Instructions for the SI630 Project Proposal

Version 1.0

Jiale Zha jialezha@umich.edu

Abstract

Relation Extraction, as an important part of Information Extraction, has always attracted our attention. Until now, various methods have been utilized in this area, including feature-based method, kernel-based method, nueral network method and so on. Our project will focus on those popular models for relation extraction system, try to compare the performance of them and design a new model combining their advantages.

1 Introduction

Extracting information from textual data has always been a popular topic in natural language processing(NLP) area. Of all those information, the relationship information always attracts our attention first. Thus, Relation Extraction(RE) plays a vital role in this area. Basically, relation extraction is to extract semantic relations, like belonging to, between eneities, such as person, organization, location and so on. Table 1 gives a example of relationship extraction, the entity pair *henrik stenson* and *sweden* has the relationship *country of citizenship*.

In some situation, RE system even could provide us with the majority information of text, so it's widely used for further textual learning problem, like the construction of knowledge graph (Milosevic and Thielemann (2022)), the exploration of gene-disease relationships (Chun et al. (2006)), protein-protein interaction (Huang et al. (2004)) and so on.

Having known that relation extraction is crucial to many further problems, in our project, we want to keep track of those methods used in this area, especially feature-based, kernel-based and deep learning methods, all of which we will describe with details in the following section, and to see whether they could provide us with some idea to make a new prograss.

2 Problem Definition

The framework for relation extraction typically could be divided into two steps (Nguyen and Grishman (2015)): 1. for some given entity pairs of interest, we want to detect whether a relation utterance corresponding to them in a sentence represents some relations; 2. if some relationships are detected, we want to classify them into some predefined classes, which is also known as *Relation Classification(RC)*.

One feature of this problem is that the training dataset will contains much more examples without any relation than those with relation, so it will be tremendously unbalanced and we could not just treat those without relation as one class. This feature is also the reason why RE system is more challenging but practical than simple RC system.

The main idea for solving this problem has been changed over time. At the very beginning, researchers tend to find a rich structural representation of raw text data(Bach and Badaskar (2007)), and then use binary classifier to detect whether a particular kind of relationship exists. Featured-based and kernel-based methods(Bach and Badaskar (2007)) are two main ideas to capture the structure of a sentence, and the features constructured by them are also known as handdesigned features. Those features that are most popular include (Bach and Badaskar (2007)) (1) the entities themselves, (2) the types of the two entities, (3) word sequence between the entities, (4) number of words between the entities and (5) path in the parse tree containing the two entities.

Those traditional methods could utilize the structure of text data, but the wrong representation of it could also bring errors to the final classification. So in the last decade, as the development of neural network(NN), especially those designed for NLP tasks, such as RNN and LSTM, a new kind

Sentence: "<e1>Henrik Stenson </e1> of < e2> Sweden </e2> will replace Harrington in the field." Entity 1: henrik stenson | Entity 2: sweden | Relation: country of citizenship

Table 1: A Example of Relationship Extraction

of end-to-end model appears. This kind of model will directly take the sentence and the position of two entities as input, the neural network will automatically capture the intrinsic structures and use the multi-class classifier like softmax to give prediction.

In our project, we want to compare the performance of those traditional methods with hand-designed features with that of those end-to-end models. And we will try to combine these two kinds of approaches together, that is to use the information from those hand-designed features in neural network.

3 Related Work

The paper given by Bach and Badaskar (2007) provide a review of those tradition methods, including a brief introduction to some feature-based methods(Kambhatla (2004)) and kernel-based methods(Zhao and Grishman (2005)). Featured-based methods focus more on those statistics about the entities and context, while kernel-based methods pay more attention to the useful transformation of original text, and so they are more flexible. Some classic kernels includes tree kernel(Zelenko et al. (2003)), subsequence kernel(Bunescu and Mooney (2005b)), dependency tree kernel(Bunescu and Mooney (2005a)) etc.

As we mentioned before, the new end-to-end model is brought by neural network framework, and it is the rise of *convolutional neural network(CNN)* give this framework a second life. So this kind of neural network is first introduced in to the area of RE system, in Nguyen and Grishman (2015). After that, some neural networks specially designed for NLP appear and are used for RE system, for example, recursive neural network(RNN) in Socher et al. (2012) and Long Short-Term Memory(LSTM) in Miwa and Bansal (2016).

4 Data

Basically, since relation extraction is a very hot topic for NLP, a lot of famous dataset could be

used to train and test our models, such as NYT (Riedel et al. (2013)), ACE2005 (Nguyen and Grishman (2015)), Wiki (Han et al. (2020)) and so on. These datasets, however, have been explored by many researchers, so we decide to construct a new dataset from them.

In our final project, we will use NYT10, NYT10m, Wiki20m and Wiki80 as our original dataset, since they have very similar form and labels. The following figures 1 and 2 provide two examples from them.

text	He is a son of Vera and William Lichtenberg of Belle Harbor, Queens.		
h	id: m.0ccvx	name: Queens	pos: [62, 68]
t	id: m.05gf08	name: Belle Harbor	pos: [47, 59]
relation	/location/location/contains		

Figure 1: An example of NYT dataset

token	"The", "Paris", "Bourse", ",", "now", "part", "of", "Euronext", ",", "an",			
token	"order", "-", "driven", ",", "electronic", "stock", "exchange", "."			
h	id: Q2385849 name: paris bourse pos: [1, 3]			
t	id: Q11691 name: stock exchange pos: [16, 18]			
relation	instance of			

Figure 2: An example of Wiki dataset

In our project, we will only remain the information of original text, the name of entities and their relation, and use these to construct the input data frame. The figure 3 below show a row of that input data frame.

What's more, the representation of labels in two datasets are different, so we have to combine them together. In our project, we will remain the labels of Wiki dataset and change those in NYT dataset. The map we use to justify labels in NYT dataset is shown in Appendix A

text	The Paris Bourse, now part of Euronext, an order-driven, electronic stock exchange.	
entity one	paris brouse	
entity two	stock exchange	
relation instance of		

Figure 3: An example of data in our project

5 Methodology

As what we have mentioned before, our project will keep track of those tradition and fancy methods used for RE system, so basically, we will first train three kinds of model: feature-based, kernel-based and deep learning model.

5.1 Feature-Baed Model

This kind of model is a classificer model based on hand-designed features, including

- 1. the entities themselves
- 2. the types of the two entities
- 3. word sequence between the entities
- 4. number of words between the entities
- 5. path in the parse tree and dependency tree

Since all of the above features could be derived from syntactic parse tree and dependency tree (Kambhatla (2004)), we then will utilize some NLP toolkits, like nltk, to build those two trees for each piece of data and ocnstruct those features. Finally, we will use the softmax classifier to extract the relation.

5.2 Kernel-Based Model

The kernel-based model is named after the kernel method used in the famous classifier, Support Vector Machine(SVM). For RE system, it utilizes the string-kernels (Lodhi et al. (2002)), which is based on the context subsequence of entites in the text, and the most popular kernels used are bag of features kernel (Bunescu and Mooney (2005a)) and tree kernel (Zelenko et al. (2003)).

In our project, we will follow the two ideas above, compute two kernel functions for each piece of data, and then train the corresponding SVM classifiers.

5.3 Deep Learning Model

A deep learning model, which is end-to-end, will take the text and the position of entities(or relative position of context) as input, pass them through a network framework, and then use the softmax classifier to give a prediction.

In our project, we will utilize the very famous network in NLP field, the Bi-Directional LSTM model.

5.4 Combined Model

After training the above three kinds of model, we will try to design a combined model of them, which will use the neural network as main framework and will take those hand-designed features as additional input.

Ideally, since we provide more direct information here, this combined model should work better than the previous three.

6 Evaluation and Results

For RE system, since our final target will always become a classification for several pre-defined relation labels, it's typical to use those metrics like accuracy precision, recall and F1 score to evaluation models. And according to our target, to compare the preformance of traditional methods with new end-to-end model and to combine them together, we could just use the traditional method as our baseline, so that we could take a look at whether those variation will improve the traditional model or not.

7 Work Plan

To achieve our final target, we have to do some preparation: to understand the framework of both traditional methods and neural network models and to implement the above two kinds of models by ourselves. Then we could try to design a model which combines them together and do an experiment to compare all of them.

So our planned timeline is as follows. By now, we have read several paper about relation extraction in the past weeks, and built an basic bidirectional LSTM based on pytorch.

In the following several weeks, we will try to implement a feature-based and a kernal-based model. Finally, based on those previous work, we will design our own neural network model with hand-designed features as part of input information, and do some experiment to see its performance.

References

Nguyen Bach and Sameer Badaskar. 2007. A review of relation extraction. *Literature review for Language and Statistics II* 2:1–15.

Razvan Bunescu and Raymond Mooney. 2005a. A shortest path dependency kernel for relation extraction. In *Proceedings of Human Language Technol-*

- ogy Conference and Conference on Empirical Methods in Natural Language Processing. pages 724–731.
- Razvan Bunescu and Raymond J Mooney. 2005b. Subsequence kernels for relation extraction. In *NIPS*. Citeseer, pages 171–178.
- Hong-Woo Chun, Yoshimasa Tsuruoka, Jin-Dong Kim, Rie Shiba, Naoki Nagata, Teruyoshi Hishiki, and Jun'ichi Tsujii. 2006. Extraction of genedisease relations from medline using domain dictionaries and machine learning. In *Biocomputing* 2006, World Scientific, pages 4–15.
- Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yaoliang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2020. More data, more relations, more context and more openness: A review and outlook for relation extraction. *arXiv* preprint arXiv:2004.03186.
- Minlie Huang, Xiaoyan Zhu, Yu Hao, Donald G Payan, Kunbin Qu, and Ming Li. 2004. Discovering patterns to extract protein–protein interactions from full texts. *Bioinformatics* 20(18):3604–3612.
- Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In *Proceedings of the ACL Interactive Poster and Demonstration Sessions*. pages 178–181.
- Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. 2002. Text classification using string kernels. *Journal of machine learning research* 2(Feb):419–444.
- Nikola Milosevic and Wolfgang Thielemann. 2022. Relationship extraction for knowledge graph creation from biomedical literature. *arXiv preprint arXiv:2201.01647*.
- Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using 1stms on sequences and tree structures. *arXiv preprint arXiv:1601.00770*.
- Thien Huu Nguyen and Ralph Grishman. 2015. Relation extraction: Perspective from convolutional neural networks. In *Proceedings of the 1st workshop on vector space modeling for natural language processing*. pages 39–48.
- Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. 2013. Relation extraction with matrix factorization and universal schemas. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*. pages 74–84.
- Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In *Proceedings of the 2012 joint conference on empirical*

- methods in natural language processing and computational natural language learning. pages 1201–1211.
- Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel methods for relation extraction. *Journal of machine learning research* 3(Feb):1083–1106.
- Shubin Zhao and Ralph Grishman. 2005. Extracting relations with integrated information using kernel methods. In *Proceedings of the 43rd annual meeting of the association for computational linguistics* (acl'05). pages 419–426.

A Label map used in NYT

The label map for labels in NYT dataset is shown in the following two pages.

Original Label	New Label	
/location/location/contains	contains administrative territorial entity	
/people/person/nationality	country of citizenship	
/people/person/place_of_birth	place of birth	
/people/deceased_person/place_of_death	place of death	
/people/person/place_lived	place live in	
/business/company/founders	founded by	
/people/person/ethnicity	ethnicity of	
/location/neighborhood/neighborhood_of	neighorhood of	
/business/person/company	works for company	
/location/administrative_division/country	located in the administrative territorial entity	
/business/company/place_founded	place founded	
/location/country/administrative_divisions	has administrative territorial entity	
/location/country/capital	has capital	
/people/person/children	child	
/sports/sports_team_location/teams	has sports team	
/people/person/religion	religion	
/people/ethnicity/people	person of ethnicity	
/business/company/major_shareholders	has major shareholders	
/business/company_shareholder/major_shareholder_of	major shareholder of	
/people/ethnicity/geographic_distribution	geographic distribution	
/business/company/industry	industry	
/sports/sports_team/location	location of sports team	
/people/person/profession	profession of	
/business/company/advisors	has advisor	
NA	NA NA	
/location/us_county/county_seat	county seating at	
/film/film/featured_film_locations	has featured location	
/people/ethnicity/included_in_group	included in group	
/people/place_of_interment/interred_here	buries him/or	
/time/event/locations	location	
/location/de_state/capital	'captial of german state'	
/location/us_state/capital	captial of us state	
/business/company_advisor/companies_advised	advises company	
/people/deceased_person/place_of_burial	place of burial	
/broadcast/content/location	broadcast of	

Table 2: Label Map for NYT (1)

Original Label	New Label
/film/film_festival/location	film festival at
/location/it_region/capital	captial of it region
/business/shopping_center_owner/shopping_centers_owned	own shopping center
/location/in_state/legislative_capital	legislative captial of in state
/location/in_state/administrative_capital	administrative captial of in state
/business/business_location/parent_company	headquarter location for
/people/family/members	family of
/location/jp_prefecture/capital	captial of jp prefecture
/film/film_location/featured_in_films	featured location for film
/people/family/country	family at
/business/company/locations	headquarter locates at
/people/ethnicity/includes_groups	includes group
/people/profession/people_with_this_profession	people with profession
/location/br_state/capital	captial of br state
/location/cn_province/capital	captial of cn state
/broadcast/producer/location	broadcast at
/location/fr_region/capital	captial of fr state
/location/province/capital	captial of province
/location/in_state/judicial_capital	judicial captial of in state
/business/shopping_center/owner	owned by
/location/mx_state/capital	captial of mx state
/people/deceasedperson/place_of_death	place of death
/business/company/majorshareholders	has major share holder
/business/location	company location
/location/region/capital	capital of region
/people/deceasedperson/place_of_burial	place of burial

Table 3: Label Map for NYT (2)