HW2 Implementation of AlexNet in SystemC

I. Code Structure sc_signal, sc_buffer, and sc_fifo are sharing similar code structure

structure.						
data folder	Include weight, bias, and input image matrix					
run	Executable files for SystemC program					
Pattern.h	Declare the internal variable, input/output signal,					
	functions, method.					
	Implement the methods that will provide our AlexNet					
	input image. It will read the text file (image) from data					
Pattern.cpp	folder when rst signal is on. After turning off rst signal,					
	Pattern will output 2 image in 2 following continuous					
	cycles.					
	Declare the input/output signal, functions and method for					
	monitoring our AlexNet. Also, the output layer (Softmax					
Monitor.h	layer and sorting) is implemented here. After getting the					
Mionitor.n	last linear layer (fc8), it will trigger the output layer and					
	show the inference result according to the Softmax result					
	and class name list.					
	Implement the method for monitoring our AlexNet. Also,					
	the output layer (Softmax layer and sorting) is					
Monitor.cpp	implemented here. After getting the last linear layer (fc8),					
	it will trigger the output layer and show the inference					
	result according to the Softmax result and class name list.					
Makefile	Makefile script for compile systemC program.					
	Declare the main function, create the module instances,					
main.cpp	mapping the signals. It includes all operation units,					
	pattern module, clockreset modules, and monitor module.					
MAC.h	Implement all operation units.					
clockreset.h	Declare the clock module and reset modules.					
clockreset.cpp	Implement the clock module and reset modules.					

II. Design Architecture and Implementation

A. sc_signal, sc_buffer

Fig(a) Architecture for sc_signal/sc_buffer solution

I implemented the design for sc_signal and sc_buffer with the same architecture since these two kinds of port are similar.

In the above Fig(a), brown ,dark blue, light blue, and light green lines are sc_signal/sc_buffer.

Orange and dark green parts are embedded in the layer which the orange/dark green arrows point at.

B. sc_fifo

Fig(b) Architecture for sc_fifo solution

In the above Fig(b), brown ,dark blue are implemented in sc_fifo. Other lines are the same as the setting in Fig(a). Orange and dark green parts are embedded in the layer which the orange/dark green arrows point at.

I remove most of lines that connect between operation layers and monitor since sc fifo only allow one output port to connect with.

III. Observations and Optimization

A. sc_signal, sc_buffer

The main difference of wiring with sc_signal and sc_buffer is the trigger of updating value. The former, sc_signal, only updates the value when its input value changed, while sc_buffer always updates the value without checking input signal.

Besides, after using "write()" function to write the new value into both of these ports, the new value will be blocked and wait the next trigger event take place. Then, we can use "read()" function to access the new value we just give to the ports.

B. sc fifo

I still use Method to implement sc_fifo-wiring module. However, we have to know if fifo is empty. If not empty, we have to read out and release fifo space. If it is empty, we have to make sure the simulation will not be blocked. To do that, I use "nb_read()". This function will return a bool term. If it is empty, it will return 0. Then, we will skip the empty process.s

IV. Demo Results

To run the simulation, Makefiles are placed in the folders (sc_signal, sc_buffer, sc_fifo). Just enter the folder and type "make".

(a) sc_signal

dog.txt for sc_signal

cat.txt for sc_signal

(b)sc_buffer

dog.txt for sc_buffer

cat.txt for sc_buffer

(c) sc_fifo

dog.txt for sc_fifo

-			C	ycle count:	19	-
=				RST signal off		=
out_val	lid_linear2:	1	11	linear2_out[0]:	-0.92959751	
****	**************	******** Top-5 *****	****** Results	*****	***********	********
Index	Val		Possi	bility	ClassName	
207 175 220 163 219	16.594538 15.569655 15.361861 15.002673 14.593215		13.86		golden retriever otterhound Sussex spaniel bloodhound cocker spaniel	

cat.txt for sc_fifo

-			Cycle count:	20		-
=			RST signal (off		=
out_va	lid_linear2:	1	linear2_o	ut[0]:	-0.72582889	
****	*****	*****	**************************************	****	*****	*****
*****	*****	Top-5 Res *****	u	*****	********	******
Index	Val	Р	ossibility	Clas	sName	
285	20.206690	 9	6.381293%	Eavp	tian cat	
281	16.136833	1	.646177%	tabb		
282	15.733844	1	.100171%	tige	er cat	
287	14.790860	0	.428477%	lynx		
728	14 411859	Θ.	293312%	nlas	tic had	