

ENS1161 Computer Fundamentals ENS4103 Computer Systems and Hardware

Tutorial Exercises Set 10

Related objectives from Unit Outline:

identify isomorphic graphs and planar graphs; use matrix representation of graphs; identify Eulerian and Hamiltonian graphs

- 1. Draw a graph with vertices A, B, C, D and E given that: A is joined to B and C; B is joined to A, C and E; C is joined to A, B, D and E; D is joined to C; and E is joined to B and C
- 2. Six teams P, Q, R, S, T and U play in a competition in which each team plays every other team exactly once. So far eight matches have been played:

 P-R, P-S, P-T, Q-S, Q-U, R-S, R-U, T-U

 Use a graph and its complement to find which matches have not yet been played.
- 3. (i) Draw K_7 , the complete graph on 7 vertices.
 - (ii) How many edges should there be in K_7 ?
 - (iii) How many edges will there be in a complete graph on 5 vertices? on 6 vertices?
- 4. Draw the complements of each of these graphs:

- 5. For each of the following, either draw a graph whose vertices have the degrees specified, or else explain why there is no such graph:
 - (i) 1, 2, 1
 - (ii) 1, 2, 3, 4, 5
 - (iii) 1, 2, 2, 2, 3
 - (iv) 1, 1, 2, 2, 3, 3
 - (v) 1, 1, 1, 2, 2, 3, 4
 - (vi) 3, 3, 3, 3
- 6. Find a function $f: \{A, B, C, D, E\} \rightarrow \{P, Q, R, S, T\}$ that shows that the following two graphs are isomorphic.

7. Explain why the following pairs of graphs are **not** isomorphic.

(i)

(ii)

(iii)

8. Determine whether the following graphs are isomorphic. If they are isomorphic, find a function $f: \{A, B, C, D, E, F\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ that shows the isomorphism. If they are not isomorphic, explain why not.

9. Determine whether the following graphs are isomorphic. If they are isomorphic, find a function $f: \{A, B, C, D, E, F, G, H\} \rightarrow \{P, Q, R, S, T, U, V, W\}$ that shows the isomorphism. If they are not isomorphic, explain why not.

- 10. Draw 11 non-isomorphic graphs each with 4 vertices.
- 11. Draw 4 non- isomorphic graphs whose vertices have degrees 1, 1, 2, 2, 3, 3.
- 12. Construct adjacency matrices for the graphs shown:

Tutorial_10 Page 3 of 9

13. Draw a graph whose adjacency matrix is:

	A	В	C	D	Е
A	0	1	0	0	1
В	1	0	1	1	0
C	0	1	0	0	1
D	0	1	0	0	1
A B C D	1	0	1	1	9

- 14 (i) Find a mapping that demonstrates that the two graphs below are isomorphic.
 - (ii) Appropriately label the rows and columns of their adjacency matrices.
 - (iii) Use the graphs to fill in each matrix, and check that they are identical.

- 15 (i) Find a mapping that demonstrates that the two graphs below are isomorphic.
 - (ii) Appropriately label the rows and columns of the adjacency matrices.
 - (iii) Use the graphs to fill in each matrix, and check that they are identical.

16. Determine whether each of the following graphs has:

- (i) no Eulerian path;
- (ii) an Eulerian path, but no Eulerian circuit;
- (iii) an Eulerian circuit.

Then, in the case of (i), explain why there is no Eulerian path, and in the case of (ii) or (iii), draw the path or circuit.

Tutorial_10 Page 5 of 9

17. For each of the following graphs,

- (i) find and draw a Hamiltonian circuit; or
- (ii) find and draw a Hamiltonian path; or
- (iii) state that the graph has no Hamiltonian path.

18. Find a Hamiltonian circuit in graph A and a Hamiltonian path in graph B.

Tutorial_10 Page 6 of 9

19. In the following graph, find (i) an Eulerian circuit; (ii) a Hamiltonian circuit.

- 20. If possible, draw a (connected) graph with 4 vertices that has:
 - (i) an Eulerian circuit and a Hamiltonian circuit;
 - (ii) an Eulerian path and a Hamiltonian circuit;
 - (iii) an Eulerian circuit and a Hamiltonian path;
 - (iv) an Eulerian circuit but no Hamiltonian path;
 - (v) a Hamiltonian circuit but no Eulerian path;
 - (vi) neither an Eulerian path nor a Hamiltonian path;
 - (vii) an Eulerian path and a Hamiltonian path.

(A graph is "connected" if every pair of vertices are joined by a path)

21. For each of the following graphs, draw an isomorphic graph in which edges intersect only at vertices, and hence show that the given graph is planar.

(iii)

(iv)

Tutorial_10 Page 7 of 9

22. Find a function that maps the vertices of graph A onto the vertices of graph B that shows that graphs A and B are isomorphic, and hence show that graph A is planar.

23. Show that the graph A is isomorphic to $K_{3,3}$, and hence is graph A is non-planar.

24. Show that Graph A below is isomorphic to K₅, and hence is non-planar.

Tutorial_10 Page 8 of 9

Show that Graph B below is isomorphic to $K_{3,\,3}$, and is therefore non-planar. 25.

Construct a truth table for the outputs P, Q and R from each of the XORs in the circuit 26. below and hence verify that Q = Y and R = X.

Use Boolean algebra to show that: **Challenge:**

(i)
$$x \oplus (x \oplus y) = y$$

$$x \oplus (x \oplus y) = y$$
 (ii) $y \oplus (x \oplus y) = x$

[Hint: Use the result $a \oplus b = a'b + ab'$]