Riemann Surfaces

Taro V. Brown a

^aDepartment of Physics, UC Davis, One Shields Avenue, Davis, CA 95616, USA

 $E ext{-}mail:$ tvbrown@ucdavis.edu

		- 1		\mathbf{tts}
	O	nt	$\boldsymbol{\alpha}$)TC
$\mathbf{\mathcal{L}}$	v.	LIU	CI.	\mathbf{r}

1 3 point amplitudes bootstrapping

2

1 3 point amplitudes bootstrapping

Take some open set U in the complex plane and a function f which takes complex variables z and maps them to $\omega = f(z)$ in the open domain V

References

[1] N. E. J. Bjerrum-Bohr, J. F. Donoghue and P. Vanhove, "On-shell Techniques and Universal Results in Quantum Gravity," JHEP **02** (2014), 111 doi:10.1007/JHEP02(2014)111 [arXiv:1309.0804 [hep-th]].