Assignment 1

- 1. Design the ALU that can perform 8-bit addition operation to implement the Add instruction.
- full adder

- 8 bits adder

- 2. Design a new instruction named GT (greater than). This instruction performs an 8-bit greater-than comparison. Add a new function in the ALU to implement the new instruction.
- a) Truth table:

A	В	PEQ	GT	EQ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	0

1	1	0	0	0
1	1	1	0	1

b) K - Map:

G	т	PEQ						
G	1	0	1					
	00							
AB	01							
AD	11							
	10		1					

- GT = AB'PEQ

E	0	PEQ						
I.	Q	0	1					
	00		1					
AB	01							
AD	11		1					
	10							

-
$$EQ = A'B'PEQ + ABPEQ$$

$$= PEQ(A'B' + AB)$$

$$=$$
 PEQ (A \bigoplus B)'

$$=$$
 PEQ (A XNOR B)

c) Design a logic diagram:

- greater:

- 8 bits greater:

- Add a new function in the ALU to implement the new instruction:

d) Simulate the circuit and check the result:

	Name Value at 0 ps		Value at	0 ps		20.	.O ns	40.	0 ns	60.	0 ns	80.	O ns	100	0 ns	120,0) ns	140) <mark>,0 ns</mark>	160	O _i O ns	180 _; 0	ns 200.0 ns 🖺
			0 ps	0 ps																			
<u>in</u>	<u> </u>	> HNhi_A	U 3	3	X	5	7	3	119	17	X						O						
<u>in</u>	<u>></u>	> HNhi_B	U 1	1	X	2	3	4	48	20	21	X						0					
<u>in</u>	<u> </u>	> HNhi_Operation_Code	U 1		1	1		X	5	1	X						O						
21	•	> HNhi_Out	U 4	4	X	7	10	0	1	37	21	X						0					