Mathematik I WS 15/16

Thomas $Dinges^1$ Jonas Wolf ²

4. November 2015

Inoffizielles Skript für die Vorlesung Mathematik I im WS 15/16, bei Britta Dorn. Alle Angaben ohne Gewähr. Fehler können gerne via E-Mail gemeldet werden.

¹thomas.dinges@student.uni-tuebingen.de

²mail@jonaswolf.de

Inhaltsverzeichnis

1	Logi	\mathbf{k}
	1.1	Negation
	1.2	Konjunktion
	1.3	Disjunktion
	1.4	XOR
	1.5	Implikation
	1.6	Äquivalenz
	1.7	Beispiel
	1.8	Definition
	1.9	Satz
	1.10	Bemerkung
		Bemerkung (Logisches Umformen)
	1.12	Definition
	1.13	Beispiel
	1.14	Definition
	1.15	Beispiel / Bemerkung
	1.16	Negation von All- und Existenzaussagen
2	Men	gen 13
	2.1	Definition (Georg Cantor, 1845-1918)
	2.2	Bemerkung
	2.3	Definition
	2.4	Beispiel
	2.5	Satz (Rechenregeln für Mengen)
3	Bew	eismethoden 19
	3.1	Direkter Beweis
	3.2	Beweis durch Kontraposition
	3.3	Beweis durch Widerspruch, indirekter Beweis
	3.4	Vollständige Induktion
		3.4.1 Prinzip der vollständigen Induktion
		3 4 2 Bemerkung 23

1 Logik

Aussagenlogik

Eine **logische Aussage** ist ein Satz, der entweder wahr oder falsch (also nie beides zugleich) ist. Wahre Aussagen haben den Wahrheitswert 1 (auch wahr, w, true, t), falsche den Wert 0 (auch falsch, f, false).

Notation: Aussagenvariablen $A, B, C, ...A_1, A_2$.

Beispiele:

- 2 ist eine gerade Zahl (1)
- Heute ist Montag (1)
- 2 ist eine Primzahl (1)
- 12 ist eine Primzahl (0)
- Es gibt unendlich viele Primzahlen (1)
- Es gibt unendlich viele Primzahlzwillinge (Aussage, aber unbekannt, ob 1 oder 0)
- 7 (keine Aussage)
- Ist 173 eine Primzahl? (keine Aussage)

Aus einfachen Aussagen kann man durch logische Verknüpfungen (**Junktoren**, z.B. und, oder, ...) kompliziertere bilden. Diese werden Ausdrücke genannt (auch Aussagen sind Ausdrücke). Durch sogenannte **Wahrheitstafeln** gibt man an, wie der Wahrheitswert der zusammengesetzten Aussage durch die Werte der Teilaussagen bedingt ist. Im folgenden seien A, B Aussagen.

Die wichtigsten Junktoren:

1.1 Negation

Verneinung von A: $\neg A$ (auch \bar{A}), *nicht* A, ist die Aussage, die genau dann wahr ist, wenn A falsch ist.

Wahrheitstafel:

Α	$\neg A$
1	0
0	1

Beispiele:

• A: 6 ist durch 3 teilbar. (1)

• $\neg A$: 6 ist nicht durch 3 teilbar. (0)

• B: 4,5 ist eine gerade Zahl (0)

• $\neg B$: 4,5 ist keine gerade Zahl. (1)

1.2 Konjunktion

Verknüpfung von A und B durch $und: A \wedge B$ ist genau dann wahr, wenn A und B gleichzeitig wahr sind.

Wahrheitstafel:

Α	В	$A \wedge B$
1	1	1
1	0	0
0	1	0
0	0	0

Beispiele:

• $\underbrace{6 \text{ ist eine gerade Zahl}}_{A(1)}$ und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (1)

• $\underbrace{9 \text{ ist eine gerade Zahl}}_{A(0)}$ und $\underbrace{\text{durch 3 teilbar}}_{B(1)}$. (0)

1.3 Disjunktion

 $oder: A \vee B$

Wahrheitstafel:

A	В	$A \vee B$
1	1	1
1	0	1
0	1	1
0	0	0

⚠ Einschließendes oder, kein entweder...oder.

Beispiele:

• 6 ist gerade oder durch 3 teilbar. (1)

- 9 ist gerade oder durch 3 teilbar. (1)
- 7 ist gerade oder durch 3 teilbar. (0)

1.4 XOR

entweder oder: A xor B, $A \oplus B$ (ausschließendes oder, exclusive or).

Wahrheitstafel:

Α	В	$A \oplus B$
1	1	0
1	0	1
0	1	1
0	0	0

1.5 Implikation

wenn, dann, $A \Rightarrow B$:

- wenn A gilt, dann auch B
- A impliziert B
- aus A folgt B
- A ist <u>hinreichend</u> für B,
- B ist notwendig für A

Wahrheitstafel:

A	В	$A \Rightarrow B$
1	1	1
1	0	0
0	1	1
0	0	1

(Die Implikation $A\Rightarrow B$ sagt nur, dass B wahr sein muss, <u>falls</u> A wahr ist. Sie sagt nicht, dass B tatsächlich war ist.)

Beispiele:

• Wenn 1 = 0, bin ich der Papst. (1)

1.6 Äquivalenz

 $genau\ dann\ wenn,\ A\Leftrightarrow B$ (dann und nur dann wenn, g.d.w, äquivalent, if and only if, iff)

Wahrheitstafel:

A	В	$A \Leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

Beispiele:

- Heute ist Montag genau dann wenn morgen Dienstag ist. (1)
- Eine natürliche Zahl ist durch 6 teilbar g. d. w. sie durch 3 teilbar ist. (0) $A \Rightarrow B \ (1)$ $B \Rightarrow A \ (0)$

Festlegung

 \neg bindet stärker als alle anderen Junktoren: $(\neg A \land B)$ heißt $(\neg A) \land B$

1.7 Beispiel

a)

Wann ist der Ausdruck $(A \vee B) \wedge \neg (A \wedge B)$ wahr?

 \rightarrow Wahrheitstafel

A	В	$(A \lor B)$	$(A \wedge B)$	$\neg (A \land B)$	$(A \vee B) \wedge \neg (A \wedge B)$
1	1	1	1	0	0
1	0	1	0	1	1
0	1	1	0	1	1
0	0	0	0	1	0

<u>∧</u> Klammerung relevant

Welche Wahrheitswerte ergeben sich für

• $A \lor (B \land \neg A) \land B)$?

• $A \vee B \wedge \neg A \wedge B$?

 $(A \vee B) \wedge \neg (A \wedge B)$ und $(A \oplus B)$ haben dieselben Wahrheitstafeln. Ausdrücke sehen unterschiedlich aus (Syntax), aber haben dieselbe Bedeutung (Semantik). Dies führt zu 1.8 Definition.

b)

Wann ist $(A \wedge B) \Rightarrow \neg (C \vee A)$ falsch?

 \rightarrow Wahrheitstafel:
 alle möglichen Belegungen von A,B,Cmit
 0/1

A	В	С	$(A \wedge B)$	$\neg(C \lor A)$	$(A \land B) \Rightarrow \neg(C \lor A)$
1	1	1	1	0	0
1	1	0	1	0	0
1	0	1	0	0	1
1	0	0	0	0	1
0	1	1	0	0	1
0	1	0	0	1	1
0	0	1	0	0	1
0	0	0	0	1	1

oder überlegen:

$$(A \wedge B) \Rightarrow \neg (C \vee A)$$
 ist nur 0, wenn

$$(A \wedge B) = 1$$
, also $A = 1$ und $B = 1$

und

$$\neg (C \lor A) = 0$$
 ist.

(Wissen: A = 1), also $\underline{C} = \underline{0}$ oder $\underline{C} = \underline{1}$ möglich.

1.8 Definition

Haben zwei Ausdrücke α und β bei jeder Kombination von Wahrheitswerten ihrer Aussagevariablen den gleichen Wahrheitswert, so heißen sie <u>logisch äquivalent</u>; man schreibt $\alpha \equiv \beta$. (' \equiv ' ist kein Junktor, entspricht '=')

Es gilt: Falls $\alpha \equiv \beta$ gilt, hat der Ausdruck $\alpha \Leftrightarrow \beta$ immer den Wahrheitswert 1.

1.9 Satz

Seien A, B, C Aussagen. Es gelten folgende logische Äquivalenzen:

- a) Doppelte Negation: $A \equiv \neg(\neg A)$
- b) Kommutativität von \land , \lor , \oplus , \Leftrightarrow :
 - $(A \wedge B) \equiv (B \wedge A)$
 - $(A \lor B) \equiv (B \lor A)$
 - $(A \oplus B) \equiv (B \oplus A)$
 - $(A \Leftrightarrow B) \equiv (B \Leftrightarrow A)$

 $\underline{\wedge}$ gilt nicht für ' \Rightarrow ' !! $(A \Rightarrow B \not\equiv B \Rightarrow A)$

- c) Assoziativität von \land , \lor , \oplus , \Leftrightarrow :
 - $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
 - $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - $(A \oplus B) \oplus C \equiv A \oplus (B \oplus C)$
 - $(A \Leftrightarrow B) \Leftrightarrow C \equiv A \Leftrightarrow (B \Leftrightarrow C)$
- d) Distributivität:
 - $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
 - $\bullet \ \ A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- e) Regeln von DeMorgan:
 - $\bullet \ \neg (A \land B) \equiv \neg A \lor \neg B$
 - $\bullet \ \neg (A \lor B) \equiv \neg A \land \neg B$
- $\mathbf{f)} \ A \Rightarrow B \equiv \neg B \Rightarrow \neg A$
- $\mathbf{g)} \ A \Rightarrow B \equiv \neg A \vee B$
- **h)** $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

(Alle Äquivalenzen gelten auch, wenn die Aussagevariablen durch Ausdrücke ersetzt werden.)

Beweis: Jeweils mittels Wahrheitstafel (Übung!), zum Beispiel:

	A	$\neg A$	$\neg(\neg A)$
a)	1	0	1
	0	1	0

	Α	В	$(A \wedge B)$	$\neg (A \land B)$	$\neg A$	$\neg B$	$(\neg A \lor \neg B)$
	1	1	1	0	0	0	0
e)	1	0	0	1	0	1	1
	0	1	0	1	1	0	1
	0	0	0	1	1	1	1

1.10 Bemerkung

$$(1.9 \text{ f}): (A \Rightarrow B) \equiv \underbrace{(\neg B \Rightarrow \neg A)}_{\text{wird} \ \underline{\text{Kontraposition}}} \text{ genannt, wichtig für Beweis. Wird im Sprachgebrauch oft falsch verwendet.}$$

Beispiel: Pit ist ein Dackel. \Rightarrow Pit ist ein Hund.

äquivalent zu: $(\neg B) \Rightarrow (\neg A)$

Pit ist kein Hund. \Rightarrow Pit ist kein Dackel.

aber nicht zu: $B \Rightarrow A$

Pit ist ein Hund. \Rightarrow Pit ist ein Dackel.

und nicht zu: $\neg A \Rightarrow \neg B$

Pit ist kein Dackel. \Rightarrow Pit ist kein Hund.

Beispiel: Sohn des Logikers / bellende Hunde $(\rightarrow$ Folien)

1.11 Bemerkung (Logisches Umformen)

Sei α ein Ausdruck. Ersetzen von Teilausdrücken von α durch logisch äquivalente Ausdrücke liefert einen zu α äquivalenten Ausdruck. So erhält man eventuell kürzere/einfachere Ausdrücke, zum Beispiel:

$$\neg(A\Rightarrow B)\underset{\text{1.9 g}}{\equiv}\neg(\neg A\vee B)\underset{\text{1.9 e})}{\equiv}\neg(\neg A)\wedge(\neg B)\underset{\text{1.9 a})}{\equiv}A\wedge\neg B$$

1.12 Definition

Ein Ausdruck heißt <u>Tautologie</u>, wenn er für jede Belegung seiner Aussagevariablen, immer den Wert 1 <u>annimmt</u>. Hat er immer Wert 0, heißt er <u>Kontradiktion</u>. Gibt es mindestens eine Belegung der Aussagevariablen, so dass der Ausdruck Wert 1 hat, heißt er erfüllbar.

1.13 Beispiel

- a) $A \vee \neg A$ Tautologie $A \wedge \neg A$ Kontradiktion
- b) $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$ Tautologie (vergleiche Beispiel in 1.11). $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$ Tautologie (vergleiche Beispiel in 1.9g).
- c) $A \wedge \neg B$ ist erfüllbar (durch A = 1, B = 0).

Prädikatenlogik

Eine <u>Aussageform</u> ist ein sprachliches Gebilde, dass formal wie eine Aussage aussieht, <u>aber eine oder mehrere Variablen enthält.</u>

Beispiel:
$$P(x)$$
 : $\underbrace{x}_{Variable} \underbrace{< 10}_{\text{Prädikat (Eigenschaft)}}$

Q(x): x studiert Informatik R(y): y ist Primzahl und $y^2 + 2$ ist Primzahl.

Eine AussageformP(x) wird zur Aussage, wenn man die Variable durch ein konkretes Objekt ersetzt. Diest ist nur dann sinnvoll, wenn klar ist, welche Werte für x erlaubt sind, daher wird oft die zugelassene Wertemenge mit angegeben. (hier Vorgriff auf Kapitel Mengen)

Im Beispiel:

- P(3) ist wahr, P(42) falsch.
- R(2) ist falsch, R(3) ist wahr.

Oft ist die Frage interessant, ob es wenigstens ein x gibt, für das P(x) wahr ist, oder ob P(x) sogar für alle zugelassenen x wahr ist.

1.14 Definition

Sei P(x) eine Aussageform.

a) Die Aussage Für alle x (aus einer bestimmten Menge M) gilt P(x). ist wahr genau dann wenn P(x) für alle in Frage kommenden x wahr ist.

Schreibweise:
$$\forall x \in M$$
 : $P(x)$ für alle, für jedes aus der Menge M gilt Eigenschaft

$$\operatorname{auch} \underbrace{\forall}_{x \in M} P(x).$$

Das Symbol ∀ heißt All- Quantor, die Aussage All- Aussage.

b) Die Aussage Es gibt (mindestens) ein x aus M, das die Eigenschaft P(x) besitzt. ist wahr, g.d.w P(x) für mindestens eines der in Frage kommenden x wahr ist.

Schreibweise:
$$\exists x \in M \quad \vdots \quad P(x)$$
.

∃ heißt Existenzquantor, die Aussage Existenzmenge.

1.15 Beispiel / Bemerkung

Übungsgruppe G:
$$\underbrace{a}_{Anna}\underbrace{b}_{Bob}\underbrace{c}_{Clara}$$

$$B(x): x$$
 ist blond. $W(x): x$ ist weiblich.

$$B(a) = 1, W(b) = 0$$

1. Alle Studenten der Gruppe sind blond. (1)

$$\forall x \in G$$
: x ist blond

$$\forall x \in G: B(x) (1)$$

Das bedeutet: a blond \wedge b blond \wedge c blond

$$\underbrace{B(a)}_1 \wedge \underbrace{B(b)}_1 \wedge \underbrace{B(c)}_1$$

 \forall ist also eine Verallgemeinerung der Konjunktion.

2. Alle Studenten der Gruppe sind weiblich. (0)

$$\underbrace{W(a)}_{1} \wedge \underbrace{W(b)}_{0} \wedge \underbrace{W(c)}_{1}(0)$$

3. Es gibt einen Studenten der Gruppe, der weiblich ist. (1)

$$\exists x \in G: W(x) (1)$$

bedeutet:
$$\underbrace{W(a)}_{1} \lor \underbrace{W(b)}_{0} \lor \underbrace{W(c)}_{1} = 1$$

 \exists ist verallgemeinerte Disjunktion.

4. Aussage A: Alle Studenten der Gruppe sind weiblich. (0)

Verneinung von A? $\neg A$

∧ Nicht korrekt wäre: Alle Studenten der Gruppe sind männlich. (Wahrheitswert ist auch 0)

Korrekt: Nicht alle Studenten der Gruppe sind weiblich (1) Es gibt (mindestens) einen Studenten der Gruppe, der nicht weiblich ist. (1)

allgemeiner:

1.16 Negation von All- und Existenzaussagen

a)
$$\neg(\forall x \in M : P(x)) \equiv \exists x \in M : \neg P(x)$$

b)
$$\neg(\exists x \in M : P(x)) \equiv \forall x \in M : \neg P(x)$$

(Verallgemeinerung der Regeln von DeMorgan) (vergleiche Beispiel 1.15, 4):

$$\neg(\forall x \in G : W(x))$$

$$\equiv \neg(W(a) \land W(b) \land W(c)$$

$$\underbrace{\equiv}_{DeMorgan} (\neg W(a)) \vee (\neg W(b)) \vee (\neg (W(c)))$$

$$\equiv \exists x \in G : \neg W(x)$$

Bemerkung

Aussageformen können auch mehrere Variablen enthalten, Aussagen mit mehreren Quantoren sind möglich.

Zum Beispiel:

$$\exists x \in X \quad \exists y \in Y : P(x, y)$$
$$\exists x \in X \quad \forall y \in Y : P(x, y)$$

$$\forall x \in X \quad \exists y \in Y : P(x, y)$$

 $\forall x \in X \quad \forall y \in Y : P(x, y)$

Negation dann durch mehrfaches Anwenden von 1.16, zum Beispiel:

$$\neg(\forall x \in X \quad \forall y \in Y \quad \exists z \in Z : P(x, y, z))
\equiv \exists x \in X : \neg(\forall y \in Y \quad \exists z \in Z : P(x, y, z))
\equiv \exists x \in X \quad \exists y \in Y : \neg(\exists z \in Z : P(x, y, z))
\equiv \exists x \in X \quad \exists y \in Y \quad \forall z \in Z : \neg P(x, y, z))$$

Also:

ändere \exists in \forall , \forall in \exists , verneine Prädikat.

2 Mengen

2.1 Definition (Georg Cantor, 1845-1918)

Eine <u>Menge</u> ist eine Zusammenfassung von bestimmten wohlunterscheidbaren Objekten (<u>Elementen</u>) unserer Anschauung oder unseres Denkens zu einem Ganzen.

Im Folgenden seien A, B Mengen.

- a) $x \in A : x$ ist Element der Menge A $x \notin A : x$ ist nicht Element der Menge A oder auch: $A \ni x : x$ ist Element der Menge A $A \not\ni x : x$ ist nicht Element der Menge A
- b) Eine Menge kann beschrieben werden durch:

 $\mathbb{N}_0 = \{0, 1, 2, 3, 4, ...\}$ Menge der natürlichen Zahlen mit der Null $\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$ Menge der ganzen Zahlen

• Charakterisierung ihrer Elemente:

 $A = \{x \mid x \text{ besitzt die Eigenschaft } E\}, \text{ z.B.:}$

$$A = \{ n \mid n \in \mathbb{N} \text{ und n ist gerade} \}$$

sprich: "mit der Eigenschaft"

$$= \{2, 4, 6, 8, ...\}$$

$$= \{x \mid \exists k \in \mathbb{N} \text{ mit } x = 2 \cdot k\} = \{2k \mid k \in \mathbb{N}\}\$$

Bsp: $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$ Menge der rationalen Zahlen

- c) Mit Ø bezeichnen wir die Menge ohne Elemente (leere Menge)
- d) Mit |A| bezeichnen wir die Anzahl der Elemente der Menge A (Kardinalität oder Mächtigkeit von A), zum Beispiel:

$$|\{1, a, \overline{*}\}| = 3, \quad |\emptyset| = 0, \quad |\mathbb{N}| = \infty, \quad |\{\mathbb{N}\}| = 1$$

e) $A \cap B := \{x \mid x \in A \land x \in B\}$ heißt <u>Durchschnitt</u> oder <u>Schnittmenge</u> von A und B.

Grafische Veranschaulichung: Venn-Diagramm (\wedge gilt nicht als Beweis)

f) $A \cup B := \{x \mid x \in A \lor x \in B\}$ heißt Vereinigung von A und B.

Beispiele: $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{4\}$

$$\begin{split} A \cap B &= \{2,3\}, \\ A \cap C &= \emptyset, \\ B \cap C &= \{4\} = C, \end{split}$$

$$A \cup B = \{1, 2, 3, 4\}$$

g) A und B heißen disjunkt, falls gilt $A \cap B = \emptyset$

h) A heißt Teilmenge von $B, A \subseteq B$, falls gilt:

$$x \in A \Rightarrow x \in B$$

Oder in Worten: Jedes Element von A ist auch Element von B.

Dasselbe bedeutet die Notation

$$B \supset A$$

(B ist Obermenge von A)

Beispiel: $\{1,2\} \subseteq \{1,2,3\} \subseteq \mathbb{N} \subseteq \mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{R}$ (reelle Zahlen)

Es gilt: $\emptyset \subseteq A$ für jede Menge A.

Achtung: Unterschied $\subseteq, \in !$

Zum Beispiel:

 $A = \{1, \mathbb{N}\}\$ (hier ist die Menge \mathbb{N} ein Element von A, keine Teilmenge!)

$$1 \in A$$
, $\mathbb{N} \in A$, $\mathbb{N} \nsubseteq A$, $2 \notin A$, $\{1\} \subseteq A$

i) Zwei Mengen A, B heißen gleich $(A = B, \text{ falls gilt: } A \subseteq B \text{ und } B \subseteq A \text{ (also } x \in A \Rightarrow / \Leftarrow / \Leftrightarrow x \in B.$

Darin liegt ein Beweisprinzip: Man zeigt A=B, indem man zeigt:

- $x \in A \Rightarrow x \in B$
- $x \in B \Rightarrow x \in A \text{ (mehr später)}$

Beispiel: $A=2,3,4, \qquad B=\{x\in\mathbb{N}\mid x>1 \text{ und } x<5\}$ A=B

j) $A \subsetneq B(A \subsetneq B)$ bedeutet $A \subseteq B$, aber $A \neq B$.

(d.h. $\exists x \in B \text{ mit } x \notin A, \text{ aber } x \in B$)

(A ist echte Teilmenge von B.)

k) Mit $P(A) := \{B \mid B \text{ ist eine Teilmenge von A}\} = \{B \mid B \subseteq A\}$ bezeichnen wir die Menge aller (echten oder nicht echten) Teilmengen von A, die sogenannte Potenzmenge von A. $(\emptyset \subseteq A \forall A, A \subseteq A \forall A)$

Beispiel:

$$A = \{1, \}, P(A) = \{\emptyset, \{\underbrace{1}_{A}\}\}$$

$$B = \{1, 2\}, P(B) = \{\emptyset, \{1\}, \{2\}, \{\underbrace{1, 2}\}\}\}$$

$$C = \{1, 2, 3\}, P(C) = \dots (8 \text{ Elemente})$$

$$P(\emptyset) = \{\emptyset\}$$

Was ist P(P(A))?

$$P(P(A)) = P(\{\emptyset, \{1\}\}) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, \{1\}\}\}$$

1) $A \setminus B := \{x \mid x \in A \text{ und } x \notin B\}$ heißt die <u>Differenz</u> (A ohne B).

Ist $A \subseteq X$ mit einer Obermenge X, so heißt $X \setminus A$ das Komplement von A (bezüglich X). Wir schreiben A_X^C oder kurz A^C (wenn X aus dem Kontext klar ist).

m) $A \triangle B := (A \backslash B) \cup (B \backslash A)$ heißt die symmetrische Differenz von A und B.

2.2 Bemerkung

Verallgemeinerung der Vereinigung und des Durchschnitts:

$$A_1 \cap A_2 \cap \dots \cap A_n = \{x \mid x \in A_1 \land x \in A_2 \land \dots \land x \in A_n\}$$

$$=:\bigcap_{i=1}^n A_i$$

$$A_1 \cup \ldots \cup A_n = \{x \mid x \in A_1 \vee \ldots \vee x \in A_n\}$$

$$=: \bigcup_{i=1}^{n} A_i$$

Beziehungsweise noch allgemeiner:

Sei S eine Menge von Mengen (System von Mengen)

2.3 Definition

Seien A, B Mengen.

$$A\underbrace{x}_{Kreuz}B:=\{(a,b)\mid a\in A,b\in B\}$$

Die Menge aller geordneten Paare, heißt <u>kartesisches Produkt</u> von A und B (nach René Descartes, 1596 - 1650).

Dabei legen wir fest: (a, b) = (a', b') (mit $a, a' \in A, b, b' \in B$) : $\Leftrightarrow a = a'$ und b = b'.

Allgemein sei für Mengen $A_1, ... A_n (n \in \mathbb{N})$

$$A_1xA_2x...xA_n := \{a_1, a_2, ..., a_n\} \mid a_i \in A_i, \forall i = 1...n\}$$

die Menge aller geordneten n-Tupel (mit analoger Gleichheitsdefinition).

$$(n = 2 : Paare, n = 3 : Tripel)$$

Schreibweise:

$$A_1x...xA : n =: X_{i-1}^n A_i$$

Ist eine der Mengen $A_1,...A_n$ leer, setzen wir $A_1x...xA_n=\emptyset$.

Statt AxA schreiben wir auch A^2 , statt $\underbrace{Ax...xA}_{n-Faktoren} = A^n$.

2.4 Beispiel

$$A = \{1, 2, 3\}, B = \{3, 4\}$$

$$(1,3) \in AxB, \underbrace{(3,1)}_{BxA} \notin AxB,$$

$$(\underbrace{3}_{BxB},\underbrace{3}_{AxA}) \in AxB \in BxA$$

$$(1,2) \in AxB, \in AxA$$

$$AxB = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

 $BxA = ...$
 $BxB = B^2 = \{(3,3), (3,4), (4,3), (4,4)\}$

2.5 Satz (Rechenregeln für Mengen)

Seien A, B, C, X Mengen. Dann gilt:

- a) $A \cup B = B \cup A$ $A \cap B = B \cap A$ (Kommutativgesetz)
- b) $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativgesetz)
- c) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Disbributivgesetz)
- d) $A, B \subseteq X$, dann $(A \cap B)_X^C = A_X^C \cup B_X^C$ $(A \cup B)_X^C = A_X^C \cap B_X^C$ (Regeln von DeMorgan)
- e) $A \subseteq X$, dann $(A_X^C)_X^C = A$
- f) $A\Delta B = (A \cup B) \setminus (A \cap B)$ (= $\{x \mid x \in A \oplus x \in B\}$)

- g) $A \cap B = A$ genau dann, wenn $A \subseteq B$ $(A \cap B) = A \iff A \subseteq B)$
- h) $A \cup B = A \iff B \subseteq A$

Beweis

a)
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

= $\{x \mid x \in B \lor x \in A\} = B \cup A$
Kommutativgesetz 1.9 b)

 $A \cap B$ analog

b), c) Übung, wie a)
benutze Assoziativgesetz (1.9 c)) bzw. Distributivgesetz (1.9 d)) für logische Äquivalenzen.

d)
$$(A \cap B)_X^C$$

$$= \{x \mid x \in X \setminus (A \cap B)\}$$

$$= \{x \mid x \in X \wedge (x \notin (A \cap B))\}$$

$$= \{x \mid x \in X \wedge \neg (x \in (A \cap B))\}$$

$$= \{x \mid x \in X \wedge \neg (x \in A \wedge x \in B)\}$$

$$= \{x \mid x \in X \wedge (x \notin A \vee x \notin B)\}$$
De Morgan 1.9 e)
$$= \{x \mid ((x \in X) \wedge (x \notin A)) \vee ((x \in X) \wedge (x \notin B))\}$$

$$= A_X^C \cup B_X^C$$

- 2. Regel analog
- e) ähnlich
- f) g) h) später

3 Beweismethoden

Ein mathematischer <u>Beweis</u> ist die Herleitung der Wahrheit (oder Falschheit) einer Aussage aus einer Menge von <u>Axiomen</u> (nicht beweisbare Grundtatsachen) oder bereits bewiesenen Aussagen nmittels logischen Folgerungen.

Bewiesene Aussagen werden Sätze genannt.

<u>Lemma</u> - Hilfssatz, der nur als Grundlage für wichtigeren Satz formuliert und bewiesen wird.

Theorem - wichtiger Satz

Korollar - einfache Folgerung aus Satz, z.B. Spezialfall

<u>Definition</u> - Benennung/Bestimmung eines Begriffs/Symbols

□ - Zeichen für Beweisende (■, q.e.d., wzbw...)

Mathematische Sätze haben oft die Form:

Wenn V (Voraussetzung) gilt, dann gilt auch B (Behauptung)

 $(V, B: Aussagen), kurz: V \Rightarrow B$

Zu zeigen ist also, dass $V \Rightarrow B$ eine wahre Aussage ist.

3.1 Direkter Beweis

Gehe davon aus, dass V wahr ist, folgere daraus, dass B wahr ist.

$$[\ \text{Sei V wahr,} \Rightarrow \dots \\ \Rightarrow \dots \\ \Rightarrow \dots \\ \vdots \\ \Rightarrow B \ \text{ist wahr} \]$$

Beispiel: Sei $n \in \mathbb{N}$. Ist n gerade, so ist auch n^2 gerade.

3.2 Beweis durch Kontraposition

vgl. Satz 1.9 f)
$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

Statt $V \Rightarrow B$ zu zeigen, können wir also auch $\neg B \Rightarrow \neg V$ zeigen.

[Es gelte
$$\neg B \Rightarrow \dots$$

 $\Rightarrow \dots$
 $\Rightarrow \dots$
 \vdots
 $\Rightarrow \text{ es gilt } \neg V$]

Beispiel: Sei $n \in \mathbb{N}$.

 $\underbrace{\text{Ist } n^2 \text{ gerade}}_{V}, \underbrace{\text{so ist auch } n \text{ gerade}}_{R}.$

Beweis durch Kontraposition:

 $// \neg B$ gilt. Sei n ungerade. $\Rightarrow n = 2k + 1$ für ein $k \in \mathbb{N}_0$ $\Rightarrow n = 2k + 1 \text{ rur em } \kappa \in \mathbb{N}_0$ $\Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = \underbrace{2(2k^2 + 2k)}_{\text{gerade}} + 1$ $\Rightarrow n^2$ ist ungerade. $// \neg V$ gilt.

3.3 Beweis durch Widerspruch, indirekter Beweis

Zu zeigen ist Aussage A. Wir gehen davon aus, dass A nicht gelte $(\neg A \text{ ist wahr})$ und folgern durch logische Schlüsse eine zweite Aussage B, von der wir wissen, dass sie falsch ist. Wenn alle logischen Schlüsse korrekt waren, muss also $\neg A$ falsch gewesen sein, also A wahr.

(
$$((\neg A \Rightarrow B) \land (\neg B)) \Rightarrow A$$
 ist Tautologie)

Beispiel: [Euklid] $\sqrt{2} \notin \mathbb{Q}$

<u>Beweis:</u> Wir nehmen an, dass die Aussage falsch ist, also $\sqrt{2} \in \mathbb{Q}$ gilt, das heißt $\sqrt{2} = \frac{p}{q}$ mit p. q. $\in \mathbb{Z}(q \neq 0)$ teilerfremd (vollständig gekürzter Bruch)

$$\Rightarrow 2 = \frac{p^2}{q^2}$$

 $\Rightarrow p^2 = 2q^2$, also ist p^2 gerade, damit aber auch p
 gerade (Beispiel in 3.2), also p = 2 * r mit $r \in \mathbb{Z}$.

$$\Rightarrow p^2 = (2r)^2 = 2q^2$$

$$\Rightarrow 4r^2 = 2q^2$$

$$\Rightarrow \frac{2r^2 = q^2}{q^2 \text{ gerade}}$$

$$\Rightarrow 4r^2 = 2a^2$$

$$\Rightarrow 2r^2 = q^2$$

$$\Rightarrow a^2$$
 gerade

$$\Rightarrow q$$
 gerade

Also: p gerade, q gerade, Widerspruch zu p, q teilerfremd.

Also war die Annahme falsch, es muss $\sqrt{2} \notin \mathbb{Q}$ gelten. \square

3.4 Vollständige Induktion

Eine Methode, um Aussagen über natürliche Zahlen zu beweisen.

Beispiel: Gauß

$$1 + 2 + \dots + 100 = ?$$

$$1 \quad 2 \quad 3 \quad \dots \quad 50$$

$$+ 100 \quad 99 \quad 98 \quad \dots \quad 51$$

$$101 \quad 101 \quad 101 \quad \dots \quad 101$$

$$50 * 101 = 5050$$

$$(= \frac{100}{2} * 101)$$

Allgemein:

$$\frac{\text{Angement.}}{1+2+3+\ldots+n} = \underbrace{\frac{n(n+1)}{2}}_{Vermutung}$$

$$(n \in \mathbb{N})$$

3.4.1 Prinzip der vollständigen Induktion

Sei $n_0 \in \mathbb{N}$ fest vorgegeben (oft $n_0 = 1$).

Für jedes $n \geq n_0, n \in \mathbb{N}$, sei A(n) eine Aussage, die von n abhängt.

Es gelte:

- 1. $A(n_0)$ ist wahr (Induktionsanfang)
- 2. $\forall n \in \mathbb{N}, n \ge n_0$: IstA(n)wahr, so istA(n+1)wahr. (Induktionsschritt)

Dann ist die Aussage A(n) für alle $n \ge n_0$ wahr. (Dominoprinzip)

(Bemerkung: gilt auch für \mathbb{N}_0 ($n_0 = 0$ auch möglich) und für $n_0 \in \mathbb{Z}$, Behauptung gilt dann für alle $n \in \mathbb{Z}$ mit $n \geq n_0$).

Beispiel:

a) Kleiner Gauß:
$$1+2+...+n=\frac{n(n+1)}{2} \forall n \in \mathbb{N}$$

Beweis:

$$A(n): 1+2+\ldots+n = \frac{n(n+1)}{2}$$

- Induktions anfang $(n = 1) : (A(1) : 1 = \frac{1*(1+1)}{2}$
- Induktionsschritt:

Induktionsvorraussetzung: sei $n \ge 1$. Es gelte A(n), d.h. $1 + ... + n = \frac{n(n+1)}{2}$ Induktionsbehauptung: Es gilt A(n+1), d.h. $1 + ... + n + (n+1) = \frac{n+1)(n+1+1)}{2}$

Beweis:
$$\underbrace{1+2+...+n}_{Ind.vor.} + (n+1) = \underbrace{\frac{n(n+1)}{2}}_{Ind.vor.} + (n+1)$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$A(n+1) \square$$

b)

$$A(n): 2^n \ge n \forall n \in \mathbb{N}$$

- Induktionsschritt: (n = 1)A(1) gilt: $2^1 \ge 1$
- ullet Induktionsschritt:

Induktionsvorraussetzung: Sei $n \ge 1$. Es gelte A(n), d.h. $2^n \ge n$ Induktionsbehauptung: (Zu zeigen!): Es gilt A(n+1), d.h. $2^{2+1} \ge n+1$.

Beweis:
$$2^{n+1}=2*2^n$$
 \geq $2*n$ $= n+n$ $\geq n+1$, also $2^{n+1}\geq n+1$ \square

3.4.2 Bemerkung

Für Formeln wie in Beispiel 3.4.1a) benutzen wir das Summenzeichen Σ (sigma, großes griechisches S)

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \ 1 + 2 + 3 + \dots + n \ k = 1k = 2k = 3k = n$$

weitere Bsp:

$$\sum_{k=1}^{n} 2k = 2*1 + 2*2 + ... 2*n \sum_{k=4}^{n} 2k = 2*4 + 2*5 + 2*n$$

$$\sum_{k=1}^{3} 7 = 7 + 7 + 7 = 21$$

allg.
$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_n \ (a_m, a_{m+1}, ... a - n \in \mathbb{R})$$

h heißt Summationszeichen

$$\sum_{k=m}^{n} a_k = \sum_{i=m}^{n} a_i$$

Schreibweisen:

$$\sum_{k=1}^{n} a_k, \sum_{k=1}^{n} a_k, \sum_{k \in \mathbb{N}} a_k, \sum_{k=1, k \neq 2}^{4} a_k = a_1 + a_3 + a_4$$

Für n < m setzt man

$$\sum_{k=m}^{n}a_{k}=0(leere\ Summe),$$
z.B. $\sum_{k=7}^{3}k=0$