PH 716 Applied Survival Analysis

Part II: Nonparametric survival curve estimation

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Mar/03 21:21:45

Notations

- i: subject index, $i = 1, \ldots, n$
- T_i : (authentic) survival time for subject i
- C_i : censoring time for subject i
- $\widetilde{T}_i = \min(T_i, C_i)$: observed survival time for subject i
- Δ_i : event indicator for subject i; = 1 if $\widetilde{T}_i = T_i$; = 0 if $\widetilde{T}_i = C_i$

Assumptions

- T_i is iid across i, i.e., $T_i \sim T$ for all i
- T_i is independent of C_i given covariates (if any)

Kaplan-Meier (KM) estimator

- To estimate $S_T(t)$ (= $S_{T_i}(t)$ for all i) nonparametrically
- Observed distinct authentic survival times: $t_1 < t_2 < \cdots < t_{n_D}$
 - $-n_D$: # of distinct time points at which events are observed
- Recall for discrete survival time

$$- S_T(t) = \prod_{j:t_i \le t} \{1 - \lambda_T(t_j)\}\$$

- KM estimator
 - $-\widehat{S}_{T,KM}(t) = \prod_{j:t_j \le t} \{1 \hat{\lambda}_T(t_j)\}\$
 - * $\hat{\lambda}_T(t_j) = d_j/r_j$: an estimate of the (conditional) probability for an individual who survives up to time t_j experiences the event at t_i , i.e., Pr(event occurs in $[t_j, t_{j+1}) \mid T \geq t_j$)
 - · d_i : # of events that happened exactly at time t_i
 - · r_j : # of individuals at risk up to time t_j (have not yet had an event or been censored prior to t_j)
- Ex. 2.1: Find the KM estimator for the data below, where the + sign denotes a right-censored subject:

				4						
\widetilde{T}_i	2	5+	8	12+	15	21+	25	29	30+	34

• Risk table

\overline{j}	t_{j}	r_{j}	d_{j}	d_j/r_j	$\widehat{S}_{KM}(t_j)$
_	0	10	0	0	1
1	2	10	1	.1	$1 \times (11) = .9$
2	8	8	1	.125	$.9 \times (1125) = .787$
3	15	6	1	.167	$.787 \times (1167) = .656$
4	25	4	1	.25	$.656 \times (125) = .492$
5	29	3	1	.33	$.492 \times (133) = .328$
6	34	1	1	1	0

```
ex21 = data.frame(
   time=c(2, 5, 8, 12, 15, 21, 25, 29, 30, 34),
   delta=c(1, 0, 1, 0, 1, 0, 1, 1, 0, 1)
)
km.ex21 = survival::survfit(
   formula=survival::Surv(time, delta)~1,
   data=ex21,
   conf.type="log-log")
summary(km.ex21)
```

- Variance of KM estimator
 - $\operatorname{var}(d_j/r_j) \approx d_j/\{r_j(r_j-d_j)\}\ (\text{since }d_j/r_j \text{ is the mle of }\lambda_T(t_j) \Rightarrow d_j/r_j \approx N(\lambda_T(t_j),\lambda_T(t_j)\{1-\lambda_T(t_j)\}/r_j))$
 - $\operatorname{var}\{\ln \widehat{S}_{T,KM}(t)\} \approx \sum_{j:t_i < t} d_j / \{r_j(r_j d_j)\}$ (the delta method)
 - $\operatorname{var}\{\widehat{S}_{T,KM}(t)\} \approx \{\widehat{S}_{T,KM}(t)\}^2 \sum_{j:t_j \leq t} d_j / \{r_j(r_j d_j)\}$ (applying the delta method twice)
 - $\operatorname{var}[\ln\{-\ln \widehat{S}_{T,KM}(t)\}] \approx \{\widehat{S}_{T,KM}(t)\}^{-2} \sum_{j:t_j \leq t} d_j / \{r_j(r_j d_j)\}$ (applying the delta method twice)
 - * leading to the confidence interval of $\widehat{S}_{T,KM}(t)$ based on the log-log transformation which is guaranteed to be inside [0,1]
- Visualization of KM estimator

- Properties of KM estimator
 - $-\hat{S}_{T,KM}(t)$ is a right-continuous step function, approximating the (likely smooth) $S_T(t)$

- $-\widehat{S}_{T,KM}(t)$ is a consistent (but typically biased) estimator of $S_T(t)$
 - * As n increases, $\widehat{S}_{T,KM}(t)$ becomes less jagged
 - * The bias vanishes when there is no censoring, stemming from the possibility that the last survivor becomes censored.
- In the absence of censoring, $\widehat{S}_{T,KM}(t)$ reduces to $1 \widehat{F}_T(t)$
 - * $\hat{F}_T(t) = \#\{i: T_i \leq t\}/n$ is the empirical cumulative distribution function (ECDF)
- Note that $\widehat{S}_{T,KM}(t)$ has n_D jumps
 - * One jump at each distinct failure time
 - * There is no jump at the censored times! (why?)
- $-\widetilde{S}_{T,KM}(t)$ is well-defined (it can be specified) up to the last observed time $\max\{\widetilde{T}_1,\ldots,\widetilde{T}_n\}$
 - * One cannot estimate $S_T(t)$ for times $\max\{\widetilde{T}_1,\ldots,\widetilde{T}_n\}$ using the KM procedure
 - * Because no data available in the sample beyond time $\max\{T_1,\ldots,T_n\}$
- If last survivor is censored, KM estimator will NOT drop down to 0
- Ex. 2.2: Visualization of two KM estimators
 - This dataset is from the Mayo Clinic trial in the primary biliary cirrhosis (PBC) conducted between 1974 and 1984. A total of 424 PBC patients met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine.

```
head(survival::pbc[,1:4])
# Cleaning
data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
head(data.ex22)
# Fitting
km.ex22 = survival::survfit(
  formula=survival::Surv(time, status)~trt, data=data.ex22, conf.type="log-log"
print(km.ex22)
summary(km.ex22)
# Plotting
plot(km.ex22)
survminer::ggsurvplot(
  km.ex22.
  xlab="Time",
  conf.int = T,
  conf.int.style="step",
  censor = F,
  risk.table = F,
  cumevents = F,
  tables.height = 0.15
```

Nelson-Aalen(-Altschuler-Fleming-Harrington) estimator

```
• Estimating the cumulative hazard
```

```
– Recall for discrete times, \Lambda_T(t) = \sum_{j:t_i \leq t} \lambda_T(t)
```

$$\begin{array}{l} -\widehat{\Lambda}_{T,NA}(t)=\sum_{j:t_j\leq t}\widehat{\lambda}_T(t_j)=\sum_{j:t_j\leq t}d_j/r_j\\ \bullet \ \ \text{Estimating the survival function} \end{array}$$

- - Recall for continuous times, $S_T(t) = \exp{-\Lambda_T(t)}$
 - $-\widehat{S}_{T,NA}(t) = \exp\{-\widehat{\Lambda}_{T,NA}(t)\} = \exp\{-\sum_{i:t_i < t} d_i/n_i\}$
- Asymptotically equivalent to KM

- KM and NA give the same estimator as $n \to \infty$
- Revisit Ex. 2.1: Find the NA estimator for the data below, where the + sign denotes a right-censored subject:

\overline{i}	1	2	3	4	5	6	7	8	9	10
$\overline{\widetilde{T}_i}$	2	5+	8	12+	15	21+	25	29	30+	34

```
ex21 = data.frame(
   time=c(2, 5, 8, 12, 15, 21, 25, 29, 30, 34),
   delta=c(1, 0, 1, 0, 1, 0, 1, 1, 0, 1)
)
na.ex21 = survival::survfit(
   formula=survival::Surv(time, delta)~1,
   data=ex21,
   conf.type="log-log",
   type = 'fh')
summary(na.ex21)
```