LP Homework 2

吴嘉骜 21307130203

2023年3月31日

2.1

For each one of the following sets, determine whether it is a polyhedron.

(a) The set of all $(x,y) \in \mathbb{R}^2$ satisfying the constraints

$$xcos\theta + ysin\theta \le 1, \forall \theta \in [0, \pi/2]$$
 $x \ge 0,$ $y \ge 0.$

- (b) The set of all $x \in \mathbb{R}$ satisfying the constraint $x^2 8x + 15 \le 0$.
- (c) The empty set.

Solution.

(a) It is not a polyhedron, as we will prove that it is actually the set $B=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 1,x\geq 0,y\geq 0\}$, which is not a polyhedron. Let A be the set defined by the primal constraints. For any $(x,y)\in A$, if it is (0,0), then $(x,y)\in B$. Assume (x,y)>0, then there exists a $\theta^*\in[0,\pi/2]$ such that $cos\theta^*=\frac{x}{\sqrt{x^2+y^2}}, sin\theta^*=\frac{y}{\sqrt{x^2+y^2}}.$ Then from $xcos\theta^*+ysin\theta^*\leq 1$ we have $x^2+y^2\leq 1$, so $(x,y)\in B$. On the other hand, For any $(x,y)\in B$ and $\theta\in[0,\pi/2]$, by Cauchy's inequality, we have $(xcos\theta+ysin\theta)^2\leq (x^2+y^2)(cos^2\theta+sin^2\theta)\leq 1$, So $xcos\theta+ysin\theta\leq 1$, namely $(x,y)\in A$.

Then we get A = B.

(b) It is a polyhedron, since it can be written equivalently as $\{x \in \mathbb{R} | x \leq 5, x \geq 3\}.$

(c) Empty set is a polyhedron, since it can be written as $\{x \in \mathbb{R} | x \leq 0, x \geq 1\}$, which fits the definition.

2.2

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function and let c be some constant. Show that the set $S = \{x \in \mathbb{R}^n | f(x) \le c\}$ is convex. Proof.

Suppose $x, y \in S$ and $\alpha \in [0, 1]$. By the convexity of f, we have $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \le \alpha c + (1 - \alpha)c = c$, which indicates $\alpha x + (1 - \alpha)y \in S$, i.e. S is convex.

2.3

(Basic feasible solutions in standard form polyhedra with upper bounds) Consider a polyhedron defined by the constraints $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{0} \le \mathbf{x} \le \mathbf{u}$, and assume that the matrix \mathbf{A} has linearly independent rows. Provide a procedure analogous to the one in Section 2.3 for constructing basic solutions, and prove an analog of Theorem 2.4.

Solution.

An analog of Theorem 2.4 is:

Consider the constraints $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{0} \le \mathbf{x} \le \mathbf{u}$ and assume that the $m \times n$ matrix \mathbf{A} has linearly independent rows. A vector $x \in \mathbb{R}^n$ is a basic solution if and only if we have $\mathbf{A}\mathbf{x} = \mathbf{b}$, and there exist indices $B(1), \ldots, B(m)$ such that:

- (a) The columns $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(m)}$ are linearly independent;
- (b) If $i \neq B(1), \ldots, B(m)$, then $x_i = 0$ or $x_i = u_i$. Proof.
- (1) Consider some $\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}$ and there exist indices $B(1), \dots, B(m)$ satisfying (a) and (b). Let $\mathcal{N} = \{i \notin B(1), \dots, B(m) | x_i = 0\}$ and $\mathcal{U} = \{i \notin B(1), \dots, B(m) | x_i = u_i\}$. The active constraints and $\mathbf{A}\mathbf{x} = \mathbf{b}$ imply that $\sum_{i=1}^m \mathbf{A}_{B(i)} x_{B(i)} = \sum_{i=1}^n \mathbf{A}_i x_i \sum_{i \in \mathcal{N}} \mathbf{A}_i 0 \sum_{i \in \mathcal{U}} \mathbf{A}_i u_i = \mathbf{b} \sum_{i \in \mathcal{U}} \mathbf{A}_i u_i.$ Since the columns $\mathbf{A}_{B(i)}, i = 1, \dots, m$ are linearly independent, $x_{B(1)}, \dots, x_{B(m)}$

are uniquely determined. Thus, the system of equations formed by the active constraints has a unique solution. This is equivalent to saying that there are n linearly independent active constraints, and this implies that \mathbf{x} is a basic solution.

(2) For the converse, we assume that \mathbf{x} is a basic solution of $\{x | \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{0} \leq \mathbf{x} \leq \mathbf{u}\}$ and we will show that conditions (a) and (b) in the statement of the theorem are satisfied. Define $\mathcal{N} = \{1 \leq i \leq n | x_i = 0\}$ and $\mathcal{U} = \{1 \leq i \leq n | x_i = u_i\}$, and denote the elements that are not included by either of the two sets by $x_{B(1)}, \ldots, x_{B(k)}$ for some k. Since \mathbf{x} is a basic solution, the system of equations formed by the active constraints $\sum_{i=1}^{n} \mathbf{A}_i x_i = \mathbf{b}, x_i = 0, i \in \mathcal{N}$ and $x_i = u_i, i \in \mathcal{U}$, have a unique solution; equivalently, the equation

$$\sum_{i=1}^k \mathbf{A}_{B(i)} x_{B(i)} = \sum_{i=1}^n \mathbf{A}_i x_i - \sum_{i \in \mathcal{N}} \mathbf{A}_i 0 - \sum_{i \in \mathcal{U}} \mathbf{A}_i u_i = \mathbf{b} - \sum_{i \in \mathcal{U}} \mathbf{A}_i u_i.$$
 has a unique solution. It follows that the columns $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(k)}$ are

has a unique solution. It follows that the columns $\mathbf{A}_{B(1)}, \ldots, \mathbf{A}_{B(k)}$ are linearly independent, which implies $k \leq m$. Since A has m linearly independent rows, it also has m linearly independent columns. It follows that we can find m-k additional columns $\mathbf{A}_{B(k+1)}, \ldots, \mathbf{A}_{B(m)}$ so that the columns $\mathbf{A}_{B(i)}, i = 1, \ldots, m$ are linearly independent. In addition, if $i \neq B(1), \ldots, B(m)$, then $i \neq B(1), \ldots, B(k)$ (because $k \leq m$), and $x_i = 0$ or $x_i = u_i$. Therefore, both conditions (a) and (b) in the statement of the theorem are satisfied.

By the above analogous theorem, all basic solutions to a bounded form polynomial can be constructed according to the following procedure.

- 1. Choose m linearly independent columns $\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(m)}$.
- 2. Let $x_i = 0$ or $x_i = u_i$ for all $i \neq B(1), \ldots, B(m)$.
- 3. Solve the system of m equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ for the unknowns $x_{B(1)}, \dots, x_{B(m)}$. If a basic solution constructed according to this procedure satisfies $\mathbf{0} \leq \mathbf{x} \leq \mathbf{u}$, then it is feasible, and it is a basic feasible solution. Conversely, since every basic feasible solution is a basic solution, it can be obtained from this procedure.

2.7

Suppose that $\{x \in \mathbb{R}^n | \mathbf{a}_i' \mathbf{x} \geq b_i, i = 1, \ldots, m\}$ and $\{x \in \mathbb{R}^n | \mathbf{g}_i' \mathbf{x} \geq h_i, i = 1, \ldots, k\}$ are two representations of the same nonempty polyhedron. Suppose that the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ span \mathbb{R}^n . Show that the same must be true for the vectors $\mathbf{g}_1, \ldots, \mathbf{g}_k$.

Proof.

Let P_1 denote the polyhedron $\{x \in \mathbb{R}^n | \mathbf{a}_i' \mathbf{x} \geq b_i, i = 1, \dots, m\}$, and $P_2 = \{x \in \mathbb{R}^n | \mathbf{g}_i' \mathbf{x} \geq h_i, i = 1, \dots, k\}$.

Since $\mathbf{a}_1, \ldots, \mathbf{a}_m$ span \mathbb{R}^n , there exist n linearly independent vectors in $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Then P_1 has at least one extreme point.

From $P_1 = P_2$, we know that P_2 also has at least one extreme point. Then there exist n linearly independent vectors in $\mathbf{g_1}, \dots, \mathbf{g_k}$, which shows that $\mathbf{g_1}, \dots, \mathbf{g_k}$ can span \mathbb{R}^n as well.

2.8

Consider the standard form polyhedron $\{x|\mathbf{A}\mathbf{x}=\mathbf{b},\mathbf{x}\geq\mathbf{0}\}$, and assume that the rows of the matrix \mathbf{A} are linearly independent. Let \mathbf{x} be a basic solution, and let $J=\{i|x_i\neq 0\}$. Show that a basis is associated with the basic solution \mathbf{x} if and only if every column $\mathbf{A}_i, i\in J$, is in the basis. Proof.

If a basis $\mathbf{B} = [\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(m)}]$ is associated with the basic solution \mathbf{x} , then any index $i \in \{1, \dots, n\} \setminus \{B(1), \dots, B(m)\}$ is associated with $x_i = 0$. Therefore, $J = \{i | x_i \neq 0\}$ must be a subset of $\{B(1), \dots, B(m)\}$, which indicates that every column $\mathbf{A}_i, i \in J$, is in the basis.

If every column \mathbf{A}_i , $i \in J$, is in the basis **B**, then for all the columns \mathbf{A}_j outside of **B** we must have $j \notin J$, i.e. $x_j = 0$. Then **B** is associated with \mathbf{x} .

2.10

Consider the standard form polyhedron $P = \{x | \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$. Suppose that the matrix \mathbf{A} has dimensions $m \times n$ and that its rows are linearly independent. For each one of the following statements, state whether it is true

or false. If true, provide a proof, else, provide a counterexample.

- (a) If n = m + 1, then P has at most two basic feasible solutions.
- (b) The set of all optimal solutions is bounded.
- (e) At every optimal solution, no more than m variables can be positive.
- (d) If there is more than one optimal solution, then there are uncountably many optimal solutions.
- (e) If there are several optimal solutions, then there exist at least two basic feasible solutions that are optimal.
- (f) Consider the problem of minimizing $\max\{\mathbf{c^Tx}, \mathbf{d^Tx}\}$ over the set P. If this problem has an optimal solution, it must have an optimal solution which is an extreme point of P.

Solution.

- (a) It is true. Consider solving the linear equation $\mathbf{A}\mathbf{x} = \mathbf{b}$. By $rank(\mathbf{A}) = m = n 1$, we know that the solution space can be written as $x_0 + W$, where x_0 is a special solution, and W denotes the null space of \mathbf{A} , dimW = n (n 1) = 1. Therefore, P is the subset of a subspace of dimension 1, namely a line. Hence P has at most two extreme points, equivalently at most two basic feasible solutions.
- (b) It is false. Consider $P = \{[x_1, x_2]^T | x_2 = 2x_1 + 1, x_1, x_2 \geq 0\}$. Here $\mathbf{A} = [-2, 1]$, and suppose the problem is to minimize $\mathbf{c^T}\mathbf{x}$ with $\mathbf{c} = [-2, 1]^T$. Then every point of P is an optimal solution. Since P is unbounded, the set of optimal solutions is unbounded.
- (c) It is false. Consider the same conditions in (b), namely m = 1, n = 2, and $[1,3]^T$ with 2 positive variables is an optimal solution.
- (d) It is true. If there are two optimal solutions, every convex combination of them is an optimal solution too.

Suppose x, y are two optimal solutions, meaning $c^T x = c^T y = p^*$, the optimal value. Let $\alpha \in (0, 1)$, and then

- $c^{T}(\alpha x + (1 \alpha)y) = \alpha c^{T}x + (1 \alpha)c^{T}y = p^{*}$. As P is a convex set, $z = \alpha x + (1 \alpha)y \in P$, so z is also an optimal solution. It is easy to see that there are uncountably many optimal solutions.
- (e) It is false. Consider the same counterexample in (b), where there are

uncountably many optimal solutions. In fact, there is only one basic feasible solution $[0, 1]^T$.

(f) It is false. Consider $P = \{[x_1, x_2]^T | x_1 + x_2 = 1, x_1, x_2 \geq 0\}$. Let $\mathbf{c} = [1, -1]^T$, $\mathbf{d} = [-1, 1]^T$. Then the problem is that minimizing $\max\{\mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_2 - \mathbf{x}_1\}$ over the set P. This is equivalently to minimize $|x_1 - x_2|$ over P, and the optimal value is 0 with the solitary optimal solution $x^* = [\frac{1}{2}, \frac{1}{2}]^T$, which is not an extreme point of P.