

LM158-LM258-LM358 LM158A-LM258A-LM358A

Low Power Dual Operational Amplifiers

- Internally frequency compensated
- Large DC voltage gain: 100dB
- Wide bandwidth (unity gain): 1.1mHz (temperature compensated)
- Very low supply current/op (500µA) essentially independent of supply voltage
- Low input bias current: 20nA (temperature compensated)
- Low input offset voltage: 2mV
- Low input offset current: 2nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to (Vcc 1.5V)

Description

These circuits consist of two independent, highgain, internally frequency-compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.

In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

Pin Connections (top view)

Order Codes

Part Number	Temperature Range	Package	Packaging	Marking
LM158N		DIP-8	Tube	LM158N
LM158D LM158DT	-55°C, +125°C	SO-8	Tube or Tape & Reel	158
LM258AN		DIP-8	Tube	LM258A
LM258AD LM258ADT		SO-8	Tube or Tape & Reel	258A
LM258APT		TSSOP-8 (Thin Shrink Outline Package)	Tape & Reel	258A
LM258AST	-40°C, +105°C	miniSO-8	Tape & Reel	K408
LM258N		DIP-8	Tube	LM258N
LM258D LM258DT		SO-8	Tube or Tape & Reel	258
LM258PT		TSSOP-8 (Thin Shrink Outline Package)	Tape & Reel	258
LM358N		DIP-8	Tube	LM358N
LM358AN		DIF-6	lube	LM358AN
LM358D LM358DT		SO-8	Tube or Tape & Reel	358
LM358AD	0°C, +70°C	30-6	Tube of Tape & Neel	358A
LM358ADT		T000D 0		050
LM358PT		TSSOP-8	Tape & Reel	358
LM358APT		(Thin Shrink Outline Package)		358A
LM358ST		miniSO-8	Tape & Reel	K405
LM358AST			,	K404

577

Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol	Parameter	LM158,A	LM158,A LM258,A LM358,A			
V _{CC}	Supply voltage		V			
Vi	Input Voltage		-0.3 to +32			
V _{id}	Differential Input Voltage		+32		V	
P _{tot}	Power Dissipation ⁽¹⁾		500		mW	
	Output Short-circuit Duration (2)		Infinite			
I _{in}	Input Current (3)		mA			
T _{oper}	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C	
T _{stg}	Storage Temperature Range		°C			
Tj	Maximum Junction Temperature		°C			
R _{thja}	Thermal Resistance Junction to Ambient ⁽⁴⁾ SO8 TSSOP8 DIP8 miniSO8	125 120 85 190			°C/W	
	HBM: Human Body Model ⁽⁵⁾	300			V	
ESD	MM: Machine Model ⁽⁶⁾		V			
	CDM: Charged Device Model		1.5		kV	

- 1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.
- Short-circuits from the output to V_{CC} can cause excessive heating if $V_{CC} > 15V$. The maximum output current is approximately 40mA independent of the magnitude of V_{CC} . Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
- 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action,

there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level

(or to ground for a large overdrive) for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.

- 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers
- 5. Human body model, 100pF discharged through a $1.5k\Omega$ resistor into pin of device.
- 6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor $< 5\Omega$), into pin to pin of device.

2 Typical Application Schematic

Figure 1. Schematic diagram (1/2 LM158)

3 Electrical Characteristics

Table 2. Electrical characteristics for $V_{cc}^+ = +5V$, $V_{cc}^- = Ground$, $V_o = 1.4V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	LM	158A-L LM35	.M258A 8A	LI	W158-L LM3		Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
V _{io}	Input Offset Voltage - note $^{(1)}$ T_{amb} = +25°C LM158, LM258 LM158A $T_{min} \le T_{amb} \le T_{max}$ LM158, LM258		1	3 2 4		2	7 5 9 7	mV
I _{io}	Input Offset Current $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		2	10 30		2	30 40	nA
I _{ib}	Input Bias Current - note $^{(2)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	50 100		20	150 200	nA
A _{vd}	Large Signal Voltage Gain $\begin{split} &V_{CC}=+15\text{V}, R_L=2k\Omega, V_o=1.4\text{V to } 11.4\text{V} \\ &T_{amb}=+25^{\circ}\text{C} \\ &T_{min}\leq T_{amb} \leq T_{max} \end{split}$	50 25	100		50 25	100		V/mV
SVR	Supply Voltage Rejection Ratio ($R_s \le 10k\Omega$) $V_{CC}^+ = 5V \text{ to } 30V$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	65 65	100		65 65	100		dB
I _{CC}	$ \begin{array}{ll} \text{Supply Current, all Amp, no load} \\ T_{min} \leq T_{amb} \; \leq T_{max} & V_{CC} = +5V \\ T_{min} \leq T_{amb} \; \leq T_{max} & V_{CC} = +30V \\ \end{array} $		0.7	1.2 2		0.7	1.2 2	mA
V _{icm}	Input Common Mode Voltage Range $V_{CC} = +30V - note^{(3)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$	0 0		V _{CC} ⁺ - 1.5 V _{CC} ⁺ -2	0 0		V _{CC} ⁺ - 1.5 V _{CC} ⁺ -2	V
CMR	Common Mode Rejection Ratio ($R_s \le 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	70 60	85		70 60	85		dB
I _{source}	Output Current Source V _{CC} = +15V, V _o = +2V, V _{id} = +1V	20	40	60	20	40	60	mA
I _{sink}	Output Sink Current ($V_{id} = -1V$) $V_{CC} = +15V$, $V_{o} = +2V$ $V_{CC} = +15V$, $V_{o} = +0.2V$	10 12	20 50		10 12	20 50		mA μA

577

Table 2. Electrical characteristics for $V_{cc^+} = +5V$, $V_{cc}^- = Ground$, $V_o = 1.4V$, $T_{amb} = +25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	LM	158A-L LM35	.M258A 8A	LI	M158-L LM3		Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.		
V _{OPP}	Output Voltage Swing ($R_L = 2k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$			V _{CC} ⁺ - 1.5 V _{CC} ⁺ -2	0		V _{CC} ⁺ - 1.5 V _{CC} ⁺ -2		
V _{OH}	High Level Output Voltage (V_{CC}^+ = 30V) $T_{amb} = +25^{\circ}CR_L = 2k\Omega$ $T_{min} \le T_{amb} \le T_{max}$ $T_{amb} = +25^{\circ}CR_L = 10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$	26 26 27 27	27 28		26 26 27 27	27 28		V	
V _{OL}	Low Level Output Voltage ($R_L = 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	20 20		5	20 20	mV	
SR	Slew Rate $V_{CC} = 15V$, $V_i = 0.5$ to 3V, $R_L = 2k\Omega$, $C_L = 100pF$, unity Gain	0.3	0.6		0.3	0.6		V/μs	
GBP	Gain Bandwidth Product V_{CC} = 30V, f =100kHz, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF	0.7	1.1		0.7	1.1		MHz	
THD	Total Harmonic Distortion $ f = 1 \text{kHz}, \ A_V = 20 \text{dB}, \ R_L = 2 \text{k}\Omega, \ V_O = 2 \text{V}_{pp}, $ $ C_L = 100 \text{pF}, \ V_O = 2 \text{Vpp} $		0.02			0.02		%	
e _n	Equivalent Input Noise Voltage f = 1kHz, $R_s = 100\Omega$, $V_{CC} = 30V$		55			55		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	
DV _{io}	Input Offset Voltage Drift		7	15		7	30	μV/ °C	
DI _{lio}	Input Offset Current Drift		10	200		10	300	pA/ °C	
V ₀₁ /V ₀₂	Channel Separation - note $^{(4)}$ 1kHz \leq f \leq 20kHZ		120			120		dB	

^{1.} $V_0 = 1.4V$, $R_S = 0\Omega$, $5V < V_{CC}^+ < 30V$, $0 < V_{ic} < V_{CC}^+ - 1.5V$

5//

^{2.} The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

^{3.} The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC}^+ - 1.5V, but either or both inputs can go to +32V without damage.

^{4.} Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Figure 2. Open loop frequency response

Figure 3. Large signal frequency response

Figure 4. Voltage follower pulse response

Figure 5. Voltage follower pulse response

Figure 6. Input current

Figure 7. Output characteristics

Figure 8. Output characteristics

Figure 9. Current limiting

Figure 10. Input voltage range

Figure 11. Positive supply voltage

Figure 12. Input voltage range

Figure 13. Supply current

577

Figure 14. Input current

Figure 15. Gain bandwidth product

Figure 16. Power supply rejection ratio

Figure 17. Common mode rejection ratio

4 Typical Applications

(single supply voltage) $V_{cc} = +5V_{dc}$

Figure 18. AC coupled inverting amplifier

Figure 19. Non-inverting DC amplifier

Figure 20. AC coupled non-inverting amplifier Figure 21. DC summing amplifier

Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC instrumentation amplifier

5//

Figure 24. Using symmetrical amplifiers to reduce input current

Figure 25. Low drift peak detector

Figure 26. Active band-pass filter

5 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

5.1 DIP8 Package

5.2 SO-8 Package

SO-8 MECHANICAL DATA

DIM.	mm.			inch		
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

5//

5.3 MiniSO-8 Package

miniSO-8 MECHANICAL DATA

DIM	mm.					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.1			0.043
A1	0.05	0.10	0.15	0,002	0.004	0,006
A2	0.78	0.86	0.94	0,031	0.031	0,037
b	0.25	0.33	0.40	0.010	0,13	0,013
С	0.13	0.18	0.23	0,005	0.007	0,009
D	2.90	3.00	3.10	0.114	0.118	0,122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	.0114	0.118	0.122
е		0.65			0.026	
К	0°		6°	0°		6°
L	0.40	0.55	0.70	0.016	0.022	0.028
L1			0.10			0.004

5.4 TSSOP8 Package

TSSOP8 MECHANICAL DATA

5 111		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	

6 Revision History

Date	Revision	Changes			
July 2003	1	First Release			
Jan. 2005	2	Rthja and Tj parameters added in AMR Table 1 on page 3			
July 2005	3	ESD protection inserted in Table 1 on page 3			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

 $\hbox{@ 2005 STM}{\sc icroelectronics}$ - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

