

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 4

Keine Abgabe vorgesehen

Präsenzaufgabe 4.5 (Erweiterter Euklidischer Algorithmus). Es sei R ein euklidischer Ring mit zugehöriger Abbildung $d: R \setminus \{0\} \longrightarrow \mathbb{N}_0$. Für beliebige $a, b \in R$ mit $b \neq 0$ definieren wir $r_{-1} := a$ und $r_0 := b$. Es seien $(r_j)_{j=1}^n$ und $(q_j)_{j=0}^{n-1}$ die in Bemerkung 2.7.10. eindeutig definierten Folgen des euklidischen Algorithmus:

$$r_{j+1} := r_{j-1} - q_j r_j$$
, wobei $d(r_{j+1}) < d(r_j)$ oder $r_{j+1} = 0$.

Hierbei sei n die kleinste natürliche Zahl, sodass $r_n = 0$. Wir definieren weiter die Folgen $(x_j)_{j=-1}^{n-1}$ und $(y_j)_{j=-1}^{n-1}$ mittels

$$x_{-1} := 1$$
, $x_0 := 0$, $x_{j+1} := x_{j-1} - q_j x_j$ für $j \in \{0, \dots, n-1\}$
 $y_{-1} := 0$, $y_0 := 1$, $y_{j+1} := y_{j-1} - q_j y_j$ für $j \in \{0, \dots, n-1\}$.

- (a). Führen Sie den erweiterten euklidischen Algorithmus am Beispiel a=86 und b=24 aus.
- (b). Zeigen Sie, dass $r_j = x_j a + y_j b$ für alle $j \in \{-1, ..., n-1\}$. Vergewissern Sie sich, dass damit die Korrektheit des Algorithmus bewiesen ist und wir eine Bézout-Darstellung eines größten gemeinsamen Teilers von a und b erhalten mittels

$$r_{n-1} = x_{n-1} a + y_{n-1} b.$$

(c). Formulieren Sie diesen Algorithmus analog zum euklidischen Algorithmus aus der Vorlesung als WHILE-Schleife zur Bestimmung einer Bézout-Darstellung eines größten gemeinsamen Teilers von a und b.

Präsenzaufgabe 4.6. Berechnen Sie jeweils mittels des erweiterten euklidischen Algorithmus eine Bézout-Darstellung eines größten gemeinsamen Teilers von $a \in R$ und $b \in R$ für

- (a). $R = \mathbb{Z}$, a = 217 und b = 133.
- **(b).** $R = \mathbb{Q}[t], a = t^4 + 14t^3 + 59t^2 + 46t 120 \text{ und } b = t^3 + 4t^2 + t 6.$

Präsenzaufgabe 4.7. Für quadratfreies $d \in \mathbb{N} \setminus \{1\}$, d.h. in der Primfaktorzerlegung von d tauchen die Primzahlen höchstens mit Vielfachheit 1 auf, sei $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$, ein Unterring von \mathbb{R} . Wir definieren

$$N : \mathbb{Z}[\sqrt{d}] \longrightarrow \mathbb{Z}$$
$$a + b\sqrt{d} \longmapsto N(a + b\sqrt{d}) = a^2 - db^2.$$

- (a). Beweisen Sie die folgenden Aussagen.
 - (a) Für alle $\alpha, \beta \in \mathbb{Z}[\sqrt{d}]$ gilt: $N(\alpha\beta) = N(\alpha)N(\beta)$. Insbesondere: $N(\alpha) = 0 \Leftrightarrow \alpha = 0$.
 - (b) $N(\alpha) = \pm 1 \Leftrightarrow \alpha \in \mathbb{Z}[\sqrt{d}]^*$. Ermitteln Sie damit 4 Elemente von $\mathbb{Z}[\sqrt{10}]^*$.
- (b). 2, 3, $4 + \sqrt{10}$, $4 \sqrt{10}$ sind irreduzible Elemente, jedoch keine Primelemente von $\mathbb{Z}[\sqrt{10}]$. Hinweis: $2 \cdot 3 = (4 + \sqrt{10})(4 - \sqrt{10})$ und rechnen Sie ggfs. in $\mathbb{Z}_{10\mathbb{Z}}$ mittels Reduktion.