Лабораторна робота 3

ТЕСТУВАННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ НА ОСНОВІ ПО-ВЕДІНКИ

Мета роботи:

- засвоїти знання з методик тестування, керованого поведінкою (Behavior-Driven Testing), на основі історій та сценаріїв поведінки системи;
- отримати досвід роботи з інструментальним засобом тестування на основі поведінки JBehave.

Інструментальні засоби і бібліотеки, необхідні для виконання роботи:

- середовище розробки Eclipse
- засіб зборки проектів Maven
- засіб модульного тестування JUnit
- бібліотека JBehave

Завдання

- 1) написати синтаксичний аналізатор на мові програмування Java, який виконує розпізнає команди і виконує матричні обчислення, реалізовані у лаб. роботі 1 (табл.1)
- 2) Протестувати програму, використовуючи методику тестування, основану на повединці

Рекомендації до виконання задання 1

— Матричні обчислення виконуються за допомогою методів класу, реалізованого в лабораторній роботі 1. Крім команд для матричних обчислень всього або окремих частин виразу, повинні бути команди обробки даних: ініціалізація, збереження, отримання збережених даних. Наприклад, для виразу $(A + B)^T$ діалог може таким:

```
> A = [[1, 2, 3], [4, 78.2, 6], [7, -4.56, 10]]
   1.00
         2.00
                3.00
   4.00 78.20
               6.00
  7.00 -4.56 10.00
> A + [[1.45, -2.11, 3], [54.4, -8.27, 0.56], [74.5, 1.22, 3.45]]
    2.45 -0.11
                 6.00
   58.40 69.93
                 6.56
   81.50 -3.34
                 13.45
> B = [[5, 211, 5.36], [88.1, 7.4, 91.11], [4.2, -9.05, 58]]
    5.00 211.00
                5.36
   88.10 7.40 91.11
    4.20 -9.05 58.00
```

Основи технологій програмування

```
> A + B
  6.00 213.00
                8.36
 92.10 85.60 97.11
 11.20 -13.61 68.00
  > (A + B) ^ T
    5.00 211.00
                 5.36
   88.10 7.40 91.11
    4.20 -9.05 58.00
  >([[1, 2, 3], [4, 78.2, 6], [7, -4.56, 10]] + [[5, 211, 5.36], [88.1, 7.4, 91.11],
   [4.2, -9.05, 58]]) ^ T
5.00 211.00
             5.36
88.10 7.40 91.11
4.20 -9.05 58.00
  > (A + (B + [[15, -2.1, 0.88], [34, 7.1, 0.12]], [-1.87, 92.5, -5.8]])) ^ T
5.00 211.00
             5.36
88.10 7.40 91.11
4.20 - 9.05 58.00
```

- синтаксичний аналізатор побудувати на основі регулярних виразів, використовуючи пакет java.util.regex.
- назви для операцій транспонування, визначення рангу, скалярного добутку, визначення детермінанту, обернення матриці можна обирати як спеціальними символами (як в прикладі вище), так і літерами;
- організувати перетворення і запис зчитаних даних у змінні типу Matrix або Vector
- регулярні вирази специфікують, які рядки будуть вважатися припустимими для введення, а які ні. Ці специфікації слід використати при побудові тестових даних. У разі введення даних слід вивести відповідне повідомлення, а діалог припиняти не треба;
- обробити помилки неправильного введення даних. В цій частині роботи не перевіряються помилки неправильного розміру матриці або відсутності операнду для виконання операції

Рекомендації до виконання частини 2

- 1) За допомогою засобу JBehave (http://jbehave.org/) написати тести та протестувати реалізацію лексичного аналізатора для роботи з матрицями та матричними операціями, побудованого у першій частині лабораторної роботи:
- описати сценарії для двох історій:
 - о «Матриці, які вводяться або обчислюються, зберігаються у сховищі» Приблизний перелік сценаріїв для історії:
 - введення та збереження матриці;
 - введення матриці у неправильному форматі;
 - введення матриці з неправильної назвою;
 - запит матриці, яка ϵ у сховищі;

Основи технологій програмування

- запит матриці, якої немає у сховищі;
- матриця з таким же ім'ям вже зберігається у сховищі;
- збереження результатів обчислень у сховищі

Перелік сценаріїв для історії можна редагувати залежно від особливостей реалізації лексичного аналізатора.

- о «Обчислення виразу з матрицями»
 - Приблизний перелік сценаріїв для історії:
 - вираз містить матриці у строковому форматі; вираз обчислюється без збереження результату;
 - вираз містить матриці у строковому форматі; вираз обчислюється і результат зберігається у сховищі;
 - вираз містить матриці у неправильному строковому форматі;
 - вираз посилається на матриці зі сховища; вираз обчислюється без збереження результату;
 - вираз посилається на матриці зі сховища; вираз обчислюється і результат зберігається у сховищі;
 - вираз посилається на матриці, яких немає у сховищі.
 Перелік сценаріїв для історії можна редагувати залежно від особливостей реалізації лексичного аналізатора.
- 2) описати і виконати модульні тести, використовуючи бібліотеку JBehave: відобразити кроки сценаріїв у програмну реалізацію, конфігурувати і запустити на виконання тести JBehave

Індівідуальні завдання

Таблиця

Варіант	Вираз	Варіант	Вираз
1	2	3	4
1	$A^T * B + C * k$	12	$(B^T + C^{-1}) * k$
2	$rank(A^{-1} + C * B)$	13	$(V1\times V2)*B^T$
3	$k * A + B * C^{-1}$	14	rank(V *B)
4	$\det(A/k-C)$	15	$A * B - C^{-1}$
5	$(V1 \bullet V2) * A^{-1}$	16	$V1 \bullet V2 + \det(A+B)$
6	$C^T / rank(A)$	17	$A/k * rank(B^T)$
7	$C^{-1} - k * B^T$	18	$(k * A^{-1} + C)/k$
8	$\det(A+k*B)$	19	(V1 + rank(A)) * B
9	$(V1 \bullet V2) * V3 $	20	$(B^{-1}-C)*k$
10	$(A-B^T)^* rank(C)$	21	$(A+B)^T*k$
11	$\det(A) * B - C^{-1}$	22	$det (A + B^{-1})$

Основи технологій програмування

* Примітка до позначень, застосованих у виразі:

1 ''	<i>y</i> 3 1
A, B, C	матриці
V1, V2, V3	вектори
k	скалярне значення
A + B	сума матриць
det(A)	детермінант матриці
A/k	ділення матриці на скалярне значення
A^{-1}	обернення матриці (A^1)
A * B	добуток матриць
A*k	добуток матриці і скалярного значення
rank(A)	ранг матриці
A - B	віднімання матриць
A^{T}	транспозиція матриці (А^Т)
$V1 \bullet V2$	скалярний добуток двух векторів (V1*V2)
V	модуль вектора
$V1 \times V2$	векторний добуток двох векторів (V1xV2)