微机原理与接口技术

微处理器中断控制

华中科技大学 左冬红

微处理器中断响应一般流程

MicroBlaze微处理器开中新

机器状态寄存器MSR(Machine Status Register)位IE(D1)

当IE为1时,MicroBlaze微处理器响应可屏蔽中断

MicroBlaze中断向量表

异常事件	中断向量	断点保存寄存器
复位	C_BASE_VECTORS+0x	~
	0000000	
用户异常	C_BASE_VECTORS+0x	Rx
	0000008	
可屏蔽中断	C_BASE_VECTORS+0x	R14
	0000010	
	或INTC提供的中断向量	
打断: 不可屏蔽中断、	C_BASE_VECTORS+0x	R16
硬件打断、软件打断	0000018	
硬件异常	C_BASE_VECTORS+0x	R17
	0000020	

MicroBlaze中断服务程序进入方式

中断向量处8个字节保存两条MicroBlaze指令

imm指令: 将立即数赋值到临时寄存器的指令

brai指令: 立即数跳转指令

imm

brai

MicroBlaze中断响应周期

irq上升沿检测中 断请求,并领存 interrupt_addres s[31:0]到寄存器 PC

Processor_ack[1:0]	状态
01	跳转到中断服务程序
10	结束中断服务返回
11	再次开放中断

小结

- •微处理器响应中断的条件
 - •现行指令执行结束
 - 微处理器开中断
- ·MicroBlaze中断响应过程
 - •中断响应周期
 - •中断向量构成
 - 立即数构成的跳转指令
 - ·与INTC配合实现快速中断
 - ·中断向量由INTC提供

下一讲:中断程序设计基础