

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Física

1^a Lista de Exercícios de Física II

Professor: Isaac Torres Sales

Disciplina: Física II

Código: EC01012
Período: PL3 2021

Entrega da Lista: até no máximo dia 06/12/2021 às 20:00

Pontuação Máxima: 3,0 pontos para a primeira avaliação, de um total de 10,0 pontos.

Entrega: em formato pdf (foto ou digitado) para o email isaac.sales@icen.ufpa.br

Constantes Físicas úteis

- Permissividade elétrica do vácuo: $\varepsilon_0 = 8.85 \times 10^{-12} F/m$
- Constante eletrostática: $k = 1/4\pi\varepsilon_0 = 8,992 \times 10^9 m/F$
- Permeabilidade magnética do vácuo: $\mu_0 = 1,26 \times 10^{-6} H/m$
- Velocidade da luz no vácuo: $c = 3.00 \times 10^8 m/s$
- Constante Gravitacional: $G = 6.67 \times 10^{-11} N \cdot m^2 / kg^2$
- Carga elementar: $e = 1,60 \times 10^{-19}$
- Massa do elétron: $m_e = 9{,}11 \times 10^{-31} kg$
- Massa do próton: $m_p = 1,67 \times 10^{-27} kg$
- Raio de Bohr: $a_0 = 5,29 \times 10^{-11} m$

Observação: Os cálculos devem ser feitos até o final, com as unidades corretas, senão serão desconsiderados.

Questão 1

Considere um átomo de hidrogênio com um próton e um elétron, separados por uma distância igual a 3 vezes o raio de Bohr. Calcule a força eletrostática entre essas partículas.

Questão 2

Considere duas partículas de cargas q_1 e q_2 separadas por uma distância d. Diga o que acontece (através de cálculo) com o valor da força eletrostática F entre essas partículas se:

- a) q_1 dobrar e q_2 se reduzir a 1/3 do valor original, ao mesmo tempo.
- b) A distância *d* for multiplicada por 5.
- c) A distância d dobrar e q_1 for reduzida à metade

Questão 3

Mostre através de um cálculo se é possível ou não que uma partícula tenha uma carga elétrica de $1,136 \cdot 10^{-17}$ C.

Questão 4

Considere um cubo centrado na origem dos eixos xyz, com lado 3.5cm. No centro há uma carga q = -12.1C. Calcule o fluxo elétrico em cada face do cubo.

Questão 5

Determine a capacitância equivalente do circuito da Figura abaixo, sendo $C_1=12\mu C$, $C_1=6\mu C$ e $C_1=3,2\mu C$.

Questão 6

Quando uma diferença de potencial de 115V é aplicada às extremidades de um fio de 7m de comprimento e 0,22mm de raio, o módulo da densidade de corrente é $1,1 \times 10^6 A/m^2$. Determine (a) a resistividade do fio; (b) a potência dissipada pelo fio.

Dicas: Calcule a corrente a partir da densidade de corrente J = corrente/área. Use a corrente e a tensão para calcular a resistência do fio e a resistividade a partir desses dados. A letra (b) pode ser encontrada a partir desses dados anteriores.

Questão 7

Lembrando que o potencial gerado por uma distribuição de carga é

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$

Calcule o potencial gerado por um anel carregado, no plano xy, com centro na origem, de raio R e densidade linear de carga $\lambda = \lambda_0 \cos(\theta/3)$, onde λ_0 é constante e θ é o ângulo usual das coordenadas polares, sendo o potencial calculado num ponto P situado a uma altura z_0 do centro do anel. Expresse o resultado em função de z e R, e não em função de r.