

#### **CSE 554**

### Lecture 5: Contouring (faster)

Fall 2018

#### Review



#### Iso-contours

- Points where a function evaluates to be a given value (iso-value)
  - Smooth thresholded boundaries



- Primal methods
  - Marching Squares (2D) and Cubes (3D)
  - Placing vertices on grid edges
- Dual methods
  - Dual Contouring (2D,3D)
  - Placing vertices in grid cells





### **Efficiency**



- Iso-contours are often used for visualizing (3D) medical images
  - The data can be large (e.g, 512^3)
  - The user often wants to change iso-values and see the result in real-time

- An efficient contouring algorithm is needed
  - Optimized for viewing one volume at multiple iso-values

#### **Marching Squares - Revisited**



- Active cell/edge
  - A grid cell/edge where {min, max} of its corner/end values encloses the isovalue
- Algorithm
- O(n) Visit each cell.
- O(k) If active, create vertices on active edges and connect them by lines
  - Time complexity? O(n+k)
    - n: the number of all grid cells
    - k: the number of active cells (usually <<n)</li>



lso-value = 3.5

#### **Marching Squares - Revisited**







CSE554 Contouring II Slide 5

# **Speeding Up Contouring**



- Can we make the algorithm's complexity output sensitive?
  - More dependent on k, rather then n
  - Need a faster way to locate active cells instead of a global scan

# **Speeding Up Contouring**



- Precompute a data structure for fast active-cell queries
  - Quadtrees (2D), Octrees (3D)
    - Hierarchical spatial structures for quickly pruning large areas of inactive cells
    - Complexity: O(k+k\*Log(n/k))
  - Interval trees
    - An optimal data structure for range finding
    - Complexity: O(k+Log(n))

#### **Overview**







# **Speeding Up Contouring**



Precompute a data structure for fast active-cell queries



Quadtrees (2D), Octrees (3D)

- Hierarchical spatial structures for quickly pruning large areas of inactive cells
- Complexity: O(k+k\*Log(n/k))
- Interval trees
  - An optimal data structure for range finding
  - Complexity: O(k+Log(n))



- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- Basic idea: coarse-to-fine search
  - Start with the entire grid:
    - If the {min, max} of all grid values does not enclose the iso-value, stop.
    - Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it's an active cell.





- A degree-4 tree
  - Root node represents the entire image
  - Each node represents a square part of the image, and stores:
    - {min, max} in the square
    - (in a non-leaf node) one child node for each quadrant of the square





- Tree building: bottom-up
  - Each grid cell becomes a leaf node
  - Assign a parent node to every group of 4 nodes
    - Compute the {min, max} of the parent node from {min, max} of the children nodes
    - Padding dummy leaf nodes (e.g., {∞,∞}) if the dimension of grid is not power of 2





Tree building: a recursive algorithm

```
// A recursive function to build a single quadtree node
// for a sub-grid at corner (lowX, lowY) and with length len
buildSubTree (lowX, lowY, len)
1. If (lowX, lowY) is out of range: Return a leaf node with \{\infty,\infty\}
2. If len = 1: Return a leaf node with {min, max} of corner values
3. Else
    1. c1 = buildSubTree (lowX, lowY, len/2)
    2. c2 = buildSubTree (lowX + len/2, lowY, len/2)
    3. c3 = buildSubTree (lowX, lowY + len/2, len/2)
    4. c4 = buildSubTree (lowX + len/2, lowY + len/2, len/2)
    5. Return a node with children {c1,...,c4} and {min, max} of all
        {min, max} of these children
```

```
// Building a quadtree for a grid whose longest dimension is len
Return buildSubTree (1, 1, 2^Ceiling[Log[2,len]])
```



- Tree-building: time complexity?
  - O(n) proportional to # nodes of tree
- Pre-computation
  - We only need to do this once (after that, the tree can be used to speed up contouring at any iso-value)



- Contouring with a quadtree: top-down
  - Starting from the root node
  - If {min, max} of the node encloses the iso-value
    - If it is not a leaf, continue onto its children
    - If the node is a leaf, contour in that grid cell



= 2.5



Contouring with a quadtree: a recursive algorithm

```
// Contouring using a quadtree whose root node is Root
// for a grid whose longest dimension is len
ctSubTree (Root, iso, 1, 1, 2^Ceiling[Log[2,len]])
```



- Contouring with a quadtree: time complexity?
  - O(k+k\*Log(n/k)) # of nodes in the rooted subtree that contains only the active leaf nodes
  - Faster than O(k+n) (Marching Squares) if k<<n</li>
  - But not efficient when k is large







### **Quadtrees (2D): Summary**



- Preprocessing: building the tree bottom-up
  - Independent of iso-values
- Contouring: traversing the tree top-down
  - For a specific iso-value
- Both are recursive algorithms

# Octrees (3D)



- Each tree node has 8 children nodes
- Similar algorithms and same complexity as quadtrees

# **Speeding Up Contouring**



- Precompute a data structure for fast active-cell queries
  - Quadtrees (2D), Octrees (3D)
    - Hierarchical spatial structures for quickly pruning large areas of inactive cells
    - Complexity: O(k+k\*Log(n/k))



- An optimal data structure for range finding
- Complexity: O(k+Log(n))



- Basic idea
  - Each grid cell occupies an interval of values {min, max}
    - An active cell's interval intersects the iso-value
  - Stores all intervals in a search tree for efficient intersection queries





- A binary tree
  - Root node: all intervals in the grid
  - Each node maintains:
    - $\delta$ : Median of end values of all intervals (used to split the children intervals)
    - (in a non-leaf node) Two child nodes
      - **Left child**: intervals  $< \delta$
      - Right child: intervals >  $\delta$
    - Two sorted lists of intervals intersecting δ
      - Left list (AL): ascending order of min-end of each interval
      - Right list (DR): descending order of max-end of each interval



m

AL: d,e,f,g,h,iDR: i,e,g,h,d,fAL: a,b,cAL: j,k,l $\delta$ =7 DR: c,a,bDR: l,j,kAL: mInterval tree:  $\delta$ =4  $\delta = 10$ DR: m $\delta=12$ *10* 11 *12* Intervals:



- Intersection queries: top-down
  - Starting with the root node
    - If the iso-value is smaller than median δ
      - Scan through AL: output all intervals whose min-end <= iso-value.</li>
      - Go to the left child.
    - If the iso-value is larger than  $\delta$ 
      - Scan through DR: output all intervals whose max-end >= iso-value.
      - Go to the right child.
    - If iso-value equals δ
      - Output AL (or DR).















- Intersection queries: time complexity?
  - O(k + Log(n)) # active intervals + depth of tree
    - Walks down the tree along a single path! (unlike quadtree/octree)
  - Much faster than O(k+n) (Marching squares/cubes)









- Tree building: top-down
  - Starting with the root node (which includes all intervals)
  - To create a node from a set of intervals,
    - Find  $\delta$  (the median of all ends of the intervals).
    - Sort all intervals intersecting with  $\delta$  into the **AL**, **DR**
    - Construct the left (right) child from intervals strictly below (above) δ
  - A recursive algorithm



 $m^{-}$ 

Interval tree:



Intervals:



AL: d,e,f,g,h,iDR: i,e,g,h,d,fInterval tree: Intervals: m

**CSE554** 



m





m

DR: i,e,g,h,d,fAL: a,b,cAL: j,k,l $\delta$ =7 DR: c,a,bDR: l,j,kInterval tree:  $\delta$ =4  $\delta = 10$ 10 *11* Intervals:

AL: d,e,f,g,h,i







- Tree building: time complexity?
  - O(n\*Log(n))
    - O(n) at each level of the tree (after pre-sorting all intervals in O(n\*Log(n)))
    - Depth of the tree is O(Log(n))

#### **Interval Trees: Summary**



- Preprocessing: building the tree top-down
  - Independent of iso-values
- Contouring: traversing the tree top-down
  - For a specific iso-value
- Both are recursive algorithms

#### **Further Readings**



- Quadtree/Octrees:
  - "Octrees for Faster Isosurface Generation", Wilhelms and van Gelder (1992)
- Interval trees:
  - "Dynamic Data Structures for Orthogonal Intersection Queries", by Edelsbrunner (1980)
  - "Speeding Up Isosurface Extraction Using Interval Trees", by Cignoni et al. (1997)

### **Further Readings**



- Other acceleration techniques:
  - "Fast Iso-contouring for Improved Interactivity", by Bajaj et al. (1996)
    - Growing connected component of active cells from pre-computed seed locations
  - "View Dependent Isosurface Extraction",
     by Livnat and Hansen (1998)
    - Culling invisible mesh parts
  - "Interactive View-Dependent Rendering Of Large Isosurfaces", by Gregorski et al. (2002)
    - Level-of-detail: decreasing mesh resolution based on distance from the viewer



Livnat and Hansen



Gregorski et al.