Logical Formalism Simple Proof Patterns

Adrien Pommellet, LRE

September 4, 2023

Manipulating Variables

- Learning how to manipulate mathematical objects, be they simple or complex.
- We will name them unambiguously using variables: two different objects must be named differently.
- A rule of thumb: two similar objects should have similar names.
- The statement " $n, m \in \mathbb{N}$ and $x, y \in \mathbb{R}$ " is easier to parse than " $n, x \in \mathbb{N}$ and $y, m \in \mathbb{R}$ ".

Manipulating Propositions

Propositions are merely statements to which we match a truth value.

The following principle applies:

Law of the excluded middle

A proposition P is either true or false.

This axiom states that there are only two possible and mutually exclusive truth values.

The logical implication \implies

- Mathematical truths are often expressed as theorems: if a hypothesis
 P is true, then a conclusion Q must be true as well.
- Given two propositions P and Q, we use the connector ⇒ in order to define a new proposition P ⇒ Q expressing that if P is true then Q must be true as well.

Q being true and P being false does not contradict $P \implies Q$.

A proof pattern for \implies

This **proof pattern** can be used to prove theorems of the form $P \implies Q$.

Goal. Prove that $P \implies Q$ is true.

If P is true . . .

Remember your definitions. Express the hypothesis *P* in a detailed manner by making the definitions explicit.

Write common properties. Can you think of some obvious, immediate consequences of *P*?

 \dots then Q is true.

Practical Application

Exercise 1. Prove that if $n \in \mathbb{N}$ is even, then n^2 is even as well.

Answer

The logical and \wedge

- Given two propositions P and Q, we use the connector \wedge in order to define a new proposition $P \wedge Q$ that is true if and only if **both** P and Q are true.
- Thus, $P \wedge Q$ is **false** in each of the following three cases:
 - Only P is false.
 - Only Q is false.
 - Both P and Q are false.
- Note that you may have to rewrite a proposition to make the \(\triangle \)
 obvious.

A proof pattern for \wedge as a conclusion

Goal. Prove that $P \implies (Q \land R)$ is true.

Suppose that P is true . . .

Split a complex goal into subgoals. Split the proof into more manageable subproofs by detailing the original goal.

Subgoal 1. Prove that Q is true.

Subgoal 2. Prove that *R* is true.

Practical Application

Exercise 2. Prove that $\forall x, y \in \mathbb{R}$, $||x| - |y|| \le |x - y|$. Note that:

- Given $u \in \mathbb{R}$ and $v \in \mathbb{R}^+$, $|u| \le v$ is equivalent to $-v \le u \le v$.
- The triangle inequality states that, $\forall u, v \in \mathbb{R}, |u+v| \leq |u| + |v|$.
- Try applying it to x and (y x) as well as y and (x y).

Answer I

Answer II

A proof pattern for \wedge as a hypothesis

Goal. Prove that $(P \land Q) \implies R$ is true.

```
If P is true ... and Q is true ... then R is true.
```

The logical or \vee

- Given two propositions P and Q, we use the connector \vee in order to define a new proposition $P \vee Q$ that is true if and only if at least one of the two propositions P and Q is true.
- Thus, $P \lor Q$ is false if and only if **both** P and Q are false.
- Note that the mathematical ∨ should not be mistaken for the common, everyday or.
- E The sentence 'Pay a fine or go to jail.' features an exclusive or.

A proof pattern for \vee as a conclusion

Goal. Prove that $P \implies (Q \lor R)$ is true.

If P is true . . .

Use a case disjunction. Q can either be true or false; in both cases, we want $Q \vee R$ to be true.

Assume that Q is true.

Then obviously $Q \vee R$ is true. No further proof is needed.

Assume that Q is false.

If P is true and Q is false . . .

...then R must be true.

A proof pattern for \vee as a hypothesis

Goal. Prove that $(P \lor Q) \implies R$ is true.

Subgoal 1. Prove that $P \implies R$ is true.

If *P* is true . . . then *R* is true.

Subgoal 2. Prove that $Q \implies R$ is true.

If Q is true . . . then R is true.

The logical equivalence \iff

Given two propositions P and Q, we use the connector \iff in order to define a new proposition $P \iff Q$ that is true **if and only if** P and Q have the **same truth value**: they're either both true or both false.

The following property holds:

Double implication

 $P \iff Q$ is true if and only if $P \implies Q$ and $Q \implies P$ are true.

A proof pattern for \iff

Goal. Prove that $P \iff Q$ is true.

Subgoal 1. Prove that $P \implies Q$ is true.

If P is true then Q is true.

Subgoal 2. Prove that $Q \implies P$ is true.

If Q is true then P is true.

Practical Application

Exercise 3. Prove that $\forall n \in \mathbb{N}$, n is a multiple of 9 if and only if the sum of its digits is a multiple of 9 as well. To do so:

- Remember that $\forall k \in \mathbb{N}$, $(10^k 1)$ is a multiple of 9.
- Use the **modulo** notation.

Answer I

Answer II