

# FCC PART 15.247 TEST REPORT

For

# Elanview Technology Co.,Ltd

Room 605, Building F, No 7001, Zhongchun Road, Minhang District, Shanghai, P.R. China

FCC ID: 2AEKJ-T02

**Product Type:** Report Type: Original Report Remote Chris. Wang **Test Engineer:** Chris Wang **Report Number:** RKS160704003-00B **Report Date:** 2016-08-10 Jesse. Hump Jesse Huang **Reviewed By:** EMC Manager **Prepared By:** Bay Area Compliance Laboratories Corp. (Kunshan) Chenghu Road, Kunshan Development Zone No.248, Kunshan, Jiangsu, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

**Note**: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

| GENERAL INFORMATION                                      | 4  |
|----------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)       |    |
| OBJECTIVE                                                |    |
| RELATED SUBMITTAL(S)/GRANT(S)                            |    |
| TEST FACILITY.                                           |    |
| SYSTEM TEST CONFIGURATION                                | 6  |
| DESCRIPTION OF TEST CONFIGURATION                        | 6  |
| EQUIPMENT MODIFICATIONS                                  |    |
| EUT EXERCISE SOFTWARE                                    | 6  |
| SUPPORT EQUIPMENT LIST AND DETAILS<br>EXTERNAL I/O CABLE |    |
| BLOCK DIAGRAM OF TEST SETUP                              | 7  |
| SUMMARY OF TEST RESULTS                                  |    |
| FCC§15.247 (i), §1.1310 &§2.1093 –RF EXPOSURE            | 9  |
| APPLICABLE STANDARD                                      |    |
| MEASUREMENT RESULT                                       | 9  |
| FCC §15.203 - ANTENNA REQUIREMENT                        | 11 |
| APPLICABLE STANDARD                                      |    |
| ANTENNA CONNECTOR CONSTRUCTION                           |    |
| FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS            | 12 |
| APPLICABLE STANDARD                                      |    |
| MEASUREMENT UNCERTAINTY                                  |    |
| EUT SETUPEMI TEST RECEIVER SETUP                         |    |
| TEST PROCEDURE                                           |    |
| TEST EQUIPMENT LIST AND DETAILS                          | 13 |
| CORRECTED FACTOR & MARGIN CALCULATION                    |    |
| TEST RESULTS SUMMARYTEST DATA                            |    |
|                                                          |    |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS   |    |
| APPLICABLE STANDARD                                      |    |
| EUT SETUP                                                |    |
| EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP              | 18 |
| TEST PROCEDURE                                           |    |
| TEST EQUIPMENT LIST AND DETAILS                          |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION                 |    |
| TEST DATA                                                |    |
| FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH             |    |
| APPLICABLE STANDARD                                      |    |
| TEST PROCEDURE                                           | 33 |
| TEST EQUIPMENT LIST AND DETAILS                          |    |
| TEST DATA                                                |    |
| FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER      | 41 |

TABLE OF CONTENTS

### Bay Area Compliance Laboratories Corp. (Kunshan)

### Report No.: RKS160704003-00B

| APPLICABLE STANDARD                                       | 41 |
|-----------------------------------------------------------|----|
| TEST PROCEDURE                                            | 41 |
| TEST EQUIPMENT LIST AND DETAILS.                          | 41 |
| Test Data                                                 | 41 |
| FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE | 43 |
| APPLICABLE STANDARD                                       | 43 |
| Test Procedure                                            | 43 |
| TEST EQUIPMENT LIST AND DETAILS.                          |    |
| TEST DATA                                                 | 43 |
| FCC §15.247(e) - POWER SPECTRAL DENSITY                   | 48 |
| APPLICABLE STANDARD                                       | 48 |
| Test Procedure                                            | 48 |
| TEST EQUIPMENT LIST AND DETAILS                           | 48 |
|                                                           | 18 |

#### **GENERAL INFORMATION**

### **Product Description for Equipment under Test (EUT)**

The Elanview Technology Co.,Ltd's product, model number: T02 (FCC ID: 2AEKJ-T02) or the "EUT" in this report is a Remote, which was measured approximately: 148.5mm(L)x155mm(W)x58mm(H). rated input voltage: DC 5.0V From USB Port (Built-in a 3.7V rechargeable battery ).

Report No.: RKS160704003-00B

\*All measurement and test data in this report was gathered from production sample serial number: 20160630009.

(Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2016-06-30.

#### **Objective**

This report is prepared on behalf of Elanview Technology Co.,Ltd in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

#### Related Submittal(s)/Grant(s)

N/A

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB558074 D01 DTS Meas Guidance v03r05.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with RF radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

FCC Part 15.247 Page 4 of 54

#### **Test Facility**

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the Chenghu Lake Road, Kunshan Development Zone No.248, Kunshan, Jiangsu, China

Report No.: RKS160704003-00B

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 54

### **SYSTEM TEST CONFIGURATION**

#### **Description of Test Configuration**

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 1       | 2412               | 8       | 2447               |
| 2       | 2417               | 9       | 2452               |
| 3       | 2422               | 10      | 2457               |
| 4       | 2427               | 11      | 2462               |
| 5       | 2432               | /       | /                  |
| 6       | 2437               | /       | /                  |
| 7       | 2442               | /       | /                  |

Report No.: RKS160704003-00B

EUT was tested with Channel 1, 6 and 11.

For 802.11n-HT40 mode, 7 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 3       | 2422               | 8       | 2447               |
| 4       | 4 2427 9           |         | 2452               |
| 5       | 2432               | /       | /                  |
| 6       | 2437               | /       | /                  |
| 7       | 2442               | /       | /                  |

EUT was tested with Channel 3, 6 and 9.

#### **Equipment Modifications**

No modification was made to the EUT tested.

#### **EUT Exercise Software**

Realtek 8189ES Test Tool

The worst condition(maximum power with 100% duty cycle) was performed under: 802.11b: Data rate:1 Mbps, Power level: 17

802.11b: Data rate: 1 Mops, Power level: 17 802.11g: Data rate: 6 Mbps, Power level: 16 802.11n-HT20: Data rate: MCS0, Power level: 16 802.11n-HT40: Data rate: MCS0, Power level: 16

FCC Part 15.247 Page 6 of 54

### **Support Equipment List and Details**

| Manufacturer | Description | Serial Number |           |
|--------------|-------------|---------------|-----------|
| DELL         | Notebook    | GX620         | D65874152 |

Report No.: RKS160704003-00B

### **External I/O Cable**

| Cable Description | Length (m) | From Port | То  |
|-------------------|------------|-----------|-----|
| USB Cable         | 0.8        | Notebook  | EUT |

### **Block Diagram of Test Setup**

For conducted emission



FCC Part 15.247 Page 7 of 54

## SUMMARY OF TEST RESULTS

| FCC Rules                             | Description of Test                      | Result     |
|---------------------------------------|------------------------------------------|------------|
| §15.247 (i), §1.1307 (b) (1)& §2.1093 | RF EXPOSURE                              | Compliance |
| §15.203                               | Antenna Requirement                      | Compliance |
| §15.207 (a)                           | AC Line Conducted Emissions              | Compliance |
| §15.247(d)                            | Spurious Emissions at Antenna Port       | Compliance |
| §15.205, §15.209,<br>§15.247(d)       | Spurious Emissions                       | Compliance |
| §15.247 (a)(2)                        | 6 dB Emission Bandwidth                  | Compliance |
| §15.247(b)(3)                         | Maximum Conducted Output Power           | Compliance |
| §15.247(d)                            | 100 kHz Bandwidth of Frequency Band Edge | Compliance |
| §15.247(e)                            | Power Spectral Density                   | Compliance |

Report No.: RKS160704003-00B

FCC Part 15.247 Page 8 of 54

### FCC§15.247 (i), §1.1310 &§2.1093 –RF EXPOSURE

#### **Applicable Standard**

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RKS160704003-00B

According to KDB447498 D01 General RF Exposure Guidance v06:

For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following (also illustrated in Appendix B):32

- 1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)· $(f_{(MHz)}/150)$ ]} mW, for 100 MHz to 1500 MHz
- 2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance 50 mm)·10]} mW, for > 1500 MHz and  $\le 6$  GHz
  - f(GHz) is the RF channel transmit frequency in GHz
  - Power and distance are rounded to the nearest mW and mm before calculation
  - The result is rounded to one decimal place for comparison
  - 3.0 and 7.5 are referred to as the numeric thresholds in the step b below

The test exclusions are applicable only when the minimum test separation distance is > 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is 12 cm, a distance of 12 cm according to 5) in section 4.1 is applied to determine SAR test exclusion.

#### **Measurement Result**

#### Step 1

The maximum conducted peak output power = (X mW) at  $2412\sim2462\text{MHz}$  [(max. power of channel, mW)/(min. test separation distance, mm)][  $\sqrt{f(GHz)}$ ] =  $(X/50)*(\sqrt{2.412}) = 7.5$  referred to as the numeric thresholds in the step b  $X=50*7.5/(\sqrt{2.412})=256.235$  mW , X is the power of distance 50mm

#### Step 2

{[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance – 50 mm)·10]} mW, for > 1500 MHz and  $\leq$  6 GHz

 $\{X+(120mm-50mm)*10\}$  mw = 956.23 mw = 29.8dBm > target power : 18dBm

Note: The target power :  $17 \pm 1 \text{dBm}$ , which declared by the Manufacturer. the minimum separation distance is 12 cm

So the stand-alone SAR evaluation is not necessary.

FCC Part 15.247 Page 9 of 54

### **EUT Photo and Antenna Location**





FCC Part 15.247 Page 10 of 54

### FCC §15.203 - ANTENNA REQUIREMENT

#### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RKS160704003-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Antenna Connector Construction**

The EUT has PCB antenna arrangement for wifi, which the antenna gain is 3.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

**Result:** Compliance.

FCC Part 15.247 Page 11 of 54

### FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

#### **Applicable Standard**

FCC§15.207

#### **Measurement Uncertainty**

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Kunshan) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Report No.: RKS160704003-00B

| Port     | Expanded Measurement uncertainty       |
|----------|----------------------------------------|
| AC Mains | 3.26 dB (k=2, 95% level of confidence) |
| CAT 3    | 3.70 dB (k=2, 95% level of confidence) |
| CAT 5    | 3.86 dB (k=2, 95% level of confidence) |
| CAT 6    | 4.64 dB (k=2, 95% level of confidence) |

#### **EUT Setup**



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC Part 15.247 Page 12 of 54

#### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

Report No.: RKS160704003-00B

#### **Test Procedure**

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model                     | Serial<br>Number | Calibration<br>Date | Calibration Due<br>Date |
|-----------------|-------------------|---------------------------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCS30                    | 934115/007       | 2015-11-12          | 2016-11-11              |
| Rohde & Schwarz | LISN              | ESH3-Z5                   | 862770/011       | 2015-11-12          | 2016-11-11              |
| Rohde & Schwarz | LISN              | ESH3-Z5                   | 892239/018       | 2016-07-04          | 2017-07-03              |
| FCC             | ISN               | FCC-TLISN-<br>T8-02       | 20376            | 2016-06-23          | 2017-06-22              |
| MICRO-COAX      | Coaxial line      | UFB-293B-1-<br>0480-50X50 | 97F0173          | 2015-10-01          | 2016-10-01              |
| Rohde & Schwarz | CE Test software  | EMC 32                    | V 09.10.0        |                     |                         |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

#### **Corrected Factor & Margin Calculation**

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 13 of 54

#### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, the worst margin reading as below:

#### 9.88dB at 0.175000 MHz in the Neutral conducted mode

Report No.: RKS160704003-00B

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL,  $U_{(Lm)}$  is less than  $U_{cispr}$ , if  $L_m$  is less than  $L_{lim}$ , it implies that the EUT complies with the limit.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 23 ℃      |
|--------------------|-----------|
| Relative Humidity: | 56 %      |
| ATM Pressure:      | 101.0 kPa |

The testing was performed by Chris Wang on 2016-08-06.

Test Mode: Transmitting

FCC Part 15.247 Page 14 of 54

### AC 120V/60 Hz, Line



Report No.: RKS160704003-00B

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dB \mu V) | Bandwidth<br>(kHz) | Line | Corr. (dB) | Margin<br>(dB) | Limit<br>(dBµV) | Comment    |
|--------------------|---------------------|-----------------------|--------------------|------|------------|----------------|-----------------|------------|
| 0.175000           |                     | 33.49                 | 9.000              | L1   | 11.0       | 21.23          | 54.72           | Compliance |
| 0.175000           | 46.83               |                       | 9.000              | L1   | 11.0       | 17.89          | 64.72           | Compliance |
| 0.235000           |                     | 28.24                 | 9.000              | L1   | 11.0       | 24.03          | 52.27           | Compliance |
| 0.235000           | 42.70               |                       | 9.000              | L1   | 11.0       | 19.57          | 62.27           | Compliance |
| 2.550000           |                     | 26.76                 | 9.000              | L1   | 11.2       | 19.24          | 46.00           | Compliance |
| 2.550000           | 36.12               |                       | 9.000              | L1   | 11.2       | 19.88          | 56.00           | Compliance |
| 4.830000           |                     | 34.82                 | 9.000              | L1   | 11.3       | 11.18          | 46.00           | Compliance |
| 4.830000           | 40.62               |                       | 9.000              | L1   | 11.3       | 15.38          | 56.00           | Compliance |
| 18.800000          |                     | 24.95                 | 9.000              | L1   | 11.4       | 25.05          | 50.00           | Compliance |
| 18.800000          | 30.06               |                       | 9.000              | L1   | 11.4       | 29.94          | 60.00           | Compliance |
| 24.445000          |                     | 23.42                 | 9.000              | L1   | 11.4       | 26.58          | 50.00           | Compliance |
| 24.445000          | 28.61               |                       | 9.000              | L1   | 11.4       | 31.39          | 60.00           | Compliance |

FCC Part 15.247 Page 15 of 54

#### AC 120V/60 Hz, Neutral



Report No.: RKS160704003-00B

| Frequency (MHz) | QuasiPeak<br>(dBµV) | Average<br>(dB \mu V) | Bandwidth (kHz) | Line | Corr. (dB) | Margin (dB) | Limit<br>(dBµV) | Comment    |
|-----------------|---------------------|-----------------------|-----------------|------|------------|-------------|-----------------|------------|
| 0.175000        |                     | 38.50                 | 9.000           | N    | 11.0       | 16.22       | 54.72           | Compliance |
| 0.175000        | 54.84               |                       | 9.000           | N    | 11.0       | 9.88        | 64.72           | Compliance |
| 0.235000        |                     | 29.03                 | 9.000           | N    | 11.0       | 23.24       | 52.27           | Compliance |
| 0.235000        | 45.95               |                       | 9.000           | N    | 11.0       | 16.32       | 62.27           | Compliance |
| 0.515000        |                     | 22.60                 | 9.000           | N    | 11.0       | 23.40       | 46.00           | Compliance |
| 0.515000        | 36.14               |                       | 9.000           | N    | 11.0       | 19.86       | 56.00           | Compliance |
| 4.870000        |                     | 34.93                 | 9.000           | N    | 11.4       | 11.07       | 46.00           | Compliance |
| 4.870000        | 41.67               |                       | 9.000           | N    | 11.4       | 14.33       | 56.00           | Compliance |
| 18.025000       |                     | 24.30                 | 9.000           | N    | 11.4       | 25.70       | 50.00           | Compliance |
| 18.025000       | 29.48               |                       | 9.000           | N    | 11.4       | 30.52       | 60.00           | Compliance |
| 24.455000       |                     | 26.18                 | 9.000           | N    | 11.4       | 23.82       | 50.00           | Compliance |
| 24.455000       | 30.94               |                       | 9.000           | N    | 11.4       | 29.06       | 60.00           | Compliance |

#### **Note:**

- 1) Corr.=LISN VDF (Voltage Division Factor) + Cable Loss
  2) Corrected Amplitude = Reading + Corr.
  3) Margin = Limit -Corrected Amplitude

FCC Part 15.247 Page 16 of 54

### FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

#### **Applicable Standard**

FCC §15.247 (d); §15.209; §15.205;

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RKS160704003-00B

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Kunshan) is 5.91 dB for 30MHz-1GHz and 4.92 dB for above 1GHz, 1.95dB for conducted measurement at antenna port. And the uncertainty will not be taken into consideration for the test data recorded in the report

#### **EUT Setup**

#### **Below 1 GHz:**



FCC Part 15.247 Page 17 of 54

#### **Above 1GHz:**



Report No.: RKS160704003-00B

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

#### **EMI Test Receiver & Spectrum Analyzer Setup**

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W | IF B/W  | Detector |
|-------------------|---------|-----------|---------|----------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz   | 120 kHz | QP       |
| Above 1 GHz       | 1MHz    | 3 MHz     | /       | PK       |
| Above I GHZ       | 1MHz    | 10 Hz     | /       | Ave.     |

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 18 of 54

#### **Test Equipment List and Details**

| Manufacturer      | Description        | Model           | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-------------------|--------------------|-----------------|------------------|---------------------|-------------------------|
| Sonoma Instrunent | Amplifier          | 330             | 171377           | 2015-09-16          | 2016-09-15              |
| Rohde & Schwarz   | EMI Test Receiver  | ESCI            | 100195           | 2015-11-12          | 2016-11-11              |
| Sunol Sciences    | Broadband Antenna  | JB3             | A090314-2        | 2015-11-07          | 2016-11-06              |
| ETS               | Horn Antenna       | 3115            | 6229             | 2015-11-07          | 2016-11-06              |
| EMCO              | Horn Antenna       | 3116            | 9510-2384        | 2015-11-07          | 2016-11-06              |
| Rohde & Schwarz   | SIGNAL<br>ANALYZER | FSV40           | 101116           | 2016-07-04          | 2017-07-03              |
| Rohde & Schwarz   | Signal Analyzer    | FSIQ26          | 100048           | 2015-11-12          | 2016-11-11              |
| Mini              | Pre-amplifier      | ZVA-183-S+      | 857001418        | 2015-09-16          | 2016-09-15              |
| DUCOMMUN          | Pre-amplifier      | ALN-22093530-01 | 990147           | 2015-09-16          | 2016-09-15              |
| champrotek        | Chamber            | Chamber A       | 1#               | 2015-09-17          | 2016-09-16              |
| R&S               | Auto test Software | EMC32           | V 09.10.0        | -                   | -                       |
| BACL              | RF cable           | KS-LAB-012      | KS-LAB-012       | 2015-12-16          | 2016-12-15              |
| BACL              | RF cable           | KS-LAB-010      | KS-LAB-010       | 2015-12-16          | 2016-12-15              |

Report No.: RKS160704003-00B

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

#### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C</u>, section 15.205, 15.209 and 15.247.

#### 1.60 dB at 2390 MHz in the Horizontal polarization for 802.11n-HT40 Mode

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

 $L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$  In BACL,  $U_{\rm (Lm)}$  is less than  $U_{\rm cispr}$ , if  $L_{\rm m}$  is less than  $L_{\rm lim}$ , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 19 of 54

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ℃      |
|--------------------|-----------|
| Relative Humidity: | 55 %      |
| ATM Pressure:      | 101.0 kPa |

The testing was performed by Chris Wang on 2016-08-08&2016-08-09.

#### **30 MHz-1 GHz:**

EUT operation mode: Transmitting



Report No.: RKS160704003-00B

| Frequency  | Receiver       |                          | Turntable | Rx Antenna  |                | Corrected<br>Factor | Corrected             | FCC Part<br>15.247/205/209 |             |
|------------|----------------|--------------------------|-----------|-------------|----------------|---------------------|-----------------------|----------------------------|-------------|
| (MHz)      | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | (dB)                | Amplitude<br>(dBμV/m) | Limit<br>(dB \mu V/m)      | Margin (dB) |
| 39.578750  | 32.39          | QP                       | 323.0     | 199.0       | V              | -10.1               | 22.29                 | 40.00                      | 17.71       |
| 64.071250  | 40.21          | QP                       | 295.0     | 199.0       | Н              | -17.0               | 23.21                 | 40.00                      | 16.79       |
| 156.221250 | 34.82          | QP                       | 102.0     | 199.0       | Н              | -12.3               | 22.52                 | 43.50                      | 20.98       |
| 310.330000 | 35.56          | QP                       | 102.0     | 101.0       | Н              | -10.2               | 25.36                 | 46.00                      | 20.64       |
| 468.682500 | 30.19          | QP                       | 130.0     | 199.0       | Н              | -6.5                | 23.69                 | 46.00                      | 22.31       |
| 781.265000 | 26.76          | QP                       | 246.0     | 199.0       | V              | -1.9                | 24.86                 | 46.00                      | 21.14       |

FCC Part 15.247 Page 20 of 54

### 1GHz-25GHz

EUT operation mode: Transmitting

802.11b Mode

| Frequency | R              | eceiver                  | Turntable | Rx An       | tenna          | Corrected   | Corrected             | FCC I<br>15.247/2     |                |
|-----------|----------------|--------------------------|-----------|-------------|----------------|-------------|-----------------------|-----------------------|----------------|
| (MHz)     | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | Factor (dB) | Amplitude<br>(dBµV/m) | Limit<br>(dB \mu V/m) | Margin<br>(dB) |
|           |                |                          | Lo        | w Channel   | (2412 M        | IHz)        |                       |                       |                |
| 2412      | 97.17          | PK                       | 120.0     | 150.0       | V              | 4.9         | 102.07                | /                     | /              |
| 2412      | 94.52          | Ave                      | 120.0     | 150.0       | V              | 4.9         | 99.42                 | /                     | /              |
| 2412      | 99.3           | PK                       | 69.0      | 150.0       | Н              | 4.9         | 104.20                | /                     | /              |
| 2412      | 96.00          | Ave                      | 69.0      | 150.0       | Н              | 4.9         | 100.90                | /                     | /              |
| 2206      | 43.92          | PK                       | 56.0      | 200.0       | Н              | 4.7         | 48.62                 | 74                    | 25.38          |
| 2206      | 22.35          | Ave                      | 56.0      | 200.0       | Н              | 4.7         | 27.05                 | 54                    | 26.95          |
| 2384      | 33.68          | Ave                      | 56.0      | 150.0       | Н              | 4.9         | 38.58                 | 54                    | 15.42          |
| 2384      | 65.46          | PK                       | 56.0      | 150.0       | Н              | 4.9         | 70.36                 | 74                    | 3.64           |
| 2390      | 65.73          | PK                       | 228.0     | 150.0       | Н              | 4.9         | 70.63                 | 74                    | 3.37           |
| 2390      | 31.68          | Ave                      | 228.0     | 150.0       | Н              | 4.9         | 36.58                 | 54                    | 17.42          |
| 4824      | 38.64          | PK                       | 53.0      | 150.0       | Н              | 13.8        | 52.44                 | 74                    | 21.56          |
| 4824      | 24.91          | Ave                      | 53.0      | 150.0       | Н              | 13.8        | 38.71                 | 54                    | 15.29          |
| 7236      | 16.72          | Ave                      | 60.0      | 200.0       | V              | 19.8        | 36.52                 | 54                    | 17.48          |
| 7236      | 30.59          | PK                       | 60.0      | 200.0       | V              | 19.8        | 50.39                 | 74                    | 23.61          |
|           | I              | 1                        | Mide      | dle Chann   | el (2437 ]     | MHz)        |                       | 1                     | I              |
| 2437      | 98.75          | PK                       | 5.0       | 150.0       | V              | 4.9         | 103.65                | /                     | /              |
| 2437      | 95.2           | Ave                      | 5.0       | 150.0       | V              | 4.9         | 100.10                | /                     | /              |
| 2437      | 96.93          | PK                       | 225.0     | 200.0       | Н              | 4.9         | 101.83                | /                     | /              |
| 2437      | 93.37          | Ave                      | 225.0     | 200.0       | Н              | 4.9         | 98.27                 | /                     | /              |
| 1589      | 39.39          | PK                       | 163.0     | 150.0       | V              | 2.8         | 42.19                 | 74                    | 31.81          |
| 1589      | 23.40          | Ave                      | 163.0     | 150.0       | V              | 2.8         | 26.20                 | 54                    | 27.80          |
| 2248      | 45.16          | PK                       | 332.0     | 150.0       | Н              | 4.7         | 49.86                 | 74                    | 24.14          |
| 2248      | 23.07          | Ave                      | 332.0     | 150.0       | Н              | 4.7         | 27.77                 | 54                    | 26.23          |
| 4874      | 39.58          | PK                       | 323.0     | 150.0       | Н              | 13.6        | 53.18                 | 74                    | 20.82          |
| 4874      | 29.03          | Ave                      | 323.0     | 150.0       | Н              | 13.6        | 42.63                 | 54                    | 11.37          |
| 6695      | 21.33          | Ave                      | 47.0      | 200.0       | V              | 17.9        | 39.23                 | 54                    | 14.77          |
| 6695      | 34.27          | PK                       | 47.0      | 200.0       | V              | 17.9        | 52.17                 | 74                    | 21.83          |
| 7311      | 30.06          | PK                       | 245.0     | 150.0       | Н              | 20.0        | 50.06                 | 74                    | 23.94          |
| 7311      | 16.70          | Ave                      | 245.0     | 150.0       | Н              | 20.0        | 36.70                 | 54                    | 17.30          |

Report No.: RKS160704003-00B

FCC Part 15.247 Page 21 of 54

| Frequency | R              | eceiver                  | Turntable | Rx An       | tenna          | Corrected   | Corrected             | FCC Part<br>15.247/205/209 |             |
|-----------|----------------|--------------------------|-----------|-------------|----------------|-------------|-----------------------|----------------------------|-------------|
| (MHz)     | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | Factor (dB) | Amplitude<br>(dBμV/m) | Limit (dBµV/m)             | Margin (dB) |
|           |                |                          | Hig       | gh Channe   | l (2462 l      | MHz)        |                       |                            |             |
| 2462      | 100.32         | PK                       | 112.0     | 150.0       | V              | 5.0         | 105.32                | /                          | /           |
| 2462      | 96.72          | Ave                      | 112.0     | 150.0       | V              | 5.0         | 101.72                | /                          | /           |
| 2462      | 99.24          | PK                       | 70.0      | 150.0       | Н              | 5.0         | 104.24                | /                          | /           |
| 2462      | 93.62          | Ave                      | 70.0      | 150.0       | Н              | 5.0         | 98.62                 | /                          | /           |
| 2483.5    | 28.23          | Ave                      | 135.0     | 200.0       | Н              | 5.0         | 33.23                 | 54                         | 20.77       |
| 2483.5    | 60.82          | PK                       | 135.0     | 200.0       | Н              | 5.0         | 65.82                 | 74                         | 8.18        |
| 2490      | 33.22          | Ave                      | 325.0     | 150.0       | Н              | 5.0         | 38.22                 | 54                         | 15.78       |
| 2490      | 63.97          | PK                       | 325.0     | 150.0       | Н              | 5.0         | 68.97                 | 74                         | 5.03        |
| 2234      | 45.79          | PK                       | 248.0     | 200.0       | Н              | 4.7         | 50.49                 | 74                         | 23.51       |
| 2234      | 23.96          | Ave                      | 248.0     | 200.0       | Н              | 4.7         | 28.66                 | 54                         | 25.34       |
| 4924      | 38.18          | PK                       | 331.0     | 200.0       | Н              | 13.8        | 51.98                 | 74                         | 22.02       |
| 4924      | 26.86          | Ave                      | 331.0     | 200.0       | Н              | 13.8        | 40.66                 | 54                         | 13.34       |
| 7386      | 16.72          | Ave                      | 199.0     | 200.0       | Н              | 20.2        | 36.92                 | 54                         | 17.08       |
| 7386      | 30.07          | PK                       | 199.0     | 200.0       | Н              | 20.2        | 50.27                 | 74                         | 23.73       |

802.11g Mode

| Frequency | R              | eceiver                  | Turntable | Rx An       | tenna          | Corrected      | Corrected             | FCC I<br>15.247/2 |             |  |  |
|-----------|----------------|--------------------------|-----------|-------------|----------------|----------------|-----------------------|-------------------|-------------|--|--|
| (MHz)     | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | Factor<br>(dB) | Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) |  |  |
|           |                |                          | Lo        | w Channe    | l (2412 N      | MHz)           |                       |                   |             |  |  |
| 2412      |                |                          |           |             |                |                |                       |                   |             |  |  |
| 2412      | 94.51          | Ave                      | 250.0     | 100.0       | V              | 4.9            | 99.41                 | /                 | /           |  |  |
| 2412      | 99.51          | PK                       | 72.0      | 150.0       | Н              | 4.9            | 104.41                | /                 | /           |  |  |
| 2412      | 94.96          | Ave                      | 72.0      | 150.0       | Н              | 4.9            | 99.86                 | /                 | /           |  |  |
| 1589      | 23.40          | Ave                      | 162.0     | 150.0       | V              | 2.8            | 26.20                 | 54                | 27.80       |  |  |
| 1589      | 38.79          | PK                       | 162.0     | 150.0       | V              | 2.8            | 41.59                 | 74                | 32.41       |  |  |
| 2382      | 29.96          | Ave                      | 67.0      | 150.0       | Н              | 4.9            | 34.86                 | 54                | 19.14       |  |  |
| 2382      | 55.31          | PK                       | 67.0      | 150.0       | Н              | 4.9            | 60.21                 | 74                | 13.79       |  |  |
| 2390      | 57.57          | PK                       | 326.0     | 150.0       | Н              | 4.9            | 62.47                 | 74                | 11.53       |  |  |
| 2390      | 32.25          | Ave                      | 326.0     | 150.0       | Н              | 4.9            | 37.15                 | 54                | 16.85       |  |  |
| 4824      | 42.00          | PK                       | 326.0     | 200.0       | Н              | 13.4           | 55.40                 | 74                | 18.60       |  |  |
| 4824      | 26.68          | Ave                      | 326.0     | 200.0       | Н              | 13.4           | 40.08                 | 54                | 13.92       |  |  |
| 7236      | 30.16          | PK                       | 13.0      | 200.0       | V              | 19.8           | 49.96                 | 74                | 24.04       |  |  |
| 7236      | 16.72          | Ave                      | 13.0      | 200.0       | V              | 19.8           | 36.52                 | 54                | 17.48       |  |  |

FCC Part 15.247 Page 22 of 54

4924

7386

7386

38.80

30.83

16.72

PK

PK

Ave

327.0

238.0

238.0

150.0

200.0

200.0

Η

Н

Н

13.7

20.2

20.2

52.50

51.03

36.92

74

74

54

21.50

22.97

17.08

FCC Part 15.247 Page 23 of 54

802.11n-HT20 Mode

| Frequency | R              | eceiver                  | Turntable | Rx An       | tenna          | Corrected   | Corrected             | FCC 1<br>15.247/2 |             |
|-----------|----------------|--------------------------|-----------|-------------|----------------|-------------|-----------------------|-------------------|-------------|
| (MHz)     | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | Factor (dB) | Amplitude<br>(dBμV/m) | Limit (dBµV/m)    | Margin (dB) |
|           |                |                          | Lo        | w Channe    | l (2412 N      | MHz)        |                       |                   |             |
| 2412      | 99.23          | PK                       | 190.0     | 200.0       | V              | 4.9         | 104.13                | /                 | /           |
| 2412      | 95.96          | Ave                      | 190.0     | 200.0       | V              | 4.9         | 100.86                | /                 | /           |
| 2412      | 99.02          | PK                       | 130.0     | 200.0       | Н              | 4.9         | 103.92                | /                 | /           |
| 2412      | 96.19          | Ave                      | 130.0     | 200.0       | Н              | 4.9         | 101.09                | /                 | /           |
| 2379      | 56.27          | PK                       | 237.0     | 150.0       | Н              | 4.9         | 61.17                 | 74                | 12.83       |
| 2379      | 30.10          | Ave                      | 237.0     | 150.0       | Н              | 4.9         | 35.00                 | 54                | 19.00       |
| 2390      | 34.83          | Ave                      | 232.0     | 150.0       | Н              | 4.9         | 39.73                 | 54                | 14.27       |
| 2390      | 61.05          | PK                       | 232.0     | 150.0       | Н              | 4.9         | 65.95                 | 74                | 8.05        |
| 3076      | 34.22          | PK                       | 205.0     | 150.0       | V              | 7.0         | 41.22                 | 74                | 32.78       |
| 3076      | 20.92          | Ave                      | 205.0     | 150.0       | V              | 7.0         | 27.92                 | 54                | 26.08       |
| 4824      | 26.07          | Ave                      | 324.0     | 200.0       | Н              | 13.3        | 39.37                 | 54                | 14.63       |
| 4824      | 41.35          | PK                       | 324.0     | 200.0       | Н              | 13.3        | 54.65                 | 74                | 19.35       |
| 7236      | 30.48          | PK                       | 37.0      | 200.0       | Н              | 19.8        | 50.28                 | 74                | 23.72       |
| 7236      | 16.72          | Ave                      | 37.0      | 200.0       | Н              | 19.8        | 36.52                 | 54                | 17.48       |
|           |                |                          | Mid       | dle Chann   | el (2437       | MHz)        |                       |                   |             |
| 2437      | 98.66          | PK                       | 33.0      | 200.0       | V              | 4.9         | 103.56                | /                 | /           |
| 2437      | 95.30          | Ave                      | 33.0      | 200.0       | V              | 4.9         | 100.20                | /                 | /           |
| 2437      | 99.56          | PK                       | 234.0     | 200.0       | Н              | 4.9         | 104.46                | /                 | /           |
| 2437      | 96.41          | Ave                      | 234.0     | 200.0       | Н              | 4.9         | 101.31                | /                 | /           |
| 1070      | 20.42          | Ave                      | 230.0     | 150.0       | Н              | 0.8         | 21.22                 | 54                | 32.78       |
| 1070      | 33.76          | PK                       | 230.0     | 150.0       | Н              | 0.8         | 34.56                 | 74                | 39.44       |
| 3062      | 34.28          | PK                       | 86.0      | 150.0       | V              | 7.0         | 41.28                 | 74                | 32.72       |
| 3062      | 21.29          | Ave                      | 86.0      | 150.0       | V              | 7.0         | 28.29                 | 54                | 25.71       |
| 4874      | 25.98          | Ave                      | 331.0     | 150.0       | Н              | 13.6        | 39.58                 | 54                | 14.42       |
| 4874      | 39.66          | PK                       | 331.0     | 150.0       | Н              | 13.6        | 53.26                 | 74                | 20.74       |
| 6667      | 21.71          | Ave                      | 344.0     | 200.0       | V              | 17.8        | 39.51                 | 54                | 14.49       |
| 6667      | 35.40          | PK                       | 344.0     | 200.0       | V              | 17.8        | 53.20                 | 74                | 20.80       |
| 7311      | 30.66          | PK                       | 37.0      | 150.0       | V              | 20.0        | 50.66                 | 74                | 23.34       |
| 7311      | 16.70          | Ave                      | 37.0      | 150.0       | V              | 20.0        | 36.70                 | 54                | 17.30       |

FCC Part 15.247 Page 24 of 54

| Frequency                                  | R              | eceiver                  | Turntable | Rx An       | tenna          | Corrected      | Corrected             | FCC 1<br>15.247/2 |             |  |
|--------------------------------------------|----------------|--------------------------|-----------|-------------|----------------|----------------|-----------------------|-------------------|-------------|--|
| (MHz)                                      | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree    | Height (cm) | Polar<br>(H/V) | Factor<br>(dB) | Amplitude<br>(dBμV/m) | Limit<br>(dBµV/m) | Margin (dB) |  |
|                                            |                |                          | Hig       | gh Channe   | l (2462 N      | MHz)           |                       |                   |             |  |
| 2462 100.36 PK 187.00 220.0 V 5.0 105.36 / |                |                          |           |             |                |                |                       |                   |             |  |
| 2462                                       | 96.97          | Ave                      | 187.00    | 220.0       | V              | 5.0            | 101.97                | /                 | /           |  |
| 2462                                       | 99.39          | PK                       | 150.00    | 333.0       | Н              | 5.0            | 104.39                | /                 | /           |  |
| 2462                                       | 95.88          | Ave                      | 150.00    | 333.0       | Н              | 5.0            | 100.88                | /                 | /           |  |
| 2483.5                                     | 57.59          | PK                       | 333.0     | 150.0       | Н              | 5.0            | 62.59                 | 74                | 11.41       |  |
| 2483.5                                     | 36.43          | Ave                      | 333.0     | 150.0       | Н              | 5.0            | 41.43                 | 54                | 12.57       |  |
| 2488                                       | 31.82          | Ave                      | 68.0      | 150.0       | Н              | 5.0            | 36.82                 | 54                | 17.18       |  |
| 2488                                       | 55.59          | PK                       | 68.0      | 150.0       | Н              | 5.0            | 60.59                 | 74                | 13.41       |  |
| 3076                                       | 34.53          | PK                       | 90.0      | 150.0       | V              | 7.0            | 41.53                 | 74                | 32.47       |  |
| 3076                                       | 21.32          | Ave                      | 90.0      | 150.0       | V              | 7.0            | 28.32                 | 54                | 25.68       |  |
| 4924                                       | 23.64          | Ave                      | 332.0     | 150.0       | Н              | 13.8           | 37.44                 | 54                | 16.56       |  |
| 4924                                       | 37.53          | PK                       | 332.0     | 150.0       | Н              | 13.8           | 51.33                 | 74                | 22.67       |  |
| 7386                                       | 30.49          | PK                       | 97.0      | 200.0       | Н              | 20.2           | 50.69                 | 74                | 23.31       |  |
| 7386                                       | 16.76          | Ave                      | 97.0      | 200.0       | Н              | 20.2           | 36.96                 | 54                | 17.04       |  |

### 802.11n-HT40 Mode

| F                  | R              | eceiver                  | Turntable          | Rx An          | tenna          | Corrected             | Corrected              |             | Part<br>205/209 |
|--------------------|----------------|--------------------------|--------------------|----------------|----------------|-----------------------|------------------------|-------------|-----------------|
| Frequency<br>(MHz) | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Degree Height (cm) | Polar<br>(H/V) | Factor<br>(dB) | Amplitude<br>(dBμV/m) | Limit<br>(dB µ<br>V/m) | Margin (dB) |                 |
|                    |                |                          | Lov                | w Channe       | l (2422 N      | ИHz)                  |                        |             |                 |
| 2422               | 95.23          | PK                       | 185.0              | 150.0          | V              | 4.9                   | 100.13                 | /           | /               |
| 2422               | 92.55          | Ave                      | 185.0              | 150.0          | V              | 4.9                   | 97.45                  | /           | /               |
| 2422               | 94.85          | PK                       | 67.0               | 200.0          | Н              | 4.9                   | 99.75                  | /           | /               |
| 2422               | 91.53          | Ave                      | 67.0               | 200.0          | Н              | 4.9                   | 96.43                  | /           | /               |
| 2384               | 34.05          | Ave                      | 240.0              | 150.0          | Н              | 4.9                   | 38.95                  | 54          | 15.05           |
| 2384               | 66.94          | PK                       | 240.0              | 150.0          | Н              | 4.9                   | 71.84                  | 74          | 2.16            |
| 2390               | 67.50          | PK                       | 49.0               | 150.0          | Н              | 4.9                   | 72.40                  | 74          | 1.60            |
| 2390               | 35.32          | Ave                      | 49.0               | 150.0          | Н              | 4.9                   | 40.22                  | 54          | 13.78           |
| 2234               | 50.43          | PK                       | 331.0              | 150.0          | Н              | 4.7                   | 55.13                  | 74          | 18.87           |
| 2234               | 22.02          | Ave                      | 331.0              | 150.0          | Н              | 4.7                   | 26.72                  | 54          | 27.28           |
| 4844               | 23.42          | Ave                      | 329.0              | 200.0          | Н              | 13.4                  | 36.82                  | 54          | 17.18           |
| 4844               | 38.57          | PK                       | 329.0              | 200.0          | Н              | 13.4                  | 51.97                  | 74          | 22.03           |
| 7266               | 30.74          | PK                       | 114.0              | 200.0          | Н              | 19.9                  | 50.64                  | 74          | 23.36           |
| 7266               | 16.67          | Ave                      | 114.0              | 200.0          | Н              | 19.9                  | 36.57                  | 54          | 17.43           |

FCC Part 15.247 Page 25 of 54

| T.                 | F              | Receiver                 | T (11               | Rx An       | itenna         | Corrected      | Corrected          |                        | C Part<br>/205/209 |
|--------------------|----------------|--------------------------|---------------------|-------------|----------------|----------------|--------------------|------------------------|--------------------|
| Frequency<br>(MHz) | Reading (dBµV) | Detector<br>(PK/QP/Ave.) | Turntable<br>Degree | Height (cm) | Polar<br>(H/V) | Factor<br>(dB) | Amplitude (dBμV/m) | Limit<br>(dB µ<br>V/m) | Margin (dB)        |
|                    |                |                          | Middle              | Channel (2  | 437MHz)        |                |                    |                        |                    |
| 2437               | 94.73          | PK                       | 125.0               | 200.0       | V              | 4.9            | 99.63              | /                      | /                  |
| 2437               | 91.82          | Ave                      | 125.0               | 200.0       | V              | 4.9            | 96.72              | /                      | /                  |
| 2437               | 95.12          | PK                       | 74.0                | 150.0       | Н              | 4.9            | 100.02             | /                      | /                  |
| 2437               | 91.79          | Ave                      | 74.0                | 150.0       | Н              | 4.9            | 96.69              | /                      | /                  |
| 2248               | 22.4           | Ave                      | 244.0               | 150.0       | Н              | 4.7            | 27.10              | 54                     | 26.90              |
| 2248               | 52.48          | PK                       | 244.0               | 150.0       | Н              | 4.7            | 57.18              | 74                     | 16.82              |
| 3062               | 34.11          | PK                       | 206.0               | 200.0       | V              | 7.0            | 41.11              | 74                     | 32.89              |
| 3062               | 21.29          | Ave                      | 206.0               | 200.0       | V              | 7.0            | 28.29              | 54                     | 25.71              |
| 4874               | 23.33          | Ave                      | 328.0               | 150.0       | Н              | 13.6           | 36.93              | 54                     | 17.07              |
| 4874               | 38.28          | PK                       | 328.0               | 150.0       | Н              | 13.6           | 51.88              | 74                     | 22.12              |
| 6653               | 22.04          | Ave                      | 171.0               | 200.0       | V              | 17.8           | 39.84              | 54                     | 14.16              |
| 6653               | 35.01          | PK                       | 171.0               | 200.0       | V              | 17.8           | 52.81              | 74                     | 21.19              |
| 7311               | 30.26          | PK                       | 326.0               | 150.0       | Н              | 20.0           | 50.26              | 74                     | 23.74              |
| 7311               | 16.70          | Ave                      | 326.0               | 150.0       | Н              | 20.0           | 36.70              | 54                     | 17.30              |
|                    |                |                          |                     | hannel (24  | 152MHz)        |                |                    |                        |                    |
| 2452               | 91.73          | PK                       | 140.0               | 200.0       | V              | 5.0            | 96.73              | /                      | /                  |
| 2452               | 88.13          | Ave                      | 140.0               | 200.0       | V              | 5.0            | 93.13              | /                      | /                  |
| 2452               | 92.88          | PK                       | 100.0               | 150.0       | Н              | 5.0            | 97.88              | /                      | /                  |
| 2452               | 89.22          | Ave                      | 100.0               | 150.0       | Н              | 5.0            | 94.22              | /                      | /                  |
| 2483.5             | 65.96          | PK                       | 42.0                | 150.0       | Н              | 5.0            | 70.96              | 74                     | 3.04               |
| 2483.5             | 33.01          | Ave                      | 42.0                | 150.0       | Н              | 5.0            | 38.01              | 54                     | 15.99              |
| 2486               | 67.39          | PK                       | 63.0                | 150.0       | Н              | 5.0            | 72.39              | 74                     | 1.61               |
| 2486               | 34.43          | Ave                      | 63.0                | 150.0       | Н              | 5.0            | 39.43              | 54                     | 14.57              |
| 2220               | 49.67          | PK                       | 242.0               | 150.0       | Н              | 4.7            | 54.37              | 74                     | 19.63              |
| 2220               | 22.01          | Ave                      | 242.0               | 150.0       | Н              | 4.7            | 26.71              | 54                     | 27.29              |
| 4904               | 35.12          | PK                       | 68.0                | 150.0       | Н              | 13.7           | 48.82              | 74                     | 25.18              |
| 4904               | 20.02          | Ave                      | 68.0                | 150.0       | Н              | 13.7           | 33.72              | 54                     | 20.28              |
| 7356               | 16.68          | Ave                      | 189.0               | 150.0       | V              | 20.2           | 36.88              | 54                     | 17.12              |
| 7356               | 30.31          | PK                       | 189.0               | 150.0       | V              | 20.2           | 50.51              | 74                     | 23.49              |

FCC Part 15.247 Page 26 of 54

#### **Spurious Emissions at Antenna Port**

#### 802.11b Low Channel

Report No.: RKS160704003-00B



Date: 8 AUG 2016 23:45:17

#### 802.11b Middle Channel



Date: 8 AUG .2016 23:49:27

FCC Part 15.247 Page 27 of 54

#### 802.11b High Channel

Report No.: RKS160704003-00B



Date: 8 AUG .2016 23:50:39

#### 802.11g Low Channel



Date: 8 AUG 2016 23:53:37

FCC Part 15.247 Page 28 of 54

#### **802.11g Middle Channel**

Report No.: RKS160704003-00B



Date: 8 AUG .2016 23:55:36

#### 802.11g High Channel



Date: 8 AUG 2016 23:56:56

FCC Part 15.247 Page 29 of 54

#### 802.11n-HT20 Low Channel

Report No.: RKS160704003-00B



Date: 8 AUG .2016 23:59:28

#### 802.11n-HT20 Middle Channel



Date: 9 AUG 2016 00:38:11

FCC Part 15.247 Page 30 of 54

#### 802.11n-HT20 High Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 00:39:30

### 802.11n-HT40 Low Channel



Date: 9 AUG .2016 00:42:10

FCC Part 15.247 Page 31 of 54

#### 802.11n-HT40 Middle Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 00:45:12

#### 802.11n-HT40 High Channel



Date: 9 AUG .2016 00:49:17

FCC Part 15.247 Page 32 of 54

### FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

#### **Applicable Standard**

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RKS160704003-00B

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.



#### **Test Equipment List and Details**

| Manufacturer    | Description        | Model      | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|--------------------|------------|---------------|---------------------|-------------------------|
| Rohde & Schwarz | SIGNAL<br>ANALYZER | FSV40      | 101116        | 2016-07-04          | 2017-07-03              |
| BACL            | RF cable           | KS-LAB-012 | KS-LAB-012    | 2015-12-16          | 2016-12-15              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 27 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 55 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Chris Wang on 2016-08-09.

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.247 Page 33 of 54

| Channel           | Frequency<br>(MHz) | 6 dB Emission<br>Bandwidth<br>(MHz) | Limit<br>(kHz) |  |  |  |  |
|-------------------|--------------------|-------------------------------------|----------------|--|--|--|--|
| 802.11b mode      |                    |                                     |                |  |  |  |  |
| Low               | 2412               | 9.20                                | ≥500           |  |  |  |  |
| Middle            | 2437               | 9.07                                | ≥500           |  |  |  |  |
| High              | 2462               | 9.07                                | ≥500           |  |  |  |  |
| 802.11g mode      |                    |                                     |                |  |  |  |  |
| Low               | 2412               | 16.50                               | ≥500           |  |  |  |  |
| Middle            | 2437               | 16.45                               | ≥500           |  |  |  |  |
| High              | 2462               | 16.50                               | ≥500           |  |  |  |  |
| 802.11n-HT20 mode |                    |                                     |                |  |  |  |  |
| Low               | 2412               | 17.71                               | ≥500           |  |  |  |  |
| Middle            | 2437               | 17.71                               | ≥500           |  |  |  |  |
| High              | 2462               | 17.76                               | ≥500           |  |  |  |  |
| 802.11n-HT40 mode |                    |                                     |                |  |  |  |  |
| Low               | 2422               | 35.43                               | ≥500           |  |  |  |  |
| Middle            | 2437               | 35.51                               | ≥500           |  |  |  |  |
| High              | 2452               | 35.51                               | ≥500           |  |  |  |  |

FCC Part 15.247 Page 34 of 54

#### 802.11b Low Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:13:38

#### 802.11b Middle Channel



Date: 9 AUG .2016 01:17:38

FCC Part 15.247 Page 35 of 54

#### 802.11b High Channel

Report No.: RKS160704003-00B



Date: 9 AUG 2016 01:19:18

#### 802.11g Low Channel



Date: 9 AUG 2016 01:21:54

FCC Part 15.247 Page 36 of 54

## **802.11g Middle Channel**

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:25:16

## 802.11g High Channel



Date: 9 AUG 2016 01:27:00

FCC Part 15.247 Page 37 of 54

### 802.11n-HT20 Low Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:29:24

### 802.11n-HT20 Middle Channel



Date: 9 AUG .2016 01:31:19

FCC Part 15.247 Page 38 of 54

### 802.11n-HT20 High Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:34:13

### 802.11n-HT40 Low Channel



Date: 9 AUG 2016 01:39:06

FCC Part 15.247 Page 39 of 54

### 802.11n-HT40 Middle Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:41:43

## 802.11n-HT40 High Channel



Date: 9 AUG .2016 01:44:28

FCC Part 15.247 Page 40 of 54

# FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

## Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RKS160704003-00B

#### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



## **Test Equipment List and Details**

| Manufacturer       | Description         | Model      | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|--------------------|---------------------|------------|---------------|---------------------|-------------------------|
| Rohde & Schwarz    | OSP120 BASE<br>UNIT | OSP120     | 101247        | 2016-07-04          | 2017-07-03              |
| Rohde &<br>Schwarz | Power Sensor        | NRP-Z91    | 200014        | 2015-08-01          | 2017-07-31              |
| BACL               | RF cable            | KS-LAB-012 | KS-LAB-012    | 2015-12-16          | 2016-12-15              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### **Test Data**

### **Environmental Conditions**

| Temperature:       | 27 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 55 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

FCC Part 15.247 Page 41 of 54

The testing was performed by Chris Wang on 2016-08-09

EUT operation mode: Transmitting

| Channel | Frequency<br>(MHz) | Max Conducted<br>Average Output Power<br>(dBm) | Max Conducted<br>Peak Output<br>Power<br>(dBm) | Limit<br>(dBm) | Result |  |  |
|---------|--------------------|------------------------------------------------|------------------------------------------------|----------------|--------|--|--|
|         |                    | 802.1                                          | 1b                                             |                |        |  |  |
| Low     | 2412               | 17.56                                          | 23.48                                          | 30             | Pass   |  |  |
| Middle  | 2437               | 17.31                                          | 23.51                                          | 30             | Pass   |  |  |
| High    | 2462               | 17.44                                          | 23.34                                          | 30             | Pass   |  |  |
|         |                    | 802.1                                          | 1g                                             |                |        |  |  |
| Low     | 2412               | 16.67                                          | 22.57                                          | 30             | Pass   |  |  |
| Middle  | 2437               | 16.52                                          | 22.72                                          | 30             | Pass   |  |  |
| High    | 2462               | 16.49                                          | 22.61                                          | 30             | Pass   |  |  |
|         | 802.11n-HT20       |                                                |                                                |                |        |  |  |
| Low     | 2412               | 16.54                                          | 22.63                                          | 30             | Pass   |  |  |
| Middle  | 2437               | 16.22                                          | 22.71                                          | 30             | Pass   |  |  |
| High    | 2462               | 16.37                                          | 22.47                                          | 30             | Pass   |  |  |
|         | 802.11n-HT40       |                                                |                                                |                |        |  |  |
| Low     | 2422               | 16.33                                          | 22.44                                          | 30             | Pass   |  |  |
| Middle  | 2437               | 16.55                                          | 22.60                                          | 30             | Pass   |  |  |
| High    | 2452               | 16.39                                          | 22.53                                          | 30             | Pass   |  |  |

Report No.: RKS160704003-00B

FCC Part 15.247 Page 42 of 54

# FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RKS160704003-00B

### **Applicable Standard**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

### **Test Equipment List and Details**

| Manufacturer    | Description              | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|--------------------------|-------------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | FSV40 Signal<br>Analyzer | FSV40       | 101116           | 2016-07-04          | 2017-07-03              |
| BACL            | TS 8997 Cable-01         | T-KS-EMC086 | T-KS-<br>EMC086  | 2015-12-10          | 2016-12-09              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

#### **Test Data**

### **Environmental Conditions**

| Temperature:       | 27 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 55 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Chris Wang on 2016-08-09.

EUT operation mode: Transmitting

FCC Part 15.247 Page 43 of 54

Please refer to the following table and plots.

802.11b: Band Edge, Left Side

Report No.: RKS160704003-00B





FCC Part 15.247 Page 44 of 54

## 802.11g: Band Edge, Left Side

Report No.: RKS160704003-00B



## 802.11g: Band Edge, Right Side



FCC Part 15.247 Page 45 of 54

## 802.11n-HT20: Band Edge, Left Side

Report No.: RKS160704003-00B



Date: 9 AUG .2016 01:04:09

## 802.11n-HT20: Band Edge, Right Side



Date: 9 AUG 2016 01:05:58

FCC Part 15.247 Page 46 of 54

802.11n-HT40: Band Edge, Left Side

Report No.: RKS160704003-00B



802.11n-HT40: Band Edge, Right Side



Date: 9 AUG .2016 01:09:05

FCC Part 15.247 Page 47 of 54

# FCC §15.247(e) - POWER SPECTRAL DENSITY

## **Applicable Standard**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RKS160704003-00B

### **Test Procedure**

According to KDB558074 D01 DTS Meas Guidance v03r05.

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to:  $3kHz \le RBW \le 100 \text{ kHz}$ .
- 3. Set the VBW  $\geq$  3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

### **Test Equipment List and Details**

| Manufacturer    | Description        | Model      | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|--------------------|------------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | SIGNAL<br>ANALYZER | FSV40      | 101116           | 2016-07-04          | 2017-07-03              |
| BACL            | RF cable           | KS-LAB-012 | KS-LAB-012       | 2015-12-16          | 2016-12-15              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### **Test Data**

## **Environmental Conditions**

| Temperature:       | 27 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 55 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Chris Wang on 2016-08-09.

EUT operation mode: Transmitting

FCC Part 15.247 Page 48 of 54

**Test Result:** Pass

| Channel           | Frequency<br>(MHz) | PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) |  |  |
|-------------------|--------------------|-------------------|---------------------|--|--|
|                   | 802.11b            | mode              |                     |  |  |
| Low               | 2412               | 7.36              | €8                  |  |  |
| Middle            | 2437               | 7.85              | €8                  |  |  |
| High              | 2462               | 7.89              | €8                  |  |  |
|                   | 802.11g            | mode              |                     |  |  |
| Low               | 2412               | -12.51            | €8                  |  |  |
| Middle            | 2437               | -11.93            | €8                  |  |  |
| High              | 2462               | -12.25            | ≪8                  |  |  |
|                   | 802.11n-HT         | 20 mode           |                     |  |  |
| Low               | 2412               | -12.48            | €8                  |  |  |
| Middle            | 2437               | -12.33            | €8                  |  |  |
| High              | 2462               | -12.04            | €8                  |  |  |
| 802.11n-HT40 mode |                    |                   |                     |  |  |
| Low               | 2422               | -15.31            | €8                  |  |  |
| Middle            | 2437               | -15.04            | €8                  |  |  |
| High              | 2452               | -14.89            | €8                  |  |  |

Report No.: RKS160704003-00B

FCC Part 15.247 Page 49 of 54

# Power Spectral Density, 802.11b Low Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 11:48:03

# Power Spectral Density, 802.11b Middle Channel



Date: 9 AUG .2016 11:49:08

FCC Part 15.247 Page 50 of 54

## Power Spectral Density, 802.11b High Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 11:49:46

### Power Spectral Density, 802.11g Low Channel



Date: 9 AUG 2016 11:51:31

FCC Part 15.247 Page 51 of 54

FCC Part 15.247

## Power Spectral Density, 802.11g Middle Channel

Report No.: RKS160704003-00B

Page 52 of 54



### B C / IB // 000 11 H/ I CI



## Power Spectral Density, 802.11n-HT20 Low Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 11:55:41

## Power Spectral Density, 802.11n-HT20 Middle Channel



Date: 9 AUG .2016 11:56:35

FCC Part 15.247 Page 53 of 54

## Power Spectral Density, 802.11n-HT20 High Channel

Report No.: RKS160704003-00B



Date: 9 AUG .2016 11:57:23

## Power Spectral Density, 802.11n-HT40 Low Channel



Date: 9 AUG 2016 11:58:39

FCC Part 15.247 Page 54 of 54

## Power Spectral Density, 802.11n-HT40 Middle Channel

Report No.: RKS160704003-00B



#### Date: 9 AUG 2016 11:59:27

## Power Spectral Density, 802.11n-HT40 High Channel



## \*\*\*\*\* END OF REPORT \*\*\*\*\*

FCC Part 15.247 Page 55 of 54