Analysis of Lowest Risk Aircraft

With emphasis on Engine Type and Purpose of Flight

Investing in Aircraft

The Problem

- How do we expand our line of business within the bounds of our risk tolerance?
- How do we determine which industries or aircraft are safest?
- Do we have enough data to inform a market entry strategy?

Investing in Aircraft

The Solution

- Sanitization
- Value imputation
- Feature Engineering to derive risk

Methodology

Assumptions

- Focus on Airplanes only
- Impute missing values with external research
- Remove samples that contain:
 - Too many unique values
 - Too many missing values
 - Too few samples

Methodology

Feature Engineering & Calculating Risk

- Calculate risk:
 - Fatal, serious, minor injuries
 - Total Uninjured
- Focus on Actionable Business Features:
 - Engine Type
 - Purpose of Flight

Findings

Safety over the years

- The Data shows a positive trend in Fatal Injuries over the years.
- What does it mean?
 - Any investments should be researched thoroughly
 - We should not invest broadly in aircraft

Findings Safest Industries

- Banner Tow
- Instructional
- Aerial Application

Findings Safest Engine Types

- Turbo Fan
- Reciprocating

Problem Solution

& How Recommendations were determined

- Solve for Risk using Fatality Rates
- Consider macro and micro features in the dataset to determine:
 - General trends
 - Specific feature analysis

Recommendations

& Conclusions

- Do not recommend broad investment in aircraft
- Invest in the following industries to minimize risk:
 - Banner Towing
 - Instructional
 - Aerial Application
- Invest in manufacturers or industries using Turbo Fan based engine architectures

Considerations

& confidence, limitations and enhancements

- Using other metrics for risk
- Data Augmentation & Heuristics
- Verifying Initial Assumptions
- Testing Statistical Significance

Questions and Answers

& Thank you