Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 106.04

Figure 1: Outline of path 1

2.1.1 NHC-catalyzed Grignard allylic substitution

Substrates:

- 1. crotyl chloride
- 2. (furan-3-ylmethyl)magnesium chloride

Products:

1. 3-(2-methyl-but-3-enyl)-furan

 $\textbf{Typical conditions:} \ \mathrm{RMgCl.THF.NHC\text{-}complex}$

Protections: none

Reference: 10.1016/j.tetlet.2012.12.124

Retrosynthesis ID: 1171

2.1.2 Ozonolysis

Substrates:

 $1. \ \ 3\hbox{-}(2\hbox{-methyl-but-}3\hbox{-enyl})\hbox{-furan}$

Products:

1. CC(C=O)Cc1ccoc1

Typical conditions: O3.MeOH.CH2Cl2.PPh3 or Me2S.low temperature

Protections: none

Reference: 10.1016/j.tet.2017.03.039

2.1.3 Iodoolefination of aldehydes

Substrates:

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)Cc1ccoc1

Products:

1. $CC(/C=C\backslash I)Cc1ccoc1$

Typical conditions: 1.PPh3.2.NaN(TMS)2.HMPA.THF

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

Retrosynthesis ID: 10001773

2.1.4 NBS-promoted oxidation of furans to lactones

Substrates:

1. $CC(/C=C\backslash I)Cc1ccoc1$

Products:

 $1. \ \, CC(/C=C\backslash I)CC1=CCOC1=O$

Typical conditions: NBS.MW.MeOH

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

Retrosynthesis ID: 49766

2.1.5 Heck Reaction

Substrates:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K

or DOI: 10.1002/9780470716076

${\bf 2.1.6} \quad {\bf Conjugated \ addition \ of \ organocuprate-acylation \ of \ enones \ and} \\ {\bf enoate \ esters}$

Substrates:

1. Acetyl chloride - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2=C1

3. 4-Iodobenzotrifluoride - available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

 $\textbf{Typical conditions:}\ 1. RCuLi. 2. AcCl. HMPA$

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.2 Path 2

Score: 106.04

2.2.1 Alkylation of Esters

Figure 2: Outline of path 2

Substrates:

1. Methyl propionate - available at Sigma-Aldrich

2. 3-chlormethyl-furan

Products:

1. COC(=O)C(C)Cc1ccoc1

Typical conditions: base e.g. BuLi.THF

Protections: none

Reference: 10.1021/ja065404r and 10.1016/S0040-4020(01)88337-X and 10.1016/0040-4039(95)00562-Q and 10.1021/ja08073a034 and 10.1021/ja08073a034

Retrosynthesis ID: 31017152

2.2.2 Aldehyde Formation

Substrates:

 $1. \ \mathrm{COC}(=\mathrm{O})\mathrm{C}(\mathrm{C})\mathrm{Cc1ccoc1}$

Products:

1. CC(C=O)Cc1ccoc1

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

Retrosynthesis ID: 28551

2.2.3 Iodoolefination of aldehydes

Substrates:

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)Cc1ccoc1

Products:

1. $CC(/C=C\setminus I)Cc1ccoc1$

 $\textbf{Typical conditions:} \ 1. PPh 3.2. NaN (TMS) 2. HMPA. THF$

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

${\bf 2.2.4}$ NBS-promoted oxidation of furans to lactones

${\bf Substrates:}$

 $1. \ CC(/C{=}C\backslash I)Cc1ccoc1$

Products:

 $1. \ \, CC(/C{=}C\backslash I)CC1{=}CCOC1{=}O$

 $\textbf{Typical conditions:} \ \mathrm{NBS.MW.MeOH}$

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

Retrosynthesis ID: 49766

2.2.5 Heck Reaction

Substrates:

 $1. \ CC(/C{=}C\backslash I)CC1{=}CCOC1{=}O$

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.2.6 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- 2. CC1C=CC2COC(=O)C2=C1
- 3. 4-Iodobenzotrifluoride available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

2.3 Path 3

Score: 106.04

Figure 3: Outline of path 3

2.3.1 Double decarboxylative coupling or aryl halides with alcohols as latent nucleophiles

Substrates:

- 1. 3-Bromofuran available at Sigma-Aldrich
- $2. \ \ 3\text{-hydroxy-2-methylpropanenitrile} \ \quad \quad \textit{available at Sigma-Aldrich}$

Products:

1. CC(C#N)Cc1ccoc1

Protections: none

Reference: 10.1021/jacs.6b09533 Retrosynthesis ID: 10032259

2.3.2 Reduction of nitriles to aldehydes

Substrates:

1. CC(C#N)Cc1ccoc1

Products:

1. CC(C=O)Cc1ccoc1

 ${\bf Typical\ conditions:\ DIBALH.DCM}$

Protections: none

Reference: 10.1016/j.bmc.2006.01.061 and 10.1016/j.tet.2012.07.022 and 10.1016/j.bmcl.2009.01.075 and 10.1016/j.bmcl.2007.09.081 and 10.1021/jo000502v

Retrosynthesis ID: 31406

2.3.3 Iodoolefination of aldehydes

Substrates:

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)Cc1ccoc1

Products:

1. $CC(/C=C\backslash I)Cc1ccoc1$

 $\textbf{Typical conditions:} \ 1. PPh 3.2. NaN (TMS) 2. HMPA. THF$

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

Retrosynthesis ID: 10001773

2.3.4 NBS-promoted oxidation of furans to lactones

Substrates:

1. $CC(/C=C\backslash I)Cc1ccoc1$

Products:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Typical conditions: NBS.MW.MeOH

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

2.3.5 Heck Reaction

Substrates:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.3.6 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

- 1. Acetyl chloride available at Sigma-Aldrich
- 2. CC1C=CC2COC(=O)C2=C1
- 3. 4-Iodobenzotrifluoride available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.4 Path 4

Score: 115.31

Figure 4: Outline of path 4

2.4.1 Oxidation of primary alcohols with DMP

Substrates:

1. 2-Methyl-3-buten-1-ol - available at Sigma-Aldrich

Products:

1. 2-methyl-but-3-enal

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and

10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.4.2 Alkenylation-Aldol reaction of enones and enoate esters

Substrates:

1. 2-methyl-but-3-enal

2. 2(5H)-Furanone - available at Sigma-Aldrich

 $3. \ \, \text{Bromoethylene} \, \text{-} \quad \, \textit{available at Sigma-Aldrich}$

Products:

1. C=CC(C)C(O)C1C(=O)OCC1C=C

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

2.4.3 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC(C)C(O)C1C(=O)OCC1C{=}C$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2C1O}$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.4.4 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CC1C=CC2COC(=O)C2C1O

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: TsOH

Protections: none

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770

Retrosynthesis ID: 7731

2.4.5 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. Acetyl chloride - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2=C1

3. 4-Iodobenzotrifluoride - available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.5 Path 5

Score: 115.31

Figure 5: Outline of path 5

2.5.1 Condensation of esters with aldehydes/ketones

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

 $1. \ C{=}CC1COC({=}O)C1{=}Cc1ccc(C(F)(F)F)cc1 \\$

 ${\bf Typical\ conditions:\ LDA.THF}$

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

2.5.2 Conjugate addition of organocuprate

Substrates:

- 1. 3-butenylmagnesium bromide
- $2. \ C{=}CC1COC({=}O)C1{=}Cc1ccc(C(F)(F)F)cc1$

Products:

 $1. \ C{=}CC(C)C(c1ccc(C(F)(F)F)cc1)C1C(=O)OCC1C{=}C$

Typical conditions: 1.CuCN.LiCl.2.Eletrophile.3.NH4Cl

Protections: none

Reference: 10.3891/acta.chem.scand.24-3490 AND 10.1016/S0040-4020(01)92354-3 AND AND 10.1016/j.tet.2011.12.046 AND 10.1016/S0040-4039(02)01713-6

Retrosynthesis ID: 10003575

2.5.3 Claisen Condensation

Substrates:

1. Methyl acetate - available at Sigma-Aldrich

 $2. \ C{=}CC(C)C(c1ccc(C(F)(F)F)cc1)C1C(=O)OCC1C{=}C\\$

Products:

 $1. \ C = CC(C)C(c1ccc(C(F)(F)F)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: Base. Solvent

Protections: none

Reference: 10.1021/cr020703u and 10.1021/cr60088a002

Retrosynthesis ID: 5015

2.5.4 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(C)C(c1ccc(C(F)(F)F)cc1)C1(C(C)=O)C(=O)OCC1C=C$

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2c1ccc(C(F)(F)F)cc1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102