CS 188: Artificial Intelligence

Markov Decision Processes

Instructor: Stuart Russell and Dawn Song

University of California, Berkeley

What is a decision network?

Decision network = Bayes net + Actions + Utilities

Action nodes (rectangles, cannot have parents, will have value fixed by algorithm)

Utility nodes (diamond, depends on action and chance nodes)

 Decision network represents a decision problem, containing all the information needed to for the agent to decide

What types of decisions?

Decision network = Bayes net + Actions + Utilities

- Utility nodes (diamond, depends on action and chance nodes)
 - Decision network represents a decision problem, containing all the information needed to for the agent to decide
 - What action to take given evidence e
 - Decision algorithm
 - Fix evidence e
 - For each possible action a
 - Fix action node to a
 - Compute posterior P(W|e,a) for parents W of U
 - Compute expected utility $\sum_{w} P(w|e,a) U(a,w)$
 - Return action with highest expected utility

Decision network = Bayes net + Actions + Utilities

- Decision network represents a decision problem, containing all the information needed to for the agent to decide
 - What action to take given evidence e
 - Decision algorithm
 - Value of information
 - $VPI(E_i \mid e) = \left[\sum_{e_i} P(e_i \mid e) \max_{a} EU(a \mid e_{i'}e)\right] \max_{a} EU(a \mid e)$

Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems

I'm sorry, Dave, I'm afraid I can't do that

Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems
- A machine that is explicitly uncertain about the human's preferences will defer to the human (e.g., allow itself to be switched off)

Off-switch problem (example)

$$EU(act) = +10$$

$$EU(wait) = (0.4 * 0) + (0.6 * 30) = +18$$

Off-switch problem (general proof)

- $EU(wait) = \int_{-\infty}^{0} P(u) \cdot 0 \ du + \int_{0}^{+\infty} P(u) \cdot u \ du$
- Obviously $\int_{-\infty}^{0} P(u) \cdot u \ du \le \int_{-\infty}^{0} P(u) \cdot 0 \ du$
- Hence $EU(act) \leq EU(wait)$

Sequential decisions under uncertainty

So far, decision problem is one-shot --- concerning only one action

Sequential decision problem: agent's utility depends on a sequence of actions

Markov Decision Process (MDP)

- Environment history: [s₀, a₀, s₁, a₁, ..., s_t]
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Markov Decision Process (MDP)

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition model T(s, a, s')
 - Probability that α from s leads to s', i.e., $P(s' \mid s, \alpha)$
 - A reward function *R*(*s*, *a*, *s'*) for each transition
 - A start state
 - Possibly a terminal state (or absorbing state)
 - Utility function which is additive (discounted) rewards

MDPs are fully observable but probabilistic search problems

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward r each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Policies

• A policy π gives an action for each state, $\pi: S \to A$

 In deterministic single-agent search problems, we wanted an optimal *plan*, or sequence of actions, from start to a goal

• For MDPs, we want an optimal **policy** π^* : $S \rightarrow A$

- An optimal policy maximizes expected utility
- An explicit policy defines a reflex agent

Optimal policy for r>0

r > 0

Optimal policy for r>0

Sample Optimal Policies

Figure 17.2 (a) The optimal policies for the stochastic environment with r = -0.04 for transitions between nonterminal states. There are two policies because in state (3,1) both Left and Up are optimal. (b) Optimal policies for four different ranges of r.

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[s_0, a_0, s_1, a_1, s_2, \ldots] > [s'_0, a'_0, s'_1, a'_1, s'_2, \ldots], \quad s_0 = s'_0, \ a_0 = a'_0, \ \text{and} \ s_1 = s'_1, \ s_1, s_2, \ldots]$$
 $[s'_1, a'_1, s'_2, \ldots]$

then there is only one way to define utilities:

• Additive discounted utility:

$$U_h([s_0, a_0, s_1, a_1, s_2, \ldots]) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \cdots$$

where $\gamma \in [0, 1]$ is the **discount factor**

Discounting

Worth $\gamma^2 r$ in two steps

- Discounting with conveniently solves the problem of infinite reward streams!
 - Geometric series: $1 + \gamma + \gamma^2 + ... = 1/(1 \gamma)$
 - Assume rewards bounded by $\pm R_{\text{max}}$
 - Then $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$ is bounded by $\pm R_{\text{max}}/(1 \gamma)$
- (Another solution: environment contains a terminal state; and agent reaches it with probability 1)

Quiz: Discounting

• Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

• Quiz 3: For which γ are West and East equally good when in state d?

The utility of a policy

- Executing a policy π from any state s_0 generates a sequence s_0 , $\pi(s_0)$, s_1 , $\pi(s_1)$, s_2 , ...
- This corresponds to a sequence of rewards

$$R(s_0, \pi(s_0), s_1), R(s_1, \pi(s_1), s_2), \dots$$

This reward sequence happens with probability

$$P(s_1 | s_0, \pi(s_0)) \times P(s_2 | s_1, \pi(s_1)) \times ...$$

- The value (expected utility) of π in s_0 is written $U^{\pi}(s_0)$
 - It's the sum over all possible state sequences of (discounted sum of rewards) x (probability of state sequence)

$$\mathsf{U}^{\mathsf{TT}}(\mathsf{S}_0) = \sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})$$

Optimal Quantities

- The optimal policy: $\pi^*(s)$ = optimal action from state s Gives highest $U^{\pi}(s)$ for any π
- The value (utility) of a state s:
 U*(s) = U^{π*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility of taking action a in state s and (thereafter) acting optimally
 U*(s) = max_aQ*(s,a)

Bellman equations (Shapley, 1953)

- The value/utility of a state is
 - The expected reward for the next transition plus the discounted value/utility of the next state, assuming the agent chooses the optimal action
- Hence we have a recursive definition of value (Bellman equation):

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

Similarly, Bellman equation for Q-functions

$$Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

= $\sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$