习题1

基本题

1. 利用对角线法则计算下列二、三阶行列式

$$(1)$$
 $\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix}$

```
Det[\{\{a+b, a-b\}, \{a-b, a+b\}\}]
```

mathematica中的不同的显示模式。

传统显示复制到新单元会隐藏部分显示,上面和下面表达式其实是一样的,若要显示可以先设置新的单元样式为Input,再转化为标准显示,方便计算。

在Mathematica中有时做题时为了显示而输入的内容,也可以进行计算,不用重新输入,同样可以先输入能计算的标准形式,再转为显示的模式进行排版。

(2)
$$\begin{vmatrix} x-1 & 1 \\ x^3 & x^2+x+1 \end{vmatrix}$$

Det[
$$\{x-1, 1\}, \{x^3, x^2 + x + 1\}\}$$
]

2 (-4)
$$3+1\times8\times1+$$
 (-1) (-1) 0 - (-1) (-4) $1-1\times0\times3-2\times8$ (-1) -4

$$(4) \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

传统显示也能直接计算。

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

$$a^2 (-b) + a^2 c + a b^2 - a c^2 - b^2 c + b c^2$$

$$a^{2}(-b) + a^{2}c + ab^{2} - ac^{2} - b^{2}c + bc^{2}$$

$$-(a-b)(a-c)(b-c)$$

$$A = \{\{1, 1, 1\}, \{a, b, c\}, \{a^2, b^2, c^2\}\}$$

Simplify $[-a^2b + ab^2 + a^2c - b^2c - ac^2 + bc^2]$

$$\begin{pmatrix}
1 & 1 & 1 \\
a & b & c \\
a^2 & b^2 & c^2
\end{pmatrix}$$

$$A[[2]] = A[[2]] - a A[[1]]$$

$$\{0, b-a, c-a\}$$

$$A[[3]] = A[[3]] - a^2 A[[1]]$$

$$\{0, b^2 - a^2, c^2 - a^2\}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b^2-a^2 & c^2-a^2 \end{pmatrix}$$

$$A[[3]] = A[[3]] - (b + a) A[[2]]$$

$$\left\{0,\, -a^2-(b-a)\,(a+b)+b^2,\, -a^2-(a+b)\,(c-a)+c^2\right\}$$

A // Simplify

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & 0 & (a-c)(b-c) \end{pmatrix}$$

2. 确定下列各排列的逆序数

(1)2413

Needs["Combinatorica`"]

General::compat: Combinatorica Graph and Permutations functionality has been superseded by preloaded functionality. The package now being loaded may conflict with this. Please see the Compatibility Guide for

Inversions::shdw: Symbol Inversions appears in multiple contexts {Combinatorica`, Global`}; definitions in context Combinatorica` may shadow or be shadowed by other definitions. >>

Inversions[{2, 4, 1, 3}]

inversion[number_] := IntegerDigits[number] // Inversions

```
inversion[2413]
3
0 + 0 + 2 + 1
3
(2)6427531
inversion[6427531]
15
若一个数之前还有
myInversion[number_] :=
 Table[Take[IntegerDigits[number], i], {i, 1, Length@IntegerDigits[number]}}
myInversion[1234]
\{\{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}
myInversion[number_] := Module[{list = IntegerDigits[number]},
  Table[Select[Take[list, i], # > list[[i]] &], {i, 1, Length@list}]]
myInversion[213457698]
\{\{\}, \{2\}, \{\}, \{\}, \{\}, \{\}, \{7\}, \{\}, \{9\}\}
(3)134782695
inversion[134782695]
myInversion[134782695]
\{\{\}, \{\}, \{\}, \{\}, \{\}, \{3, 4, 7, 8\}, \{7, 8\}, \{\}, \{7, 8, 6, 9\}\}
(4)13...(2n-1)24...(2n)
list = Range[1, 9, 2] ~ Join ~ Range[2, 9, 2]
\{1, 3, 5, 7, 9, 2, 4, 6, 8\}
Inversions[list]
myInversion[FromDigits@list]
\{\{\},\,\{\},\,\{\},\,\{\},\,\{\},\,\{3,\,5,\,7,\,9\},\,\{5,\,7,\,9\},\,\{7,\,9\},\,\{9\}\}
先用特例计算,再猜想,再归纳法证明。
list1[n_] := Range[1, 2 n, 2] ~ Join ~ Range[2, 2 n, 2]
inversionList = Table[Inversions[list1[n]], {n, 1, 10}]
\{0, 1, 3, 6, 10, 15, 21, 28, 36, 45\}
```

$$\begin{pmatrix} 1 & \{1,2\} & 0 \\ 2 & \{1,3,2,4\} & 1 \\ 3 & \{1,3,5,2,4,6\} & 3 \\ 4 & \{1,3,5,7,2,4,6,8\} & 6 \\ 5 & \{1,3,5,7,9,2,4,6,8,10\} & 10 \\ 6 & \{1,3,5,7,9,11,2,4,6,8,10,12\} & 15 \\ 7 & \{1,3,5,7,9,11,13,2,4,6,8,10,12,14\} & 21 \\ 8 & \{1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16\} & 28 \\ 9 & \{1,3,5,7,9,11,13,15,17,2,4,6,8,10,12,14,16,18\} & 36 \\ \end{pmatrix}$$

也可以对逆序数序列应用Mathematica函数求通项公式

FindSequenceFunction[inversionList, n]

$$\frac{1}{2}(n-1)\,n$$

13610...是个二阶等差数列

实际上,本题很简单,直接观察计算即可。

分别是自然排列。

非零的逆序对于24 ... (2 n)中的每一个数,前面分别有对应用的除去1的n-1项,除去1、3的 n-2项,直到0

即逆序数为 $\sum_{i=1}^{n} (i-1) = \frac{1}{2} (n-1) n$

$$\sum_{i=1}^{n} (i-1) // \text{Factor}$$

$$\frac{1}{2} (n-1) n$$

(5)13...(2n-1)(2n)(2n-2)...2

list2[n_] := Range[1, 2 n, 2] ~ Join ~ Range[2 n, 2, -2]

inversionList = Table[Inversions[list2[n]], {n, 1, 9}]
{0, 2, 6, 12, 20, 30, 42, 56, 72}

Table[{n, list2[n], Inversions[list2[n]]}, {n, 1, 9}]

$$\begin{pmatrix} 1 & \{1,2\} & 0 \\ 2 & \{1,3,4,2\} & 2 \\ 3 & \{1,3,5,6,4,2\} & 6 \\ 4 & \{1,3,5,7,8,6,4,2\} & 12 \\ 5 & \{1,3,5,7,9,10,8,6,4,2\} & 20 \\ 6 & \{1,3,5,7,9,11,12,10,8,6,4,2\} & 30 \\ 7 & \{1,3,5,7,9,11,13,14,12,10,8,6,4,2\} & 42 \\ 8 & \{1,3,5,7,9,11,13,15,16,14,12,10,8,6,4,2\} & 56 \\ 9 & \{1,3,5,7,9,11,13,15,16,14,12,10,8,6,4,2\} & 72 \\ \end{pmatrix}$$

```
FindSequenceFunction[inversionList, n] (n-1)n 0 2 6 12 20...是个二阶等差数列 直接计算逆序数 \sum_{i=1}^n 2(i-1) = (n-1)n \sum_{i=1}^n 2(i-1) // Factor (n-1)n
```

3 在6阶行列式中, 下列各项应取什么符号?

```
(1)a_{15}a_{23}a_{32}a_{44}a_{51}a_{66}
152332445166
Subscript[a, FromDigits[#]] & /@
   (IntegerDigits@152332445166 // Partition[#, 2] &) //
 Row[#,""] &(*Row用于排列成一行显示*)
a_{15}a_{23}a_{32}a_{44}a_{51}a_{66}
subscriptList[number0_] := Module[{number = number0},
   Subscript[a, FromDigits[#]] & /@ (IntegerDigits@number // Partition[#, 2] &)]
subscriptList@152332445166
\{a_{15}, a_{23}, a_{32}, a_{44}, a_{51}, 5\}
a<sub>66</sub>
5
Clear [a<sub>66</sub>] (* (下标变量清除不方便)*)
Clear::ssym: a<sub>66</sub> 不是一个符号或者一个字符串.≫
a_{66} = .
a<sub>66</sub>
a_{66}
subscriptList@152332445166
\{a_{15}, a_{23}, a_{32}, a_{44}, a_{51}, a_{66}\}\
```

$(2)a_{33}a_{42}a_{14}a_{51}a_{66}a_{25}$

334 214 516 625

在Mathematica里显示一些公式,如带下标的变量等,有的是用于排版和显示的,有的是能应用于计算的,比如这里若使用Row等用于显示的函数就不太方便进行计算,若要计算的,可以直接生成一个带下标的变量列表比较方便。

```
6 │ 习题— - 副本 (2).nb
        subscriptList[334214516625]
        \{a_{33}, a_{42}, a_{14}, a_{51}, a_{66}, a_{25}\}\
        \{a_{33}, a_{42}, a_{14}, a_{51}, a_{66}, a_{25}\} = .
        Unset::norep: 未找到对于 a<sub>51</sub> 在 Subscript 上的赋值. ≫
        Unset::norep: 未找到对于 a<sub>66</sub> 在 Subscript 上的赋值. ≫
        {Null, Null, Null, $Failed, $Failed, Null}
        \{a_{33}, a_{42}, a_{14}, a_{51}, a_{66}, a_{25}\} = Range[6]
        \{1, 2, 3, 4, 5, 6\}
        a_{33}
        subscriptList[number0_] :=
         Module[{number = number0}, Subscript[a, FromDigits[#]] &/@
             (list = (IntegerDigits@number // Partition[#, 2] &))]
        subscriptList@334214516625
        \{a_{33}, a_{42}, a_{14}, a_{51}, a_{66}, a_{25}\}\
        Power[-1, #] & /@ (Total /@ list)
        \{1, 1, -1, 1, 1, -1\}
        Total[%]
        sign[number_] := (subscriptList[number];
           -1^Inversions[list[[All, 2]]])
        sign[152 332 445 166]
        -1
        先按下标的行排序,排成自然排列
        a33a42a14a51a66a25
        排成
        a14a25a33a42a51a66
```

所以此项是负号项 myInversion[453216] $\{\{4\}, \{4, 5\}, \{4, 5, 3\}, \{4, 5, 3, 2\}, \{4, 5, 3, 2, 1\}, \{4, 5, 3, 2, 1, 6\}\}$ Inversions[IntegerDigits@453216]

然后计算排列

453216 的逆序数=9

80

```
subscriptList[1224354351]
   \{a_{12}, a_{24}, a_{35}, a_{43}, a_{51}\}\
   Inversions[IntegerDigits@24531]
   Row@subscriptList[1224354351]
   a_{12}a_{24}a_{35}a_{43}a_{51}
   sign@1224354351
   {a_{12}, a_{24}, a_{35}, a_{43}, a_{51}}
   subscriptList[1224354153]
   \{a_{12},\,a_{24},\,a_{35},\,a_{41},\,a_{53}\}
   Inversions[IntegerDigits@24513]
   5
   -Row@subscriptList[1224354153]
   -a_{12}a_{24}a_{35}a_{41}a_{53}
5 计算下列各行列式
  (1) \left| \begin{pmatrix} 4 & 1 & 2 & 4 \\ 1 & 2 & 0 & 2 \\ 10 & 5 & 2 & 0 \\ 0 & 1 & 1 & 7 \end{pmatrix} \right|
   A = \{\{4, 1, 2, 4\}, \{1, 2, 0, 2\}, \{10, 5, 2, 0\}, \{0, 1, 1, 7\}\}
    1 2 0 2
    10 5 2 0
   10:36
   按第4行展开, 计算
   Det[A] =
    -Det[A[1;; 3, {1, 2, 4}]] + 1 Det[A[1;; 3, {1, 3, 4}]] + 7 Det[A[1;; 3, 1;; 3]]
   -Det@A[1;; 3, {1, 2, 4}]
```

```
Det@A[1;; 3, {1, 3, 4}]
32
7 Det[A[1;; 3, 1;; 3]]
-112
-Det[A[1;; 3, {1, 2, 4}]] + 1 Det[A[1;; 3, {1, 3, 4}]] + 7 Det[A[1;; 3, 1;; 3]]
Det[A]
```

直接计算稍麻烦点, 既然确定值为0, 看看有什么规律, 按照行列式的性质得出值为0

性质1: 若行列式的两行对应元素成比例,则行列式值为0

性质2: 若行列式互换两行,则变符号

推论: 若行列式有两行完全相同,则行列式值为0,这个即可以从性质1推出。两行完全相同也 是对应成比例,比值为1。也可以从性质2推出。

```
A = \{\{4, 1, 2, 4\}, \{1, 2, 0, 2\}, \{10, 5, 2, 0\}, \{0, 1, 1, 7\}\}
 4 1 2 4
 1 2 0 2
10 5 2 0
0 1 1 7
```

```
(*(类似排序函数中有一个中间变量)*)互换函数Signed[matrix0_, row10_, row20_] := Module[
  {matrix = matrix0, rowTemp, row1 = row10, row2 = row20}, rowTemp = matrix[[row1]];
  matrix[[row1]] = matrix[[row2]];
 matrix[[row2]] = -rowTemp;
 matrix]
```

```
(*(对换后没有符号变换的情况)*)互换函数UnSigned[matrix0_, row10_, row20_]:= Module[
  {matrix = matrix0, rowTemp, row1 = row10, row2 = row20}, rowTemp = matrix[[row1]];
 matrix[[row1]] = matrix[[row2]];
 matrix[[row2]] = rowTemp;
  matrix]
```

把第1行放到第4行,等价与对调3次,要乘以一个-1,因为不是矩阵,所以-1是乘在某一行里 的, 所以直接乘以-1不太方便。

所以暂时先在外面记录符号的变换。

A1 = RotateLeft[A, 1]

```
1 2 0 2
10 5 2 0
0 1 1 7
4 1 2 4
```

第二行, 第四行消第一列的0

$$A1[[2]] = A1[[2]] - 10 A1[[1]]$$

 $\{0, -15, 2, -20\}$

$$A1[[4]] = A1[[4]] - 4 A1[[1]]$$

 $\{0, -7, 2, -4\}$

Α1

$$\begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & -15 & 2 & -20 \\ 0 & 1 & 1 & 7 \\ 0 & -7 & 2 & -4 \end{pmatrix}$$

对调第2行和第3行,符号数变化一次。

A2 = 互换函数Signed[A1, 2, 3]

$$\begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 7 \\ 0 & 15 & -2 & 20 \\ 0 & -7 & 2 & -4 \end{pmatrix}$$

消去第3行、第4行的第2列元素。

A2[[3]] = A2[[3]] - 15 A2[[2]]
A2[[4]] = A2[[4]] + 7 A2[[2]]
$$\{0, 0, -17, -85\}$$

 $\{0,\,0,\,9,\,45\}$

Α2

$$\begin{pmatrix}
1 & 2 & 0 & 2 \\
0 & 1 & 1 & 7 \\
0 & 0 & -17 & -85 \\
0 & 0 & 9 & 45
\end{pmatrix}$$

A2 // FactorInteger

$$\begin{pmatrix} (1 & 1) & (2 & 1) & (0 & 1) & (2 & 1) \\ (0 & 1) & (1 & 1) & (1 & 1) & (7 & 1) \\ (0 & 1) & (0 & 1) & \begin{pmatrix} -1 & 1 \\ 17 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 5 & 1 \\ 17 & 1 \end{pmatrix} \\ (0 & 1) & (0 & 1) & (3 & 2) & \begin{pmatrix} 3 & 2 \\ 5 & 1 \end{pmatrix}$$

此时, 第3行和第4行对应元素成比例, 行列式值为0.

若感觉0比0不太好,则可以理解为行列式展开的子块中的对应的两行的对应元素成比例,行列 式值为0.

当然也可以继续消去

$$A2[[4]] = 17 / 9 A2[[4]] + A2[[3]]$$

 $\{0, 0, 0, 0\}$

$$\begin{pmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & -17 & -85 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

上三角行列式的值为主对角线上的元素的乘积,有个0这样积就为0了。

现在直接使用有符号变换的对换函数简化一下步骤

原来是把第1行放到第4行, 就是对换(12)(23)(34), 然后又对换了(23) 对换了4次

A3 = 互换函数Signed[

互换函数Signed[互换函数Signed[互换函数Signed[A, 1, 2], 2, 3], 3, 4], 2, 3]

$$\begin{pmatrix}
1 & 2 & 0 & 2 \\
0 & 1 & 1 & 7 \\
-10 & -5 & -2 & 0 \\
-4 & -1 & -2 & -4
\end{pmatrix}$$

在求行列式时和在用矩阵消元法时,应该先把首项是1的行设为第1行,0的行为第2行,这样在 手工计算时是方便的。我在做这题的时候显然没有一下子意识到这个事情。

当然,这整个过程有助于对换及其在Mathematica中的实现的理解。 同时,对于之前的函数的嵌套使用中有一个不方便之处。

A3[[3]] - A3
$$\begin{pmatrix}
1 & 2 & 0 & 2 \\
0 & 1 & 1 & 7 \\
-10 & -5 & -2 & 0 \\
-4 & -1 & -2 & -4
\end{pmatrix}$$

在A3的初值求解中,嵌套应用函数时,因为要输入不同的对换的行数,不太方便,可以修改对 换函数的行数输入参数为一个列表,即互换函数的输入参数由三个改成两个。

这里,这个过程,可以理解为:反应应用对调函数,每次追加一个参数,而参数提前存储在参数序列中,现在要用Mathematica的函数与语句表达这个过程。这可以用Fold来实现

类似的问题有多元参数的函数嵌套问题。

NestList
$$\left[\left\{\frac{\#[[1]] + \#[[2]]}{2}, \sqrt{\#[[1]] \#[[2]]}\right\} \&, \{0.5, 1.0\}, 4\right]$$

$$\begin{pmatrix} 0.5 & 1 \\ 0.75 & 0.707107 \\ 0.728553 & 0.728238 \\ 0.728396 & 0.728396 \\ 0.728396 & 0.728396 \end{pmatrix}$$

```
互换函数Signed[matrix0_, rows0_]:=
      Module[{matrix = matrix0, rowTemp, row1 = rows0[[1]], row2 = rows0[[2]]},
        rowTemp = matrix[row1];
        matrix[row1] = matrix[row2];
        matrix[row2] = -rowTemp;
        matrix]
    对换序列 = {{1,2}, {2,3}, {3,4}, {2,3}}
      2 3
     3 4
     \begin{bmatrix} 2 & 3 \end{bmatrix}
    FoldList[f, x, 对换序列]
    \{x,\,f(x,\,\{1,\,2\}),\,f(f(x,\,\{1,\,2\}),\,\{2,\,3\}),\,f(f(f(x,\,\{1,\,2\}),\,\{2,\,3\}),\,\{3,\,4\}),\,f(f(f(f(x,\,\{1,\,2\}),\,\{2,\,3\}),\,\{3,\,4\}),\,\{2,\,3\})\}
    Fold [互换函数Signed, A,对换序列]
    АЗ

\begin{pmatrix}
1 & 2 & 0 & 2 \\
0 & 1 & 1 & 7 \\
-10 & -5 & -2 & 0 \\
-4 & -1 & -2 & -4
\end{pmatrix}

(2)\begin{vmatrix} - & 1 & 4 & 1 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 5 & 0 & 6 & 2 \end{vmatrix}
    Det[A = \{\{2, 1, 4, 1\}, \{3, -1, 2, 1\}, \{1, 2, 3, 2\}, \{5, 0, 6, 2\}\}]
     3 -1 2 1
```

互换,在这里,也可以按第一列的元素的自然排列排序,然后求一个变换数,即得符号。

1 2 3 2

ASorted = Sort[A]

$$\begin{pmatrix}
1 & 2 & 3 & 2 \\
2 & 1 & 4 & 1 \\
3 & -1 & 2 & 1 \\
5 & 0 & 6 & 2
\end{pmatrix}$$

1

对换序列 = {{1,3},{2,3}}

$$\begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$$

A1 = Fold[互换函数Signed, A, 对换序列]

$$\begin{pmatrix}
1 & 2 & 3 & 2 \\
-2 & -1 & -4 & -1 \\
-3 & 1 & -2 & -1 \\
5 & 0 & 6 & 2
\end{pmatrix}$$

$$A1[[2]] = A1[[2]] + 2 A1[[1]]$$

$$A1[[3]] = A1[[3]] + 3 A1[[1]]$$

$$A1[[4]] = A1[[4]] - 5 A1[[1]]$$

$$\{0, 3, 2, 3\}$$

$$\{0, 7, 7, 5\}$$

$$\{0, -10, -9, -8\}$$

Α1

$$\begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & 7 & 7 & 5 \\ 0 & -10 & -9 & -8 \end{pmatrix}$$

第二行加上第三行, 就跟第四行对应元素成比例了。

 $\{0,\,10,\,9,\,8\}$

A1

$$\begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 3 & 2 & 3 \\ 0 & 10 & 9 & 8 \\ 0 & -10 & -9 & -8 \end{pmatrix}$$

$$A = \{\{-ab, ac, ae\}, \{bd, -cd, de\}, \{bf, cf, -ef\}\}$$

$$\begin{pmatrix}
-ab & ac & ae \\
bd & -cd & de \\
bf & cf & -ef
\end{pmatrix}$$

Collect[Plus@@A[[1]], a]

 $a\left(-b+c+e\right)$

本来提取a,d,f有如下简洁的方式,可惜函数中对f进行了排序,使得{a,d,f}不在存储的树的同一层

Thread[Collect[Plus@@@A, {a, d, f}]]

$$\{a\left(-b+c+e\right),\,d\left(b-c+e\right),\,f\left(b+c-e\right)\}$$

Thread[Collect[Plus@@@A, {a, d, f}]][[All, 1]]

$$\{a,\,d,\,b+c-e\}$$

Thread[Collect[Plus@@@A/.f \rightarrow a1, {a, d, a1}]][[All, 1]] $\{a, d, a1\}$

TreeForm@ (det = Thread[Collect[Plus @@@ A /. $f \rightarrow a1$, {a, d, a1}]])

Position[det, Times]

$$\{\{1,0\},\{1,2,1,0\},\{2,0\},\{2,2,2,0\},\{3,0\},\{3,2,3,0\}\}$$

Times @@ $det[[All, 1]].(det2 = det[[All, 2]] /. Plus \rightarrow List)$

$$(a \text{ al } d). \begin{pmatrix} -b & c & e \\ b & -c & e \\ b & c & -e \end{pmatrix}$$

$$\begin{pmatrix}
-b & c & e \\
b & -c & e \\
b & c & -e
\end{pmatrix}$$

互换函数Signed[det2, {2,3}]

 $\{0, 0, 2e\}$

 $\{0, 2c, 0\}$

$$\begin{pmatrix}
-b & c & e \\
0 & 2c & 0 \\
0 & 0 & -2e
\end{pmatrix}$$

Det@det2

4 *b c e*

故最终的值为4abcdef

Times @@ det[[All, 1]] Det@det2 /. a1 \rightarrow f 4 a b c d e f

$$a_0 \quad b_1 \quad b_2 \quad \dots \quad b_n$$
 $c_1 \quad a_1 \quad 0 \quad \dots \quad 0$
 $(4) \quad c_2 \quad 0 \quad a_2 \quad \dots \quad 0 \quad (a_1 \, a_2 \, \dots \, a_n \neq 0)$
 $\dots \quad \dots \quad \dots \quad \dots$
 $c_n \quad 0 \quad 0 \quad \dots \quad a_n$

$$A = \{\{2, 1, 0, 0, 0\}, \{3, -1, 0, 0, 0\}, \\ \{1, 8, 4, 0, 7\}, \{10, -3, -2, 3, 1\}, \{21, 6, 5, -2, 3\}\}$$

$$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 3 & -1 & 0 & 0 & 0 \\ 1 & 8 & 4 & 0 & 7 \\ 10 & -3 & -2 & 3 & 1 \\ 21 & 6 & 5 & -2 & 3 \end{pmatrix}$$

Det[A]

165

A1 = Transpose[A]

$$\begin{pmatrix} 2 & 3 & 1 & 10 & 21 \\ 1 & -1 & 8 & -3 & 6 \\ 0 & 0 & 4 & -2 & 5 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 7 & 1 & 3 \end{pmatrix}$$

$$A2 = A1$$

$$\begin{pmatrix} 2 & 3 & 1 & 10 & 21 \\ 0 & -\frac{5}{2} & \frac{15}{2} & -8 & -\frac{9}{2} \\ 0 & 0 & 4 & -2 & 5 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & \frac{9}{2} & -\frac{23}{4} \end{pmatrix}$$

$$A2[[5]] = -3/2A2[[4]] + A2[[5]];$$

A2

$$\begin{pmatrix} 2 & 3 & 1 & 10 & 21 \\ 0 & -\frac{5}{2} & \frac{15}{2} & -8 & -\frac{9}{2} \\ 0 & 0 & 4 & -2 & 5 \\ 0 & 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & -\frac{11}{4} \end{pmatrix}$$

Eigenvalues
$$\left[\left\{\{2,3,1,10,21\},\left\{0,-\frac{5}{2},\frac{15}{2},-8,-\frac{9}{2}\right\},\right.\right.$$
 $\left.\{0,0,4,-2,5\},\left\{0,0,0,0,3,-2\right\},\left\{0,0,0,0,-\frac{11}{4}\right\}\right\}\right]$ $\left\{4,3,-\frac{11}{4},-\frac{5}{2},2\right\}$

Times @@
$$\left\{4, 3, -\frac{11}{4}, -\frac{5}{2}, 2\right\}$$

165

Det[A2]

165

(6)

$$det1 = Det \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

有几个0时,直接对角线法则计算也方便。

$$det2 = Det \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix};$$

det1 det2

-60

Det[A]

-60

补充题

例

```
例7
```

$$\begin{pmatrix}
1 & 2 & 0 & 3 \\
0 & 4 & -3 & 1 \\
0 & 0 & -\frac{7}{4} & -\frac{27}{4} \\
0 & 0 & 0 & -\frac{11}{7}
\end{pmatrix}$$

Det[
$$\{1, 2, 0, 3\}, \{0, 4, -3, 1\}, \{0, 0, -\frac{7}{4}, -\frac{27}{4}\}, \{0, 0, 0, -\frac{11}{7}\}\}$$
]

例8计算行列式

$$A = \{\{a, b, b, b\}, \{b, a, b, b\}, \{b, b, a, b\}, \{b, b, b, a\}\}$$

$$A[[2]] = -1A[[1]] + A[[2]];$$

$$A[[3]] = -1A[[1]] + A[[3]];$$

$$A[[4]] = -1A[[1]] + A[[4]];$$

$$A1 = A$$

$$\begin{pmatrix}
a & b & b & b \\
b - a & a - b & 0 & 0 \\
b - a & 0 & a - b & 0 \\
b - a & 0 & 0 & a - b
\end{pmatrix}$$

$$A2 = (a - b)^3 \cdot (det = MapAt[#/(a - b) &, A, {\{2\}, \{3\}, \{4\}\}}] // Simplify)$$

$$(a-b)^3. \begin{pmatrix} a & b & b & b \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

det1 = Transpose@det

$$\begin{pmatrix}
a & -1 & -1 & -1 \\
b & 1 & 0 & 0 \\
b & 0 & 1 & 0 \\
b & 0 & 0 & 1
\end{pmatrix}$$

第2行、第3行、第4行全加到第一行去

$$\begin{pmatrix} a+3 & b & 0 & 0 & 0 \\ b & 1 & 0 & 0 \\ b & 0 & 1 & 0 \\ b & 0 & 0 & 1 \end{pmatrix}$$

 $(a-b)^3$.Det[det1]

$$(a-b)^3.(a+3b)$$

det

$$\begin{pmatrix} a & b & b & b \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

detNew = 互换函数Signed[det, {1, 4}]

$$\begin{pmatrix} -1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -a & -b & -b & -b \end{pmatrix}$$

按第一行展开计算,子式也是第二列、第三列全加到第一列中来计算方便。

$$\begin{vmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ -a & -b & -b \end{vmatrix}$$
$$-a - 2b$$

$$\left| \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -b & -b & -b \end{array} \right) \right|$$

−b

detNew

$$\begin{pmatrix} -1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -a & -b & -b & -b \end{pmatrix}$$

例9证明
$$D = \text{Det}\begin{bmatrix} a_1 + b_1 & b_1 + c_1 & c_1 + a_1 \\ a_2 + b_2 & b_2 + c_2 & c_2 + a_2 \end{bmatrix} = 2 \text{ Det}\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$$

$$A = \begin{pmatrix} a+b & b+c & a+c \\ a_1+b_1 & b_1+c_1 & a_1+c_1 \\ a_2+b_2 & b_2+c_2 & a_2+c_2 \end{pmatrix};$$

-1乘第三列加到第1列

$$A1 = A$$

$$\begin{pmatrix} b-c & b+c & a+c \\ b_1-c_1 & b_1+c_1 & a_1+c_1 \\ b_2-c_2 & b_2+c_2 & a_2+c_2 \end{pmatrix}$$

第一列加到第二列

A2 = A1

$$\begin{pmatrix} b-c & 2b & a+c \\ b_1-c_1 & 2b_1 & a_1+c_1 \\ b_2-c_2 & 2b_2 & a_2+c_2 \end{pmatrix}$$

提取公因子2后,第三列加到第1列

$$\begin{pmatrix}
a+b & 2b & a+c \\
a_1+b_1 & 2b_1 & a_1+c_1 \\
a_2+b_2 & 2b_2 & a_2+c_2
\end{pmatrix}$$

$$A4 = \begin{pmatrix} a+b & b & a+c \\ a_1+b_1 & b_1 & a_1+c_1 \\ a_2+b_2 & b_2 & a_2+c_2 \end{pmatrix}$$

$$\begin{pmatrix} a+b & b & a+c \\ a_1+b_1 & b_1 & a_1+c_1 \\ a_2+b_2 & b_2 & a_2+c_2 \end{pmatrix}$$

-1乘第二列加到第一列,然后-1乘第一列加到第三列,得证。

Α4

$$\begin{pmatrix} a & b & c \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$

例10 计算行列式

高斯消去法,轻松。

$$A = \begin{pmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{pmatrix}$$

 $A1 = \{A[[1]], A[[2]] - A[[1]], A[[3]] - A[[1]], A[[4]] - A[[1]]\}$

$$\begin{pmatrix} a & b & c & d \\ 0 & a & a+b & a+b+c \\ 0 & 2a & 3a+2b & 4a+3b+2c \\ 0 & 3a & 6a+3b & 10a+6b+3c \end{pmatrix}$$

 $A2 = \{A1[[1]], A1[[2]], A1[[3]] - 2 A1[[2]], A1[[4]] - 3 A1[[2]]\} // Simplify$

$$\begin{pmatrix} a & b & c & d \\ 0 & a & a+b & a+b+c \\ 0 & 0 & a & 2a+b \\ 0 & 0 & 3a & 7a+3b \end{pmatrix}$$

A3 = {A2[[1]], A2[[2]], A2[[3]], A2[[4]] - 3 A2[[3]]} // Simplify

$$\begin{pmatrix} a & b & c & d \\ 0 & a & a+b & a+b+c \\ 0 & 0 & a & 2\,a+b \\ 0 & 0 & 0 & a \end{pmatrix}$$

例11 计算n阶行列式

箭形行列式

$$\begin{split} &2\int_{0}^{\infty}e^{-x}\cos\lambda x\,\mathrm{d}x = 2\sum_{k=0}^{\infty}\int_{0}^{\infty}e^{-x}\,\left(-1\right)^{k}\,\frac{\left(\lambda x\right)^{2\,k}}{\left(2\,k\right)\,!}\,\mathrm{d}x\\ &=\ 2\sum_{k=0}^{\infty}\frac{\lambda^{2\,k}\,\left(-1\right)^{k}}{\left(2\,k\right)\,!}\int_{0}^{\infty}e^{-x}\,x^{2\,k}\,\mathrm{d}x = 2\sum_{k=0}^{\infty}\frac{\lambda^{2\,k}\,\left(-1\right)^{k}}{\left(2\,k\right)\,!}\,\Gamma\,\left(2\,k+1\right)\\ &=\ 2\left(1+\left(-\lambda^{2}\right)+\lambda^{4}+...\right) = \frac{2}{1+\lambda^{2}} \end{split}$$

但要使得 | λ² | < 1

或

$$\begin{split} &2\int_{0}^{\infty}e^{-\mathbf{x}}\cos\lambda\mathbf{x}\,\mathrm{d}\mathbf{x} = \sum_{k=0}^{\infty}\frac{\left(\mathrm{i}\lambda\right)^{k}}{k\,!}\int_{0}^{\infty}e^{-\mathbf{x}}\,\mathbf{x}^{k}\,\mathrm{d}\mathbf{x} + \sum_{k=0}^{\infty}\frac{\left(-\mathrm{i}\lambda\right)^{k}}{k\,!}\int_{0}^{\infty}e^{-\mathbf{x}}\,\mathbf{x}^{k}\,\mathrm{d}\mathbf{x} \\ &= \sum_{k=0}^{\infty}\left(\mathrm{i}\lambda\right)^{k} + \sum_{k=0}^{\infty}\left(-\mathrm{i}\lambda\right)^{k} = \frac{1}{1-\mathrm{i}\lambda} + \frac{1}{1+\mathrm{i}\lambda} = \frac{2}{1+\lambda^{2}} \end{split}$$

1. 一动点M到A (3, 0) 的距离恒等于它到点B (-6, 0) 的距离的一半,求此动点M的轨迹方程,并作图。

$$MA = \frac{1}{2}MB = \sqrt{(x-3)^2 + (y-0)^2} = \frac{1}{2}\sqrt{(x-(-6))^2 + (y-0)^2} // \text{ TraditionalForm}$$

$$MA = \frac{MB}{2} = \sqrt{(x-3)^2 + y^2} = \frac{1}{2}\sqrt{(x+6)^2 + y^2}$$

$$MA = \sqrt{(x-3)^2 + (y-0)^2};$$

MA ^ 2

$$(-3 + x)^2 + v^2$$

a = Expand
$$[(-3 + x)^2 + y^2]$$

$$9 - 6 x + x^2 + y^2$$

b = Expand
$$\left[\left(\frac{1}{2} \sqrt{(x - (-6))^2 + (y - 0)^2} \right) ^2 \right]$$

$$9 + 3 \times + \frac{x^2}{4} + \frac{y^2}{4}$$

$$c = a - b$$

$$-9 x + \frac{3 x^2}{4} + \frac{3 y^2}{4}$$

Simplify[c]

$$\frac{3}{4} \left(-12 x + x^2 + y^2 \right)$$

Completing the Square

CompleteSquare[c, x]

$$\frac{3}{4} \left(-6 + x \right)^2 + \frac{3}{4} \left(-36 + y^2 \right)$$

$$(x-6)^2 + y^2 == 36$$

ContourPlot[$(x-6)^2 + y^2 == 36, \{x, -15, 15\}, \{y, -15, 15\}$]

sols = Solve
$$[(x-6)^2 + y^2 == 36, \{y\}]$$

$$\left\{\left\{y \rightarrow -\sqrt{12\;x-x^2\;}\right\},\; \left\{y \rightarrow \sqrt{12\;x-x^2\;}\right\}\right\}$$

Plot[y /. sols, {x, -15, 15}]

2. 有一长度为2a (a > 0) 的线段,它的两端点分别在x轴正半轴与y正半轴上移动,试求此线段中点的轨迹.

令A (x,0), B (0,y) 为其两端点,其中点坐标为 (x/2,y/2) ,

$$d = 2 a$$
, $x^2 + y^2 = 4 a^2$, $\frac{x^2}{4} + \frac{y^2}{4} = a^2$,

即
$$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = a^2$$
, $(x \ge 0, y \ge 0$ 条件容易漏)

别解: 直角三角形中,斜边中线长是斜边一半, $\sqrt{(\frac{x}{2})^2 + (\frac{y}{2})^2} = \frac{1}{2} \sqrt{x^2 + y^2} = a$

3. 卡西尼卵形线轨迹方程. 一动点到两定点 (距离为2a) 的距离乘积等于定值m².

$$\sqrt{(x-a1)^2+(y-b1)^2} \times \sqrt{(x-c1)^2+(y-d1)^2} = m^2$$
,

$$2 a = \sqrt{(c1 - a1)^2 + (d1 - b1)^2}$$

$$\Rightarrow$$
 x - a1 = sint, y - b1 = cost, (sint + a1 - c1)² + (cost + b1 - d1)² = m⁴

Expand $[(sint + a1 - c1)^2 + (cost + b1 - d1)^2]$

$$a1^2 + b1^2 - 2 a1 c1 + c1^2 + 2 b1 cost + cost^2 -$$

 $2 b1 d1 - 2 cost d1 + d1^2 + 2 a1 sint - 2 c1 sint + sint^2$

Expand $[(c1-a1)^2 + (d1-b1)^2]$

$$a1^2 + b1^2 - 2 a1 c1 + c1^2 - 2 b1 d1 + d1^2$$

不知如何继续导出结果

故参看解答,发现选取一合适的坐标非常有效,

取两定点的连线为x轴,两定点所连线段的中垂线为y轴,则其方程为

$$(x^2 + y^2)^{-2} - 2 a^2 (x^2 - y^2) = m^4 - a^4$$

极坐标
$$r^4 - 2 a^2 r^2 \cos 2\theta = m^4 - a^4$$

卵形线的形状与比值m/a有关。如果m/a大于1,则轨迹是一条闭曲线。如果m/a小于1,则轨迹 是两条不相连的闭曲线。如果m/a等于1、则是伯努利双扭线。

4. 设P, Q, R是等轴双曲线上任意三点,求证ΔPQR的垂心H必在同一等轴双曲线上.

貌似一下子有点难

5.过定点M₀ (**x₀,** y₀) 的直线与非零向量*V* =

 $\{X,Y\}$ 共线,试证直线1的向量式参数方程为 $r = r_0 + tv$ $(-\infty < t < +\infty)$

其中 $r_0 = \overline{OM_0}$, **t**为参数; 坐标式参数方程为

$$\begin{cases} x = x_0 + Xt \\ y = y_0 + Yt \end{cases}$$

对称式方程为

$$\frac{x-x_0}{X}=\frac{x-y_0}{Y}$$

6. 旋轮线

$$\begin{cases} x = t - sint \\ y = 1 - cot \end{cases} (0 \le t \le 2\pi) 的弧与直线y = \frac{3}{2} 的交点.$$

x = t - sint, 1 - cost = 3/2, cost = -1/2, $t = \pi - \pi/3$, $t = \pi + \pi/3$

 $Sin[\pi - \pi/3]$

$$\frac{\sqrt{3}}{2}$$

 $Sin[\pi + \pi / 3]$

$$-\frac{\sqrt{3}}{2}$$

$$x = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}, x = \frac{4\pi}{3} + \frac{\sqrt{3}}{2}$$

7. 化参数方程为普通方程.

(1)
$$\begin{cases} x = at^2 \\ y = 2 at \end{cases} (-\infty < t < +\infty); \quad y^2 = 4 a^2 t^2 = 4 ax$$

(2)
$$\begin{cases} x = sint + 5 \\ y = -2 cost - 1 \end{cases} (0 \le t \le 2 \pi); (x - 5)^2 - \left(\frac{y + 1}{2}\right)^2 = 1$$

(3)
$$\begin{cases} x = r & (3 \cos t + \cos 3t) \\ y = r & (3 \sin t - \sin 3t) \end{cases} (0 < t < 2\pi); x^2 + y^2 = r^2 ()$$

ParametricPlot[$\{10 \ (3 \ Cos[t] + Cos[3 \ t]), 10 \ (3 \ Sin[t] - Sin[3 \ t])\}, \{t, 0, 2 \ \pi\}\}$

x = r (3 cost + cos3t)

(cos3t + 3 cost) r

y = r (3 sint - sin3t)

r (-sin3t + 3 sint)

Expand $[x^2 + y^2] =$

 $\cos 3t^2 r^2 + 6 \cos 3t \cos t r^2 + 9 \cos t^2 r^2 + r^2 \sin 3t^2 - 6 r^2 \sin 3t \sin t + 9 r^2 \sin t^2 =$ r^2 (10 + 6 cos3t cost - 6 sin3t sint) = r^2 (10 + 6 cos4t)

Collect $[\cos 3t^2 r^2 + 6\cos 3t\cos t r^2 + 9\cos t^2 r^2 + r^2\sin 3t^2 - 6r^2\sin 3t\sin t + 9r^2\sin t^2, r]$ $r^2 \left(\cos 3t^2 + 6 \cos 3t \cos t + 9 \cos t^2 + \sin 3t^2 - 6 \sin 3t \sin t + 9 \sin t^2 \right)$

Expand $[x^2 - y^2] =$

 $\cos 3t^2 r^2 + 6 \cos 3t \cos t r^2 + 9 \cos t^2 r^2 - r^2 \sin 3t^2 + 6 r^2 \sin 3t \sin t - 9 r^2 \sin t^2$

Collect $[\cos 3t^2 r^2 + 6 \cos 3t \cos t r^2 + 9 \cos t^2 r^2 - r^2 \sin 3t^2 + 6 r^2 \sin 3t \sin t - 9 r^2 \sin t^2, r]$ $r^2 \left(\cos 3t^2 + 6 \cos 3t \cos t + 9 \cos t^2 - \sin 3t^2 + 6 \sin 3t \sin t - 9 \sin t^2 \right)$

Expand[x y]

 $-\cos 3t r^2 \sin 3t - 3 \cos t r^2 \sin 3t + 3 \cos 3t r^2 \sin t + 9 \cos t r^2 \sin t$

 $Collect[-cos3t \, r^2 \, sin3t \, - \, 3 \, cost \, r^2 \, sin3t \, + \, 3 \, cos3t \, r^2 \, sint \, + \, 9 \, cost \, r^2 \, sint, \, r]$

 r^2 (-cos3t sin3t - 3 cost sin3t + 3 cos3t sint + 9 cost sint)

看来不简单, 注cost², sint² 即为cos² t, sin² t, 以下类同

8. 普通方程化为参数方程

$$(1) y^2 = x^3;$$

令 $y = t^3$, $x = t^2$, 两边取对数: 2 Log[y] = 6 Log[t] = 3 Log[x] = 6 Log[t], $\frac{Log[y]}{Log[x]} = \frac{3}{2} = Log[x, y]$... 看答案突然发现一开始便已给出,其后不知在做什么。

 $ParametricPlot\big[\big\{t^3\,,\,t^2\big\},\,\{t\,,\,-3\,,\,3\}\big]$

(2)
$$x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}} (a > 0)$$
; \Leftrightarrow
$$\begin{cases} x = \frac{a}{4} \sin^4 t \\ y = \frac{a}{4} \cos^4 t \end{cases}$$
 (0 < t < 2 π);

ContourPlot $\left[x^{\frac{1}{2}} + y^{\frac{1}{2}} = 1, \{x, -1, 1\}, \{y, -1, 1\}\right]$

(3)
$$x^3 + y^3 - 3 axy = 0 (a > 0)$$
; 参看解答, 设y = tx .

$$x^3 + t^3 x^3 - 3 ax \cdot tx = 0$$
, $x^2 (x + xt^3 - 3 at) = 0$, $x = \frac{3 at}{1 + t^3}$, $y = \frac{3 at^2}{1 + t^3}$

如果不设y = tx又如何得出结果呢? 因为这上步和最后结果是一样的。

9. 外摆线的参数方程

此题可参照例4,内摆的就方法,

10. 箕舌线的方程

模糊数学作业第三章节部分习题

f = (Partition[Cases[ToExpression[Characters[ToString[#1]]], Except[Null]],

模糊识别: 设A1="不热", A2="不冷", U=[0, ∞], x 表示温度(单位: °C), A1和A2相应的隶属函数如下,问世A3=A1 \cap A2表示"暖和". 试问: x=20°C时气温属于哪种状态?

```
#2]) / 10 /. a \rightarrow 10 & // N;
R1 = f[5421264519a7, 4];
R2 = f[411659756876, 4];
R3 = f[6578 a923, 2];
R4 = f[73645546, 2];
R5 = f[237648, 3];
R6 = f[269321, 3];
IntegerDigits[Range[6]]
\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}
Table[StringJoin["R", ToString[k]], {k, 6}] // ToExpression
{R1, R2, R3, R4, R5, R6}
v = ToExpression["R" <> ToString[#]] & /@ Range[6]
{R1, R2, R3, R4, R5, R6}
ToExpression /@ StringJoin /@ Thread[Append[{"R"}, ToString /@ Range[6]]]
\{\{\{0.5, 0.4, 0.2, 0.1\}, \{0.2, 0.6, 0.4, 0.5\}, \{0.1, 0.9, 1., 0.7\}\},\
 \{\{0.4, 0.1, 0.1, 0.6\}, \{0.5, 0.9, 0.7, 0.5\}, \{0.6, 0.8, 0.7, 0.6\}\},\
 \{\{0.6, 0.5\}, \{0.7, 0.8\}, \{1., 0.9\}, \{0.2, 0.3\}\},\
 \{\{0.7, 0.3\}, \{0.6, 0.4\}, \{0.5, 0.5\}, \{0.4, 0.6\}\},\
 \{\{0.2, 0.3, 0.7\}, \{0.6, 0.4, 0.8\}\}, \{\{0.2, 0.6, 0.9\}, \{0.3, 0.2, 0.1\}\}\}
R12 = Table[Max[R1[[i, j]], R2[[i, j]]], {i, 3}, {j, 4}];
% // MatrixForm
0.5 0.4 0.2 0.6
 0.5 0.9 0.7 0.5
0.6 0.9 1. 0.7
{R1 // MatrixForm, R2 // MatrixForm}
  0.5 0.4 0.2 0.1 (0.4 0.1 0.1 0.6)
  0.2 0.6 0.4 0.5 |, | 0.5 0.9 0.7 0.5
  (0.1 \ 0.9 \ 1. \ 0.7)^{2} (0.6 \ 0.8 \ 0.7 \ 0.6)
R1 \bigcup R2 = R12
```

```
R3 // MatrixForm
R5 // MatrixForm
 0.6 0.5
 0.7 0.8
  1. 0.9
0.2 0.3
(0.2 0.3 0.7
0.6 0.4 0.8
4 * 2 <> 2 * 3
\texttt{str2mat[.5} \times \textbf{.4} \times \textbf{.6} \ \times
   .6 \times .4 \times .8 \times
   .6 \times .4 \times .8 \times
    .3 \times .3 \times .3
   , 3] // MatrixForm
 0.5 0.4 0.6
 0.6 0.4 0.8
 0.6 0.4 0.8
0.3 0.3 0.3
Table[Min[R3[[m, k]], R5[[k, n]]], {m, 4}, {n, 3}, {k, 2}] // MatrixForm
          (0.3)
                  (0.6)
  (0.2)
  0.5
          0.4
                  0.5
                (0.7
  (0.2) (0.3)
  (0.6) (0.4)
                  0.8
          (0.3)
                  (0.7)
  (0.2)
  (0.6)
          0.4
                  0.8
  (0.2)
          (0.2)
                  (0.2)
 dot1 = Max /@ Table[Min[R3[[m, k]], R5[[k, n]]], {m, 4}, {n, 3}, {k, 2}][[#]] &;
Table[dot1[k], {k, 4}] // MatrixForm
(0.5 0.4 0.6
 0.6 0.4 0.8
 0.6 0.4 0.8
0.3 0.3 0.3
Table[Min[R3[[m, k]], R5[[k, n]]], {m, 4}, {n, 3}, {k, 2}]
\{\{\{0.2, 0.5\}, \{0.3, 0.4\}, \{0.6, 0.5\}\}, \{\{0.2, 0.6\}, \{0.3, 0.4\}, \{0.7, 0.8\}\},
 \{\{0.2, 0.6\}, \{0.3, 0.4\}, \{0.7, 0.8\}\}, \{\{0.2, 0.3\}, \{0.2, 0.3\}\}, \{0.2, 0.3\}\}\}
 dot = Table[Max /@ Table[Min[#1[[m, k]], #2[[k, n]]],
          {m, Dimensions[#1][[1]]}, {n, Dimensions[#2][[2]]},
          {k, Dimensions[#1][[2]]}][[i]], {i, 1, Dimensions[#1][[1]]}] &;
```

```
R35 = dot[R3, R5];
% // MatrixForm
 0.5 0.4 0.6
 0.6 0.4 0.8
 0.6 0.4 0.8
0.3 0.3 0.3
R3 o R5 = R35
计算 R12。R35
R12 // MatrixForm
(0.5 0.4 0.2 0.6
 0.5 0.9 0.7 0.5
0.6 0.9 1. 0.7
dot[R12, R35] // MatrixForm
(0.5 0.4 0.5
 0.6 0.4 0.8
0.6 0.4 0.8
R1C = 1 - R1;
% // MatrixForm
0.5 0.6 0.8 0.9
 0.8 0.4 0.6 0.5
0.9 0.1 0. 0.3
R3 ∩ R4 = R3i4
R3i4 = Table[Min[R3[[i, j]], R4[[i, j]]], {i, 4}, {j, 2}];
% // MatrixForm
 0.6 0.3
 0.6 0.4
 0.5 0.5
0.2 0.3
(R1C ∘ (R3 ∩ R4)) ∘ R6
dot[dot[R1C, R3i4], R6]
\{\{0.3, 0.6, 0.6\}, \{0.3, 0.6, 0.6\}, \{0.3, 0.6, 0.6\}\}
Fold[dot, R1C, {R3i4, R6}]
\{\{0.3, 0.6, 0.6\}, \{0.3, 0.6, 0.6\}, \{0.3, 0.6, 0.6\}\}
模糊关系的合成
在中医诊断中存在模糊关系:
建立{寒,热,虚,实}等症状与{肺,心}之间的模糊关系 R1·R2
a = {寒, 热, 虚, 实}; b = {肺, 心}; c = {自汗, 恶寒, 咳嗽, 喘};
```

R1 = f[33373333884220, 4];

 $Append[Table[Append[R1[[k]], a[[k]]], \{k, 1, 4\}], c] \ // \ TableForm$

0.3	0.3	0.3	0.7	寒
0.3	0.3	0.3	0.3	热
0.8	0.3	0.8	0.8	虚
0.4	0.2	0.2	0.	实
自汗	恶寒	咳嗽	喘	

TableForm[R1, TableHeadings → {a, c}]

	自汗	恶寒	咳嗽	喘
寒	0.3	0.3	0.3	0.7
热	0.3	0.3	0.3	0.3
虚	0.8	0.3	0.8	0.8
实	0.4	0.2	0.2	0.

R2 = f[53338263, 2];

Append[Table[Append[R2[[k]], a[[k]]], {k, 1, 4}], b] // TableForm

 0.5
 0.3
 寒

 0.3
 0.3
 热

 0.8
 0.2
 虚

 0.6
 0.3
 实

 肺
 心

TableForm[R2, TableHeadings → {c, b}]

	肺	心
自汗	0.5	0.3
恶寒	0.3	0.3
咳嗽	0.8	0.2
喘	0.6	0.3

R = dot[R1, R2];

Append[Table[Append[R[[k]], a[[k]]], {k, 1, 4}], b] // TableForm

 0.6
 0.3
 寒

 0.3
 0.3
 热

 0.8
 0.3
 虚

 0.4
 0.3
 实

 肺
 心

TableForm[R, TableHeadings → {a, b}]

	肺	心	
寒	0.6	0.3	
热	0.3	0.3	
虚	0.8	0.3	
实	0.4	0.3	

已知模糊相似关系 $R \in \mathcal{F}(X^*X), X = \{x1, x2, \dots, x7\}, 求R的传递闭包,并作聚类分析。$

R = f[a9759a49a5454175a5714545a5799575a71a4177a5414915a, 7];

% // MatrixForm

```
1. 0.9 0.7 0.5 0.9 1. 0.4
0.9 1. 0.5 0.4 0.5 0.4 0.1
0.7 0.5 1. 0.5 0.7 0.1 0.4
0.5 0.4 0.5 1. 0.5 0.7 0.9
0.9 0.5 0.7 0.5 1. 0.7 0.1
1. 0.4 0.1 0.7 0.7 1. 0.5
0.4 0.1 0.4 0.9 0.1 0.5 1.
```

R2 = dot[R, R]; R4 = dot[R2, R2]; R8 = dot[R4, R4]; R16 = dot[R8, R8]; {"R²", R2, "", "R⁴", R4, "", "R⁸", R8, "", "R¹⁶", R16} // TableForm

R^2						
1. 0.9 0.7 0.7 0.9 1. 0.5	0.9 1. 0.7 0.5 0.9 0.9	0.7 0.7 1. 0.5 0.7 0.7	0.7 0.5 0.5 1. 0.7 0.7	0.9 0.9 0.7 0.7 1. 0.9 0.5	1. 0.9 0.7 0.7 0.9 1. 0.7	0.5 0.4 0.5 0.9 0.5 0.7
R^4						
1. 0.9 0.7 0.7 0.9 1.	0.9 1. 0.7 0.7 0.9 0.9	0.7 0.7 1. 0.7 0.7 0.7	0.7 0.7 0.7 1. 0.7 0.7	0.9 0.9 0.7 0.7 1. 0.9	1. 0.9 0.7 0.7 0.9 1.	0.7 0.7 0.7 0.9 0.7 0.7
R^8						
1. 0.9 0.7 0.7 0.9 1.	0.9 1. 0.7 0.7 0.9 0.9	0.7 0.7 1. 0.7 0.7 0.7	0.7 0.7 0.7 1. 0.7 0.7	0.9 0.9 0.7 0.7 1. 0.9	1. 0.9 0.7 0.7 0.9 1.	0.7 0.7 0.7 0.9 0.7
R ¹⁶						
1. 0.9 0.7 0.7 0.9 1. 0.7	0.9 1. 0.7 0.7 0.9 0.9	0.7 0.7 1. 0.7 0.7 0.7	0.7 0.7 0.7 1. 0.7 0.7 0.9	0.9 0.7 0.7 1. 0.9	1. 0.9 0.7 0.7 0.9 1. 0.7	0.7 0.7 0.7 0.9 0.7 0.7

 $\lambda = \{1, 0.9, 0.7\};$

 $\label{eq:condition} $\operatorname{Grid}[\mathsf{Table}[\mathsf{If}[\mathsf{R8}[[\mathsf{i},\;\mathsf{j}]] \geq \mathtt{\#},\; \mathsf{True},\; ""],\; \{\mathsf{i},\; 7\},\; \{\mathsf{j},\; 7\}],\; \mathsf{Frame} \to \mathsf{All}]\; \& \, /@\, \lambda \, //\, A$ **TableForm**

True					True	
	True					
		True				
			True			
				True		
True					True	
						True
True	True			True	True	
True	True			True	True	
		True				
			True			True
True	True			True	True	
True	True			True	True	
			True			True
True						
True						
True						
True						
True						
True						
True						

X = ToExpression["X" <> ToString[#]] & /@ Range[7]; Partition[X, 1];

现在开始分类:

 $\lambda = 1$ 时, 分为6类: {{X1, X6}, {X2}, {X3}, {X4}, {X5}, {X7}} λ = 0.9 时, 分为3类: {{X1, X2, X5, X6}, {X3}, {X4, X7}} $\lambda = 0.7$ 时, 分为1类: {X1, X2, X3, X4, X5, X6, X7}

画动态聚类图:

Needs["HierarchicalClustering`"]

XLabel = "X" <> ToString[#] & /@ Range[7];

p1 = DendrogramPlot[R8, LeafLabels → XLabel, Orientation → Bottom]

预报: 某地历史上虫害情况分为I(轻), II(中), III(重)3类, 今年的测报资料为N, 其相似关系 矩阵为R, 问今年的虫害情况如何?

```
R = str2mat[1 w w w 0.39 \times 1 w w 0.16 \times 0.55 \times 1 w 0.59 \times 0.41 \times 0.26 \times 1, 4];
rate = ToString /@ {I, II, III, N}; R = R /. w \rightarrow \Box;
TableForm[R, TableHeadings → ("rate" * ConstantArray[1, 2] // ToExpression)]
```

	I	II	III	Ν
I	1			
II	0.39	1		
III	0.16	0.55	1	
N	0.59	0.41	0.26	1

 $R = str2mat[1 \times 0.39 \times 0.16 \times 0.59 \times 0.39 \times 1 \times 0.00 \times 0$ $0.55 \times 0.41 \times 0.16 \times 0.55 \times 1 \times 0.26 \times 0.59 \times 0.41 \times 0.26 \times 1, 4$;

% // MatrixForm

R2 = dot[R, R]; R4 = dot[R2, R2]; R8 = dot[R4, R4]; {"R²", R2, "", "R⁴", R4, "", "R⁸", R8} // TableForm R^2 0.39 0.59 1 0.41 0.41 0.41 0.55 1 0.55 0.41 0.39 1 0.59 0.41 0.41 1 R^4 0.59 1 0.41 0.41 0.41 0.55 0.41 1 0.55 0.41 1 0.41 0.59 0.41 0.41 R^8 1 0.41 0.59 0.41 0.41 0.41 0.55 1 0.55 0.41 1 0.41 0.59 0.41 0.41

 $\lambda = \{1, 0.59, 0.55, 0.41\};$

Grid[Table[If[R4[[i, j]] \geq #, True, ""], {i, 4}, {j, 4}], Frame \rightarrow All] & /@ λ // TableForm

True			
	True		
		True	
			True

True			True
	True		
		True	
True			True

True			True
	True	True	
	True	True	
True			True

True	True	True	True
True	True	True	True
True	True	True	True
True	True	True	True

 λ = 0.59 时, 分为3类 : {{N, I}, {II, III}} 故今年虫害较轻。

$p1 = DendrogramPlot[R4, LeafLabels \rightarrow rate, Orientation \rightarrow Bottom]$

模糊数学作业第二章节部分习题

先写个小函数来减小输入数据的工作量。因为ToString[]括号中同时有数字和字母时,会产生一个空格,而且双引号则没有,但是双引号中的字符串不能用来做变量,故稍麻烦了点。

```
f = (Partition[Cases[ToExpression[Characters[ToString[#1]]], Except[Null]],
           #2]) / 10 /. a \rightarrow 10 & // N;
R1 = f[5421264519a7, 4];
R2 = f[411659756876, 4];
R3 = f[6578 a923, 2];
R4 = f[73645546, 2];
R5 = f[237648, 3];
R6 = f[269321, 3];
IntegerDigits[Range[6]]
\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}
Table[StringJoin["R", ToString[k]], {k, 6}] // ToExpression
{R1, R2, R3, R4, R5, R6}
v = ToExpression["R" <> ToString[#]] & /@Range[6]
{R1, R2, R3, R4, R5, R6}
ToExpression /@ StringJoin /@ Thread [Append [{"R"}, ToString /@ Range [6]]]
\{\{\{0.5, 0.4, 0.2, 0.1\}, \{0.2, 0.6, 0.4, 0.5\}, \{0.1, 0.9, 1., 0.7\}\},\
 \{\{0.4, 0.1, 0.1, 0.6\}, \{0.5, 0.9, 0.7, 0.5\}, \{0.6, 0.8, 0.7, 0.6\}\},\
 \{\{0.6, 0.5\}, \{0.7, 0.8\}, \{1., 0.9\}, \{0.2, 0.3\}\},\
 \{\{0.7, 0.3\}, \{0.6, 0.4\}, \{0.5, 0.5\}, \{0.4, 0.6\}\},\
 \{\{0.2, 0.3, 0.7\}, \{0.6, 0.4, 0.8\}\}, \{\{0.2, 0.6, 0.9\}, \{0.3, 0.2, 0.1\}\}\}
R12 = Table[Max[R1[[i, j]], R2[[i, j]]], {i, 3}, {j, 4}];
% // MatrixForm
 0.5 0.4 0.2 0.6
  0.5 0.9 0.7 0.5
 0.6 0.9 1. 0.7
{R1 // MatrixForm, R2 // MatrixForm}
\left\{ \begin{pmatrix} 0.5 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.4 & 0.5 \\ 0.1 & 0.9 & 1. & 0.7 \end{pmatrix}, \begin{pmatrix} 0.4 & 0.1 & 0.1 & 0.6 \\ 0.5 & 0.9 & 0.7 & 0.5 \\ 0.6 & 0.8 & 0.7 & 0.6 \end{pmatrix} \right.
R1|JR2 = R12
R3 // MatrixForm
R5 // MatrixForm
 0.6 0.5
  0.7 0.8
  1. 0.9
 0.2 0.3
 0.2 0.3 0.7
0.6 0.4 0.8
4 * 2 <> 2 * 3
```

```
str2mat[.5 \times .4 \times .6]
    .6 \times .4 \times .8
    .6 \times .4 \times .8
    .3 \times .3 \times .3
    , 3] // MatrixForm
 0.5 0.4 0.6
  0.6 0.4 0.8
  0.6 0.4 0.8
0.3 0.3 0.3
Table [Min[R3[[m,k]], R5[[k,n]]], \{m, 4\}, \{n, 3\}, \{k, 2\}] // MatrixForm
   (0.2)
             (0.3)
  (0.5) (0.4)
                     0.5/
  \left( \begin{smallmatrix} 0.2\\ 0.6 \end{smallmatrix} \right) \quad \left( \begin{smallmatrix} 0.3\\ 0.4 \end{smallmatrix} \right)
                     \begin{pmatrix} 0.7 \\ 0.8 \end{pmatrix}
            \begin{pmatrix} 0.3 \\ 0.4 \end{pmatrix}
                     \begin{pmatrix} 0.7 \\ 0.8 \end{pmatrix}
   (0.2)
  0.6
            \begin{pmatrix} 0.2 \\ 0.3 \end{pmatrix}
                     \begin{pmatrix} 0.2 \\ 0.3 \end{pmatrix}
  (0.2)
  \0.3/
dot1 = Max / @ Table[Min[R3[[m, k]], R5[[k, n]]], {m, 4}, {n, 3}, {k, 2}][[#]] &;
Table[dot1[k], {k, 4}] // MatrixForm
 0.5 0.4 0.6
  0.6 0.4 0.8
  0.6 0.4 0.8
0.3 0.3 0.3
Table [Min[R3[[m, k]], R5[[k, n]]], \{m, 4\}, \{n, 3\}, \{k, 2\}]
\{\{\{0.2, 0.5\}, \{0.3, 0.4\}, \{0.6, 0.5\}\}, \{\{0.2, 0.6\}, \{0.3, 0.4\}, \{0.7, 0.8\}\},
 \{\{0.2, 0.6\}, \{0.3, 0.4\}, \{0.7, 0.8\}\}, \{\{0.2, 0.3\}, \{0.2, 0.3\}\}\}
dot = Table[Max /@ Table[Min[#1[[m, k]], #2[[k, n]]],
           {m, Dimensions[#1][[1]]}, {n, Dimensions[#2][[2]]},
           \{k, Dimensions[\#1][[2]]\}][[i]], \{i, 1, Dimensions[\#1][[1]]\}] \&;
R35 = dot[R3, R5];
% // MatrixForm
 0.5 0.4 0.6
  0.6 0.4 0.8
  0.6 0.4 0.8
0.3 0.3 0.3
R3 ° R5 = R35
计算 R12。R35
R12 // MatrixForm
 0.5 0.4 0.2 0.6
  0.5 0.9 0.7 0.5
0.6 0.9 1. 0.7
dot[R12, R35] // MatrixForm
 0.5 0.4 0.5
  0.6 0.4 0.8
0.6 0.4 0.8
```

模糊关系的合成

建立{寒,热,虚,实}等症状与{肺,心}之间的模糊关系 R1。R2

R1 = f[33373333884220, 4];

 ${\tt Append[Table[Append[R1[[k]],a[[k]]],\{k,1,4\}],c]//\,TableForm}$

自汗	恶 寒	咳嗽	喘	
0.4	0.2	0.2	0.	实
0.8	0.3	0.8	0.8	虚
0.3	0.3	0.3	0.3	热
0.3	0.3	0.3	0.7	寒

TableForm[R1, TableHeadings \rightarrow {a, c}]

	自汗	恶 寒	咳嗽	喘
寒	0.3	0.3	0.3	0.7
热	0.3	0.3	0.3	0.3
虚	0.8	0.3	0.8	0.8
实	0.4	0.2	0.2	0.

R2 = f[53338263, 2];

 ${\tt Append} \, [{\tt Table} \, [{\tt Append} \, [{\tt R2} \, [\, k\,]\,]\,,\, a\, [\, [\, k\,]\,]\,]\,,\, \{k\,,\, 1\,,\, 4\}\,]\,,\, b]\,\,//\,\, {\tt TableForm}$

```
寒
0.5
   0.3
   0.3
         热
0.3
0.8 0.2
         虚
0.6 0.3
         实
肺
    心
```

TableForm[R2, TableHeadings $\rightarrow \{c, b\}$]

	肺	心
自汗	0.5	0.3
恶 寒	0.3	0.3
咳嗽	0.8	0.2
喘	0.6	0.3

R = dot[R1, R2];

 $Append[Table[Append[R[[k]], a[[k]]], \{k, 1, 4\}], b] // TableForm$

```
      0.6
      0.3
      寒

      0.3
      0.3
      热

      0.8
      0.3
      虚

      0.4
      0.3
      实

      肺
      心
```

TableForm[R, TableHeadings \rightarrow {a, b}]

	肺	心
寒	0.6	0.3
热	0.3	0.3
虚	0.8	0.3
实	0.4	0.3

已知模糊相似关系 $R \in \mathcal{F}(X*X), X = \{x1, x2, \dots, x7\},$ 求R的传递闭包, 并作聚类分析。

R = f[a9759a49a5454175a5714545a5799575a71a4177a5414915a, 7];

% // MatrixForm

R2 = dot[R, R]; R4 = dot[R2, R2]; R8 = dot[R4, R4]; R16 = dot[R8, R8]; $\left\{ \texttt{"R}^2\texttt{",R2,"","R}^4\texttt{",R4,"","R}^8\texttt{",R8,"","R}^{16}\texttt{",R16} \right\} \text{// TableForm}$ \mathbb{R}^2 1. 0.7 0.7 0.7 0.5 0.5 0.9 0.9 0.7 1. 0.9 0.7 0.5 0.9 0.4 1. 0.7 0.7 0.5 1. 1. 0.7 0.7 0.9 0.7 0.5 0.5 0.7 0.7 0.9 0.7 0.7 0.5 1. 0.9 0.9 0.9 0.9 0.5 1. 1. 0.5 0.9 0.7 0.4 0.5 1. ${\tt R}^4$ 1. 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.9 1. 0.9 0.7 0.7 0.9 0.7 0.9 0.7 1. 0.7 0.7 1. 0.7 1. 0.7 0.9 0.9 0.9 0.7 1. 0.9 0.7 1. 0.7 1. 0.7 0.7 0.9 0.7 0.7 0.9 0.7 0.7 0.9 0.7 1. R^8 1. 0.9 0.7 0.7 0.7 0.7 1. 0.9 0.7 0.7 0.9 0.9 0.7 1. 0.7 0.7 0.7 0.9 1. 0.7 0.7 0.7 1. 0.7 0.7 0.9 0.7 0.9 0.7 1. 0.9 0.7 0.9 0.9 0.9 0.7 0.9 0.7 1. 1. 0.7 0.7 1. R^{16} 1. 0.9 0.7 0.7 0.7 0.7 1. 0.9 0.7 0.9 0.7 0.9 0.7 1. 0.7 0.9 0.7 0.7 1. 0.7 0.7 1. 0.7 0.7 0.7 0.9 0.9 0.9 0.7 1. 0.9 0.7 1. 0.7 1. 0.7 0.9 0.7 0.7 0.9 0.7 0.7 0.7 0.9 0.7 1.

 $\lambda = \{1, 0.9, 0.7\};$

True					True	
	True					
		True				
			True			
				True		
True					True	
						True
True	True			True	True	
True	True			True	True	
		True				
			True			True
True	True			True	True	
True	True			True	True	
			True			True
True						
True						
True						
True						
True						
True						
True						

X = ToExpression["X" <> ToString[#]] & /@ Range[7];
Partition[X, 1];

现**在**开始分类:

λ=1 时,分为6类: {{X1, X6}, {X2}, {X3}, {X4}, {X5}, {X7}} λ=0.9 时,分为3类: {{X1, X2, X5, X6}, {X3}, {X4, X7}}

 $\lambda = 0.7$ 时, 分为1类: $\{X1, X2, X3, X4, X5, X6, X7\}$

画动态聚类图:

Needs["HierarchicalClustering`"]
XLabel = "X" <> ToString[#] & /@Range[7];

${\tt p1 = DendrogramPlot[R8, LeafLabels \rightarrow XLabel, Orientation \rightarrow Bottom]}$

R = str2mat[1 w w w 0.39 × 1 w w 0.16 × 0.55 × 1 w 0.59 × 0.41 × 0.26 × 1, 4]; rate = ToString /@ {I, II, III, N}; R = R /. w $\rightarrow \Box$; TableForm[R, TableHeadings \rightarrow ("rate" * ConstantArray[1, 2] // ToExpression)]

	I	II	III	N
I	1			
II	0.39	1		
III	0.16	0.55	1	
N	0.59	0.41	0.26	1

R = str2mat[$1 \times 0.39 \times 0.16 \times 0.59 \times 0.39 \times 1$ $0.55 \times 0.41 \times 0.16 \times 0.55 \times 1 \times 0.26 \times 0.59 \times 0.41 \times 0.26 \times 1, 4$];

% // MatrixForm

$$\begin{pmatrix} 1 & 0.39 & 0.16 & 0.59 \\ 0.39 & 1 & 0.55 & 0.41 \\ 0.16 & 0.55 & 1 & 0.26 \\ 0.59 & 0.41 & 0.26 & 1 \end{pmatrix}$$

 $\begin{array}{l} {\rm R2 = dot[R,\,R]\,;\,R4 = dot[R2,\,R2]\,;\,R8 = dot[R4,\,R4]\,;} \\ {\rm "R^2",\,R2,\,"",\,"R^4",\,R4,\,"",\,"R^8",\,R8} \end{array} //\,\, {\rm TableForm} \\ \end{array}$

 $\lambda = \{1, 0.59, 0.55, 0.41\};$

True			
	True		
		True	
			True
True			True
	True		
		True	
True			True
True			True
True	True	True	True
True	True True	True True	True
True			True
True	True	True	True
True	True True	True True	True True

 λ = 0.59 时, 分为3类 : {{N, I}, {II, III}} 故今年虫害较轻。

 ${\tt p1 = DendrogramPlot[R4, LeafLabels \rightarrow rate, Orientation \rightarrow Bottom]}$

模糊数学作业第三章节部分习题

模糊识别: 设A1="不热", A2="不冷", U=[0,∞], x表示温度(单位: °C), A1和A2相应的隶属函数如下, A3=A1∩A2表示"暖和". 试问: x=20 °C 时气温属哪种状态?

 $f = (Partition[Cases[ToExpression[Characters[ToString[\#1]]], Except[Null]], \\ \#2]) \ / \ 10 \ / \ N;$

A1 (x) =
$$\begin{cases} 1 & x \le 15 \\ \left(1 + \left(\frac{x-15}{10}\right)^4\right)^{-1} & x > 15 \end{cases}$$

A2 (x) =
$$\begin{cases} 0 & x \le 10 \\ \left(1 + \left(\frac{x-10}{2}\right)^{-2}\right)^{-1} & x > 10 \end{cases}$$

A1[x_] := Piecewise
$$\left[\left\{\{1, x \le 15\}, \left\{\left(1 + \left(\frac{x - 15}{10}\right)^4\right)^{-1}, x > 15\right\}\right\}\right];$$

A2[x_] := Piecewise
$$\left[\left\{\{0, x \le 10\}, \left\{\left(1 + \left(\frac{x - 10}{2}\right)^{-2}\right)^{-1}, x > 10\right\}\right\}\right];$$

p1 = Plot[A1[x], {x, 0, 40}, AxesLabel → {x, y}];
p2 = Plot[A2[x], {x, 0, 40}];

Show[p1, p2, PlotLabel \rightarrow "A1(x)\t\t\tA2(x)"]

{A1@20, A2@20} // N {0.941176, 0.961538}

由最大隶属原则知属于不冷状态。

通货膨胀问题: 设论域 $R^{+} = \{x \in R : x \ge 0\}$ 表示价格指数的集合.将通货状态分成5个类型, x表示物价上涨x %, 试按最大隶属原则判断:

当x1 = 6, x2 = 21 属于通货膨胀哪一种状态?

Thread[(A = ToExpression["A" <> ToString[#]] & /@ Range[5]) ↔

{"通货稳定","轻度","中度","重度","恶性"}] // List // TableForm

A1 ↔ 通货稳定 A2 ↔ 轻度 A3 ↔ 中度 A4 ↔ 重度 A5 ↔ 恶性

A1[x_] := Piecewise
$$\left[\left\{\{1, 0 \le x < 5\}, \left\{Exp\left[-\left(\frac{x-5}{3}\right)^2\right], x \ge 5\right\}\right\}\right];$$

A2[x_] := Exp
$$\left[-\left(\frac{x-10}{5}\right)^2\right]$$
;

A3[x_] := Exp
$$\left[-\left(\frac{x-20}{7}\right)^2\right]$$
;

A4[x_] := Exp
$$\left[-\left(\frac{x-30}{7}\right)^2\right]$$
;

A5[x_] := Piecewise
$$\left[\left\{\left[\exp\left[-\left(\frac{x-50}{15}\right)^2\right], 0 \le x \le 50\right], \{1, x > 50\}\right]\right]$$
;

Α

 $\{A1, A2, A3, A4, A5\}$

 $Ax = Table[A[[k]] / @ \{6, 21.7\}, \{k, 5\}] // N;$

TableForm[Ax, TableHeadings \rightarrow {x /@A, {"x1=6", "x2=21.7"}}]

	x1=6	x2=21.7
x [A1]	0.894839	3.48481×10^{-14}
x [A2]	0.527292	0.00418772
x [A3]	0.0183156	0.942726
x [A4]	7.84918×10^{-6}	0.245142
x [A5]	0.000183289	0.0284527

Ax[[All, 1]] // Max

0.894839

Ax[[All, 2]] // Max

0.942726

故x1属于通货稳定,x2属于中度通货膨胀

设论域 U = $\{x1, x2, x3, x4, x5, x6\}$ 上的标准模型库如下,给定一个待识别的模糊集B, 试用贴近度 σ 判别B与标准模型库中的哪个模型最贴近?

$$\sigma (A, B) = \frac{\sum_{i=1}^{n} [A(x_i) \land B(x_i)]}{\sum_{i=1}^{n} [A(x_i) \lor B(x_i)]}$$

```
A1 = f[a85401, 6];
A2 = f[528 a60, 6];
A3 = f[za2758, 6] /. z \rightarrow 0;
A4 = f[40 a 965, 6];
A5 = f[8205 a7, 6];
A6 = f[57805a, 6];
B = f[7214 a8, 6] // Flatten;
这里在输入有0开头的矩阵时有一个问题,因为ToString函数会增加一个空格,而空格被识别为
乘法然后提前计算把0后面的输入 "吃掉了", 不过这个问题已经被研究过了
这里暂且输入z代表0。
A = Flatten[{A1, A2, A3, A4, A5, A6}, 1];
\sigma[A_{-}, B_{-}] := \frac{\sum_{i=1}^{6} Min[A[[k]][[i]], B[[i]]]}{\sum_{i=1}^{6} Max[A[[k]][[i]], B[[i]]]}
Table [\sigma[A, B], \{k, 1, 6\}]
% // Max
\{0.333333, 0.4, 0.454545, 0.434783, 0.882353, 0.456522\}
0.882353
B与A5最贴近
下面B与哪个Ai最贴近?
\sigma (A, B) = \frac{2 \sum_{i=1}^{n} [A (x_i) \land B (x_i)]}{\sum_{i=1}^{n} A (x_i) + \sum_{i=1}^{n} A (x_i)}
A1 = f[2451, 4];
A2 = f[1531, 4];
A3 = f[2341, 4];
B = f[6310, 4] // Flatten;
A = Flatten[{A1, A2, A3}, 1];
Thread[{"A1", "A2", "A3", "B"} ==
     (Plus @@ Thread[Append[A, B][[#]] / {x1, x2, x3, x4}] & /@ Range[4])] //
  MatrixForm // TraditionalForm
```

$$\left(\begin{array}{l} A1 = \frac{0.2}{x1} + \frac{0.4}{x2} + \frac{0.5}{x3} + \frac{0.1}{x4} \\ A2 = \frac{0.1}{x1} + \frac{0.5}{x2} + \frac{0.3}{x3} + \frac{0.1}{x4} \\ A3 = \frac{0.2}{x1} + \frac{0.3}{x2} + \frac{0.4}{x3} + \frac{0.1}{x4} \\ B = 0. + \frac{0.6}{x1} + \frac{0.3}{x2} + \frac{0.1}{x3} \end{array} \right)$$

$$\{\{0.2,\,0.4,\,0.5,\,0.1\}\,,\,\{0.1,\,0.5,\,0.3,\,0.1\}\,,\,\{0.2,\,0.3,\,0.4,\,0.1\}\}$$

$$\sigma[A_{-}, B_{-}] := \frac{2 \sum_{i=1}^{3} Min[A[[k]][[i]], B[[i]]]}{\sum_{i=1}^{3} A[[k]][[i]] + \sum_{i=1}^{3} B[[i]]}$$

Table[σ[A, B], {k, 1, 3}]
% // Max
{0.571429, 0.526316, 0.631579}

0.631579

B与A3最贴近

心理素质识别: 在运动员中心理选材中,以 "内-克"表的9个指标为论域,即X 已知某类优秀运动员 E1, 及两名选手 A1,A2 试按贴近度 σ 对两名运动员作一心理教材.

 $X = \{m1, m2, r1, r2, s1, s2, v, n, t\};$

E1 = $(str2mat[83 \times 84 \times 95 \times 96 \times 94 \times 93 \times 99 \times 97 \times 99, 9] // Flatten) / 100 // N;$ A1 = $(str2mat[86 \times 96 \times 78 \times 100 \times 84 \times 95 \times 65 \times 94 \times 86, 9] // Flatten) / 100 // N;$

A2 = $(str2mat[99 \times 99 \times 89 \times 90 \times 93 \times 92 \times 88 \times 77 \times 99, 9] // Flatten) / 100 // N;$

$$\sigma (A, B) = \frac{\sum_{i=1}^{n} [A(x_i) \land B(x_i)]}{\sum_{i=1}^{n} [A(x_i) \lor B(x_i)]}$$

Thread[{"E1", "A1", "A2"} == (Plus@@Thread[{E1, A1, A2}[[#]] / X] & /@Range[3])] // MatrixForm // TraditionalForm

$$\left(\begin{array}{c} E1 = \frac{0.83}{m1} + \frac{0.84}{m2} + \frac{0.97}{n} + \frac{0.95}{r1} + \frac{0.96}{r2} + \frac{0.94}{s1} + \frac{0.93}{s2} + \frac{0.99}{t} + \frac{0.99}{v} \\ A1 = \frac{0.86}{m1} + \frac{0.96}{m2} + \frac{0.94}{n} + \frac{0.78}{r1} + \frac{1}{r2} + \frac{0.84}{s1} + \frac{0.95}{s2} + \frac{0.86}{t} + \frac{0.65}{v} \\ A2 = \frac{0.99}{m1} + \frac{0.99}{m2} + \frac{0.77}{n} + \frac{0.89}{r1} + \frac{0.9}{r2} + \frac{0.93}{s1} + \frac{0.92}{s2} + \frac{0.99}{s2} + \frac{0.88}{v} \end{array} \right)$$

A = {A1, A2}; TableForm[A]

$$\sigma[A_{-}, B_{-}] := \frac{\sum_{i=1}^{9} Min[A[[k]][[i]], E1[[i]]]}{\sum_{i=1}^{9} Max[A[[k]][[i]], E1[[i]]]}$$

Table $[\sigma[A, B], \{k, 1, 2\}]$

% // Max

{0.886179, 0.912744}

0.912744

E1与A2更贴近,故A2的心理更优秀

模糊数学作业第三章节部分习题

模糊识别: 设A1="不热", A2="不冷", U=[0,∞], x表示温度(单位: °C), A1和A2相应的隶属函数如下, A3=A1 \bigcap A2表示"暖和". 试问: x=20 °C 时气温属哪种状态?

f = (Partition[Cases[ToExpression[Characters[ToString[#1]]], Except[Null]], #2]) / 10 /. $a \rightarrow 10 \& // N;$

A1 (x) =
$$\begin{cases} 1 & x \le 15 \\ \left(1 + \left(\frac{x-15}{10}\right)^4\right)^{-1} & x > 15 \end{cases}$$

A2 (x) =
$$\begin{cases} 0 & x \le 10 \\ \left(1 + \left(\frac{x-10}{2}\right)^{-2}\right)^{-1} & x > 10 \end{cases}$$

A1[x_] := Piecewise
$$\left[\left\{\{1, x \le 15\}, \left\{\left(1 + \left(\frac{x - 15}{10}\right)^4\right)^{-1}, x > 15\right\}\right\}\right];$$

A2[x_] := Piecewise
$$\left[\left\{\{0, x \le 10\}, \left\{\left(1 + \left(\frac{x - 10}{2}\right)^{-2}\right)^{-1}, x > 10\right\}\right\}\right];$$

 $p1 = Plot[A1[x], \{x, 0, 40\}, AxesLabel \rightarrow \{x, y\}];$

 $p2 = Plot[A2[x], \{x, 0, 40\}];$

Show[p1, p2, PlotLabel \rightarrow "A1(x)\t\t\tA2(x)"]

{A1@20, A2@20} // N

{0.941176, 0.961538}

由最大隶属原则知属于不冷状态。

通货膨胀问题:设论域 $R^+ = \{x \in R : x \ge 0\}$ 表示价格指数的集合.将通货状态分成5个类型, x表示物价上涨 $x \ge 0$. 试按最大隶属原则判断:

当x1 = 6, x2 = 21 属于通货膨胀哪一种状态?

Thread[(A = ToExpression["A" <> ToString[#]] & /@Range[5]) ↔
{"通货稳定", "轻度", "中度", "重度", "恶性"}] // List // TableForm

A1 ↔ 通货稳定 A2 ↔ 轻度 A3 ↔ 中度

A4 ↔ **重度** A5 ↔ 恶**性**

A1[x_] := Piecewise
$$\left[\left\{ \{1, 0 \le x < 5\}, \left\{ Exp \left[-\left(\frac{x-5}{3}\right)^2\right], x \ge 5 \right\} \right] \right]$$

A2[x_] := Exp
$$\left[-\left(\frac{x-10}{5}\right)^2\right]$$
; A3[x_] := Exp $\left[-\left(\frac{x-20}{7}\right)^2\right]$; A4[x_] := Exp $\left[-\left(\frac{x-30}{7}\right)^2\right]$;

A5[x_] := Piecewise
$$\left[\left\{ \left\{ \exp \left[-\left(\frac{x-50}{15} \right)^2 \right], 0 \le x \le 50 \right\}, \{1, x > 50 \} \right\} \right];$$

А

{A1, A2, A3, A4, A5}

 $Ax = Table[A[[k]] / @ \{6, 21.7\}, \{k, 5\}] / N;$ $TableForm[Ax, TableHeadings -> \{x / @ A, \{"x1=6", "x2=21.7"\}\}]$

	x1=6	x2=21.7
x[A1]	0.894839	3.48481×10^{-14}
x[A2]	0.527292	0.00418772
x[A3]	0.0183156	0.942726
x[A4]	7.84918×10^{-6}	0.245142
x[A5]	0.000183289	0.0284527

Ax[[All, 1]] // Max

0.894839

Ax[[All, 2]] // Max

0.942726

故x1属于通货稳定, x2属于中度通货膨胀

设论域 $U = \{x1, x2, x3, x4, x5, x6\}$ 上的标准模型库如下,给定一个待识别的模糊集B,试用贴近度 σ 判别B与标准模型库中的哪个模型最贴近?

$$\sigma (A, B) = \frac{\sum_{i=1}^{n} [A(\mathbf{x}_i) \land B(\mathbf{x}_i)]}{\sum_{i=1}^{n} [A(\mathbf{x}_i) \lor B(\mathbf{x}_i)]}$$

A1 = f[a85401, 6];

A2 = f[528 a60, 6];

A3 = $f[za2758, 6] /. z \rightarrow 0;$

A4 = f[40 a 965, 6];

A5 = f[8205 a7, 6];

A6 = f[57805a, 6];

B = f[7214 a8, 6] // Flatten;

这里在输入有0开头的矩阵时有一个问题, 因为ToString函数会增加一个空格, 而空格被识别为乘法然后提前计算把 0后面的输入 "吃掉了", 不过这个问题已经被研究过了 这里暂且输入z代表0。

$$\sigma[A_{_}, B_{_}] := \frac{2 \sum_{i=1}^{3} Min[A[[k]][[i]], B[[i]]]}{\sum_{i=1}^{3} A[[k]][[i]] + \sum_{i=1}^{3} B[[i]]}$$

Table[σ [A, B], {k, 1, 3}] % // Max

{0.571429, 0.526316, 0.631579}

0.631579

B与A3最贴近

心理素质识别: 在运动员中心理选材中, 以 "内-克"表的9个指标为论域, 即X 已知某类优秀运动员 E1, 及两名选手 A1,A2 试按贴近度 σ 对两名运动员作一心理教材.

$$X = \{m1, m2, r1, r2, s1, s2, v, n, t\};$$

E1 = $(str2mat[83 \times 84 \times 95 \times 96 \times 94 \times 93 \times 99 \times 97 \times 99, 9] // Flatten) / 100 // N;$

A1 = $(str2mat[86 \times 96 \times 78 \times 100 \times 84 \times 95 \times 65 \times 94 \times 86, 9] // Flatten) / 100 // N;$

A2 = $(str2mat[99 \times 99 \times 89 \times 90 \times 93 \times 92 \times 88 \times 77 \times 99, 9] / Flatten) / 100 // N;$

$$\sigma (A, B) = \frac{\sum_{i=1}^{n} [A(x_i) \land B(x_i)]}{\sum_{i=1}^{n} [A(x_i) \lor B(x_i)]}$$

Thread[

{"E1", "A1", "A2"} == (Plus@@Thread[{E1, A1, A2}[[#]] / X] & /@Range[3])] //
MatrixForm // TraditionalForm

$$\left(\begin{array}{l} E1 = \frac{0.83}{m1} + \frac{0.84}{m2} + \frac{0.97}{n} + \frac{0.95}{r1} + \frac{0.96}{r2} + \frac{0.94}{s1} + \frac{0.93}{s2} + \frac{0.99}{t} + \frac{0.99}{v} \\ A1 = \frac{0.86}{m1} + \frac{0.96}{m2} + \frac{0.94}{n} + \frac{0.78}{r1} + \frac{1}{r2} + \frac{0.84}{s1} + \frac{0.95}{s2} + \frac{0.86}{t} + \frac{0.65}{v} \\ A2 = \frac{0.99}{m1} + \frac{0.99}{m2} + \frac{0.77}{n} + \frac{0.89}{r1} + \frac{0.9}{r2} + \frac{0.93}{s1} + \frac{0.92}{s2} + \frac{0.99}{t} + \frac{0.88}{v} \\ \end{array} \right)$$

A = {A1, A2}; TableForm[A]

$$\sigma[A_{-}, B_{-}] := \frac{\sum_{i=1}^{9} Min[A[[k]][[i]], E1[[i]]]}{\sum_{i=1}^{9} Max[A[[k]][[i]], E1[[i]]]}$$

Table[$\sigma[A, B]$, $\{k, 1, 2\}$]

% // Max

{0.886179, 0.912744}

0.912744

E1与A2更贴近, 故A2的心理更优秀

```
定理 "3.1.4
```

 \mathcal{F} 是定义在集合x上的非空集族,若集族 \mathcal{A} : = {A|A为 \mathcal{F} 中有限个两两不交的元素之并} 如果 \mathcal{F} 满足

- ① **若**E $, F \in \mathcal{F}, \mathcal{M}E \cap F \in \mathcal{F}$
- (2) 若E∈F,则E^C∈F

则 $K(\mathcal{F}) = \mathcal{A}$

即,若 \mathcal{F} 是代数,则 \mathcal{F} 中有限个两两不交的元素的并集组成的集族 \mathcal{R} 是由 \mathcal{F} 生成的代数

```
例如:
```

```
X = Range[1, 4]
```

{1, 2, 3, 4}

Subsets[X]

$$\{\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$$

若 {}, {1}, {2}, {1, 2, 3, 4} ∈ ℱ

$$\mathcal{F}1 = \{\{\}, \{1\}, \{2\}, \{1, 2, 3, 4\}\};$$

则
$$\{1\}^c = \{2, 3, 4\}, \{2\}^c = \{1, 3, 4\} \in \mathcal{F}$$

$$\mathcal{F}2 = \{\{2, 3, 4\}, \{1, 3, 4\}\};$$

则
$$\{1\}^c = \{2, 3, 4\}, \{2\}^c = \{1, 3, 4\} \in \mathcal{F}$$

Table[Intersection[$\mathcal{F}1[[m]]$, $\mathcal{F}2[[n]]$], {m, 1, 4}, {n, 1, 2}] // MatrixForm

$$\begin{pmatrix}
\{\} & \{\} \\
\{\} & \{1\} \\
\{2\} & \{\} \\
\{2, 3, 4\} & \{1, 3, 4\}
\end{pmatrix}$$

Complement[X, {1}]

{2,3,4}

Complement[X, {2}]

{1, 3, 4}

$\mathcal{F} = \text{Union}[\mathcal{F}1, \mathcal{F}2]$

$$\{\{\}, \{1\}, \{2\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$$

取产为 {{}, {1}, {2}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

 $Table[Union[\mathcal{F}[[m]],\mathcal{F}[[n]]],\{m,1,6\},\{n,1,6\}] \text{ // MatrixForm}$

```
{1,3,4}
      { }
                     {1}
                                    {2}
                                                              \{2, 3, 4\} \{1, 2, 3, 4\}
                                                             {1, 2, 3, 4} {1, 2, 3, 4}
      {1}
                     {1}
                                   {1, 2}
                                                \{1, 3, 4\}
     {2}
                   {1,2}
                                   {2}
                                              \{1, 2, 3, 4\} \{2, 3, 4\} \{1, 2, 3, 4\}
  \{1, 3, 4\}
                \{1, 3, 4\} \{1, 2, 3, 4\} \{1, 3, 4\} \{1, 2, 3, 4\} \{1, 2, 3, 4\}
  \{2, 3, 4\} \{1, 2, 3, 4\} \{2, 3, 4\} \{1, 2, 3, 4\} \{2, 3, 4\} \{1, 2, 3, 4\}
igl(1,\,2,\,3,\,4) \quad \{1,\,2,\,3,\,4\} \quad \{1,\,2,\,3,\,4\} \quad \{1,\,2,\,3,\,4\} \quad \{1,\,2,\,3,\,4\} \quad \{1,\,2,\,3,\,4\}
```

 $\mathcal{A} = \left\{ \left\{ \right\}, \, \left\{ 1 \right\}, \, \left\{ 2 \right\}, \, \left\{ 1, \, 2 \right\}, \, \left\{ 1, \, 3, \, 4 \right\}, \, \left\{ 2, \, 3, \, 4 \right\}, \, \left\{ 1, \, 2, \, 3, \, 4 \right\} \right\}$

定理 "3.1.5 若 \mathcal{A} 为集合X上的代数 ,则 $M(\mathcal{A})$ = $S(\mathcal{A})$

命题C⇔命题A成立的充要条件是命题B⇔(B⇒A) \land (A⇒B)

 $(B \Longrightarrow A) \Longleftrightarrow B \not\equiv A$ 的充分条件 $(A \Longrightarrow B) \Longleftrightarrow B \not\equiv A$ 的必要条件

 $(A \Longrightarrow B) \Longleftrightarrow A \not\equiv B$ 的充分条件 $(B \Longrightarrow A) \Longleftrightarrow A \not\equiv B$ 的必要条件

 \Longrightarrow (命题C的充分性 \Longleftrightarrow (B \Longrightarrow A)) \lor (命题C的必要性 \Longleftrightarrow (A \Longrightarrow B))

 $1. (X, \mathcal{A})$ 为一可测空间, $E \in \mathcal{A}$, 证明 f为E上可测函数的充要条件是对于任一 $r \in Q$ 均有 $E (f > r) \in \mathcal{A}$.

证明:充分性显然. $\forall a \in R$, $E(f > a) \in \mathcal{A} \Longrightarrow \forall r \in Q$, $E(f > r) \in \mathcal{A}$.

必要性. $\forall r \in Q$, $\mathbb{E}(f > r) \in \mathcal{A}$,则 $\forall a_i \in \mathcal{A}$

 r_{i0} $(r_{\text{i0}}$, $r_{\text{i1}})$ < r_{i1} \in Q ,E $(f>r_{\text{i0}})$ \in \mathcal{A} ,

故E $(f > a_i > r_{i0}) \in \mathcal{A}$

由 a_i 的任意性 $\Longrightarrow \forall a \in R$, $E(f > a) \in \mathcal{A}$, 即f为E上可测函数.

必要性:或 $(f > r_{i0}) \cap E(f < r_{i1}) \in \mathcal{A}$,故 $E_i(f \in (r_{i0}, r_{i1})) \in \mathcal{A}$

 \mathscr{R} 是 \mathscr{O} 代数 \Longrightarrow \forall $a \in R = \bigcup_{i=1}^{\infty} E_i$, $E(f > a) \in \mathscr{A}$, 即f为E上可测函数

2. (X,\mathcal{A}) 为一可测空间 (f_n) 为 $\mathbb{E}\in\mathcal{A}$ 上的可测函数列 . 证明:

 (f_n) 的收敛点集与发散点集均为可测集.

证明:若 $\lim_{n \to \infty} f_n = f$,则f可测 (由定理 4.1.2 的推论2)

即收敛点集 E_1 可测,因发散点集 $E_0 = E \setminus E_1 \in \mathcal{A}$,故其也可测.

 $3.(X,\tau)$ 为一拓扑空间, \mathcal{A} 为X上的 σ 代数,且 $\mathcal{A} \supset \tau$,证明:X上连续函数必为X上的可测函数.

证明:f:=

 $X \to Y$ 连续,Y也是一个拓扑空间,故开集 $U \subset Y$, $f^{-1}(U) = V \in \tau \subset \mathcal{A}$.A是 σ 代数.故f为X上的 \mathcal{A} 可测函数.

4. 证明:L-S可测集E上的单调函数必为E上的L-S可测函数.

证明: $f := X \to Y$ 连续, 若 τ 也是一个拓扑空间,则开集 $U \subset Y$, $f^{-1}(U) = V \in \tau \subset \mathcal{R}$. 故Y = R时也成立. \mathcal{R} 是 σ 代数. 故f为X上的 \mathcal{R} 可测函数.

5. f为可测集 \mathbb{E} 上的有界可测函数 ,证明:存在一致有界的简单函数列 (φ_n) 在 \mathbb{E} 上一致收敛于f.

证明:由定理'4.1.5---设f为 $E \in \mathcal{A}$ 上的可测函数 ,则存在E上的简单函数列(φ_n)满足

 $f(x) = \lim \varphi_n(x)$, $|\varphi_n(x)| \uparrow |f(x)|$, $x \in E$.

 $|f(x)| \le M$,M > 0 , $|\varphi_n(x)| \le |f(x)| \le M$, 因此 $\varphi_n(x)$ 一致有界

 $6.(f_n)$ 为完备测度空间中的可测集E上的可测函数序列,

 $f: E \to R^*$ 为 (f_n) 的a.e.收敛的极限函数,证明:f为E上的可测函数.

证明:由定理'4.2.1---设(X, \mathcal{A} , μ)为一测度空间,(f_n)为 $E \in \mathcal{A}$ 上的可测函数列,若E上的函数f为(f_n)的a.e. 收敛的极限函数,则存在E上的可测函数g,使得f(x) = g(x) a.e. 于E.

记E1=E(f=g),E2=E(f \neq g),则 μ (E2)=0,E1、E2都是可测集.

要证明 $\forall a \in \mathbb{R}$, E(f > a)为可测集.

- 7. 设 (X,\mathcal{A},μ) 为一测度空间, $E \in \mathcal{A}$,f, $f_n(n=1,2,...)$ 为E上的可测函数,若对任一 $\delta > 0$,存在 $E_\delta \in \mathcal{A}$ 使得 $\mu(E-E_\delta) < \delta$ 且 (f_n) 在 E_δ 上一致收敛于f,证明:
- (1) (f_n) 在 E 上依测度收敛于 f;
- (2) (f_n) 在E上a.e.收敛于f.

证明:

(1) $f_n \rightarrow f$, 故 $\forall \epsilon > 0$, \exists 一个N使得对所有 $x \in E_{\delta}$ 当 $n \ge N$ 时有 $|f_n - f| < \epsilon$

可测函数序列 (f_n) 依测度收敛与f: 若給定 ε >

0 存在一个N使得对所有n ≥ N有 μ {x: | f (x) - f_n (x) | ≥ ϵ } < ϵ

当 $n \ge N$ 时, $\{x: | f - f_n | \ge \varepsilon\} \subset E \setminus E_\delta$

或记E1 = E (| f - f_n | $\geq \epsilon$) \in (E\E_{\delta}), μ (E1) $\leq \mu$ (E\E_{\delta}) $< \delta$

 $\lim_{n\to +\infty} \mu$ (E1) = 0, μ (E (| f - f_n | $\geq \varepsilon$)) $< \varepsilon$, 故f_n \Rightarrow f于E

(2) 取 $\delta = 1 / k > 0$, $\exists E_{1/k} \in \mathcal{A}$, 使得 $\mu(E - E_{1/k}) < 1 / k$ 且 (f_n) 在 $E_{1/k}$ 上一致收敛于f , (k = 1, 2, ...)

$$\mathtt{E2} = \bigcup_{k=1}^{+\infty} \mathtt{E}_{1/k} \,, \, \lim_{n \to +\infty} \mathtt{f}_n = \mathtt{f} \,, \, \, 0 \leq \mu \, \, \left(\mathtt{E} \setminus \mathtt{E2}\right) \, = \mu \, \left(\bigcap_{k=1}^{+\infty} \, \left(\mathtt{E} \setminus \mathtt{E}_{1/k}\right)\right) \, = \mu \, \left(\mathtt{E} \setminus \mathtt{E}_k\right) \, \leq \frac{1}{k}$$

 $\lim_{k\to +\infty} \mu$ (E\E2) = 0.即 (E\E2) 为零测集, $\lim_{n\to +\infty} f_n = f$ a.e于E

8. 设 (X,\mathcal{A},μ) 为一测度空间, $\mathbb{E}\in\mathcal{A}$, $\mathbf{f}_n\Rightarrow f(x)$ 于 \mathbb{E} , \mathbf{g} $\mathbb{E}\to R^*$,证明:若 $\mathbf{f}_n(x)\leq \mathbf{g}$ (x) a.e.于 \mathbb{E} , $(n=1,\ 2,\ \dots)$,则 $\mathbf{f}(x)\leq \mathbf{g}(x)$ a.e.于 \mathbb{E} .

证明:由Riesz定理,存在子列 (f_{n_i}) ,

$$f_{n_j} \rightarrow \texttt{fa.e.} \\ \mp \texttt{E.} \\ \ensuremath{\square} \\ \ensuremath{\not=} \\ f_{n_j} \ (\texttt{x}) \ = \ \texttt{f} \ (\texttt{x}) \ \leq \ \texttt{g} \ (\texttt{x}) \ \texttt{a.e.} \\ \ensuremath{\mp} \\ \ensuremath{\exists} \\ \ensuremath{\vdash} \\ \ensuremath{\mapsto} \\ \ensuremath{\vdash} \\ \ensu$$

9. 设 (X, \mathcal{A}, μ) 为一测度空间 $, \mathbb{E} \in \mathcal{A}, f_n(x) \leq f_{n+1}(x)$ a.e. 于 $\mathbb{E}, (n=1,2,...)$,且 $f_n(x) \Rightarrow f(x)$ 于 $\mathbb{E}, 证明: f_n(x) \to f(x)$ a.e.于 $\mathbb{E}.$

证明:由Riesz定理,存在子列 (f_{n_i}) , $f_{n_i} \rightarrow f$ a.e.于E,存在E1 \subset E , μ (E1) = 0,

 $x \in (E \setminus E1)$ 时, $\lim_{i \to \infty} f_{n_i}(x) = f(x)$.

$$f_n(x) < f_{n+1}(x)$$
 a.e.于E,存在 $2 \in E$, $\mu(E2) = 0$,

$$\mathbf{x} \in \left(\mathtt{E} \setminus (\mathtt{E1} \bigcup \mathtt{E2}) \; \right)$$
 时,若 $n > n_{\mathtt{j}}$,则 $\mathbf{f}_{n_{\mathtt{j}}} \; (\mathbf{x}) \; \leq \; \mathbf{f}_{\mathtt{n}} \; (\mathbf{x}) \; \leq \; \mathbf{f} \; (\mathbf{x})$

故
$$\lim_{j \to +\infty} f_{n_j}(x) = \lim_{n \to +\infty} f_n(x) = f(x)$$
.

$$0 \le \mu \text{ (E1 |]E2)} \le \mu \text{ (E1)} + \mu \text{ (E2)} = 0$$

即
$$f_n(x) \to f(x)$$
 a.e.于 E . $f_n(x) \xrightarrow{a.e. \mp E} f(x)$

10. 设f为L – S可测集E上的a.e.有限的L – S可测函数,证明:存在R上的连续函数列(φ_n)在E上几乎处处收敛于f.

证明:

- 11. 设f为L S可测集E上的a. e有限的函数.证明: **咨**寸于任一 δ >
- 0 ,存在闭集 $E_\delta \subset E$ 使得 m_α ($E \setminus E_\delta$) $< \delta \mathrm{LL}$ 在 E_δ 上的限制是有限值连续函数 ,则f为E上L S可测函数 .

证明:

- 12. 设 (X,\mathcal{F},μ) 为一测度空间 $(E\in\mathcal{F},f,g,f_n,g_n,(n=1,2,...)$ 均为E上的a.e有限的可测函数 $(E_n,x)\Rightarrow f(x),g_n,(x)\Rightarrow g(x)$ 于E.证明:在E上成立
- $(1) \mid f_n(x) \mid \Rightarrow \mid f(x) \mid$
- (2) $\forall a \in R : \alpha f_n(x) \Rightarrow \alpha f(x)$
- $(3) (f_n + g_n) (x) \Rightarrow (f + g) (x)$
- $\begin{array}{l} (4) \text{ min } \{f_n \; \{x\} \; , \; g_n \; \{x\} \; \} \; \Rightarrow \\ \text{max } \{f_n \; \{x\} \; , \; g_n \; \{x\} \; \} \; \Rightarrow \\ \text{max } \{f \; (x) \; , \; g \; (x) \; \} \end{array}$
- (5) 若设 μ (E) $< +\infty$,则 f_n (x) g_n (x) \Rightarrow f (x) g (x)

证明:(1)

1. (X, \mathcal{A}) is a measurable space, $E \in \mathcal{A}$, Proof: necessary and sufficient condition of f is measurable function on E is $\forall r \in Q$ have $E(f > r) \in \mathcal{A}$.

Proof: sufficiency is obvious. $\forall a \in R, \ E(f > a) \in \mathcal{A} \Longrightarrow \forall \ r \in Q, \ E(f > r) \in \mathcal{A}.$

necessity 1: $\forall r \in Q$, $E(f > r) \in \mathcal{A}$, then $\forall a_i \in (r_{i0}, r_{i1})$, $r_{i0} < r_{i1} \in Q$, $E(f > r_{i0}) \in \mathcal{A}$, so $E(f > a_i > r_{i0}) \in \mathcal{A}$ for randomicity of $a_i \Longrightarrow \forall a \in R$, $E(f > a) \in \mathcal{A}$, i.e. f is measurable function on E.

necessity2: or $E(f > r_{i0}) \cap E(f < r_{i1}) \in \mathcal{A}$, so $E_i(f \in (r_{i0}, r_{i1})) \in \mathcal{A}$

 \mathcal{A} is σ algebra $\Longrightarrow \forall a \in \mathbb{R} = \bigcup_{i=1}^{\infty} E_i, \ E(f > a) \in \mathcal{A}$, namely f is measurable function on E.

2. (X, \mathcal{A}) is a measurable space, (f_n) is measurable function sequence on $E \in \mathcal{A}$. Proof: set of points of convergence and set of points of divergence are both measurable sets.

Proof: if $\lim_{n \to \infty} f_n = f$, then f is measurable. namely $setE_1$ of convergence

points measurable , for set of points of divergence $E_0 = E \setminus E_1 \in \mathcal{A}$, so it is measurable.

$$\left\{ \xi(\mathbf{x}_{-}, \, \mathbf{y}_{-}) := \frac{x}{y}, \, \eta(\mathbf{x}_{-}, \, \mathbf{y}_{-}) = y \right\};$$

$$\Big\{\frac{\partial \xi(x,\,y)}{\partial x},\,\frac{\partial \xi(x,\,y)}{\partial \,y},\,\frac{\partial \,\eta(x,\,y)}{\partial \,x},\,\frac{\partial \,\eta(x,\,y)}{\partial \,y},\,\frac{\partial^2 \,\xi(x,\,y)}{\partial \,x\,\partial \,y}\Big\}$$

$$\left\{\frac{1}{y}, -\frac{x}{y^2}, 0, 1, -\frac{1}{y^2}\right\}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{1}{y} \frac{\partial u}{\partial \xi}$$

$$\frac{\partial^2 u}{\partial x \partial x} = \frac{\partial}{\partial x} \left(\frac{1}{y} \frac{\partial u}{\partial \xi} \right) = \frac{1}{y^2} \frac{\partial^2 u}{\partial \xi \partial \xi}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y} = -\frac{x}{y^2} \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}$$

$$\frac{\partial^{2} u}{\partial y \partial y} = \frac{\partial}{\partial y} \left(-\frac{x}{y^{2}} \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \right) = \frac{\partial}{\partial y} \left(-\frac{x}{y^{2}} \right) \frac{\partial u}{\partial \xi} - \frac{x}{y^{2}} \frac{\partial^{2} u}{\partial \xi \partial \xi} \frac{\partial \xi}{\partial y} - \frac{x}{y^{2}} \frac{\partial^{2} u}{\partial \xi \partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial^{2} u}{\partial \eta \partial \eta} \frac{\partial \eta}{\partial y} + \frac{\partial^{2} u}{\partial \eta \partial \xi} \frac{\partial \xi}{\partial y} = \frac{2x}{y^{3}} \frac{\partial u}{\partial \xi} + \frac{x^{2}}{y^{4}} \frac{\partial^{2} u}{\partial \xi \partial \xi} - \frac{x}{y^{2}} \frac{\partial^{2} u}{\partial \xi \partial \eta} + \frac{\partial^{2} u}{\partial \eta \partial \eta} - \frac{x}{y^{2}} \frac{\partial^{2} u}{\partial \eta \partial \xi}$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{1}{y} \frac{\partial u}{\partial \xi} \right) = \frac{1}{y} \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \left(\frac{1}{y} \right) \frac{\partial u}{\partial \xi} = \frac{1}{y} \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} - \frac{1}{y^2} \frac{\partial u}{\partial \xi} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \eta}{\partial x} \frac{$$

$$x^2 u_{xx} + y^2 u_{yy} + 2 x y u_{xy} = 0$$

习题2

2.3

$$(2) \left\{ \begin{array}{l} u \; ' \; ' \; + \lambda \, u \, , \; 0 \, < \, x \, < \, 1 \\ u \; ' \; [0] \; = \; u \; ' \; [1] \, + \, \sigma \, u \, [1] \; = \; 0 \end{array} \right.$$

对应的特征方程为 $a^2 + \lambda = 0$

λ ≤ 0 时不是特征值

$$\lambda > 0$$
 H $a^2 = -\lambda$, $a = \pm \sqrt{-\lambda} = 0 \pm \sqrt{\lambda}$ i

$$u = e^{0 \times \left(\text{C1} \cos \left[\sqrt{\lambda} \right] + \text{C2} \sin \left[\sqrt{\lambda} \times \right] \right) = \text{C1} \cos \left[\sqrt{\lambda} \right] + \text{C2} \sin \left[\sqrt{\lambda} \times \right]$$

$$u[x] := C1 \cos \left[\sqrt{\lambda} x \right] + C2 \sin \left[\sqrt{\lambda} x \right]$$

$$\texttt{u'[x]} = \texttt{C2}\,\sqrt{\lambda}\,\,\texttt{Cos}\!\left[\texttt{x}\,\sqrt{\lambda}\,\,\right] - \texttt{C1}\,\sqrt{\lambda}\,\,\texttt{Sin}\!\left[\texttt{x}\,\sqrt{\lambda}\,\,\right]$$

$$\mathtt{C2}\,\sqrt{\lambda}\,\,\mathtt{Cos}\!\left[\mathbf{x}\,\sqrt{\lambda}\,\,\right]-\mathtt{C1}\,\sqrt{\lambda}\,\,\mathtt{Sin}\!\left[\mathbf{x}\,\sqrt{\lambda}\,\,\right]\,/\,.\,\,\mathbf{x}\to\mathbf{0}$$

 $C2 \sqrt{\lambda}$

$$u'[0] = C2\sqrt{\lambda} = 0$$
,故 $C2 = 0$

$$\mathbf{u}^{\,\prime}\left[1\right] + \sigma\,\mathbf{u}\left[1\right] = \mathbf{C}\mathbf{1}\,\sigma\,\mathbf{Cos}\left[\mathbf{1}\,\sqrt{\lambda}\,\right] - \mathbf{C}\mathbf{1}\,\sqrt{\lambda}\,\,\mathbf{Sin}\left[\mathbf{1}\,\sqrt{\lambda}\,\right] = \mathbf{C}\mathbf{1}\,\left(\sigma\,\mathbf{Cos}\left[\mathbf{1}\,\sqrt{\lambda}\,\right] - \sqrt{\lambda}\,\,\mathbf{Sin}\left[\mathbf{1}\,\sqrt{\lambda}\,\right]\right) = \mathbf{0}\,,\,\,\sigma > \mathbf{0}$$

$$\texttt{Collect}\Big[\texttt{C1} \, \sigma \, \texttt{Cos}\Big[\texttt{1} \, \sqrt{\lambda} \,\,\Big] \, - \, \texttt{C1} \, \sqrt{\lambda} \,\, \texttt{Sin}\Big[\texttt{1} \, \sqrt{\lambda} \,\,\Big] \,, \,\, \texttt{C1}\Big]$$

$$\mathtt{C1}\left(\sigma\,\mathtt{Cos}\!\left[\mathtt{l}\,\sqrt{\lambda}\,\right]-\sqrt{\lambda}\,\,\mathtt{Sin}\!\left[\mathtt{l}\,\sqrt{\lambda}\,\right]\right)$$

$$\sigma \cos \left[1\sqrt{\lambda}\right] - \sqrt{\lambda} \sin \left[1\sqrt{\lambda}\right] = 0$$

$$\mathbf{MCot}\left[1\sqrt{\lambda}\right] = \frac{\sqrt{\lambda}}{\sigma}$$

对就的特征函数为
$$u_n = Cos\left\lceil \sqrt{\lambda_n} \ \mathbf{x} \right\rceil$$
, n = 1, 2, ...

验算了一下page 43

$$Solve[{u[1] = 0, u[e] = 0}, {C[1], C[2]}]$$

$$DSolve[R''[s] - n^2R[s] = 0, R[s], s]$$

$$\{\,\{\,R\,[\,s\,]\,\,\to\,\mathbb{e}^{n\,\,s}\,\,C\,[\,1\,]\,\,+\,\mathbb{e}^{-n\,\,s}\,\,C\,[\,2\,]\,\,\}\,\}$$

$$e^{ns}C[1] + e^{-ns}C[2] /.s \rightarrow Log[\rho]$$

$$\rho^{n} C[1] + \rho^{-n} C[2]$$

$$(4) \, \left\{ \begin{array}{l} x^2 \, u \, ' \, ' \, + \, 3 \, x \, u \, ' \, + \, \lambda \, u \, = \, 0 \, , \, \, 0 \, < \, x \, < \, e \\ u \, [\, 1 \,] \, = \, u \, [\, e \,] \, = \, 0 \end{array} \right.$$

欧拉方程,作代换令 $x = e^t$, t = 1 n

$$xu'[x] = u'[t], xu''[x] = u''[t] - u'[t]$$

$$u''[t] + 2u'[t] + \lambda u[t] = 0$$

 $u = e^{-t} \left(\text{C1} \cos \left[\sqrt{\lambda - 1} \ t \right] + \text{C2} \sin \left[\sqrt{\lambda - 1} \ t \right] \right)$

$$\frac{e^{-t} \left(\text{C1} \cos \left[\sqrt{\lambda - 1} \ t \right] + \text{C2} \sin \left[\sqrt{\lambda - 1} \ t \right] \right) \ /. \ t \to \text{Log}[x]}{\text{C1} \cos \left[\sqrt{-1 + \lambda} \ \text{Log}[x] \right] + \text{C2} \sin \left[\sqrt{-1 + \lambda} \ \text{Log}[x] \right]}{x}$$

$$u[x_{-}] := \frac{\text{C1} \cos \left[\sqrt{-1 + \lambda} \operatorname{Log}[x]\right] + \text{C2} \sin \left[\sqrt{-1 + \lambda} \operatorname{Log}[x]\right]}{x};$$

$$u[1] = C1 = 0, u[e] = \frac{C1 \cos \left[\sqrt{-1 + \lambda}\right] + C2 \sin \left[\sqrt{-1 + \lambda}\right]}{e} = 0$$

故
$$\sin\left[\sqrt{-1+\lambda}\right]=0$$

$$\sqrt{-1+\lambda}=n\,\pi,\,\lambda_n=1+\left(n\,\pi\right)^2,\,n=1,\,2,\,...$$
 $u_n\;(x)=\frac{1}{-}\sin\;(n\,\pi\,\ln x)$, $n=1,\,2,\,...$

验算page 38

$$\alpha[n_{-}] := (2\,n-1)\,/\,2;\, \varphi[x_{-}] := \sin\Bigl[\frac{x}{2}\Bigr];\, \sin[n_{-},\,x_{-}] := \sin\Bigl[\frac{2\,n-1}{2}\,x\Bigr];\, f[x_{-},\,t_{-}] := \frac{1}{2}\,x\,t$$

$$c[n_{-}] := - \underset{\pi}{\text{Integrate}} [\varphi[x] \sin[\alpha[n] x], \{x, 0, \pi\}];$$

$$f[n_{-}, t_{-}] := \frac{2}{\pi} t Integrate \left[\frac{1}{2} x Sin[\alpha[n] x], \{x, 0, \pi\} \right];$$

$$f[n, t] = \frac{2t(-2\cos[n\pi] + (1-2n)\pi\sin[n\pi])}{(1-2n)^2\pi}$$

$$c[n] = \frac{(1-2n) \sin[n\pi]}{(-1+n) n\pi} = 0, n \ge 2, c[1] = 1$$

Table[f[n, t], {n, 1, 10}]

$$\Big\{\frac{4\,\text{t}}{\pi}\,,\,-\frac{4\,\text{t}}{9\,\pi}\,,\,\frac{4\,\text{t}}{25\,\pi}\,,\,-\frac{4\,\text{t}}{49\,\pi}\,,\,\frac{4\,\text{t}}{81\,\pi}\,,\,-\frac{4\,\text{t}}{121\,\pi}\,,\,\frac{4\,\text{t}}{169\,\pi}\,,\,-\frac{4\,\text{t}}{225\,\pi}\,,\,\frac{4\,\text{t}}{289\,\pi}\,,\,-\frac{4\,\text{t}}{361\,\pi}\Big\}$$

Table
$$\left[(-1)^{n-1} t \frac{1}{\pi (\alpha[n])^2}, \{n, 1, 10\} \right]$$

$$\Big\{\frac{4\,\text{t}}{\pi}\,,\,-\frac{4\,\text{t}}{9\,\pi}\,,\,\frac{4\,\text{t}}{25\,\pi}\,,\,-\frac{4\,\text{t}}{49\,\pi}\,,\,\frac{4\,\text{t}}{81\,\pi}\,,\,-\frac{4\,\text{t}}{121\,\pi}\,,\,\frac{4\,\text{t}}{169\,\pi}\,,\,-\frac{4\,\text{t}}{225\,\pi}\,,\,\frac{4\,\text{t}}{289\,\pi}\,,\,-\frac{4\,\text{t}}{361\,\pi}\Big\}$$

暂时不知道如何 让
$$f[n,t]$$
 变成这种形式 $(-1)^{n-1}t$ $\frac{1}{\pi(\alpha[n])^2}$

$$u[x_{-}, t_{-}] := Cos[\alpha[1] t] Sin[\alpha[1] x] +$$

$$Sum \left[\frac{1}{\alpha[n]} Sin[\alpha[n] \, x] \, Integrate[f[n, \, t] \, Sin[\alpha[n] \, (t - t)], \, \{t, \, 0, \, t\}], \, \{n, \, 1, \, \infty\} \right]$$

u[x, t]

$$\begin{split} &\frac{1}{8\,\pi} e^{-\frac{i\,t}{2} - \frac{i\,x}{2}} \left(-2\,e^{i\,x}\,\text{LerchPhi} \Big[-e^{-i\,(t-x)}\,,\,5\,,\,\frac{1}{2} \Big] - 2\,e^{i\,t}\,\text{LerchPhi} \Big[-e^{i\,(t-x)}\,,\,5\,,\,\frac{1}{2} \Big] + \\ &2\,i\,e^{\frac{i\,t}{2}}\,t\,\text{LerchPhi} \Big[e^{-i\,\pi - i\,x}\,,\,4\,,\,\frac{1}{2} \Big] + i\,e^{\frac{i\,t}{2}}\,t\,\text{LerchPhi} \Big[e^{-i\,\pi - i\,x}\,,\,5\,,\,\frac{1}{2} \Big] + \\ &2\,i\,e^{\frac{i\,t}{2}}\,t\,\text{LerchPhi} \Big[e^{i\,\pi - i\,x}\,,\,4\,,\,\frac{1}{2} \Big] + i\,e^{\frac{i\,t}{2}}\,t\,\text{LerchPhi} \Big[e^{i\,\pi - i\,x}\,,\,5\,,\,\frac{1}{2} \Big] - \\ &2\,i\,e^{\frac{i\,t}{2} + i\,x}\,t\,\text{LerchPhi} \Big[e^{-i\,\pi + i\,x}\,,\,4\,,\,\frac{1}{2} \Big] - i\,e^{\frac{i\,t}{2} + i\,x}\,t\,\text{LerchPhi} \Big[e^{-i\,\pi + i\,x}\,,\,5\,,\,\frac{1}{2} \Big] - \\ &2\,i\,e^{\frac{i\,t}{2} + i\,x}\,t\,\text{LerchPhi} \Big[e^{i\,\pi + i\,x}\,,\,4\,,\,\frac{1}{2} \Big] - i\,e^{\frac{i\,t}{2} + i\,x}\,t\,\text{LerchPhi} \Big[e^{i\,\pi + i\,x}\,,\,5\,,\,\frac{1}{2} \Big] - \\ &2\,i\,e^{\frac{i\,t}{2}}\,t\,\text{LerchPhi} \Big[-e^{-i\,x}\,,\,5\,,\,\frac{1}{2} \Big] + 2\,i\,e^{\frac{i\,t}{2} + i\,x}\,t\,\text{LerchPhi} \Big[-e^{i\,x}\,,\,5\,,\,\frac{1}{2} \Big] + \\ &2\,\text{LerchPhi} \Big[-e^{-i\,(t+x)}\,,\,5\,,\,\frac{1}{2} \Big] + 2\,e^{i\,t + i\,x}\,\text{LerchPhi} \Big[-e^{i\,(t+x)}\,,\,5\,,\,\frac{1}{2} \Big] + \text{Cos} \Big[\frac{t}{2} \Big] \,\text{Sin} \Big[\frac{x}{2} \Big] \end{split}$$

 $k[n_{-}, t_{-}] := Integrate[f[n, \tau] Sin[\alpha[n] (t-\tau)], \{\tau, 0, t\}]$

$$\begin{split} & \textbf{Table} \bigg[\frac{\textbf{k[n,t]}}{\alpha[\textbf{n]}}, \{\textbf{n,1,3}\}, \{\textbf{t,1,5}\} \bigg] \ // \, \textbf{N} \\ & \{ \{0.20957, 1.61476, 5.11847, 11.1098, 19.3688 \}, \\ & \{ -0.0210637, -0.119837, -0.229604, -0.263216, -0.275062 \}, \\ & \{ 0.00619802, 0.0194231, 0.0213888, 0.0343682, 0.0409598 \} \} \end{split}$$

这个积分值跟题目结果中的和式内的 进行对比发现是一样的,故一定程度上验证完毕。

$$\begin{split} & \text{Table}\bigg[\left(-1\right)^{n-1}\left(t-\frac{\sin\left[\alpha\left[n\right]\;t\right]}{\alpha\left[n\right]}\right) \middle/ \left(\pi\left(\alpha\left[n\right]\right)^{4}\right), \left\{n,1,3\right\}, \left\{t,1,5\right\}\bigg] \: //\: N \\ & \left\{\left\{0.20957,\, 1.61476,\, 5.11847,\, 11.1098,\, 19.3688\right\}, \\ & \left\{-0.0210637,\, -0.119837,\, -0.229604,\, -0.263216,\, -0.275062\right\}, \\ & \left\{0.00619802,\, 0.0194231,\, 0.0213888,\, 0.0343682,\, 0.0409598\right\} \end{split}$$

$$-\frac{1}{\left(1-2\,n\right)^{\,4}\,\pi}4\,\left(-\,2\,\text{Cos}\,[\,n\,\pi\,]\,+\,(1-2\,n)\,\,\pi\,\text{Sin}\,[\,n\,\pi\,]\,\right)\,\left(\text{t}\,-\,2\,n\,\text{t}\,+\,2\,\text{Sin}\,\!\left[\,\left(-\frac{1}{2}+n\right)\,\text{t}\,\right]\right)$$

2.7

$$(2) \left\{ \begin{array}{ll} u_{\text{tt}} - u_{xx} = x + \text{Sin}[x] \,, & 0 < x < \pi, \, t > 0 \\ u[0, \, t] = u[\pi, \, t] = 0 \,, & t \geq 0 \\ u[x, \, 0] = \frac{1}{2} \, \text{Sin}[2 \, x] \,, \, u_{t}[x, \, 0] = 0 \,, & 0 \leq x \leq \pi \end{array} \right.$$

与之对应的定解问题对应的特征值问题是

$$\begin{bmatrix} X''[x] + \lambda X[x] = 0, & 0 < x < \pi \\ X[0] = X'[\pi] = 0 & \Box$$

其对应的特征函数系是
$$\{\sin[\alpha_n \mathbf{x}]\}_{n=1}^{\infty}$$
, 其中 $\alpha_n = (2n-1)/2$ 把函数 $\varphi[\mathbf{x}] = -\sin[2\mathbf{x}]$,

 $\psi[\mathbf{x}] = 0$ 和f[x, t] = x + Sin[x] 关于x按特征函数 $\{\text{Sin}[\alpha_n \,\mathbf{x}]\}_{n=1}^{\infty}$

可以算出
$$c_1 = -\frac{8}{15\pi}$$
, $c_n = \frac{8\cos(\pi n)}{\pi(-4n^2 + 4n + 15)}$, $d_n = 0$, $f_n(t) = \frac{4\left(\frac{8\cos[n\pi]}{-3-4n+4n^2} + (1-2n)\pi\sin[n\pi]\right)}{(1-2n)^2\pi}$

$$\alpha[n_{-}] := (2n-1) / 2; \varphi[x_{-}] := \frac{1}{2} \sin[2x]; \sin[n_{-}, x_{-}] := \sin\left[\frac{2n-1}{2}x\right];$$

$$c[n_{-}] := - \underset{\pi}{\text{Integrate}} [\varphi[x] \sin[n, x], \{x, 0, \pi\}]$$

$$f[n_{-}, t_{-}] := - \underset{\pi}{\text{Integrate}[(x + \sin[x]) \sin[\alpha[n] x], \{x, 0, \pi\}];}$$

$$f[n, t] = \frac{4 \left(\frac{8 \cos[n \pi]}{-3 - 4 \ln + 4 n^2} + (1 - 2 n) \pi \sin[n \pi] \right)}{(1 - 2 n)^2 \pi}$$

$$c[n] = \frac{8 \cos[n \pi]}{(15 + 4 n - 4 n^2) \pi}$$

Integrate[f[n, τ] Sin[α [n] (t - τ)], { τ , 0, t}]

$$\left(16 \left(8 \cos[n \pi] + \left(-3 + 2 n + 12 n^2 - 8 n^3\right) \pi \sin[n \pi]\right) \sin\left[\frac{1}{4} (-1 + 2 n) t\right]^2\right) / ((-1 + 2 n)^3 (-3 - 4 n + 4 n^2) \pi)$$

公式 2 - 4 - 3

$$\begin{split} u[x_-,\,t_-] &:= \text{Sum} \Big[\frac{8 \, \text{Cos} [n\,\pi]}{\left(15 + 4\,n - 4\,n^2\right)\,\pi} \, \text{Cos} [\alpha[n]\,\,t] \, \text{Sin} [\alpha[n,\,x]] \,,\, \{n,\,1,\,2\} \Big] \,+ \\ & \text{Sum} \Big[\frac{1}{\alpha[n]} \, \text{Sin} [\alpha[n]\,\,x] \, \, \text{Integrate} [f[n,\,\tau] \, \text{Sin} [\alpha[n]\,\,(t-\tau)] \,,\, \{\tau,\,0,\,t\}] \,,\, \{n,\,1,\,2\} \Big] \,+ \\ & \text{Sum} \Big[\frac{8 \, \text{Cos} [n\,\pi]}{\left(15 + 4\,n - 4\,n^2\right)\,\pi} \, \text{Cos} [\alpha[n]\,\,t] \, \text{Sin} [\alpha[n,\,x]] \,,\, \{n,\,3,\,\infty\} \Big] \,+ \\ & \text{Sum} \Big[\frac{1}{\alpha[n]} \, \text{Sin} [\alpha[n]\,\,x] \, \, \text{Integrate} [f[n,\,\tau] \, \text{Sin} [\alpha[n]\,\,(t-\tau)] \,,\, \{\tau,\,0,\,t\}] \,,\, \{n,\,3,\,\infty\} \Big] \end{split}$$

u[x, t]

有空再算。

$$\begin{split} & \operatorname{Sum} \Big[\frac{8 \operatorname{Cos} [\operatorname{n} \pi]}{\left(15 + 4 \operatorname{n} - 4 \operatorname{n}^2\right) \pi} \operatorname{Cos} [\alpha[\operatorname{n}] \ t] \ \operatorname{Sin} [\alpha[\operatorname{n}] \ x] \ , \ \{\operatorname{n}, \ 1, \ 2\} \Big] + \\ & \operatorname{Sum} \Big[\frac{1}{\alpha[\operatorname{n}]} \operatorname{Sin} [\alpha[\operatorname{n}] \ x] \ \operatorname{Integrate} [f[\operatorname{n}, \ \tau] \ \operatorname{Sin} [\alpha[\operatorname{n}] \ (t - \tau)] \ , \ \{\tau, \ 0, \ t\}] \ , \ \{\operatorname{n}, \ 1, \ 2\} \Big] \\ & - \frac{8 \operatorname{Cos} \left[\frac{t}{2}\right] \operatorname{Sin} \left[\frac{x}{2}\right]}{15 \pi} + \frac{256 \operatorname{Sin} \left[\frac{t}{4}\right]^2 \operatorname{Sin} \left[\frac{x}{2}\right]}{3 \pi} + \\ & \frac{8 \operatorname{Cos} \left[\frac{3t}{2}\right] \operatorname{Sin} \left[\frac{3x}{2}\right]}{7 \pi} + \frac{256 \operatorname{Sin} \left[\frac{3t}{4}\right]^2 \operatorname{Sin} \left[\frac{3x}{2}\right]}{405 \pi} \ / / \ \operatorname{Fullsimplify} \\ & - 1512 \left(-80 + 81 \operatorname{Cos} \left[\frac{t}{2}\right]\right) \operatorname{Sin} \left[\frac{x}{2}\right] + 8 \left(112 + 293 \operatorname{Cos} \left[\frac{3t}{2}\right]\right) \operatorname{Sin} \left[\frac{3x}{2}\right] \\ & - 2835 \pi \end{split}$$

0.844576

3 (1 - Cos[t]) Sin[x] +
$$\frac{1}{4}$$
 (3 Cos[2t] -1) Sin[2x] /. {t \rightarrow 1, x \rightarrow 1} // N

0.649342

本来想从答案 凑出非无穷和式,结果发现错了,要么是之前的就有错,要么是无穷和式里还可以拿出来部分放到前。 面的非无穷和式

习题1

1.1 有一长度为 *l* 且两端固定的均匀而柔软的细弦做微小横振动,在振动过程中不计重力但计阻力,阻力的大小与速度成正比,比例常数为 *R* . 试导出此弦的微小横振动所满足的偏微分方程.

$$\begin{split} &u_{tt} - a^2 \, u_{xx} = \, f \, \left(x, \, t \right), \, \, \frac{- f \, \left(x, \, t \right)}{\rho} = \frac{- R}{\rho} \, v = \frac{- R}{\rho} \, u_t = u_{tt} - a^2 \, u_{xx}, \\ &u_{tt} = a^2 \, u_{xx} - \frac{R}{\rho} \, u_t, \, a = \sqrt{T_0 / \rho} \, > 0 \end{split}$$

1.2 一均匀细杆的表面绝热,内部热源是 $f_0(x,t)$. 试导出杆的温度分布所满足的偏微分方程.

$$\begin{aligned} u_t - a^2 \, \Delta u &= f \, \left(x, \, t \right) \\ u_t &= a^2 \, u_{xx} + f \, \left(x, \, t \right) \\ a^2 &= k/(c\rho) > 0, \, f = f_0/c \end{aligned}$$

常数 k, c 和 ρ 分别为热传导系数,比热和密度

1.3 一根长度为 l 的均匀细弦的左端固定,右端自由滑动。在右端点把弦垂直提起高度为 h ,等弦静止后放手任其自由振动。试推导弦振动满足的定解问题。

$$\left\{ \begin{aligned} &u_{tt} = a^2 \, u_{xx} & 0 < x < l, \, t > 0 \\ &u \, (x, \, 0) = hx/l, \, u_t \, (x, \, 0) = 0 & 0 \leq x \leq l \\ &u \, (0, \, t) = 0, \, u_x \, (l, \, t) = 0 & t > 0 \end{aligned} \right.$$

1.6 一根长度为 l 的均匀细弦,两端固定,沿弦的中点垂直提起高度 h ,等 弦稳定后再放开任其自由振动,导出弦的振动满足的定解问题.

$$\left\{ \begin{aligned} &u_{tt} = a^2 \, u_{xx} & 0 < x < l, \, t > 0 \\ &u \, (x, \, 0) = \begin{cases} 2 \, hx/l & 0 \le x < l/2 \\ h - 2 \, hx/l & 1/2 < x < l \end{cases}, \, u_t \, (x, \, 0) = 0 \quad \Box \\ &u \, (0, \, t) = 0, \, u_x \, (l, \, t) = 0 & t > 0 \end{aligned} \right.$$

$$A = \left\{ \left\{ \left\{ y^2, 0 \right\}, \left\{ 0, x^3 \right\} \right\}, \left\{ \left\{ 1, 0 \right\}, \left\{ 0, x + y \right\} \right\}, \left\{ \left\{ 1, 0 \right\}, \left\{ 0, x^2 + y \right\} \right\}, \left\{ \left\{ x, 0 \right\}, \left\{ 0, 1 \right\} \right\} \right\};$$

$$Table[Det[A[[k]]], \left\{ k, 1, 4 \right\}]$$

$$\{x^3y^2, x+y, x^2+y, x\}$$

```
1. φ = span {1, x, x²}

x1 = Table[n, {n, 0.00, 1.00, 0.25}];

f1 = {1.0000, 1.2840, 1.6487, 2.1170, 2.7183};

data = Table[{x1[[k]], f1[[k]]}, {k, 1, 5}]

{{0., 1.}, {0.25, 1.284}, {0.5, 1.6487}, {0.75, 2.117}, {1., 2.7183}}

parabola = Fit[data, {1, x, x^2}, x]

1.00514 + 0.864183 x + 0.843657 x²

p1 = Plot[parabola, {x, 0, 1.25}, PlotRange → {{0, 1.25}, {0, 3}}];

p = Table[

ListPlot[data, PlotStyle → PointSize[k], Filling → 0], {k, 0.01, 0.03, 0.01}

}];
```

Table[Show[p1, p[[k]]], {k, 1, 3}]

 $f[x_] := a0 + a1 x + a2 x;$

Construct the normal equation.

$$A = \left\{ \text{Table} \left[\text{Sum} \left[x_i^k, \{ \text{i, 1, 5} \right], \{ \text{k, 0, 2} \right], \text{Table} \left[\text{Sum} \left[x_i^k, \{ \text{i, 1, 5} \right], \{ \text{k, 1, 3} \right], \text{Table} \left[\text{Sum} \left[x_i^k, \{ \text{i, 1, 5} \right], \{ \text{k, 2, 4} \right] \right] \right\} / / \text{MatrixForm}$$

$$b = \{\{a0\}, \{a1\}, \{a2\}\} // MatrixForm$$

a0 a1 a2

A.b // MatrixForm

$$\begin{pmatrix} 5 & x_1+x_2+x_3+x_4+x_5 & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 \\ x_1+x_2+x_3+x_4+x_5 & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 & x_1^3+x_2^2+x_3^3+x_4^3+x_5^3 \\ x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 & x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 & x_1^4+x_2^4+x_3^4+x_4^4+x_5^4 \end{pmatrix} \text{.} \begin{pmatrix} \text{a0} & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 \\ x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 & x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 & x_1^4+x_2^4+x_3^4+x_4^4+x_5^4 \end{pmatrix} \text{.} \begin{pmatrix} \text{a0} & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 \\ x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 & x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 & x_1^4+x_2^4+x_3^4+x_5^4 \end{pmatrix} \text{.} \begin{pmatrix} \text{a0} & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 \\ x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 & x_1^3+x_2^3+x_3^3+x_4^3+x_5^3 & x_1^4+x_2^4+x_3^4+x_5^4 \end{pmatrix} \text{.} \begin{pmatrix} \text{a0} & x_1^2+x_2^2+x_3^2+x_3^2+x_4^2+x_5^2 \\ x_1^2+x_2^2+x_3^2$$

$$Y = \{\{Sum[y_i, \{i, 1, 5\}]\}, \{Sum[x_i * y_i, \{i, 1, 5\}]\}, \\ \{Sum[(x_i)^2 * y_i, \{i, 1, 5\}]\}\} / / MatrixForm$$

$$\begin{pmatrix} y_1 + y_2 + y_3 + y_4 + y_5 \\ x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4 + x_5 y_5 \\ x_1^2 y_1 + x_2^2 y_2 + x_3^2 y_3 + x_4^2 y_4 + x_5^2 y_5 \end{pmatrix}$$

```
b
a0
a1
```

a2

LinearSolve[A, Y] /.
$$\{x_1 \rightarrow 0, x_2 \rightarrow 0.25, x_3 \rightarrow 0.50, x_4 \rightarrow 0.75, x_5 \rightarrow 1, y_1 \rightarrow 1, y_2 \rightarrow 1.284, y_3 \rightarrow 1.6487, y_4 \rightarrow 2.117, y_5 \rightarrow 2.7183\}$$

LinearSolve
$$\begin{bmatrix} 5 & 2.5 \\ 2.5 \\ 1.875 \\ 1.5625 \\ 1.3828125 \end{bmatrix}$$
, $\begin{pmatrix} 8.768 \\ 5.4514 \\ 4.4015375 \\ \end{pmatrix}$

 $\{\{1.00514\}, \{0.864183\}, \{0.843657\}\}$

$$2.v = b e^{ax}$$

$$f2 = \{5.1, 5.79, 6.53, 7.45, 8.46\};$$

$$\{\{1., 5.1\}, \{1.25, 5.79\}, \{1.5, 6.53\}, \{1.75, 7.45\}, \{2., 8.46\}\}$$

FindFit[data,
$$b e^{a x}$$
, {a, b}, x]

 $\{a \rightarrow 0.506955, b \rightarrow 3.06658\}$

$$g[x_{]} := b e^{ax} /. \{a \rightarrow 0.5069548151177287^{b}, b \rightarrow 3.0665759310803415^{b}\}$$

$$p1 = Plot[g[x], \{x, 0, 2.5\}, PlotRange \rightarrow \{\{0, 2.5\}, \{0, 9\}\}];$$

}];

Table[Show[p1, p[[k]]], {k, 1, 3}]

 $y = b e^{ax}$, ln y=ln a+b x,Let A=ln a,B=b,u=A+Bx

$$A = Log[b]; B = a; u[x_] := A + Bx;$$

Construct the normal equation.

A1 =
$$\{Table[Sum[x_i^k, \{i, 1, 5\}], \{k, 0, 1\}], Table[Sum[x_i^k, \{i, 1, 5\}], \{k, 1, 2\}]\} // MatrixForm$$

A1.B1 // MatrixForm

$$\left(\begin{array}{cccc} 5 & x_1+x_2+x_3+x_4+x_5 \\ x_1+x_2+x_3+x_4+x_5 & x_1^2+x_2^2+x_3^2+x_4^2+x_5^2 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} Log \, [\, b \,] \\ a \end{array}\right)$$

LinearSolve[A1, Y1] /.
$$\{x_1 \rightarrow 1, x_2 \rightarrow 1.25, x_3 \rightarrow 1.50, x_4 \rightarrow 1.75, x_5 \rightarrow 2, y_1 \rightarrow 5.1, y_2 \rightarrow 5.79, y_3 \rightarrow 6.53, y_4 \rightarrow 7.45, y_5 \rightarrow 8.46\}$$

LinearSolve
$$\begin{bmatrix} 5 & 7.5\\ 7.5 & 11.875 \end{bmatrix}$$
, $\begin{pmatrix} 9.405342980613124\\ 14.424089223065254 \end{pmatrix}$

 $\{\{1.12249\}, \{0.50572\}\}$

e^1.122489190973264

3.07249

$$g[x_{]} := 3.07249 e^{0.50725 x};$$

Table[Show[p1, p[[k]]], {k, 1, 3}]

$$g[x_{-}] := 3 e^{0.5 x};$$

Table[Show[p1, p[[k]]], {k, 1, 3}]

指派问题,有4个工人,要指派他们去完成4种工作,

每人做各种工作所消耗的时间如下表所示, 问指派哪个人去完成哪种工作, 可使总的消耗时间为最小?

天干 = ToString /@ {甲, 乙, 丙, 丁, 戊, 己, 庚, 辛, 壬, 癸}

{甲,乙,丙,丁,戊,己,庚,辛,壬,癸}

天干Range[x_] := Fold[Take, 天干, Flatten@Position[天干, ToString@x]]

天干Range[丁]

{甲,乙,丙,丁}

TableForm[mat, TableHeadings -> {天干Range[4], CharacterRange["A", "D"]}]

mat1 = mat - Min /@ mat;

% // MatrixForm

$$\begin{pmatrix}
0 & 3 & 6 & 9 \\
1 & 5 & 4 & 0 \\
10 & 1 & 0 & 3 \\
2 & 4 & 6 & 0
\end{pmatrix}$$

ReplacePart[mat1, $\{\{1, 1\} \rightarrow Framed[0], \{2, 4\} \rightarrow Framed[0], \{3, 3\} \rightarrow Framed[0]\}]$ // MatrixForm

$$\begin{bmatrix}
0 & 3 & 6 & 9 \\
1 & 5 & 4 & 0 \\
10 & 1 & 0 & 3 \\
2 & 4 & 6 & 0
\end{bmatrix}$$

mat2 = ReplacePart[mat1, $\{\{\{1, 1\}, \{2, 4\}, \{3, 3\}\} \rightarrow Framed[0], \{4, 4\} \rightarrow \phi\}];$ % // MatrixForm

$$\begin{bmatrix}
0 & 3 & 6 & 9 \\
1 & 5 & 4 & 0 \\
10 & 1 & 0 & 3 \\
2 & 4 & 6 & \phi
\end{bmatrix}$$

$$\texttt{TableForm}\Big[\texttt{mat2, TableHeadings} \rightarrow \Big\{\Big\{\texttt{"", } \sqrt{\texttt{""}} \texttt{, "", } \sqrt{\texttt{""}}\Big\}, \, \Big\{\texttt{"", "", "", } \sqrt{\texttt{""}}\Big\}\Big\}\Big]$$

直接在这上面划线好像有困难,可以在新矩阵里划线或做标记,事实上不划线也没事,这里要求得的是划线覆盖所有零的直线数,这里显然是3,没有被直线覆盖的元素中的最小元素为1。

2 行4行减去1. 4 列加上1

$$\left(\begin{array}{ccccc} 0 & 3 & 6 & 10 \\ 0 & 4 & 3 & 0 \\ 10 & 1 & 0 & 4 \\ 1 & 3 & 5 & 0 \end{array}\right)$$

标记

mat5 =

$$\begin{split} & \text{ReplacePart[mat4, $\{\{1,1\},\{2,4\},\{3,3\}\} \rightarrow \text{Framed[0], $\{4,4\},\{2,1\}\} \rightarrow \phi\}$];} \\ & \text{TableForm[mat5, TableHeadings -> $$\left\{\left\{\sqrt{""},\sqrt{""},"",\sqrt{""}\right\},\left\{\sqrt{""},"","",\sqrt{""}\right\}\right\}$$} \end{split}$$

1,2,4 行减去3,1 列4列加上3

 $mat6 = ReplacePart[mat4 - 3, {3 \rightarrow mat4[[3]]}]; (*全部减去3, 三行加上3*)$ mat7 = ReplacePart[Transpose[mat6], ${-1 \rightarrow mat6[[All, 4]] + 3, 1 \rightarrow mat6[[All, 1]] + 3}] // Transpose;$

$$\begin{pmatrix}
0 & 0 & 3 & 10 \\
0 & 1 & 0 & 0 \\
13 & 1 & 0 & 7 \\
1 & 0 & 2 & 0
\end{pmatrix}$$

% // MatrixForm

现在框出独立的零,求出结果指派。

solmat1 = ReplacePart[mat7, $\{\{\{1,1\},\{4,2\},\{3,3\},\{2,4\}\}\} \rightarrow Framed[0]\}\}$; % // MatrixForm

相应指派为:

Thread [天干Range [
$$T$$
] → ToString /@ {A, D, C, B}]

$$solmat2 = ReplacePart[mat7, \{\{\{2,1\}, \{1,2\}, \{3,3\}, \{4,4\}\} \rightarrow Framed[0]\}]; \\ % // MatrixForm$$

相应指派为:

Thread[天干Range[
$$T$$
] \rightarrow ToString /@ {B, A, C, D}]

$$\left\{ oldsymbol{\Pi}
ightarrow oldsymbol{B}$$
 , $oldsymbol{Z}
ightarrow oldsymbol{A}$, $oldsymbol{\overline{D}}
ightarrow oldsymbol{C}$, $oldsymbol{\overline{D}}
ightarrow oldsymbol{D} \right\}$

1.1 用图解法,并指出解的情况

```
\max z = x_1 + 3x_2 \begin{cases} 5x_1 + 10x_2 \le 50 \\ x_1 + x_2 \ge 1 \\ x_2 \le 4 \end{cases} \begin{cases} x_1, x_2 \ge 0 \end{cases} \text{clear;clf;xl=0:10;x2=[(50-5*x1)/10;1-x1;repmat(4,1,11)];plot(x1,x2)} \text{line}(x1,x2,'\text{Color'},'\text{r'},'\text{LineWidth'},2.5) hold on for z=1:15  x_3(:,z) = (z-x1)/3; \\ plot(x1,x3,'--p') \\ end \\ xlabel('x1');box off;axis([0 10 0 6]);ylabel('x2'); \\ set(get(get(gcf,'\text{Children'}),'\text{YLabel'}),'\text{Rotation'},0);title('(1)的图') \\ hold off \end{cases}
```


故有唯一最优解 x1=2,x2=4,z=14

```
\min z = x_1 + 1.5x_2
\begin{cases} x_1 + 3x_2 \ge 3 \\ x_1 + x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}
\text{clear;clf;clf;xl=0:5;x2=[(3-x1)/3;2-x1];plot(x1,x2)}
\text{line}(x1,x2,'\text{Color'},'\text{r'},'\text{LineWidth'},2.5)
hold on
\text{for } z=1:5
x3(:,z)=(z-x1)/1.5;
plot(x1,x3,'--p')
end
\text{xlabel}('x1');\text{box off;axis}([0\ 5\ 0\ 5]);\text{ylabel}('x2');
\text{set}(\text{get}(\text{get}(\text{gcf},'\text{Children'}),'\text{YLabel'}),'\text{Rotation'},0);\text{title}('(2)))
```



```
syms x1
x1=solve((3-x1)/3-(2-x1))
```

x1 = 3/2 x2=3-x1

x2 =

3/2

ans = 3.750000000

故有唯一最优解 x1=3,x2=0,z=3

x1+1.5*x2

```
\max z = 2x_1 + 2x_2 (3) \begin{cases} x_1 - x_2 \ge -1 \\ -0.5x_1 + x_2 \le 2 \end{cases} x2=(z-2*x1)/2  z_1, x_2 \ge 0  clear; clf; clf; x1=0:5; x2=[1+x1;2+0.5*x1]; plot(x1,x2) line(x1,x2,'Color','r','LineWidth',2.5) hold on for z=1:11  x_3(:,z) = (z-2*x1)/2; plot(x1,x3,'--p') end \\ xlabel('x1'); box off; axis([0 5 0 5]); ylabel('x2'); set(get(get(gcf,'Children'),'YLabel'),'Rotation',0); title('(3)的图') \end{cases}
```


故有可行解 x1=2,x2=3,z=10 但无界,

```
x1=100;x2=50;
x1-x2,-0.5*x1+x2
ans =
    50
ans =
    0
```

```
\max z = x_1 + x_2 (3) \begin{cases} x_1 - x_2 \ge 0 \\ 3x_1 - x_2 \le -3 \end{cases} x2=z-x1 x_1, x_2 \ge 0 clear;clf;clf;x1=0:5;x2=[x1;3+3*x1];plot(x1,x2) line(x1,x2,'Color','r','LineWidth',2.5) hold on for z=1:11 x3(:,z)=z-x1; plot(x1,x3,'--p') end \\ xlabel('x1');box off;axis([0 5 0 5]);ylabel('x2'); set(get(get(gcf,'Children'),'YLabel'),'Rotation',0);title('(4)的图') \end{cases}
```


故无可行解

1.2 将下列 LP 问题变成标准型, 并列出初始单纯形表

$$\min z = -3x_1 + 4x_2 - 2x_3 + 5x_4 \quad \max z' = 3x_1 - 4x_2 + 2x_3 - 5(x_5 - x_6) + 0x_7 + 0x_8$$

$$\begin{cases} 4x_1 - x_2 + 2x_3 - x_4 = -2 \\ x_1 + x_2 + 3x_3 - x_4 \le 14 \\ -2x_1 + 3x_2 - x_3 + 2x_4 \ge 2 \\ x_1, x_2, x_3 \ge 0, x_4$$

$$\begin{cases} -4x_1 + x_2 - 2x_3 + (x_5 - x_6) = 2 \\ x_1 + x_2 + 3x_3 - (x_5 - x_6) + x_7 = 14 \\ -2x_1 + 3x_2 - x_3 + 2(x_5 - x_6) - x_8 = 2 \\ x_1, x_2, x_3, x_5, x_6, x_7, x_8 \ge 0 \end{cases}$$

增加一个人工变量

$$\max z' = 3x_1 - 4x_2 + 2x_3 - 5(x_5 - x_6) - Mx_4 + 0x_7 + 0x_8 - Mx_9$$

$$\begin{cases}
-4x_1 + x_2 - 2x_3 + (x_5 - x_6) + x_4 = 2 \\
x_1 + x_2 + 3x_3 - (x_5 - x_6) + x_7 = 14
\end{cases}$$

$$-2x_1 + 3x_2 - x_3 + 2(x_5 - x_6) - x_8 + x_9 = 2$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$$

初始单纯形表

Charpter1-LP

1.1 Convert the following LP problems to standard form:

$$(1) \left\{ \begin{array}{ll} \text{max} & z=3\;x1-5\;x2+4\;x3-6\;x4, \\ & x1-2\;x2+3\;x3-4\;x4=-5, \\ & x1+x2-x3+2\;x4\leq 20, \\ & -3\;x1+5\;x2+2\;x3-x4\geq 3, \\ & x1,\;x2,\;x3\geq 0;\;x4\;\text{unconstrained.} \end{array} \right.$$

$$\left\{ \begin{array}{ll} \text{max} & z = -3 \; x1 - x2 + 5 \; x3 + 2 \; x4, \\ & x1 + 7 \; x2 + 4 \; x3 - 2 \; x4 \geq -9, \\ & 2 \; x1 - x2 + 4 \; x3 + 3 \; x4 \leq 10, \\ & 6 \; x1 + 2 \; x2 + x3 + x4 \geq 5, \\ & x1 \leq 0; \; x2, \; x3 \geq 0; \; x4 \; \text{unconstrained.} \end{array} \right.$$

(1) Minimize [
$$z = 3 \times 1 - 5 \times 2 + 4 \times 3 - 6 \times 4$$
, $\{x1 - 2 \times 2 + 3 \times 3 - 4 \times 4 = -5, x1 + x2 - x3 + 2 \times 4 \le 20, -3 \times 1 + 5 \times 2 + 2 \times 3 - x4 \ge 3, x1 \ge 0, x2 \ge 0, x3 \ge 0\}$, $\{x1, x2, x3\}$]

$$\left\{ \begin{bmatrix} -\infty & \text{, } x1 \geq 0 \\ \infty & \text{True} \end{bmatrix}, \text{ } \{x1 \rightarrow Indeterminate, } x2 \rightarrow Indeterminate, \text{ } x3 \rightarrow Indeterminate} \right\}$$

(2) Maximize [
$$z = -3 x1 - x2 + 5 x3 + 2 x4$$
,
 $\{x1 + 7 x2 + 4 x3 - 2 x4 \ge -9, 2 x1 - x2 + 4 x3 + 3 x4 \le 10, 6 x1 + 2 x2 + x3 + x4 \ge 5, x1 \le 0, x2 \ge 0, x3 \ge 0\}$, $\{x1, x2, x3, x4\}$]

$$\{\infty, \{2 (x1 \rightarrow Indeterminate), 2 (x2 \rightarrow Indeterminate), 2 (x3 \rightarrow Indeterminate), 2 (x4 \rightarrow Indeterminate)\}\}$$

1.2 Graph method:

$$(1) \left\{ \begin{array}{lll} \max & z=2 \; x1+5 \; x2, \\ & x1+x2 \leq 6, \\ s. \; t. & x1-x2 \leq 4, \\ & 2 \; x1+x2 \geq 4, \\ & x1, \; x2 \geq 0. \end{array} \right.$$

(1) Maximize
$$[z = 2x1 + 5x2, \{x1 + x2 \le 6, x1 - x2 \le 4, 2x1 + x2 \ge 4, x1 \ge 0, x2 \ge 0\}, \{x1, x2\}]$$

$$\{30, \{x1 \rightarrow 0, x2 \rightarrow 6\}\}$$

 $RegionPlot[x + y \le 6 \&\& x - y \le 4 \&\& 2 x + y \ge 4 \&\& x \ge 0 \&\& y \ge 0, \{x, 0, 6\}, \{y, 0, 7\}]$ $Plot[6-x, x-4, 4-2x, x \ge 0], \{x, 0, 6\}, PlotRange \rightarrow \{0, 6\}, PlotStyle \rightarrow Thick]$

 $(2) \ \text{Minimize} \ [\ f = x1 + 4 \ x2, \ \ \{ -x1 + x2 \ge 1, \ x1 + x2 \le 3, \ x1 \ge 0, \ x2 \ge 0 \}, \ \ \{ x1, \ x2 \} \]$ $\{4, \{x1 \rightarrow 0, x2 \rightarrow 1\}\}$

 $\label{eq:regionPlot} \text{RegionPlot}\left[-x + y \geq 1 \,\&\& \, \, x \, + \, y \, \leq 3 \,\&\& \, x \geq 0 \,\&\& \, y \geq 0, \quad \{x, \ 0, \ 1.\, 5\}, \ \{y, \ 0.\, 5, \ 3.\, 5\} \,\right]$ $region = Plot[\{1+x, 3-x, x \geq 0\}, \{x, 0, 4\}, PlotRange \rightarrow \{0, 4\}, PlotStyle \rightarrow Thick]$

1.3 Simplexmethod:

$$(1) \left\{ \begin{array}{ll} \mbox{min} & f = -4 \; x1 + 5 \; x2 - 3 \; x3 + 6 \; x4, \\ & 5 \; x1 - 2 \; x2 + 3 \; x3 - 2 \; x4 = -1, \\ & s. \; t. & x1 + 2 \; x2 + 3 \; x3 - x4 \leq 15, \\ & -3 \; x1 + x2 - x3 + x4 \geq 3, \\ & xj \geq 0, \; \; j = 1, \; 2, \; 3, \; 4. \end{array} \right.$$

(1) Minimize [f =
$$-4 \times 1 + 5 \times 2 - 3 \times 3 + 6 \times 4$$
,
 $\{5 \times 1 - 2 \times 2 + 3 \times 3 - 2 \times 4 = = -1, \times 1 + 2 \times 2 + 3 \times 3 - \times 4 \le 15, -3 \times 1 + \times 2 - \times 3 + \times 4 \ge 3, \times 1 \ge 0, \times 2 \ge 0, \times 3 \ge 0, \times 4 \ge 0\}$, $\{x1, x2, x3, x4\}$]

$$\left\{\frac{91}{3}, \left\{x1 \to 0, x2 \to \frac{8}{3}, x3 \to 5, x4 \to \frac{16}{3}\right\}\right\}$$

(2) Minimize [f = $4 \times 1 + 8 \times 2 + 12 \times 3$, $\{x1 + 3 \times 3 \ge 4, 3 \times 2 + 2 \times 3 \ge 7, x1 \ge 0, x2 \ge 0, x3 \ge 0\}$, $\{x1, x2, x3\}$

$$\left\{\frac{496}{9}, \ \left\{2 \ (x1 \to 0) \, , \ 2 \, \left(x2 \to \frac{13}{9}\right), \ 2 \, \left(x3 \to \frac{4}{3}\right)\right\}\right\}$$

1.4 Big-M method:

$$(1) \left\{ \begin{array}{lll} \min & f = x1 + 4 \ x2 + 7 \ x3, \\ & x1 + 3 \ x2 + 2 \ x3 \ge 5, \\ s. \ t. & 3 \ x1 + 2 \ x2 \ge 7, \\ & xj \ge 0, \ j = 1, \ 2, \ 3. \end{array} \right.$$

- (1) Minimize [f = $x1 + 4x^2 + 7x^3$, $\{x1 + 3x^2 + 2x^3 \ge 5, 3x^1 + 2x^2 \ge 7, x^1 \ge 0, x^2 \ge 0, x^3 \ge 0\}$, $\{x1, x2, x3\}$
- $\{5, \{x1 \rightarrow 5, x2 \rightarrow 0, x3 \rightarrow 0\}\}$
- (2) Maximize [f = 3x1 x2 + 3x3, $\{x1 + x2 + x3 \le 8, -3 \ x1 + x3 \le 2, 4 \ x2 - x3 \ge 1, \ x1 \ge 0, \ x2 \ge 0, \ x3 \ge 0\}, \{x1, x2, x3\} \}$

$$\left\{46, \left\{2\left(x1 \to \frac{31}{4}\right), 2\left(x2 \to \frac{1}{4}\right), 2(x3 \to 0)\right\}\right\}$$

1.5 Two-phase method:

(1)
$$\begin{cases} \min & f = 8 \ x1 + 6 \ x2 + 3 \ x3 + 2 \ x4, \\ & x1 + 2 \ x2 + x4 \ge 3, \\ & 3 \ x1 + x2 + x3 + x4 \ge 6, \\ \text{s. t.} & 2 \ x3 + x4 \ge 2, \\ & x1 + x3 \ge 2, \\ & x, j \ge 0, \quad j = 1, \ 2, \ 3, \ 4. \end{cases}$$

$$\left\{ \begin{array}{ll} \text{max} & f = 5 \; x1 + 10 \; x2 + 7 \; x3, \\ & 3 \; x1 + 2 \; x2 + x3 \leq 7, \\ \text{s. t.} & -3 \; x1 + 4 \; x2 + 10 \; x3 \leq 12, \\ & 5 \; x1 + 3 \; x2 + x3 \geq 6, \\ & xj \geq 0, \; \; j = 1, \; 2, \; 3. \end{array} \right.$$

(1) Minimize $f = 8 \times 1 + 6 \times 2 + 3 \times 3 + 2 \times 4$, $\{x1 + 2x2 + x4 \ge 3, 3x1 + x2 + x3 + x4 \ge 6, 2x3 + x4 \ge 2, x1 + x3 \ge 2, x1 \ge 0, x2 \ge 0, x3 + x4 \ge 2, x1 + x3 \ge 2, x1 \ge 0, x2 \ge 0, x3 + x4 \ge 2, x1 + x3 \ge 2, x1 \ge 0, x2 \ge 0, x1 \ge 0, x2 \ge 0, x3 + x4 \ge 0, x3 + x4 \ge 0, x1 + x3 \ge 0, x1 \ge 0, x2 \ge 0, x1 + x3 \ge 0, x1 \ge 0, x2 \ge 0, x1 \ge 0, x2 \ge 0, x1 \ge 0, x1 \ge 0, x2 \ge 0, x1 \ge$ $x3 \ge 0$, $x4 \ge 0$ }, {x1, x2, x3, x4}]

$$\{14, \{x1 \rightarrow 0, x2 \rightarrow 0, x3 \rightarrow 2, x4 \rightarrow 4\}\}$$

(2) Maximize [f = $5 \times 1 + 10 \times 2 + 7 \times 3$, { $3 \times 1 + 2 \times 2 + \times 3 \le 7$, $-3 \times 1 + 4 \times 2 + 10 \times 3 \le 12$, $5 \times 1 + 3 \times 2 + \times 3 \ge 6$, $\times 1 \ge 0$, $\times 2 \ge 0$, $\times 3 \ge 0$ }, { $\times 1$, $\times 2$, $\times 3$ }]

$$\left\{\frac{590}{9}, \left\{2\left(x1 \to \frac{2}{9}\right), 2\left(x2 \to \frac{19}{6}\right), 2(x3 \to 0)\right\}\right\}$$