Math 443 Homework 6

Xander Naumenko

15/03/23

Question 1a. See below, x, y are a minimum separating set and clearly x, y are adjacent to both u and v.

Question 1b. x, y is a minimum separating set with the required properties.

Question 1c. The following graph works. Here I have listed a particular x, y, but once you choose one member of the separating set the only other option forces the other vertex adjacent to either u or v.

Question 2.

Question 3. Consider a new graph G' that is a copy of G with an additional vertex v that is adjacent to each of the v_i . I claim that G' is k-connected. Let $x, y \in V(G')$. If x and y are both in G then a vertex set of size less than k clearly can't separate them due to the k-connectivity of G, so assume y = v. Let $S \subset V(G)$ be a set of vertices on G' - x - v with |S| < k. G is k-connected so there still exists a path from x to v_i in G - S for all v_i that are in G - S. |S| < k so at least on

such v_i is still in G' - S, so there exists a path from x to v_i and an edge from v_i to v, so v and x are connected in G' - S. Thus G' is k-connected.

Now apply Menger's Theorem to u and v on G'. G' is k-connected as justified above, so $\kappa(u,v) \geq k \implies \lambda(u,v) \geq k$ (although by our construction we know equality holds, it's not important). Let P'_1, \ldots, P'_k be k disjoint paths from u to v which are guaranteed to exist by our bound of λ . The only neighbors of v for the k paths to go through are each of the v_i of which there are k, so each path must go through exactly one. Letting $P_i = P'_i - v$, these now fill the requirements of the P_i asked for in the question and we're done. \square

Question 4. Clearly $\kappa(G_r) \leq \kappa(G) + r$, since you can take a separating set of G and remove all r new vertices to separate G_r . To show that this is also an upper bound, let S be a vertex set with $|S| < \kappa(G) + r$. Let $u, v \in G_r$. If any of the r new vertices are in $G_r - S$, then u and v are both connected to that vertex (or are that vertex), so they are connected. Therefore $G - S \subset G$.

It takes r vertices of S to remove all the r new vertices, so S contains less than $\kappa(G)$ vertices of G, so by κ 's definition S isn't a separating set. Therefore $\kappa(G_r) \geq \kappa(G) + r$, so equality must hold and $\kappa(G_r) = \kappa(G) + r$. \square

Question 5. Both directions will be proven separately.

- (\Rightarrow) Assume G is k-edge-connected, and let $u, v \in V(G)$. By hypothesis a minimum uv separating edge set is of size at least k, so the maximum number of pairwise edge-disjoint uv paths is at least k by Theorem 5.21 which is what we needed to prove.
- (\Leftarrow) Assume that G contains k pairwise edge-disjoint uv-paths for each $u,v\in V(G)$. Let $u,v\in V(G)$. The maximum number of pairwise edge-disjoint uv paths in G is always at least k, so the maximum number of such paths is greater than or equal to k. Thus by Theorem 5.21, a minimum uv separating edge set is of size at least k. Since this is true of each $u,v\in V(G)$, G is k-edge-connected. \square

Question 6. As the hint suggests we will use strong induction on k.

Base case (k=2): Let G be 2-connected and let $e_1, e_2 \in E(G)$. G contains no cut vertices so by definition it's a block. From homework 5, question 4, all edges in a block share a cycle. Thus e_1 and e_2 share a cycle in G as required.

Inductive step: Let G be a (k+1)-connected graph, and assume the theorem holds for all graphs of connectivity k or less. Let $e_1, e_2 \in E(G)$ and $v_1, \ldots v_{k-1} \in V(G)$. By the inductive hypothesis there exists a cycle C containing e_1, e_2 and $v_i \forall i \in [k-2]$. For the simplicity of the proof, extend C with arbitrary other vertices until is has length at least k+1. This is possible since G is k+1 connected, so we can take two adjacent vertices $x, y, xy \notin \{e_1, e_2\}$ on C, and replace the edge between them in C with a path between them on G - (C - x - y) - xy.

By question 3 of this homework (applied to k+1 vertices of C), there exist k+1 disjoint paths from v_{k-1} to C with separate endpoints. For each of these paths, consider the shortened version, starting from its first intersection of C, to v_{k-1} , call these paths P_i , $i \in [k+1]$. Since the paths are disjoint their endpoints in C are also still distinct.

Let $S = (v_1, \ldots, e_1, \ldots, e_2, \ldots, v_{k-2})$ be an ordered list of the v_i and e_1, e_2 in the order that they occur in C (the indices on the v_i s were arbitrary, so we can rename so that they are in order). Since there are k elements of S and k+1 paths ending on C on distinct vertices, by the pidgeonhole principle it must be that there are elements of S, s_1 and s_2 that are adjacent such that two paths P_i and P_j have endpoints u_i , u_j between them in C. The awkwardness of the wording comes from the fact that s_1 and s_2 could be either edges or vertices, what I mean by between is that the subpath of C between u_i and u_j does not contain s_1 or s_2 as neither edges nor inner vertices. Thus we can extend C by considering the new cycle $C' = u_i P_i v_{k-1} P_j u_j C u_i$, and by our choice of u_i , u_j this cycle contains both e_1 , e_2 as well as all the vs. \square

Question 7. \square (pretty concise proof, huh)

Question 8. Let c be a circuit in a graph G with ordered vertices v_1, v_2, \ldots, v_n (potentially some repeats). Let v_j be the first repeated vertex (i.e. minimal j), and let i be the index of the vertex that v_j first occurred in. Then $v_i, v_{i+1}, \ldots, v_j$ is a closed walk with no repeated vertices by the minimally of j which is exactly the definition of a cycle so we're done. \square