ProofNet NL Statements

Zhangir Azerbayev

Summer 2022

df

chapter 1

section 1

- 15: Prove that $(a_1 a_2 \dots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \dots a_1^{-1}$ for all $a_1, a_2, \dots, a_n \in G$.
- 16: Let x be an element of G. Prove that $x^2 = 1$ if and only if x|x| is either 1 or 2.
- 17: Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.
- 18: Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- 20: For x an element in G show that x and x^{-1} have the same order.
- 22a: If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$.
- 22b: Deduce that |ab| = |ba| for all $a, b \in G$.
- 25: Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.
- 29: Prove that $A \times B$ is an abelian group if and only if both A and B are abelian.
- 34: If x is an element of infinite order in G, prove that the elements $x^n, n \in \mathbb{Z}$ are all distinct.

section 3

8: Prove that if $\Omega = \{1, 2, 3, ...\}$ then S_{Ω} is an infinite group

section 6

- 4: Prove that the multiplicative groups $\mathbb{R} \{0\}$ and $\mathbb{C} \{0\}$ are not isomorphic.
- 11: Let A and B be groups. Prove that $A \times B \cong B \times A$.

- 12: Let A and B be groups. Prove that $A \times B \cong B \times A$.
- 17: Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.
- 23: Let G be a finite group which possesses an automorphism σ such that $\sigma(g) = g$ if and only if g = 1. If σ^2 is the identity map from G to G, prove that G is abelian.

section 7

- 5: Prove that the kernel of an action of the group G on a set A is the same as the kernel of the corresponding permutation representation $G \to S_A$.
- 6: Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the set consisting only of the identity.

chapter 2

section 1

- 5: Prove that G cannot have a subgroup H with |H| = n-1, where n = |G| > 2.
- 13: Let H be a subgroup of the additive group of rational numbers with the property that $1/x \in H$ for every nonzero element x of H. Prove that H = 0 or \mathbb{Q} .

section 2

- 4: Prove that if H is a subgroup of G then H is generated by the set $H \{1\}$.
- 13: Prove that the multiplicative group of positive rational numbers is generated by the set $\left\{\frac{1}{p} \mid p \text{ is a prime}\right\}$.

16a: A subgroup M of a group G is called a maximal subgroup if $M \neq G$ and the only subgroups of G which contain M are M and G. Prove that if H is a proper subgroup of the finite group G then there is a maximal subgroup of G containing H.

16c: Show that if $G = \langle x \rangle$ is a cyclic group of order $n \geq 1$ then a subgroup H is maximal if and only $H = \langle x^p \rangle$ for some prime p dividing n.

Chapter 3

section 1

3a: Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian.

22a: Prove that if H and K are normal subgroups of a group G then their intersection $H \cap K$ is also a normal subgroup of G.

22b: Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable).

section 2

- 8: Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.
- 11: Let $H \leq K \leq G$. Prove that $|G:H| = |G:K| \cdot |K:H|$ (do not assume G is finite).
- 16: Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove Fermat's Little Theorem: if p is a prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.
- 21a: Prove that \mathbb{Q} has no proper subgroups of finite index.

section 3

3: Prove that if H is a normal subgroup of G of prime index p then for all $K \leq G$ either $K \leq H$ or G = HK and $|K : K \cap H| = p$.

Rudin

chapter 1

- 1: If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.
- 2: Prove that there is no rational number whose square is 12.
- 5: Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that $\inf A = -\sup(-A)$
- 14: If z is a complex number such that |z|=1, that is, such that $z\bar{z}=1$, compute $|1+z|^2+|1-z|^2$.
- 18a: If $k \geq 2$ and $\mathbf{x} \in R^k$, prove that there exists $\mathbf{y} \in R^k$ such that $\mathbf{y} \neq 0$ but $\mathbf{x} \cdot \mathbf{y} = 0$

chapter 3

- 1a: Prove that convergence of $\{s_n\}$ implies convergence of $\{|s_n|\}$.
- 3: If $s_1 = \sqrt{2}$, and $s_{n+1} = \sqrt{2 + \sqrt{s_n}}$ (n = 1, 2, 3, ...), prove that $\{s_n\}$ converges, and that $s_n < 2$ for n = 1, 2, 3, ...
- 5: For any two real sequences $\{a_n\}$, $\{b_n\}$, prove that $\limsup_{n\to\infty} (a_n+b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$, provided the sum on the right is not of the form $\infty \infty$.

- 7: Prove that the convergence of $\sum a_n$ implies the convergence of $\sum \frac{\sqrt{a_n}}{n}$ if $a_n > 0$.
- 8: If Σa_n converges, and if $\{b_n\}$ is monotonic and bounded, prove that $\Sigma a_n b_n$ converges.
- 13: Prove that the Cauchy product of two absolutely convergent series converges absolutely.
- 20: 20. Suppose $\{p_n\}$ is a Cauchy sequence in a metric space X, and some subsequence $\{p_{nl}\}$ converges to a point $p \in X$. Prove that the full sequence $\{p_n\}$ converges to p.
- 21: If $\{E_n\}$ is a sequence of closed nonempty and bounded sets in a complete metric space X, if $E_n \supset E_{n+1}$, and if $\lim_{n\to\infty} \operatorname{diam} E_n = 0$, then $\bigcap_{1}^{\infty} E_n$ consists of exactly one point.
- 22: Suppose X is a nonempty complete metric space, and $\{G_n\}$ is a sequence of dense open subsets of X. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_n$ is not empty. Hint: Find a shrinking sequence of neighborhoods E_n such that $E_n \subset G_n$.

Munkres

chapter 2

section 13

5a: Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

section 16

4: A map $f: X \to Y$ is said to be an open map if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

section 17

- 2: Show that if A is closed in Y and Y is closed in X, then A is closed in X.
- 3: Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.
- 4: Show that if U is open in X and A is closed in X, then U-A is open in X, and A-U is closed in X.

18

8a: Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Show that the set $\{x \mid f(x) \leq g(x)\}$ is closed in X.

8b: Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Let $h: X \to Y$ be the function $h(x) = \min\{f(x), g(x)\}$. Show that h is continuous. [Hint: Use the pasting lemma.]

13: Let $A \subset X$; let $f: A \to Y$ be continuous; let Y be Hausdorff. Show that if f may be extended to a continuous function $g: \bar{A} \to Y$, then g is uniquely determined by f.

21

6a: Define $f_n:[0,1]\to\mathbb{R}$ by the equation $f_n(x)=x^n$. Show that the sequence $(f_n(x))$ converges for each $x\in[0,1]$.

6b: Define $f_n:[0,1]\to\mathbb{R}$ by the equation $f_n(x)=x^n$. Show that the sequence (f_n) does not converge uniformly.

8: Let X be a topological space and let Y be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions. Let x_n be a sequence of points of X converging to x. Show that if the sequence (f_n) converges uniformly to f, then $(f_n(x_n))$ converges to f(x).

22

1: Let $p: X \to Y$ be a continuous map. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.

2a: Let $p: X \to Y$ be a continuous map. Show that if there is a continuous map $f: Y \to X$ such that $p \circ f$ equals the identity map of Y, then p is a quotient map.

2b: If $A \subset X$, a retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for each $a \in A$. Show that a retraction is a quotient map.

3: Let H be a subspace of G. Show that if H is also a subgroup of G, then both H and \bar{H} are topological groups.