LEC9	->	VAE

1. Generative Model

Motivation: Density Estimation

Given
$$\mathfrak{D} = \{(x_i)\}_{i=1}^{n}, x_i \sim p^* (QT)$$

Goal: find (estimate) p = p* (parametric model)

Given
$$\mathfrak{D} = \{ (x_i) \}_{i=1}^{N} \quad x_i \sim p^* (G7)$$

Goal sample x (new) ~ p* approximately

[Toy Example] GMM

2. Limitation of AE

1 hidden space has no structure (not smooth w.r.t distribution of data points)

we should give some structure to hidden space

3. Latent Variable Model (GMM is one example)
$P_{\theta}(x) = \int_{\mathcal{Q}} P_{\theta}(x z) P_{\theta}(z) dz$
2 → Hidden (Latent) Variable
Po(z): latent variable prior Po(z z): conditional distribution
Generating Process: model $\begin{cases} P_0(z) \\ P_0(x z) \end{cases}$ Learn from 2
\rightarrow Given $\chi^{(\text{New})}$
-> calculate $P_0(2 Z^{(new)})$ from Bayes -> $Z^{(new)} \sim P_0(2 X^{(new)})$ intractable might be
$\longrightarrow \chi' \sim P_0(\chi 2^{(\text{new})})$
approximate with qq(.) (Variational Inference)
4. VAE setting (It som use Bernaulli model)
(also can use Bernalli model)
Note: (X,2) is not Gaussian any more
⇒ untractable 2/x!
Therefore, approximate 2/x via Varational Inference
2/20 ~ Gaussian (fo(x) = go(x) LK) Approximately
Therefore, approximate $2/x$ via $Varational$ Inference $2/x \sim Gaussian (f_{\phi}(x):g_{\phi}(x^2)]_K)$ Approximately $\Rightarrow 2/x = f_{\phi}(x) + g_{\phi}^{2}(x) \circ \varepsilon$ Here $\varepsilon \sim N(o, 2k)$ $\downarrow veparameterise trick$

Question: How to learn parameters?

$$0 \stackrel{\text{MLE}}{\Rightarrow} \hat{0} = \underset{0}{\operatorname{argmax}} \log p(x_{1}\theta) \Rightarrow \underset{0}{\operatorname{log-like liked}} \mathcal{L}(\theta)$$

$$= \underset{0}{\operatorname{argmax}} \sum \log p(x_{1}\theta) \Rightarrow \underset{0}{\operatorname{log-like liked}} \mathcal{L}(\theta)$$

$$= \underset{0}{\operatorname{log}} p(x_{1}\theta)$$

$$= \underset{0}{\operatorname{Evanyosition}} L(\theta).$$

$$1(\theta) = \log p(x_{1}\theta)$$

$$= \underset{0}{\operatorname{Evanyosition}} L(\theta).$$

$$= \underset{0}{\operatorname{Evanyosition}} \sum \underset{0}{\operatorname{log}} p(x_{1}\theta)$$

$$= \underset{0}{\operatorname{Evanyosition}} \sum \underset{0}{\operatorname{Evanyosition}} \sum$$

Lec 9
Re-cap: (Unsupervised Learning -> AE ((ompression)
Denoise AE
L Semi-supervised Learning > Self-Learning
D=DLUDu Label Propagation
Lec 9 Re-cap: Sunsuperised Learning AE (Compression) Denoise AE Semi-superised Learning 9 = DL U Dn Small Big
Today:
1. <u>Learning Across Tasks</u>
Assumption: Manifold Assumption
① Transfer Learning → { Data Similar Task Very Different
we hope we can learn some features that are
we hope we can learn some features that are useful for different tasks
Approach { fine-tune & pre-train warn-start (w.r.t distribution)
warm-start ("t distribution)
2) Domain Adaptation -> { Pala Source Different
Task Very Similar
Domain Adaptation → { Pata Source Different Task Very Similar Idea → Source Domain (Labelled) → train model Target Domain (Unlabelled) → prediction
Target Domain (Unlabelled)

=> Both Density Estimation & Genevative Model
Learning is via MLE + EM Framework
$\Theta = \{\{\hat{\alpha}_i\}_{i=1}^k, \{\hat{\mu}_i, \hat{\Sigma}_i\}_{i=1}^k\}$
<u>Limitation</u> :
a) Not complex enough w.r.t model capacity
b) Need to choose (# of clusters) -> hyper-parameter
C) No prior knowledge (translation invaviance of CNN)
3) Milian AE to amount of the 1
3) Utilize AE to generate samples?
generate [2] in latent space
generate 2 in <u>latent space</u> decoder
dec(2) ~> sample we want to generate
(4) To construct a "Generative Model"
we need { able to generate
model capacity
we need { able to generate model capacity atent variable model
$P_{\theta}(x) = \int_{\mathcal{Z}} P_{\theta}(x z) P_{\theta}(z) dz$

$$SP_{\theta}(z) \rightarrow prior dist$$

 $P_{\theta}(x|z) \rightarrow generative dist$

