Constraint Optimization Problems

Prakash Kotecha, Associate Professor

Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Department of Chemical Engineering Indian Institute of Technology Guwahati

A farm uses at least 800 kg of special feed daily. The special feed is a mixture of corn and soybean meal with the following compositions.

Feedstuff	kg per kg o	Cost	
recustum	Protein	Fiber	(\$ per kg)
Corn	0.09	0.02	0.3
Soyabean meal	0.6	0.06	0.9

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. The goal is to determine the daily minimum-cost of feed mix.

Let $x_1 = \text{kg of corn in the daily mix}$ $x_2 = \text{kg of soybean meal in the daily mix}$

Objective: determine minimum-cost feed mix.

Minimize
$$z = 0.3 x_1 + 0.9 x_2$$

Subject to,

$$x_1 + x_2 \ge 800$$
 Daily demand

Feedstuff	kg per kg of feedstuff				Cost
recustum	Protein		fiber		(\$ per kg)
Corn	0.09		0.02		0.3
Soyabean meal	0.6		0.06		0.9
Dietary	At least		At most		
requirements	30%		5%		

farm uses at least 800 lb of special feed daily

$$0.09 x_1 + 0.6 x_2 \ge 0.3(x_1 + x_2)$$
 Protein requirement in total mix $-0.21x_1 + 0.3 x_2 \ge 0$

$$0.02 x_1 + 0.06 x_2 \le 0.05(x_1 + x_2)$$
 Fiber requirement in total mix $-0.03 x_1 + 0.01 x_2 \le 0$

 $x_1, x_2 \ge 0$ Lower bounds of the decision variables

- Reddy Mikks company produces interior and exterior paints from raw materials, M1 and M2.
- Daily demand for interior paint cannot exceed that for exterior paint by more than 1 unit.
- Maximum daily demand for the interior paint is 2 units.
- Determine optimum quantity of interior and exterior paints that maximizes total daily profit.

	Exterior paint	Interior paint
M1	6	4
M2	1	2

Let x_1 = Units of exterior paint produced daily

 x_2 = Units of interior paints produced daily

Maximize Profit, $Z = 5x_1 + 4x_2$

Decision variables

Objective function

	Ext.	Int. paint	Availability
M 1	6	4	24
M2	1	2	6
Profit	5	4	

Subject to

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

$$x_2 \le x_1 + 1$$

$$x_1, x_2 \ge 0$$

$$x_2 \leq 2$$

Raw material constraints

Demand constraint

Bound constraints

Constraints

Daily demand for interior paint cannot exceed that for exterior paint by more than 1 Unit.

A farmer has 2400 m of fencing and wants to fence off a rectangular field that borders a straight river. No fence is required along the river. What are the dimensions of the field that has the largest area?

Area of a rectangular region = lb

Objective: Maximize the area, max f = lb

Constraint: Perimeter should not exceed 2400m

$$l + 2b \le 2400$$

Bounds: l,b > 0

- ➤ Inequality constraints (usually resource/requirement constraints)
 - ➤ In general denoted by $g(x) \le 0$
 - Conversion form one form to the other by multiplying by -1
- Equality Constraints (usually material and energy balances)
 - In general denoted by g(x) = 0
- Feasible solution: Satisfies all the constraints
- Infeasible solution: Does not satisfy at least one constraint

- Any feasible solution is preferred to any infeasible solution
- Among two feasible solutions, the one having a better objective function value is preferred
- Among two infeasible solutions, the one having a smaller constraint violation is preferred

- Any feasible solution is preferred to any infeasible solution
- Among two feasible solutions, the one having a better objective function value is preferred
- Among two infeasible solutions, the one having a smaller constraint violation is preferred
- \triangleright A solution $x^{(i)}$ is said to be *constrain dominate* a solution $x^{(j)}$:
 - Solution $x^{(i)}$ is feasible and solution $x^{(j)}$ is not.
 - Solutions $x^{(i)}$ and $x^{(j)}$ are both infeasible, but solution $x^{(i)}$ has a smaller constraint violation.
 - Solutions $x^{(i)}$ and $x^{(j)}$ are feasible and solution $x^{(i)}$ dominates solution $x^{(j)}$ with respect to objective function.

- Any feasible solution is preferred to any infeasible solution
- Among two feasible solutions, the one having a better objective function value is preferred
- Among two infeasible solutions, the one having a smaller constraint violation is preferred
- \triangleright A solution $x^{(i)}$ is said to be *constrain dominate* a solution $x^{(j)}$:
 - Solution $x^{(i)}$ is feasible and solution $x^{(j)}$ is not.
 - (S1 constrain-dominate S2)
 - Solutions $x^{(i)}$ and $x^{(j)}$ are both infeasible, but solution $x^{(i)}$ has a smaller constraint violation.
 - (S3 constrain-dominate S2)
 - Solutions $x^{(i)}$ and $x^{(j)}$ are feasible and solution $x^{(i)}$ dominates solution $x^{(j)}$ with respect to objective function.
 - (S4 constrain-dominate S1)

	S1	S2	S3	S4
X	0.7	0.4	0.65	0.8
f	0.35	0.2	0.325	0.4
violation	0	0.29	0.0275	0

$$\text{Min} \quad f = \frac{x}{2}$$

$$s.t. \quad x^2 \ge 0.45$$

$$0 < x < 1$$

Preserving feasibility of solutions

Minimize
$$3x_1 + 2x_2 + x_3$$

s.t. $2x_1 + x_2 + x_3 \ge 5$
 $x_1 + x_2 + 0.5x_3 \le 4$
 $x_1 - x_2 = 2$
 $x_1, x_2, x_3 \in \mathbb{R}$

Minimize $5x_1 + x_3 - 4$
 $5x_1 + x_2 = 5$
 $5x_1 + x_3 \ge 7$
 $2x_1 + 0.5x_3 \le 6$

Preserving feasibility of solutions

Minimize
$$3x_1 + 2x_2 + x_3$$

 $s.t.$ $2x_1 + x_2 + x_3 \ge 5$
 $x_1 + x_2 + 0.5x_3 \le 4$ $x_1 - x_2 = 2$
 $x_1, x_2, x_3 \in \mathbb{R}$

Minimize $5x_1 + x_3 - 4$
 $5x_1 + x_2 = 5$
 $5x_1 + x_3 = 7$
 $5x_1 + x_3 \ge 7$
 $5x_1 + x_2 \ge 7$
 $5x_1 + x_3 \ge 7$
 $5x_1 + x_2 \ge 7$
 $5x_1 + x_3 \ge 7$

Algorithm

- Generate randomly a single solution/a set of solutions –
 Partial decision variables
- 2) Based on the fitness of the current solution/set of solutions, suggest other solutions

- Case 1: Unconstrained optimization problem
 - Fitness function = Objective function

Solution	Objective function	Fitness function
S_1	5	5
S_2	7	7

- Case 2: Constrained optimization problem (Minimization case)
 - Fitness function = Objective function + λ (Penalty)

Solution	Objective function	Feasibility
S_1	5	Yes
S_2	7	No

- Case 1: Unconstrained optimization problem
 - Fitness function = Objective function

Solution	Objective function	Fitness function
S_1	5	5
S_2	7	7

- Case 2: Constrained optimization problem (Minimization case)
 - Fitness function = Objective function + λ (Penalty)

Solution	Objective function	Feasibility	Violation	Fitness function
S_1	5	Yes	0	5
S_2	7	No	2	47

$$\lambda = 20$$

- Case 1: Unconstrained optimization problem
 - Fitness function = Objective function

Solution	Objective function	Fitness function
S_1	5	5
S_2	7	7

- Case 2: Constrained optimization problem (Minimization case)
 - Fitness function = Objective function + λ (Penalty)

Solution	Objective function	Feasibility	Violation	Fitness function
S_1	5	Yes	0	5
S_2	7	No	2	47
S_3	2	No	0.1	4

$$\lambda = 20$$

- Case 1: Unconstrained optimization problem
 - Fitness function = Objective function

Solution	Objective function	Fitness function
S_1	5	5
S_2	7	7

- Case 2: Constrained optimization problem (Minimization case)
 - Fitness function = Objective function + λ (Penalty)

Solution	Objective function	Feasibility	Violation	Fitness function $\lambda = 20$	Fitness function $\lambda = 200$	
S_1	5	Yes	0	5	5	
S_2	7	No	2	47	407	
S_3	2	No	0.1	4	22	

Given Problem

$$Min \quad f(x)$$

s.t.
$$g_j(x) \ge b$$
 $j = 1, 2, ...J$ $x_l \le x_i \le x_u$ $i = 1, 2, ...J$ $g_j(x) \ge 0$ $j = 1, 2, ...J$

$$\underline{g}_{i}(x) \ge 0$$
 $j = 1, 2, ..., J$

Given Problem

$$Min \quad f(x)$$

s.t.
$$g_j(x) \ge b$$
 $j = 1, 2, ...J$ $x_l \le x_i \le x_u$ $i = 1, 2, ...J$ $g_j(x) \ge 0$ $j = 1, 2, ...J$

Normalize Constraints

$$\underline{g}_{i}(x) \ge 0$$
 $j = 1, 2, \dots$

Estimate the extent of violation

$$\omega_{j}(x) = \begin{cases} \left| \underline{g}_{j}(x) \right|, & \text{if } \underline{g}_{j}(x) < 0 \\ 0, & \text{otherwise} \end{cases}$$

Given Problem

$$Min \quad f(x)$$

s.t.
$$g_{j}(x) \ge b$$
 $j = 1, 2, ...J$
 $x_{l} \le x_{i} \le x_{u}$ $i = 1, 2, ...J$
 $\underline{g}_{j}(x) \ge 0$ $j = 1, 2, ...J$

Normalize Constraints

$$g_{i}(x) \ge 0$$
 $j = 1, 2, ...$

Estimate the extent of violation

$$\omega_{j}(x) = \begin{cases} \left| \underline{g}_{j}(x) \right|, & \text{if } \underline{g}_{j}(x) < 0 \\ 0, & \text{otherwise} \end{cases}$$

Estimate the total penalty

$$\Omega(x_i) = \sum_{j=1}^{J} \omega_j(x)$$

Estimate the fitness function

$$F(x_i) = f(x) + R_m \Omega(x)$$

Penalty factor (R_m): Usually an order of magnitude than the objective function value

Evaluation of Fitness function

Minimize
$$f(x) = \frac{1 + x_2}{x_1}$$
s.t.
$$g_1(x) = 9x_1 + x_2 \ge 6$$

$$g_2(x) = 9x_1 - x_2 \ge 1$$

$$0.1 \le x_1 \le 1, \quad 0 \le x_2 \le 5$$

$$\underline{g}_{1}(x) = \frac{9x_{1} + x_{2}}{6} - 1 \ge 0$$

$$\underline{g}_{2}(x) = 9x_{1} - x_{2} - 1 \ge 0$$

$$R_{m} = 20$$

$$\omega_{j}(x) = \begin{cases} \left| \underline{g}_{j}(x) \right|, & \text{if } \underline{g}_{j}(x) < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\Omega(x) = \sum_{j=1}^{J} \omega_{j}(x)$$

$$F(x) = f(x) + R_{m} \Omega(x)$$

	Decision	Objective function (f)	
Solution	x_1 x_2		
S1	0.31	0.89	6.10
<i>S2</i>	0.38	2.73	9.82
<i>S3</i>	0.22	0.56	7.09
<i>S4</i>	0.59	3.63	7.85
<i>S5</i>	0.46	2.9	8.48
<i>S6</i>	0.66	4.11	7.74

Evaluation of Fitness function

Minimize
$$f(x) = \frac{1 + x_2}{x_1}$$
s.t.
$$g_1(x) = 9x_1 + x_2 \ge 6$$

$$g_2(x) = 9x_1 - x_2 \ge 1$$

$$0.1 \le x_1 \le 1, \quad 0 \le x_2 \le 5$$

$$\underline{g}_{1}(x) = \frac{9x_{1} + x_{2}}{6} - 1 \ge 0$$

$$\underline{g}_{2}(x) = 9x_{1} - x_{2} - 1 \ge 0$$

$$R_{m} = 20$$

$$\omega_{j}(x) = \begin{cases} \left| \underline{g}_{j}(x) \right|, & \text{if } \underline{g}_{j}(x) < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\Omega(x) = \sum_{j=1}^{J} \omega_{j}(x)$$

$$F(x) = f(x) + R_{m} \Omega(x)$$

Solution	Decision	Variables	Objective	Feasibility		
	x_1	x_2	function (f)	g_1	g_2	
S1	0.31	0.89	6.10	×	✓	
<i>S2</i>	0.38	2.73	9.82	✓	×	
<i>S3</i>	0.22	0.56	7.09	×	✓	
<i>S4</i>	0.59	3.63	7.85	✓	✓	
<i>S5</i>	0.46	2.9	8.48	✓	✓	
<i>S6</i>	0.66	4.11	7.74	✓	✓	

Evaluation of Fitness function

Minimize
$$f(x) = \frac{1 + x_2}{x_1}$$
s.t.
$$g_1(x) = 9x_1 + x_2 \ge 6$$

$$g_2(x) = 9x_1 - x_2 \ge 1$$

$$0.1 \le x_1 \le 1, \quad 0 \le x_2 \le 5$$

$$\underline{g}_{1}(x) = \frac{9x_{1} + x_{2}}{6} - 1 \ge 0$$

$$\underline{g}_{2}(x) = 9x_{1} - x_{2} - 1 \ge 0$$

$$R_{m} = 20$$

$$\omega_{j}(x) = \begin{cases} \left| \underline{g}_{j}(x) \right|, & \text{if } \underline{g}_{j}(x) < 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\Omega(x) = \sum_{j=1}^{J} \omega_{j}(x)$$

$$F(x) = f(x) + R_{m} \Omega(x)$$

	Decision	Decision Variables		Feasibility		Violations		Total	Fitness
Solution	x_1	x_2	function (f)	g_1	g_2	ω_1	ω_1	penalty $oldsymbol{arOmega}$	(F)
S1	0.31	0.89	6.10	×	✓	0.39	0.00	0.39	13.90
<i>S2</i>	0.38	2.73	9.82	✓	×	0	0.31	0.31	16.02
<i>S3</i>	0.22	0.56	7.09	×	✓	0.58	0.00	0.58	18.69
<i>S4</i>	0.59	3.63	7.85	✓	✓	0	0	0	7.85
<i>S5</i>	0.46	2.9	8.48	✓	✓	0	0	0	8.48
<i>S6</i>	0.66	4.11	7.74	✓	✓	0	0	0	7.74

Minimize

$$f\left(x\right) = \frac{1 + x_2}{x_1}$$

s.t.

$$g_1(x) = x_2 + 9x_1 \ge 6$$

$$g_2(x) = -x_2 + 9x_1 \ge 1$$

$$0.1 \le x_1 \le 1$$
, $0 \le x_2 \le 5$

$$\underline{g}_{1}(x) = \frac{9x_{1} + x_{2}}{6} - 1 \ge 0$$

$$\underline{g}_{2}(x) = 9x_{1} - x_{2} - 1 \ge 0$$

$$R_{m} = 20$$

$$g_{2}(x) = 9x_{1} - x_{2} - 1 \ge 0$$

$$R_m = 20$$

➤ Using hard penalty

$$F(x) = f(x) + \sum_{j=1}^{J} M_{j}$$

$$M_{j} = \begin{cases} \lambda_{j}, & \text{if } g_{j}(x) < 0; \\ 0, & \text{otherwise} \end{cases}$$

$$\begin{vmatrix}
M & in f(x) \\
s.t. & g_j(x) \ge 0 \\
h_k(x) = 0
\end{vmatrix} \forall j = 1, 2...J$$

➤ Using hard penalty

$$F(x) = f(x) + \sum_{j=1}^{J} M_{j}$$

$$M_{j} = \begin{cases} \lambda_{j}, & \text{if } g_{j}(x) < 0; \\ 0, & \text{otherwise} \end{cases}$$

Min
$$f(x)$$

s.t. $g_j(x) \ge 0$
 $h_k(x) = 0$ $\forall j = 1, 2...J$

➤ Using penalty function

$$F(x) = f(x) + \lambda \left[\sum_{j=1}^{J} \langle g_j(x) \rangle + \sum_{k=1}^{K} |h_k(x)| \right]$$

$$\langle g_j(x) \rangle = \begin{cases} |g_j(x)|, & \text{if } g_j(x) < 0; \\ 0, & \text{otherwise} \end{cases}$$

$$g(x) = -2$$

$$\langle g(x) \rangle = |-2| = 2$$

$$g(x)=2$$

$$\langle g(x)\rangle = 0$$

➤ Using dynamic penalty function

$$F(x) = f(x) + (C \cdot t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^{\beta} + \sum_{k=1}^{K} |h_k(x)|^{\beta} \right]$$

 C, α, β : user defined parameters

t: iteration counter

➤ Using dynamic penalty function

$$F(x) = f(x) + (C \cdot t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^{\beta} + \sum_{k=1}^{K} |h_k(x)|^{\beta} \right]$$

 C, α, β : user defined parameters

t: iteration counter

Method based on feasible over infeasible solutions.

$$F(x) = f(x) + \lambda \left[\sum_{j=1}^{J} \langle g_j(x) \rangle + \sum_{k=1}^{K} |h_k(x)| \right] + R(t,x)$$

R(t,x): difference between the best static penalized function value among all infeasible solutions and the worst feasible solution

➤ Using dynamic penalty function

$$F(x) = f(x) + (C \cdot t)^{\alpha} \left[\sum_{j=1}^{J} \langle g_j(x) \rangle^{\beta} + \sum_{k=1}^{K} |h_k(x)|^{\beta} \right]$$

 C, α, β : user defined parameters

t: iteration counter

Method based on feasible over infeasible solutions.

$$F(x) = f(x) + \lambda \left[\sum_{j=1}^{J} \langle g_j(x) \rangle + \sum_{k=1}^{K} |h_k(x)| \right] + R(t,x)$$

R(t,x): difference between the best static penalized function value among all infeasible solutions and the worst feasible solution

$$F(x) = \begin{cases} f(x), & \text{if } x \text{ is feasible} \\ f_{\text{max}} + \sum_{j=1}^{J} \langle g_j(x) \rangle + \sum_{k=1}^{K} |h_k(x)| & \text{otherwise} \end{cases}$$

$$f_{\text{max}} : \text{objective function value of worst feasible solution}$$

Thank You!!!