AUTOMATY A GRAMATIKY

3

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Redukce konečných automatů (1)

Dosažitelné stavy

- konečný automat interpretován jako orientovaný graf
 - graf prohledáme z počátečního stavu
 - KA tvořený nalezenou komponentou souvislosti je ekvivalentní původnímu KA

Ekvivalentní stavy

- □ Uvažujme KA A = (Q,X,δ,q_0,F)
 - stavy p,q∈Q jsou **ekvivalentní**, jestliže \forall w∈X* δ *(p,w)∈F \Leftrightarrow δ *(q,w)∈F
 - označení p~q
 - ekvivalence \approx nad Q se nazývá **automatová kongruence**, jestliže $\forall p,q\in Q \ p\approx q \Rightarrow p\in F \Leftrightarrow q\in F \land \forall x\in X \ \delta(p,x)\approx \delta(q,x)$
- platí, že stavová ekvivalence je automatovou kongruencí

Ekvivalence stavů (1)

- Konstrukce stavové ekvivalence
 - \square posloupnost ekvivalencí \sim_0 , \sim_1 , \sim_2 , ...
 - $\sim_i \forall w \in X^* \check{z}e \mid w \mid \leq i je \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$
 - induktivní konstrukce
 - $p \sim_0 q$ $p \in F \Leftrightarrow q \in F$
 - ověření zkonstruované ~; indukcí podle délky w
 - $p \sim_0 q \quad w = \lambda$

$$\delta^*(p,\lambda)\in F \Leftrightarrow \delta^*(q,\lambda)\in F$$

- $p\sim_{i+1}q$ w=xv, |w|=i+1 chceme $\delta^*(p, xv)\in F \Leftrightarrow \delta^*(q, xv)\in F$, víme, že $\delta(p, x)\sim_i \delta(q, x)$ tedy $\delta^*(\delta(p, x), v)\in F \Leftrightarrow \delta^*(\delta(q, x), v)\in F$
- p~q, jestliže ∀i∈N je p~¡q

Ekvivalence stavů (2)

- □ Vlastnosti posloupnosti ekvivalencí \sim_0 , \sim_1 , \sim_2 , ...
 - \square (i) \sim_{i+1} je zjemněním \sim_i
 - \Box (ii) $\sim_{i+1} = \sim_i$, pak $\forall j > i \sim_j = \sim_i$
 - (iii) když |Q|=n, pak ∃j≤n-1, že ~_i =~_{i+1}
 - $(iv) \sim_{i+1} = \sim_i$, pak $\sim_i = \sim$

Důkaz:

- □ (ii) $p \sim_{i+1} q$, jestliže $p \sim_i q \land \forall x \in X \delta(p,x) \sim_i \delta(q,x)$
 - $p\sim_{i+2}q$, jestliže $p\sim_{i+1}q$ ∧ $\forall x\in X$ $\delta(p,x)\sim_{i+1}\delta(q,x)$
 - $p\sim_{i+2}q$, jestliže $p\sim_i q \land \forall x \in X \delta(p,x) \sim_i \delta(q,x)$, tedy $p\sim_{i+2}q \Leftrightarrow p\sim_{i+1}q$
- (iii) na množině velikosti n lze provést nejvýše n-1 po sobě jdoucích netriviálních zjemnění ekvivalence
 - po triviálním zjemnění, tj. když $\sim_{i+1} = \sim_i$ další netriviální zjemnění podle (ii) nemůže následovat
- □ (iv) $p \sim q$, jestliže $\forall k \in \mathbb{N}$ je $p \sim_k q$
 - $\forall k \in \mathbb{N}$ je $p \sim_k q \Leftrightarrow p \sim_k q$ pro k=0,1,...,j a $p \sim_k q$ pro k=j+1, j+2, ...
 - z (ii) a (iii) $\sim_k = \sim_j$ pro k=j+1, j+2, ..., tedy p \sim q \Leftrightarrow p \sim_k q pro k=0,1,...,j; z (i) dostáváme p \sim q \Leftrightarrow p \sim_i q

Redukce konečných automatů (2)

- □ KA A = (Q,X,δ,q_0,F) a ≈ automatová kongruence
 - \square A/_≈= (Q/_≈,X, δ _≈,[q₀]_≈,F_≈) je **podílový automat**, kde
 - $\delta_{\alpha}([q]_{\alpha},x)=[\delta(q,x)]_{\alpha}$ pro $q\in Q$ a $x\in X$
 - $\blacksquare F_{\sim} = \{ [f]_{\sim} | f \in F \}$
 - \square $\delta_{\mathbb{R}}$ je korektně definovaná
- □ Podílový automat A/₂ je ekvivalentní s A
 - □ definujeme homomorfismus h: $Q \rightarrow Q/_{z}$, že h(q)=[q]_z
 - $= h(q_0) = [q_0]_{\approx}$
 - $h(\delta(q,x))=[\delta(q,x)]_x=\delta_x([q]_x,x)=\delta_x(h(q),x)$ pro q∈Q a x∈X
 - $f \in F \Leftrightarrow [f]_{\sim} \in F_{\sim} \Leftrightarrow h(f) \in F_{\sim}$

Redukce konečných automatů (3)

- □ Volíme-li <u>stavovou ekvivalenci</u> ~ jako automatovou kongruenci
 - □ pak v podílovém automatu A/ nejsou žádné dva stavy ekvivalentní.
- Konečný automat je redukovaný, jestliže jsou všechny jeho stavy dosažitelné a žádné dva stavy nejsou ekvivalentní.
- Konečný automat B je reduktem konečného automatu A, jestliže B je redukovaný a L(A)=L(B).
 - Konstrukce reduktu:
 - odstranit nedosažitelné stavy
 - najít stavovou ekvivalenci ~
 - sestrojit podílový automat A/~

Vlastnosti redukovaných automatů (1)

- Věta o izomorfismu reduktů
 - Redukované konečné automaty A a B, jsou ekvivalentní, právě když jsou A a B izomorfní.
- Důkaz:
 - \square A = $(Q_A, X, \delta_A, q_{AO}, F_A)$, B = $(Q_B, X, \delta_B, q_{BO}, F_B)$
 - $\Box \Rightarrow$
 - konstruujme izomorfismus, tedy h: $Q_A \rightarrow Q_B$
 - pro p∈Q_A položme h(p) = q, kde q∈Q_B takové, že \exists w∈X* a $\delta_A^*(q_{AO},w)$ =p, $\delta_B^*(q_{BO},w)$ =q
 - p je dosažitelný, tedy ∃w∈X* a δ_A*(q_{AO},w)=p
 - alternativní volba w nic nemění
 - $u \in X^*$ a $\delta_A^*(q_{AO}, u) = p$, ale $\delta_B^*(q_{BO}, u) \neq q$
 - protože stavy $\delta_B^*(q_{B0},u)$ a q nejsou v B ekvivalentní, $\exists v \in X^*$, že $\delta_B^*(q_{B0},uv) \notin F_B$ a $\delta_B^*(q_{B0},wv) \in F_B$ (či naopak, tj. \in , \notin)
 - z ekvivalence A a B je $\delta_A^*(q_{AO}, wv) \in F_A$; pak také $\delta_A^*(q_{AO}, uv) \in F_A$

Vlastnosti redukovaných automatů (2)

- □ ⇒ (pokračování)
 - ověříme, že h: $Q_A \rightarrow Q_R$ je izomorfismus
 - h je prostá a na
 - \blacksquare h(q_{AO}) = δ_B^* (q_{BO}, λ) = q_{BO}
 - $h(\delta_A(p,x))=\delta_B(h(p),x)$, pro $p\in Q_A$ a $x\in X$
 - $\delta_{\Delta}^*(q_{\Delta\Omega}, w) = p$, pak $\delta_{\Delta}(p,x) = \delta_{\Delta}^*(q_{\Delta\Omega}, wx)$
 - $h(\delta_{\Delta}^*(q_{AO}, wx)) = \delta_{B}^*(q_{BO}, wx) = \delta_{B}(\delta_{B}^*(q_{BO}, w), x) = \delta_{B}(h(p), x)$
 - \blacksquare p \in F_A, právě když $\delta_{A}^{*}(q_{AO}, w)\in$ F_A
 - z ekvivalence A a B je $\delta_R^*(q_{BO}, w) \in F_B$, což je, právě když h(p) ∈ F_B
- - ihned vidíme

Důsledky věty o izomorfismu

- Pro daný regulární jazyk L zkonstruovat přijímající konečný automat s co nejmenším počtem stavů.
 - najít libovolný KA A, že L(A)=L
 - zkonstruovat redukt A
 - KA B, že L(B)=L, s menším počtem stavů než má redukt A nemůže existovat
- Rozhodnout, zda jsou konečné **automaty A a B ekvivalentní**, tedy zda L(A)=L(B).
 - provést redukci A a B
 - otestovat izomorfismus reduktů A a B
- Pro konečné automaty A a B rozhodnout, zda L(A)⊆L(B).
 - zkonstruujeme KA C, že $L(C) = L(A) \cup L(B)$
 - ověříme, zda L(C) = L(B)
- Pro konečný automat A rozhodnout některé speciální případy L(A)
 - $L(A)=\emptyset$
 - mezi dosažitelnými stavy nebude žádný přijímající
 - □ L(A)=X*
 - zredukovat A
 - výsledem bude KA s jedním stavem, který bude přijímající

Nedeterminismus

Nedeterministický konečný automat

- \triangle A = (Q,X, δ ,S₀,F)
 - Q konečná neprázdná množina stavů
 - X konečná neprázdná abeceda
 - $\delta: Q \times X \rightarrow 2^Q$ přechodová funkce, kde 2^Q je množina všech podmnožin Q
 - S₀⊆Q množina počátečních stavů
 - F⊆Q množina přijímajících stavů
- popis analogicky k deterministické verzi
 - stavový diagram, tabulka
- slovo $w=x_1x_2...x_n$, kde $x_i \in X$ pro i=1,2,...,n
 - posloupnost q₀,q₁,...q_n, kde q_i∈Q pro j=0,1,...,n je **výpočet** NKA A nad slovem w, jestliže $q_0 \in S_0$ a $q_i \in \delta(q_{i-1}, x_i)$ pro i=1,2,...,n
 - navíc je to výpočet přijímající, když q_n∈F
 - L(A) = {w | w∈X* ∧ existuje přijímající výpočet A nad w }
 - aby bylo w přijato, stačí "uhádnout" přijímající výpočet
 - idea: "NKA hádá vždy správně"
 - $K_n = \{ w \mid w \in \{a,b\}^* \land (\exists u,v \in \{a,b\}^*)[w = ubv \land |v| = n-1] \}$, pro n=1,2,...
 - snadno lze zkonstruovat NKA A_n, že L(A_n)=K_n

Souvislost s deterministickým KA (1)

- Nedeterministické KA přijímají regulární jazyky
 - Jazyk přijímaný (deterministickým) konečným automatem A = (Q,X,δ,q_0,F) je přijímán nedeterministickým konečným automatem Aⁿ = $(Q,X,\delta^n,\{q_0\},F)$, kde
 - \bullet $\delta^n(q,x)=\{\delta(q,x)\}, \text{ pro } q\in Q \text{ a } x\in X$
 - uvažujme NKA A = (Q,X,δ,S_0,F)
 - rozšířená přechodová funkce u NKA $\delta^*:2^Q\times X^*\rightarrow 2^Q$, kde
 - \bullet $\delta^*(A, \lambda) = A \text{ pro } A \subseteq Q$
 - $\delta^*(A, w) = \bigcup_{q \in \delta^*(A,v)} \delta(q,x)$ pro $A \subseteq Q$ a $w \in X^*$, kde w = vx pro $v \in X^*$ a x∈X
 - pro w∈X* platí, že w∈L(A), jestliže $\delta^*(S_0, w) \cap F \neq \emptyset$

Souvislost s deterministickým KA (2)

- NKA nepřijímají nic víc než regulární jazyky
 - □ Jazyk přijímaný nedeterministickým KA A = (Q,X,δ,S_0,F) je přijímán deterministickým KA A^d=(2^Q, X, δ^d, S₀, F^d), kde
 - $\delta^d(A, x) = \delta^*(A, x)$ pro $A \subseteq Q$ a $x \in X$
 - $F^d = \{A \mid A \subseteq Q \land A \cap F \neq \emptyset\}$
 - paralelně sledujeme všechny možné výpočty
 - při konstrukci Ad lze rovnou vyřadit nedosažitelné stavy
- U KA nedeterminismus nepřidal výpočetní sílu, pro jiné výpočetní modely ale toto platit nemusí.
 - došlo ke zjednodušení návrhu automatu
 - uvažte KA pro jazyk K_n
 - zjednodušení náhledu uzávěrových vlastností
 - uvažte sjednocení jazyků

Další uzávěrové vlastnosti (1)

- Regulární jazyky jsou uzavřené na konkatenaci
 - K, L jazyky nad X pak K.L = {u.v | u∈K ∧ v∈L } je konkatenace K a L
 - Jsou-li K a L regulární, pak K.L je regulární
 - \blacksquare K = L(A), kde A=(Q_A,X, δ _A,q_{AO},F_A) je KA
 - L = L(B), kde B = $(Q_B, X, \delta_B, q_{BO}, F_B)$ je KA
 - zkonstruujeme NKA C, že L(C) = K.L
 - nedeterministicky propojíme přijímající stavy A a počáteční stav B

■
$$C = (Q_A \cup Q_B, X, \delta_C, S_{CO}, F_B)$$

$$= \begin{cases} \{\delta_B(q, x)\} \text{ pro } q \in Q_B \end{cases}$$
■ $\delta_C(q, x) = \begin{cases} \{\delta_A(q, x)\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \notin F_A \\ \{\delta_A(q, x), q_{BO}\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \in F_A \end{cases}$
■ $S_{CO} = \begin{cases} \{q_{AO}, q_{BO}\}, \text{ když } q_{AO} \notin F_A \end{cases}$

Další uzávěrové vlastnosti (2)

- Regulární jazyky jsou uzavřené na iteraci
 - \square L je jazyk nad X, pak iterace L je L* = $\bigcup_{i=0}^{\infty} L^i$, kde
 - $L^0 = \{\lambda\}, L^1 = L, L^{i+1} = L.L^i = L^i.L$
 - Je-li L regulární, pak L* je regulární
 - L = L(A), kde A=(Q_A,X, δ _A,q_{AO},F_A) je KA
 - zkonstruujeme NKA C, že L(C) = L*
 - nedeterministicky propojíme počáteční a přijímající stavy A
 - C = $(Q_A \cup \{q_{CO}\}, X, \delta_C, \{q_{AO}, q_{CO}\}, F_A \cup \{q_{CO}\})$ $= \begin{cases} \{\delta_A(q, x)\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \notin F_A \end{cases}$ ■ $\delta_C(q, x) = \begin{cases} \{\delta_A(q, x), q_{AO}\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \in F_A \end{cases}$ Ø pro $q = q_{CO}$

Další uzávěrové vlastnosti (3)

- Regulární jazyky jsou uzavřené na zrcadlový obraz
 - □ L je jazyk nad X, pak L^R={w|w∈X*∧ (∃u∈L)u^R=w } je zrcadlový obraz L
 - □ Je-li L regulární, pak L^R je regulární
 - L = L(A), kde A=(Q_A , X, δ_A , q_{AO} , F_A) je KA
 - zkonstruujeme NKA C, že L(C) = L^R
 - zaměníme počáteční a přijímající stavy, otočíme přechody
 - v deterministické variantě nelze
 - $C = (Q_A, X, \delta_C, F_A, \{q_{AO}\}), kde$
 - $\delta_C(q, x) = \{ p \mid q = \delta_A(p, x) \}$

Uzavřenost na kvocienty

- Kvocienty regulárních jazyků jsou regulární
 - Nechť R je regulární jazyk a L je libovolný jazyk nad X, pak L\R a R/L jsou regulární jazyky.
 - \blacksquare R = L(A), kde A=(Q_{\(\Delta\)}, X, \(\delta_\(\Delta\), q_{\(\Delta\)}, F_{\(\Delta\)}) je KA
 - zkonstruujeme NKA C, že L(C) = L\R
 - \blacksquare C = (Q_{Δ}, X, δ _C, S_{CO}, F_{Δ}), kde
 - $S_{CO} = \{ q \mid q \in Q \land (\exists w \in L) \delta_A^*(q_{AO}, w) = q \}$
 - $\delta_{C}(q, x) = \{ \delta_{\Delta}(q, x) \}$ pro q∈Q_A a x∈X
 - zkonstruujeme KA D, že L(D) = R/L
 - D = $(Q_{\Delta}, X, \delta_{\Delta}, q_{\Delta D}, F_{D})$, kde
 - $F_D = \{ q \mid q \in Q \land (\exists w \in L) \delta_{\Delta}^*(q, w) \in F_{\Delta} \}$