стержню, находящемуся на оси тонкого неподвижного кольца радиуса a. Электрическое сопротивление кольца равно R, его индуктивностью можно пренебречь.

Магнитное поле магнита в произвольной точке A удобно описывать с помощью следующих координат: r - расстояние от центра магнита то рассматриваемой точки, θ - угла между осью магнита и направлением на точку A. Вектор магнитной индукции легко разложить на составляющие: \vec{B}_r - радиальную, \vec{B}_{θ} - азимутальную. Эти компоненты поля зависят от координат по законам

$$B_r = b \frac{2\cos\theta}{r^3}; \qquad B_\theta = b \frac{\sin\theta}{r^3}.$$

Для наглядности силовые магнитные линии такого поля показаны на рисунке.

Найдите силу, действующую со стороны кольца на движущийся магнит, в точке, отстоящей на расстоянии z от центра кольца.

генераторе Ван-дер-B Граафа лента (см. рис) толщиной hи шириной а, выполненная из материала c диэлектрической проницаемостью ε , приводится в движение с небольшой скоростью электродвигателем. движении лента проходит между обкладками плоского конденсатора, раздвинутыми расстояние небольшое d, Ha конденсатор касаясь ИХ. подается напряжение U. Возникшие на ленте поляризационные заряды снимаются с внешней поверхности ленты с помощью щетки стороны отрицательной обкладки конденсатора) подаются внутреннюю поверхность

металлическом купола генератора, создавая достаточно сильные электростатические поля (высокие напряжения) в окружающем купол пространстве. Заряды с внутренней стороны ленты отводятся через шину заземления. При расчетах примите, что купол является «полной» сферой радиуса R, диэлектрическая проницаемость воздуха $\varepsilon \approx I$.

Найдите:

- 1) поверхностную плотность σ' поляризационных зарядов на ленте при выходе из конденсатора;
- 2) заряд металлической сферы генератора q(t) через время t после начала его работы. Считайте, что все поляризационные заряды снимаются с ленты на выходе из конденсатора. Потерь заряда нет.
 - 3) силу тока в шине заземления I_3 ;
- 4) используя закон Ома в дифференциальной форме $(\vec{j} = \frac{1}{\rho} \cdot \vec{E})$, найдите установившийся заряд q* на сфере генератора в предположении, что воздух слабопроводящая среда с удельным сопротивлением ρ .
- 5) при достаточно больших напряжениях вокруг сферы генератора может наблюдаться коронный разряд. Найдите установившийся заряд q** на сфере генератора при коронном разряде, если связь между плотностью тока и напряженностью поля в этом случае имеет приближенный вид $\vec{j} = \frac{l}{\rho} \vec{E} + \beta \, \vec{E} \, \big| \vec{E} \big|$, где β известная постоянная.