

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER- 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

Subject Code:

22306

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FINE of the following:	10
	a)	Moment of Inertia - It is the property of shape	01
	-	of area and can be defined as the summation	
		of the product of att elementry areas and square	
		of it centroidal distances from the reference axis.	
		Product of area and its centroidal distance from	
		reference axis is called as moment of area. The moment of moment of area about the reference	
		axis is known as 'second moment of area' or moment of inertla.	
		Unit of Moment of inertia - mmt, or cmt or mt	01
	p)	Parts subjected to tensile stresses - spokes of wheels, brake wires, clutch wires, chaindrive.	12 each

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS	Model Answer	subject Co

Q. No.	Sub Q. N.	Answer	Marking Scheme
		Parts subjected to compressive stresses-	1 each
		Shock absorbers, foot rests, brake-padels.	Max 01.
1	c)	Relationship between three moduli-	
		$E = \frac{9GK}{G+3K}$	01
		Where: = E = Modulus of Elasticity G = Modulus of rigidity K = Bulk Modulus.	01
		- OR-	
		i) E = 2G(1+4)	1/2
		ii) $E = 3k(1-24)$	1/2
		where, E = Modulus of Elasticity	01
		G = Modulus of rigidity' K = BNK Modulus	-
	-	4 = Poisson's ratio.	
1	d)	Shear force: - Shear force at a section of a loaded	
		beam is defined as the net or unbalanced vertical	1/2
		force on either side of the section.	
		Unit of shear force + Nor KN.	1/2
		Bending Moment; Bending moment at any section of the beam is the algebric summation of moments	1/2
		of all the vertical forces on eighter side of the section the moments being taken about the section. Unit of bending moment -> N-m or KN-m	
		Unit of bending moment -> N-m or KN-m	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

Q.	Sub	Anguar	1
No.	Q. N.	Answer	Marking Scheme
1	e)	Bending equation: M = & = E I = Y	01
		Where E = Modulus of Elasticity of beam material R = Radius of curvature of the beam. M = Moment of resistance I = Moment of ineria of beam cls about N.A.	01
1	F)	bending stress at the layer situated at a distance y from N.A. y = distance of layer from N.A. Eccentric load: When the line of action of the load acts parallel to but away from the axis of the member it is known as eccentric loading.	01
1	4)	2) Compressive force acting on outer edge of circular column. Twisting moment - The moment which is applied in the plane perpendicular to the axis of the shaft is called as twisting moment.	1 + 1 2
		Moment produced due to tangential force about the axis of rotation of shaft is called as twisting moment. Unit of twisting moment -> N-mm.	01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	a)	Attempt any THREE of the following: $a_1 = 6 \times 100 = 600 \text{ mm}^2$ $a_2 = 69 \times 6 = 414 \text{ mm}^2$ $a_1 = 6/2 = 3 \text{ mm}$. $a_2 = 6 + 69/2 = 40.50 \text{ mm}$. $a_3 = 6/2 = 3 \text{ mm}$. $a_4 = 6/2 = 3 \text{ mm}$. $a_5 = 6/2 = 3 \text{ mm}$. $a_7 = 6/2 = 3 \text{ mm}$.	12
		$\bar{\chi} = \frac{q_1 \chi_1 + q_2 \chi_2}{q_1 + q_2} = 18.31 \text{ mm. from } 00$	1/2
		$Y = \frac{9.1 + 9212}{9.42} = 30.81 \text{ mm. from 00}$	1/2
		$I_{XX} = (I_{XX})_{1} + (I_{XX})_{2}$ $= \left(\frac{6 \times 100^{3}}{12} + 600 (50 - 30.81)^{2}\right) + \left(\frac{60 \times 6}{12} + 414 (30.81 - 3)^{2}\right)$ $I_{XX} = 7.21 \times 10^{5} \text{ mm}^{4} + 3.21 \times 10^{5} \text{ mm}^{4}$ $I_{XX} = 10.42 \times 10^{5} \text{ mm}^{4}$ $I_{YY} = (I_{YY})_{1} + (I_{YY})_{2}$ $= \left[\frac{100 \times 6^{3}}{12} + 600 (18.31 - 3)^{2}\right] + \left[\frac{6 \times 69^{3}}{12} + 414 (40.50 - 18.31)^{2}\right]$	15
		$= 1.42 \times 10^{5} + 3.68 \times 10^{5}$ $= 5.1 \times 10^{5} \text{mm}^{4}$	12

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Sı	ubject N	ame: STRENGTH OF MATERIALS Model Answer subject Code:	22306
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	Ь	Stress B C E F A Stroun	62.
		Stress strain diagram for mild steel. A — Proportionality Limit B — Elastic Limit C — Upper yield point D — lower yield point E — Ultimate stress point F — Breaking stress (nominal) point.	01
		Stress A Breaking stress. Strain Stress-strain variation for cast irom,	01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH O	F MATERIALS
--------------------------	-------------

Model Answer

	0.1		
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	C	Given - L= 300mm, b= 40mm, d= 40mm, P= 400×103N	
		SL= 0.075cm= 0.75mm, Do= 0.03mm.	
		Solution -	
		Stress = $\delta = \frac{P}{A} = \frac{400 \times 10^3}{40 \times 40} = 250 \text{ N/mm}^2$	01
		Strain = $e = \frac{dL}{L} = \frac{0.75}{300} = 2.5 \times 10^{-3}$	01
		Lateral strain= Plat = 8d = 0.03 = 7.5×104	
		Young's Modulus = $E = \frac{6}{e} = \frac{250}{2.5 \times 16^3} = 1 \times 10^5 \text{ N/mm}^2$	01
		Poisson's ratio = $U = \frac{\text{Clat}}{\text{Clin}} = \frac{7.5 \times 10^4}{2.5 \times 10^3} = 0.30$	01
2	d	~ we/m	
		A Ammonman B	
		→	
		W1/2	
		+	
		+re w/2	02
		Shear force diagram.	
		wL ² /8	
		⊕ (* *) +ve.	02
		Bending moment diagram.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: S	TRENGTH OF	MATERIALS
-----------------	------------	-----------

Model Answer

	C !		
Q. No.	Sub Q. N.	Answer	Marking Scheme
3		Attempt amy THREE of the following.	12
	a	Given - for solid rectangular section, b = 40mm, d = 60mm,	8.1
		Solution: for solid rectangular section- Thase = I G + Ay ²	1
		$= \frac{bd^3}{12} + b \cdot d (42)^2$	
		$= \frac{40 \times 60^{3}}{12} + 40 \times 60 \times \left(\frac{60}{2}\right)^{2}$	1
		$= 7.20 \times 10^5 + 21.6 \times 10^5$	
		Ibase = 28.8 × 105 mm4	2
		$Ibase = \frac{6d^3 - 40 \times 60^3}{3} = 48.8 \times 10^5 \text{ mm}^4.$	2+2
3	Ь	S.F. & B.M. diagrams for cantilever beam. A B 2kN/m 4kN C S.F. Calculations 1, +ve. S.F. = 4kN. S.F. = 4+ (2x2) = 8kN. AkN S.F. = 8kN.	
		S. F. D. B.M. Calculations (1)+ve.	- 1
		12KN·m DIMB- TAZ QAR)AI	BMD-1
		$= -12kN \cdot m$. BMA = -4x4 - 2x2x3	
		28 B.M.D. = -28 KN·m.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER ~ 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

	0.1		
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	С	Given - for solid shaft, $d = 110 \text{mm}$, $R = 55 \text{mm}$, $T = 12.5 \text{kN·m} = 12.5 \text{x} 10^6 \text{N·mm}$, $L = 2.5 \text{m} = 2500 \text{mm}$ $G = 80 \text{GPa} = 80 \text{x} 10^3 \text{N/mm}^2$.	
		Solution - Polar M.I = Ip = $\frac{T}{32} d^4 = \frac{T}{32} \times 110^4 = 14.37 \times 10^6 \text{ mm}^4$	01
		i) Using the relation, $\frac{T}{Jp} = \frac{q_{max}}{R}$	
		$\frac{1}{100} = \frac{1}{100} \times R = \frac{12.5 \times 10^{6} \times 55}{14.37 \times 106}$ $\frac{1}{100} = \frac{12.5 \times 10^{6} \times 55}{14.37 \times 106}$	4
		ii) Using the relation, $\frac{T}{Ip} = \frac{G0}{L}$	15
		$Q = \frac{T}{L_p} \times \frac{L}{G} = \frac{12.5 \times 10^6 \times 2500}{14.87 \times 10^6 \times 80 \times 10^3}$	
		$\theta = 0.02718$ radians.	12
3	d	Given - for offset link, $d = 30 \text{ mm}$, $61 \text{ max} = 80 \text{ N/mm}^2$ $eccentrally = e = 40 + \frac{1}{2} = 40 + \frac{30}{2} = 55 \text{ mm}$. Solution:- $cls \text{ Area} = A = \frac{11}{4} \times d^2 = \frac{11}{4} \times 30^2 = 706.86 \text{ mm}^2$	01
		$M.I = I = II \times d^4 = II \times 30^4 = 39.76 \times 10^3 \text{ mm}^4$ Section Modulus = $Z = I/man = \frac{39.76 \times 10^3}{15} = 2656.7 \text{ mm}^3$	0
		Using the relation $6 \text{ max} = 6. + 6b = \frac{P}{A} + \frac{P \cdot e}{7}$ $80 = \frac{P}{706.86} + \frac{P \times 55}{2650.7}$	01
		:. P = 3610. 1 N	01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Sı	ubject	Name: STRENGTH OF MATERIALS Model Answer subject Code:	22306
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	a)	Attempt amy THREE of the following Reactions: ZMA=0 2 +vc.	12
		$5 \times 1.5 + 7 \times 3.5 - R_{B} \times 4 = 0$ $R_{B} = 8 \text{ kN}$. 2 = 8 kN. 2 = 8 kN. 2 = 8 kN.	
		$R_{A} = 12 - 8 = 4 \text{ kN}$ 1.5 m $2 m$ $0.5 mR_{A} = 4 \text{ kN} R_{B} = 8 \text{ kN}$	
		4kN O 1 +ve	0)
		S.F.D 8 8kN 6 KN·m 4kN·m 7 +ve.	
		S.F. Calculations 1/1+ve. B.M. calculations C) 7+ve	DI
		$S \cdot F_A = 4 \text{ kN}$ $S \cdot F_C \text{ (left)} = 4 \text{ kN}$ $S \cdot F_C \text{ (right)} 4 - 5 = -1 \text{ kN}$ $BM_A = BM_B = 0$ $BM_C = 4 \times 1 \cdot 5 = 6 \text{ kN·m}$	0)+01
		SFD(left) = -1 kN, SFD = -1 kN, SFB = -8 kN, SFB = -8 kN,	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	b	Given, for rectangular s.s. beam, $b = oomm , d = somm ,$ $L = 2m$., $6b = 28 \text{ N/mm}^2$, $9may = 2 \text{ N/mm}^2$ Solution; Max. B.M = $M = \frac{WL^2}{8} \times 10^6 \text{ N/m}$ Max. S.F = $S = RA = \frac{WL}{2} \times 10^3 \text{ N}$ for beam section, $I = \frac{bd^3}{12} = \frac{100 \times 150^3}{12} = 28.125 \times 10^6 \text{ m/m}^4$ $Ymax = d/2 = 150/2 = 75 \text{ m/m}$. 1) Value of 'W' for bending stress criteria. $M = \frac{6}{7} \times I$ $10^6 \times \frac{WL^2}{8} = \frac{28 \times 28.125 \times 10^6}{75}$	1/2.
		$10^{6} \times \frac{w \times 2^{2}}{8} = \frac{38 \times 38.125 \times 10^{6}}{75}$ $\frac{w}{8} = \frac{21 \text{ kN/m}}{75} - \text{A}$	1-2
		$2 \times 100 \times 150$ $W = 20 \text{ KN/m}. B$ $Permissible UDL = minimum of B 4B$	13
		= 20 KN/m	1/2

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

subject Code:

Q.	Sub	Angwor	Marking
No.	Q. N.	Answer	Marking Scheme
A	С	Given: for solid circular shaft $d=40 \text{mm}$, $N=200 \text{2pm}$, $q_{mag}=85 \text{N/mm}^2$ Solution for solid shaft, $Ip = \frac{11}{32} d4 = \frac{11}{32} \times 40^4 = 3.5 \times 10^5 \text{mm}^4$ $R = d/2 = 40/2 = 20 \text{mm}$. Using the relation, $\frac{1}{Ip} = \frac{q_{max}}{R}$ $T = \frac{q_{max} \times Ip}{R} = \frac{85 \times 3.5 \times 10^5}{20} = 1.0 \times 10^6 \text{N·mm}$ $R = 1.07 \times 10^3 \text{N·m}$. Assuming $R = 1.07 \times 10^3 \text{N·m}$. $R = \frac{211 \times 10^3 \times 10^3 \text{N·m}}{60} = \frac{211 \times 200 \times 1.07 \times 10^3 \text{N·m}}{60} = \frac{22410.03 \text{Watts}}{60}$) D1
		P = 22.41 kw.	11/2
4	d	Given for M.s. Link, $P = 80 \text{ kN} = 80 \text{ x} 10^3 \text{ N}$, $b = 3t$, $6 = 70 \text{ N/mm}^2$ Solution: $6 = \frac{P}{A}$ $A = \frac{P}{6} = \frac{80 \times 10^3}{70}$ $A = 1142.86 \text{ mm}^2$ $b \times t = 1142.86$ $3t \times t = 1142.86$ $t = 19.52 \text{ mm}$ $b = 3t = 3 \times 19.52 = 58.56 \text{ mm}$	01

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

St	ıbject	Name: STRENGTH OF MATERIALS Model Answer subject Code:	22306
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	e	N. Ja 2 de 192 93 N. Ja 2 de 192 93 9max = 9 195 Cls of beam Bending stress Shear stress distribution.	02+02
Q5	a	Attempt any Two of the following: Given, for brass bar, A = 1000 mm ² , E = 1.05×10 ⁵ Nm Solwtion: B C D SOKN B SOKN B C JOKN JOKN	12
		Equilibrium ob individual parts-	02

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER – 18 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	contd.	i) $\int L_{AB} = \frac{PL}{AE_{AB}} = \frac{50 \times 10^3 \times 800}{1000 \times 1.05 \times 10^5} = + 0.381 \text{ mm}.$	οl
		11) de le = (PL) BC = - 30×10×1000 = - 0.286 mm.	۱۵
		iii) $\Omega_{cD} = \frac{(PL)}{AE}_{cD} = -\frac{10 \times 10 \times 1200}{1000 \times 1 \cdot 05 \times 105} = -0.114 \text{ mm}.$	01
		Net deformation = SAB + SBC + SCD	
		= 0.381 - 0.286 - 0.114	
		dL = - 0.019 mm. (-ve sign indicates decrease in length)	01
5	0	on the basis of mechanical properties given materials can be arrenged in decreasing order as below.	
		D' Criteria — strongth. 1) Mild steel 2) Copper 3) Wood 4) leather.	02
		1 Criteria - Hardness - 1) Mildsted	71
		2) Copper 3). Wood 4) leather.	02
		© Controla - Ductility - 1) Copper 2) Mildsteel	a. I.
		3) leather 4) Wood.	02

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS Model Answer

subject Code:

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	C	Given - For short circular (hollow) column $D = 40 \text{ cm} = 400 \text{ mm}$ $d = 20 \text{ cm} = 200 \text{ mm}.$ $\text{Critenia} - \text{no tension at base}.$ Solution $Cls \text{ Area} = A = \frac{\Pi}{4} \left(D^2 - d^2\right) = \frac{\Pi}{4} \left(400^2 - 200^2\right) = 94.25 \times 10 \text{ mm}^2$ $M.I = I = \frac{\Pi}{64} \left(D^4 - d^4\right) = \frac{\Pi}{64} \left(400^4 - 200^4\right) = 11.78 \times 10^8 \text{ mm}^4$ $\text{Ymax} = \frac{D}{2} = \frac{400}{2} = 200 \text{ mm}.$ $\text{For no tension condition} - \frac{1}{100} = \frac{1}{$	01
		$e = \frac{I}{A \times y_{max}} = \frac{11.78 \times 10^{8}}{94.25 \times 10^{3} \times 200}$ $e = 62.49 \text{ mm}.$	01
			01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name:	STRENGTH	OF MATERIALS
---------------	-----------------	---------------------

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	a	Attempt any Two of the following: Given for a rectangular S.S. wooden beam -	12
		b=150mm, d=250mm, L=1.3m. Central point load='W'N $6b=7 N mm^2$ and $9max=1 N mm^2$	
		Solution WN D.65m B	
		$M = Max 8 \cdot M = \frac{WL}{4} = \frac{Wx 1.3}{4} = 0.325 W \cdot N \cdot m$ $M = 325 W N \cdot mm$	01
		S= Max S.F= Reaction = WN = 0.5WN.	01
		for rectangular section, A = bxd = 150x250 = 37500 mm	
		$I = \frac{bd^3}{12} = \frac{150 \times 250^3}{12} = 195.31 \times 10^6 \text{ mm}^4$	
		$y_{\text{max}} = d_2 = \frac{250}{2} = 125 \text{ mm}.$	
		i) Value of 'W' for bending stress criteria	
		$\frac{M}{I} = \frac{6}{y} \text{ M} = \frac{6}{y} \times I$ $325 \text{ W} = \frac{7 \times 195 \cdot 31 \times 10^{6}}{125}$	
		ii) Value of 'W' for shear stress criteria. 9 max = 1.55	15_
		1 = 1.5 × 0.5 W/37500 " W= 50000 N=50k1	围生
		:. Safe Value of W= min. of A &B = 33.65 kN.	01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS

Model Answer

subject Code:

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	Ь	Given, for solid circular steel shaft- $P = 90 \text{kW} = 90 \times 10^3 \text{Walts} N = 160 \text{rpm}.$ $9 \text{max} = 60 \text{N/mm}^2, G = 8 \times 10^4 \text{N/mm}^2$ $0 = 1^\circ = 1 \times \text{TL} = 0.0175 \text{rad}.$	
		Solution: $P = \frac{217 \text{ NTavg}}{60}$ $90 \times 10^3 = \frac{217 \times 160 \times \text{Tavg}}{60}$ $\frac{3}{10^3} = \frac{217 \times 160 \times \text{Tavg}}{60}$ $\frac{3}{10^3} = \frac{3}{10^3} \times \frac{3}{10^3}$	0
		Student may assume $T_{max} = T_{avg} = 5.371 \times 10^6 \text{ N/mm}$. Using the relation, $T = \frac{q_{max}}{R}$ $\frac{5.371 \times 10^6 \times 32}{R} = \frac{60 \times 2}{R}$	01
		$\frac{11 d^4}{d^3} = \frac{5.371 \times 10^6 \times 32}{11 \times 60 \times 2} = 455.90 \times 10^3$ $\frac{1}{11} d = \frac{1}{11} = \frac{1}$	01
		Now, $I_p = \frac{11}{32} \times d4 = \frac{11}{32} \times 76.96 = 3.444 \times 10^6 \text{ mm}^4$. Using the relation, $\frac{T}{T_0} = \frac{Go}{4}$	' 1
		$\frac{1}{1} = \frac{60 \cdot \text{TP}}{1} = \frac{8 \times 10^{4} \times 0.0175 \times 3.444 \times 10^{6}}{5.371 \times 10^{6}}$ $\frac{1}{1} = \frac{897.71 \text{ mm}}{1}$,
		: length of shaft = L = 0.897m Say 0.9m. (Note - Student may assume Tmax = 1.2 to 1.4 Targ. Marks Shall be awarded accordingly.)	.01

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER - 18 EXAMINATION

Subject Name: STRENGTH OF MATERIALS Model Answer

subject Code:

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
6	C	Given- For rectangular column section -	
		b = 200 mm, d= 100 mm, P= 180×103 N.	
		e=100 mm in the plane bisecting thickness	
		Solution!	
		eccentricity about YY-axis.	01
		$Iyy = \frac{d_{100 \times 200^3}}{12} = 66.67 \times 10^6 \text{ mm}^4$	
		Tmax = 200/2 = 100 mm.	
		$A = 200 \times 100 = 20000 \text{mm}^2$	
		i) direct stress = $60 = \frac{P}{A} = \frac{180 \times 10^{3}}{20000} = 9 \text{ N/mm}^{2}$	01
		ii) bending stress = 6b = + P.e. ymax	01
		$= \pm \frac{180 \times 10^{3} \times 100 \times 100}{100}$	
		66.67×106 $6b = \pm 27 \text{N/mm}^2$	01
		iii) 5 max = 60+66 = 9+27 = 36 N/mm² (Comp.)	
14		$\frac{1}{100}$ Cm = $\frac{1}{20} - 6h = 9 - 27 = -18 \text{ N/mm}^2$	01
		= 18 N/mm² (Tensile).	
		x = x 100mm = c/s of column.	
		1000	
		1011	
		18 N Carobined Stress	
		distribution dia	01
		36 N/mm ²	