输入输出系统

包括I/O设备 和 I/O设备与处理机之间的连接。\完成与外部系统的信息交换\结构计算机的重要组成部分之一。

衡量指标

响应时间 (Response Time)

可靠性 (Reliability)

廉价磁盘冗余阵列RAID

容量大、速度快、可靠性高、造价低廉

数据复制技术:基于存储子系统数据复制、

基于存储网络层数据复制、 基于卷管理器数据复制、 基于应用数据复制。

各级RAID (数据磁盘数为 n = 8)

level	name	数据磁 盘故障 和校验 空间开 销	优点	缺点	
RAID0	带状非冗余 磁盘阵列	0个故 障、0个 校验磁 盘	无空间开销	无保护	广泛使用
RAID1	镜像磁盘阵 列	n个校验 磁盘、1 个故障	无奇偶效验计算、快恢复、小数据的写速度高于其它RAID级、快速读。	最高的效验存储开销	EMC,HP,IBM
RAID2	存储器式 ECC(采用 纠错的海明 码校验)	1个故 障、4个 校验磁 盘	不依赖故障磁盘, 自 我诊断	以2为底的 对数校验存 储开销	未使用
RAID3	位交叉奇偶 校验	1个故 障、1个 校验磁 盘	较低效验开销;对大 块的读写有高带宽	不支持小数 据量或随机 读写	存储概念
RAID4	块交叉奇偶 校验	1个故 障、1个 校验磁 盘	小数据量的读有高带 宽	奇偶校验磁 盘是小数据 量的写瓶颈	网络设备
RAID5	块交叉分布 奇偶校验	1个故 障、1个 校验磁 盘	较低效验开销; 小数 据量的读写有高带宽	小数据量的 写-4个磁盘 访问	广泛使用
RAID6	P+Q冗余	2个故 障、2个 校验磁 盘	针对2个磁盘故障的保 护	小数据量的 写-6个磁盘 访问; 2X校 验开销	网络设备

共性

- ◆ RAID由一组物理磁盘驱动器组成,操作系统 视之为一个逻辑驱动器; \
- ◆ 数据分布在一组物理磁盘上; \
- ◆ 冗余信息被存储在冗余磁盘空间中, 保证磁盘在万一损坏时可以恢复数据; \
- ◆ 其中第2、3个特性在不同的RAID级别中的表现不同,RAID0不支持第3个特性。

RAIDO 带状非冗余磁盘阵列

数据分块,即把数据分布在多个盘上。非冗余阵列、无冗余信息。

RAID1 镜像磁盘阵列

每个对应一个镜像盘(备份盘、冗余盘),每一次复制的时候,会在冗余盘里产生一个备份

读性能好

RAID1的性能能够达到RAID0性能的两倍。◆

写性能由写性能最差的磁盘决定。相对以后 各级RAID来说,RAID1的写速度较快。

RAID2 存储器式ECC(采用纠错的海明码校验的磁盘阵列)

- ◆并行存取,各个驱动器同步工作。\
- ◆ 使用海明编码来进行错误检测和纠正,数据

传输率高。\

- ◆ 需要多个磁盘来存放海明校验码信息,冗余磁盘数量与数据磁盘数量的对数成正比。\
- ◆ 是一种在多磁盘易出错环境中的有效选择。\

并未被广泛应用,目前还没有商业化产品。

RAID3 位交叉奇偶校验磁盘阵列

单盘容错并行传输:数据以位或字节交叉存储,奇偶校验信息存储在一台专用盘上。

先将分布在各个数据盘上的一组数据加起来,将和存放在冗余盘上。一旦某一个盘出错,只要将冗余盘上的和减去所有正确盘上的数据,得到的差就是出错的盘上的数据。

RAID4 专用奇偶校验独立存取盘阵列

数据以块(大小可变)交叉的方式存于各盘,奇偶校验信息存在一台专用盘上。

RAID5 块交叉分布式奇偶校验盘阵列

RAID6 P+Q冗余盘阵列

- ◆写入数据要访问1个数据盘和2个冗余盘;\
- ◆ 可容忍双盘出错\
- ◆ 存储开销是RAID5的两倍,RAID6的写过程需要6次磁盘操作。

