Risk assessment and mitigation (4)

We decided to keep our original approach to risk assessment and mitigation as all team members are familiar with the risk matrix (severity levels,likelihood levels etc.) as we have used the same one throughout the project.

Introduction

To manage risk within our project, we decided to produce a risk register. A risk register is an effective tool to identify issues and plan mitigation techniques to avoid them. The register is also a good tool to provide documentation to the group, as to what to do in the event of an issue. Within the risk register, risks are detailed and then categorized into groups which are related, for example, bugs during coding are categorized as technology issues. Severity and likelihood levels are then assessed for each risk and mitigation techniques are tailored to avoid, limit or accept consequences. The level of detail used within the risk register is low to moderate and includes the type of mitigation used. This has been done purposefully as the risks themselves are nonspecific and can happen at anytime, to any member of the team. As such, mitigation techniques must also be nonspecific in an attempt to combat all possibilities. The risk register was systematically updated throughout each assessment to ensure we always had the most recent version available. During our scrum meetings, we mentioned any new risks that we came across and these were then added to the risk register by the documentation lead.

Types of Mitigation:

- Risk Acceptance: Does not mitigate the risk as the cost of doing so outweighs the damage of the risk
- Risk Avoidance: Mitigation designed to avoid the risk altogether
- Risk Limitation: Mitigation that, when an issue occurs, works towards reducing the damage of the issue
- Risk Transference: Mitigation that transfers the issue to a 3rd party.

Severity Levels:

Severity levels are a description of how harmful a risk may be if it were to occur. A risk can be harmful in one of two ways, either a risk degrades the quality of the project or a risk can cost time to resolve.

	Low	Medium	High
Quality	Requirements mostly met	Requirement partially met	Requirement not met
Time	A Day	A few days	A week or more

Likelihood Levels:

Low - Will almost certainly not happen

Medium - Has equal chance of happening or not happening

High - We expect this to happen at some point

Almost certain - This will almost definitely happen at least once

Risk Identification Process:

After reviewing feedback from assessment 1, we decided to included information regarding our risk identification process. Our process involved each member being allocated a risk category (i.e. tech, people, requirements, estimation) and coming up with a list of possible risks that may occur during our project along with their severity and likelihood. Then, we had a team discussion which involved going over each risk and deciding on a mitigation. This was useful as everyone got a say and collectively

generated more ideas (different methods of mitigation). We decided to use three severity levels and four likelihood levels to help simplify the process.

Risk matrix:

A Risk matrix was produced to provide an overall risk as the product of the likelihood levels and severity levels. This is a simple mechanism to increase visibility of risks and assist decision making. The higher the overall risk of an issue (higher number), the more dangerous the issue is to the project, as such more planning will go into attempting to mitigate or avoid issues with higher overall risk. On the other hand, issues with less overall risk represent issues that may be ignored, as they may not be too damaging or are very unlikely.

		Severity Levels				
		Low	Medium	High		
	Low	1	2	3		
Likelihood levels	Medium	2	4	6		
	High	3	6	9		
	Almost Certain	4	8	12		

Risk Register

*Overall Risk is calculated from risk matrix

	Overall Risk is calculated from risk matrix								
ID	Category	•		Likelih		Mitigation	Risk		
		Risk	ty	ood	Risk*		Ownership		
1		Data Loss due	High	Low	3	Avoidance: Utilisation of	Technical		
		to unforeseen				3rd party services to store	lead		
		circumstance				online backups			
2	Tech	Bug in	Mediu	Low		Avoidance: All tools the	Technical		
		development environment	m			team uses are well tested.	lead		
3	Tech	Incompatible	High	Low		Acceptance: All affected	Technical		
		software update				code and software must be	lead		
		to 3rd party				updated			
_	- .	software	112 1		-	A 1 0 0	-		
4	Tech	Hardware	High	Low	3	Acceptance: Software	Technical		
		compatibility issues				stability suffers	lead		
5	Tech	Game lacks	Mediu	Mediu	4	Limitation: Software tested	Technical		
	10011	stability and	m	m	-	on final platform as coded,			
		crashes				stability issues will be fixed			
						as they are found			
6	Tech	Unity not	Mediu	Almost	6	Acceptance: Each team	Technical		
		working on lab	m	Certai		member installs unity on	lead		
		PCs		n		their laptop as a back-up			
7	Tech	Code changes	Low	High		Avoidance: Use existing	Technical		
		breaking				tests to ensure we are not	Lead		
		existing code				changing existing			
_						behaviour	-		
8	People	Arguments		Mediu	4	Limitation: Speak to	Project		
		within team	m	m		Lecturer to act as a moderator	Manager		
	Desale	T	Madic	A los s = 4	0		Design		
9	People	Team member	Medin	Almost	8	Limitation: member's work	Project		

		is unavailable	m	Certai n	is split between remaining members depending on who has the least work	Manager
10	·	Team member is lacking critical knowledge	Mediu m	Almost Certai n	Limitation: Basic training on new languages or tools	Project Manager
11	•	Miscommunicati on	Mediu m	Almost Certai n	Avoidance: Some documents are created for the sole purpose of aiding communication between members, e.g Gantt chart	Project Manager
12		Under-communi cation	Mediu m	High	Avoidance: The team holds 2 face to face meetings per week in addition to semi-regular online communication.	Project Manager
13	•	Uneven workload	Mediu m	Mediu m	Avoidance: Team members with little work are encouraged to participate in or review other parts of the project.	Project Manager
14	•	Total loss of team member	High	Low	Acceptance: Talk to lecturer to discuss methods to proceed with more assistance	Project Manager
15		Misunderstandin g requirements	Mediu m	High	Limitation: All work is peer reviewed and obvious issues are resolved before they are used for other elements of the project	Customer Interface
16		Requirements change	High	Almost Certai n	Limitation: Team uses the scrum methodology, to more easily accommodate changes to the requirements.	Customer Interface
17	ents	Architecture doesn't work / unfit for purpose	Mediu m	Mediu m	Avoidance: sequence diagrams were created to run through the architecture to reason its workings.	Customer Interface
18	on to	Conflict between different stakeholders	Mediu m	Mediu m	Limitation: The team would act as a moderator between the two stakeholders, and attempt to resolve the issue into a compromised requirement	Customer Interface
19		Ambiguous requirements	Mediu m	Mediu m	Avoidance: All requirements were peer reviewed to avoid	Customer Interface

					ambiguity.	
20	Requirem ents	Inflated Requirements	Mediu m	High	Avoidance: During the listing of our requirements, each requirement was labeled with a priority, which indicates how vital it is to the project. Almost all optional requirements were removed	
21	•	Stakeholders have inaccurate expectations	Mediu m	Mediu m	9	Customer Interface
22	ents	Requirement differences between our group and the group whose project we picked up	Low	High	Acceptance: Before starting implementation, discuss requirements as a team and select which requirements to adopt as part of the change management procedure.	Project Manager
23	n	Unexpected program complexity	Mediu m	Mediu m	Acceptance: More time is issued to the problem to allow its completion	Secretary
24		Incorrect severity and likelihood assessment in risk register	Mediu m	Mediu m	Avoidance: Multiple team members check our risk analysis to avoid obvious mistakes	Secretary
25		Overly optimistic schedule	Mediu m	Mediu m	Limitation: When required, schedule more time for problematic tasks.	Secretary
26	n	Team members losing time trying to understand the code and architecture of the product from the other team	Mediu m	Mediu m	Avoidance: We do not have to understand all of the code to make changes, only need to understand the interface you are changing/adding to.	Secretary