1. 函数
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, & \pm x = 0 \text{ d} \\ 0, & x = 0. \end{cases}$$

(A) 连续且可导: (B) 连续,不可导: (C) 不连续, 有定义: (D) 没有定义.

2. 选择下述题中给出的四个结论中一个正确的结论: 设介x)在 $x = a$ 的某个邻域内有定义, 则 $f(x)$ 在 $x = a$ 处可导的一个充分条件是(). (A) $\lim_{h \to \infty} h[f(a + \frac{1}{h}) - f(a)]$ 存在; (B) $\lim_{h \to 0} \frac{f(a + 2h) - f(a + h)}{h}$ 存在; (C) $\lim_{h \to 0} \frac{f(a + h) - f(a - h)}{2h}$ 存在; (D) $\lim_{h \to 0} \frac{f(a) - f(a - h)}{h}$ 存在.

3. 设 $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ 来 $\frac{d^2 y}{dx^2}$. (B) $-\frac{b}{a^2} \csc^3 x$.; (C) $-\frac{b}{a^2} \csc^3 t$.; (D) $\frac{b}{a} \csc^2 t$..

4. 设 $y = e^u, u = \phi(x), \quad y = dy$ 等于 [] (A) $e^u dx$; (B) $e^{\phi(x)} \phi'(x) dx$; (C) $e^u \phi'(x) du$; (D) $e^{\phi(x)} \phi(x) dx$.

5. 一元函数可导足可微的 [] (A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 既非充分又非必要条件.

6. 设函数 $y = \tan^2 x, y = d$ $y = t$ [] (A) $2 \tan x dx$; (C) $2 \tan x \sec^2 x dx$; (D) $2 \tan x \sec^2 x$.

(A) $\frac{y''}{(y')^3}$. (B) $-\frac{y''}{(y')^2}$.

$$(C) - \frac{1}{(y')^2}$$
. $(D) - \frac{y''}{(y')^3}$.

8. 下列函数在给定区间上满足罗尔定理的是
 $(A) f(x) = x^2 - 5x + 6$, [2, 3]; $(B) f(x) = xe^{-x}$, [0, 1];
 $(C) f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$, [0, 2]; $(D) f(x) = \begin{cases} x+1, & x<5 \\ 1, & x \ge 5 \end{cases}$ [0, 5].

9. 对于函数 $f(x) = \frac{3-x^2}{3}$, 在区间[0,1]上满足拉格朝日定理的点类是 [] $(A) \frac{1}{2}$; $(B) \pm \frac{1}{\sqrt{3}}$; $(C) \frac{1}{\sqrt{3}}$; $(D) 1$.

10. 函数 $f(x)=(x-1)(x-2)(x-3)(x-4)$, 方程 $f'(x)=0$ 有 [] 个实根 (A) 1; (B) 2; (C) 3; (D) 4.

11. 设常数 $k>0$, 函数 $f(x)=\ln x-\frac{x}{e}+k$ 在 $(0,+\infty)$ 内零点的个数为 [] (A) f'(1) $f'(0)$ >f(1) $f'(0)$ >f(1) $f'(0)$ -f(1) $f'(0)$ -f(1)

- (A) 1; (B) $\frac{1}{3}$; (C) 3; (D) 0.

17. $\lim_{x \to +0} x^{\sin x} =$

[]

- (A) 1; (B) ∞ ; (C) 不存在但不是 ∞ ; (D) 0.

18. $\lim_{x \to +0} (\frac{1}{x})^{\tan x} =$

[]

- (A) 1; (B) ∞ ; (C) 不存在但不是 ∞ ; (D) 0.

19. $\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right] =$

- (A) 0; (B) ∞ ; (C) $\frac{1}{2}$; (D) $\frac{1}{3}$.

 $20. \lim_{x \to 0} x^2 e^{\frac{1}{x^2}} =$

- (A) 0; (B) $+\infty$; (C) 不存在但不是 ∞ ; (D) e

答案: ADCBCCDAACBBBDACAACB