

Nemko Korea Co., Ltd.

155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPUBLIC OF TEL:+82 31 330-1700 FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

KAONMEDIA Co., Ltd.

Dates of Issue: June 28, 2019

KAONMEDIA Building, 884-3, SeongnamTest Report No.: NK-19-R-031
daero, Bundang-gu, Seongnam-si, Gyeong
Test Site: Nemko Korea Co., Ltd.

gi-do, 13517, South Korea

Attn.: Hee Sung Park

FCC ID WQTCG3000 IC 24567-CG3000

Brand Name KAONMEDIA Co., Ltd.

Contact Person

KAONMEDIA Co., Ltd.

KAONMEDIA Building, 884-3, Seongnam-daero,

Bundang-gu, Seongnam-si, Gyeonggi-do,

13517, South Korea

Hee Sung Park
Telephone No.: 82-31-724-8500

Applied Standard: FCC 47 CFR Part 15.247 and IC RSS-247 Issue 2

Classification: Digital Transmission System (DTS)

EUT Type: DOCSIS3.1 Gateway (IT)

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Yonghwan Kim

Jun, 28, 2019

Engineer

Reviewed By: Seungyong Shin

Jun. 28. 20 19

Technical Manager

KAONMEDIA Co., Ltd.

Page 1 of 103

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test power setting	7
	3.1.2 Table of test channels	8
	3.1.3 Antenna information	8
	3.1.4 Additional Information Related to Testing	8
	3.1.5 Table of test modes	9
	3.2 Support Equipment	10
	3.3 Setup Drawing	10
	3.4 EUT Information	11
4.	Summary of Test Results	12
5.	Recommendation / Conclusion	13
6.	Antenna Requirements	13
7.	Description of Test	14
	7.1 Conducted Emissions	14
	7.2 Radiated Emissions	15
	7.3 6 dB Bandwidth	16
	7.4 Maximum Conducted Output Power (average)	17
	7.5 Maximum Power Spectral Density (average)	18
	7.6 Conducted Spurious Emissions	19
	7.7 Duty Cycle	20

Test Report No.: NK-19-R-031

FCC and IC Certification

8.	Test Data	21
	8.1 Conducted Emissions	21
	8.2 Radiated Emissions	23
	8.3 6 dB Bandwidth	25
	8.4 Maximum Conducted Output Power (average) and E.I.R.P	39
	8.5 Maximum Power Spectral Density (average)	43
	8.6 Conducted Spurious Emissions	58
	8.7 Radiated Spurious Emissions	93
	8.8 Radiated Band Edge	98
9.	Test Equipment	101
10.	Accuracy of Measurement	102

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-247 Issue2.

Responsible Party: KAONMEDIA Co., Ltd.

KAONMEDIA Building, 884-3, Seongnam-daero, Bundang-gu,

Seongnam-si, Gyeonggi-do, 13517, South Korea

Contact Person: Hee Sung Park

Manufacturer: KAONMEDIA Co., Ltd.

KAONMEDIA Building, 884-3, Seongnam-daero, Bundang-gu,

Seongnam-si, Gyeonggi-do, 13517, South Korea

• FCC ID: WQTCG3000

• IC: 24567-CG3000

Model: CG3000

Variant Model: CG3000-LD42J, CG3000-LD4NJ, SR820ac

• HVIN: V1.2

Brand Name: KAONMEDIA Co., Ltd.

EUT Type: DOCSIS3.1 Gateway (IT)

Classification: Digital Transmission System (DTS)

Applied Standard: FCC 47 CFR Part 15.247 and IC RSS-247 Issue 2

Test Procedure(s): ANSI C63.10-2013 and FCC guidance of Guidance 558074

D01 DTS Meas Guidance v05

Dates of Test: January 24, 2019 ~ June 4, 2019

Place of Test: Nemko Korea Co., Ltd.

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from **KAONMEDIA Co.**, Ltd. FCC ID: WQTCG3000 and IC: 24567-CG3000.

These measurement tests were conducted at *Nemko Korea Co., Ltd. EMC Laboratory*. The site address 155 & 159, Osan-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

FCC ID: WQTCG3000 / IC: 24567-CG3000

KAONMEDIA Co., Ltd.

2.2 Accreditation and listing

	Accreditation type	Accreditation number
CAB Accreditation for DOC		Designation No. KR0026
KOLAS (S) FESTING NO. 19	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. 155
Industry Canada	Canada IC Registered site	Site No. 2040E
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118
IECEE SCHEME	EMC CBTL	-
	KCC(RRL)Designated Lab.	Registration No. KR0026

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the SISO, CDD, MIMO transceiver which is module supporting the 802.11a/b/g/n/ac mode (802.11a/b/g/n(20,40MHz)/ac(20,40,80MHz): 1TX/1RX, 4TX/4RX).

The Laptop was used to control the EUT to transmit the wanted TX channel continuously (duty cycle< 98%) by the testing program (accessMtool) supported by manufacturer.

The operating voltage of EUT was 12 Vdc supplied from AC/DC adapter.

The EUT was tested at the lowest, middle and the highest channels with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Table of test power setting

Frequency	Mode	Power setting Level (1TX)	Power setting Level (4TX)
	802.11b	85	60
2412 MHz	802.11g	42	42
	802.11n (20 MHz)	42	42
	802.11b	85	60
2437 MHz	802.11g	85	72
	802.11n (20 MHz)	85	72
	802.11b	84	60
2462 MHz	802.11g	45	45
	802.11n (20 MHz)	45	45
2422MHz		40	40
2437 MHz	802.11n (40 MHz)	50	50
2452 MHz		38	38

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

3.1.2 Table of test channels

Frequency band	Mode	Test Channel (CH)	Frequency (MHz)
		1	2412
	802.11b,g,n (20 MHz) 802.11n (40 MHz)	6	2437
2.4.011-		11	2462
2.4 GHz		3	2422
		6	2437
		9	2452

3.1.3 Antenna information

Frequency band	Mode	Data rate	Antenna TX mode	Support CDD	Support MIMO
	802.11b,g	All	■ 1TX, ■ 4TX	■ Yes, □ No	☐ Yes, ■ No
	802.11n (20MHz)	MCS 0~7	■ 1TX, ■ 4TX	■ Yes, □ No	☐ Yes, ■ No
2.4 GHz		MCS 8~31	☐ 1TX, ■ 4TX	☐ Yes, ■ No	■ Yes, □ No
	802.11n	MCS 0~7	■ 1TX, ■ 4TX	■ Yes, □ No	☐ Yes, ■ No
	(40MHz)	MCS 8~31	☐ 1TX, ■ 4TX	☐ Yes, ■ No	■ Yes, □ No

- 1. CDD mode is Cyclic Delay Diversity mode.
- 2. For 802.11b,g,EUT support SISO,CDD mode for All.
- 3. For 802.11n(20 MHz), EUT support SISO, CDD mode for MCS0~7 and MIMO mode for MCS8~31.
- 4. For 802.11n(40 MHz), EUT support SISO, CDD mode for MCS0~7 and MIMO mode for MCS8~31.
- 5. CDD mode, Nss=1, MIMO mode, Nss= 2 or 3 or 4, where Nss = number of spatial streams.
- 6. MIMO mode means SM-MIMO transmission. Lowest value of Nss=2 is applied to caculate directional gain.

3.1.4 Additional Information Related to Testing

The cable and attenuator loss from 30MHz to 26.5GHz was reflected in spectrum analyzer with correction factor for all conducted testing.

3.1.5 Table of test modes

Test Items	Mode	*Data rate (Mbps)	Test Channel (CH)
Conducted Emissions	802.11n	MCS0	6
Radiated Emissions	802.11n	MCS0	6
	802.11b	1	1/6/11
6 dB Bandwidth	802.11g	6	1/6/11
o db bandwidin	802.11n (20 MHz)	MCS0	1/6/11
	802.11n (40 MHz)	MCS0	3/6/9
	802.11b	1	1/6/11
Maximum Conducted Output Power	802.11g	6	1/6/11
Maximum Conducted Output Power	802.11n (20 MHz)	MCS0	1/6/11
	802.11n (40 MHz)	MCS0	3/6/9
	802.11b	1	1/6/11
Dower Spectral Density	802.11g	6	1/6/11
Power Spectral Density	802.11n (20 MHz)	MCS0	1/6/11
	802.11n (40 MHz)	MCS0	3/6/9
	802.11b	1	1/6/11
Conducted Sourious Emission	802.11g	6	1/6/11
Conducted Spurious Emission	802.11n (20 MHz)	MCS0	1/6/11
	802.11n (40 MHz)	MCS0	3/6/9
Radiated Spurious Emission	802.11n (20 MHz)	MCS0	1/6/11
Pand adda Emission	802.11n (20 MHz)	MCS0	1/11
Band edge Emission	802.11n (40 MHz)	MCS0	3/9

^{*}The worst data rate was determined by the conducted output power that generates the highest emission performing pre-scan testing in all data rates of each mode.

3.2 Support Equipment

EUT	KAONMEDIA Co., Ltd. Model : CG3000	S/N: N/A
Laptop Computer	LG Electronics Co., Ltd. Model : 14Z970	FCC DOC S/N: N/A
AC/DC Adapter	Lien Chang Electronic Enterprise Co., Ltd Model : LCAP48-WK 1.5 m unshielded power cable	FCC DOC S/N: N/A

3.3 Setup Drawing

3.4 EUT Information

The EUT is the KAONMEDIA Co., Ltd. DOCSIS3.1 Gateway (IT) FCC ID: WQTCG3000, IC: 24567-CG3000.

Specifications:

Specifications:	
EUT Type	DOCSIS3.1 Gateway (IT)
Model Name	CG3000
Variant Model Name	CG3000-LD42J, CG3000-LD4NJ, SR820ac
Brand Name	KAONMEDIA Co., Ltd.
Frequency of Operation	802.11b,g,n (20 MHz) : 2412 MHz ~ 2462 MHz 802.11n (40 MHz) : 2422 MHz ~ 2452 MHz
Maximum Conducted Output Power	802.11b : 22.26 dBm 802.11g : 24.57 dBm 802.11n (20 MHz) : 24.72 dBm 802.11n (40 MHz) : 18.52 dBm
FCC Classification	Digital Transmission System (DTS)
Number of Channels	802.11b,g,n (20 MHz): 11 CH 802.11n (40 MHz): 7 CH
Modulations	DSSS(BPSK,QPSK,CCK) for 802.11b OFDM(BPSK,QPSK,16QAM,64QAM) for 802.11g/n
Antenna Gain (peak)	Ant: 1.9 dBi
Antenna Setup	802.11b/g/n (20, 40MHz) : 1TX / 1RX, 4TX / 4RX
Voltage	12 Vdc
Temperature Range	-20 °C ~ +50 °C
Size (W x H x D)	About 50 mm x 240 mm x 190 mm
Weight	About 692 g
HVIN (Hardware Version Number)	V1.2
FVIN (Firmware Version Identification Number)	v1.1.0_RG1.01.00
Remarks	-

KAONMEDIA Co., Ltd.

Page 11 of 103

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC Paragraph No.	IC Paragraph No.	Result	Remark
Conducted Emission	15.207	RSS-GEN Issue 4 8.8	Complies	
Radiated Emission	15.209	RSS-GEN Issue 4 8.9	Complies	
6 dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 5.2	Complies	
Maximum Conducted Output Power	15.247(b)(3)	RSS-247 Issue 2 5.4	Complies	
Power Spectral Density	15.247(e)	RSS-247 Issue 2 5.2	Complies	
Conducted Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Radiated Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Maximum Permissible Exposure	1.1307(b)	RSS-102 Issue 5	Complies	

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **KAONMEDIA Co.**, **Ltd. DOCSIS3.1 Gateway (IT) FCC ID: WQTCG3000**, **IC: 24567-CG3000** is in compliance with Part 15.247 of the FCC Rule and RSS-247 Issue 2 of the IC Specification.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the KAONMEDIA Co., Ltd. DOCSIS3.1 Gateway (IT) FCC ID: WQTCG3000, IC: 24567-CG3000 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Directional gain was be calculated according to "662911 D01 Multiple Transmitter Output v02r01" and would be found at end of average output power and PSD results in this report.

KAONMEDIA Co., Ltd.

FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 13 of 103

7. DESCRIPTION OF TESTS

7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 x 7 x 2.5 meter shielded enclosure. It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6. A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room. Rohde & Schwarz (ESH3-Z5) and (ESH2-Z5) of the 50 ohm/50 µH Line Impedance Stabilization Network (LISN) are bonded to the shielded room. The EUT is powered from the Rohde & Schwarz LISN (ESH3-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH2-Z5). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ". If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentinefashion) to a 1 meter length. Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time. The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30). The detector functions were set to CISPR quasi-peak mode & average mode. The bandwidth of receiver was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

Fig. 2. LISN Schematic Diagram

Page 15 of 103

7.2 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20: 18 to 26.5 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in KDB "558074 D01 DTS Meas Guidance v05" in section 12.2.4 and 12.2.5.3. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least 50 times (1/duty cycle) traces.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN Issue 4 8.9

FCC ID: WQTCG3000 / IC: 24567-CG3000

KAONMEDIA Co., Ltd.

7.3 6 dB Bandwidth

Test Setup

Test Procedure

EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = 100 kHz

 $VBW > 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 16 of 103

7.4 Maximum Conducted Output Power (average)

Test Setup

Test Procedure

EUTs Maximum Conducted Output Power (average) is measured at low, middle, high channels with a Power meter connected to the antenna terminal while the EUTs operating at its maximum power control level.

Add 10 log (1/x), where x is the duty cycle

KAONMEDIA Co., Ltd.

FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 17 of 103

7.5 Maximum Power Spectral Density (average)

Test Setup

Test Procedure

EUTs Maximum Power Spectral Density (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Center frequency = DTS channel center frequency

Span = at least 1.5 times the DTS bandwidth

 $RBW: 3 kHz \le RBW \le 100 kHz$

 $VBW \geq 3 \times RBW$

Detector = power averaging (RMS)

Ensure that the number of measurement points = sweep ≥ 2 x span / RBW

Sweep time = auto couple

Employ trace averaging (RMS) = minimum of 100 traces

Add 10 log (1/x), where x is the duty cycle

Use the peak marker function to determine the maximum amplitude level.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6 Conducted Spurious Emissions

Test Setup

Test Procedure

EUTs Conducted spurious emissions are measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

1) Reference Level

Center frequency = DTS channel center frequency

Span \geq 1.5 x DTS bandwidth

RBW = 100 kHz

 $VBW \geq 3 x RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

2) Unwanted Emissions

Set the center frequency and span to encompass frequency range to be measured.

RBW = 100 kHz

 $VBW \ \geq \ 3 \ x \ RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 19 of 103

7.7 Duty Cycle

Test Setup

Test Procedure

EUTs duty cycle are measured at middle channel with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

Center frequency = Center frequency of the transmission

Span = zero

RBW = 8 MHz

VBW = 8 MHz

Detector = peak

Sweep time = at least 3 ms

Sweep mode = Single

The marker function on the spectrum analyzer is used to determine the duty cycle.

The results of the duty cycle measurement according to the above test procedure.

	Data rate	On time (ms)	On + Off time (ms)	Duty Cycle (%)	Duty Factor (dB)
b mode	1Mbps	12.41	13.06	95.0	0.220
g mode	6Mbps	2.063	2.171	95.0	0.222
n(20MHz)mode	MCS0	1.919	2.020	95.0	0.223
n(40MHz)mode	MCS0	0.943	1.044	90.3	0.442

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

8. TEST DATA

8.1 Conducted Emissions

FCC §15.207, RSS-GEN Issue 4 8.8

Result

Frequency	Level	(dB <i>μ</i> V)	*) Factor	**\	Limit (dBµV)		Margin (dB)	
(MHz)	Q-Peak	Average	(dB)	**) Line	Q-Peak	Average	Q-Peak	Average
0.15	50.0	35.2	10.50	N	66.0	56.0	16.0	20.8
0.16	46.4	35.3	10.50	N	65.6	55.6	19.2	20.3
0.19	43.4	27.1	10.50	N	64.2	54.2	20.8	27.1
0.19	41.5	25.5	10.50	N	63.9	53.9	22.4	28.4
0.24	36.6	22.5	10.60	L	62.0	52.0	25.4	29.5
0.25	35.9	21.3	10.50	N	61.8	51.8	25.9	30.5

Line Conducted Emissions Tabulated Data

Notes:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. *) Factor = LISN + Cable Loss
- 4. **) LINE : L = Line , N = Neutral
- 5. The limit is on the FCC §15.207(a) and IC RSS-GEN issue4 8.8.

KAONMEDIA Co., Ltd.

FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 21 of 103

Conducted Emission at the Mains port (Line + Neutral)_n mode 2437MHz

TEST DATA

8.2 Radiated Emissions

FCC §15.209, IC RSS-Gen Issue 4 8.9

Result

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
31.51	55.19	V	100	356	-25.9	29.29	40.0	10.7
55.27	50.46	V	300	315	-23.4	27.06	40.0	12.9
98.39	60.59	V	100	110	-25.0	35.59	43.5	7.9
101.89	61.02	V	100	76	-25.2	35.82	43.5	7.7
140.90	63.31	V	100	243	-28.4	34.91	43.5	8.6
249.97	57.28	Н	100	206	-22.5	34.78	46.0	11.2

Radiated Measurements at 3meters

Notes:

- 1. All modes were measured and the worst-case emission was reported.
- 2. *Pol. H = Horizontal, V = Vertical
- 3. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 4. Measurements using CISPR quasi-peak mode below 1 GHz.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. 6 channel (2437MHz) in n (20MHz) mode is the worst case.
- 7. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 8. The limit is on the FCC §15.209 and RSS-Gen Issue4 8.9.

KAONMEDIA Co., Ltd.

FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 23 of 103

Radiated emission below 1GHz_ n mode 2437 MHz

8.3 6 dB Bandwidth

FCC §15.247(a)(2), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode

Channal	Francisco de (MILITA)	Result	Limit (MU=)	
Channel	Frequency (MHz)	Chain 3 (1TX)	Chain 3 (4TX)	Limit (MHz)
Lowest	2412	8.06	7.57	0.5
Middle	2437	7.59	7.56	0.5
Highest	2462	7.57	7.54	0.5

802.11g mode

Channal	Fragues av (MIII-)	Result	1 :: (BALL-)		
Channel	Frequency (MHz)	Chain 3 (1TX)	Chain 3 (4TX)	Limit (MHz)	
Lowest	2412	15.68	15.70	0.5	
Middle	2437	15.40	15.05	0.5	
Highest	2462	15.38	15.42	0.5	

802.11n (20 MHz) mode

Channel	Fraguency (MHz)	Result	Limit (MHz)		
Chamie	Frequency (MHz)	Chain 3 (1TX)	Chain 3 (4TX)		
Lowest	2412	15.45	15.65	0.5	
Middle	2437	15.88	15.69	0.5	
Highest	2462	15.07	15.69	0.5	

TEST DATA

802.11n (40 MHz) mode

Channel	Eroguanay (MUz)	Result	Limit (MU=)		
Channel	Frequency (MHz)	Chain 3 (1TX)	Chain 3 (4TX)	Limit (MHz)	
Lowest	2422	36.35	36.36	0.5	
Middle	2437	35.75	35.74	0.5	
Highest	2452	35.33	35.14	0.5	

Note:

The worst ant port was determined by the conducted output power that generates the highest emission performing pre-scan testing in all ant port of each mode.

802.11b mode

Chain 3 (1TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

6 dB Bandwidth, Highest Channel (2462 MHz)

Chain 3 (4TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

6 dB Bandwidth, Highest Channel (2462 MHz)

802.11g mode

Chain 3 (1TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

6 dB Bandwidth, Highest Channel (2462 MHz)

Chain 3 (4TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

6 dB Bandwidth, Highest Channel (2462 MHz)

802.11n (20 MHz) mode

Chain 3 (1TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

6 dB Bandwidth, Highest Channel (2462 MHz)

Chain 3 (4TX)

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

6 dB Bandwidth, Highest Channel (2462 MHz)

802.11n (40 MHz) mode

Chain 3 (1TX)

6 dB Bandwidth, Lowest Channel (2422 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.
FCC ID: WQTCG3000 / IC: 24567-CG3000

6 dB Bandwidth, Highest Channel (2452 MHz)

Chain 3 (4TX)

6 dB Bandwidth, Lowest Channel (2422 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

6 dB Bandwidth, Highest Channel (2452 MHz)

8.4 Maximum Conducted Output Power (average) and E.I.R.P

FCC §15.247(b)(3), IC RSS-247 Issue 2 5.4

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode - 1TX

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor	*Maximum Conducted Power	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit	
	(11112)	Chain 3	(dB)	(dBm)	(abiii)	(ubiii)	(dBm)	
Lowest	2412	22.18	0.22	22.40	30.00	24.30	36.00	
Middle	2437	22.04	0.22	22.26	30.00	24.16	36.00	
Highest	2462	21.70	0.22	21.92	30.00	23.82	36.00	

802.11b mode - 4TX

Channel Frequen (MHz)		Meas		iducted p 3m)	oower	Duty Factor	*Maximum Conducted Power (dBm)	Limit (dBm)	E.I.R.P	E.I.R.P Limit
	(WITIZ)	Chain 0	Chain 1	Chain 2	ain 2 Chain 3 (dB)	Total output power	(ubili)	(dBm)	(dBm)	
Lowest	2412	14.78	15.02	14.95	15.96	0.22	21.44	30.00	23.34	36.00
Middle	2437	15.48	15.87	15.18	16.29	0.22	21.97	30.00	23.87	36.00
Highest	2462	15.74	15.34	15.04	15.93	0.22	21.77	30.00	23.67	36.00

KAONMEDIA Co., Ltd. NKQF-27-18 (Rev. 00) FCC ID: WQTCG3000 / IC: 24567-CG3000

TEST DATA

802.11g mode - 1TX

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor	*Maximum Conducted Power	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit	
	(Chain 3	(dB)	(dBm)	()	(42)	(dBm)	
Lowest	2412	11.43	11.43 0.22 11.65		30.00	13.55	36.00	
Middle	2437	22.08	0.22	22.30	30.00	24.20	36.00	
Highest	2462	12.25	0.22	12.47	30.00	14.37	36.00	

802.11g mode - 4TX

Channel	Frequency	Meas		ducted p	oower	(dB) Total output	Duty Conducted Limit E.I.R		E.I.R.P	E.I.R.P Limit
	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3		-	(dBm)	(dBm)	(dBm)
Lowest	2412	10.84	10.75	10.90	10.95	0.22	17.10	30.00	19.00	36.00
Middle	2437	18.23	17.85	18.54	18.64	0.22	24.57	30.00	26.47	36.00
Highest	2462	11.08	11.24	11.37	11.52	0.22	17.55	30.00	19.45	36.00

802.11n (20MHz) mode - 1TX

Channel	Frequency (MHz)	Measured conducted power (dBm) Chain 3	Duty Factor (dB)	actor Conducted Power		E.I.R.P (dBm)	E.I.R.P Limit (dBm)
Lowest	2412	11.15	11.15 0.22 11.37		30.00	13.27	36.00
Middle	2437	21.95	0.22	22.17	30.00	24.07	36.00
Highest	2462	12.07	0.22	12.29	30.00	14.19	36.00

TEST DATA

802.11n (20MHz) mode - 4TX

Channel Frequency		Meas		ducted p	ower	Duty Factor	*Maximum Conducted Power (dBm)	Limit	E.I.R.P	E.I.R.P Limit
	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	Total output power	(dBm)	(dBm)	(dBm)
Lowest	2412	10.56	10.45	10.67	10.89	0.22	16.89	30.00	18.79	36.00
Middle	2437	18.57	18.21	18.49	18.63	0.22	24.72	30.00	26.62	36.00
Highest	2462	11.24	11.16	11.28	11.38	0.22	17.51	30.00	19.41	36.00

802.11n (40MHz) mode - 1TX

Channel	Frequency (MHz)	Measured conducted power (dBm)	Duty Factor	*Maximum Conducted Power	Limit (dBm)	E.I.R.P (dBm)	E.I.R.P Limit	
	(11112)	Chain 3	(dB)	(dBm)	(abiii)	(ubiii)	(dBm)	
Lowest	2422	9.80	0.44	10.24	30.00	12.14	36.00	
Middle	2437	12.90	0.44	13.34	30.00	15.24	36.00	
Highest	2452	9.60	0.44	10.04	30.00	11.94	36.00	

802.11n (40MHz) mode - 4TX

Channel	Frequency (MHz)		Measured conducted power (dBm)				*Maximum Conducted Power (dBm)	Limit	E.I.R.P	E.I.R.P Limit
	(WITZ)	Chain 0	Chain 1	Chain 2	Chain 3	Factor (dB)	Total output power	(dBm)	(dBm)	(dBm)
Lowest	2422	9.15	9.07	9.01	9.29	0.44	15.59	30.00	17.49	36.00
Middle	2437	11.82	12.14	12.02	12.23	0.44	18.52	30.00	20.42	36.00
Highest	2452	8.63	8.67	8.44	8.83	0.44	15.11	30.00	17.01	36.00

FCC and IC Certification

TEST DATA

Note:

- 1. *Maximum Conducted (average) Power = Measured conducted power + Duty Factor
- 2. Total output power = $10 \log [10^{(Chain 0 Power + duty factor)/10} + 10^{(Chain 1 Power + duty factor)/10} + <math>10^{(Chain 2 Power + duty factor)/10} + 10^{(Chain 3 Power + duty factor)/10}]$
- 3. For CDD transmission, directional gain is. 1.9 dBi.

For MIMO transmission, directional gain is 4.91 dBi.

Directional gain was calculated according to KDB662911 D01 Multiple Transmitter Output v02r01.

For power measurements on IEEE 802.11 devices employing CDD, directional gain is as follows,

Directional gain = G_{ANT} + Array G_{ANT} + 0 dB = 1.9 dBi.

Array Gain = 0 dB (i.e., no array gain) for N_{ANT} ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(NANT/NSS) dB or 3 dB, whichever is less, for 20-MHz channel widths with NANT ≥ 5.

For power measurements on all devices employing MIMO, directional gain is as follows,

Directional gain = G_{ANT} + 10 $log(N_{ANT}/N_{SS})$ dBi = 1.9 dBi + 10 log(4/2) dB = 4.91 dBi.

where N_{SS} = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi For this device, MIMO mode means SM-MIMO(Spatial Multiplexing) transmission and the lowest N_{SS} =2.

4. E.I.R.P was calculated by following equation according to KDB412172 D01 Determining ERP and EIRP v01 E.I.R.P = P_T + G_T – Lc

 P_T = Transmitter outputpower (dBm)

 G_T = Gain of the transmitting antenna in dBi, Directional antenna gain is **1.9 dBi**.

L_C = Signal attenuation in the connecting cable between the transmitter and antenna in dB. This factor of an integral antenna is negligible.

5. The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

KAONMEDIA Co., Ltd.

FCC ID: WQTCG3000 / IC: 24567-CG3000

Page 42 of 103

8.5 Maximum Power Spectral Density (average)

FCC §15.247(e), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode - 1TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit	
5.1.4.	(MHz)	Chain 3	(dB)		(dBm)	
Lowest	2412	5.93	0.22	6.15	8.00	
Middle	2437	6.16	0.22	6.38	8.00	
Highest	2462	5.58	0.22	5.80	8.00	

802.11b mode - 4TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit	
Cildinio	(MHz)	Chain 3	(dB)	Total PSD	(dBm)	
Lowest	2412	-1.71	0.22	4.53	6.08	
Middle	2437	-1.69	0.22	4.55	6.08	
Highest	2462	-2.07	0.22	4.17	6.08	

802.11g mode - 1TX

Channel	Frequency	•		*Maximum PSD (dBm)	Limit	
C 11 u 11101	(MHz)	Chain 3	(dB)		(dBm)	
Lowest	2412	-7.13	0.22	-6.91	8.00	
Middle	2437	3.39	0.22	3.61	8.00	
Highest	2462	-6.09	0.22	-5.87	8.00	

TEST DATA

802.11g mode - 4TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit	
J	(MHz)	Chain 3	(dB)	Total PSD	(dBm)	
Lowest	2412	-7.65	0.22	-1.41	6.08	
Middle	2437	-1.74	0.22	4.50	6.08	
Highest	2462	-6.77	0.22	-0.53	6.08	

802.11n (20 MHz) mode - 1TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit	
C 11 a 111101	(MHz)	Chain 3	(dB)		(dBm)	
Lowest	2412	-7.65	0.22	-7.43	8.00	
Middle	2437	2.98	0.22	3.20	8.00	
Highest	2462	-6.58	0.22	-6.36	8.00	

802.11n (20 MHz) mode - 4TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit
	(MHz)	Chain 3	(dB)	Total PSD	(dBm)
Lowest	2412	-8.04	0.22	-1.80	6.08
Middle	2437	-1.66	0.22	4.58	6.08
Highest	2462	-7.37	0.22	-1.13	6.08

KAONMEDIA Co., Ltd. NKQF-27-18 (Rev. 00) FCC ID: WQTCG3000 / IC: 24567-CG3000

FCC and IC Certification

TEST DATA

802.11n (40 MHz) mode - 1TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit	
3.14	(MHz)	Chain 3	(dB)		(dBm)	
Lowest	2422	-12.24	0.44	-11.80	8.00	
Middle	2437	-8.53	0.44	-8.09	8.00	
Highest	2452	-12.62	0.44	-12.18	8.00	

802.11n (40 MHz) mode - 4TX

Channel	Frequency	Measured PSD (dBm)	Duty Factor	*Maximum PSD (dBm)	Limit
	(MHz)	Chain 3	(dB)	Total PSD	(dBm)
Lowest	2422	-12.84	0.44	-6.38	8.00
Middle	2437	-9.28	0.44	-2.82	8.00
Highest	2452	-12.88	0.44	-6.42	8.00

Note:

- 1. *Maximum PSD = Measured PSD + Duty Factor
- 2. "Measure and add 10 log(Nant) dB, where NANT is the number of outputs" was used for measuring in-band Total PSD.

Total PSD = Chain 3 PSD + duty factor + 10 log(NANT)

3. For CDD transmission, directional gain is. **7.92 dBi.** For MIMO transmission, directional gain is **4.91 dBi.** Directional gain was calculated according to KDB662911 D01 Multiple Transmitter Output v02r01. For PSD measurements on all devices employing CDD, directional gain is as follows,

Directional gain = G_{ANT} + Array Gain = 1.9 dBi + 6.02 dB = 7.92 dBi

Array Gain = $10 \log(N_{ANT}/N_{SS}) dB = 10 \log(4/1) = 6.02 dB$.

where N_{SS} = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi. For CDD mode of this device, N_{SS} =1.

For PSD measurements on all devices employing MIMO, directional gain is as follows,

Directional gain = G_{ANT} + 10 log(N_{ANT}/N_{SS}) dBi = 1.9 dBi + 10 log(4/2) dB = 4.91 dBi.

where N_{SS} = the number of independent spatial streams of data and G_{ANT} is the antenna gain in dBi For this device, MIMO mode means SM-MIMO(Spatial Multiplexing) transmission and the lowest N_{SS}=2.

4. The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

FCC ID: WQTCG3000 / IC: 24567-CG3000

KAONMEDIA Co., Ltd.

802.11b mode

Chain 3 (1TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

Maximum Power Spectral Density, Highest Channel (2462 MHz)

Chain 3 (4TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Maximum Power Spectral Density, Highest Channel (2462 MHz)

PLOT OF TEST DATA

802.11g mode

Chain 3 (1TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

Maximum Power Spectral Density, Highest Channel (2462 MHz)

Chain 3 (4TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Maximum Power Spectral Density, Highest Channel (2462 MHz)

PLOT OF TEST DATA

802.11n (20 MHz) mode

Chain 3 (1TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

Maximum Power Spectral Density, Highest Channel (2462 MHz)

Chain 3 (4TX)

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Maximum Power Spectral Density, Highest Channel (2462 MHz)

802.11n (40 MHz) mode

Chain 3 (1TX)

Maximum Power Spectral Density, Lowest Channel (2422 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

KAONMEDIA Co., Ltd.

Maximum Power Spectral Density, Highest Channel (2452 MHz)

Chain 3 (4TX)

Maximum Power Spectral Density, Lowest Channel (2422 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Maximum Power Spectral Density, Highest Channel (2452 MHz)

8.6 Conducted Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11b mode - 1TX

Channel	Frequency	Reference Level (dBm)	Conducted Spurious	Limit
(MHz)	Chain 3	Emissions (dBc)	(dBc)	
Lowest	2412	14.71	More than 30 dBc	30
Middle	2437	14.36	More than 30 dBc	30
Highest	2462	14.22	More than 30 dBc	30

802.11b mode - 4TX

Channel	Frequency (MHz)	Reference Level (dBm) Chain 3	Conducted Spurious Emissions (dBc)	Limit (dBc)
Lowest	2412	8.83	More than 30 dBc	30
Middle	2437	8.67	More than 30 dBc	30
Highest	2462	8.57	More than 30 dBc	30

802.11g mode - 1TX

Channel	Reference Level (dBm) Conduction		Conducted Spurious	Limit
Channel (MHz)	(MHz)	Chain 3	Emissions (dBc)	(dBc)
Lowest	2412	1.40	More than 30 dBc	30
Middle	2437	12.81	More than 30 dBc	30
Highest	2462	2.64	More than 30 dBc	30

KAONMEDIA Co., Ltd. NKQF-27-18 (Rev. 00) FCC ID: WQTCG3000 / IC: 24567-CG3000

TEST DATA

802.11g mode - 4TX

Channel	Frequency	Reference Level (dBm)	Conducted Spurious	Limit
(MHz)	(MHz)	Chain 3	Emissions (dBc)	(dBc)
Lowest	2412	0.74	More than 30 dBc	30
Middle	2437	8.80	More than 30 dBc	30
Highest	2462	1.43	More than 30 dBc	30

802.11n (20MHz) mode - 1TX

Channel	Frequency Reference Level (dBm) Conducted Spurio		Conducted Spurious	Limit
(MHz)	(MHz)	Chain 3	Emissions (dBc)	(dBc)
Lowest	2412	1.43	More than 30 dBc	30
Middle	2437	12.53	More than 30 dBc	30
Highest	2462	2.31	More than 30 dBc	30

802.11n (20MHz) mode – 4TX

Channal	Frequency	Reference Level (dBm)	Conducted Spurious	Limit
Channel (MHz)	Chain 3	Emissions (dBc)	(dBc)	
Lowest	2412	0.98	More than 30 dBc	30
Middle	2437	9.09	More than 30 dBc	30
Highest	2462	2.18	More than 30 dBc	30

802.11n (40MHz) mode - 1TX

Channel	Frequency (MHz)	Reference Level (dBm) Chain 3	Conducted Spurious Emissions (dBc)	Limit (dBc)
Lowest	2412	-2.86	More than 30 dBc	30
Middle	2437	0.87	More than 30 dBc	30
Highest	2462	-3.22	More than 30 dBc	30

TEST DATA

802.11n (40MHz) mode - 4TX

Channel	Frequency (MHz)	Reference Level (dBm) Chain 3	Conducted Spurious Emissions (dBc)	Limit (dBc)
Lowest	2412	-3.36	More than 30 dBc	30
Middle	2437	0.43	More than 30 dBc	30
Highest	2462	-3.59	More than 30 dBc	30

Notes:

- 1. The cable and attenuator loss from 30 MHz to 26.5 GHz was reflected in spectrum analyzer with correction factor for the spurious emissions test.
- 2. The worst ant port was determined by the conducted output power that generates the highest emission performing pre-scan testing in all ant port of each mode.

802.11b mode

Chain 3 (1TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

KAONMEDIA Co., Ltd.

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

Chain 3 (4TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

802.11g mode

Chain 3 (1TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

KAONMEDIA Co., Ltd.

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

Chain 3 (4TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

802.11n (20 MHz) mode

Chain 3 (1TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

KAONMEDIA Co., Ltd.

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

Chain 3 (4TX)

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Band Edge, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

802.11n (40 MHz) mode

Chain 3 (1TX)

Reference Power Spectral Density, Lowest Channel (2422 MHz)

Band Edge, Lowest Channel (2422 MHz)

KAONMEDIA Co., Ltd.

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2422 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2452 MHz)

Band Edge, Highest Channel (2452 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2452 MHz)

Chain 3 (4TX)

Reference Power Spectral Density, Lowest Channel (2422 MHz)

Band Edge, Lowest Channel (2422 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2422 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2452 MHz)

Band Edge, Highest Channel (2452 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2452 MHz)

8.7 Radiated Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel,

802.11n mode

Lowest Channel

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2487.40	63.4	V	peak	-7.6	55.8	74.0	18.2
7235.50	47.3	Н	peak	7.2	54.5	74.0	19.5

Middle Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4861.50	59.7	Н	peak	1.5	61.2	74.0	12.9
4864.27	48.6	Н	Average	1.4	50.0	54.0	4.0
7298.50	57.3	Н	peak	7.2	64.5	74.0	9.5
7298.87	44.3	Н	Average	7.2	51.5	54.0	2.5
9724.00	51.9	Н	peak	10.2	62.1	74.0	11.9
9728.33	40.3	Н	Average	10.2	50.5	54.0	3.5
12168.50	46.1	Н	peak	12.0	58.1	74.0	15.9
12162.00	34.0	Н	Average	12.0	46.0	54.0	8.0

Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
7386.00	46.1	Н	peak	7.8	53.9	74.0	20.1

NKQF-27-18 (Rev. 00) FCC ID: WQTCG3000 / IC: 24567-CG3000

KAONMEDIA Co., Ltd.

TEST DATA

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 30 dB below Fundamental.
- 4. 6 channel (2437MHz) in n (20MHz) mode was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 5rd harmonic for this device.

Worst Case

802.11n (20 MHz) mode

Middle channel: 1 GHz to 18 GHz_Peak

Middle channel: 4864.27 MHz_Average

Middle channel: 7298.87 MHz_Average

Middle channel: 9728.33 MHz_Average

Middle channel: 12162.00 MHz_Average

Middle channel: 18 GHz to 26.5 GHz_Peak

TEST DATA

8.8 Radiated Band Edge

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel and Highest channel

802.11n (20MHz) mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2389.73	79.2	V	peak	-7.9	71.3	74.0	2.7
2390.00	68.1	V	peak	-7.9	60.2	74.0	13.8
2390.00	55.4	V	average	-7.9	47.5	54.0	6.5

Highest Channel

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2483.50	72.8	٧	peak	-7.6	65.2	74.0	8.8
2483.50	56.7	V	average	-7.6	49.1	54.0	4.9
2483.71	78.7	V	peak	-7.6	71.1	74.0	2.9

802.11n (40MHz) mode

Lowest Channel

Frequency	Reading	Pol*	ma a da	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2382.02	79.4	V	peak	-7.9	71.5	74.0	2.5
2390.00	72.6	V	peak	-7.9	64.7	74.0	9.3
2390.00	57.1	V	average	-7.9	49.2	54.0	4.8

TEST DATA

Highest Channel

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2483.50	75.1	V	peak	-7.6	67.5	74.0	6.5
2483.51	57.6	V	average	-7.6	50.0	54.0	4.0
2484.84	77.6	V	peak	-7.6	70.0	74.0	4.0
2483.61	58.1	V	average	-7.6	50.5	54.0	3.5

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 30 dB below Fundamental.
- 4. Highest channel (2452MHz) in n (40MHz) mode was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. Average emissions were measured using RBW = 1 MHz, VBW = 3 kHz, Detector = Peak, as specified in "12.2.5.3 Average Power Measurement Procedures" in "558074 D01 DTS Meas Guidance v05".

PLOT OF TEST DATA

Worst Case

802.11n (40 MHz) mode

Highest channel _Peak

Highest channel _Average

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 02 2019	1 year
2	*Test Receiver	R&S	ESCS30	100302	Oct. 11 2018	1 year
3	Attenuator	PASTERNACK	PE7395-10	1441-1	Jul. 11 2019	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Apr. 03 2019	1 year
5	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 03 2019	1 year
6	*Attenuator	WEINSCHEL	56-10	58765	Oct. 12 2018	1 year
7	*Amplifier	R&S	SCU 01	10029	Apr. 02 2019	1 year
8	*Amplifier	R&S	SCU18F	180025	Apr. 02 2019	1 year
9	*Amplifier	R&S	SCU26	10011	Jul. 15 2019	1 year
10	Amplifier	R&S	SCU40	100380	Jul. 15 2019	1 year
11	Pre Amplifier	HP	8449B	3008A00107	Jan. 08 2019	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Apr. 02 2019	1 year
13	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Oct. 11 2018	1 year
14	*Spectrum Analyzer	R&S	FSW43	104084	Apr. 02 2019	1 year
15	*Loop Antenna	R&S	HFH2-Z2	100279	Feb. 13 2019	2 year
16	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-474	Jun. 28 2019	2 year
17	*Horn Antenna	Q-par Angus	QSH20S20	8179	Jul. 15 2019	2 year
18	Horn Antenna	Q-par Angus	QSH22K20	8180	Jul. 15 2019	2 year
19	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	946	May. 18 2019	2 year
20	*LISN	R&S	ESH3-Z5	833874/006	Oct. 12 2018	1 year
21	*Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
22	*Controller	INNCO	CO3000	CO3000/937/38330516/L	N/A	N/A
23	*Turn Table	INNCO	DS1200S	N/A	N/A	N/A
24	*Turn Table	INNCO	DT2000-2t	N/A	N/A	N/A
25	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
26	*TILT Antenna Mast	INNCO	MA4640-XP-EP	N/A	N/A	N/A
27	*Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
28	*Open Switch And Control Unit	R&S	OSP-120	101766	N/A	N/A
29	*Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
30	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
31	*WiFi Filter Bank	R&S	U083	N/A	N/A	N/A
32	*WiFi Filter Bank	R&S	U082	N/A	N/A	N/A

^{*)} Test equipment used during the test

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dΖ	± 1.80	triangular	2.449	0.73	1	0.73
Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	a: AMN-Receiver Mismatch : + b: AMN-Receiver Mismatch : -						
Combined Standard Uncertainty	Normal ± 1.88						
Expended Uncertainty U	Normal ($k = 2$) ± 3.76						

KAONMEDIA Co., Ltd. NKQF-27-18 (Rev. 00) FCC ID: WQTCG3000 / IC: 24567-CG3000

2. Radiation Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>					
Source of Uncertainty	Xi	Value (dB)	Probability Distribution	Coverage factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)	
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34	
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01	
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09	
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46	
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18	
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25	
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15	
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50	
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00	
Antenna Factor Height Dependence	АН	± 2.00	rectangular	√3	1.15	1	1.15	
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12	
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14	
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63	
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35	
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52	
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18	
Mismatch	М	+ 0.98 - 1.11	U-Shaped	√2	0.74	1	0.74	
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11	
Remark								
Combined Standard Uncertainty	Normal							
Expended Uncertainty U		Normal (<i>k</i> = 2)						