2015005181 최전후 무화시-병원의 선행독일과 기저병단 2.3 Linear Independence 1 6. F. of A =) linear independent generates in non-zero rows -) in dependent column vectors in A C, V, + C, W, + --- + C, Wn = 0 -> only C = Cz - - = Cn = 0 · Rank of A () Basis (vector1) 1 Spanning => # of minimum limearly independent vectors =# of independent column vectors ·all linear combinations =# of " row vectors of vectors [v., v., ..., vn] to span the vector space alinear combination is unique from basis = # of pivots in G.E construct a vector space a Basis is not unique for a vector space = {vi,vi,..., vn} spour vector spoce = Dim of C(A) 8과A- 1과연당방정선목이라 작고백단구하기 or thogonal basis (vectors) if Vi orthogonal -If given independent vectors V., V2, ..., Vn |Vill= 1 C: = V: X 01,02,02 ... V, TV = 0 > find the orthonormal basis rectors X = = C,V; [v,v,-v,][6]=[x] =) Gram-Schmidt orthogonalization (Gram-Schmidt Orthogonalization 4 6 / 20 Va - 1191 = 4, 9-10/4, 2) project b onto q, b-(9,76) 4, 14, C=(4, c)q, + (4, Tc)q, +(4, Tc)43 b-(9, Th)4+ (9, Tb)4, 11b-(9, Tb)4.11 1) 9= 11=11 2) 0; - = (9, 70;) 4; = A; 3) Ai = 9; : Qj= = (4, TQj) 4; 8차시 - 인반회소계급법과 QR본한 OQ transformation preserves the olet quita, ..., quibe orthonormal longth and angle_ OQ examples XX=XXX=XIXBIL XX=XX QTA=[-9,7-] |9,9,00 |n]=I 1) Kotation matrix = x1 (0x) (0x) = x1 Q1 Qx - X1 Y 2) Permutation Matrix Projection reduces the length Q=[9.9.--4.) =) QT=Q-1 (Left -inverse) HXTYLL & MILLY ILL HIPX (&) [W) ofor 41,41, -. ,4. ER (square sys) · for 4.42. An E 12" (Rectangular Sys) >X== G9: Q=(9,42-9n) m(n · A: QR factorization [a, a, -a,]= [(q, a)), (q, a)), X=[9.9-90][2] +(9=10=)9= --+(9=10=)9= x=(00) 016 (E) - (O) - (x) = O' (E) - (E) +(4,70n)4n $= \left[q_1 q_2 - q_0 \right] \left[\begin{matrix} (q_1^T \alpha_1) & (q_1^T \alpha_2) \\ g & (q_2^T \alpha_2) & (q_2^T \alpha_2) \end{matrix} \right]$ $A \left(q_1 q_2 \right) \left[\begin{matrix} (q_1^T \alpha_2) & (q_1^T \alpha_2) \\ g & (q_2^T \alpha_2) \end{matrix} \right]$ Q Q = [] Q: Left-inverse = [-47-]X C= 97X for rectangular system (qn 12n) -Ax=b d'A (ATA)=X = (RTQTO R) - RTOTH

= (RTR) RTQTb

| I = A | PATE |

[Ae, Ae₂ -- Ae_n] = [x₁e₁, λ_2 e₂ -- λ_n e_n] $\rightarrow A[e_1e_2 -- e_n] = [e_1e_2 -- e_n][\lambda_1 0]$ A = SA= A = SA = 1

Remarks)

If $\lambda_1, \lambda_2, \dots, \lambda_n$ are different

then, e_1, e_2, \dots, e_n are linearly independent!

Remark 3)
The order of eigenvalues is same with that of eigenvectors

Power $A > \lambda \cdot R$ $A^{k} = [S \wedge S^{-1}]^{k}$ $A^{k} + \lambda^{k} \cdot R$ $A^{k} = \lambda R$

Remark 2)

S is not unique

since ke reigenvector

Remark 4)

Notall metrices have a linearly
independent eigenvectors

ALSAS-1 is not always established

Least Square를 이용하여 2차곡선 fitting하기

컴퓨터소프트웨어학부 2015005187 최철훈

목차

1. 8개의 점을 모두 이용하여 2차 곡선 fitting하기

2. 6개의 점을 이용하여 2차 곡선 fitting하기

3. Compare

8개의 점을 모두 이용하기 Pseudo-inverse로 구하기

먼저, 주어진 8개의 점을 모두 이용하여 원래의 2차 곡선을 fitting하였다.

1. 8개의 점

MWM

```
D = np.array([[-2.9, 35.4], [-2.1, 19.7], [-0.9, 5.7], [1.1, 2.1],
[0.1, 1.2], [1.9, 8.7], [3.1, 25.7], [4.0, 41.5]])
```

2. Ax=b에서 b행렬 만들기

```
# Make B
B = np.empty((0, 1), dtype=float)
for i in range(0, 8):
    B = np.append(B, [[D[i, 1]]], axis = 0)
```

3. Ax=b에서 A행렬 만들기

```
## Make 1 column of A
A1 = np.empty((0, 1), dtype=float)
for i in range(0, 8):
    A1 = np.append(A1, [[(D[i, 0])**2]], axis = 0)
## Make 2 column of A
A2 = np.empty((0, 1), dtype=float)
for i in range(0, 8):
    A2 = np.append(A2, [[D[i, 0]]], axis = 0)
## Make 3 column of A
A3 = np.ones((8, 1), dtype=float)
## Make A
A = np.hstack([A1, A2])
A = np.hstack([A1, A3])
```

4. Pseudo-inverse구하기

```
# pseudo-inverse
At = np.transpose(A)
AtA = np.dot(At, A)
AtAI = np.linalg.inv(AtA)
PI = np.dot(AtAI, At)
```

5. X구하기

```
# X
X = np.dot(PI, B)
print(X)
```

6. 결과

```
[[ 3.16052477]
[-2.36059821]
[ 1.35828072]]
```

8개의 점을 모두 이용하기 Fitting함수로 구하기

앞서 구한 X가 맞는지 확인하기 위해 2차곡선을 fitting하는 함수를 이용하여 바로 구해보았다.

1. Fitting함수인 polyfit을 이용하여 X구하기

```
x = np.array([-2.9, -2.1, -0.9, 1.1, 0.1, 1.9, 3.1, 4.0])
y = np.array([35.4, 19.7, 5.7, 2.1, 1.2, 8.7, 25.7, 41.5])

fit = np.polyfit(x, y, 2)
print(fit)
```

2. 결과

[3.16052477 -2.36059821 1.35828072]

앞서 Pseudo-inverse를 이용하여 구한 X와 같은 값이 나오므로 Pseudo-inverse를 이용하여 구하는 과정에서 제대로 코딩하여 결과를 얻었다는 것을 알 수 있다.

6개의 점을 이용하여 fitting하기과정

주어진 8개의 점 중 6개의 점을 랜덤으로 선택하여 2차 곡선을 fitting하였다.

1. 6개의 점 선택하기

```
# Randomly select 6 points
r = random.sample(range(0, 8), 6)
R = np.empty((0, 2), dtype=float)
for i in r:
    R = np.append(R, [D[i]], axis = 0)
print(R)
```

MWM

2. Ax=b에서 b행렬 만들기

```
# Make B
B = np.empty((0, 1), dtype=float)
for i in range(0, 6):
    B = np.append(B, [[R[i, 1]]], axis = 0)
```

3. Ax=b에서 A행렬 만들기

```
## Make 1 column of A
A1 = np.empty((0, 1), dtype=float)
for i in range(0, 6):
    A1 = np.append(A1, [[(R[i, 0])**2]], axis = 0)
## Make 2 column of A
A2 = np.empty((0, 1), dtype=float)
for i in range(0, 6):
    A2 = np.append(A2, [[R[i, 0]]], axis = 0)
## Make 3 column of A
A3 = np.ones((6, 1), dtype=float)
## Make A
A = np.hstack([A1, A2])
A = np.hstack([A1, A3])
```

4. Pseudo-inverse구하기

```
# pseudo-inverse
At = np.transpose(A)
AtA = np.dot(At, A)
AtAI = np.linalg.inv(AtA)
PI = np.dot(AtAI, At)
```

5. X구하기

```
# X
X = np.dot(PI, B)
print(X)
```

6개의 점을 이용하여 fitting하기 결과

총 2번 시행하여 2개의 X를 도출하였다.

```
[[-2.1 19.7]
  [ 3.1 25.7]
  [ 1.1 2.1]
  [ 4. 41.5]
  [-0.9 5.7]
  [-2.9 35.4]]
  [[ 3.18054193]
  [-2.39915013]
  [ 1.16085405]]
```

```
[[ 4. 41.5]
[ 1.9 8.7]
[ 1.1 2.1]
[-2.1 19.7]
[ 0.1 1.2]
[-0.9 5.7]]
[[ 3.07895662]
[-2.24365274]
[ 1.3153594 ]]
```

첫 번째 6개의 선택된 점과 그에 따른 결과 부 번째 6개의 선택된 점과 그에 따른 결과

Compare 두 곡선의 비교

앞서 6개의 점으로 fitting한 두 결과에 대한 2차 곡선 그래프를 그려 비교해보았다.

```
[[-2.1 19.7]

[ 3.1 25.7]

[ 1.1 2.1]

[ 4. 41.5]

[-0.9 5.7]

[-2.9 35.4]]

[[ 3.18054193]

[-2.39915013]

[ 1.16085405]]
```

MWM

```
[[ 4. 41.5]
[ 1.9 8.7]
[ 1.1 2.1]
[-2.1 19.7]
[ 0.1 1.2]
[-0.9 5.7]]
[[ 3.07895662]
[-2.24365274]
[ 1.3153594 ]]
```

파랑곡선

주황곡선

```
if j == 1:
    z1 = X[0, 0]
    y1 = X[1, 0]
    x1 = X[2, 0]
elif j == 2:
    z2 = X[0, 0]
    y2 = X[1, 0]
    x2 = X[2, 0]

k = np.arange(-100, 100, 0.01)
fit1 = z1*k**2 + y1*k + x1
plt.plot(k, fit1)
fit2 = z2*k**2 + y2*k + x2
plt.plot(k, fit2)
plt.show()
```


두 곡선의 비교 결과 큰 차이가 없음을 알 수 있다. 그나마 큰 차이가 있다면 극솟값에서 멀어질수록 조금씩 벌어진다는 것이다. 이외에도 여러 번 시도해 보았으나 매번 비슷하게 큰 차이가 없었지만 간혹 극솟값에서 멀어질수록 벌어지는 경우가 나왔다.

Compare 원래 곡선과의 비교

8개의 fitting한 그래프와 6개의 점으로fitting한 그래프를 비교해보았다.

```
[[ 4. 41.5]
[ 1.1 2.1]
[ 0.1 1.2]
[ 3.1 25.7]
[ 1.9 8.7]
[-2.1 19.7]]
[[ 3.086668 ]
[-2.14233456]
[ 1.44708834]]
```

MW

```
[[ 0.1 1.2]
[ 1.1 2.1]
[ 1.9 8.7]
[-0.9 5.7]
[ 3.1 25.7]
[-2.1 19.7]]
[[ 3.24789136]
[-2.1379364 ]
[ 1.01464205]]
```


파랑곡선 주황곡선

초록색이 8개의 점으로 fitting한 원래의 2차 곡선이다. 두 곡선과 원래 곡선의 비교 결과 앞선 6 개의 점으로 fitting한 두 곡선과의 차이와 비슷하게 큰 차이가 없음을 알 수 있다. 그나마 큰 차이가 있다면 극솟값에서 멀어질수록 조금씩 벌어진다는 것이다. 이외에도 여러 번 시도해 보았으나 매번 비슷하게 큰 차이가 없었다. 이를 통해 점의 개수가 많을수록 더 정확한 곡선을 fitting할 수 있다는 사실을 알 수 있다.

마무리

감사합니다. https://github.com/cheol-hoon/Numerical_Analysis