

Gestione delle tabelle

- □ Dizionario dei dati

Creazione di una tabella

Creazione di una tabella (1/3)

∑ Si utilizza l'istruzione di SQL DDL (Data Definition Language)

CREATE TABLE

- □ Permette di
 - definire tutti gli attributi (le colonne) della tabella
 - definire vincoli di integrità sui dati della tabella

• permette di specificare il valore di default dell'attributo

DEFAULT

< Generico Valore | USER | CURRENT_USER | SESSION_USER | SYSTEM_USER | NULL>

- □ Generico Valore
 - valore compatibile con il dominio
- > *USER
 - identificativo dell'utente
- **>** NULL
 - valore di default di base

Domini elementari (1/6)

 □ Carattere: singoli caratteri o stringhe, anche di lunghezza variabile

CHARACTER [VARYING] [(Lunghezza)] [CHARACTER SET NomeFamigliaCaratteri]

- abbreviato con VARCHAR
- □ Bit singoli (booleani) o stringhe di bit

BIT [VARYING] [(Lunghezza)]

Domini elementari (2/6)

NUMERIC [(*Precisione, Scala*)]
DECIMAL [(*Precisione, Scala*)]

INTEGER

SMALLINT

NUMERIC e DECIMAL sono numeri in base decimale

Domini elementari (3/6)

NUMERIC [(*Precisione, Scala*)]
DECIMAL [(*Precisione, Scala*)]

- - numero totale di cifre (digits)
 - per il dominio NUMERIC la precisione rappresenta un valore esatto
 - per il dominio DECIMAL la precisione costituisce un requisito minimo

Domini elementari (3/6)

NUMERIC [(*Precisione, Scala*)]
DECIMAL [(*Precisione, Scala*)]

- □ Scala
 - numero di cifre dopo la virgola
- □ Esempio: per il numero 123.45
 - la precisione è 5, mentre la scala è 2

FLOAT [(n)] REAL

DOUBLE PRECISION

- □ n specifica la precisione
 - è il numero di bit utilizzati per memorizzare la mantissa di un numero float rappresentato in notazione scientifica
 - è un valore compreso tra 1 e 53
 - il valore di default è 53

Domini elementari (5/6)

INTERVAL *PrimaUnitàDiTempo*[TO *UltimaUnitàDiTempo*]

- □ Le unità di tempo sono divise in due gruppi
 - anno, mese
 - giorno, ora, minuti, secondi
- □ Esempio: INTERVAL year TO month
 - memorizza un periodo di tempo utilizzando i campi anno e mese
- □ Esempio: INTERVAL day TO second

 memorizza un periodo di tempo utilizzando i campi giorno, ore, minuti e secondi

☐ TIMESTAMP [(*Precisione*)] [WITH TIME ZONE]

- memorizza i valori che specificano l'anno, il mese, il giorno, l'ora, i minuti, i secondi ed eventualmente la frazione di secondo
- utilizza 19 caratteri più i caratteri per rappresentare la precisione
- notazione
 - YYYY-MM-DD hh:mm:ss:p

Definizione di domini (1/2)

- □ Istruzione CREATE DOMAIN
 - definisce un dominio utilizzabile nelle definizioni di attributi
- ∑ Sintassi

CREATE DOMAIN NomeDominio AS TipoDiDato

[ValoreDiDefault] [Vincolo]

Modifica della struttura di una tabella

Istruzione ALTER TABLE (1/3)

- ∑ Sono possibili le seguenti "alterazioni"
 - aggiunta di una nuova colonna
 - definizione di nuovo valore di default per una colonna (attributo) esistente
 - per esempio, sostituzione del precedente valore di default
 - eliminazione di una colonna (attributo) esistente
 - definizione di un nuovo vincolo di integrità
 - eliminazione di un vincolo di integrità esistente

□ RESTRICT

- l'elemento (colonna o vincolo) non è rimosso se è presente in qualche definizione di un altro elemento
- opzione di default

 tutti gli elementi che dipendono da un elemento rimosso vengono rimossi, fino a quando non esistono più dipendenze non risolte (cioè non vi sono elementi nella cui definizione compaiono elementi che sono stati rimossi)

Cancellazione di una tabella

DROP TABLE *NomeTabella* [RESTRICT | CASCADE];

- □ Tutte le righe della tabella sono eliminate insieme alla tabella
- **□** RESTRICT
 - la tabella non è rimossa se è presente in qualche definizione di tabella, vincolo o vista
 - opzione di default

 se la tabella compare in qualche definizione di vista anche questa è rimossa

Dizionario dei dati

Dizionario dei dati (1/2)

- ∑ I metadati sono informazioni (dati) sui dati
 - possono essere memorizzati in tabelle della base di dati
- - contiene informazioni sugli oggetti della base di dati
 - è gestito direttamente dal DBMS relazionale
 - può essere interrogato con istruzioni SQL

- □ Contiene diverse informazioni
 - descrizione di tutte le strutture (tabelle, indici, viste) della base di dati
 - stored procedure SQL
 - privilegi degli utenti
 - statistiche
 - sulle tabelle della base di dati
 - sugli indici della base di dati
 - sulle viste della base di dati
 - sulla crescita della base di dati

- ∑ Il dizionario dei dati contiene per ogni tabella della base di dati
 - nome della tabella e struttura fisica del file in cui è memorizzata
 - nome e tipo di dato per ogni attributo
 - nome di tutti gli indici creati sulla tabella
 - vincoli di integrità

- □ Le informazioni del dizionario dati sono memorizzate in alcune tabelle
 - ogni DBMS utilizza nomi diversi per tabelle diverse
- È possibile interrogare il dizionario dati mediante istruzioni SQL

Dizionario dati in Oracle (1/2)

- ☐ In Oracle sono definite 3 collezioni di informazioni per il dizionario dati
 - USER_*: metadati relativi ai dati dell'utente corrente
 - ALL_*: metadati relativi ai dati di tutti gli utenti
 - DBA_*: metadati delle tabelle di sistema

- □ USER_* contiene diverse tabelle e viste, tra le quali:
 - USER_TABLES contiene metadati relativi alle tabelle dell'utente
 - USER_TAB_STATISTICS contiene le statistiche calcolate sulle tabelle dell'utente
 - USER_TAB_COL_STATISTICS contiene le statistiche calcolate sulle colonne delle tabelle dell'utente

Interrogazione del dizionario dati n.1

Interrogazione del dizionario dati n.1

SELECT Table_Name, Num_Rows FROM USER_TABLES;

Interrogazione del dizionario dati n.1

SELECT Table_Name, Num_Rows FROM USER_TABLES;

К

Table_Name	Num_Rows
F	5
Р	6
FP	12

Interrogazione del dizionario dati n.2 (1/2)

 □ Per ogni attributo della tabella delle forniture, visualizzare il nome dell'attributo, il numero di valori diversi e il numero di tuple che assumono valore NULL

Interrogazione del dizionario dati n.2 (1/2)

 □ Per ogni attributo della tabella delle forniture, visualizzare il nome dell'attributo, il numero di valori diversi e il numero di tuple che assumono valore NULL

SELECT Column_Name, Num_Distinct, Num_Nulls FROM USER_TAB_COL_STATISTICS WHERE Table_Name = 'FP' ORDER BY Column_Name;

SELECT Column_Name, Num_Distinct, Num_Nulls FROM USER_TAB_COL_STATISTICS WHERE Table_Name = 'FP' ORDER BY Column_Name;

R

Column_Name	Num_Distinct	Num_Nulls
CodF	4	0
CodP	6	0
Qta	4	0

Integrità dei dati

- ☐ I dati all'interno di una base di dati sono corretti se soddisfano un insieme di regole di correttezza
 - le regole sono dette vincoli di integrità
 - esempio: Qta >=0
- □ Le operazioni di modifica dei dati definiscono un nuovo stato della base dati, non necessariamente corretto

Verifica dell'integrità

- □ La verifica della correttezza dello stato di una base di dati può essere effettuata
 - dalle *procedure applicative*, che effettuano tutte le verifiche necessarie
 - mediante la definizione di vincoli di integrità sulle tabelle
 - mediante la definizione di *trigger*

Procedure applicative

- □ All'interno di ogni applicazione sono previste tutte le verifiche di correttezza necessarie
- - approccio molto efficiente

Procedure applicative

- - approccio molto efficiente
- - è possibile "aggirare" le verifiche interagendo direttamente con il DBMS
 - un errore di codifica può avere un effetto significativo sulla base di dati
 - la conoscenza delle regole di correttezza è tipicamente "nascosta" nelle applicazioni

Vincoli di integrità sulle tabelle (1/2)

- ∑ I vincoli di integrità sono
 - definiti nelle istruzioni CREATE o ALTER TABLE
 - memorizzati nel dizionario dati di sistema
- Durante l'esecuzione di qualunque operazione di modifica dei dati il DBMS verifica automaticamente che i vincoli siano osservati

Vincoli di integrità sulle tabelle (2/2)

- definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - il dizionario dei dati descrive tutti i vincoli presenti nel sistema
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

Vincoli di integrità sulle tabelle (2/2)

- definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - il dizionario dei dati descrive tutti i vincoli presenti nel sistema
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

- possono rallentare l'esecuzione delle applicazioni
- non è possibile definire tipologie arbitrarie di vincoli

esempio: vincoli su dati aggregati

- ☐ I trigger sono procedure eseguite in modo automatico quando si verificano opportune modifiche dei dati
 - definiti nell'istruzione CREATE TRIGGER
 - memorizzati nel dizionario dati del sistema
- Quando si verifica un evento di modifica dei dati sotto il controllo del trigger, la procedura viene eseguita automaticamente

- - permettono di definire vincoli d'integrità di tipo complesso
 - normalmente usati insieme alla definizione di vincoli sulle tabelle
 - unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

- permettono di definire vincoli d'integrità di tipo complesso
 - normalmente usati insieme alla definizione di vincoli sulle tabelle
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

- applicativamente complessi
- possono rallentare l'esecuzione delle applicazioni

Riparazione delle violazioni

- ∑ Se un'applicazione tenta di eseguire un'operazione che violerebbe un vincolo, il sistema può
 - impedire l'operazione, causando un errore di esecuzione dell'applicazione
 - eseguire un'azione compensativa tale da raggiungere un nuovo stato corretto
 - esempio: quando si cancella un fornitore, cancellare anche tutte le sue forniture

- Nello standard SQL-92 è stata introdotta la possibilità di specificare i vincoli di integrità in modo dichiarativo, affidando al sistema la verifica della loro consistenza
 - vincoli di tabella
 - restrizioni sui dati permessi nelle colonne di una tabella
 - vincoli d'integrità referenziale
 - gestione dei riferimenti tra tabelle diverse
 - basati sul concetto di chiave esterna

- ∑ Sono definiti su una o più colonne di una tabella
- ∑ Sono definiti nelle istruzioni di creazione di
 - tabelle
 - domini
- ∑ Tipologie di vincolo
 - chiave primaria
 - ammissibilità del valore nullo
 - unicità
 - vincoli generali di tupla

- ∑ Sono verificati dopo ogni istruzione SQL che opera sulla tabella soggetta al vincolo
 - inserimento di nuovi dati
 - modifica del valore di colonne soggette al vincolo
- Se il vincolo è violato, l'istruzione SQL che ha causato la violazione genera un errore di esecuzione

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- ⊃ Può essere specificata una sola chiave primaria per una tabella
- □ Definizione della chiave primaria
 - composta da un solo attributo

NomeAttributo Dominio PRIMARY KEY

Chiave primaria: esempio n. 1

CREATE TABLE F (CodF CHAR(5) PRIMARY KEY, NomeF CHAR(20),

NSoci SMALLINT,

Sede CHAR(15));

- □ La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- ⊃ Può essere specificata una sola chiave primaria per una tabella
- □ Definizione della chiave primaria
 - composta da uno o più attributi

PRIMARY KEY (ElencoAttributi)

- ☐ Il valore NULL indica l'assenza di informazioni

NomeAttributo Dominio NOT NULL

• il valore nullo non è ammesso

 $D_{M}^{B}G$

- □ Un attributo o un insieme di attributi non può assumere lo stesso valore in righe diverse della tabella
 - per un solo attributo
 NomeAttributo Dominio UNIQUE
 - per uno o più attributo

UNIQUE (ElencoAttributi)

 ∑ È ammessa la ripetizione del valore NULL (considerato sempre diverso)

- □ La chiave candidata è un insieme di attributi che potrebbe assumere il ruolo di chiave primaria
 - è univoca
 - può non ammettere il valore nullo
- □ La combinazione UNIQUE NOT NULL permette di definire una chiave candidata che non ammette valori nulli

NomeAttributo Dominio UNIQUE NOT NULL

Definizione della chiave esterna

 □ La chiave esterna è definita nell'istruzione □ CREATE TABLE della tabella referenziante

FOREIGN KEY (*ElencoAttributiReferenzianti*) REFERENCES

NomeTabella [(ElencoAttributiReferenziati)]

Definizione della chiave esterna

 □ La chiave esterna è definita nell'istruzione □ CREATE TABLE della tabella referenziante

FOREIGN KEY (*ElencoAttributiReferenzianti*) REFERENCES

NomeTabella [(ElencoAttributiReferenziati)]

 ∑ Se gli attributi referenziati hanno lo stesso nome di quelli referenzianti, non è obbligatorio specificarli

Gestione dei vincoli: esempio n.2 (3/3) Dipartimenti (referenziata) insert (nuova tupla) → Ok update (DNum) → aggiornare in cascata (cascade) delete (tupla) → aggiornare in cascata (cascade) cascade)

Gestione dei vincoli: esempio n.2 (3/3) Dipartimenti (referenziata) insert (nuova tupla) → Ok update (DNum) → aggiornare in cascata (cascade) delete (tupla) → aggiornare in cascata (cascade) impedire l'azione (no action) impostare a valore ignoto (set null)

Politiche di gestione dei vincoli (1/3)

 □ I vincoli d'integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione

Politiche di gestione dei vincoli (1/3)

- ☐ I vincoli d'integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione
- Non sono ammesse operazioni di inserimento e modifica della tabella referenziante che violino il vincolo

Politiche di gestione dei vincoli (2/3)

- Operazioni di modifica o cancellazione dalla tabella referenziata causano sulla tabella referenziante:
 - CASCADE: propagazione dell'operazione di aggiornamento o cancellazione
 - SET NULL/DEFAULT: null o valore di default in tutte le colonne delle tuple che hanno valori non più presenti nella tabella referenziata
 - NO ACTION: non si esegue l'azione invalidante

Politiche di gestione dei vincoli (3/3) Di Nell'istruzione CREATE TABLE della tabella referenziata FOREIGN KEY (ElencoAttributiReferenzianti) REFERENCES NomeTabella [(ElencoAttributiReferenziati)] [ON UPDATE <CASCADE | SET DEFAULT | SET NULL | NO ACTION>] [ON DELETE <CASCADE | SET DEFAULT | SET NULL | NO ACTION>] DBG

□ DB forniture prodotti

- tabella P: descrive i prodotti disponibili
 - chiave primaria: CodP
 - nome prodotto non può assumere valori nulli o duplicati
 - la taglia è sempre maggiore di zero
- tabella F: descrive i fornitori
 - chiave primaria: CodF
 - nome fornitore non può assumere valori nulli
 - numero dei soci è sempre maggiore di zero

□ DB forniture prodotti

- tabella FP: descrive le forniture, mettendo in relazione i prodotti con i fornitori che li forniscono
 - chiave primaria: (CodF, CodP)
 - quantità non può assumere il valore null ed è maggiore di zero
 - vincoli di integrità referenziale

