Digital1

Maquinas de Estado Finito Maquinas de Estado algorítmico ASM

Ferney Alberto Beltrán Molina

2024

Contacto

Nombre:

Email: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

oficina:

Contenido

Maquinas de Estado Finito

ASM introducción

ASM

Índice

Maquinas de Estado Finito

ASM introducción

ASIV

Maquina de Estado Finito FSM

Maquina de Estado Finito FSM

Maquina de Estado Finito FSM, Moore

Reconoce la palabra 10010b

Maquina de Estado Finito FSM Mealy

Reconoce la palabra 10010b

Maquina de estado Finito FSM

Índice

Maquinas de Estado Finito

ASM introducción

ASN

Multiplicador NxM

El algoritmo de multiplicación que se implementa se basa en productos parciales (PP).

Multiplicador NxM

Se realiza la multiplicación iniciando con el bit menos significativo del multiplicador, el resultado de la multiplicación se suma al primer producto parcial y se obtiene el segundo producto parcial; si el bit del multiplicador es 0 no se afecta el contenido de PP, por lo que no se realiza la suma.

A continuación se realiza la multiplicación del siguiente bit (a la izquierda del LSB) y el resultado se suma al producto parcial pero corrido un bit a la izquierda. Este proceso continua hasta completar todos los bits del multiplicador y el último producto parcial es el resultado fina

Multiplicador NxM

Multiplicador NxM: Descripción Funcional - diagrama de flujo

Multiplicador NxM: identificación de componentes

Multiplicador NxM: DATAPATH

Multiplicador NxM: DATAPATH-verilog

```
always @(posedge clk) begin
   if (rst) begin
     A = \{3'b0000,MD\};
     B = MR;
   end
   else begin
      if (sh) begin
         A= A << 1;
         B = B >> 1:
      end
   end
end
always @(posedge clk) begin
   if (rst) begin
      pp =0;
   end
   else begin
      if (add) begin
      pp =pp+A;
      end
   end
end
 assign z=(B==0)?1:0;
```


Multiplicador: se identifica la unidad Control

Multiplicador: Maquina de estados Finitos (FSM) - Control

19 / 24

Multiplicador: FSM - Control-verilog

Índice

Maquinas de Estado Finito

ASM introducción

ASM

Proceso Realizado

- 1. Se elabora un diagrama de flujo que describa la funcionalidad deseada ya sea a nivel gráfico o en texto.
- 2. Se identifica los componentes del DataPath.
- 3. Se identifican las señales necesarias para controlar el Datapath y la interconexión.
- 4. Se especifica de la unidad de control (FSM) utilizando diagramas de estado.
- 5. En laboratorio:
 - Se implementan los componentes del DataPath y de la unidad de control utilizando HDL.
 - Simulación y pruebas.

ASM

ASM - Multiplicación

