CORSO DI OTTIMIZZAZIONE PROVA SCRITTA DEL 10 FEBBRAIO 2022 Tempo a disposizione: ore 1:30.

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato. • Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- · Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- · Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 9)

Un grossista hardware deve purtroppo chiudere la sua attività. Si trova quindi a dover vendere gli n prodotti ancora rimanenti in magazzino in modo da massimizzare il ricavo complessivo. Pubblica quindi in rete l'elenco di tali prodotti con le relative specifiche e riceve m offerte da altrettanti negozi. Ciascun negozio $j \in \{1, ..., m\}$ presenta un offerta relativa all'acquisto dei prodotti i_1, \ldots, i_k , dove ogni i_s è un elemento di $\{1, \ldots, n\}$. Per l'acquisto di tali prodotti, il negozio j offre p, Euro. Si aiuti il grossista a massimizzare il ricavato della vendita, tenendo ovviamente conto che lo stesso prodotto i può essere venduto al massimo una volta. Si formuli il problema in PLI.

Esercizio 2. (Punti 8)

Si risolva il seguente problema di programmazione lineare attraverso l'algoritmo del simplesso.

$$\max x + 2u$$

$$x \ge 0$$

$$y \ge 0$$

$$x - y + 2 \ge 0$$

$$y - x + 2 \ge 0$$

Si parta dalla base ammissibile corrispondente ai vincoli della prima colonna.

Esercizio 3. (Punti 8)

Si risolva il seguente problema di flusso di costo minimo tramite l'algoritmo di cancellazione di

Esercizio 4. (Punti 5)

Dato un grafo orientato G=(V,A), una cricca in G è un sottoinsieme dell'insieme dei nodi $V = \{1, \ldots, n\}$ tale che ogni coppia i, j di vertici distinti in V sono tali per cui sia (i, j) che (j, i)appartengono ad A. Si formuli il problema di determinare una cricca di cardinalità massima in G come un problema PLI.

CORSO DI OTTIMIZZAZIONE

PROVA SCRITTA DEL 10 FEBBRAIO 2022

Tempo a disposizione: ore 1:30.

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- · Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- · Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- · Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- · Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- · Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 9)

Un grossista di prodotti per l'ufficio deve purtroppo chiudere la sua attività. Si trova quindi a dover vendere gli m prodotti ancora rimanenti in magazzino in modo da massimizzare il ricavo complessivo. Pubblica quindi in rete l'elenco di tali prodotti con le relative specifiche e riceve nofferte da altrettanti negozi. Ciascun negozio $i \in \{1, \dots, n\}$ presenta un offerta relativa all'acquisto dei prodotti j_1, \ldots, j_k , dove ogni j_s è un elemento di $\{1, \ldots, m\}$. Per l'acquisto di tali prodotti, il negozio i offre q; Euro. Si ajuti il grossista a massimizzare il ricavato della vendita, tenendo ovviamente conto che lo stesso prodotto i può essere venduto al massimo una volta. Si formuli il problema in PLI.

Esercizio 2. (Punti 8)

Si risolva il seguente problema di programmazione lineare attraverso l'algoritmo del simplesso.

$$\max x = 2u$$

$$x \le 0$$

$$y \ge 0$$

$$x + y \le 2$$

$$y + x + 2 > 0$$

Si parta dalla base ammissibile corrispondente ai vincoli della prima colonna.

Esercizio 3. (Punti 8)

Si risolva il seguente problema di flusso di costo minimo tramite l'algoritmo di cancellazione di

Esercizio 4. (Punti 5)

Dato un grafo orientato G=(V,A), una cocricca in G è un sottoinsieme dell'insieme dei nodi $V = \{1, \dots, n\}$ tale che ogni coppia i, j di vertici distinti in V sono tali per cui sia (i, j) che (j, i)non appartengono ad A. Si formuli il problema di determinare una cocricca di cardinalit $\mathbf A$ massima