

Table of Contents

GitHub

WRITING CUSTOM DATASETS, DATALOADERS AND TRANSFORMS

Author: Sasank Chilamkurthy

A lot of effort in solving any machine learning problem goes in to preparing the data. PyTorch provides many tools to make data loading easy and hopefully, to make your code more readable. In this tutorial, we will see how to load and preprocess/augment data from a non trivial dataset.

To run this tutorial, please make sure the following packages are installed:

- scikit-image: For image io and transforms
- pandas : For easier csv parsing

```
from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
plt.ion() # interactive mode
```

To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook's Cookies Policy applies. Learn more, including about available controls: Cookies Policy.

Over all, 68 different landmark points are annotated for each face.

NOTE

Download the dataset from here so that the images are in a directory named 'data/faces/'. This dataset was actually generated by applying excellent dlib's pose estimation on a few images from imagenet tagged as 'face'.

Dataset comes with a csv file with annotations which looks like this:

```
image_name,part_0_x,part_0_y,part_1_x,part_1_y,part_2_x, ... ,part_67_x,part_67_y
0805personali01.jpg,27,83,27,98, ... 84,134
1084239450_e76e00b7e7.jpg,70,236,71,257, ... ,128,312
```

Let's quickly read the CSV and get the annotations in an (N, 2) array where N is the number of landmarks.

```
landmarks_frame = pd.read_csv('data/faces/face_landmarks.csv')

n = 65
img_name = landmarks_frame.iloc[n, 0]
landmarks = landmarks_frame.iloc[n, 1:]
landmarks = np.asarray(landmarks)
landmarks = landmarks.astype('float').reshape(-1, 2)

print('Image name: {}'.format(img_name))
print('Landmarks shape: {}'.format(landmarks.shape))
print('First 4 Landmarks: {}'.format(landmarks[:4]))
```

```
Image name: person-7.jpg
Landmarks shape: (68, 2)
First 4 Landmarks: [[32. 65.]
[33. 76.]
[34. 86.]
[34. 97.]]
```

Let's write a simple helper function to show an image and its landmarks and use it to show a sample.

Dataset class

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom dataset should inherit Dataset and override the following methods:

- __len__ so that len(dataset) returns the size of the dataset.
- __getitem__ to support the indexing such that dataset[i] can be used to get *i*th sample

Let's create a dataset class for our face landmarks dataset. We will read the csv in __init__ but leave the reading of images to __getitem__. This is memory efficient because all the images are not stored in the memory at once but read as required.

Sample of our dataset will be a dict {'image': image, 'landmarks': landmarks}. Our dataset will take an optional argument transform so that any required processing can be applied on the sample. We will see the usefulness of transform in the next section.

```
class FaceLandmarksDataset(Dataset):
   """Face Landmarks dataset."""
   def __init__(self, csv_file, root_dir, transform=None):
       Args:
           csv_file (string): Path to the csv file with annotations.
           root_dir (string): Directory with all the images.
           transform (callable, optional): Optional transform to be applied
               on a sample.
       self.landmarks_frame = pd.read_csv(csv_file)
       self.root_dir = root_dir
       self.transform = transform
   def __len__(self):
       return len(self.landmarks_frame)
   def __getitem__(self, idx):
       if torch.is_tensor(idx):
           idx = idx.tolist()
       img_name = os.path.join(self.root_dir,
                               self.landmarks_frame.iloc[idx, 0])
       image = io.imread(img_name)
       landmarks = self.landmarks_frame.iloc[idx, 1:]
       landmarks = np.array([landmarks])
       landmarks = landmarks.astype('float').reshape(-1, 2)
       sample = {'image': image, 'landmarks': landmarks}
       if self.transform:
           sample = self.transform(sample)
       return sample
```

Let's instantiate this class and iterate through the data samples. We will print the sizes of first 4 samples and show their landmarks.

Sample #0

Sample #1

Sample #2

Sample #3

Out:

```
0 (324, 215, 3) (68, 2)
1 (500, 333, 3) (68, 2)
2 (250, 258, 3) (68, 2)
3 (434, 290, 3) (68, 2)
```

Transforms

One issue we can see from the above is that the samples are not of the same size. Most neural networks expect the images of a fixed size. Therefore, we will need to write some prepocessing code. Let's create three transforms:

- Rescale: to scale the image
- RandomCrop: to crop from image randomly. This is data augmentation.

• Iolensor: to convert the numpy images to torch images (we need to swap axes).

We will write them as callable classes instead of simple functions so that parameters of the transform need not be passed everytime it's called. For this, we just need to implement __call__ method and if required, __init__ method. We can then use a transform like this:

```
tsfm = Transform(params)
transformed_sample = tsfm(sample)
```

Observe below how these transforms had to be applied both on the image and landmarks.

```
class Rescale(object):
   """Rescale the image in a sample to a given size.
   Args:
       output_size (tuple or int): Desired output size. If tuple, output is
           matched to output_size. If int, smaller of image edges is matched
           to output_size keeping aspect ratio the same.
   def __init__(self, output_size):
       assert isinstance(output_size, (int, tuple))
       self.output_size = output_size
   def __call__(self, sample):
       image, landmarks = sample['image'], sample['landmarks']
       h, w = image.shape[:2]
       if isinstance(self.output_size, int):
           if h > w:
               new_h, new_w = self.output_size * h / w, self.output_size
           else:
               new_h, new_w = self.output_size, self.output_size * w / h
       else:
           new_h, new_w = self.output_size
       new_h, new_w = int(new_h), int(new_w)
       img = transform.resize(image, (new_h, new_w))
       # h and w are swapped for landmarks because for images,
       # x and y axes are axis 1 and 0 respectively
       landmarks = landmarks * [new_w / w, new_h / h]
       return {'image': img, 'landmarks': landmarks}
class RandomCrop(object):
   """Crop randomly the image in a sample.
   Args:
       output size (tuple or int): Desired output size. If int, square crop
           is made.
   def __init__(self, output_size):
       assert isinstance(output_size, (int, tuple))
       if isinstance(output_size, int):
           self.output_size = (output_size, output_size)
           assert len(output size) == 2
```

```
self.output_size = output_size
   def __call__(self, sample):
       image, landmarks = sample['image'], sample['landmarks']
       h, w = image.shape[:2]
       new_h, new_w = self.output_size
       top = np.random.randint(0, h - new_h)
       left = np.random.randint(0, w - new_w)
       image = image[top: top + new_h,
                     left: left + new_w]
       landmarks = landmarks - [left, top]
       return {'image': image, 'landmarks': landmarks}
class ToTensor(object):
    """Convert ndarrays in sample to Tensors."""
   def __call__(self, sample):
       image, landmarks = sample['image'], sample['landmarks']
       # swap color axis because
       # numpy image: H x W x C
       # torch image: C X H X W
       image = image.transpose((2, 0, 1))
       return {'image': torch.from_numpy(image),
                'landmarks': torch.from_numpy(landmarks)}
```

Compose transforms

Now, we apply the transforms on a sample.

Let's say we want to rescale the shorter side of the image to 256 and then randomly crop a square of size 224 from it. i.e, we want to compose Rescale and RandomCrop transforms. torchvision.transforms.Compose is a simple callable class which allows us to do this.

Iterating through the dataset

Let's put this all together to create a dataset with composed transforms. To summarize, every time this dataset is sampled:

- An image is read from the file on the fly
- Transforms are applied on the read image
- Since one of the transforms is random, data is augmentated on sampling

We can iterate over the created dataset with a for i in range loop as before.

Out:

```
0 torch.Size([3, 224, 224]) torch.Size([68, 2])
1 torch.Size([3, 224, 224]) torch.Size([68, 2])
2 torch.Size([3, 224, 224]) torch.Size([68, 2])
3 torch.Size([3, 224, 224]) torch.Size([68, 2])
```

However, we are losing a lot of features by using a simple for loop to iterate over the data. In particular, we are missing out on:

- Batching the data
- Shuffling the data
- Load the data in parallel using multiprocessing workers.

torch.utils.data.DataLoader is an iterator which provides all these features. Parameters used below should be clear. One parameter of interest is collate_fn . You can specify how exactly the samples need to be batched using collate_fn . However, default collate should work fine for most use cases.

```
dataloader = DataLoader(transformed_dataset, batch_size=4,
                        shuffle=True, num_workers=0)
# Helper function to show a batch
def show_landmarks_batch(sample_batched):
    """Show image with landmarks for a batch of samples."""
    images_batch, landmarks_batch = \
            sample_batched['image'], sample_batched['landmarks']
    batch_size = len(images_batch)
    im_size = images_batch.size(2)
    grid_border_size = 2
    grid = utils.make_grid(images_batch)
    plt.imshow(grid.numpy().transpose((1, 2, 0)))
    for i in range(batch_size):
        plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size,
                   landmarks_batch[i, :, 1].numpy() + grid_border_size,
                    s=10, marker='.', c='r')
        plt.title('Batch from dataloader')
for i_batch, sample_batched in enumerate(dataloader):
    print(i_batch, sample_batched['image'].size(),
          sample_batched['landmarks'].size())
    # observe 4th batch and stop.
    if i_batch == 3:
        plt.figure()
        show_landmarks_batch(sample_batched)
        plt.axis('off')
        plt.ioff()
        plt.show()
        break
```

Batch from dataloader

Out:

```
0 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
1 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
2 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
3 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
```

Afterword: torchvision

In this tutorial, we have seen how to write and use datasets, transforms and dataloader. torchvision package provides some common datasets and transforms. You might not even have to write custom classes. One of the more generic datasets available in torchvision is ImageFolder. It assumes that images are organized in the following way:

```
root/ants/xxx.png
root/ants/xxz.png
root/ants/xxz.png
.
.
.
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png
```

where 'ants', 'bees' etc. are class labels. Similarly generic transforms which operate on PIL.Image like RandomHorizontalFlip, Scale, are also available. You can use these to write a dataloader like this:

For an example with training code, please see Transfer Learning for Computer Vision Tutorial.

Total running time of the script: (1 minutes 1.014 seconds)

Was this helpful?

Yes

No

© Copyright 2017, PyTorch.

Built with Sphinx using a theme provided by Read the Docs.

Docs

Tutorials

Resources

Access comprehensive developer documentation for PyTorch View Docs > developers

answered

view Resources

