1. a) -(230 28 25 23 22 24 20) =-1,391,460,352

b)
$$2^{31} + 2^{29} + 2 + 2 + 2 + 2 + 2 + 2^{20} = 2,903,506,944$$

(c)
$$-1.001 \times 2^{-37} = -1.125 \times 2^{-37}$$

d) sw \$50,0(\$t0)

2. a) + (22+26+23+20+2++2++2++2++2+2)=+24,924,924

c)+1.142857x 254

d) Addiu \$ 52, \$00, 18724

3.

Ainvert	Binvert	Operation		Result = A op
0	0	0	0	A AND B
0	0	0	1	A OR B
0	0	1	0	A + B
0	0	1	1	
0	1	0	0	A AND B'
0	l	0		A OR B'
0	l	1	0	A + B'
0	1	1	1	
1	0	0	0	A' AND B
1	0	0	1	A' OR B
1	0	1	0	A' + B
1	0	1	1	
-	1	0	0	A' AND B
l	1	0	1	A' OR B'
1		1	0	A' + B'
-	1		1	

4. a)
$$X = 00011001 \rightarrow 25$$

 $+ Y = 00001011 \rightarrow 11$
 $00100100 \rightarrow 36$

$$X = 00011001 \rightarrow 25$$

$$X = 00001001 \rightarrow 11$$

$$00011001$$

$$0001001001$$

$$00000000$$

$$00010010011 \rightarrow 275$$

5.
$$[-5.5]$$

$$\begin{array}{c}
0.5 \\
\times 2 \\
\hline
1.0
\end{array}$$

$$-[0].[\Rightarrow -1.01100 \cdots \times 2^{2}]$$

- · Fraction: 011 0000 0000 0000 0000
- . Sign: negative > 1
- . Exponent: 2+127=129=10000001(2)

Fraction: 0110000 00000

Sign: negative > 1

Exponent: 2+1023=1025=10000000001

 5.

- · Fraction: 00000... 0000
- · Signe: Positive => 0
- · Exponent: -2+127 = 125 = 01111101(2)

Single precision:

0 01111101 0000 0000 0000 ... 0000000

Fraction: 0000 0000

Signe: Positive > 0

Exponent: -2+ 1023 = 1021 = 01111111101(2)

Double precision:

6. (-5.5): | 100000010110...0000 = -1.011x22 + 0.25: 0011111010000...0000 = 1.0x22

We need to shift the significand of number with smaller exponent. $0.25 = 1.0 \times 2^2 = 0.0001 \times 2^2$

 $(-5.5)+0.25 = -1.011 \times 2^{2} + 0.0001 \times 2^{2}$ = $2^{2}(-1.011 + 0.0001)$ = -1.0109×2^{2}

Iteration	Operation	Multiplicand	Product
0	Initial value (load multiplier to the lower half of the product register)	1010	0000 1101
1	Add: Prod = Prod + Mcand	1010	0000 1101
	Shift:	1010	1010 1101
2	Add:	1010	010 0110
	Shift:	1010	0010 1011
3	Add:	1010	1100 1011
	Shift:	1010	0110 0101
4	Add:	1010	1010 0000
	Shift:	1010	1000 0010

8. Recall the 32-bit ALU discussed in the class shown below. This ALU implements AND, OR, ADD, and SUB. Modify this ALU so it can implements AND, OR, ADD, SUB, and MAX operation. The MAX operation takes the two input words, A and B, and outputs the word that is larger when interpreted as an integer. More formally,

Do your modifications on the following diagram (First modify each 1-bit ALU, then connect them together properly). Also complete the following table to specify the values of the control signals corresponding to the 5 operations that your ALU performs. Hint: for MAX operation, a new MUX is needed, and it will take two steps comparison and assignment just like slt instruction.

32nd bit ALU

Operation	Binvert	Operation	nil to no telesco
A AND B	0	00	
A OR B	0	01	sitt onimi 20 de
A + B	0	10	some on edit on
A - B	1	10	
MAX(A, B)	0	11	en transferred to