1 Neural Transition-Based Dependency Parsing

1.b

Stack	Buffer	New dependency	Transition
[ROOT]	[I, parsed, this, sentence, correctly]		Initial configuration
[ROOT, I]	[parsed, this, sentence, correctly]		SHIFT
[ROOT, I, parsed]	[this, sentence, correctly]		SHIFT
[ROOT, parsed]	[this, sentence, correctly]	$parsed \rightarrow I$	LEFT-ARC

The rest of the table:

Stack	Buffer	New dependency	Transition
[ROOT, parsed, this]	[sentence, correctly]		SHIFT
[ROOT, parsed, this, sentence]	[correctly]		SHIFT
[ROOT, parsed, sentence]	[correctly]	sentence \rightarrow this	LEFT-ARC
[ROOT, parsed]	[correctly]	$parsed \rightarrow sentence$	RIGHT-ARC
[ROOT, parsed, correctly]			SHIFT
[ROOT, parsed]		$parsed \rightarrow correctly$	RIGHT-ARC
[ROOT]		$ROOT \rightarrow parsed$	RIGHT-ARC

1.c

A sentence containing n words will be parsed in 2n steps. Each word has to be inserted into the Stack (using the SHIFT rule). Also, the stack at the end containing only 1 element (the tree ROOT), and the [Left-ARC, RIGHT-ARC] rules reduce #(stack elements) by 1. Therefore, there will be applied n SHIFT rules and n ARC rules, meaning 2n rules.

1.g

UAS dev set: 88.62

UAS test set: 88.61

1.h

1.h.i

- Error type: Prepositional Phrase Attachment Error
- Incorrect dependency: named \rightarrow Midland
- Correct dependency: guy \rightarrow Midland

1.h.ii

- Error type: Modifier Attachment Error
- Incorrect dependency: elements \rightarrow most
- Correct dependency: crucial \rightarrow most

1.h.iii

• Error type: Verb Phrase Attachment Error

- Incorrect dependency: wedding → fearing
- Correct dependency: heading \rightarrow fearing

1.h.iv

- Error type: Coordination Attachment Error
- Incorrect dependency: makes \rightarrow rescue
- Correct dependency: rush \rightarrow rescue