CSC 411: Introduction to Machine Learning Lecture 4: Ensemble I

Mengye Ren and Matthew MacKay

University of Toronto

Overview

- We've seen two particular classification algorithms: KNN and decision trees
- Next two lectures: **combine multiple classifiers into an ensemble** which performs better than the individual members
 - Generic class of techniques that can be applied to almost any learning algorithm...
 - but are particularly well suited to decision trees
- Today
 - Understanding generalization using the bias/variance decomposition
 - Reducing variance using bagging
- Next lecture
 - ▶ Making a weak classifier stronger (i.e. reducing bias) using boosting

Ensemble methods: Overview

- An **ensemble** of predictors is a set of predictors whose individual decisions are combined in some way to classify new examples
 - ► E.g., (possibly weighted) majority vote
- For this to be nontrivial, the classifiers must differ somehow, e.g.
 - Different algorithm
 - Different choice of hyperparameters
 - Trained on different data
 - ► Trained with different weighting of the training examples
- Ensembles are usually easy to implement. The hard part is deciding what kind of ensemble you want, based on your goals.

Agenda

- This lecture: bagging
 - ► Train classifiers independently on random subsets of the training data.
- Next lecture: boosting
 - ► Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.
- Bagging and boosting serve very different purposes. To understand this, we need to take a detour to understand the bias and variance of a learning algorithm.

Loss Functions

- A **loss function** L(y, t) defines how bad it is if the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$L_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$

- Averaging the 0-1 loss over the training set gives the **training error** rate, and averaging over the test set gives the **test error** rate.
- Example: squared error loss for regression

$$L_{\rm SE}(y,t) = \frac{1}{2}(y-t)^2$$

▶ The average squared error loss is called mean squared error (MSE).

Bias and Variance

Bias-Variance Decomposition

 Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
 - ▶ Bias and variance of what?

- Suppose the training set \mathcal{D} consists of pairs (\mathbf{x}_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{data} .
- Pick a fixed query point **x** (denoted with a green x).

• Consider an experiment where we sample lots of training sets independently from p_{data} .

- Let's run our learning algorithm on each training set, and compute its prediction y at the query point x.
- We can view y as a random variable, where the randomness comes from the choice of training set.
- The classification accuracy is determined by the distribution of y.

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.

- Recap of basic setup:
 - Fix a query point x.
 - ► Repeat:
 - ▶ Sample a random training dataset \mathcal{D} i.i.d. from the data generating distribution p_{data} .
 - ▶ Run the learning algorithm on \mathcal{D} to get a prediction y at \mathbf{x} .
 - ▶ Sample the (true) target from the conditional distribution $p(t|\mathbf{x})$.
 - ▶ Compute the loss L(y, t).
- Notice: y is independent of t. (Why?)
- This gives a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}[L(y,t) | \mathbf{x}]$.
- For each query point ${\bf x}$, the expected loss is different. We are interested in minimizing the expectation of this with respect to ${\bf x} \sim p_{\rm data}$.

- For now, focus on squared error loss, $L(y, t) = \frac{1}{2}(y t)^2$.
- A first step: suppose we knew the conditional distribution $p(t | \mathbf{x})$. What value y should we predict?
 - \blacktriangleright Here, we are treating t as a random variable and choosing y.
- Claim: $y_* = \mathbb{E}[t \mid \mathbf{x}]$ is the best possible prediction.
- Proof:

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 \mid \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t^2 \mid \mathbf{x}]$$

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t \mid \mathbf{x}]^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

$$= y^2 - 2yy_* + y_*^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

$$= (y - y_*)^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

$$\mathbb{E}[(y-t)^2 \,|\, \mathbf{x}] = (y-y_*)^2 + \mathsf{Var}[t \,|\, \mathbf{x}]$$

- The first term is nonnegative, and can be made 0 by setting $y = y_*$.
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - ► This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is **Bayes optimal**.
 - ▶ Notice that this term doesn't depend on y.
- This process of choosing a single value y_* based on $p(t | \mathbf{x})$ is an example of **decision theory**.

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on x for clarity):

$$\begin{split} \mathbb{E}[(y-t)^2] &= \mathbb{E}[(y-y_*)^2] + \mathsf{Var}(t) \\ &= \mathbb{E}[y_*^2 - 2y_*y + y^2] + \mathsf{Var}(t) \\ &= y_*^2 - 2y_*\mathbb{E}[y] + \mathbb{E}[y^2] + \mathsf{Var}(t) \\ &= y_*^2 - 2y_*\mathbb{E}[y] + \mathbb{E}[y]^2 + \mathsf{Var}(y) + \mathsf{Var}(t) \\ &= \underbrace{(y_* - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\mathsf{Var}(y)}_{\text{variance}} + \underbrace{\mathsf{Var}(t)}_{\text{Bayes error}} \end{split}$$

$$\mathbb{E}[(y-t)^2] = \underbrace{(y_* - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\text{Var}(y)}_{\text{variance}} + \underbrace{\text{Var}(t)}_{\text{Bayes error}}$$

- We just split the expected loss into three terms:
 - bias: how wrong the expected prediction is (corresponds to underfitting)
 - variance: the amount of variability in the predictions (corresponds to overfitting)
 - Bayes error: the inherent unpredictability of the targets
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias/Variance Decomposition: Another Visualization

- We can visualize this decomposition in **output space**, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g. KNN with large k), it might have
 - high bias (because it's too simplistic to capture the structure in the data)
 - low variance (because there's enough data to get a stable estimate of the decision boundary)

Bias/Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g. KNN with k=1), it might have
 - low bias (since it learns all the relevant structure)
 - high variance (it fits the quirks of the data you happened to sample)

Bagging

Now, back to bagging!

Bagging: Motivation

- Suppose we could somehow sample m independent training sets from $p_{\mathrm{data}}.$
- We could then compute the prediction y_i based on each one, and take the average $y = \frac{1}{m} \sum_{i=1}^{m} y_i$.
- How does this affect the three terms of the expected loss?
 - ▶ Bayes error: unchanged, since we have no control over it
 - ▶ Bias: unchanged, since the averaged prediction has the same expectation

$$\mathbb{E}[y] = \mathbb{E}\left[\frac{1}{m}\sum_{i=1}^{m}y_i\right] = \mathbb{E}[y_i]$$

▶ Variance: reduced, since we're averaging over independent samples

$$\operatorname{Var}[y] = \operatorname{Var}\left[\frac{1}{m} \sum_{i=1}^{m} y_i\right] = \frac{1}{m^2} \sum_{i=1}^{m} \operatorname{Var}[y_i] = \frac{1}{m} \operatorname{Var}[y_i].$$

Bagging: The Idea

- In practice, we don't have access to the underlying data generating distribution p_{data}.
- It is expensive to independently collect many datasets.
- Solution: bootstrap aggregation, or bagging.
 - ▶ Take a single dataset \mathcal{D} with n examples.
 - ▶ Generate m new datasets, each by sampling n training examples from \mathcal{D} , with replacement.
 - ▶ Average the predictions of models trained on each of these datasets.

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the 1/m variance reduction.
 - Possible to show that if the sampled predictions have variance σ^2 and correlation ρ , then

$$\operatorname{Var}\left(\frac{1}{m}\sum_{i=1}^{m}y_{i}\right)=\frac{1}{m}(1-\rho)\sigma^{2}+\rho\sigma^{2}.$$

- Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
 - Intuition: you want to invest in a diversified portfolio, not just one stock.
 - ► Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

Random Forests

- Random forests = bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- Random forests are probably the best black-box machine learning algorithm — they often work well with no tuning whatsoever.
 - one of the most widely used algorithms in Kaggle competitions

Summary

- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
 - Even if a single model is great, a small ensemble usually helps.
- Limitations:
 - Does not reduce bias.
 - There is still correlation between classifiers.
- Random forest solution: Add more randomness.