北京科技大学 2018--2019 学年 第 一 学期

模拟与数字电子技术 试卷(A)

	院(系)_		_ 班级_		学된	<u>1</u> 7	<i>y</i> =	住名	
	题号	_	=	三	四	五.	六	七	卷面 总成绩
	得分								
得	1. 用] 静态电	选择题 直流电/ 点位如右 放大	玉表测?	得某放; 体管处	于 () 状			+2.3V
2.	对共集放大 A.电压放大 C.输入与输	电路而 倍数大	言,下 于1	列说法 B.带	不正确 负载能	的是(力强)。		+2.5V +12V Q
	设二极管 D 值为 3V,则 A.3V	右图所	示电路	F点的	输出电	压为 ()。	0V o —	D ₁ F
4.	下面有关差 A.主要用于 C.能抑制共	阻容耦				首级			
5.	静态工作点 A.交流输入 C.交流输入	信号单	独作用]			独作用	
6.	阻容耦合放 A.耦合电容								
7.	在共射放大 A.增大				RL 的阻	值增大	时,电	压放大	倍数()
	E弦波振荡申 $A. \dot{A}\dot{F} =1$)。			

- 9.过零电压比较器可以实现()。
- A.正弦波转变为方波 B.方波转变为正弦波 C.正弦波转变为三角波
- 10. 互补对称功率放大电路一般用在多级放大电路的()。

 - A. 首级 B. 中间级 C. 末级
- 11.和 $A\overline{B} + B + \overline{AB}$ 相等的逻辑式是 ()。
 - A. $\overline{A} + B$ B. A + B C. $A + \overline{B}$ D. AB

- 12.逻辑电路输入变量 A、B 和输出变量 F的波形如图所示,则该电路的逻辑 式为()。

 - A. F = AB B. $F = \overline{A+B}$

- $C. F = \overline{AB}$ $D. F = A \oplus B$
- 13.4个触发器最大可构成(
-) 进制计数器。

- A. 4 B. 8 C. 16 D. 100
- 14. 电路如右图, 当 A="1"时, D 触发器将()。
- A. 保持原状态 B. 具有计数功能 C. 置"0" D. 置"1"

15. 一个环形移位寄存型计数器可能的序列是()。

- A. 1111,1110,1101... B. 0000,0001,0010...

 - C. 0001,0011,0111... D. 1000,0100,0010...

得分

二、 简答题(27分)

1. (4分)分析下面由四选一数据选择器构成的电路。

四选一数据选择器功能表

输	入	输 出
A_1	A_0	Y
0	0	D_0
0	1	\mathbf{D}_{1}°
1	0	D_2
1	1	D_3

- (1) 当控制端A₁,A₀均为逻辑1时,写出输出Y和输入A、B的逻辑表达式
- (2) 为实现Y = A + B 的逻辑函数关系, A_1 , A_0 应该分别接入何值_____

2. (4 分) 电路如下图所示,分别写出 \bar{E} 为 0 和 1 情况下的输出逻辑表达式,并在图中画出对应的输出波形。

3. (6分)某呼叫显示系统如下图所示,电路核心器件是一块**8线3线优先编码器**,呼叫结果用**四输入七段数码管**显示。开关[A][B][C][D]分别用来模拟来自[A][B][C][D]四个房间的呼叫信号,有呼叫信号时输入为低电平。试分析:

- (1) 当所有开关输入均位于高电平时,与非门的输出 X 为____(高、低)电平? 数码管显示数字为?
- (2) 当任一房间有呼叫信号时,与非门的输出 X 为 (高、低)电平?
- (3) 哪个房间的呼叫优先级别最高?
- (4) 当所有开关输入均为低电平时,数码管显示数字为?_____
- (5) 各开关位于如图位置时,数码管显示数字为?______8线3线优先编码器功能表

		输	出							
$\overline{I_7}$	$\overline{I_6}$	$\overline{Y_2}$	\overline{Y}_1	\overline{Y}_0						
0	×	×	×	×	×	×	×	0	0	0
1	0	×	×	×	×	×	×	0	0	1
1	1	0	×	×	×	×	×	0	1	0
1	1	1	0	×	×	×	×	0	1	1
1	1	1	1	0	×	×	×	1	0	0
1	1	1	1	1	0	×	×	1	0	1
1	1	1	1	1	1	0	×	1	1	0
1	1	1	1	1	1	1	0	1	1	1

四输入七段数码管功能

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

输入

显示

4. (6分) 判断图中电路是否存在级间反馈?如果存在,请判断反馈的极性?该反馈对直流起作用还是对交流起作用?如存在交流负反馈,请进一步指出反馈的组态。(判断反馈 极性时要求标出瞬时极性)

5. (7分)分析下图所示电路。

- (1) 该电路属于 (同步、异步) 时序逻辑电路;
- (2) 电路中哪个芯片负责**高位**计数,请在160芯片内部标明;
- (3) 该电路采用的是____(清零法、置数法),其工作方式为____(同步、异步);
- (4) 该电路清零或置数所用的译码状态用二进制表示是:**高位片_____低位** 片_____;
- (5) 该电路构成 进制计数器?

74LS160/161功能表											
ENP	ENT	LOAD	CLR	CP	功能						
1	1	1	1	†	计数						
X	X	0	1	†	置数						
0	1	1	1	X	保持						
1	0	1	1	X	保持						
X	X	X	0	X	清零						

模拟与数字电子技术 试卷 A 第 4 页 共 8 页

三、运算电路分析(6分)

下图是利用两个运算放大器组成的具有较高输入电阻的放大电路。试求出 uo 与

ull、ull 的运算关系式。

得 分

四、组合逻辑电路设计(7分)

设计小规模组合电路满足下面真值表给出的逻辑状态关系。

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- (1) 写出最简与或逻辑表达式;
- (2) 写出最简与非逻辑表达式;
- (3) 画出对应的最简与非逻辑电路图。

五、基本放大电路分析(10分)

已知分立元件放大电路: β =50, r_{be} =0.8k Ω ; E_C =12V, R_{BI} =75k Ω , R_{B2} =25k Ω , R_C =2k Ω , R_E =1k Ω , R_L =2k Ω

- (1) 此放大电路属于什么接法? (共射, 共集)
- (2) 估算该电路的静态工作点;
- (3) 画出微变等效电路图;
- (4) 计算电压放大倍数、输入电阻和输出电阻;
- (5) 电路中电容 CE 的作用是什么?

六、时序逻辑电路设计(10分)

用D触发器设计一个能够产生下列二进制序列的同步计数器电路。

(001, 101, 011, 000, 001....)

74S138 (3 线 8 线) 译码器功能表

使能 输入					输出(低电平有效)								
$\mathbf{G_1}$	$\overline{\mathbf{G}}_{2\mathrm{A}}$	$\overline{\mathbf{G}}_{\mathbf{2B}}$	C	В	A	$\overline{\mathbf{Y}}_{0}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y}}_{2}$	$\overline{\mathbf{Y}}_{3}$	$\overline{\mathbf{Y}}_{4}$	$\overline{\mathbf{Y}}_{5}$	$\overline{\mathbf{Y}}_{6}$	$\overline{\mathbf{Y}}_{7}$
0	X	X											
X	1	\times	X	X	X	1	1	1	1	1	1	1	1
\times	×	1											
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

七、数字系统综合分析(10分)

数字小系统如下图所示。电路由组合逻辑电路、时序逻辑电路、电阻、发光二极管等元器件构成。四位二进制计数器芯片 161 的 QA 为最低位。

- (1) 电路中属于组合逻辑电路的单元有_______,属于时序逻辑电路单元的有 :
- (2) 虚线框中的电路构成 进制计数器?画出对应的状态转换图;
- (3) 写出发光二极管点亮的顺序;
- (4) 已知电路所用时钟信号频率为10Hz,发光二极管完成一个点亮周期的时间为___秒。