Linear and Nonlinear Elements

Student's Name:	Student's No.:
Partner's Name:	Partner's No.:
Instructors Name:	Section No.:
Date:	

Set V power supply = 4 Volts

Carbon Ro	esistor	Si Diode		Light bulb (lo	w currents)	Light Bulb (hig	gh currents)
V (Volts)	I (mA)	V (Volts)	I (mA)	V (Volts)	I (mA)	V (Volts)	I (mA)
0.1		0.10		0.010		0.5	
0.4		0.20		0.02		1.0	
0.8		0.30		0.03		1.5	
1.2		0.40		0.04		2.0	
1.5		0.50		0.05		2.5	
1.8		0.55		0.06		3.0	
2.1		0.61					
2.4		0.64					
2.7		0.67					
3.0		0.70					
3.3		0.73					
3.5		0.76					

Impedance Matching and Internal Resistance

Student's Name	tudent's Name: Student's No.: artner's Name: Partner's No.:		Student's No.:		Student's No.:		
Partner's Name:							
Instructors Nam	e:		Section No.:				
Date:							
Set V power su	ipply = 8 Volt	:S					
R _L (KΩ)	I(mA)	I ⁻¹ (mA) ⁻¹	I ² (mA) ²	$P_L = I^2 R_L (mW)$			
0.10							
0.15							
0.30							
0.60							
0.70							
0.85							
0.90							
0.95							
1.00							
1.05							
1.10							
1.20							
1.50							
2.00							
2.00							
4.00							
8.00							
15.0							
30.0							
60.0							

Room 253 – Network analysis 1: The SPP and Kirchhoff's law

Student's Name:	Student's No.:	
Partner's Name:	Partner's No.:	
Instructors Name:	Section No.:	
Data:		

1) Kirchhoff's Laws

Connect the circuit shown:

```
\begin{array}{l} R1=1 \; k\Omega, \\ R2=3.3 \; k\Omega, \\ R3=6.2 \; k\Omega, \\ \epsilon 1=9 \; V, \\ \epsilon 2=5 \; V. \end{array}
```


Measure the currents:

	experiment	calculation
I_1 (mA)		
$I_2(mA)$		
I ₃ (mA)		

2) **Superposition Principle**

A) Connect the circuit shown:

Measure the currents:

	experiment	calculation
I ₁₁ (mA)		
I ₂₁ (mA)		
I ₃₁ (mA)		

B) Connect the circuit shown:

Measure the currents:

	experiment	calculation
I_{12} (mA)		
I ₂₂ (mA)		
I ₃₂ (mA)		

C) Find the current using SPP

- $I_1\!=\!$
- $I_2\!=\!$
- $I_3 =$

Room 263 – Network analysis 1: The SPP and Kirchhoff's law

Student's Name:	Student's No.:	
Partner's Name:	Partner's No.:	
Instructors Name:	Section No.:	
Date:		

1) Kirchhoff's Laws

Connect the circuit shown:

```
\begin{array}{l} R1 = 1 \; k\Omega, \\ R2 = 2.2 \; k\Omega, \\ R3 = 5.1 \; k\Omega, \\ \epsilon 1 = 8 \; V, \\ \epsilon 2 = 4 \; V. \end{array}
```


Measure the currents:

	experiment	calculation
I_1 (mA)		
I ₂ (mA)		
I ₃ (mA)		

2) **Superposition Principle**

A) Connect the circuit shown:

Measure the currents:

	experiment	calculation
I ₁₁ (mA)		
I ₂₁ (mA)		
I ₃₁ (mA)		

B) Connect the circuit shown:

Measure the currents:

	experiment	calculation
I_{12} (mA)		
I ₂₂ (mA)		
I ₃₂ (mA)		

C) Find the current using SPP

- $I_1\!=\!$
- $I_2\!=\!$
- $I_3 =$

Room253-Netwo	ork analysis 2: Thevenin	and Norton technique	
Student's Name:	Student's No.:		
Partner's Name:	Partner's No.:		
Instructors Name:	Section No.:		
Date:			
Connect the circuit shown: $R1=1 \text{ k}\Omega,$ $R2=3.3 \text{ k}\Omega,$ $R3=6.2 \text{ k}\Omega,$ $\epsilon 1=10 \text{ V},$ $\epsilon 2=5 \text{ V}.$	ϵ_1 I_3	R_2 I_2 I_2 I_2	
1) Fill the following table:			
	experiment	calculation	
R _{eq1}			
$\epsilon_{ m eq1}$			
I_{eq1}			
2) Construct Thevenin equi	valent circuit:		
•	experiment	calculation	
I _{L1} (mA)			

``		0 744 0 74		
•	Construct .	SAPIANI	eama	lent circilit
J	, Consuluct.		cqui va.	ichi chicult

	experiment	calculation
I_{L1} (mA)		

B) When $I_3 = I_L$

1) Fill the following table:

	experiment	calculation
R _{eq3}		
ε _{eq3}		
I_{eq3}		

2) Construct **Thevenin** equivalent circuit:

	experiment	calculation
I_{L3} (mA)		

3) Construct **Norton** equivalent circuit

	experiment	calculation
I_{L3} (mA)		

Experiment 4 Room263—Network analysis 2: Theyenin and Norton technique

	Student's No.:		
Partner's Name:	Partner's No.:		
Instructors Name:	Section No.:		
Date:			
Connect the circuit shown: R1= 1 k Ω , R2= 2.2 k Ω , R3= 5.1 k Ω , ϵ 1= 8 V, ϵ 2= 4 V.	ϵ_1 I_3 R	R_2 I_2 I_2 I_2	
A) When I₁= I _L 1) Fill the following table:			
	experiment	calculation	
R _{eq1}			
$\epsilon_{ m eq1}$			
$I_{\rm eq1}$			
2) Construct Thevenin equi	valent circuit:		
-	experiment	calculation	
I _{L1} (mA)			
3) Construct Norton equival	ent circuit		
,	experiment	calculation	
I _{L1} (mA)			

B) When $I_3 = I_L$

1) Fill the following table:

	experiment	calculation
R _{eq3}		
$\epsilon_{ m eq3}$		
I_{eq3}		

2) Construct **Thevenin** equivalent circuit:

	experiment	calculation
I_{L3} (mA)		

3) Construct **Norton** equivalent circuit

	experiment	calculation
I_{L3} (mA)		

EXPERIMENT 5 DSO No data sheet

EXPERIMENT 6

CAPACITORS AND INDUCTORS

Part1. PC circuit		
$R=1k\Omega$	C=find best value for you=	L=10mH
Date:		
Instructors Name:	Section No.:	
Partner's Name:	Partner's No.:	
Student's Name:	Student's No.:	

Part1: RC-circuit

Show V_c on the DSO			Show V_R on the DSO					
Draw what you see or	n the screen of the DSC)	Draw what you see on the screen of the DSO)	
						- 1		
		-		-				
Find $ au_c = ag{Find } au_d $								
$ au_{exp} =$			$ au_{theo} =$					

Part2: LR-circuit

Show V_L o	Show V_L on the DSO		Show V_R on the DSO				
Draw what you see on	the screen of the DSO	Draw what you see on the screen of the DSO					
Find $ au_c=$	Find $\tau_d =$						
$ au_{exp} =$		$ au_{theo} =$	$ au_{theo} =$				

Part 3: LC-circuit

	Show V_c on the DSO					
Draw what you se	e on the screen of the DSO			TII.		
Resonance	$f_{^{\circ}exp} =$		$\omega_{^{\circ}exp} =$			
frequency	$f_{\circ_{theo}} =$		$\omega_{\circ}{}_{theo} =$			

Damped Oscillations

Student's Name:	Student's No.:		
Partner's Name:	Partner's No.:		
Instructors Name:	Section No.:		
Date:			
C = find best value = L	= 10 mH	f = (300 - 1000) Hz	
-Data:			
Part (1): Critical-Damping			

			Show V ₀	on the DS	O			
	1	Draw what	you see	on the screen	of the DSO)	1	1
_								
R _{Critical} =	=							
$t_{\frac{1}{2}exp} =$				$\delta_{C,Exp} =$				

Part (2):Over-Damping

Show V _C on the DSO					
	Draw what you see o	n the screen of th	e DSO		
$R_{Over} =$					
$t_{\frac{1}{2}exp} = \delta_{C,Exp} =$					

Part (3):Under-Damping

	Show V_C on the DSO							
	Draw what you see on the screen of the DSO							
$R_{under} =$								
$t_{\frac{1}{2}\exp} = \delta_{C,\exp} =$								
² exp								
$o_{C,exp} =$					CI			
$f'_{exp} =$					f' _{theo} =			

EXPERIMENT 8

Impedance and Reactance

Student's Name:	Student's No.:						
Partner's Name: Partner's No.:							
Instructors Name:	ructors Name:			Section No.:			
Date:	_						
C = 0.05μF		L= 10 mH		R=1 kΩ			
f(kHz)	Δt		ω	Φ = ωΔt			
0.2							
0.4							
0.8							
1.6							
3.0							
4.0							
5.0	_				\dashv		

6.0

6.5

7.0

7.5

9.0

15

30

50

70

99

Resonance

Student's Name:			Student's No.:Partner's No.:			
Partner's Name:						
Instructors Name:			Section No.:			
Date:						
L=10mH;	C=	0.05μF;	$R=1k\Omega$	$V_{PP}=8 \text{ Volts}$		
	R = 600	ΟΩ	$R = 1.2k\Omega$			
f(kHz)	$V_0(volt)$	$I_0(mA)$	$V_0(volt)$	$I_0(mA)$		
0.4						
0.6						
0.8						
1.0						
1.5						
3.0						
4.5						
6.0						
7.0						
8.0						
9.0						
15						
30						
60						
00						

Filters

Student's Name:	Student's No	0.:
Partner's Name:	Partner's No	.; <u> </u>
Instructors Name:	Section No.:	
Date:		
$R = 1 k\Omega$	$C = 0.07 \mu F$	$V_{in_{rms}} = 4 \text{ Volt}$

-Data:

		Low-pass filter		High-pass filter	
ω (rad/sec)	f(kHz)	V _{Out} (Volt)	A	V _{Out} (Volt)	A
1884					
3768					
5024					
6280					
8792					
10048					
11304					
12560					
14444					
16328					
18840					
21980					
25120					
31400					
62800					
94200					

	Low-pass filter acts as integrator	High-pass filter acts as differentiator
Туре	when $\omega \gg \omega_{-3dB}$	when $\omega \ll \omega_{-3dB}$
Square wave		
Saw wave		
Sine wave		

