Logistic Regression

$$\Rightarrow (ost fun o)$$

$$J(\Theta_{0},\Theta_{i}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\Theta}(x)^{i} - y^{i})$$

We solve regression problem with the obove ear in the linear regression

If we solve classi problem by linear regression what result we get see in example

Ducation	result
1	Fai/
1.5	fail
2	Fall
2.5	pass
3-5-	pass
4	pass
4.5	poss
\(\frac{1}{5}\)	pass

1

$$Z = h_0(x)$$

$$h_{\theta}(x) = O_0 + O_1 X_1$$
or
$$h_{\theta}(x) = g(O_0, O_1 X)$$

g, introduced for squeh of the line to prevent from upper limit and lower limit.

$$g = \frac{1}{1+\bar{e}^2}$$

sigmoid Activation function visual like

1
$$z \ge 0$$
, $g(z) \ge 0.5$
 $z \le 0$, $g(z) \le 6.5$

Training Dataset