Sintaxis y Semántica de los lenguajes

Propiedades de los lenguajes regulares y algunos problemas decidibles

2021

Facultad Regional Delta, Universidad Tecnológica Nacional

Propiedades de los lenguajes regulares.

1) Dados L_1 y L_2 dos lenguajes regulares sobre Σ , $L_1 \cup L_2$ es un lenguaje regular.

Demostración:

Sean
$$M_1 = \langle K_1, \Sigma, \delta_1, q_{0_1}, F_1 \rangle$$
 y $M_2 = \langle K_2, \Sigma, \delta_2, q_{0_2}, F_2 \rangle$ dos AFDs / $L(M_1) = L_1$ y $L(M_2) = L_2$, se puede construir M',

$$M' = \langle K', \Sigma, \delta', q_{0'}, F' \rangle /$$

$$K' = K_1 \cup K_2 \cup \{q_{0'}\} \cup \{q_{f'}\},\$$

$$\delta'(q, a) = \delta_1(q, a) \operatorname{si} q \in K_1$$
,

$$\delta'(q, a) = \delta_2(q, a) \operatorname{si} q \in K_2$$
,

$$\delta'(q_{0'}, \lambda) = \{q_{0_1}, q_{0_2}\},\$$

$$\delta'(q_{f_1}, \lambda) = q_{f'},$$

$$\delta'(q_{f_2},\,\lambda)=q_{f'},$$

$$F' = \{q_{f'}\}.$$

Luego si $(\alpha \in L_1 \lor \alpha \in L_2) \Rightarrow \alpha \in L(M')$ y $\alpha \in L(M') \Rightarrow (\alpha \in L_1 \lor \alpha \in L_2)$.

Ejercicio: demostrar

2) Sea L un lenguaje regular sobre Σ , luego el complemento de L, C(L) es un lenguaje regular sobre Σ .

Demostración:

Sean M el AFD / L(M) = L, se puede construir M' = < K, Σ , δ , q_0 , F' >,

F' = K - F.

Luego, $\forall \alpha \in \Sigma^*$, $(\alpha \in L \Rightarrow \alpha \notin L(M')) \land (\alpha \notin L \Rightarrow \alpha \in L(M'))$.

Ejercicio: demostrar que L(M') = C(L).

3) Dados L_1 y L_2 dos lenguajes regulares sobre Σ , $L_1 \cap L_2$ es un lenguaje regular.

Demostración:

$$L_1 \cap L_2 = \overline{(L_1 \cap L_2)} = \overline{(L_1 \cup L_2)}$$

Pero $\overline{L_1}$ es lenguaje regular y $\overline{L_2}$ también (por propiedad 2), así por propiedad 1, $\overline{L_1} \cup \overline{L_2}$ es lenguaje regular y de vuelta por propiedad 2 $\overline{\overline{L_1} \cup \overline{L_2}}$ es lenguaje regular.

4) Dados $\{L_i / i \in \aleph\}$ donde cada L_i es un lenguaje regular sobre Σ , luego

a) $\forall n \in \aleph, \bigcup_{i=1}^{n} L_i$ es un lenguaje regular,

b) $\forall n \in \mathbb{N}, \bigcap_{i=1}^{n} L_i$ es un lenguaje regular.

Demostración de a) (por inducción en n):

Caso base (n = 0)

Si $n = 0 \Rightarrow \bigcup_{i=1}^{n} L_i = \emptyset$ y ϕ es un lenguaje regular.

Paso inductivo:

 $\bigcup_{i=1}^{n+1} L_i = L_{n+1} \cup \bigcup_{i=1}^n L_i$, luego por HI y propiedad 1, $\bigcup_{i=1}^{n+1} L_i$ es un lenguaje regular.

Demostración de b) :¡Ejercicio!

Nota:

¿Es la unión infinita de lenguaje regulares un lenguaje regular?, esto es

¿Es $\bigcup_{i=1}^{\infty} L_i$ regular? La respuesta es **no**.

<u>Demostración</u> (por contraejemplo):

Sea $L_i = \{ a^i b^i \}$ con i en los naturales . Así, $L_1 = \{ ab \}$, $L_2 = \{ aabbb \}$, etc ¿Cuál es la unión infinita de los L_i ? Es exactamente $a^n b^n$ y nosotros sabemos que este lenguaje no es regular (por lema del bombeo).

5) Sea $L \subseteq \Sigma^* / |L|$ es finito, luego L es regular.

Demostración:

Numeremos las cadenas de L del 1 a n / |L| = n.

Sea α_1 la primera cadena perteneciente a L.

Podemos construir un AFD $M_1 / L(M_1) = \alpha_1$, esto es,

 $\alpha_1 = a_1 a_2 \dots a_{p_1}$ donde p_1 es la longitud de la cadena α_1 ,

El siguiente es un autómata que acepta α_1

Es decir, tenemos una cantidad finita de lenguajes L_i , cada uno es aquel formado exclusivamente por α_i . De modo que, por propiedad 4, la unión de esos lenguajes es regular. Pero la unión de esos lenguajes es L, y por lo tanto L es regular.

Ejercicio:

Dado M_1 , M_2 AFDs construir $M / L(M) = L(M_1) \cap L(M_2)$.

Sean
$$M_1 = \langle K_1, \Sigma, \delta_1, q_{0_1}, F_1 \rangle$$
, $M_2 = \langle K_2, \Sigma, \delta_2, q_{0_2}, F_2 \rangle$, definimos

$$M' = \langle K', \Sigma, \delta', q_{0'}, F' \rangle /$$

$$K' = K_1 \times K_2,$$

$$\delta'((q, r), a) = (\delta_1(q, a), \delta_2(r, a)), q \in K_1, r \in K_2,$$

$$q_{0'} = (q_{0_1}, q_{0_2}),$$

$$F' = F_1 \times F_2$$

<u>Demostración</u>:

Si
$$\alpha \in L(M') \Leftrightarrow \delta((q_{0_1}, q_{0_2}), \alpha) \in F_1 \times F_2 \Leftrightarrow \delta_1(q_{0_1}, \alpha) \in F_1 \wedge \delta_2(q_{0_2}, \alpha) \in F_2 \Leftrightarrow \alpha \in L(M_1) \wedge \alpha \in L(M_2).$$

Algunos problemas decidibles en lenguajes regulares.

1) **Pertenencia**. Dado L sobre Σ y $\alpha \in \Sigma^*$, $\partial \alpha \in \Sigma$

2) Finitud: dado L, ¿es L infinito?

3) Vacuidad: dado L, ¿es L vacío?

4) **Equivalencia**: dados L₁ y L₂, ¿son equivalentes?

- 1) Pertenencia.
- a) obtener el AFD M / L(M) = L. (Recordar que L estará dado por una gramática regular, expresión regular u otro tipo de AF, y que se dispone de métodos para pasar de esas formas de expresarlo a AFD).
- b) Ver si α está en L(M).

2) Finitud.

Sea M = < K,
$$\Sigma$$
, δ , q, F > AFD / L(M) = L,
L es **finito** si y sólo si \forall q \in K / q \vdash —*f, f \in F, es falso que (q \vdash —+q)

L es **infinito** si y sólo si $\exists q \in K / q \models f, f \in F \land (q \models f)$

- 3) Vacuidad.
- a) Obtener el AFD M / L(M) = L
- b) Obtener A, el conjunto de estados alcanzables
- c) Si F \cap A \neq ϕ \Rightarrow L \neq ϕ sino L = ϕ .

4) Equivalencia con Σ^*

Dado L, obtener AFD M y reducirlo a estados mínimos. Si se obtiene

entonces $L = \Sigma^*$.

Equivalencia entre L₁ y L₂ cualesquiera.

Dado L_1 y L_2 , obtener los AFDs M_1 y M_2 y reducir, ambos, a estados mínimos. Si los autómatas obtenidos son isomorfos, es decir, mas allá de cómo cada uno estén numerados, \exists una función biyectiva entre M_1 y M_2 , entonces L_1 y L_2 son iguales.

Alternativa: dados M_1 y M_2 / $L(M_1) = L_1$ y $L(M_2) = L_2$ construir un AFD para la unión de L_1 y L_2 y ver si q_{0_1} y q_{0_2} son indistinguibles. De serlos, entonces L_1 y L_2 son el mismo lenguaje. $(q_{0_1}$ y q_{0_2} son los estados iniciales de M_1 y M_2)