

```
In [1]: import warnings
        warnings.filterwarnings("ignore")
        import pandas as pd
        import sqlite3
        import csv
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        from wordcloud import WordCloud
        import re
        import os
        from sklearn.model_selection import GridSearchCV
        from sklearn.model selection import cross val score
        import numpy as np
        from sqlalchemy import create_engine # database connection
        import datetime as dt
        from nltk.corpus import stopwords
        from nltk.tokenize import word tokenize
        from nltk.stem.snowball import SnowballStemmer
        from sklearn.feature extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.multiclass import OneVsRestClassifier
        from sklearn.linear model import SGDClassifier
        from sklearn import metrics
        from sklearn.metrics import f1_score,precision_score,recall_score
        from sklearn import svm
        from sklearn.linear model import LogisticRegression
        from skmultilearn.adapt import mlknn
        from skmultilearn.problem transform import ClassifierChain
        from skmultilearn.problem_transform import BinaryRelevance
        from skmultilearn.problem transform import LabelPowerset
        from sklearn.naive bayes import GaussianNB
        from datetime import datetime
        import pickle
        from sklearn.externals import joblib
```

```
In [17]:
```

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

1.2 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data)

All of the data is in 2 files: Train and Test.

Train.csv contains 4 columns: Id,Title,Body,Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lower case, should not contain tabs '\t' or ampersands '&')

2.1.2 Example Data point

Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?

Body:

```
#include<
        iostream>\n
        #include<
        stdlib.h>\n\n
        using namespace std;\n\n
        int main()\n
        {\n
                  int n,a[n],x,c,u[n],m[n],e[n][4];\n
                  cout<<"Enter the number of variables";\n cin>>n;\n
\n
                  cout<<"Enter the Lower, and Upper Limits of the variable
s";\n
                 for(int y=1; y<n+1; y++)\n
                  {\n
                    cin>>m[y];\n
                    cin>>u[y];\n
                 }\n
                 for(x=1; x<n+1; x++)\n
                  {\n
                    a[x] = (m[x] + u[x])/2; \n
                  }\n
                  c=(n*4)-4;\n
                 for(int a1=1; a1<n+1; a1++)\n
                 \{ \n \n
                    e[a1][0] = m[a1]; \n
                    e[a1][1] = m[a1]+1; \n
                    e[a1][2] = u[a1]-1;\n
                    e[a1][3] = u[a1];\n
                 }\n
                 for(int i=1; i<n+1; i++)\n</pre>
                    for(int l=1; l<=i; l++)\n
                    {\n
                         if(1!=1)\n
                         {\n
                             cout<<a[1]<<"\\t";\n
                         }\n
                    }\n
                    for(int j=0; j<4; j++)\n
                    {\n
                         cout<<e[i][j];\n</pre>
                         for(int k=0; k< n-(i+1); k++) n
                         {\n
                             cout << a[k] << "\t"; \n
                         }\n
                         cout<<"\\n";\n
                    }\n
```

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
In [2]: import zipfile
        archive = zipfile.ZipFile('Train.zip', 'r')
        csvfile = archive.open('Train.csv')
In [3]: #Creating db file from csv
        #Learn SQL: https://www.w3schools.com/sql/default.asp
        if not os.path.isfile('train.db'):
            start = datetime.now()
            disk_engine = create_engine('sqlite:///train.db')
            start = dt.datetime.now()
            chunksize = 180000
            i = 0
            index start = 1
            for df in pd.read csv(csvfile, names=['Id', 'Title', 'Body', 'Tags'], chun
        ksize=chunksize, iterator=True, encoding='utf-8', ):
                df.index += index_start
                 j+=1
                 print('{} rows'.format(j*chunksize))
                df.to sql('data', disk engine, if exists='append')
                 index start = df.index[-1] + 1
            print("Time taken to run this cell :", datetime.now() - start)
```

3.1.2 Counting the number of rows

```
In [4]: if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
    #Always remember to close the database
    print("Number of rows in the database :","\n",num_rows['count(*)'].values[
0])
    con.close()
    print("Time taken to count the number of rows :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the above cell
    to genarate train.db file")

Number of rows in the database :
6034196
```

Time taken to count the number of rows: 0:00:31.207379

3.1.3 Checking for duplicates

```
In [5]: #Learn SQL: https://www.w3schools.com/sql/default.asp
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_d
    up FROM data GROUP BY Title, Body, Tags', con)
        con.close()
        print("Time taken to run this cell :", datetime.now() - start)
    else:
        print("Please download the train.db file from drive or run the first to ge
    narate train.db file")
```

Time taken to run this cell: 0:02:23.193506

```
In [6]: df_no_dup.head()
# we can observe that there are duplicates
```

Out[6]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><pre><code>#include<iostream>\n#include&</code></pre></pre>	C++ C	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data- binding	1
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data- binding columns	1
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in <a href="http://sta</a 	jsp jstl	1
4	java.sql.SQLException:[Microsoft] [ODBC Dri	I use the following code\n\n <pre><code></code></pre>	java jdbc	2

number of duplicate questions : 1827881 (30.292038906260256 %)

```
In [8]: # number of times each question appeared in our database
        df no dup.cnt dup.value counts()
Out[8]: 1
             2656284
             1272336
        2
        3
              277575
                  90
        4
        5
                  25
                   5
        Name: cnt_dup, dtype: int64
In [9]:
        print(df_no_dup.head())
                                                       Title \
                Implementing Boundary Value Analysis of S...
        0
        1
                    Dynamic Datagrid Binding in Silverlight?
        2
                    Dynamic Datagrid Binding in Silverlight?
        3
               java.lang.NoClassDefFoundError: javax/serv...
               java.sql.SQLException:[Microsoft][ODBC Dri...
                                                        Body
           <code>#include&lt;iostream&gt;\n#include&...
           I should do binding for datagrid dynamicall...
        1
           I should do binding for datagrid dynamicall...
        2
           I followed the guide in <a href="http://sta...</p>
           I use the following code\n\n<code>...
                                          Tags
                                                cnt dup
        0
                                         C++ C
                                                      1
        1
                   c# silverlight data-binding
                                                      1
           c# silverlight data-binding columns
                                                      1
                                      jsp jstl
                                                      1
        3
        4
                                     java jdbc
                                                      2
```

```
jadav.anand.mec17@itbhu.ac.in 21
In [10]: start = datetime.now()
         aa count=[]
         hh=[]
         for j in range(len(df no dup)):
             tex=df_no_dup['Tags'][j]
             #print(tex)
             if tex is not None:
                  #print("heyram")
                  #start=datetime.now()
                  hh.append(tex)
                  text=len(tex.split(" ") )
                  #print(text)
                  aa_count.append(text)
         print(len(aa count))
         aaa=pd.DataFrame(aa_count,columns=['tag_count'])
         hhh=pd.DataFrame(hh,columns=['Tags'])
         df_no_dup=pd.concat([hhh,aaa],axis=1)
         # adding a new feature number of tags per question
         print("Time taken to run this cell :", datetime.now() - start)
         df no dup.head()
         np.where(pd.isnull(df_no_dup))
         4206308
         Time taken to run this cell: 0:02:22.340723
Out[10]: (array([], dtype=int64), array([], dtype=int64))
In [11]: df no dup=df no dup.dropna()
In [ ]:
```

In [12]: start = datetime.now() df_no_dup["tag_count"] = df_no_dup["Tags"].apply(lambda text: len(text.split(" "))) # adding a new feature number of tags per question print("Time taken to run this cell :", datetime.now() - start) df no dup.head()

Time taken to run this cell: 0:00:03.483702

Out[12]:

	Tags	tag_count
0	C++ C	2
1	c# silverlight data-binding	3
2	c# silverlight data-binding columns	4
3	jsp jstl	2
4	java jdbc	2

```
In [13]: # distribution of number of tags per question
         df no dup.tag count.value counts()
Out[13]: 3
              1206157
              1111706
         2
               814996
         1
               568291
               505158
         Name: tag count, dtype: int64
In [14]: #Creating a new database with no duplicates
         if not os.path.isfile('train no dup.db'):
             disk_dup = create_engine("sqlite:///train_no_dup.db")
             no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
             no dup.to sql('no dup train',disk dup)
In [15]: #This method seems more appropriate to work with this much data.
         #creating the connection with database file.
         if os.path.isfile('train no dup.db'):
             start = datetime.now()
             con = sqlite3.connect('train_no_dup.db')
             tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
             #Always remember to close the database
             con.close()
             # Let's now drop unwanted column.
             tag data.drop(tag data.index[0], inplace=True)
             #Printing first 5 columns from our data frame
             tag data.head()
             print("Time taken to run this cell :", datetime.now() - start)
         else:
             print("Please download the train.db file from drive or run the above cells
         to genarate train.db file")
```

Time taken to run this cell: 0:00:53.947521

3.2 Analysis of Tags

3.2.1 Total number of unique tags

```
In [16]: tag_data=tag_data.dropna()
In [17]: # Taking only 0.5 million data points
#tag_data=tag_data[0:10000]
```

```
In [18]: print(tag data.head())
         print(len(tag data))
                                            Tags
                    c# silverlight data-binding
         2 c# silverlight data-binding columns
                                       jsp jstl
                                       java jdbc
         4
                  facebook api facebook-php-sdk
         4206307
         # Importing & Initializing the "CountVectorizer" object, which
In [19]:
         #is scikit-learn's bag of words tool.
         #by default 'split()' will tokenize each tag using space.
         vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
         # fit_transform() does two functions: First, it fits the model
         # and learns the vocabulary; second, it transforms our training data
         # into feature vectors. The input to fit transform should be a list of string
         tag dtm = vectorizer.fit transform(tag data['Tags'])
In [20]:
         print("Number of data points :", tag_dtm.shape[0])
         print("Number of unique tags :", tag_dtm.shape[1])
         Number of data points : 4206307
         Number of unique tags: 42048
In [21]: | #'get_feature_name()' gives us the vocabulary.
         tags = vectorizer.get feature names()
         #Lets look at the tags we have.
         print("Some of the tags we have :", tags[:10])
         Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash
         -profile', '.class-file', '.cs-file', '.doc', '.drv', '.ds-store']
```

3.2.3 Number of times a tag appeared

```
In [22]: # https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-ele
ments
#Lets now store the document term matrix in a dictionary.
freqs = tag_dtm.sum(axis=0).A1
result = dict(zip(tags, freqs))
#print(result)
```

```
In [23]: #Saving this dictionary to csv files.
    if not os.path.isfile('tag_counts_dict_dtm.csv'):
        with open('tag_counts_dict_dtm.csv', 'w') as csv_file:
            writer = csv.writer(csv_file)
            for key, value in result.items():
                 writer.writerow([key, value])
        tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
        tag_df.head()
```

Out[23]:

	rags	Counts
0	.a	18
1	.app	37
2	.asp.net-mvc	1
3	.aspxauth	21
4	.bash-profile	138

```
In [24]: tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
    tag_counts = tag_df_sorted['Counts'].values
```

```
In [25]: plt.plot(tag_counts)
    plt.title("Distribution of number of times tag appeared questions")
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
```



```
In [26]: plt.plot(tag_counts[0:10000])
    plt.title('first 10k tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```

first 10k tags: Distribution of number of times tag appeared questions

250000

150000

0

20000

4000

6000

8000

100000

Tag number

400 [33	1505 44	4829 22	429 17	7728 13	3364 1	1162	10029	9148	8054	7151
6466		5370		4526						
3453		3123	2986	2891						
2259	2186	2097	2020	1959	1900				1673	
1631			1479		1406				1266	
1245	1222	1197	1181	1158	1139	112	1 1101	L 1076	1056	
1038	1023	1006	983	966	952	93	8 926	911	891	
882	869	856	841	830	816	80	4 789	779	770	
752	743	733	725	712	702	68	8 678	671	658	
650	643	634	627	616	607	59	8 589	583	577	
568	559	552	545	540	533	52	6 518	3 512	506	
500	495	490	485	480	477	46	9 465	5 457	450	
447	442	437	432	426	422	41	8 413	3 408	403	
398	393	388	385	381	378	37	4 376	367	365	
361	357	354	350	347	344				332	
330	326	323	319	315	312		9 307	7 304	301	
299		293	291	289	286					
275		270	268	265	262					
252		249	247		243					
234		232	230	228	226					
217		214	212	210	209					
201		199	198	196	194					
188		185	183	182	181					
175			171		169					
164		161	160		158					
154		152	151		149					
145		143	142		141					
137		135	134		133					
129		128	127		126					
123		122	121	120	120					
117		116	115	115	114					
111		109	109	108	108					
105		104	104	103	103					
100		99	99	98	98					
95				93			3 92			
91		90	89	89	88					
86		85	85	84	84					
82		81	81	80	80					
78		78	77	77	76					
75	74	74	74	73	73	7	3 73	3 72	. 72]

```
In [27]: plt.plot(tag_counts[0:1000])
    plt.title('first 1k tags: Distribution of number of times tag appeared questio
    ns')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```


200 [331505 221533 122769 95160 62023 1639]

```
In [28]: plt.plot(tag_counts[0:500])
    plt.title('first 500 tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```


100 [331	505 221	533 122	769 95	160 62	023 44	829 37	170 31	897 26	925 24537	7
22429	21820	20957	19758	18905	17728	15533	15097	14884	13703	
13364	13157	12407	11658	11228	11162	10863	10600	10350	10224	
10029	9884	9719	9411	9252	9148	9040	8617	8361	8163	
8054	7867	7702	7564	7274	7151	7052	6847	6656	6553	
6466	6291	6183	6093	5971	5865	5760	5577	5490	5411	
5370	5283	5207	5107	5066	4983	4891	4785	4658	4549	
4526	4487	4429	4335	4310	4281	4239	4228	4195	4159	
4144	4088	4050	4002	3957	3929	3874	3849	3818	3797	
3750	3703	3685	3658	3615	3593	3564	3521	3505	3483]	

```
In [29]: plt.plot(tag counts[0:100], c='b')
         plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label=
         "quantiles with 0.05 intervals")
         # quantiles with 0.25 difference
         plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "q
         uantiles with 0.25 intervals")
         for x,y in zip(list(range(0,100,25)), tag counts[0:100:25]):
             plt.annotate(s="({} , {})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))
         plt.title('first 100 tags: Distribution of number of times tag appeared questi
         ons')
         plt.grid()
         plt.xlabel("Tag number")
         plt.ylabel("Number of times tag appeared")
         plt.legend()
         plt.show()
         print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```


20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]

```
In [30]: # Store tags greater than 10K in one list
    lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
    #Print the length of the list
    print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
    # Store tags greater than 100K in one list
    lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
    #Print the length of the list.
    print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric for this probelm.

3.2.4 Tags Per Question

```
In [31]:
         "Storing the count of tag in each question in list 'tag count'
         tag_quest_count = tag_dtm.sum(axis=1).tolist()
         #Converting each value in the 'tag quest count' to integer.
         tag quest count=[int(j) for i in tag quest count for j in i]
         print ('We have total {} datapoints.'.format(len(tag_quest_count)))
         print(tag_quest_count[:5])
         We have total 4206307 datapoints.
         [3, 4, 2, 2, 3]
In [32]:
         print( "Maximum number of tags per question: %d"%max(tag quest count))
         print( "Minimum number of tags per question: %d"%min(tag quest count))
         print( "Avg. number of tags per question: %f"% ((sum(tag quest count)*1.0)/len
         (tag_quest_count)))
         Maximum number of tags per question: 5
         Minimum number of tags per question: 1
         Avg. number of tags per question: 2.899443
```

```
In [33]: sns.countplot(tag_quest_count, palette='gist_rainbow')
    plt.title("Number of tags in the questions ")
    plt.xlabel("Number of Tags")
    plt.ylabel("Number of questions")
    plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 The top 20 tags

```
In [35]: i=np.arange(30)
    tag_df_sorted.head(30).plot(kind='bar')
    plt.title('Frequency of top 20 tags')
    plt.xticks(i, tag_df_sorted['Tags'])
    plt.xlabel('Tags')
    plt.ylabel('Counts')
    plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 0.5M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
In [2]: import nltk
    nltk.download('stopwords')

        [nltk_data] Downloading package stopwords to /root/nltk_data...
        [nltk_data] Unzipping corpora/stopwords.zip.

Out[2]: True

In [37]: def striphtml(data):
        cleanr = re.compile('<.*?>')
        cleantext = re.sub(cleanr, ' ', str(data))
        return cleantext
        stop_words = set(stopwords.words('english'))
        stemmer = SnowballStemmer("english")
```

```
In [38]: | #http://www.sqlitetutorial.net/sqlite-python/create-tables/
         def create connection(db file):
              """ create a database connection to the SQLite database
                 specified by db file
              :param db file: database file
              :return: Connection object or None
             try:
                  conn = sqlite3.connect(db file)
                  return conn
             except Error as e:
                  print(e)
             return None
         def create_table(conn, create_table_sql):
              """ create a table from the create table sql statement
             :param conn: Connection object
             :param create_table_sql: a CREATE TABLE statement
              .....
             try:
                  c = conn.cursor()
                  c.execute(create_table_sql)
             except Error as e:
                  print(e)
         def checkTableExists(dbcon):
             cursr = dbcon.cursor()
             str = "select name from sqlite master where type='table'"
             table names = cursr.execute(str)
             print("Tables in the databse:")
             tables =table names.fetchall()
             print(tables[0][0])
             return(len(tables))
         def create database table(database, query):
             conn = create connection(database)
             if conn is not None:
                  create table(conn, query)
                  checkTableExists(conn)
                  print("Error! cannot create the database connection.")
             conn.close()
         sql create table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question
          text NOT NULL, code text, tags text, words_pre integer, words_post integer, i
         s code integer);"""
          create database table("Processed.db", sql create table)
```

Tables in the databse: OuestionsProcessed

we create a new data base to store the sampled and preprocessed questions

4. Machine Learning Models

4.1 Converting tags for multilabel problems

```
        X
        y1
        y2
        y3
        y4

        x1
        0
        1
        1
        0

        x1
        1
        0
        0
        0

        x1
        0
        1
        0
        0
```

```
In [ ]:
```

4.5 Modeling with less data points (0.5M data points) and more weight to title and 500 tags only.

```
In [42]: # http://www.sqlitetutorial.net/sqlite-delete/
         # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-
         table
         read db = 'train no dup.db'
         write db = 'Titlemoreweight.db'
         train_datasize = 400000
         if os.path.isfile(read db):
             conn r = create connection(read db)
             if conn r is not None:
                 reader =conn r.cursor()
                 # for selecting first 0.5M rows
                 reader.execute("SELECT Title, Body, Tags From no_dup_train LIMIT 50000
         1;")
                 # for selecting random points
                 #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY R
         ANDOM() LIMIT 500001;")
         if os.path.isfile(write db):
             conn w = create_connection(write_db)
             if conn w is not None:
                 tables = checkTableExists(conn_w)
                 writer =conn w.cursor()
                 if tables != 0:
                      writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                      print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

In []:	
In []:	
In []:	
In []:	

```
In [43]: | #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-tab
         start = datetime.now()
         preprocessed data list=[]
         reader.fetchone()
         questions_with_code=0
         len pre=0
         len post=0
         questions proccesed = 0
         for row in reader:
             is code = 0
             title, question, tags = row[0], row[1], str(row[2])
             if '<code>' in question:
                 questions_with_code+=1
                 is code = 1
             x = len(question)+len(title)
             len_pre+=x
             code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
             question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.
         DOTALL)
             question=striphtml(question.encode('utf-8'))
             title=title.encode('utf-8')
             # adding title three time to the data to increase its weight
             # add tags string to the training data
             question=str(title)+" "+str(title)+" "+str(title)+" "+question
               if questions proccesed<=train datasize:</pre>
                   question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+s
         tr(tags)
               else:
         #
                   question=str(title)+" "+str(title)+" "+str(title)+" "+question
             question=re.sub(r'[^A-Za-z0-9#+..]+',' ',question)
             words=word tokenize(str(question.lower()))
             #Removing all single letter and and stopwords from question exceptt for th
         e letter 'c'
             question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_wor
         ds and (len(j)!=1 or j=='c'))
             len post+=len(question)
             tup = (question,code,tags,x,len(question),is code)
             questions proccesed += 1
             writer.execute("insert into QuestionsProcessed(question,code,tags,words pr
         e,words post, is code) values (?,?,?,?,?)",tup)
             if (questions proccesed%100000==0):
```

```
print("number of questions completed=",questions proccesed)
         no dup avg len pre=(len pre*1.0)/questions proccesed
         no dup avg len post=(len post*1.0)/questions proccesed
         print( "Avg. length of questions(Title+Body) before processing: %d"%no dup avg
         len pre)
         print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_
         len post)
         print ("Percent of questions containing code: %d"%((questions with code*100.0)
         /questions_proccesed))
         print("Time taken to run this cell :", datetime.now() - start)
         number of questions completed= 100000
         number of questions completed= 200000
         number of questions completed= 300000
         number of questions completed= 400000
         number of questions completed= 500000
         Avg. length of questions(Title+Body) before processing: 1239
         Avg. length of questions(Title+Body) after processing: 424
         Percent of questions containing code: 57
         Time taken to run this cell : 0:21:37.730850
In [44]:
         # never forget to close the conections or else we will end up with database lo
         cks
         conn r.commit()
         conn w.commit()
         conn r.close()
         conn_w.close()
```

Sample quesitons after preprocessing of data

```
In [45]: if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
        conn_r.commit()
        conn_r.close()
```

Questions after preprocessed

('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam code wrote code debug code block see m bind correct grid come column form come grid column although necessari bind nthank repli advance..',)

('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link instal jstl got follow error tri launch jsp page java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid taglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 jstl still messag caus so lv',)

('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow c ode display caus solv',)

('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php sdk novic facebook api read mani tutori still confused.i find post feed api method like correct second way use curl someth like way be tter',)

('btnadd click event open two window record ad btnadd click event open two window record ad btnadd click event open two window record ad open window search.aspx use code hav add button search.aspx nwhen insert record btnadd click e vent open anoth window nafter insert record close window',)

('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad news one tag mess form submiss place even touch life figur exact html use temp lat file forgiv okay entir php script get execut see data post none forum field post problem use someth titl field none data get post current use print post see submit noth work flawless statement though also mention script work flawless local machin use host come across problem state list input test mes s'.)

('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu measur let lbrace rbrace sequenc set sigma -algebra mathcal want show left bigcup right leq sum left right countabl addit measur defin se t sigma algebra mathcal think use monoton properti somewher proof start appre ci littl help nthank ad han answer make follow addit construct given han answer clear bigcup bigcup cap emptyset neq left bigcup right left bigcup right s um left right also construct subset monoton left right leq left right final w ould sum leq sum result follow',)

```
('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class properti name error occur hql error',)
```

('undefin symbol architectur i386 objc class skpsmtpmessag referenc error und efin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error import framew ork send email applic background import framework i.e skpsmtpmessag somebodi suggest get error collect2 ld return exit status import framework correct sor c taken framework follow mfmailcomposeviewcontrol question lock field updat a nswer drag drop folder project click copi nthat',)

Saving Preprocessed data to a Database

```
In [46]: #Taking 0.5 Million entries to a dataframe.
    write_db = 'Titlemoreweight.db'
    if os.path.isfile(write_db):
        conn_r = create_connection(write_db)
        if conn_r is not None:
            preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
    conn_r.commit()
    conn_r.close()
```

```
In [47]: preprocessed_data.head()
```

question

tags

Out[47]:

	-	-
0	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding
1	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding columns
2	java.lang.noclassdeffounderror javax servlet j	jsp jstl

3 java.sql.sqlexcept microsoft odbc driver manag... java jdbc

4 better way updat feed fb php sdk better way up... facebook api facebook-php-sdk

```
In [48]: print("number of data points in sample :", preprocessed_data.shape[0])
    print("number of dimensions :", preprocessed_data.shape[1])
    number of data points in sample : 500000
    number of dimensions : 2
```

Converting string Tags to multilable output variables

```
In [49]: vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

Selecting 500 Tags

```
In [50]: def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

```
In [52]: fig, ax = plt.subplots()
    ax.plot(questions_explained)
    xlabel = list(500+np.array(range(-50,450,50))*50)
    ax.set_xticklabels(xlabel)
    plt.xlabel("Number of tags")
    plt.ylabel("Number Questions coverd partially")
    plt.grid()
    plt.show()
    # you can choose any number of tags based on your computing power, minimun is
    500(it covers 90% of the tags)
    print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
    print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```


with 5500 tags we are covering 99.157 % of questions with 500 tags we are covering 90.956 % of questions

```
In [53]: # we will be taking 500 tags
         multilabel yx = tags to choose(500)
         print("number of questions that are not covered:", questions_explained_fn(500
         ), "out of ", total qs)
         number of questions that are not covered: 45221 out of 500000
In [54]: from sklearn.externals import joblib
         joblib.dump(preprocessed data, 'preprocessed data.pkl')
Out[54]: ['preprocessed data.pkl']
In [55]: x train=preprocessed data.head(train datasize)
         x test=preprocessed data.tail(preprocessed data.shape[0] - 400000)
         y train = multilabel yx[0:train datasize,:]
         y_test = multilabel_yx[train_datasize:preprocessed_data.shape[0],:]
In [56]: print("Number of data points in train data :", y_train.shape)
         print("Number of data points in test data :", y_test.shape)
         Number of data points in train data: (400000, 500)
         Number of data points in test data: (100000, 500)
```

4.5.2 Featurizing data with Tfldf vectorizer

```
In [57]: print("a")
In [58]: | start = datetime.now()
         vectorizer = TfidfVectorizer(min df=0.00009, max features=200000, smooth idf=T
         rue, norm="12", \
                                       tokenizer = lambda x: x.split(), sublinear tf=Fal
         se,
                                       ngram_range=(1,4))
         x train multilabel = vectorizer.fit transform(x train['question'])
         x test multilabel = vectorizer.transform(x test['question'])
         print("Time taken to run this cell :", datetime.now() - start)
         Time taken to run this cell: 0:07:18.075098
In [59]:
         print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.sh
         ape)
         print("Dimensions of test data X:",x test multilabel.shape,"Y:",y test.shape)
         Dimensions of train data X: (400000, 95585) Y: (400000, 500)
         Dimensions of test data X: (100000, 95585) Y: (100000, 500)
 In [ ]:
```

4.5.3 OneVsRest Classifier with SGDClassifier using TFIDF

```
In [60]:
         start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='log',
                                                         alpha=0.00001,
                                                         penalty='l1'), n jobs=-1)
         classifier.fit(x train multilabel, y train)
         predictions = classifier.predict (x_test_multilabel)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall score(y test, predictions, average='micro')
         f1 = f1 score(y test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         precision = precision score(y test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1 score(y test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         print (metrics.classification report(y test, predictions))
         print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy : 0.23625

Hamming loss 0.00278104

Micro-average quality numbers

Precision: 0.7216, Recall: 0.3256, F1-measure: 0.4488

Macro-average quality numbers

Precision: 0.5490, Recall: 0.2571, F1-measure: 0.3342

cision:	0.5490,	Recall:	0.2571,	, F1-measur	e: 0.3342
	preci	sion r	recall	f1-score	support
(9	0.94	0.64	0.76	5519
		0.68	0.26	0.38	8190
		0.81	0.38	0.52	6529
		0.81	0.43	0.56	3231
		0.81 0.81	0.43	0.54	6430
		0.81 0.82	0.41	0.48	2879
		0.82 0.87	0.49	0.48	5086
		0.88	0.54	0.67	4533
		0.61	0.13	0.21	3000
		0.81	0.53	0.64	2765
10		0.59	0.17	0.26	3051
1:		0.70	0.17	0.45	3009
12		0.65	0.25	0.36	2630
13		0.03 0.71	0.23	0.35	1426
1.		0.71	0.53	0.67	2548
1:				0.29	
10		0.68	0.18		2371 873
		0.64	0.23	0.34	
17		0.89	0.60	0.72	2151
18		0.63	0.23 0.40	0.34 0.51	2204
19		0.72			831
20		0.77	0.40	0.53	1860
2: 2:		0.27	0.08	0.12	2023
		0.50	0.22	0.31	1513
2:		0.91	0.49	0.64	1207
24		0.56	0.29	0.38	506
2!		0.68	0.30	0.41	425
20 21		0.65	0.40	0.50 0.42	793 1201
		0.60	0.33		1291
28 29		0.75 0.41	0.36	0.48	1208
		0.41 0.76	0.09	0.14	406 504
3(3:			0.17 0.11	0.28 0.16	504
		0.30			732
3:		0.57	0.22	0.32	441 1645
3: 34		0.57	0.18 0.25	0.27 0.37	1645 1058
3!		0.72 0.83	0.55	0.66	946
3:		0.65 0.66	0.20	0.30	644
3					
38		0.98 0.63	0.67 0.35	0.79	136
		0.85		0.45 0.43	570 766
39 40			0.28		766 1122
4:		0.62	0.28	0.38	1132
4.		0.46 0.80	0.19 0.53	0.27	174 210
				0.64	210
43		0.80 0.66	0.41	0.54	433
44		0.66 0.74	0.49	0.57	626 853
4!		0.74 0.75	0.31	0.44	852 524
40		0.75	0.43	0.54	534
47		0.32	0.13	0.18	350 406
48	0	0.74	0.51	0.60	496

		jauav.anand	i.iiiec i <i>i</i> @ilbiiu.a	C.III_Z I
49	0.80	0.61	0.69	785
50	0.16	0.03	0.06	475
51	0.28	0.08	0.13	305
52	0.47	0.04	0.07	251
53	0.68	0.40	0.50	914
54	0.46	0.16	0.23	728
55	0.29	0.02	0.03	258
56	0.47	0.19	0.27	821
57	0.50	0.09	0.15	541
58	0.78	0.28	0.41	748
59	0.94	0.62	0.75	724
60	0.33	0.06	0.11	660
61	0.85	0.19	0.31	235
62	0.91	0.71	0.80	718
63	0.83	0.63	0.71	468
64	0.54	0.32	0.40	191
65	0.36	0.13	0.19	429
66	0.27	0.05	0.08	415
67	0.76	0.47	0.58	274
68	0.82	0.52	0.63	510
69	0.67	0.45	0.54	466
70	0.27	0.06	0.10	305
71	0.46	0.14	0.22	247
72	0.78	0.48	0.59	401
73	0.98	0.73	0.84	86
74	0.73	0.37	0.49	120
75	0.89	0.67	0.77	129
76	0.50	0.00	0.01	473
77	0.35	0.25	0.29	143
78	0.80	0.45	0.57	347
79	0.73	0.23	0.35	479
80	0.54	0.31	0.40	279
81	0.78	0.17	0.28	461
82	0.19	0.01	0.03	298
83	0.77	0.45	0.57	396
84	0.55	0.34	0.42	184
85	0.67	0.20	0.31	573
86	0.47	0.05	0.08	325
87	0.49	0.27	0.35	273
88	0.42	0.21	0.28	135
89	0.30	0.07	0.12	232
90	0.57	0.31	0.40	409
91	0.64	0.25	0.36	420
92	0.75	0.53	0.62	408
93	0.69	0.47	0.56	241
94	0.33	0.04	0.08	211
95	0.33	0.07	0.12	277
96	0.28	0.04	0.07	410
97	0.89	0.32	0.47	501
98	0.78	0.59	0.67	136
99	0.55	0.33	0.41	239
100	0.58	0.14	0.22	324
101	0.93	0.61	0.73	277
102	0.92	0.70	0.79	613
103	0.51	0.17	0.25	157
104	0.23	0.06	0.10	295
105	0.85	0.34	0.49	334

		jauav.ananu.me	c 17@itbriu.ac.iii_2	<u> </u>
106	0.81	0.14	0.24	335
107	0.76	0.48	0.59	389
108	0.56	0.24	0.33	251
109	0.54	0.41	0.46	317
110	0.68	0.08	0.14	187
111	0.48	0.07	0.12	140
112	0.61	0.28	0.38	154
113	0.63	0.18	0.28	332
114	0.46	0.27	0.34	323
115	0.48	0.21	0.29	344
116	0.76	0.49	0.60	370
117	0.57	0.22	0.32	313
118	0.78	0.68	0.72	874
119	0.47	0.19	0.27	293
120	0.00	0.00	0.00	200
121	0.76	0.48	0.59	463
122	0.38	0.09	0.15	119
123	0.75	0.01	0.02	256
124	0.91	0.69	0.79	195
125	0.41	0.11	0.17	138
126	0.81	0.49	0.61	376
127	0.15	0.03	0.05	122
128	0.15	0.03	0.05	252
129	0.41	0.10	0.16	144
130	0.41	0.08	0.13	150
131	0.17	0.01	0.02	210
132	0.66	0.25	0.37	361
133	0.94	0.54	0.68	453
134	0.89	0.73	0.80	124
135	0.27	0.03	0.06	91
136	0.68	0.27	0.38	128
137	0.58	0.34	0.43	218
138	0.79	0.16	0.26	243
139	0.38	0.19	0.25	149
140	0.76	0.44	0.55	318
141	0.29	0.11	0.16	159
142	0.66	0.35	0.46	274
143	0.87	0.72	0.79	362
144	0.58	0.15	0.24	118
145	0.67	0.37	0.48	164
146	0.59	0.28	0.38	461
147	0.66	0.39	0.49	159
148	0.34	0.14	0.20	166
149	0.99	0.45	0.62	346
150	0.65	0.09	0.15	350
151	0.90	0.64	0.74	55
152	0.79	0.46	0.58	387
153	0.48	0.09	0.16	150
154	0.60	0.12	0.20	281
155	0.27	0.06	0.10	202
156	0.76	0.62	0.68	130
157	0.27	0.07	0.12	245
158	0.88	0.58	0.70	177
159	0.47	0.26	0.34	130
160	0.48	0.12	0.20	336
161	0.48	0.12	0.70	220
162	0.19	0.03	0.06	229
102	U. 1J	0.05	0.00	44

		jauav.ananu.me	ec i / @itbiiu.ac.iii_	<u> </u>
163	0.89	0.40	0.55	316
164	0.75	0.35	0.47	283
165	0.64	0.32	0.43	197
166	0.48	0.25	0.33	101
167	0.47	0.19	0.27	231
168	0.61	0.22	0.32	370
169	0.41	0.17	0.24	258
170	0.30	0.06	0.10	101
171	0.37	0.21	0.27	89
172	0.52	0.37	0.43	193
173	0.41	0.21	0.27	309
174	0.52	0.13	0.21	172
175	0.93	0.72	0.81	95
176	0.94	0.59	0.73	346
177	0.94	0.43	0.59	322
178	0.64	0.46	0.53	232
179	0.35	0.46	0.11	125
180	0.55	0.27	0.36	145
181	0.40	0.10	0.16	77
182	0.20	0.03	0.05	182
183	0.61	0.31	0.41	257
184	0.08	0.01	0.02	216
185	0.35	0.06	0.11	242
186	0.41	0.16	0.23	165
187	0.76	0.56	0.64	263
188	0.34	0.11	0.17	174
189	0.71	0.29	0.42	136
190	0.88	0.49	0.63	202
191	0.42	0.15	0.22	134
192	0.73	0.40	0.52	230
193	0.43	0.18	0.25	90
194	0.58	0.48	0.53	185
195	0.18	0.04	0.06	156
196	0.38	0.07	0.12	160
197	0.61	0.06	0.12	266
198	0.43	0.06	0.11	284
199	0.43	0.06	0.11	145
200	0.94	0.68	0.79	212
201	0.68	0.22	0.33	317
202	0.79	0.54	0.64	427
203	0.31	0.09	0.14	232
204	0.50	0.22	0.31	217
205	0.48	0.42	0.45	527
206	0.13	0.02	0.03	124
207	0.50	0.09	0.15	103
208	0.89	0.48	0.63	287
209	0.28	0.07	0.11	193
210	0.71	0.31	0.44	220
211	0.71	0.18	0.29	140
212	0.78	0.18	0.03	161
213	0.55 0.61	0.25	0.34	72 396
214	0.61	0.45	0.52	396
215	0.86	0.32	0.47	134
216	0.50	0.06	0.10	400
217	0.56	0.25	0.35	75
218	0.96	0.75	0.85	219
219	0.75	0.36	0.48	210

		jauav.ananu.me	c i / @itbriu.ac.iii	2 I
220	0.90	0.59	0.71	298
221	0.97	0.60	0.74	266
222	0.78	0.41	0.54	290
223	0.08	0.01	0.01	128
224	0.78	0.38	0.51	159
225	0.58	0.30	0.39	164
226	0.62	0.35	0.45	144
227	0.58	0.32	0.41	276
228	0.17	0.02	0.03	235
229	0.33	0.02	0.04	216
230	0.35	0.17	0.23	228
231	0.71	0.47	0.57	64
232	0.44	0.07	0.12	103
233	0.69	0.29	0.41	216
234	0.75	0.08	0.14	116
235	0.55	0.36	0.44	77
236	0.96	0.64	0.77	67
237	0.52	0.06	0.10	218
238	0.35	0.09	0.14	139
239	0.17	0.01	0.02	94
240	0.55	0.27	0.37	77
241	0.52	0.09	0.15	167
242	0.83	0.29	0.43	86
243	0.45	0.16	0.23	58
244	0.57	0.17	0.26	269
245	0.18	0.06	0.09	112
246	0.95	0.73	0.83	255
247	0.44	0.19	0.27	58
248	0.25	0.02	0.04	81
249	0.00	0.00	0.00	131
250	0.43	0.22	0.29	93
251	0.66	0.29	0.40	154
252	0.33	0.04	0.07	129
253	0.63	0.33	0.43	83
254	0.36	0.09	0.14	191
255	0.16	0.03	0.05	219
256	0.25	0.03	0.05	130
257	0.46	0.29	0.36	93
258	0.69	0.43	0.53	217
259	0.33	0.11	0.16	141
260	0.95	0.13	0.23	143
261	0.56	0.12	0.20	219
262	0.54	0.27	0.36	107
263	0.40	0.23	0.29	236
264	0.29	0.17	0.21	119
265	0.31	0.11	0.16	72
266	0.00	0.00	0.00	70
267	0.32	0.14	0.19	107
268	0.66	0.41	0.51	169
269	0.30	0.10	0.15	129
270	0.74	0.53	0.62	159
270	0.74	0.30	0.44	190
271	0.62	0.22	0.33	248
272	0.62	0.70	0.79	264
274	0.91		0.79	105
274	0.57	0.66 0.08	0.76	104
276	0.14	0.02	0.03	115

		jadav.anana.mo	017 @110114.40.111_2	- '
277	0.83	0.59	0.69	170
278	0.65	0.23	0.34	145
279	0.92	0.57	0.71	230
280	0.57	0.42	0.49	80
281	0.68	0.55	0.61	217
282	0.75	0.47	0.58	175
283	0.34	0.05	0.09	269
284	0.65	0.27	0.38	74
285	0.86	0.49	0.62	206
286	0.90	0.60	0.72	227
287	0.85	0.31	0.45	130
288	0.39	0.07	0.12	129
289	0.50	0.03	0.05	80
290	0.14	0.06	0.08	99
291	0.78	0.32	0.45	208
292	0.17	0.01	0.03	67
293	0.82	0.42	0.56	109
294	0.40	0.24	0.30	140
295	0.24	0.08	0.12	241
296	0.24	0.10	0.14	72
297	0.22	0.04	0.06	107
298	0.80	0.39	0.53	61
299	0.93	0.36	0.52	77
300	0.19	0.06	0.10	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.56	0.35	0.43	176
304	0.96	0.70	0.81	230
305	0.97	0.59	0.73	156
306	0.51	0.36	0.42	146
307	0.29	0.08	0.13	98
308	0.00	0.00	0.00	78
309	0.71	0.05	0.10	94
310	0.76	0.35	0.48	162
311	0.81	0.53	0.64	116
312	0.48	0.26	0.34	57
313	0.80	0.06	0.11	65
314	0.51	0.36	0.42	138
315	0.53	0.21	0.30	195
316	0.46	0.26	0.33	69
317	0.34	0.10	0.15	134
318	0.49	0.33	0.40	148
319	0.85	0.44	0.58	161
320	0.22	0.14	0.17	104
321	0.85	0.53	0.65	156
322	0.60	0.31	0.41	134
323	0.57	0.38	0.45	232
324	0.44	0.18	0.26	92
325	0.47	0.28	0.35	197
326 327	0.12	0.02 0.04	0.04 0.08	126 115
327	0.50			115
328	0.98	0.64 0.31	0.78	198
329 330	0.63 0.83	0.19	0.42	125 81
331	0.50	0.09	0.30 0.15	94
332	1.00	0.02	0.04	56
333	0.13	0.03	0.04	260
ررر	0.13	0.05	0.04	200

		jauav.ananu	i.iiiec i <i>i</i> @itbiiu.a	C.III_Z I
334	0.18	0.03	0.06	60
335	0.32	0.09	0.14	110
336	0.63	0.41	0.50	71
337	0.13	0.03	0.05	66
338	0.44	0.31	0.36	150
339	0.00	0.00	0.00	54
340	0.85	0.54	0.66	195
341	0.89	0.20	0.33	79
342	0.38	0.16	0.22	38
343	0.67	0.37	0.48	43
344	0.53	0.24	0.33	68
345	0.67	0.38	0.49	73
346	0.27	0.03	0.05	116
347	0.88	0.34	0.49	111
348	0.29	0.10	0.14	63
349	0.82	0.59	0.69	104
350	0.64	0.48	0.55	44
351	0.73	0.20	0.31	40
352	0.98	0.40	0.57	136
353	0.42	0.20	0.27	54
354	0.36	0.04	0.07	134
355	0.51	0.28	0.36	120
356	0.55	0.25	0.34	228
357	0.66	0.28	0.39	269
358	0.69	0.36	0.48	80
359	0.86	0.43	0.57	140
360	0.40	0.15	0.22	125
361	0.89	0.63	0.74	169
362	0.11	0.04	0.05	56
363	0.94	0.66	0.77	154
364	0.33	0.05	0.09	58
365	0.26	0.13	0.17	71
366	1.00	0.65	0.79	54
367	0.29	0.03	0.06	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.20	0.03	0.06	61
371	0.55	0.08	0.15	71
372	0.65	0.46	0.54	52
373	0.78	0.36	0.49	150
374	0.34	0.13	0.19	93
375	0.19	0.04	0.07	67
376	0.00	0.00	0.00	76
377	0.74	0.16	0.26	106
378	0.27	0.03	0.06	86
379	0.33	0.07	0.12	14
380	1.00	0.40	0.57	122
381	0.19	0.03	0.05	104
382	0.32	0.09	0.14	66
383	0.46	0.27	0.34	110
384	0.00	0.00	0.00	155
385	0.40	0.08	0.13	50
386	0.24	0.11	0.15	64
387	0.43	0.06	0.11	93
388	0.61	0.27	0.38	102
389	0.07	0.01	0.02	108
390	0.96	0.66	0.78	178
-	- · · ·			3

		jauav.ananu	.iiiec i / @itbiiu.a	C.III_Z
391	0.62	0.17	0.27	115
392	0.77	0.40	0.53	42
393	0.00	0.00	0.00	134
394	0.50	0.02	0.03	112
395	0.42	0.12	0.19	176
396	0.50	0.08	0.14	125
397	0.70	0.23	0.35	224
398	0.88	0.56	0.68	63
399	0.00	0.00	0.00	59
400	0.48	0.35	0.40	63
401	0.50	0.18	0.27	98
402	0.57	0.16	0.25	162
403	0.41	0.14	0.21	83
404	0.73	0.84	0.78	19
405	0.29	0.07	0.11	92
406	0.86	0.15	0.25	41
407	0.62	0.30	0.41	43
408	0.80	0.32	0.46	160
409	0.17	0.10	0.13	50
410	0.00	0.00	0.00	19
411	0.39	0.10	0.16	175
412	0.29	0.06	0.09	72
413	0.56	0.05	0.10	95
414	0.16	0.03	0.05	97
415	0.30	0.15	0.20	48
416	0.44	0.28	0.34	83
417	0.50	0.07	0.13	40
418	0.37	0.08	0.13	91
419	0.52	0.28	0.36	90
420	0.29	0.22	0.25	37
421	0.00	0.00	0.00	66
422	0.61	0.34	0.44	73
423	0.48	0.25	0.33	56
424	0.93	0.82	0.87	33
425	0.00	0.00	0.00	76
426	0.25	0.05	0.08	81
427	0.99	0.68	0.81	150
428	0.95	0.66	0.78	29
429	0.99	0.65	0.78	389
430	0.64	0.36	0.46	167
431	0.48	0.08	0.14	123
432	0.45	0.33	0.38	39
433	0.29	0.16	0.20	82
434	1.00	0.65	0.79	66
435	0.63	0.45	0.53	93
436	0.52	0.25	0.34	87
437	0.26	0.06	0.10	86
438	0.73	0.47	0.57	104
439	0.62	0.13	0.21	100
440	0.25	0.01	0.01	141
441	0.42	0.25	0.31	110
442	0.40	0.13	0.20	123
443	0.50	0.13	0.20	71
444	0.44	0.06	0.11	109
445	0.42	0.21	0.28	48 76
446	0.43	0.25	0.32	76
447	0.26	0.13	0.18	38

		jaaav.an	iana.moon with	<u>-</u>
448	0.69	0.54	0.61	81
449	0.57	0.16	0.25	132
450	0.46	0.26	0.33	81
451	0.88	0.29	0.44	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.94	0.41	0.57	70
455	0.48	0.07	0.12	155
456	0.43	0.14	0.21	43
457	0.52	0.21	0.30	72
458	0.29	0.08	0.13	62
459	0.64	0.13	0.22	69
460	0.07	0.01	0.01	119
461	0.77	0.13	0.22	79
462	0.69	0.23	0.35	47
463	0.26	0.05	0.08	104
464	0.65	0.34	0.45	106
465	0.54	0.11	0.18	64
466	0.57	0.28	0.38	173
467	0.79	0.35	0.48	107
468	0.82	0.11	0.20	126
469	0.00	0.00	0.00	114
470	0.94	0.79	0.86	140
471	0.91	0.27	0.41	79
472	0.39	0.28	0.33	143
473	0.68	0.30	0.41	158
474	0.38	0.07	0.11	138
475	0.00	0.00	0.00	59
476	0.57	0.32	0.41	88
477	0.86	0.57	0.68	176
478	0.94	0.71	0.81	24
479	0.09	0.01	0.02	92
480	0.82	0.50	0.62	100
481	0.49	0.17	0.26	103
482	0.52	0.23	0.32	74
483	0.83	0.57	0.68	105
484	0.29	0.02	0.04	83
485	0.25	0.02	0.04	82
486	0.38	0.02	0.17	71
487	0.43	0.18	0.26	120
488	0.20	0.01	0.02	105
489	0.72	0.30	0.42	87
490	1.00	0.81	0.90	32
491	0.00	0.00	0.00	69
492	0.00	0.00	0.00	49
493	0.00	0.00	0.00	117
494	0.50	0.16	0.25	61
495	0.99	0.52	0.68	344
496	0.37	0.19	0.00	52
497	0.62	0.19	0.29	137
498	0.02	0.19	0.23	98
499	0.29	0.16	0.27	79
433	0.72	0.10	U. 2/	79
avg / total	0.67	0.33	0.43	173812
ave / cocar	0.07	0.55	0.43	1/ 7012

Time taken to run this cell: 0:05:30.994191

```
In [61]: joblib.dump(classifier, 'lr_with_more_title_weight.pkl')
Out[61]: ['lr_with_more_title_weight.pkl']
```

ASSIGNMENT

- 1. bag of words upto 4 grams and compute the micro f1 score with Logistic regression(OvR)
- 2. Perform hyperparam tuning on alpha (or lambda) for Logistic regression to improve the performance using GridSearch
- 3. OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

Featurizing Using Bag of Words

```
In [ ]:
In [2]: alpha=[10**-3,10**-2,10**-1]
In [63]: | start = datetime.now()
         vectorizer = CountVectorizer(min df=0.00009, max features=200000, \
                                      tokenizer = lambda x: x.split(), ngram_range=(1,
         4))
         x_train_multilabel = vectorizer.fit_transform(x_train['question'])
In [64]:
         x test multilabel = vectorizer.transform(x test['question'])
         print("Time taken to run this cell :", datetime.now() - start)
         Time taken to run this cell: 0:07:24.935906
In [65]:
         print("Dimensions of train data X:",x train multilabel.shape, "Y:",y train.sh
         print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
         Dimensions of train data X: (400000, 95585) Y: (400000, 500)
         Dimensions of test data X: (100000, 95585) Y: (100000, 500)
```

Dump and load train and test data into joblib

```
In [66]: joblib.dump(x_train_multilabel, 'x_train_BOW.pkl')
    joblib.dump(x_test_multilabel, 'x_test_BOW.pkl')
    joblib.dump(y_train, 'y_train.pkl')
    joblib.dump(y_test, 'y_test.pkl')
Out[66]: ['y_test.pkl']
```

```
In [3]: x_train_multilabel = joblib.load('x_train_BOW.pkl')
y_train = joblib.load('y_train.pkl')

In [15]: x_test_multilabel = joblib.load('x_test_BOW.pkl')
y_test = joblib.load('y_test.pkl')
```

OneVsRestClassifier with Logistic regression

(alpha tuning using Gridsearch)

OneVsRestClassifier with SGDClassifier(penalty=I2, loss=log)==> {Logistic regression}

```
In [9]:
        start = datetime.now()
        import warnings
        warnings.filterwarnings('ignore')
        # hp1={'estimator C':alpha}
        cv scores = []
        for i in alpha:
            print(i)
            hp1={'estimator__alpha':[i],
                  'estimator loss':['log'],
                  'estimator__penalty':['12']}
            print(hp1)
            classifier = OneVsRestClassifier(SGDClassifier())
            model11 =GridSearchCV(classifier,hp1,
                                   cv=3, scoring='f1 micro',n jobs=-1)
            print("Gridsearchcv")
            best_model1=model11.fit(x_train_multilabel, y_train)
            print('fit model')
            Train model score=best model1.score(x train multilabel,
                                                 y train)
        #print("best model1")
            cv scores.append(Train model score.mean())
        fscore = [x for x in cv scores]
        # determining best alpha
        optimal alpha21 = alpha[fscore.index(max(fscore))]
        print('\n The optimal value of alpha with penalty=12 and loss= log is %d.' % o
        ptimal alpha21)
        # PLots
        fig4 = plt.figure( facecolor='c', edgecolor='k')
        plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
        linewidth=2, markersize=12)
        for xy in zip(alpha, np.round(fscore,3)):
            plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
        plt.xlabel('Hyper parameter Alpha')
        plt.ylabel('F1 Score value ')
        plt.show()
        print("Time taken to run this cell :", datetime.now() - start)
```

```
0.001
{'estimator_alpha': [0.001], 'estimator_loss': ['log'], 'estimator_penalt
y': ['12']}
Gridsearchcv
fit model
0.01
{'estimator_alpha': [0.01], 'estimator_loss': ['log'], 'estimator_penalt
y': ['12']}
Gridsearchcv
fit model
0.1
{'estimator_alpha': [0.1], 'estimator_loss': ['log'], 'estimator_penalty':
['12']}
Gridsearchcv
fit model
```

The optimal value of alpha with penalty=11 and loss= log is 0.

Time taken to run this cell: 1:59:14.455889

```
In [10]:
         print(optimal_alpha21)
         0.001
In [ ]:
In [11]:
         start = datetime.now()
         best_model1 = OneVsRestClassifier(SGDClassifier(loss='log', alpha=optimal_alph
         a21,
                                                         penalty='12'), n jobs=-1)
         best_model1.fit(x_train_multilabel, y_train)
Out[11]: OneVsRestClassifier(estimator=SGDClassifier(alpha=0.001, average=False, class
         weight=None, epsilon=0.1,
                eta0=0.0, fit_intercept=True, l1_ratio=0.15,
                learning rate='optimal', loss='log', max iter=None, n iter=None,
                n jobs=1, penalty='12', power t=0.5, random state=None,
                shuffle=True, tol=None, verbose=0, warm start=False),
                   n_jobs=-1)
```

```
In [12]: joblib.dump(best_model1, 'best_model1_LR.pkl')
Out[12]: ['best_model1_LR.pkl']
In [13]: best_model1=joblib.load('best_model1_LR.pkl')
```

```
In [16]:
        predictions = best model1.predict (x test multilabel)
         print("Accuracy :",metrics.accuracy score(y test, predictions))
         print("Hamming loss ", metrics.hamming loss(y test, predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1 score(y test, predictions, average='micro')
         print("Micro-averasge quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall score(y test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         print (metrics.classification_report(y_test, predictions)) #printing classific
         ation report for all 500 labels
         print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy: 0.2117

Hamming loss 0.00296836

Micro-averasge quality numbers

Precision: 0.6491, Recall: 0.3179, F1-measure: 0.4268

Macro-average quality numbers

Precision: 0.4948, Recall: 0.2353, F1-measure: 0.3058

recision:	0.4948,	Recall:	0.2353,	F1-measure	: 0.3058
	preci	sion	recall	f1-score	support
6		0.95	0.64	0.76	5519
1		0.68	0.27	0.39	8190
2		0.80	0.37	0.51	6529
3		0.82	0.42	0.55	3231
4		0.80	0.43	0.56	6430
5		0.80	0.35	0.49	2879
6		0.88	0.47	0.62	5086
7		0.87	0.56	0.68	4533
8		0.60	0.14	0.23	3000
ğ		0.81	0.57	0.67	2765
16		0.59	0.21	0.31	3051
11		0.71	0.33	0.45	3009
12		0.63	0.27	0.38	2630
13		0.73	0.27	0.39	1426
14		0.90	0.49	0.63	2548
15		0.63	0.13	0.22	2371
16		0.63	0.25	0.36	873
17		0.85	0.62	0.72	2151
18		0.63	0.26	0.37	2204
19		0.72	0.41	0.53	831
26		0.78	0.40	0.53	1860
21		0.28	0.14	0.18	2023
22		0.44	0.31	0.37	1513
23		0.91	0.47	0.62	1207
24		0.49	0.36	0.41	506
25		0.60	0.29	0.40	425
26		0.59	0.42	0.49	793
27		0.57	0.38	0.46	1291
28		0.70	0.32	0.44	1208
29		0.36	0.09	0.14	406
36		0.58	0.14	0.23	504
31		0.28	0.15	0.20	732
32		0.57	0.27	0.37	441
33		0.51	0.30	0.37	1645
34		0.71	0.23	0.35	1058
35		0.83	0.58	0.68	946
36		0.60	0.22	0.32	644
37		0.98	0.63	0.77	136
38		0.60	0.45	0.51	570
39		0.85	0.22	0.34	766
46		0.60 0.46	0.31	0.40	1132
41		0.46	0.22	0.30	174
42		0.69	0.43	0.53	210
43 44		0.76	0.39	0.52	433 626
		0.65	0.47 0.31	0.55 0.42	626 852
45		0.65 0.71	0.31	0.42	852 524
46		0.71	0.43	0.53	534 250
47 48		0.27 0.72	0.23	0.25 0.50	350 496
46	,	0.72	0.50	0.59	490

		jauav.anand	i.iiiec i <i>i</i> @ilbiiu.a	C.III_Z I
49	0.79	0.64	0.71	785
50	0.20	0.13	0.16	475
51	0.28	0.15	0.19	305
52	0.34	0.06	0.11	251
53	0.67	0.38	0.49	914
54	0.43	0.22	0.29	728
55	0.00	0.00	0.00	258
56	0.38	0.27	0.32	821
57	0.39	0.12	0.19	541
58	0.80	0.24	0.37	748
59	0.95	0.57	0.71	724
60	0.27	0.07	0.11	660
61	0.85	0.19	0.31	235
62	0.88	0.69	0.78	718
63	0.83	0.55	0.66	468
64	0.49	0.44	0.47	191
65	0.25	0.18	0.21	429
66	0.26	0.14	0.19	415
67	0.68	0.46	0.55	274
68	0.84	0.47	0.61	510
69	0.65	0.42	0.51	466
70	0.26	0.13	0.18	305
71	0.37	0.17	0.23	247
72	0.75	0.41	0.53	401
73	0.90	0.65	0.76	86
74	0.71	0.34	0.46	120
75	0.90	0.62	0.73	129
76	0.46	0.01	0.02	473
77	0.36	0.35	0.35	143
78	0.75	0.38	0.51	347
79	0.69	0.21	0.32	479
80	0.49	0.39	0.44	279
81	0.75	0.11	0.19	461
82	0.20	0.08	0.12	298
83	0.71	0.41	0.52	396
84	0.46	0.37	0.41	184
85	0.45	0.27	0.34	573
86	0.24	0.09	0.13	325
87	0.46	0.24	0.32	273
88	0.32	0.25	0.28	135
89	0.25	0.16	0.20	232
90	0.49	0.40	0.44	409
91	0.62	0.34	0.44	420
92	0.75	0.46	0.57	408
93	0.51	0.48	0.49	241
94	0.31	0.10	0.16	211
95	0.27	0.18	0.22	277
96	0.29	0.07	0.11	410
97	0.88	0.16	0.27	501
98	0.79	0.57	0.66	136
99	0.49	0.29	0.37	239
100	0.47	0.18	0.26	324
101	0.90	0.50	0.64	277
102	0.90	0.64	0.75	613
103	0.44	0.20	0.27	157
104	0.21	0.15	0.17	295
105	0.67	0.36	0.47	334

		jauav.ananu.me	c i / @ilbiiu.ac.iii_/	21
106	0.78	0.05	0.10	335
107	0.75	0.49	0.59	389
108	0.53	0.34	0.41	251
109	0.48	0.40	0.43	317
110	0.47	0.09	0.14	187
111	0.35	0.06	0.10	140
112	0.43	0.25	0.32	154
113	0.58	0.14	0.22	332
114	0.42	0.29	0.35	323
115	0.41	0.19	0.26	344
116	0.72	0.45	0.55	370
117	0.54	0.19	0.29	313
118	0.80	0.46	0.58	874
119	0.34	0.24	0.28	293
120	0.13	0.04	0.05	200
121	0.75	0.42	0.54	463
122	0.36	0.24	0.29	119
123	0.25	0.00	0.01	256
124	0.91	0.62	0.74	195
125	0.39	0.20	0.26	138
126	0.79	0.51	0.62	376
127	0.17	0.06	0.09	122
128	0.20	0.08	0.11	252
129	0.39	0.10	0.16	144
130	0.41	0.07	0.12	150
131	0.16	0.03	0.06	210
132	0.58	0.22	0.32	361
133	0.94	0.39	0.55	453
134	0.89	0.66	0.76	124
135	0.25	0.01	0.02	91
136	0.53	0.30	0.39	128
137	0.46	0.33	0.39	218
138	0.38	0.08	0.13	243
139	0.33	0.24	0.28	149
140	0.68	0.32	0.44	318
141	0.18	0.15	0.17	159
142	0.65	0.39	0.49	274
143	0.85	0.61	0.71	362
144	0.48	0.20	0.29	118
145	0.58	0.37	0.45	164
146	0.57	0.29	0.38	461
147	0.66	0.45	0.53	159
148	0.35	0.16	0.22	166
149	0.97	0.31	0.47	346
150	0.61	0.07	0.12	350
151	0.88	0.42	0.57	55
152	0.72	0.46	0.56	387
153	0.39	0.06	0.10	150
154	0.52	0.06	0.10	281
155	0.29	0.16	0.21	202
156	0.73	0.55	0.63	130
156	0.73	0.11	0.15	245
157	0.28	0.47	0.62	245 177
159	0.43		0.34	130
		0.28 0.25	0.33	
160	0.49			336
161	0.85	0.50	0.63	220
162	0.18	0.10	0.13	229

		jauav.ananu.me	c i / @ilbiiu.ac.iii_/	۷ ۱
163	0.90	0.28	0.43	316
164	0.71	0.28	0.41	283
165	0.54	0.28	0.37	197
166	0.31	0.20	0.24	101
167	0.39	0.24	0.30	231
168	0.44	0.21	0.28	370
169	0.42	0.28	0.33	258
170	0.23	0.09	0.13	101
171	0.46	0.25	0.32	89
172	0.39	0.34	0.36	193
173	0.41	0.28	0.34	309
174	0.50	0.12	0.19	172
175	0.90	0.75	0.82	95
176	0.93	0.43	0.59	346
177	0.95	0.24	0.39	322
178	0.57	0.43	0.49	232
179	0.54	0.06	0.10	125
180	0.43	0.21	0.28	145
181	0.47	0.19	0.28	77
182	0.13	0.07	0.09	182
183	0.55	0.35	0.43	257
184	0.13	0.06	0.08	216
185	0.29	0.14	0.19	242
186	0.28	0.19	0.23	165
187	0.77	0.46	0.58	263
188	0.31	0.16	0.21	174
189	0.78	0.33	0.46	136
190	0.94	0.36	0.52	202
191	0.40	0.15	0.22	134
192	0.63	0.31	0.41	230
193	0.31	0.18	0.23	90
194	0.59	0.52	0.56	185
195	0.08	0.04	0.05	156
196	0.23	0.07	0.11	160
197	0.10	0.02	0.03	266
198	0.38	0.10	0.16	284
199	0.15	0.03	0.06	145
200	0.93	0.52	0.67	212
201	0.49	0.23	0.31	317
202	0.73	0.43	0.54	427
203	0.25	0.14	0.18	232
204	0.40	0.25	0.31	217
205	0.48	0.38	0.42	527
206	0.10	0.04	0.06	124
207	0.34	0.16	0.21	103
208	0.81	0.34	0.48	287
209	0.25	0.11	0.15	193
210	0.69	0.25	0.37	220
211	0.64	0.06	0.12	140
212	0.08	0.05	0.06	161
213	0.55	0.29	0.38	72
214	0.60	0.43	0.50	396
215	0.77	0.17	0.28	134
216	0.36	0.07	0.12	400
217	0.44	0.25	0.32	75
218	0.97	0.50	0.66	219
219	0.79	0.28	0.41	210
				-

		jadav.anana.mo	017 @115114.40.111_2	- '
220	0.93	0.37	0.53	298
221	0.96	0.41	0.58	266
222	0.70	0.29	0.41	290
223	0.22	0.05	0.09	128
224	0.75	0.36	0.49	159
225	0.36	0.22	0.27	164
226	0.56	0.34	0.42	144
227	0.54	0.41	0.46	276
228	0.07	0.02	0.03	235
229	0.23	0.03	0.05	216
230	0.36	0.25	0.30	228
231	0.67	0.45	0.54	64
232	0.15	0.07	0.09	103
233	0.72	0.20	0.31	216
234	0.60	0.13	0.21	116
235	0.57	0.43	0.49	77
236	0.91	0.60	0.72	67
237	0.56	0.05	0.08	218
238	0.15	0.09	0.12	139
239	0.19	0.03	0.05	94
240	0.39	0.16	0.22	77
241	0.47	0.10	0.17	167
242243	0.77	0.23	0.36	86 58
243	0.48 0.45	0.19 0.22	0.27 0.29	269
244	0.43	0.06	0.09	112
245	0.96	0.54	0.69	255
247	0.39	0.21	0.03	58
248	0.36	0.06	0.11	81
249	0.03	0.01	0.01	131
250	0.30	0.23	0.26	93
251	0.57	0.28	0.38	154
252	0.20	0.05	0.09	129
253	0.55	0.35	0.43	83
254	0.22	0.10	0.14	191
255	0.14	0.07	0.09	219
256	0.07	0.02	0.03	130
257	0.41	0.31	0.35	93
258	0.63	0.35	0.45	217
259	0.24	0.11	0.15	141
260	0.89	0.12	0.21	143
261	0.53	0.11	0.18	219
262	0.42	0.32	0.36	107
263	0.32	0.32	0.32	236
264	0.21	0.19	0.20	119
265	0.32	0.24	0.27	72
266	0.18	0.09	0.12	70
267	0.26	0.13	0.17	107
268	0.61	0.33	0.43	169
269	0.22	0.15	0.18	129
270	0.70	0.50	0.58	159
271	0.48	0.17	0.25	190
272	0.57	0.21	0.31	248
273	0.93	0.43	0.59	264
274	0.88	0.50	0.64	105
275	0.09	0.03	0.04	104
276	0.09	0.02	0.03	115

		,	_	_
277	0.86	0.51	0.64	170
278	0.63	0.19	0.29	145
279	0.88	0.30	0.45	230
280	0.54	0.33	0.41	80
281	0.68	0.47	0.56	217
282	0.74	0.38	0.50	175
283	0.37	0.11	0.17	269
284	0.61	0.30	0.40	74
285	0.86	0.36	0.51	206
286	0.92	0.43	0.58	227
287	0.77	0.25	0.38	130
288	0.28	0.06	0.10	129
289	0.17	0.06	0.09	80
290	0.15	0.12	0.14	99
291	0.83	0.21	0.34	208
292	0.37	0.10	0.16	67
293	0.78	0.33	0.46	109
294	0.32	0.33	0.33	140
295	0.17	0.14	0.15	241
296	0.23	0.19	0.13	72
297	0.28	0.12	0.17	107
298	0.67	0.43	0.52	61
299	0.86	0.43	0.54	77
300	0.18	0.09	0.12	111
301				
302	0.00 0.33	0.00 0.01	0.00 0.03	126 73
303	0.53	0.40	0.46	176
304	0.96	0.46	0.62	230
305	0.94	0.40	0.57	156
306	0.43	0.36	0.39	146
307	0.28	0.11	0.16	98
308	0.08	0.04	0.05	78
309	0.33	0.02	0.04	94
310	0.56	0.31	0.40	162
311	0.67	0.37	0.48	116
312	0.47	0.25	0.32	57
313	0.67	0.03	0.06	65
314	0.46	0.30	0.37	138
315	0.48	0.24	0.32	195
316	0.41	0.33	0.37	69
317	0.19	0.08	0.11	134
318	0.41	0.30	0.35	148
319	0.70	0.29	0.41	161
320	0.18	0.22	0.20	104
321	0.81	0.43	0.56	156
322	0.56	0.31	0.40	134
323	0.49	0.41	0.45	232
324	0.37	0.18	0.25	92
325	0.34	0.26	0.30	197
326	0.09	0.02	0.04	126
327	0.29	0.04	0.08	115
328	0.97	0.31	0.47	198
329	0.53	0.32	0.40	125
330	0.57	0.10	0.17	81
331	0.22	0.06	0.10	94
332	0.33	0.02	0.03	56
333	0.12	0.09	0.10	260

		jauav.anani	u.mec i / @ilbiiu.a	C.III_Z I
334	0.67	0.07	0.12	60
335	0.28	0.17	0.21	110
336	0.65	0.42	0.51	71
337	0.11	0.06	0.08	66
338	0.46	0.33	0.38	150
339	0.00	0.00	0.00	54
340	0.89	0.33	0.49	195
341	0.75	0.19	0.30	79
342	0.33	0.32	0.32	38
343	0.57	0.30	0.39	43
344	0.50	0.21	0.29	68
345	0.60	0.38	0.47	73
346	0.07	0.03	0.04	116
347	0.93	0.23	0.36	111
348	0.23	0.08	0.12	63
349	0.89	0.39	0.55	104
350	0.54	0.30	0.38	44
351	0.50	0.15	0.23	40
352	1.00	0.18	0.31	136
353	0.48	0.28	0.35	54
354	0.27	0.04	0.08	134
355	0.48	0.26	0.34	120
356	0.42	0.23	0.30	228
357	0.53	0.22	0.31	269
358	0.69	0.30	0.42	80
359	0.65	0.25	0.36	140
360	0.37	0.18	0.24	125
361	0.88	0.33	0.48	169
362	0.12	0.05	0.07	56
363	0.95	0.47	0.63	154
364	0.33	0.05	0.09	58
365	0.22	0.20	0.21	71
366	1.00	0.37	0.54	54
367	0.19	0.05	0.08	116
368	0.25	0.02	0.03	54
369	0.12	0.04	0.06	71
370	0.10	0.03	0.05	61
371	0.40	0.06	0.10	71
372	0.61	0.33	0.42	52
373	0.60	0.17	0.27	150
374	0.39	0.23	0.29	93
375	0.33	0.06	0.10	67
376	0.00	0.00	0.00	76
377	0.66	0.18	0.28	106
378	0.17	0.01	0.02	86
379	0.20	0.07	0.11	14
380	0.94	0.14	0.24	122
381	0.11	0.05	0.07	104
382	0.19	0.08	0.11	66
383	0.49	0.26	0.34	110
384	0.20	0.01	0.02	155
385	0.22	0.04	0.07	50
386	0.22	0.17	0.19	64
387	0.19	0.03	0.06	93
388	0.54	0.20	0.29	102
389	0.10	0.02	0.03	108
390	0.95	0.32	0.48	178

		jauav.anani	u.mec i / @ilbiiu.a	C.III_Z I
391	0.58	0.16	0.25	115
392	0.50	0.21	0.30	42
393	0.00	0.00	0.00	134
394	0.06	0.01	0.02	112
395	0.45	0.21	0.29	176
396	0.19	0.02	0.04	125
397	0.69	0.21	0.32	224
398	0.85	0.27	0.41	63
399	0.00	0.00	0.00	59
400	0.42	0.29	0.34	63
401	0.23	0.16	0.19	98
402	0.35	0.07	0.12	162
403	0.33	0.20	0.25	83
404	0.76	0.68	0.72	19
405	0.19	0.12	0.15	92
406	0.60	0.22	0.32	41
407	0.74	0.33	0.45	43
408	0.66	0.18	0.28	160
409	0.28	0.22	0.25	50
410	0.00	0.00	0.00	19
411	0.28	0.15	0.20	175
412	0.29	0.06	0.09	72
413	0.40	0.04	0.08	95
414	0.17	0.10	0.13	97
415	0.20	0.10	0.14	48
416	0.43	0.29	0.35	83
417	0.11	0.03	0.04	40
418	0.25	0.10	0.14	91
419	0.42	0.28	0.34	90
420	0.18	0.11	0.14	37
421	0.10	0.05	0.06	66
422	0.54	0.37	0.44	73
423	0.41	0.20	0.27	56
424	0.95	0.58	0.72	33
425	0.05	0.01	0.02	76
426	0.19	0.06	0.09	81
427	1.00	0.32	0.48	150
428	1.00	0.52	0.68	29
429	1.00	0.07	0.13	389
430	0.62	0.20	0.31	167
431	0.32	0.06	0.10	123
432	0.37	0.26	0.30	39
433	0.42	0.29	0.35	82
434	1.00	0.42	0.60	66
435	0.60	0.39	0.47	93
436	0.55	0.20	0.29	87
437	0.24	0.05	0.08	86
438	0.81	0.34	0.48	104
439	0.55	0.11	0.18	100
440	0.36	0.04	0.06	141
441	0.36	0.32	0.34	110
442	0.26	0.17	0.21	123
443	0.00	0.00	0.00	71
444	0.21	0.03	0.05	109
445	0.22	0.12	0.16	48
446	0.33	0.12	0.25	76
447	0.17	0.13	0.15	38
 /	0.1/	0.13	0.10	٥٥

		jadav.ai	iana.moon with	114.40.111_21
448	0.69	0.49	0.58	81
449	0.51	0.20	0.29	132
450	0.49	0.28	0.36	81
451	0.80	0.16	0.26	76
452	0.00	0.00	0.00	44
453	0.12	0.02	0.04	44
454	0.73	0.31	0.44	70
455	0.22	0.10	0.14	155
456	0.33	0.21	0.26	43
457	0.40	0.22	0.29	72
458	0.17	0.06	0.09	62
459	0.50	0.12	0.19	69
460	0.05	0.03	0.03	119
461	0.72	0.23	0.35	79
462	0.31	0.11	0.16	47
463	0.21	0.07	0.10	104
464	0.59	0.36	0.45	106
465	0.62	0.12	0.21	64
466	0.58	0.24	0.34	173
467	0.66	0.23	0.34	107
468	0.48	0.08	0.14	126
469	0.00	0.00	0.00	114
470	0.95	0.51	0.67	140
471	0.62	0.06	0.11	79
472	0.30	0.22	0.26	143
473	0.50	0.18	0.27	158
474	0.27	0.05	0.09	138
475	0.07	0.03	0.04	59
476	0.62	0.28	0.39	88
477	0.85	0.42	0.56	176
478	0.93	0.54	0.68	24
479	0.18	0.04	0.07	92
480	0.83	0.30	0.44	100
481	0.41	0.19	0.26	103
482	0.30	0.27	0.28	74
483	0.82	0.30	0.44	105
484	0.03	0.01	0.02	83
485	0.10	0.02	0.04	82
486	0.35	0.15	0.22	71
487	0.36	0.20	0.26	120
488	0.20	0.02	0.03	105
489	0.62	0.02	0.34	87
490	0.95	0.59	0.73	32
491	0.00	0.00	0.00	69
492	0.25	0.02	0.04	49
493	0.25	0.02	0.01	117
494	0.43	0.05	0.09	61
495		0.08		344
496	1.00		0.15	
497	0.31 0.57	0.15 0.12	0.21 0.19	52 137
		0.12	0.19	
498 499	0.42 0.71	0.05	0.09	98 79
433	0.71	0.00	6.12	79
avg / total	0.64	0.32	0.41	173812
avb / cocur	0.04	0.52	0.71	1,3012

Time taken to run this cell: 0:15:15.119457

OneVsRestClassifier with Logistic regression(penalty=I1)

```
In [17]:
         start = datetime.now()
         import warnings
         warnings.filterwarnings('ignore')
         # hp1={'estimator C':alpha}
         cv scores = []
         for i in alpha:
             print(i)
             hp1={'estimator__alpha':[i],
                   'estimator loss':['log'],
                   'estimator__penalty':['11']}
             print(hp1)
             classifier = OneVsRestClassifier(SGDClassifier())
             model11 =GridSearchCV(classifier,hp1,
                                    cv=3, scoring='f1 micro',n jobs=-1)
             print("Gridsearchcv")
             best_model1=model11.fit(x_train_multilabel, y_train)
             print('fit model')
             Train model score=best model1.score(x train multilabel,
                                                  y train)
         #print("best model1")
             cv scores.append(Train model score.mean())
         fscore = [x for x in cv scores]
         # determining best alpha
         optimal alpha22 = alpha[fscore.index(max(fscore))]
         print('\n The optimal value of alpha with penalty=11 and loss= log is %d.' % o
         ptimal alpha22)
         # PLots
         fig4 = plt.figure( facecolor='c', edgecolor='k')
         plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
         linewidth=2, markersize=12)
         for xy in zip(alpha, np.round(fscore,3)):
             plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
         plt.xlabel('Hyper parameter Alpha')
         plt.ylabel('F1 Score value ')
         plt.show()
         print("Time taken to run this cell :", datetime.now() - start)
```

```
0.001
{'estimator_alpha': [0.001], 'estimator_loss': ['log'], 'estimator_penalt
y': ['11']}
Gridsearchcv
fit model
0.01
{'estimator_alpha': [0.01], 'estimator_loss': ['log'], 'estimator_penalt
y': ['11']}
Gridsearchcv
fit model
0.1
{'estimator_alpha': [0.1], 'estimator_loss': ['log'], 'estimator_penalty':
['11']}
Gridsearchcv
fit model
```

The optimal value of alpha with penalty=11 and loss= log is 0.

Time taken to run this cell: 2:56:17.727412

```
In [18]:
         start = datetime.now()
         best model2 = OneVsRestClassifier(SGDClassifier(loss='log', alpha=optimal alph
         a22,
                                                         penalty='l1'), n_jobs=-1)
         best_model2.fit(x_train_multilabel, y_train)
Out[18]: OneVsRestClassifier(estimator=SGDClassifier(alpha=0.001, average=False, class
         weight=None, epsilon=0.1,
                eta0=0.0, fit_intercept=True, l1_ratio=0.15,
                learning_rate='optimal', loss='log', max_iter=None, n_iter=None,
                n jobs=1, penalty='l1', power t=0.5, random state=None,
                shuffle=True, tol=None, verbose=0, warm start=False),
                   n jobs=-1
         joblib.dump(best model2, 'best model2 LR.pkl')
In [19]:
Out[19]: ['best model2 LR.pkl']
In [ ]:
```

```
In [20]: best_model2=joblib.load('best_model2_LR.pkl')
```

Logistic regression with I1 penalty

```
In [21]:
         start = datetime.now()
         #classifier = OneVsRestClassifier(LogisticRegression(penalty='l1'), n jobs=-1)
         #classifier.fit(x train multilabel, y train)
         predictions = best model2.predict(x test multilabel)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall score(y test, predictions, average='micro')
         f1 = f1 score(y test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         precision = precision score(y test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1 score(y test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         print (metrics.classification report(y test, predictions))
         print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy : 0.1879

Hamming loss 0.00319694 Micro-average quality numbers

Precision: 0.5718, Recall: 0.3201, F1-measure: 0.4104

Macro-average quality numbers
Precision: 0.4113. Recall: 0.32

recision: 0	.4113, Reca	all: 0.238	5, F1-meası	ure: 0.2830
	precision	recall	f1-score	support
0	0.68	0.68	0.68	5519
1	0.57	0.20	0.29	8190
2	0.75	0.33	0.46	6529
3	0.76	0.40	0.52	3231
4	0.70	0.42	0.53	6430
5	0.62	0.39	0.48	2879
6	0.72	0.55	0.62	5086
7	0.83	0.60	0.69	4533
8	0.48	0.14	0.22	3000
9	0.75	0.48	0.59	2765
10	0.57	0.14	0.23	3051
11	0.66	0.37	0.48	3009
12	0.61	0.22	0.32	2630
13	0.54	0.14	0.22	1426
14	0.81	0.61	0.70	2548
15	0.64	0.12	0.20	2371
16	0.49	0.28	0.35	873
17	0.74	0.68	0.71	2151
18	0.63	0.22	0.33	2204
19	0.62	0.42	0.50	831
20	0.70	0.51	0.59	1860
21	0.24	0.11	0.15	2023
22	0.34	0.25	0.28	1513
23	0.90	0.45	0.60	1207
24	0.47	0.33	0.39	506
25	0.67	0.32	0.43	425
26	0.46	0.41	0.44	793
27	0.54	0.31	0.39	1291
28	0.62	0.32	0.42	1208
29	0.26	0.09	0.14	406
30	0.50	0.26	0.35	504
31	0.26	0.14	0.18	732
32	0.47	0.35	0.40	441
33	0.35	0.11	0.17	1645
34	0.51	0.34	0.41	1058
35	0.72	0.59	0.65	946
36	0.48	0.29	0.36	644
37	0.61	0.77	0.68	136
38	0.56	0.43	0.49	570
39	0.76	0.36	0.48	766
40	0.53	0.27	0.35	1132
41	0.33	0.22	0.27	174
42	0.47	0.51	0.49	210
43	0.62	0.51	0.56	433
44	0.57	0.47	0.52	626
45	0.39	0.28	0.33	852
46	0.66	0.38	0.48	534
47	0.20	0.24	0.22	350
48	0.52	0.60	0.55	496

		jauav.anand	i.iiiec i <i>i</i> @ilbiiu.a	C.III_Z I
49	0.79	0.59	0.67	785
50	0.16	0.15	0.16	475
51	0.24	0.12	0.16	305
52	0.16	0.09	0.11	251
53	0.59	0.39	0.47	914
54	0.43	0.18	0.25	728
55	0.00	0.00	0.00	258
56	0.37	0.14	0.20	821
57	0.38	0.14	0.20	541
58	0.54	0.33	0.41	748
59	0.87	0.67	0.76	724
60	0.23	0.09	0.13	660
61	0.63	0.29	0.39	235
62	0.89	0.68	0.77	718
63	0.84	0.49	0.62	468
64	0.49	0.46	0.47	191
65	0.19	0.16	0.17	429
66	0.17	0.10	0.12	415
67	0.66	0.51	0.58	274
68	0.84	0.50	0.63	510
69	0.63	0.44	0.52	466
70	0.20	0.18	0.19	305
71	0.38	0.17	0.23	247
72	0.71	0.41	0.52	401
73	0.93	0.78	0.85	86
74	0.69	0.31	0.43	120
75	0.77	0.79	0.78	129
76	0.04	0.01	0.02	473
77	0.30	0.31	0.31	143
78	0.77	0.41	0.54	347
79	0.55	0.23	0.33	479
80	0.35	0.32	0.33	279
81	0.80	0.11	0.20	461
82	0.13	0.04	0.07	298
83	0.70	0.40	0.51	396
84	0.37	0.33	0.35	184
85	0.30	0.18	0.23	573
86	0.11	0.01	0.02	325
87	0.51	0.23	0.32	273
88	0.27	0.21	0.24	135
89	0.19	0.15	0.17	232
90	0.48	0.35	0.40	409
91	0.51	0.36	0.42	420
92	0.63	0.60	0.62	408
93	0.58	0.47	0.52	241
94	0.23	0.09	0.12	211
95	0.14	0.19	0.16	277
96	0.14	0.13	0.13	410
97	0.82	0.15	0.25	501
98	0.69	0.63	0.66	136
99	0.49	0.25	0.33	239
100	0.34	0.09	0.14	324
101	0.54	0.50	0.52	277
102	0.82	0.75	0.78	613
103	0.45	0.18	0.26	157
104	0.17	0.09	0.12	295
105	0.60	0.40	0.48	334

		jadav.anana.mo	017@110110.00.111_2	- '
106	0.07	0.01	0.01	335
107	0.77	0.47	0.59	389
108	0.18	0.25	0.21	251
109	0.42	0.29	0.34	317
110	0.52	0.06	0.11	187
111	0.24	0.15	0.18	140
112	0.12	0.03	0.04	154
113	0.40	0.39	0.40	332
114	0.40	0.20	0.27	323
115	0.35	0.09	0.14	344
116	0.59	0.48	0.53	370
117	0.50	0.17	0.26	313
118	0.79	0.53	0.63	874
119	0.36	0.16	0.22	293
120	0.01	0.01	0.01	200
121	0.75	0.42	0.54	463
122	0.27	0.32	0.29	119
123	0.00	0.00	0.00	256
124	0.87	0.73	0.79	195
125	0.34	0.17	0.22	138
126	0.62	0.50	0.55	376
127	0.20	0.07	0.11	122
128	0.17	0.06	0.09	252
129	0.50 0.09	0.02	0.04	144
130 131	0.10	0.02 0.01	0.03 0.02	150 210
132	0.43	0.08	0.14	361
133	0.43	0.55	0.68	453
134	0.83	0.70	0.76	124
135	0.00	0.00	0.00	91
136	0.18	0.30	0.23	128
137	0.44	0.29	0.35	218
138	0.09	0.00	0.01	243
139	0.32	0.21	0.25	149
140	0.68	0.29	0.41	318
141	0.10	0.14	0.12	159
142	0.69	0.30	0.42	274
143	0.78	0.79	0.79	362
144	0.50	0.24	0.32	118
145	0.61	0.39	0.48	164
146	0.57	0.25	0.35	461
147	0.61	0.42	0.50	159
148	0.35	0.13	0.19	166
149	0.92	0.56	0.70	346
150	0.42	0.01	0.03	350
151	0.79	0.62	0.69	55
152	0.75	0.44	0.56	387
153	0.00	0.00	0.00	150
154	0.40	0.19	0.26	281
155	0.25	0.12	0.17	202
156	0.62	0.65	0.64	130
157	0.30	0.11	0.16	245
158	0.83	0.48	0.61	177
159	0.42	0.24	0.31	130
160	0.46	0.17	0.25	336
161	0.81	0.60	0.69	220
162	0.10	0.03	0.05	229

		jadav.anana.mo	017 @115114.40.111_2	- '
163	0.85	0.46	0.59	316
164	0.38	0.23	0.29	283
165	0.56	0.28	0.37	197
166	0.12	0.08	0.10	101
167	0.34	0.22	0.27	231
168	0.31	0.12	0.17	370
169	0.27	0.28	0.27	258
170	0.12	0.05	0.07	101
171	0.37	0.21	0.27	89
172	0.28	0.45	0.35	193
173	0.38	0.31	0.34	309
174	0.46	0.15	0.23	172
175	0.87	0.73	0.79	95
176	0.72	0.71	0.71	346
177	0.92	0.34	0.50	322
178	0.52	0.43	0.47	232
179	0.57	0.03	0.06	125
180	0.42	0.19	0.26	145
181	0.10	0.22	0.13	77
182	0.15	0.04	0.07	182
183	0.53	0.35	0.42	257
184	0.13	0.04	0.06	216
185	0.26	0.08	0.12	242
186	0.29	0.17	0.21	165
187	0.72	0.53	0.61	263
188	0.28	0.11	0.16	174
189	0.63	0.09	0.15	136
190	0.94	0.51	0.66	202
191	0.31	0.23	0.26	134
192	0.79	0.36	0.49	230
193	0.21	0.16	0.18	90
194	0.55	0.51	0.53	185
195	0.09	0.04	0.06	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	266
198	0.44	0.07	0.12	284
199	0.14	0.07	0.09	145
200	0.91	0.59	0.72	212
201	0.25	0.04	0.07	317
202	0.57	0.65	0.61	427
203	0.16	0.17	0.16	232
204	0.26	0.17	0.20	217
205	0.45	0.35	0.39	527
206	0.07	0.02	0.03	124
207	0.00	0.00	0.00	103
208	0.77	0.59	0.67	287
209	0.15	0.09	0.11	193
210	0.46	0.21	0.29	220
211	0.00	0.00	0.00	140
212	0.08	0.18	0.11	161
213	0.50	0.18	0.27	72
214	0.60	0.50	0.54	396
215	0.87	0.25	0.39	134
216	0.00	0.00	0.00	400
217	0.43	0.33	0.38	75
218	0.90	0.80	0.85	219
219	0.70	0.38	0.49	210
	3.,0	3.33		

		jadav.anana.me	orr within a.ao.m_	_ 1
220	0.90	0.32	0.47	298
221	0.96	0.52	0.67	266
222	0.82	0.29	0.43	290
223	0.19	0.04	0.06	128
224	0.77	0.32	0.45	159
225	0.43	0.29	0.34	164
226	0.51	0.36	0.42	144
227	0.44	0.40	0.42	276
228	0.02	0.00	0.01	235
229	0.12	0.00	0.01	216
230	0.32	0.20	0.25	228
231	0.66	0.45	0.54	64
232	0.08	0.04	0.05	103
233	0.74	0.27	0.40	216
234	0.00	0.00	0.00	116
235	0.46	0.35	0.40	77
236	0.94	0.67	0.78	67
237	0.00	0.00	0.00	218
238	0.09	0.04	0.05	139
239 240	0.24	0.04 0.32	0.07	94
240	0.45 0.33		0.38 0.01	77 167
241	0.33	0.01 0.19	0.10	86
242	0.12	0.14	0.13	58
244	0.25	0.13	0.18	269
245	0.11	0.04	0.05	112
246	0.96	0.61	0.74	255
247	0.25	0.24	0.25	58
248	0.09	0.05	0.06	81
249	0.00	0.00	0.00	131
250	0.12	0.14	0.13	93
251	0.30	0.32	0.31	154
252	0.07	0.02	0.03	129
253	0.41	0.35	0.38	83
254	0.23	0.09	0.13	191
255	0.12	0.01	0.02	219
256	0.07	0.01	0.01	130
257	0.37	0.31	0.34	93
258	0.44	0.65	0.53	217
259	0.18	0.06	0.09	141
260	0.94	0.10	0.19	143
261	0.47	0.08	0.14	219
262	0.38	0.34	0.36	107
263	0.30	0.35	0.32	236
264	0.22	0.23	0.22	119
265	0.15	0.14	0.14	72
266	0.20	0.07	0.11	70
267	0.13	0.21	0.16	107
268	0.67	0.34	0.45	169
269	0.22	0.16	0.18	129
270	0.49	0.65	0.56	159
271	0.42	0.13	0.19	190
272	0.45	0.10	0.16	248
273	0.89	0.74	0.81	264
274	0.86	0.56	0.68	105
275	0.13	0.05	0.07	104
276	0.03	0.04	0.04	115

		jadav.ananc	a.mee m @noma.a	O.III_Z I
277	0.85	0.50	0.63	170
278	0.43	0.16	0.23	145
279	0.60	0.40	0.48	230
280	0.57	0.42	0.49	80
281	0.60	0.71	0.65	217
282	0.77	0.49	0.60	175
283	0.00	0.00	0.00	269
284	0.53	0.22	0.31	74
285	0.67	0.66	0.66	206
286	0.84	0.52	0.64	227
287	0.83	0.27	0.41	130
288	0.28	0.12	0.17	129
289	0.20	0.01	0.02	80
290	0.15	0.09	0.11	99
291	0.76	0.23	0.35	208
292	0.26	0.12	0.16	67
293	0.50	0.26	0.34	109
294	0.24	0.24	0.24	140
295	0.16	0.13	0.14	241
296	0.17	0.12	0.14	72
297	0.29	0.11	0.16	107
298	0.71	0.20	0.31	61
299	0.53	0.35	0.42	77
300	0.16	0.05	0.08	111
301	0.00	0.00	0.00	126
302	0.06	0.01	0.02	73
303	0.50	0.43	0.46	176
304	0.82	0.66	0.73	230
305	0.84	0.73	0.78	156
306	0.41	0.34	0.37	146
307	0.16	0.05	0.08	98
308	0.25	0.01	0.02	78
309	0.40	0.02	0.04	94
310	0.67	0.25	0.37	162
311	0.59	0.65	0.62	116
312	0.47	0.26	0.34	57
313	0.00	0.00	0.00	65
314	0.49	0.35	0.41	138
315	0.36	0.26	0.30	195
316	0.25	0.42	0.32	69
317	0.00	0.00	0.00	134
318	0.33	0.26	0.29	148
319	0.70	0.20	0.32	161
320	0.13	0.14	0.14	104
321	0.73	0.47	0.58	156
322	0.45	0.23	0.31	134
323	0.57	0.30	0.39	232
324	0.06	0.17	0.09	92
325	0.25	0.09	0.13	197
326	0.00	0.00	0.00	126
327	0.33	0.01	0.02	115
328	0.99	0.45	0.62	198
329	0.49	0.26	0.34	125
330	0.60	0.04	0.07	81
331	0.12	0.02	0.04	94
332	0.00	0.02	0.00	56
333	0.03	0.00	0.01	260
	0.05	0.00	0.01	200

		jadav.anan	a.moon @nbma.a	0.111_2 1
334	0.00	0.00	0.00	60
335	0.21	0.14	0.17	110
336	0.49	0.46	0.48	71
337	0.12	0.06	0.08	66
338	0.44	0.33	0.37	150
339	0.00	0.00	0.00	54
340	0.86	0.48	0.62	195
341	0.00	0.00	0.00	79
342 343	0.25	0.34	0.29	38 43
343 344	0.37 0.33	0.23 0.01	0.29 0.03	68
345	0.54	0.44	0.48	73
346	0.00	0.00	0.48	116
347	0.71	0.48	0.57	111
348	0.12	0.05	0.07	63
349	0.89	0.49	0.63	104
350	0.71	0.34	0.46	44
351	0.00	0.00	0.00	40
352	0.93	0.40	0.56	136
353	0.40	0.39	0.40	54
354	0.14	0.07	0.10	134
355	0.28	0.11	0.16	120
356	0.28	0.16	0.20	228
357	0.57	0.09	0.15	269
358	0.66	0.34	0.45	80
359	0.75	0.15	0.25	140
360	0.10	0.19	0.13	125
361	0.88	0.43	0.57	169
362	0.10	0.05	0.07	56
363	0.86	0.59	0.70	154
364	0.00	0.00	0.00	58
365	0.12	0.11	0.12	71
366	0.97	0.54	0.69	54
367	0.14	0.07	0.09	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.03	0.07	0.04	61
371	0.00	0.00	0.00	71
372	0.72	0.44	0.55	52
373	0.67	0.36	0.47	150
374	0.38	0.19	0.26	93
375	0.25	0.01	0.03	67
376	0.00	0.00	0.00	76
377	0.91	0.09	0.17	106
378	0.50	0.01	0.02	86
379	0.14	0.07	0.10	14
380	1.00	0.25	0.39	122
381	0.03 0.24	0.01	0.01	104
382 383	0.44	0.18 0.24	0.21 0.31	66 110
384	0.00	0.00	0.00	155
385	0.08	0.02	0.03	50
386	0.22	0.19	0.20	64
387	0.00	0.00	0.20	93
388	0.53	0.21	0.30	102
389	0.33	0.01	0.02	108
390	0.83	0.70	0.76	178
	2.22	- • · · •	3 	_, 5

		jadav.ananc	a.mee m @nbma.a	0.111_2 1
391	0.53	0.14	0.22	115
392	0.92	0.29	0.44	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.25	0.03	0.06	176
396	0.00	0.00	0.00	125
397	0.44	0.24	0.31	224
398	0.64	0.48	0.55	63
399	0.00	0.00	0.00	59
400	0.33	0.25	0.29	63
401	0.10	0.02	0.03	98
402	0.36	0.06	0.10	162
403 404	0.29	0.14	0.19	83 19
405	0.63	0.89	0.74	92
406	0.13 0.33	0.08 0.15	0.10 0.20	41
407	0.56	0.13	0.33	43
408	0.80	0.05	0.09	160
409	0.22	0.16	0.18	50
410	0.00	0.00	0.00	19
411	0.32	0.14	0.20	175
412	0.08	0.01	0.02	72
413	0.50	0.02	0.04	95
414	0.08	0.06	0.07	97
415	0.18	0.25	0.21	48
416	0.38	0.25	0.30	83
417	0.00	0.00	0.00	40
418	0.19	0.07	0.10	91
419	0.38	0.26	0.31	90
420	0.27	0.24	0.26	37
421	0.04	0.03	0.03	66
422	0.57	0.27	0.37	73
423	0.34	0.20	0.25	56
424	0.65	0.85	0.74	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	0.99	0.50	0.66	150
428	0.95	0.66	0.78	29
429	0.00	0.00	0.00	389
430	0.65	0.22	0.32	167
431	0.00	0.00	0.00	123
432	0.38	0.23	0.29	39
433	0.35	0.22	0.27	82
434	0.18	0.47	0.26	66
435	0.51	0.29	0.37	93
436	0.14	0.01	0.02	87
437	0.25	0.03	0.06	86
438	0.66	0.37	0.47	104
439	0.02	0.01	0.01	100
440	0.33	0.01	0.01	141
441	0.29	0.23	0.26	110
442	0.22	0.09	0.13	123 71
443 444	0.00 0.36	0.00 0.05	0.00 0.08	71 109
444	0.36 0.23	0.05 0.12	0.08 0.16	48
445	0.25	0.12 0.18	0.16	76
447	0.04	0.18	0.24	38
 /	₩.₩	0.03	0.03	36

		jadav.ai	iaria.irioo ir certa	114.46.111_21
448	0.66	0.43	0.52	81
449	0.47	0.06	0.11	132
450	0.39	0.30	0.34	81
451	0.89	0.11	0.19	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.88	0.30	0.45	70
455	0.11	0.01	0.01	155
456	0.22	0.16	0.19	43
457	0.31	0.15	0.21	72
458	0.23	0.11	0.15	62
459	1.00	0.09	0.16	69
460	0.25	0.03	0.06	119
461	0.68	0.16	0.27	79
462	0.17	0.02	0.04	47
463	0.11	0.01	0.02	104
464	0.37	0.33	0.35	106
465	0.00	0.00	0.00	64
466	0.55	0.20	0.29	173
467	0.66	0.48	0.55	107
468	0.50	0.01	0.02	126
469	0.00	0.00	0.00	114
470	0.94	0.72	0.81	140
471	0.00	0.00	0.00	79
472	0.32	0.27	0.29	143
473	0.56	0.23	0.32	158
474	1.00	0.01	0.01	138
475	0.04	0.05	0.05	59
476	0.58	0.39	0.46	88
477	0.81	0.45	0.58	176
478	0.92	0.50	0.65	24
479	0.00	0.00	0.00	92
480	0.78	0.28	0.41	100
481	0.44	0.04	0.07	103
482	0.22	0.22	0.22	74
483	0.76	0.45	0.56	105
484	0.05	0.01	0.02	83
485	0.11	0.01	0.02	82
486	0.33	0.03	0.05	71
487	0.39	0.21	0.27	120
488	0.00	0.00	0.00	105
489	0.60	0.00	0.27	87
490	1.00	0.75	0.86	32
491	0.00	0.00	0.00	69
492	0.00	0.00	0.00	49
493	0.00	0.00	0.00	117
494	0.80			
495	0.98	0.07 0.62	0.12 0.76	61 344
496	0.98	0.02	0.76 0.12	52
497	0.10	0.10	0.12	137
498	0.00	0.04	0.00	98
499	0.35	0.23	0.28	79
433	٥.35	0.23	V.20	79
avg / total	0.55	0.32	0.39	173812
avg / LULAI	ود. ه	0.32	0.39	1/2017

Time taken to run this cell : 0:00:19.236854

In []:	
---------	--

OneVsRestClassifier with Linear-SVM (SGDClassifier with loss-hinge)

```
In [22]:
         start = datetime.now()
         import warnings
         warnings.filterwarnings('ignore')
         # hp1={'estimator C':alpha}
         cv scores = []
         for i in alpha:
             print(i)
             hp1={'estimator__alpha':[i],
                   'estimator loss':['hinge'],
                   'estimator__penalty':['l1']}
             print(hp1)
             classifier = OneVsRestClassifier(SGDClassifier())
             model11 =GridSearchCV(classifier,hp1,
                                    cv=3, scoring='f1 micro',n jobs=-1)
             print("Gridsearchcv")
             best_model1=model11.fit(x_train_multilabel, y_train)
             print('fit model')
             Train model score=best model1.score(x train multilabel,
                                                  y train)
         #print("best model1")
             cv scores.append(Train model score.mean())
         fscore = [x for x in cv scores]
         # determining best alpha
         optimal alpha23 = alpha[fscore.index(max(fscore))]
         print('\n The optimal value of alpha with penalty=11 and loss= log is %d.' % o
         ptimal alpha23)
         # PLots
         fig4 = plt.figure( facecolor='c', edgecolor='k')
         plt.plot(alpha, fscore,color='green', marker='o', linestyle='dashed',
         linewidth=2, markersize=12)
         for xy in zip(alpha, np.round(fscore,3)):
             plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data')
         plt.xlabel('Hyper parameter Alpha')
         plt.ylabel('F1 Score value ')
         plt.show()
         print("Time taken to run this cell :", datetime.now() - start)
```

```
0.001
{'estimator__alpha': [0.001], 'estimator__loss': ['hinge'], 'estimator__penal
ty': ['l1']}
Gridsearchcv
fit model
0.01
{'estimator__alpha': [0.01], 'estimator__loss': ['hinge'], 'estimator__penalt
y': ['l1']}
Gridsearchcv
fit model
0.1
{'estimator__alpha': [0.1], 'estimator__loss': ['hinge'], 'estimator__penalt
y': ['l1']}
Gridsearchcv
fit model
```

The optimal value of alpha with penalty=11 and loss= log is 0.

Time taken to run this cell : 2:18:49.138029

OneVsRestClassifier with SGDClassifier for optimal alpha with hinge loss

```
In [26]: predictions = classifier2.predict (x test multilabel)
         print("Accuracy :", metrics.accuracy score(y test, predictions))
         print("Hamming loss ", metrics.hamming loss(y test, predictions))
         precision = precision score(y test, predictions, average='micro')
         recall = recall score(y test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-averasge quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision
         , recall, f1))
         print (metrics.classification_report(y_test, predictions)) #printing classific
         ation report for all 500 labels
         print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy : 0.17585

Hamming loss 0.00330166

Micro-averasge quality numbers

Precision: 0.5428, Recall: 0.3186, F1-measure: 0.4015

Macro-average quality numbers

Precision: 0.3193, Recall: 0.2399, F1-measure: 0.2547

cision:	0.3193, Reca	11: 0.2399		ıre: 0.2547
	precision	recall	f1-score	support
0	0.67	0.68	0.68	5519
1		0.21	0.29	8190
2		0.38	0.49	6529
3		0.43	0.52	3231
4		0.33	0.47	6430
5		0.41	0.48	2879
6		0.57	0.48	5086
7		0.59	0.68	4533
8		0.16	0.24	3000
9		0.59	0.59	2765
10		0.01	0.02	3051
11		0.37	0.47	3009
12		0.37	0.47	2630
13		0.29	0.37	1426
14				
		0.64 0.14	0.70	2548
15 16			0.22	2371
16		0.32	0.35	873
17		0.69	0.71	2151
18		0.27	0.35	2204
19		0.43	0.48	831
20		0.47	0.57	1860
21		0.01	0.02	2023
22		0.02	0.03	1513
23		0.62	0.67	1207
24		0.00	0.00	506
25		0.33	0.41	425
26		0.36	0.42	793 1201
27		0.37	0.43	1291
28		0.40	0.44	1208
29		0.18	0.16	406
30		0.25	0.37	504
31		0.00	0.00	732
32		0.39	0.38	441 1645
33		0.00	0.00 0.41	1645 1058
34		0.32		
35 26		0.57	0.61	946
36 37		0.29	0.37	644
		0.82	0.68	136
38		0.41	0.44	570 766
39		0.31	0.43 0.14	766 1122
40		0.08		1132
41		0.25	0.27	174
42		0.63	0.60	210
43		0.53	0.57	433
44		0.53	0.50	626
45		0.28	0.35	852
46		0.39	0.48	534
47		0.00	0.00	350
48	0.56	0.62	0.59	496

		jadav.anana		0.111_2 1
49	0.71	0.69	0.70	785
50	0.05	0.00	0.00	475
51	0.00	0.00	0.00	305
52	0.06	0.01	0.01	251
53	0.44	0.54	0.48	914
54	0.00	0.00	0.00	728
55	0.03	0.00	0.01	258
56	0.00	0.00	0.00	821
57	0.36	0.06	0.11	541
58	0.68	0.24	0.35	748
59	0.80	0.74	0.77	724
60	0.22	0.09	0.13	660
61	0.62	0.28	0.38	235
62	0.84	0.83	0.83	718
63	0.63	0.68	0.65	468
64	0.47	0.44	0.45	191
65	0.12	0.19	0.14	429
66	0.00	0.00	0.00	415
67	0.63	0.65	0.64	274
68	0.74	0.63	0.68	510
69	0.51	0.49	0.50	466
70	0.00	0.00	0.00	305
71	0.14	0.26	0.18	247
72	0.62	0.52	0.56	401
73	0.88	0.78	0.83	86
74	0.26	0.41	0.32	120
75	0.84	0.75	0.79	129
76	0.00	0.00	0.00	473
77	0.23	0.43	0.30	143
78	0.73	0.51	0.60	347
79	0.57	0.36	0.44	479
80	0.23	0.41	0.30	279
81	0.62	0.13	0.22	461
82	0.03	0.04	0.03	298
83	0.63	0.50	0.56	396
84	0.36	0.33	0.34	184
85	0.30	0.11	0.16	573
86	0.37	0.04	0.07	325
87	0.53	0.21	0.30	273
88	0.30	0.35	0.32	135
89	0.00	0.00	0.00	232
90	0.30	0.42	0.35	409
91	0.60	0.29	0.39	420
92	0.64	0.58	0.61	408
93	0.42	0.59	0.49	241
94	0.00	0.00	0.00	211
95	0.00	0.00	0.00	277
96	0.00	0.00	0.00	410
97	0.84	0.15	0.25	501
98	0.56	0.68	0.62	136
99	0.44	0.24	0.31	239
100	0.08	0.15	0.11	324
101	0.67	0.61	0.64	277
102	0.85	0.69	0.76	613
103	0.25	0.20	0.70	157
104	0.00	0.00	0.00	295
105	0.72	0.37	0.49	334
_05	J., Z	3.3,	J. 1J	254

		jauav.ananu.me	c i i @ilbiiu.ac.iii	2 I
106	0.00	0.00	0.00	335
107	0.54	0.60	0.57	389
108	0.33	0.21	0.26	251
109	0.39	0.42	0.40	317
110	0.00	0.00	0.00	187
111	0.17	0.15	0.16	140
112	0.09	0.05	0.07	154
113	0.49	0.31	0.38	332
114	0.00	0.00	0.00	323
115	0.19	0.16	0.17	344
116	0.58	0.61	0.59	370
117	0.42	0.15	0.22	313
118	0.69	0.73	0.71	874
119	0.41	0.16	0.23	293
120	0.00	0.00	0.00	200
121	0.60	0.49	0.54	463
122	0.00	0.00	0.00	119
123	0.00	0.00	0.00	256
124	0.80	0.82	0.81	195
125				138
	0.30	0.05	0.09	
126	0.56	0.57	0.56	376
127	0.00	0.00	0.00	122
128	0.02	0.00	0.01	252
129	0.00	0.00	0.00	144
130	0.42	0.18	0.25	150
131	0.00	0.00	0.00	210
132	0.62	0.02	0.04	361
133	0.80	0.64	0.71	453
134	0.68	0.76	0.71	124
135	0.00	0.00	0.00	91
136	0.51	0.14	0.22	128
137	0.36	0.36	0.36	218
138	0.60	0.10	0.17	243
139	0.00	0.00	0.00	149
140	0.61	0.31	0.41	318
141	0.07	0.18	0.10	159
142	0.58	0.30	0.39	274
143	0.76	0.66	0.70	362
144	0.32	0.31	0.32	118
145	0.41	0.49	0.45	164
146	0.41	0.46	0.44	461
147	0.57	0.60	0.59	159
148	0.18	0.05	0.08	166
149	0.94	0.51	0.66	346
150	0.30	0.05	0.08	350
151	0.81	0.64	0.71	55
152	0.59	0.53	0.56	387
153	0.58	0.05	0.09	150
154	0.36	0.11	0.17	281
155	0.11	0.07	0.09	202
156	0.50	0.72	0.59	130
157	0.00	0.00	0.00	245
158	0.64	0.49	0.55	177
159	0.40	0.29	0.34	130
160	0.25	0.25	0.25	336
161	0.60	0.69	0.64	220
162	0.00	0.00	0.00	229
	3.00	3.00	3.00	

		jadav.anana.mo	orr within a.do.iii_	_ 1
163	0.79	0.46	0.58	316
164	0.69	0.27	0.39	283
165	0.30	0.47	0.37	197
166	0.38	0.05	0.09	101
167	0.00	0.00	0.00	231
168	0.26	0.23	0.24	370
169	0.30	0.26	0.28	258
170	0.05	0.01	0.02	101
171	0.31	0.18	0.23	89
172	0.21	0.30	0.24	193
173	0.36	0.38	0.37	309
174	0.18	0.19	0.18	172
175	0.66	0.75	0.70	95
176	0.68	0.60	0.64	346
177	0.86	0.39	0.54	322
178	0.51	0.54	0.53	232
179	0.00	0.00	0.00	125
180	0.37	0.34	0.36	145
181	0.19	0.21	0.20	77
182	0.00	0.00	0.00	182
183	0.39	0.49	0.43	257
184	0.07	0.08	0.08	216
185	0.00	0.00	0.00	242
186	0.00	0.00	0.00	165
187	0.60	0.58	0.59	263
188	0.17	0.20	0.18	174
189	0.00	0.00	0.00	136
190	0.80	0.57	0.66	202
191	0.00	0.00	0.00	134
192	0.68	0.43	0.53	230
193	0.30	0.23	0.26	90
194	0.37	0.54	0.44	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.00	0.00	0.00	266
198	0.00	0.00	0.00	284
199	0.07	0.03	0.04	145
200	0.82	0.76	0.79	212
201	0.00	0.00	0.00	317
202	0.55	0.55	0.55	427
203	0.09	0.02	0.03	232
204	0.00	0.00	0.00	217
205	0.43	0.42	0.42	527
206	0.00	0.00	0.00	124
207	0.24	0.15	0.18	103
208	0.51	0.43	0.47	287
209	0.00	0.00	0.00	193
210	0.48	0.19	0.27	220
210	0.48	0.19	0.32	140
		0.00		
212 213	0.00 0.37	0.14	0.00 0.20	161 72
213	0.56	0.43	0.48	
214		0.43	0.48	396 134
	0.67			
216	0.06	0.01	0.02	400 75
217	0.32	0.36	0.34	75 210
218	0.87	0.74	0.80	219
219	0.79	0.30	0.44	210

		jauav.ananu.me	c i i @ilbiiu.ac.iii	2 I
220	0.91	0.36	0.51	298
221	0.46	0.69	0.55	266
222	0.44	0.34	0.38	290
223	0.12	0.12	0.12	128
224	0.46	0.48	0.47	159
225	0.53	0.29	0.38	164
226	0.34	0.44	0.38	144
227	0.45	0.25	0.32	276
228	0.00	0.00	0.00	235
229	0.00	0.00	0.00	216
230	0.00	0.00	0.00	228
231	0.69	0.64	0.67	64
232	0.07	0.12	0.09	103
233	0.46	0.34	0.39	216
234	0.33	0.02	0.03	116
235	0.36	0.71	0.48	77
236	0.86	0.73	0.79	67
237	0.00	0.00	0.00	218
238	0.07	0.03	0.04	139
239	0.00	0.00	0.00	94
240	0.47	0.25	0.32	77
241	0.42	0.05	0.09	167
242	0.42	0.43	0.42	86
242	0.40	0.02	0.42	58
244	0.00	0.02	0.00	269
244	0.13	0.12	0.12	112
246	0.73	0.12 0.79	0.76	255
247				58
247	0.27	0.21	0.24	
	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.12	0.31	0.17	93
251	0.00	0.00	0.00	154
252	0.00	0.00	0.00	129
253	0.31	0.36	0.33	83
254	0.21	0.12	0.15	191
255	0.00	0.00	0.00	219
256	0.00	0.00	0.00	130
257	0.32	0.25	0.28	93
258	0.58	0.50	0.53	217
259	0.00	0.00	0.00	141
260	0.74	0.20	0.31	143
261	0.53	0.14	0.22	219
262	0.41	0.22	0.29	107
263	0.27	0.33	0.29	236
264	0.11	0.19	0.14	119
265	0.00	0.00	0.00	72
266	0.20	0.11	0.15	70
267	0.23	0.06	0.09	107
268	0.44	0.44	0.44	169
269	0.00	0.00	0.00	129
270	0.53	0.62	0.57	159
271	0.20	0.16	0.18	190
272	0.00	0.00	0.00	248
273	0.84	0.74	0.78	264
274	0.58	0.63	0.61	105
275	0.14	0.06	0.08	104
276	0.00	0.00	0.00	115

		jadav.anana.mo	017 @110114.40.111_2	- '
277	0.88	0.12	0.22	170
278	0.41	0.31	0.35	145
279	0.83	0.30	0.45	230
280	0.39	0.46	0.42	80
281	0.54	0.64	0.58	217
282	0.63	0.70	0.66	175
283	0.00	0.00	0.00	269
284	0.45	0.43	0.44	74
285	0.60	0.47	0.53	206
286	0.83	0.71	0.77	227
287	0.77	0.26	0.39	130
288	0.16	0.12	0.14	129
289	0.00	0.00	0.00	80
290	0.00	0.00	0.00	99
291	0.51	0.20	0.28	208
292	0.10	0.03	0.05	67
293	1.00	0.01	0.02	109
294	0.00	0.00	0.00	140
295	0.12	0.20	0.15	241
296	0.10	0.12	0.11	72
297	0.20	0.14	0.16	107
298	0.61	0.18	0.28	61
299	0.81	0.17	0.28	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.31	0.42	0.36	176
304	0.87	0.71	0.78	230
305	0.93	0.58	0.72	156
306	0.34	0.35	0.35	146
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
309	0.48	0.21	0.29	94
310	0.21	0.41	0.28	162
311	0.71	0.51	0.59	116
312	0.34	0.46	0.39	57
313	0.00	0.00	0.00	65
314	0.34	0.34	0.34	138
315	0.30	0.32	0.31	195
316	0.28	0.48	0.35	69
317	0.00	0.00	0.00	134
318	0.23	0.41	0.29	148
319	0.78	0.38	0.51	161
320	0.00	0.00	0.00	104
321	0.57	0.69	0.62	156
322	0.49	0.32	0.39	134
323	0.47	0.28	0.35	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328	0.96	0.34	0.50	198
329	0.27	0.38	0.31	125
330	0.67	0.15	0.24	81
331	0.00	0.00	0.00	94 56
332	0.00	0.00	0.00	56 260
333	0.00	0.00	0.00	260

		jauav.anam	u.mec i / @itbriu.ai	5.III_Z I
334	0.00	0.00	0.00	60
335	0.13	0.19	0.16	110
336	0.32	0.56	0.41	71
337	0.00	0.00	0.00	66
338	0.35	0.25	0.29	150
339	0.00	0.00	0.00	54
340	0.60	0.46	0.52	195
341	1.00	0.03	0.05	79
342	0.38	0.08	0.13	38
343	0.47	0.21	0.29	43
344	0.00	0.00	0.00	68
345	0.37	0.47	0.41	73
346	0.08	0.05	0.06	116
347	0.72	0.23	0.35	111
348	0.00	0.00	0.00	63
349	0.62	0.65	0.64	104
350	0.50	0.43	0.46	44
351	0.00	0.00	0.00	40
352	0.29	0.38	0.33	136
353	0.35	0.31	0.33	54
354	0.00	0.00	0.00	134
355	0.82	0.12	0.20	120
356	0.29	0.14	0.19	228
357	0.62	0.06	0.10	269
358	0.33	0.54	0.41	80
359	0.31	0.33	0.32	140
360	0.00	0.00	0.00	125
361	0.87	0.39	0.54	169
362	0.08	0.05	0.06	56
363	0.82	0.64	0.72	154
364	0.00	0.00	0.00	58
365	0.07	0.23	0.11	71
366	0.97	0.54	0.69	54
367	0.00	0.00	0.00	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.45	0.07	0.12	71
372	0.41	0.50	0.45	52
373	0.27	0.18	0.22	150
374	0.24	0.32	0.27	93
375	0.00	0.00	0.00	67
376	0.00	0.00	0.00	76
377	0.16	0.07	0.09	106
378	0.00	0.00	0.00	86
379	0.00	0.00	0.00	14
380	1.00	0.03	0.06	122
381	0.00	0.00	0.00	104
382	0.16	0.12	0.14	66
383	0.21	0.26	0.24	110
384	0.00	0.00	0.00	155
385	0.00	0.00	0.00	50
386	0.21	0.16	0.18	64
387	0.00	0.00	0.00	93
388	0.33	0.38	0.35	102
389	0.00	0.00	0.00	108
390	0.85	0.70	0.77	178

		jadav.anana		<u></u> 1
391	0.54	0.24	0.34	115
392	0.46	0.43	0.44	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.00	0.00	0.00	125
397	0.52	0.48	0.50	224
398	0.59	0.37	0.45	63
399	0.00	0.00	0.00	59
400	0.32	0.46	0.38	63
401	0.00	0.00	0.00	98
402 403	0.00	0.00	0.00	162
404	0.04 0.65	0.22 0.79	0.06 0.71	83 19
405	0.00	0.00	0.00	92
406	0.15	0.27	0.19	41
407	0.36	0.28	0.32	43
408	0.04	0.03	0.03	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.25	0.12	0.16	175
412	0.00	0.00	0.00	72
413	0.20	0.11	0.14	95
414	0.00	0.00	0.00	97
415	0.00	0.00	0.00	48
416	0.27	0.36	0.31	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.27	0.22	0.25	90
420	0.29	0.46	0.35	37
421	0.00	0.00	0.00	66
422	0.44	0.36	0.39	73
423	0.37	0.25	0.30	56
424	0.88	0.88	0.88	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	0.96	0.73	0.83	150
428	0.58	0.76	0.66	29
429	0.00	0.00	0.00	389
430	0.47	0.18	0.26	167
431	0.00	0.00	0.00	123
432	0.29	0.31	0.30	39
433	0.28	0.34	0.31	82
434	0.95	0.55	0.69	66
435	0.47	0.44	0.46	93
436	0.00	0.00	0.00	87
437	0.18	0.07	0.10	86
438	0.35	0.61	0.45	104
439	0.00	0.00	0.00	100
440 441	0.00 0.29	0.00 0.35	0.00 0.31	141 110
441	0.29	0.00	0.00	123
443	0.53	0.11	0.19	71
444	0.14	0.02	0.03	109
445	0.30	0.29	0.29	48
446	0.42	0.21	0.28	76
447	0.00	0.00	0.00	38
	0.00	0.00	0.00	50

		,	0	_
448	0.49	0.51	0.50	81
449	0.00	0.00	0.00	132
450	0.47	0.38	0.42	81
451	0.60	0.33	0.42	76
452	0.00	0.00	0.00	44
453	0.00	0.00	0.00	44
454	0.45	0.49	0.47	70
455	0.00	0.00	0.00	155
456	0.00	0.00	0.00	43
457	0.09	0.36	0.14	72
458	0.00	0.00	0.00	62
459	0.00	0.00	0.00	69
460	0.00	0.00	0.00	119
461	0.00	0.00	0.00	79
462	0.00	0.00	0.00	47
463	0.00	0.00	0.00	104
464	0.00	0.00	0.00	106
465	0.00	0.00	0.00	64
466	0.31	0.26	0.28	173
467	0.67	0.21	0.31	107
468	0.00	0.00	0.00	126
469	0.00	0.00	0.00	114
470	0.88	0.59	0.71	140
471	0.00	0.00	0.00	79
472	0.35	0.43	0.39	143
473	0.69	0.11	0.20	158
474	0.00	0.00	0.00	138
475	0.00	0.00	0.00	59
476	0.43	0.62	0.51	88
477	0.65	0.63	0.64	176
478	0.85	0.71	0.77	24
479	0.08	0.10	0.09	92
480	0.25	0.20	0.22	100
481	0.00	0.00	0.00	103
482	0.00	0.00	0.00	74
483	0.70	0.54	0.61	105
484	0.00	0.00	0.00	83
485	0.00	0.00	0.00	82
486	0.24	0.10	0.14	71
487	0.28	0.53	0.36	120
488	0.00	0.00	0.00	105
489	0.62	0.37	0.46	87
490	1.00	0.81	0.90	32
491	0.00	0.00	0.00	69
492	0.00	0.00	0.00	49
493	0.00	0.00	0.00	117
494	0.33	0.07	0.11	61
495	0.00	0.00	0.00	344
496	0.00	0.00	0.00	52
497	0.00	0.00	0.00	137
498	0.29	0.05	0.09	98
499	0.00	0.00	0.00	79
avg / total	0.47	0.32	0.36	173812

Time taken to run this cell : 0:13:46.246785

Observation

```
from prettytable import PrettyTable
In [10]:
       x = PrettyTable()
       x.field names = ["Sr.No", "MODEL", "FEATURIZATION", "PENALTY", "ALPHA", 'LOSS', 'M
       ICRO F1 SCORE']
In [11]: x.add_row(["1", 'OneVsRest+SGD Classifier', "Tf-idf","11",0.0001,"log",0.4488
       x.add_row(["2", 'OneVsRest+SGD(log)=LR', "Bag-of-words","12",0.001,"log",0.426
       x.add row(["3", 'OneVsRest+SGD(log)=LR', "Bag-of-words","11",0.001,"log",0.410
       41)
       x.add row(["4", 'OneVsRest+SGD Classifier', "Bag-of-words", "l1", 0.001, "Hinge",
       0.40281)
In [12]: | print(x)
        Sr.No |
                     MODEL
                                 | FEATURIZATION | PENALTY | ALPHA | LOSS
        MICRO F1 SCORE
        1 | OneVsRest+SGD Classifier | Tf-idf |
                                                 11 | 0.0001 | log
           0.4488
          2 | OneVsRest+SGD(log)=LR | Bag-of-words |
                                                 12
                                                     | 0.001 | log
           0.4268
            | OneVsRest+SGD(log)=LR | Bag-of-words |
                                                 11
                                                     0.001
                                                              log
           0.4104
            OneVsRest+SGD Classifier | Bag-of-words | 11
                                                     | 0.001 | Hinge
           0.4028
```

- The objective's result is shown as above.
- Model {bag of words upto 4 grams and computed the micro f1 score with Logistic regression(OvR)} performs 42.68% on tag prediction which is not higher than the result obtained with model{ TF-IDF with alpha=00.0001,n grams=(1,3)}
- The performance of model with various alpha value is shown in graph.