Physics 718 Problem Set 1

Due: Feb 8, 2017

Problem 1 Uniformly Stellar

Solve the equilibrium equations for a spherical Newtonian star of uniform density $(\rho = \text{constant})$, to find m(r), P(r) and $\Phi(r)$. Defining the star's surface by the requirement P=0, find the relation between central pressure P_c and radius R. Note that $\Phi=0$ at $r=\infty$.

Problem 2 Orbital periods and maximum spins

As mentioned in the notes, the free-fall time, time of spherical oscillations, and sound-travel time across a star are all of order $\sqrt{1/G\rho}$. This is also roughly the period of a circular orbit and hence roughly the minimum rotation period of a star.

- a. Find the period of a particle in circular orbit just above the surface of a spherical star in terms of G and the average density ρ .
- b. Find this period for the Sun and for a typical neutron star.
- c. Detailed calculations give the minimum rotation period of a neutron star (the period for which the deformed equator rotates at the speed of a particle in circular orbit) as

$$P_{\min} = \sqrt{\frac{4.4 \times 10^{14} \text{g/cm}^3}{\rho}} \text{ ms},$$

where ρ is the average density of the nonrotating star. How does this compare to the period of a circular orbit for a star of the density you used? Why does the error have the sign you find?

Problem 3 Bernouilli equation for steady flow

Use the first law of thermodynamics,

$$dE = TdS - PdV$$

to show for a fluid element that conservation of mass dM = 0 implies

$$du = -Pd\frac{1}{\rho} + Tds$$
, and $dh = Tds + \frac{dP}{\rho}$ (1)

Consider a fluid for which all quantities -P, ρ , \mathbf{v} , Φ – are independent of time: $\partial_t(\text{everything}) = 0$. Using Euler's equation for a fluid, conservation of entropy (ds = 0), and the thermodynamic relation for h, show that $\frac{1}{2}v^2 + h + \Phi$ is constant along the flow:

$$\mathbf{v} \cdot \nabla \left(\frac{1}{2} v^2 + h + \Phi \right) = 0. \tag{2}$$

Problem 4 Fluids

Our derivation of conservation of energy for a fluid left out the gravitational field Φ . Show that, when the gravitational field is independent of time, conservation of energy takes the form

$$\partial_t \left[\rho \left(\frac{1}{2} v^2 + u + \Phi \right) \right] + \mathbf{\nabla} \cdot \left[\rho \mathbf{v} \left(\frac{1}{2} v^2 + h + \Phi \right) \right] = 0. \tag{3}$$

Problem 5 Stars

- Download *Hipparcos* data from the class website. Note that this is a slightly rearranged version of the data from van Leeuwen (2007, A&A, 474, 653) available at http://cdsarc.u-strasbg.fr/viz-bin/ReadMe/I/311?format=html&tex=true.
- Read the file into your favorite plotting/analysis program (python preferred but not required). Note that the column names are in the top line. You can read the column descriptions at the website above.
- Restrict the data to points with magnitude $H_p < 8$ and B V < 1.75
- Determine the distance (in pc) from the parallax (Plx) column via:

$$d = \frac{1000 \,\mathrm{pc}}{\mathrm{Plx}} \tag{4}$$

• Determine the effective temperature from the B-V color via:

$$T_{\rm eff}=a_0+a_1(B-V)+a_2(B-V)^2+a_3(B-V)^3+a_4(B-V)^4+a_5(B-V)^5+a_6(B-V)^6$$
 (5) where the coefficients are: $a_0=9552,\ a_1=-17443,\ a_2=44350,\ a_3=-68940,\ a_4=57338,\ a_5=-24072,\ a_6=4009$ from a fit by Boyajian et al. (2013, ApJ, 771, 40).

- Determine luminosity (in units of L_{\odot}) from the apparent magnitude H_p and the distance d, assuming that the absolute magnitude of the Sun is 4.7.
- Plot a Hertzsprung-Russell diagram of these data. Make sure that temperature increases to the left. Make sure that the luminosities are plotted as a \log_{10} axis. Put a marker where the Sun is on this diagram, and plot lines of constant radii (in units of R_{\odot}).

Problem 6 Stellar Scalings

Assume that for main sequence stars $R\sim M$, and $L\sim M^{3.5}$. Based on these determine how the free-fall timescale and Kelvin Helmholtz timescale scale with mass.