MATH 354	HW#18,	Section 2.2 problems # 2 and # 3
In cano	nical form	
	2: Z = 5x1+4x2	
	5: X1+2×2 + 11	=8 X130, X230
		v = 4 uzo, vzo
	3×1+2×2	tw=12 670
	1	
Tableau	XIXZUV	w
#/ 4		0 8
~ U	D-2 01	0 4
<) W	(3) 2 0 0	
	-5-4 0 0	0 0
Constructi	on of the next	tableau:
	, as the enter	
A-vatios	: 8 foru, 4 for	- U, 12 - 4 for w
- VIA con H	rat there is a des	generacy. The
Mese Ci		
basic van	rables vand w	havethesame o-vatio
		Κ
Choose v- to	be the departin	g variable
Privat on H	ne entry I with	exi pivotalcolumn
Tableau _ u	XI XZ LL L	i w
Tavas - U	0 4 1 -	104
X,		1,04
w		3 1 0
	0 -14 0	5 0 20
Constivue	tion of the ne	xt tableau:
Choose X2	as the entering	variable
e-vatios;	4 for u, 4 for x	(ignore), O for w (ignore)
	7 -2	* 8

Choose u as the departing variable
Prot on the entry 4 in the X2 pivotal column
1 X ₁ X ₂ U U W
Tableau × 0 1 1/4 - 1/4 0 1
#3 XI 1 0 ½ ½ 0 6
w 0 0 -2 -1 1 -8
00723034
We see that we have arrived at a
See -> point with a negative coordinate w = -8<0
Not and therefore we have left the set of
feasible solutions. Let us go back to
tableau #1 and choose departing variable
to be w. +
- XI XZ U V W /
Tableau 4 0 (4/3) 1 0 -1/2 4
#2 10 0 - 3 0 1 - 13 0
Xi 1 3/3 0 0 /3 4
0 - 2/3 0 0 5/3 20
Construction of the next-tableaus
Choose x as the entering varieble
O-vatios: 4 = 3 for u, 0 co for v (ighore)
and 4/2/3 = 6 for x, choose u to be the
departing variable. Proton 3
1 XI XZ U V W
Tableau x2 0 1 3/40 -1/4 3
#3 0 6 2 1 -1 8
X 10-120122
00 1/2 0 3/2 22
We see that we have achieved

Construction of the next tableau: Choose Xz as the entering variable 0-vatios: 12 foru, 18 foru We have a degeneracy, both @ ratios (for uando) are 3. Choose u as the departinguarrable Pivot on 4 X1 X2 X3 U U X3 1/2 -1/4 1 1/4 0 Tableau - V 1 9/2 0 -3/2 1 -1/2-13/4 0 5/4 0 Choose X2 as the entering variable 8-vatios: 3 for x3 (so, ignore) 0 -0 for v The smallest nonnegative o-vatio is zero for the basic variable v. So choose vas the departing variable and pivot on 9/2 Weget $\frac{\times_1 \times_2 \times_3}{5/9}$ 0 1 Tableau 2/9 1: 0 We see that we have obtained an optimal solution at the extreme point (0,0,3,00) in the canonical formulation or (0,0,3) in the standard formulation with the optimal value of ? = 15

The succession of extreme points is: $(0,0,0) \longrightarrow (0,0,3) \longrightarrow (0,0,3)$

Out of curiosity, let us see what happens (5) if we choose v to be the departing variable from Tableau #1. Choose vas the departing variable Pivot on the 6 in the x3 pivotal column | X, X₂ X₃ u v | u -2/3 -3 0 1 - 46 0 | X₃ 2/₃ 1/₂ 1 0 & 3 | 1/₃ 1/₂ 0 0 5/₆ 1/₅ We see that we have arrived at an optimal solution (0,0,3,0,0) for the canonical problem and (0,0,3) for the original problem Z=15 is the optimal value for Z The sequence of extreme points is: (0,0,0)->(0,0,3) Graph of the set of feesible solutions: 1x2

Intersection with X-X plane X2 > 2X1-12 (0,6) X2 = 5×1 +6 (9/2,0) (6,0) Intersection with XTX3 plane X3 <- 1 X, +3 Intersection with x_2 x₃ plane $x_3 \le \frac{-2}{3}x_1 + 3$ (0,3) $x_3 \le -\frac{1}{2}x_2 + 3$ (0,3) $x_3 \le -\frac{1}{2}x_2 + 3$ X3 5-2X+3 (9/20) (G,O) XI ×3 <- ラメ2+3 ×3 (0,0,3) (6:,0) XZ (0,6,0) 2/2 ×2 Graph of Set This boundary Feasible Solutions

(9/2,0,0)

plane is: 4x, +3x2+6x3=18

h 1/75+ 2 C.	•	
· NOIE: D	ur prisingly, we can choose an	
enterin	ig variable with the smallest positive	
entry in	the objective now, privot on	
Ha P 171100	ble with the smallest non negative	-
Un cat 1	and get to an extreme point of	
The seraf	feasible solutions, the optimal	
Solution	in fact. We see this as follows:	
Start with	<u> </u>	
Tablean	X ₁ X ₂ U V W	
#3 (stop age2)	X2 0 1 1/4 -1/4 0 11	
1 100	X 10 % 10 6	
=	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	0 0 7/2 3/2 0 34	
N =1=C0 0.4	,)
	as the entering variable (Why?	
wo gustifi	cation, it just works)	
The O-vat	$\frac{1}{\sqrt{2}}$ are $\frac{1}{\sqrt{2}}$ to for $\frac{6}{\sqrt{2}}$ =12 for $\frac{6}{\sqrt{2}}$	
$\alpha = 0$		
and ===	= 8 for w. 4 So, choose was the	
	- storw. So, choose w as the variable. Pivot on -1.	
departing		
<u>departing</u> Tableau		
departing	variable Pivot on -1.	
<u>departing</u> Tableau	variable. Pivot on -1. X1	
<u>departing</u> Tableau	X1 X2 U W X2 O 1 3 O 1 3 X4 1 O -1/2 O 1/2 2	
<u>departing</u> Tableau	Variable. Pivot on -1. X1	
departing Tableau #4®	Variable Pivot on -1. X1	
Table au 1 #4® We see that w	variable. Pivot on -1. X1	-
Tableau j #430 We see that w we had for	Variable Pivot on -1. X1	
Tableau #4® We see that w what for on the both	Variable. Pivot on -1. X1	-
Tableau #4® We see that w what for on the both	variable. Pivot on -1. X1	-