Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2007 Lösungsblatt Mittelklausur 2. Juni 2007

Einführung	in	die	Theoretische	Inform	atik
------------	----	-----	--------------	--------	------

Name			Vorname				Studi	engang	r S	Matrikelnummer			
					□ Ba	☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ WirtInf.							
Hörsaal			Reihe				Sitzplatz				Unterschrift		
			\mathbf{A}	llge	mein	e Hi	inwe	eise					
• Bitte füllen	Sie o	bige	Felde	r in I	Oruckb	ouchst	aben	aus ui	nd unt	erschre	iben S	ie!	
• Bitte schreiben Sie nicht mit Bleistift oder in roter/grüner Farbe!													
• Die Arbeits	zeit b	eträg	st 105	6 Min	uten.								
• Alle Antwo- seiten) der Sie Nebenr werden, wir	betref echnu	fende ngen	n Au mac	fgabe	en einz Der S	utrag chmie	en. A erblat	uf den	Schn	ierblat	tboger	ı könr	nen
Hörsaal verlasse	n		von		bi	s		/	von		bis .		
Vorzeitig abgege	eben		um										
Besondere Beme	erkung	gen:											
	A1	A2	A3	A4	A5	Σ	Kor	rektor					
Erstkorrektur									_				
Zweitkorrektur													

Aufgabe 1 (10 Punkte)

Markieren Sie, ob folgende Aussagen in voller Allgemeinheit gelten (J:ja/wahr, N:nein/falsch). Falls Sie ein Kästchen versehentlich angekreuzt haben, so füllen Sie beide bitte vollständig aus und malen unmittelbar rechts daneben zwei neue Kästchen: ■■ □□ Für jedes falsche Kreuz wird ein Punkt abgezogen (innerhalb der Aufgabe 1).

Wenn eine Sprache L kontextsensitiv ist, dann ist $L \setminus \{\epsilon\}$ ebenfalls kontextsensitiv.	√ N
Sei $L\subseteq\{0,1\}^*$. Dann gibt es eine Chomsky-0-Grammatik, die L erzeugt.	J
$ \emptyset^* = 1. \qquad \dots$	y N
Jede nutzlose Variable ist nullierbar.	J 🗸
Jede reguläre Grammatik ist in Chomsky-Normalform.	J 🗸
Sei G eine Grammatik in Greibach-Normalform. Dann gibt es zu jedem Wort $w \in L(G)$ eine eindeutige Linksableitung.	J 🗸
Seien L_1 eine reguläre und L_2 eine kontextfreie Sprache mit $L_1, L_2 \subseteq \{a, b\}^*$. Dann ist $\{a, b\}^* \setminus (L_1 \setminus L_2)$ kontextfrei.	√ N
Zu jedem nichtdeterministischen endlichen Automaten A gibt es einen deterministischen Kellerautomaten, der $L(A)$ erkennt.	火 N
Der CYK-Algorithmus berechnet zu jeder kontextfreien Grammatik eine äquivalente Grammatik in Chomsky-Normalform.	J 🜠
Sei L eine unendliche, reguläre Teilmenge von $\{a\}^*$ mit 1 als einer Pumping-Lemma-Konstanten zu L . Dann gilt $L=\{a\}^*$	y N

Aufgabe 2 (6 Punkte)

Sei G die Grammatik $G = (\{S, T\}, \{a, b\}, P, S)$ mit den Produktionen

- 1. Zeigen Sie, dass G mehrdeutig ist.
- 2. Zeigen Sie, dass $b^3a^3 \notin L(G)$ gilt.

Lösungsvorschlag

1. Wir weisen für das Wort $w=abab\in \Sigma^*$ die Existenz zweier verschiedener Linksableitungen nach.

(1 P.)

1. Linksableitung:

$$S \to_G aTbS \to_G abS \to_G abT \to_G abaTb \to_G abab = w. \tag{1 P.}$$

2. Linksableitung:

$$S \to_G SaTb \to_G TaTb \to_G abaTb \to_G abaTb \to_G abab = w$$
. (1 P.)

Auch für w = ab gibt es verschiedene Linksableitungen.

2. Wir führen die Annahme $w = b^3 a^3 \in L(G)$ zum Widerspruch.

Angenommen $w \in L(G)$, d. h. $S \rightarrow_G^* w$, dann gilt einer der folgenden 3 Fälle.

Fall 1, $S \rightarrow_G T \rightarrow_G aTb \rightarrow_G^* w$:

Wegen
$$aTb \rightarrow_G^* w$$
 muß w mit a beginnen. Widerspruch! (1 P.)

Fall 2, $S \rightarrow_G aTbS \rightarrow_G^* w$:

Wegen
$$aTbS \rightarrow_G^* w$$
 muß w mit a beginnen. Widerspruch! (1 P.)

Fall 3, $S \rightarrow_G SaTb \rightarrow_G^* w$:

Wegen
$$SaTb \rightarrow_G^* w$$
 muß w mit b enden. Widerspruch! (1 P.)

Aufgabe 3 (8 Punkte)

Sei $\Sigma = \{b, c, d\}$. Sei L die Sprache

$$L = (b^*c \mid db^*)^*.$$

- 1. Geben Sie eine Grammatik G an, die L erzeugt.
- 2. Geben Sie einen deterministischen endlichen Automaten A an, der L erkennt.

Lösungsvorschlag

1. Sei $G = (\{S, X, Y, B\}, \Sigma, P, S)$ mit Produktionen

$$S \rightarrow \epsilon \mid SS$$
, (1 P.)

$$S \rightarrow X \mid Y,$$
 $(\frac{1}{2} P.)$

$$X \rightarrow Bc$$
, $(\frac{1}{2} P.)$

$$Y \rightarrow dB$$
, $(\frac{1}{2} P.)$

$$B \rightarrow \epsilon \mid bB$$
. $(\frac{1}{2} P.)$

2. Sei
$$A = (\{q_0, q_1, q_2, q_3, undef\}, \Sigma, \delta, q_0, \{q_0, q_2, q_3\})$$
 (1 P.)

mit Übergangsfunktion

$$\delta(q_0, b) = q_1, \quad \delta(q_0, c) = q_0, \quad \delta(q_0, d) = q_2,$$
 (1 P.)

$$\delta(q_1, b) = q_1, \qquad \delta(q_1, c) = q_0, \qquad \delta(q_1, d) = undef, \qquad (1 \text{ P.})$$

$$\delta(q_2, b) = q_3, \quad \delta(q_2, c) = q_0, \quad \delta(q_2, d) = q_2,$$
 (1 P.)

$$\delta(q_3, b) = q_3, \quad \delta(q_3, c) = q_0, \quad \delta(q_3, d) = q_2.$$
 (1 P.)

Stets gelte natürlich $\delta(undef, x) = undef$.

Aufgabe 4 (7 Punkte)

Sei $f: \mathbb{N} \to \mathbb{N}$ eine beliebige Funktion und es sei $L = \{a^n b^{f(n)} c^n ; n \in \mathbb{N}\}$. Beweisen Sie:

Falls L kontextfrei ist, dann ist f beschränkt, d. h., dann gilt

 $(\exists k \in \mathbb{N} \ \forall n \in \mathbb{N}) [f(n) \le k].$

Lösungsvorschlag

Sei L kontextfrei.

Wir führen die Annahme zum Widerspruch, dass f nicht beschränkt ist.

(1 P.)

Sei also f nicht beschränkt.

Sei n eine Pumping-Lemma-Konstante zu L.

Da f nicht beschränkt ist, können wir ein m annehmen mit f(m) > n. (1 P.)

Sei $z = a^m b^{f(m)} c^m$.

Es gilt $z \in L$ und $|z| \ge n$. (1 P.)

Nach Pumping Lemma können wir eine Zerlegung uvwxy von z annehmen,

d. h. z = uvwxy, so dass

 $|vx| \ge 1, |vwx| \le n \text{ und } uv^i wx^i y \in L \text{ für alle } i \ge 0 \text{ gilt.}$ (1 P.)

Da $|b^{f(m)}| > n$ gilt, enthalten v und x beide kein a oder beide kein c. (1 P.)

Fall 1: v und x enthalten beide kein c:

Falls v und x nur aus b's bestehen, dann gilt $uv^2wx^2y \notin L$. Widerspruch! (1 P.)

Falls v ein a enthält, dann kann in uv^2wx^2y die Anzahl der a's nicht gleich

der Anzahl von c's sein. Widerspruch! (1 P.)

Fall 2: v und x enthalten beide kein a:

Analog zu Fall 1.

Aufgabe 5 (9 Punkte)

Sei $G = (\{A,B,C\},\{a,b,c\},P,A)$ mit den Produktionen $C \rightarrow c$ und

$$\begin{array}{ccc} A & \rightarrow & aBAC \mid a \,, \\ B & \rightarrow & bABC \mid b \,. \end{array}$$

- 1. Konstruieren Sie eine Grammatik G_1 in Chomsky-Normalform, die L(G) erzeugt.
- 2. Konstruieren Sie eine Grammatik G_2 in Greibach-Normalform, die L(G) erzeugt und deren Produktionen $\alpha \to \beta$ in ihrer rechten Seite β höchstens 2 Variablen enthalten.

Hinweis: Als Bezeichnung neu eingeführter Variablen für eine Satzform $A_1A_2...A_n$ kann die Klammerung $[A_1A_2...A_n]$ dienen.

Lösungsvorschlag

1. Seien T_a, T_b neue Variable mit zusätzlichen Produktionen $T_a \to a, T_b \to b$. Mit der Bezeichnungskonvention im Hinweis seien entsprechend weitere Variablen eingeführt.

(1 P.)

Dann werden die Produktionen $A \to aBAC$ und $B \to bABC$ ersetzt durch

$$A \rightarrow T_a[BAC], \qquad B \rightarrow T_b[ABC], \qquad (1 P.)$$

$$[BAC] \rightarrow B[AC], \qquad [ABC] \rightarrow A[BC], \qquad (1 P.)$$

$$[AC] \rightarrow AC$$
, $[BC] \rightarrow BC$. (1 P.)

2. Im ersten Schritt werden die Produktionen $A \to aBAC$ und $B \to bABC$ ersetzt durch

$$A \rightarrow a[BAC]$$
, $B \rightarrow b[ABC]$, $[BAC] \rightarrow B[AC]$, $[ABC] \rightarrow A[BC]$, $[BC] \rightarrow BC$. (2 P.)

Im zweiten Schritt werden die A- bzw. B-Produktionen eingesetzt mit dem Ergebnis

$$A \rightarrow a[BAC] \mid a, \qquad B \rightarrow b[ABC] \mid b,$$

$$[BAC] \rightarrow b[ABC][AC] \mid b[AC], \qquad [ABC] \rightarrow a[BAC][BC] \mid a[BC],$$

$$[AC] \rightarrow a[BAC]C \mid aC, \qquad [BC] \rightarrow b[ABC]C \mid bC.$$

$$(3 P.)$$