Lecture 16: Unitary Equivalence and Localized Orbitals

Filipp Furche

Chem 150/250 Fall 2023

11/23/2022

http://ffgroup.chem.uci.edu

Unitary Transformations of Orbitals

- Consider Slater determinant Φ with N orthonormal occupied orbitals $\{\phi_i\}$
- Unitary transformation of occupied orbitals into themselves:

$$\tilde{\phi}_i(x) = \sum_j U_{ij}\phi_j(x),$$

$$\mathsf{U}^\dagger\mathsf{U}=1$$

- ullet The $\{ ilde{\phi}_i\}$ also form a basis of N orthonormal occupied orbitals
- Chemical significance?

Transformation of Φ

• Slater determinant with transformed orbitals $\{\ddot{\phi}_i\}$:

$$\begin{split} \tilde{\Phi}(x_{1},\ldots,x_{N}) &= \frac{1}{\sqrt{N!}} \begin{vmatrix} \tilde{\phi}_{1}(x_{1}) & \tilde{\phi}_{1}(x_{2}) & \dots & \tilde{\phi}_{1}(x_{N}) \\ \tilde{\phi}_{2}(x_{1}) & \tilde{\phi}_{2}(x_{2}) & \dots & \tilde{\phi}_{2}(x_{N}) \\ \dots & \dots & \vdots & \dots \\ \tilde{\phi}_{N}(x_{1}) & \tilde{\phi}_{N}(x_{2}) & \dots & \tilde{\phi}_{N}(x_{N}) \end{vmatrix} \\ &= \frac{1}{\sqrt{N!}} \left| \mathbf{U} \begin{pmatrix} \phi_{1}(x_{1}) & \phi_{1}(x_{2}) & \dots & \phi_{1}(x_{N}) \\ \phi_{2}(x_{1}) & \phi_{2}(x_{2}) & \dots & \phi_{2}(x_{N}) \\ \dots & \dots & \vdots & \dots \\ \phi_{N}(x_{1}) & \phi_{N}(x_{2}) & \dots & \phi_{N}(x_{N}) \end{pmatrix} \right| \\ &= |\mathbf{U}| \Phi(x_{1}, \dots, x_{N}) = e^{i\phi} \Phi(x_{1}, \dots, x_{N}) \end{split}$$

- ullet Φ and $ilde{\Phi}$ are identical up to a complex phase factor $e^{i\phi}, \phi \in \mathbb{R}$
- N-electron observables are invariant under unitary transformations of occupied orbitals

Example: Ethylene Valence Orbitals

Canonical vs. Localized Orbitals

- Canonical Orbitals
 - Related to vertical ionization/electron attachment: Orbital energies approximate IP, obtained from diagonalizing (effective) one-electron Hamiltonian
 - Useful for photoelectron spectroscopy, redox chemistry, perturbation theory
 - Delocalized
- Localized orbitals
 - Maximize orbital dipole moment (Boys), Coulomb energy (Edmiston-Rüdenberg), etc.
 - Orbital energies ill-defined, no simple chemical meaning!
 - "Banana bonds"; may be used to define atomic "hybridization state"
 - Fairly local but beware of "orthogonality tails"
 - Not unique, sometimes not well defined
 - May be used to partition properties into fragment contributions
- Canonical vs. localized orbitals merely reflect different choices of

Hund's Localization Condition

- Under what conditions can all occupied orbitals be localized into 2e2c bonds ("perfect localization")?
- The ground state of molecules with perfectly localized electronic structure is well described by a single valence-bond structure
- Hund's condition for perfect localization: For every atom, the following must hold:

$$N_{AO} = N_B = N_V$$

 N_{AO} : Number of valence AOs available for bonding (excluding lone pairs)

 N_B : Number of (2e2c) bonds

 N_V : Number of valence electrons contributing to bonds

- Classification of chemical bonds:
 - 1. $N_V < N_{AO}$: Hypovalent compounds, electron deficiency, 2e-multi-center bonds, e.g. H_3^+ , boranes, metal clusters, metals
 - 2. $N_V = N_{AO}$: Normalvalent compounds, localized 2e2c bonds
 - 3. $N_V > N_{AO}$: Hypervalent compounds, electron excess, hypervalence and/or 4e-multi-center bonds, e.g. hydrogen bonds, FHF⁻, XeF₂

Examples

- C₂H₄: Normalvalent, perfectly localizable
- H₂: Normalvalent, perfectly localizable, since $N_{AO} = N_B = N_V = 2$ for O after excluding lone pairs
- B₂H₆: Not localizable, because $N_{AO}=4$, $N_V=3$, $N_B=3$ or 4. B₂H₆ is hypovalent with bridging 2e3c bonds
- SO₃: Not localizable, since $N_{AO}=4$ (no valence d orbitals!), $N_V=N_B=6$ for S