Recherche textuelle

Recherche textuelle

Christophe Viroulaud

Terminale - NSI

Recherche textuelle

Christophe Viroulaud

Terminale - NSI

oche naive pe

Recherche textuelle

Principe Implémentation

pproche plu

er-Moore
erche à l'envers
ages par sauts

lifié - version ool) lexité

► ADN humain : 3 milliards de bases répartis sur 23 paires

Des applications multiples

-Des applications multiples

Des applications multiples

FIGURE 1 – Séquence ADN

- ▶ 4 bases nucléigues : Adénine, Cytosine, Guanine, Thymine,
- ► ADN humain : 3 milliards de bases répartis sur 23 paires de chromosomes.

Problématique

Recherche

textuelle

Recherche

textuelle

Problématique

5 / 49

recherché au texte, ► décaler la fenêtre d'un cran dès qu'il n'y a pas de

texte a c 8 a t c c a t 8 a motif c a t

Principe

- b observer une **fenêtre** du texte.
- ▶ dans cette fenêtre, comparer chaque lettre du motif recherché au texte.
- ▶ décaler la fenêtre d'un cran dès qu'il n'y a pas de correspondance.

				3							
texte motif	а	С	g	а	t	С	С	а	t	g	а
motif	С	а	t								

textuelle

Recherche

Principe

FIGURE 2 – Première comparaison : pas de correspondance

Décalage de la fenêtre

Recherche textuelle

Problématique

Approche naïv

Principe

Implémentation

Approche plus efficace :

Recherche à l'envers

Décalages par sauts Prétraitement du motif

Prétraitement du motif Algorithme de Boyer-Moor

orithme de Boyer-Moor nplifié - version rspool)

Complexité

FIGURE 3 – Première comparaison : correspondance

Recherche textuelle

roblématique

Approche naïve

Principe

Approche plus

Recherche à l'envers
Décalages par sauts

traitement du motif orithme de Boyer-Moor nplifié - version rspool)

Complexité

FIGURE 4 – Deuxième comparaison : pas de correspondance

Décalage de la fenêtre

Recherche textuelle

Principe

Recherche

textuelle

Implémentation

Implémentation

Activité 1

. Écrire la fonction recherche maive(texte: str, motif: str) -> int qui renvoie la

position du motif dans le texte ou -1 s'il n'est pas Estimer la complexité temporelle de cet algorithme

dans le pire des cas : le motif n'est pas présent

Activité 1:

- 1. Écrire la fonction recherche naive(texte: str, motif: str) \rightarrow int qui renvoie la position du *motif* dans le *texte* ou -1 s'il n'est pas présent.
- 2. Estimer la complexité temporelle de cet algorithme dans le pire des cas : le motif n'est pas présent dans le texte.

```
Correction

1 of measure_nume(meas siz, media siz) —> set

1 of measure_nume(meas siz, media siz) —> set

1 of measure_nume(meas siz, media siz) —> set

2 of measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(measure_nume(mea
```

Correction

```
def recherche naive(texte: str, motif: str) -> int:
 3
       renvoie la position du motif dans le texte
       −1 s'il n'est pas présent
 4
 5
       # dernière position = taille(texte) - taille(motif)
 6
       for i in range(len(texte)—len(motif)+1):
 8
          i = 0
          while (i < len(motif)) and (motif[i] == texte[i+j]):
10
             i += 1
          if j == len(motif): # correspondance sur toute la fenê
11
        tre
12
              return i
13
       return -1
```

Code 1 – Approche naïve

Recherche textuelle

Problématique

proche naïve

Implémentation

proche plus

cherche à l'envers

aitement du motif ithme de Boyer-Moore lifié - version iool) Imaginors le cas

O(P.S)

Correction

Imaginons le cas :

- ► On vérifie toute la fenêtre à chaque fois.
- ▶ À chaque **non correspondance** la fenêtre avance de 1.
- La complexité dépend de la taille de la fenêtre et de celle du motif.

Recherche textuelle

Problèmatique

Principe Principe

Implémentation

pproche plus icace : pyer-Moore

Recherche à l'envers

Décalages par sauts

Prétraitement du motif

traitement du motif gorithme de Boyer-Moor nplifié - version rspool)

omplexité

Recherche textuelle

Approche plus efficace : Boyer-Moore

 \blacktriangleright 1970 : algorithme de Knuth-Morris-Pratt. O(T+M)

Bover-Moore

Boyer-Moore

└─Boyer-Moore

- 1. évoquera la complexité de Boyer-Moore en fin de cours
- version Horspool est simplifiée mais pas forcément aussi efficace que BM

▶ 1970 : algorithme de Knuth-Morris-Pratt. O(T + M)

oblématique

Recherche

textuelle

Approche naive Principe

Implémentation

Approche plus efficace :
Boyer-Moore

echerche à l'envers

calages par sauts straitement du motif

artement du motif ithme de Boyer-Moore lifié - version rool)

nplexité

Recherche textuelle Approche plus efficace : Boyer-Moore

-Boyer-Moore

► 1977 : Mgarithme de Boyer-Moore.

Bover-Moore

► 1970 : algorithme de Knuth-Morris-Pratt. O(T + M)

Boyer-Moore

- 1. évoquera la complexité de Boyer-Moore en fin de cours
- 2. version Horspool est simplifiée mais pas forcément aussi efficace que BM

▶ 1970 : algorithme de Knuth-Morris-Pratt. O(T + M)

▶ 1977 : algorithme de Boyer-Moore.

roblématique

Recherche

textuelle

Toblematique

Principe

Approche plus

efficace : Boyer-Moore

Recherche à l'envers

calages par sauts étraitement du motif

raitement du motir rithme de Boyer-Moore plifié - version pool)

nplexité

Recherche textuelle
Approche plus efficace : Boyer-Moore

- Boyer-Moore

> 1960 : Horspool propose une version simplifiée de l'algorithme de Boyer-Moore. O(T)

▶ 1970 : algorithme de Knuth-Morris-Pratt O(T ± M)

Bover-Moore

Boyer-Moore

Principe

Recherche

textuelle

Approche plus efficace :

Boyer-Moore Recherche à l'envers

Décalages par sauts

rétraitement du motif Agorithme de Boyer-Moore

rspool)

- 1. évoquera la complexité de Boyer-Moore en fin de cours
- 2. version Horspool est simplifiée mais pas forcément aussi efficace que BM

- ▶ 1970 : algorithme de Knuth-Morris-Pratt. O(T + M)
- ▶ 1977 : algorithme de Boyer-Moore.
- ▶ 1980 : Horspool propose une version simplifiée de l'algorithme de Boyer-Moore. *O*(*T*)

Recherche textuelle

Approche plus efficace : Boyer-Moore

Recherche à l'envers

Recherche à l'envers

Recherche à l'envers

La première idée de cet algorithme est de commencer la recherche en partant de la fin du motif.

	0	1	2	3	4	5	6	7	8	9	10
texte	а	С	g	а	t	С	С	а	t	g	а
motif	С	а	t								
	0	1	2								

FIGURE 5 – Première comparaison : pas de correspondance

Recherche textuelle

Problématique

Approcne naive Principe

Implémentation

Approche plus efficace :
Boyer-Moore

Recherche à l'envers

Décalages par sauts Prétraitement du motif

Algorithme de Boyer-Mooi (simplifié - version Horspool)

Complexité

Recherche textuelle
Approche plus efficace : Boyer-Moore
Recherche à l'envers

Pour l'instant cette approche ne semble par apporter d'amélioration par rapport à l'algorithme précédent.

Pour l'instant cette approche ne semble par apporter d'amélioration par rapport à l'algorithme précédent.

oche naïve

Recherche

textuelle

Principe Implémentation

proche plus

Boyer-Moore Recherche à l'envers

Recherche à l'envers Décalages par sauts

rraitement du motif orithme de Boyer-Moc polifié - version

exité

Sommaire

- 3. Approche plus efficace : Boyer-Moore
- 3.2 Décalages par sauts

- 3.4 Algorithme de Boyer-Moore (simplifié version

Recherche

textuelle

Décalages par sauts

Décalage par sauts

Le motif ne contient pas la lettre \mathbf{g} (la dernière lettre de la fenêtre).

FIGURE 6 – Comparaisons inutiles

Recherche textuelle

Problematique

Approche naive Principe

mplémentation

fficace : Boyer-Moore

Recherche à l'envers

Décalages par sauts

écalages par sauts

Algorithme de Boyer-Moor (simplifié - version Horspool)

mplexité

FIGURE 7 – Comparaison inutile

Recherche

textuelle

Décalages par sauts

FIGURE 8 – Comparaison inutile

textuelle

Recherche

Problèmatique

Approche naïve Principe

Approche plus

Recherche à l'envers Décalages par sauts

Décalages par sauts

Prétraitement du motif

Algorithme de Bover-Moore

gorithme de Boyer-Moor mplifié - version rspool)

omplexité

On peut donc directement décaler le motif à l'indice 3 du texte (figure 9).

FIGURE 9 – Décalage par saut

textuelle

Recherche

Problématique

Principe 11a

pproche plus

Boyer-Moore Recherche à l'envers

Décalages par sauts Prétraitement du motif

étraitement du motif gorithme de Boyer-Moor mplifié - version rspool)

On n'observe pas de correspondance par contre la lettre **c** existe dans le motif. On va donc le décaler pour les faire coïncider.

FIGURE 10 – Nouvelle situation

Recherche textuelle

Problématique

Approche naïve

Implémentation

efficace :
Boyer-Moore
Recherche à l'envers

Décalages par sauts Prétraitement du motif

Algorithme de Boyer-Moo (simplifié - version Horspool)

FIGURE 11 – Décalage par saut

Recherche textuelle

Problématique

Approche naïve Principe

Approche plu

efficace : Boyer-Moore

Décalages par sauts

Prétraitement du motif

Algorithme de Boyer-Moor

gorithme de Boyer-Moore implifié - version orspool)

Recherche textuelle Approche plus efficace : Boyer-Moore Décalages par sauts

- 1. et de sa présence éventuelle dans le motif
- 2. il existe variante *bad char* : on décale en fonction du caractère qui ne correspond pas

À retenir

On décale la position de recherche dans le texte en fonction de la dernière lettre de la fenêtre. Recherche textuelle

Problématique

Principe

Implémentation

ficace : oyer-Moore

Décalages par sauts

ecalages par sauts

gorithme de Boyer-Moore implifié - version orspool)

Sommaire

- 3. Approche plus efficace : Boyer-Moore

- 3.3 Prétraitement du motif

- 3.4 Algorithme de Boyer-Moore (simplifié version

Prétraitement du motif

Recherche

textuelle

Recherche textuelle

Approche plus efficace : Boyer-Moore

Prétraitement du motif

Prétraitement du motif

Prétraitement du motif

Pour pouvoir élécaler par sust, il fant connaître la demisipacition de chaque lestre dans le moif. Le préscribement consciuté à câclurée la éclacique à spélique processité à câclurée la éclacique à spélique processité au consciuté à câclurée la confoit à la place du dereire craciteire teste a c. 6.

motif c. 8. 2. 2. 2. 2. 2. 2. 3. 5. a. motif le préscribe de la confoit de la confo

Prétraitement du motif

Pour pouvoir décaler par saut, il faut connaître la dernière position de chaque lettre dans le motif. Le prétraitement consiste à calculer le décalage à appliquer pour amener chaque caractère du motif à la place du dernier caractère.

FIGURE 12 – Calculs des décalages

Recherche textuelle

Problématique |

Principe

Implémentation

Approche plus efficace :

écalages par sauts

Prétraitement du motif

orithme de Boyer-Moor nplifié - version rspool)

Recherche textuelle Approche plus efficace : Boyer-Moore Prétraitement du motif

attention t pourrait être présent ailleurs dans motif \rightarrow on prend en compte alors

Remarque

On ne regarde pas la dernière position de la clé (la lettre t ici). Sinon la distance associée serait nulle et on resterait sur place après l'avoir lue dans le texte.

FIGURE 13 – Sauf la dernière lettre

Recherche textuelle

Problématique

Approche naive
Principe
Implémentation

Approche plus fficace : Boyer-Moore

Décalages par sauts

Prétraitement du motif

gorithme de Boyer-Moore mplifié - version erspool)

Complexité

on fait coı̈ncider le premier t du motif avec la dernière lettre de la fenêtre

Autre exemple

texte

motif

2

FIGURE 14 - Répétition dans le motif

Prétraitement du motif

Recherche

textuelle

Activité 2 : Écrime la fonction pretraitement_decalages(motif: str) → dict qui associe chaque lettre du motif (sauf la dernière) à son décalage.

Activité 2 : Écrire la fonction pretraitement_decalages(motif: str) \rightarrow dict qui associe chaque lettre du motif (sauf la dernière) à son décalage.

Recherche textuelle

Problématique

Approche naive Principe

Approche plus efficace :

Recherche à l'envers
Décalages par sauts
Prétraitement du motif

etraitement du motif corithme de Boyer-Moor nplifié - version rspool)

mplexité

S'il y a répétition (slide précédent) le dictionnaire est mis à jour (ligne 10).

Correction

```
def pretraitement decalages(motif: str) -> dict:
       renvoie le dictionnaire des décalages à appliquer
 3
       pour chaque lettre du motif (sauf dernière)
 5
       decalages = dict()
 6
       # on s'arrête à l'avant dernière lettre du motif
       for i in range(len(motif)-1):
           # len(motif)—1 est la position de la dernière
        lettre
          decalages[motif[i]] = len(motif)-1-i
10
       return decalages
11
```

cherche à l'envers

Prétraitement du motif

thme de Boyer-Moord lifié - version ool)

Sommaire

- 3. Approche plus efficace : Boyer-Moore

- 3.4 Algorithme de Boyer-Moore (simplifié version Horspool)

Recherche

textuelle

Algorithme de Boyer-Moore (simplifié - version Horspool)

Recherche textuelle

Approche plus efficace : Boyer-Moore

Algorithme de Boyer-Moore (simplifié - version Horspool)

Algorithme de Boyer-Moore

Horspool : en 1980, version simplifiée de Boyer-Moore ; il existe plusieurs versions.

Algorithme de Boyer-Moore

L'algorithme de Boyer-Moore s'écrit alors :

Créer le tableau des décalages
Tant qu'on n'est pas à la fin du texte
Comparer le motif à la position du texte
Si le motif est présent
Renvoyer la position
Sinon
Décaler la fenêtre
Renvoyer —1 si le motif n'est pas présent

Code 2 – Algorithme de Boyer-Moore (version Horspool)

Recherche textuelle

Problématique

Principe

Approche plus

Boyer-Moore Recherche à l'envers

Décalages par sauts Prétraitement du motif

Algorithme de Boyer-Moore (simplifié - version Horspool)

mplexité

Recherche textuelle
Approche plus efficace : Boyer-Moore
Algorithme de Boyer-Moore (simplifié - version Hors-

pool)

Ecrive to function compare(texter: str., possition: int., notif: str) — bool qui remois Tree il is modif est présent à la position i du texte.

Écrive la fonction
decalage, fenetre (decalages: dict, saille: int., lettre: str) — int qui remois la décalage à applique por l'inte coincide is modif à la dermière lettre de la fenêtre. Si la littre n'est as accisents, la latifé de modif st

Écrire alors la fonction boyer_moore(texte: atr, motif: atr) -> int qui renvoie la position du motif dans le texte et -1 sinon.

Activité 3 :

- Écrire la fonction compare(texte: str, position: int, motif: str) → bool qui renvoie *True* si le motif est présent à la position i du texte.
- 2. Écrire la fonction decalage_fenetre(decalages: dict, taille: int, lettre: str) → int qui renvoie le décalage à appliquer pour faire coïncider le motif à la dernière lettre de la fenêtre. Si la lettre n'est pas présente, la taille du motif est renvoyée.
- 3. Écrire alors la fonction boyer_moore(texte: str, motif: str) → int qui renvoie la position du motif dans le texte et -1 sinon.

Recherche textuelle

Problématique

Approche naïve

Implémentation

Approche plus officace : Bover-Moore

Décalages par sauts

Prétraitement du motif Algorithme de Boyer-Moore (simplifié - version

Horspool) Complexité

Correction

```
def compare(texte: str, position: int, motif: str) -> bool:
       compare le morceau du texte
       (en partant de position + taille(motif))
 4
       avec le motif
 5
 6
       Returns:
           bool: True si on a trouvé le motif
       77 77 77
       # position de la dernière lettre de la fenêtre
10
       en cours = position+len(motif)-1
11
       # parcours de la fenêtre à l'envers
12
       for i in range(len(motif)-1, -1, -1):
13
          if not(texte[en cours] == motif[i]):
14
              return False
15
           else:
16
              en_cours -= 1
17
       return True
18
```

Recherche textuelle

oblématique

procho poivo

Principe

pproche plus

oyer-IVIoore echerche à l'envers écalages par sauts

Prétraitement du motif Algorithme de Boyer-Moore (simplifié - version Horspool)

mplexité


```
def decalage_fenetre(decalages: dict, taille: int, lettre: str) ->
    int:
    77 77 77
    renvoie la valeur du décalage à appliquer.
   si la lettre n'est pas dans le tableau
    c'est la taille du motif qui est appliqué
   Args:
       decalages (dict): dico des décalages
       taille (int): taille du motif (= décalage max)
       lettre (str): dernière lettre de la fenêtre
    Returns:
       int: décalage à appliquer
   for cle, val in decalages.items():
       if cle == lettre:
          return val
    # si la lettre n'est pas dans le dico (= le motif)
    return taille
```

Recherche

textuelle

Algorithme de Boyer-Moore (simplifié - version

Horspool)

Recherche textuelle Approche plus efficace : Boyer-Moore Algorithme de Boyer-Moore (simplifié - version Horspool)

```
and decoding—interesting and its table int, lattice on)—interest in the control of the control o
```

```
def decalage fenetre2(decalages: dict, taille: int, lettre: str) ->
   int:
   # la méthode get renvoie une valeur par défaut si elle ne
    trouve pas la clé
   return decalages.get(lettre, taille)
def decalage_fenetre3(decalages: dict, taille: int, lettre: str) ->
   int:
   try:
      res = decalages[lettre]
   except KeyError:
       res = taille
   return res
```

Problématique

Principe

pproche plus ficace :

Recherche à l'envers Décalages par sauts

Algorithme de Boyer-Moore (simplifié - version Horspool)


```
def boyer_moore(texte: str, motif: str) -> int:
 3
        Returns:
          int: la position du motif dans le texte, -1 sinon.
 5
       decalages = pretraitement_decalages(motif)
 6
       i = 0
       while i \le len(texte) - len(motif):
 8
           # si on trouve le motif
           if compare(texte, i, motif):
10
              return i
           else:
12
              # sinon on décale (en fonction de la dernière
13
        lettre de la fenêtre)
              decale = decalage fenetre(decalages,
14
                                    len(motif),
15
                                   texte[i+len(motif)-1]
16
              i += decale
17
       # si on sort de la boucle, on n'a rien trouvé
       return -1
19
```

Recherche

textuelle

Algorithme de Boyer-Moore (simplifié - version

Horspool)

Sommaire

3.5 Complexité

- 3. Approche plus efficace : Boyer-Moore

- 3.4 Algorithme de Boyer-Moore (simplifié version

Recherche

textuelle

Complexité

Complexité

Intuitivement l'algorithme semble plus rapide que la version naïve car il ne teste pas toutes les lettres du texte.

aaabaaabaaab

FIGURE 15 – Un cas représentatif

Problématique

Recherche

textuelle

robiematique

Principe

Implémentation

Approche plus efficace : Boyer-Moore

Recherche à l'envers Décalages par sauts

caiages par sauts étraitement du motif gorithme de Boyer-Moore

gorithme de Boyer-Moore mplifié - version orspool)

Activité 4 : Compter le nombre d'itérations de la recherche avec l'algorithme naif puis celui de Boyer-Moore.

Activité 4 : Compter le nombre d'itérations de la recherche avec l'algorithme naïf puis celui de Boyer-Moore.

oblématique

Recherche

textuelle

obiemanque

Principe

nplémentation

proche plus cace : yer-Moore

cherche a l'envers calages par sauts étraitement du motif

ithme de Boyer-Moore lifié - version vool)

Correction

- ► Algorithme naïf : 10 décalages,
- ► Algorithme de Boyer-Moore : 3 décalages.

Recherche

textuelle

Complexité

- 1. complexité sous-linéaire!
- 2. Naïf *O*(*T*.*M*)
- 3. Complexité moyenne : O(3.M) démontrée par Richard Cole en 1991.

Remarques

- ▶ Dans le meilleur des cas, la complexité temporelle de l'algorithme est O(T/M) où T est la taille du texte et M celle du motif.
- ▶ Plus le motif est long plus l'algorithme est rapide.

Recherche textuelle

Problèmatique

Principe

Implémentation

icace : yer-Moore

Recherche à l'envers
Décalages par sauts
Prétraitement du motif

etraitement du motif gorithme de Boyer-Moore implifié - version orspool)

Code complet

Les programmes du cours sont téléchargeables ici.

Approche naïve
Principe

Recherche

textuelle

Principe Implémentation

> oroche plu cace : er-Moore

herche à l'envers alages par sauts traitement du motif prithme de Boyer-Moc