Week 8: General(ized) linear models w/ different variable types

ANTH 674: Research Design & Analysis in Anthropology

Professor Andrew Du

Andrew.Du2@colostate.edu

1

$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \epsilon_{i}$ Quick review of general linear models Random Er component compone

Lecture outline

- 1. Quick review of general linear models
- 2. Different types of GLMs (& their nonparametric counterparts)
 - 1. t-test
 - 2. ANOVA
 - 3. ANCOVA
 - 4. Logistic regression*
 - 5. Multinomial logistic regression*
 - 6. Chi-squared test*

2

What are general linear models?

- Models continuous DV as a <u>linear/additive</u> function of one or more IVs
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 ... + \beta_n X_n + \varepsilon$
- IVs can be continuous or categorical (so far, we have just covered continuous)

^{*}Technically, these are generalized linear models (non-normal errors)

What are general linear models?

- You will see that GLMs w/ different variable types are just the "standard" tests you learn in STAT101 or see in publications!
- A lot of what you learned previously for linear regression (e.g., assumptions) applies here
- Main difference is learning how to interpret a slope w/ categorical variables
- GLM coefficients estimated w/ ordinary least squares

5

An illustrative example $Y \sim \text{Normal}(\beta_0 + \beta_1 X, \sigma^2)$ $\frac{1}{10}$ Negative richness values?!

Generalized linear models (GLiM)

- · GLMs assume normally distributed errors
 - · Why you can use ordinary least squares
 - DV needs to be continuous
- GLiMs relax this assumption and allow errors to be non-normally distributed
 - E.g., logistic regression w/ binary DV & errors
- So GLM is a special version of GLiM, where errors are normal
- Coefficients estimated using maximum likelihood

6

GLiM as a solution

Poisson regression → DV are count data, modeled as Poisson distributed (won't cover this GLiM)

Different types of GLMs

3.0

2.5

0.0

0.0

0.2

0.4

0.6

0.8

1.0

10

Different types of GLMs/GLiMs

	Independent variable						
ent le		Binomial	Multinomial	Continuous			
nder able	Binomial						
epel	Multinomial						
۵ ٔ	Continuous			Regression			

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

Two-sample t-test

Continuous DV ~ binomial IV

Different types of GLMs/GLiMs

	Independent variable					
t .		Binomial	Multinomial	Continuous		
ndent able	Binomial					
Depen varia	Multinomial					
۵ ′	Continuous	t-test		Regression		

^{*}Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

13

Two-sample t-test

- mpg = 17.15 + 7.25am (fitted linear model)
- Intercept is mean DV when IV = 0 (i.e., automatic), just like a normal intercept!
- Slope is change in mean DV as you go from 0 to 1 (i.e., manual), just like a normal slope!

Two-sample t-test

- $Y = \beta_0 + \beta_1 (X_1) + \varepsilon$ Binomial IV (two levels)
- E.g., mpg ~ am, data=mtcars
 - am has two levels: 0 (automatic) & 1 (manual)

14

Dummy coding

- In general, your baseline level is coded as a 0, and the other is coded as a 1
- Petal.length = 4.26 + 1.29Species

Two-sample t-test

- Used to test if two groups' means are significantly different
- H_0 : difference in groups' means = $0 \rightarrow$ linear $\overline{\text{model slope}} = 0$

17

Nonparametric tests

- Used when data w/in each group are not normally distributed (thus, errors are not normally distributed)
- BUT, central limit theorem ensures mean or **sum** is normally distributed if each group's sample size > 15 (general rule)
- Literally ranks DV and then performs test (e.g., like Spearman's)
- Due to less restrictive assumptions, less powerful than parametric counterpart (i.e., P-values are larger)

Comparing lm() & t.test()

lm() (slope)

t.test()

• P = 3.18e-22***

• P = 3.18e-22***

• t = 12.60

• t = 12.60

• SE = 0.10

• SE = 0.10

• 95% CI = (1.09, 1.50) • 95% CI = (1.09, 1.50)

t-test is **exactly** the same as a simple linear regression with a binomial IV!

18

Mann-Whitney U test

- Nonparametric version of two-sample t-test
- Tests if two groups' *medians* are significantly different
- •wilcox.test(PL.virg, PL.vers)
 - P = 9.13e-17 (compared w/ 3.18e-22 using t-test)

Questions?

21

Different types of GLMs/GLiMs

	Independent variable					
ent le		Binomial	Multinomial	Continuous		
ender	Binomial					
epe vari	Multinomial					
۵ ٔ	Continuous	t-test	ANOVA	Regression		

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

ANOVA ("analysis of variance")

Continuous DV ~ multinomial IV

22

One-way ANOVA

- $Y = \beta_0 + \beta_1 (X_1) + \varepsilon$ Multinomial IV (>2 levels)
- E.g., Petal.Length ~ Species
 - Species has three levels: setosa (baseline), versicolor, and virginica

One-way ANOVA

- So more accurately, $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- Petal.Length = 1.46 + 2.80versicolor + 4.10virginica
- N-1 estimated slopes (N=# levels in IV)

25

Comparing 1m() & aov()

1m()

aov()

• F = 1180.2

- F = 1180.2
- P = 2.86e-91***
- P = 2.86e-91***

One-way ANOVA

- Tests if groups' means are all equal (w/ two groups, ANOVA is identical to a t-test)
- Calculates a *single* P-value using the F statistic (ratio of variance among groups to w/in groups)

26

Two-way ANOVA

- Continuous DV ~ two multinomial IVs w/ an interaction term
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \frac{\beta_3 X_1 X_2}{\epsilon} + \epsilon$

Kruskal-Wallis test

- Nonparametric version of ANOVA
- Tests if groups' medians are significantly different
- kruskal.test(Petal.Length~Species)
 - P = 4.80e-29 (compared w/ 2.86e-91 using ANOVA)

Questions?

29

ANCOVA ("analysis of covariance")

Continuous DV ~ categorical IV + continuous IV

Different types of GLMs/GLiMs

30

	Independent variable					
nt		Binomial	Multinomial	Continuous		
endent riable	Binomial					
Depe vari	Multinomial					
<u>מ</u>	Continuous	t-test	ANO ANC	OVA ression		

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

ANCOVA

- Combines regression w/ ANOVA
- Used if regression intercept or slope varies as a function of levels w/in categorical IV

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Categorical Continuous

Group

a a b b c age

Differing intercepts

• NO interaction between IVs
• $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ • E.g., qsec ~ am + hp, data = mtcars

mtcars\$hp

33

Differing intercepts

Differing intercepts

34

36

• qsec = 21.58 - 1.53am - 0.02hp= 21.58 - 1.53*1 - 0.02hp= 20.04 - 0.02hp

Interpreting coefficients

- qsec = 21.58 1.53am 0.02hp
- 21.58 is estimated qsec~hp intercept for baseline level (i.e., automatic)
- -1.53 is how much qsec~hp intercept changes going from automatic (0) to manual (1)
- Each additional level requires an additional coefficient (interpret from baseline level as in ANOVA)

Differing intercepts & slopes

- YES interaction between IVs
- $Y = \beta_0 + \beta_1 \frac{X_1}{X_1} + \beta_2 \frac{X_2}{X_2} + \beta_3 \frac{X_1}{X_2} + \varepsilon$
- E.g., mpg ~ am * wt, data = mtcars

37

Differing intercepts & slopes

- mpg = 31.42 + 14.88am 3.79wt 5.30am*wt
- If am = 0, hp = 31.42 3.79wt

38

Differing intercepts & slopes

- mpg = 31.42 + 14.88am 3.79wt 5.30am*wt
- If am = 1, mpg = 46.29 9.08wt

39

Interpreting coefficients

- mpg = 31.42 + 14.88am 3.79wt
 5.30am*wt
- 31.42 is estimated mpg~wt intercept for baseline level (i.e., automatic)
- -3.79 is estimated mpg~wt slope for baseline level (i.e., automatic)
- 14.88 is how much mpg~wt intercept changes going from automatic (0) to manual (1)
- -5.30 is how much mpg~wt slope changes going from automatic (0) to manual (1)

41

Questions?

42

Generalized linear models

- Thus far, we have covered GLMs (where DV is continuous & errors are normally distributed) w/ IVs of different data types
- Now we move onto GLiMs, where the DV's data type changes (thus causing non-normal errors)

Logistic regression

Binomial DV ~ continuous IV

45

Logistic regression

- Binomial DV ~ one or more IVs (usually continuous but can be categorical)
- What are some examples of a binomial DV in your field?
- Used to assess <u>probability</u> of belonging to non-baseline level as a function of IVs
- E.g., am ~ wt, data = mtcars
 - Probability car is manual (am=1) as wt increases

Different types of GLMs/GLiMs

	Independent variable					
Ħ		Binomial	Multinomial	Continuous		
ependent variable	Binomial			Logistic regression		
	Multinomial					
	Continuous	t-test	ANOVA	Regression		
L	ANCOVA					

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

46

48

am ~ wt, data = mtcars

- More likely to be manual if car is lighter
- But linear regression model is terrible!
- 1. Relationship is not linear; errors not normal
- 2. Predicts impossible probabilities <0 and >1

am ~ wt, data = mtcars

- A logistic function is better
- Minimum probability is zero, maximum is one

49

Interpreting coefficients

- First, a primer on odds
- If p is the probability of something happening, odds are $\frac{p}{1-n}$
- E.g., if probability of drawing a card w/ clubs is 0.25, odds are 0.25/0.75 = 0.33
 - You're three times less likely to get clubs
- E.g., if probability of rolling a 1, 2, 3, or 4 w/ a die is 0.66, odds are 0.66/0.33 = 2
 - You're twice as likely to roll these numbers
- Odds < 1 means event less likely to happen; odds > 1 means event more likely to happen

Logit transformation

- Logistic regression uses a <u>logit transformation</u> to convert logistic curve → straight line, so DV probabilities can be modeled w/ linear model
- $\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X_1$

- logit(p) goes from negative infinity to infinity
- All done under the hood in R

50

Interpreting coefficients

- am ~ wt, data = mtcars
- $\log\left(\frac{p}{1-p}\right) = 12.04 4.02$ wt
- exp(intercept) is odds car will be manual when wt=0
 - $\exp(12.04) = 169,397$
- exp(slope) is proportional change in odds car will be manual when wt increases by one
 - $\exp(-4.02) = 0.02 \rightarrow \text{ odds decrease by } 98\%!$

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/

Demonstrating this algebraically

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x \longrightarrow \frac{p}{1-p} = \exp(\beta_0 + \beta_1 x) = \exp(\beta_0) \exp(\beta_1 x)$$

Intercept

$$\frac{p}{1-p} = \exp(\beta_0) \exp(\beta_1 \cdot 0) = \exp(\beta_0)$$
$$\frac{p}{1-p} = \exp(\beta_0)$$

Compare

Slope

$$\frac{p}{1-p} = \exp(\beta_0) \exp(\beta_1 \cdot (x+1)) = \exp(\beta_0) \exp(\beta_1 x + \beta_1) = \exp(\beta_0) \exp(\beta_1 x) \exp(\beta_1)$$

Thus, increasing \overline{x} by 1 increases odds by the multiplier, $\exp(\beta_1)$

53

Multinomial logistic regression

Multinomial DV ~ continuous IV

54

Different types of GLMs/GLiMs

	Independent variable					
¥		Binomial	Multinomial	Continuous		
Dependent variable	Binomial			Logistic regression		
	Multinomial			Multinomial regression		
	Continuous	t-test	ANOVA ANC	Regression		

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

Multinomial logistic regression

- Multinomial DV ~ one or more IVs (usually continuous but can be categorical)
- Used to assess odds of belonging to <u>EACH</u> non-baseline level as a function of IVs
- Coefficients interpreted in same way as in logistic regression

https://stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/

57

Chi-squared test

Categorical DV ~ categorical IV

58

Different types of GLMs/GLiMs

	Independent variable						
Ħ		Binomial	Multinomial	Continuous			
Dependent variable	Binomial	Chi- squared	Chi-squared	Logistic regression			
	Multinomial	Chi- squared	Chi-squared	Multinomial regression			
	Continuous	t-test	ANOVA	Regression			

*Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

Pearson's chi-squared test

- One categorical DV ~ one categorical IV
- Data presented as a <u>contingency table</u> (AKA <u>crosstab</u>)

	Eye color						
_		Brown	Blue	Hazel	Green		
<u> 응</u>	Black	32	11	10	3		
၂ ပ	Brown	53	50	25	15		
Hair color	Red	10	10	7	7		
I	Blond	3	30	5	8		

61

Pearson's chi-squared test

- Categorical DV ~ one categorical IV
- Data presented as a <u>contingency table</u> (AKA crosstab)
- Tests H₀ of whether two categorical variables are independent of each other
 - e.g., if certain hair colors are NOT associated w/ certain eye colors
- Independence operationalized as cell frequencies that are proportional to column & row totals

Mosaic plot

• Cool way to visualize a contingency table

62

Pearson's chi-squared test

• H₀ expected = (row total x column total) / grand total

• χ^2 test statistic: $\sum_{al \ cells} \frac{(\text{Observed-Expect})^2}{\text{Expected}}$

• χ^2 statistic used to get P-value

	Eye color (56 x 33) / 279 = 6							
		Brown	Blue	Hazel	Green	Total		
<u>o</u>	Black	32	11	10	3	56		
03	Brown	53	50	25	15	143		
Hair color	Red	10	10	7	7	34		
Ŧ	Blond	3	30	5	8	46		
	Total	98	101	47	33	279		

Pearson's chi-squared test

 Also a log-linear model (a generalized linear model for DV of counts): frequencies ~ IV * DV

Pearson's chi-squared test

- Also a log-linear model (a generalized linear model for DV of counts): frequencies ~ IV * DV
- The interaction term is what is tested in a chi-squared test

chisq.test()

log-linear

• $\chi^2 = 41.28$

• $\chi^2 = 41.28$

• P = 4.45e-6

• P = 4.45e-6

65

66

Significance driven by:

- Overrepresentation of <u>black hair/brown eyes</u> and blond hair/blue eyes
- Underrepresentation of <u>black hair/blue eyes</u> and <u>blonde hair/brown eyes</u>

Summary: GLMs/GLiMs

	Independent variable					
Ħ		Binomial	Multinomial	Continuous		
Dependent variable	<u>Binomial</u>	Chi- squared	Chi- squared	Logistic regression		
	Multinomial	Chi- squared	Chi- squared	Multinomial regression		
	Continuous	t-test	ANOVA	Regression		

ANCOVA

69

Summary

- t-tests, ANOVAs, & chi-squared tests emphasize P-values, so I am not a fan
- Presenting means and SD of each group & plots are more informative (to me)

Which do you think is more informative?

70

Statistics vignette

Are declining SAT scores bad for the country?

Steve Wang

^{*}Binomial and multinomial are both categorical variables w/ two and >2 categories, respectively

Decline in average SAT reading scores

•<u>1972</u>: 530

•2011: 497

73

Missing some information...

 What percentage of high schoolers take the SAT in each state?

Average SAT scores by state

1. Illinois

27. Massachusetts

Minnesota

3. Iowa

30. Vermont

4. Wisconsin

31. Connecticut

Missouri

6. Michigan

33. California

7. North Dakota

8. Kansas 9. Nebraska

42. New York

10. South Dakota

74

Average SAT scores by state

1. Illinois (5%)

27. Massachusetts (89%)

2. Minnesota (7%) 3. lowa (3%)

30. Vermont (67%)

4. Wisconsin (5%)

31. Connecticut (87%)

5. Missouri (5%)

33. California (53%)

6. Michigan (5%)

7. North Dakota (3%)

42. New York (89%)

8. Kansas (6%)

9. Nebraska (5%)

10. South Dakota (4%)

Trends through time

Since 1991, number of test takers has gone up 59%

From 1950 to 2011, proportion w/ four-year degree: 6% to 30%