

Topic 7 Lecture 7d 2,4 Trees

CSCI 240

Data Structures and Algorithms

Prof. Dominick Atanasio

9

2 5 7

10 14

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d -1 key-element items (k_i, o_i), where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v₁ are less than k₁
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d 1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children v₁ v₂ ... v_d and keys k1 k2 ... k_{d-1}
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - k < k₁: we continue the search in child v1</p>
 - $ki-1 < k < k_i$ (i = 2, ..., d 1): we continue the search in child vi
 - $k > k_{d-1}$: we continue the search in child vd
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing n items has height O(log n)
- Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2i items at depth i = 0, ..., h 1 and no items at depth h, we have $n \ge 1 + 2 + 4 + ... + 2h-1 = 2h 1$
 - Thus, $h \le \log (n + 1)$
- Searching in a (2,4) tree with n items takes O(log n) time

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
- We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- We handle an overflow at a 5-node v with a split operation:
 - let v1 ... v5 be the children of v and k1 ... k4 be the keys of v
 - node v is replaced nodes v' and v"
 - v' is a 3-node with keys k1 k2 and children v1 v2 v3
 - v" is a 2-node with key k4 and children v4 v5
 - key k3 is inserted into the parent u of v (a new root may be created)
- The overflow may propagate to the parent node u

Analysis of Insertion

- Algorithm put(k, o)
- 1. We search for key k to locate the insertion node v
- 2. We add the new entry (k, o) at node v
- 3. while overflow(v)
 - if isRoot(v)
 - create a new empty root above v
 - $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree T has O(log n) height
 - Step 1 takes O(log n) time because we visit O(log n) nodes
 - Step 2 takes O(1) time
 - Step 3 takes O(log n) time because each split takes O(1) time and we perform O(log n) splits
- Thus, an insertion in a (2,4) tree takes
 O(log n) time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
- Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node
 v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- To handle an underflow at node v with parent u, we consider two cases
- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

Analysis of Deletion

- Let T be a (2,4) tree with n items
 - Tree T has O(log n) height
- In a deletion operation
 - We visit O(log n) nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of O(log n) fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes O(log n) time

Comparison of Map Implementations

	Find	Put	Erase	Notes
Hash Table	1 expected	1 expected	1 expected	no ordered map methodssimple to implement
Skip List	log n high prob.	log n high prob.	log n high prob.	o randomized insertiono simple to implement
AVL and (2,4) Tree	log <i>n</i> worst-case	log <i>n</i> worst-case	log <i>n</i> worst-case	o complex to implement