1 Домашнее задание за 5-ую неделю

Задание 1

Утверждение 1.1. Все элементы порядка 11 сопряжены S_{11}

Мы знаем, что перестановки сопряжены ⇔ они имеют одинаковый цикловой тип. НОК длин всех циклов циклового типа равен порядку перестановки.

Поскольку 11 – простое число, то цикловой тип тривиален: (11). Значит, все элементы порядка 11 сопряжены в S_{11} .

Задание 2

Возьмем абелеву группу G как группу Z с операцией сложения. В качестве подгрупп H_1 и H_2 рассмотрим 2Z и 3Z.

Очевидно, что выбранные подгруппы изоморфны.

Докажем, что $Z/2Z \ncong Z/3Z$.

Нам известно, что $Z/2Z = (Z_2, +)$

В то же время $Z/3Z = (Z_3, +)$

Поскольку $(Z_2, +) \ncong (Z_3, +) \Rightarrow Z/2Z \ncong Z/3Z$.

Задание 3

Подгруппа H называется нормальной, если $\forall g \in GgH = Hg$

Мы знаем: $g(xy)g^{-1} = (gxg^{-1})(gyg^{-1})$.

В нашем случае: $g[x,y]g^{-1} = [gxg^{-1},gyg^{-1}] \Rightarrow g([x_1,y_1]\dots[x_n,y_n])g^{-1} = (g[x_1,y_1]g^{-1})\dots(g[x_n,y_n]g^{-1}) = [gx_1g^{-1},gy_1g^{-1}]\dots[gx_ng^{-1},gy_ng^{-1}]$

To есть $\forall g \in GgHg^{-1} \in H \Rightarrow H \lhd G$.

Задание 4

Рассмотрим автоморфизм $\phi_g: h \to ghg^{-1}$ (он действительно является автоморфизмом, т.к. есть взаимно однозначное соответсвие и $\phi(h_1h_2) = \phi(h_1) \cdot \phi(h_2)$).

В таком случае мы получаем, что рассматриваемая группа изоморфна подгруппе H, откуда следует, что она является подгруппой группы G.