MA 204 Numerical Methods

Dr. Debopriya Mukherjee Lecture-8

January 24, 2024

Contents

 Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.

Contents

- Solution of a nonlinear equation, bisection and secant methods, Newton's method, rate of convergence.
- Interpolation by polynomials, divided differences, error of the interpolating polynomial, piecewise linear and cubic spline interpolation.

Natural Cubic Spline

Given $t_0 < t_1 < \cdots < t_n$, we define the *cubic spline*, with

$$S(x) = S_i(x)$$
 for $t_i \le x \le t_{i+1}$.

Write

$$S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i, \ i = 0, 1, \dots, n-1.$$

Total number of unknowns=4.n

Natural Cubic Spline

Natural

Equations we have: equation $S_i(t_i) = y_i, \qquad i = 0, 1, \cdots, n-1 \qquad n$ $S_{i+1}(t_{i+1}) = y_{i+1}, \qquad i = 0, 1, \cdots, n-1 \qquad n$ $S'_i(t_{i+1}) = S'_{i+1}(t_{i+1}), \qquad i = 0, 1, \cdots, n-2 \qquad n-1$ $S''_i(t_{i+1}) = S''_{i+1}(t_{i+1}), \qquad i = 0, 1, \cdots, n-2 \qquad n-1$ $S''_i(t_0) = 0, S''_{n-1}(t_n) = 0, \qquad 2$

How to compute $S_i(x)$? We know:

 S_i : polynomial of degree 3

 \mathcal{S}_i' : polynomial of degree 2

 \mathcal{S}_i'' : polynomial of degree 1

Procedure:

- Start with $S_i''(x)$, they are all linear, one can use Lagrange form,
- Integrate $S_i''(x)$ twice to get $S_i(x)$, you will get two integration constants.
- Determine these constants.