Statistical inferences in fMRI

Cyril Pernet, PhD

BRIC/SINAPSE – University of Edinburgh

Overview

- Multiple comparisons correction procedures
- Levels of inferences (set, cluster, voxel)
- Circularity issues

Multiple comparison correction

Avoiding false positives

- 4-Dimensional Data
 - 1,000 multivariate observations, each with > 100,000 elements
 - 100,000 time series, each with 1,000 observations
- Massively UnivariateApproach
 - 100,000 hypothesis tests
- Massive MCP!

- Typical brain ~ 130000 voxels
- \blacksquare @ p = .05, it is expected = 6500 false positives!
- a a more conservative value like p = .001 we still expect 130 false positives.
- Using extend threshold k without correction is not enough as it, by chance, can cluster as well.

- Bennet et al., 2009
- <u>Task</u>: take a decision about emotions on pictures
- <u>Design</u>: blocks of 12 sec activation/rest
- <u>Analysis</u>: standard data processing with SPM
- <u>Subject</u>: a dead salmon!

A t-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

■ The cluster was 81mm³! – after multiple comparison corrections all false activations were removed.

Solutions for MCP

- Height Threshold
- > Familywise Error Rate (FWER)
 - Chance of any false positives; Controlled by Bonferroni & Random Field Methods
- > False Discovery Rate (FDR)
 - Proportion of false positives among rejected tests
- Bayes Statistics

From single univariate to massive univariate

Univariate stat	Functional neuroimaging					
1 observed data	Many voxels					
1 statistical value	Family of statistical values					
Type 1 error rate (chance to	Family-wise error rate					
be wrong rejecting H0)						
Null hypothesis	Family-wise null hypothesis					

Height Threshold

■ Choose locations where a test statistic Z (T, F, ...) is large to threshold the image of Z at a height z

■ The problem is how to choose this threshold z to exclude false positives with a high probability (e.g.

0.95)?

To control for family wise error on must take into account the nb of tests

Bonferroni

- 10000 Z-scores; alpha = 5%
- alpha corrected = .000005; z-score = 4.42

Bonferroni

- 10000 Z-scores; alpha = 5%
- 2D homogeneous smoothing 100 independent observations
- alpha corrected = .0005; z-score = 3.29

Solutions for MCP

- An important feature of neuroimaging data is that we have a family of stat values that has topological features (Bonferroni for instance consider tests as independent)
- Why considering data as a smooth lattice? (Chumbley et al., 2009 NeuroImage 44)
- > fMRI/PET are projection methods of data points onto the whole space – MEEG forms continuous functions in time and are smooth by the scalp (space)
- Neural activity propagate locally through intrinsic/lateral connections and is distributed via extrinsic connections / Hemodynamic correlates are initiated by diffusing signals (e.g. NO)

- 10000 Z-scores; alpha = 5%
- Gaussian kernel smoothing –
- How many independent observations?

- RFT relies on theoretical results for smooth statistical maps (hence the need for smoothing), allowing to find a threshold in a set of data where it's not easy to find the number of independent variables. Uses the expected Euler characteristic (EC density)
- 1 Estimation of the smoothness = number of resel (resolution element) = f(nb voxels, FWHM)
- 2 expected Euler characteristic = number of clusters above the threshold
- 3 Calculation of the threshold

■ The Euler characteristic can be seen as the number of blobs in an image after thresholding (p value that you select in SPM)

■ At high threshold, EC = 0 or 1 per resel: $E[EC] \approx$

pFWE

 $E[EC] = R \cdot (4 \log_e 2) \cdot (2\pi)^{-2/3} \cdot Z_t \cdot e^{-1/2} Z_t^2$ for a 2D image, more complicated in 3D

■ For 100 resels, the equation gives E[EC] = 0.049 for a threshold Z of 3.8, i.e. the probability of getting one or more blobs where Z is greater than 3.8 is 0.049

01	number of resels	Bonfe	RFT		
α	in the image	threshold	score Z	score Z	
0.05	100	0.05 100	3.3		
				3.8	

■ If the resel size is much larger than the voxel size then E[EC] only depends on the nb of resels otherwise it also depends on the volume, surface and diameter of the search area (i.e. shape and volume matter)

False discovery Rate

- Whereas family wise approach corrects for any false positive, the FDR approach aim at correcting among positive results only.
- 1. Run an analysis with alpha = x%
- 2. Sort the resulting positive data
- 3. Threshold to remove the false positives

False discovery Rate

Signal+Noise

FEW correction

FDR correction

False discovery Rate

takes the spatial structure into account

Under H0 the nb of voxels per cluster is known → uncorrected p value for clusters → apply FDR on the clusters (volume-wise correction)

Assumes that the volume of each cluster is independent of the number of clusters

Voxel, cluster and set

- 3 levels of inference can be considered:
- Voxel level (prob associated at each voxel)
- Cluster level (prob associated to a set of voxels)
- Set level (prob associated to a set of clusters)
- The 3 levels are nested and based on a single probability of obtaining c or more clusters (set level) with k or more voxels (cluster level) above a threshold u (voxel level): $P_w(u,k,c)$

■ <u>Set level</u>: we can reject H0 for an omnibus test, i.e. there are some significant clusters of activation in the brain.

☐ Cluster level: we can reject H0 for an area of a size k, i.e. a cluster of 'activated' voxels is likely to be true for a given spatial extend.

□ <u>Voxel level</u>: we can reject H0 at each voxel, i.e. a voxel is 'activated' if exceeding a given threshold

- Each level of inference is valid, but the inferences are different e.g. a set might be enough to check that subjects activated regions selected a priori for a connectivity analysis clusters might be good enough if hypotheses are about the use of different brain areas between groups
- Both voxel and cluster levels need to address the multiple comparison problem. If the activated region is predicted in advance, the use of corrected p values is unnecessary and inappropriately conservative a correction for the number of predicted regions (Bonferroni) is enough

D C	set-level cluster-level			peak-level					-			
	D FWE-corr	q FDR-corr	K _E	Duncorr	D FWE-corr	q FDR-com	7	(Z _≡)	Duncorr	1111111	mm m	
.226 21		0.000	508	0.000	0.070	0.101	7.94	4.90	0.000	-8	54	
					0.184	0.101	7.09	4.63	0.000	8	40	-:
					0.704	0.309	5.71	4.10	0.000	-4	38	-1
	0.001	0.000	227	0.000	0.146	0.101	7.30	4.70	0.000	-40	-78	34
					0.959	0.364	5.00	3.78	0.000	-48	-66	24
					0.999	0.588	4.43	3.49	0.000	-44	-66	31
	0.000	0.000	273	0.000	0.187	0.101	7.08	4.62	0.000	-24	36	46
	0.000	0.000	498	0.000	0.198	0.101	7.03	4.61	0.000	-6	-50	30
					0.865	0.332	5.35	3.94	0.000	-6	-62	24
					0.910	0.358	5.21	3.88	0.000	-20	-50	28
	0.021	0.005	133	0.001	0.773	0.309	5.57	4.04	0.000	2	60	16
	0.852	0.256	25	0.110	0.818	0.326	5.46	3.99	0.000	-32	-22	22
	0.995	0.487	10	0.301	0.868	0.332	5.34	3.93	0.000	2	10	-8
	0.422	0.099	49	0.031	0.930	0.358	5.14	3.84	0.000	50	-70	36
	0.957	0.346	17	0.181	0.947	0.358	5.06	3.81	0.000	-2	-26	42
	0.590	0.134	39	0.051	0.964	0.364	4.97	3.76	0.000		-56	18
	0.913	0.294	21	0.140	0.989	0.475	4.74	3.65	0.000	-30	-50	
	0.437	0.099	48	0.033	0.998	0.572	4.51	3.53	0.000	26	34	40
					1.000	0.781	4.07	3.29	0.001	20	38	34
	0.985	0.419	13	0.240	0.999	0.588	4.43	3.49	0.000	-16	64	10
	1.000	0.704	5	0.470	1.000	0.777	4.13	3.33	0.000	-36	-48	-2
	1.000	0.772	2	0.663	1.000	0.777	4.12	3.32	0.000	-12	62	20
	1.000	0.772	3	0.584	1.000	0.781	4.08	3.29	0.000	-30		54
	1.000	0.772	.1	0.772	1.000 wima more ti	0.936	3.87	3.17	0.001	44	-78	30

RFT (Gaussian Random Fields)

- -> Prob of cluster
- -> Prob of voxel

Using p=.001 this creates an excursion set Prob clusters of that size

Prob peak that height

→ after FDR correction

Uncorrected (bad)

Circularity issues in fMRI

Definition

- Refers to the problem of selecting data for analysis
- How data (areas usually) are selected, analysed and sorted is key to avoid circularity
- Put forward by Vul et al. 2009, Perspectives on Psychological Science. 4
- Better explained in Kriegeskorte et al., 2009 *Nat.*Neuroscience 12

Circularity

- Double dipping pblm: "data are first analyzed to select a subset and then the subset is reanalyzed to obtain the results. In this context, assumptions and hypotheses determine the selection criterion and selection can, in turn, distort the results."
- Take a gp of subjects and measures RTs, then take 2 subgroups from the same subjects and re-do some analysis?? → increases the diff.
- Take fMRI data and get activated areas, extract ROI and re-do some analyses??

Circularity

■ Selection and tests must be independent — non independence create spurious effects

Circularity

- Independence of the selection and tests
- 1. Anatomic ROI, analysis of fMRI
- SPM, minimal requirement is orthogonality of the contrasts (e.g. find regions using A+B>0 C=[1 1] and test A vs B C=[1 -1]) but if N_A and N_B are different there is still a bias when testing A-B (across subjects independence is ensured by $C_{selection}^{T}(X^{T}X)^{-1}C_{test}$)
- 3. Select using a subset of data, test with another one

Enough for today ©

Thanks for your attention