

Efficient Bayesian Modelling of Time Dependent and Transient RFI in 21cm Experiments

6th Global 21cm Workshop

Dominic Anstey

The Challenge of RFI

The 21cm signal is predicted to fall in the ~50-150MHz band. Directly over FM radio band.

- Experiments in remote locations
- RFI cleaning

Based on Leeney et al. 2023 (arXiv:2211.15448)

Bayesian Anomaly Flagging

Leeney et al. 2023 (arXiv:2211.15448)

- Calculate likelihoods of each point
- Compare to a threshold
- If exceeds the threshold, include the point's likelihood, downweighted by a penalty
- If below the threshold, add a fixed penalty

Bayesian Anomaly Flagging

Leeney et al. 2023 (arXiv:2211.15448)

$$\log \mathcal{L}_i = -\frac{1}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2} \left(\frac{\mathcal{D}_i - \mathcal{M}_i(\boldsymbol{\theta})}{\sigma} \right)^2$$

$$\log \mathcal{L} = \sum_{i} \begin{cases} \log \mathcal{L}_{i} + \log(1-p) & \text{if } \log \mathcal{L}_{i} + \log(1-p) > \log p - \log \Delta \\ \log(p) & \text{otherwise} \end{cases}$$

Probability of a point being contaminated

Approximate scale of the contamination

Bayesian Anomaly Flagging

$$\log \mathcal{L}_{ij} = -\frac{1}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2} \left(\frac{\mathcal{D}_{ij} - \mathcal{M}_{ij} \left(\boldsymbol{\theta} \right)}{\sigma} \right)^2$$

$$\log \mathcal{L} = \sum_{ij} \begin{cases} \log \mathcal{L}_{ij} + \log(1-p) & \text{if } \log \mathcal{L}_{ij} + \log(1-p) > \log p - \log \Delta \\ \log(p) & \text{otherwise} \end{cases}$$

Toy Model

Sinusoid with time-varying parameters, multiplied by a power law

$$\mathcal{D}_{ij} = G_{ij} \times x_i^{-2.55} + \hat{\sigma} + \text{anomalies}$$

$$G_{ij} = \alpha_j \sin(\omega_j x_i + \phi_j) + \gamma_j$$

With randomly generated values for the sinusoid parameters

$$\mathcal{M}_{ij}\left(\theta\right) = G_{ij} \times x_i^{-\theta}$$

Computation Time

The term

$$\log \mathcal{L}_{ij} = -\frac{1}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2} \left(\frac{\mathcal{D}_{ij} - \mathcal{M}_{ij} \left(\boldsymbol{\theta} \right)}{\sigma} \right)^2$$

must be evaluated and compared to the threshold for every data bin and time bin. There is no way to factorise the time summation out to speed this calculation.

Likelihood Reweighting

Gravitational waves

- Payne et al. 2019 (arxiv:1905.05477)
- Romero-Shaw et al. 2019 (arxiv:1905.05477)

Computation Time

$$\log \mathcal{L} = \sum_{ij} \begin{cases} \log \mathcal{L}_{ij} + \log(1-p) & \text{if } \log \mathcal{L}_{ij} + \log(1-p) > \log p - \log \Delta \\ \log(p) & \text{otherwise} \end{cases}$$

$$\log \mathcal{L}_{ij} = -\frac{1}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2} \left(\frac{\mathcal{D}_{ij} - \mathcal{M}_{ij} \left(\boldsymbol{\theta} \right)}{\sigma} \right)^2$$

Full likelihood - Slow to evaluate

$$\log \mathcal{L} = \sum_{i} \begin{cases} \log \mathcal{L}_{i} + \log(1-p) & \text{if } \log \mathcal{L}_{i} + \log(1-p) > \log p - \log \Delta \\ \log(p) & \text{otherwise} \end{cases}$$

$$\log \mathcal{L}_{i} = -\frac{1}{2} \log \left(2\pi\sigma^{2}\right) - \frac{1}{2} \left(\frac{\frac{1}{N_{t}} \sum_{j} \mathcal{D}_{ij} - \frac{1}{N_{t}} \sum_{j} \mathcal{M}_{ij} \left(\boldsymbol{\theta}\right)}{\sigma}\right)^{2}$$

Time averaged likelihood - Fast to evaluate

Both likelihoods use the same parameters and will have comparable posteriors

Likelihood Reweighting

$$\begin{split} \mathcal{P}_{S}\left(\theta|\mathcal{D},\mathcal{M}_{S}\right) &= \frac{\mathcal{L}_{S}\left(\mathcal{D}|\theta,\mathcal{M}_{S}\right)\pi\left(\theta\right)}{\mathcal{Z}_{S}} \qquad \mathcal{P}_{F}\left(\theta|\mathcal{D},\mathcal{M}_{F}\right) = \frac{\mathcal{L}_{F}\left(\mathcal{D}|\theta,\mathcal{M}_{F}\right)\pi\left(\theta\right)}{\mathcal{Z}_{F}} \\ \pi\left(\theta\right) &= \frac{\mathcal{Z}_{F}\mathcal{P}_{F}\left(\theta|\mathcal{D},\mathcal{M}_{F}\right)}{\mathcal{L}_{F}\left(\mathcal{D}|\theta,\mathcal{M}_{F}\right)} \\ & & \bullet \\ \mathcal{P}_{S}\left(\theta|\mathcal{D},\mathcal{M}_{S}\right) &= \mathcal{P}_{F}\left(\theta|\mathcal{D},\mathcal{M}_{F}\right) \frac{\mathcal{L}_{S}\left(\mathcal{D}|\theta,\mathcal{M}_{S}\right)}{\mathcal{L}_{F}\left(\mathcal{D}|\theta,\mathcal{M}_{F}\right)} \frac{\mathcal{Z}_{F}}{\mathcal{Z}_{S}} \end{split}$$

Results

Ratio of fitting data set using the flagger for Full slow likelihood/likelihood reweighting

Results

Conclusions

- In data and models with predictable time variation, that variation can be leveraged to constrain the model more accurately.
- Bayesian anomaly flagging can be incorporated in this process
- Issue of runtimes can be resolved with likelihood reweighting
- Works effectively as both a time-sensitive Bayesian RFI compensator and an efficient Bayesian transient flagger

