

AR 3.1.1.

Exposición ocupacional en reactores nucleares de potencia

REVISIÓN 2

Aprobada por Resolución del Directorio de la Autoridad Regulatoria Nuclear Nº 36/01 (Boletín Oficial 15/01/02)

EXPOSICIÓN OCUPACIONAL EN REACTORES NUCLEARES DE POTENCIA

A. OBJETIVO

1. Establecer los criterios de protección radiológica ocupacional que se deben tener en cuenta en el diseño.

B. ALCANCE

2. Esta norma es aplicable a las características de diseño de los reactores nucleares de potencia, relacionadas con la exposición de los trabajadores.

El cumplimiento de la presente norma y de las normas y requerimientos establecidos por la Autoridad Regulatoria, no exime del cumplimiento de otras normas y requerimientos no relacionados con la seguridad radiológica, establecidos por otras autoridades competentes.

C. EXPLICACIÓN DE TÉRMINOS

- **3. Área Controlada:** Lugar de trabajo donde se requiere, en condiciones normales de operación, que los trabajadores apliquen procedimientos preestablecidos para controlar la exposición a la radiación o para prevenir la dispersión de la contaminación radiactiva, y en la que se requieren medidas específicas para prevenir exposiciones potenciales.
- **4. Concentración Derivada en Aire (DAC):** Para un dado radionucleido, es el cociente entre el valor del límite anual de incorporación de ese radionucleido y 2500 m³ de aire.
- **5. Dosis:** Medida de la radiación recibida o absorbida por un órgano o cuerpo. Se utilizan, según el contexto, las magnitudes denominadas dosis efectiva, dosis equivalente, dosis colectiva y dosis efectiva comprometida. Los términos calificativos se suelen omitir cuando no son necesarios para precisar la magnitud de interés
- **6. Dosis Equivalente Ambiental, H*(d):** Dosis equivalente en la esfera ICRU $(1)^1$ -a la profundidad d- cuando se encuentra en un campo de radiación alineado y expandido, en el radio opuesto al sentido del campo alineado. Cuando la radiación es penetrante, se adopta d = 10 milímetros.
- 7. Factor de Ocupación: Fracción del año laboral (2000 horas) en la que una persona ocupa un determinado local.
- **8. Optimización:** Procedimiento para reducir tanto como sea razonablemente alcanzable, teniendo en cuenta factores sociales y económicos, la dosis colectiva originada en una Instalación o en una práctica.

_

¹ International Commission on Radiation Units and Measurements. ICRU Report 51

D. CRITERIOS

- **9**. Las dosis anuales que reciban los trabajadores expuestos deben ser inferiores a las restricciones de dosis establecidas, y los sistemas de protección deben estar optimizados. Para verificar el cumplimiento de este criterio, se podrá tener en cuenta el factor de ocupación previsto para los distintos locales; en cambio no podrá tenerse en cuenta un eventual reemplazo de trabajadores.
- **10.** Debe darse preferencia a la protección radiológica lograda mediante los sistemas propios de la instalación, frente a la obtenible por medios operativos.
- 11. La tasa de dosis equivalente ambiental en locales sin restricción de acceso para trabajadores, no debe exceder 3 μ Sv/h; en aquellos lugares donde sea superado este valor deberán preverse procedimientos adicionales de protección. En particular, el acceso a los locales donde la tasa de dosis equivalente ambiental exceda 200 μ Sv/h deberá estar prevenido mediante una barrera física apropiada.
- **12.** En locales sin restricción de acceso, la concentración de radionucleidos en aire no excederá 1/100 DAC.
- **13.** Ningún trabajador debe estar expuesto a concentraciones de radionucleidos en aire superiores a 1/10 DAC. En los locales donde estos valores de concentración puedan detectarse, deben preverse dispositivos para monitoreo y medios de protección adecuados.
- **14.** El acceso a los locales donde la concentración de radionucleidos en aire exceda 1 DAC debe estar prevenido por una barrera física apropiada.
- **15.** Durante el mantenimiento y la inspección en servicio, ningún trabajador debe estar expuesto a tasas de dosis que excedan 200 μ Sv/h de todas las radiaciones de las que el componente penetrante no superará los 30 μ Sv/h.
- **16.** Durante la reparación de fallas habituales, o durante períodos prolongados de mantenimiento e inspección de partes del circuito primario, ningún trabajador debe estar expuesto a tasas de dosis que excedan 1,2 mSv/h de todas las radiaciones de las que el componente penetrante no superará los $200~\mu Sv/h$.
- **17.** Como resultado de fallas muy infrecuentes pero previsibles, o durante breves períodos de mantenimiento e inspección de partes del circuito primario, ningún trabajador debe estar expuesto a tasas de dosis que excedan 5 mSv/h de todas las radiaciones de las que el componente penetrante no superará los 0,8 mSv/h.