

CERTIFIED DATA ANALYSTS

CAPSTONE PROJECT : Customer Retention and Sales Optimization in Retail

Part 2 - Data Science, R Programming & BI Dashboard

NAZREEN AGOS BIN ABDUL LATIFF

1. Python

a. Perform RFM (Recency, Frequency, Monetary) analysis for customer segmentation.

The RFM analysis was conducted to segment customers based on purchasing behavior, enabling targeted marketing strategies and improved customer retention.

```
CustomerID TransactionDate Recency Frequency Monetary
₹
            CUST0000
                             2025-04-10
                         2025-04-10
2025-04-13
2025-02-16
2025-02-17
2024-11-06
            CUST0002
                                                                     1146.22
                                                            6 4044.6.3 1110.82 ...
            CUST0003
                                                64
     3
            CUST0004
                                                  63
     4
           CUST0005
                                                166
                                                 22
    292 CUST0295
293 CUST0296
                         2025-03-30
2025-03-19
2025-04-04
2025-03-09
                                                                     6017.31
                                                 33
17
                                                                     3186.40
                                                                     2466.34
          CUST0297
           CUST0298
                                                  43
                                                                     3648.69
                           2025-01-04
     296 CUST0299
```

- Data was loaded from the cleaned dataset Complete.csv.
- TransactionDate was converted to proper date format (YYYY-MM-DD).
- Data was grouped by CustomerID to calculate:
- Recency: Days since the last purchase.
- Frequency: Number of transactions made.
- Monetary: Total amount spent.
- Final results were exported as customer.csv for further analysis.

Interpretation of Findings

- Low Recency + High Frequency + High Monetary = Top customers
- High Recency + Low Frequency + Low Monetary = At-risk customers
- Mid-range values = Potential growth segment

Predicting Customer Churn

A model to predict whether a customer will churn (stop buying) using Recency, Frequency, and Monetary (RFM) values.

```
1 import pandas as pd
  3 data = pd.read_csv("Complete.csv")
   5 data['TransactionDate'] = pd.to_datetime(data['TransactionDate'], dayfirst=True, errors='coerce')
  7 RFM_Data = data.groupby('CustomerID').agg({
          'TransactionDate': lambda x: x.max(),
         'TransactionID': 'count',
         'Sales': 'sum'
  10
  11 }).reset_index()
 12
 13 RFM_Data['Recency'] = (data['TransactionDate'].max() - RFM_Data['TransactionDate']).dt.days
 14 RFM Data['Churned'] = RFM Data['Recency'].apply(lambda x: "Churned" if x > 180 else "No")
 15 RFM_Data = RFM_Data[['CustomerID', 'TransactionDate', 'Recency', 'TransactionID', 'Sales', 'Churned']]
16 RFM_Data.columns = ['CustomerID', 'TransactionDate', 'Recency', 'Frequency', 'Monetary', 'Churned']
 17
 18 print(RFM_Data)
 19 RFM_Data.to_csv("customer.csv", index=False)
    CustomerID TransactionDate Recency Frequency Monetary Churned
                       2025-04-10
2025-04-13
0
      CUST0000
                                           11
                                                              6523.95
      CUST0002
                                                              1146.22
                                            8
1
                                                         3
2
      CUST0003
                       2025-02-16
                                                              3418.96
                                           64
                                                                             No
3
                       2025-02-17
      CUST0004
                                                              4044.05
                                                                             No
                                           63
                                                       3
      CUST0005
                       2024-11-06
                                          166
                                                             1110.82
                                                                             No
                                                      5 6017.31
3 3186.40
3 2466.34
5 3648.69
3 698.69
..
292
      CUST0295
                       2025-03-30
```

CUST0299 [297 rows x 6 columns]

CUST0296

CUST0297

CUST0298

Steps:

293

294

296

1. Data used: The RFM table with an extra column called Churned (Yes/No). Customers with Recency > 180 days were marked as "Churned".

No

Nο

- 2. Features: Recency (days since last purchase), Frequency (number of purchases), Monetary (total spend).
- 3. **Target:** Churned (Yes/No).

2025-03-19

2025-04-04

2025-03-09

2025-01-04

4. **Model:** Logistic Regression (also tested Random Forest).

33

17

107

43

5. **Training:** Data split into training (70%) and testing (30%) sets, with scaling applied to features.

Results:

- The model can correctly predict churn with around **X% accuracy**.
- Customers with high Recency and low Frequency/Monetary are more likely to churn.

```
1 import pandas as pd
 2 from sklearn.model_selection import train_test_split
 3 from sklearn.linear_model import LogisticRegression
 4 from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
 5 import matplotlib.pyplot as plt
  6 import seaborn as sns
 8 data = pd.read_csv("Complete.csv")
10 data['TransactionDate'] = pd.to_datetime(data['TransactionDate'], dayfirst=True, errors='coerce')
12 RFM_Data = data.groupby('CustomerID').agg({
        'TransactionDate': lambda x: x.max(),
13
        'TransactionID': 'count',
14
        'Sales': 'sum'
15
16 }).reset_index()
17
18 RFM_Data['Recency'] = (data['TransactionDate'].max() - RFM_Data['TransactionDate']).dt.days
19 RFM_Data['Churned'] = RFM_Data['Recency'].apply(lambda x: "Churned" if x > 180 else "No")
20 RFM_Data = RFM_Data[['CustomerID', 'TransactionDate', 'Recency', 'TransactionID', 'Sales','Churned']]
21 RFM_Data.columns = ['CustomerID', 'TransactionDate','Recency', 'Frequency', 'Monetary','Churned']
23 x = RFM_Data[['Recency', 'Frequency', 'Monetary']]
24 y = RFM_Data['Churned']
25
26 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
28 model = LogisticRegression()
29 model.fit(x_train, y_train)
31 y_pred = model.predict(x_test)
32
33 accuracy = accuracy_score(y_test, y_pred)
34 print("Model Accuracy:\n", accuracy)
35 classification_rep = classification_report(y_test, y_pred)
36 print("Classification Report:\n", classification_rep)
37 confusion_mat = confusion_matrix(y_test, y_pred)
38 print("Confusion Matrix:\n", confusion_mat)
Model Accuracy:
1.0
Classification Report:
                precision
                              recall f1-score support
     Churned
                    1.00
                               1.00
                                          1.00
                                                        8
                                                       82
          No
                    1.00
                               1.00
                                          1.00
                                          1.00
    accuracy
                    1.00
                               1.00
                                          1.00
                                                       90
   macro avo
weighted avg
                    1.00
                               1.00
                                          1.00
Confusion Matrix:
 [ 0 82]]
```

To identify customers at risk of stopping purchases, we labeled them as "churned" if they had not made a purchase in the past six months. We used three key features: Recency (days since last purchase), Frequency (number of purchases), and Monetary (total spend). The dataset was split into training and testing sets. A logistic regression model was trained on the training data, and its performance was evaluated on the test data to assess how accurately it could predict churn.

Feature Importance for Churn Prediction

The chart shows the influence of each feature in predicting customer churn based on the logistic regression model:

- Recency has the largest negative coefficient weight, meaning it is the most important factor. Customers who have not purchased recently are more likely to churn.
- **Frequency** has a smaller influence customers who purchase more often are less likely to churn.
- Monetary has minimal impact in this dataset, suggesting that total spending alone is not a strong predictor of churn.

This insight helps prioritize **customer re-engagement campaigns** towards those with high Recency and low Frequency values.

2. R Language

a. Statistical analysis was performed:

i. Chi-squared test to analyze relationship between gender and product category preference.

The Chi-squared test was conducted to determine whether there is a statistically significant association between **Gender** and **Product** Category preference among customers.

```
Pearson's Chi-squared test

data: gender_category

X-squared = 0.59575, df = 5, p-value = 0.9882
```

At the 5% significance level, we **fail to reject** the null hypothesis. This indicates that **Gender** and **Product Category** preference are statistically independent, meaning gender does not influence category choice in this dataset.

ii. ANOVA to compare average spend across different regions.

To determine whether there are statistically significant differences in average customer spending across the four regions (North, South, East, West).

```
Df Sum Sq Mean Sq F value Pr(>F)
Region 3 2010223 670074 1.833 0.139
Residuals 1496 546870735 365555
```

- Since the p-value (0.139) is greater than the significance threshold of 0.05, we **fail** to reject the null hypothesis.
- This indicates there is **no statistically significant difference** in average spending between the four regions.
- In business terms, customers from different regions spend approximately the same on average, so regional differences are unlikely to be a key driver of spending behavior.

b. The ggplot2 package was used for advanced visualisation.

Sales by Category and Gender

To compare sales performance across different **product categories** segmented by **gender**.

- Books, Electronics, and Groceries show similar sales volumes for both male and female customers.
- **Clothing** sales are noticeably higher among female customers compared to male customers.
- **Home & Kitchen** sales are higher for females, whereas **Sports** sales are slightly higher for males.
- Overall, sales are relatively balanced between genders across most categories, supporting the earlier Chi-squared test result that found no statistically significant relationship between gender and product category preference (p = 0.9882).

Sales Distribution by Region

To explore and compare the distribution of sales across the four regions: **East**, **North**, **South**, **and West**.

- The **South** region shows a slightly higher median sales value compared to the other regions.
- East, North, and West have very similar median sales values, indicating comparable central tendencies.
- All regions have a wide spread of sales values, with high maximum sales observed in each, suggesting the presence of high-value transactions.
- The results visually support the **ANOVA test** outcome (p = 0.139), which indicated **no statistically significant difference**in average sales between regions.
- This suggests that regional location does not strongly influence customer spending levels.

c. Apply clustering (K-means) for customer segments based on demographic and transaction data.

To segment customers into distinct groups based on **Recency** (days since last purchase) and **Monetary** (total spending), using demographic and transaction data.

Cluster 1 (Red):

- Low Recency (recent purchases), high Monetary value.
- Represents **high-value**, **loyal customers** who purchase frequently and spend more.

Cluster 2 (Green):

- Moderate Recency, mid-range Monetary value.
- Represents potentially loyal customers who could be nurtured to increase spending.

Cluster 3 (Blue):

- High Recency (long time since last purchase), low Monetary value.
- Represents **at-risk or inactive customers** who require re-engagement campaigns.

3. Power BI

• Connected to the cleaned dataset (CSV) generated in Part 1 of the project.

i. Sales trends over time

In the monthly sales trend analysis, **April** recorded the highest sales at **\$121K**, indicating a strong peak in performance. Conversely, **August** registered the lowest sales at **\$73K**, representing a significant dip compared to other months.

ii. Customer retention funnel

Among all product categories, **Groceries** accounted for the highest customer purchase volume, indicating that it is the most in-demand and frequently purchased category.

iii. Heatmap of product sales by location

Product Sales by Region

- West has the highest sales.
- East is the second highest.
- South has moderate sales.
- North has the lowest sales.

iv. KPI indicators (Average order value, Customer LTV, Monthly Active Users)

- Average Order Value (AOV): \$850.59 per transaction
- Customer Lifetime Value (CLTV): \$4,860
- Monthly Active Users (MAU): 98

These KPIs show that each transaction generates high value, customers contribute significantly over their lifetime, and there is a consistent base of active users each month.

Business Implications

- Focus marketing campaigns around Groceries in high-performing regions (West & East).
- Develop targeted promotions in the **North region** to improve its sales share.
- Engage at-risk customers identified in RFM analysis with win-back offers.
- Maintain high AOV through bundling and upselling strategies.