SEQUENCE LISTING

<110>	Ledbetter, Jeffrey Hayden-Ledbetter, Martha	
<120>	DNA VACCINES ENCODING ANTIGEN LINKED TO A DOMAIN THAT BINDS C	D40
<130>	US 60/159,690	
<140> <141>	US 60/159,690 1999-10-14	
<150> <151>		
<160>	27	
<170>	PatentIn version 3.0	
<210><211><211><212><213>	66	
<220> <223>		
<400>	1 geege catgetgtat aceteteage tgttaggaet aettetgttt tggatetegg	60
cttcg		66
<210><211><211><212><213>	DNA	
<220 <223	1 -1	
<4000 gatc	> 2 ccgaag cccgagatcc aaaacagaag tagtcctaac agctgagagg tatacagcat	60
ggcg	gca	67
<210 <211 <212 <213	> 34 > DNA	
<400 gttg	> 3 tcggat ccagaaaaca gctttgaaat gcaa	34
<210 <211 <212 <213	> 44 > DNA	
<400 gttg	> 4 stttcta gattatcact cgagtttgag taagccaaag gacg	44

<210> <211> <212> <213>	5 35 DNA Artificial	
<220> <223>	synthetic oligonucleotide	
<400> gttgtc	5 ggat ccaagaaggt tggacaagat agaag	35
<210><211><211><212><213>		
<220> <223>	synthetic oligonucleotide	
<400> ggatat	6 tgat gagatctagt gctacag	27
<210> <211> <212> <213>	DNA	
<220> <223>		
<400> gaaca	7 cagct cctattggat ccggtctttt ttctctttgc ac	42
<210><211><212><213>	90 DNA	
<220> <223>		
<400> cctgc	. 8 catgga teegateege eaceteeaga aceteeacet eetgaacege eteeceetet	60
tttt	ctctt tgcactgttc ttctctttgc	90
<210 <211 <212 <213	> 39 > DNA	
<220: <223:	. a. 1 - a + á ala	
<400: gtta	> 9 ttccat ggatccggac taatcttaca atgtgcttg	39
<210 <211 <212		

<213>	Artificial											
<220> <223>	synthetic oligonucleotide											
<400> gtacago	10 ctaa atagatctgt agtaattaat tg	32										
<210> <211> <212> <213>	11 93 DNA Artificial											
<220> <223>	synthetic oligonucleotide											
<400> ggtgcat	11 tgga tccgaacctc caccgccaga tccaccgcct cctgaggcac cgccaccact	60										
aatgtta	acaa tgtgcttgtt gtcttatatc tcc	93										
<211> <212>	2252											
	sig_peptide (13)(72)											
<222>	allele (73)(1586) HIV gp120 allele + [gly4ser]3 linker											
<220> <221> misc_feature <222> (1594)(2252) <223> CD154 extracellular domain from amino acids 48-261+Glu Binds to CD40												
<400> aagctt	12 gccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg	60										
gcttcg	gagat ctatgctcct tgggatattg atgatctgta gtgctacaga aaaattgtgg	120										
gtcaca	agtct attatggggt acctgtgtgg agagaagcaa ccaccactct attttgtgca	180										
tcagat	gcta aagcctatga tacagaggta cataatgttt gggccacaca tgcctgtgta	240										
cccaca	agacc ccaacccaca agaagtagta ttgggaaatg tgacagaaaa ttttaacatg	300										
tggaaa	aaata acatggtaga tcagatgcat gaggatataa tcagtttatg ggatgaaagc	360										
ctaaag	gocat gtgtaaaatt aaccccactc tgtgttactt taaattgcac taatttgaat	420										
atcact	caaga atactactaa tcccactagt agcagctggg gaatgatgga gaaaggagaa	480										
ataaaa	aaatt gctctttcta tatcaccaca agcataagaa ataaggtaaa gaaagaatat	540										

gcactttta	atagacttga	tgtagtacca	atagaaaata	ctaataatac	taagtatagg	600
ttaataagtt	gtaacacctc	agtcattaca	caggcctgtc	caaaggtatc	ctttcagcca	660
attcccatac	attattgtgt	cccggctggg	tttgcgatgc	taaagtgtaa	caataagaca	720
ttcaatggat	caggaccatg	cacaaatgtc	agcacagtac	aatgtacaca	tggaattagg	780
ccagtggtgt	caactcaact	gctgttaaat	ggcagtctag	cagaagaaga	catagtaatt	840
agatctgaaa	atttcacaga	caatgctaaa	accataatag	tacagctaaa	tgaatctgta	900
gtaattaatt	gtacaagacc	caacaacaat	acaagaagaa	ggttatctat	aggaccaggg	960
agagcatttt	atgcaagaag	aaacataata	ggagatataa	gacaagcaca	ttgtaacatt	1020
agtagagcaa	aatggaataa	cactttacaa	cagatagtta	taaaattaag	agaaaaattt	1080
aggaataaaa	caatagcctt	taatcaatcc	tcaggagggg	acccagaaat	tgtaatgcac	1140
agttttaatt	gtggagggga	attcttctac	tgtaatacag	cacaactgtt	taatagtact	1200
tggaatgtta	ctggagggac	aaatggcact	gaaggaaatg	acataatcac	actccaatgc	1260
agaataaaac	aaattataaa	tatgtggcag	aaagtaggaa	aagcaatgta	tgcccctccc	1320
atcacaggac	aaattagatg	ttcatcaaat	attacagggc	tgctactaac	aagagatgga	1380
ggtaatagta	ctgagactga	gactgagatc	ttcagacctg	gaggaggaga	tatgagggac	1440
aattggagaa	gtgaattata	taaatataaa	gtagtaagaa	ttgaaccaat	aggagtagca	1500
cccaccaggg	caaagagaag	aacagtgcaa	agagaaaaaa	gagggggagg	cggttcagga	1560
ggtggaggtt	ctggaggtgg	cggatcggat	ccaagaaggt	tggacaagat	agaagatgaa	1620
aggaatcttc	atgaagattt	tgtattcatg	aaaacgatac	agagatgcaa	cacaggagaa	1680
agatccttat	ccttactgaa	ctgtgaggag	attaaaagcc	agtttgaagg	ctttgtgaag	1740
gatataatgt	taaacaaaga	ggagacgaag	aaagaaaaca	gctttgaaat	gcaaaaaggt	1800
gatcagaatc	ctcaaattgc	ggcacatgtc	ataagtgagg	ccagcagtaa	aacaacatct	1860
gtgttacagt	gggctgaaaa	aggatactac	accatgagca	acaacttggt	aaccctggaa	1920
aatgggaaac	agctgaccgt	taaaagacaa	ggactctatt	atatctatgc	ccaagtcacc	1980
ttctgttcca	atcgggaagc	ttcgagtcaa	gctccattta	tagccagcct	ctgcctaaag	2040
tcccccggta	gattcgagag	aatcttactc	agagctgcaa	atacccacag	ttccgccaaa	2100
ccttgcgggc	aacaatccat	tcacttggga	ggagtatttg	aattgcaacc	aggtgcttcg	2160
gtgtttgtca	atgtgactga	tccaagccaa	gtgagccatg	gcactggctt	cacgtccttt	2220
ggcttactca	aactcgagtg	ataatctaga	ta			2252

<210> 13 <211> 2209 <212> DNA <213> HIV-human fusion cDNA

```
<220>
      sig_peptide
<221>
<222>
       (13)...(72)
      Synthetic secretory signal peptide
<223>
<220>
<221>
       allele
      (73)..(1545)
<222>
<223> HIV gp 120 allele + ProAspPro linker
<220>
       misc feature
<221>
<222>
       (155\overline{0})...(2209)
      CD154 extracellular domain
<223>
       long form (amino acids 48-261)+Glu
       Binds CD40
```

<400> 13 aagcttgccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg 60 gcttcgagat ccatgctcct tgggatattg atgatctgta gtgctacaga aaaattgtgg 120 180 gtcacagtct attatggggt acctgtgtgg agagaagcaa ccaccactct attttgtgca tcagatgcta aagcctatga tacagaggta cataatgttt gggccacaca tgcctgtgta 240 cccacagacc ccaacccaca agaagtagta ttgggaaatg tgacagaaaa ttttaacatg 300 tggaaaaata acatggtaga tcagatgcat gaggatataa tcagtttatg ggatgaaagc 360 ctaaagccat gtgtaaaatt aaccccactc tgtgttactt taaattgcac taatttgaat 420 atcactaaga atactactaa tcccactagt agcagctggg gaatgatgga gaaaggagaa 480 540 ataaaaaatt gctctttcta tatcaccaca agcataagaa ataaggtaaa gaaagaatat 600 gcacttttta atagacttga tgtagtacca atagaaaata ctaataatac taagtatagg ttaataagtt gtaacacctc agtcattaca caggcctgtc caaaggtatc ctttcagcca 660 attcccatac attattgtgt cccggctggg tttgcgatgc taaagtgtaa caataagaca 720 780 ttcaatggat caggaccatg cacaaatgtc agcacagtac aatgtacaca tggaattagg 840 ccagtggtgt caactcaact gctgttaaat ggcagtctag cagaagaaga catagtaatt agatctgaaa atttcacaga caatgctaaa accataatag tacagctaaa tgaatctgta 900 gtaattaatt gtacaagacc caacaacaat acaagaagaa ggttatctat aggaccaggg 960 agagcatttt atgcaagaag aaacataata ggagatataa gacaagcaca ttgtaacatt 1020 1080 agtagagcaa aatggaataa cactttacaa cagatagtta taaaattaag agaaaaattt aggaataaaa caatagcctt taatcaatcc tcaggagggg acccagaaat tgtaatgcac 1140 agttttaatt gtggagggga attcttctac tgtaatacag cacaactgtt taatagtact 1200 tggaatgtta ctggagggac aaatggcact gaaggaaatg acataatcac actccaatgc 1260 agaataaaac aaattataaa tatgtggcag aaagtaggaa aagcaatgta tgcccctccc 1320 <210> 14

```
atcacaggac aaattagatg ttcatcaaat attacagggc tgctactaac aagagatgga
                                                                    1380
ggtaatagta ctgagactga gactgagatc ttcagacctg gaggaggaga tatgagggac
                                                                    1440
aattggagaa gtgaattata taaatataaa gtagtaagaa ttgaaccaat aqqagtagca
                                                                    1500
cccaccaggg caaagagaag aacagtgcaa agagaaaaaa gaccggatcc aagaaggttg
                                                                    1560
gacaagatag aagatgaaag gaatcttcat gaagattttg tattcatgaa aacgatacag
                                                                    1620
agatgcaaca caggagaaag atccttatcc ttactgaact gtgaggagat taaaagccag
                                                                    1680
tttgaaggct ttgtgaagga tataatgtta aacaaagagg agacgaagaa agaaaacagc
                                                                    1740
tttgaaatgc aaaaaggtga tcagaatcct caaattqcqq cacatqtcat aaqtqaqqcc
                                                                    1800
agcagtaaaa caacatctgt gttacagtgg gctgaaaaag gatactacac catgagcaac
                                                                    1860
aacttggtaa ccctggaaaa tgggaaacag ctgaccgtta aaagacaagg actctattat
                                                                    1920
atctatgccc aagtcacctt ctgttccaat cgggaagctt cgagtcaagc tccatttata
                                                                    1980
gccagcctct gcctaaagtc ccccggtaga ttcgagagaa tcttactcag agctgcaaat
                                                                    2040
acceacagtt ccgccaaacc ttgcgggcaa caatccattc acttgggagg agtatttgaa
                                                                    2100
ttgcaaccag gtgcttcggt gtttgtcaat gtgactqatc caaqccaaqt gaqccatqqc
                                                                    2160
actggcttca cgtcctttgg cttactcaaa ctcgagtgat aatctagat
                                                                    2209
```

```
<211> 2070
<212> DNA
<213> HIV-HUMAN FUSION CDNA
<220>
<221> sig peptide
      (13)..(72)
<222>
<223> synthetic secretory signal peptide
<220>
<221>
      allele
<222>
      (73)..(1587)
<223> HIV gp120 + (gly4ser)3 linker
<220>
<221>
      misc feature
<222>
      (159\overline{4})...(2070)
<223>
      human CD154 extracellular domain
```

binds to CD40

short form from amino acids 108-261+Glu

<400> 14
aagcttgccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg 60
gcttcgagat ctatgctcct tgggatattg atgatctgta gtgctacaga aaaattgtgg 120
gtcacagtct attatggggt acctgtgtgg agagaagcaa ccaccactct attttgtgca 180
tcagatgcta aagcctatga tacagaggta cataatgttt gggccacaca tgcctgtgta 240

cccacagacc	ccaacccaca	agaagtagta	ttgggaaatg	tgacagaaaa	ttttaacatg	300
tggaaaaata	acatggtaga	tcagatgcat	gaggatataa	tcagtttatg	ggatgaaagc	360
ctaaagccat	gtgtaaaatt	aaccccactc	tgtgttactt	taaattgcac	taatttgaat	420
atcactaaga	atactactaa	tcccactagt	agcagctggg	gaatgatgga	gaaaggagaa	480
ataaaaaatt	gctctttcta	tatcaccaca	agcataagaa	ataaggtaaa	gaaagaatat	540
gcacttttta	atagacttga	tgtagtacca	atagaaaata	ctaataatac	taagtatagg	600
ttaataagtt	gtaacacctc	agtcattaca	caggcctgtc	caaaggtatc	ctttcagcca	660
attcccatac	attattgtgt	cccggctggg	tttgcgatgc	taaagtgtaa	caataagaca	720
ttcaatggat	caggaccatg	cacaaatgtc	agcacagtac	aatgtacaca	tggaattagg	780
ccagtggtgt	caactcaact	gctgttaaat	ggcagtctag	cagaagaaga	catagtaatt	840
agatctgaaa	atttcacaga	caatgctaaa	accataatag	tacagctaaa	tgaatctgta	900
gtaattaatt	gtacaagacc	caacaacaat	acaagaagaa	ggttatctat	aggaccaggg	960
agagcatttt	atgcaagaag	aaacataata	ggagatataa	gacaagcaca	ttgtaacatt	1020
agtagagcaa	aatggaataa	cactttacaa	cagatagtta	taaaattaag	agaaaaattt	1080
aggaataaaa	caatagcctt	taatcaatcc	tcaggagggg	acccagaaat	tgtaatgcac	1140
agttttaatt	gtggagggga	attcttctac	tgtaatacag	cacaactgtt	taatagtact	1200
tggaatgtta	ctggagggac	aaatggcact	gaaggaaatg	acataatcac	actccaatgc	1260
agaataaaac	aaattataaa	tatgtggcag	aaagtaggaa	aagcaatgta	tgcccctccc	1320
atcacaggac	aaattagatg	ttcatcaaat	attacagggc	tgctactaac	aagagatgga	1380
ggtaatagta	ctgagactga	gactgagatc	ttcagacctg	gaggaggaga	tatgagggac	1440
aattggagaa	gtgaattata	taaatataaa	gtagtaagaa	ttgaaccaat	aggagtagca	1500
cccaccaggg	caaagagaag	aacagtgcaa	agagaaaaaa	gaggggagg	cggttcagga	1560
ggtggaggtt	ctggaggtgg	cggatcggat	ccagaaaaca	gctttgaaat	gcaaaaaggt	1620
gatcagaatc	ctcaaattgc	ggcacatgtc	ataagtgagg	ccagcagtaa	aacaacatct	1680
gtgttacagt	gggctgaaaa	aggatactac	accatgagca	acaacttggt	aaccctggaa	1740
aatgggaaac	agctgaccgt	taaaagacaa	ggactctatt	atatctatgc	ccaagtcacc	1800
ttctgttcca	atcgggaagc	ttcgagtcaa	gctccattta	tagccagcct	ctgcctaaag	1860
tcccccggta	gattcgagag	aatcttactc	agagctgcaa	atacccacag	ttccgccaaa	1920
ccttgcgggc	aacaatccat	tcacttggga	ggagtatttg	aattgcaacc	aggtgcttcg	1980
gtgtttgtca	atgtgactga	tccaagccaa	gtgagccatg	gcactggctt	cacgtccttt	2040
ggcttactca	aactcgagtg	ataatctaga				2070

<210> 15 <211> 2028

```
<212>
        DNA
<213> HIV-HUMAN FUSION CDNA
<220>
<221> sig_peptide
<222> (13)..(72)
<223> synthetic secretory signal peptide
<220>
<221>
       allele
<222>
       (73)..(1551)
<223> HIV gp120 + ProAspPro linker
<220>
<221>
      misc feature
<222>
       (155\overline{2})...(2028)
<223> CD154 extracellular domain
       short form (amino acids 108-261)+Glu
       binds CD40
```

<400> 15 aagcttgccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg 60 gcttcgagat ccatgctcct tgggatattg atgatctgta gtgctacaga aaaattgtgg 120 gtcacagtct attatggggt acctgtgtgg agagaagcaa ccaccactct attttgtgca 180 tcagatgcta aagcctatga tacagaggta cataatgttt gggccacaca tgcctgtgta 240 cccacagacc ccaacccaca agaagtagta ttgggaaatg tgacagaaaa ttttaacatg 300 tggaaaaata acatggtaga tcagatgcat gaggatataa tcagtttatg ggatgaaagc 360 ctaaagccat gtgtaaaatt aaccccactc tgtgttactt taaattgcac taatttgaat 420 atcactaaga atactactaa tcccactagt agcagctggg gaatgatgga gaaaggagaa 480 ataaaaaatt gctctttcta tatcaccaca agcataagaa ataaggtaaa gaaagaatat 540 gcacttttta atagacttga tgtagtacca atagaaaata ctaataatac taagtatagg 600 ttaataagtt gtaacacctc agtcattaca caggeetgte caaaggtate ettteageea 660 attcccatac attattgtgt cccggctggg tttgcgatgc taaagtgtaa caataagaca 720 ttcaatggat caggaccatg cacaaatgtc agcacagtac aatgtacaca tggaattagg 780 ccagtggtgt caactcaact gctgttaaat ggcagtctag cagaagaaga catagtaatt 840 agatctgaaa atttcacaga caatgctaaa accataatag tacagctaaa tgaatctgta 900 gtaattaatt gtacaagacc caacaacaat acaagaagaa ggttatctat aggaccaggg 960 agagcatttt atgcaagaag aaacataata ggagatataa gacaagcaca ttgtaacatt 1020 agtagagcaa aatggaataa cactttacaa cagatagtta taaaattaag agaaaaattt 1080 aggaataaaa caatagcctt taatcaatcc tcaggagggg acccagaaat tgtaatgcac 1140 agttttaatt gtggagggga attcttctac tgtaatacag cacaactgtt taatagtact 1200 tggaatgtta ctggagggac aaatggcact gaaggaaatg acataatcac actccaatgc 1260

```
agaataaaac aaattataaa tatgtggcag aaagtaggaa aagcaatgta tgcccctccc
                                                                    1320
atcacaggac aaattagatg ttcatcaaat attacagggc tgctactaac aagagatgga
                                                                    1380
ggtaatagta ctgagactga gactgagatc ttcagacctg gaggaggaga tatqaqqqac
                                                                    1440
aattggagaa gtgaattata taaatataaa gtagtaagaa ttgaaccaat aggagtagca
                                                                    1500
cccaccaggg caaagagaag aacagtgcaa agagaaaaaa gaccggatcc agaaaacagc
                                                                    1560
tttgaaatgc aaaaaggtga tcaqaatcct caaattqcqq cacatqtcat aaqtqaqqcc
                                                                    1620
agcagtaaaa caacatctgt gttacagtgg gctgaaaaag gatactacac catgagcaac
                                                                    1680
aacttggtaa ccctggaaaa tgggaaacag ctgaccgtta aaagacaagg actctattat
                                                                    1740
atctatgccc aagtcacctt ctgttccaat cgggaagctt cgagtcaagc tccatttata
                                                                    1800
gccagcctct gcctaaagtc ccccggtaga ttcgagagaa tcttactcag agctgcaaat
                                                                    1860
acccacagtt ccgccaaacc ttgcgggcaa caatccattc acttgggagg agtatttgaa
                                                                    1920
ttgcaaccag gtgcttcggt gtttgtcaat gtgactgatc caagccaagt gagccatggc
                                                                    1980
actggcttca cgtcctttgg cttactcaaa ctcgagtgat aatctaga
                                                                    2028
<210>
      16
<211>
      906
<212>
      DNA
<213> HIV-human
<220>
<221> sig_peptide
<222> (13)..(72)
<223> synthetic secretory signal peptide
<220>
<221> misc_structure
<222>
      (73)...(243)
<223> HIV gp 120 V3 loop with [gly4ser3] linker
<220>
<221>
      misc feature
      (250)..(906)
<222>
      human CD154 extracellular domain
<223>
       long form from amino acids 48-261+Glu
       binds CD40
<400> 16
```

<400> 16
aagcttgccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg 60
gcttcgagat ctgtagtaat taattgtaca agacccaaca acaatacaag aagaaggtta 120
tctataggac cagggagagc attttatgca agaagaaaca taataggaga tataagacaa 180
gcacattgta acattagtgg tggcggtggc tcaggaggcg gtggatctgg cggtggaggt 240
tcggatccaa gaaggttgga caagatagaa gatgaaagga atcttcatga agattttgta 300
ttcatgaaaa cgatacagag atgcaacaca ggagaaagat ccttatcctt actgaactgt 360

```
gaggagatta aaagccagtt tgaaggcttt gtgaaggata taatgttaaa caaagaggag
                                                                       420
acgaagaaag aaaacagctt tgaaatgcaa aaaggtgatc agaatcctca aattgcggca
                                                                       480
catgtcataa gtgaggccag cagtaaaaca acatctgtgt tacagtgggc tgaaaaagga
                                                                       540
tactacacca tgagcaacaa cttggtaacc ctggaaaatg ggaaacagct gaccgttaaa
                                                                      600
agacaaggac tctattatat ctatgcccaa gtcaccttct gttccaatcg ggaagcttcg
                                                                      660
agtcaagctc catttatagc cagcctctgc ctaaagtccc ccggtagatt cgagagaatc
                                                                      720
ttactcagag ctgcaaatac ccacagttcc gccaaacctt gcgggcaaca atccattcac
                                                                      780
ttgggaggag tatttgaatt gcaaccaggt gcttcggtgt ttgtcaatgt gactgatcca
                                                                      840
agccaagtga gccatggcac tggcttcacg tcctttggct tactcaaact cgagtgataa
                                                                      900
tctaga
                                                                      906
```

```
<210> 17
 <211>
        865
 <212> DNA
 <213> HIV-HUMAN FUSION CDNA
 <220>
 <221> sig_peptide
<222> (13)..(72)
<223> synthetic secretory signal peptide
<220>
<221> misc_feature
<222> (73)..(207)
<223> HIV gp120 V3 loop + ProAspPro linker
<220>
<221>
      misc feature
<222>
      (208)..(865)
<223>
      CD154 extracellular domain
      long form from amino acids 48-261+Glu
```

binds CD40

<400> aagettgeeg eeatgetgta taeeteteag etgttaggae taettetgtt ttggateteg 60 gcttcgagat ctgtagtaat taattgtaca agacccaaca acaatacaag aagaaggtta 120 tctataggac cagggagagc attttatgca agaagaaaca taataggaga tataagacaa 180 gCacattgta acattagtcc ggatccaaga aggttggaca agatagaaga tgaaaggaat 240 cttcatgaag attttgtatt catgaaaacg atacagagat gcaacacagg agaaagatcc 300 ttatccttac tgaactgtga ggagattaaa agccagtttg aaggctttgt gaaggatata 360 atgttaaaca aagaggagac gaagaaagaa aacagctttg aaatgcaaaa aggtgatcag 420 aatcctcaaa ttgcggcaca tgtcataagt gaggccagca gtaaaacaac atctgtgtta 480 cagtgggctg aaaaaggata ctacaccatg agcaacaact tggtaaccct ggaaaatggg 540

aaacagctg	a ccgttaaaag	acaaggactc	tattatatct	atgcccaagt	caccttctgt	600						
tccaatcgg	g aagcttcgag	tcaagctcca	tttatagcca	gcctctgcct	aaagtccccc	660						
ggtagattc	g agagaatctt	actcagagct	gcaaataccc	acagttccgc	caaaccttgc	720						
gggcaacaa	t ccattcactt	gggaggagta	tttgaattgc	aaccaggtgc	ttcggtgttt	780						
gtcaatgtga ctgatccaag ccaagtgagc catggcactg gcttcacgtc ctttggctta												
ctcaaactc	g agtgataatc	tagat				865						
		ON CDNA										
<221> sic<222> (1)	<222> (13)(72)											
<222> (7)	<221> misc_feature <222> (73)(207)											
<220> <221> misc_feature <222> (208)(726) <223> CD154 extracellular domain short form from amino acids 108-261+Glu binds CD40												
<400> 18 aagcttgcc	g ccatgctgta	tacctctcag	ctgttaggac	tacttctgtt	ttggatctcg	60						
gcttcgagat	ctgtagtaat	taattgtaca	agacccaaca	acaatacaag	aagaaggtta	120						
tctataggad	cagggagagc	attttatgca	agaagaaaca	taataggaga	tataagacaa	180						
gcacattgta	acattagtgg	tggcggtggc	tcaggaggcg	gtggatctgg	cggtggaggt	240						
tcggatccaq	g aaaacagctt	tgaaatgcaa	aaaggtgatc	agaatcctca	aattgcggca	300						
catgtcataa	gtgaggccag	cagtaaaaca	acatctgtgt	tacagtgggc	tgaaaaagga	360						
tactacacca	tgagcaacaa	cttggtaacc	ctggaaaatg	ggaaacagct	gaccgttaaa	420						
agacaaggad	tctattatat	ctatgcccaa	gtcaccttct	gttccaatcg	ggaagcttcg	480						
agtcaagcto	catttatagc	cagcctctgc	ctaaagtccc	ccggtagatt	cgagagaatc	540						
ttactcagaç	g ctgcaaatac	ccacagttcc	gccaaacctt	gcgggcaaca	atccattcac	600						
ttgggaggag	g tatttgaatt	gcaaccaggt	gcttcggtgt	ttgtcaatgt	gactgatcca	660						
agccaagtga	gccatggcac	tggcttcacg	tcctttggct	tactcaaact	cgagtgataa	720						
tctaga						726						

```
<210>
          19
   <211>
          684
   <212>
         DNA
   <213> HIV-human fusion cDNA
   <220>
   <221>
         sig_peptide
   <222>
         (13)...(72)
  <223> Synthetic secretory signal peptide
  <220>
  <221>
         misc feature
  <222>
         (73)..(207)
  <223> HIV gp120 V3 loop with ProAspPro linker
  <220>
  <221>
         misc_feature
  <222>
         (208)..(684)
  <223>
         human CD154 extracellular domain
         short form from amino acids 108-261+Glu
         binds to CD40
 <400> 19
 aagcttgccg ccatgctgta tacctctcag ctgttaggac tacttctgtt ttggatctcg
                                                                        60
 gcttcgagat ctgtagtaat taattgtaca agacccaaca acaatacaag aagaaggtta
                                                                       120
 tctataggac cagggagagc attttatgca agaagaaaca taataggaga tataagacaa
                                                                       180
 gcacattgta acattagtcc ggatccagaa aacagctttg aaatgcaaaa aggtgatcag
                                                                       240
 aatcctcaaa ttgcggcaca tgtcataagt gaggccagca gtaaaacaac atctgtgtta
                                                                       300
 cagtgggctg aaaaaggata ctacaccatg agcaacaact tggtaaccct ggaaaatggg
                                                                       360
 aaacagctga ccgttaaaag acaaggactc tattatatct atgcccaagt caccttctgt
                                                                       420
 tccaatcggg aagcttcgag tcaagctcca tttatagcca gcctctgcct aaagtccccc
                                                                       480
ggtagattcg agagaatctt actcagagct gcaaataccc acagttccgc caaaccttgc
                                                                       540
gggcaacaat ccattcactt gggaggagta tttgaattgc aaccaggtgc ttcggtgttt
                                                                       600
gtcaatgtga ctgatccaag ccaagtgagc catggcactg gcttcacgtc ctttggctta
                                                                       660
ctcaaactcg agtgataatc taga
                                                                      684
<210>
       20
<211>
       742
<212>
      PRT
<213> HIV-HUMAN FUSION PROTEIN
<220>
<221>
       SIGNAL
<222>
      (1)..(20)
<223>
      synthetic secretory signal peptide
<220>
```

- <221> DOMAIN
- (21)..(526)
- <223> HIV gp120 domain with (gly4ser)3 linker
- <220>
- <221> BINDING
- (529)..(742) <222>
- <223> CD154 extracellular domain
 - long form from amino acids 48 (Arg) to 261 (Leu)+Glu

<400> 20

- Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Phe Trp Ile Ser
- Ala Ser Arg Ser Met Leu Leu Gly Ile Leu Met Ile Cys Ser Ala Thr
- Glu Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu
- Ala Thr Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr
- Glu Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro
- Asn Pro Gln Glu Val Val Leu Gly Asn Val Thr Glu Asn Phe Asn Met
- Trp Lys Asn Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu
- Trp Asp Glu Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val
- Thr Leu Asn Cys Thr Asn Leu Asn Ile Thr Lys Asn Thr Thr Asn Pro
- Thr Ser Ser Ser Trp Gly Met Met Glu Lys Gly Glu Ile Lys Asn Cys
- Ser Phe Tyr Ile Thr Thr Ser Ile Arg Asn Lys Val Lys Lys Glu Tyr
- Ala Leu Phe Asn Arg Leu Asp Val Val Pro Ile Glu Asn Thr Asn Asn
- Thr Lys Tyr Arg Leu Ile Ser Cys Asn Thr Ser Val Ile Thr Gln Ala 200
- Cys Pro Lys Val Ser Phe Gln Pro Ile Pro Ile His Tyr Cys Val Pro 215
- Ala Gly Phe Ala Met Leu Lys Cys Asn Asn Lys Thr Phe Asn Gly Ser 235
- Gly Pro Cys Thr Asn Val Ser Thr Val Gln Cys Thr His Gly Ile Arg 250
- Pro Val Val Ser Thr Gln Leu Leu Leu Asn Gly Ser Leu Ala Glu Glu

- Asp Ile Val Ile Arg Ser Glu Asn Phe Thr Asp Asn Ala Lys Thr Ile 275
- Ile Val Gln Leu Asn Glu Ser Val Val Ile Asn Cys Thr Arg Pro Asn 290 295 300
- Asn Asn Thr Arg Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr 305 310 315
- Ala Arg Arg Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile 325 330 335
- Ser Arg Ala Lys Trp Asn Asn Thr Leu Gln Gln Ile Val Ile Lys Leu 340 345 350
- Arg Glu Lys Phe Arg Asn Lys Thr Ile Ala Phe Asn Gln Ser Ser Gly 355
- Gly Asp Pro Glu Ile Val Met His Ser Phe Asn Cys Gly Glu Phe 370 375
- Phe Tyr Cys Asn Thr Ala Gln Leu Phe Asn Ser Thr Trp Asn Val Thr 385 390 395
- Gly Gly Thr Asn Gly Thr Glu Gly Asn Asp Ile Ile Thr Leu Gln Cys 405 410 415
- Arg Ile Lys Gln Ile Ile Asn Met Trp Gln Lys Val Gly Lys Ala Met 420 425 430
- Tyr Ala Pro Pro Ile Thr Gly Gln Ile Arg Cys Ser Ser Asn Ile Thr 435
- Gly Leu Leu Thr Arg Asp Gly Gly Asn Ser Thr Glu Thr Glu Thr 450 455 460
- Glu Ile Phe Arg Pro Gly Gly Gly Asp Met Arg Asp Asn Trp Arg Ser 470 475
- Glu Leu Tyr Lys Tyr Lys Val Val Arg Ile Glu Pro Ile Gly Val Ala 485 490 495
- Pro Thr Arg Ala Lys Arg Arg Thr Val Gln Arg Glu Lys Arg Gly Gly 500 505
- Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Pro Arg 515
- Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp Phe Val 530 535 540
- Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Ser 545 550 550
- Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe Val Lys 565 570 575
- Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser Phe Glu 580 585 590
- Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser 595 600 605
- Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly 610 615

```
Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln
Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr
Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser
Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala
                            680
Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His
    690
Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn
                    710
Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe
                                     730
 Gly Leu Leu Lys Leu Glu
             740
       21
 <210>
 <211> 728
 <212> PRT
<213> HIV-HUMAN FUSION PROTEIN
 <220>
 <221> SIGNAL
 <222> (1)..(20)
 <223> Synthetic secretory signal peptide
 <220>
 <221> DOMAIN
        (21)..(513)
 <222>
 <223> HIV gpl20 domain plus ProAspPro linker
 <220>
 <221> BINDING
       (514)..(728)
 <222>
 <223> CD154 extracellular domain
        long form from amino acids 48 (Arg) to 261 (Leu)+Glu
        Binds CD40
  <400> 21
 Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Phe Trp Ile Ser
  Ala Ser Arg Ser Met Leu Leu Gly Ile Leu Met Ile Cys Ser Ala Thr
  Glu Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu
  Ala Thr Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr
```

Glu Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro

65					70					75					80
Asn	Pro	Gln	Glu	Val 85	Val	Leu	Gly	Asn	Val 90	Thr	Glu	Asn	Phe	Asn 95	Met
Trp	Lys	Asn	Asn 100	Met	Val	Asp	Gln	Met 105	His	Glu	Asp	Ile	Ile 110	Ser	Leu
Trp	Asp	Glu 115	Ser	Leu	Lys	Pro	Cys 120	Val	Lys	Leu	Thr	Pro 125	Leu	Cys	Val
Thr	Leu 130	Asn	Cys	Thr	Asn	Leu 135	Asn	Ile	Thr	Lys	Asn 140	Thr	Thr	Asn	Pro
Thr 145	Ser	Ser	Ser	Trp	Gly 150	Met	Met	Glu	Lys	Gly 155	Glu	Ile	Lys	Asn	Cys 160
Ser	Phe	Tyr	Ile	Thr 165	Thr	Ser	Ile	Arg	Asn 170	Lys	Val	Lys	Lys	Glu 175	Tyr
Ala	Leu	Phe	Asn 180	Arg	Leu	Asp	Val	Val 185	Pro	Ile	Glu	Asn	Thr 190	Asn	Asn
Thr	Lys	Tyr 195	Arg	Leu	Ile	Ser	Cys 200	Asn	Thr	Ser	Val	Ile 205	Thr	Gln	Ala
Cys	Pro 210	Lys	Val	Ser	Phe	Gln 215	Pro	Ile	Pro	Ile	His 220	Tyr	Cys	Val	Pro
Ala 225	Gly	Phe	Ala	Met	Leu 230	Lys	Cys	Asn	Asn	Lys 235	Thr	Phe	Asn	Gly	Ser 240
Gly	Pro	Cys	Thr	Asn 245	Val	Ser	Thr	Val	Gln 250	Cys	Thr	His	Gly	Ile 255	Arg
Pro	Val	Val	Ser 260	Thr	Gln	Leu	Leu	Leu 265	Asn	Gly	Ser	Leu	Ala 270	Glu	Glu
Asp	Ile	Val 275	Ile	Arg	Ser	Glu	Asn 280	Phe	Thr	Asp	Asn	Ala 285	Lys	Thr	Ile
Ile	Val 290	Gln	Leu	Asn	Glu	Ser 295	Val	Val	Ile	Asn	Cys 300	Thr	Arg	Pro	Asn
Asn 305	Asn	Thr	Arg	Arg	Arg 310	Leu	Ser	Ile	Gly	Pro 315	Gly	Arg	Ala	Phe	Tyr 320
Ala	Arg	Arg	Asn	Ile 325	Ile	Gly	Asp	Ile	Arg 330	Gln	Ala	His	Cys	Asn 335	Ile
Ser	Arg	Ala	Lys 340	Trp	Asn	Asn	Thr	Leu 345	Gln	Gln	Ile	Val	Ile 350	Lys	Leu
Arg	Glu	Lys 355	Phe	Arg	Asn	Lys	Thr 360	Ile	Ala	Phe	Asn	Gln 365	Ser	Ser	Gly
Gly	Asp 370	Pro	Glu	Ile	Val	Met 375	His	Ser	Phe	Asn	Cys 380	Gly	Gly	Glu	Phe
Phe 385	Tyr	Cys	Asn	Thr	Ala 390	Gln	Leu	Phe	Asn	Ser 395	Thr	Trp	Asn	Val	Thr 400
Gly	Gly	Thr	Asn	Gly 405	Thr	Glu	Gly	Asn	Asp 410	Ile	Ile	Thr	Leu	Gln 415	Cys

- Arg Ile Lys Gln Ile Ile Asn Met Trp Gln Lys Val Gly Lys Ala Met 425 Tyr Ala Pro Pro Ile Thr Gly Gln Ile Arg Cys Ser Ser Asn Ile Thr Gly Leu Leu Teu Thr Arg Asp Gly Gly Asn Ser Thr Glu Thr Glu Thr Glu Ile Phe Arg Pro Gly Gly Gly Asp Met Arg Asp Asn Trp Arg Ser Glu Leu Tyr Lys Tyr Lys Val Val Arg Ile Glu Pro Ile Gly Val Ala Pro Thr Arg Ala Lys Arg Arg Thr Val Gln Arg Glu Lys Arg Pro Asp 505 Pro Arg Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp 520 Phe Val Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Ser Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe 555 Val Lys Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val 585 580 Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly 615 Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu 665 Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser 680 Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe 695 Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe Gly Leu Leu Lys Leu Glu 725 <210> 22
- <211> 682
- <212> PRT
- <213> HIV-HUMAN FUSION PROTEIN

```
<220>
 <221>
        SIGNAL
 <222>
        (1)..(20)
 <223> Synthetic secretory signal peptide
 <220>
 <221>
       DOMAIN
 <222>
        (21)..(525)
 <223> HIV gp120 domain plus (gly4ser)3 linker
 <220>
 <221>
        DOMAIN
 <222>
        (528)..(682)
        CD154 extracellular domain
        short form from amino acids 108 (Glu) to 261 (Leu)+Glu
        Binds CD40
 <400> 22
 Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Phe Trp Ile Ser
 Ala Ser Arg Ser Met Leu Leu Gly Ile Leu Met Ile Cys Ser Ala Thr
 Glu Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu
Ala Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr
Glu Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro
Asn Pro Gln Glu Val Val Leu Gly Asn Val Thr Glu Asn Phe Asn Met
Trp Lys Asn Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu
                                105
Trp Asp Glu Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val
Thr Leu Asn Cys Thr Asn Leu Asn Ile Thr Lys Asn Thr Thr Asn Pro
                        135
Thr Ser Ser Ser Trp Gly Met Met Glu Lys Gly Glu Ile Lys Asn Cys
                    150
Ser Phe Tyr Ile Thr Thr Ser Ile Arg Asn Lys Val Lys Lys Glu Tyr
Ala Leu Phe Asn Arg Leu Asp Val Val Pro Ile Glu Asn Thr Asn Asn
                                185
Thr Lys Tyr Arg Leu Ile Ser Cys Asn Thr Ser Val Ile Thr Gln Ala
Cys Pro Lys Val Ser Phe Gln Pro Ile Pro Ile His Tyr Cys Val Pro
                        215
Ala Gly Phe Ala Met Leu Lys Cys Asn Asn Lys Thr Phe Asn Gly Ser
```

225					230					235					240
Gly I	Pro	Суз	Thr	Asn 245	Val	Ser	Thr	Val	Gln 250	Суз	Thr	His	Gly	Ile 255	Arg
Pro V	/al	Val	Ser 260	Thr	Gln	Leu	Leu	Leu 265	Asn	Gly	Ser	Leu	Ala 270	Glu	Glu
Asp 3		Val 275	Ile	Arg	Ser	Glu	Asn 280	Phe	Thr	Asp	Asn	Ala 285	Lys	Thr	Ile
Ile Y	Val 290	Gln	Leu	Asn	Glu	Ser 295	Val	Val	Ile	Asn	Cys 300	Thr	Arg	Pro	Asn
Asn 2 305	Asn	Thr	Arg	Arg	Arg 310	Leu	Ser	Ile	Gly	Pro 315	Gly	Arg	Ala	Phe	Tyr 320
Ala	Arg	Arg	Asn	Ile 325	Ile	Gly	Asp	Ile	Arg 330	Gln	Ala	His	Cys	Asn 335	Ile
Ser .	Arg	Ala	Lys 340	Trp	Asn	Asn	Thr	Leu 345	Gln	Gln	Ile	Val	Ile 350	Lys	Leu
Arg	Glu	Lys 355	Phe	Arg	Asn	Lys	Thr 360	Ile	Ala	Phe	Asn	Gln 365	Ser	Ser	Gly
Gly	Asp 370	Pro	Glu	Ile	Val	Met 375	His	Ser	Phe	Asn	Cys 380	Gly	Gly	Glu	Phe
Phe 385	Tyr	Cys	Asn	Thr	Ala 390	Gln	Leu	Phe	Asn	Ser 395	Thr	Trp	Asn	Val	Thr 400
Gly	Gly	Thr	Asn	Gly 405	Thr	Glu	Gly	Asn	Asp 410	Ile	Ile	Thr	Leu	Gln 415	Cys
Arg	Ile	Lys	Gln 420	Ile	Ile	Asn	Met	Trp 425	Gln	Lys	Val	Gly	Lys 430	Ala	Met
		435					440					445			Thr
	450					455)				460				Thr
Glu 465	Ile	Phe	Arg	Pro	Gly 470	Gly	, Gly	Asp	Met	Arg 475	Asp	Asn	Trp	Arg	Ser 480
				485					490)				495	
Pro	Thr	Arg	500		Arg	Arg	g Thr	val 505	l Glr	Arg	Glu	Lys	510	Gly	gly
Gly	Gly	Ser 515		Gly	Gly	, Gly	y Sei 520	Gly	y Gly	/ Gly	g Gly	Ser 525	Asp	Pro	Glu
	530)				53	0				540	,			a Ala
545					550)				555)				560
Ala	Glu	ı Lys	s Gly	7 Tyı 565	туі 5	Th	r Me	t Se	r Ası 57	n Asr O	ı Leı	ı Val	l Thi	r Let 57!	ı Glu

- Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr 580 585 590
- Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro 595 600 605
- Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile
- Leu Leu Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln 625 630 635
- Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser 645 650 655
- Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly
 665 670
- Phe Thr Ser Phe Gly Leu Leu Lys Leu Glu 675 680
- <210> 23
- <211> 668
- <212> PRT
- <213> HIV-HUMAN FUSION PROTEIN
- <220>
- <221> SIGNAL
- <222> (1)..(20)
- <223> Synthetic secretory signal peptide
- <220>
- <221> DOMAIN
- <222> (21)..(513)
- <223> HIV gp120 domain with ProAspPro linker
- <220>
- <221> BINDING
- <222> (514)..(668)
- <223> CD154 extracellular domain
 short form from amino acids 108 (Glu) to 261 (Leu)+Glu
 Binds to CD40
- <400> 23
- Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Leu Phe Trp Ile Ser 1 5 10 15
- Ala Ser Arg Ser Met Leu Leu Gly Ile Leu Met Ile Cys Ser Ala Thr 20 25 30
- Glu Lys Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Arg Glu 35 40 45
- Ala Thr Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Thr 50 55 60
- Glu Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro 65 70 75 80
- Asn Pro Gln Glu Val Val Leu Gly Asn Val Thr Glu Asn Phe Asn Met 85 90 95

- Trp Lys Asn Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu 100 105 110
- Trp Asp Glu Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val 115 120 125
- Thr Leu Asn Cys Thr Asn Leu Asn Ile Thr Lys Asn Thr Thr Asn Pro 130 135 140
- Thr Ser Ser Ser Trp Gly Met Met Glu Lys Gly Glu Ile Lys Asn Cys 145 150 155
- Ser Phe Tyr Ile Thr Thr Ser Ile Arg Asn Lys Val Lys Lys Glu Tyr 165 170 175
- Ala Leu Phe Asn Arg Leu Asp Val Val Pro Ile Glu Asn Thr Asn Asn 180 185
- Thr Lys Tyr Arg Leu Ile Ser Cys Asn Thr Ser Val Ile Thr Gln Ala 195 200
- Cys Pro Lys Val Ser Phe Gln Pro Ile Pro Ile His Tyr Cys Val Pro 210 215
- Ala Gly Phe Ala Met Leu Lys Cys Asn Asn Lys Thr Phe Asn Gly Ser 225 230 235 240
- Gly Pro Cys Thr Asn Val Ser Thr Val Gln Cys Thr His Gly Ile Arg 245 250 255
- Pro Val Val Ser Thr Gln Leu Leu Leu Asn Gly Ser Leu Ala Glu Glu 260 265 270
- Asp Ile Val Ile Arg Ser Glu Asn Phe Thr Asp Asn Ala Lys Thr Ile 275 280 285
- Ile Val Gln Leu Asn Glu Ser Val Val Ile Asn Cys Thr Arg Pro Asn 290 295 300
- Asn Asn Thr Arg Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr 305 310 315
- Ala Arg Arg Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile 325 330 335
- Ser Arg Ala Lys Trp Asn Asn Thr Leu Gln Gln Ile Val Ile Lys Leu 340 345 350
- Arg Glu Lys Phe Arg Asn Lys Thr Ile Ala Phe Asn Gln Ser Ser Gly 355
- Gly Asp Pro Glu Ile Val Met His Ser Phe Asn Cys Gly Glu Phe 370 375 380
- Phe Tyr Cys Asn Thr Ala Gln Leu Phe Asn Ser Thr Trp Asn Val Thr 385 390 395
- Gly Gly Thr Asn Gly Thr Glu Gly Asn Asp Ile Ile Thr Leu Gln Cys 405 410 415
- Arg Ile Lys Gln Ile Ile Asn Met Trp Gln Lys Val Gly Lys Ala Met 420 425 430
- Tyr Ala Pro Pro Ile Thr Gly Gln Ile Arg Cys Ser Ser Asn Ile Thr

445 440 435 Gly Leu Leu Thr Arg Asp Gly Gly Asn Ser Thr Glu Thr Glu Thr Glu Ile Phe Arg Pro Gly Gly Gly Asp Met Arg Asp Asn Trp Arg Ser Glu Leu Tyr Lys Tyr Lys Val Val Arg Ile Glu Pro Ile Gly Val Ala Pro Thr Arg Ala Lys Arg Arg Thr Val Gln Arg Glu Lys Arg Pro Asp 505 Pro Glu Asn Ser Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe Gly Leu Leu Lys Leu Glu <210> 24 <211> 294 <212> PRT <213> HIV-HUMAN FUSION PROTEIN <220> <221> SIGNAL (1)..(20) <222> <223> Synthetic secretory signal peptide <220> <221> DOMAIN <222> (21)..(77) <223> HIV gpl20 V3 loop plus (gly4ser)3 linker <220> <221> BINDING <222> (80)..(294) <223> CD154 extracellular domain

long form from amino acids 48 (Arg) to 261 (Leu)+Glu binds CD40 $\,$

<400> 24

Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Phe Trp Ile Ser 1 10 15

Ala Ser Arg Ser Val Val Ile Asn Cys Thr Arg Pro Asn Asn Asn Thr 20 25 30

Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr Ala Arg Arg 35 40 45

Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile Ser Gly Gly 50 55 60

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Pro Arg 65 70 75 80

Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp Phe Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser Leu Ser

Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe Val Lys
115 120 125

Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser Phe Glu 130 135 140

Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser 145 150 155 160

Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly 165 170 175

Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln 180 185 190

Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr \$195\$

Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser 210 220

Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala 225 230 235 240

Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His 245 250 255

Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn 260 265 270

Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe 275 280 285

Gly Leu Leu Lys Leu Glu 290

<210> 25 <211> 280

- <212> PRT
- <213> HIV-HUMAN FUSION PROTEIN
- <220>
- <221> SIGNAL
- <222> (1)..(20)
- <223> Synthetic secretory signal peptide
- <220>
- <221> DOMAIN
- <222> (21)..(65)
- <223> HIV gp120 V3 loop plus ProAspPro linker
- <220>
- <221> BINDING
- <222> (66)..(280)
- <223> CD154 extracellular domain long form from amino acids 48 (Arg) to 261 (Leu)+Glu binds CD40

<400> 25

- Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Leu Phe Trp Ile Ser l 5 10 15
- Ala Ser Arg Ser Val Val Ile Asn Cys Thr Arg Pro Asn Asn Asn Thr 20 25 30
- Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr Ala Arg Arg 35 40 45
- Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile Ser Pro Asp 50 55 60
- Pro Arg Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp 65 70 75 80
- Phe Val Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser 85 90 95
- Leu Ser Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe 100 105 110
- Val Lys Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser 115 120 125
- Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val 130 135 140
- Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu 145 150 155 160
- Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly 170 175
- Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln 180 185 190
- Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile 195 200 205
- Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu

215 220

Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser 230

Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe 245

Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr

Ser Phe Gly Leu Leu Lys Leu Glu 275

<210> 26

210

- <211> 234
- <212> PRT
- . <213> HIV-HUMAN FUSION PROTEIN
 - <220>
 - <221> SIGNAL
 - <222> (1)..(20)
 - <223> Synthetic secretory signal peptide
 - <220>
 - <221> DOMAIN
 - <222> (21)..(77)
 - <223> HIV gpl20 V3 loop plus (gly4ser)3 linker
 - <220>
 - <221> BINDING
 - (80)..(234) <222>
 - <223> CD154 extracellular domain short form from amino acids 108 (Glu) to 261 (Leu)+Glu binds CD40

<400> 26

Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Leu Phe Trp Ile Ser

Ala Ser Arg Ser Val Val Ile Asn Cys Thr Arg Pro Asn Asn Asn Thr

Arg Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr Ala Arg Arg

Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile Ser Gly Gly

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Pro Glu

Asn Ser Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala

His Val Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp

Ala Glu Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu 120

Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr 135

Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro

Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile 170

Leu Leu Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln 190

Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser

Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly

Phe Thr Ser Phe Gly Leu Leu Lys Leu Glu

<210> 27

<211> 220 <212> PRT

<213> HIV-HUMAN FUSION PROTEIN

<220>

<221> SIGNAL

<222> (1)..(20)

<223> synthetic secretory signal peptide

<220>

<221> DOMAIN

<222> (21)..(65)

<223> HIV gp120 V3 loop plus ProAspPro linker

<220>

<221> BINDING

<222> (66)..(220)

CD154 extracellular domain from amino acids 108 (Glu)-261(Leu)+Gl <223> Binds CD40

<400> 27

Met Leu Tyr Thr Ser Gln Leu Leu Gly Leu Leu Leu Phe Trp Ile Ser

Ala Ser Arg Ser Val Val Ile Asn Cys Thr Arg Pro Asn Asn Asn Thr

Arg Arg Arg Leu Ser Ile Gly Pro Gly Arg Ala Phe Tyr Ala Arg Arg

Asn Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Ile Ser Pro Asp

Pro Glu Asn Ser Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile

Ala Ala His Val Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu

- Gln Trp Ala Glu Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr $100 \\ 105 \\ 110$
- Leu Glu Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr 115 120 125
- Ile Tyr Ala Gln Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln 130 135 140
- Ala Pro Phe Ile Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu 145 150 155 160
- Arg Ile Leu Leu Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys
 170
 175
- Gly Gln Gln Ser Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly 180 185 190
- Ala Ser Val Phe Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly 195 200 205
- Thr Gly Phe Thr Ser Phe Gly Leu Leu Lys Leu Glu 210 215 220