### **Obstacle / Free Space Detection (1)**



- Applied on top of GP estimation
- Assumptions for obstacle / free space detection
  - Obstacle has disparity larger than or equal to the disparity of GP it stands on
  - Free space has disparity smaller than or equal to the disparity of an object which stands on that free space



# **Obstacle / Free Space Detection (2)**



#### Compute a probability for every pixel to be an obstacle

- Count the probable obstacle pixels, which has larger disparity than ground, in a window
  - Window corresponds to 2.5 m height x 0.5 m width
  - Window size in pixels depends on the depth of a pixel in interest





Obstacle detection -

- Probability for a pixel to be obstacle,  $Pr(obstacle) = \frac{\# of \ obstacle \ pixels}{\# of \ pixels \ in \ a \ window}$ 

## **Obstacle / Free Space Detection (3)**

# Shaping Innovation

#### Find the closest obstacle boundary in every column

- Obstacle should have n (> threshold) consecutive probable pixels in a column
- A starting pixel is an obstacle boundary

#### Merge and split obstacles

obstacle boundary

- Merge obstacles in neighboring columns
- Split an obstacles based on perspective, etc.





- Obstacle detection -

### **Obstacle / Free Space Detection (4)**



#### Find the closest obstacle boundary in every column

- Obstacle should have n (> threshold) consecutive probable pixels in a column
- A starting pixel is an obstacle boundary

#### Merge and split obstacles

- Merge obstacles in neighboring columns
- Split an obstacles based on perspective, etc.





**TEXAS INSTRUMENTS**