Maths stuff

Kevin W Li

February 18, 2017

This is my notes on some maths that I encountered and found to be interesting

Contents

1	Lan	apart W function	1
	1.1	Solve $xa^x = b$	2
	1.2	Solve $x^n a^x = c$	2
3subsection.1.3			
	1.4	Solve $x \ln x = c$ and $x^x = b$	3
	1.5	The limit of (when converges) $h(x) = x^{x^{x^{\cdots}}} \dots \dots$	3

1 Lampart W function

This function is define as the inverse of the function $f(x)=xe^x$, written as $W(z)=f^{-1}(z)$ where $z\in[-e^{-1},+\infty]$. It can be used to solve many problems, for example the problem involving propagation of action potential as in Gatsby theoretical neuroscience here. One property is this $x=W(x)\exp W(x)$ by substituting z=W(x) back to $f(x)=xe^x$

1.1 Solve $xa^x = b$

$$xa^{x} = xe^{x \ln a} = b$$

$$x \ln(a)e^{x \ln(a)} = \ln(a)b$$

$$x = \frac{1}{\ln(a)}W(b \ln(a))$$

1.2 Solve $x^n a^x = c$

$$x^{n}a^{x} = c$$

$$xa^{\frac{x}{n}} = c^{\frac{1}{n}}$$

$$\frac{x}{n}a^{\frac{x}{n}} = \frac{c}{n}$$

$$x = \frac{n}{\ln a}W(\frac{c^{\frac{1}{n}}}{n}\ln a)$$

Special case is when $a=e^b,$ then $x=\frac{n}{b}W(e^{\frac{1}{n}}\frac{b}{n})$

1.3 Solve $a^x = cx + d$

$$a^{x} = cx + d$$

$$\frac{1}{c}a^{x} = x + \frac{d}{c}$$

$$\frac{1}{c}a^{-\frac{d}{c}}a^{x+\frac{d}{c}} = x + \frac{d}{c}$$

$$\left(x + \frac{d}{c}\right)a^{x+\frac{d}{c}} = ca^{\frac{d}{c}}$$

$$x + \frac{d}{c} = -\frac{1}{\ln a}W(-\frac{\ln a}{ca^{\frac{d}{c}}})$$

$$x = -\frac{1}{\ln a}W(-\frac{\ln a}{ca^{\frac{d}{c}}}) - \frac{d}{c}$$

a type outnfss@catcodes

1.4 Solve $x \ln x = c$ and $x^x = b$

$$x \ln x = c$$

$$e^{\ln x} \ln x = c$$

$$\ln x = W(c)$$

$$x = \exp W(c) = \frac{c}{W(c)}$$

Taking $c = \log a$ and exponentiate both size gives $xe^x = a$ whose solution is $\exp W(\log a)$

1.5 The limit of (when converges) $h(x) = x^{x^{x^{\cdots}}}$

$$h(x) = x^{h(x)}$$

$$h(x) = -\frac{1}{\ln x}W(-\ln x)$$

$$\delta \dot{v_E} = \frac{\partial \phi_E}{\partial v_E}$$