Interface DS3231 RTC Module with STM32

Today in this tutorial we are going to interface DS3231 RTC module with STM32. The module works on I2C communication protocol, and therefore we need only 2 wires to interface it with the microcontroller.

Components Required

You will need the following components -

- 1 × Breadboard
- 1 × STM32F030F4P6
- 1× LCD 16x2
- 1× 10KΩ potentiometer
- 1x DS3231 RTC Modules
- Some Jumper wire

Procedure

Follow the circuit diagram shown in the image given below.

There is nothing special about Interfacing DS3231 with any microcontroller. It's basically a memory device, which we can write the data to and read the data from. Just like any other memory device, we have to do the following in order to perform the read/write operation

- Select the device by sending the device address on the I2C line
- Select the memory address that you want to access
- write/read the data to the address

The following is the picture from the datasheet of the device. It shows the registers available in the DS3231 for writing and reading data

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
00H	0	10 Seconds			Seconds				Seconds	00-59
01H	0	10 Minutes			Minutes			Minutes	00-59	
02H	0	12/24	AM/PM 10 Hour	10 Hour	Hour			Hours	1-12 + AM/PM 00-23	
03H	0	0	0	0	0 Day			Day	1–7	
04H	0	0	101	Date	Date			Date	00-31	
05H	Century	0	0	10 Month	Month				Month/ Century	01–12 + Century
06H		10 Year				Yea	ar	Year	00-99	
07H	A1M1	10 Seconds			Seconds				Alarm 1 Seconds	00-59
08H	A1M2	10 Minutes			Minutes				Alarm 1 Minutes	00-59
09H	A1M3	12/24	AM/PM 10 Hour	10 Hour	Hour				Alarm 1 Hours	1–12 + AM/PM 00–23
0AH	A1M4	DY/DT	10 Date		Day				Alarm 1 Day	1–7
					Date				Alarm 1 Date	1–31
0BH	A2M2	10 Minutes			Minutes				Alarm 2 Minutes	00-59
0CH	A2M3	12/24	AM/PM 10 Hour	10 Hour	Hour				Alarm 2 Hours	1–12 + AM/PM 00–23
0DH	A2M4	DY/DT	10 Date		Day				Alarm 2 Day	1–7
					Date				Alarm 2 Date	1-31
0EH	EOSC	BBSQW	CONV	RS2	RS1	INTCN	A2IE	A1IE	Control	_
0FH	OSF	0	0	0	EN32kHz	BSY	A2F	A1F	Control/Status	_
10H	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	_
11H	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	_
12H	DATA	DATA	0	0	0	0	0	0	LSB of Temp	_

Note: Unless otherwise specified, the registers' state is not defined when power is first applied.

As I mentioned, in this tutorial we are only going to interface the RTC part. therefore we are interested in the registers ranging from address 00h to 06h for the clock and date.

STM32F0 Pin Configuration:

Pin PA0 To PA6 set as Output

Code

```
#include "main.h"
#include "LCD1602.h"
I2C HandleTypeDef hi2c1;
TIM_HandleTypeDef htim1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM1_Init(void);
void Print(int32_t num) {
 char string[4];
 string[0] = ( (num/10) % 10) + 48;
string[1] = ( num % 10) + 48;
  string[2] = 0;
  LCD_String(string); // Send the formatted string to your LCD display function
  LCD_String(" ");
int main(void)
  HAL Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_TIM1_Init();
 HAL_TIM_Base_Start(&htim1); // Timer On and init this line
  lcd_init();
  Set_Time(00,30,2,1,4,5,24); // Set_Time(sec,min,hour,dow,,dom,month,year);
  lcd_xy(0, 0);
  LCD_String("Time :");
  lcd_xy(1, 0);
  LCD_String("Date :");
  while (1)
  {
         Get_Time ();
         lcd_xy(0, 7);
         Print(time.hour);
         lcd_xy(0, 9);
LCD_String(":");
         Print(time.minutes);
         lcd_xy(0, 12);
         LCD_String(":");
         Print(time.seconds);
```

```
lcd_xy(1, 7);
    Print(time.dayofmonth);
    lcd_xy(1, 9);
    LCD_String("-");
    Print(time.month);
    lcd_xy(1, 12);
    LCD_String("-");
    Print(time.year);
}
```

We have to set the time once in the main function, and then we can always read the time in the while loop.

One more very important thing. After setting the time, you must flash the code again with the Set_Time function as commented out as shown below

```
//Set_Time(00,30,2,1,4,5,24);
```

So, just comment out the function and flash again. This is to ensure that, if the microcontroller resets, the RTC won't start from this time again.

Output:

