1. Моделирование двумерной случайной величины по совместной функции распределения

Исходные данные:

Решение

Вычисление двумерной функции распределения

Вычислим уравнения сторон:

$$W1(x, y) = 2x + 7y - 38$$

 $W2(x, y) = 6x - 9y + 6$
 $W3(x, y) = -8x + 2y - 28$

Вычислим интеграл по области, ограниченной треугольником:

$$\int_{-4}^{-2} \int_{\frac{6}{9}x+\frac{6}{9}}^{4x+14} w 1(x,y) w 2(x,y) w 3(x,y) dy dx + \int_{-2}^{5} \int_{\frac{6}{9}x+\frac{6}{9}}^{\frac{-2}{7}x+\frac{38}{7}} w 1(x,y) w 2(x,y) w 3(x,y) dy dx =$$

$$= \frac{-368000}{27} - \frac{2548000}{27} = 108000$$

$$f(x, y) = \begin{cases} \frac{(2x+7y-38)(6x-9y+6)(-8x+2y-28)}{108000}, \\ npu2x+7y-38<0, 6x-9y+6<0, -8x+2y-28<0 \end{cases}$$

$$0, 8 \text{ других случаях}$$

Вычисление маргинальной плотности

На отрезке [-4, -2]:

$$f(x) = \int_{\frac{6x}{\alpha} + \frac{6}{\alpha}}^{4x+14} \frac{(2x+7y-38)(6x-9y+6)(-8x+2y-28)}{108000} dy = \frac{5(x+4)^3(11x+8)}{2916}$$

На отрезке [-2, 5]:

$$f(x) = \int_{\frac{6x}{9} + \frac{6}{9}}^{\frac{-2x}{7} + \frac{38}{7}} \frac{(2x + 7y - 38)(6x - 9y + 6)(-8x + 2y - 28)}{108000} dy = \frac{20(x - 5)^3(8x + 23)}{250047}$$

Нахождение обратной функции к функции распределения f(x)

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$0, [-\infty, -4]$$

$$F(x) = \begin{cases} \frac{5(\frac{11t^{5}}{5} + 35t^{4} + 208t^{3} + 544t^{2} + 512t)}{2916}, [-4, -2] \\ \frac{20(\frac{8t^{5}}{5} - \frac{97t^{4}}{4} + 85t^{3} + \frac{725t^{2}}{2} - 2875t)}{250047}, [-2, 5] \\ \frac{1, [5, +\infty]}{1, [5, +\infty]}$$

Равномерная сетка на отрезке [-4, 5]:

$$x=-4+5\frac{i}{N}, i=0,1..N$$

 $y=F(x)$

Для х:

-4	-3.625	-3.25	-2.875	-2.5
-2.125	-1.75	-1.375	-1	-0.625
-0.25	0.125	0.5	0.875	1.25
1.625	2	2.375	2.75	3.125
3.5	3.875	4.25	4.625	5

Соответсвующие у (округлено):

0	0.0005	0.00319	0.01712	0.04868
0.10252	0.17650	0.26522	0.36091	0.45791
0.55181	0.63927	0.71799	0.78652	0.84420
0.89101	0.92748	0.95456	0.97352	0.98582
0.99302	0.99663	0.99805	0.99840	1

$$fn(y/\zeta=x)=\frac{f(x,y)}{f(x)}$$

• Реализация = 0.71
•
$$x = F^{-1}$$
 (0.71) = 0.5
• $f(x) = f(0.5) = -0.197$
• $fn(y/\zeta = 0.5) = \frac{(-37 + 7y)(9 - 9y)(-32 + 2y)}{-21276}$, (при $1 < x < 5.286$)

Найдем максимум $\frac{f(x,y)}{f(x)}$. Зафиксируем х.

$$f'_{y}(x,y) = \frac{-7x^2}{4500} + \frac{23xy}{2250} - \frac{29x}{750} - \frac{7y^2}{2000} + \frac{211y}{4500} - \frac{467}{4500} = 0$$

Решим относительно у и выберем максимум.

$$y = \frac{1}{63} (92 x - 10 \sqrt{67 x^2 + 338 x + 604} + 422)$$

На отрезке [-4; -2]:

$$\frac{2 \Big(-16 x-\sqrt{67 x^2+338 x+604}-46\Big) \Big(-5 x+\sqrt{67 x^2+338 x+604}-38\Big) \Big(11 x-\sqrt{67 x^2+338 x+604}+8\Big)}{735 (x+4)^3 (11 x+8)}$$

На отрезке [-2; 5]:

$$\frac{7 \left(-16 x-\sqrt{67 x^2+338 x+604}-46\right) \left(-5 x+\sqrt{67 x^2+338 x+604}-38\right) \left(11 x-\sqrt{67 x^2+338 x+604}+8\right)}{120 (x-5)^3 (8 x+23)}$$

График с отступами в 0.1 от крайних точек [-4, 5]

Визуализация:

Генерируем выборку из 10 точек:

Генерируем выборку из 100 точек:

Генерируем выборку из 1000 точек:

