PROJECT3 REPORT – CLASSIFICATION USING NEURAL NETWORKS AND DEEP LEARNING

Student Name: Mehran Tajbakhsh

Student ID: 1223980147

Submission Date: 19 Sep, 2023

Class Name and Term: CSE575 Fall 2023

PROJECT RESULTS

Epochs	Train		Test	
	Accuracy	Loss	Accuracy	Loss
0	0.297	1.384	0.3	1.384
1	0.406	1.358	0.415	1.36
2	0.531	1.087	0.55	1.084
3	0.637	0.871	0.647	0.858
4	0.706	0.735	0.705	0.736
5	0.739	0.668	0.725	0.688
6	0.761	0.617	0.755	0.653
7	0.778	0.58	0.762	0.636
8	0.791	0.541	0.765	0.62
9	0.807	0.506	0.762	0.605

Training

Accuracy: 0.807Loss: 0.506

Testing

Accuracy: 0.762Loss: 0.605

EVALUATE FUNCTION

```
def evaluate(net, images, labels):
  acc = 0
  loss = 0
  batch\_size = 1
  #pass
  for batch_index in range(0, images.shape[0], batch_size):
     x = images[batch\_index]
     y = labels[batch_index]
     # forward pass calculation
     for layer in range(net.lay_num):
                                                            # Traverse through all layers
       output_layer = net.layers[1].forward(x)
                                                             # Compute output layer
       x = output\_layer
     loss += cross_entropy(output_layer, y)
                                                             # Calculate loss from output layer
     if np.argmax(output_layer) == np.argmax(y):
                                                             # Calculate accuracy from output layer
       acc += 1
acc_output = acc / images.shape[0]
loss_output = loss / images.shape[0]
return (acc_output), (loss_output)
```

PLOTS

