Example: Dose-Response Modeling

In the data set of interest, beetles were exposed to various levels of gaseous carbon disulphide (recorded on the \log_{10} scale) for 5 hours. The observed data are given by:

j	X_{j}	n_{j}	Y_{j}
1	1.6907	59	6
2	1.7242	60	13
3	1.7552	62	18
4	1.7842	56	28
5	1.8113	63	52
6	1.8369	59	53
7	1.8610	62	61
8	1.8839	60	60

We model the dose response relationship between mortality and CS_2 exposure.

- (a) Calculate the empirical death probability for each exposure level. Also, calculate the empirical logit, probit and complementary log-log.
 - Death Prob.: $\widehat{\pi}_j = Y_j/n_j$
 - Logit: $logit_j = log\{\widehat{\pi}_j/(1-\widehat{\pi}_j)\}$
 - Probit: $Probit_j = \Phi^{-1}(\widehat{\pi}_j)$
 - CLL: $CLL_j = \log\{-\log(1 \widehat{\pi}_j)\}$
- (b) Fit linear regression models between each empirical link and dose. Which link function appears to be most appropriate?
 - See SAS code
 - CLL link function has the largest R^2 value, so based on R^2 we can select CLL. However other link functions also have very high R^2 values (> 0.95), so you can select link functions based on

the context of study and the interpretation of the results.

- (c) Fit a model assuming a probit link.
 - Model: $\Phi^{-1}(\pi_j) = \beta_0 + \beta_1 X_j$

- (d) Re-fit the model with the probit link, but this time define the end-point as $I(Y_{ij} = 0)$. What do you notice about $\widehat{\beta}_1$?
 - Model:

$$\Phi^{-1}(\pi_j) = \beta_0 + \beta_1 X_j$$
, where $\pi_j = Pr(Y_{ij} = 1 | X_j)$

• New Model:

$$\Phi^{-1}(\pi_j^*) = \beta_0^* + \beta_1^* X_j$$
, where $\pi_j^* = Pr(Y_{ij} = 0 | X_j)$
Since $\Phi^{-1}(\pi_i^*) = -\Phi^{-1}(\pi_i)$,

$$\beta_1^* = -\beta_1$$

- (e) Estimate the LD50 and compare the estimate to a model-free estimator. Compute a 95% confidence interval using IML.
 - LD50: x value satisfying $\pi(x) = 0.5$
 - Probit model: $\Phi^{-1}\{\pi(x)\} = \beta_0 + \beta_1 x$, where $\beta_0 = -\mu/\sigma$ and $\beta_1 = 1/\sigma$.

$$\widehat{\mu} = -\widehat{\beta}_0/\widehat{\beta}_1 = 1.77$$
 and $\widehat{\sigma} = 1/19.72 = 0.0507$. Therefore,

$$\widehat{LD50} = \widehat{\mu} = 1.77$$

Model free estimator: 1.78

• By delta method

$$Var\{g(\widehat{\beta})\} \approx \frac{\partial g}{\partial \beta}' Var(\widehat{\beta}) \frac{\partial g}{\partial \beta},$$

where
$$g(\beta) = -\beta_0/\beta_1 = LD50$$
, and

$$\frac{\partial g}{\partial \beta} = (-1/\beta_1, \beta_0/\beta_1^2)'$$

• Using these equations, we can show (use IML)

$$\widehat{Var}\{\widehat{LD50}\} = 0.0000145$$

• 95% CI

$$\widehat{LD50} \pm 1.96 \sqrt{\widehat{Var}\{\widehat{LD50}\}} = (1.763, 1.778)$$

- (f) Fit a model assuming a complementary log-log link.
 - Model: $\log\{-\log(1-\pi_j)\} = \beta_0 + \beta_1 X_j$
- (g) Estimate the LD50.

•
$$\log\{-\log(0.5)\} = \beta_0 + \beta_1 LD50.$$

$$\widehat{LD50} = \frac{\log\{-\log(0.5)\} - \widehat{\beta}_0}{\widehat{\beta}_1}$$

$$= \frac{-0.37 + 39.57}{22.04} = 1.78$$

(h) Re-fit the model with the complementary log-log link, but this time define the end-point as $I(Y_{ij} = 0)$. What do you notice about $\widehat{\beta}_1$?

• Model:

$$\log\{-\log(1-\pi_j)\} = \beta_0 + \beta_1 X_j$$
, where $\pi_j = Pr(Y_{ij} = 1|X_j)$

• New Model:

$$\log\{-\log(1-\pi_{j}^{*})\} = \beta_{0}^{*} + \beta_{1}^{*}X_{j}, \text{ where}$$

$$\pi_{j}^{*} = Pr(Y_{ij} = 0|X_{j}) = 1 - \pi_{j}$$
Since
$$\log\{-\log(1-\pi_{j})\} \neq -\log\{-\log(\pi_{j})\},$$

$$\beta_{1}^{*} \neq -\beta_{1}$$

(i) Re-fit the all three models using PROC GENMOD and compare them using numeric criteria. Which link function appears to be most appropriate?

	Deviance	Pearson χ^2	Likelihood
Logit	11.23	10.03	-186
Probit	10.12	9.51	-186
CLL	3.45	3.29	-182

• CLL has the smallest deviance (and the smallest Pearson χ^2 and the largest likelihood). So we can conclude that CLL is the most appropriate link function.