Homework 5

July 5, 2016

Problem 1.

Let **A** denote an $(n-1) \times n$ matrix with complex number entries for which the RREF(**A**) has n-1 pivots show that we can prepend **A** with an additional row so as to ensure that

$$\det(\mathbf{A}) \in \mathbb{R}$$
 and $\det(\mathbf{A}) > 0$.

Describe how to obtain that vector using the Laplace expansion of the determinant.

Problem 2.

Construct a 5×5 matrix of rank 4 whose Nullspace is spanned by the vector

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Problem 3.

Let **A** and **B** denote a $m \times n$ and $p \times n$ matrices where n > m > p > 2. Describe how to find a basis for the subspaces : a)

$$\text{NullSpace}(\mathbf{A}) \cup \text{NullSpace}(\mathbf{B})$$
.

b)
$$\label{eq:NullSpace} NullSpace\left(\mathbf{A}\right) \cap NullSpace\left(\mathbf{B}\right).$$

Problem 4.

a) Find the rank of an $n \times n$ matrix **A** whose entries are given by

$$a_{ij} = 1 + n \cdot (i-1) + (j-1),$$

for all $1 \le i, j \le n$, where n > 2.

- b) What can you conclude about the dimension of the Nullspace of ${\bf A}$ for all n>1.
- c) For what value of n is the matrix **A** invertible?

Problem 5.

Let **A** denote the $n \times n$ matrix whose entries are given by

$$a_{uv} = \exp\left\{i \cdot \frac{2\pi}{n} \cdot (u-1) \cdot (v-1)\right\}$$

for all $1 \leq i, j \leq n$, where $n \geq 2$. Using the standard inner-product discussed in class for elements of the vector space $\mathbb{C}^{n \times 1}$, Find the angle between any two columns of \mathbf{A} .