JMTS-12: Probability and Random Processes

Fall 2020

M. Bode

Chapter 2: Random Variables

2.2 Random Variables

- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Random Variables

Idea: Map outcomes to (real) numbers.

The random variable $X: \Omega \to \mathbb{R}$ maps all outcomes from the sample description space to a real number.

Chapter 2: Random Variables

2.2 Random Variables

- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Random Variables

The new sample (description) space is \mathbb{R} .

For the events in \mathbb{R} we use the Borel sets, i.e., intervals like $(-\infty, a]$ plus their (countable) unions and intersections, in particular [a,b], (a,b), [a,b), (a,b).

 \rightarrow For consistency, the inverse images, $X^{-1}((-\infty, a])$ etc., have to be events in Ω .

Chapter 2: Random Variables

2.2 Random Variables

- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Random Variables

New probability: $P_X: \mathcal{B} \to [0,1]$ as induced ... $P_X[B \in \mathcal{B}] = P[X^{-1}(B)]$.

New probability space: (\mathbb{R} , \mathcal{B} , P_X)

Random Variables

Example:

Toss a coin with P[H] = p, P[T] = qChoose, X(H) = 1, X(T) = 0

Chapter 2: Random Variables

2.2 Random Variables

- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Induced probabilities:

$$X^{-1}((-\infty, 0.5]) = \{T\} \Rightarrow P_X[(-\infty, 0.5]] = q$$

$$X^{-1}((-\infty, -2]) = \emptyset \Rightarrow P_X[(-\infty, -2]] = 0$$

$$X^{-1}((-\infty, 3.5]) = \{H, T\} \Rightarrow P_X[(-\infty, 3.5]] = 1$$

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Probability Distribution Functions (PDF)

$$F_X(a) := P_X\big[(-\infty, a]\big] = P\big[X^{-1}\big((-\infty, a]\big)\big] = P\big[\{\zeta \in \Omega : X(\zeta) \le a\big]$$

For a coin:

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Probability Distribution Functions (PDF)

$$F_X(a) := P_X\big[(-\infty, a]\big] = P\big[X^{-1}\big((-\infty, a]\big)\big] = P\big[\{\zeta \in \Omega : X(\zeta) \le a\big]$$

For a coin:

Properties of $F_X(x)$:

- (i) $F_X(-\infty) = 0, F_X(\infty) = 1$
- (ii) $x_1 < x_2 \Rightarrow F_X(x_1) \le F_X(x_2)$, nondecreasing function
- (iii) $F_X(x)$ is continuous from the right.

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Probability Distribution Functions (PDF)

$$F_X(a) := P_X\big[(-\infty, a]\big] = P\big[X^{-1}\big((-\infty, a]\big)\big] = P\big[\{\zeta \in \Omega : X(\zeta) \le a\big]$$

Example: Bus arrival

Suppose, the bus arrives at any time t between 0 and T, equally likely... uniform distribution.

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Probability Distribution Functions (PDF)

Properties of $F_X(x)$:

(i)
$$F_X(-\infty) = 0, F_X(\infty) = 1$$

- (ii) $x_1 < x_2 \Rightarrow F_X(x_1) \le F_X(x_2)$, nondecreasing function
- (iii) $F_X(x)$ is continuous from the right.

If $F_X(x)$ is continuous (not only from the right), then also:

$$F_X(x) = \lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} F_X(x - \varepsilon) = F_X(x^-)$$

Think! What's that: $P_X[X = x] = F_X(x) - F_X(x^-)$?

Discontinuous case ₁₀

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Probability Density Function (pdf)

For a start: Assume that $F_X(x)$ is differentiable ...

The basic idea:
$$f_X(x) = \frac{d}{dx} F_X(x)$$

Properties of $f_X(x)$:

- (i) $f_X(x) \ge 0$
- (ii) $\int_{-\infty}^{\infty} f_X(\xi) d\xi = F_X(\infty) F_X(-\infty) = 1$
- (iii) $F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi = P[X \le x]$

(iv)
$$F_X(x_2) - F_X(x_1) = \int_{-\infty}^{x_2} f_X(\xi) d\xi - \int_{-\infty}^{x_1} f_X(\xi) d\xi = \int_{x_1}^{x_2} f_X(\xi) d\xi = P[x_1 < X \le x_2]$$

Also, $P[x < X \le x + \Delta x] \approx f_X(x) \Delta x$ if $f_X(x)$ is continuous.

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Continuous case:

Example (normal or Gaussian pdf):

$$f_X(x) = \frac{1}{\sqrt{2\pi \cdot \sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Parameters:

mean:
$$\mu = \int_{-\infty}^{\infty} x f_X(x) dx$$

variance: $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Continuous case:

Example 2 (exponential pdf):

$$f_X(x) = \frac{1}{\mu} \exp\left[-\frac{x}{\mu}\right] u(x)$$

Parameters:

mean:
$$\mu = \int_{-\infty}^{\infty} x f_X(x) dx$$

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Not so smooth PDFs ... but still continuous.

Suppose, $F_X(x)$ is continuous ... but derviatives $f_X(x)$ from left and right are different for a countable set of points.

The basic idea, $f_X(x) = \frac{d}{dx} F_X(x)$, basically survives ... the ``few'' exceptions do not hurt (ignore ... or use arbitrary (finite values):

$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi = P[X \le x]$$
 still works.

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Discrete random variables ...

Suppose, $F_X(x)$ looks like a staircase.

The probability is concentrated at certain points.

Probability mass function:
$$P_X(x) = P[X \le x] - P[X < x]$$

(Notice the sloppy notation, here!)

The basic idea, $f_X(x) = \frac{d}{dx} F_X(x)$, survives only in the sense of ``delta functions.''

$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi = P[X \le x]$$
 still works: Use $\int_{-\infty}^{x^+} f_X(\xi) d\xi$ (limit from the right).

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Probability mass function: $P_X(x) = P[X \le x] - P[X < x]$

Density $f_X(x) = \frac{d}{dx} F_X(x)$, ... ``delta functions''

$$F_X(x) = \int_{-\infty}^{x^+} f_X(\xi) d\xi = P[X \le x]$$
 still works.

Chapter 2: Random Variables

- 2.2 Random Variables
- 2.3 Probability Distribution Functions (PDF)
- 2.4 Probability Density Functions (pdf)
- 2.5 Continuous, Discrete, Mixed Cases ...
- 2.6 Conditional and Joint PDFs, pdfs
- 2.7 Failure Rates

Continuous, Discrete, Mixed Cases ...

Delta ``functions''...

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0),$$
$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a),$$

Density
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, ... ``delta functions''

$$F_X(x) = \int_{-\infty}^{x^+} f_X(\xi) d\xi = P[X \le x]$$
 still works.

The End

Next time: continue Chp. 2