Assignment 8 SOLUTIONS- MAT 327 - Summer 2014

Comprehension

[C.1] On Assignment 5, A.4 you proved that in ω_1 the intersection of a finite number of closed unbounded sets was again closed unbounded, and in particular, nonempty. Does this prove that ω_1 is compact?

Solution to C.1. The theorem is that a space is compact if and only if every collection of closed sets with the finite intersection property has a point in the intersection of the collection. You proved the weaker fact that every (finite) collection of closed and unbounded sets has a point in its intersection. This is not enough to show compactness, and indeed, ω_1 is not a compact space so it's a good thing that we didn't prove that it is compact.

[C.2] Let (X, \mathcal{T}) be a topological space with basis \mathcal{B} . Prove that (X, \mathcal{T}) is compact if and only if every cover of the space by *basic* open sets has a finite subcover.

Solution to C.2. Certainly the \Rightarrow direction is obvious, so let us prove the \Leftarrow direction. Suppose that every open cover of X by basic open sets has a finite subcover. Let \mathcal{U} be an open cover of X. For each $x \in X$ and $U \in \mathcal{U}$ that contains x, choose a basic open set $B_{x,U} \subseteq U$ that contains x. Notice that $\{B_{x,U} : x \in U, U \in \mathcal{U}\}$ is an open cover of X consisting of basic open sets. Let F be a finite subcover of this cover. Notice that $\{U : B_{x,U} \in F\}$ is a finite subcollection of \mathcal{U} that covers X, since the corresponding $B_{x,U}$ cover X and $B_{x,U} \subseteq U$.

[C.3] Here's a really cute and useful fact: Let (X, \mathcal{T}) be a compact space, let (Y, \mathcal{U}) be a Hausdorff space and let $f: X \longrightarrow Y$ be a continuous function. Prove that f is a closed map. Conclude that, if additionally f is a bijection, then f is a homeomorphism.

Solution to C.3. Let us use C.5! Let $C \subseteq X$ be a closed set. Since X is compact, we know that C is also compact. Since f is continuous, f[C] is compact. Since Y is Hausdorff, we know that f[C] must be closed, as desired.

If we assume that f is a bijection and continuous then it is also closed (as we just showed), so f is a homeomorphism by Assignment 4, C.5.

[C.4] Consider \mathbb{R}^n with the usual metric d, and define

$$\rho(A,B) = \inf\{d(a,b) : a \in A, b \in B\},\$$

for $A, B \subseteq \mathbb{R}^n$. Assume that $C \subseteq \mathbb{R}^n$ is closed, and $K \subseteq \mathbb{R}^n$ is compact. Show that they are disjoint if and only if $\rho(C, K) > 0$. Find an example where this fails if both sets are closed, but not compact.

Solution to C.4. The \Leftarrow direction is fairly obvious. The \Rightarrow direction requires an argument. Use the fact that the distance function d(C,x) is a continuous, real-valued function defined on K, so it achieves its minimum value m at some value $k \in K$. If m > 0 then we are finished, so assume for the sake of contradiction that m = 0. This says that d(C, k) = 0. This means that there are points $c_n \in C$ such that $d(c_n, k) < \frac{1}{n}$. In particular, $\langle c_n \rangle$ converges to k, and since C is closed, it must contain k. This contradicts the fact that C and K are disjoint.

This can fail in \mathbb{R} if $A = \{n : n \in \mathbb{N}\}$ and $B = \{n + \frac{1}{n+1} : n \in \mathbb{N}\}$ which are both closed.

Note that there is a tempting, but *false* argument for the \Rightarrow direction:

Let $C, K \subseteq \mathbb{R}^n$ be disjoint with K compact and C closed. For each point $x \in K$, since $K \subseteq \mathbb{R}^n \setminus C$ is open, find an $\epsilon(x) > 0$ such that $B_{\epsilon(x)}(x) \subseteq \mathbb{R}^n \setminus C$. We observe that $\{B_{\epsilon(x)}(x) : x \in K\}$ is an open cover of K, so let $F \subseteq K$ be a finite set such that $\{B_{\epsilon(x)}(x) : x \in F\}$ is a finite subcover. We observe that $\rho(C, K) \ge \min_{x \in F} \{\epsilon(x)\} > 0$ which exists since F is finite. (You should check that the previous line does not have to be true!)

[C.5] Prove that the continuous image of a compact set is compact.

Solution to C.5. Let $f: X \longrightarrow Y$ be a continuous surjection with X compact. Let \mathcal{V} be an open cover of Y. Since f is a surjection we have that $\mathcal{U} := \{f^{-1}(V) : V \in \mathcal{V}\}$ is a cover of X, and since f is continuous, it is an open cover. Since X is compact, let $\{f^{-1}(V_1), \ldots, f^{-1}(V_n)\}$ be a finite subcover of \mathcal{U} . Since f is a surjection we have that $f(f^{-1}(V)) = V$, thus $\{V_1, \ldots, V_n\}$ is a finite open subcover of \mathcal{V} .

Application

[A.1] Let (X, \leq) be a linear order, and let (X, \mathcal{T}) be its order topology. Prove that X is compact if and only if every non-empty set in X has a least upper bound (supremum) and a greatest lower bound (infimum).

Solution to A.1. This is very similar to the creeping along proof of the Heine-Borel Theorem in the notes (§15). A careful reading of the proof of that theorem together with the proof technique used to prove that ω_1 is compact (in Assignment 5, A.2 or section 2 of §15 in the notes) should yield a full solution without much trouble.

[A.2] Let $2 := \{0,1\}$ be given the discrete topology, and let \mathbb{N} be given the discrete topology, prove that $2^{\mathbb{N}}$, with the product topology is a compact, Hausdorff, metrizable space. You may wish to observe that $2^{\mathbb{N}}$ is a metrizable space. Do not use Tychonoff's theorem.

Solution to A.2. We already know that $2^{\mathbb{N}}$ is Hausdorff and metrizable, since these are countably productive properties. All that we need to show is that this is a compact space. (Of course, if on assignment 7 you showed that this space is homeomorphic to the Cantor set there is nothing to show, since the Cantor set is compact!)

To show that $2^{\mathbb{N}}$ is compact let us show that every infinite set has an accumulation point, which is equivalent to compactness since $2^{\mathbb{N}}$ is a metric space. Let \mathcal{F} be an infinite subset of $2^{\mathbb{N}}$. We note that in the first coordinate their is a value g(1) (which is 0 or 1) such that infinitely many functions in \mathcal{F} take that value. Let $\mathcal{F}_1 := \{ f \in \mathcal{F} : f(1) = g(1) \}$. Recursively choose the \mathcal{F}_n and g(n) so that $\mathcal{F}_n = \{ f \in \mathcal{F}_{n-1} : f(n) = g(n) \}$, and each \mathcal{F}_n is infinite.

Now it is easy to check that $g: \mathbb{N} \longrightarrow 2$ is an accumulation point of \mathcal{F} .

[A.3] Let (X, \mathcal{T}) is a compact subpace of \mathbb{R}^n , and let $f: X \longrightarrow \mathbb{R}$ be continuous. Prove that f is uniformly continuous.

Solution to A.3. Let $\epsilon > 0$. For each $x \in X$ there is a $\delta(x) > 0$ such that if $y \in B_{\delta(x)}(x)$ then $d(f(x), f(y)) < \epsilon$. Notice that $\{B_{\delta(x)}(x) : x \in X\}$ is an open cover of X, so let $F \subseteq X$ be a finite set such that $\{B_{\delta(x)}(x) : x \in F\}$

is a finite cover of X. Since F is finite $\delta := \min_{x \in F} \{\delta(x)\} > 0$ exists, and it is easy to check that if $d(x,y) < \frac{\delta}{2}$ then $d(f(x),f(y)) < \epsilon$.