Discrete Math Cram Sheet

August 20, 2016

Contents

T	Proj	positional Logic	4
	1.1	Truth Tables	2
		Logical Equivalences	
		Rules of Inference	2
		Satisfiability	
2	Pro	ofs	3
	2.1	Mathematical Induction	3
	2.2	Strong Induction	3
3	Rec	urrence Relations	3
4	Nur	nber Theory	3
	4.1	Divisibility	3 3
	4.2	Primes and Factors	3
	4.3	Divisors	3
	4.4	Modular Arithmetic	
5	Gra	ph Theory	3
6	Line	ear Algebra	3
7	Con	nbinatorics	3
	7.1	Permutations and Combinations	3
	7.2	Binomial Coefficients	4
	7.3	Generalized Permutations and Combinations	4
	7.4	Principle of Inclusion-Exclusion	4
8	Prol	bability	4

1 Propositional Logic

1.1 Truth Tables

р	T	T	F	F	
q	T	F	T	F	
F	F	F	F	F	contradiction
$p \vee q$	F	F	F	T	joint denial
$p \not\leftarrow q$	F	F	T	F	converse nonimplication
$\neg p$	F	F	T	T	left negation
$p \rightarrow q$	F	T	F	F	nonimplication
$\neg q$	F	T	F	T	right negation
$p \oplus q$	F	T	T	F	exclusive disjunction
$p \overline{\wedge} q$	F	T	T	T	alternative denial
$p \wedge q$	T	F	F	F	conjunction
$p \leftrightarrow q$	T	F	F	T	biconditional/equivalence
q	T	F	T	F	right projection
$p \rightarrow q$	T	F	T	T	implication
p	T	T	F	F	left projection
$p \leftarrow q$	T	T	F	T	converse implication
$p \vee q$	T	T	T	F	disjunction
T	T	T	T	T	tautology

1.2 Logical Equivalences

Identity	$ \begin{array}{l} p \wedge T \equiv p \\ p \vee F \equiv p \end{array} $
Domination	$p \lor T \equiv T$ $p \land F \equiv F$
Idempotent	$ \begin{array}{c} p \wedge p \equiv p \\ p \vee p \equiv p \end{array} $
Commutative	$ \begin{array}{l} p \wedge q \equiv q \wedge p \\ p \vee q \equiv q \vee p \end{array} $
Associative	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$ $p \vee (q \vee r) \equiv (p \vee q) \vee r$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
De Morgan's	$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$
Absorption	$ \begin{array}{l} p \wedge (p \vee q) \equiv p \\ p \vee (p \wedge q) \equiv p \end{array} $
Negation	$ \begin{array}{l} p \lor \neg p \equiv \mathbf{T} \\ p \land \neg p \equiv \mathbf{F} \end{array} $
Double Negation	$\neg \left(\neg p \right) \equiv p$

Involving Biconditionals

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Involving Conditional Statements

$$\begin{array}{ll} p \rightarrow q \equiv \neg p \vee q & p \rightarrow q \equiv \neg q \rightarrow \neg p \\ p \vee q \equiv \neg p \rightarrow q & p \wedge q \equiv \neg (p \rightarrow \neg q) \\ (p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r) \\ (p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \vee q) \rightarrow r \\ (p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r) \\ (p \rightarrow r) \vee (q \rightarrow r) \equiv (p \wedge q) \rightarrow r \end{array}$$

1.3 Rules of Inference

	$p \rightarrow q$
Modus Ponens	<u>p</u>
	q
	$\neg q$
Modus Tollens	p o q
	$\overline{\neg p}$
	$(p \lor q) \lor r$
Associative	$\frac{(q-1)}{p\vee (q\vee r)}$
	$p \wedge q$
Commutative	
	$\frac{q \wedge p}{p \to q}$
D: 1:0: 1	
Biconditional	$\underline{q o p}$
	$p \leftrightarrow q$
Exportation	$(p \land q) \to r$
Exportation	$p \to (q \to r)$
C	p o q
Contraposition	$\overline{\neg q o \neg p}$
	$p \rightarrow q$
Hypothetical Syllogism	$q \rightarrow r$
11) pointenear by nogioni	$\frac{1}{p \to r}$
	•
Material Implication	$\frac{p \to q}{q}$
	$\neg p \lor q$
Distributive	$(p \lor q) \land r$
	$(p \wedge r) \vee (q \wedge r)$
Absorption	$p \rightarrow q$
710301ption	$p \to (p \land q)$
	$p \lor q$
Disjunctive Syllogism	$\neg p$
, ,	$\frac{\overline{q}}{q}$
	p
Addition	$\frac{p \vee q}{p \vee q}$
Simplification	$\frac{p \wedge q}{n}$
	p
	p
Conjunction	<u>q</u>
	$p \wedge q$
Double Negation	p
Double Negation	$\overline{\neg \neg p}$
D' ' ' C' 1'C' '	$p \lor p$
Disjunctive Simplification	$\frac{p}{p}$
	$p \lor q$
Resolution	$\neg n \lor r$
1.Coolation	$\frac{r}{a \vee r}$
	y v r

1.4 Satisfiability

A proposition is *satisfiable* if some setting of the variables makes the proposition true. For example, $p \land \neg q$ is satisfiable because the expression is true if p is true or q is false. On the other hand, $p \land \neg p$ is not satisfiable because the expression as a whole is false for both settings of p.

2-SAT Problem

(to follow...)

2 Proofs

2.1 Mathematical Induction

A statement P(n) involving the positive integer n is true for all positive integer values of n is true if P(1) is true and if P(k) is true for any arbitrary positive integer k, then P(k+1) is true.

The base case need not be for n = 1. It can be adjusted to whatever the smallest integer value n assumes.

2.2 Strong Induction

Let P(n) be a predicate defined over all integers n, and let a and b be fixed integers with $a \le b$. Suppose the following two statements are true:

- 1. Base cases: P(a), P(a+1),..., P(b) are all true.
- 2. Inductive step: For any integer k > b, if P(i) is true for all integers i with $a \le i < k$, then P(k) is true.

Then the statement P(n) is true for all integers $n \ge a$.

3 Recurrence Relations

4 Number Theory

- 4.1 Divisibility
- 4.2 Primes and Factors
- 4.3 Divisors

Greatest Common Divisor

This can be defined by the following recurrence relation:

$$\gcd(a,b) = \begin{cases} a & \text{if } b = 0\\ \gcd(b, a \bmod b) & \text{else} \end{cases}$$

4.4 Modular Arithmetic

Basic Rules

(to follow...)

Chinese Remainder Theorem

Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers, and $a_1, a_2, ..., a_n$ be arbitrary integers. Then the system

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ & \vdots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

has a unique solution modulo $m = m_1 m_2 \cdots m_n$, where $x = \sum_{k=1}^n a_k M_k y_k$, $M_k = \frac{m}{m_k}$, and y_k is the modular inverse of M_k modulo m_k , i.e. $M_k y_k \equiv 1 \pmod{m_k}$.

5 Graph Theory

6 Linear Algebra

7 Combinatorics

7.1 Permutations and Combinations

Permutation

A permutation or ranking of n objects is a listing of them in a certain order from first to last.

Combination

A combination of k objects taken from a collection of n objects is simply a selection of k of those distinct objects without regard to order.

7.2 Binomial Coefficients

7.3 Generalized Permutations and Combinations

Permutations with Duplicate Objects

The number of permutations of a multiset of n objects made up of k distinct objects can be expressed as follows:

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

where n_i represents the multiplicity of a distinct object i in the multiset.

Combinations with Repetition (Dashes and Dividers)

The number of combinations of length n using k different kinds of objects is

$$_{n}R_{k} = \binom{n+k-1}{k-1} = \binom{n+k-1}{n} = \frac{(n+k-1)!}{n!(k-1)!}$$

Number of Non-negative Integer Solutions The number of solutions of the equation $x_1 + x_2 + \cdots + x_k = n$ in non-negative integers is $\binom{n+k-1}{k-1}$.

Number of Positive Integer Solutions The number of solutions of the equation $x_1 + x_2 + \cdots + x_k = n$ in positive integers is $\binom{n-1}{k-1}$.

7.4 Principle of Inclusion-Exclusion

This provides an organized method/formula to find the number of elements in the union of a given group of sets, the size of each set, and the size of all possible intersections among the sets.

Two/Three Sets

Suppose that *A*,*B*, and *C* are finite sets. Then:

•
$$|A \cup B| = |A| + |B| - |A \cap B|$$

•
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

General Form

For finite sets A_1, \ldots, A_n , one has the identity:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}|$$

$$- \dots + (-1)^{n-1} |A_{1} \cap \dots \cap A_{n}|$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \left(\sum_{1 \leq i_{1} < \dots < i_{k} < n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}| \right)$$

8 Probability