WHAT IS CLAIMED IS:

1	1. A flexible microchannel heat exchanger, comprising:
2	a device interface layer including inlet and outlet holes and being
3	formed from a first heat-sealable polyimide material;
4	a header layer formed from a second heat-sealable polyimide
5	material and heat-sealed to said device interface layer, said header layer including
6	ports aligned with said inlet and outlet holes and fluid distribution microchannels
7	in fluid communication with said ports;
8	a channel layer formed from said second heat-sealable polyimide
9	material and heat-sealed to said header layer, said channel layer including fluid
10	flow microchannels in fluid communication with said fluid distribution channels
11	and oriented differently than said fluid distribution channels; and
12	a cap layer formed from said first heat-sealable polyimide material
13	and heat sealed to said channel layer.
1	2. The heat exchanger of claim 1, wherein said first heat-
2	sealable polyimide material has a greater glass transition temperature than said
3	second heat-sealable polyimide material.
1	3. The heat exchanger of claim 2, wherein said first heat-
2	sealable polyimide material includes a core having said greater glass transition
3	temperature.
1	4. The heat exchanger of claim 1, wherein:
2	said first heat-sealable polyimide material is DuPont Kaptonâ EKJ;
3	and
1	said second heat sealable polyimide material is DuPont Kaptonâ KI.

The heat exchanger of claim 1, wherein the microchannels in 5. 1 said channel layer have a plurality of lengths. 2 The heat exchanger of claim 5, wherein the microchannels in 6. 1 said channel layer have an overall hourglass-like shape, and a waist of the 2 hourglass-like shape aligns with said ports in said header layer. 3 The heat exchanger of claim 1, wherein fluid communication 7. 1 between microchannels in said header layer and said channel layer is established 2 where ends of microchannels in said channel layer intersect microchannels in said 3 4 header layer. The heat exchanger of claim 7, wherein microchannels or sets 8. 1 of microchannels in said channel layer further from said ports intersect more 2 microchannels in said header layer than microchannels or sets of microchannels in 3 said channel layer that are closer to said ports. 4 The heat exchanger of claim 1, wherein said header and 9. 1 channel layers are thicker than said device interface and cap layers. 2 A flexible microchannel heat exchanger, comprising: 10. 1 a laminated polyimide structure including a device interface layer, a 2 header layer, a channel layer and a cap layer; and 3 fluid circuit formed three-dimensional microchannel 4 microchannels in said header layer and said channel layer and holes in said device 5 interface layer, wherein intersections of microchannels between said header layer 6 and said channel layer define flow paths between said header layer and said 7

channel layer.

8

l	11. The heat exchanger of claim 10, wherein microchannels or
2	sets of microchannels in said channel layer further from said holes intersect more
3	microchannels in said header layer than microchannels or sets of microchannels in
4	said channel layer that are closer to said holes.
	3,
1	12. A method for forming a flexible microchannel heat
2	exchanger, the method comprising steps of:
3	mechanically patterning heat-sealable polyimide sheets to define
4	separate device interface, header, channel layers;
5	preparing the patterned sheets for lamination bonding; and
6	laminating the patterned sheets together with a cap layer.
1	13. The method for forming according to claim 12, further
2	comprising a step of cutting the heat-sealable polyimide sheets to size prior to said
3	step of mechanically patterning.
1	14. The method for forming according to claim 12, wherein said
2	step of mechanically patterning comprises a computer controlled knife cutting.
1	15. The method for forming according to claim 14, wherein said
2	computer controlled knife cutting is conducted according to a three-dimensional
3	solid model.
1	16. The method for forming according to claim 12, further
2	comprising a step of mounting the sheets on a carrier prior to said step of
3	mechanically patterning.
1	17. The method for forming according to claim 12, wherein said
2	step of laminating comprises vacuum hot-pressing.

- 1 18. The method for forming according to claim 17, wherein the cap layer and the device interface layer are formed from a higher glass transition temperature polyimide than the header layer and the channel layer
- 1 19. The method for forming according to claim 17, further comprising a step of applying a platen separator to the cap layer and the device interlayer prior to said step of lamination.
- 1 20. The method for forming according to claim 12, wherein said 2 step of preparing comprises solvent degreasing.
- 1 21. The method for forming according to claim 20, wherein said 2 step of preparing further comprises scrubbing.
- 1 22. The method for forming according to claim 21, wherein said 2 step of preparing further comprises rinsing.
- 1 23. The method for forming according to claim 21, wherein said 2 step of preparing further comprises drying.
- 1 24. The method for forming according to claim 23, wherein said 2 step of preparing further comprises dehydrating.