Przodek (z1)

Limit pamięci: 1024 MB Limit czasu: 3.00 s

Dane jest drzewo ukorzenione składające się z N wierzchołków. Twoim zadaniem jest obsłużenie Q zapytań postaci:

• v k – jaki wierzchołek znajduje się k poziomów nad v.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz Q, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę zapytań. Wierzchołki są numerowane od 1 do N, a wierzchołek 1 jest korzeniem drzewa.

W drugim wierszu wejścia znajduje się N-1 liczb całkowitych p_2,\ldots,p_N , gdzie p_i oznacza kto jest ojcem wierzchołka i w drzewie.

W kolejnych Q wierszach znajdują się po dwie liczby całkowite v oraz k, oznaczające kolejne zapytania.

Wyjście

Na wyjściu wypisz Q wierszy zawierających po jednej liczbie całkowitej, oznaczających odpowiedzi na kolejne zapytania. W przypadku, gdy szukany wierzchołek nie istnieje, wypisz -1.

Ograniczenia

$$1 \le N, Q \le 200\,000, 1 \le p_i \le i-1, 1 \le v, k \le N.$$

Wejście	Wyjście
5 3	3
1 1 3 3	1
4 1	-1
4 2	
4 3	

Najniższy wspólny przodek (z2)

Limit pamięci: 1024 MB Limit czasu: 3.00 s

Dane jest drzewo ukorzenione, składające się z N wierzchołków.

Twoim zadaniem jest obsłużenie ${\it Q}$ zapytań postaci:

• $u\ v$ – jaki jest najniższy wspólny przodek wierzchołków $u\ {\rm i}\ v.$

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz Q, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę zapytań. Wierzchołki są numerowane od 1 do N, a wierzchołek 1 jest korzeniem drzewa.

W drugim wierszu wejścia znajduje się N-1 liczb całkowitych p_2,\ldots,p_N , gdzie p_i oznacza kto jest ojcem wierzchołka i w drzewie.

W kolejnych Q wierszach znajdują się po dwie liczby całkowite u oraz v, oznaczające kolejne zapytania.

Wyjście

Na wyjściu wypisz Q wierszy zawierających po jednej liczbie całkowitej, oznaczających odpowiedzi na kolejne zapytania.

Ograniczenia

 $1 \le N, Q \le 200\,000, 1 \le p_i \le i - 1, 1 \le u, v \le N.$

Wyjście
3
1
1

Zliczanie ścieżek (z3)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest drzewo, składające się z N wierzchołków, oraz M ścieżek prostych na tym drzewie. Twoim zadaniem jest policzenie dla każdego wierzchołka ile przechodzi przez niego ścieżek.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz M, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę ścieżek. Wierzchołki są numerowane od 1 do N.

W kolejnych N-1 wierszach wejścia znajdują się po dwie liczby całkowite u i v, oznaczające krawędź między wierzchołkami o tych numerach.

W kolejnych M wierszach znajdują się po dwie liczby całkowite u oraz v, oznaczające ścieżkę pomiędzy wierzchołkami o tych numerach.

Wyjście

Na wyjściu wypisz jeden wiersz zawierający N oddzielonych pojedynczymi spacjami liczb całkowitych. Liczby te powinny kolejno oznaczać ile ścieżek przechodzi przez wierzchołek o numerze $1,2,\ldots,N$.

Ograniczenia

 $1 \le N, M \le 200\,000, 1 \le u, v \le N.$

Wejście	Wyjście
5 3	3 1 3 1 1
1 2	
1 3	
3 4	
3 5	
1 3	
2 5	
1 4	

Odległości na drzewie (z4)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest drzewo, składające się z N wierzchołków. Twoim zadaniem jest obsłużenie Q zapytań postaci:

• u v – jaka jest odległość między wierzchołkami u i v.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz Q, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę zapytań. Wierzchołki są numerowane od 1 do N.

W kolejnych N-1 wierszach wejścia znajdują się po dwie liczby całkowite u i v, oznaczające krawędź między wierzchołkami o tych numerach.

W kolejnych Q wierszach znajdują się po dwie liczby całkowite u oraz v, oznaczające kolejne zapytania.

Wyjście

Na wyjściu wypisz Q wierszy zawierających po jednej liczbie całkowitej, oznaczających odpowiedzi na kolejne zapytania.

Ograniczenia

 $1 \le N, Q \le 200\,000, 1 \le u, v \le N.$

Wejście	Wyjście
5 3	1
1 2	3
1 3	2
3 4	
3 5	
1 3	
2 5	
1 4	

Sumy w poddrzewach (z5)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest drzewo ukorzenione, składające się z N wierzchołków. Każdy z wierzchołków ma przypisaną do siebie wartość.

Twoim zadaniem jest obsłużenie Q zapytań postaci:

- 1 v x zamień wartość w wierzchołku v na x,
- 2 v podaj sume wartości wierzchołków z poddrzewa v.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz Q, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę zapytań. Wierzchołki są numerowane od 1 do N, a wierzchołek 1 jest korzeniem drzewa.

W drugim wierszu wejścia znajduje się N liczb całkowitych a_1, \ldots, a_N , oznaczających wartości przypisane do kolejnych wierzchołków.

W kolejnych N-1 wierszach wejścia znajdują się po dwie liczby całkowite u i v, oznaczające krawędź między wierzchołkami o tych numerach.

W kolejnych Q wierszach znajdują się zapytania. Każde z nich ma format $1\ v\ x$ albo $2\ v$, który opisano w treści zadania.

Wyjście

Na wyjściu wypisz dla każdego zapytania typu 2 jeden wiersz zawierający jedną liczbę całkowitą, oznaczającą odpowiedź na dane zapytanie.

Ograniczenia

 $1 \le N, Q \le 200\,000, 1 \le u, v \le N, 1 \le a_i, x \le 10^9.$

Wejście	Wyjście
5 3	8
4 2 5 2 1	10
1 2	
1 3	
3 4	
3 5	
2 3	
1 5 3	
2 3	

Sumy na ścieżkach (z6)

Limit pamięci: 1024 MB Limit czasu: 2.00 s

Dane jest drzewo ukorzenione, składające się z N wierzchołków. Każdy z wierzchołków ma przypisaną do siebie wartość.

Twoim zadaniem jest obsłużenie Q zapytań postaci:

- 1 v x zamień wartość w wierzchołku v na x,
- 2 v podaj sumę wartości wierzchołków na ścieżce od v do korzenia.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite N oraz Q, oznaczające kolejno liczbę wierzchołków w drzewie oraz liczbę zapytań. Wierzchołki są numerowane od 1 do N, a wierzchołek 1 jest korzeniem drzewa.

W drugim wierszu wejścia znajduje się N liczb całkowitych a_1, \ldots, a_N , oznaczających wartości przypisane do kolejnych wierzchołków.

W kolejnych N-1 wierszach wejścia znajdują się po dwie liczby całkowite u i v, oznaczające krawędź między wierzchołkami o tych numerach.

W kolejnych Q wierszach znajdują się zapytania. Każde z nich ma format $1\ v\ x$ albo $2\ v$, który opisano w treści zadania.

Wyjście

Na wyjściu wypisz dla każdego zapytania typu 2 jeden wiersz zawierający jedną liczbę całkowitą, oznaczającą odpowiedź na dane zapytanie.

Ograniczenia

 $1 \le N, Q \le 200\,000, 1 \le u, v \le N, 1 \le a_i, x \le 10^9.$

Wejście	Wyjście
5 3	11
4 2 5 2 1	8
1 2	
1 3	
3 4	
3 5	
2 4	
1 3 2	
2 4	

Wielkanocna Rodzina Kurczaków (27)

Limit pamięci: 4 MB Limit czasu: 0.10 s

W pewnym magicznym kurzym gnieździe nadeszła wiosna, a razem z nią... sezon genealogii!

Mama Kura, znana jako wierzchołek numer 1, postanowiła wreszcie uporządkować swoje *drzewo rodzinne*. Każde z jej N potomków (dzieci, dzieci ich dzieci... i tak dalej) zna tylko swojego rodzica. Teraz, gdy cała rodzina zjechała się na Wielkanocne Śniadanie, pojawił się dylemat: które kurczę jest najstarszym wspólnym przodkiem dwóch wybranych kuzynów?

Twoim zadaniem jest pomóc kurzej rodzinie znaleźć odpowiedzi na Q zapytań, każde z nich dotyczy dwóch kurczaków u i v, a Twoją rolą jest wskazanie ich najwyższego wspólnego przodka.

Wejście

W pierwszym wierszu znajdują się dwie liczby całkowite N i Q – liczba członków rodziny oraz liczba pytań, które padły przy świątecznym stole.

W drugim wierszu znajduje się N-1 liczb: $p_2, p_3, ..., p_N$, gdzie p_i to rodzic kurczaka i.

W kolejnych Q wierszach znajdują się po dwie liczby całkowite u oraz v, oznaczające dwóch wybranych kuzynów – dla których trzeba znaleźć najstarszego wspólnego przodka.

Wyjście

Dla każdego z $\mathbb Q$ pytań wypisz w osobnym wierszu numer kurczaka, który jest najwyższym wspólnym przodkiem wierzchołków u i v.

Ograniczenia

 $1 \le N \le 1000000$, $1 \le Q \le 1000$, $1 \le p_i \le i - 1$, $1 \le u, v \le N$.

Wejście	Wyjście
5 2	1
1 1 3 3	1
2 5	
1 4	