<u>מד"ר 2 2019 – פתרון ממ"ן 15</u>

שאלה 1

 $\left(p_i(t)u'\right)'+q_i(t)u=0$ נתבונן במשוואות . $q_2(t)=t$ -ו $q_1(t)=1$, $p_1(t)=p_2(t)=1$ א. נסמן $q_1(t)=t$ -ו $q_1(t)=t$, $q_1(t)=t$

יש לפחות שורש אחד בין כל שני Airy לכן לפי מסקנה 7.1.1, לכל פתרון לא טריוויאלי u_1 של משוואת $u_1=\cos x$ שורשים של שנמצאים בקטע בקטע $u_1=\cos x$ יש סדרה אינסופית של שורשים ששואפת לאינסוף, נקבל שגם ל- u_2 יש סדרה כזו.

(3) המשוואה $\left(-\infty,0\right]$ ל המשוואה $\left(-\infty,0\right]$ ונשים לב כי בכל קטע סגור החלקי ל- $\left(-\infty,0\right]$ המשוואה $\left(-\infty,0\right]$ שיש לו שני Airy שולטת על משוואת על משוואת נניח כעת כי u_2 פתרון לא-טריוויאלי של משוואת בין שני השורשים שורשים אי-חיוביים $t_1< t_2 \leq 0$. אז לכל פתרון לא-טריוויאלי של $t_1< t_2 \leq 0$ יש שורש בין שני השורש בקטע הללו. אבל הפתרונות של המשוואה $t_1< t_2$ הם כל הפונקציות הלינאריות, ולא לכולן יש שורש בקטע Airy שורש אי-חיובי אחד לכל היותר.

ב. יהי u פתרון לא-טריוואילי של המשוואה. יהיו יהיו $t_1 < t_2 < \ldots$ שורשי המשוואה. לפי סעיף א', אחד מביניהם לכל היותר הוא אי-חיובי, ולכן לכל $t_{k+1} > 0$, כמו כן הסדרה שואפת לאינסוף לפי סעיף א'.

לפי מסקנה 7.1.1, כיוון ש-4 שולטת ממש על משוואת Airy בקטע הפתוח , $[t_k,t_{k+1}]$, יש בקטע הפתוח , $\frac{\pi}{\sqrt{t_{k+1}}}$, ולכן , נסמנו v שורש של v והמרחק בין שורשים עוקבים הוא v ולכן . v שורש של v והמתאים שורש של v והמרחק בין שורשים עוקבים הוא

v יש שני שורשים של . כמו כן לפי אותה מסקנה, אם בקטע וע נה $\left[t_{k+1},t_{k+2}
ight]$ יש שני שורשים של . $t_{k+1}-t_k \geq t_{k+1}-s = \frac{\pi}{\sqrt{t_{k+1}}}$

u אז ביניהם יש שורש של u. אבל אין שורשים של בקטע זה, לכן יש לכל היותר שורש אחד של

 $(t_{k+2}-t_{k+1}) \to 0$ - נקבל ש- $t_{k+1} \to \infty$. נקבל ש- $t_{k+1} \to \infty$ אינו עולה על $t_{k+1} \to \infty$ אינו עולה על .

. כמו כן, נקבל הארחים הוא סדרה יורדת, כנדרש, כלומר המרחק לומר המרחק $t_{k+1}-t_k \geq \frac{\pi}{\sqrt{t_{k+1}}} \geq t_{k+2}-t_{k+1}$ כמו כן, נקבל

שאלה 2

נבחר u_1,u_2 פתרונות של הבעיה ההומוגנית u''-u=0 המקיימים את תנאי השפה השמאלי והימני $u_1(x)=\sinh x, u_2(x)=\sinh (1-x)$ בהתאמה, למשל

כמו בדוגמה הכללית 7.3.3 בספר, פונקציית גרין של הבעיה היא $g\left(x,\xi\right) = \begin{cases} Au_1(x)u_2(\xi) & a \leq x < \xi \leq b \\ Au_1(\xi)u_2(x) & a \leq \xi < x \leq b \end{cases}$ כאשר

$$.\ A = \left[W\left(u_1,u_2\right)\left(\xi\right)\right]^{-1} = \left[-\sinh\left(\xi\right)\cosh\left(1-\xi\right)-\sinh\left(1-\xi\right)\cosh\left(\xi\right)\right]^{-1} = -\frac{1}{\sinh 1}$$

פתרון הבעיה הנתונה בשאלה הוא אם כן $u(x) = \int\limits_0^1 g\left(x,\xi\right) \xi^2 d\xi$ כלומר,

$$u(x) = -\frac{1}{\sinh 1} \left[\sinh \left(1 - x\right) \int_{0}^{x} \sinh \left(\xi\right) \xi^{2} d\xi + \sinh \left(x\right) \int_{x}^{1} \sinh \left(1 - \xi\right) \xi^{2} d\xi \right]$$
 בבצע

 $u(x) = -x^2 - 2 + \frac{2}{\sinh 1} \sinh(1-x) + \frac{3}{\sinh 1} \sinh(x)$ אינטגרציה בחלקים ונקבל:

שאלה 3

ניעזר במשפט 7.3.1, שנותן תנאי מספיק לכך שלבעיית שפה לא-לינארית קיים פתרון יחיד. כיוון ש- g רציפה ב-[0,1], הפונקציה g מקבלת מקסימום בקטע, נסמן אותו g ונשים לב כי K < 8.

נסמן y_1,y_2 ולכל $x\in[0,1]$ נשים לב כי לכל $f(x,y)=g(x)\sin y$ ולכל $f(x,y)=g(x)\sin y$ נסמן $f(x,y_1)-f(x,y_2)=|g(x)||\sin y_1-\sin y_2|\leq K|\sin y_1-\sin y_2|\leq K|y_1-y_2|$ כאשר אי- \mathbb{R} ביחס למשתנה f ביחס למשתנה f

. מו כן מתקיים לבעיה פתרון לפי משפט 1.3.1 קיים לבעיה פתרון יחיד. $K \cdot \frac{\left(1-0\right)^2}{8} < 1$

לכל (a,b) מתקיים $\frac{\lambda}{a^{2018}} < \frac{\lambda}{t^{2018}} < \frac{\lambda}{a^{2018}}$ ולכן המשוואה הנתונה בשאלה שולטת על

.(1) היא פתרון של המשוואה $u=\sin\!\left(\frac{\sqrt{\lambda}}{b^{1009}}t\right)$ בקטע. הפונקציה בקטע. הפונקציה $u''+\frac{\lambda}{b^{2018}}u=0$

ואז יהיו $\dfrac{\pi b^{1009}}{\sqrt{\lambda}} < \dfrac{b-a}{2}$ ויא כך שיתקיים λ כבחר λ נבחר המרחק בין שני שורשים עוקבים של u הוא u הוא u

. בקטע (a,b) לפחות שני שורשים של המשוואה (1), ביניהם חייב להיות שורש של המשוואה הנתונה.

שאלה 5

עם (i = 1, 2) i -ם של הבעיה של $u_i \left(t, \lambda \right)$ של המתאימה $\varphi_i \left(t, \lambda \right)$ עם נתבונן בפונקציית הארגומנט

$$.\,arphi_{i}ig(t,\lambdaig) = an^{-1}\!\left(rac{u_{i}ig(tig)}{p_{i}ig(tig)u_{i}'ig(tig)}
ight)$$
 הפרמטר λ , λ

 $\phi_i'(t,\lambda) = \frac{1}{p_i}\cos^2\varphi_i(t,\lambda) + (q_i + \lambda)\sin^2\varphi_i(t,\lambda)$ מקיימת את המשוואה $\varphi_i(t,\lambda) = \frac{1}{p_i}\cos^2\varphi_i(t,\lambda)$ מקיימת את המשוואה

לפי שרואים (1) בקטע (1), ולכן, נפי שרואים לפי שרואים (2) שולטת על קבוע לפי ההנחה, עבור λ קבוע המשוואה . $\varphi_1(t,\lambda) \leq \varphi_2(t,\lambda)$ בהוכחת משפט ההשוואה הראשון, מתקיים

 λ_n את תנאי השפה אפשר לתרגם לדרישה ש- eta_i -ש ש-ק $(b,\lambda)=eta_i$ את תנאי השפה אפשר לתרגם לדרישה ש- eta_i עבור eta_i מתקיים eta_i - eta_i - עבור eta_i - מתקיים eta_i - את מתקיים eta_i - עבור eta_i - עבור eta_i - אועבור eta_i - מתקיים eta_i - אועבור eta_i - עבור eta_i - אועבור eta_i - עבור eta_i - אועבור eta_i - אועב

. $\varphi_2ig(b,\mu_nig)=eta_2+n\pi\leeta_1+n\pi=arphi_1ig(b,\lambda_nig)$ נקבל כי $0\leeta_2\leeta_1<\pi$ מההנחה $0\leeta_2\leeta_1$

מצד שני כפי שראינו, $\varphi_2ig(b,\mu_nig) \le \varphi_2ig(b,\lambda_nig)$ נקבל . $\varphi_1ig(b,\lambda_nig) \le \varphi_2ig(b,\lambda_nig)$ כיוון שפונקציית . $\mu_n \le \lambda_n$ נקבל כי λ , נקבל כי λ

אם מתקיים א"ש ממש במקום אחד לפחות, אז $(\sigma_1ig(t,\lambdaig)<arphi_2ig(t,\lambdaig)$ (כי אז בסימוני הוכחת משפט $\sigma_1ig(t,ar{arphi}ig)<arphi_2ig(a,\lambdaig)<arphi_2ig(a,\lambdaig)$ או $f_1ig(t,ar{arphi}ig)< f_1ig(t,ar{arphi}ig)$ ולכן נוכל להסיק א"ש חזק ממשפט . $\mu_n<\lambda_n$ ומכאן $\sigma_2ig(b,\mu_nig)<arphi_2ig(b,\lambda_nig)$ ומכאן . (2.6.1)