Review for Exam 2

Physics 211 Syracuse University, Physics 211 Spring 2023 Walter Freeman

February 22, 2023

Announcements

Help hours today: I am still sick and will infect people if I go to the Physics Clinic.

Other people will be there to assist you during the rest of the day. In particular, Brendan will be taking my place from 12:45-4:45 (roughly).

Group Exam 2

Your second group exam is in your next recitation.

Exam review: Sunday, 2:30-5:30 (the auditorium)

Exam 2

This exam will be just like Exam 1. A few reminders:

- You may bring a page of notes
- You may bring a calculator (not one that does algebra)
- There will be assigned seats (different than before)
- Taking your exam at CDR? They'll have a copy for you.
- Need other accommodations? Let me know.

What will be on it? Relating the forces on objects to their motion with $\vec{F} = m\vec{a}$:

- Drawing force diagrams
- Dealing with inclines
- Dealing with multiple objects
- Dealing with unknown tension/normal forces
- Dealing with friction
- Dealing with circular motion
- Interpreting things like "why doesn't the frog fall out of the bucket?"

Drawing force diagrams:

- Each object gets its own force diagram
- Only forces acting directly on that object go on the diagram
- Let physics take care of indirect things for you (three book problem)
- Forces are real tangible things (plus gravity)
- Label each force with the symbol you'll use for it in algebra
- Draw your diagrams large you may need to do trig, etc.

Dealing with inclines:

- Tilt your coordinate system so it aligns with the (possible) acceleration
- a_{y} will generally be zero
- You'll need to decompose the weight force into components

Dealing with multiple objects:

- Each object gets its own force diagram
- Only draw the forces acting on each object on its diagram
- Different objects may have different \vec{a} :
 - Use $a_{1,x}$, $a_{2,y}$, etc. then think how they relate
 - You'll have multiple equations that's okay

Dealing with unknown tension/normal forces:

- Just because they're unknown doesn't make them scary
- Normal forces are however big they need to be to stop two objects from moving through one another
- Tension is however big it needs to be to keep ropes from stretching
- Leave F_N or T as unknowns in your system of equations you'll solve for them

Dealing with inclines:

- Tilt your coordinate system so it aligns with the (possible) acceleration
- a_y will generally be zero
- You'll need to decompose the weight force into components

Dealing with friction:

- Friction opposes the relative motion of two things
- For passive objects this is simple
- "Traction" static friction between propelled vehicle/person/animal and ground
 - It points whatever direction the driver wants it to
- Friction requires you to deal with two dimensions first find F_N , then substitute into $F_{\text{fric}} = \mu F_N$

Dealing with circular motion:

- If an object is going in a circle, that just tells you its acceleration
- $a = \omega^2 r$ or v^2/r toward the center
- ullet Use the first one if you know/care about ω and the second if you know/care about v
- Do not overcomplicate this!

Interpreting motion in an accelerating frame: (guaranteed question on exam)

- Newton's laws are not valid in an accelerating "box"
 - Accelerating/turning car
 - A room rotating in a circle
- Think about what it looks like from the *outside*
- \bullet Bus slams on brakes \to bus accelerates backwards, passengers don't
- \bullet Car turns left \to car accelerates left, passengers keep going straight
- ullet Bucket accelerates toward center of circle o bucket must push on frog to make it accelerate with it

Exam 2 – makeup for Exam 1

Each student will have one question on Exam 2 on the material from Exam 1 that they got the lowest score on.

If you do better on this question, it will replace your grade on that question from Exam 1.

Note: I will send out a Google form over the weekend asking students if they plan to take the exam at CDR.

If you want to take the exam at CDR, you must tell me so I can bring a personalized exam to them for you.

In terms of m_1 and m_2 , what is the acceleration of the masses?

Review - the "Atwood machine"

In terms of m_1 and m_2 , what is the acceleration of the masses?

Key ideas:

- The accelerations are not necessarily equal
- The tension force is equal on both objects

Review - multiple pulleys

If the masses are $m_1 = 1100$ g and $m_2 = 1$ kg, what are their accelerations?

Review - multiple pulleys

If the masses are $m_1 = 1100$ g and $m_2 = 1$ kg, what are their accelerations?

Key ideas:

- The accelerations are again not necessarily equal
- The tension force is equal on both objects

Review - circular motion question from recitation

In terms of ω , m, θ , and g, what is the tension in the strings?

Review - circular motion question from recitation

In terms of ω , m, θ , and g, what is the tension in the strings?

Key ideas:

- Circular motion $\rightarrow a = \omega^2 r$ toward the center
- Forces add like vectors do F = ma in both x and y

Review - a horse towing a load uphill

A horse of mass m_1 wants to pull a sled uphill. The rope between the horse's harness and the sled is parallel to the ground. If the slope is angled at θ , the coefficient of static friction between the horse's hooves and the snow is μ_s , and the coefficient of kinetic friction between the sled's runners and the snow is μ_k , what's the heaviest load the horse can pull?

Review - a horse towing a load uphill

A horse of mass m_1 wants to pull a sled uphill. The rope between the horse's harness and the sled is parallel to the ground. If the slope is angled at θ , the coefficient of static friction between the horse's hooves and the snow is μ_s , and the coefficient of kinetic friction between the sled's runners and the snow is μ_k , what's the heaviest load the horse can pull?

Key ideas:

- Draw one force diagram for each object
- "Passive" friction opposes the sliding (the sled)
- Traction between the horse's hooves and the ground points whichever direction the horse wants (uphill)
- a = 0 here