Лекция по эконометрике № 3

Линейная регрессионная модель для случая одной объясняющей переменной

Демидова
Ольга Анатольевна
https://www.hse.ru/staff/demidova_olga
E-mail:demidova@hse.ru
21.09.2020

План лекции № 3

- Дисперсионный анализ
- $\cdot R^2$
- Теорема Гаусса-Маркова для парной регрессии

1)
$$\overline{Y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{X}$$

Доказательство

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} \Rightarrow \overline{Y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{X}$$

Линия регрессии проходит через точку $(\overline{X}, \overline{Y})$

Полезные результаты относительно $2) \sum_{i=1}^{n} e_i = 0$ регрессий

2)
$$\sum_{i=1}^{n} e_i = 0$$

Доказательство

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + e_{i}, \quad i = 1, ..., n$$

$$e_{i} = Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}, \quad i = 1, ..., n$$

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} Y_{i} - n\hat{\beta}_{0} - \hat{\beta}_{1}\sum_{i=1}^{n} X_{i}, \quad i = 1, ..., n$$

$$\frac{1}{n}\sum_{i=1}^{n} e_{i} = \overline{Y} - \hat{\beta}_{0} - \hat{\beta}_{1}\overline{X} = 0$$

Отсутствует систематическая ошибка

Полезные результаты относительно

3) $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$

Доказательство

$$Y_i = \hat{Y}_i + e_i, \quad i = 1,..., n$$

$$\sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} \hat{Y}_{i} + \sum_{i=1}^{n} e_{i},$$

$$\sum_{i=1}^{n} e_i = 0$$

Сумма всех значений Y совпадает с суммой всех выровненных Y.

$$4) \quad \overline{Y} = \overline{\hat{Y}}$$

Доказательство

$$Y_{i} = \hat{Y}_{i} + e_{i}, \quad i = 1, ..., n$$

$$\sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} \hat{Y}_{i} + \sum_{i=1}^{n} e_{i}, \quad \sum_{i=1}^{n} e_{i} = 0$$

$$\sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} \hat{Y}_{i}$$

$$\frac{1}{n} \sum_{i=1}^{n} Y_{i} = \frac{1}{n} \sum_{i=1}^{n} \hat{Y}_{i}$$

Среднее арифметическое по всем значениям Y совпадает со средним арифметическим по всех выровненным Y.

$$5) \quad \sum_{i=1}^{n} X_{i} e_{i} = 0$$

Доказательство

$$\frac{\partial RSS}{\partial \hat{\beta}_1} = 0 \implies 2\hat{\beta}_1 \sum X_i^2 - 2\sum X_i Y_i + 2\hat{\beta}_0 \sum X_i = 0$$

$$\sum X_i (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) = 0$$

$$\sum_{i=1}^{n} X_{i} e_{i} = 0$$

$$(6) \quad \sum_{i=1}^{n} \hat{Y}_{i} e_{i} = 0$$

Доказательство

$$\sum_{i=1}^{n} \hat{Y}_{i} e_{i} = \sum_{i=1}^{n} (\hat{\beta}_{0} + \hat{\beta}_{1} X_{i}) e_{i} =$$

$$= \hat{\beta}_0 \sum_{i=1}^n e_i + \hat{\beta}_1 \sum_{i=1}^n X_i e_i = 0 + 0 = 0$$

Дисперсионный анализ

$$e_{i} = Y_{i} - \hat{Y}_{i} \implies Y_{i} = \hat{Y}_{i} + e_{i}, i = 1, ..., n$$

$$Y_{i} - \overline{Y} = (\hat{Y}_{i} - \overline{Y}) + (Y_{i} - \hat{Y}_{i})$$

$$y_{i} = \hat{y}_{i} + e_{i},$$

$$y_{i}^{2} = \hat{y}_{i}^{2} + 2 \hat{y}_{i} e_{i} + e_{i}^{2},$$

$$\sum_{i=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} \hat{y}_{i}^{2} + 2 \sum_{i=1}^{n} \hat{y}_{i} e_{i} + \sum_{i=1}^{n} e_{i}^{2},$$

$$\sum_{i=1}^{n} \hat{y}_{i} e_{i} = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y}) e_{i} = \sum_{i=1}^{n} \hat{Y}_{i} e_{i} - \overline{Y} \sum_{i=1}^{n} e_{i} = 0 - 0 = 0,$$

Дисперсионный анализ

$$\sum_{i=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} \hat{y}_{i}^{2} + \sum_{i=1}^{n} e_{i}^{2},$$

Дисперсионный анализ

$$\sum_{i=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} \hat{y}_{i}^{2} + \sum_{i=1}^{n} e_{i}^{2},$$

$$\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} + \sum_{i=1}^{n} e_{i}^{2},$$

$$\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = TSS \text{ (Total Sum of Squares)}$$

$$\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} = ESS \text{ (Explained Sum of Squares)}$$

$$\sum_{i=1}^{n} e_{i}^{2} = RSS \text{ (Re sidual Sum of Squares)}$$

$$TSS = ESS + RSS$$

Показатель качества подгонки регрессии R²

$$TSS = ESS + RSS$$

$$R^{2} = \frac{ESS}{TSS} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} =$$

$$= \frac{\sum (\hat{Y}_i - \overline{Y})^2 / (n-1)}{\sum (Y_i - \overline{Y})^2 / (n-1)} = \frac{\text{var}(\hat{Y})}{\text{var}(Y)}$$

R² является отношением ESS к TSS, (или долей дисперсии Y, объясненной с помощью регрессии). Очевидно, это неотрицательная величина.

Показатель качества подгонки регрессии R²

$$TSS = ESS + RSS$$

$$R^{2} = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{\infty} e_{i}^{2}}{\sum_{i=1}^{\infty} (Y_{i} - \overline{Y})^{2}}$$

Другое выражение для \mathbb{R}^2 , из которого следует, что \mathbb{R}^2 не превышает 1.

Критерии RSS \rightarrow min и $R^2 \rightarrow$ max равносильны.

Показатель качества подгонки регрессии R²

R² действительно является квадратом, а именно, квадратом выборочного коэффициента корреляции X и Y.

Доказательство

$$R^{2} = \frac{ESS}{TSS} = \frac{\sum (\hat{Y}_{i} - \overline{\hat{Y}})^{2}}{\sum y_{i}^{2}} = \frac{\sum (\hat{\beta}_{0} + \hat{\beta}_{1}X_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}\overline{X})^{2}}{\sum y_{i}^{2}} = \frac{\sum (\hat{\beta}_{1}(X_{i} - \overline{X}))^{2}}{\sum y_{i}^{2}} = \hat{\beta}_{1}^{2} \cdot \frac{\sum (x_{i})^{2}}{\sum y_{i}^{2}} = \frac{(\sum x_{i}y_{i})^{2}}{(\sum x_{i}^{2})^{2}} \cdot \frac{\sum x_{i}^{2}}{\sum y_{i}^{2}} = \frac{(\sum x_{i}y_{i})^{2}}{(\sum x_{i}^{2})^{2}} \cdot \frac{1}{\sum y_{i}^{2}} = \hat{r}_{XY}^{2}$$

Пример с R²

. reg EARNINGS S

Source	SS -+	df	MS		Number of obs	
Model Residual	3977.38016 34419.6569	1 3977 568 60.5	.38016 979875		F(1, 568) Prob > F R-squared	= 0.0000 = 0.1036
Total	+ 38397.0371				Adj R-squared Root MSE	= 0.1020 = 7.7845
EARNINGS	Coef.	Std. Err.		• •	[95% Conf.	Interval]
S _cons	1.073055	.1324501 1.820305	8.102 -0.764	0.000 0.445	.8129028 -4.966354	1.333206 2.184347

Оценки коэффициентов — случайные величины

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

$$\hat{\beta}_1 = \frac{\cos v(X, Y)}{v \hat{a} r(X)} = \frac{\cos v(X, [\beta_0 + \beta_1 X + \varepsilon])}{v \hat{a} r(X)}$$

$$= \frac{\cos v(X, \beta_0) + \cos v(X, \beta_1 X) + \cos v(X, \varepsilon)}{v \hat{a} r(X)}$$

$$= \frac{0 + \beta_1 \cos v(X, X) + \cos v(X, \varepsilon)}{v \hat{a} r(X)}$$

$$= \beta_1 + \frac{\cos v(X, \varepsilon)}{v \hat{a} r(X)}$$

Оценки коэффициентов — случайные величины

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

$$\hat{\beta}_1 = \beta_1 + \frac{c \hat{o} v(X, \varepsilon)}{v \hat{a} r(X)}$$

Т.к. X – детерминированный, а ε – случайный вектор, то $\hat{\beta}_1$ - случайная величина.

Аналогично \hat{eta}_0 - случайная величина.

Для того, чтобы найти их основные числовые характеристики, необходимо сделать предположения об ε.

Теорема Гаусса-Маркова для парной регрессии

- 1) Если модель $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, i = 1,...,n правильно специфицирована,
- 2) Х_і детерминированы и не все равны между собой,
- 3) $E(\varepsilon_i) = 0$,
- 4) $var(\varepsilon_i) = \sigma_{\varepsilon}^2$,
- 5) $cov(\epsilon_i, \epsilon_j) = 0$ при $i \neq j$ (т.е. ошибки не коррелируют) то оценки МНК β_0 и β_1 являются BLUE (best linear unbiased estimator).

BLUE

Estimator – оценка,

Unbiased – несмещенная,

Linear – по Y,

Best – это оценки с наименьшей дисперсией в классе всех линейных несмещенных оценок

Estimator (оценка)

$$\hat{\beta}_1 = \frac{\sum X_i Y_i - n \overline{X} \overline{Y}}{\sum (X_i - \overline{X})^2}$$

$$\hat{\beta}_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2},$$

$$\hat{\beta}_{1} = \frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}, x_{i} = X_{i} - \overline{X}, \quad y_{i} = Y_{i} - \overline{Y}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Unbiased (несмещенная)

Доказательство несмещенности оценки \hat{eta}_1

$$\hat{\beta}_1 = \beta_1 + \frac{c \,\hat{o} \, v(X, \varepsilon)}{v \,\hat{a} \, r(X)}$$

$$E(\hat{\beta}_1) = E\left(\beta_1 + \frac{\operatorname{cov}(X, \varepsilon)}{\operatorname{var}(X)}\right) = E(\beta_1) + E\left(\frac{\operatorname{cov}(X, \varepsilon)}{\operatorname{var}(X)}\right)$$
$$= \beta_1 + \frac{1}{\operatorname{var}(X)}E(\operatorname{cov}(X, \varepsilon)) = \beta_1$$

Равенство последнего слагаемого нулю будет доказано далее.

Unbiased (несмещенная)

$$E(\operatorname{Cov}(X,\varepsilon)) = E\left(\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(\varepsilon_i - \overline{\varepsilon})\right)$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} E((X_i - \overline{X})(\varepsilon_i - \overline{\varepsilon}))$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})E(\varepsilon_i - \overline{\varepsilon}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}) \times 0 = 0$$

Аналогично доказывается несмещенность оценки параметра β₀

Если

$$Y = Y_1 + Y_2$$

$$Y_1 = \beta_0' + \beta_1' X + \varepsilon_1$$

$$Y_2 = \beta_0'' + \beta_1'' X + \varepsilon_2$$

$$Y = \beta_0 + \beta_1 X + \varepsilon, \quad \text{TO}$$

$$\hat{\beta}_1 = \hat{\beta}_1' + \hat{\beta}_1'',$$

$$\hat{\beta}_0 = \hat{\beta}_0' + \hat{\beta}_0'',$$

Доказательство

$$\hat{\beta}_{1} = \frac{\hat{\text{cov}}(X, Y)}{\hat{\text{var}}(X)} = \frac{\hat{\text{cov}}(X, Y_{1} + Y_{2})}{\hat{\text{var}}(X)} = \frac{\hat{\text{cov}}(X, Y_{1})}{\hat{\text{var}}(X)} + \frac{\hat{\text{cov}}(X, Y_{2})}{\hat{\text{var}}(X)} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}''} + \frac{\hat{\beta}_{1}''}{\hat{\beta}_{0}''} + \frac{\hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}''} + \frac{\hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{1}''} + \frac{\hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{0}''} = \frac{\hat{\beta}_{1}' + \hat{\beta}_{1}''}{\hat{\beta}_{1}''} = \frac{\hat$$

Если

$$Y = \alpha Y_{1}$$

$$Y_{1} = \beta_{0}' + \beta_{1}' X + \varepsilon_{1}$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
, To

$$\hat{\beta}_1 = \alpha \hat{\beta}_1$$

$$\hat{\beta}_0 = \alpha \hat{\beta}_0$$

Доказательство

$$\hat{\beta}_{1} = \frac{\hat{\text{cov}}(X, Y)}{\hat{\text{var}}(X)} = \frac{\hat{\text{cov}}(X, \alpha Y_{1})}{\hat{\text{var}}(X)} = \frac{\hat{\text{cov}}(X, \alpha Y_{1})}{\hat{\text{var}}(X)} = \alpha \hat{\beta}_{1}',$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X} = \alpha \overline{Y}_{12} - \alpha \hat{\beta}_{1}' \overline{X} = \alpha \hat{\beta}_{0}'$$

Best (наилучшая)

Best – это оценки с наименьшей дисперсией в классе всех линейных несмещенных оценок

(см доказательство в прикрепленных файлах).

$$\sigma_{\hat{\beta}_0}^2 = \sigma_{\varepsilon}^2 \frac{\sum X_i^2}{n \sum x_i^2} \qquad \sigma_{\hat{\beta}_1}^2 = \frac{\sigma_{\varepsilon}^2}{\sum x_i^2}$$

Оценка дисперсии возмущений

$$\sigma^{2}_{\varepsilon} = \frac{RSS}{n-2}$$

Является несмещенной оценкой дисперсии возмущений

(см доказательство в прикрепленных файлах).

Оценки дисперсии оценок коэффициентов

$$\sigma^{2}_{\varepsilon} = \frac{RSS}{n-2}$$

$$\sigma_{\hat{\beta}_0}^2 = \sigma_{\varepsilon}^2 \frac{\sum X_i^2}{n \sum x_i^2}$$

$$\sigma_{\hat{\beta}_1}^2 = \frac{\sigma_{\varepsilon}^2}{\sum_{i} x_i^2}$$

$$\hat{\sigma}_{\hat{\beta}_0}^2 = \hat{\sigma}_{\varepsilon}^2 \frac{\sum X_i^2}{n \sum x_i^2}$$

$$\hat{\sigma}_{\hat{\beta}_1}^2 = \frac{\hat{\sigma}_{\varepsilon}^2}{\sum_{i} x_i^2}$$

Стандартные ошибки коэффициентов регрессии

$$s.e.(\hat{\beta}_0) = \sqrt{\hat{\sigma}_{\varepsilon}^2 \frac{\sum X_i^2}{n \sum x_i^2}}$$

$$s.e.(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}_{\varepsilon}^2}{\sum x_i^2}}$$

Стандартные ошибки коэффициентов регрессии

reg EARNI						
	•		MS		Number of obs	
	+				F(1, 568)	
Model	3977.38016	1 397	7.38016		Prob > F	= 0.0000
Residual	34419.6569	568 60.	5979875		R-squared	= 0.1036
	+				Adj R-squared	= 0.1020
	38397.0371 				Root MSE	= 7.7845
EARNINGS	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
s			8.102	0.000		1.333206
_cons	-1.391004 	1.820305	-0.764	0.445	-4.966354 	2.184347

Оценки стандартных отклонений (standard errors) автоматически выдаются при оценивании регрессии статистическими пакетами.