Teorema de compacidad y aplicaciones

Semana $(10)_2 = 1010$

Lógica para Ciencia de la Computación - IIC2213

Prof. Sebastián Bugedo

Programa

Obertura

Primer acto
Teorema de isomorfismo
Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones

No definibilidad

Modelos no estándar

Epílogo

Complejidad de problemas en LPO

Teorema (Church)

VAL es indecidible

Corolario

 SAT en LPO es indecidible

Indecidibilidad en LPO

Ejercicio

Demuestre que el siguiente lenguaje es indecidible

EQUIV=
$$\{(\varphi, \psi)\}$$

EQUIV= $\{(\varphi, \psi) \mid \varphi, \psi \mathcal{L}$ -oraciones y para toda \mathcal{L} -estruc. \mathfrak{A} se tiene que $\mathfrak{A} \models \varphi$ si, y solo si, $\mathfrak{A} \models \psi$

El problema de definibilidad

Notación

Si $(\mathfrak{A}, \sigma) \models \varphi(x_1, \dots, x_k)$ y la asignación es $\sigma(x_i) = a_i$ para cada $1 \le i \le k$, entonces denotamos

$$\mathfrak{A} \vDash \varphi(a_1,\ldots,a_k)$$

Problema de definibilidad

Dada una estructura $\mathfrak A$ con dominio A y $S \subseteq A^k$ para $k \ge 1$, decimos que S es definible en $\mathfrak A$ si existe una fórmula $\varphi(x_1, \ldots, x_k)$ tal que

$$S = \{(a_1, \ldots, a_k) \in A^k \mid \mathfrak{A} \models \varphi(a_1, \ldots, a_k)\}$$

¿Todo conjunto S es definible?

La noción de isomorfismo

Sea un vocabulario $\mathcal L$ y dos estructuras $\mathfrak A$ y $\mathfrak B$ con dominios A y B respectivamente

Definición (isomorfismo)

Dos \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} son **isomorfas**, denotado por $\mathfrak{A} \cong \mathfrak{B}$ si existe una biyección $h:A\to B$ tal que

lacksquare para cada símbolo de constante $c \in \mathcal{L}$

$$h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$$

■ para cada sím. de función m-aria $f \in \mathcal{L}$ y elementos $a_1, \ldots, a_m \in A$

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_m))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_m))$$

■ para cada sim. relación n-aria $R \in \mathcal{L}$ y elementos $a_1, \ldots, a_m \in A$ $(a_1, \ldots, a_n) \in R^{\mathfrak{A}}$ si, y solo si, $(h(a_1), \ldots, h(a_n)) \in R^{\mathfrak{B}}$

Llamamos a tal h un **isomorfismo** de $\mathfrak A$ en $\mathfrak B$

Teorema de isomorfismo (v2.0)

Teorema (isomorfismo)

Sean $\mathfrak A$ y $\mathfrak B$ $\mathcal L$ -estructuras, σ asignación para $\mathfrak A$ y h un isomorfismo de $\mathfrak A$ en $\mathfrak B$. Entonces para toda $\mathcal L$ -fórmula φ se tiene que

$$(\mathfrak{A}, \sigma) \vDash \varphi$$
 si, y solo si, $(\mathfrak{B}, h \circ \sigma) \vDash \varphi$

Observación

■ $h \circ \sigma$ es una asignación para \mathfrak{B} (Demo PROPUESTA)

Con este teorema podemos demostrar que un conjunto no es definible: mostrar un isomorfismo de $\mathfrak A$ en $\mathfrak A$ (automorfismo) adecuado

Conjuntos no definibles

Ejemplo

Para $\mathcal{L} = \{+\}$ y $\mathfrak{A} = \langle \mathbb{R}, +^{\mathfrak{A}} \rangle$ demuestre que no se puede definir la multiplicación en \mathfrak{A} . Es decir, que el siguiente conjunto no es definible

$$S = \{(a, b, c) \in \mathbb{R}^3 \mid a \cdot b = c\}$$

Supongamos que existe $\varphi(x,y,z)$ tal que para todo $a,b,c\in\mathbb{R}$

$$\mathfrak{A} \models \varphi(a, b, c)$$
 si, y solo si, $a \cdot b = c$

Luego, consideremos el isomorfismo de $\mathfrak A$ en $\mathfrak A$, $h:\mathbb R\to\mathbb R$ dado por h(x)=x/2 (esto es un **automorfismo**).

Notamos que $\mathfrak{A} \models \varphi(2,2,4)$, pero $\mathfrak{A} \not\models \varphi(h(2),h(2),h(4))$. Esto contradice el resultado del teorema de isomorfismo.

Concluímos que tal φ no existe, y por lo tanto ${\mathbb S}$ no es definible.

¿En qué estamos?

Tenemos una primera estrategia para demostrar que no todo es definible

- Demostraremos el teorema de isomorfismo
- Extenderemos la idea de definibilidad más allá de conjuntos
- Agregaremos un nuevo ingrediente teórico para demostrar no-definibilidad

Hoy: teorema de compacidad

Playlist Unidad III y Orquesta

Playlist: LogiWawos #3

Además sigan en instagram: @orquesta_tamen

Objetivos de la clase

- ☐ Demostrar el teorema de isomorfismo
- Definir elementalmente propiedades en LPO
- ☐ Conocer el teorema de compacidad
- □ Utilizar el teorema para demostrar propiedades no definibles
- ☐ Definir propiedades de forma generalizada
- ☐ Utilizar modelos no estándar para demostrar propiedades no definibles

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Teorema (isomorfismo)

Sean $\mathfrak A$ y $\mathfrak B$ $\mathcal L$ -estructuras, σ asignación para $\mathfrak A$ y h un isomorfismo de $\mathfrak A$ en $\mathfrak B$. Entonces para toda $\mathcal L$ -fórmula φ se tiene que

$$(\mathfrak{A},\sigma) \vDash \varphi$$
 si, y solo si, $(\mathfrak{B},h\circ\sigma) \vDash \varphi$

Demostración

Demostración

Dado \mathcal{L} , \mathcal{L} -estructuras $\mathfrak A$ y $\mathfrak B$, y σ asignación para $\mathfrak A$, demostraremos que toda \mathcal{L} -fórmula φ cumple

$$(\mathfrak{A}, \sigma) \vDash \varphi$$
 si, y solo si, $(\mathfrak{B}, h \circ \sigma) \vDash \varphi$

Usaremos inducción estructural sobre φ y su sintaxis

Si
$$\varphi = (t_1 = t_2)$$

 $(\mathfrak{A}, \sigma) \vDash \varphi \Leftrightarrow \hat{\sigma}(t_1) = \hat{\sigma}(t_2)$ (def. de \vDash)
 $\Leftrightarrow h(\hat{\sigma}(t_1)) = h(\hat{\sigma}(t_2))$ (h biyectiva)
 $\Leftrightarrow (h \circ \hat{\sigma})(t_1) = (h \circ \hat{\sigma})(t_2)$ (composición)
 $\Leftrightarrow \widehat{h \circ \sigma}(t_1) = \widehat{h \circ \sigma}(t_2)$ (????)
 $\Leftrightarrow (\mathfrak{B}, h \circ \sigma) \vDash \varphi$ (def. de \vDash)

Propuesto: demostrar que si σ es asignación para $\mathfrak A$ y h isomorfismo de $\mathfrak A$ en $\mathfrak B$, entonces $\widehat{h \circ \sigma} = h \circ \widehat{\sigma}$

Demostración

$$\begin{aligned} & \text{Si } \varphi = R(t_1, \dots, t_n) \\ & (\mathfrak{A}, \sigma) \vDash \varphi \quad \Leftrightarrow \quad (\hat{\sigma}(t_1), \dots, \hat{\sigma}(t_n)) \in R^{\mathfrak{A}} \\ & \Leftrightarrow \quad (h(\hat{\sigma}(t_1)), \dots, h(\hat{\sigma}(t_2))) \in R^{\mathfrak{B}} \\ & \Leftrightarrow \quad (h \circ \hat{\sigma}(t_1), \dots, h \circ \hat{\sigma}(t_2)) \in R^{\mathfrak{B}} \\ & \Leftrightarrow \quad (\overline{h} \circ \overline{\sigma}(t_1), \dots, \overline{h} \circ \overline{\sigma}(t_2)) \in R^{\mathfrak{B}} \end{aligned} \quad (\text{comp.}) \\ & \Leftrightarrow \quad (\overline{h} \circ \overline{\sigma}(t_1), \dots, \overline{h} \circ \overline{\sigma}(t_2)) \in R^{\mathfrak{B}} \\ & \Leftrightarrow \quad (\mathfrak{B}, h \circ \sigma) \vDash \varphi \end{aligned} \quad (\text{def. de } \vDash)$$

Esto concluye el análisis de fórmulas atómicas... Ahora vemos casos recursivos: ¬, ∧, ∃. ; Faltan?

Demostración

Suponemos que ψ_1, ψ_2 cumplen la propiedad (**H.I.**)

$$\begin{array}{lll} \blacksquare & \mathsf{Si} \ \varphi = \neg \psi_1 \\ & (\mathfrak{A}, \sigma) \vDash \varphi & \Leftrightarrow & (\mathfrak{A}, \sigma) \not \models \psi_1 & (\mathsf{def.} \ \mathsf{de} \ \vDash) \\ & \Leftrightarrow & (\mathfrak{B}, h \circ \sigma) \not \models \psi_1 & (\mathsf{por} \ \mathsf{H.l.}) \\ & \Leftrightarrow & (\mathfrak{B}, h \circ \sigma) \vDash \varphi & (\mathsf{def.} \ \mathsf{de} \ \vDash) \end{array}$$

■ Si
$$\varphi = \psi_1 \wedge \psi_2$$

 $(\mathfrak{A}, \sigma) \vDash \varphi \iff (\mathfrak{A}, \sigma) \vDash \psi_1 \text{ y } (\mathfrak{A}, \sigma) \vDash \psi_2$
 $\Leftrightarrow (\mathfrak{B}, h \circ \sigma) \vDash \psi_1 \text{ y } (\mathfrak{B}, h \circ \sigma) \vDash \psi_2$
 $\Leftrightarrow (\mathfrak{B}, h \circ \sigma) \vDash \varphi$

Demostración

Suponemos que ψ cumple la propiedad (**H.I.**)

■ Si
$$\varphi = \exists x. \psi$$
 (Dirección \Rightarrow)

$$(\mathfrak{A}, \sigma) \vDash \varphi \implies \text{ existe } a \in A. \ (\mathfrak{A}, \sigma[x/a]) \vDash \psi \quad (\text{def. de } \vDash)$$

$$\Rightarrow \quad (\mathfrak{B}, h \circ \sigma[x/a]) \vDash \psi \qquad (\text{por H.I.})$$

Notamos que $h \circ \sigma[x/a] = (h \circ \sigma)[x/h(a)]$. Como h es biyectiva, existe un $b \in B$ tal que b = h(a) y con lo cual

$$\begin{array}{ccc} (\mathfrak{B},h\circ\sigma[x/a]) \vDash \psi & \Rightarrow & (\mathfrak{B},(h\circ\sigma)[x/b]) \vDash \psi & (h \text{ biyectiva}) \\ \Rightarrow & (\mathfrak{B},h\circ\sigma) \vDash \varphi & (\text{def. de } \vDash) \end{array}$$

La otra dirección es análoga y utiliza h^{-1} .

El poder expresivo de LPO

Pati-Reflexión

Sea $\mathcal{L} = \{+\}$, donde + es símbolo de función binaria. Sea $\mathfrak{A} = \langle \mathbb{N}, +^{\mathfrak{A}} \rangle$ con la interpretación usual de suma en los naturales

No se puede definir la multiplicación en ${\mathfrak A}$. Es decir, el siguiente conjunto no es definible

$$S = \{(a, b, c) \in \mathbb{N}^3 \mid a \cdot b = c\}$$

¿Se puede demostrar con el teorema de isomorfismo?

Este teorema es una herramienta, pero no es un "si y solo si" para definibilidad

El poder expresivo de LPO

Para demostrar el caso anterior, necesitamos más poder...

- TEORÍAS (Próxima unidad jj)
- Por ahora, nos centraremos en otro problema
- En lugar de definir conjuntos de elementos de A. . .
- ¿podemos definir conjuntos de estructuras?

Para visualizar el verdadero poder expresivo de LPO, es clave poder el problema de definibilidad en estructuras

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Definibilidad de estructuras

Sea ${\mathcal L}$ un vocabulario y $S[{\mathcal L}]$ el conjunto de ${\mathcal L}$ -estructuras

Definición

Un conjunto de \mathcal{L} -estructuras \mathcal{P} es una propiedad

Una propiedad $\mathcal P$ es elementalmente definible en LPO si existe una $\mathcal L$ -oración φ tal que

$$\mathfrak{A} \in \mathcal{P}$$
 si, y solo si, $\mathfrak{A} \models \varphi$

Definibilidad de estructuras

Ejemplo

Para un vocabulario cualquiera, la propiedad

$$\mathcal{P} = \{\mathfrak{A} \in \mathrm{S}[\mathcal{L}] \mid \mathfrak{A} \text{ tiene un único elemento en su dominio}\}$$

es definible en LPO. Es definida por la oración
$$\varphi = \exists x \forall y (x = y)$$

Definibilidad de estructuras

Ejercicio

Sea \mathcal{L} un vocabulario cualquiera y $k \in \mathbb{N}$. Demuestre que las siguientes propiedades son definibles en LPO

- $\mathbb{P}_1 = \{\mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \text{ tiene dominio con al menos } k \text{ elementos}\}$
- $\mathbb{P}_2 = \{\mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \text{ tiene dominio con a lo más } k \text{ elementos}\}$

¿Cómo demostramos que una propiedad no es definible?

Definición

Decimos que un conjunto de fórmulas en LPO Σ es satisfacible si existe (\mathfrak{A}, σ) tal que para toda fórmula $\varphi \in \Sigma$ se cumple que $(\mathfrak{A}, \sigma) \models \varphi$. Lo denotamos por $(\mathfrak{A}, \sigma) \models \varphi$

Si todo $\Sigma' \subseteq \Sigma$ finito es satisfacible, decimos que Σ es finitamente satisfacible

Hmm...a ver

- Podemos tener conjuntos infinitos de fórmulas?
- ¿Existe algún conjunto Σ infinito y satisfacible?

Veamos un ejemplo de conjunto infinito y satisfacible

Ejemplo

Sea $\mathcal{L} = \{E\}$ con E símbolo de relación binaria.

Para $k \ge 2$, la \mathcal{L} -oración

$$\varphi_k = \exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg (x_i = x_j)$$

es satisfecha por \mathcal{L} -estructuras donde existan al menos k elementos distintos en el dominio.

Consideremos ahora el conjunto

$$\Sigma = \{ \varphi_k \mid k \ge 2 \} \cup \{ \exists x \forall y (x = y) \}$$

- ¿Es finitamente satisfacible?
- ¿Es satisfacible?

Ejemplo

Para decidir si es finitamente satisfacible, sea $\Sigma' \subseteq \Sigma$ finito (no vacío).

• Si $\Sigma' = \{\exists x \forall y (x = y)\}$, tomamos

$$\mathfrak{A} = \langle \{0\}, \varnothing \rangle$$

i.e. el grafo con un nodo aislado. Tenemos que $\mathfrak{A} \models \Sigma'$.

■ En caso contrario, existe un máximo índice $k \ge 2$ tal que $\varphi_k \in \Sigma'$. Tomamos

$$\mathfrak{A} = \langle \{0, \dots, k-1\}, \emptyset \rangle$$

i.e. el grafo con k nodos aislados. Se cumple que $\mathfrak{A} \models \Sigma'$.

Concluímos que Σ es finitamente satisfacible.

Ojo: también sirven como estructuras grafos con aristas... lo importante es la cantidad de elementos

Ejemplo

¿Hay alguna estructura que satisfaga al Σ completo?

Consideremos

$$\mathfrak{A} = \langle \mathbb{N}, \emptyset \rangle$$

i.e. el grafo con una cantidad infinita (numerable) de vértices desconectados. Tenemos que $\mathfrak A$ satisface a **cada** oración de Σ , por lo que el conjunto es satsifacible.

Veremos un resultado que nos ahorra este último análisis... ¡Y que tiene muchas aplicaciones!

Teorema de compacidad

Teorema (compacidad)

Un conjunto de fórmulas en LPO Σ es satisfacible si, y solo si, Σ es finitamente satisfacible

Usaremos este teorema para demostrar que ciertas propiedades no son definibles

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Teorema de compacidad

Teorema (compacidad)

Un conjunto de fórmulas en LPO Σ es satisfacible si, y solo si, Σ es finitamente satisfacible

Usaremos este teorema para demostrar que ciertas propiedades no son definibles

Ejemplo

Para un vocabulario arbitrario, sea

$$\mathcal{P}_{\mathsf{fin}} = \{\mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \mathsf{ tiene dominio finito}\}$$

Demostraremos que esta propiedad no es definible en LPO.

Teorema de compacidad y definibilidad

Ejemplo

Supongamos que $\mathcal{P}_{\mathrm{fin}}$ es definible en LPO. Es decir, que existe una $\mathcal{L}\text{-}\mathrm{oración}\ \varphi$ tal que

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, \mathfrak{A} tiene dominio finito

Para $k \ge 2$, recordemos las \mathcal{L} -oraciones

$$\varphi_k = \exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg (x_i = x_j)$$

y consideremos el conjunto (infinito) de \mathcal{L} -oraciones

$$\Sigma = \{\varphi\} \cup \{\varphi_k \mid k \ge 2\} \cup \{\exists x \forall y (x = y)\}$$

¿Qué gracia (y desgracia) tiene Σ ?

Teorema de compacidad y definibilidad

Ejemplo

Dado

$$\Sigma = \{\varphi\} \cup \{\varphi_k \mid k \ge 2\} \cup \{\exists x \forall y (x = y)\}$$

notamos que

- Σ es finitamente satisfacible
- **p** por teorema de compacidad, Σ es satisfacible

¿Algún problema?

Como Σ es satisfacible, existe $\mathfrak A$ tal que $\mathfrak A \vDash \Sigma$. Luego,

- $\mathfrak{A} \models \Sigma \setminus \{\varphi\}$, por lo que \mathfrak{A} tiene dominio infinito
- $\mathfrak{A} \vDash \varphi$, por lo que \mathfrak{A} tiene dominio finito

Esta contradicción desmuestra que \mathcal{P}_{fin} no es definible en LPO.

Definibilidad generalizada

La definibilidad elemental requiere que exista una oración adecuada

- ¿Qué pasa si extendemos esto?
- Permitiremos una cantidad infinita de fórmulas

¿Podemos definir más cosas si permitimos esto?

Definibilidad generalizada

Definición

Una propiedad $\mathcal P$ es definible de forma generalizada en LPO si existe un conjunto de $\mathcal L$ -oraciones Σ tal que

$$\mathfrak{A} \in \mathcal{P}$$
 si, y solo si, $\mathfrak{A} \models \Sigma$

Si ${\mathcal P}$ es elementalmente definible, entonces es definible de forma generalizada

Definibilidad generalizada

Ejemplo

La propiedad

$$\mathcal{P}_{inf} = \{ \mathfrak{A} \in S[\mathcal{L}] \mid \mathfrak{A} \text{ tiene dominio infinito} \}$$

es definible de forma generalizada. Basta tomar

$$\Sigma = \left\{ \exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg (x_i = x_j) \mid k \geq 2 \right\}$$

que cumple

$$\mathfrak{A} \in \mathcal{P}_{inf}$$
 si, y solo si, $\mathfrak{A} \models \Sigma$

¿Toda propiedad es definible de forma generalizada?

Teorema de compacidad y definibilidad

Ejercicio

Demuestre que \mathcal{P}_{inf} no es elementalmente definible

Teorema de compacidad y definibilidad

Ejercicio

Supongamos que \mathcal{P}_{\inf} es elementalmente definibile, i.e. existe una oración φ tal que

$$\mathfrak{A} \in \mathcal{P}_{inf}$$
 si, y solo si, $\mathfrak{A} \models \varphi$

Ahora, sabemos que para toda estructura \mathfrak{A} ,

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, $\mathfrak{A} \vDash \{\varphi_k \mid k \ge 2\}$

Esto nos sugiere tomar el conjunto de oraciones siguiente

$$\Psi = \{\neg \varphi\} \cup \{\varphi_k \mid k \ge 2\}$$

que es insatisfacible (toda estructura que satisface $\neg \varphi$, es finita)

Teorema de compacidad y definibilidad

Ejercicio

Como Ψ no es satisfacible, por teorema de compacidad tampoco es finitamente satisfacible. Es decir, existe $\Psi' \subseteq \Psi$ finito que no es satisfacible.

Si Ψ' es finito, existe un índice n máximo tal que $\varphi_n \in \Psi'$. Luego,

$$\Psi' \subseteq \{\neg \varphi\} \cup \{\varphi_k \mid k \leq n\}$$

Consideremos ahora la estructura $\mathfrak A$ con dominio A tal que |A|=n+1, i.e. $\mathfrak A$ es finita. Luego

$$\mathfrak{A}$$
 finita $\Rightarrow \mathfrak{A} \not\models \varphi \Rightarrow \mathfrak{A} \models \neg \varphi$

Además, como |A| = n+1, tenemos $\mathfrak{A} \models \varphi_k$ para todo $k \le n$. Con esto,

$$\mathfrak{A} \models \Psi' \Rightarrow \Psi'$$
 satisfacible

¡Contradicción! Concluímos que no existe tal φ .

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

El teorema de compacidad se usa frecuentemente para construir estructuras

- Estructuras que son equivalentes a otras
- Pero que no son isomorfas

Definición

Dos \mathcal{L} -estructuras $\mathfrak{A},\mathfrak{B}$ son equivalentes si para toda \mathcal{L} -oración φ ,

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, $\mathfrak{B} \vDash \varphi$

Con esta estrategia, podremos demostrar que hay propiedades que no son definibles de forma generalizada!

Ejemplo

Sea $\mathcal{L} = \{E\}$ con E símbolo de relación binaria y consideremos la siguiente \mathcal{L} -estructura infinita

$$\mathfrak{A} = \langle \mathbb{N}, \{(i, i+1), (i+1, i) \mid i \in \mathbb{N} \} \rangle$$

$$0 \longleftrightarrow 1 \longleftrightarrow 2 \longleftrightarrow 3 \longleftrightarrow \cdots$$

Sea
$$\Sigma = \{ \varphi \mid \mathfrak{A} \vDash \varphi \}$$

- $lue{\Sigma}$ es el conjunto de todas las fórmulas satisfechas en ${\mathfrak A}$
- Tenemos que $\mathfrak{A} \models \Sigma$

Vamos a definir otra estructura que satisface al mismo conjunto, ¡pero que representa un grafo disconexo!

Ejemplo

Sea $\mathcal{L}' = \{E, a, b\}$ con E símbolo de relación binaria y dos nuevos símbolos de constantes.

Definimos recursivamente las siguientes \mathcal{L}' -fórmulas para $n \ge 1$

$$\psi_1(x,y) = E(x,y)$$

$$\psi_{n+1}(x,y) = \exists z. \, \psi_n(x,z) \land E(z,y)$$

Además, definimos $\varphi_n^{ab} = \neg \psi_n(a, b)$

- Esta oración es satisfecha si no existe camino de largo n entre las constantes a y b
- Notemos que es una \mathcal{L}' -oración y no una \mathcal{L} -oración

Ejemplo

Para k fijo, ¿es satisfacible el siguiente conjunto?

$$\Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

Consideremos $\mathfrak{C} = \langle \mathbb{N}, E^{\mathfrak{A}}, 0, k \rangle$

- Mismo dominio que 🎗
- Mismo conjunto de aristas que 🎗
- $lue{}$ Por lo tanto, satisface todas las oraciones de Σ
- Las interpretaciones de a y b están a distancia k, por lo que satisface $\{\varphi_n^{ab} \mid n < k\}$

Concluímos que efectivamente

$$\mathfrak{C} \vDash \Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

Ejemplo

Como el siguiente conjunto es satisfacible para k arbitrario

$$\Sigma \cup \{\varphi_n^{ab} \mid n < k\}$$

el siguiente conjunto es finitamente satisfacible

$$\Sigma' = \Sigma \cup \{\varphi_n^{ab} \mid n \ge 1\}$$

y por teorema de compacidad, también es satisfacible.

De esto, sabemos que debe existir una \mathcal{L}' -estructura $\mathfrak B$ tal que

$$\langle B, E^{\mathfrak{B}}, a^{\mathfrak{B}}, b^{\mathfrak{B}} \rangle \vDash \Sigma'$$

Ejemplo

$$\Sigma' = \Sigma \cup \{\varphi_n^{ab} \mid n \ge 1\}$$

Como la \mathcal{L}' -estructura $\mathfrak{B} = \langle B, E^{\mathfrak{B}}, a^{\mathfrak{B}}, b^{\mathfrak{B}} \rangle$ cumple $\mathfrak{B} \models \Sigma'$, en ella **no existe camino** entre $a^{\mathfrak{B}}$ y $b^{\mathfrak{B}}$... ¡de cualquier largo!

Es decir, el grafo representado por $\mathfrak B$ es disconexo.

Ahora, como $\Sigma \subseteq \Sigma'$ tenemos que

Definimos entonces la \mathcal{L} -estructura $\mathfrak{A}' = \langle B, E^{\mathfrak{B}} \rangle$

Por definición de Σ , tenemos que $\mathfrak A$ y $\mathfrak A'$ son equivalentes

Llamamos a \mathfrak{A}' un **modelo no estándar** de \mathfrak{A}

Modelos no estándar

Observemos que en el ejemplo

- \blacksquare \mathfrak{A} y \mathfrak{A}' son equivalentes
- No son isomorfas (una es un grafo conexo, la otra no)

Decimos que la lógica de primer orden **no es capaz** de distinguir estas dos estructuras: satisfacen exactamente las mismas fórmulas

¿Para qué nos sirve este artilugio?

Modelos no estándar

Ejercicio

Sea $\mathcal{L}=\{E\}$ para representar grafos. Demuestre que la siguiente propiedad no es definible de forma generalizada

 $\mathcal{P}_{\text{cnx}} = \left\{\mathfrak{B} \in \mathrm{S}[\mathcal{L}] \mid \mathfrak{B} \text{ representa un grafo conexo}\right\}$

Modelos no estándar

Ejercicio

Supongamos que existe Ψ conjunto de oraciones tal que

$$\mathfrak{B} \in \mathcal{P}_{cnx}$$
 si, y solo si, $\mathfrak{B} \models \Psi$

Sea $\mathfrak A$ la estructura del ejemplo (grafo conexo infinito). Como el grafo representado por $\mathfrak A$ es conexo, $\mathfrak A \in \mathcal P_{cnx}$. Luego $\mathfrak A \models \Psi$.

Como $\mathfrak{A}' \models \Sigma$ por ser modelo no estándar de \mathfrak{A} y además $\Psi \subseteq \Sigma$, entonces $\mathfrak{A}' \models \Psi$. Pero el grafo representado por \mathfrak{A}' es disconexo, lo cual es una contradicción.

Concluímos que no existe tal conjunto Ψ , i.e. la propiedad \mathcal{P}_{cnx} no es definible de forma generalizada.

Programa

Obertura

Primer acto

Teorema de isomorfismo

Teorema de compacidad

Intermedio

Segundo acto: aplicaciones No definibilidad Modelos no estándar

Epílogo

Objetivos de la clase

- ☐ Demostrar el teorema de isomorfismo
- Definir elementalmente propiedades en LPO
- ☐ Conocer el teorema de compacidad
- ☐ Utilizar el teorema para demostrar propiedades no definibles
- □ Definir propiedades de forma generalizada
- ☐ Utilizar modelos no estándar para demostrar propiedades no definibles

¿Qué aprendí hoy? ¿Comentarios?

Ve a

www.menti.com

Introduce el código

4111 7037

O usa el código QR