Основные элементы схем алгоритмов

Оформление размеров, функциональное назначение компонентов, правила выполнения схем алгоритмов описаны в ГОСТ 19.003-80, ГОСТ 19.002-80, ГОСТ 19.701-90.

Размеры блоков на примере вычислительного блока.

Размер a должен выбираться из ряда 10, 15, 20 мм. Допускается увеличивать значения a на число, кратное 5. Размер b полагают равным 2a. Размеры остальных блоков подбираются таким же образом. Исключение составляет блок «начало-конец», его

размер a вдвое меньше значений a остальных блоков.

Основные компоненты схем, применяемые при описании алгоритма программы представлены в таблице 1.

В блоках схемы недопустимы записи операторов языка программирования. Математические выражения необходимо вставлять с помощью формул.

Таблица 1 - Основные компоненты схем алгоритмов

Блок	Название	Функциональное назначение
		Начало, конец, прерывание
	Начало – конец	процесса обработки данных или
		выполнения программы.
		Преобразование данных в
/ / 1		форму, пригодную для
/	Ввод-вывод	обработки (ввод) или
0.25 a		отображения результатов
		обработки (вывод).
	Процесс	Выполнение операций или
		группы операций, в результате

		которых изменяется значение,
		форма представления или
		расположение данных.
		Связь между элементом схемы
		и пояснением. Если какая-либо
	Комментарий	
		запись не помещается внутри
		блока, то используется блок
		комментария.
		Выбор направления
	Решение	выполнения алгоритма или
		программы в зависимости от
		некоторых переменных
		условий.
	Модификация	Выполнение операций,
		меняющих команды или группу
		команд, изменяющих
		программу Блок используется
		для обозначения цикла-
		счетчика. Внутри блока
		указывается начальное
		значение счетчика, условие
		продолжения цикла, изменение
		счетчика.
	Соединитель	Указание связи между
		прерванными линиями потока,
		связывающими символами.
		Блок используется для
		соединения линий между
		элементами блок-схемы в
		случае разрыва. Внутри блока

	указывается метка (натуральное
	число) перехода.
	Использование ранее
	созданных и отдельно
Предопределенны	описанных алгоритмов или
й процесс	программ. Блок используется
	для обращения к другой
	программе.

Для обозначения некоторых базовых структур программных алгоритмов используются следующие наборы блоков.

Базовая структура следование

Последовательный переход от одного процесса к другому (рисунок 1).

Рисунок 1 - Схема базовой структуры следование

Базовая структура неполный условный оператор

Переход к выполнению оператора, если условие истинно (рисунок 2).

Рисунок 2 - Схема базовой структуры неполного условного оператора

Базовая структура полный условный оператор

Переход к выполнению оператора 1, если условие истинно, и к оператору 2, если условие ложно (рисунок 3).

Рисунок 3 - Схема базовой структуры полного условного оператора

Базовая структура оператор множественного выбора

В зависимости от того, какое из значений «метка 1», «метка 2», ..., «метка n» принимает селектор, выполняется блок операторов, расположенный на ветке с соответствующей меткой («оператор 1» - при соответствии селектора значению «метка 1», «оператор 2» - при соответствии

селектора значению «метка 2» и т.д.). Если ни одна из меток не соответствует текущему значению селектора, выполняется «оператор». Схема базовой структуры оператора множественного выбора представлена на рисунке 4.

Рисунок 4 - Схема базовой структуры оператора множественного выбора

Базовая структура цикл с предусловием

Пока условие истинно выполняется тело цикла (рисунок 5).

Рисунок 5 - Схема базовой структуры цикла с предусловием

Базовая структура цикл с постусловием

Выполнение тела цикла повторяется до тех пор, пока условие не станет ложным (рисунок 6).

Рисунок 6 - Схема базовой структуры цикла с постусловием

Базовая структура цикл со счетчиком

Пока условие изменения счетчика истинно, выполняется тело цикла (рисунок 7).

Рисунок 7 - Схема базовой структуры цикла со счетчиком

Базовая структура соединения потоков

Если схема не помещается на одну страницу, необходимо разбить ее на две части. В том месте, где разрывается линия потока, ставится блок "соединитель" с меткой в виде натурального числа внутри. На новой странице разорванная линия потока должна начинаться с соединительного блока, с таким же значением метки (рисунок 8).

Рисунок 8 – Алгоритм решения задачи 3 лабораторной работы 2

Рисунок 8 – Продолжение