

<u>Sample Question Format</u> (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Spring Semester-2021)

Subject Name & Code: Image Processing (IT-3033)

Applicable to Courses: B.Tech 6th semester

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

<u>Time:30 Minutes</u> (7×2=14 Marks)

Question	Question Type	Question	<u>CO</u>	Answer Key
<u>No</u>	(MCQ/SAT)		<u>Mapping</u>	(For MCQ
				Questions only)
Q.No:1		Histogram matching is also called as a. Histogram equalization b. Contrast stretching c. Histogram specification d. None of these	CO ₃	c
		What is accepting or rejecting of certain frequency components in an image called as? a. Contrast stretching b. Intensity stretching c. Filtering d. None of the above	CO ₃	c
		In image we notice that the components of histogram are concentrated on the higher side on intensity scale: a. Bright b. Dark c. Colourful d. All of the mentioned	CO ₃	a
		is used to emphasize high frequency	CO3	С

	aomnononta ronvocanti		
	components representing		
	the image details without		
	low frequency		
	components representing		
	the basic form of the		
	signal.		
	a. Low-Pass Filter		
	b. High-Pass Filter		
	c. High-Boost Filter		
O Maria	d. Median Filter	COs	1.
<u>Q.No:2</u>	sobel and prewitt	CO3	b
	operators are used for		
	which of the following		
	operations		
	a. Contrast		
	adjustment		
	b. Edge detection		
	c. Image averaging		
	d. All of the above	COL	1
	In a given image strip (s),	CO6	d
	assuming necessary zero		
	padding find second order		
	derivative		
	S= 4 4 4 4 2 2 2		
	8 8 8		
	_		
	a. 0, -2, 0, -1, -2, 0, 6,		
	-6, 8, 8		
	b. 0, 2, 0, 1, 2, 1, -6, 6,		
	-8, 8		
	c. 2, -1, 0, 4, 8, 6, 12,		
	14, 6, 8		
	d4, 0, 0, -2, 2, 0, 6,		
	-6, 0, -8	904	1
	Which one of the following	CO6	d
	is a major point of interest		
	in discontinuity based		
	algorithms?		
	a. <u>Isolated points</u>		
	b. <u>Lines</u>		
	c. <u>Edges</u>		
	d. All of the above	001	
	Which of the following	CO6	c
	second order operator is		
	most robust to noise in		
	edge filtering?		
	a. Sobel operator		
	b. Laplacian operator		
	c. Laplacian of		
	Gaussian operator		
0.37	d. Prewitt operator	60.1	1
<u>Q.No:3</u>	Which of the following is	CO6	b
	used to extract the most		
	appropriate location of an		
	edge when there is a		

	gradual abanga in		
	gradual change in		
	intensity levels?		
	a. Sobel operator		
	b. Laplacian operator		
	c. Prewitt operator d. All of these		
		CO6	d
	Which of the following	CO6	a
	is(are) Sobel operator?		
	^		
	[-1 0 1] [-2 0 2] [-1 0 1]		
	[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	[-1 0 1] -1 0 1] -1 0 1]		
	0 [1 2 1] [0 0 0] [1 2 -1]		
	a. Only A		
	b. Only C		
	c. Both A and B		
	d. Both A and D		
	Identify the operator	CO6	d
	[0 - 1 0]		
	-1 4 - 1		
	$\begin{bmatrix} 1 & 0 - 1 & 0 \end{bmatrix}$		
	a. Sobel edge		
	operator		
	b. Prewitt Edge		
	operator		
	c. Gradient operator		
	d. Laplacian operator	90	
	Where do we find the	CO4	a
	spectrum colours in the		
	chromatic diagram? a. On boundaries		
	a. On boundaries b. Inside		
	c. Outside d. All of the above		
Q.No:4	Which of the following	CO ₄	c
2.110.2	chromaticity coefficients	004	
	are represented in the		
	chromaticity diagram?		
	a. Blue and green		
	b. Red and blue		
	c. Red and green		
	d. Magenta and green		
	If Red, Green, and Blue	CO4	d
	have values 158, 120, and		
	98 respectively and		
	maximum intensity in		
	RGB is 255, then its		
	corresponding values in		
	CMY (range 0 to 1) are		
	a. c= 0.92, M= 0.12		
	and Y=0.21		
	b. c= 0.15, M= 0.19		
	and Y=0.97		

		0 0 0 1= M 0 10		
		c. c= 0.17, M= 0.19		
		and Y=0.97		
		d. c= 0.38, M= 0.53		
		and Y=0.62	00:	1
		Which of the colour model	CO ₄	b
		is suitable from the		
		perception point of view?		
		a. RGB		
		b. HSI		
		c. CMY		
		d. CMYK		_
		In chromaticity diagram	CO ₄	d
		which statement(s) is(are)		
		true?		
		Statement 1: Points on		
		the boundary are fully		
		saturated		
		Satatement 2: As th		
		point moves towards the		
		equal energy, more white		
		light is added to the colour		
		and become less saturated		
		Statement 3: Saturation		
		at point of equal energy is		
		zero		
		a. Statement-1		
		b. Statement-2		
		c. Statement-3		
		d. All of the above		
Q.No:5		Assume a colour image	CO4	b
		has light tone. What type	•	
		of transformation should		
		be used to correct the		
		tone?		
		a.		
			'	
			-	
		2		
		la l		
		ju /		
		Output Intensity		
		8 /		
		L-1		
		Input Intensity		
		b.		
		. .		
	<u> </u>			

	Alise L-1 Input Intensity C.		
	Input Intensity d. All of the above		
	Which of the following colours are pigment colour primaries? a. Magenta, Cyan, and Yellow b. Red, Green, and Blue c. Red, Green, and Cyan d. Red, Yellow, and Cyan	CO4	a
	Which of the following is the process of aligning two or more images of the same scene? a. Image restoration b. Image segmentation c. Image registration d. None of the above	CO ₅	С
	In which of the following application(s), image registration is used? a. Template matching b. Mosaicing c. Image fusion d. All of those	CO ₅	d
Q.No:6	Which of the following degradation model estimation method corresponds to blind convolution?	CO ₅	d

	a. By observation b. By		
	experimentation		
	c. Mathematical modelling		
	d. All of these		
	The following equation corresponds to which of	CO ₃	d
	the following filter		
	$H(u,v) = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$		
	where, n is a positive		
	integer, Do is cut-off		
	frequency		
	a. Gaussian High Pass Filter		
	b. Butterworth Low		
	Pass Filter		
	c. Gaussian Low Pass		
	Filter d. Butterworth High		
	 Pass Filter		
	In which of the following	CO3	d
	filter, the intensity at a particular point in the		
	image, is a product of two		
	terms, one is the		
	illumination term, other		
	one is the reflectance term is assumed?		
	a. Laplacian Filter		
	b. LOG		
	c. Gaussian Filter d. Homomorphic		
	Filter		
	Which is the characteristic	CO ₃	b
	of the spatial domain filter given in following figure?		
	given in following figure:		
	X		
	a. Low pass filter		
	b. High pass filter		
	c. Band pass filterd. None of these		
Q.No:7	Match the following	CO ₃	b
	I. Butterworth low pass filter $H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \leq D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$		
	II. Gaussian high pass filter $H(u,v)=e^{-D^2(u,v)/2D_0^2}$		
	(ii)		
	IV. Gaussian low (iv)		
	pass filter $H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$		

	T (') TT ('')		
	a. I-(i), II-(ii),		
	III-(iii), IV-(iv)		
	b. I-(iii), II-(iv),		
	III-(i), IV-(ii)		
	c. I-(ii), II-(iv),		
	III-(iii), IV-(iv)		
	d. I-(iii), II-(ii),		
	III-(i), IV-(iv)		
	Which of the following	CO3	a
	filter does not produce		
	ringing effect?		
	a. Gaussian Low Pass		
	Filter		
	b. Ideal Low Pass		
	Filter		
	c. Low Pass		
	Butterworth Filter		
	of Higher Order		
	d. None of these		
	TO set the average value of	CO3	c
	an image zero, which of		
	the following term would		
	be set o in the frequency		
	domain, where F(u,v) is		
	Fourier transformed		
	function of $f(x,y)$?		
	a. F(0,1)		
	b. F(1,0)		
	c. F(0,0)		
	d. All of the above		
	Histogram equalization	CO3	С
	mainly used for which of	J	
	the following purpose?		
	a. Smoothing the		
	image		
	b. Blurring of images		
	c. Enhancement of		
	images		
	d. All of the above		
L	a. III of the above		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

<u>Time: 1 Hour and 30 Minutes</u> (3×12=36 Marks)

Question	Question	<u>CO</u>
<u>No</u>		Mapping
		<u>(Each</u>
		<u>question</u>

		should be from the same CO(s))
Q.No:8	(ii) Prove that the product of two orthogonal matrices is another orthogonal matrix. (iii) Consider the image segment shown. Let V={0, 1} and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why. 3	CO(s))
	shown below: Table 5.6 Image grey level distribution	
	Grey levels (r_k) 0 1 2 3 4 5 6 7 Number of pixels (p_k) 8 10 10 2 12 16 4 2 [5 + 7]	
Q.No:9	Show that the Walsh transform works for the following image $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ Prove that the Hadamard transform works for the following image:	CO2
	a. $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ Prove that the Hadamard transform works for the following image:	

	$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	
Q.No:10	 (i) Let two of three Eigen values of a 3 × 3 matrix are −1 and 2 and if the determinant value equals 4. What is the third Eigen value? (ii) Explain discontinuity based segmentation with proper example. [2+10] 	CO6
	Take a 10x10 image matrix and detect the horizontal edges using Sobel operator. Take a 10x10 matrix and detect the horizontal edges using	
O Novid	Prewitt operator.	CO-
Q.No:11	What is the benefit of using Hough transform. Explain with proper example. What is the difference between image enhancement and restoration? With example show the process of image restoration. [4+8]	CO ₅
	(i) Difference between Full colour processing and Psedu colour processing.(ii) Explain the quantities which describe the quality of light.(iii) What are the colour component for perception purpose and hardware perspective?[4+4+4]	