网络药理学分析

2024-01-08

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要	1									
2	前吉	1									
3	材料和方法 3.1 材料										
4	分析结果										
5	结论	2									
Re	附:分析流程 5.1 Disease (database: PharmGKB, DisGeNet, GeneCards) 6.1.1 血管重塑 (Vascular Remodeling, VR) 6.1.2 败血性肺损伤 (septic lung injury, SLI) GEO 6.1.2.1 DEGs-mice 6.1.2.2 DEGs-human 5.2 糖酵解 (Glycolysis, G) 5.3 基因集 (Filtered-DEGs) 5.4 富集分析 6.4.1 SLI-DEGs 6.4.2 Filtered-DEGs (FDEGs) 5.5 PPI 5.6 蛋白互作模拟	2 2 2 2 4 5 6 6 6 7 8 9									
\mathbf{L}^{i}	st of Figures										
\mathbf{L}^{\dagger}	VR Overall targets number of datasets SLI Model vs Control DEGs Filtered DEGs intersection KEGG enrichment with enriched genes FDEGS ids KEGG enrichment FDEGS ids GO enrichment PPI of Filtered DEGs	2 3 6 7 7 8 9									
	SLI data Model vs Control DEGs	3									

2	SLI Genes mapping	4
3	Glycolysis related genes from genecards	5

1 摘要

脓毒症肺损伤 + 血管重塑 + 基因 + 糖酵解

- 糖酵解与肺血管病理性重塑(如果比较少,放宽到血管重塑 remodeling) 相关的基因集
 - 血管重塑基因 (6.1.1) 和脓毒症肺损伤基因 (6.1.2) 以及糖酵解相关基因 (6.2) 取全交集 (Fig. 3)
- 对基因集做功能通路富集分析
 - 分别对败血性肺损伤 (septic lung injury, SLI) 数据集 (Fig. 4) 和上述交集后的基因集 (Fig. 5 和 Fig. 6) 做了富集分析
- 在这些基因集中找到 kif2c (如果包含可能名次比较靠后了),及 kif2c 相关的基因,做 PPI 网络图
 - 找不到 KIF2F 基因。交集基因 PPI 图见 Fig. 7
- 目标靶基因是 MYC, 用分子对接模拟 KIF2C 与 MYC 蛋白互作
 - KIF2C 与 MYC 蛋白互作模拟结果见 6.6
- 其他,看有能满足思路的花里胡哨的图都可以放上来

客户需求:希望把生信的可视化结果弄得漂亮一点,目前 PPI 图虽然可以看出 kif2c 和 myc 的关系,但是过于单调。有没有可能再加分子对接或者两者在糖酵解代谢途径中的富集等等(不知道 kegg 和 go 分析能否用上)。辛苦增加部分生信分析的图片和结果(就是想视觉上再丰富一点,图做得好看一点多一点)

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE165226**: we divided 6-8 weeks mice into two groups - control and septic model and 6 mice per group.

3.2 方法

Mainly used method:

- R package biomaRt used for gene annotation¹.
- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package ClusterProfiler used for gene enrichment analysis².
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets³⁻⁵.
- R package ClusterProfiler used for GSEA enrichment².
- R package Limma and edgeR used for differential expression analysis^{6,7}.
- LZerD webserver used for protein-protein docking⁸.
- R package STEINGdb used for PPI network construction^{9,10}.
- Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

- 4 分析结果
- 5 结论
- 6 附:分析流程
- 6.1 Disease (database: PharmGKB, DisGeNet, GeneCards)
- 6.1.1 血管重塑 (Vascular Remodeling, VR)

Figure 1 (下方图) 为图 VR Overall targets number of datasets 概览。

(对应文件为 Figure+Table/VR-Overall-targets-number-of-datasets.pdf)

Figure 1: VR Overall targets number of datasets

'VR targets of datasets' 数据已全部提供。

(对应文件为 Figure+Table/VR-targets-of-datasets)

注:文件夹 Figure+Table/VR-targets-of-datasets 共包含 3 个文件。

- 1. 1_t.pharm.csv
- 2. 2 t.dis.csv
- 3. 3_t.genecard.csv

6.1.2 败血性肺损伤 (septic lung injury, SLI) GEO

6.1.2.1 DEGs-mice

Figure 2 (下方图) 为图 SLI Model vs Control DEGs 概览。

(对应文件为 Figure+Table/SLI-Model-vs-Control-DEGs.pdf)

Figure 2: SLI Model vs Control DEGs

Table 1 (下方表格) 为表格 SLI data Model vs Control DEGs 概览。

(对应文件为 Figure+Table/SLI-data-Model-vs-Control-DEGs.csv)

注: 表格共有 3242 行 7 列,以下预览的表格可能省略部分数据;表格含有 3242 个唯一'rownames'。

- 1. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 2. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 3. t: moderated t-statistic (omitted for 'topTableF')
- 4. P.Value: raw p-value
- 5. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 1: SLI data Model vs Control DEGs

rownames	s logFC	AveExpr	t	P.Value	adj.P.Val	В
Clec3b	-1.9848536	7.33363889	-17.498042	7.86788380	2.40662829	12.2053789
Akr1c14	2.81261598	8.11883664	15.3675634	3.45102470	3.90133653	11.0637187
Postn	-1.7034833	9.91717469	-15.228085	3.82634026	3.90133653	10.9810734
Gm13749	-2.2052006	2.83326873	-14.209839	8.35339935	5.48966386	10.3444807

rownames	$\log FC$	AveExpr	t	P.Value	adj.P.Val	В
Saa3	6.85486850	10.8792202	14.1195879	8.97355804	5.48966386	10.2850970
Ifitm6	4.80701587	9.89669026	13.8796505	1.08773578	5.54527703	10.1247543
Il1r2	4.40115929	7.69398107	13.5044213	1.47848787	6.01193210	9.86660629
Gpr153	-1.6801679	8.62129465	-13.430255	1.57236356	6.01193210	9.81448518
Col16a1	-1.4026272	7.91707219	-13.287008	1.77240443	6.02381186	9.71276692
Fgfr4	-2.6504553	6.15492443	-13.121581	2.03819307	6.03742187	9.59355318
Fcgr4	2.77105360	8.56146562	13.0473547	2.17116649	6.03742187	9.53944390
Itgam	3.15398369	10.0245737	12.6817126	2.97807344	7.59110922	9.26717907
Ces2e	-2.6636707	2.86681445	-12.575583	3.26902738	7.69176996	9.18633199
Scube2	-2.6771258	6.83822578	-12.405540	3.80107102	8.30479717	9.05504426
Tgfbi	1.55482395	10.2352866	12.1160976	4.93388623	0.00010061	8.82648927

6.1.2.2 DEGs-human

使用 Biomart 将 mice 基因 (mgi symbol) 映射为 human 基因名 (hgnc symbol)

Table 2 (下方表格) 为表格 SLI Genes mapping 概览。

(对应文件为 Figure+Table/SLI-Genes-mapping.csv)

注: 表格共有 2471 行 8 列,以下预览的表格可能省略部分数据; 表格含有 2362 个唯一'mgi_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. AveExpr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'MarrayLM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 2: SLI Genes mapping

mgi_sy	$\log FC$	AveExpr	t	P.Value	adj.P.Val	В	hgnc_s
Clec3b	-1.984	7.3336	-17.49	7.8678	2.4066	12.205	CLEC3B
Postn	-1.703	9.9171	-15.22	3.8263	3.9013	10.981	POSTN
Ifitm6	4.8070	9.8966	13.879	1.0877	5.5452	10.124	IFITM1
Ifitm6	4.8070	9.8966	13.879	1.0877	5.5452	10.124	IFITM3

mgi_sy	$\log FC$	AveExpr	t	P.Value	adj.P.Val	В	hgnc_s
Ifitm6	4.8070	9.8966	13.879	1.0877	5.5452	10.124	IFITM2
Gpr153	-1.680	8.6212	-13.43	1.5723	6.0119	9.8144	GPR153
Il1r2	4.4011	7.6939	13.504	1.4784	6.0119	9.8666	IL1R2
Col16a1	-1.402	7.9170	-13.28	1.7724	6.0238	9.7127	COL16A1
Fcgr4	2.7710	8.5614	13.047	2.1711	6.0374	9.5394	FCGR3B
Fcgr4	2.7710	8.5614	13.047	2.1711	6.0374	9.5394	FCGR3A
Fgfr4	-2.650	6.1549	-13.12	2.0381	6.0374	9.5935	FGFR4
Itgam	3.1539	10.024	12.681	2.9780	7.5911	9.2671	ITGAM
Ces2e	-2.663	2.8668	-12.57	3.2690	7.6917	9.1863	CES2
Scube2	-2.677	6.8382	-12.40	3.8010	8.3047	9.0550	SCUBE2
Tgfbi	1.5548	10.235	12.116	4.9338	0.0001	8.8264	TGFBI

6.2 糖酵解 (Glycolysis, G)

Table 3 (下方表格) 为表格 Glycolysis related genes from genecards 概览。

(对应文件为 Figure+Table/Glycolysis-related-genes-from-genecards.xlsx)

注: 表格共有 1362 行 7 列,以下预览的表格可能省略部分数据; 表格含有 1362 个唯一'Symbol'。

Table 3: Glycolysis related genes from genecards

Symbol	Description	Category	UniProt_ID	GIFtS	GC_id	Score
TIGAR	TP53 Induc	Protein Co	Q9NQ88	42	GC12P033681	22.41
PKM	Pyruvate K	Protein Co	P14618	53	GC15M072199	19.66
HK2	Hexokinase 2	Protein Co	P52789	50	GC02P074833	19.44
GAPDH	Glyceralde	Protein Co	P04406	54	GC12P033726	17.19
LDHA	Lactate De	Protein Co	P00338	54	GC11P018394	15.83
RRAD	RRAD, Ras	Protein Co	P55042	42	GC16M067144	15.10
HIF1A	Hypoxia In	Protein Co	Q16665	52	GC14P061695	14.96
HK1	Hexokinase 1	Protein Co	P19367	53	GC10P069269	14.28
ENO3	Enolase 3	Protein Co	P13929	51	GC17P004948	13.56
TPI1	Triosephos	Protein Co	P60174	51	GC12P006867	13.21
ENO1	Enolase 1	Protein Co	P06733	51	GC01M008861	13.07
GLTC1	Glycolysis	RNA Gene		2	GC11U909607	12.97
PFKP	Phosphofru	Protein Co	Q01813	49	GC10P003066	12.85
PGK1	Phosphogly	Protein Co	P00558	53	GC0XP078104	12.76
GCK	Glucokinase	Protein Co	P35557	53	GC07M044978	12.38

Symbol	Description	Category	UniProt_ID	GIFtS	GC_id	Score

6.3 基因集 (Filtered-DEGs)

Figure 3 (下方图) 为图 Filtered DEGs intersection 概览。

(对应文件为 Figure+Table/Filtered-DEGs-intersection.pdf)

Figure 3: Filtered DEGs intersection

All_intersection:

SPHK1, COL4A5, HSPA4, PARP1, RUVBL2, TNFAIP3, PPBP, MYH10, RAB4B-EGLN2, ANGPTL4, INSR, HMGA2, KDR, TNFSF10, WWTR1, PARK7, HIF1AN, TKT, CA9, TRAF6, CASP1, AHR, NR4A1, CHUK, MUC1, ROCK1, CDK2, TSC1, IRS1, PRKACA, MDM2

(上述信息框内容已保存至 Figure+Table/Filtered-DEGs-intersection-content)

6.4 富集分析

6.4.1 SLI-DEGs

Figure 4 (下方图) 为图 KEGG enrichment with enriched genes 概览。

(对应文件为 Figure+Table/KEGG-enrichment-with-enriched-genes.pdf)

Figure 4: KEGG enrichment with enriched genes

6.4.2 Filtered-DEGs (FDEGs)

Figure 5 (下方图) 为图 FDEGS ids KEGG enrichment 概览。

(对应文件为 Figure+Table/FDEGS-ids-KEGG-enrichment.pdf)

Figure 5: FDEGS ids KEGG enrichment

Figure 6 (下方图) 为图 FDEGS ids GO enrichment 概览。

(对应文件为 Figure+Table/FDEGS-ids-GO-enrichment.pdf)

Figure 6: FDEGS ids GO enrichment

6.5 PPI

Figure 7 (下方图) 为图 PPI of Filtered DEGs 概览。

(对应文件为 Figure+Table/PPI-of-Filtered-DEGs.pdf)

Figure 7: PPI of Filtered DEGs

6.6 蛋白互作模拟

https://lzerd.kiharalab.org/upload/upload/

• Results: https://lzerd.kiharalab.org/view/b6748c34192e445686eec93fd455ce7a

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 4. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 5. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for

pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).

- 6. Ritchie, M. E. et al. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research 43, e47 (2015).
- 7. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.
- 8. Christoffer, C. et al. LZerD webserver for pairwise and multiple protein-protein docking. *Nucleic acids* research 49, W359–W365 (2021).
- 9. Szklarczyk, D. et al. The string database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49, D605–D612 (2021).
- 10. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).