UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljeni Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1. Uvod	4
2. Lastnosti sestavljenega Poissonovega procesa	ţ
2.1. CPP kot martingal	10
3. Cramér-Lundbergov model	1:
Slovar strokovnih izrazov	1:
Literatura	1:

Sestavljeni Poissonov proces in njegova uporaba v financah Povzetek

Abstract

Prevod zgornjega povzetka v angleščino.

Math. Subj. Class. (2020): 60G07 60G20 60G51

Ključne besede: slučajni procesi, sestavljeni Poissonov proces, Cramér-Lundbergov model

 $\textbf{Keywords:} \ \operatorname{stochastic} \ \operatorname{processes}, \ \operatorname{compound} \ \operatorname{Poisson} \ \operatorname{process}, \ \operatorname{Cram\'er-Lundberg} \ \operatorname{model}$ del

1. Uvod

Poissonov proces šteje število prihodov v danem časovnem intervalu, kjer narava prihodov sledi določenim omejitvam. Sestavljeni Poissonov proces je podoben Poissonovemu, razen da je vsak prihod utežen z neko slučajno spremenljivko. Kot standarden primer si lahko predstavljamo stranke, ki gredo v trgovino. Njihovi prihodi sledijo Poissonovemu procesu, znesek denarja, ki ga porabijo, pa sledi sestavljenemu Poissonovemu procesu. Predpostavimo, da stranke, ki prihajajo v trgovino, sledijo Poissonovemu procesu z intenzivnostjo $\lambda=0.1$ in da je količina denarja, ki ga porabijo, porazdeljena eksponentno s parametrom $\alpha=20$, torej naša trgovina ne omogoča vračil. Slika 1 prikazuje primer zaslužka dneva poslovanja. Na osi x je čas, na osi y pa kumulativna vsota vseh prihodov do nekega trenutka v času.

SLIKA 1. Primer trajektorije sestavljenega Poissonovega procesa

Vidimo, da je to zelo zanimiva ideja slučajnega procesa, ki ima veliko potencialnih uporab za modeliranje različnih dogodkov. Na primer zahtevke v zavarovalnici, število poivedb, ki jih prejema strežnik, špremembo v ceni nekega finančnega instrumenta in mnoge druge. V delu bomo izpeljali osnovne lastnosti procesa ter se osredotočili na njegovo uporabo v financah. Za začetek definirajmo osnovne pojme ter Sestavljen Poissonov proces.

Definicija 1.1. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (E, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih spremenljivk $X_t : \Omega \to E$, ki so (\mathcal{F}, Σ) -merljive za vsak $t \in T$.

Opomba 1.2. Držali se bomo konvencije, da T predstavlja čas, torej $T = [0, \infty)$ in da s.s. zavzemajo vrednosti v realnih števili, torej $(E, \Sigma) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, kjer $\mathcal{B}_{\mathbb{R}}$ predstavlja Borelovo σ -algebro na \mathbb{R} . Od tu dalje, če ni drugače navedeno, bomo privzeli, da so s.s. definirane na nekem verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ in zavzemajo vrednosti v $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definicija 1.3. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t>0}$.

Opomba 1.4. Na slučajni proces lahko gledamo tudi kot na predpis, ki nam iz vorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t\geq 0}:[0,\infty)\to\mathbb{R}$.

Definicija 1.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek $procesa X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima $neodvisne\ prirastke$, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki

$$X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \ldots, X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

Definicija 1.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 1.7. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t\geq 0}$ definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ z vrednostmi v \mathbb{N}_0 pravimo *Poissonov proces* z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $N_0 = 0$ P-skoraj gotovo.
- (2) $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke,
- (3) Za $0 \le s < t$ velja $N_t N_s \sim \text{Pois}(\lambda(t-s))$,

Opomba 1.8. Vidimo, da v definiciji ne zahtevamo, da so skoki procesa le +1. To sledi iz...

Definicija 1.9. Naj bo $(N_t)_{t\geq 0}$ Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih (med sabo in N_t) in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljen Poissonov proces $(S_t)_{t\geq 0}$ definiran kot

$$S_t = \sum_{i=1}^{N_t} X_i.$$

Opomba 1.10. Vidimo, da je Poissonov proces le poseben primer sestavljenega Poissonovega procesa, ko za X_i vzamemo konstantno funkcijo $X_i = 1$ za vsak i. Bolj v splošnem, če za X_i postavimo $X_i = \alpha$, potem velja $S_t = \alpha N_t$.

V nadaljevanju bomo Poissonovemu procesu rekli HPP (angl. Homogeneous Poisson Process) in ga označevali z $(N_t)_{t\geq 0}$, sestavljenemu Poissonovemu procesu pa CPP (angl. Compound Poisson Process) in ga označevali s $(S_t)_{t\geq 0}$. Če ni drugače navedeno, bo λ označevala njuno intenzivnost.

2. Lastnosti sestavljenega Poissonovega procesa

V tem poglavju si bomo ogledali osnovne lastnosti sestavljenega Poissonovega procesa. Pogledali si bomo...

Trditev 2.1. CPP ima neodvisne in stacionarne prirastke.

Dokaz. Za nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ lahko slučajne spremeljivke $S_{t_i} - S_{t_{i-1}}$ zapišemo kot

$$S_{t_i} - S_{t_{i-1}} = \sum_{j=N_{t_{i-1}}+1}^{N_{t_i}} X_j.$$

Neodvisnost prirastkov sledi po neodvisnosti X_i od X_j za $i \neq j$ in N_t . Naj bo h > 0 in s < t. Potem velja

$$S_{t+h} - S_{s+h} = \sum_{j=N_{s+h}+1}^{N_{t+h}} X_j$$

Vsota ima $N_{t+h}-N_{s+h}$ členov. Ker za HPP velja $N_{t+h}-N_{s+h}\sim N_t-N_s$, je

$$\sum_{j=N_{s+h}+1}^{N_{t+h}} X_j = \sum_{j=N_s+1}^{N_t} X_j = S_t - S_s.$$

Izračunajmo pričakovano vrednost in varianco CPP. Naj bo $(N_t)_{t\geq 0}$ HPP z intenzivnostjo λ in naj bo $\mu=\mathbb{E}\left[X_i\right]$ pričakovana vrednost slučajnih spremenljivk X_i za vsak i. Po formuli za popolno pričakovano vrednost velja $\mathbb{E}\left[S_t\right]=\mathbb{E}\left[\mathbb{E}\left[S_t\mid N_t\right]\right]$. Torej

$$\mathbb{E}[S_t] = \sum_{k=0}^{\infty} \mathbb{E}[S_t | N_t = k] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\sum_{i=1}^{k} X_i\right] \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} k \mathbb{E}[X_i] \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \mu \lambda t e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!}$$

$$= \mu \lambda t.$$

Za izračun variance potrebujemo dodatno predpostavko, da imajo slučajne spremenljivke X_i drugi moment. V tem primeru označimo $\operatorname{Var}[X_i] = \sigma^2$. Velja $\operatorname{Var}[S_t] = \mathbb{E}[S_t^2] - \mathbb{E}[S_t]^2$, torej potrebujemo izračunati se drugi moment. Ponovno uporabimo formulo za popolno pričakovano vrednost.

$$\mathbb{E}\left[S_t^2\right] = \sum_{k=0}^{\infty} \mathbb{E}\left[S_t^2 \mid N_t = k\right] \mathbb{P}\left(N_t = k\right)$$
$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\left(\sum_{i=1}^k X_i\right)^2\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\sum_{i=1}^{k} X_i^2 + \sum_{i \neq j} X_i X_j\right] \mathbb{P}\left(N_t = k\right)$$
$$= \sum_{k=0}^{\infty} \left(kE\left[X_i^2\right] + k(k-1)\mathbb{E}\left[X_i\right] \mathbb{E}\left[X_j\right]\right) \mathbb{P}\left(N_t = k\right)$$

Prek formule $\operatorname{Var}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\mathbb{E}\left[X_{i}\right]^{2}$ dobimo

$$\mathbb{E}\left[X_i^2\right] = \sigma^2 + \mu^2.$$

Izraz $kE[X_i^2] + k(k-1)\mathbb{E}[X_i]\mathbb{E}[X_i]$ se tako poenostavi v $k\sigma^2 + k^2\mu^2$, torej

$$\mathbb{E}\left[S_t^2\right] = \sum_{k=0}^{\infty} \left(k\sigma^2 + k^2\mu^2\right) \mathbb{P}\left(N_t = k\right)$$
$$= \sigma^2 \mathbb{E}\left[N_t\right] + \mu^2 \mathbb{E}\left[N_t^2\right]$$
$$= \sigma^2 \lambda t + \mu^2 (\lambda t + \lambda^2 t^2),$$

kjer upoštevamo, da $N_t \sim \text{Pois}(\lambda t)$. Tako dobimo

$$Var [S_t] = \sigma^2 \lambda t + \mu^2 (\lambda t + \lambda^2 t^2) - (\mu \lambda t)^2$$
$$= \sigma^2 \lambda t + \mu^2 \lambda t + \mu^2 \lambda^2 t^2 - \mu^2 \lambda^2 t^2$$
$$= \lambda t (\sigma^2 + \mu^2).$$

Pojavi se vprašanje, kako pa je S_t porazdeljena? Na to bomo odgovorili s pomočjo rodovnih funkcij. Naj bodo X_1, X_2, \ldots n.e.p. s.s. z enako porazdelitvijo kot X. Izračunajmo momentno rodovno funkcijo CPP. Označimo z $M_X(u)$ momentno rodovno funkcijo s.s X in z M_{S_t} momentno rodovno funkcijo CPP.

$$M_{S_t}(u) = \mathbb{E}\left[\exp\left[uS_t\right]\right] = \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_t} X_i\right]\right]$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{N_t} X_i \mid N_t = k\right]\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[\exp\left[u\sum_{i=1}^{k} X_i\right]\right] \mathbb{P}\left(N_t = k\right)$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{uX}\right]^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= e^{-\lambda t} + e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(M_X(u)\lambda t)^k}{k!}$$

$$= e^{\lambda t(M_X(u)-1)}$$

$$(1)$$

Iz opombe 1.10, sledi, da če za X_i vzamemo konstantno funkcijo $X_i=1$, dobimo HPP. Tako vidimo, da je momentno rodovna funkcija HPP enaka $M_{S_t}(u)=e^{\lambda t(e^u-1)}$. Poleg tega takoj dobimo, da sta karakteristična in rodovna funkcija CPP enaki

$$\varphi_{S_t}(u) = e^{\lambda t(\varphi_X(u)-1)}$$
 in $G_{S_t}(u) = e^{\lambda t(G_X(u)-1)}$.

Saj v splošnem velja, da je karakteristična funkcija neke slučajne spremenljivke Y enaka njeni momentno rodovni funkciji izvrednoteni v iu, torej $\varphi_Y(u) = G_Y(iu)$. Rodovna pa izverdnotena v $\ln(u)$, torej $G_Y(u) = M_Y(\ln(u))$, če obstajata. V nadaljevanju bomo uporabljali predvsem karakteristično funkcijo CPP, saj je ta vedno definirana za vsak $u \in \mathbb{R}$. Prav nam bo prišla tudi naslednja povezava med njimi.

Trditev 2.2. Naj bodo X_1, X_2, \ldots n.e.p. s.s. z enako porazdelitvijo kot X in $(S_t)_{t\geq 0}$ CPP ter $(N_t)_{t\geq 0}$ HPP z intenzivnostjo λ neodvisna. Potem za fiksen $t\geq 0$ velja

$$\varphi_{S_t}(u) = G_{N_t}(\varphi_X(u)).$$

Dokaz. Po enačbi (1) velja, da je $\varphi_{S_t}(u)$ enaka

$$\varphi_{S_t}(u) = \sum_{k=0}^{\infty} \varphi_X(u)^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= G_{N_t}(\varphi_X(u)).$$

Sedaj se posvetimo vprašanju, kako je porazdeljena S_t ? Iz definicije HPP vemo, da je N_t za $t \geq 0$ porazdeljena kot Poissonova slučajna spremenljivka z intenzivnostjo λt . Fiksiramo $t \geq 0$ in računamo

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} \mathbb{P}(S_t \le x \mid N_t = k) \mathbb{P}(N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{P}(\sum_{i=1}^{k} X_i \le x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

kjer je $F_X^{*k}(x)$ porazdelitev k-te konvolucije slučajne spremenljivke X. Razen za posebne primere, je zgornji izraz za praktične namene ne-izračunljiv in nam ne pove veliko o porazdelitvi S_t .

Zgled 2.3. Če pogledamo poseben primer, ko so X_1, X_2, \ldots neodvisne s.s. porazdeljene eksponentno s parametrom α , lahko eksplicitno izračunamo porazdelitev S_t . Za $t \geq 0$ in $x \geq 0$ velja

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= \sum_{k=0}^{\infty} \frac{\alpha^k x^{k-1} e^{-\alpha x}}{(k-2)!} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$=\sum_{k=0}^{\infty}$$

To je tudi praktično edini primer, ko lahko pridemo do eksplicitne formule.

 \Diamond

Pokažimo, da je CPP v resnici porazdeljen, kot limita linearne kombinacije neodvisnih Poissonovih slučajnih spremenljivk. Naj bodo Y_1, Y_2, \ldots, Y_n neodvisne s.s. porazdeljene $\operatorname{Pois}(\lambda_1)$, $\operatorname{Pois}(\lambda_2)$,... $\operatorname{Pois}(\lambda_n)$ za poljubne $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}^+$. Označimo s $\varphi_{Z_n}(u)$ karakteristično funkcijo slučajne spremenljivke $Z_n = a_1Y_1 + a_2Y_2 + \cdots + a_nY_n$ za poljubne $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Potem po neodvisnosti velja

$$\varphi_{Z_n}(u) = \prod_{j=1}^n \varphi_{Y_j}(a_j u)$$

$$= \prod_{j=1}^n \exp\left[\lambda_j \left(e^{a_j i u} - 1\right)\right]$$

$$= \exp\left[\sum_{j=1}^n \lambda_j \left(e^{a_j i u} - 1\right)\right].$$

Naj bo sedaj $N \sim \text{Pois}(\lambda)$ za $\lambda > 0$ in $X_1, X_2, \dots X_n$ neodvisne s.s. (neodvisne med sabo in od N) enako porazdeljene kot

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \dots & \frac{\lambda_n}{\lambda} \end{pmatrix}.$$

Definiramo $Z_n' = \sum_{j=1}^N X_j$. Pokažimo, da sta Z_n in Z_n' enako porazdeljeni. Po trditvi 2.2 velja

$$\varphi_{Z'_n}(u) = G_N (\varphi_X(u))$$

$$= \exp \left[\lambda \left(\varphi_X(u) - 1\right)\right]$$

$$= \exp \left[\lambda \left(\sum_{j=1}^n \frac{\lambda_j}{\lambda} e^{iua_j} - 1\right)\right]$$

$$= \exp \left[\sum_{j=1}^n \lambda_j \left(e^{a_j iu} - 1\right)\right] = \varphi_{Z_n}(u).$$

Ker se karakteristični funkciji φ_{Z_n} in $\varphi_{Z'_n}$ ujemata za vsak $u \in \mathbb{R}$, po Lévijevem izreku o zveznosti sledi, da sta Z_n in Z'_n enako porazdeljeni. Tako smo pokazali, da je za ustrezno izbiro zaporedij $(a_n)_{n\geq 1}$ in $(\lambda_n)_{n\geq 1}$ Z'_n enako porazdeljena kot linearna kombinacija neodvisnih poissonovih s.s. Ker za uporabo Lévijevega izreka potrebujemo le konvergenco po točkah iz tega sledi, da če seštevamo diskretne n.e.p. s.s. X_i prav tako velja naša trditev. Kaj pa v primeru, ko so X_i zvezno porazdeljene? Tedaj se problema lotimo na sledeč način. Definiramo $F_n(x) := F(\frac{m}{n})$ kjer je F(x) porazdelitvena funkcija slučajne spremenljivke Z'_n in $m = \min\{k \in \mathbb{Z} \mid \frac{k}{n} > F_n(x)\}$.

SLIKA 2. Aproksimacija F s F_n

Kot je razvidno iz slike 2, je $F_n(x)$ stopničasta funkcija, ki aproksimira porazdelitveno funkcijo F(x). Seveda velja $F_n \xrightarrow{n \to \infty} F$ povsod kjer je F zvezna.

2.1. CPP kot martingal.

Definicija 2.4. Slučajni proces X_t prilagojen glede na filtracijo $(\mathcal{F}_t)_{t\geq 0}$ martingal, če velja

$$\mathbb{E}\left[X_t \mid \mathcal{F}_s\right] = X_s$$

za vsak $0 \le s \le t$.

Pokažimo, da v splošnem *CPP* ni martingal.

Trditev 2.5. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke z $\mathbb{E}[X_i] = \mu$ za vsak i. Potem je S_t martingal natanko tedaj, ko je $\mu = 0$.

Dokaz. Naj bo $0 \le s \le t$. Potem velja

$$\mathbb{E}[S_t \mid \mathcal{F}_s] = \mathbb{E}[S_t - S_s + S_s \mid \mathcal{F}_s]$$
$$= \mathbb{E}[S_t - S_s] + \mathbb{E}[S_s \mid \mathcal{F}_s]$$
$$= \mu \lambda (t - s) + S_s$$

Enakost $\mu\lambda(t-s) + S_s = S_s$ velja $\iff \mu\lambda(t-s) = 0 \iff \mu = 0.$

Opomba 2.6. Seveda, če velja $\mu \geq 0$, potem je S_t submartingal, če pa $\mu \leq 0$, je S_t supermartingal.

Trditev 2.7. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke $z \mathbb{E}[X_i] = \mu$ za vsak i, Potem je proces

$$S_t - \mu \lambda t$$

martingal.

Dokaz. Naj bosta $0 \le s < t$. Prirastek $S_t - S_s$ je neodvisen od \mathcal{F}_s in ima pričakovano vrednost $\mu \lambda(t-s)$. Torej

$$\mathbb{E}\left[S_t - \mu \lambda t \mid \mathcal{F}_s\right] = \mathbb{E}\left[S_t - S_s\right] + S_s - \mu \lambda t$$
$$= \mu \lambda (t - s) + S_s - \mu \lambda t$$
$$= S_s - \mu \lambda s.$$

3. Cramér-Lundbergov model

V nadaljevanju se bomo usmerili v Cramér-Ludenbergov model. Ta osnovni model za zavarovalniška tveganja je v svoji disretaciji leta 1903 prvi predstavil Fillip Lundeberg in tako postavil temelje za teorijo zavarovalništva. Kasneje je model je v tridesetih letih prejšnjega stoletja dopolnil Harald Cramér. Osredotočili se bomo na koncept verjetnosti propada in njeno izražanje ali približevanje, ki se obravnava kot orodje za ocenjevanje tveganosti zavarovalniškega posla.

Definicija 3.1. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i n.e.p. s.s. z enako porazdelitvijo kot X in $\mathbb{E}[X] = \mu$ ter $\mathrm{Var}[X] = \sigma^2$. Potem proces tveganja v Cramér-Lundbergovem modelu definiramo kot

$$U_t = u + ct - S_t$$

kjer je $u \ge 0$ začetni kapital zavarovalnice in c > 0 stopnja prihodkov iz premij.

Propad bomo definirali kot dogodek, ko bo vrednost procesa tveganja postala negativna.

Definicija 3.2. Za $0 < T \leq \infty$ je Verjetnost propada v Cramér-Lundbergovem modelu definirana kot

$$\psi(u,T) = \mathbb{P}(U_t < 0 \text{ za nek } T \ge t > 0),$$

če gledamo proces na končnem intervalu in kot

$$\psi(u) = \mathbb{P}(U_t < 0 \text{ za nek } t > 0),$$

če gledamo proces na neskončnem intervalu. Označimo še

$$\tau(T) = \inf\{t \mid T \ge t \ge U_t < 00\},\$$

kot *čas propada*, kjer se držimo konvencije, da je inf $\emptyset = \infty$ in pišemo $\tau = \tau(\infty)$ za čas propada na neskončnem intervalu.

Seveda takoj lahko opazimo, da je $\mathbb{E}[U_t] = u + ct - \mathbb{E}[S_t] = u + ct - \mu \lambda t$. Kar nam da prvo intuicijo o stopnji prihodkov premij c.

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, (2004).
- [2] S.M. Ross, Stochatic Processes: Second Edition, Wiley, (1996).
- [3] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, (1997).