Assignment II - Cache Design

Please design an experiment (using the cache simulator) for studying the factors that affects the performance of cache accesses. We will address traces from gcc_ld_trace.txt or go_ld_trace.txt as benchmarks. Please fill your results and plot graph of each table. In particular, what does the results suggest about the design of cache.

a. Block Size Tradeoff on direct mapped cache

	gcc_Id_trace.txt		Direct mapped		
Block Size (Bytes)	Cache Size (KB)				
	4	8	16	32	
4	Cache size: 4kB and Block size: 4B HIT:1669560 MISS: 330441 Miss ratio: 0.165220	Cache size: 8kB and Block size: 4B HIT:1775198 MISS: 224803 Miss ratio: 0.112401	Cache size: 16kB and Block size: 4B HIT:1849934 MISS: 150067 Miss ratio: 0.075033	Cache size: 32kB and Block size: 4B HIT:1895088 MISS: 104913 Miss ratio: 0.052456	
8	Cache size: 4kB and Block size: 8B HIT:1652147 MISS: 347854 Miss ratio: 0.173927	Cache size: 8kB and Block size: 8B HIT:1766215 MISS: 233786 Miss ratio: 0.116893	Cache size: 16kB and Block size: 8B HIT:1846558 MISS: 153443 Miss ratio: 0.076721	Cache size: 32kB and Block size: 8B HTT:1895885 MISS: 104116 Miss ratio: 0.052058	
16	Cache size: 4kB and Block size: 16B HIT:1677463 MISS: 322538 Miss ratio: 0.161269	Cache size: 8kB and Block size: 16B HIT:1784151 MISS: 215850 Miss ratio: 0.107925	Cache size: 16kB and Block size: 16B HIT:1860161 MISS: 139840 Miss ratio: 0.069920	Cache size: 32kB and Block size: 16B HIT:1906747 MISS: 93254 Miss ratio: 0.04662	
32	Cache size: 4kB and Block size: 32B HIT:1687566 MISS: 312435 Miss ratio: 0.156217	Cache size: 8kB and Block size: 32B HIT:1793431 MISS: 206570 Miss ratio: 0.103285	Cache size: 16kB and Block size: 32B HIT:1867498 MISS: 132503 Miss ratio: 0.066251	Cache size: 32kB and Block size: 32B HIT:1911848 MISS: 88153 Miss ratio: 0.044076	

b. N-way associative cache with replacement algorithms: Least recently used (LRU), and Round Robin (RR).

Rodrid Robii	• ` ′	e.txt block size =	4 bytes	Associativity
Cache Size (KB)	Two-way		Four-way	
	LRU	RR	LRU	RR
1	HIT:1491704	HIT:1458831	HIT:1527679	HIT:1475129
	MISS: 508297	MISS: 541170	MISS: 472322	MISS: 524872
4	HIT:1759588	HIT:1740139	HIT:1786471	HIT:1759111
	MISS: 240413	MISS: 259862	MISS: 213530	MISS: 240890
8	HIT:1834446	HIT:1821673	HIT:1852267	HIT:1834498
	MISS: 165555	MISS: 178328	MISS: 147734	MISS: 165503
32	HIT:1939563	HIT:1934739	HIT:1950492	HIT:1943335
	MISS: 60438	MISS: 65262	MISS: 49509	MISS: 56666
512	HIT:1974599	HIT:1974538	HIT:1974745	HIT:1974736
	MISS: 25402	MISS: 25463	MISS: 25256	MISS: 25265
1024	HIT:1974717	HIT:1974691	HIT:1974753	HIT:1974753
	MISS: 25284	MISS: 25310	MISS: 25248	MISS: 25248

Note that simulation code and traces can be downloaded from

https://www.cp.eng.chula.ac.th/~krerk/books/Computer%20Architecture/CacheSim

ลากกราฟละเน็นได้ว่า ขึ่ง Cache size มกและ Block size มาก จะขึ่งท่าใน miss rate ลดลง โดยเฉพาะ Cache size จะเน็นผลอย่างมาก แต่จะมีบารกรณีที่ Block size ที่มากกว่า จะมี miss rate ที่มากกว่า เช่นที่ 8 bytes เพาะเกิด Temporal Locality น้อยลง

จากกราฟจะเน็นได้จำทั่ Cache size น้อย จะมี miss rate ที่แตกต่างกันโดยหั LRU methol จะมี miss rate ที่น้อยกว่า QR methol

11ละ 4 พลง จะมี miss rate ทั่น้อยกว่า 2 พลง แท้ยั่ง Cache size มากขึ้น กามต่าง miss rate ก็จะยังน้อยลง