MINING THE MYCOBACTERIUM TUBERCULOSIS FLAVOPROTEOME: A BIOINFORMATIC APPROACH.

Speaker: Raquel Ventura Baños

Director: Milagros Medina Trullenque

Codirector: Marta Martínez Júlvez

UNIVERSIDAD DE ZARAGOZA - DPTO. BIOQUÍMICA - BIFI

Master in Biophysics and Quantitative Biotechnology

Pharmaceutical relevance of the study and drug target search

Availability of drugs in different countries, Europe survey, central and western Europe, October 2023, Otto-Knapp et al., 2024

	Bedaquiline	Levofloxacin	Moxifloxacin	Linezolid	Clofazimine	Cycloserine	Pretomanid	Delamanid
Belgium								
Croatia								
Czechia								
Estonia								
Finland								
Germany								
Ireland								
Latvia								
Lithuania								
Luxembourg								
Malta								
The Netherlands								
Norway								
Portugal								
Romania								
Slovakia					NA			
Sweden								
United Kingdom								

Previous knowledge about M. tuberculosis flavoproteome

Riboflavin derivatives, Zhang et al., 2020.

The flavoproteome content has only been reported for a small number of species with different protein diversity.

While human and *Saccharomyces cerevisiae* flavoproteomes contain 78 and 48 different proteins respectively, *Arabidopsis thaliana* has more than 200.

Montesa's study lacked the complete identification of the potential function of 133 out of the 184 envisaged as flavoproteins and flavoenzymes in *M. tuberculosis*. Previous search workflow, Montesa et al., 2023 TFG.

Similarity search

BLAST sequence similarity search algorithm diagram.

HSP: high segment scoring pair

MMSeqs

K-mers extension with inexact matches and multiple processors (servers)

Diamond (faster, blast sensitivity)

- Reduced alphabet and database blocks
- Larger and spaced seeds in different shapes
- Double indexing

Benchmark of DIAMND, MMSeqs2 and BLASTP Buchfink et al., 2021.

Orthology

Four types of homology relations, Stamboulian et al., 2020

- Orthologs are similar sequences that share a common ancestor, while paralogs are generated by duplication.
- Ortholog conjecture states that proteins from orthologs have higher chances to share functionality, orthologs are often used to predict function based on similarity.
- There is ongoing debate about the terms that are often used to describe other evolutionary relationships. This has led to the development of related terms to duplication and speciation.

Objective

To deepen into our knowledge of the flavoproteome of *M. tuberculosis* by particularly:

- creating an efficient method of searching for orthologs.
- predicting potential catalytic activity based on protein sequences.

Experimental design; precision and annotations

Benchmarking of different ortholog search methods, Altenhoff et al., 2016

- Experimentally supported GO annotations: sometimes only annotate some functional characteristics that often are related but are not necessarily indicative of similar catalytic activity.
- b. Enzyme Commission (EC) numbers: data provided by spanning archaeal, bacterial and eukaryotic proteomes support the idea that orthologs can be a highly accurate predictor of enzyme functions in the way of enzyme commission numbers. (around 95% percent)

Experimental design; pipeline

- Data: all proteins detected as flavoproteins with catalytic activity records in UniProt.
- **Algorithm**: Diamond presents the fastest algorithm for similarity search that allows local running.
- **Complexity** (efficiency) and other methods: accurate methods rely on complex network approaches taking account structure, ppi apart from sequence.
- Taking some genetic considerations approach complexity is lower: ortholog conjecture.
 - **RBH**: Reciprocal best hits, best hits for the query in the whole filtered database represent best hits in the whole species genome, having best hits in both species, orthologs.
 - **UBH:** Unidirectional best hits are best hits from each taxonomic species resulting from first similarity search (more diverse homologs, with a high ortholog content)

Experimental design; orthology

RBH:

- Therefore, after such an event occurs, pairs of genes that are caused by duplication and subsequent speciation can be detected as orthologs and *vice versa*, causing FP (false positive) and FN (false negative) respectively (cases c and d in figure).
- In the presence of a different number of duplications in each species, only detects the most similar pair.

UBH:

- May include gene loss and speciation after duplication orthologs not contemplated by RBH.
- Might mislead more paralogs as orthologs (non-reciprocity).
- Are restricted to the best hits annotated in the database.

Performance of RBH in conceptual examples, Dalquen and Dessimoz, 2013.

Workflow

Workflow

Workflow

Statistical assessment

TP (true positives) = number of orthologs matching one or two annotations with its query annotation

FP = number of orthologs all of whose annotations do not match the query annotation

FN = number of orthologs of an annotated query with no annotations

$$precision = \frac{TP}{FP + TP}$$

$$recall = \frac{TP}{FN + TP}$$

$$ortholog number = FP + TP + FN$$

$$annotation coverage = \frac{TP + FP}{FP + TP + FN}$$

Statistical assessment, recall, precision and annotation coverage

Statistical assessment, recall, precision and annotation coverage

Recall, precision and annotation coverage classifications population

- Queries with low annotation coverage, recall, and precision are those with no annotated hits (FNs), due to the stringent annotation threshold that excludes all unannotated orthologs.
- Low predictive precision, high annotation coverage and high recall mean numerous FPs and TP presence.
- Flavoproteins with high ortholog predictive precision, annotation coverage and recall are those with a high number of TPs and a low count of FN and FP.
- High precision, low recall and low or high annotation coverage means a strong presence of not annotated proteins (FNs) with a low count of TPs, that is, poorly annotated orthologs coincide with previous annotations.
- Predictions for queries with low recall and precision and high annotation coverage have FNs and high FP count.

E-value threshold

- Low predictive precision, high annotation coverage and high recall mean numerous FPs and TP presence.
- Flavoproteins with high ortholog predictive precision, annotation coverage and recall are those with a high number of TPs and a low count of FN and FP.
- High precision, low recall and low or high annotation coverage means a strong presence of not annotated proteins (FNs) with a low count of TPs, that is, poorly annotated orthologs coincide with previous annotations.
- Predictions for queries with low recall and precision and high annotation coverage have FNs and high FP count.

Negative base-10 logarithm of E-value means for each query for the different classifications

Precision for metabolic pathway prediction

Precision for catalytic activity prediction

0 0.5 1.0

synthase

Pharmaceutical target present in 29 species of Mycobacterium and not present in the 8 mammal species revised including homo sapiens (Montesa et al., 2023 TFG)

Possible cholesterol side chain degrader that would lead to a potential drug target, an acute immune response of TB host is lipid metabolism gene up-regulation, mycobacteria use steroids as a primary source for energy and thus, survival (Wilburn *et al.*, 2018; Wipperman *et al.*, 2014).

Useful for ethanol synthesis (Tian et al., 2017).

Orthologs found with an alignment below the E-value threshold (<1E-30) are considered for function prediction.

Lowest E-value, higher identity percentage together with species and alignment coverage and posible annotation experimental assertion are considered to select an ortholog closer function.

	Query code	Description		Pathwa	ıy		EC
	CCP42857.1	F420-dependent hydroxymyco dehydrogenase	lic acid	Mycolic	acid biosynthesis		1.1.98
\	CCP43226.1	Long-chain-alcohol oxidase					1.1.3.20
	CCP43640.1	NAD(P)/FAD-dependent oxidoreductase					1.14.13
	CCP44538.1	L-gulonolactone oxidase		L-ascor	bate biosynthesis		1.1.3.8
	CCP45062.1	D-lactate dehydrogenase					1.1.99.6
	Query code	Description			Pathways		EC
	CCP42879.1	Acyl-CoA dehydrogenase FadE2		Lipid metabolism; fatty acid	d beta-	1.3.8.7	
\	CCP46093.1	Acyl-CoA dehydrogenase fadE25 Short/branched chain specific acyl-CoA dehydrogenase			Lipid metabolism; fatty acid oxidation / isoleucine, leucivaline degradation		
	CCP45916.1	NADPH-ferredoxin reductase Fpr	А		Cholesterol metabolism		1.18.1.2
-	Query code	Description	Pathwa	у		EC	
\	CCP43601.1	pyruvate decarboxylase Carbohydrate metabolism			etabolism; pyruvate	4.1.	1.1
	CCP44035.1	dehydrogenase biosynt aldehyd			mine biosynthesis; betaine choline pathway; betaine noline (cytochrome castep 1/1	1.1.9	99.1
	CCP45032.1	Alkylglycerone-phosphate	Glycerol	ipid meta	abolism; ether lipid	2.5.	1.26

biosynthesis

Query code	Description	Pathway	EC
CCP42887.1	D-2-hydroxyglutarate dehydrogenase		1.1.99.39
CCP44704.1	FAD-binding oxidoreductase		1
CCP46393.1	Flavin-dependent monooxygenase, oxygenase subunit HsaA	Steroid biosynthesis	1.14.14.12*
CCP43539.1	LLM class F420-dependent oxidoreductase		1
CCP44118.1	LLM class F420-dependent oxidoreductase		1.14
CCP45888.1	LLM class F420-dependent oxidoreductase		1
CCP45863.1	NAD(P)H-dependent oxidoreductase		1
CCP46180.1	NADPH dehydrogenase		1.6.99.1

Pharmaceutical target present in 29 species of Mycobacterium and not present in the 8 mammal species revised including homo sapiens (Montesa et al., 2023 TFG)

Query code	Description	Pathway	EC	Query code	Description	Pathway	EC
CCP43131.1		aryl-CoA dehydrogenase (ETF) tryptophan degradation		CCP46626.1	Acyl-CoA dehydrogenase FadE35		1.3.99.3
	glutaryl-CoA dehydrogenase (ETF)			CCP43415.1	Acyl-CoA dehydrogenase FadE8		1.3.99.3
CCP42856.1	Acyl-CoA dehydrogenase FadE1 (R)-benzylsuccinyl-CoA dehydrogenase	Xenobiotic degradation; toluene degradation	1.3.8.3	CCP43498.1	Acyl-CoA dehydrogenase FadE9 short-chain 2-methylacyl-CoA dehydrogenase	Amino-acid degradation; L-isoleucine degradation/ Lipid metabolism; fatty acid beta-oxidation	1.3.8.5
CCP43621.1	Acyl-CoA dehydrogenase FadE10	Lipid metabolism; fatty acid beta- oxidation		CCP44444.1	Acyl-CoA/acyl-ACP dehydrogenase FadE16	acia beta oxidation	1.3.99.3
CCP43721.1	Acyl-Coa dehydrogenase FadE12 Isovaleryl-CoA dehydrogenase	Amino-acid degradation; L-leucine degradation; (S)-3-hydroxy-3-methylglutaryl-CoA from 3-isovaleryl-CoA: step 1/3	1.3.8.4	CCP45588.1	Acyl-CoA/acyl-ACP dehydrogenase FadE21 Isovaleryl-CoA dehydrogenase	Amino-acid degradation; L-leucine degradation; (S)-3-hydroxy-3-methylglutaryl-CoA from 3-isovaleryl-CoA: step 1/3	1.3.8.4
CCP43724.1	Acyl-CoA dehydrogenase fadE13		1.3.8.7	CCP42959.1	Acyl-CoA/acyl-ACP dehydrogenase	- CO/1. Step 1/3	1.3.8.7
CCP44701.1	Acyl-CoA dehydrogenase FadE17		1.3.99.3		FadE4		
CCP45294.1		Amino-acid degradation; L-isoleucine degradation/ Lipid metabolism; fatty	1.3.8.5	CCP44635.1	Ferredoxin reductase	Aromatic compound metabolism	1.18.1.2/1.18.1. 3
	short-chain 2-methylacyl-CoA dehydrogenase	acid beta-oxidation		CCP45029.1	Glycerol-3-phosphate dehydrogenase 1	Polyol metabolism; glycerol degradation via glycerol kinase pathway; glycerone phosphate from	1.1.5.3
CCP42879.1	Acyl-CoA dehydrogenase FadE2		1.3.8.7			sn-glycerol 3-phosphate (aerobic	
CCP45522.1	Acyl-CoA dehydrogenase FadE20	Lipid metabolism; mitochondrial fatty	1.3.8.8			route): step 1/1	
	Long-chain specific acyl-CoA dehydrogenase	acid beta-oxidation		CCP46121.1	Glycerol-3-phosphate dehydrogenase 2	Polyol metabolism; glycerol degradation	1.1.5.3
CCP45951.1	short-chain 2-methylacyl-CoA degradation/ Lipid metab	Amino-acid degradation; L-isoleucine	1.3.8.5	CCP43146.1	Glycine oxidase ThiO		1.4.3.19
		degradation/ Lipid metabolism; fatty acid beta-oxidation		CCP45916.1	NADPH-ferredoxin reductase FprA		1.18.1.2
CCP45950.1	dehydrogenase Acyl-CoA dehydrogenase FadE24	acid beta-oxidation	1.3.99.3	CCP43115.1	Nitric oxide dioxygenase		1.14.12.17
CCP46093.1	Acyl-CoA dehydrogenase fadE25		1.3.99.3	CCP43944.1	Proline dehydrogenase	Amino-acid degradation; L-proline degradation into L-glutamate; L-	1.5.5.2
CCP42943.1	Acyl-CoA dehydrogenase FadE3 Amino-acid degradation; L-leucine lsovaleryl-CoA dehydrogenase degradation; (S)-3-hydroxy-3-methylglutaryl-CoA from 3-isovaleryl-CoA: step 1/3	,	1.3.8.4			glutamate from L-proline: step 1/2	
			CCP42977.1	Succinate dehydrogenase flavoprotein subunit [iron-sulfur subunit]	Carbohydrate metabolism; tricarboxylic acid cycle; fumarate from succinate (bacterial route): step 1/1	,	

Useful for toluene degradation since anaerobic oxidation of petroleum hydrocarbons can be coupled to the reduction of metals, this will accelerate the removal of pollutants(Tremblay and Zhang, 2017)

Query code	Description	Pathway	EC
CCP42785.1	Carbohydrate oxidase	Energy metabolism	(1.1.3.5)*
CCP43180.1	NAD(P)/FAD-dependent oxidoreductase		1
CCP43226.1	Long-chain-alcohol oxidase	Energy metabolism	1.1.3.20/1.1.3.13
CCP43303.1	NAD(P)/FAD-dependent oxidoreductase		1 (1.13.12)*
CCP43313.1	Oxidoreductase		1
CCP43441.1	Mycofactocin system GMC family oxidoreductase		1
CCP44016.1	flavin-dependent monooxygenase (7- chlorotetracycline and tetracycline oxidation)		1
CCP44152.1	Cyclopentanone 1,2-monooxygenase	Alcohol metabolism; cyclopentanol degradation; 5- valerolactone from cyclopentanol: step 2/2	1.14.13.16
CCP44492.1	FAD-binding oxidoreductase (R)-6-hydroxynicotine oxidase	Alkaloid degradation; nicotine degradation; 6-hydroxypseudooxynicotine from nicotine (R-isomer route): step 2/2	1.5.3.6
CCP44517.1	6-methylpretetramide 4- monooxygenase	Antibiotic biosynthesis; oxytetracycline biosynthesis	1.14.13.232
CCP45575.1	Carnitine monooxygenase reductase subunit	Amine and polyamine metabolism; carnitine metabolism	1.14.13.239
CCP45858.1	L-ornithine N(5)-monooxygenase	Siderophore biosynthesis	1.14.13.196
CCP46342.1	LLM class F420-dependent oxidoreductase		1.14
CCP46658.1	NAD(P)/FAD-dependent oxidoreductase		1,-,-,-

Pharmaceutical target present in 29 species of Mycobacterium and not present in the 8 mammal species revised including homo sapiens (Montesa et al., 2023 TFG)

Conclusions

- A novel computational method has been developed to effectively search for catalytic activity identification in flavoenzymes within the *Mycobacterium tuberculosis* flavoproteome.
- The method predicted 33 flavoprotein new complete functions leading to more accurate and metabolically contextualized descriptions, spanning diverse pathways and leading to 2 potential applications in biocatalysis and 3 in drug targeting.
- The method achieved approximately 60% agreement with previous annotations and successfully analysed 184 proteins in around 50 minutes.
- Out of the 133 unknown proteins, 54 were found to have similarity with fully annotated flavoproteins from all available species comprehending all kingdoms. 33 queries were found to have significance in high scoring segment pairs alignments.
- The flavoenzymes found are involved in amino-acid metabolism, lipid metabolism, xenobiotic and aromatic compound degradation, antibiotic biosynthesis biosynthesis, energy metabolism and amine synthesis.