2M004 UPMC, 15 Octobre 2015

Question de cours. Décomposer en éléments simples les fractions rationnelles suivantes

$$F_1(X) = \frac{2X+4}{(X-\pi)(X+\sqrt{2})}$$
 et $F_2(X) = \frac{1}{(X-1)(X+1)^2}$.

Exercice autour de Rolle Soient $(f_k)_{1 \le k \le n}$ et $(g_k)_{1 \le k \le n}$ deux familles de fonctions à valeurs réelles, continues sur [a,b], dérivables sur]a,b[et telles que $g_k(a) \ne g_k(b)$ pour tout entier k compris entre 1 et n. Considérons la fonction Φ définie sur [a,b] par :

$$\Phi(x) = \sum_{k=1}^{n} (f_k(x) - f_k(a) - \lambda_k (g_k(x) - g_k(a))).$$

- 1. Φ est-elle continue sur [a, b]? Calculez $\Phi(a)$.
- 2. Déterminer des constantes λ_k (k compris entre 1 et n), telles que $\Phi(b) = \Phi(a)$.
- 3. Φ est-elle dérivable sur [a, b[? Si oui, quelle est sa dérivée?
- 4. Énoncez le théorème de Rolle.
- 5. En déduire qu'il existe un réel $c \in]a, b[$ tel que

$$\sum_{k=1}^{n} f'_k(c) = \sum_{k=1}^{n} g'_k(c) \frac{f_k(b) - f_k(a)}{g_k(b) - g_k(a)}.$$

Exercice 3 (mini Wallis). Pour tout entier n on pose

$$I_n = \int_0^{\pi/2} \sin^n x dx, J_n = \int_0^{\pi/2} \cos^n x dx.$$

- 1. Calculer I_0, I_1 et J_0, J_1 .
- 2. Montrer que $I_2 + J_2 = \frac{\pi}{2}$ et que $I_2 = J_2$, en déduire la valeur de I_2, J_2 .
- 3. En intégrant deux fois par parties, montrer que pour tout $n \geq 2$ on a

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Uniforme continuité. Soit I un intervalle de \mathbb{R} On dit que f est uniformément continue sur I lorsque l'assertion suivante est vérifiée

(1)
$$\forall \epsilon > 0, \exists \eta > 0, \forall x, y \in I, (|x - y| \le \eta \Longrightarrow |f(x) - f(y)| \le \epsilon).$$

- 1. Rappeler la définition de "f est continue sur I".
- 2. Montrer que si f est uniformément continue sur I, alors elle est continue sur I.

- 3. Rappeler la définition de "f est Lipschitz sur I". Montrer que si f est Lipschitz sur I, alors f est uniformément continue.
- 4. Prenons $f(x) = x^2$. Montrer qu'on a, pour tout x, y tels que 0 < x < y

$$|f(x) - f(y)| \ge |x - y| \times (2x).$$

En déduire que f n'est pas uniformément continue sur \mathbb{R} .

Remarque : en revanche, le résultat suivant est vrai.

Théorème 0.1 (Heine). Toute fonction continue sur un segment est uniformément continue sur ce segment.

Une équation fonctionnelle On cherche à déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que

(2)
$$f(x+y) = f(x) + f(y)$$
 pour tout $x, y \in \mathbb{R}$.

- 1. Donner un exemple de fonction f vérifiant (2). En donner un autre!
- 2. Soit f une fonction vérifiant (2).
 - (a) Déterminer f(0).
 - (b) Pour tout entier $n \in \mathbb{N}$, exprimer f(n) en fonction de f(1).
 - (c) Pour tout entier relatif $n \in \mathbb{Z}$, exprimer f(n) en fonction de f(1).
 - (d) Pour tout couple d'entiers p, q avec $q \neq 0$, exprimer f(p/q) en fonction de f(p).
 - (e) En déduire l'expression de f sur l'ensemble $\mathbb Q$ des rationnels.
- 3. Soit f une fonction vérifiant (2). On suppose que f est continue. En déduire l'expression de f. On utilisera le résultat suivant (qui est admis) :

Pour tout réel $x \in \mathbb{R}$, il existe une suite $\{x_n\}_n$ de nombre **rationnels** qui converge vers x.