

2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST – LEIC-Taguspark 11 dezembro 2017

NOME	NÚMERO	

1. (1 + 1 + 3 + 1 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16, que usa duas interrupções. Para facilitar, fornece-se a descrição interna das instruções CALL e RET e uma descrição sumária do mecanismo das interrupções.

CALL Etiqueta	SP ← SP-2 M[SP]←PC PC ← Endereço da Etiqueta
RET	$PC \leftarrow M[SP]$ $SP \leftarrow SP+2$

1.° Semestre 2017/2018

Invocação	Guarda endereço de retorno
de rotina de	Guarda registo de estado (RE)
interrupção	Salta para rotina de interrupção
RFE	Repõe registo de estado (RE)
KFE	Repõe endereço de retorno no PC

	Endereços				
		N	EQU	5	
		PLACE	1000H		
		VALOR	EQU	53FH	
	1000H	Z:	WORD	0	
	1002H	tabela:	WORD	0	
	1004H		WORD	0	
	1006H		WORD	В	
	1008H		WORD	A	
_					
Int		PLACE	0000H	1	
	0000Н		MOV	SP, 2000H	1
	0002H		MOV	BTE, tabela	
	0004H		MOV	R1, N	; durante esta instrução, todos os pinos
	000/11		MOM	DO MALOD	; de interrupção são ativados (0> 1)
	0006H		MOV	R0, VALOR	
	H8000		EI2 EI3		
	000AH 000CH		CALL	itera	
X	000CH	fim:	JMP	fim	
A			PUSH	R1	
		maisUm:	SHR	R0, 1	; desloca para a direita
	0014H	indis C III.	SUB	R1, 1	, desided para a differen
	0016H		JNZ	maisUm	
	0018H		EI		
X	001AH		MOV	R1, Z	
X	001CH		MOV	[R1], R0	
X	001EH		POP	R1	
X	0020H		RET		
	0022H	A:	SHL	R0, 2	; desloca para a esquerda
	0024H		RFE		
	0026Н	B:	SUB	R0, R1	; rotina da interrupção 2
	0028H		RFE		

- a) Preencha os <u>endereços que faltam</u> na coluna "Endereços" (preencha apenas as linhas em que tal faça sentido) e <u>as instruções (ou parte delas) que faltam no programa</u>. Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>;
- b) Na coluna mais à esquerda, "Int", coloque um "X" <u>apenas</u> nas linhas das instruções em que o PEPE, <u>em vez de executar logo</u> essa instrução, <u>pode ir atender primeiro</u> uma interrupção, se esta tiver entretanto sido pedida (num dos pinos relevantes) mas ainda não tiver sido atendida;

c) Acabe de preencher a tabela com informação sobre a sequência de todos os acessos de dados à memória feitos pelo programa, de leitura (L) ou escrita (E), assumindo que todos os pinos de interrupção do PEPE são ativados (passam de 0 para 1) durante a instrução MOV R1, Z. Ignoram-se os acessos de busca de instrução. Use apenas as linhas que necessitar.
Quando o valor lido ou escrito (coluna da direita) for o registo de estado, use apenas RE como valor (uma vez que é difícil determinar o valor de todos os bits de estado).

Endereço da instrução ou n.º da interrupção que causa o acesso	Endereço acedido	L ou E	Valor lido ou escrito
000CH	1FFEH	E	000EH
0010Н	1FFCH	E	5
2	1FFAH	E	001CH
2	1FF8H	E	RE
0028H	1FF8H	L	RE
0028H	1FFAH	L	001CH
3	1FFAH	E	001CH
3	1FF8H	E	RE
0024Н	1FF8H	L	RE
0024Н	1FFAH	L	001CH
001CH	1000H	E	00A4H
001EH	1FFCH	L	5
0020Н	1FFEH	L	000EH

d) Indique os valores (hexadecimal, 16 bits) de R0 e R1 no fim do programa.

R0	00A4	Н	R1	5	Н
----	------	---	----	---	---

2. (2 valores) Considere que no seu portátil consegue executar um jogo com 30 frames/seg, em que cada frame gasta 20% do seu tempo em CPU e 80% em GPU (processador gráfico). Decide comprar um portátil novo (vem aí o Natal...), em que a CPU e a GPU são 20% e 45% mais rápidas que no seu portátil antigo. Ou seja, demoram cerca de 80% e 55%, respetivamente, do tempo que demoravam a fazer uma dada tarefa. Estime quantos frames/seg é que o portátil novo conseguirá atingir. Justifique.

No portátil atual, cada frame demora Tf:

$$Tf = 0.2*Tf + 0.8*Tf$$

No portátil novo, cada frame demorará, para o mesmo jogo:

Tfnovo =
$$(0.2*0.8)*Tf + (0.8*0.55)*Tf = 0.6 Tf$$

Logo, o novo tempo de cada frame é 0,6 do antigo, pelo que a melhoria frames/seg é de 1/0,6 sobre 30 frames/seg. Com o novo portátil, deverá ser possível atingir os 30/0,6 = 50 frames/seg.

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a informação em falta sobre o descodificador e cada dispositivo (bits de endereço a que liga, capacidade, saída do descodificador a que deve ligar e o endereço de fim da gama de endereços em que esse dispositivo está ativo, não considerando endereços de acesso repetido - espelhos).

Bits de endereço a o descodificador deve ligar A11 .. A13

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Saída do descodificador	Início (hexadecimal)	Fim (hexadecimal)
ROM	A0-A8	512	S 6	3000H	31FFH
RAM 1	A0-A9	1 K	S2	1000H	13FFH
RAM 2	A0-A10	2 K	S0	0000Н	07FFH
Periférico	A0-A6	128	S4	2000Н	207FH

4. (2 valores) Considere a seguinte a tabela de Karnaugh, relativa a uma função de quatro entradas e uma saída. Preencha a tabela de verdade que lhe deu origem e simplifique a respetiva função, escrevendo no retângulo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z					C	D	
0	0	0	0	0			00		01	11	10
0	0	0	1	1		00			1	1	
0	0	1	0	0		00			1		
0	0	1	1	1		01				1	1
0	1	0	0	0	AB	01				1	1
0	1	0	1	0	AD	11			1	1	1
0	1	1	0	1		11				1	
0	1	1	1	1		10	1		1		1
1	0	0	0	1		10	1			1/	1
1	0	0	1	1							
1	0	1	0	1							
1	0	1	1	1							
1	1	0	0	0	Z =		$A\overline{B}$ +	A	D + E	$BC + \overline{B}A$	D
1	1	0	1	1							
1	1	1	0	1							
1	1	1	1	1							

5. (1,5 + 0,5 valores) Pretende-se construir um circuito microprogramado que compare dois números binários, X e Y. O algoritmo de comparação é simples: comparam-se os bits 0 (menor peso) de cada um, seguido de um deslocamento de um bit à direita, repetindo-se estes dois passos até os registos serem zero. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem os dois números a comparar. Cada registo tem uma saída que vale 1 quando o registo tem o valor zero. Os bits 0 de cada registo entram numa equivalência (ou-exclusivo negado), que faz EQ = 1 quando os dois bits são iguais. Quando o algoritmo termina (deteção de bits diferentes ou ambos os registos ficam a zero), a saída FEITO deve ficar ativa e a saída IGUAIS deve ficar ativa se os números forem iguais, inativa se forem diferentes.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais ativos em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	LOAD_R1	SHR_R1	LOAD_R2	SHR_R2	FEITO	IGUAIS	SEL_MICRO _SALTO	MICRO_ SALTO
0	$R1 \leftarrow X$ $R2 \leftarrow Y$	SIM		SIM					
1	$(R1(0) == R2(0)): MPC \leftarrow 3$							EQ	3
	FEITO \leftarrow 1 IGUAIS \leftarrow 0 MPC \leftarrow 2					SIM		1	2
3	$R1 \leftarrow R1 >> 1$		SIM						
4	$R2 \leftarrow R2 \gg 1$				SIM				
5	(R1 != 0 ou R2 != 0): MPC ← 1							NZ	1
	FEITO ← 1 IGUAIS ← 1 MPC ← 6					SIM	SIM	1	6

b) Quantos bits deve ter no mínimo o sinal SEL MICRO SALTO?

3

6. (1,5 + 1,5 valores) Considere uma cache de dados de mapeamento direto, com blocos de 8 palavras cada, 4 bits de etiqueta, num processador com 16 bits de endereço com <u>endereçamento de byte</u> (uma palavra = dois endereços).

a) Quantos blocos tem esta cache?

256

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 4 ns e 30 ns, respetivamente. Se o tempo médio de acesso for 9,2 ns, qual é a *hit rate* média?

80 9

7. (2 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 00000H até FFFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH. As páginas virtuais têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e tem atualmente o conteúdo da tabela seguinte (algumas posições estão vazias, isto é, não inicializadas).

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	0F
1	1	207	31
2	0	2A0	3E
3	1	1EF	F1
4	1	3B9	03
5	0	0C3	1D
6	1	2A0	1B
7	0	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

Dimensão do espaço virtual (em bytes)	1 M
Dimensão do espaço físico (em bytes)	64 K
N.º páginas físicas	256
Endereço virtual que corresponde ao endereço físico F103H	1EF03H
Endereço físico que corresponde ao endereço virtual 3B90FH	030FH