

自我介绍

ID: 一缕殇流化隐半边冰霜(花名: 霜菜)

了解 iOS 开发、前端小白、后端新手 略懂 JavaScript、Go、C、C++、Objective-C、Swift

> Github: @halfrost 微博: @halfrost

左边是静止的,右边的车是动态的。还有大众点评周围的商家,饿了么骑手动态化的智能调度。

PRESENTATION AGENDA 01 Geohash 02 Space filling curve 03 Google S2 04 Application

base 36 的版本对大小写敏感,用了36个字符,"23456789bBCdDFgGhHjJKlLMnNPqQrRtTVWX"。

wtw37p wtw37r wtw37r wtw37r wtw37r wtw37r wtw37r wtw37r wtw37r

level 6,意味着字符串长度为6,由于是 base-32,2的5次方,所有每5个二进制位表示一个 base-32,6个 base-32 需要30个二进制位,除以2等于15,所以每边二分都是15次。

从地图上可以看出,这邻近的9个格子,前缀都完全一致。都是wtw37。

当Geohash 增加到7位的时候,网格更小了,美罗城的 Geohash 变成了 wtw37qt。

可以看到中间大格子的 Geohash 的值是 wtw37q,那么它里面的所有小格子前缀都是 wtw37q。可以想象,当 Geohash 字符串长度为5的时候,Geohash 肯定就为 wtw37 了。

CODE

SCALE

字符单长度		Cell E.S.		gell高度
1	<	5,000km	14	5,000km
2	1	1,250km	ж	625km
3	4	100km	^	100km
4	s	35.1km	×	19.5km
.6	4	4.83km	•	4.89km
8	5	1.229m		0.61km
7	2	153m	×	152m
3	5	38.2m	w	19.1m
9	≤	4.77m	×	4.7/m
10	ć	1,19m	н	0.656m
11	≤	145mm	8	149mm
12	4	07.2mm	н	10 Gmm

由于有奇偶数分配不均匀的关系,所以存在误差

1.Geohash 是一种地理编码,由 Gustavo Niemeyer 发明的。它是一种分级的数据结构,把空间划分为网格。Geohash 属于空间填充曲线中的 Z 阶曲线(Z-order curve)的 实际应用。上图就是 Z 阶曲线。这个曲线比较简单,生成它也比较容易,只需要把每个 Z 首尾相连即可。

欧几里得几何有时就指二维平面上的几何,即平面几何。三维空间的欧几里得几何通常叫做立体几何。高维的情形叫欧几里得空间。黎曼几何大部分都是广义相对论的四维研究对象。所以 n 维空间应该是欧几里得空间,这些数学空间也被叫做n维欧几里得空间(甚至简称 n维空间)或有限维实内积空间。n 维时空对应的是黎曼几何。

上图就是 Z 阶曲线。这个曲线比较简单,生成它也比较容易,只需要把每个 Z 首尾相连即可。Z 阶曲线同样可以扩展到三维空间。只要 Z 形状足够小并且足够密,也能填满整个三维空间。

Geohash 有一个和 Z 阶曲线相关的性质,那就是一个点附近的地方(但不绝对) hash 字符串总是有公共前缀,并且公共前缀的长度越长,这两个点距离越近。越接近的点通常和目标点的 Geohash 字符串公共前缀越长(但是这不一定,也有特殊情况,下面举例会说明)

Z阶曲线的理论来源

它利用 Z 阶曲线进行编码。而 Z 阶曲线可以将二维或者多维空间里的所有点都转换成一维曲线。在数学上成为分形维。并且 Z 阶曲线还具有局部保序性。 Geohash 的另外一个优点,搜索查找邻近点比较快。Z 阶曲线有一个比较严重的问题,虽然有局部保序性,但是它也有突变性。在每个 Z 字母的拐角,都有可能出现顺序的突变。

如果选择 Geohash 字符串为6的话,就是蓝色的大格子。红星是美罗城,紫色的圆点是搜索出来的目标点。如果用 Geohash 算法查询的话,距离比较近的可能是 wtw37p,wtw37r,wtw37w,wtw37m。但是其实距离最近的点就在 wtw37q。如果选择这么大的网格,就需要再查找周围的8个格子。 如果选择 Geohash 字符串为7的话,那变成黄色的小格子。这样距离红星星最近的点就只有一个了。就是 wtw37qw。

如果网格大小,精度选择的不好,那么查询最近点还需要再次查询周围8个点。

在1890年,Giuseppe Peano 发现了一条连续曲线,现在称为 Peano 曲线,它可以穿过单位正方形上的每个点。他的目的是构建一个可以从单位区间到单位正方形的连续映射。 Peano 受到 Georg Cantor 早期违反直觉的研究结果的启发,即单位区间中无限数量的点与任何有限维度流型(manifold)中无限数量的点,基数相同。 Peano 解决的问题实质就是,是否存在这样一个连续的映射,一条能填充满平面的曲线。上图就是他找到的一条曲线。

龙曲线(Dragon curve)

高斯帕曲线(Gosper curve)

Koch曲线(Koch curve)

摩尔定律曲线(Moore curve)

谢尔宾斯基曲线(Sierpiński curve)、奥斯古德曲线(Osgood curve)

一年后,即1891年,希尔伯特就作出了这条曲线,叫希尔伯特曲线(Hilbert curve)。

一年后,即1891年,希尔伯特就作出了这条曲线,叫希尔伯特曲线(Hilbert curve)。

豪斯多夫分形维(Hausdorff fractals dimension)和拓扑维数

CHARACTERISTIC

降维

稳定

连续

希尔伯特曲线是连续的,所以能保证一定 可以填满空间。连续性是需要数学证明的。 具体证明方法这里就不细说了,感兴趣的 可以点文章末尾一篇关于希尔伯特曲线的 论文,那里有连续性的证明。

CONTINUITY

处理多维空间的思路,先考虑如何降维,再考虑如何分形。 众所周知,地球是近似一个球体。球体是一个三维的,如何把三维降成一维呢? 球面上的一个点,在直角坐标系中,可以这样表示

LAT / LNG S(lat,lng) -> f(x,y,z)

最后谷歌选择的是二次变换,这是一个近似切线的投影曲线。它的计算速度远远快于 tan() ,大概是 tan() 计算的3倍速度。生成的投影以后的矩形大小也类似。不过最大的矩形和最小的矩形相比依旧有2.082的比率。

s, t的值域是[0,1], 现在值域要扩大到[0,2^30^-1]

注意:由于 CellID 是64位的,头三位是 face,末尾一位是标志位,所以中间有 60 位。i,j 转换成二进制是30位的。7个4位二进制位和1个2位二进制位。4*7 + 2 = 30。 iijjoo,即 i 的头2个二进制位和 j 的头2个二进制位加上 origOrientation,这样组成的是6位二进制位,最多能表示 2^6^ = 32,转换出来的 pos + orientation 最多也是32位的。即转换出来最多也是6位的二进制位,除去末尾2位 orientation,所以 pos 在这种情况下最多是 4位。iiiijjjjpppp,即 i 的4个二进制位和 j 的4个二进制位加上 origOrientation,这样组成的是10位二进制位,最多能表示 2^10^ = 1024,转换出来的 pos + orientation 最多也是10位的。即转换出来最多也是10位的二进制位,除去末尾 2位 orientation,所以 pos 在这种情况下最多是 8位。

HILBERT CURVE

CELL ID

GOOGLE S2

 $S(lat,lng) \rightarrow f(x,y,z) \rightarrow g(face,u,v) \rightarrow h(face,s,t) \rightarrow H(face,i,j) \rightarrow CellID$

NEXT SLIDE

level	enem			•	Coll 1 (ARQ min min	pag pag man man	Flanders coll 2 (US) min color length	erice order	Humber of relig
0 1	00m012m1	000 meta-ma	SE11012/E	1	Jones on	longth 7842 cm	Design	Partition Partition	
			or may board						
			MINISTER I						
60			120000737						
			200101.27						
65	58750,67		60040.57						
DE	12015.81	20111-20	20791-86			W1 6m		1 Miles	
ET	3115.46	803.00	ALEXAND I		81.5m	76 to	77 8 10	78 hrs	100
60	300.80	1002.40	1887.9	d	ST de	50 km		Niko.	
D0	200.00	415.72	101.00	٠	11.6m	10 to	200	Xks	THE
10	40.76	100.00	01.07	d	Tien	900	5 100	1000	W
11	1078	25.81	20.27	÷	250	Atm	diva	Ilea	JW.
12	0.84	6.96	5.00	ď	1000 m	2 00	Skra	diam	1000
10	0.76	1.56	120	d	60 m	1905 m	118079	1880 1	4089
11	0.18	0.6	0.00	÷	Ole	200	MD /s	FO Is	100
15	4750.00	98650,08	2012232	*	£12m	255 m	2017	300 m	68
16	11800.00	2003.73	1000027	÷	100 m	765 m	140%	100	218
17	800.00	8637.48	4940.25	8	60 m	74.0	Xon	77.79	1000
TR	207.00	1000.00	1000	÷	27 m	27 m	20 (1)	20.0	4118
10	105.00	209.21	00927	V	10 m	19 m	100	15m	16490
00	45.41	95.30	27.36	Y	7 =	9 =	977	100	71
21	11.85	31.33	11.33	÷	Xα	0 m	40	10	301
62	2.80	6.86	4.83	*	96.00	2 10	10	10	1067
21	2.7	1.50	1.21	÷	El an	THE	118.0%	120 000	1221
64	0.98	0.96	0.00	Y.	41 00	50.00	55 078	8600	15907
20	400.00	810.20	man :	÷	21 ini	27 44	27.6%	Em	000
26	111.36	237.00	90.70		10 km	16 am	Mon	18 619	2000
ET	95.00	69.36	47.55	4	500	Town	200	700	105mH
21	7.00	11.86	11.5		2.00	4 000	300		dince
69	1.77	0.71	2.86 4		5.00	-	17 mm		(500m)
30	2.44	3.80	0.74	-	8,000	0.000	100	800	000

GOOGLE S2

- 1.涉及到角度,间隔,纬度经度点,单位矢量等的表示,以及对这些 类型的各种操作
- 2.单位球体上的几何形状,如球冠("圆盘"),纬度 经度矩形,折 线和多边形。
- 3.支持点,折线和多边形的任意集合的强大的构造操作(例如联合) 和布尔谓词(例如,包含)。
- 4.对点,折线和多边形的集合进行快速的内存索引。
- 5.针对测量距离和查找附近物体的算法。
- 6.用于捕捉和简化几何的稳健算法(该算法具有精度和拓扑保证)。
- 7.用于测试几何对象之间关系的有效且精确的数学谓词的集合。
- 8.支持空间索引,包括将区域近似为离散"S2单元"的集合。此功能可以轻松构建大型分布式空间索引。

APPLICATION Out State of the S

APPLICATION

APPLICATION Clusters Of Supply & Demand

APPLICATION

http://uber.github.io/deck.gl/#/
http://vonwolfehaus.github.io/von-grid/editor/

APPLICATION

流量是每秒钟大概数万条消息,一天大概是几亿,并且每条消息包含几十个字段

- 1.支持时序和地理空间的切片
- 2.支持大流量数据
- 3.支持秒级(毫秒级?)查询
- 4.支持原始数据查询

ElasticSearch + Kafka

ONE MORE THING

空间提票 gpleng/gpc

如何理解。维空间和n维时空 高效的多维空对点来引擎法— Ceohash 和 Coogle © Coogle 62 中的 CellD 是如何生成的?

Coogle 62 中的医叉树坝 LCA 最近公共租赁

神奇的總布鲁因序列

四叉树上如何求希尔伯特面线的邻居?

Coople S2 是如何解决型向覆盖器优解问题的?

https://github.com/halfrost/Halfrost-Field

