Part III – Model Theory

Based on lectures by Dr. S. Barbina Notes taken by Bhavik Mehta

Michaelmas 2018

Contents

0	Introduction	2
1	Languages and structures	2
2	Review: Terms, formulae and their interpretations	4
3	Theories and elementarity	7
4	Two relational structures 4.1 Dense linear orders	10 10 12
5	Compactness	14
6	Saturation	18
7	The Monster Model	22
8	Strongly Minimal Theories	27
9	Bonus Lecture: Existence of saturated models	31
Tn	dex	33

0 Introduction

Lecture 1 Model theory is a part of logic that began by looking at algebraic objects such as groups and combinatorial objects such like graphs, described in formal language. The basic question in model theory is: 'how powerful is our description of these objects to pin them down'? In Logic and Set Theory, the focus was on what was provable from a theory and language, but here we focus on whether or not a model exists.

1 Languages and structures

Definition 1.1 (Language). A language L consists of

- (i) a set \mathscr{F} of function symbols, and for each $f \in \mathscr{F}$ a positive integer m_f the **arity** of f.
- (ii) a set \mathcal{R} of relation symbols, and for each $R \in \mathcal{R}$, a positive integer m_R .
- (iii) a set \mathscr{C} of constant symbols.

Note: each of \mathcal{F}, \mathcal{R} and \mathcal{C} can be empty.

Example. Take $L = \{\{\cdot,^{-1}\}, \{1\}\}$, for \cdot a binary function and $^{-1}$ an unary function, 1 a constant. This is the language of groups, call it $L_{\rm gp}$. Also, $L_{\rm lo} = \{<\}$ a single binary relation, for linear orders.

Definition 1.2 (L-structure). Given a language L, say, an L-structure consists of

- (i) a set M, the **domain**
- (ii) for each $f \in \mathcal{F}$, a function $f^{\mathcal{M}}: M^{m_f} \to M$.
- (iii) for each $R \in \mathcal{R}$, a relation $R^{\mathcal{M}} \subseteq M^{m_R}$.
- (iv) for each $c \in \mathcal{C}$, an element $c^{\mathcal{M}} \in M$.

 f^M, R^M, c^M are the **interpretations** of f, R, c respectively.

Remark 1.3. We often fail to distinguish between the symbols in L and their interpretations in a structure, if the interpretations are clear from the context.

We may write $\mathcal{M} = \langle M, \mathcal{F}, \mathcal{R}, \mathcal{C} \rangle$.

Example 1.4.

- (a) $\mathcal{R} = \langle \mathbb{R}^+, \{\cdot, ^{-1}\}, 1 \rangle$ is an L_{gp} -structure.
- (b) $\mathcal{Z} = \langle \mathbb{Z}, \{+, -\}, 0 \rangle$ is an L_{gp} -structure.
- (c) $Q = \langle \mathbb{Q}, \langle \rangle$ is an L_{lo} -structure.

Definition 1.5 (Embedding). Let L be a language, let \mathcal{M}, \mathcal{N} be L-structures. An **embedding** of \mathcal{M} into \mathcal{N} is a one-to-one mapping $\alpha: M \to N$ such that

(i) for all $f \in \mathcal{F}$, and $a_1, \ldots, a_{m_f} \in M$,

$$\alpha(f^{\mathcal{M}}(a_1,\ldots,a_{m_f})) = f^{\mathcal{N}}(\alpha(a_1),\ldots,\alpha(a_{m_f}))$$

(ii) for all $R \in \mathcal{R}$, and $a_1, \ldots, a_{m_R} \in M$

$$(a_1, \dots, a_{m_R}) \in R^{\mathcal{M}} \iff (\alpha(a_1), \dots, \alpha(a_{m_R})) \in R^{\mathcal{N}}$$

(iii) for all $c \in \mathscr{C}$, $\alpha(c^{\mathcal{M}}) = c^{\mathcal{N}}$.

An **isomorphism** of \mathcal{M} into \mathcal{N} is a surjective embedding (onto), written $\mathcal{M} \simeq \mathcal{N}$.

Exercise 1.6. Let G_1, G_2 be groups, regarded as $L_{\rm gp}$ -structures. Check that $G_1 \simeq G_2$ in the usual algebra sense if and only if there is an isomorphism $\alpha: G_1 \to G_2$ in the sense of Definition 1.5.

2 Review: Terms, formulae and their interpretations

In addition to the symbols of L, we also have

- (i) infinitely many variables $\{x_i\}_{i\in I}$
- (ii) logical connectives \land, \neg (also expresses $\lor, \Longrightarrow, \Longleftrightarrow$)
- (iii) quantifier \exists (also expresses \forall)
- (iv) (,)
- (v) equality symbol =

Definition 2.1 (*L*-terms). *L*-terms are defined recursively as follows:

- any variable x_i is a term
- any constant symbol is a term
- for any $f \in \mathcal{F}$, $f(t_1, \ldots, t_{m_f})$ for any terms t_1, \ldots, t_{m_f} is a term
- nothing else is a term

Notation: we write $t(x_1, \ldots, x_m)$ to mean that the variables appearing in t are among x_1, \ldots, x_m .

Lecture 2 **Example.** Take $\mathcal{R} = \langle \mathbb{R}^*, \{\cdot,^{-1}\}, 1 \rangle$. Then $\cdot (\cdot(x_1, x_2), x_3)$ is a term, usually written $(x_1 \cdot x_2) \cdot x_3$. Also, $(\cdot(1, x_1))^{-1}$ is a term, written $(1 \cdot x)^{-1}$

Definition 2.2. If \mathcal{M} is an L-structure, to each L-term $t(x_1, \ldots, x_k)$ we assign a function a function $t^{\mathcal{M}}: M^k \to M$ defined as follows:

- (i) If $t = x_i, t^{\mathcal{M}}[a_1, \dots, a_k] = a_i$
- (ii) If $t = c, t^{\mathcal{M}}[a_1, \dots, a_k] = c^{\mathcal{M}}$.
- (iii) If $t = f(t_1(x_1, \dots, x_k), \dots, t_{m_f}(x_1, \dots, x_k))$, then

$$t^{\mathcal{M}}(a_1,\ldots,a_k) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(a_1,\ldots,a_k),\ldots,t_{m_f}^{\mathcal{M}}(a_1,\ldots,a_k)).$$

Notice in $L_{\rm gp}$, the term $x_2 \cdot x_3$ can be described as $t_1(x_1, x_2, x_3)$ or $t_2(x_1, x_2, x_3, x_4)$, or infinitely many other ways. In these cases, t_1 is assigned to $t_1^{\mathcal{M}} : M^3 \to M$, with $(a_1, a_2, a_3) \mapsto (a_2, a_3)$, and t_2 is assigned to $t_2^{\mathcal{M}} : M^4 \to M$, with $(a_1, a_2, a_3, a_4) \mapsto a_2 \cdot a_3$.

Fact 2.3. Let \mathcal{M}, \mathcal{N} be L-structures, and let $\alpha : \mathcal{M} \to \mathcal{N}$ be an embedding. For any L-term $t(x_1, \ldots, x_k)$ and $a_1, \ldots, a_k \in M$ we have

$$\alpha(t^{\mathcal{M}}(a_1,\ldots,a_k))=t^{\mathcal{N}}(\alpha(a_1),\ldots,\alpha(a_k))$$

Proof. By induction on the complexity of t. Let $\bar{a} = (a_1, \ldots, a_k)$ and $\bar{x} = (x_1, \ldots, x_k)$. Then

- (i) if $t = x_i$, then $t^{\mathcal{M}}(\bar{a}) = a_i$, and $t^{\mathcal{N}}(\alpha(a_1), \dots, \alpha(a_k)) = \alpha(a_i)$, so the conclusion holds.
- (ii) if t = c a constant, then $t^{\mathcal{M}}(\bar{a}) = c^{\mathcal{M}}$, and $t^{\mathcal{N}}(\alpha(\bar{a})) = c^{\mathcal{N}}$, and $\alpha(c^{\mathcal{M}}) = c^{\mathcal{N}}$, as required.

(iii) if $t = f(t_1(\bar{x}), \dots, t_{m_f}(\bar{x}))$, then

$$\alpha(f^{\mathcal{M}}(t_1^{\mathcal{M}}(\bar{a}),\ldots,t_{m_s}^{\mathcal{M}}(\bar{a}))) = f^{\mathcal{N}}(\alpha(t_1^{\mathcal{M}}(\bar{a})),\ldots,\alpha(t_{m_s}^{\mathcal{M}}(\bar{a})))$$

since α is an embedding. $t_1(\bar{x}), \ldots, t_{m_f}(\bar{x})$ have lower complexity than t, so inductive hypothesis applies.

Exercise 2.4. Conclude the proof of Fact 2.3.

Definition 2.5 (Atomic formula). The set of **atomic formulas** of L is defined as follows

- (i) if t_1, t_2 are L-terms, then $t_1 = t_2$ is an atomic formula
- (ii) if R is a relation symbol and t_1, \ldots, t_{m_R} are terms, then $R(t_1, \ldots, t_{m_R})$ is an atomic formula
- (iii) nothing else is an atomic formula.

Definition 2.6 (Formula). The set of *L*-formulas is defined as follows

- (i) any atomic formula is an L-formula
- (ii) if ϕ is an L-formula, then so is $\neg \phi$
- (iii) if ϕ and ψ are L-formulas, then so is $\phi \wedge \psi$
- (iv) if ϕ is an L-formula, for any $i \geq 1$, $\exists x_i \ \phi$ is an L-formula
- (v) nothing else is an L-formula

Example. In $L_{\rm gp}$, $x_1 \cdot x_1 = x_2$ and $x_1 \cdot x_2 = 1$ are atomic formulas, and $\exists x_1 \ (x_1 \cdot x_2) = 1$ is an $L_{\rm gp}$ -formula.

A variable occurs freely in a formula if it does not occur within the scope of a quantifier \exists (the variable is **free**). Otherwise the variable is **bound**. For instance, in $\exists x_1 (x_1 \cdot x_2) = 1$, x_1 is bound and x_2 is free.

Important convention: no variable occurs both freely and as a bound variable in the same formula.

A sentence is a formula with no free variables.

$$\exists x_1 \exists x_2 \ (x_1 \cdot x_2 = 1)$$

is an $L_{\rm gp}$ -sentence. Notation: $\phi(x_1,\ldots,x_k)$ means that the free variables in ϕ are among x_1,\ldots,x_k .

Definition 2.7 (\vDash). Let $\phi(x_1, \ldots, x_k)$ be an *L*-formula, let \mathcal{M} be an *L*-structure, and let $\bar{a} = (a_1, \ldots, a_k)$ be elements of M. We define $\mathcal{M} \vDash \phi(\bar{a})$ recursively as follows.

- (i) if ϕ is $t_1 = t_2$, then $\mathcal{M} \models \phi(\bar{a})$ if and only if $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$.
- (ii) if ϕ is $R(t_1, \ldots, t_{m_k})$ then $\mathcal{M} \vDash \phi(\bar{a})$ iff

$$(t_1^{\mathcal{M}}(\bar{a}),\ldots,t_{m_k}^{\mathcal{M}}(\bar{a})) \in R^{\mathcal{M}}.$$

- (iii) if ϕ is $\psi \wedge \chi$, then $\mathcal{M} \vDash \phi(\bar{a})$ iff $\mathcal{M} \vDash \psi(\bar{a})$ and $\mathcal{M} \vDash \chi(\bar{a})$.
- (iv) if $\phi = \neg \psi$ then $\mathcal{M} \models \phi(\bar{a})$ iff $\mathcal{M} \nvDash \psi(\bar{a})$. (this is well-defined since $\psi(\bar{a})$ is shorter than $\phi(\bar{a})$)

(v) if ϕ is $\exists x_j \ \chi(x_1, \dots, x_k, x_j)$ (where $x_j \neq x_i$ for $i = 1, \dots, k$). Then $\mathcal{M} \models \phi(\bar{a})$ iff there is $b \in \mathcal{M}$ such that $\mathcal{M} \models \chi(a_1, \dots, a_k, b)$.

Example. For $\mathcal{R} = \langle \mathbb{R}^*, \cdot, ^{-1}, 1 \rangle$, if $\phi(x_1) = \exists x_2 \ (x_2 \cdot x_2) = x_1$ then $\mathcal{R} \vDash \phi(1)$ but $\mathcal{R} \nvDash \phi(-1)$.

Notation 2.8 (Useful abbreviations). We write

- $-\phi \lor \psi$ for $\neg(\neg\phi \land \neg\psi)$
- $-\phi \to \psi$ for $\neg \phi \lor \psi$
- $-\phi \leftrightarrow \psi$ for $(\phi \to \psi) \land (\psi \to \phi)$
- $\forall x_i \ \phi \text{ for } \neg \exists x_i \ (\neg \phi)$

Proposition 2.9. Let \mathcal{M}, \mathcal{N} be L-structures, let $\alpha : \mathcal{M} \to \mathcal{N}$ be an embedding. Let $\phi(\bar{x})$ be atomic and $\bar{a} \in M^{|\bar{x}|}$, then

$$M \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(\alpha(\bar{a})).$$

Question: If ϕ is an L-formula, not necessarily atomic, does Proposition 2.9 hold?

Lecture 3 Proof of Proposition 2.9. Cases:

- (i) $\phi(\bar{x})$ is of the form $t_1(\bar{x}) = t_2(\bar{x})$ where t_1, t_2 are terms. (Exercise: complete this case, using Fact 2.3)
- (ii) $\phi(\bar{x})$ is of the form $R(t_1(\bar{x}), \dots, t_{m_R}(\bar{x}))$. Then $\mathcal{M} \models R(t_1(\bar{a}), \dots, t_{m_R}(\bar{a}))$ if and only if... (Exercise: complete this case)

Exercise 2.10. Show that Proposition 2.9 holds if $\phi(\bar{x})$ is a formula without quantifiers (a quantifier-free formula).

Example 2.11. Do embeddings preserve *all* formulas? No. Take $\mathcal{Z} = (\mathbb{Z}, <)$ and $\mathcal{Q} = (\mathbb{Q}, <)$ and L_{lo} -structure. Then $\alpha : \mathbb{Z} \to \mathbb{Q}$ (inclusion) is an embedding, but

$$\phi(x_1, x_2) = \exists x_3 (x_1 < x_3 \land x_3 < x_2).$$

 $Q \vDash \phi(1, 2) \text{ but } \mathcal{Z} \nvDash \phi(1, 2).$

Fact 2.12. Let $\alpha: \mathcal{M} \to \mathcal{N}$ be an isomorphism. Then if $\phi(\bar{x})$ is an L-formula and $\bar{a} \in M^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{M} \vDash \phi(\alpha(\bar{a})).$$

Proof. Exercise.

3 Theories and elementarity

Throughout, L is a language, \mathcal{M}, \mathcal{N} are L-structures.

Definition 3.1 (*L*-theory). An *L*-theory *T* is a set of *L*-sentences. \mathcal{M} is a **model** of *T* if $\mathcal{M} \models \sigma$ for all $\sigma \in T$. We write $\mathcal{M} \models T$. The class of all the models of *T* is written Mod(T). The theory of \mathcal{M} is the set

$$Th(\mathcal{M}) = \{ \sigma \mid \sigma \text{ is an } L\text{-sentence and } \mathcal{M} \vDash \sigma \}.$$

Example 3.2. Let $T_{\rm gp}$ be the set of $L_{\rm gp}$ -sentences

- (i) $\forall x_1 x_2 x_3 (x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3)$
- (ii) $\forall x_1 (x_1 \cdot 1 = 1 \cdot x_1 = x_1)$
- (iii) $\forall x_1 (x_1 \cdot x_1^{-1} = x_1^{-1} \cdot x_1 = 1)$

Clearly for a group $G, G \models T_{gp}$. For a specific G, clearly Th(G) is larger than T_{gp} !

Definition 3.3 (Elementarily equivalent). Say \mathcal{M} and \mathcal{N} are elementarily equivalent if $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(\mathcal{N})$. We write $\mathcal{M} \equiv \mathcal{N}$.

Clearly if $\mathcal{M} \simeq \mathcal{N}$, then $\mathcal{M} \equiv \mathcal{N}$ but if \mathcal{M} and \mathcal{N} are not isomorphic, establishing whether $\mathcal{M} \equiv \mathcal{N}$ can be highly non-trivial!

We'll see $(\mathbb{Q}, <) \equiv (\mathbb{R}, <)$ as L_{lo} -structures.

Definition 3.4 (Elementary substructure).

(i) an embedding $\beta: \mathcal{M} \to \mathcal{N}$ is **elementary** if for all formulas $\phi(\bar{x})$ and $\bar{a} \in M^{|\bar{x}|}$,

$$\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\beta(\bar{a})).$$

- (ii) if $M \subseteq N$ and id: $\mathcal{M} \to \mathcal{N}$ is an embedding, then \mathcal{M} is said to be a **substructure** of \mathcal{N} , written $\mathcal{M} \subseteq \mathcal{N}$.
- (iii) if $M \subseteq N$ and id: $\mathcal{M} \to \mathcal{N}$ is an elementary embedding, then \mathcal{M} is said to be an **elementary substructure** of \mathcal{N} , written $\mathcal{M} \preceq \mathcal{N}$.

Example 3.5. Consider $\mathcal{M} = [0,1] \subseteq \mathbb{R}$, an L_{lo} -structure, where < is the usual order, and $\mathcal{N} = [0,2] \subseteq \mathbb{R}$ in the same way. Then $\mathcal{M} \simeq \mathcal{N}$ as L_{lo} -structures.

Is $\mathcal{M} \equiv \mathcal{N}$? Yes: they are isomorphic!

Is $\mathcal{M} \subseteq \mathcal{N}$? Yes (the ordering < coincides on \mathcal{M} and \mathcal{N} .)

But $\mathcal{M} \not \leq \mathcal{N}$, since if $\phi(x) = \exists y \ (x < y)$, then

$$\mathcal{N} \vDash \phi(1)$$
 and $\mathcal{M} \nvDash \phi(1)$.

Definition 3.6 (Parameter). Let \mathcal{M} be an L-structure, $A \subseteq M$, then define

$$L(A) := L \cup \{ c_a \mid a \in A \}$$

for c_a each constant symbols. An interpretation of \mathcal{M} as an L-structure extends to an interpretation of \mathcal{M} as an L(A)-structure in the obvious way $(c_a^{\mathcal{M}} = a)$. The elements of A are called **parameters**. If \mathcal{M}, \mathcal{N} are L-structures and $A \subseteq M \cap N$, then we write $\mathcal{M} \equiv_A \mathcal{N}$ when \mathcal{M}, \mathcal{N} satisfy exactly the same L(A)-sentences.

Lecture 4 Exercise 3.7. $\mathcal{M} \preceq \mathcal{N} \iff \mathcal{M} \equiv_M \mathcal{N} \text{ (where } M \text{ is the domain of } \mathcal{M}\text{)}.$

Lemma 3.8 (Tarski-Vaught test). Let \mathcal{N} be an L-structure, let $A \subseteq N$. The following are equivalent:

- (i) A is the domain of a structure \mathcal{M} such that $\mathcal{M} \preceq \mathcal{N}$.
- (ii) for every L(A)-formula $\phi(x)$ with one free variable, if $\mathcal{N} \models \exists x \ \phi(x)$, then $\mathcal{N} \models \phi(b)$ for some $b \in A$.

Proof.

- (i) \Rightarrow (ii) Suppose $\mathcal{N} \models \phi(x)$. Then by elementarity, $\mathcal{M} \models \exists x \ \phi(x)$, and so $\mathcal{M} \models \exists x \ \phi(x)$ for $b \in \mathcal{M}$, so again by elementarity $\mathcal{N} \models \phi(b)$.
- (ii) \Rightarrow (i) First we prove that A is the domain $\mathcal{M} \subseteq \mathcal{N}$. By exercise 4 on sheet 1, it is enough to check:
 - (a) for each constant $c, c^{\mathcal{N}} \in A$.
 - (b) for each function symbol $f, f^{\mathcal{N}}(\bar{a}) \in A$ (for all $\bar{a} \in A^{m_f}$).

For (a), use property (ii) with $\exists x \ (x = c)$. For (b) use property (ii) with $\exists x \ (f(\bar{a}) = x)$.

So we now have $\mathcal{M} \subseteq \mathcal{N}$, and the domain of \mathcal{M} is A. Let $\chi(\bar{x})$ be an L-formula. We show that for $\bar{a} \in A^{|\bar{x}|}$,

$$\mathcal{M} \vDash \chi(\bar{a}) \iff \mathcal{N} \vDash \chi(\bar{a}). \tag{*}$$

By induction on the complexity of $\chi(\bar{x})$:

- if $\chi(\bar{x})$ is atomic (*) follows from $\mathcal{M} \subseteq \mathcal{N}$ (\mathcal{M} is a substructure).
- if $\chi(\bar{x})$ is $\neg \psi(\bar{x})$ or $\chi(\bar{x})$ is $\psi(\bar{x}) \wedge \xi(\bar{x})$: straightforward induction.
- if $\chi(\bar{x}) = \exists y \ \psi(\bar{x}, y)$ where $\psi(\bar{x}, y)$ is an *L*-formula, suppose that $\mathcal{M} \vDash \chi(\bar{a})$. Then $\mathcal{M} \vDash \exists y \ \psi(\bar{a}, y)$, hence $\mathcal{M} \vDash \psi(\bar{a}, b)$ for some $b \in A = \text{dom } \mathcal{M}$. But then $\mathcal{N} \vDash \psi(\bar{a}, b)$ by inductive hypothesis, so $\mathcal{N} \vDash \chi(\bar{a})$.
 - Now let $\mathcal{N} \vDash \chi(\bar{a})$, i.e. $\mathcal{N} \vDash \exists y \ \psi(\bar{a}, y)$. By property (ii), $\mathcal{N} \vDash \psi(\bar{a}, b)$ for some $b \in A = \text{dom}(\mathcal{M})$. By inductive hypothesis, $\mathcal{M} \vDash \psi(\bar{a}, b)$ and so $\mathcal{M} \vDash \chi(\bar{a})$.

Remark 3.9. Assume the set of variables is countably infinite. Then

- the cardinality of the set of L-formulas is $|L| + \omega$. (We abuse notation and write ω for the ordinal and cardinal, and define the cardinality of L as the number of symbols in it: $|L_{\rm gp}| = 3$, $|L_{\rm lo}| = 1$).
- if A is a set of parameters in some structure, the cardinality of the set of L(A)formulas is $|A| + |L| + \omega$.

Definition 3.10 (Chain). Let λ be an ordinal. Then **a chain of length** λ of sets is a sequence $\langle M_i : i < \lambda \rangle$, where $M_i \subseteq M_j$ for all $i \leq j < \lambda$. A **chain of** *L*-structures is a sequence $\langle \mathcal{M}_i : i < \lambda \rangle$ such that $\mathcal{M}_i \subseteq \mathcal{M}_j$ for $i \leq j < \lambda$.

The **union** of this chain is the L-structure \mathcal{M} is defined as follows:

- the domain of \mathcal{M} is $\bigcup_{i<\lambda} M_i$
- $c^{\mathcal{M}} = c^{\mathcal{M}_i}$ for any $i < \lambda$ (c is a constant).
- if f is a function symbol, $\bar{a} \in M^{m_f}$, $f^{\mathcal{M}}\bar{a} = f^{\mathcal{M}_i}\bar{a}$ where i is such that $\bar{a} \in M_i^{m_f}$.

- if R is a relation symbol, then $R^{\mathcal{M}} = \bigcup_{i < \lambda} R^{\mathcal{M}_i}$

Theorem 3.11 (Downward Löwenheim-Skolem). Let \mathcal{N} be an L-structure, and $|N| \geq$ $|L| + \omega$. Let $A \subseteq N$. Then for any cardinal λ such that $|L| + |A| + \omega \le \lambda \le |\mathcal{N}|$, there is $\mathcal{M} \preceq \mathcal{N}$ such that

- (i) $A \subseteq M$
- (ii) $|\mathcal{M}| = \lambda$.

(It helps to think about the case $|L| \leq \omega$, $|A| = \omega$ and |N| is uncountable). For instance, think of $(\mathbb{C},+,\cdot,-,^{-1},0,1)$ as a field. Then $\mathbb{Q} \subseteq \mathbb{C}$: it is a subset and a substructure. In particular, the property of being algebraically closed is in the theory of C. Thus Theorem 3.11 gives a algebraically closed field, which is countable and contains \mathbb{Q} - a possibility is the algebraic closure of \mathbb{Q} .

Proof. We inductively build a chain $\langle A_i : i < \omega \rangle$, with $A_i \subseteq N$, such that $|A_i| = \lambda$. (Our goal is to define $M = \bigcup_{i < \omega} A_i$).

Let $A_0 \subseteq N$ be such that $A \subseteq A_0$ and $|A_0| = \lambda$. At stage i+1, assume that A_i has been built, with $|A_i| = \lambda$. Let $\langle \phi_k(x) : k < \lambda \rangle$ be an enumeration of those $L(A_i)$ formulas such that $\mathcal{N} \vDash \exists x \ \phi_k(x)$ (observe there are no more than λ , since |L(A)| = $|L| + |A| + \omega \le \lambda$). Let a_k be such that $\mathcal{N} \models \phi_k(a_k)$ and let $A_{i+1} = A_i \cup \{a_k : k < \lambda\}$. Then $|A_{i+1}| = \lambda$.

Now let $M = \bigcup_{i < \omega} A_i$. We use the Tarski-Vaught test to show that M is the domain of a structure $\mathcal{M} \preceq \mathcal{N}$, and $|M| = \lambda$:

Let $\mathcal{N} \models \exists x \ \psi(x, \bar{a})$, where \bar{a} is a tuple in M. Then \bar{a} is a finite tuple, so there is an i such that \bar{a} is in A_i . Then A_{i+1} , by construction, contains b such that $\mathcal{N} \models \phi(b, \bar{a})$. But $A_{i+1} \subseteq M$, so $b \in M$.

4 Two relational structures

4.1 Dense linear orders

Lecture 5 **Definition 4.1** (Dense linear orders). A linear order is an $L_{lo} = \{<\}$ -structure such that

- (i) $\forall x \neg (x < x)$
- (ii) $\forall xyz \ ((x < y \land y < z) \rightarrow x < z)$
- (iii) $\forall xy ((x < y) \land (y < x) \lor (x = y)).$

A linear order is dense if it also satisfies

- (iv) $\exists xy \ (x < y)$
- (v) $\forall xy \ (x < y \rightarrow \exists z \ (x < z < y)) \ (density).$

A linear order has no endpoints if

(vi)
$$\forall x (\exists y (x < y) \land \exists z (z < x))$$

 T_{dlo} is the theory that includes axioms (i) to (vi), T_{lo} is the theory that includes axioms (i) to (iii) only.

Remark: (iv) and (v) imply that if $\mathcal{M} \models T_{\text{dlo}}$ then $|\mathcal{M}| \ge \omega$.

Definition 4.2 ((Finite) Partial embedding). If $\mathcal{M}, \mathcal{N} \models T_{lo}$, then an injective map $p : A \subseteq M \to N$ is called a **partial embedding** if for all $a, b \in A$,

$$\mathcal{M} \vDash a < b \iff \mathcal{N} \vDash p(a) < p(b).$$

If $|\operatorname{dom}(p)| < \omega$, then p is a **finite partial embedding**.

Lemma 4.3 (Extension lemma for dense linear orders). Suppose $\mathcal{M} \models T_{\text{lo}}$, $\mathcal{N} \models T_{\text{dlo}}$, let $p: A \subseteq M \to N$ be a finite partial embedding. Then if $c \in M$, there is a finite partial embedding \hat{p} such that $p \subseteq \hat{p}$ and $c \in \text{dom}(\hat{p})$.

Proof. Split into three cases:

- 1. a < c for all $a \in \text{dom}(p)$. Then choose $d \in \mathcal{N}$ so that b < d for all $b \in \text{img}(p)$.
- 2. $a_i < c < a_{i+1}$ for some $a_i, a_{i+1} \in \text{dom}(p)$. Then $\mathcal{N} \models p(a_i) < p(a_{i+1})$, so by density, $\mathcal{N} \models p(a_i) < d < p(a_{i+1})$.
- 3. c < a for all $a \in \text{dom } p$. Similar to case 1.

Theorem 4.4. Let $\mathcal{M}, \mathcal{N} \models T_{\text{dlo}}$ such that $|\mathcal{M}| = |\mathcal{N}| = \omega$. Let $p : A \subseteq M \to N$ be a finite partial embedding. Then there is $\pi : \mathcal{M} \to \mathcal{N}$, an isomorphism such that $p \subseteq \pi$.

Proof. Enumerate M, N: say $M = \langle a_i : i < \omega \rangle$, $N = \langle b_i : i < \omega \rangle$ sequences of elements. We define inductively a chain of finite partial embeddings $\langle p_i : i < \omega \rangle$ (idea: $\pi = \bigcup_{i < \omega} p_i$).

Let $p_0 = p$. At stage i + 1, p_i is given. We want to include a_i in dom (p_{i+1}) , and b_i in img (p_{i+1}) .

Forward step: By Lemma 4.3, extend p_i to $p_{i+\frac{1}{2}}$ such that $a_i \in \text{dom}(p_{i+\frac{1}{2}})$. Backward step: By Lemma 4.3 applied to $p_{i+\frac{1}{2}}^{-1}$ to include $b_i \in \text{dom}(p_{i+\frac{1}{2}}^{-1})$ (i.e. in the range of p_{i+1}). Then p_{i+1} extends p_i as required.

Let $\pi = \bigcup_{i < \omega} p_i$. Then (check) π is an isomorphism (i.e. order-preserving bijection).

Definition 4.5 (Consistent, complete, \vdash). An L-theory T is **consistent** if there is \mathcal{M} such that $\mathcal{M} \vDash T$. If T is a theory in L and ϕ is an L-sentence, then we write $T \vdash \phi$ if for all \mathcal{M} such that $\mathcal{M} \vDash T$, we also have $\mathcal{M} \vDash \phi$. An L-theory T is **complete** if for all L-sentences ϕ , either $T \vdash \phi$ or $T \vdash \neg \phi$.

Is $T_{\rm dlo}$ complete?

Lecture 6 **Definition 4.6** (ω -categorical). A theory T in a countable language with a countably infinite model is called ω -categorical if any two countable models of T are isomorphic.

Corollary 4.7 (of Theorem 4.4). T_{dlo} is ω -categorical.

Proof. Say $\mathcal{M}, \mathcal{N} \vDash T_{\text{dlo}}$, and $|\mathcal{M}| = |\mathcal{N}| = \omega$. Then \emptyset (the empty map) is a finite partial embedding. By Theorem 4.4, $\mathcal{M} \simeq \mathcal{N}$. (Can also use any $\{\langle a, b \rangle\}$ where $a \in \mathcal{M}, b \in \mathcal{N}$ as initial finite partial embedding).

Theorem 4.8. If T is an ω -categorical theory in a countable language, and T has no finite models then T is complete.

Proof. Let $\mathcal{M} \models T$ and φ be an L-sentence.

If $\mathcal{M} \vDash \varphi$, suppose $\mathcal{N} \vDash T$. Then by Downward Löwenheim-Skolem, there are $\mathcal{M}' \preccurlyeq \mathcal{M}, \, \mathcal{N}' \preccurlyeq \mathcal{N}$ such that $|\mathcal{M}'| = |\mathcal{N}'| = \omega$. By ω -categoricity, $\mathcal{M}' \simeq \mathcal{N}'$, so in particular $\mathcal{M}' \equiv \mathcal{N}'$ and so $\mathcal{N}' \vDash \varphi$.

If
$$\mathcal{M} \models \neg \varphi$$
, similar.

Corollary 4.9. $T_{\rm dlo}$ is complete.

Definition 4.10 ((Partial) elementary map). If \mathcal{M} , \mathcal{N} are L-structures, a map f such that dom $f \subseteq M$ and img $f \subseteq N$ is called a **(partial) elementary map** if for all L-formulae $\phi(\bar{x})$ and $\bar{a} \in (\text{dom } f)^{|\bar{x}|}$, then

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(f(\bar{a})).$$

Remark 4.11. A map f is elementary iff every finite restriction of f is elementary.

Proof.

 \Leftarrow Suppose f is not elementary. Then there are $\varphi(\bar{x})$ and $\bar{a} \in (\text{dom } f)^{|\bar{x}|}$ such that

$$\mathcal{M} \vDash \phi(\bar{a}) \iff \mathcal{N} \vDash \phi(f(\bar{a})).$$

Then $f|_{\bar{a}}$ is a finite restriction of f that is not elementary.

$$\Rightarrow$$
 Clear.

Proposition 4.12. Let \mathcal{M} , $\mathcal{N} \models T_{\text{dlo}}$ and let $p : A \subseteq M \to N$ be a partial embedding. Then p is elementary.

Proof. By Remark 4.11, it suffices to consider p finite. By Downward Löwenheim-Skolem, we choose $\mathcal{M}', \mathcal{N}'$ such that

- (i) $|\mathcal{M}'| = |\mathcal{N}'| = \omega$.
- (ii) $\mathcal{M}' \preccurlyeq \mathcal{M}, \, \mathcal{N}' \preccurlyeq \mathcal{N}$
- (iii) $dom(p) \subseteq \mathcal{M}', img(p) \subseteq \mathcal{N}'$

Now p is a finite partial embedding between countable models, so p extends to an isomorphism $\pi: \mathcal{M}' \to \mathcal{N}'$ by Theorem 4.4. In particular, π is an elementary map between \mathcal{M} and \mathcal{N} .

Corollary 4.13. $(\mathbb{Q}, <) \preceq (\mathbb{R}, <)$.

Proof. Use Proposition 4.12 with id :
$$\mathbb{Q} \to \mathbb{R}$$
.

4.2 Random graph

Definition 4.14 (Random graph). Let $L_{\rm gph}=\{R\}$, a binary relation symbol. An $L_{\rm gph}$ -structure is a **graph** if

- (i) $\forall x \neg R(x, x)$
- (ii) $\forall xy \ (R(x,y) \leftrightarrow R(y,x))$

An $L_{\rm gph}$ -structure is a **random graph** if it is a graph such that, for all $n \in \omega$, axiom (r_n) holds:

$$\forall x_0 \dots x_n, y_0 \dots y_n \left(\bigwedge_{i,j=0}^n x_i \neq y_j \to \exists z \left(\bigwedge_{i=0}^n (z \neq x_i) \land (z \neq y_i) \land R(z,x_i) \land \neg R(z,y_i) \right) \right)$$

(iii) $\exists xy \ (x \neq y)$.

Axiom (r_n) effectively says that for disjoint subsets (x_i) and (y_i) each of size n, there is a (different) node z connected to each x_i and none of the y_i .

Remark. A random graph is infinite. Given a finite subset, we can always find a vertex that is connected to every vertex in the subset (likewise for not connected).

Fact 4.15. There is a random graph.

Proof. Let the domain be ω , let $i, j \in \omega$ such that i < j. Write j as a sum of distinct powers of 2. Then $\{i, j\}$ is an edge iff 2^i appears in the sum.

Exercise. Prove that ω with this definition of R is a random graph.

Definition 4.16 (Graph theories, partial embedding). $T_{\rm gph}$ consists of the axioms (i),(ii) above, and $T_{\rm rg} = T_{\rm gph} \cup \{(\rm iii), (r_n) : n \in \omega\}$. If $\mathcal{M}, \mathcal{N} \models T_{\rm gph}$, a **partial embedding** is an injective map $p : A \subseteq M$ to N such that

$$\mathcal{M} \vDash R(a,b) \iff \mathcal{N} \vDash R(p(a),p(b))$$

for all a, b in the domain. Just as before, if $|\operatorname{dom}(p)| < \omega$ then p is called a **finite** partial embedding.

Lemma 4.17 (Extension lemma for random graphs). Let $\mathcal{M} \models T_{\text{gph}}$, $\mathcal{N} \models T_{\text{rg}}$, let $p : A \subseteq M \to N$ be a finite partial embedding, and let $c \in M$. Then there is a partial embedding $\hat{p} : \hat{A} \subseteq M \to N$ such that, $c \in \text{dom}(\hat{p})$, and $p \subseteq \hat{p}$.

Lecture 7 Proof. Take $c \in M$, $c \notin dom(p)$.

diagram coming soon

Find $d \in N$ such that $N \models R(d, p(a)) \iff M \models R(c, a)$.

Theorem 4.18. Let $\mathcal{M}, \mathcal{N} \models T_{rg}$ and $|\mathcal{M}| = |\mathcal{N}| = \omega$, and $p : A \subset M \to N$ a finite partial embedding. Then $\mathcal{M} \simeq \mathcal{N}$, by an isomorphism that extends p.

Proof. Same as proof of Theorem 4.4, but with Lemma 4.17 instead of Lemma 4.3. \Box

Corollary 4.19. $T_{\rm rg}$ is ω -categorical and complete. Moreover, every finite partial embedding between models of $T_{\rm rg}$ is an elementary map.

Remark 4.20. The unique (up to isomorphism) countable model of $T_{\rm rg}$ is *the* countable random graph, or the **Rado graph**. It is universal with respect to finite and countable graphs (i.e. it embeds them all). It is **ultrahomogeneous** i.e. every isomorphism between finite substructures extends to an automorphism of the whole graph.

5 Compactness

Definition 5.1. Take an L-theory T.

- (i) T is **finitely satisfiable** if every finite subset of sentences in T has a model.
- (ii) T is **maximal** if for all L-sentences σ , either $\sigma \in T$ or $\neg \sigma \in T$.
- (iii) T has the witness property if for all $\phi(x)$ (L-formula with one free variable) there is a constant $c \in \mathscr{C}$ such that

$$(\exists x \ \phi(x)) \to \phi(c) \in T.$$

Lemma 5.2. If T is maximal and finitely satisfiable and φ is an L-sentence, and $\Delta \subseteq T$ with $\Delta \vdash \varphi$, then $\varphi \in T$.

Proof. If $\varphi \notin T$ then $\neg \varphi \in T$ (by maximality). But then $\Delta \cup \{\neg \varphi\}$ is a finite subset of T which does not have a model.

Lemma 5.3. Let T be a maximal, finitely satisfiable theory with the witness property. Then T has a model. Moreover, if λ is a cardinal and $|\mathscr{C}| \leq \lambda$, then T has a model of size at most λ .

Proof. Let $c, d \in \mathcal{C}$, define $c \sim d$ iff $c = d \in T$.

Claim: \sim is an equivalence relation. **Proof:** For transitivity, let $c \sim d$ and $d \sim e$. Then $c = d \in T$ and $d = e \in T$, so $c = e \in T$ (by Lemma 5.2), and so $c \sim e$. Reflexivity follows from maximality, and symmetry is immediate. \blacksquare

We denote $[c] \in \mathscr{C}/\sim$ by c^* . Now, define a structure \mathcal{M} whose domain is $\mathscr{C}/\sim = M$. Clearly, $|M| \leq \lambda$ if $|\mathscr{C}| \leq \lambda$. We must define interpretations in \mathcal{M} for symbols of L.

- If $c \in \mathscr{C}$, then $c^{\mathcal{M}} = c^*$.
- If $R \in \mathcal{R}$, define

$$R^{\mathcal{M}} := \{ (c_1^*, \dots, c_{n_n}^*) \mid R(c_1, \dots, c_n) \in T \}.$$

Claim: $R^{\mathcal{M}}$ is well defined. **Proof:** Suppose $\bar{c}, \bar{d} \in \mathscr{C}^{n_R}$ and suppose $c_i \sim d_i$. That is, $c_i = d_i \in T$ for $i = 1, \ldots, n_R$ so by Lemma 5.2

$$R(\bar{c}) \in T \iff R(\bar{d}) \in T.$$

• If $f \in \mathscr{F}$, and $\bar{c} \in \mathscr{C}^{n_R}$, then $f\bar{c} = d \in T$ for some $d \in \mathscr{C}$. (This is because $\exists x \ (f(\bar{c}) = x) \in T$ so apply witness property.)

Then define $f^{\mathcal{M}}(\bar{c}^*) = d^*$. Exercise: Check $f^{\mathcal{M}}(\bar{c}^*)$ is well-defined!

Claim: if $t(x_1, \ldots, x_n)$ is an *L*-term and $c_1, \ldots, c_n, d \in \mathcal{C}$, then

$$t(c_1,\ldots,c_n)=d\in T\iff t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*.$$

Proof:

- (\Rightarrow) by induction on the complexity of t.
- (\Leftarrow) Assume $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*$. Then

$$t(c_1,\ldots,c_n)=e\in T$$

for some constant e by witness property and Lemma 5.2. Use (\Rightarrow) to get that $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=e^*$. But then $d^*=e^*$, i.e. $d=e\in T$. Then $t(c_1,\ldots,c_n)=d\in T$.

Claim: For all L-formulas $\varphi(\bar{x})$, and $\bar{c} \in \mathscr{C}^{|\bar{x}|}$,

$$\mathcal{M} \vDash \varphi(\bar{c}) \iff \varphi(\bar{c}) \in T.$$

Proof: By induction on $\varphi(\bar{x})$. (Exercise: Fill in the details). \blacksquare This shows $\mathcal{M} \models T$. \square

Lecture 8 Lemma 5.4. Let T be a finitely satisfiable L-theory. Then there are $L^* \supseteq L$ and a finitely satisfiable L^* -theory $T^* \supseteq T$ such that

- (i) $|L^*| = |L| + \omega$.
- (ii) any L^* -theory extending T^* has the witness property.

Proof. We define $\langle L_i : i < \omega \rangle$ a chain of languages containing L and such that $|L_i| = |L| + \omega$, and $\langle T_i : i < \omega \rangle$ of finitely satisfiable theories such that $\forall i, T_i$ is an L_i -theory and $T_i \supseteq T$.

Set $L_0 = L$ and $T_0 = T$. At stage i + 1, L_i and T_i are given. List all L_i -formulas $\varphi(x)$ (one free variable) and let

$$L_{i+1} = L_i \cup \{ c_{\varphi} \mid \varphi(x) \text{ an } L_i \text{ formula } \}.$$

For all $\varphi(x)$, an L_i formula in one free variable, let Φ_{φ} be the L_{i+1} -sentence

$$\exists x \ \varphi(x) \to \varphi(c_{\varphi}).$$

Then let

$$T_{i+1} = T_i \cup \{ \Phi_{\varphi} \mid \varphi(x) \text{ is an } L_i \text{ formula } \}.$$

Claim: T_{i+1} is finitely satisfiable.

Proof: Let $\Delta \subseteq T_{i+1}$ be finite. Then

$$\Delta = \Delta_0 \cup \{\Phi_{\omega_1}, \dots, \Phi_{\omega_n}\}$$

where $\Delta_0 \subseteq T_i$. Let $\mathcal{M} \models \Delta_0$ (\mathcal{M} is an L_i structure; it exists because T_i is finitely satisfiable).

We define an L_{i+1} -structure \mathcal{M}' with domain M. Define the interpretation of new constants as follows: if $\mathcal{M} \models \exists x \ \varphi(x)$, then let a be such that $\mathcal{M} \models \varphi(a)$, and set $c_{\varphi}^{\mathcal{M}'} := a$. Otherwise, $c_{\varphi}^{\mathcal{M}'}$ is arbitrary. Then $\mathcal{M}' \models \Delta$.

$$L^* = \bigcup_{i < \omega} L_i, \qquad T^* = \bigcup_{i < \omega} T_i.$$

By construction, any extension of T^* has the witness property (check this!) and T^* is finitely satisfiable. (If $\Delta \subseteq T^*$ then $\Delta \subseteq T_i$ for some i).

Lemma 5.5. If T is finitely satisfiable, there exists a maximal finitely satisfiable $T' \supseteq T$.

Proof. Let

$$I\coloneqq \{\,S\mid S \text{ is a finitely satisfiable L-theory such that } T\subseteq S\,\}\,.$$

I is partially ordered by inclusion, and non-empty.

If $\langle C_i : i < \lambda \rangle$ is a chain in I, then $\bigcup_{i < \lambda} C_i$ is an upper bound for the chain - it is finitely satisfiable. Then by Zorn's lemma, I has a maximal element (with respect to \subset).

Claim: the maximal element T' of I is the required extension of T (check that for all L-sentences σ , $\sigma \in T'$ or $\neg \sigma \in T'$).

Theorem 5.6 (Compactness). If T is a finitely satisfiable L-theory and $\lambda \geq |L| + \omega$, then there is $\mathcal{M} \models T$ such that $|\mathcal{M}| \leq \lambda$.

Proof sketch. Extend T to T^* , an L^* -theory that is finitely satisfiable and such that any $S \supseteq T^*$ has the witness property (by Lemma 5.4).

By Lemma 5.5, there is $T'\supseteq T^*$, which is maximal and finitely satisfiable. Then T' has the witness property. Then by Lemma 5.3 there is $\mathcal{M} \models T'$ with $|\mathcal{M}| \leq \lambda$, and $\mathcal{M} \models T$.

Definition 5.7 (Type). Let L be a language.

- An L-type $p(\bar{x})$ is a set of L-formulas whose free variables are in \bar{x} (and $\bar{x} = \langle x_i : i < \lambda \rangle$).
- An *L*-type is **satisfiable** if there is an *L*-structure \mathcal{M} and an assignment $\bar{a} \in \mathcal{M}^{|\bar{x}|}$ to \bar{x} such that $\mathcal{M} \models \varphi(\bar{a})$ for all $\varphi(\bar{x}) \in p(\bar{x})$ (we also say $p(\bar{x})$ **consistent**, and that \bar{a} **realizes** $p(\bar{x})$ in \mathcal{M}). We write $\mathcal{M} \models p(\bar{a})$ or $\mathcal{M}, \bar{a} \models p(\bar{x})$. We also say that $p(\bar{x})$ is **satisfied** in \mathcal{M} .
- A type $p(\bar{x})$ is **finitely satisfiable** if every finite subset of p(x) is satisfiable (we may say $p(\bar{x})$ is **finitely consistent**).

Remark. An L-type may be finitely satisfiable in \mathcal{M} (i.e. every finite subset is satisfiable in \mathcal{M}) but not satisfiable in \mathcal{M} .

Example. Take $\mathcal{M} = (\mathbb{N}, <)$. Let $\phi_n(x)$ say 'there are at least n elements less than x'.

$$p(x) := \{ \phi_n(x) \mid n < \omega \}$$

Is p(x) finitely satisfiable in \mathcal{M} ? Yes. But p(x) is not satisfiable in \mathcal{M} .

Theorem 5.8 (Compactness theorem for types). Every finitely satisfiable L-type $p(\bar{x})$ is satisfiable.

Proof. Let $\bar{x} = \langle x_i : i < \lambda \rangle$, let $\langle c_i : i < \lambda \rangle$ be new constants (not in L). Expand L to $L' = L \cup \{c_i : i < \lambda\}$. Then $p(\bar{c})$ is a finitely satisfiable L'-theory and Theorem 5.6 applied to $p(\bar{c})$ gives an L'-structure \mathcal{M}' such that $\mathcal{M}' \models p(\bar{c})$. But \mathcal{M}' reduces to an L structure \mathcal{M} , so \mathcal{M} , $\bar{c}^{\mathcal{M}'} \models p(\bar{x})$.

Lecture 9 Lemma 5.9. Let \mathcal{M} be a structure, let $\bar{a} = \langle a_i : i < \lambda \rangle$ an enumeration of \mathcal{M} . Let

$$q(\bar{x}) = \{ \varphi(\bar{x}) \mid \mathcal{M} \vDash \varphi(\bar{a}) \},\,$$

where $|\bar{x}| < \lambda$. Then $q(\bar{x})$ is satisfiable in \mathcal{N} iff there is $\beta : \mathcal{M} \to \mathcal{N}$ that is an elementary embedding.

Proof.

 (\Rightarrow) If $q(\bar{x})$ is satisfiable in \mathcal{N} , there is $\bar{b} \in N^{|\bar{x}|}$ such that

$$\mathcal{N} \vDash \varphi(\bar{b}) \quad \forall \varphi(\bar{x}) \in q(\bar{x}).$$

Then $\beta: a_i \mapsto b_i$ for $i < \lambda$ is an elementary embedding. (β preserves, for example, atomic formulas of the form $f(a_{i_1}, \ldots, a_{i_n}) = a_{i_{n+1}}$). More generally, for any $\varphi(\bar{x})$ an L-formula,

$$\mathcal{M} \vDash \varphi(\bar{a}) \iff \mathcal{N} \vDash \varphi(\bar{b})$$

but $\beta(\bar{a}) = \bar{b}$ so we have elementarity.

 (\Leftarrow) If $\beta: \mathcal{M} \to \mathcal{N}$ is elementary, then $\beta(\bar{a})$ satisfies $q(\bar{x})$ in \mathcal{N} .

This lemma is sometimes also called the Diagram Lemma, and stated as: Suppose $\operatorname{Th}(\mathcal{M}_M)$ is a theory in L(M). Then if $\mathcal{N} \models \operatorname{Th}(\mathcal{M}_M)$, then \mathcal{M} embeds elementarily in \mathcal{N}

Remark 5.10. We can consider types in L(A), where $A \subseteq M$. In particular, we can have M = A.

Types of this kind are said to have **parameters in** A (or to be over A). If $p(\bar{x})$ is a type over M, then there is \bar{a} , an enumeration of M, and a type $p'(\bar{x}, \bar{z})$ in L where the \bar{z} are new constants, $|\bar{z}| = |\bar{a}|$, and $p(\bar{x}) = p'(\bar{x}, \bar{a})$.

Theorem 5.11. If \mathcal{M} is a structure, and $p(\bar{x})$ is a type in L(M) that is finitely satisfiable in \mathcal{M} , then $p(\bar{x})$ is satisfiable in some \mathcal{N} such that $\mathcal{M} \preceq \mathcal{N}$.

Example. Take $\mathcal{M} = (\mathbb{Q}, <)$, and let $\langle a_i : i < \omega \rangle$ a sequence in \mathbb{Q} that converges to $\sqrt{2}$ from below, and let $\langle b_i : i < \omega \rangle \subseteq \mathbb{Q}$ tend to $\sqrt{2}$ from above. Set $\phi_n(x) := a_n < x < b_n$. Then let $p(x) = \{ \phi_n(x) \mid n < \omega \}$. Then p(x) is an $L(\mathbb{Q})$ -type which is finitely satisfiable in \mathbb{Q} . But p(x) is not satisfiable in \mathcal{M} . It is, however, satisfiable in $(\mathbb{R}, <) \succcurlyeq (\mathbb{Q}, <)$.

Proof of Theorem 5.11. Let $\langle a_i : i < \lambda \rangle$ enumerate \mathcal{M} , let

$$q(\bar{z}) := \{ \varphi(\bar{z}) \mid \mathcal{M} \vDash \varphi(\bar{a}) \}$$

where $|\bar{z}| = \lambda$ and the z_i are new variables (so not among the \bar{x}). Write $p(\bar{x})$ as $p'(\bar{x}, \bar{a})$ for some $p'(\bar{x}, \bar{z})$ (an L-type).

Claim: $p'(\bar{x}, \bar{z}) \cup q(\bar{z})$ is finitely satisfiable in \mathcal{M} .

Proof: $p'(\bar{x}, \bar{a})$ is finitely satisfiable by hypothesis and $q(\bar{z})$ is realized by \bar{a} .

Then, by Compactness theorem for types, $p'(\bar{x}, \bar{z}) \cup q(\bar{z})$ is satisfiable. That is, there is \mathcal{N} and $\bar{b} \in \mathcal{N}^{|\bar{z}|}$ and $\bar{c} \in \mathcal{N}^{|\bar{x}|}$ such that

$$\mathcal{N} \vDash p'(\bar{c}, \bar{b}) \cup q(\bar{b}).$$

In particular, $\mathcal{N} \vDash q(\bar{b})$, then by Lemma 5.9, $\beta : a_i \mapsto b_i$ is an elementary embedding. \square

Theorem 5.12 (Upward Löwenheim-Skolem). Let \mathcal{M} be such that $|\mathcal{M}| \geq \omega$. Then for any $\lambda \geq |\mathcal{M}| + |L|$, there is \mathcal{N} such that $\mathcal{M} \leq \mathcal{N}$, and $|\mathcal{N}| = \lambda$.

Proof. Let $\bar{x} = \langle x_i : i < \lambda \rangle$ a tuple of distinct variables. Let

$$p(\bar{x}) = \{ x_i \neq x_j \mid i < j < \lambda \}.$$

Then $p(\bar{x})$ is finitely consistent in \mathcal{M} . By Theorem 5.11, $p(\bar{x})$ is realized in some $\mathcal{M} \preceq \mathcal{N}$, and $|\mathcal{N}| \geq \lambda$. By Downward Löwenheim-Skolem, we may assume $|\mathcal{N}| = \lambda$.

6 Saturation

Definition 6.1 (Saturated). Let λ be an infinite cardinal, let $|\mathcal{M}| \geq \omega$. Then \mathcal{M} is λ -saturated if \mathcal{M} realizes every type p(x) with one free variable such that

- (i) p(x) has parameters in $A \subseteq M$ and $|A| < \lambda$.
- (ii) p(x) is finitely consistent in \mathcal{M} .

 \mathcal{M} is **saturated** if it is $|\mathcal{M}|$ -saturated.

Can \mathcal{M} be λ -saturated if $\lambda > |\mathcal{M}|$? If so, \mathcal{M} would satisfy finitely satisfiable types in $L(\mathcal{M})$. For example,

$$p(x) = \{ x \neq a_i \mid i < |\mathcal{M}| \}$$

where $\langle a_i : i < |\mathcal{M}| \rangle$ enumerates \mathcal{M} . p(x) is finitely satisfiable, but not satisfied in \mathcal{M} .

Lecture 10 **Definition 6.2** (Type of tuple). Let \mathcal{M} be an L-structure, $A \subseteq M$, \bar{b} a tuple in M (possibly infinite). The **type of** \bar{b} **over** A is the following L(A)-type:

$$\operatorname{tp}_{\mathcal{M}}(\bar{b}/A) \coloneqq \{ \varphi(\bar{x}) \in L(A) \mid \mathcal{M} \vDash \varphi(\bar{b}) \}.$$

The subscript \mathcal{M} is often omitted if clear from context.

Remark 6.3.

- (i) $\operatorname{tp}_{\mathcal{M}}(\bar{b}/A)$ is complete, i.e. for every L(A) formula $\phi(\bar{x})$, either $\phi(\bar{x}) \in \operatorname{tp}(\bar{b}/A)$ or $\neg \phi(x) \in \operatorname{tp}(\bar{b}/A)$.
- (ii) If $\mathcal{M} \preceq \mathcal{N}$, then for $A \subseteq M$, \bar{b} a tuple:

$$\operatorname{tp}_{\mathcal{M}}(\bar{b}/A) = \operatorname{tp}_{\mathcal{N}}(\bar{b}/A).$$

Fact 6.4.

- (i) If $f: A \subseteq \mathcal{M} \to \mathcal{N}$ is a (partial) elementary map, then in particular f preserves L-sentences, so $\mathcal{M} \equiv \mathcal{N}$.
- (ii) If $\mathcal{M} \equiv \mathcal{N}$, then \varnothing , the empty map, is an elementary map, as it preserves sentences.
- (iii) If $f: A \subseteq \mathcal{M} \to \mathcal{N}$ is elementary, and \bar{a} is an enumeration of A = dom(f), then

$$\operatorname{tp}(\bar{a}/\varnothing) = \operatorname{tp}(f(\bar{a})/\varnothing).$$

More generally, if $f: \mathcal{M} \to \mathcal{N}$ is (partial) elementary and there is $A \subseteq M \cap N$ such that $A \subseteq \text{dom } f, f|_{A} = \text{id}$, then for every \bar{b} , a tuple in dom(f),

$$\operatorname{tp}_{\mathcal{M}}(\bar{b}/A) = \operatorname{tp}_{\mathcal{N}}(f(\bar{b})/A).$$

(iv) Let \bar{a} enumerate $A \subseteq M$, A = dom(f) where $f : \mathcal{M} \to \mathcal{N}$ is elementary. Let $p(\bar{x}, \bar{a})$ be a type in L(A) that is finitely satisfiable in \mathcal{M} . Then $p(\bar{x}, f(\bar{a}))$ is finitely satisfiable in \mathcal{N} :

Let

$$\{\varphi_1(\bar{x},\bar{a}),\ldots,\varphi_n(\bar{x},\bar{a})\}\subseteq p(\bar{x},\bar{a}).$$

By finite satisfiability of $p(\bar{x}, \bar{a})$,

$$\mathcal{M} \vDash \exists \bar{x} \bigwedge_{i=1}^{n} \varphi_i(\bar{x}, \bar{a}).$$

Then

$$\mathcal{N} \vDash \exists x \ \bigwedge_{i=1}^{m} \varphi_i(\bar{x}, f(\bar{a}))$$

by elementarity of f. (Does $p(\bar{x}, \bar{a})$ satisfiable in \mathcal{M} imply $p(\bar{x}, f(\bar{a}))$ satisfiable in \mathcal{N} ? No.)

Theorem 6.5. Let \mathcal{N} be such that $|\mathcal{N}| \geq \lambda \geq |L| + \omega$. The following are equivalent:

- (i) \mathcal{N} is λ -saturated.
- (ii) if $\mathcal{M} \equiv \mathcal{N}, b \in M$ and $f : \mathcal{M} \to \mathcal{N}$ partial elementary map such that $|f| < \lambda$, then there is a partial elementary $\hat{f} \supseteq f$ and such that $b \in \text{dom}(\hat{f})$.
- (iii) If $p(\bar{z})$ is an L(A)-type where $|\bar{z}| \leq \lambda$ and $|A| < \lambda$ and $p(\bar{z})$ is finitely satisfiable in \mathcal{N} , then $p(\bar{z})$ is satisfiable in \mathcal{N} .

Proof. (i) \Rightarrow (ii). Let $f: \mathcal{M} \to \mathcal{N}$ be as in (ii), let $b \in \mathcal{M}$. Let \bar{a} be an enumeration of dom(f), so $|\bar{a}| < \lambda$. Let

$$p(x/\bar{a}) \coloneqq \operatorname{tp}_{\mathcal{M}}(b/\bar{a}).$$

Then $p(x/\bar{a})$ is finitely satisfiable in \mathcal{M} , hence $\operatorname{tp}(x/f(\bar{a}))$ is finitely satisfiable in \mathcal{N} (by Fact 6.4(iv)). Since $|f(\bar{a})| < \lambda$ and \mathcal{N} is λ -saturated, $\operatorname{tp}(x/f(\bar{a}))$ is realized in \mathcal{N} by some c. Then $f \cup \{\langle b, c \rangle\}$ is the required extension of f:

$$\mathcal{M} \vDash \phi(b, \bar{a}) \iff \mathcal{N} \vDash \phi(c, f(\bar{a}))$$

Lecture 11 (ii) \Rightarrow (iii). Let $p(\bar{z})$ be as in (iii). There is \mathcal{M} such that $\mathcal{N} \preceq \mathcal{M}$ and $\mathcal{M} \vDash p(\bar{b})$. The identity map $\mathrm{id}_A: \mathcal{M} \to \mathcal{N}$ is partial elementary. Idea: build $\langle f_i: i < |\bar{b}| \rangle$ of partial elementary maps extending id_A. Then $\bigcup_i f_i$ is partial elementary, and $\bar{b} \in \text{dom } \bigcup_{i < |\bar{a}|} f_i$.

Set $f_0 = \mathrm{id}_A$, at stage i + 1 use (ii) to put b_i in $\mathrm{dom}(f_{i+1})$. At limit stages, $\mu < \lambda$, let $f_{\mu} = \bigcup_{i < \mu} f_i$. (iii) \Rightarrow (i) is trivial.

$$(iii) \Rightarrow (i)$$
 is trivial.

Corollary 6.6. If \mathcal{M} and \mathcal{N} are saturated and $\mathcal{M} \equiv \mathcal{N}$ and $|\mathcal{M}| = |\mathcal{N}|$ then any elementary $f: \mathcal{M} \to \mathcal{N}$ extends to an isomorphism (in particular $\mathcal{M} \simeq \mathcal{N}$).

Proof. Use Theorem 6.5(ii) to extend $f: \mathcal{M} \to \mathcal{N}$ to an isomorphism by back-and-forth (take unions at limit stages).

Corollary 6.7. Models of of T_{dlo} and T_{rg} are ω -saturated.

Proof. By Theorem 6.5 and Lemma 4.3 for $T_{\rm dlo}$ and Lemma 4.17 for $T_{\rm rg}$. So $(\mathbb{Q}, <)$ is ω -saturated. Is $(\mathbb{R}, <)$ ω_1 saturated? No. It does not realize

$$p(x) := \{ x > q \mid q \in \mathbb{Q} \}.$$

Definition 6.8 (Automorphism). An isomorphism $\alpha: \mathcal{N} \to \mathcal{N}$ is called an **automorphism**. The automorphisms of \mathcal{N} form a group denoted by $\operatorname{Aut}(\mathcal{N})$. If $A \subseteq \mathcal{N}$, then

$$\operatorname{Aut}(\mathcal{N}/A) := \{ \alpha \in \operatorname{Aut}(\mathcal{M}) \mid \alpha|_A = \operatorname{id} \}.$$

Definition 6.9 (Universality, homogeneity).

- (i) An *L*-structure \mathcal{N} is λ -universal if for every $\mathcal{M} \equiv \mathcal{N}$ such that $|\mathcal{M}| \leq \lambda$ there is an elementary embedding $\beta : \mathcal{M} \to \mathcal{N}$. \mathcal{N} is universal if it is $|\mathcal{N}|$ -universal.
- (ii) \mathcal{N} is λ -homogeneous if every elementary map $f: \mathcal{N} \to \mathcal{N}$ such that $|f| < \lambda$ extends to an isomorphism of \mathcal{N} .

Theorem 6.10. Let \mathcal{N} be such that $|\mathcal{N}| \geq |L| + \omega$. The following are equivalent

- (i) \mathcal{N} is saturated
- (ii) \mathcal{N} is universal and homogeneous.

Proof. (i) \Rightarrow (ii). Assume \mathcal{N} is saturated, and $\mathcal{M} \equiv \mathcal{N}$ is such that $|\mathcal{M}| \leq |\mathcal{N}|$. Then let \bar{a} enumerate \mathcal{M} , let $p(\bar{x}) = \operatorname{tp}(\bar{a}/\varnothing)$. Then $p(\bar{x})$ is finitely satisfiable in \mathcal{M} .

Claim: $p(\bar{x})$ is finitely satisfiable in \mathcal{N} . Indeed, let $\{\varphi_1(\bar{x}), \dots, \varphi_n(\bar{x})\} \subseteq p(\bar{x})$, $\mathcal{M} \models \exists \bar{x} \ \bigwedge_{i=1}^n \varphi_i(\bar{x})$, and so $\mathcal{N} \models \exists x \ \bigwedge \varphi_i(\bar{x})$ since $\mathcal{M} \equiv \mathcal{N}$.

Since $|\bar{x}| \leq |\mathcal{N}|$, \mathcal{N} realizes $p(\bar{x})$ by saturation (Theorem 6.5). Homogeneity follows from Corollary 6.6.

(ii) \Rightarrow (i). We show that if $\mathcal{M} \equiv \mathcal{N}$, $b \in M$, $f : \mathcal{M} \to \mathcal{N}$ elementary such that $|f| < |\mathcal{N}|$ then there is $\hat{f} \supseteq f$ elementary defined on b.

By working in $\mathcal{M}' \preceq \mathcal{M}$ such that $\operatorname{dom}(f) \cup \{b\} \subseteq \mathcal{M}'$ if necessary (using Theorem 3.11), we may assume $|\mathcal{M}| \leq |\mathcal{N}|$. Since $\mathcal{M} \equiv \mathcal{N}$, by universality there is an elementary embedding $\beta : \mathcal{M} \to \mathcal{N}$. Then $\beta(\mathcal{M}) \preceq \mathcal{N}$.

Then the map $f \circ \beta^{-1} : \beta(\text{dom}(f)) \to \text{img}(f)$ is elementary. By homogeneity, there is $\alpha \in \text{Aut}(\mathcal{N})$ such that $f \circ \beta^{-1} \subseteq \alpha$. Then $f \cup \{\langle b, \alpha(\beta(b)) \}$ is elementary (it is a restriction of $\alpha \circ \beta$).

Definition 6.11 (Orbit, defined set). Let \bar{a} be a tuple in \mathcal{N} and $A \subseteq \mathcal{N}$. The **orbit** of \bar{a} over A is the set

$$O_{\mathcal{N}}(\bar{a}/A) = \{ \alpha(\bar{a}) \mid \alpha \in \operatorname{Aut}(\mathcal{N}/A) \}.$$

If $\varphi(\bar{x})$ is an L(A)-formula, then

$$\varphi(\mathcal{N}) \coloneqq \{ \bar{a} \in N^{|\bar{x}|} \mid \mathcal{N} \vDash \varphi(\bar{a}) \}$$

is the **set defined by** $\varphi(\bar{x})$. A set is **definable** over A if it is defined by some L(A)-formula. There are analogous notions of a type defining a set, and a set being type-definable.

- Lecture 12 Remark 6.12. If \bar{a} , \bar{b} are tuples in \mathcal{N} of the same length, and $A \subseteq \mathcal{N}$, then the following are equivalent.
 - (i) $\operatorname{tp}_{\mathcal{N}}(\bar{a}/A) = \operatorname{tp}_{\mathcal{N}}(\bar{b}/A)$
 - (ii) $\{a_i \mapsto b_i \mid i < |\bar{a}|\} \cup \mathrm{id}_A$ is an elementary map from $\mathcal N$ to $\mathcal N$

Proposition 6.13. Let \mathcal{N} be λ -homogeneous, $A \subseteq N$, with $|A| < \lambda$ and let \bar{a} a tuple in \mathcal{N} such that $|\bar{a}| < \lambda$. Then

$$O_{\mathcal{N}}(\bar{a}/A) = p(\mathcal{N})$$

where $p(\bar{x}) = \operatorname{tp}_{\mathcal{N}}(\bar{a}/A)$.

Proof. If $\alpha(\bar{a}) = \bar{b}$, where $\alpha \in \operatorname{Aut}(\mathcal{N}/A)$, then $\operatorname{tp}_{\mathcal{N}}(\bar{a}/A) = \operatorname{tp}_{\mathcal{N}}(\bar{b}/A)$.

If $\operatorname{tp}_{\mathcal{N}}(\bar{a}/A) = \operatorname{tp}_{\mathcal{N}}(\bar{b}/A)$, then $\{\langle a_i, b_i \rangle \mid i < |\bar{a}| \} \cup \operatorname{id}_A$ is elementary, and by homogeneity it extends to $\alpha \in \operatorname{Aut}(\mathcal{N})$, and in particular $\alpha \in \operatorname{Aut}(\mathcal{N}/A)$.

7 The Monster Model

Given a complete theory T with an infinite model, we work in a saturated structure \mathcal{U} (sometimes denoted \mathbb{M}) that is a model of T, which is sufficiently large such that any other model of T we might be interested in is an elementary substructure of \mathcal{U} . (\mathcal{U} is an expository device - see Tent/Ziegler for more details, also Marker).

Definition 7.1 (Terminology and conventions). When working in \mathcal{U} , we say

- ' $\varphi(\bar{x})$ holds' to mean that $\mathcal{U} \vDash \forall \bar{x} \ \varphi(\bar{x})$
- ' $\varphi(\bar{x})$ is **consistent**' to mean $\mathcal{U} \vDash \exists \bar{x} \ \varphi(\bar{x})$
- 'the type $p(\bar{x})$ is **consistent/satisfiable**' to mean $\mathcal{U} \models \exists \bar{x} \ p(\bar{x})$
- A cardinality λ is **small** if $\lambda < |U|$ (usually denote |U| by κ)
- a model is some $\mathcal{M} \preceq \mathcal{U}$ such that |M| is small

Conventions:

- all tuples assumed to have small length, unless specified otherwise
- \bullet formulas have parameters in U
- types have parameters in small sets
- definable sets have the form $\varphi(U)$ for some L(U)-formula $\varphi(\bar{x})$
- type definable sets have the form p(U) for some type $p(\bar{x}, A)$ where $|A| < \kappa$.
- Orbits and types of tuples are within \mathcal{U} , so $\operatorname{tp}(\bar{a}/A)$ means $\operatorname{tp}_{\mathcal{U}}(\bar{a}/A)$,

$$O(\bar{a}/A) = O_{\mathcal{U}}(\bar{a}/A)$$

• If $p(\bar{x})$, $q(\bar{x})$ are types, we write $p(\bar{x}) \to q(\bar{x})$ to mean $p(\mathcal{N}) \subseteq q(\mathcal{N})$ (think of $p(\bar{x})$ as an infinite conjunction of formulas)

Fact 7.2. Let $p(\bar{x})$ be a satisfiable L(A)-type, and $q(\bar{x})$ a satisfiable L(B)-type, such that

$$p(\bar{x}) \to \neg q(\bar{x})$$

(explicitly, $p(\bar{x})$ and $q(\bar{x})$ have no common realisations).

Then there are $\varphi_i(\bar{x}) \in p(\bar{x})$ and $\psi_i(\bar{x}) \in q(\bar{x})$ such that

$$\bigwedge_{i=1}^{n} \varphi_i(\bar{x}) \to \neg \left(\bigwedge_{i=1}^{m} \psi_i(\bar{x}) \right).$$

Proof. $p(\bar{x}) \cup q(\bar{x})$ is not realized in \mathcal{U} . By saturation of \mathcal{U} , $p(\bar{x}) \cup q(\bar{x})$ is not finitely satisfiable, hence there exist finite subsets $\{\varphi_1(\bar{x}), \ldots, \varphi_n(\bar{x})\} \subseteq p(\bar{x}), \{\psi_1(\bar{x}), \ldots, \psi_n(\bar{x})\} \subseteq q(\bar{x})$ such that their union is not satisfiable. Then

$$\bigwedge \varphi_i(\bar{x}) \to \neg \left(\bigwedge \psi_i(\bar{x})\right). \qquad \Box$$

Remark 7.3. Let $\varphi(\mathcal{U}, \bar{b})$ be such that $\varphi(\bar{x}, \bar{z})$ is an L-formula, $\bar{b} \in \mathcal{U}^{|\bar{z}|}$. If $\alpha \in \text{Aut}(\mathcal{U})$, then

$$\begin{split} \alpha[\varphi(\mathcal{U}, \bar{b})] &= \{ \, \alpha(\bar{a}) \mid \varphi(\bar{a}, \bar{b}), \bar{a} \in \mathcal{U}^{|\bar{x}|} \, \} \\ &= \{ \, \alpha(\bar{a}) \mid \varphi(\alpha(\bar{a}), \alpha(\bar{b})), \bar{a} \in \mathcal{U}^{|\bar{x}|} \, \} \\ &= \varphi(\mathcal{U}, \alpha(\bar{b})) \end{split}$$

So $\operatorname{Aut}(\mathcal{U})$ acts on the definable sets in a natural way. (Similarly for the type-definable sets)

Definition 7.4 (Invariant). A set $D \subseteq \mathcal{U}$ is invariant under $\operatorname{Aut}(\mathcal{U}/A)$ (invariant over A) if $\alpha(D) = D$ for every $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$.

Equivalently, for all $\bar{a} \in D$, $O(\bar{a}/A) \subseteq D$.

If $\bar{a} \in D$, $q(\bar{x}) = \operatorname{tp}(\bar{a}/A)$ and $\bar{b} \models q(\bar{x})$, then $\bar{b} \in D$. $(\operatorname{tp}(\bar{b}/A) = \operatorname{tp}(\bar{a}/A)$, so there is $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$ s.t. $\alpha(\bar{a}) = \bar{b}$ by homogeneity of \mathcal{U}). Hence we could also define invariance over A as

$$\forall \bar{a} \in D, \quad \bar{b} \equiv_{A} \bar{a} \implies \bar{b} \in D.$$

Proposition 7.5. Let $\varphi(\bar{x})$ be an L(U)-formula, then the following are equivalent:

- (i) $\varphi(\bar{x})$ is equivalent to some L(A)-formula $\psi(\bar{x})$
- (ii) $\varphi(\mathcal{U})$ is invariant over A

Proof. (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (i): Let $\varphi(\bar{x}, \bar{z})$ be an L-formula such that $\varphi(\mathcal{U}, \bar{b})$ is invariant over A, for suitable $\bar{b} \in U^{|\bar{z}|}$.

Let $q(\bar{z})$ be the type $\operatorname{tp}(\bar{b}/A)$. If $\bar{c} \vDash q(\bar{z})$, then there is $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$ such that $\alpha(\bar{b}) = \bar{c}$. Then

$$\begin{split} \varphi(\mathcal{U},\bar{c}) &= \alpha(\varphi(\mathcal{U},\bar{b})) & \text{by Remark 7.3} \\ &= \varphi(\mathcal{U},\bar{b}) & \text{by invariance} \end{split}$$

Hence

$$q(\bar{z}) \to \forall \bar{x} \ (\varphi(\bar{x}, \bar{z}) \leftrightarrow \varphi(\bar{x}, \bar{b})).$$

By an argument similar to Fact 7.2, there is $\theta(\bar{z}) \in q(\bar{z})$ such that $\theta(\bar{z}) \to \forall \bar{x} \ (\varphi(\bar{x}, \bar{z}) \leftrightarrow \varphi(\bar{x}, \bar{b}))$. Then $\theta(\bar{z})$ is an L(A)-formula and $\exists z \ [\theta(\bar{z}) \land \varphi(\bar{x}, \bar{z})]$ defines $\varphi(\mathcal{U}, \bar{b})$.

Lecture 13 **Definition 7.6.** An injective map $p: A \subseteq \mathcal{M} \to \mathcal{N}$ is a **partial embedding** if for all tuples in A = dom(p), p satisfies conditions (i), (ii), (iii) in Definition 1.5.

Idea: a partial embedding preserves quantifier-free formulas.

Proposition 7.7. Let $\varphi(\bar{x})$ be an *L*-formula. The following are equivalent:

(i) there is $\psi(\bar{x})$, a quantifier-free L-formula such that

$$\mathcal{U} \vDash \forall x \ [\varphi(\bar{x}) \leftrightarrow \psi(\bar{x})].$$

(ii) for all partial embeddings $p: \mathcal{U} \to \mathcal{U}$, for all \bar{a} from dom (\bar{p}) ,

$$\varphi(\bar{a}) \leftrightarrow \varphi(p(\bar{a}))$$

Proof. (i) \Rightarrow (ii): clear.

(ii) \Rightarrow (i). For $\bar{a} \in U$, set

$$\operatorname{qftp}(\bar{a}) \coloneqq \{ \psi(\bar{x}) \mid \psi(\bar{a}) \text{ and } \psi(\bar{x}) \text{ is quantifier free } \}.$$

Let

$$D = \{ q(\bar{x}) \mid q(\bar{x}) = \text{qftp}(\bar{a}) \text{ for some } \bar{a} \text{ such that } \varphi(\bar{a}) \}.$$

Claim: $\varphi(U) = \bigcup_{q(\bar{x}) \in D} q(U)$.

By (an argument similar to) Fact 7.2, there is $\theta_q(\bar{x})$ in $q(\bar{x})$ a finite conjunction of formulas such that $\theta_q(\bar{x}) \to \varphi(x)$. So we have

$$\varphi(\bar{x}) \leftrightarrow \bigvee_{q(\bar{x}) \in D} \{\theta_q(\bar{x})\}.$$

By Fact 7.2, there are $\psi_{q_1}(\bar{x}), \ldots, \psi_{q_m}(\bar{x})$ such that

$$\varphi(\bar{x}) \leftrightarrow \bigvee_{i=1}^{n} \psi_{q_i}(\bar{x}).$$

So $\bigvee \psi_{q_i}(\bar{x})$ is the required quantifier-free formula.

Definition 7.8. An L-theory T has quantifier elimination if for every L-formula $\varphi(\bar{x})$ there is $\psi(\bar{x})$ quantifier free such that

$$T \vdash \forall \bar{x} \ (\varphi(\bar{x}) \leftrightarrow \psi(\bar{x})).$$

Theorem 7.9. Let T be a complete theory with an infinite model. Then the following are equivalent:

- (i) T has quantifier elimination
- (ii) every $p: \mathcal{U} \to \mathcal{U}$ partial embedding is elementary
- (iii) If $p: \mathcal{U} \to \mathcal{U}$ is partial embedding and $|\operatorname{dom} p| < |\mathcal{U}|$ and $b \in \mathcal{U}$, then there is a partial embedding $\hat{p} \supseteq p$ such that $b \in \operatorname{dom} \hat{p}$.

Proof. (i) \Leftrightarrow (ii). Follows from Proposition 7.7.

- (ii) \Rightarrow (iii). If $p: \mathcal{U} \to \mathcal{U}$ is a partial embedding, then it is elementary. Let $b \in \mathcal{U}$. By homogeneity of \mathcal{U} , there is $\alpha \in \operatorname{Aut}(\mathcal{U})$ such that $p \subseteq \alpha$, and so $p \cup \{\langle b, \alpha(b) \rangle\}$ is the required extension of p.
- (iii) \Rightarrow (ii). Let $p: \mathcal{U} \to \mathcal{U}$ be a partial embedding. Consider $p_0 \subseteq p$, p_0 finite or small. Use property (iii) and saturation to extend p_0 to $\alpha \in \operatorname{Aut}(U)$ by back and forth

Remark. There is a fourth condition equivalent to (i), (ii), (iii):

(iv) for every finite partial embedding $p: \mathcal{U} \to \mathcal{U}$ and $b \in \mathcal{U}$ there is $\hat{p} \supseteq p$, a partial embedding such that $b \in \text{dom}(\hat{p})$.

Proof: Later, exercise.

This gives quantifier elimination for $T_{\rm rg}$ and $T_{\rm dlo}$.

Remark. If T has quantifier elimination and $\mathcal{M} \models T$, any substructure of \mathcal{M} is an elementary substructure (T is 'model-complete').

Definition 7.10. An element $a \in \mathcal{U}$ is **definable** over $A \subseteq U$ if there is an L(A)-formula $\varphi(x)$ such that $\varphi(U) = \{a\}$. (In particular, any element of A is definable over A; x = a for $a \in A$).

An element $a \in \mathcal{U}$ is **algebraic** over $A \subseteq U$ if there is an L(A)-formula $\varphi(x)$ such that $|\varphi(U)| < \omega$ and $a \in \varphi(\mathcal{U})$.

The **definable closure** of A is

$$dcl(A) = \{ a \in \mathcal{U} \mid a \text{ definable over } A \}$$

and the **algebraic closure** of A is

$$acl(A) = \{ a \in \mathcal{U} \mid a \text{ algebraic over } A \}.$$

Proposition 7.11. For $a \in \mathcal{U}$ and $A \subseteq \mathcal{U}$, the following are equivalent

- (i) $a \in \operatorname{dcl}(A)$
- (ii) $O(a/A) = \{a\}.$

Proof. $a \in dcl(A)$ iff there is $\varphi(x) \in L(A)$ such that $\varphi(U) = \{a\}$. By Proposition 7.5 this is equivalent to invariance under Aut(U/A).

Theorem 7.12. Let $A \subseteq \mathcal{U}$, $a \in \mathcal{U}$, the following are equivalent:

- (i) $a \in \operatorname{acl}(A)$
- (ii) $|O(a/A)| < \omega$
- (iii) $a \in \mathcal{M}$ for any model \mathcal{M} which contains A.
- Lecture 14 Proof. (i) \Rightarrow (ii). If $a \in \operatorname{acl}(A)$, then there is an L(A)-formula $\varphi(x)$ such that $\varphi(a)$ holds and $|\varphi(U)| < \omega$. But $\varphi(U)$ is invariant over A, and so $O(a/A) \subseteq \varphi(U)$, and so $|\mathcal{O}(a/A)| < \omega$.
 - (ii) \Rightarrow (i). If $|O(a/A)| < \omega$, then O(a/A) is definable by $\bigvee_{i=1}^{n} (x = a_i)$ where $O(a/A) = \{a_1, \ldots, a_n\}$. Also O(a/A) is invariant over A, so by Proposition 7.5, there is an L(A)-formula $\varphi(x)$ that defines O(a/A).
 - (i) \Rightarrow (iii). $a \in \operatorname{acl}(A)$, so there is $\varphi(x)$, an L(A)-formula such that there is $n \in \omega \setminus \{0\}$ with

$$\varphi(a) \wedge \exists^{\leq n} x \ \varphi(x).$$

Then by elementarity, $\varphi(a) \wedge \exists^{\leq n} x \ \varphi(x)$ holds in every $\mathcal{M} \supseteq A$, and the *n* realizations of $\varphi(x)$ in \mathcal{U} must coincide with the realizations in \mathcal{M} . Therefore $a \in \mathcal{M}$.

(iii) \Rightarrow (i). Suppose $a \notin \operatorname{acl}(A)$, let $p(x) = \operatorname{tp}(a/A)$. Then for $\varphi(x) \in p(x)$, $|\varphi(\mathcal{U})| \geq \omega$. Then from sheet 2, $|p(\mathcal{U})| \geq \omega$. By an argument similar to the one in exercise 7 on sheet 2, $|p(\mathcal{U})| = |\mathcal{U}|$.

Let $\mathcal{M} \supseteq A$, then $p(\mathcal{U}) \setminus \mathcal{M} \neq \emptyset$. So there is $b \in p(\mathcal{U}) \setminus \mathcal{M}$. Since $\operatorname{tp}(a/A) = \operatorname{tp}(b/A)$, there is $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$ such that $\alpha(b) = a$.

But then $\alpha[\mathcal{M}]$ is a model that contains A, but $a \notin \alpha[\mathcal{M}]$ while $a = \alpha(b)$.

Proposition 7.13. Let $a \in \mathcal{U}$, $A \subseteq \mathcal{U}$. Then:

- (i) if $a \in \operatorname{acl}(A)$, then there is finite $A_0 \subseteq A$ such that $a \in \operatorname{acl}(A_0)$.
- (ii) if $A \subseteq B$, then $acl(A) \subseteq acl(B)$.
- (iii) acl(A) = acl(acl(A))
- (iv) $A \subseteq acl(A)$.

(v) $acl(A) = \bigcap_{A \subseteq \mathcal{M}} \mathcal{M}$ where \mathcal{M} is a small elementary substructure of \mathcal{U} . *Proof.*

- (iv) $a \in A$ is definable over A, hence algebraic.
- (iii) $\operatorname{acl}(A) \subseteq \operatorname{acl}(\operatorname{acl}(A))$ by monotonicity. For \supseteq , let $a \in \operatorname{acl}(\operatorname{acl}(A))$. By Theorem 7.12, $a \in \mathcal{M}$ for every $\mathcal{M} \supseteq \operatorname{acl}(A)$. But $\operatorname{acl}(A) \subseteq \mathcal{M} \iff A \subseteq \mathcal{M}$, so $a \in \mathcal{M}$ for every $\mathcal{M} \supseteq A$, i.e. $a \in \operatorname{acl}(A)$.
- (v) follows from Theorem 7.12. \Box

Proposition 7.14. If $\beta \in Aut(\mathcal{U})$, $A \subseteq \mathcal{U}$, then $\beta[acl(A)] = acl(\beta[A])$.

Proof. \subseteq : Let $a \in \operatorname{acl}(A)$, let $\varphi(x, \bar{z})$ be an L-formula such that $\varphi(a, \bar{b})$ holds for \bar{b} in A and $|\varphi(U, \bar{b})| < \omega$. Then $\varphi(\beta(a), \beta(\bar{b}))$ holds, $|\varphi(U, \beta(\bar{b}))| < \omega$, and so $\beta(a)$ is algebraic over $\beta[\bar{b}]$.

The same proof with β^{-1} in place of β and $\beta[A]$ in place of A shows \supseteq .

8 Strongly Minimal Theories

Definition 8.1 (Cofinite). For \mathcal{M} a structure, $A \subseteq M$ is **cofinite** if $M \setminus A$ is finite.

Remark 8.2. Finite and cofinite sets are definable in every structure.

In this chapter, we'll look at structures where these are the only definable sets.

Definition 8.3 (Minimality, strong minimality). A structure \mathcal{M} is **minimal** if all its definable subsets are finite or cofinite. \mathcal{M} is **strongly minimal** if it is minimal and all its elementary extensions are minimal.

If T is a consistent theory without finite models, T is **strongly minimal** if for every formula $\varphi(x,\bar{z})$ there is $n \in \omega \setminus \{0\}$ such that

$$T \vdash \forall \bar{z} \ [\exists^{\leq n} x \ \varphi(x, \bar{z}) \lor \exists^{\leq n} x \ \neg \varphi(x, \bar{z})].$$

Example. Take $L = \{E\}$, a binary relation, let \mathcal{M} be the L-structure where E is an equivalence relation with exactly one class of size n for all $n \in \omega$ and no infinite classes. Then can show \mathcal{M} is minimal (can only say things like 'x is in the same class as a').

But, there is $\mathcal{N} \succcurlyeq \mathcal{M}$ where \mathcal{N} has an infinite class. Then if the equivalence class of $a \in \mathcal{N}$ is infinite, the set defined by E(x, a) is infinite/coinfinite, so \mathcal{M} is not strongly minimal.

(Remark: strongly minimal theories have monster models). From now on: T is strongly minimal, complete, and has an infinite model.

Definition 8.4 (Independence). Let $a \in \mathcal{U}$, $B \subseteq \mathcal{U}$. Then a is **independent** from B if $a \notin \operatorname{acl}(B)$. The set B is **independent** if for all $a \in B$, $a \notin \operatorname{acl}(B \setminus \{a\})$.

Example.

- Lecture 15
- Vector spaces. Fix an infinite field K, and use $L = \{+, -, \mathbf{0}, \{\lambda\}_{\lambda \in K}\}$, where λ are unary functions (for scalar multiplication). The theory of vector spaces over K, T_{VSK} includes:
 - axioms in $\{+, -, 0\}$ for abelian group
 - axiom schemata for scalar multiplication:
 - * $\forall xy \ [\lambda(x+y) = \lambda x + \lambda y]$ for each $\lambda \in K$, λx means $\lambda(x)$.
 - * :
 - * $\forall x [1x = x] \text{ (since } 1 \in K).$
 - * $\exists x \ (x \neq \mathbf{0}).$

Then it can be shown T_{VSK} is complete and has quantifier elimination.

Atomic formulas express equality of linear combinations, any atomic formula in one variable and with parameters is equivalent to ' $\lambda x = a$ ', so atomic formulas in one variable define singletons. Quantifier-free formulas in one variable and with parameters define sets that are either finite or cofinite.

By quantifier elimination, T_{VSK} is strongly minimal. Also, $acl(A) = \langle A \rangle$, the linear span, and a is independent from A if a is linearly independent from A, and A is independent if it is linearly independent.

- Fields. Take $L_{\text{ring}} = \{+, \cdot, -, 0, 1\}$. Then ACF is the theory that includes
 - axioms for abelian group in $\{+, -, 0\}$

- axioms for multiplicative monoids in $\{\cdot, 1\}$
- $\forall xyz \left[x \cdot (y+z) = x \cdot y + x \cdot z \right]$
- $\ \forall x \ [x = 0 \lor \exists y \ (x \cdot y) = 1]$
- $-0 \neq 1$
- axioms for algebraic closure: for all n,

$$\forall x_0 \cdots x_n \; \exists y \; [x_n y^n + \cdots + x_1 y + x_0 = 0].$$

If

$$\chi_p \equiv \underbrace{1 + 1 + \dots + 1}_{p \text{ times}} = 0,$$

for p prime, then $ACF \cup \{\chi_p\} =: ACF_p$, which can be shown to be complete and have quantifier elimination. By adding $\{\neg \chi_n \mid n \in \omega\}$ to ACF, get ACF_0 (also complete with quantifier elimination).

Now, atomic formulas with parameters are polynomial equations. An atomic formula with one variable (and parameters in A) is equivalent to p(x) = 0, where p(x) is a polynomial in the subfield generated by A. So such atomic formulas define finite sets, and quantifier free formulas define finite or cofinite sets, and so by quantifier elimination, ACF_p (ACF_0) is strongly minimal. If $a \in \mathcal{M} \models ACF_p$, $A \subseteq \mathcal{M}$, then $a \in acl(A)$ if a is algebraic over the field generated by A.

Notation. We write acl(a, B) for $acl(\{a\} \cup B)$ and $acl(B \setminus a)$ for $acl(B \setminus \{a\})$.

Theorem 8.5. Let $B \subseteq \mathcal{U}$, and $a, b \notin \operatorname{acl}(B)$. $(a, b \in \mathcal{U} \setminus \operatorname{acl}(B))$. Then

$$b \in \operatorname{acl}(a, B) \iff a \in \operatorname{acl}(b, B).$$

Proof. Let $a,b \in \operatorname{acl}(B)$. Assume $b \notin \operatorname{acl}(a,B)$ and $a \in \operatorname{acl}(b,B)$. Let $\varphi(x,y)$ be an L(B)-formula such that for some n,

$$\varphi(a,b) \wedge \exists^{\leq n} x \varphi(x,b).$$

Since $b \notin \operatorname{acl}(a, B)$

$$\psi(a,y) \coloneqq \varphi(a,y) \wedge \exists^{\leq n} x \varphi(x,y)$$

is such that $|\psi(a,\mathcal{U})| \geq \omega$. By question 7, example sheet 2, $|\psi(a,U)| = |\mathcal{U}|$. By strong minimality, $|\neg \psi(a,U)| < \omega$. By cardinality considerations, if $\mathcal{M} \supseteq B$, then \mathcal{M} contains c such that $\psi(a,c)$. But then $a \in \operatorname{acl}(c,B)$, so $a \in \mathcal{M}$. Therefore a is in all models that contain B, so $a \in \operatorname{acl}(B)$ by Theorem 7.12, a contradiction.

Definition 8.6 (Basis). Let $B \subseteq C \subseteq \mathcal{U}$. Then B is a basis of C if

- (i) B is independent,
- (ii) $C \subseteq \operatorname{acl}(B)$ (or equivalently, $\operatorname{acl}(B) = \operatorname{acl}(C)$).

Lemma 8.7. If B is independent and $a \notin \operatorname{acl}(B)$, then $\{a\} \cup B$ is independent.

Proof. Let $a \notin \operatorname{acl}(B)$, and suppose (for contradiction) that $\{a\} \cup B$ is not independent. Then there is $b \in B$ such that $b \in \operatorname{acl}(a, B \setminus b)$. But $b \notin \operatorname{acl}(B \setminus b)$. Since $a \notin \operatorname{acl}(B \setminus b)$, by Theorem 8.5 we have

$$a \in \operatorname{acl}(b, B \setminus b) = \operatorname{acl}(B),$$

a contradiction.

Corollary 8.8. If $B \subseteq C$, the following are equivalent:

- (i) B is a basis of C
- (ii) if $B \subseteq B' \subset C$ and B' is independent, then B = B'.

Proof. By Lemma 8.7.

Theorem 8.9. Let $C \subseteq \mathcal{U}$, then

- (i) every independent subset $B \subseteq C$ can be extended to a basis.
- (ii) if A, B are bases of C, then |A| = |B|.

Proof.

(i) If $\langle B_i : i < \lambda \rangle$ is a chain of independent sets containing B, then $\bigcup_{i < \lambda} B_i$ is independent (by Proposition 7.13(i)). By Zorn's lemma, there is a maximal independent subset of C that contains B. By Corollary 8.8, that maximal subset is a basis of C.

Lecture 16

(ii) Let $|B| \geq \omega$, assume (for contradiction) that |A| < |B|. Then $a \in A$ is also in $\operatorname{acl}(B)$. Let $D_a \subseteq B$ be finite such that $a \in \operatorname{acl}(D_a)$. Let $D = \bigcup_{a \in A} D_a$. Then $A \subseteq \operatorname{acl}(D)$ and $C \subseteq \operatorname{acl}(D)$, but |D| < |B| contradicting the independence of B. If A and B are finite, show that $|A| \leq |B|$ (and symmetrically) by using: if there is $a \in A \setminus B$, then there is $b \in B \setminus A$ such that $\{b\} \cup A \setminus \{a\}$ is independent. This holds because if $a \in A \setminus B$, then since $a \in \operatorname{acl}(B)$, we have that $B \nsubseteq \operatorname{acl}(A \setminus \{a\})$ (otherwise A is not independent). So let $b \in B \setminus \operatorname{acl}(A \setminus a)$. Then $\{b\} \cup (A \setminus a)$ is independent by Lemma 8.7.

Use finite induction argument to get $|A| \leq |B|$.

Definition 8.10 (Dimension). Let $C \subseteq \mathcal{U}$ be algebraically closed. Then the **dimension** of C is $\dim(C) = |A|$ where A is any basis of C.

Proposition 8.11. Let $f: \mathcal{U} \to \mathcal{U}$ be (partial) elementary. Let $b \notin \operatorname{acl}(\operatorname{dom}(f))$ and $c \notin \operatorname{acl}(\operatorname{img}(f))$. Then $f \cup \{\langle b, c \rangle\}$ is elementary.

Proof. Let \bar{a} enumerate dom(f), let $\varphi(x,\bar{a})$ be a formula with parameters in \bar{a} . Claim: $\varphi(b,\bar{a}) \leftrightarrow \varphi(c,f(\bar{a}))$. Cases:

- 1. $|\varphi(\mathcal{U}, \bar{a})| < \omega$. Then $|\varphi(\mathcal{U}, f(\bar{a}))| < \omega$. Then $b \notin \varphi(\mathcal{U}, \bar{a})$ (because $b \notin \operatorname{acl}(\bar{a})$) and $c \notin \varphi(\mathcal{U}, f(\bar{a}))$. Then $\neg \varphi(b, \bar{a}) \wedge \neg \varphi(c, f(\bar{a}))$.
- 2. $|\varphi(U,\bar{a})| \geq \omega$. Then $|\neg \varphi(U,\bar{a})| < \omega$, and so

$$\varphi(b,\bar{a}) \wedge \varphi(c,f(\bar{a})).$$

Corollary 8.12. Every bijection between independent subsets of \mathcal{U} is elementary.

Proof. Pick $A, B \subseteq C$ independent and let $f: A \to B$ be any bijection. Let \bar{a} enumerate A, write $f(a_i) = b_i$. Then $a_0 \notin \operatorname{acl}(\varnothing)$ and $b_0 \notin \operatorname{acl}(\varnothing)$ (otherwise A, B not independent). By Proposition 8.11, $\{\langle a_0, b_0 \rangle\}$ is an elementary map.

At stage i+1, $a_{i+1} \notin \operatorname{acl}(a_0, \ldots, a_i)$ so use the same argument.

Remark 8.13. If $\mathcal{M} \subseteq \mathcal{U}$, then by Proposition 7.13, \mathcal{M} is algebraically closed.

Theorem 8.14. Suppose that $\mathcal{M}, \mathcal{N} \subseteq \mathcal{U}$ are such that $\dim(M) = \dim(N)$, then $\mathcal{M} \simeq \mathcal{N}$.

Proof. Let A, B be bases of \mathcal{M}, \mathcal{N} respectively. Then a bijection $f: A \to B$ is elementary (by Corollary 8.12). Then there is $\alpha \in \operatorname{Aut}(\mathcal{U})$ such that $f \subseteq \alpha$. Then by Proposition 7.14,

$$\alpha(\mathcal{M}) = \alpha(\operatorname{acl}(\mathcal{M})) = \operatorname{acl}(\alpha(A)) = \operatorname{acl}(B) = \mathcal{N}.$$

Corollary 8.15. Let T be strongly minimal, let $\lambda > |L|$. Then T is λ -categorical.

Proof. If $A \subseteq \mathcal{U}$, then $|\operatorname{acl}(A)| \leq |L(A)| + \omega$ (there are at most $|L(A)| + \omega$ formulas, each element m in $\operatorname{acl}(A)$ is one of finitely many solutions of one of those formulas). If $|\mathcal{M}| = \lambda$, then a basis of \mathcal{M} must have cardinality λ .

In T_{VSK} , if K is infinite countable, the vector space can have finite dimension (ω -categoricity fails). If K is finite, the vector space must have dimension $\geq \omega$.

9 Bonus Lecture: Existence of saturated models

If \mathcal{M} is saturated, then

- \mathcal{M} is homogeneous.
- \mathcal{M} is universal.

If \mathcal{M} is λ -saturated, then:

• \mathcal{M} is weakly λ -homogeneous, i.e. for all $f: \mathcal{M} \to \mathcal{M}$ (partial) elementary such that $|f| < \lambda$, for every $b \in \mathcal{M}$, then $\exists \hat{f} \supseteq f$ elementary and such that $b \in \text{dom } f$.

Can prove: λ -homogeneous is equivalent to homogeneity when $|\mathcal{M}| = \lambda$.

Definition (Cofinality). If α is a limit ordinal $\geq \omega$, $\operatorname{cof}(\alpha)$ (**cofinality** of α) is the least λ such that there is $f: \lambda \to \alpha$ such that $\operatorname{img}(f)$ is unbounded in α .

Example.

$$cof(\omega) = \aleph_0 \qquad cof(\omega_\omega) = \aleph_0.$$

Definition (Regular). A cardinal κ is **regular** if $cof(\kappa) = \kappa$.

Example. \aleph_0 is regular. Also, every successor cardinal is regular.

Are there any limit cardinals other than \aleph_0 that are regular?

Definition $(S_1^{\mathcal{M}})$. If $\mathcal{M} \models T$, $A \subseteq \mathcal{M}$, then define

 $S_1^{\mathcal{M}}(A) := \{ p(x) \mid p(x) \text{ is a complete type in a single variable with parameters in } A \}$

Lemma. If \mathcal{M} is such that $|\mathcal{M}| \geq |L| + \omega$, let $\kappa > \aleph_0$. Then there is $\mathcal{M}' \succcurlyeq \mathcal{M}$ such that for all $A \subseteq \mathcal{M}$ with $|A| < \kappa$, if $p(x) \in S_1^{\mathcal{M}}(A)$, then p(x) is realized in \mathcal{M}' , $|\mathcal{M}'| \leq |\mathcal{M}|^{\kappa}$.

Proof. First, note

$$|\{A \subseteq \mathcal{M} \mid |A| \le \kappa\}| \le |\mathcal{M}|^{\kappa}$$
$$|S_1^{\mathcal{M}}(A)| \le 2^{\kappa}.$$

Enumerate $S_1^{\mathcal{M}}(A)$ as $\langle p_{\alpha} : \alpha < |\mathcal{M}|^{\kappa} \rangle$. Build $\langle \mathcal{M}_{\alpha} : \alpha < |\mathcal{M}|^{\kappa} \rangle$ as follows:

- $\mathcal{M}_0 = \mathcal{M}$
- $\mathcal{M}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{M}_{\beta}$ when α is a limit.
- $\mathcal{M}_{\alpha} \preceq \mathcal{M}_{\alpha+1}$ such that $\mathcal{M}_{\alpha+1}$ realizes $p_{\alpha}(x)$ and $|\mathcal{M}_{\alpha+1}| = |\mathcal{M}_{\alpha}|$. Then $\bigcup_{\alpha < |\mathcal{M}|^{\kappa}} \mathcal{M}_{\alpha}$ realizes all types in $S_1^{\mathcal{M}}(A)$ and

$$\left| \bigcup_{\alpha < |\mathcal{M}|^{\kappa}} \mathcal{M}_{\alpha} \right| \le |\mathcal{M}|^{\kappa}.$$

Theorem. Let $\kappa > \aleph_0$, let $\mathcal{M} \models T$. Then there is a κ^+ -saturated $\mathcal{N} \succcurlyeq \mathcal{M}$ such that $|\mathcal{N}| \leq |\mathcal{M}|^{\kappa}$.

Proof. Build an elementary chain $\langle \mathcal{N} : \alpha < \kappa^+ \rangle$ such that

• $\mathcal{N}_0 = \mathcal{M}$

- take unions at limit stages
- Given \mathcal{N}_{α} , find $\mathcal{N}_{\alpha+1} \succcurlyeq \mathcal{N}_{\alpha}$ such that all types in $S_1^{\mathcal{N}_{\alpha}}(A)$ with $|A| \le \kappa$ are realized.

Moreover, $|\mathcal{N}_{\alpha}| \leq |\mathcal{M}|^{\kappa}$ (follows from previous result). Let $\mathcal{N} = \bigcup_{\alpha < \kappa^{+}} \mathcal{N}_{\alpha}$. Since $\kappa^{+} \leq |\mathcal{M}|^{\kappa}$, \mathcal{N} is the union of at most $|\mathcal{M}|^{\kappa}$ sets each of size at most $|\mathcal{M}|^{\kappa}$, hence $|\mathcal{N}| \leq |\mathcal{M}|^{\kappa}$.

To see that \mathcal{N} is κ^+ saturated, pick $A \subseteq \mathcal{N}$ such that $|A| \leq \kappa$. By the regularity of κ^+ , there is α such that $A \subseteq \mathcal{N}_{\alpha}$, hence all types A with one free variable are realized in \mathcal{N} .

Recap: For arbitrarily large κ , there is a κ^+ saturated $\mathcal{N} \succeq \mathcal{M}$ with $|\mathcal{N}| \leq |\mathcal{M}|^{\kappa}$. If κ , $|\mathcal{M}|$ are such that $|\mathcal{M}| \leq 2^{\kappa}$, then $|\mathcal{M}|^{\kappa} = 2^{\kappa}$ so you get a κ^+ -saturated $\mathcal{N} \succeq \mathcal{M}$ such that $|\mathcal{N}| = 2^{\kappa}$. So GCH implies saturated models exist.

Alternatively, suppose there are arbitrarily large cardinals κ such that

$$\kappa^{<\kappa} = \bigcup \left\{ \kappa^{\alpha} \mid \alpha < \kappa \right\} = \kappa$$

(strongly inaccessible cardinals). Then the chain stabilises, giving the required structure.

Definition. Take T a complete theory in a countable language, $\kappa \geq \aleph_0$ a cardinal. Then T is κ -stable if for all $\mathcal{M} \models T$, $A \subseteq \mathcal{M}$, $|A| \leq \kappa$, $\forall n \leq \omega$, we have

$$|S_n^{\mathcal{M}}(A)| \le \kappa$$

where $S_n^{\mathcal{M}}(A)$ is the set of complete types with n variables and parameters in A.

Theorem. Let κ be a regular cardinal, and T κ -stable. Then there is a $\mathcal{M} \models T$, $|\mathcal{M}| = \kappa$, \mathcal{M} saturated.

Proof. We build an elementary chain $\langle \mathcal{M}_{\alpha} : \alpha < \kappa \rangle$ where $|\mathcal{M}_{\alpha}| < \kappa$ as follows:

- $\mathcal{M}_0 \models T$
- unions at limit stages
- given \mathcal{M}_{α} , $|\mathcal{M}_{\alpha}| = \kappa \Rightarrow S_1^{\mathcal{M}_{\alpha}}(\mathcal{M}_{\alpha}) = \kappa$, there is $\mathcal{M}_{\alpha+1} \succcurlyeq \mathcal{M}_{\alpha}$ that realizes all types in $S_1^{\mathcal{M}_{\alpha}}(\mathcal{M}_{\alpha})$ and $|\mathcal{M}_{\alpha+1}| = |\mathcal{M}_{\alpha}|$. Let $\bigcup_{\alpha < \kappa} \mathcal{M}_{\alpha}$, then $|\bigcup \mathcal{M}_{\alpha}| = \kappa$ and $\bigcup \mathcal{M}_{\alpha}$ is κ -saturated by construction.

Now, \mathcal{M} κ -saturated, κ -strongly homogeneous, $|\mathcal{M}| \gg \kappa$.

Index

⊨ , 5	invariant, 23 isomorphism, 3
arity, 2 atomic formulas, 5	lammua ma 12
automorphism, 20	language, 2 linear order, 10
advolio1pillolli, 20	dense, 10
basis, 28	333333, 20
bound, 5	maximal, 14
cardinal, 8	minimal, 27
ω -categorical, 11	model, 7
chain, 8	orbit, 21
*cofinality, 31	51510, 2 1
cofinite, 27	parameters, 7
compactness, 16	partial embedding, 10, 13, 23
complete, 11 consistent, 11, 16	finite, 10, 13
Consistent, 11, 10	quantifier elimination, 24
definable, 21	quantinei eminiation, 24
dimension, 29	Rado graph, 13
domain, 2	random graph, 12
Downward Löwenheim-Skolem, 9	realizes, 16
elementarily equivalent, 7	*regular, 31
elementary, 7	11 10
elementary embedding, 7	satisfiable, 16 saturated, 18
elementary map, 7, 11	sentence, 5
elementary substructure, 7	small, 22
embedding, 2	*stable, 32
Extension lemma, 13	strongly minimal, 27
extension lemma, 10	structure, 2
finitely satisfiable, 14, 16	substructure, 7
formula, 5	
atomic, 5	term, 4
free, 5	theory, 7
1 10	type, 16 satisfiable, 16
graph, 12	Saushabic, 10
homogeneous, 20	ultrahomogeneous, 13
	universal, 20
independent, 27	
interpretations, 2	witness property, 14