Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Cheretaev Ivan Гр. 320207

Вариант 1

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4976:616e::/95

Задание 1.2: разбить сеть из п.1.1 на 2 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней полсетей

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'\Gamma C,}$	2001:db8:0:4eef:4976:616e::/96
Префикс $N_{\rm C,PePS}$	2001:db8:0:4eef:4976:616f::/96

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (1*16)/256+10=10

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (1*16)/256 = 16

Дано: Сеть 10.16.0.0/12

Задание 2.1.1: разбить сеть на 8 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	16	U	U
Адрес сети	00001010	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 3 бит из 3-го октета.

3. Итого, получается, что сеть 10.16.0.0/12 мы разбили на 8 подсети, в каждой из которых по 131070 узлов, указываем первые 5 подсетей:

	10	16	0	0
Адрес сети дв.с	00001010	00010000	00000000	00000000
Маска дв.с	11111111	11111110	00000000	00000000
	255	254	0	0

10.16.0.0/15
10.16.0.1
10.17.255.254
10.17.255.255
10.18.0.0/15
10.18.0.1
10.19.255.254
10.19.255.255
10.20.0.0/15
10.20.0.1
10.21.255.254
10.21.255.255
10.22.0.0/15
10.22.0.1
10.23.255.254
10.23.255.255
10.24.0.0/15
10.24.0.1
10.25.255.254
10.25.255.255

Дано: Сеть 10.16.0.0/12

Задание 2.1.2: разбить сеть на 10 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(10 \leqslant 2^4 = 16)$ подсетей необходимо заимствовать 4 бит из 3-го октета (получается, что сеть можно разбить на 16 подсетей: $2^4 = 16$; оставшиеся 16 бит идут под узлы: $2^{16} - 2 = 65534$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$ig $ Адрес сети $N_1/$ Префикс N_1	10.16.0.0/16
Адрес первого узла N_1	10.16.0.1
Адрес последнего узла N_1	10.16.255.254
Широковещательный адрес N_1	10.16.255.255
Адрес сети $N_2/$ Префикс N_2	10.25.0.0/16
Адрес первого узла N_2	10.25.0.1
Адрес первого узла N_2 Адрес последнего узла N_2	10.25.0.1 10.25.255.254

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 256 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	16	0	0
Адрес сети	00001010	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$. Т.е. нужно выбрать такую маску, которря выделит ровно 8 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{12}=65536$ подсетей по 254 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	10.31.251.0/24
Адрес первого узла N_1	10.31.251.1
Адрес последнего узла N_1	10.31.251.254
Широковещательный адрес N_1	10.31.251.255
$oxedsymbol{\Lambda}$ дрес сети $N_2/$ Префикс N_2	10.31.252.0/24
Адрес первого узла N_2	10.31.252.1
Адрес последнего узла N_2	10.31.252.254
Широковещательный адрес N_2	10.31.252.255
$oxedsymbol{\Lambda}$ дрес сети $N_3/$ Префикс N_3	10.31.253.0/24
Адрес первого узла N_3	10.31.253.1
Адрес последнего узла N_3	10.31.253.254
Широковещательный адрес N_3	10.31.253.255

$oxed{A}$ дрес сети $N_4/$ Префикс N_4	10.31.254.0/24
Λ дрес первого узла N_4	10.31.254.1
Адрес последнего узла N_4	10.31.254.254
Широковещательный адрес N_4	10.31.254.255
Адрес сети $N_5/$ Префикс N_5	10.31.255.0/24
Адрес первого узла N_5	10.31.255.1
Адрес последнего узла N_5	10.31.255.254
Широковещательный адрес N_5	10.31.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 10 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	16	0	0
Адрес сети	00001010	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=4, т.к. $2^4-2=14 \geqslant 10$.

	10	16	U	U
Адрес сети дв.с	00001010	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11110000
	255	255	255	240

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	10.16.0.0/28
Адрес первого узла N_1	10.16.0.1
Адрес последнего узла N_1	10.16.0.14
Широковещательный адрес N_1	10.16.0.15

Адрес сети $N_2/$ Префикс N_2	$\fbox{10.31.255.240/28}$
Адрес первого узла N_2	10.31.255.241
Адрес последнего узла N_2	10.31.255.254
Широковещательный адрес N_2	10.31.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 5 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	16	0	0
Адрес сети	00001010	00010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=3, т.к. $2^3-2=6$.

	10	16	0	0
Адрес сети дв.с	00001010	00010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11111000
	255	255	255	248

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	$\fbox{10.31.255.216/29}$
Адрес первого узла N_1	10.31.255.217
Адрес последнего узла N_1	10.31.255.222
Широковещательный адрес N_1	10.31.255.223
Адрес сети $N_2/$ Префикс N_2	10.31.255.224/29
Адрес первого узла N_2	10.31.255.225
Адрес последнего узла N_2	10.31.255.230
Широковещательный адрес N_2	10.31.255.231

$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	$ \boxed{ 10.31.255.232/29 } $
Адрес первого узла N_3	10.31.255.233
Адрес последнего узла N_3	10.31.255.238
Широковещательный адрес N_3	10.31.255.239
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	10.31.255.240/29
Адрес первого узла N_4	10.31.255.241
Адрес последнего узла N_4	10.31.255.246
Широковещательный адрес N_4	10.31.255.247
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	10.31.255.248/29
Адрес первого узла N_5	10.31.255.249
Адрес последнего узла N_5	10.31.255.254
Широковещательный адрес N_5	10.31.255.255