Toán rời rạc 2 – Đức Huy

HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

KHOA: CƠ BẢN 1

ĐỀ THI KẾT THÚC HỌC PHẦN

(Hình thức thi viết)

Kỳ thi: Học kỳ 2

Năm học: 2022 - 2023

Học phần: **Toán rời rạc 2** Trình độ đào tạo: **Đại học**

Mã học phần: INT1359 Hình thức đào tạo: Chính quy

Thời gian thi: 90 phút

Đề số: 05

Câu 1 (2 điểm): Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

$$\begin{array}{lll} \text{Ke}(1) = \{4,9,10\} & \text{Ke}(6) = \{3,7\} \\ \text{Ke}(2) = \{4,5\} & \text{Ke}(7) = \{6,8\} \\ \text{Ke}(3) = \{6\} & \text{Ke}(8) = \{7,9,10\} \\ \text{Ke}(4) = \{1,2,5\} & \text{Ke}(9) = \{1,8,10\} \\ \text{Ke}(5) = \{2,4\} & \text{Ke}(10) = \{1,8,9\} \\ \end{array}$$

- a) Tìm bậc của mỗi đỉnh trên đồ thị.
- b) Biểu diễn đồ thị G dưới dạng ma trận liên thuộc.

Câu 2 (2 điểm):

- a) Viết hàm có tên BFS(int u) bằng C/C++ sử dụng hàng đợi thực hiện thuật toán tìm kiếm theo chiều rộng bắt đầu từ đỉnh u trên đồ thị $G = \langle V, E \rangle$ được biểu diễn dưới dạng ma trận kề a[][].
- b) Sử dụng thuật toán tìm kiếm theo chiều rộng BFS vừa trình bày, tìm cây bao trùm của đồ thị G đã cho trong Câu 1, bắt đầu từ đỉnh u=2. Chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

Câu 3 (2 điểm): Cho đơn đồ thị có hướng $G = \langle V, E \rangle$ gồm 8 đỉnh được biểu diễn dưới dạng ma trận kề như sau:

- a) Trình bày điều kiện cần và đủ để một đồ thị có hướng là nửa Euler. Áp dụng chứng minh đồ thị có hướng G đã cho là nửa Euler.
- b) Áp dụng thuật toán tìm đường đi Euler trên đồ thị, chỉ ra đường đi Euler trên đồ thị G đã cho. Chỉ rõ kết quả sau mỗi bước thực hiện thuật toán.

	1	2	3	4	5	6	7	8
1	0	1	0	0	1	0	0	0
2	0	0	1	1	0	1	0	0
3	0	0	0	1	0	0	0	0
4	0	0	0	0	0	1	1	0
5	0	1	0	0	0	0	0	1
6	0	0	0	0	1	0	1	0
7	1	0	0	0	0	0	0	1
8	1	0	0	0	0	0	0	0

Toán rời rạc 2 – Đức Huy

Câu 4 (2 điểm):

- a) Cho $T = \langle V, E \rangle$ là một cây có n đỉnh. Chứng minh rằng cây T có n-1 cạnh.
- b) Cho đơn đồ thị vô hướng $G = \langle V, E \rangle$ gồm 10 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8	9	10
1	0	4	1	1	2	9	∞	5	4	7
2	4	0	2	∞	9	1	5	∞	6	∞
3	1	2	0	7	∞	6	6	1	1	9
4	1	∞	7	0	1	7	∞	6	∞	∞
5	2	9	∞	1	0	3	4	3	1	2
6	9	1	6	7	3	0	3	1	1	5
7	∞	5	6	∞	4	3	0	4	5	∞
8	5	∞	1	6	3	1	4	0	4	2
9	4	6	1	∞	1	1	5	4	0	4
10	7	∞	9	∞	2	5	∞	2	4	0

Sử dụng thuật toán Prim tìm cây khung nhỏ nhất tại đỉnh số 2 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện thuật toán?

Câu 5 (2 điểm): Cho đơn đồ thị có hướng $G = \langle V, E \rangle$ gồm 8 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8
1	0	4	8	8	8	8	1	8
2	8	0	5	8	8	1	8	8
3	8	8	0	2	1	8	8	8
4	8	8	8	0	8	8	8	8
5	8	8	8	1	0	8	8	2
6	8	8	8	8	8	0	3	8
7	8	2	8	8	8	5	0	8
8	8	8	2	8	8	8	8	0

- a) Trình bày thuật toán Dijkstra tìm đường đi ngắn nhất xuất phát từ đỉnh $u \in V$?
- b) Áp dụng thuật toán Dijkstra vừa trình bày, chỉ ra khoảng cách và đường đi ngắn nhất từ đỉnh u=1 đến các đỉnh của đồ thị G. Chỉ rõ kết quả tại mỗi bước thực hiện thuật toán.

