Total No. of Questions : 9]	200	SEAT No. :
P6487	. 3	[Total No. of Pages : 4
	[5868]-103	

F.E. (Semester - I & II)

		ENGINEERING	CHEMISTRY	
		(2019 Pattern) (Pap	er - II) (107009)	
Tim	e : 2½	Hours OF OF	[Max. Mark	s : 70
Inst	ructio	ns to the candidates:		
	1)	Questions No. 1 is compulsory. Solv Q.No. 6 or Q.No. 7 and Q.No. 8 or	ve Q.No. 2 or Q.No. 3, Q.No. 4 or Q.1 Q.No. 9.	No. 5,
	2)	Near diagrams must be drawn wh	erever necessary.	
	3)	Figures to the right indicates full	marks.	
	4)	Use of logarithmic tables slide calculator and steam tables is allo	rule, Mollier charts, electronic powed.	ocket
	5)	Assume suitable data if necessary.	2 %	
	D		3 36.	
		, o	200	
Q1)	Mu	Itiple choice questions -	-82	
	i)	PPV shows fluorescen	co on application of electric field	d and
		can be used in	26 11	[2]
		× 0°	D) wallow areas asserts III	C
		A) blue, sutures ()	B) yellow-green, organic LI	EDS
		C) red, eye-wear lenses	D) violet, drug - delivery	No.
	ii)	C atoms in graphene show	hybridisation.	[©] [1]
		A) sp^3	B) sp	
		C) sn ²	D) sp^3d^2	
		C) sp ²	D) spa 20 30	
	iii)	Power alcohol is advantageous	because it	[1]
		A) decreases octane number	B) burns clean	
		C) increases calorific value	D) increases cetane number	
	iv)	Units of calorific value are		[1]
		A) Cal/g	B) Cal/m	
		C) Joules	D) Kg/m³	
		-/	- Ko-s	

	V)	Vibration.	and shows	fundamental modes of [2]
		A) linear, 3	, (S B)	non-linear, 3
		C) linear, 4	^ S D)	non-linear, 4
	vi)			velength 10-400 nm are called [1]
		A) Visible	B)	Microwave
		C) IR	(D)	Ultra violet
	vii)	Tinning is coal	ing of	[1]
		A) Fe on Sn	B)	Zn on Fe
		C) Sn on Fe	D)	Fe on Zn
	viii)	Rate of corrosio	on with incre	ase in purity of the metal. [1]
		A decreases		A) S
	08	B) increases	0	eno.
		C) remains sa	me S	g.,
		D) initially in	creases and then remain	ins constant
Q2)	a)			explain three factors responsible as and two uses of biodegradable
	b)	What are nan- applications of		in brief two properties and [5]
	c)	Give the struc polycarbonate.		rties and applications each of [4]
Q3)	a)		on nano-tubes? Discus respect to their structu	s the different types of carbon ire. [6]
	b)	10.770	cture of graphene with es and two application	the help of diagram and mention [5]
	c)		be conducting and g	the structural requirements for ive any three applications of [4]
[5868	3]-103		2	

[5868	3]-103	3
	b)	Give the principle of IR spectroscopy Explain fundamental modes of bending vibrations. [5]
Q7)	a)	Draw block diagram of single beam UV-vis spectrophotometer. Explain its four components and give their function. [6]
		OR CON NOT
	c)	Explain any four applications of IR spectroscopy. [4]
	b)	Explain the possible transitions which occur on absorption of UV-Vis radiations by an organic molecule. [5]
Q6)	a)	Draw block diagram of IR spectrophotometer. Explain its any four components and give their function. [6]
		Jo. V
	c)	1.0g of coal sample on complete combustion increased the weight of U-tube containing CaCl ₂ by 0.5g and tube containing KOH by 2.4g. Calculate % of C and H in the given coal sample. [4]
	b)	Give the preparation reaction of biodiesel. State four advantages and two limitations of biodiesel. [5]
Q5)		Give the principle and explain the process of fractional distillation of crude oil with labelled diagram. Give the composition and boiling range of any one fraction obtained during refining. [6]
05)	>	OR Street in a single and a value that was a saw of first time I distillation of
		Calculate GCV and NCV of the fuel [4]
		Mass of steam condensed = 0.08 kg
		Rise in temperature of cooling water = 8.1°C
		Mass of cooling water = 30 kg
		Volume of gas burnt at $STP = 0.1 \text{m}^3$
		Calorimeter experiment -
	c)	The following data was obtained in a Boy's gas
	b)	Explain the production of hydrogen by steam reforming of coke and methane with reaction conditions. [5]
Q4)	a)	What is proximate analysis of coal? Give the procedure and formula for determination of each constituent. [6]

	c)	Define the following terms -	[4]
		i) Chromophore	
		i) Chromophore ii) Hypsochromic shift	
		iii) Auxochrome	
		iv) Hypochromic shift	
Q8)	a)	Explain hydrogen evolution and oxygen absorption mechanism wet corrosion.	of [6]
	b)	What is electroplating? Explain the process with diagram and reaction Give applications of electroplating.	ons. [5]
	c)	What are anodic and cathodic coatings? Which are better and why	?[4]
		OR ASS	
Q9)	a) o	State Pilling Bedworth ratio and give its significance. Give the difference of oxide films with suitable assemble formed during the oxide	
	X	types of oxide films with suitable example formed during the oxida corrosion of metals.	[6]
	b)	Explain any five factors affecting the rate of corrosion.	[5]
	c)	What is the principle of cathodic protection? Explain any one met	
		of cathodic protection.	[4]
		200	. 3
		No. 140 years	1)
		Ng.	
		B. 2	
		2000	
		00,00	
		(G) 1/0°	
		CY 200'	
		6.7	
		of cathodic protection, and the state of the	
		19.7°	
[5868	3]-103	3 4	

Total No. of Question	ns:91
-----------------------	-------

SEAT No.	:

P6487

[Total No. of Pages: 2

[5868]-102

First Year Engineering (FE SEM I/II)

ENGINEERING CHEMISTRY

(2019 Pattern)

Solution With Appropriate Answers

Instruction to the candidate

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.

Tips to Remember You Start Writing Answer Sheet

- 1) Read the question carefully.
- 2) Plan your answer before writing.
- 3) Start with a strong introduction.
- 4) Organize your thoughts in a logical manner.
- 5) Support your arguments with evidence and examples.
- 6) Use clear and concise language.
- 7) Be specific and precise in your responses.
- 8) Address all parts of the question.
- 9) Manage your time effectively.
- 10) Review and revise your answers.

These points should help you structure and write your answers effectively during the exam. Good luck!

	Q.No.			TOTAL
E				
М				

1

प्र.क्र./Q. No.		
Q. 1		
→ i)	B) yellow-green, organic LEDs	
→ ii)	C) sp2	
→ iii)	B) burns clean	
→ iv)	A) Callg	
→ v)	C) linear, 4	
→ vi)	D) Ultra violet	
→ vii)	C) Sn on Fe	
→ viii)	A) decreases	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 2		
→ a)	Biodegradable polymers :	
	- Biodegradable polymers are a type of polymers that can be broken down into	
	simpler compounds by biological processes, such as the action of enzymes or	
	microorganisms, over a period of time.	
	- They are designed to degrade and return to the environment without leaving	
	behind harmful residues.	
	Factors responsible for biodegradation:	
	Chemical Structure:	
	- The chemical structure of a biodegradable polymer plays a crucial role in its	
	biodegradation. Certain chemical groups, such as ester, amide, or ether linkages, are	
	more susceptible to enzymatic attack and microbial degradation.	
	- Polymers with these susceptible linkages can be easily broken down by biological	
	processes.	
	Molecular Weight:	
	- The molecular weight of a biodegradable polymer affects its biodegradation rate.	
	Generally, polymers with lower molecular weights tend to degrade faster than those	
	with higher molecular weights.	
	- Smaller polymer chains provide more accessible sites for microbial colonization and	
	enzyme attack, leading to quicker degradation.	
	Environmental Conditions:	
	- The environment in which biodegradable polymers are present significantly	
	influences their degradation rate. Factors like temperature, humidity, pH, and the	
	presence of microorganisms can impact the rate and extent of biodegradation.	
	- For example, high temperatures and the presence of suitable microorganisms can	
	accelerate the degradation process.	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 2		
	Properties of biodegradable polymers:	
	Environmental Compatibility:	
	Biodegradable polymers are environmentally friendly materials as they break down	
	naturally into harmless substances.	
	- They do not persist in the environment like conventional non-biodegradable	
	plastics, reducing the accumulation of waste and potential ecological damage.	
	Versatility:	
	- Biodegradable polymers can be designed with a wide range of properties, such as	
	mechanical strength, flexibility, and degradation rate.	
	- This versatility allows for the development of customized materials suitable for	
	various applications and industries.	
	Uses of biodegradable polymers:	
	Packaging Materials:	
	- Biodegradable polymers find applications in the production of packaging materials,	
	such as bags, films, and containers.	
	- These materials can be used for food packaging or other single-use applications	
	where their biodegradability helps reduce environmental pollution.	
	Medical Applications:	
	- Biodegradable polymers are extensively used in the medical field. They are used in	
	the production of sutures, drug delivery systems, tissue engineering scaffolds, and	
	biodegradable implants.	
	- These polymers degrade within the body, eliminating the need for surgical removal	
	and minimizing potential complications.	
	<u> </u>	_

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.		
Q. 2		
→ b)	Nanomaterials :	
	- Nanomaterials are materials that have unique properties and structures at the	
	nanoscale level, typically between 1 and 100 nanometers.	
	- These materials exhibit novel characteristics different from their bulk counterparts	
	due to their small size and increased surface area-to-volume ratio.	
	Two properties of nanomaterials:	
	Size-dependent Properties:	
	- Nanomaterials display size-dependent properties, meaning their behavior and	
	characteristics change as their size decreases.	
	- For example, nanoparticles may have enhanced optical, magnetic, or catalytic	
	properties compared to larger particles of the same material.	
	High Surface Area:	
	- Nanomaterials have a significantly higher surface area compared to their volume.	
	- This large surface area enables efficient interaction with other substances, making	
	them highly reactive and suitable for applications such as adsorption, catalysis, and	
	sensing.	
	Two applications of nanomaterials:	
	Nanomaterials in Electronics/Optoelectronics:	
	- Nanomaterials are used in electronics and optics for their unique properties.	
	- For instance, nanoparticles or nanowires can be utilized in the development of	
	smaller, faster, and more efficient electronic devices.	
	- Nanomaterials are also employed in the production of high-resolution displays,	
	solar cells, and sensors.	
	Nanomaterials in Biomedical Applications:	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 2		
	- Nanomaterials have revolutionized the field of medicine and healthcare.	
	- They can be engineered for targeted drug delivery, imaging, and diagnostic	
	purposes.	
	- Nanoparticles can carry and release drugs at specific sites in the body, enhancing	
	therapeutic efficacy and minimizing side effects.	
→ c)	structure of polycarbonate:	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Properties of Polycarbonate:	
	High Impact Resistance:	
	- Polycarbonate exhibits excellent impact resistance, making it highly durable and	
	able to withstand significant forces without breaking or shattering.	
	- This property makes it ideal for applications requiring impact resistance, such as	
	safety goggles, bulletproof glass, and protective equipment.	
	Transparency:	
	- Polycarbonate has high optical clarity and transparency, allowing light to pass	
	through with minimal distortion.	
	- This property makes it suitable for applications where visibility or light transmission	
	is crucial, including eyeglass lenses, windows, and transparent protective barriers.	
	Heat Resistance:	

- Polycarbonate possesses good heat resistance, with a glass transition temperature

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 2		
	temperature around 147°C (297°F).	
	- It can withstand high temperatures without deforming or melting, making it	
	suitable for applications that require exposure to heat, such as electrical components,	
	automotive parts, and cookware handles.	
	Applications of Polycarbonate:	
	Electrical and Electronics:	1
	- Polycarbonate is widely used in electrical and electronic applications due to its	
	excellent electrical insulation properties, impact resistance, and transparency.	
	- It is used in electrical connectors, switches, insulators, LED light diffusers, and	
	optical discs.	
	Automotive Industry:	
	- Polycarbonate finds extensive use in the automotive sector due to its impact	
	resistance, lightweight nature, and transparency.	
	- It is used for headlamp lenses, interior trim components, instrument panels,	
	sunroofs, and exterior mirrors.	
	Construction and Architecture:	
	- Polycarbonate's combination of strength, transparency, and weather resistance	
	makes it suitable for construction applications.	
	- It is used for roofing panels, skylights, safety glazing, sound barriers, and	
	architectural features where both aesthetic appeal and durability are essential.	
	······································	

	Q.No.			TOTAL
E				
М				

SPPU HUB	

प्र.क्र./Q. No.		
Q. 3		
→ a)	Carbon nanotubes :	
	Carbon nanotubes are cylindrical structures composed of carbon atoms arranged in	
	a hexagonal lattice.	
	They have unique mechanical, electrical, and thermal properties, making them of	
	great interest in various fields such as electronics, materials science, and	
	nanotechnology.	
	There are different types of carbon nanotubes based on their structure, including:	
	Single-Walled Carbon Nanotubes (SWCNTs):	
	Structure of Single-Walled Carbon Nanotubes	
	ASSO.	
	\- \- -\-\	
	figure :Structure of Single-Walled Carbon Nanotubes	
	- SWCNTs consist of a single cylindrical graphene sheet rolled into a seamless tube.	
	Properties:	
	- They can have varying diameters and lengths, with aspect ratios reaching up to	
	thousands.	
	- SWCNTs can exhibit metallic or semiconducting behavior depending on their	
	chirality, which is the arrangement of carbon atoms in the tube.	
	Applications:	
	SWCNTs find applications in electronics, energy storage, nanocomposites, and	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.	
Q. 3	
	biomedical fields due to their excellent electrical conductivity and mechanical
	properties.
	Multi-Walled Carbon Nanotubes (MWCNTs):
	Structure of multi- walled carbon nanotubes :
	figure :Structure of multi-Walled Carbon Nanotubes
	- MWCNTs consist of several concentric graphene layers arranged like nested
	cylinders, forming a tube within a tube structure.
	Properties:
	- MWCNTs have larger diameters than SWCNTs and can possess multiple walls.
	- The number of walls can vary, resulting in different interlayer spacing and
	properties.
	- The outermost layer can exhibit properties similar to SWCNTs.
	Applications:
	- MWCNTs are used in a wide range of applications, including reinforced composites,
	catalyst supports, thermal management materials, and sensors.
	3. Double-Walled Carbon Nanotubes (DWCNTs):

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.								
Q. 3								
	Structure of Double-Walled Carbon Nanotubes:							
	figure Structure of Double Dellad Carbon Manatubas							
	figure :Structure of Double-Walled Carbon Nanotubes							
	- DWCNTs are composed of two concentric graphene layers forming a tube within							
	a tube structure, similar to MWCNTs but with only two walls.							
	Draw authin at							
	Properties: - DWCNTs combine some properties of SWCNTs and MWCNTs.							
	- The inner and outer tubes can have different chiralities, leading to tunable electronic properties.							
	Applications:							
	- DWCNTs have potential applications in nanoelectronics, energy storage, and as							
	catalyst supports due to their unique structure and properties							
	Court out							
→ b)	Graphene:							
	- Graphene is a two-dimensional allotrope of carbon arranged in a hexagonal lattice							
	structure.							
	- Each carbon atom in graphene is bonded to three neighboring carbon atoms,							
	forming a flat sheet with exceptional properties.							
	Structure of Graphene :							

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 3		
	Carbon atoms Molecular bonds	
	Carbon atoms Molecular bonds ~ 0.142 nm	
	figure : structure of Graphene	
	- Graphene consists of a single layer of carbon atoms arranged in a honeycomb	
	lattice. The carbon atoms are sp² hybridized, forming strong sigma bonds between	
	them.	
	- The hexagonal lattice structure of graphene resembles a chicken wire fence, where	
	each vertex represents a carbon atom and each line represents a carbon-carbon	
	bond.	
	- Due to its unique structure, graphene exhibits extraordinary strength and is	
	considered one of the strongest materials known.	
	Properties of graphene:	
	- Graphene is incredibly strong. Despite being only one atom thick, it is considered	
	one of the strongest materials known. Its carbon bonds give it exceptional structural	
	integrity.	
	- Graphene is an excellent conductor of electricity. Its unique structure allows	
	electrons to move rapidly through its lattice, making it ideal for electronic	
	applications.	
	- Graphene also possesses excellent thermal conductivity. It can efficiently conduct	
	heat, making it valuable for applications that require efficient heat dissipation.	

	Q.No.			TOTAL
E				
М				

Application of graphene :	
Electronics and Photonics:	
- Transistors, flexible displays, touchscreens, photodetectors, and sensors.	
- Enables faster, smaller, and more efficient electronic devices.	
Energy Storage:	
- Improving batteries and supercapacitors.	
- Potential applications in electric vehicles and renewable energy storage.	
Composite Materials:	
- Enhances properties of composites.	
- Improved mechanical strength, electrical conductivity, and thermal properties.	
- Applications in aerospace, automotive, and construction industries.	
Definition of Conducting Polymers:	
- Conducting polymers are a type of polymer that can conduct electricity due to	
their unique chemical structure and electronic properties.	
Structural Requirements for Conductivity:	
π-Conjugation:	
- Conducting polymers must have a conjugated backbone containing alternating	
single and double bonds or aromatic rings.	
- This allows for the delocalization of π -electrons, enabling the transport of charge	
carriers.	
Doping:	
	Electronics and Photonics: - Transistors, flexible displays, touchscreens, photodetectors, and sensors. - Enables faster, smaller, and more efficient electronic devices. Energy Storage: - Improving batteries and supercapacitors. - Potential applications in electric vehicles and renewable energy storage. Composite Materials: - Enhances properties of composites. - Improved mechanical strength, electrical conductivity, and thermal properties. - Applications in aerospace, automotive, and construction industries. Definition of Conducting Polymers: - Conducting polymers are a type of polymer that can conduct electricity due to their unique chemical structure and electronic properties. Structural Requirements for Conductivity: π-Conjugation: - Conducting polymers must have a conjugated backbone containing alternating single and double bonds or aromatic rings. - This allows for the delocalization of π-electrons, enabling the transport of charge carriers.

- Conducting polymers require the presence of dopants or charge carriers to enhance

	Q.No.			TOTAL
E				
М				

12

enhance their electrical conductivity.	
- These dopants can be added during synthesis or through electrochemical processes.	
Applications of Conducting Polymers:	
1. Organic Electronics:	
- Organic light-emitting diodes (OLEDs)	
- Organic photovoltaic cells (OPVs)	
- Organic field-effect transistors (OFETs)	
2. Energy Storage:	
- Supercapacitors	
- Batteries	
3. Sensors:	
- Biosensors	
- Gas sensors	
- Chemical sensors	
4. Antistatic Coatings:	
- Coatings to prevent electrostatic discharge (ESD)	
- Protect sensitive electronic components or materials	
	- These dopants can be added during synthesis or through electrochemical processes. Applications of Conducting Polymers: 1. Organic Electronics: - Organic light-emitting diodes (OLEDs) - Organic photovoltaic cells (OPVs) - Organic field-effect transistors (OFETs) 2. Energy Storage: - Supercapacitors - Batteries 3. Sensors: - Gas sensors - Chemical sensors 4. Antistatic Coatings: - Coatings to prevent electrostatic discharge (ESD)

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.						
Q. 4						
→ a)	Proximate analysis					
	- Proximate analysis is a laboratory technique used to determine the major					
	constituents or components of coal.					
	- It provides valuable information about the coal's quality, combustion characteristics,					
	and potential applications.					
	- The four main constituents analyzed in proximate analysis are moisture, volatile					
	matter, fixed carbon, and ash					
	procedure and formulas for the determination of each constituent:					
	I. Moisture:					
	Procedure:					
	- Weigh a representative coal sample and place it in a drying oven at a specified					
	temperature (typically 105°C to 110°C).					
	 Dry the sample until it reaches a constant weight. Calculate the percentage of moisture as the difference between the initial and 					
	final weights of the sample.					
	Formula:					
	Moisture content (%) =					
	2. Volatile Matter:					
	Procedure:					
	- Take a weighed coal sample and place it in a covered crucible.					
	- Heat the crucible in a furnace or muffle furnace at a specific temperature (typically					
	900°C) for a specified duration.					
	- Remove the crucible and allow it to cool in a desiccator.					
	- Weigh the crucible with the remaining residue.					
	- Calculate the percentage of volatile matter as the difference between the initial					
	weight and the weight of the residue.					
	OFT ALL CUID ITOX COLLYTD DADEDS (2) 1/4					

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		_					
я.ял./ Q. No.							
Q. 4							
	Formula:	<u></u>					
	Volatile matter (%) = $ \left[\frac{\text{(Initial weight - Residue weight)}}{\text{Initial weight}} \right] \times 100 $						
	L initial weight						
	3. Fixed Carbon:						
	Procedure:						
	- Calculate fixed carbon by subtracting the sum of moisture, volatile matter, and						
	ash percentages from 100%.						
		<u> </u>					
	Formula:						
	Fixed carbon (%) = 100 - (Moisture content + Volatile matter + Ash content)	<u> </u>					
	4. Ash:						
	Procedure:						
	- Take the previously dried coal sample from the moisture determination.						
	- Heat the sample in a muffle furnace at a specific temperature (typically 575°C to 625°C) until the sample is completely burned.						
	- Allow the sample to cool in a desiccator and weigh it.						
	- Calculate the percentage of ash based on the weight of the sample.						
	Formula:						
	Ash content (%) = $\left(\frac{\text{Ash weight}}{\text{Initial weight}}\right) \times 100$						
→ b)	Hydrogen production through steam reforming :						
	- it involves the reaction of a hydrocarbon, such as coke or methane, with steam						
	(water vapor) at elevated temperatures in the presence of a catalyst.						
	explanation of the production of hydrogen by steam reforming of coke and						
	methane, along with the reaction conditions :						

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.		
Q. 4		
	1. Steam Reforming of Coke:	
	- Coke, a carbon-rich material derived from coal or petroleum, can undergo steam	
	reforming to produce hydrogen.	
	- Reaction: C + H ₂ O -> CO + H ₂	
	- Carbon reacts with steam to produce carbon monoxide (CO) and hydrogen gas	
	(H2).	
	2. Steam Reforming of Methane (Natural Gas):	
	- Methane (CH4), the primary component of natural gas, can be steam-reformed	
	to produce hydrogen.	
	- Reaction: CH4 + H2O -> CO + 3H2	
	- Methane reacts with steam to produce carbon monoxide (CO) and three molecules	
	of hydrogen gas (H2).	
	Reaction Conditions:	
	- Temperature: Steam reforming reactions typically occur at high temperatures,	
	typically ranging from 700°C to 1000°C.	
	- Higher temperatures favor the reaction kinetics but may increase the risk of	
	catalyst deactivation.	
	Catalyst:	
	- A catalyst is used to enhance the reaction rate and promote the desired reactions.	
	- Common catalysts include nickel-based catalysts, which are effective for steam	
	reforming.	
	Steam-to-Carbon Ratio:	
	- The steam-to-carbon ratio (S/C ratio) refers to the molar ratio of steam to	
	carbon-containing feedstock. An SIC ratio argatax than 2 is tunisally maintained to ancure sufficient stoom for	
	- An S/C ratio greater than 2 is typically maintained to ensure sufficient steam for	
	complete reaction and prevent the formation of carbon deposits (carbon fouling).	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 4		
	Pressure:	
	- Steam reforming is typically conducted at elevated pressures, often ranging from	
	10 to 30 bar, to promote better conversion rates and increase the yield of hydrogen.	
	Reactor Design:	
	- Steam reforming can be carried out in fixed-bed, fluidized-bed, or tubular reactor	
	systems, depending on the scale and specific requirements of the process.	
	- The steam reforming process is widely used for large-scale industrial hydrogen	
	production due to its efficiency and ability to utilize various feedstocks.	
	- It is an important method in the production of hydrogen for various applications,	
	including fuel cells, ammonia synthesis, and other chemical processes.	
→ c)	Given data:	
	- Volume of gas burnt at STP = 0.1 m³	
	- Mass of cooling water = 30 kg	
	- Rise in temperature of cooling water = 8.1°C	
	- Mass of steam condensed = 0.08 kg	
	- Specific Heat Capacity of water = 4.186 J/g°C	
	- Latent Heat of vaporization of water = 2260 kJ/kg	
	Step 1: Calculate the heat gained by the water:	
	Heat gained by water = Mass of water x Specific Heat Capacity of water x Rise in	
	temperature	
	Heat gained by water = 30 kg x 4.186 J/g°C x 8.1°C = 1019.423 J	
	Step 2: Calculate the heat gained by the steam:	

Heat gained by steam = Mass of steam x Latent Heat of vaporization of water

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 4		
	Heat gained by steam = 0.08 kg x 2260 kJ/kg = 180.8 kJ = 180800 J	
	Step 3: Calculate the Gross Calorific Value (GCV):	
	GCV = (Heat gained by water + Heat gained by steam) / Volume of gas burnt	
	$GCV = (1019.423 \ J + 180800 \ J) \ / \ 0.1 \ m^3 = 1818832.3 \ J/m^3 = 1.8188323 \ MJ/m^3$	
	Step 4: Calculate the Net Calorific Value (NCV):	
	NCV = GCV - [(Mass of water x Specific Heat Capacity of water) + (Mass of	
	steam x Latent Heat of vaporization of water)] / Volume of gas burnt	
	$NCV = GCV - [(30 \text{ kg} \times 4.186 \text{ J/g}^{\circ}C \times 8.1^{\circ}C) + (0.08 \text{ kg} \times 2260 \text{ kJ/kg})] / 0.1 \text{ m}^{3}$	
	= 1.8188323 MJ/m³ - (1019.423 J + 180800 J) / 0.1 m³	
	= 1.8188323 MJ/m³ - 1818192.3 J / 0.1 m³	
	= 1.8188323 MJ/m³ - 18181923 J/m³	
	= -16.0011707 MJ/m ³	
	The Gross Calorific Value (GCV) of the fuel is approximately 1.8188323 MJ/m³,	
	and the Net Calorific Value (NCV) is approximately -16.0011707 MJ/m³.	
II		

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.		
Q. 5		
→ a)	Principle of Fractional distillation :	
	· ·	
	Fractional distillation is based on the principle that different components of a	
	mixture, such as crude oil, have different boiling points.	
	By gradually heating the mixture and condensing the vapors at different	
	temperatures, the components can be separated based on their boiling points and	
	collected as distinct fractions.	
	diagram illustrating the fractional distillation of crude oil:	
	A Marie Waller of the Control of the	
	→ Volatile gases	
	Gasoline Gasoline	
	Ketosene oil	
	Courts oil TI TI	
	vapours T Diesel eil	
	→ Lubricating oil	
	Crude oil Heavy oil	
	Steam	
	Figure : fractional distillation of crude oil	
	Process of Fractional Distillation of Crude Oil:	
	Heating:	
	- The crude oil is heated in a furnace or heat exchanger to vaporize the mixture.	
	- The temperature is carefully controlled to ensure the desired components evaporate	
	without decomposition.	
	Fractionating Column:	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 5		
	- The vaporized crude oil enters a tall fractionating column, which is packed with a	
	series of horizontal trays or plates.	
	- These trays help in achieving better separation of the components.	
	Temperature Gradient:	
	- The column is hotter at the bottom and cooler at the top.	
	- As the vapors rise, they encounter temperature variations along the column.	
	Separation:	
	- Each component in the mixture has a specific boiling point. When the vapors rise,	
	they reach a height in the column where the temperature matches their boiling	
	point.	
	- At this point, the component condenses into a liquid state and is collected on the	
	corresponding tray.	
	Collection of Fractions:	
	- The condensed fractions are collected at different levels of the fractionating	
	column.	
	- The lower boiling point components condense at higher levels (near the top of	
	the column), while the higher boiling point components condense at lower levels	
	(closer to the bottom of the column).	
	Condenser:	
	- As the fractions condense, they are collected in different receivers or condensers.	
	- These receivers are designed to collect and separate the different fractions	
	obtained during the distillation process.	
	Composition and Boiling Range of a Fraction:	
	- One fraction obtained during refining is gasoline or petrol.	
		<u> </u>

- Its composition typically consists of hydrocarbons with 5 to 12 carbon atoms.

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 5		1
	- The boiling range of gasoline is approximately 30°C to 200°C.	
	- Gasoline is commonly used as a fuel for internal combustion engines in	
	automobiles.	1
→ b)	Preparation reaction of biodiesel:	
	- Biodiesel, also known as fatty acid methyl ester (FAME), is typically prepared	
	through a process called transesterification.	
	- The reaction involves the conversion of vegetable oils or animal fats into their	
	corresponding esters (biodiesel) and glycerol.	
	The basic transesterification reaction is as follows:	
	9	
	H ₂ C-O-C-R ₁ H ₃ C-O-C-R ₁ H ₂ C-OH	
	HC-O-C-R ₂ + 3H ₃ C-OH	
	H ₂ C-O-C-R ₃ H ₃ C-O-C-R ₃ H ₂ C-OH	
	Triglyceride Methanol Methyl esters Glycerol (Biodiesel)	
	Manager Control of the Control of th	İ
	Vegetable oil (triglyceride) + Alcohol (typically methanol) $ ightarrow$ Biodiesel (FAME) +	
	Glycerol	i
		i
	Advantages of Biodiesel:	i
		İ
	- Biodiesel is derived from renewable sources such as vegetable oils and animal fats.	1
	- It reduces dependence on fossil fuels and contributes to sustainable energy	
	production.	
	- Biodiesel has lower carbon dioxide (CO2) emissions compared to fossil diesel.	1
	- It helps mitigate climate change and reduces air pollution, improving air quality.	
		1

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 5		
	biodiesel is readily biodegradable, which means it breaks down more easily in the	
	environment than petroleum-based diesel, reducing the environmental impact in case	
	of spills or leaks.	
	- Biodiesel can be used in existing diesel engines and fuel distribution systems	
	without major modifications, making it a viable alternative fuel option.	
	Limitations of Biodiesel:	
	- Biodiesel production can be more expensive compared to conventional diesel due	
	to the higher cost of feedstock, processing, and quality control.	
	- Biodiesel tends to have poorer low-temperature properties, such as higher cloud	
	and pour points, which can affect its flow and performance in cold climates.	
→ c)	Given data:	
	- Mass increase in CaCl ₂ U-tube = 0.5g (due to absorption of CO2)	
	- Mass increase in KOH U-tube = 2.4g (due to absorption of H20)	
	- Mass of coal sample used = 1.0g	
	Step 1: Calculate the mass of carbon in the coal sample:	
	Mass of carbon = Mass increase in CaCl ₂ U-tube = 0.5g	
	Step 2: Calculate the mass of hydrogen in the coal sample:	
	Mass of hydrogen = Mass increase in KOH U-tube = 2.4g	
	Step 3: Calculate the percentage of carbon and hydrogen in the coal sample:	
	Step 3. Calculate the percentage of carbon and ngalogen in the coal sample.	
	Percentage of carbon = (Mass of carbon / Mass of coal sample) x 100	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 5		İ.
	= (0.5g / 1.0g) x 100	İ.
	= 50%	Ī
	Percentage of hydrogen = (Mass of hydrogen / Mass of coal sample) x 100	
	= (2.4g / 1.0g) x 100	
	= 240%	
		·
	The percentage of hydrogen obtained is 240%, which is unusually high and suggests	i
	an error in the given data.	i
		i
		i
		i
		İ
		İ
		İ
		İ
		İ
		İ
		Ī
		Ī
		İ
		l

		Q.No.			TOTAL
	E				
ĺ	М				

		Q.No.			TOTAL
	E				
ĺ	М				

प्र.क्र./Q. No.		
Q. 6		
	Components and their Functions:	
	Light Source:	
	- The light source emits IR radiation, usually a broad spectrum of wavelengths. It	
	provides the energy necessary for the analysis of the sample.	
	Monochromator:	
	- The monochromator separates the different wavelengths of IR light, allowing only	
	a specific range (selected by the user) to pass through to the sample.	
	- It ensures that only the desired wavelengths are used for analysis, increasing	
	accuracy.	
	Detector:	
	- The detector measures the intensity of the transmitted or absorbed IR light after	
	it interacts with the sample.	
	- It converts the light signals into electrical signals that can be processed and	
	analyzed.	
	Signal Processor:	
	- The signal processor receives the electrical signals from the detector and processes	
	them.	
	- It may perform functions such as amplification, filtering, and data conversion. It	
	prepares the signals for further analysis and interpretation.	
	These components work together to measure the absorption or transmission	
	of IR radiation by the sample, generating an IR spectrum. The spectrum provides	
	valuable information about the chemical composition, functional groups, and	
	molecular structure of the sample.	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q . 6		
→ b)	possible transitions which occur on absorption of UVVis radiations by an organic	
	molecule :	
	- When an organic molecule absorbs UV-Vis radiation, it undergoes electronic	
	transitions, resulting in the excitation of electrons from the ground state to higher	
	energy levels.	
	- The specific transitions that occur depend on the molecular structure and the	
	energy of the absorbed photons.	
	$n \rightarrow n^*$ $n \rightarrow n^*$	
	the above figure consist of the following transition :	
	I. $\pi o \pi^*$ Transition:	
	- This transition involves the excitation of an electron from a π orbital (typically a	
	non-bonding or antibonding π orbital) to a higher-energy π^* antibonding orbital.	
	- This transition is commonly observed in molecules with conjugated systems, such	
	as double bonds or aromatic rings.	
	2. n $ ightarrow \pi^*$ Transition:	
	- In this transition, an electron from a non-bonding (n) orbital is excited to a	
	higher-energy π^* antibonding orbital.	
	- This transition is common in molecules with lone pair electrons, such as amines,	
	ethers, and carbonyl compounds.	
	3. $\sigma \to \sigma^*$ Transition:	
	– This transition involves the excitation of an electron from a bonding σ orbital to	
	a higher-energy σ^* antibonding orbital.	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q. 6		
	- It typically occurs in saturated organic compounds and is less common in UV-Vis	
	spectroscopy.	
	4. $n \rightarrow \sigma^*$ Transition:	
	- it occurs when there is a transfer of electron density from one molecular entity	
	to another.	
	- This can happen between two atoms or groups with different electron egativities.	
	- this transitions are often observed in molecules containing electron donor and	
	acceptor groups, such as metal complexes or dyes.	
→ c)	applications of IR spectroscopy as follow :	
	analysis of chemical compounds:	
	- IR spectroscopy is used for qualitative and quantitative analysis of chemical	
	compounds.	
	- It helps identify functional groups present in a molecule, aiding in compound	
	characterization and verification.	
	- It is widely employed in fields such as pharmaceuticals, forensics, and	
	environmental analysis.	
	Material Characterization:	
	- IR spectroscopy is utilized to study and analyze the composition of various	
	materials.	
	- It is used in polymer science to determine the type and structure of polymers.	
	- It helps identify and differentiate different types of fibers, coatings, adhesives,	
	and films.	
	- It is also employed in the analysis of minerals, ceramics, and other solid-state	
	materials.	
	•	

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.		
Q. 6		
	Pharmaceuticals and Drug Development:	
	- IR spectroscopy plays a crucial role in drug development and quality control.	
	- It helps identify active pharmaceutical ingredients (APIs) and analyze drug	
	formulations.	
	- It assesses the stability of drug molecules and detects impurities.	
	- It is employed to monitor chemical reactions during synthesis and assess drug-	
	drug interactions.	
	Environmental and Forensic Analysis:	
	- IR spectroscopy aids in environmental monitoring and forensic investigations.	
	- It identifies and quantifies pollutants in air, water, and soil samples.	
	- It helps analyze volatile organic compounds (VOCs) and detect hazardous	
	substances.	
	- It assesses the quality of food and beverages and aids in trace evidence analysis	
	in forensics.	
		1

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.							
Q . 7							
→ a)	block diagram of single beam UV-Vies Spectrophotometer :						
	Source Monochromator Sample cuvette Detector Amplifier and recorder						
	Tecorder						
	figure : block diagram of single beam UV-Vies Spectrophotometer						
	In the above figure,						
	- Source provide UV-Vis radiation used for analysis.						
	- Monochromator used for Selects a specific wavelength of radiation for						
	measurement.						
	- Sample Holder are used to Holds the sample in position for analysis.						
	- Detector: detector Measures the intensity of radiation after it passes through the						
	sample.						
	- Amplifies the electrical signal from the detector for improved sensitivity and signal						
	quality.						
	- recorder are used for Captures and records the signal, often in the form of a						
	spectrum, for analysis and interpretation.						
	functions of component in a single beam UV-Vis spectrophotometer:						
	Light Source:						
	- Emits UV-Vis radiation used for analysis						
	- Provides a stable and controllable source of UV-Vis radiation.						
	- Ensures consistent and reliable light input for accurate measurements.						
	Monochromator:						
	- Selects a specific wavelength of radiation for measurement.						
	- Separates the incoming radiation into its component wavelengths.						
	- Allows only the desired wavelength to pass through to the sample.						
	- Ensures accurate selection and control of the wavelength for analysis.						

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.		
Q . 7		
	Sample Holder:	
	- Holds the sample in position for analysis.	
	- Provides a stable and reproducible position for the sample.	
	- Ensures the sample is correctly positioned in the optical path for accurate	
	measurements.	
	- Allows the light to interact with the sample uniformly.	
	Detector:	
	- Measures the intensity of radiation after it passes through the sample.	
	- Converts the light signals into an electrical signal.	
	- Measures the intensity of the transmitted or absorbed light.	
	- Provides a quantitative measure of the sample's interaction with the radiation.	
	Amplifier:	
	- Amplifies the electrical signal from the detector for improved sensitivity and	
	signal quality.	
	- Increases the amplitude of the electrical signal.	
	- Enhances the signal-to-noise ratio, improving the detection limit and accuracy	
	of measurements.	
	- Enables precise and reliable quantification of the absorbed or transmitted light.	
	Recorder:	
	- Captures and records the signal, often in the form of a spectrum, for analysis	
	and interpretation.	
	- Captures the amplified signal for further analysis.	
	- Records the signal as a function of wavelength, creating an absorption or	
	transmission spectrum.	
	- Provides a visual representation of the sample's interaction with the radiation.	

		Q.No.			TOTAL
	E				
ĺ	М				

प्र.क्र./Q. No.							
Q . 7							
→ b)	Principle of IR Spectroscopy:						
	- IR spectroscopy is based on the principle that molecules absorb infrared radiation						
	at specific frequencies that correspond to the vibrational energies of the chemical						
	bonds within the molecule.						
	- When infrared light is passed through a sample, the molecules present absorb						
	energy at characteristic frequencies, resulting in the absorption of specific						
	wavelengths of light.						
	- By analyzing the absorbed wavelengths, valuable information about the molecular						
	structure, functional groups, and chemical bonds can be obtained.						
	fundamental modes of bending vibrations include:						
	1. symmetric and asymmetric stretching :						
	Scissoring vibrations in IR spectroscopy refer to the bending motion of atoms,						
	typically hydrogen atoms, towards and away from a central atom. There are two						
	main types of scissoring vibrations:						
	Symmetric stretching Asymmetric stretching						
	Symmetric Scissoring:						
	- Involves the simultaneous inward and outward bending motion of two identical						
	atoms with respect to a central atom.						
	- Example: Water (H2O).						
	Asymmetric Scissoring:						
	- Involves the bending motion of two different atoms with respect to a central						

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.						
Q. 7						
	Example: Methyl chloride (CH3Cl).					
	2. Rocking (ρ)					
	- Rocking vibrations involve a periodic motion where atoms move back and forth like					
	the motion of a rocking chair.					
	- It occurs in molecules with groups of atoms that are connected by flexible bonds.					
	- An example is the rocking motion of methyl (CH3) groups in organic compounds.					
	Q Q					
	in-plane rocking					
	2 (2)					
	3. Scissoring (v):					
	- Scissoring vibrations involve the periodic bending of atoms towards and away from					
	each other in a scissor-like motion.					
	- It occurs in molecules with two hydrogen atoms bonded to a central atom, such					
	as water (H2O).					
	- The scissoring mode is characterized by a bending motion of the hydrogen atoms					
	towards and away from the oxygen atom.					
	in-plane scissoring					

		Q.No.			TOTAL
E	E				
	М				

प्र.क्र./Q. No.		
Q . 7		
	4. Wagging (δ):	
	- Wagging vibrations involve an in-plane bending motion where atoms move side to	
	4. Wagging (δ):	
	- It occurs in molecules with groups of atoms connected by flexible bonds.	
	 4. Wagging (δ): - Wagging vibrations involve an in-plane bending motion where atoms move side to side, like the wagging of a dog's tail. - It occurs in molecules with groups of atoms connected by flexible bonds. - An example is the wagging motion of hydrogen atoms in ethane (C2H6). out-of-plane wagging 5. Twisting (τ): - Twisting vibrations involve the rotation or torsion of groups of atoms around a 	
	<u> </u>	
	\rightarrow	
	out of plane wagging	
	out-or-plane wagging	
	5. Twisting (τ):	
	-	
	- It occurs in molecules with flexible bonds that allow rotation.	
	+ -	
	QQ	
	Õ	
	out-of-plane twisting	

		Q.No.			TOTAL
E					
М					

प्र.क्र./Q. No.		
Q . 7		
→ c)	definition of the terms:	
	i) Chromophore:	
	- A chromophore is a specific group or moiety within a molecule responsible for its	
	color or light absorption.	
	- It is often a conjugated system of double bonds or a functional group with	
	delocalized electrons.	
	- Chromophores absorb specific wavelengths of light, resulting in the observed color	
	of compounds.	
	ii) Hypsochromic shift:	
	- A hypsochromic shift refers to a shift in the absorption wavelength towards the	
	shorter wavelength (higher energy) region in a spectrum.	
	- It occurs when a compound absorbs light at shorter wavelengths compared to a	
	reference compound or under different conditions.	
	- This shift can result from changes in molecular structure, electronic environment,	
	or intermolecular interactions.	
	iii) Auxochrome:	
	- An auxochrome is a functional group or substituent in a molecule that modifies	
	the absorption properties of a chromophore.	
	- It does not directly absorb light but influences the wavelength or intensity of	
	absorption by altering the electronic structure or polarity of the molecule.	
	- Auxochromes typically enhance the color or absorption characteristics of a	
	chromophore.	
	iv) Hypochromic shift:	
	- A hypochromic shift refers to a shift in the absorption wavelength towards the	
	longer wavelength (lower energy) region in a spectrum.	
	- It occurs when a compound absorbs light at longer wavelengths compared to a	
	W	

E M

Savitribai Phule Pune University

34

प्र.क्र./Q. No.		
Q . 7		
	reference compound or under different conditions.	
	- This shift can be caused by changes in molecular structure, electronic environment,	
	or intermolecular interactions.	

	Q.No.			TOTAL
E				
М				

£		
प्र.क्र./Q. No.		
Q. 8		
→ a)	Hydrogen Evolution Mechanism :	
	- Consider a situation where a piece of copper and a steel tank are in contact with	
	each other in the presence of an acid electrolyte as shown in below figure.	
	Evolution of Acid wastes H ₂ gas Fe ⁺⁺ H ⁺ Fe ⁺⁺ Anode Anode Smaller copper cathode	
	(scrap)	
	Electron flow from anode	
	- This setup forms an electrochemical cell, with the steel tank acting as the anode	
	and the copper acting as the cathode.	
	- Due to the difference in their electrochemical potentials, the steel tank undergoes	
	oxidation at the anode, and the copper acts as the site for reduction at the cathode.	
	- At the anode (steel tank), iron (Fe) from the steel reacts with the acid	
	electrolyte, dissociating into Fe ⁺² ions and releasing electrons.	
	- The released electrons flow through the metal surface and reach the cathode	
	(copper), where hydrogen ions (H+) from the acid electrolyte combine with the	
	electrons to form hydrogen gas (H2).	
	- The hydrogen gas is liberated as bubbles at the cathode and can accumulate on	
	the metal surface.	
	- The overall net reaction is Fe + 2H $^+$ $ ightarrow$ Fe $^{+2}$ + H $_2$, representing the corrosion of	
	the steel tank through the process of hydrogen evolution.	
	Oxygen Absorption Mechanism :	
	- Consider a steel plate lying on the ground and exposed to the atmosphere develops	
	an oxide layer on its surface. It shown in below figure.	
1		

_		Q.No.			TOTAL
	E				
	М				

_		Q.No.			TOTAL
	E				
	М				

		Q.No.			TOTAL
E					
ĺ	М				

Read	ctions :			
		Reaction at anode	Reaction at cathode	Salts for electrolyte
	For nickel plating	$Ni \rightarrow Ni^{+2} + 2e^{-}$	$Ni^{+2} + 2e^{-} \rightarrow Ni$	NiCl ₄ , NiSO ₄
	For copper plating	$Cu \rightarrow Cu^{+2} + 2e^{-}$	$Cu^{+2} + 2e^{-} \rightarrow Cu$	CuSO ₄
	For silver plating	$Ag \rightarrow Ag^+ + e^-$	$Ag^+ +e^- \to Ag$	AgCN
Appl	lications of Ele	ctroplating:		
I. De	ecorative Purpos	ses: Plating gold, s	ilver, or chrome ont	o jewelry, watches,
auto	motive parts.			
2. C	orrosion Protect	tion: Plating metals	like zinc, nickel, or	chromium onto iro
steel	surfaces.			
3. E	lectrical Conduc	ctivity: Enhancing e	electrical conductivit	y of connectors, pri
circu	it boards, and o	contacts.		
4. N	1echanical Prop	erties: Improving v	vear resistance, har	dness, and lubricity
comp	ponents.			
5. R	estoration and	Preservation: Resto	ring and preserving	antique items, artwo
and	artifacts.			
			wo types of prote	ctive coatings used
vario	us applications	5.		
I. Av	nodic Coatings:			
- An	nodic coatinas a	re formed bu anodi	izing a metal surfac	e, tupicallu aluminuv

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.							
Q. 8							
	- Anodizing involves creating an oxide layer on the metal surface through an						
	electrolytic process.						
	- Anodic coatings provide excellent corrosion resistance, hardness, and wear						
	resistance.						
	- They offer good adhesion to the substrate and can be dyed or colored for aesthetic						
	purposes.						
	- Anodic coatings can be porous or non-porous, depending on the specific application						
	requirements.						
	- Examples of anodic coatings include anodized aluminum used in architectural,						
	automotive, and electronic industries.						
	functioning diagram of anodic coatings:						
	10 Funcand nort 10 - 10						
	- Zn ⁺² - Zn ⁺² Exposed part Zn ⁺² - Zn ⁺² Corrosive - A - cathode A A - environment						
	Anode - -Anode - -						
	Zii coaung						
	Steel						
	Flow of electrons						
	•						
	2. Cathodic Coatings:						
	- Cathodic coatings are typically achieved through cathodic electrodeposition, also						
	known as electrocoating or electrophoretic deposition.						
	- Cathodic coatings involve immersing the object to be coated (cathode) in a bath						
	containing paint or coating material and applying a direct current.						
	- Cathodic coatings provide excellent corrosion protection and adhesion to the						
	substrate.						
	- Cathodic coatings can be applied to various materials, including metals, plastics,						
	and composites.						

	Q.No.			TOTAL
E				
М				

	TOTAL	
		SPPU HUB

प्र.क्र./Q. No.		
Q. 8		
	- Examples of cathodic coatings include cathodic epoxy coatings used in automotive,	
	aerospace, and industrial applications.	
	Functioning diagram of cathodic coating :	
	Corrosive	
	environmer	
	Tin coating	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Flow of electrons	
	•	
	Which is better and why?	
	the selection of the better coating depends on factors such as the base material,	
	desired properties, cost considerations, and the specific environmental conditions and	
	performance requirements of the application.	
	Both types offer unique advantages	
	- Anodic coatings, such as anodized aluminum, provide superior corrosion resistance,	
	hardness, and wear resistance.	
	They are particularly suitable for aluminum and its alloys in applications where	
	durability and aesthetic appeal are important.	
	- Cathodic coatings, achieved through electrodeposition, offer excellent corrosion	
	protection and adhesion to various substrates, including metals, plastics, and	
	composites.	
	They are advantageous for achieving uniform film thickness on complex-shaped	
	objects	

	Q.No.			TOTAL
Е				
М				

41

प्र.क्र./Q. No.		
Q. 9		
→ a)	Pilling-Bedworth Ratio:	
	- The Pilling-Bedworth ratio is a concept used in corrosion science to determine the	
	stability and protective nature of oxide films formed on metal surfaces during	
	oxidation.	
	- It is the ratio of the volume change during oxide formation to the volume of the	
	original metal.	
	Significance:	
	- The Pilling-Bedworth ratio is significant because it helps assess whether the oxide	
	film formed during oxidation will provide effective corrosion protection.	
	The following scenarios can be observed:	
	The ronowing seemands can be observed.	
	1. Pilling-Bedworth Ratio < 1:	
	- In this case, the oxide film formed has a smaller volume than the original metal.	
	- This can lead to cracks and voids in the oxide film, exposing the metal to further	
	corrosion The film may be ineffective in preventing corrosion.	
	2. Pilling-Bedworth Ratio = 1:	
	- When the Pilling-Bedworth ratio is equal to 1, the volume of the oxide film matches	
	the volume of the original metal.	
	- This suggests that the oxide film will be continuous and tightly adherent to the	
	metal surface, providing effective corrosion protection.	
	•	
	3. Pilling-Bedworth Ratio > 1:	
	- If the Pilling-Bedworth ratio is greater than I, the oxide film has a larger volume	
	than the original metal.	
	- This can lead to the formation of tensile stresses within the film, causing it to	
	crack and delaminate.	

	Q.No.			TOTAL
E				
М				

प्र.क्र./Q. No.		
Q . 9		
	- The corrosion protection provided by the oxide film may be compromised.	
	Different Types of Oxide Films Formed during Oxidation Corrosion of Metals:	
	I. Protective Oxide Films:	
	- Certain metals, such as aluminum and stainless steel, form protective oxide films	
	that adhere	
	tightly to the metal surface.	
	- Examples include aluminum oxide (Al $_2O_3$) and chromium oxide (Cr $_2O_3$). These	
	films act as barriers against further oxidation and corrosion.	
	2. Non-Protective Oxide Films:	
	- Some metals form oxide films that are not protective and do not provide effective	
	corrosion	
	resistance.	
	- For example, iron (Fe) forms rust, which is a porous and loosely adherent oxide	
	film primarily composed of hydrated iron(III) oxide (Fe2O3·nH2O).	
	- Rust is prone to flaking and does not offer long-term corrosion protection.	
	•	
	3. Passivation Films:	
	- Certain metals, such as stainless steel, can form passivation films when exposed	
	to oxygen.	
	- These films are thin and self-repairing, providing an additional layer of protection	
	against corrosion.	
	- An example is the chromium-rich oxide layer that forms on stainless steel, known	
	as the passive layer.	

	Q.No.			TOTAL
E				
М				

ritribai Phule	Pune University	М								SPPU HUB	
万./Q. No.											
Q. 9											
→ b)	Factors Affecting the Rate of Corrosion:										
	1. Environ	1. Environmental Conditions:									
	- Humidi	ty, te	mperati	ure, pre	sence o	f corro	sive ga	ises, ai	nd pH	of the surrounding	
	medium a	medium affect corrosion. - Aggressive environments with high moisture, elevated temperatures, and acidic									
											1
	conditions	s acce	elerate d	corrosion	7.						
	2. Metal	Comp	osition	:							
	- The cor	nposit	tion of	the met	tal dete	rmines	its sus	ceptibi	lity to	corrosion.	
	- Some v	netals	s, like s	tainless	steel o	and alu	minum	, form	passiv	e oxide layers that	
	protect ag	gainst	corrosi	on.							
	- Alloying	elem	nents co	n enha	nce or a	decrease	e corros	sion re	sistance	2.	
	3. Presence of Dissolved Oxygen:										
	- Availabi	ility o	f dissol	ved oxy	gen infl	uences	corrosi	on rate	es.		
	- Oxygen	acts	as an	oxidizi	ng agei	nt, faci	ilitating	g meta	ıl oxida	tion reactions and	
	accelerati	ng									
	corrosion.										
	•										
	4. Electro	olyte	Conduc	tivity:							
	- Presenc	e of	an elec	trolyte,	such a	s an io	n-cont	aining	solution	n, affects corrosion	
	rates.										
	- Higher electrolyte conductivity enables more efficient electrochemical reactions,										
$-\parallel$	increasing	corre	osion ra	tes.							
$-\parallel$	5. Surfac	e Are	a:								
╢	- The exp	osed	surface	area of	the m	etal im	pacts c	corrosio	n rates	•	
╢	•					•				ve medium, leading	
ᅦ		,	•							-	1

- Irregular osurfaces can promote localized corrosion with higher corrosion rates.

to increased corrosion rates.

_		Q.No.			TOTAL
	E				
	М				

प्र.क्र./Q. No.								
Q. 9								
→ c)	Principle of Cathodic Protection:							
	- The principle of cathodic protection is based on the concept of creating a protective							
	environment for a metal structure by making it the cathode of an electrochemical							
	cell.							
	- By applying a direct current to the metal structure, the potential of the metal is							
	shifted to a more negative value, effectively reducing or eliminating the corrosion							
	reaction.							
	Diagram of Sacrificial Anode Cathodic Protection :							
	Insulated copper wire Ground level							
	7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1							
	Sacrificial anode (Mg, Al, Zn or their alloy) Back fill Wet soil							
	alloy) Back fill # Wet soil							
	•							
	- In sacrificial anode cathodic protection, a more reactive metal is connected to the							
	metal structure to be protected.							
	- The sacrificial anode, usually made of a metal like zinc or magnesium, undergoes							
	corrosion sacrificially instead of the protected structure.							
	how the sacrificial anode cathodic protection method works:							
	1. Selection of Sacrificial Anode:							
	- A suitable sacrificial anode material is chosen based on its position in the galvanic							
	series and its ability to provide sufficient protection to the metal structure.							
	- The sacrificial anode material should have a more negative electrochemical potential							
	compared to the protected structure.							
i	CET ALL CUR JECT COLVED BAREDS							

	Q.No.			TOTAL
Е				
М				

45

1					
प्र.क्र./Q. No.					
Q . 9					
	2. Connection of Sacrificial Anode:				
	- The sacrificial anode is connected to the metal structure to be protected, creating				
	a direct electrical connection.				
	- This connection can be achieved through a metallic conductor or by direct contact.				
	3. Electrochemical Reaction:				
	- The sacrificial anode, being more reactive, undergoes corrosion instead of the				
	protected metal structure.				
	- As a result, the sacrificial anode material is consumed over time.				
	4. Cathodic Protection:				
	- The corrosion process at the sacrificial anode generates electrons, which flow				
	through the electrical connection to the protected metal structure.				
	- This flow of electrons causes the potential of the protected structure to become				
	more negative, creating a cathodic protection effect.				
	5. Protection of Metal Structure:				
	- The more negative potential of the metal structure inhibits the corrosion reaction,				
	preventing or significantly reducing the corrosion of the protected structure.				
	- The metal structure functions as the cathode in the electrochemical cell,				
	effectively protected from corrosion.				

Click Here

TO GET ALL SUBJECT SOLVED PYQ'S

(Click On The Above "Click Here" Button)

FOR ANY QUERY / SUPPORT

(Click On The Below "Message us" Button)

