[6]

M.E/M.Tech., I Semester

Examination, December 2014

Advanced Computational Mathematics

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.
- a) Let V be a vector space of dimension n. Then show that any set of n linearly independent elements of V is a basis of V.
 - b) Show that $erf(x) = erf_{j}(x) = 1$
 - c) If V be a finite dimensional vector space over a field F and S∈F is a characteristic root of the linear transformation T∈ A(V), where A(V) is an algebra of linear transformations on V. Then show that for any polynomial q(x)∈F[x], q(λ) is a characteristic root of q(T).
 - d) If V and V' are vector spaces of dimensions m and n respectively over the field F. Then prove that dimension L(V, V') = mn, where L(V, V') is the space of all linear transformations of V to V'.

d) Let u_n be the Yager class of t-conorms defined by $u_n(a,b) = \min\left\{1, \left|a^m + b^n\right|^{\frac{1}{16}}\right\}, m > 0 \text{ then show that for all } a, b \in [0,1]$ $\max(a,b) \le u_n(a,b) \le u_{\max}(a,b).$

Where
$$a_{max}(a,b) = \begin{cases} a & when b = 0 \\ b & when a = 0 \\ 1 & otherwise \end{cases}$$

OR

Define transitive closure of a crisp fuzzy relation and write the 3 steps algorithm to find it. Find the maximum minimum transitive closure of the following fuzzy relation

$$R(X,X) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 8 & 0 \end{bmatrix}.$$

OR

Let $H_a(x)$ be the Hermite polynomial of degree n. Then show that $H_1(x) = x$, $H_2(x) = x^2 - 1$, $H_3(x) = x^3 - 3x$ and $H_4(x) = x^4 - 6x^2 + 3$.

- Write the Jacobi's and Gauss-seidel iterations schemes for solving the Laplace equation $u_{rx} + u_{yy} = 0$ using finite difference method.
 - b+c) Discuss the numerical solution of the Laplace equation to get the standard five-point and diagonal five point formulae.
 - Using the method of separation of variables, solve the

equation
$$\frac{\partial^2 v}{\partial x^2} = \frac{\partial v}{\partial t}$$
, given that

$$v = 0$$
 when $t \to \infty$, also $v = 0$ at $x = 0$ and $x = l$.

OR

Solve the equation $u_{xx} + u_{yy} = 0$ by Gauss-Seidel method in the following domain:

- A can hit a target 3 times out of 5 shots, B can hit 2 times out of 5 shots and C can hit 3 times out of 4 shots. All of them fire one shot each simultaneously at the target. Find the probability that 2 shots hit the target.
 - b) If X is a normal variate with parameters μ and σ, then show that mean $E(X) = \mu$.

- If the mean of a Binomial distribution is 3 and the variance is 3/2, find the probability of obtaining atmost 3 successes.
- d) A discrete random variable X has the following probability mass function:

Values of X:x	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	$-\mathbf{k}^2$	2k²	7k²+k

- Find k i)
- ii) Evaluate $P(X \le 6)$ and $P(0 \le X \le 5)$
- iii) Determine the distribution function of X.

OR

What do you mean by standard error? For the following sampling distribution find the standard error:

	sampring distribution find				
X :	Probability:				
l	1/16				
2	2/16				
3	1/16				
4	² / ₁₆				
5	4/16				
6	² / ₁₆				
7	1/16				
8	² / ₁₆				
9	1/16				

- 4. a) Two brands of tooth paste, A and B, are available, A Customer C₁ who uses brand A, there is 80% chance that he would buy the same brand in the next purchase, where as a customer C₂, using brand B now, has 90% chance to buy the same brand in his next purchase. Express the initial transition probability matrix. Find the probability of buying the same brands by C₁ and C₂ three periods from now.
 - b) The arrivals at a telephone booth are considered to be Poisson with an average time of 10 minutes between two successive arrivals. The call time is assumed to be distributed exponentially with mean of 3 minutes.
 - i) What is the probability that a person arriving at the booth with have to wait?
 - ii) The telephone department plans to install a 2nd booth if it is convinced that an arrival would expect waiting for at least 3 minutes for a call. By how much should the flow of arrivals increase in order to justify a 2nd booth.
 - c) Recently in a market survey by a firm it was found that three brands A, B, C of talcum powders are used by the customers in a city with 20% choice to A, 50% to brand B and 30% to brand C. Firm further analysed the data and found the following brand switching matrix:

Next choice of brand

		Α	В	C
Present	Α	0.6	0.3	0.1
Brand	В	0.2	0.6	0.2
Choice	C	0.2	0.1	0.7

Find the distribution of customers choice three periods later from now. http://www.rgpvonline.com

 d) Find the steady state probabilities for a Markov process with the following transition matrix:

		States		
	1	2	3	4
1	0	.75	.25	0 1
2	0	.5	.5	0
3	0	0	.5	.5
4	[1	0	0	0
	-	OR	1	-

At the sales counter of a super market there are two sales girls. If the service time for each customer is exponential with a mean at 4 minutes and customers arrive in Poisson fashion at the rate of 10 an hour. Then determine

- i) Probability of waiting for a service,
- ii) Expected percentage of idle time for each girl
- For a waiting customer, the expected length of his waiting time.
- a) Let C:[0, 1] → [0, 1] be a continuous fuzzy complement function, then show that C has a unique equilibrium.
 - b) Describe two different functions with their application.
 - c) Let $i:[0,1]\times[0,1]\to[0,1]$ be a fuzzy intersection function, then prove that $i_{\min}(a,b)\leq i(a,b)\leq \min(a,b)$

where
$$i_{\min}(a,b) = \begin{cases} a & when b = 1 \\ b & when a = 1 \\ 0 & otherwise \end{cases}$$