# IIC2685 Robótica Móvil

1 - 2022

Profesor: Gabriel Sepúlveda V. grsepulveda@ing.puc.cl

























- Entonces ¿ qué es un robot ?. Algunas definiciones...
  - Máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas solo a las personas (RAE)
  - Programa que explora automáticamente la red para encontrar información (RAE)
  - Máquina que opera en forma autónoma o por control remoto
  - Un humanoide
  - Una conexión inteligente entre percepción y acción

- Entonces ¿ qué es un robot ?. Algunas definiciones...
  - Máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas solo a las personas (RAE)
  - Programa que explora automáticamente la red para encontrar información (RAE)
  - Máquina que opera en forma autónoma o por control remoto
  - Un humanoide
  - Una conexión inteligente entre percepción y acción
- ¿Sería un robot…
  - ... un automóvil ?
  - ... un cajero automático ?
  - ... un software inteligente?

### ROBOT

- Etimología: Robota (trabajador forzado)
- Robot aparece primero el obra de Karel Čapek, Rossum's Universal Robots, 1920 (humanoide sin alma)













- Libros "clásicos"
  - Karel Capev
    - Rossum's Universal Robots (R.U.R.) (1920)
  - Isaac Asimov
    - Runaround (1942)
    - I robot (1950)
- Películas











- Historia real: muy lejos de la ficción
  - Primer desarrollo exitoso: brazos robóticos (1954 1980)
  - Hasta hoy son los más utilizados en aplicaciones industriales
- Industria robótica crece año a año



Robots "históricos" (1950 - 1980)



Gray Walter's Tortoise (1949)



Beast (1960, JHU)



Stanford Cart (1968-1980, Stanford)



Shakey (1966-1972, SRI)

- Hasta mediados 80', muchos problemas
  - Baterías poca carga
  - Cómputo muy lento
  - Falta de sensores
  - Poca utilidad

 Con el desarrollo de computadodes más potentes y nuevas baterías, los robots móviles regresaron para quedarse

- 1990 2010
  - Mejora baterías
  - PCs embebidos
  - Menor costo sensores
  - Motores con menor peso y mayor potencia
  - Nuevos materiales livianos y resistentes









- 2012 Primer auto autónomo (público)
- Machine Learning muestra utilidad real



- Hoy
  - Industria en rápido crecimiento
  - Aún robots industriales dominan (98%)
  - Vehículos autónomos es la gran batalla actual
    - Más seguros
    - Mejora en tráfico
    - Transporte inteligente
  - Razonamiento y adaptabilidad son aún un gran desafío!

### Robot móvil

¿ Cómo podemos definir un robot autónomo?

# Una máquina AUTÓNOMA capaz de PERCIBIR, RAZONAR y ACTUAR en forma ADAPTIVA

### Robótica móvil



Nuestra definición de ROBOT:

# Una máquina AUTÓNOMA capaz de PERCIBIR, RAZONAR y ACTUAR en forma ADAPTIVA



# Autónoma (1/5)

- Varios niveles de autonomía
  - Control remoto
  - Robot supervisado
  - Robot autónomo (sin supervisión humana)
- Clave para la autonomía: percibir







# Percibir (2/5)

- Robot necesita percibir el mundo
  - Tal como humanos usan sentidos
- Múltiples sensores
  - Odometría
  - Pose  $(x,y,z,\phi,\theta,\psi)$
  - Visión 2D y 3D
  - Profundidad
  - Temperatura
  - Viento
  - Etc...



# Percibir (2/5)

¿ Cómo se realiza la odometría ?





**Encoder (óptico)** 

# Percibir (2/5)







Giroscopio



Laser



Cámara Stereo



Infrarrojos



Sonar



Camara con Procesamiento Onboard (CMU)

# Razonar (3/5)

- Razonar: interpretar la percepción
  - Estado del mundo (ej: localización)
  - Reconocer objetos
  - Restricciones de movimiento
  - Predicción de movimiento de objetos móviles







# Razonar (3/5)



# **Actuar** (4/5)

- Actuación: cambiar el estado (físico) del mundo
- Tipos de actuadores mecánicos
  - Motores, reductores, ruedas
  - Gripper
  - Parlantes
  - Pan-tilt
  - Pantallas





- En un mundo estructurado, adaptabilidad no es importante
- Robots exitosos
  - Pre-programados para tareas específicas
  - Poca adaptabilidad



- Mundos poco estructurados: adaptabilidad es clave
- Adaptabilidad requiere dotar a robots de algún tipo de inteligencia
  - Artificial Intelligence (AI), Machine Learning (ML)
  - Predicción, clasificación
  - Generalización del mundo con funciones que una máquina pueda interpretar

- Caso de estudio: DARPA Challenge
  - DARPA: Defense Advanced Research Projects Agency
  - Iniciativa fundada por el Departamento de Defensa de EEUU (2004)
  - Competencia de vehículos autónomos
  - Focalizada en vehículos todo terreno





- Caso de estudio: DARPA Challenge
  - Desafío: toma de decisiones en tiempo real en un ambiente poco estructurado (incertidumbre)



Condiciones inesperadas



Limitación de los sensores

- Caso de estudio: DARPA Challenge
  - Ganador año 2005: Stanley (Stanford Racing Team)
  - Percepción: sensor laser que permite la elaboración de modelos 3D
  - Alcance máximo del sensor: 20 [m]



- Problema: predicción de camino
  - Sensores sólo "ven" a 20 metros. A 30 [km/h], son solo 2.4 segundos!
- Solución: usar sensor visual (cámara) para estimar el camino
  - Entrenamiento: camino actual al frente del móvil
  - Predicción: Camino futuro que comparte características con camino actual (*Mixture of Gaussians*)







- Mezclando todos los ingredientes, formamos un robot móvil
  - Máquina autónoma
  - Con elementos de percepción
  - Capaz de razonar e interpretar la percepción (mundo)...
  - ... y producir cambios en éste (actuación)
  - Con la capacidad de adaptarse (inteligencia) a su entorno

 En este curso veremos aspectos teóricos y prácticos de cada ingrediente.

- ¿En qué está la robótica móvil actualmente?
  - Aún en estado de "laboratorio"
  - Grances avances en automóviles autónomos (\$)
  - Robot móviles comerciales de consumo "masivo"
    - Aspiradoras
    - Cortadoras de césped
    - Maquinaria agrícola
- El gran desafío
  - Sabemos cómo mover robots, pero cuesta hacerlos "ver" (interpretar) correctamente el mundo





### Temas a tratar en el curso

- Manejo de ROS
- Locomoción y control de bajo nivel (PID)
- Sensores
- Percepción de robot para localización y navegación
- Conceptos de probabilidades
- Localización y mapeo (SLAM)
- Navegación
- Conceptos de visión por computador
- Tópicos relacionados

### Herramientas

- Ubuntu 20.04 (Xubuntu, Kubuntu, etc.)
- ROS (Robot Operating System)
  - www.ros.org
  - Conjunto de software, drivers y utilidades para operar con robots
  - Curva de aprendizaje puede ser lenta, comenzar HOY (http://wiki.ros.org/)
  - Lenguaje: Python3 o C++
  - Versión Noetic
- OpenCV
  - Viene integrado en ROS (Noetic → OpenCV 3.x)
  - Librería de manejo de imágenes, visión por computador, etc.