Сетка Соболя

Подготовлено: Малоенко Софией,
Ивановым Николаем,
Васильевым Ильей,
Малыниным Алексеем,
Карташовым Антоном

Москва 2017г.

Сетка Соболя

Оглавление

Введение	3	
Основные определения и понятия	4	
Алгоритм построения сетки Соболя	5	
	6	

Введение

Последовательности Соболя, также называемые LPт или (t,s) в основании 2, являются примером квазислучайных последовательностей с низким расхождением. Впервые были введены российским математиком Ильей Мееровичем Соболем в 1967 году.

 $\Pi\Pi\tau$ -последовательности - асимптотически наилучшие среди всех известных равномерно распределенных последовательностей. Доказано, что среди $\Pi\Pi\tau$ -последовательностей можно выделить последовательности, обладающие дополнительными свойствами равномерности.

Среди всех изученных последовательностей точек в многомерном кубе наилучшими оценками характеристик равномерности обладают ЛП τ -последовательности. Они неоднократно использовались при расчешете практических задач, связанных с приближенным вычислением многомерных интервалов или с многопараметрической оптимизацией.

В дальнейшем величины c, e, f, g, h, u, v c любыми индексами принадлежат полю \mathbb{Z}_2 , т.е. равны либо 0, либо 1.

Основные понятия

Определение 1. Обозначим через K^n единичный п-мерный куб, в котором $0 \le x_k \le 1$, $k = 1, 2, \ldots$, п. Разобьем K^n плоскостями $x_k = \frac{1}{2}$ на 2^n многомерных октантов-кубиков, которые представляют собой двоичные параллелепипеды.

Рассмотрим произвольную бесконечную последовательность точек P_0, \ldots, P_i , ..., принадлежащих K^n . Если в любом двоичном участке этой последовательности, длина которого равна 2^n , все точки принадлежат различным кубикам, то мы скажем, что последовательность обладает свойством равномерности.

<u>Определение 2</u>. Двоичным участком длины 2^n называется множество точек P_i , индексы которых удовлетворяют неравенству $1*2^n \le i \le (l+1)*2^n$, где l=0, 1, ...

Определение 3. Пусть L₁, ..., L_n - различные моноциклические операторы в поле Z₂, порядки которых равны m₁,...,m_n. Пусть $p^{(k)}(i)$ есть ДР-последовательность, принадлежащая оператору L_k и $(v_{s_j}^{(k)})$ - порождающая ее направляющая матрица. Точки Q₀,....,Q_i,...с декартовыми координатами

(1)
$$Q_i = (p^{(1)}(i), ..., p^{(n)}(i))$$

образуют ЛП τ -последовательность в K^n , причем

$$\tau = \sum_{k=1}^{n} \left(m_k - 1 \right).$$

Алгоритм построения сетки Соболя.

Пусть $p1, \ldots, ps \in F2(x)$ – примитивные многочлены, упорядоченные в порядке неубывания степеней. Так, для $1 \le i \le s$ пусть

$$p_i(x) = x^{e_i} + a_{1,i}x^{e_i-1} + \dots + a_{e_i-1,i}x + 1$$
. (1)

Возьмём произвольные нечётные натуральные числа $m_{1,i},\ldots,m_{e_i,i}$, такие что $m_{k,i} < 2^k$ для $1 \le k \le e_i$. Для всех $k > e_i$ числа $m_{k,i}$ определяются рекурсивно при помощи побитового оператора XOR (исключающего или), обозначаемого \oplus :

$$m_{k,i} = 2a_{1,i}m_{k-1,i} \oplus 2^2a_{2,i}m_{k-2,i} \oplus \ldots \oplus 2^{e_i-1}a_{e_i-1,i}m_{k-e_i+1,i} \oplus 2^{e_i}m_{k-e_i,i} \oplus m_{k-e_i,i}.$$
(2)

Далее, определим направляющие числа $v_{k,i}$ как

$$v_{k,i} = \frac{m_{k,i}}{2^k} \, (3)$$

Наконец, для произвольного $n \in \mathbb{N}_0$, имеющего двоичное разложение $n = n_0 + 2n_1 + \ldots + 2^{r-1}n_{r-1}$, i-тая соболевская координата n-ной точки последовательности имеет вид

$$x_{n,i} = n_0 v_{1,i} \oplus n_1 v_{2,i} \oplus \dots \oplus n_{r-1} v_{r,i}$$
. (4)

Таким образом, последовательность Соболя определяется как совокупность $(x_0,x_1,...)$, где $x_n=(x_{n,1},...x_{n,s})$.

Широко известен эффективный приём, предложенный Антоновым И.А. и Салеевым В.М. А именно, для последовательной генерации точек Соболя можно воспользоваться кодами Грея $G(n) = n \oplus \lfloor n/2 \rfloor$. Учитывая тот факт, что коды Грея для чисел n и n+1 всегда отличаются только одним битом (пусть он имеет номер k), достаточно положить

$$x_{n+1,i} = x_{n,i} \oplus v_{k,i}$$
. (1.40)

Как видно из алгоритма построения последовательности Соболя, ключевое значение имеют направляющие числа $\{v_{k,i}\}$. Поиск оптимальных (с точки зрения качества конечной последовательности) наборов направляющих чисел представляет собой отдельную задачу.

Источники

- 1. Википедия свободная энциклопедия [Электронный ресурс]. https://en.wikipedia.org/wiki/Sobol_sequence
- 2. И. М. Соболь, Равномерно распределенные последова- тельности с дополнительным свойством равномерности, Ж. вычисл. матем. и матем. физ., 1976, том 16, номер 5, 1332–1337
- 3. [Электронный ресурс] http://michaelcarteronline.com/MCM/LDSequences/SobolExample.pdf
- 4. Диссертация «Расслоение и метод квази-Монте-Карло» Антонов Антон Александрович, САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕНННЫЙ УНИВЕР-СИТЕТ
 - 5. Joe and Frances Y. Kuo «Notes on generating Sobol' sequences Stephen»