«TalysLib v.0.1»

Содержание

1	Введ	цение		1	
2	Стр	уктура	библиотеки	1	
	2.1	Класс	Nucleus	1	
		2.1.1	Name, Reaction, Projectile	1	
		2.1.2	vector <level> Levels</level>	2	
		2.1.3	OpticalModelParameters OMPN, OMPP	2	
		2.1.4	Deformation	2	
		2.1.5	TGraph ElacticTotTalys, ElasticDirectTalys, ElasticCompoundTalys	2	
		2.1.6	In elastic Tot Talys V, In elastic Direct Talys V, In elastic Compound Talys V,		
ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTaly				ılysV	2
		2.1.7	BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteror	1,	
			BNECS_triton, BNECS_3He, BNECS_alpha	3	
		2.1.8	TEISGraphTot, TEISGraphCont, TEISGraphDiscr	3	
		2.1.9	void ReadElastic()	3	
		2.1.10	TGraph* GetElasticAngularDistribution(string type="'Total string option	n=	
)	4	
		2.1.11	int WriteOMPOrUseKoningP, WriteOMPOrUseKoningN	4	
		2.1.12	void MergeLevels(float tolerancy)	4	
		2.1.13	SortingLevels()	5	
		2.1.14	FindProductsByReaction(string reaction)	5	
		2.1.15	FindProductByName(string _Name)	5	
		2.1.16	Nucleus* fMotherNucleus	5	
		2.1.17	Nucleus()	5	
		2.1.18	Nucleus(string Name,string Reaction=)	5	
		2 1 19	Nucleus(NucleusData ND)	6	

2.1.20	ReadENSDFFile(string filename=,string Nuclide=)	6	
2.1.21	ReadLevelsFromTalysDatabase(string type="final")	6	
2.1.22	SetProjectileEnergy(double E)	6	
2.1.23	vector <level*>GetLevelsWithCorrespondingTransitions(floatEnergy</level*>	,	
	float tolerancy=1, float intensity=0)	6	
2.1.24	Level* FindLevelFromTalys(float Energy, SpinParity JP)	7	
2.1.25	Level* FindBestLevelByEJP(float Energy, SpinParity JP, float tolerancy	y=1) '	7
2.1.26	FindLevelByEnergy(float Energy, float tolerancy=1)	7	
2.1.27	Level* FindLevelByNumber(int number)	7	
2.1.28	GammaTransition* GetBestTransition(float Energy, float tolerancy=1)	8	
2.1.29	vector <gammatransition*>GetGammaTransition(float Energy, float</gammatransition*>		
	tolerancy=1, float intensity=0)	8	
2.1.30	vector <gammatransition*>GetGammaTransitions(string option="Tal</gammatransition*>	ys int	
	BetterThan=100, float tolerancy=1, float intensity=0)	8	
2.1.31	vector <nucleus> Products</nucleus>	8	
2.1.32	void GenerateProducts(string Projectile="n")	8	
2.1.33	void ExecuteCalculationInTalys(string _Projectile="n")	9	
2.1.34	void ReadTalysCalculationResult()	9	
2.1.35	void AssignSimilarLevels(float Tolerancy=1.5)	9	
2.1.36	void DrawLevelScheme(double MinTalysCS=0)	9	
2.1.37	void AssignPointers()	9	
2.1.38	void ErasePointers()	10	
2.1.39	void AssignDeformationsToLevels()	10	
2.1.40	void SetLevelDeformation(int LevelNumber,char LevT, int BandN=-		
	1, int BandL=-1, int NPhon=-1, int MagN=-1, vector <float> *Def=0)</float>	10	
2.1.41	void SetLevelDeformation(double LevelEnergy,char LevT, int BandN=	-	
	1, int BandL=-1, int NPhon=-1, int MagN=-1, vector <float> *Def=0)</float>	10	

	2.1.42	string PrintLevels()	11
	2.1.43	string PrintReactions()	11
	2.1.44	string ReactionToTalysNotation(char DataSelection=kExcitationCS)	11
	2.1.45	float GetMass()	11
	2.1.46	NucleusData ToNucleusData()	11
	2.1.47	void GenerateGammaSpectrum(TH1F *Spectrum, TF1* ResolutionFu	nction,
		int NEntries=100000)	12
	2.1.48	void SetTGraphNameAndTitle(string ValName)	12
	2.1.49	void AddPoint(double x_value, Nucleus* Nucl)	12
2.2	Класс	TalysCalculation	12
	2.2.1	Results, FinalResult	13
	2.2.2	Target, Proj	13
	2.2.3	TalysOptions	13
	2.2.4	Variable	13
	2.2.5	Elastic, Inelastic, GeneratedGraphs	13
	2.2.6	VarValues	13
	2.2.7	GeneratedGraphs	13
	2.2.8	ProjectileEnergy	13
	2.2.9	void ReadParametersFromFile(string filename)	13
	2.2.10	void ExecuteCalculation(), void ExecuteCalculation(void (*VarChang	eFunction)(Nucleu
		*Nuclide, double value))	13
	2.2.11	void SetTarget(string _Target), void SetProjectile(string _Proj), void	
		SetVarValues(double min, double max, double step)	13
	2.2.12	void ExecuteCalculation(), ExecuteCalculation(void (*VarChangeFun	ction)(Nucleus
		*Nuclide,double value))	13
	2.2.13	void GenerateGraphs()	14

	2.2.14	TGraph* GetLevelExcitationCrossSection(double LevelEnergy, string	
		NucleusName, string Option)	14
	2.2.15	TG raph * Get Gamma Transition Cross Sction (double Gamma Energy,	
		string NucleusName)	14
	2.2.16	TMultiGraph * GetAngular Distributions For Level (double Level Energy)	,string
		NucleusName, string type, string option, TLegend *leg)	14
	2.2.17	TMultiGraph* GetElasticAngularDistributions(string type, string option)	n,
		TLegend *leg)	14
2.3	Класс	OpticalModelParameters	14

1 Введение

Библиотека **TalysLib** представляет собой основанный на ROOT набор классов, облегчающий взаимодействие программ, создаваемых пользователем, с базами данных и результатами расчетов TALYS. Библиотека не требует вмешательства в исходный код TALYS, и предполагается, что это позволит обеспечить хорошую совместимость с разными версиями TALYS. Для получения параметров ядра (деформаций, оптических потенциалов, масс, наборов уровней с соответствующими квантовыми числами) производится чтение базы данных TALYS (расположена в директории structure), результаты расчета извлекаются из выдачи TALYS (обычно, перенаправляемой в файл output) путем поиска ключевых слов и считывания соответствующих значений.

2 Структура библиотеки

Библиотека состоит из набора классов, описывающих различные физические свойства ядер.

2.1 Класс Nucleus

Класс Nucleus включает в себя набор объектов и методов для работы со свойствами ядра. Описание методов и членов этого класса приведено ниже

2.1.1 Name, Reaction, Projectile

string Name – имя ядра вида "56Fe".

string Reaction – реакция, приводящая к образованию данного ядра, строка вида "(n,p)".

string Projectile – налетающая частица, строка вида "n". Возможные значения данного параметра: n, p, d, t, h, a, g.

2.1.2 vector<Level> Levels

Вектор, содержащий объекты типа Level-информацию о свойствах ядерных уровней.

2.1.3 OpticalModelParameters OMPN, OMPP

Объекты, содержащие в себе информацию об оптическом потенциале для нейтронов (OMPN) и протонов (OMPP)

2.1.4 Deformation

Объект, содержащий в себе сведения о деформации ядра в основном и возбужденных состояниях, а так же о природе этих состояний.

2.1.5 TGraph ElacticTotTalys, ElasticDirectTalys, ElasticCompoundTalys

Графики углового распределения упруго рассеянных частиц: ElacticTotTalys — полное сечение, ElasticDirectTalys — прямая компонента упругого рассеяния, ElasticCompoundTalys — компаунд-компонента. Данные графики заполняются функцией Nucleus::GetElasticAngularDistribution(type, string option) из векторов Angle, ElTot; Angle, ElCompound; Angle, ElDirect cooтветственно.

2.1.6 InelasticTotTalysV, InelasticDirectTalysV, InelasticCompoundTalysV, ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTalysV

Графики сечений в зависимости от некоторого, определяемого пользователем, параметра V. Заполняются функцией Nucleus::AddPoint(double x_value, Nucleus* Nucl) из значений TotInelastic, CompoundInelastic, DirectInelastic, TotElastic, CompoundElastic,

DirectElastic, TotTalys соответственно. Величины TotInelastic, CompoundInelastic, DirectInelastic, TotElastic, CompoundElastic, DirectElastic, TotTalys, в свою очередь, считываются непосредственно из output файла функцией Nucleus::ReadElastic().

2.1.7 BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteron, BNECS_triton, BNECS_3He, BNECS_alpha

Данные графики представляют собой полные сечения рождения частиц γ , n, p, d, 3 H, 3 He, α соответственно, в выходном файле данные величины названы «Binary non-elastic cross sections (non-exclusive)». Заполнение этих графиков производится функцией Nucleus::AddPoint(double x_value, Nucleus* Nucl) из величин BNECS_g, BNECS_n, BNECS_p, BNECS_d, BNECS_t, BNECS_tau, BNECS_a соответственно, а они, в свою очередь, считываются из оutput файла функцией Nucleus::ReadElastic().

2.1.8 TEISGraphTot, TEISGraphCont, TEISGraphDiscr

Данные графики представляют собой сечения неупругого рассеяния, т.е., реакций вида (n,1nx): полное, в континууме и на дискретных уровнях соответственно, в выходном файле данные величины названы «Total exclusive Inelastic scattering». Заполнение этих графиков производится функцией Nucleus::AddPoint(double x_value, Nucleus* Nucl) из величин TEISTot, TEISCont, TEISDiscr соответственно, а они, в свою очередь, считываются из output файла функцией Nucleus::ReadElastic().

2.1.9 void ReadElastic()

Функция, считывающая output файл и записывающая в переменные TOTGamProd, TOTNProd, TOTPProd, TOTAProd полные сечения образования γ , n, p, d, α соответственно; в TotElastic, CompoundElastic, DirectElastic записываются сечения упругого рассеяния и вклады отдельных компонент, а в TotInelastic, CompoundInelastic,

DirectInelastic - сечения неупругого рассеяния. В переменную TotTalys записываются значения полного сечения.

2.1.10 TGraph* GetElasticAngularDistribution(string type="Total string option=)

Данная функция строит угловое распределение рассеянных нейтронов и возвращает указатель на соответствующий график. Переменная type задает возможные варианты графика. Возможные значения: "Total полное сечение, "Compound компаунд-компонента, "Direct прямая компонента. Аргумент option принимает 2 значения: (поумолчанию) и "new". В первом случае функция вернет уже построенный график, во втором-перестроит его.

2.1.11 int WriteOMPOrUseKoningP, WriteOMPOrUseKoningN

Данные переменные задают алгоритм работы с оптической моделью для протонов и нейтронов соответственно. Если значение переменной равно -1, то в расчете будет использован потенциал "по-умолчанию либо заданный в input файле, если WriteOMPOrUseKoning=0, то будет использован потенциал, считанный из базы TALYS. Этот потенциал может быть изменен пользователем. Если в базе потенциала для данного ядра нет, будет использован потенциал "по-умолчанию". В случае, если если WriteOMPOrUseKoning=1, то будет использован потенциал из базы, а если его не окажется-то потенциал Кёнинга. Если WriteOMPOrUseKoning=2, то будет использован потенциал Кёнинга вне зависимости от наличия в базе потенциала для данного ядра.

2.1.12 void MergeLevels(float tolerancy)

Функция, используемая для слияния уровней, считанных из TALYS и NDS. Использование в дальнейшем не предполагается.

2.1.13 SortingLevels()

Функция, выполняющая сортировку вектора Levels по энергии уровня.

2.1.14 FindProductsByReaction(string reaction)

Функция, выполняющая поиск продукта по соответствующей реакции и возвращающая указатель на найденный продукт. В случае, если продукт не найден, возвращает NULL.

2.1.15 FindProductByName(string Name)

Функция, выполняющая поиск продукта по его имени и возвращающая указатель на найденный продукт. В случае, если продукт не найден, возвращает NULL.

2.1.16 Nucleus* fMotherNucleus

Указатель на начальное ядро, если рассматриваемое ядро является продуктом реакции и содержится в векторе Products. В случае, если рассматриваемое ядро является начальным ядром, он равен NULL. Устанавливается функцией AssignPointers().

2.1.17 **Nucleus()**

Конструктор по-умолчанию. Необходим для корректной работы динамических контейнеров.

2.1.18 Nucleus(string Name, string Reaction=)

Конструктор. Принимает как аргумент Name-название ядра, например, "56Fe и Reaction-реакцию, в которой данное ядро образовалось. В случае начального ядра этот аргумент остается, по умолчанию, пустым. В процессе создания ядра данным

конструктором выполняются считывание из базы TALYS величин Z, A, распространенности изотопа, схемы уровней, параметорв деформации и оптических потенциалов, выполняется присваивание указателей на данное ядро для уровней, деформаций и оптических потенциалов.

2.1.19 Nucleus(NucleusData ND)

Конструктор, позволяющий создать объект Nucleus из более компактного объекта NucleusData. В силу технических ограничений, не удалось реализовать запись объекта Nucleus в .root файл, возможно, эта проблема связана с указателями. Объект NucleusData записывается в .root файл и считывается из него без каких-либо проблем.

2.1.20 ReadENSDFFile(string filename=,string Nuclide=)

Функция, считывающая ENSDF файлы и заполняющая уровни (Levels). Использование в дальнейшем не предполагается.

2.1.21 ReadLevelsFromTalysDatabase(string type="final")

Функция, считывающая параметры уровней из базы TALYS. В качестве аргумента принимает тип информации об уровнях. Возможные значения аргумента: "final "exp "hfb описание приведено в TALYS manual (v 1.9), p. 137.

2.1.22 SetProjectileEnergy(double E)

Функция, устанавливающая энергию начальной частицы в МэВ.

2.1.23 vector<Level*> GetLevelsWithCorrespondingTransitions(float Energy, float tolerancy=1, float intensity=0)

Функция, выполняющая поиск уровней с гамма-переходами энергии Energy, энергия гамма-перехода может отличаться от заданной на tolerancy, интенсивность

должна быть не ниже intensity. Использовалась для поиска подходящих гамма-переходов в данных, считанных из ENSDF (ну, или, NDS). Использование в дальнейшем не предполагается.

2.1.24 Level* FindLevelFromTalys(float Energy, SpinParity JP)

Функция, выполняющая поиск уровня, полученного из базы TALYS с данной энергией и спин-четностью JP. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.1.25 Level* FindBestLevelByEJP(float Energy, SpinParity JP, float tolerancy=1)

Функция, выполняющая поиск уровня, лучше всего подходящего под заданные энергии. В случае, когда есть несколько уровней в пределах tolerancy от Energy, лучшим будет признан тот, который имеет спин-четности, совпадающие с JP. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.1.26 FindLevelByEnergy(float Energy, float tolerancy=1)

Функция, выполняющая поиск уровня с энергией Energy, энергия уровня может отличаться на tolerancy от величины Energy. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.1.27 Level* FindLevelByNumber(int number)

Функция, выполняющая поиск уровня с данным порядковым номером (соответствует нумерации TALYS). Нумерация начинается с основного состояния, ему присвоен номер 0. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

2.1.28 GammaTransition* GetBestTransition(float Energy, float tolerancy=1)

Функция, выполняющая поиск гамма-перехода с энергией, наиболее близкой к Energy в пределах tolerancy. В случае успеха возвращает указатель на найденный уровень, в противном случае-NULL.

Функция, выполняющая поиск гамма-переходов с энергией, наиболее близкой к Energy в пределах tolerancy. Возвращает вектор указателей на найденные переходы.

2.1.30 vector<GammaTransition*>GetGammaTransitions(string option="Talys int BetterThan=100, float tolerancy=1, float intensity=0)

Функция, выполняющая поиск гамма-переходов с происхождением и надежностью, задаваемыми аргументами функции. Использование в дальнейшем не предполагается.

2.1.31 vector<Nucleus> Products

Вектор, содержащий объекты типа Nucleus. В случае, когда рассматриваемое ядро является начальным, содержит ядра-продукты, в случае же, когдя рассматриваемое ядро само является продуктом, пуст. Заполняется функцией Nucleus::GenerateProducts().

2.1.32 void GenerateProducts(string Projectile="n")

Функция, выполняющая создание продуктов. Заполняет вектор Products, вызывает функции, выполняющие создание input файла для TALYS, его запуск и считывание результатов вычислений. В качестве аргумента принимает название начальной частицы.

2.1.33 void ExecuteCalculationInTalys(string Projectile="n")

Функция, выполняющая создание входного файла для TALYS и запуск вычислений. В качестве аргумента принимает название начальной частицы. Во входной файл могут быть добавлены дополнительные команды, находящиеся в Nucleus::TalysOptions.

2.1.34 void ReadTalysCalculationResult()

Функция, выполняющая считывание результатов расчета TALYS. Считываются:

- 1. ADTot, ADDirect, ADCompound-угловые распределения неупруго рассеянных частиц и продуктов реакции и вклады прямых и компаунд-процессов
- 2. сечения излучения гамма-квантов

В теле данной функции выполняется приписывание гамма-переходов соответствующим уровням.

2.1.35 void AssignSimilarLevels(float Tolerancy=1.5)

Функция, выполняющая приписывание уровням близких по энергии. Была введена, чтобы перерабатывать огромное множество одинаковых уровней из ENSDF. Использование в дальнейшем не предполагается.

2.1.36 void DrawLevelScheme(double MinTalysCS=0)

Функция, отрисовывающая схему уровней на текущий Canvas. В качестве аргумента принимает сечение излучения гамма-кванта, переходы с сечением менее MinTalysCS отрисованы не будут.

2.1.37 void AssignPointers()

Функция, приписывающая указателям правильные значения. Присваивает fMotherNucleus указатель на начальное ядро, Level->fNucleus-указатель на ядро, к которому относит-

ся данный уровень. Необходимо вызывать при копировании и после окончания записи в контейнер.

2.1.38 void ErasePointers()

Функция, вызывающая стирание указателей.

2.1.39 void AssignDeformationsToLevels()

Функция, приписывающая уровням указатель на соответствующий объект LevelDeformation, содержащий информацию о деформации уровня и его происхождении. Приписывание деформаций осуществляется по номеру уровня.

2.1.40 void SetLevelDeformation(int LevelNumber,char LevT, int BandN=-1, int BandL=-1, int NPhon=-1, int MagN=-1, vector<float> *Def=0)

Функция, позволяющая установить деформацию для уровня с номером LevelNumber. В случае, если аргумент = -1, он будет пропущен при записи деформации в файл. Параметры деформации описаны в TALYS manual (v 1.9), р. 138, LevT соответствует типу уровня (type of collectivity), BandN-номер полосы (the number of band), BandL-момент полосы или мультипольность(?) (multipolarity), NPhon-число фононов (phonon number of the level), MagN-магнитное квантовое число (magnetic quantum number). Значения деформации ($\beta_2...\beta_8$) передаются с помощью указателя на вектор *Def.

2.1.41 void SetLevelDeformation(double LevelEnergy,char LevT, int BandN=-1, int BandL=-1, int NPhon=-1, int MagN=-1, vector<float> *Def=0)

Функция, позволяющая установить деформацию для уровня с энергией LevelEnergy (точность задания энергии должна быть лучще 1 кэВ). В случае, если аргумент = -1, он будет пропущен при записи деформации в файл. Параметры деформации описаны в TALYS manual (v 1.9), р. 138, LevT соответствует типу уровня (type of collectivity),

BandN-номер полосы (the number of band), BandL-момент полосы или мультипольность(?) (multipolarity), NPhon-число фононов (phonon number of the level), MagN-магнитное квантовое число (magnetic quantum number). Значения деформации ($\beta_2...\beta_8$) передаются с помощью указателя на вектор *Def.

2.1.42 string PrintLevels()

Функция, возвращающая список уровней данного ядра в виде строки.

2.1.43 string PrintReactions()

Функция, возвращающая список продуктов и реакций, если данное ядро является начальным.

2.1.44 string ReactionToTalysNotation(char DataSelection=kExcitationCS)

Функция, генерирующая ключевое слово, по которому сведения о реакции, которая привела к рождению данного ядра, можно найти в файле. В качестве аргумента принимает тип информации, для которого должно быть сгенерировано ключевое слово. Возможные значения аргумента: kExcitationCS-сечение образования конкретного состояния, kAngularDistribution-угловое распределение частицы-продукта, kTotalInelasticCS-полное сечение образования данного продукта.

2.1.45 float GetMass()

Функция, возвращающая массу ядра в МэВ.

2.1.46 NucleusData ToNucleusData()

Функция, конвертирующая объект Nucleus в NucleusData, который может быть сохранен в .root файл.

2.1.47 void GenerateGammaSpectrum(TH1F *Spectrum, TF1* ResolutionFunction, int NEntries=100000)

Функция, позволяющая сгенерировать ожидаемый гамма-спектр на основе результатов вычислений в TALYS. Первый аргумент-указатель на гистограмму, куда будет записан спектр, второй-указатель на функцию (TF1), описывающую разрешение детектора, третий-число событий в спектре.

2.1.48 void SetTGraphNameAndTitle(string ValName)

Функция, задающая имена и подписи осей для графиков. В качестве аргумента принимает имя переменной, которая соответствует оси x.

2.1.49 void AddPoint(double x_value, Nucleus* Nucl)

Функция, выполняющая заполнение графиков InelasticTotTalysV, InelasticDirectTalysV, InelasticCompoundTalysV, ElasticTotTalysV, ElasticDirectTalysV, ElasticCompoundTalysV, TotTalysV, BNECS_gamma, BNECS_neutron, BNECS_proton, BNECS_deuteron, BNECS_triton, BNECS_3He, BNECS_alpha, TEISGraphTot, TEISGraphCont, TEISGraphDiscr значениями, находящимися в объекте, на который указывает указатель Nucleus* Nucl, в качестве переменной x передается x_value. Вызывает аналогичную функцию для уровней (void Level::AddPoint(double x_value,Level *level)). Используется классом TalysCalculation для построения графиков зависимости результатов вычислений от переменных, задаваемых пользователем.

2.2 Класс TalysCalculation

Класс TalysCalculation включает в себя набор объектов и методов для работы с вычислениями в TALYS. Присутствуют методы для запуска расчётов, изменения параметров вычислений. Описание методов и членов этого класса приведено ниже

2.2.2 Target, Proj
2.2.3 TalysOptions
2.2.4 Variable
2.2.5 Elastic, Inelastic, GeneratedGraphs
2.2.6 VarValues
2.2.7 GeneratedGraphs
2.2.8 ProjectileEnergy
2.2.9 void ReadParametersFromFile(string filename)
Функция,
2.2.10 void ExecuteCalculation(), void ExecuteCalculation(void (*VarChangeFunction)(Nucleus *Nuclide, double value))
Функции,
2.2.11 void SetTarget(string_Target), void SetProjectile(string_Proj), void SetVarValues(double min, double max, double step)
Функции,
2.2.12 void ExecuteCalculation(), ExecuteCalculation(void (*VarChangeFunction)(Nucleus *Nuclide,double value))
Функции,

2.2.1 Results, FinalResult

2.2.13 void GenerateGraphs()

Функция,

2.2.14 TGraph* GetLevelExcitationCrossSection(double LevelEnergy, string NucleusName, string Option)

Функция,

2.2.15 TGraph* GetGammaTransitionCrossSction(double GammaEnergy, string NucleusName)

Функция,

2.2.16 TMultiGraph* GetAngularDistributionsForLevel(double LevelEnergy,string NucleusName, string type, string option, TLegend *leg)

Функция,

2.2.17 TMultiGraph* GetElasticAngularDistributions(string type, string option, TLegend *leg)

GetElasticAngularDistributions возвращает TMultiGraph с угловыми распределениями, соответствующими значениям VarValues.

2.3 Knacc Optical Model Parameters