Departamento de Matemática e Aplicações

Universidade do Minho

Álgebra

2° teste – 5 jan 2018

duração: duas horas

Licenciatura em Ciências de Computação - 2º ano

- 1. Sem justificar, diga se é verdadeira ou falsa cada uma das seguintes proposições:
 - (a) Um grupo é cíclico se e só se tem ordem prima;
 - (b) O anel $\mathbb{Q} \otimes \mathbb{R}$ é um corpo;
 - (c) Em qualquer domínio de integridade, elementos associados geram o mesmo ideal;
 - (d) Num anel com característica 2, qualquer elemento coincide com o seu próprio simétrico;
 - (e) Para qualquer $n \in \mathbb{N}$ e $n \geq 2$, $[n-1]_n \in \mathcal{U}_{\mathbb{Z}_n}$;
 - (f) Anéis isomorfos têm a mesma característica;
 - (g) No anel $\mathbb{Z} \otimes \mathbb{Z}$,
 - (i) o ideal $8\mathbb{Z} \times 4\mathbb{Z}$ é primo;
 - (ii) o ideal $3\mathbb{Z} \times \mathbb{Z}$ é maximal;
 - (iii) o ideal $\{0\} \times \mathbb{Z}$ é primo e maximal.
- 2. Considere, no grupo S_7 , as permutações

$$\beta = (1\,3\,2\,4)\,(7\,3\,2) \qquad \text{e} \qquad \alpha = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 2 & 3 & 4 & 1 & 7 \end{array} \right).$$

- (a) Determine, em extensão, o subgrupo $<\beta^{40}>$.
- (b) Sem efectuar o produto $\alpha^{-1}\beta^3\alpha$, diga qual é a ordem da permutação $\alpha^{-1}\beta^3\alpha$.
- (c) Determine $\delta \in S_7$ tal que $\delta \alpha^{942} = \beta^{-9}$. Apresente δ como produto de ciclos disjuntos.
- 3. Seja $G = \langle b \rangle$ um grupo cíclico de ordem 45.
 - (a) Determine a ordem dos elementos b^9 e b^{41} .
 - (b) Dê exemplo, caso existam, de quatro elementos $a, x, c, d \in G$ com ordem 9, 6, 45 e 50 respectivamente. Justifique.
- 4. Considere os anéis \mathbb{Z}_{32} e $\mathbb{Z}_4 \otimes \mathbb{Z}_6$ e o morfismo de anéis $\theta: \mathbb{Z}_{32} \longrightarrow \mathbb{Z}_4 \otimes \mathbb{Z}_6$ definido por $\theta([n]_{32}) = ([n]_4, [n]_6)$, para qualquer $[n]_{32} \in \mathbb{Z}_{32}$.
 - (a) Calcule $\operatorname{Nuc} \theta$ e diga, justificando, se o morfismo θ é um monomorfismo.
 - (b) O elemento $([1]_4, [5]_6)$ pertence a $\operatorname{Im} \theta$? Porquê?
 - (c) Diga, justificando, se o morfismo θ é um epimorfismo.
- 5. Seja A um anel comutativo com identidade e I um ideal de A.
 - (a) Mostre que se o produto de dois elementos de A é um divisor de zero, então um dos factores é também um divisor de zero.
 - (b) Sejam $a \in A \setminus I$ e $K = \{xa + i : x \in A, i \in I\}$. Mostre que K é o ideal de A gerado pr $I \cup \{a\}$.
 - (c) Mostre que o ideal I é maximal se e só se, para qualquer $a \in A \setminus I$, a equação $xa + y = 1_A$ tem solução $(x,y) \in A \times I$.
- 6. Mostre que, no domínio de integridade $\mathbb{Z}[\sqrt{-11}]$, o elemento $4 + \sqrt{-11}$ é irredutível e não é primo.