Sección 0.6 Notación de intervalo

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

Repaso

- 2 Notación de intervalo
 - Intervalos acotados
 - Intervalos no acotados

Repaso

condiciones o Caracteristia específica

4 Operaciones - Union, U AUB = elementos en AoB, Prele ester Ao B, on coalgeiera de los dos _ intersection, n ANB: elementes deben ester en AGB, tiene que esteven Ag

esteven Ag

en B. . TE AUB (-) XEA V XEB · xe Ang (-> XEA 1 XEB

Notación de intervalo

La **notación de intervalo** es una forma conveniente de escribir algunos subconjuntos de la recta numérica real.

Un intervalo cerrado es aquel que incluye sus extremos, un intervalo abierto es aquel que no incluye sus extremos y un intervalo semi-abierto es aquel que incluye solamente uno de sus extremos (puede ser el izquierdo o derecho). Además, existen los intervalos infinitos que son los que no tienen límite en uno o ambos extremos del intervalo.

Intervalos acotados

En la siguiente tabla se ilustran diferentes conjuntos, su notación de intervalo y su gráfica correspondiente en la recta numérica.

Sean a y b números reales tales que a < b.

Notación de conjunto	Notación de intervalo	Gráfica
$\boxed{ \left\{ x \mid a < x < b \right\} }$	(a,b)	$a \rightarrow b$
$\{x \mid a \le x < b\}$	[a,b)) Sen.	. 1
$\{x \mid a < x \le b\}$	(a,b]	$ \begin{array}{ccc} & & & \\ & &$
$\{x\mid a\leq x\leq b\}$	[a,b]	a b
	Cerrado	

Intervalos no acotados

La siguiente tabla muestra la notación utilizada para otro tipo de intervalos, a los cuales se les llama intervalos no acotados o intervalos infinitos.

Notación de conjunto	Notación de intervalo	Gráfica
$\{x \mid x \bigotimes a\}$	(a,∞)	$\stackrel{\longrightarrow}{\underset{a}{\longleftarrow}}$
$\{x \mid x \geq a\}$	$[a,\infty)$	$\stackrel{\bullet}{a}$
$\{x \mid x $	$(-\infty,b)$	← → b
$\{x \mid x \le b\}$	$(-\infty,b]$	←
$\{x \mid x \text{ es un número real}\}$	$(-\infty,\infty)$	0

Ejemplos

Escriba los siguientes conjuntos en notación de intervalo y dibuje su gráfica.

a.
$$\{x \mid -2 \le x < 3\} = [-2, 3]$$

b.
$$\{x \mid x > 2\} = (2/P)$$

Escriba los siguientes intervalos en notación de conjunto y dibuje su gráfica.

a.
$$(-4,1] = \left\{ \begin{array}{c} X \setminus -4 \angle \times \angle 1 \end{array} \right\}$$

b.
$$(-\infty,3] = \{ \times \} \times \{ 3 \} = \{ \times \} - \infty \times \{ 3 \}$$

Use gráficas para encontrar cada conjunto.

$$\bigcap_{\chi \in I} f(\chi)$$

a.
$$(-4,0) \cap [-2,3] = \begin{bmatrix} -2 & 0 \end{bmatrix}$$

