DOCKET NO. M&M-048-USA-PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

#2

In re Application of:
T. Kuroda, et al.

Serial No.: Corresponding to PCT/JP00/05694

filed August 24, 2000

Filed: Concurrently herewith

For: Adhesive Composition And Joining Method Utilizing The Adhesive Composition

CLAIM FOR PRIORITY

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

The benefit of the filing dates of the following prior foreign application filed in Japan is hereby requested for the above identified application and the priority provided in 35 U.S.C. 365 is hereby claimed:

Japanese patent application No. 11/241599 filed August 27, 1999.

In support of this claim, a certified copy of said original foreign application was filed with the International Bureau on

10/019433 13 Rec'd PCT/PTO 31 DEC 2001

DOCKET NO. M&M-048-USA-PCT

<u>September 27, 2000</u> as evidenced by form PCT/IB/304, which is attached.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. 365 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of these documents.

Respectfully submitted,

TOWNSEND & BANTA

Donald E. Townsend Reg. No. 22,069

Donald E. Tormend, J.

unser

Donald E. Townsend, Jr. Reg. No. 43,198

TOWNSEND & BANTA 1225 Eye Street, N.W. Suite 500, #50028 Washington, D.C. 20005 (202) 682-4727

Date: December 31, 2001

B PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の曹類に記載されている事項は下記の出願曹類に記載されて いる事項と同一であることを証明する。 with this Office.

This is to certify that the annexed is a true copy of the following application as filed 出願年月日

Date of Application:

1999年 8月27日

REC'D 27 SEP 2000

出願.番号 Application Number:

平成11年特許願第241599号

WIPO PCT

出 顧 Applicant (s): 人

積水化学工業株式会社 丁中 〇〇 〇 5 6 2 4

EKU

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年10月13日

出証番号 出証特2000-3083112

特平11-2415

【書類名】

特許願

【整理番号】

99P02146

【提出日】

平成11年 8月27日

【あて先】

特許庁長官殿

【国際特許分類】

C08L101/10

【発明者】

【住所又は居所】 京都市南区上鳥羽上調子町2-2 積水化学工業株式会

社内

【氏名】

福井 弘司

【特許出願人】

【識別番号】

000002174

【氏名又は名称】 積水化学工業株式会社

【代表者】

大久保 尚武

【手数料の表示】

【予納台帳番号】 005083

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 接着剤組成物および該接着剤組成物を用いた接合方法 【特許請求の範囲】

【請求項1】 下記の成分を含有することを特徴とする接着剤組成物。

- (A) 一分子中に2個以上の加水分解性シリル基を有する化合物
- (B) 化合物(A) を架橋させるための化合物
- (C) 分子中に重合性基を有する化合物
- (D) 化合物 (C) 中の重合性基を光により重合開始させる化合物
- (E) チキソトロピー付与剤

【請求項2】 上記化合物(A)の加水分解性シリル基がアルコキシシリル基であって、また、化合物(A)がポリアルキレングリコールまたはポリオレフィンから選ばれるポリマー中に該アルコキシシリル基が置換した化合物であることを特徴とする請求項1記載の接着剤組成物。

【請求項3】 上記化合物(C)の重合性基がラジカル重合性基であって、 上記化合物(D)が光ラジカル重合開始剤であることを特徴とする請求項1また は2記載の接着剤組成物。

【請求項4】 上記化合物(C)のラジカル重合性基が、アクリロイル基またはメタクリロイル基から選ばれる重合性基であることを特徴とする請求項1~3のいずれかに記載の接着剤組成物。

【請求項5】 上記チキソトロピー付与剤(E)が、ガラスバルーン、ガラスビーズ、表面処理炭酸カルシウムおよび各種シリカからなる群より選ばれる少くとも1種であることを特徴とする請求項1~4のいずれかに記載の接着剤組成物。

【請求項6】 請求項1~5のいずれかに記載の接着剤組成物を、接合部材の片方に塗布し、塗布した接着剤組成物層の上面から光を照射し、その後、他方の接合部材を貼り合わせることを特徴とする接合部材の接合方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、常態では流動性があり塗布可能な粘性を示し、短時間の光照射で凝集力が向上して仮止め性・仮固定性を発現し、さらに、加水分解性シリル基の空気中の湿気による架橋によって最終的な接合強度に到達する接着剤組成物および該接着剤組成物を用いた接合方法に関する。

[0002]

【従来の技術】

近年、接着剤を用いた接合技術の向上により、優れた生産性や良好な作業性の 利点を活かして建築・建材分野においても接着剤が多用されるようになってきて いる。また、工業化住宅等の発展に伴って、建築部材の組立ラインの高速生産へ 適応した接着剤の要求が益々強まっている。

[0003]

従来より、アルコキシシリル基の様な加水分解性シリル基を持つ化合物を成分とする硬化性組成物が開示され、空気中の湿気等により硬化する接着剤として提案されている(例えば、特開昭56-67366号公報)。この接着剤は、接着硬化後の耐衝撃性や耐クリープ性に優れており、住宅家屋で常に荷重のかかる部分(タイルの貼り合わせ、壁材の貼り合わせ)等での利用が検討され、建築・建設の現場において用いられている。

[0004]

しかしながら、上記接着剤は、実質的に空気中の湿気により硬化するため、前 記組立ラインに適応すべく速硬化性に設計すると、ポットライフが短くなり塗工 装置上に長く滞留させることができないといった問題があった。一方、ポットラ イフを長くする様な設計にすると、速やかに硬化しなくなるため、ズレを防ぐた めの処置をしなければならないし、硬化まで養生しなければならないと言った問 題があった。

[0005]

一方、従来より、短時間の光照射で硬化する光硬化性の組成物が開示され(例えば、特開昭63-139969号公報)、光硬化性インキ、光硬化性ワニス、光硬化性コーティング材、光硬化性接着剤等への利用が提案されている。この中の光硬化性接着剤は、短時間での光硬化性のため、光硬化性接着剤を感光させる

ための光を遮るだけでポットライフを確保することができ、インライン用の接着 剤としての利用が提案がされている。しかしながら、一般に、光硬化性接着剤は 、塗布・貼り合わせ後に光照射をするため、光を実質的に透過しない建築・建材 等に用いられる材料には適用できないと言った問題があった。

[0006]

また、上記加水分解性シリル基を持つ化合物と光硬化性物質を組み合わせた硬化組成物が、建築用シーラントとして用いた場合の硬化表面の防汚性、防塵性およびタックの改善や耐候性の改善等の目的で開示されいる(例えば、特開昭55-36241号公報、特開平8-325466号公報)。しかしながら、短時間の光照射による速硬化性あるいは凝集力の速やかな発現は困難であった。

[0007]

【発明が解決しようとする課題】

本発明は、上記問題点を解決するために、常態では流動性があり塗布可能な粘性を示し、ポットライフが長く、また短時間の光照射で凝集力が発現し、仮止め、仮固定作業を必要としないためラインの接合工程に適応でき、且つ、接着硬化後の耐衝撃性、耐クリープ性等の物性に優れている接着剤組成物および該接着剤組成物を用いた接合方法を提供することを課題とする。

[0008]

【課題を解決するための手段】

請求項1に記載の発明(以下、発明1という)による接着剤組成物は、下記の 成分を含有することを特徴とする。

- (A) 一分子中に2個以上の加水分解性シリル基を有する化合物
- (B) 化合物(A) を架橋させるための化合物
- (C) 分子中に重合性基を有する化合物
- (D) 化合物 (C) 中の重合性基を光により重合開始させる化合物
- (E) チキソトロピー付与剤

[0009]

請求項2に記載の発明(以下、発明2という)による接着剤組成物は、上記発明1による接着剤組成物において、上記化合物(A)の加水分解性シリル基がア

ルコキシシリル基であって、また、化合物(A)がポリアルキレングリコールまたはポリオレフィンから選ばれるポリマー中に該アルコキシシリル基が置換した化合物であることを特徴とする。

[0010]

請求項3に記載の発明(以下、発明3という)による接着剤組成物は、上記発明2による接着剤組成物において、上記化合物(C)の重合性基がラジカル重合性基であって、上記化合物(D)が光ラジカル重合開始剤であることを特徴とする。

[0011]

請求項4に記載の発明(以下、発明4という)による接着剤組成物は、上記発明1~3のいずれかによる接着剤組成物において、上記化合物(C)のラジカル重合性基が、アクリロイル基またはメタクリロイル基から選ばれる重合性基であることを特徴とする。

[0012]

請求項5に記載の発明(以下、発明5という)による接着剤組成物は、上記発明1~4のいずれかによる接着剤組成物において、上記チキソトロピー付与剤(E)が、ガラスバルーン、ガラスビーズ、表面処理炭酸カルシウムおよび各種シリカからなる群より選ばれる少なくとも1種であることを特徴とする。

[0013]

請求項6に記載の発明(以下、発明6という)による接合部材の接合方法は、 上記発明1~5のいずれかに記載の接着剤組成物を、接合部材の片方に塗布し、 塗布した接着剤組成物層の上面から光を照射し、その後、他方の接合部材を貼り 合わせることを特徴とする。

以下、詳細に本発明を説明する。

[0014]

発明1に用いられる一分子中に2個以上の加水分解性シリル基を有する化合物 (A) における加水分解性シリル基としては、特に限定されず、例えば、珪素元素にアルコキシ基を置換させたもの、珪素元素にアルカニルオキシ基を置換させたもの、 珪素元素にアルケニルオキシ基を置換させたもの、 珪素元素にアセトキシ基を置

換させたもの、珪素元素にハロゲン基を置換させたもの等が挙げられる。貯蔵安 定性の観点から、珪素元素にアルコキシ基を置換させたもの(アルコキシシリル 基)が好適に用いられる。

[0015]

上記加水分解性シリル基としてアルコキシシリル基を有する化合物としては、接着剤組成物の粘度設計のし易さ、および硬化後の凝集力と接着性のバランスを両立させるために、一分子中に少なくとも2個以上の加水分解性シリル基を有するポリマーが好適に用いられる。用いられる上記ポリマーとしては、特に限定されず、例えば、プロピレングリコールやエチレングリコール等のポリアルキレングリコール、ポリエステル、ポリアミド、ポリカーボネート、ポリメタクリレート、ポリアクリレート、ポリスチレン、ポリオレフィン等が挙げられ、また、これらの共重合体を用いてもよく、この中でポリアルキレングリコールまたはポリオレフィンが好ましい。これらのポリマーの分子量としては、4000~3000が好ましく、さらに、10000~3000で、分子量分布(Mw/Mn)が1.6以下のものがより好ましい。

[0016]

ここで、上記アルコキシシリル基とは、モノアルコキシシリル基、ジアルコキシシリル基、およびトリアルコキシシリル基を示し、また、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、tert-ブトキシ基、フェノキシ基、ベンジルオキシ基等が挙げられる。また、ジアルコキシシリル基あるいはトリアルコキシシリル基の場合、同じアルコキシ基を用いてもよいし、異なるアルコキシ基を組み合わせて用いてもよい。

[0017]

上記アルコキシシリル基のポリマーへ置換される位置は、ポリマー末端でもよいし、ポリマーの側鎖であってもよい。また、ポリマー末端とポリマー側鎖の両方に位置していてもよい。

[0018]

発明1の化合物(A)としては、例えば、鐘淵化学工業社製の商品名MSポリ

マーのMSポリマーS-203、S-303、S-903等、商品名サイリルポリマーのサイリルSAT-200、MA-403、MA-447等、旭硝子社製の商品名エクセスターESS-2410、ESS-2420、ESS-3630等の市販の化合物を用いてもよい。

[0019]

発明1に用いられる化合物(A)を架橋させるための化合物(B)は、上記化合物(A)を空気中の湿気で架橋させる際に、促進作用あるいは触媒作用を示すものであれば特に限定されず、例えば、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫フタレート、ビス(ジブチル錫ラウリン酸)オキサイド、ジブチル錫ビスアセチルアセトナート、ジブチル錫ビス(モノエステルマレート)、オクチル酸錫、ジブチル錫オクトエート、ジオクチル錫オキサイド等の錫化合物、テトラーnーブトキシチタネート、テトライソプロポキシチタネート等のチタネート系化合物、ジブチルアミンー2ーエチルへキソエート等のアミン塩類およびその他の酸性触媒及び塩基性触媒等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。

[0020]

発明1に用いられる分子中に重合性基を有する化合物(C)は、ラジカル重合性基、カチオン重合性基等の重合性を示す置換基を有する化合物であれば特に限定されず、異なる重合性基を一分子中に複数持ち合わせていてもよい。

[0021]

ラジカル重合性基としては、例えば、スチリル基、アクリロイル基、メタクリロイル基、ピニルエステル基等が挙げられ、良好な重合性を示すアクリロイル基、メタクリロイル基が好ましい。

[0022]

[0023]

上記アクリロイル基またはメタクリロイル基を持つ化合物として、例えば、メ チル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)ア クリレート、nーブチル (メタ) アクリレート、tertーブチル (メタ) アク リレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ) アクリレート、nーオクチル(メタ)アクリレート、イソオクチル(メタ)アク リレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレ **ート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、** ベンジル (メタ) アクリレート、2 - ブトキシエチル (メタ) アクリレート、2 ーフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、 テトラヒドロフルフリル (メタ) アクリレート、ヘキサンジオールジ (メタ) ア クリレート、エチレングリコールジ (メタ) アクリレート、ポリエチレングリコ ールジ (メタ) アクリレート、プロピレングリコールジ (メタ) アクリレート、 ポリプロピレングリコールジ (メタ) アクリレート、ネオペンチルグリコールジ (メタ) アクリレート、トリメチロールプロパントリ(メタ) アクリレート、ペ ンタエリスリトールジ (メタ) アクリレート、ペンタエリスリトールトリ (メタ) アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタ エリスリトールヘキサ (メタ) アクリレート、エポキシアクリレート、ポリエス テルアクリレート、ウレタンアクリレート、2-ヒドロキシエチル(メタ)アク リレート、3ーヒドロキシプロピル(メタ)アクリレート、2ーヒドロキシプロ ピル (メタ) アクリレート、4ーヒドロキシブチル (メタ) アクリレート、2ー ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アク リレート、6-ヒドロキシヘキシル(メタ)アクリレート、3-ヒドロキシー3 ーメチルブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピ ル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2 - [(メタ)アクリロイルオキシ]エチル 2-ヒドロキシエチル フタル酸、 2-[(メタ) アクリロイルオキシ] エチル 2-ヒドロキシプロピル フタル 酸等や、

・化合物1

 ${\rm CH_2=CH-C(0)\,0-CH_2CH_2O-[C(0)\,CH_2CH_2CH_2CH_2CH_2CH_2O]\,n-H\,(n=1\sim10)}$

・化合物2

$$\mathtt{CH_2} = \mathtt{C}(\mathtt{CH_3}) - \mathtt{C}(\mathtt{0}) \, \mathtt{0} - \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{0} - [\mathtt{C}(\mathtt{0}) \, \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{CH_2} \\ \mathtt{0}] \, \mathbf{n} - \mathtt{H} \, (\mathbf{n} = \mathbf{1} \sim \mathbf{10})$$

・化合物3

$$CH_2 = CH - C(0)0 - (CH_2CH_20)n - H(n=1 \sim 12)$$

・化合物4

$$CH_2 = C(CH_3) - C(0)0 - (CH_2CH_20) n - H(n=1 \sim 12)$$

・化合物 5

$$\text{CH}_2$$
=CH-C(0)0-[CH $_2$ CH(CH $_3$)0] n-H(n=1 \sim 12)

・化合物 6

$$\text{CH}_2 = \text{C(CH}_3) - \text{C(0)} 0 - [\text{CH}_2\text{CH(CH}_3) 0] n - \text{H(n=1} \sim 12)$$

・化合物7

$$\text{CH}_2 = \text{C}(\text{CH}_3) - \text{C}(0) 0 - (\text{CH}_2\text{CH}_20) n - [\text{CH}_2\text{CH}(\text{CH}_3)0] m - \text{H}(n=1 \sim 12)$$

・化合物8

$$CH_2 = CH - C(0)0 - (CH_2CH_2O)n - [CH2CH(CH3)0]m - H(n=1 \sim 12)$$

・化合物9

$$\mathtt{CH}_2 = \mathtt{C}(\mathtt{CH}_3) - \mathtt{C}(0) \, 0 - (\mathtt{CH}_2 \mathtt{CH}_2 \mathtt{0}) \, \mathbf{n} - (\mathtt{CH}_2 \mathtt{CH}_2 \mathtt{CH}_2 \mathtt{CH}_2 \mathtt{0}) \, \mathbf{m} - \mathtt{H} \, (\mathbf{n} = 1 \! \sim \! 12)$$

・化合物10

$$\mathtt{CH}_2 = \mathtt{CH-C(0)0-(CH}_2\mathtt{CH}_2\mathtt{O)}\,\mathtt{n-(CH}_2\mathtt{CH}_2\mathtt{CH}_2\mathtt{CH}_2\mathtt{CH}_2\mathtt{O)}\,\mathtt{m-H}\,(\mathtt{n=1}\!\sim\!12)$$

・化合物11

$$\text{CH}_2$$
=CH-C(0)0-(CH₂CH₂0)n-CH₃(n=1 ~10)

・化合物12

$$\text{CH}_2 = \text{C(CH}_3) - \text{C(0)} 0 - (\text{CH}_2\text{CH}_20) \text{ n-CH}_3 (\text{n=1} \sim 30)$$

・化合物13

$$CH_2 = CH - C(0)0 - [CH_2CH(CH_3)0] n - CH_3(n=1 \sim 10)$$

・化合物14

$$CH_2 = C(CH_3) - C(0)0 - [CH_2CH(CH_3)0] n - CH_3(n=1 \sim 10)$$

· 化合物 1 5

$$\texttt{CH}_2 = \texttt{C}(\texttt{CH}_3) - \texttt{C}(0) \, 0 - (\texttt{CH}_2 \texttt{CH}_2 \texttt{0}) \, \mathbf{n} - [\texttt{CH}_2 \texttt{CH}(\texttt{CH}_3) \, 0) \, \mathbf{m} - \texttt{H} \, (\mathbf{n} = 1 \sim 10)$$

・化合物16

 $CH_2 = CH - C(0)0 - (CH_2CH_2O)n - [CH_2CH(CH_3)0)m - H(n=1 \sim 10)$

· 化合物 17

 $_{\text{CH}_2\text{=CH-C}(0)0\text{--}[\text{CH}_2\text{CH}(\text{CH}_3)0]}$ n-C(0)-CH=CH₂(n=1 \sim 20)

· 化合物 18

 $CH_2 = C(CH_3) - C(0)0 - [CH_2CH(CH_3)0] n - C(0) - C(CH_3) = CH_2(n=1 \sim 20)$

· 化合物 19

 $CH_2 = CH - C(0)0 - [CH_2CH_20] n - C(0) - CH = CH_2(n=1 \sim 20)$

· 化合物 2 0

 CH_2 =C(CH_3)-C(0)0-[CH_2 CH $_2$ 0] n-C(0)-C(CH_3)= CH_2 (n=1 \sim 20) 等が挙げられる。

[0024]

上記ビニルエステル基を持つ化合物としては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニル等が挙げられる。

[0025]

また、カチオン重合性基としては、例えば、エポキシ基、オキセタニル基、ビニロキシ基、スチリル基等が挙げられる。

[0026]

上記エポキシ基を持つ化合物としては、例えば、ビスフェノールA系エポキシ 樹脂、水添ビスフェノールA系エポキシ樹脂、ビスフェノールF系エポキシ樹脂 、ノボラック型エポキシ樹脂、脂肪族環式エポキシ樹脂、臭素化エポキシ樹脂、 ゴム変成エポキシ樹脂、ウレタン変成エポキシ樹脂、グリシジルエステル系化合 物、エポキシ化ポリブタジエン、エポキシ化スチレンーブタジエンースチレン共 重合体等が挙げられる。

[0027]

上記オキセタニル基を持つ化合物としては、例えば、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-フェノキシメチルオキセタン、3-エチル-3-ヘキシルオキシメチルオキセタン、1,4-ビス(3-エチル-3-オキセタニルメトキシ)メチル)ベンゼン等が挙げられる。

[0028]

上記ビニロキシ基を持つ化合物としては、例えば、n-プロピルビニルエーテ ル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチル ビニルエーテル、tert-アミルビニルエーテル、シクロヘキシルビニルエー テル、2-エチルヘキシルビニルエーテル、ドデシルビニルエーテル、オクタデ シルビニルエーテル、2-クロロエチルビニルエーテル、エチレングリコールブ チルビニルエーテル、トリチレングリコールメチルビニルエーテル、安息香酸(4 ービニロキシ)ブチル、エチレングリコールジビニルエーテル、ジエチレング リコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラ エチレングリコールジビニルエーテル、ブタン-1, 4-ジオールージビニルエ ーテル、ヘキサンー1,6ージオールージビニルエーテル、シクロヘキサンー1 ,4-ジメタノール-ジビニルエーテル、イソフタル酸ジ(4-ビニロキシ)ブ チル、グルタル酸ジ(4-ビニロキシ)ブチル、コハク酸ジ(4-ビニロキシ) ブチルトリメチロールプロパントリビニルエーテル、 2 - ヒドロキシエチルビニ ルエーテル、4-ヒドロキシブチルビニルエーテル、6-ヒドロキシヘキシルビ ニルエーテル、シクロヘキサンー 1 , 4 -ジメタノールーモノビニルエーテル、 ジエチレングリコールモノビニルエーテル3-アミノプロピルビニルエーテル、 2-(N, N-ジエチルアミノ) エチルビニルエーテル、ウレタンビニルエーテ ル、ポリエステルビニルエーテル等が挙げられる。

[0029]

[0030]

発明1に用いられる化合物(C)中の重合性基を光により重合開始させる化合物(D)は、化合物(C)に含まれる重合性基の重合反応様式により、適宜選択される。

重合性基がラジカル重合性基の場合、光照射によりラジカル重合を誘発する化

合物(光ラジカル重合開始剤)であれば特に限定されず、例えば、4-(2-ヒ ドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒ ドロキシ $-\alpha$, α ' -ジメチルアセトフェノン、メトキシアセトフェノン、2, 2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン誘導体化合物 、ベンゾインエチルエーテル、ベンゾインプロピルエーテル等のベンゾインエー テル系化合物、ベンジルジメチルケタール等のケタール誘導体化合物、ハロゲン 化ケトン、アシルフォスフィンオキシド、アシルフォスフォナート、2-メチル -1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン 、2-ベンジル-2-N, N-ジメチルアミノ-1-(4-モルフォリノフェニ ル) ー1ーブタノン、2, 4, 6ートリメチルベンゾイルージフェニルフォスフ ィンオキシド、ビスー(2, 6ージメトキシベンゾイル)ー2, 4, 4ートリメ チルペンチルフォスフィンオキシド、ビス(ヵ5-シクロペンタジエニル)-ビ ス(ペンタフルオロフェニル)-チタニウム、ビス(ヵ5-シクロペンタジエニ ル) ービス [2, 6ージフルオロー3ー(1Hーピリー1ーイル)フェニル] ー チタニウムが挙げられる。これらは単独で用いてもよく、2種以上を併用しても よいし、これら化合物を含む市販のものを用いてもよい。

[0031]

重合性基がカチオン重合性基の場合、光照射によりカチオン重合を誘発する化合物(光カチオン重合開始剤)であれば特に限定されず、例えば、鉄ーアレン錯体化合物、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、ピリジニウム、アルミニウム錯体/シラノール塩等が挙げられる。これらの市販のものとしては、例えば、チバガイギー社製イルガキュアー261、旭電化工業社製オプトマーSP-150、オプトマーSP-151、オプトマーSP-170、オプトマーSP-171、ゼネラルエレクトロニクス社製UVE-1014、サートマー社製CD-1012、三新化学工業社製サンエイドSI-60L、サンエイドSI-80L、サンエイドSI-100L、日本曹達社製CI-2064、CI-2639、CI-2624、CI-2481、ローヌ・プーラン社製RHODORSILPHOTOINITIATOR2074、ユニオンカーバイド社製UVI-6990、ミドリ化学社製BBI-103、MPI-10

3、TPS-103、MDS-103、DTS-103、NAT-103、NDS-103等を用いることができる。また、20~80℃付近で用いる場合は、 熱触媒活性の低い化合物が貯蔵安定性の点から好ましい。また、これらは単独で 用いてもよく、2種以上を併用してもよい。

[0032]

さらに、光カチオン重合開始剤の感光性を向上させる目的で、アントラセン、ペリレン、コロネン、テトラセン、ベンズアントラセン、フェノチアジン、フラビン、アクリジン、ケトクマリン、チオキサントン誘導体、ベンゾフェノン、アセトフェノン、2-クロロチオキサンソン、2,4-ジメチルチオキサンソン、2,4-ジエチルチオキサンソン、イソプロピルチオキサンソン等の増感剤を適宜併用してもよい。

[0033]

また、上記化合物(D)の感光波長としては、特に限定されないが、300~800nmの波長成分を含む光により感光する化合物が好適に用いられる。300nm未満の波長でのみ感光する化合物(D)では、十分なエネルギーを得ることができて速やかに化合物(C)を重合あるいは架橋させることが可能であるが、本発明の接着剤組成物を厚肉で塗布した場合、表面のみ凝集力が増し、バルク全体に均一に初期凝集力が発現しなくなったり、光照射表面の濡れ性が著しく劣ることがある。一方、800nmを超える波長でのみ感光する化合物(D)では、化合物(C)を低エネルギー(熱エネルギー)でも容易に分解して、重合あるいは架橋させてしまうため、貯蔵安定性を確保できなくなることがある。

[0034]

発明1に用いられるチキソトロピー付与剤(E)は、接着剤組成物がチキソトロピー性を発現できる化合物から適宜選ばれる、例えば、コロイダルシリカ等の各種シリカ、疎水化炭酸カルシウム等の表面処理炭酸カルシウム、ガラスバルーン、ガラスビーズ、ポリビニルピロリドン等を挙げることができ、ガラスバルーン、ガラスビーズ、各種シリカ、表面処理炭酸カルシウムが好ましい。このチキソトロピー付与剤は、本発明の接着剤組成物に用いられる化合物(A)あるいは(C)に対し親和性の高い表面を有することが好ましく、例えば、化合物(C)

としてウレタンアクリレートを用いた場合、チキソトロピー付与剤(E)としてはガラスバルーンが好ましく、また、化合物(C)としてα,αージアクリロイルーポリ(プロピレングリコール)を用いた場合、チキソトロピー付与剤(E)としては、例えば、表面処理炭酸カルシウム等の表面処理を施したものが好適に用いられる。

[0035]

次に、発明1の接着剤組成物に用いられる各成分の配合割合は、機械塗工性および貯蔵安定性に優れ、ポットライフが長く、短時間の光照射で初期凝集力が発現する限り特に限定されないが、下記の配合割合が好ましい。すなわち、一分子中に2個以上の加水分解性シリル基を有する化合物(A)100重量部に対して、化合物(A)を架橋させるための化合物(B)0.01~20重量部、分子中に重合性基を有する化合物(C)15~100重量部、化合物(C)中の重合性基を光により重合開始させる化合物(D)0.01~20重量部が好ましく、また、チキソトロピー付与剤(E)は、化合物(A)~(E)の合計100容量%に対して、20~65容量%(25℃)の割合で配合されていることが好ましい

[0036]

上記化合物(B)の配合割合が、0.01重量部未満では、上記化合物(A)の硬化速度が低下し、実質的に実用に適さなくなることがあり、逆に、20重量部を超えると、硬化速度は十分早くなるが、硬化後のバルクへの影響が著しく、十分な接着力を得ることが困難になることがある。

[0037]

上記化合物(C)の配合割合が、15重量部未満では、光重合または光架橋した後の初期凝集力が、過剰のチキソトロピー付与剤を添加したとしても、発現できなくなることがある。逆に、100重量部を超えると、光照射後の初期凝集力は十分となるものの、凝集力が著しく大きくなるため、発明1の接着剤組成物の被着体への濡れ性が低下し、もはや十分な初期接着性が発現できなくなることがある。

[0038]

上記化合物(D)の配合割合が、0.01重量部未満では、光照射による上記化合物(C)の重合または架橋速度が著しく低下し、光照射後の初期接着力が発現できなくなることがある。逆に、20重量部を超えると、硬化速度は十分早くなるが、硬化後のバルクへの影響が著しく現れるようになり、十分な接着力を得ることが困難なことがある。

[0039]

上記チキソトロピー付与剤(E)の配合割合が、20容量%未満では、十分なチキソトロピー性を得ることが困難となることがあり、また、光照射後の初期接着力を得ることが困難となることがある。逆に、65容量%を超えると、本発明の接着剤組成物の粘度が極端に上がり、機械塗工が困難となったり、塗工速度が著しく低下することがある。

[0040]

発明1の接着剤組成物には、必要に応じて、引張特性等を改善する物性調整剤 、増量剤、補強剤、可塑剤、着色剤、難燃剤等の各種添加剤を加えてもよい。

[0041]

上記の引張特性等を改善する物性調整剤としては、各種シランカップリング剤として、例えば、ビニルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、3ーアミノプロピルトリメトキシシラン、3ーアミノプロピルトリメトキシシラン、Nー(2ーアミノエチル)ー3ーアミノプロピルトリメトキシシラン、Nー(2ーアミノエチル)ー3ーアミノプロピルトリメトキシシラン、Nー(2ーアミノエチル)ー3ーアミノプロピルトリエトキシシラン、N,N'ービスー[3ー(トリメトキシシリル)プロピル]エチレンジアミン、N,N'ービスー[3ー(トリエトキシシリル)プロピル]エチレンジアミン、N,N'ービスー[3ー(トリエトキシシリル)プロピル]へキサエチレンジアミン、N,N'ービスー[3ー(トリエトキシシリル)プロピル]へキサエチレンジアミン等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。

[0042]

上記増量剤としては、本発明による接着剤組成物中に添加してチキソトロピー性を発現しないものが好適に利用でき、例えば、タルク、クレー、炭酸カルシウム、炭酸マグネシウム、無水珪素、含水珪素、ケイ酸カルシウム、二酸化チタン、カーボンブラック等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。

[0043]

上記可塑剤としては、例えば、リン酸トリブチル、リン酸トリクレジル等のリン酸エステル類、フタル酸ジオクチル等のフタル酸エステル類、グリセリンモノオレイル酸エステル等の脂肪族一塩基酸エステル類、アジピン酸ジオクチル等の脂肪族二塩基酸エステル類、ポリプロピレングリコール類等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。

[0044]

その他、発明1の接着剤組成物には、必要に応じて、タレ防止剤、酸化防止剤 、老化防止剤、紫外線吸収剤、溶剤、香料、顔料、染料等を添加してもよい。

[0045]

発明6による接合部材の接合方法は、上記発明1~5のいずれかに記載の接着 剤組成物を、接合部材の片方に塗布し、塗布した接着剤組成物層の上面から光を 照射し、その後、他方の接合部材を貼り合わせることを特徴とする。

[0046]

上記発明6による接合部材の接合方法において、上記接着剤組成物を片方の接合部材に塗布し、次に他方の接合部材を貼り合わせると、光透過性が実質的に無い接合部材の場合、その後、塗布した接着剤組成物に光を照射しすることは困難となる。一方、光を照射した上記接着剤組成物を接合部材に塗布し、貼り合わせを試みても、光照射により粘度が上昇し、凝集力が著しく向上しているため、上記接着剤組成物を塗布をすることが困難となる。

[0047]

上記発明6において、光照射に用いられる光源としては、上記化合物(C)または、感光性を向上させるために添加した上記増感剤に、吸収される波長成分を含む光を発光できる光源であれば特に限定されず、用いられる化合物(C)また

は増感剤により適宜選択されるが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマーレーザー、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、蛍光灯、太陽光等が挙げられる。

[0048]

【発明の実施の形態】

本発明をさらに詳しく説明するため以下に実施例を挙げるが、本発明はこれら 実施例のみに限定されるものではない。

[0049]

(実施例1~7及び比較例1~5)

(1)接着剤組成物の調製

表1及び表2に示す配合組成に従って、アルミホイルで遮光したビーカー中で、まず、化合物(A)、化合物(B)、化合物(C)、化合物(D)を均一になるまで撹拌、混合した(粉末等が含まれる場合は、遮光下、50℃に加温しながら混合した)。上記配合物が均一に混合された後に、チキソトロピー付与剤(E)を加え、撹拌機(特殊機化工業社製TKホモディスパー、撹拌条件500rpm×10分)を用いて分散させて、本発明の接着剤組成物を得た。

[0050]

(2)性能評価方法

上記実施例1~7及び比較例1~5で得られた接着剤組成物について、粘度、 圧縮剪断接着力、ポットライフ(可使時間)を以下の方法で評価した。実施例1 ~7の結果を表1に、比較例1~5の結果を表2に示した。

[0051]

1)粘度

JIS K 6833に準拠して、回転粘度計(東京計器社製、B型粘度計)を用いて、ローターNo4、回転速度12rpmの条件下、25℃で測定した。但し、チキソトロピー付与剤(E)を用いず、上記条件下での測定可能範囲を超え、且つ、接着剤組成物がニュートン粘性体の場合は、用いるローター及び回転速度は適宜選んで評価した。

[0052]

2) 圧縮剪断接着力

スレート被着体 (35mm×25mm×8mm)上に、接着剤組成物を25mm×25mm×0.3mmとなるように塗布し、他のスレート被着体を貼り合わせ、評価試験サンプルを作成する。得られたサンプルをJIS K 6852に準拠して圧縮試験 (クロスヘッドスピード300mm/min)を行い、光照射前の圧縮剪断接着力を評価した。

次に、上記と同様にして、スレート被着体上に接着剤組成物を塗布し、この塗布面に紫外線(高圧水銀灯、照射エネルギー:700mJ/cm²、365nm)を照射した後、他のスレート被着体を貼り合わせ、評価試験サンプルを作成する。得られたサンプルをJIS K 6852に準拠して圧縮試験(クロスヘッドスピード300mm/min)を行い、光照射直後の圧縮剪断接着力を評価した。

さらに、上記光照射直後の圧縮剪断接着力を評価するのと同じ方法で評価試験サンプルを作成する。得られたサンプルを25℃、湿度63%の条件下で7日間養生した後、JIS K 6852に準拠して圧縮試験(クロスヘッドスピード5mm/min)を行い、光照射7日後の圧縮剪断接着力を評価した。

[0053]

3) ポットライフ (可使時間)

JIS K 6833に準拠して、接着剤組成物をガラス基板上に、塗布厚み O.35mmとなるように塗布し、23℃、湿度65%、遮光下で放置して、接着剤組成物を塗布してから糸引きが生じるまでの時間をポットライフとして評価 した。

[0054]

【表1】

							東施例			
	分類	組成、商品名	ーヤーメ	-	23	ဇာ	4	ຜ	8	7
	化合物 (A)	MS#リマーS-303	量湖化学工業社	100	100	100	100	100	100	100
	化合物(B)	胡彩烛姝、SB-85	三共有機合成社	-		-	_		-	-
居 4		ウレタンアクリレート、AII-600	共栄社化学社	1.8	1 8	1 8	1 8	15		
現代	(C)	6, 8-3794046-#17026>943-5, APG-700	新中村化学工業社						15	
<u> </u>		*! (プロピレング!コール)モノアク!レート, ピスコート#320	大阪有機化学社		i			15	ß	
		3-71/‡v-2-Efa‡v7a24771v-1,M-600A	共栄社化学社							8 0
	化合物 (D)	1rgacure-819	井がなさやートモリーゲスが土	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	チャントロピー	ガラスパルーン、Q-Cell520	PQAustraliaPty社	0 9	2 0			0 9		
	(7) 186 (1)	表面処理炭酸カルシウム、ヒスコライトリ	白石工業社			3.0	2 0		5 0	4 0
-	粘度	(cps)		440000	330000	250000	450000	400000	340000	6500
名表		光照射前(kgf/cm³)		<0.01	<0.01	(0, 01	(0, 01	<0, 01	<0, 01	<0, 01
2 Rt E	圧縮剪断接着力	光照射直後(kgf/cm³)	*	0.4	0.3	0.5	0.5	0.8	0.5	0.9
1		光照射7日後(kgf/cm³)		17	16	14	1 3	16	1 8	1 4
	ポットライフ	(時間)		> 1 2	> 1 2	> 1 2	> 1 2	> 1 2	> 1 2	> 1 2

配合組成単位:化合物(A)~(D)は重量部、チキソトロピー付与剤(E)は容量%

[0055]

【表2】

						比較例		
	分類	粗成、商品名	ーなーメ	1	2	3	4	D.
10	化合物 (A)	MS#U~-S-303	维洲化学工典社	100	100	100	100	100
	化合物 (B)	錫系蝕媒、SB-65	三共有機合成社	1	1	1	1	1
温		ウレタンアクリレート、AH-800	共栄社化学社	1.8		1.5		
口架化		a, w~ジアクリロイルーギリブロピレングリコール, APG-700	新中村化学工業社				1 5	
ž	行団物(こ)	*!(7a2'v/y1a-k)&179!v-1, Exa-1\$320	大阪有機化学社		•		g	
		3-72/ty-2-ef0ty/ach7/1/-1.M-600A	共栄社化学社					8 0
	化合物 (D)	Irgacure-819	チバスペシャリティートミカル社	0, 5		0.5	3 '0	0, 5
	チキソトロピー 付与剤(B)	ガラスパルーン、Q-Cell520	PQAustraliaPty社		0 9			
	粘度	(cps)		14000	420000	10000	12000	200
和为		光照射前(kgf/cm³)		<0, 01	<0, 01	<0.01	<0.01	<0.01
お客に	圧縮剪断接着力	光照射直後 (kgf/cm²)		<0, 01	<0, 01	<0, 01	<0.01	<0, 01
盲		光照射7日後 (kgf/cm³)		1 9	1 7	17	16	1 3
	ボットライフ	(開報)		> 1 2	> 1 2	> 1 2	> 1 2	> 1 2

配合組成単位:化合物(A)~(D)は重量部、チキソトロピー付与剤(E)は容量%

[0056]

表1に示したように、実施例1~7の接着剤組成物は、塗布粘度が適当で、光 照射直後の接着力が高く凝集力が向上しており、ポットライフも長く、また、光 照射7日後の接着力も十分発現している。

[0057]

表2に示したように、比較例1、3~5の接着剤組成物は、チキソトロピー付与剤(E)を含有しないため、また、比較例2の接着剤組成物は、分子中に重合性基を有する化合物(C)及び化合物(C)中の重合性基を光により重合開始させる化合物(D)を含有しないため、光照射直後の接着力が劣っている。

[0058]

【発明の効果】

本発明の接着剤組成物は、空気中の湿気で硬化する成分に、短時間の光照射により凝集力を発現するような成分と、チキソトロピー付与剤を含有するため、常態では流動性があり塗布可能な粘性を示し、ポットライフが長く、また短時間の光照射で凝集力が発現し、仮止め、仮固定作業を必要としないためラインの接合工程に適応でき、且つ、接着硬化後の耐衝撃性、耐クリープ性等の物性に優れている。

【書類名】 要約書

【要約】

【課題】 常態では流動性があり塗布可能な粘性を示し、ポットライフが長く、また短時間の光照射で凝集力が発現し、仮止め、仮固定作業を必要としないためラインの接合工程に適応でき、且つ、接着硬化後の耐衝撃性、耐クリープ性等の物性に優れている接着剤組成物および該接着剤組成物を用いた接合方法を提供することを課題とする。

【解決手段】 下記の成分を含有することを特徴とする接着剤組成物。

- (A) 一分子中に2個以上の加水分解性シリル基を有する化合物
- (B) 化合物(A) を架橋させるための化合物
- (C) 分子中に重合性基を有する化合物
- (D) 化合物 (C) 中の重合性基を光により重合開始させる化合物
- (E) チキソトロピー付与剤

【選択図】 なし

出願人履歴情報

識別番号

[000002174]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住 所 大阪府大阪市北区西天満2丁目4番4号

氏 名 積水化学工業株式会社