Positionsbestimmung drahtloser mobiler eingebetteter Systeme mittels Time Difference of Arrival

präsentiert von

Oliver Koepp

Zur Erlangung des akademisches Grades

Bachelor of Engineering

Gliederung

- Einleitung
- Grundlagen
- Implementierung
 - Software
 - Modultest
- Auswertung
- Praktische Durchführung

Einleitung

Problem:

"Eine Positionsbestimmung im Zentimeterbereich durchzuführen"

Lösung:

- Kommunikation zwischen Master und Slave
 - 2,4GHz Funk
 - Hörbaren Schall
- Zeitsynchronisation
 - Precision Time Protocol (PTP)
- Positionsbestimmung
 - Time Difference of Arrival

Grundlagen – Master / Slave

Software:

- RIOT The friendly Operating System for the Internet of Things
 - > Echtzeitfähig
 - Fokus Drahtlose Sensornetzwerke
 - Multithreading
 - ➤ Ist mit SAMR21 kompatibel

Hardware:

- Atmel SAM R21 Xplained Pro Board
 - > RIOT OS
 - Integriertes 2,4GHz Funkmodul
 - Integrierbarkeit in vorhandene Systeme

Grundlagen – Master /Slave

Master:

- Unbekannte Position
- SparkFun Sound Detector
 - > Detektion von Hörbarem Schall
 - > TTL Ausgang
 - > Veränderbare Empfindlichkeit

Slave:

- Sitzt bei bekannten Positionen (Koordinaten)
- Lautsprecher
 - ➤ PIEP Ton → andere Töne werden überlagert

Grundlagen – Master / Slave

24.01.2020

htuu

Grundlagen – Zeitsynchronisation

Problem:

"Keine gemeinsame Zeitbasis vorhanden"

Lösung:

- Precision Time Protocol (PTP)
- Hierarchielose kleine Sensornetzwerke spezialisiert
- Hohe Genauigkeit
- Genauigkeit bis 5ms ohne Hardwareunterstützung

Grundlagen – Zeitsynchronisation

- Laufzeitverzögerung
- Bestimmung des PINGs

- Synchronisation der 7eit
- Request / Response –
 Nachrichtenaustausch

<u> Դես</u>ս

Grundlagen – Time Difference of Arrival

- Verfahren zur Laufzeitmessung
- Laufzeitunterschied von zwei Zeitstempel
- Art des Signals ist irrelevant

Grundlagen – Mathematik

- Schall breitet sich Kreisförmig in 2D aus
- Schnittpunkt von drei Kreisen → eindeutige Punktidentifizierung

 Schnittpunkt von drei Kreisgleichungen

Implementierung – Software

Implementierung – Modultest

- Fehlereingrenzung durch unabhängige Module
- Abweichungen besser zu erkennen

Implementierung – Modultest

Vermutung – Modul D

- Keine Impulsabgabe des Tons
- Plausibilitätscheck war erfolgreich (Klatschen)
- Verzögerungen min. 5 ms durch Zeitsynchronisation
 - \rightarrow 343,2 $\frac{m}{s} \cdot 5 ms = 1,716 m$ Genauigkeit

Auswertung

- Positionsbestimmung → Technisch realisierbar
- Zentimetergenauigkeit nicht erfüllt
 - Einschränkungen bei der Hardware
- Irrationale Schwankungen
- Hardware nicht optimal ausgesucht

Unit Test

- Gleichungen für die Positionsbestimmung
- Abstand zweier Punkte
- Quadratische Gleichung

Praktische Durchführung

- Zeitsynchronisation
 - Precision Time Protocol
- Theoretische Positionsbestimmung
 - Schnittpunkt ohne Schwankung
 - Schnittpunkt mit Schwankung
- Praktische Positionsbestimmung
 - Zeitsynchronisation
 - Messung

University of Applied Sciences