ORIE 4742 - Info Theory and Bayesian ML

Lecture 4: Source Coding

February 4, 2020

Sid Banerjee, ORIE, Cornell

entropy and information

rv
$$X$$
 taking values $\mathcal{X} = \{a_1, a_2, \dots, a_k\}$, with pmf $\mathbb{P}[X = a_i] = p_i$

Shannon's entropy function

- outcome $X = a_i$ has information content: $h(a_i) = \log_2\left(\frac{1}{p_i}\right)$
- random variable X has entropy: $H(X) = \mathbb{E}[h(X)] = \sum_{i=1}^k p_i \log_2\left(\frac{1}{p_i}\right)$
- only depends on distribution of X (i.e., $H(X) = H(p_1, p_2, \ldots, p_k)$)
- $H(X) \ge 0$ for all X
- if $X \perp \!\!\! \perp Y$, then H(X,Y) = H(X) + H(Y)where joint entropy $H(X,Y) \triangleq \sum_{(x,y)} p(x,y) \log_2 1/p(x,y)$
- if $X \sim$ uniform on \mathcal{X} , then $H(X) = \log_2 |\mathcal{X}|$; else, $H(X) \leq \log_2 |\mathcal{X}|$

source coding

the source coding problem

suppose we are given a database $D = (X_1 X_2 ... X_N)$, where each X_i is a letter in an alphabet \mathcal{X} , generated iid according to $X_i \sim \{p_1, p_2, ..., p_k\}$

the source coding problem

suppose we are given a database $D = (X_1 X_2 ... X_N)$, where each X_i is a letter in an alphabet \mathcal{X} , generated iid according to $X_i \sim \{p_1, p_2, ..., p_k\}$

lossless compression

compress every database D into a codeword $L=\phi(D)$ such that we can exactly recover $D=\phi^{-1}(L)$

 δ -lossy compression $L=\phi(D)$ defined only for $D\in\mathcal{S}_{\delta}$ s.t. $\mathbb{P}[\mathcal{S}_{\delta}]\geq 1-\delta$

the source coding problem

suppose we are given a database $D=(X_1X_2...X_N)$, where each X_i is a letter in an alphabet \mathcal{X} , generated iid according to $X_i \sim \{p_1, p_2, ..., p_k\}$

lossless compression

compress every database D into a codeword $L=\phi(D)$ such that we can exactly recover $D=\phi^{-1}(L)$

Shannon's source coding theorem

if X has entropy H(X), then can compress $D=(X_1X_2\dots X_n)$ into a codeword $L=\phi(D)$ of expected size $|L|=n\ell$ bits, such that

$$H(X) \le \ell < H(X) + \frac{1}{n}$$

moreover, no lossless encoder ϕ has expected codeword size < nH(X)

Mackay's bent coin lottery

A coin with $p_1 = 0.1$ will be tossed N = 1000 times.

The outcome is $\mathbf{x} = x_1 x_2 \dots x_N$.

e.g., $\mathbf{x} = 000001001000100...00010$

You can buy any of the 2^N possible tickets for £1 each, before the coin-tossing.

If you own ticket \mathbf{x} , you win £1,000,000,000.

- To have a 99% chance of winning, at lowest possible cost, which tickets would you buy?
- And how many tickets is that?

Express your answer in the form $2^{(\cdots)}$.

Lottery tickets available

```
0000000000.....00000
      0000000000.....00001
      0000000000.....00010
      0000000000.....00011
      0000000000.....00100
      0000000000.....00101
      0000000000.....00110
2^N
      0000000000.....00111
      0010000001.....01000
      11111111111.....11101
      11111111111.....11110
```

11111111111.....11111

Mackay's bent coin lottery: warmup

what if you could buy only one ticket?

Mackay's bent coin lottery: warmup

what if you could buy k tickets?

recall: two useful facts

- counting via binary entropy for $N \in \mathbb{N}$, $k \leq N$: $\binom{N}{k} \approx 2^{NH_2(k/N)}$
- Chebyshev's inequality for any rv. X with mean $\mathbb{E}[X]$, finite variance $\sigma^2 > 0$, and any k > 0: $\mathbb{P}[|X \mathbb{E}[X]| \ge k\sigma] \le \frac{1}{L^2}$

(lossy) source coding theorem for binary sources

given $X^N = (X_1 X_2 \dots X_N)$, where each $X_i \sim \text{Bernoulli}(p)$

δ -lossy compression

$$L = \phi(X^N)$$
 defined only for $X^N \in \mathcal{S}_\delta$ s.t. $\mathbb{P}[\mathcal{S}_\delta] \geq 1 - \delta$

(lossy) source coding theorem for binary sources

given $X^N = (X_1 X_2 \dots X_N)$, where each $X_i \sim \text{Bernoulli}(p)$

δ -lossy compression

$$L = \phi(X^N)$$
 defined only for $X^N \in \mathcal{S}_\delta$ s.t. $\mathbb{P}[\mathcal{S}_\delta] \geq 1 - \delta$

- δ -sufficient subset S_δ : smallest subset of $\{0,1\}^N$ s.t. $\mathbb{P}[S_\delta] \geq 1-\delta$
- essential information content in X^N : $H_{\delta}(X^N) \triangleq \log_2 |S_{\delta}|$

(lossy) source coding theorem for binary sources

given
$$X^N = (X_1 X_2 \dots X_N)$$
, where each $X_i \sim \text{Bernoulli}(p)$

δ -lossy compression

$$L = \phi(X^N)$$
 defined only for $X^N \in \mathcal{S}_\delta$ s.t. $\mathbb{P}[\mathcal{S}_\delta] \geq 1 - \delta$

- δ -sufficient subset S_{δ} : smallest subset of $\{0,1\}^N$ s.t. $\mathbb{P}[S_{\delta}] \geq 1 \delta$
- essential information content in X^N : $H_\delta(X^N) \triangleq \log_2 |S_\delta|$

Shannon's source coding theorem (lossy version)

if X has entropy H(X), then for any $\epsilon > 0$ and $0 < \delta < 1$, there exists N_0 s.t. for all $N > N_0$, we have

$$\left|\frac{H_{\delta}(X^N)}{N} - H(X)\right| \le 1$$

(lossy) source coding for binary sources: intuition

(lossy) source coding for binary sources: intuition

lossless source coding

from lossy to lossless compression

given $X^N = (X_1 X_2 \dots X_N)$, where each $X_i \sim \text{Bernoulli}(p)$

from lossy to lossless compression

given $X^N = (X_1 X_2 \dots X_N)$, where each $X_i \sim$ Bernoulli(p)

Shannon's source coding theorem

if X has entropy H(X), then for any $\epsilon > 0$ and $0 < \delta < 1$, there exists N_0 s.t. for all $N > N_0$, we have a lossless code $L = \phi(X^N)$ s.t.

$$\left| \frac{\mathbb{E}[L]}{N} - H(X) \right| \le \epsilon$$

lossless compression via typical set encoding

typical set

iid source produces $X^N = (X_1 X_2 \dots X_n)$; each $X_i \in \mathcal{X}$ has entropy H(X) then X^N is very likely to be one of $\approx 2^{NH(X)}$ typical strings, all of which have probability $\approx 2^{NH(X)}$

visualizing the typical set

visualizing 'asymptotic equipartition'

practical source coding solutions

$$X_1X_2\ldots X_n \quad \to \quad \phi(X_1)\phi(X_2)\ldots\phi(X_n)$$

stream codes

$$X_1X_2...X_n \rightarrow \phi(X_1)\phi(X_2|X_1)\phi(X_3|X_1X_2)...\phi(X_n|X_1X_2...X_{n-1})$$

symbol codes

expected length of symbol code

let $X \sim \{p(x)\}_{x \in \mathcal{X}}$, and consider code $C(\cdot)$, and let $\ell(x) = |C(x)|$ the expected length of C is $\mathbb{E}[L(C,X)] = \sum_{x} p(x)\ell(x)$

what we want from symbol code C:

- unique decodability: $\forall x_1 x_2 \dots x_n \neq y_1 y_2 \dots y_n$, we have $C(x_1)C(x_2)\dots C(x_n) \neq C(y_1)C(y_2)\dots C(y_n)$
- easy to decode
- small $\mathbb{E}[L(C,X)]$

types of symbol codes

consider source producing $X \sim \{a, b, c, d\}$ with prob $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$

the limits of unique decodability

Kraft-McMillan inequality

for any $C \equiv \text{uniquely decodable}$ binary code over \mathcal{X} , with $\ell(x) = |C(x)|$

$$\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le 1$$

moreover, for any $\{\ell(x)\}$ satisfying this, we can find a prefix code

the limits of unique decodability

Kraft's inequality: for prefix codes $\sum_{x \in \mathcal{X}} 2^{-\ell(x)} \le$

Kraft's symbol-code supermarket

Kraft's inequality: for prefix codes $\sum_{x \in \mathcal{X}}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
10 000 0000 0000 0000 0000 0000 0000 0	0	00	000	0000	The total symbol code budget
001 0010 0011 0010 0010 0010 0010 0010				0001	
11 1110			001	0010	
11 1110				0011	
11 1110		01	010	0100	
11 1110				0101	
11 1110			011	0110	
11 1110				0111	
11 1110	1	10	100	1000	
11 1110				1001	
11 1110			101	1010	
11 1110				1011	
11 1110		11	110	1100	
111				1101	
1111			111	1110	
				1111	

Kraft's symbol-code supermarket

optimizing expected code length

- entropy of X: $H(X) = \sum_{i \in \mathcal{X}} p_i \log_2 \left(\frac{1}{p_i}\right)$
- Kraft-McMillan inequality: UD code $\{\ell_i\}_{\{i\in\mathcal{X}\}}$ satisfies $\sum_{i\in\mathcal{X}} 2^{-\ell_i} \leq 1$

optimizing expected code length

let $X \sim \{p(x)\}_{x \in \mathcal{X}}$, and consider code $C(\cdot)$, and let $\ell(x) = |C(x)|$ the expected length of C is $\mathbb{E}[L(C,X)] = \sum_{x} p(x)\ell(x)$

relative entropy and Gibb's inequality

relative entropy (or Kullback-Leibler (KL) divergence)

the relative entropy $D_{KL}(p||q)$ between two distributions p(x) and q(x) defined over alphabet \mathcal{X} is

$$D_{\mathcal{KL}}(P||Q) = \sum_{x \in \mathcal{X}} p(x) \ln \left(\frac{p(x)}{q(x)} \right)$$

the function $\phi(x) = x \ln x$

relative entropy and Gibb's inequality

the relative entropy
$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) \ln \left(\frac{p(x)}{q(x)} \right) \ge 0$$
 for all p, q

aside: cross entropy

the cross entropy of
$$p$$
 given q : $H_p(q) = \sum_{x \in \mathcal{X}} p(x) \ln \left(\frac{1}{q(x)} \right)$ – avg length of message from if ' p mis-estimated as q '

Huffman code

consider $X \sim \{a, b, c, d\}$ with prob $\{0.5, 0.25, 0.125, 0.125\}$

Huffman code

consider $X \sim \{a, b, c, d, e, f\}$ with prob $\{0.4, 0.14, 0.13, 0.12, 0.11, 0.10\}$

aside: information content in a perfect code

let C be a perfect code for X, and given database $X_1X_2...X_n$, suppose we pick one bit at random from the encoded sequence $C(X_1)C(X_2)...C(X_n)$. what is the probability this bit is a 1?

problems with Huffman codes

changing ensemble

the extra bit: we know Huffman gives $H(X) \leq \mathbb{E}[L_C(X)] \leq H(X) + 1$

a	0.001	00000
b	0.001	00001
С	0.990	1
d	0.001	00010
е	0.001	00011
f	0.001	0100
g	0.001	0101
h	0.001	0110
i	0.001	0111
j	0.001	0010
k	0.001	0011

$$H(X) = 0.114$$

 $\mathbb{E}[L]/H(X) = 9$

 $\mathbb{E}[\mathsf{length}] = 1.034$

the guessing game

application of arithmetic coding beyond compression

https://www.youtube.com/watch?v=nr3s4613DX8

Lempel-Ziv-Welch coding

source substrings	λ	1	0	11	01	010	00	10
s(n)	0	1	2	3	4	5	6	7
$s(n)_{\text{binary}}$	000	001	010	011	100	101	110 (010,0)	111
(pointer, bit)		(,1)	(0,0)	(01, 1)	(10, 1)	(100, 0)	(010, 0)	(001, 0)

aside: from coin-flips to distributions

we are given a fair coin (i.e., $X_i \sim \text{Bernoulli}(p)$, and want to use it to generate a rv. $Y \sim \{a, b, c, d, e, f\}$ with prob $\{0.5, 0.25, 0.125, 0.125\}$

aside: from coin-flips to distributions

we are given a fair coin (i.e., $X_i \sim \text{Bernoulli}(p)$, and want to use it to generate a rv. $Y \sim \{a, b\}$ with prob $\{5/8, 3/8\}$

aside: from coin-flips to distributions

we are given a fair coin (i.e., $X_i \sim \overline{\text{Bernoulli}(p)}$, and want to use it to generate a rv $Y \sim \{a, b\}$ with prob $\{1/3, 2/3\}$

puzzle: generating a fair coin

we are given a coin with some unknown bias p how can we use it to generate a Bernoulli(1/2) random variable

