Sections 2.1 and 2.2

Chester Ismay, Tom Linton

Ripon College, Central College

Learning Quote of the Day

"You don't learn to walk by following rules. You learn by doing, and by falling over."

- Richard Branson

Description

Historically, the average claim size for residential home damage from a hurricane is \$25,300. Hurricane Andrew swept through southern Florida causing billions of dollars in home damage. Because of the severity of the storm and the type of residential construction used in this semi-tropical area, there was concern that the average claim size would be greater than the historical average. Several insurance companies collaborated in a data gathering experiment. They randomly selected 45 homes and found that the average claim for the 45 homes was \$26,500 with a standard deviation of \$6635. Is there good evidence that the average claim for home damage from Hurricane Andrew was greater than the historical average?

Observational Units

- (1) What are the observational units?
- A Dollar amounts of the claims
- B Homes damaged by all hurricanes
- C Hurricanes in residential areas
- D Insurance claims for home damage due to Andrew
- E Insurance companies that cover home damage

Variable of Interest

- (2) What is the variable of interest?
- A The dollar amount of the claims.
- B The average claim size for Hurricane Andrew.
- C The proportion of homes damaged by Hurricane Andrew.
- D If claims for home damage were greater for Hurricane Andrew.
- E Whether or not a home was damaged by Hurricane Andrew.

Parameter or Statistic

Historically, the average claim size for residential home damage from a hurricane is \$25,300. Hurricane Andrew swept ...

- (3) Is the value \$25,300 above a hypothesized parameter value or a statistic?
- A Hypothesized parameter value
- B Statistic
- C Both
- D Neither
- E I am not sure

Parameter or Statistic

- ... Several insurance companies collaborated in a data gathering experiment. They randomly selected 45 homes and found that the average claim for the 45 homes was \$26,500 with a standard deviation of \$6635.
- (4) Is the value \$26,500 above a parameter or a statistic? What symbol do we use for numbers like this?
- A Parameter, μ
- B Parameter, \overline{x}
- C Statistic, \hat{p}
- D Statistic, t
- E Statistic, \overline{x}

Hypotheses

Historically, the average claim size for residential home damage from a hurricane is \$25,300. Hurricane Andrew swept through ... the average claim for the 45 homes was \$26,500 with a standard deviation of \$6635. Is there good evidence that the average claim for home damage from Hurricane Andrew was greater than the historical average?

- (5) What is the null hypothesis?
- A The long run probability that a home was damaged by Hurricane Andrew is no different than the historical probability.
- **B** $H_0: \pi = \$25,300$
- C $H_0: \mu = \$26,500$
- D The mean claim for home damage from Hurricane Andrew is no different than the historical average.
- E $H_a: \overline{x} > $25,300$

Hypotheses

Historically, the average claim size for residential home damage from a hurricane is \$25,300. Hurricane Andrew swept through ... the average claim for the 45 homes was \$26,500 with a standard deviation of \$6635. Is there good evidence that the average claim for home damage from Hurricane Andrew was greater than the historical average?

- (6) What is wrong with the following alternative hypothesis? $H_a: \pi \neq \$26{,}500$
- A The parameter is a mean not a proportion.
- B The research question suggests a right-tailed, not two-tailed alternative.
- C Hypothesized parameter values, not the values of statistics, should appear in the hypotheses.
- D All of the above.
- E B and C, but not A.

p-value

- (7) Given the test statistic t=1.21 for Hurricane Andrew claims, what sort of p-value would you expect for this study? The p-value would be
- A very small, claims for Andrew were 1.21 times larger than the historical average.
- B very small, Andrew's claims were \$1200 above the historical average.
- C small to moderate, \overline{x} is only 1.21 SEs above the historical average.
- D moderate to large, t = 1.21 gives little to no evidence against H_0 .
- E large, 26,500-25,300 = 1200 is very small compared to s = 6635.

Description

A zoologist at a large metropolitan zoo is concerned about a potential new disease present among the 243 sharks living in the large aquarium at the zoo. The zoologist takes a random sample of 15 sharks from the aquarium, temporarily removes the sharks from the tank and tests them for the disease. He finds that 3 of the sharks have the disease.

Representative Sample

- (8) Is it reasonable to assume that the sample of 15 sharks is a good representation of all 243 sharks in the aquarium?
- A No, 15 is too small of a sample for this setting.
- B No, the population is not 20 times the sample size.
- C No, a larger convenience sample would be more representative.
- D Yes, the sample was random.
- E Yes, the population is more than 10 times the sample size.

Hypotheses

(9) Recall that the zoologist found 3/15 = 20% of the sharks in the sample with the disease. If he wanted to test if less than 1/4 of the sharks in the aquarium had the disease, what is his null hypothesis?

- A $H_0 = 0.25$
- **B** $H_0: \mu = 0.2$
- $C H_0: \pi = 0.25$
- D $H_0: \hat{p} < 0.25$
- **E** $H_0: \overline{x} = 3/15$

p-value

- (10) A simulation based p-value for this test is p = 0.48. Which of the following are correct conclusions based on this p-value?
- A We have good evidence that $\pi = 0.25$.
- B We do not have good evidence that $\pi < 0.25$.
- C 0.25 is one of many plausible values for π .
- D A and B but not C.
- E B and C but not A.

p-value

- (11) A simulation based p-value for this test is p = 0.48. Which of the following are correct statements about this p-value?
- A When $\pi = .25$, random samples of size 15 will have $\hat{p} \leq \frac{3}{15}$ about 48% of the time.
- B The sample must have been biased because $\hat{p} < 0.25$, so we should have a small p-value.
- C The simulation must have been done wrong, the p-value should be smaller.
- D If we took a larger sample (n > 15), but still had $\hat{p} = 0.2$, the p-value would be larger.
- E If the population size were doubled (486 sharks in the aquarium), but everything else stayed the same, the p-value would decrease.

Shape

(12) Here is a dot plot for the ages of 21 male rattlesnakes captured at a single site. Assume that these 21 snakes can be regarded as a random sample of all male rattlesnakes at that site. The average age is 8.571 years, with a standard deviation of 2.942 years. Describe the shape of this distribution.

- A skewed left
- B slightly skewed left
- C fairly symmetric
- D slightly skewed right
- E skewed right

Measures of Center

(13) Based on the dot plot of rattlesnake ages below, how would you expect the median to compare to the mean?

The median would be

- A less than the mean
- B roughly equal to the mean
- C greater than the mean
- D You cannot tell

Median

(14) Based on the dot plot of rattlesnake ages below, estimate the value of the median

- A 7
- B 8
- C 9
- D 11
- E You cannot tell

Standard Deviation

(15) If the ages of the three youngest rattlesnakes were all changed to 0, what would happen to the SD?

- A It would get smaller
- B It would not change
- C It would get larger
- D You cannot tell

(16) If the ages of the three youngest rattlesnakes were all changed to 0, what would happen to the mean?

- A It would get smaller
- B It would not change
- C It would get larger
- D You cannot tell

Median

(17) If the ages of the three youngest rattlesnakes were all changed to 0, what would happen to the median?

- A It would get smaller
- B It would not change
- C It would get larger
- D You cannot tell

Rarity

(18) For the 21 rattlesnakes, the mean age was 8.571 years with s = 2.942 years. Which of the following calculations do you feel gives the best measure of how rare a 12.5 year old rattlesnake would be at this location?

- A It is the 3rd oldest rattlesnake.
- B It is $12.5 8.571 \approx 3.9$ years above average.
- C It is approximately $\frac{12.5}{2.942} \approx 4.2$ SEs above zero.
- D It's approximate standardized value is $\frac{12.5-8.571}{2.942} \approx 1.34$.

Key Terms and Ideas to Understand in Section 2.3

- Significance level
- Type I error (false alarm)
- Type II error (missed opportunity)
- Power of a test