Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

9 de noviembre de 2020

Espacios Vectoriales (continuación)

Proposición (1)

Sean V un espacio vectorial, $\{v^1, v^2, \dots, v^k\} \subset V$ genera a V y $\{u^1, u^2, \dots, u^r\} \subset V$ una colección arbitraria de vectores, con k < r, entonces $\{u^1, u^2, \dots, u^r\}$ son l.d.

Proposición (Teorema de la Dimensión)

Todas las bases de un espacio vectorial V tienen el mismo cardinal.

Prueba:

Denotemos \mathfrak{B} la base de V.

Si $V = \{\mathbf{0}\}$, entonces $\mathfrak{B} = \emptyset$.

Si $V \neq \{\mathbf{0}\}$, en este caso demostraremos previamente el siguiente

Lema

Sean V un espacio vectorial, $S \subset V$, $u, v \in V$. Entonces $v \in \mathcal{L}(S \cup \{u\}) \backslash \mathcal{L}(S) \Rightarrow u \in \mathcal{L}(S \cup \{v\})$.

Prueba:

Por hipótesos se tiene que $v \in \mathcal{L}(S \cup \{u\}) \setminus \mathcal{L}(S)$, entonces vectores $\{s^1, s^2, \cdots, s^m\} \subset S$ tales que

$$\mathbf{v} = \alpha_1 \mathbf{s}^1 + \alpha_2 \mathbf{s}^2 + \dots + \alpha_m \mathbf{s}^m + \alpha \mathbf{u},$$

observar que si $\alpha=0$, entonces $v\in \mathcal{L}(S)$ lo cual es una contradicción. Por tanto despejamos u, y obtenemos

$$u = \alpha^{-1}v + \alpha^{-1}\alpha_2s^1 + \dots + \alpha^{-1}\alpha_ms^m,$$

esto nos indica que $u \in \mathcal{L}(S \cup \{v\})$.

Ahora veamos la continuación de la demostración del **Teorema de la Dimensión**, entonces

Caso I $card(\mathfrak{B}) < \infty$.

Entonces supongamos que V posee dos bases \mathfrak{B}_1 y \mathfrak{B}_2 tales que $\operatorname{card}(\mathfrak{B}_1) = n$ y $\operatorname{card}(\mathfrak{B}_2) = m$, con m < n, y consideremos que $\mathfrak{B}_1 = \{v^1, v^2, \cdots, v^n\}$ y $\mathfrak{B}_2 = \{u^1, u^2, \cdots, u^m\}$. Como $u^1 \in \mathscr{L}(\mathfrak{B}_1) = V$, entonces existen $\alpha_1, \alpha_2, \cdots, \alpha_n$ no todos nulos tale que

$$u^{1} = \alpha_{1}v^{1} + \alpha_{2}v^{2} + \dots + \alpha_{n}v^{n}, \tag{1}$$

notar que $u^1 \neq \mathbf{0}$, dado que los $v^j \neq \mathbf{0}$.

Sin pérdida de generalidad supongamos que $\alpha_1 \neq 0$.

Notamos que $u^1 \notin \mathcal{L}(\{v^2, \dots, v^n\})$, en caso contrario, existen escalares no todos nulos β_2, \dots, β_n tales que

$$u^1 = \beta_2 v^2 + \dots + \beta_n v^n, \tag{2}$$

Restando las ecuaciones (2) de (1) tenemos

$$\alpha_1 v^1 + (\alpha_2 - \beta_2) v^2 + \dots + (\alpha_n - \beta_n) v^n = \mathbf{0},$$

con $\alpha_1 \neq 0$ entonces \mathfrak{B}_1 es l.d lo cual es una contradicción. Por tanto tenemos

$$u^1 \in \mathcal{L}(\lbrace v^2, \cdots, v^n \rbrace \cup \lbrace v^1 \rbrace) \backslash \mathcal{L}(\lbrace v^2, \cdots, v^n \rbrace),$$

ahora aplicamos el Lema anterior obteniéndose

$$v^1 \in \mathscr{L}(\{v^2, \cdots, v^n\} \cup \{u^1\}).$$

Como $\{v^2, \dots, v^n\}$ es linealmente independiente. y $u^1 \notin \mathcal{L}(\{v^2, \dots, v^n\})$ entonces $\{u^1, v^2, \dots, v^n\}$ es l.i.

Como $v^1 \in \mathcal{L}(\{v^2, \cdots, v^n\} \cup \{u^1\})$, entonces se tiene que $V = \mathcal{L}(\{v^2, \cdots, v^n\} \cup \{u^1\}) = \mathcal{L}(\{u^1, v^2, \cdots, v^n\}$, es decir, $\{u^1, v^2, \cdots, v^n\}$ es una base de V.

Repitiendo el proceso m veces, tenemos que

$$\{u^1,\cdots,u^m.v^{m+1},\cdots,v^n\}$$

es una base de V.

Pero $\mathfrak{B}_2=\{u^1,\cdots,u^m\}$ es una base de V, por tanto, $v^{m+1}\in\mathfrak{B}_2$, entonces

$$\{u^1,\cdots,u^m.v^{m+1},\cdots,v^n\}$$

es linealmente dependiente, lo cual es una contradicción.

Por tanto, m < n no puede ser.

De forma similar no puede ser n < m.

Por tanto todas las bases de V tiene el mismo número de elementos, es decir, tienen el mismo cardinal.

caso II $card(\mathfrak{B}) = \infty$, es decir. ninguna base tiene cardinal finito. Sean \mathfrak{B}_1 , \mathfrak{B}_2 dos bases de V, entonces tienen un número infinito de vectores.

Consideremos $u \in \mathfrak{B}_1$, y como \mathfrak{B}_2 es una base de V, entonces existe un único subconjunto $\Delta_x \subset \mathfrak{B}_2$ tal que $u \in \mathscr{L}(\Delta_u)$ y $u \notin \mathscr{L}(\Delta')$ para todo $\Delta' \subsetneq \Delta_u$. Definamos una función definida

$$\varphi: \mathfrak{B}_1 \longrightarrow \mathcal{P}(\mathfrak{B}_2), \quad \varphi(u) = \Delta_u.$$

Recordemos ahora la siguiente propiedad de teoría de cardinales: PROPIEDAD. Si A y B son conjuntos con A infinito y para todo $x \in A$ consideramos un conjunto finito $\Delta_x \subset B$, entonces

$$card(A) \geq card\left(\bigcup_{x \in A} \Delta_x\right).$$

Como \mathfrak{B}_1 es un conjunto infinito, entonces por la propiedad anterior tenemos

$$\operatorname{\it card}(\mathfrak{B}_1) \geq \operatorname{\it card}\left(igcup_{u\in\mathfrak{B}_1}\Delta_u
ight).$$

Dado que $u \in \mathcal{L}(\Delta_u)$ para todo $u \in \mathfrak{B}_1$, entonces

$$V = \mathscr{L}\left(\bigcup_{u \in \mathfrak{B}_1} \Delta_u\right).$$

Como $\bigcup_{u \in \mathfrak{B}_1} \Delta_u \subset \mathfrak{B}_2$ y \mathfrak{B}_2 es una base de V, entonces se tiene que

$$\mathfrak{B}_2 = \bigcup_{u \in \mathfrak{B}_1} \Delta_u,$$

es decir, $card(\mathfrak{B}_1) > card(\mathfrak{B}_2)$.

Intercambiando \mathfrak{B}_1 y \mathfrak{B}_2 , llegamos de forma análoga a obtener $\operatorname{card}(\mathfrak{B}_2) \geq \operatorname{card}(\mathfrak{B}_1)$

Proposición (Existencia de Bases)

De cualquier conjunto generador de un espacio vectorial V se puede extraer una base.

Prueba:

Probaremos solo para el caso finito.

Sea
$$A = \{v^1, v^2, \cdots, v^n\} \subset V$$
.

Consideremos $u^1 \in A$ no-nulo, si $V = \mathcal{L}(\{u^1\})$, entonces terminamos. Caso contrario si $\mathcal{L}(\{u^1\}) \subseteq V$, entonces sea $u^2 \in A \setminus \mathcal{L}(\{u^1\})$ no

nulo, ahora si $V=\mathscr{L}(\{u^1,u^2\})$, entonces terminamos.

Caso contrario $\mathcal{L}(\{u^1, u^2\}) \subsetneq V$, entonces sea $u^3 \in A \setminus \mathcal{L}(\{u^1, u^2\})$ no nulo y repetimos el proceso en forma inductiva hasta obtener $\{u^1, u^2, \dots, u^m\}$ que son l.i. por construcción..

Este proceso termina en número finito de pasos $m \leq n$, con lo cual

obtenemos

$$V = \mathscr{L}(\{u^1, u^2, \cdots, u^m\})_{\text{the support}}$$

Sean V un espacio vectorial, $y \mathfrak{B}$ una base, al número card (\mathfrak{B}) diremos que es la dimensión del espacio vectorial V y lo denotamos por $\dim_{\mathbb{K}}(V)$ o simplemente $\dim(V)$ si no hay confusión.

Observación

- 1. Si $V = \{0\}$, entonces dim(V) = 0.
- 2. Si V tiene una base infinita, entonces dim $(V) = \infty$.
- 3. $dim(\mathbb{K}^n) = n$.
- 4. $dim(\mathbb{K}[x]) = \infty$.

Ejercicio

Sea el conjunto $A = \{1, \pi, \pi^2, \dots, \pi^n, \dots\}$. Pruebe que A es un conjunto I.i. y $dim(A) = dim_{\mathbb{Q}}(\mathbb{R})$.

Proposición

Sea V un espacio vectorial con dim(V) = n. Entonces los n vectores son l.i si, y solo si dichos vectores generan a V.

Prueba:

 \Rightarrow) Sean v^1, v^2, \dots, v^n vectores I.i. Para cada $u \in V$ tenemos por la proposición (1) que los vecto-

res v^1, v^2, \cdots, v^n, u son l.d., esto es debido a que $\dim(V) = n$. Entonces existen escalares $\lambda, \lambda_1, \lambda_2, \cdots, \lambda_n$ no todos nulos tales que

$$\lambda_1 v^1 + \lambda_2 v^2 + \cdots + \lambda_n v^n + \lambda u = \mathbf{0},$$

Notar que $\lambda \neq 0$, caso contrario, como los vectores v^1, v^2, \dots, v^n son l.i., entonces v^1, v^2, \dots, v^n, u son l.i. esto no puede ser.

Luego despejamos u entonces tenemos

$$u = \beta_1 v^1 + \beta_2 v^2 + \cdots + \beta_n v^n,$$

donde $\beta_j = -\frac{\lambda_j}{\lambda}$, por tanto v^1, v^2, \dots, v^n genera a V, es decir, $V = \mathcal{L}(\{v^1, v^2, \dots, v^n\})$.

 \Leftarrow) Si $V = \mathcal{L}(\{v^1, v^2, \cdots, v^n\})$. y por tanto aplicamos la proposición anterior.

Teorema (Completación de una base)

Sea V un espacio vectorial, con dim(V) = n. Si $v^1, v^2, \dots, v^r \subset V$ son l.i., con r < n, entonces existen vectores $v^{r+1}, v^{r+2}, \dots, v^n$ tales que

$$v^1, v^2, \cdots, v^r, v^{r+1}, \cdots, v^n$$

es una base de V.

Prueba:

Sea $v^{r+1} \in V \setminus \{v^1, v^2, \cdots, v^r\}$ cualquiera.

Si $v^1, v^2, \dots, v^r, v^{r+1}$ genera a V termina la prueba.

Caso contrario, existe $v^{r+2} \in V \setminus \{v^1, v^2, \cdots, v^r, v^{r+1}\}$, entonces si $v^1, v^2, \cdots, v^r, v^{r+1}, v^{r+2}$ genera a V termina la prueba.

Caso contrario, existe $v^{r+3} \in V \setminus \{v^1, v^2, \dots, v^{r+2}\}$ y repetimos el proceso anterior, hasta obtener $\{v^1, v^2, \dots, v^n\}$ una base de V.

Corolario

Sea V un espacio vectorial. Si $dim(V) \ge 1$, entonces todo vector $v \ne \mathbf{0}$ forma parte de una base de V.

Prueba: Ejercicio.

Proposición

Sean V un espacio vectorial y $S \subset V$ un subespacio, entonces

- 1. $dim(S) \leq dim(V)$.
- 2. Si $dim(V) < \infty$ y dim(V) = dim(S), entonces S = V.
- 3. Si $dim(V) = \infty$ y dim(V) = dim(S), luego no necesariamente se tiene S = V.

Prueba: Ejercicio.

Proposición

Sean V un espacio vectorial, con dim $(V) < \infty$, $y S, S' \subset V$ subespacios, entonces

$$dim(S+S') = dim(S) + dim(S') - dim(S \cap S').$$

Prueba:

Sean v^1, v^2, \dots, v^r una base de $S \cap S'$, entonces por el teorema anterior (completación de base) existen $u^1, u^2, \dots, u^p \in S \ v \ w^1, w^2, \dots, w^q \in S' \ tales \ que$

$$\{v^1, v^2, \cdots, v^r, u^1, u^2, \cdots, u^p\}$$
 un base de S $\{v^1, v^2, \cdots, v^r, w^1, w^2, \cdots, w^q\}$ un base de S' ,

de donde $\{v^1, \dots, v^r, u^1, \dots, u^p, w^1, \dots, w^q\}$ es una base de S+S', por tanto

$$dim(S + S') = p + q + r = (p + r) + (q + r) - r$$

= $dim(S) + dim(S') - dim(S \cap S')$.

Sea V un espacio vectorial sobre \mathbb{R} , una función $\langle\cdot,\cdot\rangle:V\times V\longrightarrow\mathbb{R}$ que satisface

- 1. $(\forall u, v \in V)(\langle u, v \rangle = \langle v, u \rangle)$,
- 2. $(\forall u, v, w \in V)(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle)$,
- 3. $(\forall \lambda \in \mathbb{R}, \ \forall u, v \in V)(\langle \lambda u, v \rangle = \lambda \langle u, v \rangle)$,
- 4. $(\forall u \in V)(\langle u, u \rangle \geq 0)$, $y \langle u, u \rangle = 0$ si, y solo si $u = \mathbf{0}$, decimos que un **producto interno** real sobre V.

Nota al para $(V, \langle \cdot, \cdot \rangle)$ es llamado espacio producto interno.

Un espacio vectorial V real de dimensión finita con producto interno, es llamado **espacio euclidiano**.

Ejercicio

1. $V = \mathbb{R}^n$, y el producto

$$\langle u, v \rangle = \sum_{j=1}^{n} u_j v_j$$
, donde $u = (u_1, \dots, u_n)$, $v = (v_1, \dots, v_n)$, este

producto es llamado producto interno canónico.

2. Si
$$u = (u_1, u_2)$$
, $v = (v_1, v_2)$, entonces $\langle u, v \rangle = 2u_1v_1 + u_2v_1 + u_1v_2 + 3u_2v_2$, es un producto interno sobre $V = \mathbb{R}^2$

Verifique que efectivamente, en cada caso, es un producto interno.

Sea V un espacio vectorial sobre \mathbb{C} , una función $\langle\cdot,\cdot\rangle:V\times V\longrightarrow\mathbb{C}$ que satisface

- 1. $(\forall u, v \in V) (\langle u, v \rangle = \overline{\langle v, u \rangle})$,
- 2. $(\forall u, v, w \in V)(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle)$,
- 3. $(\forall \lambda \in \mathbb{C}, \ \forall u, v \in V)(\langle \lambda u, v \rangle = \lambda \langle u, v \rangle)$,
- 4. $(\forall u \in V)(\langle u, u \rangle \geq 0)$, $y \langle u, u \rangle = 0$ si, y solo si $u = \mathbf{0}$, decimos que un **producto interno** complejo (también llamado **hermitiano**) sobre V.

Sea V un espacio vectorial complejo de dimensión finita con producto interno, también se le llama **espacio unitario**.