A Brief Story About AlphaGo Zero

David Silver et al Mastering the game of Go without human knowledge *Nature* 550, 354–359 2017.10.19

Speaker: Lu Jia Date: 2017.10.27

DeepMind Technologies Limited

Founded in London

Acquired by Google

Part of the Alphabet group

AlphaGo Fan

2015.10
Defeated Fan Hui
2016 .1
Made headlines
on nature

From wiki

From deepmind.com

AlphaGo Lee

2016.3 Defeated Lee Sedol

From deepmind.com

AlphaGo Master

2017.5
Defeated KeJie

From deepmind.com

From http://mp.weixin.qq.com/s/1S0CW4HxvftffhUZVya20g

AlphaGo Zero

Training time graphic

From https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo Zero

Elo ratings - a measure of the relative skill levels of players in competitive games such as Go - show how AlphaGo has become progressively stronger during its development From https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo Zero

AlphaGo has become progressively more efficient thanks to hardware gains and more recently algorithmic advance

From https://deepmind.com/blog/alphago-zero-learning-scratch/

Differences

Previous versions	AlphaGo Zero
trained from human data	without human data beyond rules
policy network and value network	one deep neural network
supervised learning	reinforcement learning

Reinforcement Learning Algorithm

——Why is AlphaGo Zero so powerful?

- A deep neutral network f_θ
- Monte Carlo tree search (MCTS)

Deep Neural Network f_θ

•
$$(p,v) = f_{\theta}(s)$$

s: position and history

b Neural network training

Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The

p: vector of move posibilities of selecting move a pa = Pr (a | s)
v: probility of curent player wining from s

From David Silver et al Nature 550, 354–359 (19 October 2017)

Monte Carlo tree search (MCTS)

Steps of Monte Carlo Tree Search From https://www.nature.com/nature/journal/v550/n7676/full/nature24270.html

Self-play pipeline

 π : probability of moving

z : self-play winner

From David Silver et al Nature 550, 354–359 (19 October 2017)

Applications

- Protein folding
- Reducing energy comsumption
- Searching for new materials

Machine learning in astronomy

- Classification of Galaxies
- Redshift estimation
- Gamma-ray separation
- Determine stability of exoplanet

Reference:

https://www.zhihu.com/question/34224788?sort=created

top5 answers

References

- https://deepmind.com/research/alphago
- https://en.wikipedia.org
- https://www.nature.com

- https://deepmind.com/research/alphago/alphago-vs-alphago-self-play-games/
- https://online-go.com/learn-to-play-go/