درس جبرخطی۱ نیمسال دوم ۱۳۹۸

راهنماییهایی برای تمرین سری سوم (بخش دوم)

- نصحیح شود.) $A^nB-BA^n=nA^{n-1}$ از استقرا روی n استفاده کنید. (حکم مسئله باید به شکل $A^nB-BA^n=nA^{n-1}$ تصحیح شود.)
- (ب) (۱) باید نشان دهید که هر زیرمجموعهی متناهی عضوی از مجموعهی داده شده مستقل خطی است. از استقرا روی تعداد عناصر این زیرمجموعه استفاده کنید.
- (۲) پایه ی استقرا را برای زیرمجموعه های تکعضوی به شکل $\{A^k\}$ با استفاده از قسمت (آ) و اینکه A پوچتوان نیست (چرا؟)، ثابت کنید.
- (۳) برای اثبات گام استقرا، ابتدا میتوانید حالات n=r و n=r و n=r را بررسی کنید تا ایده ی اثبات گام استقرا مشخص شود. حال زیرمجموعه ای دلخواه مانند $\{A^{i_1},A^{i_2},\ldots,A^{i_{n+1}}\}$ را در نظر بگیرید و نشان دهید که اگر عضوی از این مجموعه را بتوان به صورت ترکیب خطی بقیه ی اعضای آن نوشت، آنگاه یک ترکیب خطی از باقی اعضا (که تعدادشان nتاست) وجود دارد که برابر صفر می شود.
- رقی این کار، فرض کنید و تساویهای $A^{i_k} = \sum\limits_{j \neq k} \alpha_j A^{i_j}$ متوالیاً از قسمت (آ) استفاده کنید و تساویهای $\alpha_j A^{i_j+1} B \alpha_j B A^{i_j+1} = (i_j+1)\alpha_j A^{i_j}$ را جمع کنید.
 - (ج) به یاد بیاورید که فضای همه ی ماتریسهای $n \times n$ ، یک فضای برداری با بُعد n^\intercal است.
- سری $\operatorname{Im} T \cap \operatorname{Im} U = \{o\}$ و پایه ی $\operatorname{Im} T \cap \operatorname{Im} U = \{o\}$ برای $\operatorname{Im} T \cap \operatorname{Im} U = \{o\}$ اگر اگر اگر اگر استفاده از اجتماع این دو بسازید. برای این کار، $\operatorname{Im} U = \{o\}$ برای این کار، $\operatorname{Im} U = \{o\}$ برای این دهید این مجموعه مستقل خطی $\operatorname{Im} (T+U)$ است و با استفاده از فرض $\operatorname{Im} T \cap \operatorname{Im} U = \{o\}$ نشان دهید این مجموعه مستقل خطی است.

رای اثبات عکس حالت بالا، با استفاده از رابطهی $\operatorname{Im} U = \operatorname{rank}(T) + \operatorname{rank}(U) + \operatorname{rank}(U)$ و گرفتن پایه برای $\operatorname{Im} T = \operatorname{Im} T + \operatorname{Im} U$ و نیز $\operatorname{Im} T = \operatorname{Im} T = \operatorname{Im} T = \operatorname{Im} T = \operatorname{Im} T$ و نیز $\operatorname{Im} T = \operatorname{Im} T$ بایه ی $\operatorname{Im} T = \operatorname{Im} T = \operatorname{$

- ستفرا روی n استفاده کنید. پایهی استقرا برای n=0 واضح است. (۱) از استقرا روی n
- (۲) برای اثبات گام استقرا، از فرض مسئله برای n استفاده کنید و حکم مسئله برای n+1 را به شکل زیر ساده کنید:

 $\dim (\ker A^{n+1}) = \dim (\ker A^n) + \dim (\operatorname{Im} A^n \cap \ker A)$

- یک پایه برای $\operatorname{Im} A^n \cap \ker A$ در نظر بگیرید و آن را به یک پایه برای $\ker A^n$ گسترش دهید. حال با استفاده از این دو پایه، یک $\operatorname{ker} A^n$ یک پایه برای $\operatorname{ker} A^{n+1}$ بسازید.
 - اگر A_n وارون پذیر باشد که مسئله حل شده است.
- (۲) پس فرض کنیم این طور نباشد، در نتیجه معادلهی AX = O یک جواب ناصفر مانند X دارد (چرا؟). حال برای حل سؤال، میتوانید از ابتدا به طور عکس به سؤال فکر کنید؛ فرض کنید که ماتریس B با این ویژگی که ABA = A وجود دارد. چه نتایجی میتوانید از این عبارت بگیرید؟

- باید داشته باشیم A(BA-I)=O؛ یعنی اگر E_i ها بردارهای استاندارد و Aها ستونهای ماتریس A باشند، در این صورت برای $A(BA_i-E_i)=O$ باید داشته باشیم: $A(BA_i-E_i)=O$
- داشته باشیم فرض کنید $A_{i_1}, A_{i_2}, \dots, A_{i_k}$ ستونهای مستقل A باشند. ماتریس B را طوری بسازید که برای هر $A_{i_1}, A_{i_2}, \dots, A_{i_k}$ داشته باشیم فرض کنید $B_{i_j} = X_{\circ} + E_{i_j}$ نشان دهید B ویژگی مورد نظر ما را دارد. (همواره قضیه $B_{i_j} = X_{\circ} + E_{i_j}$ نگاشت خطی با استفاده از عناصر یایه در نظر داشته باشید.)
 - برای قسمت (ب)، استفاده از $\frac{P'}{P}$ از $\ln P$ و $\ln \left|\frac{1}{1-x}\right|+C$ راهگشا خواهد بود. $\cdot \Delta$
- وجه کنید $u \in \ker T$ که v = u + T(w) میتوان به طور عکس به مسئله نگاه کرد؛ فرض کنید حکم مسئله درست باشد و v = u + T(w) که در این صورت v = u + T(w) که در این صورت v = u + T(w)
- $T(v) = T^{\mathsf{T}}(w)$ وجود دارد بهطوری که $v \in V$ عال بنابر فرضهای سؤال، برای بردار دلخواه $v \in V$ بنابر فرضهای v = (v T(w)) + T(w)
- (ب) (آ) میتوان به طور عکس به مسئله نگاه کرد و با فرض درستی حکم مسئله، نمایش مورد نظر را به دست آورد. تساوی $v = \frac{v + T(v)}{V} + \frac{v T(v)}{V}$
 - (ب) یک یایه برای $\ker (T + I_V)$ و یک یایه برای $\ker (T I_V)$ در نظر بگیرید.
- یک پایه برای V_0 در نظر بگیرید و آن را به پایهای برای V_1 گسترش دهید. این پایه را به پایهای برای V_7 گسترش دهید و این کار را متوالیاً تکرار کنید.
 - را در نظر بگیرید. $S': \operatorname{Im} T \to W$ نگاشت تحدیدشدهی $S': \operatorname{Im} T \to W$ را در نظر بگیرید. قضیهی رتبه-پوچی را برای S' بنویسید.
 - (ب) برای نابرابری سمت راست، از رابطهی ${\rm Im}(T_1+T_7)\subset {\rm Im}\,T_1+{\rm Im}\,T_2$ استفاده کنید. نابرابری سمت چپ از نابرابری سمت راست بهدست میآید.
- (ج) (۱) فرض کنید V یک فضای برداری با بعد n باشد و $T_1(X)=BX$ و $T_1(X)=AX$ نگاشتهایی خطی روی $T_1(X)=AX$ باشد. $\operatorname{rank}(T_1 \circ T_1) \geq \operatorname{rank}(T_1) + \operatorname{rank}(T_1) \operatorname{dim} V$ باید ثابت کنیم
 - (۲) قضیهی رتبه-پوچی را برای T_1 بنویسید و با استفاده از آن رابطهی بالا را ساده کنید.
- (۳) نگاشت تحدیدشده ی $T'_1: \operatorname{Im} T_1 \to V$ را در نظر بگیرید و قضیه ی رتبه-پوچی را برای آن بنویسید. با استفاده از آن، حکم را باز هم ساده تر کنید. (برای محاسبه ی رتبه ی ترکیب دو نگاشت خطی، ایده ی تحدید یک نگاشت معمولاً سودمند است.)
 - $\alpha_i \in F$ خواهد بود که $A = [\alpha_1 v \mid \alpha_1 v \mid \dots \mid \alpha_n v]$ خواهد بود که $A = [\alpha_1 v \mid \alpha_1 v \mid \dots \mid \alpha_n v]$. $A^{\dagger} = [\alpha_1 A v \mid \alpha_1 A v \mid \alpha_1 A v \mid \dots \mid \alpha_n A v]$ پس $A^{\dagger} = [\alpha_1 A v \mid \alpha_1 A v \mid \alpha_1 A v \mid \dots \mid \alpha_n A v]$ پس $A^{\dagger} = [\alpha_1 A v \mid \alpha_1 A v \mid \alpha_1 A v \mid \dots \mid \alpha_n A v]$
- رب) به راحتی میتوانید دو تساوی $\begin{bmatrix} O \\ B \end{bmatrix} = \operatorname{rank}(B)$ و $\operatorname{rank} \begin{bmatrix} A \\ O \end{bmatrix} = \operatorname{rank}(A)$ دو تساوی (ب) به راحتی میتوانید دو تساوی $\operatorname{rank}(A)$ د تتجه بگدید.
- و $L_1(X) = AX$ را با ضابطهی $L_1, L_7: V \to V$ و نگاشت خطی $L_1, L_7: V \to V$ را با ضابطهی $L_1(X) = AX$ و نظر بگیرید. با استفاده از فرض سؤال، نشان دهید که L_1 پوشا و L_1 یکبهیک است، سپس نتیجه بگیرید که هر دو وارونپذیر هستند.
 - بنویسید. (A I)(B I) بنویسید.