

Super drevo (Super Tree)

Dano je ukoreninjeno drevo z n vozlišči, označenimi z indeksi $0,\ldots,n-1$. Koren ima indeks 0. Za vsak $i\in\{0,\ldots,n-1\}$ ima vozlišče i (tj. vozlišče z indeksom i) dodeljeno celo število a_i . Naj bo f_v vrednost binarne operacije AND (v nadaljevanju označene z &) za vrednosti a_i na enostavni poti od vozlišča v do korena. (Upoštevajte, da enostavna pot od vozlišča x do vozlišča y vključuje tudi x in y, pri čemer je vsaka točka obiskana samo enkrat.) Naj bo moč drevesa vrednost

$$\sum_{0 \le u,v \le n} f_u \cdot f_v,$$

in naj bo supermoč drevesa vrednost (upoštevajte razliko v obsegih)

$$\sum_{0 \le u < v \le n} f_u \cdot f_v.$$

Za razjasnitev primera glejte razlago vzorčnih testnih primerov spodaj.

Recimo, da vozlišče u pripada poddrevesu vozlišča v, če v pripada enostavni poti od vozlišča u do korena. Upoštevajte, da poddrevo vozlišča x vključuje samo točko x.

Opisanih je q posodobitev. Vsaka posodobitev je opisana z dvema celima številoma, v in x, kar pomeni, da izračunate $a_u := a_u \,\&\, x$ za vsako vozlišče u v poddrevesu vozlišča v in po vsaki posodobitvi izpisaše moč in supermoč trenutnega drevesa.

Ker so izhodne vrednosti lahko velike, jih izpišete po modulu $10^9 + 7. \,$

Oblika vhodih podatkov

Prva vrstica vnosa vsebuje cela števila n in q.

V drugi vrstici vnosa je n-1 celih števil, in sicer p_1,p_2,\ldots,p_{n-1} , ki določajo strukturo drevesa. Za vsak $i\in\{1,\ldots,n-1\}$ je p_i indeks nadrejenega vozlišča i in velja, da $0\leq p_i< i$.

Tretja vrstica vnosa vsebuje n celih števil, in sicer a_0 , a_1 , ..., a_{n-1} . To so vrednosti, dodeljene vozliščem.

Vsaka od naslednjih q vrstic vsebuje dve celi števili, v ($0 \le v < n$) in x. Ta cela števila določajo posamezne posodobitve v skladu z gornjimi zahtevami naloge.

Oblika izhoda

Izpišite q+1 vrstic. Vsaka vrstica mora vsebovati dve celi števili, ločeni s presledkom. V prvo vrstico izpišite moč in supermoč (po modulu 10^9+7) začetnega drevesa. V i-to vrstico preostalih q vrstic ($i \in \{1,\ldots,q\}$) izpišite moč in supermoč (po modulu 10^9+7) za drevo po i-ti posodobitvi.

Omejitve vhodnih podatkov

- $1 < n, q < 10^6$.
- $0 \leq a_i < 2^{60}$ za vsak $i \in \{0,\dots,n-1\}.$
- $0 \le x < 2^{60}$ za vsako posodobitev (v, x).

Točkovanje

Za dani testni primer bo vaša rešitev prejela 50% možnih točk, če pravilno izračuna vse vrednosti moči, vendar nepravilno izračuna vsaj eno vrednost super moči za ta testni primer.

Podobno bo 50% možnih točk za dani testni primer dodeljeno rešitvi, ki pravilno izračuna vrednosti supermoči za vse posodobitve v tem testnem primeru, vendar nepravilno izračuna moč za vsaj eno posodobitev.

Podnaloge

- 1. (4 točke) n = 3.
- 2. (7 točk) $n, q \leq 700$.
- 3. (13 točk) $n, q \leq 5000$.
- 4. (6 točk) $n\leq 10^5$, $p_i=i-1$ (za vsak $i\in\{1,\dots,n-1\}$) in $a_i,x<2^{20}$ (za vsak $i\in\{0,\dots,n-1\}$ in za vsako posodobitev (v,x)).
- 5. (7 točk) $p_i = i 1$ (za vsak $i \in \{1, \dots, n-1\}$).
- 6. (12 točk) $a_i, x < 2^{20}$ (za vsak $i \in \{0, \dots, n-1\}$ in za vsako posodobitev (v, x)).
- 7. (14 točk) $n \le 10^5$.
- 8. (11 točk) $n \le 5 \cdot 10^5$.
- 9. (26 točk) Brez dodatnih omejitev.

Testni primer 1

Vhod

Izhod

```
196 61
169 50
81 14
25 6
```

Pojasnila

Na začetku imamo

$$f_0 = 7, \ f_1 = 7\&3 = 3, \ f_2 = 7\&4 = 4.$$

zato je moč drevesa enaka

$$f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 + f_1 \cdot f_1 + f_1 \cdot f_2 + f_2 \cdot f_0 + f_2 \cdot f_1 + f_2 \cdot f_2 =$$

$$= 7 \cdot 7 + 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 7 + 3 \cdot 3 + 3 \cdot 4 + 4 \cdot 7 + 4 \cdot 3 + 4 \cdot 4 = 196.$$

Supermoč je enaka

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

Po prvi posodobitvi:

$$a_0=7,\; a_1=3\&6=2,\; a_2=4;$$
 $f_0=7,\; f_1=2,\; f_2=4.$

Po drugi posodobitvi:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Po tretji posodobitvi:

$$a_0=7\&3=3,\; a_1=2\&3=2,\; a_2=0\&3=0;$$
 $f_0=3,\; f_1=2,\; f_2=0.$

Testni primer 2

Vhod

4 2 0 0 1 6 5 6 2 1 2 0 3

Izhod

256 84 144 36 16 4

Pojasnilo

Na začetku imamo

$$f_0=6,\ f_1=6\&5=4,\ f_2=6\&6=6,\ f_3=2\&5\&6=0.$$

Po prvi posodobitvi:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

Po drugi posodobitvi:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Testni primer 3

Vhod

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Izhod

```
900 367
784 311
576 223
256 83
```