

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA AGRÍCOLA DE JUNDIAÍ ESTRUTURA DA DADOS PROFESSOR: TANIRO RODRIGUES

Lista de Exercícios 5

QUESTÃO 1: Indique se as afirmativas a seguir são verdadeiras ou falsas. Justifique sua resposta.

- I. Verdadeiro A notação O(2n)O(2n)O(2n) é usada para indicar que a função f(n)f(n)f(n) é limitada superiormente por uma constante multiplicada por 2n2^n2n. No caso de f(n)=22nf(n) = 22nf(n)=22n, temos uma função linear, que é de ordem inferior em comparação com 2n2^n2n, ou seja, f(n)f(n)f(n) cresce linearmente enquanto 2n2^n2n cresce exponencialmente. Portanto, f(n)=22nf(n) = 22nf(n)=22n está dentro da classe O(2n)O(2n)O(2n), pois uma função linear está limitada por uma função exponencial no limite superior assintótico.
- II. f(n)=2n+1 não seja exatamente 2n2^n2n, a notação O(2n)O(2n)O(2n) é usada para descrever a ordem de crescimento de uma função. A expressão 2n+12n + 12n+1 é uma função linear, que pode ser expressa como O(2n)O(2n)O(2n), pois o termo dominante é 2n2n2n. A constante 1 não afeta a ordem de crescimento assintótica, logo f(n)=2n+1f(n) = 2n + 1f(n)=2n+1 é de fato O(2n)O(2n)O(2n).

QUESTÃO 2: Dadas as funções de custo de tempo T pelas expressões abaixo para um tamanho n considerando valores muito grandes de n. Escreva o termo dominante e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

T(n)	Termo dominante	Menor limite assintótico superior
5 + 0,001n ³ + 0,025n	n³	O(n³)
500n + 100n ^{3/2} + 50nlog10(n)	nlog ₂ (n)	O(nlog n)
$0.3n + 5n^{3/2} + 2.5n^{7/4}$	n³/²	O(n³/²)
n²log2(n) + n(log2(n)) ²	n²log₂(n)	O(n²log n)
nlog3(n) + nlog2(n)	nlog ₂ (n)	O(nlog n)
$3\log 8(n) + \log 2(\log 2(\log 2(n)))$	log₃(n)	O(log n)
100n + 0.01n ²	n²	O(n²)
0,01n + 100n ²	n²	O(n²)
$2n + n^{1/2} + 0.5n^{5/4}$	N	O(n)
100nlog3(n) + n ³ + 100n	n³	O(n³)

QUESTÃO 3: A declaração "O tempo de execução no algoritmo A é no mínimo O(n2) não faz sentido porque a notação O2 descreve um limite superior, ou seja, um limite máximo para o tempo de execução. Para indicar um limite inferior, deve-se usar a notação $\Omega(n2)(n2)\Omega(n2)$. Portanto, a frase correta seria "O tempo de execução no algoritmo A é no mínimo $\Omega(n2)$

QUESTÃO 4: Sejam g (n) = $(n + 1)^2$ e f (n) = n^2 , prove que as funções g (n) e f (n) dominam assintoticamente uma à outra.

g(n) e f(n) **dominante assintoticamente uma à outra**, pois ambas têm a mesma ordem de crescimento, n2n^2n2, e são limitadas uma pela outra em termos assintóticos.

Resposta resumida: As funções $g(n)=(n+1)2g(n)=(n+1)^2g(n)=(n+1)2$ e $f(n)=n2f(n)=n^2f(n)=n2$ dominam assintoticamente uma à outra, pois ambas têm a mesma ordem de crescimento, $O(n^2)$