MAT185 Linear Algebra Term Test 1

Full Name:	Solutions
Student number:	
Email :	@mail.utoronto.ca
Signature:	

Instructions:

- 1. This test contains a total of 9 pages.
- 2. DO NOT DETACH ANY PAGES FROM THIS TEST.
- 3. There are no aids permitted for this test, including calculators.
- 4. Cellphones, smartwatches, or any other electronic devices are not permitted. They must be turned off and in your bag under your desk or chair. These devices may **not** be left in your pockets.
- 5. Write clearly and concisely in a linear fashion. Organize your work in a reasonably neat and coherent way.
- 6. Show your work and justify your steps on every question unless otherwise indicated. A correct answer without explanation will receive no credit unless otherwise noted; an incorrect answer supported by substantially correct calculations and explanations may receive partial credit.
- 7. For questions with a boxed area, ensure your answer is completely inside the box.
- 8. The back side of pages will not be scanned nor graded. Use the back side of pages for rough work only.
- 9. You must use the methods learned in this course to solve all of the problems.
- 10. DO NOT START the test until instructed to do so.

Multiple Choice: No justification is required. Only your final answer will be graded.

1. Let $V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$. Define vector addition and scalar multiplication in V by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2 - 2)$$

 $c(x_1, x_2) = (cx_1, cx_2 - 2c + 2), c \in \mathbb{R}$

Then V is a vector space. The additive inverse of (2,1) is ______. [1 mark]

Indicate your final answer by filling in exactly one circle below (unfilled \bigcirc filled \blacksquare).

- $\bigcirc (-2, -3)$
- \bigcirc (-2,-1)
- $\bigcirc (0,0)$
- \bigcirc (2, -3)
- (-2,3)

2. Let $V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$. Define vector addition in V as the usual entry-wise addition, and define scalar multiplication by

$$c(x_1, x_2) = \begin{cases} (0, 0), & \text{if } c = 0\\ (cx_1, \frac{x_2}{c}), & \text{if } c \neq 0 \end{cases}$$

Then V is not a vector space. Which of the following axioms fails to hold? [1 mark]

Indicate your final answer by filling in exactly one circle below (unfilled \bigcirc filled \bullet).

- \bigcirc V is closed under scalar multiplication.
- \bigcirc For all $\mathbf{x} \in V$, and $c, d \in \mathbb{R}$, $(cd)\mathbf{x} = c(d\mathbf{x})$.
- \bigcirc For all $\mathbf{x}, \mathbf{y} \in V$, and $c \in \mathbb{R}$, $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$.
- For all $\mathbf{x} \in V$, and $c, d \in \mathbb{R}$, $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$.
- \bigcirc For all $\mathbf{x} \in V$, $1\mathbf{x} = \mathbf{x}$.

Multiple Choice: No justification is required. Only your final answer will be graded.

3. Which of the following subsets of \mathbb{R}^2 are subspaces of \mathbb{R}^2 with respect to the usual entry-wise vector addition and scalar multiplication in \mathbb{R}^2 ? [2 marks]

You can fill in more than one option for this question (unfilled \bigcirc filled \bigcirc).

- $\bigcirc \{(x_1, x_2) \mid x_1 x_2 \leq 0\}$
- $\{(x_1, x_2) \mid x_1^2 + x_2^2 = 0 \}$
- $\{(x_1, x_2) \mid (x_1 + x_2)^2 = 0 \}$
- $\bigcirc \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\}$

4. Let S and T be subsets of a vector space V. Which of the following statements are true? [2 marks]

You can fill in more than one option for this question (unfilled \bigcirc filled \bigcirc).

- $S \subseteq \operatorname{span} S$.
- $S = \operatorname{span} S$ if and only if S is a subspace.
- span S = span(span S).
- If $S \subseteq T$ then span $S \subseteq \operatorname{span} T$.
- $\bigcirc \ \mbox{If span}\, S = \mbox{span}\, T \mbox{ then there is a vector } {\bf x} \mbox{ such that } {\bf x} \in S \mbox{ and } {\bf x} \in T.$

True or False: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent

5. Let $V = \{(x_1, x_2) \mid x_1, x_2 > 0, x_1 + x_2 = 1\}$. Define vector addition and scalar multiplication in V by

$$(x_1, x_2) + (y_1, y_2) = \left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right)$$

 $c(x_1, x_2) = (x_1, x_2), \ c \in \mathbb{R}$

Indicate your final answers by filling in exactly one circle for each part below (unfilled ○ filled ●). Each part is worth 2 marks: 1 mark for a correct final answer; 1 mark for a correct explanantion.

- (a) V is closed under addition.
 - True.
 - O False.

Given the definition for addition, we note that

$$\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2} > 0, \qquad \frac{x_1 + y_1}{2} + \frac{x_2 + y_2}{2} = \frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2} = \frac{1}{2} + \frac{1}{2} = 1$$

As such, $(x_1, x_2) + (y_1, y_2) \in V$ and hence V is closed under addition.

- (b) V is closed under scalar multiplication.
 - True.
 - O False.

The result of scalar multiplication is (x_1, x_2) , the original element in V, which of course remains in V. Thus V is closed under scalar multiplication.

- (c) V is a vector space.
 - O True.
 - False.

Associativity for addition fails: Consider $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in V$. Now

$$[(x_1, x_2) + (y_1, y_2)] + (z_1, z_2) = \left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right) + (z_1, z_2) = \left(\frac{x_1 + y_1 + 2z_1}{4}, \frac{x_2 + y_2 + 2z_2}{4}\right)$$

However,

$$(x_1, x_2) + [(y_1, y_2) + (z_1, z_2)] = (x_1, x_2) + \left(\frac{y_1 + z_1}{2}, \frac{y_2 + z_2}{2}\right) = \left(\frac{2x_1 + y_1 + z_1}{4}, \frac{2x_2 + y_2 + z_2}{4}\right)$$

These are not the same in general as the specific example of $(\frac{3}{4}, \frac{1}{4}), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{4}, \frac{3}{4})$ reveals. (By the former calculation, the result is $(\frac{7}{16}, \frac{9}{16})$ and, by the latter, $(\frac{9}{16}, \frac{7}{16})$.)

The zero does not exist either: Let (o_1, o_2) be the zero, if it exists. Then, in general, we must have

$$(x_1, x_2) + (o_1, o_2) = \left(\frac{x_1 + o_1}{2}, \frac{x_2 + o_2}{2}\right) = (x_1, x_2)$$

This entails $x_1 + o_1 = 2x_1$ implying $o_1 = x_1$; similarly $o_2 = x_2$. The zero would depend on the element (x_1, x_2) . Hence a zero does not exist.

As a result, the additive inverse cannot exist either.

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way.

- **6.** Consider the subset $W = \{p(x) \mid p(0) = 0\}$ of $P_3(\mathbb{R})$.
- (a) Show that W is a subspace of $P_3(\mathbb{R})$ with respect to the usual vector addition and scalar multiplication in $P_3(\mathbb{R})$. [3 marks]

By the Subspace Test,

- SI. The zero polynomial $z: \mathbb{R} \to \{0\}$ satisfied z(0) = 0 and thus is included in W.
- SII. W is closed under vector addition as, for any $p, q \in W$,

$$(p+q)(0) = p(0) + q(0) = 0 + 0 = 0$$

SIII. W is also closed under scalar multiplication because, for any $p \in W$ and any $\lambda \in \mathbb{R}$,

$$(\lambda p)(0) = \lambda p(0) = \lambda \cdot 0 = 0$$

Alternatively, we can argue that W is a subspace by noting

- SI'. W is nonempty because $z: \mathbb{R} \to \{0\}$ is included.
- SII'. W is closed under the operation $\lambda p + q$ for any $p, q \in W$ and any $\lambda \in \mathbb{R}$. Consider that

$$(\lambda p + q)(0) = (\lambda p)(0) + q(0) = \lambda p(0) + q(0) = \lambda \cdot 0 + 0 = 0$$

By either procedure, W is shown to be a subspace of \mathbb{P}_3 .

(b). Show that $W = \text{span}\{x, x^2, x^3\}$. [3 marks]

In general, a vector in \mathbb{P}_3 can be written as

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

But for p to be admitted into W, we must have p(0) = 0. This requires $a_0 = 0$. So a general vector in W can be expressed as

$$p(x) = a_1 x + a_2 x^2 + a_3 x^3 \in \text{span}\{x, x^2, x^3\}$$

This shows that $W \subseteq \text{span}\{x, x^2, x^3\}$.

Conversely, every vector in the spanning set is in W. Therefore any linear combination of these vectors is in W, i.e., span $\{x, x^2, x^3\} \subseteq W$.

Thus $W = \text{span}\{x, x^2, x^3\}$ as was required to show.

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way.

7.

(a) Let V be a vector space. Define what it means for the list of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in V$ to be linearly independent. Be sure to give a precise definition. No partial credit will be given for statements that are "close" to the definition. [2 marks]

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_n\} \subset V$ is linearly independent if and only if

$$\sum_{j=1}^{n} \lambda_j \mathbf{x}_j = \lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n = \mathbf{0}$$

implies that all $\lambda_j = 0$.

(b) Let $A \in \mathbb{R}^n$, and let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}$ be such that $A\mathbf{x}_1 = \mathbf{0}$, $A^2\mathbf{x}_2 = \mathbf{0}$, and $A^3\mathbf{x}_3 = \mathbf{0}$ but $\mathbf{x}_1 \neq \mathbf{0}$, $A\mathbf{x}_2 \neq \mathbf{0}$, and $A^2\mathbf{x}_3 \neq \mathbf{0}$. Prove that the list $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ is linearly independent. [4 marks]

We apply the above test to determine linear independence. Consider then

$$\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \lambda_3 \mathbf{x}_3 = \mathbf{0}$$

Multiply through by A^2 and note that $A^2\mathbf{x}_1 = A^2\mathbf{x}_2 = \mathbf{0}$. This leaves $\lambda_3 A^2\mathbf{x}_3 = \mathbf{0}$ but, as $\mathbf{A}^2\mathbf{x}_3 \neq \mathbf{0}$, $\lambda_3 = 0$. What remains is

$$\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 = \mathbf{0}$$

Multiply now by A giving $\lambda_2 A \mathbf{x}_2 = \mathbf{0}$ because $A \mathbf{x}_1 = \mathbf{0}$. This implies that $\lambda_2 = 0$ as $A \mathbf{x}_2 \neq \mathbf{0}$. Finally, we are left with

$$\lambda_1 \mathbf{x}_1 = \mathbf{0}$$

But $\mathbf{x}_1 \neq \mathbf{0}$ necessitating $\lambda_1 = 0$.

Therefore, $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and as a consequence $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is linearly independent.

Short Answer: Unsupported answers will not receive full credit. Organize your work in a reasonably neat and coherent way. Put your final answer in the box provided.

8.

(a) State the Fundamental Theorem of Linear Algebra. Be sure to give a precise statement. No partial credit will be given for statements that are "close" to the statement of the theorem. [2 marks]

Let V be a vector space spanned by n vectors. If a set of m vectors from V is linearly independent, then $m \leq n$.

(b) Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^3$ be linearly independent, let $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^3$ also be linearly independent, and suppose $W_1 = \text{span}\{\mathbf{x}_1, \mathbf{x}_2\}$, and $W_2 = \text{span}\{\mathbf{y}_1, \mathbf{y}_2\}$. Prove that $W_1 \cap W_2 \neq \{\mathbf{0}\}$. [4 marks]

We need to show that there is a vector $\mathbf{w} \neq \mathbf{0}$ in both W_1 and W_2 . Let us seek such a vector, which we must be able to express as a linear combination of the spanning set of W_1 , i.e.,

$$\mathbf{w} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 \in W_1, \qquad \alpha_1, \alpha_2 \in \mathbb{R}$$

For w to be in W_2 , we must also be able to write

$$\mathbf{w} = \beta_1 \mathbf{y}_1 + \beta_2 \mathbf{y}_2 \in W_2, \qquad \beta_1, \beta_2 \in \mathbb{R}$$

Thus

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + (-\beta_1) \mathbf{y}_1 + (-\beta_2) \mathbf{y}_2 = \mathbf{0}$$

We claim that $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2\}$ cannot be linearly independent because \mathbb{R}^3 can be spanned by 3 vectors; otherwise the Fundamental Theorem of Linear Algebra would be violated. So there must at least one coefficient among $\alpha_1, \alpha_2, \beta_1, \beta_2$ that is not zero.

Let's say $\alpha_1 \neq 0$ or $\alpha_2 \neq 0$. Then because $\{\mathbf{x}_1, \mathbf{x}_2\}$ is linearly independent, \mathbf{w} must be nonzero. (That is, the only way \mathbf{w} can be zero, given its expression as a linear combination of $\mathbf{x}_1, \mathbf{x}_2$, is for both α_1 and α_2 to be zero.) Similarly, if $\beta_1 \neq 0$ or $\beta_2 \neq 0$, we conclude that \mathbf{w} is nonzero. (In fact, one of α_1 or α_2 must be nonzero and one of β_1 or β_2 must be as well.)

Thus $W_1 \cap W_2 \neq \{0\}$.