

${\rm ELE2715}$ - circuitos digitais - Semana 3

Grupo 01

Líder	Matricula	Nome
	20170138246	ALYSSON FERREIRA DA SILVA
	20160147330	KALINE SOUZA DOS SANTOS
•	20160106801	MARIA LUIZA DE LIMA ROCHA
	20170040418	PEDRO HENRIQUE DE FREITAS SILVA
	20180035411	RAFAEL PEREIRA DE ALEXANDRIA SOARES

${\bf Grupo}~02$

Líder	Matricula	Nome
	20200150284	ANTÔNIO PAULO VINÍCIUS BARATEIRO DE SOUSA
	20170183170	EVERTON ANDRADE LEAL DUARTE
	20200150293	JOSE LINDENBERG DE ANDRADE
	20170038779	STHEFANIA FERNANDES SILVA
	20160159144	WESLEY BRITO DA SILVA

${\bf Grupo}~{\bf 03}$

Líder	Matricula	Nome
	20150126669	LUCAS BATISTA DA FONSECA
	20180151241	MARCELO FERREIRA MOTA JÚNIOR
•	20170042299	RENATO EMANUEL MEDEIROS DE LIRA
	20170041335	THIAGO VICTOR BEZERRA SILVA
	20190071752	VINICIUS SOUZA FONSÊCA

Grupo 04

Líder	Matricula	Nome
	20170043358	ALBERTHO SIZINEY COSTA
	20170040919	EDUARDO GARCIA ZACCHARIAS
	20170036273	IGOR MICHAEL ARAUJO DE MACEDO
•	20170117907	ISAAC DE LYRA JUNIOR
	20160142657	JOAO MATHEUS BERNARDO RESENDE

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina: ELE2715 - Circuitos Digitais Período: 2020.2
Aluno: Problema: 02

Projete um circuito lógico para implementar uma Unidade Lógica Aritmética (ULA). A ULA (ver Figura 1) contará com duas entradas de 8 bits, uma entrada de 4 bits e com três saídas sendo uma saída de 8 bits e duas de um bit cada. Com relação as entradas, duas serão destinadas para a entrada dos dados a serem operados e uma será utilizada para indicar qual instrução (Função) foi selecionada (ver Tabela 1). Com relação às saídas, o circuito deverá apresentar o valor da saída da ULA através dos displays HEX[2:0], a sinalização do bit de carry através do C e a sinalização do bit de Zero através do Z.

Figura 1: Projeto Completo

Função S[3:0]	Instrução	Descrição	Carry	Zero
1	ADD A, B	O=A+B	•	•
2	SUB A, B	O=A-B	•	•
3	INC A	O=A+1	•	•
4	DEC A	O=A-1	•	•
5	MUL A, B	$O = (A \cdot B)[7:0]$	•	•
6	AND A, B	O=A AND B		•
7	OR A, B	O=A OR B		•
8	XOR A, B	O=A XOR B		•
9	NOT A	O=not(A)		•
10	SHL A, B	O=A≪B[2:0], C=Msb	•	•
11	SHR A, B	O=A>>B[2:0]		•

Table 1: Conjunto de instruções do circuito da ULA.

Observações

- O ponto em Carry ou Zero na tabela indica que a operação realizada pela ULA pode alterar o valor da saída marcada.
- Para o aluno desenvolver uma solução para o problema, ele deverá consultar livros de circuitos digitais, datasheet de componentes eletrônicos e quaisquer referências técnicas que possam auxiliar. Todas as referências consultadas devem ser citadas de forma adequada e identificadas nos relatórios.
- Na semana de projeto, deve-se realizar todas as definições necessárias, deve-se especificar, detalhar e realizar o projeto de forma estruturada e, por fim, deve-se elaborar um relatório técnico, o qual será auto-contido, ou seja, todas as informações necessárias para a implementação do projeto devem constar no relatório.
- Na semana da implementação deverão ser desenvolvidos a simulação em VHDL e esquemáticos eletrônicos do circuito projetado e, além disso, deve-se elaborar um relatório técnico com o detalhamento da implementação, com as correções do projeto e com a apresentação dos resultados que comprovem a correta implementação do projeto.