Assignment 3 Documentation

Yelamati Pavan kalyan Rao

700729168

1. Titanic dataset

- ✓ Read train and test dataset using pandas.
- ✓ Check head to see columns and type of data.
- ✓ Check for data imbalance using value_counts on y variable.
- ✓ Plot histogram for survived vs age.

- ✓ Drop unnecessary columns and separate y variable. Out: X train, Y train, X test
- ✓ Check for null values and fill them with mean or median accordingly.
- ✓ Convert categorical columns to numerical with label encoding.
- ✓ Sample data after preprocessing is as below.

	Pclass	Sex	Age	Fare	Embarked
0	3	male	34.5	7.8292	Q
1	3	female	47.0	7.0000	S
2	2	male	62.0	9.6875	Q
3	3	male	27.0	8.6625	S
4	3	female	22.0	12.2875	S

✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement) on X_train and Y_train. Use scikit-learn for the same.

- ✓ Predict on X_test.
- ✓ Since X_test original labels are not available we calculate accuracy on train data itself.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn
- ✓ Gaussian:

	precision	recall	f1-score	support	
	0 1	0.83	2 0.81 0 0.72		549 342
	accuracy macro avg weighted avg				891 891 891
✓	[[445 104] [95 247]] accuracy is 0	.776655443	332211		
	precision	recall fi	l-score s	upport	
	0 1	0.72 0.64	0.83 0.48		549 342
	accuracy macro avg weighted avg				891 891 891
✓	[[457 92] [179 163]] accuracy is 0 Bernoulli: precision			upport.	
	-				
	0	0.81			549 342
	accuracy macro avg weighted avg				891 891 891
	[[468 81] [109 233]] accuracy is 0	.786756453	34231201		
✓	<pre>Complement: precision</pre>	recall fi	l-score s	upport	
	0 1	0.72		0.77 0.55	549 342
	accuracy macro avg weighted avg	0.69		0.70 0.66 0.69	891 891 891

✓ Best fit model is Bernoulli naïve as it works well on binary dataset.

2. Glass dataset

- ✓ Read glass dataset using pandas.
- ✓ Check head to see columns and type of data.

RI	Na	Mg	Αl	Si	K	Ca	Ва	Fe	Type		
0	1.5210	1	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.5176	1	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.5161	8	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.5176	6	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.5174	2	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

- ✓ Check for data imbalance using value_counts on y variable. This dataset is highly **imbalanced**.
- ✓ Plot histogram for Type vs Na and Type vs Si to observe the relation of dependant variables with independent variable.

- ✓ Separate X and Y data.
- ✓ Split data for train and test with 20% test using train_test_split. Set random_set to get same split on repetition. Out: X_train, Y_train, X_test, Y_test.
- ✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement), SVC and Linear SVC on X_train and Y_train. Use scikit-learn for the same.
- ✓ Predict on X test.
- ✓ Calculate accuracy on test data with Y_test and Y_pred_test.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn.
- ✓ Gaussian:

precision	reca	ill f1-sc	ore supp	ort	
	1	0.19	0.44	0.27	9
	2	0.33	0.16	0.21	19
	3	0.33	0.20	0.25	5

	5 6 7	0.00 0.67 1.00	0.00 1.00 1.00	0.00 0.80 1.00	2 2 6
accur macro weighted a	avg	0.42 0.40	0.47 0.37	0.37 0.42 0.36	43 43 43
[14 3 [3 1 [0 2 [0 0 [0 0	1 0 0 0 0 0 0 0 2 0 0 0	0] 0] 0] 0] 0] 6]] 93023255813	395		
precision	recal	l f1-score	e support	t	
	1 2 3 5 6	0.28 0.40 0.00 0.00 0.00	0.89 0.11 0.00 0.00 0.00	0.42 0.17 0.00 0.00 0.00	9 19 5 2 2

precision	l	r	ecall	f1-s	core	sur	pport	
	_	1	C	.28	0.	89	0.42	9
	2	2		.40	0.		0.17	19
	3	3	C	0.00	0.	00	0.00	5
		5	C	0.00	0.	00	0.00	2
	6	6	C	0.00	0.	00	0.00	2
	-	7	C	.67	1.	00	0.80	6
accui	racy	J					0.37	43
macro avq				.22	0.	33	0.23	43
weighted	avç	J	C	.33	0.	37	0.27	43
[[8 1	0	0	0 0]					
[16 2	0	0	0 1]					
[5 0	0	0	0 0]					
0 0]	0	0	0 2]					
[0 2	0	0	0 0]					
0 0]	0	0	0 6]]				
accuracy	is	0.	372093	302325	581395			

✓ Bernoulli:

precision	recall f	l-score	support	
1 2 3 5 6 7	0.2 0.2 0.0 0.0 0.0	9 0.1 0 0.0 0 0.0 0 0.0	1 0.15 00 0.00 00 0.00 00 0.00	19 5 2 2
accuracy macro avg weighted avg	0.2			43

[[8 1 0 0 0 0]

```
[16 2 0 0 0 1]

[5 0 0 0 0 0 0]

[0 2 0 0 0 0]

[0 2 0 0 0 0]

[1 0 0 0 0 5]]

accuracy is 0.3488372093023256
```

✓ Complement:

precision	1	recall	f1-s	core	suppor	:t	
	1		0.28	1.0	00	0.44	9
	2		0.00	0.0	00	0.00	19
	3		0.00	0.0	00	0.00	5
	5		1.00	0.5	50	0.67	2
	6		0.50	0.5	50	0.50	2
	7		0.75	1.0	00	0.86	6
accura	СУ					0.40	43
macro a	vg		0.42	0.5	50	0.41	43
weighted a	vg		0.23	0.4	40	0.27	43
[[9 0 0	0	0 0]				
[17 0 0	0	1 1					
[500	0	0 0]				
0 0 0]	1	0 1]				
[1 0 0	0	1 0]				
0 0 0]	0	0 6]]				
accuracy i	s 0.	39534	883720	93023			

✓ SVC:

precision	ı	r	ecal	l f1-	score	su	pport	
	1 2 3 5	2 3 5		0.21 0.00 0.00 0.00	0 0 0	.00	0.35 0.00 0.00 0.00	9 19 5 2 2
	7			0.00		.00	0.00	6
accun macro weighted	avg	J		0.03		.17 .21	0.21 0.06 0.07	43 43 43
[[9 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0] 0] 0] 0] 0] 0] 0]]	8139536	ō.		

✓ Linear SVC(max_iter=1000):

```
precision
            recall f1-score
                             support
          1
                  0.31
                            1.00
                                     0.47
          2
                  1.00
                            0.11
                                     0.19
                                                 19
          3
                  0.00
                            0.00
                                     0.00
                                                  5
          5
                                                  2
                  0.50
                            0.50
                                     0.50
                                                  2
          6
                  0.50
                            1.00
                                     0.67
          7
                  1.00
                            1.00
                                                  6
                                     1.00
                                     0.47
                                                 43
   accuracy
  macro avg
                  0.55
                            0.60
                                     0.47
                                                 43
                  0.69
                            0.47
                                     0.38
                                                 43
weighted avg
[[9
     0
        0 0 0 0]
 [15
     2
        0 1 1
                 0]
 [ 5
     0 0 0 0
                 0]
 0 ]
     0 0 1
              1
                 0]
 [ 0 0 0 0 2
                 0]
 0 0 0 0 0
                 6]]
accuracy is 0.46511627906976744
```

✓ Complement naïve bayes works well for imbalanced dataset. Overall Linear SVC has better accuracy because data may be linearly related.