Graphs of Reciprocal Functions

- All the y-coordinates of a reciprocal function are the reciprocals of the y-coordinates of the original function.
- The graph of a reciprocal function has a vertical asymptote at each zero of the original function.
- A reciprocal function will always have y = 0 as a horizontal asymptote if the original function is linear or quadratic.
- A reciprocal function has the same positive/negative intervals as the original function.
- Intervals of increase on the original function are intervals of decrease on the reciprocal function.
 Intervals of decrease on the original function are intervals of increase on the reciprocal function.
- If the range of the original function includes 1 and/or -1, the reciprocal function will intersect the original function at a point (or points) where the y-coordinate is 1 or -1.
- If the original function has a local minimum point, the reciprocal function will have a local maximum point at the same x-value (and vice versa).

A linear function and its reciprocal

Both functions are negative when $x \in (-\infty, -1)$ and positive when $x \in (-1, \infty)$. The original function is increasing when $x \in (-\infty, \infty)$. The reciprocal function is decreasing when $x \in (-\infty, -1)$ or $(-1, \infty)$.

A quadratic function and its reciprocal

Both functions are negative when $x \in (-3, 1)$ and positive when $x \in (-\infty, -3)$ or $(1, \infty)$. The original function is decreasing when $x \in (-\infty, -1)$ and increasing when $x \in (-1, \infty)$. The reciprocal function is increasing when $x \in (-\infty, -3)$ or (-3, -1) and decreasing when $x \in (-1, 1)$ or $(1, \infty)$.

Example 1

State the equation of the reciprocal of each function, and determine the equations of the vertical asymptotes of the reciprocal.

a)
$$f(x) = x - 6$$

c)
$$f(x) = -x^2 + 25$$

b)
$$f(x) = -3x + 1$$

d)
$$f(x) = 2x^2 + 5x - 12$$

Example 2 Given the function f(x) = 7 - 2x,

- a) determine the domain and range, intercepts, positive/negative intervals, and increasing/decreasing intervals
- b) use your answers from part (a) to sketch the graph of the reciprocal function

Page 2

Example 3

Given the function $f(x) = -x^2 - 6x + 16$,

- a) determine the domain and range, intercepts, positive/negative intervals, and increasing/decreasing intervals
- b) use your answers from part (a) to sketch the graph of the reciprocal function

The graph is given. Sketch its reciprocal.

Exploring Quotients of Polynomial Functions

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a hole at x = a if $\frac{p(a)}{q(a)} = \frac{0}{0}$. This occurs when p(x) and q(x) contain a common factor of (x-a). For example, $f(x) = \frac{x^2-4}{x-2}$ has the common factor of (x-2) in the numerator and the denominator. This results in a hole in the graph of f(x) at x = 2.

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a vertical asymptote at x = a if $\frac{p(a)}{q(a)} = \frac{p(a)}{0}$. For example, $f(x) = \frac{x+1}{x-2}$ has a vertical asymptote at x = 2.

• A rational function, $f(x) = \frac{p(x)}{q(x)}$, has a horizontal asymptote only when the degree of p(x) is less than or equal to the degree of q(x). For example, $f(x) = \frac{2x}{x+1}$ has a horizontal asymptote at y = 2.

Example 1 For each function, determine the equations of any vertical asymptotes, the locations of any holes, and the existence of any horizontal or oblique asymptotes.

a)
$$f(x) = \frac{x^2 - 5x + 4}{x - 5}$$

c)
$$h(x) = \frac{3x}{2x-1}$$

b)
$$p(x) = \frac{2x+5}{2x^2+x-10}$$

d)
$$m(x) = \frac{x^2 - 64}{2x + 16}$$

Example 2 Write an equation for a rational function with the properties as given.

- a) a vertical asymptote at x = -5 and a horizontal asymptote at $y = \frac{1}{2}$
- b) a hole at x = 3 and a vertical asymptote at x = -1
- c) a vertical asymptote at $x = -\frac{5}{4}$ and an oblique asymptote

Graphs of Rational Functions of the Form $f(x) = \frac{ax+b}{cx+d}$

• Rational functions of the form $f(x) = \frac{b}{cx+d}$ have a vertical asymptote defined by $x = -\frac{d}{c}$ and a horizontal asymptote defined by y = 0. For example, see the graph of $f(x) = \frac{2}{x-3}$.

• Most rational functions of the form $f(x) = \frac{ax+b}{cx+d}$ have a vertical asymptote defined by $x = -\frac{d}{c}$ and a horizontal asymptote defined by $y = \frac{a}{c}$. For example, see the graph of $f(x) = \frac{4x-1}{2x-1}$.

The exception occurs when the numerator and the denominator both contain a common linear factor. This results in a graph of a horizontal line that has a hole where the zero of the common factor occurs. As a result, the graph has no asymptotes. For example, see the graph of $f(x) = \frac{4x-8}{x-2} = \frac{4(x-2)}{x-2}$.

Example 1

For each function, determine the domain, intercepts, asymptotes, and positive/negative intervals. Use these characteristics to sketch the graph of the function. Then describe where the function is increasing or decreasing.

a)
$$f(x) = \frac{6}{x-2}$$

b)
$$g(x) = \frac{4x-1}{3x+5}$$

Sketch the following rational functions.

1.
$$y = \frac{x}{9-x^2}$$

2.
$$y = \frac{x^3-27}{x^2-9}$$

Sketch the following rational functions.

3.
$$y = \frac{x^3 - 3x^2 - 4x}{x^2 + 3x}$$

4.
$$y = \frac{2x^3 - x^2 - 2x + 1}{x^2 - 3x + 2}$$