习题一 多元函数的基本概念

	专业班级	姓名		学号	
	、选择题:				
1,	平面集合 $\{(x,y) x>$	$ 0, y > 0 $ $\bigcup \{(x, y)\}$	x<0,y	<0}是()。	
	(A) 开区域;	(B) 闭区域;	(C) 开	集。	
2、	平面集合 $\{(x,y) y\ge$	≥1或y≤-1}是()。		
	(A) 闭区域;	(B) 既非闭区域	又非开门	闭域; (C)开	区域。
3、	$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 + y^3}{x^3 + y^2} = ($)。			
()	A) 等于0; (B)	不存在; (C)	等于1。		
4、	定义在 R^2 上的 f (.	$(x, y) = \begin{cases} \frac{1}{(x-1)^2 + 1} \\ 0, \end{cases}$	$\overline{(y+1)^2}$,	$(x, y) \neq (1,-1)$ (x, y) = (1,-1)	的不连续点集
合:	是()。				
	(A) 直线 x=1;	(B) 直线 y=-	1; ((こ) 单点集 {(1,-1)	}。
	、填空题:				
2、	若 $f(x+y,y/x) = x$	$\int_{-\infty}^{\infty} (x^2 - y^2) dy = \int_{-\infty}^{\infty} f(x, y) dy$	=		;
3、	$u = \arcsin \frac{\sqrt{x^2 + y^2}}{z}$	- 的定义域是			o
	、求下列函数的定义				
1,	$z = \sqrt{x - \sqrt{y}} \; ;$		$2 \cdot z =$	$= \ln(1 - (x + y))$))。

四、计算下列极限:

$$1 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{3 - \sqrt{xy + 9}}{xy};$$

$$2 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \cos(x^2 + y^2)}{(x^2 + y^2)x^2y^2}$$

五、证明: 极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x+y}{x-y}$ 不存在。

六、设
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 问 $f(x,y)$ 在点 $(0,0)$ 处是否连续?。

习题二 偏导数

一、选择题:

- 1、z = f(x, y) 在点 $P_0(x_0, y_0)$ 处的偏导数都存在,则 f(x, y) 在点 P_0 处() (A) 一定连续; (B) 一定不连续; (C) 不一定连续。
- 2、曲线 $\begin{cases} z = \sqrt{1 + x^2 + y^2} \\ x = 1 \end{cases}$ 在点 $(1, 1, \sqrt{3})$ 处的切线与y轴正向间夹角为()
 - (A) $\frac{\pi}{3}$; (B) $\frac{\pi}{6}$; (C) $\frac{\pi}{4}$.
- 3、 $z = \sin y + f(\sin x \sin y)$,其中 f 可微,则 $\sec x \frac{\partial z}{\partial x} + \sec y \frac{\partial z}{\partial y} = ($)
 - (A) 1;
- (B) 2f';
- (C) 0°

二、填空题:

- 1、设 $z = \sin \frac{x}{v} \cos \frac{y}{v}$,及 $z = \ln(\sqrt{x} + \sqrt{y})$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ 分别为____和___
- 2、设 $z = \arcsin \frac{x}{v} + xe^{-xy}$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$ 。

二、计算题:

1、设 $z = (1 + xy)^y$, 求 $\frac{\partial z}{\partial x}|_{(1,1)}, \frac{\partial z}{\partial y}|_{(1,1)}$ 。

2、设 $z = \ln \tan \frac{x}{y}$, 求 z_x , z_y 。

3、设 $u = \arctan(x - y)^z$, 求 u_x, u_y, u_z 。

4、设
$$z = x \ln(x \sin y)$$
,求 $\frac{\partial^3 z}{\partial x^2 \partial y}$, $\frac{\partial^3 z}{\partial x \partial y^2}$

五、设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^4 + y^4}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

1、计算 $f_x(0,0)$, $f_y(0,0)$; 2、证明 f 在 (0,0) 点不连续。

习题三 全微分及其应用

2	专业班级_		_姓名	学号		
	、是非题:					
1,	z = f(x, y)	的偏导数 $\frac{\partial z}{\partial x}$,	$\frac{\partial z}{\partial y}$ 在点 $P_0(x_0)$	$_{0},y_{0}$)存在是 $f(x,y)$ 在	点P。可微的充分	分必
	条件。					
2、	若函数 z	=f(x,y))在点	$P_0(x_0,y_0)$	可微,则偏导数 f_x	$(x,y), f_{y}(x,y) \bar{A}$	生点
	(x_0, y_0) 处业				()
	、填空题:					
1,	设 $z=e^{xy}$,	则 dz _(1,1) =	,当么	$x = 0.01, \Delta y = 0.02 \text{F}$	$dz _{(1,1)} = \underline{\qquad}$)
2,	设 $z = \ln si$	$ \frac{x}{y}, \text{则} dz = \underline{\qquad} $			0	
3、	设 $z = \ln(1$	$+\frac{x}{y^2}$), $\iint dz \mid_{(1,x)}$)
三、	、计算题:					
1,	$z = \arcsin z$	$\frac{y^2}{x}$, $\Re dz$.				

 $2, u = \ln(x^x y^y z^z), 菜du。$

3、 $z = x2^{xy}$,求dz及 $dz|_{(1,0)}$ 。

四、研究函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在 (0,0) 点的可微性。

五、证明
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 点可微。

习题四 多元复合函数的求导法则

- 一、求下列复合函数的导数或偏导数:
- 1, $u = x^y$, $x = \sin t$, $y = \cos t$, $\mathbb{U} u'(t) = \underline{\hspace{1cm}}$
- 2. $z = u^2 + vw$, u = x + y, $v = x^2$, w = xy, $y = \frac{\partial z}{\partial x}|_{(1,0)} = \frac{\partial z}{\partial y}|_{(1,0)} = \frac{\partial z}{\partial$
- 4、说 $w = \frac{1}{u}$, $u = \sqrt{x^2 + y^2 + z^2}$, 则 $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \underline{\hspace{1cm}}$ 。
- 5、设 $z = \frac{y}{f(x^2 y^2)}$,其中 f 可微,则 $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 。
- 二、求下列函数的二阶偏导数,其中f有连续的二阶导数或偏导数:
- 1. $z = f(x^2 + y^2)$, $\stackrel{?}{x} \frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$;

2. $z = f(x, y, \frac{x}{y}), \ \ \ \ \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y};$

三、函数u(x,t)有二阶连续偏导数,引入 $\xi=x-at$, $\eta=x+at$ ($a\neq 0$ 为常数)后变为 $u(\xi,\eta)$,问方程 $\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}$ 变为什么形式?你能写出一个满足此方程的函数 $u(\xi,\eta)$ 吗?

习题五 隐函数微分法

一、设
$$\cos(x^2 + yz) = xz + y$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 。

二、设
$$e^z - xyz = 0$$
,求 $\frac{\partial^2 z}{\partial x^2}$ 。

三、证明方程
$$ax+by+cz=F(x^2+y^2+z^2)$$
(其中 $F(u)$ 有连续导数)所确定的

函数
$$z = z(x, y)$$
 满足 $(cy - bz)\frac{\partial z}{\partial x} + (az - cx)\frac{\partial z}{\partial y} = bx - ay$

四、设
$$\begin{cases} z = x^2 + y^2 \\ x^2 + 2y^2 + 3z^2 = 20 \end{cases}$$
,求 $\frac{dy}{dx}$ 及 $\frac{dz}{dx}$ 。

五、设
$$x = e^u \cos v$$
, $y = e^u \sin v$, $z = uv$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

六、设
$$u = f(x, y, z) = xy^2 z^3$$
,而 x, y, z 满足方程 $x^2 + y^2 + z^2 - 3xyz = 0$,设 $z = z(x, y)$ 是由上述方程所确定的隐函数, $z(1,1) = 1$,求 $\frac{\partial u}{\partial x}|_{(1,1)}$ 。

习题六 方向导数与梯度

专业班级	姓名	学号	
一、是非题:			
1、若 $z = f(x, y)$ 在	点 $P(x_0, y_0)$ 处 沿 作	壬一方向的方向导	数均存在,则
$f(x, y)$ 在 $P_0(x_0, y_0)$ 处	上必可微。		()
$f(x, y)$ 在 $P_0(x_0, y_0)$ 处 2 、若 $u = F(x, y, z)$ 可存的方向。	散,则方向 $\left\{ \frac{\partial F}{\partial x}, \frac{\partial I}{\partial y} \right\}$	$\left\{\frac{F}{y},\frac{\partial F}{\partial z}\right\}$ 是 u 在点 (x,y,y)	z) 处变化率最大
的方向。			()
二、填空题:			
$1、设 f(x,y,z) = x^2 +$	$2y^2 + 3z^2 + xy + 3x$	-2y-6z,则 grad $f(0)$	0, 0, 0) =
$\underline{\hspace{1cm}}$, $\operatorname{grad} f($	1, 1, 1) =	0	
$2、求函数 z=3x^4+x$			了上的方向导数
$\frac{\partial z}{\partial I} _{(1,2)} =$		_°	
三、计算题:			
1 、求函数 $u = 3x^2 + z^2$ 向上的方向导数。	-2yz+2xz在点 <i>M</i>	(1, 2, 3) 处沿点(-1, 1,	-2)至(5,4,0)方

2、求函数 $u = x^2 + y + z^2$ 在球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 上点 $M(x_0, y_0, z_0)$ 处沿该点外法线方向的方向导数。

3、已知
$$\vec{\alpha} = y^2 \vec{i} + 2xy \vec{j} - xz^2 \vec{k}, u = z^2 - x^2 y$$
,试在 $M(-1,-1,1)$ 处计算

(1) $(\vec{\alpha} \cdot \operatorname{grad} u)|_{M}$,

(2) $(\vec{\alpha} \times \operatorname{grad} u)|_{M}$

4、设 $f(x,y,z) = \ln(x+y+z+\sqrt{1+(x+y+z)^2})$,它在点(1,1,1)处沿哪个方向的变化率最大? 求出这个方向的方向余弦及 f 在点(1,1,1)处的最大变化率。

5、求函数 $f(x,y) = 1 - (\frac{x^2}{a^2} + \frac{y^2}{b^2})$ 在点 $M(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$ 处沿曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在这点内法线方向上的方向导数。

习题七 多元函数微分法的几何应用

专业班级	姓名	学号	
一、填空题:			
$1、椭球面 2x^2 + 3y^2$	$+z^2 = 6$ 点 $P(1, 1, 1)$ 处的	切平面方程是	o
法线方程是			
$2、曲线 x = t - \sin t, y$	$=1-\cos t, z=4\sin\frac{t}{2}, \bar{a}$	E点 $(\frac{\pi}{2} - 1, 1, 2\sqrt{2})$ 处	上的切线方程是
	; 法平面方程是	:	o
3、设曲面 S 的方程是	$\stackrel{1}{=} F(cx-az,cy-bz) = 0 ,$	其中 F 可微, a,b ,	c是非零常数,
则点 $M(x_0,y_0,z_0) \in S$	处的法向量是		o
二、计算题:			
1、求曲线 <i>x = t</i> , <i>y</i> =	$= t^2, z = t^3$ 上的点,使	曲线在该点的切约	线平行于平面
x + 2y + z = 4.			

2、求曲面 $e^z - z + xy = 3$ 在点(2,1,0)处的切平面及法线方程。

3、求曲线 $\begin{cases} xyz = 1 \\ y^2 = x \end{cases}$ 在点 (1, 1, 1) 处的切线的方向余弦。

4、求曲线 $\begin{cases} x^2 + y^2 + z^2 = 4a^2 \\ y^2 + x^2 = 2ax \end{cases}$ (a > 0) 在点 $M(a, a, \sqrt{2}a)$ 处的切线及法平面方程。

三、证明: 曲面 $xyz = a^3(a > 0)$ 的切平面与坐标平面围成的四面体的体积为常数。

习题八 多元函数的极值

专业班级	姓名	学号	
一、是非题:			
$1、若点P(x_0,y_0)为$	$\delta z = f(x, y)$ 的极值点, 则	則必有 $f_x(x_0, y_0) = 0$,	$f_{y}(x_0, y_0) = 0 .$
$A = f_{xx}(x_0, y_0), B =$	$P(x_0, y_0)$ 的 某 邻 域 内 $f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$ 处取极小值。()		
1、求函数 <i>f</i> (<i>x</i> , <i>y</i>)=	$= x^3 + y^3 - 3xy$ 的极值。		

2、求曲面z = xy被平面x + y = 1所截的曲线的最高点的坐标。

三、从斜边长为L的一切直角三角形中,求有最大周界的直角三角形。

四、求椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 在第一封限内的点,使得椭球面过该点的切平面与三个坐标面围成的四面体体积最小,最小体积是多少?

五、抛物面 $z = x^2 + y^2$ 被平面 x + y + z = 1截成一椭圆,求原点到这椭圆的最长与最短距离。

习题九 二元函数的泰勒公式

专业班级		学号	
一、利用泰勒公式料	等二元多项式 $2x^2 - 2xy$	$-y^2 - 3x - 4y + 1$ 写月	$ \ddot{x} - 1 $ 和 $y - 2 $ 方
幂的形式。			

二、求函数 $f(x, y) = e^x \ln(1+y)$ 的二阶麦克劳林公式。

习题十 空间曲面与空间曲线

一、填空题:

1、方程
$$x^2 + y^2 + z^2 - x + 2y - 2z = 0$$
表示的空间曲面是_____。

2、
$$xoy$$
平面上的曲线 $\begin{cases} 3x^2 - 2y^2 = 6 \\ z = 0 \end{cases}$ 绕 x 轴旋转一周的旋转曲面是_____

,该曲面的方程是 。绕 y 轴旋转一周 的旋转曲面是______,该曲面的方程是_____。 3、yoz平面上的曲线 $\begin{cases} 2y^2 + 1 = z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周的旋转曲面是______ ,该曲面的方程是 4、zox 平面上的曲线 $\begin{cases} 4x^2 + 9z^2 = 36 \\ y = 0 \end{cases}$ 绕 x 轴旋转一周的旋转曲面是______ ,该曲面的方程是 5、方程 $4x + y^2 = 0$ 在平面直角坐标系中表示的是 ,在空 间直角坐标系中表示的是_____ 在空间直角坐标系中表示的是_____ 7、曲线 $\begin{cases} x^2 + y^2 + z^2 = 10 \\ x - 2y = 0 \end{cases}$ 的参数方程为______。 8、曲线 $\begin{cases} (x-1)^2 + y^2 + (z+1)^2 = 4 \\ z = -1 \end{cases}$ 的参数方程为______。 9、母线平行于 y 轴,且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 \\ x^2 + z^2 - y^2 = 0 \end{cases}$ 的柱面方程 是____。 10、球面 $x^2 + y^2 + z^2 = 9$ 与平面 y + z = 1 的交线在 xoy 平面上的投影曲线方程 11、曲线 $\begin{cases} x^2 + 2y^2 - z = 0 \\ z = x + 1 \end{cases}$ 在 y = 0 坐标面上的投影曲线方程是______。

习题十一 二次曲面

- 一、写出下列方程所表示的曲面的名称,并作出图形:
- (1) $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ (2) $16x^2 + 4y^2 z^2 = 64$ (3) $2y^2 + 2z^2 x = 0$

- 二、画出曲面 $\frac{x^2}{9} \frac{y^2}{25} + \frac{z^2}{4} = 1$ 的图形以及被下列各平面截得的曲线方程,并指 出它们是什么曲线?
- (1) x=2; (2) y=0;
- (3) z = 2

三、指出下列方程组所表示的曲线:

(1)
$$\begin{cases} y^2 + 3z^2 - 4x + 8 = 0 \\ y = 4 \end{cases}$$
 (2)
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1 \\ z = -2 \end{cases}$$

四、画出下列各组曲面所围成的立体的图形:

(1)
$$z = 0$$
, $z = 3$, $x - y = 0$, $x - \sqrt{3}y = 0$, $x^2 + y^2 = 1$, 在第一卦限内;

(2)
$$x = 0$$
, $y = 0$, $z = 0$, $x + y = 1$, $z = x^2 + y^2$;

(3)
$$x = 0$$
, $y = 0$, $z = 0$, $y = 1$, $z = 4 - 2x^2 - y^2$, 在第一卦限内。

习题十二 二重积分的概念与性质

专业班级	姓名	学号	
一、比较下列各对积	分值的大小,并说明	理由。	
$(1) \iint_{D} (x+y)d\sigma_{\underline{\hspace{1cm}}}$	$-\iint_{D} (x+y)^2 d\sigma$,其口	中区域 D 由 x 轴, y 轴	油与直线 $x+y=1$
围成。	D		
$(2) \iint_{D} (x+y)d\sigma_{\underline{\hspace{1cm}}}$	$-\iint\limits_{D}(x+y)^2d\sigma, $ 其「	中区域 D 由圆 $(x-2)$	$y^2 + (y-1)^2 = 2 \boxplus$
成。			
$(3) \iint_{D} \ln(x+y) d\sigma_{-}$	$ \iint_{D} \left[\ln(x+y) \right]^{2} d\sigma $, 其中区域 <i>D</i> 是顶	点为(1,0), (1,1)和
(2,0)的三角形区域。			
$(4) \iint_{D} \ln(x+y) d\sigma_{\underline{\hspace{1cm}}}$	$\iint_{D} \left[\ln(x+y)\right]^2 d\sigma,$	其中 $D = \{(x, y) \mid 3 \le x\}$	$\{x \le 6, \ 0 \le y \le 1\}.$
二、利用二重积分的	性质估计下列积分值	Ī:	
(1) $\mathfrak{P} D = \{(x, y) \mid 0\}$	$0 \le x \le \pi, 0 \le y \le \pi \} ,$	则≤ $\iint_D \sin^2 x \sin^2 x$	$n^2 y d\sigma \leq \underline{\hspace{1cm}}$
(2) 设 $D = \{(x, y) \mid x\}$	$(x^2 + y^2 \le 4)$, $[y]$	$\underline{\qquad} \leq \iint\limits_{D} (x^2 + 4y^2 + 9)^2 dy$	9)dσ≤∘
(3) 设 $D = \{(x, y) y$	x + y ≤ 10},则	$\leq \iint_{D} \frac{d\sigma}{100 + \cos^2 x}$	$\frac{1}{c + \cos^2 y} \le \underline{\qquad} \circ$
三、由二重积分的几个	何意义,指出∬(1-	$(x-y)d\sigma = f(\xi,\eta)\cdot d\theta$	σ 中 $f(\xi,\eta)$ 的值,
其中 D 是顶点为(0,0)), (1,0), (0,1)的三角	角形, σ 是 D 的面积。	

四、若 f(x,y) 在闭区域 $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ 上连续,证明:

$$\lim_{\substack{\alpha \to +0 \\ \beta \to +0}} \frac{1}{\pi \alpha \beta} \iint_{D_{\alpha\beta}} f \quad \text{if} \quad y \quad \text{if} = f \quad ($$

其中
$$0 < \alpha < a, 0 < \beta < b, \quad D_{\alpha\beta} = \{(x, y) \mid \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} \le 1\}$$
。

习题十三 二重积分的计算

一、交换下列累次积分的积分次序:

(1)
$$\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy = ______;$$

(2)
$$\int_0^1 dy \int_0^{2y} f(x, y) dx + \int_1^3 dy \int_0^{3-y} f(x, y) dx = \underline{\hspace{1cm}}$$

二、画出积分区域,并计算下列二重积分:

1、
$$\iint_{D} \frac{x}{1+y^2} d\sigma$$
, 其中 D 为矩形为区域 $0 \le x \le 2$, $-1 \le y \le 1$ 。

$$2$$
、 $\iint_D (x^2 + y^2 - x) d\sigma$,其中 D 为由直线 $y = 2$, $y = x$, 及 $y = 2x$ 围成的闭区域。

3、
$$\iint_D e^{x+y} d\sigma$$
, 其中 D 由 $|x|+|y| \le 1$ 所确定的闭区域。

4、 $\iint_D \frac{d\sigma}{\sqrt{2a-x}}$, 其中 D 是由 $(x-a)^2 + (y-a)^2 \ge a^2$, $0 \le x \le a$, $0 \le y \le a$ 所确定的闭区域。

5、 $\iint_D e^{y^2} d\sigma$, 其中 D 是第一象限内由直线 y = x 和曲线 $y = \sqrt[3]{x}$ 围成的闭区域。

三、计算下列累次积分:

$$1 \cdot I = \int_1^2 dx \int_{\frac{1}{x}}^1 y e^{xy} dy$$

$$2 \cdot I = \int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} \, dy$$

习题十四 二重积分的计算(续)

一、利用极坐标计算下列二重积分:

1.
$$\iint_{D} \ln(1+x^2+y^2)dxdy$$
, $D = \{(x,y) \mid x \ge 0, y \ge 0, x^2+y^2 \le 1\}$;

2、 $I = \iint_{D} |x| dxdy$, 其中 D 是以原点为圆心, 以 a 为半径的上半圆域;

3、 $\iint_D \arctan \frac{y}{x} dx dy$, D 为圆 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ 及直线 y = x, y = 0 所包围的 在第一象限内的区域;

4、 $\iint_D xydxdy$, 其中 $D = \{(x, y) \mid y \ge 0, x^2 + y^2 \ge 1, x^2 + y^2 \le 2x\}$ 。

二、将下列直角坐标系下的二次积分化为极坐标系下的二次积分:

1.
$$\int_0^2 dx \int_x^{\sqrt{3}x} f(\sqrt{x^2 + y^2}) dy = \underline{\hspace{1cm}}$$

$$2 \int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4x-x^2}} f(x,y) dy + \int_2^4 dx \int_0^{\sqrt{4x-x^2}} f(x,y) dy = \underline{\qquad}$$

三、把下列积分化为极坐标形式的累次积分并计算积分值:

1.
$$\int_0^a dy \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx$$
;

1.
$$\int_0^a dy \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx$$
; 2. $\int_0^1 dx \int_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} e^{x^2+y^2} dy + \int_1^2 dx \int_0^{\sqrt{4-x^2}} e^{x^2+y^2} dy$.

四、设
$$F(t) = \iint_{D(t)} e^{\sin\sqrt{x^2+y^2}} dxdy$$
,其中 $D(t) = \{(x,y) \mid x^2 + y^2 \le t^2, t > 0\}$,求 $F'(t)$ 。

五、作适当的坐标变换,求
$$\iint_{D} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dxdy$$
,其中 $D = \left\{ (x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$ 。

习题十五 三重积分的概念及计算

专业班级	姓名	学号	
一、 填空题:			
$1、 说 I = \iiint_{\Omega} f(x, y, z) dv$,其中Ω是由曲	$ \overline{\square} cz = xy, (c > 0), \frac{x^2}{a^2} + $	$\frac{y^2}{b^2} = 1, z = 0$
围成的第一卦限的区域	,则在直角坐标系	系下化为先对 z 再对 y z	最后对 x 的累次
积分 $I =$			o
$2、 说 I = \iiint_{\Omega} f(x, y, z) dv$,,其中Ω是由曲	面 $2z = x^2 + y^2$,平面	$z=1, z=2 \; \overline{\mathbb{B}}$
成的区域,则在直角坐	标系下化为先对。	c再对 y 最后对 z 的累况	欠积分
I =			0
$3 \ \text{if } I = \iiint_{\Omega} \frac{z^3 \ln(1+x^2)}{1+x^2+1}$	$\frac{(y^2+z^2)}{(y^2+z^2)}dv$,其		则积分值 <i>I</i> =
4、设 $I = \iint_{\Omega} e^{x+y+z} dv$,是	其中 $\Omega = \{(x, y, z) \mid$	$0 \le x \le 1, 0 \le y \le 1, 0 \le$	[z≤1], 则积
分值 <i>I</i> =		•	
二、计算题:			
$1, \iiint_{\Omega} \frac{dv}{(1+x+y+z)^3}, \Omega$	2为平面 x = 0, y =	$z = 0, z = 0 \not \mathbb{Z} x + y + z = 1$	围成的四面体。

、 $\iint_{\Omega} y\cos(x+z)dxdydz$, Ω 为抛物柱面 $y=\sqrt{x}$ 及平面 $y=0, z=0, x+z=\frac{\pi}{2}$ 围成的区域。

、 $I = \iint_{\Omega} xy^2 z^3 dv$,其中 Ω 是由曲面z = xy与平面y = x, x = 1和z = 0围成的区域。

4、 $\iint_{\Omega} xzdxdydz$, 其中 Ω 是平面z=0,z=y,y=1及抛物柱面 $y=x^2$ 围成的区域。

5、
$$\iint_{\Omega} e^{y} dv$$
, 其中 Ω 由 $x^{2} - y^{2} + z^{2} = 1$, $y = 0$, $y = 2$ 围成。

习题十六 三重积分的计算(续)

专业班级	姓名	学号	
一、填空题:			
1 、设 $I = \iiint_{\Omega} f(x, y, z)$	dv,	$+ y^2 - 3z = \sqrt{x^2 + y^2}$	圆成的区域,则
在直角坐标、柱面坐	标系下的累次积分分	别为	
I ₌ =			;
$2、设 I = \iiint_{\Omega} f(x, y, z) dz$	dv , 其中 Ω 由 $z = \sqrt{x^2}$	$\overline{y^2 + y^2}$, $x^2 + y^2 = 1$, $z =$:0围成的区域,
则在直角坐标、柱面			
<i>I</i> 直=		;	
<i>I</i> _柱 =			
3 、设 $I = \iint_{\Omega} f(x, y, z)$	dv ,其中 $\Omega = \{(x, y, z)\}$	$ x^2 + y^2 + (z-1)^2 \le 1$	},则在球面坐
标下的累次积分为1=			
$4 \cdot I = \iiint_{\Omega} (x^2 + y^2) dv$,其中Ω由 $z = \sqrt{x^2 + y^2}$	$y^2 = x^2 + y^2 + z^2 = 1$	围成的区域(含
在锥内),则在三种丛	2标下的累次积分分别	别为	
<i>I</i> _直 =		;	
I _柱 =		;	
$I_{\scriptscriptstyle{rac{1}{2rac{1}{2}}}}=$;	
二、计算题:			
$1 \cdot \iiint_{\Omega} z \sqrt{x^2 + y^2} dv, \ \Omega$	2为柱面 $y = \sqrt{2x - x^2}$	及平面 $z = 0, z = 2, y =$	-0围成的区域。

2、
$$\iint_{\Omega} \frac{\ln(1+\sqrt{x^2+y^2})}{x^2+y^2} dv$$
, Ω是由 $z = x^2 + y^2$ 和 $z = \sqrt{x^2+y^2}$ 围成的区域。

3、
$$\iint_{\Omega} (x^2 + y^2) dv$$
, Ω 为两个半球面 $z = \sqrt{A^2 - x^2 - y^2}$, $z = \sqrt{a^2 - x^2 - y^2}$
($A > a > 0$) 及平面 $z = 0$ 围成的区域。

4、
$$\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dv$$
, Ω是由球面 $x^2 + y^2 + z^2 = z$ 围成的区域。

三、设函数
$$f$$
 有连续导数且 $f(0) = 0$, $\Omega(t) = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2, t > 0\}$,
$$F(t) = \iiint_{\Omega(t)} f(\sqrt{x^2 + y^2 + z^2}) dv$$
, 求 $(1) F(t)$ 在球坐标系下的表示式; $(2) F'(t)$;

$$(3) \lim_{t\to 0^+} \frac{F(t)}{\pi t^4} \circ$$

习题十七 重积分的应用

专业班级	姓名	学号
· · · · · · · · · · · · · · · · · · ·		

一、求曲线 $z = x^2 + 2y^2$ 及 $z = 6 - 2x^2 - y^2$ 所围成的立体的体积。

二、求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下部分的曲面面积。

三、求锥面 $z^2 = x^2 + y^2$ 被圆柱面 $x^2 + y^2 = 2ax$ (a > 0) 所截部分的曲面面积。

四、设平面薄片所占的区域D是由抛物线 $y=x^2$ 及直线y=x围成,它在点 (x,y)处的面密度 $\rho(x,y)=x^2y$,求该薄片的重心。

五、求由抛物线 $y=x^2$ 及直线 y=1 围成的均匀薄片(面密度为常数 ρ)对于直线 y=-1 转动惯量。

六、一个物体是由两个半径各为A和a(0 < a < A)的同心球面围成,已知其内部任一点处的密度与该点到球心的距离成反比,且在距离等于1处等于2,求物体的质量。

七、一均匀物体(密度 ρ 为常数)占有的区域 Ω 由曲面 $z=x^2+y^2$ 和平面 z=0, |x|=a, |y|=a 围成。

1、求其体积; 2、求物体的重心; 3、求物体关于 z 轴的转动惯量。

习题十八 第一型曲线积分

专业班级	姓名	_学号
一、填空题:		
1 、 设 曲 线 L 是		, $L_2: y = 0 \ (0 \le x \le 1)$,
		函数 $f(x,y)$ 在 L 上连续,则
将 $\int_{L} f(x,y)ds$ 化为定积分	计算时, $\int_{L_1} f(x,y)ds = \underline{\hspace{1cm}}$,
$\int_{L_2} f(x, y) ds = \underline{\hspace{1cm}}$	$\int_{L_3} f(x, y) ds = \underline{\hspace{1cm}}$	
2、设曲线 L 的方程为 3	$y = \sqrt{1 - x^2}$, 函数 $f(x, y)$)在 L 上连续,将曲线积分
$\int_{L} f(x,y)ds$ 化为定积分进	行计算,则	
当取 x 为参数时, $\int f(x, x)$	y)ds =	;
$\int_{L} f(x,y)ds$ 化为定积分进 当取 x 为参数时, $\int_{L} f(x,y)$ 而当取 y 为参数时, $\int_{L} f(x,y)$	(x, y)ds =	•
3、设曲线 L 的方程为 $y=$	$\sqrt{4-x^2} (0 \le x \le 2) , \text{用极}$	坐标计算第一型曲线积分时,
	$\sqrt{4-x^2} (0 \le x \le 2) , \text{用极}$	坐标计算第一型曲线积分时,
3 、设曲线 L 的方程为 $y = \int_{L} f(x,y)ds = \underline{\qquad}$	$\sqrt{4-x^2}$ (0 ≤ x ≤ 2),用极如,(其中	坐标计算第一型曲线积分时,
3 、设曲线 L 的方程为 $y = \int_{L} f(x,y)ds = \underline{\qquad }$ 4、设曲线 Γ 的直角坐标	$\sqrt{4-x^2}$ (0 \le x \le 2),用极知,(其中方程是 $\left\{x^2+y^2+z^2=3, z=1\right\}$	坐标计算第一型曲线积分时,中 $f(x,y)$ 在 L 上连续)。 用柱面坐标中的 θ 为参数计
3 、设曲线 L 的方程为 $y = \int_{L} f(x,y)ds = \underline{\qquad }$ 4、设曲线 Γ 的直角坐标算曲线积分 $\int_{\Gamma} f(x,y,z)ds = \underline{\qquad }$	方程是 $\begin{cases} x^2 + y^2 + z^2 = 3 \\ z = 1 \end{cases}$,	坐标计算第一型曲线积分时, $f(x,y)$ 在 L 上连续)。
3 、设曲线 L 的方程为 $y = \int_{L} f(x,y)ds = \underline{\qquad }$ 4、设曲线 Γ 的直角坐标算曲线积分 $\int_{\Gamma} f(x,y,z)ds = \underline{\qquad }$	方程是 $\begin{cases} x^2 + y^2 + z^2 = 3 \\ z = 1 \end{cases}$,	坐标计算第一型曲线积分时,中 $f(x,y)$ 在 L 上连续)。 用柱面坐标中的 θ 为参数计,(其中 f 在 Γ 上连续)。

三、计算曲线积分 $\int_{L} e^{\sqrt{x^2+y^2}} ds$,其中 L 为圆周 $x^2+y^2=a^2$,直线 y=x 及 x 轴在第一象限内所围成的扇形的边界。

四、计算曲线积分
$$\int_L y^2 ds$$
, 其中 L 为摆线 $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ 的一拱 $(0 \le t \le 2\pi)$ 。

五、计算曲线积分 $\int_{\Gamma} x^2 yz ds$,其中 Γ 为折线 ABCD, 这里 A, B, C, D 依次为点 (0,0,0), (0,0,2), (1,0,2), (1,3,2)。

习题十九 第二型曲线积分

专业班级	姓名	学号	
一、填空题:			
1、设 Γ 的参数方程为 $x=3$	3t, y = 2t, x = t,	取从点 A(3, 2, 1)	到 $B(0,0,0)$ 一段,
将 对 坐 标 的 曲	线 积 分 化	化 为 定 积 分	计算,则
$\int_{AB} P(x, y, z) dx + Q(x, y, z) dy$	y + R(x, y, z)dz =	=	o
2、把对坐标的曲线积分化	2为对弧长的曲:	线积分。若 L 为 x	oy 面内沿直线从点
$(0,0)$ 到 $(1,2)$,则 $\int_{L} P(x,y)$)dx + Q(x, y)dy =	=	; 若 <i>L</i> 为沿抛物
线 $y = 2x^2$ 从点 $(0,0)$ 到 $(1,2)$	$P(x,y)$, 则 $\int_L P(x,y)$	$dx + Q(x, y)dy = \underline{\hspace{1cm}}$	0
3、把对坐标的曲线积分化	为定积分。若Γ	为曲线 $x = t, y =$	t^2 , $z = t^3$ 上相应于 t
从 0 变到 1 的曲线弧,则	$\int_{\Gamma} P(x, y, z) dx + Q$	Q(x, y, z)dy + R(x, y)	(y,z)dz =
_		o	
二、计算曲线积分 $\oint_{t} xydx$,	其中L为x轴与	与上半圆周 (x−a)	$a^2 + y^2 = a^2 (a > 0)$ 在
第一象限内所围成区域的证	力界(按逆时针	方向绕行)。	

三、计算曲线积分 $\oint_L \frac{(x+y)dx-(x-y)dy}{x^2+y^2}$, 其中 L 为圆周 $x^2+y^2=a^2(a>0)$ (按 逆时针方向绕行)。

四、设计曲线积分 $\int_L (x^2-2xy)dx+(y^2-2xy)dy$, 其中 L 是抛物线 $y=x^2$ 上从点 (-1,1) 到点 (1,1) 的一段。

五、计算曲线积分 $\int_{\Gamma} dx - dy + y dz$,其中 Γ 为有向闭折线 ABCA,这里 A, B, C 依次为 (1,0,0), (0,1,0), (0,0,1) 。

六、在椭圆 $x=a\cos t,y=b\sin t$ 上每一点P有作用力 \overline{F} ,其大小等于从点P到椭圆中心距离,而方向朝着椭圆中心。

(1) 试求质点 P 沿椭圆位于第一象限中的弧从点 A(a,0) 移动到 B(0,b) 时力 \vec{F} 所作的功。(2) 求点 P 按正向走遍全部椭圆时力 \vec{F} 所作的功。

习题二十 格林公式及应用

<u> </u>	マ 业 処 級 タ の タ の タ の の の の の の の の の の の の の の	姓名	学号
----------	---	----	----

- 一、利用格林公式计算下列各曲线积分:
- 1、 $\int_{L} x^{2} y dx + xy^{2} dy$,L: |x| + |y| = 1的正向。

- 2. $\int_{L} (x^2 y \cos x + 2xy \sin x y^2 e^x) dx + (x^2 \sin x 2y e^x) dy$,
- $L: x^{2/3} + y^{2/3} = a^{2/3}$ (a > 0) 的正向。

3、 $\int_{L} (e^{x} \sin y - my) dx + (e^{x} \cos y - m) dy$, 其中 L 为从点 A(a, a) 沿曲线 $x^{2} + y^{2} = 2ax$ 的上半段到点 O(0, 0)的一段弧。

4、 $\int_L \frac{1}{x} \arctan \frac{y}{x} dx + \frac{2}{y} \arctan \frac{x}{y} dy$, 其中 L 为由曲线: $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, y = x, $y = \sqrt{3}x$ (y > 0) 所围成的区域 D 的正向边界。

二、计算曲线积分 $\oint_L \frac{ydx-xdy}{x^2+y^2}$,其中 L 为逆时针方向的圆周 $(x-1)^2+y^2=a^2(a>0, \exists a\neq 1)$ 。

三、设简单闭曲线 L 不过 y 轴,证明 L 所围面积 $S = \frac{1}{2} \oint_L x^2 d(\frac{y}{x})$ 。

习题二十一 格林公式及其应用(续)

一、证明下列曲线积分在整个xov平面内与路径无关,并计算积分值:

$$(1)\int_{(11)}^{(2,3)} (x+y)dx + (x-y)dy;$$

$$(1) \int_{(1,1)}^{(2,3)} (x+y)dx + (x-y)dy; \qquad (2) \int_{(1,2)}^{(6,8)} (2xe^y + 1)dx + (x^2e^y + y)dy;$$

(3)
$$\int_{(0,0)}^{(1,1)} (\sin x - y) dx - (x + \sin y) dy$$

二、求
$$\int_{L} e^{-x} \sin y dx - e^{-x} \cos y dy$$
, L: 沿 $y = x^2 - 2x$ 上从点 $(0,0)$ 到点 $(4,8)$ 。

三、设 $I = \int_{L} [e^{x} + 2f(x)]ydx - f(x)dy$ 与积分路径 L 无关,且 f(1) = 1,求: $I = \int_{(0,0)}^{(1,1)} [e^{x} + 2f(x)]ydx - f(x)dy$ 之值。

四、确定 λ 的值,使曲线积分 $I = \int_L (x^4 + 4xy^3) dx + (6x^{\lambda-1}y^2 - 5y^4) dy$ 与积分路 线无关,并求 $\int_{(0,0)}^{(1,2)} (x^4 + 4xy^3) dx + (6x^{\lambda-1}y^2 - 5y^4) dy$ 之值。

五、验证 $(\ln \frac{y}{x} - 1)dx + \frac{x}{y}dy$ (在第 I 象限内) 是某一个函数 u(x,y) 的全微分, 并求 u(x,y) .

习题二十二 第一型曲面积分

专业班级	姓名	学号	
一、填空题:			
1、设有一分布着质	量的曲面 Σ ,在点 (x, y)	y,z)处它的面密度为	$\rho(x,y,z)$,则曲
面 Σ 的质量 <i>M</i> =	,曲面Σ	的重心坐标 <i>x</i> =	
<u></u>	, <u>z</u> =		o
2、设曲面			
$\sum_{1} x^{2} + y^{2} + z^{2} = R^{2}$	$x^2, \sum_2 : x = y^2 + z^2, 1 \le x$	$\leq 2, \sum_{3} : y^{2} + z^{2} = R^{2}, 0$	$0 \le x \le 1$ 。试用重
积分表示下列第一类			
$\iint\limits_{\Sigma} f(x, y, z) dS = \underline{\hspace{1cm}}$;
$\iint f(x, y, z) dS = \underline{\hspace{1cm}}$	_	_	;
$\iint\limits_{\Sigma_3} f(x, y, z) dS = \underline{\hspace{1cm}}$			o
二、计算曲面积分∬∑	$\int (z+4x+2y)dS$,其中	$\exists \Sigma 为 平面 x + \frac{y}{2} + \frac{z}{4} =$:1在第一卦限内
的部分。			

三、计算曲面积分 $\iint\limits_{\Sigma} \sqrt{1+4z} dS$, Σ 为 $z=x^2+y^2$ 上 $z\leq 1$ 的部分。

四、计算曲面积分 $\iint_{\Sigma} \sqrt{1+x^2+y^2} dS$, 其中 Σ 为双曲抛物面 z=xy 被柱面 $x^2+y^2=R^2$ 所截得的第一卦限部分。

五、知圆柱面 $x^2+y^2=1$ 上每一点的密度为 $\mu(x,y,z)=\frac{1}{r^2}$,r 为该点到原点的距离,求介于平面 z=0 及 z=1 之间的圆柱面的质量。

习题二十三 第二型面积分

专业班级	姓名	学号	
一、填空题:			
1、设Σ为平面 z = z	z _o 内的一个区域的上侧	J,Σ在xoy面上的投	影区域记为 D ,
则 $\iint_{\Sigma} P(x, y, z) dy dz =$; <u> </u>	$Q(x, y, z)dzdx = \underline{\hspace{1cm}}$;
_	2		
2、设Σ1是平面	3x + 2y + z = 6 在第一	一卦限部分的上侧	, Σ ₂ 是球面
$x^2 + y^2 + z^2 = 1$ 的外	Σ_3 是抛物面 $x=1$	$-y^2-z^2$ 在 yoz 平面前	
用第一类曲面积分表	表示下列第二类曲面积	l分:	
$\iint\limits_{\Sigma} P(x,y,z)dydz = \underline{\hspace{1cm}}$; ∬Q	$(x, y, z)dzdx = \underline{\hspace{1cm}}$;
-1	22		0
二、计算下列第二	类曲面积分:		
$1 \cdot \iint\limits_{\Sigma} (x^2 + y^2) z dx dy$	y ,其中 Σ 是球面 x^2 +	$y^2 + z^2 = 1$ 下半部的下	侧。

2、 $\iint_{\Sigma} x^2 dy dz + z dx dy$,其中 Σ 为曲面 $z = x^2 + y^2$ 被平面 z = 0, z = 1 所截部分的外侧。

3、 $\iint_{\Sigma} (x^2 + y^2) dz dx + z dx dy$, 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ ($z \le 1$) 在第一卦限部分的下侧。

、 $\iint_{\Sigma} 2(1+x)dydz$,其中 Σ 是由平面曲线 $\begin{cases} y=\sqrt{x} \\ z=0 \end{cases}$ $(0 \le x \le 1)$ 绕x 轴旋转一周所得曲面的外侧。

三*、
$$\iint_{\Sigma} \frac{dydz}{x} + \frac{dzdx}{y} + \frac{dxdy}{z}$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = R^2$ 的内侧。(提示: 化为第一型曲面积分计算)

习题二十四 高斯公式与斯托克斯公式

2、 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$,其中 Σ 为介于平面 z=1与 z=5 之间的那部分圆柱面 $x^2+y^2=1$ 的外侧。

3、 $\iint_{\Sigma} yzdydz + (x^2 + z^2)ydzdx + xydxdy$, 其中 Σ 为曲面 $4 - y = x^2 + z^2$ 在 xoz 平 面右方部分的外部。

4、 $\iint_{\Sigma} 4zxdydz - 2yzdzdx + (1-z^2)dxdy$, 其中 Σ 为 $z = e^y$ (0 $\leq y \leq$ 2) 绕 z 轴旋转一周所围成曲面的内侧。

三、求矢径 $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ 通过锥面 $z = 4 - \sqrt{x^2 + y^2} (z \ge 1)$ 上侧的通量。

四、利用斯托克斯公式计算下列曲线积分:

1、 $\int_{\Gamma} y dx + z dy + x dz$,其中 Γ 为圆周 $\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases}$,从x轴正向看去圆周是逆时针方向。

2、 $\int_{\Gamma} 3ydx - xzdy + yz^2dz$,其中 Γ 为圆周 $\begin{cases} x^2 + y^2 = 2z \\ z = 2 \end{cases}$,从 z 轴正向看去圆周是逆时针方向。

五、求向量扬 $\vec{A}=-y\vec{i}+x\vec{j}+c\vec{k}$ (c 为常数)沿闭曲线 $\Gamma: \begin{cases} x^2+y^2=1\\ z=0 \end{cases}$ (从 z 轴正向看取逆时针方向)的环量。