Numerical Integration

Outline

- Statement of the problem
- Newton-Cotes Formulas
 - Trapezoidal Rule
 - Simpson's Rule
 - Midpoint Rule
- Composite Formulas
- Gaussian Formulas

Numerical Integration

Statement of the problem:

Let f be a real function defined on an interval [a,b]. We want to determine an approximation of the definite integral

$$I(a,b;f) = \int_a^b f(x) \, dx$$

Why to provide an approximation:

- It is not always possible to express the primitive of f in terms of elementary functions.
- The function to be integrated may not be given in an analytical form but as a set of points.

Suppose we know (or can evaluate) the integrand function f(x) at points x_i (chosen or predetermined), distinct within the interval [a, b].

$$I(a,b;f) = \int_a^b f(x) dx \approx I_n = \sum_{i=0}^n c_i f(x_i),$$

where c_i are weights/coefficients and $f(x_i)$ are the function values on the points x_i . The rest of the quadrature formula is:

$$r_n = I - I_n$$

Numerical integration

A quadrature formula is a weighted sum of function values at appropriate points:

$$\int_a^b f(x) dx \approx \sum_{i=0}^n c_i f(x_i) = c_0 f(x_0) + c_1 f(x_1) + \cdots + c_n f(x_n)$$

Interpolatory formulas

Idea: The idea is to replace the integrand function, f(x), with a function that is easier to integrate, typically a polynomial.

$$I(a,b;f) = \int_a^b f(x) dx \quad I_n(a,b;f) = \int_a^b p_n(x) dx$$

where $p_n(x)$ is the polynomial that interpolates f(x) at n+1 points $(x_i, f(x_i))$

Interpolatory formulas

Let $p_n(x)$ be the Lagrange interpolating polynomial at n+1 distinct points.

$$p_n(x) = \sum_{i=0}^n f(x_i) L_i(x)$$

$$I_n(f) = \int_a^b p_n(x) dx = \sum_{i=0}^n \underbrace{\int_a^b L_i(x) dx}_{c_i} f(x_i)$$

A quadrature formula I_n has a accuracy degree k if it is exact $(r_n = 0)$ when the integrand function is any polynomial p(x) of degree less than or equal to k.

$$I(p) = I_n(p) \quad \forall p \in \mathbb{P}_k$$

The quadrature formula is exact by construction for polynomials of degree at least n (accuracy degree at least n).

Trapezoidal Rule

Let us consider a linear approximation of f(x)

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{1} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1})$$
$$= \frac{h}{2} [f(x_{0}) + f(x_{1})]$$

where $a = x_0$ and $b = x_1$

Trapezoidal Rule

Lagrange Polynomial, n = 1

$$p(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

$$p(x) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1)$$

Variable change

$$\xi = \frac{x - x_0}{x_1 - x_0} \in [0, 1], \quad d\xi = \frac{dx}{h}; \quad h = x_1 - x_0$$

$$x = x_0 \implies \xi = 0 \quad \text{and} \quad x = x_1 \implies \xi = 1$$

$$p(\xi) = (1 - \xi)f(a) + \xi f(b)$$

Integrating

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx = h \int_{0}^{1} p(\xi)d\xi$$
$$= f(a)h \int_{0}^{1} (1 - \xi)d\xi + f(b)h \int_{0}^{1} \xi d\xi$$
$$= f(a)h \left(\xi - \frac{\xi^{2}}{2}\right) \Big|_{0}^{1} + f(b)h \frac{\xi^{2}}{2} \Big|_{0}^{1} = \frac{h}{2} [f(a) + f(b)]$$

Trapezoidal Rule: an example

Let us calculate the following integral

$$\int_0^4 x e^{2x} dx$$

Exact Solution

$$\int_0^4 x e^{2x} dx = \left[\frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} \right]_0^4$$
$$= \frac{1}{4} e^{2x} (2x - 1) \Big|_0^4 = 5216.926477$$

Trapezoidal Rule

$$I = \int_0^4 xe^{2x} dx \approx \frac{4-0}{2} \left[f(0) + f(4) \right] = 2(0+4e^8) = 23847.66$$

Relative error

$$\varepsilon = \frac{5216.926 - 23847.66}{5216.926} = -357.12\%$$

Simpson rule 1/3

Let us approximate the function f(x) with a parabola p(x), n=2

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{2} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{2} f(x_{2})$$
$$= \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + f(x_{2})]$$

$$\rho(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)
\xi = \frac{x - x_1}{h} \in [-1, 1], \quad d\xi = \frac{dx}{h}, \quad h = \frac{x_2 - x_0}{2}
\begin{cases} x = x_0 \implies \xi = -1 \\ x = x_1 \implies \xi = 0 \\ x = x_2 \implies \xi = 1 \end{cases}$$

$$\rho(\xi) = \frac{\xi(\xi - 1)}{2} f(x_0) + (1 - \xi^2) f(x_1) + \frac{\xi(\xi + 1)}{2} f(x_2)
\int_{a}^{b} f(x) dx \approx h \int_{-1}^{1} \rho(\xi) d\xi =$$

$$= f(x_0) \frac{h}{2} \int_{-1}^{1} \xi(\xi - 1) d\xi + f(x_1) h \int_{-1}^{1} (1 - \xi^2) d\xi + f(x_2) \frac{h}{2} \int_{-1}^{1} \xi(\xi + 1) d\xi
= f(x_0) \frac{h}{2} \left(\frac{\xi^3}{3} - \frac{\xi^2}{2}\right) \Big|_{-1}^{1} + f(x_1) h \left(\xi - \frac{\xi^3}{3}\right) \Big|_{-1}^{1} + f(x_2) \frac{h}{2} \left(\frac{\xi^3}{3} + \frac{\xi^2}{2}\right) \Big|_{-1}^{1}$$

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Simpson rule 3/8

Let us approximate the function f(x) with a cubic polynomial, n = 3

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{3} c_{i} f(x_{i}) = c_{0} f(x_{0}) + c_{1} f(x_{1}) + c_{2} f(x_{2}) + c_{3} f(x_{3})$$
$$= \frac{3h}{8} [f(x_{0}) + 3f(x_{1}) + 3f(x_{2}) + f(x_{3})]$$

Simpson rule 3/8

Calculate the Integral

$$\int_0^4 x e^{2x} dx$$

• Simpson 1/3

$$I = \int_0^4 x e^{2x} dx \approx \frac{h}{3} [f(0) + 4f(2) + f(4)]$$
$$= \frac{2}{3} [0 + 4(2e^4) + 4e^8] = 8240.411$$
$$\varepsilon = \frac{5216.926 - 8240.411}{5216.926} = -57.96\%$$

• Simpson 3/8

$$I = \int_0^4 xe^{2x} dx \approx \frac{3h}{8} \left[f(0) + 3f\left(\frac{4}{3}\right) + 3f\left(\frac{8}{3}\right) + f(4) \right]$$
$$= \frac{3(4/3)}{8} \left[0 + 3(19.18922) + 3(552.33933) + 11923.832 \right] = 6819.209$$
$$\varepsilon = \frac{5216.926 - 6819.209}{5216.926} = -30.71\%$$

Mid point rule

Let us approximate the function f(x) with a constant function, n = 0

$$\int_{a}^{b} f(x)dx \approx (x_{2} - x_{0})f(x_{mid}) \approx (x_{2} - x_{0})f(\frac{x_{0} + x_{2}}{2})$$

Theorem (Interpolation Error, Cauchy (1840))

Let $f \in C^{n+1}([a,b])$ and suppose that $x_0, \ldots, x_n \in [a,b]$ are distinct, and that the polynomial p_n satisfies

$$p_n(x_k) = f(x_k), \quad k = 0, \ldots, n.$$

Then

$$E_n[f](x) := f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i),$$

where $\xi \in I$ with I being the smallest open interval containing x_0, \ldots, x_n .

So we have that the rest of the quadrature formula is given by

$$r_n = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \int_a^b \Pi_n(x) dx$$

where
$$\Pi_n(x) = \prod_{i=0}^n (x - x_i)$$

Truncation Error

Since the nodes x_i are equally spaced, the rest expression simplifies as follows

• If n is even and $f \in C^{n+2}([a,b])$ then

$$r_n = \frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!}\int_0^n t^2(t-1)\cdots(t-n)dt$$

• If n is odd and $f \in C^{n+1}([a,b])$ then

$$r_n = \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!}\int_0^n t(t-1)\cdots(t-n))dt$$

Then the Newton-Cotes formulas have an accuracy degree of

$$n+1$$
 if n is EVEN and n if n is ODD.

• An example: truncation error for the trapezoidal rule

$$r_1 = \frac{h^3}{2!} f^{(2)}(\eta) \int_0^1 t(t-1) dt$$
$$\int_0^1 t(t-1) dt = \left[\frac{t^3}{3} - \frac{t^2}{2} \right]_0^1 = -\frac{1}{6}$$
$$r_1 = -\frac{1}{12} h^3 f^{(2)}(\xi)$$

Errors in Newton-Cotes Formulas

Trapezoidal Rule:

$$r_1 = -\frac{h^3}{12}f^{(2)}(\xi)$$
 $h = b - a$

• Simpson's 1/3 Rule:

$$r_2 = -\frac{h^5}{90}f^{(4)}(\xi)$$
 $h = \frac{b-a}{2}$

• Simpson's 3/8 Rule:

$$r_3 = -\frac{3h^5}{80}f^{(4)}(\xi)$$
 $h = \frac{b-a}{3}$

Midpoint Rule:

$$r_0 = -\frac{h^3}{3}f^{(2)}(\xi)$$
 $h = \frac{b-a}{2}$

Composite Formulas

Subdivision of the integration interval [a, b] into N parts

$$[x_i,x_{i+1}],\quad i=0,1,\dots,N-1$$

• Elementary interpolatory formula on each subinterval

$$\int_{x_i}^{x_{i+1}} f(x) dx \quad \text{replaced by} \quad \int_{x_i}^{x_{i+1}} p(x) dx$$

• Sum of integrals over each subinterval

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

Composite Trapezoidal Rule

Let use compute the following integral

$$I = \int_0^4 x e^{2x} \, dx$$

$$N = 1, h = 4 \Rightarrow I = \frac{h}{2} [f(0) + f(4)] = 23847.66 \quad \varepsilon = -357.12\%$$

$$N = 2, h = 2 \Rightarrow I = \frac{h}{2} [f(0) + 2f(2) + f(4)] = 12142.23 \quad \varepsilon = -132.75\%$$

$$N = 4, h = 1 \Rightarrow I = \frac{h}{2} [f(0) + 2f(1) + 2f(2) + 2f(3) + f(4)] = 7288.79 \quad \varepsilon = -39.71\%$$

$$N = 8, h = 0.5 \Rightarrow I = \frac{h}{2} [f(0) + 2f(0.5) + 2f(1) + 2f(1.5) + 2f(2) + 2f(2.5) + 2f(3) + 2f(3.5) + f(4) = 5764.76 \quad \varepsilon = -10.50\%$$

$$N = 16, h = 0.25 \Rightarrow I = \frac{h}{2} [f(0) + 2f(0.25) + 2f(0.5) + \dots + 2f(3.5) + 2f(3.75) + f(4)] = 5355.95 \quad \varepsilon = -2.66\%$$

Errors in Composite Formulas

Trapezoidal Rule:

$$r_1 = -\frac{b-a}{12}h^2f^{(2)}(\xi)$$
 $h = \frac{b-a}{N}$

• Simpson's 1/3 Rule:

$$r_2 = -\frac{b-a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi) \quad h = \frac{b-a}{N}$$

Midpoint Rule:

$$r_0 = -\frac{b-a}{24}h^2f^{(2)}(\xi)$$
 $h = \frac{b-a}{N}$

The accuracy degree of the composite formulas is the same of the corresponding simple ones but, if N > 1, then the step size h is smaller.

Example.

Approximate the definite integral

$$I = \int_0^1 x^3 \sqrt{x} \, dx = \frac{2}{9},$$

using the known composite formulas for $\emph{N}=1,2,4,\ldots,$

Ν	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_I$
1	3.76	3.86	14.56
2	3.93	3.96	15.00
4	3.98	3.99	15.31
8	4.00	4.00	15.53
16	4.00	4.00	15.67
32	4.00	4.00	15.77
64	4.00	4.00	15.84
128	4.00	4.00	15.88
256	4.00	4.00	15.92
512	4.00	4.00	16.06

Table: Error decay for the composite rectangle, trapezoidal, and Cavalieri-Simpson formulas, for N subintervals, in calculating $I=\int_0^1 x^3 \sqrt{x} dx$. Ratios between two successive errors are shown for each formula.

Example.

Approximate the definite integral

$$I=\int_0^1 \sqrt{x}\,dx=\frac{2}{3},$$

using the known composite formulas for $N = 1, 2, 4, \dots, 1024$.

Unlike the previous case, the convergence of the three families of formulas is very slow. This is mainly due to the fact that although the function is continuous in [a,b], it does not even belong to $C^1[0,1]$ since it is not differentiable at 0. Nevertheless, the formulas still converge.

Ν	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_N$
1	2.47	2.64	2.82
2	2.59	2.70	2.83
4	2.67	2.74	2.83
8	2.72	2.77	2.83
16	2.75	2.79	2.83
32	2.78	2.80	2.83
64	2.80	2.81	2.83
128	2.80	2.81	2.83
256	2.81	2.82	2.83
512	2.82	2.82	2.83
1024	2.82	2.82	2.83

Table: Error decay for the composite rectangle, trapezoidal, and Cavalieri-Simpson formulas, for N subintervals, in calculating $I=\int_0^1 \sqrt{x} dx$. Ratios between two successive errors are shown for each formula.

Gaussian Quadrature Formulas

Newton-Cotes Formulas

- Use values of the function at n + 1 equally spaced nodes.
- Degree of precision n (if n is odd) or n + 1 (if n is even)
- n is the degree of polynomial interpolation.

Question: What are the coefficients c_i and nodes x_i such that the quadrature formula

$$\int_a^b f(x)dx \approx \sum_{i=0}^n c_i f(x_i)$$

is exact for a polynomial of the highest possible degree?

Gaussian Formulas

• The nodes x_0, x_1, \ldots are not predefined; nodes and coefficients are determined to maximize the degree of precision.

Gaussian Quadrature Formulas: Method of Undetermined Coefficients

- n = 1: $\int_{-1}^{1} f(x) dx = c_0 f(x_0) + c_1 f(x_1)$
- Exact formula for $f = x^0, x^1, x^2, x^3$
- Non-linear system of 4 equations and 4 unknowns

$$f = 1 \implies \int_{-1}^{1} 1 \, dx = 2 = c_0 + c_1$$

$$f = x \implies \int_{-1}^{1} x \, dx = 0 = c_0 x_0 + c_1 x_1 \qquad c_0 = 1$$

$$f = x^2 \implies \int_{-1}^{1} x^2 \, dx = \frac{2}{3} = c_0 x_0^2 + c_1 x_1^2 \qquad x_1 = \frac{1}{\sqrt{3}}$$

$$f = x^3 \implies \int_{-1}^{1} x^3 \, dx = 0 = c_0 x_0^3 + c_1 x_1^3$$

$$\int_{-1}^{1} f(x) \, dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

• Degree of precision: 2n + 1 = 3

Gauss-Legendre Formulas

• Alternatively, the nodes of a Gaussian formula are obtained using orthogonal polynomials. The nodes are the roots of orthogonal polynomials with respect to appropriate weight functions $w(x) \ge 0$ in [a, b]:

$$\int_a^b w(x)f(x)\,dx \approx \sum_{i=0}^n c_i f(x_i)$$

where
$$c_i=\int_a^b w(x)L_i(x)$$

$$n=1: \quad \text{interval } [-1,1]; \quad w(x)=1$$

$$p_0(x)=1; \quad p_1(x)=x;$$

$$p_2(x)=\frac{1}{2}(3x^2-1), \quad \text{with roots } x_0=-\frac{1}{\sqrt{3}}, \, x_1=\frac{1}{\sqrt{3}},$$

Determine c_0 and c_1 such that the formula is exact for polynomials of degree < n+1

- Calculate $I = \int_0^4 te^{2t} dt = 5216.926477$
- Coordinate Transformation

$$t = \frac{b-a}{2}x + \frac{b+a}{2} = 2x + 2; \quad dt = 2dx$$

$$I = \int_0^4 te^{2t} dt = \int_{-1}^1 (4x + 4)e^{4x+4} dx = \int_{-1}^1 f(x) dx$$

Gaussian Quadrature Formula for 2 points

$$I = \int_{-1}^{1} f(x)dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$
$$= \left(4 - \frac{4}{\sqrt{3}}\right)e^{4 - \frac{4}{\sqrt{3}}} + \left(4 + \frac{4}{\sqrt{3}}\right)e^{4 + \frac{4}{\sqrt{3}}}$$
$$= 9.167657324 + 3468.376279 = 3477.543936 \quad (\varepsilon = 33.34\%)$$

Gaussian Quadrature Formulas

$$n=2:$$
 $\int_{-1}^{1} f(x)dx = c_0 f(x_0) + c_1 f(x_1) + c_2 f(x_2)$

Choose $(c_0, c_1, c_2, x_0, x_1, x_2)$ in order to maximize the degree of precision, that is, to impose that the integral is "exact" for $f(x) = x^0, x^1, x^2, x^3, x^4, x^5$

Gaussian Quadrature Formulas: Method of Indeterminate Coefficients

$$f = 1 \quad \Rightarrow \int_{-1}^{1} 1 dx = 2 = c_0 + c_1 + c_2$$

$$f = x \quad \Rightarrow \int_{-1}^{1} x dx = 0 = c_0 x_0 + c_1 x_1 + c_2 x_2$$

$$f = x^2 \quad \Rightarrow \int_{-1}^{1} x^2 dx = \frac{2}{3} = c_0 x_0^2 + c_1 x_1^2 + c_2 x_2^2$$

$$f = x^3 \quad \Rightarrow \int_{-1}^{1} x^3 dx = 0 = c_0 x_0^3 + c_1 x_1^3 + c_2 x_2^3$$

$$f = x^4 \quad \Rightarrow \int_{-1}^{1} x^4 dx = \frac{2}{5} = c_0 x_0^4 + c_1 x_1^4 + c_2 x_2^4$$

$$f = x^5 \quad \Rightarrow \int_{-1}^{1} x^5 dx = 0 = c_0 x_0^5 + c_1 x_1^5 + c_2 x_2^5$$

$$I = \int_{-1}^{1} f(x) dx = \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)$$

• 2n + 1 = 5

$$I = \int_0^4 te^{2t} dt = \int_{-1}^1 (4x + 4)e^{4x + 4} dx = 5216.926477$$

Formula with three points n = 3:

$$I = \int_{-1}^{1} f(x)dx = \frac{5}{9}f\left(-\sqrt{0.6}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{0.6}\right)$$

$$= \frac{5}{9}\left(4 - 4\sqrt{0.6}\right)e^{4-\sqrt{0.6}} + \frac{8}{9}\left(4e^{4}\right) + \frac{5}{9}\left(4 + 4\sqrt{0.6}\right)e^{4+\sqrt{0.6}}$$

$$= \frac{5}{9} \times (2.221191545) + \frac{8}{9} \times (218.3926001) + \frac{5}{9} \times (8589.142689)$$

$$= 4967.106689 \quad (\varepsilon = 4.79\%)$$

Formula with four points n = 4:

$$I = \int_{-1}^{1} f(x)dx = 0.34785 [f(-0.861136) + f(0.861136)]$$

$$+ 0.652145 [f(-0.339981) + f(0.339981)] = 5197.54375 \quad (\varepsilon = 0.37\%)$$

Gaussian Quadrature Formulas

$$I_{w,f} = \int_a^b w(x)f(x)dx$$

where w(x) is the weight function $w(x) \ge 0$ on [a, b].

Interval	w(x))	Orthogonal polynomials
[-1, 1]	1	Legendre polynomials
[-1, 1]	$(1-x)^{\alpha}(1+x)^{\beta}$, $\alpha, \beta > -1$	Jacobi polynomials
[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)
[0, ∞)	e^{-x}	Laguerre polynomials
$[-\infty,\infty]$	e^{-x^2}	Hermite polynomials

Gaussian Quadrature Formulas

Theorem

$$\int_{a}^{b} w(x)f(x) dx \approx \sum_{i=0}^{n} c_{i}f(x_{i})$$
 (1)

Let x_0, x_1, \ldots, x_n be the zeros of the n+1-th orthogonal polynomial $p_{n+1}(x)$ in the interval [a, b] with respect to the weight function w(x).

If the coefficients are determined so that formula (1) is exact for every polynomial of degree less than n+1, then the Gaussian quadrature formula (1) has an accuracy degree of 2n+1.

Proof

Let $f \in \mathbb{P}_{2n+1}$. Let us divide f(x) by p_{n+1} :

$$f(x) = p_{n+1}q + r$$
 $q, r \in \mathbb{P}_n$

Consequently $f(x_i) = r(x_i)$, with x_i roots of p_{n+1} :

$$\int_{a}^{b} f(x)w(x)dx = \int_{a}^{b} (p_{n+1}q+r)w(x)dx = \int_{a}^{b} p_{n+1}(x)q(x)w(x)dx + \int_{a}^{b} r(x)w(x)dx = \sum_{i=0}^{n} w_{i}r(x_{i}) = \sum_{i=0}^{n} w_{i}f(x_{i})$$

Convergence of Interpolation Formulas

The convergence of algebraic formulas, obtained by integrating the interpolating polynomial, depends on the family of selected nodes.

• If we consider the Chebyshev nodes $\{x_k^{(ch)}\}_{k=0,...,n}$, as seen in polynomial interpolation, we have for the Bernstein theorem that

$$\lim_{n\to\infty} \max_{x\in[a,b]} |f(x)-p_n(x)|=0, \tag{1}$$

and we can deduce that

$$\lim_{n\to\infty}\int_a^b p_n(x)\,dx=\int_a^b f(x)\,dx.$$

- On the other hand, if we consider the equispaced nodes $\{x_k^{(e)}\}_{k=0,\dots,n}$, as seen in polynomial interpolation, one cannot affirm that (1) is verified. as can be verified for $f(x)=\frac{1}{1+x^2}$, that is, the Runge function.
- if we consider composite formulas, as seen in polynomial interpolation, the (1) is verified

Convergence of Interpolation Formulas

The family of Newton-Cotes rules does not converge to the required integral, unlike what happens when using interpolation formulas at Chebyshev nodes (as predicted by the theory).

E_n^e	E_n^{ch}
1.9e + 00	1.7e-01
3.0e + 01	3.3e-03
7.7e + 02	6.2e-05
2.5e + 04	1.2e-06
8.9e + 05	2.1e-08
7.3e + 09	4.7e-10
1.0e + 07	2.7e-12
6.3e + 05	6.1e-13
1.4e + 05	4.1e-14
1.9e + 03	4.4e-15
	1.9e+00 3.0e+01 7.7e+02 2.5e+04 8.9e+05 7.3e+09 1.0e+07 6.3e+05 1.4e+05

Table: In the first column, the parameter n represents the degree of the interpolating polynomial. In the second and third columns, the absolute quadrature errors are given, obtained by integrating the interpolants at n+1 equispaced nodes and Chebyshev nodes in the interval [-5,5].

Convergence of Composite Formulas

Ν	$E_0^{(C)}(f)$	$E_1^{(C)}(f)$	$E_2^{(C)}(f)$
1	7.3e+00	2.4e + 00	4.0e+00
2	1.4e + 00	2.4e + 00	9.6e + 02
4	4.6e-01	1.4e + 01	1.3e-01
8	9.3e-02	3.6e-01	1.5e + 00
16	2.1e-04	6.9e-04	9.1e-05
32	1.6e-04	6.6e-04	1.0e-05
64	7.5e-05	6.0e-05	2.6e-09
128	1.3e-06	1.2e-06	4.6e-10
256	5.0e-07	9.8e-07	9.5e-10
512	1.2e-07	3.8e-07	4.4e-10
1024	1.7e-08	2.6e-08	3.7e-11
2048	4.4e-09	3.7e-09	9.4e-12
4096	9.5e-10	9.6e-10	5.3e-13
8192	1.5e-10	1.6e-10	4.0e-14
16384	4.4e-12	1.0e-11	4.4e-16
32768	1.4e-12	3.7e-13	4.0e-17
65536	2.9e-11	5.7e-13	0.0e + 00
131072	4.5e-12	3.9e-13	0.0e + 00
262144	8.1e-12	2.8e-13	0.0e + 00
524288	1.4e-12	1.2e-13	0.0e + 00
1048576	1.1e-13	2.2e-13	0.0e + 00

Table: Comparison of the composite rectangle, trapezoidal, and Cavalieri-Simpson formulas, for N subintervals, relative to the calculation of $I=\int_{-5}^5 \frac{1}{1+x^2} dx$, where the absolute errors $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_0^{(c)}(r)$, $E_1^{(c)}(r)$ are described for each formula.

Stability of a Quadrature Formula

From

$$S(f) = \sum_{j=1}^n c_j f_j, \quad \tilde{S}(f) = \sum_{j=1}^n c_j \tilde{f}_j,$$

we derive from the triangular inequality

$$|S(f) - \tilde{S}(f)| = \left| \sum_{j=1}^{n} c_j (f_j - \tilde{f}_j) \right| \le \sum_{j=1}^{n} |c_j| |f_j - \tilde{f}_j|$$

$$\le \left(\sum_{j=1}^{n} |c_j| \right) \cdot \max_{j} |f_j - \tilde{f}_j|.$$

Thus, the quantity

$$\sum_{j=1}^n |c_j|$$

is an **index of stability** for the quadrature formula S.

Stability of a Quadrature Formula

If the formula has at least degree 0, $\{c_j^+\}_{j=1,\dots,n_+}$ and $\{c_k^-\}_{k=1,\dots,n_-}$ are respectively the positive and negative weights:

$$\int_{a}^{b} w(x)dx = \int_{a}^{b} 1 \cdot w(x)dx = \sum_{j=1}^{n} c_{j} = \sum_{j=1}^{n_{+}} c_{j}^{+} + \sum_{k=1}^{n_{-}} c_{k}^{-}$$
$$= \sum_{j=1}^{n} |c_{j}| - 2 \sum_{k=1}^{n_{-}} |c_{k}^{-}|,$$

from which the stability index $\sum_{i=1}^{n} |c_{i}|$ satisfies

$$\sum_{j=1}^{n} |c_{j}| = \int_{a}^{b} w(x) dx + 2 \sum_{k=1}^{n} |c_{k}^{-}|.$$

Thus, the presence of negative weights worsens the stability index $\sum_{j=1}^{n} |c_j|$, while if they are all positive, $\sum_{j=1}^{n} |c_j| = \int_a^b w(x) dx$.

Stability of a Quadrature Formula

```
\mathcal{I}
n
    2.00000e+00
    2.00000e+00
    2.00000e+00
    2.00000e+00
4
    2.00000e+00
5
    2.00000e+00
    2.00000e+00
    2.00000e+00
8
    2.90243e+00
9
    2.00000e+00
10
    6.12959e+00
```

Table: Stability index $\mathcal{I}(S_n)$ of closed Newton-Cotes formulas with n+1 nodes.

On the other hand, the weights of the Gaussian quadrature formulas are all positive.

Quadrature Formulas

Newton-Cotes Formulas

- \circ Use of function values at n+1 equally spaced points
- Accuracy degree n or n+1
- The weights are positive only for $n \le 7$
- May not converge

Gaussian Formulas

- Accuracy degree 2n + 1
- o The weights are always positive
- o Always convergent as the number of nodes increases