

planetmath.org

Math for the people, by the people.

closed complex plane

Canonical name ClosedComplexPlane Date of creation 2013-03-22 17:37:48 Last modified on 2013-03-22 17:37:48

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 5

Author pahio (2872) Entry type Definition Classification msc 54E35 Classification msc 30-00

Synonym extended complex plane

Related topic RiemannSphere

Related topic Stereographic Projection

Related topic RegularAtInfinity

The complex plane \mathbb{C} , i.e. the set of the complex numbers z satisfying

$$|z| < \infty$$

is open but not closed, since it doesn't contain the accumulation points of all sets of complex numbers, for example of the set $\{1, 2, 3, ...\}$. One can \mathbb{C} to the closed complex plane $\mathbb{C} \cup \{\infty\}$ by adding to \mathbb{C} the infinite point ∞ which the lacking accumulation points. One settles that $|\infty| = \infty$, where the latter ∞ means the real infinity.

The resulting space is the one-point compactification of \mathbb{C} . The open sets are the open sets in \mathbb{C} together with sets containing ∞ whose complement is compact in \mathbb{C} . Conceptually, one thinks of the additional open sets as those open sets "around ∞ ".

The one-point compactification of \mathbb{C} is also the complex projective line \mathbb{CP}^1 , as well as the Riemann sphere.