Review of Mathematics

Hui-Jun Chen January 20, 2022

Area Formula

Area Formula: Triangle

• Area formula: $\frac{1}{2} \times a \times h$

Area Formula: Rectangle

ullet Area formula: $length \times width$

Area Formula: Trapezoid

- Area formula: $\frac{(b_1+b_2)}{2} \times h$
- Or separate into two triangles and one rectangle

Basic Algebra Review

Area Formula

Basic Algebra Review: properties

- Associative properties:
 - additive: a + (b+c) = (a+b) + c
 - multiplicative: a(bc) = (ab) c
- Commutative properties:
 - additive: a + b = b + a
 - multiplicative: ab = ba
- Distributive properties: a(b+c) = ab + ac
- Properties for exponents:
 - $a^x a^y = a^{x+y}$; $\frac{a^x}{a^y} = a^{x-y}$
 - $(ab)^x = a^x b^x$; $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
 - $\bullet \ (a^x)^y = a^{xy}$

Basic Algebra Review: properties (Cont.)

• Properties for fractions:

•
$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\bullet \ \ \frac{\frac{a}{c}}{b} = \frac{a}{bc}$$

•
$$\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}$$

•
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

• $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$

$$\bullet \quad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

Axioms of Equality

- $a+b=c \implies a=c-b$
- \bullet $a-b=c \implies a=c+b$
- $ab = c \implies a = \frac{c}{b}$
- $\frac{a}{b} = c \implies a = bc$

Calculus

Introductory Example

- Function: how y is gotten from x, written as y = f(x).
 - E.g., y=3x+2: if x=3, then 3 times 3 and plus 2 will get y=11.
- Differentiation: how the value of y changes when the value of x changes.
 - E.g., y = 3x + 2,

Table 1: Table for how the value of x affects the value of y

Notice $\Delta x = 1 \implies \Delta y = 3 \implies \frac{\Delta y}{\Delta x} = 3$, change to differentiation notation, $\frac{dy}{dx} = 3$

• Tips: $y = 3x^2 + 9x + 2$, look at terms with x, $dy = 3 \times 2x (dx) + 9 (dx) \implies \frac{dy}{dx} = 6x + 9$

Notation and Convention

- Function is a mapping from argument to outcome:
 - y = f(x): f describes a mapping from argument x to outcome y
- Differentiation: given mapping f, how much y would change (dy) if x change a fixed amoung (dx)
- First derivative: $y = f(x) \implies \frac{dy}{dx}$ or f'(x)
 - the "change" itself
 - Example: $y = x^{\alpha} \implies \frac{dy}{dx} = \alpha x^{\alpha-1}$
- Partial derivative: $y = f(x, z) \implies \frac{\partial y}{\partial x}$
 - Example:

$$y = x^{\alpha} z^{1-\alpha} \implies \frac{\partial y}{\partial x} = \alpha x^{\alpha-1} z^{1-\alpha}; \frac{\partial y}{\partial z} = (1-\alpha) x^{\alpha} z^{-\alpha}$$

- Second derivative: $y = f(x) \implies \frac{d^2 f}{dx^2}$ or f''(x)
 - the speed of "change"
 - Example: $y = x^{\alpha} \implies \frac{d^2 f}{dx^2} = \alpha (\alpha 1) x^{\alpha 2}$

Production

Average Production of Labor (APL):

$$y = f(x) \implies APL = \frac{y}{x} = \frac{f(x)}{x}$$

Production (Cont.)

Marginal Production of Labor (MPL):

Concave / Convex and Diminishing MPL

- Concave v.s. Convex: Is production function looks like a "cave"?
- Concave function: whenever study hour increases by 1 unit, the speed of increase in grade point is decreasing.
 - → decreasing MPL

Application of Differentiation: Elasticity

Definition (The "A" Elasticity of "B")

percentage change in "B" when "A" changes by 1%, i.e., $-\frac{\%\Delta B}{\%\Delta A}$

Definition (The price elasticity of quantity demanded)

percentage change in quantity demanded when price changes by 1% , i.e., $-\frac{\%\Delta Q}{\%\Delta P}$

- \bullet Calculate percentage: $\frac{\text{value}}{\text{total amount}} \times 100\%$
- Expand the $\%\Delta$ part: $\%\Delta Q = \frac{\Delta Q}{Q}$
- Use differentiation notation: $\%\Delta Q = \frac{\Delta Q}{Q} = \frac{dQ}{Q}$
- Rewrite Def of elasticity: $-\frac{\%\Delta Q}{\%\Delta P} = -\frac{dQ}{Q} \Big/ \frac{dP}{P} = -\frac{P}{Q} \frac{dQ}{dP}$

Technological Progress Example: Numerically calculating π

-The Discovery That Transformed Pi by Veritasium