

官网: www. juyingele. com. cn

DAM0808-T 继电器控制卡说明书

北京聚英翱翔电子有限责任公司 2016 年 01 月

目 录

_,	产品特点	I
二、	产品功能	1
三、	产品选型	1
四、	主要参数	1
五、	接口说明	2
六、	通讯接线说明	2
	1、RS485 级联接线方式	2
七、	输入输出接线	3
	1、继电器接线说明	3
	2、有源开关量接线示意图	3
	3、无源开关量接线示意图	3
八、	网络通讯	4
九、	串口通讯方式下	4
	1、软件下载	4
	2、软件界面	4
	3、通讯测试	5
十、	参数及工作模式配置	6
	1、设备地址	6
	2、工作模式功能设置	
	3、闪开闪断功能及设置	
+-	-、网络通讯方式下	. 10
	1. 配置软件使用说明	.10
	2. 网络调试软件说明	. 11
+=	L、开发资料说明	. 11
	1、通讯协议说明	
	2、Modbus 寄存器说明	
	3、指令生成说明	
	4、指令列表	. 14
	5、指令详解	. 14
+=	三、常见问题与解决方法	17

一、 产品特点

- DC7-30V 供电;
- 继电器输出触点隔离;
- 通讯接口支持 RS485、RJ45 以太网口:
- 通信波特率: 2400,4800,9600,19200,38400 (可以通过软件修改,默认 9600):
- 通信协议:支持标准 modbus RTU 协议;
- 可以设置 0-255 个设备地址,可以通过软件设置;
- 具有闪开、闪断功能,可以在指令里边带参数、操作继电器开一段时间 自动关闭;
- 具有频闪功能,可以控制器继电器周期性开关。

二、产品功能

- 八路继电器控制输出;
- 八路光耦隔离输入(5-24V);
- 支持手动控制模式。

三、 产品选型

型号	modbus	RS232	RS485	USB	RJ45	继电器	输入
DAM0808T-485+NET						8	8

四、 主要参数

参数	说明					
触点容量	10A/30VDC 10A/250VAC					
耐久性	10万次					
数据接口	RS485、岡口					
额定电压	DC 7-30V					
电源指示	1路红色 LED 指示					
输出指示	8路红色 LED 指示					
温度范围	工业级,-40℃~85℃					
尺寸	154*87*23mm					
重量	330g					
默认通讯格式	9600, n, 8, 1					
波特率	2400,4800,9600,19200,38400					
软件支持	配套配置软件、控制软件; 支持各家组态软件; 支持 Labviewd 等					

五、 接口说明

六、 通讯接线说明

1、RS485级联接线方式

电脑自带的串口一般是 RS232,需要配 232-485 转换器(工业环境建议使用有源带隔离的转换器),转换后 RS485 为 A、B 两线,A 接板上 A 端子,不接板上 B 端子,485 屏蔽可以接 GND。若设备比较多建议采用双绞屏蔽线,采用链型网络结构。

七、输入输出接线

1、继电器接线说明

2、有源开关量接线示意图

3、无源开关量接线示意图

八、网络通讯

九、串口通讯方式下

1、软件下载

http://www.juyingele.com.cn/software/software/聚英翱翔 DAM 调试软件使用教程.rar (软件视频教程连接)

2、软件界面

软件功能

- 继电器状态查询
- 继电器独立控制
- 模拟量读取
- 开关量状态查询
- 调试信息查询
- 工作模式的更改
- 偏移地址的设定
- 继电器整体控制

3、通讯测试

- ① 选择设备当前串口号,打开串口;
- ② 选择对应的产品型号;
- ③ 设备地址修改为254,点击"读取地址",软件底部提示"读取成功",读到的设备地址为"0",软件右下方的发送和指令正确,则说明设备与电脑通讯成功。

十、参数及工作模式配置

1、设备地址

官网: www. juyingele. com. cn

http://www.juyingele.com.cn/software/software/聚英翱翔 DAM 调试软件使用教程.rar (软件视频教程连接)

打开"聚英翱翔 DAM 调试软件"; 串口设定栏: 串口选择您电脑对应 COM 口, 波特率选择设备默认波特率(9600)(未自己设置过波特率前),设备地址填写"254"(254为设备的广播地址),设备型号选择相对应型号,设置好以上设备的 4 个参数后点击**打开串口**,点击继电器按钮"**JD1**"若继电器反应则连接成功。

1.1 设备地址的更改方法

1.1.1、设备地址的介绍

设备偏移地址是指在拨码开关地址基础上进行偏移,具体关系是:**设备地址=拨码开关地址+偏移地址。**

注意: 本设备是没有拨码开关的设备, 所以设备地址 = 偏移地址。

1.1.2、设备地址的读取

点击软件上方"读取地址"

1.1.3、偏移地址的设定与读取

点击软件下方偏移地址后边的"读取"或"设置"来对设备的偏移地址进行

读取或设置。

1.1.4、波特率的读取与设置

点击下方波特率设置栏的"读取"和"设置"就可以分别读取和设置波特率和地址,操作后需要重启设备和修改电脑串口设置。

2、工作模式功能设置

打开"**聚英翱翔 DAM 调试软件**"点击下方工作模式设置栏的"**读取**"和"**设置**"就可以分别读取和设置工作模式。

3、闪开闪断功能及设置

3.1、闪开闪断功能介绍

手动模式:对继电器每操作一次,继电器则翻转一次(闭合时断开,断开时闭合); 闪开模式:对继电器每操作一次,继电器则闭合1秒(实际时间【单位秒】=设置数字*0.1)后自行断开;

闪断模式:对继电器每操作一次,继电器则断开1.秒(时间可调)后自行闭合;

3.2、闪断闪开的设置

打开"聚英翱翔 DAM 调试软件"点击继电器模式后面下拉箭头进行模式的选择。 (后边时间可自行设置,实际时间=填写数字*0.1【单位秒】)

十一、网络通讯方式下

1. 配置软件使用说明

使用"以太网配置软件"(相关下载内下载),配置设备的设备地址及设备的网络通信模式。详细配置方法参见"**以太网配置软件使用说明**"文档。

软件下载地址: http://www.juvingele.com.cn/software/jynet/以太网转串口配置软件.rar

设备参数配置完毕,通过建立虚拟串口或网络调试助手进行测试。

2. 网络调试软件说明

使用 TCP/UDP 调试工具进行测试,发送指令详见本说明书中的"指令生成说明与指令详解"。

十二、开发资料说明

1、通讯协议说明

本产品支持标准 modbus 指令,有关详细的指令生成与解析方式,可根据本文中的寄存器表结合参考《MODBUS 协议中文版》 即可。

Modbus 协议中文版参考:

http://www.juyingele.com.cn/software/software/Modbus%20POLL 软件及使用教程.rar 本产品支持 modbus RTU 格式。

2、Modbus 寄存器说明

本控制卡主要为线圈寄存器,主要支持以下指令码:1、5、15

指令码	含义
1	读线圈寄存器
5	写单个线圈
15	写多个线圈寄存器

线圈寄存器地址表:

寄存器名称		寄存器地址	说明
线圈控制			
线圈 1	写线圈	0x0001	第一路继电器输出

线圈 2	1号指令码	0x0002	第二路继电器输出
线圈 3		0x0003	第三路继电器输出
线圈 4		0x0004	第四路继电器输出
线圈 5		0x0005	第五路继电器输出
线圈 6		0x0006	第六路继电器输出
线圈 7		0x0007	第七路继电器输出
线圈 8		0x0008	第八路继电器输出
离散量输入			
输入1	开关量	1x0001	第一路输入
输入2	2号指令	1x0002	第二路输入
输入3		1x0003	第三路输入
输入4		1x0004	第四路输入
输入 5		1x0005	第五路输入
输入 6		1x0006	第六路输入
输入7		1x0007	第七路输入
输入8		1x0008	第八路输入
配置参数			
通信波特率	保持寄存器	4x1001	见下表波特率数值对应表,默认为0,
			支持 0-5, 该寄存器同时决定 RS232 和
			RS485 的通信波特率
备用		4x1002	备用,用户不可写入任何值。
偏移地址		4x1003	设备地址=偏移地址+拨码开关地址
工作模式		4x1004	用户可以使用,存储用户数据
延迟时间		4x1005	用户可以使用,存储用户数据

备注:

①: Modbus 设备指令支持下列 Modbus 地址:

00001 至 09999 是离散输出(线圈)

10001 至 19999 是离散输入(触点)

30001 至 39999 是输入寄存器(通常是模拟量输入)

40001 至 49999 是保持寄存器(通常存储设备配置信息)

采用 5 位码格式,第一个字符决定寄存器类型,其余 4 个字符代表地址。地址 1 从 0 开始,如 00001 对应 0000。

②: 波特率数值对应表

数值	波特率
0	9600
1	2400
2	4800
3	9600
4	19200
5	38400

③:继电器状态,通过 30002 地址可以查询,也可以通过 00001---00002 地址来查询,但控制只能使用 00001---00002 地址。

30002 地址数据长度为 16bit。最多可表示 16 个继电器。

对应结果如下:

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
继电器	8	7	6	5	4	3	2	1	16	15	14	13	12	11	10	9
位置																

即 寄存器 30009 数据 的 bit8 与寄存器 00001 的数据一样。

同理: 光耦输入也是如此。寄存器 30003 的 bit8、bit9 与寄存器 10001、10002 都对应到指定的硬件上。

寄存器地址按照 PLC 命名规则,真实地址为去掉最高位,然后减一。

3、指令生成说明

应用举例及其说明:本机地址除了拨码开关地址之外,还有默认的 254 为广播地址。当总线上只有一个设备时,无需关心拨码开关地址,直接使用 254 地址即可,当总线上有多个设备时通过拨码开关选择为不同地址,发送控制指令时通过地址区别。

注意: RS485 总线可以挂载多个设备。

指令可通过"聚英翱翔 DAM 调试软件",的调试信息来获取。

指令生成说明:对于下表中没有的指令,用户可以自己根据 modbus 协议生成,对于继电器线圈的读写,实际就是对 modbus 寄存器中的线圈寄存器的读写,上文中已经说明了继电器寄存器的地址,用户只需生成对寄存器操作的读写指令即可。例如读或者写继电器 1 的状态,实际上是对继电器 1 对应的线圈寄存器 0001 的读写操作。

4、指令列表

情景	RTU 格式(16 进制发送)
查询八路状态	FE 01 00 00 00 08 29 C3
查询指令返回信息	FE 01 01 00 61 9C
控制第一路开	FE 05 00 00 FF 00 98 35
控制返回信息	FE 05 00 00 FF 00 98 35
控制第一路关	FE 05 00 00 00 00 D9 C5
控制返回信息	FE 05 00 00 00 00 D9 C5
控制第二路开	FE 05 00 01 FF 00 C9 F5
控制第二路关	FE 05 00 01 00 00 88 05
控制第三路开	FE 05 00 02 FF 00 39 F5
控制第三路关	FE 05 00 02 00 00 78 05
控制第四路开	FE 05 00 03 FF 00 68 35
控制第四路关	FE 05 00 03 00 00 29 C5
控制第五路开	FE 05 00 04 FF 00 D9 F4
控制第五路关	FE 05 00 04 00 00 98 04
控制第六路开	FE 05 00 05 FF 00 88 34
控制第六路关	FE 05 00 05 00 00 C9 C4
控制第七路开	FE 05 00 06 FF 00 78 34
控制第七路关	FE 05 00 06 00 00 39 C4
控制第八路开	FE 05 00 07 FF 00 29 F4
控制第八路关	FE 05 00 07 00 00 68 04
查询八路光耦状态	FE 02 00 00 00 08 6D C3
查询返回信息	FE 02 01 00 91 9C

5、指令详解

5.1、继电器输出

控制 1 路继电器(以第一路开为例,其他通道参照本例) 发送码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址
05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

返回码: FE 05 00 00 FF 00 98 35

字段	含义	备注
FE	设备地址	这里为广播地址

05	05 指令	单个控制指令
00 00	地址	要控制继电器寄存器地址
FF 00	指令	继电器开的动作
98 35	CRC16	前 6 字节数据的 CRC16 校验和

5.2、继电器状态

查询8路继电器

发送码: FE 01 00 00 00 08 29 C3

字段	含义	备注
FE	设备地址	这里为广播地址
01	01 指令	查询继电器状态指令
00 00	起始地址	要查询的第一个继电器寄存器地址
00 08	查询数量	要查询的继电器数量
29 C3	CRC16	前 6 字节数据的 CRC16 校验和

继电器卡返回信息:

返回码: FE 01 01 00 61 9C

字段	含义	备注
FE	设备地址	
01	01 指令	返回指令:如果查询错误,返回 0x81
01	字节数	返回状态信息的所有字节数。1+(n-1)/8
00	查询的状态	返回的继电器状态。 Bit0:第一个继电器状态 Bit1:第二个继电器状态 。。。。。。。 Bit7:第八个继电器状态
61 9C	CRC16	前 6 字节数据的 CRC16 校验和

5.3、光耦输入

查询光耦

发送码: FE 02 00 00 00 08 6D C3

字段	含义	备注
FE	设备地址	
02	02 指令	查询离散量输入(光耦输入)状态指令
00 00	起始地址	要查询的第一个光耦的寄存器地址
00 08	查询数量	要查询的光耦状态数量
6D C3	CRC16	

光耦返回信息:

返回码: FE 02 01 01 50 5C

字段	含义	备注
FE	设备地址	

02	02 指令	返回指令: 如果查询错误,返回 0x82
01	字节数	返回状态信息的所有字节数。1+(n-1)/8
01	查询的状态	返回的继电器状态。
		Bit0:第一个光耦输入状态
		Bit1:第二个光耦输入状态
		0 0 0 0 0 0
		Bit7:第八个光耦输入状态
50 5C	CRC16	

5.4、闪开闪闭指令

闪开闪闭指令解析

闪开发送码: FE 10 00 03 00 02 04 00 04 00 0A 00 D8 闪断发送码: FE 10 00 03 00 02 04 00 02 00 14 21 62

字段	含义	备注
FE	设备地址	
10	10 指令	查询输入寄存器指令
00 03	继电器地址	要控制的器地址
00 02	控制命令数	要对继电的命令个数
	量	
04	字节数	控制信息命令的的所有字节数。1+(n-1)/8
00 04 或 00 02	指令	00 04 为闪开指令 00 02 为闪闭命令
00 0A	间断时间	00 0A 为十六进制换为十进制则为 10 间隔时
		间为 (0.1 秒*10)
00 D8	CRC16	校验方式

返回码: FE 10 00 03 00 02 A5 C7

字段	含义	备注
FE	设备地址	
10	10 指令	返回指令:如果查询错误,返回 0x82
00 03	设备地址	查询设备的地址
00 02	接收命令数	设备接受的命令个数
A5 C7	CRC16	校验位

5.5、全开全关指令

全开全关指令解析

全开发送码: FE OF OO OO OO OO OO OF FF F1 D1 全断发送码: FE OF OO OO OO OO OO OO B1 91

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	
00 08	控制数量	控制的继电器数量
01	字节数	发送命令字节数

FF (或 00)	全开全关命令	FF 全开命令	00 全关命令
F1 D1 (或B1 91)	CRC16	校验位	

全开返回码: FE OF OO OO OO OA C1 C3 全断返回码: FE OF OO OO OO OO 08 40 O2

字段	含义	备注
FE	设备地址	
0F	0F 指令	返回指令:如果查询错误,返回 0x82
00 00	起始地址	
00 08	数量	返回信息的继电器数量
40 02	CRC16	校验位

十三、常见问题与解决方法

1、继电器板卡供电后使用232接口无法建立通信,无法控制

首先测试不同波特率是否可以控制,485接口注意 A+、B-线以及屏蔽线,屏蔽线不是必须,但在通信误码率大的情况下必须接上,即便距离很近也可能出现此类情况。

2、总线,挂载了大于1个的设备,我以广播地址255发送继电器1吸和,但并不是所有模块的继电器1吸和。

广播地址在总线上只有一个设备时可以使用,大于1个设备时请以拨码开关区分地址来控制,否则会因为模块在通信数据的判断不同步上导致指令无法正确执行。

3、西门子 PLC 与设备不能正常通讯

西门子 485 总线 AB 定义与设备相反。

十二、技术支持联系方式

联系电话: 4008128121、010-82899827/1-803

联系 QQ: 4008128121