Aprendizaje de Máquina No Supervisado

¿Qué es la Reducción Dimensional?

Simplificación

Reduce variables conservando información relevante.

Rendimiento

Mejora modelos y reduce tiempos de cálculo.

Visualización

Facilita el análisis con representaciones 2D/3D.

Enfoques de Reducción Dimensional

Selección de Características

Elige un subconjunto de variables relevantes.

Transformaciones

Transforma datos a un espacio de menor dimensión.

Pota **Bork** Sook Bach La Tinso

PCA

PCA: Análisis de Componentes Principales

Maximiza Varianza

Captura la mayor información posible.

Minimiza Redundancia

Reduce la colinealidad entre variables.

¿Cómo funciona PCA?

Matriz de Covarianza

Resume relaciones entre variables.

Autovalores y Autovectores

Indican varianza y direcciones.

Selección

Ordena componentes por varianza.

T-SNE: Visualización No Lineal

Estructura Local
Preserva relaciones cercanas entre datos.

Visualización 2D/3D
Facilita análisis de patrones complejos.

t-SNE

T-SNE

Pasos de t-SNE

Relaciones Locales

Mide similitudes entre puntos cercanos.

Espacio Menor

Asigna puntos preservando similitudes.

Minimiza Divergencia

Ajusta posiciones iterativamente.

Autoencoders: Redes Neuronales

Codificación

Comprime datos en una capa intermedia.

Decodificación

Reconstruye datos desde la representación.

Ventajas y Desventajas

Método	Ventajas	Desventajas
PCA	Simple, rápido, útil para datos lineales.	Solo captura relaciones lineales.
t-SNE	Visualización 2D/3D, preserva estructura local.	Escalabilidad limitada, resultados variables.
Autoencoders	Captura relaciones lineales y no lineales.	Requiere muchos datos, interpretación compleja.

Aplicaciones de la Reducción Dimensional

Análisis Genético

Identifica patrones en perfiles genéticos.

Reconocimiento de Imágenes

Reduce tamaño de imágenes sin perder información.

Análisis de Sentimientos

Reduce complejidad computacional en NLP.

Preguntas

Sección de preguntas

Aprendizaje de Máquina No Supervisado

Continúe con las actividades