Maximizar:

$$f(x_1, x_2) = -(x_1 - 3)^2 - 5(x_2 - 2)^2$$

Derivando la función:

$$\nabla f_{x_1} = -2x_1 + 6$$
$$\nabla f_{x_2} = -10x_2 + 20$$

Tomamos como punto inicial $p_0 = (0,0)$. Iterando con el método del ascenso/descenso más pronunciado obtenemos:

Iteración 1.

Evaluamos ∇f en el punto $p_0 = (0.0, 0.0)$, entonces $\nabla f = (6.0, 20.0)$. Obteniendo h(r):

$$h(r) = -(6r - 3)^2 - 5(20r - 2)^2$$

Maximizando h encontramos r=0.107. Así $p_1=(0.642, 2.141)$.

Iteración 2.

Evaluamos ∇f en el punto $p_1=(0.642,2.141)$, entonces $\nabla f=(4.715,-1.415)$. Obteniendo h(r):

$$h(r) = -5(-1.41453433915813r + 0.141453433915813)^2 - (4.71512793965051r - 2.35756396982526)^2$$

Maximizando h encontramos r=0.376. Así $p_2=(2.415, 1.61)$.

Iteración 3.

Evaluamos ∇f en el punto $p_2 = (2.415, 1.61)$, entonces $\nabla f = (1.171, 3.902)$. Obteniendo h(r):

$$h(r) = -(1.17064803582196r - 0.585324017910978)^2 - 5(3.90217032145075r - 0.390217032145075)^2$$

Maximizando h encontramos r=0.107. Así $p_3=(2.54, 2.028)$.

Iteración 4.

Evaluamos ∇f en el punto $p_3=(2.54,2.028)$, entonces $\nabla f=(0.92,-0.276)$. Obteniendo h(r):

$$h(r) = -5(-0.275982400855789r + 0.0275982400855788)^{2} - (0.919959527898813r - 0.459979763949407)^{2}$$

Maximizando h encontramos r=0.376. Así $p_4=(2.886, 1.924)$.

Iteración 5.

Evaluamos ∇f en el punto $p_4 = (2.886, 1.924)$, entonces $\nabla f = (0.228, 0.761)$. Obteniendo h(r):

$$h(r) = -(0.228397537116283r - 0.114198768558142)^2 - 5(0.761340072409386r - 0.0761340072409384)^2$$

Maximizando h encontramos r=0.107. Así $p_5=(2.91, 2.005)$.

Iteración 6.

Evaluamos ∇f en el punto $p_5 = (2.91, 2.005)$, entonces $\nabla f = (0.179, -0.054)$. Obteniendo h(r):

 $h(r) = -5(-0.0538449099507758r + 0.00538449099507776)^2 - (0.179487398529719r - 0.0897436992648593)^2$ Maximizando h encontramos r=0.376. Así p_6 =(2.978, 1.985).

Iteración 7.

Evaluamos ∇f en el punto $p_6=(2.978,1.985)$, entonces $\nabla f=(0.045,0.149)$. Obteniendo h(r):

 $h(r) = -(0.0445609099296327r - 0.0222804549648163)^2 - 5(0.148539900575159r - 0.0148539900575158)^2$ Maximizando h encontramos r=0.107. Así p_7 =(2.982, 2.001).

Iteración 8.

Evaluamos ∇f en el punto $p_7 = (2.982, 2.001)$, entonces $\nabla f = (0.035, -0.011)$. Obteniendo h(r):

 $h(r) = -5(-0.0105052583832261r + 0.00105052583832244)^2 - (0.0350184274375263r - 0.0175092137187631)^2$ Maximizando h encontramos r=0.376. Así p_8 =(2.996, 1.997).

Iteración 9.

Evaluamos ∇f en el punto $p_8 = (2.996, 1.997)$, entonces $\nabla f = (0.009, 0.029)$. Obteniendo h(r):

 $h(r) = -(0.00869392885924114r - 0.00434696442962057)^2 - 5(0.0289804752161942r - 0.0028980475216196)^2$ Maximizando h encontramos r=0.107. Así p_9 =(2.997, 2.0).

Iteración 10.

Evaluamos ∇f en el punto $p_9 = (2.997, 2.0)$, entonces $\nabla f = (0.007, -0.002)$. Obteniendo h(r):

 $h(r) = -5(-0.00204959473393629r + 0.000204959473393718)^2 - (0.00683217042614981r - 0.0034160852130749)^2$ Maximizando h encontramos r=0.376. Así p_{10} =(2.999, 1.999).

Iteración 11.

Evaluamos ∇f en el punto $p_{10} = (2.999, 1.999)$, entonces $\nabla f = (0.002, 0.006)$. Obteniendo h(r):

 $h(r) = -(0.00169619898814144r - 0.00084809949407072)^2 - 5(0.00565415045712214r - 0.00056541504571217)^2$ Maximizando h encontramos r=0.107. Así p_{11} =(2.999, 2.0).

Iteración 12.

Evaluamos ∇f en el punto $p_{11}=(2.999,2.0)$, entonces $\nabla f=(0.001,-0.0)$. Obteniendo h(r):

 $h(r) = -5(-0.000399877091158629r + 3.99877091159517e - 5)^2 - (0.00133296721780063r - 0.000666483608900315)^2$

Maximizando h encontramos r=0.376. Así $p_{12}=(3.0, 2.0)$.

Iteración 13.

Evaluamos ∇f en el punto $p_{12} = (3.0, 2.0)$, entonces $\nabla f = (0.0, 0.001)$. Obteniendo h(r):

 $h(r) = -(0.000330928687758636r - 0.000165464343879318)^2 - 5(0.00110313156228159r - 0.000110313156228337)^2$ Maximizando h encontramos r=0.107. Así p_{13} =(3.0, 2.0).

Iteración 14.

Evaluamos ∇f en el punto $p_{13} = (3.0, 2.0)$, entonces $\nabla f = (0.0, -0.0)$. Obteniendo h(r):

 $h(r) = -5(-7.80156922601805e - 5r + 7.80156922619568e - 6)^2 - (0.00026006216116059r - 0.000130031080580295)^2$ Maximizando h encontramos r=0.376. Así p_{14} =(3.0, 2.0).

Iteración 15.

Evaluamos ∇f en el punto $p_{14} = (3.0, 2.0)$, entonces $\nabla f = (0.0, 0.0)$. Obteniendo h(r):

 $h(r) = -(6.45637952167988e - 5r - 3.22818976083994e - 5)^2 - 5(0.000215220745648281r - 2.15220745649614e - 5)^2$ Maximizando h encontramos r=0.107. Así p_{15} =(3.0, 2.0).

Iteración 16.

Evaluamos ∇f en el punto $p_{15} = (3.0, 2.0)$, entonces $\nabla f = (0.0, -0.0)$. Obteniendo h(r):

 $h(r) = -5(-1.52206335428673e - 5r + 1.52206335446436e - 6)^2 - (5.07378325096397e - 5r - 2.53689162548199e - 5)^2$ Maximizando h encontramos r = 0.376. Así $p_{16} = (3.0, 2.0)$.

Iteración 17.

Evaluamos ∇f en el punto $p_{16} = (3.0, 2.0)$, entonces $\nabla f = (0.0, 0.0)$. Obteniendo h(r):

 $h(r) = -(1.25961628043569e - 5r - 6.29808140217847e - 6)^2 - 5(4.1989178992452e - 5r - 4.19891789937843e - 6)^2$ Maximizando h encontramos r=0.107. Así p_{17} =(3.0, 2.0).

Por lo tanto el punto máximo es: (3.0, 2.0)