1) (10 pts) ANL (Algorithm Analysis)

Write down the <u>worst case run-times</u> for each of the requested operations. <u>You may assume that each operation is done with an efficient algorithm.</u> Please leave your answer in <u>simplified Big-Oh</u> form, in terms of the variables given in the problem. Thus, please do NOT include any leading constants or unnecessary terms. Answers such as $O(2n^2)$ or $O(n^2 + \lg n)$ <u>will receive no credit</u>, even if they are technically correct. Each part is worth 1 point.

a)	Inserting k items, each into the front of a linked list which	
	starts with n items.	<u>O(k)</u>
b)	Running a floodfill on a grid with ${\bf r}$ rows and ${\bf c}$ columns.	O(rc)
c)	Sorting n elements via the Quick Sort algorithm.	$O(n^2)$
d)	Efficiently forming a heap out of n unsorted items.	<u>O(n)</u>
e)	Removing all of $\bf n$ items, one by one, from a Priority Queue that originally has $\bf n$ items.	O(nlgn)
f)	Inserting n items, one by one, into a Binary Search Tree.	<u>O(n²)</u>
g)	Inserting n items, one by one, into a AVL Tree.	O(nlgn)
h)	Printing out the set of moves to solve the Towers of Hanoi with a tower of $\bf n$ disks.	<u>O(2ⁿ)</u>
i)	Merging two sorted lists , one with r elements, the other with s elements, into a single sorted list.	O(r+s)
j)	Writing out the first 10 Fibonacci numbers.	<u>O(1)</u>

Grading: 1 pt per answer. Answer has to match exactly to get credit. Only exception is that (i) can be listed as O(max(r,s)).