II.5. Série géométrique

Définition 20.9 (Série géométrique)

l On appelle *série géométrique* toute série dont le terme général est une suite géométrique.

Propriété 20.10 (Rappel)

Si u est une suite géométrique de raison r différente de 1 alors $\sum_{k=0}^{n} u_k = u_0 \frac{1-r^{n+1}}{1-r}$.

Si u est une suite géométrique de raison 1 alors $\sum_{k=0}^{n} u_k = (n+1)u_0$.

Théorème 20.11 (Convergence d'une série géométrique)

Une série géométrique converge si et seulement si son terme général est nul ou de raison rvérifiant |r| < 1.

De plus, si elle est non nulle et convergente, alors sa somme vaut

$$\sum_{n=0}^{+\infty} u_n = \frac{u_0}{1-r}$$

Démonstration

Si $u_0 = 0$, il est clair que S = 0 converge.

Sinon, si r=1, $S_n=nu_0$ diverge vers $\pm\infty$ suivant le signe de u_0 . Enfin, dans le dernier cas, $\frac{S_n}{u_0}=\frac{1}{1-r}-\frac{r^{n+1}}{1-r}$ converge vers $\frac{1}{1-r}$ si et seulement si |r|<1.

Méthode

Les séries géométriques sont d'une importance primordiale!

En voici deux utilisations très fréquentes :

- lorsqu'une série est de la forme $\sum f(n)r^n$, il peut être fructueux de considérer la fonction $S_n: x \in \mathbb{R} \setminus \{1\} \mapsto \sum f(n)x^n$ et de tenter d'exprimer S_n à l'aide de la série géométrique $\sum x^n$ puis d'évaluer S_n pour x = r;
- nous verrons une autre utilisation de la comparaison à des séries géométriques -notamment de la majoration d'une série à termes positifs par une série géométrique- au paragraphe III..

Ex. 20.7 (Cor.) Nature (et somme si convergence) de la série $\sum \frac{n}{2^n}$.

Même question pour la série $\sum \frac{n\cos\left(\frac{2n\pi}{3}\right)}{2^n}$.

II.6. Suites et séries télescopiques

Proposition 20.12

Une suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

Démonstration

Il suffit de remarquer que a suite $S_n = \sum_{k=0}^n (u_{k+1} - u_k)$ est une somme télescopique qui se simplifie en $S_n = u_{n+1} - u_0$. L'équivalence annoncée est alors évidente.

Méthode: Sommation d'une série en utilisant des sommes télescopiques

Le théorème précédent paraît anodin mais est souvent utilisé pour calculer la valeur de la somme d'une série, notamment lorsque celle-ci a pour terme général une fraction rationnelle. En décomposant cette fraction rationnelle en éléments simples, il apparaît parfois une série télescopique dont la somme peut être calculée.

Nous verrons aussi à l'exercice 20.11 une utilisation directe de cette proposition.

Ex. 20.8 (Cor.) Montrer que
$$\sum_{n\geq 1} \frac{1}{n(n+1)}$$
 converge et calculer sa somme.

Ex. 20.9 (Cor.) En utilisant l'exercice précédent, montrer que la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge et donner un encadrement de $\sum_{i=1}^{+\infty} \frac{1}{n^2}$.

III. Séries à termes positifs

Définition III.1.

Définition 20.13 (Série à termes positifs)

On dit que $\sum u_n$ est une série à termes positifs ou plus simplement est à termes positifs si $\forall n \in \mathbb{N}, u_n \geq 0$.

III.2. Théorème de convergence monotone

Théorème 20.14

Une série à termes positifs converge si et seulement si elle est majorée.

Démonstration

La série étant à termes positifs, $\sum_{k=0}^{n+1} u_k = \sum_{k=0}^n u_k + u_{n+1} \geqslant \sum_{k=0}^n u_k.$

La suite des sommes partielles est donc croissante.

Or une suite croissante est convergente si et seulement si elle est majorée d'après le théorème 8.51 de convergence monotone.

III.3. Comparaison entre séries et intégrales

Théorème 20.15

Soit f une fonction continue et décroissante sur \mathbb{R}_+^* .

$$\forall n \in \mathbb{N}^*, \int_1^{n+1} f(t) dt \leqslant \sum_{k=1}^n f(k) \leqslant f(1) + \int_1^n f(t) dt$$

Démonstration

f est décroissante donc

- $\forall k \in \mathbb{N}^*, \forall t \in [k; k+1], f(k) \geqslant f(t) \geqslant f(k+1). \text{ On a donc :}$ $\bullet \sum_{k=1}^n f(k) = \sum_{k=1}^n \int_k^{k+1} f(k) dt \geqslant \sum_{k=1}^n \int_k^{k+1} f(t) dt = \int_1^{n+1} f(t) dt.$

$$\sum_{k=1}^{n} f(k) = f(1) + \sum_{k=1}^{n-1} f(k+1) \leqslant f(1) + \sum_{k=1}^{n-1} \int_{k}^{k+1} f(t) dt = f(1) + \int_{1}^{n} f(t) dt.$$

Nous avons déjà utilisé le théorème précédent pour déterminer la nature de la $s\acute{e}rie~harmo$ nique $\sum \frac{1}{n}$.

En pratique, comme dans l'exemple 20.6, ce théorème permet dans le cas où la série est divergente d'obtenir non seulement la divergence de la série, mais aussi un équivalent de $\sum_{k=0}^{\infty} f(k) \text{ lorsque } n \to +\infty.$

Dans le cas des séries convergentes en revanche, ce théorème permet de majorer la série donc de prouver sa convergence, mais ne donne pas la valeur de sa somme.

Soit $r \in \mathbb{R}$. Ex. 20.10 (Cor.)

Déterminer suivant la valeur de r la nature de la série $S = \sum \frac{1}{n^r}$ et donner un équivalent de S_n lorsqu'elle diverge.

III.4. Séries de Riemann

Définition 20.16 (Séries de Riemann)

On appelle **série de Riemann** toute série de la forme $\sum_{i=1}^{n} \frac{1}{n^{\alpha}}$ où $\alpha \in \mathbb{R}_{+}^{*}$.

Propriété 20.17

La série de Riemann $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Démonstration

La démonstration a été faite à l'exercice 20.10.

III.5.Théorèmes de comparaisons entre séries à termes positifs

Proposition 20.18 (Majoration/minoration)

Si u et v sont positives à partir d'un certain rang et si $u \leq v$ à partir d'un certain rang alors

- $\sum v_n$ converge $\Rightarrow \sum u_n$ converge; $\sum u_n$ diverge $\Rightarrow \sum v_n$ diverge.

Démonstration

Notons $N \in \mathbb{N}$ un rang satisfaisant $\forall n \geq N, 0 \leq u_n \leq v_n$ et m le minimum de $\sum_{n=1}^{\infty} u_n$ et de

$$\sum_{n=0}^{N} v_n$$
. On a alors

$$\forall n \geqslant N, \sum_{k=0}^{n} u_k = \sum_{k=0}^{N} u_k + \sum_{k=N+1}^{n} u_k \leqslant \sum_{k=0}^{N} u_k + \sum_{k=N+1}^{n} v_k.$$
 De plus la suite
$$\sum u_n$$
 est croissante à partir du rang N , donc si $\sum v_n$ converge, elle est

croissante (à partir d'un certain) et majorée donc convergente.

De même, si u diverge, $\sum u_n$ tend vers $+\infty$ et $\sum_{k=0}^{n} v_k \geqslant \sum_{k=0}^{n} v_k + \sum_{k=0}^{n} u_k$ diverge d'après le théorème des gendarmes.

\right Remarque

Dans la proposition précédente, si l'inégalité est vérifiée à partir du rang 0, on peut de plus affirmer que $\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n$ en cas de convergence.

Proposition 20.19 (Nature de séries à termes positifs équivalents)

Si u et v sont positives et si $u_n \underset{\infty}{\sim} v_n$ alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Démonstration

 $u_n \sim v_n$ donc à partir d'un certain rang, $\frac{v_n}{2} \leqslant u_n \leqslant \frac{3v_n}{2}$. Les suites étant par ailleurs positives (à partir d'un certain rang) le théorème précédent permet d'affirmer qu'en cas de divergence de $\sum v_n$, $\frac{\sum v_n}{2}$ diverge aussi, donc $\sum u_n$ aussi.

De même, en cas de convergence de $\sum v_n$, $\frac{3\sum v_n}{2}$ converge aussi, donc $\sum u_n$ aussi.

III.6. Exemples

Ex. 20.11 (Cor.) Soit x la suite définie pour $n \in \mathbb{N}^*$ par $x_n = \frac{\sqrt{n}}{n!} \left(\frac{n}{e}\right)^n$. Montrer que x_n converge et en déduire qu'il existe un réel $\lambda \in \mathbb{R}_+^*$ tel que $n! \underset{n \to +\infty}{\sim} \lambda \sqrt{n} \left(\frac{n}{e}\right)^n$.

Ex. 20.12 (Cor.) Nature des séries suivantes :

$$\overline{S = \sum_{n \ge 2} \frac{1}{\sqrt{n^3 - 1}}} \quad T = \sum_{n \ge 2} \ln\left(1 - \frac{1}{\sqrt{n}}\right) \quad U = \sum_{n \ge 1} \frac{1}{n + \ln n} \quad V = \sum_{n \ge 2} \frac{1}{\sqrt{n \ln n}} \quad W = \sum_{n \ge 2} n^3 e^{-n}$$

III.7. Complément : comparaison à une série géométrique

Proposition 20.20 (Critère de d'Alembert)

Soit $S = \sum u_n$ une série à termes positifs.

- S'il existe $r \in]0;1[$ tel qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} < r < 1$ alors S converge;
- si à partir d'un certain rang $\frac{u_{n+1}}{u_n} > 1$, alors S diverge.

Démonstration

- Dans le premier cas, une récurrence immédiate qu'à partir de ce rang $u_{N+p} < r^p u_N$. Or r < 1, donc d'après 20.11, la série $\sum_{p \geqslant 0} u_N r^N r^p$ converge et d'après 20.18, la série S, à termes positifs, converge.
- Dans le second cas, la suite u est positive strictement croissante à partir d'un certain rang, donc elle ne tend pas vers 0. La série S diverge donc grossièrement.

$\underline{\mathbf{Ex.}}\ 20.13\ (\mathbf{Cor.})$

- 1) Quelle est la nature de la série de terme général $\frac{n^n}{(2n)!}$?
- 2) On pose $S = \sum_{n=0}^{+\infty} \frac{n^n}{(2n)!}$ (avec la convention $0^0 = 1$). Montrer que $S \geqslant e^{\frac{1}{2}}$ puis majorer S.