第九章 醛酮醌 (2)

主要内容

醛酮的化学性质(Ⅱ)

- 醛酮与醇的加成——缩醛(酮)的生成
- 醛酮与胺类化合物的加成——生成亚胺和烯胺
- Beckmann重排
- Wittig反应

一. 醛酮的性质 (II)

■ 复习:醛酮与负离子型亲核试剂的加成

- 1. 醛酮羰基上的亲核加成反应(2)
- 分析: 分子型亲核试剂的特点及与醛酮的加成

•预测:直接与羰基加成

•预测: H*存在下与羰基加成

结论:酸性条件有助分子型亲

核试剂向羰基的加成

1.1 醛酮与 H₂O 加成

甲醛的40%水溶液 称为福尔马林溶液

一些稳定的偕二醇(水合羰基化合物)举例

> 水合醛的脱水

$$W$$
— C — H H_2SO_4 W — C — H W — C — H W

例2:环状半缩醛(酮)

- •环状半缩醛(酮)较稳定,易生成
- •环状半缩醛仍有醛的特性

缩醛(酮)在稀酸中能水解生成原来的醛或酮;但对碱、氧化剂和还原剂稳定。缩醛(酮)在有机合成中常用来保护醛、酮基。

- > 缩醛(酮)在合成上的应用
- (i) 用于保护羰基

$$H_3C$$
 $(CH_2)_2$ $-MgBr$

醚键,

条件下稳定

碱性

$$\begin{array}{c|c} H_2O & O \\ \hline \\ H^+ & H_3C \\ \hline \end{array} (CH_2)_2 \begin{array}{c} OH \\ \hline \\ CH_3 \\ \end{array} +$$

缩酮水解,除去保护

(ii) 用于保护邻二醇

例: 合成多元醇单酯

直接酯化难控制

- 酯化位置
- 酯化数量

>硫代缩酮(或缩醛)的制备及应用

应用:

- 保护羰基(硫代缩酮较易制备,但较难除去,应用受到限制)。
- 还原成亚甲基(反应容易进行)

1.3 醛酮与胺类化合物的缩合

(i) 与伯胺的缩合

(ii) 与氨衍生物的缩合(弱酸性条件下反应)

问题:上述反应在弱酸性条件下 (pH=3~5)进行的原因是什么?

酸性条件可以增加羰基的亲电性, 若在强酸中, 出与氮原子上未共用电子对结合而失去亲核性。

应用: 鉴别和提纯

反应产物通常都是不溶水的晶体,具有明确的熔点,因此可测定反应物的熔点,与文献的数据比较,就能确定原来是何种醛酮。同时,反应产物在稀酸存在下能水解为原来的醛、酮,可用来分离提纯醛酮。

- 亚胺、肟、腙和烯胺类化合物在合成上的应用
- 通过还原制备胺类化合物

■ **肟类化合物的Beckmann重排**:醛或酮肟用浓硫酸或者 五氯化膦处理,发生分子内的重排,生成酰胺的反应。

酮肟的两种顺反异构体经贝克曼重排后,生成不同的产物,实验表明是羟基反位上的基团迁移到N-原子上:

■ Beckmann 重排的立体化学

• 反式协同迁移—消除

• 迁移基团的构型保持不变

构型不变

■ Beckmann 重排的机理(了解)

合成纤维-----锦纶-6----的单体

例:
$$\frac{\text{NH}_2\text{OH}}{\text{NH}_2\text{OH}} \xrightarrow{\text{NOH}} \frac{\text{NOH}}{\text{H}} \xrightarrow{\text{C}} \frac{\text{NOH}}{\text{C}}$$
 Ch酰胺
$$\frac{\text{H}_2\text{SO}_4}{\text{NH}(\text{CH}_2)_6} \xrightarrow{\text{C}} \frac{1}{\text{n}}$$
 nylon-6 聚己内酰胺

维蒂希 (Wittig) 反应:

维蒂希试剂是强亲核试剂,可和醛酮反应制备特殊结构的烯烃。

例:
$$Ph_3P-CHCH_2CH_3$$
 CH_3CCH_3 CH_3 CH_3 CH_3 $C=CHCH_2CH_3$ CH_3

反应的总结果: 羰基中的氧被维蒂希试剂中负性部分取代。

例: 制备 ()=CH₂

$$\bigcirc$$
=O + Ph₃ $\stackrel{+}{P}$ - $\stackrel{-}{C}$ H₂ \longrightarrow \bigcirc =CH₂

立体化学:

注意: Wittig反应是一个在精细合成中非常有用的反应,

Wittig因此而获得诺贝尔化学奖(1979年)。

本次课小结:

- ▶ 醛酮与醇类化合物的缩合。要求掌握缩醛(酮)的形成、 缩醛(酮)的水解及缩醛(酮)换的机理)
- ▶ 缩醛(酮)在合成上的应用 —— 保护羰基及邻二醇
- ▶ 醛酮与胺类化合物的缩合(要求掌握醛酮与各种类型胺的 反应及其反应机理)
- ▶ Beckmann重排反应及其机理、应用
- ➤ Wittig反应