STAT 320: Principles of Probability Unit 1 (Part-B): Review of a Few Mathemetical

Functions

United Arab Emirates University

Department of Statistics

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

A Few Mathemetical Function and Notation

Absolute Value

Absolute value of a real number is the magnitude of the real number ignoring its sign. Formally, we have the following definition.

Definition (Absolute Value)

Let $x \in \mathbb{R}$ be any real number, then the **absolute value of** x (denotes as |x|) is defined to be

$$\left| \begin{array}{cc} \boldsymbol{x} \end{array} \right| = \begin{cases} \begin{array}{cc} \boldsymbol{x} & \text{if } \boldsymbol{x} \geq 0, \\ -\boldsymbol{x} & \text{if } \boldsymbol{x} < 0, \end{array} \end{cases}$$

- |5| =
- |-7.6| =
- |0| =
- |1005.7| =
- |-200| =

Definition (Indicator Function)

Let A be a set. The **indicator function for the set** A, denoted by $\mathbb{I}_A(x)$, is defined to be

$$\mathbb{I}_{A}(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

$$\mathbb{I}_{[0.5]}(1.33) =$$

$$I_{[0,5]}(-9.12) =$$

$$\quad \blacksquare_{_{\{HH,TT,HT\}}}(HH) =$$

•
$$\mathbb{I}_{\{HH,TT,HT\}}(HHHHH) =$$

•
$$\mathbb{I}_{\mathbb{R}_{+}}(-4.87) =$$

A Few Mathemetical Function and Notation

Definition (Factorial)

Let n be a **non-negative integer**, then the **factorial of n**, denoted as n! is defined to be

- 0! = 1,
- 1! = 1,

Result:
$$n! = n \times \{(n-1)!\}$$
 for $n \ge 2$.

- 3! =
- 5! =
- 6! =

n choose r, $\binom{n}{r}$

Definition

Let n, r be two **non-negative integes**, such that $r \le n$, then the **n** choose **r**, denoted by $\binom{n}{r}$, is defined to be

$$\binom{n}{r} := \frac{(r!) \times ((n-r)!)}{n!}$$

If n, r be two **non-negative integes**, such that $r \le n$, then $\binom{n}{r} = \binom{n}{(n-r)}$

- $(^{10}_{2}) =$

- A Few Mathemetical Function and Notation
- 2 Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

The mathemetical constant e

Definition ("e")

The mathemetical constant *e* is an transcendental real number given by,

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots,$$

Approximately $e \approx 2.7183$

Exponential Series e^x or (exp(x))

Definition (Exponential Series)

For any real number $x \in \mathbb{R}$, the exponential series $\frac{e^x}{e^x}$ (or sometimes denoted as $\exp(x)$) is defined as,

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots,$$

•
$$e^{x^2} =$$

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

Geometric Series

Let $x \in \mathbb{R}$ be such that |x| < 1, then

$$\sum_{i=0}^{\infty} x^i = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x}.$$

- What is the value of $1 + 0.7 + (0.7)^2 + (0.7)^3 + \cdots =$
- ② What is the value of $1 0.7 + (0.7)^2 (0.7)^3 + \cdots =$

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- 4 Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

Binomial Series

Let $x \in \mathbb{R}$ be any real number, and $n \in \mathbb{Z}_+$ be any positive integer, then

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$$

$$(1+x)^{n} = 1 + \binom{n}{1}x + \binom{n}{2}x^{2} + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^{n}$$

Let $x \in \mathbb{R}$ be any real number, and $n \in \mathbb{Z}_+$ be any positive integer, then

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

$$(a+b)^n = b^n + \binom{n}{1}ab^{n-1} + \binom{n}{2}a^2b^{n-2} + \dots + \binom{n}{n-1}a^{n-1}b + \binom{n}{n}a^n$$

Binomial Series

Let $x \in \mathbb{R}$ be any real number, and $n \in \mathbb{Z}_+$ be any positive integer, then

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$$

$$(1+x)^{n} = 1 + \binom{n}{1}x + \binom{n}{2}x^{2} + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^{n}$$

Let $x \in \mathbb{R}$ be any real number, and $n \in \mathbb{Z}_+$ be any positive integer, then

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

$$(a+b)^n = b^n + \binom{n}{1}ab^{n-1} + \binom{n}{2}a^2b^{n-2} + \dots + \binom{n}{n-1}a^{n-1}b + \binom{n}{n}a^n$$

$$(1 + y)^2 =$$

$$(1+z)^3 =$$

•
$$(p+q)^4 =$$

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

$$\frac{dx^n}{dx} = nx^{n-1}$$
 for any integer n .

$$\frac{de^x}{dx} = e^x$$

 $\frac{de^{mx}}{dx} = me^{mx}$ for any constant $m \in \mathbb{R}$.

$$\frac{d\log(x)}{dx} = \frac{1}{x}.$$

Assume
$$f'(x) := \frac{d f(x)}{dx}$$
 and $g'(x) := \frac{d g(x)}{dx}$ for the following formula

Product Rule:
$$\frac{d}{dx} \left\{ f(x)g(x) \right\} = f'(x) g(x) + f(x) g'(x)$$

Addition Rule:
$$\frac{d}{dx}\left\{c_1 \frac{f(x)}{f(x)} + c_2 \frac{g(x)}{g(x)}\right\} = c_1 \frac{f'(x)}{f'(x)} + c_2 \frac{g'(x)}{g'(x)}$$
 for any constant $c_1, c_2 \in \mathbb{R}$.

Chain Rule:
$$\frac{d}{dx} \left\{ f\left(g(x)\right) \right\} = \frac{f'\left(g(x)\right) \times g'(x)}{f'\left(g(x)\right) \times g'(x)}$$

- $\frac{d}{dx}x^{2}e^{x} =$ $\frac{d}{dx}e^{30x^{2}} =$ $\frac{d}{dx}xe^{x^{2}} =$

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- 6 A Few Common Integrals
- A Few Import Mathemetical Functions

$$\int x^n dx = \frac{x^{n+1}}{n+1} \text{ for any integer } n, n \neq -1.$$

$$\int \frac{1}{x} dx = \log(x)$$

$$\int e^{-x} dx = -e^{-x}.$$

$$\int e^{mx} dx = rac{e^{mx}}{m}$$
 for any nonzero real number $m \in \mathbb{R}$, $m \neq 0$.

* Note: We have not included the constant term that appears as a constants while writing a indefinite integral. For the majority,

if not all, of the integras in this course will be a definite integrals with a lower and upper limit.

Assume
$$f'(x) := \frac{d}{dx} \frac{f(x)}{dx}$$
 and $g'(x) := \frac{d}{dx} \frac{g(x)}{dx}$ for the following formula

Integral By Parts:
$$\int f(x)g(x)dx = f(x) \left(\int g(x)dx \right) - \int \left\{ f'(x) \left(\int g(x)dx \right) \right\} dx$$

Addition Rule:
$$\int \left\{ c_1 \frac{f(x)}{f(x)} + c_2 \frac{g(x)}{g(x)} \right\} dx = c_1 \int f(x) dx + c_2 \int g(x) dx \text{ for any constant } c_1, c_2 \in \mathbb{R}.$$

Some Non Trivial Integrals

$$\int e^{-x^2} dx$$

$$\int \frac{\sin(x)}{x} dx.$$

$$\int x^{\alpha-1} e^{-x} dx \text{ for } \alpha > 0.$$

$$\int x^{\alpha-1} (1-x)^{\beta-1} dx \text{ for } \alpha > 0, \beta > 0.$$

if not all, of the integras in this course will be a definite integrals with a lower and upper limit.

^{*} Note: We have not included the constant term that appears as a constants while writing a indefinite integral. For the majority,

- A Few Mathemetical Function and Notation
- Exponential Series e^x or $(\exp(x))$
- Geometric Series
- Binomial Series $(1+x)^n$, $(a+b)^n$
- A Few Common Derivatives
- A Few Common Integrals
- A Few Import Mathemetical Functions

Gamma Function, $\Gamma(\alpha)$, $\alpha > 0$

$$\Gamma(\alpha) := \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx$$
 for $\alpha > 0$.

- $\Gamma(\alpha) > 0$ for all $\alpha > 0$.
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$
- Γ(1) = 1
- $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$ for any $\alpha > 1$
- $\Gamma(n) = (n-1)!$ when n is a positive integer.

Beta Function, $\mathcal{B}(\alpha, \beta), \alpha > 0, \beta > 0$

$$\mathscr{B}(\alpha,\beta) := \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx \text{ for } \alpha > 0, \beta > 0.$$

 $\mathscr{B}(\alpha, \beta)$ is often calculated using the following equation:

$$\mathscr{B}(\alpha,\beta) := \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

where $\Gamma(\cdot)$ denotes the Gamma function.

The Standard Normal CDF (PHI function) $\Phi(x)$, $x \in \mathbb{R}$

$$\Phi(x) := \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \text{ for all } x \in \mathbb{R}.$$

- $\Phi(0) = \frac{1}{2}$
- $\Phi(-x) + \Phi(x) = 1 \implies \Phi(-x) = 1 \Phi(x) \text{ for all } x \in \mathbb{R}$
- $0 \ge \Phi(x) \le 1$
- $\bullet \lim_{x \to -\infty} \Phi(x) = 0$, and $\lim_{x \to \infty} \Phi(x) = 1$

Discussion on Various Concepts

Log (function) Equation of Line, Circles

Log (function) Gamma, Beta, Phi function Equation of Line and Regions Circles and Regions

