BPA產業展望與競爭力改善專案報告

日期:2020年12月15日

※會後收回

- 1. 結晶單元主要作用為移除製程中的不純物,提高BPA的純度。固液分離後的結晶母液含有酚、不純物及BPA,不純物須從製程中定量移除,避免於製程中累積而影響結晶分離操作。
- 2. 藉由過去累積的製程條件數據來建模,找出最佳的結晶操作條件,讓③的BPA越多、不純物越少, 結晶純化效率得以提升。

(二)定義問題與目標

項目	結晶純化效率(%)] 註: 結晶純化效率 =	<u> </u>	
	設計	實際	目標	101 1/2 11 11	(2)	
第一段結晶區	94. 6	95. 2	96. 3	$2 = \frac{\lambda + 2 \times 2}{\lambda + 2 \times 2}$ 3	= <u>出料總不純物</u> 出料BPA	

- 1. 導入AI演算法建立結晶純化效率預測模型,並使用製程模擬軟體(Aspen Plus),建立結晶段模擬模型, 產出廣域且具有化工理論基礎的數據,並從中找出歷史數據以外或設備理論上的最佳操作條件。
- 2. 目標使結晶純化效率由95. 2/96. 3%。

(三)AI模型開發歷程

收集2015~2020年製程數據,經刪除異常值及開停車期間數據,52個製程變數數據計417,704筆、 人工取樣分析數據計1,367筆,將80%數據做建模使用,20%數據做驗證使用。

(三)AI模型開發歷程(續)

- 1. 將製程變數(52個)進行時間差調整,依出料流速以及設備的體積換算滯留時間,計算製程變數與 ③取樣分析的時間差。
- 2. 經計算結晶罐K300入料流量與③取樣分析時間差,故延後150 min,其餘變數依其時間差進行 適當的時間差調整。

(三)AI模型開發歷程(續)

原始數據共417,704筆 (單位、數值範圍不同) 數據標準化共417,704筆 (無單位,且分布在0到1之間)

(十位 数值轮图作内)			(無干位 工力				(-1)	
時間	F300馬達 電流(Amp) II-F300. PV	暫存槽V305 出料流量 (L/h) FI-3052. PV	操作液位(%)		時間	F300馬達 電流	暫存槽V305 出料流量	結晶罐K300 操作液位 LIC-3004. PV
	H-1.900.1 A	F1-3002, PV	LIC-5004. PV			11-1.900°1 A	F1-5052. PV	LIC-5004. PV
2015-1-1 09:00:00	3.8	701	85. 24	標準化	2015-1-1 09:00:00	0.2660	0.0077	0.8105
2015-1-2 09:00:00	3.8	724	85. 54	轉換	2015-1-2 09:00:00	0. 2085	0.1634	0.8864
2015-1-3 09:00:00	3.8	718	85. 82		2015-1-3 09:00:00	0. 2252	0. 1217	0. 9558
•	•	:	•	$X^* = \frac{X - min}{max - min}$	•	•	•	•
2020-2-4 09:00:00	4. 4	804	84. 41		2020-2-4 09:00:00	0.8885	0.6960	0. 6039
2020-2-5 09:00:00	4. 3	821	84.10	min:最小差	2020-2-5 09:00:00	0.7766	0.8087	0. 5265

3. 每個變數的單位、數值大小不同,使用極小極大手法(MinMax scaler)進行標準化轉換,將數據轉換在同一基準下(最大值變為1,最小值變為0),可避免數值大小差異影響模型準確度,有助於接續使用Lasso線性模型進行變數篩選。

(三)AI模型開發歷程(續)

結晶純化效率 = $a_1X_1 + \cdots + a_{41}X_{41} + a_{42}X_{42} + \cdots + a_{52}X_{52} + b$

排名	製程變數(X _i)	模型係數(a _i)-	表示變數對結晶純化效率影響程度
1	FIC-3001.PV	-2.510	正值:與結晶純化效率為正相關
2	PIC-3003.PV	2. 441	負值:與結晶純化效率為負相關 係數絕對值大:影響程度高
3	TIC-3005.PV	1.834	
•	•	•	
40	TI-3202. PV	-0.024	
41	LIC-3201A.PV	-0.011	
42	II-B312.PV	0.000	\neg
•	•	•	模型係數為0之變數,經製程人員檢討確認,
51	FI-3052.PV	0.000	對於結晶純化效率影響程度低,故予以剔除。
52	LIC-3131.PV	0.000	

第一段結晶單元製程變數多達52個,利用Lasso演算法計算出的模型係數,判斷變數對結晶純化效率的影響程度,將不顯著之變數(模型係數為0)予以剔除,篩選出41個變數作為後續建模依據。

(三)AI模型開發歷程(續)

演算法	Lasso (套索迴歸)	Ridge (脊迴歸)	XGBoost (極限梯度提升)
模型類別	線性	線性	非線性
MAPE (平均絕對誤差)	0. 72%	0.79%	0. 42%
RMSE (均方根誤差)	1.14	1.18	1. 03
R ² (決定係數)	0. 54	0. 51	0. 84

- 1. 以3種演算法進行建模評估,經評估XGBoost模型 MAPE為0. 42%最低, R²為0. 84最高。
- 2. 經以2020年2、3月的數據進行驗證, MAPE為0. 43%, 與建模時誤差0. 42%相當。

(三)AI模型開發歷程(續)

開發操作條件指引程式

項次	模型重要性	TAG編號	中文說明
1	0.1831	FIC-3001.PV	結晶罐K300入料流量
2	0.1739	PIC-3003.PV	結晶罐K300操作壓力
3	0.1611	TIC-3005.PV	結晶罐K300操作溫度
4	0. 1501	TIC-3971.PV	結晶罐K300夾套溫度
5	0.1409	TIC-3011.PV	結晶罐K300入料温度
6	0.1373	LIC-3004.PV	結晶罐K300操作液位
7	0.0978	FIC-3002.PV	結晶罐K300酚水入料流量
8	0.0675	FIC-3006.PV	結晶罐K300出料流量
	:	:	
22	0.0531	LIC-3201A.PV	溶融槽M320液位A

- 1. 經變數篩選的41個變數中,可控變數共有22個,為避免一次調整過多變數影響製程穩定度, 以XGBoost演算法的模型重要性排序,篩選可控關鍵變數,作為上線優化調整。
- 2. 考量流量相關變數(入料、出料流量等)影響產量,及部分變數影響後段製程,皆不列入選擇, 檢討後選擇項次2-6作為可控關鍵變數,進行優化調整。

(三)AI模型開發歷程(續)

開發操作條件指引程式

		條件設定			模型計算	
	控制變數		操作範圍	間距	操作點	較佳條件
\mathbf{X}_1	結晶罐K300操作壓力	Torr	23.0 ~ 28.0	0.5	11個	25. 5 / 28. 0
\mathbf{X}_2	結晶罐K300操作溫度	°C	42.0 ~ 48.0	0.5	13個	46. 0 46. 5
X_3	結晶罐K300夾套溫度	°C	44.0 ~ 52.0	0.5	17個	48. 0 / 50. 0
X_4	結晶罐K300入料溫度	°C	73.0 ~ 77.0	0.5	9個	75. 0 ∕ 75. 5
X_5	結晶罐K300操作液位	%	82.0 ~ 86.0	0.5	9個	84. 0 83. 0
目標	目標 結晶純化效率 %		極大化	(望大)		95. 2 95. 9

- 1. 設定5個可控關鍵變數操作範圍及調整區間,共196,911種操作條件組合。
- 2. 以Python程式語言開發操作條件指引程式,將不同操作條件組合的數據,自動帶入預測模型計算, 找出最佳的結晶純化效率及對應的可控關鍵變數建議值,並呈現在DCS及RTPMS 畫面中,供調整參考。
- 3. 最終模型計算出一組結晶純化效率最大值(95.2/95.9%)及其操作條件建議值。

(四)模擬模型(Aspen Plus)開發歷程

使用結晶罐模型,輸入溫度、壓力等製程數據,搭配Aspen Plus資料庫可計算出蒸發的氣相(酚水)組成, 再由溶解度數據計算,高於溶解度的成分會過飽和析出(BPA)結晶,其餘則為液相(酚水及不純物)。 透過建立結晶系統的模擬模型,加以確認製程數據之準確性,並找尋較適操作條件。

(四)模擬模型(Aspen Plus)開發歷程(續)

將實際的進料數據帶入Aspen Plus的結晶罐模型進行驗證,於不同操作溫度及壓力的條件下,模型可計算得到 出料組成與結晶純化效率預測值,經比對模型計算與實際出料組成、結晶純化效率數據,結果兩者相符, 確認模型具適用性,且發現兩股入料的流量比,AI建模時未發現亦屬影響效率的關鍵變數。

(四)模擬模型(Aspen Plus)開發歷程(續)

3. 模擬最佳操作條件

管制點	PIC-3003	TIC-3005	FIC-3002/FIC-3001	-
描述	結晶罐操作壓力 (Torr)	結晶罐操作溫度 (℃)	酚水進料比 (噸/噸)	結晶純化效率 (%)
原始操作範圍	23.0 ~ 28.0	42.0 ~ 48.0	-	
產生廣域 數據上下限	20.0 ~ 30.0	40.0 ~ 50.0	0.090 ~ 0.130	86.5以上
1	20.0	40.0	0.090	86. 5
2	20.0	40.0	0.091	86. 6
3	20.0	40.0	0.092	86. 7
:	:	:	:	:
15233	28. 5	47. 0	0.111	96. 2
15234	28. 5	47. 0	0.112	96.3
15235	28. 5	47. 0	0.113	96. 1
:	:	:	:	:
18079	30.0	50.0	0.128	95. 5
18080	30.0	50.0	0.129	95. 5
18081	30.0	50.0	0.130	95. 6
最佳條件	28. 5	47. 0	0.112	96. 3

依學理判斷影響結晶純化效率關鍵因子為BPA與不純物的平衡溶解度變數,故選出3個關鍵因子(X),並將操作條件範圍放寬,超出歷史數據的上下限,藉Aspen Plus模擬模型在合理操作範圍內產出具有化工理論基礎的數據,於結晶罐操作壓力28.5Torr、結晶罐操作溫度47.0°C及酚水進料比0.112噸/噸,結晶純化效率最佳為96.3%。因未有實際操作經驗,經變更管理(MOC)研討後進一步線上測試。

(五)製程調整與效益

	第一階段測試(AI)						
項次	可控 關鍵變數	單位	調整後	調整前	差異		
X_1	結晶罐操作壓力	Torr	28. 0	25. 5	2. 5		
X_2	結晶罐操作溫度	$^{\circ}$ C	46. 5	46.0	0.5		
X_3	結晶罐入水溫度	$^{\circ}\!\mathbb{C}$	50.0	48.0	2. 0		
X_4	結晶罐入料溫度	$^{\circ}$ C	75. 5	75. 0	0.5		
X_5	結晶罐操作液位	%	83. 0	84. 0	-1.0		
4L 日 4L カ - 4. 赤 (0/)		目標	改善後	改善前	差異		
int.	吉晶純化效率(%)	95. 9	96. 0	95. 2	0.8		
	第二階段	測試(As	pen Plus	3)			
項次	可控 關鍵變數	單位	調整後	調整前	差異		
X_1	結晶罐操作壓力	Torr	28. 5	28. 0	0.5		
X_2	X ₂ 結晶罐操作溫度		47. 0	46. 5	0.5		
結晶純化效率(%)		目標	改善後	改善前	差異		
		96. 3	96. 3	96.0	0.3		

- 1. 依AI模型計算的建議值,於2020. 4. 11~2020. 5. 4進行線上測試,結晶純化效率由95. 2/96. 0%。
- 2. 依Aspen Plus軟體計算的建議值,於2020.10.12~2020.10.17進行線上測試,結晶純化效率進一步由96.0/96.3%,後續將續評估酚水入料比測試。
- 3. 純化效率提升,增加BPA收率,可節省原料酚1.9公斤/頓BPA;丙酮0.6公斤/頓BPA,降低原料單位成本 0.6美元/頓BPA,年效益新台幣6,970千元。
- 4. 横向展開至BPA3/4執行,年效益新台幣16, 450千元。BPA2/3/4合計改善年效益新台幣23, 420千元。