JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, December – 2019/January - 2020 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) Find $L[e^{2t}A]$. [2]

b) Find inverse Laplace of $\frac{1}{s^2 + 2s + 2}$. [3]

c) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{\frac{3}{4}} x \cos^{\frac{3}{4}} x dx$ using Beta -Gamma functions. [2]

d) Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, using the relation $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. [3]

e) Evaluate $\iint_{0}^{1} \iint_{0}^{1} dx dy dz$ [2]

f) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x}} dy dx$. [3]

g) Find the directional derivative of $x^2 + y^2 + z^2 = r^2$, at the point (0, r, 0) in the direction of \overline{j}

h) Find Curl (grad f) where $f = x^2 + y^2 - z$. [3]

i) State Green's theorem in a plane. [2]

j) Find the work done by $\overline{F} = 2x\overline{i} + 2y\overline{j} + 3z\overline{k}$ in moving a particle from (-1, 2, 1) to (2, 3, 4) along the line joining them.

PART-B

(50 Marks)

2.a) Find inverse Laplace transform $L^{-1} \left\{ \log \left(\frac{s^2 + 1}{(s-1)^2} \right) \right\}$

b) Find $L\{te^{2t}\sin 3t\}$ [5+5]

OR

3. Using Laplace transform solve $(D^2 + 3D + 2)y = 3$, y(0) = y'(0) = 1. [10]

4.a) Prove the relation between Beta and Gamma functions.

b) If $\frac{\beta(m,n)}{k} = \frac{\beta(m-1,n+1)}{p}$ find k+p in terms of m and n. [5+5]

5.a) Prove that $\Gamma(m)\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$.

b) Show that
$$\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(x+a)^{m+n}} dx = \frac{\beta(m,n)}{a^{n}(1+a)^{m}}.$$
 [5+5]

- 6.a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.
 - b) Evaluate $\iiint_V (xy + yz + zx) dx dy dz$ where V is the region of space bounded by x = 0, x = 1, y = 0, y = 2, z = 0, z = 3. [5+5]

OR

- 7.a) Evaluate $\int_{0}^{1} \int_{0}^{2-x} xy dy dx$
 - b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{y-z}^{x+z} (x+y+z) dx dy dz$. [5+5]
- 8.a) Prove that $\nabla(\overline{A} \cdot \overline{B}) = (\overline{B} \cdot \nabla)\overline{A} + (\overline{A} \cdot \nabla)\overline{B} + \overline{B} \times (\nabla \times \overline{A}) + \overline{A} \times (\nabla \times \overline{B})$.
 - b) Evaluate the angle between the normals of the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3). [5+5]

OR

- 9.a) Find the unit normal vector to the surface $x^2y + 2xz = 4$ at the point (2,-2,3). Also find the directional derivative of the surface in the direction normal to the surface $x \log z y^2 = 1$ at (-1, 2, 1).
 - b) For any vector field \overline{V} , prove that Div Curl $\overline{V} = 0$. [5+5]
- 10. Verify Divergence Theorem for $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$ over the surface S of the solid cut of by the plane x+y+z=a in the 1^{st} octant. [10]

OR

- 11.a) Find the work done by the force $\overline{F} = (xy)\overline{i} z\overline{j} + (x^2)\overline{k}$ along the curve $x = t^2$; y = 2t; $z = t^3$ from t=0 to t=1.
 - b) Apply Stokes Theorem to evaluate $\int_{c} \overline{F} . d\overline{R}$, where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and x + z = a and $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$. [5+5]

---00O00---