NSWI090: Počítačové sítě I (verze 4.0)

Lekce 5: Základy datových komunikací - II

Jiří Peterka

zpoždění při přenosech

- při přenosech dat dochází ke zpoždění, kvůli:
 - omezené rychlosti šíření signálu přenosovým médiem
 - omezené přenosové rychlosti
 - přenosová rychlost (v bitech za sekundu) vypovídá o tom, jak dlouho trvá přenos (odesílání / příjem) 1 bitu
 - jinými slovy: jak dlouho musíme čekat, než můžeme vyslat další bit

zpoždění signálu

- propagation delay
- vypovídá o tom, jak dlouho trvá přenášenému signálu, než se dostane ze začátku na konec
 - je to dáno (konečnou) rychlostí šíření signálu v daném přenosovém médiu
 - blízkou rychlosti šíření světla ve vakuu
 - cca 300 000 km/s
 - v praxi:
 - vyjadřuje se jako násobek rychlosti šíření světla (c)
- počítá se jako: t_{prop} = délka / v_{šíření}

přenosové médium	vůči světlu	km/s	
tlustý koaxiální kabel	0.77 * c	231 000 km/s	
tenký koaxiální kabel	0,65 * c	195 000 km/s	
kroucená dvoulinka (twist)	0,59 * c	177 000 km/s	
optické vlákno	0,66 * c	198 000 km/s	

zpoždění přenosu

- transmission delay
- vypovídá o tom, za jak dlouho se podaří odeslat celý přenášený blok dat
- závisí na době, kterou trvá odesílání 1 bitu
 - tj. na přenosové rychlosti
 - v bitech za sekundu
- počítá se jako:

závisí na délce

nezávisí na

délce média

zpoždění při přenosech

zpoždění signálu + zpoždění přenosu + zpoždění při zpracování + zpoždění ve frontách

nemění se, lze predikovat

- zpoždění při zpracování (t_{proc})
 - představuje dobu, po kterou se procesor rozhoduje a manipuluje s přenášenými bloky dat (pakety)
 - pokud na ně vůbec má čas/kapacitu
 - jinak bloky čekají ve frontách

- mění se, **nelze predikovat** !!!!
- zpoždění ve frontách (t_{queue})
 - představuje dobu, po kterou bloky dat čekají ve vstupních či výstupních frontách, než na ně přijde řada

co dělat, když nemá???

důsledek:

u přepojování paketů nelze dopředu odhadnout, jak dlouho se blok dat zdrží
 v přepojovacím uzlu
 přepojování paketů není izochronní!!

latence

- parametr, kterým se v praxi vyjadřuje "míra zpoždění" při přenosech či zpracování
 - požadavky:
 - telefonie, byznys kvalita: latence do 200 ms (nad 500 ms se již nedá použít)
 - hraní on-line her: záleží na charakteru hry, obvykle se očekává méně než 100 ms
 - příklady dosahované latence:
 - dial-up přenos: kolem 100 ms
 - ISDN přenos: kolem 10 ms
 - xDSL, kabel: desítky ms
 - Ethernet: typická propojka kolem 0,3 ms
 - metalický (měděný) vodič: 5,48 nanosekund na 1 metr délky kabelu
- ale:
 - ne vždy se pod pojmem "latence" chápe stejná veličina
 - například:
 - někdy jde o jednosměrnou latenci (one-way latency)
 - jindy o obousměrnou latenci (round-trip latency)
 - existuje více různých definic latence
 - které se ještě mohou dělit podle druhu přenosu či zpracování
 - zda jde o prostý přenos, bez bufferování, nebo zda jde o přenos s bufferováním
 - na principu store&forward

- GSM (GPRS, EDGE): až 800 ms

- UMTS/3G: 200-400 ms

LTE: i pod 100 ms

často se plete s dobou obrátky (RTT, Round Trip Time)

definice (jednosměrné) latence

"jednosměrná" latence, dle RFC 1242:

- pro nebufferovaný přenos ("bit forwarding"):
 - doba od (konce) prvního odeslaného bitu
- FIFO vstupujícího do přenosu (proto: First In)
 - do (začátku) prvního přijatého bitu (First Out)
 - pro bufferovaný přenos (store&forward):

doba od (konce) posledního odeslaného bitu do (začátku) prvního přijatého bitu

teoreticky (pro tuto definici):

- latence není závislá na přenosové rychlosti
 - je dána jen zpožděním signálu (které závisí na délce)

existují i alternativní definice latence

- které již jsou závislé na přenosové rychlosti (zpoždění přenosu), či zpoždění zpracování
- LILO: Last In, Last Out (dle RFC 4689)
 - doba od (konce) posledního odeslaného bitu
 - do (konce) posledního přijatého bitu
- FILO: First In, Last Out
 - doba od (začátku) prvního odeslaného bitu
 - do (konce) posledního přijatého bitu

doba obrátky, RTT

- doba obrátky (RTT, Round Trip Time) je další veličina, která popisuje chování přenosové sítě
 - definice z RFC 2681: doba od odeslání prvního bitu paketu P, který příjemce nejprve celý přijme a pak jej ihned odešle zpět, do příjmu posledního bitu tohoto paketu
 - doba obrátky je závislá na velikosti paketu (bloku) P i na přenosové rychlosti (skrze dobu přenosu)
- doba obrátky nezahrnuje reakční dobu příjemce
 - dobu na zpracování přijatého paketu P
 - předpokládá se, že příjemce paket nezpracovává
 - a že jeho "vrácení" je realizováno v HW, případně na úrovni SW ovladače / protokolového stack-u
 - aby bylo maximálně rychlé

v praxi:

- doba obrátky (RTT) se měří utilitou PING
 - odesílají se zprávy ICMP Echo Request
 - přijímají se zprávy ICMP Echo Reply
 - které generuje TCP/IP stack

sové	velikost P	PING
	32 B	10 ms
	1024 B	12 ms
fragmen	1460 B	12 ms
nagmen	1470 B	18 ms
	2048 B	20 ms
	16536 B	1406 ms
	32768 B	2837 ms

příklad:

kabelová přípojka, 30 Mbit/s PING na ksi.ms.mff.cuni.cz

zjednodušeně:

- doba obrátky (RTT) se bere jako obousměrná latence
 - či jako 2x jednosměrná latence
 - i když to není správné/přesné

jitter (kolísání, rozptyl)

- **K**jitter vyjadřuje nežádoucí odchylky od očekávané pravidelnosti
 - kolísání, rozptyl, fázová neurčitost,
 - lze aplikovat na řadu různých veličin:
 - na (jednosměrnou) latenci, na dobu obrátky (RTT, Round Trip Time),
- otázka:
 - jak jitter definovat a hodnotit?
- možnosti:

```
Přibližná doba do přijetí odezvy v milisekundách:
Minimum = 680ms, Maximum = 1465ms, Průměr = 1435ms
```

- jako rozmezí (min max), ve kterém se sledovaná veličina pohybuje
 - přístup ITU, obvykle preferovaný od ISP
- statistickými metodami: jako rozptyl/rozdělení sledované veličiny
 - dle RFC 3393
- obecně:
 - čím nižší (menší) je jitter, tím je sledovaná veličina pravidelnější
 - a naopak: čím vyšší jitter, tím je větší míra nepravidelnosti sledované veličiny
- připomenutí:
 - multimediální aplikace/služby potřebují nízký jitter (pravidelně doručovaná data),
 protože je zpracovávají průběžně
 - například přehrávají či zobrazují
 - datovým aplikacím/službám vyšší jitter nevadí, protože čekají na doručení všech dat

čas=1455ms čas=1456ms čas=1455ms čas=1451ms čas=1454ms čas=1452ms čas=1455ms čas=1453ms čas=1454ms čas=1457ms čas=1452ms čas=1384ms čas=1445ms čas=1455ms čas=1451ms čas=1458ms čas=1450ms čas=1456ms čas=1453ms čas=1455ms čas=1451ms čas=1456ms čas=1454ms

příklad nepravidelnosti RTT při PINGu

izochronní přenos, bitstream

izochronní

- isochronous
- = probíhající ve stejném čase
- *iso* = stejný, *chronos* = čas
- ve smyslu: s konstantní latencí
 - tj. jitter = 0
 - latence nemusí být nulová
 - a nikdy není

• v praxi:

- izochronní přenos doručuje data s ideální pravidelností
- vyhovuje to multimediálním přenosům

obecně:

- přepojování paketů (packet switching) není izochronní
 - protože přenášená data se mohou zdržet v mezilehlých (přepojovacích) uzlech po předem neznámou, neodhadnutelnou – a hlavně různou - dobu

bitstream

- proud bitů, bitový proud
- taková přenosová služba, která:
 - přenáší jednotlivé bity
 - proto: "bit" stream (proud)
 - funguje izochronně
 - latence = konst., jitter = 0
- platí pro něj:
 - přenosová rychlost = přenosový výkon (throughput)

v praxi:

- bitstream lze využít k realizaci garantovaných přenosových služeb
 - s garantovanou latencí a jitterem
- hodí se pro implementaci multimediálních služeb

• v ČR:

bitstream není nabízen

techniky multiplexu a demultiplexu

co je multiplex(ování)?

- způsob, jak využít jednu přenosovou cestu pro více samostatných přenosů
 - jak ji rozdělit na více částí, které se chovají jako samostatné a lze je samostatně využít
- existují různé způsoby/techniky multiplexování:
 - analogové:
 - frekvenční multiplex
 - FDM, Frequency Division Multiplexing
 - vlnový multiplex
 - WDM, Wavelength Division Multiplexing
 - digitální:
 - časový multiplex
 - TDM, Time Division Multiplexing
 - statistický multiplex
 - STDM, Statistical TDM
 - kódový multiplex
 - CDM, Code Division Multiplexing
- co je demultiplexování?
 - způsob, jak sdružit více přenosových cest, tak aby se výsledek choval jako jedna jediná přenosová cesta
 - anglicky: aggregation, channel bonding, channel bundling

frekvenční multiplex (FDM)

f[Hz]

analogová technika multiplexu

- princip:
 - vstupní signály jsou analogové
 - a mají užší šířku pásma
 - k dispozici je "širší" analogová přenosová cesta
 - s větší šířkou přenosového pásma,
 - dostupné pásmo se rozdělí na dílčí frekvenční kanály
 - toto rozdělení je pevné a nemění se v čase
 - jednotlivé dílčí části nemusí být stejné!!!
 - mezi jednotlivými kanály musí ještě být tzv. ochranné intervaly (guard intervals)
 - nutné kvůli nedokonalosti technologie
 - každý vstupní signál se "vloží" do jiného kanálu
 - každý vstupní signál se přesune do jiné frekvenční polohy
 - k jeho frekvenci se přičte (jiná) konstanta
 - jednotlivé (posunuté) signály se sloučí a přenesou skrze (společnou) přenosovou cestu
 - příjemce vrátí každý dílčí signál do jeho původní frekvenční polohy

relativně velká režie na oddělení kanálů (na ochranné intervaly)

frekvenční multiplex (FDM)

frekvenční multiplex se v praxi používá například:

- pro (analogové) rozhlasové a televizní vysílání
 - každý program je vysílán na jiném (frekvenčním) kanálu
 - a každý zabírá pro sebe celý kanál:
 - TV v systému PAL/SECAM zabírá 8 MHz, v systému NTSC 6 MHz

- mezi ústřednami je vedeno více hovorů po jedné ("širší") přenosové cestě (analogovém linkovém traktu)
 - teze: čím "užší" je každý hovor, tím více se jich tam vejde
 - proto: omezení každého hovoru na 300 až 3400 Hz, což ještě stačí pro srozumitelnost!!

f [Hz]

3400 Hz

- na místní smyčce: pro oddělení hovorového pásma a nadhovorového pásma
 - v hovorovém pásmu je veden (analogový) hlasový hovor
 - 0 až 4 kHz
 - v nadhovorovém pásmu jsou vedeny datové přenosy
 - pomocí technologií xDSL: ADSL až do 1,1 MHz
- v (analogové) mobilní telefonní síti:
 - 1 hovor = 1 frekvenční kanál
 - v NMT: kanál má šířku 25 kHz

300 Hz

časový multiplex (TDM)

digitální technika multiplexu

princip:

- vstupy mají digitální podobu
 - jsou to "proudy dat" o určité přenosové rychlosti
- k dispozici je "širší" digitální přenosová cesta
 - s větší přenosovou kapacitou (přenosovou rychlostí)
 - neboli: s kratším bitovým intervalem
 - fungující jako bitstream
- rozdělí se "v čase", na pevně dané časové úseky
 - časové sloty, timeslots
- každému jednotlivému vstupu je přidělena a vyhrazena určitá pevně daná posloupnost časových úseků (timeslotů)
 - obecně: "každý n-tý" timeslot
- příslušný vstup vkládá svá data do přidělených timeslotů
 - a nechá je přenést skrze přenosovou cestu
 - na druhé straně je zase vyjímá
 - příjemce dopředu ví, komu patří obsah toho kterého
 časového úseku (timeslotu), protože přiřazení se v čase nemění

časový multiplex (TDM)

rozděluje (společnou) přenosovou kapacitu pevně daným způsobem

- který se v čase nemění !!!
 - může se jednat o rozdělení na různě velké části (časové úseky/timesloty)
 - ale podstatné je, že se toto rozdělení v čase nemění
 - je to nutnou podmínkou k tomu, aby příjemce věděl, komu "patří" obsah toho kterého timeslotu a nepotřeboval k tomu jakoukoli dodatečnou informaci
- jde fakticky o přepojování okruhů
 - výsledkem je rozdělení jednoho ("většího") přenosového okruhu či kanálu na několik menších přenosových okruhů (kanálů), které se chovají (a dají využít) zcela samostatně
 - původní (společný) přenosový okruh či kanál má vyhrazenou přenosovou kapacitu
 - časový multiplex zachovává vyhrazený charakter přenosové kapacity
 - i jednotlivé přenosové okruhy či kanály mají vyhrazenou (a garantovanou) přenosovou kapacitu
 - zachovává také izochronní charakter přenosu
- jde o vhodné řešení pro takové vstupy, které generují stabilní (stále stejnou) zátěž
 - které přenáší svá data stále stejnou rychlostí
- není to vhodné řešení tam, kde vstupy "kolísají" (generují proměnnou zátěž)
 - protože nelze měnit rozdělení na časové úseky/timesloty dle aktuální zátěže ani nějak "vrátit" nevyužitou kapacitu

využití časového multiplexu (TDM)

obecně:

všude tam, kde se hodí fungování na principu přepojování okruhů (circuit switching)

konkrétně (například):

- v (klasické) pevné i mobilní telefonii označované také jako "switched telephony"
 - · kde je pro každý hovor vyhrazena (a také garantována) určitá přenosová kapacita
 - vytvořená technikami, které fungují jako přepojování okruhů jako je právě TDM
 - kde (díky vyhrazené kapacitě) hovor může mít garantovanou kvalitu
 - přepojování okruhů

alternativou jsou zejména IP technologie (VOIP, Voice over IP) kde se přenáší data po síti, fungující na principu přepojování paketů (IP síti), a kde není vyhrazena ani garantována přenosová kapacita, a nemůže být ani garantována kvalita hovoru

TDM systém, TDM řešení:

a tím i na přepojování okruhů

- obecné označení pro všechna řešení, která fungují na principu časového multiplexu (TDM)
- příklad:
 - TDM ústředna (alternativou je IP ústředna)
- příklad:
 - TDM trakt (mezi ústřednami), alternativou je IP (SIP) trakt (SIP trunk)
 - okruhy E a T (tzv. digitální hierarchie), SONET,

duplexing: TDD a FDD

duplexing, duplex:

jde o to, jak je řešen obousměrný (duplexní) přenos

• FDD: Frequency Division Duplex

- pro každý směr je použit samostatný (jednosměrný) frekvenční kanál
 - jinými slovy: v každém směru se komunikuje na jiných frekvencích
- používá se při rádiových přenosech
 - je zapotřebí tzv. párové pásmo
 - dvojice frekvenčních rozsahů, každý pro komunikací jedním směrem
 - například: GSM, UMTS
 - přesněji: UMTS FDD

 frekvenční kanály jsou stejně velké, tudíž i přenosové kapacity v obou směrech jsou stejně velké

TDD: Time Division Duplex

- jeden (obousměrný) okruh je využíván pro přenos oběma směry
 - pomocí časového multiplexu je rozdělen na timesloty
 - každý timeslot může být využit pro přenos jedním nebo druhým směrem
 - lze volit dynamicky, dle potřeby
- používá se při rádiových přenosech
 - stačí pro něj tzv. nepárové pásmo
 - jen jeden rozsah frekvencí
 - například: UMTS TDD, WiMAX

obvykle:

kapacity v obou směrech jsou různé

statistický multiplex (STDM)

- digitální technika multiplexu
- rozdíl oproti časovému multiplexu:
 - přidělení jednotlivých časových úseků (timeslot-ů) konkrétním vstupů není pevné a neměnné v čase
 - ale mění se podle potřeby
 - podle toho, kolik který vstup právě potřebuje přenést dat
 - každý jednotlivý timeslot je přiřazován dynamicky
 - svá data do něj může vložit ten (vstup), který to právě potřebuje

představa:

- společná přenosová kapacita se chová jako nekonečný vlak
 - pohybuje se (vpřed) konstantní rychlostí
 - všechny jeho vagony (timesloty) jsou stejně velké
- každý vstup může umístit svá data do vagonu (timeslotu), který je právě volný
 - ale: musí svá data označit, aby příjemce věděl, komu patří !!!!

· důsledek:

- ne vždy musí být k dispozici volný vagon (timeslot)
 je nutné počkat!
 - proto: statistický multiplex negarantuje přenosovou kapacitu ani konstantní zpoždění!
 - nezachovává pravidelnost, není izochronní !!!

vlastnosti statistického multiplexu (sтом)

obecně:

- hodí se tam, kde jednotlivé vstupy generují nerovnoměrnou zátěž
 - kde rychlost přenosu (resp. objem dat, které potřebují přenést za jednotku času) není pevná, ale mění se v čase

princip fungování:

- požadavky jednotlivých vstupů jsou vyřizovány na principu "kdo první přijde "
 - ale mohou být použity i jiné strategie
- cílem je efektivní využití společné přenosové kapacity
 - aby nezůstávaly nevyužity timesloty, pokud příslušný vstup právě nemá co odeslat
 - a tak se timeslot přidělí někomu jinému
- jde v zásadě o princip přepojování paketů
 - data musí být "zabalena" do určitého bloku (rámce, paketu, buňky) a opatřena hlavičkou
 - podle hlavičky příjemce pozná, komu obsah timeslotu (blok dat) patří
 - na rozdíl od časového multiplexu toto neví (a nemůže vědět) dopředu !!!
 - timesloty obvykle mají stejnou délku
 - ale nemusí tomu tak být z hlavičky pak musí vyplývat, jak je timeslot veliký
- rozdíl oproti (skutečnému) přepojování paketů
 - u STDM jednotlivé sloty následují bezprostředně po sobě (a obvykle jsou stejně velké)
 - u přepojování paketů nemusí
 - mezi jednotlivými pakety (bloky) mohou být libovolně velké odstupy

přenosová média

- vždy šíří nějakou podobu elektromagnetického vlnění
- dělí se podle toho, jak se vlnění šíří:
 - vedená ("drátová", "vodičová" média,
 guided, bounded):
 - elektromagnetická vlnění jsou "vedena" nějakým hmotným prostředím, které se chová jako vodič a vymezuje dráhu, po které dochází k šíření
 - zejména:
 - kroucená dvoulinka (twist)
 - šíří signál do jednotek/desítek MHz
 - koaxiální kabel (coax)
 - šíří signál až do stovek MHz
 - větší přenosový potenciál než kroucená dvoulinka
 - optické vlákno (fiber)
 - šíří signál od 180 do 370 THz (infračervené světlo)
 - 850 nm až 1665 nm
 - největší přenosový potenciál.
 - vlnovody
 - "prázdné trubky", bez hmotného vnitřku

- nevedená (unguided, wireless,
 bezdrátová)
 - není žádný "hmotný vodič", vlnění se volně šíří hmotným či nehmotným prostorem mezi anténami
 - může jít o šíření vakuem, ale třeba také vodou, atmosférou,
 - může být problém se "zacílením"
 - určitým směrováním šířícího se signálu
 - obvyklé dělení na:

viz Shannonův

teorém

- rádiové: frekvence do 300 GHz
 - mikrovlnné: 300 MHz až 300 GHz
- infračervené: 300 GHz až 430 THz
 - 700 nm až 1 mm
- optické (400 THz až 1 PHz)
 - FSO, Free Space Optics

zpoždění signálu cca 4-5 μs/km

kroucená dvoulinka (twisted pair)

· dva metalické vodiče, vedené vedle sebe

- obvykle měděné, o průměru 0,4 až 0,9 mm
- vždy se chovají jako anténa:

- něco "přijímají" ze svého okolí (elmag. indukce), což ovlivňuje probíhající přenos
- konstrukční provedení:
 - pro dat. přenosy se nejčastěji používají kabely se 4 páry (nestíněné) kroucené dvoulinky
 - v pevné telefonii se používají kabely s mnohem většími počty párů
 - provedení vodičů: "drát" (1 homogenní vodič) nebo licna (splétaný vodič, z více vláken)
- možnosti minimalizace efektu antény:
 - zkroucení twisting), odsud: kroucená dvoulinka twisted pair)
 - zkroucení musí být pravidelné, v závislosti na frekvenci přenášeného signálu
 - typicky 1 zkroucení na 0,6 až 0,85 cm (Cat 5) či 7,5 až 10 cm (Cat 3)
 - stínění (shielding)
 - nestíněná kroucená dvoulinka (UTP, Unshielded Twisted Pair)
 - nejlevnější, nejvíce používané ale nejhorší obvodové vlastnosti
 - stíněná kroucená dvoulinka (STP, Shielded Twisted Pair)
 - nejdražší, nejlepší obvodové vlastnosti každý pár v kabelu má vlastní stínění
 - ScTP, Screened Twisted Pair
 - kompromis, jedno společné stínění na všechny páry v kabelu

kroucená dvoulinka (twisted pair)

	frekvence do	využití	další možnosti využití		
Cat 3	16 MHz	10BaseT	100BaseT4 (4 páry)	100BaseT2 (2 páry)	100VG-AnyLAN (4 páry)
Cat 5 (5e)	100 (350) MHz	100BaseTX	1000BaseT (4 páry)		
Cat 6 (6a)	250 (500) MHz	1GBaseT	10GBaseT (jen 37/55 metrů)		
Cat 7 (7a) (STP)	600 (1000) MHz	10GBaseT	40GBaseT (40 metrů)	100GBaseT (15 metrů)	
Cat 8 (STP)	1400 MHz	100GBaseT			

kategorie kroucené dvoulinky:

- liší se materiálem, provedením i očekávanou frekvencí přenášeného signálu
 - mají různý dosah, lze na nich dosahovat různé rychlosti
 - podle frekvence je také volen počet zkroucení na jednotku délky
- dosahované přenosové rychlosti závisí hlavně na použitém kódování

praktické problémy:

hlavně s vyzařováním a přeslechy

typická nasazení:

- jako místní smyčky (pevná tel. síť)
 - Cat3 nebo horší
 - délka: jednotky kilometrů
 - problémy s útlumem a přeslechy
 - využití pro hlas i data (xDSL)
- propojovací kabely (v sítích LAN)
 - dnes Cat5 a vyšší
 - jednotky/desítky metrů, do 100 m
- síťové rozvody (zabudované)
 - např. v rámci strukturované kabeláže
 - dnes Cat 5 a vyšší
 - délka: jednotky metrů

koaxiální kabel (coax)

- ko-axiální, neboli souosý (co-axial)
 - má dva vodiče uspořádané tak, že mají stejnou osu
 - vnitřní vodič + vodivé opletení, které slouží současně jako stínění vnitřního vodiče
 - vodivé opletení může být i dvojité

- má lepší obvodové vlastnosti
 - než kroucená dvoulinka, díky dobrému stínění (skrze vodivé opletení)
 - hlavně menší přeslechy mezi kabely
- obecně:
 - větší přenosová kapacita než u kroucené dvoulinky
 - může přenášet signály vyšších frekvencí

do 500 MHz, ev. i vyšší

použití:

- v audio/video technice
 - rozvody TV antén
- první verze Ethernetu
 - 10Base5
 - (žlutý) koax. kabel ϕ 1 cm
 - 10Base2
 - (černý) koax. kabel, ϕ 0,5 cm
- rozvody HFC (Hybrid Fiber-Coax)
 - na větší vzdálenost vedena optika
 - překlenutí poslední míle
 - na kratší vzdálenost veden koaxiální kabel
 - rozvody ke koncovým účastníkům
- dříve též:
 - "dálkové kabely", např. podmořské

optická vlákna a optické přenosy

optika, optické přenosy

- mají obrovský potenciál, dosud využitý jen z velmi malé části
 - důvodem je obrovská šířka přenosového pásma, daná (rozsahem) frekvencí přenášeného signálu (stovky THz = $X*10^8$ MHz = $X*10^{14}$ Hz)
- spíše než frekvence \mathbf{f} se vyjadřuje vlnová délka λ
 - přičemž $f * \lambda = c$

c = rychlost světla, cca 300 000 km/s

· přenášené světlo

- nejde o viditelné světlo kvůli vyšším hodnotám útlumu
 - lidské oko (obvykle) vnímá rozsah 430 až 790 THz (390 700 nm)
- ale o infračervené světlo kvůli příznivějšímu (nižšímu) útlumu
 - hlavně v pásmech 1550 a 1310 nm
 - jednovidová optická vlákna (single mode)
 - a v pásmech 1300 a 850 nm
 - mnohovidová optická vlákna (multimode)
 - snesou i větší rozptyl

frekvence	vlnová délka		
480-405 THz	625-740 nm		
510-480 THz	590-625 nm		
530-510 THz	565-590 nm		
580-530 THz	520-565 nm		
600-580 THz	500-520 nm		
670-600 THz	450-500 nm		
790-700 THz	380-430 nm		

princip optického přenosu

• využívá Snellův zákon lomu:

- při dopadu paprsku na rozhraní dvou optických prostředí se část odráží zpět a část prostupuje do druhého prostředí
- ale: pokud se vhodně zvolí úhel dopadu paprsku, neprostupuje nic a celý paprsek se odráží zpět

princip vedení světla optickým vláknem

 paprsek "vstupuje" do vlákna pod dostatečně malým úhlem (v rámci numerické apertury) a opakovaně se celý odráží - po celé délce vlákna

konstrukce optického vlákna (optical fiber)

- je tvořeno 2 prostředími s různou optickou hustotou
 - jádro (core)
 - plášť (cladding)
- plus dalším vhodným "ochranným obalem"
 - který ale u samotných vláken nezajišťuje dostatečnou mechanickou tuhost

optická vlákna vs. kabely

- jádro i plášť optických vláken jsou vyráběny z křemíku
 - a jsou velmi křehké proto je třeba je mechanicky chránit proti ohybu/zlomu
 - připojování konektorů (tzv. konektorování) je velmi náročnou záležitostí
 - konektory se musí velmi pečlivě navařovat

v praxi:

- často se používají celé optické kabely, které obsahují více (křemíkových) vláken
 - a zajišťují potřebnou mechanickou tuhost
 - představa: uprostřed je tuhá mechanická výztuha, kolem jsou jednotlivá vlákna
 - uprostřed může být i koaxiální kabel

mnohovidová vlákna (multimode fiber)

- přenáší "širší" paprsky
 - více "svazků" (vidů) světla, každý se šíří po trochu jiné dráze
 - ale vyhodnocuje se jejich součet
 - proto dochází k tzv. vidové disperzi
 - která "rozostřuje" (zaobluje) přijatý signál

• jednovidová vlákna (single mode, monomode fiber)

- přenáší velmi úzké paprsky
 - pouze 1 vid (→ jednovidové)
 - přenáší se po ose vlákna, zcela bez odrazů
 - nedochází k vidové disperzi

optický přenosový systém

- samotné optické vlákno nestačí je potřeba ho "nasvítit"
 - jinak se jedná o tzv. nenasvícené optické vlákno (≱≰ dark fiber)
 - nenasvícené vlákno (dark fiber) se také pronajímá nájemce si ho "nasvítí" sám
- "nasvícení" vyžaduje:
 - zdroj světla

- pro jednovidová vlákna je nutný dostatečně kvalitní laser
- pro mnohovidová vlákna stačí jednodušší zdroj (např. obyčejná LED dioda)
- detektor světla
 - pro jednovidová vlákna je nutný kvalitní detektor
 - pro mnohovidová vlákna stačí např. obyčejná fotodioda/fototranzistor
- na delší vzdálenosti (km, desítky km,):

- může být zapotřebí opakovač
 - který zregeneruje a zesílí přenášený optický signál
 - skrze jeho převod na elektrické signály a zase zpět na optické

	průměr jádro/plášť	přenášené světlo	dosah	rychlost	konektorování
mnohovidová vlákna	62.5/125 μm, 50/125 μm	1310/1550 nm	větší	nižší	méně náročné, levnější
jednovidová vlákna	9/125 μm	850/1310 nm	menší	vyšší	více náročné, dražší

plastová vlákna, chráničky

alternativa pro krátké vzdálenosti

- pro velmi krátké vzdálenosti (max. desítky metrů) jsou křemíková optická vlákna "overkill"
- stačí vlákna z plastu (místo křemíku)
 - jsou levnější
 - nejsou zdaleka tak náročná na:
 - osazování konektory
 - zapojování, spojování, rozpojování
 - mechanickou ochranu
 - jsou pružná, lze je ohýbat
 - mají větší průměr
- využívají se:
 - pro datové přenosy na krátké vzdálenosti
 - v rámci spotřební elektroniky

jak to chodí v praxi?

- cca 85% nákladů na pokládku optických kabelů jde na zemní práce a nejrůznější povolení
 - samotná kabeláž má stále menší podíl

· řešení:

- když už se "rozkope zem", tak se tam položí i tzv. chráničky
 - "prázdné trubky", do kterých lze dodatečně zasunout kabel, bez nutnosti znovu "kopat do země"
- chráničky lze následně i pronajímat
 - pro zavedení "cizích" kabelů

vlnový multiplex (WDM)

"klasické" optické přenosy:

- technologie "příjmu" světla jsou nedokonalé, vnímají jen "součet" světelných toků na všech přenášených vlnových délkách
 - nedokáží od sebe oddělit světla různých frekvencí
 - proto vnímají jen jejich součet
- optický přenos je jednosměrný
 - do stejného vlákna nelze "pustit" paprsek světla, který se šíří opačným směrem

podstata vlnového multiplexu

• WDM, Wavelength Division Multiplexing

navíc: možnost obousměrného přenosu po jednom vlákně

- technologie příjmu (ale i generování) světla jsou dokonálejší, dokáží rozlišovat paprsky světla na různých frekvencích – a pracovat s nimi nezávisle
 - každý paprsek (tzv. kanál) může být využit (modulován) nezávisle na ostatních
 - proto: chová se jako samostatný přenosový kanál, nezávislý na ostatních
- důsledek: celková přenosová kapacita optického vlákna se násobí počtem kanálů
 - v praxi: kanálů mohou být desítky, stovky či tisíce !!!!
- představa: jde o různé barvy světla

odstupy: desetiny až desítky nm

_ve skutečnosti jde o světlo v infračervené části spektra

rádiové přenosy

- signál či data, které potřebujeme přenést, jsou obvykle "úzké"
 - mají omezenou šířku pásma

- při jejich rádiovém přenosu lze postupovat dvěma různými způsoby
 - "nerozprostírat je"
 - použít pouze tak široký (resp. úzký) rozsah frekvencí, jaký odpovídá přenášenému signálu/datům
 - jde o úzkopásmový přenos,

narrowband

- nevýhodou je menší odolnost vůči negativním vlivům
 - snazší rušení, interference, odposlech
 - nutnost vysílat "nad" šum

- "rozprostřít je do šířky"
 - záměrně použít širší rozsah frekvencí, než jaký by byl nezbytně nutný
 - jaký by byl zapotřebí při úzkopásmovém přenosu
- jde o přenos v rozprostřeném spektru,
 spread spectrum (wideband)
 - důvodem může být:
 - snaha znesnadnit neoprávněný příjem / odposlech / rušení
 - snaha o vyšší robustnost přenosu
 - odolnost vůči nepříznivým přírodním podmínkám
 - přírodní šum, interference
 - možnost vysílat podstatně nižším výkonem než při úzkopásmovém přenosu
 - i pod úrovní šumu

techniky rozprostření

existuje více možností (technik), jak rozprostřít přenos do širšího spektra

- FSSS: Frequency Hopping Spread Spectrum
 - technika frekvenčního přeskakování
- DSSS: Direct Sequence Spread Spectrum
 - technika přímo rozprostřeného spektra, rozprostírání přímou posloupností,
- FDM (Frequency Division Multiplexing) a OFDM (Orthogonal FDM)
 - technika (ortogonálního multiplexu)
- UWB (Ultra Wide Band)

–

princip FHSS:

- efektu rozprostření se dosahuje přeskakováním
 - vysílá se "úzký" signál, který ale pravidelně přeskakuje mezi různými frekvenčními polohami (kanály)
 - v rámci širšího rozsahu pásma
- v praxi:
 - FHSS používá např. technologie Bluetooth:
 - přeskakuje se 1600x za 1 sekundu

- představa fungování FHSS:
 - obě strany dopředu znají posloupnost přeskoků
 - tato posloupnost je pseudonáhodná
 - vysílač krátkou dobu vysílá na jednom (úzkém) frekvenčním kanálu, pak rychle přejde na jiný kanál a zde pokračuje ve vysílání
 - příjemce jeho činnost napodobuje

FDM a OFDM

představa:

- místo přeskakování mezi různými frekvenčními kanály se využijí všechny kanály současně
 - každý z nich může být modulován samostatně a nést tak "vlastní" data
 - resp. část širšího toku dat

FDM: frekvenční multiplex

- Frequency Division Multiplexing
- jednotlivé nosné využívají vždy celý kanál a nepřekrývají se
 - v praxi se už tolik nepoužívá
 - kvůli relativně velké režii na oddělení jednotlivých kanálů

• OFDM: ortogonální FDM

- Orthogonal FDM
- jednotlivé nosné jsou "nahuštěny" tak, aby se maximum jedné nosné překrývalo s minimem druhé nosné
 - výhoda: na stejnou šířku pásma se "vejde" podstatně více nosných, a tím lze dosáhnout i podstatně vyšší propustnosti (přenosové rychlosti)
 - používá se velmi často, například v rámci xDSL technologií, Wi-Fi apod.

představa DSSS

DSSS, Direct Sequence Spread Spectrum

- technika přímo rozprostřeného spektra, rozprostírání přímou posloupností,
 - využívá se například u IEEE 802.11b (Wi-Fi),

podstata

- místo jednoho bitu se přenese celý symbol (jakýsi "vzorek") předem známého tvaru, tvořený posloupností tzv. chipů ("úlomků")
 - v případě hodnoty 1 se přenáší tento "vzorek" –
 - v případě hodnoty 0 jeho invertovaná podoba

představa fungování

- symbol ("vzorek") nemusí přesahovat úroveň šumu
 - může být vysílán i s nižší "silou" ale příjemce jej dokáže rozpoznat díky tomu, že "ví, co má hledat"
 - dosahuje se efektu úspory energie / malého rušení jiných přenosů / utajení
- přijatý symbol (vzorek) může být i poškozen
 - příjemce hledá i "podobné" vzorky, které ještě dokáže rozpoznat a odlišit od sebe
 - poznat, zda jde o 1 (symbol) nebo 0 (invert. symbol)
 - dosahuje se efektu robustnosti určitá míra poškození symbolů (vzorků) nenaruší přenos

odbočení: kódový multiplex (CDM)

- princip kódového multiplexu (CDM, Code Division Multiplexing)
 - místo jednotlivých bitů se přenáší celé čipy ("vzorky")
 - stejně jako u DSSS ale zde za jiným účelem, než je rozprostření do spektra a větší robustnost
 - u DSSS jsou všechny čipy (vzorky) stejné
 - zde jsou naopak čipy různé (pro každou komunikující dvojici) !!!!!
 - ale nemohou být libovolné musí být vzájemně ortogonální !!!!
 - ortogonální = mají nulový skalární součin (jsou na sobě nezávislé / na sebe kolmé)

důsledek

- jednotlivé přenosy se mohou v přenosovém médiu (např. éteru) smíchat, ale stále je možné je zase od sebe oddělit !!!!!
 - viz algebra a ortogonální báze vektorových prostorů: použité čipy musí tvořit ortogonální bázi

výhoda

- režie na "oddělení" jednotlivých přenosů má charakter výpočetní kapacity
 - tato kapacita ale není omezeným přírodním zdroje, lze ji snadno a levně zvyšovat

využití

například v mobilních komunikacích – technologie CDMA

UWB: Ultra Wide Band

myšlenka:

- využít extrémně (ultra) široké pásmo,
 i když ho už používá někdo jiný
 - více jak 500 MHz, což umožňuje dosahovat rychlosti v řádu stovek Mbit/s
 - ale jen na velmi krátkou vzdálenostjednotky metrů
- ale: vysílat zde tak slabě, že to "tomu jinému" nebude vadit
 - otázka: jak slabě to musí být?

modulace:

- pomocí pulzů ("pulzní rádio")
 - pulzy, využívající celé široké pásmo
- mění se (moduluje):
 - délka pulzu, četnost pulzů

využití:

technologie UWB měla být základem
 pro Bluetooth 3 – ale nestalo se tak

v USA

- rozhodnutí FCC z roku 2004 povoluje
 UWB v pásmu 3,1 až 10,6 GHz
 - s maximální "silou" -42,3 dBm/MHz

v Evropě

- Evropská komise vydala své doporučení v únoru 2007
 - 4,8 až 6 GHz: 42,3 dBm/MHz
 - ostatní frekvence: ještě slabší signál

