

Europäisch s Patentamt

European Patent Offi e

Offic europé n d s br vets

(11) EP 0 786 519 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 30.07.1997 Bulletin 1997/31

(51) Int Cl.6: C12N 15/00

(21) Application number: 97100117.7

(22) Date of filing: 07.01.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LV RO SI

(30) Priority: 05.01.1996 US 9861

(71) Applicant: HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)

(72) Inventors:

Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

Choi, Gil H.
 Rockville, Maryland 20850 (US)

Barash, Steven C.
 Rockville, Maryland 20850 (US)

Dillon, Patrick J.
 Gaithersburg, Maryland 20879 (US)

Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)

Rosen, Craig A.
 Laytonsville, Maryland 20882 (US)

(74) Representative; VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) Staphylococcus aureus polynucleotides and sequences

(57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

D ription

Th present invention relates to the field if molecular biology. In particular, it relates to, among other things, nucleotid sequences of Staphylococcus aureus, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

The genus Staphylococcus includes at least 20 distinct species. (For a review see Novick, R. P., The Staphylococcus as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.

Human Health and S. Aureus

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.

Bums

10

15

20

25

30

35

50

55

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. *S. aureus* is produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

40 Eyelid infections

S. aureus is the cause of styes and of sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S. aureus infects bone joints causing diseases such osteomyelitis.

Osteomyelitis

S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the und of long, growing bones.

Skin infections

5

10

15

20

30

35

40

45

50

55

S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This disease occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Nocosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable. Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confermultidrug resistance.

Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistanc in S. aureus has been elucidated (See Lyon et al., Microbiology Reviews 51: 88-134 (1987)). G nerally, resistance is m diated by plasmids, as noted above regarding penicilling resistance; how v r, several stable forms of drug resistance have been observed that apparently involve integration of a r sistance element into the S. aureus genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.

Molecular Genetics of Staphylococcus Aureus

10

20

25

30

50

55

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.

These studies revealed that the S. aureus genome, like that of other staphylococci, consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee et al. published a low resolution and incomplete genetic and physical map of the chromosome of S. aureus strain NCTC 8325. (Pattee et al. Genetic and Physical Mapping of Chromosome of Staphylococcus aureus NCTC 8325, Chapter 11, pgs. 163-169 in. MOLECULAR BIOLOGY OF THE STAPHYLOCOCCI, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Smal chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Smal recognition sequence.

In sum, most physical characteristics and almost all of the genes of Staphylococcus aureus are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., Antimicrobial Chemotherapy 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of S. aureus such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the Staphylococcus aureus genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.

The present invention provides the nucleotide sequence of several thousand contigs of the Staphylococcus aureus genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-5.191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99.9%, identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

The nucleotide sequence of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequence of SEQ ID NOS:1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the Staphylococcus aureus genome.

Another embodiment of the present invention is directed to fragments, pref rably isolated fragments, of the Sta-phylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs,* fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs,* and fragments which can be used to diagnose the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or "DFs."

5

10

15

20

25

30

35

40

45

55

Each of the ORFs in fragments of the Staphylococcus aureus genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Staphylococcus* aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides, comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of Staphylococcus aureus will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the Staphylococcus aureus genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to Staphylococcus aureus researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genom—s will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

10

20

25

30

35

40

45

55

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR*) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3...

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned Staphylococcus aureus polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191; or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are Staphylococcus aureus open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of Staphylococcus aureus in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Staphylococcus aureus* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-5,191. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC").

The nucleotide sequences of the genomes from different strains of Staphylococcus aureus differ somewhat. However, the nucleotide sequences of the genomes of all Staphylococcus aureus strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

5

10

15

20

25

30

35

40

45

50

55

The nucleotide sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; i.e., a nucleotide sequence provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the Staphylococcus aureus genome and parts thereof (e.g., a Staphylococcus aureus open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the Staphylococcus aureus genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Staphylococcus aureus genome which contain homology to ORFs or proteins from both Staphylococcus aureus and from other organisms. Among the ORFs discussed

herein ar protein encoding fragments of the Staphylococcus aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The pr sent invention furth r provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, comm reially important fragments of the Staphylococcus aureus genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

10

20

25

30

35

40

45

55

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the Staphylococcus aureus genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, etc.) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

5 BIOCHEMICAL EMBODIMENTS

10

20

25

30

35

40

45

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the Staphylococcus aureus genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the Staphylococcus aureus genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the Staphylococcus aureus contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand; and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numenclature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring signent pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

10

15

20

25

30

35

40

45

50

55

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not timited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the Staphylococcus aureus genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the Staphylococcus aureus genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to Staphylococcus aureus sequences. DFs can be readily identified by identifying unique sequences within contigs of the Staphylococcus aureus genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQID NOS:1-5,191, with a sequence from another isolate of the same species.

Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.

5

10

20

25

30

35

40

45

55

In addition, the fragments of the present invention, as broadly described, can be used to control gine expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus* aureus genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacl, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immunochromatography, and immunochromatography.

no-affinity chromatography.

10

20

25

30

35

40

45

55

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice.

5

10

15

20

25

30

35

40

45

50

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J Bioenerg. Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as *S. pyogenes, S. mutans, E. faecalis, S. pneumoniae,* and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amin d. The amino acid sequence of this region is L-P-X-T-G-X, wher X is any amino acid.

5

15

20

25

30

35

40

45

50

55

Amino acid sequince similarities to proteins of kn wn function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for silecting antigenic and immunogenic Staphylococcus aureus polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful Staphylococcus aureus polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS:5,192 to 5,255. Thus the amino acid sequence of each of several antigenic Staphylococcus aureus polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS:5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for xample the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS:5,191-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the I vel of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131-5135; this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further describ d in U.S. Patent No. 4,631,211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson t al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

5

10

20

25

30

35

40

45

50

55

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus* aureus outermembrane proteins, as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO.5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS:1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, PCR PROTOCOLS, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-5,191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-5,191, or from a nuclotid sequence having an aforementioned id ntity to a sequence of SEQ ID NOS:1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

25

30

35

40

45

50

55

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5,191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of Staphylococcus aureus. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(A), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitativ determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. <u>872</u>: 83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists:hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon/bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

2. Generation of Antibodies

5

10

15

20

25

30

35

40

45

50

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256: 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today)

4: 72 (1983), pgs. 77-96 of Col. et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985)).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogen polypeptid. Methods for immunization are will known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, westem blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art, for example see Stemberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

10

15

20

25

30

35

40

45

50

55

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry, PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be r adily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

5

10

15

20

25

30

35

40

45

50

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the Staphylococcus aureus fragment and contigs herein described.

In general, such methods comprise steps of:

(a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and

(b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical C mpositions and Vaccin s

5

10

15

20

25

30

35

40

45

50

55

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of Staphylococcus aureus, or another related organism, in vivo or in vitro. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of Staphylococcus aureus or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical molecules not normally a part of the molecule. Such moleties may improve the molecule's solubility, absorption, biological half life, etc. The molecules may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moleties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e. g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

50

5

10

15

20

25

30

35

40

45

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequ n ing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage." For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a .2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

15

20

25

30

35

40

50

55

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end. Staphylococcus aureus DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C.

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

5

10

15 .

20

25

30

35

40

45

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ut) containing 50 ug DNA, 1X Sau3Al buffer, 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ut of fragments was used with 1 ut of DASHII vector (Stratagene) in the recommended ligation reaction. One ut of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ut of recommended SM buffer and chloroform treatment). Yield was about 2.5x10⁹ pfu/ut.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences, and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dyeprim rs and dye-terminators with approximately equal fidelity, although plasmid templates generally give longer usable significant.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

5

10

15

20

25

30

35

40

45

50

55

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).

3. Identifying Genes

The predicted coding regions of the Staphylococcus aureus genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all Staphylococcus aureus nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

10

15

20

25

30

35

40

45

50

55

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.* Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.

3. Preparation of PCR Primers and Amplification of DNA

Various fragments of the Staphylococcus aureus genome, such as those of Tables 1-3 and SEQ ID NOS:1-5,191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approxi-

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

4. G ne expression from DNA S quenc s Corresponding to ORFs

5

10

15

20

25

30

35

40

45

50

55

A fragment of the Staphylococcus aureus genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Staphylococcus aureus genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Staphylococcus aureus DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Staphylococcus aureus DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding Staphylococcus aureus DNA 3' primer, taking care to ensure that the Staphylococcus aureus DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

TABLE 1

S. aureus - Coding regions containing known sequences

5

Contlg ORF ID ID	100 E	Start (nt)	Stop (nt)	match acession	natch gene neme	percent	MSP nt length	ORF nt length
-	-	1419	757	[emp x17301[5AHD	enb X17301 SAHD S. jureus DNA for htd.geno and for port of agr gene	100	663	663
-	~	6726	2452	emb X52543 SAAG	S. aureus agrk, agrß and hld genes	66	809	822
-	- 2	6418	5631	db D14711 STAH	dbj D14711 S7AH Staphylococcus aureus HSP10 and HSP60 genes	1 98 1	223	768
2	-	1807	439	emb x72700 saPV	S. aureus genes for S and P components of Panton-Valentine leucocidins	81	216	369
•	-	5031	1756	emb x72700 sAPV	S.aureus genes for S and F components of Panton-Valentine leucocidins	35	424 ,	1991
10		99	904	gb L25288	Staphylococcus aureus gyrass-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	86	2115	919
16		5302	6246	40 U3 5 77 3 I	Staphylococcus aureus prolipoprotein diacylglyceryl transferase (lgt) gene, complete cds	86	251	\$45
16	<u></u>	6249	1001	1827731	Stanhylococcus aureus prolipoprotain diacylglyceryl transferase (1gt) gene, complete cds	66	843	8
16		7084	7584	[[[[] [] [] [] [] [] [] []	Stabbylococcus aureus prolipoprotain discylglyceryl transferase (1gt) gene, complete cds	6	342	203
20		995	549	gb L19300 	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	100	3	\$
02		101	B4.1	ap r18300	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	91	137	171
50		2010	1798	 95 119300 	Stabhylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-ll sequence homology, 5' flank	100	110	213
70	-	5300	3825	gb H'6714	Staphylococcus aureus peptidoglycan hydrolasa gane, complete cds	100	948	1476
2	~	4788	4282	gb H7 < 714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	309	507
36	-	~	145	gb U41072	Staphylococcus aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	100	126	166
97	~	3 6	557	95 041072	Staphylococcu: aureus isolaucyl-tRWA synthetase (iles) gene, partial cds	66	430	474
76	_	637	13531	emb[X74219[SAIL	S. aureus gene for isoleucyl-thus synthetase	66	2769	2769
29	-	1261	4392	ap neees	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3132
=	77	14977	13463	emb x73889 SAP1	S. aureus genes Pl and P2	66	1351	1515
11	<u>51</u>	114241	13855	emb X73889 SAP1	S. sureus genes P1 and P2	86	258	780
80	117	114284	133112,	13112 , [95 112715	S. aureus geh gene encoding lipase (glycarol ester hydrolase)	100	372	1173
2	61	13434	115518	80 8,2715	S. aureus geh gene encoding lipasa (glycerol ester hydrolase)	100	2085	2085
		1111111				********		

S. aureus - Coding regions containing known sequences

ORF nt length	1209	576	924	1326	1185	336	954	1542	594	1683	744	495	3087	1077	43	1305	300.	1755	3	1 5001
HSP nt Q	1209	376	926	1283	1185	872	954	- 88	540	1668	720	463	3087	- 89	423	1305	300	1755	444	673
percent		98		86	86		- 66	1001	- 86	100	- 56	100	7 001	- 68	1 66	- 66	 001	- 66	 8	1 66
match gene name	Handhylucoccus militus type B capsulo genes, cap8A, cap8D, cap8C, cap8D, cap8C,	Stabhylococcus aureus type 8 capsule ganes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H,	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H, cap8L, cap8H,	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap8H, cap8H, cap8H, cap8F,	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8B, cap8F, cap8F, cap8H,	Stabhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	Staphylococcus aureus rech gene, complete cds	S. aureus AhpC gene	S.aureus AhpC gene	S. aureus fnbB gene for fibronectin binding protein B	S. aureus fnbB gane for fibronectin binding protein B	S. aureus fnbB gene for fibronectin binding protein B	S. aureus fibronectin-binding protein (inbh) mBNA, complete cds	S. aureus mdr, pbp4 and taqD genes (SG511-55 isolate)	S. aureus abch, pbp4, and tagD genes	S. aureus abch, pbp4, and tagD genes	Stably Jococcus aureus ABC transporter-like protein AbcA (abcA) gene, partial cds	S. aureus abch, pbp4, and tagD genes	S.auraus agr gane encoding an accessory gene regulator protein, complete cds	emb x52341 SaAG S. aureus agra, agr8 and hld genes
match	ub w73374	pb U73374	pb U73374	ab U73374	gb U73374	pp U73374	gb L25893	emb X85029 SAAH	emb x85029 SAAH	emb X62992 SAFN	emb X62992 SAFN	emb K62992 SAPN	gb[J04151]	emt. XA7104 SADN	emb x91786 sAPB	emb X91786 SAPB	gb[U29478]	emb x91786 3APB	gb['121854	emb X52543 SAAG
Stop (nt.)	1727	2295	3162	86	5720	6120	955	2924	3515	3392	4122	4562	8300	2819	3280	4701	8378	6840,	445	1453
Start (nt)	\$	1720	2259	5716	4536	6455	2	4465	4108	5074	4865	5056	11386	1743	2858	6005	5677	5086	689	2457
9 Q I		<u></u>	•	<u>~</u>	•		-	-	-	_	4	~	9	-	-	<u>~</u>	•	-		~
Contig ORF	46	9	9	9	9	\$	ę	05	05	- 54	54	54	24	88	88	88	£	85	27	27

aureus - Coding regions containing known sequences

. *6*

5

Contig	<u>8</u> 8	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF ur. length
82		357	7160	emb x64172 SARP	S.aureus rpli, orf202, fooBirif) and rpoc genes for riboscanl procein L7/L12, hypothetical protein ORP202, DMA-directed RNA polymerase beta & beta' chains	6	2396	3561
83	7	4027	7677	emb X89233{SARP	S.aureus DNA for rpoC gene	66	1716	3651
8.7	<u> </u>	7745	8908	ab u20869	Staphylococcus aureus ribosomal protein S12 (rpsi) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	320	324
8	~	8103	8579	gb U20869	Staphylococcus aureus ribosemal protein S12 (rpsl.) gene, complete cds, ribosemal protein S7 (rpsG) and ORF 1 genes, partial cds	100	- 64	477
83	<u>~</u> _	8618	8821	95 020869	Staphylococcus aureus ribosomal protein S12 (rpsi) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	100	154	204
2		2	193	40 073374	Stanhylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	86	191	174
2	~	189	893	95 073374	Stabbylococcus aureus type 8 capsula genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	*	705	205
A.		R8.7	1660	qb U73374 	Staphylococcus auraus tynn 8 capsule genes, cap8A, cap8R, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	66	774	47.6
e 2	-	1584	3503	gb U73374	Staphylococcus aurous type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	86	1920	1920
	un	3394	4521	1975570 46	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8H,		1128	1128
B.	<u> </u>	4519	5643	(gb U73374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8C, cap8C, cap8C, cap8C, cap8F,	6	1125	1125
96	~	1245	3896	emb 218852 SACF	S.aureus gene for clumping factor		099	2652
6	7	625	882	gb U41072	Staphylococcus aureus isoleucyl-tRNA synthetase (ileS) gene, partial cds	- 6	89	258
111			4 25	gb L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	450	450
=	~	526	1041	gt L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	66	516	516
117	~	1278	1958	gb H83994	Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete cds	007	5	(81

Contig	98 G	Start (nt)	Stop (nt)	match , acession	match gene name	percent ident	HSP nt length	ORF nt length	
118		13787	4254	db U30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP10; HSP40; ORF35, complete cds	66	467	468	
130		2597	3640	emb x13290 SATN	Staphylococcus aureus multi-resistance plasmid pSK1 DNA containing transposon In4003	85	986	1044	
130	- 1	3813	4265	omb 216422 SADI	S. aureus dirB gene for dihydrofolate reductase	86	416	453	
130	9	4309	5172	emb 216422 SADI	S.aureus dirB gene for dihydrofolate reductase	96	, 209	864	
901	-	5296	6207	emb X71437 SAGY	emb X71437 SACY S.aureus genes gyrB, gyrA and recf (partial)	1 97	838	912	
136	- 5	111680	8987	dbj D10489 STAG	dbj D10489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	001	2694	2694	
136	9 -	12886	10940	dbj 010489 stAG		66	1947	1947	
136	<u></u> ,	12592	11765	gb 577055	reck cluster: dnaAarsplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, Y8886. Genomic, 5 genes. 1373 ntl	66	822	828	
151	1	14171	1 2867	gb U36379	Staphylococcus aureus S-adenosylmethionine synthetase gens, complete cds	66	1305	1305	
143		3100	4281	pb t42943	Stabhy ococcus aureus (clone KIN3O) phosphoenolpyruvate carboxykinase (pckA) gene, complete cds	900	1170	1182	
3	<u>~</u>	4254	4718	gb US1133	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	100	617	465	
7	5	6977	7261	gb US1132	Staphylococcus aureus o-succinylbenzolc acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	75	285	
143	2-	9464	8361	gb U51132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	1104	1104	
143	<u> </u>	11232	9748	gb US1132 	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	1485	1485	
143	=_	10739	10320	gb US1132 	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o- succinylbenzoic acid synthetase (menc) genes, complete cds	100	332	420	
152	<u></u>	2454	3437	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferese and dihydroliposmide dehydrogenase	66	305	984	
152	9	13813	1 4820	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrollpoamide acetyltransferase and dihydrollpoamide dehydrogenase	86	1308	1308	
152		4818	6230	emb x58434 SAPD	S.aureus pdhB. pdhC and pdhD ganes for pyruvate decarboxylaso. dihydroliposmide acetyltransferase and dihydroliposmide dahydrogenasa	66	1413	1413	
153	<u>-</u>	187	1526	gb S77055	recF cluster: dnaA=replisome assembly proteingyrs=DNA gyrsse beta subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt]	88	1160	1140	
153	~	1877	2152	gb 577055	recf cluster: dnaA-replisome assembly proteingyr8=DNA gyrase beta subunit [Staphylococcus aureus, YB886, Genomic, 5 genes, 353 nt]	100	276	276	

S. aureus - Coding regions containing known sequences

Contig ORF ID ID	<u>8</u> 5	Start (nt)	Stop (nt)	match	mptch gene name	percent Ident	HSP nt Jength	ORF nt length
153		2143	2289	5501.25 96	recf cluster; dnahareplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YB866, Genomic, 5.genes, 1573 nt	66	611	147
154	01	10792	9316	gb 106451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	91	154	1479
154	Ξ	9935	5196	145 006431	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	- 66	229	321
154	71	9943	110167	ab u06451	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	- 96	123	225
154	<u> </u>	10089	11501	300 006451	Staphylococcus aureus proline permease homolog (putP) gene, complete cds	- 66	1326	1413
159	~	2195	1212	(db) [D28879 STAP	dıs D28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, camplete cds	100	11	984
161		2596	2270	gb H83994 	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene. complete cds	32	203	327
162	-	1406	70\$	1915 1211	Staphylococcus aureus hyaluronate lyasa (hysA) gene, complete cds	700	702	702
163	-	1263	1772	95 019776	Staphylococcus aureus pyrrolidone carboxyl peptidase (prp) gene, complete cds	96	127	510
164	-	4774	1 9117	[db] D86727 D867	dbj D8677 D867 Staphylococcus aureus DNA for DNA polymerase III, complete cds	66	3470	4344
168	۲	7448	6447	964 021636	Staphylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete	100	1002	1002
168	æ 	9538	7961	46 021636	Staphylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, complete	66	1158	1578
571	-	9240	7801	gb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	100	1440	1440
271		11252	9522	gb J03479 	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	66	1671	1571
£1.	« ——	8285	B704	gb J03479 	5. Aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	100	420	420
171	<u></u>	10168	9839	gb J03479	S.aureus enzyme III-lac (lacP), enzyme II-lac (lacE), and phospho-beta- golactosidase (lacG) genos, complete cds	100	330	330
173	<u>07</u>	111815	10829	emt X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	987	987
173	=	12721	111774	emb X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	948	948
671	72	12838	12305	gb H64724	S.aureus tagatose 6-phosphate isomerase gene, complete cds	100	534	534
173	2_	13243	12773,	gb 1432103	Staphylococous aureus lac repressor (lacR) gene, completo cds and lacA repressor (lacA), partial cds	100	471	411
 t1	3 _	14633	13866	gb M32103 	Staphylococcus aureus lac repressor (lack) gene, complete cds and lack repressor (lack), partial cds	001 ——	768	768

		•							• •	•		•	·	• •		-			• —	•	• — •	• —		· ·
5		ORF DE length	654	720	453	303	165	270	\$25	929	1623	1611	822	1920	177	1203	670	324	306	1143	673	1557	708	362
Ū		KSP nt length	115	720	5	303	765	270	669	772	1332	611	132	1920	177	1 250	870	324	304	1143	464	1552	684	157
10		percent	001	100	100	100	\$	66	66	86		66	08	66	66	66	66	66		66	*6	66	66	96
15			ırgB (lrgB) genes,	rgB (lrgB) genes,	rgB (lrgB) genes,	rgB (lrgB) genes,							oside diphosphate (aroB) and enes, partial cds				complete cds, transfer RNA 16S ribosomal RNA (16S					and other ORFs	ysin (atl) genes,	ron dltA, dltB,
20	:		Staphylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	Stabhylococcus aurous holin-like protein LrgA (lrgA) and LrgB (lrgB) complete cds	Stabhylococcus aureus holin-like protein LrgA (1rgA) and LrgB (1rgB) genes. complete cds	aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes.	as, complete cds	es, complete cds	lete cds	ein A	complete cad	oin A	Staphylococcus aureus chorismate synthams (aroC) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydrosulnate synthams (aroB) and gerenylgoranyl pyrophosphate synthetase homolog (gencs, genes, partial eds	coagulase	coagulase	coagulase						lysin, complete cdą and	Staphylococcus aureus ORF1, partial cds. ORP2, ORF3, autolysin (atl) genes. complete cds	dbj D86240 D862 Staphylococcus auraus gene for unkown function and dlt operon dltA, dltB,
25	known sequences		olin-like protei	olin-like protei	olin-like protei	olin-like protei	aurous lyts and lyth genes.	ytS and lytR gen	plac) gene, comp	aureus spa gene for protein	g for protein A,	pa gene for prot	horismate syntha mplete cds, deby sphate synthetas	ĕ	ene for staphylo	ene for staphylo	aureus 1ysyl-tRNA sythetase gene, 5S ribosomal RNA (5S rRNA) gene, 5 ribosomal RNA (13S rRIA) gene	geneg	genes		2	tl gene for autolysin,	RF1, partial cds	ene for unkown fr mplete cds
30	- Couling regions contaming known sequences	match gene name	taphylococcus aureus h complete cds	taphylococcus aurous h complete cds	taphylococcus aureus h complete cds	Staphylococcus aureus h complete cds	Staphylococcus aureus l	Staphylococcus aureus lytS and lytR genes, complete cds	S. aureus signs factor (plac) gene, complete cds	ylococcul aureus s	S. aureus spa gene coding for protein A.	Staphylococcus aureus spa gene for protein A	taphylococcus aureus chorismate synthase (aroc) kinase (ndk) genes, complete cds, dehydroaulnate geranylgeranyl pyrophosphate synthetase homolog	Staphylococcus aureus coa gene	Staphylococcus aureus gene for staphylocoagulase	emb X16457 SAST Staphylococcus aureus gene for staphylocoagulase	Staphylococcus aureus lysyl-tRNA sythetase gene (tRNA) genes, 58 ribosomal RNA (38 rRNA) gene, rRNA) gene, 236 ribosomal RNA (236 rRNA) gene	S.aureus ptsH and ptsI genes	S. aurous pts!! and pts! genes	emb x97985 SA12 S.aureus orfs 1,2,1 & 4	emb X73889 SAP1 S. aureus genes P1 and P2	Staphylococcus aureus atl	taphylococcus aureus O complete cds	ylococcus aureus g and ditD genes, co
35	oding re	antel -	Staph	Staph	Staph	Staphy	Staph	Staphy	3.aur	Staphy	S.aur	_	Staph kina gera			Staphy	Staph) (cRN) rRNA			S.aur	S.aur		Staph	Staphy
40	S. aureus - (match	an{u52961	 pp 052961	gb U52961 	 	gb 1.42945	gb L42945	gb H63177	emb X61307 SASP Staphylococcu1	pp 101186	emb X61307 SASP	gb U31979	emb x17679 saco	emb X16457 SAST	emb X16457 SAS	95 136472	emi X93205 SAPT	cmb x93205 SAPT	emb x97985 SA1	emb x73889 sAP	db3 017366 STAA	ob t41499	db) D86240 D86.
45		Stop (nt)	655	1482	1909	1853	2777	3025	590	141	2312	4251	824	2760	3143	4566	872	2011	2310	1305	2175	1558	2232	0177
45	•	Start (nt)	2	2201	2361	1551	3541	3294	1114	_	069	5861	ñ	178	2967	83768	1741	16AR	2002	163	1303	3314	2939	7429
		<u>80 U</u>		~			-	9	- -	-	- -	_		2	-	-	-	-	-	- -	7	- -	~_	=_
50		Contig	178	178	178	174	17#	178	181	182	182	182	281	191	191	191	196	198	178	202	202	210	210	214

TABLE 1

55

S. auraus - Coding regions containing known sequences

__ **35**

Capacitate Cap
The aureus genes for ORP37; HSP20; HSP40; ORP35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus phosphatidylinositol-specific phosphalipase C (plc) lete cds The aureus type 8 capsule genes, cap84, cap86, cap86, cap86, cap86, sp80; sp87, cap86, cap87, cap81, cap83, cap84, cap84, cap84, cap84, cap84, cap84, cap84, cap86,
The aureus gones for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus genes for ORP37; HSP20; HSP70; HSP40; ORF35, complete the aureus phosphatidylinositol-specific phosphalipase C (plc) lete cds The aureus type 8 capsule genes, cap84, cap86, cap86
us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus phosphatidylinositol-specific phospholipase C (plc) lete cds us aureus type 8 capsule genes, cap80, cap80, cap80, sp, cap80, cap80, cap80, cap80, cap80, sp80, sp, cap80,
us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus phosphatidylinositol-specific phospholipase C (plc) lete cds us aureus type 8 capsule genes, cap8A, cap8C, cap8C, BP, cap8G, cap8H, cap81, cap83, cap8K, cap8C, cap8B, BP, cap8G, cap8H, cap81, cap83, cap8K, cap8L, cap8H, cap8B, BP, cap13, 14
us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete us aures phosphatidylinositol-specific phospholipase C (plc) lete cds us aureus type 8 capsule genes, cap8A, cap8A, cap8C, cap8B, BP, cap8G, cap8H, cap81, cap8J, cap8K, cap8B, cap8B, BP, cap13, 4 4
us aureus genes for ORF37; HSP20; HSP10; HSP40; ORF35, complete us aures phosphatidylinositol-specific phospholipase C (plc) lete cds us aureus type 8 capsule genes, cap84, cap86, cap86, BF, cap86, cap86, cap81, cap87, cap88, cap86, cap88, cap86, cap86, cap86, cap81,
us auras phosphatidylinositol-specific phospholipase C (plc) lete cds us aureus type 8 capsule genes, cap8A, cap8C, cap8C, BP, cap8C, cap8H, cap81, cap8J, cap8K, cap8H, cap8N, BP, cap1ca cds 12.13.4
type B capsule genes, cap8A, cap8B, cap8B, cap8L, cap6A, cap8L, cap6A, cap8L, c
(a 1,2,3 & 4
fa 1.2.3 & 4
S. auraus orfs 1, 2, 3 & 4
S.aureus orfs 1,2,3 £ 4
Staphylococcus aureus elastin binding protein (abpS) gane, complete cds
S. aureus DNA for penicillin-binding protein 2
Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds
Staphylococcus aureus sath gene, complete cds
Staphylococcus aureus scdA gene, complete cds
Staphylococcus aureus scdA gene, complete cds
Staphylococcus aureus glycorol aster hydrolase (11p) gene, complete cds
Staphylococcus aureus gane for a participant in homogeneous expression of high-lovel methicillin resistance, complete cds

		:	:	:	<u> </u>				; 	:	:	:	:	:	<u></u>	: -	: -		:	:-	-	<u>-</u>
5		ORF nt length	213	654	1017	\$25	987	168	627	666	213	456	867	978	285	1353	1314	80	966	722	900	74
•		HSP nt length	213	69	743	110	952	98	112	979	187	338	867	975	793	1343	1314	151	966	108	259	τς:
10		parcent ident	- 66	88	98	100	100	86	700	66	88	- 66	66	100	6	- 66	98	74	86	7001	88	97
15		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a expression of	in homogeneous expression of	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	59, Genemic, 1087	59, Genomic, 1087	on (pcrA) gene,	on (pcrA) gene,	on (pcrA) gane,	lon (perA) gene,	-conzyme genes,	c (high, high,	c (hlgA, hlgB,	C (hìgA, hìgB,	and other ORFs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t) gene and	nase (ddh) gene,	***************************************		_
20			Staphylococcus aurous gene for a participant in homogeneous expression high-level methicillin resistance, complete cds			hemBeporphobilinogen synthase (Staphylococcus aureus, SA1959, nt)	hemB-porphobilinogen synthase (Staphylococcus aureus, SA1959, nt]	Staphylococcus aureus helicase required for 7181 replication (pcrk) gena, complete cds	Staphylococcus aureus helicase required (or T18) replication (pcrA) complete cds	aureus helicase required for Ti81 replication (pcrA)	Stabilyococcus aureus helicase required for Ti81 replication (pcrA) gene, complete cds	S. aureus SaulAI-restriction-enzyme and SaulAI-modification-enzyme complete cds	sponents A, B and	mponents A. B and	mponents A, B and	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	s, complete cds	Staphylococcus aureus methicillin-remistance protein (meck) gene and unknown ORF, complete cds	Stabhylococcus aureus D-specific D-2-hydroxyacid dehydrogonase (ddh) complete cds	gene	: leucocidin R	l leucocidin N
25	inown sequences		taphylococcus aurous gene for a participant in high-level methicillin resistance, complete cds	ne for a participant resistance, complete	Staphylococcus sureus HSP10 and HSP60 genes	thase (Staphyloco	thase (Staphyloco	licase required (licase required	Micase required	licase required	ion-enzyme and Se	gamma-hemolysin components A,	gamma-hemolysin components A.	gamma-hemolysin components cds	1 gane for autoly	Staphylococcus aureus lytS and lytR genes, complete	ithicillin-resista ids	specific D-2-hydr	Vå serine protease gene	emb x64389 SALE S.aureus leuf-PB3 gene for F component of:leucocidin	ur F companent of
30	s containing h	o name	ccus aureus ge l methicillin	Staphylococcus aureus gene for high-level methicillin resiste	ccus aureus HS	obilinogen syn	obilinogen syn	ccus aureus he	ccus aureus he		cds	aulAI-restrict cds	Staphylococcus nureus gamma hglC} genus, complete cds	Staphylococcus aureus gamm hglCl genes, complete cds	. Aurous complete	ccus aureus At	ccus bureus ly	ocus aureus meth RF, complete cds	ccus sureus D-	Staphylococcus aureus V8	euF-PB3 gene (auf-PR) geno (
35	ling region	match gene name	Staphyloco high-leve	Staphyloco high-leve	Staphyloco	hemB=porph nt.	hemB+porph nt]	Staphylococcu complete cds	Staphylococcu complete cds	Staphylococcus complete cds	Staphylococcu complete cds	S.aureus Saul complete cds	Staphyloco hglC} gen	Staphyloco hglCl gen	Staphylococcus hglC genes,	Staphyloco	Staphyloco	Staphylococcus unknown ORF,	Staphylococcu complete cds	Staphyloco	S.aureus 1	S. aureus 1
40	S. auraus - Coding regions containing known sequences	match	db] D21131 STAS	dbj 021131 5TAS	dbj D14711 STAH	95/672488	95 572488	gb H63176	gb M63176	gb H63176	90 [M63176	gb H32470 	sp 1:01055		95 101035	db; D17366 STA	[gb]L42945]	dp 1,14017	95 11119	emb Y00356 SASP	emb;x64389 SALE	cub/X64189 SALE S. oureus lauf-PB) gena (ur f component of leucocidin R
		Stop (nt)	476	1765	1018	525	1502	170	1034	2026	2202	1991	868	23#3	3161	1155	1315	7870	1003	237	368	1048
45		Start (nt)	688	2418	~	-	516	·	2B2	1028	0661	1536	~	1409	2367	2707	2628	7019	1998	-	687	182#
		08. 13.	~		_		~-		~		-			~		-	-	<u>-</u> _		_ ~	<u> </u>	~
50		Cont lg ORF ID ID	265	265	7992	282	282	284	284	284	7H4	289	303	101	60	305	111	312	323	326	938	338

		ORF nt length	1176	732	228	201	527	672	903	405	1146	657	540	507	762	216	216	1248	324	432	708	807	168	657
5		8 -	<u> </u>	-	_			-			-	-	-	_			-		-	-	-			
		HSP nt length	1176	732	27.1	187	23	17.9	747	89	1146	349	389	178	163	216	188	1248	200	8	151	556	ă	657
10		percent	100	86	96	100	66	1 25	86	6	- 66	- 6	- 66	- 66	66	100	1001	66	96	1 001	100	100	100	93
15		9 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				gene, complete	gene, complete		pase C (plc)	ipase C (plc)	#				sphylococcus	sin (atl) genes,	and other ORFs	(from		complete cds	complete cds	n dita, dita,	n dltA, dltB,	stance (fem.A.)
20		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, complete cds		ite (attB)	Staphylococcus aureus prolipoprotein signal peptidase (lap) cds	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	Staphylococcus aureus MHC class II analog gene, complete cds	Staphylococcus aures phosphatidylinositol-specific phospholipase gene, complete cds	Staphylococcus aures phosphatidylinositol-specific phospholipsse C (pic) gene, complete cds	n 2	uo	q	molysin	asp23-alkaiina shock protein 13 (methicillin resistant) [Staphylococcus aureus, 912, Genomic, 1160 nt]	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolyshn (atl) genes.	Staphylococcus aureus atl gene for autolysin, complete cds and other ORFs	Transposon Th5404 and insertion sequences 181181 and 181182 (from Staphylococcus aureus) DNA	nsertion site	dbj 028879 STAP Staphylococcus aureus gene for penicillin-binding protein 1,	dbj 028879 STAP Staphylococcus aureus gene for penicillin-binding protein 1,	Staphylococcus aureus gane for unknown function and dit operon dit λ , dit β , dit ζ and dit ζ genes, complete cds	Stabhylococcus aureus gene for unkown function and dit operon dith, dite, ditc.	S.aurous factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end
25	own sequences		Staphylococcus aureus SA4 Fts2 (fts2) gene, complete cds	60	S.aureus bacteriophage phi-11 attachment site (attB)	lipoprotein signa	lipoprotein signa	class II analog	phatidylinositol-	phatidylinositol-	emb X62288 SAPE S.aureus DNA for penicillin-binding protein 2	emb x62282 SATS S.aureus target site DNA for 15431 insertion	emi: x61716 SAHL S. aureus hib gene encoding sphingonyelinase	emb X13404 SAHL Staphylococcus aureus hib gene for beta-hemolysin	ein 23 (methicill 60 nt)	1, partial cds, O	gene for autolys	artion sequences	S.aureus (strain RN450) transposon 1n554 insertion site	e for penicillin-	a for penicillin-	e for unkown func lete cds	e for unkown func lete cds	saureus factor essential for expression or gene, complete cds, and trpA gene, 3' end
30	containing kn	name	us aureus SA4	A for nucleas	teriophage ph	us aureus pro	us aureus pro	us aureus MHC	us aures phos ete cds	us aures phos ete cds	for penicill	get site DNA	gene encodin	us aureus hib	isp23=alkaline shock protein 23 aureus, 912, Genomic, 1360 nt)	us aureus ORP	us aureus at l	fransposon Th5404 and inser	rain RN450) tı	us aureus geni	us aureus gen	us aureus gene tD genes,compl	itaphylococcus aureus gene for un ditc and ditb genes, complete cds	S.aureus factor essential for gene, complete cds, and trpA
35	- Coding regions containing known sequences	match gene name	Staphylococ	S. sureus mRN	S.aureus bac	Staphylocoec cds	Staphylococc	Staphylococ	Staphylococcus aure gene, complete cds	Staphylococcus aure gene, complete cds	S. aureus DNA	S. Aureus tar	S.aureus hib	Staphylococc	asp23=alkali aureus, 912	Staphylococcu complete cds		Transposon T	S.aureus (st	Staphylococ	Staphylococc	Staphylococci	Staphylococci dltc and dl	S.aureus faci
40	S. Aureus - Cc	match acession	gh;U06462	emb v01281 SANU S.aureus mRNA for nuclease	ab H20393	gb ын3994	gb ивз994	[gb]u20503	gb L19298	 ab u.9298	emb[x62288]SAPE	emb x62282 SATS	emb X61716 SAHL	emb(X13404 SAKL	gb S76213	gb :,41499 	db) 017366 STAA	gb[143098	gb x02985	db) 028879 STAP	db; D28879 STAP	dbj c86240 p86 2	du j D86240 D862	emb X17688 SAFE
		Stop (nt)	1754	1248	230	516	1046	674	903	1507	1148	1248	540	1187	1049	217	639	2509	325	434	1122	808	666	685
45		Start (nt)	579	517	457	1016	1582	-		1103	_	1904	-	1693	1810	~-	854	1262	- -	865	1829	~	832	1761
		ORF IO	~	~			~	-		~_	-	_	_	~			-	~_		-	_ ~		~_	-
50		Contig	342	344	349	353	353	356	361	361	373	389	400	007	408	418	418	123	422	427	427	435	435	936

TABLE 1

55

																					· — ·
•		ORF nt length	797	954	273	912	609	2991	2418	1329	324	363	291	201	1368	463	630	4 33	540	366	1059
5		HSP nt langth	294	204	187	\$1.	597	653	2418	1328	96	250	224	22	1368	108	323	4 23	540	221	641
10		percent	100	84	86	100	96	۶۶ ا	66	66	100	100	100	96	66	100	8	96	66	66	66
15			osistance (femA)	leucocidins	c (hlgA, hlgB.) gene, complete) gene, complete		Staphylococcus aureus gyrase-like protein alpha and beta subunit (grla and grlB) genes, complete cds	aureus gyrase-like protein elpha and beta subunit (grlà and complete cds		omal protein lymerase beta 6	omal protein lymorasa beta 6	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete	complete cds	Staphylococcus aurene prolipoprotein signal peptidase (1sp) gene, completa cds	Ri gene and	Staphylococcus			[dbf D17366 STAA Staphylococcus aurous atl gene for autolysin, complete cds and other ORPs
20			muly17688 SAFE S. aureus factor essential for expression of mathicillin resistance (fema) gene, complete cds, and trpA gene, 1° and	S and F components of Panton-Valentine leucocidins	Staphylococcus aureus gamma-hemolysin components A. B and C (higA, higB. hglC) genes, complete cds	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) cds	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, cds		alpha and beta	elphe and beta		rpoBirifi and rpoC genes for ribosomal protein rotein ORF101, DNA-directed RNA polymerase beta	S. auraus spil, orf202, spostrif) and spoc genes for sibosomal protein L7/L12, hypothatical protein ORF202, DNA-directed RNA polymoress beta beta' chains	al peptidase (ls	(hysA) gene, comp	al peptidaso (le	Staphylococcus aureus methicillin-resistance protein (mecR) gens and unknown ORP, complete cds	asp23-alkaline shock protein 23 (methicillin resistant) (Staphylococcus aureus, 912, Genomic, 1360 nt)	protein	protein	rsin, complete cd
25	aureus - Coding regions containing known sequences		as factor essential for expression of complete cds, and trpA gens, 1' end	F components of	ma-hemolysin com is	rrolidone carboxy	rrolidane carboxy	ng factor	rase-like protein is	rase-like protein ds	nid genes	.wreus rplL, orf202, rpoB(rlf) and rpoC [J/Ll2, hypothetical protein ORF202, DNA bets: chains	poB(rif) and rpoc stein ORF202, DWA	olipoprotein sign	aureus hyaluronate lyase (hysA) gene,	olipoprotein sign	bethicillin-resista cds	tein 23 (methici) 360 nt)	emb x72014 SAFI S. aureus fib gene for fibrinogen-binding protein	emb x72013 SAFI S. aureus fib gene for fibrinogen-binding protein	gene for autoly
30	containing kr	name	tor essential ete cds, and	3	taphylococcus avraus gamma hglC) genes, complete cds	us aureus pyl	us aureus pyl	e for clumpin	us aureus gyra , complete cds	us aureus gyra i, complete cds	A, agrB and	orf202, hetical p	IL, orf202, m sothetical pross	us aureus pr	us aureus hy	ons entene pr	cus aureus mei 7, complete c	ine shock protein 23 2, Genomic, 1360 nt)	gene for fil	gene for fi	us aurous at
35	oding regions	, match gene name	S.aureus fac gene, compl	S. aureus gen	Staphylococc hglC) genee	Staphylococc cds	Staphylococc	S.aureus ger	Staphylococcu grlB) genes,	Staphylococcus grlB genes, c	S. aureus ag		S. Aureus L7/L12. beta c	Staphylococc cds	Staphylococcus	Staphylococo cds	Staphylococcu unknown ORF,	aureus, 912,	S.aureus fil	S.aureus fil	Staphylococo
40	3, Aureus - C	march	cub N17688 SAFE	omb x72700 SAPV S.aureus genes	gb L01055	1000 1000	dp (n1970	emb 218852 SACF S.aurous gene for clumping fector	95 125288	gb L25288	emb X52543 SAAG S. aureus agrA, agrB and hld genes	em') X64172 SARP	emb X64172 SARP	gb m83994	ab U21221	gb M83994	 ab L14017	gb 576213	emb x72014 SAFI	emb x72013 SAFI	db1 D17366 STAA
		Stop (nt)	1657	1300	2178	1078	1784	4319	5479	6792	889	1560	1534	1168	1370	653	2242	2700	1297	1801	1092
45	•	Start	2403	347	1906	167	1176	7309	7896	R120	995	1922	1244	1388	2737	1135	191	3122	1 758	1436	2150
		98. 10.		-	-		~	12	- _		~				-	~_		-	~	_	-
50		Contig	436	4 5	445	447	40	454	472	472	475	481	481	483	489	503	511	511	520	520	526

LARIE 1

55

		OKP nt length	906	1771	\$32	1185	193	795	1100	591	336	192	363	924	201	315	2814	1929
5		HSP nt	260	998	432	1185	189	22	906	136	1 336	189	*	8.6	122	306	2588	1873
10		percent	66	66	66	91	88	000	66	100	66	100	100	33	96	8	86	66
15		9 0 5 3 2 2 2 2 3 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	complete cds,	complete cds;	Stabhylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, duhydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthacase homolog (garcC) genes, partial cds	Staphylococcus aureus chorismate synthase (aroci and nucleoside diphosphate kinase (ndk) genus, complate cds, dchydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (garcC) genes, partial cds	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and yrranylgeraryl pyrophosphate synthetase homolog (gerCC) genes, partial cds	e, 3' end cds; 3- complete cds;	e, 3' end cds; 3- complete cds;	Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF), complete cds	0		, capac, capab, capam, capan,	, cap8C, cap8D, cap8M, cap8N,	, cap8B, cap8C, cap8D, cap8L, cap8M, cap8N,	plete cds		db. D2R879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds
20			Staphylococcus aureus DAA sequence encoding three ORFs, complete cds. prophage phi-ll sequence hamology, 5' flank	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5: flank	taphylococcus aureus chorismate synthase (arcC) and nucleoside diphospi kinase (ndk) genes, complete cds, duhydroauinate synthase (aroB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial	taphylococcus aureus chorismate synthase (aroc) and nucleoside diphosp) kinase (ndk) gonus, complete cds, dehydroauinate synthase (aroB) and geranyigeranyi pyrophosphate synthetase homolog (gerCC) genes, partial	taphylococcus aureus chorismate synthase (aroc) and nucleoside diphospi kinase (ndk) genes, complete cds, dehydroauinate synthase (aroB) and granylgerenyl pyrophosphate synthetase homolog (gerCC) genes, partial	Staphylococcus aureus dehydroquinate synthase (arob) gene, J' end cds; phosphoshikimate-1-carboxyvinyltransferase (arok) gene, complete cds; ORF), complete cds	Staphylococcus aureus dehydroquinate synthase (arob) gene, J'end cds; phosphoshikimato-1-carboxyvinyltransforase (arob) gene, complete cds; ONF), complete cds	taphylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds; phosphoshikimate-1-carboxyvinyltransfarase (aroA) gene, complete cds; QRF), complete cds			Staphylococcus avreus type 8 capsula ganes, cap8A, cap8B, cap8C, cap8C, cap8E,	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8E,	Skaphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8B, cap8C,	Staphylococcus aureus hyaluronate lyase (hysA) gene, complete cds		n-binding protol
25	sociendes umpu		taphylococcus aureus DNA sequence encoding prophage phi-11 sequence homology, 5' flank	A sequence encode homology, 5' (orismate synthas plete cds, duhyc phate synthatase	orismate synthas plate cds, dehyc phate synthatase	orismate synthas plate cds, debyc phate synthetase	hydroquinate syr oxyvinyltransfer	hydroquinate syr oxyvinyltransfo	hydroquinate syr oxyvinyitransfer	d ginR genes	d ginR genes	pe 8 capsule ger p8H, cap8I, cap8 cds	Lype & capsule ger capAH, capAI, capA ce cds	pe B capsule genes, cap8A, p8H, cap8I, cap8J, cap8K, cds	aluronate lyase	ng factor	ne for penicilli
30	- Cading regions containing known sequences	a name	phi-11 sequenc	taphylococcus aureus DNA sequence prophage phi-11 sequence homology,	occus aureus ch ndk) genes, com eranyl pyrophos	occus aureus ch odk) genes, com eranyl pyrophos	ocus aureus ch idk) genes, com iranyl pyrophos	occus sureus de ilkimate-l-carb aplete cds	taphylococcus aureus de phosphoshikimato-1-carb ONFJ, complete cds	taphylococcus aureus de phosphoshikimete-1-carb ORF3, complete cds	S. aureus (bb270) glnA and glnR genes	S.aureus (bb270) glnA and glnR genes	cap8F, cap8G, cap8H cap8F, cap8G, cap8H	coccus aureus type capAF, capAG, capAH capAF, complete cds	ococcus aureus type B capAF, capAG, capBH, capBP, complete cds	ccus aureus hy	ene for clumpi	cons aureus ge
35	ding region	mostch gene name	Staphyloco	Staphyloco prophage	Staphyloco kinase (r geranylge	Scaphyloco kinase (r geranylge	Staphyloco kinase (r geranylge	Scaphyloco phosphosi ORF3, con	Staphyloco phosphost ORF3, con	Staphyloco phosphost ORF3, con	S.aureus	S.aureus	Staphylocc cap8E, ce cap8O, ce	Staphyloco capAE, ca capAO, ca	Staphyloco cap8E, ca cap8O, ca	Staphyloco	S.aureus gene	Staphyloco
40	s. aureus - Co	match 4cession	gh u19300 	ab;119300 	gb U31979	gb{U31979 	gb u31979	ap r02004	95/1.05004/	pb L05004	emb x76490 SAGL	[emb x76490 SAGL	gb U73374	gb U73374 	gb U73374	[gb;U21221]	emul 218852 SACF S. aureus gene for clumping factor	1951 db.] D2R879 STAP Staphylococcus aureus gene for penicillin-binding protein 1,
		Stop Int)	963	2870	634	2195	2801	3484	4792	5380	338	527	365	1252	1374	705	4288	1953
45		Start (nt)	28	1098	-	1211	5109	2690	3482	4790	_	336	727	2175	1574	1019	1475	3841
		IORF	~-			~			<u>~</u>	• 	-			~		- 2	-	
50		Contig 1D	228	528		230	\$30	\$30	530	\$30	539	539	755	554	55.	584	1 587	598

5	
10	
15	
20	
25	section to se
30	ootajajaja koom
35	S AITANIS - Cadina radions containing known seminaes
40	y and all the
45	
50	

Contig ORF	ORF 11D	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt Length	ORF nt Jength
509		~	745	dbj D86240 D862	Staphylococcus aurens gene for unkown function and dit operon ditA, ditB,	86	338	744
609	-	1628	919	em. x76490 SAGL	S. aureus (bb270) glnA and glnR genes	100	495	613
619		1280	79	911 132303	Staphylococcus aureus lac repressor (lack) gene, complete cds and lach repressor (lack), partial cds	6	639	639
626		2508	1255	gb #63176 	Staphylococcus aureus helicase required for T181 replication (pcrA) gene.	001	225,	1254
626	~	3315	2284	gb M63176	Staphylococcus auraus helicase required for T181 replication (pcrA) gene, complete cds	6	838	1032
629		1999	1001	emb X17688 SAFE	S.aureus factor essontial for expression of methicillin resistance (femA) gana, complete cds, and trpA gena. 3' end	66	966	666
629	~-	1407	1195	emb X17688 SAFE	S.aureus factor essential for expression of methicillin resistance ((enA) gene, complete cds, and trpA gene, 3' end	86	194	2
169	~	1 5126	3228	cmb 218852 SACF	S.aureus gene for clumping factor	82	684	1899
632		٥	281	emb 210588 SAST	S.aureus (RM4220) genes for potential ABC transporter and potential membrana apanning protein	6	549	\$
63.	~ _	529	1323	emb 230588 SAST	S.aureus (RM4220) genes for potential ABC transporter and potential membrane spanning protein	6	795	262
651		1909	1070	ap r19300 	Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; propisgs phi-11 sequence homology, 5: [lank	66	478	8
657	~_	1 800	1108	95 114017	Staphylococcus aureus mathicillin-resistance protein (macR) gene and unknown ORF, complete cds	8	456	969
662	-	908	. 456	emb X13404 SAHL	Staphylococcus aureus hib gene for beta-hemolysin	100	969	453
662	7	230	475	emb(x13404 SAHL	Staphylococcus aureus hlb gene for beta-hemolysin	100	246	246
662	-	146	1399	+nb X13404 SAHL	emb X13404 SAHL Staphylococcus aureus hlb gene for beta-hemolysin	86	683	989
682	 	956	480	125 1163177	S.aureus signa factor (plac) gene, complete cds	100	136	1 (()
685		1182	265	9½ 065000 	Staphylococcus aureus type-1 signal peptidase SpsA (spsA) gene, and type-1 signal peptidase SpsB (spsB) gene, complete cds	86	534	265
685	~	1716	1153	95,065,000	Staphylococcus aureus type-1 signal peptidase SpsA (spsA) gene, and type-1 signal peptidase SpsB (spsB) gene, complete cds	96	564	264
691	-	-	527	gb N63177	S.aureus signa factor (plac) gena, complete cds	100	195	\$25
_ :	7	485	784	gb H63177	S.aureus sigma (actor (plac) gene, complete cds	. 6	280	300
:						*********		*********

	89	081	3	636	369	900	633	555	613	363	122	465	174	159	386	285	23	195	165	264	159	4
ORF nt Length	÷		<u>~</u>	· ·	<u></u>	ف	9	ű.	· •	7	~					7	7	_		_		
HSP nt length	21.7	160	\$22	618	340	267	429	\$50	568	363	961	156	174	131	395	1.0	592	195	691	247	147	
percent ident		97	160	66	- 66	98	- 66	98	- 66	9.6	56	66	66	100	86	66	- B6	901	66	- 66	- 56	
march gene name	dbj DR6240 DR62 Staphylococcus aureus gene for unkown function and dlt operon dltA, dltB,	Stabhylococcus aurous norhll99 gene (which mediates active efflux of fluoroquinolones), complete cds	Staphylococcus aureus DNA for LukK component, LukF-FV like component,	emb Y00156 SASP Staphylococcus aureus VB serine protesse gens	emb Y00156 SASP Staphylococcus aureus VB serine protease gene	emb X01645 SATO Staphylococcus auraus (Wood 46) gene for alpha-texin	emb 249245 5A42 S.aureus partial sod gene for superoxide dismutase	Staphylococcus aureus MHC class·II analog gene, complete cds	Staphylococcus aureus novel antigen gene, complete cds	dbj D14711 STAK Staphylococcus aureus HSP10 and HSP60 genes	emb X58414[SAPD S.aureum pdhB. pdhC and pdhD genes for pyruwate decarboxylase.	recF cluster: dnawareplisome assembly proteingyrb=DWA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt)	Stabity ococcus aureus gyrase-like protoin alpha and bota subunit (grlA and grlb) gones, complete cds	Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	S.aureus rpli, orizoz, rpoB(rif) and rpoc genas for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains	dbj1090119 STAM S. auraus norA gene	embiX32341 SANG S.aureus agrA, agrB and hld genes	emb X52543 SAAG S.aurous agrh, agrB and hid genes	emb 230588 5AST 5.aureus (RM4220) genes for potential ABC transporter and potential membrane spanning protein	S. aureus tagatose 6-phosphate isomerase gene, complete cds	S. aureus tagatose 6-phosphate isomerase gene, complete cds	
inatch acession	db DR6240 DR62	gb H80252	dbj b83951 sTAL	emb Y00356 SASP	emb[Y00356 SASP	emb x01645 SATO	emb 249245 5A42	86 020503	gb u63529	db; D14711 STAH	emb x58434 SAPD	gb S77055	gb L25288	gb L25288	emb X64172 SARP	MATS 6110901 tdb	emb X52543 SAAG	emb X52543 SAAG	emb 230588 SAST	gb H64724	gb N64724	
Stop (nL)	503	502	1197	636	956	709	950	587	687	244	302	467	175	318	39.2	285	7.	522	681	265	396	
	2	79	1736	-	588	8061	1582	1111	5	182	532	_	34.8	4.76	792	-	909	716	517	7	238	
Start (nt)	;		;	; -	:	-	_	-	-	_				~	-	-	-	7	~	-	~	
ORF Start		-		12	-	١	· ·	-	 .	•	•		•	·	·	· —	•	· ·		; — :	:	

S. aurous - Colling regions containing known sequences

Contig	08. 10	Start (nt)	Stop (nt)	match	match gene name	percent ident	IISP nt length	ORF nt length
696	-	~	=	db stan	dbj 190119 STAM S. aureus norA gene	6	395	411
991.	-	1 672	755	emb X52543 SAAG	emb X52541 SAAG S.auraus agrA, agrB and hld genes	66	336	336
0001		1117	845	[gb[L14017]	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	78	190	273
1001		498	265	db3 D86240 D862	Staphylococcus arress gene for unkown function and dit operon dith, dith, ditt, and dith genes, complete cds	66	234	234
1010	-	-	285	122120 96	Staphylococcus aureus hysluronate lysse (hysk) gens, complete cds	66	324	285
1046	-	959	000	emb(x72700 SAPV S.aureus genes	S. aureus genes for S and F components of Panton-Valentine leucocidins	88	205	122
1060		480	786	emb x58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruwate decarboxylese, dihydrolipoamide acetyltransferase and dihydrolipoamide debydrogenase	66	180	195
1073	-	1176	589	gb K02985	S.aureus (strain RN450) transposon Th554 insertion site	700	יכז	888
1079	<u>-</u>	<u>~</u>	730	4115 1086240 10862	Staphylococcus aureus geno for unkown function and dit operon dith, dite, ditc, and ditD genes, complete cds	66	220	228
1079	~-	218	\$	db; D86240 D862	Staphylococcus aureus gene for unkown function and dit operon dith, ditB, ditC, and ditD genes, complete cds	100	267	267
64.01		760	645	th DH6240 DH62	Staphylococcus aureus gene for unkown function and dit operon dith, ditb,	001	186	186
1092		289	9\$1	emb X58434 SAPD	S.aureus pdhB. pdhC end pdhD genes for pyruvete decarboxylese, dihydrolipoamido aceryltransferase and dihydrolipoamide dehydrogenase	86	124	144
1143	<u>-</u>	<i>-</i>	243	an m63177	S.aurous signa (actor (plac) gene, complete cds	- 66	243	. O.
1157	-	~	901	cmb 248003 SADN	cmb 248003 SADN S.aureus gene for DNA polymerase III	97	127	1 501
1189	-	720	1 361	gb 574031	nora vora (159794) [Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]	66	360	360
1190			183	95 1121854	S.aureus agr gene encoding an accessory gene regulator protein, complete cds	100	787	282
1190	~	1127	888	omb X52543 SAAG	omb X51541 SAMG S.aureus agrk, agrB and hld genes	001	240	240
1225	-	~	163	[emb. X17679 SACO	emh X11679 Sko Staphylococcus aureus cos gene for cosgulase	97	124	162
1243		~	529	dbj D86240 D862	Staphylococcus aureus gene for unkown function and dit operon dith, ditB, ditC and ditD genes, complete cds	66	495	528
1244	-	-	, 012	/ un 574031	nork=Nork (15P794) Staphylococcus aurays, NCTC 8125, Insertion, 1820 nt	100	210	210
1001	-	7	472	emb X76490 SAUL	emb X76490 SAUL S.aureus (bb270) glnA and glnR genes	- 66	299	432

5, aurous - Coding regions containing known sequences

Contig	10 03 15	Start (nl)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt length
1315		4.	326	emb x64172 SARP	S. aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/Li2, hypothetical protein ORF202, DNA-directed RNA polymerase beta L beta' chains	86	277	309
1519	_	~	175	db5 D28879 STAP	db; D28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	86	139	174
1663		1346	678	db. DA6240 D862	db. DA6240 D662 Staphylococcus aureus gene for unkown function and dit operon ditA, ditB,	86	672	672
1797		644	324	gb U73374 	Stephylococcus aurens type 8 capsule genes, cap8A, cap8B, cap8D, cap8E, cap8E, cap8E, cap8E, cap8E, cap8H,	66	321	321
1857	-	~	192	90,000,000	Staphylococcus aureus alpha-hemolysin gene, 3° end	98	192	192
1923	-	7	181	emb XL7688 SAFE	S.auraus factor essential for expression of methicillin resistance (fem.) gene, complete cds, and trpA gene, 1' end	200	180	180
1957	-	7	346	685090 q5	Staphylococcus aureus novel antigan gene, complete cds	99	365	345
1988			402	db) D86240 D862 	dby D86240 D862 Staphylococcus aureus gene for unkown function and dit operon ditA, ditB,	100	402	402
2100	-	414	208	ab H63177	S.aureus aigma factor (plac) gene, complete cds	86	207	207
2199	_	-	402	195 [06664]	Staphylococcus aurous DNA (ragment with class II promoter activity	66	123	402
2537		308	136	OBD X17688 SAFE	S. Aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' end	66	153	153
2891		~	400	gb 1.25426	Staphylococcus auraus penicillin-binding protein 2 (pbp2) gena, complete cds	6	399	399
2950	-	87.	398	dbj D30690 STAN 	dbj D30690 STAM Staphylococcus aureus genes for ORF37; HSP20; HSP40; ORF35, complete	100	358	381
2971	-	~	398	gb u51132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthatase (menc) genes, complete cds	6	272	396
2978	-	618	328	6261031979	Staphylococcus aureus chorismate synthame (aroc) and mucleoside diphosphate kinase (ndk) genos, complete cds, dehydroauinate synthamse (aroB) and geranylgeranyl pyrophosphate synthetame homolog (gerCC) genes, partial cds	8	250	291
1 2985	-	832	464	emb X17679 SACO	Staphylococcus aureus coa gene for coagulase	86	347	369
3006	-	2170	1784	95 011779	Staphylococcus aureus methicillin-resistant ATCC 11952 clone RRNV10 169-215	87	83	387
3008		474	238	dbj D30690 STAN	Staphylococcus aureus genes for ORF37, HSP20; HSP40; HSP40; ORP35, complexe cds	88	178	237
3008	~	Ş	281	db; 030690 STAN	dbj U30690 STAN Staphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF33, complete		120	171

		ORF nt length	396	234	153	198	147	258	ca.	761	258	396	1762	201	35	17.1	122	174	210	876	210	17
5		HSP . C	127	234	100		115	183	212 	34	229	250	215	160	142	88	192	154	197		2 	-
10		percent H	- 16		-	001	97	- 1.	6	2	- 66	9	- 56	- 6		100	98 1	- 96	- 68	96	 8	- 96
15				and phospho-beta-	gene, complete cds	e (pcka) gene,	e (pcka) gene,	e (pcka) gene,	poc genes for ribosomal protein DNA-directed RNA polymerase beta 6	Staphylococcus aureus ganes for ORF17; HSP20; HSP10; HSP40; ORF15, complete	gene, complete cds	bosomal protein polymerase beta 6	lete cds	-	and phospho-bota-	decarboxylase, ipoamide dehydrogenase	-		complete cds	oxylase, de dehydrogenase	and phospho-beta-	aplete cds
20			g protein B	-lac (lacE),	molog (put?)	cerboxykinas	carboxykinas	carboxykinas	genes for ri	P20; HSP70; H	molog (put?)	gones for ri -directed RMA	ase III. comp		-lac (lacE),	pyruvate decarb dihydrolipoami			a A and B, co	ruvate decarb lihydrolipoami	-lac (lacE).	lase gene, co
25	iowii sequences		bronectin bindin	c (lac?), enzyme II genes, complete cds	oline permease homolo	aureus phosphoenolpyruvate carboxykinase (pcka) gene	aureus phosphoenolpyruvate carboxykinase (pcka)	aureus phosphoenolpyruvate carboxykinase (pcka) gene		nes for ORF37; HS	oline permease ho	poB(rif) and rpoC otain ORF202, DUA	A for DMA polymer	lymerase III	(lacf), enzyme II nes, complete cds	pdhD genes for py transferase and d	ŧ.	ng factor	nes for DNA gyras	pdhc and pdhD genes for pyruvate decarboxylase, de acetyltransferase and dihydroliposmide dehyd	entyme III-lac (lacF), entyme II-lac (lacE), and idase (lacG) genes, complete cds	ptidoglycan hydro
30	auraus - Coding ragions contaming known sequences	gene name	S. aureus inbB gene for libronectin binding protein	S.aureus enzyme III-lac (lacp), enzyme II-lac (lacE), and phospho-beta-galactosidase (lacG) genes, completo cds	Staphylococcus aureus proline permease homolog (putp) gene, complete cds	Staphylococcus aureus ph complete cds	Staphylococcus aureus ph complete cds	Scaphylococcus aureus ph complete cds	S. aureus rpll, orf202, rpoBrif) and L7/L12, hypothetical protein ORF202, beta' chains	ylococcus aurqus ge	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	S. Aurous rplL, orf202, rpoBirit! and rpoC gones for ribosomal protein L7/L12, hypothetical protein ORF202, DKA-directed RNA polymerase beta beta chains	dbj D86727 D867 Staphylococcus aureus DNA for DNA polymerase III. complete cds	cab 248001 SAIN S. auraus gene for DNA polymerase III	S. oureus enzyme III-lac (lac?), enzyme II-lac (lacE), and phospho-beta-galactopidase (lacG) genes, complete cds	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide ecetyltransferase and dihydrolipoamide dohydrogenase	Š	aus gene for clumping factor	db) חוסאפן SthG Staphylococcus aureus genes for DNA gyrese A and B,	S. aureus pdhs, pdhc and pdhb genes for pyruvate decarboxylase, dihydrollposmide acetyltransferses and dihydrollposmide dehydrogenses	aureus entyme III-lac (lacf), entyme II galactosidase (lacG) genes, complete cds	Staphylococcus aurous peptidoglycan hydrolase gene, complete cds
35	soding re	match		S. sur	Staphy	Staph	Staphy	Staphy	<u> </u>		Staph		Staphy	l S.aur	S.aur	 -		S.aurave	Staph		S.aureus galactos	Staph
40	S aurous - C	match	emb X62992 SAFN	61 502 46	[gh[v06451]	ab u51133	[[[[[[[[[[[[[[[[[[[95[051133]	emb X64172 SARP	dbj D10690 STAN	gb U06453	emb x64172 SARP	dbj D86727 D867	cmb 248063 5AIR	60) 103 479	emb x58434 sAPD	cmb 289233 SARP	emb 218852 SACF	db; 110489 STM	emb 2:38434 SAPD	gb 303479	gb :m6714
		Stop (nt)	-	235	233	287	791	721	215	792	284	397	239	÷	155	398	23	271	211	378	717	61
45		Start (nt)	193		18	06		67		-	27	~	_	3	307	995	463	~	420	-1	420	_
	•	2 G	-		-					=	-		-				_	_	-	-		-
50		Cont ig	1000	3019	3023	3029	3039	3039	3056	3059	3073	3074	3088	1097	3102	1121	3125	1133	3160	3176	3192	3210

TABLE 1

Contig ONF	-	Start	Stop (nt)	match acession	match gene namu	parcent	HSP at	ORF nt length
3232		2106	1282	ab L14017	Staphylococcus aureus mathicillin-resistance protein (mecR) gene and unknown ORF, complete cds	17	257	825
1 3538	_	<i>-</i> :	234	emb x89233 SARP	emb XR9233 SARP S.aureus DNA for rpnC gene	66	356	393
13543	-	1392	654	ab L11330	Staphylococcus aureus transfar RMA sequence with two rANAs	66	102	243
3555	_	637	320	emb 218852 SACF	emb 218851 SACF S.aureus gene for clumping factor	6	307	318
1 3559			182	emb X17679 SACO	emb X17679 SACO Staphylococcus aureus coa gene for coagulase	100	121	180
1359	~	95	3	[emb] X17679 SACO	emb X11679 SACO Staphylococcus aureus coa yene for coagulasa	- 86	174	219
3563		278	₹	57/25/10/48	Staphylococcus aureus proli-protein diacylglycery] transferase (1gt) gene, complete cds	100	29	871
3563	~_	527	1963	1626257196	Staphylococus aureus prolipoprotein diacylglyceryl transferase (1gt) gene, complete cds	86	162	165
3566	-		5	emb X16457 SAST	emb X16457 SAST Staphylococcus aureus gene for staphylocosquiase	96	175	420
3588		~	762	gb L43098	Transpason Th5404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA		253	261
3593	-	-	350	[ab]JB3479]	S. nurous outyme IIF-lac (lacF), outyme II-lac (lacF), and phospho-beta- galactosidase (lacG) genes, complete cds	66	345	348
1 3600	-	758	180	emb 218852 SACF	ent) 218852 SACF S.aureus gene for clumping factor	72	346	378
1 3602	-	788	136	emb 218852 SACF	emb 218652 SACF S.aureus gene for clumping factor	86	319	191
3636	_	1013	528	emis 218852 SACP	cmb/218852 SACP S.aureus gene for clumping factor	- 78	603	486
3682		<u> </u>	536	Cath X64172 SARP	5.aureus rpli, orf202, rpoBirifi and rpoC genes for ribosomal protein L7/Li2, hypothetical protein ORF202, DNA-directed RUA polymerase beta 6 beta' chains	100	231	234
3682	~	224	£	emb X64172 SARP	S. aureus rpli, orf202, rpoB(rif) and rpoC genes for ribosomel protein L7/Ll2, hypothetical protein ORP202, DMA-directed RNA polymerase bata i, beta' chains	001	112	192
1693	-	75.8	1423	amb x62992 SAFN	emb X62992 SAFN S.aureus fnbB gone for fibronactin binding protein B	100	229	336
3702	_	593	354	gh 1.11530	Staphylococcus aureus transfer RNA sequence with two rRNAs	- 52	18	240
2276	-	924	463	emb 218852 5ACF	emb 218852 SACF S.aureus gans for clumping factor	172	367	462
13761		809	450	dp r14017	Staphylococcus auraus methicilin-resistance protein (meck) gane and unknown ORF, complete cds	88	E C	160
3767		-	402	emt X64172 SARP 	S.aureus rpli, orf202, rpoBirit) and rpoC genes for ribosomal procein L7/L12, hypothatical protein ORF202, DMA-directed RNA polymerase bate i beta: chains	es 6	387	402
			<u>.</u>		TABLE 1			

Cont ig	<u> </u>	Start (int)	Stop (nt)	match accasion	natch gene name	percent	IISF nt length	ORP nt length
3775		7	286	emb x64172 SARP	S.aureus rpil, orf203, rpoB(rif) and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	8	122	285
3786	-	456	229	db D10489 STAG	dbj D10489 STAC Staphylococcus aureus genes for DNA gyrase A and B, complete cds	1000	204	228
3786	~	542	366	dbj D10489 STAG	dbj D10489 S7AG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	- 56	123	177
179R	-		251	emb X17679 SACO	eab X17679 SACO Staphylococcus aureus coa gene for coagulase	- 66	249 ,	249
3813	_	5.67	398	gb J04151	S. aureus fibronectin-binding protein (InbA) maNA, complete eds	86	396	396
3819	-	181	707	emb X68425 SA23	ent X68425 SA23 S.aureus gene for 235 rNNA	- 66	191	219
3844	_	932	468	9b U48826	Staphylococcus aureus elastin binding protein (abpS) gene, complete cds	8.1	204	465
3845			381	emb X58434 SAPD	emi X58434 SAPD S.aureus pdhB, pdhC and pdhD gones for pyruvate decarboxylase. dihydroliposmide acetyltransforase and dihydroliposmide dehydrogenase	2	356	
3856		798	00	gb 1.14017	Staphylococcus aureus methicillin-resistance protein (meck) gene and unknown ORF, complete cds	76	192	399
3859	-	1049	573	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	1 88 1	197	477
3871	=	650	נבר	qb N76714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	1001	299	324
3876	-	~	233	dbj p10489 STAG	dbj DlodR9 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	100	217	252
3877		2,5	288	ab Jo3479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds		209	285
1878			7.52	Qmb X58434 SAPD	omb X38434 SAPD S. aureus pdhh, pdhC and pdhD gones for pyrvuate decarboxylaso, dibydrollpoamide debydrogenase	96	155	237
3888	_	_	173	emb x16457 5AST	emb X16457 5AST Staphylococcus aureus gene for staphylocoagulase	- 98	171	171
1893	-	-	183	emb x89233 SARP	emb X89233 SARP S.aureus DNA for rpoC gene	100	170	163.
3893	~	181	357	emb x89233 SARP	emb X89233 SARP S.aureus DNA for rpoC gene	86	66	1 1/1
3894	-		485	emb x64172 SARP	S. aureus rplu, orf202, rpoBirit! and rpoc genes for ribosomai protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta 4 beta' chains	66	4.50	Q
3895	-	#36	420	1910,0041511	is.avreum (ibronectin-binding protein (Inbh) mRMA, complete cds	66	411	437 j
3905	_	£	239	90/105004	Staphylococcus aurous dehydroquinate synthase (arob) gene, J' end cds; J- phosphoshikimate-1-carboxyvinyltransfersse (aroA) gene, complete cds; ORF1, complete cds	9	159	192
3905	~	98	00+	gh 1.05004	Staphylococcus auress dehydroquinate synthase (arob) gene, 1' end cds; 1-phosphoshikimate-i-carboxyvinyltransferase (aroA) gene, complete cds; ORF), complete cds	6	8	213

S. aureus - Coding regions containing known sequences

gene name percent HSP nt OMP nt Ludent Longth Longth	sureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, 99 278 353 dihydrollpoamide acetyltransferase and dihydrollpoamide dehydrogenase	Staphylococcus aureus mothicillin-resistance protein (mscR) gene and 75 175 330 unknown ORP, complete cds	s gene for DNA polymerase III 100 295 345	Staphylococcus aureus gene for staphylocoagulase 98 163. 192	Staphylococcus aureus genes for DNA gyrase A and B, complete cds 99 339 369	s gene for clumping factor 87 221 345	S.aurous gene for clumping factor 373 375	S. aureus gene for DNA polymerase 111 429 429	Stathylococcus aureus methicillin-resistance protein (mecR) geno and '75 196 303 unknown ORF, complete cds	Staphylococcus aureus mathicillin-resistant ATCC 33952 clone RRNV42 165-235 98 127 345 rRNA spacer region	Transposon, Th3404 and insertion sequences IS1181 and IS1182 (from 99 227 300 Staphylococcus aureus) UNA	.aureus pdhD, pdhC and In.'nD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	S.aureus gene for clumping factor	Staphylococcus aurous delydroquinate synthaso (arob) gene, 3' and cds; 3- 98 157 181 phosphoshikimate-1-carboxyvinyltransferase (arob) gene, complete cds;	Skaphylococcus aurous type 8 capsule gones, cap8A, cap8B, cap8C, cap8D, cap8F,	S.aureus fibronectin-binding protein (fnbA) mRNA, complete cds 99 200 213	Staphylococcus aureus methicillin-resistance protein (mecR) gene end 87 150 264 unknown ORF, complete cds	s rpli, ort202, rpoB(rif) and rpoC genes for ribosomal protein 99 297 357 thypothetical protein ORF202, DNA-directed RNA polymerase beta 6 chains	r splt, orf202, rpoB(rif) and rpoC genes for ribosomel protein 98 240 294
match	S gureus pdhB.	Staphy I unknow	S.Aureus gene	Staphyl	Staphyl	S. aureus	S.aureu	S.aureu	Staphyl	Staphy!	Transpo Staphy	S.aureus pdhB, dihydrolipoam	S. aureu	Staphy ly	Staphyl cap8E,	S, aureu	Staphy] unknow	S.aureus L7/L12, beta' cl	S. aureus rpll.
match	emb X58434 SAPD	 ap 174013	emb 248003 SADN	emb x16457 SAST	dbj 010489 STAG	emb 218852 SACF	emb :18852 SACF	emb 248003 SADN	gb L14017	gb U11786	gb 1.43098	cmt X58434 SAPD	emb 218852 SACF	91105004	94 17 2 2 7 4	95 304151	gb L14017	emb x64172 SARP	emb X64172 SARP
Stop (IIC)	359	9110	347	390	371	348	27.5	432	304	Ç	301	ררג	402	4 02	+ 01	247	366	398	294
Start (nt)		-	169	199	_	692	-	960	909	88	~	~	-	22	240	-	629		_
			-	_	-	-	-	-					-			-			<u>-</u> -
Cont.lg CRF	3910	3915	1964	4007	4036	4046	0900	-:	4062	4085	4088	4093	4097	9116	5: 13	4149	4151	4154	4179

Contig	10 10	Start (nt)	Stop (nt.)	match	match gene name	percent	IISP nt Jength	ORF nt length
4203	-	-	255	emb (X89233)SARP	S. aureus DNA for rpoC gene	- 66	239	255
4206	-		303	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	100	236	303
4206	7	195	7	cn:b 218852 SACF	S. aurous gene for clumping factor	28	\$9	150
4208		108	314	emb 256434 SAPD	S.aureus pdhb, pdhc and pdhb genes for pyruvate decarboxylass, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	89	9	207
4216		959	000	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decerboxylese, dlhydrollposmide acetyltransfersse and dlhydrollposmide dehydrogenase	96	326	127
4226	-	\$65	298	dp r11230	Staphylococcus aureus transfer NNA sequence with two rRMAs	97	132	297
4260		216		05 011784	Staphylococcus aureus methicillin-resistant ATCC 33952 clone RRNV40 165-235 rRNA spacer region	2	7	1 891
4272	-	358	6.11	emt: 248003 SAUN	emt: [24800] SAUN S.aureus gene for DNA polymerase III	100	164	1 1.71
4276	- -	-	7,1	emio X16457 SAST	Staphylococcus aureus gene for staphylocosquiase	- 66	150	174
4277		-	270	eml x64172 SARP	S.aureus rpil., orilol, rpobirii) and rpoc genes for riboscomi procein L7/Lil, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	6	265	270
4282		169	77.6	emb X64172 SARP	S.aureus rplL, or(202, rpoBris) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta i. beta: chains	86	282	315
4291		976	191	emb x64172 SARP	S.aureus rpli, orizo2, rpoBirif) and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta: chains	66	183	189
4295	- -	^	329	cmb X16457 SAST	amb X16457 SAST Staphylococcus aureus gene for staphylocoagulase	*	741	327
4313	-	435	280	[gb[L11530]	Staphylococcus aureus transfer RNA sequence with two rRNAs	100	7.	156
4315	-		185	ab 303479 	S.aureus enzyme III-lac (lace), enzyme II-lac (lace), and phospho-beta- nalactnidase (lace) genns, complete eds	100	158	181
4315	~	101	310	gb J03479 	S.aureus enzyme III-lac (lac?), enzyme II-lac (lacɛ), and phospho-beta- galactosidasa (lacG) genss, complete cds	96	5	210
4327	- -	-	294	gb 1.43098	Transposen 715404 and insection sequences [5118] and [51182 (from Staphylococcus aureus) DMA	B6	294	294
4360	-	603	616	016700 96	. ~	1001	- 911	285
4364		•	146	emb x64172 SARP	S. sureus rpli, orizo2, rpod(rii) and rpoc genes for ribosomal protein in/Li2, hypothetical protein ORF202, DIM-directed RNA polymerase beta 6 beta 'chains	\$	9	
4388	-	167	310	emb x62992 SAFN	emb X62992 SAFN S.aureus inbB gene for fibronectin binding pratein B	ے ا	1 611	1 ++1

5

Contig	10 T	Start (nt)	Stop (nt)	match	motch gene name	percent	HSP nt length	ORF nt length	4 .
1401	1_	~	33	emb x62992 SAFN	emb X62992 SAFN S.aureus inbB gene for fibronectin binding protein B	.6	543	312	
4421	-	3,6	1 281	dbj D12572 STA2	dbj D13572 STA2 Staphylococcus aureus rrnA gene for 23S ribosomel RUA	100	112	246	
1426	-	_	293	emb 218852 SACF	emb 218852 5ACF S.aureus gene for clumping factor	88	185	291	
4428		493	248	emh X64172 SARP	emb(x64172 SARP S. aureus rpli., orf203, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta' chains	100	139	346	
4462		7	271	eml. X64172 SARP	S.auraus rpli, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains	66	270	270	
4466	-	-	240	emb 218852 SACF	S.aureus gene for clumping factor	66	231	240	
4469		-	312	gb J03479	S.aureus ensyme III-lac (lacF), ensyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	66	265	312	
4485			263	gb L43098	fransposon fn5404 and insertion sequences [S]181 and [S]182 (from Staphylococcus aureus) DMA	86	259	261	
4492		7	000	gb M86227	Staphylococcus aureus DNA gyrase & subunit (gyr&) RecF homologue (recF) and DNA gyrase A subunit (gyrA) gene, complete cds	88	104	721	
1 4497	-	\$15	502	omb 218852 SACE	emb 2:18ACF S.aurous guna for clumpling factor	66	(12	267	
4529		~	172	emb x64172 SARP	emb X64172 SARP S.aureus rpli., or1203, rpoB(rit) and rpoC genes for ribosomal protein L7/Li2, hypothetical protein ORF102, DNA-directed RNA polymerase beta & beta' chains	<u>0</u>	151	171	
4547	_	_	300	cmb x62992 SAFN	emb X62992 SAFN S.aureus fnbb gene for fibronectin binding protein D	100	157	300	
1 6554	-	318	760	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	18	126	159	
4565	-	6	227	enb[218852 SACF	enb 218852 SACF S.auraus gene for clumping factox	84	(12	219	
4569	-	6.	222	[emb 218852 SACF	emb 218851 SACF S.aureus gene for clumping factor	86	127	144	
4608		2	216	emb X58434 SAPD 5.aureus pdhB,	S.aureus pdhB, pdhC and pdhB genes for pyruvate decarboxylase, dinydrollposmide acetyltransferase and dinydrollposmide dehydrogenase	92	168	195	
4614	-	79	234	emb 218852 SACF	emb 218852 SACF S.aureus gene for clumping factor	98	169	231	
4623	-	105	302	gb J04151	S. aureus (ibronectin-binding protein (inbA) mRNA, complete cds	66	152	198	
4632		81	706	gb,303479	S.aureus entyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta-galactosidase (lacG) genes, complete cdg	86	£ .	189	
4646	-	-	222	emb 218852 SACP	emb 218852 SACP S.aureus gane for clumping factor	8	001	222	
1 4687	-	7	1 166	gb J04151	S.aureus fibronectin-binding protein (fnbA) mRNA, complete cds	86	156	1 591	

5		ontig ORF Start Stop match match gene name percent HSP nt ORF nt ORF nt ORF nt ORF nt ORF nt Inngth Inngth Inngth	75 155 156	4703 1 1 153 cmb X58434 SAPP S.Gureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, 98 103 153
15			() gene end	labe, tehydrogenase
20			te protein (mec	uvate decarboxyl
25	m sequances		cillin-resistan	D genes for pyrinsferase and dil
30	 aureus - Coding regions containing known sequences 	nane -	Staphylococcus aureus methi unknown ORF, complete cds	3. aureus pdh6, pdhC and pdh0 genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase
35	ding regions	match gene	Staphylococ unknown Of	S.aureus po
40	S. aureus - Co	match	gr L14017 	cmb X58414 SAPD S.cureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,
45	•	Stop (nt)	158	153
		Start (nt)	2	4703 1 1
50		ORF	-	
		ont ig	1695	4703

TABLE 2

÷ Ξ \$\$ length (nt) £ 1, 7. . 6 9.1 e sia similar to trimethylamine DH [Mycoplasma capricolum] pir[64950]849950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SOC3) (fragment) protein synthesis initiation factor 2 (infB) (Bacillus subtilis) gi|49319 Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi large subunit of NADH-dayendent glutamake synthase [Plectonema boryanum] Bacteriophage phi-11 int gene activator (Staphylococcus acceriophage phi H. influenzae predicted coding region H10660 [Haemophilus influenzae] S. aurens . Putative coding regions of novel proteins similar to known pruteins Cip-like ATP-dependent protesse binding subunit (Bos taurus) excisionase (xis) (Staphylococcus bacteriophage phi 11) integrass (int) [Staphylococcus bacteriophage phi 11] Integrase (int) (Staphylococcus bacteriophage phi 11) lint gene activator RinA - tacteriophage phi 11 protein kinase C inhibitor-I (Nomo sapiene) nusG gene product (Staphylococcus carnosus) nusG gene product (Staphylococcus carnosus) ORF1 [Staphylococcus bacteriophage phi 11] PET112-11ke protein (Bacillus subtilis) . PET112-like protein (Bacillus subtilis) PET112-like protein (Bacillus subtilis) polyprotain (Bean common mosaic virus) 1.11 protein (Staphylocucus carnosus) unknown (Staphylococcus hasmolyticus) unknown (Staphylococcus haemolyticus) IF2 gene product (Bacillus subtilis) enolase (Bacillus subtilis) S10 [Bacillus subtilis] match gene name |pir|849703|8497 acession 91 143359 05661.11 19 91 1022726 101 1022726 91,1354211 91 1204912 |91|511839 191 1373002 91 1354211 191 971784 1 602031 191 | 581618 |ai|:66161 91 426473 metch 91 | 166159 91 | 166159 91 | 426473 91 | 460259 191 | 166161 91 | 862933 Stop (nt) Start (nt) \$089 1 | 321 £ **8**. ~ -9 01 01 **-**_ -ri ~ 168 157R Contig Ξ

Cont lg ID	<u>8</u> 0	Start (nt)	Stop (nt)	match	makth gen name	e is	1 Ident	length (nt)
4227	7	152	331	[g1]871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	96	91	180
4416	-	570	286	191 1022726	unknown (Staphylococcus haemolyticus)	96	2	285
æ	-	858	430	191 511070	Ured (Staphylococcus xylosus)	ş	90	429
77	- 1	4362	4036	1911581787	urease gamma subunit (Staphylococcus xylosus)	95	79	327
28	-	8794	9114	ptr JG0008 JG00	pir jugonos jugos (ribosomal protein S? - Bacillus stearothermophilus	28	83,	323
154	6	9280	7638	91 1354211	PET112-like protein (Bacillus subtilis)	95	92	745
98.	_	2798	2055	191 1514656	serine O-acetyltransfersse (Staphylococcus xylosus)	\$	8,	744
502	~	4406	4014	91 142462	ribosomal protein 511 [Bacillus subtilis]	8	85	193
205	,	5017	6793	1911142459	initiation factor 1 (Bacillus subtilis)	86	8	225
205	12	11365	10991	91 1044974	ribosomal protein bid (Bacillus subtilis)	85	2	375
259	~	7288	6644	4p P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA S'REGION (ORFL) (PRACHENT).	\$	88	648
302		795	1097	91 40186	homologous to E.coli ribosomai protein L27 (Bacillus subtilis) i 113592 L27 ribosomai protein (Bacillus subtilis) ir C21895 C21895 ribosomai protein L27 - Bacillus subtilis p P05637 RL27_BACSU 50S RIBOSOWAL PROTEIM L27 (8L30) (BL24), i 40175 L24 gene prod	8	68	303
310	-	678	1523	191/1177684	chorismate mutase [Staphylococcus xylosus]	36	92	576
3	-	~	163	pir C48396 C483	pir (48396 (C483 ribosoms) protein L34 - Bacillus stearothsrmophilus	96	8	162
4185	7	125	1277	191 1276841	glutamate synthese (GGGAT) Porphyra purpureal	98	98	153
2	7	1028	123	191 511069	Uref [Staphylococcus xylosus]	*		306
22	- 2	5046	3310	101 410516	urease alpha subunit (Staphylococcus xylosus)	3	95	ינרג
9	-	815	5761	191/666116	glucose kinase (Stephylococcus xylosus)	6	87	958
205	118	110012	9536	01 1044978	ribosomal protein 58 (Bacillus subtilis)	76	78	(1.47)
326		97.66	2542	91 557492	dihydroxynapthoic acid (DRNA) synthatass (Bacillus subtilis) gi[143186 dihydroxynapthoic acid (DRNA) synthatase (Bacillus ubtilis)	*	88	68
717	-	737	955	91/467386	thiophen and furan oxidation (Bacillus subtilis)	36	7.	219
426	-	1 2260	1823	91 1263908	putative (Staphylococcus epidermidis)	94	6)	438
2.5	-	~	355	91 633650	ensyme II(mannitol) (Staphylococcus carnosus)	26	8	354
1017	-	~	229	gi 149435	putative (factococcus lactis)	76	7.3	228
3098	_	30	184	G: 413952	ipa-28d gene product (Bacillus subcilis]	Z	0,0	147
					0452992000000000000000000000000000000000		4111111111	

Contig	ORE	Stert	Stop (nt)	acession ,	match dene name	e is	1 ident	length (nt.)
333	-	630	316	101 1022725	unknown (Staphylococcus haemolyticus)	20	78	315
\$	- 5	1 2089	2259	pir B48396 B483	pir B48396 B483 ribosomal protein L33 - Bacillus stesrothermophilus	8	16	171
101	-2	1745	1383	gi 155345	ergenic efflux pump protein (Plasmid pSX267)	93	83	363
205	124	12227	11865	sp P14577 RL16_	SP P14577 RL16_ 508 RIBOSONAL PROTEIN L16.	93	83	363
259	-	8291	5673	gi 499335	sech protein (Staphylococcus carnosus)	2	98	2619
235	1-	1 2226	1111	91 633650	ensyme Il(mannitol) Staphylococcus carnosus	3	98	1113
=======================================	-	6207	5773	91 1022726	unknown (Staphylococcus haemolyticus)	23	81	435
167	-	152	622	91 46912	riboscmal protein Lil (Staphylococcus carnosus)	2	88	471
1 607	-	1674	2033	91 1022726	unknown (Staphylococcus heemolyticus)	26	63	360
653	-	1 973	897	91 580890	translation initiation (actor 173 (AA 1-172) [Bacillus tearothermophilus]	23	77	486
1864	-	-	194	101 306553	ribosmel protein small subunit (Nomo sapiens)	S	93	192
7662	-	- 28	300	191 (143390	carbamyl phosphate synthetase (Bacilius subtilis)	£	62	273
3232	~	1 907	596	[91 1022725	unknown (Staphylecoccus haemolyticus)	દ	78	312
3761	~	1 794	621	91 1022725	unknown (Staphylococcus haemolyticus)	٤	80 80	174
9.			374	91 142701	putative cytoplismic protein; putative [Bacillus subtlil] sp p17954 uvrs_macsu excinucleass abc Subunit B (Dina Protein) Praction;	92	8	27.
7	-	\$165	6124	gi 1136430	[KIAA0185 protein [Home sapiena]	93	99	210
\$	62	26483	127391	94 467401	unknown [Becilius subtilis]	92	80	606
	9	1 5882	6130	94 530200	[trophoblastin [Ovis aries]	25	2	548
51	-	1 2568	1 2038	91 1022725	unknown (Staphylococcus haemolyticus)	92	80	105
153	-	2760	1362	191 517475	[D-amino acid transaminase [Staphylococcus haemolyticus]	92	98	399
205	=	7495	6962	[91 (49189	sect gene product (Staphylococcus carnosus)	92	85	534
205	6=	110812	110255	gi 1044976	ribosomal protein 13 (Bacillus subtilis)	92	82	1 558
219	-	1 710	1357	[91 1303812	[Yqev [Bacillus subtilis]	8	88	354
**	-	2751	1805	19111405474	[CspC protein [Bacillus cereus]	8	88	231
669	-	02 —	361	01 413999	lpa-75d gene product (Bacillus subtilis)	35	16	342
31	-	- 2	091	pir A45434 A454	pir A45434 A454 ribosomal protein L19 - Bacillus steerothermophilus	93	8	159

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	10 a	Start (nt)	Stop (nt)	match	match gene name	ais 1	• ident	length (nt)
1958	-	524	264	91 (407908	Ellser (Staphylococcus xylosus)	92	90	261
878	- 5	1718	386	19111339950	large subunit of NADM-dependent glutemate synthase [Plectonema borysnum]	92	78	CCC
1585	-	5	324	121 (139950	large subunit of MADH-dependent glutemate synthese [Plectonema boryanum]	8	5	321
3640	-	-	402	01 1022726	unknown (Staphylococcus haemolyticus)	92	19	399
4362		=	178	91 450608	hadw gene of Ecoparl gene product [Escheritchia coli] pir[5]8437[5]8437 hadw protein - Escherichia coli pir[509629[509629 hypothetical protein A - [Escherichia coli (5UB 40-520)	25	16	165
446	-	358	182	[61 1022725	unknown [Staphy]ococcus heemolyticus]	2	82	177
4549	-	462	232	91 1022726.	unknown [Staphylococcus haemolycicus]	32	080	231
4626	-	-	1 224	101 1022725	unknown [Staphylococcus haemolyticus]	35	84	222
7	-	1 1980	£31	191 (535349	CodW (Bacillus subtilis)	18	34	\$\$2
1 28	-	7 -	1126	191 1001376	hypothetical protein (Symechocystis ep.)	7	10	1125
09 -	-	1354	1701	91 1226043	orf2 domstream of glucose kinase (Stephylococcue xylosus)	2	80	348
101	-	1989	1036	91 150728	ersenic efflux pump protein (Plasmid p1358)	16	80	954
187	-	=======================================	1194	91 142559	ATP synthase alpha subunit (Bacillus megaterium)	ĸ	6,	783
205	2	11579	11298	91 40149	S17 protein (AA 1-87) [Decillus subtilis]	٤	93	282
700	-	818	10262	91/1072418	glcA gene product (Staphylococcus carmosus)	16	93	2019
306	-	1 3885	1 2326	94 143012	GMP synthetase (Sacilius subtilis)	2	92	1560
306	_	6168	3826	91 467399	IMP dehydrogenase (Bacillus subtilis)	16	66	1494
310	-	2194	3207	1911117685	ccpA gene product (Staphylococcus xylosus)	16	16	1014
7	-	2974	3150	1911949974	sucrose repressor (Staphylococcus xylosus)	18	62	173
480	_	1606	3042	191 (433991	ATP synthase subunit beta (Bacillus subtilis)	16	88	1437
\$ -		707	1280	91 113366	ademylosuccinate lyase (PUR-B) Bacillus subtilis pir c29326 #285D5 ademylosuccinate lyase (PC 4.3.2.2) - Bacillus ubtilis	91	66	747
282		1064	5 ,	91 297874	fructoss-bisphosphate aldolase [Staphylococcus carnosus] pir A49943 fructoss-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnosus (strain 7H300)	16	ec	450
637	-	-	1536	101 143597	CTP synthetase (Bacillus subtilis)	16	67	1536
688	-	77	359	91 385178	unknown (Bacillus subtilis)	16	99	339

S. aureus - Putative coding regions of novel proteins similar to known proteins

1 468 775 61 16165538	Cont 19 1D	I OR	Start	Stop (at)	match acession	Match gone name	. sin	1 1dent	length (nt.)
1 466 725 64 5110700 Oteo Greathframe (Becherichia coli) 1 2 302 64 5110700 Oteo Greathframe (Becherichia coli) 1 2 302 64 51102725 Juniceon (Bachlylococcus hamolyticus) 1 1 2 302 64 54 54 54 54 54 54 54		-	339	530	191 196558	orix (Bacillus subtilis)	91	11	192
1 2 202 9 146512 DistrictAthionae (Eschwitchia coli!) 1 2 202 9 1652733 Unitroom (Eschwitchia coli!) 1 1 1 1 1 1 1 1 1	2515	-	466	275	91 511070	Ured (Staphylococcus xylosus)	16	88	192
1 177 455 5111027755 Unknown [Staphylococcus hamsolyticus] 1 177 455 5111027756 Unknown [Staphylococcus hamsolyticus] 1 1 177 51175664 Affase [Lactococcus latts] 1 1 177 51175664 Affase [Lactococcus latts] 1 1 177 51175664 Affase [Lactococcus latts] 1 1 1 1 1 1 1 1 1	2594	-	2	207	911146824	bota-cystathionase [Escherichia coli]	16	75	102
1 1.17 445 51 1022756 Unknown [StabPhylococcus hammolyticus] 1 1 177 51 26664 APPase [Lactococcus lacits] 1 1 1 1 1 1 1 1 1	3764	-	647	425	91 11022725	unknown (Staphylococcus hammolyticus)	16	96	423
1 1 177 0 195644 APPase [Lactococcus lactie] 1 1 177 0 195644 APPase [Lactococcus lactie] 1 1 177 0 195644 Apparentation Appar	4011	-	127	495	191 1022726	unknown (Staphylococcus hasmolyticus)	16	64 1	369
1 15 10 10 15 10 15 10 15 10 15 10 10	4137	-	-	177	91 296464	ATPase [Lactococcus lactis]	16	99	177
8 1717 4607	2	-	1 815	1033	191 520401	catalase [Haesophilus influentse]	90	98	219
1 5317 4001 G 1146706 G 101anAte dehydrogenaae Bacillus subtilis 2 2263 1819 61 517475 D-amino acid transmaninae Staphylococcus hemmolyticus 4 4497 3550 61 517475 D-amino acid transmaninae Staphylococcus hemmolyticus 5 2263 2819 61 517475 D-amino acid transmaninae Staphylococcus hemmolyticus 6 4748 4410 61 517475 RNA polymerase alpha-core-subunit Bacillus subtilis 10 7156 6402 61 61889	51		13717	4607	191 580899	OppP gene product [Bacillus subtilis]	90	7	891
17 1662# 16933 sup P05766 RS15. JOS RIBOSORAL PROTEIN SIS (BS18). 1662# 16933 sup P05766 RS15. John Decid transmantare (Staphylococcus hemonlyticus) 4 4497 3550 gu 142463 RNA polymerase alpha-core-subunit (Bacillus subtilis) 10 1550 gu 143463 ribosomal protein SI3 (Bacillus subtilis) 10 1553 1645 6472 gu 178615 ribosomal protein SI3 (Bacillus subtilis) 10 1554 1646 gu 178615 ribosomal protein SI3 (Bacillus subtilis) 10 1555 1549 gu 178615 ribosomal Protein SI3 (Bacillus subtilis) 10 1555 1549 gu 178615 ribosomal Protein SI3 (Bacillus subtilis) 10 1569 gu 178010 ribosomal Protein SI3 (Bacillus subtilis) 10 1569 gu 178010 ribosomal Protein SI3 (Bacillus subtilis) 10 1569 gu 178010 ribosomal Protein SI3 (Bacillus subtilis) 10 10 10 10 10 10 10 1	129	1	5317	1007	gi 1146206	glutamate delydrogenase (Bacillus subtilis)	90	1 76	7161
5 2381 2819 61 517475 D-malino acid Cransaninase (Staphylococcus haemolyticus) 4 4497 1355 91 12463 Run polymerase alpha-core-subunit Bacillus subtilis) 6 4748 4410 91 104499 Intonomal protein S13 (Bacillus subtilis) 10 7165 6404 91 49189 sect gene product (Staphylococcus carnoaus) 11 6645 6472 91 49189 sect gene product (Staphylococcus carnoaus) 12 13692 13496 91 1163303 I.3 (Bacillus aubtilis) 13 13692 13496 91 1163303 I.3 (Bacillus aubtilis) 13 13693 1371 91 1161303 I.3 (Bacillus aubtilis) 1 1 1 1 1 1 1 1 1	164	:	16628	16933		JOS RIBOSOMAL PROTEIN SIS (BS18).	06 1	7.	306
4 4497 1350 91 142463 RNA polymerase alpha-core-subunit [Bacillus subtilis] 6 4748 4410 91 144489 Tibosomal protein Sil Secillus subtilis 10 7165 6404 91 42189 sect game product [Staphylococcus carnoaus] 11 15645 6472 91 42189 sect game product [Staphylococcus carnoaus] 12 11562 11346 91 1163303 L3 [Bacillus subtilis] 13 1565 11346 91 1163303 L3 [Bacillus subtilis] 14 1561 1769 91 12433 Pata-tubulin [Sporidiobolus pararoseus] 15 1025 1717 91 12443 Carbamoyl-phosphate synthesase [Bacillus subtilis] 16 1769 91 163189 R. Jamaschil predicted coding region MJ644 [Bacillus abtilis] 1 1 1 186 91 131189 R. Jamaschil predicted coding region MJ644 [Bacillus abtilis] 1 1 1 1 1 1 1 1 1	171	5	2983	2819	191 517475	D-amino acid transaminase (Staphylococcus haemolyticus)	06	78	165
6 4746 4410 gil 1004899 Iribosomal protein SiJ (Bacillus subtilia) 10 7156 6404 gil 49189 sect gene product (Staphylococcus carnosus) 11 6645 6472 gil 49189 sect gene product (Staphylococcus carnosus) 12 11662 11345 gil 786157 Ribosomal Protein SiJ (Bacillus subtilia) 13 115856 115456 gil 1165130 LJ (Bacillus aubtilia) 14 11581 1747 gil 116413 Carbamoyl-phosphate synthetase (Bacillus subtilia) 15 1025 1717 gil 112443 Carbamoyl-phosphate synthates (Gutamina-hydrolysing) Bacillus aldolyticus 1 954 523 pir 534762 5347 L-serine dehydracase beta chain - Clostriddum sp. 1 3 188 gil 531589 R. Jannaschil predicted coding region NJ624 (Rothanococcus Jannaschil) 1 3 188 gil 13165 Pir TJO481 WWS tryptophanyl-tRNA synthetase (EC 6.1.1.2) (Bacillus ubtilia) 1 1 261 gil 13065 Pubert (Bacillus stearothermophilus) 1 1 261 gil 13065 Pubert (Bacillus stearothermophilus) 1 1 261 gil 13065 Pubert (Bacillus stearothermophilus) 2 667 1200' Gil 13065 Pubert (Bacillus stearothermophilus) 3 188 gil 130643 Pubert (Bacillus stearothermophilus) 4 1059 865 [ci 20643] Pubert (Bacillus stearothermophilus) 5 1059 865 [ci 20643] Pubert (Bacillus stearothermophilus) 6 1050 Pubert (Bacillus stearothermophilus) 7 1050 Pubert (Bacillus stearothermophilus) 8 1050 Pubert (Bacillus stearothermophilus) 9 9 9 9 9 9 9 9 9	205	-	4497	1350	191 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	06	36	948
10 7165 6404 gi 49189 sect gene product [Staphylococcus carnosus] 12 13658 141786157 Ribosomal Protein S19 [Bacillus subtilis] 12558 13496 gi 1165303 Li Raa Staphylococcus epidermidis 12 12558 13496 gi 1165303 Li Raa Staphylococcus epidermidis 12 12558 13496 gi 1165303 Lical Staphylococcus epidermidis 12 1255 1277 gi 12443 Carbamoyl-phosphate synthetase [Bacillus subtilis] 12558 1277 gi 12443 Carbamoyl-phosphate synthase (glutamins-hydrolysing) Racillus aldolyticus 1 1258 1270 gi 198593 Data-tubulin Sporidiobolus pararosaus 1 1848 gi 1511889 M. Jannaschil predicted coding region MJ624 (Rothanococcus Jannaschil) 1 1 1 1 1 1 1 1 1	205	9	4748	4410	91 1044989	ribosomal protein S13 (Bacillus subtilis)	90	13	939
11 6645 6672 91 49189 seet gene product [Staphylococcus carnosus] 1 15856 15496 91 786157 1010somal Protein 319 [Bacillus subtilis] 1 15856 15496 91 165303 124 1240	205	027	1 7165	6404	91 49189	secY gene product [Staphylococcus carmosus]	90	18	162
17 11592 11345 94 7165157 Ribosomal Protein S19 (Bacillus subtilis) 15958 15496 94 7165103 15.0 (Bacillus subtilis) 15958 15496 94 7165103 15.0 (Bacillus subtilis) 15978 1573 94 7165104 15800 15	205	=	6645	6472	91 49189	gene product (Staphylococcus	06	1 78	124
13 13856 15396 91 1165303 L3 Bacillus aubtilis 5 7023 5773 91 1161300 Irea Istaphylococcus epidermidis 6 3178 3947 91 467440 'Phosabnicosylopocophate synthetase Bacillus subtilis gi 40218 PRPP 7 1025 1217 91 918563 Carbamoyl-phosphate synthatase (glutamina-hydrolysing) Bacillus aldolyticus 8 94 523 pir[534762 5347 L-serine dehydratase beta chain - Cloatridium sp. 9 94 523 pir[534762 5347 L-serine dehydratase beta chain - Cloatridium sp. 1 3 188 91 143786	205	127	13692	13345	101 786157	Albosomal Protein S19 (Bacillus subtilis)	06	79	74#
5 7023 5773 91 161300 IcaA Staphylococcus epidermidds 6 3378 3947 91 467440 'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP 7 1025 1717 91 312443 carbamoyl-phosphate synthase (glutamine-hydrolysing) Bacillus aldolyticus 4 1581 1769 91 986963 baca-cubulin Sportdiobolus pararoseus 1 954 523 pir[534762 5347 L-serine dehydratase beta chain - Clostridium sp. 1 9 188 94 1511589 M. samachii predicted coding region MJ624 Rethanococcus Jamaachii 2 667 1200' qi 143786 tryptophanyl-RNN synthetase (BC 6.1.1.2) Bacillus subtilis 3 1 261 91 143065 hubat Bacillus staarothermophilus 4 1059 865 61 1205433 H. influentase pradicted coding region HI1190 Resemblius Influentase		13	15858	15496	91 1165303	[L] [Bacillus subtilis]	06	96	363
6 3378 3947 gri 467440 'phosphoribosylpyrophaephate synthetase [Bacillus subtilis] gri 40218 PRP 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5	260	-	1023	5773	91/1161380	Icah Staphylococcus epidermidia	06	186	1251
2 1025 1717 Guillia Carbamoyl-phosphate synthase (glutamina-hydrolysing) [Bacillus aldolyticus] 4 1581 1769 Guillia Deta-tubulin (Sportdiobolus pararoseus) 1 954 523 pir[534762]8347 L-serine dehydratase beta chain - Cloatridium sp. 1 3 188 Guillia Guillia H. Jannaschii predicted coding region MJ624 [Buthanococcus Jannaschii] 2 667 1200 Guillia Errptophanyl-RNA synthetase (EC 6.1.1.2) Bacillus ubtilia 2 667 1200 Guillia Pir[JT048] Whūs tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus ubtilia 3 1 261 Guillia Hubat Bacillus stearothermophilus 4 1059 865 641 1205433 H. Influenzae pradicted coding region HII190 (Heesophilus Influenzae)	299	<u>~</u> _	87.25	3947	91 467440	'phosphoribosylpyrophosphate synthetase [Bacillus subtilis] gl 40218 PRPP synthetase (AA 1-317) [Bacillus subtilis]	8	18	570
4 1581 1769 g1 98663 Deca-tubulin (Sportdiobolus pararoseus) 1 954 523 pir[534762 S347 L-Serine dehydratase beta chain - Cloatridium sp.	320	- 5	1 1025	1111	191 312 643	carbamoyl-phosphate synthase (glutamins-hydrolysing) (Bacillus aldolyticus)	8	25	693
1 954 523 pir[534762 5347 L-serine dehydratase beta chain - Clostridium sp.	330	-	1881	1769	[91]986963	beta-tubulin (Sporidiobolus pararoseus)	06	08	189
1 3 188 gi 1511589 H. Jannaschii predicted coding region MJ624 [Nathanococcus Jannaschii] 2 667 1200' gi 143786 tryptophanyl-tRNA synthetase (EC 6.1.1.2) Bacillus subtilis 1 1 261 gi 143065 hubar Bacillus stearchharmophilus 1 1 261 gi 143065 hubar Bacillus stearchharmophilus 4 1059 865 61 1205433 H. Influenzae predicted coding region HII190 [Neesophilus Influenzae)	369	-	1 954	523	pir 534762 5347	L-serine dehydratase beta chain - Clostridium sp.	06	"	433
2 667 1200' gi 143786 tryptophanyl-RNA synthetase (EC 6.1.1.2) [Bacillus subtilis]	557	-	-	188	91 1511589	(N. jannaschii predicted coding region MJ1624 [Methanococcus jannaschii)	06	25	186
1 1 261 91 143065 hubst [Bacillus stearothermophilus] 4 1059 865 61 1205433 H. influenzae predicted coding region HII190 [Heemophilus influenzae]	663	~_	667	1200,		synthetase (SC 6.1.1.2) (Bacillus subtilis) ryptophentRMA ligase (SC 6.1.1.2) - Bacillus	g 	23	Š
4 1059 865 Gi 1205433 H. influenzae predicted coding region HI1190 (Heemophilus Influenzae)	21.7	-	-	1 261	91 143065	hubst {Bacillus stearothermophilus	8	19	192
	745	-	1059	865	61 1205433	H. Influenzae predicted coding region HI1190 (Meemophilus Influenzae)	8	18	195

S. aureus - Putative coding regions of novel profeins smaller to known provains

Contig	7 to 01	Start (nt)	Stop (nt)	acession	patch gene name	nia /	1 Ident	length
1007	-	386	265	911113366	adenylosuccinate lyase (FUR-b) (Bacillus subtilis) pir[C79326 #ZBSDS adenylosuccinate lyase (EC 4.3.2.2) - Bacillus ubilis	06	"	180
1054	_	579	111	91 1033122	ORF_(729 [Escherichia coli]		9	
1156	-	117	707	91 1477776	Cipr (Bacillus aubtilis)			
1180	-	408	205	191 1377831	unknown (Bacillus subtilis)	96	2	160
1253	-		462	91 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearothermophilus) if S15936 [NUBSSA qurcose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	8	2, 2,	Ş
2951	-	r	569	91 144816	Cormylestrahydrofolate synthetese (FTHFS) (ttg start codon) (EC .3.4.3)	96	76	267
3140		727	166	91 1070014	protein-dependent Becillus subtilis}	6	:	
4594	-	-	53	91 871784	Clp-like ATP-dependent protesse binding subunit (Bos taurus)	96	7,4	
87		1028	1750	[91 467327	unknown (Bacillus subtills)	68	56	
77		~	203	[gi[153741	ATP-binding protein (Streptococcus mutans)	68		3
811	_	120	398	gi 1303804	YqeQ (Bacillus subtilis)	89		
128	-	3545	7276	911460257	triose phosphate isomerase (Bacillus subtilis)	2	2	
26.	72	11667	12755	[g1[39954	IP2 (sa 1-741) (Bacillus stearothermophilus)	8		
205	=	7.875	7405	141 (216338	ORF for LIS ribosomal protein (Bacillus subtilis)			1007
205	~	16152	15823	191 11165303	[1] [Becillus subtilis]		2 1 2	
270	-	2407	2207	ptr c41902 c419	arsenate reductase (EC 1,-,-) - Staphylococcus xylogus plasmid nexter		200	970
395	~	157	672	91 520574	Glutamate racemase (Staphylococcus haemolyticus)	6		707
3	<u>-</u>	-	839	191 396259	protesse (Staphylococcus epidernidis)	6	99	516
910		-	ž.	9: 40046	phosphoglucose isomarase A (AA 1-449) [Bacillus atearothermophilus irisis5956 NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	6 6	F 7	444
615	-	2124	1210	2180901110	Yqev (Bacillus subtilis)			
841	-	18	141	91 1165303	L) [Bacillus subtilis]			516
1111	-	152		91 47146	thermonuclease (Staphylococcus intermedius)		2 ;	725
1875	-	2	256	91/1205108	ATP-dependent protesse binding subunit (Haemophilus influenzae)	2	2	20
2963	-	-	367	91 467458	cell division protein (Becilius subtilis)		3	6 5
			•			•	3	, 61

Contig 10	98 01	Start int)	Stop (nt)	match	L match gene name	als v	• ident	Jength (nt)
3020	1-	06	362	91 1239988	hypothetical protein (Bacillus subtilis)	89	99	273
3565	-	- 2	804	91 1256635	dihydroxy-acid dehydratasa (Bacillus subtilis)	89	75	199
3586	=	105	374	91 580832	ATP synthase subunit gamma (Bacillus subtilis)	- 69	82	210
3629	-	794	399	9111009366	Respiratory nitrate reductase (Bacillus subtilis)	68	96	396
3688	-	7	9	91 1146206	glutamata dehydrogenase (Bacillus subtilis)	83	25	399
3699		1 794	1399	191 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	62	25	396
4016	1	128	216	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	69	1,	213
117	-	423	301	91 149426	[putative [Lactococcus lactis]	8	92	171
4436	-	1 601	302	91 1022725	unknown (Staphylococcus haemolyticus)	68	90	8
4635	=	320	162	191 1022725	unknown (Staphylococcus haemolyticus)	68	ני	159
7	-	1330	2676	91 520754	putative [Bacillus subtilis]	88	96	1347
42	~	998	848	sp P42321 CATA_	CATALASE (EC 1.11.1.61.	8	96	383
23	_2	6389	1 4722	191 474177	alpha-D-1,4-glucosidase (Staphylococcus xylosus)	88	8	1668
35	91	118018	18617	1911467411	recombination protein [Bacillus subtilis]	88	נג	600
99	-	176	8	91 666116	glucose kinase (Staphylococcus xylosus)	88	נ	468
92	-	1583	1365	91 44095	replication initiator protein (Listeria monocytogenes)	88	je	339
82	-	11514	12719	pir A60663 A606	pir A60663 A606 translation elongation factor Tu - Becillus subtilis	88	79	1206
201	_	4179	4391	191 167181	serine/threonine kinase receptor Brassice napus	88	1.1	213
Ξ	-	2677	8232	91/1022726	unknown (Staphylococcus haemolyticus)	88	22	201
811	~	308	1102	91 1303804	YqeQ (Bacillus subtilis	88	77	1704
=	-	657	9011 -	91 1405446	transkotolase (Bacillus subtilis)	88	22	087
871	_	1 5871	6116	19111118002	dihydropteroate synthase (Staphylococcus haemolyticus)	88	78	246
165		1428	2231	181 40053	phenylalanyl-cRNA synthetess alpha subunit [Secillus subtilis] ir Sll730 YFDSA phenylalaninetRNA ligase (EC 6.1.1.20) alpha ain - Secillus subtilis	Œ Œ	08	804
205	128	15027	114185	19111165306	L2 (Bacillus subtilis)	88	82	843
225	-	1569	868	10111303840	YqfS (Bacillus subtilis)	88	78	672
235	-	7	1975	191 452309	vely1-tRNA synthetase (Sacillus subtilis)	88	16	1974
•								

TABLE 2

#1 1 sim | 1 ident | langth 8, ç mannitol-specific ensyme-III [Staphylococcus carnonus] pirjJ0008[J0008]
phosphoternsferans system enryme II (Er. 7-1, 69), mannitol-specific, factor III - Staphylococcus carnonus spjeri876[PTMA_STACA PTS SYSTEM, MANNITOL-SPECIFIC IIA COMPONENT EIIA-HTL) [| pyruvate decarboxylase (E-1) bete subunit (Bacillus subtilis) gi|1377836 | pyruvate decarboxylase E-1 beta subunit (Bacillus ubtilis) |valy1-thwa syntherase [Bacillus stearothermophilus] sp[Pl191][SYV_BACST | VALIL-TRNA LIGASE] (VALGS). |pir|847154|8471 |signal recognition particle 54K chain homolog Pth - Bacillus subtilis |pir|D47154|8471 |signal recognition particle 54K chain homolog Fth - Bacillus subtilis |glutamate synthase (ferradoxin) [Synachocystis sp.) pir|S46957|546957 | glutamate synthase (ferradoxin) (EC 1.4.7.1) - ynechocystis sp. |glutamate synthase (ferredoxin) (Symechocystis sp.) pir|S46957|s46957 | glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp. ribosomal protein L20 (AA 1-119) (Bacillus atearcubermophilus) if505348[R58520 ribosomal protein L20 - Bacillus arctherophilus novel proteins similar to known proteins pyrimidine nucleoside phosphorylase (Bacillus subtilis) dihydropteroate synthase (Staphylococcus haemolyticus) | O-acetylaerine(thiol) lyase (Spinacia oleracea) |dihydroxyacetone kinase |Citrobacter freundii| nitrite reductese (nirB) (Bacillus subtilis) |glutamate dehydrogenase (Bacillus subtilis) unknown (Staphylococcus haemolyticus) |phosphomannomutase (Mycoplasma pirum) (function umknown (Bacillus subtilis) aconitase [Bacillus subtilis] ORP_F746 [Escherichia coli] S. aureus - Putative coding regions of [Codx [Bacillus subtilis] Codx (Bacillus subtilis) , match gene neme metch acession | 2060 | 1566 | 61 | 1118002 | 4125 | 2926 | 61 | 588559 19: | 1022726 2928 |01|558559 |gi|143797 91 153049 191 | 710018 91 535350 91 1405454 19: | 218277 [01 | 493083 191 (1146206 194 | 606055 91 143378 191 1064791 19 | 39963 91 | 515938 91 | 515938 (91 | 535350 Stop (at) 1 5 | 4570 8 6781 1 1 680 <u>8</u> 0 • 1299 | 1 --- 53 Contin

Contig	OR P	Start (nt)	Stop (nt)	match	march gene name	1 sin	1 ident	length [
2	2	1584	2480	gi (142992	glycerol kinase (glpk) (EC 2.7.1.30) [Bacillus subtilis) pir B45868 B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp P18157 GLFW_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTRANSFERASE) (GK).	83	27	897
96	112	6813	9100	91 467433	unknown (Bacillus subtilis)	87	62	288
127	<u>+</u>	4265	2988	91 556886	serine hydroxymethyltransferase Bacillus subtilis pir 549163 349163 serine hydroxymethyltransferase - Becillus ubtilis	87	۲,	1278
124	-	1 4457	4032	91 556883	Unknown (Bacillus subtilis)	18	99	426
148	- 2	1 3741	4559	01/467460	unknown (Bacillus subtilis)	1 87	70	819
164	=	112710	13810	91 39954	IF2 (am 1-741) (Bacillus stearothermophilus)	82	2	1011
111	- 2	1104	2126	91 467385	unknown [Bacillus subtilis]	69	1 78	1023
1 199	-	1 1982	1158	91 143527	iron-sulfur protein (Bacillus subtilis)	1 87	17	825
199	-	4717	2933	pir a27763 a277	pir A27763 A277 succinate dehydrogenase (EC 1.3.99.1) flavoprotein - Bacillus subtilis	1 87	88	1785
1 205	=	111782	11543	91 1044972	Bacillus subti	8.1	18	240
1 205	=======================================	27261	112607	91 1165309	S3 [Bacillus subtilis]	- 87	25	699
1 222	-	2033	11107	94 1177249	rec1)) gene product (Becillus subtilis)	87	70	927
236	-	1635	1333	91 1146198	[ferredoxin (Bacillus subtilis]	67	80	303
246	- 2	2585	1 2292	191 467373	ribosomal protein S18 (Bacilius subtilis)	1 87	77	294
1 260	- 5	4189	3422	91 1161382	IcaC (Staphylococcus epidermidis)	1 87	72	768
320	_	1696	2393	gi 312443	carbamoyl-phosphate synthase (glutemine-hydrolysing) (Bacillus aldolyticus)	1 87	80	969
380	7	1165	1383	91 162570	ATP synthase c subunit (Sacillus firmus)	1 87	80	219
414	-	006	1073	91/467386	thiophen and furan oxidation (Bacillus subtilis)	87	۲.	174
425	-	1003	762	9311046166	pilin repressor (Mycoplasma genitalium)	97	69	210
448	-	1255	122	91 405134	acetate kinase (Bacillus subtilis)	1 87	25	534
480	-	-	12.	01 142559	ATP synthage alpha subunit (Bacillus megaterium)	1 87	79	111
187	-	~	1352	sp Q06797 RL1_B	SO QO6797 RILL B SOS RIBOSOWAL PROTEIN LI (BLI).	- B7	72	351
1 677	7	1359	955	91 460911	[fructoss-bisphosphate aldolase (Bacilius subtilis)	8.	7.8	597
1 677	_	934	1284	1911460911	[fructose-bisphosphate aldolase (Bacillus subtilis)	£8 1	86	351
876	-		452	91 1146247	asparaginyl-tRNA synthetase (Becilius subtilis)	1 87	62	450
-				**************	r			

Contig	100	Start (nt)	Stop (nt)	match	match gene name	√ sim	1 ident	length (nt)
1376	-	925	214	91,1065555	P46H6.4 gene product [Caenorhabditis elegans]	67	1.81	213
1 2206	-	_	374	91 215098	excisionese (Bacteriophage 194a)	1 6	12	172
1 2938	-		290	91 508979	OTP-binding protein (Bacillus subtilis)	63	69	288
1 3081	-	126	308	91 467399	IMP dehydrogensse [Becillus subtills]	6.1	- 11	183
1535	-	_	100	91 1405454	aconitase (Becilius subtilis)	6	8	199
1 4238	-	547	275	191 603769	lintU protein, urocanase (Bacillus subtills)	62	ا در	(12
-	-	110427	1 8736	1911603769	Hutty protein, urocanase (Bacilius subtilis)	98	72	1692
22		1 4190	8276	91 410515	urease bata subunit (Staphylococcue xylogus)	98	23	453
54	-	2480	1572	191 289287	UDP-glucose pyrophosphorylase (Bacillus subtilis)	98	70	606
124		2336	12.	u 556887	uracil phosphoribosyltransferase (Bacillus aubtilis) pir 549164 549364 uracil phosphoribosyltransferase - Bacillus ubtilis	98	7	624
148	-	1349	3448	91 467458	cell division protein (Bacillus subtilis)	9	75	2100
148	-	1 3638	1 3859	191 467460	unknown [Bacillus subtilis]	98	. 60	222
152	1-	1340	1 2086	gi 1377835	pyruvate decarboxylase E-1 alpha subunit (Bacillus subtilis)	88	75	747
164	F.7	117347	119467	91 1184680	[polymucleatide phosphorylase (Bacillus subtilis)	98	7.2	1212
180	- 2	554	1159	91 143467	ribosomal protein S4 (Bacillus subtilis)	98	08	909
1 205	-	1 2966	1 2592	101 142464	ribosomal protein Li7 [Bacillus subtilis]	96	7.	175
205	<u>~</u> _	113364	112990	191140107	ribosomal protein L22 (Bacillus stearothermophilus) ir s10612 510612 ribosomal protein L22 - Bacillus esrothermophilus	98	87	375
246	-	13463	3140	91 467375	ribosomal protein S6 (Bacillus subtilis)	98	0ر ا	324
1 299	-	1196	1540	ci 39656	apoVG gene product (Bacillus megaterium)	98	0,	345
299		388	4145	91 467440	phosphoribosylpycophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-317) (Bacillus subtilis)	98	18	65
304	<u>~</u>	2170	2523	91 666983	[pucative ATP binding subunic (Bacillus subtilis)	98	99	354
310	-	1487	1678	91,1177684	chorismate mutase (Staphylococcus xylosus)	98	12	192
1337	-	2086	3409	51 487434	isocitrate dehydrogenase (Bacillus subtilis)	98	87	1320
1 339	~	1489	1109	gi 1118003	dihydroneopterin aldolase (Staphylococcus haemolyticus)	98	رد)	180
356	~	2124	346	91/1146219	18.1% of identity to the Escherichia coli GTP-binding protein Era; putative (Bacillus subtilis)	98	23	7157

Contig	<u>R</u> 0	Start (nt)	Stop (nt)	match acession	match gene name	. sim	* ident	length (nt)
***	~	1015	2058	191 1303817	Yqia (Bacillus subtilis)	88	18	1044
581	~	199	452	91140056	phop gena product (Bacillus subtilis)	98	r 	210
642	-	1338	1075		[Epir (Staphylococcus opidermidis]	98	72	138
01.1	1-	622	3.5	91 143326	phop protein (put.); putative (Bacillus subtilis)	98	1 69	376
865	-	1177	890	(91 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	98	z	888
868	-	963	1 1 1	gi 1002911	transmembrane protein Saccharomyces cerevisiae	98	69	171
904	-	-	1 162	91 (1303912	YqhM Bacillus subtilis]	98	7.	162
989	=	1 35	- 63	91 1303993	YqkL (Bacillus subtilis)	98	76	399
1212	=	1 296	150	01 414014	ipa-90d gene product (Bacillus subtilis)	96	70	147
1323	<u></u>		9	01 40041	pyruwake dehydrogenase (lipoamide) (Bacillus stearothermophilus) ir S10798 DESSPF pyruwake dehydrogenase (lipoamide) (EC 1.2.4.1) pha chain - Bacillus stearothermophilus	8	٤	147
1085	~	540	310	91/1354211	PET112-11ke protein (Bacillus subtilis)	86	98	231
1847	-	- -	1 228	71 296464	ATPaso (Lactococcus lactis)	98	69	228
4487	-	1476	240	91 1022726	unknown (Staphylococcus hasmolyticus)	98	נג	237
458)	=	27.6	187	91 1022725	unknown {Staphylococcus heemolyticus	98	29	186
2	-	4287	\$103	91,1502421	13-ketoacy1-acyl carrier protein reductase (Bacillus subtilis)	85	79	753
95	=	130627	29395	0: 11408507	pyrimidine nucleoside transport protein (Bacillus aubtilia)	£	69	1233
89	~	332	1192	91 467376	unknown [Bacillus subtilis]	95	74	198
5	~	880 0	1707	gi 142992	glycerol kinase (glpk) (EC 2.7.1.30) [Bacillus subtilis] pir [B45868] B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp[P18157] GLPP_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTRANSFERASE) (GK).	88	22	828
106	-	1 1505	3490	9i 143766	[thrSv] (EC 6.1.1.3) [Bacillus subtilis]	8	14	1986
128	~	1153	2302	91(311924	glycerladehyde-1-phosphate dehydrogenase (Clostridium pasteurianum) pir 831454 834254 glyceraldehyde-1-phosphate dehydrogenase (EC .2.1.12) - Clostridium pasteurianum	88	٤	1050
129	-	9949	5252	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	92	ετ.	1215
138	°	3475	5673	91 1072419	gleB gene product (Staphylococcus carnosus)	85	7.4	2199
189	-	7	169	91 (467385	unknown (Bacillus subtilis)	98	9	168

		length (nt)	1 616	1 666	390	6171	11.6	2709	336	2478	2115	654	399	109	603	404	237	186	273	297	315	387	384	306	180	246
5		1 ident	27	22	99	10	1 72	13	72	69	89	89	5	55	12	3	1 22	114	74	88	1 49	56	70	3.6	1 19	- 65
10	;	# 1 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	88	88	88	- 88	- 85	98	8	- 85	88	- BS	£	1 85	88	93	88	88	Se .	88	65	2	88	1 88	88	85
15	roteins			7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		***			- ·	9 f 2 1 9 5 5 6 6 5 9 5 9 6 6 6 6 6 6 6 6 6 6 6	[8]		on supplied by	•	us subtilis	41023 DCDA_BACHT	• • • • • • • • • • • • • • • • • • • •	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1788 S01788	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	us influentae)	24997 S24997 einhardtí1	us influenzael		
20	 aureus - Putative coding regions of novel proteins similar to known proteins 			hermophilus					nomelog of E.coll ribosomal protein L21 (Bacillus subtilis) ir [518439[818439 Ribosomal protein L21 - Bacillus aubtilis p[P26908[RL21_BACSU 50S RIBOSDIAL PROTEIN L21 (BL20).	subtilis]	Cip-like ATP-dependent protesse binding subunit (Bos taurus	# 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Method: conceptual translation supplied by	8 6 6 F 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8	signal recognition particle 54K chain homolog Fth - Bacillus subtilis	diaminopimelate decarboxylase (Bacillus methanolicus) sp[e4102] pcDA_BACHT DIAMINOPIHELATE DECARBOXYLASE (EC 4.1.1.20) DAP DECARBOXYLASE).	*		richia coli ir S01788 S01788	, , , , , , , , , , , , , , , , , , ,	* 4 5 9 4 4 4 5 9 9 6 1 9 9 6 1 9 9 9 9	type I restriction enzyme ECOR124/3 I M protein (Haemophilus influenzae)	formate acetyltransferase [Chlamydomonas reinhardtili ir[524997]834999 formate C-acetyltransferase [EC 2.3.1.54] - Lamydomonas reinhardtil	type I restriction enzyme ECOR114/3 I M protein (Maemophilus influenzae		
25	el proteins		lus subtilis]	illus stearot	subtilis)		lus subtilis)	-	protein L21 protein L21 BOSCHAL PROTE	se (Bacillus	ease binding	bt1118]	: Method: co	terocolitics)	S4K chain ho	Se (Bacillus	[54a]	cheni formis)	1-760) (Eacher (EC 2.3.1.5	us gallus]	[Pseudomonas fragi]	OR124/3 1 M g	hlamydomonas (EC 2.3.1.5	me ECOR124/3 I H p	occus cernose	ter capsulatu
30	ing regions of nov	<u>ាម n.ame</u>	ribosomal protein S5 (Bacillus subtills	pir A02819 R585 ribosomal protein 124 - Bacillus stearothermophilus	sech gene product (Secillus subtilis)	MutS (Bacillus subtilis)	ipa-87r gene product (Bacillus subtilis)	aconitase (Bacillus subtills)	omolog of E.coli ribosomal protein L21 [Bacillus subb Ir[51813][51643] Ribosomal protein L21 - Bacillus sub p[P26908]RL21_BACSU 50S RIBOSOMAL PROTEIN L21 (BL20).	ClpC adenosine triphosphatase (Bacillus subtilis)	TP-dependent prote	acetate kinase (Bacillus subtilis)	orf-X, hypothetical protein, author (Bacillus subtilis)	hemin permease (Yersinia enterocolitica)	ognition particle	liaminopimelate decarboxylase (Baci	excisionase (Dacterlophage 154a)	Pyruvate Kinase (Bacillus licheniformis)	pyruvate formate-lysse (AA 1-760) (Escherichi formate C-acetyltransferase (EC 2.3.1.54) -	limb deformity protein (Gallus gallus)	it of HDT (Pseudom	triction enzyme BC	ormate acetyltransferase (Chlamydomonas reformate C-acctyltransferase (EC 2.3.3.54)	triction enzyme EC	glcA gene product [Staphylococcus carnosus]	(ructose enzyme II (Rhodobacter capsulatus
35	itative cod	match gene name	ribosoma1	ribosomal	secA gene	HULS (Bac)	1pa-87r ge	aconitase	homolog of ir S18435 p P26908	Clpc adenc	Cip-like	Acetate ki	orf-X, hyp	hemin perm	signal rec	diaminopim DIAMINOPI	excisionas	Pyruvace K	pyruvate (limb defor	bata-subunit of HDT	type I res	formate ac	type I res	glcA gene	(ructase e
40	S. aureus - P.	match	91 [1044981	pir A02819 R5BS	91 48980	19111002520	91 414011	91/1405454	91 40173	91 442360	01 871784	91 405134	91/1373157	91 541768	pir 847154 8471	91/304355	91,215098	191 1041099	91 42370	91 63568	91 391840	91 1204472	91 18178	94 1204472	01/1072418	[911151932
		Stop (nt)	8106	110596	6101	3159	8783	3186	475	2968	6196	6561	853	467	909	409	251	390	275	299	316	387	386	340	181	930
45		Start Int!	8624	10928	6490	4877	8013	5894	140	5445	6082	1992	1251	159	1208	416	487	776		595	630	-		2	7	\$75
		01 01	2	2	-	-	6	~		-	-	~		~			-	_ _	-	-	-	_	-	-	=	
50		Contig	205	205	220	231	243	249	302	333	364	448	747	986	1089	1163	1924	2932	0000	- X	8776	3435	4042	1 4053	410A	4300

TABLE 2

S. aurous - Putative codiny regions of novel proteins similar to known proteins

Contig	108 F	Start (nt)	Stop (nt)	match	match gene name ()	. sim	1 ident	length (nt)
1 4392	=	627	355	181 1022725	unknown (Stanhylococcus haemolyticus)	85	76	273
4408	-	~	235	91 (871784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	98	62	234
4430	=	578	1 291	01 1009366	Respiratory nitrate reductase [Bacillus subtilis]	88	69	288
4555		2	253	91 450688	hadw gene of Ecopril gene product [Recharichia coli] pir[53847][538437] hadw protein - Escharichia coli pir[509629 509629 hypothetical protein A - Escharichia coli 508 40-520	£.	25 ,	252
4611	-	1	242	91 1256635	dihydroxy-acid dehydratase (Bacillus subtills)	88	59	240
-	==	=	10591	ti 46982	losB gons product (Staphylococcus spideraidis)	9	89	153
2	~	1348	2711	01 142450	lahrC protein (Bacillus subtilis)	a	95	177
91	-	1803	4652	91 1277198	DNA repair protein [Deinococcus radiodurans]	8 6	.9	2850
22	-	1535	1128	01 511069	Uref (Staphylococcus xylosus)	78	Et	408
23	-	\$ \$05	5306	191 603320	Yer082p Saccharomyces cerevisiae	70	19	252
3	Ξ.	111597	111165	191 1303948	Yqiw (Bacillus subtilis)	ě	89	453
<u></u>	=_	114059	12770	144 142613	hranchad choin alpha-kono acid habydrogenama E2 (hacillus aubills) gi[1303944 BimBB [Bacillus aubills]	2	r.	1290
07	-	1332	982	191 46647	ORF (repE) (Staphylococcus aureus)	6	99	151
1,	-	2513	4311	191 142993	glycerol-J-phosphata dehydrogenase (glpD) (EC 1.1.99.5) (Bacillus ubtilis)	84	74	1800
86	-	4324	9609	191 467427	imethionyl-tRNA synthatase (Bacillus subtilis)	£	99	1773
100	•	9501	8680	91 1340128	ORF1 (Staphylococcus aureus)	5	78	822
111	-	1934	3208	91 1237019	Srb (Bacillus subtilis)	8	89	1275
148	9	4720	0.95	91 467462	cysteine synthetase A [Bacillus subtilis]	7 0	69	156
152	-	2064	2456	[9: 143377	pyruvate decarboxylasa (E-1) alpha subunit (Bacillus subtilis) pir 816118 HEBSPA Hyruvate dehydrogemasa (Hpoamido) (EC 1.2.4.1) lpha chain - Bacillus subtilis	ē	00	<u></u>
169	_	- 3634	3861	91 1001342	hypothetical protein [Symechocystis sp.]	10	99	228
171	-	2992	2657	191 517475	D-smino acid transaminase (Staphylococcus haemolyticus)	ě.	r	300
186	9	6941	6216	191 467475	unknam (Bacillus subtilis)	84	20	726
205	_	6261	5695	91 216340	ORF for ademylate kinase (Becillus subtilis)	8	17	570
224	~	915	1391	91 208269	beta-fructofuranosidase [Staphylococcus xylosus]	2	70	677

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig ORF 10 10	08F		Stop	natch	match gene name	e is	1 Ident	length (nt)
251	-	- 82	388	191 1303790	Yqe1 [Bacillus subtilis]	3	69	297
282		1526	2836	91 143040	glucamate-1-semialdehyde 2,1-aminotranaferase [Bacillus subtilis] pir[b42728]D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	2	75	1311
100	-	8616	1 2959	91/1070014	protein-dependent (Bacillus subtilis)	76	62	180
320	-	1 2343	4229	91 143390	carbamy phosphate synthetase (Bacillus subtilis)	76	100	1887
27.6	-	-	296	191 1022725	unknown (Staphylococcus haemolyticus)	94	0,	294
=	~	1 2201	13.	91 1256146	YbbQ (Bacillus subtilis)	96	9	1981
- 53	-	_	392	91 1046173	osmotically inducible protein (Mycoplasma genitalium)	8	83	190
19		1362	2270	91 40211	Ebreonine synthase (thrC) (AA 1-352) [Bacillus subtilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis	8	\$	909
1 487	-		1 299	[91]1144531	integrin-like protein alpha Intip (Candida albicans)	84	46	297
160	-	624	905	pir 508564 R3BS	ribosomal protein S9 - Bacillus stearothermophilus	ž	69	282
164	1	R16	[6]	pir 508564 R3BS	ribosomal protein S9 - Bacillus stearothermophilus	8	נר	198
548	_	: :	14.	1011411231	אוז שכון הפושאספט (Bacillus caldolyticus)	Z	\$ C	339
728	~	1 2701	1748	oi 912445	DNA polymerase (Bacillus caldotenax)	84	89	954
694	_	_	1 257	yi 1510953	cobalamin biosymthesis protein N (Methanococcus jannaschii)	84	38	255
954	_	308	156	19) 1405454	acomiting (Bacillus subtilis)	=	57	151
756			395		recombination protein (ttg start codon) (Bacillus subtilis) gi 1303923 RacN (Bacillus subtilis)	2	5	193
975	-	_	452	9: 885934	CipB (Symechococcus sp.)	98	0,	450
1 1585	-	_	1 257	111510140	ligoendopeptidaso F (Lactococcus lactis)	84	95	255
2954	-	-	1323	191 603769	HutU protein, urocanase (Bacillus subtilis)	78	ετ	121
2996	-	059	348	91 18178	formate acetyltransferase Chlamydomonas reinhardtii ir 524997 formate C-acetyltiansferase (EC 2.3.1.54) - lamydomonas reinhardtii	96	9	101
3766	-	1 737	375	13: 1517205	67 kDa Nyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	æ	22	36.
4022	<u>-</u>	~	169	91 1146206	glutamate dehydrogensse [Bacillus subtilis]	8	24	891
4058	-	620	1 312	1.11151932	[fructose enzyme II [Rhodobecter capsulatus]	88	12	309
4108	~	106	1351	91/1072418	gick gane product (Staphylococcus carnosus)	8		246

TABLE 2

1 sim | 1 ident | length 5 5 inidazolegiycerol-phosphate synthase (cyclase) (Methanococcus jannaschiil branched chain aipha-keto acid dehydrogenase El-bata [Bacillus ubbilis] alcobol dehydrogenase I (adba) (BC 1.1.1.1) [Zymomonas mobilis] | pir|als260[als260 alcobol dehydrogenase (BC 1.1.1.1) I - Zymomonas obilis glutamate synthase large subunit (EC 2.6.1.53) [Escherichia coli) pir[A29617]A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain Escherichia coli lactate debydrogenase (AC 1.1.1.27) (Bacillus celdolyticus)
prf829704[BJ9734 L-lactate debydrogenase (EC 1.1.1.27) - Bacillus
eldolyticus aureus - Putative coding regions of novel proteins similar to known proteins lumazine synthase (b-subunit) (Bacillus amyloliquefaciens) replication initiator protein (Listeria monocytogenes) initiation protein of replicaton (Bacillus subtilis) JORF for L30 ribosomal protein (Bacillus subtilis) fumarase (citG) (as 1-462) (Bacillus subtilis) cysteinyi-tRNA synthetase [Bacillus subtilis] phospho-beta-glucosidase (Bacillus subtilis) | liutU protein, urocanase (Bacillus subtilis) GTP-binding protein (Bacillus subtilis) urease accessory protein (Bacillus sp.) ORF6 gene product (Bacillus subtilis) ORF2 gene product (Bacillus subtilis) unknown (Bacillus subtilis) ORF75 (Bacillus subtilis) ORFU [Lactococcus lactis] YQDK [Bacillus subtilis] orf4 [Bacillus subtilis] YqhH [Bacillus subtilis] kdpB (Escherichia coli) , match gene name match acassion 191 1303894 |91|1212730 191 1212175 101 11210488 121 1039479 91 | 580902 9 | 520844 191 | 216337 151 467419 101 | 508979 91 603769 91 634107 191 | 903307 91 289284 91 146208 1 1576 |94 | 393297 114722 |13745 |91|142612 |ai |143132 91 506381 195 | 467391 191 49316 101 39844 91 44095 | 4 | 3933 | 3571 ONF | Start | Stop 1 4 | 2043 13 | 3468 112 | 5749 1 1 3119 7.7.0 ~ <u>-</u> Ξ Courtin S Ş ç

S. aureus - Putative coding regions of novel proteins similar to known proteins

length	099	169	7.1	180	- ese	1 162	1771	607	2	324	1 90	792	243	270	222	165	69.1	909	1 921	1 000	1 006	1656	342	1 2433
* ident	٩	۲9	99	Ç	22	5	9,	S	69	\$	\$	5	Ę	E	7	79	69	2	88	۶	69	9	99	20
E si	2	63	S	8	ຂ	2	2	8	8	8	8	6	9	2	2	8	62	8	93	83	82	83	83	82
Amitch gene name	DNA polymerase I [Becilius stearothermophilus]	protesse (Staphylococcus epidermidis)	elanine dehydrogenase (EC 1.4.1.1) [Bacillus stemrochermophilus] pir 834261 834261 alanine dehydrogenase (EC 1.4.1.1) - Bacillus tearothermophilus	ademylosuccinate lysse (PCR-8) [Becillus subtilis]; ir c39336 WZBSDS ademylosuccinate lysse (PC 4.3.2.2) - Becillus ubtilis	DNA topoisomerase [[Bacillus subtilis]	M. Jannaschil predicted coding region MJECL28 (Mathenococcus jannaschil)	ORTHININE AMINOTRANSFERASE (Becilius subtilis)	lexA (Bacillus subtilis)	cryptophanyl-tRNA synthetsse (EC 6.1.1.2) (Bacillus subtilis) pir JT0481 YMSS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	[Prof [Bacillus subtilis]	ORF_0294 (Eschottchia coli)	hypothetical yest protein 1 (Mycoplasma capricolum) piri648578 [548578] hypothetical protein - Mycoplasma capricolum SGC3) (fragment)	thioredoxin reductase (Eubacterium acideminophilum)	clumping factor (Staphylococcus aureus	unknown (Staphylococcus haemolyticus	gicB gene product (Staphylococcus carnosus)	uvs402 protein (Streptococcus pneumonise)	[uvs402 protein [Streptococcus pneumonime]	N-acetylneuraminate lyase (Haemophilus influentae)	catalase [Bacteroides (ragilis)	sporulation protein (Bacillus subtilis)	oligo-1,6-glucosidase (Bacillus cereus)	unknown [Bacillus subtilis]	transfer RNA-Lou synthetase (Bacillus subtilis)
match	91 806281	91 396259	9: 142455	91 143366	191 520753	91 1522665	91 1064807	91 289288	91 143786	91 1109687	41 482532	yi 950062 	191 1353197	191 197526	91 1022726	191 1072419	191 153854	9i 153854	51 1204400	91 841192	101,143607	161 139431	91 467410	911143148
Stop (nt)	662	1566	179	1438	889	361	296	167	150	326	366	305	303	172	[22]	1 261	1191	1798	8724	2019	3489	13925	118014	3313
Start nt	-	916	355	1617	7	200	120	_	296	649	B.C.C.	ž.	63	540	7	٠6	295	1193	9644	986	2590	12270	[17673	
200	-	~		-	=	~	=	-	-	=		~	-	=	-	-	~	_	=	-	٠	Ξ.	25	i - i
Contig	387	527	ŝ	536	652	174	R9.7	1213	2529	2973	1001	3035	3064	445R	4570	4654	92	16	5	· Ç	23	%		19

Jength (nt)	2157	2211	1 6171	252	1557	954	1440	1092	1 894	231	1 099	918	216	912	2010	\$76	286	152	972	1368	1233
1 ident	64	99	65	\$	99	3	1 69	1 59	59		20	69	69	19	1 69	62	112	- 65	68	63	69
nis '	83	82	82	82	82	22	82	82	42	82	2	82	82	82	82	88	82	82	8	82	85
parch gene name	elongation factor G (AA 1-691) (Thermus aquaticus thermophilus) it S15928 EFTWG translation elongation factor G - Thermus aquaticus plei1551 EFG_THETH ELONGATION PACTOR G (EP-G).	phosphoribosylformyl glycinamidine synthetase II (PUR-Q) [Sacillus ubtilis]	dihydroxy-scid dehydratase (Bacillus subtilis)	orfl 5' of Fth - Bacillus subtills		9)vcerophosphoryl diester phosphodiesteras (Bacillus subtilis) pir 537251 537251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	unknown [Bacillus subtilis]	thiophen and furan oxidation (Bacillus subtilis)	ORF (19% protein) (Enterococcus faecalis)	[Gapt protein [Listeria monocytogenes]	Hoppoptide antiblotics iturin A Bacillus subtilis sp P39144 LP14_BACSU LIPOPETTIDE ANTIDIOTICS ITURIN A AND SURFACTIN IOSWATHESIS PROTEIN.	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	Salmonalla typhimurium 15100 insertion sequence from SARAI7, artisl. , gonn product (Salmonella typhimurium)	[ca8 [Staphylococcus epidermidis]	quinol oxidase (Bacillus subtilis)	ORF5; This ORF includes a region (aa23-103) containing a potential ronsulphur centre hamologous to a region of Rhodospirilium rubrum nd Chromatium vinosum; putative (Bacilium stearothermophilus) pring PQ0239 hypothetical protein \$ (glda 3: region) -	ribosomal protein L1 (Bacillus subtilis)	Yqeb (Bacillus subtilis)	YqfE (Bacillus subtilis]	YqhX (Bacillus subtilis)	tryptophen synthase beta subunit (Lettococcus letis) pir (535129 [535129 tryptophen synthase (EC 4.2.1.20) beta chain - actococcus lactis subap.
match	gi 48240	91 143369	91 1256635	pir A47154 A471 forf1 5'	91 460258	91 (403373	191 11377831	gi 467386	91115356	91 1001878	91 473916	91 517205	91 439619	191 1161381	91 143397	Q 1429B1	91 436574	92 1303793	91(1303821	1303913	91 149521
Stop (nt.)	11318	3260	5380	3493	5933	21.82	1	1094	4039	4225	20707	1722	1651	4296	2855	7945	1342	618	4024	3073	2864
:	~	5470	3662	3242	77.64	1229	~		3572	4455	21366	805	3866	5207	4864	8520	1055	262	1053	4440	4096
Start (nt)	9162	'n					· —	: :	- :	-:		:		- :	_		- 1	:	; - ;	: - :	
ONF Start	7 316	7	9	-	9	~	<u>-</u>	_	-	-	=_	7		_	_	2	2	~	-	-	-

S. aurous - Putative coding regions of novel proteins similar to known proteins

length (nt)	822	613	189	200	1.11	794	180	210	182	1002	1 765	190	306	151	327	150	219	180	801	23	722	207
1 ident	1 69	- 69	99	5 .	19	69	69	- 38	69		72	- 09	- 69	- 12	72	99		- 79	- 09	42	78	3
E .	82	93	82	E	82	82	82	82	83	3	23	82	62	62	82	8	95	82	92	2	28	2
motch gene name	glycereldehyde-J-phosphate dehydrogenase (Bacillus tearothermophilus)	spore germination and vegetative growth protein (Meemophilus influenzae)	aspartata transcarbamylase (Becillus aubtilis)	decxyrlbodipyrimidine photolysse Bacilius subtilis pir[AJ7192] AJ7192 uvr8 protein - Bacillus subtilis sp P14951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	4-4	sack gane product (Staphylococcus carnosus)	phosphoribosyl aminolaidazole carboxy formyl ormyltransferase/Inosine monophosphate cyclohydrolase (FUR-H(J)) Secillus subtilis	cell division protein (Becillus subtilis)	[function unknown [Bacillus subtilis]	uroporphyrinogen decarboxylase (Bacilius subtilis) pir B47045 847045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acillus subtilis	ATP binding protein (Borrelia burgdorferi)	transfer RNA-Tyr cynthetase (Bacillus subtilis)	gamma-hemolysin [Staphylococcus sureus]	NKJ-dependent NAD synthetase (Escharichia coli)	Ellace (Staphylococcus xylogus)	ribosomal procein LJS (AA 1-66) [Becillus stearothermophilus] ir S05347 RJBS35 ribosomal protein LJS - Becillus earothermophilus	ATPARS subunit opsilon (Bacillus stearothermophilus) sp[P42009 ATPE_BACST ATP SYMTHASE EPSILON CHAIN (EC 1.6.1.34).	unknown (Bacillus subtilis)	ribosomal protein L9 (Bacillus subtilis]	ribosumel protein 1.9 [Bacillus subtilis]	secA protein [Staphylococcus carnosus]	orfY 3' of comk [Bacillus subtilis, R26, Peptide Partial, 140 asj pirjstisizjs43612 hypothetical protein Y - Bacillus subtilis spjeto398 YHAD_BACSU HYPOTHETICAL PROTEIN IN COMK 3'REGION (ORFY)
metch scession	gi 142952	91 1204354	91 143387	91 142521	191 853767	gi 426472	(41)143373	91 467458	91 1064787	191 143043	191 1027507	1911143795	91 577647	91/146974	91 407908	91 19962	91 534655	91 467402	91 467335	51 467335	41 499335	91 546918
Stop (nt)	2573	11227	181	1210	184	90	386	77	283	1176	599	399	306	155	375	150	ŝ	224	139	5	238	210
Start Int)	3394	10415	_	1007	1560	40	\$65	422	564	175		01	-	202	63	-	567	\$	276	558	474	416
OR ID	-	=	-	2	-	7	~	=	-		-	_	-	-	-		~	_ 	-	~	-	
Cont lg	=	:	446	462	527	6.R0	724	763	818	858	A95	929	961	1192	1317	1341	2990	3024	3045	3045	3091	3107

1 2 319 01 12086 Initiae reducessa siph submit [Breherichia coli] 1909153 NaQo_CONI 1909153 Naqo_C	Contig	2 C	Start (nt)	Stop (nt.)	metch	match gene name	418	1 ident	length (nt)
1 1225 1274 691 1199573 ppsB 59hikapanoma sp. 1 1 1518 1219 191 166679 Lygine specific permase (Scherichia coli) 2 1461 1469 191 191 166679 Lygine specific permase (Scherichia coli) 3 1461 1469 14690 C-phosphopicane (Scherichia coli) 4 1373 1219 191	4332		2	319	9 42086	NITREE FEBUCEASE ALPHA SUBURIL [ESCHETICHIA COII] P[POSIS2 [MARG_ECOLI RESPIRATORY NITRATE REDUCTASE 1 ALFHA CHAIN (EC 7.99.4). (SUB 2-1247)	95	27	318
1 618 221 61 16578	2	_	13275	1 2574	91 1199573	spaß (Sphingowonas sp.)	26	79	702
1378 1379 1410	\$	-	638	1321	91 466778	lysine specific permesse (Escherichia coll)	8	\$	318
1 1519 1519 pir 516449 5164 celtoc protein - Secilius subtilia 2 154 1494 pir 5103451 Negly (Bacilius subtilia) 3 1419 7971 pir 44920 6-phosphoglucomate dehydrogenase (Eacherichia colli) 4 1419 7971 pir 44920 6-phosphoglucomate dehydrogenase (Eacherichia colli) 5 10057 10119 pir 440105 pircomate timese (Bacilius subtilia) 6 1176 pir 740105 pircomate timese (Bacilius subtilia) 7 7 7 7 pir 440105 pircomate timese (Bacilius subtilia) 8 17 1798 pirl pirl	8	- 5	1 4051	1 4350	191(1045937	 H. genitalium predicted coding region MG246 (Mycoplasma genitalium) 	16	62	8
2 344 1494 64 100361 19qJ (Bacillus subtilis) 10157 10119 91 14030 6-Phosphoglucomate dehydrogenase (Edcherichia coli) 1136 1011019 91 14030	22	-	1578	2579	pir S16649 S166	dciAC protein - Bacillus subtilis	18	55	1002
8 9419 7971 Gil 146910 G-Dhosphoglucomate dehydrogenase [Escherichia coli] 11786 10119 Gil 140105 Gil 101005 Gil 11786 Gil 11788 11788 11788 11788 11788 11788 11788 11788 11788	2	~	354	1494	196[1]0361	YqjJ (Becillus subtilis)	16	69	E .
9 10757 10119 gi [41016 permosa o Bacillus subtilis]	53	=	9419	17971	91 1146930	6-phosphogluconate dehydrogenase [Eacherichia coli]	15	99	1449
10 1356 11786 01 143015 Glucomate kinese (Bacillus subtilis) 1368 13166 pic 122302 Literate dahydropanae (EC I.I.177) - Bacillus subtilis 12 1208 2317 01 122302 Mid-raded protein (Heamophilus influence) 1 145 1374 01 141017 1pa-91d gene product (Bacillus subtilis) 1 145 1374 01 141017 1pa-91d gene product (Bacillus subtilis) 1 145 1374 01 141017 1pa-91d gene product (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	3.	6	10757	611011	[91 [143016	permesso (Bacillus subtilis)	8	65	639
17 17983 12156 pir A25805 A-lactate dehydrogenase EC 1.1.27] - Bacillus subtilis 2 2708 2217 gi 222102 NiffG-related protein (Hemmophilus influenzae) 3 2708 2217 gi 212102 NiffG-related protein (Hemmophilus influenzae) 4 745 774 774 1974 gi 212102 5 10645 12338 gi 1524192 6 6088 3471 gi 1524192 8 10208 2280 gi 1524192 9 10208 2280 gi 1524192 9 10208 2280 gi 1524192 1 430 226 gi 112562 1 430 2276 gi 112562 1 430 2277 1 430 2277 1 430 2277 1 430 2277 1 430 2477 1 430	5	=	113360	111786	01 143015	pluconate kinese (Becillus subtilis)	93	3	1575
1 745 374 Gil 122202 [NIGU-related protein [Heampohlius influenzae] 1 745 374 Gil 1220202 [Nigu-93d game product [Bacilius subtilis] 12202	23	=	113983	113366	pir 125805 A258		97	7	618
1 745 374 G1 414017 Ipn-93d gene product [Bacillus subtilis] 1942176 NARH_BACSU 12084 4861 95 971342 Initrate reductase beta subunit [Bacillus subtilis] 19843 12138 95 1554322 GDsA (Bacillus subtilis] 19943 12138 95 1554322 GDsA (Bacillus subtilis] 19964 12138 95 1633 12138 95 1633 121381 12138	91	~	2708	1 2217	91 1222302	Nitu-related protein (Heemophilus influentee)	8	*	492
6 64.38 4861 91 971342 Initrate reductase beta aubunit [Bacillus subtills] sp[P42176 NAH_BACSU NITRATE REDUCTAGE BETA CHAIN [EC 1.7.99.4). 15 10845 12338 91 524192	, K6	-	148	374	191 414017	ipa-93d gene product (Bacilius subtilis)	a	70	372
15 10845 12338 91 1524392 Coba (Bacillus subtilis) 5 1676 4413 92 1433193 Criose phosphate (somerase (Bacillus megaterium) 6 6048 5471 92 1439163 Alanine dehydrogenase (Bacillus subtilis) 7 835 91 1439163 Riamonella typhimurium 15300 Insertion sequence (rom SARA17, artial.), 8 835 91 183795 Riamonella typhimurium 15300 Insertion sequence (rom SARA17, artial.), 8 835 91 183705 Riamonella typhimurium 15400 10	101	۰	6438	4861	91 97 342	nitrate reductase beta subunit [Bacilius subtilis] sp[P42176 NARH_BACSU NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).	91	64	1578
5 1676 4413 0: 44319	120			12338	91 1524392	GDsA (Bacillus subtilis	160	69	1494
9 [10308 9280 0: [399163] slandshe dehydrogenase [Bacillus subtilis] 1 43 845 9: [419619 [Salmonella typhimurium IS300 Insertion sequence from SARA17, artial.], 1 450 226 9: [1125826	128	~	97,96	4413	[0:[141319	triose phosphate isomerase (Bacillus megaterium)	æ	79	138
6 6008 5471	3	~	10308	9280	10: [299163	alanine dehydrogenase (Sacillus subtilis)	81	89	1029
1 450 226 gi 1125826 RIBOSCOKLL, PROTEIN S2. 1450 226 gi 1125826 RIBOSCOKLL, PROTEIN S2. 1 450 226 gi 1125826 RIBOSCOKLL, PROTEIN S2. 1 450 226 gi 1125826 RIBOSCOKLL, PROTEIN S2. 1 450 2677 gi 467404	143	<u>-</u> _	6098	5471	91 439619	(Salmonella typhimurium 15100 insertion sequence from SARAll, artial.), gene product (Salmonella typhimurium)	81	19	619
1 450 226 gi 123826 short ragion of weak similarity to tyrosine-protein kinase receptors in a fibromectin type III-like domain (Caenorhabditis elegans) 5 2000 2677 ni 467404 unknown (Bacillus aubtilis) 2 1081 2149 gi 16510 succinateCoA ligase (GDP-forming) (Arabidopsis thaliana Ir S10579 S10579 succinateCoA ligase (GDP-forming) (BC 6.2.1.4) pha chain - Arabidopsis 1 1 981 pir 50941 S094 spoilE protein - Bacillus subtilis 1782 1784 protein - Bacillus subtilis 1782 1784 1784 1785	169	-	Ç	825	91 897795	305 ribosomal protein (Pediococcus scidilactici) sp Pe9668 RE2_PEDAC 305 RIBOSOWAL, PROTEIN S2.	81	\$9	783
5 2000 2677 nil467404 unknown [Bacillus aubtlis] 2 3081 2149 gi 16510 succinateCoA ligase (GDP-forming) [Arabidopsis thaliana Ir 530579 530579 1 1 981 pir 509411 5094 spoili protein - Bacillus subtilis Braden 2 (RP-2) (FRACHENT) 1 1 981 spip28367 RF2_B PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRACHENT)	230	- -	450	326	91 1125826	short region of weak similarity to tyrosine-protein kinsse receptors in a fibromentin type III-like domain (Caenorhabditis elegans)	83	\$	225
2 3081 2149 gi 16510 succinateCoA ligase (GDP-forming) (RC 6.2.1.4) pha chain - Arabidopsis succinateCoA ligase (GDP-forming) (RC 6.2.1.4) pha chain - Arabidopsis thaliana (fragment) thaliana (fragmen	233	~	2000	2677	ui 467404	unknown [Bacillus subtilis]	81	9	678
1 1 1 981 pir 509411 5094 spoiliE protein - Bacillus subtilis 3752 2691 sp[p20167]8F2_B PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRACHENT).	241	~	3081	2149	91 16510	succinateCoA ligase (GDP-forming) (Arabidopsis thallana) it 530579 530579 succinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis thallana (fragment)	£	69	933
3 1752 2691 Sp[P28367 RF2_B PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRACHENT).	256		-	1981	pir 509411 5094	spoiii protein - Bacillus subtilis	19	59	981
	259	_	3752	1 2691	[sp[P28367 RF2_B	PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRAGMENT).	18	65	1062

		:	- : -		· : -	- • -	- • -	- • -	- <u>+</u> -	- + -	- • -	- • -		- +		_ • -	- + -			- +						
5		Length	1854	732	1308	300	240	109	1068	975		195	106	609	237				199	150	189	222	126		324	399
		1 Ident	89	63		49	3	99	69	G	69	65	65	99	57				5,	22	- 57	7	62	1 95	89	- 69
10		E o i	81	18	18	81	63	81	18	81	81	18	18	18	5		=	=	81	81	2	91	- 18	6	£	=
15	oteins	* 6 9 4 6 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	lus ubtilis)	influentael	•	• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	illus influenzael				053 522053 ×	Borica				near	\$44944 S44944	icalium)				7, artial.1.	
20	 aureus - Putative coding regions of novel proteins similar to known proteins 		L-glutamine-D-fructome-6-phosphate amidotransferase (Becillus ubrilis)	M. influenzee predicted coding region HI0594 (Heemophilus influenzee)	t111s	• • • • • • • • • • • • • • • • • • • •			luenzaej	methylated-DMAprotein-cysteine methyltransferase (Masmophilus influentse)	, , , , , , , , , , , , , , , , , , ,	•	•	Manganese superoxide dismutase (Becillus caldotnas) ir S22053 S22053 superoxide dismutase (EC 1.15.1.1) (Mn) - Bacillus idotenax	pir (537043) (5370 hypothetical protein 16 (ompli 3' region) - Selmonella typhimurium				dipeptide transport ATP-binding protein (Haemophilus influentae)	symergohymanotropic toxin [Staphylococcus intermedius] pir S44944 S44944 symergohymanotropic toxin - Staphylococcus ntarmedius	M. genitalium predicted coding region MG423 (Mycoplasma genitalium)	helicase (Autographa californica nuclear polyhedrosis virus) sp p24307 V141_NPVAC HELICASE.	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)		[Salmone]la typhimurium IS300 insertion sequence from SARA17, artisl.]. gene product [Salmone]la typhimurium]	
25	el proteins si	ŀ	losphate amidot	Ing region HID	(Bacillus sub				semophilus inf	teine methyltr	18]	subt111s	1	ase (Secillus	pli 3. region)	cterium leprae	•	11116)	ding protein (1	Staphylococcus Staphylococcus	Ing region MG42	nica nuclear p	arboxylase (Re		0 insertion se phimurium	
30	regions of nov	9880	O-fructose-6-pho	e predicted cod	adenylosuccinate synthetaxe (Bacillus subtilis)	ichia coli	resolvase (Transposon Tn917)	ichla colli	Aspartyl-tRNA synthatasa (Haemophilus influenzae)	DMAprotein-cys	unknown (Bacillus subtilis)	spolif protein - Bacillus subtilis	s subtilis)	langanese superoxide dismutase (Bacillus superoxide dismutase (EC 1.15.1.1) (Mm)	protein 16 (ompli 3: regi	protein kinase PknB (Hycobacterium leprae)	us subtilis)	transketolase (Bacillus subtilis)	Insport ATP-bind	synergobymenotropic toxin [Staphylococus intermedius] synergobymenotropic toxin - Staphylococcus ntermedius	a predicted codi	sp P24307 V143_NPVAC HELICASE.	rophosphate dec	ORP_(188 (Escharichia coli)	Selmonella typhimurium 15200 insertio gene product (Selmonella typhimurium)	Affese (Lactococus lactis)
35	stative coding	match gene name	L-glutamine	K. influenza	Adenylosucci	queA (Escherichia coli	resolvase [T	yeeD (Escharichla coll)	asparty1-tRN	methylated-D	unknowm (Bac	spolite prot	Bex (Bacillus subtilis)	Manganese su superoxide	hypothetical (fragment)	protein kine	YqhU (Bacillus subtilis)	transketolase	dipeptide tra	synergohymenc synergohymer	M. genitalium	helicase (Aut sp P24307 V3	mevalonate py	ORF_(388 (Esc	Salmonella t gene product	Affase (Lacto
40	S. aureus . P.	match	91 726480	91 1204844	91 467328	01 147485	91 154961	91 405955	91/1204570	91 1204652	91 467416	pir 509411 5094	911606745	91 39453	P11 [0370H3]C370	91 1262360	91 1303902	91 1405446	91 1205429	91 487686	91 1046138	91 559164	91 1322245	7537137	91 439619	1 401
		Stop Int.)	3581	735	1406	5889	1376	1342	2471	5706	1135	603	6154	9111	SH89		1064	÷30	907	10	189	69	241	239	325	403
45		Stert (nt)	1728	1466	- 66	5590	- 61	1034	1404	6251	1707	=	-	1727	1,653	1105		98	198	252	-	670	89	475	~	-
		<u>8</u> 0	~	_	-	-		~		-	- 5			~_		_ 	~	-		~	-			_		-
50		Contig	275	285	296	302	2	5	360	364	372	392	404	426	4.RO	625	154	842	953	961	1035	1280	11716	3715	3908	3940
	•	- •					_ •				- •	- •	- +							:		:	:	_ :	:	_ :

5

Contig ORP ID ID	OR C	Start (nt)	Stop (nt)	match aression	, match gene name	E E	1 Idont	length (nt.)
3954	1-		338	91,1224069	emidase [Horaxella catarrhalis]	91	1 89	318
4049		337	170	91 603768	Hurt procesin, imidazolome-5-propionate hydrolase [Bacillus subtills] gil 601768 Hurl protein, imidazolome-5-propionate hydrolase Bacillus subtilis]	£	8 9	168
4209		-	324	95 403373	qlycerophosphory disater phosphodissesse Bacillus subtilis pir 53721 537251 lycerophosphory disater phosphodiseterss - acillus subtilis	8g	88 ,	324
4371		627	322	911216677	indo apyruwate decarboxylase Enterobecter cloacee pir 516013 516013 indo apyruwate decarboxylase (EC 4.1.1) - nterobacter cloacee	81	27	306
4387	-	19	228	193 460689	[TVG (Thermoactinomyces vulgaris]	- 81	- 89	210
4191	-	- 5A1	306	[gi 1524193	unknown [Mycohacterium tuberculosis]	18	69	276
4425	-		<u> </u>	91 143015	[gluconate kinase (Bacillus subtilis]	6	99	1339
•	-	1593	1 847	91 1064786	function unknown [Bacillus subtilis]	9	62	747
17		*	ā	91 559164	halicase [Autographa californica nuclear polyhedrosts virus] sp p24307 v143_NFVAC HELICASE.	9	9	234
\$	- 2	1159	2448	91 1109684	Prov [Bacillus subtilis]	- 80	63	1290
\$	- 5	4032	433	91 1109687	ProZ [Bacillus subtilis]	80	- 55	702
54	-	110266	9502	91 563952	[gluconate permesse (Bacillus licheniformis]	08	62	765
79	122	8852	1545	91 854655	Na/H antiporter system (Bacillus alcalophilus)	80	62	1308
62	Ξ	8087	8683	191 559713	ORF (!lomo saplens)	80	89	597
63	92	13781	114122	191 305002	ONF_f156 (Escherichia coli)	80	9	342
2	12	111495	10296	191 1303995	YqkN [Bacillus subtilis]	90	99	1200
2	-	6136	7130	91 467428	unknown Bacillus subtilis}	98	69	295
86	2	7294	183	91 467430	unknown (Becillus subtilis)	98	99	540
86	Ξ.	7820	18737	91 467431	high level kasgamycin resistance (Bacillus subtilis)	9	19	916
109	9.1	14154	14813	94 560875	ipa-57d gene product [Bacillus subtilis]	00	59	099
112	13	114294	16636	91 1072361	pyruvate-formate-lyase (Clostridium pasteurianum)	98	9	2343
139	-	1448	726	191 506699	CapC (Staphylococcus aureus)	9	88	123
139	-	6712	1 1448	191 506698	Cap8 [Staphylococcus aureus]	08	89	732
134	-	1.726	1 2870	51 1146242	aspartate 1-decarboxylase (Bacillus subtilis)	2	19	402
				,				

Contig ORF ID 10	ORF TO	Start (nt)	Stop (nt)	match ,	natch gane name	E .	1 ident	length (nt)
177	2	2012	2842	91 467385	unknown (Bacillus subtilis)	80	70	157
184	9	6124	5912	91 (161953	85-kDa surface antigen (Trypanosoma cruzi)	90	99	213
186	-	5368	2875	91 289282	glutamyl-tRNN synthetame [Bacillus subtilis]	80	9	1691
i	2	15796	115140	01 40103	ribosomal protein L4 (Bacillus stearothermophilus)	9	99	657
207	-	160	1315	91 460259	enolase (Bacillus subtilis)	8	69	1176
7117	1	1078	1590	91 410131	ORFX7 [Bacillus subtilis]	08	15	53
235	~_	1962	1255	01/11/3797	valyRNA synthetase (Becillus steerocharmophilus) ep[81931 SYV_BAC67 VALYLFRNA SYNTHETASE (EC 6.1.1.9) VALINETRNA LIGASE) (VALNS).	9	\$	294
239	<u>-</u>		1263	9(143000	proton glutamate symport protein [Bacillus stearothermophlius] pir 526247 526247 glutamate/aspartate transport protein - Bacillus tearothermophlius	2	5	1263
272	-	1 2724	2461	191 709993	[hypothetical protein [Bacillus subtilis]	- 80	*	264
301	-	1446		91 467418	unknown Bacillus subtilis	90	95	336
310	-	1 5697	4501	1911117686	acuC gene product (Staphylococcus xylosus)	90	.9	1197
9.5	-	525B	1006	181 348053	acatyl-CoA synthetase (Sacillus subtills)	80	69	1749
910	~	7410	5113	191 1103865	[formyl-tetrahydrofolate synthetase (Streptococcus mutans]	08	63	1704
325	-	1114	1389	91 310325	outer capaid protein (Rotavirus sp.	89	Ç	276
722	-	1268	636	91 537049	ORF_0470 (Escherichia coli)	O&	\$\$	69
374	-		1228	91 1405448	(Ynef (Bacillus subtilis)	08	10	200
375	- 2	: —	īc.	91 467448	(unknown (Bacillus subtilis)	80	69	270
386	_	267	587	91 1064791	[function umknown [Bacillus subtilis]	80	9	321
394		<u>.</u>	629	91 304976	neiches PS00017: AFP_GFP_A and PS00101: EFACTOR_GFP; similar to longation (actor G, TetW/TetO tetracycline-resistance proteins Escherichia coli	98	65	651
456	<u>-</u>	625	1263	51 1146183	putative (Bacillus subtilis]	80	65	619
475	_	-	654	191 288269	bata-fructofuranosidase (Staphylococcus xylosus)	Ç.	99	Š
546	~	1449	2240	pi 529754	spec (Streptococcus pyogenes)	90	S.	192
622	-	1623	187	[91]1483545	unknown (Mycobacterium tuberculosis)	80	65	\$ 2
719	-	-	1257	(91 1064791	[function umknown (Becillus subtilis]	80	89	1257
92.	-	107	838	911666983	putative ATP binding subunit (Becilius subtilis)	80	19	22.

LABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont 14	, a	Start (nt)	Stop (nt)	match	match gene name	E .	* ident	length (nt)
745	~	581	414	191 1511600	coentyme PQQ synthesis protein III (Methanococcus Jannaschii)	98 —	61	168
822		1.7	619	91 410141	ORFXI7 [Becillus subtilis]	90	88	663
627	-	991	836	11205301	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	08	24	156
1044	1-	-	691	191 60632	vp2 [Marburg virus]	80	\$\$	147
1220	-	172	-	pir A61072 EPSG	gallidarmin precursor - Staphylococcus gallinarum	080	K	159
2519	-	25	215	191 147556	dp Escherichia coli	ON I	Ç	201
2947	1-	\$03	279	191 1184680	polymucleatide phosphorylase (Bacillus subtilis)	80	62	522
3120	-	2	226	1911517205	(67 kDa Hyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	1 80	65	225
1610	<u></u>	294	148	91(151259	HNG-Cok reductase (EC 1.1.1.88) (Pseudomonas mevalonili pir A44736 A44736 hydroxymethylglutaryl-Cok reductase (EC 1.1.1.88) Pseudomonas sp.	80	83	141
3560	- 2	285	- F	61 217130	photosystem I core protein B (Symechococcus valcanus)	08	20	150
3655	1	4	346	91 415855	deoxyribose aldolase (Mycoplasma hominis)	90	56	300
3658	~	324	284	101 551531	2-nitropropane dioxygenase (Williopsis saturnus)	80	24	192
1769	=	798	98	191 1133950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	90	89	199
37R1	=	692	348	91 166412	NADII-glutamate synthase (Medicago sativa)	08	62	345
39 A 8	1-	87	1 287	91 1204696	[fructose-permease IIBC component (Haemophilus influentae)	08	69	240
4030	=	172	1 287	91 (1009366	Respiratory nitrate reductase (Bacillus subtilis)	980	09	285
4092	=	55	275	91(1370207	orf6 [Lactobacillus sake]	80	69	1 273
4103	-	680	75	93666 199		08 —	9	666
4231	-	692	348	91 289287	[UDP-glucome pyrophosphorylame [Bacillus subtilis]	08	9	365
4265		595	299	91 603768	Hur; procein, imidazolone-5-propionate hydrolase (Bacillus subtilis) gi 603768 Hur; protein, imidazolone-5-propionate hydrolase Bacillus subtilis	8	G.	297
4504	1=	498	1 250	91/1339950	large subunit of NACM-dependent glutamate synthase [Plectonema boryanum]	80	89	249
7	-	5998	6798	10 [535351	[Cody [Bacillus subtilis]	64	63	1 801
-		8295	705 I	41 603768	<pre>fult protein, imidazolone-5-propionate hydrolase [Bacillus subtills] gi 603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus subtilis]</pre>		3	1245
25	9	1 5273	5515		pir A36728 A367 acyl carrier protein - Rhizobium meilloti	67	s9 -	243
			1					

1173 1424 91 147923 1 204 91 666115 3002 1550 91 144906 560 4554 91 144906 560 4554 91 144906 7792 9372 91 145093 7792 9372 91 145668 2440 1356 91 1498296 259 1098 91 266697 1644 1156 91 1458602 259 291 91 755602 1039 587 91 237874 7584 6874 91 1314298
·;;-;;
3660 7489 71190 7792 2240 1644 1644 1039 1039
60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Contig ORF ID ID	10 OZ	Start (nt)	Stop (nt)	match acession	match Gene name	ais '	1 ident	length (nt)
352	9	10106	9886	91 216854	P47K Pseudomonas chlororaphis)	62	88	1221
412	-	1153	578	1911143177	putative [Becillus subtilis]	62	51	576
481	1	129	11124	91 786163	Ribosomal Protein L10 (Bacillus subtilis)	6.	99	204
516	-	1 702	352	191 805090	NisF [Lactococcus lactis]	96	69	151
\$25	~	2457	1426	91 143371	phosphoribosyl spinoinidazole syntherase (PUR-WY: (Bacillus subtilis) pri H29326 A2BSCL phosphoribosylformylglycinamidine cyclo-ligase EC 6.3.3.1) - Bacillus subtilis	97	19	1032
538	-	3448	1 2825	191 1370207	orf6 [Lactobacillus sake]	97	5	624
5.10	-	~	421	191 476160	arginine permease substrate-binding subunit (Listeria monocytogenes)	61	19	420
645		2663	13241	191 153898	transport protein (Salmonella typhimurium)	62	29	678
6.83	-	35	1374	101 1064795	[function unknown [Bacillus subtilis]	66	62	300
#16	-	4100	13987	191 1407784	orf-1; novel antipen (Staphylococcus aureus)	6	8	714
2929	-	-	- -	91/1524197	[glycine betaine transporter OpuD [Bacillus subtilis]	62	59	199
2937	-	1357	1 202	pir S\$2915 S\$29	nitrate reductase alpha chain - Bacillus subtilis (fragment)	61	28	156
2940	-	168	_ 385	14 149429	putative [Lactococcus lactis]	6	72	384
2946	-	570	286	91/143267	2-oxogiutarate dehydrogenase (odhA; EC 1.2.4.2) {Bacillus subtilis}	6,	61	285
2999	-	_	717	1911710020	nitrite reductase (nirB) [Bacillus subtilis]	61	89	210
3022	-	1 514	777	1911450686]-phosphoglycerate kinase [Thermotoga maritima]	6	19	183
3064	-	_	7.	91 1204436	pyruvate.formate-lyase [Haemophilus influenzae]	62	09	312
3083	-	~	1220	191/1149662	hypD gene product (Clostridium perfringens)	79	98	219
3126	-	104	Ę	19: 11339950	large subunit of NADII-dependent glutamate synthase [Plectonems boryanum]	79	35	162
3181	-	607	326	19111339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	25	89	282
3345	-	-	476	191,1871784	Clp-like ATP-dependent protease binding subunit (Bos taurus)	62	63	474
3718	-	536	270	pir C36889 C368	leuB protein, inactive - Lactococcus lactis subsp. lactis (strain ILI403)	67	11	267
3724	- 7	159	1 0	121 1009366	Respiratory nitrate reductase (Bacillus subtilis)	79	64	243
3836	-	809 -	212	(21 (1524193	unknown (Mycobacterium tuberculosis)	62	65	297
3941	-	~	- i	91/415855	decaygibose aldolase (Mycoplasma hominis)	25	24	333
411	-		2	91/163015	glucomate kinase (Bacillus subtilis)	79	S	339

Cont ig	ORF CI	Start (nt)	Stop (nt)	match	match gene name		1 Ident	length (nt)	
4501	-	90+	1 209	91 1022726	unknown (Staphylococcus hasmolyticus)	23	99	198	
4612	-	~	238	91 460689	TVG Thermoactinomyces vulgaris	91	88	237	
~	-	~	1213	91 520753	DNA topoisomerase I (Bacillus subtilis)	8r	9	1212	
ec	~	2266	1220	91 216151	DNA polymerase (gene L, ttg start codon) [Bacterlophage SP02) g1[579197] SP02 DNA polymerase (se 1-648) [Bacterlophage SP02] pir[A21498]DJBPS2 DNA-directed DNA polymerase (EC 2.7.7.7) - phage P02	92	ζ,	1047	
6	-	1340	1089	91,1064787	function unknown (Bacillus subtills)	7.8	57	152	
2	-	6803	2017	91 146974	NH3-dependent MAD synthetase (Escherichia coll)	7.8	63	900	
32	-	1 2941	3138	91 290503	glutamate permease (Escherichia coll)	96	53	198	
2	152	117684	116221	91 1303941	Yqlv [8acillus subtilis]	9,6	88	1464	
12	7	110520	12067	91 1072418	gick gene product (Staphylococcus carnosus)	78	65	1548	
99	-	1 679A	5812	91/1212729	YqhJ (Bacillus subtilis)	98	69	987	
69	-	4029	4376	91 466612	nika (facharichia coli)	18	1,1	348	
	-	10058	10942	91 467380	stage 0 sporultion (Bacillus subtilis)	18	20	885	
102	=	R574	06 101	011149426	putativo (Lactococcus lactis)	78	61	1557	
113	9	3540	1 4463	1911854234	cymc gane product Klabsialla oxytoca]	96	36	924	
ž	~	1889	1901	91 405622	unknowm [Bacilius subtilis]	86	09	A28	
877	_	1805	2260	911256536	putative (Becillus subtilis)	92	12	456	
6	-	184	1377	91 168060	lamb (Emericella niculans)	78	\$3	375	
166	-	1 7125	(919	91 451216	Hannosephosphate Isomerase [Streptococcus mutans]	78	63	696	
186	_	1586	267	191 289284	cysteinyi-tRNA synthetase (Bacillus subtilis)	78	63	792	
561	-	2749	2315	91 1353874	unknown (Rhodobacter capsulatus)	78	28	435	
661		4279	3623	91 143525	succinate dehydrogenase cytochrome b-558 subunit (Bacillus subtilis) pir A19941 DEBSSC succinate dehydrogenase (EC 1.3.99.1) cytochrome 558 - Bacillus subtilis	87	æ	657	
661		7209	\$557	9. 142521	deoxyribodipyrimidine photolysse (Bacillus subtlis) pir AJ192 AJ192 uvrB protein - Bacillus subtilis sp[P1495][UVRC_BACSU EXCINÜCLEASE ABC SUBUNIT C.	84	62	1653	
233		1631	1523	111139596	Escherichia coli 19200 insertion sequence from ECOR61, partial. , ene product [Escherichia coli]	78	4.1	309	
					*				

FABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

10 110	2	<u>5</u>	=======================================	Acession		_	_	int.
299	-	1865	2149	91 467439	temperature sensitive cell division (Bacillus subtilis)	1 28	62	285
321		9877	\$167 	91 142979	ORF) in homologous to an ORF downstream of the sport gene of E.coll; RP1 [Becillus stearothermophilus]	87	35	420
352	-	3714	3944	91 349050	actin 1 (Pnaumocystis cariniii	- 78 -	42	231
352	<u></u>	7592	6093	91 903587	NADH dehydrogenase subunit 5 [Bacilius subtilis] ap[939755]NDHF BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5.3) NADH-UBIQUINGNE OXIDOREDUCTASE CHAIN 5).	£	8,	1500
376	-	~	583	91 551693	dethiobiotin synthase (Bacillus sphmericus)	8 6	7.	\$82
7.7	~	1595	1768	pr 1524117	alpha-acetolactate decarboxylase (Lactococcus lactis)	82	89	174
430	-	1914	1 988	91 1030068	HAD(P)H oxidornductase, isoflavone reductase homologue (Solanum tuberosum)	82	63	927
558	-	1 762	1 562	91 1511588	bifunctional protain (Methanococcus jannaschil)	92	9	201
670	12	1152	1589	91 1122759	unknown (Bacillus subtilis)	8¢	79	438
714	<u>-</u>	- 64	132	101 111460	137 kd minor signa factor (rpoF, sigB; ttg start codon) (Bacillus ubtilis)	1 78	57	699
T T	-)6A	[91]1377833	unknown (Dacillus Subtilis)	82	89	366
981	<u>-</u>	1381	693	91 143802	Gerc2 [Bacillus subtilis]	BC	9	690
995	~	878	122	91 296947	uridine kinase (Escherichia coli)	9, 1	9	252
1045	-	-	<u>-</u>	91 1407784	orf-1; novel antigen (Staphylococcus eureus)	18	5	399
116.	~	368	- 186	1911410117	Uluminopimulato decarboxylase (Bacillus subtilis)	38	×	183
2191	-	1 794	1399	51 215098	excisionase (Bacteriophage 154a)	96	65	196
2933	-	7	181 -	91 1204436	pyruvate formate-lyase [Haemophilus Influenzae]	98	در ا	180
3041	-	621	111	191 624632	Git. (Escherichia coli)	92	S	189
3581	-	105	5	91 763186	[]-ketoacyl-coa thiolase [Saccharomyces cerevisiae]	1 78	\$\$	762
3709	-		1 230	101 160689	TVG [Thermoactinomyces vulgarie]	96	88	228
3974	-	528	1 265	9: 558839	unknown (Becillus subtilis)	1	65	264
3980	-	-	401	95661161	IIOIc. (Bacillus subtilis)	96	62	199
950\$	-	1 643	354	1911125635	dihydroxy-acid dehydratase (Bacillus subtilis)	8د ا	\$5	294
ŧ	-	630	116	ptr 509372 5093	hypothetical protein - Trypanosoma brucei	92	. 62	315
7817								

		length (nt)	327	740	306	213	237	697	162	347	663	228	1164	561	336	642	1227	636	162	909	279	768	573	159	127	225
5	•	dent	09	ç	- 89	36 .1	65	98	65	69	09	59	8	35	52	98	S	63	37	SS	28	9	8	3.	7	5
10		e e	. Br	18	18	- 76	92	17	רר	1 11	7	۲	٤	CC	1 77	ני	17	1 11		t	- 77	1 22	1 11	"		ا ا
15	proteins			lus subtilis! lase Bacillus	[0]						acillus btilis]	-101)	tuberosum) rocursor,							enophilus					ccus jannaschiij	
20	lar to known			colese (Bacili) Sionate hydrol	cous mirabilis	[48]					AA 1-804) IB	chia coli) sp	or (Solanum SC 1.2.1.2) pr						bt111s]	g protein (IIa	11				98 (Methanoco	-
25	- Putative coding regions of novel proteins similar to known proteins		_	Nuti protein, imidazolome-5-propionate hydrolase (Bacillus subtilis) gi 601768 Nuti protein, imidazolome-5-propionate hydrolase Bacillus subtilis)	heavy-metal transporting P-type ATPase (Proteus	glutamate synthase (GOGAT) (Porphyra purpures)			ribosomal protein L9 (Bacillus subtilis)		phenylalanyl-tRNA synthetese beta subunit (AA 1-804) [Bacillus btilis]	protein 314 (Bacheric 4 514. (SUB 2-101)	mitochondria! (ormate dehydrogenase precuraer (Solanum tubersaum) pir 3022/2 303272 (ormate delydrogenase (EC 1.2.1.2) procursor, tochondria! - potato	[8]	acetolactate synthase (Thermus aquaticus)	-		subt[11s]	hypothetical 15.9-kDa protein (Becillus subtilis)	spermidine/putrencine transport ATP-binding protein (Naemophilus influenzae)	Esch	hermophilus)	iens)		M. jannaschii predicted coding region MJ0798 (Methanococcus jannoschii)	ORF for adenylate kinase [Bacillus subtills]
30	regions of no		unknown (Bacillus subtilis)	, imidezolone- atī protein, i	ransporting P	thase (COCAT)	lus subtills)	us subcilis)	otein L9 (Baci	us subtilis)	-tRNA synthete	subunit PROTEIL	l formate dehy 302272 formate 1 - potato	ORP1 (Staphylococcus aureus	synthase (The	Unknown (Bacillus subtilis)	us subtilis!	thymidine kinase (Bacillus	15.9-kDa prot	utrescine tran	factor EP-Ts'	esterase (Bacillus stearotharmophilus)	ORP3 (Clostridium perfringens)	us subtilis)	1 predicted cod	ylate kinase
35	Putative coding	match gene name	unknown (Baci	Rut protein, gi 603768 h subtilis	heavy-metal	glutamate sy	IIGIc (Bacillus subtills	Prov (Bacillus subtilis)	ribosoms pro	Yqhi (Bacillus subtilis)	phenylalanyl	30S ribosomel 30S RIBOSOMAL	mitochondrial formate of pir 1022/2 1022/2 fore	ORF1 (Staphy	scetolactate	Unknown (Bac	ORP4 (Bacillus subtilis)	thymidine ki	hypothetical	spermidine/p	elongation factor	esterase (Be	ORP3 (Clostr	YqeH [Bacillus subtilis]	H. jannaschi	ORF for aden
40	S. Aureus -	natch	91 558839	91 603768	191 1353678	91 1276841	95661 10	91 1109684	91 467335	92(2121)16	91 40054	91 606241	91 297798	91 1340128	91 1311482	191 710637	191 1237015	91 405819	191 849027	91/1205583	91 473825	191 216314	608(38)16]	191 1303788	91 1499 620	191 216340
		Stop (nt)	329	302	707	216	238	2073	1965	388	1252	2931	16622	4002	5713	5383	1228	7688	985	. 1953	1282	1163	3868	290	9414	\$204
45		Start	655	2	612	428	474	2969	2426	7	590	2704	15459	4562	5378	4742	~	1323	1146	1354	1004	380	3296	132	8740	5428
		28. 10.	-	-	-	_	_	~	~	-	~	•	=	-	-		-	9	_	2_	~	~	2	_	-	=
50		Cont 19	4235	1352	4368	1944	4530	-	27	- 12	29	C	4.	100	201	109	117	124	9	152	169	181	189	61	195	205

FARIE?

TABLE 2

\$10 length (nt.) 2 2 S 1 ident 7 = S \$3 1 5 Fi ננ e ei | nalic entyme (EC 1.1.1.38) | Bacillus steerochermophilus| pir | A3307 | DEBSXS | nalate dehydronense oxeloscetate-decarboxylating) (EC 1.1.1.38) - | Bacillus tearothermophilus phosphoribosyl glycinamide synthetase (PUR-D; grg start codon) Bacillus subtilis! UDP-N-acetyl muramate-alanine ligase (Bacillus subtilis) spipio778|MURC_BACSU UDP-N-ACETYLAURANATE--ALANINE LIGASE (EC .3.2.8) (UDP-N- ACETYLAURANOYL-1-ALANIME SYNTHETASE) (FRAGMENT). Arp-bind. pyrimidine kinase (Mycoplasma capricolum) pir | 548605 | 548605 | hypothetical protein - Mycoplasma capricolum SGC3) (fragment) |pir|A01179|SYRS |tyrosins--tRNA ligase (EC 6.1.1.1) - Bacillus stearothermophilus aureus - Pulative coding regions of novel proteins similar to known proteins |fibronectin/fibrinogen-binding protein (Streptococcus pyogenes) carboxyltransferase beta subunit (Symechococcus PCC7942) ORF1 gene product (Acinetobacter calcoaceticus) fumarase (citC) (as 1-462) [Bacillus subtilis] orf-li novel antigen (Staphylococcus sureus) Ribosomal Protein L23 [Bacillus subtilis] endonuclease III (Bacillus subtilis) unconventional myosin (Sus scrofa) transketolase [Bacillus subtilis] |ruvB protein [Escherichia coli] |unknown (Bacillus subtilis) unknown (Bacillus subtilis) ONFX8 [Bacillus subtilis] phes (Sacilius subtilis) YmoB (Bacillus subtilis) Yqhw (Bacillus subtilis] match gene name match acession 191 1154634 191 (1303912 91 1405446 191 467436 191 | 1070015 191 | 1399855 91 1407784 91 | 143374 191 432427 191 | 508980 91 533099 191 786155 191 410132 191 147783 4416 |91|496254 91 467408 191 | 516155 150026 156 01 39844 Stop (nt) **\$** \$65 5 | 4079 **-**~ ~ ----~ _ _ ~ ~ • • 01 <u>د</u> Contig \$22

10	
15	
20	
25	
30	•
35	
40 ·	

Cont 19	9 9	Start	Stop	match	metch gene name	40.4		
	2			101010101			TOWN TO THE TOWN T	length (at)
			<u> </u>	6161911	44% identity over 102 residues with hypothetical protein from Synechocystis 5p. 4ccession D64006_CD) expression induced by environmental stress; some similarity to 64ycosi transferases; two potential membrane-spanning helices [Becillus subtil	۲	5	722
536	7	963	612	91/143366 -	adenylosuccinate lysse (FUR-B) (Bacillus subtilis) pir [C29326 WZBSDS adenylosuccinate lysse (FC 4.3.3.3) - Bacillus ubtilis	77	5	372
248	~	339	872	91/143387	(Separtate transcarbamylase (Bacilius subtilis)			
597	-	2	6	91 904198	[hypothetical protein [Bacillus subtilis]	-	96	534
633	~	1747	cici	91 387577	(ORIN (Bacillus subtilis)		6	087
642	~	8.5	360	gi 46971	epiP gene product (Staphylococcus epidermidis)		3	507
659	-	125	1219	[91 1072381	glutamyl-aminopeptidase Lactococcus actis		61	276
670	~	1587	1820	91 1122760	unknown {Bacillus subtility	4	62	1095
789	-	~	1391	19111377823	aminopeptidase Bacillus subtilie)	7	- 85	77
815	_	2	573	191 1303861	YqqN (Bacillus gubrills)	- 6	- 65	390
111	-	-	235	194 1204844	11. influenza melecal calling region mases m		- 69	564
1083	-	-	188	91 460828	8969 Saccharomyces cerevisias		22	23.
1942	-	415	209	Jai 1 160047		- 4	99	186
	-				Joik malaria antigen precursor - Plasmodium falciparum pir a29232 a29232	٤	82	207
2559	-	-	<u> </u>	9111499034	M. jarmaschii predicted coding region MJ0255 (Nethanococcus jannaschii)		- 13	
2933	~	55	100	91 42370	Pyruvate formate-lyase (AA 1-760) (Escharichia coli) ir S01788 S01788 formate C-scetyltransferase (EC 2.3.1.34) - cherichia coli	7.	22	159
-:	_	26	292	91 [1524397	glycine betaine transporter OpuD (Bacillus subtilis)		- ; -	
976		614	309	91 40003	oxoglutarate dehydrogenase (MADP+) [Bacillus subtilis] p P23123 ODD]_BACGU 2-OXOGLUTARATE DEHYDROCENASE EI COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROCENASE).	F	8	306
979	~	678	004	91 1204354	spore germination and vegetative growth protein [Haemophilus influence)		- ;	
298R		109	٠,٠٤	91 438465	Probable operon with orff. Possible alternative initiation codon, assa 2151-2153. Homology with acetyltransferans.; putative Becillus subrilis		25 25	225
2990		Ę.	167	91 142562	ATE synthase epsilon subunit (Bacillus megaterium) pir B20599 PMBSEM H+- transporting ATP synthase (RC 3.6.1.34) pallon chain - Becillus mennyeium		63	165
3032	_	-	389	91 488430				
1057	-	-	195	91 468764	mocR gene product (Rhizobium meliloti)	-	86	187
	-		•			-	<u>-</u>	195

TABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont ig	OR CI	Start (nt)	Stop (nt)	match	netch gene name	ain.	1 Ident	length (nt)
4008	-	726	000	91 603768	Hutt protein, imidazolone-5-propionate hydrolase [Bacillus subtilis] gil 603768 Hutz protein, imidazolone-5-propionate hydrolase Bacillus subtilis[t	25	127
4048	-	703	386	91 216278	gramicidin S synthetase 1 [Bacillus brevis]	רר	55	318
4110	-	-	368	pir 552915 5529	pir (\$52915 \$529 nitrate reductage alpha chein - Becilius subtilis (fragment)	77	19	366
4115	-	-	348	91 517205	67 kpa Myosin-crossreactive streptococcal antigen [Streptococcus yagenes]	7.7	, 69	348
4225	-	590	1 297	191 1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	۲,	09	294
4611	- 7	169	726	191/508979	orp-binding protein (Bacillus subtilis)	۲	57	168
466A	-	1361	1 182	pir s52915 S529	intrate reductase alpha chain - Bacillus subtilis (fragment)	7.	19	180
22	-	~	1627	91 1150620		96	85	1626
ā	2	1488	752	pir A43577 A435	regulatory protein pion - Clostridium perfringens	76	57	1050
2	- 2	1 2962	4041	19111111061	dioxygenase (Hethylobacterium extorquens)	76	62	1080
58	120	27389	127955	191/467402	unknown (Bacillus subtilis	76	99	567
52	===	112046	112219	9111206040	weak similarity to koratin [Caenorhabditis elegans]	92	07	174
16	7	1 1062	1 2261	81 475715	acetyl comryme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	92	52	1200
86	-	818	1624	91 467422	unknown [Bacillus subtilis]	96	62	F07
# K	-	1 2965	322R	01 897793	y98 gene product (Pediococcus acidilacticil	94	52	264
9.6	-	5922	6326	191 467427	[methionyl-tRNA synthetase [Bacillus subtilis]	92	3	\$0\$
104	2	1122	1885	91/216151	DNA polymerse (gene L: ttg start codon) [Becteriophage 5P02] gi[579197 SP02 DNA polymerase (as 1-648) [Becteriophage SP02] pir[A21498]DJBPS2 DNA-directed DNA polymerase (EC 2.7.7.7) - phage P02	94	2	36
124		6134	1055	91 853776	peptide chain release factor 1 Bacilius subtilis pir 955437 555437 peptide chain release factor 1 - Bacilius ubtilis	92	88	1080
164	~	2832	1311	19111204976	prolyl-tRNA synthetasa (Maemophilus influenzae)	92	3	480
168	-	1 2617	1841	[91(117253	putative ATP-binding protein of ABC-type (Bacillus subtilis	9,	88	17.
189	7	163	888	91 467384	unknown [Bacillus subtilis]	92	63	126
235	2-	2253	3518	91 142936	foly-polygiucanate synthetase (Bacillus subtilis) pir B10646 B40646 folc - Bacillus subtilis	96	2	1266
236	-	1335	925	[91]1146197	putative (Bacillus subtilis)	96	*	1 891
752	-	5323	5541	191 1279261	F13G3.6 (Csenorhsbditis elegans)	92	- 47	219
				The state of the s				

10	
15	
20	
25	
30	
35	
40	

Contig	08F 10	Start (nt)	Stop (nt)	match	, match gene name	e is	1 ident	length (nt)
1 263	- 2	5490	4585	191 1510346	dinydrodipicolinata synthase (Methanocu.cus jannaschili	76	- 67	906
704	-	1051	1794	91 666982	pucetive membrane spanning subunit [Bacillus mubtilis] pir 552382 252382 probable membrane spanning protein - Bacillus ubtilis	26	09	704
312	-	3611	1624	(01)143312	6-bhoupho-1-fructokinasa (gkg start codon; EC 2.7.1.11) (Bacillus tearothermophilus)	37	95	1014
343		~	1036	g1 405956	yeeE [Escherichia coll]	1 26	, 65	1035
347	-	600	10/1	191 396304	scetylornithine descatylase [Zacherichia coli]	1 26	7.2	1293
82	-	672	1907	10111146215	19.0% identity to the Eacherichia coli Si ribosomal protein; putative [Bacillus subtilis]	9,	88	1236
17.6		-	222	01 537084	alternate gene name mgt, CG Site No. 497 (Escherichia coll) pir S56468 S56468 mgtA protein - Escherichia coll	92	19	222
379	-	4331	4858	g1 143268	dihydroliposmide transsuccinylass (odhB; EC 2.3.1.61) (Bacillus ubtills)	1 76	61	528
404	-	4022	14492	1911303823	YqfG (Bacillus subtilis	96	9	127
-	-	2	1307	91 186025	ORF YKLOZ7w [Saccharomyces cerevisies]	36	55	306
472	-	4356	2854	91 1405464	Aist [Bacillus subtilis]	1 26	57	1503
546	-	27.2	\$66	91 153821	streptococcal pyrogenic exotoxin type C (spec) precursor Streptococcus pyogenes)	96	36	627
588	-	1054	557	191 1002520	[MutS Bacillus subtilis]	96	61	464
1 591	-	116	235	91 885934	Clp8 (Symechococcus sp.)	94	*	720
602	-	271	198	01 1486422	OppD homologue (Rhisoblum sp.)	94	52	624
619	~	1 547	230	[91]330613	sajor capsid protein (Human cytomagalovirus)	92	43	258
099	-	1 2568	1 3302	1911904199	[hypothetical protein [Bacillus subtills]	94	55	\$67
677	-	452	1 228	[91 40177	spoof gene product (Racillus subtilis)	9/	88	225
962		7	308	91/142443	adenylosuccinate synthetase (Bacillus subtilis) sp[P29726]pURA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.1.4.4) IMPASPARTATE LIGASE).	92	69	183
978	-	1158	580	9411511333	H. Jannaschli prodicted coding region MJ1322 (Nethanococcus jannaschii)	96	98	579
666	-	486	7 244	911467154	No definition line found (Mycobacterium leprae)	1 76	38	243
1 1563	-	529	366	91 1303984	YokG [Bacillus subtilis]	16	52	264
2184	-	196	182	191 506706	CapJ (Staphylococcus aureus)	94	38	180
2572	-	-	1387	21 153898	transport protein (Salmonella typhimurium)	92	59	387

ABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

. 40

Cont lg	8 8	Start (nt)	Stop (nt)	natch	פשללו לפטפ ששופ	e ia	1 Ident	length (nt)
1 2942	-	29	007	91 710020	nitrite reductase (nirB) [Bacillus subtilis]	92	6.	372
1 2957	-	775	316	91/1511251	hypothetical protein (SP:P42404) (Methanococcus jannaschil)	76	+	162
1 2980		554	279	91 1405464	AlsT (Bacillus subtilis)	9,	23	376
1 3015	-	649	326	91/408115	ornithine acetyltransferase (Bacillus subtilis)	9,0	19	7.0
1 3124	-	= -	174	1911882705	ORF_0401 (Escherichia coli)	76	, 59	162
6718			161	01 168477	ferredoxin-dependent gutamate synthase [tea mays] pir AlB596 AlB596 glutamate synthase (ferredoxin) (EC 1.4.7.1) - wire	76	S	159
3789	-	- 2	976	97139956		76	\$5	378
3892	-	-	314	0111510398	farripyochelin binding protein Methanococcus annaschii	92	25	313
1 3928	-	1 798	00 7	91 143016	[parmeaso [Bacillus subtilis]	92	65	199
4159	-	1757	1 386	5p P80544 HRSP_	HETHICHLIN-RESISTANT SURFACE PROTEIN (PRACHENTS).	92	99	372
1 4204	-	1 17	777	91296464	ATPase (Lactococcus lactis)	9,	95	315
4394	_	764	249	[gi 987255	Henkes disease gene [Homo sepiens]	36	87	346
4506	-	~	21.	91 216746	D-lactate dehydrogenase [Lactobacillus plantarum]	36	- 43	312
4546	-	1 477	247	191 1339950	larga subunit of NADM-dependent glutamate synthase (Plectonema boryanum)	16	3	231
4596	-	671	191	191 560027	cellulose synthase [Acetobacter xylimum]	92	1 70	189
-	-	1 5257	4337	01 882532	ORF_0294 [Escherichia coli]	٤٢	. 59	921
•	-	154	952	191 40960	OTCase [Escherichia coli]	٤٢	96	789
12	_	5835	3964	91 467336	unknown (Bacillus subtilis)	٤	57	1992
2	=	118272	01671	gi 1296433	O-acetylserine suifhydrylase B [Alcaligenes eutrophus]		- 55	963
- 25	_	1 2356	1393	91 1502419	Plax (Bacillus subtilis)	5	95	1038
36	=	5365	6037	91 1256517	unknown. {Schizoseccheromyces pombe]	75	1 45	273
97	2.	98111	12058	91 48972	Initrate transporter (Symechococcus sp.)	75	46	673
12	-	7 - 3474	13677	91 113607	sporulation protein (Bacillus subtilis)	25	19	707
ç 	- <u>1</u> -	16850	16590	16590 ' 01 143402	recombination protein (ttg start codon), (Bacillus subtilis) gi 1101923 NecN	25	15	261
7	_	1 3572	2568	9511204847	ornithine carbamoyltransferase isemophilus influenzae	75	19	1005

S. aureus - Putative coding regions of novel proteins similar to known proteins
10
8
similar
proteins
novel
s of
region
coding
Putative
ur eu
S. auf

Cont 19	<u>8</u> 0	Start (nt)	Stop (nt)	match acession	match gene name	e te	1 1000		•
2	<u> </u>	4628	3930	01/143368	phosphoribosylcornyl glycinamidine synthetese I (PUR-L; gtg start odon)		5	(uc)	: .
£	<u>~</u> _	5588	4878	191(143367	(phosphoribosyl aminoidasole succinocarboxamide synthetase (PUR-C) to start codon) (8acillus ambelia)		; ;	6	:
85	-	6625	7530	91 1303916	YqiA Bacillus subtilis		G .		
£	_	2340	1390	91 1064813	[homo] odoug to an PMAB pacer (n	25	s	906	: -
Ę.	9	16094	9689	9111064810	[function unknown (a.e.)]	75	56,	1251	• -
108	7	1844	1503	91 1001824	[hypothetial	25	19	613	
01.	2	1748	1272	91 1147593	putative podne avertee - 1	75	52	342	
=	_	415	5252	191 (1177251	C WD dein Drainer (1991)	7.5	35	1980	
120	=	11266	10649	91 1524394	ORP. 1 CORP. 1	75	25	900	
121	<u> </u>	2050	4221	91 1154632	Ned Barilie subtil	75	35	618	
124	-	283	3	91 405622	unknown Bact June substitute	75	1 28	2712	
128	_	=	1139	91(143316	Gab Gene incoducts (Inc.(1).	25	36	=	
0.1	<u> </u>	\$760	5903	01 1256654	54.8% identity with Nelsonia conseries	2	e +	1059	
136	~	4480	33.85		[Bacillus subtilis]	٠ -	3	÷	
191	2	- 7 -	•	10100111111111111111111111111111111111	seryl-tRWA synthetese (Bacillus subtilis)	75	54		
27.1	-;-	- ; -	•	101/1001195	Inypothetical protain (Synethocyatis sp.)	25	5	9677	
179	-	- † -	- 1	194 (19515)	Arr-binding protein (Bacilius subtilis)	75	52 -		
195	2	7-	•		porphobilinogen desainsse (Bacilius subtills)	75 -	- 88		
200	· ; -		•	Tuani icare a land	PROTECTION OF THE STREET OF PROPER STREET ON (ORF-15) (FRACHENT).	, , , , , , , , , , , , , , , , , , ,			
	- i -	-;-	- [91 142440	ATP-dependent nuclease (Bacillus subtilis)		-	961	
- ;	-	-	2620	91,1256135	VbbF (Bacillus subtilis)	5	- 36	1992	
_;	~	159	389	pi 11052800	unknown (Schizosaccharomycas pombe)	- 52	- 13	1281	
229				gi[1205958	branched chain as transport system II carrier protein (Hammont)	5	- 88	165	
230	-	518	1714	91 (971337	District extrusion over the last it	۶	- -	819	
-	-	2240 1	1122	9: 1002521	Much (Becilius subrites)	- 27	- 83	1197	
233	_	1314 1	1859 19	gx 467405	unknown (Bart 1) in a min 1 in	25	- 75	1119	
		-	•	***************************************		-			

•
protein
known
ಭ
simi lar
proteins
novel
ö
regions
coding
3. Aureus - Putativo coding regions of novel proteins similar to known proteins
en
majne
٠.

Contig	10 dt	Start (nt)	Stop (nt)	match acession	majch gene name	e i	1 Ident	Jength (nt.)
1 269	-	325	164	19111511246	methyl coenzyms M reductase system, component A2 (Methanococcus jannaechii)	25	05	162
1 292	-	1389	1772	9111511604	M. Jannaschil predicted coding region MJ1651 (Methanococcus Jannaschill	75	46	618
1 304	-	67.1	1 2261	91;1205328	aurfectin (Haemophilus influenzae)	25	55	489
312	-	2437	3387	91 285621	undefined open reading frame (Bacillus stearothermophilus)	25	62	951
1 312	- 2	1 4622	6403	191 1041097	Pyruvate Kinase (Bacillus psychrophilus)	25	57.	1782
1 319	=	1353	1 877	91 1212728	Yqhi (Bacillus subtilis)	27	\$4	\$2\$
1 320	- \$	4321	1 5031	191 1070361	OMP decarboxylase [Lactococcus lactis]	25	95	71.1
120	9	5010	5642	01 143394	OMP-PRPP transferase (Bacillus subtilis)	7.5	09	(1)
7.68	-	1519	2088	91 487433	citrate synthase II (Bacillus subtilis)	2.5	88	570
394		699	1721	gi 304976	matches PS00011: APP_GPP_A and PS00101: EFACTOR_GTP: similar to longation factor G. TetH/TetO tetracycline-resistance proteins Escherichia colii	22	2	603
- 423	-	127	570	191 1183839	unknown (Pseudomonas seruginosa)	7.5	65	79,
63	-	1 1603	1929	91 149211	acatolactate synthase (Klebsiella pneumoniae)	1.5	63	122
446	-	176	1540	91 312411	dihydroorotase (Bacillus caldolyticus)	st	62	1365
786	-	767	249	19111149682	potf gene product (Clostridium perfringens)	25	\$\$	246
964	-	<u> </u>	194	91 143582	spoiliEA protein (Bacillus subtilis)	25	59	192
498	-	824	1504	91 143328	phop protein (put.); putative (Bacillus subtills)	25	43	189
669	~	1061	1624	91 (1387979	44% identity over 302 residues with hypothetical protein from Synachocystis sp, accession D64006_CD; expression induced by environmental stress; sone similarity to glycosyl transferases; two potential membrane-spanning helices (Bacillus subtil	٤	27	564
268			8	ptr 3C4110 3C41	criscy/glycerol lipsse (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides (SGC3)	25	80	189
613	-	430	ננג	gi 330993	tegument protein (Saimirfine herpesvirus 2)	25	25	198
621	-	-	523	91 529754	apeC (Streptococcus pyogenes)	sc)	43	525
642	-	1809	2474	91 1176401	EpiG (Staphylococcus epidermidis)	25	22	999
979	~	424	(65)	91 172442	ribonuclease P (Saccharomyces cerevisiae)	25	3,	204
1 657	-	_	5	91 882541	ORF_0236 [Escharichia coli]	25	47	345
750	-	1662	832	91 46971	apiP gene product (Staphylococcus epidermidis)	25	1 57	831
*******		*******						

TABLE 2

proteins
ar to known proteir
3
simi ler
S. aureus - Putative coding regions of novel proteins similar to)
novel
96
regions
coding
Putat ive
-
aureus
<u> અં</u>

Contig	20 CE	Start (nt)	Stop (nt)	match	natch gane name				:
754	-	~	481	[91 1303901	Your (Bacillas emballs)		1 100Ut	length (nt)	
763	-	1 563	1 393	191 1205145	ault drug resistance according	1 75	57	480	: -
27.5	-	1 961	482	pir 03689 0368	pir 016889 0188 18th grotein (nartus)	5	25	171	: -
793	-	-	180	191 143316	[Gap] Gene products (Revilles	75	G	480	: -
800	-	318	160	91 509411	NFRA DECEMBER AND ASSESSED OF THE PROPERTY OF	25	52	180	•
Ę	-	1117	560	91 143434	Rho Pactor (Bactor (Bactor)	75	, ¥.	159	• —
940	-	493	329	[91 1276985	Detailed the second sec	7.5	9	558	•
971	-	7.	1 252	91 1001373	hypothatical protein (Swarthamer)	75	S	165	• -
1059	-	384	1 232	911726480	L-glutaming-D-fructosa-6-phochas	52	88	216	• •
1109	~	219	24	91 143331	alkaline phospharas regulatory protein (Secillus ubtilia) pic AZ765 place regulatory protein phoR - Bacillus subtilia sp Pic AZ765 place AZ765 place AZ765 place AZ765 place AZ765 place AZ766 place	5.	23	153	• - •
126A	-	271	137	91 104135	ornithino acetyltransferase (Bacillus stearchemophilus) spion308/ACETYLTAUART GACTILITRANSFERASE (EC 2.3.1.35) GRNITHINE ACETYLTAUASFERASE (CR. 2.3.1.137) GRNITHINE ACETYLTAUASFERASE (C. 2.3.1.1.10) GRNITHINE	25	69	135	
1500	_	324	163	11205488	excinuclesse ADC subunit B (Massachi).	-			
1529	-	R67	0	91 1002521	Nutt. [Bacillus subtilie]	75	57	162	
3010	-	07.	387	19111204435	Pyruvate (ormate-lyase arrivaters	- 22	24	199	
3105	-	-	180	191 1041097	Pyruvate Kinase (Bacillus newhydains)	75	3	384	_
7110		Ş	212	91 899317	Paptide synthetase module (Higrocystis seruginoss) pir 549111 54911 Probable amino acid activating domain - icrocystis seruginoss (fragment)	2 2	5 5	169	
3139	~	607	\$	91 145294	adenine Phosphoribosyl-transferase ferhalistic	-			
3880	~	618	_	91 1009366	Respiratory nitrate reductives in the second	75 –	99	202	
3911	_		100	gi 433991 A	ATP synthase subunit here (nearling)	- 52	- 88	309	
1957	-	~	67	pir 1936819 13	3-isopropylmalite dehystates (EC 4.2.1.33) chain luuC - jactococcus lacis subsp. lactis (strain Tilan)	25	- B9	354	
4005	- -	-	259	gi 216746 D	D-lactate dehydrogenase [tactobacillus niant		;		
4080	-	2	233	Di 415855 d	deoxyribose aldolase (hycrn)sems horizis	£ _	99	255	
						۲. -	-	741	

.

Cuntig	ORF 10	Start (nt)	Stop (nt)	match	mayon gene name	e i	1 irlent	length (nt)
11.5	-	-	1339	191 149435	putative (Lectococcus lactis	75	57	339
4136		602	303	91 450688	hsuw gene of Ecopril gene product (Eacherichia coli) pir(538437)338437 hadw protein - Eacherichia coli pir(509629)909629 hypothetical protein A - Escherichia coli (508 40-520)	21	95	300
7717	-	999	336	191 (48972	nitrate transporter (Symechococcus sp.)	\$5	6	333
4237	-	799	374	19111339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	٤	98, 1	291
4306	~	5 -	318	91 294260	r surface glycoprotein [Pneumocystis Carinii]	2	6.8	246
1343	-	115	1359	91 1204652	methylated-DNAprotein-cysteine methyltransfersse (Haemophilus influenzae)	2	52	257
4552	-	620	1 312	911296464	ATPase (Lactococcus Lactis)	75	55	309
	- 6	8778	6126	91 443793	NupC Escherichia coli	7	05	351
\$0	8	6910	6221	gi 1239988	hypothetical protein (Bacillus subtilis)	7	- 55	069
3.6	6-	07701	12221	91 1000451	Trep [Bacillus subtilis]	7	- 53	1452
2	-	1266	1622	191 41015	aspartate-tRNA ligase (Escherichia coli)	25	57	\$99
99	9	5063	4848	91 1212729	[YqhJ Bacillus subtilis]	36	۱ در	216
1.9	12	114334	114897	91 1510631	endoglucanase (Methanococcus jannaschii)	~	- 23	564
102	=	12561	13136	101 149429	[putative [Lactococcus lactis]	7	63	576
102	=	13121	11419	01 149435	putative [Lactococcus lactis]	7	- 57	1299
601		4873	3902	qi 39478	ATP binding protein of transport ATPases (Bacilius firmus) ir S15486 S15486 ATP-binding protein - Bacilius firmus p P26946 VATP_BACFI HYPOTHETICAL ATP-BINDING TRANSPORT PROTEIN.	7	s 	972
116	- 2	1 8574	1093	91 1205430	dipeptide transport system permease protein (Masmophilus influenzae)	74	63	1482
120		4342	4803	91 146970	ribonucleoside Eriphosphake reductase (Escharichia coll) pir anily a47331 anaerobic ribonucleotide reductase - Escharichia oli	*	88	462
121	-	1 5961	1869	[91]1107528	ttg start (Campylobacter coli)	74	15	621
128	-	2320	1831	91 143318	phosphoglycerate kinase (Bacilius mogaterium)	*	- 57	1212
000	-	1 5237	1672	91 1256653	DIA-binding protein (Bacillus subtilis)	74	09	\$55
136	-	6745	5150	5150 * [91]143076	histidase (Becillus subtilis)	~ _	88	1596
145	~	99	B9C1 —	91 40773	devk gene product (Anabaena sp.)	7	45	202
132	-	552	1277	(91/1377833	unknown Bacillus subtilis	7	3	276
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			:	

TABLE 2

5		length (312	486	453	1008	561	1137	1188	507	1239	907	96			1065	747	432	768 1	942	1191	234	1111	255	1 6001	1293
		1 Ident	52	*	97	88	_ z,	63	52	19	55	6	3	5	5	09	26	Ş	26	\$2	- 15	36	62	52	88	15
10		E .	7	7	7	72	7.	77.	7.	74	77	74	74	7.4	74	74	7.	7.4	**	14	74	76	74	74	74	74
15	81								•) lyzing) (EC is		**********				364 A25364				.4.3.8) -
20	 aureus - Putative coding regions of novel proteins similar to known proteins 	· · · · · · · · · · · · · · · · · · ·			ophi lusi	us influenzael	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 1 6 8 8 8 4 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ens)	subt111s)	subcilis)			hypothetical protein (GB:U14001_302) [Maemophilus influenzae]	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ilutaminase of carbamyl phosphate synthetase [Bacillus subtilis] pir[2]8845[E3985 carbamovi-phosphate synthase glutamina-hydrolyzing] 6.3.5.5), pyrimidine-repressible, small hain - Bacillus subsilis	LB1	* * * * * * * * * * * * * * * * * * *	ctist		\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	threonine synthase (thrc) (AA 1-332) [dacillus subtilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btilis		chii.	· · · · · · · · · · · · · · · · · · ·	glutamate-1-semialdehyde 2.1-aminotranaforsae (Bacillus subtilis) pir[bk778 042728 042728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) Bacillus subtilis
25	proteins sim		01116]		icilius alcal	(Haemophi)	subcilis)		rium extorqu	in [Bacillus	D (Bacillus	em1)	a influenzae	302) [Haemo	ubtilis)	te synthetas osphate syntl le, small ha	rothermophil		ctococcus la	subtilis)	lus subtilis	-352) (Bacillus subt		occus jannas	pyogenes]	notransferas emialdehyde
30	egions of novel	e 6	gene product (Bacilius subtilis)	blum meliloti)	Na/H antiporter system ORF2 (Bacillus alcelophilus)	hypothetical protein (SP: P25745) (Haemophilus influentae	ribosomal protein L6 (Bacillus subcilis)	sacillus subtilis;	malate thiokinase (Methylobacterium extorquens)	single atrand DNA binding protein (Bacillus subtilis)	glycine betains transporter OpuD (Bacillus subtilis)	CbrB protein [grwinia chrysanthem1]	ATP-binding protein [Haemophilus influenzae	rotein (GB:U14003	quinol oxidasa (Bacillus subtilis)	lutaminase of crbamyl phosphate synthetase [Ba pir[2]8845[E]9845 carbamoyl-phosphate synthase 6.3.5.5), pyrimidine-repressible, small hain	Affese subunit a (Bacillus stearothermophilus)	subrilis;	alpha-acetolactate synthase (lactococcus lactis)	ipa-58r gene product (Bacillus subtilis)	homoserine dehydrogenase (Bacillus subtilis)	lase (thrC) (AA 1-3). hase (EC 4.2.99.2)	thioredoxin (Bacillus subtilis)	glycyl-tRNA synthetase (Methanococcus jannaschii)	acid glycoprotein (Streptococcus pyogenes)	ialdehyde 2,1-ami 728 giutamate-1-8 1is
35	beative coding r	match gene name	ONF3 gene prod	unknown (Rhizobium meliloti)	Na/H antiporte	hypothetical p	ribosomal prot	putstive (Bacillus subtilis)	malate thiokin	single strand	glycine betain	ChrB protein [1	ATP-binding pro	hypothetical p	quinol oxiduse	glutaminase of pir(E39845 E39 6.3.5.5), pyri	ATPase subunit	YqhZ (Bacillus subrilis)	alpha-acetolact	ipa-58r gene pr	homoserine dehy	threonine synthase (thro	thioredoxin 18a	glycyl-tRNA syn	acid glycoprote	glutamate-1-semia pir D42728 D42728 Bacillus subtilis
40	S. aureus - S	match	[g1[580900	91 642656	191 854656	91/1204430	191 1044979	91,1146207	91 694121	91 467374	191 1524397	91 809542	91,1204872	191 1205579	[91]143398	91(143389	91 534857	94 1303915	91 473902	91 413982	gi 558494	91 40211	91 142520	91 1499005	91 217040	91,143040
45		Stop (nt)	111175	2624	2612	10339	9059	6710	334	2799	5313	4081	4665	999	862	1065	1128	=	1 3270	942	1193	1407	7,	320	1740	2791
		Start (nt)	111064	13309	6064	11346	9619	5574	4521	3305	6551	4389	5714	1220	1473	-	342	1742	2503	-		1174	402	574	139	606
50	į	1000	2	-	-	크	=	-		•	-		_	_	~		7	~	5	-	- 	~_	~	- -!	~	~
		Contig	164	272	175	195	Ş	316	2	546	249	261	278	100	315	320	3.80	405	=	452	197	5	462	£	501	551

TABLE 2

		length {nt	477	483	1167	327	186	909	25g	282	492	156	366	237	199	288	189	222	255	186	177	303	168	219	228
5		1 ident	\$ _	- \$\$	\$	62	5.8	\$0	4.1	46	24	8.7	36	62	09	5.8	96	3 5	57	\$1	79	Ţ	58	54	89
10		1 sim	74	14	26	1 24	*	14	1 74	74	34	1 74	1 74	74	74	14	74	7	7.	1 74	14	1 24	1	7,	7
15	roteins				or of Sacharomyces 2ea mays: putative		odon) Becilius											subtilis] hse (EC .4.3.8) -	ent)			cus jannaschii)			
20	ar to known p				ion factor of hase of Zea m) gtg start o				-					ma.)		e [Bacillus 2,1-aminomut	otilis (fragma			[Methanococ			
25	- Putative coding regions of novel proteins similar to known proteins		hocystis sp. 1		 At of identity to trans-acting transcription factor of Sacharomyces caravistae, 25% of identity to sucrose synthese of Zea mays; putative [Bacillus; subtilis] 		phosphoribosyl glycinamide synthatese (PUR-D, gtg start codon) Bacillus subtilis)	us parasanguis)			epiD gene product [Staphylococcus epidermidis]	lus subtilis)	chrysanthem!}	Aum perfringens!		1-phosphoglycerate kinase [Thermotoga maritima]		gutmaste-1-semialdehyde 2,1-sainotransferase [Bacillus subtilis pir[D42728 D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC Bacillus subtilis	nitrate reductase alpha chain - Bacillus subtilis (fragment)	111	molyticus	M. jannaschii predicted coding region MJ0938 (Methanococcus		cillus subtilis]	
30	g regions of nove	กลติด	hypothatical protein (Synachocystis sp.	YqgF (Bacillus subtilis)	1.4% of identity to trans- cerevisiae, 25% of identity [Bacillus:subtilis]	ORF3 [Lactococcus 'lactis]	syl glycinsmide	ORF1; putative [Streptococcus parasanguis]	ORF V (Bacillus subtilis)	YQKM [Bacillus subtilis]	product (Staphylo	ipa-24d gene product (Bacillus subtilis)	reed gene product (Erwinia chrysanthemi)	sbcC gene product [Clostridium perfringens	aconitase (Bacillus subtilis)	lycorate kinase [Yqhi (Bacillus subtilis)	1-semialdehyde 2, 8 D42728 glutamat subtilis	ductase alpha cha	ttg start (Campylobacter coli)	unknown (Staphylococcus haemolyticus)	hii predicted cod	llus subtilis)	peptide-synthetase ORF1 [Bacillus subtilis]	orf6 (Lactobaci)lus sake)
35	tative codin	match gene name	hypothetic	YqgF (Baci)	21.4% of identity to carevisiae, 25% of [Bacillus subtilis]	ORF3 (Lacto	phosphoribe subtilis]	ORF1; putal	ORF V (Bac	YQKM (Baci.	epib gene	ipa-24d ger	rocJ gene	spcc gene	aconitase	1-phosphog	Yqht (Baci	glutamate- pir D4272 Bacillus	intrate re	ttg start	unknown (S	H. jannasc	orfd (Bacillus	peptide-sy	orf6 (Lact
40	S. aureus - Pu	match	91 1006605	91 1303853	91 1146217	91 1072380	gi 143374	91 1353833	91 143458	61 1303994	191116970	91 413948	91 495245	91 1149701	91 1405454	91 450686	19111303893	91;143040	pir \$52915 \$529	911107528	191 1022725	91 1510977	91 520844	191 580910	91 1370207
45		Stop (nt)	111	<u> </u>	1758	1595	188	1209	159	724	492	528	413	238	007	163	161	223	256	189	360	305	304	221	231
.,		Start	-	1780	2924	1269	5.	604	7	\$	-	573	917	~	798	629	-	7	510	374	184	607	47.1	_	458
5 0		ORF	-		~	- 2			-	- 2	-	7	-	-	1-	-	-		-	-	- -	-	-	-	-
50		Contig ORF	1 573	965	618	659	724	2.53	836	986	1106	1135	1234	1 2586	1 2959	1 2962	2983	3018	3038	1 3062	4035	4045	42R3	4449	4587 1

1 23 214 0.1146600 0.114600 0.
1 175 174 Gardiston Gardiston Pari Alazania Largo abbunit (EC 2.6.1.31) (Escherichia coli) 1 1 1 1 1 1 1 1 1
1 27 214 Gil 146200 Giltemate anothers large subunit (EC 2 6.153) (Becherichis coli) 1 1 1 1 1 1 1 1 1
1 23 214
1 29 214 91 1 1 1 1 1 1 1 1
1 29 1 29 1 29 1 29 1 29 1 204 1 2024 2 2024 2 2024 2 2 2 2 2 2 2 2 2
1 29 11 29 12 2454 13 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 1 2024 2 2024 2 2024 2 2024 2 2024 2 2024 2 2024 2 2024 2 2024 2 2024 2 2 2 2 2 2 2 2 2
2 7 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1
4603 4603 111 111 111 111 111 111 110 110 110 1

. aureus - Putative coding regions of noval proteins similar to known proteins

	0	10 CE	Start Int)	Stop (nt)	match	'nutrh gene name	e sia	1 ident	length (nt)
6 70:04 57:14 61141023 Fully gene product [leacting sabtilis] 71 61140023 Fully gene product [leacting sabtilis] 71 61140023 Fully gene product [leacting sabtilis] 71 61140023 Fully gene product [leacting sabtilis] 71 71 71 71 71 71 71 7	132	5	4151	4363	191 871048		23	7	233
4 866 377 Q1140032 Preside product [bacillus aubtilis] 70 67 67 67 67 67 67 67	140	9	5952	4324	191 634107	kdp8 (Escherichia coll)	2	65	1629
1 11 11 11 11 11 11 11	143	9	2060	5939	1911410125	rilk; gene product (Macilius subtilis)	<u>د</u> ا	52	1123
1 1 1431 Gil 612394 Decendantsate hadronymethyl transferase Bacillus aubtilis] 13 55 19 18 18 18 18 18 18 18	149	*	1366	1717	911460892	heparin binding protein-44, HBP-44 (mice, Peptide, 360 as) pir[JX0281]JX0281 heparin-binding protein-44 precursor - mouse gi 220434 ORF [Mus musculus] (SUB 2-360)	52	α,	150
6 5333 5539 5131 5131 513165240 Netcopentoate hydroxymethyltrenselesse Bacillus aubtilis] 73 55 55 55 5131 5131 5136557 Na/W antiporter system ORP) [Bacillus aubtilis] 73 56 73 73 56 73 57 57 57 57 57 57 57	156	-	-	1431	101 882504	ORP_1560 (Escherichia coli)	23	52	1631
1 13.2 13.7 13.7 13.8 14.	174	9	5352	1 4525	91 1146240	ketopantoate hydroxymethyltransferase [Bacillus subtilis]	13		R28
5 6.593 54.93 54.94 54.146707 Uniforom (Bacillus subtillis) 73 6.6 7.1 7.2	27.1	=	5537	8718	9: 854657	Na/H antiporter system ORP3 (Bacillus alcalophilus)	23	3.6	360
6 6283 5729 67 1521397 61 61	186	2	6593	5493	191 467477	unknown (Bacillus subtilis)	٤٢		1101
4 1873 2280 91 19848	249	9	6283	5729	(95 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	73	26	\$55
1 128 572 Gill Model	265	•	1873	2280	[01]39848	U3 (Bacillus subtilis)	52	=	408
4 4284 1553 91 12049653	270	-	328	582	1911780461	220 kDa polyprotein (African swine fewer virus)	67	2	255
1 4984 3593 91 1185288	2.7R	-	4283	3618	91 1204965	hypothetical 23.3 kd protein (Escherichia coli)	55	\$	999
4 1207 1575 94 1511440 9Jutamina—fructose—6-phosphate transaminase [Mathanococcus Jannaschii] 73 63 1 1 1 1 1 1 1 1 1	279	_	4984	13593	91 1185288	isochorismate synthase [Bacillus subtilis]	5.	28	1392
2 735 1166 gil 167437 unknown [Bacillus subtilis] 73 58 1 1 5 2050 3234 gil 167439 temperature sensitive cell division [Bacillus subtilis] 73 63 1 1 1 1237 726 gil 167436 vice amidolyase [Bacillus subtilis] 73 51 2 1827 1036 gil 1405451 vice amidolyase [Bacillus subtilis] 73 55 4 1916 2554 gil 1405451 vice amidolyase [Bacillus subtilis] 73 56 4 1916 2554 gil 1405451 vice amidolyase [Bacillus subtilis] 73 56 2 1928 gil 1146240 NADo-dependent gil 2000 [Escherichia colii) 73 56 2 1929 733 gil 1114847 cinA (Bacillus subtilis) 73 73 73 73 73 73 73 73 73 73 73 73	291	-	1207	1575	91 1511440	glutaminefructose-6-phosphate transaminase (Methanococcus jannaschii)	67	69	369
5 2050 3234 91 657439 5emperature sensitive cell division [Bacillus subtilis] 73 53 43 11 1237 128 91 516655 ORF YBR2444 [Saccharomyces crevisiae] 73 51 73 51 73 51 73 52 74 75 75 75 75 75 75 75	299	~	735	1166	91 467437	unknown {Bacillus subtilis	23	8.5	433
1 1237 728	299	\$	2050	3234	91 467439	temperature sensitive cell division (Bacillus subtilis)	22	53	1185
2 1927 1036 91 790943 Urea amidolysse [Bacillus subtilis] 73 51 138 138 137 1036 91 87 1036 91 87	334	-	1237	728	91 536655		22	\$	210
3 1389 1874 91 1405451 YneJ Bacillus subtilis 73 55 14 1916 2554 91 1405451 YneJ Bacillus subtilis 73 56 15 1795 1028 91 91 91 91 91 91 91 9	336	~	1827	1036.	191 790943	ures amidolysse [bacillus subtilis]	57	51	792
4 1916 2354 gi 473902 Alpha-acecolactate synthase (Lactococcus lactial) 73 54 1 1 1 1 1 1 1 1 1	374	_	1389	1874	91 1405451	YneJ (Bacillus subtilis)	2	\$\$	987
2 1795 1028 gil 467483 Lunknown Bacillus subtilis 73 56	433		1916	2554	191 473902	alpha-acetolactate synthase (Lactococcus lactis)	22	7	639
1 1709 918 91 146220 NAD+ dependent glycerol-1-phosphate dehydrogenase [Bacillus subtilis] 73 56 2 239 733 94 1510605 hypothetical protein (SP:P02297) [Methanococcus Jannaschil] 73 52 2 1148 2815 94 41748 hadM protein (AA 1-520) [Escherichia coli) 73 52 1 762 382 94 1314847 CinA (Bacillus subtilis) 73 57 1 1346 675 94 410137 ORFWI3 (Bacillus subtilis) 73 58	509	~	1795	1 1028	01 467483	unknown (Bacillus subcilis)	13	36	168
2 239 733 , [gr] [550665 hypothetical protein (SP-P42297) [Methanococcus Jannaschii] 73 44	513	_	1709	918	91 1146220	NAD+ dependent glycerol-1-phosphate dehydrogenase [Bacillus subtills]	25	56	792
2 1148 2815 91 41746 hadw protein (AM 1-520) Eacherichla coll) 73 52 1 762 182 91 1114847 CinA (Bacillus subtilis) 77 57 1 1 1 1 1 1 1 1	533	~	239		, 191 1510605	hypothetical protein (SP:P42297) [Methanococcus jannaschii]	23	3	495
1 762 382 94 1314847 CdnA (Bacdllus subtilis) 57		_	1148	2815	91 41748	hadw protein (AA 1-520) (Escherichia coli)	27	52	1668
1 1346 678 91 910137 ORFX13 (Bacillus subtilis)	549		762	382	91 1314847	CinA (Bacillus subtilis)	ני	57	381
			1346	87.8	91 410137	ORFX13 (Bacillus subtilis)	ני	- 88	672

5

				S. Aureus - Pu	S. aurcus - Putative coding regions of novel protains similar to known proteins			
Cont ig	<u>8</u> a	Start (nc)	Stop (nt)	match acession	, makch gene name	E E	1 ident	length (nt)
316	~	654	1112	91 1256623	exodeoxyribonuclesse (Bacillus subtilis)	נג	95	1 659
277			677	91 142010	Shows 70.3% similarity and 48.6% identity to the EnvH protein of almonella typhimurium [Anabbens sp.]	5	5	675
174	-	_	209	[91 409286	DarU (Sacillus subtilis)	5	52	207
782	- -	-	402	91 143320	[gap] gene products [Bacillus megaterium]	2	. 88	402
789	~	4 21	762	91 1063246	low homology to Pi4 protein of Hemmophilus influentar and 14.2 kba protein of Escherichia coli (Bacilius subtilis)	ç	95	312
796	-	_	911	91 853754	ABC transporter (Bacillus subtilis)	2	88	1 606
908		1209	676	91 143786	tryptophanyl-tRNA synthetase (EC 6.1.1.2) (Bacillus subtlis) pir[J70481] YMS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	5	15	192
916	~	4839	1 3097	91 41748	hady protein (AA 1-520) (Escherichia coli)	2	52	170
639	-	798	00	906988 36	argininoauccinate synthetase (Streptomyces clavuligerus) pri (57659 577659 argininoauccinate synthase (EC 6.3.4.5) - treptomyces clavuligerus	٤	65	399
857	-	_	290	91 348052	acetoin utilization protein (Bacillus subtilis)	2	1 05	288
1008		790	398	91 40100	rodC (tag1) polypoptide (AA)-746) [Bacillus subtliis] ir S06049 S06049 rodC protein - Bacillus subtliis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	5	7	190
1018	-	-	213	gi 529357	No definition line found (Ceenorhabditis elegans) sp[P46975 STT3_CAEEL OLIGOSACCHARYL TRANSFERASE STT3 SUBURIT OHOLOG.	2	3	======================================
1033	-	_	191	1911142706	comGt gana prouluct (Bacillus subtillus	2	7	48.9
1174	-	395	704	91 1149513	aiphala subunit of laminin 3 (Homo sepiens)	5	09	192
2711	-	655	329	1911473817	('ORF' (Escherichia coli)	5	57	327
1187	-	-	209	191,580870	ipa-37d qoxx gene product (Bacilius subtilis)	2	22	207
1206		2	245	01/144816	[formyltetrahydrofolate synthetase (FTMPS) (ttg start codon) (EC .3.4.3) [Hoorelle thermoscetics]	52	7	174
1654	-	423	747	01 1213253	unknown [Schlzosaccharomyces pombe]	2	53	183
1469	-	517	260	7875051 120		2	35	258
1761	-	374	189	91 (9135	Hstisha gene product (Drosophile simulans)	١ در	7	186
1849	-	1 467	55	91 162307	DNA topolsomerase II (Trypanosoma cruzi)	2	- 09	225
2055	-	~	400	(91 (559381	P47K protein [Rhodococcus arythropolis]	2	7.	1 660
2556	-	~	1	91 145925	[fecB [Escherichia coli]	5	62	263

2947	98 C	Start	Stop (nt)	match [natch gene name	e in	1 Ident	lengch (nt.)	
	-	549	400	9111184680	polymucleotide phosphorylase (Bacillus subtilis)	2	- 15	150	
2956	-	746	278	[gk[:43397	quinol oxidase (Bacillus subcilis)		58	372	
7.000	-	655	329	191/11/1091	acetolactate synthase (Dacillus subtilis)	2	55	720	
3115		285	194	91 323866	overlapping out-of-phase protein [Eggplant mossic virus] sp[220129[V70K_ERNY 70 KD PROTEIN.	2	3	192	
1 3603	~	700	527	91 14.9521	glutaryl-CoA dehydrogenasa precursor (Mus musculus)	2	69	174	
3743	-	798	8	91 (50688	hach gene of Ecopri gene product [Eacherichia coli) pir[938437]538437 hach protain - Eacherichia coli pir[509529]509629 hypothatical protein A - Escherichia coli [508 40-520]	در	×	199	
1 3752	-	9	159	gi 1524193	unknown (Mycobacterium tuberculosis)	5	- 65	282	
3852	-	7	181	1911216746	D-lactate dehydrogenese [Lactobacillus plantarum]	٤٢	89	180	
3914	-	475	239	[pir 313490 5134	pir silasojsila Hydroxymethylgiutaryl-CoA synthase (EC 4.1.3.5) - Chicken (fragment)	33	23	752	
3914	~	570	35	1911528991	unknowm [Bacilius subtilis]	٤٢	38	228	
4069		~	316	91 40003	oxoglutarate dahydrogenase (NADP+) (Bacillus subtilisi pip23139)0D01_BACEU 2-0XOGLUTARATE DEHYDROCENASE El COMPONENT (EC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROCENASE).	£	\$	315	
4165	=	215	365	91 1439521	glutary}-CoA dehydrogenase precursor [Mus musculus]	5	87	351	
4196		-	121	91 809660	decayribose-phosphate aldolase (Becillus subtilis) plr 549455 549455 decayribose-phosphate aldolase (EC 4.1.2.4) - ecillus subtilis	2	09	(1)	
4202	-	572	378	1911528991	unknown (Bacillus subtilis)	2	3#	195	
7.5	-	7	61	91 136797	N-acyl-L-amino acid amidohydrolase macrillus stearothermophilus sp 831112 AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1.14) (AMINOACYLASE).	5	~	192	
1 4393	-	-	1 263	91 216267	ONF2 Bacillus megatarium	5	5	197	
25	~	903	1973	191 1146196	[phosphoglycerate dehydrogenase [Bacillus subtilis]	72	53	1011	_,
E	2	19094	17877	6 602031	similar to trimethylamine DH [Mycoplasma capricolum; pir[549950 549950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum (SGC3) (fragment)	22	2	1218	
138	= =	118134	119162	191(413968		12	*	1029	
*	161	111895	12953	91 516272	unknown [8acillus subtilis]	72	49	1059	
87	-	6248	1111	91 43499	pyruvate synthase (Halobacterium halobium)	72	6+	670	
05	_	6563	1 5691	191(1205399	[proton glutamate symport protein (Haemophilus influenzae)	r,	2	1 873	

				S. aureus - Pul	S. aureus - Putative coding regions of novel proteins samilir to known proteins	•	•	
Cont l9	9 03	Start (nt)	Stop	metch	match gene name	4	* ident	length (nL)
2	-	10521	9259	at 1303956	YqJE (Bacillus subtilis)	22	52	1263
28	2	29549	29995	191 467471	unknown [Bacillus subtilis]	72	£	447
69	-	5298	4133	91 1354775	pfos/R (Treponema pallidum)	22	- 94	1176
69	÷	1 4377	1 (982	911904198	hypothatical protain [Bacillus subtilis]	22	3	909
5	-	7	956	91 142997	glycerol uptake fatilitator (Bacillus subtilis)	72	59,	855
88	12	1786	10258	[91 467435	unknowm [Bacillus subtilis]	22	20	698
123			1593	91/217344	alanime carrier protein (thermophilic beterium PS1) pir[Ad3111[Ad3111] alanime transport protein - thermophilic acterium PS-1	27	98	1593
<u> </u>		1 5197	7600	91 153952	polymerase III polymerase aubunit (draE) (Salmonella typhimurium) pir A45915 A45915 DNA-directed DNA polymerase (EC 2.7.7.7) III lpha chain - Salmonella typhimurium	22	S	2598
7	-	1040	1978	91 1405446	transkatolasa (Bacillus subtilis)	72	- 35	939
15	-	1 2819	- 2535	91 606234	secy (Zacherichia coli)	גנ	3	385
149	12	5472	5245	91 1304472	DNA polymerase (Unidentified phycodnavirus clone OTU6)	22	\$5	228
154	-	-	210	91 1205620	ferritin like protein (Haemophilus influenzae)	21	07	210
155		2202	1320	91 391610	<pre>[armsyl diphosphate synthase (Becilius stearothermophilus) pir[JX0257]JX0357 goranyltranstransferase (EC 2.5.1.10) - Bacilius taarothermophilus</pre>	בר	ß	8 8
180	-	7	328	191 133630	A180 (Saccharomyces caravisiae)	27	62	127
¥ .	-	<u> </u>	1553	91/1205110	virulence associated protein homolog (Heemophilus influensee)	22	67	2409
261	~	1923	6721	191 1001730	hypothetical protein (Synechocystis ap.)	22	Ş	645
502 -	3	14646	115869	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	5	8	1224
209	~	F	932	101 1204666	hypothetical protein (GB:X73124_53) (Maemophilus influensae)	72	09	471
215	~	764	\$22	91 881513	rece	£	3	243
224	-	~ -	190	191,949974	aucrose repressor (Staphylococcus xylosus)	22	*5	789
52	-	: —	-	91 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	22	\$2	762
240	-	1 220	1485	g1 537049	0 (Escherichia coli)	72	52	1266
52	-	-	1340	91,1206578	hypothetical protein (GB:U06949_1) (Haemophilus influenzae)	22	ş	1338

PRO CI		Stop (nt)	match acession	I daich gene name	e 13	1 ident	length (nt)
1	2108	1245	gi 1340128	ORF1 [Staphylococcus aureus]	72	59	998
7	285	1094	91 1205330	glutemine-binding periplesmic protein (Heemophilus influenzee)	2	52	810
9	5326	\$039	181 11070015	protein-dependent (Bacillus subtilis)	22	53	288
-	1 517	760	91 143399	quinol oxidase (Bacillus subtilis)	72	- \$\$	258
=	1 9622	9309	ui 1204465	hypothetical protein (SP:P27857) [Haemophilus influenzae]	72	35	215
_	926	1609	91 487433	citrate synthese II (Becillus subtilis)	72	\$5	684
~	12538	10493	91 1510643	ferrous iron transport protein B [Nethanococcus jannaschil]	22	25	2046
~	340	1263	91 1402944	orfRM1 gene product (Bacillus subtilis)	2	9	924
_	2177	1590	91 312379	highly conserved smong subscrets (Clostridius scatobutylicus) pir 534312 534312 hypothetics protein V - Clostridius cetobutylicus	22	5	888
	2654	2505	pir 500601 BKSA	antibacterial protein 3 - Staphylococcus haemolyticus	22	92	150
-	~	625	9111016162	ABC transporter subunit Cyanophore paradoxa	72	- 12	624
-	3253	1628	91 666014	the polymorphysm (RFLP) of this game is associated with usceptibility to essential hypertension. The SA gene product has light homology to acetyl-coa synthetese (Homo sapiens)	22	9	1626
-	1 3047	3466	gi 433992	ATP synthase subunit epsilon (Bacillus subtilis)	22	8	420
-	1086	586	gi 310859	ORF2 Symechococcus sp.	z,	\$	108
-	 	1184	gi 1303704	YrkE (Bacillus subtilis)	22	35	1104
-	-	746	91 1107530	cauD gana product (Campylobacter coli	2	- 95	344
	1142	573	97 1303866	[YqgS [Bacillus subtilis]	22	- 95	570
	~	592	[g:[1204497	protein-export membrane protein (Neenophilus influentee)	72	*	165
~	1 295	1251	1911563258	virulence-associated protein 2 (Dichelobacter nodosus)	27	- 22	957
~	295	957	91 1146214	[44] identical amino acids with the Escherichia coll smba supress; putative	2	6	663
-		(35	91 1146183	putative [Bacillus subtilis]	12.	~	435
	150	788	91 1377842	unknown (Bacillus subtilis)	72	S	639
_	130	432	191 1088269	unknown protein (Atotobacter vinelandii	22	- 88	303
	7	238	gi 153929	NADPH-sulfite reducatase (lavoprotein component (Salmonella yphimurium)	22	\$	742
-	940	421	91 853767	UDP-N-acetyiglucosamine 1-carboxyvinyitransferase (Bacillus ubtilis)	2	1 65	420
			·				**********

5

Contig ORF	<u>8</u> 0		Stop (at)	match	måtch gene name	e ta	* ident	length (nt)
1209	-	1 383	213	91 144735	neurotoxin type B (Clostridium botulinum)	2	3	171
1469	-	119	474	91 1205458	hypothetical protein (GB:D26562_47) [Haemophilus influenzae]	2	69	1961
1936		127	165	91 154409	haxosaphosphato tranaport protein (Selmonella typhimurium) pirjmid55 B41853 haxosa phosphato transport system regulatory rotein uhpB - Salmonella typhimurium	22	3	363
71017	-	-	401	91(1303950	YqiY (Bacillus subtilis)	22	20,	199
2503		569	399	91 149713	formate dehydrogenese (Methanobacterium formicicum) pir [AZ212]AA2112 formate dehydrogenese (EC 1.2.1.2) - ethanobacterium formicicum	72	95	171
2967	-	-	155	94 1212729	YqhJ (Bacillus subtilis)	2	9	153
3004	<u>-</u> ,	1 367	185	91,665999	hypothetical protein (Bacillus subtilis)	۲۲	88	183
3109	-	1 278	141	91 413968	ipa-44d gene product [Becillus subtilis]	22	45	900
3171			287	91 (515938	glutamate synthase (ferredoxin) (Synethocystis ap.1 pir [646937] 546957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis ap.	22	25	285
3771		36	367	91 1408501	homologous to N-acyl-L-anino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subrilis)	72	69	25
1382	-	-	222	91 1300409	M. Jannaschil predicted coding region MJ1519 [Mathanococcus Jannaschil]	2	38	222
4190	-	122	362	93 33956	IIGIC [Becilius subtilis]	72	cs	360
3	-	<u>-</u>	247	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	27	\$\$	365
٠	-:	- F	1 1200	191 537095	onnichino carbamoyitranufursuu (Kuchorichin colli	5	5	270
=		11350	10859	91 532309	15 kDa protein (Escherichia coli)	11	4	492
52	7	1248	2435	91 1244574	D-alanine:D-alanine ligase (Enterococcus hirae)	וג ן	52	1188
12	~	868	1488	91 149629	anthranilate synthass component 2 (Leptospira biflexa) pir (032840 032840 anthranilate synthase (SC 4.1.3.37) component II Leptospira biflexa	17	\$	\$91
<u> </u>	-		567	94 (1303983	YQAF (Bacillus subtills)	7	65	267
33	_	3192	2806	[41]1209681	glutamate-rich protein [Bacillus firmus]	12	05	186
e	81	12250	112462	91 927645	arginyl endopeptidase (Porphyromonas gingivalis)	1,4	20	213
67	-	1246	4431	pir 509411 5094	spoiliB protein - Bacillus subtilis	114	6	3186
2	=	07721	14760	101 142611	branched chain alpha-keto acid dehydrogenase El-alpha (Bacillus ubtilis)	14	88	101
<u>.</u>	Ξ	111 13461	12625	01 143014	gnt repressor (Bacillus subtilis)	17	99	837

Contig ORF 1D 10	10 TO	Start (nt)	Stop	metch acession	match gene name	1 sim	* ident	length (nc.)
53		7152	2860	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia	1,1	e	1293
57	8	13897	14334	91 1063247	high homology to (lavohomoprotein (Heamoglobin-like protein) of Alcaligenes eutrophus and Saccharomyces cerevisiae (Becillus subtilis)	1,	95	\$; 7
G	92	1 9831	110955	91 1303926	Yqid (Bacillus subtilis)	17	75	1125
70	122	1 8505	9968	91 147198	phnE protein (Escherichia coli)	7	38,	797
86	- 5	1 2394	2089	91 904205	hypothetical protein [Bacillus subtilis]	7	- 12	306
96	-	1 7601	8269	191 709991	hypothetical protein (Bacillus subtilis)	12	67	699
100	9	4H22	16831	91 1060848	Opine dehydrogenase (Arthrobacter sp.)	נג	\$	1110
103	-	1 1062	512	91 143089	lep protein (Bacillus subtilis)	1,	=	168
109	118	115312	15695	91 413985	ipa-61d gene product (Becillus subtilis	1,	52	384
113	-	630	9.6	gi 663254	probable protein kinase [Saccharomyces cerevisiae]	12	- 65	315
11.4	-	6598	5603	911143156	membrane bound protein (Bacillus subtilis)	1,	9	966
61	~	3087	(271	191 1303913	Yqhx Bacillus subcilis]	17	53	1365
149	61	6135	5885	91 529650	G10P Bacteriophage SPP1	1,	22	3
154	s -	3635	1 3087	191 425488	repressor protein (Streptococcus sobrinus)	2	Ç	549
164	Ξ	11354	111689	191 44318	ORP4 gana product (Hacillus subtilis)	17	2,5	336
169	<u>-</u>	1936	2745	91(1403403	unknown Mycobacterium tuberculosis	14	95	910
193	~	272	1234	191 1303788	YqeH (Bacillus subtilis)	1,	6.	963
205	-	1763	985	91/1215694	GlnQ (Mycoplesme pneumoniee)	12	99	849
233	-	1 1849	2022	91 633732	[ORF1 (Campylobacter jejuni]	2	95	174
237	_	4501	1 \$169	911149384	HisIE [Lactococcus lactis]	1.6	24	699
272	-	2848	(727)	191 709993	hypothatical protain (Bacillus subtilis)	112	8.8	576
274	~	618	1496	91 143035	NADIPIH:glutamyl-transfer RNA reductase (Becillus subtilis) pir A35522 A35252 5-aminolevulinate synthase (EC 2.3.1.37) - acillus subtilis	<u>-</u>	S	619
276	~	13369	1 2720	1911303562	ORF210 (Escherichia coli)	1,0	05	630
287	-	136	099	1911310634	10 kDa protein (Streptococcus gordonii)	1,	G	525
288	9	1 3322	1772	91 1256625	putative [Bacillus subtilis	7	47	252
			, , , , , ,					

S. aureus - Putative coding regions of novel proteins similar to known proteins

f sim t ident	similar to Lysine decarbomylase (Bacillus subtilis)	transport protein (Bacillus subtilis)	capricolumi 71 45	acetein utilization protein (Bacillus subtilis)	hypothatical protein Symechocystis sp. 46'	11	s lactis) 71 55		ATP synthase b subunit (Bacillus megaterium)	homologous to E.coli rnpA (Bacillus subtilis) 49	L-lactate dehydrogenses [Lactobacillus planterum] 71 57	phosphoribosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilis 71 66 (fragment)	1 1	phosphoribosylpyrophosphate amidotransferase (PUR-F; EC 2.4.2.14) Becillus 71 56 subtilis)	-	ubtilis] 71 53	11.	(imbrise 2 (Salmonella typhimurium)	lysine specific permease (Escherichia coli)	poly(A) polymerase (Bacillus subtilis)	s subcilis) 71 53	lus subtilis) 11 51	NADH dehydrogenase aubunic V (AA 1-603) [Gallus gallus] ir[310197] 10197 11 47 NADH dehydrogenase (ubiquinone) [EC 1.6.5.3] chain - chicken mitochondrion (50C1)	
madch gene name	similar to lysine	transport protein	orfC (Mycoplasma capricolum	acetoin utilization	hypothetical prot	unknown (Bacillus subtilis)	ORF 1 [Lactococcus lactis]	unknown (Becillus subtilis)	ATP synthase b su	homologous to E.c.	L-lactate dehydro	phosphoribosylant (fragment)	ORFX18 (Becillus subtilis	phosphoribosylpyr subtilis]	ORF_£309 (Escharichia coli	ORF4 [Bacillus subtilis]	72503.2 [Caenorhabditis elegans]	fimbrias 2 (Salmo	lysina specific p	poly(A) polymeras	unknowm (Bacillus subtilis)	comE ORF1 (Bacillus subtilis)	NADH dehydrogenas NADH dehydrogena (SOC1)	
match	91 467417	91/1256618	91 622683	gi 348052	01 1001819	91 167473	91 551879	91 467447	91 142557	911580904	91 581305	pir PN0501 PN05	191 410142	191 143370	101 606150	91 1237015	9111301730	191 153968	191 466778	91 1146238	91 1486243	191 289260	126112971	
Stop (nt)	1982	\$222	925	\$146	1303	3995	922	11.00	2102	637	1384	3270	1280	1844	2047	696	255	913	654	623	586	179	427	
Start (nt)	3492	6607	1536	1.6672	7	17.1	548	1860	1560	251	315	1070	_	2272	2739	22	506	1068	-	1243	1170	1126	149	
10 E	- 9	-	-	-	 -	-	7	-	-	-	-		-		-	-	-	-	-	-	-	-	~	
6	301	306	307	310	322	E .	350	375	380	=	7.5	436	482	528	529	563	581	612	613	618	630	169	694	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match l acession	match gene name	e is	1 ident	length (nt)
9			ê	10111405459	Yass (Sacillus subtilis)	11	67	969
2				12(1)110389	H. samaschii pradicted coding region MJ0296 [Methanococcus Jannaschii]	12	2	198
753			215	oi 475972	pentafunctional enzyme [Pneumocystia carinii]	1,	4.2	213
10/			Ę	104 536655	ORF YBR244W [Saccharomyces cerevisiae]	1,1	22	105
78/		290	987	lai1:204326	LENA delta(2) - isopentenylpyrophusphate transferase [Haemophilus influentae]	12	.83	306
	. -		286	10111419075	cbim gene product Methanobacterium thermosutotrophicum	12	05	171
908		973	- 688	191 893358	Pgs. (Bacillus subtilis)	4	\$6	1 987
140,		7	1 262	91 1408507	[pyrimidine nucleoside transport protein [Bacillus subtilis]	7	45	261
0.00	-	~	172	191 (709993	hypothetical protein (Bacillus subtilis)	=	97	171
1176		25	365	91 151259	HHG-CGA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CcA reductase (EC 1.1.1.88) Pseudomonas sp.	r .	69	309
1 1181		366	184	191 46971	epip gene product (Staphylococrus epidermidis)	7	05	163
1281		-	290	91)153016	ORF 419 protein (Staphylococcus aureus)	7	95	289
1148		456	229	91 602693	orfc [Hycoplasma capricolum]	17	89	228
2002	-	756	976	191 1008177	ORF YJLD46w (Saccharomyces Cerevisiee)	=	- 48	876
2119	-	~	712	101 1046088	arginy 1-tRMA synthetase (Mycoplasma genitalium)	-	20	1 216
2418	: -	-	320	gi 1499771	H. jannaschil predicted coding region MJ0936 (Wethanococcus jannaschil)	12	52	1 318
2961	: -		187	91 312443	carbamoyl-phosphate synthase (glutamine-hydrolysing) (Bacillus aldolyticus)	7	52	186
2999	-	19	306	1911710020	nitrite reductase (nirB) [Bacillus subtilis]	7	3	240
3033	-	- 2	184	(91)1262335	YmaA (Bacillus subtilis)	۳ -	- 52	163
3584	-	-	338	91 401716	[beta-laopropylmalate dehydrogenase [Neurospora Grassa]		- 22	336
3115	~	733	1399	191 563952	gluconate permease (Bacillus licheniformis)	۶ -		345
1785	· i –	077	1 387	[91]47382	acyl-CoA-dehydrogenase (Streptomyces purpurascens)	-	- 53	384
,	- ; -		1 272	qi 1001541	hypothetical protein (Symechocystis sp.	-	1 38	270
\$13	-	637	320	95 142695	S-adenosyl-L-methionine:Uroporphyrinogen III methyltransferase Bacillus megakerium	12	~~	318
4249			239	q1 1205363	decxyribose aldolase [Haemophilus influentee]	- -	- 63	741
	- i -	239	267	19111197667	vitallogenin (Anolis pulchellus)	11	99	764
7	- ;	. !				-	}	

Contig	OR C	Start (nt)	Stop (nt)	match	match gene name	ais .	1 Ident	length
9	_	1237	1272	61 1321788	arginine ornithine antiporter (Clostridium perfringens)	٥٢	>4	1485
=	=	6572	1486	91 216854	P47K [Pseudomonas chlororaphis]	δr	5	918
7	-	1 2890	1491	141 467330	replicative DNA helicase (Bacillus subtilis)	٥,	67	1410
15	-	1756	1 893	91 451216	Mannosephosphate Isomerase (Streptococcus mutens)	6	97	998
115	~	1277	1050	191 476092	unknown (Bacillus subtilis)	70	, os	228
1 17	-	2112	1350	91 145402	choling dehydrogenase (Escherichia coli)	92	52	783
2		7	925	91 149516	anthranilate synthaue (EC 4.1.3.27) alpha chain - actococcus lectis subsp. lactis	0,	S.	924
52	- 1	5580	6251	91 1389549	ORF3 (Bacillus subtilis)	20	52	672
133	-	1709	7423	91 1303875	YqhB (Bacillus subtilis)	٥	15	1353
36	-	1 959	1594	g1 500755	methyl purine glycosylase (Mus musculus)	6	41	636
38	-	4901	1 5860	9111408507	pyrimidine nucleoside transport protein (Bacillus subtilis)	٥٢	7	960
*	- -	5312	5989	91 1006620	hypothetical protein (Symechocystis sp.)	92	49	678
94	110	0960	10020	91 1403126	czcD gene product (Alcaligenes eutrophus)	2	\$	1001
52	7	1 272	1900	91 1486247	unknown [Bacillus subtilis]	20	65	828
22	9-	8707	4656	91 244501	estarase II carboxylesterase (EC 3.1.1.1) (Pseudomonas fluorescans, eptido, 216 aa)	70	05	609
95		8460	1 9962	10111339953	small subunit of NADM-dependent glutamate synthase [Plectonema boryanum]	70	18	1303
62	-	48	1 290	91 142702	A competence protein 2 (Bacillus subtilis)	70	42	243
	-	1080	136	91 1204377	molybdopterin biosynthesis protein (Maemophilus influenzae)	70	42	540
20	-	5139	3595	91 1204834	[2', 3'-cyclic-nucleotide 2'-phosphodiesterase (Haemophilus influenzae)	٥٢	.	1545
16	-	7793	5466	91 886471	methionine synthase [Catheranthus roseus]	20	98	2328
96	-	8754	1255	pir 839096 8390	alkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	0, 1	3	1500
011	-	196	1300	gi 145294	adenine phosphoribosyl-transferase [Escherichia coli]	5	18	534
116	9	1 7026	3767	911143607	sporulation protein (Bacillus subtilis)	70	os I	951
121		6401	6969	91 1107528	ttg start (Campylobacter coli)	92	45	588
161	60	6842	7936	911150454	prolidase Pepg (Lactobacillus delbrusckii)	20	87	1095

· 25

1 sim 1 ident length (nt)	pirition of ro-Ser-Ale at 70 49 1488 ophus)	1 70 46 297	162 47 531	nfluenzae) 70 50, 993	00	nfluenzae] 70 48 477	10 46 417	_	906 05 04	1 46	- Escherichia coli 70 55 1173	70 46 1107	191 40 291	1 70 33 627	70 52	-	70 41	70 44 883	104 108	52 04	101 101	nnaachiii 70 50 456	189 65 04	-
match gene name	putative membrane-bound protein with four times repitition of ro-Ser-Ale	hypothatical protein (Bacillus subtills)	ORF1 gane product (Bacillus subtilis)	hypothetical protein (GB:D1048) 18) (Haemophilus influenzae)	paptide transport system protein Sapf homolog; Sapf homolog (Mycoplassa pneumoniae)	hypothetical protein (GB:X73124_26) [Heemophilus influentae	excisionase (Bacteriophage 154a)	aspartokinase II (Bacillus sp.)	ORF1 (Staphylococcus aureus)	ruvA protein (gtg start) (Escherichia coli)	pir C18530 C185 queuine tRWA-ribosyltransferase (EC 2.4.2.29) - E.	aminopeptidase a/i [Haemophilus influentae]	protein-dependent (Bacillus subtilis)	GunF [Kanthomonas campestris]	high affinity ribose transport protein (Hacmophilus influensae)	HgtE (Bacillus firmus)	utative (Bacil (bglA region)	ATP synthase gamma subunit (Bacillus megaterium)	RCH2 protein [Brassica nepus]	phosphoribosyl glycinamide formyltransferase (PUR-N) [Bacillus ubtilis]	ORFP (Bacillus subtilis)	hypothetical protein (SP:P37002) [Methanococcus jannaschi	uracil permesse (Bacillus caldolyticus)	
match	91 311309	91 504181	[g1 49315	91 1205212	91 1215695	91 1204665	93 215098	91 142540	1911340128	91 147782	pir c38530 c385	91 1205934	91 11070013	191 133147	H 1204752	01 619724	01 727145	91 142560	gi 602292	91 143372	01 881434	gi 1511524	91,431231	
Stop (nt)	1489	714	9874	16618	1803	1386	1756	6749	4117	3827	12051	1414	699	629	1 9273	1243	320	1608	1 307	1	2552	1284	703	9000
Start (nt)	7	618	9344	115626	2735	910	340	1 7876	13212	1026	5879	1 2520	978	1255	07.78		637	727	~	823	1 3625	829	1383	
ag O	-		-	116	~_	-	- 3	- 2	-	-	01	-		-	2	-		7	-	-	-	-	-	-
:0=	<u> </u>																		•					

		- de -	708	47	672	585	3	207	267	315	570	168	- 66	903	309	234	276	348	12.	180	345	285	264	198	486	396	201
5	į	lengeh (nt)	_	_	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-		-		-	-
		1 ident	3	51	\$	5	,;	\$	=	\$	₹	2	3,	69	2	9	-	20	2	-	*	5		2	۶	1 52	2
10		# 8 im	م و	2	70	0,	0,	٥	2	6	٥	0,	6	92	5	0,	5	70	70	٥	٥	5	6	70	9	۶	92
			-	_	_	_	_	-		_	_	_	_	_	_	_	_	-					richie		5		
15	e e																	TEIN A			rein		n Esche		7 S4699 up.		
20	to known protes			SENIC REGION.					18)									LLIN-DINDING PR			s inducible pro		i phosphorylation		sp.] pir 546957 546957 - ymechocystis mp.		is elegans!
25	- Putative coding regions of novel proteins similar to known proteins		ystis sp. l	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION	yatis sp.)		ia fabal	ATP-dependent helicase [Haemophilus influentae]	(Bacillus subcilis		s subtilis]	subtilis)		cilis	cystis sp.]	epidermidia	aureus]	PENICILLIN-BINDING PROTEIN IA (PBP-1A) (PENICILLIN-DINDING PROTEIN A)		apiensi	22.4% identity with Escherichia coli DNA-damage inducible protein putative [Secilius subtilis]	occus lactis)	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia coli	ulosis)	n) [Symechocyetis dn) (EC 1.4.7.1)	um laminosum)	chromosome condensation protein (Caenorhabditis elegans)
30	egions of novel		hypothetical protein (Synachocystis sp.)	4.3 KD PROTEIN I	pritain (Symechocystis sp.)	erichia coli!	NADH dehydrogenase (ndhf) (Vicia fabal	helicase [Haemor	otein (probale)	us subtilis!	hypothetical protein (Bacillus subtilis)	e (Becillus sub	spec (Streptococcus pyogenes)	ABC transporter (Bacillus subtilis	protein (Symechucystis sp.)	- Staphylococcus	FemA protein [Staphylococcus aureus]	ADING PROTEIN IA	putative (Bacillus aubtilis)	endothelin-A receptor (Homo sapiens	2.4% identity with Escherich putative [Sacillus subtilis]	transmembrane protein (Lectococcus lactis)	f PTS-dependent	unknown (Mycobacterium tuberculosis)	glutamate synthase (ferredoxin) glutamate synthase (ferredoxin)	ATP binding protein (Phormidium leminosum)	ndensation prote
35	ative coding re	match gene name	hypothetical p	HYPOTHETICAL 5	hypothetical p	putative (Sacherichia coli	NADH dehydroge	ATP-dependent	DUA binding protein	CinA [Becillus subtilis]	hypothetical p	ORF 3; putative (Bacillus	spec (Streptoc	ABC transport	hypothetical p	epiB protein	FemA protein	PENICILLIN-BIN	putative [Bac	endothelin-A	22.4% identity putative (Bac	transmembrane	EIIC domain of	unknown (Mycol	glutamate syniglutamate syn	ATP binding p	chromosome cor
40	. sureus - Put	match	91 (001678	ED P33940 YOJH_	91 1001 644	91 145165	91 552971	91/1204636	91 467364	91 1314847	g1 709991	91;112441	g1 529755	91 853754	191 1001827	pir [523416]5234	41 153015	sp P31776 PBPA_	91 1146181	91 219630	91 1146243	01 495179	91 508175	91 1340096	91,515938	191 1154891	141 529385
45		Stop (nt)	<u>; </u>	448	727	787	-	1379	269	716	572	509	335	904	910	235	348	542	402	272	346	286	100	199	888	199	399
		Start	· 		- 5	11.61	250	1585	\$35	-	-	172	-	- ~	7	468	2	195	212	151		7	264	~		194	- 665
	`	<u>:</u>	· i –	-	-	-	1 2	7	1 - 5	-	-	2	-	-	-	-	-	-	-	-	-	-		-		-	-
50		Contig ORF		i -	-	776	834	865	894	1 616	944	988	-	1093	1109	1220	1279	1336	1537	1574	1640	2504	3061	3128	3218	- 626	9696
		ξ.	_ ! _		Ι.	Ϊ_		= =			. ! _	!_	1_	1_	!_	!_	1_	1_	!_	!_	!	!_	!	!_	<u>:</u>	!_	!_!

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

55

Contig	98.	Start	Stop (nt)	match	match gene name	E is	1 ident	longth (nc)
3 2	-	306	398		hypothetical 23.3 kd protein (Eacherichia coli)	20	- +	309
1 1929			107		purative [Lactococcus lactis]	90	6.0	1 660
•		295	374		aimilar to trimethylamine DH [Hycoplasma capricolum] pirjS49950[549950 probable trimethylamine dehydrogenase (EC .5.99.7) - Hycoplasma capricolum (SGC3) (fragment)	5	ĝ	222
4329	. -	858	280	1366221 [76]	small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	٥٢ ا	- 65	279
4422	-	576	289	-	Affase [Lactococcus lactis]	0,	57	288 }
4647	-	1361	200	91 166412	NADH-glutemate synthase [Medicago sative]	6	59	162
16	8	17.57	1 8031	01 1499620	M. jannaachii predicted coding region M30798 (Methanococcus jannaschii)	69	3	1461
16	-	9080	110033	616261/12	thioredoxin reductase (Eubacterium acideminophilum)	69	- 34	954
92	-	1452	727	91 1204910	hypothetical protein (GB:U14001_102) [Heemophilus influenzee]	69	1 52	726
38	-	1023	1298	191 1407773	davk gane product (Anabaene sp.	69	7	1 276
3		5987	\$689	91 1205920	molybdate uptake system hydrophilic membrane-bound protein (Heemophilus		\$	609
62	12	9104	9475	191 385178	unknown (Bacilius subtilis)	69	-	1 272
99	-	1 2402	2803	91 (1303893	YqhL Bacillus subtilis	\$	28	402
69	12	114124	13627	91 149647	ONFZ [Listeria monocytogenes]	69	- 23	167
59	=	14053	14382	gi 305002	ONF_£1356 [Escherichia coli]	69	6+	330
69	62	15130	15807	191 1109684	Prov Bacillus subtilis	69	- 5	8.9
94	-	1467	2124	gi 1256633	putative (Sacillus subtilis)	69	3	819
7.8	-	1 4513	1 3725	01 1103958	rqjo (Bacillus subtilis)	69	22	987
- B	-	14521	1 (21)	pir;E29326 E293	pir(E29326 E293 hypothetical protein (pur operon) - Becillus subtills	69	32	900
98	-	13353	1 2654	gi 973332	Orfc (Bacilius subtilis)	69	28	009
8		96	220	91 78646A	(All antigen, sperm tail membrane antigen sputative sucrose-specific hosphotransferase enzyme-II homolog (nice, testis, Peptide Partisi, 72 am)	s 		615
8	-	6023	1426	191 1205355	Na+/H+ antiporter [Haemophilus influenzae]	69	- 39	1404
102	-	2678	1650	91 561690	sialoglycoprotease [Pasteurella haemolytica]	69	4	1 1029
	80	112241	1 8537	191 1009366	[Respiratory nitrate reductase (Bacilius subtilis]	69	- 84	3705
163	Ξ	14987	112552	1911710020	nitrite reductase (nirB) (Bacillus subtilis)	69	- 51	2436
	1							

	:		:	-	- :	-	- :	-:	-:	-:	-	-:	-:		-:		- ;	-:	-:	-:	-:	- ;	-:	- 7	- :	- ;	:-:	
5		length (nt.)	1461	177	921	087	1002	588	267	786	2412	552	348	1188	2775	243	118	154	3692	162	162	426	(69)	1957	1029	414	1001	
J		1 ident	z	80	\$	39.	53	5	39	43	52	\$	69	æ	64	8	9	48	2	20	19	45	95	35	9	52	ž	
10		els /	69	69	69	69	69	69	69	69	69	69	63	69	69	69	69	69	69	69	69	69	69	69	69	69	69	
15	oteins		in uhpT -	uenzae)) plasmid pSB1	P0]	llus btilis;			OLE ACBTOL-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
20	ilar to known pri		ila typhimurium) ort aystem prote	Haemophilus infl		m vivax			ramyces bisporus	ophilus influenz	(AA 1-804) (Baci			2.6.1.9) (IMIDAZ	-		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		of Luenzae)			
25	wel proteins sim		protein (Salmonella typhimurium) phosphate transport aystem prote	lvating enzyme (Haemophilus		in 1 - Plasmodium vivex		lus subtilis!	/east (Zygosaccha	J14003_302) (Naen	as beta subunit	rulina platensis]	co11)	OTRANSFERASE (EC	[Escherichia col		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	echocystis sp.]	sobium etli)	legans)	strate)		omenas mebilis!	elox)	r (Haemophílus ir	18	9)	
30	 aureus - Putative coding regions of novel proteins similar to known proteins 	metch gene name	transport 153 hexose murium	pyruvate formate-lyase activating enzyme (Maemophilus influenzae)	ol07 (Escherichia coli)	pir A42771 A427 reticulocyte-binding protein 1	Nrdf [Bacillus subtilis]	ipa-7d gene product (Bacillus subtilia)	pir 528089 5280 hypothetical protein A - yeast (Zygosaccharomycos bisporus) plasmid pSB)	hypothetical protein (GB:U14003_302) [Macmophilus influenzae]	phenylalanyl-tRNA synthetase beta subunit (AA 1-504) (Bacillus	alongation factor 7s (Spirulina platenais)	Fins procein (Escherichia coli)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9) (THIDAZOLE ACETOL- PHOSPHATE TRANSAMINASE).	hadR protein (AA 1-1033) [Escherichia coli)	YbbF [Bacillus subtilis]	Ynup (Bacillus subtilia)	hypothetical protein (Symechocystis sp.	pyruvate carboxylase (Rhizobium ethi)	TO4H1.4 (Csenorhabditis elagans)	ORP (Balaenoptera acutorostrata)	ORFI (Bacillus subtilis)	phosphoglyceromutase [Zymomonas mobilis]	arginase (Bacillus caldovelox)	purine synthesis repressor (Heemophilus influentee)	unknown (Bacillus subtilis)	muty homolog (Homo sapiens)	
35	itativa co	match g	hexosephosphate pir D41853 D418 almonella typhi	pyruvate	0307 (Es	reticulo	Nrdf (Ba	pa-7d g	hypother	hypothet	phenylel	alongation	FinE pro		hadR pro	Ybbr (Da	Ynur (Ba	hypothet	pyruvate	T04H1.4	ORF [B4]	ORFI (Be	pondsond)	arginase	purine s	unknown	muty boa	
40	S. Bureus - P.	natch	94 154111	91 1204435	91 (290509	pic A42771 A427	911:154633	1811413931	pir 528089 5280	91 1205538	191 40054	191 296031	91 732682	sp P17731 HIS8_	91 41750	191 (1256135	91 11405456	91 1001768	91 1256798	91 1491664	95/336458	91 556015	101 1155611	91 1276985	91 1221782	91/1122758	101 1458228	
45		Stop (nc)	10168	17414	953	1058	5310	854	10400	A13	4633	1761	6339	1691	12777	5796	5	5776	1 3893	1808	2305	2424	677	1129	17741	415	2246	
		Start (mt.)	8708	16644	2	1537	4309	1 267	10666	1598	1 2222	1210	9898	784	1 \$551	6038	9F9	4820	1 7384	2098	2075	1 1999	- 87	1 2085	6713	828	3286	
		2 2	=	191	~	~	•	~	33	-	-	_	2	~_	_	-	_	-	~	-	_	12	-	-		-	~	
50		Cont la	112	112	113	7.	121	125	149	161	165	691	25.	190	306	206	249	302	324	351	369	392	410	421	¥	453	469	

TABLE 2

TABLE 2

Cont 19	0 Kg	Start (nt)	Stop (nt)	match acession	יושרכן ספטס חששפ	e is	• ident	length (nt)
\$09		1730	17.61	91 49224	URP 4 [Symechococcus sp.]	69	19	1 090
\$20	5	3023	2823	91 726427	similar to D. melanogaster HST101-2 protein (FIR:S34154) Caenorhabditis elegansi	69	39	701
53.1	-	36	760		repressor protein (Bacterlophage Tuc2009)	69	£	135
589	-	107	253	1911169101	17.9 kDa heat shock protein (hapl7.9) [Pisum setivum]	69	52	147
594	7	1 597	1391	91 142783	DNA photolyase (Sacillus firmus)	69	89,	195
604	-	2476	2114	191 413930	ipa-6d gene product [Bacillus subtilis]	69	\$	163
607	1-	7	121	B1 1236103	WDBD2.3 [Caenorhabditis elegans]	69	-	312
607	7	290	1312	1911536715	ONF YBR275c (Saccharomyces cerevisiae)	69	39	672
734	-	864	5	91 467327	unknown (Bacillus subtilis)	69	‡	432
759	-	-	338	191 1009367	Respiratory nitrate reductase (Bacillus aubtilis)	69	0\$	336
761	7_	1392	286	qi 3508 	Leucy1-tRNA synthetase (cytoplannic) (Saccharonyces cerevisiae) 1370340 ORP YPL160w (Saccharonyces cerevisiae)	69	4	195
802	-	22	1013	91 143044	[ferrochelatase [Bacillus subtilis]	69	\$\$	942
816	1-	1 2573	1368	191 1510268	restriction modification system S subunit (Nethanococcus jameschii)	69	\$	1206
838	~_	<u> </u>	786	91 1255371	coded for by C. elegans CDNA yklas) 5; coded for by C. elegans CDNA yklas);; Similar to quanylate kinase [Caunorhalalitim elvians]	s	\$	255
A51	7	745	1005	1911268998	sech gene product (Antithemnion sp.)	69	er	261
867	-	888	1 269	gi 1070014	protein-dependent (Bacillus subtilis)	69	42	267
995	-	954	1 478	9411205569	transcription elongation factor (Heemophilus influentae)	69	53	477
666	-	1009	206	01 899254	[predicted trithorax protein [Drosophila virilis]	69	12	204
1127	-	1315	629	91 1205434	H. influenzae predicted coding region Hill91 (Haemophilus influenzae)	69	95	657
1138	-	248	097	gi 1310646	[N. jannaschil predicted coding region NJ0568 [Methenococcus jannaschii]	69	87	213
2928	-		- •	01 290503	glutamate permesse [Escherichia coll]	69	=	199
3090	-	**	223	91 1204987	DNA polymerase III, alpha chain (Hasmophilus influenzae)	- 69	36	222
3817	-	7 -	800	di 1483199	peptide-synthetase (Amycolatopsis mediterranei)	69	\$	1 399
1833	-	1 667	335	91 1524193	[unknown [Mycobacterium tuberculosis]	69	97	66

		+		~																				
5		length	348			228	300	Ę,				366		2000					1038		1 1 2 2	• , ,	1215	1011
3		1 ident	79			Ç	77	64	46	5		\$ 5		3	, ,	9	9						\$ \$	- 05
10		1 sin	69	9	69	69	69	69	89	89	89	89	69	59	89	89	89	5	89	89	8		89	89
15	proteins	* * * * * * * * * * * * * * * * * * *	. 140 aa} £111s 10N (ORFY)	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus youanse)		Jamonis)		nia coli) POWENT	6	•		lble remeshift,	• • • • • • • • • • • • • • • • • • • •		enitelium)	***************************************			r A29277 A29277 Cus				SULPITE REDUCTASE (MADPH) FLAVOPROTEIN ALPHA-COMPONENT (EC 1.8.1.2) (SIR-PP).	
20	- Putative coding regions of novel proteins similar to known proteins		rff 3' of comk (Bacillus subtilis, R26, Peptide Partial, 140 aaj pir[84]813[834812] hypothetical protein Y - Bacillus subtilis ap P40398 YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK J'REGION (ORFY) FRACHENT).	antigen (Strept		estriction-modification ensyme subunit MI (Mycoplasma pulmonis) pir [849393]849395 HadMI protein - Mycoplasma pulmonis (6003)		imilar to phosphotransferase system ensyme II (Eacherichia coli) sp P32672 FTWC_ECOLI PYS SYSTEM, FRUCTOSE-LING-2 IIC COMPONENT PHOSPHOTRANSFERASE ENSYME II, C COMPONENT).			•	OR 2623; reading frame open far upstream of start; possible rameshift. linking to previous ORP [Escherichia coll]	•	us)	M. genitalium predicted coding region M0246 [Mycoplassa genitalium]	:			procursor (as -20 to 38) (Adinatobacter calcoaceticus) ir A29277 A29271 aldose 1-epimerase (BC 5.1.3.3) - Acinetobacter loseeticus			• • • • • • • • • • • • • • • • • • • •	HA-COMPONENT (EX	
25	vel proteins si		subtilis, E26, ical protein Y	atraptococcal	chocystis sp.)	nzyme subunit H	t (Bacillus subtilis)	ise system enzy YSTEM, FRUCTOS II, C COMPONEN		visiael	•	n far upstream	rio choleree)	m grooving vir	ing region HG2	· · · · · · · · · · · · · · · · · · ·	011)	colij	Acinetobacter	lae)	us subtilis)		AVOPROTEIN ALF	therichia colis
30	regions of nov		omk (Bacillus S43612 hypothet HXD_BACSU HYPOT	n-crossreactive	hypothetical protein (Symechocystis sp.)	restriction-modification enzyme mubunit Mi pir 549395 549395 HedMi protein - Mycopies	ipa-13d gena product (Bacillus subtilis)	hosphotransfera TWC_ECOLI PTS S SFERASE ENZYHE	us subtilis)	unknown [Saccharomyces cerevisiae]	ATPase (Enterococcus hirae)	DR_o622, reading frame open far upstream o linking to previous ORF [Escherichia coli]	aldehyde dehydrogenase (Vibrio choleras)	241k polyprotein (Apple stem groowing virus)	predicted cod	s subtilis)	phng protein (Escharichia coli)	35 kDa protein [Escherichia coli]	recursor (as -20 to 381) (Acina aldose 1-spimerase (EC 5.1.3.3)	MalC (Streptococcus pneumoniae)	sporulation protein (Bacillus subtilis)	s subtilis]	TASE (NADPH) FL	argininosuccinate lyase (Escherichia coli)
35	outative coding	match dene name	orfy 3' of C pir S43612 sp P40398 Y FRAGHENT).	67 kDa Myosis	hypothetical	restriction-	ipa-43d gens	similar to pi sp P32672 P	ProW (Bacillus subtilis)	unknown (Sace	ATPase (Enter	ORF_o622, red	aldehyde dehy	241k polyprot	K. genitalius	YqjA (Bacillus subtilis)	phn& protein	35 kDa protei	precursor (as aldose 1-spime	MalC (Strepto	sporulation p	YqeR [Bacillus subtilis]	SULPITE REDUC	argininosucci
40	S. sureus -	match	91 546918	91 517205	91 1208451	91,496158	101 413967	91 196296	91 1109685	81 807973	91 290642	91 606342	91 155276	91 285608	94 1045937	91 1303952	91 147198	91 145173	91 38722	91 153724	91 143608	91 1303805	sp P38038 CYSJ_	91 396307
45		Stap (nt.)	400	007	333	230	374	293	1193	2074	8772	750	8415	3404	4132	10685	8155	2966	1150	3622		9696	1594	1101
45		Start (nt)	2	215	-	457	06		2302	2892	632A	511	6886	3643	3536	11671	7346	1899	2187	2666	7865	2484	1424	
		98 CI	-	~	_	_	-	-	_	•	8	~	-	_	-	2	-	-		<u></u>	~		~-	
50		Contig	4029	4115	4139	4258	4317	4465	-	15	<u>-</u>	Ĉ.	9	=	.	2	5	6	108	112	316	118	120	129
	:	:		<u> :</u>	: _ :	!	i	i	i	i			ij		į	i	ï	·	:	:	- 1		•	: :

Cont.ig ORF	ag of	Start (nt)	Stop (nt)	match	match gone name	E .	1 ident	length (nt.)
132		1867	2739	91/216267	ORF2 (Bacillus megaterium)	- 89	87	673
134	~	848	1012	91/147545	DNA recombinasa (Escherichia coli)	69	20	165
141	~	372	719	91(872116	ski (stress inducible protein) (Glycine max)	3	36	243
149		2454	1 2260	911145774	hsp70 protein (dnaK gene) [Escherichia coll]	89	48	195
1 155	-	1776	1534	91 216583	ORF! [Escharichie coli!	68	36	243
158		1826	3289	HCOX OPECEA I de	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	89	. 51	1464
691	9	2749	133.8	9111403402	unknown (Mycobacterium tuberculosis)	89	9.	570
175	2	9158	7365	11072395	phak gene product (Rhizobium maliloti)	89	13	1794
188	-	4184	5434	91 1173843	3-Aetoacyl-ACP synthase II (Vibrio harveyl)	89	87	1251
189	-	1 907	1665	91 467383	DNA binding protein (probable) [Bacillus subtilis]	68	\$\$	759
1 206	5 -	7683	6209	91 1256138	Ybbf (Bacillus subtilis)	69	87	975
1 206	8	8 10425	12176	101 452687	pyruvate decarboxylasa [Saccharomyces cerevisiae]	89	8	1752
212		3421	19648	101 136941	cl gene product (Bacteriophage Bl)	89	39	228
1 214	=	5457	6482	191 1420467	ORF YOR196c (Saccharomyces cerevisiae)	89	53	1026
1 237	-	2507	3088	191 149381	HisH [Lactocorcus lactis]	89	9.	582
243	- 5	5540	4542	91 1235684	mevalonate pyrophosphate decarboxylase (Saccharomyces cerevision)	89	43	666
262	-	-	164	91 150974	4-oxalecrotonate tautemerase (Pseudomonas putida)	69	7	162
1 262	-	1984	1118	91/1147744	PSR (Enterococcus hirae)	6.8	69	867
276	9	1 3702	1339	sp P30750 ABC_E	ATP-BINDING PROTEIN ABC (FRAGHENT).	69	\$0	264
1 306	9	6345	5725	91 1256617	adenine phosphoribosyltransferase [Bacillus subtilis]	68	53	621
133	-	4599	3850	91 467473	unknown (Bacillus subtilis)	69	45	750
1 365	9-	1 5017	4838	91 1130643	72283.3 [Caenorhabditis elegans]	89	\$\$	160
1 376	- 2	549	1646	91 1277026	DAPA aminotransferase [Bacillus subtilis]	89	5.3	1098
1 405	-	1741	1 872	191 1303917	Yqia [bacilius subtilis]	89	47	01.B
406	~	853	539	gi 1511513	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	89	7	315
1 426	9-	3558	1988	91 624632	GltL Escherichia coli	89	87	168
438	-	108	1329	191 146923	nitrogensse reductaso (Escherichia coli)	85	43	222

5	Vident Jength (nt)	42 237	1 967 1 97	55 669	45 , 945	41 831	64 321	47 570	52 456	36 234	48 207	54 429	1 987 98	46 312	47 531		46 345	43 201	50 693	53 237	51 381	47 324	50 240	45 396	19
10	ain .	- 89	- 69	99	89	- 89	89	- 89	- 89	- 89	- 89	- 89	- 89	89	- 89	 5	- 89	- 89	- 89	1 89) 89	- 69	- 6A -	1 89	 9
.0kein s		_	influenzael	1455 549455 btilis	subtilis) CDA NTERGENIC						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 1				tone 17C1)				67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	aeruginosaj otein braz
lar to known pr			1 (Haemophilus	ubtilis] pir S49455) - acillus subtili	thase [Bacillus OTEIN IN NARI-A			ERCENIC RECION.			-	occus Sannaschi			btilis)	rich antigun (c	dis)		agalectise]	antigen (Strept				dis)	ir (Peeudomonas id transport pr
CG CG DE SIMI		lejuni j	ng region H1049	ise (Bacillus su ase (GC 4.1.2.4	ardiolipin synt IETICAL 58.2 PRC	its coli)		IN NRDC-TK INT	lus subtilis)	jens]	[Escherichia culi]	1466) [Methanoc			se [Bacillus su	for asparagine-	coccus epidermi	[8]	Streptococcus	streptococcal	la typhimurium)	tilis		coccus epideral	ransport carrie
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		[Campylobacter jejuni]	H. influenzae predicted coding region HI0491 (Haemophilus influenzae)	decayribose-phosphate addiase (Becilius subtilis) pir[544455]559455 decayribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	nknown, similar to B.coli cardiolipin synthase [Becillus subtills] sp b4886 TMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA MTERGENIC HEGION,	transport protein (Recherichia coli)	[Bacteriophage A2]	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC RECION	ipa-58r gene product (Bacillus subtilis)	C)109.8 (Caenorhabditis elegens)	hsp70 protein (dneK gene) [hypothetical protein (SP:P31466) (Methanococcus Sannaschill	reductase (Leishmania major)	pfos/R (Treponema pallidum)	diaminopimelate theorboxylase [Bacillus subtilis	Plasmodium (aiciparum mRNA for asparayine-rich antigun (clone 1701) [Plasmodium falciparum]	epic gene product (Staphylococcus epidermidis)	Rho Factor (Bacillus subtilis)	group B oligopeptidase. PepB (Streptococcus agalacties)	in-crossreactive	transport protein (Salmonella typhimurium)	g - Bacillus subtilis	lamin LII (Kenopus laevis)	epiB gene product (Staphylococcus epidermidis)	branched-chain amino acid transjort carrier (Peeudomonae seruginose) pir A38514[A38534 branched-chain amino acid transport protein braz Pseudomonas deruginosa
SS 52 coding	match gene name	hippuricase	H. influenza	decxyribose decxyribose	unknown, sim sp P45860 Y REGION.	transport pr	orf2 [Bacter	HYPOTHETICAL	ipa-58r gen	C3309.8 [C46	hsp70 prote	hypothetical	reductase	pfos/R (Tre	diaminopime	Plasmodium [Plasmodium	epic gene pi	Rho Factor	group B oli	67 kDa Nyos	transport p	hisc homolog -		epiB gene p	branched-ch pir A38514 Pseudomona
64 O O O O O O O O O O O O O O O O O O O	march	91 535810	91 1204742	191 # 11 4 6 6 0	91 571345	91 147328	191 : 523809	sp P19237 Y05L_	191 413982	191 1107541	101 145774	101/11/10416	191 603456	191 1354775	191 (10117	gi 1335714	91 :81649	191/143434	1911.69939	91 :17205	91 153898	pir c33496 c334	191 64884	91 581648	01 216869
45	Stop (nt)	240	2015	8778	1184	1046	2084	11.5	459	1901	1716	432	611	402	534	216	348	465	169	238	383	126	374	398	385
	Start	476	818	4447	340	1876	1764	~	914	1668	1510	860	9601	16	1064	828	692	665	~	~	_	_	613	.687	~
	·	· -	<u>; </u>		~	~	-	_	-	-	5	-	-	-	<u> </u>	-	1-	7	-	-	-		-	<u>:</u>	
50	Contig ORF	45	i -	40	476	486	517	572	979	659	B64	920	952	970	1028	1029	1058	1096	1308	1679	2039	2077	2112	£722	2948
		•	•	· :	· :	·		·	·												•	•			•

		length (nt.)	4539	756	336	1233	1203	1482	705	840	384	=	1.49	- 2	966	- 69	7171	240	ā	104	1440	276	1263	157	1386	513	1014
5		ident 1		9	\$	- 67	2	- 15	- 87	- 67	23	54			30	65	3	7	- 87	4	- 6	53	- 87	÷	96	36	\$
10		e ie	3	- 69		67	- 69	69	62	- 69	- 69	69	67	69	- 69	67	67	- 69	- 69	- 69	69	67	67	- 69	1 (9	67	67
15	oteins		rasilense] } alpha hain -	# # # # # # # # # # # # # # # # # # #	ide Mutant, 112		[942]																		11)		
20	lmilar to known pr		large subunit pracursor (Azospirillum brasilense) glutamate synthase (NADPH) (EC 1.4.1.13) alpha hain liense	\$ 6 8 8 8 5 5 5 6 6 1 1 1 1 1 2 3 5 6 6 11 8 6 6	mtant 18224, Pept	ıl lus)	semophilus influen								oplasma genitalium		uofaciens)				cia oleracea)	Jannaschii)		SQ10N.	acilius delbrueck	mante major]	
25	el proteins si		bunit precurs e synthase (NJ		li-sensitive s	illus alcalop?	1090212_3) (Ha	- T	subt[][s]	lus subtilis]	lus subcilis;				6185_10) [Myc		lius amyloliqu				locator (Spina	Methanococcus	illus subtili	N IN ASPS 5'R	arrier [Lactob	(Hsp100) [Leis	enthem!
30	S. aureus - Putative coding regions of novel proteins similar to known proteins	match gene name	glucamete synthase large subunit precursor (Azospirillum brasilense) pirjs46602j846602 glutamate synthase (NADPH) (EC 1.4.1.13) alpha h Azospirillum brasilense	Tres (Bacillus subtilis)	orf3 (Bacilius. C-125, alkali-sansitive mutant 18224, Peptide Mutant, 112 as)	Na/H antiporter system [Bacillus alcalophilus]	hypothetical protein (GB:GB:D90212_3) (Haemophilus influenzae	putative (Lactococcus lactis)	LP9D gene product [Bacillus subtilis]	ipa-52r gene product (Bacillus subtilis	ipa-59d gene product [Bacillus subtills]	YmaA (Bacillus subtilis)	ORFB (Bacillus subtilis)	Unknown (Bacillus subtilis)	hypothetical protein (GB:D26185_10) [Mycoplasma genitalium]	kdpC [Escherichia coli]	GTP cyclohydrolasc 11 (Bacilius amyioliquufaciens)	YrkJ [Bacillus subtilis]	unknown (Bacillus subtilis)	Sphx (Symechococcus sp.)	2-oxoglutarate/malate translocator (Spinacia oleracea	shikimate 5-debydrogenase (Methanococcus jannaschii)	ATP-dependent nuclease (Bacillus subtilis)	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION	branched-chain amino acid carrier [Lectobacillus delbrueckii]	100 kDa heat shock protein (Hsp100) [Leishmanla major]	CbrB protein [Erwinia chrysanthami]
35	stative co	match g	glutamat pir 846 Azospir	TreR (BA	orf3 (Ba	Na/H ant	hypothet	putative	LP9D gen	lipa-52r	1 tps-59d	YmaA (Be	ORFB (Ba	Unknown	hypothet	kdpC [89	GTP cycl	YrkJ (Be	unknown	Sphx (Sy	2-oxoglu	shikimat	ATP-depe	нуротиет	branched	100 kDa	ChrB pro
40	S. aureus - P.	match acession	91 304131	91 1000453	91[1113949	91 4655	91 1204349	91 149432	e gi 1408497	91 413976	91 413983	01 1262335	91 143047	91 556885	91 1046081	91 146549	101 (1212775	9111303709	11377843	91 496319	189268 15	1011151]16	91 142439	sp P37347 YECD_	g1 732813	91 1033037	91 809542
		Stop (nt.)	8 6 8 1	14678	4757	6338	1321	7176	14049 ~	13962	15194	2153	1149	3518	3589	2297	8619	2374	6673	3763	3428	1626	2179	12801	14632	808	2052
45		Start (nc)	3943	13923	5092	0787	2119	\$695	14549	14821	14811	6171	-1	4060	4584	2899	5409	2913	6341	2720	1989	1351	116	12445	13047	1321	1039
		0. 1.0		2	60	01	_	6	=	51	11	-	- -	~	~	-	-	- 2		-	9	r -	~	2	Ξ	~	
50		Cont 19 ID	295	95	62	62	66	102	103	109	109	121	132	124	<u>=</u>	140	77	51	152	161	163	193	200	700	506	508	238

246 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	176 2223 2223 16 16 5520 554 108 4890 2940 2946	367 3056 1028 5030 5030 264 1194 1194 1292		excisionase (Bacterlophage 1542) ORP271 [Eschmichia coli] Ctal protein (Bacillus firmus) protein-dapendent (Bacillus subtilis)	1 69		
	2260 2223 5220 36 5650 524 4890 4890 125			NR771 (Escharichia coli) ctaλ protein (Bacillus firmus) protein-dependent (Bacillus subtilis)		37	192
	2223 5220 36 5650 524 524 4890 4890 125		91 142784	Cteλ protein (Bacillus firmus) protein-dependent (Bacillus subtilis)	67	- os	849
	5220 524 524 108 4890 2940 325			protein-dependent (Bacillus subtilis)	69	- 9 7	834
	2940 12940 12940 12940				67	\$	1035
	5650 524 108 4890 2940 1325			dioxygenase (Methylobecterium extorquens)	- 19	25	166
	\$24 10H 4890 2940 325 666	!!!!!!		putative cell division protein fteW (Enterococcus hirse)	67	49	621
	10H 4890 2940 325 666	!!!!!		urea amidolyase (Saccharomyces 'Cerevisiae)	5	45	261
	4890 2940 325 666	3592 2113 918		up p30053 SYILS HISTIDYL-TRNA SYMTHETASK (EC 6.1.1.21) (HISTIDINETRNA LIGASK) (HISRS).	67		1287
	2940 325 666	2113	-	HRG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii pir a44756 a44756 a44756 aydroxymethylglutaryl-CoA reductese (EC 1.1.1.88) Pseudomonas sp.	63	9	1299
	325	918		orf2 gene product [Lactobacillus helveticus]	- 69	4.7	828
	999	******	01/1039479	ORFU (Lactococcus lactia)	و،	- 41	594
		11211	01 1204516	hypothetical protein (GB:U00014_4) [Haemophilus influenzae]	63	55	909
	1800	106	91 382579	CG Site No. 29739 [Escharichia coli]	67	99	900
	1799	1 903		putative (Bacillus subtilis]	69	89	697
7 7 7 7	~	967	91 486906	argininosuccinate synthetase (Streptomyces clavuligerus) pir [557659 [557659 argininosuccinate synthase (EC 6.3.4.5) - treptomyces clavuligorus	67	6.9	795
	1921	2226	91/143434	Rho Factor (Racillus subtilis)	69	Ş	306
7 7 7	1728	965	91:1303853	YqqF (Bacillus subtilis)	62	47	864
	£	218	gi 1204628	hypothetical protein (SP:P21498) [Haemophilus influenzas]	69	-	216
	249	1 647	191 677947	AppC [Bacillus subtilis]	63	125	399
-	340	900	191177761	lrrA (Symechococcus sp.)	62	37	195
************	1407	916	gi 142996	requistory protein [Bacillus subtilis]	62	17	492
1 856 1	1555	677	91 780224	2K970.2 [Caenorhabditis elegans]	69	36	רדר
888 1	1614	850	01 437315	TTG start codon (Bacillus licheniformis)	62	0	765
1034 1	1190	597	191 1205113	hypothetical protein (GB:L19201_15) (Maemophilus influenzee)	62	\$	594
1 1062 1	969	916	19111303850	YqqC (Bacillus subtilis)	69	7	318
1 1067 1	918	460	pir A32950 A329	pir A32950 A329 probable reductase protein - Leishmanla major	5	75	459

Cont ig	<u>8</u> 8	Start (nt)	Stop (nt)	acession	match gene name	N ein	Vident	Jength
1358	-	-	293	gi 1001369	hypothetical protein (Symechocystis ap. i	- ! -		(nt.)
2181	-	٠ -	302	101/1510416	hypothetical protein (SP P31466) [Mathanogogus Januarhiii	. 67	*	291
3000	-	-	- 507	91 517205	67 kDs Myosin-crossreactive streptococcal antigen (Strentococcus unamana)	6	2	300
9906	-	199	2	21 30861	GTG start codon (Lactococcus lactis)		*	\$00
3087	_	454	251	91 1205366	oligopeptide transport ATP-binding protein (Hessiophilus influence)	6	\$	162
3101	-	~	256	01/1531541	uroporphyrinogen III methyltransferase [Zea mays]	63	7	204
3598	-	728	293	94 151259	HMG-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonii) pir A44756 A44756 hydroxymethylgluteryl-CoA reductase (EC 1.1.1.88) Pseudomonas an	6 6	58	336
3765	~	- SA4	366	91/557489	menD (Bacillus subtilis)			
3788	-	1 654	398	pir 552915 5529	pir 552915 5529 nitrate reductase alpha chain - Racilius subsitie / 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$	612
383	-	~	765	[01/704397	cystathionine beta-lyses (Arabidopsis thalians)	69	45	797
3926	_	~	360	(01 (1403199	peptlde-synthetese (Anycolatopsis mediterranei)		9	264
4417	-	1 82	396	191 1205337	Iribonucleotide transport Att-binding protein Haemontine issi	69	=	160
7	_	1 3075	3989	191 535348	Cody (Bacillus subtilis)	- 69	*	315
15	90	2273	2542	101 46491	Smt B Symethococcus PCC7942	99	~	915
7	۵.	8059	7826	vi 292046	[muclu (Homo sapiens)	99	- 45	270
7	=	1 9034	9258	91 1204545	mercury stavenger Drotein (Happman) in the	99	3	234
32	9	6347	5253	Qi 998342	inducible nitric oxide synthase (Gallie cali)	99	-	223.
7	2	9888	10124	61 1510751	molybdenum cofactor bigsynthesis most protein Mathenacon	99	•	1095
89	~	1276	2868	[91(150209	ORF 1 (Mycoplasma mycoides)	99	- 9	1269
88		1 2178	8428	666599 18	hypothetical protein (Bacillus aubrilis)	99	•	1593
. 62	_	5143	4370	91 1072398	phab gene product (Rhizohium malilari)	99	-	1251
70	=	11693	10998	1011809660		1 99	9	774
-	_ [-:			denayribose-phosphate aidolase [Bacilius subtilis] pir[849455 [849455] denayribose-phosphate aidolase [EC 4.1.2.6] - acilius subtilis	99	25	969
- [- [-		_	ATP-dependent nuclease (Bacillus subtilis)	99	42	1305
-;	<u>.</u>	- 7	•	gi 704397	Cystathionine beta-lyase (Arabidopsis thelians)	99		
102	5	1 3810 3265	3265	19111204323	hypothetical protein (SP:P31805) [Hecmophilus influences]	3		7
						•		

S, aureus - Putative codiny regions of novel proteins similar to known proteins

Cont is	훒	Start (at)	Ston Int)	match	Abafich geno namo	s s	1 libent	length [
103		3418	2732	91 971344	nitrate reductase gama subunit (Bacillus subtilis) ap[842177]NANI_BACSU NITRATE REDUCTASE GAMMA CHAIN (EC 1.7.99.4). gi 1009169 Respiratory nitrate reductase (Bacillus subtilis) (SUB -160)	9	.	687
601	<u>-</u> -	4243	4674	91 170886	glucosamine-6-phosphate deaminas [Candida albicans] pir[A46652]A46652 glucosamine-6-phosphate isomerase (EC 5.3.1.10) - east (Candida albicans)	99	Ş	432
112	Ξ	117491	117712	19111323179	ORF YGRIILW (Saccharomyces cerevisiae)	99	ı çç	222
1 116	~	1 4667	2637	91 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis)	99	43	2031
150	-	1189	1 29 89	91 1146224	[putative (Bacillus subtilis]	99	00 1	201
172	<u>~</u> _	3264	3662	1911755152	[highly hydrophobic integral membrane protein [Bacillus subtilis] sp[P4295][TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN ACG.	99	7	399
174	-	4592	1 3723	91 1146241	[pantothenate synthetase [Bacillus subtilis]	99	67	870
175	-	3209	2880	01 642655	unknown Rhigobium meliloti	99	52	000
175	Ξ	8743	1994	91 954655	Na/H antiporter system (Becilius alcalophilus)	99	7	150
061	-	6707	1 5727	91 451072	di-tripoptide transporter [Lactococcus lactis]	99	0	1383
561	51	61651	313	91 1322411	unknown (Mycobacterium tuberculosis	99	3	207
1 217	-	2822	2595	gi 1143542	alternative stop codon [Rettus norvegicus]	99	36	228
1 233	-	3.5	6135	91 1458327	FOSF3.4 gene product [Caenorhabditis elegans]	99	-	666
£.	-	÷	1941	91 809541	[Chra protein (Erwinio chrysanthemi)	99	#	
741	-	2012	1053	91 153067	peptidoglycan hydrolass (Staphylococcus aureus)	99	3	1050
197	-	1178	648	91 1510859	H. jannaschii predicted coding region MJ0790 (Methanococcus jannaschii)	99	•	168
763	-	1000	2973	91 1205865	tetrahydrodipicolinate N-succinyltransferase [Hacmophilus influensas]	99	•	159
272		6548	2484	91 882101	high affinity nickel transporter [Alcaligenes eutrophus] sp p23516 HOXN_ALCEU HIGH-APPIHITY NICKEL TRANSPORT FROTEIN.	99	=	1065
276	-	- 2805	2104	91 1208965	hypothetical 23.3 kd protein (Escherichia coli)	99		702
278	-	1 2830	1784	91 1488662	[phosphatase-associated protein (Bacillus subtilis]	99	48	1047
278	-	3830	2952	91 303560	ORF271 (Escherichia coli)	99	45	879
279	~_	3894	2218	91 1185289	2-succinyl-6-hydroxy-2.4-cyclohexadiene-1- carboxylate synthase Bacillus subtilis	99	\$	1677
788	-	2535	2275	gi 1256625	[putative (Bacillus subtilis]	99	42	197
292	~	6611	942	91 1511604	N. jannaschil predicted coding region MJ1651 (Methanococcus jannaechii)	99	30	192
	-							

proteins
. aureus - Putative coding regions of novel proteins similar to known proteins
sinilar
proteins
of novel
regions
coding
Putative
aureus -
si '

Contrig	<u> </u>	51.act	Stop (nt)	match acession	Makch gene name	Laim	1 ident	length
394	-	1116	- 559	191 (216314	esterase (Bacillus stearothermophilus)			
297	-	2913	1978	91 994794	Cytochrome a assembly facto (Bacillus subtilis) mp P24009 COXX_BACSU PROBABLE CYTOCHROME C OXIDASE ASSEMBLY PACYOR.	99	\$	936
316	-	1 2053	2662	94/1107839	alginata lyase Pesudomonam aeruginosa	99		
338	-	2460	2302	91 520750	[blotin synthetase (Bacillus sphearicus)			0.00
ŝ	-	1214	- 3 - 3	91 167468	7, 8-dihydro-6-hydroxymethylpterin-byrophosobokinasa (Barillushelli.		2	159
363	=	-	863	91 581649	epiC gene product (Staphylococcus epidersidis)	9	25	8
366	~	232	483	91/1103505	unknown (Schizosaccharomyces pombe)	2	\$	2
367	<u>-</u>	1 2468	1845	sp P20692 TYRA_	sp P20692 TYRA_ PREPHENATE DEHYDROGENASE (EC 1.3.1.12) (POH)	0	S	22
372	_	1 2150	1599	191 467416	unknown {Bacillus subtilis}	0	DC .	624
378	-	212	1009	[91]147309	Dutine nucleoside phosphorylass Perhanishis	8	80	232
401			462	91 388263	D-sainobenzoic acid synthase (Streptomyces griseus) pir JNU531 JNU531 p- aninotenzoic acid synthase - Streptomyces riseus	9 9	\$ 6	198
†	_	4836	5254	91 606744	cytidine deaminese (Bacillus subtilis)	9		
411	~	1 1738	1103	91 1460081	unknown (Mycobacterium tuberculosis)	3		
420	<u> </u>	~	241	191 1046024	Na* AfPase subunit J (Hycoplasma genitalium)	3	:	9
17	_	-	889	19111500008	M., Jannaschii prodicted coding region M31154 (Methangement Januarchii)	3		240
\$	-	6.95	5299	191 852076	Nega (Bacillus subtilis)	5	8	#25
1		3405	565	91 153047	lysestaphin (ttg start coden) (Staphylococcus simulans) pir [A23881 A23881	9	9 5	Ā
	_				LYSOSTAPHIN PRECURSOR (EC 3.5.11.		;	Š
261	_[956	•	91 1204905	[DNA-1-methyladenine glycosidese [[Hemophilus influentee]	99	45	477
262	_	9901	1283	91 1046082	M. genitalium predicted coding region MO372 [Mycoplasma genitalium]	1 99		
576	_	7	724	µi 305014	ORF_0234 [Escherichia coli]	99	5	
5		1 190	903	191 (1001353	hypothetical protein (Symechocyatis ap.)	***		
584	-	2	11	SP P24204 YEBA_	INPOTHETICAL 46.7 KD PROTEIN IN MSBB-RUVB INTERGENIC REGION (ORFU).			
592	_	1410	706	gi 928839	ORF266; putative (Lactococcus lactis phage BKS-T)	3		
109	-	25.	720	91 148655	novel antigen; orf-2 (Staphylococcus aureus)	99		
					一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	;	•	1

FABLE 2

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

;		-	•	: -	:	: -	• -	-	: -	: :	: -	:	: -	: -	. –	; -	;	: -	; —	: -	-	: -	: -	: :	:
length (nt)	378	207	162	315	434	891	25.	231	246	693	828	173	549	387	ã	ĕ	201	394	162	573	6 7 2	255	ß	402	192
i dent	\$	9	09	120	7	\$	7	99	\$	15	S	Ç	35	0,5	er .	31	0	25	*	97	9	97	85	5	95
E 18	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99
matth gene name	similar to M. musculus transport system membrane protein. Mramp PIR.A40719) and S. cerevisiae SMTI protein (PIR.A45154) Casnorhabditis elegans)	unknown protein (Rattus norvegicus)	phosphatidylcholine binding immunoglobulin heavy chain 1gH variable region [Mus musculus]	argininosuccinate: lyase [Campylobacter jejuni]	alkaline phosphatase like protein [Lectococcus lactis] pir [539339] salkaline phosphatase-like protein - Lactococcus actis	CG Site No. 161 [Escherichia coli]	[ferrichrome-binding protein [Bacillus subtilis]	HCMVUL77 (AA 1-642) (Human cytomegalovirus)	putative [Helicobacter pylori]	(F) [Bacillus subtilis]	aryl-alcohol dehydrogenase (Bacillus subtilis	dleminopimelate decerboxylese (Becillus subtilis)	orf145 (Staphylococcus aureus)	uridine kinase (uridine monophosphokinase) (Haemophilus influenzae)	rhoptry protein [Plasmodium yoelli]	ORF_(356 [Escherichia coli)	YqgP (Bacillus subtilis)	unknown (Saccharomyces cerevisiae)	methylgalactoside permease ATP-binding protein [Mycoplasma genitalium]	[hypothetical protain (Symachocystis sp.]	H. jannaschii predicted coding region MJ0255 (Nethanococcus jannaachii)	DMA polymerase (g43) (Bacteriophage T4)	DWA-binding protein (Bacillus subtilis)	hypothetical protein (Synethocystis sp.)	tall fiber protein [Bacterkophage T3]
match	91 746573	91 804808	91 1519085	191 1209272	gi 435296	gi 536955	191 289272	91 833061	191 149008	91 580842	191 790945	191 410117	91 48713	101 1204390	[g1]457146	191 305002	191 1303853	191 575913	91 1045799	[91 1001 193	91 1499034	01 215908	[g1]1256653	gi 1208474	191 215811
Stop (nt)	845	355	\$12	712	747	171	158	232	247	233	1473	549	552	475	666	315	203	294	231	574	250	453	587	402	398
Start (nt)	468	561	673	-	010	338		462	~	1425	2300	61	1100	89	1308	52	-	-	-	~	86+	107	1123	-	589
08F 01	n	2	~	-		-	-	-	-	-	- 2	_	_	~	~	-	-	-	_	-	-	2	-	<u>-</u>	- 2
Contig	619	306	7.7	97	764	R52	886	989	893	900	906	647	950	955	1#6	986	1057	1087	1105	1128	1150	1180	1208	1342	1941

 $extsf{TABLE}$ 2

Cont 19 ORF	10RF	Start (nt)	Stop (nt)	Batch	metch gene name	n sin	* ident	length	
1983	-	669	251	101 1045935	DNA helicase II (Mycoplasma genitalium)	99	9	249	
2103	~	176	400	191 929798	precursor for the major merosoite surface antigens (Plasmodium elciparum)	99	97	225	_
2341	-	323	188	[91[1256623	exodeoxyribonuclease (Bacillus subtilis)	99	80	186	
2458	_	325	164	[91]1019410	unknown (Schizosaccharomyces pombe)	99	- 5	162	
2505		468	235	81 1510394	[putative transcriptional regulator [Mathanococcus jannaschii]	99	39, 1	234	
2525	_	558	280	191 1000695	cytotoxin L (Clostridium sordellii)	99	7	1 672	_
2935			275	[91]765073	autolysin (Staphylococcus auraus)	99	- 4	1 672	
3005		=	305	91 1205784	heterocyst maturation protein [Maemophllus influenzas]	99	90	192	
3048	_	8	7.72	19111303813	Yqew (Bacillus subtilis)	99	42	1961	
3071	-	~	189	191 1070014	protein-dependent [Bacillus subtilis]	99	=======================================	189	
1081		7 0 7	225	191 984212	unknown (Schizosaccharomyces pombe)	99	- 55	180	
1090	~	880	386	91 1204987	DNA polymerase III. alphe chain (Haemophilus influenzae)	99	8.8	195	
3318		-	387	991 1009366	Respiratory nitrate reducteso (Bacillus subtilis)	99	- 63	387	
3739	-	798	004	91 1109684	Prov Bacillus subtilis	99	1 68	1 660	
3796		402	202	191 853760	ecyl-CoA dehydrogensse (Bacillus subtilia)	99	09	201	
1924	-	<u>.</u>	347	111 561952	gluconate purmosue (Bacillus licheniformis)	99	46.	249	
42.40			350	gi 151259 	INTG-CoA reductase (EC 1.1.1.88) Pseudomonas meralonii pir A44'156 A44'156 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	99	3	348	
4604	-	-	234	pic A26713 BHHC	pir A26713 BHHC hemocyanin subunit ii - Atlantic horseshoe crab	99	1 94	228	
-	6	8845	9750	91 145646	cynR [Escherichia coll]	- 69	35	1 906	
•	5	2708	3565	91 887824	ORF_0310 (Escharichia coli)	65	1 4	658	
2		1993	866	91,143402	recombination procein (ttg start codon) [Bacillus subtilis] gi 1303923 RecN [Bacillus subtilis]	65	**	966	
15	-	2493	3524	91 1403126	crcD gene product (Alcaligenes eutrophus)	65	38	1032	
82		1908	1372	91 349187	acyltransferase (Saccharomyces cerevisiae)	1 59	- 05	537	
ដ		1467	2492	91 149518	phosphoribosyl anthranilate transferase (lactococous lactis) ptr/535126/535126 anthranilate phosphoribosyltransferase (SC .4.2.18) - Lactocococus lactis subsp. lactis	\$	3	1026	
25	-	1374	4312	[91]1502420	malony1-CoA:Acyl carrier protein transacylese (Bacillus subrilis)	65	44	939	

TABLE 2

192 272 381 182 1431 930 13 756 639 480 786 331 879 954 924 239 282 852 101 357 957 \$25 717 3 5 = 2 **=** = 33 3 9 \$ ÷ ç 33 Ç \$ 9 Ş 42 2 22 12 \$ 2 65 65 5 65 8 8 \$ Ş 3 9 : \$ Ş \$ Ş 5 9 65 Ş Ş \$ 8 5 9 10 S-adenosyl-L-mathionine:uroporphyrinogen III methyltransferase Bacillus [H. influenzae predicted coding region M10594 [Haemophilus influenzae] H. influentae predicted coding region HI0388 (Haemophilus influentae) (H. genitalium predicted coding region MG372 (Mycoplesma genitalium) 15 glucosanine-6-phosphate deaminase protein (Nachophilus influentae) N-terminal acetyltransferase complex, subunit ARD1 (Nethanococcus molybdenum cofactor biosynthesis protein (Masmophilus influenzae) aureus - Putative coding regions of novel proteins similar to known proteins D-hydroxyisocaproate dehydrogenase (Lactobacillus delbrueckii) |NAD(P)!-flavin oxidoreductasa (Waemophilus influentas) 20 cystathionine beta-lyase (Emericella nidulans) [lysophospholipase L2 [Haemophilus influenzas] initrite reductase (nirD) (Bacillus subtilis) hypothetical protein (Symechocyatis sp.) sporulation protein (Bacillus subtilis) ORP 311 (AA 1-311) (Bacillus subtilis) AppA protein (Salmonella typhimurium) OppB gane product (Bacillus subtilis) 25 CG Site No. 361 [Escherichia coli] [permease [Haemophilus influenzae] H-protein [Plaveria cronquistil] |pir|A44459|A444 |troponin T beta Inf-5 - rabbit unknown (Bacillus subtilis) |unknowm (Bacillus subtilis) YqhJ (Bacillus subtilis) yeik (Escherichia coli) 30 match gene name (annaschi (negaterium] 35 |gi|1204637 91 1204896 91 1204844 91 104 5082 9112221196 91 1001 108 91 1399263 191 1204399 |gi|1212729 191 | 1205518 191 1511532 191 1205905 gi | 467423 1 8595 | | | | | | | | | | | | | | 101 1143607 101 | 467424 91 142695 12001/1001 91 547: 91 493074 91 | 509245 191 405882 91 | 580897 19866 129 40 2119 9841 1988 10119 1140 1058 8272 \$375 1433 3454 8357 19528 8832 7588 1503 10387 979 953 757 45 Start int) 110 | 10439 1608 2250 4446 4728 8548 2598 3647 10851 6635 1339 7421 110 | 7165 111040 19172 9386 954 795 262 3909 790 580 225 390 • 10 RF 2 ~ = 7. ~ 50 Contig 106 7 38 Į = ç 22 22 55 63 5 7 11 ۲ æ 2 86 88 102 102 103 103 109 9 Ξ

aureus - Putative coding regions of novel proteins similar to known proteins

1 sim 1 ident length	65 45	114 05 59	65 56 150	nfluencee! 65 52' 579	_	65 39 201	-	9261 17 59	015 95 1.59	65 27 252	_	pir a42296 a42296 65 50 1911 ATCC 9790)	196 97 59		05 44 2637	65 38 2496	1 65 53 1296	65 41 630	SOGO48 SS 40 1515 NACSU PROBABLE 1.52) TECHOIC	a) 65 46 13A)	65 46 612	9 59	- 0
match gene name	stringent response-like protein Streptococcus equisimilis pir S19975 S19975 stringent response-like protein - Streptococcus quisimilis	ORFI (Streptococcus equisimilis)	Ori2 Streptomyces grieeus]	ii. influentae predicted coding region H10318 (Maemophilus influentae)	[transcriptions] activator protein (Bacillus bravis)	repeat organellar protein [Plasmodium chabaudi]	precursor llomo saplens	homologous to spiiTRA_ECOLI (Dacillus subtilis	mutator mut7 (AT-GC transversion) Eschetichia coll]	D02_orf569 [Mycoplasma pneumoniae]	[putative [Bacillus subtilis]	-acetylmuramoylhydrolase [Enterococcus hiraw] 2 (EC 3.2.1) precursor - Enterococcus irae	ONF3; putative (Rhodobacter capsulatus)	ONF IV (AA 1-489) (Pigwart mosaic virus)	alanyl-tRNA synthetaso (Escherichia cuil)	exonuclease V alpha-subunit (Escherichia coli)	ornithine acetyltransferase (Bacillus subtilis)	S'quanylate kinase [Haemophilus influenzae]	rodD (gtaa) polypeptide (AA 1-673) [Bacillus subtilis pir S06048 S06048 probably rodD protein - bacillus subtilis ap P13464 TAGP_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFEHASE (EC 2.4.1.32) [TECHO]C	DNA or ENA helicase, DNA-dependent ATPASE [Bacillus subtilis]	HisBd (Lactococcus lactis)	ribonucleasa HII (EC 31264) (RNASE HIII (Haemophilus influensee)	hypothetical protein (08:000022_9) [Haemophilus influenzae]
match	acussion gl 407881	911407880	91 1139574	91 1204571	101 710496	911111158	91 37589	01 1064809	191 216513	91 1209768	191 1146225	9; 148304	191 151943	[gi 58812	fg1 14522a	gi 882711	191 408115	191 1205974	91 \$80920	9111146200	fgi 149379	191(1205308	10111204989
Stop	3915	4295	4380	8640	11288	202	422	12658	7004	3838	2841	1948	4178	47.85	2,225	8104	18191	3215	13751	1 3709	2513	4195	940
Start	3688	3882	4231	9218	1-	2	-	107.01	1543	3587	3482	3858	3195	4982	7906	10599	16896	3844	5265	1327	1902	8967	1278
Contig loke	_ ; <u>_ </u>	-	9	92	112 12049	=	=	K (701 11	- 8	- 5	-		-	-	- - -		91	-		-	-	-	-
		01.	110	- 21	21	125	126	721	143	145	150	166	188	. £	195	195	206	117	220	236	237	241	252

5

Contig	10 ORF	Start	Stop (nt)	match	matidh gene name	* oim	Lident	Jength
1 274	-	2	1 278	1911496558	ortx [Bacilius subtilis]	9	2	276
100	-	982	818	911.67418	unknown (Bacillus subtilis)	59	\$	168
1 307	-	3586	2864	qi 1070014	[protein-dependent [Bacillus subtilis]	65	0	723
315	~	2286	1399	91 146913	N-acetylglucosamine transport protein (Escherichia coli) pir 829895 MQEC2N phosphotransferase system enzyme [1 (EC. 7.1.69), N-acetylglucosamine-specific - Escherichia coli sp P09323 PTAA_ECOLI PTS SYSTEM, N-ACETYGLUCOSAMINE-SPECIFIC ITABC OMPONENT (EIIA	9	8	888
13.8	~	4120	0716	91 1277029	biotin synthase (Bacillus subtilis	59	65	156
5	_	1490	2800	191 143264	membrane-associated protein (Bacillus subtilis)	. 65	83	11161
344	-	1975	1 2531	191 1050540	[tRNA-glutamine synthetase [Lupinus luteus]	99	7	231
1 358	<u>-</u>	13421	1621	91 1146220	[NAD+ dependent glycerol-1-phosphate dehydrogenase [Bacillus subtilis]	59	- 4	201
1 364	-	1 236	669	[gi [1340128	[ORF] [Staphylococcus aureus]	1 65	1 15	462
379		-	576	91 143331	alkaline phosphatase regulatory protein (Bacillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.31).	\$	9	576
1379	_	1 3666	4346	gi 143268	dihydroliposmide transsuccinylase (odh8; EC 2.3.1.61) [Bacillus ubtllis]	59 -	05	681
428	- -	187	483	19111420465	ORF YOR195w (Saccharonyces cerevisiae)	59	\$	297
43.8	-	21.2	8.38	fgi [143498	degS protein (Decillus subillis)	59	=	7.95
444	Ξ	9280	110215	191 1204756	ribokinase [Haemophilus influentae]	9	5	936
449	7	1241	1531	g1 599848	Na/H antiporter homolog (Lactococcus lactis)	65	3	291
478	7	1452	865	191 1045942	glycyl-tRWA synthetese (Mycoplesma genitalium)	9	39	588
479	_	1032	517	191 1498192	putetive (Pseudomonas aeruginosa)	\$9	•	516
 84	-	4312	5637	91 415662	UDP-N-acetylglucosamine 1-carboxyvinyl transferase (Acinatobacter alcoaceticus)	9	\$	1326
484	-	~	430	[gi [146551	transmembrane protein (kdpb) [Bacharichia coli]	\$9	3	429
499	~	54	932	191 603456	reductase. Loishmania major	\$9	52	H79 [
505	-	914	459	91 1518853	OafA (Salmonella typhimurium	99	39	456
175		1509	683	91149399	open reading frame upstream glnE (Eacherichia coli) 1r[537754[537754] hypothecical protein XE (glnE 5' region) - cherichia coli	\$9	3	627
13	~	906	270	2 506 270 91 10961	[AAP-2 [Plasmodium falciparum]	\$	07	237

Contig ORF	03F	Start (nc)	Stop (nt)	match	match gene name	E E	1 ident	Jength Int.)
202	-	564	283	91 710020	nitrite reductase (nirB) Bacillus subtilis}	59	52	282
112	-	-	177	gi 289272	ferrichrome-binding protein (Bacillus subtilis	65	- 22	171
113	7	196	1 354	1911289272	[ferrichrome-binding protein (Bacillus subtilis)	\$9		159
743	-	~	631	191(310631	ATP binding protein (Straptococcus gordonii)	68	45	630
749	~	1 193	677	gi 467374	single strand DNA, binding protein (Bacillus subtilis)	65	29'	387
762	-	1698	850	91 160399	:::	S9	97	849
788	-	82	315	191 1129096	unknown protein Bacillus sp.]	\$9	35	231
850	-	-	80 0	19111006604	hypothetical protein (Synechocystis sp.)	65	1,46	408
908	-	-	414	01 1199546	2362 Saccharomyces cerevisiae	65	9	*
925	-	-	174	91 1256653	DMA-binding protein (Bacillus subtilis)	59	35	2.5
1031		56	232	gi 238657	AppCacytochrone d oxidase, subunit I homolog [Escherichia coli, K12,	65	Ç	207
1037	-	7	292	191 1491813	gamma-glutamyltranspeptidase (Bacillus subtills)	65	94	153
1053	-	F# .	175	g1 642655	unknown (Rhizobium meliloti)	S9	7	77.1
1149	-	1399	752	19111162980	[ribulose-5-phosphate]-epimerase (Spinacia .leracea)	65	9	648
1214	_	HB1	495	01 1205959	[lactem utilization protein [Heomophilus influenzae]	S9	- 5	387
1276		476	276	pir 835493 8354	site-specific DNA-methyltransforase Stal (EC 2.1.1) - Streptococcus	59	A	201
1276	~	900	15،	91 473794	'ORF' (Escherichia coli)	65	34	324
2057	-	272	138	191 633699	TrsH (Yersinia enterocolitica)	1 59	21 12	135
2521	-	336	169	91 1045789	hypothetical protein (GB:U1400] 76; [Mycoplasma genitalium]	1 59	17	168
2974	-	590	297	91 152052	enantiomerase-selective amidase (Rhodococcus sp.)	65	45	294
1631		306	154	pix JQ1024 JQ10	hypothetical Jok protain (LmRF140 5' region) - fruit fly (Drosophile melanoquater)	53	5	52
3069		5	278	91 164906	product homolognus to E.coli thioredoxin reductase: J.Biol.Chem. 1988] 261:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A	9	99	276
3146	-	282	142	91 49315	ORF1 gene product (Bacillus subtilis)	69	- 1.	141
3170		-		91 1507711	indolepyruvate decarboxylasa (Erwinia herbicola)	- 59	- 44	339
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			:	

		length (nt)	303	122	186	306	363	1260	714	009	1170	1977	1163	345	606	360	916	246	339	1152	780	009	987	285	297	777
5	•	* ident	\$	7	-,	- 05	42	- \$ \$	36	- 43	4 5	- 4	0	99	53 –	20	45	3	28	46	42	4	46	47	28	9
10		e i a	2	\$9	- 59	65	65	- 99	19	99	79	9	99	79	99	3	-	•9	79	9	-	5	64	99	99	- 54
15	teins		8437 538437 hsdM protein A -						_	_								_		iica) (EC .1.1.21) -	s jannaschiil				r 527891 527891	Jannaschii)
20	- Putative coding regions of novel proteins similar to known proteins		schi gene of. Ecopril gene product. [Escherichia coli] pir[538437 538437 haum protein - Escherichia coli pir[509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)		lbc i 1 i s]							lus influenzael			se 0139)			elegans i		5-aminoimidazole ribonucleotide-carboxilase (Pichia methanolica) pir S19112 S19112 phosphoribosylaminoimidazole carboxylase (EC yeast (Pichia methanolica)	ABC transporter, probable ATP-binding subunit (Hethanococcus jannaschiil				serotype-specific antigen (African horse sickness virus) pir(S27891 S27891 capsid protein VP2 - African horse sickness virus	M. janneschii predicted coding region Mil63 (Methanococcus jannaschii)
25	vel proceins sig		product [Escheri i pir 509629 509 520)	NADH-glutamate synthase [Hedicago sativa]	Respiratory nitrate reductase (Bacillus subtilis)	cerevis	ellusj		(Cyanophora paradoxa)	aureus]	ipa-85d gene product (Bacillus subtills)	component [Haemophilus	ichia coli}	us subtilis)	epimerase (Vibrio cholerae 0139)			similar to zinc fingers (Caenorhabditis e	11	ocide-carboxila oribosylaminoimic 1)	ATP-binding sub	aureus)	lysine specific permease (Eschurichia coli)	-	tigen (African horse sickness - African horse sickness virus	ding region NJ1)
30	gions of no	4	oprri gene erichia col li (SUB 40-	synthase IM	rate reduct	ccharomyces	nolis pulch	ia colij		hylococcus	oduct (Baci	se IIBC com	ase (Escher	ict [Bacil]	r epimerase	subtilis)	subtilis]	fingers (C	fum melilot	e ribonucleo 112 phosphor methanolica)	, probable	hylococcus	permease (us subtilis	ic antigen VP2 - Afri	redicted co
35	lve coding re	match gene nama	hsdw gene of Ec protein - Esch Escherichia co	OH-glutsmate	spiratory nit	ORF YGRO87c Saccharomyces	vitellogenin (Anolis pulchellus)	deaD [Escherichia coli]	ycf27 gene product	autolysin (Staphylococcus aureus)	-85d gene pr	fructose-parmease IIBC	glutamate permease (Escherichia coli)	orf 2 gene product [Bacillus subtilis]	nucleotide sugar	YqjJ (Bacillus subtilis)	gltC (Bacillus subtilis)	similar to zinc	unknown (Rhizobium meliloti)	s-aminoimidazol pir S39112 S39 yeast (Pichia	C transporter	autolysin (Staphylococcus aureus)	aine specific	unknowm (Bacillus subtilis)	erotype-specific ar capsid protein VP2	janneschii p
40	reus - Putat		<u>-</u>	_		_	_	_		_		_	_	_		_	_					—	_			
	S. aureus	match	U1 45068B	91 166412	gi 1009366	191 1323127	191 1197667	191 145727	191 101 6232	gi 765073	191 414009	91 1204696	191 290503	191 39815	94 1230585	191 1303961	gi 457514	191 (470331	191 642655	911457702	(151151)	[91]765073	1911466778	91 467484	191 210061	91 1511160
45		Stop (nt)	303	1 328	189	308	364	5518	6926	6454	111537	4364	1 3013	4409	8760	1 1899	3855	30247	1 2421	6027	110030	009	4854	554	7810	6721
	,	Start (nt)		- 2	1374	613	726	4259	1 7639	1 7053	12706	2388	1871	4065	1 7852	1540	4793	30002	2759	1178	19251	-	3868	838	7514	7134
50		108		-	-	_	~	-	9	æ	=	-	_	9	-	-	9	124	-	φ	6	-	~	~		-
		Contig ORF	3546	1 3782	3990	4032	4278	61	61	50	16	2	36	1 33	45	53	95	95	62	æ	96	100	907	123	127	131

TABLE 2

		:	- • -	- + -			- + -			-					_		_												
5		length	639	354	196	828	3601				6	222	200	279	891	486	1 162	666				747			1316	630	282	\$49	\$55
		1 ident	\$	22	3	os	1,1	=	4	*			6	8	69	38	52	8		· · ·	;	8	-		S.	5	2	- BX	=
10		1 sia	3	99	**	79	P9	79		79	3			3	- 64	5	- 29	2	79		3	2	3	-	2	-	-	29	3
15	ins	7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ioniae)				***	•		***************************************							I Fluorechi i	.2.1.11)				lococcus					-	-	_
20	to known prote		lus pleuropneum		111	* * * * * * * * * * * * * * * * * * * *		•	*********								lethanococcus je	subcilis)				ccus hominis) protein - taphy	•••••••••		,(a)		ganes		
25	roteins similar		it (Actinobaci)	- Leishmania major	[Pneumocystis carinii]		1 1 1 1 4 4 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1110t11	cous aureus)	richia coli)	181		ubt () (a)			egion M70837 (H	mase (Bacillus SEMIALDEHYDE DE	m leprae	***************************************	ia coli]	spanning protein (Staphylococcus hominis) potential membrane spanning protein - tap	ubtilis)	18]	Secilla hra	The property of the property o	torate monocytic		
30	 Putative coding regions of novel proteins similar to known proteins 	9	ribofiavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	tase protein - Le	incigen MSG2 (Pne	ila colij	(Bacillus subtilis)	us subcilis]	PhaD gene product (Rhizobium mellloti)	analog (Staphylococcus aureus)	No definition line found (Escherichia coli)	argC [Bacillus stearothermophilus]	ter vinelandii)	1pa-90d gane product [Bacillus subfiles		females for the second	M. Jannaschil predicted coding region MJ0837 (Methanococcus jannaschil)	aspartate semialdehydə dehydrogenase (Bacillus subtilis) ap Q04797 nHaS_BACSU ASPARTATE-SEHIALDEHYDE DEHYDROGENASE (ASA DEHYDROGENASE),	hflx; 82235_C2_202 (Mycobacterium leprae)	1ubc111s1	ein n' (Escherichia coli)	otential membrane spanning protein (Staphylococcus hominis) pir[542932[543932 potential membrane spanning protein - taphylococcus hominis	lysine decarboxylase [Bacillus subtilis]	quinol oxidase [Bacillus subtilis]	transcriptional activator protein (Bacillus braufe)	Orotain			ichia colij
35	itative coding r	match gene name	riboflavin syn	probable reductase protein	major surface antigen MSG2	DinP (Escherichia	ORF72 (Bacillus	unknown (Bacillus subtilis)	phaD gene produ	11 88 11	No definition 1	arge (Bacillus	ORF 6 (Agotobacter	tpa-90d gane pr	P17 [Listoria monocutorial		M. Jannaschii p	aspartate semialdeby sp[Q04797 DNAS_BACS (ASA DENYNKOGENASE)	hflx, 82235_C2_	YqfR (Bacillus subtilis)	primosomal protein n'	Potential membrane pir S42932 S42932 hominis	lysine decarboxy	quinol oxidase	transcriptional	ORF2; putative 19 kpa	ftsA (Bacillus subrile)		URF_0470 (Escherichia coli)
40	S. aureus - P.	matcn acession	7135711 16	pir A32950 A329	91 398151	91 984587	91 903304	gi;467483	gi 1072398	961001913	91 396380	91 304134	91 142359	01 414014	ui 1664754		01 1499663	91 142828	gi[467091	91 1303839	91 117345	91 459266	91 580835	143396	91/710496	91/1314295			
45		Stop (nt)	4817	356	3295	2307	4880	191	45:4	2500	13446	16938	282	6928	848	Ī	-;	5567	1163	1450 {	1267	1488	1446 9		635 9	4239 9	549 9		•
		Start (nt)	5455	109	3555	724	3855	2	6355	2042	_	16429	960	7818	1330		705	999	-	- 62	2532	742	1625	5064	-	4520	-	2878	- ‡
50		2 0 0	5	-	=	-	- i	-	9		114	- 51		- 2	- 2	î -	- † -	 •	-			~	 	-	-	- 5	-	-	- †
		Contig ORF	742	5	149	154	191	165	175	188	195	206	215	243	258	25.0	667	263	171	280	293	295	301	315	321	333	342	353	
	•	-		*	*		•	-•	•	•			_		•	+ -	- • -		- •	- •	-÷		-:	1	i :	-	: _	:-	. !

55

5

Contig	0.0 CT	Start (nt)	Stop (nt)	metch	match gene name	t sia	1 Ident	length (nt)
379	-	827	3658	pit 525295 A328	pir 535295 A328 oxoglutarate dehydrogenase (lipoamide) (EC 1.2.4.3) - Bacillus subtilis	3	- (+	2832
* 0 *	9	4429	4839	pir A36933 A369	pic A36933 A369 diacylglycerol kinase homolog - Streptococcus mutans	9	35	117
1 407	-	2020	6611	91 969026	Ortx [Bacillus subtilis]	3	5	888
1 425	-	6011	591	91/1146177	[phosphotransfarase system glucose-specific enzyme II (Bacillus subtilis)	99	- 44	519
[443	9	4082	4798	91 147309	purine nucleoside phosphorylase (Sacherichia coli)	64	1 81	1 7.17
450	~	1035	1604	91 06376	ORF_0162 [Escherichia coli]	3	38	570
470	- 2	1680	6107	91 1369946	host interacting protein (Bacteriophage Bi)	79	45	1428
4 8 6		1911	1471	91 1205582	spermidine/putrescine transport system permease protein [Haemophilus influenzae]	9	35	\$
1 497	-	2217	1159	sp P36929 FHU_E FHU PROTEIN	FMU PROTEIN.	•	38	1059
105	-	~	410	91 142450	ahrC protein (Bacillus subtilis)	- 64	38	100
514	7	<u> </u>	290	191 1204496	H. influentes predicted coding region H10238 [Haemophilus influentae]	3	7	288
\$51	-	3162	3323	[91]1204511	bacterioferritin comigratory protein [Heemophilus influenzae]	- 64	\$	162
603	4	759	986	[91]755823		- 64	35	198
653	~	076	746	1911.213234	dicarboxylic smino acids Dip5p parmease (Saccheromyces cerevisiae)	3	7	195
099	_	3401	12257	sp P46133 YDAIL_		79	66	1545
569	-	17	205	[91]1001383	hypothetical protein (Symechocystis sp.)	3	4	492
102	-	_	752	91,142865	DNA primase (Bacillus subtilis)	3	46	150
826			339	1911971336	arginyl tRNA synthetase [Bacillus subtilis]	3	0.5	339
838	-	1631	917	19111354775	pfos/R (Treponema pallidum)	3	#	915
864		675	344	91 39833	cyclomaltodextrin glucanotransferase [Bacillus stearothermophilus] 1[39835 cyclomaltodextrin glucanotransferase [Bacillus earothermophilus]	3	Ç	270
887		.	677	gi 153002	enterotoxin type E precursor (Staphylococcus aureus) pir[A28179 A28179 enterotoxin E precursor - Staphylococcus aureus sp[P1293][ETKE_STANU ENTEROTOXIN TYPE E PRECURSOR (SEE).	2	46	675
928	~	11.72	963	91 311976	[librinogen-binding protein [Stephylococcus aureus pir 534270 534270 fibrinogen-binding protein - Staphylococcus ureus	2	4	210
1049	7	800	909	91/1049115	Rap60 (Bacillus subtilis	3	42	195
1 1067	~	666	748	91 1151072	[Hhdh precursor [Haemophilus ducreyi]	9	80	252
	•							·]

Contig ORF ID ID	10 P	Start (nt)	Stop (nt)	acession	match gene name	E	1 Ident	length (nt.)
1120	-	S	202	191 142439	ATP-dependent nuclease [Bacillus subtilis]	79	000	3
1125	- -	1751	177	gi 581648	epiB gene product (Staphylococcus epidermidis)	99	*	275
1688	-	402	717	pir A01365 TVMS	pir A01365 TVMS transforming protein K-ras - mousa	- 64	-	189
2472	-	7	358	91 487282	Na+ -ATPase subunit J (Enterococcus hiree)	79] 9¢	35
2989	-	520	356	91 304134	argC (Bacillus stearothermophilus)	- 64	- 80 -	165
3013	-	630	352	1011531699	Cytochrome oxidase subunit I (Bacillus firmus)	- 64	- 12	813
3034	-	346	274	91 1204349	hypothetical protein (GB:GB:D90212_3) (Haemophilus influenzae)	79	- 80	27.5
3197	-	613	306	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	- 64	46	306
1303	-	96	362	191 1107839	alginate lyase (Pseudomonas aeruginosa)	- 64	7	273
3852	7	82	288	191 216746	D-lectate dehydrogenase (Lectobacillus plantarum)	- 64	7	207
3868	_		212	191 149435	putative [Lactococcus lactis]	- 64	8	212
3918	-	099	331	191 5532	acetyl-CoA acyltransferase (Yarrowia lipolytica)	- 64	90	82
4000	-	1112	378	191 944688	unknown (Saccharomyces cerevisiae)	- 64	44	267
6007	-	18	368	191 39372	greB gane product (Bacillus brevis)	9 -	4	288
4166	-	~	349	91 149435	putative (Lactococcus lactis)	9	94	£
4366	_	~	1 307	91/216267	ORF2 (Dacillus mogaterium)	99	+4	306
4457	-	2	007	gi 1197667	vitellogenin (Anolis pulchellus)	9	7	399
=	-	1539	2438	91 438228	OAF C (Staphylococcus aureus)	- 63	32	8
24	-	1195	5423	0111369943	al gene product (Sacteriophage 81]	- 63		681
29	-	-	061	91 467401	expressed at the end of exponential growth under conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) glid67441 expressed at the end of exponential growth under ondtions in which the enzymes of the TCA cycle are repressed Bacil	5	4	960
11	9	6329	5712	gi 496943	ORF (Saccharomyces cerevisiae)	- 63	1 47	619
4	2	14669	15019	pir A04446 QQEC	hypothetical protein F-92 - Escharichia coli	- 63	96	351
48	~	4403	6250	91 43498	pyruvate synthase (Halobacterium halobium)	69	42	1848
20	5	3869	4738	91 413967	ipa-41d gene product (Bacillus subtilis)	63	43	870
53	9	6764	5742	91 474176	regulator protein (Staphylococcus xylosus)	69	49	1023

Contig ORF	ORF	Start (nt)	Stop (nt)	ratch	match gane name	e la	1 Ident	length (nt)
9,5	!	15880	17607	191 467409	DMA polymerase III subunit (Bacillus subtilis)	S	44	1728
52	Ξ	7945	17376	1911:37036	ORF_0158 Escherichia coli	63	- 66	570
79	-	2479	7177	911 142656	unknown (Rhizobium meliloti)	2	7	366
0t -	-	6562	1 2353	91 1399821	PhoC Rhizobium meliloti	63	46	192
25	7	1 223	1 927	91 149376	Hisd (Lactococcus lactis)	G	45	705
#2	- 2	4912	4403	191 413950	ipa-26d gene product (Bacillus subtilis)	6	7	510
16	- 2	9006	1220	191 466997	metH2 B2126_C1_157 (Mycobacterium leprae)	S	=	1857
91	-	10566	9448	191 1204344	cystathionine gamma-synthase (Haemophilus influenzae)	63	\$	6111
120	-	57	1508	191 882657	sulfite reductase (NAOPH) flavoprotein beta subunit (Escherichia oli)	G	46	1488
120	7	2272	4125	91 665994	hypothetical protein (Bacillus subtilis)	3	34	1404
127	-	1909	7566	91 40162	murE gene product (Racillus subtilis)	3	*	1503
149	9	2321	1 2106	191 148503	dnaK (Erysipelothrix rhusiopathiae	6	0,7	216
149	756	10445	10170	gi 4870	ORF 2, has similarity to DNA polymerase (Saccharcmyces kluyveri) r[S15961 S15961 hypothetical protein 2 - yeast (Saccharomyces yveri) plasmid pSKL	63	Ç	276
164	~	507	1298	1298 91 145476	CDP-diglyceride synthetase (Escherichia coll]	3	*	192
991	9	11909	H164	[91 [151932	[fructose enzyma 11 (Rhadobactur capenlatus)	3	-	1746
169	~	1704	1886	1911152886	elongation factor 7s (taf) (Spiroplasma citri)	3	•	61
188	~	3145	1362	[91]1334547	[GIY COI il4 grp IB protein [Podospora anserina]	63	42	195
195	2	11767	12804	191,606100	ORP_0335 [Escherichia coli]	63	Ĉ.	1038
201	~_	607	2283	gi 433534 	arginyl-tRMA synthetese Corymebacterium glutamicum pir A49936 A49936 argininetRMA ligase (EC 6.1.1.19) - orymebacterium glutamicum	63	9	1677
206	1.4	15893	16489	g1 580828	N-acetyl-glutemate-gamma-semialdehyde dehydrogenase Bacillus ubtilis	G	49	165
220	~	99/1	1 5766	91 216334	secA protein (Bacillus subtilis)	63	42	2004
221	-	74	907	191 677945	AppA (Bacillus subtilis)	S	42	834
722		944	1708	191(1510558	cobyric acid symthase (Methanococcus jannaschii)	63	46	765
263	~	804	1070	[91]486511	ORF YKRO54c [Saccharomyces cerevisiae]	63	45	267
269	~	3606	1960	91 148221	ONA-dependent AfPase, DIA helicase Escherichia coli) pir JSD137{8VEXQ recQ protein - Escherichia coli	G	42	1647
					•			

		•																											
-		length	(nt) 1242		986	747		-	726	387	225	-	1671		849	\$73	1 68%	1 (12	228	390	100			901	396	537	240	440	615
5		1 ident	=		38	7, 7,		- 5	15	-	2	-	62	-	- 07	18	45	29	52 -	2	- 51	5	3,	-	-	38	39	- 75	45
10		1 sim	8		69	3	_	3	69	63	63	-	 5 5	- :	- 69	- 5	63	3	63	- 63	- 59	- 59	- 69			63 -	- 69	- 69	- 59
15	oteins		807 (NETB_NYCLE SERINE (THIOL) -				las aeruginosa	_ *		, ·	8 89. PCC 79421		P29K_STRPN 29 KD	-		-:	_	_		_	-	-		dennesski i			_		-
20	- Putative coding regions of novel proteins similar to known proteins		CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) O-SUCCINYLHONOSERINE (THIOL). LYASE).			erier protein (AA 1 - 437) [Pseudomons aeruginosa] ir[S11497 S11497	an Drab - eudomor	1.1.231 (FGBH).			uniete parmease (919 start codon) (Symechococcus PCC630)) pir A3030 GRYCS7 sulfate transport protein - Symechococcus	influences	29-kilobalton protein [Streptococcus pnamoniae] sp P42362 P29K_STRPW 29 KD HEMBRANE PROTEIN IN PSAA 5'RESTON DBF11					naschíí)					8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	H. Jannaschii predicted coding region MJ1232 (Nethanococus Januarii)	hypothetical protein (GB:U00019 14) [Hammorbil: 1.6]	TITE INCIDENTES	*****		faccalis)
25	l proteíns si	4 1 1 1 1 1 1 1	[Mycobacter]		S subréstat	[Pseudomonas	ENACE (FC				odon) (Symech Ansport prote	(Maemophilus	Scoceus pneum		Dent de 100	do thrusactures	Ce se deck 11	nococcus Jan	5 Japonicus)	rificanal	es lividans)	losis)		region HJ123	14) (Haemon	1100 P	118)	001118	Enterococcus
30	regions of nove	B W E	ystathionine gamma-synthase (Mycobacterium CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) LYASE).	putative (Bacillus subtilis)	hypothetical protein (Bacillus auhritie)	n (AA 1 - 437)	D-3-PHOSPHOGLYCERATE DEHYDROGENIASE (FC. 1 1 A.	subt (1 i g)	subrille)		G (9tg start co	transport ATP-binding protein (Haemophilus influenzas)	9-kiloDalton protein (Streptococcus pner HEMBRAME PROTEIN IN PSAA 5'REGION OBFI)	llus sake]	COMY [Bacillus subtills, E26, Danside, to.	(Lactobaci) lus	SOLIDO AM CONTRACTOR C		se tradel [Locu	atacoccus denici	ame istreptomyce	cterium tubercul	is lactis)	edicted coding	tein (GB:U00019	Baciline subré			Catac encigen (
35	utative coding	match gene name	CYSTATHIONINE CYSTATHIONINE	putative (Baci	hypothetical p	Carrier protein (AA	D-3-PHOSPHOGLY	YqeZ (Bacillus subrilis)	Yahy Bacillus subrilies	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pir A30301 GR	transport ATP-b	29-kiloDalton p	orf4 (Lactobacillus sake)	comk Bacillus	offs-like gene [Lectobaci] us delbrosetti	Serine aminorra		Moro martin (COOL TOTAL TESTSCOCCES GENERALIZONS	oran reading trame istreptomyces lividans	unknown (Mycobacterium tuberculosis)	ORF1 (Lactococcus lactis)	M. jannaschii pr	hypothetical pro	ures amidolyase (Bacillus subrilla)	regulation protein	andocarditie ene	
40	S. aureus - P	match	91 099273	101 405133	91 1239983	91 45302	\$p 935136 SERA_	91/1303816	91 1303914	91 112152		91 1205402	91 193268	91 1418999	91 546917	91 41985	91 1510994	91 517356	91 881940	01/47168		~	_	91 1511235	91 1204277	gi 790943	pir S49892 S498 1	91 493017	
45		Stop (nt)	6176	1733	748	3134	1216	1051	1715	327	-	2718	2679	2195	[-		215	230	392	\$00 		- -		399 19	618 19	542 9	482 p:	617	
		Start (nt)	7417	73R	7	2148	1,226	326	1012	451	;	1048	. 3575	1347	~	-	427	-	-	2		-	-		1154 6	- 5	3	1231 6	-
50		I to	e	- - -	-	2	7	-	-	-	-:	-	<u></u>	-	_	-	_	-	-	-	-	-	-	-	-;	-	_	:-	
50		Contig	278	287	295	328	362	404	405	406	-	415	426	505	507	-	-	<u>†</u> –	-	720	1 977	- † -	- † -	- i	1085 1	1094 1	1108	1113 1	
	• •	+		÷		:	- :	- :	-	÷ —	- : .	-:	:	_:	_ :	_ :	!	! —	!	i _	!_	. : _	. ! _	- :	_ !			, T	i

5Ś

Conclg ORF	7 01 7 01	Start (nt)	Stop (nt)	match	natch gene name	e sia	1 ident	length (nt)	
1300	1	_	695	sp P33940 YOJH_	SP P33940 YOJH_ HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	69	99	693	
1325	_	-	204	191 928989	pl00 protain (Borrelia burgdorfari)	63	30	204	
1814	-	7	245	19111303914	YqhY (Bacillus subtilis)	63	7.	243	
1 2021	-	867	250	pir c33496 c334 hisc homolog	hisc homolog - Bacillus subtilis	63	9	249	
2325		2	193	91 436132	product is similar to TmpA of transposon Tm554 from Staphylococcus ureus 	3	9	192	
2335	-	-	195	91 1184298	[flagellar MS-ring protein [Borrella burgdorferi]	63	- 42	195	
2406	-	451	722	91 1041785	rhoptry protein [Plasmodium yoelii]	63	23	225	
1 2961	~	136	360	1911312443	carbamoyi-phosphate synthase (glutamine-hydrolysing) Bacillus aldolyticus	63	23	225	_
2965	-	-	1 602	19111407784	orf-1; novel antigen (Staphylococcus aureus)	63	05	402	
1 2987	-	583	1 293	191 1224069	amidase (Noraxella caterrhalis	63	32	291	
2994	-	366	ŝ	91 836646	phosphoribosylformimo-praic katoisomerasa [Rhodobacter phaeroides]	63	25	132	_
3043	-	6.5	1252	101 11480237	phenylacetaldehydo dehydrogenasa (Escherichia coli)	63	9	189	-
3078	-	609	007	9111487982	intrinsic membrane protein (Mycoplasma hominis)	G	90	210	
3139		~	712	91)439126	glutamate synthase (NADPH) (Arospirillum brasilense) pir A49916 A49916 glutamate synthase (NADPH) (EC 1.4.1.13) - rospirillum brasilense	3	Ç	216	
1625	_	1733	196	41 (623073	OHF160; partariva (hacturity)haya td-fl	63	87	768	
3658	-	-	1399	19111103697	YrkA (Bacillus subtilis)	. 63	à	399	
3639	-	-	195	91 1256135	YbbF (Bacilius subtilis)	63	87	393	
3783		720	161	911125,6902	Pyruvate decarboxylase isozyme 2 (Suiss Prot. accession number P16467) [Sacchaçomyces cerevisiae]	3	×	360	
3900	~	338	12.	sp 110537 AMYB_	BETA-ANYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLUCAN MALTOHYDROLASE).	6	54	168	
4309	-	~ _	911	pir A37967 A379	pir(AJ1967 AJ19 neural cell adhesion molecule Ng-CAM precursor - chicken	- 63	1 6	174	
4367	- -	-	195	91/1121932	Per6p gene product (Pichia pastoris)	1 63	30	195	
4432			216	91,151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC.1.1.1.88) Pseudomonas s.p.	3	£	112	
4468	-	9	1 308	1011296464	ATPase [Lactococcus lactis]	63	96	30)	. ـــ .
133		1411	2400	1911153675	tagatose 6-P kinase (Streptococcus mutans)	62	\$	065	-
36	6	5985	6218	191 1490521	INSH] (Nomo sapiens)	62	- 15	234	
		-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				

 ·

Contig	ORF	Start (nt)	Stop (at)	natch acession	match gene name	1 sin	1 Sident	Jength (nc)	
	-	~	121	[91]1107531	ceuE gene product (Campylobacter coll)	62	2	720	
- 38	115	110912	11589	91 1222058	•	79	a.	678	
38	<u>-35</u>	119526	120329	91 695280	ORF2 (Alcaligenes eutrophus)	62	7	804	
- 57	~	1 2523	1780	91 171234	orfi (Waemophilus influentse)	29	. 55	7.	
52		9646	6350	91 508174	EIIB domain of PTS-dependent Gat transport and phosphorylation Eacherichia	62	32	767	
88		~	259	91 755152	[highly hydrophobic integral membrane protein [Bacillus subtitis] sp[P42953]TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.	62	7	558	
69	2	4250 	9014	g1 4706R3	Shows similarity with ATP-binding proteins from other AGC-transport perons. Swiss Prot Accession Numbers P24137, 198007, P04285, P24116 Escherichia coli)	G	Z	965	
69	-	6315	7494	91 46816	actVA 4 gene product [Streptomyces coelicolor]	- 62	\$	622	
<u>ء</u>	_	1793	1320	41 3993	UDP-N-acetylmuramoylalaninaD-glutanata ligase [Bacillus subtilis]	29	•	7.7	
FR .	-	7034	920\$	191/1217191	5'-nucleotidase precursor (Vibrio parahaemolyticus)	62	47	2112	
100	_	14051	3089	19111511047	phosphoglycerate dehydrogenase (Methanococcus jannaschil)	62	42	963	
102		~	520	91 1153655	mismatch repair protein Streptococcus pneumonise pir C28667 C28667 R4A mismatch repair protein hexA - Streptococcus neumonise	62	3	519	
112	7	991	1068	191 (153741	ATP-binding protein [Streptococcus mutans]	63	3.1	(09	
=	-	6855	1 7562	1911204866	1-fucose operon activator (Naemophilus influensae)	62	*	AD.	
116	-	6823	5633	1911677947	AppC (Bacillus subtilis)	62	17	1611	
124	e	6855	6004	101[853777	product similar to E.coli PRFA2 protein (Bacillus subtilis) pir(555438 555438 ywkE protein - Bacillus subtilis sp(#45673) HEHK_BACSU POSSIBLE PROTOPORPHYRINGEN OKIDASE (EC. 3.3).	8	ş	823	
148	-	24	554	191 467456	unknown (Becillus subtilis)	62	õ	531	
149	120	7591	6725	191 1205807	replicative DNA helicase (Maemophilus influenzae)	62	Ş	667	
91	_	1503	1153	191140067	X geno product (bacillus sphaericus)	62	~	150	
791	-115	14673	15632	91 42219	P35 gene product (AA 1 - 314) (Escharichia coli)	62	38	096	
591	~_	1166	1447	91 403936	phenylalany -tRUM synthetase alpha subunit (Cly394 variant) unidentified cloning vector	62	8	282	
7997	7	2084	5089	191 308861	GTG start codon (Lactococcus lactis)	. 62	7	3006	
171	-	1225	614	[91]1046053	hypothetical protein (SP:P32009) (Mycoplasma genitalium)	29	7	612	

Contig ORF	OR C	Start (nt)	Stop (nt)	match	match gane name	mis 1	* ident	length (nt)
183	-	2521	1310	91 143045	hemY (Bacillus subtilis)	62	45	1212
500	_		956	91 142439	ATP-dependent nuclease (Bacillus subtilis)	62	22	954
762	~	935	1966	91/41695	hisC protein (Escherichia coli)	79		1032
261	-	4008	1 2605	91/143121	ORF A; putative (Bacillus firmus)	62	42	1404
299	œ	4417	4719	gi 467441	expressed at the end of exponential growyh undur conditions in which he entymes of the TCA cycle are repressed (Bacillus subtilis) gile67481 expressed at the end of exponential growyh under ondtions in which the entymes of the TCA cycle are repressed Bacil	62	ç	350
707	9	501A	1 3819	91/153015	[FemA protein [Staphylococcus aureus]	62	\$	1200
324		~	7 5 5 5	gi 142717	Cytochtome aa3 controlling protein (Bacillus subtilis) pir A33960 A33960 cta protein - Bacillus subtilis sp P12946 CTAL BACSU CYTOCHROHE A3 CONTROLLING PROTEIN.	3	3	261
328	1 2	269	1207	91,581088	methionyl-tRum formyltransferase [Escherichia coli]	- 62	39	939
132	9	4894	1631	91 1499960	uridine 5'-monophosphate synthase [Hethanococcus jannaschii]	62	36	264
355	_	7	07.6	01 145925	[fecb (Escherichia coli)	62	- 26	369
365	8	6628	6804	di 413943	lipa-19d gene product (Bacillus subtilis)	7 29	- 35	177
369	7	2744	1626	pir A43577 A435	pir A4357 A435 regulatory protein pioR - Clostridium parfringens	7 79	- ;	1 6111
370	-	× .	1 264	91 40665	[bota-ylucosidase (Cloutridium tharmacallum)	79		1 162
415	_	2709	9116	91 1205401	(transport ATP-binding protein (Maemophilus influenzae)	62	35	168
429	-	1578	790	gi 1046024	Na+ ATPase subunit J (Mycoplasma genitalium)	62	- 0 2	789
ŧ	~	704	1369	91 581510	Inodulation gene; integral membrane protein; homology to Rhizobium eguminosarum nodi (Rhizobium loti)	29	5	999
411	<u></u>	132	1 1869	pir A18440 A484	pir A18440 A484 ring-infected erythrocyte surface antigen 2, RESA-2 - Plasmodium falciperum	62	- ;	1 6111
485	-	241	1707	191117934	betains aldehyd dehydrogenass (Beta vulgaria)	62	4	1467
487	2	1141	1161	91 149465	ORF1 [Lactococcus lactis]	62	_ _ _ _	1 171
494		1134	1313	91 166835	ribulose bisphosphate carboxylase/oxygenase activase (Arabidopsis haliana)	62	ا بر	180
518	-	193	882	101 153491	O-methyltransferase (Streptomyces glaucescens)	62	39	690.
73	~	369	2522	91 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	62	35 -	2154
551	9	1769	4820	[gt 511113	ferric uptake regulation protein (Cempylobacter jejuni)	62	1 4	450
574	-		570	81 153000		62	7	570
					·····································	400000000000000000000000000000000000000	********	4000000

		:	- + -	- • •	- •																							•		
		length	200		63	(1)	345	246	BLO	675	765	366	17.	591	201		231	231	285	189	243	165	1 660	1 762	213	1	246	181	-	372
5		1 ident	;		3	2 :				96	- ex	45	\$	39	51.5		5	5	62	45 -		- i	- 27	- 12	=	- 27	- - -	- -	-	- 27
10		1 sin		; ;	3			;		3	29	62	62	- 23	62			70	70	3	62	62	- 29	62	- 29	62 -	62	62	-	- 3
15	roteins					methyl coensyme H reductase system, component A2 (Methanococcus fannaschill		0	00 (ta) (sm)					\$05 aa)	ONF homologous to E.coli mota (Herpetosiphon aurantiscus) pir (514010 514030 Hypothutical protein - Horpetosiphon autantiscus (fegment)									_	_	acetyl coenzyme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	91	HHO-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonii) pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) pseudomona	Bp.	_
20	aureus - Putative coding i=gions of novel proteins similar to known proteins				intee)	Int A2 (Methano		hypothetical protein (GB:X75627_4) (Haemophilus influenzae)	H. genitalium predicted coding region MGI81 [Mycoplasma onnitalium	ens)				Agx-1 antigen human, infertile patient, testis, Peptide, SOS as)	NF homologous to E.coll mots Herpetosiphon surantiacus) polypothnitcal protein - Horpetosiphon susantiacus (frament)			sch111			101					e) (Clostridium	homologous to N-acyl-L-amino acid amidohydroless of Bacillus stearothermophlius [Bacillus subtilis]	HG-CoA reductase (EC 1.1.1.88) (Pseudomonas mevalonil) pir A44756 hydroxymethylglutasyl-CoA reductase (EC 1.1.1.88) Pseudomonas		mn rud
25	eins sim				us influe	Compone	197	[Haemoph	ion MG181	domo sabi	1976		A BChi i	ient, ter	stosiphos 100 autani	miaal	1118)	us jannar	-	1	Variabil				prae]	(thiolas	nidohydro [18]	udomonas (EC 1, 1		Closmanu.
20	novel prot		tylicum	50111	Heemoph!	Se system	cheni form	X75627_4)	oding reg	drolese (The safe		occus Jan	ertile pa	notB [Hern priotosiph	cus pneus	llus subt	thanococc	mirabili	idium bor	Anabaena	• • • • • • • • • • • • • • • • • • • •		lius suht	cterium 1	ansferase	no acid an lus subti	1.88) (Pac reductase	The state of the s	
30	ng regions of r	в лаже	ORFC (Clostridium acetobutylicum)	phnB protein (Escherichia coli)	cell division inhibitor (Neemophilus influenzae)	Tyme H reducts	Asparaginase (Bacillus licheniformis)	1 protein (GB:	um predicted co	deoxyuridine nucleotidohydrolase (Homo sapiens)	10a-7d gans product (hacillus substitus	PROPERTY OF THE PROPERTY OF TH	se i inethenoc	en Ihuman, infe	ous to E.coli n al protein - Ik	ONF2, putative (Streptococcus pneumonias)	ipa-44d gene product (Bacillus subtilis)	alanyl-tRNA synthetase [Methanococcus jannaschii]	ming one product (Proteus mirabilis)	nontoxic component (Clostridium hornitum	DNA-repair protein (reca) (Anabaena variabi)(=)	epib gene product (Stanby)ororgie enidemidia		archorphyrinagen III (sacillus guhtillis)	nits; Bi496_C2_193 (Mycobacterium leprae)	yme A acetyltri	omologous to N-acyl-L-amino acid amido stearothermophilus (Bacillus subtilis)	ctase (EC 1.1.) ylglutaryl-CoA	thioredoxin reductase (Eubactarium soideline)	
35	Putative codir	השנקן ספחפ חפשפ 	ORFC (Clost	phnB protei	cell divisi	methyl coen	Asparaginas	hypothetica	M. genitali	deoxyuridin	lipa-7d gene	and and a long to a		Agx-1 antig	ONF homolog	ONF2, putat	lipa-44d gen	alany]-tRNA	mryc gene pr	nontoxic com	DNA-repair	lepib gene pr		lacapachuyr II	luits; Bi496	acetyl coenz	homologous to	HHG-CoA reduced hydroxymethy	thioredoxin	
40	S aureus -	match	191 40367	191 147195	191 1205451	91 1511613	91 (9272	91 1205822	91 1045865	[91 1144332	91 413931	9111510649		101 988011	94 581261	91 460025	91 413968	91 1510641	191 485956	01 285708	g1 142092	01 581646	at 1710022	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V. 40086J	91 475715	91 1408501	91/151259	91(1353197	
45		Stop (nt)	1171	830	478	348	248	944	1041	1491	007	11.1		60	503	233	3	257	161	245	167	8	300	1	- T	- [376	402	7.5	
45		Starc (nc)),44	1396	~	692	493	267	2171	868	35					463	644	~	^	_	150	198	396	-		823		584	-	
		<u> </u>	~	_	_	-	_	~	~	~	-	1-	-	. .	-	-	_	-	-	-	-	-	-	-	. [-		~-	-	
50		10	590	655	959	929	687	700	940	A64	916	1071	1084		502	121	1533	1537	22K7	2386	2484	2490	3016	3116		1297	9090	1665	_	
	• -		- :	<u>-</u> :	<u> </u>	_:	:	:	_:	- :	_	: <u> </u>	: -	- : -	:	-:	- :	_:	_ :	_	: — :	-	٠.	i _	. i .	-₿.	:	:	_ :	:

S. aureus - Putative coding regions of novel proteins similar to known proteins

	237	141	363	303	264	255	189	222	157	159	948	519	492	1 66	187	996	\$55	438	7161	1 768	1098	7	576	465	1011	
length (nt)	_	_	_	_	_	-	-	-	_	_	_		-	-	_	-	-	-	-	_	_	_	-	-		
• ident	\$	7	\$	9	\$5,	ž	45	\$	36	2	4	50	ŧ	\$	æ	42	77	18	36	\$	\$	\$	*	19	99	
e;e,	62	62	62	62	62	62	3	62	3	19	19	3	19	19		79	19	61	19	19	19	5	30	61	19	
match gene name	tagatose 6-P kinase (Streptococcus mutans)	homologue to gene 30 (as 1-59); putative (Bovine herpesvirus 4)	hady protein (AA 1-520) (Escherichia coli)	[Yqew (Bacillus subtilis]	mayalonate pyrophosphate decarboxylase [Saccharomyces cerevisiae]	enterotoxin H (Staphylococcus aureus)	ORF4: putative [Streptomyces violaceoruber]	hsdM protein (AM 1-520) (Escherichia coli)	ORF95; putative [Lactococcus lactis phage 8K5-T]	prothymosin siphs homolog (clone 32) - human (fragment)	hypothetical protein (SP:P31995) [Haemophilus influenzae]	exo-bata 1,1 glucanase (Cochliobolus carbonum)	glutamine transport ATP-binding protein Q [Methanococcus jannaschil]	Prox (Bacillus subtilis)	ORF2 Clostridlum perfringens	trac (Plasmid pAD1)	hypothatical protein (GB:U00011_3) [Haemophilus influenzae]	Na/H antiporter system ORF2 (Bacillus alcalophilus)	nikA [Escherichia coli	carbanate kinase [Haemophilus influenzae]	[amidophosphoribosyltransferase PurF [Rhizobium etli]	H. jannaschli predicted coding region MJ1083 (Methanococcus jannaschii)	orf {Bacillus subtilis	[pa-]4d gene product (Bacillus subtilis)	Similar to Saccharomyces cerevisiae SUAS protein [Bacilius subtilis] pir S19358 S49358 pic-29d protein - Bacilius subtilis sp P19153 YMLC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLYC WYERCENIC REGION.	
match	91 153675	191 330705	91 41748	[91]1303813	191 11235684	191 510692	91 (763513	91 41748	01 928831	pir c33356 C333	19111205391	191 1066504	191 11510864	91 1109686	91 498839	91 388269	91 (1205893	959589196	911466612	9111204846	91 1498756	91 1499931	91 1518679	91 413958	91 556881	
Stop (nt)	762	2	365	303	267	256	223	222	3912	162	11938	101	1107	4038	7504	5570	2243	5122	5646	1504	1101	1582	649	, 0661	5123	
Start (nt)	_	283	127	-	530	~	=	-	4288	[_	1	283	919	3082	7118	4605	1689	\$559	4330	2400	2198	1995	7	2454	6223	,
<u> </u>	-	_	-	_	-	-	-	-	- 2		=			-	-	- 6	-	-	- 2	- 2	-	-		~	<u></u>	1
Cont 1g	3898	4027	4109	100	4380	1494	4598	4624	-	=	18	<u> </u>	- F	\$	4	7	3	29	5	-	85	98		66	124	****

10	
15	
20	
25	
30	
15	
o	

•	•	•	- ; -	- ;	- : :	- :	:	7	;		- •	•	+	-	_	• •	•				-					
	length (nt)	624	3	822		(2)	1728	1299	924	1A9	888	1089	693	357	697	369	207	1845		972		366	423	249	11	122
	1 ident	\$	9	35		7	# ·	49	3,	29	=	7 92	- 86	9	9	=	97	ŧ			-), e	= = = = = = = = = = = = = = = = = = = =	78	<u> </u>	-
	mis .	19	19	5			;	7	- i	5	19	- 19	- 5		- 19	61 -	- 19	3	- -	3 3	- :	19	- 19	- 19		- 15
oleins		-beta-1		Ir A29232 A29232	ochi1)					isnratura and				_	_	_		A56390 A56390 3.2.1.96)		Haemophilus			_			
ailar to known pr	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	selis plasmid pAM	olens)	um falciparum (st.	hanococcus Janua		laterosporus		hara formation	us subtilial							ohilus influenzae	pneumoniae] pir cosaminidase (EC	•	id transporter [[Escherichia col IKE IIB COMPONENT (EC 2.7.1.69).	
vel proteins sin		nterococcus faec	rolase [Homo sap	ntigen (Plesmodi ursor - Plesmodi	HIT-family (Met	subt111s]	Cursor (Bacillus	•	or 2 beta (elf-2	ptidame (Bacilly	lanchem!			tin toursel		711cum)	Company ()	Streptococcus beta-N-acetylglu neumoniae	llus subtilis)	-aminobutryic ac	subtilis)	Tues factories			STEM, ARBUTIN-L.) I, B COMPONENT)	ocystis sp.)
00 30 800158		protein I - E	nucleatidohyd	antigen prec	nember of the	VB [Bacillus	Acylase pre	subtilis]	tiation facto	nine amino pe	Erwinia chrys	erichia coli	Agrobacterium	(Mycobacteri	dium acoroni	on our wie for		oprotein ndo- reptococcus p	etase A (Baci	pendent gamma	se (Bacillus	Ne i .nterococo	vbridal		RASE ENZYME I	etical protein (Synachoc
march dene		hypothetical [fragment]	deoxyuridine	pi01/acidic bu	HIT protein, a	similar to Spo	glutaryl 7-AC	bmrU (Bacillus	eukaryotic ini	ORF for methic	Cbrc protein	ORF_f579 (Rach	chvb protein (glvr-1 protein	ORFA! (Closeri	hypothetical	bata-N-acary,h	mannosyl-glyc precursor - to	cysteine synth	Na+ and Cl- der influenzae]	polyA polymeras	cell wall enzym	FBP3 (Petunia h	similar to hera	SP P31451 PTIB PHOSPHOTRANSFE	hypothetical protein (Symechocystis sp.)
metch	Acession	pir P00259 P002	01/1144332	91 160047	91 1499694	191 1467416	01 216374	91 409286	91 415861	91 216341	91 409543	91 537231	91 142226	91 (699379	91 40364	91 1204848			_		-	-	-			191/1001805
Stop	(11)	627	3075	7869	2361	7948	2340	4111	190	5048	3047	\$ 69	1034	2627	3051	4827	1845		7032	8535	366		;	7 769	:	1190
Start	(nt)	DC.T	3617	9690	1915	9675	1042	\$034	~	4161	1959	~	67.8	3523	3419	4621	-		8003	9878		1918	-	1304		1912
	9 .		•	2	-1	-	_	-	_	-	-	-	~	~	~	-	-		-		-	~	-	-		~
Contig	9 3	7.	149	149	168	121	17.	190	216	227	238	247	247	257	268	275	7.7	!	278	278	283	288	-	318	; -	955
	OWF Start Stop match	ONF Start Stop match halph gone name	ONF Start Stop match haidh gane name ID (nt) (nt) (nt) acession Aidh gane name Aim Aident leng 1.250 Aim Aident Aim Aident Aim Aident Aim Aim	ONF Start Stop match haid gene name D		1 1250 627 Pir[T00259 PQ02 Hypothetical protein - Enterococcus faecalis plasmid pAM-beta-1 61 43 61 40 62 62 62 62 62 62 62 6	1 1250 627 Dir[PG0259] PQ02 Mypothetical protein - Catalogue of novel proteins similar to known proteins N sim N ident leng 1 1250 627 Dir[PG0259] PQ02 Mypothetical protein - Catalogue of accels Pamid pAM-beta-1 61 43	19 ONF Start Stop match hatch quee name 19 10	1 1250 627 Pir[PG0259 PQ02 Mypochetical protein - Enterococcus feecalis plasmid pAM-beta-1 61 43 61 40 61 61 40 61 61 40 61 61 61 40 61 61 61 61 61 61 61 6	9 Start Stop match Asign gene name 1 1250 627 pir[T00259] PQ02 hypothetical protein - Concentration - Concentratio	1 1250 627 pir Properties Proper	1 1750 627 pir Probability Agency Agency	1 1250 627 pir[PQ0239]PQ02 hypothetical protein - Enterococcus faccalis plasmid pAN-beta-1 61 43 61 62 627 pir[PQ0239]PQ02 hypothetical protein - Enterococcus faccalis plasmid pAN-beta-1 61 43 62 62 62 62 62 62 62 6	1 1250 627 pir Procession March March March General March March	1 1250 627 pir[PQD359] PRODE Martch March gane name Teacher Teacher		1 1350 627 pir[P00379] POOCE match Asception and the control of the c	1 1350 627 pic[Ty00359] PROD Procedure of moved procedure similar to known procedure and control of the control of t	1 1250 S27 Steel Steep martch Match gone name 1 1250 S27 Steep Match gone name 1 1250 S27 Dit[Pro0259]PQ02 Properties 1 1250 S27 Dit[Pro0259]PQ02 Proo2595PQ02 S27 Dit[Pro0259]PQ02 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 Dit[Pro0259]PQ02 S27 Dit[Pro0259]PQ02 Dit[Pro0259]PQ02 Dit[Pro0259]PQ02 Dit[Pro0259]PQ02 Dit[P	1 130 53.4 58.0 article Autority regions of most process state Autority regions Aut	10 1750 512 11 1100 20 20 20 20 20	1 130 CR. Stop autton Autoph goon name 1 130 CR. CR. Stop autoph goon name 1 130 CR. CR.	1 130 CHR Stork Stop match Abiging Gram name Chrosomore Match Match Chrosomore Match Match Chrosomore Match Match Chrosomore Match Match Match Chrosomore Match M	1 130 621 130	150 Start Store Start St	1 135 527 SIGNATION Match gone name Match gone name

Cont 1g	<u>8</u> 0	Start (nt)	Stop (nt)	match	mptch gene name	t sin	1 ident	length (nt)
385	-	1513	1025	91 533098	Onab protein (Bacillus subtilis)	61	7	489
426	-	794	199	94 1303853	YqqF [Bacillus subtilis]	59	*	396
438		810	1421	gi 1293660	AbsA2 (Streptomyces coelicolor)	19	36	612
1 55	-	1580	192	1911733522	phosphetidylinositol-4,5-diphosphate 3-kinase [Dictyostellum iscoideum]	19	000	189
464	7	784	260	91 1123120	[C5]87.5 gene product (Caenorhabditis elegans)	19	38′	225
470		6077	7357	[41]623073	ORF360; putative (Bacterlophage LL-H)	19	C	1281
509	-	554	279	[93 467484	[unknown (Bacillus subtilis]	19	45	276
855		1916	1296	91 141800	anthranilate synthase glutamine amidotransferase (Acinetobecter alcoeceticus)	19	\$	621
696	<u>-</u>	1171	183	191 467090	B2235_C2_195 [Mycobacterium leprae]	19	- 6	1 858
585	-	1961	803	sp P36686 SURE_	SURVIVAL PROTEIN SURE HONOLOG (FRAGHENT).	19	6	159
592	_	1694	1422	19111221602	inmunity repressor protein (Meemophilus influenzae)	19	22	1 675
603	-	ę	1357	191 507738	Ilmp (Vibrio parabaenolyticus)	19	S	1 211
699	- 	2467	1235	91 1146243	22.4% identity with Escherichia coli DNA-damage inducible protein; putative [Bacillus subtilis]	19	5	1233
675		808	1101	91 403373	(a)yeerophosphoryl diesear phosphodiesterses (Bacillus subtilis) pir 537251 537251 glycerophosphoryl diesear phosphodiesterse - acillus subtilis	19	×	297
103	-	1656	629	[91[537181	ORF_f470 (Escherichia coli)	19	22	A2A (
728	_	1628	916	191 806281	DNA polymerase I (Bacillus stearothermophilus)	19	96	813
621	-	15	318	191 709992	hypothetical protein Bacillus subtilis]	19	38	258
856	-	2313	1567	91,609310	portal protein gp3 Bacteriophage HK97]	19	9	747
921	-	1081	542		putative (Bacillus subtilis)	19	38	\$40
1124	-	- 59	370	g1 1107541	[CJJD9.8 (Csenorhabditis elegans]	19	26	312
1492	-	248	276	191 406397	unknown [Mycoplasma genitalium]	19	22	273
1 1602	=	46	318	91/733522	phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium iscoideum)	19	*	273
2500	_	1 577	290	91 1045964	hypothetical protein (GB:U14001_297) [Mycoplasma genitalium]	19	ä	288
1 2968	-	~	808	91 397526	clumping factor (Staphylococcus aureus)	19	35	807
3076	-	-	248	91 169373	ORF 1 [Lectococcus lactis]	19	17	246

S. aureus - Putative coding regions of novel proteins similar to known proteins

	900		40.5	ACT	AARTH GARA DAMA	4		
61	=	ar)	(10)	acession			- Insur	(nt)
1 3609	~_	20.7	401	01 1408501		19	6	195
1 3662	-	1477	740	19111303813	Yqek (Bacillus subtilis)	19	~	738
3672		2	\$	911/84897	beta-M-ecetylhaxosaminidase (Streptococcus pmammniase pir 1856)90[A55390 mannosyl-glycoprotain ndo-bata-W-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	6.	8	4
3724	-	7	220	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	5	7	219
1 3728	-	<u>.</u>	398	81 677943	AppD (Bacillus subtilis)	61	9	396
3884		<u>-</u>	4 0	g1 784897	Deta-N-acetylhexosaminidase (Streptococcus pneumoniae) pir/A56390{A36390 mannosyl-gjycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ç	199
1796			383	91 784897	beta-N-acetylhaxosaminidase (Streptococcus pneumoniae) pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ĉ	181
4038	-	199	359	Q1{133995n	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	19	7.	303
404	-	346	274	101 413953	ipa-29d gene product (Becilius subtilis)	19	÷	273
4047	-	-	402	191 528991	unknown (Bacillus subtills)	19	42	402
4102	-	-	345	1911976025	HrsA [Escherichia coli]	19	46	345
\$		-	336	141 784.897	heta-N-acetylhaxosaminidasa Streptococcua pneumoniae pir A56390{A56390 mannosyl-glycoprotein ndo-heta-N-acetylglucosaminidase (EC 3.2.1.96) procursor	9	Ş	336
4268		Ç	233	91 450688	hadk yene of Ecopri gene product (Escherichie coll) pir 338437 338437 hadk prutein - Escherichia coli pir (509629 509629 hypothetical protein A - Escherichia coli (50m 40-520)	19	80	231
47.0		245	273	91 784897	Deta-N-acetylhexosaminidaes [Streptococcus pneumoniae] pir[A36390]A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae		8	270
4389	-	~	172	91 147516	ribokinase Escherichia coli	19	35	171
4621		~	268	91 784897	Deta-N-acetylhaxosaminidase (Streptococcus pnaumoniae) pir [A56396[A56390] mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	Ç	267
(4663	-	12	, , , , ,	1911976025	HrsA [Escherichia coli]	5	05	201
		6663	5536	01 1408501	homologous to N-acyl-L-amino acid amidohydrolase of Bacillus steatochtermophilus [Bacillus aubtilis]	9	\$	1128

Contig	- K	Start (nt)	Stop (nt)	match acession	morch gene name	e sa	1 ident	length int)
=	<u></u>	3426	3725	91 410748	ring-infessed erythiocyte surface antigen (Plasmodium falcipaum) pic A2536 A25526 Fing-infected erythrocyte surface antigen recursor - Plasmodium falciparum (strain FC27/Papua New Guinea) sp P13830 RESA_PLAFF RING-INFECTED ERYTHROCTTE SURFACE ANTIGEN RE	09	24	000
= -	7	11035	10313	oi 1217651	carbonyl reductase (NADPH) (Rattus norvegicus)	9	28	123
91 –	=	11911	12930	[91]1001453	hypothatical protein (Synachocystis sp.)	0	رر ا	1014
2		1 26	469	191 388109	regulatory protein (Enterococcus (aecalis)	9	1.7	644
	=	110411	3834	911336656	Orfl [Bacillus subtilis]	9	0	981
66	-	4364	4522	191 1872	ORF 4 Saccharomyces kluyveri	09	47	159
7	-	2047	1 1025	91142822	D-alanine racemase cds (Bacillus subtilis)	9	39	1023
2	-	2474	3607	91 468046	para-nitrobenzy esterase (Bacillus subtilis)	9	Ç	1134
3	2	6736	9967	91 414234	thif [Escherichia coli]	09	25	1014
\$	2	8874	9074	191 343949	var1(40.0) Saccharomyces cerevisiae	09	7	201
35	=	27842	26430	91 468764	mocR gene product (Rhizobium meliloti)	9	35	C 37
9	~	571	388	91 1303864	Yqgq (Bacilius subcilis)	9	23	216
G	~	1357	1619	91 467124	ureD; B229_C1_234 [Mycobacterium leprae]	09	\$	1263
69	_	TRT	395	19111518853	OefA (Salmonella typhimurium)	09	36	193
e e	<u>-</u>	- -	1188	91 1480429	putativa transcriptional regulator [Bacillus stearothermophilus]	09	30	1188
92	و	4735	13881	91 349227	transme n biane protein (Escherichia coll)	9	1,	855
92	_	9665	1 4923	91 466613	nika (Escherichia coli)	9	38	1074
36	-	949	9.00	19111510925	coenzyma F420-reducing hydrogenass, beta subunit [Methanococcus jannaschii]	9	12	474
36	<u>-</u>	7366	# K	1911-12715	areossory protein (Carrobactorium piacifola)	9	0.	213
86	•	1 3212	4069	91 467 425	unknown (Becillus subtilis)	9	7	858
102	<u></u>	7158	7430	91 143092	acetolactate synthase small subunit (Bacillus subtilis) sp[P37222]ILUM_BACSU ACETOLACTATE SYNTHASE SHALL SUBUNIT (EC .1.3.18) [AHAS] (ACETOHYDROXY-ACID SYNTHASE SHALL SUBUNIT) (ALS).	9		273
601	Ξ	9127	110515	19111255259	o-succinylbenzoic acid (OSB) CoA iigase (Staphylococcus aureus)	9	28	1389
109	=	110499	11656	191 141954	beta-ketothiolase [Alcaligenes eutrophus]	9	7	1158
119	~	1 4630	3134	9111524280	unknown (Mycobacterium tuberculosis)	9	\$\$	1497
		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

		:	:-	:-	: -	:-	:	:-	• -			• • -	• -				٠.			٠-							
5		l length Inc)	069	1692	102	1 594	429	155	255	1029	384	780	1623	1011	993	626	858	282	867	1089	976	669	267	1215	1607	792	611
3		1 ident	1 35	45	2	8	30,	36	•	7.	*		=	=	0	37	•	\$	34	36	0.7	- 62	35	25	27	25	2
10		- Bim	09	9 -	09	9	09	99	99	09	9	09	09	09	09	09	09	09	99	09	09	9	09	99	9	09	9
15	oteins	# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		* * * * * * * * * * * * * * * * * * *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	990000000000000000000000000000000000000	6 6 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 9 9 8 8 8 8 9 9 9 9 9 8 8 8 8 8 8 8 8			With Lactococcus			scro(n)		PRECURSOR.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * *	uenza irus 3)	101	• • • • • • • • • • • • • • • • • • •		a steurianum]	4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		ubsp. lactis	zinc fingers
20	 aureus - Putative coding regions of novel proteins similar to known proteins 		u e a a a a a a a a a a a a a a a a a a						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hypothetical protein (GB:L19201_29) (Haemophilus influenzae)	ORF3: PepV; putative oligoendopeptidase based on homology with Lactoroccus Lactis PepF (GenBank Accession Number, 232522) [Caidicellulosiruptor Eaccharolyticus]	90)	ue subtilis]	NAUP dependent louketreins bf 12-hydroxydehydrogensse (Sus scrofe)	*	SP P37028 YADT HYPOTHETICAL 29.4 KD PROTEIN IN HEML-PPS INTERGENIC REGION PRECURSOR	visine)	SOLON.	hemagglutinin-neuraminidase fusion protain (Numan parainfluenza irus	hypothetical protein (GB:U1400]_130) [Heemophilus influentae]	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	hypothetical protein (GB:U00021_5) (Mycoplasma genitalium)	similar to a B.subtilis gene (GB: DACHEMENY_S) (Clostridium asteurianum)			leuD 3'-region hypothetical protein - Lactococcus lactis subsp. lactis	coded for by C. elegans CDMA ykl30el2.5; contains C2!12-type zinc fingers (Caenorhabditis elegans)
25	ovel proteins s		obacter colil		perculosis)	[8]		perculosis)	is subtilis]	.19201_29) (Hae	vendopeptidass	occus preumoni	r OpuD (Bacill	be 12-hydroxy	llus subtilis	IN IN REML-PPS	haromyces cere	IN IN ASPS 5'R	e fusion prote	14003_130) [88		00021_5) (Mycop	ne (GB: BACHEM	occus aureus)	terococcus hire	protein - Lactoc	NA YK130e12.5,
30	ling regions of n	ne name	ceuC gene product [Campylobacter coli]	kdpA (Escherichia coli)	unknown (Mycobacterium tuberculosis)	putative (Bacillus subtilis	Yqjx (Bacillus subtilis)	unknowm [Mycobacterium tuberculosis]	murD gene product (Becillus subtilis)	cal protein (GB:)	Y, putative olige epf (GenBank Acce lyticus)	28.2 kDa protein (Streptococcus pnaumeniae)	olycine betaine transporter OpuD (Bacillus subtilis)	ndont loukotreind	ipa-19d gene product (Bacillus subtilia	CAL 29.4 KD PROTE	09719.34p; CAI: 0.14 (Saccharomyces cerevistae)	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION	inin-neuraminidas	cal protein (GB:U	HisD (Lactococcus lactis)	cal protein (GB:U	a B.subtilis ge	clumping factor (Staphylococcus aureus)	Nak-antiporter protein (Enterococcus hiree)	gion hypothetica (11403)	oded for by C. elegans cD
35	stative cod	match gene name	ceuC gene	kdpA (Esc	unknown (putative	Yqjx (Bac	unknown [murD gene	hypotheti	GRF3; PepY; putat lactis PepF (Gen maccharolyticus)	28.2 kDa	slycine b	NAUP depo	p per-edi	HYPOTHETE	109719.34p	IIYPOTHETI	hemagglut	hypothetic	Hisb (Lac	hypothetic	similar to	clumping	NaH-antiport	leuD 3'-region h (strain [L]403)	coded for
40 .	S. aureus - P.	match	91 1107529	91 146547	91 1460077	91 1146230	94 1303975	[g1 144928B	94 580932	61 1204532	91 1496003	191 485280	91 1524397	19111100737	93 413943	sp P37028 YADT_	911927798	sp P37347 YECO_	qi 332711	41 1204366	91 149377	91 1046160	91 431950	91 397526	01 148316	pir F36489 F368	9111208899
		Stop	7646	6013	703	2216	961	1 4769	257	11187	7866	2110	2460	4953	966	4573	2415	12515	1410	1153	937	4998	6485	1218	1409	4595	1198
45		Start (mt)	6957	7704	~	2809	1389	\$125	136	159	8249	100	4082	5963	-	1641	3269	12234	1213	\$	~	9695	8165	2432	-	3804	0960
	į	108	۵ ا	-	-	_	~	2	-	-	=	-	~	-	-	-	-	6	-	-	-	•	•	-	-	-	
50		Contig 10	121	140	145	150	1 157	158	159	160	161	172	571	173	198	201	203	206	213	214	237	241	260	264	267	275	291
	_		_		-	-		_	_							_ •			•				•		- •		

TABLE 2

5

Contig ORF	10	Start (nt)	Stop (nt)	match	match gene name	sin .	1 ident	length (nt)
100	9	3421	3176	91 1070014	protein-dependent (Bacillus subtilis)	09	36	246
1 316		4957	5823	191 413952	ipe-28d gene product (Becillus subtilis)	09	7	867
328		2996	7.84	91 1204484	membrans-associated component, branched amino acid transport system [Haemophilus influenzas]	09	38	689
255	5	4887	6363	gi 1205449	colicin V production protein (pur regulon) [Haemophilus influenzao]	9		\$25
1 357	_	1062	532	95 987842	single-stranded DNA-specific exonuclesse [Escherichia coli]	9	7	531
276	7_	9.	362	91 1057	adenylyl cyclase gene product [Saccharomyces kluyverl] r[J01145]orBYK adenylate cyclase [EC 4.6.1.1] - ysast ccharomyces kluyverl)	09	\$	267
197	-	99	416	91 709999	Glucarate dehydratass [Bacillus subtills]	9	37	351
409	-	7	163	91,499700	glycogen phosphorylase (Saccharomyces cerevisiae)	9	35	162
453	-	916	1237	91 1 1 1 1 9 6 8 9 9	unknown protein (Stephylococcus aureus)	99	36	324
453	-	3838	3620	sp P12222 YCF1_	SP P12222 YCFL_ HYPOTHETICAL 226 KD PROTEIN (ORF 1901).	9	2	219
470	~	622	945	pir s30782 s307	pir S10782 S107 integrin homolog - yeast (Saccharomyres cerevisiae)	9	110	324
200	-	118	909	191 467407	unknown (Bacillus subtilis	09)6	4.89
503	-	152	982	91 167835	myosin heavy chain [Dictyostellum discoidsum]	9	×	231
\$0\$	-	2238	3563	91 1510732	MADH oxidase (Methanococcus jamaschil)	09	36	1326
25	-	-	1043	91 143331	alkaline phosphatase regulatory protein (Becilius subtilis) pir k27650 k27650 regulatory protein phoR - Bacilius subtilis sp p23545 phoR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.3).	9	3	1041
543	-		465	191 1511103	cobalt transport ATP-binding protein O (Methenococcus janneschii)	09	\$	599
545	7		726	pi 1498192	putative [Pseudomonas meruginasa]	09	- 07	726
556	-	~	1054	91 1477402	tex gene product (Bordetelle pertussis)	99	42	1053
878	-	974	489	191 1205129	H. influenzae predicted coding region H10882 (Haemophilus influenzae)	99	42	486
594	-	-	624	01 1212755	adenylyl cyclase (Aeromonas hydrophila)	9	53	624
804	-	-	\$30	g1 145925	[fec8 [Eacherichia coll]	9	7	528
620	-	926	465	191 1205483	bicyclomycin resistance protein [Haemophllus influensae]	9	33	462
630	-	1 871	1122	91 1486242	= :	9	7	252
645	7	1.574	425	91 1205136	serine hydroxymethyltransfersse (serine methylase) (Haemophilus influenzas)	9	28	150

	Jth	(ac)	240	4	2	726	120	-	306	168	- ;	77	210	246	357	168	285	-;	186	92	267	1.89	225	707	-;	- 77
5		=		_	- Ì	-	- -	_ }	_			_	- !	_	_	_	_ _	_		_	_	_		7	_	-
	1 ident		£ :	\$	\$	=	39,		F S	Q Q		* :	9	ž	Š	7	35		۶ 3	a	37	15	× 2	27		36
10	e i a		2	09	9	8	9 9	- ;		9	- ; ;		2	3	09	09	9 9	- ; -	2	9	9	9	- 09		-	 2
15 80 190 190 190							CORRECTION BD PS0368 NUSH_SCHCO			91 871029 847295 847295					- • •		cv. Gula, eptide,			-	-	_	OA ehydrogenese	A44756 A44756		-
5 5 5 05 - 5 - 5 5 5 5 5 5 5 5 5 5 5 5 5		hypothetical protein (GB:U14003_302) [Haemophilus influenzael		****						inner membrane copper toleranca protein [Eacherichia coli) gi[871029] disulphide isometase like protein [Eacherichia coli] pir[647295] inner membrane copper tolerance protein - acherichia coli				eticus			dihydroflavonol-4-reductase, DFR (Hordsum vulgaræ-barley, cv. Gula, eptide, 354 as)					000000000000000000000000000000000000000	nitochondrial long-chain amoyl-CoA hydratase/l-hydroxycyl-CoA ehydrogenase alpha-subunit (Retus norvegicus)	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas meratonil] pir/A4475s[A44756] hydroxymethylglutaryl-CoA reductase (EC 1.1.1 as) o		
93 ovel proteins		J14003_302) (Ha	llus subtilis)	subtilis]	abricoiden	Chocystis sp. 1	NADH dehydrogenase, subunit 5 (Schisophyllum NADH-UBIQUINGNE OXIDOREDUCTASE CHAIN 5 (EC.	cillus cereus)	ubt1118]	rance protein Esche erance protein	1	istael	llus subtilis]	Carboxyl esterase - Acinetobacter calcoaceticus	aminotransferase [Hatmophilus influenzan]	ferritin like protein (Haemonijus influenza)	b, DFR (Hordaum		prephenate dehydratase (Bacillus subtilis)	-	orf-1; novel entigen (Staphylococcus aureus)	cytadherence-accessory protein (Nyom)sama oneisilian	oyl-CoA hydrate	.88) (Pseudomon reductase (EC)	hia coli)	
30 subject of in	name	1 protein (GB:1	oxfRM1 gene product (Bacillus subtilis)	ures amidolyase (Bacillus subtilis)	GMP reductase (Ascaria lumbrico(dem)	hypothetical protein (Symechocystis mp.	ogenese, subuni INONE OXIDOREDU	novel hemolytic factor [Bacillus cereus]	putative; orfl (Bacillus subtilis)	ine copper tole isomerase like	ORF3 (Streptomyces griseus)	Vps8p (Saccharomyces cerevisiae)	hypothetical protein (Bacillus subtilia)	orage - Acinet	rase [Haemophi	e protein (Haen	nol-4-reductase	id pAQ1)	ehydratase (Bac	putative (Bacillus subtilis)	antigen (Staph	Accessory prot	aitochondrial long-chain enoyl-CoA	tase (EC 1.1.1	iucC gene product [Escherichia coll]	
G Putative codin	match gene name	hypothetica	orfami gene	ures amidol	GMP reducta	hypothetica	NADH dehydr	novel hemoly	putative; or	inner membrade disulphide inner membra	ORF3 (Strept	Vps8p (Sacch	hypothetical	-	aminotransfe	Carritin 11k	dihydroflavo	ORF 1 [Plasmid pAQ1]	prephenate d	putative (Ba	orf-1; novel	cytadherence	mitochondria alpha-subuni	HHG-CoA reduc	luce gene pro	************
S. Aureus -	match	[91 1205538	91 1402944	191 790943	91 159661	81 1001 83	91 604926	91 662880	91 1429255	91 581055	01 407885	91 1171407	91 1239981	p1r 857530 8575	91 1222056	91 1205619	91 240052	91 (497626	91 508981	91,1146199	91 1407784	91 1046097	91 510108	91/151259	01 474192	
_	Stop (nt)	843	485	976	726	874	839	נצר	595	503	620	275	562	360	169	<u> </u>	286	200		T -	208	326	186	ž	146	
•	Start (nt)	1082	196	588	-	1746	1558	4 + B	~	699	1150	484	11	716	336	-	570	3#S	\$19	568	- 2	~	368		-	
	80 0	-	-	-	-	-		~	_		_		-	-	_	-	-	-	_	_	-	-			- -	
,	Contig	684	186	B44	851	1.69.1	e 96	908	979	107#	1112	1135	1146	1291	1332	1429	1722	2350	2936	3027	3084	1155	3603	3665	3747	
											- •			•				-:	_:	-:	_:	- 3	:	:	_:	

TABLE 2

			• •			·				• •														• - •	•
5		length (nt)	333	270	159	276	86	312	121	219	171	966	יני ו	1203	916	192	300	780	1059	492	606	984	1449	1206	
v		\ ident	44	33	28	₹`	5	28	7	48	7	1 39		33	33	07	7	7.0	9	ž	۲٤ ا	94	19	*	
10		e ;	09	09	9	9	9	9	09	9	9	65	65	65	65	89	- 59	88	- 59	65	65	65	83	- 29	
15	proteins				1e) gi[780656	pir \$49950 \$49950 - Mycoplasma capricolum	aeruginosa) pir[S49111]S49111 - icrocystia aeruginosa (fragment)		mitochondrial long-chain encyl-CoA hydratase/J-hydroxycyl-CoA ehydrogenase alpha-subunit [Rattus norvegicus]		nitochondrial long-chain encyl-CoA hydratase/3-hydroxycyl-CoA ehydrogenase alpha-subunit (Rattus norvegicus)		egment)										[Bacillus subtilis] IN NARI-ACDA MTERGENIC		
20	milar to known		[81]		sarum bv. vicia osarum bv. icia	capricolum) pir	ruginosa) pir { crocystis ser		ase/3-hydroxyc	ur bscens]	*se/3-hydroxyc		capricolum (SGC3) (fragment)					(a	113				nthase [Bacil] ROTEIN IN NARI		
<i>25</i>	wel proteins siz		hylococcus aure		thizobium leguminos [Rhizobium legumin	DH (Mycoplesma lehydrogenase (E)	module [Hicrocystis aeruginosa] pir[649]11 549]11 Id activating domain - icrocystis seruginosa (frag		noyl-CoA hydrat. vegicus]	reptomyces purp	encyl-CoA hydrat rvegicus)	typh!]		legans)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nutum)		Bacillus subtili	[Escherichia co			meliloti)	l cardiolipin sy OTHETICAL 58.2 P		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30	- Putative coding regions of novel proteins similar to known proteins	agec ac	novel antigen; orf-2 [Staphylococcus aureus]	yelH (Escherichia coli)	chemoreceptor protein (Rhizobium leguminosarum bv. viciae) chemoreceptor protein (Rhizobium leguminosarum bv. iciae)	similar to trimethylamine DH (Mycoplasma capticolum) pir[54950[549960 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capri[SGC3] (fragment)	9 4 9 4 0	pheB [Bacillus subtilis]	nitochondrial long-chain enoyl-Cos alpha-aubunit [Rattus norvegicus]	acyl-CoA-dehydrogenase [Streptomyces purpurascens]	aitochondrial long-chain encyl-Coa alpha-subunit [Rattus norvegicus]	VipB protein (Salmoneila typhi)	cal protein - Mycoplasma	FS982.3 (Caenorhabditis elegans)	ORF2 (Bacillus subtilis)	BiP (Phaeodactylum tricornutum)	ORF_090a [Escherichia coli]	transcription regulator (Bacillus subtilis)	Gat-1-P-DH, NAD dependent [Escherichia coli]	YqhT (Bacillus subtilis)	nikć (Escherichia coli)	PhoD precursor (Rhizobium meliloti	unknown, similar to E.coil cardiolipin synthase (Bacillus subtilis) sp P45860 YMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA WTERGER REGION.	LORF P (unidentified)	
35	utative codi	motch gene name	novel ant	yelH [Esc]	chemorece	similar to probable (SGC3) (peptide synthe probable emin (SUB 144-528)	pheB (Bac	mitochond	acyl-CoA-	mitochond alpha-su	Vips prot	hypothetical	F5982.3 (ORF2 (Bac	Bir (Phae	ORF_090a	transcrip	Gat-1-P-D	YqhT Bac	nike (Bec	PhoD prec	unknown, sp P4586 REGION.	LORF F (u	
40	S aureus - P.	Berch	gi : 488695	1911405879	971,80656	91 602031	gi 899317	91 308980	91 510108	q1 47382	191 510108	91 426446	pir S48604 S486	191 6721	191(142833	1911912576	191 536972	191 483940	91 (508176	194 1303901	191 912461	91 1399822	91 971345	82 10 14329 15534 91 490328	
		Stap (nt)	335	272	152	402	324	=======================================	173	280	22	3523	1683	5653	3299	16593	2349	13402	3339	495	7460	6366	1449	115534	
45		Start	_	_	530	677	127	624	343	498	ß	4518	707	4651	3228	16784	2648	14181	4397	986	6552	5383	-	14329	
		ORF	-	-		~	-	-	_	-	-	-	~	~	~	- - -	<u>-</u>	77	_	-	_	-	-	2	
50		Cont 19	1912	4072	4	4207	4243	01.0	4345	4382	4474	2	2	13	ŗ	»«		35	5	99	67	δ.	78	82	

Contig	<u>8</u> 0	Start (mt)	Stop (nt)	match	.match gene name	. sim	1 ident	length (nt.)	
89	~	1602	958	91 642801	unknown (Saccharomyces cerevisiae)	59	32	579	
96	-	4940	1 5473	1911133802	protein of unknown function (Rhodobacter capsulatus)	\$	- F	534	•
B6	-	~	820	191 467421	similar to B. subtills OneH (Bacillus subtilis)	\$	7	619	
119	<u>-</u>	166	1557	191 143122	ORP 8; putative [Bacillus (irmus)	8	36	1392	
120	2	6214	95.9	191 15354	ORF 55.9 (Bacteriophage 74)	5	, 64	543	
130	91	112476	11510	491 1086575	BotA (Rhisoblum meliloti)	65		1035	
2	-	386	195	191 984737	catalase (Campylobacter jejuni)	23	86	192	
ŝ		370	645	91 1256534	23.8% identity over 120 as with the Synenococcus sp. MpeV protein; putative (Bacillus subtilia)	5	7	276	
17	-	\$278	5712	91 1510655	hypothetical protein (SP.P42297) (Mathanococcus jannaschil)	65	- 66	435	
164	-	-	509	g1 1001342	hypothetical protein (Symechocystis ap.)	\$	=	507	
164	-	1529	2821	91 1205165	hypothetical protein (SP.P37764) (Haemophilus influenzae)	\$	25	1293	
164	1	119643	21376	191 1001381	hynothetical protein Synechocystis sp.]	\$3	76	1734	.
621		4727	7176	191 1184121	auxin-induced protein Vigna radiata	83	20	1011	
671	7	2218	1689	91 143036	unidentified gene product [Bacillus subtilis]	83	- 6	168	
195	=======================================	12669	11503	91 762778	NifS gene product (Anabaena azollae)	\$3	=	1167	
707	-	4702	5670	91 1510240	hemin permease (Wothanococcus jannaschii)	89	726	696	_
707	_	5719	6315	91/1511456	M. jannaschii predicted coding region MJ1437 (Methanococcus jannaschii)	- 65	ň	597	
209	-	102	198	gi 1204666	hypothetical protein (GB:X73124_53) (Haemophilus influenzae)	8	7	360	
214	-	1050	2234	[91[551531	2-nicropropans dioxygenase [Williopsis saturnus]	83	96	1185	
214	2	1826	4135	91 1303709	YrkJ (Bacillus subtilis)	8	22	843	
217	~	13381	2167	91, 290489	dfp (CG Site No. 18430) (Escherichia colli)	\$	3	1215	
722	~	3078	37.85	91 149362	IISA Lectococcus ectis	59	- BE	104	
251	7	376	960	191(1303791	Yqu (Becillus subtilis	\$	7	\$85	
1 2R6	-	1621	813	fgt 146551	transmembrane protein (kdpp) [Escherichia coli]	8	15	810	
316	2	4978	3860	91 405879	yeir (Escherichia coli)	8	32	1119	
370		009	761	91 1303794	YqeM (Bacillus subtilis)	8	35	162	
						•	********		

TARE 7

Contig	9 0 1	Start (nt)	Scop (nt)	match	match gene name	e is	• sdunt	length (nt)	
382	-	6001	306	01 547513	oril (Haemophilus influentae)	\$	7.	204	
1391	-	1620	1273	91(152901	ORF 3 (Spirochaeta aurantia)	59	1 7.6	348	
900	-	2808	1705	91 709992	hypothetical protein (Bacillus subtilis)	\$3	75	1011	
426	<u>~</u> _	3802	3245	91 1204610	ironilli) dicitrate transport ATP-binding protein PECE (Haemophilus	65	36	828	
1 429	-	1513	1148	91 1064809	homologous to sp: WTRA_ECOLI (Bacillus subtilis]	59	7	1990	
094	~	708	1301	91 466882	ppsi; Bl496_C2_189 [Nycobacterium leprae]	59	1 70	\$ \$4 }	
3	-	1 2212	3335	91 1498295	homoserine kinase homolog (Streptococcus preumonise)	53	17	924	
53	-	2829	1607	91 147989	trigger factor (Escherichia coll)	83	07	1323	
984	œ ——	5862	6110	91 1205311	[188]-hydroxymyristol acyl carrier protein dehydrase [Haemophilus] influenzae]	29	Q	249	
122	-	<u>~</u>	1354	[p[r]A25620]A256	pir A25620 A256 staphylocoagulase - Staphylococcus aureus (fragment)	88	77	1341	
ž 	- -	2994	4073	91 153746	annitol-phosphate dehydrogenase Streptococcus mutans pir C44738 C44798 mannitol-phosphate dehydrogenase MtD - treptococcus mutans	\$	30	1080	
515	-	-	984	91 1469939	group B oligopeptidase PapB (Straptococcus agalactiae)	89		954	
551	-	2836	3186	81 1204511	[bacterioferritin comigratory protein (Haemophilus influenzae)	89	\$	351	
573	- 5	449	940	101 386681	ORF YALO22 (Saccharomyces cerevisiae)	\$9	36	492	
650		۰	748	91 396400	similar to eukaryotic NeviH+ exchangers [Escherichie coli] sp[p1270][VJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOKM-ACS NTERGENIC REGION [0549].	89	8	74	
799	-	266	788	91 1262748	Lukf-PV like component (Staphylococcus aureus)	88	CC .	282	
670	-	-	4 55	91 1122758	unknown (Becillus subtilis)	59	42	183	
674	_	543	929	91 [293033	Integrase (Bacteriophage phi-LC3)	89	93	387	
758	-	349	971	gi 1500472	H. jannaschii predicted coding region MJ1577 (Methanococcus jannaschii)	53	۱ رد	174	
171	~	2270	1461	91 522150	bromoperoxidase BPO-Al (Streptomyces aureofaciens sp P13912 BPAL_STRAU NON-HAEM BROMOPEROXIDASE BPO-Al (EC 1.11.1) BROMIDS PEROXIDASE) (BPO1). (SUB 2-275)	8	\$	910	
828	. <u>.</u>	1612	1097	191 397526	clumping factor (Staphylococcus aureus) ,	89	4	1095	
1052	~	1094	123	191 289262	comE ORP3 Bacillus subtilis	89	36	372	
1152	-	1373	188	{91/127668	ORF138 gene product (Porphyra purpures)	\$	37	196	
-	-								

10	
15	
20	
25	
30	
35	
40	

1. 1. 1. 1. 1. 1. 1. 1.	Cont ig 0 10 1	ORF Start ID (mt)	Stop (nt)	match acossion	match gene name	n sin	1 ident	length	
1 186 01 505104 01/001-100A synthecase (Pycoplames gentialine) 59 51 51 51 51 51 51 51	: _	1 492	247	91 142439	Aff-dependent nuclease (Bacillus substits)	_		(nc)	
1 180 51 453500	: _ :	-	1 235	91 1045942	glycyl-tRNA synthetase Myconlasma newless:	\$	56	246	
773 736 6 11007344 Yeard (Sacrillus mobilis) 750	-	-	186	91 459250	triacylelycerol	- 59	3,	224	
414 224 9 123200 (Tata. liver, Paptide, 60) asi 46	<u> </u>	1 193	398	91 1303794	Yqek (Bacillus subtilis!	89	a	186	
145 348 [91] [1272770 [VapK [Bacillus subtilis] 59 44 [1272770 [VapK [Bacillus subtilis] 59 31 [127270 [VapK [Bacillus secolouty]icum] 59 31 [127271 [VapK Conses [Closeridium secolouty]icum] 59 42 [127271 [VapK Conses [Closeridium secolouty]icum] 59 42 [127271 [VapK Conses [Closeridium secolouty]icum] 59 42 [127271 [VapK Conses [Closeridium secolouty]icum] 59 50 [VapK Conses [Closeridium secolouty]icum] 50 [VapK Conses [VapK Conses [Closeridium secolouty]icum] 50 [VapK Conses [VapK Conses [Closeridium secolouty]icum] 50 [VapK Conses [VapK Conses [VapK Conses [Closeridium secolouty]icum] 50 [VapK Conses [Vap	!	i —— :	284	91 258003	insulin-like growth fector binding protein complex acid-labile ubunit frats, liver, Peptide, 603 as	\$ 8	38	201	
3 348	-	-	348	91/1212730	Yqhk (Bacillus subtilis)				
1 401	_	-	748	121(773571	neurofilament protein NP70 [Hellx aspersal	\$	3	204	
1 401	_	-	40.	91 1055218	crotonase Clostridium acetobutylicum	2	7	746	
122 162 191 19152218 Croteonase (Clostridium acetobuty) 154 1226 191 1925218 Croteonase (Clostridium acetobuty) 154 1526 191 1925218 Croteonase (Clostridium acetobuty) 154 1526 191 1925218 Croteonase (Clostridium acetobuty) 155	_		1	91 1055218	crotonase (Clostridium ecetobuty) (mim)	65	62	399	-
12.22 16.23 16.114.08.994 Promotogoues to penicitiin acylase (Bacillus subtilisi) 5.9 3.6 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.6 3.2 3.6	-	; —	1381	91 1055218	Crotonase Clostridium acerthury	59	42	399	
1.242 021 051 05218 Crotonase (Clostridium acetobutylicum) 59 42 42 42 42 42 42 42 4	-	 -	163	91 1408494	homologous to penicility are lessing	- 65	2	348	
1342 422 421 421 421 421 421 421 421 421 422	<u>: -</u>	<u>: -</u>	296	91 1055218	Crotonase Clostridium acarabus vilams	\$	36	360	
1342 622 GI 146913 N-acety/glucosamine transport protein (Excherichla coll) pr[82995]WQRZN 58 43 99ecific - Sechetichla coll sp P09123 N-acety/Rlucosamine	<u>:-</u>	-	310	91 1524193	Luknown (Woobartartum Fuhrania	- 65		767	
Tracety Jacobson Prospectane Receive Forcial Carcherichia coli pri Barasasiwoscamina prospectane Receive Acceptation Communication Programme Coli Programme Coli Programme Coli Programme Coli Programme Coli Programme Coli Sala Programme Coli Sala Coli Sal	!-	:-	622	104 (14691)		8	39	309	
7020 5845 gi 50502 collagen alpha chain precursor (IA -27 to 1127) feus musculus	!				Nacetylglucosamine transport procein (Escherichia coli) pir a29895 MQCC2N phosphotransferase system enzyme II (EC 71.69), Nacetylglucosamine-specific - Escherichia coli spipo9131 prvA, ECOLI Prs SYSTEM, Nacetylglucosamine-ACETYLGLUCOSAMINE-SPECIFIC IIADC OMPONENT (EIIA	88	2	621	
1234 1669 Gil 1054660 Phosphoribosyl anthranilate isomerase [Thermotoga maritima] 58 12 1284 1669 Gil 1276860 EpsG (Streptococcus thermophilas) 58 29 29 20 20 20 20 20 20	_!	- ;	5845	_	collagen alpha chain precursor (AA -27 to 1127) (Mus musculus)				
1844 1669 91 1276880 EpsG [Streptococcue thermophilus] 58 29 1 1 1 1 1 1 1 1 1	_:		3626	191 1054860	phosphoribosyl anthranilate isomerase [Thermotoca maritims]		9,	1176	
9301 8090 pir[A31133]A311 disminopimelate decarboxylase (EC 4.1.1.20) - Pseudomonas aeruginose 58 37 1 1 1 1 1 1 1 1 1	~	-	1669	19111276880	Eps0 (Streptococcus thermophlius)	7	7 7 7	293	
12555 12684 91 971249 Vestitone reductase [Medicago astiva] 58 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 38	2		1 8090			85	53	1 (711	
2 406 gi 289272 ferrichrome-binding procein (Bacillus subtilis) 58 31 58 31 58 13 58 13 58 13 58 13 58 13 58 13 58 13 58 13 58 13 58 53 538 64 Embryonic myosin heavy chain - human 759 538 64 158852 91 100 1	2	!	22884		vestitone_reductase Medicano_estitus	- 8	- 5	1212	
1 552 Gil 29464 embryonic myosin heavy chain (1005 AA) (Nomo sapiens) ir 512460	:=	- 2	909	Jai 1289272	Control of the second of the s	- 88	1,1	330	
759 538 Gill58852 Glucose regulated protein Echinococcus multilocularis 58 32	1=		552	91 29464	embryonic monato bases that the	82		- 609	
759 538 gi 158852 glucose regulated protein (Echinococcus multilocularis) 58 32 8493 8068 gi 975353 kinase-associated protein B (Bacillus subtilis) 88 35 1553 1717 gi 166926 Arabidopsis thallane unidentified mBMA sequence, complete cds.], ene 58 35 15 1717 gi 166926 Product (Arabidopsis thallane) 15 15 15 15 15 15 15 1	_1:	- :			myosin beta heavy chain - human	85	2	552	
8493 8068 [01/973353 Xinase-associated protein B (Bacillus subfills) 1553 1717 01/166926 Arabidopsis thallane unidentified mBMA sequence, complete cds.1, one 58 35	~] :	- :	538	91 158852	glucose regulated protein (Schinococcus multilocularis)		26	233	
1553 1717 gf 166926 Arabidopaia thaliana unidentified mRMA sequence, complete cds. , ene 58 35	<u> </u>	-;.	8068	01 975353	kinase-associated protein B (Bacilius subtilis)	58	- 51	764	
	- :		1717	97 166926	Arabidopsis thalians unidentified mRMA sequence, complete cds. , ene product (Arabidopsis thalians)	- 88	35 -	165	

Contig	980	Start (nt)	Stop (nt)	match	match gene name	* sim	Lident	length (nt i
19	3	12017	11229	91 1228083	[NADH dehydrogenese subunit 2 (Chorthippus parallelus)	88	\$	789
96		8208	9167	191 709992	3	88	42	096
107	7	2065	1364	91 806327	Escherichia coli hrpa gene for A protein similar to yeast PRP16 and RP22 (Escherichia coli)	88	23	702
112	-	4519	\$613	91 155588	glucose-fructose oxidoreductase (Ermomonas mobilis) pir [A42289] A42289 glucose-fructose oxidoreductase (EC 1.1) recursor - 3ymomonas mobilis	8	38,	1095
=	9	1318	6503	191 1377843	unknown (Dacillus subtilis)	55	38	816
3	~	2261	1395	pir A45605 A456	mature-paranite-infacted erythrocyte surface antigen MESA - Plasmodium	5	Ä	867
151	- 2	717	950	191 1370261	unknown (Mycobacterium tuborculosis)	- 85	-	707
154	9	6015	4627	191 1 2 2 9 2 7 7	pcTHoml gene product (Chlamydia trachomatis)	82	5	1389
154	116	16 14281	13541	91 146613	DNA ligase (EC 6.5.1.2) [Escharichia coli]	88	39	741
155	_	5269	1892	191 1303917	Vqi8 Bacillus subtilis	88	~	376
174	-	11156	529	q1 90419A	lyynothetical protein (Bacillus subtilis	5	36	52R
189	-	1533	1769	191 467383	DNA binding protein (probable) (Bacilius subtilis)	88	25	רנג
201	. 1	1 2669	13307	[gi 1511453	clease III (Methanococcus	88	34	639
204	_	~	238	91 1276729	hhycobilisome linker polyneptide (Porphyra purpurea)	88	59	רנג
220	Ξ	114575	13058	gi 397526	clumping factor (Staphylococcus aureus)	85	15	1518
231	_	1629	1474	94 1002520	Huts (Decillus subtilis)	88	Ş	156
233	9	1201	3497	[91 1463023	No definition line found (Caenorhabditis elegans)	88	19	705
243	0.	9303	110082	194 537207	ORF_(277 (Escharichia coli)	28	32	780
257		133	1143	19111340128	ORF1 (Staphylococcus aureus)	88	\$	813
302	7	460	108	[gi 40174	ORF X (Bacillus subtilis)	88	ž	342
1 307	<u>=</u>	6984	6127	[g1[1303842	Yqfu (Becilius subtilis)	88	30	858
321	2	1914	1 2747	qi 1239996	hypothetical protein (Bacillus subtilis)	3	=	834
342	-	2724	3497	1911454838	ORF 6; putative (Pseudomonas aeruginosa)	88	\$	174
348	-	-	663	1911467478	unknown [Bacillus subtilis]	88)6	(9)
401	~	384	605	191 143407	pera-aminobenzoic acid synthase, component I (pab) (Bacillus ubtilis)	3	2	222

5		length (nt)	1230	1 9001	1.41	702	714	190	1164	163	1218	171	192	1162	\$04	168	138	846	651	240	309	507	309	933	ę ę
J		· ident	- \$1	- 21	- - -	- 0+	7,90	9	000	29		34	=	7	- 57	5	7	 s	=	1 60	1 60	- #X	72 -	1 96	<u></u>
10		nis 1	88	88	98	85	85	5	1 88 1	- 88	88	58	38	95	- 88] sa	1 58	85	1 88	88	_ 88 _ 1	- 88 -	- 88 -	85	85
15	su]	• • • • • • • • • • • • • • • • • • •	6 8 1 1 1 1 2 4 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				hetical	6048 S06048 SU PROBABLE S2) (TECHOIC	•		91 886052	•				4 4 5 5 7 7 8 8	• • • • • • • • • • • • • • • • • • •	us q1 677882 us			us ubtiliaj		Jenzae]		ISOPENTENTC-
20	to known prote	9 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Thermophilic bacterium hypothetical	ubcilia) pir so Pli484 TAGE_BAC RASE (EC 2.4.1.	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	Spiroplasma citrii (Spiroplasma itrii	_		6 # # # # # # # # # # # # # # # # # # #				Rattus norvegici [Rattus orvegici		us influentae)	terminases (Sacillus ubtills)		Lagmophilus infli		revisiao) ASE (EC 2.3.1.8) P RANSFERASE) (II
25	- Putativa coding regions of novel proteins similar to known proteins			(8n)	oabe)	colij	- 4	rodD (grah) polypeptide (AA 1-673) [Bacillus subtilis) pir S06048 S06048 probable rodD protein - Bacillus subtilis pp Pild64 TAGE_BACED PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSTLT:ANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSTNTHESIS ROFEIN B).		A hominis)	subunit S subunit	ielle pneumoniae	(a)	ystis sp.]	o septens]	ystis sp.]	jannaschii)	leal sodium-dependent bile acid transporter (Rattus norvegicus)	subtilis)	(GB:L10128_61) (Haemophilus influentae)	of phage	coli]	coensyme PQQ synthesis protein III (pqqIII) (Hasmophilus influensae)	enzae)	thwa isopentenyl transferase (Saccharomyces cereviaiae) sp P07884 H005_YEAST TRVA ISOPENTENYLTRANSFERASE (EC 2.3.1.8) ISÓP DIPHOSPHATE: TRVA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPP).
30	egions of novel	0	subt i 11s j	protein A (Staphylococcus aureus)	unknown (Schliosaccharomyces pombe	yjjo gene product (Escherichia coli)	identity in 165 as to 6; putative (Bacillus	odb (graa) polypepride (aa 1- probable rodb protein - Bacil Poly(GLYCEROL-PHOSPHATE) LPHA ACID BIOSYNTHEEIS ROTEIN E)	ELICASE MG018.	orf268 gene product (Mycoplesma hominis)	ii ficat di fica	nifS protein (AA 1-400) [Klebsiella	unknown (Pseudomonas aeruginosa)	hypothetical protein (Symechocystis sp.)	integral membrane protein [Homo seplens	hypothetical protein (Synechocystis sp.)		ependent bile ac dependent bile a	hypothatical protein (Bacillus subtilis)	protein (GB:L1012	ORFB; homologous to small subunit	gane product (Escherichia coli)	mthesis protein	collagenase (Haemophilus influenzae)	/l transferase S_YEAST TRNA 150 FRNA ISOPENTENYE
35	tative coding re	metch gene name	Yngs (Bacillus subtilis)	protein A (Sta	unknown (Schize	yjjG gene prod	26.7% of ident protein 6; pu	rodD (gteA) polypeptide (probable rodD protein - PoLY(GLYCEROL-PHOSPHATE) ACID BIOSYNTHESIS ROTEIN	HYPOTHETICAL HELICASE MG018	orf268 gene pr	restriction mo	nifs protein IA	unknown (Pseud	hypothetical p	[integra] membr	hypothetical p	transaldolasa [Methanococcus	ileal sodium-d	hypothatical p	hypothetical p	ORFB; homologo	osmC gane product	coenzyme PQQ synt	collagenase (H	tRNA sepenteny sp P07884 HODS DIPHOSPHATE: 1
40	S. aureus - Pu	metch acession	011303866	91(581583	91 1009455	91 537214	96 1256621	q1 580920	Sp. P47264 Y018_	91 453422	91 886052	91 (1831	91 1183839	91 1001353	91 903748	91 1208474	91 1510995	91 677882	91 1239999	91 1204262	91 498817	91142181	91 1205432	91 1204669	94 171963
45		Stop (at.)	1554	1442	_	_	3	545	1164	454	4019	179	1156		_		_	946	1556	232	327	806	310	2 2611	7
	-	Start (nt.)	325	105	789	2746	131	606	-	4182	2802	_	1347	1231	-	~	1492		906	11.1	635	1312	618	242	1096
50		I OR	-	-	_	\$	~		<u>-</u>	-	2_	-	~	7	- -	_	-	-	-	-	-	~		~ -	~
		Cont ig	433	÷	_ 3	4\$3	419	06 *	517	517	546	562	909	709	619	635	635	643	645	668	674	675	745	199	00

FABLE 2

5

Contig	98.	Start	Srop	march	match gene name	e o i	Lident	Jength (nt)	
854	-	1108	1	91 466778	lyains specific persesse (Escherichia coli)	88	=	504	
RAS	-	481	2	91 861199	protoporphyrin IX Mg-chelatase subunit precursor [Hordeum vulgare]	- 85	- 66	240	
691	1-	-	(25)	91 1293660	AbaA2 (Streptomyces coelicolor)	88	116	\$25	
942	1-	1 931		91 405567	trak (Plagmid pskil)	88	30	465	
1002	-	952	521	91 577649	protukk (Staphylococcus aureus)	88	34,	432	
1438			261	91 581558	IROLGUCYI RRNA SYNTHETASE (Staphylococcus auraus) sp[P4]368 SYIP_STANU ISOLEUCYL-TRNA SYNTHETASE, HUPIROCIN RESISTANT EC 6.1.1.5) (ISOLEUCINE THNA LIGASE) (ILERS) (HUPIROCIN RESISTANCE ROTEIN).	58	00	261	
1442	-	~ -	465	91 971394	similar to Acc. No. D26185 (Escherichia coli)	88	- -	162	
ET. 1	-	480	1 241	191 1339951	small subunit of NADM-dependent glutamate synthase [Plectonema boryanum]	5,	E	240	
1876			158	91 529216	No definition line found (Caenorhabditis elegans) sp[P46503]YLX7_CAEEL HYPOTHETICAL 7.3 KO PROTEIN F33F12.7 IN HROHOSOME III.	83	2	156	
1989	-	108	401	91 1405458	YneR (Bacilius subtilis)	88	29	294	
2109	-		401	91 1001801	hypothetical protein (Symechocystis sp.)	88	ű.	399	
2473	-	288	145	91 510140	igoendopeptidase F Lactococcus ligoendopeptidase F Lactococcus	88	38	144	
2523	-	452	228	91 644873	catabolic dehydroquinate dehydratase [Acinetobacter calcoaceticus]	88	1,77	225	
1041	-	7	122	91 1205367	oligopeptide transport ATP-binding protein (Haemophlius influenzae)	88	96	210	
3094	-	_	1 263	91 1185288	sochorismate synthase (Bacillus subtilis)	88	- RC	261	
1 3706	-	-	383	91/45614	mevalonate kinase (Arabidopsis thellane)	\$\$	¥	381	
3854	-	-	~ +	91,808869	human gcp372 (Homo sapiens)	88	32	402	
4082		2	224	91 508551	ribulosa-1,5 bisphosphate carboxylasa large subunit -methyltransferase [Pisus sativum]	8 5	۲,	174	
4278			206	91 180189	cerebellar-degeneration-related antigen (CDR14) (Homo sapiens) 91 182737 cerebellar degeneration-associated protein (Homo sapiens) pir A29770 A29770 cerebellar degeneration-related protein - human	88	7.	204	
19	-	7818	17363	19111001516	hypothetical protein (Symechocystis sp.)	57	16	456	
2	=	6996	8872	937 606066	ORF_f135 [Escherichia coli]	53	29	792	
7	-	4801	2402	191 153146	ORF3 (Streptomyces coelicolor)	53	77	2400	
æ	Ξ	11611	10796	191 144859	ORF B [Clostridium perfringens]	57	- -	916	
9	Ē	12063	13046	91 1001 19	hypothetical protein (Symechocystis sp.)	53	25	984	

10	
15	
20	
25	
30	
35	
40	

TABLE 2

10	
15	
20	
25	
30	
35	
40	
45	

Cont.ig 1D	0 E	Start Int)	Stop (nt)	metch Acession	imatch gene name	• •	1 ident	tength (nt.)
375	9	3340	3741	91 385177	cell division protein (Bacillus subtilis)	1 57	92	405
Ş	-	3286	110+	191 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	52	0,	726
410	2	903	1145	91 804819		52	30	243
487	2	1391	1723	191 507323	ORF1 (Bacillus stearothermophilus)	52	28	333
861	_	27.4	852	91 1334549	[NADH-ubiquinone oxidoreductase subunit 4L [Podospora anserina]	52	74.	579
503	_	35	671	91 1502283	organic cation transporter OCT2 [Rattus norvegicus]	22	000	171
505	7	1 1619	1284	91 466884	B1496_C2_194 (Nycobacterium laprae)	- 57	9	336
519	~	11182	2549	191 1393707	YTH [Bacillus subtilis]	52	7	1368
522	~	3234	1945	191 1064809	homologous to spiMTRA_ECOLI [Bacillus subtilis]	57	36	1290
538	~	606	1415	91/153179	phosphorinothyrcin n-acetyltransferse (Streptomyces coelicolor) pir JH0246 JH0246 phosphinothricin N-acetyltransfersse (EC 2.3.1) Streptomyces coelicolor	2	ę	502
547	-	896	486	91 467340	unknown [Bacillus subtills]	5	95	463
599	_	1062	232	8p P20692 TYRA_	PREPIENATE DENYDROJEMASE (EC 1.3.1.12) (PDH).	- 23	7	168
620	~	757	572	91 1107894	unknown (Schizosaccharomyces pombe)	52	3.8	186
622	~	1600	1130	91173028	thiorodoxin 11 (Saccharomyces cerevistae)	52	66	17.0
625	~	1 362	11	9111262366	hypothetical protein (Mycobacterium leprae)	. 72	70	751
680		-	204	91 143544	NNA polymerase sigma-10 factor (Bacillus subtlis) prr/A28625[A28625 transcription initiation factor sigma H - acillus subtliks	۲۶	e e	204
069	_	_	629	191 466520	pocR (Salmonella typhimurium	5	62	627
969	-	~	6	191 413972	ipa-48r gene product (Bacillus subtilis)	52	2	432
7 0¢	-	36	638	12(116993)	M. jannaschii predicted coding region MJ1083 (Methanococcus jannaschii)	-25	36	603
132	-	2316	1621	0i 1418999	orf4 (Lactobacillus sake)	52	32	969
746	-	451	122	91 392973	Rab) (Aplysia californica	- 53	42	225
151		2	166	91 (43979	 curvatus small cryptic plasmid gene for rep protein (Lactobacillus rvatus) 	52	\$	447
862	-	~	295	91 1303827	Yqf1 (Bacillus subtilis)	- 53	77	294
1049	-	907	455	191 1510108	ORF-1 Agrobacterium tumefaciens	53	35	453
1117	_	1 1387	695	91 896286	NN2 terminus uncertain (Leishmania tarentolae)	- 53	28	693
							4	

1136	VOGE (Bacillus subtilis) voltage-activated calcium channel alpha-1 submit (Rattus orwagicus) H. jannaschii predicted coding region MJ1143 (Mathanococcus jannaschii) putative membrane protein; putative (Racillus subtilis) uracil permeane (Escherichia coli) ORF4 (Bacillus subtilis)		_	7
2 1013 611 91 310003		52	90	321
1 1472 736 94 1511166 H 1 2 746 558 94 151777 H 1 2 400 91 1277015 O 1 1 2 400 91 1277015 O 1 1 2 400 91 1204540 H 1 2 361 91 1204540 H 1 2 361 91 135388 O 1 1 2 361 91 135388 O 1 1 370 398 91 135388 O 1 1 370 398 91 135329 O 1 1 370 370 91 1206533 O 1 1 370 370 91 1405894 O 1 1 2 232 91 1403603 O 1 1 2 232 91 1403603 O 1 1 2 232 91 1403603 O 1 1 2 232 91 1505338 O 1 1 2 232 91 1505338 O 1 1 2 232 91 1505338 O 1 1 2 238 O 91 1505338 O O 0 0 1 1 2 238 O 0 0 1 1505338 O O 0 0 1 1 2 238 O 0 0 0 1 1 2 238 O 0 0 0 1 1 2 238 O 0 0 0 0 0 0 0 0 0		57	97	423
1 658 94 142780 P	ive membrane procein; purative (Bacillus subbills) I permenase (Escharichia coli) (Bacillus subtills)	75	7	735
1 659 399 gal 313777 W W W W W W W W W	il permenae (Escherichia coli) Bacillus subtilis	- 53	- 52	189
1 2 400 91 1237015 91 1204540 11 12 1210 92 1204540 12 93 94 1204540 12 94 94 123588 94 94 94 94 94 94 94	(Bacillus subtilis)	53	716	261
1 3 230 91 1204540 1 1 2 161 1812472 1 1 2 161 1812472 1 1 2 161 1812472 1 1 1 1 1 1 1 1 1		52	- 62	399
1 160 181 91 88472 0 1 1 2 161 91 153490 1 1 1 1 1 1 1 1 1	isochorismate synthuse (Haemophilus influenzae)	52	30	324
1 2 361 91153588 9 1 1 1 1 1 1 1 1 1	ORF_of64 (Escherichia coli)	53	9	180
1 856 434 91 155588 9 9 9 9 9 9 9 9 9	tetrocenomycin C resistance and export protein (Stroptomyres laucescens)		, ,	360
1 704 334 91 41353 1 1 384 94 151259 1 793 398 pir JV0037 RDEC 1 573 247 91 21512 2 631 335 94 1000365 1 3 302 94 200305 2 108 290 91 405894 1 2 232 94 1463603 1 572 288 94 515938	se oxidored		9	423
1 1 384 94 151259 1 1 394 94 151259 1 1 1 1 1 1 1 1 1	ipa-29d gene product (Bacilius subtilis)	- 53	36	351
1 793 398 pir JV0037 RDEC 1 596 300 gi 1086633 1 571 247 gi 21512 2 631 335 gi 1000365 1 3 302 gi 298032 2 108 290 gi 405894 1 2 222 gi 1405899 1 572 288 gi 405879 1 512 258 gi 515938 1 512 558 64 515938 1 515 558 64 515938 1 515 558 64 515938 1 515 558 64 515938 1 515	HMO-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	<u>~-</u>	65	384
1 596 300 91 1086633 2 631 335 91 1000365 1 3 302 91 296032 2 108 290 91 105894 1 2 222 91 1405603 1 572 288 94 405879 1 512 258 94 515938	nitrate reductasa (EC 1.7.99.4) alpha chain - Escherichia coli	1 57	7.	396
1 571 287 91 21512 2 631 335 91 1000365 1 3 302 91 298032 1 2 232 91 405834 1 5 248 91 405879 1 512 258 91 515938	TO6C10.5 gene product (Caenorhabditis elegans)		4	297
2 631 335 91 1000365 1 3 302 91 298032 2 108 290 91 405894 1 2 232 93 1083603 1 572 288 93 405879 1 512 258 91 515938	patatin (Solanum tuborosum)	8	05	285
1 3 302 g1 28602 2 108 290 g1 405834 1 2 232 g1 463603 1 572 288 g1 405879 1 512 258 g1 515938	Spoiling (bacillus subtilis)	52	98	297
2 108 290 gl 405894 1 2 232 gl 148363 1 572 288 gl 405879 1 512 258 gl 515938	EF [Streptococcus suis]	- 57	32	300
1 2 232 91 1483693 1 572 288 91 405879 1 512 258 91 515938	1-phosphofructokinase (Escherichis coli)	- 37	١, ٢	61
1 572 288 91 405879 1 512 254 91 515938	inamycin i synthase i istrepto	57	35	ä
1 512 258 94 515938	yaik (Escherichia coli)	- 37	=	285
	glutamate synthase (ferredoxin) (Synochocystis sp.) pir S46957 S46957 glutamate synthase (ferredoxin) (RC 1.4.7.1) - ynechocystis sp.	52	\$	255
4510 1 481 242 gf. 1205303 loukote	loukotoxin secretion ATP-binding protein (Hammophilus influenzae)	52	96	240
256 (91)1511222	restriction modification ensyme, subunit MI [Methenococcus janneschil]	- s	35	213
4 11 12201 11524 91 149204 histidi	histidine utilitation repressor G [Klebsiella aerogenes] pir[AJ6730 AJ6730] hutG protein - Klebsiella pneumoniee (fregment) sp[P19452 HUTO_KLEAE PORMINHINGOLLANARS (EC 3.5.1.8) PORMINHOGULTANARS (EC 3.5.1.8) PORMINHINGOLLAND PROTEIN (HISTIDINE UTILIZATION PROTEIN () PRACHEM?).	98	14	678

length (nt.)	930	1086	261	\$04	342	897	939	\$55	1111	405	1068	1305	168	1 669	7 767	573	222.	297	363	372	1596	645	252	393
1 ident	23	7.7	11	39	,87	ος	32	66	ž	u	ę	30		12	23	35	30	76	30	35	35	~	96	=
s in	95	95	- 95 -	36	\$6	2,6	95	26	98	95	 88	95	95	95	95	\$6	36	26	98	36	26 1	36	26	- 95
match gene name	RACHI (Homo sapiens)	liposte-protein ligase (Mycopissma capricolum)	Y gene product (unidentified)	hypothetical protein (GB:L19201_1) [Haemophilus influenzae]	[liber protein Human adenovirus type 5]	[transcriptional activator [Providencia stuartii] sp[P43463]AARP_PROST TRANSCRIPTIONAL ACTIVATOR AARP.	inik8 [Escherichia coli]	protein with homology to pail repressor of B.subtilis [Lactobacillus elbrueckii	CAMP receptor protein (crp) [Escherichia colii]	hypothetics protein (GB:U14003_278) Haemophilus influenzse	glucose-fructose oxidoreductase [Symomonas sobilis] pir[A42289] glucose-fructose oxidoreductase (EC 1.1) recursor - Symomonas mobilis	MgtE (Bacillus (irmus)	lpa-24d gene product (Dacillus subtilis)	ipa-22r gene product (Bacillus subtilis	н. genitalium predicted coding region MG109 (Mycoplasma genitalium)	terminase small subunit [Dacteriophage LL-H]	glutamine synthetase (Bacteroides fragills)	ORFIS4 (Preudomonas putida	H(+)-transporting ATP synthese [Lea mays]	Prox (Bacillus subtilis	acyl coentyme A synthetase (Escherichia coli)	collagenase Methanococcus fannaschii	heat shock protein (Clostridium acetobutylicum)	sarA (Staphylococcus aureus)
match	91 132222	[gi 1480705	91 490320	91 1205099	[91 209931	91 623476	91 466613	91 482922	91/145594	191/1204367	gi 155588 	91 619724	91 413948	91 580868	191 1046009	01 945380	91 143947	91,405792	762118 19	191 1109686	191 581070	91 1510242	491 (40363	191,1477533
Stop (nc)	15177	22264	2421	10606	5161	2972	6594	1810	616	17846	6678	5100	1 232	1521	447	1067	223	6448	33	37.3	9943	647	202	3775
Start (nt.)	4248	21179	1861	10103	4820	2076	9898	2364	203	18250	5611	6404	65	#23	740	1639	7	6745	ī .	~	11538	1291	2323	3383
ORF	8	28	-	22	•	-	•		7	121	œ.			-	~	7	-	-			-	_		- 2
Cont ig 1D		38		3	Š	S	67	R 9	96	109	112	131	138	138	146	1.59	163	166	187	190	191	195	230	238

		:	-:-	- : -	- : -	- : -	- : -	- : -	-	- : -	- :	- :	- • •	_ • .							- • -			 -				
5		length	1500						200	193	7/5	579	168	612	870	603		778	366	167					3 3		co	219
		1 ident	36	9	3 3	25	, 2					3	9		86	: 2		2	5 5						2 2		; ;	-
10		nis /	26	98	35	36	26	35	3	*				,	8 3	95	,	,		3	35	98	95	3	28		3	2
15	oteins	3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3 Januaschiij			•									29_C1_170		Voltimerium		***************************************		e Jannaschill			thetical			
20	 aureus - Putalive coding regions of novel proteins similar to known proteins 			561 (Mathenococcus Sennaschii)		! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !					11(8)	formamidopyrimidine-DNA glycosylase [Hasmophilus influenzas]				rim; 105 glbosomal protein 518 alamine acetyltzansfersse; 229_C1_170		NADPII-sulfite reducatase flavoprotein component (Salmoneila vohimurium)	hydrogenase accessory protein (Methanococcus jannaschii)		ie BKS-T)	ABC transporter, probable ATP-binding subunit (Methanococcus	320		26.71 of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative (Bacillus subtilis)			
25	proteins si	·		region NJ1	ratis sp.1	111011	111	racis sp.)		bt1118]	illus subt	lase [Haem			nctum]	alanine acc		rotein comp	Methanococc	subtilis]	lactis phag	inding subu	lus influen	e)	Thermophi.			
	lovel		zae]	oding	echoc	ich m	ta col	echoc	iens)	lus su	e (Bac	lycosy	SPP1	ytics)	typhie	S18	legans	flavop	ein C	11148	Scoul	ATP-b	Indom	neuza.	9 11	-	- 98	
30	regions of r	200	ilus influer	predicted c	protein (3yr	duck (Rhisob	• (Escherich	protein (Syn	of (Homo sap	oduct [Baci]	decarboxylas	midine-DNA g	cteriophage	rella haemol	(Salmonella	Ribosomal protei	orhabditis e	reducatase	cessory pro	product (Bac)	ein (Lactoco	r, probable	protein [Had	IJus sullition	ity in 165 a tative (Baci	lus influenz	nas aerugino	piens)
35	Putative coding	match gene name	orf3 (Magmophilus influenzae)	N. Jannaschil predicted coding region MJ1561	hypothetical protein (Synchocystis ap.)	nol1 gene product [Rhizobium meliloti]	[L-ribulokinase [Escherichia coll]	hypothetical protein [Synechocystis ap.	5-WT4L receptor (Nomo sapiens)	HS74A gene product [Bacillus subtilis]	ocetolactate decarboxylase [Bacillus subtilis]	formamidapyri	terminase Bacteriophage SPP1	Lpple (Pasteurella hacmolytica)	brno protein (Salmonolla typhimurium)	rim; 105 Ribosomal pro Mycobacterium leprae	ZK930.1 (Caenorhabditis elegans)	NADPII-sulfite	hydrogenase ac	[ips-24d gene product (Bacillus subtilis)	repressor protein [Lactococcus lactis phage BKS-7]	ABC transporte	cell division protein Haemophilus influenzae	permease [Haemophilus influentae]	26.7% of identity in 165 as to a Thermopi protein 6; putative (Bacillus subtilis)	orf3 (Haemophilus influenzae)	MexR (Pseudomones aeruginosa)	HHG-1 (Homo sapiens)
40	S. aureus -	match	91 547513	91/1511556	91 1001801	91 46336	91 145304	94 1001634	191 1438904	191 1408486	91 142471	91 1205194	191115466	91 1142681	1911217049	91/467109	91 1229106	[01]153929	gi [1510801	91 413948	191 1928836	[91 [1511513	91 1205382	191 1222161	91 1256621	91 547513	91 886022	91 184251
		Stop (nt)	1632	5751	1799	149	1823	2409	192	2109	2334	1017	1812	1287	1284	1701	3774	400	1095	495	677	399	403	930	515	466	132	22
45		Start (nt)	3221	1140	2947	1279	360	1762	380	2480	1756	1907	2423	_	-	1099	3547	د	_	-	- 14	176	-	- 61		~	1049	5
		10 E	-	5	~	~	~	-	-	-	~	-	~	~	- -		-	_	~	-	-	-	-	-		-	-	_
50		Cont ig	1 290	297	321	359	176	1391	707	416	424	457	458	504	<u>-</u>	- P	099	707	109	718	744	1 290	1 295	- c18	#55 	968	973	1203
																					•		. •	- •		•	- +	•

TABLE 2

5

!	Contig ORF	JORF 10	Start (nt)	Stop (nt)	macch acession	match gene name	- sia	1 ident	length (nt)	
:	9761	=_	452	237			*	2	216	
:	2161		~	907	19111237015	ORP4 (Bacillus subcilis)	S6	27	399	
<u> </u>	2958	-	362	183	gi 46685	No definition line found [Escherichia coli]	98	36	180	
: _	2979	=	157	212		spore germination and vegetative growth protein (Heemophilus influenzae)	\$6	40	210	
: _	2994	~	526	326	91 35646	phosphoribosyliorminino-praic katoisomerase [Rhodobacter phaeroides]	\$6	29	201	
:	3026	-	173	328	91 143306	penicillin V amidase (Bacillus sphaericus)	36	0.0	150	
<u>:</u>	31.89	-	289	146	91 1166604	Similar to aldehyde dehydrogenase (Caenorhabditis elegans)	98	37	144	
: -	37.70	-	69	107	91 1129145	acetyl-CoA C-acyltrans(erase [Mangifera indica]	36	Ç	139	
<u>:</u> —	4054	~	120	1961	91 1205355	Na-/H+ antiporter [Haemophilus Influenzae]	36	ī	360	
: —	4145	-	-	324	91 726095	long-chain acyl-CoA dehydrogenasa (Mus musculus)	98	36	324	
:	4200		505	72	91 155588	glucose-fructose oxidoreductase (EVmomonas mobilis) pir [A42289]A4229 glucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	96	ç	252	
<u>: </u>	4273	=	675	355	9i 308861	GTG start codon (Lactococcus lactis)	38	C.	121	
·	~		4095	3436	91,5341	Puzative orf YCLM8c, len:192 (Saccharomycas cerevisiae) r 553591 553591 hypothetical protein - yeast (Saccharomycas evisiae)	\$5	22	099	
: —	=	2	1 9377	8505	[91 216773	haloacetate dehalogenase H-1 (Moraxella sp.)	\$5	32	R73	
: -	27	-	5133	\$	191 467337	nown [Bacillus subtill	55	76	009	
· —	19	\$	2404	5844	1001719	hypothetical protein (Symechocystis sp.)	\$3	52	441	
· —	2	=	14087	112339	91 474190	luck gene product (Escherichia coli)	×	30	1749	
- -	27	_	5368	6888	191 1340096	unknown [Mycobacterium tuberculosis]	SS		1521	
. —	7	_	1 2569	1808	91 1303968	YqjQ (Bacillus subtilis)	8	39	762	
-	z	- 2	13960	3412	91 1303962		æ	(()	549	
•	36	<u>-</u>	1241	1 647	1911606045	(ORP_0118 [Escherichia coli)	\$	7.2	645	
	3,	•	6220	5243	191 1001341	hypothetical protein (Symechocystis sp.)	8	76	978	
· ·	4.	_	3054	1280	[91]1001819	hypothetical protain [Synechocystis sp.],	\$3	77	768	
·	\$		2065	1127	91 (403373	glycerophosphoryl diester phosphodiesterase (Bacillus subtilis) pir 537251 537251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	\$\$	ž	939	
÷										

5

Cont ig	10 OE	Start	Stop (nt)	stch scession	match, gone name	· aim	* ident	length (nt)
63	=	9968	9365	(61(153053	norAll99 protein Staphylococcus aureus	SS	. 2	009
25	-	188	1273	91 141698	L-histidinol: NAD oxidoreductase (EC 1.1.1.23) (as 1-434) scherichis colli	SS	33	193
2	-	15387	14194	191 (136221	carboxypeptidase [Sulfolobus solistaricus]	2	35	1194
-8	-	13817	1817	91 1064812	[function unknown (Becilius subtilis]	25	36	1401
=	~	1172	1636	191 882463	protein-Nipil-phosphohistidine-sugar phosphotransferase (Escherichia olil	S.	35	465
92.	-	127	516	19111377832	unknown [Bacillus subtilis]	s	36	390
001	-	836	2035	91 1370274	seawanthin epoxidase (Nicotiana plumbaginifolia)	æ	36	1200
80-	- 2	15137	4658	1911396660	unknown open roading frame (Buchnera aphidicola)	25	1 29	480
103		4266	29R6	19111499866	[H. jannaschii predicted coding region MJ1024 (Methanococcus jannaschii)	ş	٠ <u>.</u>	1281
1	-	2616	1834	91 1511367	formate dehydrogenase, alpha subunit (Methandroccus jammaschii)	\$	59	783
=	-	1805	1476	191 1100787	unkown Saccheromyces cerevisiae	Š	- 38	330
165	-	6212	8208	91 1045884	И. genitalium predicted coding region MO199 [Mycoplasma genitalium]	25	72	705
1.89	-	2205	2576	gi 142569	ATP synthose a subunit (Bacillus firmus)	SS	1 35	372
161	9	9116	6857	1911559411	B0272.3 (Ceanorhabditis elegans)	8	1 39	2280
194	-	364	636	9111145768	K7 kinesin-lika protein (Dictyostelium discoideum)	23	7.	273
502	-	5101-	1676	101 1473357	thi4 gene product (Schilosaccharomyces pombm)	\$\$	35	342
117	~	1 1693	1145	911410130	ORPX6 (Bacillus subtilis)	SS.	1 37	549
1 23	-	- 644	2721	91 633692	Trak (Yereinia enterocolitica)	s	2	729
114	-	777	2481	191 1001793	hypothetical protein (Symechocystis sp.)	\$	30	1338
1221	-	131473	1 9197	91,466520	poch (Salmonella typhimurium)	\$\$	1 32	1 2277
2	-	5908	4817	9111237063	unknown (Mycobacterium tubarculosis)	S	18	1092
326	-	11375	1 2340	91 1146199	putative [Dacillus subtilis]	\$)2	996
25	~	1 380	1685	91 459907	mercuric reductase (Plasmid p1258)	×	1 29	1506
258	-	786	394	191 455006	orf6 (Rhodococcus factions)	55	36	193
281	-	126	938	gi 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	25	1 35	813
316	_	133	2102	191 1486447	LuxA homologue (Rhizobium sp.)	55	00	780
326	~	1 2968	2744	gi 1296824	proline iminopeptidase (Lactobacillus helveticus)	SS	36	225

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	01 01	Start (nt)	Stop	match acession	'match, gene name		1 ident	length (nt)
151	~	1 2322	1429	gi 1204820	hydrogen peroxide-inducible activator (Haemophilus influenzae)	88	28	894
1 353	-	1 2197	2412	91 1272475	chitin synthase (Emericella nidulans)	\$\$	50	216
380	-	=	67t	91 142554	ATP synthese i subunit [Bacillus megaterium]	\$\$	7.	366
CAL _	-	462	232	gi 289272	[ferrichrome-binding protein [Bacillus subtilis]	55	36	231
386	-	_	938	91 1510251	DMA helicase, putative Methanococcus jamnaschii	88	, or	936
410		1208	1881	gi 1205144	multidrug resistance protein (Haemophilus influenzae)	\$\$	12	189
483	~	=	63	91/13934	ipa-10r gene product (Bacillus subtilis)	88	26	423
529	_	7771	£	191606150	ORF_[109 (Escherichia coli)	\$5	33	345
sss -	-	1088	588	91 (143407	para-aminobenzoic acid synthase, component I (pab) [Bacillus ubtills]	55	28	\$05
595	-	103	707	191 1223961	CDP-tyvelose epimerase (Yersinia pseudotuberculosis)	\$\$	7	707
- SR2		121	452	91 1256643	[30.2% identity with NADH debydrogenase of the Leishmania major mitochondrion: putative [Bacillus subtilis]	æ	36	300
645	<u>~</u>	2260	2057	91/210824	[usion protein F (Bovine respiratory symcytial virus) pir [JO1481] VGRZBA [usion plycoprotein precursor - bovine espiratory symcytial virus (strain AS1908)	8	25	507
672	~	1 957	1 2216	191 1511333	M. Jannaschil predicted coding region MJ1122 [Hethanococcus jannaschil]	\$\$	36	1260
730	_	955	479	191 537007	ORF_(379 Escherichia coli)	\$\$	č	57.5
133	-	1859	945	1911536963	CG Site No. 18166 [Escherichia coli	\$\$	ĕ	915
1 742	~	228	572	91 304160	product unknown (Becillus subtilis)	\$\$	38	365
817	~	1121	903	191 1136289	histidine kinase A (Dictyostelium discoideum)	\$\$	29	309
R19	-	582	155	191 558073	[polymorphic antigen (Plasmodium falciparum)	\$\$	22	1 228
632	~	1152	724	91 40367	ORFC (Clostridium acetobutylicum)	\$	32	429
840	_	99.	1386	91 1205875	pseudouridylate synthase I Haemophilus influensse	SS	39	384
1021	=	2	529	91 (4856)	beta-lactamase (Yersinia enterocolitica)	55	38	507
1026	-	99	1335	01 47804	Opp C (AA1-101) (Salmonelle typhimurium)	\$\$	26	276
1525	-	-	2A2	[91]1477533	sark (Staphylococcus aureus)	55	29	282
1814	~	774	985	91 1046078	H. genitalium predicted coding region HO369 [Hycoplasma genitalium]	\$5	38	762
3254	-	1 427	254	91/413968	ipa-44d gene product (Bacillus subtilis)	\$\$	30	174

		:	- • -	- • -	- • -	- • -	- • -		 .				 .														
5		length							567	243	270	267		2	202		41	1002	978		144	168	_	534	939	618	531
		1 ident	32	7			, 82			-	87	* * *		7	; ;		2	or i	3 3	-	2	37	- :	-	75	- 62	- 11
10		* sin	55	55	\$		- 55		;	3	- -	\$				-				- -		 z	- -	-		3	-
15	erus	+ — — — — — — — — — — — — — — — — — — —										sapiens) gi 182737 ens)			eptide				sp. l			ve Bacillus			eciculate)		-
20	- Putative coding regions of novel proteins similar to known proteins		-			ica)	*	***************************************	•		nechocyatis sp.}	834) [Homo sapiem (Homo sapiems) related protein -		ce	myosin alpha heavy chain (52 subfragment) frabbits, masseter, eptide Partial, 234 aal		fluenzael		amall subunit of soluble hydrogenase (AA 1-184) [Symethococcus sp.] ir[566919]HQYCSS soluble hydrogenase (EC 1.12 small chain - inchococcus sp. (PCC 6716)]	protein is hydrophobic, with homology to E. coli Prow; putative Bacillus subtilis;	* * * * * * * * * * * * * * * * * * * *	inosine-uridine preferring nucleoside hydrolese (Crithids formation)			
25	vel proteins simi		haloacetate dehalogenase H-1 [Moraxella sp.	chia coli	chia colij	acetyl-CoA C-acyltransferase (Mangifers indice)	88)	lla enterica;	chia coli)	rculosisi	derredoxin-dependent glutamate synthase (Symechocyatia sp.	cerebellar-degeneration-related antigen (CDR14) Homo sapicerebellar degeneration-associated protein (Homo sapiens) pir (A29770)A29770 cerebellar degeneration-related protein	haloacetate dehalogenase H-1 (Horaxella sp.)	acetyl-CoA C-acyltransferase [Hangifers indics]	2 subfragment) (r	cerevisiae)	homoserine acetyltransferase (Haemophilus influenzae)	his colij	drogenase (BC 1.)		palmitoyl-protein thioesterase [Homo saplens]	homology to E.		ucleoside hydrola			
30	agions of no	•	alogenase H	ct (Escheri	ict (Escheri	yltransfera	ccus pyogen	in (Salmone	gene product (Escherichia coli)	cterium tube	ndent glutan	neration-rel eneration-ag 770 cerebell	alogenase H-	yltransferas	avy chain (S	charomyces	Atransferes	t (Escheric	soluble hy (scc 6716)	ichia colij	n thioester	phobic, with	ubt 111s1	preferring n	nelenogaster	eliloci1	
35	utative coding re	mátch gene name	haloscetate deha	ORF1 gene product (Escherichia col1)	ORF1 gene product (Escherichia coli)	acetyl-CoA C-ac	spac (Streptococcus pyogenes)	phase I flagellin (Salmonella enterica	ORF1 gene produ	Unknown (Mycobacterium tuberculosis	terredoxin-depe	cerebellar-dege cerebellar deg pir A29770 A29	haloacetate deh	acetyl-CoA C-ac	myosin alpha heau Partial, 234 aa	ORF YBL047c (Saccharomyces cerevisiae)	homoserine acet	lucc gene product (Escherichia coli)	small subunit of soluble hy ir 506919 HQYCSS soluble nechococcus sp. (PCC 6716)	ORF_f177 (Bacherichia coli)	palmitoy1-protes	protein is hydro	YbbJ [Bacillus subtilis]	inosine-uridine	Cap [Drosophila melanogaster]	PhoE (Rhizobium meliloci)	
40	S. auraus - P	match acession	lgi 21673	91 42029	91 42029	01 1129145	1911529754	1911476252	91 42029	91 1524267	91 1100774	94 180189	191 (216773	191 1129145	91 386120	911536069	91,1205504	911474192	91 48054	91 337207	91,1160967	91 438473	91 1256139	91 1151248	91 1335781	94/1399823	*************
45		Stop (nt)	35	312	272	423	1 385	198	246	36	208	378	244	217	210	4932	6165	15326	979	8667	9332	13804	3.6	10179	5 000	9798	
		Start (nt)	989	-	-	~	~	-	488	~	=	644	~	432	416	5348	7166	17086	~	9437	8165	13025	703	11117	516	8116	
50		<u> </u>	-	-	-	-	-!	-	-	-	-		-	-	-	-	7	91	-	Ξ	12	<u></u>	~	=	-	- 9	-
.5		Contig	3695	1212	3799	3889	3916	3945	4074	4184	4284	4457	4514	4599	4606	•	=	23	22	7.7	22	ę	9.6	53	99		
	• •		- •		:	<u> </u>		:		-:	<u> </u>	:	-:	-:	!	_:	:	-:	!	_:	_ ;	:	_ :	_ :	_ :		4

TABLE 2

Contig ORF	ORF	Start (nt)	Stop (nt)	match acession	'mākkh gene name	ē.	1 Ident	length (nt)
0,	51	112556	11801	sp{P02983 TCR_S	TETRACYCLINE RESISTANCE PROTEIN.	75	- 62	156
87	- 2	4915	5706	191 1064811	[Unction unknown [Bacillus subtilis]	35	- R	192
85	7	3005	2289	91 1205366	oligopeptide cransport ATP-binding protain (Haemophilus influenzae)	24		717
103	7	2596	1556	91 710495	protein kinase (Bacillus brevis)	- 55	=======================================	1041
20\$	7	13585	2095	gi 143727	putative (Bacillus subtilis)	35	, 00	1691
112	-		1 2732	91 153724	MalC (Stroptococcus pneumoniae)	28	3	396
127	~_		2493	91 144297	acetyl esterase (XymC) [Caldocellum saccharolyticum] pir[BJ7202 837202 acetylesterase (EC 3.1.1.6) (XynC) - Caldocellum accharolyticum	8	ž	174
138	~	1600	1 3306	91 42473	pyruvete oxidase (Escherichia coli)	84	36	1707
152	~	525	5711	191 1377834	unknown [Bacillus subtilis]	75	23	648
191	6	4831	5469	1911903305	ORF73 [Bacillus subcilis]	35	26	629
191	12	1 6694	1251	191 1511039	phosphate transport system regulatory protein (Methanococcus jannaschii)	54	32	558
164	9	1263	4543	191 1204976	[proly]-tRNA synthetase [Naemophilus influenzae]	25	_ ~	1281
164	20	21602	122243	91 143582	spoliich protein (Bacillus subtilis)	75	2	642
<u>.</u>		6 5683	4250	91 436965	main gene products (Bacillus stearothermophilus) pir 543914 543914 hypothetical protein 1 - Bacillus tearothermophilus	*	5	÷
206	: - :	1920R	119720	91 1240016	R09510.] (Caenorhabditis elegans)	35	86	513
218	-	1090	1 1905	191 467378	unknown [Bacillus subtilis]	54	97	816
220	-		663	19111353761	myosin II heavy chain (Maegleria Cowleri)	75	72	099
220	2	:	13059	pir S00485 S004	pir 500485 5004 gene 11-1 protein precureor - Plasmodium (alciparum (fragments)	25	25	405
122		2030	3709	19111303813	YqeM [Bacillus subtilis]	*	×	1680
272		\$ \$0\$	4219	91 62964	arylamine N-acetyltransferase (AA 1-190) (Gallus gailus) ir[506622 XYCHY3 arylamine N-acetyltransferase (EC 2.3.3.5) (clone NAT-3) - chicken	2	2	837
316	_	4141	4701	91 682769	mccE gene product (Escherichia coll	8	=	195
316	97	6994	8742	91 413951	ipa-27d gene product (Bacillus subtills)	35	28	1749
338	-	1337	1 2214	191 490328	[LORF F [unidentified]]	35	28	1164
341 4 3201	-	3201	3614	101 171959	Inyosin-like protein (Saccharomyces cerevisiae)	35	25	717
						*****	**********	*********

ont ig	Contig ORF ID ID	Start (nt)	Stop (nt)	match acession	. match gene name	wie /	1 ident	Length
346		1820	912	91 396400	similar to eukaryotic Na./II. exchangers [Eacherichis coli] sp[p2270] NJCE_ECOLI HYPOTHETICAL 60.5 ND PROTEIN IN SONR-ACS MTERGENIC REGION (0549).	2	Š	(nt)
348	7	623	1351	191 537109	ORF_EJ43a (Bscherichia coli)			_
378	7	1007	1942	sp P02983 TCR_S	: -	35	34	927
809	9	1321	19391	[91]474190	inch gene product (Escherichia colii	\$	ä	936
7	_	7934	8854	91 216267	ORF2 (Bacillus megaterium)	3	29,	128
463	~	7172	12229	91 104160	product unknown (Bacillus subtilia)	*	32	921
203	~	9691	=======================================	91/1205015	hypothetical protein (Sp.p10120) Haamoniiine (Afiliana)	3	20	489
505	9	6262	5357	191 1500558	2-hydroxyhapta-2,4-diane-1,7-dioata lawmeraa luoi.	3	38	264
550		2736	1822	91 40100	rodc (tag3) polypaptide (AA 1-746) [Bacillus subtilis] ir 306049 506049 1060 protein - Bacillus subtilis p Pl3469 TAGP_BACEU TECHOIC ACID	* * *	23 23	1215
155	5	3000	4279	91 950197	unknown [Corymebacterium glutamicum]			
558	~	1356	958	91 485090	No definition line found (Casnorhabditis elegans)	*	Ž	975
540	-	16	936.	91/331906	itsed envelope glycoprotein precursor [Friend soleen forme-former	× 1	32	399
603	_	554	757	911323423	ORP YGR314w Saccharomyces cerevisiae	ň	\$	846
617	-	\$2	249	191 219959	ornithine transcarbanylase lines sanianal	7	96	204
632	_	1097	1480	19111303873	You's [Sacillus subtilis]	- *	9	225
623			404	191,1063250	low homology to P20 protein of Bacillus lichinitornis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus anhillis	2 2	2 5	184
689		1547	1011	91 552446	NADH dehydrogenase subunit 4 Apis mellifera ligustical pir 532968 532968 NADH dehydrogenase chain 4 - honoybee itcchondrion 5521	- -	e,	537
725	~	686	1981	91 987096	sensory protein kinase (Streptomyces hydrosconicus)	- :	-	
956	-		349	[pir 530782 5307	pir 530782 5307 integrin homolog - yeast (Saccharomyces caravietas)	*	36	756
978	~	1137	#59	19111301994	ORF YNLO91w (Saccharomycas cerevisiae)	75	7	249
77	-	-	281	91 1001108	hypothetical protein (Synethocyaria an i	- 3	- 6	279
2450	-	-	228	91 1045057	Ch-TOG Homo septens	3	7	975
2934	-	-	187	91 580870	ips-37d goxA gene product (Bacillus subtite)	-	12 -	228
	_ _	499	251	sp[P]734P[vece	TO THE PROPERTY OF THE PROPERT	- 34 -	_ 9¢	387
	-				TOTAL TRUELM IN ASPS 5 REGION (FRACKET).	- 75	4.2	- 670

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	als t	• ident	length (nt)	
!	_	-	900		The protein [Lectococcus lectis]	3	13.	309	
3561		6	199	91/151259	HMG-CoA reductase [EC 1.1.1.88] [Pseudomonas mevalonii] pir[A44756] A44756 hydroxymethyiglutaryl-CoA reductase [EC 1.1.1.88] Pseudomonas sp.	2	35	456	
3572		5	104	91 450688	hach gane of Ecopril gene product [Eacherichia coli] pir[938437 838617 hach protein - Escherichia coli pir[50829 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	Z	36	330	
3829		798	400	91 1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	3	29	399	
1909		-	273	91 29865	CENP-E (Homo sapiens)	25	30	273	
1260	-		209	pir S24325 S243	pir 524325 5243 glucan 1.4-beta-glucosidase (EC 3.2.1.74) - Pseudomonas fluorescens subsp.	25	a M	207	
4438	=	999	285	91 1196657	unknown protein (Mycoplasma pneumoniae)	š	30	282	
4459	1	-	272	91 1046081	hypothatical protein (GB:D26185_10) (Mycoplasma genitalium)	35	38	270	
4564	=	-	221	91 216267	ORF2 Bacillus megaterium	3	98	219	
2	=	12538	10685	91 474192	lucC gene product (Escherichia coli)	S	25	1854	
2	=	114841	13579	gi (2029	ORF1 gene product (Escherichia coli)	SS	32	1263	
77	_	4440	1940	91 1369947	c2 gene product (Bacteriophage Bl)	53	36	501	
26	-	1 3838	1 4618	91 1486247	unknown [Bacillus subtilis]	ß	7.	108	_
5	9	2856	1 3998	91 405880	yeil (Escherichia coli)	æ	9	1143	
88	2	9380	1 7806	gi 1399954	thyroid sodius/iodida symporter NIS (Rattus norvegicus)	£	29	1575	
\$6	2	112324	112100	pir A\$4592 A\$45	pir A54592 A545 110k actin film essociated protein - chicken	2	Σ	225	
52	9	5047	4583	pir A00341 DEZP	pir[A00141 DEZP accond dehydrogenase (EC 1.1.1.1) - fission yeast (Schisosaccheromyces	æ	33	465	
57	2	10515	8932	91 .480429	[putative transcriptional regulator [Bacillus steerothermophilus]	2	30	1584	
63	22	9496	110218	911111155	quinolons resistance nora protein protein [Methanococcus jannaschii]	ß	12	723	
69		3125	2382	91 1687017	arabinogalactan-protein, AGP (Nicotiana alata, cell-suspension culture filtrate, Peptide, 461 aa)	53	30	164	
92	-	_	1031	91 1523802	glucarise (Anabaena variabilis)	23	32	1029	
8	_	673	338	91 452428	ATPase 3 (Plasmodium falciparum)	ß	36	336	
88	-	1910	2524	1911 137034	ORF_0488 [Eacherichia coli]	23	1 25	618	
82	2	2467	3282	91 537034	ORF_0488 [Escherichia coli]	S	29	816	
			*****					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

FABLE 2

_		length	(ut)	366	6611	1221	624	1641	1209	103	-	297	1608	_	264	768	-	102	122	531	1650		684	2289	381	357	261
5		1 ident		2	25	30	35	7	72	2 2	_	- *	 -	-	29	%	- ;	- #z	- 	- z	- - - a		11	- - -	126	30	27
10		N sim		2	\$	- 53	2	2	2	2 2	-	-	65	- ;	- S	\$	- :	7	2	2	2 Z		- 53	- 62	52	53	
15	sroteins			-		NOTELN).				mucoidy requiatory protein AlgR (Feeudomonae aeruginose) pir (A32802) A32802 requiatory protein algR - Pseudomonae aeruginose api P26275 ALGR_PSEAE POSITIVE ALGIANTE BAGSTANHESIS REGULANDRY enteru			burytater-acctoscate Colerinius acetobutylicum; pir 849346 849346 burytater-acctoscate Colerinaseras (SC .8.3.9) small chain - Clostridium acetobutylicum spipl372 (FTPA_CLOAB BUTYRATE-ACETOACETATE COA- TRANSFERASE SUBUNIT (SC 2.8.3.9) (COAT A)		•	#D Q01905 ARGB_BACST					EST UBUNIT (EC			_	(ORP104).		Cus mutans
20	milar to known p		attus norvegicus	140)		The state of the s			44.54	As aeruginoss) uginosa sp P262	DOCOCCUS Assessed		etobutylicum; pi C .8.3.9; emall _CLOAB BUTYRATB-	ubrilia		rmophilus) spigo Inase) (agk) [n-	•		- Street occours muteus		Hum falciparum) HERASE III LARG				IN TBPA-LEUD INTERGENIC REGION		on) - Streptococ
25	wel protains ai		rus receptor [R	romyces cerevisias)	OTETN (STR PONAN		Conf. fact.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Coccus ontdone	AlgR (Pseudomon Pseudomonas asr	4044_18) (Metha		Yiase (Clostridium ace te CoA-transferase (BC Ylicum ap Pl3752 CTFA_ (BC 2.8.3.9) (COAT A)	lon) (Bacillus		2.7.2.8) (NAG :	(alciparum)	itisj			Subunit (Plasmod IRECTED RUM POLY		educe)		IN TBPA-LEUD II	ococcus eureus)	sor (ar 5' regio
30	S. aureus - Putative coding regions of novel proteins similar to known proteins	a name	amphotropic murine retrovirus receptor (Rattus norvegicus)	tropomyosin (TPM1) (Saccharomyosa ceravisias)	IN RESISTANCE PR	ORFI [Vibrio anguillarum]	glycine betaine transporter Onth Parillia	putative (Bacillus subtilis)	epi8 gene product (Stabhylococus cotto	uccidy regulatory protein Alga (Pesudomonas aeruginoss) pir (A32802)A3; regulatory protein alga - Pseudomonas aeruginosa ap P26275 ALCA_PSEAR POSITIVE ALGINATE BIOSYNTHESIS REGULATORY ENTERN	hypothetical protein (GP:D64044_18) [Methanogoccus 4annach41		buryeare oversooylass [closefillus acetobuty]icum] pir 8493 buryeare acetoscatete Co-transferase (8C .8.3.9) small chain Clostridium acetobutylicum sp 83752 crps_close Buryeare.aceroa TRANSFERASE SUBLNIT (8C 2.8.3.9) (COST A)	rpoE protein (ttg etart codon) (Bacillus subrities	Acetylclusate kinese (artille erreite)	ACETYLGLUTAHATE KINASE (EC 2.7.2.8) (NAG INASE) (AGK) (N-ACETYL-L- GLUTAMATE 5-PHOSPHOTRANSFERASE).	protein kinase (Plasmodium falciparum)	paramyosin (Dirofilaria immitis)	hypothetical protein (gtfD 3' region)	ORF_0696 (Escherichia coll)	WA polymerase III largest subunit [Plasmodium falciparum] sp[27625]RPC1_PLAFA DNA-DIRECTED RNA POLYMERASE III LARGEST USUNIT (BC.	unknown Isokieseskustania		own (campylobacter jejuni)	HIPPOTHETICAL 42.7 KD PROTEIN IN TBPA-LEUD INTERGENIC REGION (ORPIDA)	MMC class II analog (Staphylococcus eureus)	40K cell wall protein precursor (sr 5' region) - Streptococcus mutans (strain OWZ175, serotype f)
35	utative codi	match gene name	amphotropi	tropomyosi	BICYCLOMYC	ORFI (VEbr	glycine bet	putative	epiB gene	mucoidy req	hypothetica	4440404040	Clostridiu TRANSFERAS	rpoE protei	Acetylgluta	ACETYLGLUT GLUTANATE	protein kin	paramyosin	hypothetical	ORP_0696 (E)	RNA polymera sp P27625 8	unknown 18ch		מענו (כששמאו	HYPOTHETICAL	MHC class II	(Strain OHZ
10	S. aureus - P	natch	91 399598	91 173038	SP P28246 BCR_E BICYCLOHYCIN RESISTANCE PROTEIN (KILDENMARTER DESCRIPTION	91 576655	191 1524397	191 11256630	91 581648	91 151004	91 1510669	at 298085		91 143456	[91 304136		191 9878	91 537506	pir A33141 A331	91 606292	91 160596	91 854601	4				The control of the co
5		Stop	5505	3239	5633	1262	1 8897	5888	1 \$57	4256	5421	111483		4326	14971		4221	1350	3249	2576	5884	106	2500	- ; -	- i -	-;-	;
-		Start (nt)	1 5870	4417	4207	1639	1 7257	6893	1 255	4705	5717	13087		1 3763	18204		4021	1580	2719	927	5645	218	212	763	589	965	
	-	<u>8</u> 0	-	- 5	~	_	3	•	~		-	_		-	12		2	~	-			-	7	-	-		
)		Contig	28	2		120	120	127	143	15s	171	161		203	206		77	£	222	308	320	327	341	351	43	454	

TABLE 2

		÷-						
Contig	10 0	Start (nt)	(nt.)	Acession	Taking dena name	8	1 dent	(nt)
4 70	-	1123	1761	91 516826	rat GCP360 (Rattus rattus)	53		639
483	-	432	1 217	gi 1480429	putative transcriptions] regulator [Bacillus stearothermophilus]	53		216
244	-	516	1259	91 46587	ONF 1 (AA 1 - 121) (1 is 2nd base in codon) [Staphylococcus aureus] ir[515765 515765 hypothetical protein 1 (hib 5' region) - aphylococcus aureus (fregment)	S	8	**
558	10	13957	3754	91/15140	res gene (Bacteriophage Pl)	S	32.	204
(09	~	339	620	911507738	Hmp Vibrio parahaemolyticus	53	56	282
69		1669	941	91 153123	toxic shock syndrome toxin-1 precursor (Staphylococcus aureus) pir A24606 XCSAS1 toxic shock syndrome toxin-1 precursor - taphylococcus aureus	ß	38	729
766	-	~	673	191 687 600	orfA2; orfA2 forms an operon with orfA1 [Listeria monocytogenes]	53	\$	672
781	-	1 667	335	91 1204551	pilin biogenesis protein (Maemophilus influensee)	53	76	133
108	-		545	19111279400	SapA protein [Escherichia coli]	53	25	543
803	-	- 2	910	91 695278	lipase-like enzyme (Alcaligenes eutrophus)	ß	30	606
872	-	7711	290	191 298032	[EP Streptococcus suis]	53	30	588
910	-	~	184	91 1044936	unknown [Schizosaccharomycas pomba]	53	29	183
ê.		794	399	911:90508	similar to unidentified ORP near 47 minutes [Escharichia coli] ep Pli436 Yick_Ecoli Hypothetical 41.5 KD PROTEIN IN SELC-NLPA NTERGENIC REGION.	£	8	396
988	-	1004	\$04	(91)142441	ORF 3; putative [Bacillus subtilis]	53	78	\$01
1064	<u>-</u>	<u> </u>	•	191305080	myosin heavy chain (Entamosba histolytica)	1 53	26	432
1366	-	<u>-</u>	452	gi 308852	transmembrane protein [Lactococcus lactis]	53	33	450
1758	-	192	197	91 [1001774	hypothetical protein (Synachocystis sp.)	53	30	396
1 1897	-		447	[gi 1303949	Yqix (Bacillus subtilis)	53	22	447
2381	<u>-</u> _	798	00+	91 1146243	[22.4% identity with Escherichia coli DNA-damage inducible protein; putative [Bacillus subtitis]	2	٤.	199
1537	-		727	93 450688	hsdW gane of Ecopril gene product (Escherichia coll) pir 538437 538437 hsdM protein - Escherichia coll pir 509629 509629 hypothetical protein A - Escherichia coll (SUB 40-520)	S	35	327
3747	7	1117	1397	91 1477486	transposase [Surkholderia cepacia]	S	53	261
=	~	3049	341	91 86824	(No definition line found (Ceenorhabditis elegans)	52	33	393

		•	- • -	- + -		- •	- •	- •		-																		
5		length	165	1380	3459		921	808	450	519	08.	1143	7 067		G.	56/	1608	1224	_ ;	099	636	187	1569	432	816	1149	3.82	273
		1 Ident	*	32	2		9	8	36	22	32	ę	22		9 5		000	36		9	7	- 66	2	77	18	95		35 -
10		1 sin	22	52	g		76	25	25	22	25	8	25	6			25	2 2	•	1		25	25	- 22	52	S	52 -	52
15	Ins				# # # # # # # # # # # # # # # # # # #		•					1.				Park 4 1 1	ecni 1.j	(357 A44357						_	_	in; putative		naschii)
20	S. auraus - Putative coding regions of novel proteins similar to known proteins	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	90 14	hilus influenzaej	predicted 86.4kd protein, 52kd observed (Mycobacteriophage 15) pir 510971 530971 game 26 protein - Mycobacterium phage L5 sp[00523] vozé_BPML5 MINOR TAIL PROTEIN 0P26. (SUB 2-837)					ınxaej		ndothelial differentiation protain (edg-1) (Homo sapiens) pir(A3510G A3510G G protein-coupled receptor edg-1 - human sp P2145]EDGL_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.	1	1	• • • • • • • • • • • • • • • • • • • •	glutamate synthase (NADPH), subunit alpha (Methanococcum farmachi)	ins influences	cytoplasmic dynein heavy chain [Dictyoztellum discoldeum] r [A4435]A44357 dynein heavy chain, cytosolic - slime mold ctyostellum discoldeum]		k1118]		amino acid permesse Yeef like protein (Salmonella transference				25.8% identify over 120 as with the Symenococcus sp. MpeV protein; putative [Bacillus subtilis]	4	H. Jannaschil predicted coding region NJ0272 (Methanococcus Jannaschil)
25	proteins sim		(Bacteriopha	etase (Haemop	d observed (M otein - Mycob AIL PROTEIN G	annaschii!	coelicolori	60141		12 sataudouvi		rotein (edg~1 coupled recepi 2 G PROTEIN-C	lus subcilis)	meliloti)	cus PCC7942]	bunit alpha	2) (Meemoohi)	[Dictyostell	llus subtilis;	(Bacillus sub	um lepraef	Orotein (Salm	Cerevisiael		istreatout a	h the Symenoc	14.0]	region MJ027;
30	regions of novel	name	G41 protein (gtg start codon) (Bacteriophage T4)	UDP-murnac-pentapoptids synthetase (Maemophilus influenzae)	redicted 86.4kd protein; 52kd observed (Mycobacteriophage pir(51097) 510971 gans 26 protein - Mycobacterium phage 1. sp[QG5233] VG26_SPWL5 MINOR TAIL PROTEIN 0P26. (SUB 2-837)	P115 protein (Mathanococcus jannaschii)	glucose kinase (Streptomyces coelicolor)	Gene Droduct (Bacherichia Anii)	NADA debadronomes estimate & Francisco		d pAD1 }	endothelial differentiation protein (edg-1) [Homo saplens) pir[A35100[A35100 G protein-coupled receptor edg-1 - human sp[P2145]EDGL_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EI	sorbitol dehydrogenese [Bacillus subtilis]	phas gane product (Rhizobium meliloti)	NADH dehydrogenase (Synechococcus PCC7942)	thase (NADPH), su	hypothetical protein (SP:P31122) (Haemorhius (of the mane)	ytoplasmic dynein heavy chain dynein heavy chain, cytosolic	B65G gene product (Bacillus subtilis)	Respiratory nitrate reductase (Bacillus subtilis)	ImbE gene product (Mycobacterium lepras)	rmease Year 11kg	unknown (Saccharomyces cerevisias)	Dud dans product (boundary)	The Least Property Concrete	y over 120 as with brilis)	PB6X terminase [Bacillus subtilis]	predicted coding
35	Putative coding	match gane name	G41 protein	UDP-murnag-p	predicted 86 pir 530971 sp[005233 v	P115 protein	glucose kina	moaß gene Dr	NADR dehydro		crac (Piasmid pADI)	pir[A35300 J pir[A35300 J sp[P21453 Et	sorbitol deh	phas gene pro	NADH dehydrog	glutamate syr	hypothetical	cytoplasmic d	B650 gene pro	Respiratory n	ImbE gene pro	amino acid pe	unknown (Sacc	Tothorn gene Tud		(2).8% identity over	PBGX terminak	H. jannaachii
40	S. Aureus -	match	91 215966	191 1205379	91 579124	Q1 1500543	91 46851	91 42012	91 1040957	1041100000	1971 308203	91 181949	01 304153	91 (1072399	91146485	91 1511365	91 1204393	91 7227	91 1408485	91 1009368	91 699274	91 1526981	94 732931	91 1296975	011125674	97 7636538	91 1225943	191 1510368
45		Stop (nt.)	2369	3808	3462	3938	9703	11066	521	6280		2826	4173	2870	3651	12962	18158	1997	10664	3351	3350	17300	981	1680	1 -		583	
•		Start (nc)	2205	2429	6920	3015	8795	10617		5531		2965	4850	3364	4445	111355	16935	2185	10005	3986	4102	15732	1422	865	659	;	- {	14 4687 4415
		20 E	- 2	_		2	=	12	1-	100				- - -	-	= =	121		2	- 2	_	1 61	-	-		;	-;	=
50		Cont ig	15	13	24	33	æ	7	\$	5.1		6	53	62	62	63	69	- 0,	96	103	109	109	121	125	130	- Ţ	-;	6
	•			- •		•	_		• -			- :	- ∙	- ÷	 ÷		÷ —	·	-:	-:	_ :	:	<u> </u>	: _	:_	1	_ i.	_i

167	Contig ORF 1D 11D	Start (nt)	Stop (nt)	match acussion	matth gene name	eis .	I ident	length (nt)
994	-	1 216	1001	91/146025	cell division protein [Escherichia coll]	22	5	186
<u> </u>		120	1256	91/47/915	orf 337, translated orf similarity to SW: BRR_ECOLD bicyclomycin esistence protein of Escherichia coli [Coxiella burnetil] pir [544207]544207 hypothetical protein 137 - Coxiella burnetii (SUB -338)	2	36	200
195		9161	8760	91 3028	nitochondrial outer membrane 72K protein (Neurospora crassa) r Al6682 Al6682 72K mitochondrial outer membrane protein - rospora crassa	2	52	405
1 200	-	2065	2607	91 142439	ATP-dependent nuclease (Bacillus subtilis)	2	35	- 68
202	-	27.76	3684	61 130369B	BitD (Bacillus subtilis)	52	15	606
1 227	80	\$250	5651	91 305080	myosin heavy chain (Entamoeba histolytica)	23	24	402
242	-	77	1424	191 1060877	Enry [Escherichia coli]	52	32	1404
569	- 2	4526	4753	pir c37222 c372	cytochrome P450 1X1, hepatic - dog (fragment)	52	2	228
1 255	-	2107	1055	gs 143290	penicillin-binding protein (Bacillus subtilis)	52	82	1053
276	-	13963	3664	191 1001610	hypothetical protein (Symechocystis sp.)	\$2	20	300
276	8	4456	4055	91 416235	orf Li Mycoplasma capricolum	52	26	402
289	~	1856	1449	191 150900	GTP phosphohydrolase (Proteus valgaris)	22	*	408
325		-	279	91 1204874	polypeptide deformylase (formylmethionine deformylase) [Haemophilus influenzae]	52	я —	279
340		2017	1010	91 11215695	peptide transport system protein Sapf homolog; Sapf homolog [Mycoplasma preumoniae]	23	Ξ	1000
375	<u> </u>	340	1878	21 467446	similar to SpoVB (Bacillus subtilis)	33	28	1839
7.7	-	4104	3262	igi 1478239	unknown (Mycobacterium tuberculosis)	52	75	843
63	-		575	pir A42606 A426	orfA 5: to orf405 - Saccharopolyspora erythraea (fragment)	\$3	28	573
*	-	4728	3712	0111408494	homologous to penicillin acylase (Bacillus subtilis)	23	ır	1017
465		1802	903	91 143333	alkaline phosphatase regulatory protein (Bacillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P213545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (BC 2.7.3).	\$	98	006
697	<u>~</u>	4705	4169	91 755152	highly hydrophobic integral membrane protein [Bacillus aubillis] ap[A1293][ncc_ancsu Teichoic acid Translocation Perhease Protein Ago.	32	32	537
692	-	1262	633	91 1204607	transcription activator (Haemophilus influenzae)	52	25	630
505	- 7	6004	5762	91,162440	ATP-dependent muclesse (Bacillus subtilis)	8	82	243

FABLE 2

	1	;	-;	- : -	- :	-:	-:	-:	- :	:	-:	- +	_,	_	· —	٠.												
5		Jength	\$			336	63	231	345		282	258	294	306	219	267	312	387		249	219	210	573	198	999	234	364	279
3		l ident	35	,	;	95	9	35	28	_	S	J St	76	36	3.	- 05	=	5	_ ;	6	72	•	- 38 	- 25	- 52	- 17	35	37
10		eie ,	\$2	52		3 6	*	70	25		22	\$2	2	52	52	25	25	~~~	-	*	76	7 7	- -	- 12	22	- 15	- 15	- 15
15	proteins		Bacteriophage phi-li int gene activator (Stephylococcus acteriophage phi		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			codon) (Bacteriophage SPO2) g1 579197 Bacteriophage SPO2) p1r A21498 DJBPS2 DNA-7.71 - phage PO2					-			r [Haemophilus	MODINITARATE DEHYDROGENASE E1 COMPONENT (SC 2.4.2) (ALPHA- KETOGLUTARATE DEHYDROGENASE).					_					
20	agrees - releative coding regions of novel proteins similar to known proteins match match case name	į	Staphylococcus	umoniae)	midia)		4]		(Bacteriophage ophage SP02 pir phage P02		************			,			Na and Cl - dependent gamma-aminobutrylc acid transporter [Haemophilus influenzae]	lus subcilis) p T (SC 2.4.2) (Al	ans j	1)		uhr (1 (a 1						
25	ovel proteins		rene activator	Hycoplesma pne	ococcus spider	rmoformicicum]	cillus subciti	18]	g start codon) -648) [Bacteri EC 2.7.7.7]		richia colii		ain (Backline				1-aminobutryic	(NADP+) (Baci)	ishmenia donov	scherichia col	E140)	or (Bacillus .		Deul seminide	1	10000		ter pylori)
<i>30</i>	ng regions of no		age phi-li int g	putative orf; GT9_orf434 [Hycoplasma pneumoniae]	epiB gene product (Staphylococcus spidermidis)	FdhC (Methanobacterium thermoformicicum)	ATP-dependent nuclease [Bacillus subtilia]	comE ORF1 (Bacillus subtilis)	DNA polymerase (gene L) ttg stert codon) (Bacterios SPO2 DNA polymerase (as 1-648) (Bacteriophage SPO directed DNA polymerase (EC 2.7.7.7) - phage PO2	YbbG (Bacillus subtilis)	his or (A 1-245) (Escherichia cols	&F (Streptococcus suis)	hypothetical 64.7-kDa protein (Recilling minerial	Bacillus licheniformia		nerpesvirus 6]	dependent gammal	OXOGIUTATALE dehydrogenese (NADP+) (Bacillus subtilis) 2-OXOGL/TANATE DEHYDROGENASE El COMPONENT (EC 2.4.2) DEHYDROGENASE).	ornithine decarboxylase [Leishmania donovani	No definition line found (Escherichia coli)	Adrép (Saccharomyces cerevisiae)	operon requistor (Becillus embrilia	Indole-3-dlycarol phoenhate amehica	Yqin (Bacillus subrilis)	Stp1 (Schizosecharomyces pomba)	Dene broduct [Racher(chie colt.)		"" CALING COXID HELICOBACTER Dylori
35	rucative coding reg		Bacterioph 11)	putative	epile gene	FdhC (Meth	ATP-depende	COME ORP3	DNA polymer SP02 DNA p	YbbG [Bacil	hisa ore (A	EF (Strepto	hypothetica	BAA (Bacill	[130]	Liberal Look	Na+ and C1- influenzae	oxoglutarate de 2-OXOGLUTARATE DEHYDROGENASE)	ornithine de	No definitio	Adrep (Sacch	putative cel	Indole-3-gly	Yqin (Bacill	Srp1 (Schizo	moaD gene pr	and a forces	Directions
40	aberch	acession	91 166162	91 1215693	91 581648	91,1279769	91 142439	91 289262	91 216151	91 1256136	191 (11713	191 298032	01 849025	91 1218040	Joi 1894064		91 1202919	91 40003	91 159388	91 409795	91 965077	91 895747	91 1510962	91 1303933	91 1519460	9. 42011	41495471	
	Stop	Ē	1614	1295	336	426	330	347	324	285	320	295	307	260	367		5	389	249	220	212	\$78	3276	9965	1283	11305	1673	Ţ
45	Start	(ac)	1162	3	-	1 848	100	169		996	115	888	612	478	613				-	438	_	_	2479	5301	1516	11042 11	6453	
	ORF		~_	~	-	-	~	-		-	-	_		-	~	-			-	_	-	-	-	-	_	12	- =	-
50	Contig	<u> </u>	25.	35	286	273	1120	1614	2495	1 2931	2943	2993	1996	1944	1954	1986		4002	4020	4098	4248	7	21	22	5	7	51	

TABLE 2

length (nt)	63	£8	1083	786	342	1194	124	684	1438	687	1287	1578	759	412	<u>.</u>	35	579	954	A07	291	639	672	657
· — }			_	<u> </u>	_	_	-	-		-	_	_	-	<u>.</u> –	-	-	-	-	-	-		_	-
* ident	35	22	=	~	7.	32	38	52	23	7	\$	53	8	5.	33	28	36	27	7		23	27	ī .
ais.	2	22	51	22	22	51	15	æ	\$1	25	51	51	51	2	2	51	15	51	15	12	15	22	18
match gene neme	25% identity to the E.coli regulatory protein MprA; putative (Bacillus subtilis)	EIIA domain of PTS-dependent Gat transport and phosphorylation Escherichia	alanina dehydrogenase (Bacillus subtilis)	N. jannaschil predicted coding ragion NJ0918 (Methanococcus jamnaschil)	unknown (Bacillus subtilis)	EF (Streptococcus suis)	proliferating cell nuclear antigen (Styela clave)	fFIID subunit TAFII55 (Homo sapiens)	rodb (gtax) polypetide (AA 1-673) [Becillus subtilis] pir S06048 S06048 S06048 probable rodb protesin - Bacillus subtilis sp P1)4484 TAGE_BACGO PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCGSYLTRANSFERASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN B).	hypothetical protein (SP:P3262) [Haemophilus influenzae]	naltose-binding protein precursor - Enterobacter aerogenes	yehU (Escherichia coli)	orf! (Mycoplasma capricolum)	ORF VIILOR'SW (Saccharomycus curuvistau)	H. influenzae predicted coding region HI0056 [Heemophilus influenzae]	MunI regulatory protein (Mycoplasma sp.)	unknown (Mycobacterium tuberculosis	bmrU (Bacillus subtilis)	hypothetical protein (SP:P3918) [Haemonhilus influenzae]	[81496_C3_206 [Mycobacterium leprae]	mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparum	nuclear protein Drosophila melanogaster	Asperaginase (Sacillus licheniformis)
match acession	91 1256652	91 508173	01 299163	101111111111111111111111111111111111111	01 467359	91 298032	91 1161242	91 642795	91 580920	91 1204815	pir s05330 s053	191 (405857	911435098	9111431110	9111204314	qi 431929	91 1237044	91 409286	91 1205484	191 466886	pir A45605 A456	91 8204	91 49272
Stop (nt)	2995	6843	=======================================	16576	1218	1196	176	4040	1428	6693	2352	12855	8967	912	10477	7356	1153	5634	6236	291	2139	1378	7481
:		1887	29	! -	1559	-	349	755.5	2852	6009	1066	14432	9725	-	9647	6814	575	6587	6943	-	1501	707	8137
Start (nt)	2537	-				•	-	: -	:	:	<u> </u>	!	_	-	; –	-	~	_	-	-		-	-
Contig ORF Start ID ID (nt)	4 253	01	-	120	~	1-	~	-	<u></u>	_	17	Ξ	-		2	<u>:</u> —	! —	! —	! —	! —			-

		length	(30)	789		1173	231	1233	1719	237			010	420		456	7.4	194	390		176	25.	351	228	181	1 660
5		1 ident	33	ž		32	~	6	92	22	- -	;	3	2 2	- : :	2	2	- i :	 * 8			6	72	76 –	27	
10		. sim	15	15		7	75	16	7	215		5		5 5			3 3	;	3 3	5		7	7	7		- 12
15	proteins	1	influenzae)	4514 A54514						501407 XUVKG marxianus var.				18818 548818					806049 S06049 IOIC ACID	Blae)		* demonstrated				
20	ilar to known p		26 Haemophilus	falciparum pir A54514 A54514 Plesmodium alciparum						yveromyces lactis] r[501407 XUVKG - yeast uyveromyces markianus var	•	•		evisiae) pir S	ccus fannaschi	feecalisi		[8]	subtilis) ir	romyces cerevi		(Methanococcu		•		
25	 Putative coding regions of novel proteins similar to known proteins 		H. influenzae predicted coding region H10326 [Haemophilus influenzae]	[Plasmodium falc precursor - Pla		iae)	lus subtilis)	rmophilus)		687) [Klv 5.1.3.2)	them!	ba histolytical	4-1	orf, len: 20; CAI: 0.16 (Saccharomycos carevistas) pir[Si8818 S48818] hypothetical protein - yeast (Saccharomycos erevisias)	hypothetical protein (SP:P37002) [Methanococcus fagnaschil]	endocarditis specific antigen [Enterococcus Gescalis]	inusi	dehydroquinate dehydratase (Bacillus subtilis)	(tag)) polypeptide (AA 1-746) (Secillus subtilis) ir 806649 S06049 Protein - Bacillus subtilis p P13488 TAGF_BACSU TECHOIC ACID	phosphoglycerate mutase (Saccharomyces cerevisiae)	chia coli)	K. Jannaschil predicted coding region Mili77 (Methanococus Assessit)	(S-1 DNA ORF 3)	them!]-hydroxyacyl-CoA dahydrogenase (EC 1.1.1.39)	hia coll)
30	g regions of nov	Dame	se predicted cod	glutamic acid-rich protein (Plasmodium glutamic acid-rich protein precursor -	subtits)	SCPB (Streptococcus agalactiae)	1pa-29d gene product (Bacillus subtilis)	muts (Thermus aquaticus thermophilus)	unknown [Bacillus subtilis]	(GALIO) (AA 1 4-epimerase (EC	protease G [Erwinia chrysanthemi]	serine rich protein (Entamoeba histolytica)	cII protein (Bacteriophage P4)	1, CAI: 0.16 [Sa] protein - yeas	protein (SP:P37	specific antige	unknown (Prochlorococcus marinus)	nate dehydratase (odC (tagl) polypeptide (AA rodC protein - Bacillus sub BIOSYNTHESIS PROTEIN F.	phosphoglycerat	glycosyltransferase [Escherichia coll)	predicted codi	DNA POLYMERASE (EC 2.7.7.7)		-CoA dahydrogena	acyl-CoA synthetase (Escherichia coll)
35	utative codin	hatçh gene name	H. influenze	glutamic aci	F1 (Bacillus subtilis)	SCPB (Strept	1pa-29d gene	muts [Thermu	unknown i Bac	transferase UDPglucose lactis)	protease G	serine rich	cII protein	orf, len: 20 hypothetica	hypothetical	endocarditis	unknown (Pro	dehydroquine	rodc (tag3) po rodc protein BIOSYNTHESIS	hypothetical	glycosyltran	H. Jannaschii	DNA POLYMERAS	CbrC protein	3-hydroxyacy1	acyl-CoA synt
40	S. aureus - p	natch	911:204579	91 160299	91 580841	91 1336162	91 (413953	94 1209012	91 528991	91 2819	101 297861	91 1513317	91 455320	91 587532	91 1511524	91 493017	91 1151851	91 410145	gi 40100	1016121 18	91 510257	91 1511175	SP P10582 DPOM_	91 809543	JC4210 JC42	91,145906
		Stop (nt)	נרננ	1609	1591	748	7049	2057	4991	6.84 4	1177	1718	421	983	934	909	230	652	393	322	624	352	-	i –	1	316
15		Start (nt)	3540	2397	2419	518	5817	37.75	3816	4 4 8	1353	2287	840	1474	£79	127	7	176	782	642	998	702	-	-	-	~
		28. 10.	-		<u>ب</u>	~	6	~	-	~	~	-	-	-	~	7	-			-	~	_	-	-	-	-
50		Contig	257	258	265	298	316	332	164	440	495	495	506	009	607	989	726	861	R69	1001	-	_	2558	1000	-	3732

TABLE 2

1443 1017 13 1134 210 441 2 2 1122 1272 1059 345 237 25 1 5 36 78 2 2 2 29 35 32 32 29 38 53 2 33 52 3 - 05 8 8 8 8 2 2 2 Š S 8 Š 8 S ŝ 8 3 2 20 eis . 10 xylitol dehydrogenase (unidentified hemiescomycete) coded for by C. elegans cDNA cmûle7; Similar to hydroxymethylglutary1-CoA OME_[167; end overlaps end of 0100 by 14 bases; start overlaps [174, ther starts possible [Escherichia coli] GRAIL score: null; cap site and late promoter motifs present patream; putetive (Autographa californica nuclear polyhidrosis irus) ribosomal protein L12 (AA 1-179) [Escherichia coli] ir|S04776|XXECPL psptide N-acetyltransferase rimL (EC 2.3.1.-) - cherichia coli 15 aureus - Putative coding regions of novel proteins similar to known proteins Similar to dihydroflavonol-4-reductase (maize, petunla, tomato) (Caenorhabditis elegans) Similar to dihydroflavonol-4-reductase (maize, petunia, tomato) carbamoyl phosphate synthetase II (Plasmodium falciparum) homologous to penicillin acylase (Bacillus subtilis) 20 putative cel operon regulator (Bacillus subtilis) circumsporozoite protein (Plasmodium reichenowi) semaphorin III family homolog (Nomo saplens structural protein [Bacteriophage Tuc2009] surfactin synthetase (Bacillus subtilis) hypothetical protein [Symechocyatis sp.] ipa-42d gene product [Bacillus subtilis] ORF174 gene product (Porphyra purpurea) ORF YGR103w (Saccharomyces cerevisiae) FemA protein (Staphylococcus aureus) unknown [Mycobacterium tuberculosis] 25 (Caenorhabditis elegans) putative (Bacillus subtilis) putative (Bacillus subtilis) |Caenorhabditis elegans| Yqjo (Bacillus subtilis) 30 match gene name aynthase 35 metch acession | 8407 |gi|1323159 191 | 1072179 91 1072179 |gi|1276658 191 | 1061351 91 11458280 | 5408 | 4824 |91|496280 91 11408494 | 5165 |gi|1146207 91,1208451 191 | 1303966 1 1705 | 2976 | 91 | 153015 191 1403441 91 | 413966 960909 | 16 91 640922 1 2 | 628 | 1761 |91|143725 |gi|476024 | 9623 |gi|895747 191 160229 121 | 559160 91 | 216346 |01 |42749 40 1 6 | 5284 | 5096 9496 1018 1077 | 5 | 3700 | 3356 4859 17.159 (13 |15290 |15R41 23440 239 626 185 30 239 45 4044 1 2034 111 | 8586 1926 1 1 2135 6 | 4393 1 11065 113 (10509 30 | 22865 3576 1 186 * 612 1 367 442 - 3 ~ 3791 | 1 _ 4 _ 1995 | 1 _ +1 Contig 4539 4193 52 50 ž £ 151 5 50 74 38 Ş. 28 8 =

TABLE 2

LarP integral membrane protein (Lactococcus lactis)

|22 |30784 |29555 |9:|1052754

2

10
15
20
25
30
35
40
45

				S. aureus - P	aureus - Putative coding regions of novel proteins similar to known proteins	,		5
Contig ORF ID	<u>8</u> 8	Start (nt)	Stop (nt)	match	match gene name	N sim	1 ident	length
211	- ;	1523	1927	191 410131	ORPX7 (Bacillus aubtilis)		-	(nt)
216	-	1 2411	3295	Rp P37348 YECE_	÷	8	29	405
228	-	1 5068	4406	; -	• • -	20		985
					envelope protein - human immunodeficiency virus type 1) pir 635835 83835 annelope protein - human immunodeficiency virus ype 1 (fragment) (6UB 1-71)	9	sr	. 663
272	7	3048	5271	191 1408485	965G gene product (Bacillus subtilis)	_	_	_
273	~	9191	984	101 384186	phosphoglycerate mutage (Saccharomycen ceresista)	<u> </u>	22,	1326
328	~	1 2507	1605	191 148896	Lipoprotein (Heemophilus Influensee)	8	**************************************	(19
332	-	5469	1 3802	lgi 1526547	DNA polymerase femily X (thermis sense)	20	26	903
342	- \$	1 3473	1661	191 456562	G-box binding (arter interest)	50	27	1668
352	-	1478	741	di 288301	OSS TARE DESCRIPTION OF STREET	0.5	35	459
404		5299	5523	10:111665	Tours Valle Product (Bactilus Begaterius)	8	29	738
420					UNTILIA [MATCHARTIA DOLYMOTPHA]	20	27	225
77	-	050	1825	91 757842	UDP-sugar hydrolase (Escherichis coli)	05	5	
464	-	-	1 591	91 487282	Na+ -Affese subunit 3 (Enterococcus hirae)			9
472	~	1418	864	91 351875	BglR Lectococcus lactis	00	58	165
520	_	52	541	91 567036	CapE Staphylococcus aureus	8	2	555
529		9	0.5	91 1256652	25 identity to the 8 coli regulatory protein Mrra. material	02	1 - 12	\$19
			_		BOTTIES	8	~~	405
, i		7726	6509	911295671	selected as a weak suppressor of a mutant of the subunit Acto of DNA spendant NNA polymerase I and III (Saccharomyces cerevisiae)	05	87	1668
è		2990	1497	91 405568	Trai protein shares sequence similarity with a family of opoisomerases	20	ī	1494
999		1133	117	191 410007	laukocidin P component (Staphylococcus aureus, MRSA No. 4. Pentide 23 2.1		-	
678		-	627	191 238032		2	72.	\$
285	<u></u>	947	1171	91 150572	cytochrome c1 precursor (EC 1.10.2.2) [Paracoccus denitrificans g1 45465 cytochrome c1 (AA 1-450) [Paracoccus denitrificans pir C29413 C29413 ubiquinolcytochrome-c reductase (EC 1.10.2.2) ytochrome c1 precursor - Paracoccus denitrificans sp p15627 CY1	2 8	37	225
827	_	1363	683	91 142020	heterocyst differentiation protein (Anabaena sp.)	- ;	-	
892	_	3	752	91 .408485	865G gene product Bacillus subtilis	2	7	681
910	~	438	987	91 11.04727	Lyrosine-specific transport protein (Hammanhillia tas)	95	- 12	750
				***************	CONCENTED TO THE PROPERTY OF T	20	33	977

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	190 100 100 100 100 100 100 100 100 100	Start (nt)	Stop (nt)	match	match gene name	ais .	• ident	length (nt)
	-	524	1 760	19111205451	cell division inhibitor (Naemophilus influenzae)	50	32	713
1 973	-	1 424	236	91 886947	orf3 gene product (Saccharomyces cerevisiae)	20	- 07	189
1009	1 - 6	1 653	429	1911153727	M protein (group G streptococcus)	0,5	28	225
1 1027	7 1	1 511	257	91 413934	Ipa-10r gene product (Bacillus subtilis)	so I	25	255
1153	2 - 5	-	326	1911773676	InccA [Alcaligenes xylosoxydans]	80	36	233
1222	2 1	1 798	- 60 -	91 1408485	B65G gene product (Bacilius subtilis)	20	2	399
1350	-	1 692	1 399	g1 289272	[ferrichrome-binding protein [Bacillus subtilis]	20	32	294
2945	- 5	366	184	[gi 171704	hexaprenyl pyrophosphate synthetase (COQ1) Saccharomyces erevisiae)	- 80	74	183
1 2968	:	1 2 . 1604	804	91 397526	clumping factor (Staphylococcus aurous)	- 50	6	801
1 2998	8	1 657	134	91 495696	[P34E7.3 gene product (Caenorhabditis elegans)	- 05	Ç	264
1 3046		908	306	pir S13819 S138	pin S13819 S138 acyl carrier protein - Anabaena variabilis (fragment)	20	32	201
1 3063	-	547	275	91 174190	luck gene product (Escherichia coli)	0,5	29	273
1 3174	-		146	91 151900	alcohol dehydrogenase [Rhodobacter sphaeroides]	8	ī	164
3792	7	625	717	19111001423	hypothetical protein (Symechocystis sp.)	05	35	312
3900		~	262	91 144733	NAD-dependent beta-hydroxybutyryl coensyme A dehydrogenase Clostridium	08	2.A	192
3946		1373	188	911576765	cytochrome b (Myrmecia pilosula)	20	85	146
1 3984	-	-	1 291	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRACHENT).	8	ĸ	288
1 37	0.7	9250	7885	91 1204367	hypothetical protein [GB:U14001_278) [Haemophilus influenzae]	69	30	366
4	911	13802	14848	121 466860	acd; B1308_F1_34 (Mycobacterium leprae)	6.	7	1047
- 59	-	2267	19601	51 606304	ORF_0462 [Escherichia coli]	49	72	1335
112	81	117884	118615	91 559502	ND4 procein (AA i - 409) [Caenorhabditis elegans]	49	25	132
138	-	6973	1 7902	[41 (303953	esterase (Acinetobacter calcoaceticus)	64	29	930
712	9		5138	91 496254	[fibronectin/fibrinogen-binding protein (Streptococcus pyogenes]	49	31	738
220		111803	12657	91/397526	clumping factor (Staphylococcus aureus)	6+	31	855
228	-	1 1842	2492	p1r 523692 5236	pir S23692 S236 hypothetical protein 9 - Plasmodium falciparum	- 49	26	651
1 268	_	5016	1 2614	gi 143047	ORFB [Bacillus subcilis]	49	26	2403
,,,,,,					·	·		

		:-	- ;	_;	_;_	-;	-;	-:	-:	-;	-:	; –	;	- ; .	-:	-:	-:	- :	_		. –	: -	·	- +		_		•	 .
5		Jength	(atc)	210	1161		\$45	189	612	639	4.1	210	171		STS	270	672	609	1407	14751	909	336	318		\$22	735	1338	1812	
J		1 ident		38	39		26	53	32	- 53	29	77	28		9	\$	36	28	20	28	30	29	25	-		- 62	7		- -
10		* sim		•	\$	- -	ŝ	\$	6	\$	-	-	\$;			1 89	-	89	- 84	- 67	=======================================	- -		- \$	- 80	9	
15	eins				ignature			- *			-	_	HURG_BACSU			-		luenzae	-	-	leschii)	_	of able			(uenzae)	-	S NTERGENIC	unnaschii!
20	S. aureus · Putative coding regions of novel proteins similar to known proteins	•		hypothetical protein (GP:X91006_2) (Methanococcus Jannaschil)	matches P000041; Bacterial regulatory proteins, araC family ignature [Escherichia coli]								TOGOSYCEN SYNCHESIS STRYME (BEGLILUS BADELLIS) ED [337985 HURG_BACSU HURG PROTEIN UPD-N-ACETYLLANDANYL. PENTAPETITIED PYROPHOSPHORYL-UNDECAPRENDE N-ACETYLANDANYL.	TERGENIC REGION.		hepatocyte nuclear factor 4 gamma (HNP4oamma) (Hnmo and and	H. influences predicted coding region writes (hamana)	o indemophilus in			was the state of the process of the	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Suls) homolog; similar to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number P22293 Drosophila virilisi		H. influenzae predicted coding region H1121s (unamate)	Tur springhment in		TATA COLL GARANTE SACHARAGETS [Secharichia coll] SP[22703][VJE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC	H. Jannaschii predicted coding region KJ0419 (Methanococcus Jannasch)
25	vel proteins sim	· · · · · · · · · · · · · · · · · · ·	chocystis sp. }	91006_2) (Methano	regulatory prote		181			ASBA D(rum)			SYILLEESS ENTYME (BECLILUS SUBLIIS) SP UPD-N-ACETYLGLUCOSANINEN-ACETYLMURANYL. PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUC	HYPOTHETICAL 36.2 KD PROTEIN IN NDK-OCPE INTERGENIC REGION	lus subtilis;	Gamma (HNF&comm	ing resion was	TOTAL CONTRACTOR		#1018]	rocein protein (P		rosophila melanog t Accession Numbe		to region Hills		locystis sp.)	DEPOY OF THE PROPERTY OF THE CONTROL OF THE COLD OF T	ng region MJ0419
30	ng regions of no	e name	hypothetical protein (Symechocystis sp.)	al protein (GP:X	00041: Bacterial	YqgP (Bacillus subtilis)	ORFI (Streptococcus sobrinus)	unknown (Bacillus subtilis)	xpac (Bacillus subtilis)	phosphomannomutase (Mycop) asma nimmi	YdeN (Bacillus subt(lis)		IN UPD-N-ACETYLG	L 36.2 KD PROTEI	surfactin synthetase (Bacillus subtilis)	nuclear factor 4	se predicted cod	unknown (Mycobacterium tuharculosis)	College Colleg		Wahi the city to contract the property of	ius subtilisi	og; similar to Di otein, Swiss-Pro	unknown (Sphingomonas SBB)	se predicted cod	hypothetical protein (Smachonnet		JCE_ECOLI_HYPOTH	i predicted codi
35	utative codi	. match gene name	hypothetic	hypothetica	matches P300041: Ba	YqgP (Baci	JORF1 (Street	unknown (Ba	xpac [Baci]	phosphomann	YqeN (Baci)	on took took	HURG PROTEIN	HYPOTHETICA	surfactin s	hepatocyte	H. Influenz	unknown (Ny	Land protes	andloning	140%	I tour leach	su(s) homolo (su(s)) pro	unknown (Sp)	H. influenza	hypothetical	ainilar to	SP P32703 Y REGION 1054	H. jannaschi
40	S. aureus - P	metch	191 (1001)157	94 1310796	91 396301	181 1303863	91 633112	911122758	911143830	91 401786	94 1303799	qt 216300		8p P27434 YFGA_	91 516360	91 (1217963	91 1205790	01 1524267	91,1197336	91 1511555	ai 1103891		91 671 708	9111114584	gi 1205968	91 1208454	1396400		91 1510493
45		Stop (nt)	1173	3160	1143	947	191	1014	795	473	213	172		376	173	3100	609	6427	31096	809	3646	-:-		610		9557	1814	;	385
70		Start (nt)	1164	4340	2281	_	379	4 03	1433	943	422	342		~	542	3771	-	\$021	16346 []	-	3311	-	,	- 1511	2014	8220	3625		7
		98 01	7	_		-	-	7	-		1	-	i	_		- -	-	9	=======================================	-	-		- 	- 	-	=	-		_
50		Cont ig	172	300	381	466	999	0.9	709	431	1052	1800	_	2430	3096	32	38	\$	59	61	61	114		121	136		175		194
	-			•		- •	+			_	-	• -			_ :	-	_	•		<u>:</u> _	i	. i _	:	•			•	i	•

5

5

1 10 10 10 10 10 10 10	Centin ORF 1D 1D	<u>8</u> 0	Start (nt)	Stop (nt)	motch	match gene name	e ia) ident	length (nt.)
1 155 698 61 379202 No cellinated in the nucleoil of pea enclei, org; puestive Piezz. 48 25 25 25 25 25 25 25 2	197	-	106	452	91 1045714	spermidina/putrescine transport ATP-binding protein (Mycoplasma genitalium)	9	25	\$20
1 155 658 [6] [51590 100 definition line found (Cenerchabilita elegani) 68 23 25 25 25 25 25 25 25	203		-	396	91 940288	procesn localized in the nucleoil of pea nuclei; ORF; putative Plaum sativum	89	29	396
1 2 1166 [41] 11700 [41] [41] 11700 [41]	204	-	1363	869	91 529202	No definition line found (Caenorhabditis elegans)	8	25	999
1 2 166 Gil 125999 Incidential Remapual Leaviel 18 2 186 Gil 125999 Incidential Remapual Leaviel 18 2 18 2 18 2 18 2 2 2 2 2 2 2 2 2	206	20	134815	27760	q1 511490	gramicidin S synthetase 2 [Bacillus brevis]	87	12	7056
6 6150 11287 11287 91 14073 See' protein (Lactococcus Lactis) 46 22 1 1 1 1 1 1 1 1	212	-	7	166	91 295899		8	7	165
6 6450 5491 91 184118	220	2	12652	111426	191144073	Secy protein (Lactococcus lactis)	87	52	1227
1 1312 788 91 143834 Papilication initiation procein [Bacillus subtills] pri[826360 82580 48 73 78 78 91 143834 Papilication initiation procein [Bacillus ubtills] pri[826360 82580 48 73 73 73 73 73 73 73 7	243	9	6450	5491	91 1184118	mevalonate kinase (Methanobacterium thermoautotrophicum)	97	30	960
13.5 768 91 123863 replication initiation protein Bacillus subtilis pir[B2680[B2580] 68 23 23 23 23 23 23 23 2	264	-	:	3308	91 1015903	ORF YJR151c (Saccharomyces cerevisiae)	\$	36	2127
1 183 1938 1938 194	7	- -	1532	768	91 142863	replication intiation protein (Bacillus subtilis) pir 25580 826580 replication intilation protein - Bacillus ubtilis	9	2	765
1 135 2000 Divi 52886 5238 N-carbamoylastrosin anidobydrolase EC 1.5.1.59) - Arthrobacter sp. 48 18 27 27 27 27 27 27 27 2	444	- 2	1 3898	5298	91 145836	putative (Escherichia coli)	=	7.	1401
1 1225 2000 pir[528369 5289 N*-carbamoylascrosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp. 48 27 1 1 1 1 1 1 1 1 1	484	~	388	0111	91 146551	transmembrane protein (kdpD) [Escherichia coli]	8	18	22
1 1 1019 GI 151490 Letracondomyclin C resistance and amport protein [Straptomyces laucescens] 48 24 1 1 1 1 2 730 GI 1103507 Unknown (Schlzosaccharomyces pombe] 48 28 38 39 144859 OMF B (Cloarridium perfitigans) 48 27 27 28 39 144859 OMF B (Cloarridium perfitigans) 48 30 30 30 30 30 30 30 3	542	_	1425	2000	pir S28969 S289	N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp.	£	72	576
1 2 730 gil 103507 unknown [Schlzosaccharomyces pombe] 48 38 38 38 38 38 38 38	366	<u>-</u>		1019	911153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	\$	24	101
1 1255 665 91 14889 ORF B (Clostidium parfilhgens)	611	<u>-</u>	7	730	191 1103507	unknown (Schizosaccharomyces pombe)	\$	38	729
1 1014 508 g1 537506 paramyosin Dirofilaria Immitia 48 27 27 28 49.50 g1 1499876 Impoxyoenase Plaum sacityum 48 35 35 35 37 381 g1 1409486 MS74A gene product Racharichia coli g1 41425 48 24 25 24 21 21 21 21 21 21 21	624	_	1255	999	91 144859	ORF B (Clostridium parfringens)	43	56	165
1 10 174	946	-	101	808	91 537506	paramyosin (Dirofilaria immitis)	ŧ	2.7	507
1 174 gil (493730 lipoxygenase Pisum sativum 48 35 35 36 36 36 37 38 39 39 39 39 39 39 39	1020	-	2	9,0	191 1499876	magnesium and cobalt transport protein (Methanococcus janneschii)	48	ĕ	885
1 1 405 91 882452 ORF=[211] alternate name yggA; orf5 of K1416 [Eacherichia coli] gi[41425] 48 24 24 24 24 24 24 24	1227	-	-	174	1911493730		æ	35	174
1 707 381 gi 1408866 HS74A gene product (Bacillus subtilis) 48 25 40 46 213 gi 1500401 reverse gyrase (Methanococcus Jannaachii) 46 46 214 gi 1353703 Trio (Homo saplers) 48 20 48 31 48 22 48 31 48 29 48 21 48 22 48 22 48 22 48 22 48 22 48 22 48 22 48 22 48 22 48 23 48 22 48 23	1266			405	91 882452	ORF_2211, alternate name yggA, orf5 of X14416 [Eacherichia coll] gi 41425 ORF5 (AA 1-197) [Escherichia coll] [SUB 15-311)	=	*	405
1 463 233	2071	_	707	381	91 1408486	HS74A gene product (Bacillus subtilis)	6 9	52	725
1 476 246 pir[H48563]H485 G1 protein - fowlpox virus (strain HP444) (fragment) 48 40 48 11 446 225 g1 135703 Trio (Homo sapiens) 48 33 48 33 48 29 48 29 48 29 48 29 48 29 48 29 48 29 48 29 48 29 48 29 48 29 48 20 20 48 20 20 20 20 20 20 20 2	2398	-	1 463	233	gi 1500401	reverse gyrase (Methanococcus jannaschii)	67	60	162
1 446 225 91 353703 Trio (Homo saplens)	2425	-	476	346	pir H48563 H485	G1 protein - fowlpox virus (strain HP444) (fragment)	\$	40	12
1 794 399 4 42450 division initiation protein [Bacillus subtilis]	2432	-	446	225	191 1353703	Trio (Homo sapiens)	48	2	222
1 469 236 gi 577569 PepV (Lactobacillus delbrusckii) 48 31	2453	-	194	399	91 142850	division initiation protein (Bacillus subtilis)	48	29	396
	2998	-	469	236	91 577569	PepV (Lactobacillus delbruackii)	#	12	234

Contig 1D	2 C	Start (nt)	Stop (nt.)	metch	makdn gene name	E	• Ident	length (nt)
3042	_	=	280	gi 945219	mucin (Homo sapiens)	82	35	267
3686	-	-	405	91 145836	putative (Escherichie coli)	8	35	403
1 4027	~	492	301	pir.ss1177 ss11	trans-activator protein - Equine infectious anemia virus	87	77	1 261
-	~	3641	2232	191 1303989	Yqki (Bacillus subtilis)	\$	7.	1410
7.7	~	899	1084	191 540083	PC4-1 gene product (Bradysia hygida)	- 1	28	486
90	2	1524	6925	19111209223	wsterase (Acinetobacter lwoffii)	42	78	009
\$	~	196	1884	91 1403455	unknown (Mycobacterium tuberculosis)	Ç	2	1689
7	73	16118	15108	9111511555	quinolone resistance norA protein protein (Methanococcus jannaschii)	\$	16	1101
69	-	7141	6710	91 438466	Possible operon with orfd. Hydrophilic, no homologue in the atabase; putative [Bacillus subtilis]	5	£	\$
8.1	-	\$052	4279	91 466882	pps1; 81496_C2_189 [Mycobacterium leprae]	-	74	744
	Ξ	9135	6863	491 927340	D9509.27p; CAI: 0.12 [Saccharomyces cerevisiae]	47	38	1 (72
142	-	2022	1174	91 (486143	ORF YKLO94w [Saccharomyces cerevisiae]	5	22	849
168	-	2178	1093	91/1177254	hypothetical BcsB protein (Bacillus subtilis)	42	6.7	1086
263	-	1884	943	91 142822	D-slanine racemase cds (Bacillus subtilis)	S	7.	942
279	-	109		91 51 6 6 0 8	2 predicted membrane helices, homology with B. subtilis mem Orf3 Rouland et. al. unpublished Accession number H74183), approximately 1 minutes on undated Rudd map; putative [Escherichia coli] sp[P3735] trbB_ECOLI HYPOTHETICAL 26.7 KD PROTEIN IN MEMD-MEMB	\$	ī.	948
1 345	7	2620	9,91	gi 1204835	hippuricase (Maemophilus influenzae)	62	28	945
3.89	7	152	00+	91 456562	G-box binding factor [Dictyostellum discoldeum]	42	77	249
391	-	~	831	91 1420856	myo-inositol transporter [Schizosaccharomyces pombe]	5	161	831
* 0	_	202	2773	91 1255425	C3368.2 gene product [Caenorhabditis elegans]	5	17.	702
529	'n	2145	3107	10111103973	Yqjv (Bacillus subtilis)	5	29	963
595	~	2321	1257	91 142824	processing protease (Bacillus subtilis)	47	28	1065
654	-	962	483	91 243353	JORF 5' of ECRF) (herpesvirus saimiri HVS, host-equirce) monkey, eptide, 407	\$	53	480
692	-	113	633	91 150756	40 kDe protein (Plesmid ANI)	42	25	519
765		1634	819	91 1256621	16.7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative (Bacilius subtilis)	5	28	916

Contig	P 01	Start (nt)	Stop (nt)	atch scession	matth gene name	. sim	ident	length (nt)
825	<u>~</u>	23.1	1023	91,397526	clumping factor (Staphylococcus aureus)	\$	32	813
914	-	-	615	911558073	polymorphic antigen (Plasmodium falciparum)	5	29	615
1076	-	-	753	91 1147557	Aspartate aminotransferase (Bacillus circulans)	÷	2	753
1351	-	1 293	398	gi 755153	ATP-binding protein (Bacillus subtilis)	-	02	396
4192	-	_	293	91 145836	[putative [Bacherichie coli]]	4)	.72	167
2		4708	4361	91 (305080	Imyosin heavy chain (Entamoeba histolytica)	\$	92	348
=	-	1277	3058	91 603639	Yel040p [Saccharomyces cerevisiae]	\$	78	282
46	Ξ	10518	10300	91 1246901	ATP-dependent DNA ligase (Candida albicans)	90	28	219
19	-	1941	1930	1911298032	[EF (Streptococcus suis)	\$	35	3990
132	-	\$028	4093	19111511057	hypotherical protein SP:P45869 (Methanococcus jannaschii)	9	25	936
170	-	4719	3652	pir S\$1910 S\$19	pir S51910 S519 C4 protein - Sauroleisheania tarentolae	9	56	1068
161	-	9543	8284	191 1041334	F54D5.7 [Caenorhabditis elegans]	\$	- x	1260
153	-	-	1396	gi 1204449	dihydroliposmide acetyltransferase (Haemophilus influenzae)	9+	š	396
264		437	973	gi 180189	cerebellar-degeneration-related antigen (CDR)4) (Homo aspiens gi 182737 cerebellar degeneration-associated protein (Homo asptens) pir A29770 (A29770 cerebellar degeneration-related protein - human	9	29	\$37
1 273	-	485	285	191 607573	envelope glycoprotein C2V3 region (Ruman immunodeficiency virus type)	\$	35	102
350	-	_	563	gi 537052	ORF_f286 [Escherichia coli)	9	35	195
384	- !	~	1 1162	91/1221884	(urea?) amidolyase (Haemophilus influenzae)	97	ā	. B61
610	-	1876	2490	91 1110518	proton antiporter efflux pump (Mycobacterium smegmatis)	9	72	615
432		2663	1455	91 1197634	orf4: putative transporter; Method: conceptual translation supplied by author (Mycobacterium smegnatis)	9	27	1209
45B	-	2419	1121	91115470	portal protein (Bacteriophage SPP1)	9	30	1209
1 517	2	2477	4192	191/1523812	orf5 [Bacteriophage A2]	97	23	1716
540	_	1512	1285	1911215635	pacA (Bacteriophage Pi)	46	96	228
587	~	649	1242	91,537148	ORF_[18] (Escherichia coll)	9	29	594
1218	-	747	391	91 1205456	single-stranded-ONA-specific exonuclesse (Heemophilus influenzae)	9\$	30	150

10	
15	ins
20	S. aureus - Putative coding regions of novel proteins similar to known proteins
25	proteins simila
30	regions of novel
· 35	utative coding
40	S. aureus - p
45	

			1					
Contig	<u>8</u> 2	Start (nc)	Stop (nt)	match	match gene name	1 sim	1 Ident	Length
3685	-		\$	91 450688	hadw gene of Ecopril gene product (Secherichia coli) pir(538437 538437 hadw protein - Secherichia coli) pir(509629 809629 hypothetical protein A - Escherichia coli intro A - A - A - A - A - A - A - A - A - A	9	a	(nt) 402
1 4176	-	673	138	91 351460	FIM-C.1 dens product (Yangana 1994)			
137	-	4813	5922	gi 606064	108F £408 (Rehociation Annual Control	99	_ #	336
	91	11699	12004	01 452192	Drotein Presidential COLL	\$	72	1110
68	7	1748	2407	19:11064813	Three least the state of the same of the same same same same same same same sam	\$\$	72	306
100	=======================================	14182	13385	191 11001307	hypotheteal arrests to	45	2	099
112	=	14791	13811	[91]1204389	Influences president and the second series	45	22	967
145	-	4483	3462	191 220578	Open reading frame Mus muscyllus	\$	1 (2	186
170	•	6329	4965	1011238657	AppC=cytochrome d oxidese, subunit I homelog (Escherichia coli, KI2, eptide, 514 aal	\$	20	1023
206	7	5230	4346	91 1222056	aminotransferase (Heemonhilus influence)	;	,	1365
228	1	ŝ	716	91(160299	glutanic acid-rich nevitate (a)	45	- 12	985
			•		glutamic acid-rich protein precursor - Plasmodium alciparum	\$	2	657
288	_ [7	1015	gi 1255425	[C33G8.2 gane product [Ceanorhabditis elegans]	-	-	-
313		4339	3128	911581140	NADH dehydrogenase (Escherichia coll!	\$	- 2	1014
332	-	914		191 870966	[F47A4.2 (Caenorhabditis elegans)	\$	30 -	1212]
344		_	221	(ai (171225	kinesin-related protein (Sarcharowoos	\$	20	456
197	~	1991	1073	91 (142863	replication initiation protain (Bacillus subtilis) pir 1226901 pagen	\$	26	219
672	-	~	982	91 1511334	Contraction intraction protein - Bacillus ubtills	\$		429
763		1345	851	91 606180	JORF (110 (Rethorish)	\$	22	9A1
886		379	R46	gi 726426	Self late to proper to the self-self-self-self-self-self-self-self-	\$	24	495
0.00	_ ; .	- ; -			(Caenorhabditis elegans)	\$	90	B94
			173	91 156400	Lyosin heavy chain (isozyme unc-54) (Caenorhabditis elegans) pir [A93958]MWKW myosin heavy chain B - Caenorhabditis elegans sp P02566 [MYSB_CASEL MYOSIN HRAVY CHAIN B (MHC B)	£ -		425
1158	-	~	376	91 441155	ransnission-blocking target antigen (Pleamodium felicinemas)	- ;	-	-
2551	-	-		91 1276705	ORF281 gene product (Porphyra purpuram)	\$	35 –	175
1 3967	-	42	374 19	191 (976025	MrsA (Earbarichta Ant)	- 5	28	282
			********		TOTAL TELEFORM			********

aureus - Putative coding regions of novel proteins similar to known proteins

length (nt)	1086	375	1416	210	1173	1440	\$19	951	612	609	1464	1892	999	£ £ £ 5	480	576	1269	678	1242	480	573	1053	1212
1 ident	73	28	21	30	26	31	24	32	28	72	21	22	21	21	29	23	18	31	12	25	30	23	24
1 sim	÷	3	7	- \$	7	4	\$	3	4	3	3	43	63	43	43	÷	4 5	43	42	43	45	7	\$
natch gene name	unknown (Bacillus subtilis)	thioredoxin II (Saccharomyces cerevisiae)	tetracenomycin C resistance and export protein (Streptomyces laucescens)	hypothetical protein (GB:U00022_9) [Haemophilus influenzae]	carboxypeptidase (Sulfolobus solfataricus)	orfl gene product [Lactobacillus helveticus]	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	FIM-C.1 gana product (Xenopus laevis)	high molecular weight neurofilament (Rattus norvegicus)	molybdopterin-guanine dinucleotide biosynthesis protein A (Methanococcus jannaschil)	tetracenomycin C resistance and export protein (Streptomyces laucescens)	lipase (Staphylococcus epidermidis)	unknown (Mycobacterium tuberculosis)	clumping factor (Staphylococcus aureus	sporozoite surface protein 2 - Plasmodium yoelli (fragment)	SULFIDE DEHYDROGENASE (FLAVOCYTOCHROHE C) FLAVOPROTEIN CIAIN PRECURSOR (EC 1.8.2) (FC) (FCSD).	selected as a weak suppressor of a mutant of the subunit AC60 of DNA ependant RNA polymerase I and III (Saccheromyces cerevisiae)	ORF2 [Trypanosoma brucel]	ORF1 gene product (Escherichia coli)	ORF1, putative [Bacillus firmus]	ORF 2 (AA 1-203) [Bacillus thuringiensis]	yeeF Escherichia coli	rodD (gtah) polypeptide (AA 1-673) [Bacillus subtilis] pir[506048]505046 probable rodD protein - Bacillus subtilis sp[P13484]TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSFHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2.4.1.52) [TECHOIC ACID BIOSYNTHESIS ROTEIN E).
match	91 467378	91,173028	91 153490	91 1204989	91 1136221	91 1296822	gi :063250	91 951460	91 205680	91 1511614	91/153490	91 153022	9111419051	91 397526	pir A60540 A605	sp 006530 pii2U_	91 295671	91 501027	191 42029	gi 142790	61 40320	gi 405957	91 580920
Stop (nt)	5846	6849	5617	1122	2093	3524	1833	4.892	613	11911	5128	7527	681	12134	2303	3122	13321	1001	4550	1036	3525	1115	1223
Start	6931	6475	7032	1331	3265	4963	315	3942	1224	11301	3665	5536	1346	9402	2782	2547	12053	1768	1878	1515	4097	2167	2434
98 GI	1,7	8	- 2	- 7	- 2	-		-	=	1 -	8	02	-	6		2_	2_	~	-	1	9	-	
Contig	52	138	221	252	263	365	543	544	792	**	55	59	99	310	432	519	4	*	121	297	¥	\$12	631

Aureus - Putative coding regions of novel proteins similar to known proteins

Contig	30 20	Start Int) 2359	Stop (nt) 1739	acesion acesion ai 1303784	match gene name YqeD (Becillus subcilis) protein tytosine phosphatase (Dictyostalium discoideum)	4 61m	1 ident 19 19 25	length (nt.) 621
2	~_	1375			spermidine/spermine NI-acetyltransferase (Mus saxicola) pir[343430[843430 apermidine/spermine NI-acetyltransferase - spiny ouse (Mus saxicola)	7	00	492
161	12	112 14797	114075	911124957	orf4 gens product (Methanosarcina barkeri)	17	22	
212		6 2150	3127	[91(1587)	observed 35.2Kd protein (Mycobacteriophage 15)	7	26	_
213	-	1 3 1263	7000	191 633692	Trsa (Yersinia enterocolitica)	7	82	_
408		2625	1 3386	91/1197634	orfs; putativo transporter: Method: conceptual translation supplied by author (Mycobacterium anegmatis)	=	22	
542	-		611	91 457146	rhoptry protein (Plesmodium yoelii)	=	77	1011
924	-	7	475	pir JH0148 JH01	inucleolin - rat	=	00	474
1562		-	5	91 552184	asparagine-rich antigen Pfa35-2 [Plasmodium falciparum] pir \$27826 \$27826 asparagine-rich antigen Pfa35-2 - Plasmodium alciparum (fragment)	ş	02	
2395	-	518	261	pir S42251 S422	hypothatical protein 5 - towlpox virus	\$	18	_
4077			302	91 1055055	coded for by C. alegans CDMA ykl7g1.5; coded for by C. elegans CDMA ykl7g9.5; coded for by C. elegans CDMA ykla9.5; alternatively spliced form of F22C9.8b [Camporhabulits elegans]	62	22	
H-95.8	-	1003	503	101 1255425	[3]3G8.1 gene product [Caenorhabditis elegans]	1 37	25.	501
65	22	<u>: _</u>	110636	91 535260	STARP antigen (Plasmodium reichenowi)	36	24	2343
- 63	-	1 3550	8079	91 298032	EP (Streptococcus suis)	36	61	1 4530
544	-		1096	191 1101 5903	ORF YJRISIC Saccharomyces cerevisiae	35	2	1095
		1949	3574	91 552195	circumaporosoite protein (Plasmodium falciparum) sp P05691 CSP_PLAFL Circumspercozoite PROTEIN (CS) (PRACHEN).	2		1626

5	

S, aurius - Putative coding regions of novel proteins not similar to known proteins

•		· —			•	· ·	-	·	• -	-	:	: - :	-		: - -	-	-	• •	:	-		: - :	-	-			: -
Stop (nt)	2	2	100	12585	1601	1771	4550	3	8547	2	26	5983	\$		11271	5	4862		10835	5	7364	8230	8803	10470	919	2485	5942
Start (nt)	. ~				253	1532	5	: =	: =	2	: \$: =	2		10954		4596	1895	11263	1093	. ~		9201	12158	674	6138	6376
¥ 0	-	-	_	-		_ 	<u> </u>	~	2	-	-		- 6 -	2	91	- \$	9	-	2	7	<u>_</u>	2	2	=	1	9	-
ont 19 10	-	-	-	-	5	2	5	5	-	٠		11	7	=	=		12	15			20	20		2	23		23
<u> </u>	1_	!_	<u>:</u>	!_	!_	<u>!</u> _	!_	!_	:_	<u> </u>	!_	<u>!</u>	<u> </u>	<u> </u>	<u> </u>	_	!_	<u> </u>	<u>:</u> _	ļ	<u> </u>	i	.	<u>. </u>	<u>:</u> _	<u> </u>	<u>! _</u>

5	
_	

Ompt 19	율유	Start (nt)	-
23	•	7651	1669
2	<u>:</u>	12618	112830
74	-	4556	4385
7.	9		5241
25	~		7 2402
7	~		849
7			1524
ä	-	2454	3005
~	~		1388
2	•	7952	
		8591	8728
32		9738	9379
32	=	10797	10087
ž	~		1049
36	-		5801
36	=		7261
36	=		7621
	-		2964
2	~	1585	980
2	=	6425	6868
£	-	6982	16371
	_	10253	20804
92	_	22.0	21264
39	_		
9	 	808	\$ 0
2	_	196	428
=	-	2674	775
	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 1 1 1 1 2 4 1 1 1 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11

5	

		_		
2	1	U	,	

į	?₹	,	

3	2	

٥	9	

4	v	

Ston	(ut)	3263	0129	36	- 76	6297	6520	9260	74	1079	1 8777	-	1316	_	2245	287	6319	8709		-		1228	1560	12	3521	5822	8553
Start St		 	10587 10129	1 5276	969	575	-	0449	15032 15424	88	7620 77	-	1621 131	-	- 2	-	6705 63	=	592 326	1052 786	1	1551 12	1970	92 18	3694 35	5436 58	8885. 85
1089		5	=			-		=======================================	=	_	6	-	7	-	<u>\$</u>	-	-	-		_	<u>-</u>	<u>-</u>	-	=	-		6
- Francis	4	7	4	=		4	46	1 46	4	43	7	\$0	°.	15	22	2	53	<u>~</u>	\$5	- S	25	98	95	26	52	57	- 58

10	
15	n proteins
20	similar to know
25	proteins not
30	regions of novel
35	aurely - Putative coding regions of novel proteins not similar to known proteins
	aurer 3 - 6

ă																										
known pr																										
5																										
=																										
-																										
not similar																										
2	•	• —	٠																							
coding regions of novel proteins		1~			Ι_			-	i –	; –	; -	<u>; – </u>	-	: -	!-	1-	;-	<u>:</u> –	<u>†</u> –	<u>;</u> –	; –	•	; –	:-	; -	:-
D.	Stop (nt)	2802	3570	1363	8378	16403	1521	5757	326	1381	2610	3904	6955	326	5199	8645	1192	1228	1791	9	8653	8781	1232	9366	2	_
5	! !	-	-	ξΞ.	-	įΞ.	_		12	1_	-	1		=	5		Ξ	=	=	3	8	878	= =	36	1922	<u>=</u>
ě	Start (nt)	2	2	9		- :	۰		ŀ	1		-				_	Ι_	_	-	-	_	;-	<u> </u>	:-	:-:	-
v	Star (nt)	3026	37.0		1518	10401	2696	3440	-	9	1774	2591	0110	78	6761	8935	1590	1509	Ξ	~	9300	8968	1426	9187	1620	_
2	1	_	-	-	-	=		-	 	 -	-	-	-	-	_	Ξ.	ΙΞ.	Ξ.	Ξ.	_	_	=	! =	1 6	12	
9;0	98 D	9	_		Ξ	2	~	=	-	-	~	~	-	-	٠	1 =	-	~	-	-		ន្ទ				_
,	5							_	-	-	_	_		-		=	-	-	_	-		=.	{ — ;	-	-	-
e j	Contig ' to	5	\$	\$	S	2	29	2	2	5	5	5	5	69	5	2	5	6	92	2	2	Sg.		_ !	_ !	
g	<u> </u>	_ !	i									_		_			_	-	,	-	•	~	-	6	8	*
			_	,			•			_ •	•		· •				- :		_				- :	- :	- :	_ į
Putative																										
Ē																										
•																										
re s																										
Ĭ.																										

5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

٠	į		١
Contig	<u>100</u>	Start (nt)	Stop (nt)
9.1	_	2	1
92	7	6	928
92	-	1958	1467
2	6	6	6024
36	-	19	332
76	_		1813
7	-	28	2197
96	1		11050
66	٠	. ~	4523
8	_		4784
100		1658	7287
: -	_	4697	4368
103	_	2496	2035
5	-		169
104	~	669	1277
105	7	: 2	693
105		12	2655
10.8	7	! ~	121
106	2	1209	1355
107	-	8	25
109	4	4025	1651
109	2	11625	11996
109	=	11981	12268
109	8	17401	17688
110	-		760
71	2	8764	9384
116	1=	-	309

proceins
Rock .
ដ
simi lar
90
proteins
novel
7
regions
coding
Putative
t
Sn:

Stop	4462	9266	: 5	1320	1869	9844	•	818		4195	1 40	1695		258	729	152	6463	1032		2743		7586	1 8	640	511
Start	6273	11049	(100	2002	: 3	9290		1090	2648	7807	6773	115	~	\$12	1124		8009	2060	2019	2387	1360	8830	1 2	1327	~
g 9	-		6	5	-	2	~	_		~		~		~	<u> </u>	-	_	-1	~	~	~	-	~	-	-
. Contig	116	116	-	120	120	120	121	126	. ~	127	131	132	77	135	135	138	138	140	Q	3	142	2	3	3	146

10	
10	
15	100
20	- Putative coding ranions of novel proteins not similar to brown notating
20	re()er
25	on soins
	r layou ju
30	regions
35	ive coding
	- Purat

ž
known
Ş
similar
ě
proteins
novel
₹.
regions
coding
Putat ive

dub	ig.	80	Start	Stop	
<u>a</u>		2	at)	(at)	
146	_	5	2874	1001	
143				Ä	
149		=	3956		
149		22			
97	_	2		4145	
149		51	4907	4610	
91		91	5495	5049	
2		91	5739	اضا	
5		12	7416	7054	
5	Ι-	R	9216	8521	
9	-	7,	9681	9016	
2	_	22	10679	1 9897	
	_	~	2303	1587	
151	_	_	1795	1508	
- 15	_		6586	8619	
154		=	12704	12147	
- 1	_	23	13531	12803	
156	_	1	315	593	
157		_	1183	2233	
158	_	~	1471	1064	
159	_	~	452	808	
161	_	~	976	1808	
161	_	٠	4653	4279	
191	_	~	19 03	4540	
191	_	~	4896	4313	
161	_	=	5817	8638	
	-	,		•	

5	

1	0	

9	n	
-	v	

25
ZJ

	_	٠.	_	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

_	
.3	15
-	_

•	Stop (nt)	334	2647	5132	1147	4884	2868	4158	7772	1450	11125	97.8	1149	906	100	1105	2890	333	4506	4986	\$702	1755	2994	1006	2564	153	699	13039
	Start (nt)	2796	2952	4905	1338	cics	2500	3595	2517	1722	12576	-	1940	1289	1000	593	1552	3820	6362	5477	6043	1210	2647	2614	1998	-	950	11786
	ខ្លួង	-		_	_	-	-	<u>د</u>	_	~	=	1	~	_	~	~	2	-	-	-	<u>.</u>	~	-	9	_	-	~	2
	Contig	163	163	163	164	166	168	168	170	171	זינ	172	17.2	נרנ	5	174	271	175	273	182	184	188	186	189	190	191	191	191
•	•	• —	• —	•		-	· —	· ·		-		-		· —	· —		-	• —			· —	· —	• —			· — ·	:	-:

10	
15	
20	
25	
30	
35	

15	proteins																									٠.				
20	proteins not similar to known proteins																													
25	el proteins not	Stop	12363	426	1932	3606	1651	625 ·	1466	1 2187	13636	127960	817	1167		4038	105	570	8474	5669		1 965	657	2156	1 1369	12562	1 7208	1 1999	110216	
30	regions of nove	ORF Start ID (nt)	112902	16 1	-	1 5 2899	-	_	2 783	-	13	21 28208	1 2 170	1 3 796	•	= =		1 2 1076	-	0099 6	-	1 1 1927	1 1 178	3 1776	2 1851	13 3251	7 8275	<u>-</u>	96411 6.1	
35	Putacivo coding regions of novel	Contis	161	192		195	198	1 201	203	1 206	1 206	1 206	212	1 212	212		213	1 214	214	214	214	217	218	218	1 220	220	220	730	220	
40	S. aureus - P																													

15	
20	
25	Botto in the section of the section
	1000

imilar to			
ğ			
ive coding regions of novel proteins not similar to	Contig ORF Start Stop	4 3095 2613	221 (0 1) 4.3 (1,026-1
of nov	ORF Start ID (nt)	3095	0 11173
glone	ON CI		•
coding re	Contig ORF	122	727
\$.			

_		•-		• -	٠_		.																	
<u>ئ</u>	1 2613	10757	689	1459	1961	487	975	2121	2355	3768	6367	2877	3526	3762	579	1391	905	7	1363	576	647	1962	1258	-
(at	3095	11428	-	3196	1476	7	09+	1855	2052	4760	5591	2503	2846	3944	809	1975	1417	4495	1677	121	1291	3035	1614	
2	-	•	-	~	<u>-</u>	-	-	- -	s -	- %	-	~	9	-	-	~	-		-	- -	<u>-</u>	- ~	~	
Gr.	221	221	326	226	326	227	722	227	722	722	722	228	228	233	236	238	239	341	242	243	244	244	245	
- •			• •	. — •	. – •	•	-•		- -	- -	- -	•	_:	3		:	_ 1	-:	- :	:	- :	_:	. <u> </u>	,

5

S. aureus - Putative codding regions of novel proteins not similar to known proteins

																										•		
	i	<u>-</u>	; -	; –	<u>-</u>	-	; -	;-	:-	-	;	;	<u>-</u>	-	:-	<u>-</u>	-	-	-	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>:</u> –	; — ·	<u>. – </u>	<u>-</u>
	Stop (nt)	156	114	3227	4580	7606	3681	439	\$	\$107	2	5208	3	651	6067	6035	1961	\$53	7	5127	3,5	1950	2276	1055	183	622	2051	1349
	Start (nt)	-	956	3700	9067	2196	3214	155	5252	4739	1323	5140	862	1200	1697	6469	1746	224	1299	6987	551	1756	2055	2107	2234	- 2	1565	1606
	8 2	<u></u>	-	_	-	-	-		~	9	~	-	<u> </u>	_	<u>-</u>	2	-		<u>~</u>	_	~	2	~	-	~	~	- -	-
	Contig	254	256	257	260	261	261	264	264	264	267	268	272	272	272	272	276	278	278	278	285	288	288		290	291	291	295
•	•	•			. –	•	•	• -	•	• —	• –	• —	• -	•	•		• -	• —	• —	• —	•	• —	• —	•		• :	. — .	_

į	5	

15

Э.	n	

25	

3	0	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

	Ì.	£	5

4	^
-	·

4	1	ě	5	

50

55

11 12 12 13 14 15 15 15 15 15 15 15	;		· – ·		· ·	· — ·	<u>. </u>	•	· ·	·	<u>. </u>	<u>. </u>	· —	<u>. </u>	• —	<u>. </u>	. –	·	· —	·	<u>. </u>	<u>.</u> –	•	<u>. – :</u>		<u>. </u>	•	• -
10 10 10 10 10 10 10 10	25 5 1	= 1	. 2	2	2	2	2624	194	654	4257	339	1 6					. ~	Ē		3	3458	5217	2	. 6	: ;	7111	1467	
 ^^ {-{-{-}}-{-}-	3 2 1	2	: Ž	2	1 ~ 1	2	5				•		i	. ~		2316	2	. ~	· ~	i	. ~ .	5995	6169		627			: :
	<u>8</u> 8	•	~	~	-	7	-	-	-	-	-	-	_	-	-	~	-	~	9		_	9			~			-
	2e :	-		297			107	ğ	306	306	307	100	308	108	308	2	314	316	316	117	317	321	321	321	. ~	326	iã	138

un proteins
known c
ន
s not similar
not.
ng regions of novel proteins
novel
ö
regions
e coding
utntiv
aureus

. **5**

•			
Contig	10 OR F		Stop (nc)
	5	3452	3276
	_	-	916
	~	781	1212
	2	1471	183
	-	\$7.6	289
	_	1447	1623
•	<u>-</u>	2353	2204
•	_	4971	5138
:	~	3295	3728
i	-	864	5
i		98	\$26
ì	~	1658	1356
•	-	-	281
:	2	2176	3192
	5	3618	3944
ì	9	3929	4558
	~	3197	2889
	1	1532	768
, ,	~	221	265
	2	1410	1598
	-	2178	1765
		7316	4596
	-	1967	900
		8906	9247
	•	10171	9854
į	-	-	546
			327

•	^	

_	_	
2	п	

	_	
9	•	

30	

,		,		
٠	5.	3	,	

		•	
٩	L	9	

Stop	(nt)	1808	10714	1313	1 0600	6239	6171	1085	164	136	1097	276	1 (10	1549	260	197	1068	1141	1 699			- 0	 &		- -	; -	:
1-	(at)	2158		-	-	-	-	-	-	2	_	_	-	1 1 1761	-	-	2132 106	_	-	566 847	-	5561 5370	-	875	3524 4423	-	
: - -	=	-	-	~	~	-	-	_	-	-	_	- -	=	~	~	<u>-</u>	-	-	<u>-</u>	_	_ 	•	~	_ 	<u>-</u>	-	
Cont 19	2	3	364	365	365	365	990	1 367	368	275	380	369	390	190	191	395	396	398	399	100	707	\$ 0	\$0 \$	\$0	408	410	:

_
5
_

										•	• —	. — .	•	- —			•		• - -				• -	. –	٠ ــ		
Stop (nt)	847	1590	179	616	513	637	1407	1084	417	2033	53	1235	450	3320	1520	969	6366	614	636	4786	4512	127	219	930	687	247	907
Start	578	2195	~	161	788	357	956	466	-	2311	25	2089	-	1269	1873	7	6761	96	968	3833	6718	4937	75	472	265	~	1494
8 G	~	_	-	~	~			~	-	-	-		-	- 2	_	-	-	-	~		•	=	-	~		-	- ~
Contig	416	416	413	413	02	422	431	77	÷	£3	÷	5	0 7	442	£	3	ŧ	15	4 53	3	\$	453	455	455	459	462	997
÷ ——	-	-	-	-	-	÷ —	÷ —	· —	•	÷	• –	•	• —		÷ —	• —		•	-	-	•	•	• –	•	•	•	• -

_	
5	

1	n	

٠,	n	

2	0	
_	_	

25	
23	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

7	•	•	•	

											_					_	_										
Stop (nt)	349	250	925	3372	3706	82	3696	5686	1818	\$17.6	800	1017	267	760	2081	2332	1927	08	ž	2112	359	675	\$20	1242	1571	346	\$ 2
Start (nt)	654	~	1488	2386	3464	۲.	8609	6330	1351	8175	96	1562	2	~	1764	9902	4016	956	69	1795	215	127	~	496	1149	069	4566
G	-	-	-	_	-	-	-	-	_	2	_	~	_	-	_	-	~	~	_	-	_	-	-	~	_	_	-
Contig	487	468	469	697	697	65	2	\$ 10	÷10	470	1,5	127	476	477	411	477	08+	5	989	487	887	492	493	493	\$02	304	\$0\$
 -	• — •	• —	• —	• —	• —	• —		• —	• —	• —	•	• —	• —	• —	• —	• —	• —		. –	• —	• -	•	,	• —	• —		

10	
15	40.00
20	
25	400 400 1000
30	, , , , , , , , , , , , , , , , , , , ,
35	

															•									
Stop	1232	147	612	2511	2360	3669	498	335	1104	5534	156	736	2880	3121	1731	664	1001	£33	432	1273	734	1129	104	1154
Start (nt)	1741	583	609	21.79	2097	3908	-	637	1679	\$296	308	1362	2203	3531	4348	966	1495	89	71.9	1048	1012	2145	892	1357
PR OI	~	~	-	-	-	-	-	-	~	-	-	-	2	~	٠	-	~	-	~	~	~	-	~	~
Contig	511	512	515	517	520	230	527	528		530	536	\$38	\$1.8	\$38	538	240	\$40	541	341	542	\$45	551	\$55	558
·	: —	-	-	•	÷	· —	÷ —	· —	-	•	• —	-	-			-	-	• —	-	. —	• —		• —	-

5	

1 1 108 156 1 2 1994 1206 2 163 433 2 1784 1200 1 1988 996 1 946 539 1 1742 1354 2 1856 1372 3 1742 1554 1 47 134 2 1455 1141 1 2 155	108 136 2 139 163 433 1784 120 1784 120 1786 1986 1786 137 1742 155 1742 155 1745 114	108 156 156 156 156 156 156 156 156 156 157	108 156	108 136 136 139 130
163 433 1784 120 1988 996 22 533 1742 137 1742 135 1 1455 134	163 433 1784 120 1786 956 1886 956 1776 137 1776 135 1776 135 1	163 633 1784 120 1986 996 946 539 1772 155 1772 155 1775 1775 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	163 433 1784 120 1786 130 1772 137 1772 137 1772 134 1773 112 1755 114 1755 114 1751 113	1 1 63 633 645 6 130 645 6 130
1784 120 1986 996 1946 539 12 573 1742 155 1742 155 1745 114	1784 120 1986 539 1946 539 1742 573 1742 135 1745 114 1755 114 1755 114	1784 120 1986 539 1886 137 1742 155 1742 155 1745 134 1745 134 1817 112	1784 120 1986 539 12 533 1742 155 1742 155 1745 114 185 115 185 185	1784 120 1986 539 1946 539 1742 137 1742 137 1745 114 1755 114 187 189 189 140
946 539 22 573 1896 137 1742 155 47 134 1455 114	1 946 539 1 22 573 1 1086 137 1 1742 155 1 47 134 1 455 114 1 455 114 1 4 1 12	946 539 186 137 1742 155 147 134 2 775 817 112	946 539 186 137 1742 155 141 134 2 775 87 890 1593 143	946 539 186 137 1742 155 1742 155 185 114 87 890 1591 140
1836 137 1836 137 1742 155 47 134 1455 114	22 573 1836 137 1742 155 47 134 1455 114 2 775 1175	22 573 1856 137 1742 155 145 134 2 775 817 112	1836 137 1845 185 1845 184 187 189	22 573 1836 137 1742 155 1855 114 87 890 1593 140
1742 155 47 334 1455 134	1742 155 47 134 1455 114 2 775 817 112	1742 155 47 134 1345 114 2 775 817 112	1742 155 47 134 13455 114 2 775 817 112 87 890	1742 155 1455 114 1 1455 114 1 1 2 775 1 1 2 775 1 1 2 140 1 1 5 9 1 140
1455 114	1 1455 114 2 775 817 112	1 45 114 114 114 115	47 334 3455 114 2 775 817 112 87 890	1455 134 1455 114 2 775 817 112 1593 143)
1 1455 114	1455 114 2 775 817 112	1455 114 2 775 817 112 87 890	1455 114 2 775 817 112 87 890 1593 143	1455 114 2 775 617 112 87 690 1591 143
77 2 1	1 2 775	87 2 817 112 87 890	2 775 817 112 87 890 1593 143	817 112 87 890 1593 143
	617 112	817 112 87 890	87 112 87 890	87 890 1593 143
87 890 1591 1431	8 169 1071 149	1071 146	1001 146	

10	
15	proteins
20	imilar to known
25	proteins not s.
30	regions of novel
35	 aureus - Putative coding regions of novel proteins not similar to known proteins
40	S. aureus -

similar to known proteins																									٠.	-
Putative coding regions of novel proteins not	Stop	900	059	491	347	2549	210	452	7007	759	368	1063	1994	1081	261	118	-	1331	1847	809	1758	2321	2488	1045	601	872
of novel	Start (nt)	-	166	736	96	2046	67	901	4789	1448	189	1929	1323	227	518	1377	811 	1615	2260	~	1534	2025	2940	~	٤	576
lons	98.E	-	-	~	-	-	-	-	-	-	_	~	~	_	_	7	-	_	-	-	-	<u>~</u>	-	-	-	~
eding re	Pt 10	612	616	617	622	625	627	628	633	634	636	919	637	6.18	619	639	199	642	642	643	645	645	645	648	099	099

6 829 641 644 641	146 905 1 167 1 167 1 183 1 111 1 472 1 441 1 441	900 1637 1637 1839 1111 1111 1111 1111 1111 1111 1111	146 167 167 177 183 183 1111 18 1111 18 111 18
100 100	167 1637 1 570 1 1833 1 1111 1 441 1 441	167 167 183 183 472 472 6828	900 161 161 181 181 181 181 181 181 181 181
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 111 672 672 678	520 181 6 829 6 819 6 828 6 828 6 828	570 6 829 6 829 6 929 6 828 782 782
8 111 8 111 472	66 929 66 929 8 111 472 628	983 66 829 672 678 828	66 829 66 829 672 672 628 628 782
472	472 472 441 628	472 472 628	8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	92	9 6 6	47 47 82 21 78
140	1 628	628	941 828 214 782
	828	1 828	214

_

1	0

15	

2	2	5	

S. sureus - Putative coding regions of novel proteins not similar to known proteins

	10)
•	•	

40	

4	15	

	,	٠,	•
2	,	4	,

55

:		: —	<u></u>	<u></u> .	<u>. </u>	·	<u>.</u> –	:	• —	<u>.</u> —	<u></u> :	· :	:	<u>. </u>	· –	<u>. </u>	: -	<u>. </u>	<u>. </u>	<u>. </u>	<u>. </u>	· –	÷	<u>. –</u>	<u>. –</u>	<u>. </u>	• —·	. – •
	Stop (nt)	780	ş	ž	452	223	918	9	97.	\$0\$	55	234	907	<u>6</u>	5	224	260	=	089	842	1112	7	979	358	707	1032	1419	1064
		-		-	_	_	-	_	-			2		ر ا	9	-		-	-	-	77	-	-	-	-	- 52	-	-
	- St	=		89	8	_	52	99	2		-	2	=	-	=	_	_	2	_	12	7	=	_	=	=	- 15	2	5
	9 5 5	_	-		-	-	~	~	~	_		_	-	_	-	_	-	-	_	_	-	~	_	-	~	-	_	-
	Conti	\$¥.		£	751	755	755	758	764		168	17.1	178	SF.		167		8 0	805	808	8	9.0	812	617	818	619	619	830
•		• —	•	• —	-	• –	• –	• –	• -	• —	• —	-	-	•	-	•		-	• -	•	• —	-	• –	•	. — .	• – •		· •

15	proceins
	known
20	ន
	simi lar
	5
25	regions of novel protoins not similar to known proteins
	novel
30	ě
	regions

ន			
s imi lar			
ş			
ins	:	. –	: –
prote	Stop (nt.)	255	800
Jove	Start (nt)	1 1 506 255	-
5	<u>ت</u> ت	Š	\$
eno 1 ga	98. 10	-	-
Coding re	Contig ORF Start Stop	828 1 506 255	829
s - iucativa coding regions of novel protoins not similar to	•		

	<u> </u>	_	-	-	-
Stop (nt.)	255	800	162 261	298	796
Start (nt)	908	8	578	594	320
<u>8</u> 9	-1	-	-	-	-
Cont to	828	629	830	632	835

******	-	4	110000
840	_	169	709
845	-	1 912	1457
850	~	202	69
853	-	215	359
098	-		526
864	-	٠	077
864	~	383	215
R64	۰		1828
0.00	-	:	588
873	_	906	454
878	-		234
673	-	1661	1020
878	-	186	3
879	-	1567	785
1881		-	2
882		389	709
890	-	. ~	508
905	-	193	
906	-	• •	244
912	~	נינ	
913	-		290
	,		

10	
15	n proteins
20	similar to known
25	al proteins not
30	regions of nove
35	S. aurous - Putative coding regions of novel proteins not similar to known proteins
40	S. aureus -

not similar																									•			
	:	<u>. </u>	<u>. – :</u>		<u>.</u> –	<u>. </u>	<u>. </u>	<u>. </u>		<u> </u>		<u>. </u>	-	_	<u> </u>	<u>. </u>	<u>. </u>		_	<u>. </u>	_	· —			_	·		
proteins	Stop (nt.)	191	4 05	386	808	385	007	00,	384	528		645	1242	950	270	362	3	0 0	162	9 X	909		57	161	348	112	987	296
of novel	Start	9	169	126	1578	~	~	~		1052	. ~	220	679	1702		_	~	123	-	069		_	2	319	692	~	1926	589
egions	OR P	-	~	-	-	-	-	-	-	-	-	-	7	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
coding re			918	126	927	928	929	932	934	936	537	945	945	946	949	951	955	096	1 963	596	996	696	971		976	716	982	984
· Putative	•																											

5	

10	
----	--

วก	

25	

S. auceus - Putative coding regions of novel proteins not similar to known proteins

٦	-	

2E	
35	

5

Stop (III:)	163	223	519	9.5	: :	3	155	099	5	299	2	338	179	199	369	199	159	384	55	007	65	533	399	405	138	384	7
Start	-	-	920	557	624	~	288	1205	619	585	276	673	355	194	-	115	-	20	1233	~	~	769	707	2	88	_	246
8 9	_ 	_	-	_	-	-		-	-	-	~	-	=	_	_	~	_	-	-	-	_	~	_	-	_	-	~
cont 19	987	3	766	1000	101	1015	1016	1019	1022	1024	1024	1030	1032	1:140	1043	1044	1047	1051	1051	1063	1069	1069	1075	1077	1081	1086	1087
• — <u>—</u>	•	• —	· —	• –	• —	•	• -	• —	• —	•		•	• –		•			•	• -	• —			• —	_	• –	•	-

_	
J	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

	. — .	.			. — .					• —		· — ·	• —					-	<u>. </u>	_	<u>. </u>				•	· ·	•
Stop (nt)	174	236	\$09	511	1158	353	194	580	422	268	267	342	Ē	376	225	280	153	816	986	186	254	0.7	299	97.6	921	189	197
Start (nt)	_	5	1015	8	1520	20,	385	~	_	~	2		360	609		• •	-	7	•	343	427	61	108	· ~	355	i -4	2
ORF ID	-	_	-	-	~	-	-	-	-	-	-	-	_	-	-	-		_	_	-	=	-	~	_	_	-	
Contig	1088	1096	1098	1100	1100	1011	1102	1107	1	1115	1119	1129	112	611	114	1147	1153	1154	1159	1161	1164	1711	1711	1183	1195	1196	1200

5	

	\mathbf{a}
•	v

•	,	١	
c	ı	,	

9	2	h	¢	:	
۰	۰	۹	۲	•	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

30	

•	_
o	•

40	
70	

50

	_	_	
	•	4	
•	•	v	

Stop	164	ē	187	175	=======================================	777	295	165	185	159	\$70	61	5 9	345	157	00	=	~	167	236	671	398	639	399	- 5	=	104
Start	129	105	_	~	520	=======================================	~	-	367	158	2	784	_	_ 	- 017	-	_	702	1	~	295	122	869	79.	126	283	
8 8		~	_	_	1-	-	-]_	_	~	_	_	_	-	-	-	-	-	_	_	-	_	-	-	-	-	-
Consig	1203	1222	1232	1240	1247	1721	1286	1295	1306	101	1316	1359	1370	1371	1374	1378	1392	1411	5	1450	1453	161	147	1502	1518	1534	7751
•	•	-	-	• –	•	•		• –	• -	• –	• –	• —	• –	• –	•	• –	•	• —	• -	•	•	-	• -	· —	•		_

5

	; - ;	<u> </u>	; - ;	· —	; — ·	; -	. –	<u>. – </u>	<u>. </u>	<u>;</u> —	. – ·	<u>;</u> –	; —	<u>-</u>	<u>:</u> — :	<u>:</u> – ·	<u>. –</u>	-	<u> </u>	<u>;</u> – :	• —·	<u>:</u> –	<u>; —</u>	· —	. –
Stop (nt)	\$2	350		· •	Ş	235	ž	500 200	286	67.	00	3	Ş	167	263	. ~	283	9	ž	167	167	166	338	352	Ę
Start	206	~	-	5	_	899	625	-	119	~	12	215	282	<u> </u>	523	76.	\$64	218	492	22		8	622	Ş	679
10 a	-	_	_	~	_	-	=	-	~	_	-	~	~	=	_	-	_	-	_	_	-	=	~	-	_
cont 19 ID	1547	1583	1587	1602	1629	1665	1760	1762	1876	1895	1661		2055	2056	2150	2 2	2164	21.75	2	2338		2352	2352	2355	2356

c	
o	

Putative	coding	regions	of nuvel	l proteins
	Contig	<u>8</u> 8	105	Stop (nt)
	3046	-	1367	185
		-	553	278
	3050	-	_	ž
		-	504	233
		-	~	187
	3070	-	1357	130
	3075	-	9	777
	3060	-	-	285
	3092	1-	320	162
	1093	-	3	250
		-	22	7.02
	3103	_	Ş	298
	1118	-	34	2
	3123	_	~	5
	3127	_	_	=
		-	336	169
	3142	-	388	202
	3144	-	999	386
		-	766	15
	3155	~	202	: =
	3168	-	=	2.1
	3205	-	288	5
	3282	~	-	150
	3303	~	239	ê
	1716	~	117	199
	3556	-	~	148
	3558	-	7	107

į	5	;	

S, aurous - Putative coding regions of novel proteins not similar to known proteins

Stop	185	878	7.0	253	157	061	222	285	162	250	782	298	7.	145	147	169	502	386	170	384	176	145	150	000	399	148	100
Start (nt)	367	553	-	504		• •	9		320	11	52	Ç	ž	~	-	336	388	999	137	202	-	288	-	239	111		36
38 01	-	-	-	-	-	_	-	_	-	-	-	-	-	-1		-	_	-	-	~	7	~	_	~	~	-	~
Cont 10	3046	3049	3050	3052	3065	0,000	3075	3080	3092	3093	3100	3103	3118	3123	1127	3138	3143	3144	131	3155	3168	3205	3282	3303	1756	3558	3558

c	,	

10

		_	
s	7	7	٠

25	

30	

35	

Ę e		8 C	5 –	u =	•
13568	-		: 5		• —·
•	_	-	787		•
1618	-	-	~	238	• —
3618	-	~	001		•
3622	-	-	•		•
1 3622	-	~	: 3		•
3642	<u> </u>	-	9.26		•
3649	i – :	-		338	• —
3651	-	-	625	314	•
1664	-	-	199		•
3674	-	-		402	•
1 3677	-	→	619		•
370	-	-	-	4 02	•
3726	; — ·	-	\$35	569	
. ~	-	-	\$10	256	•
87.6	-	-	554	357	•
•	-	-	566		•
3794	-	~	667	7.1	•
	-	~	638	375	•
1080	-	-	474	262	• —
3806	-	-		. ~	•
		_	\$	389	•
3815	-	_	198	8	•
13827	-	-	_		•
3842	-	-	781		
3653	-	_	671	399	
	÷-	-	-	1	

į	5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

		• —							• —				• —		•		• —	• —	• —	• —		• — ·		•	•	•	
Stop (nt.)	235	297	399	671	00	104	342	375	224	382	377	744	400	117	356	296	335	259	5	345	344	3.64	150	324	390	285	272
tart	-		- 569	-	-	225	101	0,	- 9 ⁷	651	105	979	- 267	-	-	- iet	0	7	186	-	_	-	-	_	187	-	127
DAR I	-	_ 	<u>-</u>	_ _				- -	-	- - -	- 7	- -	- -	_		_ 	-	-	- 7	-	_ ·	_ _			-	-	7
Contig	3857	1981	3865	1897	3897	3898	3921	1927	3930	3946	3951	3965	1973	39.81	3998	4001	4003	4018	4018	4021	4043	4054	9907	4070	4072	4073	4077
	-	: —	÷	-	! —	: -	: —	٤	÷ —	: —	: —	! —	<u>:</u> —	: –	: _		: _	: —	: —	: — ·	_	: — :		-	- –	:	· —

22:	8	a !	(30)	Stop (nt)
÷ :	083		_	2
4090	9	-		
3	<u>.</u>			- PT 1
Ę	105		-	306
₹	107	-		~
₹	62	-	. ~	-
3	7	-	· ~	5
	2	-	_	1 🌣
3	2	-	^	•
₽	23 82			<u> </u>
=	9	-	996	415
ŧ	ş.	-	i on	_
ŧ	2	-		206
4186	8	-	505	254
4224	7.		510	1 2 5 6
. ~	2	-	-	i 🕶 1
. ~	3	-	709	136
. ~	2	-	\$89	
4253	53	-		7.
	56	-		1323
\$	258	7	498	334
4267	67	-	284	
123	1,	-	~	<u>8</u>
4287		-	20.	
4289	83	-	£	511
4302	~	-	153	1 305

10	
15	
20	
25	
30	
35	
	;

<u>:</u>		· • — •	<u></u> .	: —	·	· –	•	· —	<u>.</u>	· — ·	. –	: - :	· - ·		· — :	· — ·	; — ·	· ·	; - -	· :	· — ·		· — :	; — :	· • — •	. – :	_
Stop (nt)	214	151	269	3	221	364	399	277	311	268	326	309	116	249	328	61	280	398	364	230	398	215	123	271	289	302	206
		~	576	5	439	528	728	17.	11.7	2	574	7 19	6	~	606	-	7	697	~	_	601	437	643	240	ŝ	601	77
8 8	~	-		_	-		_	_	~	-	-	_	-	_	-	<u>-</u>	-	~	-	_	-	=	-	-	-	-	-
font ig	4304	4306	4318	4322	4331	411	4338	4346	(367	6773	4381	1381	4397	4402	4403	7406	4411	4411	412	£18	4424	£	1754	4478	48 2	4489	4491
-	• –	• —	• -	•	•	• -	• —	• —	. –						. —									. —			
	g ORF Start ID (nt)	ntig ORF Start ID ID (nt)	00 00 00 00 00 00 00 00 00 00 00 00 00	g ORF Start 100 (nt) 2 96 1 2 96 1 2 36	9 (At) 1 2 96 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 5 76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 08 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	GAP Start (nt) 1 2 96 1 1 5 1 1 1 1 1 1 1	1 1 2 96 1 1 1 5 96 1 1 1 5 96 1 1 1 5 96 1 1 1 1 5 96 1 1 1 1 5 96 1 1 1 1 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 2 96 1 1 1 2 96 1 1 1 2 96 1 1 1 2 96 1 1 1 2 96 1 1 1 2 95 8 1 1 1 1 2 9 9 1 1 1 1 2 9 9 1 1 1 1 1 2 9 9 1 1 1 1	9 (0AF Start 1 2 96 1 1 2 96 1 1 1 2 1 1 1 2 1 1	9 (0AF Start 1 2 9 6 1 1 1 1 1 1 1 1 1	9 (08) Start (11) 2 96 (11) 1 1 2 96 (11) 1 1 2 96 (11) 1 1 1 2 96 (11) 1 1 1 2 96 (11) 1 1 2 96 (11) 1 1 2 974 (11) 1 1 2 974 (11) 1 1 2 974 (11) 1 1 1 2 974 (11) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 (nt) 1 2 3 4 1 1 3 4 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 1 1 1 1 1 1	9 (nt) 1 2 3 4 1 1 2 3 4 1 1 3 4 1 1 1 3 4 1 1 1 1 1 1 1 1 1	96 (nt) 1 1 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 2 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 (or) 1 2 3 4 1 1 2 3 4 1 1 3 4 1 3 4 1 3 4 1 3 4 4 3 4 4 3 4 4 3 4 4	96 (nt) 1 1 2 3 4 6 1 1 1 2 1 1 1 2 3 6 1 1 1 1 2 3 6 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1	96 (nt) 1 1 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 (nt) 1 1 2 2 3 8 1 1 1 1 2 3 8 1 1 1 1 2 3 8 1 1 1 1 2 3 8 1 1 1 1 1 2 3 8 1 1 1 1 1 1 2 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 (08) Start 1 2 9 6 1 1 1 1 1 1 1 1 1	96 (nt) 1 2 3 3 3 3 3 3 3 3 3	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 6 1 1 2 9 6 1 1 1 2 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 1	1 1 2 2 2 2 2 2 2 2

1	n
٠	•

15

	r		e	
4	4	8	C	,

ı			_	
:	3	į.	ø	,

Contig	8	Start	Stop
a —	2	(ut)	(at)
4495	_	-	611
7496	-	200	132
4500	-	130	306
1157	-	3	7.
4518	-	-	346
4526		987	₹
4527	_	~	163
4532	_	_	239
4542	-	=	175
1 6567	-	36	200
4573	-	-	102
4578	-	642	132
4619	=		160
4620	-	349	176
1662	-	-	246
4669	-	~	(25)
4680	_	8 2	183
0697	_	344	17

Table 4

168_6	ORF	SEQ ID NO	BLAST	Antigenic			
168_6	5	1	HOMOLOG	Region 1	Region 2	Region 3	Region 4
238_1 5193	168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
10 Section		5193			48-58	84-95	232-249
10 278_3 5195				20-36	70-79	100-112	121-131
276_2 5196				20-29	59-73	85-97	162-171
45_4 5197 ProX 28-37 59-69 85-100 120-12			· · · · · · · · · ·		65-74	177-186	211-220
315_8 5198 hypothetical protein 45.54 88.97 182-192 243-25					59-69	85-100	120-129
154_15 5199 unknown 31-40				45-54	88-97		243-253
228_9 \$200	1			31-40	48-58	79-88	95-104
128_6 5201 unknown 29-41 89-101 128-143 173-18 50_1 5202 unknown 21-33 52-61 168-182 197-20 112_7 5203 iron-binding periplasmic 21-31 58-67 92-101 111-12 111-12 111-12 121-13 182-19 111-12 121-13 182-19 111-12 121-13 182-19 111-12 121-13 182-19 104-116 127-136 167-18 1				25-38	40-52	64-74	80-89
SO_1 S202 unknown 21-33 S2-61 168-182 197-20			 		89-101	128-143	173-184
112_7 5203 Iron-binding periplasmic 21-31 58-67 92-101 111-12					52-61	168-182	197-206
442_1 5204 unknown 30-39 91-100 122-137 182-19					58-67	92-101	111-120
66_2 5205 unknown 50-59 104-116 127-136 167-186 304_2 5206 Q-binding periplasmic 19-28 48-57 75-84 103-11 44_1 5207 hypothetical protein 27-36 86-95 129-138 192-20 161_4 5208 SphX 27-44 149-161 166-175 201-21 46_5 5209 cmpC (permease) 21-33 61-70 83-92 100-10 942_1 5210 traft [Plasmid pSK41] 83-92 109-118 127-142 52-4 5211 ORF (S. aureus) 12-22 87-96 111-120 151-15 20-4 5212 peptidoglycan hydrolase (S. 24-34 129-138 141-150 161-17 328_2 5213 lipoprotein (H. flu) 81-90 123-133 290-299 520_2 5214 fibronectin binding protein 44-54 63-79 81-90 95-110 771_1 5215 emm1 gene product (S. pyr 30-39 65-82 96-106 112-12 99-1 5216 predicted trithorax prot. (D. 7-16 120-129 157-166 128-12 288_2 5219 cell wall enzyme 14-23 89-98 596_2 5220 penicillin binding protein 59-68 76-87 106-11 217_5 5221 fibronectin/fibrinogen bp 10-19 31-40 54-62 73-92 528_3 5223 myosin cross reactive prote 4-13 29-47 60-73 90-99 121_2 527_2 528_3 5223 myosin cross reactive prote 4-13 29-47 60-73 90-99 129_2 523_3 5226 penicillin binding protein 59-68 95-104 353_2 5226 penicillin binding protein 59-68 95-104 342_4 5228 Twitching motility 10-19 48-60 83-92 111-12 69_3 5229 arabinogalsctan protein 36-45 48-57 137-160 179-18 129_2 5231 glycerol diester phosphodie 8-17 41-50 55-74 97-10 58_5 5232 PBP (S. aureus) 97-106 132-141 158-167 180-18 129_2 5231 myosin cross reactive prote 3-12-21 59-68 95-104 36-45 48-57 137-160 179-18 36-45 48-57 137-160 179-18 36-45 48-57 137-160 179-18 36-45 48-57 137-160 179-18 36-45 38-57 377-160 179-18 310-8 5233 MHC class II analog (S. aure 72-81 94-103 115-124 136-14 136-14 136-14 136-14 136-14 136-14 136-14 136-14 136-14 136-14 136-14 1					91-100	122-137	182-192
304_2 \$206 Q-binding periplasmic 19-28 48-57 75-84 103-11 44_1				50-59	104-116	127-136	167-182
44_1 5207 hypothetical protein 27-36 86-95 129-138 192-20	204 3		O-binding periplasmic	19-28	48-57	75-84	103-116
161_4 \$208 SphX \$27.44 149-161 166-175 201-21							192-201
46_5 5209 cmpC (permease) 21-33 61-70 83-92 100-10 942_1				27-44	149-161	166-175	201-210
942_1 5210 traH [Plasmid pSK41] 83-92 109-118 127-142 5_4				21-33	61-70	83-92	100-109
S_4 S211 ORF (S. aureus) 12-22 87-96 111-120 151-16				83-92	109-118	127-142	
20_4 5212 peptidoglycan hydrolase (S: 24-34 129-138 141-150 161-17	5.4		ORF (S. aureus)	12-22	87-96	111-120	151-160
328_2 5213 lipoprotein (H. flu) 181-90 123-133 290-299		5212	peptidoglycan hydrolase (S.	24-34	129-138		161-171
S20_2 S214 fibronectin binding protein 44-54 63-79 81-90 95-110	1 	5213		81-90	123-133	290-299	
771_1			fibronectin binding protein :				95-110
Section Sect		5215	emm1 gene product (S. pyc	30-39			112-121
853_1 5217 ORF2136 (Marchantia polyr 43-52 88-97 102-111 287_1 5218 psaA hornolog 13-22 28-44 72-82 114-12 288_2 5219 cell wall enzyme 14-23 89-98 596_2 5220 penicillin binding protein 2b 40-49 59-68 76-87 106-11 217_5 5221 fibronectin/fibrinogen binding 28-37 40-49 62-71 93-11 217_6 5222 fibronectin/fibrinogen bp 10-19 31-40 54-62 73-92 528_3 5223 myosin cross reactive prote 4-13 29-47 60-73 90-99 171_11 5224 EF 20-31 91-110	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	
287_1 5218 psaA homolog 13-22 28-44 72-82 114-12 288_2 5219 cell wall enzyme 14-23 89-98		5217	ORF2136 (Marchantia polyr	43-52			
S96_2 S220 penicillin binding protein 2b 40-49 S9-68 76-87 106-11	287_1	5218		13-22		72-82	114-124
S96_2 S220 penicillin binding protein 2b 40-49 S9-68 76-87 106-11	288_2	5219	cell wall enzyme			<u></u>	
217_6 5222 fibronectin/fibrinogen bp 10-19 31-40 54-62 73-92							106-115
528_3 5223 myosin cross reactive prote 4-13 29-47 60-73 90-99	217_5	5221	fibronectin/fibrinogen bindii				
171_11	35 217_6	5222	fibronectin/fibrinogen bp				
63_4	528_3	5223	myosin cross reactive prote			60-73	90-99
353_2 5226 46-55 62-71	171_11	5224					
743_1	63_4		penicillin binding protein 2b			95-104	
40 342_4 5228 Twitching motility 10-19 48-60 83-92 111-12 69_3 5229 arabinogalactan protein 97-106 132-141 158-167 180-18 70_6 5230 nodulin 36-45 48-57 137-160 179-18 129_2 5231 glycerol diester phosphodie 8-17 41-50 55-74 97-100 58_5 5232 PBP (S. aureus) 26-35 70-79 117-126 152-16 45 188_3 5233 MHC class II analog (S. aure 72-81 94-103 115-124 136-14 236_6 5234 histidine kinase domain (Dic 24-33 52-67 81-94 106-12 310_8 5235 clumping factor (S. aureus) 59-71 77-86 93-102 118-12 601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 50 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 <	353_2						
342_4 5228 Twitching motility 10-19 48-60 83-92 11-12	40						175-184
70_6 5230 nodulin 36-45 48-57 137-160 179-18 129_2 5231 glycerol diester phosphodie 8-17 41-50 55-74 97-100 58_5 5232 PBP (S. aureus) 26-35 70-79 117-126 152-16 188_3 5233 MHC class II analog (S. aure 72-81 94-103 115-124 136-14 236_6 5234 histidine kinase domain (Dic 24-33 52-67 81-94 106-12 310_8 5235 clumping factor (S. aureus) 59-71 77-86 93-102 118-12 601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 544_3 5237 ORF YJR151c (S. cerevisae) 76-90 101-111 131-140 154-16 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	342_4						
129_2							
58_5							113100
45 188_3 5233 MHC class II analog (S. aure 72-81 94-103 115-124 136-14 236_6 5234 histidine kinase domain (Dic 24-33 52-67 81-94 106-12 310_8 5235 clumping factor (S. aureus) 59-71 77-86 93-102 118-12 601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 50 544_3 5237 ORF YJR151c (S. cerevisae) 76-90 101-111 131-140 154-16 50 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13							
236_6 5234 histidine kinase domain (Dic 24-33 52-67 81-94 106-12 310_8 5235 clumping factor (S. aureus) 59-71 77-86 93-102 118-12 601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 544_3 5237 ORF YJR151c (S. cerevisae) 76-90 101-111 131-140 154-16 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	/c						
310_8 5235 clumping factor (S. aureus) 59-71 77-86 93-102 118-12 601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 544_3 5237 ORF YJR151c (S. cerevisae) 76-90 101-111 131-140 154-16 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	100_3						
601_1 5236 novel antigen/ORF2 (S. aur 45-54 91-104 108-117 186-19 544_3 5237 ORF YJR151c (S. cerevisae) 76-90 101-111 131-140 154-16 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	<u> </u>						
54_3 : 5237 ORF YJR151c (S. cerevisae); 76-90 101-111 131-140 154-16 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	310_8	· -					
50 662_1 5238 MHC class II analog (S. aure 22-32 71-80 89-98 114-12 87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13	601_1						186-195
87_7 5239 5' nucleotidase precursor (' 29-45 62-71 105-114 125-13		5237					154-164
	662_1	5238					114-122
	87_7	5239			62-71	105-114	125-137
120_1 5240 B65G gene product (B. sub 102-111	120_1	5240	B65G gene product (B. sub	102-111			

Table 4

5	ORF		Antigenic		(cont)		
Ĭ		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	168_6	244-272	303-315		1		:
i	238_1	260-269	291-301	308-317	1		:
	51_2	140-152	188-208	211-220	256-266	273-283	!
10	278_3	198-209			1		· -
"	276_2	255-268					i
	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8	, · ·······························					i
	154_15	148-157	177-187	202-211	1		
15	228_3	101-119	139-154	166-181	1		:
13	228_6						1
1	50_1				1		<u> </u>
į	112_7	136-149	197-211	218-229	253-273		<u> </u>
ĺ	442_1	199-210	247-257	264-277	287-309		<u> </u>
20	66_2	100 210	2 11 201		1 30. 303		
20	304_2	178-187	250-259		- 		
1	44_1						
• 1	161_4				 		i
	46_5	131-141	162-176	206-215	243-252	264-273	- 285-294
25	942_1				1		
	5_4	189-205	230-239	246-264	301-318	340-354	378-387
i	20_4	202-212	217-234	260-275	314-336	366-373	380-391
	328_2	202 212			J. 1 000		1
	520_2 520_2			 	 		<u> </u>
30	771_1	145-154			 		
1	999_1	143.134					!
1	853_1					· .	1
Ī	287_1	154-164			i		
	288_2	137107			 		
35	596_2	121-130	i		 		:
	217_5	244-253	259-268	288-297	302-311		
	217_6	144-158	174-183	188-197	207-216	226-242	:
ł	528_3		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1
	171_11						!
40	63_4				1 1		Ī
	353_2						!
	743_1	197-207					<u> </u>
j	342_4				T :		
	69_3	195-211			1		i
45	70_6	206-215	263-272	291-301	331-340	358-371	390-414
		117-127	141-157	168-183	202-211		261-270
	58_5	184-203	260-269	275-299	330-344	372-381	424-433
	188_3		i				·
	236_6	138-147	163-172	187-198	244-261	268-278	308-317
50	310_8	131-140	144-153	177-186	190-199	204-213	216-227
	601_1	208-218			1		
	544_3	170-179	184-193	224-235	274-287	327-336	352-361
		: 1/0-1/3	107-133	FF4-F33	£1-1-201	361-330	332-301
	662_1	<u> </u>				· - · · · · · · · · · · · · · · · · · ·	
55	87_7	!					
	120_1						

Table 4

_	ORF		Antigenic	Regions	(cont)		
5	l	Region 11	Region 12	Region 13	Region 14	: Region 15	Region 16
	168_6	<u>i </u>	:			:	
	2381	:		1			
	51_2						
40	278_3				1		· !
10	276_2				Ī		<u> </u>
	45_4	1	:		1	:	
	316_8			!	<u> </u>		1
	154_15	1				T T	
15	228_3		i			i	
15	228_6						
	50_1		·		i		
	112_7		·				
	442_1	i	·			<u> </u>	
20	66_2						
	304_2				1	•	
	44_1		· · · · · · · · · · · · · · · · · · ·		<u> </u>	·:	
	161_4		· · · · · · · · · · · · · · · · · · · 				
	46_5	306-315	:			:	1
25	942_1	i	· - · · - · · - · · · · · · · · · · · ·			1	
	5_4	393-407	416-426	456-465		i	
	20_4	396-405	410-419	461-481			
	328_2				- I		1
	520_2		<u></u>		1	<u> </u>	
30	771_1				1	:	
	999_1						
	853_1				 		·
	287_1						
	288_2	i			 		
35	596_2				i	:	
•	217_5	i					
	217_6	 				:	1
	528_3	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	i
	171_11				<u> </u>		
40	63_4						
	353_2						-i
	743_1				1		:
	342_4		•			:	:
	69_3				 		·
45	70_6	453-471	506-515	!	-		
	129_2	296-315			1		- i
	58_5	. 			! ·		:
	188_3			i	1		
	236_6	358-377	410-423	428-439	442-457	467-476	480-493
50	310_8	238-251	256-275	281-290	1296-310	314-333	338-347
	601_1				1		1
				<u> </u>	<u> </u>		
	544_3	 			!	 	
	662_1	· ·				 ,	
55	87_7	<u> </u>	· - · · - · · · · · · · · · · ·		<u>.</u>		
	120_1	<u>:</u>			:		

Table 4

5	ORF	<u>!</u>	Antigenic	Regions	(cont)	·	
9		Region 17	Region 18	Region 19	Region 20	Region 21	Region 22
	168_6	<u>i</u>	·		:	<u> </u>	
	238_1				1	1	<u>:</u>
		;			!		. 1
_		1			i		i
,	276_2	i			! .	1	:
	45_4				1	1	
	316_8				 -		
	154_15				i	 	
	228_3	 			1	1	
	228_6	·				<u> </u>	
		i			:	·}	
	50_1 112_7	 					
		 -		·	 -	i	
	442_1	<u> </u>	 			ļ	-
)	66_2		<u>i</u>		<u> </u>	ļ	-
	304_2				<u> </u>	ļ	
	44_1				! -		_
	161_4	<u> </u>	· · · · · · · · · · · · · · · · · · ·		1		 _
	46_5	L			<u> </u>		<u> </u>
;	942_1						·
	5_4				1		<u> </u>
	20_4	1				1	!
	328_2				!		
	520_2				:	1	1
1	771_1	i			· · · · · · · · · · · · · · · · · · ·		
	999_1	 -			:	1	<u> </u>
	853_1	i				†	1 .
	287_1	1			:	i	 -
	288_2	 			:		
;	596_2	:				 	
	390_2	 			•		
	217_5	:			 	1	
	217_6				· · · · · · · · · · · · · · · · · · ·	 	
	528_3	<u> </u>					:
	1/1-11	<u>:</u>			:	<u> </u>	
)	63_4	<u> </u>	 		·	ļ <u></u>	
	353_2					ļ	<u> </u>
	743_1	<u> </u>			<u>:</u>	<u> </u>	!
-	342_4	<u> </u>		: 	<u>:</u>		1
	69_3	;		! !		1	!
;	70_6	į		·	·	<u>!</u>	
	129_2						
	58_5	:				!	
		:				!	:
	236_6					i	
)		·357-366	370-379	429-438	443-452	.478-487	551-560
			_ <u></u>				
	601_1	!		 			
		!		<u></u>		<u>:</u>	
	662_1					<u> </u>	
5	87_7	:		<u> </u>		·	
	120_1			:			

Table 4

5	ORF	i	Antigenic	Regions	(cont)	:	
5		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6	!			1	i i	
	238_1	!		1	!	: .	
i	51_2			İ	 	:	i
	278_3	i		i	i	1	1
10	276_2		 -	i			1
	45_4		<u>:</u>	i	 	:	
	316_8			 	-	·	1
			 	:		:	[
				<u> </u>		<u></u>	
15	228_6	1			 	<u> </u>	
	. 50_1	†	:	i		1	
	112_7	`				i	
	442_1	 			 	 	1
	66_2	 			1 .	 	
20	304_2		:		 	 	
	44_1	!			 		
	161_4			<u> </u>		1	1
	46_5	·		i	 	1	
	942_1				·	!	
25	5 1	 			 	1	
	5_1 20_4	·	i	··	 	1	
	328_2	i	!	 			
• •	520_2	 	·		†	1	
	771_1	<u>:</u>	·	1		:	
30	999_1		 		<u> </u>	:	
. "	853_1	†		†·		:	
	287_1	 				: -	1
Face (Ac.)	288_2	†				:	
<i>35</i>	596_2	(
 	217_5			1			
	217_6						1
	528_3		:		T		
	171_11	-		1		:	
40	63_4		!			•	
	353_2		:	I		1	
	743_1		•	1		į	
	342_4			:		:	
	69_3	:		:			
45	70_6				-		
40	129_2						1
	58_5				:		<u>:</u>
	188_3			:	:	<u></u>	
	236_6	:		i	!		<u>i</u>
50	310_8	622-632	670-685	708-718	823-836	858-867	877-886
	601_1			!	i		İ
	544_3	ı		·		1	1
	662_1			!			
	87_7			1	1		!
55							•
-	120_1						

Table 4

(cont)

E	ORF	Antigenic	Regions
5		Region 29	Region 30
	168_6	· 	<u></u>
	238_1	<u>:</u>	
	51_2		
10	278_3		
	276_2	İ	
	45_4		
	316_8	:	
	154_15		
15	228_3	:	
	228_6		
	50_1		
	112_7	:	
	442_1	!	
20	66_2	T	
	304_2	:	
	44_1		
	161_4		
	46_5		
<i>25</i>	942_1	 	
	5_4		
•	20_4		·-··
	328_2	:	
	520_2		
30	771_1		
	999_1		
	853_1	i	
	287_1		
	288_2		
<i>35</i>	596_2	:	
	217_5		
	217_6	1	·
	528_3	<u> </u>	
	171_11	<u>i</u>	
40	63_4	<u> </u>	
	353_2	<u> </u>	
	743_1	i	
	342_4	 i	
	69_3		
45	70_6	:	
•	129_2		
	58_5		
	188_3	:	
	236_6	·	
50	310_8		
	601_1		
	544_3		
	662_1		
	1 07 7		

120_1

212

Table 4

ORF	:	BLAST	Antigenic	Regions	!	
		HOMOLOG	Region 1	Region 2	Region 3	Region 4
46_1	5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
63_4	5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
174_6	52	43 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
206_16	5244	ornithine acetyltransferase :	1-10	34-43	54-63	194-210
267_1	5245	NaH-antiporter protein (E. I	120-129	332-347	398-408	
322_1	5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
415_2	5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
214_3	5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
587_3	5249	clumping factor	5-14	43-54	59-68	76-95
685_1	5250	signal peptidase	59-68	72-81	86-95	99-108
54_3	5251	fibronectin binding protein I	23-32	37-46	50-59	89-98
54_4	5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
54_5	5253	fibronectin binding protein !	49-60	81-90		
54_6	5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
328_1	5255	lipoprotein (H. flu)	11-20	61-70	96-105	i

Table 4

_	-	
"		
_	_	

1	ORF		Antigenic	Regions	(cont)	1	
		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	46_1	215-242	333-352	376-385	416-432	471-487	1
30	63_4	145-154	191-202	212-223	245-265	274-283	291-300
	174_6						<u> </u>
	206_16	239-259	275-284				i
	267_1					<u> </u>	<u> </u>
	322_1	298-319	350-359		<u> </u>	<u> </u>	<u>.</u>
35	415_2	344-353	371-380	395-404	456-465	486-495	518-527
	214_3	318-337	365-375			<u> </u>	<u>ļ</u>
	587_3	106-115	142-151	156-166	173-182	186-198	204-213
	685_1	113-122	130-145	 			
	54_3	128-138	185-194	217-226	251-260	1268-277	295-305
40	54_4	175-188	191-200	203-212	220-229		ļ
	54_5		i				ļ <u> </u>
	54_6	220-230	287-304	317-326	344-353	364-373	378-387
	328_1			<u> </u>	1	<u>!</u>	<u> </u>

Table 4

ORF	•	Antigenic	Regions	i(cont)	1	!
	Region 11	Region 12	Region 13	Region 14	Region 15	Region 17
46_1		!				
63_4	306-315	319-328	366-376	395-420	:453-462	467-476
174_6	i				;	
206_16						i
267_1					_i	
322_1						i
415_2	539-555					· · · · · · · · · · · · · · · · · · ·
214_3						
587_3	217-226	278-287	318-327	332-342	351-360	377-386
685_1	:					
54_3	316-325	329-345	355-372	387-396	416-425	438-448
54_4	:	!		<u> </u>	-L	
54_5				<u> </u>	<u> </u>	. ! — —
54_6	396-407	427-436	514-531	541-550	569-578	612-622
328_1	<u> </u>		<u> </u>	<u> </u>	1	1

Table 4

ORF	1	Antigenio	: Regions	(cont)	•	!
	Region 18	Region 19	Region 20	Region 21	Region 22	Region 23
46_1		1	.!		:	
63_4	485-500	513-525	1			
174_6					·	
206_16	:				· 	*** * * * * ****
267_1				J	<u></u>	:
322_1	i		i		<u>!</u>	
415_2		:			1	
214_3	i					_:
587_3	396-405	426-442	i459-470	485-494	505-514	531-562
685_1					<u> </u>	:
54_3	455-462	472-491	517-536			_i
54_4	i					_!
54_5						
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328 1		i	!	1	•	i

Table 4

_	ORF		Antigeni	c Regions	(cont)		
5		Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
	46_1	:		<u>.i</u>	<u> </u>	<u> </u>	1
	63_4	•	i	·	<u> </u>	<u> </u>	<u>. i.</u>
	174_6		·	<u> </u>		<u> </u>	<u></u>
10	206_16			<u> </u>	<u> </u>		.i
70	267_1	•		<u>i</u>		<u> </u>	
	322_1		<u>i</u>		<u> </u>	<u> </u>	
	415_2		.1	.i			i
	214_3		i				
15	587_3	·567-578	584-601	607-840	844-854	858-870	877-886
	685_1		<u> </u>	_		<u> </u>	
	54_3		<u> </u>	.		 	
	54_4_	···		<u> </u>		J	
	54_5	<u>.i</u>					
20	54_6	793-802	811-826	834-848	866-876	893-903	907-918
	328_1	'	<u> </u>	_!	<u> </u>	<u></u>	<u> </u>

Table 4

ら 一次年記者な

ORF	Antigenic	Regions	(cont)
	Region 30	Region 31	
46_1	!	:	
63_4	:		
174_6	1		
206_16		:	
267_1		i	
322_1	!	!	
415_2		:	
214_3			1
587_3	889-911	927-936	
685_1		!	
54_3			
54_4	l		
54_5		i	
54_6	925-944	951-997	
328 1	1		

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland
15	(E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	<pre>(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33</pre>
30	(C) OPERATING SYSTEM: MSDOS version 6.2(D) SOFTWARE: ASCII Text
	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996
40	(2) INFORMATION FOR SEQ ID NO:1:
45	
50	

(i) SEQUENCE CHARACTERISTICS:

X.

5

10

15

20

25

30

35

40

45

50

55

(A) LENGTH: 5895 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

TCCATTATGA AGTCACAAGT ACTATAAGCT GCGATGTTAC CAATGTTTTT TAAAATCCCA 60 GTAATAAAAT CAAAAAATAA GTTAAATAAT GTATTCATTT TAAGTCCTCC TTAATAAAGa 120 aaataGGTAA TAATGTAATA GCTTCTATTA TGATGCCTAA TTGAATGAAT TGGGCAAATG 180 GCTCTTTGAT GATAAGTGTG ATAATGAAAA GGGTTAAACT AACAATAATC GCATAATATT 240 TTTTCGTTT AATAAGTCGC ACAGGAATGG GCTTCTTTTT AGTTGCTGCA GGAGCATATA 300 CTGAGATTAC ACCTAAAGAA ATAACTGTTA AAATAATCAT AATTAAAAAG TTAATATGAA 360 AATTTACTAT TACTAAAGGT AAAAGTATAA ATAGTATAAT ACTTTCTACA TAACACCAAA 420 AAGAAGAAGG TGCATGTGCA CCATGTGCAT GCCTTCTTAT TAAATAAAAT GTTAAATTCG 480 TAATTAACGT AAACAGAAAA ATGTTTAAAA TATAGGCAAT AGTATACATA ACAATTAATT 540 TACCTATATT TTTAGCTAAG ACCTGCATCC CTAATCGTAC TTGCAAAAAT TGAATATGAT 600 CTAAGTTATT TCTCTTTTGA AGATACGTGG CAAACTGGTC AATTTTATTA TCAAAATAAT 660 TCAATTTAC ACCACTCTCC TCACTGTCAT TATACGATTT AGTACAATCT TTTATCATTA 720 TATTGCCTAA CTGTAGGAAA TAAATACTTA ACTGTTAAAT GTAATTTGTA TTTAATATTT 780 TAACATAAAA AAATTTACAG TTAAGAATAA AAAACGACTA GTTAAGAAAA ATTGGAAAAT 840 AAATGCTTTT AGCATGTTTT AATATAACTA GATCACAGAG ATGTGATGGA AAATAGTTGA 900 TGAGFTGTTT AATTTTAAGA ATTTTTATCT TAATTAAGGA AGGAGTGATT TCAATGGCAC 960 AAGATATCAT TTCAACAATC GGTGACTTAG TAAAATGGAT TATCGACACA GTGAACAAAT 1020 TCACTAAAAA ATAAGATGAA TAATTAATTA CTTTCATTGT AAATTTGTTA TCTTCGTATA 1080 GTACTAAAAG TATGAGTTAT TAAGCCATCC CAACTTAATA ACCATGTAAA ATTAGCAAGT 1140 GAGTAACATT TGCTAGTAGA GTTAGTTTCC TTGGACTCAG TGCTATGTAT TTTTCTTAAT 1200 TATCATTACA GATAATTATT TCTAGCATGT AAGCTATCGT AAACAACATC GATTTATCAT 1260 TATTTGATAA ATAAAATTTT TTTCATAATT AATAACATCC CCAAAAATAG ATTGAAAAAA 1320 TAACTGTAAA ACATTCCCTT AATAATAAGT ATGGTCGTGA GCCCCTCCCA AGCTCGCGGC 1380 CTTTTTTGTA ATGAAGAAGG GATGAGTTAA TCATCATTAT GAGACCCGCC GTTAAAATAT 1440

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	AAAAATATTA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	2700
40	AATGTGTAAG	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
	CCTAACAATA	TATTGATTAT	TTTTTTATTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
45	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTIGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
55	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240
-							

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATTGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	ССАААТАТАА	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3600
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
20	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
40	TACAÁCAGCA	ATCGAATTAC	TTTAGATTCC	aatatttcaa	TCCATTGAAA	TCAGAAAGGT	4560
	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
45	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	ААААТАААА	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040

	AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
_	GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
5	ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
	GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
10	TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
	TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
	GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
15	ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
	AATATATAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
	ATATTTGTTT.	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
20	GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
	TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
25	ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
	TGATAGTGCT	AAAGA	•				5895

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAA CAAGGTACGA TTGGTTTAAT AACATATATG AGAACCGATT CTACACGTAT 60 TTCAGATACT GCCAAAGTTG AAGCAAAACA GTATATAACT GATAAATACG GTGAATCTTA 120 CACTTCTAAA CGTAAAGCAT CAGGGAAACA AGGTGACCAA GATGCCCATG AGGCTATTAG 180 ACCTTCAAGT ACTATGCGTA CGCCAGATGA TATGAAGTCA TTTTTGACGA AAGACCAATA 240 CCGATTATAC AAATTAATTT GGGAACGATT TGTTGCTAGT CAAATGGCTC CAGCAATACT 300 TGATACAGTC TCATTAGACA TAACACAAGG TGACATTAAA TTTAGAGCGA ATGGTCAAAC 360 AATCAAGTTT AAAGGATTTA TGACACTTTA TGTAGAAACT AAAGATGATA GTGATAGCGA 420 AAAGGAAAAT AAACTGCCTA AATTAGAGCA AGGTGATAAA GTCACAGCAA CTCAAATTGA 480 ACCAGCTCAA CACTATACAC AACCACCTCC AAGATATACT GAGGCGAGAT TAGTAAAAAC 540

55

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
δ	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	TTAATCTAAA	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	AATGAGAAGA	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340
-							

	TATGTAGAAA	GCGCAGCTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
5	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
•	TCTCATGCTA	ААААСААТАА	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	САААААААСТ	TTATAAAATA	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
5	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
5	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
0	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAATT	3480
5	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
0	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
5	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGA A A	AGTGTATCTA	AATGCACATC	3960
0	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
_	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
5	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
10	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
15	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TCAAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
. 20	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

ATCCTAAAAT ThAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCt GGACGATCAT 60 kAAATTCCaA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT 120 GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA 180 TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT 240 TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT 300 GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT 360 GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA 420 ATTITATACA TATTIGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT 480 TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA 540

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
25	AATAŢCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTTTTTCA	TTTGTGGCAC	1860
40	TTGTGCAAtA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACKCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	СТТТААААТА	1980
45	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
-	ACAACCTGAA	GGTCCAATTA	GCACAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13321 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
10	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
5	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	660
	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
5	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
0	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	CTCCAAATAT	1020
5	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1080
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCAAACTA	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
0	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
5	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTt	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
0	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

	TCCTACAGAC	GICCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	TAAAATAAAA	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TTCCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCÀT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТАА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTTGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
•	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
<i>55</i>	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480
-							

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
10	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
10	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
•	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
05	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	СТААААТТА	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTAAATTTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
40	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGcTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	AATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	ССТТС & ТТТ Т	5290

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080
JJ							

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	720
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	726
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
o	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
5	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
0	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
•	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
5	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
•	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
o	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
5	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
o	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
0	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
5	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
o .	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
٠	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	TATAATAAA	8820
	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	8880

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
9	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
0	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
5	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG .	9960
	CTCAGTCAAC	TGTATACCTT	TIGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
	TTATĂAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
15	TGAAGAAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TTTAAAAAAT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCTGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	TAATCAAATA	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
20	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
40	TGTTAATAAA	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240.
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
EE	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480
55							

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
5	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT.	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
10	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
15	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
•	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
20	AGAATCAGCm	Gaatcagtta	AACAAGCACC	ACMAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
•	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
 25	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8549 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA	AACTTTTATG	TTGAAAAAGC	TACTTATCTC	AATGAAAACA	AGTAGCATTT	60
AATAAATTAA	TTAGTATACA	GCTAGTTTTT	CTAATTGTTC	TTTAACTTGA	ATTAAGTTTG	120
ACCGTATTAG	AGAGGCAGAT	TGATCCATCG	TTTGAATTGC	TTGTCCTTCA	TTTTCGTTCA	180
AGCCATTACA	AACAACTTCA	AACTGTTGTG	CCATTTGATC	AAGACGCGCA	TGAGCTTGTG	240
TGTTTAAAAT	AAACATATCG	TCATAATGTG	ATGGCGAATA	GATAATTCGT	CGTTGTATAC	300
AAACGTATAA	AAACCTTGTC	ATATCAACGG	TTTTGGCATT	TTTAAACCTC	TGTGTTTTCC	360
ACGCATGTTT	GCCCTTATTT	AAATAATTTG	CCCTTTTTTC	GCCCCGAAAA	AAAAACACAA	420
AAAAATAACC	ACACTCCTAA	ATTAATAGGT	GGTGTGGTTT	TGTTGATTGT	AGGGGTATAA	480
AAATAACCGC	ATTATTAAAG	ATACGGTTAC	TCTGTTATCT	GTAAATATAA	TAGTAGTTTA	540

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
_	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
8	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	TATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
<u>•</u>	TACGATATCC	CACCAGATAA	AATAGATGAT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTAcACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCaAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CTGGCACTGG	TGGATTTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
,,,	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
20	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CCTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTTTTCAA	ACATAGTCTT	ATCATTTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	ттаааааста	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTITGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	ATAATTAAAA	aaataaattg	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
40	TTAĂCAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
40	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940

i Li

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kttgatattt	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTTGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	CTACATATAA	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATTTTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
.5	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTAȚATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
10	TCTCCTGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
10	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
15	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680
	асаатсаатс	АССТСТСТА Т	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740

	ATTACTGCAT	TTGTAAgAGG	TGCAAGTTCT	GTCACAAATA	AAAATTCTTG	CTTATCAGGT	7860
_	TCAAAACGAT	ACTCGATATC	AAGAATTTCT	TGTTTGGTCT	TATTTAATTC	TCTTATAGTT	7920
5	TCCTCTTTAT	TAATTTGAGT	TTTGGTTTCC	CAATCGTCTA	AATGTTCTTT	TAATGTGTCA	7980
	AAGGTTTCGC	CGTTTACATT	AACTCGAGCT	TGAACAATCT	CATTAGCACT	GTTATTACGT	8040
10	GGTGCCACAA	CAAGTGCGTT	AATTTGACTT	TGTAAAGATT	TGTTTACTGC	TGCTTGCGAT	8100
	CTACCATTAT	AATAAATTTG	CTCAGCGAAG	TGTTGAATTG	TTTTAGCTYT	CTGATGCAAC	8160
	TTAAACTCTG	TTGTCAAGCC	AAGCGCAAAT	TGCTCTATTC	TTTGTAAGTT	TTGTATTTCC	8220
15	TTAGCTCTAT	AATCTCGACC	TGCTAAAGCT	CCCAAATCCT	TTATTAAATA	CAAATTTTCC	8280
	ATAATGCACC	TTCCTTTCTA	ATAAAATAGC	ACTGTACCAA	GTTTCCCACT	ATCGTCAACT	8340
	GTTATTTTCC	ACAATTTACC	GTTTGGGGAT	TTCTGTACAA	TGCTATTTTG	AATAATTgcC	8400
20	TGctTCGCCT	TAAATTTTTA	TATCTAATTT	ATTTKTATCA	TTTACCGAAA	TGATACCGTC	8460
	TTGAGGCAAT	CCATCAATAn	CACTACTGCC	TGCATAAGGT	ATCCCATTTA	TAGCTTTCCA	8520
25	ATGTGTAGCT	GGAAAGTACT	GTTTATCGT		•		8549

(2) INFORMATION FOR SEQ ID NO: 6:

30

40

45

50

*5*5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

AGGCGTGTAG TGACTTACGG nTAGGAAACT ATGTATCCGA ATGATTTATT GAGACCAAAA 60 AGGCATTAAA GTCCATTGAA ATATCNGGTA GCGMGTTGGT ACGTGGACGT GGGGGCCCTA 120 GATGTATGAG TCAACCATTA TTCAGAGAGG ACATTTAACG TAATAAATTA TAGAMACGAG 180 GGTGAAAATA ATGACAGAAA TTCAAAAACC GTATGATTTA AAAGGCAGAT CATTATTAAA 240 AGAAAGTGAT TTTACCAAAG CAGAATTCGA AGGACTTATT GATTTTGCAA TTACATTAAA 300 AGAGTATAAG AAAAACGGTA TTAAGCATCA CTACTTATCT GGAAAAAATA TTGCACTACT 360 ATTCGAAAAG AATTCGACGA GAACGCGTGC TGCGTTTACA GTTGCGTCTA TTGATTTAGG 420 TGCGCATCCA GAATTTTTAG GAAAAAATGA TATTCAATTA GGCAAAAAAG AATCTGTAGA 480 GGATACTGCG AAAGTATTAG GTAGAATGTT CGATGGTATT GAATTCCGTG GTTTTTCACA 540 ACAAGCTGTT GAAGATTTAG CGAAGTTCTC TGGTGTACCG GTGTGGAATG GATTAACAGA 600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rgaaaaagcg	AGTCAATATG	GTGGTYCAGT	840
	CATGATTACG	GATAATATTG	CAGATCCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	900
10	TIGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACACGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
•	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	agttatagga	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
23	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAGAGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGTTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	naaaatgaga	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	ТАТУТСТТАТ	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
•	GCTCTTCTTG	TTTATACAAT	CGRTCMAAAG	rATwATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	tatcgtactt	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
•	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	aatagtgata	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	agttgaagaa	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGCGT	CACCACTACC	3240
	TCAATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
10	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
5	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
5	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGG&AACCAA	3600
	A						3601
o	(2) INFORMA	TION FOR SE	Q ID NO: 7:				
		QUENCE CHAR A) LENGTH:					
	(B) TYPE: nu C) STRANDED	cleic acid				
5		D) TOPOLOGY					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

50

55

CGACACTATT AAATGAATTA GAGCACAATC TAACAAATCA AATTCATTTT TCAAAAAGATG 60

AACGACTCAC ACATATCGCT TTAAAGTTAT TCGAAACAAC CGATCCTGTT TCAACAAAGC 120

AACTTGCGCA AGATGTTAAT GTTTCGCGTC GGACAATTGC AGATGATATT AAAATGATTC 180

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCn ATTGCTTCAA	540
10	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
25	AAATTTTCTT TTTCTTTATC AATCTGaTkG TAATTAACaC TTTCGaCTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
30	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360 -
35	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
40	TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
40	GGCÁGTTCAA TCATTAGAAA ACCTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	600
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
45	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
50	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960

55

CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT 1020

AGATCTCTTG CTATTTCTAA TTCAGTATCT GAAATATAAT GCTTTGTTAA ATTCTGAAGT	1140							
TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200							
ACCCGTTCAT CACTGCACAT C	1221							
(2) INFORMATION FOR SEQ ID NO: 9:								
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear								
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:								
TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATACAT	60							
AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC	120							
ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG	180							
ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT	240							
CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT	300							
TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA	360							
TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA	420							
CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA	480							
TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT	540							
TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG	600							
AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG	660							
TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA	720							
TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT	780							
AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA	840							
TARATTARTS TARTCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC	900							

(2) INFORMATION FOR SEQ ID NO: 10:

CAATAAGAAA

TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT

GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAATTTCATT

AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC

(A) LENGTH: 904 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
35	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGGTAAA GAGCGTCAAG AGCATTACCA	840
	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	,5, 551 02 000 22000	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
55	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
10	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	TAATTCTAAA	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	Gaaacttttg	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
40	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
45	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	COMMONORATION	ACCTTATEAA	ССТССССАТА	ער ביי ביי ביי ביי ביי ביי ביי ביי ביי בי	ТААТСАТТСС	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2280
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATIGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	aataaaagtg	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
25	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
25	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAATATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
40	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
45	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	AAATTTATTT	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	AATAAATTTT	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AAATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATCGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
70	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgccat	4500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCAAT	4560
	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
35	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTETGCACA	TCTTTTAACA	CAGCGGGAAG	GCTTACCAGC	TAAACAAGAT	GTCATTGAAA	5100
40	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
45	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
						CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
25	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
23	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
. ,	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
40	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
45	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	CTCATTCAAT	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
,,	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TITAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
•	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
40	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
45	TTGGATAACG	ATCAAAAATA	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCGCGCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
,,,	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
	CGTACGATAC	CGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
25	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	СТАААТАААТ	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	AAAAATAATA	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	agtgataaaa	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
60	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG TTCAAATGAT TGCTGAAAAA CTGAATGTCA CTACAGAAGA TGTGGAAAAA 11100
GTATTAGCTA TGACAGCGCC ACTAGGCATT TTTAGTCATC AATTACAACG ATTTATTCAT 11160
TTAGTATGGG ATGTCAGAGA TGTAATAAAC GACAATATTA AAGGAAATGG ACAAACACCA 11220
GAACCATATA CGTATTTAAA AGGTGAAAAA GAGGACTATT GGTTTTTAAG A 11271

10

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO: 12:

- (A) LENGTH: 6261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GAAAAACTTT TTTACATCAT ATCTGCATGT GCATAATCGA TATCGGTAAA TTTATTATAT TGTTTCATAA AATGTAACTT AACTGTGCCT GTTGGACCGT TACGTTGCTT AGCAATGATA ATTTCAATTT CACCGTTTTC ATCATTCGTT TGTGGCTCGA AACCACCATC ATCGTCATCA TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTAAT TCACGGGCT AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT GGACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC GTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT GGATACCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATGCCTTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCTGTTC ACGAGAAGAT 1080 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080							
TGTTTCATAA AATGTAACTT AACTGTGCCT GTTGGACCGT TACGTTGCTT AGCAATGATA ATTTCAATTT CACCGTTTTC ATCATTCGTT TGTGGCTCGA AACCACCATC ATCGTCATCA 240 TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA 300 TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT 361 TGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTTAA TTCACGGGCT AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT 480 GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGGAAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT 900 CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AACGTCATCA 1080	 CAACCCGTTC	AGAACAAAAT	AAAAACCGTA	CAATTTTATC	ATCTTAATGA	TTATTGTACG	60
ATTTCAATTT CACCGTTTC ATCATTCGTT TGTGGCTCGA AACCACCATC ATCGTCATCA TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT ATGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTTAA TTCACGGGCT AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACA CAGCTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT GGATACCTT TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAGAT 1086 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTGTTC AAGGTCATCA 1086 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGGTCATCA 1086	GAAAAACTTT	TTTACATCAT	ATCTGCATGT	GCATAATCGA	TATCGGTAAA	TTTATTATAT	120
TCTTCATCGC CGCCACGGTT ATAGTAATCA TCACGGTATA AGAATGCAAC GATATCGGCA 3000000000000000000000000000000000000	TGTTTCATAA	AATGTAACTT	AACTGTGCCT	GTTGGACCGT	TACGTTGCTT	AGCAATGATA	180
TCTTGCTCAA TCGAACCAGA TTCACGAATA TCACTCATCA TTGGACGTTT ATCTTGTCGT TGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTTAA TTCACGGGCT AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGGTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1026 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1086	ATTTCAATTT	CACCGTTTTC	ATCATTCGTT	TGTGGCTCGA	AACCACCATC	ATCGTCATCA	240
TGTTCAACAC CACGAGATAA CTGACTTAAT GCGATAACTG GACATTTAA TTCACGGGCT AATGCTTTTA ATGTACGAGA GATTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGGTTCATCA 1080	TCTTCATCGC	CGCCACGGTT	ATAGTAATCA	TCACGGTATA	AGAATGCAAC	GATATCGGCA	300
AATGCTTTTA ATGTACGAGA GATTTCAGAA ACTTCCTGTT GTCTGTTATC GGACGCACGT GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	TCTTGCTCAA	TCGAACCAGA	TTCACGAATA	TCACTCATCA	TTGGACGTTT	ATCTTGTCGT	360
GAACCACTAC CTTGAATCAA CTGTAAGTAG TCAATCACAA TCATGTCTAA GCCATGTTCT TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	TGTTCAACAC	CACGAGATAA	CTGACTTAAT	GCGATAACTG	GACATTTTAA	TTCACGGGCT	420
TGCTTTAATC GACGACATTT AGAACGTAAA TCATTAATTC GAATACCCGG TGTATCATCA ATAAÂAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1020 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	AATGCTTTTA	ATGTACGAGA	GATTTCAGAA	ACTTCCTGTT	GTCTGTTATC	GGACGCACGT	480
ATAAAAATCT TCGTACGTGA TAATTTACCT ACCGCTATAG TAAAACGACT CCAATCTTCC 666 TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA 726 CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT 786 TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA 846 CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT 906 CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT 966 TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 1026 GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1086	GAACCACTAC	CTTGAATCAA	CTGTAAGTAG	TCAATCACAA	TCATGTCTAA	GCCATGTTCT	540
TCAGTCATAG TACCCGTTCT TAAGCGGTTT GAGTCAACAT TTCCAGAACT ACAAATCATA CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	TGCTTTAATC	GACGACATTT	AGAACGTAAA	TCATTAATTC	GAATACCCGG	TGTATCATCA	600
CGTGTGGCTA ACTGATCAGC ACCCATCTCT AGCGAGAAAA TACCAACTGT ATACATATCT TCATGCGTTG CAACTTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	ATAAAAATCT	TCGTACGTGA	TAATTTACCT	ACCGCTATAG	TAAAACGACT	CCAATCTTCC	660
TCATGCGTTG CAACTTTTG TGCAATATTA AGTGCGAACG CAGTCTTACC TACAGATGGA 84 CCGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT 90 CCGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT 96 CCACTACTTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT 102 CGATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 108 CCACTACTTA AAATTCGACG TTCTGCATCA CTTAAAAATCG CATCTAGTTC AAGTTCATCA 108 CCACTAGTTC AAGTTCATCA	TCAGTCATAG	TACCCGTTCT	TAAGCGGTTT	GAGTCAACAT	TTCCAGAACT	ACAAATCATA	720-
CGCGCTGCAA GGATAATTAA ATCATTTCGG TTGAACCCTG CTGTCATTTG GTCTAAATCT CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	CGTGTGGCTA	ACTGATCAGC	ACCCATCTCT	AGCGAGAAAA	TACCAACTGT	ATACATATCT	780
CGATATCCTG TAGGTATACC TGGTGTTTGA CCACTATTTT GATCAAGCTC TTCAGCTGTT 960 TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	TCATGCGTTG	CAACTTTTTG	TGCAATATTA	AGTGCGAACG	CAGTCTTACC	TACAGATGGA	840
TCATACACTT GTCCTAAGAC GTCTCGAATG TCTTTAAAGC CATCGCTTTC ACGAGAAGAT GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	CGCGCTGCAA	GGATAATTAA	ATCATTTCGG	TTGAACCCTG	CTGTCATTTG	GTCTAAATCT	900
GATAGCTCTA AAATTCGACG TTCTGCATCA CTTAAAATCG CATCTAGTTC AAGTTCATCA 1080	CGATATCCTG	TAGGTATACC	TGGTGTTTGA	CCACTATTTT	GATCAAGCTC	TTCAGCTGTT	960
	TCATACACTT	GTCCTAAGAC	GTCTCGAATG	TCTTTAAAGC	CATCGCTTTC	ACGAGAAGAT	1020
TTATATCCAT CATTGGCAAT ACTATCTGCA GTTTGAATCA ATCTACGTTT TAATGCATGC 114	GATAGCTCTA	AAATTCGACG	TTCTGCATCA	CTTAAAATCG	CATCTAGTTC	AAGTTCATCA	1080
	TTATATCCAT	CATTGGCAAT	ACTATCTGCA	GTTTGAATCA	ATCTACGTTT	TAATGCATGC	1140

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	1320
5	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTITATIGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGATACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
25	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
.5	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
80	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
15	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
10	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
10	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
15	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGCACGTT	TATCTCCCAT	CATAATCACT	ですごすこれ ここごす	CTCCNACCAT	እጥር ጥጥጥጥ እ እ ር	2040

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
5	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
70	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
	GTAATCTCAT	CGTAGTTATC	TAAAAATAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
15	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC.	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
45	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
45	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTNATCTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	ΔΔΩΩΤΤΩΤΔ	יויים שייויים שליצויים	ССТАТАТАТОС	АТАССТССТА	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	498
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	.5040
40	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
10	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	ATTTTTAAAA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTnATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
45	GGTTGCTGAA	GTATCACAGG	G				6261

,

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1222 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

magazi kan di sang

- (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

ATGCGATTAA CTCTGGAAAT ATCTTTTCCA TATTTACGTn TTAAATTATT CAGCAAATTC 60 5 ATACGAGATT CATACTCGTT YAACACTTGT TCGTCGAATT CTGTATTAGC CATTTCATCA 120 TATAACTCAT GTTTTGCATC TTCTAAAATG TAGTAAAATT GATCAATATC TTCTTTTAAT 180 TTGTCATATT TGTTTGGAAC TATATCGTTT ATTGTTAACA AATGGTTGCT TAGTTCATAT 240 10 AAACGATCAG TGATAGCATT TTCATCCGTT AATGTCATAT ATGCGTTATT AAGCGCTAAG 300 CTTAATTTT CAGAGTTTTG AATGCGTTTA ATATCTATTT CAAGTTGCTC TATTTCGCCT 360 TCTTTTAGAT GTGCTTCAGA CAATTCTTCT AATTGGAATT TCATTAAATC TAAACGCTGT 420 15 AGCAATGCTT GGTCTGCTGA TTCTAAATCT TCTAACTCTT GCTTTTTGGC TTTATAATTT 480 TGAAAAGTTT GGTGATATTT ATCCAACAAA TCTTGATAAC GTGATTCTGC GTAATTATCC 540 AATAATGTTA AATGGTATTT TTGTTTCAAC AAAGACTGCG TTTCATGTTG GCCATGAATA 600 20 TCTAATAATT CTTGCATAAC TTTTCGTAAA TCTTGTAAAG TAACTGTTTG ATTATTAATT 660 TTACAAAGAC TTTTACCAGA GCTGAAAATT TCCCGTTTAA CTAATAAAAA ATCTTCATCT 720 25 ACATCAATAT CCATATTTTT CAATATATGT ATAGCATCTT TACTCTCGTC AATATCAAAT 780 ATACCTTCGA TGACAGCCTT TTTTTCACCA TGTCTTACAA AATCAGATGA AGCTCTCATT 840 CCAATTAATT GTCCAATTGC ATCTATAATA ATTGACTTAC CTGAACCCGT TTCACCACTT 900 30 AAAACAGTTA AACCATCAGA AAATTGAATT TCTAATTCTT CAATAATAGC AAATTGCTTG 960 ATTGATAAGG TTTGTAACAT AAACTCATCG CATCCTTATA ACAAATTGAA AATTCTTGAC 1020

TTGATTTCAT CACTTGCCTC TTTGCTTCGA CAAATAATTA AACAAGTATC ATCACCACAA

ATTGTGCCTA GTACTTCTTC CCAATTGATT TGGTCTAATA TAGCTCCAAT AGATTGTGCA

TTACCAGGTA TGTTTTTAGA ACAAGTAAAT TATCAGTACC ATCTATATTA ACAAAGGAAT

1080

1140

1200 1222

(2) INFORMATION FOR SEQ ID NO: 14:

CCATTAAATA ACGTCCCAAT TT

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTTGTTATTA TTACHTHAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

	TTCTTTTGGC	ACGACATAAT	TGTCTTTATC	TTGAACTAAA	TATCCGCCAG	ATACTGAAAC	180
	AAACTCTTCT	TCGTTACTGT	CTATAGTCAT	ATCAATTTCT	AATAATCTTA	CATTCTTCTT	240
5	TTGTTTTAAA	ATATCTAATG	CTTCATCTGT	AAATTTTGGT	GCAATAATGA	CTTCCAAAAA	300
	GATACTATGC	AATTGCTCTG	CTAACTCAGG	TGTTACAGCT	CGGTTTAATG	CAACAATTCC	360
10	ACCAAATATT	GATTGACTAT	CCGCTTCATA	CGCATGTTGA	AATGCTTGTT	CTATCGTGTC	420
	ACCGATACCA	ACACCACATG	GATTCATGTG	TTTAACCGCA	ACTGTAGCAG	GTGTATCAAA	480
	CTTTTTAACT	AAAGCTAGTG	TAGCATCTGC	ATCTTTAATA	TTGTTATAGC	TTAATTGTTT	540
15	CCCATGTAAT	TGTTTAGCGC	CTGCAATCGT	GTGCTTAGCA	TTCGAAGTTC	TCACAAAATA	600
	CGCTGATTGT	TGTGGATTTT	CTCCATATCT	TAAAGTTTCT	TTATCCCCTT	TAAAGAAACG	660
	TACAATCGCT	TCATCATATT	CTGCAGTATG	CTCAAAAACT	TTAATCATTA	ATGATTGTCT	720
20	ATATGACTCA	TCTAACGAAT	CGTTTCTTAA	TCGCGTCAAT	ACTICTIGAT	AATCTGCCGG	780
	ATGTACAATT	GTTGTTACAT	GTTTATAGTT	TTTAGCTGCA	GCACGTAACA	TTGTTGGACC	840
	ACCAATATCA	ATATTTTCAA	TTGCTTCGTC	CATCGTCACA	TCAGGGTTTG	CAACAGTTTG	900
25	TTGGAATGGA	AATTAAATTAA	CTACTACCAT	ATCAATTAAA	TCTATATGTT	GTTCTGATAA	960
	TTCATTTAAA	TGCTGCGGTT	TATTTCGATC	AGCTAAAATG	CCACCATGAA	CAGCCGGATG	1020
30	T						1021

12

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3759 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TCATTCACTC CTAAATTGTT ATTACACTAT TACACATAGC TAATCATCAA TGTGAAATCA 60

CCTTCAAAGA CACTATCCAA ATCTTCAGAA GTCAAAATAA AGTTTGTACC AGTAGTCAGT 120

TTGAAAATTT CACCATCGAC AATCATTTGC CCTTCGCCTT CCAACACTGT AACTAAACAG 180

AACTCTCTAG GCTTCATATA ATTTAACGTG CCAGAAATTT CCCATTTAAC CAATGTAAAG 240

AAATCATTCG ATACAATGTG TGTACACTTA TGGTTTTCAA TAATTTCGCT TTCAGGCAAA 300

ATATTAGGTA ATGGTGCATT GTACTGAATA ACGTCTAAAG CTTTTTCAAT ATTTAACGGT 360

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC 420

55

35

45

	ATAAAA taga	ATTCYCCAGG	KTTTAC tTTA	AtatATCyAA	gTAtCGaCtC	tATCGTTCCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
10	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
70	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	TATTTAAAAA	AGCATAGAGA	TTATATCTCT	1200
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAAACAA	1260
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA.	AGTAACCCGC	1380
<i>30</i>	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	1800
			TTATCTGCAC				1860
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	1920
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	1980
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	2040
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	2100
	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	2160
	ACTACTGGGA	ACGTATTAAA	TTAATATATG	AACAAATATT	CATATGAAAG	GATTGTCATA	2220

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTTATCAG	TCAGCGAAgC	2340
_	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
0	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
5	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TITATTTATG	2760
	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CITTITGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
o	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
5	CCATTACTGC	AGCTAKTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
o	ACATTTTAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
5	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCACATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
o	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TITGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTT	3720
5	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	60
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTŁACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTc	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTcCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
35	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
35	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTGAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	AACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ттаатааааа	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CCDAAAAACA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	agtaaatgaa	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	Aataaattaa	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
٠	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
35	TÄÄCAGÄACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
w	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
40	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCKT	3060
	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
					TCAAGCGATT		3180
45	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	AGAAATGAGA	GATTTAGGAA	3420
	ATACTTTAAT	TGTAGTTGAA	CACGATGATG	ATACAATGCG	TGCGGCTGAT	ТАСТТАСТСС	3480

	AGGTAATGAA	AGATAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AAAAAATTAA	тааатстааа	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGGCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
	AAgcTTGTAA	AGGTGACGGT	AAAATTATTA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaaCTTG	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTT A G	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÄATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
40	GGGACAGAAA	TGATAAAGAA	TÇACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGAAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
45	GAATTTCTIT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	ТААААТААТА	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	TTATATTTTT	GATATGATAA	GAAGAGATGT	5280

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10 -	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
,,	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	AAATATTAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	AGTGAAATTA	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
40	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
45	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAATT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	CCAACAAAAA	7080

•	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	ATATATATAA	ACAACTTTTA	7260
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	TATATAAAAA	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTITGAAAA	agtgttagaa	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA.	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACgGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
35	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
3 3	ATTTATAAAA	AAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
40	ATATAAAAA	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
45	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	22200000000	NTCOTTCCNT	CCATTONATOR	N.C.COCCA N.COCC	3 m 3 3 mm a ama	>>>>>	

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	9180
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
10	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
15	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
10	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	aatgataaaa	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
30	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
1 5	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
50	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCAACTCGC	ATTGCCTGTA	GAATTTCTTT	TCGAAATTCT	CTGTGTTGGG	GCCCACACCC	10680

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10980
	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
,,	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTT AG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
35	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
45	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AATTTTAAAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	АТАТТССТАА	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	GCTTTAAGGG	AAGCAGATTT	AATCGTTCTT	12480

	GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
	GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
5	CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAA	12720
	TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAGC	12780
	ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
10	AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
	CCTTTCGTAC	CAAGTGATAA	ACGTNAATAA	TATAGAACGT	AATCATATTA	TGATATGATA	12960
15	ATAGAGCTGT	GAAAAAAATG	AAnatagaca	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
	AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	aaaaatgaat	TAACTAGAAT	13080
	AGACGT						13086

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1350 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

60	TTATTTTAGC	CACCGGCCTT	TCTGTGAAAT	GACAACTTCA	GAAAATAGCC	CATTAGTCAT
120	TCTTTTTACA	GAGAAAGTGA	TGATCATACA	CGATTTTAAT	TCTGATTTTA	TAACTTTATT
180	AATGTTTTCT	AATAAGACAA	ATTTGATGAA	TATATTGGAC	ACTCATGATC	ATTTCTAAAA
240	TAATTCGCCT	TCCAAATCGC	TCTTCTTTAA	GAATGAATCA	CTTGTTTTGG	GTTAGCTTCT
300	AGTATTCCTT	AAAAGCTCAT	ATATATTCGT	AAATGTTTGT	TATCATCTTT	aatgētgttt
360	AATTAAATGT	AAGAAAACAC	GAAAGCTTTC	ATCCTACCAC	ACTTATATAA	CTCTCAATTT
420	AGGTCAATTA	TCTGCCAATT	TCTTTTAATG	GGTTGTGCAC	AACTTTTTAA	CTATTTAGTG
480	CGTTTTTGAA	ACTCACACAC	CAGTTCATAT	ACTCTATTTT	TGTACAATTA	ATCATCACAA
540	TACAATAGAT	CTGGCACCAA	GCAAAAAAGC	TAGATAAAAC	ACTTCTCATT	CAACACATTA
600	CGATTGCACC	GGTTTTACTT	TTTAGCGTAT	TATAAATTTA	GAGTCTACTA	GCCAGACTAA
660	CTAAAGGCTT	TATTGTGGCT	ATAATCAATA	CATGCTTATA	TCATGAACAC	TTCATTTTCA
720	CGTGTATATT	AAAACAGGTG	AGCTAACATT	CTGCTTTTTC	ATAATGTCTG	TCTGCCACGT
780	CCATACCGTG	CGTAAATTTT	ATCAACTACA	TAGCTGATGC	GTACGTGGCA	GCCATTTGTC

ACTACAAGAT	GGGTGTAATG	CTGTTTCACC	ATCTCTACGA	ACCCAATCAA	GAATTTCTTC	900
GTCTGTTTGC	ACTTCTGGTC	CTGGTGAAAT	TTCTCCACCA	TTGAATGGAT	CCATTGCTTT	960
TTGAGATAAG	ATATTTCTTG	CTACACGAAT	TGCTTCTACC	CATTCTTTTT	TATCTTCTTC	1020
TGTTGATAAA	TAATTAAAGC	GGATACTTGG	TTTTTCGAAT	GGATCTTTAG	ATTTGATTTT	1080
CAAGCTACCA	CGAGAGTTTG	AATACATTGG	TCCTACGTGA	ACTTGATAAC	CATGTGCGAC	1140
CGCTGCCTTT	TGACCATCAT	ATCTTACAGC	TATTGGTAAG	AAATGGAACA	TTAAGTTAGG	1200
ATAAtCAACT	TCGTTATTTG	AACGTACAAA	TCCGCCACCT	TCAAAATGGT	TAGATGCTGC	1260
TGCACCTGTA	CGTGTGAAAA	TCCATTGTAA	ACCAATAAAT	GGCATGCGCT	TGALATCTAA	1320
GCTTGGCtGt	AATGATACAG	GTTCCTTACA				1350

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1376 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

25

30

35

40

45

50

5

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TRATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TCCTAAACCG ACTATAGATT 60 CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA 120 AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA 240 TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG 300 AYGCTTTCAT TCCTAATAAA GGCGCTAATT TCATTGGTGA TAATACAACT GTAACTAAAA 360 AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG 420 CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA 480 AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA 540 TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA 600 AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA 660 TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA 720 TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC 780 TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA 840

AAAGACCGTG	AATCTTAGTA	GGACCAACAT	AAGCAACAGG	TAATATTGGT	GACTTACTTA	960
ACATTGCAAT	TGTTGAAGCA	CCaCGTTTCA	AAGGTGCACC	TTCTTGCGAT	GTGCGAGAAC	. 1020
CTGTTGGGAA	GATACCAACT	GTCTTATTAT	CTTTCAACAA	ATTGATTGGG	CGTTTTAAAG	1080
TACTAGGTCC	TGGATTTTCA	CGATCTACAG	GAAATGCATT	TAAAGACGTT	AAAAATTTAC	1140
CAATCCATTT	ATTTTTGAAT	AATTCTTTTT	TAGCCATATA	ATGAATTTGA	TTAGGATATA	1200
ATGCCATACC	TAGCATAATG	ACTTCGTTAT	AACTTTCATG	CGTACAAGTT	ACGACATATT	1260
TACTATCCTT	AGGAATATTA	TCTTTACCGA	TTACGTATAA	TGATTTTGAC	ATTTTAACTA	1320
AAATGAAATT	CAAAATCTTA	CTAATCACTG	AATACATTGT	GCCACCTACT	TAACTT	1376
(2) INFORMA	TION FOR SE	O ID NO: 19):		•	

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7363 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TTGI	CATACC	AATATTTTGT	AAAATATGGA	ACACAAGTAA	AGTGACGAAA	CCAACGATAA	60
AGAT	TTTGTT	AAATTGATCT	TCAATTTTCG	CAGCTAATCT	TATTAGATGG	AAGATTAAAA	120
ATAA	TATAAA	TAAGATCAAT	ATGACAGAAC	CGATAAAGCC	AAGTTCCTCT	CCAATCACTG	180
KAAA	AGATAAA	GTCAGTATGA	TTTTCAGGTA	TATAAACTTC	ACCGTGATTG	TATCCTTTAC	240
CTAG	STAACTG	TCCAGAACCG	ATAGCTTTAA	GTGATTCAGT	TAAATGaTAG	CCATCACCAC	300
TACI	TATATGT	ATAGGGGTCA	AGCCATGAAT	TGATTCGTCC	CATTTGATAC	AGTTGGaCAC	360
CTAA	TAAATT	TTCAATTAAT	GCGGGTGCAT	ATAGAATACC	TAAAATGACT	GTCATTGCAC	420
CAAC	TAATACC	TGTAATAAAG	ATAGGTGCTA	AGATACGCCA	TGTTATACCA	CTTACTAACA	480
TCAC	ACCTGC	AATAATAGCA	GCTAATACTA	ATGTAGTTCC	TAGGTCATTT	TGCAGTAATA	540
TTAA	AATACT	TGGTACTAAC	GAGACACCAA	TAATTTTGAA	AAATAATAAC	AAATCACTTT	600
GGAA	TGATTT	ATTGAATGTG	AATTGATTAT	GTCTAGAAAC	GACACGCGCT	AATGCTAAAA	660
TTAA	TAATAA	TTTCATGAAT	TCAGATGGCT	GAATACTGAT	AGGGCCAAAC	GTGTACCAAC	720
TTTT	GGCACC	ATTGATAATA	GGTGTAATAG	GTGACTCAGG	AATAACGAGC	AAGCCTATTA	780
ATAA	TAGACA	GATTAAGAAA	TACAATAAAT	ATGTATAATG	TTTAATCTTT	TTAGGTGAAA	840
ТААА	CATGAT	GATACCTGCA	AAAATTGCAC	СТВАВАТСТВ	ттааааатт	татетартье	900

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTTTAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
10	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
10 .	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
15	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
-	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
20	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	atgtaggaaa	TGGTGTATTG	TCAGCTGCAA	1740
25	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
30	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
35	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
35	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAÃGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
40	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
45	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
50	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
	TOCOCOTOOT	ጥጥጥልጥር <u>ል</u> ል	GAGGGACACC	татасатсал	አ አጥርጥ አ አርርርር	CCCTATTAT .	2700

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
10	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TTGTTCTGTT	GATGATAGAG	ATACTACAGG	3240
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	3360
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	3420
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	3480
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	3540
25	AGAATTAGGT	GAAAATAGCA	aagaaatgca	TATCGGTGTA	GGTAATTATT	TAGAAGAAAA	3600
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3660
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	agttaaagga	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	СТТАТААААА	3840
35	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
55	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTACĀCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
40	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
	ATACGTATTT	TATAAAAAAT	TTTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
45	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	TAATTATAA	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	AATTGATATC	CTTGGGCAAG	CTCAAACCGG	TACAGGTAAA	ACAGGAGCAT	TCGGTATTCC	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
10	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
70	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTtAGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCAAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAy.	TcGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
3 0	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC"	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
35	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
-	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
10	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aaagtactaa	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
15	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	ATTAAATTTA	AGAATAATCG	6060
	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	АТААААААСА	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	ТАААТААТАА	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
	m	amaas momes	mares > ms > ms	maramana a	~~~~		

	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	642
_	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	648
5	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	654
	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	660
10	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	666
	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	672
	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	678
15	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
20	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
	CTAAATATAA	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
25	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAtAAAgCT	TGTAAAATCA	7260
20	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
30	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363

(2) INFORMATION FOR SEQ ID NO: 20:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10470 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG	ATAACCACAA	TACTTCTATT	GTAATTGTTT	AACGATTTCn	CGATTAAAAT	60
CATCTAAATC	GTCTGGTACT	CGACTTGTTA	CAATATTGTT	GTCTACAcTa	CTGACTCATC	120
AACTACATGT	GCGCCTGCAT	TTGATAAATC	TTTGCGTACA	TTTAATACTG	CTGTTAACGT	180
ACGACCTTTT	AAATCGTCTG	TATCTATTAG	TATTTGTGGC	CCATGACAAA	TGGCAAATGT	240
TGGTACATCA	TTTTTAGTAA	AGTATTTAGC	AAATGTGCCA	TATCGACCTT	CTGTATCTCC	300
ACCTA A ATCA	TCTCCTCAAA	ATCCTCCAGG	ייממייממייים מ ייממיים מיייים מ	ССТСТТАТА	المناسات الم	360

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	720
10	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
15	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	СТТТТААААА	TCCCCTTTTC	960
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	Tatcataccg	1020
20	ATATGAACCA	aatagaaaga	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
30	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
35	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTIGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
40	CATÂTTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
45	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	ACACATAATT	TGTAAGTCAT	CAACTAACCT	ACAAATATAA	TTATACTAAA	CAAATGTTTA	2160

	GTTATCTACA	TITAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGACATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
10	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
10	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
25	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
35	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
-	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TTGTTCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTÁAAGTT.	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3660
15	TCCAAACAAA	ACTTTCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	3720
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	3780
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	3840
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	3900
			mammama	• mmmaa. aa-		m com common	2066

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	408
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	414
5 .	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	420
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	426
	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	432
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	438
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	444
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	450
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	456
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	462
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	468
	TTAAATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	474
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATTAAATTA	TCCGCTTGTT	4800
?5	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTITIGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTTC	AACTTCTTGC	AATTTATTTT	5100
	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
10	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTITCATIC	TTTTCGATGT	5340
	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
15	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	5700

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
70	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	AAAATAAATT	CATTTTTACT	6900
35	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
,5	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
10	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	TATATAAATA	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TITTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
15	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTAAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	3 3 3 3 M O M M M M M M M M M M M M M M	CONTROL NO	mma mamma a a	NECESTRA COM	CONTRA NOTICE	» mmmmma» aa	3560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	ТСААААТААА	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
0	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
5	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
•	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
0	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTCT	CCAGTGATTA .	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	aaagttttaa	TGTCTTTAAA	agttggataa	ATCATCTTCA	8400
5	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
٠	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
0	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
5	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
0	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
•	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
5	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
0	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	TGTTGCATAG	TAATTACCAG	CAGTTAAATA	TCCCAAATCG	CCTTGCGCAT	TATTTAAGTT	9360

	GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
	AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
5	TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
	ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
10	GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
10	CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
	TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
15	TTTAGACTTT	TGCCAATTCG	TIGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
	TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
	TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA.	GTAATAGCTT	GTATAGCTTC	10020
20	GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
	TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
	GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
25	TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
	TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTAAAAATTT	CATTCGGTAT	10320
	CACATÁCTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
30	GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnacgata	GATGTTTTAA	CATGTTCAGA	10440
	ACTTATAGAT	AAGGGTCTGT	TATRCTTAGT				10470

(2) INFORMATION FOR SEQ ID NO: 21:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3647 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT 60 CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA 120 AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA 180 AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT 240 TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT 300

	TCAAATTGTA	ACAACTAATO	CTATTGCAGG	TACGATTCA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACITAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATI	GCGAATTTAT	TACCAACAGG	660
10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
. •	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
00	AATTTTCCAG	aagaattgaa	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
_	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	AAGGATGAAA	ACCATGACAT	1500
15	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA:	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATAAATTAAA	TGAATTACTT	AGTTCCTATT	1620
0	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGcGTAA	1800
5	AAGTTATAAA	ACATGGLAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGtTAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnaaag	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
o	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	א כיידיים א כיכידיא	TCDDDTCCTD	CC CCTCTTTTTC	ATCCTACAAA	COUNTRACTOR	amma ama a a a	

	AAGCAACACT	ATCTGGTGAT	AATTIGATAT	ATGAATTGAC	TGAAGATGGA	GAAATCAAAA	2220
	ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
5	GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
	CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
	TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
10	TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
	TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
15	GTGAAGATTC	AGAATAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
	ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
	TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
20	GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
	CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
	GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
25	TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
	TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
	CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
30	TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
	GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
•	TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
35	CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
	ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
40	TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
	ACGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
	TTATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
45	ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CcAcCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACATCGAT	AATATATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
10	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GacGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
-	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TnACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kttgcaccaa	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGTACAT	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAAACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
5.	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
40	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTÄTC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
_	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1980
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
.0	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
10	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
5	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	AAAATAATTA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
0	CTATĂATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
.0	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
5	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
0	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	Δαααασητ	ተ ሞል ርርተምጥርር	СВССВТВТТС	מביידע מידיעם	V Calab Calababahaha	TATCCCCACC	2400

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
_	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTIGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	Caatttacaa	TTATATTAA	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
20	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC.	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTAAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	GAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
40	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
40	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTITGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

GTGTTAAACT	AGGAATAAAT	TTATATTAA	GTGTGTTGTG	TGGGGTGACT	AATATGAATG	5400
ATATGGATAA	TTCCTTTTTA	ATAACAACGG	AAATTCAAAG	AAAATGGATT	GAAAAATTCA	5460
AAGTAATTAG	AGATACATTT	AAGGCTAAAG	CTGAATATAA	TGATCAACAT	AGCCAATTTC	5520
CATATAAAAA	TATTGAATGG	TTAATTAAAG	AAGGTTATGG	AAAATTAACG	TTACCAAAAG	5580
CATATGGTGG	TGAAGGTGCG	ACCATAGAAG	ACATGGTTAT	TTTGCAATCA	TTTTTAGGCG	5640
AACTTGATGG	TGCCACAGCA	TTATCTATTG	GTTGGCATGT	GAGTGTCGTA	GGACAAATTT	5700
ATGAACAGAA	ATTATGGTCT	CAAGATATGT	TGGAGCAATT	TGCTGTTGAA	ATTAATAATG	5760
GTGCATTAGT	TAATAGAGCA	GTTAGTGAAG	CTGAAATGGG	TAGTCCAACA	AGAGGGGGAA	5820
GACCAAGTAC	ACATGCTGTT	AAAGCTGATG	ATGGGTATAT	TTTAAATGGT	GTGAAGACAT	5880
ATACATCAAT	GAGTAAAGCA	CTAACACATA	TTATTGTTGC	TGCTTATATA	GAAGAATTAG	5940
AAAGTGTTGG	TTTTTTTTTA	GTAGAC				5966

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17310 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CTGTGTCATC	GCGAAATAGT	TAGGGTCATT	CATTAATCCT	TTTGAACGTA	TTTCATCAAA	60
ATATAACAAT	TTCATTAGTA	AAGGGGACTT	GTTCAAACCA	GCTATAATAC	AAAATAGACC	120
TATAGTCACA	CTGCTTATAA	TATAAGAGGT	AACGATCACT	TTTTTGCTAT	TACCTAACTT	180
AAAGATGATC	ATCCCTAAAT	AGAAATAAAT	GACTACAAAT	GCATATTTAA	CTGTAGATGC	240
AAGAACTTCC	TTAACCGTAA	ТАААТАТСАА	ATCATCAAAA	AATaGCaAAC	AArGCGTAAT	300
AATCATACGA	TATGTATACA	AAATAATGA m	AAACTGTmAA	AAATGATTTG	CCTTTAATAA	360
ATGGTTAGCG	AAAAACAGTA	AATAAACTAA	TATTAGTAAT	GTGATAAAGT	CAGCTATAGA	420
AACATTCACA	CCGGCAATAA	CCGAAGATTG	CTGAATAAAA	ACCGCTAAAC	CGATAAGTAA	480
CAATGTTAGT	AATTTACTAT	TGTGTTGATT	TTCCATTATA	AACGTCTTCC	ACTTCTTTAA	540
TCATTTTCTC	CTCAGTAAAA	CATTCTAAAT	AACGTTTTCT	AGATTGATTA	CTCATTTTGA	600
TGTAATCACT	GTCTATTAAA	TATTTTTCCA	GGACTTTAGC	AATAGTTTCG	GGTTGGTTGT	660
TCATCATACA	TATACCATTA	TCAGCTACTA	ATTCTGAAAT	ACCGCCAACA	TGACTGGCTA	720

ور د معر

	TTATTAAAAT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
0	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
•	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
5	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	TAACTAAATA	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTtCGCAATT	CGTCcGACCG	1380
0	TECCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
5	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
5	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	TTTTAATTTT	CAACTGTTAC	AAACCCCTTT	1680
o ·	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
5	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	TIGTIGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
0	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
5	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
-	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
60	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AAAATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTACTTTC	שריים איייים	тттсатассс	АТААСССТТА	ТТАТТАТССА	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
_	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
o	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	AAAAAATTTA	ACAACCGCTG	3000
5	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
0	TAATGATITC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
5	ATGTCTTCAT	GATTIGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
5	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
o	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	АТСАТААААА	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	ATTTATTTT	AAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
5	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTTTCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCETTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
0	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
5	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
o	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACGTTCAC	GCCATATACT	GTTTTAAACT	GTTCTTCAGT	4320

3.

285

	GCCAAATTGC	GCGGCAGTTT	GTCTTAcTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
ε	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
10	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
25	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	aaatatagaa	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
35	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	CCAATATTAA	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
50	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	TTAAAATTTA	5940
	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	624
5	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
10	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
5	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
	GCAŢĀGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
0	TCAGACCATG	CCTTTGCTTT	AATAAAATTT	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCC	7560
5	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
o	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
0	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
5	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
0	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC.	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
ne.	TCTCATCATT	AATCGCCACG.	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
5	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
ю	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
5	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	AAATAATTAT	GAAAAATGCA	9120
5 0 5 0	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
o	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
	TGCtCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
5	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
50	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ል ተልጥርጥጥርጥጥ	CCTCTATCTC	СПТТВВССВВ	ጥርርርጥልልጥጥጥ	GCGCTGCATT	ጥጥ ር እ እ ጥጥር ጥ እ	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
_	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTTTATC	TTTGTCGATA	10080
0	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
5	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGAÇAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
0	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
5	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
o	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGCAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
5	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
0	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
5	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
o	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
	ATGAÄATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
5	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
_	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
25	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	ааатаааста	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	.ATGGCAGCGC	12480
	CACTAAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT.	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
8 5 .	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT.	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
10	AAGCAAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
15	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CTATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ataaaatgtg	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
20	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTITC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG .	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	СТТТТТТСТТ	TAGCTAATGG	ATGAAATGGA	14880
•	CGATCTTTTA .	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
<i>EE</i>	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
<i>55</i>							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
_	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TIGTIGTIGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	agtaatatga	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	TTTAATTAAA	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCCGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTŢŢĊŢĀĀĊ	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
70	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

2

TACATTGGCA	CCATAACTTT	TAATAATTTT	CAAATTTGTT	GGTGATATTT	TAGGATCAAC	17040
AACACACGTG	AGTTTTAATC	CCTTGATTTT	AGCTATCATT	GCCAACGCAA	TGCCTAAATT	17100
ACCAGAAGTA	CTTTCAATTA	AATGTGTATT	CTCAGTGATT	AAACCATGTT	TAATACCATG	17160
TTCAATGATG	TACTTGGCAG	GTCGATCTTT	CATGCTGCCT	CCAGGATTCA	TATACTCTAA	17220
CTTTGCAAAC	ACTTCATGTT	TCGGAAATAG	TTGATGAAGT	TGAACCATAG	GTGTTTGCCC	17280
TACAGAATCT	AACAATGAAT	CGTGCACATG				17310
(a) THEODYS	MION BOD OF	0 TD NO 04				

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5423 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATACTAGTAA	GCGCATCGGT	TATTGACATC	GAATTCAACT	TTAACAGTTT	TCATGTTCGG	60
 TGATGTTTCa	ATAGAATGTG	TGTGTTGTAC	TTGCGCATTT	ATATTTCCAC	CTAAATTACT	120
TAAGTTTCCT	GTAATACTAG	AAATGTCAGG	TGCGTTTAAT	GTAGGTTGAA	ATGCATCAAC	180
TACTTTATCT	GCAACATTAG	AAACATTACG	GATAACTTTA	CTTGAATGAT	TATCTATACC	240
TTTAACGAAA	CCTAACATTG	AATACATACC	AACATCCATG	AATTCACGTG	AAGGTGAGTG	300
AATACCTAGC	GCTCTTTTGG	CTGCATTTAA	AGCACCTTTT	GCTACACTAG	CTGCTTTTTC	360
AGCTAAGTCT	CTAGCCATAT	TACCAATACC	TCTCATCAAA	CCACGGATCA	TATCAGCACC	420
TGCTGATACA	AAGTCATCCA	CAAAGCTTTT	AACTTTATTT	ACTGCATTTG	TCATACCTTG	480
ACTAACTTTG	TTTACAACAT	TAACGAATCC	TTGAACAACT	CTATTAACAA	rGTTAATTAG	540
CGTACtTGTt	ATAGTAGATA	CCCaTnGCAT	ACCTTTAGTG	ACMATGAAGT	TCCAAGCTTG	600
AGACATTTTG	TCTGATATAG	TTGAAACAAC	TTGTGTGAAT	ATGCTTACAA	CTTTATTCCA	. 660
AATTGTCGTT	AATATACCAG	ATAAGAAACT	CCAAATCGTA	TTCCATATAT	TAGAAATAAA	720
ACTCCATGCC	GCTTGTAACG	CAGTAGATAT	AGCTGTAGTG	ATAGCGTTCC	AAACCTTAGT	780
TGCCACAGTA	ACTATAGTGT	TCCACAACGT	TTGTAAGAAC	GTCCAAATAG	CGTTCCAAAT	840
TGTTATTGCG	ATAGTCATAA	TTGTGGTAAA	CACTGTAGTT	ATTACAGTGA	CTAACAAATT	900
CCAAATCGTA	GTAGCGATTG	TAATTATCGT	ATTCCAGATT	GTACTTAAGA	ACGTCCAAAT	960
AGCTGTCCAT	ATCGTCATAA	CTATTGTCAT	TATCGTCGTG	AAAACAGTTG	TAATGATTGT	1020

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
_	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
5	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATT	2220
•	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
40	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
	TTGATTTTGC	TATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
45	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540.
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
25	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
: 5	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
10	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
5	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTŦGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
· ·	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	mArGCTTAAC	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
5	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
0	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	THE CAMPACA AM	n account moma	C	THE STATE OF THE S	TOTO C 3 8 3 3 T	CCTCLCCLTL	4630

	GTCCATTGTA	TCCTCTGTAT	CTGTATCAGC	TTCATGTGAT	AAGCCGTATT	CAGTTAAAAA	4740
	AAGCATTTTA	GTAGCATCTA	CTTTTTCGCC	AGCTTTTCTA	AATAAAATAA	TACGATCATT	4800
5	ACTATTTTTC	ATATTTGCCA	TTCAATATTC	CTCCGTTTTT	TAAAATGTTT	TGTAAGATAT	4860
	CGTTACTGAT	GTGTGTAGCA	ATTCTTGATT	GGTAGTATCA	TCAACTAACT	GTGTGATGTT	4920
10	AGTATCTTCT	TCTTCAAAGT	CATAATCGTT	TGTTTTAACG	CTAGGTGTTA	AATCATCAAT	4980
	ACATCTTTTA	ACAAGTCCGT	CATGATGTCC	TAAATCATCG	CTTACACTCC	AAATATCAAT	5040
	AACTAAATTC	GTATCGCCAG	AATAACTATC	AAACGTGTAC	TTACTTCTAT	TTGACTCCGG	5100
15	CATTTTTATT	ACAAAAAAAG	GATACGGAAT	CTCTTGTTGC	ATCTCTTTAC	GAGAAATAAC	5160
	AGGGAATCCA	TATCCTTGTA	GCGTTTCATA	CGCTTTATTA	TAAAGTTGTA	AGTTCGGTGT	5220
	CATGCTTTTA	TCTCCTATTC	AAACAACGCT	TTCAATTCTT	CTACAGTIGA	TTTCCTAATC	5280
20	ACTTCGTATA	CCGGCCACAT	AAAAGGTTCA	GCCTCCATGT	ATCGAGTACC	AAATTCTAAG	5340
	AAACCACTAT	AAGCTGCGTG	CGATGTGATA	GTGTATTGCA	AATCGCCAGT	TTTTTTATAT	5400
25	CTGATATTGC	GTGATAAATT	ACC				5423

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6251 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

AAACGCAGAT	GTTCAATTAG	AACCAGTCTA	TCGTATTAAG	GAAGGTATTA	AACAAAAGCA	60
AATACGAGAC	CAAATTAGAC	AAGCGTTAAA	TGATGTGACA	ATTCATGAAT	GGTTAACTGA	120
TGAACTAAGA	GAAAAATATA	AATTAGAGAC	CTTGGACTTT	ACTTTGAACA	CATTACATCA	180
TCCTAAAAGT	AAAGAGGATT	TATTACGTGC	TCGTAGAACC	TATGCATTTA	CTGAACTGTT	240
TTTATTCGAA	TTACGTATGC	AATGGCTAAA	TAGATTAGAA	AAGTCATCTG	ACGAAGCAAT	300
TGAAATTGAT	TATGACATAG	ACCAAGTTAA	ATCATTTATT	GATCGTTTAC	CTTTTGAACT	360
AACTGAAGCA	CAGAAATCCA	GTGTTAATGA	AATTTTTAGA	GATTTAAAAG	CACCAATACG	420
TATGCATCGA	TTACTTCAAG	GTGATGTAGG	TTCAGGAAAA	ACAGTAGTTG	CTGCAATTTG	480
TATGTATGCG	TTAAAAACTG	CTGGTTATCA	ATCAGCATTG	ATGGTACCAA	CTGAAATTTT	540
AGCAGAGCAA	CATGCTGAAA	GTTTAATGGC	TTTATTTGGA	GATTCTATGA	ACGTTGCATT	600

55

30

35

40

45

50

. . .

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	72
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	78
5	AAGAGAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	84
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	90
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	96
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	102
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
25	AACAACGGAT	GGATTTGAAT	TGAGTGAÃCG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT.	1440
23	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
40	ATAÃACGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
40	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
45	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	TAAATTAAAA	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	TAAAATTTA	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTITICGGT	2520
	GACGAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	TTAAATAAAA	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
.5	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
35	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
10	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
15	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	እርጥ እር እንጥጥ	አምሞአአር-ሞርክ ስ	СУСУУТСССТ	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aaattgwtaa	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	TAAAATTTAA	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
<i>3</i> 5	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	AATAATAAAT	5520
40	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
45	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	מייים או או אייים או או אייים או	ATTGAACGAA	מדידידים	TTCCTAAACC	TGAAGAGAAA	ACAGGGGGAC	6000

	ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAAC	6120
AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGTC 6	AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC	6180
	6240	
	6251	
0	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS:	

- (A) LENGTH: 4920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

20 ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA 60 AGATAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA 120 AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA 180 25 CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAGCTA 240 ATCARATGGT TGGTGACGCG GTAGARARG CACGCCGTTT AGCATTCCAG ACTGRAGATA 300 TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG 360 30 ACTTATTAAA AAACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG 420 TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG 480 CAAATGCACA AAATAATGCA TCAAATACAC CAGACAATAA TCAACAATCC AATGATTCAG 540 35 AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA 600 CAGCGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT 660 40 TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA 720 GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG 780 GATTACAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA 840 45 AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA 900 GAAAAAATA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT 960 AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA 1020 50 ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT 1080 GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT 1140

55

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GGTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
40	AGAÇCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	AGTGGTTAAA	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	דדדמתמתמדד	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTC	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
20	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	TTATTAAAAA	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	ATATTATAAA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
5 10 15 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
10	CGAAGCGCAA	TGGACGAGGC	TTTAATAAAA	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
					GGTATTCCAG		4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
15	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
					ATGATCTTTT		4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	CTATTAATTA	4740

TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
CTCGAACTGA CATTCGNGTG AACTCAAAAT NGCCTACTTN CTTAAATTAC CAATATCTAT	4920
(2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
TCACTAGAGG AACGCGTACA TCGTTT	626
(2) INFORMATION FOR SEQ ID NO: 28:	
C(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	60
AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240

	AACCTTAGCC	AAGACGTTGA	ATGTACCATT	TGCAATTGCA	GATGCGACAA	GTTTAACTGA	360
_	AGCTGGTTAT	GTAGGCGATG	atgttgaaaa	TATCTTGTTG	AGATTAATTC	AAGCAGCTGA	420
5	CTTTGACATT	GATAAAGCCG	AAAAAGGTAT	TATTTATGTA	GATGAAATTG	ATAAAATTGC	480
	ACGTAAATCT	GAAAACACAT	CTATAACACG	TGACGTTTCA	GGTGAAGGTG	TTCAACAAGC	540
10	ATTGCTTAAA	ATCTTAGAAG	GTACGACTGC	AAGTGTTCCG	CCACAAGGTG	GACGCAAACA	600
	TCCAAACCAA	GAAATGATTC	AAATTGATAC	AACAAATATC	TTATTTATTC	TTGGTGGTGC	660
	CTTTGATGGT	ATTGAAGAAG	TGATTAAGCG	CCGTCTTGGT	GAAAAAGTTA	TTGGTTTCTC	720
15	AAGCAATGAA	GCTGATAAAT	ATGACGAACA	AGCATTATTA	GCACAAATTC	GCCCAGAAGA	780
	TTTGCAAGCC	TATGGTTTGA	TTCCTGAATT	TATCGGACGT	GTGCCAATTG	TAGCTAATTT	840
	AGAAACATTA	GATGTAACTG	CGTTGAAAAA	CATCTTAACG	CAACCTAAAA	ATGCACTTGT	900
20	GAAACAATAT	ACTAAAATGC	TGGAATTAGA	TGATGTGGAT	TTAGAGTTCA	CTGAAGAAGC	960
	TTTATCAGCA	ATTAGTGAAA	AAGCAATTGA	AAGAAAAACA	GGTGCGCGTG	GTTTACGTTC	1020
25	AATCATAGAA	GAATCGTTAA	TCGATATTAT	GTTTGATGTG	CCTTCTAACG	AAAATGTAAC	1080
	GAAGGTAGTT	ATTACAGCAC	AAACmATTAA	TGrAGaACTG	AACCAG		1126
	(2) INFORM	ATION FOR SI	EQ ID NO: 25	9:			
	/i) e	POTTENICE CUAT	ACTED TOTTO	2.			

(A) LENGTH: 4392 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

60	AGTTCAATTA	TTGAAGTACC	GAACGTACTG	TaTGAGTGAA	TAGCAATnAA	ATTGACTTCT
120	ATTCAACTTA	AACAACCATT	GGCGTAGTTG	TAAAGAAGGC	CAGTAGGCGC	GTTGGTGAAG
180	TACTGAATTA	AAGTAGACAT	GAAGCAATCG	CAATATTCCA	CTACTCCAGA	GAAGTAACTG
240	CAAAATCGAA	CTGGCGACTT	GTTAAAGTAA	TGTTGCTGAT	ACAGCTTAAC	AACATTAACG
300	AACTGAAGAA	CTGAAGAACC	GTTGCTCCAA	AGTAACAGTA	CTGAATCAGT	AACGATTCAG
360	TGGCGAAAGC	CAGAAGTTGT	ACTGAAGAAC	CGAACAACAA	CTATGGAAGG	GAAATCGAAG
420	GTTTTTATAC	TTACATTAAA	TTTTAATCTG	TGAAGAGTAA	AAGAAAAAC	AAAGAAGACG
480	TGTTATTATA	GTGCTTTTTG	TATAAGCATG	CTTATTTTAA	AAGCACTGTG	TTTGTTTAAC
540	GAGTAAAAGA	TAATTTTAGT	AAAGTTTAAT	ACTTTGTACT	AAACTTTATT	AAGCTTAATT

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
_	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	aatttataga	TGCTGAAGAA	1500
80	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	aaggtaagaa	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
15	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
	GGTÄTTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
10	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
15	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
io	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
_	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	aatggatcaa	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
.5	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	tgtaatggaa	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
ю	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
5	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
o	ATAGCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
o .	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
5	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATgaat	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
0	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
_	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
25	TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
23	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
	TATTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13856 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

55

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	. 120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTCCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
70	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
25	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTtA	1320
40	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
45	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
45	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	AAAATAAATA	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

					* mamma * am	N N CCTCNTNT	1920
				TCTTTTAAAG			1920
_	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2160
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
25	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATAGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTÄATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
40	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
45	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	ТАААТАААА	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	3540
	CCAATGCTCG	CGATTATTTG	TAATCACTGC	ACCAGTTAAA	CCGTAATCTG	TATCATTTGC	`3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTTTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAÄATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAXAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
_	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTCA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTŤTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
.0	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGŤ	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
10	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
15	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	CTTATAAAAA	CTTAAGAAAT	7020
5 <i>0</i>	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	CTTAATCTTA	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG	7200

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
o	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
U	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
5	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATITT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
0	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
_	AAAGAAAAGC	TTATAATTAA	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
5	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	B100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA-	CACATTATGA	ACGAGATGGT	8160
0	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
•	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
15	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
10	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
15	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	·8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTnA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	ATTATTATAA	ATAATAAGTA	CACTACGGtT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTÇATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
,,,	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	aatgtttaaa	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
05	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	- 10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACÉTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
40	CACTCATGAT	TTTAATTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
45	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740
	ጥር/ርጥተጥርርጥ	א לייזייושושוייריא א	ACCUMICA ATIC	יי ביישיייטיים מיים מיים מיים מיים מיים מיים מי	TACCAACTCC	NANACCCACT	10000

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	CTAAATAATC	CGTGTAGCCT	11160
10	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCITGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
-	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

	ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
	TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGCCCT	12780
5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
	GGAATAATTG	AATATAGTGA	CGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
	TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
	GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATTT	TTTATAAACA	13080
15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTTC	TAGCATTTGC	13140
	TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
	TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
	CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
25	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
2.5	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
	GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
	GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
	TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
	CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
	(2) INFORMA	TION FOR SE	Q ID NO: 32	? :			

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10088 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT 180

55

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
10	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTaT	540
	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
5	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
20	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
5	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
3	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGaTG	ACAGGAAAAG	1140
0	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATT GG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
5	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
_	ATTEATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
0	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
5	TGATATCGAA	AAGGTATTTA	ACATICTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
o	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
_	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
				TGGTAACGAA			3240
	TAAKAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
10	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
15	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
				AACAAAGCAA			3540
						CGCATTTTGA	3600
50				AAACGTGTCA			3660
						TGCAATTGCT	3720
	CCAACCCCAT	מהשהעה עיע שיישהעה	A CITICA A A CITIT	TO A A TOTOTA C	TOTOTOTOTO	A M C A M A C M C A	2000

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TIGCTICATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TIGIGCTICG	TTACGTTCGA	ATAGTTCGAA	TIGCTITGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
23	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	_		CATCTCTTGC				5040
40	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
40			CAGTTTCTTT				5160
			AATGACACTC				5220
45			ACACCTCGCT		•		5280
			CATTAAATTG		·		5340
						AATATTTAGG	5400
50						ACATAATGAC	5460
						AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATTTC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
5	GGCAGCATCO	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
3	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTTTAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30 :	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
40	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	TTAAAAATA	ATGTACAATC	ACATTCATTT	ATAAAATCTT	TAGTGTTAGG	7020
45	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG .	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50 .	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG .	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
_	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	actaaagtaa	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
5	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
. .	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	aaatttagga	TATGGCGTTA	CGCACTATGC	8340
ю	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TTAAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
5	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	AAtGCAAGGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
o	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
5	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGCTG	8880
	GGGGTTCTTA	AAATTTTATA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
0	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA.	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	CAATAACAAT	TGAGCTATTA	TTTTTTTTTTT	ATAATGTGAG	TTGTTTGTGT	ጥርጥልጥጉጥል	9180

	CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
	AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
5	TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
	TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
10	TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
	CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
	TATTATTTTT	AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
15	GACTTCTTCC	CTGAGTTTGT	ССААААТААА	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
	GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
	TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
20	TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
	AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
	GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
25	GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
	TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7563 base pairs (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

\mathcal{I} (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

60	TTCATAGCTT	AAATACGAAG	TGCCAAAATT	ATGCTTGACG	CCCnATGCGT	CGGÂAACGnA
120	AAGCAAATGT	Gnactcatac	AGAAGTCGCA	TATCTGGTCA	GAAGAACATT	TGAGGTACCA
180	TTGTATTTGT	CATGAACATT	AAATACAAAA	TTGTTCTAGA	TTTAAAACGC	TAAAACAGTA
240	GAGAGAAGAA	GCTTTGGTTG	AAAGGCAGCT	TAGATATGAA	AGTGAAACTT	TATCCCAGTA
300	GTGGTGGGTG	GGATACATTC	AAATGTAACG	ATAATTTGAA	ATGCCTTTAG	ATTGCAGCTT
360	GTGAAAATTA	GACAAATCGT	AACAGTCGTT	CATTGTTTCC	GGTATGAAAA	TTCGCCTGTT
420	CŢGTTGAGGA	ATCACAATAG	AACAATGCAA	GTGGGCTTCG	AGTGTGAGTG	TAGTCATATC
400	TA ATA ACA AC	САТСААТСАТ	AGCAGTTATC	CCAAAATTCC	раастраас	TTTGATTACA

55

30

35

40

45

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
5	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
10	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
. •	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
30	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
40	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
45	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	CCTCATAGTA	CAGTTGCAGG	CATGGTGGCT	GGAATTGCTT	CAGGTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
5	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
	ATGACAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
10	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGcAGcG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
?5	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
15	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
10	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
ıE	TATTAACAGT						3780
15	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
					CGGTCCATTC		3900
50						ACAGCTGCAA	3960
	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
	AATTTACAAA	AGAACAACGT	GGTTCAATTA	TCCCTAACTA	TGTGATGGGT	ATGTCATTTA	4080

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTITCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
· 25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
30	GCGGAgCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
45	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAAGTA	5580
10	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	ATAAAACAAG	GCAAGGTTCA	CACATTTAGC	TAATAAATAA	TCATAATTAA	ATGTATGCAA	5880

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAA	AGATGATTGC	6240
10 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTTG	AAGCAATCAA	6360
5	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
0 C C C C C C C C C C C C C C C C C C C	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
0	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
-	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
5	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
o	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	GRAAT TAATTGGAAA CTTCGACCAT AATTAGTTTG ATTATATTA TTCTATTAAT PRACE ACTGTATTTG TIGGTTCAGA ATTTGCATTA GTAAAAATTA GAGCAACAAG AACAG CTAGCAGATG AAGGAAATAA ACCTGCTAAA ATAGTAAAAA AGATGATTGC PAGAT TATTATCTTT CTGCTTGTCA GTTAGGTATA ACAGTAACAT CTTTAGGGTT GGTGAACCAA CGTTTGAAAA GCTATTACAC CCAATATTTG AAGCAATCAA CAACT GCATTAACGA CGACGATTTC GTTTGCAGTG TCATTTATAA TCGTTACGTA ATGTA GTACTTGGTG AATTAGCGC TAAATCTATA GCTATTCAAC ATACTGAAAA CTTTA GTATATGCAA GACCATTGTT CTATTTCGGT AACATTATGA AACCATTGAT CHATG AATGGTTCTG CACGTGTTAT TATTAGAATG TTTGGTGTAA ATCCTGATGC CTGAT GCAATGTCAG AAGAAGAAAT CAAAAATTATT ATTAACAATA GTTATAATGG AAAAA GAATAAAAGG AAGAAGAAAT ACCTTATAA ACCCATTATAA CAGAA TTACTAGAAA CAATAAAAGA ACACTAATTT ACCGGTTATC CAATTACTGA CAGAA TTACTAGAAA CAATAAAAGA ACACTAATTT ACGCGTTATC CAATTACTGA CAGAA TACCAACAC TTAAAGGATT TATTAACGTC AAAGAATTTT TAACTGAATA CAGAA AAAACGATTA AAATAGCAAA CTATATACAT GAGTTGCCAA TGATTCCAGA CACCT ATCAGTGATG CATTAAATTAG AATGCAACCT GAACATTTAA CACCTAATTT TAACTGAATA CACCT ATCAGTGATG CATTAAATTAG AATGCAACCT GAACATTTAA CTGAAGAAT CAGAA GAATATCGTG GAACAGCAG TATTTAACGT GAACATTTAA CACTTAAAAT CACCT ATCAGTGATG CATTAAATTAG AATGCAACCT GAACATTTAA CTGAAGAGT CAGAA GAATATCGTG GAACAGCAG TATTTTAACG ATGGAAGATA TTTTAGAAGA CACTT ATCAGTAGA CAATAATTAG AATGCAACCT GAACATTTAA CTGAAGAGT CAGAA TTTGATGATC CATTAATTAG AATGCAACCT GAACATTTAA CTGAAGAGT CAGAA TTTGATGATC CATTAATTAG AGTGAATGATA TCGTTAAAAT CAGAA TTTGATGACT CTGAGGATAT TGATTAACAT GAGTGATGATA TCGTTAAAAT CAGAA TTTGATGACT CTGAGGATAT TGATACAACT TATGAATCTCC CAAT TTACAAAAAG ATGATTACCT GGATACACT TATGAATTTAA CTGAAGAGTT CAGAA TTTGATGACT CTGAGGATAT TGATACAACT TATGAATTAA ATGAAGCGAG CAAT TTACAAAAAG ATGATTACCT GGATACACT TATGAATTTAA CTGAAGAGTT CAGAA TTTACAAAAAG ATGATTACCT GGATACACT TATGAATTTAA TATATAAACC CAGAT AACCACCAAA TTATTTGGGT GATATTAAAC TATGAATTTAA TATATAAACC CAGAT AACCACCAAA TTATTTGGGT GATATTTAA TAGAATAAAA ATAG TATTGGAACT CAATATCTTT AATGATTTAA TAGAATAAAA ATAG TATTGGAACT CAATATCTTT AATGATTTAA TAGAATAAAA ATAG TATTGGAACT CAATATCTTT AATGATTTAA TAGAATAAAT TTATTTGAAAAAAAA	7020				
5	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
0	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
_	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
5	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
0	GTGAAAATAG	TATTGGAACT	CAATATCTTT	AATGATTTAA	TGAATAAnTT	TTATTGAAAG	7560
	CGA						7563

(2) INFORMATION FOR SEQ ID NO: 34:

,			 	
	•			
			4	
•				
			•	
	ī			
ě				
	•			
		•		
			•	
				•

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC TTC	ATGGCGG AACCATTGAT	GACCCATTAG	ACGAAACAAT	AAGCGCATTT	60
	SATGAATTGA AAC	AAGAAGG AATTATACGT	GCTTACGGTA	TTTCTTCTAT	TCGCCCAAAT	120
	GTAATTGATT ATT	'ATTTAAA ACATAGTCAA	ATCGAAACGA	TAATGTCTCA	ATTCAATTTG	180
· 15	ATTGATAATC GTC	CAGAATC ATTATTAGAT	GCAATTCACA	ACAATGATGT	TAAAGTATTG	240
	GCAAGAGGAC CTG	TGTCTAA AGGATTATTA	ACTTCAAACA	GTGTTAATGT	GCTCGACAAT	300
	DTA DAAATTTAAA	GTATTTT TGATTATTCT	CATGATGAAT	TGGGTGAAAC	AATAGCCTCT	. 360
20	ATTAAAGAAA TIG	AAAGTAA TTTATĆTGCA	TTGACATTTA	GTTATTTAAC	ATCACATGAC	420
	GTGCTTGGTT CCA	TCATTGT AGGTGCAAGT	AGCGTCGACC	AATTAAAAGA	AAATATTGAA	480
25	AACTATCATA CTA	AAGTTAG TITAGATCAG	ATTAAAACAG	CAAGAGCTCG	TGTAAAGGAT	. 540
	TTGGAATATA CCA	ATCATTT AGTGTAGAAG	TCATTTTCAG	TAATAAAAAC	AGCAGCATGA	600
	GGCGTTTCAT TATA	AAAAATG CCTTACTGCT	GTTGTTTATG	TACAATTCGC	TATTAATTTAT	660
30	GATTATGATT ACT	CACTTAT GATAGAAATT	AAAGCGTTGT	CCTCACGCAT	CAGTATTTAG	720
	TAATTTCGCC TTG	CGGCATT GCCTTAAGCA	AACTTCTGCC	ACTTCATCTC	TTAATAATTT	780
	TATTAAAACA TCT	TTCTATA TTTCACTTCG	CATGTTGATT	CATCATTATT	AGTTATTATT	840
35	TGTACACCCA GCA	CATTTCC TTGCAACACA	AGTAGTTTGA	ATTTTTCACA	AGTATAATAT	900
	_	AAATTTG GTCTACAGAA				960
40	TCTTCAAATA CTG	ATAGTTG TTCCGCATAT	CGTACACAAA	GTCTTACCAC	ACTCTCCGAT	1020
40	TGACAGTTCA TTG	CCATCCC ACCTATTTAT	GCTTTATTTT	TAAATAATTT	AGGGAAACAT	1080
		TAGGCGC AATTTGATAC				1140
45	CGATTAATTT CCA	ATTGTTT TGTTTTAATG	CCATAAATGA	TATCTTCTGC	AAGCTGATTA	1200
	GCATCAAGCA TAA	ITTCCCC CATCTTTTA	gCATACTTCA	TTGATGGGTC	GGCTTTTTGA	1260
	TGAAAAGGTG TATO	CAATCGG GCCAACATTA	ACTGTCATGA	TATGTAAGTT	TGGTGACTCT	1320
<i>50</i>	AGTCTTAAAG CAT	CATTAA TGCATAAAAC	CCTGCTTTCG	ATGCCCCATA	ATGTGCAGCA	1380
	TTTGCTTGTG TGG/	AAAATGC AGCTTGACTT	GAAATACCTA	CAATATGTGC	GTTAGATGTT	1440
	AAATATGGTC TCAA	ACACAGT ATATAAAACA	TTAAAACTAA	TTAAATTAAG	CTGATACGTT	1500

55

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATTGCA	GTGCCTGTAT	CGACTTCAAA	1620
	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
	ACAAGTTGAT	TATCTTTCCT	AATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGrATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	ATATATTAA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
-	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
•	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	ATTTTTATAT	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGALTTG	AGCATGGCTC	AATTAAGAAA	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACAAACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	TTATTTAATA	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
45	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
	GTTTGGACTC	ACCTCTAAAA	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	CATCACATTT	ጥል ርማጥርማውጥር እ	TATTACCAC	CTCCTTCAAC	A CCA A TCTTT	ጥጥጥ እ ለተረተመጥ	2200

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
25	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
0	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
5	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
	CTTAAAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
o	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATnG	780
	CTTTAAAATA ACAATTGCng GTGGTCAAGG CCATCTTAAA GGTCAAATTT TNAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
5	TTTAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
0	TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140
	AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG	1200

GTAATACGAT	TTCAGCTACT	GAACATACAC	TGGCAATGTT	ATTATCAATO	GCACGAAATA	1320
TTCCGCAAGC	ACACCAATCA	CTTACAAATA	AAGAATGGAA	TCGAAATGCA	TTTAAAGGTA	1380
CTGAGCTTTA	TCATAAAACA	TTAGGTGTCA	TTGGTGCTGG	TAGAATTGGT	TTAGGTGTTG	1440
					TTAACGGATG	1500
					CAACATTCTG	1560
					AATGCTGTCT	
	AGCAAAACCT					1620
	GCTAATAAAA					1680
	TGAACCTGCA					1740
						1800
	GGGTGCTTCA					1860
					GCACCTAAAA	1920
	CAATATAGAT			CAATTTAAGC	CAA	1973
(2) INFORMA	TION FOR SE	Q ID NO: 36	•			

25

5

10

15

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7620 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

30

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA 60 TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT 120 AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA 180 TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT 240 GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC 300 GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA 360 ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT 420 AGAAATAGGT TTATTATTAG CACACACA GCTGGAACCA TAAGTATCAA ATGCCATAGT 480 GCCATATACC AATATTCACT ACGTCTTGAT CTCCCCTTAA AATTTACATA ATTTTTCCAA 540 AATAAAACGA ATGATTTCAT AAAACCTACT TGAGGTAATT GTTCCATTGT AATCTCCCTT 600 TCGTTAATCA TATTTATATT TTTAATTATT GTTACCGTTA TAATTTACAA GATTCATTAT 660

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТАААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTI	TTTCATTTT	ATTAAATTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
•	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
30	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
15	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
10	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
15	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
io	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCG	GCTCTTGCAG	CTGCAACTTT	AGGTCTTGTA	TTTCCACCC	TTATCCCTCC	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATTTA	CATAGTAAAT	TTAATGCCAC	258
_	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	264
5	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	270
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	276
0	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	282
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	288
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	294
5	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3006
	ATGGCAAATT	TAGATGTTAT	TACTAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	306
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
_	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTTCA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
80	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
10	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
45	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
15	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
	CGCATCTTAT						4200
	MAN MORROWA	TOTAL TOTAL COLOR	COCC N N N N CON	COC NOW NOWN	A A COMPA COMM	TOTAL COLOR	4200

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
5	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
3	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	4500
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCITC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC .	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
25	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
10	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	570 0
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	5760
15	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	5940
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
			mmaamaaaa			O NO OMBO OMBO	C0C0

	NINNIIIIII	AGAICAAIII	INICANALIA	AAGGGCAATA	CITIATCATC	ACACATATCA	6180
_	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAKCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGRAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGLACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
30	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
35	GAAGCAAATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCITT	GCCAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTITCAAAT	TTAAGACTAC	AATTGAACAG	7380
40	TGATTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	AAGTAAAGAA	AAGAACTTTA	7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
15	TCAACAACCG						7560
45	CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620
	(2) INFORMA	TION FOR SE	Q ID NO: 37	':			

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9834 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATtACCG	amTTTCtTAG	AATCATTTAA	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
0	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
5	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
TO TO AN AN AN AN AN AN AN AN AN AN AN AN AN	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
0	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	TATTAAAAAA	600
	TGTTAAAGCA	attaaagaag	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
5	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
_	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
AAAAGAA ACGTACA ACGTACA TGTTTAT TATCGGA CAAAATT CGATACA TGTTTCTI TCAAGCGI TGTTAAA AGCTGGA: AAAAGGAA TTGGTTGA TTGTTTCAA AAAAGGAA TTGGTTGA CATTTAAA TGTTTTGA TTAATGGC CATTTAAA GTATCGATG TTACCATA AATTAGAA	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GGCGGGGCCC	AAACATAGAG	960
5 A T T T T C G G 5	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
5	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTGC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
o	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
5	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
_	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
0	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	ATACTCTAAA	GGTTGTTTAG	ATTCTCTACG	TTCTGTTAAA	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	aatgtaaaag	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
13	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	ATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGCtACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
33	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAAÇTCCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
40	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
45	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
						M1 M1 1 GG1 1 G	3400

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	СТАТТАТААТ	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAM	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	AAAAAADTT	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tattttggaa	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	СТААААТТТА	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
40	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
45	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	GATAGTTTTG	ATGCTGGTGC	AGGTATGTTA	CAAGCATTAG	GTGCTCAATT	CTATGATGAC	5280

23.

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
15	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
25	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
35	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
40	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
45	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	GAAATACTTT	AGGATCTAAG	ACACGTTTAG	TATTGCCTAG	TTTGTATGGC	TTACCATCAT	7080

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTTTCTAAT	GTAGCAAATA	720
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	726
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	732
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	738
	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	744
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	750
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	756
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7626
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7686
	TTAAGCCTAA	aattaagctt	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
35	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
33	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	aatgaaaaa	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
45	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTITGTITT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGAAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	8820

	TITACGCTGT	GATTTTGGAT	CGTCATCTGT	TAAATAACCA	ACACCGATAG	ACACTGACAA	9000
	TTTAATAACT	TCTTTGTTTG	GTAAATGGAA	TGATGATTTT	TCAACACCCG	AACGAATATT	9060
5	TTCAGCTAAT	TTAACACTTT	GATCAAGTGA	ATAATTGTGA	ATGACAACTG	AGAACTCTTC	9120
	GCCACCATTT	CTAAAAATTT	TAAATTGATT	CGGCACATAG	TTTTTAAGTA	ATTGAGACAT	9180
	TTGTTTTAAT	ACAGCATCAC	CTGATTTGTG	TGAGTAGGTA	TCATTGaCAT	CTTTAAATCC	9240
10	ATCGATATCG	ATTAATAATA	ATGCGATACT	TTGATGTTCT	TTTTCAGCTT	TTCGTGAAAT	9300
	TTCATTTAAA	TGTCTATCAA	ATTCTTTTAC	ATTACCTAAG	CCTGTTAAGT	AATCATATTT	9360
15	ATCTTCGTTT	TCATAACGAT	TTACGAGTGA	GAAGAAATGC	CAAATATCGA	CAAATGTTAT	9420
	CGCTGAAGCT	AAAGTGATAA	TTAATGAAAT	TGGTATTAAA	ATGATAACTT	CCGATAGTGT	9480
	GTAAATAGGA	CTCACTAACG	CGACACCAAA	TAAAATGATT	ATTGTAACAA	CATTAAGTAT	9540
20	TAATAATGAT	AGCACATCAT	TTTGTTTTAA	AAATGGTCCA	ATAGCACTTG	TTACTGCAGC	9600
	AATAACAATC	AACGTAACAC	CGTACATAAT	CGAGTTGTTA	AATACTACAA	TTTCAACAAT	9660
	TGCTACAATT	ACTGTGGCAG	ATAATGTATA	GACCATATTT	GTAAATCTAC	СТАААААСАА	9720
25	TAAAGGAACG	AATGTTAAGT	GAATTAAATA	ATCTTCACGA	TAAGGGATAG	GGTAGACAGA	9780
	TAATAATAAT	GATACGATTG	TCATTAAAAC	AGTGACATAA	GCCTTAGAAA	AAAC	9834
	(2) INFORMA	TION FOR SE	Q ID NO: 38	:			

30

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23439 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TCTCAATCAG ATGAAAAATT GCATATCGTA GGTTTTACAG AAAGTGCAAA ATATAATGCG 60 TCATCAGTCA TTTTCACGAA TGACGCTACC ATTGCCAAGA TCAATCCTAG ATTGACTGGA 120 GATAAAATTA ATGCAGTTGT TGTACGTGAT ACAAATTGGA AAGACAAAAA ATTAAACCAA 180 GAGCTTGAAG CGGTAAGTAT TAATGACTTT ATTGAAAATT TACCAGGTTA TAAACCACAG 240 AACTTAACAT TAAACTTTAT GATTTCATTC TTATTTGTCA TTTCAGCTAC AGTTATAGGC 300 ATTTTCCTAT ATGTCATGAC ATTACAAAAG ACGAGTTTAT TTGGCATATT AAAAGCTCAA 360 GGATTTACGA ATGGCTATTT GGCGAATGTG GTAATTTCGC AGACGGTCAT ATTAGCACTA 420 TTTGGTACGG CATTTGGCTT ACTGTTAACA GGCGTTACAG GTGCATTTTT ACCTGATGCA 480

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	AATGTTGAAA	TTTGAAAATG	TAACAAAGTC	TADAAATTTA	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
10	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
25	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	ATTAATAATA	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	AAATATAATA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
35	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
40	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
45	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	GTATTGAACC	TTTATCACAA	GCAGATATTG	TATCAGCCAA	TCCAATTCCA	ATCTATATTA	2280

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TIGITACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
4.5	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	ATTTTAAAAA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAgCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
40	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
45	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
•	GCACGGGAGA	ACAATCAACC	GATTGTAGCA	TTAGAATCAA	CAATTATTTC	GCATGGTATG	4080

	GCCATTCCAG	CAACCATAGO	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	CTAAAACAAA	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	5100
10	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
•	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
5	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	5280
	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	5340
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	5400
o	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	5460
	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	5520
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	5580
5	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	5640
	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	5700
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	5760
0	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	5820
	GGGGATTCCA	TGGAGCGAAC	TGTTCCAGCT	GGCTCTTTAA	TGGCGACTAA	ATTAATTACA	5880

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGC	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	СТАВАТТАВА	TTCATGGCAA	AGCTAAACCC	CGTCACCAAG	6180
o	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
o .	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
5	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
0	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
10	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
-	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCCCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
40	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
45	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CGGTAAAGAA	ACTATTGGTA	CTTTGGCTCG	CGCGCTTGGT	7680

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
5	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
,,,	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACAACAAA	AGTGAGCTTA	TTACTGACAA	agtatatgag	ATTGTAACAG	GATATATGAA	9000
10	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
15	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50		ACGAGTGCAT					9420
	A CATCTCCCA		A A C C A C CTYC A	A C A A C C C C A C	CAMAMMOO CAA	**********	

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
6	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTT	AGAAAATGTA	TTATAAAAAA	TGGTATTGAA	9900
	ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	atgttgataa	10020
	GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
25	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
•	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
.5	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATĀĀATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
10	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
15	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
		CCOTTACACCA	እ ተምስ ረ ም አጥር አ	TATATTACAA	CACATCCACC	CARCOTTCAR	11290

55

;

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGC	AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAAA	CGTGTGATGG	ACTTAGGCGT	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
10	TATCTTAGGT	GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
05	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	CGCAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTTT	САААСААААА	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TDTAATAAAT	AATGACCAAG	12780
45	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	ma sama sama	***********	THE STREET	777 B 778 C 8 C 8	8 8 8 CMCM 8 MC	1 maga magana	

	ATAGTTTGAA	TTATTTTCAT	ACCAATACAA	ATTAACTAAT	TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	AAAATATTTA	TCTTAAATGT	TGTTGTGTTG	ATTCAACACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	TTTGTAAATG	ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAGT	CTTAATCMAA	AAATAATATA	TGTCATGTTA	13380
	TATTGAAGGT	GCAGTTGTTT	TTCATTCTCA	AGAGGGGGTC	AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGAA	AGTATAGTAT	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTG	TTGTGTCATC	ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACACT	AAATCAACCG	GGAGAACAAG	13620
	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGC	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
٠	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATaAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG:	ACCACTTAAA	.GCGAATCAAG	14340
	TACAACCACT	ТААСАААТАТ	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
40	ATAÁTGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
45	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTAGC	AACACCACAT	AATGGTTCAC	AAGCAGCTGA	TAAGTTTGGA	AATACAGAAG	14880

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
40	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
10	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	TATAATTTAA	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ataaattgta	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
35	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
33	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
40	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGAtGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
45	ATAAACGAŤA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAGATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	СТТТААТААТ	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	MORTON TO SA	N CHACHCALLE N	እምምምርር አጥር እ	ል ል ል ውጥ ውጥ ርጥርጥ	таасассатс	ACTCATGATA	16680

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCÁGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
o	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
5	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	aatgtttgaa	TCAGCAAACG	17340
ю	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGAȚTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
90	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
35	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
10	CTGAAAATAT	GAATATGAAA	AAGAAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
45	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	1824
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	1830
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTITTGATG	ATGCATACAT	TGGCGCAGAC	1836
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGI	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	1842
			manana anama	י מתמשיים מתמי	ന്നു പ്രധാന വേധ വേധ വ	ተ ልሮ ር ጥልተተርር	1848

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	TATTTTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
35	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
33	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
40	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
45	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
•	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	TATTTACAGA	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	2040
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	2046
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	2052
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	2058
10	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	2064
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	2070
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	2076
15	AACAGTGTAG	CTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
. 25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
•	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
35	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
33	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTGATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
40	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
45	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	AAAATTTAAT	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	moore comore	3 C 3 COT 3 COTO	CR COMP COOM	B C B C B C B C B	* mmm.cm.cm.cm	*****	

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
10	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	AGTAATTAAA	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGcAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGĀĢÁCGTA	GCTGAACTGC	ACATTTTGGC	23280
3 5	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tttgttggga	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4522 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39: CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT

60

55

50

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	18
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	24
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTTTAA	CTCAAATGAC	30
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	36
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	42
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	48
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	54
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	60
,,,	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	66
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACLAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTIGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	actaaatgta	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTIGATIC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
40	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
70	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
•	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
45	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2040
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
0	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGCGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
5	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
0	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
O	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	AATATTCAGK	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
5	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
o	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
5	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATETGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	agtgaaagaa	TGCCTGCGAG	TCAAGCCACA	3240
0	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
5	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
3	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
50	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTITCA	3600
	AATAAAAATG	AAGATACAGC	TAATGAAAAT	AGACCTCGGA	CGAACCAACA	AGATGTTGCA	3660

	CCAAGTGTTT CATTACTAGA AGAACCACAA GTTATTGAGT CGGACGAGGA CTGGATTACA	3780
	GATAAAAAGA AAGAACTGAA TGACGCATTA TTTTACTTTA ATGTACCTGC AGAAGTACAA	3840
5	GATGTAACTG AAGGTCCAAG TGTTACAAGA TTTGAATTAT CAGTTGAAAA AGGTGTTAAA	3900
	GTTTCAAGAA TTACGGCATT ACAAGATGAC ATTAAAATGG CATTGGCAGC GAAAGATATT	3960
	CGTATAGAAG CGCCTATTCC AGGAACTAGT CGTGTTGGTA TTGAAGTTCC GAACCAAAAT	4020
10	CCAACGACAG TCAACTTACG TTCTATTATT GAATCTCCAA GTTTTAAAAA TGCTGAATCT	4080
	AAATTAACAG TTGCGATGGG GTATAGAATT AATAATGAAC CATTACTTAT GGATATTGCT	4140
15	AAAACGCCAC ACGCACTAAT TGCAGGTGCA ACTGGATCAG GGAAATCAGT TTGTATCAAT	4200
	AGTATITIGA IGICITIACI ATATAAAAAT CATCCIGAGG AATTAAGATI ATTACITATC	4260
	GATCCAAAAA TGGTTGAATT AGCTCCTTAT AATGGTTTGC CACATTTAGT TGCACCGGTA	4320
20	ATTACAGATG TCAAAGCAGC TACACAGAGT TTAAAATGGG CCGTAGAAGA AATGGAACGA	4380
	CGTTATAAGT TATTTGCACA TTACCCATGT ACGTANTATA ACAGCATTTA ACNAAAAAGC	4440
	CCCATATGAT GAAAGAATGn CAAAAATTGT CATTGTAATT GATGAGTTGG CTGATTTAAT	4500
25	GATGATGGTC CGCAAGAAGT TG	4522
	(2) INFORMATION FOR SEQ ID NO: 40:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	TCAAGTTTAC GGATACGTAT ATATTTTGCA TGACATTTAG TGCAATAATA TTCATAATTT	60
	GCCCGTTGTT GATAGCTTTC AATGCTGTTA CAAAATCTAG GCGCTCCAAC CTGTTGGCTC	120
10	AATCGTTTAA AATCTTGATC TTTATGTTGA TAACCTTTAC CAGCAATATG CAAGTGATAA	180
	TGACACAATT CGTGCAGTAT AATTTTTACA ACAGCATCTT CTCCATAATG CTCATATTGT	240
15	TTTGGATTAA TTTCAATATC ATGGGACTTT AAAAGATAAC GTCCGCCTGT TGTACGTAAC	300
-	CTTTTATTAA AATATGCACA ATGTCGAAAC GTACGTCCAA ATTTTTCTTC CGAAAGATTC	360
	TCAACCATTC GCTGAAGTTT GTCATTATTC ATGTGGATCA ATCATCGTTA ATGATACTTT	420
io	GTCTTTATTT TTGTCAATAC TGTAAATCCA AACGTCAACG ATATCACCAA CACTGACAAT	480

ATCCATTGGA TTTTTTACGA ACTTCTTAGA AAGTTTCGAA ACATGGACAA GTCCATCTTG

55

660

TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC

	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTTT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
45	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
•3	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2930 base pairs	

356

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: TGACCACAT GCCCAATACA ACCATCCCAT GGTAAAGCCA AGAGATGAGT CAATAAAGCG 60 TGTTGAATAA GAGCTGAATG AACCTGATAC TGGATAAAAT GTTGCCAACT CTCCAATTGA 120 10 TGACATTAAG AAATATAGCA TGACACCAAT AACAAGATAA GCGAGTATAG CGCCTCCAGG 180 ACCAGCTTGA GAAATGATAT TACCAGTAGC TACAAATAGA CCAGTCCCAA TTGCACCACC 240 TATAGCAATC ATGGAAATGT GTCTTGAGTT AAGACTACGG TTCATTTTAT TATCTTCCAT 300 15 ATTTAGTCTC CCATCTATTT AAATATACCC ATTATTGTAA GCTTTTTAAG TGTACTATTC 360 AATAACTATT TAGTACTGTA AAGCGAAAAA ATTAAAATTT TCTGATTTTT TAATCATCTT 420 GAGCATGTTT AATTGTAATT TTGATGGGGT TAAATTATAA TATGTATTAA ATTATAATTA 480 20 THATAAATTG TGGAGGGATG ACTATGTCAC AACAAGACAA AAAGTTAACT GGTGTTTTTG 540 GGCATCCAGT ATCAGACCGA GAAAATAGTA TGACAGCAGG GCCTAGGGGA CCTCTTTTAA 600 25 TGCAAGATAT TTACTTTTTA GAGCAAATGT CTCAATTTGA TAGAGAAGTA ATACCAGAAC 660 GTCGAATGCA TGCCAAAGGT TCTGGTGCAT TTGGGACATT TACTGTAACT AAAGATATAA 720 CAAAATATAC GAATGCTAAA ALATTCTCTG AAATAGGTAA GCAAACCGAA ATGTTTGCCC 780 30 GTTTCTCTAC TGTAGCAGGA GAACGTGGTG CTGCTGATGC GGACGTGACA TTCGAGGATT 840 TGCGTTAAAG TTCTACACTG AAGAAGGGAA CTGGGATTTA GTAGGGAATA ACACACCAGT 900 ATTCTTCTTT AGAGATCCAA AGTTATTTGT TAGTTTAAAT CGTGCGGTGA AACGAGATCC 960 35 TAGAACAAAT ATGAGAGATG CACAAAATAA CTGGGATTTC TGGACGGGTt TCCAGAAGCA 1020 TTGCACCAAG TAACGATCTT AATGTCAGAT AGAGGGATTC CTAAAGATTT ACGTCATATG 1080 CATGGGTTCG GTTCTCACAC ATACTCTATG TATAATGATT CTGGTGAACG TGTTTGGGTT 1140 40 AAATTCCATT TTAGAACGCA ACAAGGTATT GAAAACTTAA CTGATGAAGA AGCTGCTGAA 1200 ATTATAGCTA CAGATCGTGA TTCATCTCAA CGCGATTTAT TCGAAGCCAT TGAAAAAGGT 1260 GATTATCCAA AATGGACAAT GTATATTCAA GTAATGACTG AGGAACAAGC TAAAAACCAT 1320 45 AAAGATAATC CATTTGATTT AACAAAAGTA TGGTATCACG ATGAGTATCC TCTAATTGAA 1380 GTTGGAGAGT TTGAATTAAA TAGAAATCCA GATAATTACT TTATGGATGT TGAACAAGCT 1440 GCGTTTGCAC CAACTAATAT TATTCCAGGA TTAGATTTTT CTCCAGACAA AATGCTGCAA 1500

GGGCGTTTAT TCTCATATGG CGATGCGCAA AGATATCGAT TAGGAGTTAA TCATTGGCAG

50

	GGTCAAATGC	GCGTAGTTGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC	AATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
	GAAGGCGTAA	CGGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
10	GAATATGGTA	AAGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
	TTGCGTAGTT	GAGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG	TGCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA	AAAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA	AATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
20	GATTTGAAAA	TAAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG	TGATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA	TTAAAATTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	AAATATTTTA	2460
	GTCACTTTGT	TAGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
	GCGGAATTTA	ATAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
30	TTTAATCTTA	AATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAaA	CTTTACTGTT	2640
	GAATTATGTG	AGGATTGTGT	TATTATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT	ATATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT	ATTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC	CAAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGACCTAGAG	GTGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMA	TION FOR SE	Q ID NO: 43) :			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3606 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

45

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TIGGIGCGIG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
25	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
40	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
45	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
5	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
10	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
15	TCACTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
20	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
.5	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTIT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
35	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTCGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATITC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
ió	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gcTAAAACAA	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT .	ATACAAAAGA	TGAAGGCGAT	ATTATATTA	CTAGTGAACA	3420
15	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCAA	3540
	ACAGCCGATG	aAGCAATTTT '	TACmACmACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15109 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACSAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
20	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	TAATTAAAmA	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
	AATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTTTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTÂATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	TAAATTTTAAA	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50	ATTGATATGG	TTGCTTTAGA	AAGTACGAAT	CAAGTACCGC	TAACGTTAGA	TGTTAGACAA	1440

55

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTTT	GATTATATAA	CTGCACTTGC	TAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
·25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
25	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	AAAAATATAT	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	TATGTATGCA	AAGCAAGGTT	ATGTCTATCA	ATCGTTTTGT	ТАТСАААТАТ	3240

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	3360
	СТТАТАААА	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
10	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
70	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
25	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
3 <i>0</i>	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTIGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35	GGGCATCAAT	TATAAATAAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAĀAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
40	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	AAAAATTTA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
45	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
50	TATAAATATG						4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	CCDDDDDTDTC	CCANACACTA	プププス こみでみるご	ייי מיויידיים ממידי מ	TTABACABCT	CCAAACHAAA	

	CAAGGTTTTG	TGTATAAAAC	TGACTTATAT	AAACAAAATA	AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAAG	AAGTAGAACT	TAAGAAGCCA	ATCACATACG	AAGCTGGTGC	TACATCAGAT	5220 .
5	AGTAAATTAG	CAAAAGAGTG	GATGGAATTC	TTAAAATCAG	ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATACC	ACTTTGCAGC	ATAAGGAGTT	GTAATCCATG	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
15	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
?5	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	AAAAATTTAT	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
3 5	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTTTTATGG	CTGAACCATC	6300
	TGAACACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
10	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACTAA	6420
	ACCAGATTTA	DATTATTTA	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
15	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	A DOGGA A GGGA	3 3 mmmm 3 mmm	AAACAA SOAC	CDC N N N D N CC	mannaaann	1011100111	5040

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATIGAATIT	AGTAATITAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ÄTTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
15	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
10	GTGCATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAÄ	AATCTCCAGA	8340
15	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CGGAATAAGT	GTTGATGTAT	TTTTGGCAGC	CATAATACCA	GCGATTTGAG	CAGTGTTCAA	8640

	AATGCTTGAA	TGAGCGACAG	CAGITCTTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGT	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8880
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
10	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGaAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGGAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
*.	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TODADATOT	בידיים מים מידיים	מת מרת מרחת מ	CCTATTACTT	CAACCCTTTA	3.3.3.3.000000003	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10800
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT.	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT.	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGATGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	CTATAACTAA	11760
40	AGCÁCTACAT						11820
						ATTATCAGCA	11880
		•				ATGGTAGAAC	11940
45	AAATAAAAGA						12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA						12120
50	AATTAGGTGT	ATAAAAAAA	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	ATGTACTTAT	ACCTABATTA	ביית ב ב ביית ב	ስጥርርጥስጥጥር ስ	ACATA TOTOLOG	TTC 2 OUR CLAS	12240

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
15	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATTAAATT	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	AATTTAATAT	TTGTAATAGA	TAAAATGCTA	13560
	AGTTTGATAT	TTAATAATT	TAAGTAATTG	татаатаата	TGAATTACAA	ACATCTAAGA	13620
40	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	aaaagattag	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	GCGTTACAAA	CTAAAAACTT	aAAAAgcaTG	CCAATCTCTA	TTCATCATAA	TTGCGTCTTG	14040

	GTTCATGGCA	TTTCTAGTTA	CATGACGTCC	ATGAATTAAG	AAGTAAACAA	GCATAGTAAT	14160
	GATTGCTAAA	GCGGCCATAA	AGCCGAAGAT	TTCACTATAT	GAAAACATAT	GAGTAAATAA	14220
5	CCCAAGGAAT	GATGGACCGA	AGCCGACACC	TGCATCTAGA	CCAACGTAAA	AAGTAGATGT	14280
	CGCGATACCA	TATTTAATCG	GGGGTGAGAC	TTTTATCGCA	ATAGATTGCA	TTGCAGATGA	14340
	TAAATTTCCA	TACCCTAAAC	CTAGGCAAGC	ACCAGCAAGT	AATATTAACC	AGCTTTGATA	14400
10	GCTTGAAATT	AAGCATACAA	ATGAAAGGAA	AAGCATGATA	AATGCTGGGT	AGACAATAAT	14460
	ATTTTCATTT	TTATCATCCA	TCAATCTACC	AGCAATAGGT	CTAGTAATTA	ACGATGCTAT	14520
	AGCATAGCAA	ATAAAGAAAT	AGCTTGCTGC	agtgactagg	TGTCGCTCTA	AAGCAAATGC	14580
15	TTGTAAATAA	GTTAGGATGG	ACGCATAGGT	AACGCCAATT	AAAAGCATAA	TTACAGCAAC	14640
	AGGAATGGCC	TCTTTTGCAA	TAAATTGATG	AATACTAAAT	CTTGGTTTAT	CAATGACATT	14700
20	AGTTTCAGTT	TTGTTATTTG	TTACTTCGAA	ATCAACTTTT	ATAAATAATG	AGATAATGAG	14760
	TCCGAGTATG	CCTAATATGA	CACAAATAAT	AAACAGTAAG	TCAATTGCGT	ATTTTGTAAT	14820
	AAGTAACATG	CCTAGAAATG	GGCCAATCGC	TGTACCTAAT	ACTAAACTTA	AGGAAAATAA	14880
25	ACTGATGCCT	TCACTTTTTC	TATTAACAGG	GGTAACGTAT	GCCGCAATAG	TACCTGTTGC	14940
	AGTTGTCACA	ACTGCAGTTG	CGATACCGTT	TATGAGACGT	ACAAAGATTA	AAAAAGCTAA	15000
	AGATCCATCA	АТААААТААА	GTAATTGCGT	GATAATTAAA	GCAATTAAAC	CAATAAATAA	15060
<i>30</i>	TAATCGTTTA	GGTCCrATTT	satttacaaa	TTTACCTGTA	GCAAATCGA	1	15109

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9072 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GAGAGTCAA1	GGCAAGAAGA	ATATAAATAT	TTGAGAGCGT	TAATCTTTAA	TGAAACAGAA	60
TTAGAGGAAG	CGTATAAATG	GATGCATCCT	TGTTACACGT	TGAATAATAA	AAATGTAGTA	120
CTTATCCATC	GCTTCAAAAA	TTATGTTGCA	CTATTATTTC	ATAAAGGTGC	CATTTTGGAG	180
GATAAATATO	ATACACTCAT	TCAACAGACT	GAAAAGGTGC	AAGCAGCTCG	TCAGTTACGA	240
TTTGAAAATT	TAACAGAGAT	TCAAGCACGT	ACCGAAGAAA	TTAAATATTA	TCTAGCCGAA	300
GCAATTAAAG	CTGAAAAAGC	TGGTAAAAA	GTTGAAATGA	AGAAAACAGA	GGAATATGTT	360

	AAATTAACGC	CAGGCAGACA	ACATCAATAT	ATATATCATA	TTGGACAAGC	TAAACGCAgT	480
	GGAACAAGAC	AAAAGCGTGT	TGAAAAGTAT	ATTAACCAAA	TACTAGAAGG	TAAAGGGATG	540
5	CATGATAAGT	AATTAATGAG	TAAAGCATAC	CGGTTATACA	ACAACATACA	AGATGACACG	600
	AAACAACCAA	TGGCTCATGC	TGTTGGTTGT	TTTTTTAGGT	GTGTCTGTCA	TGGGCAACAC	660
	TTTGACGTTG	GAATTCCGTT	ACAGGCTTGG	GAGTAGAAAA	TGTTAGCAAA	AGGCAAGGGT	720
10	GTCTACAATG	AATGATGAAG	ATATTAAAAT	ATAAGGATGA	CTTTGTGAGT	GGCGGATGGG	780
	CGGTTGTCCG	TCTGTAACAA	TGGATGCGTG	TGCATTATTA	CAAAAATTCG	ACTTTTGTAA	840
	TAATATTTCA	CATTTTCGAC	ACTTTTTTGC	TATAAAACAA	CCAATTGAGC	GATAATAAAT	900
15	TCGCTTTTAA	AAAATATGAG	TTATCTATTT	AGTTGCCAAA	GATAAAATAA	TAATGTTTAA	960
	TAACATCATA	TAGAGTATGT	TAGTTTTAAA	TGTCGAATAT	ACGAATGTGC	AAACAAAGTA	1020
20	ATCGGTAGAA	ATTCAACATA	CATAGCGCCG	TTTACTGTTA	AGTATTCACA	TTACAGATGA	1080
	AAATATAAA	ATTCTACATA	ATCAAGACCA	TGATGTGTAC	TTGTTTAACT	TATGACTCTA	1140
	TTTGTTTAAC	AATTGCGATA	ATGGTCTTTT	TATTTTATGC	GTATCATTCG	TCATATTTTT	1200
25	TATGAGGAAG	GAGAAATGAT	TATGTTAAGT	ATTAAGCATT	TAACGAAAAT	TTATTCTGGT	1260
	AATAAAAAGG	CAGTAGATGA	CATCTCTTTA	GATATTCAAT	CTGGGGAATT	TATCGCATTT	1320
	ATTGGAACCA	GTGGAAGTGG	CAAAACGACT	GCTTTAAGAA	TGATAAACCG	TATGATTGAA	1380
3 <i>0</i>	GCGACAGAAG	GACAAATTGA	AATTGATGGT	AAAGATGTTC	GGAGTATGAA	TCCTGTCGAA	1440
	TTGCGTAGAA	ATATTGGCTA	TGTTATTCAA	CAAATTGGCT	TAATGCCTCA	TATGACGATT	1500
	AAAGAGAATA	TTGTGTTGGT	ACCCAAATTG	TTGAAATGGA	CTAAAGAGGA	AAAGGATAAA	1560
35	CGTGCAAAGG	AATTAATTAA	ACTTGTGGAT	TTACCGGAGT	CATTTTTAGA	GCGTTATCCA	1620
	GCAGAACTAT	CAGGTGGGCA	ACAACAACGT	ATCGGTGTTG	TAAGAGCACT	TGCGGCCGAA	1680
40	CAAGATATTA	TTTTAATGGA	TGAACCTTTT	GGTGCATTGG	ATCCTATTAC	GAGAGATACG	1740
10	TTACAAGATT	TAGTTAAAAC	GTTACAACGA	AAATTAGGCA	AGACGTTTAT	CTTTGTAACA	1800
	CATGATATGG	ATGAAGCGAT	TAAATTAGCA	GACAAAATTT	GTATTATGTC	AGAAGGTAAG	1860
15	GTGGTGCAAT	TTGATACGCC	AGACAATATT	TTAAGACATC	CCGCAAATGA	TTTTGTACGT	1920
	GATTTTATAG	GACAAAATAG	ACTGATTCAA	GACCGTCCCA	ATGACAAGAC	TGTAGAAGGT	1980
	GTAATGATTA	AACCAATCAC	GATACAAGCA	GAAGCAACAC	TGAATGACGC	CGTTCATATT	2040
50	ATGAGACAAA	AACGTGTTGA	TACTATTTTT	GTAGTAGATA	GTAATAACCA	TTTACTAGGT	2100

	ATTTTAAAAA GAAACGTTAG GAATGTACCT GTCGTAGATG ATCAACAGCG TTTAGTAGGA	2280
	CTGATTACGC GTGCCAATGT TGTTGATATT GTATATGACA CGATTTGGGG CGATAGTGAG	2340
5	GATACAGTGC AAACAGAACA TGTGGGGGAA GACACTGCGT CCTCAAAAGT GCATGAGCAA	2400
	CACACTACTA ATGTCAAAGT ACGTGACATA GGAGATGATA AATCATGATT GAGTTCCTAC	2460
	ATGAACATGG TGGACAGTTG ATGTCGAAAA CACTGGAACA TTTCTATATT TCTATAGTGG	2520
10	CATTATTACT TGCCATCATT GTTGCAGTAC CTATAGGCAT TTTATTATCA AAAACAAAGC	2580
	GAACTGCCAA TATTGTATTA ACTGTGGCAG GTGTCTTACA AACTATTCCA ACACTAGCTG	2640
15	TACTTGCTAT TATGATACCG ATTTTTGGTG TTGGTAAAAC GCCTGCAATT GTAGCGCTAT	2700
	TTATTTATGT ATTATTACCT ATTTTAAATA ACACGGTACT CGGTGTTCAA AATATTGATA	2760
	GCAACATTAA AGAAGCTGGA AAAAGTATGG GAATGACACA ATTTCAATTG ATGAAGGATG	2820
20	TTGAATTGCC GTTAGCATTG CCGCTTATCA TTGGTGGCAT TCGTTTGTCA TCTGTGTATG	2880
	TAATTAGTTG GGCTACACTT GCAAGTTATG TAGGTGCGGG TGGATTAGGT GATTTCATTT	2940
	TCAATGGTTT AAATTTATAT GATCCACTGA TGATTGTAAC TGCAACGGTA CTCGTTACTG	3000
25	CACTAGCATT AGGTGTTGAT GCCTTATTAG CTTTAGTTGA AAAATGGGTA GTTCCCAAAG	3060
	GCTTAAAAGT ATCTGGATAA TTAGGAGGCT AAGATAATGA AGAAAATTAA ATATATACTT	3120
٠	GTCGTGTTTG TCTTATCGCT TACCGTATTA TCTGGATGTA GTTTGCCCGG ACTAGGTAGT	3180
30	AAGAGCACGA AAAATGATGT CAAAATTACA GCATTATCAA CAAGCGAATC GCAAATTATT	3240
	TCACATATGT TACGGTTGTT AATAGAGCAT GATACACACG GTAAGATAAA GCCAACATTA	3300
	GTAAATAATT TAGGGTCAAG TACGATTCAA CATAATGCCT TAATTAATGG GGATGCTAAT	3360
35	ATATCAGGTG TTAGATATAA TGGCACAGAT TTAACGGGAG CTTTGAAGGA AGCACCAATT	3420
	AAAAATCCTA AGAAAGCAAT GATAGCAACA CAACAAGGAT TTAAAAAGAA ATTTGATCAA	3480
40	ACGITITITG ATTCGTATGG TTTTGCGAAT ACGTATGCAT TCATGGTAAC GAAGGAAACC	3540
	GCTAAAAAAT ATCATTTAGA GACAGTTTCA GATTTAGCAA AGCATAGTAA AGATTTACGT	3600
	TTAGGTATGG ATAGTTCATG GATGAATCGT AAAGGCGATG GCTATGAAGG ATTTAAAAAA	3660
45	GAGTATGGTT TTGACTTTGG TACAGTGAGA CCAATGCAAA TAGGTCTAGT CTACGACGCA	3720
	TTAAACTCAG AGAAGTTAGA CGTTGCATTA GGTTATTCTA CAGATGGTCG AATTGCGGCG	3780
	TATGATTTGA AAGTACTTAA AGATGATAAA CAATTTTTCC CACCTTATGC TGCGAGTGCT	3840
50	GTTGCAACAA ATGAATTATT ACGGCAACAC CCAGAACTTA AAACGACGAT TAATAAGTTG	3900
	ACAGGAAAGA TTTCGACTTC AGAGATGCAA CGCTTGAATT ATGAAGCGGA TGGTAAAGGT	3960

55 ·

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	4260
	TAGCTATITT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
10	TATATGCGTT	ACTTCCAATT	АТААААААСА	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
١	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	AAAAATTATA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
25	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
45	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TITGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	ተተተርርጥተተ ኮ ር	مستمايات لا تراسيسة	א א יייים א כיייים	בעריבעיבערים אינויים	TOTAL TOTAL	5760

1.1

	AATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
45	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	Catattgaag	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	AATGTAAAAG	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATTAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
45	ATACAGCAAT	cc					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16826 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC TGTAAC	TATA TCATTTCTT	T CAACATTTAT	T TGGGAAAATG	TTAGCTACAT	60
5	TTCTATATCC GATTAA	TAAT GTAGTACTT	T CATATATnT	TGTAAATGAA	AGTGACAATA	120
	TAAAGAAGCA ATATTT	Gaaa actaatcta	A TTGCTATAGO	TGCCCTATGT	TTAGTCATGA	180
	TTATATGTTA TCCAAT	TACA ATAATTATT	G TCTCTTTACT	GTATAACATT	GATTCAAGTT	240
10	TATATTCGAA GTTTAT	FATT TTAGGTAAT.	A TAGGTGTTT	TATTCAATGCA	GTGAGTATTA	300
	TGATCCAAAC TTTAAA	TACA AAACACGCA	r caataacati	ACAAGCGAAT	TATATGACGC	360
15	TTCACACGAT TACATT	TATA TTCATAACTI	A TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	420
	GATTCTTTTG GACAAC	SCTG TTCAGCAAC	A TTATTAAGTA	TGTGATTTTA	AATATTATAG	480
	GTTTAAAGTC TAAATTO	CATT AATAAAAAG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	540
20	TGATTTTATG TCAGTAT	TTT TATCCGGAAT	TATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA TTTAATT	GCG AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA TCATAAA	CAG GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA TTCGAGG	TTT AATAACAAAA	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC AAAATTC	GTG ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA TCCACCA	ATC TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC TTTTGTG	GTG TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG TAGCATG	ATT GATAAGCTGA	TGCGTTACAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA TGTCATT	GTC CITGGTACGG	AAATGAAAAA	CTACTTACTA	AATCATCAAA	1080
35	TTTCTAAAAA TGCTGAC					1140
-	AAGACAATCG TATCTAT					1200
40	TATTGTATAG CGGTAAT					1260
	AATTAAATAA GGATCAG					1320
	CAGATGTCAA AACGGCA					1380
45	TAACAGGTAC AGACTAT					1440
	TTAAAGAAGG CGTCGGT					1500
	AAGCGTTGGT ACTCATC					1560
50	ATGCGGGTAT CCAAATT	SAT AATGGCGATG	CACATGCCAT	TTATAACTTC .	ATCAACACTC	1620
	ACTCGAGTAA GGAATTG	CAC GAGATGGGTG	AGCGCGCACA	יואנאטיבאטי ע ערט.	7.7.7.7.7.3.3.m	1.500

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTI	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	ATATAACAAA	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAĀTCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
10	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AATAATAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
15	AAGTCATCTA	AAAATAAATT	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTCAAC	COTA TICOTA CA A	CCCCACAMCC	a morror a morror	mmms mas mma	acammaca	

	TAGTATTTTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	aataacttaa	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	ТААТТААТТАА	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	4500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	ÄAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG.	TATATTTGAT.	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
40	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
40	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
45	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	AGATTTTTAA	AGCAGTAAGA	GATTTGGCAG	ATGAATATAA	AGATGTTGTC	TTCATTTATC	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	TTTATTTATA	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	aatgtaaaga	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
10	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
,,	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
15	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
,	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
10	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	7740
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
?5	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	AGTGATTAAA	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
15	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
.5	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	:AACTTATAAA	8340
	GGTGCGTTAA	GTAACTATCA	ACAAGTTAAA	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
0	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
5	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
io	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8820
	ma mma a a a	mmans ms mas	MAGGAAMATT	221112CCC	* cmama cmam		

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	9720
25	ttaattttaa	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
30	GCGATTGATC	AAGTATCATC	attgttgaaa	gaaaaatatg	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
35	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGAÇÃTCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
40	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
45	TTAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
	CATEGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
60	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	AAACAATTTT	TAACAGAAGC	AGATATTAGT	ATTCAATTAG	10680

55

€.

15	COLLINATION	umcocim	*4:11:15:00:	•			
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTITACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATŢACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
40	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	TATTAAAAAA	12240
40	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
15	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	.13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG.	GATTATTTGG	13740
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAAGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
40	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATITC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
45	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
45	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	aatgatttag	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	TAATATTCAA	GAAGACCATT	ATTTTGGTGC	GATTTCGAAA	CATGAATCAT	CAGATGAATT	14280

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	ATTTTTTAAA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTÄA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
10	AAAŤCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
,,,						ATTATATTAG	15720
					GGATGTGATT		15780
45						TTGAAATTAG	15840
						GAACACAATA	15900
						GCGGTTATGG	15960
50						GAAGGTGAAT	16020
	GGAACTTGTC	TCAAGTAGGT	AATCATGCGC	ATGAATTACA	ACACAAAACA	ATTGGTATTT	16080

TA	CAACACTA	TGATCCAATC	AATCAACAAG	ACCATAAATT	GTCTAAATTT	GTAAGCTTTG	16200
TA	GAACTTGT	TTCAACAAGT	GATGCGATTA	CAATTCATGC	ACCATTAACA	CCAGAAACTG	16260
TA	AACTTATT	TGATAAAGAT	GTTTTAAGTC	GTATGAAAAA	ACACAGTTAT	TTAGTGAATA	16320
CT	GCACGTGG	TAAAATTGTA	AATCGCGATG	CGTTAGTTGA	AGCGTTAgCA	TCCGAGCATT	16380
TA	CAAGGATA	TGCTGGTGAT	GTTTGGTATC	CaCAACCtGC	ACCTGCTGAT	CATCCATGGA	16440
GA	ACAATGCC	TAGAAATGCT	ATGACGGTTC	ACTATTCAGG	TATGACTTTA	GAAGCACAAA	16500
AA	CGTATTGA	AGATGGAGTT	AAAGATATTT	TAGAGCGTTT	CTTCAATCAT	GAACCTTTCC	16560
AA	GATAAAGA	TATTATTGTT	GCAAGTGGTC	GTATTGCTAG	TAAAAGTTAT	ACAGCTAAAT	16620
AG	AATAAGGA	TGCTGGGCTA	GCGATTAACG	CTTTCAATTT	TATATAAATG	AATCATATAA	16680
GC	ACTACTGC	TGTTGTAAAG	ATGGCAGTAG	TTTTTTTATG	ATTACATCTA	AGTATAGTCA	16740
CG	GCTATGTT	AGGACAATGA	TTTAACATTT	ACGCACATAT	GTGTTCACTT	ACGCAATTAT	16800
TG	AnAAATnT	CATTCATGTG	GnAATC				16826

(2) INFORMATION FOR SEQ ID NO: 47:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4012 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

	TTCAATGAGA	GTAGTGGGCT	GATGTTTAGC	GATATCGCGT	AAGATTAACC	ATTGGCCATA	60
-	ATATATATTG	TGTTTTTCTA	AAATCGGCTC	GGCTAATTTT	AAATAGGGGC	GATATATTGT	120
	TATĄAAACTA	TTGAAAAATT	CTTGTGATAG	CATAGTGACA	TCTCCTAAGA	CAAAATAGTT	180
	AGCTTAGCTA	mCCTTTTTAC	AACAATAGTA	ATTATAAAAC	GGGAGCAATT	AGAAATCAAT	240
	ATATAATTAT	TAAGAGCAAA	AATAATTATA	CTTTGTTAAA	ATAAGCGTAA	TTACATGTAA	300
	ATAGGGGGAT	ACTAATGATA	TTGAAATTTG	aTCACATCAT	TCATTATATA	GATCAGTTAG	360
	ATCGGTTTAG	TTTTCCAGGA	GATGTTATAA	AATTACATTC	AGGTGGGTAT	CATCATAAAT	420
	ATGGAACATT	СААТАААТТА	GGTTATATCA	ATGAAAATTA	TATTGAGCTA	CTAGATGTAG	480
	AAAATAATGA	AAAGTTGAAA	AAGATGGCAA	AAACGATAGA	mGGCGGAGTC	GCTTTTGCTA	540
	CTCAAATTGT	TCAAGAGAAG	TATGAGCAAG	GCTTTAAAAA	TATTTGTTTG	CGTACAAATG	600
	ATATAGAGGC	AGTTAAAAAT	AAACTACAAA	GTGAGCAGGT	TGAAGTAGTA	GGGCCGATTC	660

					1011111111	MIIGITCIC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTICA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	AGTAATAAAG	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
45	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTTA	2400
	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAAIAIGA	ITAATGATGC	GCWWWIWW	ATTGCTAAAA	AIGAAGAIIT	MAMACGAGAC	2500
	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
10	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	attgaaatta	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA.	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÁAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
40	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
40	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
•	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
45	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7778 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
15	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	Gataaatcag	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	TATATTTAAA	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
•	TTTAGAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	TTAATATATA	TCATAAAGTC	1260
40	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
•	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
45	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
40	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAAA	GAATCAAAAA	TTGAAGAAAA	ACAACAACAA	1680

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1860
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
10	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
75	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	Atctagttag	ACAGCACTTT	2940
•	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TTTATATTAT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
45	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
40	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTA ACATATO	CAACTTTTCA	CACAAACTAA	ጥር ጥርጥርጥል	TAATTGAAGA	ልልልልፐልልጥጥ ሮ	3480

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	AAAATATATA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3840
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
15	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
25	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	CATATAACTA	TGAAACCACA	4500
30	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	ATAATAAAAT	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTArC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGÁTGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
40	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
45	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
40	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
50	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	GGTTATTCAA	ACAGAAGATG	AAATTGCTGC	TGTAACTATG	GCTATTGGTG	CAAATTATGG	5280

	IGGATIATET	GGIAIGACIG	AAACGCCATT	AGICATIATI	MINCCCMAC	GAGGIGGACC	3400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	6060
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
40	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
45	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCAAGAT	AAAGAAACAC	CATCATATGA	7020
EE	ATCLCAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

TGTATTTATA	ACAGATCCAT	TTATGCTACT	CAGTTTTTTA	CTATTACAAA	AAATAAAGGA	7200
GTTTTTAAAA	ATGAAAGACA	CATTAATGAG	TATACAAATA	ATTCCTAAAA	CACCAAACAA	7260
TGACAATGTT	ATACCTTACG	TAGACGAGGC	GATTAAAATA	ATTGACGAAT	CTGGTTTGCA	7320
TTTTAGAGTA	GGTCCGTTAG	AAACGACAGT	ACAAGGAAAT	ATGAATGAAT	GTTTAATTTT	7380
AATACAATCA	TTAAATGAAC	GAATGGTGGA	ACTTGAATGT	CCAAGTATTA	TTAGCCAAGT	7440
TAAGTTTTAT	CATGTGCCAG	ATGGCATCAC	TATTGAAACT	TTAACTGAAA	AATATGATGA	7500
ATAACATTAA	AAGTGAAGTA	AACTGGATTT	GAATTGGCTT	GTTAGAGATG	ACGTATAACT	7560
				ATTAAATGAT		7620
				AAGTTCTGTA		7680
				TTTTGAACAT	GTTTATCAGC	7740
CGCCTAATTT	AAAAGCAAGC	GCAAAAAAAG	AGGTNAAA			7778

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

AGATGAAGTT	GTTACGAAAA	TTGCGTACGC	TGTTTCAGAA	CATGTCAAAA	TAGAAACAGG	60
TAATCCATTC	TTTCAAACAT	CACATAGTGG	TTGTGCGACG	GGCGGATCCT	GTAATTGTTC	120
АТТАТААААА	ACATCGAGTC	AGAAAAAGGT	GGTTATTGAA	CCACTAACTA	GCATCTGACT	180
CGATGTTTTT	ATTTATTĊGG	GATTGTTTGT	TTGAATTGTT	GTGCTAAATC	TGGTCGATCT	240
GTCACAATCG	TGTGTGCACC	TTTTTGGTAT	AAATCATTCA	TCAGATTTAT	ACTATTTACG	300
CCATAATAGC	CTGGAATGAT	ATTCATATCA	TTTAACCATT	TGATAAAACG	AGATGAAGTC	360
AAATCAATGC	CTTTAAAATG	AGTAGGCATT	TGGAACGTTT	GTGCTAATGG	TTGGTAGTAC	420
CTACCACCTA	ATAAATGATA	TTTTAAAAAT	GCTTCTGTAA	CTTCCTGTTG	GCTAGCACCA	480
ATTGCGACGG	ATCCTTGTGC	AATTTTATTA	AAACGAACGA	TTTGTTCTTT	ATAAAAACTT	540
GTCACAAGAA	CGCGGTCAAA	TGCTTGATTT	TCTGCAATTG	TATCAAACAT	AATTTGTGGT	600
GCGATTGAGC	CTTCATAGGA	TTCAGGAGCA	TCTTTTAAGT	CTACGTTTAT	ATACATATCA	660
GGATATTGCT	TCAGCAACTC	ATCGAAGGTT	AGTATAGCTG	TGTGTGCATG	ACCACGATAT	720

AATGTATGGG	CACTAACTTT	TCCAGAGCCG	TTCGTCGTTC	TATCAACAGT	TGCGTCATGA	840
AAAACGATAA	GCTGTTGATC	TTTTGTGAGT	CTCACATCTG	TTTCAAAGCC	ATCAACGCCT	900
AATTGTTTAG	CATAGTCAAA	TGCAAGTTGC	GTTTGCTCTG	GTCTTAAAGC	CATACCACCG	960
CGATGCGCAA	ATATATATGG	TGCATTGCCT	TTGAAAAAAG	CAGGGATGGT	TTGCTTTTTA	1020
GTAATCACTT	TATTTTTATT	GATCATTAAT	AGACTACTTA	AAAATCCAGC	ACCGACTAGT	1080
ACCGCATTTA	AAATGTTTCT	GTTTACnTTT	TTCATAAAAA	ATTCCTCC		1128
(2) INFORM	ATION FOR SE	3Q ID NO: 5	0:			
(1) 91	POTTENCE CHAI	ACTERISTICS	S :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6252 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

CAA	GCAAACA	ATCGTCGATA	AAATTGCTAA	AATAATAAA	GTAATTCGAA	CTTTCATCAT	60
GAT	CATCCTT	TGTTTATAGA	GTCAATATAA	GTATGGAATA	TGTTAGGTAT	ATAGTCAAAT	120
GCG	TCAACTA	ATGGGAATTT	TGGCATAGAT	AGAGAATTTA	AGGCAATTAA	AAAGGCATCA	180
			TGCCCAAATG				240
			GAATTAAAAC				300
			GATAACATCA				360
			TTTATTAACA				420
ACA	TTGATTT	TATTTTGCGG	TTGATAGCTA	AGCTTTTCAA	TATCTTCATC	AACAT TGGCG	480
ATT	OTACTAT	TTAAAGCTTT	GAAGTAATTC	ATCATTAATT	CAACGGGTTT	CTTATATTCT	540
TTA	GGAATAT	TGTTTTCAGT	GACAAATTTC	TTGAAATGCA	AATCGTTTTT	AACAGCTAAG	600
TTA	GATAAGT	GGCTAAGTGT	TTCTGCTTGT	TTTTCAGTCA	CTTTTGTTTG	ACTGTCAATT	660
TGT	TTATCTA	GTTTATGTTG	CATAATATAT	TTGTTATCAA	GTATATCGCT	ATTTACAGAC	720
AAA	TACTTTT	CTATAGCTTG	CTTCATCTCT	GCATCACTAA	TATCACTATT	TTTCTTATCT	780
GAG	TTAAAGA	TATCTTTTGT	tTCTAATTTT	TTAGCGCTTT	TAGGTGCATG	GATGCCAGTA	840
CTT	GTATGAT	GATCTTCGTT	ATCAGATTGA	TCGGACGCGC	AACCTGTAAG	AATTAATGTC	900
_		-	TAGTAATCTC				960
TAT	CTTTAAT	TGAAAAAATA	TGTATTCATG	TTTAATAGAG	TAACATTGAA	TTAGTTTGGA	1020

	TCTATCAATA	ATGCATCATT	TTGGACGTTG	TTAAGGATAG	CTTTATCTAT	AAATAACTGC	1140
_	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGATAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TTTGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
40	AAGĀCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
45	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTTATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760
E E	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	IGIIGIIIIA	ANICAGCATI	MAGCAIGGII	GIAMIGCCIC	CITAGATITI	ACCIACIAAA	2.940
5	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
0.5	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
35	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
40	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	attaaagaaa	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
45	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
50	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
55	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
10	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
25	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	atgagactac	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
*	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

(2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

(D) TOPOLOGY: linear

5

10

15

20

25

30

35

40

45

ATCAAATCNC AAAATATTTA TTAATNANAA GGGGATTATC CATGTGAGAA ACAAAGTAAT 60 GCTCTTTTTT TACCTCTTGT GGGTTGAAAA aTGGATCATC AGAGATAGAC TTCTTCTTTT 120 TCGAAGATGA CATTTGATAC TTTAATCTTC TAAAACCATA ACTTGTCGCA TCAAAAATGC 180 CTTCTTGTAC AAGTAAAATC AAAAATATGC TAATAAAAAT AATTAATGAA ACATAAAACA 240 ATATATTTAA ATATGTAATG ATAGTATGGC TATTAAAAAG CCATATAATA AACGTTAATA 300 TTGGCGTTAT TAGTGCCATT CCAAGCCATT TTTTCAACAT TTGATCACTC CCACTTATAG 360 420 AAAACTCTTA CGCATAGTTT ACATTAAAAT CAGACATTGA GGAATGATTT TTTAATTTCT TCAGCTTTAT TGAAATTCTA AAATCAATCA TTCTTCATTA GTTTAAAGCA AAAAAATATT 480 GATATATAGT AAATATTGTA TATATAATAT TAGTTAAGAT TTCAGAAAAT TTTGAAGGGA 540 ATGGAAATTT AGAAATCGGA ATTTGTTAGA GGAGGGGATT AGATGGGGAA ATATATTTTC 600 660 AAACGATTTA TITATATGCT TATTTCTTTA TITATTATTA TIACAATTAC ATTTTTCTTA ATGAAATTAA TGCCAGGTTC GCCATTTAAC GATGCTAAAT TAAATGCTGA ACAAAAAGAA 720 ATTTTAAATG AAAAATATGG ATTAAATGAT CCTGLAGCTA CGCAGTATTT ACATTATTTA 780 AAAAATGTTG TTACAGGCGA TTTTGGTAAT TCATTCCAGT ATCATAATCA ACCTGTGTGG 840 GATTTGATTA AACCGAGACT ACTACCTTCT TTTGAAATGG GTCTTACAGC AATGTTCaTC 900 GGTGTGATAC TGGGACTTAT TTTAGGTGTT GCAGCAGCTA CTAAACAAAA TTCTTGGGTT 960 GACTATACAA CTACAGTTAT TTCAGTTATT GCAGTATCTG TACCATCTTT TGTACTTGCT 1020 GTACFTTTAC AATATGTATT TGCAGTTAAA TTAAGATGGT TCCCAGTAGC TGGATGGGAA 1080 GGTTTTTCGA CCGCGGTATI ACCGTCACTT GCATTATCTG CAGCTGTTTT AGCAACTGTC 1140

GCCAGATACA TAAGAGCAGA GATGATAGAG GTATTAAGTT CAGACTATAT TTTATTAGCG

AGAGCTAAAG GTAATTCGAC AATGCGTGTA CTTTTTGGAC ATGCACTTAG AAATGCTTTA

ATTCCAATTA TTACAATTAT CGTTCCCATG TTAGCAAGTA TTTTAACAGG CACTTTAACA

ATTGAAAATA TTTTTGGAGT TCCTGGATTA GGGGATCAAT TCGTACGTTC AATTACAACA

AATGATTTCT CAGTAATCAT GGCAATCACA CTATTATTTA GCACACTGTT TATCGTTTCT

ATTTTTATTG TAGATATTTT GTACGGTGTG ATAGATCCAC GAATTCGTGT TCCAAGGAGG

TAAAAATAA TGGCTGAAAA TAAAAACAAT TTGTCGATTA ACGACGATCA TTCTAATGCA

¥ 9

5

1200

1260

1320

1380

1440

1500

1560

55

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TIGGCAAGAT	GCTTGGGCTC	1680
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1800
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
0	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
-	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
5	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT.	aatttttgaa	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	AAAATTAAAA	aatcaagagt	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
5	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
-	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
0	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTTATTT	GAACAAAGGG	2700
15	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	.CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
10	GAAGÁTTTAG	CAAAAAAACC	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
Ю	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
15	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360