

Fig. 1

Fig. 2

Fig. 3

Fig. 5

1	module <memory_name></memory_name>	
	/* where <memory_name> is the RT-level name of the memory;</memory_name>	*/
2	CLASS = {REGISTER FILE, SRAM, DRAM};	
3	FUNCTION = {RAM, CAM, FIFO};	
4	WIDTH = <integer>;</integer>	
1.	/* where integer indicates the data width of the memory.	*/
5	DEPTH = <integer>:</integer>	,
1	/* where integer indicates the address depth of the memory.	* /
1	/ where integer indicates the address depth of the memory.	. /
6	MIN_ADDRESS = <integer>;</integer>	
1 7	MAX_ADDRESS = <integer>:</integer>	
1 '	/* The minimum and maximum addressable locations for read and write ports.	*/
8	READ_ADDRESS = {decoded, encoded};	,
9	WRITE_ADDRESS = {decoded, encoded};	
1. "	/* Fully decoded and encoded address signals.	*/
1	/ runy decoded and encoded address signals.	. /
10	PORTS = {R= <integer>, W=<integer>, RW=<integer>, C=<integer>, S, R};</integer></integer></integer></integer>	
1 10	/* Where R: read only ports, W: write only ports, RW: read and write ports,	*/
	/* C: compare ports, S: set port, R: reset port	*/
1	7 C. compare ports, 5. set port, 1c. reset port	- /
111	WRITE POLARITIES={W Dpolarity ,W Apolarity ,W Epolarity ,WCLK polarity};	
1	/* polarity ={+,-}	*/
	/* WD+ WD- : write data acts as an A B phase latch	*/
1	/* WA+ WA- : write address acts as an A B phase latch	*/
	/* WE+ WE- : write enable acts as an A B phase latch	*/
	/* WCLK+ WCLK- : actual write occurs on the rising/falling edge	*/
1	/ Women's women white occurs on the manighment edge	,
12	READ_POLARITIES={RDpolarity, RApolarity, REpolarity, RCLKpolarity};	
	/* polarity ={+,-}	*/
1	/* RD+ RD- : read data acts as an A B phase latch	*/
1	/* RA+ RA- : read address acts as an A B phase latch	*/
1	/* RE+ RE- : read enable acts as an A B phase latch	*/
1	/* RCLK+ RCLK- : read occurs on the rising/falling edge	*/
1		
13	RR_RESOLUTION={R,X};	
1	/* where R : indicates that the location could be read	*/
14	WW_RESOLUTION={true, false};	
1	/* where true: indicates that two ports can write to the same location	*/
15	PORT_ARBITRATION={port names};	•
1	/* The order the port names appear in the list determines the dominant ports.	*/
16	RW_RESOLUTION={NW,XW,OW,XX,OX};	
1	/* where NW: reading new data and writing the data	*/
	/* XW: reading X and writing the data	*/
1	/* OW: reading old data and writing data	*/
1	/* XX: reading and writing Xs	*/
1	/* OX: reading old data and writing X	*/
1		
17	endmodule;	

Fig. 6

Fig.7

Fig. 8