Universidade de Brasília

Topologia Geral $0^{\circ}/2019$ Turma A LISTA DE EXERCÍCIOS 2 07/02/2019

PROBLEMA 1: Seja $K:[0,1]\times[0,1]\to\mathbb{R}$ uma função contínua. Para cada $f\in C([0,1],\mathbb{R})$ defina

$$T(f) = \int_0^1 K(x, y) f(y) dy.$$

Mostre que $T(f) \in C([0,1],\mathbb{R})$ e que $\{T(f), \|f\| \leq 1\}$ é precompacto em $C([0,1],\mathbb{R})$.

PROBLEMA 2: Seja (Ω, d) um espaço métrico. Uma função $f \in C(\Omega, \mathbb{R})$ é dita α -Hölder contínua $(\alpha > 0)$ quando a quantidade abaixo é finita

$$\operatorname{Hol}_{\alpha}(f) = \sup_{x \neq y} \frac{f(x) - f(y)}{d(x, y)^{\alpha}}.$$

Mostre que se o espaço métrico Ω é compacto, então o conjunto $\{f \in C(\Omega, \mathbb{R}) : \|f\| \le 1, \ \operatorname{Hol}_{\alpha}(f) \le 1\}$ é compacto em $C(\Omega, \mathbb{R})$ na métrica uniforme.