SOLUCIONES

Boletín de Ejercicios SUBNETTING VLSM

(VARIABLE LENGTH SUBNET MASK)

Imagen: Pixabay

Autor: Lionel M. Tarazón Alcocer Licencia: (cc) BY-NO-SA http://creativecommons.org/licenses/by-nc-sa/4.0/

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 192.168.1 024 Subredes necesarias:

Bits disponibles: 8

N° de IPs disponibles: 2 8 = 256

IPs necesarias por subred: 120, 64, 30

124 -> 2	156 IP5
128 IPS (UND)	128 /26 64795 (LAN 2) 192 /26 64 Is (LAN 3)

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
LAN 1	192.168.1.0	125	192.168.1.127	128
LAN 2	192.168.1.128	126	192.168.2.191	64
LAN 3	192.168.2.192	126	192.168.1.265	64

I+D

R1-K2

Problema 2

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 10.3.7(0)24

Bits disponibles: 8

Nº de IPs disponibles:

Subredes necesarias:

IPs necesarias por subred:

90,60,20,2

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
Laboratorio	10.3.7.0	125	10, 3, 7, 127	128
Tecnología	10.3.7.128	126	10, 3, 7, 191	64
I+D	10.3.7.192	127	10.3.7,223	32
R1-R2	10.3.7.224	127	10.3.7.255	32

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 172.16.0024

Bits disponibles: 8

N° de IPs disponibles:

Subredes necesarias:

IPs necesarias por subred: 70, 30, 20, 2, 2

Red	IP de Red		Máscara	Última IP (di	fusión)	IPs posibles
Valencia	172.16.	0.0	125	172.16	.0.127	128
Alicante	ti	. 128	127	()	.159	32
Castellón	()	.160	127	()	- 191	32
R1-R2	۱,	. 142	127	١,	. 223	32
R1-R3	٠,	. 224	177	11	. 255	32

Autor: Lionel M. Tarazón Alcocer

Licencia: (cc) BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0/

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 192.168.00/24

Bits disponibles:

256 Nº de IPs disponibles:

Subredes necesarias:

IPs necesarias por subred:

60,50,36,20,

Red	IP de Red		Máscara	Última IP (difu	sión)	IPs posibles
Administrac.	192.168.	0.0	126	192.168	.0.63	64
Ventas	c ₁	.64	126	l,	.127	64
Marketing	٠,	.128	126	11	.191	64
Fábrica	t ₁	.192	127	C ₁	.223	32
R1-R2	t į	, 224	127	11	. 285	32

/24 256	\rightarrow	/26 64'	126	\rightarrow	126	126	
	ļ	/26 64	64		64	72+ 127 32 32	

Autor: Lionel M. Tarazón Alcocer

Licencia: (cc) BY-NO-SA http://creativecommons.org/licenses/by-nc-sa/4.0/

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 10.10.100/24

Bits disponibles: 8

 N° de IPs disponibles: $2^{3} = 256$

Subredes necesarias:

IPs necesarias por subred: 65, 30, 20, 17, 2

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
Lions	10.10.10.0	125	10.10.10,127	128
Monkeys	.128	126	11 . 159	32
Dolphins	1, ,160	126	. 191	32
Eagles	192	126	.223	32
R1-R2	11 . 224	126	. 255	32

Autor: Lionel M. Tarazón Alcocer

Licencia: (cc) BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0/

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 172.30.1(0)24 Subredes necesarias:

Bits disponibles: 8

Bits disponibles: $\frac{8}{2}$ N° de IPs disponibles: $\frac{28 - 256}{2}$ IPs necesarias por subred: $\frac{120, 60, 16, 12, 9, 2, 2}{2}$

124->	256 IPs	
.0	.128/26	
125	64 7PS	
128 IPS	Beta	
Alpha	172 1.208	_
	IL IPS IL IPS	
	Epsilon Delta	0
	128 129 124 128 129 124 16 IPS 8 IP 8 F	- 1
	Gama 7.25	- 1
	11-02	-

						11-27 TR1-	- 12 C
Red	IP de Red		Máscara	Última IP (difu	sión)	IPs posibles	
Alpha	172.30	.1.0	125	172.30.	1.127	128	1
Beta	• • • • • • • • • • • • • • • • • • • •	. 128	126	٠,	. 191	64	1
Epsilon	11	. 192	128	١,	. 207	16	1
Delta	(1)	. 208	128	٠,	. 223	16	1
Gamma	٠,	. 224	128	٤,	. 239	16	1
R1-R2	61	.240	129	L,	. 247	8	
R1-R3	11	-248	129	(,	, 255	8	

Autor: Lionel M. Tarazón Alcocer

Licencia; (6) 67-16-50 http://creativecommons.org/licenses/by-nc-sa/4.0/

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: ,192.168.3.0/25

Bits disponibles: 7

 N° de IPs disponibles: $2^{\frac{3}{4}} = 12.8$

Subredes necesarias:

IPs necesarias por subred:

60, 30, 20

/2S ->	128 IPs
.0	.64
	127 32 Ils
126	LAN 3
64 IPs	
LAN 1	.96/27
	32 IPs
	LAN 2
	.127

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
LAN 1	192.168.3.0	126	197.168.3.63	64
LAN 3	11 .64	127	11 .95	32
LAN 2	11 .96	127	11 . 127	32

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 192.168.3.0/26

Bits disponibles: 6

N° de IPs disponibles: 26 = 64 IPs

Subredes necesarias:

IPs necesarias por subred: 30, 45, 6, 2

126 >	64 IPS
, 0	128
40.5	16 IPS
/27	Sala C
32 IPs	,47
Sala B	148/29 8 Frs
	Sala A .55
	.56/29 8IPS
.31	KI-H2.63

Red	IP de Red		Máscara	Última IP (difus	ión)	IPs posibles
Sala B	192.168	. 3.0	127	192.168.	3,31	32
Sala C	11	. 32	128	t,	.47	16
Sala A	١,	.48	129	l i	.55	8
K1-R2	(i	.56	127	11	.63	8

Licencia: (6) BY-H0-50 http://creativecommons.org/licenses/by-nc-sa/4,0/ Autor: Lionel M. Tarazón Alcocer 16 32 8

scaneado con CamSc

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

₹ .0 / .128	
M7 /18	۸4
16 124 IPC	H P
1 3 C. #60 Ars / //4 x 2 (6)	· ,
(128 x 236)	5 5
D11 7	4
	65
1 198	_
1 100 131 -13	1
(64×256)	16
.127 .255	-

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
LAN 1	10.5.0.0	117	10.5,127.255	32.268
LAN 2	10.5.128.0			
LAN 3	10.5.192.6	118	10,5,255.755	16.134

7.000 IPs

3.500 IPs

Problema 10

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

N° de IPs disponibles: $250 \times 206 = 65.536$ Bits disponibles: 16 IP de Red: 10.1.0.0)16 iPs necesarias por subred: 31 K, 7 K, Subredes necesarias: 1070! Es el tocer .0 4-23 **S5** R2 Epsilon 1.000 IPS B2 x 256) (32 , 256) Beta Gamma Alpha S₂ S1 208 . 192 A LIVE Alpha Beta 120 120 **S3 S4** 4.096 IP 4.09671 (16×256) 31.000 IPs 6.000 IPs (16 × 526) Gamma Delta

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles	
Alpha	10.1.6 0.0	117	10.1.127.255	128 x 256	
bamma	1 .128.0	119	11 .159.755	32 × 256	
Beta	.160.0	119	11 -191.255	35 × 526	
Delta	1192.0	120	11 .207.255	16 x 256	
Epsilon	. 208.0	120	.223.755	16 x 256	
R1-12	1, .724.0	120	11 . 239. 255	16 × 256	
12-R3	11 ,240.0	120	11 .755.255	16 × 256	

22/20

4.096 IP (16×256)

240 120 4.096 FF

(16 x 256)

10.0.10,00000.0 Red 26=64 75=756

hosta 10,0,191,255

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 10.0.128.0/18

Bits disponibles: $\underline{14}$ N° de lPs disponibles: $\underline{64} \times 256 \pm 75 = 18$ lPs necesarias por subred: $\underline{5k}$, 4k, 3k = 16. 334 ± 75

Subredes necesarias:

.128.0 /19 8.192 IPs (32 × 256) Sith	.160.0 /20 4.096 IPs (16 x 256) Jed; .176.0 /20 4.096 JPs	, 16.384 IB (64 × 256)
Jian	120 4.096 JPs (16 x 256) Podawan .191.255	8

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles	
5,-14	10.0.128.0	119	10.0.159.255	32 × 256	
Jedi	11 .160.0	120	11 . 175.255	16 × 256	
Padawan	11 -176.0	120	" -191.25S	16 × 256	

Autor: Lionel M. Tarazón Alcocer

Licencia: (a) BY-NO-SA http://creativecommons.org/licenses/by-nc-sa/4.0/

=> Red desde 10.5.96.0 10.5.0110,0000.0 Red 24=16 256 hasta 10.5. 111. 255 Problema 12 (16 x 256 IPS)

Partiendo de la red abajo indicada y aplicando subnetting VLSM (máscara de longitud variable) diseña el esquema de direccionamiento para cubrir las necesidades de las redes mostradas en la topología.

IP de Red: 10.5.96.0/20>

Bits disponibles: 12

Nº de lPs disponibles: 16 x 256 = 4.096

Subredes necesarias:_

IPs necesarias por subred: 2.030, 1.024, 510, 250, 2

Thor	104.00 /22 1.024 Fis (4×256) VISION 108.0 1.110.0 /24 256 FPS 512 IPS Fromman (2×256) Hulk /24 256 EPS R1-R2	120 7 4.096 Irs	(16×256)
------	--	-----------------	----------

Red	IP de Red	Máscara	Última IP (difusión)	IPs posibles
Thor	10.5.96.0	121	10.5.103.255	8×256
Vision	.104.0	122	11.107.755	4 × 256
HULK	108.0	123	1 109.255	2 × 256
Fromen	110.0	124	1.110.255	1 x 256
RI-RZ	111.0	124	11 .111 . 255	1 x 256