Лабораторная работа № 3.4.5 "Петля гистерезиса (динамический метод)"

Петров Артём Антонович, группа 721

4 декабря 2018

Экспериментальная установка

Рис. 1: Схема установки для изучения петли гистерезиса и калебровки приборов

В этой работе величины K_x и K_y указаны на Большое деление, в то время как все деления указаны в величинах маленьких делений, которые в 5 раз меньше больших.

Параметры установки:

$$R_0 = 0.220 \pm 0.002 Ohm \ R_u = 20 kOhm \ C_u = 20 \mu F$$

Феррит 1000

$$N_0 = 42$$
 витка $N_u = 400$ витков $S = 3,0cm^2$ $2\pi R = 25cm$

Пермаллой

$$N_0 = 20$$
 витка $N_u = 300$ витков $S = 0,76cm^2$ $2\pi R = 13,3cm$

Кремнистое железо

$$N_0 = 25$$
 витка $N_u = 250$ витков $S = 2,0cm^2$ $2\pi R = 11cm$

Формулы для расчёта цены деления осциллографа:

$$H = \frac{K_x N_0}{2\pi R R_0} * x; B = \frac{K_y R_u C_u}{S N_u} * y.$$
 (1)

Ход работы

Калибровка

Ось Х:

Коэффициент усиления рассчитывается по формуле:

$$m_x = \frac{2\sqrt{2}R_0 I_{eff}}{2x} \left[\frac{V}{div} \right] \tag{2}$$

где I_{eff} - показания амперметра.

Для параметров: $K_x = 50mV/div$; $2x = [50 \pm 0.5]div$; $I_{Eff} = [0,767 \pm 0,001]A$

Получено значение $m_x = [47.8 \pm 0.8] mV/div$, что показывает, что осциллограф даёт на самом деле усиление, на 4% отличное от ожидаемого для оси X. (Ну или что где-то тут неточность)

Ось У:

Коэффициент усиления рассчитывается по формуле:

$$m_y = \frac{2\sqrt{2}U_{eff}}{2y} \left[\frac{V}{div} \right] \tag{3}$$

где U_{eff} - показания вольтметра.

Для параметров: $K_y=20mV/div;~2y=[41\pm0.5]div;~U_{eff}=[58,3\pm0,2]mV$

Получено значение $m_y = [20.1 \pm 0.3] mV/div$, что совпадает с нашими ожиданиями.

Для параметров: $K_y = 50mV/div; 2y = [38 \pm 0.5]div; U_{eff} = [135 \pm 1]mV$

Получено значение $m_y = [50.2 \pm 0.8] mV/div$, что совпадает с нашими ожиданиями.

Определение au

$$\tau = RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BMY}}} \tag{4}$$

где $\Omega = 2\pi * 50 Hz$ - частота тока в установке. Данные:

Вход: $K_y = 1V \ 2y_{\text{вх}} = [38 \pm 0.5] div$; Выход:

 $K_y = 10mV \ 2y_{\text{вых}} = [30 \pm 0.5]div.$

Откуда получаем: $au = [403 \pm 9] msec$, что идеально совпадает с расчётом au через параметры установки: $au = C_u R_u = [400 \pm 4] msec$.

Исследование гистерезиса

Полученные результаты: Полученные кривые намагничивания можно видеть на графиках 3.

Полученные значения для коэрцитивной силы H_c , индукции насыщения B_s и коэффициента намагничивания $\mu_{\text{диф}}$:

Феррит: $H_c = [23.3 \pm 1.1] A/m; \ B_s = [0.240 \pm 0.006] T; \ \mu_{\text{диф}} = [2.4 \pm 0.2] mT * m/A$ Пермаллой: $H_c = [24.9 \pm 1.1] A/m; \ B_s = [1.49 \pm 0.05] T; \ \mu_{\text{диф}} = [140 \pm 30] mT * m/A$ Кремнистое железо: $H_c = [66 \pm 3] A/m; \ B_s = [0.88 \pm 0.03] T; \ \mu_{\text{диф}} = [3.2 \pm 0.3] mT * m/A$

Рис. 2: Петля гистерезиса для образцов из феррита (слева), пермаллоя (по центру) и кремниестого железа (справа)

Итог

В данной работе мы пронаблюдали эффект гистерезиса в ферромагнетиках. Также были получены некоторые характеристики исследуемых веществ:

Величина	Феррит	Пермаллой	Кремнистое железо
$H_c, A/m$	23.3 ± 1.1	24.9 ± 1.1	66 ± 3
B_s, T	0.240 ± 0.006	1.49 ± 0.05	0.88 ± 0.03
$\mu_{\text{диф}}, mT * m/A$	2.4 ± 0.2	140 ± 30	3.2 ± 0.3

Табличные же значения очень сильно зависят от пропорции элементов в сплаве. Примерные диапазоны приведены в табличке:

Величина	Феррит	Пермаллой	Кремнистое железо
$H_c, A/m$	≈ 10	1 - 100	10 - 100
B_s, T	≈ 0.25	1 - 2	1-2
$\mu_{\text{диф}}, mT * m/A$	0.2 - 8	≈ 100	≈ 10

Приложение

Исходные данные: 2) - параметры для петли гистерезиса, что на картинке

- 3) параметры для кривой намагничивания
- (4) данные для определения коэрцитивной силы H_c и индукции насыщения B_s

Феррит

- 2) $K_x = 50mV/div$; $K_y = 20mV/div$; $I_{eff} = 0.6454 \pm 0.0002A$
- 3) Кривая снята при тех же K_x ; K_y
- 4) $2y = 36div \ (K_y = 20mV/div); \ 2x = 30.5div \ (K_x = 10mV/div)$

Пермаллой:

- 2) $K_x = 20mV/div$; $K_y = 50mV/div$; $I_{eff} = 0.173 \pm 0.001A$
- 3)Кривая снята при тех же K_x ; K_y
- 4) $2y = 17div (K_y = 50mV/div); 2x = 36,5div (K_x = 10mV/div)$

Кремнистое железо:

- 2) $K_x = 0.1 V/div$; $K_y = 50 mV/div$; $I_{eff} = 1.252 \pm 0.002 A$
- 3)Кривая снята при тех же K_x ; K_y
- 4) $2y = 22div \ (K_y = 50mV/div); \ 2x = 32div \ (K_x = 20mV/div)$

Рис. 3: Кривые намагничивания для образцов из феррита (сверху), пермаллоя (по центру) и кремниестого железа (снизу)