ຫົວບົດສອບເສັງທຶນການສຶກສາລັດຖະບານຍີ່ປຸ່ນ (MEXT) ສຶກຮຽນປີ 2019

ຄຳຖາມສອບເສັງ

ລະດັບ ຊັ້ນສູງເຕັກໂນໂລຊີ

ວິຊາຄະນິດສາດ

ໝາຍເຫດ: ເວລາ **60 ນາທີ**

ວິຊາຄະນິດສາດ

ສັນຊາດ		ເລກທີ	
-୯୭୯	(ຂຽນຊື່ແທ້ ແລະ ນາມສະກຸນ, ຂີດກ້ອງນາມສະກຸນ)		

- າ ຈຶ່ງຕອບຄຳຖາມຕໍ່ໄປນີ້ ແລ້ວຕື່ມຄຳຕອບໃສ່ຫ້ອງຫວ່າງ.
 - 1) ຈຶ່ງແກ້ສົມຜິນ $x^3 2x^2 x + 2 = 0$.

x =

2) ຈຶ່ງແກ້ສືມຜົນ $\cos x - 2\cos^2 x = 0 \ (0 \le x \le \pi)$.

x =

3) ຈື່ງຂຽນ $|\sqrt{8}-3|+|2-\sqrt{2}|$ ໂດຍທີ່ບໍ່ມີຄ່າສຳບູນ.

4) ຈຶ່ງແກ້ສົມຜົນ $\log_2(x-1) = \log_4(x-1)$.

x =

5) ຈຶ່ງຊອກຫາຄ່າໃຫ່ຍສຸດ m ຂອງຕຳລາ $f(x) = \cos x + \cos(x + \frac{\pi}{3})$ $(0 \le x \le 2\pi)$. ດັ່ງດຽວກັນນັ້ນ, ສຳລັບຄ່າໃດຂອງ x ທີ່ເຮັດໃຫ້ f(x) ມີຄ່າໃຫ່ຍສຸດ?

> m =x =

6) ໂດຍການນຳໃຊ້ $\lim_{t\to 0}(1+t)^{\frac{1}{t}}=e$, ຈຶ່ງຄິດໄລ່ $\lim_{h\to 0}(1+2h)^{\frac{1}{h}}$.

7) ຈຶ່ງຊອກຫາເມັດຕັດກັນຂອງເສັ້ນຊື່ $\frac{x-1}{6} = \frac{y-1}{2} = \frac{z-2}{3}$ ແລະ ແຜ່ນພຽງ x + 2y - 4z + 1 = 0.

$$x = y = z =$$

8) ຈຶ່ງຊອກຫາເສັ້ນຕິດກັບເສັ້ນໂຄ້ງ $y = \log_e x$ ເຊິ່ງຜ່ານເມັດ (0;0).

9) ຈື່ງຄິດໄລ່ $\sum_{n=1}^{\infty} rac{1}{n(n+2)}$.

10) ຈຶ່ງຄິດໄລ່ $\lim_{x \to -\infty} \frac{2x+1}{\sqrt{x^2+1}}$.

11) ໃຫ້ $f(x) = \log_e \frac{\sqrt{x-1}}{x+1}$. ຈຶ່ງຄິດໄລ່ f'(x).

$$f'(x) =$$

12) ີ່ ຈຶ່ງຄິດໄລ່ $\int_{-\pi}^{\pi} \sin 3x \sin x \, dx$.

- 2 ສຳລັບ $A = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$. ຈຶ່ງຕອບຄຳຖາມຕໍ່ໄປນີ້ ແລະ ຂຽນຄຳຕອບໃສ່ໃນຫ້ອງຫວ່າງ.
 - າ) ຈຶ່ງຄິດໄລ່ A^n .

$$A^n = \left(\begin{array}{c} \\ \end{array} \right)$$

2) ຈຶ່ງຄິດໄລ່ $S = \sum_{k=1}^n A^k$.

$$S = \left(\begin{array}{c} \end{array}\right)$$

3) ຈຶ່ງຄິດໄລ່ມາຕຣິດປຶ້ນ S^{-1} ຂອງ $S=\sum_{k=1}^n A^k$.

$$S^{-1} = \left(\begin{array}{c} \\ \end{array} \right)$$

3 ສຳລັບຈຳນວນທຳມະຊາດໃດໜຶ່ງ k>0, ໃຫ້ $I_{2k+1}=\frac{2k}{2k+1}\cdot\frac{2k-2}{2k-1}\cdots\frac{4}{5}\cdot\frac{2}{3}$ ແລະ $I_{2k}=\frac{2k-1}{2k}\cdot\frac{2k-3}{2k-2}\cdots\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}$. ຈຶ່ງຕອບຄຳຖາມຕໍ່ໄປນີ້ ແລະ ຂຽນຄຳຕອບໃສ່ໃນຫ້ອງຫວ່າງ.

2) ຈື່ງຊອກຫາ a_k ເຊິ່ງຕອບສະໜອງ $I_{2k+1} \cdot I_{2k} = \frac{\pi}{2} \cdot a_k$.

 $a_k =$

3) ຈື່ງຊອກຫາ b_k ເຊິ່ງຕອບສະໜອງ $I_{2k-1} \cdot I_{2k} = \frac{\pi}{2} \cdot b_k$.

 $b_k =$

4) ຈື່ງຄິດໄລ່ $\lim_{k \to \infty} \frac{1}{k} \left\{ \frac{(2k)(2k-2)\cdots 4\cdot 2}{(2k-1)(2k-3)\cdots 3\cdot 1} \right\}^2$ ໂດຍກຳນົດໃຫ້ $I_{2k+1} < I_{2k} < I_{2k-1}$.