Exercícios de Equilíbrio

EXERCÍCIO RESOLVIDO

Um mol de hidrogênio e um mol de iodo são misturados, a 500 °C. As substâncias reagem e, após certo tempo, chega-se a um equilíbrio em que se constata a presença de 0,22 mol de hidrogênio residual. Qual a constante de equilíbrio (K_c), nessas condições?

Resolução

A equação química do equilíbrio é:

$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2 HI_{(g)} (500 \,^{\circ}\text{C})$$

Para calcular as concentrações molares em equilíbrio, montamos a seguinte tabela:

	H ₂ -	+ I ₂ ←	→ 2 HI
$N^{\underline{o}}$ inicial de mols	1 mol	1 mol	zero
$N^{\underline{o}}$ de mols que reage e é produzido	0,78 mol	0,78 mol	1,56 mol
Nº de mols no equilíbrio	0,22 mol	0,22 mol	1,56 mol
Concentrações molares no equilíbrio	$\left(\frac{0,22}{V}\right)\frac{\text{mol}}{\text{L}}$	$\left(\frac{0,22}{V}\right)\frac{\text{mol}}{\text{L}}$	$\left(\frac{1,56}{V}\right)\frac{\text{mol}}{\text{L}}$

Aplicando-se a expressão de K_c , temos:

$$K_{c} = \frac{[HI]^{2}}{[H_{2}] \cdot [I_{2}]} \rightarrow K_{c} = \frac{\left(\frac{1,56}{V}\right)^{2}}{\left(\frac{0,22}{V}\right) \cdot \left(\frac{0,22}{V}\right)}$$

$$K_{\mathcal{C}} = \frac{\frac{(1,56)^2}{V^2}}{\frac{(0,22)^2}{V^2}} = \frac{(1,56)^2}{(0,22)^2} \Rightarrow K_{\mathcal{C}} \cong 50$$

EXERCÍCIOS DE APLICAÇÃO

01 (PUC-RS) Um equilíbrio envolvido na formação da chuva ácida está representado pela equação:

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

Em um recipiente de um litro, foram misturados 6 mols de dióxido de enxofre e 5 mols de oxigênio. Depois de algum tempo, o sistema atingiu o equilíbrio; o número de mols de trióxido de enxofre medido foi de 4. O valor aproximado da constante de equilíbrio é

- a) 0,53
- b) 0,66
- c) 0,75
- d) 1,33
- e) 2,33

02 (FUVEST-SP) Um recipiente fechado de 1 litro, contendo inicialmente, à temperatura ambiente, 1 mol de I_2 e 1 mol de I_2 , é aquecido a 300 °C. Com isto, estabelece-se o equilíbrio:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

cuja constante é igual a $1,0 \cdot 10^2$. Qual a concentração, em mol/L, de cada uma das espécies $H_2(g)$, $I_2(g)$ e HI(g) nessas condições?

- a) 0, 0, 2
- b) 1, 1, 10
- c) 1/6, 1/6, 5/3
- d) 1/6, 1/6, 5/6
- e) 1/11, 1/11, 10/11

03 (UFMG-MG) Quando um mol de amônia é aquecido num sistema fechado, a uma determinada temperatura, 50% do composto se dissocia, estabelecendo-se o equilíbrio:

$$NH_3(g) \rightleftharpoons 1/2 N_2(g) + 3/2 H_2(g)$$

A soma das quantidades de matéria, em mol, das substâncias presentes na mistura em equilíbrio é:

- a) 3,0
- b) 2,5
- c) 2,0
- d) 1,5
- e) 1,0

04 (UNIALFENAS-MG) O valor da constante de equilíbrio, em concentração, da reação de esterificação entre 1 mol de etanol e 1 mol de ácido acético, na temperatura T, é igual a 4. Dada a reação em equilíbrio:

$$C_2H_5OH + C_2H_3OOH \rightleftharpoons C_2H_3OOC_2H_5 + H_2O$$

o número de mols do éster obtido no equilíbrio, na temperatura T, é aproximadamente

- a) 3/4
- b) 2/3
- c) 1/3
- d) 1/4
- e) 1/2

05 (FUVEST-SP) N₂O₄ e NO₂, gases poluentes do ar, encontram-se em equilíbrio, como indicado:

$$N_2O_4 \rightleftharpoons 2 NO_2$$

Em uma experiência, nas condições ambientes, introduziu-se 1,50 mol de N₂O₄, em um reator de 2,0 litros.

Estabelecido o equilíbrio, a concentração de NO2 foi de 0,060 mol/L. Qual o valor da constante Kc, em termos de concentração desse equilíbrio?

a)
$$2,4 \cdot 10^{-3}$$

d)
$$5.2 \cdot 10^{-1}$$

06 (UFMG-MG) A reação entre os gases SO₂ e NO₂, a uma dada temperatura, atinge o equilíbrio descrito pela equação

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$

As concentrações iniciais e de equilíbrio, em mol/L, estão representadas neste quadro:

Concentração	$[SO_2]$	$[NO_2]$	$[SO_3]$	[NO]
Inicial	a	b	-	_
Equilíbrio	х	y	Z	Z

A alternativa que indica, corretamente, a relação de concentração no equilíbrio é:

$$a) x = z$$

b)
$$x = y$$

c)
$$a - x = z$$

d)
$$a + y = 2z$$

e)
$$b - y = 2z$$

07 (UFRJ-RJ) Uma das reações para produção industrial do metanol é dada por:

$$CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$$

No gráfico a seguir, a reta representa a variação do número de mols de hidrogênio em função do número de mols de metanol, para diversas condições da reação.

O ponto P representa uma situação de equilíbrio a uma dada temperatura.

Calcule a constante de equilíbrio (K_c), neste ponto, quando no início da reação estão presentes 2,0 mols de H₂ e 2,0 mols de CO num volume de 1,0 litro.

• • •	•			•		•	e atingem o equilíbrio I neste equilíbrio é
a) 1,2 b) 2	2,3	c) 3,5	d) 4,7	e) 5	5,6		
09 (FUVEST-SP) A re				-			ores para a constante
	t °C	225	425	625	825	995	
	K	0.007	0.109	0.455	1.08	1.76	

Partindo-se de uma mistura equimolar de CO e H₂O:

- a) quais os compostos predominantes no equilíbrio, a 225°C?
- b) em qual das temperaturas acima mencionadas as concentrações dos reagentes e dos produtos, no equilíbrio, são aproximadamente iguais?
- 10 (PUC-MG) Um mol de H_2 e um mol de Br_2 são colocados em um recipiente de 10 L de capacidade, a 575°C. Atingindose o equilíbrio, a análise do sistema mostrou que 0,20 mol de HBr está presente. Calcule o valor Kc, a 575°C, para a reação: $H_2(g) + Br_2(g) \rightleftharpoons 2$ HBr(g)
- 11 (UNIFENAS-MG) O valor da constante de equilíbrio, em concentração, da reação de esterificação entre 1 mol de etanol e 1 mol de ácido acético, na temperatura T, é igual a 4. Dada a reação em equilíbrio:

$$C_2H_5OH + C_2H_3OOH \rightleftharpoons C_2H_3OOC_2H_5 + H_2O$$

o número de mols do éster obtido no equilíbrio, na temperatura T, é aproximadamente:

- a) 3/4
- b) 2/3
- c) 1/3
- d) 1/4
- e) 1/2

12 (UECE-CE) A 620 K, o valor de Kc para CO(g) + $H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ é 324. Números iguais de mols de CO e H_2O são adicionados a um recipiente, a 620 K. Depois de estabelecido o equilíbrio, $[CO_2]$ é igual a 9,0 M. A concentração de CO no equilíbrio é:

a) 0,5 M

b) 8,5 M

c) 9,0 M

d) 9,5 M

13 (PUC-RS) O acetato de etila é um éster muito usado como solvente de vernizes. Em um recipiente de um litro, foram misturados um mol de acetato de etila e um mol de água. Os compostos reagiram produzindo etanol e ácido, de acordo com a equação:

$$C_4H_8O_2 + H_2O \rightleftharpoons C_2H_5OH + C_2H_4O_2$$

Depois de algum tempo, o sistema atingiu o equilíbrio; o número de mols de éster medido foi de 0,66. O valor, aproximado, da constante de equilíbrio é:

- a) 0,26
- b) 1,00
- c) 1,50
- d) 2,60
- e) 3,77

14 (CEFET-PR) Dois mols de CO(g) reagem com dois mols de NO₂(g), conforme a equação:

$$CO_{(g)} + NO_{2(g)} \xrightarrow{1} CO_{2(g)} + NO_{(g)}$$

Quando se estabelece o equilíbrio, verifica-se que ¾ de cada um dos reagentes foi transformado em CO₂(g) e NO(g). A constante de equilíbrio para a reação é:

- a) 0,11
- b) 0,56
- c) 1,77
- d) 9,00
- e) 10,50
- 15 (ITA-SP) Num recipiente de volume constante igual a 1,00 dm³, inicialmente evacuado, foi introduzido 1,00 mol de pentacloreto de fósforo gasoso e puro. O recipiente foi mantido a 227°C e, no equilíbrio final, foi verificada a existência de 33,4 g de gás cloro. Qual das opções a seguir contém o valor aproximado da constante (Kc) do equilíbrio estabelecido dentro do cilindro e representado pela seguinte equação química?

$$PC\ell_5(g) \rightleftharpoons PC\ell_3(g) + C\ell_2(g)$$

Dado: Cℓ = 35,5 g/mol

- a) 0,179
- b) 0,22
- c) 0,42
- d) 2,38
- e) 4,52
- 16 (FUVEST-SP) O carbamato de amônio sólido, NH₄OCONH₂, se decompõe facilmente, formando os gases NH₃ e CO₂. Em recipiente fechado, estabelece-se o equilíbrio:

$$NH_4OCONH_2(s) \rightleftharpoons 2 NH_3(g) + CO_2(g)$$

A 20°C, a constante desse equilíbrio, em termos de concentração mol/L, é igual a 4.10⁻⁹.

- a) Um recipiente de 2 L, evacuado, contendo inicialmente apenas carbamato de amônio na quantidade de 4.10⁻³ mol foi mantido a 20°C até não se observar mais variação de pressão. Nessas condições, resta algum sólido dentro do recipiente? Justifique com cálculos.
- b) Para a decomposição do carbamato de amônio em sistema fechado, faça um gráfico da concentração de NH₃ em função do tempo, mostrando a situação de equilíbrio.

17 (UFG-GO) A cinética da reação de consumo de 1 mol de ácido acético e formação de 1 mol de acetato de etila em função do tempo está representada no gráfico a seguir.

A reação que representa esse equilíbrio é dada por:

- a) Quantos mols de ácido acético restam e quantos de acetato de etila se formaram em 120 s de reação?
- b) Após quanto tempo de reação a quantidade de produtos passa a ser maior que a de reagentes?
- c) Quantos mols de acetato de etila são obtidos no equilíbrio?

18 (UFV-MG) Ao se misturar vapor de iodo (um gás violeta) com gás hidrogênio (incolor), ocorre uma reação química que resulta na formação do gás iodeto de hidrogênio (incolor).

$$I_2(g) + H_2(g) \rightleftharpoons 2 HI(g)$$

O gráfico a seguir mostra a variação das concentrações de reagentes e produtos durante um experimento em que foram utilizados 1,0 mol de I_2 e 1,0 mol de H_2 , a 400°C, em um frasco de 1,0 L.

Em relação a este experimento, assinale a afirmativa correta.

- a) Ao final do experimento, o sistema gasoso contido no recipiente se apresenta incolor.
- b) Ao final do experimento, a concentração de HI é 2,0 mol· L⁻¹.
- c) Ao final do experimento, as concentrações de H₂ e I₂ são iguais a zero.
- d) A constante de equilíbrio desta reação, a 400°C, é 64.
- e) A reação atinge o estado de equilíbrio no tempo 2.

19 (FUVEST-SP) A L-isoleucina é um aminoácido que, em milhares de anos, se transforma no seu isômero, a D-isoleucina. Assim, quando um animal morre e aminoácidos deixam de ser incorporados, o quociente entre as quantidades, em mol, de D-isoleucina e de L-isoleucina, que é igual a zero no momento da morte, aumenta gradativamente até atingir o valor da constante de equilíbrio. A determinação desses aminoácidos, num fóssil, permite datá-lo.

O gráfico traz a fração molar de L-isoleucina, em uma mistura dos isômeros D e L, em função do tempo.

- a) Leia no gráfico as frações molares de L-isoleucina indicadas com uma cruz e construa uma tabela com esses valores e com os tempos correspondentes.
- b) Complete sua tabela com os valores da fração molar de D-isoleucina formada nos tempos indicados. Explique.
- c) Calcule a constante do equilíbrio da isomerização L-isoleucina D-isoleucina
- d) Qual é a idade de um osso fóssil em que o quociente entre as quantidades de D-isoleucina e L-isoleucina é igual a 1?

20 (FUVEST-SP) Em uma experiência, aqueceu-se, a uma determinada temperatura, uma mistura de 0,40 mol de dióxido de enxofre e 0,20 mol de oxigênio, contidos em um recipiente de 1 L e na presença de um catalisador. A equação química, representando a reação reversível que ocorre entre esses dois reagentes gasosos, é:

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

As concentrações dos reagentes e do produto foram determinadas em vários tempos, após o início da reação, obtendo-se o gráfico:

Em uma nova experiência, 0,40 mol de trióxido de enxofre, contido em um recipiente de 1L, foi aquecido à mesma temperatura da experiência anterior e na presença do mesmo catalisador. Acompanhando-se a reação ao longo do tempo, deve-se ter, ao atingir o equilíbrio, uma concentração de SO₃ de aproximadamente:

- a) 0,05 mol/L
- b) 0,18 mol/L
- c) 0,20 mol/L
- d) 0,35 mol/L
- e) 0,40 mol/L

- **21 (UFPE-PE)** A constante de equilíbrio a 298 K para a reação $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$, é igual a 1,0. Num recipiente fechado, a 298 K, foi preparada uma mistura dos gases N_2O_4 e NO_2 com pressões parciais iniciais de 2,0 e 1,0 bar, respectivamente. Com relação a esta mistura reacional a 298 K, pode-se afirmar que:
- () está em equilíbrio.
- () no equilíbrio, a pressão parcial do gás N₂O₄ será maior que sua pressão parcial inicial.
- () no equilíbrio, a pressão parcial do gás NO₂ será maior que sua pressão parcial inicial.
- () no equilíbrio, as pressões parciais do N₂O₄ e NO₂ serão as mesmas que as iniciais.
- () no equilíbrio, a velocidade da reação direta será igual à velocidade da reação inversa.
- **22 (PUCCamp-SP)** Uma mistura equimolar de nitrogênio (N_2) e oxigênio (O_2) aquecida a 2.000°C reage numa extensão de 1% (em mol) para formar óxido nítrico $N_2(g) + O_2(g) \rightleftharpoons 2$ NO(g). Nessa temperatura, o valor da constante desse equilíbrio é, aproximadamente:
- a) 4 · 10⁻⁴
- b) 4 · 10⁻²
- c) 4
- d) 4 · 10²
- e) 4 · 10⁴
- 23 (UFRGS-RS) Num vaso de reação a 45° C e 10 atm, foram colocados 1,0 mol de N_2 e 3,0 mols de H_2 . O equilíbrio que se estabeleceu pode ser representado pela equação abaixo:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

Qual a composição da mistura no estado de equilíbrio, se nessa condição é obtido 0,08 mol de NH₃?

	N_2	H ₂	NH ₃
a)	1,0 mol	3,0 mols	0,08 mol
b)	0,96 mol	2,92 mols	0,16 mol
c)	0,84 mol	2,84 mols	0,16 mol
d)	0,84 mol	2,92 mols	0,08 mol
e)	0,96 mol	2,88 mols	0,08 mol

24 (UFV-MG) Amônia pode ser preparada pela reação entre nitrogênio e hidrogênio gasosos, sob alta pressão, segundo a equação abaixo:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

A tabela abaixo mostra a variação da concentração dos reagentes e produtos no decorrer de um experimento realizado em sistema fechado, a temperatura e pressão constantes.

Intervalo de tempo	[N ₂] mol/L	[H ₂] mol/L	[NH ₃] mol/L
0	10	10	0
1	X	4	4
2	7	1	Υ
3	7	1	Υ

a) Os valores de X e Y no quadro acima são: X = mol/L Y = mol/L
) Escreva a expressão da constante de equilíbrio para esta reação, em termos das concentrações de cada componente.
Kc =
r) O valor da constante de equilíbrio para esta reação, nas condições do experimento, é

25 (UFPE-PE) O valor da constante de equilíbrio para a reação n-butano ⇌ isobutano é 2,5. 140 mols de n-butano são injetados num botijão de 20 litros. Quando o equilíbrio for atingido, quantos mols de n-butano restarão?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Incolor Violeta Incolor

tem, a 370°C, constante K_C igual a 64. Para estudar esse equilíbrio, foram feitas duas experiências independentes, 1 e 2:

- 1. 0,10 mol de cada gás, H₂ e I₂, foram colocados em um recipiente adequado de 1 L, mantido a 370°C até atingir o equilíbrio (a intensidade da cor não muda mais).
- 2. 0,20 mol do gás HI foi colocado em um recipiente de 1 L, idêntico ao utilizado em A, mantido a 370°C até atingir o equilíbrio (a intensidade da cor não muda mais).
- a) Atingido o equilíbrio em A e em B, é possível distinguir os recipientes pela intensidade da coloração violeta? Justifique.
- b) Para a experiência A, calcule a concentração de cada gás no equilíbrio. Mostre, em um gráfico de concentração (no quadriculado abaixo), como variam, em função do tempo, as concentrações desses gases até que o equilíbrio seja atingido. Identifique as curvas no gráfico.

27 (UFRN-RN) Um estudante, ao entrar no laboratório de Química de sua escola, depara-se com dois frascos de reagentes sobre a bancada. No rótulo de um, estava escrito: Ácido acético ($C_2H_4O_2$); no do outro, Etanol (C_2H_6O).

Ele também percebeu que, no quadro do laboratório, estavam escritas as informações seguintes:

1. Reação:

ácido acético + etanol
$$\xleftarrow{K_1}$$
 X + Y

2. Volume total da solução: 1,0 litro 3. Constante de Equilíbrio: $Kc = K_1/K_2 = 3$

4. Dados:

	Reage	Prod	utos	
	Ácido Acético	Etanol	Х	Υ
Inicial	2 mol	3 mol	0	0
Equilíbrio	2 – x	3 - 3x	X	X

Com base na interpretação das informações disponíveis, atenda às seguintes solicitações:

- a) escreva e balanceie a reação química que se processa usando-se as fórmulas estruturais planos;
- b) calcule quantos mols de cada componente existem na mistura em equilíbrio.
- 28 Um mol de hidrogênio e 1 mol de iodo são misturados a 500°C. As substâncias reagem e, após certo tempo, chega-se a um equilíbrio, onde constata a presença de 0,22 mol de hidrogênio residual. Qual é a constante de equilíbrio (K_c), nessas condições?
- 29 (UNIFOR-CE) São colocados 8,0 mols de amônia num recipiente fechado de 5,0 litros de capacidade. Acima de 450°C, estabelece-se, após algum tempo, o equilíbrio:

$$2 \text{ NH}_3(g) \rightleftharpoons 3 \text{ H}_2(g) + \text{ N}_2(g)$$

Sabendo que a variação do número de mols dos participantes está registrada no gráfico, podemos afirmar que, nestas condições, a constante de equilíbrio, K_c , é igual a:

a) 27,00

b) 5,40

c) 1,08

d) 2,16

- 30 Na esterificação de 1 mol de ácido acético com 1 mol de álcool etílico, a 25°C, o equilíbrio é atingido com K_c = 4. Quais são as quantidades em mols das substâncias presentes no equilíbrio?
- 31 (IME-RJ) A reação dada pela equação abaixo:

$$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

tem constante de equilíbrio (K_c) igual a 4,00 à temperatura de 100°C. Calcule as concentrações de equilíbrio em moles por litro de cada componente, partindo da condição inicial de 120,0 g de ácido acético e de 92,0 g de etanol (massas atômicas: H = 1 u; C = 12 u; O = 16 u).

32 (VUNESP-SP) Considere o equilíbrio a 25°C:

$$PC\ell_5(g) \rightleftharpoons PC\ell_3(g) + C\ell_2(g)$$

Conhecendo-se as concentrações iniciais: $[PC\ell_5]_i = 0,100 \text{ mol/L}$; $[C\ell_2]_i = 0,020 \text{ mol/L}$; $[PC\ell_3]_i = 0$ e a constante de equilíbrio $(K_c = 0,030 \text{ mol/L})$ para a decomposição do $PC\ell_5$ à mesma temperatura, a concentração de PCl_5 no equilíbrio é igual a: a) 0,035 b)0,050 c) 0,065 d) 0,120 e) 0,230

- 33 Aqueceram-se 2 mols de $PC\ell_5$ em um recipiente fechado, com capacidade de 2 L. Atingindo o equilíbrio, o $PC\ell_5$ estava 40% dissociado em $PC\ell_3$ e $C\ell_2$. Calcule a constante de equilíbrio.
- 34 Um mol de HI gasoso, a determinada temperatura, está 20% dissociado em hidrogênio e iodo. Qual é o valor da constante de equilíbrio dessa reação?
- 35 (UFPI-PI) Um método proposto para coletar energia solar consiste na utilização desta energia para aquecer a 800 °C trióxido de enxofre SO₃ ocasionalmente a reação:

$$2 SO_3(g) \rightleftharpoons 2 SO_3(g) + O_2(g)$$

Os compostos SO_2 (g) e O_2 (g), assim produzidos, são introduzidos em um trocador de calor de volume corresponde a 1,0 L e se recombinam produzindo SO_3 e liberando calor. Se 5,0 mols de SO_3 sofrem 60% de dissociação nesta temperatura marque o valor correto de K_c :

- a) 1,1
- b) 1,5
- c) 3,4
- d) 6,7
- e) 9,0

36 Em um recipiente fechado mantido a temperatura constante foram introduzidos monóxidos de carbono e vapor de água em quantidades tais que suas pressões parciais eram iguais e valiam 0,856 atm cada uma. Após certo, tempo, estabeleceu-se o equilíbrio $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$. Medindo-se então a pressão parcial de CO, obteve-se 0,580 atm. Qual o valor da constante de equilíbrio K_p ?

- 37 (FAAP-SP) Em um recipiente indeformável de 10 L são colocados 46 g de N_2O_4 (g). O sistema é aquecido até 27 °C, ocorrendo a reação representada pela equação N_2O_4 (g) \rightleftharpoons 2 NO_2 (g). Sabendo que, a massa temperatura, o grau de dissociação do N_2O_4 (g) é igual a 20%, calcule a pressão parcial de N_2O_4 (g) no sistema (massas atômicas: N = 14; O = 16).
- 38 (UNICAP-PE) Suponha a síntese a seguir:

$$A(g) + B(g) \rightleftharpoons AB(g)$$

Se as pressões iniciais de A (g) e B (g) forem, respectivamente, 3 atm e 2 atm, a pressão total, no equilíbrio, será 4,2 atm. Nas condições indicadas, aponte as alternativas corretas:

- () A reação não pode atingir o equilíbrio;
- () A pressão de A (g), no equilíbrio, será 2,2 atm;
- () A pressão de AB (g), no equilíbrio será 2,2 atm.
- () O grau de dissociação será 40% em relação a B.
- () A pressão de B (g), no equilíbrio, será 0,8 atm.
- 39 (UNIVALI-SC) Considere a mistura gasosa em equilíbrio, a 450°C.

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

	H ₂	I ₂	н
Concentração no equilíbrio (mol/L)	0,01	0,01	0,07
Concentração de H₂ foi dobrada (mol/L)	0,01 + 0,01		
Concentração no novo estado de equilíbrio	0,017	0,007	0,076

O valor da constante de equilíbrio, em termos de concentração molar, na temperatura em que foi realizado o experimento é, aproximadamente:

- a) 0,014
- b) 14
- c) 7
- d) 4,9
- e) 49

40 (UNICAMP-SP) A constante de equilíbrio (K), a 100°C, para o sistema gasoso representado abaixo, é menor que 1 (K<1).

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

- a) Escreva a expressão da constante de equilíbrio em função das pressões parciais dos gases envolvidos.
- b) Em um recipiente previamente evacuado, a 100°C, são misturados 1,0 mol de cada um dos três gases acima. Após algum tempo, o sistema atinge o equilíbrio. Como se alterou (aumentou, diminuiu ou permaneceu constante) a concentração de cada um dos três gases em relação à concentração inicial?

41 (FUVEST-SP) O íon complexo $[Cr(C_2H_8N_2)_2(OH)_2]^+$ pode existir na forma de dois isômeros geométricos, A e B, que estão em equilíbrio:

Isômero A ⇌ Isômero B

Numa experiência realizada à temperatura constante, em que se partiu do isômero A puro, foram obtidos os seguintes dados de concentração desse isômero em função do tempo, em segundos:

Tempo	0	100	200	500	1000	2000	2500	3000
$[A]/10^{-3} \text{ mol } L^{-1}$	11,6	11,3	11,0	10,5	10,2	10,0	10,0	10,0
[B]/10 ⁻³ mol L ⁻¹								

- a) Obtenha os dados da concentração do isômero B e construa uma tabela desses dados para todos os tempos indicados.
- b) Qual o valor da constante desse equilíbrio? Justifique.
- 42 Um equilíbrio químico, gasoso, é identificado pela equação de decomposição de AB:

$$AB(g) \rightleftharpoons A(g) + B(g)$$

Verificou-se, em dada temperatura, que iniciando o processo com pressão do sistema a 5 atm, o equilíbrio foi alcançado quando a pressão estabilizou em 6 atm.

Diante das informações, conclui-se que o grau de dissociação do processo é:

- a) 10%
- b) 40%
- c) 50%
- d) 20%
- e) 80%

43 (ENG. SANTOS-SP) 18,4 g de N_2O_4 são aquecidos a uma temperatura T, num tubo fechado de capacidade igual a 2 litros. Estabelecido o equilíbrio, verifica-se que o N_2O_4 está 75% dissociado em NO_2 , segundo a equação:

$$N_2O_4 \rightleftharpoons 2 NO_2$$

Em consequência, a constante de equilíbrio, na referida temperatura, terá valor: (Dados: massas atômicas: N = 14 u; O = 16 u)

- a) $5.0 \cdot 10^{-1}$
- b) $6.0 \cdot 10^{-1}$
- c) 7,0 . 10⁻¹
- d) 8,0 . 10⁻¹
- e) 9,0 . 10⁻¹
- 44 (PUC-SP) Num recipiente fechado estão contidos 495 g de COCℓ₂ à temperatura de 27°C, apresentando uma pressão de 1,23 atm. O sistema é aquecido até 327°C, quando ocorre a reação:

$$COC\ell_2(g) \rightleftharpoons CO(g) + C\ell_2(g)$$

Atingido o equilíbrio, verifica-se a existência de 30% (em quantidade de matéria) de CO na mistura gasosa formada. Calcule a constante de equilíbrio da reação acima, em termos de concentrações na temperatura em que se encontra o sistema. Dados: C = 12 u; C = 16 u; C = 16

45 (MAUÁ-SP) Em um recipiente vazio, cuja capacidade é 4,00 litros, são introduzidos 20,85 g de PC ℓ_5 . Aquecido a 127°C, verifica-se que, estabelecido o equilíbrio PC $\ell_5 \rightleftharpoons PC\ell_3 + C\ell_2$, a pressão atingida pelo sistema resulta igual a 1,23 atm. Admitindo que o comportamento do sistema seja o de um gás perfeito, calcule o grau de dissociação térmica do PC ℓ_5 , no equilíbrio referido.

Dado: P = 31 u; C ℓ = 35,5 u; R = 0,082 atm . L/K mol

46 (SANTOS-SP) Quando é alcançado o equilíbrio:

$$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$$

a pressão é 2 atm e há 50% de NO2 em volume. O valor da constante de equilíbrio em pressões parciais (Kp) deve ser:

- a) 0,2
- b) 0,25
- c) 1
- d) 0,5
- e) 0,75
- 47 (PUC-SP) Ao ser atingido o equilíbrio gasoso:

$$2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$$

verificou-se que a massa molecular aparente da mistura era 82,8 u.

- a) Determine sua composição percentual em volume.
- b) Determine o valor da constante de equilíbrio em pressões parciais, sabendo ser a pressão total, no equilíbrio, 2 atm. Dados: N = 14 u; O = 16 u
- 48 (ITA) Em um balão fechado e sob temperatura de 27°C, N₂O₄(g) está em equilíbrio com NO₂(g).

A pressão total exercida pelos gases dentro do balão é igual a 1,0 atm e, nestas condições, N₂O₄(g) encontra-se 20% dissociado.

- a) Determine o valor da constante de equilíbrio para a reação de dissociação do N₂O₄(g). Mostre os cálculos realizados.
- b) Para a temperatura de 27°C e pressão total dos gases dentro do balão igual a 0,10 atm, determine o grau de dissociação do N₂O₄(g). Mostre os cálculos realizados.
- 49 (FEI-SP) Em um recipiente de volume V ocorre a seguinte reação de equilíbrio em fase gasosa: $1A + 1B \rightleftharpoons 2C$. No início são colocados 6,5 mols de cada reagente e após atingido o equilíbrio, restaram 1,5 mols de cada reagente. A constante de equilíbrio (Kc) é igual a:
- a) 45 V
- b) 22,2 V
- c) $44,4 \text{ V}^2$
- d) 44,4
- e) 22,2 V
- 50 (MAUÁ-SP) A pressão de um sistema gasoso constituído por CO₂, O₂ e CO, em equilíbrio, é de 2 atm, a dada temperatura. Tendo em conta que no sistema em questão existem 30% de CO₂ e 20% de O₂, em volume, calcule:
- a) a pressão parcial do CO.
- b) a constante de equilíbrio do sistema considerado, em termos de pressão para a formação do CO2.

GABARITO

01- Alternativa D

	2 SO ₂	+ O ₂ ←	⇒ 2 SO ₃
Início	6 mols/L	5 mols/L	0
Reagem	4 mols/L	2 mols/L	4 mols/L
Equilíbrio	2 mols/L	3 mols/L	4 mols/L

$$K_{C} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}.[O_{2}]} = \frac{(4)^{2}}{(2)^{2}.(3)} = 1,33$$

02- Alternativa C

	H_2 -	+ I ₂ ∓	→ 2 HI
Início	1 mol/L	1 mol/L	0
Reage	x	x	_
Forma	_	_	2 <i>x</i>
Equilíbrio	1 - x	1 - x	2 <i>x</i>

$$K_{C} = \frac{[HI]^{2}}{[H_{2}].[I_{2}]} \rightarrow 10^{2} = \frac{(2X)^{2}}{(1-X).(1-X)} \rightarrow 10 = \frac{2X}{1-X} \rightarrow X = \frac{5}{6} \text{ mol.} L^{-1}$$

$$[H_{2}] = [I_{2}] = 1 - X = 1 - \frac{5}{6} = \frac{1}{6} \text{ mol.} L^{-1}$$

[HI] =
$$2X=2.\frac{5}{6} = \frac{5}{3} \text{mol.L}^{-1}$$

03- Alternativa D

	NH ₃ ∓	→ 1/2 N ₂	+ 3/2 H ₂
Início	1 mol	0	0
Reage	0,5 mol	0,25 mol	0,75 mol
Equilíbrio	0,5 mol	0,25 mol	0,75 mol

04- Alternativa C

	$C_2H_5OH +$	C ₂ H ₃ OOH ₹	C ₂ H ₃ OOC ₂ H ₅	5+H ₂ O
Início	1 mol	1 mol	0	0
Reage	x mol	x mol	x mol	x mol
Equilíbrio	(1-x) mol	(1-x) mol	x mol	x mol

$$K_C = \frac{[C_2H_3OOC_2H_5] \cdot [H_2O]}{[C_2H_5OH] \cdot [C_2H_3OOH]}$$

$$K_C = \frac{x \cdot x}{(1-x) \cdot (1-x)} \implies 4 = \frac{x^2}{(1-x)^2} \implies \sqrt{4} = \sqrt{\frac{x^2}{(1-x)^2}} \implies 2 = \frac{x}{1-x} \implies x = 1/3 \text{ mol}$$

05- Alternativa C

	N_2O_4	\rightarrow 2 NO ₂
Início	0,750 mol/L	0
Reage	0,03 mol/L	0,060 mol/L
Equilíbrio	0,72 mol/L	0,060 mol/L

$$[N_2O_4]_{inicial} = \frac{1,50}{2} = 0,75 \text{ mol/L}$$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(0.06)^2}{(0.72)} = 5 \cdot 10^{-3}$$

06- Alternativa C

	SO ₂ +	+ NO ₂ ←	⇒ SO ₃ -	+ NO
Início	a	b	0	0
Reage	Z	Z	Z	Z
Equilíbrio	x = a - z	y = b - z	Z	Z

07-

$$CO_{(g)} + 2H_{2(g)} \rightleftharpoons CH_3OH_{(g)}$$
 n_i
2
2
0
 $n_{cons/form} = 0.50 = 1.0 = 0.50$
 n_{eq}
1,5
1,0
0,50

Com V=1L

$$K_c = \frac{[CH_3OH]}{[CO] \cdot [H]^2} = \frac{0,50}{1,5 \cdot (1,0)^2} = \frac{1}{3} \cong 0,33.$$

08- Alternativa D

	H ₂	+	l ₂	1	2 HI
Início	3mols		3mols		0
Reage/Forma	Х		Χ		2X
Equilíbrio	3-X		3-X		2X

Calculando o valor de X:

$$K_{C} = \frac{[HI]^{2}}{[H_{2}].[I_{2}]} \rightarrow 49 = \frac{(2X)^{2}}{(3-X).(3-X)} \rightarrow 7 = \frac{2X}{3-X} \rightarrow X = \frac{21}{9}$$

Calculando a concentração molar de HI: [HI]= $2.X=2.\frac{21}{9}=4,7$ mol.L⁻¹

- a) Como a 225°C o valor de K_C é muito pequeno, neste caso a concentração dos reagentes são inversamente proporcionais ao K_C e neste caso predomina a concentração de CO(g) e $H_2O(g)$.
- b) A 825°C as concentrações dos reagentes e produtos são aproximadamente iguais onde o valor do K_C é aproximadamente igual a 1.

10-

	H ₂	+	Br ₂	11	2 HBr
Início	1mol		1mol		0
Reage/Forma	0,10mol		0,10mol		0,20mol
Equilíbrio	0,90mol		0,90mol		0,20mol

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[HBr]^{2}}{[H_{2}].[Br_{2}]} = \frac{\left(\frac{0,20}{10}\right)^{2}}{\left(\frac{0,90}{10}\right).\left(\frac{0,90}{10}\right)} = 0,050$$

11- Alternativa B

	C₂H₅OH	+	C ₂ H ₃ OOH	1	C ₂ H ₃ OOC ₂ H ₅	+	H ₂ O
Início	1mol		1mol		0		0
Reage/Forma	Χ		Χ		X		Χ
Equilíbrio	1-X		1-X		X		Χ

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[C_{2}H_{3}OOC_{2}H_{5}].[H_{2}O]}{[C_{2}H_{5}OH].[C_{2}H_{3}OOH]} \rightarrow 4 = \frac{(X).(X)}{(1-X).(1-X)} \rightarrow 2 = \frac{X}{1-X} \rightarrow X = \frac{2}{3}$$

Calculando do número de mols de $C_2H_3OOC_2H_5$: $X=\frac{2}{3}$ mol

12- Alternativa A

	СО	+	H ₂ O	11	CO ₂	+	H ₂
Início	Χ		Χ		0		0
Reage/Forma	9M		9M		9M		9M
Equilíbrio	X-9		X-9		9M		9M

Calculando a [CO₂]:

$$K_{C} = \frac{[CO_{2}].[H_{2}]}{[CO].[H_{2}O]} \rightarrow 324 = \frac{(9).(9)}{(X-9).(X-9)} \rightarrow 18 = \frac{9}{X-9} \rightarrow X=9,5$$

Calculando a concentração molar de CO no equilíbrio:[CO]=X - 9,0=9,5-9,0=0,5M

13- Alternativa E

	$C_2H_3OOC_2H_5$	+	H ₂ O	11	C ₂ H ₅ OH	+	C ₂ H ₃ OOH
Início	1M		1M		0		0
Reage/Forma	0,66M		0,66M		0,66M		0,66M
Equilíbrio	0,34M		0,34M		0,66M	·	0,66M

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[C_{2}H_{5}OH].[C_{2}H_{3}OOH]}{[C_{2}H_{3}OOC_{2}H_{5}].[H_{2}O]} = \frac{(0,66).(0,66)}{(0,34).(0,34)} = 3,77$$

14- Alternativa D

	СО	+	NO ₂	11	CO ₂	+	NO
Início	2mol		2mol		0		0
Reage/Forma	2.(3/4)mol		2.(3/4)mol		2.(3/4)mol		2.(3/4)mol
Equilíbrio	1/2mol		1/2mol		3/2mol		3/2mol

Calculando o valor de K_C para a reação:

$$K_C = \frac{[CO_2].[NO]}{[CO].[NO_2]} = \frac{(1,5).(1,5)}{(0,5).(0,5)} = 9,0$$

15- Alternativa C

Calculando o número de mol de C ℓ_2 no equilíbrio: $n = \frac{m}{M} = \frac{33,4}{71} = 0,47 \, \text{mol}$

Para um volume de 1dm³ temos: $[C\ell_2] = \frac{n}{V} = \frac{0.47 \text{mol}}{1 \text{dm}^3} = 0.47 \text{M}$

	PCℓ ₅	11	PCℓ ₃	+	Cℓ ₂
Início	1M		0		0
Reage/Forma	0,47M		0,47M		0,47M
Equilíbrio	0,53M		0,47M		0,47M

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[PC\ell_{3}].[C\ell_{2}]}{[PC\ell_{5}]} = \frac{(0,47).(0,47)}{(0,53)} = 0,42$$

16-

a)

	NH ₄ OCONH ₂ (s)	11	2 NH ₃ (g)	+	CO ₂ (g)
Início	4.10 ⁻³ mol		0		0
Reage/Forma	X		2X		Χ
Equilíbrio	4.10 ⁻³ – X		Χ		Χ

Calculando o valor de X:

$$K_{C} = [NH_{3}]^{2}.[CO_{2}] \rightarrow 4.10^{-9} = \left(\frac{2X}{2L}\right)^{2}.\left(\frac{X}{2L}\right) \rightarrow X = 2.10^{-3} \text{mol}$$

Sim, em todo equilíbrio químico nenhuma substância envolvida se acaba:

$$n_{\text{carbamato}} = 4 \cdot 10^{-3} - \underbrace{(2 \cdot 10^{-3})}_{x} = 2 \cdot 10^{-3} \text{ mol}$$

	C ₂ H ₅ OH	+	C ₂ H ₃ OOH	11	$C_2H_3OOC_2H_5$	+	H ₂ O
Início	1mol		1mol		0		0
Reage/Forma	0,8mol		0,8mol		0,8mol		0,8mol
Equilíbrio	0,2mol		0,8mol		0,8mol		0,8mol

- a) Ácido acético \cong 0,2 mol; acetato de etila \cong 0,8 mol
- b) Após 40 s
- c) Aproximadamente 0,8 mol.

18- Alternativa D

	H ₂	+	l ₂	11	2 HI
Início	1mol		1mol		0
Reage/Forma	0,8mol		0,8mol		1,6mol
Equilíbrio	0,2mol		0,2mol		1,6mol

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[HI]^{2}}{[H_{2}].[I_{2}]} = \frac{\left(\frac{1,6}{1}\right)^{2}}{\left(\frac{0,2}{1}\right).\left(\frac{0,2}{1}\right)} = 64$$

19a) e b)

Fração molar de L - isoleucina	1	0,68	0,50	0,44	0,42	0,42
Tempo (t/103 anos)	0	50	130	200	300	450
Fração molar de D-isoleucina	0	0,32	0,50	0,56	0,58	0,58

- c) Kc = 1.38
- d) 130 · 10³ anos

20- Alternativa A

Considerando-se reação completa, partindo-se de 0,40 mol de SO₂ e 0,20 mol de O₂, obtém-se 0,40 mol de SO₃:

 $2 \; SO_2 \; + \; O_2 \; \rightarrow \; 2 \; SO_3$

0,4mol 0,2mol 0,4mol

Partindo-se de 0,40 mol de SO₃, em reação completa, também obtemos 0,40 mol de SO₂ e 0,20 mol de O₂:

 $2 SO_3 \rightarrow 2 SO_2 + O_2$

0,4mol 0,4mol 0,2mol

Logo, partindo-se de 0,40 mol de SO_2 e 0,20 mol de O_2 ou 0,40 mol de SO_3 , nos equilíbrios, teremos as mesmas concentrações:

	2 SO ₂	+	O ₂	11	2 SO ₃
Início	0,4mol		0,2mol		0
Reage/Forma	0,05mol		0,025mol		0,05mol
Equilíbrio	0,35mol		0,175mol		0,05mol

	2 SO ₃	1	2 SO ₂	+	O ₂
Início	0,4mol		0		0
Reage/Forma	0,35mol		0,35mol		0,175mol
Equilíbrio	0,05mol		0,35mol		0,175mol

21-

- (F) está em equilíbrio.
- (F) no equilíbrio, a pressão parcial do gás N₂O₄ será maior que sua pressão parcial inicial.
- (V) no equilíbrio, a pressão parcial do gás NO₂ será maior que sua pressão parcial inicial.
- (F) no equilíbrio, as pressões parciais do N₂O₄ e NO₂ serão as mesmas que as iniciais.
- (V) no equilíbrio, a velocidade da reação direta será igual à velocidade da reação inversa.

	N ₂ O ₄	11	2 NO ₂
Início	2bar		1bar
Reage/Forma	Х		2X
Equilíbrio	2-X		1+2X

22- Alternativa A

	N ₂ (g)	+	O ₂ (g)	11	2 NO(g)
Início	1M		1M		0
Reage/Forma	0,01M		0,01M		0,02M
Equilíbrio	0,99M		0,99M		0,02M

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[NO]^{2}}{[N_{2}].[O_{2}]} = \frac{(0,02)^{2}}{(1,0).(1,0)} = 4.10^{-4}$$

23- Alternativa E

	N ₂	+	3 H ₂	=	2 NH ₃
Início	1mol		3mol		0
Reage/Forma	0,04mol		0,12mol		0,08mol
Equilíbrio	0,96mol		2,88mol		0,08mol

24-Para o intervalo de tempo 1:

rara o intervalo de tempo 1.						
	N ₂	+	3 H ₂	1	2 NH ₃	
Início	10M		10M		0	
Reage/Forma	2M		6M		4M	
Equilíbrio	8M		4M		4M	

Para o intervalo de tempo 2 e 3:

	N ₂	+	3 H ₂	11	2 NH ₃
Início	10M		10M		0
Reage/Forma	3M		9M		6M
Equilíbrio	7M		1M		6M

a) x = 8 mol/L; y = 6 mol/L

b)
$$K_C = \frac{[NH_3]^2}{[N_2].[H_2]^3}$$

c)
$$K_C = \frac{[NH_3]^2}{[N_2].[H_2]^3} = \frac{(6)^2}{(7).(1)^3} = 5,14$$

25-

	n-butano	11	Isobutano
Início	140mols		0
Reage/Forma	Χ		Х
Equilíbrio	140-X		Х

$$K_{C} = \frac{[\text{isobutano}]}{[\text{n-butano}]} \rightarrow 2,5 = \frac{\left(\frac{X}{20}\right)}{\left(\frac{140 - X}{20}\right)} \rightarrow 2,5.(140 - X) = X \rightarrow X = 100 \text{mols}$$

Com isso temos: n-butano = 140 - X = 140 - 100 = 40 mols

26-

a)

	H ₂ + I	2 ⇌ 21	HI .
Início	0,10 mol/L	0,10 mol/L	0
Reage	x	x	_
Forma	_	_	2x
Equilíbrio	0,10 - x	0,10 - x	2x

$$K_c = \frac{(2x)^2}{(0,1-x)\cdot(0,1-x)}$$

$$64 = \frac{(2x)^2}{(0,1-x)^2} \quad x = 0.08 \text{ mol/L}$$

$$\begin{bmatrix} I_2 \end{bmatrix} = 0.10 - 0.08 = 0.02 \text{ mol/L}$$

$$K_{c} = \frac{x \cdot x}{(0,20 - 2x)^{2}}$$

$$\frac{1}{64} = \frac{x^{2}}{(0,20 - 2x)^{2}}$$

$$x = 0.02 \text{ mol/L}$$

A concentração de iodo no equilíbrio será a mesma nos dois recipientes.

b) $[H_2] = [I_2] = 0.02 \text{ mol/L}$

[HI] = 0.16 mol/L

b) Consideração 1

Número de mols de cada constituinte no equilíbrio:

ácido acético = 0,5 mol; etanol = 1,5 mol, acetato de etila = 1,5 mol

Consideração 2

Número de mols de cada constituinte no equilíbrio:

ácido acético = 1,114 mol; etanol = 2,114 mol; acetato de etila = 0,886 mol

28-

	H ₂	+	l ₂	1	2 HI
Início	1mol		1mol		0
Reage/Forma	0,78mol		0,78mol		1,56mol
Equilíbrio	0,22mol		0,22mol		1,56mol

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[HI]^{2}}{[H_{2}].[I_{2}]} = \frac{\left(\frac{1,56}{V}\right)^{2}}{\left(\frac{0,22}{V}\right).\left(\frac{0,22}{V}\right)} = 50,3$$

29- Alternativa C

	2 NH ₃	1	N ₂	+	3 H ₂		
Início	8mols		0		0		
Reage/Forma	4mols		2mols		6mols		
Equilíbrio	4mols		2mols		6mols		

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[N_{2}] \cdot [H_{2}]^{3}}{[NH_{3}]^{2}} = \frac{\left(\frac{2}{5}\right) \cdot \left(\frac{6}{5}\right)^{3}}{\left(\frac{4}{5}\right)^{2}} = 1,08$$

	C ₂ H ₅ OH	+	C ₂ H ₃ OOH	11	$C_2H_3OOC_2H_5$	+	H ₂ O
Início	1mol		1mol		0		0
Reage/Forma	Χ		Χ		Х		Χ
Equilíbrio	1 - X		1 - X		Х		Χ

$$K_{C} = \frac{[C_{2}H_{3}OOC_{2}H_{5}].[H_{2}O]}{[C_{2}H_{5}OH].[C_{2}H_{3}OOH]} \rightarrow 4 = \frac{\left(\frac{X}{V}\right).\left(\frac{X}{V}\right)}{\left(\frac{1-X}{V}\right).\left(\frac{1-X}{V}\right)} \rightarrow 4 = \frac{\left(\frac{X}{V}\right)^{2}}{\left(\frac{1-X}{V}\right)^{2}} \rightarrow 2 = \frac{\left(\frac{X}{V}\right)}{\left(\frac{1-X}{V}\right)} \rightarrow 2 = \frac{(X)}{(1-X)} \rightarrow X = \frac{2}{3}$$

Com isso temos no equilíbrio:

 $[C_2H_5OH] = 1 - X = 1 - 2/3 = 1/3 \text{ mol}$

 $[C_2H_3OOH] = 1 - X = 1 - 2/3 = 1/3 \text{ mol}$

 $[C_2H_3OOC_2H_5] = X = 2/3 \text{ mol}$

 $[H_2O] = X = 2/3 \text{ mol}$

31-

Calculando o número de mols dos reagentes:

$$\rightarrow$$
 Para o CH₃COOH: $n = \frac{m}{M} = \frac{120}{60} = 2 \text{mols}$

$$\rightarrow$$
 Para o C₂H₅OH: $n = \frac{m}{M} = \frac{92}{46} = 2 mols$

	C ₂ H ₅ OH	+	C ₂ H ₃ OOH	11	$C_2H_3OOC_2H_5$	+	H ₂ O
Início	2mol		2mol		0		0
Reage/Forma	Х		Χ		Х		Χ
Equilíbrio	2 - X		2 - X		Х		Χ

$$K_{C} = \frac{[C_{2}H_{3}OOC_{2}H_{5}].[H_{2}O]}{[C_{2}H_{5}OH].[C_{2}H_{3}OOH]} \rightarrow 4 = \frac{\left(\frac{X}{V}\right).\left(\frac{X}{V}\right)}{\left(\frac{2-X}{V}\right).\left(\frac{2-X}{V}\right)} \rightarrow 4 = \frac{\left(\frac{X}{V}\right)^{2}}{\left(\frac{2-X}{V}\right)^{2}} \rightarrow 2 = \frac{\left(\frac{X}{V}\right)}{\left(\frac{2-X}{V}\right)} \rightarrow 2 = \frac{(X)}{(2-X)} \rightarrow X = \frac{4}{3}$$

Com isso temos no equilíbrio:

 $[C_2H_5OH] = 2 - X = 2 - 4/3 = 2/3 \text{ mol}$

 $[C_2H_3OOH] = 2 - X = 2 - 4/3 = 2/3 \text{ mol}$

 $[C_2H_3OOC_2H_5] = X = 4/3 \text{ mol}$

 $[H_2O] = X = 4/3 \text{ mol}$

32- Alternativa C

	PCℓ ₅	11	PCℓ ₃	+	Cℓ ₂
Início	0,1M		0		0,02M
Reage/Forma	Χ		Х		Χ
Equilíbrio	0,1-X		Х		0,02+X

Calculando o valor de X:

$$K_{C} = \frac{[PC\ell_{3}].[C\ell_{2}]}{[PC\ell_{5}]} \rightarrow 0,03 = \frac{X.(0,02+X)}{(0,1-X)} \rightarrow 0,03.(0,1-X) = 0,02X+X^{2} \rightarrow X^{2} + 0,05X-0,003=0$$

$$X = \frac{-b + \sqrt{b^2 - 4.a.c}}{2.a} = \frac{-0.05 + \sqrt{(0.05)^2 - 4.(-0.003)}}{2} = \frac{-0.05 + 0.12}{2} = 0.035 \text{mol.L}^{-1}$$

Com isso temos: $[PCl_5]_{equilibrio} = 0,1 - X = 0,1 - 0,035 = 0,065 \text{ mol.L}^{-1}$

33-

	PCℓ ₅	1	PCℓ ₃	+	Cℓ₂
Início	2mols		0		0
Reage/Forma	0,8mol		0,8mol		0,8mol
Equilíbrio	1,2mol		0,8mol		0,8mol

Calculando o valor de K_C para a reação:

$\mathbf{K}_{\mathbf{C}} = \frac{[\mathbf{PC\ell}_{3}].[\mathbf{C\ell}_{2}]}{[\mathbf{PC\ell}_{5}]} = \frac{\left(\frac{\mathbf{C}_{3}}{\mathbf{C}_{3}}\right)}{\mathbf{C}_{3}}$	$\frac{0.8}{2} \cdot \left(\frac{0.8}{2}\right)$ $\frac{\left(\frac{1.2}{2}\right)}{\left(\frac{1.2}{2}\right)} = 0.27$
--	---

34-

	2 HI	1	H ₂	+	l ₂
Início	1mol		0		0
Reage/Forma	0,2mol		0,1mol		0,1mol
Equilíbrio	0,8mol		0,1mol		0,1mol

Calculando o valor de K_C para a reação:

$$K_{C} = \frac{[H_{2}].[I_{2}]}{[HI]^{2}} = \frac{\left(\frac{0.1}{V}\right).\left(\frac{0.1}{V}\right)}{\left(\frac{0.8}{V}\right)^{2}} = \frac{1}{64} = 1,6.10^{-2}$$

35- Alternativa C

oo maara o								
	2 SO ₃	1	2 SO ₂	+	O ₂			
Início	5mols		0		0			
Reage/Forma	3mols		3mols		1,5mols			
Equilíbrio	2mols		3mols		1,5mols			

Calculando o valor de K_C para a reação:

$$K_C = \frac{[3,0]^2.[1,5]}{[2,0]^2} = 3,375$$

36-

	CO(g)	+	H₂O(g)	11	CO ₂ (g)	+	H₂(g)
Início	0,856atm		0,856atm		0		0
Reage/Forma	0,276atm		0,276atm		0,276atm		0,276atm
Equilíbrio	0,580atm		0,580atm		0,276atm		0,276atm

Calculando o valor da constante de equilíbrio K_p :

$$K_{p} = \frac{(pCO_{2}).(pH_{2})}{(pCO).(pH_{2}O)} = \frac{(0,276).(0,276)}{(0,580).(0,580)} = 0,226$$

Calculando o número de mols de N₂O₄: $n = \frac{m}{M} = \frac{46}{92} = 0,5 \text{mol}$

Calculando a concentração molar de N₂O₄: $[N_2O_4] = \frac{n}{V} = \frac{0.5 mol}{10L} = 0.05 mol.L^{-1}$

	N_2O_4	11	2 NO ₂
Início	0,05M		0
Reage/Forma	0,01M		0,02M
Equilíbrio	0,04M		0,02M

Calculando a pressão parcial do N₂O₄ no sistema:

$$P_{N_2O_4}.V = n.R.T \rightarrow P_{N_2O_4} = \frac{n}{V}.R.T \rightarrow P_{N_2O_4} = [N_2O_4].R.T \rightarrow P_{N_2O_4} = 0,04.0,082.300 \rightarrow P_{N_2O_4} = 0,984atm$$

38-

	A(g)	+	B(g)	11	AB(g)
Início	3atm		2atm		0
Reage/Forma	Χ		Х		Χ
Equilíbrio	3 - X		2 - X		Χ

Calculando o valor de X: $P_T = P_A + P_B + P_{AB} \rightarrow 4,2 = 3 - X + 2 - X + X \rightarrow 4,2 = 5 + X \rightarrow X = 0,8atm$ Com isso temos:

	A(g)	+	B(g)	11	AB(g)
Início	3atm		2atm		0
Reage/Forma	0,8atm		0,8atm		0,8atm
Equilíbrio	2,2atm		1,2atm		0,8atm

- (F) A reação não pode atingir o equilíbrio;
- (V) A pressão de A (g), no equilíbrio, será 2,2 atm;
- (F) A pressão de AB (g), no equilíbrio será 2,2 atm.
- (V) O grau de dissociação será 40% em relação a B.
- (F) A pressão de B (g), no equilíbrio, será 0,8 atm.

39- Alternativa E

	H ₂	I ₂	HI
Concentração no equilíbrio (mol/L)	0,01	0,01	0,07
Concentração de H ₂ foi dobrada (mol/L)	0,01 + 0,01		
Concentração no novo estado de equilíbrio	0,017	0,007	0,076

Calculando o valor de K_C para a reação:

$$K_C = \frac{[HI]^2}{[H_2].[I_2]} = \frac{(0.076)^2}{(0.017).(0.007)} = 48.5$$

40-

a)
$$K_P = \frac{(pH_2).(pI_2)}{(pHI)^2}$$

b) Para $K_C < 1$, temos $\uparrow [HI] = \downarrow [H_2] \downarrow [I_2]$, e desta forma ficamos com:

	2 HI	11	H ₂	+	l ₂
Início	1mol		1mol		1mol
Reage/Forma	Х		Х		Χ
Equilíbrio	1+X		1-X		1-X

41-

a)

Tempo	0	100	200	500	1000	2000	2500	3000
$[A]/10^{-3} \text{ mol } L^{-1}$	11,6	11,3	11,0	10,5	10,2	10,0	10,0	10,0
[B]/10 ⁻³ mol L ⁻¹	0	0,3	0,6	1,1	1,4	1,6	1,6	1,6

b) $K_C = 0.16$

42- Alternativa D

	AB	\rightleftharpoons	Α	+	В	$6 = 5 - \alpha 5 + \alpha 5 + \alpha 5$
Início	5 atm				_	$1 = \alpha 5$
Reage e forma	α 5		α 5		α5	$\alpha = 0.2 = 20\%$
Equilíbrio	$5-\alpha 5$		α 5		α5	

43- Alternativa E

Cálculo da quantidade em mol de N₂O₄:

92 g — 1 mol
18,4 g —
$$x$$
 $\therefore x = 0,2 \text{ mol}$

	N_2O_4	\rightleftharpoons	2NO ₂	$K_c = \frac{(0,15)^2}{0,025}$
Início	0,2 mol		_	0,025
Reage e forma	0,15 mol		0,30 mol	$K_c = 9.0 \cdot 10^{-1}$
Equilíbrio	0,05 mol		0,30 mol	

44-

Cálculo da quantidade em mol de COCl₂

$$COCl_2$$
: $\overline{M}=99$ g/mol 99 g — 1 mol 495 g — x \therefore $x=5$ mol Cálculo do volume do recipiente

 $PV = nRT \Rightarrow 1,23 \cdot V = 5 \cdot 0,082 \cdot 300 \Rightarrow V = 100 L$

$$K_{c} = \frac{\frac{2,14}{100} \cdot \frac{2,14}{100}}{\frac{2,86}{100}} \Rightarrow K_{c} = 0,016$$

45-

Cálculo da pressão inicial

$$PV = nRT :: PV = \frac{m}{\overline{M}} RT :: P \cdot 4 = \frac{20,85}{208,5} \cdot 0,082 \cdot 400 :: P = 0,82 \text{ atm}$$

$$PCl_5 \iff PCl_3 + Cl_2$$
 Início 0,82 atm — — — Reage e forma $\alpha \cdot 0,82$ $\alpha \cdot 0,82$ $\alpha \cdot 0,82$ $\alpha \cdot 0,82$ Equilíbrio 0,82 – $\alpha \cdot 0,82$ $\alpha \cdot 0,82$ $\alpha \cdot 0,82$ 1,23 = 0,82 – $\alpha \cdot 0,82$ + $\alpha \cdot 0,82$ + $\alpha \cdot 0,82$ 1,23 = 0,82 + $\alpha \cdot 0,82$ $\alpha = 0,50 :: 50\%$

46- Alternativa C

50% de NO₂ em volume = 50% de NO₂ em mol (mesma P e T)

$$\begin{split} x_{NO_2} &= \frac{n_{O_2}}{n_T} = \frac{50}{100} \ \therefore \ x_{NO_2} = 0,5 & x = \text{fração em mol} \\ x_{NO_2} + x_{N_2O_4} &= 1 \ \therefore \ x_{N_2O_4} = 0,5 \\ 2NO_2 &\rightleftharpoons N_2O_4 & K_p = \frac{p_{N_2O_4}}{p_{NO_2}^2} & p = x \cdot P \\ K_p &= \frac{0,5 \cdot 2}{0.5 \cdot 2} \ \therefore \ K_p = 1 \end{split}$$

47-

47-
a.
$$NO_2$$
 $x\%$
 $100 - x\%$

82,8 = $\frac{46 \cdot x + (100 - x) 92}{100}$
 $x = 20$
b. 2 atm

$$Kp = \frac{pN_2O_4}{p^2NO_2}$$

$$Kp = \frac{1,6}{0,4}$$

$$Kp = 10$$

$$80\%$$
N₂O₄: 1,6 atm

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

0

Como a pressão total no equilíbrio é igual a 1,0 atm, temos 0,8 p + 0,4 p = 1

$$p = \frac{1}{1,2}$$
 atm

Logo

$$p_{N_2O_4} = \frac{0.8}{1.2} atm = \frac{2}{3} atm$$

$$p_{NO_2} = \frac{0.4}{1.2} atm = \frac{1}{3} atm$$

$$K_p = \frac{(p_{NO_2})^2}{p_{N_2O_4}} = \frac{\left(\frac{1}{3}\right)^2}{\frac{2}{3}} = \frac{1}{6}$$

b. Admitindo a nova pressão total no equilíbrio igual a 0,10 atm, temos:

$$N_2O_4(g) \rightleftharpoons$$

$$\stackrel{\triangle}{=}$$
 2NO₂ (g)

Início

Reage e forma

Equilíbrio

$$p - \alpha p$$

$$2\alpha p$$

Equilíbrio: $p_{N_2O_4} + p_{NO_2} = 0.10 \text{ atm}$

$$p - \alpha p + 2\alpha p = 0,10$$

$$p(1 + \alpha) = 0.10$$

$$p = \frac{0.10}{1 + \alpha}$$

Como
$$K_p = \frac{(p_{NO_2})^2}{p_{N_2O_4}}$$

$$\frac{1}{6} = \frac{(2\alpha p)^2}{p - \alpha p}$$

$$24 \alpha^2 p = 1 - \alpha$$

Substituindo:

$$24 \alpha^2 \frac{0.10}{1+\alpha} = 1 - \alpha$$

$$24 \alpha^2 = (+ \alpha) (1 - \alpha)$$

$$2.4 \alpha^2 = 1 - \alpha^2$$

$$3.4 \alpha^2 = 1 \Rightarrow \alpha = \sqrt{\frac{1}{3.4}}$$

$$\alpha = 0.54 = 54\%$$

49- Alternativa D

$$A + B \rightleftharpoons 2C$$
Início 6,5 6,5 -
Reage e forma 5,0 5,0 10
Equilíbrio 1,5 1,5 10

$$K_c = \frac{[C]^2}{[A][B]}$$
 $K_c = \frac{\left(\frac{10}{V}\right)^2}{\frac{1.5}{V} \cdot \frac{1.5}{V}} \therefore K_c = 44.4$

50-

a.
$$p_{CO} = x_{CO} \cdot P$$

$$x_{CO_2} = 0.30$$
 $x_{O_2} = 0.20$ $p_{CO} = 0.50 \cdot 2 \text{ atm}$ \therefore $p_{CO} = 1 \text{ atm}$

$$x_{O_2} = 0.20$$

 $x_{CO} = 0.50$

$$n_{co} = 1$$
 atm

b.
$$2CO + O_2 \rightleftharpoons 2CO_2$$

$$p_{O_2} = 0.20 \cdot 2 = 0.40 \text{ atm}$$

$$p_{CO_2} = 0.30 \cdot 2 = 0.60 \text{ atm}$$

$$K_p = \frac{p_{CO_2}^2}{p_{CO}^2 \cdot p_{O_2}} \Rightarrow K_p = \frac{0.6^2}{1^2 \cdot 0.4} \Rightarrow K_p = 0.9$$