南京大学数学系期中试卷

2018/2019		学年第	学年第二学期		考试形式_ 闭卷		程名称_	高等代数	
院系	数学	班级	班级		学号		姓名		
考试时门	同2	019.5.11	19.5.11任课教师			考试成绩			
题号	-	=	三	四	£	六	七	总分	
得分									

一. 判断题(判断下列叙述是否正确: 并给出理由. 每小题 6 分, 共 30 分).

设 V 是域 F 上的 n 维线性空间, $\sigma \in L(V), \; \mathbb{M} \; V = \mathrm{Ker}(\sigma) + \mathrm{Im}(\sigma).$

2. 设 f(x) 是域 F 上的首一 n 次多项式,则存在 $A \in M_n(F)$ 使得 f(x) 就是 A 的特征多项式.

4. 设 σ 是域 F 上 n 维线性空间 V 的线性变换,则 σ 可能没有特征值.

5. 域 F 上两个 n 阶方阵相似当且仅当它们的特征多项式和最小多项式分别相等.

第一页(共六页)

第二页(共六页)

三.
$$(8 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$. \diamondsuit

 $W = \{f(A) \in M_4(\mathbb{R}) \mid f(x) \in \mathbb{R}[x]\}.$

(1) 证明: W 是 M₄(ℝ) 的 ℝ-线性子空间;(2) 求 W 的一组 ℝ-基.

四. (10分) 设 $A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$. 求 A^{10} .

五. (10分)设 V 是 n 维急·线性空间。 $\sigma\in L(V)$,且存在 V 的子空间 V_1,V_2 满足 $\mathrm{Ker}(\sigma)=V_1\cap V_2$. 求证:存在 $\sigma_1,\sigma_2\in L(V)$ 使得 $\sigma=\sigma_1+\sigma_2$ 且 $V_i=\mathrm{Ker}(\sigma_i),i=1,2$.

二. 填空题 (每小题 6 分, 共 42 分).

的矩阵,则其 Jordan标准型为_____

假设 $A=(a_{ij})$ 是一个 $n\times n$ 的复数矩阵,求证 A 可以被可对角化的矩阵逼近,即存在一个由 $n\times n$ 的复数矩阵组成的矩阵序列 $A^{(1)}=(a_{ij}^{(1)}),\ A^{(2)}=(a_{ij}^{(2)}),\ ...,\ A^{(k)}=(a_{ij}^{(k)}),\ ...,\ 满足下面两个条件:$ $(1) 对固定的 <math>(i,j),a_{ij}^{(1)},a_{ij}^{(2)},...,a_{ij}^{(k)},...,$ 是一个复数柯西序列: (2) 对每个正整数 k. $A^{(k)}$ 都是可对角化的.

假设 A 是一个 2×2 的整数矩阵 (即矩阵的每个位置都是整数),而且 $A^{120}=I$ 是 2×2 的单位矩阵,求 A 的特征多项式所有可能的情形。

第五页(共六页) 第六页(共六页)