CURTIN UNIVERSITY

School of Electrical Engineering, Computing and Mathematical Sciences

Computing Discipline

Test 2 – S1/2019							
SUBJECT: De	esign and Analysis of Algorithms	Unit Code COMP3001					
TIME ALLOWI	ED: 55 minutes test. The supervisor with may commence.	ill indicate when answering					
AIDS ALLOWE	ED:						
	To be supplied by the Candidate:	Nil					
	To be supplied by the University:	Nil					
	Calculators are NOT allowed.						
GENERAL INST	TRUCTIONS : r consists of Two (2) questions with a tot	al of 50 marks.					

ATTEMPT ALL QUESTIONS

Name:	 	
Student No:		_
Tutorial Time/Tutor:		

QUESTION ONE (total: 30 marks): Graph and Heap

a) (**Total: 12 marks**). Consider the following undirected graph G(V, E), and a breadth-first-search algorithm to answer the following questions.

BFS_Tree_G(V, E)

Input: G = (V, E). L[x] refers to the adjacency list of x.

Output: The BFS tree *T*;

- 1. Mark all vertices *new* and set $T = \{ \}$
- 2. Mark the start vertex v = old
- 3. insert (Q, v) // Q is a queue
- 4. **while** Q is nonempty **do**
- 5. x = dequeue(Q)
- 6. **for** each vertex w in L[x] marked new **do**
- 7. $T = T \cup \{x, w\}$
- 8. Mark w = old
- 9. insert (Q, w)
- (i) (2 marks). Give the adjacency list for the graph.
- (ii) (1 mark). Give the maximum clique in the given graph.
- (iii) (4 marks). Draw the breath-first-search tree of the graph. Assume the root of the tree is node 1, and vertices are put into the queue in increasing order when there is a tie.
- (iv) (5 marks). Analyse the time complexity of BFS_Tree_G(V, E) to show that its time complexity is O(|E| + |V|) if its input is in an adjacency list.

Answer:

(i) Adjacency list

(ii) Maximum clique:

(iii) BFS

(iv) Time complexity

b) (**Total: 8 marks**). Consider the following function HEAPIFY (A, i).

```
HEAPIFY (A, i)
```

```
1.
       l \leftarrow \text{LEFT\_CHILD}(i)
2.
       r \leftarrow \text{RIGHT\_CHILD}(i)
3.
       if l \le \text{heap\_size}[A] and A[l] < A[i]
4.
                 then a \leftarrow l
5.
                 else a \leftarrow i
6.
       if r \le \text{heap\_size}[A] and A[r] < A[a]
7.
                 then a \leftarrow r
8.
       if a \neq i
9.
                 then exchange A[i] with A[a]
10.
                 HEAPIFY(A, a)
```

- (i) (2 marks). Is function HEAPIFY() a MIN_HEAPIFY() or a MAX_HEAPIFY() function? Justify your answer by explaining the lines in the code that correspond to a min-heap or a max-heap.
- (ii) (2 marks). Modify the function to its opposite function, that is, if your answer to part (i) is a MIN_HEAPIFY modify it into a MAX_HEAPIFY. You need to give only the modified lines.
- (iii) (4 marks). Explain why 1) the worst case running time of function HEAPIFY is $O(\log n)$ and 2) its best case is O(1). You are not required to give a formal proof for the time complexity.

Best case:

Answer:	
(i)	
(ii)	
(iii) Worst case:	
(11) 11 0150 0450.	

c) (**Total: 10 marks**). Consider the following HEAPSORT algorithm.

HEAPSORT(A)

Input: Array A[1...n], n = A.length**Output:** Sorted array A[1...n]

- 1. BUILD-MAX-HEAP(*A*)
- 2. **for** i = A.length downto 2
- 3. **do** exchange A[1] with A[i]
- 4. $A.heap_size = A.heap_size 1$
- 5. MAX-HEAPIFY(A, 1)
- (i) (3 marks). Consider the following array A = (7, 2, 9, 4, 3, 5, 1, 6). Show the content of array A after using function BUILD_MAX_HEAP (A). Show your details to get partial credits.
 - **Hint.** It is recommended that you first construct the max-heap in its binary tree. Then, convert the resulting tree into its array form.
- (ii) (4 marks). Does the HEAPSORT() sort array *A* in *increasing* or in *decreasing* order? Justify your answer by **explaining how HEAPSORT**() **works**; thus an explanation based on only one line is not sufficient.
- (iii) (3 marks). What is the running time of HEAPSORT() if initially array A is sorted in increasing order? Explain your answer.

Answer:

(i)

	(ii)
	(iii)
d)	(2 marks). Explain one main advantage and one main disadvantage of using the leftist tree than the binary heap tree.
	Answer:
	Advantage:
	Disadvantage:

END OF QUESTION ONE

QUESTION TWO (total: 20 marks): Greedy Algorithms

a) (**Total: 6 marks**). Consider a 0/1 Knapsack problem with a knapsack that can hold 50 units of weight, and the following item set.

	Items				
	A	В	C		
Weight	10	20	30		
Value	\$80	\$100	\$150		

- (i) (2 marks). If the selection is greedy by weight, what items are selected and what is the total value of the selected items?
- (ii) (2 marks). If the selection is greedy by value/weight, what items are selected and what is the total value of the selected items?
- (iii) (2 marks). Does the item selection approach in (i) or (ii) produce optimal value? Justify your answer.

Answer:	

(i)

(ii)

(iii)

b) (**Total: 14 marks**). Consider the following pseudocode for Dijkstra's algorithm.

Single-source shortest path_G(V, E, u)

Input: G = (V, E), the weighted directed graph and u the source vertex **Output:** for each vertex, v, d[v] is the length of the shortest path from u to v.

```
1.
     mark vertex u
2.
     d[u] \leftarrow 0
3.
      for each unmarked vertex v \in V do
4.
          if edge (u,v) exists then d[v] \leftarrow weight(u,v)
5.
          else d[v] \leftarrow \infty
      while there exists an unmarked vertex do
6.
7.
          let v be an unmarked vertex such that d[v] is minimal
8.
          mark vertex v
9.
          for all edges (v, x) such that x is unmarked do
10.
              if d[x] > d[v] + weight[v, x] then
11.
                  d[x] \leftarrow d[v] + weight[v, x]
```

- (i) (1 mark). Explain why Dijkstra's algorithm is a greedy approach.
- (ii) (1 mark). Consider that the Dijkstra's algorithm is implemented using a minheap in which every node contains each vertex of the graph and its *value*. What *value* is stored in the min-heap node?
- (iii) (2 mark). What is the time complexity of Lines 3 to 5? Explain your answer.
- (iv) (8 marks). Use Dijkstra's algorithm to find the shortest paths from vertex u of the following graph. The template for the solution is provided below.
- (v) (2 marks). Show the shortest path to node **f** and its cost.

Answer:

(i)

(ii)

(iii)

(iv) Using Dijkstra's algorithm.

Step#	Vertex	Distance to vertex								
	to be marked	u	a	b	c	d	e	f	g	h
0	и									
1										
2										
3										
4										
5										
6										
7										
8										

(v) Shortest path to node f:

Cost:

END OF TEST PAPER