## U4 - Mechanics

## When is an object in equilibrium?

When there is **NO RESULTANT FORCE** and **MOMENTS BALANCE**.

Thus when  $\geq 3$  forces act on a body in equilibrium, the resultant of all but one will be **equal and opposite** to the last. Similarly, the sum horizontal and vertical components of all forces is 0.



## What is Newton's First Law of Motion (Law of Inertia)?

"Every body continues at rest or with a constant **VELOCITY** unless acted upon by a resultant force."

VELOCITY is key as an object moving in a circle experiences a centripetal and is thus accelerating. Let's say you had a cup on a table, although it looks stationary, considering the Earth/Table perspective, it isn't as it's weight is slightly greater than the normal force as it's experiencing a centripetal force due to the Earth's rotation. However, we assume they're the same.

## What is Newton's Second Law of Motion?

"The resultant force is proportional to the rate of change of momentum and acts in the same direction as the change in momentum."

$$F = \frac{\Delta(mv)}{\Delta t}$$

F = ma is a special case of where mass is constant. This cannot be used for a rocket.

Remember that the change in momentum has to be constant. E.g., going from 5 kgms<sup>-1</sup> to 0 kgms<sup>-1</sup> exerts some force whose size is dependent on the time in which this change occurs. Thus cushions work better than harder surfaces such as steel.

| What is Newton's Third Law of Motion?                                                          | "For every action, there is an equal and opposite reaction."                                                                                                                                                                                                                                                              |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                | This is a result of electrostatic repulsion between electrons. When you "touch" stuff, you're not actually touching it. Your hand is slightly hovering above it.                                                                                                                                                          |  |
| What must the forces in Newton's Third Law be?                                                 | Of the same type.                                                                                                                                                                                                                                                                                                         |  |
| Give an example of Newton's<br>Third Law and explain the<br>importance of frictional<br>forces | <ul> <li>By walking, you push the earth backwards yet the earth pushes you forward (somewhat like a car)</li> <li>This is a result of frictional forces. Without them, you couldn't walk (like on ice) or even hold a ladder against a wall.</li> </ul> Direction of walking frictional force experienced by sole of shoe |  |
| What happens when a ball hits a wall with reference to Newton's Laws?                          | <ul> <li>It will experience a change in momentum thus exerting a force on the wall.</li> <li>The wall will exert an equal and opposite force on the wall.</li> </ul>                                                                                                                                                      |  |
| What is a moment defined as?                                                                   | A force multiplied by the perpendicular distance between the pivot and the <b>line of action</b> of the force.                                                                                                                                                                                                            |  |
|                                                                                                | In essence, we're looking at the turning effect of a force. When we take moments about a point, we can ignore the force acting at the point. So never pick a point where you'd have to consider all distances and forces.                                                                                                 |  |
| What is the principle of moments?                                                              | "For any system <b>IN EQUILIBRIUM</b> , sum of clockwise moments = sum of anticlockwise moments."                                                                                                                                                                                                                         |  |
| What is a couple defined as and how is the moment of a couple calculated?                      | <ul> <li>A pair of equal and opposite coplanar forces.</li> <li>Force × perpendicular distance between the lines of action of the forces.</li> </ul>                                                                                                                                                                      |  |

|                                                          | $M = (F \stackrel{\lambda}{\cancel{a}}) + (F \stackrel{\lambda}{\cancel{a}}) = F \stackrel{\lambda}{\cancel{a}}$ $M = F \stackrel{\lambda}{\cancel{a}} + (F \stackrel{\lambda}{\cancel{a}}) = F \stackrel{\lambda}{\cancel{a}}$ Torque of (ouple $Y = F \stackrel{\lambda}{\cancel{a}}$ )  As shown, it can be calculated by taking moments about the centre. Since the system isn't in equilibrium (as there's a resultant moment), you cannot use the principle of moments. |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What is the Centre of Mass and Centre of Gravity?        | <ul> <li>Centre of mass is the point where all the mass seems to be concentrated.</li> <li>Centre of gravity is the point where all the weight seems to be concentrated.</li> </ul> In a uniform gravitational field, both are in the same place.                                                                                                                                                                                                                             |  |
| How can you find the centre of mass of an object?        | <ol> <li>Freely suspend an irregular shape from a clamp.</li> <li>Dangle a plumb line from the point of suspension and wait for the object to come to rest.</li> <li>Draw a line following the string of the plumb line.</li> <li>Repeat steps 1 - 3 for another point.</li> </ol> The centre of mass is where both lines intersect.                                                                                                                                          |  |
| When will an object rotate and topple (with an example)? | <ul> <li>It rotates when there is a resultant moment acting on it.</li> <li>It topples when the centre of mass acts outside the base.</li> </ul>                                                                                                                                                                                                                                                                                                                              |  |

|                                                                                               | • The clockwise moment = $Fd$ and the anticlockwise moment = $\frac{Wb}{2}$ (as the weight is in the middle).                                                                                                                                                                                                                                                                         |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What is the principle of the conservation of momentum?                                        | "When two objects interact, the total momentum remains the same provided no external forces are acting."                                                                                                                                                                                                                                                                              |  |  |
|                                                                                               | External forces include friction. They affect the total momentum as they can reduce the velocity of an object.                                                                                                                                                                                                                                                                        |  |  |
| What is impulse and how is it calculated?                                                     | The change in momentum calculated by multiply force by the time the force acts. $F\Delta t = \Delta(mv)$                                                                                                                                                                                                                                                                              |  |  |
| Describe and explain the shape of the force-time graph of a steel ball bouncing off a surface | <ul> <li>This is analogous to jumping on a trampoline. The force the trampoline exerts back on you varies over time. At maximum deformation (the peak), the ball's direction changes.</li> <li>The area under the graph is the total change in momentum. It goes from, let's say, -5 kgms<sup>-1</sup> to 5 kgms<sup>-1</sup> thus half the graph is the initial momentum.</li> </ul> |  |  |
| What happens in elastic, inelastic, and perfectly inelastic collisions?                       | <ul> <li>Elastic is when BOTH momentum and kinetic energy IS conserved.</li> <li>Inelastic is when momentum IS conserved YET kinetic energy IS NOT.</li> <li>Perfectly inelastic is where the colliding objects stick.</li> </ul>                                                                                                                                                     |  |  |
| Give examples of elastic collisions using both equal and unequal masses                       | Equal masses:  ■ They swap so they carry on the momentum in a given direction.                                                                                                                                                                                                                                                                                                        |  |  |

|                                                        | <ul> <li>Unequal masses:</li> <li>If they move towards, they bounce off each other with the heavier object moving slower (as it will have more kinetic</li> </ul> |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                        | energy like in table tennis).                                                                                                                                     |  |  |  |
|                                                        | 2m m                                                                                                                                                              |  |  |  |
|                                                        | The exact values are calculated by a slightly complicated equation which you can easily derive.                                                                   |  |  |  |
| Describe the stages of a                               | 1. He initially accelerates at 9.81ms <sup>-2</sup> .                                                                                                             |  |  |  |
| skydiver jumping out a plane                           | 2. Air resistances increases as he falls faster and faster until he                                                                                               |  |  |  |
|                                                        | reaches terminal velocity.                                                                                                                                        |  |  |  |
|                                                        | <ol><li>When the parachute opens, the force of air resistance<br/>increases drastically causing deceleration.</li></ol>                                           |  |  |  |
|                                                        | Air resistance balances his weight again when he reaches terminal velocity again.                                                                                 |  |  |  |
|                                                        | His weight remains constant throughout his dive.                                                                                                                  |  |  |  |
| How is energy transferred                              | <ul> <li>Accelerating - GPE = KE + Q.</li> </ul>                                                                                                                  |  |  |  |
| when accelerating and at<br>terminal velocity during a | <ul> <li>Terminal velocity - GPE = Q (as work is being done again<br/>particles).</li> </ul>                                                                      |  |  |  |
| skydive?                                               | Where Q is heat energy.                                                                                                                                           |  |  |  |
| Projectile Motion                                      | What happens horizontally is independent from what happens vertically.                                                                                            |  |  |  |
|                                                        | Thus if you drop a bullet and fire a bullet from the same                                                                                                         |  |  |  |
|                                                        | height, they will reach the ground at the same time.                                                                                                              |  |  |  |
|                                                        | <ul> <li>Likewise, this is why you have to aim above a target to<br/>actually hit it. Think of the monkey-hunter scenario.</li> </ul>                             |  |  |  |
|                                                        |                                                                                                                                                                   |  |  |  |

| What is mechanical energy?                                                                          | Energy due to the movement or position of an object (kinetic or potential).                                          |                                                                                   |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Graphs                                                                                              | Distance is cumulative so a distance-time graph would never go down.                                                 |                                                                                   |  |
| What is stopping distance and the factors affecting it?                                             | Sum of thinking and braking distances.  Factors affecting stopping distances                                         |                                                                                   |  |
|                                                                                                     | Thinking distance                                                                                                    | Braking distance                                                                  |  |
|                                                                                                     | <ul> <li>Fatigue</li> <li>Intoxication/drugs</li> <li>Age</li> <li>Distractions</li> <li>Speed (∵ s = ut)</li> </ul> | <ul> <li>Brakes</li> <li>Tyres</li> <li>Road conditions</li> <li>Speed</li> </ul> |  |
| Sketch the velocity and displacement time graph of a bouncing ball with the ground being the origin | velocity first bounce                                                                                                | second bounce  time                                                               |  |