

IN THE CLAIMS:

1 1. (Currently Amended) {A one step} The chemical vapor deposition process of claim
2 2, wherein [such that] the deposited coating comprises at least one interface containing
3 chemical groups having sufficient intrinsic chemical reactivity to react with target molecules.

1 2. (Previously Presented) A chemical vapor deposition process; said process includes
2 coating a substrate with a reactive coating that includes repeating units selected from a group
3 consisting of:

R: hydrogen atom, alkyli, aryl, benzyl, halogen, hydroxyl, alkoxy

R₁, R₂, R₃, R₄, R₅ independantly are: hydrogene atom, alky, ary, benzy

13

14

15

R: F, CH₃, CF₃, C₄F₉, CH₂CF₃, C₂F₅,
(CH₂)_nNR'₂(R': hydrogen atom, alkyl,
aryl, benzyl)

16

R: CH₃, H, CF₃, NO₂,
Br, F, Cl, I

16

R₁, R₂, R₃, R₄ independantly are:
hydrogene atom, alkyl, aryl, benzyl,
halogen, hydroxyl, alkoxy, thiol,
thioether, amino, nitro
n: 0 or 1

R₅: hydrogene atom, alkyl, alkenyl,
benzyl, halogene, alkoxy,

17

18

19

20

21

22

23

24

4

5 3. (Original) The chemical vapor deposition process of claim 1, wherein the interfaces
6 are based on poly[para-xylylenes]s or copolymers thereof.

1 4. (Original) The chemical vapor deposition process of the claim 1, wherein
2 [2.2]paracyclophanes are polymerized during the chemical vapor deposition process.

1 5. (Original) The chemical vapor deposition process as defined in claim 1, wherein
2 the polymeric coating is poly[*para*-xylylene carboxylic acid pentafluorophenoester-*co*-*para*-
3 xylylene].

1 6. (Original) The chemical vapor deposition process of claim 1, wherein the coating
2 includes interfaces containing functional groups, which are capable of reacting with functional
3 groups of target molecules resulting in stable linkages.

1 7. (Original) The chemical vapor deposition process of claim 1, wherein the coating
2 includes interfaces containing functional groups, where illumination with light was used to
3 induce reaction with functional groups of target molecules resulting in stable linkages.

1 8. (Currently Amended) The chemical vapor deposition process of claim [7] 2,
2 wherein photolithography is used to create immobilization pattern on a substrate.

1 9. (Currently Amended) The chemical vapor deposition of claim [1] 2, wherein a
2 [2.2]paracyclophane is deposited onto a substrate, said process including:
3 providing purified [2.2]paracyclophane;
4 sublimating the [2.2]paracyclophane under a reduced pressure of less than 100 Pa;

5 heating the sublimated material to approximately 550°C - 900°C to cleave C-C bonds
6 to produce monomers;

7 polymerizing the monomers which are absorbed on the substrate at a temperature below
8 150°C to produce a topologically uniform polymer film.

1 10. (Original) The chemical vapor deposition process of claim 9, wherein the
2 sublimation of [2.2]paracyclophane 4-carboxylic acid pentafluorophenoylester is conducted at a
3 pressure of 0.2 mbar and at a temperature between 120 to 130°C and the polymerization
4 temperature is below 45°C.

1 11. (Original) The chemical vapor deposition process of claim 10 wherein the polymer
2 film is transparent.

1 12. (Original) The chemical vapor deposition process of claim 10, wherein the
2 polymeric film has a thickness between 40 and 2000 nm.

1 13. (Currently Amended) The chemical vapor deposition process of claim ~~1~~ 2,
2 wherein said coating is applied in a pattern on a substrate.

1 14. (Currently Amended) A chemical vapor deposition coating process as claimed in
2 claim ~~1~~ 2, including microstructuring by stamping a surface of a substrate to produce a
3 pattern.

1 15. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of biotin-ligands.

1 16. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of peptides.

1 17. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of proteins.

1 18. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of oligonucleotides.

1 19. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of DNA.

1 20. (Original) The chemical vapor deposition process of claim 1, wherein the polymer
2 interface is patterned by spatially restricted attachment of polysaccharides.

1 21. (Currently Amended) The chemical vapor deposition process of claim {1} 2
2 further including patterning the surface of the substrate using layer-by-layer adsorption.

1 22. (Currently Amended) A chemical vapor deposition process of claim {1} 2, wherein
2 (+)-biotinyl-3,6,9-trioxaundecanediamine was used for coating different patterns of substrates
3 with poly[*para*-xylylene carboxylic acid pantaflourophenoester-*co*-*para*-xylylene].

1 23. (Currently Amended) The chemical vapor deposition process as claimed in claim
2 {1} 2, further including masking a surface of the substrate to produce a patterned coating
3 having defined areas, each area having different functional groups.

1 24. (Currently Amended) The chemical vapor deposition process as claimed in claim
2 ~~1~~ 2 further including a plasma treatment of the substrate prior to the chemical vapor
3 deposition process.

1 25. (Original) The chemical vapor deposition process as claimed in claim 1, wherein a
2 polymer interface containing chemical groups having sufficient intrinsic reactivity to react with
3 target molecules is created and the chemical groups show an anisotropic distribution on the
4 surface.

1 26. (Original) The chemical vapor deposition process as claimed in claim 25, wherein
2 a gradient of reactivity is formed.

1 27. (Original) The chemical vapor deposition process as claimed in claim 1, wherein
2 the deposited coating comprises co-polymers with at least two different types of chemical
3 groups each having sufficient intrinsic reactivity to react with target molecules.

1 28. (Original) The chemical vapor deposition process as claimed in claim 1, wherein
2 the deposited coating comprises co-polymers of at least one polymer with at least one type of
3 chemical groups having sufficient intrinsic reactivity to react with target molecules and of at
4 least one polymer that has no sufficient intrinsic reactivity to react with target molecules.

1 29. (Original) The chemical vapor deposition process as claimed in claim 28 wherein
2 the polymer that has no sufficient intrinsic reactivity to react with target molecules is a poly(*p*-
3 xylylene).

1 30. (Original) The chemical vapor deposition process as claimed in claim 28 wherein
2 the polymer that has no sufficient intrinsic reactivity to react with target molecules is a
3 functionalized poly(*p*-xylylene).

1 31. (Original) The chemical vapor deposition process as claimed in claim 28 wherein
2 the polymer that has no sufficient intrinsic reactivity to react with target molecules is a
3 poly(olefin).

1 32. (Original) Preparation of an electrophoresis chamber including depositing a
2 polymer coating by chemical vapor deposition as claimed in claim 1, said coating including
3 functional groups to enhance surface properties.