${\bf CMA211~AD}$ - Cálculo 2 - Mecânica Diurno

08 de Outubro de 2018

Prova 2

	Q:	1	2	3	4	5	6	7	Total
Nome:	P:	10	15	15	15	15	15	15	100
	N:								
Questão 1	a aprox	 kimaç	 ção p	 ara	(1.01	$e^{0.015}$	$\frac{1}{2}$		10
Questão 2									15
Questão 2	mos e	mínii	mos l	locais	s e os	s pon	tos d	le sel	a da
Questão 3									15
Questão 3 Mostre que $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$	onde	z =	f(x,	(y), x	x = r	$\cos \theta$	$\theta \in y$	= r s	$\sin \theta$.
Questão 4									15
Uma função diferenciável $f(x, y)$ tem, no ponto $(0, 11)$	$\frac{\pi}{2}$), de	erivac	la dii	recio	nal ig	gual a	$\frac{2}{5}$ n	a dir	eção
$3\vec{i} + 4\vec{j}$ e igual a $\frac{11}{5}$ na direção $4\vec{i} - 3\vec{j}$. Calcule:	_						9		
(a) $10 \nabla f(0, \frac{\pi}{2}).$									
(b) $\boxed{5}$ $D_u f(0, \frac{\pi}{2})$ na direção $\vec{w} = \vec{i} + \vec{j}$.									
Questão 5	$+y^2$.	Enco	ontre	os v	alore	es glo	bais	de j	
Questão 6					••••				15
(a) 7 Esboce a região de integração.									
(b) 8 Calcule a integral.									
Questão 7									15
Considere R a região triangular que passa nos pont arbitrária contínua em R . Expresse os dois tipos o				, (0,	5) e .	f(x, y)	y) un	na fui	nção
$\iint_{R} f(x, y)$) dA								