CS57300 PURDUE UNIVERSITY FEBRUARY 19, 2019

DATA MINING

ANNOUNCEMENT

- Assignment 3 is out
 - Implement Logistic Regression and Linear SVM for speed dating event outcome prediction
 - Due: March 8 (Friday), 11:59pm
- In-class midterm exam in two weeks
 - March 5, 4:30-5:45pm, WANG 2599

SMOOTH OPTIMIZATION

SOLVE CONVEX OPTIMIZATION PROBLEM

- Minimize a convex function without any constraints on the variables
 - If f'(x)=0 then x is a stationary point of f
 - If f'(x)=0 and f''(x) is not negative then x is a local minimum of f (for convex function, this is also a global minimum)
 - If f is a strictly convex function, any stationary point of f is the unique global minimum of
- What about minimizing a convex function with constraints?

USE LAGRANGE MULTIPLIERS TO SOLVE CONVEX OPTIMIZATION

For a standard form of convex optimization problem (f_0 are f_i are convex, h_i is linear):

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0$, for $i=1,\ldots,m$. $h_i(x)=0$, for $i=1,\ldots,k$.

The Lagrangian function of it is

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{k} \nu_i h_i(x)$$

- $\lambda_i \ge 0$ is the Lagrange multiplier for the *i*-th inequality constraint, V_i is the Lagrange multiplier for the *i*-th equality constraint
- Solve the constrained optimization problem by finding the stationary point of the Lagrangian function

LOGISTIC REGRESSION LEARNING

- Logistic regression: $P(y = 1|\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T\mathbf{x} + w_0)}}$
 - Maximize (log) likelihood: $\mathbf{w} = (\mathbf{w}, w_0), \mathbf{x}_i = (\mathbf{x}_i, 1)$

$$logL(\mathbf{w}|D) = \sum_{i=1}^{N} logp(y_i|\mathbf{w})$$

$$= \sum_{i=1}^{N} log[(\frac{1}{1+e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i}})^{y_i}(\frac{e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i}}{1+e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i}})^{1-y_i}]$$

$$= \sum_{i=1}^{N} (y_i \mathbf{w}^{\mathsf{T}}\mathbf{x}_i - log(1+e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}_i}))$$

Minimize: $\sum_{i=1}^{N} (-y_i \mathbf{w}^\mathsf{T} \mathbf{x_i} + log(1 + e^{\mathbf{w}^\mathsf{T} \mathbf{x_i}}))^{i=1}$

LOGISTIC REGRESSION LEARNING

$$minimize \sum_{i=1}^{N} (-y_i \mathbf{w}^\mathsf{T} \mathbf{x}_i + log(1 + e^{\mathbf{w}^\mathsf{T} \mathbf{x}_i}))$$

$$\frac{dlogL(\mathbf{w}|D)}{dw_j} = \sum_{i=1}^{N} (-y_i x_{ij} + \frac{1}{1 + e^{\mathbf{w}^\mathsf{T} \mathbf{x}_i}} e^{\mathbf{w}^\mathsf{T} \mathbf{x}_i} \mathbf{i} x_{ij})$$

$$= \sum_{i=1}^{N} (-y_i + \frac{1}{1 + e^{\mathbf{w}^\mathsf{T} \mathbf{x}_i}} e^{\mathbf{w}^\mathsf{T} \mathbf{x}_i} \mathbf{i}) x_{ij}$$

$$= \sum_{i=1}^{N} (-y_i + P(y_i = 1 | \mathbf{w})) x_{ij}$$

Convex!

But no closed form solution!

GRADIENT DESCENT

- For some convex functions, we may be able to take the derivative, but it may be difficult to directly solve for parameter values
- Solution:
 - Start at some value of the parameters
 - Take derivative and use it to move the parameters in the direction of the negative gradient
 - Repeat until stopping criteria
 is met (e.g., gradient close to 0)

Gradient Descent Rule:

$$\underline{\mathbf{w}}_{\text{new}} = \underline{\mathbf{w}}_{\text{old}} - \boldsymbol{\eta} \Delta (\underline{\mathbf{w}})$$

where

 Δ (w) is the gradient and η is the learning rate (small, positive)

Notes:

- 1. This moves us downhill in direction Δ (w) (steepest downhill direction)
- 2. How far we go is determined by the value of η

STOPPING CRITERIA FOR GRADIENT DESCENT

- Ideally, f'(x)=0...
- In practice...
 - $||\nabla f(x)|| < \varepsilon$
 - $|f(x_{k+1}) f(x_k)| < \varepsilon$
 - $\|x_{k+1} x_k\| < \varepsilon$
 - Maximum number of iterations has been reached

GRADIENT ASCENT

- ► For concave functions that you want to *maximize*, take a step in direction of gradient (i.e., $w_{new} \leftarrow w_{old} + \eta \nabla(w)$)
- Otherwise same as gradient descent:
 - Start at some parameter values
 - Take derivative, move the parameters in the direction of gradient
 - Repeat until stopping criteria is met (e.g., gradient close to 0)

GRADIENT DESCENT FOR NON-CONVEX OPTIMIZATION

- Works on any objective function $F(\theta)$
 - \blacktriangleright as long as we can evaluate the gradient $\Delta(\theta)$
 - this can be very useful for minimizing complex functions F
- Can be used in hill-climbing search to find local minima in smooth, but non-convex functions

- If function has multiple local minima, gradient descent goes to the closest local minimum:
 - > solution: random restarts from multiple places in model space

LOGISTIC REGRESSION: RECAP

LOGISTIC REGRESSION

Same parametric form as standard regression,
 but uses logistic function for binary classification

Logistic regression model:

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}}$$

- Output is the (positive) class probability rather than the binary prediction
- Logistic function transform ensures output is [0,1]

Logistic function:

logistic(x) :=
$$\frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

LR EXAMPLE

$$P(BC = 1|A, I, S, CR) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x})}}$$

Intercept	Age>40	Income=high	Student=yes	Credit=fair	BuysComp?
1	0	1	0	1	0
1	0	1	0	0	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	0	1	0	0
1	0	0	1	0	1
1	0	0	0	1	0
1	0	0	1	1	1
1	1	0	1	1	1
1	0	0	1	0	1
1	0	0	0	0	1
1	0	1	1	1	1
1	1	0	0	0	0

$$\mathbf{x} = [Int, A, I, S, CR]$$

$$\mathbf{w} = [w_0, w_A, w_I, w_S, w_{CR}]$$

LR parameters = w

- Score function: likelihood
- Estimate w with maximum likelihood estimation

Score function: likelihood function

minimize
$$\sum_{i=1}^{N} (-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + log(1 + e^{\mathbf{w}^{\mathsf{T}}} \mathbf{x}_i))$$

$$dlogL \qquad \frac{N}{N}$$

 $minimize \sum_{i=1}^{N} (-y_i \mathbf{w}^\mathsf{T} \mathbf{x_i} + log(1 + e^{\mathbf{w}^\mathsf{T}} \mathbf{x_i}))$ $Estimate optimal \mathbf{w} using gradient descent \frac{dlogL}{dw_i} = \sum_{i=1}^{N} (-y_i + P(y_i = 1 \mid \mathbf{w}, \mathbf{x}_i)) x_{ij}$

Gradient descent:

Start at some **w**, e.g., $\mathbf{w} = [0,0,0,0,0]$

Make predictions given current w:

 $\forall i \ \widehat{y}_i = P(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}_i}}$ $\forall j \ \frac{d \log L}{d w_j} = \left[\sum_{i=1}^{n} (-y_i + \hat{y}_i) x_{ij} \right]$ Calculate gradient for each parameter:

Move parameters in direction of negative gradient:

Repeat until stopping criteria is met

$$w_j$$
 $w_j^{new} = w_j$ $v_j^{new} = w_j$

PREDICTIVE MODELING

LR PREDICTION

Intercept	Age>40	Income=high	Student=yes	Credit=fair	BuysComp?
1	0	1	0	1	0
1	0	1	0	0	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	0	1	0	0
1	0	0	1	0	1
1	0	0	0	1	0
1	0	0	1	1	1
1	1	0	1	1	1
1	0	0	1	0	1
1	0	0	0	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	0	1	0	0	?

What is the probability that new person will buy a computer?

$$\mathbf{x} = [1, 0, 1, 0, 0]$$

 $\mathbf{w} = [-1.3, 1, 2, -2, 0.7]$

$$\mathbf{x}^T \mathbf{w} = 0.7$$

$$P(BC = 1|\mathbf{x}|) = \frac{1}{1 + e^{-0.7}}$$

= 0.668

PREDICTIVE MODELING

DEAL WITH OVERFITTING

- Simply finding the parameter values that lead to maximum likelihood function value in the training dataset may imply overfitting!
- Solution: add a regularization term in the scoring function to penalize complex models
 - e.g., L2 regularization term: $\frac{\lambda}{2} ||w||^2$
 - $ightharpoonup \lambda$ is the regularization parameter; the larger the value, the more we are in favor of simple models

LR LEARNING WITH REGULARIZATION TERM

Score function: likelihood with L2 regularization

minimize
$$\sum_{i=1}^{N} (-y_i \mathbf{w}^\mathsf{T} \mathbf{x_i} + log(1 + e^{\mathbf{w}^\mathsf{T} \mathbf{x_i}})) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Estimate optimal w using gradient descent

Gradient descent:

Start at some **w**, e.g., $\mathbf{w} = [0,0,0,0,0]$

Make predictions given current w:

Calculate gradient for each parameter:

$$\forall i \ \widehat{y}_i = P(y_i = 1 | \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}_i}}$$

$$\forall j \ \frac{d \log L}{d w_j} = \left[\sum_{i=1}^n (-y_i + \hat{y}_i) x_{ij}\right] + \lambda w_j$$
$$= \nabla_j$$

Move parameters in direction of negative $\ \forall j \ w_j^{new} = w_j - \eta \nabla_j$ gradient:

Repeat until stopping criteria is met

PREDICTIVE MODELING 23

SVM: RECAP

SVM: KNOWLEDGE REPRESENTATION AND SCORING FUNCTION

- Linear SVM: $y = sign \left[\sum_{i=1}^{m} w_i x_i + b \right]$
- Margin = $d_+ + d_- = 2/||w||$
- Optimization problem
 - max 2/||w||
 - subject to

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1, \forall i \in \{1, 2, ..., N\}$$

SVM LEARNING

Equivalent to minimize $\|\mathbf{w}\|^2/2$ subject to

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1, \forall i \in \{1, 2, ..., N\}$$

- This is a **quadratic optimization** problem subject to linear constraints, there is a unique minimum
- Lagrangian function $L(\mathbf{w}, b, \lambda_i) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{N} \lambda_i (1 y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b))$

WHAT ABOUT LINEARLY NON-SEPARABLE DATA?

Introduce slack variables $\varepsilon_i \ge 0$ such that:

$$y_i(\mathbf{w}^\mathsf{T} \mathbf{x}_i + b) \ge 1 - \varepsilon_i, \forall i \in \{1, 2, ..., N\}$$

- $m{arepsilon}_i$ measures the amount of error
 - When $0 < \varepsilon_i \le 1$, data is between the margin, but classified correctly
 - When $\varepsilon_i > 1$, data is misclassified

"SOFT" MARGIN OPTIMIZATION

With slack variables the score function is:

$$\min_{\mathbf{w},\xi} ||\mathbf{w}||^2 + C \sum_{i}^{N} \xi_i$$

And new constraints:

$$y_i(x_i \cdot w + b) - (1 - \xi_i) \ge 0 \ \forall i$$

- If ξ are sufficiently large, then every constraint can be satisfied
- C is regularization parameter
 - > Small C means constraints can be ignored in order to find large margin
 - Large C means constraints cannot be ignored and result is small margin (C=∞ enforces hard margin)

SVM OPTIMIZATION

Constraint can be rewritten as:

$$y_i f(x_i) \ge 1 - \xi_i \ \forall i$$

▶ Together with $\xi_i \ge 0$, is equivalent to:

$$\xi_i = \max\left(0, 1 - y_i f(x_i)\right)$$

Hence we can use the following score in unconstrained optimization:

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i}^{N} \left[\max\left(0, 1 - y_i f(x_i)\right) \right]$$

NEW OBJECTIVE

$$\min_{\mathbf{w}} ||\mathbf{w}||^2 + C \sum_{i}^{N} \left[\max\left(0, 1 - y_i f(x_i)\right) \right]$$

Hinge Loss

Points are in three categories:

- 1. $y_i f(x_i) > 1$ Point is outside margin. No contribution to loss
- 2. $y_i f(x_i) = 1$ Point is on margin. No contribution to loss. As in hard margin case.
- 3. $y_i f(x_i) < 1$ Point violates margin constraint. Contributes to loss

