Репер Френе. Формулы Френе-Серре

Теория кривых

# **Дифференциальная геометрия Теория кривых**

Геворкян М. Н.

Российский университет дружбы народов Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

#### Параметризованная кривая

#### Определение

Сегмент кривой  $\gamma$  имеет параметрическое представление в  $\mathbb{R}^n$  если задана вектор-функция

$$\mathbf{r}(t) \colon [a,b] \to \mathbb{R}^n, \ \mathbf{r}(t) = \begin{pmatrix} x^1(t) \\ x^2(t) \\ \vdots \\ x^n(t) \end{pmatrix} \ t \in [a,b] \in \mathbb{R},$$

Если функции  $x^i(t), \forall i=1,\dots,n$  имеют непрерывные производные первого порядка, которые ни в одной точке интервала [a,b] не обращаются в ноль:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \neq \vec{\mathbf{0}}, \ \forall t \in [a, b],$$

то сегмент кривой называется регулярным.

#### Параметризованная кривая

Если на отрезке  $a\leqslant t\leqslant b$  каждому значению t соответствует одна точка сегмента кривой и, наоборот, каждой точке сегмента кривой соответствует одно значение t, то сегмент называется простой дугой. У такого сегмента кривой нет точек самопересечения.

В классической дифференциальной геометрии изучаются кривые, состоящие из регулярных сегментов. В точках соединения сегментов требование регулярности может не выполнятся. Такие точки называются нерегулярными или особыми.

Мы будем рассматривать примеры кривых, заданных на плоскости  $\mathbb{R}^2$  и в пространстве  $\mathbb{R}^3$ . Параметрическое представление таких кривых задается как:

$$\mathbf{r}(t) = \begin{pmatrix} x^1(t) \\ x^2(t) \end{pmatrix} \in \mathbb{R}^2 \quad \mathbf{r}(t) = \begin{pmatrix} x^1(t) \\ x^2(t) \\ x^3(t) \end{pmatrix} \in \mathbb{R}^3, \ t \in [a,b] \in \mathbb{R},$$

#### Неявно заданная кривая

#### Определение

Кривая  $\gamma$  называется неявно заданной в  $\mathbb{R}^n$ , если геометрическое место ее точек находится как решение системы из n-1 уравнения:

$$\begin{cases} F_1(x^1,x^2,\ldots,x^n) = 0, \\ F_2(x^1,x^2,\ldots,x^n) = 0, \\ \vdots \\ F_{n-1}(x^1,x^2,\ldots,x^n) = 0, \end{cases}$$

где каждая функция  $F_i(\mathbf{x})$  — гладкая функция  $\mathbb{R}^n o \mathbb{R}$ .

Для плоскости  $\mathbb{R}^2$  это одно уравнение F(x,y)=0, а для трехмерного пространства  $\mathbb{R}^3$  это два уравнения  $F_1(x,y,z)=0$  и  $F_2(x,y,z)=0$ .

#### Касательный вектор

#### Определение

Касательным вектором кривой  $\gamma$  в точке P называется производная от радиус-вектора  $\mathbf{r}(t)$  кривой:

$$\dot{\mathbf{r}}(t) = \left. \frac{\mathrm{d}\mathbf{r}(t)}{\mathrm{d}t} \right|_{t=t_0} = \left( \frac{\frac{\mathrm{d}x^1}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \right)_{t=t_0} = \left( \dot{x}^1 \atop \dot{x}^n \right)_{t=t_0}$$

Точка имеет координаты  $P=\mathbf{r}(t_0)=\begin{pmatrix} x_0^1 & x_0^2 & \dots & x_0^n \end{pmatrix}$ . Касательный вектор также называют вектором скорости.

C помощью точки над буквой  $\dot{x}(t)$  обозначается первая производная по переменной t.

$$\dot{\mathbf{r}}(t) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}, \ \ddot{\mathbf{r}}(t) = \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}, \ \dot{\ddot{\mathbf{r}}}(t) = \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}t^3}$$

#### Вектор ускорения

Вектором ускорения кривой  $\gamma$  в точке P назовем вторую производную по t от радиус-вектора  $\mathbf{r}(t)$  кривой:

$$\ddot{\mathbf{r}}(t_0) = \left.\frac{\mathrm{d}^2\mathbf{r}(t)}{\mathrm{d}t^2}\right|_{t=t_0} = \left(\frac{\frac{\mathrm{d}^2x^1}{\mathrm{d}t^2}}{\vdots}\right)_{t=t_0} = \left(\ddot{x}^1\right)_{t=t_0}$$

Термин вектор ускорения в дифференциальной геометрии обычно не используют, потому что рассматривают нормальный вектор, который мы введем ниже. В некоторых случаях вектор ускорения и вектор нормали совпадают.

#### Вектор скорости и ускорения

На рисунке можно видеть единичный (нормированный) касательный вектор  $\mathbf{v}(t) = \frac{\dot{\mathbf{r}}}{\|\dot{\mathbf{r}}\|}(t)$  и единичный вектор ускорения  $\mathbf{a}(t) = \frac{\ddot{\mathbf{r}}}{\|\ddot{\mathbf{r}}\|}(t)$  в точке P некоторого сегмента кривой. Обратите внимание, что угол между ними может быть произвольным.



Выберем такой параметр l=l(t), что касательный вектор по этому параметру будет единичным вектором при любых значениях l:

$$\mathbf{v}(l) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \ \|\mathbf{v}\| = \left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\right\| \equiv 1, \forall l \in [a,b].$$

По правилу дифференцирования сложной функции получим:

Таким образом

$$dl = \left\| \frac{d\mathbf{r}}{dt} \right\| dt = \sqrt{\left( \frac{d\mathbf{r}}{dt}, \frac{d\mathbf{r}}{dt} \right)} dt,$$

а в случае ортонормированного базиса можно записать

$$dl = \sqrt{\sum_{i=1}^{n} (\dot{x}^i(t))^2} dt$$

#### Определение

Параметрическое представление кривой  $\gamma$ , при котором радиус-вектор кривой  $\mathbf{r}(l)\colon [a,b]\to\mathbb{R}^n$  имеет единичный касательный вектор  $\mathbf{v}$ :

$$\|\mathbf{v}(l)\| = \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} \right\| \equiv 1, \forall l \in [a, b] \in \mathbb{R}^n,$$

называется натуральным представлением, а параметр l — натуральным параметром.

Натуральный параметр l имеет смысл длины дуги кривой, измеряемой от произвольно, но определенно выбранного начала отсчета на кривой.



#### Определение

Кривая, которая допускает введение понятия длины дуги, называется спрямляемой.

#### **Утверждение**

Кривая спрямляема, если текущие координаты являются непрерывными функциями параметра t с непрерывными производными первого порядка.

Длина кривой вычисляется по формуле:

$$l = \int_{t_0}^t \|\dot{\mathbf{r}}(\tau)\| \, d\tau = \int_{t_0}^t \sqrt{(\dot{\mathbf{r}}(\tau), \dot{\mathbf{r}}(\tau))} \, d\tau$$

а для ортонормированного базиса в трехмерном случае:

$$l = \int_{t_0}^{t} \sqrt{\dot{x}^2(\tau) + \dot{y}^2(\tau) + \dot{z}^2(\tau)} \,d\tau$$

Эта формула раскрывает геометрический смысл параметра l — длина дуги от некоторой фиксированной точки  $P_0={f r}(t_0)$  кривой до произвольной точки  $P={f r}(t)$ .

# Касательная прямая и нормальная плоскость для $\mathbb{R}^3$

Уравнение касательной к кривой в точке  $P=(x_0,y_0,z_0)$  может быть записано как уравнение прямой, проходящей через точку P параллельно касательному вектору  $\mathbf{v}(t_0)=(\dot{x}_0,\dot{y}_0,\dot{z}_0)^T$  то есть:

$$\frac{x - x_0}{\dot{x}_0} = \frac{y - y_0}{\dot{y}_0} = \frac{z - z_0}{\dot{z}_0}.$$

Прямые, проходящие через точки касания перпендикулярно к касательной, называются нормалями кривой. Плоскость, проходящая через точку касания перпендикулярно к касательной, называется нормальной плоскостью и содержит в себе все нормали к кривой в точке P. Уравнение нормальной плоскости записывается как

$$(x-x_0)\dot{x}_0 + (y-y_0)\dot{y}_0 + (z-z_0)\dot{z}_0 = 0.$$

В случае плоской кривой нормальная плоскость вырождается в нормальную прямую:

$$(x - x_0)\dot{x}_0 + (y - y_0)\dot{y}_0 = 0.$$

## Кривизна и вектор нормали

#### Определение

Пусть регулярный сегмент кривой  $\gamma$  имеет параметрическое представление с помощью радиус-вектора  ${f r}(l)$  с натуральным параметром l. Вектор ускорения  ${d^2{f r}\over dl^2}$  в точке  $P_0={f r}(l_0)$  называется вектором нормали в точке  $P_0$ .

Единичный вектор нормали  $\mathbf{n}(l)$  определяется как:

$$\mathbf{n}(l) \stackrel{\text{def}}{=} \frac{\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}}{\left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|}$$

Величина вектора нормали  $\frac{\mathrm{d}^2 r}{\mathrm{d} l^2}$  в точке  $P_0 = \mathbf{r}(l_0)$  называется кривизной кривой в точке  $P_0$ :

$$k(l_0) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|_{l=l_0}$$

#### Главная нормаль

Даже при n=3 мы уже получаем целый пучок нормалей, так как достаточно провести плоскость, перпендикулярную касательной в точке касания и весь пучок прямых этой плоскости с центром в точке касания будет состоять из нормалей к нашей кривой.

Вектор нормали  $\mathbf{n}(l)$  позволяет выделить главную нормаль на нормальной плоскости для случая  $\mathbb{R}^n, n \geqslant 3$ .

## Кривизна и вектор нормали

Для регулярного сегмента кривой кривизна k(l) определена для любого l из  $[a,b] \in \mathbb{R}$ . То же справедливо и для касательного вектора  $\mathbf{v}(l)$  и для нормального вектора  $\mathbf{n}(l)$ . Поэтому мы часто будем опускать фразу об определенной точек  $P_0$ .

#### Определение

Радиусом кривизны кривой  $\gamma$  в точке P называется величина, обратная кривизне

$$R(l) = \frac{1}{k(l)}$$

Из определений следует уравнение:

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} = k\mathbf{n}, \ k(l) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|.$$

Это первое уравнение Френе-Серре

#### Замечания по поводу обозначений

В литературе (см., например [1, с. 57]) встречаются обозначения касательного и нормального векторов с помощью греческих букв «тау»  $\vec{\tau}$  и «ню»  $\vec{\nu}$ , так как они перекликаются с оригинальными латинскими терминами tangentem и normalis.

Мы используем обозначение  ${\bf v}$  для единичного касательного вектора, что отражает физический смысл этого вектора — вектор скорости (лат. velocitas — скорость) и обозначение  ${\bf n}$  для единичного вектора нормали.

# Ортогональность векторов касательной и нормали

#### **Утверждение**

Векторы касательной  $rac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}$  и нормали  $rac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}$  ортогональны, при натуральном параметре l.

Докажем, взяв производную от скалярного произведения. С одной стороны:

$$\frac{\mathrm{d}}{\mathrm{d}l}\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l},\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\right) = \left(\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2},\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\right) + \left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l},\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}\right) = 2\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l},\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}\right).$$

С другой стороны, из-за натурального параметра касательный вектор единичной длины для любого значения l и, следовательно, производная равна 0  $\forall l$ 

$$\frac{\mathrm{d}}{\mathrm{d}l} \left( \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} \right) = \frac{\mathrm{d}}{\mathrm{d}l} \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} \right\|^2 = \frac{\mathrm{d}}{\mathrm{d}l} \mathbf{1} = 0,$$

В итоге

$$\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}\right) \equiv 0 \quad \Box$$

# Ортогональность единичных векторов касательной и нормали

Из ортогональности

$$\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}\right) = 0,$$

следует ортогональность  ${f v}$  и  ${f n}$ :

$$(\mathbf{v}, k\mathbf{n}) = k(\mathbf{v}, \mathbf{n}) = \left(\frac{d\mathbf{r}}{dl}, \frac{d^2\mathbf{r}}{dl^2}\right) = 0$$

Можно точно также доказать, что

$$\left(\mathbf{n}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right) \equiv 0,$$

пользуясь единичностью вектора  ${\bf n}$  при натуральном параметре l.

$$\frac{\mathrm{d}}{\mathrm{d}l}(\mathbf{n}, \mathbf{n}) = 2\left(\mathbf{n}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}l}(\mathbf{n},\mathbf{n}) = \frac{\mathrm{d}}{\mathrm{d}l}\mathbf{1} \equiv 0$$

## Бинормаль

Векторы  ${\bf v}$  и  ${\bf n}$  при натуральной параметризации являются ортогональными. В  $\mathbb{R}^3$  должен существовать еще один вектор, ортогональный и  ${\bf v}$  и  ${\bf n}$ . Введем его следующим образом.

## Определение

Вектор  $\mathbf{b} = [\mathbf{v}, \mathbf{n}]$  называется единичным вектором бинормали.

По определению векторного умножения вектор бинормали ортогонален векторам  ${\bf v}$  и  ${\bf n}$ . Упорядоченная тройка векторов  $\langle {\bf v}, {\bf n}, {\bf b} \rangle$  образуют репер, который называется репером Френе или основными векторами кривой.

$$\mathbf{v}=[\mathbf{n},\mathbf{b}],$$

$$\mathbf{n}=[\mathbf{b},\mathbf{v}],$$

$$\mathbf{b} = [\mathbf{v}, \mathbf{n}].$$

# Репер Френе и сопровождающий трехгранник



# Репер Френе как локальный базис

Репер Френе определен для бесконечно малой локальной окрестности каждой точки P регулярного сегмента кривой в пространстве  $\mathbb{R}^3$ . Возможны обобщения и на большие размерности, но классическая дифференциальная геометрия изучает кривые именно в  $\mathbb{R}^2$  и  $\mathbb{R}^3$ .

Любой вектор в локальной окрестности точки P можно разложить по векторам базиса Френе. Рассмотрим следующий вектор:

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = a\mathbf{v} + b\mathbf{n} + c\mathbf{b}, \ a, b, c \in \mathbb{R},$$

и найдем значения коэффициентов a,b,c. Из ортогональности  ${f n}$  и  $rac{{
m d}{f n}}{{
m d}l}$  следует:

$$\left(\mathbf{n}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right) = a\left(\underbrace{\mathbf{n}, \mathbf{v}}_{=0}\right) + b\left(\underbrace{\mathbf{n}, \mathbf{n}}_{=1}\right) + c\left(\underbrace{\mathbf{n}, \mathbf{b}}_{=0}\right) \Rightarrow b = 0$$

Таким образом:

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = a\mathbf{v} + c\mathbf{b}$$

# Вывод второй формулы Френе-Серре

Для нахождения a и c продифференцируем скалярное произведение  $(\mathbf{v},\mathbf{n})=0.$ 

$$\frac{\mathrm{d}}{\mathrm{d}l}(\mathbf{v},\mathbf{n}) = \left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l},\mathbf{n}\right) + \left(\mathbf{v},\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right)$$

так как

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} = k\mathbf{n} \ \mathsf{v} \ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = a\mathbf{v} + c\mathbf{b},$$

то

$$k\underbrace{(\mathbf{n},\mathbf{n})}_{=1} + a\underbrace{(\mathbf{v},\mathbf{v})}_{=1} + c\underbrace{(\mathbf{v},\mathbf{b})}_{=0} = 0 \Rightarrow a = -k.$$

Таким образом

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = -k\mathbf{v} + c\mathbf{b}$$

## Кручение

Величина c обозначается греческой буквой  $\kappa$  (или  $\varkappa$ ) и называется кручением и является вторым инвариантом кривой (первый – кривизна). Также кручение иногда называют пространственной кривизной и обозначают как  $k_2$ .

- Кручение, в отличие от кривизны, может принимать любой знак.
- У плоских (двумерных) кривых кручение равно 0.
- Геометрический смысл кручения скорость изменения направления соприкасающейся плоскости.

Формула

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = -k\mathbf{v} + \kappa\mathbf{b}$$

называется второй формулой Френе-Серре.

# Третья формула Френе-Серре

Для вывода третьей формулы Френе-Серре найдем производную от бинормали по натуральному параметру.

$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = \frac{\mathrm{d}}{\mathrm{d}l}[\mathbf{v}, \mathbf{n}] = \left[\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l}, \mathbf{n}\right] + \left[\mathbf{v}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right] = \underbrace{\left[k\mathbf{n}, \mathbf{n}\right]}_{=0} + \left[\mathbf{v}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right] = \left[\mathbf{v}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right]$$

Пользуясь второй формулой Френе-Серре, получим:

$$\left[\mathbf{v}, \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l}\right] = \left[\mathbf{v}, -k\mathbf{v} + \varkappa\mathbf{b}\right] = -k\underbrace{\left[\mathbf{v}, \mathbf{v}\right]}_{=0} + \varkappa\underbrace{\left[\mathbf{v}, \mathbf{b}\right]}_{=\mathbf{n}}.$$

Получили третью формулу Френе-Серре:

$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = -\kappa \mathbf{n}.$$

## Формулы Френе-Серре

Мы доказали теорему:

#### Теорема

Френе–Серре для любой пространственной кривой  $\mathbf{r}(l)$ , где l — натуральный параметр, имеют место следующие формулы, называемые формулами Френе:

$$\begin{array}{ll} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} & = & +k\mathbf{n} \\ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} & = -k\mathbf{v} & + \varkappa\mathbf{b} \\ \frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} & = & -\varkappa\mathbf{n} \end{array}$$

где  ${f v}$  — единичный вектор касательной,  ${f n}$  — единичный вектор нормали,  ${f b}$  — единичный вектор бинормали,  ${f \kappa}$  — кручение, а k — кривизна.

Три вектора  $\langle {\bf e}_1(t), {\bf e}_2(t), {\bf e}_3(t) \rangle$  образуют ортонормальную тройку если они единичны и взаимно ортогональны:

$$(\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Дополнительно потребуем непрерывность производных произвольного порядка. Производные первого порядка от е, можно разложить по ним самим и рассмотреть систему [2, с. 13]:

$$\frac{\mathrm{d}\mathbf{e}_i}{\mathrm{d}t} = \sum_{i=1}^3 a_i^k \mathbf{e}_k.$$

С одной стороны:

$$\frac{\mathrm{d}}{\mathrm{d}t}\big(\mathbf{e}_i,\mathbf{e}_j\big) = \left(\frac{\mathrm{d}\mathbf{e}_i}{\mathrm{d}t},\mathbf{e}_j\right) + \left(\mathbf{e}_i,\frac{\mathrm{d}\mathbf{e}_j}{\mathrm{d}t}\right) = \sum_{k=1}^3 (a_i^k\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 (\mathbf{e}_i,a_j^l\mathbf{e}_l) = \sum_{k=1}^3 a_i^k(\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 a_j^l(\mathbf{e}_i,\mathbf{e}_l) = a_i^k\delta_{kj} + a_j^l\delta_{il} = \sum_{k=1}^3 a_i^k(\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 a_l^l(\mathbf{e}_i,\mathbf{e}_l) = a_i^k\delta_{kj} + a_j^l\delta_{il} = \sum_{k=1}^3 a_i^k(\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 a_l^l(\mathbf{e}_i,\mathbf{e}_l) = a_i^k\delta_{kj} + a_j^l\delta_{il} = \sum_{k=1}^3 a_i^k(\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 a_l^l(\mathbf{e}_i,\mathbf{e}_l) = \sum_{k=1}^3 a_k^k(\mathbf{e}_k,\mathbf{e}_j) + \sum_{l=1}^3 a_l^l(\mathbf{e}_i,\mathbf{e}_l) = \sum_{k=1}^3 a_k^k(\mathbf{e}_k,\mathbf{e}_k) + \sum_{l=1}^3 a_l^l(\mathbf{e}_l,\mathbf{e}_l) = \sum_{k=1}^3 a_k^k(\mathbf{e}_k,\mathbf{e}_l) + \sum_{l=1}^3 a_l^l(\mathbf{e}_l,\mathbf{e}_l) = \sum_{l=1}^3 a_l^l(\mathbf{e}_l,\mathbf{e}_l) + \sum_{l=1}^3 a_l^l(\mathbf{e}_l,\mathbf{e}_l) = \sum_{l=1}^3$$

С другой стороны по определению:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{e}_i, \mathbf{e}_j) = \frac{\mathrm{d}}{\mathrm{d}t}\delta_{ij} = 0.$$

Получаем условие, налагаемое на коэффициенты матрицы  $a^i_j$ :

$$a_i^j + a_j^i = 0 \ \forall i,j \Rightarrow a_i^j = -a_j^i,$$

что в терминах матриц означает антисимметричность матрицы:

$$\begin{pmatrix} 0 & a_2^1 & a_3^1 \\ -a_2^1 & 0 & a_3^2 \\ -a_3^1 & -a_3^2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} \Rightarrow \begin{cases} \frac{d\mathbf{e}_1}{dt} = -\alpha\mathbf{e}_2 - \beta\mathbf{e}_3, \\ \frac{d\mathbf{e}_2}{dt} = +\alpha\mathbf{e}_1 - \gamma\mathbf{e}_3, \\ \frac{d\mathbf{e}_3}{dt} = +\beta\mathbf{e}_1 + \gamma\mathbf{e}_2. \end{cases}$$

Отсюда мы можем легко получить формулы Френе-Серре, если рассмотрим в качестве ортонормальной тройки вектора  $\langle \mathbf{v}, \mathbf{n}, \mathbf{b} \rangle$  (порядок важен) и натуральную параметризацию кривой параметром l. Тогда:

$$\begin{cases} \frac{d\mathbf{e}_1}{\mathrm{d}l} = -\alpha\mathbf{e}_2 - \beta\mathbf{e}_3, \\ \frac{d\mathbf{e}_2}{\mathrm{d}l} = +\alpha\mathbf{e}_1 - \gamma\mathbf{e}_3, \Rightarrow \begin{cases} \frac{d\mathbf{v}}{\mathrm{d}l} = -\alpha\mathbf{n} - \beta\mathbf{b}, \\ \frac{d\mathbf{n}}{\mathrm{d}l} = +\alpha\mathbf{v} - \gamma\mathbf{b}, \\ \frac{d\mathbf{e}_3}{\mathrm{d}l} = +\beta\mathbf{e}_1 + \gamma\mathbf{e}_2. \end{cases}$$

и используем формулу

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = k\mathbf{n},$$

которая по-сути является определением единичного вектора нормали. Из этой формулы следует, что  $\alpha=-k,\ \beta=0.$  Тогда:

$$\begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = k\mathbf{n} - 0\mathbf{b}, \\ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = -k\mathbf{v} - \gamma\mathbf{b}, \Rightarrow \begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = k\mathbf{n}, \\ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = -k\mathbf{v} + \varkappa\mathbf{b}, \text{ где } \gamma = -\varkappa. \end{cases}$$
$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = 0\mathbf{v} + \gamma\mathbf{n}, \qquad \begin{cases} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = k\mathbf{n}, \\ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} = -k\mathbf{v} + \varkappa\mathbf{b}, \text{ где } \gamma = -\varkappa. \end{cases}$$

Мы получили непосредственно формулы Френе–Серре. Последнюю формулу можно использовать в качестве определения кручения  $\varkappa$ .

Такой подход позволяет обобщить формулы Френе–Серре на произвольную размерность пространства  $\mathbb{R}^n.$ 

# Явная формула для кручения и I/II

Выведем теперь явную формулу для вычисления кручения  $\varkappa$  в произвольной точке регулярной гладкой кривой. Рассмотрим три производные от радиус-вектора  ${\bf r}$  по l:

$$\begin{split} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} &= \mathbf{v}, \\ \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} &= k\mathbf{n}, \\ \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}l^3} &= k\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} + \frac{\mathrm{d}k}{\mathrm{d}l}\mathbf{n} = -k^2\mathbf{v} + k\varkappa\mathbf{b} + \frac{\mathrm{d}k}{\mathrm{d}l}\mathbf{n}. \end{split}$$

Найдем смешанное произведение (используя внешнее произведение)

$$\frac{d\mathbf{r}}{dl} \wedge \frac{d^{2}\mathbf{r}}{dl^{2}} \wedge \frac{d^{3}\mathbf{r}}{dl^{3}} = \mathbf{v} \wedge k\mathbf{n} \wedge \left(-k^{2}\mathbf{v} + k\varkappa\mathbf{b} + \frac{dk}{dl}\mathbf{n}\right) = \\
= -k^{3}\underbrace{\mathbf{v} \wedge \mathbf{n} \wedge \mathbf{v}}_{=0} + k^{2}\varkappa\underbrace{\mathbf{v} \wedge \mathbf{n} \wedge \mathbf{b}}_{\neq 0} + k\frac{dk}{dl}\underbrace{\mathbf{v} \wedge \mathbf{n} \wedge \mathbf{n}}_{=0} = k^{2}\varkappa\mathbf{v} \wedge \mathbf{n} \wedge \mathbf{b}$$

Получили значение смешанного произведения (скаляр)

$$\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}, \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}l^3}\right) = k^2 \varkappa \Rightarrow \varkappa = \frac{\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}, \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}l^3}\right)}{k^2(l)} = R^2(l) \left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}, \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}l^3}\right).$$

Учитывая, что

$$k^2(l) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|^2.$$

получим окончательную формулу для вычисления кручения кривой:

$$\varkappa(l) = \frac{\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}}, \frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}l^{3}}\right)}{\left\|\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}}\right\|^{2}}$$

# Сводка основных формул для кривой с натуральным параметром 1

Пусть  $\mathbf{r}(l)$  радиус-вектор гладкой регулярной кривой  $\gamma$  (сегмента кривой). В каждой точке кривой можно определить следующие векторы.

• Единичный касательный вектор  $\mathbf{v}(l)$ :

$$\mathbf{v}(l) \stackrel{\mathrm{def}}{=} \frac{\mathrm{d}\mathbf{r}(l)}{\mathrm{d}l}$$

ullet Единичный вектор нормали  $\mathbf{n}(l)$ :

$$\mathbf{n}(l) \stackrel{\mathrm{def}}{=} \frac{\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}}{\left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|}$$

ullet Единичный вектор бинормали  ${f b}(l)$ :

$$\mathbf{b}(l) \stackrel{\mathrm{def}}{=} [\mathbf{v}, \mathbf{n}]$$

# Сводка основных формул для кривой с натуральным параметром 2

Также у кривой существуют два скалярных инварианта.

ullet Кривизна кривой k(l) и радиус кривизны R(l):

$$k(l) = \left\| \frac{\mathrm{d}^2 \mathbf{r}(l)}{\mathrm{d}l^2} \right\|, \ R(l) = \frac{1}{k(l)}.$$

• Кручение кривой  $\varkappa(l)$  в точке  $\mathbf{r}(l)$  определяется по формуле:

$$\varkappa(l) = \frac{\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}, \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}l^3}\right)}{\left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\right\|^2}$$

# Сводка основных формул для кривой с натуральным параметром 3

Между перечисленными векторами  $\langle \mathbf{v}, \mathbf{n}, \mathbf{b} \rangle$  и скалярами k(l) и  $\varkappa(l)$  существует связь, задаваемая формулами Френе—Серре:

$$\begin{array}{lll} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} & = & +k\mathbf{n} \\ \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}l} & = -k\mathbf{v} & +\varkappa\mathbf{b} & \Leftrightarrow & \frac{\mathrm{d}}{\mathrm{d}l} \begin{bmatrix} \mathbf{v} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & +k & 0 \\ -k & 0 & +\varkappa \\ 0 & -\varkappa & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix} \\ \frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} & = & -\varkappa\mathbf{n} \end{array}$$

Упорядоченная тройка векторов  $\langle \mathbf{v}, \mathbf{n}, \mathbf{b} \rangle$  образует репер Френе.

$$\mathbf{v}\times\mathbf{n}=\mathbf{b},\ \mathbf{n}\times\mathbf{b}=\mathbf{v},\ \mathbf{b}\times\mathbf{v}=\mathbf{n}.$$



Все вышеперечисленные формулы и определения справедливы только для натурального уравнения  $\mathbf{r}(l)$  кривой  $\gamma$ . Для произвольного параметра t эти формулы довольно значительно усложняются. Далее мы займемся выводом формул для вычисления  $\langle \mathbf{v}(t), \mathbf{n}(t), \mathbf{b}(t) \rangle$ , k(t) и  $\varkappa(t)$ .

## Вычисление единичного вектора касательной

#### Задача

Вычислить касательный вектор  $\mathbf{v}(t)$  зная радиус-вектор  $\mathbf{r}(t)$  с произвольным параметром t.

Будем считать, что натуральный параметр l является непрерывной функцией от t то есть t(l) и, обратно: l(t). Аналитического выражения для t(l) и l(t) мы не знаем. Тогда из определения касательного вектора и правила дифференцирования сложной функции имеем:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{r}(t(l))}{\mathrm{d}l} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}l}, \quad \frac{\mathrm{d}\mathbf{r}(l(t))}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\frac{\mathrm{d}l}{\mathrm{d}t}.$$

Так как  $\|\mathbf{v}\| \equiv 1$ , то

$$\left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right\|\frac{\mathrm{d}t}{\mathrm{d}l} = \|\mathbf{v}\| \equiv 1 \Rightarrow \boxed{\frac{\mathrm{d}t}{\mathrm{d}l} = \left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right\|^{-1}} \text{ is } \left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right\| = \underbrace{\left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}\right\|}_{=\|\mathbf{v}\| = 1} \underbrace{\frac{\mathrm{d}l}{\mathrm{d}t}}_{=\|\mathbf{v}\| = 1} \underbrace{\frac{\mathrm{d}l}{\mathrm{d}t}}_{=\|\mathbf{v}\| = 1}$$

Для единичного касательного вектора получим выражение (очевидное)

$$\frac{\mathrm{d}t}{\mathrm{d}l} = \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right\|^{-1} \Rightarrow \boxed{\mathbf{v}(t) = \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right\|^{-1} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\dot{\mathbf{r}}(t)}{\|\dot{\mathbf{r}}(t)\|}}$$

# Вычисление единичного вектора нормали 1

## Задача

Вычислить единичный вектор нормали  $\mathbf{n}(t)$  зная радиус-вектор  $\mathbf{r}(t)$  с произвольным параметром t.

Данная задача намного более трудоемкая. Начнем с определения:

$$\mathbf{n}(t(l)) = \frac{\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}}{\left\|\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}\right\|}$$

Используя правило дифференцирования сложной функции вычислим:

$$\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} = \frac{\mathrm{d}}{\mathrm{d}l}\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} = \frac{\mathrm{d}}{\mathrm{d}l}\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}l}\right) = \underbrace{\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}}}_{\hat{\mathbf{r}}}\underbrace{\left(\frac{\mathrm{d}t}{\mathrm{d}l}\right)^{2}}_{\|\mathbf{r}\|^{-2}} + \underbrace{\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}}_{\hat{\mathbf{r}}}\frac{\mathrm{d}^{2}t}{\mathrm{d}l^{2}} = \frac{\ddot{\mathbf{r}}}{\|\dot{\mathbf{r}}\|^{2}} + \dot{\mathbf{r}}\frac{\mathrm{d}^{2}t}{\underline{\mathrm{d}}l^{2}}$$
(1)

## Вычисление единичного вектора нормали 2

Необходимо найти вторую производную от t по l. Учитывая, что  $\|\dot{\mathbf{r}}\| = \sqrt{(\dot{\mathbf{r}},\dot{\mathbf{r}})}$  запишем:

$$\frac{\mathrm{d}^2 t}{\mathrm{d}l^2} = \frac{\mathrm{d}}{\mathrm{d}l} \frac{\mathrm{d}t}{\mathrm{d}l} = \frac{\mathrm{d}}{\mathrm{d}l} \frac{1}{\sqrt{(\dot{\mathbf{r}}, \dot{\mathbf{r}})}} = -\frac{1}{2} (\dot{\mathbf{r}}, \dot{\mathbf{r}})^{-\frac{3}{2}} ((\ddot{\mathbf{r}}, \dot{\mathbf{r}}) + (\dot{\mathbf{r}}, \ddot{\mathbf{r}})) \frac{\mathrm{d}t}{\mathrm{d}l} = \\
= -\frac{1}{2} (\dot{\mathbf{r}}, \dot{\mathbf{r}})^{-\frac{3}{2}} 2 (\dot{\mathbf{r}}, \ddot{\mathbf{r}}) (\dot{\mathbf{r}}, \dot{\mathbf{r}})^{-\frac{1}{2}} = -\frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} \Rightarrow \boxed{\frac{\mathrm{d}^2 t}{\mathrm{d}l^2} = -\frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2}}$$

Подставляя в (1) получим:

$$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} = \frac{\ddot{\mathbf{r}}}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})} - \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} \dot{\mathbf{r}} = \frac{\ddot{\mathbf{r}}(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - \dot{\mathbf{r}}(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2}$$

Найдем теперь  $\left\| rac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} \right\|$ 

$$\begin{aligned} & \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|^2 = \left( \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}, \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right) = \left( \frac{\ddot{\mathbf{r}}}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})} - \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} \dot{\mathbf{r}}, \frac{\ddot{\mathbf{r}}}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} \dot{\mathbf{r}} \right) = \\ & = \frac{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} - \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^3} (\ddot{\mathbf{r}}, \dot{\mathbf{r}}) - \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})^2}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^3} + \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}})^2(\dot{\mathbf{r}}, \dot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^4} = \frac{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})^2}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^2} - \frac{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})^2}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^3} = \frac{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - (\dot{\mathbf{r}}, \ddot{\mathbf{r}})^2}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^3} = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|^2 \end{aligned}$$

Получили:

$$\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} = \frac{\ddot{\mathbf{r}}(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - \dot{\mathbf{r}}(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{(\dot{\mathbf{r}}, \dot{\mathbf{r}})^{2}} \qquad \left\| \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} \right\| = \frac{\sqrt{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - (\dot{\mathbf{r}}, \ddot{\mathbf{r}})^{2}}}{\|\dot{\mathbf{r}}\|^{3}}$$
$$\mathbf{n}(t) = \frac{\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}}}{\|\dot{\mathbf{d}}l^{2}\|} = \frac{\ddot{\mathbf{r}}(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - \dot{\mathbf{r}}(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{\|\dot{\mathbf{r}}\|\sqrt{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - (\dot{\mathbf{r}}, \ddot{\mathbf{r}})^{2}}}$$

## Вычисление кривизны k(t)

## Задача

Вычислить кривизну k(t) зная радиус-вектор  $\mathbf{r}(t)$  с произвольным параметром t.

Выше мы доказали, что

$$\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} = \frac{\ddot{\mathbf{r}}(\dot{\mathbf{r}},\dot{\mathbf{r}}) - \dot{\mathbf{r}}(\dot{\mathbf{r}},\dot{\mathbf{r}})}{(\dot{\mathbf{r}},\dot{\mathbf{r}})^{2}} \qquad \left\| \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} \right\| = \frac{\sqrt{(\ddot{\mathbf{r}},\ddot{\mathbf{r}})(\dot{\mathbf{r}},\dot{\mathbf{r}}) - (\dot{\mathbf{r}},\ddot{\mathbf{r}})^{2}}}{\left\|\dot{\mathbf{r}}\right\|^{3}}$$

Для векторного произведения можно доказать следующее равенство:

$$\left\|\mathbf{a}\times\mathbf{b}\right\|^2=(\mathbf{a},\mathbf{a})(\mathbf{b},\mathbf{b})-(\mathbf{a},\mathbf{b})^2\Rightarrow\left\|\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2}\right\|=\frac{\left\|\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right\|}{\left\|\dot{\mathbf{r}}\right\|^3}$$

$$k(t) = \frac{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|}{\|\dot{\mathbf{r}}\|^3}$$

## Альтернативный способ Вычисление кривизны k(t) I/II

Можно обойтись без формулы  $\|\mathbf{a} \times \mathbf{b}\|^2 = (\mathbf{a}, \mathbf{a})(\mathbf{b}, \mathbf{b}) - (\mathbf{a}, \mathbf{b})^2$  для этого рассмотрим первую и вторую производные от  $\mathbf{r}(t)$  по t:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{v}\frac{\mathrm{d}l}{\mathrm{d}t}, \ \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^2 \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} + \frac{\mathrm{d}^2l}{\mathrm{d}t^2} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^2 k\mathbf{n} + \frac{\mathrm{d}^2l}{\mathrm{d}t^2}\mathbf{v}$$

И найдем их векторное произведение, используя внешнее произведение ∧:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \wedge \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \mathbf{v} \frac{\mathrm{d}l}{\mathrm{d}t} \wedge \left( \left( \frac{\mathrm{d}l}{\mathrm{d}t} \right)^2 k\mathbf{n} + \frac{\mathrm{d}^2l}{\mathrm{d}t^2} \mathbf{v} \right) = \left( \frac{\mathrm{d}l}{\mathrm{d}t} \right)^3 k\mathbf{v} \wedge \mathbf{n} + \frac{\mathrm{d}l}{\mathrm{d}t} \frac{\mathrm{d}^2l}{\mathrm{d}t^2} \mathbf{v} \wedge \mathbf{v} = \left( \frac{\mathrm{d}l}{\mathrm{d}t} \right)^3 k\mathbf{v} \wedge \mathbf{n}$$

Следовательно:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \times \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^3 k\mathbf{v} \times \mathbf{n} \Rightarrow \left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \times \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}\right\| = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^3 k \underbrace{\left\|\mathbf{v} \times \mathbf{n}\right\|}_{\|\mathbf{b}\|=1} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^3 k$$

# Альтернативный способ Вычисление кривизны k(t) II/II

Учитывая, что

$$\left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^3 = \|\mathbf{r}\|^3,$$

запишем формулу для k(t):

$$k(t) = \frac{\left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \times \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}} \right\|}{\left\| \mathbf{r} \right\|^{3}}.$$

Так как по определению

$$k(t) = k(l) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\| = \frac{\sqrt{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - (\dot{\mathbf{r}}, \ddot{\mathbf{r}})^2}}{\left\| \dot{\mathbf{r}} \right\|^3},$$

то мы заодно доказали формулу

$$\left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\times\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}\right\|=\sqrt{(\ddot{\mathbf{r}},\ddot{\mathbf{r}})(\dot{\mathbf{r}},\dot{\mathbf{r}})-(\dot{\mathbf{r}},\ddot{\mathbf{r}})^2}\;\text{или}\;\|\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\|^2=(\ddot{\mathbf{r}},\ddot{\mathbf{r}})(\dot{\mathbf{r}},\dot{\mathbf{r}})-(\dot{\mathbf{r}},\ddot{\mathbf{r}})^2.$$

## Вычисление единичного вектора бинормали

#### Задача

Вычислить единичный вектор бинормали  $\mathbf{b}(t)$  зная радиус-вектор  $\mathbf{r}(t)$  с произвольным параметром t.

Единичный вектор бинормали  ${\bf b}$  легко вычисляется из определения при известных  ${\bf v}$  и  ${\bf n}$ . Но можно записать явную формулу через  ${\bf r}(t)$ . Выше мы вывели, что

$$\dot{\mathbf{r}} \times \ddot{\mathbf{r}} = \|\dot{\mathbf{r}}\|^3 k \mathbf{v} \times \mathbf{n} = \|\dot{\mathbf{r}}\|^3 k \mathbf{b}.$$

Используя выражение для  $\boldsymbol{k}(t)$ 

$$k(t) = \frac{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|}{\|\dot{\mathbf{r}}\|^3}$$

получим

$$\dot{\mathbf{r}} \times \ddot{\mathbf{r}} = \frac{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|}{\|\dot{\mathbf{r}}\|^3} \|\dot{\mathbf{r}}\|^3 \mathbf{b} \Rightarrow \boxed{\mathbf{b}(t) = \frac{\dot{\mathbf{r}} \times \ddot{\mathbf{r}}}{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|}}$$

# Вычисление кручения $\varkappa(t)$ 1

#### Задача

Вычислить кручение  $\varkappa(t)$  зная радиус-вектор  $\mathbf{r}(t)$  с произвольным параметром t.

Рассмотрим три производные:  $\dot{\mathbf{r}}(t)$ ,  $\ddot{\mathbf{r}}(t)$  и  $\ddot{\mathbf{r}}(t)$ 

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathrm{d}l}{\mathrm{d}t} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l},$$

$$\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{2} \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} + \frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l},$$

$$\frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}t^{3}} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{3} \frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}l^{3}} + 3\frac{\mathrm{d}l}{\mathrm{d}t} \frac{\mathrm{d}^{2}l}{\mathrm{d}t^{2}} \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} + \frac{\mathrm{d}^{3}l}{\mathrm{d}t^{3}} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l}.$$

Находим внешнее произведение всех трех векторов:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \wedge \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}t^{2}} \wedge \frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}t^{3}} = \frac{\mathrm{d}l}{\mathrm{d}t} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} \wedge \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{2} \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} \wedge \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{3} \frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}l^{3}} = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{6} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} \wedge \frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}} \wedge \frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}l^{3}}$$

# Вычисление кручения $\varkappa(t)$ 2

Учитывая, что  $\frac{d\mathbf{r}}{dl} \wedge \frac{d^2\mathbf{r}}{dl^2} \wedge \frac{d^3\mathbf{r}}{dl^3} = k^2 \varkappa \mathbf{v} \wedge \mathbf{n} \wedge \mathbf{b}$ , запишем смешанное произведение векторов  $\dot{\mathbf{r}}(t)$ ,  $\ddot{\mathbf{r}}(t)$  и  $\ddot{\mathbf{r}}(t)$  как:

$$\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}, \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}, \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}t^3}\right) = (\dot{\mathbf{r}}, \ddot{\mathbf{r}}, \dot{\ddot{\mathbf{r}}}) = \left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^6 k^2 \varkappa$$

Учитывая также, что

$$\left(\frac{\mathrm{d}l}{\mathrm{d}t}\right)^{6} = (\dot{\mathbf{r}},\dot{\mathbf{r}})^{3} = \left\|\dot{\mathbf{r}}\right\|^{6} \text{ in } k(t) = \frac{\left\|\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right\|}{\left\|\dot{\mathbf{r}}\right\|^{3}} \Rightarrow \varkappa \frac{\left\|\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right\|^{2}}{\left\|\dot{\mathbf{r}}\right\|^{6}} \left\|\dot{\mathbf{r}}\right\|^{6} = (\dot{\mathbf{r}},\ddot{\mathbf{r}},\dot{\ddot{\mathbf{r}}})$$

окончательно получим:

$$\boxed{ \varkappa(t) = \frac{(\dot{\mathbf{r}}, \ddot{\mathbf{r}}, \dot{\ddot{\mathbf{r}}})}{\|\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\|^2} }$$

## Случай плоской кривой в $\mathbb{R}^2$

Стоит отдельно рассмотреть регулярный сегмент кривой  $\gamma$  на плоскости  $\mathbb{R}^2.$  В этом случае

$$\mathbf{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \dot{\mathbf{r}}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \ddot{\mathbf{r}}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix}$$

- ullet Единичный вектор бинормали  ${f b}$  тождественно равен нулю. Кручение  ${\cal H}$  также равно нулю во всех точках.
- Так как операция векторного произведения определена только для трехмерных векторов, формулы с ее участием нужно переписать другим способом.
- Репер Френе на плоскости состоит из двух векторов  $\langle {\bf v}, {\bf n} \rangle$ . Из инвариантов на плоскости определена только кривизна k.

Многие формулы для плоских кривых существенно упрощаются, если использовать для их записи комплексную структуру.

# Комплексная структура на $\mathbb{R}^2$

#### Определение

Комплексная структура [3] на  $\mathbb{R}^2$  задается линейным оператором J таким, что для любого вектора

$$\mathbf{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 верно:

$$\operatorname{J} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$$
 из чего следует, что  $\operatorname{J} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  и  $\operatorname{J} \circ \operatorname{J} \begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \operatorname{J} \circ \operatorname{J} = -\operatorname{I}$ 

Каждому вектору  $\mathbf{x} \in \mathbb{R}^2$  можно поставить в соответствие комплексное число  $z \in \mathbb{C}$ :

$$\mathbf{u} = \begin{pmatrix} x \\ y \end{pmatrix} \leftrightarrow z = x + iy$$

Тогда действие оператора  ${
m J}$  на  ${
m f u}$  будет соответствовать умножению числа z на мнимую единицу:

$$\mathbf{J}\mathbf{u} = \begin{pmatrix} -y \\ x \end{pmatrix} \leftrightarrow iz = -y + ix$$

Выше мы доказали равенство  $(\mathbf{a},\mathbf{a})(\mathbf{b},\mathbf{b})-(\mathbf{a},\mathbf{b})^2=\|\mathbf{a}\times\mathbf{b}\|^2$  для трехмерного случая  $\mathbf{a},\mathbf{b}\in\mathbb{R}^3$ . Покажем, что для двумерных векторов  $\mathbf{a}=\begin{pmatrix} a_x\\a_y \end{pmatrix}$  и  $\mathbf{b}=\begin{pmatrix} b_x\\b_y \end{pmatrix}$  вместо векторного произведения можно использовать комплексную структуру:

$$(\mathbf{a}, \mathbf{J}\mathbf{b})^2 = (\mathbf{a}, \mathbf{a})(\mathbf{b}, \mathbf{b}) - (\mathbf{a}, \mathbf{b})^2$$

$$\begin{split} (\mathbf{a},\mathbf{a})(\mathbf{b},\mathbf{b}) &= a_x^2 b_x^2 + a_y^2 b_y^2 + a_y^2 b_x^2 + a_x^2 b_y^2, \\ (\mathbf{a},\mathbf{b})^2 &= a_x^2 b_x^2 + 2 a_x b_x a_y b_y + a_y^2 b_y^2, \\ (\mathbf{a},\mathbf{a})(\mathbf{b},\mathbf{b}) - (\mathbf{a},\mathbf{b})^2 &= a_y^2 b_x^2 + a_x^2 b_y^2 - 2 a_x b_x a_y b_y = (a_x b_y - b_x a_y)^2 = (a_y b_x - a_x b_y)^2, \\ (\mathbf{a},\mathbf{J}\mathbf{b}) &= \begin{pmatrix} a_x \\ a_y \end{pmatrix}^T \begin{pmatrix} -b_y \\ b_x \end{pmatrix} = -a_x b_y + a_y b_x = a_y b_x - a_x b_y, \end{split}$$

откуда

$$(\mathbf{a},\mathbf{J}\mathbf{b})^2=(\mathbf{a},\mathbf{a})(\mathbf{b},\mathbf{b})-(\mathbf{a},\mathbf{b})^2$$

## Единичный вектор нормали п на плоскости

Выше мы нашли, что

$$\mathbf{n}(t) = \frac{\frac{\mathrm{d}^{-}\mathbf{r}}{\mathrm{d}l^{2}}}{\left\|\frac{\mathrm{d}^{2}\mathbf{r}}{\mathrm{d}l^{2}}\right\|} = \frac{\ddot{\mathbf{r}}(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - \dot{\mathbf{r}}(\dot{\mathbf{r}}, \ddot{\mathbf{r}})}{\left\|\dot{\mathbf{r}}\right\|\sqrt{(\ddot{\mathbf{r}}, \ddot{\mathbf{r}})(\dot{\mathbf{r}}, \dot{\mathbf{r}}) - (\dot{\mathbf{r}}, \ddot{\mathbf{r}})^{2}}}.$$

Упростим эту формулу для двумерного случая.

$$\begin{split} (\dot{\mathbf{r}},\dot{\mathbf{r}})\ddot{\mathbf{r}} - (\ddot{\mathbf{r}},\dot{\mathbf{r}})\dot{\mathbf{r}} &= (\dot{x}^2 + \dot{y}^2) \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} - (\ddot{x}\dot{x} + \ddot{y}\dot{y}) \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \dot{x}^2\ddot{x} + \dot{y}^2\ddot{x} - \ddot{x}\dot{x}^2 - \ddot{y}\dot{y}\dot{x} \\ \dot{x}^2\ddot{y} + \dot{y}^2\ddot{y} - \ddot{x}\dot{x}\dot{y} - \ddot{y}\dot{y}^2 \end{pmatrix} = \\ &= \begin{pmatrix} (\dot{y}\ddot{x} - \ddot{y}\dot{x})\dot{y} \\ (\dot{x}\ddot{y} - \ddot{x}\dot{y})\dot{x} \end{pmatrix} = (\dot{x}\ddot{y} - \ddot{x}\dot{y}) \begin{pmatrix} -\dot{y} \\ \dot{x} \end{pmatrix} = (\dot{x}\ddot{y} - \ddot{x}\dot{y})\mathbf{J}\dot{\mathbf{r}} = (\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})\mathbf{J}\dot{\mathbf{r}} \text{ так как } (\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}}) = \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix}^T \begin{pmatrix} -\dot{y} \\ \dot{x} \end{pmatrix} \end{split}$$

Получается, что

$$\mathbf{n}(t) = \frac{(\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})\mathbf{J}\dot{\mathbf{r}}}{\sqrt{(\dot{\mathbf{r}}, \dot{\mathbf{r}})}(\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})} = \frac{\mathbf{J}\dot{\mathbf{r}}}{\sqrt{(\dot{\mathbf{r}}, \dot{\mathbf{r}})}} = \frac{(-\dot{y}, \dot{x})^T}{\sqrt{\dot{x}^2 + \dot{y}^2}}, \quad \boxed{\mathbf{n}(t) = \frac{\mathbf{J}\dot{\mathbf{r}}}{\sqrt{(\dot{\mathbf{r}}, \dot{\mathbf{r}})}} = \frac{1}{\sqrt{\dot{x}^2 + \dot{y}^2}} \begin{pmatrix} -\dot{y}\\ \dot{x} \end{pmatrix}}$$

## Кривизна плоской кривой

Так как  $({f a},{
m J}{f b})^2=({f a},{f a})({f b},{f b})-({f a},{f b})^2$ , то формула для кривизны принимает вид:

$$\boxed{k(t) = \frac{(\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})}{\|\dot{\mathbf{r}}\|^3} = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\sqrt{(\dot{x}^2 + \dot{y}^2)^3}}}$$

Также, имя ввиду соответствие  $\mathbf{r}(t) = (x(t), y(t))^T \leftrightarrow z = x + iy$  можно записать формулу для кривизны в комплексном виде:

$$k(t) = \Im \frac{\ddot{z}(t)\dot{\bar{z}}(t)}{|z(t)|^3},$$

где буквой  ${\mathfrak I}$  обозначена мнимая часть комплексного числа.

# Производные кривые от кривой $\gamma$

Для регулярного сегмента кривой  $\gamma$  вводят несколько различных вспомогательных кривых, которые имеют дополнительный геометрический и механический смысл [4]:

- Эволюта и эвольвента.
- Эквидистантная кривая.
- Подера и антиподера.
- Огибающая.
- Конхоида.
- Циссоида.
- Строфоида.
- Глиссетта.
- Рулетта.

Дадим определения некоторым из этих кривых. Примеры построения будут даны при решении задач.

#### Эволюта и эвольвента

#### Определение

Геометрическое место точек центров кривизны кривой называется эволютой кривой.

Для плоской кривой  $\gamma$  точка  $Q \in \mathbb{R}^2$  называется центром кривизны в точке  $P \in \gamma$ , если существует окружность C(Q,R) с центром в Q и радиуса R, которая касается кривой  $\gamma$  в точке P так, что кривизны кривой  $\gamma$  и окружности C совпадают. Радиус R — радиус кривизны, а окружность C называется соприкасающейся окружностью.

## Определение

 ${\color{blue} eta}$ вольвента (инволюта) кривой  $\gamma$  суть кривая, для которой  $\gamma$  является эволютой.

Если на кривую намотана нерастяжимая нить, то при разматывании этой нити, ее свободный конец будет описывать эвольвенту.

#### Уравнения эволюты и эвольвенты

Если кривая  $\gamma$  представленная параметрическим уравнением с радиус-вектором  ${f r}(t)$ , то уравнение эволюты для плоской кривой имеет вид:

$$\mathbf{e}(t) = \mathbf{r}(t) + R(t)\mathbf{n}(t),$$

где R(t)=1/k(t) — радиус кривизны,  ${f n}$  — единичный вектор нормали. В свою очередь уравнение эвольвенты имеет вид:

$$\mathbf{e}(t) = \mathbf{r}(t) + (l(t_0) + l(t))\mathbf{v}(t), \ \ l(t_0) - l(t) = -\int\limits_{t_0}^t \|\dot{\mathbf{r}}(\tau)\| \,\mathrm{d}\tau,$$

где l — натуральный параметр.

## Эквидистантная кривая и ее уравнение

#### Определение

Геометрическое место точек, расположенных на фиксированном расстоянии от точек кривой  $\gamma$  в направлении единичного вектора нормали, называется эквидистантной кривой (параллельной кривой).

Уравнение данной кривой легко получается из определения:

$$\mathbf{e}(t) = \mathbf{r}(t) + d\mathbf{n}(t),$$

где d — фиксированное расстояние до кривой  $\gamma$ ,  $\mathbf{n}$  — единичный вектор нормали.

## Подера кривой и ее уравнение

#### Определение

Пусть  $\gamma$  — некоторая кривая и O — фиксированная точка. Геометрическое место точек, описываемое основанием перпендикуляра, опущенного на касательную движущейся точки кривой  $\gamma$  называется подерой кривой  $\gamma$ .

Для трехмерной кривой уравнение подеры с точкой  ${\it O}$  в начале координат имеет вид:

$$\mathbf{p}(t) = (\mathbf{r}(t), \mathbf{n}(t))\mathbf{n}(t) + (\mathbf{r}(t), \mathbf{b}(t))\mathbf{b}(t).$$

Для двумерной кривой уравнение упрощается

$$\mathbf{p}(t) = (\mathbf{r}(t), \mathbf{n}(t))\mathbf{n}(t),$$

где точка  ${\cal O}$  из определения по прежнему является началом координат.

## Огибающая семейства кривых

## Определение

Огибающей семейства кривых называется кривая, которая касается каждой кривой из данного семейства.

#### Конхоида

Следующее определения справедливо для плоской кривой.

#### Определение

Пусть  $\gamma$  — некоторая кривая и A — некоторая фиксированная точка на плоскости. Некоторая прямая проходит через A и пересекает  $\gamma$  в точке Q.  $P_1$  и  $P_2$  — точки этой прямой такие, что

$$P_1Q=QP_2=k=\mathrm{const}$$

Геометрическое место точек  $P_1$  и  $P_2$ , получаемое при перемещении точки Q по прямой, называется конхоидой, построенной относительно точки A.

## Циссоида

Следующее определения справедливо для плоской кривой.

## Определение

Пусть даны две кривые  $\gamma_1$  и  $\gamma_2$ . Пусть A — некоторая фиксированная точка. Некоторая прямая проходит через A и пересекает  $\gamma_1$  и  $\gamma_2$  в точках Q и R соответственно. Найдется точка P на прямой для которой выполняется AP=QR. Геометрическое место точек P, получаемое при движении точек Q и R по кривым называется циссоидой. Точка A называется полюсом циссоиды.

## Строфоида

Следующее определения справедливо для плоской кривой.

#### Определение

Пусть даны некоторая кривая  $\gamma$  и фиксированные точки O и A на этой кривой. Прямая проходит через O и пересекает кривую  $\gamma$  в точке Q. Две точки  $P_1$  и  $P_2$  выбираются на прямой так, что  $P_1Q=QP_2=QA$ . Геометрическое место точек  $P_1$  и  $P_2$  называется строфоидой, построенной относительно O и A. Точка O называется полюсом строфоиды.

#### Рулетта

Следующее определения справедливо для плоской кривой.

#### Определение

Если кривая катится без проскальзывания вдоль другой, фиксированной кривой, то любая выбранная точка движущейся кривой описывает рулетту (от французского roulette).

Примеры рулетты: циклоида, эпициклоида, гипоциклоида.

кривых

Теория кривых

Примеры и решение задач по теории

# Дифференциальная геометрия Примеры и решение задач по теории кривых

Геворкян М. Н.

Российский университет дружбы народов Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

#### Замечательные кривые

Существует большое количество кривых, которые возникали как решение различных математических, физических, астрономических и инженерных задач. Обычно такие кривые получали имя собственное. Перечислим некоторые из таких кривых.

- Конические сечения: эллипс (окружность), парабола, гипербола.
- Циклоидальные кривые: эпитрохоида и гипотрохоида и их частные случаи: эпициклоида и гипоциклоида, кардиоида, улитка Паскаля (limaçon), астроида, нефроида, делтоида, циклоида.
- Различные спирали (простая и логарифмическая)
- Прямая строфоида.
- Лемнискаты (лемниската Бернулли)

## Окружность 1

Не следует путать отдельные графики  $x(t) = R\cos t$  и  $y(t) = R\sin t$  (рисунок 78) с параметрически заданной кривой с радиус-вектором  ${f r}(t)$ :

$$\mathbf{r}(t) = egin{pmatrix} x(t) \\ y(t) \end{pmatrix} = egin{pmatrix} R\cos t \\ R\sin t \end{pmatrix} \ \ \text{против} \ \ \begin{cases} x(t) = R\cos t, \\ y(t) = R\sin t. \end{cases}$$



Рис. 3: Синусоиды, а не окружность

## Окружность 2

На рисунке 4

изображена параметрическая окружность, заданная радиус-вектором:

$$\mathbf{r}(t) = \begin{pmatrix} R\cos t \\ R\sin t \end{pmatrix}$$

- ullet Каждому значению параметра t соответствует точка  $(x(t),y(t))^T$ .
- $\bullet$  Геометрический смысл t угол между радиус-вектором  ${\bf r}$  и осью Ox.
- Хотя  $t \in \mathbb{R}$ , но достаточно  $0 \leqslant t \leqslant 2\pi$ .



Рис. 4: Окружность

#### Эллипс

Из неявного уравнения эллипса с центром в точке  $(x_0,y_0)$  легко получить явную, кусочно-гладкую функцию:

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 = 1 \Rightarrow y = y_0 \pm b\sqrt{1-\left(\frac{x-x_0}{a}\right)^2}, \, -a \leqslant x \leqslant a.$$

Параметрическое представление удобнее для анализа и построения кривой (см. рис. 80).

$$\mathbf{r}(t) = (x_0 + a\cos t, y_0 + b\sin t)^T$$



Рис. 5: В случае эллипса параметр не равен углу поворота радиус-вектора

## Гипербола I/II

Центр двух ветвей гиперболы в точке  $(x_0,y_0)$ . Неявное уравнение имеет вид:

$$\left(\frac{x-x_0}{a}\right)^2 - \left(\frac{y-y_0}{b}\right)^2 = 1,$$

а явное получается из неявного и также является кусочной функцией:

$$y=y_0\pm b\sqrt{\left(\frac{x-x_0}{a}\right)^2-1},\,x\notin(-a,a).$$

Параметрическое уравнение:

$$\begin{cases} x = x_0 + a \operatorname{ch} t, \\ y = y_0 + b \operatorname{sh} t. \end{cases}$$

где  $\mathrm{ch}$  — гиперболический косинус, а  $\mathrm{sh}$  — гиперболический синус.

# Гипербола II/II



# Логоифмическая спираль



Логарифмическая спираль имеет наиболее простое уравнение в полярных координатах:

$$r = ae^{b\varphi}$$

•Параметрическое представление в декартовых координатах чуть более громоздкое:

$$\mathbf{r}(t) = \begin{pmatrix} ae^{bt}\cos t\\ ae^{bt}\sin t \end{pmatrix}$$

## Эпитрохоида

Эпитрохоида (ἐπί — над, τροχός — колесо, ειδής — образ) циклоидальная кривая (или рулетта) получающаяся если окружность радиуса r катится по внешней стороне окружности радиуса R. Параметрический вид кривой:

$$\begin{cases} x(t) = R(k+1)\cos(kt) - d\cos((k+1)t), \\ y(t) = R(k+1)\sin(kt) - d\sin((k+1)t), \end{cases}$$

где k=r/R, d — расстояние от центра катящейся окружности до точки кривой.

## Эпитрохоида



На рисунке слева изображена эпитрохоида со следующими параметрами:

$$r = \frac{R}{2}, R = 3, d = \frac{3R}{2}.$$

#### Гипотрохоида

Гипотрохоида (ὑπό — снизу, τροχός — колесо, ειδής — образ) циклоидальная кривая (или рулетта) получающаяся если окружность радиуса r катится по внутренней стороне окружности радиуса R. Параметрическое уравнение имеет вид:

$$\begin{cases} x(t) = R(1-k)\cos(kt) + d\cos((1-k)t), \\ y(t) = R(1-k)\sin(kt) - d\sin((1-k)t), \end{cases} \label{eq:summary}$$

где r — радиус катящейся окружности, R — радиус неподвижной окружности, k=r/R, d — расстояние от центра катящейся окружности до точки кривой.

### Гипотрохоида



На рисунке слева изображена гипотрохоида со следующими параметрами:

$$R = 4, r = 2, d = 1.$$

### Эпициклоида



 ${
m Эпициклоида}$  (ὑπό — снизу, κύκλος — круг/окружность, ειδής — образ) суть эпитрохоида с d=r.

### Гипоциклоида



### Циклоида



Циклоида (ки́к $\lambda$ ос — круг/окружность, єїб $\eta$ с — образ) определяется как траектория фиксированной точки на окружности, которая катится без проскальзывания по прямой (обычно вдоль Ox). Параметрическое представление:

$$\mathbf{r}(t) = \begin{pmatrix} a(t - \sin t) \\ a(1 - \cos t) \end{pmatrix}$$



Астроида (αστρον — звезда, είδος — образ, идея) — частный случай гипоциклоиды с k=4. Неявное уравнение имеет вид:

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}},$$

а параметрическое указано на рисунке слева.

- ullet Геометрический смысл t угол между радиус-вектором  ${f r}$  и осью Ox.
- Хотя  $t \in \mathbb{R}$ , но достаточно  $0 \leqslant t < 2\pi$  чтобы обойти все точки кривой.

### Дельтоида



Дельтоида (δέλτα — дельта  $\Delta$ , ειδής — образ) — частный случай гипоциклоиды с k=3. Параметрическое уравнение имеет вид:

$$\mathbf{r}(t) = \begin{pmatrix} a(2\cos t + \cos 2t) \\ a(2\sin t - \sin 2t) \end{pmatrix}$$

### Нефроида



Нефроида (νεφρός — почка, εΐδος — образ) — частный случай эпициклоиды с k=2. Параметрическое уравнение имеет вид:

$$\mathbf{r}(t) = \begin{pmatrix} a(3\cos t - \cos 3t) \\ a(3\sin t - \sin 3t) \end{pmatrix}$$

### Кардиоида



Кардиоида (καρδία — сердце, εΐδος — образ) — частный случай эпициклоиды с k=1 или улитки Паскаля при d=r. Параметрическое уравнение имеет вид:

$$\mathbf{r}(t) = \begin{pmatrix} a(2\cos t - \cos 2t) \\ a(2\sin t - \sin 2t) \end{pmatrix}$$

# Вычисление натурального параметра 1

#### Пример

Найти натуральный параметр кривой  $y=x^{\frac{3}{2}}$ .

Параметризировать функцию можно следующим образом:  $t=x\Rightarrow$ 

$$\mathbf{r}(t) = \begin{pmatrix} t \\ t^{3/2} \end{pmatrix} \Leftrightarrow \begin{cases} x(t) = t, \\ y(t) = t^{3/2} \end{cases}$$

Используя известную нам формулу:

$$\mathrm{d}l = \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right\| \mathrm{d}t \,,$$

найдем выражение для дифференциала натурального параметра:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \left(\frac{3}{2}t^{1/2}\right) \Rightarrow \left\|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right\| = \sqrt{1 + \frac{9}{4}|t|} \Rightarrow \mathrm{d}l = \sqrt{1 + \frac{9}{4}|t|}\,\mathrm{d}t$$

### Вычисление натурального параметра 2

В данном случае интеграл можно вычислить аналитически. Обратите внимание, что мы заменили параметр t на au под знаком интеграла.

$$l = \frac{1}{2} \int_{0}^{t} \sqrt{4 + 9|\tau|} d\tau = \frac{1}{27} ((4 + 9t)^{3/2} - 8)$$

Мы нашли выражение для натурального параметра:

$$l = \frac{1}{27}((4+9t)^{3/2} - 8)$$

Так как мы брали интеграл от 0 до t, то l=0 в той точке, которая соответствует t=0, то есть (0,0). Именно от этой точки отсчитывается длина дуги кривой l в положительном и отрицательном направлениях.

### Вычисление натурального параметра

#### Пример

Найти натуральное уравнение окружности с центром в точке  $x_0, y_0$  радиуса R.

Параметрическое уравнение окружности имеет вид:

$$\mathbf{r}(t) = \begin{pmatrix} x_0 + R\cos t \\ y_0 + R\sin t \end{pmatrix} \Rightarrow \dot{\mathbf{r}}(t) = \begin{pmatrix} -R\sin t \\ +R\cos t \end{pmatrix} \Rightarrow \|\mathbf{r}(t)\| = \sqrt{R^2(\cos^2 t + \sin^2 t)} = R.$$

Натуральный параметр вычисляется легко, так как норма радиус-вектора постоянна и равна  ${\it R}$ 

$$dl = \|\dot{\mathbf{r}}(t)\| dt = R dt \Rightarrow l = \int_{0}^{t} R d\tau \Rightarrow l = Rt \Rightarrow t = l/R.$$

Праметрическое представление окружности имеет вид:

$$\mathbf{r}(t) = \left(x_0 + R\cos\frac{l}{R}, y_0 + R\sin\frac{l}{R}\right)^T$$

### Кривизна прямой линии

#### Пример

Найти кривизну прямой линии.

Параметрическое представление с натуральным параметром для кривой имеет вид:

$$\mathbf{r}(l) = (x_0 + al, y_0 + bl)^T \Leftrightarrow \begin{cases} x(l) = x_0 + al, \\ y(l) = y_0 + bl. \end{cases}$$

Так как кривизна вычисляется по формуле  $k(l) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|$  нам надо вычислить вторую производную от радиус-вектора  $\mathbf{r}$  по натуральному параметру l:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow k(l) = 0, \ R(l) \to \infty.$$

#### Кривизна окружности

#### Пример

Найти кривизну окружности радиуса  $\rho$ :

Выше мы нашли параметрическое представление окружности с натуральным параметром. Продифференцируем x(l) и y(l) два раза.

$$\begin{cases} x(l) = x_0 + \rho \cos\left(\frac{l}{\rho}\right), \\ y(l) = y_0 + \rho \sin\left(\frac{l}{\rho}\right), \end{cases} \Rightarrow \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}l} = -\rho \frac{1}{\rho} \sin\left(\frac{l}{\rho}\right), \\ \frac{\mathrm{d}y}{\mathrm{d}l} = +\rho \frac{1}{\rho} \cos\left(\frac{l}{\rho}\right), \end{cases} \Rightarrow \begin{cases} \frac{\mathrm{d}^2x}{\mathrm{d}l^2} = -\frac{1}{\rho} \cos\left(\frac{l}{\rho}\right), \\ \frac{\mathrm{d}^2y}{\mathrm{d}l^2} = -\frac{1}{\rho} \sin\left(\frac{l}{\rho}\right), \end{cases}$$
 
$$k(l) = \sqrt{\frac{\mathrm{d}^2x}{\mathrm{d}l^2} + \frac{\mathrm{d}^2y}{\mathrm{d}l^2}} = \frac{1}{\rho},$$
 
$$R(l) = \frac{1}{k(l)} = \rho.$$

Найти кривизну и кручение винтовой линии:

$$\mathbf{r}(t) = (a\cos t, a\sin t, bt)^T$$

Решение.

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = (-a\sin t, a\cos t, b)^T$$

$$\mathrm{d}l = \sqrt{a^2\sin^2 t + a^2\cos^2 t + b^2}\mathrm{d}t = \sqrt{a^2 + b^2}\mathrm{d}t$$

$$l = \sqrt{a^2 + b^2}t \Rightarrow t = \frac{l}{\sqrt{a^2 + b^2}}$$

$$a\sin\frac{l}{\sqrt{a^2 + b^2}}$$

$$\frac{\mathrm{d}\mathbf{r}}{\sqrt{a^2 + b^2}} \Rightarrow \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} = \begin{pmatrix} -\frac{a}{\sqrt{a^2 + b^2}}\sin\frac{l}{\sqrt{a^2 + b^2}}\\ +\frac{a}{\sqrt{a^2 + b^2}}\cos\frac{l}{\sqrt{a^2 + b^2}} \end{pmatrix} \Rightarrow \mathbf{v}(l)$$

### Вычисление кривизны и кручения винтовой линии 2

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = \begin{pmatrix} -\frac{a}{a^2 + b^2} \cos \frac{l}{\sqrt{a^2 + b^2}} \\ -\frac{a}{a^2 + b^2} \sin \frac{l}{\sqrt{a^2 + b^2}} \end{pmatrix}$$
$$\begin{vmatrix} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} \end{vmatrix} = \begin{bmatrix} \frac{a}{a^2 + b^2} = k \end{bmatrix}$$
$$\mathbf{n} = \frac{1}{k} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}l} = \begin{pmatrix} -\cos \frac{l}{\sqrt{a^2 + b^2}} \\ -\sin \frac{l}{\sqrt{a^2 + b^2}} \\ 0 \end{pmatrix}$$

## Вычисление кривизны и кручения винтовой линии 3

$$\mathbf{b} = [\mathbf{v}, \mathbf{n}] = \det \begin{pmatrix} \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ v^{1} & v^{2} & v^{3} \\ n^{1} & n^{2} & n^{3} \end{pmatrix} =$$

$$= \left( \frac{a}{\sqrt{a^{2} + b^{2}}} \cos \frac{l}{\sqrt{a^{2} + b^{2}}} \cdot 0 + \frac{b}{\sqrt{a^{2} + b^{2}}} \sin \frac{l}{\sqrt{a^{2} + b^{2}}} \right) \mathbf{e}_{1} +$$

$$+ \left( -\frac{b}{\sqrt{a^{2} + b^{2}}} \cos \frac{l}{\sqrt{a^{2} + b^{2}}} + \frac{a}{\sqrt{a^{2} + b^{2}}} \sin \frac{l}{\sqrt{a^{2} + b^{2}}} \cdot 0 \right) \mathbf{e}_{2} +$$

$$\left( \frac{a}{\sqrt{a^{2} + b^{2}}} \sin \frac{l}{\sqrt{a^{2} + b^{2}}} \sin \frac{l}{\sqrt{a^{2} + b^{2}}} + \frac{a}{\sqrt{a^{2} + b^{2}}} \cos \frac{l}{\sqrt{a^{2} + b^{2}}} \cos \frac{l}{\sqrt{a^{2} + b^{2}}} \right) \cdot \mathbf{e}_{3}$$

$$\frac{d\mathbf{b}}{dl} = \begin{pmatrix} \frac{b}{a^{2} + b^{2}} \cos \frac{l}{\sqrt{a^{2} + b^{2}}} \\ \frac{b}{a^{2} + b^{2}} \sin \frac{l}{\sqrt{a^{2} + b^{2}}} \end{pmatrix} = \underbrace{-\frac{b}{a^{2} + b^{2}}}_{\kappa} \underbrace{\begin{pmatrix} -\cos \frac{l}{\sqrt{a^{2} + b^{2}}} \\ -\sin \frac{l}{\sqrt{a^{2} + b^{2}}} \\ 0 \end{pmatrix}} \Rightarrow$$

# Вычисление кривизны и кручения винтовой линии 4

Так как кручение определяется равенством

$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = -\kappa\mathbf{n},$$

то для винтовой линии:

$$\kappa = \frac{b}{a^2 + b^2}$$

Из формул видно, что кривизна и кручение винтовой линии постоянны:

$$k = \frac{a}{a^2 + b^2} = \text{const}, \ \kappa = \frac{b}{a^2 + b^2} = \text{const}.$$

Уравнение эволюты:

$$\mathbf{e}(t) = \mathbf{r}(t) + R(t)\mathbf{n}(t) = \mathbf{r} + \frac{\|\dot{\mathbf{r}}\|^3}{(\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})} \frac{\mathbf{J}\dot{\mathbf{r}}}{\|\dot{\mathbf{r}}\|} = \mathbf{r} + \frac{\|\dot{\mathbf{r}}\|^2}{(\ddot{\mathbf{r}}, \mathbf{J}\dot{\mathbf{r}})} \mathbf{J}\dot{\mathbf{r}},$$

а в декартовых координатах

$$\mathbf{e}(t) = \begin{pmatrix} x_{\mathbf{e}}(t) \\ y_{\mathbf{e}}(t) \end{pmatrix} \begin{pmatrix} x(t) - \dot{y}(t) \frac{\dot{x}^2 + \dot{y}^2}{\dot{x}\ddot{y} - \ddot{x}\dot{y}} \\ y(t) + \dot{x}(t) \frac{\dot{x}^2 + \dot{y}^2}{\dot{x}\ddot{y} - \ddot{x}\dot{y}} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \frac{\dot{x}^2 + \dot{y}^2}{\dot{x}\ddot{y} - \ddot{x}\dot{y}} \begin{pmatrix} -\dot{y} \\ \dot{x} \end{pmatrix}$$

#### Пример

Найти уравнение эволюты эллипса  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 

#### Вычисление эволюты эллипса 2

Так как у нас есть общая формула для эволюты плоской кривой, то решение задачи является делом чисто техническим. Достаточно найти первую и вторую производную и выполнить алгебраические преобразования.

$$\begin{cases} \dot{x}(t) = -a \sin t, \\ \dot{y}(t) = b \cos t \end{cases} \begin{cases} \ddot{x}(t) = -a \cos t, \\ \ddot{y}(t) = -b \sin t \end{cases} \Rightarrow \begin{aligned} \dot{x}^2(t) + \dot{y}^2(t) = a^2 \sin^2 t + b^2 \cos^2 t, \\ \ddot{x}\ddot{y} - \dot{y}\ddot{x} = ab \sin^2 t + ab \cos^2 t = ab \end{aligned}$$
 
$$x_{\mathbf{e}}(t) = a \cos t - b \cos t \frac{1}{ab} (a^2 \sin^2 t + b^2 \cos^2 t) = a \cos t (1 - \sin^2 t) - \frac{b^2}{a} \cos^3 t = \frac{a^2 - b^2}{a} \cos^3 t,$$
 
$$y_{\mathbf{e}}(t) = b \sin t - a \sin t \frac{1}{ab} (a^2 \sin^2 t + b^2 \cos^2 t) = b \sin t (1 - \cos^2 t) - \frac{a^2}{b} \sin^3 t = \frac{b^2 - a^2}{b} \sin^3 t$$
 
$$\mathbf{e}(t) = \begin{pmatrix} \frac{a^2 - b^2}{a} \cos^3 t \\ \frac{b^2 - a^2}{b} \sin^3 t \end{pmatrix} - \text{ эволюта}.$$

### Эволюта эллипса



## Эволюта астроиды



# Эволюта дельтоиды



# Эволюта нефроиды



## Эволюта кардиоиды



### Задача

Найти репер Френе, кривизну и кручение следующей кривой

$$\mathbf{r}(t) = (2t, \ln t, t^2)^T$$

Попробуем перейти к натуральному параметру:

$$dl = \left\| \frac{d\mathbf{r}(t)}{dt} \right\| dt, \ l = \int_{0}^{t} \left\| \frac{d\mathbf{r}(\tau)}{d\tau} \right\| d\tau, \ \frac{d\mathbf{r}}{dt} = \begin{pmatrix} 2\\ \frac{1}{t}\\ 2t \end{pmatrix} \frac{d^{2}\mathbf{r}}{dt^{2}} = \begin{pmatrix} 0\\ -\frac{1}{t^{2}}\\ 2 \end{pmatrix}$$

$$\left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right\|^2 = \left( \frac{1}{t} + 2t \right)^2, \Rightarrow \left\| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right\| = \frac{1}{t} + 2t \Rightarrow \mathrm{d}l = \frac{2t^2 + 1}{t} \, \mathrm{d}t.$$

Выразить t через l явно не представляется возможным в конечном виде, так как их связывает трансцендентное уравнение:

$$l = t^2 + \ln t.$$

Будем действовать обходными путями. Проще всего найти касательный вектор:

$$\mathbf{v}(t) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}l} = \frac{t}{2t^2 + 1} \begin{pmatrix} 2\\ \frac{1}{t}\\ 2t \end{pmatrix} = \begin{vmatrix} 1\\ 2t^2 + 1 \begin{pmatrix} 2t\\ 1\\ 2t^2 \end{vmatrix} \end{vmatrix}$$

Далее найдем нормальный вектор и кривизну:

$$\frac{\mathrm{d}}{\mathrm{d}l} \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}l} = \frac{\mathrm{d}}{\mathrm{d}l} \left( \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}l} \right) = \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} \left( \frac{\mathrm{d}t}{\mathrm{d}l} \right)^2 + \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \frac{\mathrm{d}^2t}{\mathrm{d}l^2},$$

$$\frac{\mathrm{d}t}{\mathrm{d}l} = \frac{t}{2t^2 + 1}, \quad \frac{\mathrm{d}^2t}{\mathrm{d}l^2} = \frac{(1 - 2t^2)t}{(2t^2 + 1)^3},$$

$$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} = \frac{2t}{(2t^2 + 1)^3} \begin{pmatrix} 1 - 2t^2 \\ -2t \\ 2t \end{pmatrix} \Rightarrow \left\| \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}l^2} \right\|^2 = \frac{4t^2}{(2t^2 + 1)^4}$$

Вычисляем кривизну и единичный вектор нормали:

$$k(t) = \left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\| = \frac{2t}{(2t^2 + 1)^2}, \quad \mathbf{n}(t) = \frac{\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2}}{\left\| \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}l^2} \right\|} = \frac{1}{2t^2 + 1} \begin{pmatrix} 1 - 2t^2 \\ -2t \\ 2t \end{pmatrix}$$

Зная  ${f v}$  и  ${f n}$  можно найти единичный вектор бинормали:

$$\mathbf{b} = [\mathbf{v}, \mathbf{n}] = \frac{1}{(2t^2 + 1)^2} \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 2t & 1 & 2t^2 \\ 1 - 2t^2 & -2t & 2t \end{vmatrix} \Rightarrow$$

$$\mathbf{b}(t) = \frac{1}{2t^2 + 1} \begin{pmatrix} 2t \\ -2t^2 \\ -1 \end{pmatrix}$$

Можно проверить, что  $\|\mathbf{b}\| \equiv 1$ . Для нахождения кручения  $\varkappa(\mathsf{t})$  воспользуемся третьей формулой Френе–Серре:

$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = -\kappa \mathbf{n}$$

для чего вычислим

$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = \frac{\mathrm{d}\mathbf{b}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}l} \text{ T.K. } \frac{\mathrm{d}\mathbf{b}}{\mathrm{d}t} = \frac{1}{(2t^2+1)^2} \begin{pmatrix} 2-4t\\-4t\\4t \end{pmatrix} \text{ To } \frac{\mathrm{d}\mathbf{b}}{\mathrm{d}l} = -\frac{2t}{(2t^2+1)^2} \underbrace{\frac{1}{2t^2+1} \begin{pmatrix} 1-2t\\-2t\\2t \end{pmatrix}}_{P}$$

Из этого соотношения находим кручение как коэффициент при единичном векторе нормали:

$$\boxed{\varkappa(t) = \frac{2t}{(2t^2+1)^2}}$$

Это проще, чем пользоваться формулой со смешанным произведением.

### Список литературы 1

- 1. Фиников С. Курс дифференциальной геометрии. Москва : URSS, 2017. 343 с.
- 2. Норден А. П. **Теория поверхностей.** 2-е изд. Москва : ЛЕНАНД, 2019. С. 264. (Физико-математическое наследие: математика (дифференциальная геометрия)). ISBN 978597106234.
- 3. Abbena E., Salamon S., Gray A. Modern Differential Geometry of Curves and Surfaces with Mathematica. 3-е изд. CRC Press, 2017. (Textbooks in Mathematics). ISBN 9781351992206.
- 4. Lockwood E. H. A book of curves. Cambridge University Press, 1961.