

Dirección de Docencia en Tecnologías de Información y Comunicación

Tema 1: neuronas artificiales Diplomado en inteligencia artificial aplicada

Instructor	Blanca Hilda Vázquez Gómez
Periodo	Jueves 4 de abril, 2024
Modalidad	En línea
Horario	10:00 - 10:45 am
Duración	45 minutos
Sesiones	Jueves

Objetivo general

• El participante estudiará los elementos básicos de las redes neuronales artificiales, y adquirirá habilidades para la construcción de estas redes en Python con el objetivo de solucionar problemas con conjuntos de datos complejos.

Forma de trabajo

- Curso teórico-práctico.
- Materiales en **formato digital** e incluye: temario, diapositivas, libretas de programación.
- Registro de asistencia en cada sesión.
- Seguimiento académico al inicio, durante y fin del módulo.

Criterios de evaluación

Para acreditar el módulo se requiere **mínimo el 70**% de asistencia

La **calificación** aprobatoria será de 8. El módulo se evaluará de la siguiente forma: Asistencia 15%
Participación 15%
Prácticas 30%
Proyecto 40%
Total: 100%

Recomendaciones generales

Puntualidad

Dispositivos seguros

Respaldar información

Celular en vibrador

Repasar los temas

Agenda

Módulo 11. Introducción a las redes neuronales

Tema 1. Neuronas artificiales

- → 1.1 La neurona artificial
 - 1.2 Funciones de activación
 - 1.3 Funciones de pérdida
 - 1.4 Relación con regresión lineal, regresión logística y regresión softMax.
 - 1.5 Algoritmo por descenso del gradiente

¿Qué son las redes neuronales?

Una red neuronal es un modelo matemático **inspirado** en el comportamiento biológico de las neuronas y en la estructura del cerebro.

Imagen tomada de Ramírez-Agundis, 2018.

Comunicación entre neuronas

- La función de las neuronas es recibir y enviar mensajes.
- Los mensajes viajan por las dendritas hasta llegar al axón.
- El axón es el encargo de enviar los mensajes.
- Los mensajes pasan entre neuronas a través de las conexiones sinápticas.

Imagen tomada de Wikipedia, 2020.

El perceptrón

Es la unidad básica de una red neuronal

El perceptrón

Dado un punto arbitrario (x_1, x_2) , va pertenecer al lado positivo de la recta cuando:

$$w_1 x_1 + w_2 x_2 + w_3 > 0$$

Hiperplanos

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_{n+1} = 0$$

Hiperplano

$$\sum_{i=1}^{n} w_i x_i + w_{n+1} = 0$$

$$\boldsymbol{w}^T \mathbf{x} + \boldsymbol{w}_{n+1} = 0$$

Donde:

wes un vector de pesos

$$w_{n+1}$$
 es el sesgo

Neurona artificial

Neurona artificial vs neurona biológica

¿Cómo separar completamente los datos?

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_{n+1} = \begin{cases} > 0 & \text{if } \mathbf{x} \in c_1 \\ < 0 & \text{if } \mathbf{x} \in c_2 \end{cases}$$

¿Cómo separar completamente los datos?

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_{n+1} = \begin{cases} > 0 & \text{if } \mathbf{x} \in c_1 \\ < 0 & \text{if } \mathbf{x} \in c_2 \end{cases}$$

¿Cómo separar completamente los datos?

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_{n+1} = \begin{cases} > 0 & \text{if } \mathbf{x} \in c_1 \\ < 0 & \text{if } \mathbf{x} \in c_2 \end{cases}$$

Múltiples capas

Imagen tomada de González and Woods, Digital Image Processing, Pearson, 4ta edición, 2018.

Funciones de activación

Imágenes tomadas de González and Woods, Digital Image Processing, Pearson, 4ta edición, 2018.

Repaso

En esta sección aprendimos:

- Aprendimos qué es el perceptrón.
- Estudiamos la estructura de una red neuronal
- Comparamos una neurona biológica con una red neuronal.
- Aprendimos las funciones de activación más utilizadas.

Bibliografía

- Ramírez-Agundis, Agustín. Diseño y experimentación de un cuantizador vectorial hardware basado en redes neuronales para un sistema de codificación de video. Tesis Doctoral, Universidad Politécnica de Valencia, octubre 2018.
- González and Woods, Digital Image Processing, Pearson, 4ta edición, 2018.

¿Preguntas?

Contacto

Blanca Hilda Vázquez Gómez Investigador posdoctoral en la Unidad Académica del IIMAS en el Estado de Yucatán, IIMAS, UNAM.

blanca.vazquez@iimas.unam.mx

