

Competitive Programming

From Problem 2 Solution in O(1)

Computational Geometry Introduction

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Geometry

About shape, size, relative position of **figures**

Euclid is the **father** of geometry

Computational Geometry

Study of **algorithms** for geometric problems. Our Major focus on 2D. Few 3D.

- 3D algorithms may be more complex
- Or much more computations
- So rare in competitions

Real life apps:

- Games
- Graphics and visualization
- Geographic information systems
- <u>More</u>

Src:

Competitions

- Typically 0/1 geometry problem.
- Typically guys avoid it if hard problem
- Corner Cases
 - Lines: Vertical?
 - Points: Collinear?
 - Polyong: Simple? Concave? ..
- Degenerate Cases
 - Line start and end point are same!
- Precision Problems (avoid as possible)
- Lots of new coding? Library copy paste?

Resources

- Books
 - Programming Challenges
 - Competitive Programming
 - Introduction to Algorithms
- http://geomalgorithms.com/algorithms.html
 - Great site: algorithms and codes
- Articles
 - Topcoder: <u>article 1</u>, <u>article 2</u>
- Libraries: lots on web
 - Lib 1, Lib 2
 - Mine will be covered by end of series

Elements

Term	Dimensions	Graphic	Symbol		
Point	Zero	•	- A		
Line Segment	One	A B	\overline{AB}		
Ray	One	A_B_	\overrightarrow{AB}		
Line	One	4	\overrightarrow{AB}		
Plane	Two		Plane M		

Trigonometry

- All about angles and their measures
- Angles measure
 - Radians: $0 2\pi$
 - Degrees: 0 360
 - Radians is better computationally so libraries use that
- Right angle 90 degree or $\pi/2$ radians
- 370 Degree = 10 Degree = 370 % 360

Radians \(\Degrees

$$90^\circ = 90^\circ \times \frac{\pi \text{ radians}}{180^\circ} = \frac{\pi}{2} \text{ radians}$$

$$\pi \text{ radians} = \pi \times \frac{180^{\circ}}{\pi \text{ radians}} = 180^{\circ}$$

$$\frac{3\pi}{2}$$
 radians = $\frac{3\pi}{2} \times \frac{180^{\circ}}{\pi \text{ radians}} = 270^{\circ}$

$$2\pi \text{ radians} = 2\pi \times \frac{180^{\circ}}{\pi \text{ radians}} = 360^{\circ}$$

$$30^{\circ} = 30^{\circ} \times \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{6} \text{ radians}$$

$$45^{\circ} = 45^{\circ} \times \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{4} \text{ radians}$$

$$60^{\circ} = 60^{\circ} \times \frac{\pi \text{ radians}}{180^{\circ}} = \frac{\pi}{3} \text{ radians}$$

Radians \Leftrightarrow Degrees

```
const double PI = acos(-1.0);

double toDegeeFromMinutes(double minutes) {
    return (minutes/60);
}
double toRadians(double degree) {
    return (degree*PI/180.0);
}
double toDegree(double radian) {
    if(radian < 0) radian += 2*PI;
    return (radian*180/PI);
}</pre>
```


360 / # sides if all equal

Triangles Types

 $Src: {}_{\underline{\underline{https://s3-ap-southeast-1.amazonaws.com/learnhive/lcards/Types-of-Triangles-521dd275368b9.pnd}}$

Triangle Laws

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cdot cos(A)$$

$$b^2 = a^2 + c^2 - 2ac \cdot cos(B)$$

$$c^2 = a^2 + b^2 - 2ab \cdot cos(c)$$

@ www.mathwarehouse.com

Solving Triangles

- Given A(angles) or S(sides) of triangle
 - Find other missing values
- 6 different cases!
- AAA, AAS, ASA, SAS, SSA, SSS
- We mainly use the triangle laws
- Homework: Study them and following code

Solving Triangles

Law of Sines

Given: 2 sides, 1 opposite angle

Objective: angle opposite side

Law of Sines

Given: 2 angles, 1 opposite side

Objective: Side Opposite Angle

Law of cosines

Given: 2 sides, 1 included angle

Objective: side opposite angle

Law of cosines

Given: 3 sides

Objective: any angle

@ www.mathwarehouse.com

Solving Triangles

```
double fixAngle(double A) {
    return A > 1 ? 1 : (A < -1 ? -1 : A);
}
// \sin(A)/a = \sin(B)/b = \sin(C)/c
double getSide a bAB(double b, double A, double B) {
    return (sin(A)*b)/sin(B);
}
double getAngle A abB(double a, double b, double B) {
    return asin( fixAngle( (a*sin(B))/b ) );
}
// a^2 = b^2 + c^2 - 2*b*c*cos(A)
double getAngle A abc(double a, double b, double c) {
    return acos(fixAngle( (b*b+c*c-a*a)/(2*b*c) ));
}
```

Trigonometric functions

- Sin θ = opposite/hypotenuse
- $\cos \theta = \text{adjacent/hypotenuse}$
- Tan θ = opposite/adjacent

Soh

Cah

Toa

$$a^2 + b^2 = c^2$$

sin⁻¹, cos⁻¹, and tan⁻¹ functions give θ

With any 2 values, you can find all sides and all angles

Trigonometric functions

$$\sin(\frac{\pi}{2} - \theta) = +\cos\theta$$

$$\cos(\frac{\pi}{2} - \theta) = +\sin\theta$$

$$\tan(\frac{\pi}{2} - \theta) = +\cot\theta$$

$$\csc(\frac{\pi}{2} - \theta) = +\sec\theta$$

$$\sec(\frac{\pi}{2} - \theta) = +\csc\theta$$

$$\cot(\frac{\pi}{2} - \theta) = +\tan\theta$$

Src: http://amsi.org.au/ESA_Senior_Years/SeniorTopic2/2d/2d_2content_6.htm

Trigonometric formula

$$sin (A + B) = sin A cos B + sin B cos A$$

 $sin (A - B) = sin A cos B - sin B cos A$
 $cos (A + B) = cos A cos B - sin A sin B$
 $cos (A - B) = cos A cos B + sin A sin B$

$$tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$$

$$tan(A+B) = \frac{tan A + tan B}{1 - tan A tan B}$$

Trigonometric functions in C++

- In cmath header .. all in radians
 - Please read the 2 <u>tables</u>..see examples
 - Revise input/output ranges...vary much

Trigonometric functions

cos	Compute cosine (function)				
sin	Compute sine (function)				
tan	Compute tangent (function)				
acos	Compute arc cosine (function)				
asin	Compute arc sine (function)				
atan	Compute arc tangent (function)				
atan2	Compute arc tangent with two parameters (function)				

Hyperbolic functions

cosh	Compute hyperbolic cosine (function)			
sinh	Compute hyperbolic sine (function)			
tanh	Compute hyperbolic tangent (function)			
acosh 🚥	Compute area hyperbolic cosine (function)			
asinh 👊	Compute area hyperbolic sine (function)			
atanh [***	Compute area hyperbolic tangent (function)			

Atan vs Atan 2

Quadrant	Angle			sin		cos		tan			
I	0	<	α	<	π/2	>	Θ	>	Θ	>	0
II	$\pi/2$	<	α	<	π	>	0	<	0	<	0
III	π	<	α	<	3π/2	<	0	<	0	>	0
IV	$3\pi/2$	<	α	<	2π	<	0	>	0	<	0

Atan range is [-PI/2 - PI/2]
Tan of either angles 45 or 135 => positive values?!
How to know the quadrant! We need to use sin/cos too

atan2(y, x) do that for us and return range [-PI, PI]

Atan vs Atan 2

```
	ext{atan2}(y,x) = egin{cases} rctan(rac{y}{x}) & x>0 \ rctan(rac{y}{x}) + \pi & y \geq 0 \;,\; x < 0 \ rctan(rac{y}{x}) - \pi & y < 0 \;,\; x < 0 \ rac{\pi}{2} & y > 0 \;,\; x = 0 \ -rac{\pi}{2} & y < 0 \;,\; x = 0 \ 	ext{undefined} & y = 0 \;,\; x = 0 \end{cases}
```

```
(+1,+1) cartesian is (1.41421,0.785398) polar (+1,-1) cartesian is (1.41421,2.35619) polar (-1,-1) cartesian is (1.41421,-2.35619) polar (-1,1) cartesian is (1.41421,-0.785398) polar atan2(0,0)=0 atan2(0,-0)=3.14159 atan2(7,0)=1.5708
```

Degree = Radian

0 = 0

90 = 1.5708

180 = 3.14159

270 = 4.71239

360 = 6.28319

45 = 0.785398

135 = 2.35619

225 = 3.92699

315 = 5.49779

1.4 = sqrt(2)

Triangle Area

- Please read <u>triangle</u> article.
 - Ignore hard things
- Homeworks
 - Given 3 sides of triangle, find area?
 - Given the length of three medians of a triangle, find area?
 - Given 3 sides of triangle inside/outside circle? what is circle radius? Totally touching the circle
 - **...**

Triangle Area

```
double triangleArea( point p0, point p1, point p2 ) {
    double a = length(p0-p1), b = length(p0-p2), c = length(p1-p2);
    double s = (a+b+c)/2:
    return sqrt((s-a)*(s-b)*(s-c)*s); //Heron's formula
   // base=u+v (divided by h) u = (a^2 + b^2 - c^2)/2a,
   // h = sgrt(b^2-u^2) where base is a.
   // If these 3 points on circle boundry (Trinagle inside circle)
    // double radius1 = (a*b*c)/(4*triangleArea);
    // If circle inside triangle
    // double radius2 = sqrt((s-a)*(s-b)*(s-c)/s);
// Given the length of three medians of a triangle, find area
double triangleArea( double m1, double m2, double m3 )
   // Area of triangle using medians as sides =
   // 3/4 * (area of original triangle)
    if(m1<=0 ||m2<=0 ||m3<=0 )
                                    return -1; // impossipole
    // For area made by sides as medians
    double s = 0.5 * (m1 + m2 + m3);
    double medians area = (s * ( s - m1 ) * (s - m2) * ( s - m3 ));
    double area = 4.0/3.0 * sqrt(medians area);
    if(medians area <= 0.0 || area <= 0) return -1; // impossipole
    return area;
```

Parts of a Circle

Src: http://ssepkowitz.pbworks.com/f/1241790691/SAT Geometry Circles1.pn

$$(x-h)^2+(y-k)^2=r^2$$

$$(x-3)^2 + (y-(-2))^2 = 4^2$$

$$(x-3)^2 + (y+2)^2 = 16$$

Src: http://images.slideplayer.com/18/6070989/slides/slide 4.jpg

Area of a circle = $\pi \times \text{radius}^2$

Circumference of a circle = $\pi \times \text{diameter}$

remember that the diameter = 2 x radius

Length of an Arc Formula

Length =
$$\frac{n^{\circ}}{360^{\circ}} \times 2\pi r$$

ABC is the major arc

 $Src: {\scriptstyle \underline{\text{http://www.funmaths.com/math_tutorials/images/tutorial_geometry6_clip_image002.jpg}} \quad \text{http://www.mathwarehouse.com/geometry/circle/images/secant-tangent-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-sides/secant-side$

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ