Math 220 Section 108 Lecture 10

11th October 2022

Limit definition

Definition (Definition 6.4.8 of PLP)

Let $a, L \in \mathbb{R}$ and let f be a real-valued function. We say that the **limit** of f as x approaches a is L when

$$\forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } (0 < |x - a| < \delta) \Rightarrow (|f(x) - L| < \epsilon).$$

In this case we write

$$\lim_{x \to a} f(x) = L \qquad \text{or} \qquad f(x) \to L \text{ as } x \to a$$

and say that f converges to L as x approaches a. We also sometimes say that the limit of f as x goes to a is L.

If f does not converge to any finite limit L as x approaches a, then we say that f **diverges** as x approaches a.

Worksheet 5 – Limits

Limits

5. Prove that $\lim_{x\to 2} \left(\frac{1}{x}\right) = \frac{1}{2}$.

Hint: You may need to have more than one condition on δ .

$$\left|\frac{2-n}{2n}\right| < \varepsilon$$

$$\left|\frac{n-2}{2n}\right| \le |n-2| < \varepsilon$$

So,
$$\xi > |n-2|$$

 $\xi > |\frac{n-2}{2n}|$ (since $|n-2| \ge |\frac{n-2}{2n}|$, for

Since
$$|x-2| \ge |\frac{x-2}{2n}|$$
, for $n > 1$

Induction

Worksheet 6 - Induction

1. Consider the sequence defined by

$$u_1=\frac{1}{2},\quad u_{n+1}=\frac{1+u_n}{2+u_n} \text{ for } n\in\mathbb{N}.$$

Prove that $0 < u_n < 1$ for every $n \in \mathbb{N}$.

Base
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

Math 220 Section 108 Lecture 10

1 > UK+1>C

Induction

2. The Fibonacci numbers are defined by the recurrence

$$F_1 = F_2 = 1$$
 and $F_n = F_{n-1} + F_{n-2}$ for $n > 2$.

Show that for every $n \in \mathbb{N}$, F_{4n} is a multiple of 3.

Induction

3. Prove that $7^n - 2^n$ is divisible by 5 for all $n \in \mathbb{N}$.