D2.1: Pointwise convergence

 $f_n \to f$ pointwise on E if:

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Here $f_n: E \to \mathbb{R}$.

$$\forall x \in E; \forall \epsilon > 0; \exists N \in \mathbb{N} : \forall n \ge N$$

 $\implies |f_n(x) - f(x)| < \epsilon$

D2.2: Uniform convergence

 $f_n \to f$ uniformly on E if:

$$\forall \epsilon > 0; \exists N \in \mathbb{N} : \forall n \ge N \text{ and } \forall x \in E$$

 $\implies |f_n(x) - f(x)| < \epsilon$

P2.1

The following statements are equivalent.

- 1. $f_n \to f$ uniformly on E
- 2. $\lim_{n \to \infty} \sup_{x \in E} |f_n(x) f(x)| = 0$
- 3. $\exists a_n \to 0 \text{ s.t. } |f_n(x) f(x)| \le a_n \text{ for }$ $\forall x \in E$.

T2.1

If f_n is continuous on E and $f_n \to f$ uniformly on E then f is continuous on E.

Remark

If f is <u>not continuous</u> on E then f_n <u>cannot</u> be uniform on E.

T2.5: Weierstrass M-test

Let $E \subset \mathbb{R}$ and $f_k : E \to \mathbb{R}$.

$$\exists M_k>0: \sum_{k=1}^\infty M_k<\infty.$$
 If $\forall k\in\mathbb{N}$ and $\forall x\in E; |f_k(x)|\leq M_k$ then:

$$\sum_{k=1}^{\infty} f_k(x) \text{ converges uniformly on } E.$$