

Agenda

- Dataset
- Augmentation techniques
- Implementations
- Results

Dataset

- 29,843 RGB images
- 64x64 pixels

Augmentation

Implementations

- Cycle-Gan
- Difussion-Based model
- Style-Gan
- Style-Gan2-ADA
- For all models we changed photos to size to maintain the same size (128x128 or 256x256 depends on model)

Implementations - Cycle-Gan

- Parameters:
 - o Adam optimizers,
 - Learning rate of 2×10-4
 - Loss function: MSE

Implementations – Difussion-based

Parameters:

- o 50 epochs using an Adam optimizer
- o learning rate of 1 × 10−4
- Mean Squared Error (MSE) as the loss function.

Implementations – Style-Gan

Parameters:

- o 100 epochs,
- obatch size of 8,
- Adam optimizers,
- olearning rate 2 × 10−4
- Loss fun: binary crossentropy loss

Implementations – StyleGan2-Ada

- Parameters:
 - o 512-dimensional latent space,
 - o 1 000 000 images
 - o batch size of 16,
 - Adam optimizer

• "The approach does not require changes to loss functions or network architectures"

non-saturating logistic loss with R1 regularization

 dynamically adjust augmentation strength on the discriminator, improving training stability and mitigating overfitting on limited dataset.

StyleGan2-Ada on more aggressive augmentation

- larger and more frequent square occlusions,
- increased rotation angles,
- greater scaling variations

StyleGan2-Ada on RGB

Stylemixing using StyleGan2-Ada models

Variant	Description	Mixing ratio control	Synthesizer	Outputs
Single Seed	One shared latent vector (z)	Blending done by proportional layer mixing (e.g., 50% RGB, 50% Thermal)	Thermal Generator	1 Mixed Image
Independen Seeds	t Two random latent seeds	Early layers from RGB, late from Thermal using hard cutoff (after layer 6).	Thermal Generator	RGB, Thermal, Mixed
Multi- Seed Shared	Same seed used in both models	Early structure layers from RGB, later ones from Thermal (after layer 4)	Thermal Generator	RGB, Thermal, Mixed

Results of style-mixing

Comparision of the best models – FID score

Model	FID Score
CycleGAN	350.37
StyleGAN	300
StyleGAN2-ADA	$\boldsymbol{101.37}$
StyleGAN2-ADA (RGB photos only)	8.12

Thank you very much!

WE WILL BE WORKING FOR BETTER THERMLA CATS...