Exercises for 3.13-3.14

1. Here is something obvious. If we have evidence that $P \vee Q$ and we have evidence that $\neg P$, we have evidence that Q. Our proof system confirms this. Add the missing datums in the following derivation:

1. Γ	$\vdash \ P \lor Q$	premise
2. Δ	$\vdash \neg P$	premise
3. <i>P</i>	$\vdash P$	A
4. $\Delta, \neg Q$	$\vdash \neg P$	2
5. $\underline{P, \neg Q}$	$\vdash P$	3
6. Δ, P	$\vdash \neg \neg Q$	4,5,¬I
7. Δ, <i>P</i>	$\vdash Q$	6,¬E
8. <i>Q</i>	$\vdash Q$	A
9. Γ, Δ	$\vdash Q$	1,7,8,∨E

2. Derivations can often be adapted to prove something similar. For instance, the above can be adapted easily to derive from $\Gamma \vdash \neg P \lor Q$ and $\Delta \vdash P$ to $\Gamma, \Delta \vdash Q$. Fill in the missing datums and annotations.

1. Γ	$\vdash \neg P \lor 0$	Q premise
2. Δ	$\vdash P$	premise
3. <u>¬P</u>	$\vdash \neg P$	A
4. $\underline{\Delta}, \neg Q$	$\vdash P$	2
5. $\neg P, \neg Q$	$\vdash \neg P$	3
6. $\underline{\Delta}, \neg P$	$\vdash \neg \neg Q$	4,5,¬I
7. $\Delta, \neg P$	$\vdash Q$	6,¬E
8. <i>Q</i>	$\vdash Q$	A
9. Γ,Δ	$\vdash Q$	1,7,8,∨E

3. The Greek capital letters on the datum side are place-holders. You can plug anything you want into them. Take the derivation in Problem 2 above. You can plug P into Δ and add one more step at the end to show that you can infer from $\Gamma \vdash \neg P \lor Q$ to $\Gamma \vdash P \supset Q$ (which we should expect given the way the conditional is defined). Construct such a derivation.

Answer Key	
1. Г	$\vdash \neg P \lor Q$ premise
2. P	⊢ <i>P</i> A
3. ¬ <i>P</i>	⊢ ¬PA
4. $P, \neg Q$	⊢ <i>P</i> 2
5. ¬ <i>P</i> , ¬ <i>Q</i>	⊢ ¬P3
6. <i>P</i> , ¬ <i>P</i>	$\vdash \neg \neg Q$ 4,5, $\neg I$
7. <i>P</i> , ¬ <i>P</i>	$\vdash Q$
8. Q	⊢ <i>Q</i> A
9. Γ, <i>P</i>	$\vdash Q$
10. Γ	$\vdash P \supset Q$ 9, \supset I

4. The following is a derivation from $\Gamma \vdash P \supset Q$ to $\Gamma \vdash \neg P \lor Q$. Again, we should expect that there is such a derivation given the way the conditional was defined. Fill in the missing parts of the derivation:

5. Suppose there is evidence that P ⊃ Q. In that case, there is is evidence that ¬Q ⊃ ¬P. Our proof system confirms this. Construct a derivation from Γ ⊢ P ⊃ Q to Γ ⊢ ¬Q ⊃ ¬P. Hint: you can adapt and modify one the derivations given in Section 3.13.

Answer Key	
1. Γ	$\vdash P \supset Q$ premise
$2. \neg Q$	$\vdash \neg Q$
3. P	⊢ <i>P</i>
4. Γ, P	$\vdash Q \qquad \dots \dots$
5. $\neg Q, P$	$\vdash \neg Q$
6. $\Gamma, \neg Q$	$\vdash \neg P$ 4,5, $\neg I$
7. Г	$\vdash \neg Q \supset \neg P$

6. Correct any errors in the annotations of the following derivation from $\Gamma \vdash P \supset Q$ and $\Delta \vdash R \lor \neg Q$ to $\Gamma, \Delta \vdash P \supset R$ (the only errors are in the annotations):

- 1. Γ $\vdash P \supset Q$ premise
- 2. Δ $\vdash R \lor \neg Q$

(premise)

- $4. R, P \mapsto R \dots 3$
- 5. $R \mapsto P \supset R$

4)

⊃I

6. $\neg Q \qquad \qquad \vdash \neg Q \qquad \qquad \ldots$

	A	
7.	P	⊢ <i>P</i>
8.	Γ, P	$\vdash Q$
	Œ	
9.	$\neg Q, P$	$\vdash \neg Q$
10.	$\Gamma, \neg Q$	⊢ ¬P
	8,9)	
	,¬I	
11.	$\Gamma, \neg Q$	$\vdash \neg P \lor R$
	10	
	,∨I	
12.	$\neg P$	$\vdash \neg P$
13.	$\neg P, \neg R$	$\vdash \neg P$
	12)	
14.	$P, \neg R$	⊢ <i>P</i>
	7	
15.	$\neg P, P$	$\vdash \neg \neg R$
	\bigcirc I)	
16.	$\neg P, P$	⊢ <i>R</i>
	(¬E)	
17	_P	∟ P ¬ R 16

(3)

18. $\Gamma, \neg Q \qquad \qquad \vdash P \supset R \qquad \qquad \ldots \qquad \qquad 11,17,5, \lor E$

19. Γ, Δ $\vdash P \supset R$

(2,5,18)

,∨E

7. If you have evidence that $(W \vee Y) \supset Z$, you have evidence that $W \supset Z$. Construct a derivation from $\Gamma \vdash (W \vee Y) \supset Z$ to $\Gamma \vdash W \supset Z$.

 Answer Key

 1. Γ
 $\vdash (W \lor Y) ⊃ Z$ premise

 2. W
 $\vdash W$ A

 3. W
 $\vdash W \lor Y$ 2,∨I

 4. Γ, W
 $\vdash Z$ 1,3,⊃E

 5. Γ
 $\vdash W ⊃ Z$ 4,⊃I