Week 5

Approximate Solutions of the Schrödinger Equation

5.1 Approximation Methods

10/25:

- The **variational method** and **perturbation theory** are two methods of approximating solutions to Schrödinger equations describing systems more complex than the hydrogen atom.
- To begin our investigation of the variational method, we will look at the particle in a box.
 - Consider a Hamiltonian for an electron in a box of length L=2 a.u. centered around x=0.
 - Note that we take the electron as the fundamental mass, \hbar as the fundamental unit of energy time, and the charge of the electron as the fundamental unit of charge, and the Bohr radius as the fundamental unit of length.
 - Our Hamiltonian is

$$H\psi(x) = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi(x)$$

or, in atomic units,

$$H\psi(x) = -\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x)$$

• Variational theorem: The expectation value of our Hamiltonian with respect to a trial wave function produces an approximate energy. Moreover^[1],

$$E_{\rm approx} \ge E_{\rm gr. st.}$$

- Variational method: Take $\psi_{\text{trial}} = \sum_n a_n |\psi_n\rangle$ where ψ_n is a trial wave function and the a_j 's are parameters of the wave function which we want to optimize to lower E_{trial} .
 - Dirac's ket describes an abstract state of the particle (possibly position, possibly its Fourier transform, momentum).
- Back to the particle in a box:
 - A possible trial wave function (that satisfies the boundary conditions) is

$$\psi_{\rm tr} = (1+x)(1-x) = 1-x^2$$

¹We will prove that the approximate energy is an upper bound on the ground state energy in the homework.

- The energy of $\psi_{\rm tr}$ may be evaluated as follows.

$$E = \frac{\int \psi_{\text{tr}}^*(x) \hat{H} \psi_{\text{tr}}(x) \, dx}{\int \psi_{\text{tr}}^*(x) \psi_{\text{tr}}(x) \, dx}$$

$$= \frac{\int_{-1}^{1} (1 - x^2) \left(-\frac{1}{2} \frac{d^2}{dx^2} \right) (1 - x^2) \, dx}{\int_{-1}^{1} (1 - x^2) (1 - x^2) \, dx}$$

$$= \frac{\int_{-1}^{1} (1 - x^2) \, dx}{\int_{-1}^{1} (1 - x^2) (1 - x^2) \, dx}$$

$$= \frac{4/3}{16/15}$$

$$= \frac{5}{4}$$

$$= 1.25 \text{ a.u.}$$

- From the exact solution to the particle in a box

$$E_1 = 1.23370055 < 1.25 = E_{\text{trial}}$$

so the variational theorem is satisfied.

- Next step: Trial wave function as a linear combination is $\psi_{\rm tr}(x) = c_1 \psi_1(x) + c_2 \psi_2(x)$.
- Plugging this into the SE yields

$$c_1(\hat{H} - E)\psi_1(x) + c_2(\hat{H} - E)\psi_2(x) = 0$$

- $\blacksquare \psi_1, \psi_2$ span the (Hilbert) space of solutions.
- To solve the above equation, multiply by $\psi_1(x)$ and integrate to obtain

$$c_1 \int_{-1}^{1} \psi_1^*(x)(\hat{H} - E)\psi_1(x) dx + c_2 \int_{-1}^{1} \psi_1^*(x)(\hat{H} - E)\psi_2(x) dx = 0$$

and multiply by $\psi_2(x)$ an integrate to obtain

$$c_1 \int_{-1}^{1} \psi_2^*(x)(\hat{H} - E)\psi_1(x) \, dx + c_2 \int_{-1}^{1} \psi_2^*(x)(\hat{H} - E)\psi_2(x) \, dx = 0$$

- Substituting, we have

$$c_1(H_{11} - ES_{11}) + c_2(H_{12} - ES_{12}) = 0$$
 $c_1(H_{21} - ES_{21}) + c_2(H_{22} - ES_{22}) = 0$

- In matrix form, the above two equations become

$$\begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} - E \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\mathbb{H}\vec{c} - E \mathbb{S}\vec{c} = 0$$

- We get a matrix that the same dimension as the size of the expansion (in the first case, we had a 1×1 matrix).
- S is the overlap matrix because the wave functions aren't normalized.

5.2 Variational Method

10/27: • Approximating the ground state energy with some trial wave function and applying

$$E_{\text{approx}} = \frac{\int \psi_{\text{tr}}^* \hat{H} \psi_{\text{tr}} \, dx}{\int \psi_{\text{tr}}^* \psi_{\text{tr}} \, dx}$$

where

$$\psi_{\rm tr} = \sum_{n} c_n \psi_n(x)$$

- Example 2:
- For our second term, we need another even function (since the ground state wavefunction is even). Thus, choose

$$\psi_{\rm tr}(x) = c_1(1-x^2) + c_2(1-x^2)x^2$$

- Think about this in the context of power series we have $(1-x^2)$ times an even power series expansion $(c_1 + c_2x^2)$.
- To find c_1, c_2 , we could plug into the approximation integral and minimize.
- Alternatively, we can use matrices. We essentially project the Schrödinger equation onto the space of the two wave functions.
- Take $\hat{H}\psi = E\psi$ and expand it to $\hat{H}(c_1\psi_1 + c_2\psi_2) = E(c_1\psi_1 + c_2\psi_2)$. In matrix form, $\mathbb{H}\vec{c} = E\mathbb{S}\vec{c}$.
- We have an overlap matrix S because our wave functions aren't normalized. If the basis is orthonormal, S collapses to the identity matrix.
 - Each s_{ij} equals

$$s_{ij} = \int \psi_i^* \psi_j \, \mathrm{d}x$$

- If ψ_1, ψ_2 is orthonormal, then $s_{ij} = \delta_{ij}$.
- The elements of the Hamiltonian matrix:

$$H_{11} = \int \psi_1^*(x) \hat{H} \psi_1(x) dx \qquad H_{12} = \int \psi_1^*(x) \hat{H} \psi_2(x) dx$$
$$= \frac{4}{3} \qquad = \frac{8}{15}$$

$$H_{21} = \frac{8}{15} \qquad \qquad H_{22} = \frac{44}{105}$$

- Notice that \mathbb{H} is symmetric with $H_{12} = H_{21}$.
- $\bullet\,$ Elements of the overlap matrix:

$$S_{11} = \frac{16}{15} \qquad \qquad S_{12} = \frac{32}{105}$$

$$S_{21} = \frac{32}{105} \qquad \qquad S_{22} = \frac{16}{315}$$

- Notice that \mathbb{S} is symmetric with $S_{12} = S_{21}$.
- Note that there are multiple ways to solve $\mathbb{H}\vec{c} = E\mathbb{S}\vec{c}$; McQuarrie and Simon (1997) only teaches one. Thus, you can get computers to do the math and solve far bigger systems than you could by hand.

- Solving $\mathbb{H}\vec{c} = E\mathbb{S}\vec{c}$ with the textbook method:
 - Rewrite as $(\mathbb{H} E\mathbb{S})\vec{c} = 0$. Find the null space of $\mathbb{H} E\mathbb{S}$.
 - Since the determinant is the product of the eigenvalues, $\det(\mathbb{H} E\mathbb{S}) = (E_1 E)(E_2 E)$.
 - This determinant is equal to zero only when $E = E_1$ or $E = E_2$.
 - The energy is becoming quantized because of the linear algebra!
 - Now taking $det(\mathbb{H} E\mathbb{S})$ gives a characteristic polynomial in E.

$$0 = \begin{vmatrix} \frac{4}{3} - \frac{16}{15}E & \frac{4}{15} - \frac{16}{105}E \\ \frac{4}{15} - \frac{16}{105}E & \frac{44}{105} - \frac{16}{315}E \end{vmatrix}$$
$$= \frac{256}{525} - \frac{2048}{4725}E + \frac{1024}{33075}E^2$$

- Solving the quadratic gives us

$$E = 7 \pm \frac{\sqrt{133}}{2}$$

- Thus,

$$E_1 = 1.233718705 \,\mathrm{a.u.}$$

$$E_2 = 12.766 \,\mathrm{a.u.}$$

- Notice that the E_1 we found is only *marginally* greater than the real value of E_1 . Our value is accurate to four decimal places!
- Solving for \vec{c} with E_1 gives us

$$\vec{c}_1 = -0.9764$$

$$\vec{c}_2 = 0.2156$$