第七章常微分方程的数值解法

王志明

wangzhiming@ies.ustb.edu.cn

本章内容

- 7.1 欧拉(Euler)方程
- 7.2 改进的欧拉方程
- 7.3 龙格-库塔(Runge-Kutta)法
- 7.4 线性多步法

引言

一阶常微分方程的初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

假设函数f(x,y)连续,且满足Lipschitz条件:

$$|f(x, y) - f(x, \overline{y})| \le L |y - \overline{y}|$$

常用的离散化方法包括: 差商近似导数、数值积分、泰勒展开近似。

1、用差商近似导数

$$\frac{y(x_{n+1}) - y(x_n)}{h} \approx f(x_n, y(x_n)) \quad (n = 0,1,...)$$
$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

以yn近似y(xn),得到迭代求解公式:

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

2、用数值积分方法

$$y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x, y(x)) \quad (n = 0,1,...)$$

运用矩形公式:
$$\int_{x_n}^{x_{n+1}} f(x, y(x)) \approx h f(x_n, y_n)$$

迭代求解:

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

3、用Taylor多项式近似

$$y(x_{n+1}) = y(x_n + h) \approx y(x_n) + hy'(x_n) = y(x_n) + hf(x_n, y(x_n))$$

迭代求解:

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

§ 7.1 欧拉(Euler)法

§ 7.1.1 Euler方法公式

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

【例7.1】Euler方法求解初值问题:

$$\begin{cases} \frac{dy}{dx} = x - y & 0 \le x \le 1\\ y(0) = 0 \end{cases}$$

精确解:
$$y = x + e^{-x} - 1$$

迭代公式:
$$y_{n+1} = y_n + h(x_n - y_n)$$

表 7-1 数值计算结果

x_n	y_n	$y(x_n)$	$y(x_n)-y_n$
0	0.000000	0.000000	0.000000
0.1	0.000000	0.004837	0.004837
0.2	0.010000	0,018731	0.008731
0.3	0.029000	0.040818	0.011818
0.4	0.056100	0.070320	0.014220
0.5	0.090490	0, 106531	0.016041
0.6	0. 131441	0.148812	0.017371
0.7	0.178297	0. 196585	0.018288
0.8	0. 230467	0. 249329	0.018862
0.9	0. 287420	0.306570	0.019150
1.0	0.348678	0. 367879	0,019201

Euler折线法(方向为向量 场左端点值):

向后差商代替导数:

$$y'(x_{n+1}) \approx \frac{y(x_{n+1}) - y(x_n)}{h}$$

向后隐式迭代法:

$$\begin{cases} y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}) & (n = 0,1,...) \\ y_0 = y(a) \end{cases}$$

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)}) & (k = 0,1,...) \end{cases}$$

§ 7.1.2 Euler方法的估计误差

单步法的一般形式:

$$y_{n+1} = y_n + h\varphi(x_n, y_n, x_{n+1}, y_{n+1}, h)$$

定义7.1 单步法的局部截断误差:

$$R_{n+1} = y(x_{n+1}) - y(x_n) - h\varphi(x_n, y_n, x_{n+1}, y(x_{n+1}), h)$$

泰勒展开式估计:

$$R_{n+1} = y(x_{n+1}) - y(x_n) - hf(x_n, y(x_n))$$

$$= y(x_n + h) - y(x_n) - hy'(x_n) = \frac{1}{2}h^2y''(\xi)$$

$$R_{n+1} = \frac{1}{2}h^2y''(x_n) + O(h^3) = O(h^2)$$

定义7.2 整体截断误差:

$$e_{n+1} = y(x_{n+1}) - y_{n+1}$$

推导可得:

$$|e_{n+1}| \le \left\lceil \frac{hM}{2L} e^{L(b-a)} - 1 \right\rceil \quad (\forall x \in [a,b], |y''| < M)$$

局部截断误差为O(hp+1),则称该方法是p阶的。