

В этой работе совершенно отсутствуют какие бы то ни было чертежи. Излагаемые мною методы не требуют ни построений, ни геометрических или механических рассуждений; они требуют только алгебраических операций, подчиненных планомерному и однообразному алгоритму.

—Предисловие к "Аналитической механике"

Рис. 1: Жозеф Луи Лагранж

Условия оптимальности

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x)\to \min_{x\in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

• • Стационарные точки

Рис. 2: Иллюстрация различных стационарных (критических) точек

Условия оптимальности

Рис. 2: Иллюстрация различных стационарных (критических) точек

 $f(x)\to \min_{x\in }$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x)\to \min_{x\in}$$

Множество S обычно называется **допустимым множеством** (или **бюджетным множеством**).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

• Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех $x \in S$.

♥ റ ⊘

Рис. 2: Иллюстрация различных стационарных (критических) точек

$f(x)\to \min_{x\in}$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

- Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.

େ ଚେ 🕈

Рис. 2: Иллюстрация различных стационарных (критических) точек

$f(x) \to \min_{x \in S}$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

- Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.

⊕ 0 @

Рис. 2: Иллюстрация различных стационарных (критических) точек

$f(x) \to \min_{x \in S}$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

- ullet Точка x^* является глобальным минимумом, если $f(x^*) \leq f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
- Мы называем точку x^* стационарной точкой (или критической точкой), если $\nabla f(x^*) = 0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

i Theorem

Пусть $S\subset\mathbb{R}^n$ - компактное множество и f(x) - непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

i Theorem

Пусть $S\subset\mathbb{R}^n$ - компактное множество и f(x) - непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

Рис. 3: Многие практические задачи теоретически разрешимы

i Theorem

Пусть $S\subset\mathbb{R}^n$ - компактное множество и f(x) - непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

Рис. 3: Многие практические задачи теоретически разрешимы

і Теорема Тейлора

Пусть $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируемая функция и $p\in \mathbb{R}^n.$ Тогда мы имеем:

$$f(x+p) = f(x) + \nabla f(x+tp)^T p$$
 для некоторого $t \in (0,1)$

i Theorem

Пусть $S\subset\mathbb{R}^n$ - компактное множество и f(x) - непрерывная функция на S. Тогда точка глобального минимума функции f(x) на S существует.

Рис. 3: Многие практические задачи теоретически разрешимы

Теорема Тейлора

Пусть $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируемая функция и $p\in \mathbb{R}^n$. Тогда мы имеем:

$$f(x+p) = f(x) + \nabla f(x+tp)^T p$$
 для некоторого $t \in (0,1)$

Кроме того, если f дважды непрерывно дифференцируема, то мы имеем:

$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+tp) p \, dt$$

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p$$

для некоторого $t \in (0,1)$.

Безусловная оптимизация

і Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

1 Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T\nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

🕯 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

🕯 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

Для любого $\bar{t} \in (0,T]$, мы имеем по теореме Тейлора, что

$$f(x^*+ar t p)=f(x^*)+ar t\, p^T\,
abla f(x^*+tp),$$
 для некоторого $t\in(0,ar t)$

🕯 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T \nabla f(x^* + tp) < 0$$
, для всех $t \in [0, T]$

Для любого $\bar{t} \in (0,T]$, мы имеем по теореме Тейлора, что

$$f(x^*+ar t p)=f(x^*)+ar t\, p^T\,
abla f(x^*+tp),$$
 для некоторого $\,t\in(0,ar t)$

Следовательно, $f(x^*+\bar{t}p) < f(x^*)$ для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

1 Достаточные условия оптимальности второго порядка

Пусть $abla^2 f$ непрерывна в открытой окрестности x^* , и выполнено

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^{st} является строгим локальным минимумом функции f.

🗓 Достаточные условия оптимальности второго порядка

Пусть $\nabla^2 f$ непрерывна в открытой окрестности x^* , и выполнено

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^* является строгим локальным минимумом функции f.

Доказательство

Поскольку гессиан непрерывен и положительно определен в x^* , мы можем выбрать радиус r>0 такой, что $\nabla^2 f(x)$ остается положительно определенным для всех x в открытом шаре $B=\{z\mid \|z-x^*\|< r\}$. Возьмем любой ненулевой вектор p с $\|p\|< r$, тогда $x^*+p\in B$ и для некоторого $t\in (0,1)$ выполняется

🗓 Достаточные условия оптимальности второго порядка

Пусть $\nabla^2 f$ непрерывна в открытой окрестности x^* , и выполнено

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^* является строгим локальным минимумом функции f.

Доказательство

Поскольку гессиан непрерывен и положительно определен в x^* , мы можем выбрать радиус r>0 такой, что $\nabla^2 f(x)$ остается положительно определенным для всех x в открытом шаре $B=\{z\mid \|z-x^*\|< r\}$. Возьмем любой ненулевой вектор p с $\|p\|< r$, тогда $x^*+p\in B$ и для некоторого $t\in (0,1)$ выполняется

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p,$$

🗓 Достаточные условия оптимальности второго порядка

Пусть $\nabla^2 f$ непрерывна в открытой окрестности x^* , и выполнено

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^* является строгим локальным минимумом функции f.

Доказательство

Поскольку гессиан непрерывен и положительно определен в x^* , мы можем выбрать радиус r>0 такой, что $\nabla^2 f(x)$ остается положительно определенным для всех x в открытом шаре $B=\{z\mid \|z-x^*\|< r\}$.

Возьмем любой ненулевой вектор p с $\|p\| < r$, тогда $x^* + p \in B$ и для некоторого $t \in (0,1)$ выполняется

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p,$$

= $f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p.$

🗓 Достаточные условия оптимальности второго порядка

Пусть $abla^2 f$ непрерывна в открытой окрестности x^* , и выполнено

$$\nabla f(x^*) = 0 \quad \nabla^2 f(x^*) \succ 0.$$

Тогда x^st является строгим локальным минимумом функции f.

Доказательство

Поскольку гессиан непрерывен и положительно определен в x^* , мы можем выбрать радиус r>0 такой, что $\nabla^2 f(x)$ остается положительно определенным для всех x в открытом шаре $B=\{z\mid \|z-x^*\|< r\}.$

Возьмем любой ненулевой вектор p с $\|p\| < r$, тогда $x^* + p \in B$ и для некоторого $t \in (0,1)$ выполняется

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p,$$

= $f(x^*) + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p.$

Поскольку $x^*+tp\in B$, то $p^T\nabla^2 f(x^*+tp)p>0$, и поэтому $f(x^*+p)>f(x^*)$, что доказывает утверждение.

Ф кираєвимитло кві

Заметим, что если $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \succeq 0$ (гессиан положительно полуопределён), то мы не можем быть уверены, что x^* является локальным минимумом.

Заметим, что если $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \succeq 0$ (гессиан положительно полуопределён), то мы не можем быть уверены, что x^* является локальным минимумом.

$$f(x,y)=(2x^2-y)(x^2-y)$$

Заметим, что если $\nabla f(x^*)=0$, $\nabla^2 f(x^*)\succeq 0$ (гессиан положительно полуопределён), то мы не можем быть уверены, что x^* является локальным минимумом.

$$f(x,y) = (2x^2 - y)(x^2 - y)$$

Хотя поверхность не имеет локального минимума в начале координат, ее пересечение с любой вертикальной плоскостью, проходящей через начало координат (плоскость с уравнением u = mx или x = 0) является кривой, которая имеет локальный минимум в начале координат. Другими словами, если точка начинает движение в начале координат (0,0) вдоль любой прямой линии, то значение $(2x^2-y)(x^2-y)$ будет увеличиваться в начале движения. Тем не менее, (0,0) не является локальным минимумом функции, потому что движение вдоль параболы, такой как $u = \sqrt{2}x^2$. приведет к уменьшению значения функции.

Заметим, что если $\nabla f(x^*)=0,\, \nabla^2 f(x^*)\succeq 0$ (гессиан положительно полуопределён), то мы не можем быть уверены, что x^* является локальным минимумом.

$$f(x,y) = (2x^2 - y)(x^2 - y)$$

Хотя поверхность не имеет локального минимума в начале координат, ее пересечение с любой вертикальной плоскостью, проходящей через начало координат (плоскость с уравнением y = mx или x = 0) является кривой, которая имеет локальный минимум в начале координат. Другими словами, если точка начинает движение в начале координат (0,0) вдоль любой прямой линии, то значение $(2x^2 - y)(x^2 - y)$ будет увеличиваться в начале движения. Тем не менее, (0,0) не является локальным минимумом функции, потому что движение вдоль параболы, такой как $u = \sqrt{2}x^2$. приведет к уменьшению значения функции.

Non-convex PL function

Условная оптимизация

Общее условие локальной оптимальности первого порядка Вектор $d \in \mathbb{R}^n$ является допустимым

вектор $a \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Вектор $d \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$. если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S \subseteq \mathbb{R}^n$ и функция $f : \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в

окрестности x^* .

Вектор $d \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$. если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S \subseteq \mathbb{R}^n$ и функция $f : \mathbb{R}^n \to \mathbb{R}$.

Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в окрестности x^* .

1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.

Вектор $d \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$. если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S \subseteq \mathbb{R}^n$ и функция $f : \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в

- окрестности x^* . 1. Тогда для любого допустимого
 - направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
 - 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x-x^*) \geq 0, \forall x \in S.$$

Вектор $d \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$. если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S \subseteq \mathbb{R}^n$ и функция $f : \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в

- окрестности x^* . 1. Тогда для любого допустимого
 - направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
 - 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x-x^*) \geq 0, \forall x \in S.$$

Вектор $d \in \mathbb{R}^n$ является допустимым направлением в точке $x^* \in S \subseteq \mathbb{R}^n$. если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S \subseteq \mathbb{R}^n$ и функция $f : \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в

- окрестности x^* . 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$. 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x-x^*) \geq 0, \forall x \in S.$$

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$

Рис. 4: Общее условие локальной оптимальности первого порядка

Следует отметить, что в выпуклом случае (то есть при выпуклых f и S) необходимое условие становится достаточным.

Следует отметить, что в выпуклом случае (то есть при выпуклых f и S) необходимое условие становится достаточным.

Еще один важный результат для выпуклого случая звучит следующим образом: если $f(x):S o\mathbb{R}$ выпуклая функция, определённая на выпуклом множестве S, то:

Следует отметить, что в выпуклом случае (то есть при выпуклых f и S) необходимое условие становится достаточным.

Еще один важный результат для выпуклого случая звучит следующим образом: если $f(x):S o\mathbb{R}$ выпуклая функция, определённая на выпуклом множестве S, то:

• Любой локальный минимум является глобальным.

Следует отметить, что в выпуклом случае (то есть при выпуклых f и S) необходимое условие становится достаточным.

Еще один важный результат для выпуклого случая звучит следующим образом: если $f(x):S o\mathbb{R}$ выпуклая функция, определённая на выпуклом множестве S, то:

- Любой локальный минимум является глобальным.
- Множество локальных (= глобальных) минимумов S^* выпукло.

Следует отметить, что в выпуклом случае (то есть при выпуклых f и S) необходимое условие становится достаточным.

Еще один важный результат для выпуклого случая звучит следующим образом: если $f(x):S o\mathbb{R}$ выпуклая функция, определённая на выпуклом множестве S, то:

- Любой локальный минимум является глобальным.
- Множество локальных (= глобальных) минимумов S^* выпукло.
- Если f(x) строго или сильно выпуклая функция, то S^* содержит только одну точку: $S^* = \{x^*\}$.

В задачах без ограничений всё довольно интуитивно. В этом разделе мы добавим одно ограничение-равенство, то есть:

В задачах без ограничений всё довольно интуитивно. В этом разделе мы добавим одно ограничение-равенство, то есть:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\mathrm{s.t.}\ h(x)=0$$

В задачах без ограничений всё довольно интуитивно. В этом разделе мы добавим одно ограничение-равенство, то есть:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. h(x) = 0

Мы попробуем проиллюстрировать подход к решению этой задачи через простой пример с $f(x)=x_1+x_2$ и $h(x) = x_1^2 + x_2^2 - 2$.

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Предположим, что в процессе такого движения мы пришли в точку, где

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Предположим, что в процессе такого движения мы пришли в точку, где

$$-\nabla f(x) = \nu \nabla h(x)$$

В общем случае, чтобы двигаться от x_F вдоль допустимого множества и уменьшать значение функции, необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Предположим, что в процессе такого движения мы пришли в точку, где

$$-\nabla f(x) = \nu \nabla h(x)$$

$$\langle \delta x, -\nabla f(x) \rangle = \langle \delta x, \nu \nabla h(x) \rangle = 0$$

В общем случае, чтобы двигаться от x_E вдоль допустимого множества и уменьшать значение функции. необходимо обеспечить два условия:

$$\langle \delta x, \nabla h(x_F) \rangle = 0$$

$$\langle \delta x, -\nabla f(x_F) \rangle > 0$$

Предположим, что в процессе такого движения мы пришли в точку, где

$$-\nabla f(x) = \nu \nabla h(x)$$

$$\langle \delta x, -\nabla f(x) \rangle = \langle \delta x, \nu \nabla h(x) \rangle = 0$$

Тогда мы достигли такой точки допустимого множества, из которой нельзя уменьшить значение функции при допустимых малых сдвигах. Это и есть условие локального минимума в задаче с ограничением.

Давайте определим лагранжиан (для удобства):

$$L(x,\nu) = f(x) + \nu h(x)$$

Давайте определим лагранжиан (для удобства):

$$L(x,\nu) = f(x) + \nu h(x)$$

Если задача perулярная (мы определим это понятие позже) и точка x^* является локальным минимумом для описанной выше задачи, то существует ν^* :

Давайте определим лагранжиан (для удобства):

$$L(x,\nu) = f(x) + \nu h(x)$$

Если задача perynaphaa (мы определим это понятие позже) и точка x^* является локальным минимумом для описанной выше задачи, то существует ν^* :

Необходимые условия

Важно отметить, что $L(x^*, \nu^*) = f(x^*)$.

Давайте определим лагранжиан (для удобства):

$$L(x,\nu) = f(x) + \nu h(x)$$

Если задача perулярная (мы определим это понятие позже) и точка x^* является локальным минимумом для описанной выше задачи, то существует ν^* :

Необходимые условия

$$abla_x L(x^*,
u^*) = 0$$
 это мы уже написали выше

Важно отметить, что $L(x^*, \nu^*) = f(x^*)$.

Давайте определим лагранжиан (для удобства):

$$L(x,\nu) = f(x) + \nu h(x)$$

Если задача $perynnersize{pr$ описанной выше задачи, то существует ν^* :

Необходимые условия

$$abla_x L(x^*,
u^*) = 0$$
 это мы уже написали выше

$$abla_{
u}L(x^*,
u^*)=0$$
 бюджетное ограничение

Важно отметить, что $L(x^*, \nu^*) = f(x^*)$.

$$f(x) \to \min_{x \in \mathbb{R}^n}$$
 s.t. $h_i(x) = 0, \ i = 1, \dots, p$

$$L(x,\nu) = f(x) + \sum_{i=1}^{p} \nu_i h_i(x) = f(x) + \nu^\top h(x)$$

Пусть f(x) и $h_i(x)$ дважды дифференцируемы в точке x^* и непрерывно дифференцируемы в некоторой окрестности x^* . Условия локального минимума для $x \in \mathbb{R}^n, \nu \in \mathbb{R}^p$ записываются как

Необходимые условия

$$\nabla_x L(x^*, \nu^*) = 0$$

$$\nabla_{\nu}L(x^*,\nu^*)=0$$

 $f \to \min_{x,y,z}$ Условная оптимизация

Задача наименьших квадратов

i Example

Поставим задачу оптимизации и решим ее для линейной системы $Ax = b, A \in \mathbb{R}^{m \times n}$ для трех случаев (предполагая, что матрица имеет полный ранг):

• m < n

Задача наименьших квадратов

i Example

Поставим задачу оптимизации и решим ее для линейной системы $Ax = b, A \in \mathbb{R}^{m \times n}$ для трех случаев (предполагая, что матрица имеет полный ранг):

- m < n
- \bullet m=n

Задача наименьших квадратов

i Example

Поставим задачу оптимизации и решим ее для линейной системы $Ax = b, A \in \mathbb{R}^{m \times n}$ для трех случаев (предполагая, что матрица имеет полный ранг):

- \bullet m < n
- \bullet m=n
- m > n

Пример задачи с ограничениями-неравенствами

$$f(x) = x_1^2 + x_2^2$$
 $g(x) = x_1^2 + x_2^2 - 1$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

⊕ n ø

Как понять, что некоторая допустимая точка является локальным минимумом? x_{2}

Просто! Проверим достаточные условия локального экстремума x_2 .

Таким образом, если ограничения типа неравенства неактивны в условной задаче, то мы можем решать задачу без ограничений. Однако так бывает не всегда. Рассмотрим второй простой пример.

$$f(x) = (x_1 - 1)^2 + (x_2 + 1)^2 \quad g(x) = x_1^2 + x_2^2 - 1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Бюджетное множество $\ g(x) = x_1^2 + x_2^2 - 1 \leq 0$

Как понять, что некоторая допустимая точка является локальным минимумом? x_{2}

Не так просто! Даже градиент в оптимальной точке не равен нулю v_2 x_f

чениями-неравенствами Фактически имеем задачу с ограничением-равенством x_2 $g(x^*)=0$

 x_1

 x_f

Не является локальным минимумом, т.к. $-\nabla f(x)$ направлен внутрь бюджетного множества x_2

Итак, у нас есть задача:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

s.t. $g(x) \leq 0$

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

•
$$q(x^*) < 0$$

Итак, у нас есть задача:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$

Итак, у нас есть задача:

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) \succ 0$

Итак, у нас есть задача:

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

- $g(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) \succ 0$

Итак, у нас есть задача:

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$s.t. \ g(x) \le 0$$

$$q(x) < 0$$
 неактивно: $q(x^*) < 0$

•
$$g(x^*) < 0$$

•
$$\nabla f(x^*) = 0$$

•
$$\nabla^2 \hat{f}(x^*) \succ 0$$

$$g(x) \le 0$$
 активно: $g(x^*) = 0$

$$g(x^*) = 0$$

Итак, у нас есть задача:

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

s.t. $g(x) \leq 0$

Два возможных случая:

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

- $q(x^*) < 0$
- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*) \succ 0$

- q(x) < 0 активно: $q(x^*) = 0$
 - $q(x^*) = 0$
 - Необходимые условия: $-\nabla f(x^*) = \lambda \nabla g(x^*), \ \lambda > 0$

 $f \to \min_{x,y,z}$ Задачи с ограничениями-неравенствами

Итак, у нас есть задача:

$$f(x)\to \min_{x\in\mathbb{R}^n}$$

$$\text{s.t. } g(x) \le 0$$

Два возможных случая:

$$g(x) \leq 0$$
 неактивно: $g(x^*) < 0$

- $g(x^*) < 0$
- $\nabla^2 f(x^*) \succ 0$

$$q(x) < 0$$
 активно: $q(x^*) = 0$

- $q(x^*) = 0$
- Необходимые условия: $-\nabla f(x^*) = \lambda \nabla g(x^*)$, $\lambda > 0$

• Достаточные условия:

$$\langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0, \forall y \neq 0 \in \mathbb{R}^n : \nabla g(x^*)^\top y = 0$$

Лагранжиан для задач с ограничениями-неравенствами

Объединяя два возможных случая, мы можем записать общие условия для задачи:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

Определим функцию Лагранжа:

$$L(x,\lambda) = f(x) + \lambda g(x)$$

Классические условия Каруша-Куна-Таккера для локального минимума x^* , сформулированные при некоторых условиях регулярности, можно записать следующим образом.

Лагранжиан для задач с ограничениями-неравенствами

Объединяя два возможных случая, мы $\,$ Если x^* является локальным минимумом для описанной выше задачи, можем записать общие условия для задачи:

$$f(x) \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } g(x) \leq 0$$

$$\text{s.t. } g(x) \leq 0$$

$$T(x, y) = f(x) + yx$$

$$L(x,\lambda) = f(x) + \lambda g(x)$$

$$L(x,\lambda) = f(x) + \lambda g(x)$$

Каруша-Куна-Таккера для локального минимума x^* , сформулированные при

некоторых условиях регулярности, можно записать следующим образом.

 $L(x,\lambda) = f(x) + \lambda q(x)$

 $(1) \nabla_x L(x^*, \lambda^*) = 0$

(2) $\lambda^* > 0$

(3) $\lambda^* q(x^*) = 0$

 $I(x^*) = \{i \mid q_i(x^*) = 0\}$

 $(4) \ q(x^*) \leq 0$

то существует единственный множитель Лагранжа λ^* такой, что:

where $C(x^*) = \{ y \in \mathbb{R}^n | \nabla f(x^*)^\top y < 0 \text{ and } \forall i \in I(x^*) : \nabla q_i(x^*)^T y < 0 \}$

(5) $\forall u \in C(x^*) : \langle y, \nabla^2_{xx} L(x^*, \lambda^*) y \rangle > 0$

KKT

Общая формулировка

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Пусть x^* , (λ^*, ν^*) является решением **регулярной** задачи математического программирования с нулевым зазором двойственности (оптимальное значение для исходной задачи p^* равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

•
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

Пусть x^* , (λ^*, ν^*) является решением **регулярной** задачи математического программирования *с нулевым* зазором двойственности (оптимальное значение для исходной задачи p^* равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

- $\nabla_{m}L(x^{*},\lambda^{*},\nu^{*})=0$
- $\nabla_{\cdot \cdot} L(x^*, \lambda^*, \nu^*) = 0$

Пусть x^* , (λ^*, ν^*) является решением **регулярной** задачи математического программирования *с нулевым* зазором двойственности (оптимальное значение для исходной задачи p^* равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

•
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

- $\nabla_{..}L(x^*, \lambda^*, \nu^*) = 0$
- $\lambda_i^* \geq 0, i = 1, ..., m$

Пусть x^* , (λ^*, ν^*) является решением **регулярной** задачи математического программирования *с нулевым* зазором двойственности (оптимальное значение для исходной задачи p^st равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

$$\bullet \ \nabla_x L(x^*,\lambda^*,\nu^*) = 0$$

- $\nabla_{\cdot \cdot} L(x^*, \lambda^*, \nu^*) = 0$
- $\lambda_i^* > 0, i = 1, ..., m$
- $\lambda_i^* f_i(x^*) = 0, i = 1, ..., m$

Пусть x^* , (λ^*, ν^*) является решением **регулярной** задачи математического программирования *с нулевым* зазором двойственности (оптимальное значение для исходной задачи p^st равно оптимальному значению для двойственной задачи d^*). Пусть также функции f_0, f_i, h_i дифференцируемы.

•
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

- $\nabla_{\cdot \cdot} L(x^*, \lambda^*, \nu^*) = 0$
- $\lambda_i^* > 0, i = 1, ..., m$
- $\lambda_i^* f_i(x^*) = 0, i = 1, ..., m$
- $f_i(x^*) < 0, i = 1, ..., m$

Эти условия нужны для того, чтобы условия Каруша-Куна-Таккера стали необходимыми условиями. Некоторые из них даже превращают необходимые условия в достаточные (например, условие Слейтера). Кроме того, если у нас есть регулярность, мы можем записать необходимые условия второго порядка $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle > 0$ с полуопределенным гессианом лагранжиана.

ullet **Условие Слейтера.** Если для выпуклой задачи (при минимизации, с выпуклыми f_0,f_i и аффинными $h_i)$ существует точка x такая, что h(x)=0 и $f_i(x)<0$ (существует строго допустимая точка), то зазор двойственности равен нулю, и условия Каруша—Куна—Таккера становятся необходимыми и достаточными.

Эти условия нужны для того, чтобы условия Каруша-Куна-Таккера стали необходимыми условиями. Некоторые из них даже превращают необходимые условия в достаточные (например, условие Слейтера). Кроме того, если у нас есть регулярность, мы можем записать необходимые условия второго порядка $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$ с полуопределенным гессианом лагранжиана.

- ullet **Условие Слейтера.** Если для выпуклой задачи (при минимизации, с выпуклыми f_0,f_i и аффинными $h_i)$ существует точка x такая, что h(x)=0 и $f_i(x)<0$ (существует строго допустимая точка), то зазор двойственности равен нулю, и условия Каруша—Куна—Таккера становятся необходимыми и достаточными.
- ullet **Условие линейной квалификации ограничений.** Если f_i и h_i являются аффинными функциями, то никаких других условий не требуется.

 $f \to \min_{x,y,z}$ KKT

Эти условия нужны для того, чтобы условия Каруша-Куна-Таккера стали необходимыми условиями. Некоторые из них даже превращают необходимые условия в достаточные (например, условие Слейтера). Кроме того, если у нас есть регулярность, мы можем записать необходимые условия второго порядка $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$ с полуопределенным гессианом лагранжиана.

- ullet **Условие Слейтера.** Если для выпуклой задачи (при минимизации, с выпуклыми f_0,f_i и аффинными $h_i)$ существует точка x такая, что h(x)=0 и $f_i(x)<0$ (существует строго допустимая точка), то зазор двойственности равен нулю, и условия Каруша—Куна—Таккера становятся необходимыми и достаточными.
- ullet **Условие линейной квалификации ограничений.** Если f_i и h_i являются аффинными функциями, то никаких других условий не требуется.
- Условие линейной независимости ограничений. Градиенты активных ограничений неравенства и градиенты ограничений равенства линейно независимы в точке x^* .

Эти условия нужны для того, чтобы условия Каруша-Куна-Таккера стали необходимыми условиями. Некоторые из них даже превращают необходимые условия в достаточные (например, условие Слейтера). Кроме того, если у нас есть регулярность, мы можем записать необходимые условия второго порядка $\langle y, \nabla^2_{xx} L(x^*, \lambda^*, \nu^*) y \rangle \geq 0$ с полуопределенным гессианом лагранжиана.

- ullet **Условие Слейтера.** Если для выпуклой задачи (при минимизации, с выпуклыми f_0,f_i и аффинными $h_i)$ существует точка x такая, что h(x)=0 и $f_i(x)<0$ (существует строго допустимая точка), то зазор двойственности равен нулю, и условия Каруша—Куна—Таккера становятся необходимыми и достаточными.
- ullet **Условие линейной квалификации ограничений.** Если f_i и h_i являются аффинными функциями, то никаких других условий не требуется.
- Условие линейной независимости ограничений. Градиенты активных ограничений неравенства и градиенты ограничений равенства линейно независимы в точке x^* .
- Для других примеров см. wiki.

і Субдифференциальная форма ККТ

Пусть X - линейное нормированное пространство, а $f_i:X\to\mathbb{R},\ j=0,1,\ldots,m$ - выпуклая и не принимающая значения $-\infty$ и ∞ . Рассмотрим задачу

$$f_0(x) \to \min_{x \in X}$$

$$\text{s.t. } f_j(x) \leq 0, \ j=1,\ldots,m$$

Пусть $x^* \in X$ - точка минимума, и функции f_j , $j=0,1,\ldots,m$, непрерывны в x^* . Тогда существуют $\lambda_i \geq 0, j = 0, 1, ..., m$ такие, что

$$\sum_{j=0}^{m} \lambda_j = 1,$$

$$\lambda_j f_j(x^*) = 0, \quad j = 1, \dots, m,$$

$$0 \in \sum_{j=0}^{m} \lambda_j \partial f_j(x^*).$$

Доказательство

1. Рассмотрим функцию

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

Точка x^* - точка глобального минимума этой функции. Действительно, если в некоторой точке $x_e \in X$ выполнено неравенство $f(x_e) < 0$, то $f_0(x_e) < f_0(x^*)$ и $f_j(x_e) < 0$, $j = 1, \dots, m$, что противоречит тому, что точка x^* является точкой минимума.

Доказательство

1. Рассмотрим функцию

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

Точка x^* - точка глобального минимума этой функции. Действительно, если в некоторой точке $x_e \in X$ выполнено неравенство $f(x_e) < 0$, то $f_0(x_e) < f_0(x^*)$ и $f_j(x_e) < 0$, $j = 1, \dots, m$, что противоречит тому, что точка x^* является точкой минимума.

2. Из теоремы Ферма в субдифференциальной форме

$$0 \in \partial f(x^*)$$
.

Доказательство

1. Рассмотрим функцию

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

Точка x^* - точка глобального минимума этой функции. Действительно, если в некоторой точке $x_e \in X$ выполнено неравенство $f(x_e) < 0$, то $f_0(x_e) < f_0(x^*)$ и $f_i(x_e) < 0$, $j = 1, \dots, m$, что противоречит тому, что точка x^* является точкой минимума.

2. Из теоремы Ферма в субдифференциальной форме

$$0 \in \partial f(x^*).$$

3. Из теоремы Дубовицкого-Милютина имеем

$$\partial f(x^*) = \mathrm{conv} \ \left(\bigcup_{j \in I} \partial f_j(x^*) \right),$$

где
$$I = \{0\} \cup \{j: f_j(x^*) = 0, 1 \leq j \leq m\}.$$

Доказательство в простом случае

Доказательство

1. Рассмотрим функцию

$$f(x) = \max\{f_0(x) - f_0(x^*), f_1(x), \dots, f_m(x)\}.$$

Точка x^* - точка глобального минимума этой функции. Действительно, если в некоторой точке $x_e \in X$ выполнено неравенство $f(x_e) < 0$, то $f_0(x_e) < f_0(x^*)$ и $f_i(x_e) < 0$, $j = 1, \dots, m$, что противоречит тому, что точка x^* является точкой минимума.

2. Из теоремы Ферма в субдифференциальной форме

$$0 \in \partial f(x^*)$$
.

3. Из теоремы Дубовицкого-Милютина имеем

$$\partial f(x^*) = \mathrm{conv} \ \left(\bigcup_{j \in I} \partial f_j(x^*) \right),$$

где $I = \{0\} \cup \{j : f_i(x^*) = 0, 1 \le j \le m\}.$

4. Следовательно, существует $g_i \in \partial f_i(x^*)$, $j \in I$ такая, что

$$\sum_{j\in I} \lambda_j g_j = 0, \quad \sum_{j\in I} \lambda_j = 1, \quad \lambda_j \geq 0, \quad j\in I.$$

Осталось установить $\lambda_i = 0$ for $j \notin I$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

Решение

Лагранжиан:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

Решение

Лагранжиан:

$$L(\mathbf{x},\nu) = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|^2 + \nu(\mathbf{a}^T\mathbf{x} - b)$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

Решение

Лагранжиан:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Производная L по \mathbf{x} :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$$

Решение

Лагранжиан:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Производная L по \mathbf{x} :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y} - \nu \mathbf{a}^T \mathbf{a}$$
 $\nu = \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2}$

 $\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{a}^T \mathbf{x} = b.$

Решение

Лагранжиан:

$$L(\mathbf{x}, \nu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \nu (\mathbf{a}^T \mathbf{x} - b)$$

Производная L по \mathbf{x} :

$$\frac{\partial L}{\partial \mathbf{x}} = \mathbf{x} - \mathbf{y} + \nu \mathbf{a} = 0, \quad \mathbf{x} = \mathbf{y} - \nu \mathbf{a}$$

$$\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y} - \nu \mathbf{a}^T \mathbf{a}$$
 $\nu = \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2}$

$$\mathbf{x} = \mathbf{y} - \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2} \mathbf{a}$$

 $f \to \min_{x,y,z}$ KKT

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

•
$$\frac{\partial L}{\partial x} = x_i - y_i - \lambda_i + \nu = 0$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

- $\frac{\partial L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i \dot{x}_i = 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

- $\frac{\partial L}{\partial x} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i x_i = 0$
- $\lambda_i \geq 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

- $\frac{\partial L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i x_i = 0$
- $\lambda_i \geq 0$
- $\mathbf{x}^{\top} \mathbf{1} = 1, \quad \mathbf{x} \ge 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \geq 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

- $\frac{\partial L}{\partial x_i} = x_i y_i \lambda_i + \nu = 0$
- $\lambda_i x_i = 0$
- $\lambda_i \geq 0$
- $\mathbf{x}^{\top} \mathbf{1} = 1, \quad \mathbf{x} \ge 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \ge 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

Взяв производную L по x_i и записав ККТ, мы получаем:

•
$$\frac{\partial L}{\partial x_i} = x_i - y_i - \lambda_i + \nu = 0$$

$$\frac{\partial x_i}{\partial x_i} = \frac{\partial x_i}{\partial x_i} = \frac{\partial x_i}{\partial x_i} + \frac{\partial x_i}{\partial x_i} = \frac{\partial x_i}{\partial$$

$$\lambda_i x_i = 0$$

•
$$\lambda_{\underline{i}} \geq 0$$

•
$$\mathbf{x}^{\top} \mathbf{1} = 1, \quad \mathbf{x} \ge 0$$

i Question

Решите систему выше за $O(n \log n)$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \ge 0.$$

Условия ККТ

Лагранжиан задается следующим образом:

$$L = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 - \sum_i \lambda_i x_i + \nu(\mathbf{x}^\top \mathbf{1} - 1)$$

Взяв производную L по x_i и записав ККТ, мы получаем:

$$\bullet \ \ \frac{\partial \dot{L}}{\partial x_i} = x_i - y_i - \lambda_i + \nu = 0$$

$$\lambda_i x_i = 0$$

$$\lambda_i \ge 0$$

$$\mathbf{x}^\top \mathbf{1} = 1, \quad \mathbf{x} \ge 0$$

•
$$x | 1 = 1, x \ge$$

Решите систему выше за $O(n \log n)$.

Решите систему выше за O(n).

Задачи

i Question

Функция $f:E o\mathbb{R}$ определена как

$$f(x) = \ln\left(-Q(x)\right)$$

где $E=\{x\in\mathbb{R}^n:Q(x)<0\}$ и

$$Q(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x + c$$

 $c A \in \mathbb{S}^n_{++}, b \in \mathbb{R}^n, c \in \mathbb{R}.$

Найдите точку максимума x^* функции f.

i Question

Найдите явное решение следующей задачи.

$$f(x,y) = x + y \to \min$$
 s.t. $x^2 + y^2 = 1$

где $x,y\in\mathbb{R}$.

i Question

Найдите явное решение следующей задачи.

$$\langle c, x \rangle + \sum_{i=1}^n x_i \log x_i \to \min_{x \in \mathbb{R}^n}$$

$$\text{s.t. } \sum_{i=1}^n x_i = 1,$$

где $x \in \mathbb{R}^n_{++}, c \neq 0$.

i Question

Пусть $A \in \mathbb{S}^n_{++}, b>0$ покажите, что:

$$\det(X) \to \max_{X \in \mathbb{S}_n^n} \text{ s.t.} \langle A, X \rangle \leq b$$

имеет единственное решение и найдите его.

i Question

Даны $y \in \{-1,1\}$, и $X \in \mathbb{R}^{n \times p}$, задача об опорных векторах:

$$\frac{1}{2}||w||_2^2 + C\sum_{i=1}^n \xi_i \to \min_{w,w_0,\xi_i}$$

s.t.
$$\xi_i \ge 0, i = 1, ..., n$$

$$y_i(x_i^T w + w_0) \ge 1 - \xi_i, i = 1, \dots, n$$

найдите условие стационарности ККТ.

i Question

Покажите, что следующая задача оптимизации с ограничениями имеет единственное решение и найдите его.

$$\langle C^{-1}, X \rangle - \log \det(X) \to \min_{X \in \mathbb{S}_{++}^n} \text{s.t. } a^T X a \leq 1$$

$$C \in \mathbb{S}^n_{++}, a \neq 0$$

Вы должны избежать явного обратного матрицы C в ответе.

Задача 7 (БОНУС)

Для некоторых $\Sigma, \Sigma_0 \in \mathbb{S}^n_{++}$ определите расхождение Кульбака-Лейблера между двумя гауссовыми распределениями как:

$$D(\Sigma, \Sigma_0) = \frac{1}{2} (\langle \Sigma_0^{-1}, \Sigma \rangle - \log \det(\Sigma_0^{-1} \Sigma) - n)$$

Теперь пусть $H \in \mathbb{S}^n_{++}$ и $y,x \in \mathbb{R}^n: \langle y,s \rangle > 0$

Мы хотим решить следующую задачу минимизации с ограничениями.

$$\min_{X \in \mathbb{S}^n} \{D(X^{-1}, H^{-1}) | Xy = s\}$$

Докажите, что она имеет единственное решение и оно равно:

$$(I_n - \frac{sy^T}{y^Ts})H(I_n - \frac{ys^T}{y^Ts}) + \frac{ss^T}{y^Ts}$$

Задача 8 (БОНУС)

i Question

Пусть e_1,\dots,e_n будет стандартным базисом в \mathbb{R}^n . Покажите, что:

$$\max_{X \in \mathbb{S}_{++}^n} \det(X): ||Xe_i|| \leq 1 \forall i \in 1, \dots, n$$

имеет единственное решение I_n , и выведите неравенство Гильберта:

$$\det(X) \leq \prod^n ||Xe_i|| \forall X \in \mathbb{S}^n_{++}$$

Приложения

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

• Лекция по условиям ККТ (очень интуитивное объяснение) в курсе "Элементы статистического обучения" @ KTH.

- Лекция по условиям ККТ (очень интуитивное объяснение) в курсе "Элементы статистического обучения" @ KTH.
- Однострочное доказательство ККТ

- Лекция по условиям ККТ (очень интуитивное объяснение) в курсе "Элементы статистического обучения"
 © КТН.
- Однострочное доказательство ККТ
- О втором порядке оптимальности для задач оптимизации с ограничениями неравенства

- Лекция по условиям ККТ (очень интуитивное объяснение) в курсе "Элементы статистического обучения" @ KTH.
- Однострочное доказательство ККТ
- О втором порядке оптимальности для задач оптимизации с ограничениями неравенства
- О втором порядке оптимальности в нелинейной оптимизации

- Лекция по условиям ККТ (очень интуитивное объяснение) в курсе "Элементы статистического обучения" 0 KTH
- Однострочное доказательство ККТ
- О втором порядке оптимальности для задач оптимизации с ограничениями неравенства
- О втором порядке оптимальности в нелинейной оптимизации
- Численная оптимизация by Jorge Nocedal and Stephen J. Wright.

