

—— Europe 2023

Efficient Access to Shared GPU Resources: Mechanisms and Use Cases

Diogo Guerra & Diana Gaponcic, CERN

Who

Diogo Guerra - <u>diogo.filipe.tomas.guerra@cern.ch</u>
Computing Engineer with the Kubernetes team @ CERN

Diana Gaponcic - <u>diana.gaponcic@cern.ch</u>
Computing Engineer with the Kubernetes team @ CERN

Motivation

Some of our use cases for GPUs:

- Simulation
- Event filtering
- Machine Learning:
 - a. <u>event reconstruction (GNN)</u>
 - b. <u>faster generation of simulation data (3DGAN)</u>
 - c. reinforcement learning for beam calibration

CERN Alice GPU Trigger

CERN LHCb High-Level Trigger

Challenges

Efficient GPU usage challenges:

- Suboptimal code
- Existing workloads' usage patterns not designed with GPUs in mind
- Spiky workloads (ex: Development workflow using interactive tools like Notebooks)

Infrastructure perspective:

- GPU power density constraints
- Vendor lock-in (ex: cuda, oneapi from Intel, frameworks built on cuda)
- Limited resources to meet users' demand

Europe 2023

Story time!

Meet the actors

Meet the actors

Mr Brown

Badly coded simulation job:

- 1. Low average GPU usage (CPU dependant workload)
- 2. Needs 10 GiB VRAM (8 + 2 dynamic)
- 3. Long running process

Meet the actors

Mr Pink

An inference service which is occasionally triggered by outside events:

- Spiky and unpredictable execution
- Mostly sits idle
- Saturates the GPU cores
- Max 10 GiB VRAM (2 + 8 dynamic)

Meet the actors

Mr Orange

Never know what to expected from the notebook users:

- 1. Potential memory leaks
- 2. Poorly considered batch size
- 3. GPU memory locked by an idle notebook

—— Europe 2023

Use Case 1:

User is assigned full GPU card

Europe 2023 -

Let's onboard Mr Brown

Let's onboard Mr Brown

- GPU underutilized
- Steady memory utilization ~ 20%

Use Case 2:

Sharing GPUs with Time Slicing

What is Time Slicing

- The scheduler gives an equal share of time to all GPU processes and alternates them in a round-robin fashion.
- The memory is shared between the processes
- The compute resources are assigned to one process at a time

Time Slicing config


```
# values.yaml in NVIDIA gpu operator Helm chart
devicePlugin:
 config:
                                          When set to true, each resource is advertised
   name: nvidia-time-slicing-config
                                          under the name <resource-name>.shared
                                          instead of <resource-name>.
# $ cat nvidia-time-slicing-config.yaml
apiVersion: v1
kind: ConfigMap
                                            Allocatable:
metadata:
 name: nvidia-time-slicing-config
                                             nvidia.com/gpu: 1
 namespace: kube-system
data:
 slice-4: |-
  version: v1
   sharing:
     timeSlicing:
                                                                 Allocatable:
       renameByDefault: true
      failRequestsGreaterThanOne: true
                                                                  nvidia.com/gpu:
      resources:
       - name: nvidia.com/gpu
                                                                  nvidia.com/qpu.shared:
         replicas: 4
```


—— Europe 2023 -

Now let's onboard Mr Pink

Let's onboard Mr Brown and Mr Pink

- improved GPU utilization
- better memory consumption (~ 50 %)

Europe 2023

Let's risk...

and onboard Mr Orange

The GPU is fully utilized

- GPU utilization 100%
- memory consumption increasing

Time Slicing conclusions

Advantages	Disadvantages
Works on a wide range of NVIDIA architectures	No process or memory isolation
An easy way to set up GPU concurrency	No ability to set priorities
An unlimited number of partitions	Inappropriate for latency-sensitive applications (ex: desktop rendering for CAD workloads)

Europe 2023 -

Can we do better?

Yes we can!

Introducing MIG

Multi Instance GPU (MIG) can partition the GPU into up to seven instances, each **fully isolated** with its own high-bandwidth memory, cache, and compute cores.

NVIDIA A100 GPU can be partitioned into up to 7 MIG devices

source: http://www.pattersonconsultingtn.com/blog/introduction to nvidia mig.html

MIG config


```
# values.yaml in NVIDIA gpu operator Helm chart
mig:
strategy: mixed
                                       mixed strategy enumerates resource types for
migManager:
                                       every MIG device available.
config:
 name: nvidia-mig-config
                                        Allocatable:
apiVersion: v1
kind: ConfigMap
metadata:
                                         nvidia.com/gpu: 1
name: nvidia-mig-config
data:
config.yaml: |
 version: v1
 mig-configs:
                                                               Allocatable:
  # A100-40GB
  3g.20gb-2x2g.10gb:
  - devices: all
                                                                nvidia.com/gpu:
   mig-enabled: true
                                                                nvidia.com/mig-2g.10gb: 2
   mig-devices:
                                                                nvidia.com/mig-3q.20qb: 1
    "2a.10ab": 2
    "3q.20qb": 1
```


2/7 Cores 2/8 Memory

instance type: 2g.10gb

2/7 Cores 2/8 Memory

3/7 Cores 4/8 Memory

GPU utilization with MIG

Every process:

- is isolated
- saturates own resources
- cannot influence other processes

Now Mr Orange is isolated

It would have been nice to live this long in the movie too!

MIG Conclusions

Advantages	Disadvantages
Hardware isolation allows processes to run securely in parallel and not influence each other	Only available for Ampere and Hopper architecture (as of mid 2023)
Monitoring and telemetry data available at partition level	Reconfiguring the partition layout requires all running processes to be evicted
Allows partitioning based on use cases, making the solution flexible	Potential loss of available memory depending on chosen profile layout

Europe 2023

Performance Tradeoffs?

Let's benchmark

Benchmarking Setup

Environment:

- NVIDIA A100 40GB PCIe GPU
- Kubernetes version 1.22
- Cuda version utilized: 11.6
- Driver Version: 470.129.06

Xsuite Benchmarked Script

Benchmarked script:

- Simulation script that generates collision events
- Built with Xsuite (Suite of python packages for multiparticle simulations for particle accelerators)
- Very heavy on GPU usage
- Low on memory accesses
- Low on CPU-GPU communication

Time Slicing performance penalty

Number of particles	Passthrough [seconds]	Shared x1 [seconds]	Loss [%]
10 000 000	51.135	51.93	1.98
15 000 000	76.374	77.12	0.97
20 000 000	99.55	99.91	0.36
30 000 000	151.57	152.61	0.68

Conclusion:

The performance loss when enabling time slicing (shared x1) is negligible.

Time Slicing performance penalty

Number of particles	Shared x1 [seconds]	Expected Shared x2 = Shared x1 * 2 [seconds]	Actual Shared x2 [seconds]	Loss [%]
10 000 000	51.93	103.86	138.76	33.6
15 000 000	77.12	154.24	212.71	37.90
20 000 000	99.91	199.82	276.23	38.23
30 000 000	152.61	305.22	423.08	38.61

Conclusion:

If the GPU needs to perform context switching (going from shared x1 to shared x2) it leads to a performance loss of ~38%.

Time Slicing performance penalty

Number of particles	Shared x2 [seconds]	Shared x4 [seconds]	Loss [%]
10 000 000	138.76	281.98	1.6
15 000 000	212.71	421.55	0
20 000 000	276.23	546.19	0
30 000 000	423.08	838.55	0

Number of particles	Shared x4 [seconds]	Shared x8 [seconds]	Loss [%]
10 000 000	281.98	561.98	0
15 000 000	421.55	838.22	0
20 000 000	546.19	1087.99	0
30 000 000	838.55	1672.95	0

Conclusion:

Further increasing the number of processes (shared x4, shared x8), doesn't introduce additional performance loss.

MIG performance penalty for A100

MIG performance penalty

Number of particles	Whole GPU, no MIG [seconds]	Whole GPU, with MIG (7g.40gb) [seconds]	Loss [%]
5 000 000	26.365	28.732	8.97 %
10 000 000	51.135	55.930	9.37 %
15 000 000	76.374	83.184	8.91 %

Conclusion:

The theoretical loss of 9.25% can be seen experimentally as well.

MIG performance penalty

Number of particles	7g.40gb [s]	3g.20gb [s]	2g.10gb [s]	1g.5gb [s]
5 000 000	28.732	62.268	92.394	182.32
10 000 000	55.930	122.864	183.01	362.10
15 000 000	83.184	183.688	273.7	542.3

Number of particles	3g.20gb / 7g.40gb	2g.10gb / 3g.20gb	1g.5gb / 2g.10gb
5 000 000	2.16	1.48	1.97
10 000 000	2.19	1.48	1.97
15 000 000	2.20	1.48	1.98
ideal scale	7/3 = 2.33	3/2 = 1.5	2/1 = 2

Conclusion:

The scaling between partitions converges to the ideal values.

Final conclusions

Category	Examples	Time slicing	MIG
Latency sensitive	CAD, Engineering Applications	X	V
Interactive	Notebooks	V 1	V
Performance intensive	Simulation	X	V
Low priority	CI Runners	V	▼

¹ Independent workloads can trigger OOM errors between each other. Needs an external mechanism to control memory usage (similar to kubelet CPU memory checks)

Nice to know/have - Profiling Metrics

Profiling the A100 compute pipeline utilization

References:

Europe 2023

CERN k8s GPU blog posts

NVIDIA Documentation

k8s NVIDIA gpu-operator

Special thanks:

Ricardo Rocha

Dejan Golubovic

Europe 2023

Acknowledgements:

Reservoir Dogs (1992)

Europe 2023

Thank you!