Machine Learning Visualization for Big Data Analysis

Cmpt 733 – Big Data Programming 2
Steven Bergner

sbergner@sfu.ca

Analysis of Big Data via ML - Outline

- Machine learning tasks
- Vis for ML
- ML for Vis
- Google Compute
- Best of: Weather model vis

Tasks performed by and for ML

ML Task Categories: By Output

- Classification
- Regression
- Clustering
- Association rules
- Forecasting
- Dimensional reduction
- Density estimation

ML Task categories: By Training

Supervised learning

- Inputs and desired outputs are given
- Find rule that maps unseen inputs to outputs

Semi-supervised learning

Supervised learning with only few of the target outputs given

Active learning

Data is not given, but asked for

Unsupervised learning

- No labels given
- Discover hidden patterns and structure in inputs
- Feature learning

Reinforcement learning

 Rewards/punishments given as feedback to actions in dynamic environment

Tasks for Machine Learning

For a given problem

- Choose a model class & estimator, loss function, optimization method
- Determine the right training data (attributes, distribution)

For a given model class

- Estimate model parameters to fit with given observations
- Make predictions, determine and communicate uncertainty
- Analyse model behaviour over a region of inputs
- Understand how model works, explain its decision making
- Validate fit of training assumptions vs operating conditions

All of the above: data-driven Some: human-in-the-loop

Cluster Analysis

Cluster Visualization

- Treat cluster label as categorical variable
- Multi-variate vis technique with encoding for label attribute

Example: DimStiller Workflows

- Goal: Understand and transform input data
- Chain operators together into pipelines

DimStiller Cluster Analysis Example

Dimension Reduction

Dimension Reduction

PCA

•ICA

Manifold Learning with 1000 points, 10 neighbors

t-SNE (7.2 sec)

Manifold Learning

- t-SNE
- LLE
- ...

Model Explanation

ML model explainability

What features have the biggest impact?

- Debugging
- Informing feature engineering
- Directing future data collection
- Informing human decision-making
- Building Trust

Explain: Permutation importance

- •For a trained model, per column of the data:
 - Randomly shuffle column values
 - Performance deterioration as feature importance

Height at age 20 (cm)	Height at age 10 (cm)		Socks owned at age 10
182	1 55	•••	20
175	147	•••	10
	/ A	•••	
156	142		8
153	130	•••	24

Explain: Partial dependence plots

- Use trained model
- Show prediction as feature in one row is varied

Average over all rows

Explain: SHAP values

- How much does a particular prediction change, if a feature is reset to a base value?
- "Man of the match" example:

SHAP calculation

$$\phi_i(f, x) = \sum_{z' \subseteq x'} \frac{|z'|!(M - |z'| - 1)!}{M!} \left[f_x(z') - f_x(z' \setminus i) \right]$$

- •z' represents feature vectors, where some feature values are 'missing' (are at base level)
- *i* indicates the feature of interest
- Normalization balances number of combinations
- Computed via local linear approximation (LIME)

Model explanation via local linear approximation (LIME)

- Lime: Explaining the predictions of any ML classifier
- SHAP values are a generalization of this

Deep Learning / Neural Networks

Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers

Fred Hohman, *Member, IEEE,* Minsuk Kahng, *Member, IEEE,* Robert Pienta, *Member, IEEE,* and Duen Horng Chau, *Member, IEEE*

Abstract—Deep learning has recently seen rapid development and received significant attention due to its state-of-the-art performance on previously-thought hard problems. However, because of the internal complexity and nonlinear structure of deep neural networks, the **underlying decision making processes** for why these models are achieving such performance are challenging and [...]

• [TVCG 2018] Web version

Interrogative Questions

Interpretability & Explainability		Node-link Diagrams for Network Architecture	
Debugging & Improving Models	ΥΗW	Dimensionality Reduction & Scatter Plots	
Comparing & Selecting Models		Line Charts for Temporal Metrics	
Teaching Deep Learning Concepts		Instance-based Analysis & Exploration	₩
Model Developers & Builders	_	Interactive Experimentation	
Model Users	WHO	Algorithms for Attribution & Feature Visualization	
Non-experts		During Training	
Computational Graph & Network Architecture	_	After Training	WHEN
Learned Model Parameters			_
Individual Computational Units	WHA	Publication Venue	¥
Neurons in High-dimensional Space	4	Fublication venue	EEE
Aggregated Information		Web ve	

Sequence model visualization

- Examine model decisions
- Connect decisions to previous examples
- Test alternative decisions

See [Video] at https://seq2seq-vis.io/

Further directions

Debugging tools

- Tensorboard: Visualizing Learning
- <u>Visdom</u> (only supports (Py)Torch and numpy)

Explainables

- R2D3 ← DEMO
- Tensorboard Playground

Model visualization

- Seq2Seq Vis: http://lstm.seas.harvard.edu/client/index.html
- Building blocks of interpretability

Google Compute

AutoML - Neural Architecture Search

Compute gradient of p and scale it by R to update the controller

- Given a dataset, produce Model
- Serve model output via REST API

How:

- Controller suggests architecture for better R
- Combined with evolution

AutoML

- Controller is implemented as RNN
- Generates string to define architecture
- Speed-up: Transfer learning for architecture and weights

Google Compute Platform

- Big Query: Cloud data warehouse with ML
 - Beware of the pricing

- Vis via Data Studio (free)
 - https://cloud.google.com/bigquery/docs/visualize-data-studio

Google Facets

https://pair-code.github.io/facets/

Uncover issues:

- Unexpected feature values
- Missing feature values for a large number of examples
- Training/serving skew
- Training/test/validation set skew
- Evolved into What-If-Tool

What-If-Tool (Google PAIR)

Weather Model Visualizations

Selected solutions from Assignment 3 – Task 2 B1

Anurag Bejju – GBT Model

Aisuluu Alymbekova

Andong (Anton) Ma

Fg3 is the dense heat-map generated by my model. Which we can easily evaluate as not good, because it shows that the temperature of southern earth is all above 0 $^{\circ}$ C, even in the South Pole.

Fg 3

Abhishek Sunnak

Andrew Wesson – Decision Tree

Manjur Patowary

Venkata Sai Pavan Kumar Kosaraju

Interpretation: Predicted temperatures on 27th May 2019 across globe by the model. Temperatures may reach as high as 35 degrees near equator region while in Northern and Southern hemisphere it will be cool.

Prashanth Rao - Great discussion!

Neda Zolaktaf

Mohammad Mazraeh

Oluwaseyi (Seyi) Talabi

Thank you for your attention!