1 Тема 3. Дискретные системы

1.1 Операции над сигналами

1.1.1 Временной сдвиг

Сдвинутая на целое число отсчетов k последовательность x(n) формируется как

$$y(n) = x(n-k).$$

Если k положительное, то сигнал y(n) сдвигается вправо относительно x(n), т.е. y(n) является задержанной версией x(n). Если k отрицательное, то сигнал y(n) сдвигается влево относительно x(n), т.е. y(n) является опережающей версией x(n). На рисунке 1.1 приведены примеры временного сдвига дискретного сигнала.

Рисунок 1.1 — Дискретный сигналы x(n): а) исходный вид; б) задержанная версия на 3 отсчета; в) опережающая на 3 отсчета версия

При изучении и описании дискретных систем важным понятием является понятие *единичного оператора задержки* D. Действие данного оператора описывается следующим выражением:

$$D\{x(n)\} = x(n-1).$$

Повторное применение оператора задержки обозначается как $D(D) = D^2$ и приводит к следующему действию:

$$D^{2}\{x(n)\} = x(n-2).$$

При обозначении операции временного сдвига на блок-схеме дискретной системы используют один из двух способов, показанных на рисунке 1.2.

$$x(n) \longrightarrow D \longrightarrow y(n) = x(n-1) \qquad x(n) \longrightarrow z^{-1} \longrightarrow y(n) = x(n-1)$$

Рисунок 1.2 – Варианты обозначения операции временного сдвига

1.1.2 Масштабирование

Операция масштабирования заключается в умножении сигнала на константу $\alpha \in \mathbb{C}$:

$$y(n) = \alpha x(n)$$
.

Если α представляет собой действительное число, то масштабирование является обычным усилением (при $|\alpha| > 1$) или ослаблением (при $|\alpha| < 1$). На рисунке 1.3 приведено условное графическое обозначение операции масштабирования, используемое при описании блок-схем дискретных систем.

$$x(n) \xrightarrow{\alpha} y(n) = \alpha x(n)$$

Рисунок 1.3 – Обозначение на блок схеме операции масштабирования

1.1.3 Суммирование и произведение

Сумма двух последовательностей x(n) и w(n) определяется путем поэлементной операции суммирования:

$$y(n) = x(n) + w(n).$$

Аналогично определяется произведение двух последовательностей:

$$y(n) = x(n)w(n).$$

Обозначение операций суммирования и умножения, используемое при описании блок-схем дискретных систем приведено на рисунке 1.4.

Рисунок 1.4 – Обозначение на блок схеме операций: а) сложения; б) масштабирования

1.2 Общие сведения о дискретных системах

Система обработки сигнала – это устройство, которое обрабатывает входные сигналы и/или формирует выходные сигналы. Когда-то все системы обработки сигнала были полностью аналоговыми (телефоны, радио). В этом разделе мы определим систему с дискретным временем, введем важные классы систем (отличающиеся своими свойствами). Это привет нас к определению фильтра, которое станет центральным в нашем учении.

С точки зрения математики система с дискретным временем определяется как преобразование, или оператор, переводящий входную последовательность x(n) в выходную последовательность y(n) отклик (или реакцию) системы, что можно обозначить как

$$y(n) = T\{x(n)\}.$$
 (1.1)

Соотношение (1.1) — это правило, или формула, по которому вычисляется реакция системы через отсчеты сигнала, поданного на её вход. Необходимо подчеркнуть, что отсчет с индексом n может зависеть от всех отсчетов входного сигнала x(n).

Приведем несколько примеров примитивных систем:

Пример 1.1. Система, имеющая константу на выходе (игнорирование входа):

$$y(n) = C$$
.

При помощи такой системы можно моделировать источник питания.

Пример 1.2. Система реализующая «тождество» (identity):

$$y(n) = x(n)$$
.

Пример 1.3. Система реализующая усилитель:

$$y(n) = Ax(n)$$
.

Далее приведены примеры более сложных систем.

¹ В некоторых случаях система не имеет входного сигнала. Примером служит генератор синусоидального колебания. Тем не менее, для генератора может служить входом: частота, фаза, амплитуда. Такие генераторы являются базовыми элементами для трансмиттеров, радаров и музыкальных синтезаторов.

Иногда система не имеет выходного сигнала. Пример – детектор, его выходом служит логическая переменная: ложь, если не обнаружен сигнал с определенными параметрами.

Пример 1.4. *Идеальная система задержки* (ИСЗ) определяется по формуле:

$$y(n) = x(n - n_d), -\infty < n < \infty,$$

где n_d — фиксированное натуральное число, называемое *задержкой* системы. Иными словами, ИСЗ сдвигает входную последовательность вправо на n_d отсчетов.

Пример 1.5. Скользящее среднее

Общая система скользящего среднего имеет вид:

$$y(n) = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x(n-k)$$

$$= \frac{1}{M_1 + M_2 + 1}$$

$$\times (x(n+M_1) + x(n+M_1 - 1) + \dots + x(n) + \dots + x(n-M_2)).$$

Она вычисляет n-й отсчет входной последовательности как среднее арифметическое (M_1+M_2+1) отсчетов входной последовательности, расположенных вокруг n-го отсчета.

1.3 Свойства дискретных систем

1.3.1 Системы без памяти (memoryless system)

Для системы без памяти характерно, что её текущий отклик y(n) зависит только от текущего входного значения x(n) для любого n.

Пример 1.6. Система

$$y(n) = x^2(n),$$

является системой без памяти, а система

$$y(n) = x(n) + x(n-1)$$

является системой с памятью.

Характерно, что «zero-state» системы (т.е. системы без памяти) при технической реализации не требуют сохранения контекста своей работы. Выходной результат в них зависит только от текущего входа.

1.3.2 Детерминированность (каузальность)

Систему называют *детерминированной*, если выходной отсчет системы с номером n_0 зависит только от входных отсчетов с номерами $n \le n_0$.

Пример 1.7² Система, описываемая уравнением

$$y(n) = x(n) + x(n-1)$$

является детерминированной, поскольку выход системы для любого момента времени $n=n_0$ зависит от входа x(n) в моменты времени n_0 и n_0-1 .

Система

$$y(n) = x(n) + x(n+1),$$

напротив недетерминированная (некаузальная), поскольку её выход в момент времени $n=n_0$ зависит от входа в момент времени n_0+1 .

Рассмотрим более сложных пример работы системы, выполняющей «уплотнение» сигнала.

Пример 1.8³ *Компрессор (уплотнитель)*— это система, определяемая соотношением

$$y(n) = x(Mn), -\infty < n < \infty,$$

где $M \in \mathbb{N}$. Компрессор отбрасывает M-1 из каждых M отсчетов входной последовательности.

Компрессор не является детерминированной системой поскольку y(1) = x(M), т.е. высох в момент времени n = 1 зависит от входного отсчета в момент времени n = M.

Попробуйте сами ответить на следующие вопросы:

- 1. Детерминирована ли система скользящего среднего?
- 2. Детерминирована ли система идеальной задержки?

1.3.3 Устойчивость (stable)

Говорят, что система устойчива, если и только если её реакция на любой ограниченный по амплитуде сигнал ограничена. Последовательность x(n) называется organuvehhoù, если найдется такое конечное положительное число B_x , что

$$\forall n \quad |x(n)| \leq B_x < \infty.$$

Т.о. в устойчивой системе для **каждой** ограниченной входной последовательности найдется такая положительная константа B_{ν} , что

$$\forall n \ |y(n)| \leq B_{\nu} < \infty.$$

² Оппенгейм, с.40

³ Оппенгейм, с.40

Важно понять, что устойчивость — свойство именно системы, а не входных последовательностей. Можно и для неустойчивой системы найти входную последовательность, для которой выход будет ограниченным. Для устойчивости важно, что выход ограничен для **любой** ограниченной входной последовательности.

Пример 1.9 Является ли устойчивой система, описываемая уравнением

$$y(n) = \sum_{k=-\infty}^{n} x(n).$$

Пример 1.10 Является ли устойчивой система:

$$y(n) = \cos(x(n)).$$

Пример 1.11 Является ли устойчивой система:

$$y(n) = \lg(x(n)).$$

Решение. Нет, поскольку $y(n) = \lg(x(n)) = -\infty$ для x(n) = 0.

1.3.4 Обратимость

Обратимость системы – важное свойство в таких приложениях как частотная коррекция канала и обратная фильтрация. Говорят, что система является *обратимой*, если вход системы можно восстановить единственным образом зная выход системы. Для того, чтобы система была обратимой она должна для различных входов производить различные выходы. Другими словами, если есть два входа $x_1(n)$ и $x_2(n)$, причем $x_1(n) \neq x_2(n)$, то должно выполнятся неравенство $y_1(n) \neq y_2(n)$.

Система, определенная как

$$y(n) = x(n)g(n)$$

является обратимой только тогда, когда $g(n) \neq 0 \ \forall n$. В частности зная y(n) и g(n), которое не равно нулю для всех n, вход x(n) можно восстановить по y(n) следующим образом:

$$x(n) = \frac{y(n)}{g(n)}.$$

Пример 1.12 Является ли обратимыми следующие системы:

$$a) y(n) = 2x(n)$$

б)
$$y(n) = nx(n)$$

$$\mathbf{B}) y(n) = x(n) - x(n-1)$$

$$\Gamma y(n) = \sum_{k=-\infty}^{n} x(k)$$

$$д) y(n) = Re\{x(n)\}$$

1.3.5 Аддитивность

Под аддитивностью понимается суперпозиция причин и результатов. Так, если причина (x_1) вызывает результат (y_1) и если причина (x_2) вызывает результат (y_2) , то суперпозиция причин и результатов означает, что причина (x_1+x_2) вызовет результат (y_1+y_2) .

Выражаясь математически система называется аддитивной если

$$T\{x_1(n) + x_2(n)\} = T\{x_1(n)\} + T\{x_2(n)\}$$

для любых сигналов $x_1(n)$ и $x_2(n)$.

1.3.6 Однородность (гомогенность)

Под однородностью понимается наличие пропорциональности между входным и выходным сигналами. Дадим этому понятию более точное определение.

Система называется однородной, если

$$T\{cx(n)\} = cT\{x(n)\}, c \in \mathbb{C}.$$

для входной последовательности x(n). Т.е. для любого комплексного числа c реакция системы на входной сигнал cx(n) в c раз больше реакции системы на входной сигнал x(n).

Пример 1.13 4 Система

$$y(n) = \frac{x^2(n)}{x(n-1)}$$

не аддитивна, поскольку

$$T\{x_1(n) + x_2(n)\} = \frac{\left(x_1(n) + x_2(n)\right)^2}{x_1(n-1) + x_2(n-1)}$$

что не тоже самое, что

$$T\{x_1(n)\} + T\{x_2(n)\} = \frac{x_1^2(n)}{x_1(n-1)} + \frac{x_2^2(n)}{x_2(n-1)}$$

А является ли она однородной? Да. Поскольку

$$T\{cx(n)\} = \frac{(cx(n))^2}{cx(n-1)} = c\frac{x^2(n)}{x(n-1)} = cT\{x(n)\}.$$

⁴ Shaum DSP p.8

Другой пример

Пример 1.145 Система

$$y(n) = x(n) + x^*(n-1)$$

является аддитивной, но не однородной.

Проверка

$$T[x_1(n) + x_2(n)] = x_1(n) + x_2(n) + x_1^*(n-1) + x_2^*(n-1),$$

$$T\{x_1(n)\} + T\{x_2(n)\} = x_1(n) + x_2(n) + x_1^*(n-1) + x_2^*(n-1)$$

Аддитивность подтверждается.

$$T\{cx(n)\} = cx(n) + (cx(n-1))^* = cx(n) + c^*x^*(n-1).$$

Очевидно, что это не равно

$$cT\{x(n)\} = cx(n) + cx^*(n-1).$$

Однородность не подтверждается.

1.3.7 Линейные системы

Класс линейных систем определяется по принципу суперпозиции, т.е. обладает одновременно свойством аддитивности и однородности:

$$T\{a_1x_1(n) + a_2x_2(n)\} = a_1T\{x_1(n)\} + a_2T\{x_2(n)\}.$$
 (1.2)

Другими словами, линейность подразумевает, что системный оператор T коммутирует с операциями суммы и масштабирования. Для линейной системы не важно в каком порядке выполнять суммирование и масштабирование до либо после системного оператора.

Отклик линейной системы

Свойство линейности существенно упрощает вычисление отклика системы на заданный вход:

$$y(n) = T\{x(n)\} = T\left\{\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right\} = \sum_{k=-\infty}^{\infty} T\{x(k)\delta(n-k)\}$$

поскольку коэффициенты x(k) константы, то мы можем использовать свойство однородности:

$$y(n) = \sum_{k=-\infty}^{\infty} T\{x(k)\delta(n-k)\} = \sum_{k=-\infty}^{\infty} x(k)T\{\delta(n-k)\}$$
 (1.3)

Если мы введем $h_k(n)$ как отклик на единичный импульс во время n=k

⁵ Shaum DSP p.8

$$h_k(n) = T\{\delta(n-k)\}\$$

То (1.3) превратиться в

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h_k(n).$$
 (1.4)

1.3.8 Стационарные системы

К *стационарным* относят системы, для которых временной сдвиг (или задержка) входной последовательности приводит к появлению такого же сдвига выходной последовательности.

Человек – не стационарная система, если дать человеку работу днем, он быстро её сделает, если разбудить его ночью, то результата работы придется ждать долго.

Более формально, если $y(n) = T\{x(n)\}$, то для стационарной системы справедливо тождество:

$$T\{x(n-n_0)\} = y(n-n_0).$$

Стационарные системы еще называют *инвариантными относительно сдвига*.

Большинство рассмотренных ранее систем стационарны. Рассмотрим ещё один пример:

Пример 1.15⁶ Компрессор

Система, определенная соотношением

$$y(n) = x(Mn), -\infty < n < \infty,$$

где $M \in \mathbb{N}$, называется уплотнителем (компрессором). Она отбрасывает M-1 из каждых M отсчетов входной последовательности. Показать, что она нестационарна можно следующим образом: рассмотрим реакцию $y_1[n]$ системы на входной сигнал $x_1(n) = x(n-n_0)$. Если бы система была стационарна, то выполнялось бы равенство $y_1(n) = y(n-n_0)$. Однако

$$y_1(n) = x_1(Mn) = x(Mn - n_0) \neq y(n - n_0) = x(M(n - n_0))$$

Для стационарных систем:

$$D^m H\{x(n)\} = H\{D^m x(n)\} = H\{x(n-m)\}.$$

Пример 1.16⁷ Для следующей системы определите её свойства (Запоминание? Устойчивость? Детерминированность? Аддитивность? Однородность? Линейность? Стационарность?)

$$y(n) = \text{median}\{x(n-1), x(n), x(n+1)\},$$

 $^{^6}$ Оппенгейм, с.40

⁷ Shaum DSP p.49

Ответ:

Медианный фильтр:

- 1) с запоминанием;
- 2) устойчивый;
- 3) недетерминированный;
- 4) однородный;
- 5) неаддитивный
- 6) нелинейный (не хватает аддитивности);
- 7) стационарный (инвариантный относительно сдвига, инвариантный во времени)

1.4 Линейные стационарные системы

Линейные стационарные системы представляют собой особо распространенный класс систем. Наличие этих свойств позволяет описывать системы в удобном виде. Они также играют ведущую роль в приложениях обработки сигналов.

Хорошо, когда человек красивый, хорошо, когда человек умный, но, когда он одновременно и красивый, и умный – это уже некое новое качество, наступает гармония между формой и содержанием. Так и наличие одновременно двух свойств у дискретной системы – линейности и стационарности – делает её особенно привлекательной.

Если h(n) – реакция системы на дельта-импульс $\delta(n)$, то её отклик на $\delta(n-k)$ будет h(n-k). Поэтому возвращаясь к формуле (1.4) мы получим:

$$h_k(n) = T\{\delta(n-k)\} = h(n-k),$$

следовательно

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h_k(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k). \tag{1.5}$$

Уравнение (1.5) называется *сверткой* и обозначается как

$$y(n) = x(n) * h(n), \tag{1.6}$$

где * - обозначает операцию свертки.

Последовательность h(n) – называется импульсной характеристикой системы. Таким образом, ЛС-система полностью определяется своей импульсной характеристикой h(n), в том смысле, что опираясь на (1.5), можно вычислить отклик y(n) на **любой** поданный сигнал x(n).

Пример 1.17 Рассмотрим ЛС-систему с импульсной характеристикой $h(n) = 2^{-n}u(n)$. Найти реакцию системы на вход x(n) = u(n) - u(n-10).

Решение. Вход x(n) можно переписать в виде

$$x(n) = \sum_{k=0}^{9} \delta(n-k).$$

Тогда общий отклик равен

$$y(n) = \sum_{k=0}^{9} h(n-k) = \sum_{k=0}^{9} 2^{k-n} u(n-k)$$

Рассмотрим ещё один пример.

Пример 1.18 Рассмотрим ЛС-систему с импульсной характеристикой

$$h(n) = \frac{1}{2}\delta(n) + \frac{1}{2}\delta(n-1) - \frac{1}{2}\delta(n-2) - \frac{1}{2}\delta(n-3),$$

Найти реакцию системы на вход

$$x(n) = \sum_{n=0}^{6} \delta(n).$$

Решение. Общую формулу свертки можно переписать как

$$y(n) = \sum_{k=0}^{6} x(k)h(n-k).$$

Запишем выражение для y(0)

$$y(0) = \sum_{k=0}^{6} x(k)h(-k).$$

Графическое вычисление свертки показано на следующих рисунках.

Таким образом можно видеть, что в процессе вычисления свертки одна из последовательностей обращается во времени и сдвигается вправо по мере увеличения n.

Пример 1.19⁸ Первый ненулевой элемент последовательности x(n) появляется на индексе n = -6 и имеет значение x(-6) = 3, последний ненулевой элемент имеет индекс n = 24 и значение x(24) = -4. Какой индекс будет у первого ненулевого элемента последовательности и какое он будет иметь значение?

$$y(n) = x(n) * x(n)$$

Какой индекс будет у последнего ненулевого элемента? Какое он будет иметь значение.

Решение. Поскольку сворачиваются две последовательности конечной длины, то индекс первого ненулевого значения будет равен сумме индексов первых ненулевых элементов двух сворачиваемых последовательностей.

$$y(n) = \sum_{k=-6}^{24} x(k)x(n-k).$$

Пусть k = -6 при каком наименьшем n произведение x(-6)x(n+6) будет ненулевым? Ответ: при n = -12. При этом будет получено значение

$$y(-12) = x^2(-6) = 9.$$

Аналогичным образом, индекс и значение последнего ненулевого элемента равны: n=48, а

$$y(48) = x^2(24) = 16.$$

.

⁸ Shaum DSP p.35