Notes of J.E. Marsden's – Foundations of Mechanics

Regoon Wang, ChemE@UNSW wang.regoon@gmail.com

October 3, 2013

Contents

Ι	Pr	reliminaries	4
1	Diff	Gerential Theory	5
	1.1	Topology	5
	1.2	Finite-Dimensional Banach Sapce	11
	1.3	Local Differential Calculus	12
	1.4	Manifolds and Mappings	14
	1.5	Vector Bundles	14
	1.6	The Tangent Bundle	15
	1.7	Tensors	16
2	Cal	culus on Manifolds	17
_	2.1	Vector Fields as Dynamical Systems	18
	2.2	Vector Fields as Differential Operators	18
	2.3	Exterior Algebra	18
	$\frac{2.5}{2.4}$	Cartan's Calculus of Differential Forms	18
	2.5	Orientable Manifolds	18
	2.6	Integration on Manifolds	18
	2.7	Some Riemannian Geometry	18
II	A	analytical Dynamics	19
3	Har	niltonian and Lagrangian Systems	20
J	3.1	Symplectic Algebra	21
	3.2	Symplectic Geometry	21
	3.3	Hamiltonian Vector Fields and Poisson Brackets	21
	3.4	Integral Invariants, Energy Surfaces, and Stability	21
	3.5	Lagrangian Systems	21
	3.6	The Legendre Transformation	21
	3.7	Mechanics on Riemannian Manifolds	21
	3.8	Variational Principles in Mechanics	21
4	Нат	niltonian Systems with Symmetry	22
•	4.1	Lie Groups and Group Actions	22
		The Momentum Mapping	22

	4.3	Reduction of Phase Space with Symmetry	22
	4.4	Hamiltonian Systems on Lie Groups and the Rigid Body	22
	4.5	The Topology of Simple Mechanical Systems	22
	4.6	The Topology of the Rigid Body	22
5	Hai	milton-Jacobi Theory and Mathematical Physics	23
	5.1	Time-Dependent Systems	23
	5.2	Canonical Transformations and Hamilton-Jacobi Theory	23
	5.3	Lagrangian Submanifolds	23
	5.4	Quantization	23
	5.5	Introduction to Infinite-Dimensional Hamiltonian Systems	23
	5.6	Introduction to Nonlinear Oscillations	23
IJ	Ι.	An Outline of Qualitative Dynamics	24
6	Tor	pological Dynamics	25
	6.1	Limit and Minimal Sets	25
	6.2	Recurrence	25
	6.3	Stability	25
7	Diff	ferentiable Dynamics	26
	7.1	Critical Elements	27
	7.2	Stable Manifolds	27
	7.3	Generic Properties	27
	7.4	Structural Stability	27
	7.5	Absolute Stability and Axiom A	27
	7.6	Bifurcations of Generic Arcs	27
	7.7	A Zoo of Stable Bifurcations	27
	7.8	Experimental Dynamics	27
8	Hai	miltonian Dynamics	28
	8.1	Critical Elements	28
	8.2	Orbit Cylinders	28
	8.3	Stability of Orbits	28
	8.4	Generic Properties	28
	8.5	Structural Stability	28
	8.6	A Zoo of stable Bifurcations	28
	8.7	The General Pathology	28
	8.8	Experimental Mechanics	28
I	V (Celestial Mechanics	29
9	The	e Two-Body Problem	30
		Models for Two Bodies	30

	9.2	Elliptic Orbits and Kepler Elements	30
	9.3	The Delaunay Variables	30
	9.4	Lagrange Brackets of Kepler Elements	30
	9.5	Whittaker's Method	30
	9.6	Poincare Variables	30
	9.7	Summary of Models	30
	9.8	Topology of the Two-Body Problem	30
10	The	Three-Body Problem	31
	10.1	Models for Three Bodies	31
	10.2	Critical Points in the Restricted Three-Body Problem	31
	10.3	Closed Orbits in the Restricted Three-Body Problem	31
	10.4	Topology of the Plannar n-Body Problem	31

Part I Preliminaries

Differential Theory

1.1 Topology

Definition 1.1. A topological space is a set S together with a collect \mathcal{O} of subsets called open sets s.t.

- (T1) $\emptyset \in \mathcal{O}$ and $S \in \mathcal{O}$;
- (T2) If $U_1, U_2 \in \mathcal{S}$, then $U_1 \cap U_2 \in \mathcal{O}$;
- (T3) The union of any collection of open sets is open.

For such a topological space the **closed sets** are the elements of $\gamma = \{A \mid A^c \in \mathcal{O}\}$. An **open neighborhood of a point** u is a topological space S is an open set U s.t. $u \in U$. Similarly, for a subset A of S, U is an **open neighborhood** of A if U is open and $A \subset U$. If A is a subset of a topological space S, the **relative topology** on A is defined by $\mathcal{O}_A = \{U \cap A \mid U \in \mathcal{O}\}$.

Then a **basis** for the topology is a collection \mathcal{B} of opensets s.t. every open set of S is a union of elements of \mathcal{B} . The topology is called **first coutable** if for each $u \in S$, there is a countable collection $\{U_n\}$ of neighborhoods of u s.t. for any neighborhood U of u, there is an n so $U_n \subset U$. The topology is called **second countable** if it has a countable basis.

Let $\{u_n\}$ be a sequence of points in S. The sequence is said to **coverge** if there is a point $u \in S$ s.t. for every neighborhood U of u, there is an N s.t. $n \geq N$ implies $u_n \in U$. We say that $\{u_n\}$ converges to u or u is a **limit point** of $\{u_n\}$.

Example 1.1. The standard topology of \mathbb{R} is the unions of open intervals (a, b). Then \mathbb{R} is second countable (hence first countable) with a basis

$$\left\{ \left(r_n - \frac{1}{m}, r_n + \frac{1}{m} \right) \mid r_n \in \mathbb{Q}, m \in \mathbb{N}^+ \right\}$$

Definition 1.2. Let S be a topological space and $A \subset S$. Then the **closure** of A, denoted \overline{A} is the inersection of all colsed sets containing A. The **interior** of A, denoted \mathring{A} is the union of all open sets contained in A. The **boundary** of A, denoted $\partial A := \overline{A} \cap \overline{A^c}$.

Thus, ∂A is closed, and $\partial A = \partial A^c$. Note that A is open iff $A = \mathring{A}$ and closed iff $A = \overline{A}$.

Propsition 1.1. Let S be a topological space and $A \subset S$.

- (i) $u \in \overline{A}$ iff for every neighborhood U of $u, U \cap A \neq \emptyset$.
- (ii) $u \in \mathring{A}$ iff there is a neighborhood U of u s.t. $U \subset A$.
- (iii) $u \in \partial A$ iff for every neighborhood U of $u, U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$.

Definition 1.3. A point $u \in S$ is called **isolated** iff $\{u\}$ is open. A subset A of S is called **dense** in S iff $\overline{A} = S$ and is called **nowhere dense** iff $(\overline{A})^c$ is dense in S. Thus, A is nowhere dense iff $\overline{A} = \emptyset$.

Definition 1.4. A topological space S is called **Hausdorff** iff each two distinct points have disjoint neighborhoods. Similarly, S is called **normal** iff each two disjoint closed sets have disjoint neighborhoods.

Propsition 1.2. (i) A space S is Hausdorff iff $\Delta_S = \{(u, u) \mid u \in S\}$ is closed in $S \times S$ is the product topology.

(ii) A first countable space S is Hausdorff iff all sequences have at most one limit point.

Proof. If Δ_S is closed and u_1, u_2 are distinct, there is an open rectangle $U \times V$ containing (u_1, u_2) and $U \times V \subset \Delta_S^c$. Then in S, U and V are disjoint because if $\exists p \in U \cap V$, then $(p, p) \in U \times V$ it countered with closed set Δ_S . The converse is similar and we leave it as an exercise.

Definition 1.5. Let \mathbb{R}^+ denote the nonnegative real numbers with a point $\{+\infty\}$ adjoined, and topology generated by the open intervals of the form (a,b). A **metric** on set M is a function $d: M \times M \to \mathbb{R}^+$ s.t.

- (M1) $d(m_1, m_2) = 0$ iff $m_1 = m_2$;
- (M2) $d(m_1, m_2) = d(m_2, m_1);$
- (M3) $d(m_1, m_3) \le d(m_1, m_2) + d(m_2, m_3)$

For $\varepsilon > 0$, the ε disk about m is defined by $D_{\varepsilon}(m) = \{m' \in M \mid d(m', m) < \varepsilon$. The collection of subsets of M that are unions of such disks is the metric topology of the metric space (M,d). Two metrics on a set are called **equivalent** if they induce the same metric topology. $\{u_n\}$ is a **Cauchy sequence** iff for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ s.t. $n, m \geq N$ implies $d(u_n, u_m) < \varepsilon$. The space M is called **complete** if every Cauchy sequence converges. We define $d(u, A) = \inf\{d(u, v) \mid v \in A\}$ and $d(u, \emptyset) = \infty$.

Propsition 1.3. Every metric space is normal.

Proof. Let A and B be closed, disjoint subsets of M, and let

$$U = \{ u \in M \mid d(u, A) < d(u, B) \}$$

$$V = \{ v \in M \mid d(v, A) > d(v, B) \}$$

It is verified that U and V are open, disjoint and $A \subset U, B \subset V$.

Definition 1.6. If $\varphi: S \to T$ is **continuous** at $u \in S$ if $\forall V \ni \varphi(u), \exists U \ni u \Rightarrow \varphi(U) \subset V$. If $\forall V \subset T, \varphi^{-1}(V) = \{u \in S \mid \varphi(u) \in V \text{ is open in S, } \varphi \text{ is$ **continuous** $.}$

If $\varphi: S \to T$ is a **bijection**, φ and φ^{-1} are continuous, then φ is a **homeomorphism** and S and T are **homeomorphic**.

Propsition 1.4. φ is continuous iff $\forall A \subset S \Rightarrow \varphi(\overline{A}) \subset \overline{\varphi(A)}$.

Proof. If φ is continuous, then $\varphi^{-1}(\overline{\varphi(A)})$ is closed. But $A \subset \varphi^{-1}(\overline{\varphi(A)})$ and hence $\overline{A} \subset \underline{\varphi^{-1}(\overline{\varphi(A)})}$ or $\varphi(\overline{A}) \subset \overline{\varphi(A)}$. Conversely, let $B \subset T$ be closed and $A = \varphi^{-1}(B)$. Then $\overline{(A)} \subset \varphi^{-1}(B) = A$, so A is closed.

Propsition 1.5. Let $\varphi: S \to T$ and S first countable set. Then φ is continuous iff $\forall u_n \to u \Rightarrow \varphi(u_n) \to \varphi(u)$.

Propsition 1.6. Let M and N be metric spaces with N complete. Then the collection C(M,N) of all continuous maps $\varphi: M \to N$ forms a complete metric space with the metric $d^0(\varphi,\phi) = \sup\{d(\varphi(u),\phi(u)) \mid u \in M\}$.

Proof. It is readily verified that d^0 is a metric. Convergence of sequence $f_n \in C(M,N)$ to $f \in C(M,N)$ in the metric d^0 is the same as uniform convergence, that is, for all $\varepsilon > 0$ there is an N s.t. if $n \geq N$, $d(f_n(x), f(x)) \leq \varepsilon$ for all $x \in M$. If f_n is a Cauchy sequence in C(M,N), then since $d(f_n(x), f_m(x)) \leq d^0(f_n, f_m)$. $f_n(x)$ is Cauchy for each point $x \in M$. Thus f_n converges pointwise, define a function f(x). We must show that $f_n \to f$ uniformly and that f is continuous. First of all, given $\varepsilon > 0$, choose N s.t. $d^0(f_n, f_m) < \varepsilon/2$ if $n, m \geq N$. Then for any $x \in M$, pick $N_x \geq N$ s.t. $d(f_m(x), f(x)) < \varepsilon/2$ if $m \geq N_x$. Thus with $n \geq N$ and $m \geq N_x$, $d(f_n(x), f(x)) \leq d(f_n(x), f_m(x)) + d(f_m(x), f(x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$ So $f_n \to f$ uniformly.

Definition 1.7. S is called **compact** iff $\forall \cup_{\alpha} U_{\alpha} = S$ there is a finite subcovering. A subset $A \subset S$ is called **compact** iff A is compact in the relative topology. A space is called *locallycompact* iff each point has a neighborhood whose closure is compact.

Theorem 1.1 (Boizano-Weierstrass). If S is a first countable space and is compact, then every sequence has a convergent subsequence.

Proof. Suppose $\{u_n\}$ contains no convergent subsequences. Then we may assume all points are distinct. Each u_n has a neighborhood \mathcal{O}_n that contains no other u_m . $\{u_n\}$ is closed, so that \mathcal{O}_n together with $\{u_n\}^c$ forms an open covering of S, with no finit subcovering.

In a metric space, every compact subset is closed and bounded (Heine Borel theorem).

Propsition 1.7. Let S be a Hausdorff space. Then every compact subset of S is closed. Also, every compact Hausdorff space is normal.

Proof. Let $u \in A^c$ and $v \in A$, where A is compact in S. There are disjoint neighborhoods of u and v and, since A is compact, there are disjoint neighborhood of u and A. Thus A^c is open. The second part is an exercise.

Propsition 1.8. Let S be a Hausdorff space that is locally homeomorphic to a locally compact Hausdorff space. Then S is locally compact.

Proof. Let $U \subset S$ be homeomorphic to $\varphi(U) \subset T$. There is a neighborhood V of $\varphi(u)$ so $\overline{V} \subset \varphi(U)$ and \overline{V} is compact. Then $\varphi^{-1}(\overline{V})$ is compact, and hence closed in S. $\varphi^{-1}(\overline{V}) \subset \varphi^{-1}(V)$. Thus $\varphi^{-1}(V)$ has compact closure.

Definition 1.8. A covering $\{U_{\alpha}\}$ of S is called a **refinement** of a covering $\{V_i\}$ iff $\forall U_{\alpha}$ there is a V_i s.t. $U_{\alpha} \subset V_i$. A covering $\{U_{\alpha}\}$ of S is called **locally finite** iff each point $u \in S$ has a neighborhood U such that U intersects only a finite number of U_{α} . A space is called **paracompact** iff every open covering of S has a locally finite refinement of open sets, and S is Hausdorff.

Theorem 1.2. Second countable, locally compact Hausdorff spaces are paracompact.

Proof. S is the countable union of open sets U_n s.t. $\overline{U_n}$ is compact and $\overline{U_n} \subset U_{n+1}$. If W_{α} is a covering of S by open sets, and $K_n = \overline{U_n} - U_{n-1}$ then we can cover K_n by a finit number of open sets each of which is contained in some $W_{\alpha} \cap U_{n+1}$, and is disjoint from $\overline{U_{n-2}}$. The union of such collections yiels the desired refinement of $\{W_{\alpha}\}$.

Theorem 1.3. Every paracompact space is normal.

Proof. We first show that if A is closed and $u \in A^c$, there are disjoint neighborhoods of u and A. For each $v \in A$ let U_u, V_v be disjoint neighborhood of u and v. Let W_α be a locally fininit refinement of the covering V_v, A^c and $V = \bigcup W_\alpha$, the union over those α so $W_\alpha \cap A \neq \emptyset$. A neighborhood U_0 of u meets a finite number of W_α . Let U denote the intersection of U_0 and the corresponding U_u . Then V and U are the required neighborhoods.

Theorem 1.4. If S is a Hausdorff space, the following are equivalent:

- (i) S is normal;
- (ii) For any two closed nonempty disjoint set A, B ther is a continuous function $f: S \rightarrow [0,1]$ s.t. f(A) = 0, f(B) = 1.(Urysohn's Lemma)
- (iii) For any closed set $A \subset S$ and continuous function $f: A \to [a,b]$, there is a continuous extension $\tilde{f}: S \to [a,b]$ of f (Tietze extension theorem)

Definition 1.9. The support of $f: s \to \mathbb{R}$ is $supp(f) = \overline{\{x \in S \mid f(x) \neq 0\}}$. A partition of unity on S is a family of continuous mappings $\{\varphi_i: S \to [0,1]\}$ s.t.

- (i) $\{supp(\varphi_i)\}\$ is locally finite.
- (ii) $\sum_{i} \varphi_i(x) = 1$ for all x.

We say that a pratition of unity $\{\varphi_i\}$ is **subordinate** to a covering $\{A_\alpha\}$ of S if $supp(\varphi_i)$ is a refrinement of $\{A_\alpha\}$.

Theorem 1.5. Let S be paracompact and $\{U_i\}$ be any open covering of S. Then ther is a partition of unity $\{\varphi_i\}$ subordinate to $\{U_i\}$.

Definition 1.10. A topological space S is **connected** if \emptyset and S are the only subsets of S that are both open and closed. A subset of S is connected iff it is connected in the relative topology. A **component** A of S is a nonempty connected subsect of S s.t. the only connected subset of S containing A is A; S is called **locally connected** iff each point x has an open neighborhood containing a connected neighborhood of x.

Propsition 1.9. A space S is not connected iff either of the following holds.

- (i) There is a nonempty proper subset of S that is both open and closed.
- (ii) S is the disjoint union of two nonempty open sets.
- (iii) S is the disjoint union of two nonempty closed sets.

Propsition 1.10. Let S be a connected space and $f: S \to \mathbb{R}$ be continuous. Then f assumes every value between any two values f(u), f(v).

Proof. Suppose f(u) < a < f(v) and f doses not assume the value a. Then $U = \{u_0 \mid f(u_0) < a\}$ is both open and closed.

Propsition 1.11. Let S be a topological space and $B \subset S$ be connected.

- (i) if $B \subset A \subset \overline{B}$, then A is connected;
- (ii) if B_{α} are connected and $B_{\alpha} \cap B \neq \emptyset$, then $B \cup (U_{\alpha}B_{\alpha})$ is connected.

Proof. If A is not connected, A is the disjoint union of $U_1 \cap A$ and $U_2 \cap A$ where U_1, U_2 are open in S. Then $U_1 \cap B \neq \emptyset$, $U_2 \cap B \neq \emptyset$, so B is not connected.

Definition 1.11. An **arc** φ in S is a continuous mapping $\varphi : I = [0,1] \to S$. If $\varphi(0) = u, \varphi(1) = v$, we say φ joins u and v; S is called **arcwise connected** iff every two points in S can be joined by an arc in S. A space is called **locally arcwise connected** iff each point has an arcwise connected neighborhood.

Propsition 1.12. Every arcwise connected space is connected. If a space is connected and locally arcwise connected, it is arcwise connected.

Proof. If S is arcwise connected and not connected, write $S = U_1 \cup U_2$ where U_1, U_2 are nonempty, disjoint and open. Let $u_1 \in U_1, u_2 \in U_2$ and let φ be an arc joining u_1, u_2 . Now $\varphi(I)$ is connected, and since $\varphi(I) \cap U_i \neq \emptyset$, $\varphi \cap U_1 \cap U_2 \neq \emptyset$. Hence $U_1 \cap U_2 \neq \emptyset$, a contradiction. Let $u \in S$ and U denote all points that can be joined to u by an arc. An easy argument shows U and U^c are open and so U = S.

Definition 1.12. Let S be a metric space with metric d, and 2^S denote the set of all subsets of S. Define $\tilde{d}(A,B) = \sup\{d(A,B) | a \in A$. As this is not symmetric, we further define $\overline{d}(A,B) = \sup\{d(A,B), d(B,A)\}$. If $A \neq \emptyset, B = \emptyset, \overline{d}(A,B) = \infty, \overline{d}(\emptyset,\emptyset) = 0$. We call it the **Hausdorff metric**.

Propsition 1.13. Let S be a metric space and d the Hausdorff metric on 2^S . Then $f: S \to 2^S$ is continuous at $u_0 \in S$ iff for all $\varepsilon > 0$ there is a $\delta > 0$ s.t. $d(u, u_0) < \delta$ implies:

(i) for all $a \in f(u)$, there is a $b \in f(u_0)$ s.t. $d(a,b) < \varepsilon$; that is

$$f(u) \subset \underset{b \in f(u_0)}{\cup} D_{\varepsilon}(b)$$

.

(ii) for all $b \in f(u_0)$, there is an $a \in f(u)$ s.t. $d(b,a) < \varepsilon$.

Definition 1.13. Let S be a set. An equivalence relation \sim on S is a binary relation s.t. for all $u, v, w \in S$

- (i) $u \sim u$;
- (ii) $u \sim v$ iff $v \sim u$;
- (iii) $u \sim v, v \sim w \Rightarrow u \sim w$.

The **equivalence class** containing u, denoted [u] is defined by $[u] = \{v \in S \mid u \sim v\}$. The set of equivalence classes is denote S/\sim , and the mapping $\pi: S \to S/\sim$; $u \longmapsto [u]$ is called the **canonical projection**.

Definition 1.14. $\{U \subset S/\sim |\pi^{-1}(U) \text{ is open in } S\}$ is called the **quotient topology**.

Example 1.2. Consider \mathbb{R}^2 and the relation \sim defined by $(a_1, a_2) \sim (b_1, b_2)$ iff $a_1 - b_1, a_2 - b_2 \in \mathbb{Z}$. Then $T^2 = \mathbb{R}^2 / \sim$ is called the 2-**torus**. In addition to the quotient topology, it inherits a group structure in the usual way: $[(a_1, a_2)] + [(b_1, b_2)] = [(a_1, a_2) + (b_1, b_2)]$.

Example 1.3. The Klein bottle is obtained by reversing one of the orientations. Notice that K^2 is not "orientable" and does not inherit a group structure from \mathbb{R}^2 .

Definition 1.15. Let Z be a topological space and $c : [0,1] \to Z$ a continuous map s.t. $c(0) = c(1) = p \in Z$. We call c a **loop** in Z based at p. The loop c is called **contractible** if there is a continuous map $H : [0,1] \times [0,1] \to Z$ s.t. $H(t,0) = c(t), H(t,1) = p, \forall t \in [0,1]$.

Definition 1.16. A space Z is called **simply connected** iff every loop in Z is contractible.

Definition 1.17. Let X be a topological space and $A \subset X$. Then A is called *residual* iff A is the intersection of a countable family of open dense subsets of X. A space X is called a **Baire space** iff every residual set is dense.

Lemma 1.1. Let X be a locally Baire space; that is, each point $x \in X$ has a neighborhood U s.t. \overline{U} is a Baire space. Then X is a Baire space.

Proof. Let $A \subset X$ be residual; $A = \bigcap_{1}^{\infty} O_n$ where $\overline{O_n} = X$. Then $A \cap \overline{U} = \bigcap_{1}^{\infty} (O_n \cap \overline{U})$ Now $O_n \cap \overline{U}$ is dense in \overline{U} for if $u \in \overline{U}, u \in O$ then $O \cap U \neq \emptyset, O \cap U \cap O_n \neq \emptyset$. Hence $\overline{U} \subset \overline{A}, \overline{A} = X$.

Theorem 1.6 (Baire category). Every complete pseudometric space is a Baire space.

Proof. Let $U \subset X$ be open and $A = \bigcap_1^{\infty} O_n$ be residual. We must show $U \cap A \neq \emptyset$. Now as $\overline{O_n} = X, U \cap O_n \neq \emptyset$ and so we can choose a disk of diameter less than one, say V_1 , s.t. $\overline{V_1} \subset U \cap O_1$. Proceed inductively to obtain $\overline{V_n} \subset U \cap O_n \cap V_{n-1}$, where V_n has diameter < 1/n. Let $x_n \in \overline{V_n}$. Clearly $\{x_n\}$ is a Cauchy sequence, and by completeness has a convergence subsequence with limit point x. Then $x \in \bigcap_1^{\infty} \overline{V_n}, U \cap \bigcap_1^{\infty} O_n \neq \emptyset$.

Exercises

Exercise 1.1. Let S and T be sets and $f: S \to T$. Show that f is a bijection iff there is a mapping $g: T \to S$ s.t. $f \circ g, g \circ f$ are identity mappings.

Exercise 1.2. Let X and Y be topological space with Y Hausdorff. Then show that, for any continuous maps $f, g: X \to Y$, $\{x \in X \mid f(x) = g(x) \text{ is closed. [Hint: Consider the mapping } x \longmapsto (f(x), g(x))\}.$

Exercise 1.3. Prove that in a Hausdorff space, single points are closed.

Exercise 1.4. Define a topological manifold as a space locally homeomorphic to \mathbb{R}^n . Find a topological manifold that is not Hausdorff and not locally compact. [Hint: Consier $\mathbb{R} \cup \{\pm \infty\}$].

Exercise 1.5. Show that the continuous image of a connected space is connected.

1.2 Finite-Dimensional Banach Sapce

Definition 1.18. A norm on a vector space E is a mapping $\| \bullet \| : E \to \mathbb{R}$ s.t.

- (N1) $\| \bullet \| \ge 0, \forall e \in E \text{ and } \| e \| = 0 \text{ iff } e = 0.$
- (N2) $\|\lambda e\| = |\lambda| \|e\|, \forall e \in E, \lambda \in \mathbb{R}.$
- (N3) $||e_1 + e_2|| \le ||e_1|| + ||e_2||, \forall e_1, e_2 \in E$.

A normed space whose induced metric is complete is a **Banach space**.

Definition 1.19. Two norms on a vector space E are **equivalent** iff they induce the same topology on E.

Theorem 1.7. Let E be a finite-dimensional real vector space. Then

- (i) there is a norm on E;
- (ii) all norms on E are equivalent;
- (iii) all norms on E are complete.

Theorem 1.8. For finite-dimensional real vector spaces, linear and multilinear maps are continuous.

Corollary 1.1. Addition and scalar multiplication in a vector space are continuous maps from $E \times E \to E$, $\mathbb{R} \times E \to E$.

Definition 1.20. Given E,F we let L(E,F) denote the set of all linear maps from E into F together with the natural structure of finite dimensional real vector space. Similarly, $L^k(E,F)$ denote the space of multilinear maps from $E \times \cdots \times E$ into F, $L^k_s(E,F)$, the subspace of symmetric elements of $L^k(E,F)$ [that is, if π is any permutation of $\{1,2\cdots,k\}$, we have $f(e_1,\cdots,e_2)=f(e_{\pi(1)},\cdots,e_{\pi(k)})$] and $L^k_a(E,F)$ the subspace of skew symmetric [That is if π is any permutation of $\{1,2\cdots,k\}$, we have $f(e_1,\cdots,e_2)=(sgn\pi)f(e_{\pi(1)},\cdots,e_{\pi(k)})$, wher $sgn\pi=\pm 1$ according as π is an even or odd permutation].

Theorem 1.9. There is a natural isomorphism $L(E, L^k(E, F)) \approx L^{k+1}(E, F)$.

Exercises

Exercise 1.6. Let $f \in L(E, F)$ so that f is continuous.

- (a) Show that there is a constant K s.t. $\parallel f(e) \parallel \leq K \parallel e \parallel$ for all $e \in E$. Define $\parallel f \parallel$ as the greatest lower bound of such K.
- (b) Show that this is a norm on L(E, F).
- (c) Prove that $\parallel f \circ g \parallel \leq \parallel f \parallel \cdot \parallel g \parallel$.

Exercise 1.7. Suppose $f \in L(E, F)$ and dim(E) = dim(F). Then f is an isomorphism iff it is a monomorphism (one-to-one) and iff it is surjective (onto).

Exercise 1.8. Show that two norms $\| \bullet \|_1$, $\| \bullet \|_2$ are equivalent iff there is a constant M s.t. $M^{-1} \| e \|_1 \le \| e \|_2 \le M \| e \|_1$.

Exercise 1.9. Let E be the set of all C^1 functions $f:[0,1] \to \mathbb{R}$ with the norm $||f|| = \sup_{x \in [0,1]} |f'(x)| + \sup_{x \in [0,1]} |f'(x)|$. Prove that E is a Banach space.

1.3 Local Differential Calculus

Definition 1.21. Let E,F be two vector spaces with maps $f, g : U \subset E \to F$. We say f and g are **tangent** at $u_0 \in U$ iff

$$\lim_{u \to u_0} \frac{\| f(u) - g(u) \|}{\| u - u_0 \|} = 0$$

Theorem 1.10. For $f: U \subset E \to F$ there is at most one $L \in L(E, F)$ so that the map $g_L: U \subset E \to F$ given by $g_L(u) = f(u_0) + L(u - u_0)$ is tangent to f at u_0 .

Definition 1.22. If there is such an L we say f is **differentiable** at u_0 , and define the **derivative** of f at u_0 to be $Df(u_0) = L$. If f is differentiable at each $u \in U$, the map $Df: U \to L(E, F); u \mapsto Df(u)$ is the **derivative** of f. Moreover, if Df is a continuous map we say f is of class C^1 .

Definition 1.23. Suppose $f: U \subset E \to F$ is of class C^1 . Define the **tangent** of f to be the map: $Tf: U \times E \to F \times F$ given by $Tf(u, e) = (f(u), Df(u) \cdot e)$.

From a geometrical point of view, T is more natural than D. If we take (u, e) as a vector with base point u, then $(f(u), Df(u) \cdot e)$ is the image vector with its base point. Another reason for this is its behavior under composition, so T is a covariant functor.

Theorem 1.11.

$$T(g \circ f) = T(g) \circ T(f)$$

$$T^{r}(g \circ f) = T^{r}(g) \circ T^{r}(f)$$

For $f: E \to F, c: I \to U$. So $Df(u) \cdot e = \frac{d}{dt} \{f(u+te)\} \mid_{t=0}$. Df(u) is represented by the usual Jacobian matrix. If we apply the fundamental theorm of calculus to $t \mapsto f(tx+(1-t)y)$ and $\parallel Df(tx+(1-t)y) \parallel \leq M$, we obtain the mean value inequality: $\parallel f(x) - f(y) \parallel \leq M \parallel x-y \parallel$.

Definition 1.24. Let $U_1 \subset E_1, U_2 \subset E_2$ be open and suppose $f: U_1 \times U_2 \to F$. Then the **partial derivative** of f with respect to E_1 denoted $D_1 f$ is defined by $D_1 f(u_1, u_2) : E_1 \to F: e_1 \mapsto D_1 f(u_1, u_2) \cdot e_1 = D f(u_1, u_2) \cdot (e_1, 0)$. Thus $D f = D_1 f + D_2 f$.

Theorem 1.12 (Inverse Mapping). Let $f: U \subset E \to F$ be of class C^r and suppose $Df(x_0)$ is a linear isomorphism. Then f is a C^r diffeomorphism of some neighborhood of x_0 onto some neighborhood of $f(x_0)$.

Lemma 1.2. Let M be a complete metric space, Let $F: M \to M$ and assume there is a constant $0 \le \lambda < 1$ s.t. $\forall x, y \in M, d(F(x), F(y)) \le \lambda d(x, y)$. Then F has a unique fixed point $x_0 \in M, F(x_0) = x_0$.

Proof. Pick $x_1 \in M$ and define $x_{n+1} = F(x_n)$. Thus $d(x_{n+1}, x_n) \leq \lambda^{n-1} d(F(x_1), x_1)$ and $d(x_{n+k}, x_n) \leq \left(\sum_{j=n-1}^{n+k-1} \lambda^j\right) d(F(x_1), x_1)$. Thus x_n is a Cauchy sequence. Since F is obviously uniformly continuous, then $x_0 = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} F(x_n) = F(x_0)$. \square

Theorem 1.13 (Implicit Function). Let $U \subset E, V \subset F$ and $f: U \times V \to G$ be C^r . For some x_0, y_0 assume $D_2f(x_0, y_0): F \to G$ is an isomorphism. Then there are neighborhoods $x_0 \in U_0, f(x_0, y_0) \in W_0$ and a unique C^r map $g: U_0 \times W_0 \to V$ s.t. $\forall (x, w) \in U_0 \times W_0, f(x, g(x, w)) = w$.

Proof. Consider the map $\Phi:(x,y)\mapsto(x,f(x,y))$, then

$$D\Phi(x_0, y_0) \cdot (x_1, y_1) = \begin{pmatrix} I & 0 \\ D_1 f(x_0, y_0) & D_2 f(x_0, y_0) \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

which is easily seen to be an isomorphism. Thus Φ has a unique C^r local inverse Φ^{-1} : $(x, w) \mapsto (x, q(x, w))$. Then g so defined is the desired map.

Exercises

Exercise 1.10. Show that

$$T^2f: (U \times E) \times (E \times E) \to (F \times F) \times F \times F$$

$$(u, e_1, e_2, e_3) \mapsto (f(u), Df(u) \cdot e_1, Df(u) \cdot e_2, D^2f(u) \cdot (e_1, e_2) + Df(u) \cdot e_3$$

Exercise 1.11. Develop a formula for $D^r(f \circ g), D^r(fg)$.

1.4 Manifolds and Mappings

Definition 1.25. A **local chart** on S is a bijection φ from a subsut U of S to an open subset of some (fimite-dimentional, real) vector space F, denoted as (U, φ) . An **atlas** on S is a family \mathcal{A} of charts $\{(U_i, \varphi_i)\}$ s.t.

- (1) $S = \cup U_i$;
- (2) Any two charts are compatable in the sense that the overlap maps between members of \mathcal{A} are C^{∞} diffeomorphisms.

Two atlases A_1, A_2 are equivalent iff $A_1 \cup A_2$ is an atlas. A differentiable structure S on S is an equivalence class of atlases on S. The union of the atlases $A_1 = \cup A$ is the maximal atlas. A differentiable manifold M is a pair (S, S). A manifold will always mean a Hausdorff, second countable, differentiable manifold.

Definition 1.26. Let $(S_1, S_1), (S_2, S_2)$ be two manifolds. The **product manifold** is $(S_1 \times S_2, S_1 \times S_2)$.

Definition 1.27. A submanifold of a manifold M is a subset $B \subset M$ with the property that for each $b \in B$ there is admissible chart (U, φ) in M with $b \in U$ which has the submanifold **property**, $\varphi : U \to E \times F$, and $\varphi(U \cap B) = \varphi(U) \cap (E \times \{0\})$. And its differentiable structure generated by the atlas is $\{(U \cap B, \varphi \mid U \cap B)\}$.

Definition 1.28. Suppose we have $f: M \to N$ and charts $(U, \varphi), (V, \phi)$. So the **local** representative of f, $f_{\varphi\phi} = \phi \circ f \circ \varphi^{-1}$.

Definition 1.29. A map $f: M \to N$ is called a diffeomorphism if f is of class C^r , is a bijection, and f^{-1} is of class C^r .

Exercises

Exercise 1.12. Prove that S^1 is a submanifold of \mathbb{R}^2 .

1.5 Vector Bundles

Definition 1.30. Let E and F be vector spaces with U an open subset of E. We call the product $U \times F$ a **local vector bundle**. We call U the **base space**, which can be identified with $U \times \{0\}$, the zero section. For $u \in U$, $\{u\} \times F$ is called the **fiber** over u, which we can endow with the vector space structure of F. The map $\pi : U \times F \to U$ given by $\pi(u, f) = u$ is called the **projection** of $U \times F$. Thus, the fiber over u is $\pi^{-1}(u)$.

Definition 1.31. Let S be a set. A **local bundle chart** of S is a pair (U, φ) where $U \subset S$ and $\varphi : U \to U' \times F'$ is a bijection. A **vector bundle atlas** on S is a family $\mathcal{B} = \{(U_i, \varphi_i)\}$ statisfying:

(1) it covers S;

(2) for any two local bundle charts $(U_i, \varphi_i), (U_j, \varphi_j)$ with $U_i \cap U_j \neq \emptyset$ and the overlap map $\phi_{ii} = \varphi_i \circ \varphi_i^{-1} \mid \varphi_i(U_i \cap U_j)$ is a local vector bundle isomorphism.

A vector bundle E is a pair (S, \mathcal{V}) , where \mathcal{V} is a vector bundle structure on set S. We define the **zero section** by $E_0 = \{e \in E \mid \text{there exists}(U, \varphi), e = \varphi^{-1}(u', 0).$

1.6 The Tangent Bundle

Let $\tau_U: TU \to U$ be the projections. We identify U with zero section $U \times \{0\}$. Then the diagram

$$TU \xrightarrow{Tf} TV$$

$$\tau_{U} \downarrow \qquad \qquad \downarrow \tau_{V}$$

$$U \xrightarrow{f} V$$

is commutative, that is, $f \circ \tau_U = \tau_V \circ Tf$. We will now extend the tangent function T from this local context to the category of differentiable manifolds and mappings.

Definition 1.32. Let M be a manifold and $m \in M$. A curve at m is a C^1 map $c : I \to M$ with $0 \in I$, c(0) = m. Let c_1, c_2 be curves at m and (U, φ) an admissible chart with $m \in U$. Then we say c_1, c_2 are **tangent** at m with respect φ iff $\varphi \circ c_1, \varphi \circ c_2$ are tangent at 0.

Propsition 1.14. Suppose $(U_{\beta}, \varphi_{\beta})$ are admissble charts. Then c_1, c_2 are tangent at m with respect to φ_1 iff they are tangent at m with respect to φ_2 .

Proof. Let
$$D(\varphi_1 \circ c_1)(0) = D(\varphi_1 \circ c_2)(0)$$
 and $u_1 = U_2$. Then we have $\varphi_2 \circ c_i = (\varphi_2 \circ \varphi_1^{-1}) \circ (\varphi_1 \circ c_i)$. Then it follows that $D(\varphi_2 \circ c_1)(0) = D(\varphi_2 \circ c_2)(0)$.

From the Proposition, we can say that c_1, c_2 are tangent at m for any local chart φ . An **equivalence class** of such curves is denoted $[c]_m$.

Definition 1.33. The **tangent space** of M at m is the set of equivalence calsses of curves at m $T_m(M) = \{[c]_m \mid c$ is a curve at m $\}$. For a subset $A \subset M$, let $TM \mid A = m \in AT_m(M)$. We call $TM = TM \mid M$ the tangent bundle of M. The mapping $\tau_M : TM \to M$ defined by $\tau_M([c]_m) = m$, is the **tangent bundle projection**.

Propsition 1.15. There is a unique $e \in E$ s.t. the curve $c_{u,e}$ defined by $c_{u,e}(t) = u + te$ is tangent to c at u.

Proof. Dc(0) is the unique linear map in $L(\mathbb{R}, E)$ s.t. the curve $g : \mathbb{R} \to E$ given by g(t) = u + Dc(0) * t is tangent to c at t=0. If $e = Dc(0) \cdot 1$, then $g = c_{u,e}$.

Propsition 1.16. Suppose c_1, c_2 are tangent at m. Let $f: M \to N$ be of class C^1 . Then $f \circ c_1, f \circ c_2$ are tangent at $f(m) \in N$.

$$Proof. \ (\phi \circ f \circ c_1)'(0) = (\phi \circ f' \circ \varphi^{-1})(\varphi \circ c_1)'(0) = (\phi \circ f' \circ \varphi^{-1})(\varphi \circ c_2)'(0) = (\phi \circ f \circ c_2)'(0) \quad \Box$$

Definition 1.34. We define $Tf:TM\to TN$ by $Tf([c]_m)=[f\circ c]_{f(m)}$. We call Tf the **tangent** of f.

Theorem 1.14. (1) Suppose $M\overrightarrow{f}N\overrightarrow{g}K$. Then $f \circ f : M \to K$ is of class C^1 and $T(g \circ f) = Tg \circ Tf$.

- (2) If $h: M \to M$ is the identity map, then Th is the identity map.
- (3) If f is a diffeomorphism, then Tf is a bijection and $(Tf)^{-1} = T(f^{-1})$.

Exercises

1.7 Tensors

Calculus on Manifolds

	2.1	Vector	Fields	as	Dynamical	Systems
--	-----	--------	--------	----	-----------	---------

Exercises

2.2 Vector Fields as Differential Operators

Exercises

2.3 Exterior Algebra

Exercises

2.4 Cartan's Calculus of Differential Forms

Exercises

2.5 Orientable Manifolds

Exercises

2.6 Integration on Manifolds

Exercises

2.7 Some Riemannian Geometry

Part II Analytical Dynamics

Hamiltonian and Lagrangian Systems

3.1 Symplectic Algebra

Exercises

3.2 Symplectic Geometry

Exercises

3.3 Hamiltonian Vector Fields and Poisson Brackets

Exercises

3.4 Integral Invariants, Energy Surfaces, and Stability

Exercises

3.5 Lagrangian Systems

Exercises

3.6 The Legendre Transformation

Exercises

3.7 Mechanics on Riemannian Manifolds

Exercises

3.8 Variational Principles₂in Mechanics

Hamiltonian Systems with Symmetry

4.1 Lie Groups and Group Actions

Exercises

4.2 The Momentum Mapping

Exercises

4.3 Reduction of Phase Space with Symmetry

Exercises

4.4 Hamiltonian Systems on Lie Groups and the Rigid Body

Exercises

4.5 The Topology of Simple Mechanical Systems

Exercises

4.6 The Topology of the Rigid Body

Hamilton-Jacobi Theory and Mathematical Physics

5.1 Time-Dependent Systems

Exercises

5.2 Canonical Transformations and Hamilton-Jacobi Theory

Exercises

5.3 Lagrangian Submanifolds

Exercises

5.4 Quantization

Exercises

5.5 Introduction to Infinite-Dimensional Hamiltonian Systems

Exercises

5.6 Introduction to Nonlinear Oscillations

Part III An Outline of Qualitative Dynamics

Topological Dynamics

6.1 Limit and Minimal Sets

Exercises

6.2 Recurrence

Exercises

6.3 Stability

Differentiable Dynamics

7.1	Critical	Elements
(• I	Oriucai	Diemenos

Exercises

7.2 Stable Manifolds

Exercises

7.3 Generic Properties

Exercises

7.4 Structural Stability

Exercises

7.5 Absolute Stability and Axiom A

Exercises

7.6 Bifurcations of Generic Arcs

- 7.7 A Zoo of Stable Bifurcations
- 7.8 Experimental Dynamics

Hamiltonian Dynamics

- 8.1 Critical Elements
- 8.2 Orbit Cylinders

Exercises

8.3 Stability of Orbits

Exercises

8.4 Generic Properties

- 8.5 Structural Stability
- 8.6 A Zoo of stable Bifurcations
- 8.7 The General Pathology
- 8.8 Experimental Mechanics

Part IV Celestial Mechanics

The Two-Body Problem

$^{\circ}$	T / - 1 - 1	C	M	D - 11
9.1	Models	m	I WO	Bodies

Exercises

- 9.2 Elliptic Orbits and Kepler Elements
- 9.3 The Delaunay Variables
- 9.4 Lagrange Brackets of Kepler Elements
- 9.5 Whittaker's Method
- 9.6 Poincare Variables

Exercises

9.7 Summary of Models

Exercises

9.8 Topology of the Two-Body Problem

The Three-Body Problem

10.1 Models for Three Bodies

Exercises

10.2 Critical Points in the Restricted Three-Body Problem

Exercises

10.3 Closed Orbits in the Restricted Three-Body Problem

Exercises

10.4 Topology of the Plannar n-Body Problem

Appendix

General Theory by Kolmogorov