Sammanfattning i Linjär Algebra

Axel Kennedal kennedal@kth.se

Marcus Östling

17 december 2015

Innehåll

1	Matriser			
	1.1	Vanliga	a beräkningar	
		1.1.1	Begrepp: Matris	
		1.1.2	BERÄKNINGSMETOD: MATRISADDITION	
		1.1.3	BERÄKNINGSMETOD: MULTIPLIKATION MED SKALÄR	
		1.1.4	BERÄKNINGSMETOD: MATRISMULTIPLIKATION	
		1.1.5	Begrepp: Identitetsmatrisen	
		1.1.6	Begrepp: Symmetrisk matris	
	1.2	Invers		
		1.2.1	Begrepp: Matrisinvers	
2	Base	er & Ba	asbyten	
		2.0.1	Begrepp: Bas	
			Begrepp: Standardbas	
		2.0.3	Begrepp: Basbyte	
		2.0.4	Begrepp: Koordinater & Koordinatvektor	

1 Matriser

1.1 Vanliga beräkningar

1.1.1 Begrepp: Matris

En uppställning av tal i rader och kolumner, storleken anges som $rader \times kolumner$ eller $n \times m$.

1.1.2 BERÄKNINGSMETOD: MATRISADDITION

Addera alla element var för sig.

$$\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}$$

1.1.3 BERÄKNINGSMETOD: MULTIPLIKATION MED SKALÄR

Multiplicera varje element i matrisen med skalären.

$$s * \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} sa & sb \\ sc & sd \end{bmatrix}$$
$$s \in R$$

1.1.4 BERÄKNINGSMETOD: MATRISMULTIPLIKATION

Endast definierad för två matriser A $m \times n$ och B $n \times m$ vilket ger en matris C $m \times m$. Multiplicera varje rad i A med B's kolumner.

$$\begin{bmatrix} c & e \\ d & f \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ca + eb \\ da + fb \end{bmatrix}$$

Multiplikation av en 2×2 och en 2×1 matris

1.1.5 Begrepp: Identitetsmatrisen

Multiplikation av en matris A med identitetsmatrisen ger tillbaka A oförändrad.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Identitetsmatrisen har ettor längs diagonalen och nollor på alla andra platser

1.1.6 Begrepp: Symmetrisk matris

Innebär att $A^T=A.\ {\rm Om}\ {\rm A}$ är symmetrisk och inverterbar är A^{-1} symmetrisk.

1.2 Invers

1.2.1 Begrepp: Matrisinvers

Krav för att en matris A ska vara inverterbar:

- $\exists B : AB = I$.
- A är kvadratisk
- $det(A) \neq 0$
- A's reducerade form är I

2 Baser & Basbyten

2.0.1 Begrepp: Bas

En bas är grunden för ett vektorrum och utgörs av ett antal *basvektorer*, vilka är linjärt oberoende och spänner upp vektorrummet. Om dessa 2 krav uppfylls är *dimensionen* för vektorrummet = antal basvektorer.

$$B = \{\vec{v_1}, \vec{v_2}\}$$

En bas i R2

2.0.2 Begrepp: Standardbas

En bas i RN med n st basvektorer vars element är bara nollor förutom en etta i den kolumnen m för den m-te basvektorn i basen. Är per definition *ortonomal*.

$$B = \left\{ \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \right\}$$

2.0.3 Begrepp: Basbyte

En vektor kan beskrivas i ett vektorrum med hjälp av *koordinater*, denna koordinatrepresentation skiljer sig mellan olika vektorrum som har olika baser. Ibland vill man byta mellan baser då det kan ge enklare beräkningar.

2.0.4 Begrepp: Koordinater & Koordinatvektor

Om $S = \{\vec{v_1}, \dots, \vec{v_n}\}$ är en bas för ett vektorrum och $\vec{v} = c_1 \vec{v_1} + \dots + c_n \vec{v_n}$ så är c_1, \dots, c_n koordinater och $\vec{c} = (c_1, \dots, c_n) = (\vec{v})_S$ koordinatvektorn för \vec{v} i basen S.