Appunti di Algebra Superiore

Github Repository: Oxke/appunti/AlgebraSuperiore

Primo semestre, 2025 - 2026, prof. Alberto Canonaco

Libri utili

- Per la parte di algebra omologica Hilton-Stammbach, Osborne e Weibel.
- Dispense sui moduli (su KIRO) utili
- Aluffi, Algebra Chapter 0

Il corso è di 60 ore, non perché sia più pesante ma perché dovrebbero esserci ore di esercitazioni (non sarà necessariamente vero ma Canonaco cercherà di andare un po' nel dettaglio, fornire esempi e controesempi per quanto possibile)

0.1 Richiami sugli Anelli

Per convenzione, parlando di anelli si parlerà sempre di anelli con unità

Definizione 0.1.1: Anello

Un **anello** $A, +, \cdot$ è un gruppo abeliano A, + (con 0 elemento neutro) e contemporaneamente un monoide A, \cdot (cn 1 elemento neutro). Inoltre le due operazioni sono legate dalle proprietà distributive

$$a(b+c) = ab + ac$$
 ; $(b+c)a = ba + ca$

Diremo che l'anello è **commutativo** se l'operazione \cdot è commutativa

Per quasi tutto ciò che si vedrà in questo corso non è necessario andare a disturbare anelli non commutativi, dunque si useranno quasi sempre anelli commutativi.

Esempio 0.1.1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{Z}/n\mathbb{Z}$

Esempio 0.1.2. Se A è un anello (commutativo), allora i polinomi a coefficienti in Λ e con variabili in Λ costituiscono l'anello $A[x_{\lambda} \mid \lambda \in \Lambda]$

Esempio 0.1.3 (Anello Banale). L'anello composto da un solo elemento $\{0 = 1\}$

Esempio 0.1.4 (Non comm.). A anello, allora l'anello $M_n(A)$ delle matrici $n \times n$ a coefficienti in A non è commutativo se n > 1 (e se non è l'anello banale ma dai l'anello banale non esiste davvero)

Esempio 0.1.5. Endomorfismi Se (G, +) è un gruppo abeliano, allora End(G) è anello con + determinato da (f + g)(a) = f(a) + g(a) e · dato dalla composizione $(f \circ g)(a) = f(g(a))$

In generale se G, G' sono gruppi con (G, +) abeliano, allora l'insieme Hom(G', G) degli omomorfismi da G' a G è un sottogruppo di $G^{G'}$ il gruppo delle funzioni da G' a G.

Infatti se X è un insieme allora G^X è un gruppo con (f+g)(a)=f(a)+g(a)

Definizione 0.1.2: Invertibile

 $a \in A$ è invertibile a sinistra (destra) se $\exists a' \in A$ tale che a'a = 1 (aa' = 1). a viene detto **invertibile** se $\exists a' \in A$ tale che a'a = aa' = 1

Osservazione (invertibile \iff invertibile a destra e sinistra). solo una implicazione non è ovvia. Se $a', a'' \in A$ sono tali che a'a = aa'' = 1 allora

$$(a'a)a'' = a'(aa'')$$

 $1a'' = a'' = a' = a'1$

quindi a è invertibile e $a^{-1} = a' = a''$

Osservazione (Gruppo degli invertibili). L'insieme degli elementi invertibili forma un gruppo con l'operazione di prodotto e si indica con A^*

In generale, se $1 \neq 0$, allora $A^* \subseteq A \setminus \{0\}$

Definizione 0.1.3: Anello con Divisione

A si dice anello con divisione se $A^* = A \setminus \{0\}$. Un campo è un anello con divisione commutativo.

Definizione 0.1.4: Divisore di zero

 $a \in A$ è detto divisore di zero a sinistra (destra) se $\exists a' \in A \setminus \{0\}$ tale che aa' = 0 (a'a = 0)

Osservazione. Divisore di zero a sinistra: aa' = 0. Invertibile a sinistra: a'a = 1

Definizione 0.1.5: Dominio

A viene detto **dominio** se $A \neq 0$ e A non ha divisori di zero. Viene inoltre chiamato **dominio** di integrità se è commutativo.

Esempio 0.1.6. I campi, \mathbb{Z} , se A dominio d'integrità, allora anche $A[x_{\lambda} \mid \lambda \in \Lambda]$ è dominio d'integrità.

Osservazione. $A \neq 0$ tale che $\forall 0 \neq a \in A$ è invertibile a sinistra, allora A è un anello con divisione.

Dimostrazione. $\exists a' \in A$ tale che a'a = 1 ma anche $\exists a'' \in A : a''a' = 1$. Allora a' è invertibile a sinistra e a destra, infatti

$$a'^{-1} = a = a'' \implies a \in A^*$$

Definizione 0.1.6: Sottoanello

 $A'\subseteq A$ è sottoanello di A se (A',+)<(A,+), $ab\in A'$ per ogni $a,b\in A'$ e $1\in A'$

Esempio 0.1.7. $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}\subseteq\mathbb{H}$ sono tutti sottoanelli

Esempio 0.1.8. $A \subseteq A[X]$ sottoanello

Definizione 0.1.7: Ideale

 $I\subseteq A$ è un'ideale sinistro (destro) se (I,+)<(A,+)e $ab\in I$ $(ba\in I),\,\forall a\in A$ e $\forall b\in I.$

Un ideale bilatero è un ideale sia sinistro che destro.

Esempio 0.1.9. Gli ideali in \mathbb{Z} sono tutti e soli della forma $n\mathbb{Z}$, con $n \in \mathbb{N}$

Osservazione. Se I è un ideale sinistro o destro allora

$$I = A \iff I \cap A^* \neq \emptyset$$

quindi A con divisione \implies gli unici ideali sinistri o destri sono $\{0\}$ e A

Definizione 0.1.8: Anello opposto

L'anello opposto di un anello A è A^{op} , con $(A^{op}, +) := (A, +)$ e con prodotto ab in A^{op} definito come ba in A

Osservazione. $(A^{op})^{op} = A \in A^{op} = A \iff A \text{ commutativo}$

Proposizione 0.1.1 (Anello Quoziente). Se $I \subseteq A$ ideale, allora il gruppo abeliano A/I, + è un anello con prodotto $\overline{ab} := \overline{ab}$, dove $\overline{a} := a + I \in A/I$

Definizione 0.1.9: omomorfismo di anelli

Siano A, B anelli. $f: A \to B$ è **omomorfismo** di anelli se, $\forall a, a' \in A$

- i) f(a + a') = f(a) + f(a')
- ii) f(aa') = f(a)f(a')
- iii) $f(1_A) = 1_B$

ed è **isomorfismo** se è un omomorfismo biunivoco

Osservazione. f omomorfismo è isomorfismo $\iff \exists f': B \to A$ omomorfismo tale che $f' \circ f = \mathrm{id}_A$ e $f \circ f' = \mathrm{id}_B$

Indicheremo $A \cong B$ se esiste un isomorfismo tra $A \in B$

Proposizione 0.1.2. Se $f: A \rightarrow B$ è un omomorfismo allora

- 1. $A' \subseteq A$ è sottoanello $\implies f(A') \subseteq B$ è sottoanello.
- 2. $B' \subseteq B$ sottoanello $\implies f^{-1}(B') \subseteq A$ è sottoanello
- 3. $J \subseteq B$ è ideale (sinistro / destro) $\Longrightarrow f^{-1}(J) \subseteq A$ è ideale (sinistro / destro). In particolare $\operatorname{Ker} f := f^{-1}(0_B) \subseteq A$ è ideale
- 4. f suriettivo $e \ I \subseteq A \ ideale \implies f(I) \subseteq B \ è \ ideale$

Osservazione. $f: A \to B$ è iniettivo \iff Ker $f = \{0_A\}$ e in tal caso $A \cong \text{Im} f := f(A)$ che dunque è sottoanello di B

Teorema 0.1.3: Omomorfismo

 $f:A\to B$ è omomorfismo di anelli, $I\subseteq A$ ideale tale che $I\subseteq \mathrm{Ker} f$. Allora

 $\exists ! \overline{f} : A/I \to B$ omomorfismo tale che $\overline{f}(\overline{a}) = f(a) \quad \forall a \in A$

$$A \xrightarrow{f} B$$

$$\pi \downarrow \qquad \overline{f}$$

$$A/I$$

Inoltre im $\overline{f} = \text{im} f$ e $\text{Ker} \overline{f} = \text{Ker} f/I$

Proposizione 0.1.4. Gli ideali di A/I sono tutti e soli della forma J/I con $J \subseteq A$ ideale tale che $I \subseteq J$

Teorema 0.1.5: Primo teorema di isomorfismo

 $f:A\to B$ è omomorfismo di anelli, allora im $f\cong A/\mathrm{Ker} f$

Definizione 0.1.10: Ideale massimale (sinistro / destro)

Un ideale J (sinistro/destro) di A è massimale se $\forall I$ ideale (sinistro/destro) tale che $J\subseteq I\subseteq A,$ allora I=J o I=A

Osservazione. Esiste sempre un ideale (sinistro/destro) massimale (lemma di Zorn)

Definizione 0.1.11

L'ideale generato da $U\subseteq A$ è il più piccolo ideale di A che contiene $U=\bigcap_{U\subseteq I\subseteq A \text{ideale}} I$ ed esplicitamente è

$$AUA := \left\{ \sum_{i=1}^{n} a_i u_i b_i : n \in \mathbb{N}, a_i, b_i \in A, u_i \in U \right\}$$

Osservazione. Se A è commutativo e $U=\{u\}$ allora $A\{u\}A=Au=\{au:a\in A\}$ (ideale principale)

Definizione 0.1.12: PID

A è un dominio (d'integrità) a ideali principali (PID) se ogni ideale di A è principale.

Esempio 0.1.10. Campi (non ci sono ideali propri)

Esempio 0.1.11. \mathbb{Z} (con ideali nZ = (n))

Esempio 0.1.12. K[X] con K campo

0.2 Richiami sui Moduli

Definizione 0.2.1: A-modulo

Un A-modulo (di default sinistro) M è un gruppo abeliano (M,+) con una moltiplicazione per scalare definita da

$$\cdot: A \times M \longrightarrow M$$

$$(a, x) \longmapsto ax \in M$$

e tale che, $\forall a, b \in A$ e $\forall x, y \in M$:

- $1) \ a(x+y) = ax + ay$
- $2) \ (a+b)x = ax + bx$
- $3) \ (ab)x = a(bx)$
- 4) 1x = x

Osservazione. Se $\mathbb K$ è un campo, allora un $\mathbb K$ -modulo è uno spazio vettoriale.

Osservazione. Se (M,+) è un gruppo abeliano, data $f:A\times M\to M$ posso definire $\alpha:A\to M^M$ come $\alpha(a)=(x\mapsto ax)$, e quindi le proprietà precedenti si traducono in

- 1. $\alpha(a)(x+y)=\alpha(a)(x)+\alpha(a)(y)$ e dunque $\alpha(a)$ è omomorfismo di gruppi, dunque $\alpha(A)\subseteq \mathrm{End}(M)$
- 2. $\alpha(a+b) = \alpha(a) + \alpha(b)$ dunque $\alpha: A \to \operatorname{End}(M)$ è omomorfismo di gruppi
- 3. $\alpha(a) \circ \alpha(b) = \alpha(ab)$
- 4. $\alpha(1) = \mathrm{id}_M$

Dalla 2,3,4 $\alpha:A\to \operatorname{End}(M)$ è omomorfismo di anelli.

Teorema 0.2.1: Secondo teorema di isomorfismo

Sia M un modulo, con $M', M'' \subseteq M$ sottomoduli. Allora

$$M'/(M' \cap M'') \cong (M' + M'')/M''$$

Dimostrazione. Si prenda $f: M' \to (M' + M'')/M''$ composizione dell'inclusione di M' in M' + M'' e della proiezione a quoziente, dunque è un omomorfismo.

Allora $\text{Ker} f = \{x \in M' : x + M'' = M''\} = M' \cap M''.$

Preso $y \in (M' + M'')/M''$, y = x' + x'' + M'' = x' + M'' = f(x') dunque f è suriettiva. Dal primo teorema di isomorfismo segue la tesi.

Teorema 0.2.2: Terzo teorema di isomorfismo

Dati $M'' \subseteq M' \subseteq M$ sottomoduli e modulo, allora

$$(M/M')/(M'/M'') \cong M/M'$$

Dimostrazione. Sia f la composizione delle due proiezioni a quoziente, dunque è suriettiva. Allora

$$x \in \operatorname{Ker} f \iff \pi(x) \in \operatorname{Ker} \pi' = M'/M''$$

dunque $\operatorname{Ker} f = M'$ da cui la tesi per il primo teorema di isomorfismo.

Proposizione 0.2.3.

- 1. Sia A un anello, allora un A-modulo M è ciclico se e solo se $\exists I \subseteq A$ ideale sinistro tale che $M \cong A/I$
- 2. M è semplice se e solo se $\exists I \subseteq A$ ideale sinistro massimale tale che $M \cong A/I$

Dimostrazione. 1. (\iff) A/I è ciclico (generato da $\overline{1}$). Viceversa per (\implies) so che M=Ax per un qualche $x\in M$. Considerata $f:_AA\to M$ data da $a\mapsto ax$, Kerf è sottomodulo di A, ovvero ideale sinistro. Concludo per il primo teorema di isomorfismo.

2. Se M è semplice allora $\forall 0 \neq x \in M$, M = Ax, dunque M è ciclico e per il punto 1. esiste I ideale sinistro tale che $M \cong A/I$. La proposizione si riduce a dire che A/I è semplice se e solo se I è massimale. Sappiamo che i sottomoduli di A/I sono tutti e soli della forma J/I con $I \subseteq J \subseteq A$ ideale sinistro. Allora $A/I \neq 0 \iff I \neq A$ e gli unici sottomoduli di A/I sono I/I e A/I, ossia gli unici ideali sinistri J tali che $I \subseteq J \subseteq A$ sono I e A.

Osservazione. Con il lemma di Zorn si dimostra che $A \neq 0 \implies$ esiste un ideale sinistro massimale (e dunque esiste un sottomodulo semplice)

0.2.1 Prodotti

Definizione 0.2.2: Prodotto

Supponiamo di avere M_{λ} A-moduli, per $\lambda \in \Lambda$. Allora

$$M:=\prod_{\lambda\in\Lambda}M_\lambda$$
è un $A\text{-modulo detto }\mathbf{prodotto}$ degli M_λ

 $\begin{array}{l} {\rm con}\; (x+y)_{\lambda} := x_{\lambda} + y_{\lambda} \; {\rm e}\; (ax)_{\lambda} = ax_{\lambda} \; {\rm per \; ogni} \; \lambda \in \Lambda \; {\rm e}\; x, y \in M. \\ \forall \mu \in \Lambda \; {\rm esiste} \; p_{\mu} : M \to M_{\mu}, \; (x_{\lambda})_{\lambda \in \Lambda} \mapsto x_{\mu} \; {\rm che} \; \grave{\rm e} \; A \text{-lineare e suriettivo}. \end{array}$

Proposizione 0.2.4 (Proprietà universale del prodotto).

Dati $f_{\mu}: N \to M_{\mu}$ A-lineari $\forall \mu \in \Lambda$, allora esiste unico $f: N \to M$ A-lineare tale che $f_{\mu} = p_{\mu} \circ f$

$$\begin{array}{c}
N \\
f_{\mu} \downarrow \\
M_{\mu} \leftarrow p_{\mu} & \prod_{\lambda \in \Lambda} M_{\lambda}
\end{array}$$

Esercizio 0.2.1

Dimostrare la proprietà universale del prodotto

Definizione 0.2.3: Somma diretta

La somma diretta (o coprodotto) degli M_{λ} è

$$M':=\bigoplus_{\lambda\in\Lambda}M_\lambda=\{(x_\lambda)_{\lambda\in\Lambda}\in M:x_\lambda>0\text{ per finiti }\lambda\subseteq M\}$$

è sottomodulo.

 $\forall \mu \in \Lambda \text{ esiste}$

$$\begin{split} i_{\mu}: M_{\mu} &\longrightarrow M' \\ x &\longmapsto i_{\mu}(x) = (x_{\lambda})_{\lambda \in \Lambda}, \quad x_{\lambda} := \begin{cases} x & \lambda = \mu \\ 0 & \lambda \neq \mu \end{cases} \end{split}$$

che è A-lineare e iniettivo.

Proposizione 0.2.5 (Proprietà universale somma diretta).

$$\begin{array}{c}
N \\
f_{\mu} \\
\downarrow \\
M_{\mu} \xrightarrow{i_{\mu}} \bigoplus_{\lambda \in \Lambda} M_{\lambda}
\end{array}$$

Osservazione. Se $\#\Lambda < +\infty$ allora

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \prod_{\lambda \in \Lambda} M_{\lambda}$$

Nota (zione). Se $M_{\lambda}=M$ per ogni $\lambda\in\Lambda,$ si denota

$$\prod_{\lambda \in \Lambda} M =: M^{\Lambda} \quad \text{e} \quad \bigoplus_{\lambda \in \Lambda} M =: M^{(\Lambda)}$$

Dati $M_{\lambda} \subseteq M$ sottomoduli, con $\lambda \in \Lambda$, sia

$$f: \bigoplus_{\lambda \in \Lambda} M_{\lambda} \to M$$

l'omomorfismo indotto dalle inclusioni $M_\lambda \overset{i_\lambda}{\hookrightarrow} M$, allora

$$\operatorname{im} f =: \sum_{\lambda \in \Lambda} M_\lambda \subseteq M$$
è sottomodulo

Inoltre f è iniettiva se e solo se $M_{\mu} \cap \sum_{\lambda \in \Lambda} \{ \{ \} \} = 0$ per ogni $\mu \in \Lambda$ e in tal caso f induce un isomorfismo tra $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ e $\sum_{\lambda \in \Lambda} M_{\lambda}$ e si può scrivere $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ per indicare il sottomodulo di M

Definizione 0.2.4: Linearmente indipendente, base, modulo libero

Si
a $U\subseteq M$ un insieme, con M A-modulo. Si dice che
 U è A-linearmente indipendente se dati
 $x_1,\dots,x_n\subseteq U$ distinti

$$a_1, \dots, a_n \in A \text{ t.c. } \sum_{i=1}^n a_i x_i = 0 \implies a_1 = \dots = a_n = 0$$

U è detta base di M se è linearmente indipendente e genera M, ossia M=AU. Si dice che M è libero se ammette una base

Esempio 0.2.1. Per ogni Λ , $A^{(\Lambda)}$ è libero con base $\{e_{\lambda} : \lambda \in \Lambda\}$ dove, per ogni $\lambda \in \Lambda$,

$$(e_{\lambda})_{i} = \begin{cases} 1 & \lambda = i \\ 0 & \lambda \neq i \end{cases}$$

Proposizione 0.2.6. Siano L, M A-moduli, con L libero con base $\{l_{\lambda} : \lambda \in \Lambda\}$ tale che $l_{\lambda} \neq l_{\mu}$ se $\lambda \neq \mu$, allora

$$\forall \lambda \in \Lambda \ \exists ! f : L \to M \ A\text{-lineare t.c.} \ f(l_{\lambda}) = x_{\lambda}$$

Corollario 0.2.6.1. Un A-modulo è libero se e solo se è isomorfo a $A^{(\Lambda)}$ per qualche Λ

Dimostrazione.

 $\implies M$ libero con base $\{x_{\lambda} : \lambda \in \Lambda\}$ con $x_{\lambda} \neq x_{\mu}$ se $\lambda \neq \mu$. Allora per la proposizione

$$\exists ! f: A^{\Lambda} \to M$$
 A-lineare t.c. $f(e_{\lambda}) = x_{\lambda}$

per ogni $\lambda \in \Lambda$. Allora im $f = \langle x_\lambda : \lambda \in \Lambda \rangle_A = M$ e f è iniettivo perché gli x_λ sono linearmente indipendenti.

<= ovvio

Corollario 0.2.6.2. Ogni A-modulo è insomorfo a un quoziente di un modulo libero $(A^{(\Lambda)} \ per \ un \ qualche \ \Lambda \).$

Inoltre un A-modulo è finitamente generato se e solo se è isomorfo a un quoziente di $A^n, n \in \mathbb{N}$

Dimostrazione. Sia $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ un insieme di generatori di un modulo M. Per la proposizione $\exists! f: A^{(\Lambda)} \to M$ A-lineare tale che $\mathrm{fl}_{\lambda} = x_{\lambda}$ per ogni $\lambda \in \Lambda$. Allora $\mathrm{Im} f = M$ e dunque per il primo teorema di isomorfismo $M \neq A^{(\Lambda)}/\mathrm{ker} f$.

Per la seconda parte se M è finitamente generato posso scegliere Λ finito e viceversa $M \neq A^n/N$ è finitamente generato perché A^n lo è e $\pi: A^n \to A^n/N$ è un omomorfismo suriettivo.

Proposizione 0.2.7. A è con divisione se e solo se ogni suo A-modulo è libero

Dimostrazione.

- ⇒ (complementi di algebra)
- \Leftarrow Sia M un A-modulo semplice. Per ipotesi è libero, allora $M \cong A^{(\Lambda)}$ per un qualche Λ . Ma se $\#\Lambda > 1$ allora $A^{(\Lambda)}$ non è semplice ($A \subseteq A^{(\Lambda)}$ è un sottomodulo non banale). Inoltre $\Lambda \neq \emptyset$ ($A^{(\varnothing)} = \{0\}$ non è semplice).

Ne consegue che $M\cong A$ e dunque A è con divisione

Esempio 0.2.2. Con $A = \mathbb{Z}, \mathbb{Z}/p\mathbb{Z}$ non è libero

Si può dimostrare che se A è con divisione, allora tutte le basi di un A-modulo (libero) M hanno la stessa cardinalità, che viene detta rango e indicata con $\operatorname{rk}_A M$.

In generale non tutte le basi di un A-modulo libero hanno la stessa cardinalità, esistono infatti anelli A non banali tali che ${}_A^A \cong_A A^n$ per $ogni \ n \in \mathbb{N}$.

Esempio 0.2.3. Sia $A = \operatorname{End}_{\mathbb{K}}(V)$ con \mathbb{K} campo e $\dim_{\mathbb{K}}(V) = +\infty$

Si dimostra che se $A \to B$ è omomorfismo di anelli e il rango dei B-modulli liberi è ben definito allora anche il rango degli A-moduli liberi è ben definito. Di conseguenza se $A \neq 0$ è commutativo allora il rango degli A-moduli liberi è ben definito ($\exists I \subseteq A$ ideale massimale e $\pi: A \to A/I$ omomorfismo con A/I campo)

0.2.2 restrizione degli scalari

Siano A, B anelli, con $f: A \to B$ omomorfismo di anelli. Allora se M è un B-modulo allora M è anche un A-modulo con ax := f(a)x. Si dice allora che ${}_AM$ è ottenuto da ${}_BM$ per **restrizione degli scalari** attraverso f.

Inoltre se $M'\subseteq M$ è B-sottomodulo allora è anche un A-sottomodulo e se $g:M\to N$ è B-lineare allora g è anche A-lineare.

Prima della prossima definizione ricordiamo che il **centro** di un anello è sottoanello, con il centro l'insieme degli elementi che commutano con tutti gli altri elementi e indicato con Z(A),

$$Z(A) := \{ z \in A : za = az \ \forall a \in A \}$$

Definizione 0.2.5

Sia A commutativo. Allora una A-algebra è un omomorfismo di anelli $f:A\to B$ tale che im $f\subseteq Z(B)$

Se f è evidente si dice che B è una A-algebra

Esempio 0.2.4. $M_n(A)$ è una A-algebra con $a\mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$

Esempio 0.2.5. Se $A=\mathbb{Z}$ per ogni B anello l'unico omomorfismo di anelli $\mathbb{Z}\to B$ è una \mathbb{Z} -algebra. Infatti l'omomorfismo unico $\mathbb{Z}\to Z(B)$ deve essere lo stesso di $\mathbb{Z}\to B$

Definizione 0.2.6: Morfismo di A-algebre

Siano $f:A\to B,\ g:A\to C$ A-algebre. Un (omo/iso/...)morfismo di A-algebre da f a g è $h:B\to C$ (omo/iso/...)morfismo di anelli tale che $h\circ f=g$

Esempio 0.2.6. Ogni omomorfismo di anelli è omomorfismo di \mathbb{Z} -algebre.

Esempio 0.2.7. Sia $f:A\to B$ una A-algebra. Allora $\forall I\subseteq B$ ideale B/I è A-algebra con $\pi\circ f$

Osservazione (motivazione della definizione). Se $f:A\to B$ A-algebra, allora B è un anello e A-modulo (per restrizione degli scalari) tale che

$$a(bb') = (ab)b' = b(ab')$$