Numerical Analysis Homework 3

Alabi Oluwatosin(YJ5OWR) and David Savary Martinez(SNEMG4)

October 23, 2020

1 Composite Quadrature

1.1 1a

Solved. run ex1a.m

1.2 1b

run ex1b.m

The convergence rate for composite midpoint method is approx. 2

The convergence rate for composite trapezoidal rule is approx. 2

The convergence rate for composite Simpson rule is approx. 4

For all methods as h becomes smaller, the error also reduces proportianlly. the reduction is faster in simpson's method by approximately 2 times as shown in the images. fig. 1, 23.

Figure 1: log-log plot of composite midpoint method

Figure 2: log-log plot of composite trapezoidal method

Figure 3: log-log plot of composite simpson's method

1.3 1c

 $run\ ex1c.m$

convergence rate reduces to approx 1 if a mistake is made. As show in the fig. 4. and calculated in ex1c.m

Figure 4: log-log plot of mistake trapezoidal method

2 Numerical integration

2.1 a

 $run\ ex2a.m$

2.2 b

solved. run ex2b.m decay rate for euler method is 2 decay rate for backwards euler method is 2 decay rate for crank-nicholson method is 4