Universidade Federal do Rio Grande do Norte Departamento de Computação e Tecnologia DCT1101 - Algoritmos e Lógica de Programação Prof. Flavius Gorgônio - Período 2018.1

Terceira Lista de Exercícios

As questões a seguir envolvem problemas com expressões aritméticas, relacionais ou lógicas, para os quais você deverá desenvolver um programa usando a linguagem Python. Em cada caso, procure inicialmente imaginar um algoritmo que represente uma solução para o problema e, só após isso, comece a codificação do programa. Não é necessário ter pressa ou resolver todos os problemas de uma só vez, siga o seu próprio ritmo de aprendizado. Lembre-se sempre que existem inúmeras soluções para cada problema.

1. Assumindo que as variáveis a seguir são inicializadas com os valores: x=1, y=3, z=5 e w=2, analise as expressões a seguir e defina o seu valor resultante. Depois, escreva um programa no Python que confira as suas respostas.

a.
$$x >= y / 2$$

e.
$$z + w >= 2 * x ** y$$

f.
$$(x < z)$$
 and $(y < z)$ or $(x < w)$ and $(z > = y)$

c.
$$not(x > w \text{ or } x < w)$$

g.
$$(y > x)$$
 and $not(y > x)$

d.
$$not(y > x)$$
 or $(y > x)$

h.
$$(x < 0)$$
 or $(y > x)$ and $(y < z)$

2. A mudança de base de um logaritmo é dada pela equação abaixo:

$$log_a N = \frac{log_b N}{log_b a}$$

Usando essa equação base e as funções log(x) e log10(x), calcule:

c. $\log_{16}(1024)$

b.
$$\log_{5}(625)$$

d. $\log_2(1024)$

3. Verifique as seguintes identidades trigonométricas calculando os dois lados de cada equação abaixo para valores arbitrários de x:

a.
$$sen(2x) = 2 . sen(x) . cos(x)$$

c.
$$1 - \cos(2x) = \sin(2x)$$

b.
$$sen(-x) = - sen(x)$$

d.
$$sen(a+b) = sen(a) \cdot cos(b) + sen(b) \cdot cos(a)$$

- 4. Laranjas são empacotadas em caixas contendo *m* unidades. Escreva um programa que calcule exatamente quantas caixas são necessárias para armazenar *n* laranjas, onde os valores de *m* e *n* deve ser fornecido pelo usuário.
- 5. Um baralho tem 52 cartas e cada jogador recebe *k* cartas selecionadas aleatoriamente do baralho. Escreva um programa que calcule quantas diferentes combinações com *k* cartas são possíveis, onde o valor de *k* deve ser fornecido pelo usuário. Lembre que:

$$C_{n, r} = \frac{n!}{r! (n-r)!}$$