

The Enterprise class Monitoring Solution for Everyone

WWW.ZABBIX.COM

Zabbix 3.0 Тренинг Сертифицированный Специалист

1 день

НАЧАЛО ТРЕНИНГА

Возможности

Введение

- Предыстория/компания
- ✓ Опыт с CLI на Unix-подобных системах
- ✓ Опыт работы с Zabbix
- Опыт работы с другими решениями мониторинга
- ✓ Текущие инсталляции Zabbix

Вопросы поощряются в любое время

РАСПИСАНИЕ НА КАЖДЫЙ ДЕНЬ

Понедельник

10.00-11.30 Zabbix 3.0 Сертифицированный специалист

11.30-11.45 Перерыв

11.45-13.00 Zabbix 3.0 Сертифицированный специалист

13.00-14.00 Перерыв

14.00-15.30 Zabbix 3.0 Сертифицированный специалист

15.30-15.45 Перерыв

15.45-17.50 Zabbix 3.0 Сертифицированный специалист

Вторник

09.00-11.30 Zabbix 3.0 Сертифицированный специалист

11.30-11.45 Перерыв

11.45-13.00 Zabbix 3.0 Сертифицированный специалист

13.00-14.00 Перерыв

14.00-15.30 Zabbix 3.0 Сертифицированный специалист

15.30-15.45 Перерыв

15.45-17.50 Zabbix 3.0 Сертифицированный специалист

Среда

09.00-11.30 Zabbix 3.0 Сертифицированный специалист

11.30-11.45 Перерыв

11.45-14.00 Zabbix 3.0 Сертифицированный специалист

14.00-15.00 Перерыв и время Q/A

15.00-16.00 Расширенные темы

16.00-17.50 Сертификация и выдача сертификатов

ПОВЕСТКА

O Zabbix

Архитектура

Установка

Сбор данных

Элементы данных

Определение проблем

Zabbix – Open Source программное обеспечение корпоративного уровня

Факты о продукте

Поддерживает практически все платформы и методы мониторинга

Масштабирование до крупных сред

Распределенный мониторинг

Превентивный мониторинг

Честный Open Source, Без проприетарных аддонов, "профессиональных" или "корпоративных" версий

HISTORY OF ZABBIX

версии

ВЫХОД ВЕРСИЙ

ФАКТЫ О КОМПАНИИ

- ✓ Основана 12 Апреля, 2005 в Риге, Латвия.
- ✓ Частное управление,Без инвесторов

Размещение

Головной офис: Рига, Латвия Филиалы: Токио, Япония

Нью-Йорк, США

МИССИЯ & ЦЕЛИ

Наша миссия

Фокусировка на разработке и предоставлении коммерческих сервисов по программному обеспечению Zabbix

Цели и принципы

Разработка исключительной платформы мониторинга

Прислушиваться к нашим пользователям и сообществу

Применять последние технологии и потребности пользователей

ИСТОРИЧЕСКИЕ ДЕТАЛИ

ТОР 10 ЗАГРУЗОК 2015

Страна
США
Великобритания
Китай
Бразилия
Россия
Япония
Германия
Польша
Франция
Украина

Всего
434,971
193,038
68,604
61,218
47,197
21,100
18,987
15,095
11,246
6,889

ПРИЧИНЫ МОНИТОРИНГА

Трудности в управлении непрозрачной средой

Высокая стоимость простоя

Сведение к минимуму влияния на бизнес процессы

Знание, что сервис доступен

ВОЗМОЖНОСТИ ZABBIX

Сбор данных

Сбор различными методами, включая SNMP, родными агентами, IPMI и другими

Хранение данных

После сбора данных не имеет смысла удалять их, так как зачастую мы захотим сохранить их для последующего анализа

Определение проблем и оповещения

Собранные данные можно сравнивать с пороговыми значениями и отправлять оповещения с использованием разных каналов, таких как email или СМС

Визуализация

Люди лучше воспринимают визуализированные данные, в особенности когда речь идет о тысячах значений данных

DIFFERENT APPROACHES

Безагентный мониторинг

- ✓ ICMP ping
- ✓ HTTP, SSH, IMAP, SMTP,
- другие сервисы
- Использование удаленных команд
- ✓ Telnet и SSH

Централизованный мониторинг

 Вся настройка и управление выполняются на одном центральном Zabbix сервере

Мониторинг агентами

- ✓ Пассивные агенты SNMP, Zabbix агент, IPMI
- Активные агентыSNMP трапы, Zabbix агенты

Распределенный мониторинг

- Уменьшение нагрузки на сеть
- ✓ Пережить время недоступности соединения

4TO TAKOE ZABBIX?

Zabbix – программное решение для мониторинга производительости и доступности IT инфраструктуры (но не ограничено этим)

- Сетевые устройства
- ✓ Ресурсы ОС
- Промежуточные устройства/ПО
- Приложения
- ✓ Сервисы
- ✓ Всё что угодно

КЛЮЧЕВЫЕ ПРИНЦИПЫ РАЗРАБОТКИ

Делай короче и проще (KISS)

Быть эффективным: использование как можно меньших ресурсов системы насколько возможно (использование памяти/CPU)

Очень высокая производительность и качество продукта

Малое количество сторонних зависимостей

ВАЖНЫЕ РЕШЕНИЯ

Веб-интерфейс

✓ Открытый и возможностью изменения

Всё хранится в реляционной базе данных Язык С у сервера, прокси и агента

- Лучшая производительность
- ✓ Маленький размер и меньшее использование ресурсов
- ✓ Linux агент использует меньше мегабайта RAM
 (736К на 64бит; исключая разделяемые библиотеки)

Можно использовать во встраивамых решениях

✓ SQLite, очень маленький размер

ПРОСТАЯ АРХИТЕКТУРА

РАЗДЕЛЕННЫЕ КОМПОНЕНТЫ

возможности 1

Мониторинг в режие реального времени

- Мониторинг производительности
- ✓ Мониторинг доступности
- Мониторинг целостности
- Гибкие условия оповещений
- ✓ Оповещения (email, CMC, Jabber)

Предсказание тенденций

- Значения будущего
- ✓ Время

Визуализация

- **∨** Графики
- **✓** Карты
- Пользовательские страницы (комплексные экраны)
- Фильтруемая ПАНЕЛЬ

Оповещения (email, CMC, Jabber)

Шифрование (сертификат, PSK)

Услуги IT / SLA мониторинг

- ✓ Иерархические услуги IT
- ✓ Отчетность по SLA в режиме реального времени

Гибкость

- Легко расширяемый агент
- Любые методы оповещений
- ✓ Сервер работает на любой Unix платформе
- ✓ Zabbix sender

Превентивный мониторинг

- ✓ Автоматическое выполнение удаленных команд
- Выполняемые вручную команд

Агрегативный мониторинг

Мониторинг группы узлов сети

возможности 2

Высоко-производительные родные агенты

Сетевое обнаружение

Авто-регистрация активных агентов Инвентарь

✓ Автоматический сбор

Веб-интерфейс для настройки (drag'n'drop карт/экранов и прочего)

Аутентификация

- Встроенная
- ✓ На основе LDAР
- ✓ HTTP аутентификация

Эскалации

Неограниченное количество уровней

Zabbix прокси

✓ Активный/пассивный

Веб-мониторинг

Мониторинг VMware

Технологии улучшения прозводительности

- ✓ Буферизация данных на стороне агента
- ✓ Кэши на стороне сервера

Настройка групп пользователей

Построитель регулярных выражений

Поддержка IPv6

IPMI мониторинг

Обслуживание

UTF8

API

Java gateway (прямой мониторинг JMX)

ТРЕБОВАНИЯ К ZABBIX СЕРВЕРУ

База данных

Дополнительные библиотеки

- ✓ Linux
- ✓ Solaris
- ✓ AIX
- ✓ HP-UX
- ✓ FreeBSD
- ✓ OpenBSD

- MySQL
- ✓ Ответвления от MySQL
- ✓ PostgreSQL
- ✓ Oracle
- ✓ SQLite
- ✓ IBM DB2

- ✓ SNMP: NET-SNMP
- ✓ Web: libcurl
- ✓ SSH: libssh2
- ✓ IPMI: OpenIPMI
- ✓ Jabber: lib-iksemel
- ✓ VMware: libxml2
- ✓ ODBC: unixODBC
- ✓ Шифрование: OpenSSL

ЧТО РЕКОМЕНДУЕТСЯ

Аппаратное обеспечение

✓ Многоядерный 64битный СРU

Операционная система

✓ Linux

Движок базы данных

✓ MySQL c InnoDB

Почему MySQL?

- Открытый исходный код
- Наиболее широко используемая

Дистрибутив – что чаще используется

✓ RedHat, CentOS, SUSE, Debian, Ubuntu Дистрибутив и выбор БД

✓ Используйте то, с чем больше знакомы

УСТАНОВКА СЕРВЕРА ИЗ ПАКЕТОВ

RHEL/CentOS

Установка Zabbix сервера

```
# rpm -ivh http://repo.zabbix.com/zabbix/3.0/rhel/\
7/x86_64/zabbix-release-3.0-1.el7.noarch.rpm

# yum install zabbix-server-mysql
```

или

yum install zabbix30-server-mysql

OpenSUSE/SLES

zypper install zabbix-server-mysql

УСТАНОВКА СЕРВЕРА: АЛТЕРНАТИВНЫЙ СПОСОБ (ИСХОДНИКИ)

Сконфигурируйте и скомпилируйте

```
# ./configure -help
# ./configure <параметр1> <параметр2> ...
# make install
```

Пример:

```
# ./configure --enable-server --with-mysql --with-net-snmp ...
# make install
```


СОЗДАНИЕ БАЗЫ ДАННЫХ

Установка MySQL сервера

yum install mysql-server

Создание Zabbix базы данных и пользователя

```
# mysql
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost \
identified by 'zabbix';
```

Загрука файлов

```
# cd /usr/share/doc/zabbix-server-mysql-3.0.0
# zcat create.sql.gz | mysql -uroot zabbix
```


ЗАВЕРШЕНИЕ УСТАНОВКИ СЕРВЕРА

Настройка Zabbix сервера

```
# vi /etc/zabbix/zabbix_server.conf

DBHost=localhost

DBName=zabbix

DBUser=zabbix

DBPassword=zabbix
```

Запуск Zabbix сервера

```
# service zabbix-server start
```

ИЛИ

systemctl start zabbix-server

ТРЕБОВАНИЯ К ВЕБ-ИНТЕРФЕЙСУ

Компонент

Серверная часть

Браузер

Требование

Apache, lighthttpd, nginx Любой другой с поддержкой РНР

Mozilla Chrome Safari MS Internet Explorer Opera

ВЕБ-ИНТЕРФЕЙС ТРЕБОВАНИЯ К РНР

Компонент

РНР версия

Поддержка базы данных в РНР

РНР модули

Другие требования

Требование

5.4.0 или выше

php-mysql, php-sqlite, php-pgsql, php-sqlora, php-ibm_db2

php-bcmath, php-gd 2.0, php-net-socket, php-mbstring, поддержка PNG/JPEG/FreeType, php-xml, php-gettext, php-ldap

Некоторые дистрибутивы могут разделять функции PHP ядра в пакеты такие как php5-ctype, php-session or php5-xml/php5-dom

КОНФИГУРАЦИЯ РНР

Компонент				
	4 1 1 1		7	

PHP memory limit

PHP post max size

PHP upload max filesize

PHP max execution time

PHP max input time

PHP Timezone

Требование

128 МБ

16 Mb

2 МБ

300 секунд

300 секунд

Europe/Riga America/Chicago

http://php.net/manual/ru/timezones.php

УСТАНОВКА ВЕБ-ИНТЕРФЕЙСА ИЗ ПАКЕТОВ

RHEL/CentOS

yum install zabbix-web-mysql

OpenSUSE/SLES

zypper install zabbix-phpfrontend

УСТАНОВКА ВЕБ-ИНТЕРФЕЙСА: АЛЬТЕРНАТИВНЫЙ СПОСОБ (ИСХОДНИКИ)

Из папки с исходными кодами

cp -a frontends/php <htdocs>/zabbix

Распространенные места <htdocs>:

/usr/local/apache2/htdocs

/srv/www/htdocs

/var/www/html

/var/www

ВЕБ-ИНТЕРФЕЙС: ПОМОЩНИК ПО НАСТРОЙКЕ

Зайдите в веб-интерфейс при помощи веб браузера: <DNS или IP>/zabbix

НАСТРОЙКА ВЕБ-ИНТЕРФЕЙСА: АЛТЕРНАТИВНЫЙ СПОСОБ

cp conf/zabbix.conf.php.example conf/zabbix.conf.php

Измените новый файл

```
$DB["TYPE"] = "MYSQL";
$DB["SERVER"] = "localhost";
$DB["PORT"] = "0";
$DB["DATABASE"] = "zabbix";
$DB["USER"] = "zabbix";
$DB["PASSWORD"] = "zabbix";
$ZBX_SERVER = "localhost";
$ZBX_SERVER_PORT = "10051";
$ZBX_SERVER_NAME = "";
```


ДОСТУПНОСТЬ АГЕНТА

УСТАНОВКА АГЕНТА

Установите Zabbix агента

yum install zabbix-agent

Hacтройте zabbix_agentd.conf

Server

ServerActive

Hostname

Запустите Zabbix агента

service zabbix-agent start

Зачастую уже скомпилирован

Сконфигурируйте и скомпилируйте исходные коды

YCTAHOBKA WINDOWS AFEHTA

Установите службой Windows

```
cmd> zabbix_agentd.exe --config \
"C:\Program Files (x86)\Zabbix agent\zabbix_agentd.conf" --install
```

Запустите агента

cmd> zabbix_agentd.exe --start

Пример конфигурации:

zabbix_agentd.win.conf

ПРАКТИЧЕСКАЯ УСТАНОВКА

Установите MySQL сервер

Установите Zabbix сервер, веб-интерфейс и агента

Создайте Zabbix БД

Hастройте Zabbix сервер

Настройте веб-интерфейс

Запустите веб-сервер, Zabbix сервер и агента

ОПРЕДЕЛЕНИЯ В ZABBIX

-	O	. V.	_ /	$oldsymbol{\cap}$		
- A				•		

Требование

Узел сети

Любое подключенное к сети устройство с IP или DNS

Группа узлов сети

Логическая группировка узлов сети

Элемент данных

Источник информации / метрика

Триггер

Логическое выражение описывающее условие проблемы

Шаблон

Набор объектов (элементов данных, триггеров и т.д.) готовых к применению на одном или нескольких узлах сети

Группа элементов данных

Группировка элементов данных в логическую группу

Событие

Изменение состояния элемента

Действие

Гибкий набор условий Автоматически выполняемый набор операций

Операция

Различные типы: оповещение, удаленная команда, добавление/удаление узла сети, присоединение шаблонов

ПОСМОТРИМ НА НИХ ВМЕСТЕ

ПРИМЕР ИЗ РЕАЛЬНОЙ ЖИЗНИ

E-mail сервер

Очередь почты

Очередь почты больше 100

Очередь превысила 100 в 2015.12.31 20:45

Проблемы с E-mail сервером

Если затронут e-mail сервер Если проблема критична Если нерабочее время

Отправка СМС администратору

Zabbix сервер

Узел сети

Триггер

Условие

Операция

Событие Действие

Фактическое сообщение

Очередь почты на e-mail сервере: 248

ОСНОВЫ

Пять уровней меню

Мониторинг Инвентарь Отчеты Настройка Администрирование

Права зависят от типа пользователя

Нормальный пользователь: Мониторинг, Инвентарь и Отчеты

Zabbix Администратор: Мониторинг, Инвентарь, Отчеты и Настройка

Zabbix Супер Администратор: Мониторинг, Инвентарь, Отчеты, Настройка и Администрирование

Глобальный поиск

Выбор списка и массовые обновления

Спец пользователь: Guest

Неавторизованный пользователь, используемый для входа

Полноэкранный режим у многих страниц (спец иконка)

Выбор темы, языка

ПАНЕЛЬ

Состоит из двух частей

- Избранное
- Статистика верхнего уровня

Перемещение виджетов

Скрытие/Отображение панелей

Фильтрация по группе узлов сети, обслуживанию, важности триггеров и имени

Отображение неподтвержденных триггеров

ГЛОБАЛЬНЫЕ ОПОВЕЩЕНИЯ

Каждому пользователю (нельзя задать администратором)

Таймаут

Воспроизведение сигнала один раз/10 сек/всегда

Разные звуки в зависимсти от важности

Заснуть/выключить звук

ВСЕ УРОВНИ ІТ ИНФРАСТРУКТУРЫ

Business Any application that Customer depends on. applications Middleware **Apache** php ORACLE" MysQL 010110 Logs & text files Incoming data Virtual layer **vm**ware () Network Catalyst Router Switch Tru64™ ORACLE® 08 FreeBSD. OpenBST Hardware 1111

ЧТО ТАКОЕ УЗЕЛ СЕТИ?

Узел сети – устройство, которые вы хотите наблюдать

Примеры:

- Сервер
- Коммутатор
- UPS
- Приложение
- База данных
- ✓ Веб-сайт
- ...всё-что угодно

УЗЛЫ СЕТИ

СВОЙСТВА УЗЛА СЕТИ

Имя

Видимое имя

Группы

Новая группа

Интерфейсы - IP (рекомендуется) / DNS

- Агент
- SNMP
- JMX
- IPMI

Наблюдение через прокси

Статус

Остальные вкладки:

- Шаблоны
- IPMI
- Макросы
- Инвентарь

ИНТЕРФЕЙСЫ УЗЛА СЕТИ

ПРАКТИЧЕСКАЯ УСТАНОВКА

Создайте в веб-интерфейсе группу узлов сети "Сервера тренинга"

Создайте новый узел сети

Используйте ваше имя VM как имя узла сети

Поместите его в группу узлов сети "Сервера тренинга"

ВИД НАСТРОЙКИ УЗЛОВ СЕТИ

Фильтр узлов сети

Ссылки на объекты настройки

МАССОВОЕ ИЗМЕНЕНИЕ УЗЛОВ СЕТИ

Настройка → Узлы сети

ЧТО ТАКОЕ ДОСТУПНОСТЬ УЗЛОВ СЕТИ?

Доступность определяется 4 различными типами

проверок раздельно:

- ✓ Пассивный Zabbix агент
- ✓ SNMP
- ✓ JMX
- ✓ IPMI

Get value from agent

failed: cannot connect to

[[195.13.189.29]:10050]:

[4] Interrupted system

call

Сообщения об ошибках сохраняются по каждому типу

Вычисляется сервером внутри

Отображается в списке и в свойствах узла сети

СОСТОЯНИЕ ДОСТУПНОСТИ УЗЛОВ СЕТИ

Zabbix сервер меняет иконку доступности узла сети на серую:

- Нет активированных элементов данных на соответствующем интерфейсе
- Узел сети наблюдается через прокси, другой прокси или сервер
- Узел сети наблюдается через прокси, который стал недоступен
- Узел сети деактивирован

ГРУППЫ УЗЛОВ СЕТИ

Одной группе может принадлежать много узлов сети

Узел сети может принадлежать любому количеству групп

Группы используются для прав

SAP HANA servers	Hosts 1	Templates	SAP HANA DB
Service servers	Hosts 1	Templates	ADServer Riga
SL Servers	Hosts 3	Templates	backup1-riga1.zabbix.com, c2blade00san02.zabbix.com, c2gsm01.zabbix.com
Soft Routers	Hosts 2	Templates	pe1-kgn1.zabbix.com, pe1-mgn1.zabbix.com
Sybase servers	Hosts 1	Templates	Sybase DB

ЧТО ТАКОЕ ЭЛЕМЕНТ ДАННЫХ?

Элемент данных – определяет метрику, которую вы хотите наблюдать

Примеры:

- ✓ Загрузка CPU
- ✓ Состояние БД
- Температура в серверной комнате
- Количество онлайн пользователей приложения

...всё-что угодно

ЭЛЕМЕНТЫ ДАННЫХ

ТИПЫ ЭЛЕМЕНТОВ ДАННЫХ

Zabbix агент

✓ Опрашиваются Zabbix сервером

Zabbix агент (активный)

- Опрашиваются Zabbix агентом
- Могут кэшироваться

Безагентные проверки (простые)

✓ Опрашиваются Zabbix сервером

SNMP агент/траппер

Поддерживаются все SNMP версии

Zabbix траппер

✓ Используется с Zabbix sender

Внутренние

✓ Состояние Zabbix

IPMI JMX

Агрегативные

grpsum["MySQL
Servers","vfs.fs.size[/,total]","last", "0"]

Внешние проверки

script[параметры]

SSH

 Поддерживается аутентификация по паролю и ключу

Telnet

Базы данных

Вычисляемые

last("vm.memory.size[free]")+
last("vm.memory.size[buffers]")

ОБЩЕНИЕ

Протокол на основе JSON

1.0, 1.1: очень простой протокол

1.4: XML

1.6+: JSON

ПАССИВНЫЕ VS АКТИВНЫЕ ПРОВЕРКИ

- ✓ Пассивные (pull)
- ✓ Активные (push)

ПОТОК ДАННЫХ

ПАССИВНЫЙ VS АКТИВНЫЙ -ИДЕНТИФИКАЦИЯ

✓ Пассивный IP адрес / DNS имя

✓ Активный

Явно заданный Hostname

HostnameItem если Hostname не задан system.hostname по умолчанию

КЛЮЧ ЭЛЕМЕНТА ДАННЫХ

Общий синтаксис: ключ[парам1,парам2,парам3]

Должен быть уникальным в пределах узла сети

Гибкий / не гибкий (net.tcp.listen[631] / agent.ping)

Используйте \$1, \$2...\$9 в имени элемента данных, чтобы сослаться на первый, второй... девятый параметр ключа элемента данных

Используйте кавычки

vfs.file.size[/tmp/abc,123]

VS

vfs.file.size["/tmp/abc,123"]

БОЛЕЕ ПОДРОБНО О КЛЮЧЕ ЭЛЕМЕНТА ДАННЫХ

Строка в свободной форме у SNMP & IPMI (не относится кОІD & IPMI сенсору)

Параметры в кавычках (proc.mem["httpd",apache,sum])

Краткий справочник в веб-интерфейсе

Смотрите документацию Zabbix по всему списку ключей

Standard items		Туре	Zabbix agent	•
KEY	NAME			
agent.hostname	Agent host name. Returns string			
agent.ping	Agent availability check. Returns nothing - unavailable; 1 - available			
agent.version	Version of Zabbix agent. Returns string			
kernel.maxfiles	Maximum number of opened files supported by OS. Returns integer			
kernel.maxproc	Maximum number of processes supported by OS. Returns integer			

ИНТЕРФЕЙСЫ У ЭЛЕМЕНТОВ ДАННЫХ

ЕДИНИЦЫ ИЗМЕРЕНИЯ ЭЛЕМЕНТОВ ДАННЫХ

Единицы измерения

Только для числовых данных

Если задана, добавляется префикс K/M/G/T/P/E/Z/Y:

5242880 B -> 5 MB

Специальная обработка для:

- B, Bps, unixtime, uptime
- Черный список для %, ms, RPM, rpm

ПРЕДОБРАБОТКА ЭЛЕМЕНТОВ ДАННЫХ

Хранение значений

Хранить как есть: без изменений полученного значения

Дельта (скорость в секунду): вычисляется как (значениепредзначение)/(времяпредвремя)

Полезно при мониторинге счетчиков

Дельта (простое изменение): вычисляется как (значениепредзначение)

Тип данных

Десятичный, восьмиричный, шестнадцатеричный, булевый

Множитель

Вычисляется как значение * множитель

Используйте 0.125, чтобы разделить на 8

ПРЕОБРАЗОВАНИЕ ЗНАЧЕНИЙ

Используется практически повсеместно в веб-интерфейсе и оповещениях

Поддерживает строковые значения

Администрирование → Общие → Преобразования значений

VMware status	0 ⇒ gray 1 ⇒ green 2 ⇒ yellow 3 ⇒ red
✓ VMware VirtualMachinePowerState	0 ⇒ poweredOff 1 ⇒ poweredOn 2 ⇒ suspended

Пример: Мониторинг → Последние данные

✓ Power state	2016-01-26 14:30:00 poweredOn (1)
Uptime	2016-01-26 14:30:04 21 days, 01:39:25

МЕНЯЮТСЯ ЛИ ЗАПИСЫВАЕМЫЕ ДАННЫЕ ИЛИ НЕТ?

Записываемые данные не меняются (значение записывается как есть)

Единицы измерения
Преобразования значений

Записываемые данные изменяются

Тип данных Хранение значений Множитель

ГИБКИЕ ИНТЕРВАЛЫ

Позволяет переопределить интервал элемента данных по умолчанию

Если несколько гибких интервалов перекрываются, используется наименьший

Можно использовать задержку по умолчанию равную 0 вместе с гибким интервалом для эмуляции раписания на конкретное время суток

Update interval (in sec)	60				
Custom intervals	TYPE		INTERVAL	PERIOD	ACTION
	Flexible	Scheduling	600	6-7,00:00-24:00	Remove
	Add				

Имейте в виду: не поддерживаются при активной проверка агента

ВЫПОЛНЕНИЕ В УКАЗАННОЕ ВРЕМЯ

Позволяет проверять элементы данных в заданное время

Update interval (in sec)	60			
Custom intervals	TYPE		INTERVAL	PERIOD ACTION
	Flexible	Scheduling	wd1-5h9	Remove
	Add			

Примеры:

wd1-5h9 – каждый Понедельник по Пятницу в 9:00 h9m/30;h10 – проверять в 9:00, 9:30, 10:00 h9-10m10-40/30 – проверять в 9:10, 9:40, 10:10, 10:40 md1wd1h9m30 - каждый 1-ый день каждого месяца в 9:3, если это Понедельник

Имейте в виду: не поддерживаются при активной проверка агента

ИСТОРИЯ, ДИНАМИКА ИЗМЕНЕНИЙ И ОЧИСТКА ИСТОРИИ

ФИЛЬТР КОНФИГУРАЦИИ ЭЛЕМЕНТОВ ДАННЫХ

Поиск элементов данных по нескольким узлам сети

Поиск неподдерживаемых элементов данных

Дальнейшая фильтрация при помощи подфильтра

МАССОВОЕ ИЗМЕНЕНИЕ ЭЛЕМЕНТОВ ДАННЫХ

Настройка → Узлы сети → <Узел> → Элементы данных

✓ WIZAF	RD NAME	TRIGGERS	KEY	INTERVAL
•	BB +5.0V		BB_plus5.0V	30s
•	Power Unit Stat		Power_Unit_Stat	30s
•	Front Panel Temp		Front_Panel_Temp	30s
•	Baseboard Temp		Baseboard_Temp	30s
•	System Fan 3		System_Fan_3	30s
•	System Fan 2		System_Fan_2	30s
6 selected	Enable Disable	Clear history C	opy Mass update	Delete

ПРАКТИЧЕСКАЯ УСТАНОВКА

Создайте три элемента данных у узла сети:

"Входящий трафик на eth0"

"Исходящий трафик с eth0"

"Загрузка CPU"

Убедитесь, что элементы данных получают данные

ПОСЛЕДНИЕ ДАННЫЕ

Данные производительности по выбранному серверу/группе

Простые графики

Простая текстовая информация

Детали конфигурации

CPU idle time	2016-01-26 14:57:19	88.37 %	+0.97 %	Graph
CPU interrupt time	2016-01-26 14:57:20	0 %		Graph
CPU iowait time	2016-01-26 14:57:21	3.11 %	-2.29 %	Graph
CPU nice time	2016-01-26 14:57:22	0 %		Graph

TIMESTAMP	VALUE
2016-01-26 14:59:21	4.9975
2016-01-26 14:58:21	5.6178
2016-01-26 14:57:21	3.1067
2016-01-26 14:56:21	5.3968
2016-01-26 14:55:21	3.2263

ГРУППЫ ЭЛЕМЕНТОВ ДАННЫХ

Группы элементов данных

Одна группа элементов данных, много элементов данных

Один элемент данных, много групп элементов данных

▼ □	NAME A	LAST CHECK	LAST VALUE
>	CPU (13 Items)		
•	Filesystems (5 Items)		
•	General (5 Items)		
•	Memory (5 Items)		
•	MySQL (15 Items)		
	MySQL begin operations per second	2016-01-26 15:02:26	2 qps
	MySQL bytes received per second	2016-01-26 15:02:24	1.18 KBps
	MySQL bytes sent per second	2016-01-26 15:02:25	7.03 KBps

ПРОСТЫЕ ГРАФИКИ

ОБЗОР

Данные производительности по группе серверов Отображение проблем

Быстрая навигация к Графикам и к Простым текстовым данным

ITEMS	OPENSUSE_13.1_TF	WINDOWS SERVER
Average number of bytes read from the disk Hard disk 1	0 Bps	0 Bps
Average number of bytes written to the disk Hard disk 1	0 Bps	0 Bps
Average number of reads from the disk Hard disk 1	0	0
Average number of writes to the disk Hard disk 1	0	0
Ballooned memory	0 B	0 B
Cluster name		
Committed storage space	4.55 GB	4.9 GB
Compressed memory	0 B	0 B
CPU ready	11 %	15 %

ОСНОВНЫЕ КЛЮЧИ ЭЛЕМЕНТОВ ДАННЫХ

Область

Доступность

Производительность сети

Удаленные сервисы

Процессы

Доступность места на диске

Доступность памяти

Имя хоста

Загрузка/утилизация CPU

Предлагаемый ключ

agent.ping

net.if.in/out[интерфейс]

net.tcp.service[сервис,<ip>,<порт>]

proc.num[<имя>,<пользователь>,<cocтояние>,<cmdline>]

vfs.fs.size[fs, <pежим>]

vm.memory.size[<режим>]

system.hostname[<тип>]

system.cpu.load[]
system.cpu.util[]

ЧТО ТАКОЕ ТРИГГЕР?

Триггер – определение проблемы

Примеры:

- ✓ Утилизация CPU слишком высокая
- ✓ Узел сети недоступен по ICMP
- База данных недоступна
- Приложение не запущено
- ...всё-что угодно

ОПРЕДЕЛЕНИЕ ТРИГГЕРА

Имя

Выражение

Генерация событий

Описание

Важность

URL

Активирован

Зависимости

СИНТАКСИС ВЫРАЖЕНИЯ ТРИГГЕРОВ

Синтаксис:

{узел_сети:ключ.функция(парам)}=0 {zabbix:system.cpu.load.min(300)}>10

Операторы

$$- + / * < > = <> >= <= or and$$

Ссылка на элементы данных с нескольких узлов сети

{host1:item.fun(5m)}>10 and {host2:item.fun(5m)}>5 and {host3:item.fun(5m)}<3

Zabbix принимает решение на основе всей доступной информации: последняя и история

ФУНКЦИИ ТРИГГЕРОВ

Функции:

```
min, max, avg, last, diff, count, delta, time, и т.д.
Смотрите документацию по Zabbix
```

Параметр:

```
<cтрока> - нормальные параметры
    {zabbix:system.cpu.load.min(10m)}>5
#<кол-во> - количество проверок
    {zabbix:system.cpu.load.min(#10)}>5
```

Поддерживаемые суффиксы: s, m, h, d, w

МЕНЕЕ ЧУВСТВИТЕЛЬНЫЕ ВЫРАЖЕНИЯ ТРИГГЕРОВ

Например, используйте:

min(10m) > 5 для загрузки CPU

min(#10) > 5 для загрузки CPU

 $\max(10m) = 0$ для проверки доступности

АНАЛИЗ ИСТОРИИ

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10

{server:system.cpu.load.min(10m)} > 5

ИЗМЕНЕНИЕ ВЫРАЖЕНИЯ ТРИГГЕРА

Классический

Конструктор

ТЕСТИРОВАНИЕ ВЫРАЖЕНИЙ

СОВЕТЫ И ПРИЕМЫ

Отсутствие данных за период времени

Нет ответа от агента за 10 минут: {host:agent.ping.nodata(600)}=1

"Неопределенный" триггер, когда?

Сервер недоступен

После обновления выражения триггера

Если Zabbix не может вычислить выражение триггера

Проверка разницы времени

Функция fuzzytime()

Макросы в имени триггера

{HOST.NAME}

ФУНКЦИОНАЛ ПОЛЬЗОВАТЕЛЬСКОГО МАКРОСА

Лёгкое обслуживание – один шаблон и:

Разные параметров ключей элементов данных

net.tcp.service[ssh,{\$SSH_PORT}]

Разные значения выражений триггеров

{server:system.cpu.load[,avg1].last(0)} > {\$CPU_LOAD}

В порядке убывания – приоритет:

Макрос на уровне узла сети Макрос на уровне шаблона Глобальный макрос

Синтаксис:

{\$MM\$}

ЗАВИСИМОСТИ МЕЖДУ ТРИГГЕРАМИ

Во избежание оповещений

Добавление зависимостей между

Сетевые устройства

Приложения

Ресурсы

... всё-что угодно

Несколько уровней

Узел сети → Коммутатор 1 → Коммутатор 2

Несколько зависимостей

Узел сети → Роутер1

Узел сети → Роутер2

Веб-страница

ПРАКТИЧЕСКАЯ УСТАНОВКА

Создайте новый триггер у узла сети:

"Загрузка CPU очень высокая у <макрос>"

Используйте макрос в имени триггера для отображения имени узла сети

Используйте команду "cat /dev/urandom | md5sum" для тестирования выражения

СОСТОЯНИЕ ТРИГГЕРОВ

Отображает состояние триггеров и событий

События можно подтвердить

Можно фильтровать по мин важности, возрасту, имени, группе элементов данных и инвентарным данным

Триггеры можно раскрыть и просмотреть события

Если триггер имеет активную зависимость, он не отображается

МАССОВОЕ ПОДТВЕРЖДЕНИЕ

ОБЗОР

Состояние группы серверов
Разные цвета у разных важностей триггеров
Мигание при изменении
Быстрая навигация к Событиям и Графикам

БОЛЬШЕ ПРИМЕРОВ ТРИГГЕРОВ

Загрузка CPU очень высокая и в сети меньше 100 пользователей:

{host:system.cpu.load.last()}>5 and {host:users.last()}<100

Файл "passwd" изменен:

{host:vfs.file.cksum[/etc/passwd].diff()}>0

Кто-то загрузил большой файл из Интернет {host:net.if.in[eth0,bytes].min(5m)}>512М

ВОПРОСЫ?

The Enterprise class Monitoring Solution for Everyone
WWW.ZABBIX.COM

ВРЕМЯ ДЛЯ ОТДЫХА:)