Método de Newton-Raphson y de Punto Fijo

Métodos numéricos

Camilo Cubides eccubidesg@unal.edu.co

Research Group on Artificial Life – Grupo de investigación en vida artificial – (Alife)

Departamento de Ingeniería de Sistemas e Industrial

Facultad de Ingeniería

Universidad Nacional de Colombia

(Intersemestral 2016)

Agenda

- Resolución de ecuaciones no lineales por métodos abiertos
 - Método de Newton-Raphson
 - Método de iteración simple de punto fijo

Outline

- Resolución de ecuaciones no lineales por métodos abiertos
 - Método de Newton-Raphson
 - Método de iteración simple de punto fijo

Método de Newton-Raphson I

$$m = \frac{f(x_0) - 0}{x_0 - x_1}$$

$$f'(x_0) = \frac{f(x_0) - 0}{x_0 - x_1}$$

$$x_0 - x_1 = \frac{f(x_0)}{f'(x_0)}$$

$$-x_1 = -x_0 + \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

en general

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Método de Newton-Raphson II

Camilo Cubides

Método de Newton-Raphson III

Método de Newton-Raphson IV

Método de Newton-Raphson V

Método de Newton-Raphson VI

Método de Newton-Raphson VII

Método de Newton-Raphson VIII

Método de Newton-Raphson IX

¡El método de Newton-Raphson no es infalible! I

Método de Newton-Raphson X

¡El método de Newton-Raphson no es infalible! II

Teorema de Newton-Raphson XI

Theorem (Teorema de Newton-Raphson)

Supóngase que la función $f \in \mathcal{C}^2\big([a,b]\big)$ y que existe un número $p \in [a,b]$ tal que f(p) = 0. Si $f'(p) \neq 0$, entonces existe $\delta > 0$ tal que la sucesión $\{p_n\}_{n=0}^\infty$ definida por el proceso iterativo

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})},$$
 para $n = 1, 2, ...,$

converge a p cualquiera que sea la aproximación inicial $p_0 \in [p-\delta, p+\delta]$.

Teorema de Newton-Raphson XII

Función de iteración de Newton-Raphson

a función g(x) del teorema anterior, se encuentra definida por la relación

$$g(x) = x - \frac{f(x)}{f'(x)}$$

y se le suele llamar la función de iteración de Newton-Raphson, ésta tiene la característica de que si f(p)=0, entonces g(p)=p, con lo cual se deduce que encontrar una raiz p de la ecuación f(x)=0, esto equivale a encontrar un valor p tal que g(p)=p.

Resolución de ecuaciones no lineales por medio del método de Newton-Raphson I

$$f(x) = \frac{1}{2}\tan(x) - x - \frac{1}{2}, \quad if(p) = 0$$
?

Resolución de ecuaciones no lineales por medio del método de Newton-Raphson II — (Scilab)

$$f(x) = \frac{1}{2}\tan(x) - x - \frac{1}{2}, \qquad f'(x) = \frac{1}{2}\sec^2(x) - 1$$

i	Xi	f(Xi)	f(Xi)
0	1.45000000	2.16904638	2.16904638
1	1.38512276	0.77675840	0.77675840
2	1.32830572	0.19305539	0.19305539
3	1.30314144	0.02011210	0.02011210
4	1.29987038	0.00027554	0.00027554
5	1.29982431	0.00000005	0.0000005

¡EXITO! el cálculo fue exitoso, la mejor aproximación de la raiz es: 1.299824311553

Conceptos previos sobre puntos fijos I

Definition

Un punto fijo de una función g(x) es un número p tal que g(p) = p.

Conceptos previos sobre puntos fijos II

Definition

La iteración $p_{n+1}=g(p_n)$ para $n=0,1,\ldots$ se dice que es una iteración de punto fijo.

Theorem

Supóngase que g es una función continua y que $\{p_i\}_{n=0}^{\infty}$ es una sucesión generada por iteración de punto fijo. Si $\lim_{n\to\infty}p_n=p$, entonces p es un punto fijo de g(x).

Conceptos previos sobre puntos fijos III

Theorem

Supóngase que $g \in \mathcal{C}([a,b])$, entonces.

- Si la imagen de la aplicación g(x) = y cumple que $y \in [a, b]$ para cada punto $x \in [a, b]$, entonces g tiene un punto fijo en [a, b].
- Supóngase que además, g'(x) está definida en (a,b) y que |g'(x)| < 1 para todo $x \in (a,b)$, entonces g tiene un único punto fijo en [a,b].

Método de iteración simple de punto fijo I

Método de iteración, Método punto fijo, Método de aproximaciones sucesivas de Picard (Charles Émile Picard; 1856–1941)

Supóngase que se desea estudiar el problema de encontrar una raiz de la función f, es decir se desea solucionar la ecuación

$$f(x) = 0.$$

Solucionar este problema es equivalente a resolver la ecuación

$$g(x) = x$$

donde g(x) es equivalente a la función f(x)+x o una variante algebraica del problema original f(x)=0, para el cual una solución de f(x)=0 es una solución de g(x)=x y viceversa.

Método de iteración simple de punto fijo II

Bajo ciertas condiciones, si dado un valor inicial x_0 y si la sucesión generada por iteración de punto fijo sobre g

$$x_0$$

$$x_1 = g(x_0)$$

$$x_2 = g(x_1)$$

$$\vdots$$

$$x_{i+1} = g(x_i)$$

$$\vdots$$

converge, entonces el $\lim_{n\to\infty} g(x_n) = p$ resulta ser un punto fijo de g y por lo tanto se ha encontrado una solución al problema de resolver la ecuación

$$f(x) = 0.$$

Caso 1: Punto fijo atractivo monótono

Figure: Convergencia monótona para $0 \le g'(p) < 1$.

Caso 2: Punto fijo atractivo oscilante

Figure: Convergencia oscilante para -1 < g'(p) < 0.

Caso 3: Punto fijo repulsivo monótono

Figure: Divergencia monótona para 1 < g'(p).

Caso 4: Punto fijo repulsivo oscilante

Caso 5: Punto fijo convergente y divergente; |g'(p)| = 1

Teorema del punto fijo

Theorem (Teorema del punto fijo)

Supóngase que la función $g \in \mathcal{C}^1 \big([a,b] \big)$ tales que $g(x) \in [a,b]$ para toda $x \in [a,b]$, además supóngase que existe una constante positiva 0 < K < 1 y $p_0 \in (a,b)$. Entonces existe un punto fijo p de g en [a,b], y

- $Si |g'(x)| \leq K$, para toda $x \in [a,b]$, entonces p es un único punto fijo de g en [a,b] y la sucesión $p_k = g(p_{k-1})$ con $k=1,2,\ldots$, converge a el punto fijo p, el cual se llama un punto fijo atractivo.
- Si |g'(p)| > 1 y $p_0 \neq p$, entonces la sucesión $p_k = g(p_{k-1})$ con $k = 1, 2, \ldots$ no converge a p. En este caso, se dice que p es un punto fijo repulsivo y la sucesión presenta divergencia local.
- Si |g'(p)| = 1 y $p_0 \neq p$, no se puede decidir si hay o no convergencia hacia el punto fijo.

