William Stallings Data and Computer Communications 7th Edition

Chapter 17 Wireless LANs

Unlicensed Narrowband RF

- 1995, Radiolan memperkenalkan narrowband LAN tanpa kawat yang menggunakan spektrum ALIRAN tanpa SIM
 - yang yang digunakan Untuk narrowband transmisi pada kuasa rendah
 - 0.5 watt atau lebih sedikit
 - Beroperasi pada 10 Mbps
 - 5.8-GHz band
 - 50 m di (dalam) semiopen kantor dan 100 m di (dalam) kantor terbuka
- Konfigurasi Peer-To-Peer
- Memilih satu node sebagai master
 - Berdasarkan lokasi,interferensi dan kekuatan sinyal
- Master dapat berubah secara otomatis saat kondisinya berubah
- Termasuk fungsi dynamic relay
- Stasiun dapat menjadi repeater untuk memindah data antara stasiun yang di luar jangkauan dengan yang lain

IEEE 802.11 - BSS

- MAC protokol and spesifikasi medium phisik untuk wireless LANs
- Bangunan kecil adalah basic service set (BSS)
 - Jumlah statsiun
 - MAC protokol yang sama
 - Bersaing untuk akses ke media wireless yang sama
- Mungkin di isolasi atau dihubungkan ke sistem distribusi backbone (DS) melalui access point (AP)
 - Fungsi AP seperti bridge
- MAC protokol mungkin dibagi atau dikendalikan oleh fungsi koordinasi pusat dalam AP
- BSS biasanya sesuai dengan sel
- DS dapat menjadi switch, jaringan kabel, atau jaringan wireless

Konfigurasi BSS

- Paling Sederhana: masing-masing stasiun menjadi BSS tunggal
 - —Di dalam cakupan hanya stasiun lain di dalam BSS
- Mampukah dua BSSs overlap
 - —Stasiun dapat mengambil bagian di lebih dari satu BSS
- Asosiasi antara stasiun dan BSS dinamis
 - Stasiun mungkin memadamkan, datang di dalam cakupan, dan keluar cakupan

Extended Service Set (ESS)

- Dua atau lebih BSS di hubungkan oleh DS
 - Biasanya, DS adalah wired backbone tetapi dapat di jaringan manapun
- Terlihat sebagai LAN tunggal ke LLC

Access Point (AP)

- Logika di dalam stasiun yang menyediakan akses ke DS
 - -Menyediakan DS di samping sebagai stasiun
- Untuk mengintegrasikan IEEE 802.11 arsitektur dengan wired LAN, menggunakan portal
- Logika portal diterapkan dalam alat yang menjadi bagian dari wired LAN dan tersambung dengan DS
 - —E.g. Bridge atau router

IEEE 802.11 Architecture

STA = station AP = access point

Services

Service	Provider	Category
Association	Distribution system	MSDU delivery
Authentication	Station	LAN access and security
Deauthentication	Station	LAN access and security
Dissassociation	Distribution system	MSDU delivery
Distribution	Distribution system	MSDU delivery
Integration	Distribution system	MSDU delivery
MSDU delivery	Station	MSDU delivery
Privacy	Station	LAN access and security
Reassocation	Distribution system	MSDU delivery

Kategori Services

- Jasa stasiun diterapkan di tiap-tiap stasiun 802.11
 - Termasuk stasiun AP
- Jasa distribusi diperlihatkan antara BSSs
 - Mungkin dapat di implementasikan di AP atau special-purpose device
- Tiga jasa digunakan untuk mengontrol akses dan kerahasiaan
- Enam jasa digunakan untuk membantu pengiriman MAC data units (MSDUs) antar stasiun
 - Blok data yang dilewati oleh pemakai MAC layer MAC
 - Biasanya LLC PDU
 - Jika MSDU terlalu besar untuk MAC frame, akan dibagi dan dipancarkan secara urut setiap frame (lihat kemudian)

Distribusi Messages Di dalam suatu DS

- Distribusi adalah layanan utama yang digunakan oleh stasiun untuk menukar MAC frame saat frame harus menyilang ke DS
 - Dari stasiun dalam satu BSS ke stasiun di BSS yang lain
 - Pengiriman pesan melalui DS adalah di luar lingkup dari 802.11
 - Jika stasiun di BSS yang sama, melayani distribusi secara logika melewati AP tunggal dari BSS itu
- Layanan pengintegrasian memungkinkan perpindahan data antar stasiun pada 802.11 LAN dan satu pada 802.x LAN yang terintegrasi
 - Integrasi mengacu pada wired LAN secara phisik terhubung ke DS
 - Stasiun mungkin secara logika terhubung ke 802.11 LAN via layanan integrasi
 - Layanan pengintegrasian melindungi konversi media dan terjemahan alamat

Association Related Services

- Tujuan MAC layer memindahkan MSDUs antar kesatuan MAC
- Dipenuhi oleh layanan distribusi (DS)
- DS memerlukan informasi tentang stasiun di dalam ESS
 - Diperlihatkan oleh layanan association-related
 - Stasiun harus dihubungkan sebelum berkomunikasi
- Tiga transisi jenis mobilitas didasarkan pada
 - Tidak ada transisi: Keperluan atau perpindahan dalam jangkauan BSS tunggal
 - BSS transisi: Dari satu BSS ke yang lain di dalam ESS yang sama
 - Memerlukan kemampuan untuk bisa mengenali lokasi yang baru
- Transisi ESS: Dari BSS di satu ESS ke BSS di dalam ESS yang lain
 - Hanya mendukung bahwa stasiun dapat pindah
 - Pemeliharaan koneksi layer atas tidak di jamin
 - Mungkin gangguan layanan

Penempatan Stasiun

- DS harus mengetahui di mana stasiun tujuan adalah
 - Identitas AP untuk pesan mana harus dikirimkan
 - Stasiun harus memelihara asosiasi dengan AP di dalam BSS yang ada
- Tiga jasa berhubungan dengan keperluan ini:
 - Asosiasi: Menetapkan asosiasi awal antara stasiun dan AP
 - Untuk membuat identitas dan alamat yang diketahui
 - Stasiun harus menetapkan asosiasi dengan AP di dalam BSS tertentu
 - AP kemudian mengkomunikasi informasi ke APs lain di dalam ESS
 - Reassociation: Memindahkan asosiasi ke AP yang lain
 - Mengijinkan stasiun untuk pindah dari satu BSS ke yang lain
 - Disassociation: Dari salah satu stasiun atau AP yang asosiasinya diakhiri
 - Diberikan sebelum stasiun meninggalkan ESS atau menutup
 - MAC fasilitas manajemen melindungi dirinya sendiri melawan terhadap stasiun yang menghilang tanpa pemberitahuan

Access and Privacy Services - Authentication

- Pada wireless LAN, stasiun manapun di dalam radio mencakup alat lain yang dapat memancarkan
- Stasiun manapun di dalam cakupan radio dapat menerima
- Pengesahan: Digunakan untuk menetapkan identitas stasiun satu sama lain
 - Wired LANS mengasumsikan akses ke koneksi phisik menyampaikan otoritas untuk menghubungkan ke LAN
 - Bukan asumsi sah untuk wireless LANS
 - Connectivas yang dicapai dengan baik untuk mengatur antena
 - Layanan pengesahan yang digunakan untuk menetapkan identitas setasiun
 - 802.11 supports several authentication schemes
 - Di ijinkan perluasan tentang rencana ini
 - Tidak mengamanatkan rencana tertentu
 - Jangkauan dari handshaking secara relatif tidak kuat ke rencana publickey encryption
 - 802.11 memerlukan pengesahan bisa diterima, sukses dikenali sebelum asosiasi

Access and Privacy Services - Deauthentication and Privacy

- Deauthentication: Dilibatkan saat pengesahan ada untuk diakhiri
- Pribadi: Mencegah pesan dibaca oleh orang yang lain
- 802.11 menyediakan penggunaan encryption yang opsional

Media Kontrol akses

- MAC layer meliputi tiga area yang fungsional
- Pengiriman data yang dipercaya
- Kontrol Akses
- Keamanan
 - —Di luar lingkup

Reliable Data Delivery

- 802.11 phisik dan MAC layer tertuju pada keandalan
- Noise, interferensi, dan efek propagasi mengakibatkan hilangnya frame
- Sama dengan koreksi kesalahan kode, frame tidak selalu sukses diterima
- Dapat dihadapkan dengan layer yang lebih tinggi, seperti TCP
 - Bagaimanapun, transmisi kembali pengatur waktu pada layer atas secara khas dalam detik
 - Lebih efisien untuk berhubungan dengan kesalahan di MAC
- 802.11 meliputi frame penukar protokol
 - Stasiun yang menerima frame mengembalikan kemampuan (ACK) frame
 - Pertukaran dianggap sebagai unit kecil
 - Tidak yang disela oleh setasiun lain
 - Jika tanpa ACK di dalam jangka waktu pendek, memancarkan kembali

Four Frame Exchange

- Perpindahan data dasar melibatkan pertukaran dua frame
- Untuk lebih meningkatkan keandalan, empat frame ditukar mungkin bisa digunakan
 - Sumber mengeluarkan suatu Request To Send (RTS) frame ke tujuan
 - Tujuan menjawab dengan Clear To Send (CTS)
 - Setelah menerima CTS, sumber memancarkan data
 - Tujuan merespon dengan ACK
- RTS siaga semua stasiun dalam jangkauan sumber yang menukar dalam perjalanan
- CTS siaga semua setasiun dalam jangkauan tujuan
- Stasiun menahan dari transmisi untuk menghindari benturan
- Pertukaran RTS/CTS diperlukan Untuk fungsi MAC tetapi mungkin dapat dilumpuhkan

Media Access Control

- Pembagian pondasi wireless MAC (DWFMAC)
 - Akses yang dibagi-bagikan mengendalikan mekanisme
 - Kendali dipusatkan di atas
- Sublayer bawah adalah distributed coordination function (DCF)
 - Algoritma untuk menyediakan akses untuk semua traffic
 - Asynchronous traffic
- Fungsi titik koordinasi (PCF)
 - MAC algoritma yang yang dipusatkan
 - Dibangun pada puncak DCF

IEEE 802.11 Protocol Architecture

Distributed Coordination Function

- DCF sublayer menggunakan CSMA
- Jika setasiun mempunyai frame untuk memancarkan, itu didengarkan medium
- Jka medium kosing, stasiun boleh memancarkan
- Jika tidak harus menunggu sampai transmisi sekarang melengkapi
- Tidak ada pendeteksian benturan
 - Tidak dilakukan pada jaringan wireless
 - Cakupan sinyal yang dinamis sangat besar
 - Pemancar setasiun tidak bisa melihat sinyal lemah dari noise dan efek transmisinya
- DCF meliputi delay
 - Sejumlah rencana prioritas
 - Interframe ruang

Interframe Space

- Penundaan tunggal dikenal sebagai interframe ruang (IFS)
- Menggunakan IFS, aturan untuk CSMA:
- 1. Stasiun dengan media frame
 - Jika kosong, menunggu jika sisa yang kosong untuk satu IFS. Jika demikian, boleh memancarkan dengan segera
- 2. Jika sibuk (yang manapun pada awalnya atau menjadi sibuk selama IFS) stasiun menunda transmisi
 - Lanjut untuk memonitor sampai transmisi sekarang selesai
- 3. Sekali ketika transmisi arus berlebih, menunda IFS lain
 - Jika sisa kosong, back off waktu acak
 - Jika medium masih kosong, stasiun boleh memancarkan
 - Selama backoff waktu, jika menjadi sibuk, backoff pengatur waktu dihentikan dan mulai lagi ketika medium menjadi kosong
- Untuk memastikan stabilitas, backoff menggunakan exponen biner

IEEE 802.11 Medium

Access Control Logic

Prioritas

- Menggunakan tiga nilai untuk IFS
- SIFS (IFS yang pendek):
 - IFS paling pendek
 - Untuk semua respon tanggapan (lihat kemudian)
- PIFS (menunjukan fungsi koordinat IFS):
 - Midlength IFS
 - Digunakan oleh pengontrol dipusatkan di PCF
- DIFS (distribusi fungsi koordinat):
 - IFS terpanjang
 - Digunakan selama penundaan minimum untuk asynchronous frame untuk akses

SIFS Menggunakan ACK

- Stasiun menggunakan SIFS untuk menentukan transmisi yang mempunyai prioritas paling tinggi
 - Dalam pilihan ke stasiun menunggu waktu PIFS atau DIFS
- SIFS digunakan dalam keadaan berikut:
- Kemampuan (ACK): Stasiun merespon dengan ACK setelah menunggu SIFS gap
 - Tidak ada pendeteksian maka kemungkinan benturan yang lebih besar dibanding CSMA/CD
 - MAC-LEVEL ACK memberi recovery yang efisien
 - SIFS menyediakan pengiriman efisien berbagai frame LLC PDU
 - Stasiun dengan multiframe LLC PDU memancarkan MAC frame dalam satu waktu
 - Kemampuan setiap frame diakui setelah SIFS di penerima
 - Saat sumber menerima ACK, segera (setelah SIFS) mengirimkan frame berikutnya sesuai urutan
 - Satu stasiun mencakup semua saluran, itu mengontrol semua fragmen yang dikirim

SIFS Menggunakan CTS

- Clear to Send (CTS): Stasiun dapat memastikan data frame akan melalui dengan mengeluarkan RTS
 - Stasiun tujuan perlu dengan segera merespon dengan CTS jika siap untuk menerima
 - —Semua stasiun lain mendengar RTS dan menunda
- Tanggapan Poll: Lihat Point coordination Function (PCF)

PIFS dan DIFS

- PIFS digunakan oleh pengontrol yang dipusat
 - —Pengeluaran tempat
 - —Harus mendahulukan traffic yang normal
 - —Frame menggunakan SIFS harus mendahulukan PCF
- DIFS menggunakan untuk semua asynchronous traffic yang tidak sama

IEEE 802.11 MAC Timing Basic Access Method

(a) Basic Access Method

Point Coordination Function (PCF)

- Metode akses alternatif menerapkan di atas DCF
- Polling oleh polling master (titik koordinator)
- Menggunakan PIFS saat pengeluaran polls
 - PIFS lebih kecil dibanding DIFS
 - Mampu menangkap medium dan mengunci saat asychronous traffic tidak sama saat menerima respon
- E.G. jaringan wireless mengatur beberapa stasiun dengan timesensitive traffic yang dikendalikan oleh titik koordinator
 - Traffic lainnya bersaing untuk akses menggunakan CSMA
- Titik koordinator dalam round-robind ke stasiun untuk mengatur
- Saat mengeluarkan poll, stasiun mungkin merespon menggunakan SIFS
- Jika titik koordinator menerima respon, itu mengeluarkan poll yang lain menggunakan PIFS
- Jika tidak ada tanggapan selama penggunaan waktu yang diharapkan, koordinator mengeluarkan poll

Superframe

- Titik Koordinator akan mengunci hingga orang tak dapa lalu lintas tak serempak pengeluaran tempat pemungutan suara
- Superframe interval menggambarkan
 - Selama bagian dari pertama superframe interval, tempat pemungutan suara protes koordinator titik kepada semua setasiun mengatur untuk menanyai
 - Nunjuk koordinator kemudian yang kosong untuk sisa superframe
 - Membiarkan periode perkelahian untuk akses tak serempak
- Pada permulaan superframe, koordinator titik boleh menangkap kendali dan tempat pemungutan suara isu untuk periode diberi
 - Waktu bervariasi oleh karena ukuran bingkai variabel yang dikeluarkan dengan menjawab setasiun
- Istirahat superframe yang tersedia untuk akses contention-based
- Pada akhir superframe interval, koordinator titik berkelahi/ menantang untuk akses yang menggunakan PIFS
- Jika kosong, koordinator titik memperoleh akses segera
 - Superframe periode penuh mengikuti
 - Jika sibuk, koordinator titik harus menantikan kosong untuk memperoleh akses
 - Akibatkan superframe periode digambar perspektif untuk siklus berikutnya

IEEE 802.11 konstruksi waktu MAC PCF Superframe

IEEE 802.11 Format MAC Frame

FC = Frame control

D/I = Duration/Connection ID

SC = Sequence control

Bidang MAC Frame (1)

Kendali frame:

- Tipe rangka
- Kendali, manajemen, atau data
- Sediakan informasi kendali
 - Liputi apakah bingkai akan atau dari D, pemecahan menjadi kepingan informasi, dan keleluasaan pribadi informasi

Duration/Connection ID:

- Jika janga waktu bidang digunakan sebagai, menandai adanya waktu di dalam saluran akan jadi dialokasikan untuk transmisi MAC yang sukses membingkai
- Dalam beberapa kendali membingkai, berisi koneksi atau asosiasi identifier

• Alamat:

- maksud/arti dan Jumlah bidang alamat tergantung pada konteks
- Jenis meliputi sumber, tujuan, memancarkan setasiun, dan setasiun menerima

Bidang MAC Frame(2)

Urutan Kendali:

- 4-bit membagi-bagi nomor jumlah subfield
- Karena pemecahan menjadi kepingan dan reassembly
- 12-bit urutan nomor jumlah
- Nomor Jumlah membingkai antara penerima dan pemancar diberi

Badan frame:

- MSDU (atau suatu fragmen LLC PDU atau MAC mengendalikan informasi)
- Pemeriksa Urutan frame:
 - 32-bit siklis pemborosan cek

Kontrol Frames

- Membantu dalam penyerahan data dapat yang dipercaya
- Menggerakkan Save-Poll (PS-POLL)
 - Dikirim Oleh stasiun manapun ke stasiun yang meliputi AP
 - Permintaan AP memancarkan frame yang buffered untuk stasiun ini pada saat stasiun dalam gaya yang power-saving
- Permintaan untuk Mengirimkan (RTS)
 - Frame pertama pada pertukaran frame dengan empat cara
- Clear untuk Mengirimkan (CTS)
 - Ke dua bingkai di (dalam) pertukaran dengan empat cara
- Pengakuan (ACK)
- Contention-Free (CF)-END
 - Umumkan akhir contention-free periode bagian dari PCF
- CF-END+ CF-ACK:
 - Mengakui adanya CF-END
 - Terakhir contention-free periode dan setasiun pelepasan/release dari pembatasan dihubungkan

Data Frames – Data Carrying

- Delapan data membingkai subtypes, dalam dua kelompok
- Pertama empat membawa upper-level data dari stasiun sumber ke stasiun tujuan
- Data
 - data paling sederhana Bingkai
 - Dapat digunakan di perpaduan atau contention-free periode
- Data+ CF-ACK
 - Yang hanya yang dikirim selama contention-free periode
 - Membawa data dan mengakui adanya sebelumnya menerima data
- Data+ CF-POLL
 - Digunakan oleh koordinator titik untuk mengirim data
 - Juga untuk meminta stasiun mengirimkan frame data mungkin mempunyai buffered
- Data+ CF-ACK+ CF-POLL
 - Berkombinasi Data+ CF-ACK dan Data+ CF-POLL

Data Frames – Bukan Data Carrying

- Empat bingkai data tersisa tidak membawa data pemakai
- Fungsi null
 - Membawa data, tempat pemungutan suara, atau pengakuan
 - Pembawa manajemen kuasa menggigit di (dalam) bidang kendali bingkai ke AP
 - Ditandai dengan adanya stasiun sedang mengubah ke lowpower status
- Tiga bingkai lainnya(CF-ACK, CF-POLL, CF-ACK+ CF-POLL) sama seperti bersesuaian bingkai di (dalam) daftar terdahulu (Data+ CF-ACK, Data+ CF-POLL, Data+ CF-ACK+ CF-POLL) tetapi tanpa data

Managemen Frames

- Digunakan untuk mengatur komunikasi antar stasiun dan Aps
- E.G. manajemen asosiasi
 - Minta, menanggapi, asosiasi kembali, pemisahan, dan pengesahan

Lapisan fisik 802.11

- Yang dikeluarkan dalam empat langkah-langkah
- Bagian pertama di 1997
 - IEEE 802.11
 - Meliputi MAC lapisan dan tiga spesifikasi lapisan phisik
 - Dua pada 2.4-GHz rombongan dan [satu/ orang] inframerah
 - Semua operasi pada 1 dan 2 Mbps
- Dua komponen tambahan di 1999
 - IEEE 802.11a
 - 5-GHz rombongan sampai kepada 54 Mbps
 - IEEE 802.11b
 - 2.4-GHz rombongan pada 5.5 dan 11 Mbps
- Yang paling Terbaru di 2002
 - IEEE 802.g meluas IEEE 802.11b ke yang lebih tinggi data tingkat tarip

Original 802.11 Physical Layer - DSSS

- Tiga media phisik
- Direct-Sequence menyebar spektrum
 - 2.4 GHZ rombongan ALIRAN pada 1 Mbps dan 2 Mbps
 - Sampai kepada tujuh saluran, masing-masing 1 Mbps atau 2 Mbps, dapat digunakan
 - Gantung pada luas bidang yang dialokasikan oleh berbagai peraturan nasional
 - 13 di kebanyakan Negara-Negara eropa
 - Satu di Jepang
 - Masing-Masing luas bidang saluran 5 MHZ
 - Masing-Masing luas bidang saluran 5 MHZ
 - Pengcodean DBPSK untuk 1-Mbps dan DQPSK untuk 2-Mbps

Original 802.11 lapisan fisik - FHSS

Frequency-Hopping spektrum di/tersebar

- 2.4 GHZ rombongan ALIRAN pada 1 Mbps dan 2 Mbps
- Gunakan berbagai saluran
- Isyarat yang meloncat dari satu menggali yang didasarkan pada yang lain suatu pseudonoise urutan
- 1-MHz saluran digunakan
- 23 saluran di Jepang
- 70 di AS

Skema hopping dapat disetel

- E.G. tingkat tarip loncatan minimum Forusa adalah 2.5 loncatan per detik
- Loncatan minimum Jarak 6 MHZ di (dalam) Amerika Utara dan kebanyakan dari Eropa dan 5 MHZ di (dalam) Jepang

Two-Level Gauss FSK modulasi untuk 1-Mbps

 Bit menyandi [sebagai/ketika/sebab] penyimpangan dari freknensi pembawa sekarang

Selama 2 Mbps, menggunakan

 Empat penyimpangan berbeda dari frekwensi pusat menggambarkan empat 2-bit kombinasi

Original 802.11 Lapisan Phisik-Inframerah

- Omnidirectional
- Cakup sampai kepada 20 m
- 1 Mbps menggunakan 16-PPM (posisi pulsa modulasi)
 - Masing-Masing kelompok 4 bit data memetakan ke dalam salah satu 16-PPM lambang
 - Masing-Masing lambang terdiri dari 16 bit
 - Masing-Masing 16-bit terdiri dari lima belas 0s dan satu biner 1
- Untuk 2-Mbps, masing-masing kelompok 2 bit data dipetakan ke dalam salah satu empat 4-bit urutan
 - Masing-Masing urutan terdiri dari tiga 0s dan satu biner 1
 - Intensitas modul
 - Kehadiran sesuai dengan isyarat

802.11a

- 5-GHz frekuensi
- Gunakan frekuensi divisi orthogonal yang terdiri dari banyak bagian (OFDM)
 - Yang tidak spread spektrum
- Disebut multicarrier modulasi
- Berbagai isyarat pengangkut pada frekwensi berbeda
- Beberapa bit pada masing-masing saluran
 - serupa Ke FDM tetapi semua subchannels mempersembahkan kepada sumber tunggal
- Data rate 6, 9, 12, 18, 24, 36, 48, dan 54 Mbps
- Sampai kepada 52 subcarriers yang diatur menggunakan BPSK, QPSK, 16-QAM, atau 64-QAM
 - Tergantung pada tingkat tarif
 - Subcarrier frekwensi mengatur jarak 0.3125 MHZ
 - Convolutional kode pada tingkat 1/2, 2/3, atau 3/4 menyediakan pemain depan koreksi kesalahan

802.11b

- Merupakan perluasan 802.11 DS-SS
- 5.5 dan 11 Mbps
- Memotong tingkat tarip 11 MHZ
 - ✓ Sama seperti asli DS-SS
 - ✓ Luas bidang yang diduduki sama
 - ✓ Kode komplementer [yang] menyetem (CCK) modulasi untuk mencapai yang lebih tinggi data menilai di (dalam) luas bidang sama pada tingkat tarip memotong sama
 - ✓ CCK modulasi kompleks
 - ✓ Ikhtisar pada slide berikutnya
- Data diperlakukan di (dalam) blok 8 bit pada 1.375 MHZ
 - -8 bits/symbol? 1.375 MHZ= 11 Mbps
 - Sebanyak enam bit ini memetakan ke dalam salah satu 64 urutan kode
 - Keluaran pemetaan, lebih dua bit tambahan, format masuk ke QPSK modulator

Skema modulasi 11-Mbps CCK

802.11g

- Persuasion Higher-speed key 802.11b
- Combines lapisan fisik menggunakan teknik pengkodean pada 802.11a dan 802.11b yang menyediakan layanan pada berbagai tingkat tarif data

Perlu untuk dibaca

- Stallings bab 17
- Web pada 802.11