Course Code	Course Name	L-T-P-Credits	Year of Introduction
BT207	Microbiology	3-0-0-3	2016

Prerequisite: Nil

Course Objectives

- To give a fundamental understanding of microbe based bioprocess system.
- Tol equip the students in applying their knowledge of microorganisms to a variety of bioprocess situations, in all realms of human endeavor.

Syllabus

Historical aspects and the landmark discoveries of microbiology; microscopy and staining techniques. Eukaryotic and prokaryotic cell structure and function; microbial taxonomy; classification systems, Microbial nutrition and cultivation, Microbial growth and control of microorganisms. Microbial interactions and ecology; microorganisms in different environments- aquatic and soil. Application of microbiology.

Expected outcome

Upon successful completion of this course, the students will be able to

- Identify and characterize the major groups of microorganisms.
- Understand basic techniques for visualization, cultivation and identification of a variety of microorganisms.
- Distinguish among viral, prokaryotic and eukaryotic structure, organization, metabolism and environmental needs.
- Relate the role of microbial interactions with ecology and applications.

Reference Books

- 1. Prescott, Harley and Klein, *Microbiology*, McGraw Hill International Edition, 2008.
- 2. Pelczar M. J., E. C. E. Chan and N. R. Krieg, *Microbiology*, Tata McGraw Hill, 1993.
- 3. Ingraham J. L. and C. A. Ingraham, *Introduction to Micro Biology A Case History Approach*, 3/e, Thomson Publications, 2003.
- 4. Brock, *Biology of Microorganism*, Prentice Hall, International Inc, 2005.
- 5. Schlegel H. G., General Microbiology, Cambridge University Press, 1993.

Course Plan			
Module	Contents	Hours	Sem. Exam Marks
I	Historical perspectives: Discovery of microbial world; Landmark discoveries relevant to the field of microbiology; controversy over spontaneous generation-Scope and relevance of microbiology. Role of microorganisms in transformation biotransformation. Microscopic techniques: light microscopy, dark field microscopy, phase contrast microscopy, fluorescence microscopy, SEM, TEM, newer techniques: confocal microscopy, scanning probe microscopy. Staining techniques: cell staining- simple staining, gram staining and acid fast staining; staining of specific structures.	7	15%

II	Study of microbial structure	7	15%
	Eukaryotic and prokaryotic cell structure and function:	,	1370
	size, shape and arrangement, cell membranes, cell organelles,		
	cell walls, component external to cell walls. Microbial		
	chemotaxis, mechanisms of solute transport across cell		
	membranes.		
	Microbial taxonomy: Evolution and diversity of		
	microorganisms, taxonomic ranks, classification systems,		
	assessment of microbial phylogeny. Bacteria, archaea and	V . A	
	their broad classification; Eukaryotic microbes: Yeasts, molds	VI	
	and protozoa; viruses and their classification, viroids and	Y	
	prions.		
	FIRST INTERNAL EXAM	A. And	
III	Microbial nutrition and cultivation: Nutrition of	7	15%
	microorganisms; nutritional classes of microbes, Macro and		
	micronutrients, sources and physiological functions of		
	nutrients. Growth factors and their functions in metabolism.		
	Cultivation of microorganisms: Culture media- synthetic,		
	complex media, solidifying agents, types of media - selective,		
	differential and enrichment media, pure culture methods -		
	spread plate, pour plate and streak plate, special techniques		
	for cultivation of anaerobes.		
IV	Microbial Growth: Definition of growth; growth curve;	8	15%
	mathematical expression of exponential growth phase;		
	measurement of growth and growth yields; synchronous		
	growth; effect of environmental factors on growth, growth in		
	natural environments.		
	Control of microorganisms: Basic terminology-		
	sterilization, disinfection, sanitization, antisepsis. Patterns of		
	microbial death, physical methods for microbial control- heat,		
	low temperature, filtration and radiation. Use of chemical		
	agents, evaluation of effectiveness of antimicrobial agents.		
	SECOND INTERNAL EXAM		
V	Microbial interactions and ecology: Types of microbial	8	20%
	interactions - mutualism, protocooperation, commensalisms,		
	predation, parasitism, amensalism, competition, symbiosis.		
	Biogeochemical cycles: cycles of nitrogen, carbon, sulphur		
	and manganese.		
	Microorganisms in aquatic environments: microbial		
	community in marine and fresh water environments,		
	microbiological analysis of water purity-sanitary tests for		
	coliforms (presumptive test, confirmed test, competed test),		
	MPN test, defined substrate test, IMVIC test. Quality		
	standards for drinking water.		
	Soil microbiology: Soil as a habitat for microorganisms,		
	physico-chemical properties of soil, microbial community in		
	soil, role of microorganisms in organic matter decomposition.		
VI	Application of microbiology : Food microbiology- Role of	5	20%
V 1	microorganisms in food spoilage and contamination, food		
	preservation methods - physical and chemical methods, food		

borne diseases and intoxications, examples of fermented food products.	
Industrial microbiology- Microorganisms as biofertilizers and biopesticides, commercially important microorganisms for industrial fermentation.	
END CEMECODED DV ANDRA DION	

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 hours

The question paper consists of Part A, Part B and Part C.

Part A consists of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer two questions $(15\times2=30 \text{ marks})$.

Part B consists of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer two questions ($15 \times 2 = 30$ marks).

Part C consists of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer two questions ($20 \times 2 = 40$ marks).

Note: Each question can have a maximum of 4 subparts, if needed.

