Statistik och Dataanalys I

Föreläsning 22 - Chi2-test och beslut under osäkerhet

Oscar Oelrich

Statistiska institutionen Stockholms universitet

Översikt

- Chi2-test för goodness of fit
- Chi2-test för oberoende
- Beslutsfattande under osäkerhet

Kortkampanj (Uppgift 22.2 i SDM)

- Bank har tre sorters kreditkort: Silver, Gold och Platinum.
- Marknadsföringkampanj. Skillnad i vilken kortklass kunder ansöker om?
- Undersöker n = 200 personers ansökningar efter kampanj.

Korttyp	Innan	Efter	Stickprov efter	Förväntat om ingen effekt av kampanj
Silver	60%	55.5%	111	$200 \cdot 0.6 = 120$
Gold	30%	29.5%	59	$200 \cdot 0.3 = 60$
Platinum	10%	15%	30	$200 \cdot 0.1 = 20$

Chi2-test Goodness-of-fit

- Räknedata. Antal.
- Hypoteser
 - \blacktriangleright H_0 : räknedata följer fördelning med sannolikhet p_k i cell k.
 - $ightharpoonup H_A$: räknedata följer annan fördelning.
- Totalt antal i hela tabellen: n
- **Förväntat antal** i cell k: $\operatorname{Exp}_k = n \cdot p_k$.
 - \triangleright Exempel: $\text{Exp}_{\text{silver}} = 200 \cdot 0.6 = 120$
- **Observerat antal** i cell k: Obs_k
 - \triangleright Exempel: Obs_{silver} = 111

Korttyp	Innan	Efter	Stickprov efter	Förväntat om ingen effekt av kampanj
Silver	60%	55.5%	111	$200 \cdot 0.6 = 120$
Gold	30%	29.5%	59	$200 \cdot 0.3 = 60$
Platinum	10%	15%	30	$200 \cdot 0.1 = 20$

Chi2-test Goodness-of-fit

- Hypoteser
 - $ightharpoonup H_0$: räknedata följer fördelning med sannolikhet p_k i cell k.
 - $ightharpoonup H_A$: räknedata följer annan fördelning.
- Chi2 (χ^2) test för tabell med K celler **teststatistika**

$$\chi^2 = \sum_{k=1}^K \frac{(\mathrm{Obs}_k - \mathrm{Exp}_k)^2}{\mathrm{Exp}_k} = \sum_{\mathsf{all cells}} \frac{(\mathrm{Obs} - \mathrm{Exp})^2}{\mathrm{Exp}}$$

■ Under H_0 - Chi2-fördelning med K-1 frihetsgrader

$$\chi^2 \sim \chi^2_{K-1}$$

Chi2-fördelning

Chi2-test Goodness-of-fit

Teststatistika

$$\chi^2_{obs} = \sum_{\text{all cells}} \frac{(\text{Obs} - \text{Exp})^2}{\text{Exp}} = \frac{(111 - 120)^2}{120} + \frac{(59 - 60)^2}{60} + \frac{(30 - 20)^2}{20} = 5.6917$$

- Under H_0 Chi2-fördelning med 3-1=2 frihetsgrader
- Kritiskt värde på signifikansnivå 5% från χ^2_2 -tabell: $\chi^2_{crit}=5.991.$
- Eftersom $\chi^2_{obs} < \chi^2_{crit}$ kan vi inte förkasta H_0 .
- Finns inte stöd för att kampanjen har ändrat fördelningen över olika kortklasser.

Korttyp	Innan	Efter	Stickprov efter	Förväntat om ingen effekt av kampanj
Silver	60%	55.5%	111	$200 \cdot 0.6 = 120$
Gold	30%	29.5%	59	$200 \cdot 0.3 = 60$
Platinum	10%	15%	30	$200 \cdot 0.1 = 20$

Chi2-tabell

χ^2 -fördelning

Right-tail probability:	0.100	0.050	0.025	0.010	0.005
df					
1	2.706	3.841	5.024	6.635	7.879
2	4.605	5.991	7.378	9.210	10.597
3	6.251	7.815	9.348	11.345	12.838
4	7.779	9.488	11.143	13.277	14.860
5	9.236	11.070	12.833	15.086	16.750
6	10.645	12.592	14.449	16.812	18.548
7	12.017	14.067	16.013	18.475	20.278
8	13.362	15.507	17.535	20.090	21.955
9	14.684	16.919	19.023	21.666	23.589
10	15.987	18.307	20.483	23.209	25.188

	Hepatit C	Ej hepatit C	Total
Tatuering, studio	17	35	52
Tatuering, ej studio	8	53	61
Ingen tatuering	22	491	513
Total	47	579	626

- Hur skulle tabellen ovan skulle se ut om det inte fanns något samband?
- 47 av 626 personer testade positivt för hepatit C.
- Om hepatit C och tatueringsstatus är oberoende så borde andelen vara runt 47/626 = 0.075 oavsett om personen var tatuerad eller inte.

	Hepatit C	Ej hepatit C	Total
Tatuering, studio	17	35	52
Tatuering, ej studio	8	53	61
Ingen tatuering	22	491	513
Total	47	579	626

- 52/626 = 0.08 har en tatuering från en tatueringsstudio. Av dessa 52 skulle vi förvänta oss att 52*47/626 = 3.9 skulle ha hepatit C, om det inte finns något samband. Resten (52-3.9=48.1) förväntas ej ha heptatit C.
- Av dom 61 som har en tatuering, men inte från en tatueringsstudio, förväntar vi oss 61*47/626=4.6 med hepatit C och 61-4.6=56.4 utan hepatit C.
- Vi beräknar dom 6 förväntade antalen om det ej finns samband och jämför med observerade data.

Tatuering	Hepatit C	Obs	Exp	$\frac{(Obs-Exp)^2}{Exp}$
Studio	Ja	17	3.9	44.0
Studio	Nej	35	48.1	3.6
Ej studio	Ja	8	4.6	2.5
Ej studio	Nej	53	56.4	0.2
Ingen	Ja	22	38.5	7.1
Ingen	Nej	491	474.5	0.6

Den totala avvikelsen är 58.0. Är denna avvikelse från vad vi förväntar oss tillräckligt stor för att vi ska förkasta antagandet om oberoende? Vi gör ett hypotestest!

- *H*₀: dom två variablerna (tatueringsstatus och hepatit C i detta exempel) är oberoende.
- \blacksquare H_A : dom två variablerna är inte oberoende.
- Teststatistika $\chi^2 = \sum_{\text{alla}} \frac{(Obs Exp)^2}{Exp}$.
- **Antal frihetsgrader**: $df = (n_{rader} 1) \cdot (n_{kolumner} 1)$.
- **Kritiskt värde**: $\chi^2_{df}(\alpha)$.
- Förkasta om $\chi^2_{obs} > \chi^2_{df}(\alpha)$.

- H₀: dom två variablerna (tatueringsstatus och hepatit C i detta exempel) är oberoende.
- \blacksquare H_A : dom två variablerna är inte oberoende.
- Teststatistika $\chi^2_{obs} = \sum_{alla} \frac{(Obs Exp)^2}{Exp} = 58.0.$
- Antal frihetsgrader: $df = (n_{rader} - 1) \cdot (n_{kolumner} - 1) = (3 - 1) \cdot (2 - 1) = 2.$
- **Kritiskt värde**, vi väljer $\alpha = 0.05$: $\chi_2^2(0.05) = 5.991$.
- $\mathbf{Z}_{obs}^2=58>5.991.$ Vi förkastar nollhypotesen på $\alpha=0.05$ signifikansnivå.

Test av oberoende - antaganden

- Räknedata. Vi antar att vi har räknedata för individer, med värden för två variabler.
- **Oberoende**. Vi antar att observationerna är oberoende, exempelvis ett slumpmässigt urval.
- Tillräcklig cellfrekvens: vi antar att det förväntade antalet (Exp) är minst 5 i varje cell.

Test av oberoende - kollaps

För hepatitexemplet så är inte det tredje antagandet uppfyllt, så vi bör vara försiktiga med våra slutsatser. Ett alternativ är att kollapsa olika kategorier. Lägsta förväntade blir då 113*47/626=8.5, men vi tappar möjligheten att se om det är nån skillnad mellan tatuering i studio eller övrig tatuering.

	Hepatit C	Ej hepatit C	Total
Tatuering	25	88	113
Ej tatuering	22	491	513
Total	47	579	626

Beslut under osäkerhet

- Vi behöver ofta fatta beslut i en miljö med osäkerhet.
 - ▶ Beslut: Ska jag ta med ett paraply när jag går ut?
 - ▶ Osäkerhet: kommer det att regna?
 - ▶ Beslut: ska jag investera i aktier eller spara på banken?
 - ▶ Osäkerhet: börsens och inflationens utveckling under min placeringshorisont.
 - ▶ Beslut: Ska Sverige satsa på snabbtåg?
 - Osäkerhet: hur kommer elbilar utvecklas? klimatet? vad kommer det kosta? etc etc

Beslut och statistik

- Ett fattat beslut har konsekvenser.
- konsekvenserna beror på osäkra faktorer som vi inte vet när vi fattar beslutet.
- Vi behöver sannolikhetfördelningen för de osäkra kvantiteterna.
- Modellerar osäker kvantitet i form av en slumpvariabel X.
- Använder data (och expertkunskap) för att beräkna dessa sannolikheter. Statistik!

Beslut + Utfall = Konsekvens

Nyttobegreppet

Beslutsprocess:

- ▶ Du fattar beslutet a.
- \triangleright X realiseras som x.
- ► Kombinationen *a* och *x* ger dig viss **nytta** (eng. **utility**):

■ Ibland: förlust L(a,x) - vilket bara är negativ nytta

$$L(a,x) = U(a,x)$$

Nytta

Maximin - en pessimistisk beslutsregel

- Maximin: välj beslut a som maximerar den minimala nyttan.
- Garderar mot det värsta som kan hända (pessimist).

Maximin ignorerar hur sannolika utfallen är.

I spelteori med intelligent motståndare är maximin optimal.

Maximera förväntad nytta

Beslutsregel välj beslut a som maximerar förväntade nytta

$$EU(a) = \sum_{\text{alla } x} U(a, x) \cdot P(X = x)$$

■ Paraply-beslutet:

$$a_1 = \mathsf{Paraply}: \qquad \mathrm{EU}(a) = 0.2 \cdot 0 + 0.8 \cdot 50 = 40$$
 $a_2 = \mathsf{Inget} \ \mathsf{paraply}: \mathrm{EU}(a) = 0.2 \cdot (-100) + 0.8 \cdot 100 = 60$

Optimalt beslut: ta inte med paraply.

Maximera förväntad nytta

Paraply-beslutet i Bergen:

$$\begin{aligned} & \textbf{a}_1 = \mathsf{Paraply}: & & & & & & & & & & & & & & & & & \\ & \textbf{a}_2 = \mathsf{Inget} \ \mathsf{paraply}: & & & & & & & & & & & \\ & \textbf{a}_2 = \mathsf{Inget} \ \mathsf{paraply}: & & & & & & & & & \\ & \textbf{EU(a)} = 0.7 \cdot (-100) + 0.3 \cdot 100 = -40 \end{aligned}$$

Optimal beslut i Bergen: Paraply!

Credits

Dessa slides skapades för kursen statistik och dataanalys 1 av Mattias Villani HT 2023, och har modifierats av Oscar Oelrich för statistik och dataanalys 1 VT 2024.