Лекция №2

Линейные системы

Будем рассматривать системы вида

$$\begin{cases} \dot{x}_1 = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t), \\ \dot{x}_2 = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t), \\ \dots \\ \dot{x}_n = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t), \end{cases}$$

$$(1)$$

где $a_{ij}(t), f_i(t)$ –заданные функции.

Определение. Система (1) — линейная система диффернциальных уравнений первого порядка.

Часто функции $a_{ij}(t)$ называют коэффициентами системы, а $f_i(t)$ правыми частями или свободными членами.

Определение. Если правые части $f_i(t)$ в системе (1) отсутствуют, то такая система называется – линейной однородной системой диффернциальных уравнений первого порядка.

В дальнейшем будем предполагать, что коэффициенты $a_{ij}(t)$ и правые части $f_i(t)$ $\forall i, j = 1, \ldots, n$ – непрерывные на интервале (a, b) функции.

Теорема (о продолжениии решений линейной системы). Всякое решение системы (1) продолжается на весь интервал (a,b).

Для сокращения записи систем удобно пользоваться векторно-матричными обозначениями. Введем матрицу коэффициентов системы

$$A(t) = \begin{pmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & \dots & a_{2n}(t) \\ \dots & \dots & \dots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{pmatrix},$$

а систему неизвестных функций $x_1(t), \ldots, x_n(t)$ и правые части $f_1(t), \ldots, f_n(t)$ будем обозначать как векторфункции $\boldsymbol{x}(t)$ и $\boldsymbol{f}(t)$ соответственно. Тогда система (1) перепишется в виде

$$\dot{\boldsymbol{x}} = A(t)\boldsymbol{x} + \boldsymbol{f}.\tag{2}$$

Соответствующая однородная система будет иметь вид

$$\dot{\boldsymbol{x}} = A(t)\boldsymbol{x}.\tag{3}$$

Теорема (о множестве решений линейной однородной системы). *Множество решений R линейной однородной системы*(3) образует линейное пространство размерности n.

Доказательство. Так как множество всех действительнозначных функций образует линейное пространство, то для доказательства теоремы достаточно показать замкнутость множества R — решений линейной однородной системы относительно операций сложения и умножения на число, то есть надо показать, что если \mathbf{x}^1 , \mathbf{x}^2 — решения линейной однородной системы, α — число, то $\mathbf{x}^1 + \mathbf{x}^2$, $\alpha \mathbf{x}^1$ — тоже решения линейной однородной системы. Действительно

$$\frac{d(\boldsymbol{x}^1 + \boldsymbol{x}^2)}{dt} = \frac{d\boldsymbol{x}^1}{dt} + \frac{d\boldsymbol{x}^2}{dt} = A(t)\boldsymbol{x}^1 + A(t)\boldsymbol{x}^2 = A(t)(\boldsymbol{x}^1 + \boldsymbol{x}^2),$$
$$\frac{d(\alpha \boldsymbol{x}^1)}{dt} = \alpha \frac{d\boldsymbol{x}^1}{dt} = \alpha A(t)\boldsymbol{x}^1 = A(t)(\alpha \boldsymbol{x}^1).$$

Следовательно R – линейное пространство.

Покажем, что размерность этого пространства равна n. Для этого рассмотрим точку $t_0 \in (a,b)$ и отображение $\varphi: R \to \mathbb{R}^n$, которое каждому решению \boldsymbol{x} системы(3) ставит в соответствие его значения в точке t_0 . То есть $\varphi(\boldsymbol{x}) = \boldsymbol{x}(t_0)$. Отображение φ :

- линейно;
- сюръективно (отображение "на"), в силу существования решения задачи Коши;
- инъективно, в силу единственности решения задачи Коппи.

Следовательно φ –изоморфизм, а значит

$$\dim R = \dim \mathbb{R}^n = n.$$

Фундаментальная система решений.

Определение. Произвольный базис $x^1(t), \dots, x^n(t)$ в R называется фундаментальной системой решений (ФСР) системы(3).

Определение. Матрица X(t), столбцы которой образуют Φ CP, называется фундаментальной матрицей системы(3).

Лемма. Фундаментальная матрица системы(3) X(t) удовлетворяет матричному уравнению $\dot{X} = AX$.

Доказательство. Это следует из того, что каждый столбец матрицы \dot{X} является произведением матрицы A на соответствующий столбец матрицы X.

Теорема (об общем решении линейной однородной системы). Пусть $\{x^1(t), \ldots, x^n(t)\}$ – Φ CP системы (3), а c_1, \ldots, c_n – произвольные постоянные. Тогда общее решение линейной однородной системы (3) имеет вид

$$\boldsymbol{x}_{oo}(t) = c_1 \boldsymbol{x}^1(t) + \ldots + c_n \boldsymbol{x}^n(t). \tag{4}$$

Доказательство. Это следует из того, что Φ CP образует базис в линейном пространстве решений системы(3). \square

Теорема (об общем решении линейной неоднородной системы). Пусть $\{x^1(t), \ldots, x^n(t)\}$ — ΦCP системы (3), тогда общее решение линейной неоднородной системы (2) имеет вид

$$\boldsymbol{x}_{on}(t) = \boldsymbol{x}_{un}(t) + \boldsymbol{x}_{oo}(t), \tag{5}$$

где $\mathbf{x}_{un}(t)$ – частное решение линейной неоднородной системы (2), $\mathbf{x}_{oo}(t)$ – общее решение линейной однородной системы (3).

Доказательство. Пусть $\mathbf{x}_1(t)$ — фиксированное частное решение системы (2), $\mathbf{x}_0(t)$ — произвольное решение системы (3), $\mathbf{x}(t) = \mathbf{x}_1(t) + \mathbf{x}_0(t)$. Покажем, что $\mathbf{x}(t)$ — решение системы (2).

$$\frac{d\mathbf{x}}{dt} = \frac{d(\mathbf{x}_1 + \mathbf{x}_0)}{dt} = \frac{d\mathbf{x}_1}{dt} + \frac{d\mathbf{x}_0}{dt} = A\mathbf{x}_1 + \mathbf{f} + A\mathbf{x}_0 = A\mathbf{x}_1 + A\mathbf{x}_0 = A\mathbf{x$$

Обратно пусть $\boldsymbol{x}(t)$ – произвольное решение системы (2). Покажем, что

$$\boldsymbol{x}-\boldsymbol{x}_1=\boldsymbol{x}_0,$$

где x_0 — некоторое решение линейной однородной системы(2). Действительно

$$\frac{d\mathbf{x}_0}{dt} = \frac{d(\mathbf{x} - \mathbf{x}_1)}{dt} = \frac{d\mathbf{x}}{dt} - \frac{d\mathbf{x}_1}{dt} = A\mathbf{x} + \mathbf{f} - (A\mathbf{x}_1 + \mathbf{f}) =$$
$$= A(\mathbf{x} - \mathbf{x}_1) = A\mathbf{x}_0.$$