CSE-315 Microprocessor

Waqar Hassan Khan

Student ID: 1505107

1 Chapter-9: 8086/8088 specification

- virtually no differences between these two microprocessors. Both are packaged in 40-pin dual in-line package.
- 8086:16 bit microprocessor with a 16bit data bus(A0-A15) 8088:16 bit microprocessor with a 8bit data bus(A0-A7) major difference between 8086 and 8088.
- Minor differences

8086: $\mathrm{M}/\overline{IO};$ 8088: IO/\overline{M}

PIN34:-**8086**:*BHE*/S7;**8088**:SS0

• power supply requirements:

 $+5\mathrm{v}$ with a supply voltage tolerance of +-10%

both 32F to 180F

8086 and 8088 have 340 and 360 mA.

figures in the book

1.1 Pin Connection

- AD7-AD0:

- -8088 address/data bus lines
- -multiplexed address data bus
- -rightmost 8 bits of the memory address or I/O port whenever

-high impedance state during hold acknowledge.

- A15-A8:

- -8088 address bus
- -high impedance state during hold acknowledge.

- AD15-AD8:

- -8086 address/data bus lines.
- -contains address bits when ALE=1
- -high impedance state during hold acknowledge.

- A19/S6-A16/S3:

- -multiplexed address/data bus lines
- -high impedance state during hold acknowledge.

- **S6:** always 0

- S5: indicated the condition of IF flag

S4	S3	indicate segment accessed during current bus cycle	
0	0	extra segment	
0	1	stack segment	
1	0	code or no segment	
1	1	data segment	

- $-\overline{RD}$: if it is 0 then the data bus becomes receptive to data from memory or i/o devices connected to the system.
 - -high impedance state during hold acknowledge.

- READY:

- -enters into wait state and remains idle if 0
- -no effect on operations of microprocessor if this pin is in logic state 1.

- INTR:

- -used to request a h/w interrupt.
- -if INTR=1 when IF=1 then microprocessor enters an interrupt acknowledge cycle after completion of current instruction

− NMI:

- -non maskable interrupt pin.
- -similar to INTR except do not check IF flag.

$-\overline{\mathbf{TEST}}:$

- -an input that is tested by **wait** instruction. -if it is 0, the **WAIT** functions as **NOP**.
- -if 1 then **WAIT** waits for $\overline{\mathbf{TEST}}$ to become logic 0.

2 Chapter-9: 8086/8088 specification

• NMI:

- -non-maskable interrupt pin
- -similar to INTR except that NMI does not check IF flag.

• RESET:

- -causes the microprocessor to reset if this pin remains high for a minimum of 4 clocking periods.
- -whenever the microprocessor gets reset, it begins executing instructions at memory location FFFF0H and disables future interrupts by clearing IF.

• CLK:

- -provides the base timing signal to the microprocessor.
- -clock signal must have at least 33% duty cycle (high for $\frac{1}{3}$ rd and low for $\frac{2}{3}$ of the period)

• VCC

- -power supply input
- -provides +5V
- GND:- 2 pins, both must be connected to ground.

- MN/\overline{MX} :-selects either minimum mode or maximum mode operations of microprocessor.
- $\overline{BHE}/\mathbf{S7}$ -both high enable. -use in 8086 to enable the most significant data bus bits(D15-D8) during a read or write
 - -the state of S7 is always a logic1

2.1 Minimum Mode Pins

– IO/ \overline{M} or M/ \overline{IO}

- -selects memory or i/o -indicates that microprocessors address bus contains either a memory address or an i/o port address.
- -high impedance state during a hold acknowledge.

$-\overline{WR}$:

- -indicates that microprocessor is outputting data to a memory or io device.
- -data bus contains valid data for memory or io during the time, WR remains 0.

$-\overline{INTA}$:

- -a response to the INTR input pin.
- -used to gate the interrupt vector number onto the data bus in response to an interrupt request.

$-\overline{ALE}$:

- -address latch enable.
- -indicates that the microprocessor address/data bus contains address information.
- -the address can be a memory address or an i/o port.
- -does not float during a hold acknowledge.
- \mathbf{DT}/\overline{R} : data transmit or receive.
 - -indicates that microprocessors data bus is transmitting (DT/overlineR=1) or receiving (DT/overlineR=(DT/overlineR=0) data.
 - -used to enable external data bus buffers.
- **DEN:**-data bus enable
 - -activates external data bus buffers.
- HOLD: requests a direct memory access (DMA).
 - -if it is logic 1, microprocessor stops executing s/w and places its address, data and control bus at high impedance state.
 - -if it is a logic 0, the microprocessor executes s/w normally.
- **HLDA:** hold acknowledge
 - -indicates that the microprocessor has entered the hold state.
- $-\overline{SS0}$ equivalent to the S0 pin in the maximum mode operation.

-it is combined with IO/\overline{M} and DT/\overline{R} to decode function of the current bus cycle.

IO/\overline{M}	DT/\overline{R}	$\overline{SS0}$	function
0	0	0	interrupt acknowledge
0	0	1	memory card
0	1	1	memory write
0	1	1	halt
1	0	0	opcode fetch
1	0	1	I/O read
1	1	0	I/O write
1	1	1	passive/inactive

Table 1: bus cycle status (8088)[minimum mode]

$\overline{IS2}$	$\overline{S1}$	$\overline{S0}$	function
0	0	0	interrupt acknowledge
0	0	1	I/O card
0	1	1	I/O write
0	1	1	halt
1	0	0	opcode fetch
1	0	1	memory read
1	1	0	memory write
1	1	1	passive

Table 2: bus control functions generated by the bus controller $8088[{\rm maximum}\ {\rm mode}]$

3 8086/8088 hardware specifications

Maximum Mode Pins: for using with external co-processors

- $\overline{S2}, \overline{S1}, \overline{S0}$ indicate the function of current bus cycle. -normally decoded 8288 bus controller.
- $\overline{R1}/\overline{GT1}$ and $\overline{R0}/\overline{GT0}$ request/grant pins -requests direct memory access(DMA) -used to both request and grant DMA operation.
- \bullet $\,\overline{LOCK}$ used to lock peripheral off the system.
- \bullet OS1 and OS2 queue status bit.
 - -show status of the internal instruction queue.
 - -accessed by numeric co-processor(8087)

QS1	QSA	Function	
0	0	queue is idle	
0	1	first byte of opcode	
1	0	queue is empty	
1	1	subsequent byte of opcode	

3.1 clock generator-8284A

Fig1. Pin diagram of the 8284A clock generator

Figure 1: 8284A clock generator

• Basic functions:

- -clock generation
- -RESET synchronization
- -READY synchronization
- -TTL-level peripheral clk signals

• pin functions

• AEN1 and AEN2 (address enable) - qualify the bus ready signals RDY1 and RDY2 respectively.

- -wait states are generated by the READY pin of microprocessor, which is controlled by $\overline{AEN1}$ and $\overline{AEN2}$
- RDY1 and RDY2 Bus ready inputs.
 - -cause wait states in conjunction with $\overline{AEN1}$ and $\overline{AEN2}$ pins.
- - -selects either one or two stages of synchronization for RDY1 and RDY2 inputs.
- **READY** an output pin that connects to microprocessors READY input.
 - -synchronized with RDY1 and RDY2 inputs.
- X1 and X2: crystal oscillator pins.
 - -connect to an external crystal which is used as the timing source for the clock generator and all its functions.
- F/\overline{C} : Frequency/crystal select input.
 - chooses the clocking source.
 - if it is held high, an external clock is provided to the EFI pin.
 - if it is held low, the internal crystal oscillator provides the timing signal.

- EFI: External Frequency Input.
 - supplies timing whenever F/\overline{C} is held high.
- CLK: clock output pin, which provides clock input to microprocessor and other components.
 - output signal is $\frac{1}{3}$ of crystal or EFI input freq. and has a duty cycle of 33%(as required by 8086/8088).
- PCLK: peripheral clock.
 - $-\frac{1}{6}$ of the crystal or EFI input freq. and has a 50% duty cycle.
- OSC: oscillator output.
 - at same freq. as the crystal or EFI input.
 - provides an EFI input to other 8284A in a multi-processor system.
- \overline{RES} : reset input.
 - often connected to an RC network that provides power on resetting.
- **RESET:** reset output.
 - connected to microprocessors RESET input pin.
- **CSYNC:** clock synchronization.
 - used whenever the EFI input provides synchronization in a multi-

processor system.

-if the internal oscillator is used, this pin must be grounded.