FIT 3080: Intelligent Systems

Markov Decision Processes (MDPs)

Gholamreza Haffari – Monash University

Many slides over the course adapted from Stuart Russell, Andrew Moore, or Dan Klein

Announcements

Online Reading:

- Reinforcement Learning: An Introduction, by Richard Sutton and Andrew Barto, MIT Press
- Chapter 3 and Chapter 4
- Accessible from: http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
- Different treatment and notation than the R&N book, beware!
- Lecture version is the standard for this class.

Sections 17.1-3

Non-Deterministic Search

How do you plan when your actions might fail?

Outline

MDPs

- Definition
- MDPs as Search Trees
- Utility of a Sequence of Actions

Solving MDPs

- Bellman Equation
- Value Iteration
- Policy Iteration

Outline

MDPs

- Definition
- MDPs as Search Trees
- Utility of a Sequence of Actions

Solving MDPs

- Bellman Equation
- Value Iteration
- Policy Iteration

Grid World

- The agent lives in a grid
 - Agent has four actions: North, South, East, West
 - Walls block the agent's path
 - If outcome of actions are deterministic, we can use standard planning/search algorithms to go from the initial state to the favorable goal state
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

Action Results

Deterministic Grid World

Non-Deterministic Grid World

Grid World

- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

- Question: What is the best action to take from each state to maximize sum of rewards?
- This week lectures:
 - Firstly, formalize the problem more generally as a Markov Decision Process (MDP)
 - Secondly, present algorithms to solve MDPs (to solve stochastic planning/game problems)

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
- MDPs are a family of nondeterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions

What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example Optimal Policies

R(s) = -0.03

$$R(s) = -2.0$$

Example: High-Low

Rules:

- Three card types: 2, 3, 4
 - Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
 - New card is flipped
 - If you're right, you win the points shown on the new card
 - Ties are no-ops
 - If you're wrong, game ends
- How is this different from the "chance" games in the last lecture?
 - #1: get rewards as you go
 - #2: you might play forever

You can patch expectimax to deal with #1 but not #2

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: T(s, a, s'):
 - $P(s' = 4 \mid 4, Low) = 1/4$
 - $P(s'=3 \mid 4, Low) = 1/4$
 - P(s' = 2 | 4, Low) = 1/2
 - P(s' =done | 4, Low) = 0
 - $P(s'=4 \mid 4, High) = 1/4$
 - $P(s'=3 \mid 4, High) = 0$
 - P(s' = 2 | 4, High) = 0
 - P(s' =done | 4, High) = 3/4
 - ...
- Rewards: R(s, a, s'):
 - Number shown on s' if s ≠ s'
 - 0 otherwise

Example: High-Low

Outline

MDPs

- Definition
- MDPs as Search Trees
- Utility of a Sequence of Actions

Solving MDPs

- Bellman Equation
- Value Iteration
- Policy Iteration

MDP Search Trees

Each MDP state gives an "expectimax" search tree

Outline

MDPs

- Definition
- MDPs as Search Trees
- Utility of a Sequence of Actions

Solving MDPs

- Bellman Equation
- Value Iteration
- Policy Iteration

Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:

- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

Smaller γ means smaller "horizon" – shorter term focus

Discounting

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Outline

- MDPs
 - Definition
 - MDPs as Search Trees
 - Utility of a Sequence of Actions
- Solving MDPs
 - Bellman Equation
 - Value Iteration
 - Policy Iteration

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

Define the value of a state s:

V*(s) = expected utility starting in s and acting optimally

Define the value of a q-state (s,a):

Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally

• Define the optimal policy: $\pi^*(s)$ = optimal action from state s

3	0.812	0.868	0.912	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
'	1	2	3	4

Solving MDPs

• We want to find the optimal policy π^*

How to do that?

The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:

Optimal rewards = maximize over first action and then follow optimal policy

Formally:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value Estimates

- Calculate estimates V_k*(s)
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As k → ∞, it approaches the optimal value
- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming

Outline

- MDPs
 - Definition
 - MDPs as Search Trees
 - Utility of a Sequence of Actions
- Solving MDPs
 - Bellman Equation
 - Value Iteration
 - Policy Iteration

Value Iteration

- Idea:
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

Example: Value Iteration

 Information propagates outward from terminal states and eventually all states have correct value estimates

Convergence*

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem: $||U^{t+1}-U^t||<\epsilon, \Rightarrow ||U^{t+1}-U||<2\epsilon\gamma/(1-\gamma)$
 - I.e. once the change in our approximation is small, it must also be close to correct

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Given optimal q-values Q?

$$\underset{a}{\operatorname{arg\,max}}\,Q^*(s,a)$$

Lesson: actions are easier to select from Q's!

Aside: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i*, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$

Outline

- MDPs
 - Definition
 - MDPs as Search Trees
 - Utility of a Sequence of Actions
- Solving MDPs
 - Bellman Equation
 - Value Iteration
 - Policy Iteration

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:

 $V^{\pi}(s)$ = expected total discounted rewards (return) starting in s and following π

Recursive relation (one-step lookahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Idea two: it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
 - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Policy Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: O(|S|³ + |A|.|S|²)
 - Space: O(|S|)
- Number of iterations
 - Unknown, but can be faster in practice
 - Convergence is guaranteed

Comparison

- In value iteration:
 - Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)
- In policy iteration:
 - Several passes to update utilities with frozen policy
 - Occasional passes to update policies
- Hybrid approaches (asynchronous policy iteration):
 - Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often