Metodi Matematici per l'Informatica (secondo canale) — 20 Gennaio 2020 Soluzioni di Andrea Princic. Cartella delle soluzioni.

Es 1. Sia $A = \{2, \{1, 3\}, (3, 5)\}$ e $B = \{(2, 2), 5\}$. Allora:	
$\square_V \square_F \ \mathbf{A.} \ 2 \in A \cap B$	
$\square_V \square_F \ \mathbf{B.} \ 1 \in A \cup B$	
$\square_V \square_F \ \mathbf{C.} \ B - A \neq \emptyset$	
$\square_V \square_F \ \mathbf{D.} \ \{1,3\} \subseteq A$	
$\square_V \square_F \mathbf{E.} \exists x, y \ (x \in A \land \{(x,y)\} \subseteq B)$	
Es 2. Data la relazione $R = \{(1,2), (6,7), (2,3), (5,6), (3,4), (8,9)\} \subseteq \mathbb{N} \times \mathbb{N}$, indichiamo con \hat{R} la sua chiusura transitiva. $\square_V \square_F \ \mathbf{A}. \ \hat{R} \ \text{ha 10 elementi}$ $\square_V \square_F \ \mathbf{B}. \ \hat{R} = R$ $\square_V \square_F \ \mathbf{C}. \ R - \hat{R} = \emptyset$	
Es 3. Sia $Q = \{(1,2), (1,3), (1,4), (2,3)\} \subseteq \{1,2,3,4\} \times \{1,2,3,4\}$. Allora	
$\square_V \square_F$ A. Q è una funzione iniettiva	
$\square_V \square_F$ B. Q è una relazione di equivalenza	
$\square_V \square_F$ C. Q è una relazione transitiva	
$\square_V \square_F$ D. Q non è una funzione	
Es 4. Si consideri la relazione $D = \{(a, b) \mid a, b \in \mathbb{N} \land a \text{ divide } b\}.$	
$\square_V \square_F$ A. D è una relazione d'ordine stretto	
$\square_V \square_F$ B. D è una relazione d'ordine largo	
$\square_V \square_F$ C. esiste $x \in \mathbb{N}$ tale che per ogni $y \in \mathbb{N}$ se $x \neq y$ allora $(x,y) \in D$	
$\square_{V}\square_{F}$ D. esiste $x\in\mathbb{N}$ tale che per ogni $y\in\mathbb{N}$ se $x\neq y$ allora $(y,x)\in D$	
Es 5. Per ogni coppia di insiemi $A \in B$ si ha che:	
$\square_{V}\square_{F}$ A. se A è numerabile allora $A-B$ è numerabile	
$\square_{V}\square_{F}$ B. se A e B sono numerabili allora $A-B$ è finito	
$\square_{V} \square_{F}$ C. se A e B non sono numerabili allora $A \cap B$ non è numerabile	
$\square_{V} \square_{F}$ D. se A e B sono numerabili allora $A \times B$ è numerabile	
Es 6. Sia \mathbb{P} l'insieme dei numeri pari. Scrivere una relazione di equivalenza $R \subseteq \mathbb{P} \times \mathbb{P}$ che abbia tre clas di equivalenza, indicandone l'insieme quoziente.	ssi
Rispondere qui	_

$\mathbf{E}\mathbf{s}$	7.	La successione	dei	cosiddetti	numeri	pentagonali è	definita come s	segue:

$$f(1) = 1$$

$$f(n+1) = f(n) + 3n + 1$$

Dimostrare che per ogni intero $n \ge 1$ vale $f(n) = \frac{n(3n-1)}{2}$

Rispondere qui		

Es 8. Dimostrare che se $\vDash (A \to B)$ allora $\vDash ((A \land B) \leftrightarrow A)$ e $\vDash ((A \lor B) \leftrightarrow B)$

Rispondere qui		

Es 9. Decidere se i seguenti enunciati sono validi:

$$\square_{V} \square_{F} \ \mathbf{A.} \ (\forall x \ (A(x) \lor B(x))) \to (\forall x \ A(x) \lor \forall x \ B(x))$$

$$\square_V \square_F$$
 B. $(\exists x \ A(x) \rightarrow \forall x \ B(x)) \rightarrow \forall x \ (A(x) \rightarrow B(x))$

Es 10. Scrivere un enunciato che distingua fra $(\mathbb{N}, <)$ e $(\mathbb{Z}, <)$, vale a dire per il quale $(\mathbb{N}, <)$ sia un modello, mentre $(\mathbb{Z}, <)$ non lo sia. Usare il linguaggio predicativo con i simboli = e < (con le loro ovvie interpretazioni).

Rispondere qui

	nalizzare i seguenti enunciati, usando simboli predicativi ed una loro opportuna interpretazione: Qualche uomo è un genio
	Rispondere qui
В.	Nessuna scimmia è un uomo
	Rispondere qui
C.	Qualche genio non è una scimmia
	Rispondere qui