Numerical Solutions to Partial Differential Equations

numpde_lecture_17_c7_2.pdf

School of Mathematical Sciences Peking University Céa Lemma

Céa Lemma — an Abstract Error Estimate Theorem

Consider the variational problem of the form

$$\begin{cases} \mathsf{Find} & u \in \mathbb{V} \mathsf{ such that} \\ \mathsf{a}(u,v) = f(v), & \forall v \in \mathbb{V}. \end{cases}$$

Consider the conforming finite element method of the form
$$\begin{cases} \text{Find} & u_h \in \overline{\mathbb{V}_h} \subset \overline{\mathbb{V}} \text{ such that} \\ a(u_h, v_h) = f(v_h), & \forall v_h \in \mathbb{V}_h. \end{cases}$$

- 3 The problem: how to estimate the error $||u u_h||$?
- The method used for FDM is not an ideal framework for FEM.
- The standard approach for the error estimations of a finite element solution is to use an abstract error estimate to reduce the problem to a function approximation problem. FEM误差估计的标准方法:使用抽象的误差估计(Cea引理)把它化为函数逼近问题.

(7.1.1)

(7.1.2)

Céa Lemma — an Abstract Error Estimate Theorem

Theorem 7.1

Let $\mathbb V$ be a Hilbert space, $\mathbb V_h$ be a linear subspace of $\mathbb V$. Let the bilinear form $a(\cdot, \cdot)$ and the linear form $f(\cdot)$ satisfy the conditions of the Lax-Milgram lemma (see Theorem 5.1). Let $u \in \mathbb V$ be the solution to the variational problem, and $u_h \in \mathbb V_h$ satisfy the equation

$$a(u_h, v_h) = f(v_h), \quad \forall v_h \in \mathbb{V}_h. \tag{7.1.2}$$

Then, there exist a constant C independent of \mathbb{V}_h , such that

$$||u-u_h|| \leq C \inf_{\mathsf{v}_h \in \mathbb{V}_h} ||u-\mathsf{v}_h||,$$

where $\|\cdot\|$ is the norm of \mathbb{V} .

Cea引理表明: uh is quasi-optimal in the sense that the error ||u-uh||_V is proportional to the best it can be using the subspace Vh.

(7.1.3)

Proof of the Céa Lemma

① Since u and u_h satisfy the equations, and $\mathbb{V}_h \subset \mathbb{V}$, we have

$$(a(u-u_h, w_h) = a(u, w_h) - a(u_h, w_h) = f(w_h) - f(w_h) = 0, \quad \forall w_h \in V_h.$$
(7.1.4)

② In particular, taking $w_h = u_h - v_h$ leads to

$$a(u-u_h, u_h-v_h)=0.$$

- 3 The V-ellipticity $\Rightarrow \alpha \|u u_h\|^2 \le a(u u_h, u u_h).$ (2)
- The boundedness $\Rightarrow a(u-u_h, u-v_h) \leq M||u-u_h||||u-v_h||$.
- **6** Hence, $\alpha \| u u_h \|^2 \leq a(u u_h, u v_h) \leq M \| u u_h \| \| u v_h \|$.
- **o** Take $C = M/\alpha$, we have

$$||u-u_h|| \leq C||u-v_h||, \quad \forall v_h \in \mathbb{V}_h.$$

The conclusion of the theorem follows.

(*1)

Remarks on the Céa Lemma

- ① The Céa lemma reduces the error estimation problem of $\|u u_h\|$ to the optimal approximation problem of $\inf_{v_h \in \mathbb{V}_h} \|u v_h\|$. Cea引理: 把FEM误差估计化为函数逼近问题.
- 2 Error of the finite element solution $||u u_h||$ is of the same order as the optimal approximation error $\inf_{v_h \in \mathbb{V}_h} ||u v_h||$.
- **3** Suppose the \mathbb{V}_h -interpolation function $\Pi_h u$ of u is well defined in the finite element function space \mathbb{V}_h , then,

$$\| u - u_h \| \le C \inf_{v_h \in \mathbb{V}_h} \| u - v_h \| \le C \| u - \Pi_h u \|.$$

FEM误差估计可进一步化为插值误差估计问题.Therefore, the error estimation problem of $\|u-u_h\|$ can be further reduced to the error estimation problem for the \mathbb{V}_h -interpolation error $\|u-\Pi_h u\|$.

(7.2.1)

For Symmetric $a(\cdot, \cdot)$, u_h is a Orthogonal Projection of u on \mathbb{V}_h

- If the \mathbb{V} -elliptic bounded bilinear form $a(\cdot, \cdot)$ is symmetric, then, $a(\cdot, \cdot)$ defines an inner product on \mathbb{V} , with the induced norm equivalent to the \mathbb{V} -norm.
 - Denote $(\mathbf{P}_h): \mathbb{V} \to \mathbb{V}_h$ as the orthogonal projection operator induced by the inner product $a(\cdot, \cdot)$. Then, $\mathbf{a}(\mathbf{u} \mathbf{P}_h \mathbf{u}, \mathbf{v}_h) = \mathbf{0}, \quad \forall \mathbf{v}_h \in \mathbb{V}_h.$
 - ③ Therefore, the finite element solution $u_h = \mathbf{P}_h u$, *i.e.* it is the orthogonal projection of u on \mathbb{V}_h with respect to the inner product $a(\cdot, \cdot)$. FEM解可用正交投影算子表示出来.

Céa Lemma for Symmetric $a(\cdot, \cdot)$

Corollary 7.1

Under the conditions of the Céa Lemma, if the bilinear form $a(\cdot, \cdot)$ is still symmetric, then, the solution u_h is the orthogonal projection, which is induced by the inner product $a(\cdot, \cdot)$, of the solution u on the subspace \mathbb{V}_h , meaning $u_h = \mathbf{P}_h u$.

Furthermore, we have

$$a(u-u_h, u-u_h) = \inf_{v_h \in \mathbb{V}_h} a(u-v_h, u-v_h).$$

与(7.2.1)对应,此时常数为1.

The proof follows the same lines as the proof of the Céa lemma. The only difference here is that $\alpha = M = 1$.

 $\|u-uh\|_E^2=a(u-uh,u-uh)=a(u-uh,u-vh+vh-uh)=(u-uh,u-vh)\leq \|u-uh\|_E^*\|u-vh\|_E$. 用了a(u-uh, vh-uh)=0

Céa Lemma in the Form of Orthogonal Projection Error Estimate

Denote \widetilde{P}_h : $\mathbb{V} \to \mathbb{V}_h$ as the orthogonal projection operator induced by the inner product $(\cdot, \cdot)_{\mathbb{V}}$ of \mathbb{V} , then,

$$\|u - \tilde{P}_h u\| = \|(I - \tilde{P}_h)u\| = \inf_{v_h \in V_h} \|u - v_h\|.$$

Therefore, as a corollary of the Céa lemma, we have

Corollary 7.2

(*)

Let $\mathbb V$ be a Hilbert space, and $\mathbb V_h$ be a linear subspace of $\mathbb V$. Let $a(\cdot, \cdot)$ be a symmetric bilinear form on $\mathbb V$ satisfying the conditions of the Lax-Milgram lemma. Let P_h and $\tilde P_h$ be the orthogonal projection operators from $\mathbb V$ to $\mathbb V_h$ induced by the inner products $a(\cdot, \cdot)$ and $(\cdot, \cdot)_{\mathbb V}$ respectively. Then, we have

$$||I-\tilde{P}_h|| \leq ||I-P_h|| \leq \frac{M}{\alpha} ||I-\tilde{P}_h||.$$

 $||(I-P_h)u||^2 = ||(I-tilde\{P)_h)u + (tilde\{P)_h-P_h)u ||^2 = ||(I-tilde\{P\}_h)u ||^2 + ||(tilde\{P\}_h-P_h)u ||^2 + ||(tilde\{P\}_$

(7.1.5)

- The Interpolation Theory of Sobolev Spaces
 - An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

例7.1 插值误差估计 (P236)

- **1** $\hat{\Omega} = (0, 1), \ \Omega = (b, b+h), \ h > 0.$
- 綠性坐 ② $F: \hat{x} \in [0, 1] \rightarrow [b, b+h], F(\hat{x}) = h\hat{x} + b$: an invertible affine mapping from $\hat{\Omega}$ to Ω .
- 线性插 (1): $\mathbb{C}([0,\ 1]) \to \mathbb{P}_1([0,\ 1])$: the interpolation operator with $\hat{\Pi}\hat{v}(0) = \hat{v}(0), \; \hat{\Pi}\hat{v}(1) = \hat{v}(1)$.
- 线性插 ④ Π : $\mathbb{C}([b,\ b+h]) \to \mathbb{P}_1([b,\ b+h])$: the interpolation operator with $\Pi v(b) = v(b),\ \Pi v(b+h) = v(b+h)$.

- The Interpolation Theory of Sobolev Spaces
 - An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

- ⑤ Let $u \in \mathbb{H}^2(\Omega)$, denote $\hat{u}(\hat{x}) = u \circ F(\hat{x}) = u(h\hat{x} + b)$, then, it can be shown $\hat{u} \in \mathbb{H}^2(\hat{\Omega})$, thus, $\hat{u} \in \mathbb{C}([0, 1])$
- P1不到的插信 算子
- $$\begin{split} & \hat{\Pi} \text{ is } \mathbb{P}_1([0,1]) \text{ invariant: } \hat{\Pi} \hat{w} = \hat{w}, \ \forall \hat{w} \in \mathbb{P}_1([0,1]), \text{ thus,} \\ & \left\| (I \hat{\Pi}) \hat{u} \right\|_{0,\hat{\Omega}} \stackrel{\text{def}}{=} \hat{\mathbb{I}} (\tilde{I} \hat{\tilde{\Pi}}) (\hat{u} + \hat{w}) \right\|_{0,\hat{\Omega}} \leq \|I \hat{\Pi}\| \, \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}, \\ & \text{where } \|I \hat{\Pi}\| \text{ is the norm of } \underline{I \hat{\Pi}} : \mathbb{H}^2(\hat{\Omega}) \rightarrow \mathbb{L}^2(\hat{\Omega}). \end{aligned}$$
- This shows that $I \widehat{\Pi} \in \mathfrak{L}(\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1]); \mathbb{L}^2(0,1))$, and $(1) \|\hat{u} \widehat{\Pi}\hat{u}\|_{0,\widehat{\Omega}} \leq \|I \widehat{\Pi}\| \inf_{\widehat{w} \in \mathbb{P}_1(\widehat{\Omega})} \|\hat{u} + \widehat{w}\|_{2,\widehat{\Omega}},$ $\lim_{\widehat{u} \in \mathbb{R}_2} \|\hat{u} \widehat{u}\|_{0,\widehat{\Omega}} \leq \|I \widehat{u}\|_{0,\widehat{\Omega}} \|\hat{u} \widehat{u}\|_{0,\widehat{\Omega}}$
- where $\inf_{\hat{w} \in \mathbb{P}_1(\hat{\Omega})} \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}$ is the norm of \hat{u} in the quotient space
- $\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1])$. Sobolev空间的多项式商空间 $\mathbb{H}^2/\mathbb{P}^1$ 的元素为 \mathbb{H}^2 中元素v 的等价类 \mathbb{H}^2 : W·V P1 \mathbb{H}^2 . 见7.2.1节

设V是域K上的一个向量空间,且N是V的一个子空间。定义在V上定义一个等价类,如果x-y属于N 则令x<mark>--y。</mark> 即如果其中一个加上N中 一个元素得到另一个,则与y 相关. x 的所在等价类通常记作[x]=x+N. 商空间v_xl(读作V<mark>模N</mark>)定义为v/-_, V在等价~下所有等价类集合. An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

 \bigstar It can be shown that, \exists const. $C(\hat{\Omega}) > 0$ s.t.

$$(2) |\hat{u}|_{2,\hat{\Omega}} \leq \inf_{\hat{w} \in \mathbb{P}_{1}(\hat{\Omega})} ||\hat{u} + \hat{w}||_{2,\hat{\Omega}} \leq C(\hat{\Omega}) |\hat{u}|_{2,\hat{\Omega}}.$$

H2的半范数是Sobolev空间的多项式商空间H2/P1(见7.2.1节)的等价范数

- \bigstar It follows from the chain rule that $\hat{u}''(\hat{x}) = h^2 u''(x)$.
- \bigstar By a change of the integral variable, and $dx = hd\hat{x}$, we obtain

变换前后

(3)
$$\hat{u} \in \mathbb{H}^2(\hat{\Omega})$$
, and $|\hat{u}|_{2,\hat{\Omega}}^2 = h^3 |u|_{2,\Omega}^2$;
(4) $||u - \Pi u||_{0,\Omega}^2 = h||\hat{u} - \hat{\Pi}\hat{u}||_{0,\hat{\Omega}}^2$.

(4)
$$\|u - \Pi u\|_{0,\Omega}^2 = h\|\hat{u} - \hat{\Pi}\hat{u}\|_{0,\hat{\Omega}}^2$$

An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

- The conclusion (1) says that the \mathbb{L}^2 norm of the error of a \mathbb{P}_1 invariant interpolation can be bounded by the quotient norm of the function in $\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1])$.
- The conclusion (2) says that the semi norm | · |_{2,(0,1)} is an equivalent norm of the quotient space $\mathbb{H}^2(0,1)/\mathbb{P}_1([0,1])$.

 Ø7.1中的(2)是指:H2的半范数是Sobolev空间的多项式商空间H2/P1(见7.2.1节) 的等价范数
- The conclusions (3) and (4) present the relations between the semi-norms of Sobolev spaces defined on affine-equivalent open sets.

- ☐ The Interpolation Theory of Sobolev Spaces
 - An Example on Interpolation Error Estimates

1-D Example on Linear Interpolation Error Estimation for \mathbb{H}^2 Functions

★ The combination of (4) and (1) yields

$$\|u - \Pi u\|_{0,\Omega} \le h^{\frac{1}{2}} \|I - \hat{\Pi}\| \inf_{\hat{w} \in \mathbb{P}_1(\hat{\Omega})} \|\hat{u} + \hat{w}\|_{2,\hat{\Omega}}$$

★ This together with (2) and (3) lead to the expected interpolation error estimate:

L2范数下的H2 函数的插值误 差估计

$$\|u-\Pi u\|_{0,\Omega} \leq \|I-\hat{\Pi}\|C(\hat{\Omega})|u|_{2,\Omega}h^2, \quad \forall u \in \mathbb{H}^2(\Omega).$$

H1半范数下的H2函数的插值误差估计|(I-\Pi)u| 1\leq C*h* |u| 2, 见习题7中题4(p262).

- The Interpolation Theory of Sobolev Spaces
 - An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs 例子7.1的提示:仿射等价压的插值误差估计的一个框架

The polynomial quotient spaces of a Sobolev space and their equivalent quotient norms ((2) in the example);

Sobolev空间的多项式商空间(见7.2.1节) & 它们的等价范数(例7.1中的(2))

- ② The relations between the semi-norms of Sobolev spaces defined on affine-equivalent open sets ((3), (4) in the exmample); 定义在仿射等价开集上的Sobolev空间的半范数之间的关系
- The abstract error estimates for the polynomial invariant operators ((1) in the example);
 多项式不变算子的抽象的误差估计
- **4** To estimate the constants appeared in the relations of the Sobolev semi-norms by means of the geometric parameters of the corresponding affine-equivalent open sets.

用仿射等价开集的几何参数(见下页)来估计相应的Sobolev空间半范数关系中的常数

The Interpolation Theory of Sobolev Spaces
An Example on Interpolation Error Estimates

A Framework for Interpolation Error Estimation of Affine Equivalent FEs 仿射等价E的插值误差估计的一个框架

- the change of integral variable will introduce the Jacobian determinant $\det\left(\frac{\partial F(\hat{\mathbf{x}})}{\partial \hat{\mathbf{x}}}\right)$; 积分变量变换— 仿射变换的Jacobi行列式
- ullet in high dimensions, the <code>Jacobi determinant</code> represents the ratio of the volumes $|\Omega|/|\hat{\Omega}|$; Jacobi行列式代表体积比
- the chain rule for the mth derivative will produce h^m .
- h actually represents the ratio of the lengths in the directions of corresponding directional derivatives of the regions $\Omega = F(\hat{\Omega})$ and $\hat{\Omega}$.

The related technique is often referred to as the scaling technique.

尺度技术/比例缩小技术

下面就是在这个框架下简要介绍椭圆型BVP弱解的基本函数空间Sobolev空间上的多项式插值误差估计理论 . 详见FEM专著[P. G. Ciarlet , The Finite Element Method for Elliptic Problems , SIAM, 2002].

- The Interpolation Theory of Sobolev Spaces
 - Polynomial Quotient Spaces and Equivalent Quotient Norms

Polynomial Quotient Spaces

7.2.1节 多项式商空间 & 等价商范数

The quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$, in which a vector is the equivalent class of $v \in \mathbb{W}^{k+1,p}(\Omega)$ in the sense that

$$\dot{v} = \{ w \in \mathbb{W}^{k+1,p}(\Omega) : (w-v) \in \mathbb{P}_k(\Omega) \}.$$

Sobolev空间的多项式商空间W/P的元素为W中元素v的等价类dot{v}.

The quotient norm of a vector \dot{v} is defined by

$$\dot{v} \in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)
ightarrow \frac{\|\dot{v}\|_{k+1,p,\Omega}}{\|\dot{v}\|_{k}} \stackrel{ ext{def}}{:=} \inf_{w \in \mathbb{P}_k(\Omega)} \|v+w\|_{k+1,p,\Omega}.$$

设V是域K上的一个向量空间,且N是V的一个子空间。定义在V上定义一个等价类,如果x-y属于N 则令x-y。即如果其中一个加上N中一个元素得到另一个,则与y 相关、x的所在等价类通常\fuller(x)=x+N。 商空间vx/ki律krV槽N)定义为v/-、y在等价-下所有等价类通常。

可以定义等价类上的数乘与加法,和范数(见上面);商空间x/M关于此范数是完备的,所以是一个巴拿赫空间。

Polynomial Quotient Spaces

- - #100 $\dot{v} \in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega) \to \underline{|\dot{v}|_{k+1,p,\Omega}} \stackrel{\text{def}}{=} |v|_{k+1,p,\Omega}$ is a semi-norm of the quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$, and obviously $\underline{|\dot{v}|_{k+1,p,\Omega}} \leq \|\dot{v}\|_{k+1,p,\Omega}$.
 - \bullet In fact, $|\dot{v}|_{k+1,p,\Omega} = |v|_{k+1,p,\Omega}$ is an equivalent norm of the quotient space $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$. \mathbb{Q} To $\mathbb{Q$

Interpolation Theory of Sobolev Spaces

Polynomial Quotient Spaces and Equivalent Quotient Norms

Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

Theorem 7.2 (商空间的等价模定理)

There exists a constant $C(\Omega)$ such that

$$\|\dot{\mathbf{v}}\|_{k+1,p,\Omega} \leq C(\Omega)|\dot{\mathbf{v}}|_{k+1,p,\Omega}, \qquad \forall \dot{\mathbf{v}} \in \mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega).$$

商空间的半范数是与其范数等价的

Proof:

fi是P k的共轭空间(线性泛函)的一组基

① Let $\{p_i\}_{i=1}^N$ be a basis of $\mathbb{P}_k(\Omega)$, and f_i , $i=1,\ldots,N$, be the corresponding dual basis, meaning $f_i(p_i) = \delta_{ii}$.

2 Thus, for any
$$w \in \mathbb{P}_k(\Omega)$$
, $f_i(w) = 0$, $i = 1, \ldots, N \Leftrightarrow w = 0$.

Hahn-Banach延拓 Extend f_i , i = 1, ..., N, to a set of bounded linear functionals

或扩张定理=> defined on $\mathbb{W}^{k+1,p}(\Omega)$, which satisfy (*).

Hahn-Banach延拓或扩张定理:设X为实线性空间,M为它的线性子空间, p是X上的次可加正齐性泛函, f0是M上的线性泛函, 则存在X上的线 性泛函f, s.t. f(x)=f0(x), for all x in M; 如果f0(x)\leq p(x), for all x in M , 则可使f满足 f(x)\leq p(x), for all x in M. 一般泛函分析教科书中的X常取为赋范线性空间,p则取为空间的范数.这样,哈恩一巴拿赫定理就变为线性泛函的保持范数不变的可延拓定

理。从选择公理可以推出哈恩-巴拿赫定理。然而,反过来不成立。注意超滤子引理比选择公理更弱,但从它也可以推出哈恩-巴拿赫定理(反 过来则不行)。实际上,哈恩-巴拿赫定理还可以用比超滤子引理更弱的假设来证明。

(7.2.2)

Semi-norm $|v|_{k+1,p,\Omega}$ is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

that there exists a constant $C(\Omega)$ such that $\|v\|_{k+1,p,\Omega} \leq C(\Omega)(|v|_{k+1,p,\Omega} + \sum_{i=1}^{N} |f_i(v)|), \ \forall v \in \mathbb{W}^{k+1,p}(\Omega).$ (7.2.3)

如果(7.2.3)已经得证,则由此可推得(7.2.2).事实上

采用反证法证明(7.2.3):

Suppose 4 doesn't hold. Then,

6 there exists a sequence $\{v_j\}_{j=1}^{\infty}$ in $\mathbb{W}^{k+1,p}(\Omega)$ s.t.

$$\|v_j\|_{k+1,p,\Omega}=1$$
, $orall j\geq 1$ and $\lim_{j o\infty}(|v_j|_{k+1,p,\Omega}+\sum_{i=1}^{\infty}|f_i(v_j)|)$ $=0$. (7.2.4)

希望抽取出它的一个收敛子列,一方面证明其极限函数为0,另一方面又证明其范数为1,进而矛盾!

紧嵌入定理 \mathbb{Q} $\mathbb{W}^{k+1,p}(\Omega) \overset{c}{\hookrightarrow} \mathbb{W}^{k,p}(\Omega), \ 1 \leq p < \infty; \ \mathbb{W}^{k+1,\infty}(\Omega) \overset{c}{\hookrightarrow} \mathbb{C}^k(\bar{\Omega}).$

(22) \hookrightarrow \forall \forall (22), $1 \leq p < \infty$, \forall \forall (22) \hookrightarrow (22

Rellich定理:H1紧嵌入L2

Semi-norm $|v|_{k+1,p,\Omega}$ Is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

8 So, there exist a subsequence of $\{v_i\}_{i=1}^{\infty}$, denoted again as $\{v_j\}_{j=1}^{\infty}$, and a function $v \in \overline{\mathbb{W}^{k,p}(\Omega)}$, such that

$$\lim_{j\to\infty}\|v_j-v\|_{k,p,\Omega}=0.$$

9 (a) implies $\{v_i\}_{i=1}^{\infty}$ is a Cauchy sequence in $\mathbb{W}^{k+1,p}(\Omega)$.

再结合(7.2.5), W空间的完备知, {vj}在W^{k+1,p}中收敛。

- Therefore, v in 8 is actually a function in $\mathbb{W}^{k+1,p}(\Omega)$.

(7.2.5)

Polynomial Quotient Spaces and Equivalent Quotient Norms

Semi-norm $|v|_{k+1,p,\Omega}$ Is an equivalent Norm of $\mathbb{W}^{k+1,p}(\Omega)/\mathbb{P}_k(\Omega)$

h5.2 区域 是一个连通的开域,u的所有m+1阶的广义偏导数均为0 ,则u是 上的一个次数不超过m的多项式.

- By Theorem 5.2, (1) implies $v \in \mathbb{P}_k(\Omega)$.
- On the other hand, it follows from 6 that

$$f_i(v) = \lim_{j \to \infty} f_i(v_j) = 0, \quad i = 1, \dots, N,$$

Therefore, by (2), we have v = 0.

On the other hand, since v_j converges to v in $\mathbb{W}^{k+1,p}(\Omega)$, by **6**, we have $\|v\|_{k+1,p,\Omega} = \lim_{j\to\infty} \|v_j\|_{k+1,p,\Omega} = 1$.

The contradiction of A and S completes the proof.

- Relations of Sobolev Semi-norms on Affine Equivalent Open Sets
 - Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by $F(\hat{x}) = h\hat{x} + b \in \mathbb{R}^n$

仿射等价开集 FSobolev空间半范数之间的关系

- **1** Let $F: \hat{x} \in \mathbb{R}^n \to F(\hat{x}) = h\hat{x} + b \in \mathbb{R}^n$, and $\Omega = F(\hat{\Omega})$, $\Rightarrow \operatorname{diam}(\Omega)/\operatorname{diam}(\hat{\Omega}) = h.$
 - 2 Then, $\frac{\partial^{\alpha} v(x)}{\partial x^{\alpha}} = \frac{h^{-|\alpha|} \partial^{\alpha} \hat{v}(\hat{x})}{\partial x^{\alpha}}$, and $\frac{dx}{dx} = \frac{|\det(B)|}{dx} = \frac{h^n}{dx}$.
 - **3** Therefore, by a change of integral variable, we have

积分变量变换

$$|v|_{m,p,\Omega} = h^{-m} |\det(B)|^{1/p} |\hat{v}|_{m,p,\hat{\Omega}} = h^{-m+n/p} |\hat{v}|_{m,p,\hat{\Omega}}.$$

变换前后的半范数之比
$$|v|_{m,p,\Omega}/|\hat{v}|_{m,p,\hat{\Omega}} \propto h^{-m+n/p}$$

"表示成正比例; v x(读作"v正比于x")

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Affine Equivalent Open Sets Related by $F(\hat{x}) = B\hat{x} + b \in \mathbb{R}^n$

一般的仿射变换

佐耐等价并售

Let $\Omega = F(\hat{\Omega})$ be affine equivalent open set in \mathbb{R}^n with

仿射变换
$$F: \hat{x} \in \mathbb{R}^n \to F(\hat{x}) \stackrel{\text{def}}{=} B\hat{x} + b \in \mathbb{R}^n$$
,

For $v \in \mathbb{W}^{m,p}(\Omega)$ and $\hat{v}(\hat{x}) = v(F(\hat{x}))$, the Sobolev semi-norms $|v|_{m,p,\Omega}$ and $|\hat{v}|_{m,p,\hat{\Omega}}$ have a similar relation for general B, *i.e.*

$$|v|_{m,p,\Omega}/|\hat{v}|_{m,p,\hat{\Omega}} \propto h^{-m+n/p},$$
变换前后的半范数之比 符号"表示成正比例;y x (读作"y正比于x")

where $h = \operatorname{diam}(\Omega)/\operatorname{diam}(\hat{\Omega})$.

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Relations of Semi-norms on Open Sets Related by $F(\hat{x}) = B\hat{x} + b$

Theorem 7.3 (半范数间的关系)

Let Ω and $\hat{\Omega}$ be two affine equivalent open sets in \mathbb{R}^n . Let $\mathbf{v} \in \mathbb{W}^{m,p}(\Omega)$ for some $\mathbf{p} \in [1,\infty]$ and nonnegative integer \mathbf{m} . Then, $\hat{\mathbf{v}} = \mathbf{v} \circ \mathbf{f} \in \mathbb{W}^{m,p}(\hat{\Omega})$, and there exists a constant C = C(m,n) such that

$$|\hat{v}|_{m,p,\hat{\Omega}} \le C \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega},$$
 (7.2.7)

where B is the matrix in the affine mapping F, $\|\cdot\|$ represents the operator norms induced from the Euclidian norm of \mathbb{R}^n . Similarly, we also have

$$|v|_{m,p,\Omega} \le C \|B^{-1}\|^m |\det(B)|^{1/p} |\hat{v}|_{m,p,\hat{\Omega}}.$$
 (7.2.8)

24 / 31

- Relations of Sobolev Semi-norms on Affine Equivalent Open Sets
 - Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \le C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$ (7.2.7)

Let
$$\underline{\xi_i} = (\xi_{i1}, \dots, \xi_{in})^T \in \mathbb{R}^n$$
, $i = 1, \dots, m$, be unit vectors, $D = (\partial_1, \dots, \partial_n)$, $\underline{D}^m \hat{v}(\hat{x})(\xi_1, \dots, \xi_m) = (\prod_{i=1}^m \underline{D} \cdot \underline{\xi_i}) \hat{v}(\hat{x})$.

Step 1 ② Assume $\mathbf{v} \in \mathbb{C}^m(\overline{\Omega})$, therefore, $\widehat{\mathbf{v}} \in \mathbb{C}^m(\overline{\Omega})$ also. We have

$$\frac{|\partial^{\alpha} \hat{v}(\hat{x})| \leq ||D^{m} \hat{v}(\hat{x})|| := \sup_{\substack{||\xi_{i}||=1\\1 \leq i \leq m}} |D^{m} \hat{v}(\hat{x})(\xi_{1}, \ldots, \xi_{m})|, \quad \forall |\alpha| = m.$$

3 Let $C_1(m, n)$ be the cardinal number of α , then

$$\widehat{\|\hat{\mathbf{v}}\|_{m,p,\widehat{\Omega}}} = \left(\int_{\widehat{\Omega}} \sum_{|\alpha|=m} |\partial^{\alpha} \widehat{\mathbf{v}}(\widehat{\mathbf{x}})|^{p} d\widehat{\mathbf{x}}\right)^{1/p} \leq C_{1}(m,n) \left(\int_{\widehat{\Omega}} \|D^{m} \widehat{\mathbf{v}}(\widehat{\mathbf{x}})\|^{p} d\widehat{\mathbf{x}}\right)^{1/p}.$$

P241: C1(m.n)=C^n_(n+m}-C^n_(n+m-1)=(n/m)*C^n_(n+m-1); α的基数,即n维空间π里指标α的个数, C1(m,n)=sup_{1} p} (card(α N^n, |α|=m})^{1/p}, Page 118 of Ciarlet's book

On the other hand, by the <u>chain rule of differentiations</u> for composition of functions,

$$(D \cdot \xi) \hat{\mathbf{v}}(\hat{\mathbf{x}}) = D(\mathbf{v} \circ F(\hat{\mathbf{x}})) \xi = D\mathbf{v}(\mathbf{x}) \frac{\partial F(\hat{\mathbf{x}})}{\partial \hat{\mathbf{x}}} \xi = (D \cdot B\xi)\mathbf{v}(\mathbf{x}).$$

5 Therefore, $(\prod_{i=1}^m D \cdot \xi_i) \hat{v}(\hat{x}) = (\prod_{i=1}^m D \cdot B\xi_i) v(x)$, i.e.

$$D^{m}\hat{v}(\hat{x})(\xi_{1},\ldots,\xi_{m})=D^{m}v(x)(B\xi_{1},\ldots,B\xi_{m}).$$

- **6** Consequently, $||D^m \hat{v}(\hat{x})|| \le ||B||^m ||D^m v(x)||$.
- Thus, by a change of integral variable, we obtain

$$\int_{\widehat{\Omega}} \| D^m \widehat{v}(\widehat{x}) \|^p d\widehat{x} \leq \|B\|^{mp} \left| \det \left(B^{-1} \right) \right| \int_{\Omega} \| D^m v(x) \|^p dx.$$

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \leq C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$ (7.2.7)

3 For any given $\eta_i \in \mathbb{R}^n$ with $\|\eta_i\| = 1$, $1 \le i \le m$, we have

$$D^{m}v(x)(\eta_{1},\ldots,\eta_{m})=\left[\prod_{i=1}^{m}\sum_{j=1}^{n}\eta_{ij}\partial_{j}\right]v(x)=\sum_{j_{1},\ldots,j_{m}=1}^{n}\left[\prod_{i=1}^{m}\eta_{ij_{i}}\partial_{j_{i}}\right]v(x).$$

9 Since, $|\eta_{ij}| \le 1$, $1 \le i \le m$, $1 \le j \le n$, we have

$$||D^m v(x)|| \le n^m \max_{|\alpha|=m} |\partial^{\alpha} v(x)| \le n^m \Big(\sum_{|\alpha|=m} |\partial^{\alpha} v(x)|^p\Big)^{1/p}.$$

- Relations of Sobolev Semi-norms on Affine Equivalent Open Sets
 - Extension of the 1-D Result to the General Case

Proof of $|\hat{v}|_{m,p,\hat{\Omega}} \le C(n,m) \|B\|^m |\det(B)|^{-1/p} |v|_{m,p,\Omega}$ (7.2.7)

- **1** By (3), (7) and (9), the inequality hold for $v \in \mathbb{C}^m(\overline{\Omega})$.
- Step 3

 If $p = \infty$, since the inequality holds uniformly for $1 \le q < \infty$, and for the bounded domain Ω , it holds

$$\|w\|_{0,\infty,\Omega} = \lim_{q \to \infty} \|w\|_{0,q,\Omega}, \qquad \forall w \in \mathbb{L}^{\infty}(\Omega),$$

the inequality holds also for $v \in \mathbb{W}^{m,\infty}(\Omega)$.

有界时、W^{m, }函数属于W^{m,p},p 。 \hat{\partial^\alpha} \hat{\partial^\

Relations of Sobolev Semi-norms on Affine Equivalent Open Sets

 \sqsubseteq Estimate ||B|| and det(B) by Geometric Parameters

Bound $\|B\|$ and $\|B^{-1}\|$ by the Interior and Exterior Diameters

利用几何参数来估计仿射变换矩阵B及其逆的范数

1 Denote the exterior and interior diameters of a region Ω as

$$\begin{cases} h_{\Omega} := \operatorname{diam} \big(\Omega \big), & \text{ with} \\ \rho_{\Omega} := \sup \left\{ \operatorname{diam} \big(S \big) : S \subset \Omega \text{ is a n-dimensional ball} \right\}. \end{cases}$$

Theorem 7.4

Let Ω and $\hat{\Omega}$ be two affine-equivalent open sets in \mathbb{R}^n , let $F(\hat{x}) = B\hat{x} + b$ be the invertible affine mapping, and $\Omega = F(\hat{\Omega})$. Then, $\|B\| \leq \frac{h}{\hat{\rho}}, \quad \text{and} \quad \|B^{-1}\| \leq \frac{\hat{h}}{\rho},$

where $h = h_{\Omega}$, $\hat{h} = h_{\hat{\Omega}}$, $\rho = \rho_{\Omega}$, $\hat{\rho} = \rho_{\hat{\Omega}}$

- Relations of Sobolev Semi-norms on Affine Equivalent Open Sets
 - \sqsubseteq Estimate ||B|| and det(B) by Geometric Parameters

Proof of $||B|| \leq \frac{h}{\hat{a}}$ and the Geometric Meaning of $\det(B)$

1 By the definition of ||B||, we have

$$\|B\| = rac{1}{\hat{
ho}} \sup_{\|\xi\| = \hat{
ho}} \|B\xi\|.$$

- 2 Let the vectors \hat{x} , $\hat{y} \in \widehat{\Omega}$ be such that $\|\hat{y} \hat{x}\| = \hat{\rho}$, then, we have $x = F(\hat{x}) \in \overline{\Omega}$, $y = F(\hat{y}) \in \overline{\Omega}$.
- **3** Therefore, $||B(\hat{y} \hat{x})|| = ||F(\hat{y}) F(\hat{x})|| \le h \implies ||B|| \le \frac{h}{\hat{\rho}}$.

行列式有明显的几何意义

The determinant det(B) also has an obvious geometric meaning:

$$|\det(B)| = rac{\operatorname{meas}(\Omega)}{\operatorname{meas}(\hat{\Omega})}$$
 and $|\det(B^{-1})| = rac{\operatorname{meas}(\hat{\Omega})}{\operatorname{meas}(\Omega)}$

Thank You!