

अध्याय 14

पारितंत्र

- 14.1 पारितंत्र संरचना एवं क्रियाशीलता
- 14.2 उत्पादकता
- 14.3 अपघटन
- 14.4 ऊर्जा प्रवाह
- 14.5 पारिस्थितिक पिरामिड
- 14.6 पारिस्थितिक अनुक्रम
- 14.7 पोषक चक्र
- 14.8 पारितंत्र सेवाएँ

पारितंत्र को प्रकृति की एक क्रियाशील ईकाई के रूप में देखा जाता है, जहाँ पर जीवधारी आपस में तथा आस पास के भौतिक पर्यावरण के साथ परस्पर क्रिया करते हैं। पारितंत्र का आकार एक छोटे से तालाब से लेकर एक विशाल जंगल या महासागर तक हो सकता है। कई पारिस्थितिकी वैज्ञानिक संपूर्ण जीवमंडल को विश्व (ग्लोबी) पारितंत्र के रूप में देखते हैं, जिसमें पृथ्वी के सभी स्थानीय पारितंत्र समाहित होते हैं। चूँिक यह तंत्र बहुत विशाल एवं जटिल है अत: अध्ययन की सुविधा की दृष्टि से इसे दो आधारभूत श्रेणियों- मुख्यत: स्थलीय एवं जलीय में बाँटा गया है। जंगल, घास के मैदान तथा मरूस्थल आदि कुछ स्थलीय पारितंत्र तथा झीलें, तालाब, दलदली क्षेत्र, निदयाँ एवं ज्वार नदमुख (एस्टुअरी) आदि कुछ जलीय पारितंत्र के उदाहरण हैं। मानव निर्मित पारितंत्र के रूप में शस्यभूमि एवं जलजीवशाला को माना जा सकता है।

हम सबसे पहले, पारितंत्र की संरचना को देखेंगे ताकि निवेश (उत्पादकता), ऊर्जा का स्थानांतरण (आहार शृंखला / जाल, पोषण चक्र) तथा निर्गम (निम्नीकरण एवं ऊर्जा क्षिति) का अवगमन (अवबोध) कर सकें। इसके साथ ही हम चक्रों, शृंखलाओं, जाल तंत्रों के संबंधों को भी देखेंगे-जोकि तंत्र के अंतर्गत प्रवाहित इन ऊर्जाओं के परिणामस्वरूप पैदा हुए हैं।

14.1 पारितंत्र संरचना एवं क्रियाशीलता

अध्याय 13 में आपने पर्यावरण के विभिन्न घटकों के बारे में अध्ययन किया, जिसमें दोनों जैविक एवं अजैविक घटक शामिल हैं। आपने पढ़ा है कि किस प्रकार से जैविक एवं अजैविक घटक व्यक्तिगत रूप से एक-दूसरे को तथा अपने आस पास के वातावरण को प्रभावित करते हैं। आइए! अब इन घटकों को और अधिक समेकित (संयुक्त) रूप से देखें तथा यह जाने कि पारितंत्र के इन घटकों के अंतर्गत ऊर्जा प्रवाह कैसे संपन्न होता है।

जैविक एवं अजैविक घटकों की परस्पर क्रियाओं के फलस्वरूप एक भौतिक संरचना विकसित होती है, जो प्रत्येक प्रकार के पारितंत्र की विशिष्टता है। एक पारितंत्र की पादप एवं प्राणि प्रजातियों की पहचान एवं गणना इसकी प्रजातियों के संघटन (कंपोजीशन) को प्रकट करता है। विभिन्न स्तरों पर विभिन्न प्रजातियों के ऊर्ध्वाधर वितरण को स्तरविन्यास कहते हैं। उदाहरणार्थ एक जंगल में वृक्ष सर्वोपिर ऊर्ध्वाधर स्तर, झाड़ियाँ द्वितीयक स्तर तथा जड़ी-बृटियाँ एवं घास निचले (धरातलीय) स्तर पर निवास करते हैं।

पारिस्थितिक तंत्र में सारे घटक एक इकाई के रूप में तब क्रियाशील दिखते हैं; जब आप निम्न पहलुओं पर दृष्टि डालते हैं-

- (क) उत्पादकता
- (ख) अपघटन
- (ग) ऊर्जाप्रवाह और
- (घ) पोषण चक्र।

एक जलीय पारितंत्र के गुण धर्म (प्रकृति) को समझने के लिए आइए एक छोटे तालाब को उदाहरण स्वरूप लेते हैं। यह एक औचित्यपूर्ण स्वपोषी और अपेक्षित रूप से सरल उदाहरण है जो हमें एक जलीय पारितंत्र में यहाँ तक की जटिल-पारस्परिकता (अन्योन्यक्रियाओं) को समझने में सहायक है। एक तालाब उथले पानी वाला एक जल-निकाय है जिसमें एक पारितंत्र के सभी मूलभूत घटक बेहतर ढंग से प्रदर्शित होते हैं। पानी एक अजैविक घटक है जिसमें कार्बनिक एवं अकार्बनिक तत्त्व तथा प्रचुर मुदा निक्षेप तालाब की तली में जमा होते हैं। सौर निवेश, ताप का चक्र, दिन की अवधि (लंबाई) तथा अन्य जलवायुवीय परिस्थितियाँ समुचे तालाब की क्रियाशीलता की दर को नियमित करते हैं। स्वपोषी घटक जैसे पादप लवक, कुछ काई (शैवाल) तथा प्लवक एवं निमग्न तथा किनारों पर सीमांत पादप तालाब के किनारों पर पाए जाते हैं। उपभोक्ताओं का प्रतिनिधित्व प्राणिप्लवक तथा स्वतंत्र प्लवी एवं तलीय वासी जीव स्वरूपों द्वारा पारितंत्र किया जाता है। अपघटक के उदाहरण कवक एवं जीवाणु हैं जो विशेष रूप से तालाब की तली में प्रचुरता से पाए जाते हैं। यह तंत्र किसी भी पारितंत्र (और कुल मिलाकर जीवमंडल) की सभी प्रक्रियाओं को निष्पादित करते हैं अर्थात स्वपोषियों द्वारा सूर्य की विकिरण ऊर्जा के उपभोग से अकार्बनिक तत्त्वों को कार्बनिक तत्त्वों में बदलना. विभिन्न स्तरों के परपोषितों द्वारा स्वपोषकों का भक्षण, मृत जीवों की सामग्रियों का अपघटन एवं खनिजीकरण कर स्वपोषकों के लिए मुक्त करना इस घटना की पुनरावृत्ति बारंबार होती रहती है। ऊर्जा की एकदिशीय गतिशीलता उच्च पोषी स्तरों की ओर तथा पर्यावरण में इसका अपव्यय और ऊष्मा के रूप में हानि होती है।

14.2 उत्पादकता

किसी भी पारितंत्र की क्रियाशीलता एवं उसके स्थायी रहने के लिए सौर ऊर्जा के निरंतर निवेश (इनपुट) की आधारभूत आवश्यकता है। **प्राथमिक उत्पादन** प्रकाश संश्लेषण के दौरान पादपों द्वारा एक निश्चित समयाविध में प्रित ईकाई क्षेत्र द्वारा उत्पन्न किए गए जैव मात्रा या कार्बनिक सामग्री की मात्रा है। इसे भार (g^{-2}) या ऊर्जा (K cal m^{-2}) के रूप में व्यक्त किया जा सकता है। जैव मात्रा के उत्पादन की दर को **उत्पादकता** कहते हैं। इसे g^{-2} yr^1 या (K cal m^{-2}) yr^{-1} (ऊर्जा) के रूप में व्यक्त किया जा सकता है, जिससे विभिन्न पारितंत्रों को उत्पादकता की तुलना की जा सकती है। इसे सकल या कुल प्राथमिक उत्पादकता तथा नेट प्राथमिक उत्पादकता में विभाजित किया जा सकता है। एक पारिस्थितिक तंत्र की **सकल प्राथमिक उत्पादकता** प्रकाश संश्लेषण के दौरान कार्बनिक तत्त्व की उत्पादन दर होती है। सकल प्राथमिक उत्पादकता की एक महत्त्वपूर्ण मात्रा पादपों में श्वसन द्वारा उपयोग की जाती है। यदि हम सकल प्राथमिक उत्पादकता प्राप्त होती है। यदि हम सकल प्राथमिक उत्पादकता प्राप्त होती है। $\frac{1}{2}$ $\frac{1}{2}$

जी.पी.पी - आर = एन.पी.पी.

नेट प्राथमिक उत्पादकता परपोषितों की खपत (शाकभक्षी या अपघटक के रूप में) के लिए उपलब्ध जैव मात्रा होती है। **द्वितीयक उत्पादकता** को उपभोक्ताओं ने नए कार्बनिक तत्त्वों के निर्माण की दर के रूप में परिभाषित किया है।

प्राथमिक उत्पादकता एक सुनिश्चित क्षेत्र में पादप प्रजातियों के निवास पर निर्भर करती है। ये विभिन्न प्रकार के पर्यावरणीय कारकों, पोषकों की उपलब्धता तथा पादपों की प्रकाश संश्लेषण क्षमता पर भी निर्भर करती है। इसिलए ये विभिन्न प्रकार के पारितंत्रों में भिन्न-भिन्न होती है। संपूर्ण जीव मंडल की वार्षिक कुल प्राथमिक उत्पादकता का भार कार्बनिक तत्त्व (शुष्क भार) के रूप में लगभग 170 बिलियन टन आँका गया है। यद्यपि पृथ्वी के धरातल का लगभग 70 प्रतिशत भाग समुद्रों द्वारा ढका हुआ है, फिर भी बावजूद इनकी उत्पादकता केवल 55 बिलियन टन है। शेष मात्रा भूमि पर उत्पन्न होती है। अपने शिक्षक के साथ महासागरों की निम्न उत्पादकता के प्रमुख कारणों के बारे में चर्चा कीजिए।

14.3 अपघटन

आपने शायद सुना होगा कि केंचुओं को किसान के मित्र के रूप में संबोधित किया जाता है। ऐसा इसलिए हैं; क्योंकि ये जटिल कार्बनिक पदार्थों खंडन करने के साथ-साथ भूमि को भुरभुरा बनाने में मदद करते हैं। उसी प्रकार अपघटक जटिल कार्बनिक सामग्री को अकार्बनिक तत्त्वों जैसे- कार्बन डाईऑक्साइड, जल एवं पोषकों में खंडित करने में सहायता करते हैं और इस प्रक्रिया को अपघटन कहते हैं। पादपों के मृत अवशेष -जैसे पत्तियाँ, छाल, फूल तथा प्राणियों (पशुओं) के मृत अवशेष, मलादि सहित अपरद (डेट्राइटस) बनाते हैं, जोिक अपघटन के लिए कच्चे पदार्थों का काम करते हैं। अपघटन की प्रक्रिया के महत्त्वपूर्ण चरण खंडन, निक्षालन, अपचयन, ह्यूमस भवन (बनना), खनिजी भवन हैं।

चित्र 14.1 एक स्थलीय पारितंत्र में अपघटन चक्र का आरेखीय निरूपण

अपरदाहारी (जैसे कि केंचुए) अपरद को छोटे-छोटे कणों में खंडित कर देते हैं। इस प्रक्रिया को खंडन कहते हैं। निक्षालन प्रक्रिया के अंतर्गत जल-विलेय अकार्बनिक पोषक भूमि मृदासंस्तर में प्रविष्ट कर जाते हैं और अनुपलब्ध लवण के रूप में अवक्षेपित हो जाते हैं। बैक्टीरियल (जीवाणुवीय) एवं कवकीय एंजाइंस अपरदों को सरल अकार्बनिक तत्त्वों में तोड देते हैं। इस प्रक्रिया को अपचय कहते हैं।

यह समझना महत्त्वपूर्ण हैं कि उपर्युक्त अपघटन की समस्त प्रक्रियाएँ अपरद पर समानांतर रूप से लगातार चलती रहती हैं। (चित्र 14.1) ह्यूमीिफकेशन और मिनरेलाइजेशन की प्रक्रिया अपघटन के दौरान मृदा में संपन्न होती है। ह्यूमीिफकेशन के द्वारा एक गहरे रंग के क्रिसटल रहित तत्त्व का निर्माण होता है जिसे ह्यूमस कहते हैं जोिक सूक्ष्मजैविक क्रिया के लिए उच्च प्रतिरोधी होता है और इसका अपघटन बहुत ही धीमी गित से चलता है। स्वभाव (प्रकृति) में कोलाइडल होने के कारण यह पोषक के भंडार का काम करता है। ह्यूमस पुन: कुछ सूक्ष्मजीवों द्वारा खंडित होता है और जो खनिजीकरण नामक प्रक्रिया द्वारा अकार्बनिक पोषक उत्पन्न होते हैं उन्हें मुक्त करता है।

पारितंत्र

अपघटन एक प्रक्रिया है जिसमें ऑक्सीजन की आवश्यकता होती है। अपघटन की दर जलवायुवीय घटकों तथा अपरद के रासायिनक संघटनों द्वारा निर्धारित होती है। एक विशिष्ट जलवायुवीय पिरिस्थित में; यदि अपरद काइटिन तथा लिग्निन से भरपूर होता है तब अपघटन दर धीमी होती हैं, यदि अपरद नाइट्रोजन तथा जलविलेय तत्त्वों जैसे चीनी आदि से भरपूर होता है तब यह तेज होती है। ताप एवं मृदा की नमी बहुत ही महत्त्वपूर्ण जलवायुवीय घटक है जो मृदा के सूक्ष्मजीवों की क्रियाओं द्वारा अपघटन की गित को नियमित करते हैं। गरम एवं आई पर्यावरण में अपघटन की गित तेज होती है जबिक निम्न ताप एवं अवायुजीवन अपघटन की गित को धीमा करती है जिसके परिणाम स्वरूप कार्बिनक पदार्थों का भंडार जमा हो जाता है।

14.4 ऊर्जा प्रवाह

गहरे समुद्र के जलतापीय पारितंत्र को छोड़कर पृथ्वी पर सभी पारिस्थितिक तंत्रों के लिए एक मात्र ऊर्जा स्रोत सूर्य है। आपितत सौर विकिरण का 50 प्रतिशत से कम भाग प्रकाश संश्लेषणात्मक सिक्रय विकिरण में प्रयुक्त होता है। हम जानते हैं कि पादप एवं प्रकाश संश्लेषण सक्षम जीवाणु (स्वपोषी) सूर्य की विकरित ऊर्जा को सरल अकार्बनिक पदार्थों से आहार तैयार करने में लगाते हैं। पादप केवल 2-10 प्रतिशत प्रकाश संश्लेषणात्मक सिक्रय विकिरण का प्रग्रहण करते हैं और यही आंशिक मात्रा की ऊर्जा संपूर्ण विश्व का संपोषण करती है। अत: यह जानना अत्यंत महत्त्वपूर्ण है कि पादपों द्वारा संग्रहण की गई सौर ऊर्जा एक पारिस्थितिक तंत्र के विभिन्न जीवों के माध्यम से किस प्रकार प्रवाहित होती है। पृथ्वी के सभी जीव आहार के लिए प्रत्यक्ष या अप्रत्यक्ष रूप से उत्पादकों पर निर्भर रहते हैं। अत: आप पायेंगे कि सूर्य से उत्पादकों की ओर और फिर उपभोक्ता की ओर ऊर्जा का प्रवाह एकदिशीय होता है। क्या इसमें ऊष्मा गितक का प्रथम सिद्धांत निहित हैं?

पारिस्थितिक तंत्र ऊष्मा गितक के दूसरे सिद्धांत से अवमुक्त नहीं हैं। उन्हें निरंतर ऊर्जा की आपूर्ति की आवश्यकता होती है तािक वे अपेक्षित अणुओं को संश्लेषित कर बढती हुई अव्यवस्थापन के प्रति सर्व-व्यापी प्रवृत्ति से संघर्ष कर सकें।

पारिस्थितिक तंत्र की शब्दावली में हरे पादप को उत्पादक कहा जाता है। स्थलीय पारिस्थितिक तंत्र में शाकी एवं काष्ठीय पादप प्रमुख उत्पादक हैं। इसी प्रकार विभिन्न प्रजातियाँ जैसे-पादपप्लवक, काई और बड़े पादप जलीय पारिस्थित तंत्र के प्राथिमक उत्पादक हैं।

आपने खाद्य शृंखलाओं तथा जालों (बेब्स) के बारे में पढ़ा है जो कि प्रकृति में विद्यमान हैं। पादप (या उत्पादक) से प्रारंभ होकर खाद्य शृंखला या जाल इस प्रकार से बने होते हैं कि प्रत्येक प्राणी जो एक पादप से आहार ग्रहण करता है या अन्य प्राणी पर निर्भर करता है और बदले में वह किसी अन्य के लिए आहार बनाता है। इस परस्पर अंतर निर्भरता के कारण शृंखला जाल (वेब) की रचना होती है। किसी भी जीव द्वारा आबद्ध (ग्रहण) की गई ऊर्जा सदैव के लिए संचित नहीं रहती है। उत्पादक द्वारा आबद्ध

Y

की गई ऊर्जा या तो उपभोक्ता को भंज दी जाती है या वह जीव मृत हो जाती है। एक जीव की मृत्यु अपरद खाद्य शृंखला / जाल की शरुआत होती है।

सभी जीव अपनी आहार आवश्यकता के लिए (प्रत्यक्ष या अप्रत्यक्ष रूप से) पादपों पर निर्भर करते हैं। अत: इन्हें उपभोक्ता तथा परपोषित भी कहा जाता है और यदि वे उत्पादक, पादपों से आहारपूर्ति करते हैं तब उन्हें प्राथमिक उपभोक्ता कहा जाता है और अगर एक पशु दूसरे पशु (वह पशु जो पेड़ों को या उसके उत्पाद को खाता है) को खाता है, उसे द्वितीयक उपभोक्ता कहा जाता है। ठीक उसी प्रकार से आप तृतीयक उपभोक्ता भी हो सकते हैं। निश्चित ही प्राथमिक उपभोक्ता शाकाहारी या शाकभक्षी होंगे। स्थलीय पारिस्थितिक तंत्र में कुछ सामान्य शाकाहारी, कीट-पतंगे, पक्षी तथा स्तनधारी पशु तथा जलीय पारिस्थितिक तंत्र में मृदकवची (मोलस्क) होते हैं।

वे उपभोक्ता, जो शाकाहारी जीवों से आहारपूर्ति करते हैं, वे मांसाहारी या मांसभक्षी होते हैं या इन्हें प्राथमिक मांसभक्षी कहना अधिक उपयुक्त होगा (यद्यपि द्वितीयक उपभोक्ता)। वे पशु, जो आहार हेतु प्राथमिक मांसभिक्षयों पर निर्भर करते हैं उन्हें द्वितीयक मांसभक्षी के रूप में नामित किया गया है।

एक साधारण खाद्य शृंखला यहाँ दिखाई गई है -

एक अन्य प्रकार की खाद्य शृंखला को अपरद खाद्य शृंखला के नाम से जाना जाता है जो मृत कार्बनिक सामग्री से प्रारंभ होती है। यह अपघटकों से बना होता है जोिक मुख्यत: कवक एवं बैक्टीरिया के रूप में परपोषित जीव होते हैं। ये मृत कार्बनिक सामग्री या अपरदों के खंडन द्वारा अपेक्षित ऊर्जा एवं पोषण प्राप्त करते हैं। इन्हें मृतपोषी या पूर्तिजीवी (मृत: अपघटन) के नाम से भी जाना जाता है। अपघटक पाचक एंजाइम्स स्रवित करते हैं, जो मृत जीवों तथा व्यर्थ सामग्री को साधारण, अकार्बनिक पदार्थों में तोड़ डालते हैं, जो बाद में उन्हीं के द्वारा अवशोषित कर लिए जाते हैं।

जलीय पारितंत्र में चारण खाद्य शृंखला ऊर्जा प्रवाह का महत्त्वपूर्ण साधन है। इसके विरुद्ध, स्थलीय पारिस्थितिक तंत्र में जी एफ सी की तुलना में अपरद खाद्य शृंखला द्वारा कहीं अधिक ऊर्जा प्रवाहित होती है। कुछ स्तरों पर अपरद खाद्य शृंखला को चारण (चराई) खाद्य शृंखला से जोड़ा जा सकता है। अपरद खाद्य शृंखला के कुछ जीव, चारण खाद्य शृंखला-पशुओं के शिकार बन जाते हैं और एक प्राकृतिक पारिस्थितिक तंत्र में कुछ जीव-जंतु जैसे काकरोच (तिलचट्टे) एवं कौवे आदि सर्वभक्षी होते हैं। खाद्य शृंखलाओं का यह प्राकृतिक अंतरसंबंध एक आहार जाल (फूडवेब) का निर्माण करता है।

आहारपूर्ति संबंधों के अनुसार सभी जीवों का प्राकृतिक वातावरण या एक समुदाय में अन्य जीवों के साथ एक स्थान होता है। सभी जीव अपने पोषण या आहार के स्रोत के आधार पर आहार शृंखला में एक विशेष स्थान ग्रहण करते हैं, जिसे (ट्राफिक लेवेल) **पोषण स्तर** के नाम से जाना जाता है। उत्पादक प्रथम पोषण स्तर में आते हैं, शाकाहारी

चित्र 14.2 एक पारिस्थितिक तंत्र में पोषण स्तर का आरेखीय निरूपण

(प्राथमिक उपभोक्ता) दूसरी एवं मांसाहारी (द्वितीयक उपभोक्ता) तीसरे पोषण स्तर से संबद्ध होते हैं। (चित्र 14.2)

यहाँ पर ध्यान देने योग्य महत्त्वपूर्ण बात यह है कि उत्तरोत्तर पोषण स्तरों पर ऊर्जा की मात्रा घटती जाती है। जब कोई जीव मरता है तो वह अपरद या मृत जैवमात्रा में बदल जाता है जो अपघटकों के लिए एक ऊर्जा स्रोत के रूप में काम करता है। प्रत्येक पोषण स्तर पर जीव अपनी ऊर्जा की आवश्यकता के लिए निम्न पोषण स्तर पर निर्भर रहता है।

एक विशिष्ट समय पर प्रत्येक पोषण स्तर का जीवित पदार्थ की कुछ खास मात्रा होती है, जिसे स्थित शस्य या खड़ी फसल कहा जाता है। स्थित शस्य को जीवित जैविकों की मात्रा (जैवमात्रा) या इकाई क्षेत्र में संख्या से मापा जाता है। एक प्रजाति की जैवमात्रा को ताजे या शुष्क भार के रूप में व्यक्त किया जाता है। एक जैवमात्रा का मापन शुष्क भार के शब्दों में किया जाय तो वह अधिक विशुद्ध होगा। क्यों?

चारण खाद्य शृंखला में पोषण स्तरों की संख्या प्रतिबंधित होती है इस तरह से ऊर्जा प्रवाह का स्थानांतरण 10 प्रतिशत कम होता है और प्रत्येक निम्न पोषण स्तर से ऊपर का पोषण स्तर पर केवल 10 प्रतिशत ऊर्जा प्रवाहित होती है। प्रकृति में यह संभव है कि कई स्तर हों जैसे कि चरण खाद्य शृंखला में उत्पादक, शाकभक्षी, प्राथमिक मांसभक्षी, द्वितीयक मांसभक्षी आदि (चित्र 14.3)। क्या आप सोच सकते हैं कि इस प्रकार अपरद खाद्य शृंखला की कोई सीमा है?

चित्र 14.3 विभिन्न पोषण स्तरों में से होता हुआ ऊर्जा का प्रवाह

14.5 पारिस्थितिक पिरैमिड (सूची स्तंभ)

आप पिरैमिड के आकार से निश्चित ही परिचित होंगे। पिरैमिड का आधार चौड़ा (विस्तृत) एवं शिखाग्र की ओर सँकरा होता जाता है। विभिन्न पोषण रीतियों पर जीवों के बीच चाहे आप एक खाद्य या ऊर्जा संबंध जोड़े तो आपको पिरैमिड के समान आकार मिलेगा। इस संबंध को संख्या, जैव मात्रा या ऊर्जा के रूप में व्यक्त किया जा सकता है। प्रत्येक पिरैमिड के आधार का प्रतिनिधित्व उत्पादक या पहली पोषण स्तर करता है जबिक शिखर का प्रतिनिधित्व तृतीयक पोषण स्तर या सर्वोच्च उपभोक्ता करता है। तीन पारिस्थितिक पिरैमिड जिनका आमतौर पर अध्ययन किया जाता है, वे हैं (क) संख्या का पिरैमिड (ख) जैवमात्रा का पिरैमिड और (ग) ऊर्जा का पिरैमिड। विस्तृत जानकारी के लिए चित्र 14.4 अ. ब. स और द देखें।

ऊर्जा, मात्रा या अंश, जैवमात्रा या संख्याओं की किसी भी गणना में पोषण स्तर के सभी जीवों को शामिल किया जाना चाहिए। यदि हम किसी पोषण स्तर के कुछ व्यष्टियों को ही गणना में लेते हैं तो हमारे द्वारा किया गया कोई भी व्यापकीकरण सत्य नहीं होगा। इसके साथ ही एक प्रदत्त जीव एक ही समय एक से अधिक पोषणरीतियों में अधिष्ठित हो जाएगा। हमें यह अवश्य ध्यान में रखना चाहिए कि पोषण स्तर एक क्रियात्मक स्तर का प्रतिनिधित्व करता है न कि किसी प्रजाति का। एक प्रदत्त प्रजाति, एक ही समय पर एक ही पारिस्थितिक तंत्र में एक से अधिक पोषण रीतियों में अधिष्ठित हो सकती है; उदाहरण के लिए एक गौरेया जब बीज, फल व मटर खाती है तो वह प्राथमिक उपभोक्ता

है किंतु जब वह कीटों एवं केंचुओं को खाती है, तब वह द्वितीयक उपभोक्ता होती है। क्या आप यह विवरण दे सकते हैं कि एक खाद्यशृंखला में मनुष्य कितनी पोषणरीतियों का प्रयोग करता है?

अधिकतर पारिस्थितिक तंत्रों में संख्याओं, ऊर्जा तथा जैव मात्रा के सभी पिरैमिड आधार से ऊपर की ओर होते हैं। अर्थात् शाकाहारियों की अपेक्षा उत्पादकों की संख्या एवं जैव मात्रा अधिक होती है और इसी तरह से शाकाहारियों की संख्या एवं जैव मात्रा

चित्र 14.4 (अ) एक घास के मैदान की पारिस्थितिक तंत्र का पिरैमिड लगभग 6 मिलियन पादपों के उत्पादन पर आधारित पारिस्थितिक तंत्र में समर्थित केवल 3 मांसाहारी जीव हैं।

चित्र 14.4 (ब) एक जैव मात्रा का पिरैमिड शीर्ष पोषण स्तर पर एक तीव्र गिरावट दर्शाता है। एक दलदली पारिस्थितिक तंत्र से आंकड़े

चित्र 14.4 (स) जैव मात्रा का उल्टा पिरैमिड प्राणीप्लवक की व्यापक खड़ी फसल को समर्थित करती पादप प्लवक की छोटी खड़ी फसल।

जीव विज्ञान

चित्र 14.4 द ऊर्जा का एक आदर्श पिरैमिड चित्र 14.4-अ-ब पारिस्थितिक पिरैमिड (P) उत्पादक, (PC) प्राथिमिक उपभोक्ता (SC) द्वितीयक उपभोक्ता, (TC) तृतीयक उपभोक्ता

मांसाहारियों की अपेक्षा अधिक होती है। इसी प्रकार से निम्न पोषण स्तर में ऊर्जा की मात्रा ऊपरी पोषण स्तर से अधिक होती है।

इस व्यापकीकरण में कुछ अपवाद हैं; यदि आप एक बड़े वृक्ष पर आहार प्राप्त करने वाले कीटों की संख्या की गणना करें तो आपको कैसा पिरैमिड प्राप्त हो सकता है। अब उसमें उन छोटे कीटों पर निर्भर छोटे पिक्षयों की गणना करें, इसके साथ ही कीटभक्षी पिक्षयों पर निर्भर बड़े पिक्षयों की गणना करें। अब आप प्राप्त आंकड़ों पर चित्र बनाएँ। समुद्र में जैव मात्रा (भार) के पिरैमिड भी प्राय: उल्टे होते हैं, क्योंकि मछलियों की जैवमात्रा पादपप्लवकों की जैव मात्रा से बहुत अधिक होती है। क्या यह एक विरोधाभास नहीं है? आप इसकी व्याख्या कैसे करेंगे?

ऊर्जा पिरैमिड सदैव खड़ी अवस्था में होता है, कभी उल्टा नहीं हो सकता, क्योंकि जब ऊर्जा किसी विशेष पोषण स्तर से अग्र पोषण स्तर में पहुँचती है, तो हर स्तर पर ऊष्मा के रूप में ऊर्जा का ह्रास होता है। ऊर्जा पिरैमिड का प्रत्येक स्तंभ उस पोषण स्तर में किसी विशेष समय पर अथवा प्रति इकाई क्षेत्र वार्षिक ऊर्जा का द्योतक है। यद्यपि, पारिस्थितिकी पिरैमिड की कुछ सीमाएँ हैं, जैसे कि पिरैमिड में ऐसी जातियों का समावेश भी होता है, जोिक दो या अधिक भोजन स्तरों से संबंधित हो सकता है। इससे एक साधारण आहार शृंखला बनती है, जो कि प्रकृति में विद्यमान नहीं होती है, इसमें आहार जाल का समावेश नहीं है। पारिस्थितिकी तंत्र में एक प्रमुख भूमिका निभाने के अतिरिक्त मृत जीवियों को पारिस्थितिकी पिरामिड में कोई स्थान प्राप्त नहीं है।

14.6 पारिस्थितिक अनुक्रमण

आपने अध्याय-13 में समष्टि और समुदाय के लक्षणों, और पर्यावरण में उनकी अनुक्रिया तथा किस प्रकार ये अनुक्रियाएँ एक वैयक्तिक अनुक्रिया से भिन्न हैं, का अध्ययन किया होगा। चलो, हम समय के साथ सामुदायिक अनुक्रिया के अन्य पहलूओं पर विचार करें।

सभी समुदायों का महत्त्वपूर्ण लक्षण पर्यावरण के बदलते स्वरूप के साथ इसके संगठन एवं संरचना में निरंतर परिवर्तन होते रहना है। यह परिवर्तन क्रमबद्ध और भौतिक पर्यावरण के परिवर्तन के सामांतर होता है। अंतत: यह परिवर्तन एक समुदाय को गठित करता है, जो कि पर्यावरण से संतुलन के नजदीक है और इसे चरम समुदाय कहा जाता है। एक सुनिश्चित क्षेत्र की प्रजाति संरचना में उचित रूप से आंकलित परिवर्तन को पारिस्थितिक अनुक्रमण कहते हैं। अनुक्रमण के दौरान कुछ प्रजातियाँ एक क्षेत्र में नयी बस्ती बसा लेती हैं और इनकी जनसंख्या अनिगनत हो जाती है, जबिक दूसरी प्रजातियों की जनसंख्या घटती चली जाती है, और यहाँ तक कि अदृश्य हो जाती है।

समुदाय का संपूर्ण क्रम, जो दिए हुए क्षेत्र में सफलतापूर्वक परिवर्तित होता है, उसे क्रमक कहते हैं। विशेष परिवर्तनशील समुदायों को क्रमकी चरण या क्रमकी समुदाय कहा जाता है। अनुक्रमिकीय क्रमकी चरणों में, जीवों की प्रजातियों की भिन्नता, जीव और प्रजातियों की जनसंख्या वृद्धि, साथ ही संपूर्ण जैव मात्रा में वृद्धि जैसे परिवर्तन होते हैं। संसार के निर्वतमान समुदाय धरती पर जीवोत्पत्ति के पश्चात् लाखों वर्षों के अनुक्रमण के फलस्वरूप उत्पन्न हुए हैं। वास्तव में अनुक्रमण एवं विकास उस समय सामांतर प्रक्रियाएँ थीं।

अत: अनुक्रमण एक प्रक्रिया है, जो वहाँ शुरू होती है, जहाँ कोई सजीव नहीं होते, अथवा कोई ऐसा क्षेत्र जहाँ कभी कोई सजीव नहीं रहा हो, उदाहरण के लिए नग्न पत्थर, या फिर ऐसा क्षेत्र जहाँ के सभी जीव, जो कभी वहाँ रहते थे, किसी प्रकार से नष्ट (लुप्त) हो गए। पहले को प्राथमिक अनुक्रमण कहते हैं, जबिक दूसरे को द्वितीयक अनुक्रमण के रूप में जाना जाता है।

प्राथमिक अनुक्रमण पाए जाने वाले क्षेत्रों का अनुक्रम है- तुरंत (नया) ठंडा लावा, नग्न पत्थर, नविकसित तालाब या जलाशय। नये जीवीय समुदाय की संस्थापना सामान्यत: धीमी होती है। विविध जीवों के जीवीय समुदाय की संस्थापना से पूर्व, वहाँ उपजाऊ मिट्टी अवश्य होनी चाहिए। अधिकतर जलवायु की निर्भरता के आधार पर, प्राकृतिक रूप से उपजाऊ मिट्टी के उत्पादन में कई सौ से कई हजार वर्ष लग जाते हैं।

द्वितीयक अनुक्रमण ऐसे क्षेत्र में प्रारंभ होता है जहाँ प्राकृतिक जीवीय समुदाय निरस्त हो गए हैं, जैसे कि पूरी तरह से छोड़ी गई कृषि योग्य भूमि, जले या कटे वन, बाढ़ से प्रभावित जमीन। जबिक कुछ मिट्टी या अवसाद इनमें उपस्थित रहते हैं, अनुक्रमण की क्रिया प्राथमिक अनुक्रमण की अपेक्षा तेज होती है।

साधारणतया पारिस्थितिक अनुक्रमण का विवरण वानस्पितक परिवर्तन पर केंद्रित होता है। जबिक बाद में ये वानस्पितिक परिवर्तन, विभिन्न प्रकार के जानवरों के खाद्य और शरण स्थल पर प्रभाव डालते हैं। अत: जैसे-जैसे अनुक्रमण बढ़ता है, जानवरों के प्रकार एवं संख्या तथा अपघटक भी बदलते हैं।

किसी भी समय प्राथमिक अथवा द्वितीयक अनुक्रमण को प्राकृतिक अथवा मानव जिनत विघ्न/बाधाओं (जैसे आग, जंगलों का काटना इत्यादि) द्वारा क्रमक अवस्था को प्राथमिक अवस्था में बदला जा सकता है। इन बाधाओं से ऐसी नयी स्थितियाँ/अवस्थाएँ पैदा हो जाती हैं, जिनसे नयी जातियों को प्रोत्साहन मिलता है तथा अन्य जातियाँ हतोत्साहित होती है, अथवा निष्कासित हो जाती हैं।

14.6.1 पादपों का अनुक्रमण

आवास की प्रकृति के आधार पर — चाहे वह पानी हो (या बहुत गीला क्षेत्र) अथवा बहुत शुष्क क्षेत्र – पौधों के इस अनुक्रमण को क्रमशः जलारंभी अथवा शुष्कतारंभी कहते हैं। जलारंभी अनुक्रमण जलमग्न क्षेत्रों में होता है और अनुक्रमण श्रेणी हाइड्रिक से समोदिक परिस्थित की ओर अग्रसरित होती हैं। इसके विपरीत शुष्कतारंभी अनुक्रमण शुष्क क्षेत्रों में होता है और यह श्रेणी शुष्कता से समोदिक परिस्थित की ओर बढ़ता है। अतः जलारंभी एवं शुष्कतारंभी, दोनों ही अनुक्रमण मध्यम जल परिस्थित न तो बहुत शुष्क (जीरिक) और न बहुत जलीय।

वह प्रजाति, जो खाली एवं नग्न क्षेत्र पर आक्रमण करती है, उन्हें मूल अन्वेषक प्रजाति कहा जाता है। प्राय: लाइकेन चट्टानों पर प्राथमिक अनुक्रमण करते हैं, जो चट्टानों को पिघलाने के लिए अम्ल का स्राव करते हैं तथा अपरदन एवं मृदा निर्माण में सहायक होते हैं। बाद में ये बहुत छोटे पौधों जैसे ब्रायोफाइट के लिए मार्ग प्रशस्त करते हैं, जो मृदा की कम मात्रा में भी अपनी पकड़ बनाये रखने में सक्षम हैं। समय के साथ उनका स्थान बड़े पौधों द्वारा ग्रहण कर लिया जाता है। अंतत: कई चरणों के बाद एक स्थिर चरमावस्था पर वन समुदाय का निर्माण होता है। जब तक पर्यावरण नहीं बदलता है, चरमसीमा समुदाय स्थिर रहता है। समय के साथ मरूस्थलीय आवास समोद्भिदीय में परिवर्तित हो जाते हैं।

जल में प्राथमिक अनुक्रमण में, लघु पादपप्लवक मूल अंवेशक होते हैं। ये क्रमशः जड़ वाले निमग्न पादप, जड़ वाले प्लावी पादप एवं मुक्त प्लावी पादप के पश्चात दलदली नरकुल, दलदली घास, झाड़ी एवं अंततः पेड़ों द्वारा प्रतिस्थापित किए जाते हैं। अंततः वन ही पुनः चरमसीमा समुदाय होंगे। समय के साथ जलकाय स्थलीय पारितंत्र में परिवर्तित हो जाती है (चित्र 14.5)।

द्वितीयक अनुक्रमण में, प्रजाति का आक्रमण मृदा की स्थिति जल की उपलब्धता, पर्यावरण, तथा बीज या अन्य उपस्थित प्रवर्ध्य पर निर्भर करती है। यद्यपि पहले से मृदा विद्यमान है, यहाँ अनुक्रमण दर बहुत तेज होती है और चरमावस्था तेजी से प्राप्त हो जाती है।

समझने के लिए यह महत्त्वपूर्ण है कि अनुक्रमण, विशेषरूप से प्राथमिक अनुक्रमण एक बहुत धीमी प्रक्रिया है, जो चरमावस्था तक पहुँचने में शायद हजारों वर्ष लगाए। दूसरा महत्त्वपूर्ण तथ्य यह समझना है कि सभी अनुक्रमण चाहे पानी में हो या भूमि पर एक ही प्रकार से चरम समुदाय मीजिक की ओर अग्रसर होता है।

14.7 पोषक चक्रण

आपने कक्षा 11 में पढ़ा है कि जीवों को लगातार वृद्धि, प्रजनन एवं विभिन्न कायिक क्रियाओं को संपन्न करने के लिए लगातार पोषकों के संभरण की आवश्यकता होती है। मृदा में विद्यमान पोषकों की मात्रा; जैसे कि कार्बन, नाइट्रोजन, फॉस्फोरस, कैल्सियम आदि को स्थायी अवस्था के रूप में संदर्भित किया जाता है। यह विभिन्न प्रकार के पारितंत्र में भिन्न होती है और साथ ही मौसम पर आधारित होती है।

पारितंत्र

चित्र 14.5 जीवमंडल में कार्बन चक्र का सरलीकृत मॉडल

यह समझना अधिक महत्त्वपूर्ण है कि पारितंत्र से पोषक कभी समाप्त नहीं होते हैं। ये बार-बार पुन: चक्रित होते हैं एवं अनंत काल तक चलते रहते हैं। एक पारितंत्र के विभिन्न घटकों के माध्यम से पोषक तत्त्वों की गतिशीलता को पोषक चक्र कहा जाता

चित्र 14.6 भूमंडल में कार्बन-चक्र का सरलीकृत मॉडल

है। पोषक चक्र का एक अन्य नाम जैव भू रसायन चक्र (जैव सजीव जीवन, भू चट्टानें, हवा, पानी) है। पोषक चक्र दो प्रकार के होते हैं (क) गैसीय और (ख) अवसादी या तलछटी। गैसीय प्रकार के पोषक चक्र (जैसे नाइट्रोजन, कार्बनचक्र) के भंडार वायुमंडल में विद्यमान होते हैं तथा अवसादी चक्र (जैसे- सल्फर एवं फॉस्फोरस चक्र) के भंडार धरती के पटल (पपड़ी) में स्थित होते हैं। पर्यावरणीय घटक जैसे कि मिट्टी, आर्द्रता, पी एच, ताप आदि वायुमंडल में पोषकों के मुक्त होने की दर तय करते हैं। एक भंडार की क्रियाशीलता, कमी को पूरा करने के लिए होती है जोिक अंतर्वाह एवं बर्हि:वाह की दर के असंतुलन के कारण संपन्न होती है।

आपने कक्षा 11 में, नाइट्रोजन चक्र का विस्तृत अध्ययन किया था। यहाँ पर हम कार्बन तथा फॉस्फोरस चक्रों के बारे में चर्चा कर रहे हैं।

14.7.1 पारितंत्र-कार्बन चक्र

जब आप सजीवों की संरचना का अध्ययन करेंगे तो पायेंगे कि जीवों के शुष्क भार का 49 प्रतिशत भाग कार्बन से बना होता है और जल के पश्चात् यही आता है। यदि हम

भूमंडलीय कार्बन की पूर्ण मात्रा की ओर ध्यान दें तब हम देखेंगे कि समुद्र में 71 प्रतिशत कार्बन विलेय के रूप में विद्यमान है। यह सागरीय कार्बन भंडार वायुमंडल में कार्बन डाईआक्साइड की मात्रा को नियमित करता है (चित्र 14.6)। क्या आप जानते हैं कि कुल भूमंडलीय कार्बन का केवल एक प्रतिशत भाग वायुमंडल में समाहित है?

जीवाश्मी ईंधन भी कार्बन के एक भंडार का प्रतिनिधित्व करता है। कार्बन चक्र वायुमंडल, सागर तथा जीवित एवं मृतजीवों द्वारा संपन्न होता है। एक अनुमान के अनुसार जैव मंडल में प्रकाश संश्लेषण के द्वारा प्रतिवर्ष 4×10^{13} किग्रा. कार्बन का स्थिरीकरण होता है। एक महत्त्वपूर्ण कार्बन की मात्रा $\mathrm{Co}_2($ कार्बन डाईआक्साइड) के रूप में उत्पादकों एवं उपभोक्ताओं के श्वसन क्रिया के माध्यम से वायुमंडल में वापस आती है। इसके साथ ही भूमि एवं सागरों के कचरा सामग्री एवं मृत कार्बनिक सामग्री की अघटन प्रक्रियाओं के द्वारा भी कार्बन डाईआक्साइड की काफी मात्रा अपघटकों द्वारा छोड़ी जाती है। यौगिकीकृत कार्बन की कुछ मात्रा अवसादों में नष्ट होती है और संचरण द्वारा निकाली जाती है। लकड़ी के जलाने, जंगली आग एवं जीवाश्मी ईंधन के जलने के कारण, कार्बनिक सामग्री, ज्वालामुखीय क्रियाओं आदि अतिरिक्त स्रोतों द्वारा वायुमंडल में कार्बन डाईआक्साइड को मुक्त किया जाता है।

कार्बन चक्र में मानवीय क्रियाकलापों का महत्त्वपूर्ण प्रभाव है। तेजी से जंगलों का विनाश तथा परिवहन एवं ऊर्जा के लिए जीवाश्मी ईधनों को जलाने आदि से महत्त्वपूर्ण रूप से वायुमंडल में कार्बनडाईआक्साइड को मुक्त करने की दर बढ़ी है, (अध्याय 16 में ग्रीनहाउस (पौधाघर) प्रभाव देखें)।

14.7.2 पारितंत्र-फॉस्फोरस चक्र

फॉस्फोरस जैविक झिल्लियाँ, न्यूक्लिक एसिड (अम्ल) तथा कोशिकीय ऊर्जा स्थानांतरण प्रणाली का एक प्रमुख घटक है। अनेक प्राणियों को अपना कवच, अस्थियाँ एवं दाँत आदि बनाने के लिए इसकी आवश्यकता होती है। फॉस्फोरस का प्राकृतिक भंडारण चट्टानों में है जो कि फॉस्फेट के रूप में फॉस्फोरस को संचित किए हुए हैं। जब चट्टानों का अपक्षय होता है तो थोड़ी मात्रा में ये फॉस्फेट भूमि के विलयन में घुल जाते हैं एवं उन्हें पादपों की जड़ों द्वारा अवशोषित कर लिया जाता है। शाकाहारी और अन्य जानवर इन तत्त्वों को पादपों से ग्रहण करते हैं (चित्र 14.7)। कचरा उत्पादों एवं मृत जीवों को फॉस्फोरस विलेयक जीवाणुओं द्वारा अपघटित करने पर फॉस्फोरस मुक्त किया जाता है। कार्बन चक्र की भाँति पर्यावरण में फॉस्फोरस को श्वसन द्वारा अवमुक्त नहीं किया जाता है। क्या आप कार्बन चक्र एवं फॉस्फोरस चक्र के बीच कुछ विभेदों का पता कर सकते हैं?

यहाँ पर फॉस्फोरस एवं कार्बन चक्र के बीच दो व्यापक अंतर हैं। पहला बरसात के द्वारा वायुमंडल में फॉस्फोरस का निवेश, कार्बन निवेश की अपेक्षा बहुत कम होता है। दूसरा, जीवों और पर्यावरण के बीच फॉस्फोरस का गैसीय विनिमय बिल्कुल नगण्य होता है।

चित्र 14.7 एक स्थलीय पारिस्थितिक तंत्र में फॉस्फोरस चक्र का सरलीकृत मॉडल

14.8 पारितंत्र सेवाएँ

एक स्वस्थ पारितंत्र आर्थिक, पर्यावरणीय तथा सौंदर्यात्मक वस्तुएँ एवं सेवाओं के विस्तृत परिसर का आधार है। पारितंत्र प्रक्रिया के उत्पादों को **पारितंत्र सेवाएँ** के नाम से जाना जाता है; उदाहरण के लिए, एक स्वस्थ वन पारितंत्र की भूमिका वायु एवं जल को शुद्ध बनाना, सूखा एवं बाढ़ों की घटाना, पोषकों को चिक्रित करना, भूमि को उर्वर बनाना, जंगली जीवों को आवास उपलब्ध कराना, जैव विविधता को बनाए रखना, फसलों का परागण करने में सहायता करना, कार्बन के लिए भंडारण स्थल उपलब्ध कराना और साथ ही सौंदर्यात्मक, सांस्कृतिक एवं आध्यात्मिक मूल्य प्रदान करना आदि है। यद्यपि जैव विविधता को इन सेवाओं का मूल्यांकन करना एक कठिन कार्य है, परंतु यह मानना उपयुक्त है कि जैव विविधता को एक ऊँची कीमत की पर्ची प्रदान की जानी चाहिए।

रॉबर्ट कोंसटैंजा एवं उनके साथियों ने हाल ही में, प्रकृति के जीवन समर्थक (आधारीय) सेवाओं की एक कीमत निर्धारित करने का प्रयास किया है। शोधकर्ताओं ने इस मूलभूत पारिस्थितिक तंत्र की सेवाओं की एक वर्ष की कीमत औसतन 33 ट्रिलियन अमेरिकी डॉलर तय की है, जिसे व्यापक तौर पर अनुदत्त भाव (लापरवाही) से लिया जाता है क्योंकि वह मुफ्त प्राप्त है। यह मूल्य वैश्विक सकल उत्पाद (जी.एन.पी.) की कीमत का लगभग तीन गुना ज्यादा है जोिक 18 ट्रिलियन अमेरिकी डॉलर है।

विभिन्न पारितंत्र सेवाओं की कुल लागत में से 50 प्रतिशत केवल मृदा संरचना (भूमि गठन) के लिए हैं जबिक शेष सेवाएँ जैसेकि पोषक चक्रण तथा मनोरंजन आदि प्रत्येक 10 प्रतिशत से कम भागीदारी रखती हैं। वन्य जीवन के लिए जलवायु नियमन तथा वास की लागत लगभग प्रत्येक के लिए 6 प्रतिशत है।

सारांश

पारितंत्र प्रकृति की एक क्रियाशील ईकाई है और उसमें निर्जीव एवं सजीव घटक समाहित हैं। अजीवीय घटकों के अंतर्गत अकार्बनिक सामग्री जैसे हवा, पानी, एवं मिट्टी जबिक सजीव घटकों के अंतर्गत उत्पादक, उपभोक्ता एवं अपघटक आते हैं। प्रत्येक पारितंत्र की एक विशिष्ट भौतिक संरचना होती है जो निर्जीव एवं सजीवों के बीच परस्पर क्रिया का परिणाम है। एक पारितंत्र की दो महत्त्वपूर्ण विशिष्टताएँ प्रजाति संघटन एवं स्तर विन्यास होती हैं। सभी जीवों का पारितंत्र में अपने पोषण स्रोत के आधार पर एक स्थान निश्चित होता है।

उत्पादकता, अपघटन, ऊर्जा प्रवाह तथा पोषक चक्र एक पारितंत्र की चार महत्त्वपूर्ण क्रियाएँ होती हैं। प्राथमिक उत्पादकता, उत्पादक की जैव मात्रा, उत्पादन या सौर ऊर्जा की ग्रहण की दर होती है। इसके दो प्रकार हैं— ग्रास प्राथमिक उत्पादकता तथा नेट प्राथमिक उत्पादकता। जैविक पदार्थ की कुल उत्पादकता या सौर ऊर्जा संग्रहण की दर को ग्रास प्राथमिक उत्पादकता कहते है। इसके साथ ही उत्पादकता के उपयोग के पश्चात् शेष बची जैव मात्रा या ऊर्जा को नेट प्राथमिक उत्पादकता (एन.पी.पी.) कहते हैं। द्वितीयक उत्पादकता उपभोक्ता द्वारा खाद्य ऊर्जा के सर्वांगीकरण की दर होती है। अपघटन में, अपरद के जटिल कार्बनिक घटकों को अपघटकों द्वारा कार्बन डाईऑक्साइड, जल तथा अकार्बनिक पोषकों में द्वारा बदला जाता है। अपघटन में तीन प्रक्रियाएँ सम्मिलत होती हैं जोकि मुख्यत: अपरदों का खंडन, निक्षालन एवं अपचय हैं।

ऊर्जा प्रवाह एकदिशीय होता है। पहले, पादप सौर ऊर्जा को ग्रहण करते हैं इसके बाद आहार उत्पादक से अपघटक को स्थानांतरित किया जाता है। प्रकृति में भिन्न पोषण स्तर के जीव आहार या ऊर्जा संबंधों हेतु एक दूसरे से परस्पर जुड़कर खाद्य शृंखला का गठन करते हैं। पारिस्थितिक तंत्र के विभिन्न घटकों के माध्यम से पोषक तत्त्वों की गतिशीलता एवं भंडारण को पोषक चक्र कहते हैं। इस प्रक्रिया द्वारा पोषकों का बार – बार उपयोग होता है। पोषक चक्र दो प्रकार के होते हैं: गैसीय एवं अवसादी। गैसीय प्रकार के चक्र (कार्बन) हेतु भंडार वायुमंडल या जलमंडल होता है, जबिक पृथ्वी की पटल (पपड़ी) अवसादी प्रकार के (फास्फोरस) पोषक का भंडार होती है। पारितंत्रीय प्रक्रिया के उत्पादों को पारितंत्र सेवा का नाम दिया गया है। जैसेकि जंगलों द्वारा वायु एवं जल का शुद्धीकरण। जैविक समुदाय गतिक है और बीते समय के साथ परिवर्तित होता है। ये परिवर्तन क्रमशः अनुक्रमित हैं और पारिस्थितिकी अनुक्रमण की संरचना करते हैं। अनुक्रमण का प्रारंभ पायनीयर (अग्रणी) जाति द्वारा खाली जैव विहीन क्षेत्रों पर प्रवेश के साथ होता है, जो बाद में उनके उत्तराधिकारियों का मार्ग प्रशस्त करती है और अंततः एक अचल चरम समुदाय का निर्माण होता है। चरम समुदाय पर्यावरण के अपरिवर्तित होने तक स्थिर रहता है।

अभ्यास

- 1. रिक्त स्थानों को भरो।
 - (क) पादपों को कहते हैं; क्योंकि कार्बन डाईऑक्साइड का स्थिरीकरण करते हैं।

- (ख) पादप द्वारा प्रमुख पारितंत्र का पिरैमिड (सं का) (""") प्रकार का है।
- (ग) एक जलीय पारितंत्र में, उत्पादकता का सीमा कारक है।
- (घ) हमारे पारितंत्र में सामान्य अपरदन """ हैं।
- (च) पृथ्वी पर कार्बन का प्रमुख भंडार """ है।
- 2. एक खाद्य शृंखला में निम्नलिखित में सर्वाधिक संख्या किसकी होती है-
 - (क) उत्पादक
 - (ख) प्राथमिक उपभोक्ता
 - (ग) द्वितीयक उपभोक्ता
 - (घ) अपघटक
- 3. एक झील में द्वितीय (दूसरी) पोषण स्तर होता है-
 - (क) पादपप्लवक
 - (ख) प्राणिप्ल्वक
 - (ग) नितलक (बैनथॉस)
 - (घ) मछलियाँ
- 4. द्वितीयक उत्पादक हैं-
 - (क) शाकाहारी (शाकभक्षी)
 - (ख) उत्पादक
 - (ग) मांसाहारी (मांसभक्षी)
 - (घ) उपरोक्त कोई भी नहीं
- 5. प्रासंगिक सौर विकिरण में प्रकाश संश्लेषणात्मक सिक्रय विकिरण का क्या प्रतिशत होता है?
 - (क) 100%
 - (刊) 50%
 - (η) 1-5%
 - (되) 2-10%
- 6. निम्नलिखित में अंतर स्पष्ट करें
 - (क) चारण खाद्य शृंखला एवं अपरद खाद्य श्रृंखला
 - (ख) उत्पादन एवं अपघटन
 - (ग) ऊर्ध्ववर्ती (शिखरांश) व अधोवर्ती पिरैमिड
- 7. निम्नलिखित में अंतर स्पष्ट करें
 - (क) खाद्य शृंखला तथा खाद्य जाल (बेब)
 - (ख) लिटर (कर्कट) एवं अपरद
 - (ग) प्राथमिक एवं द्वितीयक उत्पादकता
- पारिस्थितिक तंत्र के घटकों की व्याख्या करें।
- 9. पारिस्थितिकी पिरैमिड को परिभाषित करें तथा जैवमात्रा या जैवभार तथा संख्या के पिरैमिडों की उदाहरण सहित व्याख्या करें।
- प्राथमिक उत्पादकता क्या है? उन कारकों की संक्षेप में चर्चा करें जो प्राथमिक उत्पादकता को प्रभावित करते हैं।

पारितंत्र

- Y
- 11. अपघटन की परिभाषा दें तथा अपघटन की प्रक्रिया एवं उसके उत्पादों की व्याख्या करें।
- 12. एक पारिस्थितिक तंत्र में ऊर्जा प्रवाह का वर्णन करें।
- 13. एक पारिस्थितिक तंत्र में एक अवसादीय चक्र की महत्त्वपूर्ण विशिष्टताओं का वर्णन करें।
- 14. एक पारिस्थितिक तंत्र में कार्बन चक्रण की महत्त्वपूर्ण विशिष्टताओं की रूप रेखा प्रस्तुत करें।