Arline: Benchmarks

Automated benchmarking platform for quantum compilers, quantum hardware and quantum algorithms

Automatically generated report

by Arline Benchmarks

 $https://github.com/ArlineQ/arline_benchmarks$

June 15, 2022

Contents

Overview

Quantum compilation is a problem of translating quantum algorithm to the set of low-level hardware instructions to be executed on the quantum processor. Efficient compilation and circuit optimisation (finding an optimal sequence of gates for the desired quantum computation) is immense importance for practical applications and is necessary for further progress towards scalable quantum computation.

The importance of optimal quantum compilation stems from the fact that noisy intermediate-scale quantum (NISQ) devices suffer from unavoidable noise caused by individual gates. Extreme susceptibility of quantum computation to noise is the crucial problem that hinders the development of large-scale quantum computers. By the means of optimising gate count in the quantum circuit, it is possible to significantly reduce hardware errors.

Optimal (or near-optimal) circuit compilation is an extremely challenging task due to additional constraints imposed by hardware configuration, such as restricted qubit connectivity and hardware-native gate set. Finding optimal gate sequences for a given quantum circuit with all imposed constraints is an open problem. For two-qubit circuits, the KAK algorithm is an example of the efficient compilation algorithm, that is used in practical applications.

The subroutines for quantum circuit optimisation, mapping and routing for particular hardware connectivity are an integral part of existing quantum software frameworks. The complexity and diversity of various quantum compilation algorithms create a necessity of cross-benchmarking and comparison between different compiler frameworks. It worth to note, that the problem of hardware benchmarking often arises in classical computing, where hardware is compared based on their performance on a set of predefined tests.

Arline Benchmarks¹ platform is created to solve benchmarking problem in the quantum world and aims to provide a fair comparison between compilers for various quantum hardware and quantum algorithms.

1.1 Frameworks

Below we list compilation frameworks used in the benchmarking run:

- IBM Qiskit²v0.34.2 (open-source).Qiskit is an open-source framework for working with quantum computers at the level of circuits, pulses, and algorithms. Qiskit transpiler combines mapping and compression subroutines. The transpiler has three levels of optimization, in our report, we invoke the most advanced optimization level (3).
 - Compression/optimization algorithm relies on **commutative cancellations of gates**, **aggregation of single-qubit gates**, **removal of diagonal gates before measurement**.
 - Routing and mapping algorithms are based on construction of a basic, stochastic or lookahead swap network.
 - The output circuit gate set: $U_1, U_2, U_3, CNOT, I$.
- Google Cirq library v0.13.1 (open-source). Cirq has been developed by Google AI Quantum Team. Cirq supports mapping/routing operations and tailored towards specific grid-like qubit coupling topologies.
 - The compression subroutines include pushing Pauli gates and phased Pauli gates to the end of the circuit, merging single-qubit gates and dropping negligible gates and empty moments.
 - Routing and mapping methods are based on a greedy swap insertion strategy.
 - The output circuit gate set: R_x , R_z , CZ.

Neither the authors of the Arline Benchmarks program, nor any of their employees, nor any of their contractors, sub-contractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Readers are cautioned that information contained in this report is only current as of the respective dates of such information. The technical condition, analyzed program code, comparative results may have changed since those dates. Readers are advised to review only the most recent document for the most current information.

²IBM and Qiskit are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.

¹Disclaimer. This report was prepared using open source program Arline Benchmarks and is provided "AS IS", "AS AVAILABLE", and all warranties, express or implied, are disclaimed.

1.2 Definitions

We define compression factor (CF) for a particular class of gates (G) (e.g. single-qubit gates, two-qubit gates) averaged over circuits (C) as:

• Compression factor greater then unity (CF(G) > 1) corresponds to a successful compression (the gate count of the gate (G) in the output circuit is less compared to the input circuit). Similarly, compression factor less then unity (CF(G) < 1) corresponds to unsuccessful compression (the output circuit contains more gates of type (G) compared to the input circuit).

$$CF(G) = \left\langle \frac{\text{gate count}(G, C_i)_{\text{before}}}{\text{gate count}(G, C_i)_{\text{after}}} \right\rangle_C.$$

• Circuits **before** and **after** correspond to initial and final compilation stages. In the present report, we usually assume that the initial stage is target generation, the final stage is typically either **compression** or **rebase** to the output hardware gate set.

As an additional metric that defines a circuit cost we use the following circuit cost function:

$$C = -\log\left(K^d \prod_i F_i^{1q} \prod_j F_j^{2q}\right),\,$$

where C - circuit cost, K - factor that penalises deep circuits, d - circuit depth, F_i^{1q} - fidelity of single qubit gates, F_i^{2q} - fidelity of two qubit gates.

1.3 Metrics

- Depth
- Total Gate Count
- Single-Qubit Gate Count
- Two-Qubit Gate Count
- Single-Qubit Gate Depth
- Two-Qubit Gate Depth
- Circuit Cost Function
- Execution Time

Note that in most cases single-qubit gate count and single-qubit gate compression factor have only limited meaning as a metric of compiler performance. This is because single-qubit gate count is very sensitive to the choice single-qubit basisgates (e.g. U_3 is equivalent to a combination of 3 rotation gates R_x , R_y and R_z).

1.4 Hardware Backends

Hardware backends are defined in open-source **Arline Quantum** library https://github.com/ArlineQ/arline_quantum. Names of hardware backends reflect gate set and connectivity. E.g. IbmAll2All16Q corresponds to a 16-qubit fully-connected mock backend with the native gate set of the IBM quantum hardware.

Figure 1.1: IbmRueschlikonSymmetrical16Q hardware coupling map: adjacency matrix.

Figure 1.2: IbmAll2All16Q hardware coupling map: adjacency matrix.

1.5 Compilation Pipelines

Compilation pipeline is a sequence of compilation routines, which typically consist of three main stages:

- 1. Unroll (optional) for the three-qubit gates;
- 2. Mapping and routing of the original circuit to a hardware topology, further mapping;
- 3. Compression of the circuit that reduces the number of gates involved;
- 4. Rebase (optional) of the final gate sequence into a particular gate set;

Summary of compilation pipelines settings used in the current report is presented below.

Number of pipelines for benchmarking: 2

- Pipeline name: **QiskitPl**
 - 1. Stage name: mapping_compression
- Pipeline name: CirqPl
 - 1. Stage name: mapping_compression

1.6 System Info

- Platform: Linux-5.13.0-1029-azure-x86_64-with-glibc2.29
- Processor: AMD EPYC 7763 64-Core Processor
- Memory: 15.6 Gb

1.7 Targets

Target is a quantum circuit subject to compilation. List of target generators:

- Target generator type: random circuits from [Clifford + T] gate set:
 - Number of circuits: 10
 - Gates frequencies: [Cnot: 0.152, H: 0.17, S: 0.161, Sd: 0.168, T: 0.172, Td: 0.177]
 - Mean number of qubits: 2.0
 - Mean circuit depth per circuit: 84.7
 - Mean single-qubit gate count per circuit: 101.7

- Mean two-qubit gate count per circuit: 18.3
- Mean total gate count per circuit: 120.0
- Target generator type: random circuits from [CNOT, U₃] gate set:
 - Number of circuits: 10
 - Gates frequencies: [Cnot: 0.515, U3: 0.485]
 - Mean number of qubits: 2.0
 - Mean circuit depth per circuit: 108.0
 - Mean single-qubit gate count per circuit: 58.2
 - Mean two-qubit gate count per circuit: 61.8
 - Mean total gate count per circuit: 120.0
- Target generator type: random circuits from [Clifford + T] gate set:
 - Number of circuits: 10
 - Gates frequencies: [Cnot: 0.743, H: 0.061, S: 0.045, Sd: 0.049, T: 0.054, Td: 0.048]
 - Mean number of qubits: 16.0
 - Mean circuit depth per circuit: 33.8
 - Mean single-qubit gate count per circuit: 30.9
 - Mean two-qubit gate count per circuit: 89.1
 - Mean total gate count per circuit: 120.0
- Target generator type: random circuits from [CNOT, U₃] gate set:
 - Number of circuits: 10
 - Gates frequencies: [Cnot: 0.926, U3: 0.074]
 - Mean number of qubits: 16.0
 - Mean circuit depth per circuit: 36.9
 - Mean single-qubit gate count per circuit: 8.9
 - Mean two-qubit gate count per circuit: 111.1
 - Mean total gate count per circuit: 120.0
- Target generator type: QASM circuits for arithmetic blocks:
 - Number of circuits: 5

- Gates frequencies: [Cnot: 0.445, H: 0.123, T: 0.246, Td: 0.185, X: 0.001]
- Mean number of qubits: 16.0
- Mean circuit depth per circuit: 165.2
- Mean single-qubit gate count per circuit: 184.7
- Mean two-qubit gate count per circuit: 148.2
- Mean total gate count per circuit: 332.8

Comparison with KAK

Decomposition: Two-Qubit Circuits

2.1 Cartan decomposition

Cartan decomposition (KAK decomposition) provides theoretical *CNOT*-optimal schemes for two-qubit circuits (Figure ??).

Figure 2.1: KAK decomposition scheme for two-qubit circuits.

Arbitrary two-qubit unitary can be represented using U_3 and CNOT gates with no more than:

Metrics	Gate Count	Depth
CNOT	3	3
U_3	8	4
Total	11	7

Target: Random Circuits from

[Clifford + T] Gate Set

3.1 Hardware: IbmAll2All2Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Note that in most cases single-qubit gate count and single-qubit gate compression factor have only limited meaning as a metric of compiler performance. This is because single-qubit gate count is very sensitive to the choice single-qubit basis gates (e.g. U_3 is equivalent to a combination of 3 rotation gates R_x , R_y and R_z).

Figure 3.1: Circuits metrics for each compilation pipeline stage for IbmAll2All2Q.

Figure 3.2: Circuit cost function for IbmAll2All2Q.

Figure 3.3: Compression factor (CF) between target and final compilation stage for IbmAll2All2Q (histogram and radar plot).

Gate composition for each compilation pipeline stage

Figure 3.4: Gate frequencies in each pipeline stage for IbmAll2All2Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 3.5: Mean execution time of each compilation stage for IbmAll2All2Q.

Summary stats (averaged over target circuits) by pipeline

	Metrics	Mi	n	Max	
Depth			Ç)iskitPl	CirqPl
Total Gate Count			Ç)iskitPl	CirqPl
Single-Qubit Gate Count			QiskitPl		CirqPl
Two-Qubit Gate Count			CirqPl		CirqPl
Single-Qubit Gate Depth			QiskitPl		CirqPl
	Continued on Next Page				

	Metrics	Min		Max	
Two-Qubit Gate Depth			CirqPl		CirqPl
Circuit Cost Function			QiskitPl		CirqPl
Execution Time			C	SirqPl	QiskitPl

Cluster analytics

Scatter plots with axes representing: depth, (input/output) single-qubit gate count, (input/output) two-qubit gate count, (input/output) total gate count and execution time.

Figure 3.6: Cluster analytics for IbmAll2All2Q. Each point corresponds to an individual target quantum circuit from the target generator.

Breakdown by individual circuits

Figure 3.7: Compression factor (CF) vs circuit for IbmAll2All2Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	6	5	CirqPl	1	8
Total Gate Count	QiskitPl	6	8	CirqPl	1	13
Single-Qubit Gate Count	QiskitPl	6	6	CirqPl	1	10
Two-Qubit Gate Count	QiskitPl	6	2	QiskitPl	1	3
Single-Qubit Gate Depth	QiskitPl	6	3	CirqPl	1	5
Two-Qubit Gate Depth	QiskitPl	6	2	QiskitPl	1	3
Circuit Cost Function	QiskitPl	6	0.051	CirqPl	1	0.08
Execution Time	CirqPl	8	0.054	QiskitPl	10	0.184

3.2 Hardware Comparison

This analysis is performed across all classes of target circuit.

	Metrics	Min	Max	
Depth	Depth		2All2Q	IbmAll2All2Q
Total Gate Count		IbmAll	2All2Q	IbmAll2All2Q
Single-Qubit Gate Count		IbmAll	2All2Q	IbmAll2All2Q
Two-Qubit Gate Count		IbmAll	2All2Q	IbmAll2All2Q
Single-Qubit Gate Depth		IbmAll	2All2Q	IbmAll2All2Q
Two-Qubit Gate	e Depth	IbmAll	2All2Q	IbmAll2All2Q
Circuit Cost Fu	nction	IbmAll2All2Q		IbmAll2All2Q
Execution Time	,	IbmAll	2All2Q	IbmAll2All2Q

Figure 3.8: Final circuit metrics after compilation vs hardware backend.

Target: Random Circuits from

[CNOT, U₃] Gate Set

4.1 Hardware: IbmAll2All2Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Note that in most cases single-qubit gate count and single-qubit gate compression factor have only limited meaning as a metric of compiler performance. This is because single-qubit gate count is very sensitive to the choice single-qubit basis gates (e.g. U_3 is equivalent to a combination of 3 rotation gates R_x , R_y and R_z).

Figure 4.1: Circuits metrics for each compilation pipeline stage for IbmAll2All2Q.

Figure 4.2: Circuit cost function for IbmAll2All2Q.

Figure 4.3: Compression factor (CF) between target and final compilation stage for IbmAll2All2Q (histogram and radar plot).

Gate composition for each compilation pipeline stage

Figure 4.4: Gate frequencies in each pipeline stage for IbmAll2All2Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 4.5: Mean execution time of each compilation stage for IbmAll2All2Q.

Summary stats (averaged over target circuits) by pipeline

	Metrics	Min	Max	
Depth	Depth			CirqPl
Total Gate Count			QiskitPl	CirqPl
Single-Qubit Gate Count			QiskitPl	CirqPl
Two-Qubit Gate Count			CirqPl	CirqPl
Single-Qubit Gate Depth			QiskitPl	CirqPl
	xt Page			

	Metrics	Min	n Max		
Two-Qubit Gate Depth			CirqPl		CirqPl
Circuit Cost Function			Q)iskitPl	CirqPl
Execution Time			Q)iskitPl	CirqPl

Cluster analytics

Scatter plots with axes representing: depth, (input/output) single-qubit gate count, (input/output) two-qubit gate count, (input/output) total gate count and execution time.

Figure 4.6: Cluster analytics for IbmAll2All2Q. Each point corresponds to an individual target quantum circuit from the target generator.

Breakdown by individual circuits

Figure 4.7: Compression factor (CF) vs circuit for IbmAll2All2Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	1	7	CirqPl	1	8
Total Gate Count	QiskitPl	1	11	CirqPl	1	13
Single-Qubit Gate Count	QiskitPl	1	8	CirqPl	1	10
Two-Qubit Gate Count	QiskitPl	1	3	QiskitPl	1	3
Single-Qubit Gate Depth	QiskitPl	1	4	CirqPl	1	5
Two-Qubit Gate Depth	QiskitPl	1	3	QiskitPl	1	3
Circuit Cost Function	QiskitPl	1	0.073	CirqPl	1	0.08
Execution Time	QiskitPl	3	0.07	CirqPl	7	0.312

4.2 Hardware Comparison

This analysis is performed across all classes of target circuit.

	Metrics	Min	Max	
Depth	Depth		2All2Q	IbmAll2All2Q
Total Gate Cou	nt	IbmAll	2All2Q	IbmAll2All2Q
Single-Qubit Ga	ate Count	IbmAll	2All2Q	IbmAll2All2Q
Two-Qubit Gate	e Count	IbmAll	2All2Q	IbmAll2All2Q
Single-Qubit Ga	ate Depth	IbmAll	2All2Q	IbmAll2All2Q
Two-Qubit Gate	e Depth	IbmAll	2All2Q	IbmAll2All2Q
Circuit Cost Fu	nction	IbmAll2All2Q		IbmAll2All2Q
Execution Time	,	IbmAll	2All2Q	IbmAll2All2Q

Figure 4.8: Final circuit metrics after compilation vs hardware backend.

Quick Summary

5.1 Aggregate Multi-Factor Comparison

This analysis is performed across all compilation frameworks, target circuits and hardware. From this result, we can deduce the degree of compressibility of different target circuits.

Note that in most cases single-qubit gate count and single-qubit gate compression factor have only limited meaning as a metric of compiler performance. This is because single-qubit gate count is very sensitive to the choice single-qubit basis gates (e.g. U_3 is equivalent to a combination of 3 rotation gates R_x , R_y and R_z).

Figure 5.1: Aggregate multi-factor comparison of compilation frameworks: compression factor (CF) across various features. Columns correspond to specific target circuit classes, and row correspond to different hardware architectures. Better performance corresponds to a larger polygon area.

Target: Random Circuits from

[Clifford + T] Gate Set

6.1 Hardware: IbmRueschlikonSymmetrical16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Note that in most cases single-qubit gate count and single-qubit gate compression factor have only limited meaning as a metric of compiler performance. This is because single-qubit gate count is very sensitive to the choice single-qubit basis gates (e.g. U_3 is equivalent to a combination of 3 rotation gates R_x , R_y and R_z).

Figure 6.1: Circuits metrics for each compilation pipeline stage for IbmRueschlikonSymmetrical16Q.

Figure 6.2: Circuit cost function for IbmRueschlikonSymmetrical16Q.

Figure 6.3: Compression factor (CF) between target and final compilation stage for IbmRueschlikon-Symmetrical16Q (histogram and radar plot).

Gate composition for each compilation pipeline stage

Figure 6.4: Gate frequencies in each pipeline stage for IbmRueschlikonSymmetrical16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 6.5: Mean execution time of each compilation stage for IbmRueschlikonSymmetrical16Q.

Summary stats (averaged over target circuits) by pipeline

	Metrics	Min		Max	
Depth	Depth			iskitPl	CirqPl
Total Gate Count				iskitPl	CirqPl
Single-Qubit Gate Count			QiskitPl		CirqPl
Two-Qubit Gate Count			Q	iskitPl	CirqPl
	Page				

	Metrics	Min	l	Max	
Single-Qubit Gate Depth				QiskitPl	CirqPl
Two-Qubit Gate Depth			QiskitPl		CirqPl
Circuit Cost Function			QiskitPl		CirqPl
Execution Time			(QiskitPl	CirqPl

Cluster analytics

Scatter plots with axes representing: depth, (input/output) single-qubit gate count, (input/output) two-qubit gate count, (input/output) total gate count and execution time.

Figure 6.6: Cluster analytics for IbmRueschlikonSymmetrical16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Breakdown by individual circuits

Figure 6.7: Compression factor (CF) vs circuit for IbmRueschlikonSymmetrical16Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	1	145	CirqPl	7	743
Total Gate Count	QiskitPl	1	403	CirqPl	1	2147
Single-Qubit Gate Count	QiskitPl	7	50	CirqPl	1	1382
Two-Qubit Gate Count	QiskitPl	1	323	CirqPl	1	765
Single-Qubit Gate Depth	QiskitPl	4	8	CirqPl	10	158
Two-Qubit Gate Depth	QiskitPl	1	130	CirqPl	7	383
Circuit Cost Function	QiskitPl	1	4.053	CirqPl	1	12.435
Execution Time	QiskitPl	1	0.71	CirqPl	1	9.678

6.2 Hardware: IbmAll2All16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Figure 6.8: Circuits metrics for each compilation pipeline stage for IbmAll2All16Q.

Figure 6.9: Circuit cost function for IbmAll2All16Q.

Figure 6.10: Compression factor (CF) between target and final compilation stage for IbmAll2All16Q (histogram and radar plot).

Figure 6.11: Gate frequencies in each pipeline stage for IbmAll2All16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 6.12: Mean execution time of each compilation stage for IbmAll2All16Q.

	Metrics	Min	Max	
Depth	Depth		QiskitPl	CirqPl
Total Ga	te Count		QiskitPl	CirqPl
Single-Qu	ıbit Gate C	ount	QiskitPl	CirqPl
Two-Qub	it Gate Cou	int	QiskitPl	CirqPl
Single-Qubit Gate Depth			QiskitPl	CirqPl
	xt Page			

	Metrics	Min		Max	
Two-Qubit Gate Depth				QiskitPl	CirqPl
Circuit Cost Function				QiskitPl	CirqPl
Execution Time			(QiskitPl	CirqPl

Figure 6.13: Cluster analytics for IbmAll2All16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Figure 6.14: Compression factor (CF) vs circuit for IbmAll2All16Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	9	28	CirqPl	4	62
Total Gate Count	QiskitPl	3	103	CirqPl	7	224
Single-Qubit Gate Count	QiskitPl	4	19	CirqPl	1	138
Two-Qubit Gate Count	QiskitPl	3	75	CirqPl	4	93
Single-Qubit Gate Depth	QiskitPl	4	2	CirqPl	1	15
Two-Qubit Gate Depth	QiskitPl	1	25	CirqPl	4	38
Circuit Cost Function	QiskitPl	3	0.942	CirqPl	4	1.371
Execution Time	QiskitPl	9	0.174	CirqPl	3	0.696

6.3 Hardware Comparison

This analysis is performed across all classes of target circuit.

	Metrics	Min	Max	
Depth		IbmAll2	All16Q	IbmAll2All16Q
Total Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gat	e Count	IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gat	e Depth	IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate	Depth	IbmAll2All16Q		IbmAll2All16Q
Circuit Cost Fun	ction	IbmAll2All16Q		IbmAll2All16Q
Execution Time		IbmAll2	All16Q	IbmAll2All16Q

Figure 6.15: Final circuit metrics after compilation vs hardware backend.

Chapter 7

Target: Random Circuits from

[CNOT, U₃] Gate Set

7.1 Hardware: IbmRueschlikonSymmetrical16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Figure 7.1: Circuits metrics for each compilation pipeline stage for IbmRueschlikonSymmetrical16Q.

Figure 7.2: Circuit cost function for IbmRueschlikonSymmetrical16Q.

Figure 7.3: Compression factor (CF) between target and final compilation stage for IbmRueschlikon-Symmetrical16Q (histogram and radar plot).

Figure 7.4: Gate frequencies in each pipeline stage for IbmRueschlikonSymmetrical16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 7.5: Mean execution time of each compilation stage for IbmRueschlikonSymmetrical16Q.

	Metrics	Min		Max	
Depth	th		(QiskitPl	CirqPl
Total Gate Count				QiskitPl	CirqPl
Single-Qubit Gate Count				QiskitPl	CirqPl
Two-Qub	it Gate Cou	ınt	(QiskitPl	CirqPl
Single-Qubit Gate Depth				QiskitPl	CirqPl
	t Page				

	Metrics	Min		Max	
Two-Qubit Gate Depth				QiskitPl	CirqPl
Circuit Cost Function				QiskitPl	CirqPl
Execution Time			(QiskitPl	CirqPl

Figure 7.6: Cluster analytics for IbmRueschlikonSymmetrical16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Figure 7.7: Compression factor (CF) vs circuit for IbmRueschlikonSymmetrical16Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	5	171	CirqPl	8	784
Total Gate Count	QiskitPl	5	451	CirqPl	8	2517
Single-Qubit Gate Count	QiskitPl	2	53	CirqPl	8	1606
Two-Qubit Gate Count	QiskitPl	5	378	CirqPl	8	911
Single-Qubit Gate Depth	QiskitPl	3	9	CirqPl	8	201
Two-Qubit Gate Depth	QiskitPl	5	153	CirqPl	8	408
Circuit Cost Function	QiskitPl	5	4.729	CirqPl	8	14.692
Execution Time	QiskitPl	10	0.861	CirqPl	8	11.713

7.2 Hardware: IbmAll2All16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Figure 7.8: Circuits metrics for each compilation pipeline stage for IbmAll2All16Q.

Figure 7.9: Circuit cost function for IbmAll2All16Q.

Figure 7.10: Compression factor (CF) between target and final compilation stage for IbmAll2All16Q (histogram and radar plot).

Figure 7.11: Gate frequencies in each pipeline stage for IbmAll2All16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 7.12: Mean execution time of each compilation stage for IbmAll2All16Q.

	Metrics	Min	Max	
Depth			QiskitPl	CirqPl
Total Ga	Total Gate Count QiskitPl CirqP			
Single-Qu	ıbit Gate C	ount	QiskitPl	CirqPl
Two-Qub	it Gate Cou	int	QiskitPl	CirqPl
Single-Qu	ıbit Gate D	epth	QiskitPl	CirqPl
	xt Page			

	Metrics	Min		Max	
Two-Qubit Gate Depth				QiskitPl	CirqPl
Circuit Cost Function				QiskitPl	CirqPl
Execution Time			(QiskitPl	CirqPl

Figure 7.13: Cluster analytics for IbmAll2All16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Figure 7.14: Compression factor (CF) vs circuit for IbmAll2All16Q.

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Depth	QiskitPl	5	29	CirqPl	4	67
Total Gate Count	QiskitPl	10	105	CirqPl	2	271
Single-Qubit Gate Count	QiskitPl	2	5	CirqPl	2	156
Two-Qubit Gate Count	QiskitPl	10	92	CirqPl	2	115
Single-Qubit Gate Depth	QiskitPl	7	1	CirqPl	8	18
Two-Qubit Gate Depth	QiskitPl	5	29	CirqPl	4	40
Circuit Cost Function	QiskitPl	10	1.098	CirqPl	2	1.608
Execution Time	QiskitPl	1	0.189	CirqPl	8	0.84

7.3 Hardware Comparison

This analysis is performed across all classes of target circuit.

	Metrics	Min	Max	
Depth		IbmAll2	All16Q	IbmAll2All16Q
Total Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gat	e Count	IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gat	e Depth	IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate	Depth	IbmAll2All16Q		IbmAll2All16Q
Circuit Cost Fun	ction	IbmAll2All16Q		IbmAll2All16Q
Execution Time		IbmAll2	All16Q	IbmAll2All16Q

Figure 7.15: Final circuit metrics after compilation vs hardware backend.

Chapter 8

Target: QASM Circuits for

Arithmetic Algorithms

8.1 Hardware: IbmRueschlikonSymmetrical16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Figure 8.1: Circuits metrics for each compilation pipeline stage for IbmRueschlikonSymmetrical16Q.

Figure 8.2: Circuit cost function for IbmRueschlikonSymmetrical16Q.

Figure 8.3: Compression factor (CF) between target and final compilation stage for IbmRueschlikon-Symmetrical16Q (histogram and radar plot).

Figure 8.4: Gate frequencies in each pipeline stage for IbmRueschlikonSymmetrical16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 8.5: Mean execution time of each compilation stage for IbmRueschlikonSymmetrical16Q.

	Metrics	Min		Max	
Depth				QiskitPl	CirqPl
Total Gate Count			(QiskitPl	CirqPl
Single-Qubit Gate Count			QiskitPl		CirqPl
Two-Qubit Gate Count			QiskitPl		CirqPl
Single-Qubit Gate Depth			(QiskitPl	CirqPl
	t Page				

	Metrics	Min		Max	
Two-Qub	Two-Qubit Gate Depth			QiskitPl	CirqPl
Circuit Cost Function			QiskitPl		CirqPl
Execution Time			(QiskitPl	CirqPl

Figure 8.6: Cluster analytics for IbmRueschlikonSymmetrical16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Figure 8.7: Compression factor (CF) vs circuit for IbmRueschlikonSymmetrical16Q.

Metrics	Min			Max			
	Pipeline	Circuit	Val	Pipeline	Circuit	Val	
Depth	QiskitPl	sym9_146	341	CirqPl	sym9_146	631	
Total Gate Count	QiskitPl	mini- alu 167	529	CirqPl	sym9_146	1497	
Single-Qubit Gate Count	QiskitPl	rd53_135	221	CirqPl	sym9_146	980	
				С	ontinued on	Next Page	

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Two-Qubit Gate Count	QiskitPl	mini- alu 167	288	CirqPl	sym9_146	517
Single-Qubit Gate Depth	QiskitPl	sym9_146	50	CirqPl	sym9_146	194
Two-Qubit Gate Depth	QiskitPl	sym9_146	255	QiskitPl	C17_204	408
Circuit Cost Function	QiskitPl	mini- alu 167	4.99	CirqPl	sym9_146	9.339
Execution Time	QiskitPl	mini- alu 167	0.892	CirqPl	sym9_146	30.401

8.2 Hardware: IbmAll2All16Q

Metrics for each stage of compilation pipeline and aggregate compression factor (initial/final)

Figure 8.8: Circuits metrics for each compilation pipeline stage for IbmAll2All16Q.

Figure 8.9: Circuit cost function for IbmAll2All16Q.

Figure 8.10: Compression factor (CF) between target and final compilation stage for IbmAll2All16Q (histogram and radar plot).

Figure 8.11: Gate frequencies in each pipeline stage for IbmAll2All16Q.

Execution time stats

Here we present stats about execution time (in seconds) spent by frameworks for each compilation stage.

Figure 8.12: Mean execution time of each compilation stage for IbmAll2All16Q.

	Metrics	Mi	n	Max	
Depth) iskitPl	CirqPl
Total Gate Count)iskitPl	CirqPl
Single-Qubit Gate Count			QiskitPl		CirqPl
Two-Qubit Gate Count			CirqPl		QiskitPl
Single-Qu	Qubit Gate Depth)iskitPl	CirqPl
	Continued				

	Metrics	Min		Max	
Two-Qubit Gate Depth			CirqPl		QiskitPl
Circuit Cost Function			QiskitPl		CirqPl
Execution Time			Ç)iskitPl	CirqPl

Figure 8.13: Cluster analytics for IbmAll2All16Q. Each point corresponds to an individual target quantum circuit from the target generator.

Figure 8.14: Compression factor (CF) vs circuit for IbmAll2All16Q.

Metrics	Min	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val	
Depth	QiskitPl	sym9_146	120	QiskitPl	C17_204	229	
Total Gate Count	QiskitPl	mini- alu 167	254	CirqPl	sym9_146	418	
Single-Qubit Gate Count	QiskitPl	mini- alu 167	128	CirqPl	sym9_146	270	
Continued on Next Page							

Metrics	Min			Max		
	Pipeline	Circuit	Val	Pipeline	Circuit	Val
Two-Qubit Gate Count	QiskitPl	mini- alu 167	126	QiskitPl	C17_204	205
Single-Qubit Gate Depth	QiskitPl	rd53_135	32	CirqPl	sym9_146	64
Two-Qubit Gate Depth	QiskitPl	sym9_146	91	QiskitPl	C17_204	173
Circuit Cost Function	QiskitPl	mini- alu 167	2.131	QiskitPl	C17_204	3.413
Execution Time	QiskitPl	one-two- three- v0 97	0.387	CirqPl	sym9_146	1.061

8.3 Hardware Comparison

This analysis is performed across all classes of target circuit.

	Metrics	Min	Max	
Depth		IbmAll2	All16Q	IbmAll2All16Q
Total Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate Count		IbmAll2	All16Q	IbmAll2All16Q
Single-Qubit Gate Depth		IbmAll2	All16Q	IbmAll2All16Q
Two-Qubit Gate Depth		IbmAll2All16Q		IbmAll2All16Q
Circuit Cost Function		IbmAll2All16Q		IbmAll2All16Q
Execution Time		IbmAll2	All16Q	IbmAll2All16Q

Figure 8.15: Final circuit metrics after compilation vs hardware backend.

References

- G. Vidal and C.M. Dawson, "A universal quantum circuit for two-qubit transformations with three CNOT gates", Phys. Rev. A 69, 010301 (2004), https://arxiv.org/pdf/quant-ph/0307177.pdf
- IBM Qiskit repository https://github.com/Qiskit
- P. Jurcevic et al, "Demonstration of quantum volume 64 on a superconducting quantum computing system", https://arxiv.org/abs/2008.08571 (2020).