Manually, in Excel we could open the two data frames as spreadsheets and cut and paste cases where the id number matches...

Probably ok for 48 participants, but what if you had 200 or 2,000?

In R, we can use the inner_join function from the dplyr package where we join the two data frames matched by ID.

>	dataRT_all					
	ID	$\overline{W}M$	ΙQ	Comp	Simple_Sentence	Complex_Sentence
1	95	47	94	19	2154	2441
2	400	45	118	18	1824	2456
3	457	42	100	22	1857	2324
4	1138	41	77	18	1902	2341
5	1587	54	67	21	1844	2320
6	1805	52	109	19	2224	2256
7	1864	57	111	19	1880	2391
8	2006	44	110	19	2091	2456
9	2183	55	125	23	1926	2218
10	2318	51	91	21	1960	2440

We can use the assignment symbol <- to assign the output of this inner_join function to a new variable I'm calling dataRT_all. We can ask for the structure of this new data frame using the str() function:

So we have created a new data frame of 48 participants consisting of their reading times and their individual difference measures from two separate (and different sized) data frames...with one line of code...

```
> head(dataRT all)
   ID WM IQ Comp Simple Sentence Complex Sentence
1 95 47 94
                            2154
                                            2441
2 400 45 118
             18
                            1824
                                            2456
3 457 42 100
                            1857
                                            2324
             18
                           1902
4 1138 41 77
                                           2341
5 1587 54 67
                           1844
                                           2320
6 1805 52 109
                            2224
                                            2256
```