Twierdzenia graniczne: Mocne Prawo Wielkich Liczb, Centralne Twierdzenie Graniczne

Definicja 1. Ciąg $\{X_n\}_{n\in\mathcal{N}}$ zmiennych losowych jest zbieżny do zmiennej losowej X: a) prawie na pewno (prawie wszędzie, \mathbb{P} -prawie wszędzie, z prawdopodobieństwem 1), jeżeli

$$\mathbb{P}(\lim_{n \to \infty} X_n = X) = 1,$$

ozn. $X_n \xrightarrow{p.n.} X$, $X_n \xrightarrow{p.w.} X$, $X_n \xrightarrow{\mathbb{P}-p.w.} X$; b) $według \ prawdopodobieństwa, jeżeli$

$$\forall \ \varepsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0,$$

ozn. $X_n \stackrel{\mathbb{P}}{\longrightarrow} X;$

c) według rozkładu (słabo zbieżny), jeżeli ciąg dystrybuant $\{F_{X_n}\}_{n\in\mathcal{N}}$ odpowiadających zmiennym losowym $\{X_n\}_{n\in\mathcal{N}}$ jest zbieżny do dystrybuanty F_X zmiennej losowej X, przy $n\longrightarrow\infty$, w każdym punkcie ciągłości dystrybuanty F_X . Ozn. $X_n\stackrel{D}{\longrightarrow} X$.

Fakt 1. Zależności między rodzajami zbieżności zmiennych losowych są następujące:

$$X_n \xrightarrow{p.n.} X \implies X_n \xrightarrow{\mathbb{P}} X \implies X_n \xrightarrow{D} X.$$

Fakt 2. Jeżeli ciąg $\{X_n\}_{n\in\mathcal{N}}$ zbiega wg rozkładu do stałej, to zbiega również wg prawdopodobieństwa do tej samej stałej.

Fakt 3. Jeżeli $X_n \stackrel{D}{\longrightarrow} X$ i $Y_n \stackrel{D}{\longrightarrow} c$, to $X_n \pm Y_n \stackrel{D}{\longrightarrow} X \pm c$ oraz $X_n Y_n \stackrel{D}{\longrightarrow} cX$, $X_n/Y_n \stackrel{D}{\longrightarrow} X/c$ $(c \neq 0)$.

Mocne Prawo Wielkich Liczb (MPWL) Niech X_1, X_2, \ldots będzie ciągiem parami niezależnych zmiennych losowych o jednakowym rozkładzie. Jeżeli $\mathbb{E}|X_1| < \infty$, to

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow{p.n.} \mathbb{E}(X_1), \quad n \longrightarrow \infty.$$
 (1)

Uwaga. Jeśli w (1) mamy zbieżność $\stackrel{\mathbb{P}}{\longrightarrow}$, to takie twierdzenie nazywa się Słabym Prawem Wielkich Liczb (SPWL). Zachodzi: MPWL \implies SPWL.

Centralne Twierdzenie Graniczne (CTG) Niech $X_1, X_2, ...$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie ze skończoną wartością oczekiwaną i skończoną dodatnią wariancją. Wówczas

$$\frac{X_1 + \ldots + X_n - n \cdot \mathbb{E}(X_1)}{\sqrt{n \cdot \mathbf{Var}(X_1)}} \stackrel{D}{\longrightarrow} X \sim N(0, 1), \quad n \longrightarrow \infty.$$

Wniosek (Twierdzenie de Moivre'a-Laplace'a) Niech S_n oznacza liczbę sukcesów w schemacie Bernoullego (n - liczba doświadczeń, $p \in (0,1)$ - prawdopodobieństwo sukcesu), czyli $S_n \sim b(n,p)$. Wówczas

$$\frac{S_n - np}{\sqrt{np(1-p)}} \stackrel{D}{\longrightarrow} X \sim N(0,1) \quad n \longrightarrow \infty;$$

w szczególności dla dowolnych liczba < b

$$\mathbb{P}\left(a \leqslant \frac{S_n - np}{\sqrt{np(1-p)}} \leqslant b\right) \longrightarrow \Phi(b) - \Phi(a), \quad n \longrightarrow \infty,$$

gdzie $\Phi(\cdot)$ jest dystrybuantą rozkładu N(0,1).