REPORT

Assignment 1: Decision Trees

Procedure

- Converted the .data file to .csv and read the data using the Python csv library.
- Defined classes for tree nodes, attribute set etc.
- Implemented the ID3 algorithm using information gain heuristic.
 - Tackled examples with missing attribute values by assigning the value which is most common in the examples having its target classification.
- Implemented a best_depth function that takes in a dataset and returns a tree with highest test accuracy.
 - Iterated over possible depths (in this case, 10)
 - For each depth, shuffled the data set and then divided it in the ratio 60:20:20.
 - 1st part: Training set to train the tree,
 - 2nd part: Validation set which is used in pruning the tree
 - 3rd part : Test set to test the accuracy of the tree constructed
- Used Reduced Error Pruning to prune the tree
 - Tested nodes from bottom to up (leaf to root)
 - If pruning the node, increases the accuracy on the validation set (obtained from the best_depth function), then the node is replaced with a leaf node having most common classification at that node.
- Used the matplotlib library to plot the graph between Depth vs Accuracy on both test-set as well as training set
- Implemented a function to write a graphviz file (.gv) for printing the tree.
 - Non-leaf nodes are colored purple.
 - Leaf Nodes are colored red/green
 - Red :- Non-recurrence event
 - Green :- Recurrence event

Results

o Step II: Finding the best depth

Depth	Average accuracy on test-set (%)	Accuracy on test- set of the best tree (%)	Accuracy on training set (%)
1	66.84	78.94	72.02
2	70.87	80.70	76.57
3	69.12	77.19	83.91
4	68.42	77.19	93.70
5	66.66	75.43	97.02
6	62.28	71.92	97.02
7	66.14	73.68	97.02
8	65.61	75.43	97.02
9	64.73	73.68	97.02
10	67.71	70.87	97.02

o Step III: Pruning the tree

- The tree with maximum accuracy of of depth 2 is chosen for pruning
- o **Three** nodes are pruned.

Depth of the node pruned	Attribute name	Accuracy on validation set before pruning (%)	Accuracy after on validation set after pruning (%)
1	Tumor-size	70.87	71.92
1	Breast-quad	71.92	73.68
1	Tumor-size	73.68	75.43

o Accuracy increases from 70.87% to 75.43%.