CPE 690: Introduction to VLSI Design

Lecture 1 Introduction to Digital VLSI Design

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Analog & Digital Amplification

MIXED SIGNAL: Analog and digital in same circuit (chip)

Why Analog?

Analog circuits:

- Complex functions with few transistors
- Needed to interface to outside world
- Low power (per function)
- Circuit complexity limited by noise & component variation (process, temperature, voltage etc.)
- Analog design requires significant skill and experience
- Limited design automation and little re-use of circuits
- Advanced (nanometer) processes provide reduced signal to noise ratio (because of reduced voltages)
- Difficult to test

Why Digital?

Digital circuits:

- Thousands of transistors to do simplest real-world function
- Higher power dissipation (per function)
- Highly immune to noise & component (process) variation
- Same result every time
- Highly reliable circuits with hundreds of millions of transistors
- Significant re-use (libraries) and design automation (synthesis, formal verification)
- Digital designers don't need deep circuit knowledge
- Nanometer processes provide higher speed, greater density and lower power
- Much simpler to test

What is VLSI?

VERY LARGE SCALE

A circuit that has $10^4 \sim 10^9$ transistors on a single chip

Maximum number of transistors is still growing: quadruples every 24 months (Moore's law!)

INTEGRATED CIRCUIT

Technique where many circuit components and the wiring that connects them are manufactured simultaneously on a monolithic compact (silicon) chip (or die)

First Digital Computer: Babbage Difference Engine

(1832)

- Executed basic operations (add, sub, mult, div) in arbitrary sequences
- Operated in two-cycle sequence, "Store", and "Mill" (execute)
- Included features like pipelining to make it faster.
- Complexity: 25,000 parts.
- •Cost: £17,470 (in 1834!)

ENIAC - The first electronic computer (1946)

- 100 kHz clock
- 20 words memory (~ 100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons
1,000 square feet of floor- space
More than 70,000 resistors
10,000 capacitors
6,000 switches
18,000 vacuum tubes
Requires 150 kilowatts of power;

Transistor Age...

1947: Bardeen and Brattain create point-contact transistor (gain=18)

1951: Shockley develops junction transistor which can be manufactured in quantity.

IBM 1401 - Transistor electronic computer (1959)

- Diode-transistor logic
 - 9,000 germanium transistors, 14,000 diodes
- Up to 16k x 6-bit words of magnetic core memory
- Binary-coded-decimal computation
 - 8-digit decimal add in 300μs
- Fortran and Cobol compilers
 - Used in payroll & accounting applications
- \$83,000 or \$2.500/month
- Up to 12 kW power

The Integrated Circuit

Jack Kilby, working at Texas Instruments, invented a monolithic "integrated circuit" in July 1959.

He constructed the flip-flop shown in the patent drawing above.

Planar transistors

In mid 1959, Noyce develops the first true IC using planar transistors:

- Reverse biased pn junctions for isolation
- Diode-isolated silicon resistors and
- SiO₂ insulation
- Evaporated metal wiring on top

This enabled designers to place and connect multiple transistors on silicon die using sophisticated "printing process"

First Digital ICs – early 60's

1961: TI and Fairchild introduced first logic IC's: dual flip-flop with 4 transistors (cost ~\$50)

1963: Densities and yields improve. This circuit has four flip-flops.

Continuing Development – late 60's

1967: Fairchild markets the first semicustom chip. Transistors (organized in columns) can be easily rewired to create different circuits. Circuit had ~150 logic gates.

1968: Noyce and Moore leave Fairchild to form Intel. By 1971 Intel had 500 employees;

(By 2004, 80,000 employees in 55 countries and \$34.2B in sales)

Continuing Development early 70's

1970: Intel starts selling a 1k bit RAM.

1971: Ted Hoff at Intel designed the first microprocessor.

The 4004 had 4-bit busses and a clock rate of 108 KHz. It had 2300 transistors and was built in a 10 um process.

Continuing Development – Microprocessor

1972: 8008 introduced.

3,500 transistors supporting a byte-wide data path.

1974: Introduction of the 8080 – first "truly usable microprocessor"

8-bit data, 16-bit address bus (up to 64kB memory) 6,000 transistors in a 6 um process.

Clock rate was 2 MHz.

Exponential Growth

Planar "printing process" enabled continuing reductions in process "line width" which has led to increased density in transistors/mm²

What has brought about this extraordinary growth?

Huge investments in and major advances in:

- Solid State Physics
- •Materials Science
- Lithography and fab
- Device modeling

- Circuit design and layout
- •Architecture design
- •Algorithms
- •CAD tools

Cost of building 65nm fab is around \$3B!

Cost of building 22nm fab is around \$7B!

Analog vs. Digital Revisited

Well suited to analog

Well suited to digital

High Performance Digital: Pentium 4 – 0.18 um

0.18-micron process technology

- Introduced in 2000 (1.5, 1.4 GHz)
- Level Two cache: 256 KB
 Advanced Transfer Cache
- System Bus Speed: 400 MHz
- SSE2 SIMD Extensions
- Transistors: 42 Million
- Typical Use: Desktops and entry-level workstations

High Performance Digital: Intel i5–45 nm

- Introduced 2009 (2.6 GHz)
- Level 3 cache: 8MB
- 4 cores / 4 threads
- Transistors: 774 Million

- 95 W

Supercomputer for Sony's PlayStation 3 – 45nm

- IBM/Toshiba chip has 9 processor cores
- 192 billion floating-point operations per second
- •240 M transistors
- Optimized for graphics & multimedia

IBM Power 9 Processor

IEEE ISSCC 2017

- 14 nm SOI FinFET process with 17 levels interconnect
- 24 x 64-bit 4.0 GHz cores optimized for cognitive computing
- 8.0B transistors
- 6 MB L2 / 120 MB L3
- 12.9 Tb/s I/O BW
- 695 mm² die (approx. 1.1 inches square)

Moore's Law

 In 1965, Gordon Moore noted that the number of transistors on a chip approximately doubled every 12 months.

 He made a prediction that IC cost effective component count would continue to double every 12 months

Moore's Law – how it checked out

Actual growth has been a doubling every 18-24 months

Technology Directions: SIA Roadmap

	3003				
	2002	2005	2008	2011	2014
	130	100	70	50	35
1	18M	39M	84M	180M	390M
5	.580	.255	.110	.049	.022
, , ,	2553	3492	4776	6532	8935
) [2100	3500	6000	10000	16900
	430	520	620	750	900
	7	7-8	8-9	9	10
	1.5	1.2	0.9	0.6	0.5
	130	160	170	175	183
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	1 5	130 1 18M 5 .580 2 2553 2 100 430 7 1.5	130 100 18M 39M 5 .580 .255 2553 3492 2100 3500 430 520 7 7-8 1.5 1.2	130 100 70 1 18M 39M 84M 5 .580 .255 .110 2 2553 3492 4776 2 2100 3500 6000 430 520 620 7 7-8 8-9 1.5 1.2 0.9	130 100 70 50 1 18M 39M 84M 180M 5 .580 .255 .110 .049 2 2553 3492 4776 6532 2 2100 3500 6000 10000 430 520 620 750 7 7-8 8-9 9 1.5 1.2 0.9 0.6

Roadmap has become a self-fulfilling prophecy!

Microprocessor Clock Frequency

Microprocessor Power Projection 2000

- Increasing processing speed thru clock rate is power prohibitive
- Solution today is use of parallelism (#processors, #threads)

Transistors shipped per year

Decades of Progress

Intel 4004 Processor (1978)

6th Generation Intel Core Processor (2015)

Processor		4004 to 14nm
Wafer Size	1	36x area
Technology Linewidth	V	700x
Performance	^	3,500x
Price per Transistor	V	60,000x
Transistor Energy Efficiency	1	90,000x

What does 700x Scaling Look Like?

Not only Microprocessors...

Video games

Ethernet router

Wireless basestation

iPod

Digital Design Challenges

"Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

"Macroscopic Issues"

- Time-to-Market
- Chip area
- Yield
- Design Cost
- CAD tools
- Reuse & IP: Portability

Productivity Trends

 Today's high-end digital chips can require 50 personyears development

Digital Implementation Options

- ASIC Application Specific Integrated Circuit
 - Chip designed to do a specific dedicated hardware function
 - Synthesis tools place & route gates, memories, alu's, specialized
 IP (e.g. comm. interfaces, digital filters)
 - Greatest performance, least flexibility
- Programmable Processors
 - Microprocessors, DSPs etc.
 - Function determined by software
 - Greatest flexibility, least performance
- Programmable Logic Device (PLD)
 - Fixed architecture with programmable hardware functions & interconnect
 - Programmed using fusible links, on-chip RAM, Flash etc.
 - Synthesis tools generate programming sequence
 - Trade-off in performance & flexibility

Field Programmable Gate Array (FPGA)

- Most powerful & flexible of today's PLD's
- All function is controlled by on-chip (re)writable RAM
 - Can be configured "in the field"
 - Fast configuration time
 - Easily re-configured (bug fixes, upgrades etc)
- Basic Architecture:
 - Array of Configurable Logic Blocks (CLBs) surrounded by
 - Programmable Switch Matrix (PSM)

Xilinx XC 4000 Configurable Logic Block

courtesy Xilinx

Simplified View of Xilinx Logic Cell

8 Logic Cells/Configurable Logic Block

Simplified View of Xilinx Logic Cell

Configuring an FPGA

- Powerful software tools map logic structure on to CLB and PSM resources
- Configuration "code" downloaded to on-chip SRAM
 - CLB look-up tables
 - Extra RAM controls CLB multiplexers
 - Horizontal & vertical routing resources can be cross-connected though switches controlled by SRAM
- Programmable I/O blocks provide
 - CMOS, TTL, LVDS etc.
 - Tri-state, in, out bidirectional
 - Controlled rise/fall times
 - Controlled impedance
 - All configured via on-chip SRAM

FPGA Design Process (1)

Design and implement a simple unit permitting to speed up encryption with RC5-similar cipher with fixed key set on 8031 microcontroller. Unlike in the experiment 5, this time your unit has to be able to perform an encryption algorithm by itself, executing 32 rounds.....

Specification

FPGA Design Process (2)

Map Report

Design Summary Number of errors: Number of warnings: **Logic Utilization:** Number of Slice Flip Flops: 144 out of 4,704 3% Number of 4 input LUTs: 3% 173 out of 4,704 **Logic Distribution:** Number of occupied Slices: 145 out of 2,352 6% Number of Slices containing only related logic: 145 out of 145 100% Number of Slices containing unrelated logic: 0 out of 145 0% *See NOTES below for an explanation of the effects of unrelated logic 210 out of 4,704 Total Number 4 input LUTs: 4% Number used as logic: 173 Number used as a route-thru: Number used as 16x1 RAMs: 32 Number of bonded IOBs: 74 out of 176 42% Number of GCLKs: 1 out of 4 25% Number of GCLKIOBs: 1 out of 4 25

FPGA Configuration

 Configuration generates a bit stream file (.bit extension) that is used to serially program the FPGA:

Today's FPGAs

- Also contain higher level functional blocks
 - High density data RAMs
 - Register Files
 - Multipliers
 - Standard bus interfaces
 - Phase locked loop clock generators
 - microprocessor cores
- High density and performance (e.g. Virtex 6):
 - 760,000 logic cells (~ 50,000 CLB's)
 - 38Mb block RAM
 - 2016 DSP slices (2.4 GMAC's)
 - 11 Gb/s serial I/O
 - 1200 I/O pins

FPGA vs. ASIC

ASIC

Higher Density
Higher Performance
More Power Efficient
Lower Unit Cost

FPGA

Flexibility
Field reconfiguration
Faster to market
Lower up-front cost