Supplementary Material for the Submission "A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments"

Rui Xia¹, Vincent Y. F. Tan¹, Louis Filstroff², and Cédric Févotte²

¹Department of Mathematics, National University of Singapore rui.xia@u.nus.edu, vtan@nus.edu.sg

²IRIT, Université de Toulouse, CNRS, France {louis.filstroff, cedric.fevotte}@irit.fr

S-1 Proof that likelihood is non-decreasing after truncation to zero

We first simplify the term $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) - u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$ by writing out these terms as follows. Firstly, for $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)})$, we have

$$f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)})$$

$$= \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right]$$

$$= \sum_{m} \sum_{\substack{(i',j'):\\i',j' \neq i}} b_{i'j'}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}) \right]$$

$$+ \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right]$$

$$+ \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right]$$

Next for $u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$, we have

$$u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$$

$$\begin{split} &= \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log \left(\frac{\tilde{h}_{ki}^{(l+1)} + \epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} \right) \\ &+ \log \left([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj} \right) + \frac{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l+1)} + \tilde{h}_{kj}^{(l+1)} + 2\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} - 1 \right] \\ &= \sum_{m=1}^{M} \sum_{\substack{(i',j'):\\ i',j' \neq i}} b_{i'j'}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki'}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}} \log \left(\frac{\tilde{h}_{ki'}^{(l)} + \epsilon}{\tilde{h}_{ki'}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} \right) \right. \\ &+ \log \left([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'} \right) + \frac{\sum_{k} w_{mk}(h_{ki'}^{(l)} + h_{kj'}^{(l)} + 2\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}} - 1 \right] \\ &+ \sum_{m=1}^{M} \sum_{j \neq i: (i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log \left(\frac{\tilde{h}_{ki}^{(l+1)} + \epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} \right) \right] \\ &+ \sum_{m=1}^{M} \sum_{j \neq i: (i,j) \in \mathcal{P}_m} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj} \right) + \frac{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l+1)} + \tilde{h}_{kj}^{(l+1)} + 2\epsilon)}{\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l)} + \tilde{h}_{kj}^{(l)} + 2\epsilon)} - 1 \right] \end{aligned}$$

$$\begin{split}
&= \sum_{m=1}^{M} \sum_{\substack{(i',j'):\\ i',j'\neq i}} b_{i'j'}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'}) + \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi'} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj'}) \right] \\
&+ \sum_{m=1}^{M} \sum_{\substack{j \neq i:\\ (i,j) \in \mathcal{P}_{m}}} b_{ij}^{(m)} \left[-\sum_{k' \neq k} \frac{w_{mk'}(\tilde{h}_{k'i}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\
&- \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\
&+ \sum_{m=1}^{M} \sum_{\substack{j \neq i:\\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \\
&+ \sum_{m=1}^{M} \sum_{\substack{j \neq i:\\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\sum_{\substack{k' \neq k \\ w_{mk'}}} w_{mk'}(\tilde{h}_{ki}^{(l)} + \epsilon) + w_{mk}(\epsilon) + \sum_{k} w_{mk}(\tilde{h}_{kj}^{(l)} + \epsilon) \\
&\sum_{k} w_{mk}(\tilde{h}_{ki}^{(l)} + \tilde{h}_{kj}^{(l)} + 2\epsilon) - 1 \right]
\end{aligned}$$

When we calculate $f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) - u_2(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)}|\mathbf{W})$, the expressions in (S-1) and (S-2) cancel and we have:

$$\begin{split} &f_{\epsilon}(\mathbf{W},\tilde{\mathbf{H}}^{(l)}) - u_{2}(\tilde{\mathbf{H}}^{(l+1)},\tilde{\mathbf{H}}^{(l)}|\mathbf{W}) \\ &= \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\ &+ \sum_{m} \sum_{j \neq i:(i,j) \in \mathcal{P}_{m}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \right] \\ &- \sum_{m=1}^{M} \sum_{j \neq i:} b_{ij}^{(m)} \left[-\sum_{k' \neq k} \frac{w_{mk'}(\tilde{h}_{k'i}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right. \\ &- \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon} [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}) \right] \\ &- \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \log([\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}) \\ &- \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\sum_{k' \neq k} w_{mk'}(\tilde{h}_{ki}^{(l)} + \epsilon) + w_{mk}(\epsilon) + \sum_{k} w_{mk}(\tilde{h}_{kj}^{(l)} + \epsilon) \\ &- \sum_{k} \sum_{i,j \neq i:} b_{ij}^{(m)} \left[\frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \log(\frac{\epsilon}{\tilde{h}_{ki}^{(l)} + \epsilon}) \right] \\ &+ \sum_{m=1}^{M} \sum_{j \neq i:} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \right] \end{aligned}$$

Using the inequality when truncation to zero is invoked, i.e.,

$$\frac{\sum\limits_{m}\sum\limits_{j\neq i}b_{ij}^{(m)}\frac{w_{mk}(\tilde{h}_{ki}^{(l)}+\epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mi}}}{\sum\limits_{m}\sum\limits_{j\neq i}(b_{ij}^{(m)}+b_{ji}^{(m)})\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\mathbf{W}(\tilde{\mathbf{H}}^{(l)}+\epsilon\mathbb{1})]_{mj}}}\leq\epsilon$$

we obtain

$$\begin{split} &f_{\epsilon}(\mathbf{W},\tilde{\mathbf{H}}^{(l)}) - u_{2}(\tilde{\mathbf{H}}^{(l+1)},\tilde{\mathbf{H}}^{(l)}|\mathbf{W}) \\ &= -\log\Big(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}\Big) \bigg[\sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} b_{ij}^{(m)} \frac{w_{mk}(\tilde{h}_{ki}^{(l)} + \epsilon)}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi}} \bigg] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \bigg] \\ &\geq -\log\Big(\frac{h_{ki}^{(l)} + \epsilon}{\epsilon}\Big) \cdot \epsilon \cdot \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \bigg] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \bigg] \\ &= \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \bigg[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbb{1})]_{mj}} \bigg(- \epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}\Big) + \tilde{h}_{ki}^{(l)} \bigg) \bigg] \geq 0 \end{split}$$

The proof is done and the last inequality is satisfied since $x \ge \log(x+1)$ for all $x \ge 0$ with equality at x = 0.

S-2 Convergence Analysis: Proof of Theorem 1

S-2.1 Conditions for Convergence

The paper [1] shows that given a function f(x) to be minimized on domain $\mathcal{X} = \prod_{i=1}^n \mathcal{X}_i$, if the surrogate function (auxiliary function/majorizer) $F_i(\cdot|\cdot)$ satisfies the following five properties:

- **(P1)** $F_i(\tilde{x}_i|\tilde{x}) = f(\tilde{x})$, for any $\tilde{x} \in \mathcal{X}$
- **(P2)** $F_i(x_i|\tilde{x}) \leq f(\tilde{x}_1,...,x_i,...,\tilde{x}_n)$, for any $(x_i,\tilde{x}) \in \mathcal{X}_i \times \mathcal{X}$
- **(P3)** $F_i(\cdot|\cdot)$ is differentiable on $\operatorname{int} \mathcal{X}_i \times \operatorname{int} \mathcal{X}$, there exists a function $g(\cdot|\tilde{x}) : \nabla F_i(\cdot|\tilde{x}) = g(\cdot/\tilde{x}_i|\tilde{x})$
- (P4) Define $f_i(\cdot|\tilde{x}): x_i \mapsto f(\tilde{x}_1, ..., x_i, ..., \tilde{x}_n)$, for any $x_i \in \mathcal{X}_i$, and $\tilde{x} \in \mathcal{X}$. Then for any $\hat{x}_i \in \mathcal{X}_i$, $F_i'(x_i; \hat{x}_i x_i|\tilde{x})|_{x_i = \tilde{x}_i} = f_i'(x_i; \hat{x}_i x_i|\tilde{x})|_{x_i = \tilde{x}_i}$ where the directional derivative f'(x; d) is defined as $f'(x; d) := \lim_{\delta \to 0} [f(x + \delta d) f(x)]/\delta$
- **(P5)** $F_i(\cdot|\tilde{x})$ is strictly convex on \mathcal{X}_i , for any $\tilde{x} \in \mathcal{X}$

where,

$$\mathcal{X} = \mathbb{R}_{++}^{M \times K} \times \mathbb{R}_{++}^{K \times N}$$

$$f_{\epsilon}(\mathbf{W}, \mathbf{H}) = \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log\left([\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mi} \right) + \log\left([\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H} + \epsilon \mathbb{1})]_{mj} \right) \right]$$

$$F_{1}(x_{1}|\tilde{x}) = u_{1}(\mathbf{W}, \mathbf{W}^{(l)}|\mathbf{H}^{(l)})$$

$$F_{2}(x_{2}|\tilde{x}) = u_{2}(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})$$

the sequence of iterates $\{(\mathbf{W}^{(l)}, \mathbf{H}^{(l)})\}_{l=0}^{\infty}$ generated by Algorithm 1 converges to the set of stationary points that minimizes the negative log-likelihood $f_{\epsilon}(\mathbf{W}, \mathbf{H})$.

Although there are truncations to zero during the update of **H**, the update:

$$\mathbf{H}^{(l+1)} = \underset{\mathbf{H} \in \mathbb{R}_{++}^{K \times N}}{\operatorname{argmin}} u_2(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)})$$
(S-3)

is still satisfied. However, those h_{ki} that do not involve truncations are updated such that $\left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}$ is minimized. For those h_{ki} that involve truncations,

$$\left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}\Big|_{h_{ki}=0} \le \left[u_2(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)})\right]_{ki}\Big|_{h_{ki}}, \quad \forall h_{ki} \ge 0$$

is always satisfied by the fact that $x \ge \log(x+1), \forall x \ge 0$. Hence, the update rule in equation (S-3) is maintained. We only need to check the five properties.

S-2.2 Surrogate Functions

We have

$$u_{1}(\mathbf{W}, \mathbf{W}^{(l)}|\mathbf{H}^{(l)}) = \sum_{m} \sum_{(i,j)\in\mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} \log \left(\frac{w_{mk}}{w_{mk}^{(l)}} [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} \right) + \log \left([\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj} \right) + \frac{[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} - 1 \right]$$

and

$$u_{2}(\mathbf{H}, \mathbf{H}^{(l)}|\mathbf{W}^{(l+1)}) = \sum_{m} \sum_{(i,j)\in\mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l+1)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} \log \left(\frac{h_{ki} + \epsilon}{h_{ki}^{(l)} + \epsilon} [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} \right) + \log \left([\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj} \right) + \frac{[\mathbf{W}^{(l+1)}(\mathbf{H} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H} + \epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l+1)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj}} - 1 \right]$$

P1 and P2 are satisfied by the fact that u_1 and u_2 are surrogate functions for **W** and **H** respectively.

S-2.3 Checking P3 & P4

Firstly, we check slope with respect to W

$$\begin{split} & \left[\nabla_{\mathbf{W}} f_{\epsilon}(\mathbf{W}, \mathbf{H}^{(l)}) \right]_{mk} \\ &= \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{(h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon) [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - (h_{ki}^{(l)} + \epsilon) \left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right]}{([\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}) [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \\ &= \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{h_{kj}^{(l)} [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - h_{ki}^{(l)} [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} + \epsilon \left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right]}{\left[[\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right] [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \end{split}$$

as well as the slope with respect to u_1

$$\begin{split} & \left[\nabla_{\mathbf{W}} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \right]_{mk} \\ & = \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi}} \frac{1}{w_{mk}} + \frac{h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon\mathbb{1})]_{mj}} \right] \end{split}$$

It is easy to check that:

$$\begin{split} & \left[\nabla_{\mathbf{W}} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \Big|_{\mathbf{W} = \mathbf{W}^{(l)}} \right]_{mk} \\ &= \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\frac{h_{ki}^{(l)} + \epsilon}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} + \frac{h_{ki}^{(l)} + h_{kj}^{(l)} + 2\epsilon}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} \right] \\ &= \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \frac{h_{kj}^{(l)} [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - h_{ki}^{(l)} [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} + \epsilon \left[[\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} - [\mathbf{W} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj} \right] \\ &= \left[\nabla_{\mathbf{W}} f(\mathbf{W}, \mathbf{H}^{(l)}) \Big|_{\mathbf{W} = \mathbf{W}^{(l)}} \right]_{mk} \end{split}$$

This implies that

$$\nabla_{\mathbf{W}} u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} = \nabla_{\mathbf{W}} f(\mathbf{W}, \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}}$$
(S-4)

Next define $f_{1,\epsilon}(\cdot|\mathbf{H}^{(l)}): \mathbf{W} \mapsto f(\mathbf{W},\mathbf{H}^{(l)})$. This is evaluated as follows

$$\begin{split} &f_{1,\epsilon}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)}) \\ &= \lim_{\delta \to 0} \frac{f(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W})|\mathbf{H}^{(l)}) - f(\mathbf{W}|\mathbf{H}^{(l)})}{\delta} \\ &= \lim_{\delta \to 0} \frac{1}{\delta} \Bigg[\sum_{m} \sum_{(i,j)} b_{ij}^{(m)} \log \left(\frac{[(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W}))(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W}))(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W}))(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}} \\ &\times \frac{[\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}{[\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}} \Bigg) \Bigg] \end{split}$$

For simplification, we denote $a = [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}$, $b = [\mathbf{W}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}$, $c = [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}$, $d = [\widehat{\mathbf{W}}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}$. Then the above simplifies to

$$\begin{split} f_{1,\epsilon}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)}) &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{(1-\delta)a + \delta c + (1-\delta)b + \delta d}{(1-\delta)a + \delta c} \frac{a}{a+b} \\ &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \frac{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta ad}{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta bc} \\ &= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \left(1 + \frac{\delta ad - \delta bc}{(1-\delta)a^2 + (1-\delta)ab + \delta ac + \delta bc}\right) \end{split}$$

For further simplification, we denote s = ad - bc, r = a(a + b), t = c(a + b). The above simplifies to

$$f'_{1,\epsilon}(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) = \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{1}{\delta} \log \left(1 + \frac{\delta s}{(1 - \delta)r + \delta t} \right)$$

$$= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t - r}{r}} \right)^{\frac{1}{\delta}}$$

$$= \lim_{\delta \to 0} \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t - r}{r}} \right)^{\frac{1}{\delta} + \frac{t - r}{r}} - \log \left(1 + \frac{\frac{s}{r}}{\frac{1}{\delta} + \frac{t - r}{r}} \right)^{\frac{t - r}{r}}$$

since $\left(1 + \frac{t}{f(x)}\right)^{f(x)} \to e^t$ as $f(x) \to \infty$ and $\frac{1}{\delta} + \frac{t-r}{r} \to \infty$ as $\delta \to 0$. Thus,

$$\begin{split} &f_{1,\epsilon}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)}) \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{s}{r} \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{ad-bc}{a(a+b)} \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{[\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj} - [\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}{[\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} \Big[[\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}\Big]} \end{split}$$

Similarly,

$$\begin{split} &u_{1}^{\prime}(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W},\mathbf{W}^{(l)}|\mathbf{H}^{(l)})\\ &=\lim_{\delta\to0}\frac{\tilde{u}_{1}(\mathbf{W}+\delta(\widehat{\mathbf{W}}-\mathbf{W})|\mathbf{W}^{(l)},\mathbf{H}^{(l)})-\tilde{u}_{1}(\mathbf{W}|\mathbf{W}^{(l)},\mathbf{H}^{(l)})}{\delta}\\ &=\lim_{\delta\to0}\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\frac{1}{\delta}\left[-\sum_{k}\frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\log\left(\frac{(1-\delta)w_{mk}+\delta\hat{w}_{mk}}{w_{mk}}\right)\right.\\ &+\frac{\delta\left([\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}\right)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}\right]\\ &=\lim_{\delta\to0}\sum_{m}\sum_{(i,j)\in\mathcal{P}_{m}}b_{ij}^{(m)}\left[-\sum_{k}\frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}\log\left(1+\frac{\hat{w}_{mk}-w_{mk}}{\frac{1}{\delta}}\right)^{\frac{1}{\delta}}\right.\\ &+\frac{\left([\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})-\mathbf{W}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}\right)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}+[\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}\right]} \end{split}$$

where the last equality again follows from the fact that $\left(1 + \frac{t}{f(x)}\right)^{f(x)} \to e^t$ as $f(x) \to \infty$. Thus,

$$\begin{aligned} u_1'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W},\mathbf{W}^{(l)}|\mathbf{H}^{(l)}) &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \bigg[-\sum_{k} \frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{\hat{w}_{mk} - w_{mk}}{w_{mk}} \\ &+ \frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi} + [\mathbf{W}^{(l)}(\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mj}} \bigg] \end{aligned}$$

Now we evaluate the expressions above at the point $\mathbf{W} = \mathbf{W}^{(l)}$ as follows

$$\begin{aligned} &u_1'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W},\mathbf{W}^{(l)}|\mathbf{H}^{(l)})\bigg|_{\mathbf{W}=\mathbf{W}^{(l)}} \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l)}(h_{ki}^{(l)}+\epsilon)}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}} \frac{\hat{w}_{mk} - w_{mk}^{(l)}}{w_{mk}^{(l)}} + \frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}} + \frac{[(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} + [(\widehat{\mathbf{W}}-\mathbf{W})(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}} \right] \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \frac{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj} - [\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}}{[\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi} - [\mathbf{W}^{(l)}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mj} [\widehat{\mathbf{W}}(\mathbf{H}^{(l)}+\epsilon\mathbb{1})]_{mi}} \\ &= f_{1,\epsilon}'(\mathbf{W};\widehat{\mathbf{W}}-\mathbf{W}|\mathbf{H}^{(l)}) \bigg|_{\mathbf{W}=\mathbf{W}^{(l)}} \end{aligned}$$

Together with equation (S-4), we have proved P4.

The same idea can be applied to the surrogate function with respect to **H**, hence we conclude that:

$$\begin{aligned} u_1'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} &= f_{1,\epsilon}'(\mathbf{W}; \widehat{\mathbf{W}} - \mathbf{W} | \mathbf{H}^{(l)}) \bigg|_{\mathbf{W} = \mathbf{W}^{(l)}} \\ u_2'(\mathbf{H}; \widehat{\mathbf{H}} - \mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)}) \bigg|_{\mathbf{H} = \mathbf{H}^{(l)}} &= f_{2,\epsilon}'(\mathbf{H}; \widehat{\mathbf{H}} - \mathbf{H} | \mathbf{W}^{(l+1)}) \bigg|_{\mathbf{H} = \mathbf{H}^{(l)}} \end{aligned}$$

S-2.4 Checking P5

We have,

$$\begin{split} &\frac{\partial^2}{\partial w_{mk}^2} u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) = \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \bigg(\frac{w_{mk}^{(l)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{1}{w_{mk}^2} \bigg) \\ &\frac{\partial^2}{\partial h_{ki}^2} u_2(\mathbf{H}, \mathbf{W}^{(l+1)} | \mathbf{H}^{(l)}) = \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \bigg(\frac{w_{mk}^{(l+1)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon \mathbb{1})]_{mi}} \frac{1}{(h_{ki} + \epsilon)^2} \bigg) \end{split}$$

Hence, u_1, u_2 are strictly convex if $w_{mk} > 0$ and $h_{ki} \ge 0$. This is satisfied since (\mathbf{W}, \mathbf{H}) are both initialized to be positive, i.e., $\mathbf{W}^{(0)} \in \mathbb{R}_{++}^{M \times K}$, $\mathbf{H}^{(0)} \in \mathbb{R}_{++}^{K \times N}$, and during the update of \mathbf{W} and \mathbf{H} , entries are kept positive for \mathbf{W} and nonnegative for \mathbf{H} .

The five properties are satisfied and hence by [1] the sequence converges to the set of stationary points.

Remark 1: While we have verified that all 5 properties hold, the proof of Theorem 1 differs slightly from the original proof in [1]. Firstly, in the original proof of [1], the regularization terms in the objective function guarantees that the set $S_0 \triangleq \{(\mathbf{W}, \mathbf{H}) \in \mathbb{R}_{++}^{M \times K} \times \mathbb{R}_{++}^{K \times N} \mid \ell(\mathbf{W}, \mathbf{H}) \leq \ell(\mathbf{W}^0, \mathbf{H}^0)\}$ is bounded. However, in our theorem, boundedness of the corresponding set is ensured by normalization where $\sum_k w_{mk} = 1$ or $\sum_k w_{mk} = 1$, and $\sum_{k,i} h_{ki} = 1$. Secondly, in the last step of Algorithm 1, we perform normalization for both \mathbf{W} and \mathbf{H} . Denote the result after the **Update** step in Algorithm 1 as $(\tilde{\mathbf{W}}, \tilde{\mathbf{H}})$ and the result after the **Normalization** step as (\mathbf{W}, \mathbf{H}) . Although $f_{\epsilon}(\tilde{\mathbf{W}}, \tilde{\mathbf{H}}) = f_{\epsilon}(\mathbf{W}, \mathbf{H})$, the derivatives differ. This does not affect the last part of the proof in [1], because if we denote the normalization operation as a function, where $\mathbf{W} = N(\tilde{\mathbf{W}})$, application of the chain rule suggests that $f'_{1,\epsilon}(\mathbf{W}; \hat{\mathbf{W}} - \mathbf{W}|H) = f'_{1,\epsilon}(\tilde{\mathbf{W}}; \hat{\mathbf{W}} - \tilde{\mathbf{W}}|H) \cdot N'(\tilde{\mathbf{W}})$, where $N'(\tilde{\mathbf{W}})$ are positive as one can easily observe from the **Normalization** step in Algorithm 1. Hence, the directional derivatives of $f'_{1,\epsilon}$ and $f'_{2,\epsilon}$ are still non-negative at the limit points.

S-3 Non-decreasing likelihood

Figure S-1: Plot of the evolution of negative log-likelihoods

Fig. S-1 shows that the likelihood is non-decreasing (negative log-likelihood is non-increasing).

S-4 Numerical Results for K = 3 for men

Tables S-1 and S-2 show the **W** and **H** matrices for the men when K=3. The matrix $\Lambda=\mathbf{WH}$ when K=3 is displayed in Tables S-3 and S-4.

Tournaments	Ro	ow Normalizati	on	Colu	ımn Normaliza	ition
Australian Open	2.25E-01	3.61E-01	4.14E-01	1.87E-02	4.00E-02	3.65E-02
Indian Wells Masters	2.74E-01	2.79E-01	4.47E-01	4.21E-02	8.02E-02	5.24E-02
Miami Open	6.28E-02	8.45E-01	9.25E-02	1.56E-02	2.68E-02	2.56E-01
Monte-Carlo Masters	8.32E-01	6.06E-101	1.68E-01	1.96E-01	4.63E-02	2.02E-72
Madrid Open	0.00E+00	1.00E-00	1.89E-33	0.00E+00	8.73E-14	2.03E-01
Italian Open	7.65E-01	2.35E-01	0.00E+00	1.64E-01	0.00E+00	6.14E-02
French Open	6.17E-01	1.02E-01	2.81E-01	9.10E-02	4.83E-02	1.83E-02
Wimbledon	3.94E-01	6.11E-10	6.06E-01	5.51E-02	9.92E-02	1.40E-20
Canadian Open	0.00E+00	0.00E+00	1.00E-00	0.00E+00	2.55E-01	0.00E+00
Cincinnati Masters	4.95E-01	3.31E-16	5.05E-01	1.51E-01	1.80E-01	2.30E-38
US Open	3.36E-01	2.82E-01	3.82E-01	5.60E-02	7.42E-02	5.73E-02
Shanghai Masters	9.85E-167	6.45E-01	3.55E-01	1.04E-141	7.92E-02	1.51E-01
Paris Masters	7.48E-01	1.47E-01	1.06E-01	1.88E-01	3.09E-02	4.49E-02
The ATP Finals	1.46E-01	6.32E-01	2.21E-01	2.26E-02	3.99E-02	1.19E-01

Table S-1: Learned dictionary matrix W for the men's dataset

Players		matrix \mathbf{H}^T	
Novak Djokovic	3.66E-02	3.37E-02	1.81E-01
Rafael Nadal	1.38E-01	1.30E-02	4.03E-02
Roger Federer	6.44E-03	6.25E-02	6.03E-02
Andy Murray	4.40E-32	4.45E-02	3.31E-02
Tomas Berdych	1.62E-02	0.00E+00	1.03E-02
David Ferrer	2.29E-02	0.00E+00	1.04E-02
Stan Wawrinka	2.87E-02	0.00E+00	1.02E-02
Jo-Wilfried Tsonga	1.77E-03	3.05E-02	6.69E-04
Richard Gasquet	1.05E-02	4.02E-03	3.09E-03
Juan Martin del Potro	3.62E-03	1.56E-02	1.84E-02
Marin Cilic	0.00E+00	1.86E-02	7.38E-10
Fernando Verdasco	5.53E-03	1.26E-02	1.81E-03
Kei Nishikori	0.00E+00	1.56E-03	3.09E-02
Gilles Simon	3.16E-03	1.10E-02	2.07E-03
Milos Raonic	7.13E-03	1.10E-02	9.22E-04
Philipp Kohlschreiber	4.58E-03	4.09E-07	1.12E-06
John Isner	1.63E-02	2.13E-03	0.00E+00
Feliciano Lopez	0.00E+00	6.14E-03	1.02E-02
Gael Monfils	9.27E-03	0.00E+00	2.63E-03
Nicolas Almagro	2.25E-06	5.91E-03	0.00E+00

Table S-2: Learned transpose of coefficient matrix \mathbf{H}^T with column normalization of \mathbf{W} for the men's dataset

S-5 Numerical Results for Λ for K=2 for women

The matrix $\Lambda = \mathbf{WH}$ when K = 2 for the women players is displayed in Tables S-5 and S-6.

Tournament	Novak Djokovic	Rafael Nadal	Roger Federer	Andy Murray	Tomas Berdych	David Ferrer	Stan Wawrinka	Jo-Wilfried Tsonga	Richard Gas- quet	Juan Martin del Potro
Australian Open	8.64E-03	4.58E-03	4.82E-03	2.99E-03	6.78E-04	8.09E-04	9.11E-04	1.28E-03	4.70E-04	1.36E-03
Indian Wells Masters	1.37E-02	8.97E-03	8.45E-03	5.31E-03	1.22E-03	1.51E-03	1.74E-03	2.56E-03	9.26E-04	2.36E-03
Miami Open	4.78E-02	1.28E-02	1.72E-02	9.68E-03	2.88E-03	3.03E-03	3.07E-03	1.02E-03	1.06E-03	5.18E-03
Monte-Carlo Masters	8.75E-03	2.77E-02	4.16E-03	2.06E-03	3.18E-03	4.49E-03	5.64E-03	1.76E-03	2.24E-03	1.43E-03
Madrid Open	3.68E-02	8.18E-03	1.23E-02	6.73E-03	2.09E-03	2.12 E-03	2.08E-03	1.36E-04	6.29E-04	3.73E-03
Italian Open	1.71E-02	2.51E-02	4.76E-03	2.03E-03	3.28E-03	4.39E-03	5.33E-03	3.31E-04	1.91E-03	1.72E-03
French Open	8.28E-03	1.39E-02	4.71E-03	2.76E-03	1.66E-03	2.27E-03	2.80E-03	1.65E-03	1.20E-03	1.42E-03
Wimbledon	5.36E-03	8.90E-03	6.56E-03	4.41E-03	8.94E-04	1.26E-03	1.58E-03	3.13E-03	9.76E-04	1.74E-03
Canadian Open	8.59E-03	3.31E-03	1.60E-02	1.14E-02	0.00E+00	0.00E + 00	0.00E+00	7.80E-03	1.03E-03	3.97E-03
Cincinnati Masters	1.16E-02	2.32E-02	1.22E-02	8.00E-03	2.45E-03	3.46E-03	4.34E-03	5.76E-03	2.31E-03	3.34E-03
US Open	1.49E-02	1.10E-02	8.46E-03	5.20E-03	1.50E-03	1.88E-03	2.19E-03	2.40E-03	1.06E-03	2.41E-03
Shanghai Masters	3.00E-02	7.11E-03	1.41E-02	8.53E-03	1.55E-03	1.58 E-03	1.54E-03	2.52E-03	7.86E-04	4.01E-03
Paris Masters	1.60E-02	2.81E-02	5.85E-03	2.86E-03	3.50E-03	4.76E-03	5.84E-03	1.31E-03	2.23E-03	1.99E-03
ATP World Tour Finals	2.38E-02	8.44E-03	9.83E-03	$5.72\mathrm{E-}03$	1.59E-03	1.76E-03	1.87E-03	1.34E-03	7.66E-04	2.89E-03

Table S-3: Learned $\Lambda = \mathbf{WH}$ matrix for first 10 men players

Tournament	Marin Cilic	Fernando Ver- dasco	Gilles Simon	Milos Raonic	John Isner	Philipp Kohlschreiber	John Isner	Feliciano Lopez	Gael Monfils	Nicolas Alma- gro
Australian Open	7.45E-04	6.75E-04	1.19E-03	5.73E-04	6.09E-04	8.59E-05	3.90E-04	6.16E-04	2.70E-04	2.37E-04
Indian Wells Masters	1.49E-03	1.34E-03	1.74E-03	1.12E-03	1.23E-03	1.93E-04	8.55E-04	1.03E-03	5.28E-04	4.75E-04
Miami Open	4.99E-04	8.89E-04	7.94E-03	8.73E-04	6.43E-04	7.18E-05	3.11E-04	2.77E-03	8.18E-04	1.59E-04
Monte-Carlo Masters	8.61E-04	1.67E-03	7.20E-05	1.13E-03	1.91E-03	9.00E-04	3.29E-03	2.84E-04	1.82E-03	2.74E-04
Madrid Open	1.50E-10	3.68E-04	6.27E-03	4.20E-04	1.87E-04	2.28E-07	1.86E-16	2.07E-03	5.34E-04	5.16E-16
Italian Open	4.53E-11	1.02E-03	1.90E-03	6.45E-04	1.22E-03	7.50E-04	2.66E-03	6.24E-04	1.68E-03	3.68E-07
French Open	9.00E-04	1.15E-03	6.41E-04	8.55E-04	1.20E-03	4.17E-04	1.58E-03	4.83E-04	8.91E-04	2.86E-04
Wimbledon	1.85E-03	1.56E-03	1.54E-04	1.26E-03	1.49E-03	2.53E-04	1.11E-03	6.09E-04	5.11E-04	5.87E-04
Canadian Open	4.75E-03	3.22E-03	3.97E-04	2.80E-03	2.82E-03	1.04E-07	5.44E-04	1.57E-03	0.00E+00	1.51E-03
Cincinnati Masters	3.35E-03	3.11E-03	2.80E-04	2.45E-03	3.06E-03	6.92E-04	2.84E-03	1.10E-03	1.40E-03	1.06E-03
US Open	1.38E-03	1.35E-03	1.88E-03	1.11E-03	1.27E-03	2.57E-04	1.07E-03	1.04E-03	6.70E-04	4.39E-04
Shanghai Masters	1.47E-03	1.27E-03	4.78E-03	1.18E-03	1.01E-03	2.02E-07	1.69E-04	2.02E-03	3.97E-04	4.69E-04
Paris Masters	5.76E-04	1.51E-03	1.43E-03	1.02E-03	1.72E-03	8.59E-04	3.11E-03	6.46E-04	1.86E-03	1.83E-04
ATP World Tour Finals	7.43E-04	8.45E-04	3.74E-03	7.55E-04	7.12E-04	1.04E-04	4.53E-04	1.46E-03	5.23E-04	2.36E-04

Table S-4: Learned $\Lambda = WH$ matrix for last 10 men players

Tournament	Serena Williams	Agnieszka Radwanska	Victoria Azarenka	Caroline Woz- niacki	Maria Shara- pova	Simona Halep	Petra Kvitova	Angelique Kerber	Samantha Stosur	Ana Ivanovic
Australia Open	6.13E-03	2.48E-03	7.27E-03	3.13E-03	8.67E-04	1.55E-03	2.47E-03	7.05E-04	4.29E-05	9.88E-04
Qatar Open	1.30E-02	3.23E-03	6.80E-03	3.92E-03	5.18E-03	3.01E-03	3.94E-03	2.26E-03	2.13E-03	2.26E-03
Dubai Tennis Championships	4.53E-03	1.83E-03	5.38E-03	2.31E-03	6.41E-04	1.15E-03	1.83E-03	5.21E-04	3.17E-05	7.30E-04
Indian Wells Open	1.12E-02	2.66E-03	5.36E-03	3.22E-03	4.63E-03	2.57E-03	3.31E-03	1.98E-03	1.94E-03	1.95E-03
Miami Open	9.69E-03	2.36E-03	4.87E-03	2.86E-03	3.93E-03	2.24E-03	2.90E-03	1.70E-03	1.63E-03	1.69E-03
Madrid Open	9.80E-03	2.20E-03	4.12E-03	2.64E-03	4.29E-03	2.23E-03	2.81E-03	1.79E-03	1.83E-03	1.72E-03
Italian Open	1.32E-02	2.61E-03	4.06E-03	3.08E-03	6.35E-03	2.96E-03	3.56E-03	2.54E-03	2.82E-03	2.34E-03
French Open	1.59E-02	2.74E-03	3.11E-03	3.16E-03	8.37E-03	3.52E-03	4.03E-03	3.23E-03	3.83E-03	2.87E-03
Wimbledon	2.18E-02	3.76E-03	4.28E-03	4.34E-03	1.15E-02	4.82E-03	5.52E-03	4.42E-03	5.25E-03	3.93E-03
Canadian Open	1.07E-02	2.31E-03	4.11E-03	2.76E-03	4.84E-03	2.43E-03	3.02E-03	1.99E-03	2.10E-03	1.89E-03
Cincinnati Open	2.20E-02	3.30E-03	2.25E-03	3.71E-03	1.23E-02	4.77E-03	5.24E-03	4.62E-03	5.75E-03	3.99E-03
US Open	9.75E-03	2.44E-03	5.17E-03	2.96E-03	3.85E-03	2.26E-03	2.96E-03	1.68E-03	1.57E-03	1.69E-03
Pan Pacific Open	2.54E-02	3.81E-03	2.60E-03	4.29E-03	1.42E-02	5.52E-03	6.06E-03	5.35E-03	6.66E-03	4.61E-03
Wuhan Open	6.77E-03	2.73E-03	8.03E-03	3.45E-03	9.57E-04	1.71E-03	2.73E-03	7.77E-04	4.73E-05	1.09E-03
China Open	2.08E-02	3.68E-03	4.55E-03	4.27E-03	1.07E-02	4.60E-03	5.33E-03	4.16E-03	4.87E-03	3.72E-03
WTA Finals	8.56E-03	1.40E-03	1.36E-03	1.60E-03	4.61E-03	1.88E-03	2.12E-03	1.76E-03	2.13E-03	1.54E-03

Table S-5: Learned $\Lambda = \mathbf{WH}$ matrix for first 10 women players

Karolina Pliskova
<u> </u>
8.27E-05 1.03E-03 1.56E-03 2.15E-03
5.20E-04 8.27E-05 1.53E-03 1.56E-03 3.85E-04 6.11E-05
1.27E-24 5.20E-04 1.75E-03 1.53E-03 1.40E-40 3.85E-04
3.07E-03 1.27 3.10E-03 1.75
3.63E-03
7.15E-04
1.21E-04
L

Table S-6: Learned $\Lambda = \mathbf{WH}$ matrix for last 10 women players

Players	K = 2	Trial 1	K=2	Trial 2
Novak Djokovic	1.20E-01	2.91E-02	3.40E-05	9.42E-05
Rafael Nadal	1.07E-01	2.25E-02	1.47E-05	1.15E-04
Roger Federer	1.53E-01	1.11E-02	9.29E-03	1.83E-05
Andy Murray	1.43E-01	4.39E-03	2.46E-05	1.52E-05
Tomas Berdych	2.37E-12	6.59E-03	6.51E-19	1.60E-05
David Ferrer	4.74E-02	2.19E-03	1.56E-05	5.89E-06
Stan Wawrinka	6.26E-07	7.21E-03	2.11E-05	6.29E-06
Jo-Wilfried Tsonga	2.03E-01	5.88E-04	9.90E-01	1.04E-06
Richard Gasquet	4.98E-04	1.62E-03	5.30E-08	4.81E-06
Juan Martin del Potro	4.26E-06	8.01E-03	1.90E-05	7.19E-06
Marin Cilic	1.56E-09	2.12E-03	3.49E-16	4.11E-06
Fernando Verdasco	2.75E-17	7.12E-03	6.54E-05	9.72 E-07
Kei Nishikori	1.83E-12	8.58E-03	4.18E-23	1.77E-05
Gilles Simon	5.14E-06	1.31E-03	2.47E-10	4.13E-06
Milos Raonic	2.07E-07	2.84E-03	3.99E-08	6.00E-06
Philipp Kohlschreiber	0.00E+00	1.13E-03	7.99E-06	5.0E-324
John Isner	6.93E-02	3.21E-04	1.73E-22	9.47E-06
Feliciano Lopez	3.67E-02	4.93E-04	8.57E-06	1.38E-06
Gael Monfils	6.05E-14	2.85E-03	1.06E-12	4.00E-06
Nicolas Almagro	4.18E-07	2.14E-04	1.04E-14	8.10E-07
Assignments	4.72E-01	5.28E-01	3.32E-01	6.68E-01
Log-likelihoods	-657	7.56	-650	5.47

Table S-7: Learned λ skill vectors for the mixture-BTL model with K=2

S-6 Numerical Results for BTL and Mixture-BTL models

The learned λ vectors for the mixture-BTL models with K=2 across two almost-optimal trials are displayed in Table S-7.

References

[1] R. Zhao and V. Y. F. Tan. A unified convergence analysis of the multiplicative update algorithm for nonnegative matrix factorization. *IEEE Transactions on Signal Processing*, 66(1):129–138, 2018.