5.1:Graph Theory

Graph Representation

Graph Representations

- In graph theory, a graph representation is a technique to store graph into the memory of computer.
- To represent a graph, we just need the set of vertices, and for each vertex the neighbors of the vertex (vertices which is directly connected to it by an edge).
- There are different ways to represent a graph:
 - Adjacency Matrix
 - Incidence Matrix
 - Adjacency List

Adjacency Matrix

- Adjacency matrix is a sequential representation.
- It is used to represent which nodes are adjacent to each other. i.e. is there any edge connecting nodes to a graph.
- In this representation, we have to construct a nXn matrix A.
- The adjacency matrix of G with respect to given ordered list of vertices is a n*n matrix denoted by $A(G)=(a_{ii})_{n*n}$ such that
 - a_{ij} = 0 if there is no edge between the vertices v_i
 1 if there is edge between the vertices v_i
 K if there are K (K>=2) edges between the vertices v_i

• Consider the following undirected graph representation:

Example: For Directed graph

- **Pros:** Representation is easier to implement and follow.
- **Cons:** It takes a lot of space and time to visit all the neighbors of a vertex, we have to traverse all the vertices in the graph, which takes quite some time.

Incidence Matrix

- In **Incidence matrix representation**, graph can be represented using a matrix of size: Total number of vertices by total number of edges.
- It means if a graph has 4 vertices and 6 edges, then it can be represented using a matrix of 4X6 class. In this matrix, columns represent edges and rows represent vertices.
- Let G be a graph with vertices v_1, v_2, \dots, v_m and edes e_1, e_2, \dots, e_n . The incidence matrix I(G) of graph G is a m*n matrix with I(G)= $(m_{ij})_{m*n}$ where

```
m_{ij} = 1 if ej is incident with vi
0 if ej is not incident with vi
2 if vi is has loop
```


Incidence Matrix: For directed graph

• This matrix is filled with either **0 or 1** or -1. Where,

0 is used to represent row edge which is not connected to column vertex.

1 is used to represent row edge which is connected as outgoing edge to column vertex.

-1 is used to represent row edge which is connected as incoming edge to column vertex.

Questions

Draw an undirected graph from the adjacency matrix.

_				_
0	1	3	0	4
1	2	1	3	0
3	1	1	0 0 2	4 0 1 2 3
0	3	0	0	2
_4	0	1	2	4 0 1 2 3

Write an incidence matrix for the graph shown.

Adjacency List

- Adjacency list is a linked representation.
- In this representation, for each vertex in the graph, we maintain the list of its neighbors.
- It means, every vertex of the graph contains list of its adjacent vertices.
- We have an array of vertices which is indexed by the vertex number and for each vertex v, the corresponding array element points to a singly linked list of neighbors of v.

• We can also implement this representation using array as follows:

• Pros:

- Adjacency list saves lot of space.
- We can easily insert or delete as we use linked list.
- Such kind of representation is easy to follow and clearly shows the adjacent nodes of node.

• Cons:

slower

Question: Write adjacency matrix, incidence matrix and Adjacency list

Question: Write adjacency matrix, incidence matrix and Adjacency list

