Diffusion Reading Group #18

Tanishq Abraham 3/11/2023

Diffusion models - refresher

Stochastic Differential Equation (SDE):

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + \sigma(t) d\mathbf{w}_t$$

Probability Flow Ordinary Differential Equation (PF ODE):

$$d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2}\sigma(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] dt.$$

Diffusion models - refresher

Karras et al.:

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -t\boldsymbol{s}_{\boldsymbol{\phi}}(\mathbf{x}_t, t).$$

Score function $s_{\phi}(\mathbf{x}_t,t)$ obtained via denoising score matching Use ODE solver to obtain solution trajectory, usually stop at $t=\epsilon$

Consistency models

Define a consistency function $f: (\mathbf{x}_t, t) \mapsto \mathbf{x}_{\epsilon}$ for any t

Therefore, $f(\mathbf{x}_t, t) = f(\mathbf{x}_{t'}, t')$ for all $t, t' \in [\epsilon, T]$

We train a neural network $f_{\theta}(\mathbf{x}_t, t)$ by directly learning to enforce this self-consistency property

Consistency models - parameterization

Boundary condition: $f(\mathbf{x}_{\epsilon}, \epsilon) = \mathbf{x}_{\epsilon} (f(\cdot, \epsilon))$ is the identity function

The consistency model needs to be parameterized to respect this boundary condition

Option 1:

$$f_{\theta}(\mathbf{x},t) = \begin{cases} \mathbf{x} & t = \epsilon \\ F_{\theta}(\mathbf{x},t) & t \in (\epsilon,T] \end{cases}$$

Option 2:

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t),$$

This is equivalent to Karras et al. preconditioning, this is used in the experiments.

Sampling

Single step sampling:

$$\hat{\mathbf{x}}_T \sim \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$$

$$\hat{\mathbf{x}}_\epsilon = \mathbf{f}_{\theta}(\mathbf{x}_T, T)$$

Multi-step sampling:

Algorithm 1 Multistep Consistency Sampling

```
Input: Consistency model f_{\theta}(\cdot, \cdot), sequence of time points \tau_1 > \tau_2 > \cdots > \tau_{N-1}, initial noise \hat{\mathbf{x}}_T \mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_T, T) for n = 1 to N-1 do Sample \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z} \mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_{\tau_n}, \tau_n) end for Output: \mathbf{x}
```

Numerically solving ODE with Karras et al.-defined discretized timesteps:

$$\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \coloneqq \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi}),$$

where $\Phi(\cdots;\phi)$ is the update function of a one-step ODE solver applied to the PF ODE

Specifically using the Euler solver:

$$\hat{\mathbf{x}}_{t_n}^{\phi} = \mathbf{x}_{t_{n+1}} - (t_n - t_{n+1})t_{n+1}s_{\phi}(\mathbf{x}_{t_{n+1}}, t_{n+1}).$$

We can sample $\mathbf{x} \sim p_{\text{data}}$, then add Gaussian noise to \mathbf{x}

Given a datapoint \mathbf{x} , we sample from $\mathcal{N}(\mathbf{x}, t_{n+1}^2 \mathbf{I})$ to get $\mathbf{x}_{t_{n+1}}$, and take one discretization step of the numerical ODE solver (with the score function from our pretrained diffusion model) to get $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}$

Our consistency model learns to enforce the consistency on the pair $\left(\hat{\mathbf{x}}_{t_n}^{\pmb{\phi}}, \mathbf{x}_{t_{n+1}}\right)$

Loss function:

Definition 1. The consistency distillation loss is defined as

$$\mathcal{L}_{CD}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) := \mathbb{E}[\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))], \quad (7)$$

In practice $\lambda(t_n)=1$ performs well. EMA + stopgrad improves training stability:

$$\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1 - \mu)\boldsymbol{\theta}).$$

Algorithm 2 Consistency Distillation (CD) Input: dataset \mathcal{D} , initial model parameter θ , learning rate

$$\eta$$
, ODE solver $\Phi(\cdot, \cdot; \phi)$, $d(\cdot, \cdot)$, $\lambda(\cdot)$, and μ
 $\theta^- \leftarrow \theta$

repeat

Sample $\mathbf{x} \sim \mathcal{D}$ and $n \sim \mathcal{U}[\![1, N-1]\!]$

Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$
 $\hat{\mathbf{x}}_{t_n}^{\phi} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1})\Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi)$
 $\mathcal{L}(\theta, \theta^-; \phi) \leftarrow$
 $\lambda(t_n)d(\mathbf{f}_{\theta}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \mathbf{f}_{\theta^-}(\hat{\mathbf{x}}_{t_n}^{\phi}, t_n))$
 $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-; \phi)$
 $\theta^- \leftarrow \text{stopgrad}(\mu \theta^- + (1 - \mu)\theta)$

until convergence

Consistency Training (CT)

A pretrained diffusion model was used to provide the score function in CD. We can instead directly estimate for training as the following is true:

$$\nabla \log p_t(\mathbf{x}_t) = -\mathbb{E}\left[\frac{\mathbf{x}_t - \mathbf{x}}{t^2} \,\middle|\, \mathbf{x}_t\right],$$

We can use this estimate of the score function in our loss function instead:

$$\mathbb{E}[\lambda(t_n)d(\boldsymbol{f_{\theta}}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\boldsymbol{f_{\theta}}^{-}(\mathbf{x}+t_n\mathbf{z},t_n))], (10)$$

Consistency Training (CT)

Algorithm 3 Consistency Training (CT)

until convergence

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , step schedule $N(\cdot)$, EMA decay rate schedule $\mu(\cdot), d(\cdot, \cdot)$, and $\lambda(\cdot)$ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ and $k \leftarrow 0$ repeat

Sample $\mathbf{x} \sim \mathcal{D}$, and $n \sim \mathcal{U}[\![1, N(k) - 1]\!]$ Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \leftarrow \lambda(t_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x} + t_{n+1}\mathbf{z}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\mathbf{x} + t_n\mathbf{z}, t_n)$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-)$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu(k)\boldsymbol{\theta}^- + (1 - \mu(k))\boldsymbol{\theta})$ $k \leftarrow k + 1$

$$N(k) = \left[\sqrt{\frac{k}{K}} ((s_1 + 1)^2 - s_0^2) + s_0^2 - 1 \right] + 1$$

$$\mu(k) = \exp\left(\frac{s_0 \log \mu_0}{N(k)}\right),$$

Continuous-time objectives

Consistency Distillation (L2 loss, no stopgrad):

$$\mathcal{L}_{CD}^{\infty}(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi}) = \mathbb{E}\left[\lambda(t) \left\| \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)}{\partial t} - t \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}} \boldsymbol{s}_{\boldsymbol{\phi}}(\mathbf{x}_{t}, t) \right\|_{2}^{2}\right].$$

Consistency Training (L2 loss, stopgrad):

$$\mathcal{L}_{CT}^{\infty}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}) = 2\mathbb{E}\left[\lambda(t)\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)^{\mathsf{T}}\left(\frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\mathbf{x}_{t}, t)}{\partial t} + \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}} \cdot \frac{\mathbf{x}_{t} - \mathbf{x}}{t}\right)\right].$$

Results – Consistency Distillation

LPIPS is best distance metric

Heun solver with N=18 performs best (for CIFAR10)

Results – Consistency Training

Based on CD results, LPIPS is used with Heun solver

Low N has quick convergence but worse samples while high N has slow convergencebut better samples. Adaptive N schedule addresses this

issue

(d) Adaptive N and μ in CT.

CD beats Progressive Distillation (PD) at all timesteps for most datasets

Figure 4: Multistep image generation with consistency distillation (CD). CD outperforms progressive distillation (PD) across all datasets and sampling steps. The only exception is single-step generation on Bedroom 256×256 .

CD sets new SOTAs, while CT beats non-adversarial single-step methods (and is comparable to PD)

Direct Congression

Table 1: Sample quality on CIFAR-10. *Methods that require synthetic data construction for distillation.

METHOD	NFE (↓)	FID (↓)	IS (†)
Diffusion + Samplers			
DDIM (Song et al., 2020)	50	4.67	
DDIM (Song et al., 2020)	20	6.84	
DDIM (Song et al., 2020)	10	8.23	
DPM-solver-2 (Lu et al., 2022)	12	5.28	
DPM-solver-3 (Lu et al., 2022)	12	6.03	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
Diffusion + Distillation			
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36	
DFNO* (Zheng et al., 2022)	1	4.12	
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79
PD (Salimans & Ho, 2022)	1	8.34	8.69
CD	1	3.55	9.48
PD (Salimans & Ho, 2022)	2	5.58	9.05
CD	2	2.93	9.75

Direct Generation			
BigGAN (Brock et al., 2019)	1	14.7	9.22
CR-GAN (Zhang et al., 2019)	1	14.6	8.40
AutoGAN (Gong et al., 2019)	1	12.4	8.55
E2GAN (Tian et al., 2020)	1	11.3	8.51
ViTGAN (Lee et al., 2021)	1	6.66	9.30
TransGAN (Jiang et al., 2021)	1	9.26	9.05
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83
StyleGAN-XL (Sauer et al., 2022)	1	1.85	
Score SDE (Song et al., 2021)	2000	2.20	9.89
DDPM (Ho et al., 2020)	1000	3.17	9.46
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.68
EDM (Karras et al., 2022)	36	2.04	9.84
1-Rectified Flow (Liu et al., 2022)	1	378	1.13
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
Residual Flow (Chen et al., 2019a)	1	46.4	
GLFlow (Xiao et al., 2019)	1	44.6	
DenseFlow (Grcić et al., 2021)	1	34.9	
DC-VAE (Parmar et al., 2021)	1	17.9	8.20
CT	1	8.70	8.49
CT	2	5.83	8.85

METHOD	NFE (\lambda)	FID (↓)	Prec. (†)	Rec. (†)	LSUN Bedroom $256 imes 256$		
	$T(L(\downarrow))$ $T(L(\downarrow))$ $T(L(\downarrow))$		1100. ()	Rec. ()	PD [†] (Salimans & Ho, 2022)	1	16.92
ImageNet 64 × 64					PD [†] (Salimans & Ho, 2022)	2	8.47
PD [†] (Salimans & Ho, 2022)	1	15.39	0.59	0.62	$\mathbf{C}\mathbf{D}^{\dagger}$	1	7.80
DFNO ^{†*} (Zheng et al., 2022)	1	8.35			$\mathbf{C}\mathbf{D}^{\dagger}$	2	5.22
$\mathbf{C}\mathbf{D}^{\dagger}$	1	6.20	0.68	0.63	DDPM (Ho et al., 2020)	1000	4.89
PD [†] (Salimans & Ho, 2022)	2	8.95	0.63	0.65	ADM (Dhariwal & Nichol, 2021)	1000	1.90
$\mathbf{C}\mathbf{D}^{\dagger}$	2	4.70	0.69	0.64	EDM (Karras et al., 2022)	79	3.57
ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63	SS-GAN (Chen et al., 2019b)	1	13.3
EDM (Karras et al., 2022)	79	2.44	0.71	0.67	PGGAN (Karras et al., 2018)	1	8.34
BigGAN-deep (Brock et al., 2019)	1	4.06	0.79	0.48	PG-SWGAN (Wu et al., 2019)	1	8.0
CT	1	13.0	0.71	0.47	StyleGAN2 (Karras et al., 2020)	1	2.35
CT	2	11.1	0.69	0.56	CT	1	16.0
					CT	2	7.85

LSUN Cat 256 × 256				
PD [†] (Salimans & Ho, 2022)	1	29.6	0.51	0.25
PD [†] (Salimans & Ho, 2022)	2	15.5	0.59	0.36
$\mathbf{C}\mathbf{D}^{\dagger}$	1	11.0	0.65	0.36
$\mathbf{C}\mathbf{D}^{\dagger}$	2	8.84	0.66	0.40
DDPM (Ho et al., 2020)	1000	17.1	0.53	0.48
ADM (Dhariwal & Nichol, 2021)	1000	5.57	0.63	0.52
EDM (Karras et al., 2022)	79	6.69	0.70	0.43
PGGAN (Karras et al., 2018)	1	37.5		
StyleGAN2 (Karras et al., 2020)	1	7.25	0.58	0.43
CT	1	20.7	0.56	0.23
CT	2	11.7	0.63	0.36

0.47

0.56

0.68

0.60

0.66 0.66

0.59

0.60

0.68

0.27

0.39 0.34 **0.39**

0.45

0.51

0.45

0.48

0.17

0.33

Figure 5: Samples generated by EDM (*top*), CT + single-step generation (*middle*), and CT + 2-step generation (*Bottom*). All corresponding images are generated from the same initial noise.

Results – Zero-shot Image Editing

(a) Left: The gray-scale image. Middle: Colorized images. Right: The ground-truth image.

(b) Left: The downsampled image (32 \times 32). Middle: Full resolution images (256 \times 256). Right: The ground-truth image (256 \times 256).

(c) Left: A stroke input provided by users. Right: Stroke-guided image generation.

Figure 6: Zero-shot image editing with a consistency model trained by consistency distillation on LSUN Bedroom 256×256 .