Measurement of differential top-quark pair production cross sections in pp collisions at $\sqrt{s} = 7$ TeV

Event selection

Dilepton channel: 3 possible final states:

- $e^{\pm}e^{\mp}$ + 2 b-jets + 2 neutrinos
- $\mu^{\pm}\mu^{\mp}$ + 2 *b*-jets + 2 neutrinos
- $e^{\pm}\mu^{\mp}$ + 2 b-jets + 2 neutrinos

 \Rightarrow selecting events with two leptons, two jets, also expect missing transverse energy (MET)

t and \bar{t} are then reconstructed from measured final state particles and assumptions on $m_W,\ m_t$

Data samples:

- $e^{\pm}e^{\mp}$: 'DoubleElectron'
- $\bullet~\mu^{\pm}\mu^{\mp}$: 'DoubleMu'
- \bullet $e^{\pm}\mu^{\mp}$: 'MuEG'

Event selection

Primary vertex:

- dof > 4
- \bullet impact parameter <2 cm in transverse plane and <24 cm in z

Leptons: two leading p_T opposite signed $p_T > 20$ GeV, $|\eta| < 2.4$

- Electrons ('gsfElectrons')
 - isolated with $I_{\rm rel}^{\Delta R < 0.3} < 0.17 \left(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}\right)$
 - no missing hits in the silicon tracker
- Muons ('muons')
 - isolated with $I_{\rm vol}^{\Delta R < 0.3} < 0.20$
 - required to be global muons
 - at least 10 valid tracker hits and 2 pixel hits
 - global track fit $\chi^2/\text{dof} < 10$
 - \bullet impact parameter to PV < 0.02 cm in transverse plane and < 0.5 cm in z
- $\qquad M(ll) > 12 \,\, \mathrm{GeV}$
- in ee and $\mu\mu$ channels exclude 16 < M(ll) < 106 GeV
- ullet in ee and $\mu\mu$ channels require MET >30 GeV

Jets ('ak5PFJets'): at least two with $p_T>30$ GeV, $|\eta|<2.4$

- ullet anti- k_T with clustering parameter 0.5
- Jet energy correction: 'ak5PFL1FastL2L3Residual'
- at least one b-tagged using CSVL (discriminant > 0.244)
- \bullet CSV information stored only for 'ak5CaloJets': perform matching choosing closest jet in ΔR

Kinematic reconstruction

Goal: obtain $\vec{p_t}$ and $\vec{p_{ar{t}}}$

Efficiency determined in signal MC: $\approx 70\%$ vs 90% in the paper

- Measured input: 2 leptons, 2 jets, MET
- Unknowns: \bar{p}_{ν} , $\bar{p}_{\bar{\nu}}$ (6)
- Constraints:
 - m_t , $m_{\bar{t}}$ (2)
 - m_{W^+} , m_{W^-} (2)
 - $(\bar{p}_{\nu} + \bar{p}_{\bar{\nu}})_T^n = \text{MET (2)}$
- For each pair of jets, solve this using the method from [Phys. Rev. D73 (2006) 054015]
- If there are several solutions in event (either because of many jet combinations, or several solutions for one configuration), prefer:
 - with 2 b-tagged jets
 - with 1 b-tagged jets
 - with highest weight, weight is determined according to the MC neutrino energy spectrum
- Difference from the paper: no m_t scan \Rightarrow worse efficiency due to detector effects

[DESY-THESIS-2012-037]

MC samples

Signal:

MadGraph + Pythia6, 55M

Background:

- $t\bar{t}$ 'other', mainly via au decays (MadGraph + Pythia6)
- single top (POWHEG + Pythia6), 1.5M
- Drell-Yan (DY) (MadGraph + Pythia6), 44M
- \bullet W + jets (MadGraph + Pythia6), 55M
- Diboson and QCD multijet considered in the paper, but contribute negligibly: not used

TOP-11-013

In total processed:

- ullet Data: 33M $(e\mu)$ + 50M (ee) + 40M $(\mu\mu)$ pprox 123M
- \bullet MC: \approx 155M (processing MC took $\times 5$ more time than data: busy events, larger fraction selected)

Overall \sim 2 weeks (not CPU time!), running several jobs in parallel on one machine, but also gaps between running jobs. Some jobs needed to be resubmitted. Bottleneck: data network access (latent server responce?). Any improvement here is very desirable: how will it be feasible for more complicated analyses, or 2012 data?..

Control distributions

- $\bullet \approx$ 25% less events than expected from TOP-11-013: consistent with smaller kin. reco efficiency
- Larger MC / data: consistent with missing scale factors, corrections etc.
- Slightly larger background fraction
- Shapes very similar
- * $p_T(t),\,y(t)$ vs $p_T(t),p_T(\bar{t})$ and $y(t),y(\bar{t})$ in paper

Cross section measured at parton level in full phase space:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Y} = \frac{N_{Sig}}{ALB\Delta Y}$$
, $N_{Sig} = N_{DATA} - N_{MCbackgr}$, $E = \frac{N_{MCreco}}{N_{MCgen}}$
 $\sigma = \int \frac{\mathrm{d}\sigma}{\mathrm{d}Y}$
 $L = 2.5 \text{ fb}^{-1}$, $B = 4.6\%$

Efficiency E determined as bin-to-bin corrections: no 'unfolding'. This should give underestimated stat. uncertainties and might bias central values in bins with small purity/stability and poor MC description.

Measure:

- normalised differential x-section $\frac{1}{\sigma} \frac{d\sigma}{dY}$ (published in TOP-11-013)
- total x-section (published in TOP-13-004)

Normalised differential cross sections

Total cross section

How it is determined:

- Using $e\mu$ channel only (most precise)
- In this analysis obtained by integrating over differential x-section
- More sophisticated procedure in the paper

Open data

TOP-13-004

e.g. by integrating
$$p_T(t)$$
 diff. x-section: $\sigma(t\bar{t}) = 163.3 \pm 4.3$ (stat) pb

$$173.6 \pm 2.1$$
 (stat) $^{+4.5}_{-4.0}$ (sys) ± 3.8 (lum) pb

additionally spread between integrations over different variables ≈ 10 pb: $\sigma(t\bar{t}) = 163.3 \pm 4.3$ (stat) \pm 5 (syst) pb

- Reasonable consistency. In agreement with larger MC / data rate, missing corrections etc.
- Total x-section sensitive to (in)efficiency, scale factor issues (cancel to large extend for normalised x-section).