Cs3340 Assignment 1

Daniel Rawana | 250911447

- **1. a)** Insertion sort's worst case performance is Θ (k^2) per k-element list. Therefore sorting all n/k lists of length k will take $\Theta(k^2n/k) = \Theta(nk)$ worst-case time.
- **b)** To merge the sublists in $\Theta(n|g(n/k))$ time, we must merge the lists pairwise, then merge those lists pairwise, etc until there is only one list. Each level takes $\Theta(n)$ time and there are $\lg(n/k)$ levels. Therefore the merging takes $\Theta(n|g(n/k))$ time.

c)
$$k = \Theta(\lg n)$$
.

 $\Theta(nk+n\lg(n/k)) = \Theta(n\lg n+n\lg n-n\lg\lg n) = \Theta(2n\lg n-n\lg\lg n)$ which is in the order of $\Theta(n\lg n)$.

d) We should choose k so that it is the largest list length that is faster to sort using insertion sort than merge sort.

2.

Α	В	0	0	Ω	ω	Θ
Lg ² k	n€	Yes	Yes	No	No	No
n ^k	C ⁿ	Yes	Yes	No	No	No
√n	n ^{sin n}	No	No	No	No	No
2 ⁿ	2 ^{n/2}	No	No	Yes	Yes	No
n ^{lgc}	C ^{lg n}	Yes	No	Yes	No	Yes
lg(n!)	lg(n ⁿ)	yes	No	Yes	No	Yes

3. a)

i)
$$T(n) = T(n/2) + c = \Theta(Ign)$$

ii)
$$T(n) = T(n/2) + cN$$

$$=2cN+T(n/4)$$

$$=3cN+T(n/8)$$

$$= \sum (i = 0 \rightarrow \lg n - 1) (2^i cN / 2^i)$$

=cNlgn

 $=\Theta(nlgn).$

iii)
$$T(n)=T(n/2)+cn=\Theta(n)$$
.

```
b) i) T(n) = 2T(n/2) + cn = \Theta(n \lg n)

ii) T(n) = 2T(n/2) + cn + 2N = 4N + cn + 2c(n/2) + 4T(n/4)

= 8N + 2cn + 4c(n/4) + 8T(n/8)

= \sum (cn + 2^i N)

= \sum cn + N \sum 2^i

= cn \lg n + N ((2^{\lg n} - 1) / (2 - 1))

= cn \lg n + nN - N = O(nN)

= O(n^2)

iii) T(n) = 2T(n/2) + cn + 2n/2

= 2T(n/2) + (c+1)n

= \Theta(n \lg n).
```

- **5.** a) \$./asn1_a.sh [size] b) \$./asn1_b.sh [size] c) \$./asn1_c.sh [size] [k value]
- **d)** Insertion sort's run time grows exponentially with input size, so an input of size 200,000,000 would take extremely long. The best value of K is 16 and at this length, insertion sort is faster than merge sort.