Airbnb's Demand in NYC: An Econometric Analysis on an Airbnb's popularity

Presented by Qianshu Ni, Liangjiayi Wang, Haoyue Tan

Introduction

BIG IDEA: How can we boost the Airbnb popularity in NYC and optimize the potential tourist?

Motivation:

- Boost the Airbnb reviews helps to attract more potential consumer
- Provide pre-insights for travelers
- Measure the customers' and providers' behavior and performance on the platform

Possible considerations:

- The popularity of Airbnb in the NYC is not consistent with other cities
- We cannot predict the case during the COVID-19 time

Research Question

This research aims to find the factors that will influence the prosperity of house sharing economics in NYC, especially for the price of Airbnbs in the year of 2019.

Why asking:

- Provide information for Airbnb hosts to maximize their surplus and help the government to better track and manage tourism resources.

Why Airbnbs? Why the year of 2019?

- The Rise of "Sharing Economics"
- Emit the impact of the pandemic.

Outline

1. Literature Review: Literature Review: Inspiration from Sung and Lee's work in 2018, they introduced a new economic model called "sharing economy" and aims to encourage people to make extra profit by sharing their unused properties with another person.

2 Data Resources:

- New York City Airbnb Open Data in Kaggle for 2019 and each Airbnb's specific demographics like room type, reviews per month, price (in USD), borough group, etc.
- RentHop New York Two Bedroom Median Rent Affordability from the NY Curbed website
- 3. Descriptive statistics: Basic summary for dependent variable and covariates.
- 4. Methodology: Use two stage least square method with instrumental variable 'income per rent'

Literature Review

Interested in Sharing economics (Airbnb market)

- Sung, E., Kim, H., & Lee, D. (2018). Why Do People Consume and Provide Sharing Economy Accommodation? —A Sustainability Perspective
- The word "sharing" indicates the activities that people maximize the utilization of unused by sharing the good or services with others.

Existent Research

- Voltes-Dorta, A., & Sánchez-Medina, A. (2020). Drivers of Airbnb prices according to property/room type, season and location: A regression approach. Journal of Hospitality and Tourism Management
- Dudás, G., Vida, G., Kovalcsik, T., & Boros, L. (2017). A socio-economic analysis of Airbnb in New York
 City
- Aim to build the demand model that can be used to estimate a reasonable price based on the quantity demand of Airbnb in New York City. Researchers indicates that price of Airbnb is related with its location, neighborhood group and room type.

Preliminary analysis-Data cleaning

- price <= 500
- Merge with the table "RentHop New York Two Bedroom Median Rent Affordability"

RangeIndex: 14811 entries, 0 to 14810 Data columns (total 19 columns): Column Non-Null Count Dtype id 14811 non-null int64 14810 non-null object name 14811 non-null int64 host id host name 14807 non-null object neighbourhood group 14811 non-null object neighbourhood 14811 non-null object latitude float64 14811 non-null longitude 14811 non-null float64 object room type 14811 non-null price(in USD) int64 14811 non-null minimum nights 14811 non-null int64 advertisement 14811 non-null int64 last review 14811 non-null object reviews per month 14811 non-null float64 calculated host listings count 14811 non-null int64 availability 365 14811 non-null int64 Coordinates 14811 non-null object income per_rent 14811 non-null float64 per rent borough 14811 non-null float64 dtypes: float64(5), int64(7), object(7)

Descriptive Statistics - Dependent Variable

count	14811
mean	1.25
std	1.56
min	0.01
25%	0.16
50%	0.59
75%	1.82
max	15.32

Methodology - OLS

Why use OLS

- Building the OLS model with Airbnb's monthly review frequency and price and then gradually add other factors to view the changing coefficient significance.
- Whether all variables are significant and whether there are some potential problems such as endogenous
- We selected the model with the highest R-square

Controls include:

review_per_month: Average daily review in each month in 2019 price: Price in US dollarneighourhood_group: location in NYC

room_type: listing space type

advertisement: number of reviews cause by web-recommendation availability_365: number of days when listing is available for booking

minimum_nights: amount of nights minimum for booking

OLS Regression Model

```
Model1: reviews_per_month<sub>i</sub> = \beta_0 + \beta_1 \times \text{price}(\text{in USD})_i

Model2: reviews_per_month<sub>i</sub> = \beta_0 + \beta_1 \times \text{price}(\text{in USD})_i + \beta_{2j} \times \text{neighbourhood\_group}_{ij}

Model3: reviews_per_month<sub>i</sub> = \beta_0 + \beta_1 \times \text{price}(\text{in USD})_i + \beta_{2j} \times \text{neighbourhood\_group}_{ij} + \beta_{3j} \times \text{room\_type}_{ij}

Model4: reviews_per_month<sub>i</sub> = \beta_0 + \beta_1 \times \text{price}(\text{in USD})_i + \beta_{2j} \times \text{neighbourhood\_group}_{ij} + \beta_{3j} \times \text{room\_type}_{ij} + \beta_4 \times \text{advertisement}_i

Model5: reviews_per_month<sub>i</sub> = \beta_0 + \beta_1 \times \text{price}(\text{in USD})_i + \beta_{2j} \times \text{neighbourhood\_group}_{ij} + \beta_{3j} \times \text{room\_type}_{ij} + \beta_4 \times \text{advertisement}_i + \beta_5 \times \text{availability\_365}_i + \beta_6 \times \text{minimum\_nights}_i
```


OLS Regression Model Comparison

OLS Regressions Summaries for Model 1-5

		Model2			
R-squared	0.003				
	0.003	0.031	0.032	0.339	0.350
Intercept	1.375***	1.467***	1.355***	0.823***	0.809***
-	(0.024)	(0.172)	(0.174)	(0.144)	(0.144)
price	-0.001***				
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
C(neighbourhood_group)[T.Brooklyn]	, ,			-0.281**	
		(0.173)	(0.172)	(0.143)	(0.142)
C(neighbourhood_group)[T.Manhattan]				-0.335**	
		(0.173)	(0.173)	(0.143)	(0.142)
<pre>C(neighbourhood_group)[T.Queens]</pre>				0.308**	
				(0.144)	
C(neighbourhood_group)[T.Staten Island]		-0.145	-0.145	-0.187	-0.229
		(0.318)	(0.318)	(0.263)	(0.261)
C(room type)[T.Private room]		,		0.089***	
/-			(0.032)	(0.026)	(0.026)
C(room type)[T.Shared room]				0.114	
			(0.096)	(0.079)	(0.079)
advertisement			,	0.018***	0.017***
				(0.000)	(0.000)
availability_365				,	0.001***
2					(0.000)
minimum nights					-0.009***
					(0.001)
R-squared	0.00	0.03	0.03	0.34	, , , , ,
No. observations	14811		14811	14811	
Chandard arrays in maranthagas					

Standard errors in parentheses.

^{*} p<.1, ** p<.05, ***p<.01

Methodology-2SLS

Why choose 2SLS:

- Endogenous between independent variable and dependent variable

Controls include:

- Income_per_rent: the instrument variable represent the percent of income spend and income required in a neighborhood
- Almost the same with OLS, since these variables are informative for the estimation
- Except for Location which cause is collinear with the instrument variable

Endogenity of price ~ reviews_per_month

OLS Regression Results

						===
Dep. Variable:		price	R-squared:		0.0	003
Model:		OLS	Adj. R-squar	red:	0.0	003
Method:	Least	t Squares	F-statistic:	:	38.	.66
Date:	Sun, 04		Prob (F-stat	,	5.19e-	-10
Time:		23:20:25	Log-Likeliho	ood:	-8596	54.
No. Observations:		14811	AIC:		1.719e	+05
Df Residuals:		14809	BIC:		1.719e	+05
Df Model:		1				
Covariance Type:	1	nonrobust				
		std err			[0.025	0.975]
THEFTER	133.6183	0.843	158.562	0.000	131.966	135.270
reviews_per_month			158.562 -6.218		131.966 -3.445	
reviews_per_month		0.421	-6.218	0.000	-3.445 	-1.793
reviews_per_month ======== Omnibus:		0.421 3735.111	-6.218 Durbin-Watso	0.000 	-3.445 	-1.793 943
reviews_per_month ======== Omnibus: Prob(Omnibus):		0.421 3735.111 0.000	-6.218 Durbin-Watso Jarque-Bera	0.000 	-3.445 	-1.793 === 943 569
reviews_per_month ======== Omnibus:		0.421 3735.111	-6.218 Durbin-Watso Jarque-Bera Prob(JB):	0.000 	-3.445 	-1.793 943

Instrument Variable

It shows the percent of income spent and income required in neighborhoods with sufficient data

RentHop New York Two Bedroom Median Rent Affordability

Search:		
---------	--	--

Neighborhood ↓↑	Borough ↓↑	Two-Bedroom Median Rent	Median Household Income	Income % for Median Rent ↓₹	Income Required to Lease (40X Rule)
Queensbridge- Ravenswood-Long Island City	Queens	\$3,300.00	\$28,378	139.54%	\$132,000
Williamsburg	Brooklyn	\$2,499.00	\$21,502	139.47%	\$99,960
Lower East Side	Manhattan	\$3,495.00	\$31,273	134.11%	\$139,800
Mott Haven-Port Morris	Bronx	\$2,200.00	\$20,334	129.83%	\$88,000
East Harlem North	Manhattan	\$2,495.00	\$26,099	114.72%	\$99,800

Instrument Variable- Validation

Z has casual impact on X

Z independent with Y

OLS Regression Results

Dep. Variable:		price	R-squared:		(0.001	
Model:	OLS		Adj. R-squ	ared:	(0.001	
Method:	Leas	st Squares	F-statisti	c:	1	10.98	
Date:	Sun, 04	4 Apr 2021	Prob (F-st	atistic):	0.00	00923	
Time:		23:18:57	Log-Likeli	hood:	-85	5978.	
No. Observations:		14811	AIC:		1.720	0e+05	
Df Residuals:		14809	BIC:		1.720	0e+05	
Df Model:		1					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	125.7441	1.540	81.629	0.000	122.725	128.764	
income_per_rent	0.0584	0.018	3.314	0.001	0.024	0.093	
Omnibus:		3708.375	Durbin-Wat	======== son:	 1	==== 1.940	
Prob(Omnibus):		0.000	Jarque-Ber	a (JB):	8476	6.456	
Skew:		1.422	Prob(JB):	. , . , .		0.00	
Kurtosis:		5.376	Cond. No.			204.	
						=====	

IV limitation - Collinearity with location factor

IV-2SLS Estimation Summary

Dep. Variable:	reviews_per_month	R-squared:	0.3413				
Estimator:	IV-2SLS	Adj. R-squared:	0.3409				
No. Observations:	14811	F-statistic:	1.487e+04				
Date:	Thu, Apr 08 2021	P-value (F-stat)	0.0000				
Time:	19:40:07	Distribution:	chi2(11)				
Cov. Estimator:	robust						

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI		
<pre>C(neighbourhood_group)[Bronx]</pre>	0.5117	0.2840	1.8017	0.0716	-0.0449	1.0683		
<pre>C(neighbourhood_group)[Brooklyn]</pre>	0.2060	0.3140	0.6560	0.5118	-0.4095	0.8215		
C(neighbourhood_group)[Manhattan]	0.1088	0.3692	0.2948	0.7682	-0.6148	0.8325		
C(neighbourhood_group)[Queens]	0.7981	0.2625	3.0400	0.0024	0.2835	1.3126		
C(neighbourhood_group)[Staten Island]	0.2766	0.2701	1.0240	0.3058	-0.2528	0.8060		
<pre>C(room_type)[T.Private room]</pre>	0.2476	0.1700	1.4564	0.1453	-0.0856	0.5807		
C(room_type)[T.Shared room]	0.2765	0.2377	1.1631	0.2448	-0.1894	0.7424		
advertisement	0.0175	0.0004	46.367	0.0000	0.0168	0.0183		
availability_365	0.0007	0.0002	4.1899	0.0000	0.0004	0.0011		
minimum_nights	-0.0085	0.0027	-3.0918	0.0020	-0.0139	-0.0031		
price	0.0025	0.0019	1.2831	0.1995	-0.0013	0.0062		
				≠======				

Endogenous: price

Instruments: income_per_rent

Robust Covariance (Heteroskedastic)

Debiased: False

Finalize regression

IV-2SLS Estimation Summary

Dep. Variable:	reviews_per_month	R-squared:	0.2233
Estimator:	IV-2SLS	Adj. R-squared:	0.2230
No. Observations:	14811	F-statistic:	1.299e+04
Date:	Thu, Apr 08 2021	P-value (F-stat)	0.0000
Time:	19:40:15	Distribution:	chi2(7)
Cov. Estimator:	robust		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
<pre>C(room_type)[Entire home/apt]</pre>	2.1653	0.3895	5.5597	0.0000	1.4019	2.9286
C(room_type)[Private room]	1.4223	0.1769	8.0384	0.0000	1.0755	1.7690
C(room_type)[Shared room]	1.1696	0.1367	8.5578	0.0000	0.9017	1.4375
advertisement	0.0169	0.0004	43.571	0.0000	0.0162	0.0177
availability_365	0.0017	0.0002	10.704	0.0000	0.0014	0.0020
minimum_nights	-0.0119	0.0037	-3.2000	0.0014	-0.0193	-0.0046
price	-0.0088	0.0022	-3.9595	0.0001	-0.0132	-0.0045

Endogenous: price

Instruments: income_per_rent

Robust Covariance (Heteroskedastic)

Debiased: False

Considerations in future

 Due to the limited information provided by dataset, we only measure 5 factors that will influence the dependent variable which makes the R² small

Possible solution:

- 1. Find more information from online resources like: 'whether the Airbnb is close to a tourist site' and merge them into our dataset; then refit the model
- 2. We also have column 'name', if possible, we can do the text analysis; find out top used listings' name words and see how entitle the Airbnb influence the reviews.
- Our analysis is limited in NYC, which cannot represent the low-tier cities' Airbnb situation
- Due to the local epidemic prevention policy, we cannot get the sample data for Airbnb 2020 which we fail to use the hedonic regression to measure the effect of time period.

Thanks for Listening

