Contrôle d'algèbre linéaire N°3

Durée : 1 heure 40 minutes Barème sur 20 points

NOM:	
	Groupe
PRENOM:	

- 1. Dans le plan, muni de la base canonique orthonormée $B=(\vec{e}_1,\,\vec{e}_2)\,,\,$ on considère les endomorphismes suivants :
 - s est une symétrie orthogonale d'axe (O, \vec{a}) telle que $\angle(\vec{e}_1, \vec{a}) = \frac{\pi}{6}$,
 - p est une projection orthogonale sur la droite 4x 3y = 0,
 - r est une rotation de centre O et d'angle $\varphi = \frac{\pi}{18}$,
 - h est une homothétie de centre O et de rapport k=25.
 - a) Déterminer la matrice de l'endomorphisme $l=s^{11}\circ h\circ r^6\circ p$ par rapport à la base B.
 - b) En le justifiant, déterminer, avec précision, la nature géométrique de $\,l\,.\,$

5.5 pts

 $R\'{e}ponses$:

a)
$$M_l = \begin{pmatrix} 9 & 12 \\ -12 & -16 \end{pmatrix}$$

- b) l est une projection sur Im l parallèlement à $\ker l$, composée avec une homothétie de centre O et rapport -7.
- 2. Dans le plan \mathbb{R}^2 , soient deux vecteurs \vec{u} et \vec{v} linéairement indépendants.

On considère une affinité g de direction \vec{v} , de rapport k=-2 et d'axe (O, \vec{w}) , avec $\vec{w}=3\vec{u}-4\vec{v}$.

a) Déterminer $g(\vec{u})$ et $g(\vec{v})$ en fonction de \vec{u} et \vec{v} . En déduire la matrice de g dans la base $B = (\vec{u}, \vec{v})$.

Soit l'endomorphisme f défini par

$$\begin{cases} f(\vec{u} + \vec{v}) &= 9\vec{v} \\ f(-\vec{u} + \vec{v}) &= \vec{v} \end{cases}$$

b) Déterminer la matrice M_f de l'application f dans la base B.

c) Dans la base $\,B\,,$ calculer la matrice de l'endomorphisme $\,l=g+f\,$ et en déduire directement sa nature géométrique.

3 pts

 $R\'{e}ponses$:

a)
$$M_g = \begin{pmatrix} 1 & 0 \\ -4 & -2 \end{pmatrix}$$

b)
$$M_f = \begin{pmatrix} 0 & 0 \\ 4 & 5 \end{pmatrix}$$

c)
$$M_l = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

l est une affinité d'axe (O, \vec{u}) , direction \vec{v} et rapport 3.

- **3.** Dans l'espace, muni de la base canonique orthonormée $B=(\vec{e_1},\vec{e_2},\vec{e_3})$, on considère l'endomorphisme $f=h\circ p$ défini par :
 - ker f est la droite d'équations paramétriques $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,
 - h est une homothétie de centre O et de rapport k=3,
 - \bullet p est une projection orthogonale de l'espace.
 - a) Déterminer Im f, en le justifiant brièvement, et en donner deux générateurs notés \vec{a} et \vec{b} .
 - b) Relativement à la base B, déterminer la matrice de f.

Soit g l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 dont la matrice est M_g par rapport à B:

$$M_g = \frac{1}{3} \left(\begin{array}{rrr} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{array} \right)$$

- c) Montrer que g est bijective et déterminer l'ensemble des points fixes de g. Calculer $g(\alpha \vec{a} + \beta \vec{b})$, $\alpha, \beta \in \mathbb{R}$ (\vec{a}, \vec{b}) définis sous a) En déduire, en le justifiant, la nature géométrique de g.
- d) Dans une base judicieusement choisie, à préciser, calculer la matrice de l'endomorphisme $l=4\,f+6\,g$.

En déduire la nature géométrique de l.

8 pts

$R\'{e}ponses$:

a) Im f est un plan orthogonal à ker f, et passant par O.

Générateurs : par exemple
$$\vec{a}=\begin{pmatrix}1\\-1\\0\end{pmatrix}$$
 et $\vec{b}=\begin{pmatrix}1\\0\\-1\end{pmatrix}$

b)
$$M_f = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

c) $\det M_g \neq 0$

Points fixes:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

g est une symétrie orthogonale par rapport à la droite $(O\,,\vec{u})\,,$ où \vec{u} est le vecteur directeur de $\ker f\,.$

d) Soit la base $B(\vec{a}, \vec{b}, \vec{u})$, où \vec{u} est le vecteur directeur de ker f, alors

$$M_l = \left(\begin{array}{ccc} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right)$$

l est une homothétie de centre O et rapport 6.

4. On munit \mathbb{R}^3 et $\mathbb{M}(2,\mathbb{R})$ de leur base canonique usuelle.

On considère l'application linéaire f suivante :

$$\begin{array}{cccc} f: & \mathbb{R}^3 & \longrightarrow & \mathbb{M}(2,\mathbb{R}) \\ & \vec{x} & \longmapsto & f(\vec{x}) \end{array}$$

définie par sa matrice $M_f=\left(\begin{array}{ccc}1&0&1\\1&-1&0\\1&1&2\\0&1&1\end{array}\right)$ par rapport à ces bases.

a) Déterminer $\operatorname{Im} f$ et $\ker f$ et en donner une base.

Soit la matrice $M = \begin{pmatrix} 2 & -2 \\ 6 & 4 \end{pmatrix}$.

b) Déterminer $f^{-1}(\{M\})$.

R'eponses:

- a) Base de Im f: (A,B), avec $A=\begin{pmatrix}1&1\\1&0\end{pmatrix}$ et $B=\begin{pmatrix}0&-1\\1&1\end{pmatrix}$ Base de $\ker f:(\vec{a})$ avec $\vec{a}=\begin{pmatrix}1\\1\\-1\end{pmatrix}$
- b) $f^{-1}(\{M\}) = \begin{pmatrix} 2\\4\\0 \end{pmatrix} + k \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$