Elektronika

XII. Bipoláris tranzisztor

12.1. Bipoláris tranzisztor

1. Bipoláris tranzisztor felépítése

- BJT bipolar junction transistor bipoláris mert mindkét féle töltéshordozó szerepet játszik (elektron, lyuk)
- három félvezető rétegből (2 PN átmenet) álló alkatrész (+ külső tokozás és kivezetések)
- áram által vezérelt, három kivezetéses eszköz (első tranzisztor 1948)
- analóg áramkörökben főleg erősítőként használjuk
- digitális áramkörökben vezérelt kapcsolóként

12.1. Bipoláris tranzisztor

2. Bipoláris tranzisztor üzemmódjai

- 2 darab PN átmenet, és ezek lehetnek nyitva vagy zárva! →
 4 lehetséges variáció → 4 üzemmód

Zárt állapot

Mindkét PN átmenet záró előfeszítést kap → A tranzisztor lezár, ~ szakadás a kivezetések között. De nagyon kicsi záró irányú áramok folynak (~nA)

(Pnp tranzisztor esetén ellentétes polaritások)

Telítéses állapot

Mindkét PN átmenet nyitó előfeszítést kap → A tranzisztor telítésben, mindkét PN átmenete nyitva (a bázis-emitter és a bázis-kollektor dióda is nyit)

→ kollektor-emitter közötti feszültség kicsi (~0,2V)

(Pnp tranzisztor esetén ellentétes polaritások)

A tranzisztor áramerősítése (B, lásd később) lecsökken!!

12.1. Bipoláris tranzisztor

Normál aktív üzemmód

A bázis-emitter dióda nyitva, a bázis-kollektor dióda zárva! → kollektor és emitter között mégis áram folyik!!

A bázisárammal tudjuk vezérelni a kollektor áramot ! (Pnp tranzisztor esetén ellentétes polaritások)

Áram erősítési tényező

- Egyenáramú → B = Ic / IB
- Váltakozó áramú → β = ΔIc / ΔIB

B ≈ β ≈ állandó

B értéke nagy (~ 50 - 500)

Tranzisztor áram egyenletei:

$$IE = IC + IB$$

$$Ic = B * IB$$

Inverz aktív üzemmód

A bázis-emitter dióda zárva, a bázis-kollektor dióda nyitva!

- → emitter és kollektor szerepe felcserélődik, DE!
 - → mivel a tranzisztor felépítése nem szimmetrikus,
 - → ilyenkor sokkal rosszabb paraméterek,
 - \rightarrow B értéke nagyon kicsi lesz (0,1 10)

(Pnp tranzisztor esetén ellentétes polaritások)

12.2. Bipoláris tranzisztor modellje

Normál aktív üzemmódban nagy jelű modell, árammal vezérelt áramgenerátor

Tranzisztor áram egyenletei:

$$IE = IC + IB$$

 $IC = B * IB$

Normál aktív üzemmódban kis jelű modell

Ezek eléggé leegyszerűsített modellek !! Vannak sokkal pontosabbak is

12.3. Bipoláris tranzisztor, alapszámítások

Tranzisztor feszültségei:

UBE → bázis-emitter feszültség mint dióda esetén → 0,6-0,7V

UCE → kollektor-emitter feszültség Nagyon változhat (elméletileg 0 és UT2 között)

Hurok törvény: Hurok törvény:

UT1 - URb - UBE = 0 UT2 - URC - UCE = 0

Tranzisztor áram egyenletei:

IE = IC + IBIC = B * IB

12.3. Bipoláris tranzisztor, alapszámítások

1. mintafeladat:

Hurok törvény:

Hurok törvény:

$$UT1 - URb - UBE = 0$$

 $U_{T2} - U_{RC} - U_{CE} = 0$

Tranzisztor áram egyenletei:

$$IE = IC + IB$$
 $IC = B * IB$

 $U_{T1} = 5V$ $U_{T2} = 9V$ $R_b = 800 \text{ k}\Omega$ $R_c = 3 \text{ k}\Omega$ B = 200Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

Bal oldali hurok (hurok és Ohm törvény) $U_{Rb} = U_{T1} - U_{BE} = 5 \text{ V} - 0.6 \text{ V} = 4.4 \text{ V}$ $I_{B} = U_{Rb} / R_{b} = 4.4 \text{ V} / 800 \text{ k}\Omega = 0.0055 \text{ mA}$

Tranzisztor

IC = B * IB = 200 * 0,0055 mA = 1,1 mAIE = IC + IB = 1,1 + 0,0055 mA = 1,1055 mA

Jobb oldali hurok (Ohm és hurok törvény)

URC = Rc * IC =
$$3 \text{ k}\Omega$$
 * 1,1 mA = 3,3 V
UCE = UT2 - URC = $9 \text{ V} - 3.3 \text{ V} = 5.7 \text{ V}$

12.4. Feladatok

1. feladat:

 $U_{T1} = 5V$ $U_{T2} = 9V$ $R_b = 400 \text{ k}\Omega$ $R_c = 3 \text{ k}\Omega$ B = 200Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

2. feladat:

 $U_{T1} = 5V$

 $U_{T2} = 9V$

 $Rb = 200 k\Omega$

 $Rc = 1.2 k\Omega$

B = 200

Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

12.4. Feladatok

2. feladat, megoldás:

 $R_b = 200 kΩ$ és $R_c = 1,2 kΩ$ A többi érték ugyanaz mint az 1. feladatnál

URb = UT1 - UBE =
$$5 \text{ V} - 0.6 \text{ V} = 4.4 \text{ V}$$

IB = URb / Rb = $4.4 \text{ V} / 200 \text{ k}\Omega = 0.022 \text{ mA}$
IC = B * IB = $200 * 0.022 \text{ mA} = 4.4 \text{ mA}$
IE = IC + IB = $4.4 + 0.022 \text{ mA} = 4.422 \text{ mA}$

1. feladat, megoldás:

$$\begin{array}{lll} \text{UT1} &= 5\text{V} & \text{UT2} &= 9\text{V} \\ \text{Rb} &= 400 \text{ k}\Omega & \text{Rc} &= 3 \text{ k}\Omega \\ \text{B} &= 200 \\ \text{Számoljuk ki a tranzisztor és} \\ \text{ellenállások feszültségeit, áramait} &! \\ \text{URb} &= \text{UT1} - \text{UBE} = 5 \text{ V} - 0.6 \text{ V} = 4.4 \text{ V} \\ \text{IB} &= \text{URb} \text{ / Rb} = 4.4 \text{ V} \text{ / 400 k}\Omega = 0.011 \text{ mA} \\ \text{IC} &= \text{B} * \text{IB} = 200 * 0.011 \text{ mA} = 2.2 \text{ mA} \\ \text{IE} &= \text{IC} + \text{IB} = 2.2 + 0.011 \text{ mA} = 2.211 \text{ mA} \\ \text{URc} &= \text{Rc} * \text{IC} = 3 \text{ k}\Omega * 2.2 \text{ mA} = 6.6 \text{ V} \\ \text{UCE} &= \text{UT2} - \text{URc} = 9 \text{ V} - 6.6 \text{ V} = 2.4 \text{ V} \end{array}$$

$$U_{RC} = R_{C} * I_{C} = 1.2 k\Omega * 4.4 mA = 5.28 V$$

 $U_{CE} = U_{T2} - U_{RC} = 9 V - 5.28 V = 3.72 V$

12.5. Számítások bipoláris tranzisztorral

1. mintafeladat:

Hurok törvények:

$$UT - URb - UBE = 0$$

 $UT - URc - UCE = 0$

Tranzisztor áram egyenletei:

$$IE = IC + IB$$
 $IC = B * IB$

$$U_T = 9V$$
 $R_b = 800 \text{ k}\Omega$
 $R_c = 2 \text{ k}\Omega$
 $B = 200$
Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

Megoldás

Nagy hurok

$$U_{Rb} = U_{T} - U_{BE} = 9 \text{ V} - 0.6 \text{ V} = 8.4 \text{ V}$$
 $I_{B} = U_{Rb} / R_{b} = 8.4 \text{ V} / 800 \text{ k}\Omega = 0.0105 \text{ mA}$

Tranzisztor

Jobb oldali hurok

$$U_{RC} = R_{C} * I_{C} = 2 k\Omega * 2,1 mA = 4,2 V$$

 $U_{CE} = U_{T} - U_{RC} = 9 V - 4,2 V = 4,8 V$

12.5. Számítások bipoláris tranzisztorral

2. mintafeladat:

Valami nem OK $!! \rightarrow túl$ nagy bázis áram \rightarrow telítésbe megy a tranzisztor \rightarrow B és UCE értéke lecsökken (UCEmin \approx 0,2V)

```
URC = UT - UCE = 9V - 0.2V = 8.8V

IC = URC / RC = 8.8V / 2 \text{ k}\Omega = 4.4 \text{ mA}

B = IC / IB = 4.4 \text{ mA} / 0.042 \text{ mA} = 104.76!

IE = IC + IB = 4.4 + 0.042 \text{ mA} = 4.442 \text{ mA}
```

 $U_T = 9V$ $R_b = 200 \text{ k}\Omega$ $R_c = 2 \text{ k}\Omega$ B = 200Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

Megoldás

Nagy hurok

$$U_{Rb} = U_{T} - U_{BE} = 9 \text{ V} - 0.6 \text{ V} = 8.4 \text{ V}$$
 $I_{B} = U_{Rb} / R_{b} = 8.4 \text{ V} / 200 \text{ k}\Omega = 0.042 \text{ mA}$

<u>Tranzisztor</u>

Jobb oldali hurok

$$U_{RC} = R_{C} * I_{C} = 2 k\Omega * 8,4 mA = 16,8 V !!$$

 $U_{CE} = U_{T} - U_{RC} = 9 V - 16,8 V = -7.8 V$

12.5. Számítások bipoláris tranzisztorral

3. Mintafeladat:

Hurok törvények:

$$UT - URb - UBE - UE = 0$$

 $UT - URC - UCE - UE = 0$

Tranzisztor áram egyenletei:

$$IC = B * IB$$
 $IE = IC + IB = (B + 1) * IB$

$$U_T = 9V$$
 B = 200

 $R_b = 800 \text{ k}\Omega$

 $R_c = 2 k\Omega$ $R_E = 500 \Omega$

Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

Megoldás

Nagy hurok

$$\begin{array}{l} \text{UT} = \text{ IB * Rb + UBE + (B + 1) *IB * RE} \\ \text{IB} = (\text{UT} - \text{UBE}) / (\text{Rb} + (\text{B} + 1) * \text{RE}) \\ \text{IB} = 8.4 \text{ V} / (800 \text{ k}\Omega + 201 * 0.5 \text{ k}\Omega) \\ \text{IB} = 8.4 \text{ V} / 900.5 \text{ k}\Omega = 0.00933 \text{ mA} \\ \text{URb} = \text{ IB * Rb} = 0.00933 \text{ mA} * 800 \text{ k}\Omega = 7.46 \text{ V} \\ \text{UE} = \text{UT} - \text{URb} - \text{UBE} = 9 - 7.46 - 0.6 \text{ V} = 0.94 \text{ V} \end{array}$$

Tranzisztor

Jobb oldali hurok

UE = IE * RE = 1,875 mA * 0,5 k
$$\Omega$$
 = 0,94 V
URc = Rc * IC = 2 k Ω * 1,866 mA = 3,73 V
UCE = UT - URc - UE = 9 - 3,73 - 0,94 V
UCE = 4,33 V

12.6. Feladatok

1. feladat:

 $U_{T1} = 3V$

 $U_{T2} = 10V$

 $R_b = 600 \text{ k}\Omega$

 $Rc = 3 k\Omega$

B = 300

Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

2. feladat:

UT = 12V

 $Rb = 500 k\Omega$

 $R_c = 2 k\Omega$

B = 100

 $U_{BE} = 0.72 \text{ V}$

Számoljuk ki a tranzisztor és ellenállások feszültségeit, áramait!

12.6. Feladatok

3. feladat:

$$U_T = 10V$$
 $B = 300$
 $I_E \approx I_C = 3mA$
 $U_{CE} = 5V$

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

4. feladat:

$$UT = 12V$$

$$B = 250$$

 $IE \approx IC = 4mA$

Re = $0.2 \text{ k}\Omega$

UCE = 5V

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

12.6. Feladatok

1. feladat, megoldás:

URb = UT1 - UBE =
$$3 \text{ V} - 0.6 \text{ V} = 2.4 \text{ V}$$

IB = URb / Rb = $2.4 \text{ V} / 600 \text{ k}\Omega = 0.004 \text{ mA}$

URC = Rc * IC =
$$3 \text{ k}\Omega$$
 * 1,2 mA = 3,6 V
UCE = UT2 - URC = $10 \text{ V} - 3,6 \text{ V} = 6,4 \text{ V}$

2. feladat, megoldás:

URb = UT - UBE =
$$12 \text{ V} - 0.72 \text{ V} = 11.28 \text{ V}$$

IB = URb / Rb = $11.28 \text{ V} / 0.5 \text{ M}\Omega = 22.56 \mu\text{A}$

$$IC = B * IB = 100 * 22,56 \mu A = 2,256 mA$$

 $IE = IC + IB = 2,256 + 0,02256 mA = 2,2786 mA$

$$U_{RC} = R_{C} * I_{C} = 2 k\Omega * 2,256 mA = 4,512 V$$

 $U_{CE} = U_{T} - U_{RC} = 12 V - 4,512 V = 7,488 V$

3. feladat, megoldás:

$$I_{B0} = I_{C0} / B = 3 \text{ mA} / 300 = 0.01 \text{ mA}$$

$$U_{Rb} = U_{T} - U_{BE0} = 10 - 0.7 = 9.3 \text{ V}$$

 $R_{b} = U_{Rb} / I_{B0} = 9.3 \text{ V} / 0.01 \text{ mA} = 930 \text{ k}\Omega$

URC = UT - UCE =
$$10 - 5 = 5 \text{ V}$$

Rc = URC / IC0 = $5 \text{ V} / 3 \text{ mA} = 1,67 \text{ k}\Omega$

4. feladat, megoldás:

$$IB = Ic / B = 4 \text{ mA} / 250 = 0,016 \text{ mA}$$

 $UBE \text{ legyen } 0,7 \text{ V}$

UE = RE * IE = 0,2 k
$$\Omega$$
 * 4 mA = 0,8 V
URb = UT - UBE - UE = 12 - 0,7 - 0,8 V = 10,5 V
Rb= URb / IB = 10,5 V / 0,016 mA = 656,25 k Ω

URC = UT - UCE - UE =
$$12 - 5 - 0.8 \text{ V} = 6.2 \text{ V}$$

Rc = URC / IC = $6.2 \text{ V} / 4 \text{ mA} = 1.55 \text{ k}\Omega$

12.7. Bipoláris tranzisztor karakterisztikái

1. Tranzisztor karakterisztikák (jelleggörbék)

 a tranzisztor áramai és feszültségei közötti összefüggéseket írják le

- a tranzisztort mint négypólust vizsgáljuk,
 - → egyik kivezetés közös
- közös emitteres kapcsolás

2. Bemeneti karakterisztika

- a bázis-emitter feszültség és bázis áram közötti kapcsolatot mutatja (UBE – IB), ha UCE állandó
- a bázis-emitter egy PN átmenet
 - → a karakterisztika hasonló mint dióda esetén
- függ egy kicsi Uce értékétől is nagyobb Uce → jobbra tolódik
- függ a hőmérséklettől is
 - → ΔU_{BE}/ΔT \approx -2mV/°C (balra tolódik 2mV-al fokonként)
- differenciális bemeneti ellenállás:

 $r_{BE} = \Delta U_{BE}/\Delta I_B$ ha Uce állandó $r_{BE} \rightarrow h_{11e}$ paraméter

lв

12.7. Bipoláris tranzisztor karakterisztikái

3. Kimeneti karakterisztika

- a kollektor-emitter feszültség és kollektor áram közötti kapcsolatot mutatja (UCE – IC) ha IB állandó
- Ic főleg IB értékétől függ !!

 UCE értékétől lényegében nem függ !!

 (csak telítési tartományban)
- differenciális kimeneti ellenállás:

rce = ΔUce/ΔIc ha Ube állandó

1/rce → h22e paraméter !!

- a kollektor áram és a bázis áram
 közötti kapcsolatot mutatja (IB Ic)
 ha UCE állandó
- egyenáramú áramerősítési tényező:

B = Ic/I_B → közelítőleg állandó (de nem teljesen!)

- differenciális áramerősítési tényező:

 $\beta = \Delta Ic/\Delta IB$ ha Uce állandó

 $\beta \rightarrow h_{21e}$ paraméter !!

- B és β értéke függ Ic értékétől!
 - → kis, és nagy Ic esetén kisebbek

1. Munkapont

Munkapont:

- megfelelő áramok és feszültségek (IB IC UBE UCE IE) beállítása, hogy a tranzisztor stabilan nyitva legyen (általában a normál aktív tartományban) → (IBO ICO UBEO UCEO IEO)
- a generátor feszültség (Ug) és a bázisköri, kollektorköri ellenállások (Rв, Rc) által meghatározott munkaegyenesen mozoghatunk
- UCEO értékét (amely Ut és 0 között lehet) általában célszerű a tápfeszültség fele közelébe belőni (erősítő esetén így lesz nagy a kivezérelhetőség!)

2. Munkapont beállítás bázis árammal

1. mintafeladat

UT = 12V

 $I_{B0} = 0.06 \text{ mA}$ $U_{BE0} = 0.7 \text{ V}$

 $B = 260 \qquad (IE0 \approx IC0)$

UCE = 6V

Számoljuk ki a szükséges ellenállások értékeit!

Megoldás

Tranzisztor

 $I_{C0} = B * I_{B0} = 260 * 0,06 \text{ mA} = 15,6 \text{ mA}$ $I_{E0} = I_{C0} + I_{B0} = 15,6 + 0,06 = 15,66 \text{ mA}$

Nagy hurok

 $U_{Rb} = U_{T} - U_{BE0} = 12 - 0.7 = 11.3 \text{ V}$ $R_{b} = U_{Rb} / I_{B0} = 11.3 \text{ V} / 0.06 \text{ mA} = 188.33 \text{ k}\Omega$

Jobb oldali hurok

 $U_{RC} = U_{T} - U_{CE} = 12 - 6 = 6 \text{ V}$ $R_{C} = U_{RC} / I_{CO} = 6 \text{ V} / 15.6 \text{ mA} = 0.385 \text{ k}\Omega$

RE szerepe

Soros negatív áram visszacsatolást valósít meg \rightarrow munkapont stabilizáló hatása van (hőmérséklet nő \rightarrow Ib nő \rightarrow Ic nő \rightarrow Ue nő \rightarrow Ube csökken \rightarrow Ib csökken \rightarrow Ic csökken)

2. Mintafeladat:

UT = 10V

IE≈ IC = 2mA

UE = 1.4V

UCE = 5V

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

B = 250

Megoldás

Tranzisztor

 $I_B = I_C / B = 2 \text{ mA} / 250 = 0,008 \text{ mA}$ UBE legyen 0,6 V

Nagy hurok

RE = UE / IE = 1,4 V / 2 mA= 0,7 k Ω URb = UT - UBE - UE = 10 - 0,6 - 1,4 V = 8 V Rb= URb / IB = 8 V / 0,008 mA = 1000 k Ω

Jobb oldali hurok

URC = UT - UCE - UE = 10 - 5 - 1.4 V = 3.6 VRc = URC / IC = $3.6 \text{ V} / 2 \text{ mA} = 1.8 \text{ k}\Omega$

3. Munkapont beállítás bázisosztóval

R₁ és R₂ alkotja a feszültség osztót, amely a tápfeszültségből előállítja a bázis számára szükséges kisebb feszültséget.

Akkor jó ha lo > lB (legalább 10-szer legyen nagyobb) →

a feszültségosztó közel terheletlen

3. Mintafeladat:

 $U_T = 10V$ B = 150

 $Ie \approx Ic = 3mA$

UE = 1V UCE = 5V

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

Megoldás

<u>Tranzisztor</u> UBE legyen 0,6 V

 $I_B = I_C / B = 3 \text{ mA} / 150 = 0.02 \text{ mA}$

 $I_0 = 10 * I_B = 10 * 0.02 \text{ mA} = 0.2 \text{ mA}$

kis hurok

 $U_{BE} + U_{E} - U_{B} = 0$

 $Re = Ue / Ie = 1 V / 3 mA = 0.33 k\Omega$

 $U_B = U_{BE} + U_E = 0.6 + 1 V = 1.6 V$

 $R_2 = U_B / I_0 = 1,6 V / 0,2 mA = 8 k\Omega$

Nagy hurok

 $U_{R1} = U_T - U_B = 10 - 1.6 = 8.4 V$

 $R_1 = U_{R1} / (I_0 + I_B) = 8.4 \text{ V} / 0.22 \text{ mA} = 38.2 \text{ k}\Omega$

Jobb oldali hurok

URC = UT - UCE - UE = 10 - 5 - 1 V = 4 V

 $R_c = U_{RC} / I_C = 4 V / 3 mA = 1.33 k\Omega$

12.9. Feladatok

1. feladat:

 $U_T = 15V$

B = 300

 $IE \approx IC = 4.5 \text{mA}$

UE = 1,5V

UCE = 7V

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat !

2. feladat:

UT = 12V

B = 200

 $IE \approx IC = 2mA$

UCE = 6V

UE = 1V

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

12.9. Feladatok

1. feladat, megoldás:

```
UBE legyen 0,7 V

IB = Ic / B = 4,5 \text{ mA} / 300 = 0,015 \text{ mA}

Io = 10 * IB = 10 * 0,015 \text{ mA} = 0,15 \text{ mA}
```

RE = UE / IE = 1,5 V / 4,5 mA= 0,33 k
$$\Omega$$

UB = UBE + UE = 0,7 + 1,5 V = 2,2 V
R2= UB / I0 = 2,2 V / 0,15 mA = 14,67 k Ω

UR1 = UT – UB = 15 – 2,2 = 12,8 V
R1 = UR1 / (I0 + IB) = 12,8 V / 0,165 mA
R1 = 77,58 k
$$\Omega$$

URC = UT - UCE - UE =
$$15 - 7 - 1.5 \text{ V} = 6.5 \text{ V}$$

Rc = URC / IC = $6.5 \text{ V} / 4.5 \text{ mA} = 1.44 \text{ k}\Omega$

2. feladat, megoldás:

RE = UE / IE = 1 V / 2 mA= 0,5 k
$$\Omega$$

URb = UT - UBE - UE = 12 - 0,7 - 1 V = 10,3 V
Rb= URb / IB = 10,3 V / 0,01 mA = 1030 k Ω

URC = UT - UCE - UE =
$$12 - 6 - 1 \text{ V} = 5 \text{ V}$$

Rc = URC / IC = $5 \text{ V} / 2 \text{ mA} = 2.5 \text{ k}\Omega$

12.10. Ismétlő kérdések, feladatok

1. Jelöld meg a kivezetéseket, melyik az emitter, bázis és a kollektor?

Rajzold le a bipoláris tranzisztor bemeneti és kimeneti karakterisztikáját!

12.10. Ismétlő kérdések, feladatok

4. Jelöld a rajzon a tranzisztor áramait! Milyen összefüggéseket ismerünk közöttük?

5. Rajzolj le egy bázisosztós munkapont beállító kapcsolást!

6. Mennyi áram fog folyni az alábbi áramkörökben?

12.10. Ismétlő kérdések, feladatok

7. Számítsd ki az ellenállások értékét!

$$UT = 12V$$
 $IC = 4mA$
 $UE = 1V$
 $UCE = 5V$

$$B = 100$$

12.11. Speciális tranzisztoros kapcsolások

1. Darlington kapcsolás

Eredő áram erősítési tényező

$$B = IC / IB \rightarrow$$

$$Be = B1 * B2$$

Jellemzői:

- nagy áram erősítés! →
- IB nagyon kicsi lehet
- hátrány: nagyobb zaj mint egy tranzisztor esetén

2. Komplementer Darlington kapcsolás

12.11. Speciális tranzisztoros kapcsolások

3. egyszerű áramgenerátor

R₁ és R₂ feszültségosztó közel állandó bázis feszültséget állít be

- → emitter feszültség is közel állandó
- → emitter, kollektor áram is közel állandó Hátránya:

UB erősen függ a tápfeszültségtől és a hőmérséklettől

```
It = Ic = (UB - UBE) / RE

Rb = 1/h22e * (1 + h21e * RE / h11e)
```

Minta feladat

 $R_1 = 20 kΩ$ $R_2 = 10 kΩ$ $R_3 = 760 Ω$ $R_4 = 9V$

```
U_B \approx U_T * R_2 / (R_1 + R_2) = 3 V

U_E = U_B - U_{BE} = 2.3 V

I_t = I_C \approx I_E = U_E / R_E = 2.3 V / 760 \Omega = 3 mA
```

12.11. Speciális tranzisztoros kapcsolások

4. áramgenerátor, hőmérséklet függés csökkentéssel

It = Ic = (UB - UBE) / RE

 $R_{be} = 1/h_{22e} * (1 + U_E / U_T)$

It \approx Iref * R2 / RE

5. áramgenerátor, tápfeszültség függés csökkentéssel

It = IC = (UB - UBE) / RE

UB = Uz !! tápfeszültségtől függetlenül