Assignment 1

Name Surname Matriculation number

Demosaicing

- 1. **Problem.** Briefly describe the problem.
- 2. Motivations. Describe the reasons and motivations behind this problem.
- 3. **Derivation of gradient.** In this section you should:
 - Write the finite difference approximation of the objective function E.
 - Compute the gradient of the objective function $\nabla_u E$.
- 4. **Implement gradient descent for demosaicing.** In this section you should:
 - Show some images, as the the gradient method progresses iteration by iteration. Display the initial and the final image and 3 more images in between.
- 5. Show images obtained by very high, very low and optimal λ . In this section you should:
 - Display 3 images with different λ (very low, very high and optimal).
 - Describe the effect of λ on the solution.
- 6. Find optimal λ . In this section you should:
 - Display the SSD vs. λ graph.
 - Describe the effect of λ with respect to the SSD between the ground truth and the solution image.