BİÇİMSEL DİLLER ve OTOMATLAR Uygulama-5

- 1. a. $L=\{a^ib^j\mid 0\leq i\leq j\leq 2i\}$ olarak verilen ifadenin ait olduğu gramerin kurallarını veriniz b. Yukarıdaki düzenli ifadeyi tanıyan yığın yapılı otomatın geçiş kurallarını veriniz.
 - c. aabbbb katarının bu otomat tarafından nasıl tanındığını gösteriniz.

ÇÖZÜM:

a. Gramerin üretim kuralları:

$$S \rightarrow aSB \mid \Lambda$$

 $B \rightarrow bb \mid b$

b. Bu dili tanıyan PDA'nın tanımı

$$\begin{split} &Q = \{q0,\,q1,\,q2,\,q3,\,f\} \\ &\sum = \{a,\,b\} \quad \Gamma = \{a,c\} \\ &s = q0,\,F = \{f\} \\ &\Delta = \{\,[(q0,\,\Lambda,\,\Lambda)\,(q1,\,c)],\\ &\quad [(q1,\,\Lambda,\,c)\,(f,\,\Lambda)],\,[(q1,\,a,\,\Lambda)\,(q1,\,a)],\,[(q1,\,a,\,\Lambda)\,(q2,\,a)],\,[(q1,\,b,\,a),\,(q3,\,\Lambda)],\\ &\quad [(q2,\,\Lambda,\,\Lambda),\,(q1,\,a)],\\ &\quad [(q3,\,b,\,a),\,(q3,\,\Lambda)],[(q3,\,\Lambda,\,c),\,(f,\,\Lambda)]\} \end{split}$$

c.

Durum	Katar	Yığın
q0	aabbbb	٨
q1	aabbbb	С
q2	abbbb	ac
q1	abbbb	aac
q2	bbbb	aaac
q1	bbbb	aaaac
q3	bbb	aaac
q3	bb	aac
q3	b	ac
q3	Λ	С
f	Λ	Λ

2. n bit uzunluğunda(n>0) ikili kodlanmış bir sayıyı giriş olarak alan ve çıkışta da bu sayının sonuna, 1'lerin sayısı tek ise 1, çift ise 0 ilave eden bir fonksiyonu gerçekleyen bir Turing makinası tasarlayınız. Tasarladığınız Turing makinasının çalışmasını paritesi tek olan ve çift olan birer katar üzerinde gösteriniz.

ÇÖZÜM:

$$K = \{q0, q1, q2, h\}$$
$$\sum = \{0, 1, \#\}$$
$$s = q0$$
$$F = h$$

q	0	1	#
q0	(q2,R)	(q1,R)	
q1	(q1,R)	(q2,R)	(h,1)
q2	(q2,R)	(q1,R)	(h,0)
h	(h,R)	(h,R)	(h,#)

tek sayıda 1 olma durumu çift sayıda 1 olma durumu

Örnek:

1001 katarını ele alalım

$$(q0, \underline{1}001) \rightarrow (q1, \underline{10}01) \rightarrow (q1, \underline{100}1) \rightarrow (q1, \underline{100}1) \rightarrow (q2, \underline{1001}\underline{\#}) \rightarrow (h, \underline{10010}) \rightarrow (h, \underline{10010}\underline{\#})$$

1101 katarını ele alalım

$$(q0, \underline{1}101) \rightarrow (q1, 1\underline{1}01) \rightarrow (q2, 11\underline{0}1) \rightarrow (q2, 110\underline{1}) \rightarrow (q1, 1101\underline{\#}) \rightarrow (h, 1101\underline{1}) \rightarrow (h, 11011\underline{\#})$$

3. n bit uzunluğunda ikili kodlanmış bir sayı şerit üzerinde $a_0a_1a_2....a_{n-1}$ şeklinde yer alsın. Giriş olarak bu sayıyı alan, çıkışta ise, bu sayının 2'ye tümleyenini en düşük anlamlı bit en solda yer alacak şekilde şeride yazan bir Turing makinası tasarlayınız.

ÇÖZÜM:

i.
$$(1101)' \rightarrow 1010$$

ii. $(0000)' \rightarrow 0000$

1 görene kadar sağa git. Sonrasında 0 gördükçe 1, 1 gördükçe sıfır olarak değiştir.

$$K = \{q0, q1, q2, h\}$$

$$\sum = \{0, 1, \#\}$$

s= q0
F= h

q	0	1	#
q0	(q0,R)	(q1,R)	(h,#)
q1	(q2,1)	(q2,0)	(h,#)
q2	(q1,R)	(q1,R)	
h			(h,#)

Örnek:

1001 katarını ele alalım

$$(q0, \underline{1}001) \rightarrow (q1, \underline{10}01) \rightarrow (q2, \underline{11}01) \rightarrow (q1, \underline{11}01) \rightarrow (q2, \underline{11}11) \rightarrow (q1, \underline{11}11) \rightarrow (q2, \underline{11}110) \rightarrow (q1, \underline{11}110\underline{\#}) \rightarrow (q1, \underline{11}10\underline{\#})$$

0000 katarını ele alalım

$$(q0, \underline{0}000) \rightarrow (q0, 0\underline{0}00) \rightarrow (q0, 00\underline{0}0) \rightarrow (q0, 000\underline{0}) \rightarrow (q0, 0000\underline{\#}) \rightarrow (h, 0000\underline{\#})$$