Name :	Utech
Roll No.:	
Inviailator's Sianature	VI among the last

CS/B.TECH(NEW)APM/TT/AUE/CHE/ME/ PE/CE/SEM-4/M-402/2012

2012 MATHEMATICS-III

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Short Answer Type Questions)

Answer any ten questions: $10 \times 2 = 20$

- 1. a) If $f(x) = x + x^2$, $-\pi \le x \le \pi$ be represented in a Fourier series as $a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then find the value of a_0 .
 - b) State Fourier Integral theorem.
 - c) If F(s) is the Fourier transform of f(x), then find the Fourier transform of f(ax).
 - d) Find the residue of $f(z) = \frac{2 + 3 \sin \pi z}{z(z 1)^2}$ at z = 1.
 - e) Find the value of $\int_{C} \frac{z}{z-1} dz$ where C is the curve defined by $|z| = \frac{1}{2}$.
 - f) Find the poles of the function $f(z) = z^2 / \left\{ (z-1)^2 (z+2) \right\}$.

4152 [Turn over

CS/B.TECH(NEW)APM/TT/AUE/CHE/ME/ PE/CE/SEM-4/M-402/2012

- g) If a Poisson variate X is such that P(X = 1) = P(X = 2), Find P(X = 4).
- h) For any two events A and B (may not be mutually exclusive), prove that P(A+B) = P(A) + P(B) P(AB).
- i) Find the value of p so that the function $(2x x^2 + py^2)$ is harmonic.
- j) Find the value of $J_{\frac{1}{2}}(x)$.
- k) Prove that $(2n + 1)x P_n = (n + 1)P_{n+1} + nP_{n-1}$
- l) Find the ordinary and singular points of the differential equation $x^2(1+x)^2 \frac{d^2y}{dx^2} + (x^2-1) \frac{dy}{dx} + 2xy = 0$.
- m) Find the bilinear transformation which *maps* z = 0, 1, ∞ onto $\omega = -1$, -i, 1 respectively.
- n) Find the value of $\int_{-1}^{1} P_0(x) dx$ where $P_n(x)$ is a Legendre's polynomial of degree n.
- o) Write down the Bessel's equation of order 2.

GROUP - B

Answer any *five* questions taking at least *one* question from each Modules. : $5 \times 10 = 50$

Module I: Fourier Series and Fourier Transform

2. a) Expand f(x) = x, $-\pi \le x \le \pi$ in Fourier series. Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots$ 4 + 1

2

b) Find the Fourier sine transform of f(x), where

$$f(x) = \begin{cases} 1, & 0 < x \le \pi \\ 0, & x > \pi \end{cases}$$

and hence evaluate the integral $\int\limits_0^\infty \left(\frac{1-\cos p\pi}{p} \right) \sin px \; \mathrm{d}p$.

3 + 2

4152

- PE/CE/SEM-4/M-402/2012

 3. a) Find the Fourier series of $f(x) = x^2$, $-\pi \le x \le \pi$.

 Hence prove that $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$. 4 + 1
 - b) Find the function whose Fourier cosine transform is $\frac{\sin as}{s}$.

Module II: Calculus of Complex variable

4. a) Using Cauchy's Residue theorem, prove that

$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} = \frac{2\pi}{\sqrt{3}}.$$

b) Evaluate $\oint_c \frac{e^{2z}}{(z+1)^4} dz$

where *C* is the circle
$$|z| = 3$$
.

- 5. a) If $u = x^2 y^2$ and $v = -\frac{y}{x^2 + y^2}$, then prove that both u and v are harmonic.
 - b) Find the zeros and their orders of the function $f(z) = \frac{z^5 1}{z^2 + 5}.$
- 6. a) Expand $f(z) = \frac{z}{(z-1)(z-2)}$ in Laurent's series for 1 < |z| < 2.
 - b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although the Cauchy-Riemann conditions are satisfied at that point.

Module III: Probability

7. a) Two urns contain respectively 5 white, 7 black balls and 4 while, 2 black balls. One of the urns is selected by the toss of a fair coin and then 2 balls are drawn without replacement from the selected urn. If both balls are white, what is the probability that the first urn is selected?

CS/B.TECH(NEW)APM/TT/AUE/CHE/ME/ PE/CE/SEM-4/M-402/2012

b) X is a continuous random variable having probability

dimity function
$$f(x) = \begin{cases} \frac{4x}{5}, & 0 < x \le 1 \\ \frac{2(3-x)}{5}, & 1 < x \le 2 \\ 0, & \text{elsewhere} \end{cases}$$

Find the mean value of *x* and the distribution function.

3 + 2

- 8. a) An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8?
 - b) A random variable X has the following probability function:

X	0	1	2	3	4	5	6	7
P (x)	0	K	2K	2K	3K	K^2	$2K^2$	7K ² + K
-	01 :		•	C 77	•		D	77 0\ 1

Obtain the value of K and estimate P (X < 6) and P (0 < X < 5).

Module IV: PDE and Series solution of ODE.

9. Use Laplace transform to solve the one dimensional wave

equation
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad (x > 0, t > 0)$$

where
$$u(x,0) = 0$$
, $\frac{\partial u}{\partial t}(x,0) = 0$, $x > 0$

and
$$u(0, t) = F(t), u(\infty, t) = 0, t \ge 0$$
.

10

- 10. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.
- 11. a) Find the series solution of *ODE*

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} + x^2 y = 0 \quad \text{about } x = 0.$$

b) Show that
$$\int_{-1}^{1} x^2 p_{n-1}(x) p_{n+1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$$

5