След резольвенты оператора Лапласа на метрическом графе

Толченников Антон Александрович ИПМех РАН, Механико-математический факультет МГУ Секция: Уравнения в частных производных, математическая физика и спектральная теория

Доклад будет посвящен оператору Лапласа на метрическом конечном графе G=(V,E) с длинами ребер $\{l_j\}_{j=1}^{|E|}$, который на каждом ребре задан выражением $-\frac{d^2}{dx^2}$, а в вершинах графа заданы граничные условия, обеспечивающие самосопряженность оператора. Для работы с такими операторами есть эффективный метод — формализм Крейна, позволяющий удобно записывать резольвенту такого оператора и вычислять его след (или след подходящей степени резольвенты в случае пространств большей размерности, например, декорированных графов). Каждый такой оператор однозначно определяется лагранжевой плоскостью в $\mathbb{C}^{|2E|} \oplus \mathbb{C}^{2|E|}$: $\Lambda \leftrightarrow \Delta^{\Lambda}$. Цель — написать коэффициенты разложения $\mathrm{tr}(\Delta^{\Lambda}-z)^{-1}$ при больших z (за исключением сектора, содержащего положительную вещественную полуось). Первые два слагаемых в разложении особенно просты: $\mathrm{tr}(\Delta^{\Lambda}+w^2)^{-1}=\frac{\sum_{i=1}^{|E|}l_i}{2w}+\frac{|E|-\dim\Lambda\cap\Lambda_X}{2w^2}+O(w^{-3})$, где $\Lambda_X=\mathbb{C}^{2|E|}\oplus 0$. Этот подход, связанный с резольвентной формулой Крейна, можно применять для более сложных пространств – декорированных графов.

Работа поддержана грантом РНФ 22-11-00272.