1. A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.

$$V = (3-2x)^{2} \times V' = -4(3-2x)^{2} \times V' = -4(3-2x)^{2} \times (3-2x)^{2} \times (3-2x)^{2}$$

Check:
$$x=9,\frac{1}{2},\frac{3}{2}$$
 $V(0)=0$ $V(\frac{1}{2})=\frac{4}{2}=2$ 51^2 $V(\frac{3}{2})=0$

2. A rectangular storage container with an open top is to have a volume of 10 m³. The length of the base is twice the width. Material for the base costs \$10 per square meter. Material for the sides costs \$ 6 per square meter. Find the costs of materials for the cheapest such container.

3. Find the point on the line y = 3x that is closest to the point (1, 0).

$$=20x-2$$

$$0'=0$$
 at $x=\frac{1}{10}$, $y=\frac{3}{10}$

- **4.** Consider the function $G(x) = x^3 x^2$.
 - **a**. On what intervals is *G* increasing or decreasing?

$$G'(x) = 3x^2 - 2x$$
 x = $x(3x-2)$ 3x-2

incrasig: (-00,0) ad (= 00)

conc down: (-00) (3)

dec: (0,2/5)

b. Find the locations of any local maximum and minimum values of *G*.

c. Find the intervals of concavity and the inflection points.

 6^{11} -14 5.0.i: t=13Canc up: (1/3,10)

2

5. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 2 cm³/sec, how fast is the water level rising when the water is 5 cm deep?

- $2 = \frac{9\pi}{100}.25 \frac{dh}{dt} \Rightarrow \frac{dh}{1t} = \frac{8}{9\pi} \frac{cm/sec}{sec}$
- **6.** Find the linearization of $f(x) = \sqrt{x}$ at a = 4 and use it to estimate $\sqrt{4.1}$.

$$f(4) = 2$$

$$f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2} = \frac{1}{4}$$

$$L(x) = 2 + \frac{1}{4}(x - 4)$$

$$J4.1 = f(4.1) \approx L(4.1) = 2 + \frac{1}{4} \cdot \frac{1}{10} = 2 + \frac{1}{40}$$

$$= 2.025$$

$$VS = 2.024 845 \dots$$

7. The position of a mass on the x axis is given by $x(t) = t(e^t - 2)$ for $t \ge 0$. Find an equation involving a derivative to solve to determine the time when x(t) is at a minimum. You will not be able to solve the equation by hand, so don't sweat it.

$$x'(t) = e^{t} - 2 + te^{t}$$

 $x(t)$ at a min requires $x'(t) = 0$
So $(1+t)e^{t} - 2 = 0$

- **8.** We can use Newton's method in the previous problem to find an approximate solution.
 - **a**. Explain why you expect the minimum to occur somewhere between t = 0 and t = 0

$$\ln(2) \approx 0.7$$
. $\chi(6) = 0$ $\chi(4) < 0$ for $0 < \ell < \ln(2)$
 $\chi(\ln(2)) = 0$ $\chi(\ell) > 0$ for $0 < \ell < \ln(2)$
b. Apply one round of Newton's method to determine an approximate solution starting

with t = 1/2.

$$x' = x^0 - \frac{t(x^0)}{t(x^0)}$$

$$f(x) = (1+t)e^{t} - 2$$

$$f'(x) = e^{t} + (1+t)e^{t}$$

$$= (2+t)e^{t}$$

$$\chi(=\frac{1}{2}-\frac{3e^{1/2}-2}{5e^{1/2}}$$