Group 7

Body Fat Prediction

Contents

1. Introduction

2. Model Selection and Results

3. Final Model Interpretation

4. Shiny App

Introduction

Background and Data Cleaning

Data cleaning

• Scale

We changed the units of weight and height to kg and cm because all of the other variables in the dataset are measured in cm.

Height

We fixed a person who is only 74.94 cm tall using the relationship between bmi, weight and height (bmi=kg/m^2).

Bodyfat

We removed the person with 0% body fat percentage, because this is scientifically impossible and we couldn't manage to fix this.

Model Selection and Results

Model Selection, Visualization, Result Discussion

Models Selection

- Stepwise linear regression model without interaction Weight, age,neck,abdomen,thigh,forearm,wrist are significant
- Lasso regression

 Age,height,neck,abdomen,forearm,wrist are significant

There are too many predictors and we want a simpler model

- 1. The two models above show that weight, age, abdomen, height are four predictors significant and easy to measure
- 2. We fit a linear model only consider these four predictors, and find that only abdomen and weight are significant
- 3. We suggest that there are interaction effect between abdomen and weight
- 4. So we fit a linear model with interaction
- Linear regression with interaction

Abdomen and the interaction between abdomen and weight are significant

Visualization of Results

- This plot shows the 95% CI of all the significant predictors in our three models
- We can see that estimates for each predictors are close to each other

Discussions of results

- MSE and R^2 are similar in these three models
- Overall p-value are all smaller than 0.05
- Among them, the interaction model uses least amount of predictors and is the simplest one

Model	MSE	R^2	Overall p-value
stepwise	15.12	0.74	<2e-16
Interaction model	16.08	0.72	<2e-16
lasso	15.67	0.73	<2.2e-16

Final Model Interpretation

Final Model, Visualization, Model Diagnostics , Strengths and Weaknesses

Final model

bodyfat=-64.4-0.008weight+1.14abdomen-0.003weight*abdomen

- Michael Phelps Example: weight(87 kg), abdomen(86.36 cm)
 - Michael's estimated body fat percentage is 8.33% This result is pretty close to what we got from Google, which is 10.3%.
- For A man who has 89 cm abdomen circumference our model predicts that his body fat percentage will decrease 0.275% for every 1 kg increase in his weight.
- For a man who has 70 kg weight
 - Our model predicts that his body fat percentage will increase 0.93% for every 1 cm increase in his abdomen circumference.

Visual description of final model

bodyfat vs fitted values

• The trend of fitted values and the original density is roughly the same

Statistical properties of final model

predictor	coefficient	p-value	95% lower CI	95% upper CI
intercept	-64.4	4.63e-15	-79.60	-49.25
weight	-0.008	0.94	-0.21	0.19
abdomen	1.14	<2e-16	0.97	1.32
weight*abdomen	-0.003	0.001	-0.005	-0.001

- Abdomen and the interaction term weight*abdomen are significant under alpha=0.05
- Overall model is significant with p-value<2e-16
- R^2=0.72, MSE=16.08

Model diagnostics

- We test the normality and randomness of the residuals
- Q-Q plot shows that residuals are approximately normally distributed
- Residuals vs fitted values plot shows that residuals have mean 0 and show no obvious pattern

Strengths and weaknesses

bodyfat=-64.4-0.008weight+1.14abdomen-0.003weight*abdomen

Strengths

Simple and Easy to explain

Residuals normally distributed

Weaknesses

Only two predictors

Data is inaccurate for weight and abdomen

Outliers in normal Q-Q plot

Shiny App

Michael Phelps Example, Extreme Values

Michael Phelps Example

Body Fat Calculator

• We use Michael Phelps's data to introduce our shiny app

• The outcome is 10.5%, which is really close to the Google result 10.3%

 There is some difference between our predicted data and the shiny app outcome due to rounding

Extreme Values

Body Fat Calculator

Body Fat Calculator

Thank you

Contribution: