

IoT-Hackathon

Systemübersicht

MQTT - Kurzübersicht

MQTT – Was ist das?

MQTT → MQ Telemetry Transport

Publish & Subscribe System

Ermöglicht Senden & Empfangen Nachrichten als Client

Ermöglicht einfache Kommunikation zwischen verschiedenen Geräten Geringe Bandbreite

→ Gut geeignet für IoT Applikationen

Anwendungsfälle:

- Sende einen Befehl, um Geräte ein- oder auszuschalten
- Lese Daten von einem Sensor und publiziere sie

MQTT - Basisbegriffe

Broker

Publish/Subscribe

Messages

Topics

MQTT - Broker

- Empfängt alle Nachrichten
- Filtert die Nachrichten
- Publiziert Nachrichten an die Abonnenten (Subscriber)
- Bekannter Broker: Mosquitto

MQTT - Publish/Subscribe

Device 1 veröffentlicht Daten unter einem Topic (publish)

Device 2 hat dieses Topic abonniert (subscribe)

→ Device 2 erhält die Daten

MQTT - Topics

- Spezifizieren den "Titel" unter dem Daten veröffentlicht werden
- Topics werden als String angegeben
- Topics können Hierarchien bilden die Level werden durch "/" getrennt
- Beispiel: home/office/lamp
- Topics sind case-sensitive: home/office/lamp != home/office/LAMP

INFLUXDB – Keine Einführung

INFLUXDB

- Timebase Database (NOSQL)
- Zur Speicherung von zeitbasierten Daten (Meßreihen)
- Eine Meßreihe wird identifiziert über
 - Name
 - Tags (Markierungen)
 - Meßwert(e)
 - Zeitstempel

Datenübertragung über Line-Protokoll

<measurement>[,<tag_key>=<tag_value>[,<tag_key>=<tag_value>]] <field_key>=<field_value>[,<field_key>=<field_value>] [<timestamp>]
Name
Tags
Meßwerte
Zeitstempel

https://www.influxdata.com/

https://docs.influxdata.com/influxdb/v1.6/

Metrik Visualisierung mit Grafana

Grafana - Übersicht

- Analytik Plattform für jegliche Art von Metrik
- Abfragen, Visualisieren, Benachrichtigen egal wo die Daten gespeichert sind
- Erstellen, Erkunden und Teilen von Dashboards

https://grafana.com/ http://docs.grafana.org/

Darstellung von Temperatur und Luftfeuchtigkeit

- Graph Panel mit 2 Sensor Daten
- Herkunft der Daten aus einer InfluxDB

Neues Dashboard anlegen Auswahl eines geeigneten Panel

Neues Dashboard anlegen Globale Dashboard Einstellungen

Neues Dashboard anlegen Panel Konfigurieren

Neues Dashboard anlegen Datenquelle auswählen

- Beispiel Daten sind in einer InfluxDB gespeichert.
- Konfigurierte Datenquelle nennt sich hier telegraf

Neues Dashboard anlegen Auswahl Daten

 Im Beispiel wurden die Sensordaten im Measurement mit Name sensors gespeichert

Neues Dashboard anlegen Mehrere Metriken hinzufügen

Neues Dashboard anlegen Anpassung der Einheiten

 Im Beispiel sollen 2 Sensor Daten (Temperatur in Grad Celcius und Leuftfeuchtigkeit in %) mit unterschiedlichen Skalen dargestellt werden

Neues Dashboard anlegen Verschieben einer Query auf die rechte Y-Achse

Neues Dashboard anlegen Darstellungseigenschaften

- Einstellung des Zeitstrahl (hier die letzten 6 Stunden)
- Automatischer Refresh (hier alle 30 Sekunden)

NODE-RED

Node-RED

- grafisches Entwicklungswerkzeug von IBM
- Umsetzung von Anwendungsfällen mit Baukastenprinzip
- Funktionsbausteine werden durch Ziehen von Verbindungen verbunden
- Aufteilung verschiedener
 Abläufe in einzelne
 Arbeitsbereiche (Flows)
 möglich
- Datenverarbeitung und -manipulation mit JavaScript möglich

Node A - Hardware

Node B - Hardware

Software

Programmierung mit der Arduino Entwicklungsumgebung

Entwicklungsboard auswählen

Zusatzbibliotheken installieren

Aufgaben

DIY – Vorschläge für erste Schritte

Programmierung ESP8266

- NodeB entsprechend Plan aufbauen
- Sensor auslesen
- Taster auswerten
- □ LED Ring ansteuern
- □ WiFi Verbindung herstellen
- □ MQTT Daten senden
- ☐ MQTT Daten empfangen

Top-Level Programme

- □ NODE-RED MQTT Daten auswerten
- □ NODE-RED MQTT Daten senden
- □ GRAFANA Datenauswerten

Links

- GITHUB Repo mit Beispielen https://github.com/sqs-dach/loT-on-Campus-2018
- MQTT https://www.heise.de/developer/artikel/MQTT-Protokoll-fuer-das-Internet-der-Dinge-2168152.html
- INFLUX DB <u>-</u> Line Protokoll
 https://docs.influxdata.com/influxdb/v1.6/write_protocols/line_protocol_tutorial/
- NODE RED https://nodered.org/
- GRAFANA https://grafana.com/
 Getting started http://docs.grafana.org/guides/getting_started/

Vielen Dank für Ihre Aufmerksamkeit.

SQS Software Quality Systems AG

Stollwerckstraße 11

51149 Köln, Deutschland

Telefon: +49 2203 9154-0

Telefax: +49 2203 9154-15

info-germany@sqs.com

			_			_
	nc	OF	~ 1	ΛU	OF	
LU.		СΙ	e I	W	-	

Leidenschaft für Qualität

Professionelle Partnerschaft Exzellente Mitarbeiter

Verantwortung

Ehrlichkeit & Integrität