	L	С
	ATOM	3379	C LEU L	47 47	52.920 53.660		-3.804	1.00 43.02	L	0
	MOTA MOTA	3381 1	M ILE L	48	53.024	47.708 46.659	-1.562 -1.077	1.00 42.64 1.00 44.20	L L	N C
5	MOTA MOTA		CA ILE L CB ILE L	48 48	53.893 55.148	47.296	-0.472	1.00 44.06 1.00 42.39	L L	C
5	MOTA	3384 (CG2 ILE L	48 48	56.083 55.895	46.170 48.103	-1.540	1.00 43.43	L	С
	ATOM ATOM		CD1 ILE L	48	57.123	47.375 45.824	-2.060 -0.013	1.00 45.86 1.00 44.86	L L	C
10	ATOM ATOM		O ILE L	48 48	53.169 52.713	46.305	0.993	1.00 44.44	r F	N
10	MOTA	3389	N TYR L	49 49	53.069 52.544	44.523 43.575	-0.336 0.646	1.00 43.51 1.00 44.25	L	С
	MOTA MOTA		CA TYR L CB TYR L	49	51.447	42.725	-0.007 -1.095	1.00 44.43 1.00 47.66	L L	C
4.00	MOTA	3392	CG TYR L CD1 TYR L	49 49	51.998 52.302	41.866 40.531	-0.831	1.00 48.71	L	С
15	MOTA ATOM	3394	CE1 TYR L	49	52.574 51.996	39.656 42.319	-1.873 -2.415	1.00 48.62 1.00 46.74	L L	C
	ATOM ATOM		CD2 TYR L CE2 TYR L	49 49	52.278	41.447	-3.456	1.00 47.16	L	C
	MOTA	3397	CZ TYR L	49 49	52.567 52.841	40.122 39.246	-3.189 -4.221	1.00 47.68 1.00 49.06	L	0
20	ATOM ATOM	3398 3399	C TYR L	49	53.626	42.684	1.269 0.719	1.00 44.97 1.00 44.07	L L	C
	MOTA	3400	O TYR L N ARG L	49 50	54.695 53.318	42.452 42.219	2.485	1.00 44.80	L	N
	MOTA MOTA	3401 3402	CA ARG L	. 50	54.318	41.356	3.209 2.609	1.00 46.52 1.00 47.86	L L	C
25	ATOM	3403 3404	CB ARG L	50 50	54.263 54.273	39.963 38.890	3.685	1.00 49.22	: L	C
	MOTA MOTA	3405	CD ARG L	50	54.342 53.536	37.481 37.403	3.085 1.865	1.00 49.53 1.00 51.67		N
	MOTA MOTA	3406 3407	NE ARG L CZ ARG L	50 50	53.801	36.394	1.017	1.00 52.68 1.00 53.20	B L	C N
30	MOTA	3408	NH1 ARG L	50 50	54.765 53.036	35.533 36.226	1.290 -0.066	1.00 52.22	2 L	N
	MOTA MOTA	3409 3410	NH2 ARG L C ARG L	50	55.780	41.844	3.283 3.136	1.00 46.28	B L L L	C O
	MOTA	3411	O ARG L N ALA L	50 51	56.760 55.831	41.090 43.166	3.535	1.00 45.86	5 L	N
35	MOTA MOTA	3412 3413	CA ALA L	51	56.996	44.060 43.478	3.797 4.954	1.00 44.82 1.00 45.10	2 L	C
	MOTA MOTA	3414 3415	CB ALA L	51 51	57.806 58.054	44.322	2.684	1.00 46.1	4 L	C
	ATOM	3416	O ALA L	51	58.836 58.146	45.259 43.438	2.765 1.650	1.00 47.3 1.00 44.6		N
40	ATOM ATOM	3417 3418	N SER L	52 52	59.178	43.624	0.583	1.00 45.9 1.00 42.7		C
40	MOTA	3419	CB SER L		60.482 60.249	42.894 41.539	0.955 1.329	1.00 43.6	2 L	0
	MOTA ATOM	3420 3421	C SER L	52	58.718	43.186	-0.849 -1.810	1.00 47.1 1.00 48.3	9 L 8 L	C 0
4.5	MOTA	3422 3423	O SER L N ASN L		59.467 57.403	43.297 42.790	-0.932	1.00 49.2	0 F	N
45	MOTA MOTA	3424	CA ASN L	53	56.750 55.792			1.00 51.2 1.00 52.8	6 L 0 L	
	MOTA MOTA	3425 3426	CB ASN I		56.547	39.817	-1.926	1.00 55.5	8 L	
	MOTA	3427	OD1 ASN I	53	57.180 56.499			1.00 55.7	'9 L	\mathbf{N}
50	MOTA MOTA	3428 3429	ND2 ASN I C ASN I	53 ر	55.998	43.325	-2.976	1.00 51.9	0 L	
	MOTA	3430	O ASN I		54.932 56.626			1.00 52.0)1 L	N
	MOTA MOTA		CA LEU I	54	56.044	44.648	-5.060		38 I 15 I	C
55	ATOM		CB LEU I		57.080 56.676	5 46.173	-7.022	1.00 54.4	16 I	, C
	MOTA MOTA	3435	CD1 LEU I	ւ 54	56.434 57.738)9 I 24 I	, C
	MOTA ATOM			ն 54 ն 54	54.749	9 44.151	L -5.720	1.00 53.	72 I	
60	MOTA	3438	O LEU	ւ 54	54.703 53.62			1.00 53.	51 I	N
	MOTA MOTA			ւ 55	52.36	8 44.478	8 -6.116	5 1.00 55.	11 I	
	ATOM	3441	. CB GLU	ь 55	51.29 49.97		4 -5.592 5 -6.300	1.00 55.	64 I	. C
65	ATOM ATOM		CD GLU	ь 55	49.16	9 43.96	9 -5.835	5 1.00 57.	19 I 60 I	. O
00	ATOM	3444	OE1 GLU	ь 55 ь 55	49.76 47.88			2 1.00 56.	57	<u>ن</u> 0
	ATOM ATOM		C GLU	L 55	52.36	0 44.66	2 -7.650	0 1.00 55.		L C
	ATOM		7 O GLU	ь 55	52.87 228	0 45.53	Z -0.21	, <u>1.00 55.</u>		

	ATOM	3448	N	SER L	56	51.750	43.781	-8.303	1.00 56.80	I	ı N
	ATOM	3449	CA	SER L	56	51.755	43.837	-9.703	1.00 58.42	L	
	ATOM	3450	CB	SER L	56	50.933	42.610	-10.158	1.00 58.40	I	_
_	ATOM	3451	OG	SER L	56	50.926	42.846	-11.533	1.00 62.54	L	
5	ATOM	3452	C	SER L	56	51.163	45.190	-10.225	1.00 57.30	L	_
	MOTA	3453	0	SER L	56	50.186	45.761	-9.731	1.00 57.56	Ī	_
	ATOM	3454	N	GLY L	57	51.874	45.796	-11.127	1.00 57.37	L	
	MOTA	3455	CA	GLY L	57 57	51.424	47.049	-11.688	1.00 56.96	L	-
40	MOTA	3456	C	GLY L	57	52.204	48.193	-11.119	1.00 56.79	L	
10	ATOM ATOM	3457 3458	O	GLY L ILE L	57 58	52.157 52.895	49.231	-11.753	1.00 58.79 1.00 55.41	L	_
	ATOM	3459	N CA	ILE P	58	53.508	48.026 49.177	-9.960 -9.257	1.00 53.41	I.	
	ATOM	3460	CB	ILE L	58	53.534	48.875	-7.833	1.00 53.96	L	
	ATOM	3461	CG2	ILE L	58	54.205	49.855	-7.156	1.00 51.43	L	
15	ATOM	3462	CG1		58	52.121	48.769	-7.308	1.00 50.04	ī	
	MOTA	3463	CD1		58	51.212	50.082	-7.601	1.00 50.72	ī	
	ATOM	3464	C	ILE L	58	54.878	49.294	-9.751	1.00 54.15	ī	
	ATOM	3465	Ō	ILE L	58	55.493	48.283	-9.888	1.00 55.21	Ī	
	ATOM	3466	N	PRO L	59	55.399	50.473	-10.051	1.00 53.53	L	
20	ATOM	3467	CD	PRO L	59	54.706	51.752	-10.212	1.00 52.32	L	
	ATOM	3468	CA	PRO L	59	56.800	50.603	-10.428	1.00 53.60	L	C
	ATOM	3469	CB	PRO L	59	56.943	52.058	-10.742	1.00 51.95	L	C
	MOTA	3470	CG	PRO L	59	55.586	52.664	-10.254	1.00 51.28	L	
	MOTA	3471	C	PRO L	59	57.867	50.269	-9.460	1.00 54.47	I	
25	ATOM	3472	0	PRO L	59	57.709	50.423	-8.128	1.00 55.96	L	
	ATOM	3473	N	ALA L	60	58.970	49.767	-10.063	1.00 54.31	L	
	MOTA	3474	CA	ALA L	60	60.165	49.330	-9.309	1.00 54.02	L	
	ATOM	3475 3476	CB	ALA L	60	61.266	48.623 50.494	-10.235	1.00 53.41	L	
30	ATOM ATOM	3477	С 0	ALA L ALA L	·60 60	60.854 61.789	50.494	-8.512 -7.714	1.00 53.88 1.00 53.56	L	
30	ATOM	3477	N	ARG L	61	60.503	51.752	-8.815	1.00 53.36	L L	
	ATOM	3479	CA	ARG L	61	60.979	52.803	-7.943	1.00 53.40	L	-
	ATOM	3480	CB	ARG L	61	60.491	54.163	-8.394	1.00 54.39	L	
	ATOM	3481	CG	ARG L	61	60.284	54.239	-9.802	1.00 55.57	L	
35	ATOM	3482	CD	ARG L	61	59.850	55.654	-10.234	1.00 58.75	L	
	ATOM	3483	NE	ARG L	61	58.422	55.955	-10.333	1.00 60.43	L	
	MOTA	3484	CZ	ARG L	61	57.733	56.569	-9.387	1.00 61.42	L	
	MOTA	3485	NH1	ARG L	61	58.344	56.916	-8.329	1.00 61.49	L	
	ATOM	3486	NH2	ARG L	61	56.475	56.905	-9.543	1.00 60.78	L	N
40	MOTA	3487	С	ARG L	61	60.565	52.561	-6.456	1.00 51.50	L	C
	ATOM	3488	0	ARG L	61	61.109	53.120	-5.595	1.00 51.57	L	
	ATOM	3489	N	PHE L	62	59.529	51.811	-6.212	1.00 50.00	L	
	MOTA	3490	CA	PHE L	62	59.032	51.632	-4.935	1.00 49.93	L	_
45	ATOM	3491	CB	PHE L	62	57.467	51.469	-4.961	1.00 47.93	L	
45	MOTA	3492 3493	CG CD1	PHE L	62	56.737	52.754	-5.178	1.00 48.92	L	
	ATOM ATOM	3494		PHE L	62 62	56.522 56.365	53.651 53.122	-4.150 -6.376	1.00 48.20 1.00 48.67	L L	
	ATOM	3495		PHE L	62	55.873	54.853	-4.358	1.00 48.82	L	
	ATOM	3496	CE2		62	55.859	54.350	-6.619	1.00 49.21	L	
50	MOTA	3497	CZ	PHE L	62	55.528	55.210	-5.657	1.00 47.07	L	
	ATOM	3498	Č	PHE L	62	59.627	50.305	-4.485	1.00 50.05	L	
	ATOM	3499	Ó	PHE L	62	59.369	49.281	-5.181	1.00 51.12	L	
	ATOM	3500	N	SER L	63	60.115	50.244	-3.287	1.00 48.79	L	
	ATOM	3501	CA	SER L	63	60.627	49.031	-2.616	1.00 49.33	L	
55	MOTA	3502	CB	SER L	63	62.221	48.902	-2.650	1.00 48.44	L	
	MOTA	3503	OG	SER L	63	62.867	50.204	-2.559	1.00 52.96	L	0
	MOTA	3504	C	SER L	63	60.387	49.146	-1.139	1.00 49.52	L	C
	MOTA	3505	0	SER L	63	60.260	50.204	-0.588	1.00 50.14	L	
	MOTA	3506	\mathbf{N}	GLY L	64	60.505	48.022	-0.459	1.00 49.55	L	
60	MOTA	3507	CA	GLY L	64	60.236	47.981	0.966	1.00 49.92	L	
	ATOM	3508	C	GLY L	64	61.159	46.980	1.657	1.00 50.31	L	
	ATOM	3509	0	GLY L	64	61.708	46.063	1.050	1.00 51.49	L	
	ATOM	3510	N	SER L	65	61.365	47.192	2.967	1.00 50.12	L	
GE.	MOTA	3511	CA	SER L	65 65	62.186	46.237	3.707	1.00 51.65	L	
65	ATOM ATOM	3512 3513	CB OG	SER L SER L	65 65	63.669 63.903	46.486 47.880	3.393 3.197	1.00 51.79 1.00 54.65	L L	
	ATOM	3513	C	SER L	65	61.942	46.325	5.240	1.00 54.65	L L	
	ATOM	3515	0	SER L	65	61.163	47.105	5.722	1.00 52.23	L L	
	ATOM	3516	N	GLY L	66	62.640	45.355	5.896	1.00 53.83	L	
					- •	-2.520					

									-	
	MOTA		A GLY L	66	62.944	45.167 44.044	7.285 7.895	1.00 54.65 1.00 55.40	L L	C C
	ATOM	3518 C 3519 O		66 66	62.097 61.401	43.294	7.225	1.00 56.17	L	0
	ATOM ATOM	3520 N		67	62.236	43.937	9.219 9.898	1.00 56.74 1.00 57.00	L L	C N
5	MOTA		A SER L	67	61.469 62.289	42.901 41.610	9.899	1.00 56.12	Ē	C
	MOTA MOTA		CB SER L OG SER L	67 67	63.440	41.777	10.728	1.00 52.42	Ŀ	0
	MOTA	3524 C		67	61.112	43.301	11.330	1.00 58.80 1.00 58.14	L L	C C
	MOTA	3525 C		67 68	61.566 60.226	44.299 42.492	11.869 11.938	1.00 50.14	L	N
10	ATOM ATOM	3526 N 3527 C	N ARG L CA ARG L	68	59.752	42.799	13.284	1.00 62.85	L	C C
	MOTA		CB ARG L	68	60.943	42.830	14.243 15.635	1.00 66.36 1.00 71.20	L L	G
	MOTA		CG ARG L	68 68	60.579 61.290	42.311 40.988	15.902	1.00 75.53	L	С
4.5	ATOM ATOM		CD ARG L NE ARG L	68	62.250	40.757	14.819	1.00 79.27	L	N C
15	ATOM		CZ ARG L	68	62.796	39.537	14.706 15.563	1.00 81.84 1.00 81.92	L L	N
	ATOM		NH1 ARG L NH2 ARG L	68 68	62.477 63.640	38.584 39.287	13.702	1.00 82.11	L	N
	MOTA MOTA		NH2 ARG L C ARG L	68	59.054	44.151	13.354	1.00 62.53	L	C O
20	ATOM		O ARG L	68	58.092	44.438 44.980	12.659 14.275	1.00 63.47 1.00 61.15	L L	И
	MOTA		N THR L CA THR L	69 69	59.568 58.935	46.256	14.555	1.00 58.99	\mathbf{L}	C
	MOTA MOTA		CA THR L CB THR L	69	59.128	46.541	16.044	1.00 60.19	L L	C O
	ATOM	3540	OG1 THR L	69	60.474	46.226 45.666	16.405 16.872	1.00 62.69 1.00 59.57	L	č
25	MOTA		CG2 THR L	69 69	58.185 59.549	47.398	13.734	1.00 56.96	L	C
	MOTA MOTA		O THR L	69	59.270	48.573	13.949	1.00 58.32 1.00 54.09	L L	O N
	MOTA	3544	N ASP L	70	60.444 61.095	47.031 48.083	12.793 12.018	1.00 54.09 1.00 52.20	L	Č
00	MOTA		CA ASP L CB ASP L	70 70	62.565	48.163	12.433	1.00 55.60	L	C
30	MOTA MOTA		CG ASP L	70	62.648	48.807	13.817	1.00 58.39 1.00 59.55	L L	C
	MOTA		OD1 ASP L	70	62.032 63.304	49.860 48.254	13.992 14.694	1.00 59.35	ŗ	0
	MOTA ATOM		OD2 ASP L C ASP L	70 70	60.963	47.857	10.511	1.00 50.32	L	C
35	ATOM	3551	O ASP L	70	61.438	46.878	9.956 9.855	1.00 50.21 1.00 47.22	L L	N O
	MOTA	3552	N PHE L	71 71	60.236 60.062	48.803 48.762	8.391	1.00 45.44	r L	C
	MOTA MOTA	3553 3554	CA PHE L	71	58.633	48.313	8.064	1.00 43.23	L	C
	MOTA	3555	CG PHE L	71	58.375	46.958	8.652 9.913	1.00 43.34 1.00 41.62	L L	C
40	MOTA	3556	CD1 PHE L CD2 PHE L	71 71	57.803 58.728	46.861 45.818	7.952	1.00 42.49	L	C
	MOTA MOTA	3557 3558	CD2 PHE L CE1 PHE L	71	57.594	45.613	10.480	1.00 40.34	L L	C
	ATOM	3559	CE2 PHE L	71	58.515	44.567 44.461	8.526 9.794	1.00 41.49 1.00 41.13	P P	Č
	MOTA	3560 3561	CZ PHE L		57.955 60.331	50.125	7.733	1.00 45.21	\mathbf{L}	C
45	MOTA MOTA	3561 3562	O PHE L		60.172	51.183	8.328	1.00 46.58	r r	N O
	MOTA	3563	N THR L		60.799 60.899	50.060 51.279	6.469 5.668	1.00 44.20 1.00 45.03	L	Ĉ
	MOTA	3564 3565	CA THR L		62.369	51.709	5.571	1.00 46.32	L	C
50	ATOM ATOM	3566	OG1 THR L	72	63.003	51.009	4.500		L L	O C
	MOTA	3567	CG2 THR L	72	63.107 60.311		6.874 4.266		L	č
	ATOM ATOM	3568 3569	C THR L		60.368		3.684	1.00 43.76	Ŀ	0
	MOTA	3570	N LEU I	. 73	59.865	52.169	3.622 2.296		L L	N C
55	MOTA	3571	CA LEU I		59.338 57.998		2.268		L	C
	MOTA MOTA	3572 3573	CB LEU I		57.448		0.879	1.00 40.67	L	C
	ATOM	3574	CD1 LEU I	<u>.</u> 73	57.165				L L	C
	MOTA	3575	CD2 LEU I		56.164 60.244				L	С
60	MOTA MOTA	3576 3577	C LEU I		60.489		2.145	1.00 40.33	Ŀ	O
	ATOM	3578	N THR I	L 74	60.745				L L	N C
	MOTA	3579	CA THR I		61.678 63.014			3 1.00 45.29	L	С
e E	MOTA MOTA	3580 3581	CB THR DOG THR D		63.448	52.846	0.943	3 1.00 47.02	L	0
65	MOTA	3582	CG2 THR	ւ 74	64.004	1 53.738			L L	C
	MOTA		C THR		61.192 60.57			1.00 48.07	L	0
	ATOM ATOM		O THR :		61.23				L	N
	AIOM	3303	_,		220					

	MOTA	3586	CA ILE L	75	60.824	55.801 -3.394	1.00 49.37 1.00 49.66	ŗ	C
	MOTA	3587	CB ILE L	75 75	59.716	56.813 -3.255 57.029 -4.756	1.00 49.00	L L	C
	MOTA	3588	CG2 ILE L CG1 ILE L	75 75	59.075	56.280 -2.371	1.00 48.29	L L	C
E	MOTA	3589 3590	CG1 ILE L CD1 ILE L	75 75	58.597 57.615	57.253 -2.112	1.00 49.44	L	C
5	MOTA	3591	C ILE L	75 75	62.057	56.414 -4.104	1.00 51.18	L L	Č
	ATOM ATOM	3591	O ILE L	75 75	62.647	57.343 -3.656	1.00 49.95	Ŀ	Ö
	ATOM	3593	N ASN L	76	62.551	55.697 -5.093	1.00 54.36	L	Ŋ
	ATOM	3594	CA ASN L	76	63.754	56.088 -5.754	1.00 56.06	L	Ċ
10	ATOM	3595	CB ASN L	76	64.910	55.467 -5.119	1.00 56.78	L L	Č
10	ATOM	3596	CG ASN L	76	66.156	56.228 -5.432	1.00 58.44	L	Ċ
	ATOM	3597	OD1 ASN L	76	66.083	57.367 -5.916	1.00 61.35	L	0
	ATOM	3598	ND2 ASN L	76	67.262	55.617 -5.265	1.00 57.10	L	N
	ATOM	3599	C ASN L	76	63.854	55.739 -7.120	1.00 56.03	L	C
15	ATOM	3600	O ASN L	76	63.964	54.552 -7.421	1.00 57.71	L	0
	MOTA	3601	N PRO L	77	63.827	56.689 -7.994	1.00 55.48	L	N
	MOTA	3602	CD PRO L	77	64.022	56.425 -9.423	1.00 54.95	L	С
	MOTA	3603	CA PRO L	77	63.654	58.118 -7.725	1.00 55.35	L	C
	MOTA	3604	CB PRO L	77	64.191	58.743 -9.015	1.00 54.21	L	C
20	MOTA	3605	CG PRO L	77	63.679	57.741 -10.056	1.00 54.17	L	C
	MOTA	3606	C PRO L	77	62.202	58.627 -7.678	1.00 55.61	L	C
	ATOM	3607	O PRO L	77	61.249	58.102 -8.307	1.00 55.40	L	0
	ATOM	3608	N VAL L	78	62.090	59.733 -6.904	1.00 55.66	L	N
	MOTA	3609	CA VAL L	78 70	60.826	60.404 -6.770	1.00 55.06	L L	C
25	ATOM	3610	CB VAL L	78 78	60.878 59.649	61.341 -5.622 62.191 -5.632	1.00 55.08 1.00 54.52	L	C
	MOTA	3611	CG1 VAL L CG2 VAL L	78 78	60.814	60.506 -4.300	1.00 54.52	L	C
	MOTA	3612 3613		78	60.384	61.046 -8.097	1.00 54.90	Ŀ	č
	ATOM	3614	C VAL L	78	61.125	61.666 -8.805	1.00 55.13	L	ŏ
30	ATOM ATOM	3615	N GLU L	79	59.115	61.027 -8.313	1.00 53.45	L	N
30	ATOM	3616	CA GLU L	79	58.568	61.857 -9.363	1.00 53.76	L	Ĉ
	ATOM	3617	CB GLU L	79	58.064	60.856 -10.490	1.00 55.61	L	Ċ
	ATOM	3618	CG GLU L	79	59.101	59.872 -10.986	1.00 59.25	Ŀ	С
	ATOM	3619	CD GLU L	79	58.606	58.946 -12.112	1.00 61.38	L	C
35	ATOM	3620	OE1 GLU L	79	59.547	58.243 -12.667	1.00 62.40	L	0
	MOTA	3621	OE2 GLU L	79	57.390	59.009 -12.468	1.00 61.93	L	0
	ATOM	3622	C GLU L	79	57.313	62.583 -8.913	1.00 52.66	L	С
	MOTA	3623	O GLU L	79	56.708	62.213 -7.941	1.00 52.31	Ŀ	0
	MOTA	3624	N ALA L	80	56.865	63.435 -9.740	1.00 52.07	L	N
40	MOTA	3625	CA ALA L	80	55.877	64.405 -9.435	1.00 52.18	<u>L</u>	C
	MOTA	3626	CB ALA L	80	55.736	65.167 -10.630	1.00 52.09	Ŀ	C
	MOTA	3627	C ALA L	80	54.499	63.900 -9.041	1.00 51.76	L	C
	MOTA	3628	O ALA L	80	53.863	64.489 -8.186	1.00 49.52	L	O NT
4 100	MOTA	3629	N ASP L	81	54.106	62.824 -9.738 62.079 -9.383	1.00 51.07 1.00 52.00	L L	N C
45	MOTA	3630	CA ASP L	81	52.991		1.00 54.54	L L	C
	ATOM	3631	CB ASP L	81	52.635 51.245	61.150 -10.581 60.565 -10.455	1.00 54.34	L	C
	ATOM	3632 3633	CG ASP L	81 81	50.181	61.322 -10.285	1.00 58.70	L	ŏ
	ATOM ATOM	3634	OD1 ASP L OD2 ASP L	81	51.146	59.343 -10.407	1.00 59.75	L	ŏ
50	ATOM	3635	C ASP L	81	53.025	61.238 -8.054	1.00 50.63	L	č
50	MOTA	3636	O ASP L	81	52.030	60.675 -7.720	1.00 49.73	_ L	ō
	MOTA	3637	N ASP L	82	54.075	61.308 -7.279	1.00 48.83	L	N
	ATOM	3638	CA ASP L	82	54.144	60.597 -6.012	1.00 48.89	L	C
	MOTA	3639	CB ASP L	82	55.588	60.276 -5.666	1.00 49.88	L	С
55	MOTA	3640	CG ASP L	82	56.240	59.342 -6.753	1.00 52.14	L	C
	MOTA	3641	OD1 ASP L	82	55.485	58.500 -7.287	1.00 52.41	Ŀ	0
	ATOM	3642	OD2 ASP L	82	57.442	59.343 -6.965	1.00 54.56	L	0
	ATOM	3643	C ASP L	82	53.673	61.396 -4.814	1.00 48.65	${f L}$	С
	MOTA	3644	O ASP L	82	53.819	60.947 -3.655	1.00 48.04	L	0
60	MOTA	3645	N VAL L	83	53.079	62.560 -5.096	1.00 47.12	Ŀ	N
	MOTA	3646	CA VAL L	83	52.638	63.357 -4.005	1.00 46.76	Ē	C
	MOTA	3647	CB VAL L	83	52.165	64.848 -4.323	1.00 47.54	Ŀ	C
	MOTA	3648	CG1 VAL L	83	53.180	65.486 -5.076	1.00 48.00	Ŀ	C
	MOTA	3649	CG2 VAL L	83	51.050	64.877 -5.086	1.00 48.87	ŗ	C
65	ATOM	3650	C VAL L	83	51.408	62.654 -3.519	1.00 45.32	L	C
	ATOM	3651	O VAL L	83	50.459	62.419 -4.303	1.00 45.55 1.00 43.63	· L	O
	MOTA	3652	N ALA L	84	51.466	62.377 -2.239	1.00 43.63	L L	N
	MOTA	3653	CA ALA L	84 84	50.503 50.563	61.592 -1.600 60.211 -2.223	1.00 42.80	L L	C
	MOTA	3654	CB ALA L	04	20.503	00.211 -2.223	T.00		_

	ATOM	3655	С	7 T 7 T	84	50.774	61.441	-0.101	1.00 41.61	т	~
	ATOM	3656	0	ALA L ALA L	84	51.894	61.441	0.329	1.00 42.11	L L	C
	ATOM	3657	N	THR L	85	49.863	60.727	0.565	1.00 39.60	L	И
	ATOM	3658	ĈA	THR L	85	50.123	60.302	1.982	1.00 41.07	L	C
5	ATOM	3659	CB	THR L	85	48.924	60.597	2.859	1.00 41.88	L	Č
	MOTA	3660	OG1	THR L	85	48.909	61.984	2.953	1.00 43.50	L	0
	MOTA	3661	CG2	THR L	85	49.099	60.169	4.220	1.00 42.73	L	C
	MOTA	3662	С	THR L	85	50.389	58.812	1.925	1.00 41.86	L	C
	ATOM	3663	0	THR L	85	49.688	58.201	1.232	1.00 42.14	L	0
10	ATOM	3664	N	TYR L	86	51.335	58.228	2.692	1.00 41.17	L	N
	MOTA	3665	CA	TYR L	86 86	51.669	56.827 56.644	2.666	1.00 42.15	L	C
	ATOM ATOM	3666 3667	CB CG	TYR L	86 86	53.123 53.481	57.131	$2.243 \\ 0.849$	1.00 40.67 1.00 40.33	L L	C
	ATOM	3668			86	53.696	58.456	0.549	1.00 40.33	L	C
15	MOTA	3669	CE1	TYR L	86	53.913	58.828	-0.781	1.00 38.35	L	Ċ
	ATOM	3670	CD2	TYR L	86	53.330	56.289	-0.211	1.00 38.76	L	Č
	ATOM	3671	CE2	TYR L	86	53.525	56.769	-1.598	1.00 37.31	L	C
	MOTA	3672	CZ	TYR L	86	53.794	58.033	-1.809	1.00 40.02	L	С
4	ATOM	3673	OH	TYR L	86	53.888	58.480	-3.251	1.00 37.67	L	0
20	ATOM	3674	C	TYR L	86	51.398	56.221	3.934	1.00 44.14	L	C
	MOTA	3675	O	TYR L	86	51.819	56.826	5.017	1.00 46.29	Ļ	0
	ATOM ATOM	3676 3677	N CA	TYR L	87 87	50.679 50.454	55.064 54.392	3.945 5.249	1.00 42.51 1.00 42.40	L L	C N
	ATOM	3678	CB	TYR L	87	48.946	54.323	5.530	1.00 42.40	L	C
25	ATOM	3679	CG	TYR L	87	48.195	55.573	5.499	1.00 39.25	L	Č
	MOTA	3680	CD1	TYR L	87	47.708	56.110	4.322	1.00 37.90	L	Ċ
	ATOM	3681	CE1	TYR L	87	46.929	57.277	4.400	1.00 37.86	L	С
	MOTA	3682	CD2	TYR L	87	47.710	56.086	6.696	1.00 39.45	L	C
	MOTA	3683	CE2	TYR L	87	47.057	57.273	6.743	1.00 37.41	L	C
30	ATOM	3684	CZ	TYR L	87	46.626	57.829	5.430	1.00 37.62	Ţ.	C
	ATOM ATOM	3685 3686	OH C	TYR L TYR L	87 87	45.851 50.917	58.916 52.985	5.440 5.331	1.00 40.72 1.00 43.25	L L	О С
	ATOM	3687	0	TYR L	87	50.917	52.298	4.273	1.00 43.23	L	.0
	MOTA	3688	N	CYS L	88	51.324	52.585	6.557	1.00 44.13	L	N
35	ATOM	3689	CA	CYS L	88	51.632	51.249	6.833	1.00 44.88	L	Ĉ
	ATOM	3690	C	CYS L	88	50.505	50.617	7.597	1.00 44.55	L	C
	ATOM	3691	0	CYS L	88	49.622	51.295	8.129	1.00 43.38	L	0
	ATOM	3692	CB	CYS L	88	52.986	51.039	7.654	1.00 44.75	L	C
40	ATOM	3693	SG	CYS L	88	52.928	52.042	9.185	1.00 45.57	Ŀ	S
40	ATOM	3694	N	GLN L	89	50.460	49.282	7.528	1.00 44.18	L	N
	ATOM ATOM	3695 3696	CA CB	GLN L GLN L	89 89	49.292 48.125	48.540 48.523	8.105 7.140	1.00 44.10 1.00 42.71	L L	C
	ATOM	3697	CG	GLN L	89	46.971	47.793	7.704	1.00 42.71	L	C
	ATOM	3698	CD	GLN L	89	46.825	46.370	6.956	1.00 42.95	L	č
45	ATOM	3699	OE1	GLN L	89	46.839	46.258	5.730	1.00 41.37	L	ō
	ATOM	3700	NE2	GLN L	89	46.888	45.307	7.793	1.00 38.44	L	N
	ATOM	3701	С	GLN L	89	49.756	47.136	8.424	1.00 45.06	L	С
	ATOM	3702	0	GLN L	89	50.446	46.580	7.598	1.00 44.95	L	0
50	ATOM	3703	N	GLN L	90	49.475	46.672	9.633	1.00 44.17	L	N
50	ATOM ATOM	3704 3705	CA CB	GLN L GLN L	90 90	49.737 50.491	45.307 45.296	10.051 11.398	1.00 44.79 1.00 42.34	L L	C
	ATOM	3705	CG	GLN L	90	49.625	45.801	12.585	1.00 44.52	T T	C
	MOTA	3707	CD	GLN L	90	48.654	44.710	13.155	1.00 46.51	L	Č
	MOTA	3708	OE1	GLN L	90	48.921	43.583	13.018	1.00 46.93	L	Ō
55	ATOM	3709	NE2	GLN L	90	47.546	45.105	13.756	1.00 46.47	L	N
	MOTA	3710	C	GLN L	90	48.505	44.352	10.090	1.00 45.80	L	С
	MOTA	3711	0	GLN L	90	47.331	44.706	10.396	1.00 44.66	L	0
	MOTA	3712	N	SER L	91	48.793	43.072	9.763	1.00 47.04	Ţ	N
60	MOTA	3713	CA	SER L	91	47.841	42.007	9.605	1.00 50.24 1.00 50.88	L	C
60	ATOM ATOM	3714 3715	CB OG	SER L SER L	91 91	47.991 47.148	41.516 42.515	$8.052 \\ 7.448$	1.00 50.88	L L	C
	ATOM	3716	C	SER L	91	48.260	40.852	10.535	1.00 51.02	Г	Č
	ATOM	3717	ŏ	SER L	91	47.818	39.741	10.359	1.00 51.43	L	ŏ
	ATOM	3718	N	ASN L	92	49.096	41.136	11.526	1.00 51.69	Ľ	N
65	MOTA	3719	CA	ASN L	92	49.553	40.106	12.404	1.00 52.68	L	C
	MOTA	3720	CB	ASN L	92	50.955	40.293	12.867	1.00 53.64	L	С
	ATOM	3721	CG	ASN L	92	51.439	39.102	13.659	1.00 54.66	L	C
	MOTA	3722		ASN L	92	51.345	38.022	13.199	1.00 55.46	L	O
	ATOM	3723	אחא	ASN L	92	52.089	39.337	14.773	1.00 53.66	Ŀ	N

	ATOM	3724	C ASN L	92	48.650	39.774	13.452	1.00 52.84	Ţ	C
	MOTA	3725	O ASN L	92	48.547	38.677	13.787	1.00 51.48 1.00 54.21	L L	O N
•	MOTA	3726	N GLU L	93 93	47.867 46.917	40.694 40.511	13.784 14.847	1.00 56.33	L	C
5	ATOM ATOM	3727 3728	CA GLU L CB GLU L	93	47.664	40.794	16.127	1.00 58.27	L	Č
5	MOTA	3729	CG GLU L	93	46.781	41.352	17.225	1.00 64.91	L	C
	MOTA	3730	CD GLU L	93	47.570	41.631	18.613	1.00 69.27	L	С
	MOTA	3731	OE1 GLU L	93	47.033	42.328	19.596	1.00 69.83	Ŀ	0
	MOTA	3732	OE2 GLU L	93	48.753	41.164	18.679	1.00 71.16 1.00 55.46	L L	0
10	ATOM	3733	C GLU L	93	45.693 45.830	41.403 42.487	14.792 14.512	1.00 55.46 1.00 55.13	L	Ö
	MOTA ATOM	3734 3735	O GLU L N ASP L	93 94	44.532	40.975	15.329	1.00 54.53	L	Ň
	ATOM	3736	CA ASP L	94	43.346	41.750	15.364	1.00 53.23	L	C
•	ATOM	3737	CB ASP L	94	42.142	40.809	15.294	1.00 54.70	L	С
15	MOTA	3738	CG ASP L	94 '	42.076	39.997	13.826	1.00 57.43	L	C
	MOTA	3739	OD1 ASP L	94	42.696	40.310	12.814	1.00 57.14 1.00 61.04	L L	0
	MOTA	3740	OD2 ASP L	94	41.463 43.190	39.008 42.589	13.648 16.555	1.00 51.04	P.	Č
	MOTA	3741 3742	C ASP LOOK	94 94	43.190	42.180	17.663	1.00 54.05	L	ŏ
20	ATOM ATOM	3742	N PRO L	95	42.672	43.777	16.387	1.00 48.83	L	N
20	ATOM	3744	CD PRO L	95	42.461	44.714	17.489	1.00 47.99	\mathbf{L}	C
	ATOM	3745	CA PRO L	95	42.312	44.348	15.087	1.00 48.09	L	C
	MOTA	3746	CB PRO L	95	41.376	45.510	15.436	1.00 49.09	L	C
	MOTA	3747	CG PRO L	95	42.063	46.117	16.791	1.00 47.71	L L	C
25	ATOM	3748	C PRO L	95	43.396 44.300	44.759 45.389	14.188 14.643	1.00 46.87 1.00 47.73	L	Ö
	ATOM	3749 3750	O PRO L N TRP L	95 96	43.354	44.392	12.867	1.00 47.73	L	N
	ATOM ATOM	3750 3751	N TRP L CA TRP L	96	44.289	45.074	11.947	1.00 45.52	L	Ċ
	ATOM	3752	CB TRP L	96	44.003	44.780	10.478	1.00 45.68	L	C
30	ATOM	3753	CG TRP L	96	44.181	43.372	10.097	1.00 45.86	L	C
	ATOM	3754	CD2 TRP L	96	44.084	42.815	8.827	1.00 46.64	L	C
	ATOM	3755	CE2 TRP L	96	44.231	41.361	8.976	1.00 46.98	L	C
	MOTA	3756	CE3 TRP L	96	43.831	43.331	7.577	1.00 47.58 1.00 44.89	L L	C
	MOTA	3757	CD1 TRP L	96	44.369 44.446	42.327 41.119	10.941 10.306	1.00 45.59	L	N
35	MOTA	3758 3759	NE1 TRP L CZ2 TRP L	96 96	44.327	40.521	7.939	1.00 46.28	L	Ĉ
	ATOM ATOM	3760	CZZ TRP L	96	43.875	42.467	6.467	1.00 48.84	L	С
	ATOM	3761	CH2 TRP L	96	44.030	41.022	6.640	1.00 47.17	L	C
	MOTA	3762	C TRP L	96	44.304	46.639	12.165	1.00 43.70	L	C
40	MOTA	3763	O TRP L	96	43.282	47.212	12.334	1.00 42.66	ŗ	0
	MOTA	3764	N THR L	97	45.480	47.279	12.172	1.00 42.35 1.00 42.63	L L	N C
	ATOM	3765	CA THR L	97	45.610 46.179	48.692 49.032	12.325 13.645	1.00 42.03	L	Ċ
	MOTA	3766	CB THR L	97 97	47.337	48.270	13.806	1.00 42.43	L	ŏ
45	MOTA MOTA	3767 3768	CG2 THR L	97	45.190	48.602	14.784	1.00 42.15	L	C
40	MOTA	3769	C THR L	97	46.561	49.331	11.315	1.00 42.11	L	С
	MOTA	3770	O THR L	97	47.465	48.653	10.852	1.00 40.72	L	0
	MOTA	3771	N PHE L	98	46.371	50.620	11.204	1.00 42.79	ŗ	
	MOTA	3772	CA PHE L	98	47.158	51.355	10.243	1.00 44.72 1.00 44.19	L L	C
50	ATOM	3773	CB PHE L	98 98	46.257 45.492	52.157 51.275	9.301 8.233	1.00 44.19	Ŀ	C
	MOTA MOTA	3774 3775	CG PHE L CD1 PHE L	98	44.260	50.690	8.549	1.00 44.38	L	Č
	ATOM	3776	CD1 PHE L	98	45.845	51.317	6.909	1.0043.71	L	С
	ATOM	3777	CE1 PHE L	98	43.579	49.891	7.630	1.00 44.14	L	С
55	ATOM	3778	CE2 PHE L	98	45.142	50.544	5.952	1.00 44.40	L	C
	MOTA	3779	CZ PHE L	98	43.990	49.844	6.323	1.00 43.77	Ŀ	C
	ATOM	3780	C PHE L	98	48.021	52.424	11.032	1.00 45.39 1.00 46.17	Ŀ L	C 0
	ATOM	3781	O PHE L	98	47.539	53.020 52.858	11.932 10.467	1.00 45.17	Ŀ	
60	ATOM	3782	N GLY L	99 99	49.155 49.809	54.075	10.407	1.00 45.06	L	Ĉ
60	ATOM ATOM	3783 3784	CA GLY L C GLY L	99 99	49.051	55.337	10.565	1.00 46.31	Ĺ	
	ATOM	3785	O GLY L	99	48.143	55.392	9.509	1.00 45.42	L	0
	ATOM	3786	N GLY L		49.531	56.441	11.247	1.00 45.88	L	
	MOTA	3787	CA GLY L		49.024	57.752	11.058	1.00 45.30	Ŀ	
65	ATOM	3788	C GLY L	100	49.199	58.373	9.657	1.00 45.43	L	
	MOTA	3789	O GLY L		48.790	59.443	9.313	1.00 45.57 1.00 45.62	L L	
	ATOM	3790	N GLY L		50.013	57.757 58.406	8.844 7.650	1.00 45.85	r T	
	MOTA	3791	CA GLY L		50.426 51.663	59.279	7.620	1.00 45.85	L	
	MOTA	3792	C GLY L	TOT	24.002	33.213	,		_	

	ATOM	3793	0	GLY L 101		51.934	59.904	8.587	1.00 44.61	L	0)
	MOTA	3794	N	THR L 102		52.291	59.442	6.433	1.00 45.36	L	N	
	MOTA	3795		THR L 102 THR L 102		53.411 54.626	60.313 59.534	6.255 5.965	1.00 45.28 1.00 44.83	L L	C	
5	MOTA MOTA	3796 3797	CB OG1	THR L 102		55.236	59.086	7.115	1.00 44.03	L	0)
J	MOTA	3798	CG2	THR L 102		55.665	60.329	5.172	1.00 44.01 1.00 46.66	L L	C	
	ATOM	3799	C	THR L 102 THR L 102		53.154 52.867	60.976 60.240	4.830 3.841	1.00 45.35	L	o	
	ATOM ATOM	3800 3801	N O	LYS L 103		53.058	62.320	4.809	1.00 47.18	L	N	
10	MOTA	3802	CA	LYS L 103		52.816	63.201	3.673	1.00 48.50 1.00 50.90	L L	d	
	MOTA	3803 3804	CB CG	LYS L 103 LYS L 103		52.191 51.609	64.445 65.477	$4.212 \\ 3.221$	1.00 56.57	L	d	
	ATOM ATOM	3804	CD	LYS L 103		50.967	64.749	1.911	1.00 60.51	L	C	3
	ATOM	3806	CE	LYS L 103		50.587	65.501	0.527	1.00 60.75	L L	N.	
15	MOTA	3807	NZ	LYS L 103		49.218 54.089	64.661 63.528	0.158 2.937	1.00 64.51 1.00 49.12	r L		
	MOTA MOTA	3808 3809	C O	LYS L 103		55.070	63.987	3.529	1.00 46.89	L	C)
	ATOM	3810	N	LEU L 104		54.136	63.203	1.640	1.00 49.88 1.00 50.17	L L		
	MOTA	3811	CA	LEU L 104 LEU L 104		55.237 55.450	63.493 62.279	0.821 -0.094	1.00 50.17	L		
20	ATOM ATOM	3812 3813	CB CG	LEU L 104		56.504	62.487	-1.172	1.00 51.61	L	C	3
	ATOM	3814	CD1	LEU L 104		57.736	62.665	-0.408	1.00 50.91	L L		7
	MOTA	3815		LEU L 104 LEU L 104		56.680 54.886	61.293 64.669	-2.010 -0.160	1.00 51.28 1.00 50.51	L		ž
25	MOTA MOTA	3816 3817	C O	LEU L 104		54.013	64.595	-0.991	1.00 50.36	L		С
20	MOTA	3818	N	GLU L 105		55.750	65.621	-0.180	1.00 52.49	L		N C
	MOTA	3819	CA	GLU L 105		55.759 55.539	66.681 67.921	-1.104 -0.352	1.00 54.11 1.00 55.10	L L	. (C
	ATOM ATOM	3820 3821	CB CG	GLU L 105 GLU L 105		54.018	67.996	-0.086	1.00 61.17	I	, (С
30	MOTA	3822	CD	GLU L 105		53.637	68.790	1.207	1.00 64.63	I I		C O
	ATOM	3823	OE1			54.425 52.652	68.420 69.661	2.179 1.163	1.00 67.64 1.00 65.16	I		Ö
	ATOM ATOM	3824 3825	OE2 C	GLU L 105 GLU L 105		56.954	66.708	-2.082	1.00 54.00	I	ı (С
	ATOM	3826	ŏ	GLU L 105		58.116	66.333	-1.762	1.00 53.00	I		O N
35	ATOM	3827	N	ILE L 106		56.644 57.745	67.285 67.670	-3.223 -4.139	1.00 54.75 1.00 56.70	I		C
	MOTA MOTA	3828 3829	CA CB	ILE L 106		57.349	67.406	-5.589	1.00 56.28	I	, (С
	ATOM	3830	CG2	ILE L 106		58.592	67.703	-6.534	1.00 56.73	I		C C
	MOTA	3831	CG1			56.777 57.702	65.999 65.016	-5.661 -5.232	1.00 57.37 1.00 56.71	Ī		C
40	MOTA MOTA	3832 3833	CD1 C	ILE L 106		58.348	69.019	-3.972	1.00 57.21	I	. (С
	ATOM	3834	ō	ILE L 106		57.604	69.928	-3.826	1.00 57.93 1.00 57.73	I		O N
	ATOM	3835	N	LYS L 107		59.714 60.478	69.124 70.430	-3.982 -4.003	1.00 57.73	I		C
45	ATOM ATOM	3836 3837	CA CB	LYS L 107		61.787	70.552	-3.283	1.00 58.92	I		C
-10	ATOM	3838	CG	LYS L 107		61.726	70.325	-1.955	1.00 61.50 1.00 63.56			C
	ATOM	3839	CD	LYS L 107		63.145 63.002	70.594 71.212	-1.364 0.071	1.00 65.27			C
	MOTA MOTA	3840 3841	CE NZ	LYS L 107	,	64.255	71.130	0.893	1.00 67.17			N
50	ATOM	3842	C	LYS L 107	'	60.785	70.780	-5.419	1.00 58.54 1.00 59.83			C
	MOTA	3843 3844	N O	LYS L 107 ARG L 108		61.079 60.489	69.888 72.052	-6.256 -5.691	1.00 57.71			N
	MOTA MOTA	3845	CA	ARG L 108		60.602	72.586	-6.940	1.00 56.79			C
	MOTA	3846	CB	ARG L 108		59.370	72.336	-7.752 7.303	1.00 56.25 1.00 57.11		ւ Մ	C
55	MOTA	3847 3848	CG CD	ARG L 108	} ?	58.122 57.194	72.926 73.347	-7.302 -8.373	1.00 58.22			C
	MOTA MOTA	3849	NE	ARG L 10		57.728	74.544	-9.051	1.00 59.58			N
	MOTA	3850	CZ	ARG L 10		57.277	75.002	-10.208	1.00 60.73 1.00 60.18			N C
00	MOTA	3851	NH:		3	56.286 57.817	74.384 76.093	-10.896 -10.739	1.00 60.18			N
60	ATOM ATOM	3852 3853	NH: C	ARG L 10		61.109	73.981	-6.858	1.00 57.20	:	L	С
	MOTA	3854	0	ARG L 10	3	61.247	74.526	-5.783	1.00 57.37			И О
	MOTA	3855		ALA L 10 ALA L 10		61.418 61.799		-8.058 -8.199	1.00 56.62 1.00 56.09			C
65	MOTA MOTA	3856 3857				62.040		-9.655	1.00 53.79		L	C
	MOTA	3858	С	ALA L 10	9	60.615		-7.667	1.00 56.43 1.00 56.16			C
	MOTA	3859		ALA L 10 ASP L 11		59.410 60.920		-7.921 -6.998				N
	MOTA MOTA	3860 3861				59.892					L	С
						22.4						

							1 00 56 01	т.	С
	MOTA	3862 CE		ο 0.511	80.157 79.797	-5.837 -4.443	1.00 56.81 1.00 58.54	L L	C
	MOTA	3863 CG	ASP L 110 D1 ASP L 110	61.128 60.928	78.730	-3.852	1.00 59.52	L	0
	ATOM ATOM		02 ASP L 110	61.870	80.621	-3.807	1.00 59.92	L L	0
5	MOTA	3866 C	ASP L 110	59.125	79.430	-7.775 -8.905	1.00 57.69 1.00 59.35	L	0
	MOTA	3867 0	ASP L 110	59.672 57.838	79.417 79.723	-7.595	1.00 56.11	L	N
	MOTA	3868 N 3869 C	ALA L 111 A ALA L 111	56.869	80.171	-8.619	1.00 55.19	L	C
	ATOM ATOM	3870 CI		56.070	79.034	-9.159	1.00 52.10	L L	C
10	ATOM	3871 C	ALA L 111	55.941	81.179	-7.991 -6.956	1.00 55.80 1.00 55.37	r L	Ö
	MOTA	3872 0	ALA L 111	55.376 55.807	80.892 82.368	-8.618	1.00 56.05	L	N
	ATOM	3873 N 3874 C		54.850	83.310	-8.173	1.00 56.07	L	C
	MOTA MOTA	3875 C		55.222	84.806	-8.826	1.00 55.31	L L	C
15	ATOM	3876 C	ALA L 112	53.370	82.893	-8.402 -9.455	1.00 56.07 1.00 56.89	Ŀ	Ö
	MOTA	3877 0	ALA L 112	52.988 52.474	82.406 83.234	-7.505	1.00 55.80	L	N
	MOTA	3878 N 3879 C	PRO L 113 D PRO L 113	52.643	84.043	-6.244	1.00 54.68	Ŀ	C
	ATOM ATOM		A PRO L 113	51.074	83.015	-7.777	1.00 54.69 1.00 54.68	L L	C
20	MOTA		B PRO L 113	50.384	83.513	-6.451 -5.848	1.00 54.66	L	Č
	MOTA	•	G PRO L 113 PRO L 113	51.271 50.516	84.529 83.920	-8.805	1.00 54.74	L	С
	MOTA	3883 C 3884 O		50.922	85.031	-8.877	1.00 55.39	$ ilde{\mathbf{r}}$	O
	ATOM ATOM	3885 N	THR L 114	49.392	83.530	-9.334	1.00 54.38 1.00 54.72	L L	N C
25	MOTA	3886 C	THR L 114	48.631 48.300	84.218 83.289	-10.276 -11.360	1.00 54.72 1.00 55.08	L	č
	ATOM	• • • •	CB THR L 114 OG1 THR L 114	49.517	82.942	-11.940	1.00 56.71	${f L}$	0
	ATOM ATOM		OG1 THR L 114 CG2 THR L 114	47.352	84.010	-12.458	1.00 54.02	Ŀ	C
	MOTA	3890 C	THR L 114	47.315	84.529	-9.570	1.00 55.93 1.00 55.95	L L	Ö
30	ATOM	3891 0	THR L 114	46.529	83.548 85.831	-9.242 -9.299	1.00 55.11	Ĺ	N
	MOTA		N VAL L 115 CA VAL L 115	47.093 46.026	86.296	-8.435	1.00 55.65	\mathbf{L}	C
	MOTA MOTA	•	CA VAL L 115 CB VAL L 115	46.526	87.339	-7.568	1.00 55.29	L	C
	ATOM		CG1 VAL L 115	45.498	87.847	-6.585 -6.861	1.00 54.37 1.00 55.51	L L	C
35	MOTA	3896 (CG2 VAL L 115	47.733 44.896	86.748 86.832	-9.187	1.00 56.77	L	С
	MOTA		C VAL L 115 O VAL L 115	45.067	87.612	-10.165	1.00 57.49	L	0
	MOTA MOTA		N SER L 116	43.697	86.493	-8.747	1.00 57.44	L L	N C
	MOTA		CA SER L 116	42.536	87.040	-9.514 -10.433	1.00 59.96 1.00 59.44	P P	C
40	MOTA		CB SER L 116	41.993 43.127	86.004 85.809		1.00 63.37	L	0
	MOTA		OG SER L 116 C SER L 116	41.517	87.421	-8.528	1.00 61.30	L	C
	MOTA MOTA	• • • •	O SER L 116	41.396	86.709	-7.486	1.00 62.38 1.00 62.29	L L	O N
	MOTA	3905	N ILE L 117	40.807	88.529 88.949		1.00 62.25	L	Ĉ
45	MOTA		CA ILE L 117 CB ILE L 117	39.705 40.034			1.00 64.24	L	C
	MOTA MOTA	3907 3908	CB ILE L 117 CG2 ILE L 117	39.911	91.545	-8.193	1.00 63.93	Ŀ	C
	MOTA	3909	CG1 ILE L 117	39.176			1.00 63.82 1.00 63.17	L L	C
	ATOM	3910	CD1 ILE L 117	39.509		3 -5.135 7 -8.605		L	Č
50	MOTA	3911	C ILE L 117 O ILE L 117	38.324 38.135			1.00 66.10	L	0
	MOTA MOTA	3912 3913	N PHE L 117	37.301	88.667	7 –7.783	1.00 65.70	L L	N C
	ATOM	3914	CA PHE L 118	36.011				r L	Č
	MOTA	3915	CB PHE L 118	35.650 36.650				L	C
55	MOTA	3916	CG PHE L 118 CD1 PHE L 118	37.740			1.00 69.91	L	C
	MOTA MOTA	3917 3918	CD2 PHE L 118	36.448	86.08	7 -10.734		L	C
	ATOM		CE1 PHE L 118	38.640			1.00 69.94 3 1.00 68.43	L L	c
	MOTA	3920	CE2 PHE L 118	37.333 38.378				L	C
60	ATOM		CZ PHE L 118 C PHE L 118	34.952			1.00 68.64	L	C
	MOTA		C PHE L 118 O PHE L 118	34.82	88.89	9 -6.264		ŗ	O
	MOTA MOTA		N PRO L 119	34.15	1 90.10	3 -8.063		L L	C N
	MOTA	3925	CD PRO L 119	34.18				Ŀ	C
65	MOTA		CA PRO L 119 CB PRO L 119	33.09 32.68			0 1.00 68.71	L	C
	MOTA		CB PRO L 119 CG PRO L 119	33.93		7 -9.08	7 1.00 69.40	L	C
	MOTA MOTA		C PRO L 119	31.94	1 89.87			L L	C O
	ATOM		O PRO L 119	31.81	9 88.99	1 -7.82	0 1.00 05.00	ш.	0
				235					

	ATOM ATOM	3931 3932	N CD	PRO L PRO L	120 120	31.018 30.919				70.27 70.15	L L	N C
	ATOM	3933	CA		120	29.871			1.00	71.14	L	č
	MOTA	3934	CB	PRO L		29.149				70.76	L	C
5	ATOM	3935	CG		120	30.185				70.81	L	C
	ATOM	3936	C	PRO L		28.917				71.90 72.28	L L	C
	ATOM ATOM	3937 3938	N O	PRO L SER L		28.743 28.311				73.49	L	N
	ATOM	3939	CA	SER L		27.432				75.09	L	Ċ
10	ATOM	3940	CB		121	27.094				75.12	L	C
10	ATOM	3941	ŌĠ	SER L		26.586	85.86		1.00	75.74	L	0
	ATOM	3942	С	SER L		26.132			1.00	76.41	L	C
	MOTA	3943	0	SER L		25.753				76.22	Ŀ	O
	ATOM	3944	N	SER L		25.406				77.92 79.32	L L	N C
15	ATOM	3945 3946	CA CB	SER L SER L	122	24.027 23.326			$\frac{1.00}{1.00}$	79.46	L	C
	ATOM ATOM	3947	OG	SER L		24.063				81.39	L	ŏ
	ATOM	3948	Č	SER L		23.128				79.71	L	C
	ATOM	3949	0	SER L	122	22.36			1.00	79.61	L	0
20	ATOM	3950	N	GLU L		23.24				79.84	L	N
	ATOM	3951	CA	GLU L		22.35				80.62 82.32	L L	C
	MOTA	3952	CB	GLU L		22.642 21.47				84.76	L L	C
	ATOM ATOM	3953 3954	CG CD	GLU L		21.98				86.63	L	Č
25	ATOM	3955	OE1			21.54				88.17	L	0
	ATOM	3956	OE2	GLU L	123	22.83				87.03	L	0
	ATOM	3957	С	GLU L		22.34				79.85	L	C
	ATOM	3958	0	GLU L		21.29				79.94 79.17	L L	O N
00	MOTA	3959 3960	N	GLN L GLN L		23.486 23.628				78.84	L	C
30	ATOM ATOM	3960	CA CB	GLN L		25.11			1.00	77.47	L	č
	ATOM	3962	CG	GLN L		25.59			1.00	75.52	L	С
	MOTA	3963	CD	GLN L	124	27.16			1.00		L	C
	MOTA	3964	OE1			27.73				75.06	L L	N
35	MOTA	3965 3966	NE2 C	GLN L		27.81 23.22				74.95 79.38	L	C
	MOTA ATOM	3967	0	GLN L		22.71				78.57	L	ŏ
	ATOM	3968	Ň	LEU L		23.53		7 -4.708	1.00	80.14	L	N
	MOTA	3969	CA	LEU L		23.19				80.82	L	C
40	MOTA	3970	CB	LEU L		23.62					Ŀ	C
	ATOM	3971	CG	LEU L		24.77 25.49				78.76 78.25	L L	C
	MOTA MOTA	3972 3973		LEU L	125	25.49					L	č
	ATOM	3974	CDZ		125	21.67				81.71	L	Ċ
45	ATOM	3975	ŏ		125	21.22	2 90.37	2 -2.956		82.15	L	0
	MOTA	3976	N	THR L		20.89				81.94	Ŀ	N
	MOTA	3977	CA	THR L		19.47				82.43	Ŀ	C
	ATOM	3978	CB OC1	THR L		18.74 19.10				82.87 84.01	L L	C
50	ATOM ATOM	3979 3980	OG1 CG2			19.11				83.71	L	č
30	ATOM	3981	C	THR L		19.18				82.03	Ŀ	C
	MOTA	3982	0	THR L		18.21	8 89.26			83.16	L	0
	MOTA	3983	N	SER L		19.97				81.29	L	N
	ATOM	3984	CA	SER L		19.76				80.30 81.26	L L	C
55	MOTA MOTA	3985 3986	CB OG	SER L SER L		20.70 20.07				82.17	L	Õ
	ATOM	3987	C	SER L		19.95				78.92	L	Č
	ATOM	3988	ŏ	SER L	127	19.47			1.00	79.15	L	0
	MOTA	3989	N	GLY L	128	20.66	1 89.13			77.27	L	N
60	MOTA	3990	CA	GLY L		21.10				76.66	L	C
	ATOM	3991	C	GLY L		22.57				76.00 75.56	L L	C 0
	MOTA	3992	O M	GLY L GLY L		22.94 23.39				75.16	L L	N
	MOTA ATOM	3993 3994	N CA	GLY L		24.79				73.79	L	Ĉ
65	ATOM	3995	C	GLY L	129	25.75	0 89.16	51 -0.515	1.00	72.59	L	С
	ATOM	3996	0	GLY L	129	25.39	1 89.35	50 -1.659	1.00	71.66	Ŀ	0
	ATOM	3997	N	ALA L		26.97				71.12	L	N
	ATOM	3998	CA	ALA L		27.99				69.78 69.16	L L	C
	MOTA	3999	CB	ALA L	T20	28.26	J J1.48	٠٥.۶٥١ عر	. 1.00	07.10		C

									_		_
	MOTA	4000 C		29.	248	88.975	-0.726 0.402	1.00 69.14 1.00 69.40	L L		C O
	ATOM	4001 C	404		693 685	89.059 88.053	-1.568	1.00 67.83	L		И
	ATOM	4002 N	N SER L 131 CA SER L 131		954	87.324	-1.317	1.00 66.38	L		С
5	ATOM ATOM		CB SER L 131		761	85.779	-1.366	1.00 66.45	L		C
5	MOTA		OG SER L 131		911	85.269	-0.267	1.00 65.95	L L		C 0
	ATOM		C SER L 131		.977	87.774	-2.347 -3.602	1.00 65.46 1.00 65.33	L		0
	MOTA		SER L 131		.640 .141	87.847 88.177	-1.850	1.00 64.00	Ĺ		N
	ATOM		N VAL L 132 CA VAL L 132		.236	88.632	-2.718	1.00 63.13	L		C
10	ATOM ATOM		CA VAL L 132 CB VAL L 132		819	89.972	-2.286	1.00 63.18	L		C
	ATOM	4011	CG1 VAL L 132	35	.786	90.546	-3.235	1.00 62.10	L		C C
	MOTA	4012	CG2 VAL L 132		.797	90.979	-2.012 -2.681	1.00 63.46 1.00 62.52	L L		C
	MOTA		C VAL L 132		.287 .689	87.545 87.053	-1.599	1.00 61.71	Ŀ		ō
15	ATOM		O VAL L 132 N VAL L 133		.674	87.092	-3.864	1.00 62.28	L		N
	MOTA MOTA		N VAL L 133 CA VAL L 133		.508	85.922	-4.004	1.00 61.13	L		C
	ATOM		CB VAL L 133		.845	84.812	-4.879	1.00 60.79	L		C
	ATOM	4018	CG1 VAL L 133		.666	83.560	-4.734	1.00 61.21 1.00 60.87	L L		C
20	MOTA		CG2 VAL L 133		.490 .779	84.536 86.296	-4.496 -4.687	1.00 60.84	Ī		Č
	MOTA		C VAL L 133 O VAL L 133		.838	87.026	-5.766	1.00 59.39	I	,	0
	MOTA MOTA		O VAL L 133 N CYS L 134		.808	85.738	-4.151	1.00 60.55	I.		N
	ATOM		CA CYS L 134		.170	85.866	-4.711	1.00 60.80	I I		C
25	ATOM		C CYS L 134		.910	84.507	-4.875	1.00 58.83 1.00 58.54	I		Ö
	ATOM		O CYS L 134		.022	83.716 86.783	-3.947 -3.760	1.00 50.34	ī		Č
	ATOM		CB CYS L 134 SG CYS L 134		.525	87.373	-4.465	1.00 66.69	I	,	S
	ATOM ATOM	4027 4028	SG CYS L 134 N PHE L 135		.465	84.202	-6.034	1.00 58.10	Ī		N
30	ATOM	4029	CA PHE L 135	42	.320	83.024	-6.337	1.00 58.00	I		C
	MOTA	4030	CB PHE L 135		916	82.231	-7.608 7.504	1.00 57.99 1.00 59.98	I		C
	MOTA	4031	CG PHE L 135).563).199	81.667 80.894	-7.504 -6.353	1.00 60.26	Ī		Č
	ATOM	4032	CD1 PHE L 135 CD2 PHE L 135).570	81.927	-8.426	1.00 60.52			С
95	MOTA	4033 4034	CD2 PHE L 135 CE1 PHE L 135		3.918	80.414	-6.220	1.00 60.79			C
35	MOTA MOTA	4035	CE2 PHE L 135		3.274	81.405	-8.208	1.00 60.24		_	C
	ATOM	4036	CZ PHE L 135		7.979	80.723	-7.131	1.00 60.17 1.00 57.37		L L	C
	ATOM	4037	C PHE L 135		3.695	83.390 84.430	-6.360 -6.793	1.00 57.37		_ 	ŏ
	MOTA	4038	O PHE L 135 N LEU L 136		1.065 1.475	82.615	-5.732	1.00 56.20		<u>.</u>	N
40	MOTA	4039 4040	N LEU L 136 CA LEU L 136		5.902	82.636	-5.797	1.00 56.01		Ŀ	C
	MOTA ATOM	4041	CB LEU L 136		5.466	82.926	-4.349	1.00 55.00		L	C
	MOTA	4042	CG LEU L 136		5.197	84.380	-3.849	1.00 53.48 1.00 52.57		L L	c
	MOTA	4043	CD1 LEU L 136		4.809	84.348 84.588	-3.487 -2.663	1.00 53.68		L	Č
45	MOTA	4044	CD2 LEU L 136 C LEU L 136		7.206 6.461	81.270	-6.220	1.00 55.46	:	L	С
	MOTA	4045 4046	C LEU L 136 O LEU L 136		6.648	80.361	-5.363	1.00 55.72		L	0
	ATOM ATOM	4047	N ASN L 137	4	6.696	81.125	-7.504	1.00 54.71		L	N
	ATOM	4048	CA ASN L 137		6.908	79.853	-8.217 -9.315	1.00 54.02 1.00 53.13		L L	C
50	MOTA	4049	CB ASN L 137		5.912 4.576	79.848 79.532	-8.824	1.00 54.07		L	Č
	MOTA	4050	CG ASN L 137 OD1 ASN L 137		3.611		-9.556	1.00 54.87		L	0
	ATOM ATOM	4051 4052	ND2 ASN L 137		4.486		-7.490	1.00 53.36		L -	N
	MOTA	4053	C ASN L 137		8.280					L L	C
55	ATOM	4054	O ASN L 137		9.023					P P	И
	MOTA	4055	N ASN L 138		8.717					L	Ĉ
	ATOM	4056	CA ASN L 138 CB ASN L 138		0.019 9.948			1.00 53.07		L	С
	MOTA	4057 4058	CB ASN L 138 CG ASN L 138		8.845	76.761	-10.939	1.00 53.90		L	C
60	MOTA MOTA	4059	OD1 ASN L 138	4	7.738	77.168	-11.022	1.00 54.05		Ŀ	O
JU	MOTA	4060	ND2 ASN L 138		9.164		-11.148			L L	C N
	MOTA	4061	C ASN L 138		1.282					r r	Ö
	MOTA	4062	O ASN L 138		52.085 51.493					L	N
0.5	MOTA	4063	N PHE L 139 CA PHE L 139		2.686			1.00 50.60		L	C
65	MOTA MOTA	4064	CB PHE L 139		2.243	80.105	-5.715	1.00 50.74		Ŀ	C
	MOTA	4066	CG PHE L 139	5	51.351	79.679				L L	C
	MOTA	4067	CD1 PHE L 139		51.889					L	C
	MOTA	4068	CD2 PHE L 139	ž	50.020	79.854	: ~4.JI:	, 1.00 -1.01			_
					227						

	ATOM ATOM	4069 4070	CE1 PHE L 139 CE2 PHE L 139	49.1	.53	78.832 79.655	-2.264 -3.432	1.00 44.38 1.00 46.99	L L	C C C
	ATOM	$\frac{4071}{4072}$	CZ PHE L 139 C PHE L 139			79.145 78.035	-2.293 -5.987	1.00 46.10 1.00 50.74	L L	C
5	ATOM ATOM	4073	O PHE L 139			76.992	-5.659	1.00 51.42	L	0
•	ATOM	4074	N TYR L 140			78.307	-5.712	1.00 50.69	L	Ŋ
	MOTA	4075	CA TYR L 140			77.532	-4.737	1.00 51.02	L	C
	ATOM	4076	CB TYR L 140 CG TYR L 140			76.384 75.429	-5.565 -4.718	1.00 50.21 1.00 50.51	L L	C
10	MOTA MOTA	4077 4078	CG TYR L 140 CD1 TYR L 140			75.776	-4.260	1.00 50.90	L	č
10	ATOM	4079	CE1 TYR L 140			74.860	-3.430	1.00 51.73	L	C
	MOTA	4080	CD2 TYR L 140			74.231	-4.313	1.00 50.29	L	C
	MOTA	4081	CE2 TYR L 140			73.398	-3.442	1.00 49.97	L	C
	ATOM	4082	CZ TYR L 140			73.731 72.903	-3.033 -2.208	1.00 50.71 1.00 51.28	L L	С О
15	ATOM ATOM	4083 4084	OH TYR L 140 C TYR L 140			78.436	-4.108	1.00 52.40	L	č
	ATOM	4085	O TYR L 140			79.318	-4.849	1.00 53.02	r .	O
	MOTA	4086	N PRO L 14:		914	78.189	-2.837	1.00 53.24	L	N
	MOTA	4087	CD PRO L 143			78.906	-2.277	1.00 53.94	L	C
20	ATOM	4088	CA PRO L 14:			77.114 77.042	-1.909 -0.809	1.00 53.82 1.00 54.17	L L	C
	MOTA	4089 4090	CB PRO L 14: CG PRO L 14:			78.417	-0.809	1.00 54.65	L	Č
	MOTA MOTA	4090	C PRO L 14:			77.398	-1.338	1.00 55.01	L	C
	ATOM	4092	O PRO L 14:			78.370	-1.550	1.00 54.05	L	0
25	MOTA	4093	N LYS L 14			76.460	-0.588	1.00 56.78	L	N
	ATOM	4094	CA LYS L 14			76.616 75.335	-0.029 0.800	1.00 58.31 1.00 59.20	L L	C
	MOTA MOTA	4095 4096	CB LYS L 14: CG LYS L 14:			75.335 75.266	2.059	1.00 53.20	L	č
	ATOM	4097	CD LYS L 14			74.381	3.213	1.00 66.39	L	C
30	ATOM	4098	CE LYS L 14	2 53.		72.900	2.888	1.00 68.80	L	C
	MOTA	4099	NZ LYS L 14			72.069	3.031	1.00 71.04	L	N
	ATOM	4100	C LYS L 14			77.846 78.219	0.910 1.053	1.00 57.77 1.00 56.47	L L	C
	ATOM ATOM	$\frac{4101}{4102}$	O LYS L 14 N ASP L 14			78.301	1.647	1.00 58.64	Ŀ	N
35	ATOM	4102	CA ASP L 14			79.452	2.544	1.00 60.59	L	C
00	ATOM	4104	CB ASP L 14	3 54.		79.662	3.435	1.00 63.72	L	C
	ATOM	4105	CG ASP L 14			78.208	3.881	1.00 68.11	L	C
	ATOM	4106	OD1 ASP L 14			77.551 77.589	4.678 3.350	1.00 71.23 1.00 68.52	L L	0
40	ATOM ATOM	4107 4108	OD2 ASP L 14 C ASP L 14			80.707	1.777	1.00 59.86	Ŀ	Č
40	ATOM	4109	O ASP L 14			81.100	0.832	1.00 59.91	L	0
	MOTA	4110	N ILE L 14			81.227	2.139	1.00 59.20	Ŀ	N
	MOTA	4111	CA ILE L 14			82.460	1.579	1.00 57.84	L L	C
4	ATOM	4112	CB ILE L 14		848 495	82.198 81.527	$0.240 \\ 0.333$	1.00 57.69 1.00 57.29	Г Г	C
45	ATOM ATOM	$\frac{4113}{4114}$	CG2 ILE L 14 CG1 ILE L 14		459	83.396	-0.447	1.00 56.97	L	Č
	ATOM	4115	CD1 ILE L 14		218	82.952	-1.999	1.00 58.74	L	C
	ATOM	4116	C ILE L 14		517	83.183	2.516	1.00 57.84	Ŀ	C
	ATOM	4117	O ILE L 14		025	82.633	3.447	1.00 57.82	L L	N
50	ATOM	4118 4119	N ASN L 14 CA ASN L 14		398 474	84.459 85.216	2.352 3.173	1.00 58.32 1.00 58.90	L	C
	MOTA MOTA	4120	CA ASN L 14 CB ASN L 14		180	85.973	4.384	1.00 61.33	L	C
	MOTA	4121	CG ASN L 14	5 50.	711	84.960	5.438	1.00 65.53	L	С
	MOTA	4122	OD1 ASN L 14		064	84.629	6.562	1.00 67.50	L	O
55	MOTA	4123	ND2 ASN L 14		803	84.324	5.035 2.315	1.00 67.78 1.00 58.33	L L	C N
	MOTA	4124	C ASN L 14 O ASN L 14		750 351	86.163 86.782	1.573	1.00 57.41	Ŀ	ō
	ATOM ATOM	4125 4126	O ASN L 14 N VAL L 14		43.8	86.226	2.478	1.00 57.86	L	\mathbf{N}
	ATOM	4127	CA VAL L 14		555	87.234	1.924	1.00 58.06	L	С
60	MOTA	4128	CB VAL L 14	6 45.	303	86.517	1.079	1.00 57.95	L	C
	ATOM	4129	CG1 VAL L 14		307	86.211 87.508	1.872 0.160	1.00 57.78 1.00 58.46	L L	C
	MOTA MOTA	$4130 \\ 4131$	CG2 VAL L 14 C VAL L 14		67 <u>4</u> 900	88.252	2.910	1.00 57.64	Ŀ	C
	MOTA	4132	O VAL L 14		598	87.920	4.076	1.00 58.21	L	0
65	MOTA	4133	N ALA L 14	.7 45.	671	89.436	2.420	1.00 57.33	L	N
	MOTA	4134	CA ALA L 14		064	90.601	3.176	1.00 57.71	L	C
	MOTA	4135	CB ALA L 14		.137 .014	91.686 91.255	3.585 2.324	1.00 55.87 1.00 57.31	L L	C
	MOTA MOTA	4136 4137	C ALA L 14		.223	91.499	$\frac{2.324}{1.101}$	1.00 57.31	L	ŏ
	AIOM	477/	O 2002 11 15	.,						

	ATOM	4138	N TRP L 148		91.453	2.894 2.236	1.00 57.87 1.00 58.89	L L	N C
	ATOM ATOM	4139 4140	CA TRP L 148 CB TRP L 148		92.218 91.584	2.236	1.00 57.33	L	C
	MOTA	4141	CG TRP L 148	40.288	90.291	1.853	1.00 57.66	L	C
5	ATOM	4142	CD2 TRP L 148		90.085	0.541	1.00 57.55	L L	C
	ATOM	$\frac{4143}{4144}$	CE2 TRP L 148 CE3 TRP L 148		88.685 90.945	0.329 -0.454	1.00 57.15 1.00 56.56	F.	C
	ATOM ATOM	4145	CD1 TRP L 148		89.005	2.371	1.00 58.03	L	č
	MOTA	4146	NE1 TRP L 148	40.157	88.010	1.528	1.00 57.48	L	N
10	MOTA	4147	CZ2 TRP L 148		88.187	-0.854	1.00 56.94	L L	C
	ATOM ATOM	4148 4149	CZ3 TRP L 148 CH2 TRP L 148		90.449 89.052	-1.634 -1.835	1.00 57.22 1.00 57.66	Ŀ	C
	ATOM	4150	C TRP L 148		93.669	2.705	1.00 59.68	L	Č
	ATOM	4151	O TRP L 148	42.073	93.972	3.876	1.00 58.38	L	0
15	MOTA	4152	N LYS L 149		94.576	1.727	1.00 60.92 1.00 62.70	L L	N C
	MOTA ATOM	4153 4154	CA LYS L 149 CB LYS L 149		95.970 96.770	$2.071 \\ 1.601$	1.00 62.70 1.00 62.73	L	c
	ATOM	4155	CG LYS L 149		96.275	2.216	1.00 65.79	L	C
	ATOM	4156	CD LYS L 149	45.191	97.199	1.883	1.00 67.30	ŗ	C
20	MOTA	4157	CE LYS L 149		97.132	2.928 2.346	1.00 68.06 1.00 69.75	L L	C N
	MOTA MOTA	4158 4159	NZ LYS L 149 C LYS L 149		97.631 96.513	1.393	1.00 69.75 1.00 64.55	L L	C
	ATOM	4160	O LYS L 149		96.480	0.179	1.00 65.43	L	Ö
	ATOM	4161	N ILE L 150	39.297	96.975	2.238	1.00 66.29	L	N
25	MOTA	4162	CA ILE L 150		97.649 97.082	$1.709 \\ 2.420$	1.00 68.24 1.00 67.61	r L	C
	MOTA MOTA	4163 4164	CB ILE L 150		97.148	1.483	1.00 66.74	L	C
	ATOM	4165	CG1 ILE L 150		95.617	2.807	1.00 68.87	${f L}$	C
	ATOM	4166	CD1 ILE L 150		94.846	2.900	1.00 68.94	ŗ	C
30	MOTA	4167	C ILE L 150		99.155 99.651	1.961 3.048	1.00 69.93 1.00 70.68	L L	C
	ATOM ATOM	4168 4169	O ILE L 150 N ASP L 151		99.893	0.919	1.00 70.00	L	Ŋ
	MOTA	4170	CA ASP L 15	38.698	101.335	1.080	1.00 75.11	L	C
	ATOM	4171	CB ASP L 15			1.563	1.00 76.60	Ŀ	C
35	ATOM	4172	CG ASP L 15		102.376 102.148	0.400 -0.744	1.00 78.00 1.00 80.12	L L	C O
	ATOM ATOM	4173 4174	OD1 ASP L 15: OD2 ASP L 15:		102.148	0.660	1.00 30.12	r r	ŏ
	ATOM	4175	C ASP L 15		101.714	2.116	1.00 76.27	L	C
	ATOM	4176	O ASP L 15	1 39.501	102.350	3.129	1.00 77.76	L	0
40	ATOM	4177	N GLY L 15			$1.858 \\ 2.684$	1.00 76.18 1.00 77.99	L L	N C
	ATOM ATOM	4178 4179	CA GLY L 15. C GLY L 15.			3.858	1.00 77.55	L	č
	ATOM	4180	O GLY L 15	2 43.497	100.184	4.043	1.00 80.56	L	0
	MOTA	4181	N SER L 15		100.501	4.688	1.00 79.95	$\mathbf{L}_{_{1}}$	N
45	MOTA	4182	CA SER L 15		99.673 100.083	5.878 6.931	1.00 80.24 1.00 79.86	L L	C
	MOTA MOTA	4183 4184	CB SER L 15 OG SER L 15		100.005	6.336	1.00 80.56	Ŀ	ŏ
	MOTA	4185	C SER L 15	3 41.397	98.186	5.554	1.00 80.28	L	C
	MOTA	4186	O SER L 15	3 40.625		4.697	1.00 79.92	L	O
50	MOTA	4187	N GLU L 15 CA GLU L 15			6.271 6.217	1.00 80.81 1.00 82.01	L L	N C
	ATOM ATOM	4188 4189	CA GLU L 15 CB GLU L 15			7.000	1.00 82.58	L	C
	ATOM	4190	CG GLU L 15	4 43.693	93.986	6.909	1.00 83.88	L	C
	MOTA	4191	CD GLU L 15	4 44.934		7.710	1.00 85.00 1.00 86.24	L L	C O
55	MOTA	4192 4193	OE1 GLU L 15 OE2 GLU L 15			8.011 7.989	1.00 85.24	Ŀ	Ö
	ATOM ATOM	4194	C GLU L 15			6.889	1.00 82.30	L	Ċ
	ATOM	4195	O GLU L 15	4 40.455	95.942	7.884	1.00 81.97	L	0
	MOTA	4196	N ARG L 15			6.220	1.00 82.65 1.00 83.03	L L	N C
60	ATOM	4197 4198	CA ARG L 15 CB ARG L 15			6.761 5.785	1.00 83.03	r L	C
	MOTA MOTA	4198	CG ARG L 15			6.190	1.00 84.92	L	C
	ATOM	4200	CD ARG L 15	5 36.200	93.337	7.238	1.00 86.77	L	C
	MOTA	4201	NE ARG L 15			7.153 7.146	1.00 88.25 1.00 88.42	L L	N C
65	MOTA	4202 4203	CZ ARG L 15 NH1 ARG L 15			7.146 7.274	1.00 88.42	P P	N
	MOTA ATOM	4203	NH2 ARG L 15			6.998	1.00 89.76	L	N
	MOTA	4205	C ARG L 15	5 40.140	92.075	7.077	1.00 82.99	L	C
	MOTA	4206	O ARG L 15	5 41.035	91.596	6.322	1.00 83.97	L	0

	ATOM ATOM	4207 4208 4209	N GLN L 156 CA GLN L 156 CB GLN L 156	39.666 39.811 40.770	91.490 90.083 90.099	8.196 8.655 9.830	1.00 81.99 1.00 80.76 1.00 80.72	L L L	C C
5	ATOM ATOM ATOM ATOM	4210 4211 4212	CG GLN L 156 CD GLN L 156 OE1 GLN L 156	42.232 43.078 42.765	90.228 90.931 92.026	9.421 10.427 10.846	1.00 80.80 1.00 82.05 1.00 82.80	L L L	с с с
	ATOM ATOM ATOM	4213 4214 4215	NE2 GLN L 156 C GLN L 156 O GLN L 156	44.169 38.459 38.334	90.282 89.288 88.061	10.857 8.952 8.733	1.00 82.66 1.00 80.18 1.00 80.18	L L L	O C N
10	ATOM ATOM ATOM	4216 4217 4218	N ASN L 157 CA ASN L 157 CB ASN L 157	37.435 36.109 35.300	90.015 89.487 90.700	9.341 9.547 10.075	1.00 78.71 1.00 77.03 1.00 78.97	L L L	C C
15	ATOM ATOM ATOM	4219 4220 4221	CG ASN L 157 OD1 ASN L 157 ND2 ASN L 157	33.882 33.573 33.032	90.323 89.132 91.339	10.592 10.652 10.954	1.00 80.56 1.00 82.32 1.00 81.05	L L L	C O . N
	ATOM ATOM ATOM	4222 4223 4224	C ASN L 157 O ASN L 157 N GLY L 158	35.380 34.967 35.103	88.982 89.810 87.642	8.298 7.408 8.222	1.00 74.78 1.00 75.06 1.00 71.80	r r r	0 N
20	ATOM ATOM ATOM	4225 4226 4227	CA GLY L 158 C GLY L 158 O GLY L 158	34.183 35.024 34.664	87.163 86.671 86.616	7.173 6.129 4.978	1.00 67.26 1.00 65.35 1.00 65.64	L L	0 0
	ATOM ATOM ATOM	4228 4229 4230	N VAL L 159 CA VAL L 159 CB VAL L 159	36.203 37.256 38.648	86.316 85.881 86.582	6.524 5.623 5.757	1.00 62.86 1.00 60.58 1.00 60.31	L L	N C C
25	MOTA ATOM MOTA	4231 4232 4233	CG1 VAL L 159 CG2 VAL L 159 C VAL L 159	39.725 38.678 37.506	85.978 88.045 84.421	4.872 5.438 5.903	1.00 57.65 1.00 59.05 1.00 59.71	L L L	0 0 0
30	ATOM ATOM ATOM	4234 4235 4236	O VAL L 159 N LEU L 160 CA LEU L 160	37.844 37.374 37.557	83.995 83.625 82.157	7.023 4.863 4.890	1.00 60.16 1.00 57.40 1.00 55.89	L L L	O N C
	MOTA MOTA MOTA	4237 4238 4239	CB LEU L 160 CG LEU L 160 CD1 LEU L 160	36.153 35.473 34.081	81.523 81.481 80.756	4.887 6.386 6.541	1.00 55.19 1.00 55.02 1.00 52.85	L L L	. C C
35	MOTA ATOM ATOM	4240 4241 4242	CD2 LEU L 160 C LEU L 160 O LEU L 160	36.367 38.467 38.156	80.947 81.698 81.965	7.670 3.747 2.593	1.00 51.54 1.00 54.28 1.00 54.43	L L L	С О
	MOTA ATOM ATOM	4243 4244 4245	N ASN L 161 CA ASN L 161 CB ASN L 161	39.609 40.587 41.879	81.137 80.590 81.051	4.096 3.258 3.771	1.00 53.43 1.00 53.45 1.00 54.82	L L L	N C C
40	MOTA MOTA MOTA	4246 4247 4248	CG ASN L 161 OD1 ASN L 161 ND2 ASN L 161	42.029 41.519 42.657	82.496 83.084 83.091	3.642 2.665 4.610	1.00 56.80 1.00 56.52 1.00 55.21	L L L	0 C
45	MOTA ATOM MOTA	4249 4250 4251	C ASN L 161 O ASN L 161 N SER L 162	40.734 40.319 41.253	79.081 78.384 78.571	3.176 4.043 2.016	1.00 53.57 1.00 53.48 1.00 53.97	L L	О О С
	ATOM ATOM ATOM	4252 4253 4254	CA SER L 162 CB SER L 162 OG SER L 162	41.350 39.961 40.034	77.148 76.646 75.376	1.750 1.339 0.681	1.00 53.68 1.00 52.18 1.00 55.01	L L	0 0 0
50	ATOM ATOM ATOM	4255 4256 4257	C SER L 162 O SER L 162 N TRP L 163	42.407 42.432 43.198	76.915 77.585 75.906	0.696 -0.222 0.853	1.00 54.09 1.00 55.23 1.00 53.72	L L L	0 N
	ATOM ATOM ATOM	4258 4259 4260	CA TRP L 163 CB TRP L 163 CG TRP L 163	44.378 45.659 46.120	75.589 75.480 76.734	0.150 1.064 1.597	1.00 54.51 1.00 57.00 1.00 59.37	L L L	0 0 0
55	MOTA ATOM MOTA	4261 4262 4263	CD2 TRP L 163 CE2 TRP L 163 CE3 TRP L 163	45.511 46.278 44.475	77.432 78.524 77.121	2.684 2.950 3.538	1.00 59.95 1.00 61.25 1.00 60.81	L L	C C
60	ATOM ATOM ATOM	4264 4265 4266	CD1 TRP L 163 NE1 TRP L 163 CZ2 TRP L 163	47.228 47.313 46.021	77.427 78.570 79.336	1.237 2.022 3.953	1.00 60.45 1.00 62.43 1.00 61.48	L L	N C
	ATOM ATOM ATOM	4267 4268 4269	CZ3 TRP L 163 CH2 TRP L 163 C TRP L 163	44.208 44.941 44.152	77.956 79.117 74.125	4.536 4.659 -0.338	1.00 60.93 1.00 60.59 1.00 53.80	L L	C C C
65	ATOM ATOM ATOM	4270 4271 4272	O TRP L 163 N THR L 164 CA THR L 164		73.221 73.884 72.603	0.367 -1.511 -2.117	1.00 53.91 1.00 52.58 1.00 51.82	L L L	С И О
	MOTA MOTA MOTA	4273 4274 4275	CB THR L 164 OG1 THR L 164 CG2 THR L 164	44.605 45.805	73.483	-3.624 -4.091 -4.131	1.00 51.25 1.00 51.26 1.00 50.51	L L L	С О С

	n u							_	~
	MOTA	4276 C		45.845	71.880	-1.815	1.00 51.96	L	C
	MOTA	4277 O		46.712	72.419	-1.359	1.00 52.00 1.00 53.05	L L	И
	MOTA	4278 N		45.971	70.649	-2.208 -1.993	1.00 53.05	L	C
	MOTA	4279 C		47.165	69.837 68.360	-1.999	1.00 55.45	L	č
5	ATOM	4280 C		46.799 46.252	67.855	-0.542	1.00 60.07	L	č
	ATOM		G ASP L 165	45.044	67.725	-0.411	1.00 61.03	L	ō
	ATOM		D1 ASP L 165 D2 ASP L 165	46.984	67.497	0.454	1.00 63.38	L	Ö
	MOTA			48.009	70.135	-3.161	1.00 52.57	L	
40	MOTA	4284 C		47.508	70.595	-4.165	1.00 52.07	L	0
10	ATOM ATOM	4285 O 4286 N		49.223	69.688	-3.087	1.00 50.87	L	N
	ATOM		A GLN L 166	50.207	69.825	-4.145	1.00 50.45	L	
	ATOM		B GLN L 166	51.473	69.184	-3.640	1.00 49.06	L	
	ATOM		G GLN L 166	52.576	69.588	-4.484	1.00 50.09	L	
15	ATOM		D GLN L 166	53.909	69.326	-4.010	1.00 50.81	L	
15	ATOM		E1 GLN L 166	54.122	68.377	-3.327	1.00 50.74	L	
	ATOM		JE2 GLN L 166	54.822	70.264	-4.311	1.00 50.10	L	
	ATOM	4293 C		49.653	69.162	-5.444	1.00 51.47	L	
	ATOM	4294 C		49.199	68.063	-5.439	1.00 50.46	Ŀ	
20	ATOM	4295 N		49.577	69.901	-6.493	1.00 52.11	Ŀ	
	MOTA		CA ASP L 167	49.257	69.421	-7.799	1.00 54.31	L	
	ATOM		CB ASP L 167	49.503	70.542	-8.785	1.00 56.80	L	
	ATOM		CG ASP L 167	48.910		-10.071	1.00 59.47	L	
	MOTA	4299 C	DD1 ASP L 167	47.643		-10.035	1.00 60.73	L	
25	MOTA	4300 0	DD2 ASP L 167	49.615		-11.037	1.00 60.31	L	
	ATOM	4301 0		50.249	68.275	-8.167	1.00 55.01	L	
	ATOM		O ASP L 167	51.401	68.414	-8.028	1.00 55.28 1.00 55.89	L	
	MOTA		N SER L 168	49.733	67.109	-8.488	1.00 56.86	I	
	MOTA		CA SER L 168	50.473	65.926	-9.062 -9.158	1.00 56.64	ī	
30	MOTA		CB SER L 168	49.570	64.627	-9.138 -9.870	1.00 50.04	Ī	
	MOTA		OG SER L 168	48.456 51.220	65.012	-10.403	1.00 56.36	Ī	
	MOTA		C SER L 168	52.027		-10.659	1.00 57.56	Ī	
	MOTA		O SER L 168	51.052		-11.101	1.00 56.30	I	
	MOTA		N LYS L 169	51.800	67.138	-12.364	1.00 57.59	Ī	
35	ATOM		CA LYS L 169 CB LYS L 169	50.798	67.440	-13.469	1.00 59.32	I	
	ATOM		CB LYS L 169 CG LYS L 169	49.678		-13.648	1.00 62.12	I	
	MOTA		CD LYS L 169	48.998		-15.020	1.00 62.52	I	, C
	MOTA		CE LYS L 169	48.225		-14.949	1.00 64.22	Ι	, c
40	ATOM ATOM		NZ LYS L 169	47.154		-16.011	1.00 63.95	I	
40	ATOM		C LYS L 169	52.812		-12.332	1.00 57.97	I	
	ATOM		O LYS L 169	53.946	68.201	-12.490	1.00 57.97	I	
	ATOM		N ASP L 170	52.446		-11.987	1.00 57.59	Ι	
	ATOM		CA ASP L 170	53.438	70.868	-11.910	1.00 57.49	I	
45	ATOM		CB ASP L 170	52.788	72.129	-12.489	1.00 60.30	I	
	ATOM		CG ASP L 170	51.710		-11.564	1.00 62.68	I	
	ATOM		OD1 ASP L 170	51.622		-10.321	1.00 65.22	I	
	MOTA	4323	OD2 ASP L 170	50.896		-12.024	1.00 62.99		
	MOTA		C ASP L 170	53.901	71.148		1.00 55.90		i C
50	MOTA	4325	O ASP L 170	54.694	72.062		1.00 54.92		L O L N
	MOTA		N SER L 171	53.446	70.339	-9.478	1.00 54.19 1.00 53.65		r C
	MOTA		CA SER L 171	54.038	70.455	-8.108	1.00 53.65		r C
	MOTA		CB SER L 171	55.440	70.037	-8.123	1.00 54.70		L O
	MOTA		OG SER L 171	55.708	68.799	-8.882	1.00 52.81		r C
55	MOTA		C SER L 171	53.876	71.866	-7.423	1.00 52.51		L Ö
	MOTA		O SER L 171	54.596	72.185	-6.436 -7.840	1.00 51.64		L N
	MOTA		N THR L 172	52.826	72.583 73.877	-7.362	1.00 51.66		L C
	MOTA		CA THR L 172	52.507	74.809	-8.372	1.00 51.61		L C
	MOTA	4334	CB THR L 172	52.052	74.383		1.00 50.22		L O
60	MOTA	4335	OG1 THR L 172	50.823 52.978	75.076				L Č
	ATOM	4336	CG2 THR L 172	52.978	73.740				L Č
	ATOM	4337	C THR L 172	50.672	72.688				L O
	ATOM	4338	O THR L 172	51.051	74.805				L N
0.	MOTA	4339	N TYR L 173 CA TYR L 173	49.878					L C
65	MOTA	4340 4341	CA TYR L 173 CB TYR L 173	50.334					L C
	ATOM	$4341 \\ 4342$	CG TYR L 173	51.209			1.00 52.92		L C
	ATOM ATOM	4342	CD1 TYR L 173	52.517			1.00 53.07		ь с
	ATOM	4343	CE1 TYR L 173	53.329					L C
	WI OM	#J##							

			50.703 73.175 -1.858 1.00 53.06 L C	
	MOTA MOTA	4345 CD2 TYR L 173 4346 CE2 TYR L 173	51.564 72.130 -1.375 1.00 54.56 L C	
	ATOM ATOM	4347 CZ TYR L 173 4348 OH TYR L 173	53.703 71.126 -1.149 1.00 56.41 L O	
5	ATOM ATOM	4349 C TYR L 173 4350 O TYR L 173	48.987 75.983 3.173 1.00 52.51 L O N	
	MOTA	4351 N SER L 174	47.778 75.895 -4.809 1.00 56.59 L C	
	ATOM ATOM	4353 CB SER L 174	45.898 76.574 -6.002 1.00 56.89	
10	MOTA	4354 OG SER L 174 4355 C SER L 174	45.984 77.303 -3.506 1.00 57.56 L C	
	ATOM ATOM	4356 O SER L 174	45.807 76.544 -2.616 1.00 56.52 L N	
	ATOM ATOM	4357 N MET L 175 4358 CA MET L 175	44.637 78.939 -2.408 1.00 60.02 L C	
15	MOTA	4359 CB MET L 175	45.288 81.039 -1.286 1.00 66.41 L C	
	MOTA MOTA	4361 SD MET L 175	45.001 81.374 0.591 1.00 70.49 L S	
	MOTA	4362 CE MET L 175 4363 C MET L 175	43.567 79.795 -2.863 1.00 59.29 L C	
20	ATOM ATOM	4364 O MET L 175	43.680 80.541 -3.860 1.00 59.37 L N	
	ATOM ATOM	4365 N SER L 176 4366 CA SER L 176	41.309 80.502 -2.491 1.00 59.10 L	
	MOTA	4367 CB SER L 176	39 208 80.594 -2.947 1.00 60.69 L O	
25	MOTA MOTA	4369 C SER L 176	40.964 81.310 -1.208 1.00 50.40 L O	
	MOTA MOTA	4370 O SER L 176 4371 N SER L 177	40.659 82.616 -1.358 1.00 57.20 L N	
	MOTA	4372 CA SER L 177	40.193 83.440 c.205 1.00 56.59 L C	
30	ATOM ATOM	4374 OG SER L 177	40.940 85.208 1.304 1.00 55.06 II C	
30	MOTA	4375 C SER L 177 4376 O SER L 177	38.889 84.030 0.133 1.00 60.67 L O	
	MOTA MOTA	4377 N THR L 178	37.970 83.906 0.433 1.00 60.53 L C	
35	ATOM ATOM	4378 CA THR L 178 4379 CB THR L 178	35.594 83.260 0.267 1.00 60.58 L C	
35	MOTA	4380 OG1 THR L 178	34 146 83.762 -0.046 1.00 61.14 L C	
	MOTA MOTA	4382 C THR L 178	36.127 85.364 1.530 1.00 62.36 II C	
	MOTA	4383 O THR L 178 4384 N LEU L 179	35.820 86.606 1.189 1.00 64.02 L N	
40	MOTA MOTA	4385 CA LEU L 179	35.321 87.641 2.073 1.00 66.01 L C	
	MOTA MOTA	4386 CB LEU L 179 4387 CG LEU L 179	35.527 90.141 2.547 1.00 66.63 L C	
	MOTA	4388 CD1 LEU L 179	35.694 89.990 4.055 1.00 66.81 L C	
45	MOTA MOTA	4390 C LEU L 179	33.808 87.792 1.872 1.00 66.30 L O	
	MOTA	4391 O LEU L 179 4392 N THR L 180	33.078 87.369 2.912 1.00 67.93 L N	
	MOTA MOTA	4393 CA THR L 180	31.622 87.393 2.887 1.88 76.36 L C	
50	MOTA MOTA	4394 CB THR L 180 4395 OG1 THR L 180	31.691 84.981 2.712 1.00 71.93 E C	
	ATOM	4396 CG2 THR L 180	31.088 88.536 3.748 1.00 71.78 L C	
	MOTA MOTA	4398 O THR L 180	31.298 88.594 4.951 1.00 71.49 L N	
55	ATOM ATOM		29.918 90.676 3.846 1.00 76.89 L C	
	ATOM	4401 CB LEU L 181	30.347 91.926 3.632 1.00 76.56 L C	
	MOTA MOTA	4403 CD1 LEU L 181	32.154 92.713 1.419 1.00 76.50 1.60 1.60	
60	ATOM	4404 CD2 LEU L 181	32.736 92.478 3.751 1.00 78.78 L C 28.381 90.605 4.016 1.00 78.78 L C	
	IOTA IOTA	4406 O LEU L 181	27.828 89.535 4.105 1.00 80.37 L N	
	ATOL		26.289 91.915 3.858 1.00 82.33 L C	
65		4 4409 CB THR L 182	25.662 92.615 5.07 1.00 81.85 L O	
	ATO! ATO!	и 4411 CG2 THR L 182	25.240 91.514 6.082 1.00 82.04 L C	
	OTA	4412 C THR L 182	26.237 92.856 2.623 1.00 84 91 L O	
	OTA	M 4413 O THR L 182	242	

	ATOM ATOM	4414 4415	N LYS L 183 CA LYS L 183		92.658 93.594	1.644 0.562	1.00 84.68 1.00 86.00	L L	N C
	MOTA	4416	CB LYS L 183	25.019	93.197	-0.749	1.00 86.72	L	C
_	MOTA	4417	CG LYS L 183		93.322 93.995	-0.752 -2.073	1.00 86.54 1.00 87.47	L L	C
5	ATOM ATOM	4418 4419	CD LYS L 183 CE LYS L 183		93.785	-2.691	1.00 88.10	L	Č
	ATOM	4420	NZ LYS L 183		94.811	-3.743	1.00 89.02	L	N
	MOTA	4421	C LYS L 183		95.056	1.041	1.00 86.08	L	С
	ATOM	4422	O LYS L 183		96.024	0.508	1.00 86.38	L	0
10	ATOM	4423	N ASP L 184		95.158 96.437	$2.167 \\ 2.721$	1.00 85.81 1.00 85.79	L L	N C
	MOTA	4424 4425	CA ASP L 184 CB ASP L 184		96.160	3.897	1.00 87.59	L	Č
	MOTA MOTA	4426	CG ASP L 184		97.349	4.851	1.00 89.93	L	C
	ATOM	4427	OD1 ASP L 184		98.440	4.386	1.00 90.99	\mathbf{L}	0
15	MOTA	4428	OD2 ASP L 184		97.125	6.059	1.00 91.11	L	0 C
	MOTA	4429	C ASP L 184		97.177 98.391	3.133 2.998	1.00 84.86 1.00 85.11	L L	0
	MOTA	$4430 \\ 4431$	O ASP L 184 N GLU L 185		96.403	3.685	1.00 83.36	Ĺ	Ŋ
	MOTA MOTA	4431	CA GLU L 185		96.852	4.008	1.00 82.20	L	С
20	MOTA	4433	CB GLU L 185	28.562	95.839	5.023	1.00 82.08	L _	C
	ATOM	4434	CG GLU L 185		95.387	4.788	1.00 82.98	L L	C
	ATOM	4435	CD GLU L 185		96.050 95.363	5.830 6.730	1.00 83.92 1.00 85.45	L L	Ö
	ATOM ATOM	4436 4437	OE1 GLU L 185 OE2 GLU L 185		97.277	5.847	1.00 83.51	L	ŏ
25	ATOM	4438	C GLU L 185		96.888	2.760	1.00 80.93	L	С
0	MOTA	4439	O GLU L 185	29.750	97.781	2.573	1.00 79.31	L	0
	MOTA	4440	N TYR L 186		95.847	1.906	1.00 80.68 1.00 81.19	L L	N C
	ATOM	4441	CA TYR L 186 CB TYR L 186		95.888 94.799	0.600 -0.320	1.00 79.74	L	Ċ
30	ATOM ATOM	4442 4443	CB TYR L 186		94.924	-1.735	1.00 79.67	L	С
50	ATOM	4444	CD1 TYR L 186	-	95.127	-1.986	1.00 79.51	L	C
	ATOM	4445	CE1 TYR L 186		94.990	-3.274	1.00 78.75	L	C
	ATOM	4446	CD2 TYR L 186		94.606	-2.809	1.00 79.13 1.00 78.31	L L	C
0.5	ATOM	4447	CE2 TYR L 186		94.472 94.669	-4.091 -4.334	1.00 78.31	L	C
35	MOTA MOTA	4448 4449	CZ TYR L 186 OH TYR L 186	-	94.670	-5.639	1.00 77.89	L	0
	ATOM	4450	C TYR L 186		97.258	-0.011	1.00 81.44	\mathbf{L}	· C
	MOTA	4451	O TYR L 180		98.023	-0.236	1.00 82.62	L	0
	MOTA	4452	N GLU L 18		97.580 98.768	-0.242 -0.987	1.00 81.21 1.00 81.63	L L	N C
40	MOTA	4453 4454	CA GLU L 18'		98.747	-1.066	1.00 82.22	Ĺ	č
	ATOM ATOM	4455	CG GLU L 18		97.889	-2.208	1.00 83.98	L	C
	MOTA	4456	CD GLU L 18	7 24.105	98.198	-2.392	1.00 85.00	L	C
	MOTA	4457	OE1 GLU L 18		97.305	-2.767	1.00 84.70	L	0
45	ATOM	4458	OE2 GLU L 18'		99.319 100.113	-2.073 -0.356	1.00 86.06 1.00 80.66	L L	C O
	ATOM ATOM	4459 4460	O GLU L 18'		101.169	-0.784	1.00 80.69	L	ŏ
	ATOM	4461	N ARG L 18	8 28.800	100.085	0.715	1.00 79.90	L	N
	MOTA	4462	CA ARG L 18	8 29.105	101.364	1.347	1.00 79.44	Ŀ	C
50	MOTA	4463	CB ARG L 18		101.227	2.864	1.00 80.37 1.00 82.71	L L	C
	MOTA	4464 4465	CG ARG L 18 CD ARG L 18		101.291 101.669	3.281 4.756	1.00 85.06	L	C
	MOTA MOTA	4465	CD ARG L 18 NE ARG L 18		100.484	5.612	1.00 85.93	L	N
	ATOM	4467	CZ ARG L 18		99.818	5.932	1.00 86.70	L	C
55	MOTA	4468	NH1 ARG L 18		100.226	5.477	1.00 86.66	L	N
	ATOM	4469	NH2 ARG L 18		98.738 101.898	6.716 0.973	1.00 86.37 1.00 78.28	L L	N C
	ATOM ATOM	4470 4471	C ARG L 18 O ARG L 18		101.090	1.208	1.00 70.20	L	ŏ
	ATOM	4472	N HIS L 18		100.835	0.491	1.00 76.81	L	N
60	MOTA	4473	CA HIS L 18	9 32.505	101.005	-0.024	1.00 75.77	L	C
-	MOTA	4474	CB HIS L 18	9 33.450	100.127	0.793	1.00 76.18	L	C
	MOTA	4475	CG HIS L 18		100.344 99.803	2.259 3.049	1.00 75.83 1.00 75.79	L L	C
	ATOM	4476 4477	CD2 HIS L 18 ND1 HIS L 18	34.184 3 34 056	101.028	3.049	1.00 76.33	L	И
65	ATOM ATOM	4478	CE1 HIS L 18	33.568	100.890	4.306	1.00 76.23	L	С
	ATOM	4479	NE2 HIS L 18	32.447	100.160	4.329	1.00 76.30	ŗ	N
	ATOM	4480	C HIS L 18		100.595	-1.488	1.00 74.26 1.00 73.32	L L	C
	MOTA	4481	O HIS L 18		99.713 101.241	-1.942 -2.203	1.00 73.32	r r	N
	ATOM	4482	n asn L 19	0 33.495	TAT. 747	د.203	2.00 /3.22		-1

	MOTA MOTA	4483 4484	CA ASN L 190 CB ASN L 190	33.511 33.497	101.062 102.448	-3.644 -4.284	1.00 72.28 1.00 72.27	L L	C
	ATOM	4485	CG ASN L 190	33.359	102.314	-5.777	1.00 72.22	Ŀ	C
	ATOM	4486	OD1 ASN L 190	32.582	101.514	-6.291	1.00 72.45	T.	0
5	ATOM	4487	ND2 ASN L 190	34.149	103.133	-6.492	1.00 72.27	L	И
	MOTA	4488	C ASN L 190		100.292	-4.083	1.00 71.86 1.00 71.82	L L	C
	MOTA	4489	O ASN L 190	34.733	99.519	-5.032	1.00 71.82 1.00 70.48	F F	И
	ATOM	4490	N SER L 191	35.886		-3.430 -3.668	1.00 70.48	P P	C
	MOTA	4491	CA SER L 191	37.231	99.902 100.968	-3.415	1.00 68.08	L	č
10	MOTA	4492	CB SER L 191	38.292 39.567		-3.635	1.00 70.37	L	ŏ
	ATOM	.4493	OG SER L 191 C SER L 191	37.561	98.593	-2.756	1.00 68.67	L	Č
	ATOM	4494	C SER L 191 O SER L 191	37.611	98.630	-1.534	1.00 68.74	L	0
	ATOM	4495 4496	N TYR L 192	37.721	97.469	-3.426	1.00 67.14	L	N
15	ATOM ATOM	4497	CA TYR L 192	37.945	96.133	-2.841	1.00 66.18	Ŀ	C
15	ATOM	4498	CB TYR L 192	36.809	95.191	-3.337	1.00 64.98	L	С
	ATOM	4499	CG TYR L 192	35.577	95.517	-2.560	1.00 65.06	L	C
	ATOM	4500	CD1 TYR L 192	34.690		-3.018	1.00 65.76	Ē	C
	ATOM	4501	CE1 TYR L 192	33.532	96.850	-2.250	1.00 65.52	$ar{ t r}$	C
20	ATOM	4502	CD2 TYR L 192	35.350		-1.281	1.00 64.44	T.	C
	MOTA	4503	CE2 TYR L 192	34.192		-0.452	1.00 64.83 1.00 65.25	L L	C
	MOTA	4504	CZ TYR L 192	33.299		-0.960 -0.300	1.00 65.23	r L	Ö
	MOTA	4505	OH TYR L 192	32.176 39.239		-3.407	1.00 65.75	L	č
	MOTA	4506	C TYR L 192 O TYR L 192	39.405		-4.664	1.00 65.70	L	ō
25	MOTA	4507 4508	O TYR L 192 N THR L 193	40.182		-2.565	1.00 64.25	L	N
	MOTA MOTA	4509	CA THR L 193	41.444		-2.979	1.00 63.31	L	С
	ATOM	4510	CB THR L 193	42.465		-2.780	1.00 63.11	${f L}$	С
	ATOM	4511	OG1 THR L 193	42.317		-3.840	1.00 63.06	Ľ	-0
30	ATOM	4512	CG2 THR L 193	43.903		-2.971	1.00 62.69	Ŀ	C
	ATOM	4513	C THR L 193	41.943		-2.280	1.00 63.36	L	C
	MOTA	4514	O THR L 193	41.741		-1.075	1.00 61.67	L L	N O
	ATOM	4515	N CYS L 194	42.588		-3.059	1.00 63.76 1.00 64.62	L	C
	MOTA	4516	CA CYS L 194	43.220		-2.686 -2.683	1.00 64.62 1.00 64.56	L	Č
35	ATOM	4517	C CYS L 194	44.750 45.367		-3.717	1.00 64.27	Ĺ	ŏ
	ATOM	4518	O CYS L 194 CB CYS L 194	42.754		-3.656	1.00 65.84	L	č
	MOTA	4519 4520	CB CYS L 194 SG CYS L 194	43.253		-3.082	1.00 69.27	L	S
	ATOM ATOM	4521	N GLU L 195	45.475		-1.654	1.00 65.49	L	N
40	ATOM	4522	CA GLU L 195	46.940		-1.514	1.00 66.37	L	C
40	ATOM	4523	CB GLU L 195	47.313		-0.485	1.00 67.92	L	C
	ATOM	4524	CG GLU L 195	47.266	93.904	-1.015	1.00 70.14	Ē	C
	MOTA	4525	CD GLU L 195	48.023		-0.147	1.00 72.46	Ļ	C
	ATOM	4526	OE1 GLU L 195	48.87		0.691	1.00 74.03	L L	0
45	MOTA	4527	OE2 GLU L 195	47.713		-0.294 -1.028	1.00 74.44 1.00 66.00	L	C
	MOTA	4528	C GLU L 195	47.670 47.530		0.172	1.00 66.57	r.	ŏ
	ATOM	4529	O GLU L 195			-1.891	1.00 65.28	L	Ŋ
	MOTA	4530	N ALA L 196 CA ALA L 196	48.633 49.25		-1.699	1.00 64.12	L	С
50	ATOM ATOM	4531 4532	CA ALA L 196 CB ALA L 196	49.14		-2.984	1.00 63.44	L	C
50	ATOM	4533	C ALA L 196	50.64		-1.252	1.00 64.13	Ŀ	С
	ATOM	4534	O ALA L 196	51.39		-1.899	1.00 63.42	L	0
	MOTA	4535	N THR L 197	51.00		-0.064	1.00 64.82	Ŀ	N
	ATOM	4536	CA THR L 197	52.38		0.252	1.00 64.09	L	C
55	MOTA	4537	CB THR L 197	52.65		1.576	1.00 63.72	L L	C
	MOTA	4538	OG1 THR L 197	52.33		1.434	1.00 64.06 1.00 63.15	L ₁	Č
	MOTA	4539	CG2 THR L 197			1.879 0.070	1.00 64.02	L	Č
	ATOM	4540	C THR L 197			0.788	1.00 64.77	L	ŏ
	ATOM	4541	O THR L 197 N HIS L 198			-0.910	1.00 62.84	L	N
60	MOTA	4542	N HIS L 198			-1.189	1.00 61.69	L	С
	MOTA ATOM	4543 4544	CB HIS L 198			-2.512	1.00 59.77	\mathbf{L}	С
	ATOM	4545	CG HIS L 198			-2.645	1.00 59.10	\mathbf{r}	С
	ATOM	4546	CD2 HIS L 198		2 82.226	-2.233	1.00 58.46	L	C
65	ATOM	4547	ND1 HIS L 198	55.73	4 83.035	-3.297	1.00 59.08	L	N
	ATOM	4548	CE1 HIS L 198	55.82		-3.331	1.00 57.61	Ŀ	C
	MOTA	4549	NE2 HIS L 198	54.82			1.00 57.62	L T.	N
	ATOM	4550					1.00 61.03 1.00 60.88	L L	C O
	ATOM	4551	O HIS L 198	56.74	7 86.720	-1.785	T.00 00.00	ם	J
				0.4.4					

5	ATOM 4552 N LYS L 199 ATOM 4553 CA LYS L 199 ATOM 4554 CB LYS L 199 ATOM 4555 CG LYS L 199 ATOM 4556 CD LYS L 199 ATOM 4557 CE LYS L 199 ATOM 4558 NZ LYS L 19	58.586 59.152 60.165 60.614 62.157	84.693 -1.0 84.708 -1.3 83.326 -0.0 82.579 -1.3 81.343 -0.3 81.071 -0.7 79.587 -1.	161 1.00 6 608 1.00 6 411 1.00 6 633 1.00 6 720 1.00 6 216 1.00 7	1.48 2.55 5.31 7.98 88.98 72.58	L C	
10	ATOM 4559 C LYS L 19 ATOM 4560 O LYS L 19 ATOM 4561 N THR L 20 ATOM 4562 CA THR L 20	59.215 60.316 58.534 58.889	85.037 -2. 85.439 -2. 84.770 -3. 85.151 -4.	.606 1.00 6 .867 1.00 6 .955 1.00 6	59.15 51.34 52.41 51.98	L L L	C N C
15	ATOM 4563 CB THR L 20 ATOM 4564 OG1 THR L 20 ATOM 4565 CG2 THR L 20 ATOM 4566 C THR L 20 ATOM 4567 O THR L 20	56.492 57.965 58.937 59.287	84.775 -5. 83.103 -6. 86.656 -5. 87.166 -6.	.459 1.00 .030 1.00 .003 1.00 .033 1.00 .027 1.00	51.96 63.55 63.63	L L L	и С С
20	ATOM 4568 N SER L 20 ATOM 4569 CA SER L 20 ATOM 4570 CB SER L 20 ATOM 4571 OG SER L 20 ATOM 4572 C SER L 20 ATOM 4573 O SER L 20 ATOM 4574 N THR L 20	58.503 57.270 57.317 58.532 57.824 59.389	88.878 -4. 89.284 -5. 90.617 -5. 89.678 -2. 89.379 -2. 90.679 -2.	.257 1.00 .062 1.00 .277 1.00 .932 1.00 .026 1.00 .903 1.00	66.77 66.67 69.81 67.89		C C C C C C C C C C
25	ATOM 4575 CA THR L 20 ATOM 4576 CB THR L 20 ATOM 4577 OG1 THR L 20 ATOM 4578 CG2 THR L 20	2 60.789 2 61.001 2 62.051	92.514 -1 92.700 -3 91.770 -1	.942 1.00	70.21 71.61 69.32 71.81	L L L	C O C C
30	ATOM 4579 C THR L 2 ATOM 4580 O THR L 2 ATOM 4581 N SER L 2 ATOM 4582 CA SER L 2 ATOM 4583 CB SER L 2	2 58.384 2 58.249 3 57.509 3 56.351 3 56.536	93.078 -0 92.620 -2 93.397 -2 94.788 -2 94.698 -4	1.00 2.445 1.00 2.139 1.00 2.770 1.00 4.173 1.00	73.06 72.08 72.51 72.61 73.89	L L L L	О С С С С
35	ATOM 4585 C SER L 2 ATOM 4586 O SER L 2 ATOM 4587 N PRO L 2 ATOM 4588 CD PRO L 2	55.109 55.060 64 54.020 64 53.822	91.850 -3 92.809 -1 93.786 -0	0.890 1.00	73.15 73.17 73.52 73.68 73.37	F F F	С С О
40	ATOM 4591 CG PRO L 2 ATOM 4592 C PRO L 2 ATOM 4593 O PRO L 2	51.760 04 52.466 04 52.319 04 52.550	92.891 -1 94.171 -1 92.276 -3 93.254 -4 91.345 -4	1.538 1.00 1.377 1.00 3.827 1.00 4.516 1.00 4.270 1.00	72.83 73.10 73.82 73.65 74.15	L L L L	C C O N C
45	ATOM 4595 CA ILE L : ATOM 4596 CB ILE L : ATOM 4597 CG2 ILE L : ATOM 4598 CG1 ILE L	05 50.947 05 51.131 05 50.847 05 50.088	91.530 - 90.297 - 90.291 - 90.139 - 90.	5.470 1.00 7.496 1.00 8.411 1.00	75.73 77.35 75.81 76.36	L L L	00000
50	ATOM 4600 C ILE L ATOM 4601 O ILE L ATOM 4602 N VAL L ATOM 4603 CA VAL L	05 49.492 05 49.112 06 48.715 06 47.513	91.850 - 91.672 - 92.491 - 3 93.122 -	-4.177 1.00 -6.123 1.00 -5.663 1.00 -5.144 1.00	75.53 76.26 75.08 74.71 74.40	L L L L	О И С
55	ATOM 4604 CB VAL L ATOM 4605 CG1 VAL L ATOM 4606 CG2 VAL L ATOM 4607 C VAL L ATOM 4608 O VAL L ATOM 4609 N LYS L	206 48.952 206 47.693 206 46.644 206 47.073	94.812 - 9 95.650 - 4 93.211 - 1 93.738 - 2 92.674 -	-4.282 1.00 -6.301 1.00 -6.846 1.00 -7.786 1.00 -6.741 1.00	73.30 74.38 74.88 75.87 74.58	L L L L	ССОИС
60	ATOM 4610 CA LYS L ATOM 4611 CB LYS L ATOM 4612 CG LYS L ATOM 4613 CD LYS L	207 44.29 207 43.87 207 44.99 207 45.03	8 91.401 - 6 90.736 - 0 91.289 -1 6 90.847 -1	-8.024 1.0 -8.978 1.0 10.379 1.0 11.268 1.0	0 74.35 0 74.50 0 75.19 0 76.53 0 77.77	r r r	CCCN
65	ATOM 4614 CE LYS L ATOM 4615 NZ LYS L ATOM 4616 C LYS L ATOM 4617 O LYS L ATOM 4618 N SER L ATOM 4619 CA SER L ATOM 4620 CB SER L	207 45.76 207 43.09 207 42.82 208 42.40 208 41.41	4 90.117 -1 6 93.543 7 93.341 94.355 3 95.213	-6.906 1.0 -5.709 1.0 -7.676 1.0 -7.140 1.0	0 79.30 0 74.45 0 73.76 0 74.34 0 74.67 0 74.26	L L L L	C O N C C
	*** *** ·· · · · · · · · · · · · · · ·	245					

5 10 15 20 25	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4629 CI 4630 CI 4631 CI 4632 CZ 4633 C CI 4635 N 4636 CZ 4637 C CI 4638 C CI 4639 CI 4640 N 4641 C CI 4642 CI 4643 N 4644 C CI 4645 C CI 4646 C CI 4647 C CI 4648 C CI 4647 C CI 4648 C CI 4649 C CI 4649 C CI 4650 N 4651 N	SER L 208 SER L 208 PHE L 209 PHE L 210 ASN L 210 B ASN L 210 B ASN L 210 B ASN L 210 C ASN L 211 C ARG L 211	43.125 96.638 -6.088 1.00 75.04 L O 40.278 95.350 -8.117 1.00 75.12 L O 40.328 94.990 -9.309 1.00 75.07 L O 39.225 95.930 -7.600 1.00 75.89 L N 38.202 96.369 -8.515 1.00 76.68 L C 37.392 95.232 -8.946 1.00 75.71 L C 36.442 94.760 -7.934 1.00 76.21 L C 35.288 95.396 -7.710 1.00 76.62 L C 36.650 93.568 -7.240 1.00 76.62 L C 34.321 94.896 -6.848 1.00 76.62 L C 35.650 93.051 -6.385 1.00 77.20 L C 34.499 93.760 -6.215 1.00 77.21 L C 37.380 97.346 -7.803 1.00 78.77
35	MOTA ATOM ATOM ATOM MOTA MOTA	4653 C 4654 I 4655 C 4656 C 4657 C	ARG L 211 D ARG L 211 N ASN L 212 CA ASN L 212 CB ASN L 212 CG ASN L 212	30.298 98.696 -9.159 1.00 90.59 L O 31.609 100.529 -8.707 1.00 92.92 L N 31.022 101.615 -9.578 1.00 95.30 L C 31.287 103.060 -8.990 1.00 95.62 L C 32.727 103.685 -9.302 1.00 95.98 L C 33.706 102 985 -9.365 1.00 96.57 L O
40	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4659 1 4660 6 4661 6 4662 3	OD1 ASN L 212 ND2 ASN L 212 C ASN L 212 O ASN L 212 N GLU L 213 CA GLU L 213	32.810 105.038 -9.430 1.00 95.86 L N 31.451 101.449 -11.064 1.00 97.04 L C 30.838 102.032 -11.978 1.00 97.84 L O 32.523 100.647 -11.235 1.00 98.65 L N 32.879 99.815 -12.407 1.00100.44 L C
45	MOTA MOTA MOTA MOTA MOTA	4664 4665 4666 4667 4668	CB GLU L 213 CG GLU L 213 CD GLU L 213 OE1 GLU L 213 OE2 GLU L 213	31.669 99.384 -13.335 1.00101.37 L C 30.708 98.317 -12.739 1.00103.86 L C 29.293 98.287 -13.389 1.00105.73 L C 29.148 98.663 -14.613 1.00106.92 L O 28.311 97.881 -12.696 1.00106.19 L O 34.052 100.491 -13.158 1.00101.34 L C
50	MOTA MOTA ATOM ATOM MOTA	4670 4671 4672 4673	C GLU L 213 O GLU L 213 OXT GLU L 213 CB ALA H 1 C ALA H 1	34.052 100.491 -13.136 1.00101.24 L O 35.005 101.056 -12.555 1.00101.24 L O 34.010 100.451 -14.407 1.00102.50 L O 39.945 47.058 -15.210 1.00 57.59 H C 39.240 45.311 -13.489 1.00 56.41 H C 38.014 45.283 -13.595 1.00 56.03 H O
55	MOTA MOTA MOTA MOTA MOTA	4674 4675 4676 4677 4678	O ALA H 1 N ALA H 1 CA ALA H 1 N VAL H 2 CA VAL H 2	39.647 44.577 -15.546 1.00 58.24 H N 40.167 45.578 -14.643 1.00 57.67 H C 39.812 45.198 -12.287 1.00 55.97 H N 38.982 45.072 -11.168 1.00 55.80 H C
60	MOTA MOTA MOTA MOTA	4679 4680 4681 4682	CB VAL H 2 CG1 VAL H 2 CG2 VAL H 2 C VAL H 2 O VAL H 2	38.900 44.730 -8.646 1.00 53.68 H C 40.562 43.232 -10.087 1.00 54.67 H C 38.208 46.290 -10.890 1.00 55.96 H C 38.753 47.332 -10.978 1.00 56.13 H O
65	MOTA MOTA MOTA MOTA MOTA MOTA	4684 4685 4686 4687 4688	N LYS H 3 CA LYS H 3 CB LYS H 3 CG LYS H 3 CD LYS H 3 CE LYS H 3	36.979 46.190 -10.426 1.00 55.21 H N 36.214 47.342 -10.003 1.00 54.60 H C 35.313 47.862 -11.046 1.00 56.93 H C 35.974 48.256 -12.313 1.00 61.09 H C 34.988 48.698 -13.499 1.00 64.16 H C 35.878 48.939 -14.898 1.00 66.47 H C

								4.5.005	1 00 66		т.	NT
	MOTA			LYS H	3	35.296 35.355	48.156 47.206	-16.087 -8.701	1.00 69	2.89	H H	C N
	ATOM ATOM	4691 4692		LYS H LYS H	3 3	34.716	46.223	-8.522	1.00 53		H-	0
	ATOM	4693	N	LEU H	4	35.271	48.273	-7.924	1.00 50		H H	И С
5	MOTA	4694	CA	LEU H	4	34.437 35.301	48.255 48.009	-6.746 -5.477	1.00 40		H	č
	ATOM ATOM	4695 4696	CB CG	LEU H LEU H	$rac{4}{4}$	36.237	46.878	-5.386	1.00 4	7.93	H	C
	ATOM	4697	CD1	LEU H	4	37.068	46.748	-3.950	1.00 44	4.50 5.14	H H	C C
	ATOM	4698		LEU H	4	35.265	45.686 49.504	-5.471 -6.651	1.00 4		H	Č
10	MOTA	4699	C	LEU H LEU H	4 4	33.768 34.443	50.510	-6.706	1.00 4	9.93	H	0
	ATOM ATOM	$4700 \\ 4701$	N O	VAL H	5	32.466	49.494	-6.457		8.58	H	N
	ATOM	4702	CA	VAL H	5	31.680	50.754	-6.411	1.004 1.004	8.51 8.35	H H	C C
	MOTA	4703	CB	VAL H	5	30.892 30.080	50.955 52.257	-7.693 -7.619	1.00 4	7.31	H	Č
15	MOTA	4704 4705		VAL H	5 5	31.859	50.919	-8.930	1.00 4	6.39	H	C
	MOTA MOTA	4705 4706	C	VAL H	5	30.742	50.824	-5.191	1.00 4		H H	C O
	MOTA	4707	0	VAL H	5	29.722	50.175 51.695	-5.154 -4.269	1.004 1.004	9.40	Н	N
	ATOM	4708	N	GLU H	6 6	31.058 30.241	51.844	-3.056	1.00 5		H	C
20	MOTA ATOM	4709 4710	CA CB	GLU H	6	31.120	52.542	-2.043		0.52	H	C
	ATOM	4711	CG	GLU H	6	32.410	51.720	-1.614 -2.427		2.97 4.93	H H	C C
	MOTA	4712	CD	GLU H	6	33.634 33.454	52.070 52.594	-2.427 -3.591	1.00 5		H	ŏ
0.5	MOTA	4713 4714	OE1 OE2		6 6	34.778	51.772	-1.950	1.00 5	3.24	H	0
25	MOTA MOTA	4715	C	GLU H	6	29.005	52.674	-3.334		1.92	H H	C O
	MOTA	4716	0	GLU H	6	29.006	53.587 52.409	-4.190 -2.617		3.20 52.28	H	И
	MOTA	4717	N	SER H SER H	7 7	27.949 26.784	53.228	-2.628	1.00 5		H	С
30	ATOM ATOM	4718 4719	CA CB	SER H	7	25.870	52.850	-3.832		51.14	H	C
30	ATOM	4720	ŌĠ	SER H	7	25.351	51.648		1.00 5		H H	0
	MOTA	4721	C	SER H	7	26.041 26.407	53.138 52.356		1.00 5	52.35	Н	ō
	MOTA	4722 4723	N O	SER H GLY H	7 8	24.926	53.908		1.00 5	53.91	Н	N
35	ATOM ATOM	4724	CA	GLY H	8	24.156	53.922		1.00 5		H H	C C
-	ATOM	4725	C	GLY H	8	24.571 23.988	54.962 55.136		1.00		H	Ö
	ATOM	4726	O	GLY H	8 9	25.549	55.685			54.06	H	N
	ATOM ATOM	4727 4728	N CA	GLY H	9	26.023	56.605	1.797		55.85	H H	C
40	ATOM	4729	C	GLY H	9	25.094	57.863			56.97 58.21	H	Ö
	ATOM	4730	0	GLY H	9 10	24.395 25.096	58.190 58.589			56.93	H	N
	MOTA MOTA	4731 4732	N CA		10	24.492	59.891	L 3.099	1.00		H	C
	MOTA	4733	C	GLY H	10	24.458	60.322			57.22 56.37	H H	C
45	MOTA	4734	0	GLY H	10	25.269 23.491	59.948 61.158				H	N
	MOTA	4735 4736	N CA	LEU H	11 11	23.324		-	1.00	58.33	H	C
	MOTA MOTA	4737	CB		11	22.670	63.09	5.971		57.28	H H	C C
	ATOM	4738	CG	LEU H	11	22.217 23.399				57.41 56.59	H	С
50	ATOM	4739		1 LEU H 2 LEU H	11 11	23.533			1.00	55.33	H	С
	ATOM ATOM	4740 4741		LEU H	11	22.422	60.91	2 7.021		58.53	H H	C O
	ATOM	4742		LEU H	11	21.366				59.22 58.84	H	N
	ATOM	4743		VAL H	12 12	22.718 21.708				59.95	H	С
55	MOTA ATOM	4744 4745			12	22.077		7 8.929	1.00	60.75	H	C
	ATOM	4746	CG	31 VAL H	12	23.568				60.56 60.62	H H	C
	ATOM	4747		2 VAL H	12	21.161 21.774				60.49	H	č
	MOTA	4748		VAL H VAL H	12 12	22.697			9 1.00	60.65	H	0
60	MOTA MOTA	4749 4750		LYS H		20.834	60.19	5 11.25		60.42	H	N C
	MOTA	4751	L CF	A LYS H	13	20.867				59.46 60.98	H H	C
	MOTA	4752				19.419 18.779			1 1.00	63.17	H	С
e e	MOTA MOTA	4753 4754			_	17.763		4 13.15	4 1.00	65.62	H	C
65	MOTA				13	17.036	64.15	4 12.22		68.26 71.07	H H	и С
	ATOM	4756	S N			16.293 21.483				58.33	H	Č
	MOTA					21.48				58.31	H	0
	ATOM	4758	. 0	יו מיות		247						

	ATOM ATOM ATOM ATOM	4760 4761		PRO H PRO H PRO H PRO H	14 14 14 14	22.042 22.318 22.626 22.995	60.411 61.869 59.548 60.555	14.752 14.891 15.802 16.947	1.00 57.07 1.00 55.75 1.00 56.28 1.00 56.53	н н н	N C C
5	ATOM ATOM ATOM ATOM ATOM		CG C O N CA	PRO H PRO H PRO H GLY H GLY H	14 14 14 15 15	23.122 21.666 20.570 21.993 20.994	61.877 58.517 58.933 57.257 56.241	16.191 16.305 16.728 16.354 16.724	1.00 56.41 1.00 55.92 1.00 56.88 1.00 55.44 1.00 54.88	н н н н	С С С
10	ATOM ATOM ATOM ATOM	4768 4769 4770 4771	C O N CA	GLY H GLY H GLY H GLY H	15 15 16 16 16	20.484 19.892 20.699 19.951 20.773	55.495 54.476 56.038 55.543 54.494	15.465 15.544 14.263 13.101 12.482	1.00 54.20 1.00 54.74 1.00 53.14 1.00 51.86 1.00 52.00	н н н н	
15	ATOM ATOM ATOM ATOM ATOM	4772 4773 4774 4775 4776	C N CA CB	GLY H SER H SER H SER H	16 17 17 17	21.729 20.297 20.774 19.762 20.092	53.970 54.042 52.845 51.729 51.111	13.145 11.307 10.687 10.752 12.020	1.00 51.59 1.00 53.11 1.00 54.45 1.00 54.70 1.00 59.63	н н н н	N C C
20	ATOM ATOM ATOM ATOM ATOM	4777 4778 4779 4780 4781	OG C O N CA	SER H SER H SER H LEU H LEU H	17 17 17 18 18	20.920 20.163 21.938 22.072	53.091 53.853 52.505 52.699	9.213 8.685 8.621 7.169 6.955	1.00 54.40 1.00 53.44 1.00 54.00 1.00 54.73 1.00 54.70	H H H H	C O N C
25	ATOM ATOM ATOM ATOM ATOM	4782 4783 4784 4785 4786		LEU H LEU H LEU H	18 18 18 18	22.948 23.142 21.896 24.212 22.774	54.458 55.216 55.423 51.412	5.572 5.078 5.601 6.623	1.00 56.43 1.00 56.27 1.00 56.44 1.00 55.38	H H H H	
30	ATOM ATOM ATOM ATOM ATOM	4787 4788 4789 4790 4791	O N CA CB CG	LEU H LYS H LYS H LYS H LYS H	18 19 19 19 19	23.624 22.509 23.140 22.060 22.453	51.140 50.022 48.990	7.374 5.353 4.821 4.581 3.743	1.00 56.00 1.00 53.52 1.00 53.55 1.00 56.27 1.00 58.99	H H H	I N I C I C
35	MOTA MOTA MOTA	4792 4793 4794 4795	CD CE NZ C	LYS H LYS H LYS H LYS H LYS H	19 19 19 19	21.232 21.663 20.773 23.873 23.232	3 45.114 L 44.171 L 50.392		1.00 61.93 1.00 63.64 1.00 65.48 1.00 52.35 1.00 50.72	1- 1- 1- 1- 1-	H C
40	MOTA MOTA MOTA MOTA MOTA	4796 4797 4798 4799 4800	O N CA CB CG	LEU H LEU H LEU H	20 20 20 20	25.196 25.95 27.363 27.433	50.059 7 50.334 1 50.733 9 51.809	3.504 2.258 2.749 3.840	1.00 50.39 1.00 49.11 1.00 47.89 1.00 47.60 1.00 43.14		ı C
45	MOTA MOTA MOTA MOTA MOTA	4801 4802 4803 4804 4805		LEU H LEU H LEU H LEU H SER H	20 20 20 20 21	28.975 26.685 26.055 25.99 26.44	2 53.096 8 49.092 9 47.926 6 49.281	3.407 1.342 1.817 0.097	1.00 43.08 1.00 48.76 1.00 48.50 1.00 47.53	I I I	H C H C H O
50	ATOM ATOM ATOM ATOM	4806 4807 4808 4809 4810	CA CB OG C	SER H SER H SER H SER H	21 21 21	26.57 25.23 24.93 27.72 28.30	0 47.952 1 48.983 7 48.498	-1.286 -2.110 -1.651	1.00 53.28 1.00 50.26]]]	H C H C H C H C
55	ATOM ATOM ATOM ATOM ATOM ATOM	4811 4812 4813 4814 4815	O N CA C O CB	CYS H CYS H CYS H CYS H	22 22 22 22 22 22	28.24 29.41 29.34 29.35 30.76 32.24	4 47.418 2 47.531 6 46.503 7 45.322 1 47.352	-2.228 -3.065 -4.180 -3.900 -2.238	1.00 50.61 1.00 50.77 1.00 50.55 1.00 50.98 1.00 51.71		H CH CH CH CH CH S
60	ATOM ATOM ATOM ATOM ATOM	4816 4817 4818 4819 4820	SG N CA CB	CYS H ALA H ALA H ALA H	23 23 23 23 23	29.41 29.30 28.61 30.60 31.27	5 46.993 2 46.234 4 47.108 4 45.935	3 -5.373 4 -6.577 3 -7.567 5 -7.103	1.00 49.89 1.00 49.03 1.00 47.99 1.00 49.69		H N H C H C H C
65	MOTA MOTA MOTA MOTA MOTA	4821 4822 4823 4824 4825 4826	O N CA CB C	ALA H ALA H ALA H	I 24 I 24 I 24 I 24 I 24	30.91 32.20 32.73 32.14 31.35	1 44.676 17 44.285 1 43.146 13 43.718 14 42.919	6 -7.200 5 -7.697 0 -6.924 8 -9.135 9 -9.301	1.00 49.14 1.00 48.47 1.00 47.00 1.00 48.34 1.00 49.22		H N H C H C H O H N
	MOTA	4827	N	SER F	1 25	33.30	14 43.10	O -2.010	, 1.00 40.04		

	ATOM ATOM	4828 4829		ER H	25 25	33.438 32.645	43.147 · 44.055 ·	-12.109	1.00 45.88 1.00 45.88	H H	C
	MOTA	4830		ER H	25	33.287	45.345		1.00 45.34 1.00 45.41	H H	0
_	MOTA	4831		ER H	25	34.889	43.038 43.637	-11.463	1.00 43.41	· H	C O
5	MOTA	4832		ER H	25	35.874 35.133		-10.833	1.00 45.42	H	И
	MOTA	4833 4834		TA H TA H	26 26	36.533	42.204		1.00 44.78	H	Ĉ
	ATOM ATOM	4835		TA H	26	37.332		-12.147	1.00 45.64	H	č
	ATOM	4836		LY H	26	38.405	40.867		1.00 47.57	H	0
10	ATOM	4837		HE H	27	36.715	40.205		1.00 45.58	H	N
	ATOM	4838	CA F	HE H	27	37.357		-10.671	1.00 46.08	H	C
	MOTA	4839	CB F	PHE H	27	38.317	39.699	-9.644	1.00 43.87	H	C
	MOTA	4840		HE H	27	37.579	40.292	-8.414	1.00 43.88	H	C C
	ATOM .	4841		PHE H	27	37.326	39.512	-7.245 -8.474	1.00 40.50 1.00 42.67	H H	C
15	ATOM	4842		PHE H	27 27	37.119 36.667	41.532 40.059	-6.196	1.00 42.07	H	č
	ATOM ATOM	4843 4844		PHE H	27	36.366	42.142	-7.299	1.00 44.46	H	č
	ATOM	4845		PHE H	27	36.134	41.425	-6.272	1.00 42.65	H	C
	ATOM	4846		PHE H	27	36.336		-10.076	1.00 47.08	H	C
20	ATOM	4847	-	PHE H	27	35.185	38.307	-9.844	1.00 49.16	H	0
	MOTA	4848	N J	CHR H	28	36.748	36.820	-9.877	1.00 48.35	H	N
	ATOM	4849		CHR H	28	35.813	35.893	-9.410	1.00 50.12	H H	C
	ATOM	4850		THR H	28	36.202	34.434	-9.933 -9.243	1.00 52.14 1.00 56.55	н Н	o
0.5	MOTA	4851		PHR H PHR H	28 28	35.403 37.402	33.362 34.188	-9.243 -9.641	1.00 53.83	H	Č
25	MOTA MOTA	4852 4853		THR H	28	35.514	36.102	-7.818	1.00 49.21	H	Č
	ATOM	4854		THR H	28	36.115	35.568	-6.977	1.00 49.79	H	0
	ATOM	4855		PHE H	29	34.524	36.874	-7.593	1.00 47.72	H	N
	ATOM	4856		PHE H	29	34.149	37.342	-6.286	1.00 47.97	H	
30	ATOM	4857		PHE H	29	32.787	38.132	-6.445	1.00 47.14	H	C
	MOTA	4858		PHE H	29	32.172	38.691	-5.220	1.00 49.20 1.00 48.92	H H	
	ATOM	4859		PHE H	29	32.709	39.718 38.144	-4.625 -4.646	1.00 48.92	H	
	MOTA	4860.		PHE H PHE H	29 29	31.027 32.193	40.292	-3.574	1.00 30.52	H	
35	ATOM ATOM	4861 4862		PHE H	29	30.519	38.683	-3.472	1.00 51.60	H	
35	ATOM	4863		PHE H	29	31.069	39.875	-3.036	1.00 50.36	H	
	MOTA	4864		PHE H	29	34.066	36.255	-5.324	1.00 48.25	H	
	ATOM	4865		PHE H	29	34.650	36.405	-4.308	1.00 47.87	H	
	ATOM	4866		ILE H	30	33.416	35.161	-5.640	1.00 48.05	H	
40	ATOM	4867	_	ILE H	30	33.240	34.134	-4.657	1.00 48.95 1.00 51.25	H H	
	ATOM	4868		ILE H	30 30	32.439 31.085	32.942 33.450	-5.181 -5.918	1.00 51.25	Н	
	ATOM ATOM	4869 4870		ILE H	30	33.251	32.358	-6.337	1.00 53.67	H	
	ATOM	4871		ILE H	30	32.533	31.000	-6.629	1.00 56.77	H	
45	ATOM	4872		ILE H	30	34.510	33.607	-4.067	1.00 47.10	H	
	ATOM	4873		ILE H	30	34.426	33.078	-2.972	1.00 46.72	H	
	MOTA	4874		SER H	31	35.639	33.649	-4.781	1.00 45.74	H	
	MOTA	4875		SER H	31	36.879	33.125	-4.259	1.00 46.34 1.00 45.27	H H	
50	ATOM	4876		SER H	31 31	37.827 37.519	32.857 31.569	-5.438 -6.102	1.00 47.34	H	
50	MOTA MOTA	4877 4878		SER H	31	37.608	34.041	-3.249	1.00 47.42	H	
	ATOM	4879		SER H	31	38.528	33.582	-2.645	1.00 48.51	Н	
	ATOM	4880		TYR H	32	37.258	35.349	-3.166	1.00 46.52	H	
	MOTA	4881		TYR H	32	37.975	36.322	-2.352	1.00 45.49	H	
55	MOTA	4882		TYR H	32	38.213	37.568	-3.172	1.00 45.29	H	
	MOTA	4883		TYR H	32	39.251	37.376	-4.152	1.00 47.58 1.00 46.72	H H	
	MOTA	4884		TYR H	32	38.922	36.939 36.713	-5.514 -6.359	1.00 47.22	H	
	MOTA	4885	_	TYR H	32 32	39.847 40.590	37.593	-3.856	1.00 47.39	H	
60	ATOM ATOM	4886 4887		TYR H	32	41.530	37.455	-4.906	1.00 49.71	H	I C
00	ATOM	4888		TYR H	32	41.051	36.937	-6.187	1.00 49.39	H	ı C
	ATOM	4889		TYR H	32	41.962	36.800	-7.206	1.00 50.64	H	0 1
	ATOM	4890	C	TYR H	32	37.216	36.750	-1.113	1.00 44.53	H	
	ATOM	4891		TYR H	32	35.949	36.960	-1.073	1.00 43.26	H	
65	MOTA	4892		ALA H	33	37.935	36.900	-0.101	1.00 42.87 1.00 42.63	H H	
	ATOM	4893		ALA H	33	37.400	37.574 37.424	$\frac{1.210}{2.247}$	1.00 42.03	H	
	ATOM	4894 4895	CB C	ALA H	33 33	38.336 37.328	39.121	0.848	1.00 41.98	H	
	MOTA MOTA	4896	O	ALA H	33	38.029	39.563	-0.026	1.00 41.34	H	

	-	36 474 39.866 1.481 1.00 41.20	H N
	ATOM 4897 N MET H 34 ATOM 4898 CA MET H 34	36.186 41.225 1.222 1.00 40.63 36.186 41.225 1.222 1.00 39 10	H C H C
	ATOM 4899 CB MET H 34	34.605 40.629 -0.882 1.00 39.77	H C
5	ATOM 4901 SD MET H 34	35.784 41.463 -1.994 1.00 45.71 34.886 42.882 -1.964 1.00 37.92	н С
	ATOM 4902 CE MET H 34 ATOM 4903 C MET H 34	36.064 41.971 2.628 1.00 41.20	H C H O
	ATOM 4904 O MET H 34	36 215 43.285 2.610 1.00 41.11	H N
10	ATOM 4906 CA SER H 35	36.200 44.080 3.829 1.00 42.00	H C H C
10	ATOM 4907 CB SER H 35	38.364 43.036 4.454 1.00 47.79	H О H С
	ATOM 4909 C SER H 35	35.695 45.455 3.673 1.00 41.71 35.720 46.062 2.568 1.00 41.47	н О
15	ATOM 4910 O SER H 35 ATOM 4911 N TRP H 36	35.278 46.065 4.802 1.00 42.04	H N H C
15	ATOM 4912 CA TRP H 36	33.732 47.837 5.384 1.00 40.20	H C
	ATOM 4914 CG TRP H 36	32.757 47.463 4.576 1.00 43.62	н С
	ATOM 4915 CD2 TRP H 36	31.210 47.285 2.887 1.00 45.57	н С н С
20	ATOM 4917 CE3 TRP H 36	32 184 46.211 4.564 1.00 44.58	н С
	ATOM 4919 NE1 TRP H 36	31.199 46.152 3.621 1.00 44.93	H N H C
	ATOM 4920 CZ2 TRP H 36	31.538 49.746 1.866 1.00 47.87	н С н С
25	ATOM 4922 CH2 TRP H 36	30.542 48.889 1.300 1.00 47.68 36.263 48.226 5.552 1.00 41.16	н С
	ATOM 4923 C TRP H 36 ATOM 4924 O TRP H 36	36.743 47.750 6.656 1.00 41.65	H O
	ATOM 4925 N VAL H 37	37.677 50.161 5.817 1.00 41.72	н С н С
30	ATOM 4927 CB VAL H 37	39.036 50.109 5.144 1.00 42.37 40.071 51.091 5.876 1.00 39.85	н С
	ATOM 4928 CG1 VAL H 37 ATOM 4929 CG2 VAL H 37	39.663 48.676 5.106 1.00 38.47	н С н С
	ATOM 4930 C VAL H 37	36 995 52.089 4.630 1.00 42.66	н О
35	ATOM 4932 N ARG H 38	37.228 52.304 6.833 1.00 44.32	н N н С
	ATOM 4933 CA ARG H 38	35.669 53.856 7.939 1.00 45.50	н С н С
	ATOM 4935 CG ARG H 38	36.084 53.725 9.186 1.00 45.79 34.803 53.785 10.025 1.00 45.99	H C
40	ATOM 4936 CD ARG H 38 ATOM 4937 NE ARG H 38	35.170 53.623 11.372 1.00 45.09	H N H C
	ATOM 4938 CZ ARG H 38	32.926 53.654 12.247 1.00 45.96	H N H N
	ATOM 4940 NH2 ARG H 38	34.638 53.487 13.675 1.00 45.71	н С
45	ATOM 4941 C ARG H 38 ATOM 4942 O ARG H 38	38.903 54.408 7.622 1.00 45.24	H O H N
	ATOM 4943 N GLN H 39	38.673 56.948 6.926 1.00 47.06	H C
	ATOM 4945 CB GLN H 39	39.308 57.430 5.570 1.00 46.43	н С
50	ATOM 4946 CG GLN H 39	41.330 58.532 4.518 1.00 47.35	н С н О
	ATOM 4948 OE1 GLN H 39	40.833 50.575 4.792 1.00 45.77	H N
	ATOM 4950 C GLN H 39	37.956 58.115 7.601 1.00 47.56	н С н О
55	ATOM 4951 O GLN H 39	38.514 58.593 8.660 1.00 48.24	H N H C
	ATOM 4953 CA THR H 40	37.841 59.686 9.468 1.00 50.75	н С
	ATOM 4954 CB THR H 40 ATOM 4955 OG1 THR H 40	39.707 60.030 10.772 1.00 52.70	н О н С
60	ATOM 4956 CG2 THR H 40	30 346 60 985 8.902 1.00 51.36	н С
	ATOM 4957 C THR H 40 ATOM 4958 O THR H 40	39.059 61.013 8.038 1.00 51.10	O H
	ATOM 4959 N PRO H 41	36.295 62.115 10.073 1.00 52.24	н с
65	ATOM 4961 CA PRO H 41	37.890 63.382 8.700 1.00 51.01	н С
00	ATOM 4962 CB PRO H 41	35.639 63.438 9.554 1.00 50.96	н С н С
	ATOM 4964 C PRO H 41	39.303 63.781 9.025 1.00 51.27 39.846 64.518 8.265 1.00 51.34	н О
	ATOM 4965 O PRO H 41	250	

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4966 4967 4968 4969 4970 4971 4972	CA CB CCC CCC CCCCCCCCCCCCCCCCCCCCCCCCC	GLU H GLU H GLU H GLU H GLU H	42 42 42 42 42 42 42	39.838 41.210 41.532 40.596 39.079 38.707 38.252	63.399 63.665 63.339 64.039 63.416 62.251 63.979	10.184 10.527 12.031 13.179 13.163 13.758 12.323	1.00 50.91 1.00 52.30 1.00 55.58 1.00 59.66 1.00 62.60 1.00 63.38 1.00 64.12	н н н н н	иссссоо
10	ATOM ATOM ATOM ATOM ATOM ATOM	4973 4974 4975 4976 4977 4978	C C C C C C	GLU H GLU H ALA H ALA H ALA H ALA H	42 42 43 43 43	42.073 43.240 41.527 42.347 43.348 43.018 43.689	62.709 62.735 61.853 61.082 61.928 59.830 59.136	9.628 9.742 8.757 7.706 6.815 8.352 7.699	1.00 51.81 1.00 52.65 1.00 49.44 1.00 48.63 1.00 47.37 1.00 48.33 1.00 48.60	H H H H H H	000000
15	ATOM ATOM ATOM ATOM ATOM	4979 4980 4981 4982 4983	N CA CB CG	ALA H ARG H ARG H ARG H ARG H	43 44 44 44	42.570 42.889 42.938 44.321	59.389 58.032 57.885 58.813	9.572 9.839 11.296 11.780	1.00 47.49 1.00 48.90 1.00 52.09 1.00 59.28	н н н н	С С С
20	MOTA MOTA MOTA	4984 4985 4986 4987 4988	NE CZ NH1	ARG H ARG H ARG H ARG H	44 44 44 44	44.773 45.692 46.987 47.689 47.593	58.725 57.571 57.605 58.789 56.430	13.290 13.544 13.921 14.061 14.154	1.00 62.11 1.00 64.30 1.00 63.28 1.00 63.13 1.00 63.84	н н н н	N C N
25	ATOM ATOM ATOM ATOM ATOM	4989 4990 4991 4992	C O N CA	ARG H ARG H LEU H LEU H	44 44 45 45	42.073 40.898 42.750 42.201	56.938 56.964 55.849 54.621	9.226 9.436 8.788 8.474 7.427	1.00 47.27 1.00 47.74 1.00 44.62 1.00 43.21 1.00 41.37	н н н н	С О И С
30	ATOM ATOM ATOM ATOM ATOM	4993 4994 4995 4996 4997		LEU H LEU H LEU H LEU H	45 45 45 45 45	42.979 43.190 44.344 42.020 41.890	53.927 54.958 54.453 54.769 53.725	6.126 5.241 5.365 9.680	1.00 41.08 1.00 39.01 1.00 41.28 1.00 44.41	Н Н Н Н	C C C
35	ATOM ATOM ATOM ATOM ATOM	4998 4999 5000 5001 5002	O N CA CB CG	LEU H GLU H GLU H GLU H	45 46 46 46 46	42.784 40.653 40.405 39.654 38.953 37.945	53.297 53.243 52.104 52.733 51.754 52.324	10.506 9.616 10.572 11.793 12.667 13.608	1.00 42.31 1.00 44.35 1.00 46.78 1.00 48.43 1.00 52.62 1.00 56.08	Н Н Н Н Н	0 12 0 0 0
40	MOTA TOM ATOM ATOM ATOM ATOM	5003 5004 5005 5006 5007	CD OE1 OE2 C		46 46 46 46	37.478 37.788 39.651 38.667 40.175	53.515 51.555 50.915 51.058 49.729	13.325 14.649 9.850 9.176 9.965	1.00 57.26 1.00 55.19 1.00 46.71 1.00 46.44 1.00 46.18	Н Н Н Н	и С О
45	ATOM ATOM ATOM ATOM ATOM	5008 5009 5010 5011 5012	N CA CB CG CD2	TRP H TRP H TRP H	47 47 47 47	39.466 40.340 39.694 39.356 38.668	48.450 47.263 45.993 45.041 44.028	9.572 9.895 9.682 10.644	1.00 46.26 1.00 45.60 1.00 49.04 1.00 49.15 1.00 48.82	Н Н Н Н	00000
50	ATOM ATOM ATOM ATOM ATOM	5013 5014 5015 5016 5017	NE1 CZ2	TRP H TRP H TRP H TRP H	1 47 1 47 1 47 1 47	39.556 39.199 38.624 38.166 39.025	44.952 45.536 44.341 42.946 43.894	12.113 8.452 8.636 10.626	1.00 49.50 1.00 47.78 1.00 48.17 1.00 49.29	H H H H	С И С
55	ATOM ATOM ATOM ATOM ATOM	5018 5019 5020 5021 5022	О С	TRP F TRP F TRP F VAL F	1 47 1 47 1 47 1 48	38.534 38.178 38.089 37.138	42.753 48.290 48.496 48.043	11.972 10.228 11.428 9.468	1.00 49.96 1.00 45.51 1.00 46.18 1.00 45.21	Н Н Н Н	Д С С
60	ATOM ATOM ATOM ATOM ATOM	5023 5024 5025 5026 5027	CB CG1 CG2	VAL I VAL I VAL I VAL I VAL I	4 48 4 48 4 48	35.778 34.909 33.524 35.317 35.150	49.056 48.931 50.434 46.594	9.097 9.243 9.519 9.919	1.00 46.39 1.00 46.00 1.00 46.55 1.00 47.74	Н Н Н Н	2000
65	ATOM ATOM ATOM ATOM ATOM ATOM	5028 5029 5030 5031 5032 5033	O N CA CB C	VAL I ALA I ALA I ALA I ALA I	H 48 H 49 H 49 H 49 H 49 H 49	34.364 35.430 34.934 33.393 35.447 35.923	45.788 44.439 44.443 43.653 44.124	8.912 9.013 9.047 3.7.835 4.6.750	1.00 47.88 1.00 47.12 1.00 47.13 1.00 46.52 1.00 46.49	н н н н н	и оооо ои
	MOTA	5034	ł N	SER !	H 50	33.410	, -12.57.	_ 0.0,2			

	 ATOM		CA SER H	50	35.824	41.422	6.964 7.351	1.00 45.97 1.00 45.68	H H	C
	MOTA		CB SER H	50 50	37.267 38.110	40.907 41.991	7.172	1.00 46.90	H	ŏ
	MOTA		OG SER H C SER H	50 50	34.842	40.237	6.905	1.00 45.95	H	C
-	MOTA MOTA		C SER H O SER H		34.224	39.839	7.964	1.00 46.23	H	0
5	ATOM		N ILE H	51	34.740	39.574	5.746	1.00 44.35	H	N
	ATOM		CA ILE H		34.061	38.321	5.575	1.00 43.41	H	C C
	ATOM		CB ILE H		32.647	38.545	4.897	1.00 42.37 1.00 40.16	H H	C
	MOTA		CG2 ILE H		32.703	39.310 37.239	3.471 4.824	1.00 41.84	H	č
10	ATOM		CG1 ILE H		31.811 30.240	37.456	4.666	1.00 41.59	H	С
	MOTA		CD1 ILE H		34.881	37.441	4.640	1.00 44.63	H	C
	MOTA MOTA		O ILE H		35.403	38.002	3.596	1.00 44.42	H	0
	MOTA		N SER H		35.147	36.126	5.074	1.00 44.47	H	N
15	ATOM		CA SER H	52	35.938	35.254	4.277	1.00 47.09 1.00 46.84	H H	C
	MOTA		CB SER H		36.368	34.010 33.304	5.034 5.485	1.00 47.85	H	ŏ
	MOTA		OG SER H		35.231 35.147	$33.304 \\ 34.674$	3.405	1.00 47.49	H	Ċ
	ATOM		C SER F		33.926	34.918	2.875	1.00 45.99	Н	0
00	MOTA MOTA	5053 5054	O SER I		35.865	33.884	2.201	1.00 49.05	H	N
20	ATOM		CA SER I		35.209	33.375	0.894	1.00 49.67	H	C C
	ATOM	5056	CB SER F		36.168	32.723	-0.041	1.00 49.00 1.00 50.01	H H	Ö
	MOTA	5057	OG SER I		36.770	31.610 32.332	$0.686 \\ 1.448$	1.00 50.01 1.00 50.73	H	č
	MOTA	5058	C SER I		34.185 33.092	32.140	0.880	1.00 51.07	H	0
25	ATOM ATOM	5059 5060	O SER I		34.403	31.912	2.647	1.00 51.03	H	N
	ATOM	5061	CA GLY		33.540	30.925	3.220	1.00 52.23	H	C
	ATOM	5062	C GLY	H 54	32.454	31.432	4.040	1.00 53.84 1.00 54.98	H H	C
	MOTA	5063	O GLY		31.664	30.683	$4.614 \\ 4.172$	1.00 54.98	H	N
30	MOTA	5064	N GLY		32.326 31.281	32.712 33.279	5.125	1.00 55.93	H	C
	ATOM	5065 5066	CA GLY		31.653	33.592	6.603	1.00 56.90	H	С
	ATOM ATOM	5067	O GLY		30.829	34.053	7.401	1.00 59.08	H	0
	ATOM	5068	N ASN	н 56	32.901	33.390	7.042	1.00 56.97 1.00 56.87	H H	N C
35	MOTA	5069	CA ASN		33.241	33.813 33.311	8.376 8.686	1.00 56.87 1.00 58.57	H	č
	ATOM	5070	CB ASN CG ASN		34.641 34.848	31.707	8.674	1.00 60.80	H	C
	MOTA MOTA	5071 5072	CG ASN OD1 ASN		35.948	31.265	8.259	1.00 62.91	H	0
	ATOM	5072	ND2 ASN		33.932	30.944	9.202	1.00 58.88	H	N
40	MOTA	5074	C ASN		33.328	35.349	8.488	1.00 56.17 1.00 56.06	H H	C
	MOTA	5075	O ASN		33.756	35.993	7.536 9.651	1.00 55.51	H	N
	MOTA	5076	N THR		32.945 32.817	35.940 37.327	9.817	1.00 53.59	H	C
	MOTA	5077 5078	CA THR CB THR		31.419		10.158	1.00 53.48	H	C
45	MOTA ATOM	5079	OG1 THR		30.924	37.625	11.595	1.00 52.48	H	0
40	ATOM	5080	CG2 THR		30.394		9.249	1.00 51.25	H H	C
	MOTA	5081	C THR		33.855		10.893 11.883	1.00 53.43 1.00 52.41	H	ŏ
	ATOM	5082	O THR		34.062 34.453		10.713	1.00 52.67	H	N
F0	MOTA MOTA	5083 5084	N TYR CA TYR		35.398		11.668	1.00 52.76	H	C
50	ATOM	5085	CB TYR		36.725	39.194	11.145	1.00 52.49	H	C C
	MOTA	5086	CG TYR		37.059		10.726 9.504	1.00 53.52 1.00 53.54	H H	C
	MOTA	5087	CD1 TYR		36.701		9.099	1.00 53.34	H	Č
	MOTA	5088	CE1 TYR CD2 TYR		37.013 37.868		11.533	1.00 53.39	H	C
55	MOTA ATOM	5089 5090	CD2 TYR CE2 TYR		38.229	35.741	11.070	1.00 54.38	H	C
	ATOM	5091	CZ TYR		37.748	35.425	9.790		H	C C
	MOTA	5092	OH TYR	н 58	38.058		9.344		H H	C
	MOTA	5093	C TYR		35.244 35.056		11.935 10.975		Н	ŏ
60	MOTA	5094	O TYR		35.26		13.182	1.00 52.51	H	N
	MOTA	5095 5096	N TYR CA TYR		34.99		13.523	1.00 52.95	H	C
	MOTA MOTA	5097	CB TYR		33.53	3 43.018	14.083		H	C
	ATOM	5098	CG TYR	н 59	32.41		13.081 13.231		H H	C
65	ATOM	5099	CD1 TYR		31.793 30.86		13.231 12.405		Н	С
	MOTA	5100 5101	CE1 TYR CD2 TYR		31.99		12.072	1.00 54.68	H	С
	ATOM ATOM				31.04	9 42.822	11.166	1.00 55.81	H	C
	MOTA				30.49	4 41.541	11.353	1.00 55.91	H	С
					252					

		29.437 41.021 10.587 1.00 56.18	н О
	ATOM 5104 OH TYR H 59 ATOM 5105 C TYR H 59	35.873 43.285 14.582 1.00 52.14	н С н О
	ATOM 5106 O TYR H 59	36 301 44 578 14.540 1.00 51.10	H N
5	ATOM 5108 CD PRO H 60	35.948 45.627 13.547 1.00 50.32	н С н С
J	ATOM 5109 CA PRO H 60	37.619 46.481 15.123 1.00 50.61	H C
	ATOM 5111 CG PRO H 60	36.550 46.883 14.122 1.00 49.50	н С н С
	ATOM 5112 C PRO H 60	34.753 45.912 16.527 1.00 51.38	н О
10	ATOM 5114 N ASP H 61	36.342 45.820 18.000 1.00 53.47	H N H C
	ATOM 5115 CA ASP H 61 ATOM 5116 CB ASP H 61	36.206 46.275 20.452 1.00 55.46	н С н С
	ATOM 5117 CG ASP H 61	36.538 44.902 20.885 1.00 57.77 37.403 44.611 21.711 1.00 58.30	н О
15	ATOM 5118 OD1 ASP H 61 ATOM 5119 OD2 ASP H 61	35.804 44.026 20.420 1.00 58.83	н О н С
	ATOM 5120 C ASP H 61	34.655 47.507 19.054 1.00 54.65 33.545 47.569 19.547 1.00 54.74	н О
	ATOM 5121 O ASP H 61 ATOM 5122 N SER H 62	35.102 48.381 18.162 1.00 54.82	H N H C
20	ATOM 5123 CA SER H 62	34.543 49.676 17.993 1.00 56.32 35.638 50.516 17.192 1.00 57.39	н С
	ATOM 5124 CB SER H 62 ATOM 5125 OG SER H 62	35.889 50.046 15.798 1.00 59.78	н О Н С
	ATOM 5126 C SER H 62	33.163 49.619 17.362 1.00 56.10 32.468 50.520 17.414 1.00 55.34	H O
0.5	ATOM 5127 O SER H 62 ATOM 5128 N VAL H 63	32.900 48.597 16.552 1.00 56.41	H N H C
25	ATOM 5129 CA VAL H 63	31.699 48.386 15.847 1.00 56.65 31.890 48.550 14.285 1.00 55.76	н С
	ATOM 5130 CB VAL H 63 ATOM 5131 CG1 VAL H 63	32.652 49.663 14.056 1.00 54.30	н С н С
	ATOM 5132 CG2 VAL H 63	32.541 47.542 15.005 1.00 57.66	н С
30	ATOM 5133 C VAL H 63 ATOM 5134 O VAL H 63	29.946 46.678 15.567 1.00 57.57	H O H N
	ATOM 5135 N LYS H 64	31 037 44 767 17.007 1.00 60.19	н С
	ATOM 5136 CA LYS H 64 ATOM 5137 CB LYS H 64	31.873 43.826 17.908 1.00 61.48	н С н С
35	ATOM 5138 CG LYS H 64	32 299 41 554 18.817 1.00 64.36	н С
	ATOM 5139 CD LYS H 64 ATOM 5140 CE LYS H 64	31.942 40.092 19.153 1.00 65.73	H C H N
	ATOM 5141 NZ LYS H 64	32.676 33.341 27.722 1.00 60.59	н с
40	ATOM 5142 C LYS H 64 ATOM 5143 O LYS H 64	29.431 45.586 18.780 1.00 62.28	H O H N
40	ATOM 5144 N GLY H 65	27 365 44 166 17.600 1.00 58.63	н С
	ATOM 5145 CA GLY H 65 ATOM 5146 C GLY H 65	26.533 45.288 17.147 1.00 58.62	н С н О
	ATOM 5147 O GLY H 65	27 108 46.269 16.463 1.00 57.07	H N
45	ATOM 5148 N ARG H 66 ATOM 5149 CA ARG H 66	26.280 47.247 15.780 1.00 55.77	н С н С
	ATOM 5150 CB ARG H 66	26 000 48 903 17.660 1.00 53.21	н С
	ATOM 5152 CD ARG H 66	27.229 50.369 17.891 1.00 51.58	H C H N
50	ATOM 5153 NE ARG H 66	28.931 51.813 16.823 1.00 50.26	н С
	ATOM 5155 NH1 ARG H 66	28.037 52.565 16.279 1.00 48.61	f H N
	ATOM 5156 NH2 ARG H 66	26.389 47.081 14.297 1.00 55.54	н С
55	ATOM 5158 O ARG H 66	25.503 47.441 13.635 1.00 55.80	H O H N
	ATOM 5159 N PHE H 67	27.672 46.501 12.322 1.00 54.62	. н С
	ATOM 5161 CB PHE H 67	29.029 47.046 11.863 1.00 55.55	н С
	ATOM 5162 CG PHE H 67	28 315 49.397 12.535 1.00 54.88	н С
60	ATOM 5164 CD2 PHE H 67	30.137 49.156 11.059 1.00 55.35	н С н С
	ATOM 5165 CE1 PHE H 67	30.283 50.503 11.012 1.00 55.27	н С
	ATOM 5167 CZ PHE H 67	29.510 51.315 11.687 1.00 55.25	н С н С
65	ATOM 5168 C PHE H 67	27.967 44.187 12.703 1.00 53.47	н О
	ATOM 5170 N THR H 68	27.185 44.863 10.716 1.00 53.47	H N H C
	ATOM 5171 CA THR H 68	27.043 43.466 10.208 1.00 54.52 25.623 42.863 10.372 1.00 55.50	н С
	ATOM 5172 CB THR H 68	253	

ANTOM 5175 C THR H 68 26.25 44.268 8.008 1.00 54.03 H CO STOR STOR STOR STOR STOR STOR STOR STO		" ATOM	5173 5174	OG1 THR			25.227 25.626	42.726 41.324	9.847	1.00 56.3 1.00 54.	74	H H	0 0
ATOM 5147 0 N. T. S.		ATOM	5175	C THR	н 68		27.369			1.00 54.0			C 0
ATOM 5178 CR LIE H 69 28.8971 42.515 6.983 1.00 51.28 H CO ATOM 5180 CG2 LIE H 69 31.330 42.476 7.476 7.476 7.497 1.00 50.24 H CO ATOM 5181 CG1 LIE H 69 31.035 42.476 7.476 7.476 7.497 1.00 50.24 H CO ATOM 5181 CG1 LIE H 69 31.035 42.206 5.358 1.00 49.67 H CO ATOM 5181 CG1 LIE H 69 28.260 41.291 6.305 1.00 51.26 H CO ATOM 5185 CO SER H 70 27.863 41.288 5.093 1.00 50.529 H CO ATOM 5186 CA SER H 70 27.863 41.288 5.093 1.00 50.53 H CO ATOM 5187 CB SER H 70 27.863 41.288 5.093 1.00 50.55 H DO ATOM 5188 CS SER H 70 27.7607 40.193 2.895 1.00 51.59 H CO ATOM 5189 CS SER H 70 27.7607 40.193 2.895 1.00 51.69 H CO ATOM 5189 CS SER H 70 27.7607 40.193 2.895 1.00 51.69 H CO ATOM 5193 CS SER H 70 27.7607 40.193 2.895 1.00 51.69 H CO ATOM 5192 CA ARG H 71 27.821 39.220 0.685 1.00 51.92 H CO ATOM 5193 CS ARG H 71 27.821 39.220 0.685 1.00 51.92 H CO ATOM 5194 CG ARG H 71 27.821 39.220 0.685 1.00 51.92 H CO ATOM 5195 CD ARG H 71 29.280 37.000 59.665 1.00 50.87 H CO ATOM 5195 CD ARG H 71 29.280 37.000 59.665 1.00 50.87 H CO ATOM 5195 CD ARG H 71 27.821 39.220 0.685 1.00 50.87 H CO ATOM 5195 CD ARG H 71 29.280 37.000 0.965 1.00 50.87 H CO ATOM 5196 CD ARG H 71 29.280 37.000 0.965 1.00 50.87 H CO ATOM 5190 CD ARG H 71 29.280 37.000 0.965 1.00 50.87 H CO ATOM 5190 CD ARG H 71 29.280 37.000 0.965 1.00 50.87 H CO ATOM 5190 CD ARG H 71 29.280 37.000 0.965 1.00 50.80 H CO ATOM 5190 CD ARG H 71 29.280 37.000 0.965 1.00 50.80 H CO ATOM 5190 CD ARG H 71	5						28.418	42.758	8.312	1.00 52.	81		N
ATOM 5180 CG2 ILE H 69 ATOM 5181 CG1 LIE H 69 ATOM 5182 CG1 LIE H 69 ATOM 5182 CG1 LIE H 69 ATOM 5182 CG1 LIE H 69 ATOM 5183 C LIE H 69 ATOM 5184 O LIE H 69 ATOM 5185 C LIE H 69 ATOM 5186 C LIE H 70 ATOM 5186 C LIE H 70 ATOM 5187 C LIE H 70 ATOM 5187 C LIE H 70 ATOM 5188 C LIE H 70 ATOM 5189 C LIE H 70 ATOM 5191 N ARG H 71 ATOM 5191 N ARG H 71 ATOM 5192 C ARG H 71 ATOM 5192 C ARG H 71 ATOM 5193 CB ARG H 71 ATOM 5193 CB ARG H 71 ATOM 5195 CD ARG H 71 ATOM 5196 C ARG H 71 ATOM 5197 C ARG H 71 ATOM 5198 C C ARG H 71 ATOM 5199 C C ARG H 71 ATOM 5199 C C ARG H 71 ATOM 5190 C ARG H 71 ATOM 5190 C C	3	MOTA	5178	CA ILE	н 69					1.00 51.	28	H	C
ATOM 5182 CD1 ILLE H 69				CG2 ILE	н 69		31.062	41.283					C C
No. St.	40								5.195	1.00 49.	96	H	C
ATOM 5184 O LIE H 97	10		5183	C ILE	н 69		28.280			1.00 51.	26 09		0
ATOM 5186 CA SER FO 27.401 40.072 4.393 1.00 51.00								41.288	5.093	1.00 50.	56		N
APOING Sar Color Ser H TO 25,366 41,376 4,072 1,00 51,90 H Color APOING Sar TO 27,707 40,193 2,895 1,00 51,69 H Color APOING 5190 O Ser H TO 28,045 41,274 2,444 1,00 51,39 H Color APOING 5192 Ca ARG H TO 27,528 39,135 2,133 1,00 51,78 H TO APOING 5193 CB ARG H TO 29,163 39,135 2,133 1,00 51,78 H TO APOING 5193 CB ARG H TO 29,163 38,500 0,369 1,00 50,83 H Color APOING 5194 CG ARG H TO 29,163 38,500 0,369 1,00 50,83 H Color APOING 5195 CD ARG H TO 30,574 36,465 0,945 1,00 47,051 H APOING 5196 NE ARG H TO 30,574 36,465 0,945 1,00 47,051 H APOING 5196 NE ARG H TO 31,331 36,661 -0,344 1,00 47,051 H APOING 5196 NE ARG H TO 32,635 36,755 -0,514 1,00 44,25 H APOING 5198 NH1 ARG H TO 33,442 36,645 0,445 0,00 0,444 1,00 44,25 H APOING 5199 NH2 ARG H TO 33,437 36,861 -1,231 1,00 44,25 H APOING S198 NH1 ARG H TO 33,437 36,861 -1,231 1,00 44,25 H APOING S198 NH1 ARG H TO 26,269 37,400 0,00		MOTA	5186	CA SER	н 70.					1.00 50.	53		C
ATOM 5189 C SER H 70 27.707 40.193 2.8045 1.00 51.39 H 70 ATOM 5190 O SER H 70 28.045 41.274 2.444 1.00 51.39 H 71 27.528 39.135 2.133 1.00 51.78 H 10 ATOM 5191 N ARG H 71 27.528 39.135 2.133 1.00 51.78 H 10 ATOM 5192 CA ARG H 71 29.280 37.000 0.969 1.00 50.83 H 61 ATOM 5193 CB ARG H 71 29.280 37.000 0.969 1.00 50.83 H 61 ATOM 5195 CD ARG H 71 30.574 36.65 0.945 1.00 47.03 H 10 ATOM 5195 CD ARG H 71 30.574 36.65 0.945 1.00 47.03 H 10 ATOM 5195 CD ARG H 71 30.574 36.65 0.945 1.00 47.03 H 10 ATOM 5197 CZ ARG H 71 32.653 6.659 -0.514 1.00 47.03 H 10 ATOM 5197 CZ ARG H 71 32.653 6.659 -0.514 1.00 42.99 H 10 ATOM 5199 NH2 ARG H 71 32.636 6.659 -0.544 1.00 42.99 H 10 ATOM 5199 NH2 ARG H 71 32.636 861 -0.344 1.00 42.99 H 10 ATOM 5199 NH2 ARG H 71 32.636 861 -0.344 1.00 52.00 H 10 ATOM 5201 C ARG H 71 26.794 97.742 1.00 42.99 H 10 ATOM 5201 C ARG H 71 26.794 97.742 1.00 52.00 H 10 ATOM 5202 N ASP H 72 26.756 38.087 -2.065 1.00 52.00 H 10 ATOM 5203 CA ASP H 72 25.750 38.087 -2.065 1.00 54.30 H 10 ATOM 5203 CA ASP H 72 25.750 38.087 -2.065 1.00 54.30 H 10 ATOM 5205 CG ASP H 72 23.5811 38.605 -3.544 1.00 57.72 H 10 ATOM 5205 CG ASP H 72 23.5811 37.685 -4.373 1.00 63.22 H 10 ATOM 5206 CD ARG H 72 24.706 39.144 -2.484 1.00 57.72 H 10 ATOM 5205 CG ASP H 72 23.5811 37.685 -4.373 1.00 63.54 H 10 ATOM 5207 CD ARG H 72 26.756 39.184 -3.631 1.00 53.35 H 10 ATOM 5207 CD ARG H 72 26.756 39.184 -3.631 1.00 53.35 H 10 ATOM 5208 C ASP H 72 26.756 39.184 -3.631 1.00 53.35 H 10 ATOM 5208 C ASP H 72 26.756 39.184 -3.631 1.00 53.35 H 10 ATOM 5208 C ASP H 72 26.756 39.184 -3.631 1.00 53.35 H 10 ATOM 5211 CA ARG H 73 26.751 36.267 -3.230 1.00 53.35 H 10 ATOM 5212 CA ARG H 73 26.756 ATOM 5206 CD ARG H 73 26.756 ATOM 5208 CA ASP H 72 26.756 ATOM 5208 CA ASP	15				н 70		25.366	41.376	4.072	1.00 51.	90		C
ATOM 5191 N ARG H 71 27,528 39,135 2.133 1.00 51.78 H C ATOM 5192 CA ARG H 71 27,821 39,220 0.685 1.00 51.92 H C ARG H 71 29,163 38,500 0.369 1.00 50.83 H C ARG H 71 29,163 38,500 0.369 1.00 50.83 H C ARG H 71 29,163 38,500 0.369 1.00 48.57 H C ARG H 71 29,163 38,500 0.369 1.00 48.57 H C ARG H 71 ARG H 71 30,574 36,465 0.945 1.00 47.03 H C ARG H 71 30,574 36,465 0.945 1.00 47.03 H C ARG H 71 31,331 36,661 -0.344 1.00 43,91 H C ARG H 71 31,331 36,661 -0.344 1.00 43,91 H C ARG H 71 31,331 36,661 -0.344 1.00 44,20 H C ARG H 71 32,635 36,759 -0.514 1.00 44,20 H C ARG H 71 32,635 36,759 -0.514 1.00 44,20 H C ARG H 71 32,635 36,759 -0.514 1.00 44,20 H C ARG H 71 32,635 36,759 -0.514 1.00 44,20 H C ARG H 71 32,433 36,645 -0.485 1.00 44,20 H C ARG H 71 32,433 36,645 -0.485 1.00 44,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 36,645 -1.721 1.00 42,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,20 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,63 H C ARG H 71 32,435 37,435 4 -1.255 1.00 54,63 H C ARG H 71 32,435 37,435 4 -1.255 1.00 53,45 H C ARG H 71 32,445 37,45 H C ARG H 71 32,445 37,4		MOTA	5189	C SER	н 70					1.00 51.	39	H	0
ATOM 5192 CA ARG H 71				N ARG	H 71		27.528	39.135	2.133	1.00 51.	.78 92		N C
ATOM 5194 CC ARG H 71 29,280 37.000 0.946 1.00 47.03 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	MOTA					27.821 29.163		0.369	1.00 50.	. 83	H	С
ATOM 5195 NE ARG H 71 31.331 36.661 -0.344 1.00 44.40 H H 6 ATOM 5197 CZ ARG H 71 32.635 36.759 -0.514 1.00 44.40 H H 6 ATOM 5198 NH1 ARG H 71 33.437 36.861 -0.344 1.00 44.40 H H 6 ATOM 5198 NH1 ARG H 71 33.443 36.645 0.485 1.00 44.25 H 1 ATOM 5199 NH2 ARG H 71 33.437 36.861 -1.721 1.00 42.99 H 1 ATOM 5200 C ARG H 71 26.269 37.442 0.575 1.00 52.40 H 1 ATOM 5201 O ARG H 71 26.269 37.442 0.575 1.00 52.40 H 1 ATOM 5202 N ASP H 72 26.636 38.752 -1.253 1.00 53.22 H 1 ATOM 5203 CA ASP H 72 26.636 38.752 -1.253 1.00 53.22 H 1 ATOM 5205 CG ASP H 72 24.706 39.144 -2.484 1.00 61.26 H 1 ATOM 5205 CG ASP H 72 24.706 39.144 -2.484 1.00 61.26 H 1 ATOM 5205 CG ASP H 72 23.581 38.605 -3.544 1.00 61.26 H 1 ATOM 5205 CG ASP H 72 23.881 37.685 -4.373 1.00 63.54 H 1 ATOM 5205 CG ASP H 72 23.581 38.605 -3.544 1.00 63.54 H 1 ATOM 5205 CG ASP H 72 23.881 37.685 -4.373 1.00 63.54 H 1 ATOM 5205 CG ASP H 72 23.881 37.685 -4.373 1.00 63.54 H 1 ATOM 5205 CG ASP H 72 26.466 38.104 -3.544 1.00 61.26 H 1 ATOM 5207 OD2 ASP H 72 26.756 38.360 -4.373 1.00 63.54 H 1 ATOM 5208 C ASP H 72 26.756 38.360 -4.373 1.00 63.54 H 1 ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H 1 ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H 1 ATOM 5211 CA ASN H 73 26.711 36.267 -3.230 1.00 53.35 H 1 ATOM 5212 CB ASN H 73 28.264 34.510 -3.344 1.00 52.96 H 1 ATOM 5213 CG ASN H 73 29.674 35.743 -2.461 1.00 56.11 H 1 ATOM 5216 C ASN H 73 29.674 35.743 -2.461 1.00 56.19 H 1 ATOM 5217 O ASN H 73 29.674 35.743 -2.461 1.00 56.19 H 1 ATOM 5218 N ALA H 74 25.09 35.601 -7.134 1.00 53.76 H 1 ATOM 5218 N ALA H 74 25.09 35.601 -7.134 1.00 53.76 H 1 ATOM 5218 N ALA H 74 25.09 35.601 -7.134 1.00 53.96 H 1 ATOM 5218 N ALA H 74 25.09 35.601 -7.134 1.00 53.97 H 1 ATOM 5221 CB ALA H 74 24.963 35.601 -7.134 1.00 53.96 H 1 ATOM 5222 CB ALA H 74 24.963 35.601 -7.134 1.00 53.96 H 1 ATOM 5221 CB ALA H 74 25.09 35.601 -7.134 1.00 53.96 H 1 ATOM 5222 CB ALA H 74 25.048 36.940 -7.773 1.00 53.96 H 1 ATOM 5223 N ALA H 74 25.048 36.940 -7.773 1.00 53.94 H 1 ATOM 5223 N ALA H 74 25.048			5194	CG ARG	н 71		29.280			1.00 48.	. 57 . 03		C
25 ATOM 5197 CZ ARG H 71 32.635 36.759 -0.514 1.00 44.425 H 71 ATOM 5198 NH1 ARG H 71 33.433 36.635 -0.596 1.00 44.25 H 71 ATOM 5199 NH2 ARG H 71 33.433 36.861 -1.721 1.00 44.25 H 71 ATOM 5199 NH2 ARG H 71 26.794 38.435 0.008 1.00 52.40 H 71 26.794 38.435 0.008 1.00 52.40 H 71 26.794 38.435 0.008 1.00 52.40 H 72 26.636 38.752 -1.253 1.00 53.02 H 72 25.750 38.087 -2.065 1.00 52.00 H 72 72 72 72 72 72 72 72 72 72 72 72 72				CD ARG				36.661	-0.344	1.00 43	.91		N C
ATOM 5199 Nill ARG H 71 26.794 38.435 0.008 1.00 52.40 H H ATOM 5201 C ARG H 71 26.269 37.442 0.575 1.00 52.40 H H ATOM 5201 O ARG H 71 26.269 37.442 0.575 1.00 52.00 H H ATOM 5202 N ASP H 72 25.750 38.087 -2.065 1.00 53.22 H H ATOM 5204 CB ASP H 72 25.750 38.087 -2.065 1.00 54.30 H ATOM 5204 CB ASP H 72 24.706 33.144 -2.484 1.00 57.72 H ATOM 5206 ODI ASP H 72 23.881 37.665 -4.373 1.00 63.54 H ATOM 5206 ODI ASP H 72 23.881 37.665 -4.373 1.00 63.54 H ATOM 5208 C ASP H 72 23.881 37.665 -4.373 1.00 63.54 H ATOM 5208 C ASP H 72 26.491 37.583 -3.244 1.00 61.12 H ATOM 5208 C ASP H 72 26.491 37.583 -3.244 1.00 53.96 H ATOM 5210 N ASN H 73 26.756 38.60 -4.270 1.00 54.68 H ATOM 5211 CA ASN H 73 27.576 35.773 -4.308 1.00 53.42 H ATOM 5212 CB ASN H 73 28.264 34.501 -3.899 1.00 53.42 H ATOM 5212 CB ASN H 73 29.674 35.743 -2.461 1.00 53.42 H ATOM 5212 CB ASN H 73 29.674 35.743 -2.461 1.00 53.42 H ATOM 5212 CB ASN H 73 29.674 35.743 -2.461 1.00 53.45 H ATOM 5212 CB ASN H 73 29.674 35.743 -2.461 1.00 53.45 H ATOM 5212 CB ASN H 73 29.674 35.743 -2.461 1.00 53.797 H ATOM 5215 ND2 ASN H 73 29.674 35.743 -2.461 1.00 53.797 H ATOM 5215 ND2 ASN H 73 29.674 35.743 -2.461 1.00 55.11 H ATOM 5217 O ASN H 73 29.674 35.743 -2.461 1.00 53.76 H ATOM 5218 N ALA H 74 24.963 35.601 -5.830 1.00 53.76 H ATOM 5218 N ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C ALA H 74 25.008 36.940 -7.773 1.00 53.48 H ATOM 5221 C ALA H 74 25.008 36.940 -7.773 1.00 53.48 H ATOM 5222 CB ARG H 75 23.861 40.024 -6.712 1.00 53.48 H ATOM 5223 N ARG H 75 22.486 39.9266 -7.416 1.00 53.48 H ATOM 5221 C ALA H 74 25.008 36.940 -7.773 1.00 53.48 H ATOM 5222 CB ARG H 75 23.861 40.024 -6.712 1.00 53.48 H ATOM 5223 N ARG H 75 22.486 39.9266 -7.416 1.00 53.48 H ATOM 5220 CB ALA H 74 25.008 36.940 -7.731 1.00 53.48 H ATOM 5221 C ALA H 74 25.008 37.960 -6.946 1.00 53.48 H ATOM 5222 CB ARG H 75 22.486 39.9266 -7.416 1.00 53.48 H ATOM 5222 CB ARG H 75 22.486 39.9266 -7.416 1.00 53.48 H ATOM 5220 CB ARG H 75 22.486 39	25	ATOM	5197	CZ ARG	; н 71		32.635			1.0044 1.0044	.40 .25		N
ATOM 5201 O ARG H 71 26.794 38.443 0.006 1.00 52.00 H ARG H 71 26.269 37.442 0.575 1.00 52.00 H ARG H 71 26.269 37.442 0.575 1.00 53.202 H ARG H 71 26.269 37.442 0.575 1.00 53.202 H ARG H 71 26.269 37.442 0.575 1.00 53.202 H ARG H 72 25.750 38.087 -2.065 1.00 54.30 H ARG H 72 25.750 38.087 -2.065 1.00 54.30 H ARG H 72 24.706 39.144 -2.484 1.00 57.72 H ARG H 72 25.581 38.608 -3.544 1.00 57.72 H ARG H 72 25.581 38.608 -3.544 1.00 51.26 H ARG H 72 23.881 37.685 -4.373 1.00 61.12 H ARG H 72 26.756 38.3605 -3.544 1.00 61.26 H ARG H 72 26.756 38.360 -4.270 1.00 54.68 H ARG H 72 26.756 38.360 -4.270 1.00 54.68 H ARG H 72 26.756 38.360 -4.270 1.00 54.68 H ARG H 72 26.756 38.360 -4.270 1.00 54.68 H ARG H 73 26.756 38.360 -4.270 1.00 53.42 H ARG H 73 26.756 38.360 -4.270 1.00 53.42 H ARG H 73 26.756 38.360 -4.270 1.00 53.42 H ARG H 73 27.576 35.773 -4.308 1.00 53.42 H ARG H 73 28.64 34.501 -3.899 1.00 53.42 H ARG H 73 28.64 34.501 -3.899 1.00 53.42 H ARG H 74 28.64 34.501 -3.899 1.00 53.42 H ARG H 74 28.64 34.501 -3.899 1.00 52.96 H ARG H 75 213 CB ARS H 73 29.265 33.639 -1.842 1.00 53.97 H ARG H 75 215 CB ARG H 75 22.26 ARG H 75 22.36 ARG H 74 24.963 35.601 -7.134 1.00 52.70 H ARG H 75 221 CB ARG H 74 25.137 37.023 -8.944 1.00 53.76 H ARG H 75 221 CB ARG H 75 22.466 39.956 -7.445 1.00 53.88 H 75 222 C ARG H 75 22.486 39.956 -7.445 1.00 53.88 H 75 22.486 39.956 -7.445 1.00 53.84 H 75 22.486 39.956 -7.445 1.00 53.84 H 75 22.486 39.956 -7.445 1.00 53.88 H 75 22.486 39.956 -7.445							33.137	36.861	-1.721	1.00 42	.99		N C
30 ATOM 5203 CA ASP H 72		MOTA	5200							1.00 52	.00	H	0
ATOM 5204 CB ASP H 72 23.581 38.605 -3.544 1.00 61.26 H ATOM 5205 CG ASP H 72 23.581 38.605 -3.544 1.00 61.26 H ATOM 5205 CD ASP H 72 23.581 38.605 -3.544 1.00 61.26 H ATOM 5207 CD ASP H 72 22.466 39.184 -3.613 1.00 63.54 H ATOM 5208 C ASP H 72 22.466 39.184 -3.613 1.00 63.54 H ATOM 5209 O ASP H 72 26.756 38.360 -4.270 1.00 53.96 H ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H ATOM 5211 CA ASN H 73 27.576 35.773 -4.308 1.00 53.35 H ATOM 5212 CB ASN H 73 27.576 35.773 -4.308 1.00 52.96 H ATOM 5212 CB ASN H 73 27.576 35.773 -4.308 1.00 52.96 H ATOM 5213 CG ASN H 73 29.674 35.743 -2.461 1.00 56.11 H ATOM 5215 C ASN H 73 29.674 35.743 -2.461 1.00 53.97 H ATOM 5216 C ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5216 C ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5217 O ASN H 73 27.701 35.344 -6.643 1.00 52.43 H ATOM 5218 N AIA H 74 24.963 35.601 -7.134 1.00 52.70 H ATOM 5218 N AIA H 74 24.963 35.601 -7.134 1.00 53.07 H ATOM 5210 CA AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5220 CB AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5222 C AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5220 CB AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C AIA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5220 CB AIA H 74 24.966 37.960 -6.946 1.00 53.48 H ATOM 5222 C AIA H 74 25.028 9.266 -7.416 1.00 53.48 H ATOM 5222 C AIA H 74 25.028 9.266 -7.416 1.00 53.48 H ATOM 5222 C AIA H 74 25.028 9.266 -7.416 1.00 53.48 H ATOM 5222 C AIA H 75 22.486 39.946 -7.773 1.00 53.07 H ATOM 5222 C AIA H 75 22.486 39.946 -7.416 1.00 53.76 H ATOM 5223 C AIA H 74 25.028 9.266 -7.416 1.00 53.48 H ATOM 5222 C AIA H 75 22.486 39.946 -7.7173 1.00 53.01 H ATOM 5222 C AIA H 75 26.956 40.070 -7.320 1.00 53.01 H ATOM 5223 C AIA H 75 22.486 39.946 -7.445 1.00 56.70 H ATOM 5223 C AIA H 75 22.486 39.946 -7.416 1.00 50.79 H ATOM 5223 C AIA H 75 22.486 39.946 -7.416 1.00 50.38 H ATOM 5223 C AIA H 75 22.486 39.946 -7.416 1.00 50.79 H AT	30			N ASI	Р Н 72		26.636	38.752					N C
ATOM 5206 ODI ASP H 72 23.581 38.605 -3.544 1.00 61.20 H ATOM 5207 OD2 ASP H 72 22.466 39.184 -3.613 1.00 63.54 H ATOM 5207 OD2 ASP H 72 22.466 39.184 -3.613 1.00 63.54 H ATOM 5209 O ASP H 72 26.491 37.583 -3.244 1.00 53.96 H ATOM 5209 O ASP H 72 26.756 38.360 -4.270 1.00 54.68 H ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H ATOM 5211 CA ASN H 73 26.711 36.267 -3.230 1.00 53.42 H ATOM 5211 CB ASN H 73 28.264 34.501 -3.899 1.00 52.96 H ATOM 5212 CB ASN H 73 29.163 34.664 -2.695 1.00 54.63 H ATOM 5214 ODI ASN H 73 29.674 35.743 -2.461 1.00 56.11 H ATOM 5215 ND2 ASN H 73 29.674 35.743 -2.461 1.00 56.11 H ATOM 5216 C ASN H 73 29.245 33.639 -1.842 1.00 53.97 H ATOM 5217 O ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5218 N ALA H 74 25.709 35.801 -7.134 1.00 53.76 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.048 39.956 -7.445 1.00 57.90 H ATOM 5222 C ARG H 75 23.861 40.024 -6.712 1.00 53.84 H ATOM 5222 C ARG H 75 23.861 40.024 -6.712 1.00 53.98 H ATOM 5222 C ARG H 75 23.861 40.024 -6.712 1.00 53.98 H ATOM 5222 C ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 C ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 C ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5231 NEW ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5233 O ARG H 75 22.486 39.956 -7.445 1.00 50.79 H ATOM 5233 O ARG H 75 22.486 39.956 -7.445 1.00 50.79 H ATOM 5233 O ARG H 75 22.486 39.956 -7.445 1.00 50.79 H ATOM 5233 O ARG H 75 22.486 39.956 -7.445 1.00 50.79 H ATOM 5233 O ARG H 75 22.486 39.956 -7.445 1.00 50.79 H ATOM 5233 O ARG H 75 22.486 39.9426 -7.732 1.00 50.04 H ATOM 5233 O ARG H 75 22.486 39.9426 -7.445 1.00 50.79 H ATOM 5234 N ARG H 75 22.486 39.9426 -7.918 1.00		MOTA								1.00 57	.72	H	C
ATOM 5200 OD1 ASP H 72			5205	CG ASI	⊋н 72		23.581						C O
ATOM 5208 C ASP H 72 26.491 37.583 -3.424 1.00 53.35 H ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H ATOM 5211 CA ASN H 73 27.576 38.360 -4.270 1.00 53.35 H ATOM 5211 CB ASN H 73 27.576 35.773 -4.308 1.00 53.42 H ATOM 5212 CB ASN H 73 28.264 34.501 -3.899 1.00 52.96 H ATOM 5213 CG ASN H 73 29.163 34.664 -2.695 1.00 56.11 H ATOM 5214 OD1 ASN H 73 29.245 33.639 -1.842 1.00 56.11 H ATOM 5215 ND2 ASN H 73 29.245 33.639 -1.842 1.00 55.11 H ATOM 5216 C ASN H 73 27.010 35.742 -5.731 1.00 52.70 H ATOM 5218 N ALA H 74 25.709 35.801 -5.830 1.00 53.07 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.07 H ATOM 5210 CB ALA H 74 24.963 35.164 -6.989 1.00 53.76 H ATOM 5220 CB ALA H 74 25.048 36.940 -7.773 1.00 53.76 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.76 H ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.76 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5224 CB ARG H 75 22.486 39.956 -7.445 1.00 56.70 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 56.70 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 66.38 H ATOM 5221 NH ARG H 75 19.499 39.885 -5.884 1.00 66.38 H ATOM 5223 NA ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 53.01 H ATOM 5231 NH2 ARG H 75 19.499 39.885 -5.884 1.00 66.38 H ATOM 5232 C ARG H 75 19.499 39.885 -5.884 1.00 66.38 H ATOM 5231 NH2 ARG H 75 19.499 39.885 -5.884 1.00 66.38 H ATOM 5232 C ARG H 75 26.491 41.234 -7.849 1.00 51.72 H ATOM 5231 NH2 ARG H 75 26.491 41.234 -7.849 1.00 51.72 H ATOM 5232 C ARG H 75 26.491 41.234 -7.849 1.00 50.07 H ATOM 5233 NH 76 29.563 37.982 -9.470 1.00 50.064 H ATOM 5233 NH 76 29.563 37.982 -9.470 1.00 50.064 H ATOM 5234 N ASN H 76 29.563 37.982 -9.470 1.00 50.064 H ATOM 5238 OD1 ASN H 76 29.563 37.982 -9.470 1.0	25			OD1 ASI				39.184	-3.613	1.00 63	.54		0
ATOM 5210 N ASN H 73 26.711 36.267 -3.230 1.00 53.35 H ATOM 5211 CA ASN H 73 27.576 35.773 -4.308 1.00 53.42 H ATOM 5212 CB ASN H 73 28.264 34.501 -3.899 1.00 52.96 H ATOM 5213 CG ASN H 73 29.163 34.664 -2.695 1.00 54.63 H ATOM 5214 OD1 ASN H 73 29.674 35.743 -2.461 1.00 56.11 H ATOM 5215 ND2 ASN H 73 29.674 35.743 -2.461 1.00 56.11 H ATOM 5216 C ASN H 73 29.245 33.639 -1.842 1.00 53.97 H ATOM 5216 C ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5217 O ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5218 N ALA H 74 25.709 35.801 -5.830 1.00 53.07 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.07 H ATOM 5210 CB ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.84 H ATOM 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.84 H ATOM 5222 C CB ARG H 75 22.4946 37.960 -6.946 1.00 53.48 H ATOM 5222 C CB ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5226 CG ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5229 CZ ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5229 CZ ARG H 75 22.486 39.956 -7.4416 1.00 53.84 H ATOM 5229 CZ ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 C ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5223 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5230 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5230 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5231 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5232 C ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5233 N ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5231 N ARG H 75 22.486 39.916 -5.935 1.00 66.988 H ATOM 5232 C ARG H 75 22.486 39.916 -5.935 1.00 67.53 H ATOM 5232 C ARG H 75 22.486 39.916 -5.935 1.00 65.98 H ATOM 5233 N ARG H 75 22.486 39.916 -7.445 1.00 57.90 H ATOM 5233 N ARG H 75 26.355 40.00 70 -7.320 1.00 53.01 H ATOM 5234 N ARG H 75 26.355 40.00 70 -7.32	33	MOTA	5208	C AS	РН 72								0
## ATOM 5211 CA ASN H 73 27.576 35.773 -4.308 1.00 52.96 H ## ATOM 5212 CB ASN H 73 73 29.163 34.664 -2.695 1.00 54.63 H ## ATOM 5214 ODI ASN H 73 29.163 34.664 -2.695 1.00 54.63 H ## ATOM 5215 ND2 ASN H 73 29.1674 35.743 -2.461 1.00 53.97 H ## ATOM 5216 C ASN H 73 29.245 33.639 -1.842 1.00 53.97 H ## ATOM 5217 O ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ## ATOM 5218 CA ALA H 74 25.709 35.801 -5.830 1.00 53.07 H ## ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ## ATOM 5220 CB ALA H 74 25.048 36.940 -7.773 1.00 53.76 H ## ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ## ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.48 H ## ATOM 5222 CB ARG H 75 24.946 37.023 -8.944 1.00 53.84 H ## ATOM 5225 CB ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ## ATOM 5226 CG ARG H 75 23.861 40.024 -6.712 1.00 57.90 H ## ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 57.90 H ## ATOM 5228 NE ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ## ATOM 5228 NE ARG H 75 21.361 40.798 -6.811 1.00 67.53 H ## ATOM 5230 NH1 ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ## ATOM 5231 NH2 ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ## ATOM 5234 N ASN H 76 29.315 40.254 -7.918 1.00 50.79 H ## ATOM 5235 CA ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ## ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 50.64 H ## ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ## ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 50.64 H ## ATOM 5233 O ARG H 75 26.355 40.070							26.711	36.267	-3.230	1.00 53	.35		C N
ATOM 5212 CG ASN H 73 29.163 34.664 -2.695 1.00 54.63 H 29.163 34.664 -2.695 1.00 54.63 H 34.00 5214 OD1 ASN H 73 29.245 33.639 -1.842 1.00 53.97 H 34.00 5216 C ASN H 73 29.245 33.639 -1.842 1.00 52.70 H 35.072 ASN H 73 27.010 35.722 -5.731 1.00 52.70 H 34.00 5217 O ASN H 73 27.010 35.722 -5.731 1.00 52.43 H 34.00 5218 N ALA H 74 25.709 35.801 -5.830 1.00 53.07 H 34.00 5218 N ALA H 74 25.709 35.801 -5.830 1.00 53.07 H 34.00 5220 CB ALA H 74 23.449 35.164 -6.989 1.00 52.82 H 34.00 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H 34.00 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.98 H 34.00 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.98 H 34.00 5222 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H 34.00 5222 C ALA H 74 25.048 36.940 -7.473 1.00 53.348 H 34.00 5222 C ALA H 75 22.946 37.960 -6.946 1.00 53.48 H 34.00 5222 C ALA H 75 22.946 37.960 -6.946 1.00 53.48 H 34.00 5222 C ALA H 75 22.946 39.956 -7.446 1.00 53.48 H 34.00 5225 CB ARG H 75 22.486 39.956 -7.445 1.00 57.90 H 34.00 5225 CB ARG H 75 22.486 39.956 -7.445 1.00 57.90 H 34.00 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 60.38 H 34.00 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 60.38 H 34.00 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 60.38 H 34.00 5228 NE ARG H 75 22.486 39.956 -7.445 1.00 60.38 H 34.00 5228 NE ARG H 75 19.499 39.426 -5.935 1.00 65.98 H 34.00 5228 NE ARG H 75 19.499 39.426 -5.935 1.00 65.98 H 34.00 5223 NH1 ARG H 75 19.499 39.426 -5.935 1.00 67.53 H 34.00 5231 NH2 ARG H 75 26.355 40.070 -7.320 1.00 53.01 H 34.00 5234 N ASN H 76 26.355 40.070 -7.320 1.00 50.79 H 34.00 5234 N ASN H 76 26.491 41.234 -7.849 1.00 51.72 H 34.00 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.64 H 34.00 5237 N ASN H 76 29.315 40.254 -7.918 1.00 50.64 H 34.00 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 50.64 H 34.00 5241 O ASN H 76 29.563 37.982 -7.603 1.00 50.64 H 34.00 5241 O ASN H 76 29.563 37.982 -7.603 1.00 50.64 H 34.00 5241 O ASN H 76 29.563 37.982 -7.603 1.00 50.64 H 34.00 5241 O ASN H 76 29.563 37.982 -7.603 1.00 50.64 H 34.00 5241 O ASN H 76 29.563 37.982 -7.		MOTA	5211							1.00 52	.96	H	С
ATOM 5215 ND2 ASN H 73 29.674 33.639 -1.842 1.00 53.97 H ATOM 5215 ND2 ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5217 O ASN H 73 27.701 35.344 -6.643 1.00 52.43 H ATOM 5218 N ALA H 74 25.709 35.801 -5.830 1.00 53.07 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5210 CB ALA H 74 23.449 35.164 -6.989 1.00 53.76 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 C ALA H 74 25.137 37.023 -8.944 1.00 54.91 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5224 CA ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5225 CB ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5226 CG ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5229 CZ ARG H 75 19.499 39.885 -5.884 1.00 64.88 H ATOM 5230 NH1 ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5231 NH2 ARG H 75 19.499 39.426 -5.935 1.00 67.53 H ATOM 5232 C ARG H 75 19.499 39.426 -5.935 1.00 67.53 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 CA ASN H 76 27.361 39.476 -6.669 1.00 51.34 H ATOM 5233 CA ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5235 CA ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 50.88 H ATOM 5239 ND2 ASN H 76 29.731 38.958 -8.434 1.00 50.88 H ATOM 5230 ND2 ASN H 76 29.731 38.958 -8.434 1.00 50.88 H ATOM 5230 ND2 ASN H 76 29.731 38.958 -8.434 1.00 50.88 H ATOM 5230 ND2 ASN H 76 29.731 38.958 -8.434 1.00 50.64 H ATOM 5230 ND2 ASN H 76 29.731 38.958 -7.605 1.00 47.56 H	40			CG AS	N H 73		29.163	34.664					C O
ATOM 5216 C ASN H 73 27.010 35.722 -5.731 1.00 52.70 H ATOM 5217 O ASN H 73 27.701 35.344 -6.643 1.00 52.43 H ATOM 5218 N ALLA H 74 24.963 35.801 -5.830 1.00 53.07 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 52.76 H ATOM 5220 CB ALA H 74 23.449 35.164 -6.989 1.00 52.82 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 O ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5223 N ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ATOM 5224 CA ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5225 CB ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5227 CD ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 60.38 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5230 NH1 ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5231 NH2 ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5232 N ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 N ASN H 76 26.355 40.070 -7.320 1.00 53.01 H ATOM 5234 N ASN H 76 28.632 40.121 -6.877 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.79 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.313 38.958 -8.434 1.00 51.70 H ATOM 5230 C ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.68 H ATOM 5238 OD1 ASN H 76 29.315 37.982 -7.663 1.00 52.12 H ATOM 5230 C ASN H 76 29.563 37.982 -7.663 1.00 52.12 H ATOM 5230 C ASN H 76 29.563 37.982 -7.663 1.00 49.22 H ATOM 5231 O ASN H 76 29.563 37.982 -7.663 1.00 49.22 H ATOM 5234 O C ASN H 76 29.563 37.982 -7.663 1.00 49.22 H ATOM 5230 C ASN H 76 29.563 37.982 -7.663 1.00 49.22 H ATOM 5231 O ASN H 76 29.563 40.254 -7.918 1.00 50.64 H ATOM 5230 O C ASN H 76 29.563 40.254 -7.918 1.00 50.64 H ATOM 5230 O C ASN H 76 29.563 40.254 -7.918 1.00 50.64 H ATOM 5231 O ASN H 76 29.563 40.254 -7.918 1.00 50.64 H ATOM 5231 O ASN H 76 29.563 40.254 -7.9		MOTA							-1.842	1.00 53	.97	H	N
45 ATOM 5218 N ALA H 74 25.770 35.801 -5.830 1.00 53.07 H ATOM 5219 CA ALA H 74 24.963 35.601 -7.134 1.00 53.76 H ATOM 5220 CB ALA H 74 23.449 35.164 -6.989 1.00 52.82 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5221 C ALA H 74 25.137 37.023 -8.944 1.00 54.91 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5225 CB ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5225 CB ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5231 NH2 ARG H 75 19.499 39.426 -5.935 1.00 67.53 H ATOM 5231 NH2 ARG H 75 19.499 39.426 -5.935 1.00 67.53 H ATOM 5232 C ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 CA ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.79 H ATOM 5238 OD1 ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.315 40.254 -7.603 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.363 38.820 -9.470 1.00 50.64 H ATOM 5230 CA ASN H 76 29.315 40.254 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.368 42.494 -6.227 1.00 47.56 H			5216	C AS	N H 73		27.010						С 0
ATOM 5219 CA ALA H 74 24.963 35.661 -7.154 1.00 52.82 H ATOM 5220 CB ALA H 74 23.449 35.164 -6.989 1.00 52.82 H ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 O ALA H 74 25.137 37.023 -8.944 1.00 54.91 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5224 CA ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ATOM 5225 CB ARG H 75 22.486 39.956 -7.416 1.00 56.70 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 56.70 H ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5228 NE ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5230 NH1 ARG H 75 19.499 39.426 -5.935 1.00 67.53 H ATOM 5231 NH2 ARG H 75 19.147 38.611 -5.004 1.00 68.48 H ATOM 5232 C ARG H 75 26.491 41.234 -7.849 1.00 53.01 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.72 H ATOM 5234 N ASN H 76 26.491 41.234 -7.849 1.00 51.72 H ATOM 5235 CA ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ATOM 5238 OD1 ASN H 76 29.315 40.254 -7.918 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.731 38.958 -8.434 1.00 50.79 H ATOM 5230 OD1 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5237 CG ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5238 OD1 ASN H 76 29.966 42.494 -6.227 1.00 47.56 H	45						25.709	35.801	-5.830	1.00 53	3.07		C N
ATOM 5221 C ALA H 74 25.048 36.940 -7.773 1.00 53.98 H ATOM 5222 O ALA H 74 25.137 37.023 -8.944 1.00 54.91 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5224 CA ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ATOM 5225 CB ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5227 CD ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5231 NH2 ARG H 75 18.646 39.712 -6.877 1.00 67.53 H ATOM 5231 NH2 ARG H 75 19.147 38.611 -5.004 1.00 68.48 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5234 N ASN H 76 26.355 40.070 -7.320 1.00 53.01 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 50.88 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 50.64 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H		MOTA	5219	CA AL	АН 74					1.00 52	2.82	H	С
50 ATOM 5222 O ALA H 74 25.137 37.963 -6.946 1.00 53.48 H ATOM 5223 N ARG H 75 24.946 37.960 -6.946 1.00 53.48 H ATOM 5224 CA ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ATOM 5225 CB ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5227 CD ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5230 NH1 ARG H 75 18.646 39.712 -6.877 1.00 67.53 H ATOM 5231 NH2 ARG H 75 19.147 38.611 -5.004 1.00 68.48 H ATOM 5232 C ARG H 75 26.355 40.070 -7.320 1.00 63.301 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5235 CA ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.313 38.958 -8.434 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H				C AL	а н 74		25.048	36.940	-7.773		3.98 1.91		C O
ATOM 5224 CA ARG H 75 25.028 39.266 -7.416 1.00 53.84 H ATOM 5225 CB ARG H 75 23.861 40.024 -6.712 1.00 56.70 H ATOM 5226 CG ARG H 75 22.486 39.956 -7.445 1.00 57.90 H ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5230 NH1 ARG H 75 18.646 39.712 -6.877 1.00 67.53 H ATOM 5231 NH2 ARG H 75 19.147 38.611 -5.004 1.00 68.48 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 O ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5234 N ASN H 76 26.491 41.234 -7.849 1.00 51.34 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H	50	MOTA							-6.946	1.00 53	3.48	H	N
ATOM 5225 CB ARG H 75 ATOM 5226 CG ARG H 75 ATOM 5227 CD ARG H 75 ATOM 5228 NE ARG H 75 ATOM 5228 NE ARG H 75 ATOM 5228 NE ARG H 75 ATOM 5229 CZ ARG H 75 ATOM 5230 NH1 ARG H 75 ATOM 5231 NH2 ARG H 75 ATOM 5232 C ARG H 75 ATOM 5232 C ARG H 75 ATOM 5233 O ARG H 75 ATOM 5233 O ARG H 75 ATOM 5234 N ASN H 76 ATOM 5235 CA ASN H 76 ATOM 5236 CB ASN H 76 ATOM 5237 CG ASN H 76 ATOM 5238 OD1 ASN H 76 ATOM 5238 OD1 ASN H 76 ATOM 5239 ND2 ASN H 76 ATOM 5240 C ASN H 76 ATOM 5241 O ASN H 76 ATOM			5224	. CA AR	RG H 75		25.028	39.266		_			C
55 ATOM 5227 CD ARG H 75 21.361 40.798 -6.811 1.00 60.38 H ATOM 5228 NE ARG H 75 20.699 39.885 -5.884 1.00 64.88 H ATOM 5229 CZ ARG H 75 19.499 39.426 -5.935 1.00 65.98 H ATOM 5231 NH2 ARG H 75 18.646 39.712 -6.877 1.00 67.53 H ATOM 5232 C ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5234 N ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H								39.956	-7.445	1.00 5	7.90		C
ATOM 5228 NE ARG H 75 ATOM 5229 CZ ARG H 75 ATOM 5230 NH1 ARG H 75 ATOM 5231 NH2 ARG H 75 ATOM 5231 NH2 ARG H 75 ATOM 5232 C ARG H 75 ATOM 5233 O ARG H 75 ATOM 5233 O ARG H 75 ATOM 5234 N ASN H 76 ATOM 5235 CA ASN H 76 ATOM 5236 CB ASN H 76 ATOM 5237 CG ASN H 76 ATOM 5238 OD1 ASN H 76 ATOM 5238 OD1 ASN H 76 ATOM 5239 ND2 ASN H 76 ATOM 5239 ND2 ASN H 76 ATOM 5239 ND2 ASN H 76 ATOM 5240 C ASN H 76 ATOM 5241 O ASN H 76 ATOM 5241	55	MOTA	5227	CD AF						_	4.88	H	N
ATOM 5230 NH1 ARG H 75 18.646 39.712 -6.877 1.00 68.48 H ATOM 5231 NH2 ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5234 N ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5239 ND2 ASN H 76 30.392 38.820 -9.470 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 29.086 42.494 -6.227 1.00 47.56 H							19.499	39.426	-5.935	1.00 6	5.98		C N
ATOM 5231 C ARG H 75 26.355 40.070 -7.320 1.00 53.01 H ATOM 5232 C ARG H 75 26.491 41.234 -7.849 1.00 51.34 H ATOM 5233 O ARG H 75 26.491 41.234 -7.849 1.00 51.72 H ATOM 5234 N ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 OD1 ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H		MOTA	5230) NH1 AF						1.00 6	8.48	H	N
ATOM 5233 O ARG H 75 26.491 41.234 -7.043 1.00 51.72 H ATOM 5234 N ASN H 76 27.361 39.476 -6.669 1.00 51.72 H ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 OD1 ASN H 76 30.392 38.820 -9.470 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H	60			C AI	RG H 75	;	26.355	40.070	-7.320	1.00 5	3.01 1 34		C
ATOM 5235 CA ASN H 76 28.632 40.121 -6.510 1.00 50.79 H ATOM 5236 CB ASN H 76 29.315 40.254 -7.918 1.00 50.88 H ATOM 5237 CG ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 OD1 ASN H 76 30.392 38.820 -9.470 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H		MOTA							-6.669	1.00 5	1.72	H	N
ATOM 5236 CB ASN H 76 29.315 40.234 -7.316 1.00 51.70 H ATOM 5237 CG ASN H 76 29.731 38.958 -8.434 1.00 51.70 H ATOM 5238 OD1 ASN H 76 30.392 38.820 -9.470 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H			5235	CA A	SN H 76	5	28.632	2 40.123			0.79 0.88		C
ATOM 5238 OD1 ASN H 76 30.392 38.820 -9.470 1.00 50.64 H ATOM 5239 ND2 ASN H 76 29.563 37.982 -7.603 1.00 52.12 H ATOM 5240 C ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56 H	65						29.733	1 38.958	8 -8.434	1.00 5	1.70		C
ATOM 5239 ND2 ASN H 76 28.444 41.544 -5.865 1.00 49.22 H ATOM 5240 C ASN H 76 28.444 41.544 -6.227 1.00 47.56 H ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.56	00	ATOM	5238	8 OD1 A	SN H 76					3 1.00 5	2.12	H	N
ATOM 5241 O ASN H 76 29.086 42.494 -6.227 1.00 47.30 M					SN H 7	5	28.44	4 41.54	4 -5.865	5 1.00 4	9.22		C
OEA						5	29.08	6 42.49	4 -0.22	, 1.00 4	.,.50		Ü

					27.729	41.553	-4.754	1.00 47.69	н		N
	MOTA	5242 N 5243 CA		77 77	27.729	42.653	-3.929	1.00 47.93	H		C C
	MOTA MOTA	5244 CB	ILE H	77	26.126 26.040	43.102 44.411	-3.973 -3.140	1.00 47.80 1.00 48.14	H	,	C
_	MOTA	5245 CG 5246 CG	·	77 77	25.721	43.638	-5.331	1.00 46.37	H		C C
5	ATOM ATOM	5247 CD	1 ILE H	77	24.173	43.842	-5.549 -2.487	1.00 45.88 1.00 48.54	H L H		C
	ATOM	5248 C	ILE H ILE H	77 7 7	27.998 27.825	42.386 41.270	-1.957	1.00 48.81	L H		0
	ATOM ATOM	5249 O 5250 N	LEU H	78	28.610	43.389	-1.863	1.00 47.84 1.00 48.57	1 H 7 H		N C
10	ATOM	5251 CA		78	29.059 30.563	43.294 43.649	-0.509 -0.495	1.00 48.73	, 3 H		č
	MOTA	5252 CF 5253 CG		78 78	31.088	43.596	0.929	1.00 47.6	7 H		C
	ATOM ATOM	5254 CI	D1 LEU H	78	31.187	42.158	1.519	1.00 47.04 1.00 47.5	4 H 7 H		C
	MOTA	5255 CI	D2 LEU H	78 78	32.365 28.299	44.371 44.319	$1.207 \\ 0.352$	1.00 49.23	1 H		C
15	MOTA	5256 C 5257 O		78 78	27.826	45.315	-0.052	1.00 50.4	5 H 5 H		N
	MOTA ATOM	5258 N	TYR H	79	28.035	44.033 44.855	1.553 2.317	1.00 50.7 1.00 52.0	6 H		C
	MOTA	5259 C		79 79	27.177 25.742	44.140	2.498	1.00 53.3	5 H		C
20	MOTA MOTA	5260 CI 5261 C		79 79	24.871	43.972	1.172	1.00 55.8 1.00 56.5	7 H 1 H		C
20	MOTA	5262 C	D1 TYR H	79	24.578 23.735	42.710 42.556	0.663 -0.481	1.00 57.9	_		C
	MOTA		E1 TYR H D2 TYR H	79 79	24.374	45.043	0.491	1.00 55.7	2 H		C
•	ATOM ATOM		E2 TYR H	79	23.572	44.882	-0.639 -1.054	1.00 56.3 1.00 58.4	1 H		C
25	MOTA	_	Z TYR H	79 79	23.247 22.609	43.650 43.533	-2.252	1.00 60.1	.2 F	Ī	0
	MOTA MOTA	5267 O 5268 C	H TYR H	79	27.702	45.191	3.633	1.00 52.1 1.00 51.2			C O
	MOTA	5269 C	TYR H	79	28.365 27.289	44.358 46.360	$4.266 \\ 4.152$	1.00 51.2 1.00 52.1			N
	MOTA	5270 N 5271 C	LEU H	80 80	27.203	46.718	5.521	1.00 52.7	72 I	Į	C
30	MOTA MOTA		CB LEU H	80	28.802	47.563	5.493 6.905	1.00 51.0 1.00 52.4)5 1 14 I	I I	C C
	MOTA		CG LEU H	80 80	29.222 29.699	48.078 46.925	7.713	1.00 53.2	20 1	H	С
	MOTA MOTA	5274 C	CD1 LEU H	80	30.226	49.254	7.078	1.00 51.8		H H	C
35	ATOM	5276	C LEU H	80	26.405 25.923	47.402 48.431	6.180 5.665	1.00 53.0	00	H	0
	MOTA	- - · ·	O LEU H	80 81	25.772	46.703	7.112	1.00 54.	52	H	N
	MOTA ATOM		CA GLN H	81	24.604		7.836 8.221	1.00 55. 1.00 56.	69 62	H H	C C
	MOTA	5280	CB GLN H CG GLN H	81 81	23.568 22.383	46.125 46.533		1.00 58.	33	H	C
40	ATOM ATOM		CG GLN H	81	21.423	47.264	8.251	1.00 60. 1.00 62.	67 40	H H	C O
	ATOM	5283	OE1 GLN H		20.972 21.387	46.664 48.608		1.00 62.		H	N
	MOTA		NE2 GLN H C GLN H	81 81	25.055	47.763	9.110	1.00 56.	82	H	C O
45	MOTA MOTA		O GLN H	81	25.683		9.959 9.331	1.00 57. 1.00 58.	28	H H	И
	MOTA	5287	N MET H		24.641 25.021			1.00 60.	26	H	C
	MOTA MOTA		CB MET H		25.707	7 51.079	10.003	1.00 61.	16 go	H H	C C
	MOTA	5290	CG MET H	82A	26.924 27.898	1 50.877 3 52.390	9.024 8.755	1.00 64.	38	H	s
50	MOTA		SD MET H		27.093	1 52.775	7.376	1.00 62.	45	H	C C
	MOTA MOTA		C MET H	82A	23.82				13	H H	ŏ
	MOTA		O MET H		22.829 24.01			1.00 60.	. 07	H	N
55	MOTA MOTA		N SER H		22.88	0 50.393	3 13.477			H H	C
33	ATOM	5297	CB SER F	1 82B	22.14 22.90				.61	H	0
	MOTA		OG SER F		23.44	9 51.10	8 14.761	1.00 60	. 67	H H	C O
	MOTA ATOM		O SER I	1 82B	24.66	9 51.13			. 39 . 07	H	И
60	ATOM	5301	N SER I		22.63 23.17	5 51.84 4 52.80		3 1.00 61	.07	H	C
	MOTA MOTA		CA SER I		23.47	5 52.03	2 17.784		.29	H H	C O
	ATOM	I 5304	OG SER	H 82C	22.61	9 50.93 7 53.60			.65	H	č
	ATOM		C SER		24.37 25.33		3 16.938	3 1.00 61	.63	H	O
65	MOTA MOTA		N LEU	H 82D	24.35	3 54.23	5 14.973		.41 .72	H H	N C
	MOTA	5308	CA LEU	н 82D	25.43 24.97			6 1.00 60	.37	H	C
	MOTA MOTA		CB LEU		24.97				.24	H	С
	AION	. 5510			255						

5 10 15	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328	CD1 LEU H CD2 LEU H C LEU H O LEU H N ARG H CA ARG H CB ARG H CG ARG H CD ARG H NE ARG H CZ ARG E NH1 ARG E NH2 ARG H O ARG H NH2 ARG H O ARG	83 83 83 83 83 83 83 83 83 83 83 83 84 84 84	24.386 26.461 25.685 24.718 26.928 27.286 28.035 28.089 28.592 28.362 29.251 30.408 28.944 28.077 28.596 29.007 29.129 29.598	55.079 54.225 56.273 56.901 57.669 57.275 55.693 55.263 53.883 52.934 53.145 51.726 58.597 58.597 59.837 60.920 61.963	10.897 11.718 15.489 15.988 15.850 16.671 17.953 18.182 19.516 19.942 19.356 20.407 15.795 14.720 16.310 15.511 16.249 17.500	1.00 57.43 1.00 58.39 1.00 62.71 1.00 64.10 1.00 63.66 1.00 64.35 1.00 67.33 1.00 69.20 1.00 72.23 1.00 73.34 1.00 73.99 1.00 74.45 1.00 64.00 1.00 63.76 1.00 63.40 1.00 62.76 1.00 64.95	нннннннннннннн	СССИСИСИСИСОИСО
20	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5329 5330 5331 5332 5333 5334	C SER I O SER I N GLU I CA GLU I	H 84 H 84 H 85 H 85 H 85	30.367 30.796 31.008 32.356 32.818	60.434 60.790 59.642 59.037 58.098	15.059 13.908 15.944 15.635 16.798	1.00 62.17 1.00 62.05 1.00 60.48 1.00 59.67 1.00 59.83 1.00 63.33	Н Н Н Н Н	C O N C C
25	ATOM ATOM ATOM ATOM ATOM	5335 5336 5337 5338 5339	CG GLU I CD GLU I OE1 GLU I OE2 GLU I C GLU I	н 85 н 85 н 85 н 85	32.602 31.403 31.387 30.602 32.385	58.833 58.378 57.224 59.226 58.092	17.959 18.752 19.125 19.061 14.494 14.307	1.00 63.33 1.00 64.36 1.00 65.15 1.00 66.28 1.00 58.39 1.00 59.02	н н н н н	00000
30	ATOM ATOM ATOM ATOM ATOM	5340 5341 5342 5343 5344	O GLU N ASP CA ASP CB ASP CG ASP	н 86 н 86 н 86 н 86	33.412 31.253 31.158 29.880 30.017	57.539 57.774 56.814 55.991 54.951	13.908 12.864 13.036 14.084 14.834	1.00 56.08 1.00 54.11 1.00 55.33 1.00 57.05 1.00 58.36	H H H H	и С С
35	ATOM ATOM ATOM ATOM ATOM	5345 5346 5347 5348 5349	C ASP	н 86 н 86 н 86 н 87	29.030 31.050 31.243 31.339 31.286	54.963 54.210 57.475 56.836 58.783	14.375 11.489 10.413 11.579	1.00 55.58 1.00 52.34 1.00 50.01 1.00 49.59 1.00 48.63	H H H H	и О С
40	ATOM ATOM ATOM ATOM ATOM	5350 5351 5352 5353 5354	CA THR CB THR OG1 THR CG2 THR C THR	н 87 н 87 н 87 н 87	31.325 31.069 29.737 31.250 32.614	59.669 61.194 61.382 62.306 59.471	10.417 10.922 11.522 9.903 9.751	1.00 48.91 1.00 50.30 1.00 48.84 1.00 47.71	н н н н н	00000
45	ATOM ATOM ATOM ATOM ATOM	5355 5356 5357 5358 5359	O THR N ALA CA ALA CB ALA C ALA	H 88 H 88 H 88	33.651 32.525 33.696 34.219 33.423	58.565	10.363 8.444 7.656 8.177 6.266 5.872	1.00 45.93 1.00 45.98 1.00 44.66 1.00 43.85 1.00 44.68 1.00 45.79	н н н н	иссо
50	ATOM ATOM ATOM ATOM ATOM	5360 5361 5362 5363 5364		H 89 H 89 H 89 H 89	32.260 34.498 34.488 35.704 35.662	58.433 57.827 58.347 57.806	5.474 4.173 3.419 1.922	1.00 44.08 1.00 43.11 1.00 43.90 1.00 45.35	н н н н н	2 C C Z
55	ATOM ATOM ATOM ATOM ATOM	5365 5366 5367 5368 5369	CE MET O MET N TYR	H 89 H 89 H 90	34.197 34.716 34.666 35.591 33.626	59.894 56.305 55.858 55.528	0.371 4.331 4.896 4.007	1.00 45.97 1.00 44.27 1.00 44.18 1.00 43.97	H H H H	С О И С
60	ATOM ATOM ATOM ATOM ATOM	5370 5371 5372 5373 5374	CA TYR CB TYR CG TYR CD1 TYR CE1 TYR	H 90 H 90 H 90 H 90	33.576 32.153 31.822 32.069 31.778 31.543	53.648 53.774 52.770 52.890	4.374 5.899 6.771 8.105 6.446	1.00 42.74 1.00 42.49 1.00 42.71 1.00 41.99 1.00 41.28	Н Н Н Н	0000
65	MOTA MOTA MOTA MOTA	5378	CE2 TYR CZ TYR OH TYR	. н 90 . н 90 . н 90	31.376 31.502 31.430 34.062	55.175 2 54.125 54.157	7.823 8.653 7 10.018	1.00 41.04 1.00 41.54 1.00 41.11	н н н н	C C C

			mvn II	90	33.501	53.708	1.596 1	00 44.77	H	0
	ATOM ATOM	5380 O 5381 N	TYR H TYR H	91	35.160	52.733		L.00 42.96 L.00 43.91	H H	N C
	ATOM	5382 CA	TYR H	91	35.638	52.127 52.315	1.436 1 1.356 1	L.00 43.91 L.00 42.41	H	C
	MOTA	5383 CB	TYR H	91 91	37.214 37.761	53.729	1.202	L.00 43.94	H	C
5	MOTA	5384 CG 5385 CD	TYR H 1 TYR H	91	38.374	54.490		1.00 41.91	H	C
	ATOM ATOM	5385 CD		91	38.708	55.820		1.00 44.39 1.00 42.91	H H	C C
	ATOM	5387 CD	2 TYR H	91	37.789	54.267 · 55.415 ·	-0.090 : -0.312 :	1.00 45.60	H	Ċ
	MOTA	5388 CE		91 91	38.185 38.807	56.203	0.666	1.00 46.11	H	C
10	MOTA	5389 CZ 5390 OH		91	39.168	57.455		1.00 50.45	H H	C C
	MOTA MOTA	5390 OII 5391 C	TYR H	91	35.356	50.634		1.00 44.70 1.00 43.09	H H	0
	MOTA	5392 0	TYR H	91	35.516	49.860 50.127	2.407 0.237	1.00 45.69	H	N
	MOTA	5393 N	CYS H	92 92	35.128 35.005	48.670	0.074	1.00 46.10	H	C
15	ATOM	5394 CA 5395 C	CYS H	92 92	36.380	48.319		1.00 44.52	H	C O
	ATOM ATOM	5395 C 5396 O	CYS H	92	36.965	48.974		1.00 43.72 1.00 47.38	H H	C
	ATOM	5397 CE	CYS H	92	34.031	48.498 46.885	-1.175 -1.690	1.00 47.30	H	S
	ATOM	5398 SG	CYS H	92 93	33.784 36.773	47.126	-0.042	1.00 43.35	H	N
20	ATOM	5399 N 5400 CA	ALA H ALA H	93	38.079	46.581	-0.608	1.00 43.49	H H	C C
	MOTA ATOM	5400 CF		93	39.256	46.935	0.540	1.00 41.94 1.00 43.78	H	C
	MOTA	5402 C	ALA H	93	38.022	45.117 44.409	-0.627 0.487	1.00 45.76	H	0
	MOTA	5403 O	ALA H	93 94	37.485 38.862	44.628	-1.461	1.00 43.45	H	N
25	MOTA	5404 N 5405 C	ARG H A ARG H	94	39.053	43.214	-1.645	1.00 44.26	H H	C
	MOTA MOTA	5406 CI		94	39.576	42.862	-3.109 -3.350	1.00 45.24 1.00 46.44	H	č
	MOTA	5407 C	G ARG H	94	39.501 39.929	41.398 40.954	-3.330 -4.994	1.00 47.28	H	C
	MOTA	5408 C		94 94	41.337	40.997	-5.159	1.00 49.70	H	N
30	MOTA	5409 N 5410 C		94	41.991	40.672	-6.278	1.00 50.40	H H	C N
	ATOM ATOM	•	H1 ARG H	94	41.357	40.531	-7.402 -6.311	1.00 50.46 1.00 46.10	H	N
	ATOM		H2 ARG H	94	43.276 40.201	40.565 42.746	-0.761	1.00 44.81	H	C
	MOTA	5413 C		94 94	41.240	43.215	-0.817	1.00 45.02	H	O
35	MOTA MOTA	5414 O 5415 N			39.932	41.776	0.081	1.00 44.55	H H	N C
	MOTA		A LEU H	95	40.997	41.445	$1.189 \\ 2.470$	1.00 43.74 1.00 41.49	H	č
	MOTA	5417 C	B LEU H		40.289 41.121	41.191 40.420	3.541	1.00 42.09	H	C
	MOTA		G LEU H D1 LEU H		42.374		3.739	1.00 43.97	H	C
40	MOTA MOTA		D1 LEU H D2 LEU H		40.120	40.347	4.728	1.00 43.57 1.00 44.13	H H	C
	ATOM	5421		95	41.584		$0.804 \\ 0.740$	1.00 44.13	H	ŏ
	MOTA	5422			40.903 42.765		0.208	1.00 44.89	H	N
	ATOM	5423 N	N ASP H CA ASP H		43.557	39.273	-0.364	1.00 45.30	H	C
45	MOTA MOTA		CB ASP H	<u>-</u>	44.541	. 39.676	-1.408	1.00 44.92 1.00 48.16	H H	C
	MOTA	5426	CG ASP F	I 96	43.888	40.051	-2.741 -2.757	1.00 48.16	H	Ö
	MOTA	5427 (OD1 ASP H		42.729 44.526		-3.840	1.00 49.25	H	0
	MOTA		OD2 ASP F C ASP F		44.212		0.600	1.00 46.33	H	C
50	MOTA MOTA		O ASP I		44.551	1 37.315	0.197	1.00 48.00 1.00 46.28	H H	N
	ATOM		N GLY I		44.145		1.933 2.935	1.00 45.80	H	C
	MOTA	5432	CA GLY I		44.662 45.75		3.889	1.00 46.63	H	C
	ATOM		O GLY I		46.43		3.487	1.00 45.58	H	N
55	MOTA MOTA		N TYR		45.86	7 38.104	5.140	1.00 45.50 1.00 45.67	, H H	C
	ATOM		CA TYR		46.92				H	C
	MOTA	5437	CB TYR		46.87 47.03			1.00 45.01	H	C
	ATOM		CG TYR CD1 TYR		48.21		7.805	1.00 45.57	H	C C
60	MOTA MOTA		CD1 TYR		48.41	8 34.646			H H	C
	IOTA IOTA		CD2 TYR	н 98	46.00				H	С
	ATO	4 5442	CE2 TYR		46.08 47.31				H	С
	IOTA		CZ TYR OH TYR		47.43	9 32.515	7.945	1.00 47.02	H	0
65	IOTA TOTA		OH TYR C TYR		48.29	8 38.576	5.350	1.00 45.31	H H	C
	OTA OTA		O TYR	н 98	49.09				H	
	ATO!	M 5447	N TYR	н 99	48.58 49.81				Н	
	OTA		CA TYR	н 99		57.02-	,,,,,			
					257					

5	MOTA TOM ATOM ATOM ATOM ATOM ATOM ATOM	5450 C 5451 C 5452 C 5453 C	CB TYR H 99 CG TYR H 99 CD1 TYR H 99 CE1 TYR H 99 CD2 TYR H 99 CE2 TYR H 99		50.227 50.752 51.868 52.254 49.982 50.422	36.082 35.176 35.548 34.855 34.050 33.286 33.716	4.285 5.007	1.00 45.33 1.00 47.93 1.00 49.06 1.00 50.83 1.00 48.72 1.00 50.56 1.00 51.08	H H H H H H	0000000
10	MOTA MOTA MOTA MOTA MOTA MOTA	5456 C 5457 C 5458 C 5459 P	O TYR H 99 N PHE H 100		51.532 51.955 49.829 50.880 48.735	32.910 38.483 38.715 38.962 39.844	7.410 2.360 1.772 1.875 0.745	1.00 50.59 1.00 41.57 1.00 42.24 1.00 41.19 1.00 41.39	H H H H	О О О
15	MOTA MOTA MOTA MOTA MOTA	5461 (5462 (5463 (5464 (CA PHE H 100 CB PHE H 100 CG PHE H 100 CD1 PHE H 100 CD2 PHE H 100	A A A A	48.715 47.950 48.520 48.087 49.650	39.136 37.790 36.764 37.668 35.463	-0.406 -0.721 -0.162 -1.444 -0.394	1.00 41.14 1.00 40.31 1.00 39.72 1.00 39.59 1.00 40.58	н н н н	מטטטט
20	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5466 5467 5468 5469 5470	CE1 PHE H 100 CE2 PHE H 100 CZ PHE H 100 C PHE H 100 O PHE H 100 N GLY H 100 CA GLY H 100	A A A A)A)B	48.687 50.144 49.756 48.163 48.322 47.429 46.918	35.463 36.420 35.288 41.269 42.037 41.627 43.013	-1.925 -1.187 0.851 -0.071 1.883 2.046	1.00 41.22 1.00 41.75 1.00 41.09 1.00 40.97 1.00 41.60 1.00 40.67	н н н н н	C C C C C C C C C C C C C C C C C C C
25	ATOM ATOM ATOM ATOM	5472 5473 5474	C GLY H 100 O GLY H 100 N PHE H 100 CA PHE H 100)B)B)C)C	45.530 44.855 45.087 43.876	43.259 42.360 44.491 44.969	1.366 0.912 1.365 0.745	1.00 41.06 1.00 40.75 1.00 39.30 1.00 39.10 1.00 36.63	н н н н	C O N C C
30	MOTA MOTA MOTA MOTA MOTA	5476 5477 5478	CB PHE H 10 CG PHE H 10 CD1 PHE H 10 CD2 PHE H 10 CE1 PHE H 10	0C 0C 0C	43.437 42.852 43.534 41.806 42.988	46.207 46.003 46.461 45.153 46.286 44.860	1.455 2.697 3.977 2.862 5.054 4.462	1.00 36.63 1.00 37.34 1.00 37.49 1.00 37.27 1.00 37.43 1.00 37.98	н н н н	ממממ
35	MOTA ATOM ATOM ATOM ATOM ATOM	5481 5482 5483 5484 5485	CE2 PHE H 10 CZ PHE H 10 C PHE H 10 O PHE H 10 N ALA H 10	0C 0C 0C 1	41.256 41.775 44.310 44.856 44.112 44.715	45.401 45.386 46.558 44.508 44.704	5.277 -0.689 -0.957 -1.626 -2.982	1.00 38.05 1.00 38.92 1.00 37.99 1.00 38.37 1.00 38.04	H H H 'H	C C O N
40	ATOM ATOM ATOM ATOM ATOM	5486 5487 5488 5489 5490	CA ALA H 10 CB ALA H 10 C ALA H 10 O ALA H 10 N TYR H 10	1 1 1 2	44.713 44.741 43.888 44.459 42.624 41.823	43.310 45.617 46.125 45.849 46.756	-3.802 -3.860 -4.821 -3.587 -4.421	1.00 37.26 1.00 38.70 1.00 39.22 1.00 37.88 1.00 40.73	H H H H	C N C
45	MOTA MOTA MOTA MOTA MOTA	5491 5492 5493 5494 5495	CA TYR H 10 CB TYR H 10 CG TYR H 10 CD1 TYR H 10 CE1 TYR H 10	2 2 2 2	40.881 41.770 42.487 43.463	45.940 45.485 44.255 43.807	-5.415 -6.594 -6.486 -7.469 -7.510	1.00 43.71 1.00 46.39 1.00 46.61 1.00 47.40 1.00 46.31	H H H H	I C I C
50	MOTA MOTA MOTA MOTA MOTA	5496 5497 5498 5499 5500	CD2 TYR H 10 CE2 TYR H 10 CZ TYR H 10 OH TYR H 10 C TYR H 10)2)2)2)2	42.176 43.139 43.697 44.665 40.807	45.953 44.635 44.236 47.551	-8.505 -8.507 -9.426 -3.509	1.00 48.95 1.00 50.42 1.00 50.89 1.00 41.67	H H H	H C
55	ATOM ATOM ATOM ATOM ATOM	5501 5502 5503 5504 5505	O TYR H 1 N TRP H 1 CA TRP H 1 CB TRP H 1 CG TRP H 1)3)3)3)3	40.259 40.625 39.717 40.386 41.471	48.838 49.645 50.618 50.174	-2.117 -1.249	1.00 41.77 1.00 44.39 1.00 42.16 1.00 42.59]]]	H NH CH CH C
60	MOTA MOTA MOTA MOTA MOTA	5506 5507 5508 5509	CD2 TRP H 1 CE2 TRP H 1 CE3 TRP H 1 CD1 TRP H 1 NE1 TRP H 1	03 03 03 03	41.595 42.752 40.791 42.667 43.385	49.885 51.203 49.439 49.247	0.661 1.095 -1.605 -0.423	1.00 40.61 1.00 38.63 1.00 41.54 1.00 41.94		H CH CH NH CH
65	MOTA MOTA MOTA MOTA MOTA MOTA	5511 5512 5513 5514 5515 5516	CZ2 TRP H 1 CZ3 TRP H 1 CH2 TRP H 1 C TRP H 1 O TRP H 1 N GLY H 1 CA GLY H 1	03 03 03 03 03 04	43.179 41.257 42.429 38.809 39.069 37.600	7 51.321 9 50.777 5 50.440 8 50.687 3 50.646	2.447 2.818 3.949 -5.092 5.3.465	7 1.00 37.69 3 1.00 37.36 9 1.00 45.62 2 1.00 45.76 5 1.00 46.03		H C H C H C H O H N
	£11 O13				258					

													_
	ATOM	5518		LY H 104	36.		52.969	-3.990	1.00	50.39 50.04	H H		C O
	ATOM	5519	_	LY H 104 LN H 105	37. 35.		53.342 53.812	-3.435 -4.380	1.00	51.47	н		N
	ATOM ATOM			LN H 105	36.		55.263	-4.372	1.00	53.77	H H		C C
5	ATOM	5522	CB G	LN H 105		215	55.927 55.514	-5.448 -6.818		58.08 63.91	H		C
	ATOM			LN H 105 LN H 105		012 577	56.078	-7.031	1.00	67.40	Н		С
	ATOM ATOM		OE1 G	LN H 105	37.	891	57.324	-6.794	1.00	70.51 68.61	H H		O N
,	MOTA	5526		LN H 105		506 541	55.151 55.826	-7.495 -3.186	1.00	53.77	H		C
10	MOTA			LN H 105 LN H 105		881	56.980	-2.926	1.00	52.00	H		0
	MOTA MOTA		N G	LY H 106	34.	827	55.047	-2.408		53.76 53.09	H H		C N
	MOTA	5530		LY H 106		.526 .100	55.500 56.020	-1.099 -1.125	1.00	53.25	H		C
45	MOTA MOTA		O G	LY Н 106 LY Н 106		662	56.529	-2.182	1.00	53.58	H		O
15	ATOM	5533	r n	THR H 107		.320	55.878	$-0.055 \\ 0.001$	1.00	51.37 49.58	H H		C N
	MOTA	5534		ГНR Н 107 ГНR Н 107		.068 .822	56.570 55.625	-0.204	1.00	49.86	H		C
	MOTA MOTA	5535 5536		THR H 107		.563	56.384	-0.242		52.01	H H		C
20	MOTA	5537	CG2 T	THR H 107		.563	54.703 57.202	$0.994 \\ 1.297$		48.32 49.76	H		C
	ATOM	5538		THR H 107 THR H 107		.010 .356	56.588	2.303	1.00	49.74	H		0
	ATOM ATOM	5539 5540	N I	LEU H 108	30	.618	58.471	1.346		50.53 51.52	H H		C N
	ATOM	5541		LEU H 108		.546, .711	59.237 60.734	2.619 2.383	1.00	_	н		C
25	MOTA	5542 5543		LEU H 108 LEU H 108		.064	61.420	2.162	1.00		H		C
	MOTA MOTA	5544	CD1	LEU H 108	32	.029	62.939	$1.777 \\ 3.414$	1.00	54.62 56.22	H H		C
	MOTA	5545		LEU H 108 LEU H 108		.009	61.326 59.030	3.483	1.00	50.37	H		С
30	MOTA MOTA	5546 5547		LEU H 108	28	.272	59.085	2.998	1.00	48.78	H H		N O
30	MOTA	5548	N '	VAL H 109		.532	58.955 58.808	4.786 5.695	1.00) 49.42) 50.40	H		C
	MOTA	5549 5550	CA CB	VAL H 109 VAL H 109		.471	57.421	6.360	1.00	50.35	H		C
	ATOM ATOM	5550 5551	CG1	VAL H 109	27	.558	57.361	7.473		0 49.64 0 49.09	H H		C
35	MOTA	5552		VAL H 109		3.360	56.213 59.882	5.360 6.856		0 51.56	H		С
	ATOM ATOM	5553 5554	C O	VAL H 109 VAL H 109		611	59.948	7.554		51.16	ŀ		N O
	ATOM	5555	N.	ALA H 110		7.582	60.770 61.701	7.019 8.120	1.0	0 51.38 0 52.80	I I		C
	ATOM	5556	CA CB	ALA H 110 ALA H 110		7.547 7.449	63.102	7.626	1.0	0 52.41	Ŧ		С
40	MOTA MOTA	5557 5558	CP	ALA H 110	2	5.460	61.441	9.110	1.0	0 52.98 0 52.47		I I	C O
	MOTA	5559	0	ALA H 110		5.368 5.893	61.185 61.338	8.712 10.336	1.0	0 54.00		Ī	N
	MOTA MOTA	5560 5561	N CA	VAL H 111 VAL H 111		6.075	61.036	11.455	1.0	0 55.55		F	C
45	MOTA	5562	CB	VAL H 111		6.756			1.0	0 55.09 0 55.18		H H	C
	ATOM	5563	CG1	VAL H 111 VAL H 111		5.748 7.155			1.0	0 53.86		H	C
	ATOM ATOM	5564 5565	CGZ	VAL H 111	2	5.946	62.358	12.138		0 57.61 0 57.50		H H	C O
	ATOM	5566	0	VAL H 111		6.838 4.800		12.773 11.987	1.0	0 59.58		H	N
50	MOTA	5567 5568	N CA	SER H 112 SER H 112	2	4.564		12.424	1.0	0 62.06		H	C
	MOTA MOTA	5569	CB	SER H 112		5.076			_	0 62.27 0 63.44		H H	C
	MOTA	5570	OG	SER H 112 SER H 112		4.805 3.061			1.0	0 64.01		H	С
55	ATOM ATOM	5571 5572	C O	SER H 112 SER H 112		2.269	64.096	11.871	1.0	0 64.87		H H	N O
33	MOTA	5573	N	ALA H 113		2.634			_	00 65.89 00 67.77		H	C
	MOTA	5574		ALA H 113 ALA H 113		1.219		15.179	1.0	00 67.00		H	C
	MOTA MOTA			ALA H 113	2	0.861	L 67.04	3 12.965		00 69.23		H H	C 0
60	MOTA	5577	0	ALA H 113		.9.729 21.836				00 69.99		H	N
	MOTA			ALA H 114 ALA H 114		1.55		5 11.383	3 1.0	00 71.20		H	C
	MOTA MOTA			ALA H 114	2	22.83	2 69.47			00 70.37 00 72.68		H H	C
	MOTA	5581		ALA H 114 ALA H 114		20.864 20.69			7 1.	00 72.43		H	0
65	ATOM ATOM			LYS H 115		20.52	3 69.29	3 9.30	7 1.	00 73.47		H H	C N
	MOTA	5584	L CA	LYS H 115		19.58 18.33				00 74.97 00 76.29		Н	С
	MOTA			LYS H 115 LYS H 115		17.02				00 78.90		H	С
	MOTA	, ,,,,,,,	,			250							

		****									_	~
	MOTA	5587		YS H 115	15.72 14.47		70.076 59.941	8.445 9.414	1.00	80.84 82.54	H H	C C
			CE L	YS H 115 YS H 115	13.41	7 7	70.968	9.050	1.00	84.38 74.57	H H	C N
	MOTA	5590	C P	YS H 115 YS H 115	20.23 20.97	-	69.344 70.400	6.901 6.712	1.00	74.15	H	0
5				HR H 116	19.76	1 (68.565	5.925		74.05 74.84	H H	N C
	ATOM	5593	CA T	HR H 116	20.33 20.18		68.731 67.575	4.659 3.700	1.00	75.81	H	C
	MOTA	5594 5595	CB T	HR H 116 HR H 116	19.39		67.962	2.580	1.00	78.72	H	0
10	ATOM ATOM	5596	CG2 T	HR H 116	19.52	0	66.458	4.332 4.138		77.18 74.35	H H	C C
10	MOTA			THR H 116 THR H 116	$20.04 \\ 19.01$		70.095 70.595	4.371	1.00	74.89	H	0
	ATOM ATOM	5598 5599	N T	THR H 117	21.02	8	70.736	3.524	1.00	73.19 72.52	H H	N C
	ATOM	5600	CA T	THR H 117	20.73 21.32		72.009 73.135	2.879 3.718	1.00	72.50	H	C
15	MOTA MOTA	5601 5602	CB T	ГНК Н 117 ГНК Н 117	21.00	9	72.949	5.153		72.65	H H	O C
	ATOM	5603	CG2	THR H 117	20.67	-	74.469 72.133	3.161 1.516	1.00	71.32 71.62	n H	C
	MOTA	5604	C	THR H 117 THR H 117	21.30 22.44	-	71.904	1.379	1.00	72.24	H	0
20	MOTA ATOM	5605 5606	N]	PRO H 118	20.55	8	72.464	0.497		70.54 70.30	H H	C N
20	MOTA	5607	CD 1	PRO H 118	19.10 21.1		72.729 72.613	0.435 -0.815	1.00	69.81	H	С
	ATOM ATOM	5608 5609	CA I	PRO H 118 PRO H 118	19.9		72.676	-1.794	1.00	70.03	H H	C
	ATOM	5610	CG :	PRO H 118	18.90		73.314 73.820	-1.007 -0.850	1.00	69.36 69.30	H	Č
25	ATOM	5611 5612	0	PRO H 118 PRO H 118	22.00 22.1	00	74.702	-0.001	1.00	68.93	H	O
	MOTA MOTA	5613	N	PRO H 119	23.0	20	73.759	-1.772 -2.675	1.00	69.63 69.24	H H	N C
	MOTA	5614		PRO H 119 PRO H 119	23.3 23.9		72.607 74.865	-1.927	1.00	69.43	H	C
30	ATOM ATOM	5615 5616		PRO H 119	25.1	40	74.229	-2.653	1.00	69.59 69.96	H H	C
30	MOTA	5617	CG	PRO H 119	24.4 23.3		73.207 75.894	-3.526 -2.789	1.00	69.54	H	С
	MOTA	5618 5619	C O	PRO H 119 PRO H 119	22.5		75.533	-3.519	1.00	69.35	H	N
	MOTA MOTA	5620	И	SER H 120	23.7	35	77.137 78.148	-2.578 -3.511		69.05 69.34	H H	C
35	MOTA	5621	CA CB	SER H 120 SER H 120	23.5 23.3		79.438	-2.776	1.00	69.06	H	C
	$\begin{array}{c} \texttt{MOTA} \\ \texttt{ATOM} \end{array}$	5622 5623	OG	SER H 120	22.2	80	79.351	-1.990 -4.362	1.00	0 69.83 0 69.65	H H	О С
	ATOM	5624	C	SER H 120	24.7 25.8		78.222 78.200	-4.302 -3.817	1.00	0 70.99	H	0
40	MOTA MOTA	5625 5626	N	SER H 120 VAL H 121	24.6	83	78.406	-5.682	1.00	0 69.07 0 68.49	H H	N C
40	MOTA	5627	CA	VAL H 121	25.7 25.5		78.429 77.269	-6.568 -7.538	1.0	0 67.99	H	C
	MOTA	5628 5629	CB CG1	VAL H 121 VAL H 121	26.6		77.227	-8.681	1.0	0 66.50	H	C
	ATOM ATOM	5630	CG2	VAL H 121	25.5		75.933 79.759	-6.683 -7.337	1.0	0 67.19 0 68.59	H H	C
45	ATOM	5631	C O	VAL H 121 VAL H 121	25.9 25.0		80.213	-7.833	1.0	0 69.44	H	O
	MOTA MOTA	5632 5633	И	TYR H 122	27.0	35	80.351	-7.514		0 68.04 0 68.49	H H	C N
	MOTA	5634		TYR H 122 TYR H 122	27.0 27.3		81.683 82.741	-8.072 -7.030	1.0	0 66.91	H	С
50	MOTA MOTA	5635 5636		TYR H 122	26.	318	82.787	-5.901	1.0	0 65.94 0 65.72	H H	C
50	MOTA	5637	CD1	TYR H 122	25. 24.		82.941 82.968	-6.191 -5.212		0 64.55	H	С
	MOTA ATOM	5638 5639			26.		82.585	-4.584	1.0	0 64.79	H H	C
	ATOM	5640	_	TYR H 122	25.		82.631 82.849	-3.591 -3.962		00 64.05 00 63.93	H	Č
55	MOTA	5641		TYR H 122 TYR H 122	24. 23.		82.929	-3.129	1.0	0 63.03	H	0
	MOTA MOTA	5642 5643		TYR H 122	28.	278	81.724	-9.056		00 69.84 00 69.11	H H	C
	MOTA	5644	l O	TYR H 122		303 142		-8.764 -10.181	1.0	00 71.60	H	N
60	MOTA MOTA	5645 5646		PRO H 123 PRO H 123		999	83.253	-10.618	3 1.0	00 71.61	H H	C
60	ATOM	5647	7 CA	PRO H 123		225		-11.168 -12.519		73.00 72.20	H	С
	MOTA	5648		PRO H 123 PRO H 123		495 297	83.644	-12.07	7 1.0	00 71.53	H	C
	ATOM ATOM			PRO H 123	30.	228	83.455	-10.82	9 1.0	00 74.28 00 75.03	H H	C O
65	MOTA	5653	1 0	PRO H 123 LEU H 124		839 500		-10.39	7 1.	00 75.57	H	\mathbf{N}
	MOTA MOTA			LEU H 124	32	464	84.215	-10.80	8 1.	00 77.18	H H	C
	ATOM	565	4 CB	LEU H 124		515				00 76.33 00 75.63	H	c
	MOTA	565	5 CG	LEU H 124		. 045 50	, 05.17	J	·			
						44 F						

	ATOM ATOM ATOM	5657	CD2 C	LEU H 124 LEU H 124 LEU H 124 LEU H 124	32.585		-7.902 -7.676 -12.061 -12.645	1.00 7 1.00 7	5.22 8.64 8.81	H H H	Ŧ	0000
5	ATOM ATOM ATOM ATOM ATOM	5660 5661 5662 5663	N CA	ALA H 125 ALA H 125 ALA H 125 ALA H 125	33.005 33.442 32.252 34.258	85.915 86.473 86.765 87.705	-12.348 -13.631 -14.462 -13.366	1.00 8	2.49 1.49 3.38	I I I	H H H H H	И С С
10	MOTA ATOM ATOM MOTA	5664 5665 5666 5667	O N CD CA	ALA H 125 PRO H 126 PRO H 126 PRO H 126	33.977 35.298 35.713 36.216 37.083	87.967 87.225 89.095	-12.373 -14.181 -15.370 -13.959 -15.205	1.00 8	4.62 4.56 5.66]]]	H H H H	C C
15	ATOM ATOM ATOM	5668 5669 5670	CB CG C	PRO H 126 PRO H 126 PRO H 126	36.296 35.534	88.308 90.465 90.903	-16.113 -13.871	1.00 8	4.85	!	H H H	C C
	ATOM ATOM ATOM	5671 5672 5673	O N CA	PRO H 126 ALA H 133 ALA H 133	34.537 45.015 46.014	88.620 88.473	-19.518 -20.570 -19.927	1.00 8	37.90 38.86		H H H	N C C
20	ATOM ATOM ATOM ATOM ATOM	5674 5675 5676 5677 5678	CB O N CA	ALA H 133 ALA H 133 ALA H 133 ALA H 134 ALA H 134	47.399 45.850 44.766 46.979 46.941	87.150 86.594 86.669 85.423	-21.322 -21.442 -21.875 -22.633	1.00 8 1.00 8 1.00 8	39.28 39.70 39.69 90.00		H H H H H	C N C C
25	ATOM ATOM ATOM ATOM	5679 5680 5681 5682	CB C O N	ALA H 134 ALA H 134 ALA H 134 MET H 135	48.337 45.920 45.215 45.887	84.439 83.736 84.376	-22.766 -20.712	1.00 9 1.00 9 1.00 9 1.00 9	90.19 90.05 89.65		H H H H	0 0 0
30	MOTA ATOM ATOM ATOM ATOM ATOM	5683 5684 5685 5686 5687	CA CB CG SD CE	MET H 135 MET H 135 MET H 135 MET H 135 MET H 135	44.974 45.807 46.718 45.790 44.934	82.459 81.595 80.601 79.553	-20.115 -21.291 -20.106	1.00 1.00 1.00	89.05 89.97 92.18 90.49		Н Н Н Н	C C S C
35	ATOM ATOM ATOM ATOM	5688 5689 5690 5691	C O N CA	MET H 135 MET H 135 VAL H 136 VAL H 136	43.977 44.172 42.854 41.838 40.793	84.167 85.301 83.477 84.065 84.742	-18.736 -18.881 -18.018	1.00 1.00 1.00 1.00	87.12 85.50 83.76		H H H H H	C N C C
40	ATOM ATOM ATOM ATOM	5692 5693 5694 5695	CB CG1 CG2 C		39.802 40.041 41.164 40.857	83.703 85.793 83.009	-19.426	1.00 1.00 1.00 1.00	83.33 83.66 82.18 82.47		Н Н Н Н	0 0 0 0
	ATOM ATOM ATOM ATOM	5696 5697 5698 5699	N CA CB	THR H 137 THR H 137 THR H 137	40.974 40.306 41.222 40.560	83.371 82.454 82.227 82.675	L -15.858 1 -14.943 7 -13.740	$\frac{1.00}{1.00}$	80.41 79.76 79.32 79.45		H H H H	И С О
45	MOTA MOTA MOTA	5700 5701 5702 5703	OG: CG: O	2 THR H 137 THR H 137 THR H 137	42.519 38.957 38.773	83.023 83.013 84.213		1.00 1.00 1.00	78.61 78.49 78.29 77.73		H H H H	0 C C
50	MOTA MOTA MOTA	5704 5705 5706 5707	CA CB CG	LEU H 138 LEU H 138	38.056 36.717 35.784 36.149	82.19 81.76 82.43	6 -13.866 8 -14.997 1 -16.321	1.00 1.00 1.00	77.47 78.10 79.50 79.35		H H H H	000
55	ATOM ATOM ATOM ATOM ATOM	5708 5709 5710 5711 5712	CD C	1 LEU H 138 2 LEU H 138 LEU H 138 LEU H 138 GLY H 139	35.422 35.787 36.566 37.440 35.428	83.91 81.21 80.40 81.31	0 -17.526 7 -16.316 7 -12.706 2 -12.420 8 -11.999	1.00 1.00 1.00 1.00	78.82 76.73 76.08 76.19		н н н н	О О С
60	MOTA MOTA MOTA MOTA	5713 5714 5715 5716	CA C O N	GLY H 139 GLY H 139 GLY H 139 CYS H 140	35.185 33.699 32.807 33.460 32.115	80.19 80.74 79.32	3 - 9.639	1.00 1.00 1.00 1.00 1.00	76.09 75.94 75.89 76.35 76.80		H H H H	C O N C
65	MOTA MOTA MOTA MOTA MOTA	5718 5719 5720 5721	3 C 9 O 0 CE L SG	CYS H 140 CYS H 140 3 CYS H 140 5 CYS H 140	32.118 32.979 31.768 30.531 31.166	78.99 78.40 77.60 77.71	00 -7.062 08 -9.693 6 -10.993 75 -7.033	2 1.00 3 1.00 3 1.00 3 1.00	75.34 75.52 78.19 83.30 73.47		H H H H	C O C S N
	MOTA MOTA MOTA	5723	3 C <i>F</i>	A LEU H 141	31.133 31.073	79.58	30 -5.59	9 1.00 2 1.00	70.98 70.21		H	C

	**			30.910	81.245	-3.583 1	1.00 69.27	Н	С
	MOTA MOTA	5726 CD1	LEU H 141 LEU H 141	32.100	80.826	-2.720	1.00 68.13 1.00 68.78	H H	C C
	MOTA	5727 CD2	LEU H 141 LEU H 141		78.722	-5.186	1.00 69.23	H	С
5	MOTA MOTA	5729 O	LEU H 141	28.813 30.252	,	-5.720 -4.287	1.00 69.90 1.00 66.68	H H	N O
	ATOM ATOM	5731 CA	VAL H 142 VAL H 142	29.214	76.863	-3.806	1.00 64.25 1.00 64.24	H H	C
	ATOM	5732 CB	VAL H 142 VAL H 142	29.617 28.544	75.452 74.440	-3.846	1.00 61.94	H	C
10	ATOM ATOM	5733 CG1 5734 CG2	VAL H 142	29.797	75.400 77.012	-5.719 -2.312	1.00 61.98 1.00 63.46	H H	C C
	ATOM ATOM	5735 C 5736 O	VAL H 142 VAL H 142	29.063 29.931	76.683	-1.511	1.00 62.73	H H	O N
	ATOM	5737 N	LYS H 143	27.895 27.728	77.604 78.239	-0.671	1.00 62.44 1.00 61.55	H	С
15	ATOM ATOM	5738 CA 5739 CB	LYS H 143 LYS H 143	27.568	79.740	-0.912 0.368	1.00 61.63 1.00 64.18	H H	C
,0	ATOM	5740 CG 5741 CD	LYS H 143 LYS H 143	27.800 27.452	80.536 82.004	0.237	1.00 66.95	Н	С
	MOTA MOTA	5742 CE	LYS H 143	27.476 28.805	82.690 82.543	$1.597 \\ 2.222$	1.00 67.20 1.00 69.98	H H	C N
20	ATOM ATOM	5743 NZ 5744 C	LYS H 143 LYS H 143	26.502	77.737	0.069	1.00 60.08 1.00 59.81	H H	C O
20	ATOM	5745 O	LYS H 143 GLY H 144	25.390 26.809	77.671 77.297	-0.439 1.302	1.00 58.65	Н	N
	MOTA ATOM	5746 N 5747 CA	GLY H 144 GLY H 144	25.785	77.102	2.318 2.273	1.00 58.01 1.00 57.98	H H	C
	MOTA	5748 C 5749 O	GLY H 144 GLY H 144	25.114 23.925	75.718 75.575	2.485	1.00 57.35	H	0
25	MOTA MOTA	5750 N	TYR H 145	25.914 25.310	74.670 73.332	1.969 1.814	1.00 57.90 1.00 57.33	H H	N C
	ATOM ATOM	5751 CA 5752 CB	TYR H 145 TYR H 145	25.754	72.732	0.470	1.00 57.61 1.00 59.84	H H	C C
	MOTA	5753 CG	TYR H 145	27.211 27.702	72.419 71.225	0.469 0.973	1.00 59.62	H	С
30	MOTA MOTA	5754 CD1 5755 CE1	1 TYR H 145	29.021	70.862	0.786 -0.241	1.00 61.69 1.00 60.20	H H	C
	MOTA	5756 CD2 5757 CE2		28.071 29.408	73.235 72.879	-0.428	1.00 60.85	H	C
•	MOTA MOTA	5758 CZ	TYR H 145	29.887 31.233	71.699 71.371	0.108 -0.008	1.00 61.51 1.00 63.36	H H	0
35	MOTA MOTA	5759 OH 5760 C	TYR H 145 TYR H 145	25.707	72.391	2.974	1.00 57.16 1.00 56.86	H H	0 0
	MOTA	5761 O	TYR H 145 PHE H 146	26.691 24.907	72.595 71.338	3.662 3.216	1.00 57.23	H	N
	MOTA MOTA	5762 N 5763 CA	PHE H 146	25.269	70.307	4.209 5.618	1.00 57.03 1.00 57.40	H H	C
40	MOTA	5764 CB 5765 CG		24.977 25.239	70.863 69.831	6.686	1.00 57.38	H	C
	ATOM ATOM	5766 CD	1 PHE H 146	26.497 24.228	69.744 68.953	7.267 7.079	1.00 56.79 1.00 57.31	H H	C
	MOTA MOTA	5767 CD 5768 CE	1 PHE H 146	26.753	68.781	8.233	1.00 56.84 1.00 57.73	H H	C
45	MOTA	5769 CE	22 PHE H 146 3 PHE H 146	24.492 25.753	67.991 67.889	8.047 8.614	1.00 56.94	H	C
	MOTA MOTA	5770 CZ 5771 C	PHE H 146	24.395	69.079 69.177	3.936 3.600	1.00 57.78 1.00 58.27	H H	С 0
	MOTA MOTA	5772 O 5773 N	PHE H 146 PRO H 147	23.225 24.948	67.837	4.033	1.00 57.91	H H	С И
50	MOTA	5774 CI	PRO H 147	24.299 26.347		3.760 4.399	1.00 57.22 1.00 56.51	H	C
	MOTA MOTA	5775 CA 5776 CE	3 PRO H 147	26.337	66.155	4.958	1.00 57.13 1.00 57.27	H H	C C
	MOTA	5777 CG	PRO H 147 PRO H 147	25.316 27.195		3.130	1.00 56.56	H	С
55	ATOM ATOM		PRO H 147	26.749	67.891	2.031	1.00 55.45 1.00 55.99	H H	N O
	ATOM			28.481 29.360	66.829	2.227	1.00 55.91	H H	C
	MOTA MOTA	5782 CI	B GLU H 148	30.818 31.483				H	С
60	ATOM ATOM	5784 C	D GLU H 148	32.922	68.092	2.735	1.00 60.41	H H	C 0
30	ATOM	5785 O	E1 GLU H 148	33.838 33.11	3 67.843 7 68.614	3.478 4.641	1.00 60.21	H	0
	MOTA MOTA		GLU H 148	28.86	6 65.468	1.672		H H	C
65	ATOM	5788 O	110	28.27 29.15	6 65.243	0.375	1.00 54.06	H H	N C
65	MOTA MOTA	5790 C	D PRO H 149	28.96 29.91	5 63.97		1.00 54.94	H	C
	ATON ATON		A PRO H 149 B PRO H 149	30.90	9 65.16	7 -1.114	1.00 54.57	H H	C
	ATOM	•	G PRO H 149	30.05	7 63.94	4 -1.504	± 1.00 Jæ.æ2	**	_
				262					

	μ				20 121	66.781	-1.643	1.00 5	6.29	H	С
	MOTA	J , J =		RO H 149 RO H 149	29.121 27.930	66.563	-1.847	1.00 5	7.63	H	0
	MOTA MOTA	J. J.	N A	AL H 150	29.844	67.654	-2.427	1.00 5		H H	N C
	MOTA	J , J -	CA V	AL H 150	29.324	68.079	-3.723 -3.809	1.00 5		H	Č
5	MOTA	J.J.	CB V	AL H 150	29.146 28.016	69.608 70.105	-2.912	1.00 5	55.69	H	C
	MOTA	•	CG1 V	AL H 150 AL H 150	30.449	70.326	-3.507	1.00 5		H	C
	MOTA MOTA	5000	C V	AL H 150	30.290	67.734	-4.807	1.00 5		H H	С О
	ATOM	00-	O V	AL H 150	31.430	67.338 67.938	-4.587 -6.018		59.16	H	N
10	MOTA	5000		HR H 151 HR H 151	29.837 30.715	67.629	-7.095	1.00	50.28	H	C
	ATOM		CA T	HR H 151 HR H 151	30.353	66.211	-7.573	1.00	61.13	H	C
	MOTA MOTA	5805 5806	OG1 T	HR H 151	31.476	65.613	-8.226	1.00	62.65 61 40	H H	С О
	ATOM	5807	-	HR H 151	29.132	66.233 68.695	-8.489 -8.174		60.42	H	č
15	MOTA	5808		HR H 151	30.628 29.556	69.171	-8.551	1.00	61.43	H	0
	MOTA	5809 5810	O T	HR H 151 AL H 152	31.823	69.130	-8.609	1.00	60.63	H	N
	MOTA MOTA	5810	CA V	AL H 152	31.903	70.227	-9.539	$\frac{1.00}{1.00}$	60.80	H H	C
	MOTA	5812	CB V	7AL H 152	32.737	71.304 72.431	-8.867 -9.854	1.00	59.55	H	С
20	MOTA	5813	CG1 V	7AL H 152	33.050 32.020	71.839	-7.646	1.00	60.63	H	С
	MOTA	5814	CG2 V	/AL H 152 /AL H 152	32.626	69.789	-10.789	1.00		H	C
	MOTA MOTA	5815 5816	7 0	/AL H 152	33.667	69.158	-10.717		61.61 63.13	H H	N O
	MOTA	5817	и а	THR H 153	32.010		-11.955 -13.195		64.55	H	Ĉ
25	MOTA	5818	CA 7	THR H 153 THR H 153	32.739 32.109			1.00	64.46	H	C
	MOTA	5819 5820	CB 5	THR H 153	30.720		-14.214	1.00	66.15	H	O C
	MOTA MOTA	5821	CG2	THR H 153	32.260			$1.00 \\ 1.00$	63.21 65.35	H H	C
	ATOM	5822	C :	THR H 153	32.639			1.00	65.82	H	Ö
30	MOTA	5823	0 '	THR H 153 TRP H 154	31.845 33.50	71.320	-15.015	1.00	67.73	H	N
	MOTA	5824 5825	CA '	TRP H 154	33.34	72.395	5 -15.980		70.47	H	C C
	MOTA MOTA	5826	CB '	TRP H 154	34.61	73.250	-15.939	1.00	71.18 71.96	H H	G
	MOTA	5827	CG	TRP H 154	34.74) -14.636) -14.369	1.00	72.27	H	С
35	MOTA	5828		TRP H 154 TRP H 154	34.19 34.61		-13.034	1.00	72.93	H	C
	MOTA	5829 5830	CE2 CE3	TRP H 154	33.42		2 -15.096		72.34	H	C
	MOTA MOTA	5831	CD1	TRP H 154	35.49			1.00	72.81 72.55	H H	И
	MOTA	5832	NE1	TRP H 154	35.44 34.23					H	С
40	MOTA	5833	CZ2	TRP H 154 TRP H 154	33.05			1.00	73.01	H	C
	MOTA MOTA	5834 5835	CZ3 CH2	TRP H 154	33.45	3 77.75	7 -13.283		73.60	H H	C
	ATOM	5836	C	TRP H 154	33.10		9 -17.383 0 -17.717		71.96 72.49	H	ŏ
	MOTA	5837	0	TRP H 154	33.63 32.26		$\frac{0}{4}$ -18.176	1.00	73.41	H	N
45	ATOM	5838	N CA	ASN H 155 ASN H 155	31.58	5 72.00	7 -19.404	1.00	74.78	H	C
	MOTA	5839 5840	CB	ASN H 155	32.34	4 72.40	5 - 20.678	3 1.00	73.67	H H	C C
	MOTA MOTA	5841	CG	ASN H 155	32.37		3 -20.835 4 -20.572		72.85 72.15	H	ŏ
	MOTA	5842		ASN H 155	31.39 33.58		$\frac{4}{3}$ -20.372	1 1.00	73.17	H	N
50	MOTA	5843 5844		ASN H 155 ASN H 155	31.21	6 70.50	2 - 19.442	2 1.00	76.03	H	C
	MOTA MOTA			ASN H 155	31.40	69.81	.8 -20.45		76.90 77.24	H H	И
	MOTA			SER H 156	30.66		.0 -18.30 4 -18.23		78.92	H	C
	MOTA			SER H 156	30.03 28.8		0 -19.22	1 1.00	79.62	H	C
55	MOTA			SER H 156 SER H 156	27.8	7 69.58	36 -18.82	2 1.00	80.28	H	0
	MOTA MOTA			SER H 156	31.0	L6 67.49	1 -18.35		79.81 80.45	H H	O C
	MOTA			SER H 156	30.6		13 -18.63 28 -18.09		80.43	H	N
	ATOM			GLY H 157	32.2 33.3		48 -18.14	0 1.00	0 80.31	Н	C
60	ATOM			GLY H 157 GLY H 157	34.4	37 67.34	49 -19.03	3 1.00	0 80.50	H	C
	MOTA MOTA			GLY H 157	35.6	42 66.95	51 -18.92	3 1.00	0 80.73	H H	N O
	ATOM			ALA H 158	34.0		46 -19.96		0 80.66 0 81.02	H	C
	ATOM	ī 585'	7 CA	ALA H 158	35.0		06 -21.02 33 -22.08	9 1.0	0 81.05	H	С
65	MOTA	ı 5858		ALA H 158 ALA H 158	34.2 36.3	06 69.29	92 -20.52	5 1.0	0 81.09	H	C
	ATOM			ALA H 158	37.4	07 68.84	48 -20.78	9 1.0	0 80.82	H H	
	ATOM ATOM			LEU H 159	36.1	20 70.4	02 -19.77		0 81.48 0 81.12	H H	
	MOTA			LEU H 159	37.2		34 -19.22	.0 1.0	0 01.12	••	_
					263						

						1	10 026	1.00 81.49	Н	С
	MOTA			LEU H 159	36.718	72.524 - 73.540 -	18.926	1.00 80.68	H	Č
	MOTA	5864	CG	LEU H 159	37.224 36.514	74.885 -		1.00 80.53	н	С
	MOTA		CD1	LEU H 159	38.716	73.822 -	19.816	1.00 81.02	H	C
	ATOM	_		LEU H 159 LEU H 159	37.786	70.536 -	17.917	1.00 81.10	H	С
5	ATOM			LEU H 159	37.150	70.570 -	16.885	1.00 80.67	H	0
	MOTA	-	N O	SER H 160	39.002	69.969 -	17.978	1.00 81.36	H	$\widetilde{\mathbf{N}}$
	ATOM ATOM		CA	SER H 160	39.491	69.283 -		1.00 81.20	H	C
	ATOM	5871	CB	SER H 160	39.458	• • •	17.075	1.00 81.88	H	C
10	ATOM	5872	OG	SER H 160	39.477		18.489	1.00 82.71	H H	O C
10	ATOM		Ċ	SER H 160	40.911	69.699 -	-16.408	1.00 80.76 1.00 81.69	H	Ö
	MOTA	5874	ō	SER H 160	41.486	69.249 -	-15.415	1.00 81.69	H	N
	ATOM	5875	N	SER H 161	41.515	70.530 -	-17.297	1.00 79.30	H	Č
	MOTA	5876	CA	SER H 161	42.797	71.127 -	-10.940 17.060	1.00 78.13	H	č
15	MOTA	5877	CB	SER H 161	43.864	70.721 - 69.356 -	-17.737	1.00 80.44	H	ō
	MOTA	5878	OG	SER H 161	44.212		-16.771	1.00 76.76	Н	C
	MOTA	5879	С	SER H 161	42.743		-17.292	1.00 76.36	H	0
	MOTA	5880	0	SER H 161	41.890		-15.955	1.00 75.51	H	\mathbf{N}
	MOTA	5881	N	GLY H 162	43.720		-15.436	1.00 73.39	H	С
20	MOTA	5882	CA	GLY H 162	42.535		-14.455	1.00 71.72	H	C
	MOTA	5883	C	GLY H 162 GLY H 162	42.098		-14.213	1.00 72.43	H	0
	MOTA	5884	0	VAL H 163	42.005	73.511	-13.941	1.00 68.97	H	N
	MOTA	5885 5886	N CA	VAL H 163	40.926		-12.941	1.00 66.41	H	C
0.5	MOTA	5887	CB	VAL H 163	39.906	72.375	-13.308	1.00 66.17	H	C
25	ATOM ATOM	5888	CG1	VAL H 163	39.101		-12.064	1.00 64.64	H	C
	ATOM	5889	CG2	VAL H 163	38.945	72.866	-14.357	1.00 65.38	H H	C
	MOTA	5890	Ċ	VAL H 163	41.427	73.170	-11.526	1.00 65.54 1.00 65.66	Н	ŏ
	MOTA	5891	0	VAL H 163	42.045		-11.247	1.00 65.66 1.00 64.28	H	Ŋ
30	ATOM	5892	N	HIS H 164	41.138		-10.634	1.00 64.28	H	Ĉ
	ATOM	5893	CA	HIS H 164	41.380	73.986	-9.217 -8.825	1.00 62.70	H	Č
	ATOM	5894	CB	HIS H 164	42.289	75.168 75.002	-9.366	1.00 61.67	Н	C
	MOTA	5895	ÇG	HIS H 164	43.713		-10.192	1.00 61.61	Н	C
	MOTA	5896	CD2	HIS H 164	44.444 44.548	73.994	-8.998	1.00 61.59	H	N
35	MOTA	5897	ND1	HIS H 164	45.733	74.259	-9.619	1.00 61.79	H	С
	MOTA	5898	CEI	HIS H 164 HIS H 164	45.701	75.392	-10.339	1.00 61.73	H	N
	ATOM	5899		HIS H 164	40.045	74.070	-8.445	1.00 62.25	H	C
	ATOM	5900 5901	C	HIS H 164	39.417	75.114	-8.357	1.00 62.65	H	0
40	MOTA	5901	И	THR H 165	39.571	72.900	-7.924	1.00 60.50	H	N
40	MOTA ATOM	5902	CA	THR H 165	38.430		-6.986	1.00 58.57	H	C
	ATOM	5904	CB	THR H 165	37.531	71.679	-7.383	1.00 58.57	H H	0
	ATOM	5905	OG:		36.954	71.953	-8.661	1.00 57.87	п Н	č
	MOTA	5906	CG:		36.394		-6.374	1.00 56.88 1.00 57.25	H	č
45	ATOM	5907	С	THR H 165	38.921		-5.529 -5.164	1.00 57.25	Н	ŏ
	ATOM	5908	0	THR H 165	39.631		-4.680	1.00 55.32	H	N
	MOTA	5909	N	PHE H 166	38.577		-3.346	1.00 53.48	Н	C
	MOTA	5910	CA	PHE H 166	39.188 39.250		-2.943	1.00 51.93	H	C
	MOTA	5911	CB	PHE H 166	40.124		-3.886	1.00 50.87	н	C
50	MOTA	5912	CG	PHE H 166 1 PHE H 166	39.593		-5.092	1.00 49.87	H	C
	ATOM	5913		2 PHE H 166	41.45		-3.551	1.00 50.53	H	
	MOTA	5914		1 PHE H 166	40.41		-5.980	1.00 48.36	H	
	MOTA	5915 5916			42.27	1 77.110	-4.445	1.00 50.79	H	C
EE	MOTA MOTA	5917			41.75	2 77.556		1.00 48.16	H	
55	ATOM	5918		PHE H 166	38.40				H H	
	ATOM	5919		PHE H 166	37.21					
	MOTA	5920		PRO H 167	39.13					
	MOTA	5921		PRO H 167	40.55					
60	MOTA	5922		PRO H 167	38.46					
00	ATOM	5923		PRO H 167	39.56					
	MOTA	5924	r Co	PRO H 167	40.87				Н	
	MOTA	5925		PRO H 167	37.40					
	ATOM	5926		PRO H 167	37.59	-				N I
65	MOTA			ALA H 168	36.24 35.22				H	C C
	MOTA			A ALA H 168	33.99) 1.00 56.59) F	
	MOTA			B ALA H 168 ALA H 168	35.72			1.00 58.43	} H	
	MOTA			ALA H 168	36.55					I 0
	ATOM	5932	. 0	WILL TOO	264					
					26/					

	и		TTDT II 1 CO	35.216	74.412	3.348	1.00 61.29	H	N
	ATOM	5932 N 5933 CA	VAL H 169 VAL H 169		74.880	4.720	1.00 64.98	H	C
	ATOM ATOM	5933 CA 5934 CB	VAL H 169	35.947	76.274		1.00 65.10	H H	C
	ATOM	5935 CG1	L VAL H 169		76.143	4.565	1.00 64.84 1.00 66.13	H	C
5	MOTA	5936 CG2			77.109 74.907	3.577 5.403	1.00 66.34	H	č
-	MOTA	5937 C	VAL H 169	33.945 32.897	75.043		1.00 66.63	H	0
	MOTA	5938 O	VAL H 169 LEU H 170	33.975	74.725	6.734	1.00 68.77	H	N
	MOTA	5939 N 5940 CA	LEU H 170	32.726	74.631		1.00 71.62	H	C
10	MOTA MOTA	5941 CB	LEU H 170	32.786	73.367		1.00 70.81 1.00 70.04	H H	C
10	ATOM	5942 CG	LEU H 170	31.534	73.158	9.194 8.356	1.00 70.04	H	Č
	MOTA	5943 CD	1 LEU H 170	30.284	72.878 71.975	10.159	1.00 69.05	H	C
	MOTA		2 LEU H 170 LEU H 170	31.668 32.497	75.861	8.359	1.00 74.42	Н	C
	MOTA	5945 C 5946 O	LEU H 170	33.216	76.124	9.315	1.00 74.98	H	O
15	ATOM ATOM	5947 N	GLU H 171	31.473	76.650	7.985	1.00 77.39	H H	C N
	ATOM	5948 CA	GLU H 171	31.147	77.829	8.780 7.864	1.00 80.47 1.00 82.66	H	Č
	MOTA	5949 CB	GLU H 171	31.193	79.054 80.220	7.804 8.406	1.00 85.40	H	C
	MOTA	5950 CG		30.366 31.231	81.076	9.304	1.00 86.56	H	С
20	ATOM	5951 CD 5952 OE		30.703	81.973	9.945	1.00 87.03	H	0
	ATOM ATOM	5952 OE		32.436	80.836	9.353	1.00 86.28	H H	С О
	ATOM	5954 C	GLU H 171	29.769	77.704	9.430	1.00 81.61 1.00 82.55	л Н	Ö
	ATOM	5955 O	GLU H 171	28.732	77.775 77.466	8.784 10.755	1.00 82.33	H	N
25	MOTA	5956 N	SER H 172	29.786 28.538	77.280	11.487	1.00 83.43	H	С
	MOTA	5957 CA		27.828	78.630	11.604	1.00 84.82	H	C
	MOTA	5958 CE 5959 OG		27.626	78.930	12.985	1.00 86.80	H	0
	ATOM ATOM	5960 C	SER H 172	27.621	76.250	10.819	1.00 83.32 1.00 83.57	H H	C O
30	MOTA	5961 0	SER H 172	26.564	76.556	10.283 10.837	1.00 83.57	H	Й
	MOTA	5962 N	ASP H 173	28.097 27.315	74.987 73.880	10.280	1.00 80.87	H	С
	MOTA	5963 CZ	480	27.313	72.491	10.629	1.00 84.20	H	C
	ATOM	5964 CI 5965 C	4-0	28.158	72.411	12.114	1.00 87.15	H	C
05	MOTA MOTA	5965 CO 5966 OI	D1 ASP H 173	28.796	73.336	12.616	1.00 88.19	H	0
35	ATOM	5967 O	D2 ASP H 173	27.799	71.414	12.738	1.00 88.10 1.00 78.06	H H	Ċ
	ATOM	5968 C	ASP H 173	26.810	74.056 73.667	8.846 8.487	1.00 78.06 1.00 78.01	H	ŏ
	MOTA	5969 O	4 🗆 4	25.705 27.656	74.697	8.017	1.00 73.95	H	N
	MOTA	5970 N	454	27.402	74.696	6.579	1.00 70.41	H	C
40	MOTA MOTA	5971 C 5972 C		26.488	75.875	6.219	1.00 70.08	H	C
	ATOM	5973 C	G LEU H 174	25.025	75.612	6.594	1.00 70.43 1.00 70.06	H H	C
	MOTA	5974 C	D1 LEU H 174	24.084	76.749	6.170 5.958	1.00 70.00	H	č
	MOTA		D2 LEU H 174	24.469 28.717	74.336 74.777	5.806	1.00 67.79	Н	С
45	ATOM	5976 C	4 5 4	29.660	75.460	6.187	1.00 66.62	H	0
	MOTA MOTA	5977 O 5978 N		28.785	74.006	4.704	1.00 64.82	H	N C
	MOTA		A TYR H 175	30.001	74.020	3.906	1.00 62.23 1.00 62.23	H H	Č
	MOTA		CB TYR H 175	30.165		3.264 4.307	1.00 62.25	H	č
50	MOTA		CG TYR H 175	30.532 31.855		4.721	1.00 63.65	H	C
	MOTA		CD1 TYR H 175 CE1 TYR H 175	32.217		5.663	1.00 63.25	H	C
	ATOM		CD2 TYR H 175	29.569	70.808	4.851	1.00 62.78	H	C
	ATOM ATOM		CE2 TYR H 175	29.935	69.851	5.790	1.00 63.05	H H	C
55	MOTA		CZ TYR H 175	31.254		6.188 7.153	1.00 63.80 1.00 65.22	H	ŏ
	MOTA		OH TYR H 175	31.620 29.947		2.834	1.00 60.55	H	C
	MOTA		TYR H 175	28.904		2.278	1.00 60.47	H	0
	ATOM		O TYR H 175 N THR H 176	31.145		2.509	1.00 58.14	H	N
	ATOM		N THR H 176 CA THR H 176	31.271	76.400	1.320		H	C
60	MOTA MOTA		CB THR H 176	31.337	77.854			H H	C O
	ATOM		OG1 THR H 176	30.080	78.266			H	Č
	MOTA	5994	CG2 THR H 176	31.662				Н	Č
	MOTA	5995	C THR H 176	32.535 33.605			1.00 54.15	H	Ο.
65	ATOM		O THR H 176 N LEU H 177	32.40			1.00 54.99	H	И
	MOTA		N LEU H 177 CA LEU H 177	33.64	4 75.711	_1.454	1.00 54.81	H	C
	MOTA MOTA		CB LEU H 177	33.99	7 74.226	-1.576	1.00 53.58	H H	C
	ATOM		CG LEU H 177	33.20	5 73.434	-2.616	1.00 53.24	rı.	C
				265					

	* CD1 T DI II 177	33.308 74.013 -4.022 1.00 51.50	н С
	ATOM 6001 CD1 LEU H 177 ATOM 6002 CD2 LEU H 177	33.717 71.984 -2.732 1.00 51.97	н С н С
	ATOM 6003 C LEU H 177	33.862 70.300 -3.143 1.00 54.75	н О
	ATOM 6004 O LEU H 1//	34 839 76.548 -3.353 1.00 55.14	H N H C
5	AIOH CED U 178	34.915 77.210 -4.621 1.00 56.14	н С н С
	ATOM 6007 CB SER H 178	35.455 78.055 4 103 1 00 59 10	н О
	ATOM 6008 OG SER H 178	35.787 76.403 -5.564 1.00 56.78	н С н О
40	ATOM 6010 O SER H 178	36.603 75.556 -5.159 1.00 57.21	H O H N
10	AHOM 6011 N SER H 179	36 339 76 082 -7.932 1.00 58.62	н С
	ATOM 6012 CA SER H 1/9	35 518 74 977 -8.584 1.00 58.75	н С н О
	ATOM 6014 OG SER H 179	36.313 74.361 -9.613 1.00 59.52	н О н С
15	NEOM 6015 C SER H 179	35.075 77.125 -9.295 1.00 59.16	н О
	ATOM 6016 O SER H 179	37 916 77.008 -9.523 1.00 62.74	H N H C
	AUDM 6018 CA SER H 180	38.398 77.958 -10.511 1.00 65.02	H C
	ATOM 6019 CB SER H 180	40 701 78 041 -9.914 1.00 65.15	н О
20	ATOM 6020 OG SER H 180	38 840 77.235 -11.782 1.00 66.68	н С н О
	ATOM 6021 C SER H 180 ATOM 6022 O SER H 180	39.221 76.062 -11.807 1.00 66.57	H O H N
	ATOM 6023 N VAL H 181	38.720 77.223 14 121 1 00 71 88	н С
	ATOM 6024 CA VAL H 181	37 992 76.656 -14.815 1.00 72.40	н С н С
25	ATOM 6025 CB VAL H 181 ATOM 6026 CG1 VAL H 181	37.011 77.703 -15.337 1.00 71.91	н С н С
	ATOM 6027 CG2 VAL H 181	30.409 73.022 25.003 1.00 74.04	н С
	ATOM 6028 C VAL H 181 ATOM 6029 O VAL H 181	39.424 79.508 -15.152 1.00 74.01	H O H N
20	ATOM 6030 N THR H 182	41.088 77.980 -15.536 1.00 76.01	н С
30	ATOM 6031 CA THR H 182	41.826 78.902 -10.431 -1.00 79.87	н С
	ATOM 6032 CB THR H 182 ATOM 6033 OG1 THR H 182	43 322 79.384 -14.540 1.00 80.82	н О н С
	ATOM 6034 CG2 THR H 182	43.896 80.294 -16.730 1.00 80.03	H C
35	ATOM 6035 C THR H 182	41.812 78.403 17.57 1.00 81.90	н О
	ATOM 6036 O THR H 182	41.543 79.374 -18.794 1.00 83.41	H N H C
	ATOM 6038 CA VAL H 183	41.506 79.122 -20.231 1.00 85.28	H C
	ATOM 6039 CB VAL H 183	20.403 77.605 -19.968 1.00 84.54	H C
40	ATOM 6040 CG1 VAL H 183 ATOM 6041 CG2 VAL H 183	39.201 80.053 -20.320 1.00 84.50	н С н С
	ATOM 6042 C VAL H 183	41.963 80.374 -20.976 1.00 86.87 41.665 81.494 -20.600 1.00 86.42	H O
	ATOM 6043 O VAL H 183	42 719 80.179 -22.083 1.00 88.54	H N
	ATOM STORY	43.143 78.934 -22.681 1.00 88.29	н С н С
45	ATOM 6046 CA PRO H 184	43.109 81.278 24.228 1 00 89 09	н С
	ATOM 6047 CB PRO H 184	43.020 79.171 -24.249 1.00 88.32	н С н С
	ATOM 6048 CG PRO H 184 ATOM 6049 C PRO H 184	41.942 82.267 -23.160 1.00 90.99	н С н О
50	ATOM 6050 O PRO H 184	42 265 83 573 -23 196 1.00 92.37	H N
	ATOM 6051 N SER H 185	41.175 84.539 -23.307 1.00 93.92	н С н С
	ATTOM 6053 CB SER H 185	41.796 85.917 -23.523 1.00 93.71	н О
	ATOM 6054 OG SER H 185	40.250 84.197 -24.482 1.00 95.37	н С
55	ATOM 6055 C SER H 185	39 053 84.030 -24.357 1.00 95.82	H O H N
	ATTOM 6057 N SER H 186	40.875 84.129 -25.669 1.00 96.71	н С
	ATTOM 6058 CA SER H 186	41 070 92 951 -27 779 1.00 97.22	H C
	ATOM 6059 CB SER H 186	42 409 83.051 -27.294 1.00 96.73	н О Н С
60	ATOM 6060 OG SER H 186 ATOM 6061 C SER H 186	38.872 82.975 -26.564 1.00 98.18	H C H O
	ATTOM 6062 O SER H 186	37.732 03.22	H N
	ATOM 6063 N PRO H 187	40.347 81.049 -25.882 1.00 99.12	н С н С
05	A1011 6365 G7 DPO H 187	37.970 80.795 -25.903 1.00 98.81	H C H C
65	ATTOM 6066 CB PRO H 187	10.050 79.487 -25.685 1.00 99.00	н С
	ATOM 6067 CG PRO H 187	36 928 81.342 -24.911 1.00 99.06	н С н О
	ATOM 6068 C PRO H 187 ATOM 6069 O PRO H 187	36.101 80.625 -24.368 1.00 99.21	н О
	Alon 0003 0	266	

	-	37.001 82.663 -24.664 1.00 99.35	н и
	ATOM 6070 N ARG H 188 ATOM 6071 CA ARG H 188	36.126 83.344 -23.714 1.00 99.40	н С н С
	ATOM 6072 CB ARG H 188	36.567 82.959 -22.300 1.00 99.67 35.443 82.305 -21.498 1.00 99.53	н с
_	ATOM 6073 CG ARG H 188 ATOM 6074 CD ARG H 188	34.248 83.247 -21.305 1.00100.06	H C H N
5	ATOM 6075 NE ARG H 188	33 612 84 726 -19.521 1.00100.11	н с
	ATOM 6076 CZ ARG H 188 ATOM 6077 NH1 ARG H 188	32.423 84.150 -19.552 1.00100.16	H N H N
	ATOM 6078 NH2 ARG H 188	36 183 84 865 -23.879 1.00 99.18	н с
10	ATOM 6079 C ARG H 188 ATOM 6080 O ARG H 188	37 230 85.463 -24.085 1.00 99.88	H O H N
	ATOM 6081 N PRO H 189	34 695 86 909 -23.868 1.00 98.41	H C
	ATOM 6082 CD PRO H 189 ATOM 6083 CA PRO H 189	33.737 84.759 -23.700 1.00 98.37	н С н С
15	ATOM 6084 CB PRO H 189	32.648 85.752 -23.292 1.00 98.25 33.290 87.128 -23.140 1.00 97.82	н С
	ATOM 6085 CG PRO H 189 ATOM 6086 C PRO H 189	33 354 84.074 -25.015 1.00 98.61	н С н О
	ATOM 6087 O PRO H 189	32.206 83.732 -25.264 1.00 98.49 34.360 83.922 -25.894 1.00 98.76	H N
	ATOM 6088 N SER H 190 ATOM 6089 CA SER H 190	34.104 83.255 -27.163 1.00 98.88	н С н С
20	ATOM 6090 CB SER H 190	35.433 82.711 -27.684 1.00 99.51	н С н О
	ATOM 6091 OG SER H 190	33 098 82.114 -26.993 1.00 98.50	н С н О
	ATOM 6093 O SER H 190	31.933 82.211 -27.357 1.00 98.43	H O H N
25	ATOM 6094 N GLU H 191	32.708 79.880 -26.132 1.00 97.34	н С н С
	ATOM 6096 CB GLU H 191	33.438 78.565 -26.415 1.00 98.15	н С н С
	ATOM 6097 CG GLU H 191	35.565 77.727 -27.379 1.00100.16	н С н О
30	ATOM 6099 OE1 GLU H 191	36.435 78.045 -26.581 1.00100.89	н О Н О
00	ATOM 6100 OE2 GLU H 191	32 264 79.934 -24.669 1.00 96.18	н С н О
	ATTOM 6102 O GLU H 191	32.723 80.747 -23.876 1.00 95.98	H O H N
	ATOM 6103 N THR H 192	30.724 79.091 -22.994 1.00 93.78	н С
35	ATOM 6105 CB THR H 192	29.277 78.623 -23.105 1.00 94.05	н С н О
	ATOM 6106 OG1 THR H 192	28.440 79.678 -23.840 1.00 93.66	н С
	ATOM 6108 C THR H 192	31.487 78.205 -22.002 1.00 92.58	н С н О
40	ATOM 6109 O THR H 192	31.659 78.811 -20.824 1.00 90.80	H N
	ATOM 6111 CA VAL H 193	32.106 78.053 -19.668 1.00 88.60	н С н С
	ATOM 6112 CB VAL H 193	33.150 80.273 -19.171 1.00 88.69	н С
45	ATOM 6114 CG2 VAL H 193	33.506 78.369 -17.610 1.00 87.63	н С н С
45	ATOM 6115 C VAL H 193	30.403 78.947 -18.214 1.00 87.20	H O
	ATOM 6117 N THR H 194	30.587 76.709 -18.396 1.00 85.54	H N H C
	ATOM 6118 CA THR H 194	29 370 75 813 -18.285 1.00 83.86	н С
50	ATOM 6120 OG1 THR H 194	27.816 76.773 -19.185 1.00 84.35	н О н С
	ATOM 6121 CG2 THR H 194	29.955 75.585 -16.355 1.00 82.17	H C
	ATOM 6123 O THR H 194	30.672 74.613 -16.553 1.00 82.55	H O
55	ATOM 6124 N CYS H 195	20 051 74 784 -14 145 1.00 78.12	н С
	ATOM 6125 CA CYS H 195 ATOM 6126 C CYS H 195	28.846 74.043 -13.572 1.00 76.08	н С н О
	ATOM 6127 O CYS H 195	20 925 75 600 -13.095 1.00 79.63	н С
-00	ATOM 6128 CB CYS H 195 ATOM 6129 SG CYS H 195	29 974 75.843 -11.518 1.00 82.89	н S н N
60	ATOM 6130 N ASN H 196	29.066 72.780 -13.183 1.00 74.40 27.980 71.872 -12.865 1.00 72.95	н с
	ATOM 6131 CA ASN H 196 ATOM 6132 CB ASN H 196	27.915 70.606 -13.774 1.00 72.15	н С н С
	ATOM 6133 CG ASN H 196	28.406 70.875 -15.164 1.00 71.83 29.525 71 162 -15.381 1.00 68.99	н О
65	ATOM 6134 OD1 ASN H 196 ATOM 6135 ND2 ASN H 196	27.501 70.826 -16.106 1.00 73.50	H N H C
	ATOM 6136 C ASN H 196	28.281 71.399 -11.561 1.00 72.47	H O
	ATOM 6137 O ASN H 196	29.217 70.696 -11.342 1.00 72.10 27.318 71.586 -10.735 1.00 71.69	H N
	ATOM 6138 N VAL H 197	267	

	"	6139	CA	VAL H 1	97	27.429	71.327	-9.318	1.00		Н	С
	ATOM ATOM			VAL H 1		27.179	72.629	-8.554		69.36	H	C
	ATOM	6141	CG1	VAL H 1	L97	27.229	72.357	-7.046	1.00	67.95 68.71	H H	C
	ATOM			VAL H 1		28.253	73.643 70.345	-9.009 -8.905	1 00	69.75	H	C
5	MOTA			VAL H 1		26.381 25.213	70.530	-9.240	1.00	70.35	H	Ö
	MOTA	6144	•	VAL H 1 ALA H 1		26.747	69.318	-8.145	1.00	68.57	H	N
	MOTA	6145 6146	N CA	ALA H		25.749	68.437	-7.608	1.00	67.67	H	С
	MOTA MOTA	6147	CB .	ALA H		25.841	67.205	-8.296	1.00	67.30	H	C
10	ATOM	6148	C	ALA H	198	25.921	68.201	-6.135	1.00	67.32	H	C
.0	ATOM	6149	0	ALA H	198	27.024	68.151	-5.641	1.00	66.23 67.38	H H	O N
	MOTA	6150	N	HIS H	199	24.826	67.953 67.804	-5.469 -4.064	1.00	68.47	H	Č
	MOTA	6151	CA	HIS H		24.776 24.255	69.073	-3.271	1.00	67.96	H	Č
	ATOM	6152	CB	HIS H		24.233	68.894	-1.791	1.00	67.23	H	C
15	ATOM	6153 6154	CD2	HIS H		25.311	68.371	-1.013	1.00	66.87	H	C
	ATOM ATOM	6155	ND1	HIS H	199	23.282	69.150	-0.952	1.00	66.44	H	N
	MOTA	6156	CE1	HIS H	199	23.669	68.911	0.302		67.18	H H	C N
	ATOM	6157	NE2	HIS H	199	24.894	68.391	0.287 -3.971	1.00 1.00	66.30 69.13	H	C
20	MOTA	6158	С	HIS H	199	23.780	66.705 67.026	-3.971		69.67	H	ŏ
	ATOM	6159	0	HIS H PRO H	199	22.637 24.226	65.441	-4.035	1.00	69.98	H	N
	MOTA	6160 6161	N CD	PRO H		25.632	65.150	-4.215		69.33	H	C
	ATOM ATOM	6162	CA	PRO H		23.392	64.222	-3.910	1.00	70.75	H	C
25	ATOM	6163	CB	PRO H		24.401	63.064	-3.673		70.87	H	C
	MOTA	6164	CG	PRO H		25.708	63.634	-4.023		71.25 72.04	H H	C
	ATOM	6165	C	PRO H	200	22.503	64.261 64.016	-2.707 -2.771	1 00	72.64	Н	ŏ
	ATOM	6166	0	PRO H ALA H		21.333 23.032	64.644	-1.571	1.00		H	N
00	MOTA	6167 6168	N CA	ALA H	201	22.184	64.607	-0.379		72.98	H	C
30	MOTA MOTA	6169	CB	ALA H	201	22.890	65.109	0.764	1.00		H	C
	MOTA	6170	C	ALA H	201	20.826	65.318	-0.529		73.61	H H	C O
	ATOM	6171	0	ALA H	201	19.920	64.865	0.034	1.00	73.80 74.32	H	И
	MOTA	6172	N	SER H	202	20.716 19.446	66.390 67.136	-1.286 -1.396	1.00	75.64	H	Ĉ
35	MOTA	6173	CA	SER H SER H		19.440	68.595	-0.939	1.00		H	C
	MOTA	6174 6175	CB OG	SER H		20.291	69.315	-2.024	1.00		H	0
	ATOM ATOM	6176	C	SER H		18.957	67.126	-2.831	1.00		H	C
	ATOM	6177	Ö	SER H	202	18.189	67.973	-3.318	1.00		H H	И
40	ATOM	6178	N	SER H		19.464		-3.560 -4.827	1.00		H	C
	MOTA	6179	CA	SER H		18.892 17.413	65.969 65.525	-4.606		77.35	H	č
	ATOM	6180	CB	SER H SER H		17.284		-4.052	1.00		H	0
	ATOM ATOM	6181 6182	OG C			19.000		-5.719		77.79	H	C
45	ATOM	6183	ŏ	SER H	203	18.065				78.13	H	
	ATOM	6184	N	THR H	204	20.149				77.85	H H	
	ATOM	6185	CA	THR H	204	20.306				79.06	H	_
	ATOM	6186	CB	THR H L THR H	204	20.920 20.042				80.45	H	
F 0	MOTA	6187 6188	CG2			20.960			1.00	79.18	H	
50	MOTA ATOM	6189	C	THR H		21.192		-7.564		79.50	H	_
	MOTA	6190	Ö	THR H	204	22.173			1.00	79.85	H H	
	MOTA	6191	N	LYS H	205	20.870				80.18 81.64	H	
	MOTA	6192	CA	LYS H	205	21.768 21.729		-10.481		81.77	H	
55	MOTA	6193	CB	LYS H LYS H	205	22.428		_11.878		83.94	H	С
	ATOM	6194 6195		LYS H	205	23.761	68.927	7 -12.188	1.00	85.65	H	
	MOTA MOTA	6196			205	24.377	68.628	3 -13.676	1.0	0 86.61	H	
	ATOM	6197		LYS H	1 205	25.873		2 -13.750		0 87.15	H	
60	MOTA	6198		LYS H	1 205	21.510		L -10.601		0 82.29 0 82.64	H H	
	MOTA	6199		LYS H	1 205	20.392		L -11.148 L -10.571		0 82.71	H	
	ATOM	6200		VAL H	1 206	22.540 22.50		$\frac{1}{5}$ -11.125		0 83.11	H	C
	ATOM	6201 6202				22.55	74.056	5 -10.024	1.0	0 83.19	F	
65	MOTA MOTA	6202		1 VAL F		22.55		0 -10.675	5 1.0	0 83.85	H	
UU	MOTA	6204	. CG	2 VAL F	1 206	21.38	0 73.847	7 -9.119		0 82.83	H H	
	ATOM	6205	C	VAL I	I 206	23.69	4 73.338	$\frac{12.032}{2}$		0 83.70 0 83.58	F	
	ATOM	6206		VAL I		24.82 23.42		2 -11.783 4 -13.075		0 84.95	ŀ	
	ATOM	6207	N	ASP I	1 40/	23.42	_ , _					

	ATOM	6208 CA ASP H 207	24.462 74.532 -14.042 1.00 86.38 24.270 73.858 -15.435 1.00 86.99	н С н С
	MOTA MOTA	6209 CB ASP H 207 6210 CG ASP H 207	24.342 72.302 -15.384 1.00 88.63	н С н О
-	ATOM ATOM	6211 OD1 ASP H 207 6212 OD2 ASP H 207	23.380 71.538 -15.103 1.00 89.52	H C
5	MOTA	6213 C ASP H 207	24.456 76.044 -14.123 1.00 87.07 23.501 76.601 -14.580 1.00 86.95	H O
	MOTA MOTA	6215 N ALA H 208	25.484 76.710 -13.580 1.00 87.90	H N H C
	MOTA	6216 CA ALA H 208 6217 CB ALA H 208	25.811 78.899 -12.475 1.00 87.84	H C
10	ATOM ATOM	6218 C ALA H 208	26.572 78.528 -14.793 1.00 89.66	н С н О
	MOTA	6219 O ALA H 208 6220 N LYS H 209	25.997 79.265 -15.730 1.00 90.60	H N H C
	ATOM ATOM	6221 CA LYS H 209	26.707 79.881 -16.848 1.00 91.34 25.694 80.141 -17.964 1.00 91.16	н С
15	MOTA MOTA	6222 CB LYS H 209 6223 CG LYS H 209	26.283 80.980 -19.098 1.00 91.01	н С н С
	MOTA	6224 CD LYS H 209	25.227 81.362 -20.136 1.00 90.83 25.837 81.992 -21.392 1.00 90.53	н С
	ATOM ATOM	6225 CE LYS H 209 6226 NZ LYS H 209	24.796 82.699 -22.135 1.00 89.44	H N H C
20	MOTA	6227 C LYS H 209	26 832 82 071 -15.816 1.00 91.55	н О
	ATOM ATOM	6229 N ILE H 210	28.695 81.276 -16.805 1.00 92.64	H N H C
	MOTA	6230 CA ILE H 210 6231 CB ILE H 210	30.918 82.136 -16.427 1.00 92.09	н С
25	MOTA MOTA	6232 CG2 ILE H 210	31.654 83.154 -15.536 1.00 91.71	H С H С
	ATOM	6233 CG1 ILE H 210 6234 CD1 ILE H 210	30.409 80.649 -14.424 1.00 90.25	н С н С
	MOTA MOTA	6235 C ILE H 210	29.192 83.572 -17.570 1.00 95.01 29.623 83.485 -18.713 1.00 95.16	н С н О
00	ATOM ATOM	6236 O ILE H 210 6237 N ALA H 211	28.423 84.594 -17.155 1.00 96.52	H N H C
30	MOTA	6238 CA ALA H 211	27.957 85.595 -18.107 1.00 97.96 26.989 86.529 -17.376 1.00 97.85	н С
	MOTA MOTA	6239 CB ALA H 211 6240 C ALA H 211	29.105 86.409 -18.708 1.00 99.08	н С н О
	MOTA	6241 O ALA H 211	29 276 87 629 -18.171 1.00100.17	H N
35	MOTA MOTA	6243 CA ALA H 212	30.290 88.518 -18.725 1.00101.26	н С н С
	MOTA	6244 CB ALA H 212 6245 C ALA H 212	30.480 89.764 -17.861 1.00101.96	H C
	ATOM ATOM	6246 O ALA H 212	31.345 89.835 -16.998 1.00102.21	H O H N
40	MOTA	6247 N ALA H 213 6248 CA ALA H 213	29.750 92.013 -17.360 1.00104.14	н С
	MOTA MOTA	6249 CB ALA H 213	29.407 91.661 -15.911 1.00104.00 31.154 92.615 -17.425 1.00105.06	H C H C
	MOTA MOTA	6250 C ALA H 213 6251 O ALA H 213	31.731 93.023 -16.428 1.00105.39	н О н О
45	MOTA	6252 OXT ALA H 213	31.766 92.717 -18.478 1.00105.71 48.040 27.606 -7.533 1.00 43.49	W O
	MOTA MOTA	6253 O HOH W 1 6254 O HOH W 2	56.255 30.910 -4.462 1.00 55.47	M O M
	MOTA	6255 O HOH W 3	26 430 18.335 -11.581 1.00 44.42	M O
50	ATOM ATOM	6257 O HOH W 5	35.131 45.610 -13.929 1.00 49.40	M O
	MOTA	6258 О НОН W 6	51.776 59.864 11.192 1.00 42.02	M O
	ATOM ATOM	6260 O HOH W 8	44.767 37.321 -4.124 1.00 42.78	W O
	ATOM	6261 O HOH W 9 6262 O HOH W 10	51.943 57.484 12.566 1.00 39.47	M O
55	MOTA MOTA	6263 O HOH W 11	38.747 31.228 -1.651 1.00 43.69	M 0
	MOTA		58.428 47.238 4.389 1.00 48.79	M 0
	MOTA MOTA	6266 O HOH W 14	43.554 36.444 -2.054 1.00 45.57 57.415 61.701 12.627 1.00 41.49	W 0
60	ATOM		61.270 51.287 12.253 1.00 67.52	W O
	MOTA MOTA	6269 O HOH W 18	48.459 41.310 -2.576 1.00 48.81 53.916 29.663 7.818 1.00 48.60	W O
	ATOM ATOM		56.558 71.377 -0.532 1.00 48.14	0 W
65	ATOM	6272 O HOH W 21	32.808 27.123 -0.609 1.00 44.93 47.847 62.036 -10.526 1.00 63.97	M O
	MOTA MOTA	1 6274 O HOH W 23	36.925 77.944 -1.838 1.00 50.62	M O
	MOTA	6275 O HOH W 24	26.214 42.194 14.054 1.00 63.38 45.644 56.046 9.966 1.00 42.51	M O
	MOTA	1 6276 O HOH W 25	269	

	14							4 071	1.00 72.	02	W	0
	ATOM	6277 C		HOH W 2		44.856	70.990	1.971	1.00 72.	26	W	Ö
	MOTA	6278 C		HOH W 2		41.934	61.986	-0.999 -1.348	1.00 /0.		W	ŏ
	MOTA	6279 C)	HOH W 2		25.281	34.502	-6.980	1.00 59	50	W	ŏ
	MOTA)	HOH W 2		49.892 29.792	62.411 66.376	5.878	1.00 52	.90	W	Ö
5	MOTA	-	2	HOH W 3		38.272	58.084	-4.321	1.00 65	.01	W	Ö
	MOTA		2	HOH W 3		27.858	55.054	-6.230	1.00 56		M	0
	MOTA		2	HOH W 3		57.799	63.672	-12.243	1.00 59		M	0
	MOTA		2		4	31.795	68.789	0.185	1.00 63		M	0
	MOTA		0		5	38.425	31.427	-8.589		.62	W	0
10	ATOM	-	0		6	46.860	66.957	-9.197	1.00 54	.26	M	0
	ATOM		0		7	36.028	69.393	-9.044	1.00 62	.22	M	0
	ATOM		0		8	41.452	74.029	2.581	1.00 57		M	0
	ATOM		0 0		9	61.277	8.820	8.379	1.00 45	.17	W	0
4 =	ATOM		0		10	58.226	38.911	5.165	1.00 58		W	0
15	ATOM		0		11	45.000	61.694	3.280	1.00 67		W	0
	MOTA ATOM		ŏ		12	32.220	33.159	-1.482		.51	W	0
	ATOM		Ö		13	24.268	56.225	-2.604		.87	W	0
	ATOM		ŏ		14	43.870	51.811	12.171	1.00 43		M	0
20	ATOM		ŏ		15	45.208	48.980	-4.712	1.00 41		W	0
20	ATOM		ŏ		16	51.086	54.354	-7.830	1.00 52		W	0
	ATOM		ŏ		17	45.735	54.909	12.584	1.00 47		W	0
	ATOM		ō		48	40.670	36.691	-0.514	1.00 40		W	0
	ATOM		0		49	47.855	48.291	-6.195	1.00 47	.98	W	0
25	ATOM		0		50	27.975	20.736	-9.226	1.00 61		W	ő
	ATOM	6302	0		51	26.649	37.011	3.912	1.00 54 1.00 60	26	W	ŏ
	MOTA	6303	0		52	40.332	12.184		1.00 50		W	ŏ
	ATOM	6304	0		53	26.889			1.00 42		W	ŏ
	MOTA	6305	0		54	46.332	35.286		1.00 47	62	W	ŏ
30	MOTA	6306	0		55	38.286	11.976		1.00 74	. 09	W	Ö
	MOTA	6307	Ο,		56	52.678	29.083 49.514		1.00 48	8.80	W	Ö
	MOTA	6308	0		57	42.010	60.323		1.00 51	. 87	W	Ō
	MOTA	6309	0		58	34.530	62.030		1.00 67	7.89	W	0
	MOTA	6310	0		59	35.892 32.190	8.378		1.00 57		W	0
35	MOTA	6311	0		60	45.527	38.449		1.00 42	2.83	M	0
	ATOM	6312	0		61	45.913	56.892		1.00 49		W	0
	MOTA	6313	0		62	38.310	29.708			27	W	0
	MOTA	6314	0		63	54.611	60.457		1.00 48		W	0
	ATOM	6315	0		64 65	39.898			1.00 5		W	0
40	ATOM	6316	0		66	44,938			1.00 7	7.41	M	0
	MOTA	6317	0		67	22.644			1.00 78	3.49	W	0
	MOTA	6318	0	$HOH\ W$	68	40.739			1.00 5	7.60	W	0
	MOTA	6319 6320	0	HOH W	69	58.604			1.00 6		M	0 '
4 ==	MOTA	6321	Ö	HOH W	7Ò	23.021			1.00 6	4.43	M	0
45	MOTA MOTA	6322	ŏ	HOH W	72	36.562		0.228	1.00 5		W	0
		6323	ŏ	HOH W	73	36.156	30.941			4.66	M	
	MOTA MOTA	6324	ŏ	HOH W	74	46.575				1.03	M	0
	ATOM	6325	ŏ	HOH W	75	63.106	60.743		1.00 6	5.63	W	0
50	MOTA	6326	Õ	HOH W	76	27.283					W	_
50	ATOM	6327	O	HOH W	77	42.119				9.75	W	
	ATOM	6328	0	HOH W	78	56.213	74.27			9.07	W	_
	ATOM	6329	0	HOH W	79	49.593		4.731		T.22	M.	_
	ATOM	6330	0	HOH W	80	19.20		6.981	1.00 6		W W	
55	ATOM	6331	0	HOH W	81	62.469					₩.	_
	ATOM	6332	0	HOH W	82	63.942		9 2.662		2.30	<i>™</i>	_
	ATOM	6333	0	HOH W	83	51.559			1.00 5	0 77	T/s	_
	ATOM	6334	0	HOH W	84	56.70				2 66	T/s	
	ATOM	6335	0	HOH W	85	56.70	3 13.17				Į∧.	_
60	ATOM	6336	0	HOH W	86	38.70					V. •	_
	MOTA	6337	0	HOH W	87	55.18					<i>V</i> ,	_
	MOTA	6338	0	HOH W	88	53.09	34.49				V.	_
	MOTA	6339	0	HOH W	89	42.57				,J.J5	V	_
	MOTA	6340	0	HOH W	90	57.34					٧	_
65	MOTA	6341	0	HOH W	91	61.04	5 40.26	3 -1.253			V	_
-	MOTA		0	HOH W	92	35.56		1 -15.193 8 4.84			V	_
	MOTA		0	HOH W	93	56.06		9 -10.70			V	
	MOTA		0	HOH W	94	42.08						v 0
	MOTA	6345	0	HOH W	95	30.01	1 60.16	0.50			•	_

	ATOM 6346 O HOH W 96 ATOM 6347 O HOH W 98	8 50.322 24.7/6 -13.192 1.00 51.66 W	
5	ATOM 6348 O HOH W 99 ATOM 6349 O HOH W 100 ATOM 6350 O HOH W 100 ATOM 6351 O HOH W 100	9 58.464 55.474 13.043 1.00 70.56 W O 44.700 36.694 -6.969 1.00 70.56 W O 2 23.656 17.781 -5.182 1.00 68.07 W O 37.411 50.148 -8.219 1.00 52.24 W O 37.411 50.148 -8.219 1.00 66.82 W O	
10	ATOM 6352 O HOH W 10- ATOM 6353 O HOH W 10- ATOM 6354 O HOH W 10- ATOM 6355 O HOH W 10- ATOM 6356 O HOH W 11- ATOM 6357 O HOH W 11- ATOM 6358 O HOH W 11-	28.717 35.027 -8.770 1.00 79.00 W O O O O O O O O O O O O O O O O O O	
15	ATOM 6359 O HOH W 11 ATOM 6360 O HOH W 11 ATOM 6361 O HOH W 11 ATOM 6362 O HOH W 11 ATOM 6363 O HOH W 11	14 24.876 23.040 -17.596 1.00 66.24 W O 15 1.643 3.467 3.813 1.00 69.60 W O 16 16 37.627 61.517 4.930 1.00 61.35 W O 17 54.093 37.319 -7.747 1.00 63.69 W O 17 54.093 37.319 -7.747 1.00 63.24 W O	
20	ATOM 6364 O HOH W 13 ATOM 6365 O HOH W 13 ATOM 6366 O HOH W 13 ATOM 6367 O HOH W 13	18	
25	ATOM 6369 O HOH W 1: ATOM 6370 O HOH W 1: ATOM 6371 O HOH W 1: ATOM 6372 O HOH W 1	23	
30	ATOM 6374 O HOH W 1 ATOM 6375 O HOH W 1 ATOM 6376 O HOH W 1 ATOM 6377 O HOH W 1 ATOM 6378 O HOH W 1	128 36.172 56.763 14.794 1.00 66.67 W O L30 42.258 8.230 -13.604 1.00 65.20 W O L30 46.138 51.846 16.640 1.00 54.65 W O L31 27.630 60.434 19.677 1.00 59.03 W O L31 27.630 68.255 -15.282 1.00 83.69 W O L32 45.177 68.255 -15.282 1.00 68.39 W O	
35	ATOM 6379 O HOH W 1 ATOM 6380 O HOH W 1 ATOM 6381 O HOH W 1 ATOM 6382 O HOH W 1	133 20.000 32.11 -4.723 1.00 97.13 W O 134 29.093 9.721 -4.723 1.00 97.13 W O 136 51.100 80.703 -12.102 1.00 69.57 W O 137 21.223 52.941 19.573 1.00 89.91 W O 138 39.908 48.609 13.428 1.00 54.77 W O 138 39.908 18.6000 18.6000 18.600 18.600 18.600 18.600 18.600	
40	ATOM 6384 O HOH W 3 ATOM 6385 O HOH W 3 ATOM 6386 O HOH W 3 ATOM 6387 O HOH W 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
45	ATOM 6389 O HOH W ATOM 6390 O HOH W ATOM 6391 O HOH W ATOM 6392 O HOH W	145)
50	ATOM 6394 O HOH W ATOM 6395 O HOH W ATOM 6396 O HOH W ATOM 6397 O HOH W	150 61.671 43.988 18.926 1.00 73.37 W O 151 53.973 39.898 -6.529 1.00 63.01 W O 152 33.054 13.127 -22.134 1.00 46.54 W O 153 40.317 33.419 9.150 1.00 64.69 W O 153 40.628 68.076 -0.443 1.00 66.41 W)))
55	ATOM 6398 O HOH W ATOM 6399 O HOH W ATOM 6400 O HOH W ATOM 6401 O HOH W ATOM 6402 O HOH W ATOM 6403 O HOH W	154 40.949 12.531 1.841 1.00 57.31 W C C C C C C C C C C C C C C C C C C	
60	ATOM 6404 O HOH W ATOM 6405 O HOH W ATOM 6406 O HOH W ATOM 6407 O HOH W ATOM 6408 O HOH W	160 43.374 71.842 8.393 1.00 68.93 W 161 62.463 57.842 8.393 1.00 68.93 W 162 62.314 3.853 -8.007 1.00 72.85 W 163 48.708 28.590 -11.402 1.00 70.46 W 164 26.594 22.894 -11.356 1.00 72.66 W 164 37.650 57.278 -2.348 1.00 75.27 W	00000
65	ATOM 6409 O HOH W ATOM 6410 O HOH W ATOM 6411 O HOH W ATOM 6412 O HOH W ATOM 6413 O HOH W	V 165 27.594 60.020 0.150 1.00 62.76 W V 166 27.594 60.020 0.150 1.00 85.08 W V 167 43.450 54.030 -6.900 1.00 85.08 W V 168 38.122 59.238 -1.849 1.00 56.87 W V 169 27.129 39.301 13.729 1.00 68.09 W V 169 27.129 39.301 50.62 1.00 50.86 W	00000
	ATOM 6414 O HOH W	271	

	а							1 00 55 64	7.7	^
	ATOM	6415	0	HOH W 171	46.578	59.161		1.00 77.64 1.00 51.18	W W	0
	ATOM		0	HOH W 172	48.228	52.442	14.549 -7.042	1.00 51.18 1.00 87.49	W	0
	MOTA	6417	0	HOH W 173	70.197	2.753	-7.042 -6.765	1.00 67.49	W	ŏ
	ATOM		0	HOH W 174	64.004	2.450 -4.990	-18.564	1.00 72.72	W	ŏ
5	MOTA		0	HOH W 175	42.696 18.059		-13.442	1.00101.30	W	Ö
	MOTA		0	HOH W 177	15.355		-29.333	1.00 68.26	W	O
	ATOM		0	HOH W 180 HOH W 181	35.274		-15.496	1.00 81.17	W	0
	ATOM		0	HOH W 181 HOH W 182	37.734		-17.674	1.00 76.65	W	0
	ATOM		0	HOH W 183	4.398		-27.101	1.00 73.23	W	0
10	ATOM		0	HOH W 183	25.726	62.296	18.755	1.00 68.08	M	0
	ATOM	6425	0	HOH W 185	55.967	5.969	6.509	1.00 63.28	W	0
	MOTA	6426 6427	0	HOH W 186	52.635	32.458	16.778	1.00 64.30	W	0
	MOTA	6428	0	HOH W 187	42.187	61.267	1.486	1.00 63.63	M	0
45	ATOM ATOM	6429	Ö	HOH W 188	54.080	67.804	9.345	1.00 73.07	W	0
15	ATOM	6430	ŏ	HOH W 191	39.373	49.817	15.778	1.00 73.96	M	0
	ATOM	6431	ŏ	HOH W 192	30.145	48.697	18.491	1.00 67.43	W	0
	ATOM	6432	ŏ	HOH W 193	58.517		-10.692	1.00 64.51	M	0
	ATOM	6433	ŏ	HOH W 194	66.066	47.014	5.586	1.00 70.05	W	0
20	ATOM	6434	ō	HOH W 195	60.708	45.623	-2.248	1.00 54.73	W	0
20	ATOM	6435	0	HOH W 197	40.532	56.318	-5.957	1.00 61.38	W	0
	ATOM	6436	0	HOH W 198	59.085	42.157	-5.617	1.00 63.62	M	0
	ATOM	6437	0	HOH W 199	58.018	28.117	9.569	1.00 59.02 1.00 91.05	W	ŏ
	MOTA	6438	0	HOH W 200	62.084	19.823	-10.491	1.00 91.05	W	ő
25	ATOM	6439	0	HOH W 201	71.317	-2.871	5.295 -4.399	1.00 67.04	W	ŏ
	ATOM	6440	0	HOH W 202	25.844	56.209	13.305	1.00 78.61	W	ŏ
	MOTA	6441	0	HOH W 203	50.532	31.124 43.277	5.774	1.00 53.65	W	ŏ
	MOTA	6442	0	HOH W 204	25.247	36.272	-4.050	1.00 82.87	W	O
	MOTA	6443	0	HOH W 205	53.767 53.294	78.768		1.00 56.03	W	0
30	MOTA	6444	0	HOH W 206	47.425	27.397	11.529	1.00 75.72	W	0
	MOTA	6445	0	нон W 207 нон W 208	51.605	34.818		1.00 75.55	W	0
	MOTA	6446	0	HOH W 208	43.903	15.886		1.00 74.13	W	0
	MOTA	6447	0	HOH W 210	46.556	14.040		1.00 91.12	W	0
	MOTA	6448	0	HOH W 210	40.263	22.624		1.00 89.07	W	0
35	MOTA	6449	0	HOH W 211	55.658	6.616		1.00 84.65	W	0
	MOTA	6450 6451	0	HOH W 214	58.186	32.450		1.00 61.74	M	0
	MOTA	6452	Ö	HOH W 215	58.141	37.758		1.00 61.98	W	0
	MOTA MOTA	6453	ŏ	HOH W 216	56.966	35.250	2.674	1.00 57.55	W	0
40	ATOM	6454	ŏ	HOH W 217	55.211	32.727		1.00 53.03	M	0
40	ATOM	6455	ŏ	HOH W 218	52.367	31.257	-12.864	1.00 74.72	M	0
	ATOM	6456	ō	HOH W 220	56.462	36.886		1.00 63.55	W	0
	ATOM	6457	Ō	HOH W 224	29.998	24.261		1.00 60.64	M	0
	ATOM	6458	0	HOH W 225	24.007	3.807		1.00 62.70	W	0
45	ATOM	6459	0	HOH W 226	45.167	21.855		1.00 88.68 1.00 56.13	M	ő
	ATOM	6460	0	HOH W 227	53.676	66.697			W	Õ
	ATOM	6461	0	HOH W 229	51.011	64.329		1.00 95.18 1.00 80.36	W	ŏ
	MOTA	6462	0	HOH W 230	39.248	30.285		- ·	W	ŏ
	MOTA	6463	0	HOH W 231	44.473	38.407	7 17.076		W	ŏ
50	MOTA	6464	0	HOH W 235	25.679	2.134	1 -15.868) -21.135		W	ŏ
	MOTA	6465	0	HOH W 236	32.236	28.315	6.252		W	Ō
	MOTA	6466	0	HOH W 237	34.413				W	0
	MOTA	6467	0	HOH W 238	27.724				W	O
	MOTA	6468	0	HOH W 239	56.205				W	0
55	MOTA	6469	0	HOH W 240	66.188 63.285				W	0
	MOTA	6470	0	HOH W 242	60.113				W	0
	MOTA	6471	0	HOH W 243	57.113				M	0
	MOTA	6472	0	HOH W 244	46.457				M	0
	MOTA	6473	0	HOH W 245	42.305				W	0
60	MOTA	6474	0	HOH W 246	32.141				W	0
	ATOM	6475	0	нон W 247 нон W 248	58.909				M	0
	MOTA	6476	0	HOH W 240	38.763				M	0
	MOTA	6477	0	нон W 249 нон W 250	39.214	62.95		1.00 75.29	M	0
	MOTA	6478	0	HOH W 250	60.671			1.00 55.23	W	0
65	MOTA	6479	0	HOH W 252	38.380			1.00 74.82	W	0
	MOTA	6480		HOH W 254	44.133			3 1.00 87.18	W	0
	MOTA	6481 6482		HOH W 255	32.114			2 1.00 84.19	W	0
	MOTA ATOM	6483		HOH W 256	46.385	47.10	1 -10.075	5 1.00 80.35	W	0
	ATOM	0-±00		200	070					

^aAmino acids residues of the light (L) and heavy (H) chains are numbered according to the Chothia numbering system as shown in Tables 6 and 7, respectively (Al-Lazikani *et al.*, *Jour. Mol. Biol.* 273;927-948, 1997). Amino acid residues of IL-13 (I) are numbered as shown in SEQ ID NO:4 (FIG. 2B). Amino acid residues of IL-13Rα1 are numbered as shown in SEQ ID NO:12 (FIG. 14).

Other embodiments are in the claims

^bColumns are labeled according to Protein Data Bank Format, Version 2.2

WHAT IS CLAIMED IS:

5

10

15

20

25

1. A crystalline antibody, wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

- 2. The crystalline antibody of claim 1, wherein the crystalline antibody has space group $P2_12_12_1$.
 - 3. The crystalline antibody according to any one of claims 1 or 2, wherein the crystalline antibody has unit cell dimensions a=54.4, b=98.0, c=108.5, and $\alpha=\beta=\gamma=90^{\circ}$.
 - 4. The crystalline antibody according to any one of claims 1-3, wherein the antibody is from a mammal.
 - 5. The crystalline antibody according to any one of claims 1-4, wherein the antibody is from a mouse, rat, rabbit, or goat.
 - 6. The crystalline antibody according to any one of claims 1-5, further comprising an IL-13 polypeptide bound to the antibody.
 - 7. The crystalline antibody of claim 6, further comprising an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.
 - 8. The crystalline antibody according to any one of claims 1-7, wherein the antibody comprises a polypeptide including the amino acid sequence of SEQ ID NO:1.
 - 9. The crystalline antibody according to any one of claims 1-8, wherein the antibody comprises a polypeptide including the amino acid sequence of SEQ ID NO:2.

10. The crystalline antibody according to any one of claims 1-9, wherein the antibody is a monoclonal antibody.

- 11. The crystalline antibody according to any one of claims 1-10, wherein the antibody is mAb13.2.
 - 12. The crystalline antibody according to any one of claims 1-11, wherein the antibody is an mAb13.2 Fab fragment.
- 13. The crystalline antibody according to any one of claims 1-12, wherein the antibody is capable of binding to a region of IL-13 that binds to an IL-4R polypeptide *in vivo*.
 - 14. The crystalline antibody according to any one of claims 1-13, wherein the crystalline antibody can diffract X-rays to a resolution of at least about 3.5 Å.
 - 15. The crystalline antibody according to any one of claims 1-14, wherein the crystalline antibody comprises the structural coordinates of Table 10, +/- a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.
 - 16. The crystalline antibody according to any one of claims 1-15, wherein: the light chain of the antibody comprises the amino acid sequence of SEQ ID NO:1;
 - the heavy chain of the antibody comprises the amino acid sequence of SEQ ID $\,$ NO:2; and

the crystalline antibody diffracts X-rays to a resolution of at least about 3.5 Å.

17. A crystalline composition that comprises an antibody, wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

15

20

18. The crystalline composition of claim 17, further comprising at least one water molecule.

- 19. The crystalline composition according to any one of claims 17 or 18, further comprising a salt or zinc.
 - 20. The crystalline composition according to any one of claims 17-19, further comprising an IL-13 polypeptide bound to the anti-IL-13 antibody or Fab fragment.
- 21. The crystalline composition of claim 20, further comprising an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.
 - 22. A crystalline complex, comprising:

an IL-13 polypeptide; and

an antibody,

wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

- 23. The crystalline complex of claim 22, wherein the crystalline complex has space group P2₁3.
 - 24. The crystalline complex according to any one of claims 22 or 23, wherein the crystalline complex has unit cell dimensions a = b = c = 125.3 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

25

15

- 25. The crystalline complex according to any one of claims 22-24, wherein the antibody is from a mammal.
- 26. The crystalline complex according to any one of claims 22-25, wherein the antibody is from a mouse.

27. The crystalline complex according to any one of claims 22-26, wherein the IL-13 polypeptide is from a mammal.

28. The crystalline complex according to any one of claims 22-27, wherein the IL-13 polypeptide is from a human.

5

10

15

20

- 29. The crystalline complex according to any one of claims 22-28, wherein the antibody comprises a polypeptide including the amino acid sequence of SEQ ID NO:1.
- 30. The crystalline complex according to any one of claims 22-29, wherein the antibody comprises a polypeptide including the amino acid sequence of SEQ ID NO:2.
 - 31. The crystalline complex according to any one of claims 22-30, wherein the antibody is a monoclonal antibody.
 - 32. The crystalline complex according to any one of claims 22-31, wherein the antibody is mAb13.2.
- 33. The crystalline complex according to any one of claims 22-32, wherein the antibody is an mAb13.2 Fab fragment.
 - 34. The crystalline complex according to any one of claims 22-33, wherein the antibody is bound to a region of the IL-13 polypeptide that binds to an IL-4R polypeptide in vivo.
 - 35. The crystalline complex according to any one of claims 22-34, wherein the IL-13 polypeptide comprises a region that binds to an IL-4R polypeptide.
- 36. The crystalline complex according to any one of claims 22-35, wherein the IL-13 polypeptide comprises the amino acid sequence of SEQ ID NO:4.

37. The crystalline complex according to any one of claims 22-36, wherein the antibody interacts with one or more of residues Ser7, Thr8, Ala9, Glu12, Leu48, Glu49, Ile52, Asn53, Arg65, Ser68, Gly69, Phe70, Cys71, Pro72, His73, Lys74, and Arg86 as defined by the amino acid sequence of SEQ ID NO:4.

5

10

15

- 38. The crystalline complex according to any one of claims 22-37, wherein the IL-13 polypeptide interacts with one or more of residues Asn31, Tyr32, Lys34, Arg54, Asn96, Asp98, and Trp100 as defined by the amino acid sequence of SEQ ID NO:1 and Ile30, Ser31, Ala33, Trp47, Ser50, Ser52, Ser53, Tyr58, Leu98, Asp99, Gly100, Tyr101, Tyr102, and Phe103 as defined by the amino acid sequence of SEQ ID NO:2.
- 39. The crystalline complex according to any one of claims 22-38, wherein the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.
- 40. The crystalline complex according to any one of claims 22-39, wherein the crystalline complex comprises the structural coordinates of Table 11, +/- a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.
- 41. The crystalline complex according to any one of claims 22-40, further comprising an IL-13Rα1 polypeptide.
 - 42. A crystalline complex, comprising:

an IL-13Ra1 polypeptide; and

an IL-13 polypeptide.

- 43. The crystalline complex of claim 42, wherein the crystalline complex has space group I4.
- 44. The crystalline complex according to any one of claims 42 or 43, wherein the crystalline complex has unit cell dimensions a = b = 164.9 Å, c = 74.8 Å and $\alpha = \beta = \gamma = 90^{\circ}$.

45. The crystalline complex according to any one of claims 42, 43, or 44, further comprising an antibody,

wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

- 46. The crystalline complex of claim 45, wherein the antibody is from a mammal.
- 47. The crystalline complex according to any one of claims 45 or 46, wherein the antibody is from a mouse.
 - 48. The crystalline complex according to any one of claims 42-47, wherein the IL-13 polypeptide is from a mammal.
 - 49. The crystalline complex according to any one of claims 42-48, wherein the IL-13 polypeptide is from a human.
 - 50. The crystalline complex according to any one of claims 45 or 46, wherein the antibody is a monoclonal antibody.
 - 51. The crystalline complex according to any one of claims 45 or 46, wherein the antibody is mAb13.2.
 - 52. The crystalline complex according to any one of claims 45 or 46, wherein the antibody is an mAb13.2 Fab fragment.
 - 53. The crystalline complex according to any one of claims 45 or 46, wherein the antibody is bound to a region of the IL-13 polypeptide that binds to an IL-4R polypeptide in vivo.

25

5

15

54. The crystalline complex according to any one of claims 42-53, wherein the IL-13 polypeptide comprises a region that binds to an IL-4R polypeptide.

- 55. The crystalline complex according to any one of claims 42-54, wherein the
 IL-13Rα1 polypeptide is from a mammal.
 - 56. The crystalline complex according to any one of claims 42-55, wherein the IL-13Rα1 polypeptide is from a human
- 57. The crystalline complex according to any one of claims 42-56, wherein the IL-13 polypeptide comprises the amino acid sequence of SEQ ID NO:4.

15

20

25

- 58. The crystalline complex according to any one of claims 42-57, wherein the IL-13Rα1 polypeptide comprises the amino acid sequence of SEQ ID NO:12.
- 59. The crystalline complex according to any one of claims 44 or 46, wherein the antibody interacts with one or more of residues Ser7, Thr8, Ala9, Glu12, Leu48, Glu49, Ile52, Asn53, Arg65, Ser68, Gly69, Phe70, Cys71, Pro72, His73, Lys74, and Arg86 as defined by the amino acid sequence of SEQ ID NO:4.
- 60. The crystalline complex according to any one of claims 45 or 46, wherein the IL-13 polypeptide interacts with one or more of residues Asn31, Tyr32, Lys34, Arg54, Asn96, Asp98, and Trp100 as defined by the amino acid sequence of SEQ ID NO:1 and Ile30, Ser31, Ala33, Trp47, Ser50, Ser52, Ser53, Tyr58, Leu98, Asp99, Gly100, Tyr101, Tyr102, and Phe103 as defined by the amino acid sequence of SEQ ID NO:2.
- 61. The crystalline complex according to any one of claims 42-60, wherein the IL-13 polypeptide interacts with one or more of residues Ile254, Ser255, Arg256, Lys318, Cys320, Tyr321, Lys76, Lys77, Ile78, and Ala79 as defined by the amino acid sequence of SEQ ID NO:12.

62. The crystalline complex according to any one of claims 42-59, wherein the IL-13Rα1 polypeptide interacts with one or more of residues Arg11, Glu12, Leu13, Ile14, Glu15, Thr88, Lys89, Ile90, Glu91, Lys104, Lys105, Leu106, Phe107, and Arg108, as defined by the amino acid sequence of SEQ ID NO:4.

5

15

25

30

- 63. The crystalline complex according to any one of claims 42-62, wherein the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.
- 64. The crystalline complex according to any one of claims 42-63, wherein the crystalline complex comprises the structural coordinates of Table 12, +/- a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.
 - 65. A method comprising:

using a three-dimensional model of an antibody to design an agent that interacts with an IL-13 polypeptide,

wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

- 66. The method of claim 65, wherein the three-dimensional model comprises a CDR of the antibody.
 - 67. The method according to any one of claims 65 or 66, wherein the antibody is a Fab fragment of an anti-IL-13 antibody.
 - 68. The method according to any one of claims 65-67, wherein the antibody comprises a light chain polypeptide including the amino acid sequence of SEQ ID NO:1, and a heavy chain polypeptide including the amino acid sequence of SEQ ID NO:2.
 - 69. The method according to any one of claims 65-68, wherein the antibody is mAb13.2.

70. The method according to any one of claims 65-69, wherein the antibody is an mAb13.2 Fab fragment.

- 71. The method according to any one of claims 65-70, wherein the three-dimensional model comprises structural coordinates of atoms of the antibody.
 - 72. The method of claim 71, wherein the structural coordinates are experimentally determined coordinates.
- 73. The method according to any one of claims 65-72, wherein the three-dimensional model comprises structural coordinates of an atom selected from the group consisting of atoms of amino acids Asn31, Tyr32, Lys34, Arg54, Asn96, Asp98, and Trp100 as defined by the amino acid sequence of SEQ ID NO:1, and Ile30, Ser31, Ala33, Trp47, Ser50, Ser52, Ser53, Tyr58, Leu98, Asp99, Gly100, Tyr101, Tyr102, and Phe103 as defined by the amino acid sequence of SEQ ID NO:2.
- 74. The method according to any one of claims 65-73, wherein the agent binds a region of the IL-13 polypeptide that binds an IL-4R polypeptide *in vivo*.
- 75. The method of claim 74, wherein the IL-4R polypeptide is an IL-4R α polypeptide.
 - 76. The method according to any one of claims 65-75, wherein the three-dimensional model comprises an IL-13 polypeptide bound to the antibody.
 - 77. The method of claim 76, wherein the three-dimensional model further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.
 - 78. A method comprising:

5

10

15

20

25

30

using a three-dimensional model of an IL-13 polypeptide to design an agent that interacts with the IL-13 polypeptide.

79. The method of claim 78, wherein the three-dimensional model further comprises an antibody bound to the IL-13 polypeptide, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

5

80. The method of claim 79, wherein the three-dimensional model comprises structural coordinates of atoms of the antibody.

81. The method according to any one of claims 78-807, wherein the three-dimensional model comprises a region of the IL-13 polypeptide that binds to an IL-4R polypeptide *in vivo*.

82. The method according to any one of claims 78-81, wherein the agent inhibits binding of the IL-13 polypeptide to an IL-4R polypeptide.

15

83. The method according to any one of claims 75-79, wherein the three-dimensional model comprises structural coordinates of atoms of the IL-13 polypeptide.

84. The method of claim 83, wherein the structural coordinates are experimentally determined coordinates.

20 experimentall

85. The method according to any one of claims 83 or 84, wherein the structural coordinates are according to Table 11 +/- a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.

25

30

86. The method according to any one of claims 78-85, wherein the three-dimensional model comprises structural coordinates of an atom selected from the group consisting of atoms of amino acids Glu49, Asn53, Ser68, Gly69, Phe70, Cys71, Pro72, His73, Lys74, and Arg86 of the IL-13 polypeptide as defined by the amino acid sequence of SEQ ID NO:4.

87. The method according to any one of claims 78-86, wherein the three-dimensional model further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.

- 88. The method of claim 87, wherein the three-dimensional model comprises structural coordinates of atoms of the IL-13Rα1 polypeptide.
 - 89. A method comprising:

5

10

. 15

20

25

30

using a three-dimensional model of an IL-13 polypeptide bound to an IL-13Rα1 polypeptide to design an agent that interacts with the IL-13 polypeptide.

- 90. The method of claim 89, wherein the three-dimensional model further comprises an antibody bound to the IL-13 polypeptide, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.
- 91. The method according to any one of claims 89 or 90, wherein the agent inhibits binding of the IL-13 polypeptide to an IL-4R polypeptide.
- 92. The method according to any one of claims 89-91, wherein the three-dimensional model comprises structural coordinates of atoms of the IL-13 polypeptide and the IL-13Ral polypeptide.
- 93. The method of claim 92, wherein the structural coordinates are experimentally determined coordinates.
- 94. The method according to any one of claims 92 or 93, wherein the structural coordinates are according to Table 12 +/- a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.
 - 95. A method, comprising:

selecting an agent by performing rational drug design with a three-dimensional structure of a crystalline complex that comprises an IL-13 polypeptide;

contacting the agent with an IL-13 polypeptide; and detecting the ability of the agent to bind the IL-13 polypeptide.

5

96. The method of claim 95, wherein the crystalline complex of the three-dimensional structure further comprises an antibody bound to the IL-13 polypeptide, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

10

97. The method of claim 96, wherein the anti-IL-13 antibody or Fab fragment of an anti-IL-13 antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

15

98. The method according to any one of claims 95-97, wherein the agent is selected via computer modeling.

20

99. The method according to any one of claims 95-98, wherein the three-dimensional structure comprises structural coordinates of Table 11, \pm a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.

100. The method according to any one of claims 95-99, wherein the crystalline complex of the three-dimensional structure further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.

25

101. The method according to any one of claims 95-100, wherein the three-dimensional structure comprises structural coordinates of Table 12, \pm a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.

30

102. The method according to any one of claims 95-101, further comprising obtaining the agent.

103. The method according to any one of claims 95-102, further comprising: obtaining a supplemental crystalline complex comprising the IL-13 polypeptide and the agent;

determining the three-dimensional structure of the supplemental crystalline complex;

selecting a second agent by performing rational drug design with the threedimensional structure of the supplemental crystalline complex;

contacting the second agent with the IL-13 polypeptide; and detecting the ability of the second agent to bind the IL-13 polypeptide.

10

15

20

25

5

- 104. The method of claim 103, wherein the second agent is selected via computer modeling.
- 105. The method according to any one of claims 103 or 104, further comprising detecting an ability of the second agent to inhibit IL-13 activity.
 - 106. A method, comprising:

contacting an IL-13 polypeptide with an antibody to form a composition; and crystallizing the composition to form a crystalline complex in which the antibody is bound to the IL-13 polypeptide,

wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

- 107. The method of claim 106, wherein the method includes using vapor diffusion.
- 108. The method according to any one of claims 106 or 107, wherein the antibody is mAb13.2.

109. The method according to any one of claims 106-108, wherein the antibody is a mAb13.2 Fab fragment.

110. A method, comprising:

contacting an IL-13 polypeptide with an antibody and an IL-13R α 1 polypeptide to form a composition; and

crystallizing the composition to form a crystalline complex in which the antibody and the IL-13Ra1 polypeptide are each bound to the IL-13 polypeptide,

wherein the antibody comprises an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

- 111. The method of claim 110, wherein the method includes using vapor diffusion.
- 112. The method according to any one of claims 110-111, wherein the antibody is mAb13.2.
- 113. The method according to any one of claims 110-112, wherein the antibody is an mAb13.2 Fab fragment.
- 114. A software system, comprising instructions for causing a computer system to:

accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody;

accept information relating to a candidate agent; and determine binding characteristics of the candidate agent to the IL-13 polypeptide, wherein the determination is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

5

10

15

20

25

115. The software system of claim 114, wherein the structure of the IL-13 polypeptide bound to the antibody is a crystal structure.

116. The software system of claim 115, wherein the crystal structure comprises the structural coordinates of Table 11, \pm a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.

5

10

15

20

25

30

- 117. The software system according to any one of claims 106-108, wherein the structure of the IL-13 polypeptide bound to the antibody further comprises an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.
- 118. The software system of claim 117, wherein the structure of the IL-13 polypeptide bound to the antibody and the IL-13Ra1 polypeptide bound to the IL-13 polypeptide is a crystal structure.
- 119. The software system of claim 118, wherein the crystal structure comprises the structural coordinates of Table 12, \pm a root mean square deviation for alpha carbon atoms of not more than 1.5 Å.
- 120. The software system according to any one of claims 114-119, further comprising instructions for causing the computer system to:

apply information from a database, the information relating to candidate agents; and

identify a candidate agent in the database that can bind the IL-13 polypeptide, wherein the identification is based on the information relating to the structure of the IL-13 polypeptide and information relating to the candidate agent.

121. The software system according to any one of claims 114-120, further comprising instructions for causing the computer system to model the binding characteristics of the candidate agent with the IL-13 polypeptide.

122. A computer program residing on a computer readable medium having a plurality of instructions stored thereon, which, when executed by one or more processors, cause the one or more processors to:

accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody comprising an anti-IL-13 polypeptide or a Fab fragment of an anti-IL-13 antibody;

accept information relating to a candidate agent; and determine binding characteristics of the candidate agent to the IL-13 polypeptide, wherein the determination is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

123. The computer program of claim 122, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.

124. A method, comprising:

5

10

15

20

25

30

accepting information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody; and

modeling the binding characteristics of the IL-13 polypeptide with a candidate agent,

wherein the method is implemented by a software system.

- 125. The method of claim 124, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.
- 126. The method according to any one of claims 124 or 125, further comprising applying information from a database of candidate agents to identify a candidate agent that can bind the IL-13 polypeptide,

wherein the identification is based on the information relating to the structure of the IL-13 polypeptide and information relating to the candidate agent.

127. A computer program residing on a computer readable medium having a plurality of instructions stored thereon, which, when executed by one or more processors, cause the one or more processors to:

accept information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody; and

model the binding characteristics of the IL-13 polypeptide with a candidate agent.

128. The computer program of claim 127, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.

15

5

10

129. The computer program according to any one of claims 127 or 128, further comprising instructions which cause the one or more processors to:

apply information from a database, the information relating to candidate agents; and

20

25

identify a candidate agent in the database that can bind the IL-13 polypeptide, wherein the identification is based on the information relating to the structure of the IL-13 polypeptide.

- 130. The computer program according to any one of claims 127-129, further comprising instructions which cause the one or more processors to model the binding characteristics of the candidate agent with the IL-13 polypeptide.
- 131. A software system, comprising instructions for causing a computer system to:

accept information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody comprising an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody; and

model the binding characteristics of the IL-13 polypeptide with a candidate agent.

5

- 132. The method of claim 131, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.
- 133. A crystalline antibody, wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.
 - 134. A crystalline composition that comprises an antibody, wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds in vivo.
 - 135. A crystalline complex, comprising:

an IL-13 polypeptide; and

an antibody,

20

25

30

15

wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

136. A crystalline complex, comprising:

an IL-13 polypeptide;

an IL-13Ra1 polypeptide; and

an antibody,

wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

137. A method, comprising:

using a three-dimensional model of an antibody to design an agent that interacts with an IL-13 polypeptide,

wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.

5

138. The method of claim 137, wherein the three-dimensional model comprises structural coordinates of atoms of the antibody.

139. A method, comprising:

10

contacting an IL-13 polypeptide with an antibody to form a composition; and crystallizing the composition to form a crystalline complex in which the antibody is bound to the IL-13 polypeptide,

wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

15

140. A method, comprising:

contacting an IL-13 polypeptide with an antibody and an IL-13R α 1 polypeptide to form a composition; and

20

crystallizing the composition to form a crystalline complex in which the antibody and the IL-13Ra1 polypeptide are each bound to the IL-13 polypeptide,

wherein the antibody is capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*, and the crystalline complex can diffract X-rays to a resolution of at least about 3.5 Å.

25

141. A software system, comprising instructions for causing a computer system to:

accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*;

30

accept information relating to a candidate agent; and

determine binding characteristics of the candidate agent to the IL-13 polypeptide, wherein the determination is based on the information relating to the structure of the IL-13 polypeptide and the information relating to the candidate agent.

5 142. The software system of claim 141, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.

143. A computer program residing on a computer readable medium having a plurality of instructions stored thereon, which, when executed by one or more processors, cause the one or more processors to:

accept information relating to a structure of an IL-13 polypeptide bound to an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*;

accept information relating to a candidate agent; and
determine binding characteristics of the candidate agent to the IL-13 polypeptide,
wherein the determination is based on the information relating to the structure of
the IL-13 polypeptide and the information relating to the candidate agent.

144. The computer program of claim 143, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.

145. A method, comprising:

10

15

20

25

30

accepting information relating to the structure of an IL-13 polypeptide bound to a an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*; and

modeling the binding characteristics of the IL-13 polypeptide with a candidate agent,

wherein the method is implemented by a software system.

146. The method of claim 145, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.

147. A computer program residing on a computer readable medium having a plurality of instructions stored thereon, which, when executed by one or more processors, cause the one or more processors to:

5

10

15

20

25

30

accept information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*; and

model the binding characteristics of the IL-13 polypeptide with a candidate agent.

- 148. The computer program of claim 147, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13Rα1 polypeptide bound to the IL-13 polypeptide.
- 149. A software system, comprising instructions for causing a computer system to:

accept information relating to the structure of an IL-13 polypeptide bound to an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*; and

model the binding characteristics of the IL-13 polypeptide with a candidate agent.

- 150. The software system of claim 149, wherein the structure of the IL-13 polypeptide bound to an antibody further comprises an IL-13R α 1 polypeptide bound to the IL-13 polypeptide.
- 151. A method of modulating IL-13 activity in a subject, comprising: using rational drug design to select an agent that is capable of modulating IL-13 activity; and

administering a therapeutically effective amount of the agent to the subject.

152. The method of claim 151, wherein the rational drug design includes using a three-dimensional structure of a crystalline complex that comprises an IL-13 polypeptide.

153. The method of claim 152, wherein the crystalline complex further comprises an antibody, the antibody being an anti-IL-13 antibody or a Fab fragment of an anti-IL-13 antibody.

5

10

15

20

25

30

- 154. The method according to any one of claims 152 or 153, wherein the crystalline complex further comprises an antibody, the antibody being capable of binding a site of an IL-13 polypeptide to which an IL-4R polypeptide binds *in vivo*.
 - 155. The method according to any one of claims 152-154, wherein the crystalline complex further comprises an IL-13R α 1 polypeptide.

156. A method of treating a subject having a condition associated with IL-13 activity, comprising:

using rational drug design to select an agent that is capable of effecting IL-13 activity; and

administering a therapeutically effective amount of the agent to a subject in need thereof.

- 157. The method of claim 156, wherein the condition is asthma.
- 158. The method according to any one of claims 156 or 157, wherein the condition is allergic asthma or nonallergic asthma.
- 159. The method of claim 156, wherein the condition comprises at least one condition selected from the group consisting of cancer, airway inflammation, eosinophilia, fibrosis, excess mucus production, an inflammatory condition of the skin,

gastrointestinal organs, blood vessels or connective tissue, and an autoimmune condition of the skin, gastrointestinal organs, blood vessels, or connective tissue.

160. The method of claim 156, wherein the condition comprises at least one condition selected from the group consisting of chronic obstructive pulmonary disorder, cystic fibrosis, pulmonary fibrosis, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, Crohn's disease, cirrhosis, scleroderma, or Hodgkin's lymphoma.

5

10

15

20

25

30

161. A method of prophylactically treating a subject susceptible to a condition associated with IL-13 activity, comprising:

determining that the subject is susceptible to the condition associated with IL-13 activity;

using rational drug design to select an agent that is capable of effecting IL-13 activity; and

administering a therapeutically effective amount of the agent to the subject.

- 162. The method of claim 161, wherein the condition is asthma.
- 163. The method according to any one of claims 161 or 162, wherein the condition is allergic asthma or nonallergic asthma.
- 164. The method of claim 161, wherein the condition comprises at least one condition selected from the group consisting of cancer, airway inflammation, eosinophilia, fibrosis, excess mucus production, an inflammatory condition of the skin, gastrointestinal organs, blood vessels or connective tissue, and an autoimmune condition of the skin, gastrointestinal organs, blood vessels, or connective tissue.
- 165. The method of claim 161, wherein the condition comprises at least one condition selected from the group consisting of chronic obstructive pulmonary disorder, cystic fibrosis, pulmonary fibrosis, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, Crohn's disease, cirrhosis, scleroderma, or Hodgkin's lymphoma.

166. The method according to any one of claims 161-165, wherein the agent binds to the IL-13 polypeptide by interacting to within about 2.0Å with one or more of amino acids Glu49, Asn53, Gly69, Pro72, His73, Lys74, and Arg86, as defined by the amino acid sequence of SEQ ID NO:4.

5

10

20

25

30

- 167. Use of an agent designed or selected according to any one of claims 64-97 or 129 or 130 in the manufacture of a medicament for the prophylaxis or treatment of a condition associated with IL-13 activity.
- 168. The use according to claim 167, wherein the agent is capable of inhibiting IL-13 activity.
- 169. The use according to any one of claims 167 or 168, wherein the agent is capable of inhibiting IL-13 activity *in vivo*.
 - 170. The use according to any one of claims 167, 168, or 169, wherein the condition is asthma.
 - 171. The use according to any one of claims 167-170, wherein the condition is allergic asthma or non-allergic asthma.
 - 172. The use according to any one of claims 167-170, wherein the condition comprises at least one condition selected from the group consisting of cancer, airway inflammation, eosinophilia, fibrosis, excess mucus production, an inflammatory condition of the skin, gastrointestinal organs, blood vessels or connective tissue, and an autoimmune condition of the skin, gastrointestinal organs, blood vessels, or connective tissue.
 - 173. The use according to any one of claims 167-170, wherein the condition comprises at least one condition selected from the group consisting of chronic obstructive 297

pulmonary disorder, cystic fibrosis, pulmonary fibrosis, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, Crohn's disease, cirrhosis, scleroderma, or Hodgkin's lymphoma.

- 174. The use according to any one of claims 167-173, wherein the agent binds to the IL-13 polypeptide by interacting to within about 2.0Å with one or more of amino acids Glu49, Asn53, Gly69, Pro72, His73, Lys74, and Arg86, as defined by the amino acid sequence of SEQ ID NO:4.
- 175. An agent designed or selected according to any one of claims 65-105 or 129 or 130 for use in the prophylaxis or treatment of a condition associated with IL-13 activity.
- 176. The agent of claim 175, wherein the agent is capable of inhibiting IL-13 activity.
 - 177. The agent according to any one of claims 175 or 176, wherein the agent is capable of inhibiting IL-13 activity in vivo.
 - 178. The agent according to any one of claims 175, 176, or 177, wherein the condition is asthma.

20

25

30

- 179. The agent according to any one of claims 175-178, wherein the condition is allergic asthma or nonallergic asthma.
- 180. The agent according to any one of claims 175-177, wherein the condition comprises at least one condition selected from the group consisting of cancer, airway inflammation, eosinophilia, fibrosis, excess mucus production, an inflammatory condition of the skin, gastrointestinal organs, blood vessels or connective tissue, and an autoimmune condition of the skin, gastrointestinal organs, blood vessels, or connective tissue.

181. The agent according to any one of claims 175-177, wherein the condition comprises at least one condition selected from the group consisting of chronic obstructive pulmonary disorder, cystic fibrosis, pulmonary fibrosis, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, Crohn's disease, cirrhosis, scleroderma, or Hodgkin's lymphoma.

5

10

182. The agent according to any one of claims 175-181, wherein the agent binds to the IL-13 polypeptide by interacting to within about 2.0Å with one or more of amino acids Glu49, Asn53, Gly69, Pro72, His73, Lys74, and Arg86, as defined by the amino acid sequence of SEQ ID NO:4.

1/18

1	DIVITATOSPAS	LAVSLGORAT	ISCKASESVD	NYGKSLMHWY	QQKPGQSPKL
= 1	TITYRASMLES	GTPARFSGSG	SRTDFTLTIN	PVEADDVATY	YCQQSNEDPW
101	TECCCTKLET	KRADAAPTVS	IFPPSSEOLT	SGGASVVCFL	NNFYPKDINV
151	THUGGIRED	NGVINSWTDO	DSKDSTYSMS	STLTLTKDEY	ERHNSYTCEA
	THKTSTSPIV				

(SEQ ID NO:1) Light

FIG. 1A

51 101 151	EVKLVESGGG ISSGGNTYYP YYFGFAYWGQ FPEPVTVTWN NVAHPASSTK	DSVKGRFTIS GTLVAVSAAK SGSLSSGVHT	RDNARNILYL TTPPSVYPLA	QMSSLRSEDT PGSAAQTNSM	AMYYCARLDG VTLGCLVKGY
------------------	--	--	--------------------------	--------------------------	--------------------------

(SEQ ID NO:2) Heavy

FIG. 1B

2/18

- 1 MALLLTTVIA LTCLGGFAS/P GPVP<u>PSTALR ELIEELVNIT ONO</u>KAPLCNG 51 SMVWSINLTA G<u>MYCAALESL INVSGCSAIE KTORMLSGF</u>C PHKVSAGQFS 101 SLHVRDTKIE V<u>AOFVKDLLL HLKKLFR</u>EGR FN

(SEQ ID NO:3) IL-13

FIG. 2A

1 PGPVP<u>PSTAL RELIEELVNI TONO</u>KAPLCN GSMVWSINLT AG<u>MYCAALES</u> 51 <u>LINVSGCSAI EKTORMLSGF</u> CPHKVSAGQF SSLHVRDTKI EV<u>AOFVKDLL</u> 101 <u>LHLKKLFR</u>EG RFN

(SEQ ID NO:4) IL-13 processed

FIG. 2B

FIG. 4

FIG. 5

FIG. 6

FIG. 7A

Both IL13 and IL4 induce CD23 expression on human monocytes.

mAb13.2 inhibits bioactivity of IL13 but not IL4.

FIG. 7B

FIG. 7C

FIG. 8

9/18

FIG. 9A

FIG. 9B

FIG. 9C

FIG. 10

1	GACGAAAGGG	CCTCGTGATA	CGCCTATTTT	TATAGGTTAA	
51	ATAATGGTTT	CTTAGACGTC	AGGTGGCACT	TTTCGGGGAA	
101	AACCCCTATT	TGTTTATTTT	TCTAAATACA	TTCAAATATG	TATCCGCTCA
151	TGAGACAATA	ACCCTGATAA	ATGCTTCAAT	AATATTGAAA	AAGGAAGAGT
201	ATGAGTATTC	AACATTTCCG	TGTCGCCCTT	ATTCCCTTTT	TTGCGGCATT
251	TTGCCTTCCT	GTTTTTGCTC	ACCCAGAAAC	GCTGGTGAAA	GTAAAAGATG
301	CTGAAGATCA	GTTGGGTGCA	CGAGTGGGTT	ACATCGAACT	GGATCTCAAC
351	AGCGGTAAGA	TCCTTGAGAG	TTTTCGCCCC	GAAGAACGTT	TTCCAATGAT
401	GAGCACTTTT	AAAGTTCTGC	TATGTGGCGC	GGTATTATCC	CGTATTGACG
451	CCGGGCAAGA	GCAACTCGGT	CGCCGCATAC	ACTATTCTCA	GAATGACTTG
501	GTTGAGTACT	CACCAGTCAC	AGAAAAGCAT	CTTACGGATG	GCATGACAGT
551	AAGAGAATTA	TGCAGTGCTG	CCATAACCAT	GAGTGATAAC	ACTGCGGCCA
601	ACTTACTTCT	GACAACGATC	GGAGGACCGA	AGGAGCTAAC	CGCTTTTTTG
651	CACAACATGG	GGGATCATGT	AACTCGCCTT	GATCGTTGGG	AACCGGAGCT
701	GAATGAAGCC	ATACCAAACG	ACGAGCGTGA	CACCACGATG	CCTGTAGCAA
751	TGGCAACAAC	GTTGCGCAAA	CTATTAACTG	GCGAACTACT	TACTCTAGCT
801	TCCCGGCAAC	AATTAATAGA	CTGGATGGAG	GCGGATAAAG	TTGCAGGACC
851	ACTTCTGCGC	TCGGCCCTTC	CGGCTGGCTG	GTTTATTGCT	GATAAATCTG
901	GAGCCGGTGA	GCGTGGGTCT	CGCGGTATCA	TTGCAGCACT	GGGGCCAGAT
951	GGTAAGCCCT	CCCGTATCGT	AGTTATCTAC	ACGACGGGGA	GTCAGGCAAC
1001	TATGGATGAA	CGAAATAGAC	AGATCGCTGA	GATAGGTGCC	TCACTGATTA
1051	AGCATTGGTA	ACTGTCAGAC	CAAGTTTACT	CATATATACT	TTAGATTGAT
1101	TTAAAACTTC	TTAATTTTAATT	TAAAAGGATC	TAGGTGAAGA	TCCTTTTTGA
1151	TAATCTCATG	ACCAAAATCC	CTTAACGTGA		CACTGAGCGT
1201	CAGACCCCGT	AGAAAAGATC	AAAGGATCTT		TTTTTTTCTG
1251	CGCGTAATCT	GCTGCTTGCA	AACAAAAAAA		CAGCGGTGGT
1301	TTGTTTGCCG	GATCAAGAGC	TACCAACTCT	TTTTCCGAAG	GTAACTGGCT
1351	TCAGCAGAGC	GCAGATACCA	AATACTGTCC	TTCTAGTGTA	
1401	GGCCACCACT	TCAAGAACTC	TGTAGCACCG	CCTACATACC	TCGCTCTGCT
1451	AATCCTGTTA	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	TGTCTTACCG
1501	GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA
1551	ACGGGGGGTT	CGTGCACACA	GCCCAGCTTG	GAGCGAACGA	
1601	ACTGAGATAC	: CTACAGCGTG	AGCATTGAGA	. AAGCGCCACG	CTTCCCGAAG
1651		: GGACAGGTAT	CCGGTAAGCG	GCAGGGTCGG	
1701		AGCTTCCAGG	GGGAAACGCC	TGGTATCTTT	
1751		CACCTCTGAC	TTGAGCGTCG		
1801	GGGGGCGGAG	CCTATGGAAA	AACGCCAGCA	ACGCGGCCTT	
1851		GCTGGCCTTI	TGCTCACATG	TTCTTTCCTG	CGTTATCCCC
1901			TTACCGCCTI		
1951		AACGACCGAG	GCAGCGAGT	CAGTGAGCGA	GGAAGCGGAA

FIG. 13

14/18

2001	GAGCGCCCAA	TACGCAAACC	GCCTCTCCCC	GCGCGTTGGC	CGATTCATTA
2051	ATGCAGAATT	GATCTCTCAC	CTACCAAACA	ATGCCCCCCT	GCAAAAAATA
2101	AATTCATATA	AAAAACATAC	AGATAACCAT	CTGCGGTGAT	AAATTATCTC
2151	TGGCGGTGTT	GACATAAATA	CCACTGGCGG	TGATACTGAG	CACATCAGCA
2201	GGACGCACTG	ACCACCATGA	AGGTGACGCT	CTTAAAAATT	AAGCCCTGAA
2251	GAAGGGCAGC	ATTCAAAGCA	GAAGGCTTTG	GGGTGTGTGA	TACGAAACGA
2301	AGCATTGGCC	GTAAGTGCGA	TTCCGGATTA	GCTGCCAATG	TGCCAATCGC
2351	GGGGGGTTTT	CGTTCAGGAC	TACAACTGCC	ACACACCACC	AAAGCTAACT
2401	GACAGGAGAA	TCCAGATGGA	TGCACAAACA	CGCCGCCGCG	AACGTCGCGC
2451	AGAGAAACAG	GCTCAATGGA	AAGCAGCAAA	TCCCCTGTTG	GTTGGGGTAA
2501	GCGCAAAACC	AGTTCCGAAA	${\tt GATTTTTTA}$	ACTATAAACG	CTGATGGAAG
2551	CGTTTATGCG	GAAGAGGTAA	AGCCCTTCCC	GAGTAACAAA	AAAACAACAG
2601	CATAAATAAC	CCCGCTCTTA	CACATTCCAG	CCCTGAAAAA	GGGCATCAAA
2651	TTAAACCACA	CCTATGGTGT	ATGCATTTAT	TTGCATACAT	TCAATCAATT
2701	GTTATCCAAG	AAGGAGATAT	ACATATGGGT	CCAGTTCCAC	CATCTACTGC
2751	TCTGCGTGAA	CTGATTGAAG	AACTGGTTAA	CATCACCCAG	AACCAGAAAG
2801	CTCCGCTGTG	TAACGGTTCC	ATGGTTTGGT	CCATCAACCT	GACCGCTGGT
2851	ATGTACTGTG	CAGCTCTGGA	ATCCCTGATC	AACGTTTCTG	GTTGCTCTGC
2901	TATCGAAAAA	ACCCAGCGTA	TGCTGTCTGG	TTTCTGCCCG	CACAAAGTTT
2951	CCGCTGGTCA	GTTCTCCTCT	CTGCACGTTC	GTGACACCAA	AATCGAAGTT
3001	GCTCAGTTCG	TAAAAGACCT	GCTGCTGCAC	CTGAAAAAAC	TGTTCCGTGA
3051	AGGTCGTTTC	AACTAATAAT	CTAGAGTCGA	CCTGCAGTAA	TCGTACAGGG
3101	TAGTACAAAT	AAAAAAGGCA	CGTCAGATGA	CGTGCCTTTT	TTCTTGTGAG
3151	CAGTAAGCTT	GGCACTGGCC	GTCGTTTTAC	AACGTCGTGA	CTGGGAAAAC
3201	CCTGGCGTTA	CCCAACTTAA	TCGCCTTGCA	GCACATCCCC	CTTTCGCCAG
3251	CTGGCGTAAT	AGCGAAGAGG	CCCGCACCGA	TCGCCCTTCC	CAACAGTTGC
3301	GCAGCCTGAA	TGGCGAATGG	CGCCTGATGC	GGTATTTTCT	CCTTACGCAT
3351	CTGTGCGGTA	TTTCACACCG	CATATATGGT	GCACTCTCAG	TACAATCTGC
3401	TCTGATGCCG	CATAGTTAAG	CCAGCCCCGA	CACCCGCCAA	
3451	CGCGCCCTGA	CGGGCTTGTC	TGCTCCCGGC	ATCCGCTTAC	AGACAAGCTG
3501	TGACCGTCTC	CGGGAGCTGC	ATGTGTCAGA	GGTTTTCACC	GTCATCACCG
3551	AAACGCGCGA				

SEQ ID NO:5

FIG. 13 (cont.)

15/18

1	MEWPARLCGL	WALLLCAGGG	GGGGGAAPTE	TQPPVTNLSV	SVENLCTVIW	TWNPPEGASS
61	NCSLWYFSHF	GDKQDKKIAP	ETRRSIEVPL	NERICLQVGS	QCSTNESEKP	SILVEKCISP
L21	PEGDPESAVT	ELQCIWHNLS	YMKCSWLPGR	${\tt NTSPDTNYTL}$	YYWHRSLEKI	HQCENIFREG
181	QYFGCSFDLT	KVKDSSFEQH	SVQIMVKDNA	GKIKPSFNIV	PLTSRVKPDP	PHIKNLSFHN
241	DDLYVQWENP	QNFISRCLFY	EVEVNNSQTE	THNVFYVQEA	KCENPEFERN	VENTSCFMVP
				SQEMSIGKKR		
361	IVLLLYLKRL	KIIIFPPIPD	PGKIFKEMFG	DQNDDTLHWK	KYDIYEKQTK	EETDSVVLIE
421	NLKKASQ					

SEQ ID NO:12 IL-13Rα1

FIG. 14

