IN THE CLAIMS

Fax:7132668510

1	1.	(currently amended) A method of identifying a presence of a first materia	l fluid in	
2		an earth formation having a first transverse nuclear magnetic spin relaxation time		
3		T_2 in a mixture with a second material fluid in an earth formation having a second		
4		transverse nuclear magnetic spin relaxation time T_2 greater than said first	<u>:</u>	
5		transverse relaxation time, said first material comprising a small fraction	of the	
6		mixture, the method comprising:		
7		(a) using a magnet to produce a static field in a region of examination	in said	
8	•	earth formation and align nuclear spins in said region substantiall	у	
9		parallel to a direction of said static field;		
10		(b) applying a pulse sequence		
1	•	A1 - τ- B1 τ - A2 - TW - A3		
12		where A1 is a first excitation pulse, τ is a Carr-Purcell time, B1 is	a first	
3		refocusing pulse, A2 is forced inversion pulse, A3 is a second exce	itation	
14		pulse, and TW is a wait time, and		
		(c) determining a value of TW for which a resulting signal from said	second	
6		material fluid in said earth formation is substantially zero.		
7				
1	2.	(previously presented) The method of claim 1 wherein said first excitation	pulse	
2	•	comprises a pulse having a tip angle substantially equal to 90°.		
3				
1	3.	(previously presented) The method of claim 1 wherein said second excitation		
2	10/64	pulse comprises a pulse having a tip angle substantially equal to 90°.		

1 4. (previously presented) The method of claim 1 wherein said first refocusing pulse 2 comprises a pulse having a tip angle substantially equal to 180°.

Fax:7132668510

3

1 5. (previously presented) The method of claim 1 wherein determining said value of 2 TW further comprises applying a sequence of refocusing pulses B2; after said 3 second excitation pulse and determining a value of TW for which substantially no spin echo signals are produced by said sequence of refocusing pulses. 4

5

1 6. (previously presented) The method of claim 5 wherein at least one of said 2 sequence of refocusing pulses comprises a pulse with a tip angle substantially 3 equal to 180°.

4

- (previously presented) The method of claim 1 further selecting τ to satisfy the 1 7. 2 condition
- 3 $T_2' >> \tau >> T_2$.

4

- 1 8. (previously presented) The method of claim 5 further comprising:
- 2 (i) repeating (b) with different values of TW until no free induction decay 3 signal after the second excitation pulse A3 is produced;
- 4 (ii) repeating (b) with a value of TW altered from the value determined in (i); 5 and
- 6 analyzing a resulting free induction decay signal. (iii) 10/649,423

•			
1	9.	cancel	ed.
2			
1	10.	(previo	ously presented) The method of claim 9 further comprising conveying said
2		magne	t on a logging tool into a borehole into said earth formation.
3			
l	11.	(previo	ously presented) The method of claim 10 wherein said logging tool is
2		convey	yed on a wireline.
3			
1	12.	(previo	ously presented) The method of claim 10 wherein said logging tool is
2		convey	ved on a drilling tubular.
3			
1	13.	(previo	ously presented) A system for identifying a presence of first fluid having a
2		first tra	ansverse nuclear spin relaxation time T_2 in a mixture in an earth formation
3		with a	second fluid having a second transverse spin relaxation time T_2 ' greater
4		than sa	ud first transverse relaxation time, said first fluid comprising a small
5		fraction	n of the second fluid, the method comprising:
б		(a)	a logging tool conveyed into a borehole into said earth formation,
7		(b)	a magnet on said logging tool for producing a static field in a region of
8			said earth formation including said mixture, said magnet aligning nuclear
9			spins in said region substantially parallel to a direction of said static field
10		(b)	a transmitter on said logging tool for applying a radio frequency pulse
11	10/649	,4 2 3	sequence

Fax:7132668510

12			A1 - 7- B1 -7 - A2 - TW - A3
13			to said mixture in said region, where Al is a first excitation pulse, τ is a
14			Carr-Purcell time, B1 is a first refocusing pulse, A2 is forced inversion
15			pulse, and A3 is a second excitation pulse,
16	٠	(c)	a receiver on said logging tool for receiving signals resulting from said
17			nuclear spins resulting from application of said pulse sequence; and
18		(d)	a processor for determining a value of TW for which a resulting signal
19			from said second fluid is substantially zero.
20			
1	14.	(previ	iously presented) The system of claim 13 wherein said first excitation pulse
2		comp	rises a pulse having a tip angle substantially equal to 90°.
3			•
1	15.	(previ	iously presented) The system of claim 13 wherein said second excitation
2		pulse	comprises a pulse having a tip angle substantially equal to 90°
3			
1	16.	(previ	iously presented) The system of claim 13 wherein determining said value of
2		TW f	urther comprises applying a sequence of refocusing pulses B2 i after said
3		secon	d excitation pulse and determining a value of TW for which substantially no
4		spin e	echo signals are produced by said sequence of refocusing pules
5			
1	17.	(previ	iously presented) The system of claim 13 wherein said first refocusing pulse
2		comp	rises a pulse having a tip angle substantially equal to 180°.
3	10/210	492	
	10/649	,423	

1	18.	(previously presented) The system of claim 16 wherein at least one of said
2		sequence of refocusing pulses comprises a pulse with a tip angle substantially
3		equal to 180°.
4		
1	19.	(previously presented) The system of claim 13 wherein $T_2' >> \tau >> T_2$.
2		
1	20.	(previously presented) The system of claim 13 wherein said processor further
2		performs:
3		(i) a repetition of (b) in claim 13 with different values of TW until no free
4		induction decay signal after the second excitation pulse A3 is produced;
5		(ii) a repetition of (b) in claim 13 with the value of TW altered from the value
6		determined in (i); and
7		(iii) analyzes a resulting free induction decay signal.
8		
1	21.	(previously presented) The system of claim 13 further comprising a wireline for
2		conveying said logging tool into said borehole.
3		
1	22.	(previously presented) The system of claim 13 further comprising a drilling
2		tubular for conveying said logging tool into said borehole.
3		-
1	23.	(previously presented) The system of claim 13 wherein said processor is on said
2		logging tool.