7. Galois Extensions

Galois Extensions

Automorphisms

Let K/F be an extension fields and let $\operatorname{Aut}(K/F)$ be the group of field homomorphisms $\sigma: K \to K$ which are the identity when restricted to F.

Some basics:

- If $\alpha \in K$ is algebraic over F with minimal polynomial p(x) over F, then $\sigma(\alpha)$ is also a root of p(x).
- If $H \subset \operatorname{Aut}(K/F)$ is a subgroup, then the set $K^H = \{x \in K : \sigma(x) = x \forall \sigma \in H\}$ is a subfield of K.
- If $H_1 \subset H_2$ are subgroups of $\operatorname{Aut}(K/F)$, then $K^{H_2} \subset K^{H_1}$.

Galois Extensions

Proposition: Let E/F be the splitting field over F of some polynomial $f(x) \in F[x]$. Then

$$|\operatorname{Aut}(E/F)| \le [E:F].$$

If f(x) is separable, then this is an equality.

Definition: E/F is called a Galois extension if $|\operatorname{Aut}(E/F)| = [E:F]$. In this case the automorphism group is called the *Galois group* of the extension.

Proposition 5 says that separable splitting fields are Galois extensions.

The Galois correspondence

Let E/F be a Galois extension with Galois group G. Then there is a bijective (inclusion reversing) correspondence between:

- subfields L of E containing F
- subgroups of G

The correspondence is given by $H \to E^H$ for $H \subset G$ in one direction, and $L \to \operatorname{Aut}(E/L) \subset G$ in the other direction.

Further:

- If $L=E^H$ then E/L is Galois with group H. If $L=E^H$ then [E:L]=|H| so E is Galois over L.
- If L is a subfield of E containing F, then |Aut(E/L)| = [E:L] so E is Galois over L.
- The fixed field $L = E^H$ is Galois over F if and only if H is a normal subgroup of G, and in that case Aut(L/F) = G/H.

Some examples

- Quadratic extensions
- $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
- The splitting field of $x^3 2$ over \mathbb{Q} .
- The splitting field of $x^4 2$ over \mathbb{Q} .
- The field $\mathbb{Q}(\zeta_p)$ where ζ_p is a p^{th} root of unity.
- The fields of eight and ninth roots of unity.
- Finite fields.

Overview of the proof

View as slides