Théorèmes d'interversion

Les intégrales sont écrites par rapport à une variable t sur un intervalle I. L'éventuelle autre variable, notée x, appartient à un intervalle J. Les hypothèses faibles ne sont pas indiquées. Par exemple, $t \mapsto f(x,t) \in \mathrm{CM}(I,\mathbb{K})$ et $x \mapsto f(x,t) \in \mathscr{C}^0(J,\mathbb{K})$ pour le th. de continuité d'une intégrale à paramètre. « Domination locale possible » signifie qu'on peut se contenter de $\forall [a,b] \subset J, \ \exists \varphi_{a,b} \in L^1(I,\mathbb{R}_+), \ \forall t \in I, \ \forall x \in [a,b], \ |\cdots(x,t)| \leqslant \varphi_{a,b}(t)$. Les hypothèses de convergence uniforme peuvent résulter de la convergence normale.

$\forall [a,b] \subset J, \ \exists \varphi_{a,b} \in L^1(I,\mathbb{K}_+), \ \forall t \in I, \ \forall x \in [a,b], \ \cdots(x,t) \leqslant \varphi_{a,b}(t)$. Les hypothèses de convergence uniforme peuvent résulter de la convergence normale.			
Conclusion	Nom	Hypothèse forte	Remarques
$\lim_{n \to +\infty} \left(\int_{I} f_n(t) \mathrm{d}t \right) = \int_{I} \lim_{n} f_n(t) \mathrm{d}t$	Convergence dominée	$ f_n(t) \leqslant \varphi(t)$ où φ intégrable sur I	Vérifier que $f = \lim_n f_n \in CM(I, \mathbb{K})$
$\int_{I} \sum_{n=0}^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_n(t) dt$	Intégration terme à terme positif (Beppo Levi)	$f_n(t) \ge 0$	Valable dans $[0, +\infty]$ (cas divergent aussi)
$\int_{I} \sum_{n=0}^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_n(t) dt$	Intégration terme à terme sur un int. qq.	$\sum_{n\geqslant 0} \int_{I} f_n(t) \mathrm{d}t \text{ converge}$	Si l'hypothèse forte n'est pas vérifiée, appliquer la la ligne suivante
$\int_{I} \sum_{n=0}^{+\infty} f_{n}(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_{n}(t) dt$	Convergence dominée pour les s. partielles.	$ S_n(t) = \sum_{k=0}^n f_k(t) \leq \varphi(t)$ où φ int. sur I	Utile pour les séries alt. ou géom.
$\lim_{n \to +\infty} \left(\int_a^b f_n(t) dt \right) = \int_a^b \lim_{n \to +\infty} f_n(t) dt$	Intégration d'une limite uniforme	(f_n) CVU vers f sur $[a,b]$	Valable seulement sur un segment
$\int_{[a,b]} \sum_{n=0}^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} \int_{[a,b]} f_n(t) dt$	Intégration terme à terme sur un segment	$\sum_{n\geqslant 0} f_n \text{ CVU sur } [a,b]$	Valable seulement sur un segment
$\lim_{x \to b} \left(\int_{I} f(x, t) dt \right) = \int_{I} \lim_{x \to b} f(x, t) dt$	Limite d'une intégrale à paramètre ou con- vergence dominée pour un paramètre réel	$ f(x,t) \leqslant \varphi(t)$ où φ intégrable sur I	Il faut la domination sur un intervalle $[c, b[$ b peut être infini
$x \mapsto \int_I f(x,t) dt$ est continue sur J	Cont. d'une intég. à paramètre sur un int. qq.	$ f(x,t) \leqslant \varphi(t)$ où φ intégrable sur I	Domination locale possible
$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\int_I f(x,t) \mathrm{d}t \right) = \int_I \frac{\partial^n f}{\partial x^n} (x,t) \mathrm{d}t, n \in \mathbb{N}^*$	Formule de Leibniz (int. qq.) de classe $\mathscr{C}^n(\mathscr{C}^{\infty})$	$\left \frac{\partial^n f}{\partial x^n}(x,t)\right \leqslant \varphi(t) \text{ où } \varphi \text{ intégrable sur } I$	Domination locale possible. $\forall j \in [0, n-1]$ et $\forall x \in J, t \mapsto \frac{\partial^j f}{\partial x^j}(x,t)$ intégrable Extension a la classe \mathscr{C}^{∞} en dominant (localement) toutes les dérivées
$f = \lim_{n \to +\infty} f$ est continue sur I	Continuité d'une limite uniforme	(f_n) CVU vers f	CVU sur I ou sur tout segment de I
$\lim_{t \to b} f(t) = \lim_{n \to +\infty} \left(\lim_{t \to b} f_n(t) \right).$	Théorème de la double limite	$(f_n)_n$ CVU vers f	Il faut la CVU sur un intervalle $[c, b[$ b peut être infini
$\left(\lim_{n \to +\infty} f_n\right)^{(k)} = \lim_{n \to +\infty} f_n^{(k)} k \in \mathbb{N}^*$	Classe $\mathscr{C}^k(\mathscr{C}^{\infty})$ d'une lim. de suite de fonctions	La dernière suite dérivée $(f_n^{(k)})$ CVU	Possibilité de CVU sur tout segment de I Les suites $(f_n^{(j)})$ CVS pour $0 \le j \le k-1$ Extension à la classe \mathscr{C}^{∞} (avec CVU de toutes les dérivées)
$\sum_{n=0}^{+\infty} f_n \text{ est continue sur } I$	Cont. de la somme d'une sér. de f.	$\sum_{n\geqslant 0} f_n \text{ CVU}$	CVU sur I ou sur tout segment de I
$\lim_{t \to b} \left(\sum_{n=0}^{+\infty} f_n(t) \right) = \sum_{n=0}^{+\infty} \lim_{t \to b} f_n(t)$	Théorème de la double limite	$\sum_{n\geqslant 0} f_n \text{ CVU}$	Il faut la CVU sur un intervalle $[a, b[$ b peut être infini
$\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$	Dérivation terme à terme de classe $\mathscr{C}^k(\mathscr{C}^{\infty})$	La dernière série dérivée $\sum_{n\geqslant 0} f_n^{(k)}$ CVU	Possibilité de CVU sur tout segment de I Les séries $\sum f_n^{(j)}$ CVS pour $0 \le j \le k-1$ Extension à la classe \mathscr{C}^{∞} (avec CVU de toutes les dérivées)
$x \mapsto \sum_{n=0}^{+\infty} a_n x^n \text{ est } \mathscr{C}^{\infty} \text{ sur }] - R, R[$	Dérivation t. à t. des sér. ent.	aucune	Valable sur $]-R,R[$
$\int_{x_0}^{x} \sum_{n=0}^{+\infty} a_n t^n dt = \left[\sum_{n=0}^{+\infty} \frac{a_n}{n+1} t^{n+1} \right]^{x}$	Intégration t. à t. des sér. ent.	aucune	C'est faux sur le segment $[-R, R]$. Il faut que x_0 et x soient dans $]-R, R[$
$\lim_{x \to R} \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} a_n R^n$	Convergence radiale d'Abel	La série $\sum_{n=0}^{+\infty} a_n R^n$ converge	Même résultat en $-R$