(Tıbbi) Görüntü İşleme Medical Image Processing

Hedef

- ExtractNormalizedRGBChannel
- Connected Components Labeling
- Blob Counter
- Blobs Filtering
- Extract Biggest Blob
- Transformations
 - Helmert
 - Affine
 - Persfective

ExtractNormalizedRGBChannel

- Düzensiz arka plan aydınlatmalarının normalize edilmesidir.
- Her kanal için ayrı çalıştırılır.
- Griye çevirme yöntemidir.
- Kanal çıkarmaya benzer.

```
r = R / (R + G + B)
g = G / (R + G + B)
b = B / (R + G + B)
```

Connected Components Labeling

- Siyah arka planı olan görüntülerde çalışan yöntem, birbiri ile komşu pikselleri tespit ederek bir grup içine toplamaya yaramaktadır.
- Bu gruplama sonucunda görüntü üzerindeki her bir grup bir nesneyi temsil eder.
- Dört komşuluk veya sekiz komşuluk olarak ikiye ayrılır.
- Düşey ve yatay piksellerde gruplama yapılmak istenirse dört komşulu, her yönde gruplama yapılmak istenirse sekiz komşulu etiketleme yapılmalıdır.

Connected Components Labeling

 En çok kullanılan tarama yöntemi çift geçiş yöntemidir.

Connected Components Labeling

Blob Counter

- Görüntü üzerindeki nesneleri saymak, bilgilerini elde etmek için kullanılır.
- Eşik değerlere göre blob filtresi yapılabilir.
- CCL algoritmasını temel alır.

Blob Counter

```
BlobCounter bc = new BlobCounter();
bc.FilterBlobs = true;
bc.MinHeight = 5;
bc.MinWidth = 5;
bc.ProcessImage(islem);
Rectangle[] rects = bc.GetObjectsRectangles();
foreach(Rectangle rect in rects)
{
```

Blobs Filtering

- Görüntü üzerindeki nesneleri bulmak için kullanılır.
- max veya min değerlere göre arama yapar.
- Gri ve renkli görüntülerde çalışabilir.
- Ancak arka planın siyah, aranan nesnelerin ise farklı renk olması gerekir.

Blobs Filtering

- BlobsFiltering filter = new BlobsFiltering();
- // configure filter
- filter.CoupledSizeFiltering = true;
- filter.MinWidth = 70;
- filter.MinHeight = 70;
- // apply the filter filter.ApplyInPlace(image);

Extract Biggest Blob

- Gri ve renkli görüntülerde çalışabilir.
- Bulunan nesneler içindeki en büyük hacimliyi getirir.

Transformations

- Görüntü üzerinde aranan nesneler istenilen formda olmayabilir.
- Bunun için bazı dönüşümlerin yapılmasına ihtiyaç vardır.
- En çok kullanılanları:
 - Helmert (Benzerlik)
 - Affine (Afin)
 - Persfective (Perspektif)

Helmert (Benzerlik)

- Dönüşüm sonrası ilk görüntüye benzer.
- Döndürme, ölçekleme ve öteleme işlemlerini içerir.
- Bu yöntemde açılar korunur.
 - Döndürme
 - Ölçeklendirme
 - Öteleme

Affine (Afin)

- Açılar değişir.
- Dönüşüm sonrası ilk görüntüden farklı görüntü oluşur.
- Kenarlar paralel kalırlar.
 - Döndürme
 - Ölçeklendirme
 - Öteleme
 - Germe ve Eğme

Affine (Afin)

Perspective (Projective, perspektif)

- Düzlemlerin farklı iz düşümleriyle ifade edilebilir.
- Açılar ve paralellikler değişir.
- Dönüşüm sonrası ilk görüntüden farklı görüntü oluşur.

Perspective (Projective, perspektif)

Uygulama

Hücrelerin sayılması

Arduino

- Üzerinde input/output portları bulunan fiziksel bir uygulama/programlama platformudur.
- Arduino kartlarının donanımında bir adet Atmel AVR mikrodenetleyici (ATmega328, ATmega2560 vb), programlamayabilmek ve diğer devrelerle bağlantı kurabilmek için yan elemanlar bulunur.
- 2005 yılında İtalya' da ortaya çıkmıştır.
- Processing language kullanır.
- Kütüphaneleri c/c++ ile yazılmaktadır.

Arduino

Uygulama

Arduino C# ile led yakma

Kaynakça

- Gonzalez, Rafael C., ve Richard E. Woods. Sayısal Görüntü İşleme: Üçüncü Baskıdan Çeviri. Çeviren Ziya Telatar vd., 2013.
- http://www.aforgenet.com/framework/