4. Понятия полуразрешимого и разрешимого отношения по Тьюрингу. Пример алгоритмически неразрешимого отношения (с доказательством).

Билеты 2, 9, 13, 27

Упорядоченный набор из n слов в алфавите A называется n-местным набором над A. Множество всех n-местных наборов над A обозначим через $(A^*)^n$.

Любое подмножество R множества $(A^*)^n$ называется n местным словарным отношением.

Любое, возможно, частичное отображение $f(A^*)^n \to A^*$ называется n-местной словарной функцией. Область определения функции f обозначается через Def(f).

Результатом работы программы T на входном псевдослове X называется псевдослово T(x), которое появляется на ленте в момент остановки программы; если программа работает бесконечно, то результат не определен.

Программу, которая в процессе работы над любым псевдословом X не сдвигает головку левее пробела, расположенного слева от n-го слова псевдослова X, будем назвать тьюринговой n-программой.

Словарное n-местное отношение R называется $\underline{nonypaspeuuumыm}$, если существует n-программа T, которая останавливается в точности на всех псевдословах, имеющих вид $\underset{X\#u_n\#u_{n-1}\#...\#u_1\#}{\downarrow}$, где $(u_1,u_2,...,u_n)\in R$.

Словарное n-местное отношение R называется разрешимым, если R и $\neg R$ полуразрешимы (под $\neg R$ здесь понимается множество $(A^*)^n \backslash R$).

Словарная n-местная функция $f: f(A^*)^n \to A^*$ называется вычислимой по Тьюрингу, если существует n-программа T такая, что

$$T(u_n\#u_{n-1}\#\dots\#u_1\#) = \begin{cases} u_n\#u_{n-1}\#\dots\#u_1\#f(u_1,u_2,\dots,u_n)\#\\ \text{если } (u_1,u_2,\dots,u_n) \in Def(f)\\ \text{неопределен в противном случае} \end{cases}$$

Не любое словарное отношение является алгебраически разрешимым. T – тьюрингова программа, A – алфавит тьюринговых программ, $T \to code(T) \in A^*$, T – самоприменима, если она останавливается на своем коде code(T). $M = \{code(T)|T - \text{самопринимима}\}$

M — полуразрешимо, \overline{M} — не полуразрешимо. Док-во от противного. \overline{M} — полуразрешимо, тогда существует тьюрингова программа T^* , останавливающаяся в точности на словах \overline{M} . Возможны 2 случая: T^* - самоприменима и наоборот.

- 1. Предположим, что T^* самоприменима, тогда T^* останавливается на $code(T^*) \in M$, но T^* останавличается в точности на словах \overline{M} , значит на своем коде должен работать бесконечно долго
- 2. Предположим, что T^* несамоприменима, тогда T^* должна работать бесконечно долго на $code(T^*)$. Поэтому $code(T^*) \notin M$, поскольку \overline{M} множество тех слов, на которых T^* должен остановиться. Значит, $code(T^*) \in M$ и T^* самоприменима по определению M.

Множество \overline{M} – не полуразрешимо, \overline{M} – алгоритмически не разрешимо.