PDG:

Sequencing Interface Signals List and Power Rails

SLP_SUS#:

SLP_SUS#	PCH	Platform	For platforms supporting Deep Sx state, a low on this signal indicates that PCH is in Deep Sx state and that EC/platform logic does not need to keep the Primary Rails ON.
			If high means EC must keep Primary rails ON.
			Unlike previous generation platforms, in TGL SLP_SUS# is used in both DSx and Non-DSx platforms. Refer DSW/PRIM Rail Architecture in DSx and Non-DSx Designs on page 432 for details.
			Note: In eSPI mode this signal is a hard wire only and not a virtual wire.

If SLP_SUS#=0 →

Power Up:

SL. No		Rail Name		Net Name in SCH [Fill up by customer own design]	
1		VCCRTC		+VCCPRTC_3P3	2.0-3.3V +5% supplies for PCH RTC Well. This power is not expected to be shut off in any of the sleep states unless the RTC battery is removed or completely drained.
2		RTCRST#	1	RTC_RST_N	When asserted, this signal resets the register bits in the RTC well.
3		SRTCRST#		SRTC_RST_N	This signal resets the manageability register bits in the RTC well when the RTC battery is removed
4		VCCDSW_3P3		+VCCPDSW_3P3	3.3-V supply for Deep Sx wells. If Deep Sx is not supported on the platform, tie to VCCPRIM_3P3.
5		DSW_PWROK		DSW_PWROK	Deep Sx Well PWROK: Power OK Indication for the +VCCPDSW_3P3 voltage rail. Note: This signal is in the RTC well. This signal cannot tie with RSMRST#. Connected to FPGA
6	2	SLP_SUS#		PM_SLP_SUS_N	Or platforms supporting Deep Sx state, a low on this signal (SLP_SUS# =0) indicates that PCH is in Deep Sx state and that EC/platform logic does not need to keep the Primary Rails ON. (+VCCPRIM_3P3 && VCCPRIM_1P8) should go down. If SLP_SUS# =0 → +VCCPRIM_3P3 = 0 && VCCPRIM_1P8 = 0 If high (SLP_SUS# =1) means EC must keep Primary rails ON. Unlike previous generation platforms, in TGL SLP_SUS# is used in both DSx and Non-DSx platforms. Refer DSW/PRIM Rail Architecture in DSx and Non-DSx Designs on page 432 for details. Note: In eSPI mode this signal is a hard wire only and not a virtual wire. SLP_SUS# =1 indicates that (+VCCPRIM_3P3 && VCCPRIM_1P8) should be ENABLED. In TL-SBC: 226/270 In TL-SBC: 226/270 In TL-SBC: 226/270 SLP_SUS# =1 Enables +V3.3A and +5VA In TensorI20 FPGA Code: SLP_SUS# wasn't used to enable V33A_ENn, but VCC was used instead (which is high when +3V3DSW is high)
7		V5.0A		+V5A	
8		VCCPRIM_3P3	3	+VCCPRIM_3P3	PCH I/O and Misc rails 3.3V (Primary Well)

9		VCCPRIM_1P8		+VCCPRIM_1P8	PCH I/O and Misc rails 1.8V (Primary Well)
10		VCCIN_AUX		+VCCIN_AUX	PCH FIVR input power supply
11	4	VNN_BYPASS	_	+VCC_VNNEXT_1P05V	Optional BYPASS rail for PCH Prime Core Well (760mV in S0ix and 1.05V in Sx states) or reduced power consumption in low-power states
12		V1.05A_BYPASS		+VCC_V1P05EXT_1P05V	Optional BYPASS rail for PCH Primary Well (1.05V) for reduced power consumption in low power states
13		RSMRST#		PM_RSMRST_N	
14		PWRBTN#		PM_PWRBTN_N	
15		SLP_S5#	5	PM_SLP_S5_N	This signal is for power plane control. When asserted (low), it will shutoff power to all non-critical systems in S5 (Soft Off) states. Note: In eSFI mode this signal is also virtual wire on the eSFI interface; in addition to the hard signal from PCH. Refer eSFI Compatibility Specification (SOSF40) and Tigot Lake Platform Controller Hub-LP External Design Specification for details.
16	6	SLP_S4#		PM_SLP_S4_N	S4 Sleep Control. This signal is for power plane control. When asserted (low), it will shut-off power to all non-critical systems in S4 (Suspend to Disk) and lower (S5). If SLP_S4# = 0, Note: In eSPI mode this signal is also virtual wire on the eSPI interface, in addition to the hard signal from PCH. Refer eSPI Compatibility Specification (508740) and Tiger Lake Platform Controller Hub-LP External Design Specification for details.
17		DDR_VPP (DDR4)		+V1.8U_2.5U_MEM {VPP}	
18		SLP_S3#		PM_SLP_S3_N (GOES HIGH ON POWER UP)	SLP_S3# is for power plane control. This signal shuts off power to all non-critical systems when in the S4 , or S5 state .
19		SLP_S0#		PM_SLP_S0_N	S0 Sleep Control: When PCH is idle and processor is in C10 state, this pin will assert to indicate VR controller can go into a light load mode. This signal can also be connected to EC for other power management related optimizations. If PM_SLP_S0_N = 0,
20	8	CPU_C10_GATE#	7	CPU_C10_GATE_N	Power gating control to turn off VCCSTG in C10 and lower. Note: In eSPI mode this signal is a hard wire only and not a virtual wire. External Power Gate: Control for VCCIO, VCCSTG and VCCPLL_OC during C10. When asserted, VCCIO, VCCSTG and VCCPLL_OC can be 0 V, however the power good indicators for these rails must remain asserted.
21		VCCST		+VCCST_CPU	Sustain voltage for processor in Standby
				VIDDA GDV	modes
22		DDR_VDD2 (DDR4)		+VDD2_CPU	
23 24		DDR_VDDQ (DDR4) VCCSTG	9	+VDD2_MEM (p.229/270) +VCCSTG_CPU	
25		ALL_SYS_PWRGD	,	ALL_SYS_PWRGD	
26	10	VCCST_PWRGD		VCCST_PWRGD	VCCST_PWRGD is a signal on the Tiger Lake processor that indicates both the VCCST power supply and VDDQ power

					supply are within voltage tolerance specifications. TL-PCH: VccST Power Good: When asserted, an indicator to the processor this rail is now supplied by the integrated FIVR in the PCH. During S5 to S0 and DSx to S0 transitions, the platform will need to generate the VCCST_PWRGD, PCH_PWROK and SYS_PWROK signals to the processor. In this phase of the power up sequence, the platform and CPU S0 rails are ramped up.
27		VTT		+V_VDD2_VTT {VTT}	
28		PCH_PWROK (from FPGA to Processor)		PM_PCH_PWROK	
29		VCCIN	11	+VCCIN	Processor FIVR input power supply
30		PROCPWRGD		CPUPWRGD	
31		VCCIO		+VCCIO_OUT	
32	12	SYS_PWROK		SYS_PWROK	
33		PLTRST#		PLT_RST_N	

Premium PWROK (Power OK) Generation Flow Diagram

Rail-to-Rail Sequencing Requirement for Non-Deep Sx Configured System:

		Max	Unit	Description	Controlled by	
VCCRTC [+VCCPRTC_3P3] RTCRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N]	9		ms	VccRTC = 2.0V to the point in time where voltage on the RTC resets equals 0.65 times the voltage present on the VccRTC rail during ramp. This measurement should be made from VccRTC = 2.0V to the first of RTCRST# or SRTCRST# reaching 0.65 * VccRTC	PLT	done
From VCCDSW_3P3 to DSW_PWROK	10	2000	ms	VccDSW stable (@95% of full value) to DSW_PWROK high.	PLT	35 ms (done in dsw_pwrok_block)
VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_V1P05EXT_1P05V] RSMRST# [PM_RSMRST_N]	10	2000	ms	VccPrimary stable (@95% of full value) to RSMRST# high	PLT	NA
VCCRTC [+VCCPRTC_3P3] VCCDSW_3P3 [+VCCPDSW_3P3] Note: how did we take care of this delay in CFL-SBC?	30		ms	VccRTC stable (@90% of full value) to start of VccDSW voltage ramp for systems with coined RTC battery VccRTC stable (@90% of full value) to start of VccDSW voltage ramp for systems with coinless RTC. Please refer to IBP#549657 for Design considerations technical advisory document without RTC battery. Earlier this timing was referred as tPCH48.(in CLH)	PCH	In Tensor I22: In the coinless case when 3V3DSW is up +VCCPRTC_3P3 is up.
	RTCRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N] From VCCDSW_3P3 to DSW_PWROK VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_V1P05EXT_1P05V] RSMRST# [PM_RSMRST_N] VCCRTC [+VCCPRTC_3P3] VCCDSW_3P3 [+VCCPDSW_3P3] Note: how did we take care of this	RTCRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N] From VCCDSW_3P3 to DSW_PWROK VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_V1P05EXT_1P05V] RSMRST# [PM_RSMRST_N] VCCRTC [+VCCPRTC_3P3] VCCDSW_3P3 [+VCCPDSW_3P3] Note: how did we take care of this 30	RTCRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N] From VCCDSW_3P3 to DSW_PWROK VNN_BYPASS	RTCRST# [RTC_RST_N] From VCCDSW_3P3 to DSW_PWROK VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_V1P05EXT_1P05V] RSMRST# [PM_RSMRST_N] VCCRTC [+VCCPRTC_3P3] VCCDSW_3P3 [+VCCPDSW_3P3] Note: how did we take care of this 30	PRICE STEP (RTC_RST_N) SRTCRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N] From VCCDSW_3P3 to DSW_PWROK 10 2000 ms VCCDSW stable (@95% of full value) to DSW_PWROK VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_V1P05EXT_1P05V] RSMRST# [PM_RSMRST_N] VCCDSW_3P3 [+VCCPDSW_3P3] VCCDSW_3P3 [+VCCPDSW_3P3] VCCDSW_3P3 [-VCCPDSW_3P3] VCCDSW_3P3 [-VCCPDSW_3P3] SWRST# [PM_RSMRST_N] INS VCCRTC (LOCATION CONTROL OF THE NAME OF THE NA	TRICRST# [RTC_RST_N] SRTCRST# [SRTC_RST_N] SRTCRST# [SRTC_RST_N] SRTCRST# [SRTC_RST_N] SRTCRST# [SRTC_RST_N] SRTCRST# [SRTC_RST_N] From VCCDSW_3P3 to DSW_PWROK 10 2000 ms VccDSW stable (@95% of full value) to DSW_PWROK high. VNN_BYPASS [+VCC_VNNEXT_1P05V] V1.05A_BYPASS [+VCC_VNNEXT_1P05V] RSMRST# [PM_RSMRST_N] VCCRTC [+VCCPRTC_3P3] VCCDSW_3P3 [+VCC_VPDSW_3P3] VCCCDSW_3P3 [+VCC_VPDSW_3P3] VCCCDSW_3P3 [+VCC_VPDSW_3P3] VCCRTC [+VCCPSW_3P3] Note: how did we take care of this delay in CFL-SBC?

		<u> </u>	1	DTCDCT# k1-k	T	1
tPCH05	RTCRST# [RTC_RST_N] DSW_PWROK	1	us	RTCRST# high (voltage above ViH_min) to DSW_PWROK high (when voltage crosses ViL_max such that internally it might be resolved as a logic '1')	PLT	
tPCH06	VCCDSW_3P3 [+VCCPDSW_3P3] VCCPRIM_1P8 [+VCCPRIM_1P8]	200	us	VccDSW 3.3 stable (@95% of full value) to VccPrimary 1.8V starting to ramp (for DSx or nonDSx configurations)	PLT	
tPCH07	DSW_PWROK RSMRST# [PM_RSMRST_N]	0	ms	DSW_PWROK high to RSMRST# high	PLT	
tPCH08	SLP_S3# [PM_SLP_S3_N] PCH_PWROK [PM_PCH_PWROK]	1	ms	SLP_S3# de- assertion to PCH_PWROK assertion	PLT	
tPCH32	DSW_PWROK SLP_SUS# [PM_SLP_SUS_N]	95	ms	DSW_PWROK assertion to SLP_SUS# de- assertion	PCH	
tCPU00	VCCST [+VCCST_CPU] VCCSTG [+VCCSTG_CPU] VCCST_PWRGD [VCCST_PWRGD]	2	ms	VCCST, VCCSTG ramped and stable to VccST_PWRGD assertion	PLT	
tCPU01	DDR_VDDQ [+VDD2_MEM] VCCST_PWRGD [VCCST_PWRGD]	1	ms	VDDQ ramped and stable to VccST_PWRGD assertion	PLT	

tPCH34	VCCPRIM_3P3	50	ms	Time from	PLT	
	[+VCCPRIM_3P3]			start of ramp		
	V1.05A_BYPASS			of the first		
	[+VCC_V1P05EXT_1P05V]			prim rail after		
	VCCPRIM_1P8			SLP_SUS#		
	[+VCCPRIM_1P8]			deassertion to		
	V1.05A_BYPASS			completion of		
	[+VCC_V1P05EXT_1P05V]			primary and		
				bypass rail		
				ramp		

POWER DOWN:

SL. No		Rail Name		Net Name in SCH [Fill up by customer own design]	
1		PLTRST#		PLT_RST_N	
2		PROCPWRGD	1	CPUPWRGD	
3		SLP_S3#		PM_SLP_S3_N	USBAB_VBUS=High
4		ALL_SYS_PWRGD		ALL_SYS_PWRGD	
5	2	VCCST_PWRGD		VCCST_PWRGD VCCST_PWRGD must accurately reflect the state of VCCST and must not glitch when VCCST, VCCSTG or VDDQ power is applied. Additionally, VCCST_PWRGD must track to the state of PCH_PWROK on the platform. When PCH_PWROK de-asserts during \$0 ->> Sx transitions, then VCCST PWRGD must also de-assert.	VccST Power Good: When asserted, an indicator to the processor this rail is now supplied by the integrated FIVR in the PCH.
6		PCH_PWROK		PM_PCH_PWROK	
7		SYS_PWROK	ر ا	SYS_PWROK	
8		VCCIN	3	+VCCIN	
9		VTT		+V_VDD2_VTT	
10		VCCSTG		+VCCSTG_CPU	
11	4	SLP_S4#		PM_SLP_S4_N	In Tensor I22: If SLP S4#=0 -> USBAB VBUS=0
12		DDR_VDDQ (DDR4)		+VDD2_MEM	n bin_o.w o y cobinvee o
13		VCCST	_	+VCCST_CPU	
14		SLP_S5#	5	PM_SLP_S5_N	
15		DDR_VPP (DDR4)		+V1.8U_2.5U_MEM	
16	6	SLP_SUS#		PM_SLP_SUS_N	
17		DSW_PWROK		DSW_PWROK	
18		RSMRST#		PM_RSMRST_N	
19		SLP_S0#	7	PM_SLP_S0_N	So Sleep Control. When PCH is idle and processor is in C10 state, this Pin will assert indicate VR controller can go into a light load mode. This signal can also be connected to EC for other power management related optimizations.
20	8	CPU_C10_GATE#		CPU_C10_GATE_N	

21		VCCDSW_3P3		+VCCPDSW_3P3	
22		V5.0A		+V5A	
23		VCCPRIM_3P3		+VCCPRIM_3P3	
24		VCCPRIM_1P8	9	+VCCPRIM_1P8	
25		VCC1.05_OUT_PCH	9	+VCC1P05_OUT_PCH	
26		VCCIN_AUX		+VCCIN_AUX	
27	10	VNN_BYPASS		+VCC_VNNEXT_1P05V	
28	10	V1.05A_BYPASS		+VCC_V1P05EXT_1P05V	
29		PWRBTN#		PM_PWRBTN_N	
30		VCCRTC	11	+VCCPRTC_3P3	
31		RTCRST#	11	RTC_RST_N	
32		SRTCRST#		SRTC_RST_N	

SLP_A#:

SLP_A# output signal can be used to cut power to the Intel $^{\otimes}$ Converged Security and Management Engine and SPI flash on a platform that supports the M3 state (for example, certain power policies in Intel $^{\otimes}$ AMT).

GPD6 / SLP_A#

SLP_A#: Signal asserted when the Intel CSME platform goes to M-Off or M3-PG. Depending on the platform, this pin may be used to control power to various devices that are part of the Intel CSME sub-system in the platform. If you are not using SLP_A for any functional purposes on your platform, or can tolerate lack of minimum assertion time, program the "SLP_A minimum assertion width" value to the minimum. SLP_A# functionality can be utilized on the platform via either the physical pin or via the SLP_A# virtual wire over eSPI.

Power Down:

Label	Signal Name	Min	Max	Unit	Description	Controlled by
tPCH24	PLTRST# [PLTRST_N] PROCPWRGD [CPUPWRGD]	30		us	PLTRST# assertion to PROCPWRGD de-assertion	PCH
tPCH27	SLP_S4# [PM_SLP_S4_N] SLP_S5# [PM_SLP_S5_N]	30		us	SLP_S4# assertion to SLP_S5# assertion	PCH
tPCH28	SLP_S3# [PM_SLP_S3_N] SLP_S4# [PM_SLP_S4_N]	30		us	SLP_S3# assertion to SLP_S4# assertion	PCH

tCPU22	VCCST_PWRGD [VCCST_PWRGD] DDR_VDDQ [+VDD2_MEM] VCCST_PWRGD [VCCST_PWRGD] VCCST [+VCCST_CPU] VCCST_PWRGD [VCCST_PWRGD [VCCST_PWRGD] VCCST_PWRGD [VCCST_PWRGD] VCCSTG [+VCCSTG_CPU]	1	us	VCCST_PWRGD deassertion to either VDDQ, VCCST, VCCSTG below specification for normal SO to Sx transitions. Recommend VCCST_PWRGD goes low with SLP_S3#	PLT
tPCH29	SLP_S3# [PM_SLP_S3_N] PCH_PWROK [PM_PCH_PWROK]	0	ms	SLP_S3# assertion to PCH_PWROK deassertion	PCH

Power Up:

Power down:

PCH:

State / Substates	Legacy Name/Description
G0/S0/C0	Full On: Processor operating. Individual devices may be shut down or be placed into lower power states to save power.
G0/S0/Cx	Cx States: C states are processor power states within the S0 system state that provide for various levels of power savings on the processor. The processor manages C states itself. The actual C state is not passed to the PCH. Only C state related messages are sent to the PCH and PCH will base its behavior on the actual data passed.
G1/S4	Suspend-To-Disk (STD): The context of the system is maintained on the disk. All power is then shut off to the system except for the logic required to resume.
G2/S5	Soft Off (SOFF): System context is not maintained. All power is shut off except for the logic required to restart. A full boot is required when waking.
S0ix	SO Idle States: Processor PKG C states and platform latency tolerance will allow the PCH to decide when to take aggressive power management actions.
Deep Sx	Deep Sx: An optional low power state where system context may or may not be maintained depending upon entry condition. All power is shut off except for minimal logic that allows exiting Deep Sx. If Deep Sx state was entered from S4 state, then the resume path will place system back into S4. If Deep Sx state was entered from S5 state, then the resume path will place system back into S5.
G3	Mechanical OFF (M-Off): System context not maintained. All power is shut off except for the RTC. No "Wake" events are possible. This state occurs if the user removes the main system batteries in a mobile system, turns off a mechanical switch, or if the system power supply is at a level that is insufficient to power the "waking" logic. When system power returns, transition will depend on the state just prior to the entry to G3 and the AFTERG3_EN bit in the General Power Management Configuration (GEN_PMCON). Refer to table System Power

	Plane for more details.

Sleep States

▲ 🚆 22.4 Functional Description 22.4.1 Features

> States
> 22.4.5 SMI#/SCI Ger 22,4.6 C-States 22.4.7 Dynamic 38.4 MHz Clock Control

22.4.8 Sleep States

22.4.2 PCH S0 Low Power
22.4.3 Power Management
Sub-state

22.4.4 PCH and System Power

22.4.9 Event Input Signals and Their Usage 22.4.10 ALT Access Mode

22.4.11 System Power Supplies, Planes, and Signals

22.4.12 Legacy Power
Management Theory of

Sleep states (S4/S5) are exited based on wake events. The wake events forces the system to a full on state (S0), although some non-critical subsystems might still be shut off and have to be brought back manually. For example, the storage subsystem may be shut off during a sleep state and have to be enabled using a GPIO pin before it can be used.

Upon exit from the PCH-controlled Sleep states, the WAK_STS bit is set. The possible causes of wake events (and their restrictions) are shown in the table below.

If the BATLOW# signal is asserted, the PCH does not attempt to wake from an S4/S5 state, nor will it exit from Deep Sx state, even if the power button is pressed. This prevents the system from waking when the battery power is insufficient to wake the system. Wake events that occur while BATLOW# is asserted are latched by the PCH, and the system wakes after BATLOW# is de-asserted.

Every USB port must always have VBUS when the system is on S3. Having that, the wanted status is to turn the VBUS of on S4 and S5, and addition of a switch to change it is a good feature.

When SLP_S4# = 0 (from the CPU) then SLP_S4#=1 inside the TEL.

And if we turn the switch ON, that means SLP_S4#=1 will enable VBUS even when the CPU is in S4 and S5.