An introduction to RL

II CMB workshop

Francisco Garre-Frutos
University of Granada

franfrutos.github.io
fgfrutos@ugr.es
@fgfrutos.bsky.social

- All models are wrong, but some are useful (Box, 1974)
- All models are wrong, but some make you think! (me, some days ago).
- But... which models make you think?

- All models are wrong, but some are useful (Box, 1974)
- All models are wrong, but some make you think! (me, some days ago).
- But... which models make you think?

This is (*clearly*) me in the last CMB workshop

(CIMCYC, 2022; Colored picture)

• But... which models make you think?

Why computational models? My personally-biased take.

But... which models make you think?

Existential *crisis* intensifies

• My research problems, my (wrongs) models

• My research problems, my (wrongs) models

People attend to the high-value distractor even if it means losing reward

My research problems, my (wrong?) models

• My research problems, my (wrong?) models

What is the **structure** of my model?

My research problems, my (wrong?) models

What is the **structure** of my model?

$$RT_i \sim N(\mu, \sigma)$$

```
What is the size of the effect?
= \beta_{distractor} \cdot x_{distractor} + \beta_{Block} \cdot x_{Block}
+\beta_{Block\cdot Distractor}\cdot x_{Block}\cdot x_{Distractor}
        How does the effect change through blocks?
```

My research problems, my (wrong?) models

What is the **structure** of my model?

$$RT_i \sim N(\mu, \sigma)$$

What is the size of the effect? $= \beta_{distractor} \cdot x_{distractor} + \beta_{Block} \cdot x_{Block}$ $+\beta_{Block\cdot Distractor}\cdot x_{Block}\cdot x_{Distractor}$ How does the effect change through blocks?

Inferences in this model are just *fancy descriptives*

Why computational cognitive models?

- Computational models are any statistical model that describes the data-generating process in computational terms.
- A computational cognitive model is a statistical or mathematical model that aims to explain the data-generating process based on theory.

Why computational cognitive models?

- Computational models are, by definition, any statistical model that describes the data-generating process in computational terms.
- A computational *cognitive* model is a statistical or mathematical model that aims to *explain* the data-generating process based on theory.

"An a priori neutral stimulus that **gains learned value through experience** is **attended to more** than other equally physically salient stimuli."

"An a priori neutral stimulus that **gains learned value through experience** is **attended to** more than other equally physically salient stimuli."

- What is *learned value*?
- What is **experience**?
- What is attention?

- What is learned value?
- What is **experience**?

- What is learned value?
- What is **experience**?

The Rescorla-Wagner model (1972) of Pavlovian learning

$$v_{d,i} = v_{d,1-i} + \beta \alpha (\lambda_i - v_{d,1-i})$$

- What is **learned value**?
 What is **experience**?

The Rescorla-Wagner model (1972) of Pavlovian learning

$$v_{d,i} = v_{d,1-i} + \beta \alpha (\frac{\delta_i}{\lambda_i - v_{d,1-i}})$$

 $v_{d.i}$ $v_{d,1-}$

The value of distractor d in trial i is based on the value of distractor d in the previous trial (1-i), plus the difference between the expected value for distractor d in trial 1-i and the actual perceived value observed in trial i, the prediction error.

$$v_{d,i} = v_{d,1-i} + \beta \alpha (\overline{\lambda_i - v_{d,1-i}})$$

Let's simulate!

 $v_{d,i} = v_{d,1-i} + \beta \alpha (\overline{\lambda_i - v_{d,1-i}})$

The learning rate

Prediction errors has a big impact on value updating, and learning is faster and more volatile

Prediction errors have less impact on value updating, and learning is slower, but more stable

Why computational cognitive models?

What is attention?

$$v_{d,i} = v_{d,1-i} + \beta \alpha (\overline{\lambda_i} - v_{d,1-i})$$

$$\alpha = |v_{d,1-i}|$$

Attention matches expected value

Mike Le Pelley

What is attention?

$$v_{d,i} = v_{d,1-i} + \beta \alpha (\overline{\lambda_i} - v_{d,1-i})$$

$$\alpha = |v_{d,1-i}|$$

Mike Le Pelley

Mapping attention to behavior:

$$p_i \sim Bernouilli(\theta)$$

$$\theta = logit^{-1}(\beta_{attention} \cdot \alpha)$$

The latent attention (α) increases the probability of looking at the distractor in a particular trial (p_i).

 $p_i \sim Bernouilli(\theta)$

$$\theta = logit^{-1}(\boldsymbol{\beta}_{attention} \cdot \boldsymbol{\alpha})$$

Pablo

Fran

Verbal instructions update the expected value of the distractors!

```
\begin{aligned} v_{high-value} &= p_{reversal} \cdot v_{low-value} + (1 - p_{reversal}) \cdot v_{high-value} \\ v_{low-value} &= p_{reversal} \cdot v_{high-value} + (1 - p_{reversal}) \cdot v_{low-value} \end{aligned}
```


Fran

Verbal instructions update the expected value of the distractors!

$$v_{high-value} = p_{reversal} \cdot v_{low-value} + (1 - p_{reversal}) \cdot v_{high-value}$$
 $v_{low-value} = p_{reversal} \cdot v_{high-value} + (1 - p_{reversal}) \cdot v_{low-value}$

... or maybe learning is just faster at the beginning of the reversal?

David

At the beginning of the reversal stage, the *prediction error is larger*

Model 1: Instructions have *no* effect

Model 2: Instructions have an effect

Yes, *learning is faster*, but predictions do not completely match observed data

Singleton

High

Low

Assuming that instructions have a direct effect on expected value seems to be a better match for the data

Take-home messages

- A model makes you think if...
 - Makes you operationalize your constructs
 - Makes you define how your target constructs are related at the latent, cognitive level
 - Allows you to make specific predictions based on theory
 - And most importantly, a model that makes you think always allows you to test counterfactual predictions based on a different state of the world, a different theory.

Thank you!

... and let's start the hands-on session!

Francisco Garre-Frutos
University of Granada

franfrutos.github.io
fgfrutos@ugr.es
@fgfrutos.bsky.social

Funded by:

