#### Министерство науки и высшего образования Российской Федерации



Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ                  | ИУК «Информатика и управление»     |  |  |  |
|----------------------------|------------------------------------|--|--|--|
| КАФЕДРА                    | ИУК4 «Программное обеспечение ЭВМ, |  |  |  |
| информационные технологии» |                                    |  |  |  |

# Лабораторная работа №3 «Построение аналоговых фильтров»

# ДИСЦИПЛИНА: «Цифровая обработка сигналов»

| Выполнил: студент гр. ИУК4-72Б |           |    | Сафронов Н.С. |  |
|--------------------------------|-----------|----|---------------|--|
|                                | (подпись) |    | (Ф.И.О.)      |  |
| Проверил:                      |           | (_ | Тронов К.А.   |  |
|                                | (подпись) |    | (Ф.И.О.)      |  |
|                                |           |    |               |  |
|                                |           |    |               |  |
|                                |           |    |               |  |
| Дата сдачи (защиты):           |           |    |               |  |
| <b>D</b>                       |           |    |               |  |
| Результаты сдачи (защиты):     |           |    |               |  |
| - Балльная оценка:             |           |    |               |  |
| - Оц                           | енка:     |    |               |  |

**Цель работы**: формирование практических навыков построения аналоговых фильтров.

#### Постановка задачи

Построить АЧХ аналоговых фильтров с заданными параметрами: фильтр Баттерворта; фильтр Чебышева 1 рода; фильтр Чебышева 2 рода; эллиптический фильтр; фильтр Бесселя. Выполнить преобразование фильтров – прототипов.

### Вариант 14

$$n = 2$$
,  $R_p = 3$ ,  $R_s = 45$ 

Осуществить преобразование в фильтры: ФВЧ, режекторный.

#### Листинг программы

```
% n = 2, R p = 3, R s = 45, Фильтр высоких частот, режекторный
n = 2;
Rp = 3;
Rs = 45;
w = 0:0.1:5;
%% Фильтр Баттерворта - АЧХ
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
plot(w, abs(h));
%% Фильтр Чебышёва первого рода - АЧХ
[z, p, k] = cheb1ap(n, Rp);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
plot(w, abs(h));
%% Фильтр Чебышёва второго рода - АЧХ
[z, p, k] = \frac{\text{cheb2ap}(n, Rs)}{};
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
plot(w, abs(h));
%% Эллиптический фильтр - АЧХ
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
plot(w, abs(h));
%% Фильтр Бесселя - АЧХ
[z, p, k] = besselap(n);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
plot(w, abs(h));
%% Фильтр Баттерворта
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
```

```
subplot(1, 3, 1);
plot(w, abs(h));
legend("AYX");
w0 = 3;
[b1, a1] = \frac{1p2hp}{b}(b, a, w0);
h = freqs(b1, a1, w);
subplot(1, 3, 2);
plot(w, abs(h));
legend("ΦΒԿ");
w1 = 2;
w2 = 4;
w0 = sqrt(w1 * w2);
Q = w0/(w2 - w1);
[b1, a1] = \frac{1p2bs}{b}(b, a, w0, Q);
h = freqs(b1, a1, w);
subplot(1, 3, 3);
plot(w, abs(h));
legend ("Режекторный");
sgtitle("Фильтр Баттерворта");
%% Фильтр Чебышёва первого рода
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
subplot(1, 3, 1);
plot(w, abs(h));
w0 = 3;
[b1, a1] = \frac{1p2hp}{b}(b, a, w0);
h = freqs(b1, a1, w);
subplot(1, 3, 2);
plot(w, abs(h));
legend("ΦBԿ");
w1 = 2;
w2 = 4;
w0 = sqrt(w1 * w2);
Q = w0/(w2 - w1);
[b1, a1] = \frac{1p2bs}{b}(b, a, w0, Q);
h = freqs(b1, a1, w);
subplot(1, 3, 3);
plot(w, abs(h));
legend("Режекторный");
sgtitle("Фильтр Чебышёва первого рода");
%% Фильтр Чебышёва второго рода
[z, p, k] = \frac{\text{cheb2ap}(n, Rs)}{};
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
subplot(1, 3, 1);
plot(w, abs(h));
w0 = 3;
[b1, a1] = \frac{1p2hp}{b}(b, a, w0);
h = freqs(b1, a1, w);
subplot(1, 3, 2);
plot(w, abs(h));
legend("ΦΒΨ");
```

```
w1 = 2;
w2 = 4;
w0 = sqrt(w1 * w2);
Q = w0/(w2 - w1);
[b1, a1] = \frac{1p2bs}{b}(b, a, w0, Q);
h = freqs(b1, a1, w);
subplot(1, 3, 3);
plot(w, abs(h));
legend ("Режекторный");
sgtitle("Фильтр Чебышёва второго рода");
%% Эллиптический фильтр
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = \frac{zp2tf(z, p, k)}{zp2tf(z, p, k)}
h = freqs(b, a, w);
subplot(1, 3, 1);
plot(w, abs(h));
w0 = 3;
[b1, a1] = \frac{1p2hp}{b}(b, a, w0);
h = freqs(b1, a1, w);
subplot(1, 3, 2);
plot(w, abs(h));
legend("ΦΒΨ");
w1 = 2;
w2 = 4;
w0 = sqrt(w1 * w2);
Q = w0/(w2 - w1);
[b1, a1] = \frac{1p2bs}{b}(b, a, w0, Q);
h = freqs(b1, a1, w);
subplot(1, 3, 3);
plot(w, abs(h));
legend ("Режекторный");
sgtitle("Эллиптический фильтр");
%% Фильтр Бесселя
[z, p, k] = besselap(n);
[b, a] = zp2tf(z, p, k);
h = freqs(b, a, w);
subplot(1, 3, 1);
plot(w, abs(h));
w0 = 3;
[b1, a1] = \frac{1p2hp}{b}(b, a, w0);
h = freqs(b1, a1, w);
subplot(1, 3, 2);
plot(w, abs(h));
legend("ΦΒԿ");
w1 = 2;
w2 = 4;
w0 = sqrt(w1 * w2);
Q = w0/(w2 - w1);
[b1, a1] = \frac{1p2bs}{b}(b, a, w0, Q);
h = freqs(b1, a1, w);
subplot(1, 3, 3);
plot(w, abs(h));
legend("Режекторный");
sgtitle("Фильтр Бесселя");
```

## Результаты выполнения программы



Рисунок 1 – АЧХ аналогового фильтра Баттерворта



Рисунок 2 – АЧХ аналогового фильтра Чебышёва первого рода



Рисунок 3 – АЧХ аналогового фильтра Чебышёва первого рода



Рисунок 4 – АЧХ аналогового эллиптического фильтра



Рисунок 5 – АЧХ аналогового фильтра Бесселя



Рисунок 6 – Преобразованный фильтр Баттерворта



Рисунок 7 – Преобразованный фильтр Чебышёва первого рода



Рисунок 8 – Преобразованный фильтр Чебышёва второго рода



Рисунок 9 – Преобразованный эллиптический фильтр



Рисунок 10 – Преобразованный фильтр Бесселя

**Вывод:** в ходе выполнения лабораторной работы были сформированы практические навыки построения аналоговых фильтров.