Problem Sheet 5

Math40002, Analysis 1

- 1. In lecture, we needed the claim that $\lim_{x\to\infty} xs^{x-1}=0$ for any $s\in(0,1)$ in order to prove that the term-by-term derivative of a power series converges inside that power series's radius of convergence.
 - (a) Prove that for all c > 0, there exists N > 0 such that $\log(x) < cx$ for all $x \ge N$.
 - (b) Prove that $\lim_{x\to\infty} xs^x = 0$, and show that this implies the above claim.
- 2. (a) Compute the Taylor series P(x) of $f(x) = \log(1+x)$ centered at x = 0, and prove that it converges absolutely on (-1,1).
 - (b) Prove using Taylor's theorem that f(x) = P(x) on some open neighborhood of 0, by showing that the sequence of *n*th order Taylor polynomials $P_n(x)$ converges uniformly to f(x). Show that the same is true at x = 1, and so $\log(2) = \frac{1}{1} \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \dots$
- 3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ has at least six continuous derivatives, and that $f^{(i)}(0) = 0$ for i = 1, 2, 3, 4, 5 but $f^{(6)}(0) = 1$. Prove that f(x) has a local minimum at x = 0.
- 4. (a) Suppose that some function $f:(-R,R)\to\mathbb{R}$ is equal to the power series $\sum_{n=0}^{\infty}\frac{a_nx^n}{n!}$, which converges absolutely on (-R,R). Prove that the Taylor series of f centered at a=0 is precisely $\sum_{n=0}^{\infty}\frac{a_nx^n}{n!}$, and hence that this power series is unique.
 - (b) Compute the Taylor series of $f(x) = \frac{1}{1-x^2}$ centered at a = 0. What is $f^{(100)}(0)$?
- 5. (a) Prove that $f(x) = e^x$ is convex on all of \mathbb{R} .
 - (b) Let a, b > 0. Use the convexity of e^x to prove the arithmetic mean-geometric mean inequality

$$\frac{a+b}{2} \ge \sqrt{ab}.$$

(Hint: think about $\alpha = \log(a)$ and $\beta = \log(b)$.)

- (c) Prove for any a, b > 0 and $s \in [0, 1]$ that $sa + (1 s)b \ge a^s b^{1-s}$.
- (d) Prove Young's inequality: for any $x, y \ge 0$ and p, q positive with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\frac{x^p}{p} + \frac{y^q}{q} \ge xy.$$

- 6. (*) Let (a_n) denote the Fibonacci sequence, with $a_0 = 0$, $a_1 = 1$, and $a_{n+2} = a_{n+1} + a_n$ for all $n \ge 0$.
 - (a) Prove by induction that $a_n < 2^n$ for all $n \ge 0$. What is the radius of convergence of the exponential generating function

$$F(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} = 0 + 1x + \frac{1x^2}{2} + \frac{2x^3}{6} + \frac{3x^4}{24} + \dots$$
?

- (b) Prove that F''(x) = F'(x) + F(x), and that F(0) = 0 and F'(0) = 1.
- (c) Solve this differential equation for F(x).
- (d) Use the solution from part (c) to prove Binet's formula:

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

- 7. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$
 - (a) Prove that for all integers $n \geq 0$, there is a polynomial $p_n(x)$ such that

$$f^{(n)}(x) = \frac{p_n(x)}{x^{3n}} e^{-1/x^2}$$
 for all $x \neq 0$.

- (b) Prove that $f^{(n)}(0) = 0$ for all n, and hence that f(x) does not equal its Taylor series (centered at a = 0) at any nonzero x.
- (c) Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} 0, & x \leq 0 \\ e^{-1/x^2}, & x > 0. \end{cases}$ Prove that $g^{(n)}(x)$ exists for all $n \geq 0$ and all $x \in \mathbb{R}$, and that $g^{(n)}(0) = 0$ for all n.
- (d) Define $h: \mathbb{R} \to \mathbb{R}$ by h(x) = g(x)g(1-x). Prove that h is infinitely differentiable, meaning that $h^{(n)}(x)$ exists for all $n \geq 0$ and all $x \in \mathbb{R}$, and that $h(x) \neq 0$ if and only if 0 < x < 1.