Question-1:

		Question-1						
Domain(x)	y=e^x	y=e^(-x)	y=8^x	y=8^(-x)	y=0.9^x	y=0.6^x	y=0.3^x	y=0.1^x
-5	0.0067	148.4132	0	32768	1.6935	12.8601	411.5226	100000
-4	0.0183	54.5982	0.0002	4096	1.5242	7.716	123.4568	10000
-3	0.0498	20.0855	0.002	512	1.3717	4.6296	37.037	1000
-2	0.1353	7.3891	0.0156	64	1.2346	2.7778	11.1111	100
-1	0.3679	2.7183	0.125	8	1.1111	1.6667	3.3333	10
0	1	1	1	1	1	1	1	1
1	2.7183	0.3679	8	0.125	0.9	0.6	0.3	0.1
2	7.3891	0.1353	64	0.0156	0.81	0.36	0.09	0.01
3	20.0855	0.0498	512	0.002	0.729	0.216	0.027	0.001
4	54.5982	0.0183	4096	0.0002	0.6561	0.1296	0.0081	0.0001
5	148.4132	0.0067	32768	0	0.5905	0.0778	0.0024	0

Question-2:

We've given that $f(x)=10^x$ To prove,

$$\frac{f(x+h) - f(x)}{h} = 10^x \left(\frac{10^h - 1}{h} \right)$$

Here, taking LHS

$$\frac{f(x+h) - f(x)}{h}$$

$$=\frac{10^{x+h}-10^x}{h}$$
 (Since, f(x)= 10^x)

$$=\frac{10^x \cdot 10^h - 10^x}{h}$$

$$=\frac{10^{x} (10^{h} - 1)}{h}$$

Hence, LHS = RHS

Question-3:

To compare the functions $f(x) = x^5$ and $g(x) = 5^x$ and determine which grows more rapidly when x is large, we can plot their curves in Excel and observe their behavior.

Let's create a table in Excel with the x-values ranging from, for example, 0 to 10. In the adjacent column, we can calculate the corresponding y-values for each function using the formulas $f(x) = x^5$ and $g(x) = 5^x$.

After inputting the formulas and generating the values, we can select the data and create a scatter plot in Excel. The x-values will be plotted on the horizontal axis, and the corresponding y-values will be plotted on the vertical axis.

Upon examining the graph, we can observe that both curves start at the point (0, 0) since $f(0) = 0^5 = 0$ and $g(0) = 5^0 = 1$. As x increases, the function $f(x) = x^5$ grows rapidly but still follows a polynomial growth pattern. On the other hand, the function $g(x) = 5^x$ grows even more rapidly and exhibits an exponential growth pattern.

We can compare their derivatives to prove mathematically that $g(x) = 5^x$ grows more rapidly than $f(x) = x^5$ as x becomes large.

The derivative of $f(x) = x^5$ can be calculated as follows: $f'(x) = 5x^4$ The derivative of $g(x) = 5^x$ can be determined using the chain rule and logarithmic differentiation:

$$g'(x) = 5^x * ln(5)$$

When evaluating these derivatives, it becomes evident that the rate of change of f(x) is dependent on the value of x and is limited by the power of x^4 . As x approaches infinity, the derivative will tend to infinity but remain constrained by the power term.

However, the derivative of $g(x) = 5^x$ includes the function value 5^x itself, multiplied by the natural logarithm of 5. This implies that the rate of change of g(x) is directly proportional to its function value, resulting in exponential growth. As x becomes large, no limiting factor restricts the growth of g(x).

Therefore, based on the mathematical analysis, we can conclude that $g(x) = 5^x$ grows more rapidly than $f(x) = x^5$ when x is large.

Question-4:

Question-5:

Answer for a: The graph f(x) becomes steeper as b increases when the value of a > 0.

Answer for b: As, a increases, the amplitude of graph f(x) increases.

and f(x)=1/(1+ae^(bx))
-2 -1 0 1 2 3 4 5 X
X
Question-5 a Question-5 f(x)=1/(1+ae^(bx))

Question-6:

	Question-6:			g(x)= x^6 + x^4 and g^(-1)x						
x	$g(x) = x^6 + x^4$	g^(-1)x	14000000							
1	2	0.5	12000000							
5	16250	6.15385E-05	12000000						/	
8	266240	3.75601E-06	10 0000 00						_/	
10	1010000	9.90099E-07								
12	3006720	3.32588E-07	8000000							
15	11441250	8.7403E-08	6000000					/		
			4000000							
			2000000							
			0 —		5	8	10	12	15	
							x		15	
	c^6 + x^4	Question-6	i: g^(-1)x							

Question-7:

#Solution-a

We've Given that,

Q(t) =
$$Q_o(1 - e^{-\frac{t}{a}})$$

 $\frac{Q}{Q_o} = 1 - e^{-\frac{t}{a}}$

Rearranging the equation we get,

$$1 - \frac{Q}{Q_0} = e^{\frac{t}{a}}$$

Taking log on both sides, we get

In
$$(1 - \frac{Q}{Q_o}) = -\frac{t}{a}$$

 $t = -a * In (1 - \frac{Q}{Q_o}) (eqn - 1)$
Therefore, Q' (t) = -a * In $(1 - \frac{Q}{Q_o})$

#Solution-b:

Given:

a = 2

Q(t) = 0.9Q0 (90% capacity represented by 0.9 times Q0)

Substituting these values into the equation:

$$t = -2 * ln(1 - 0.9)$$

$$t = -2 * ln(0.1)$$

$$t = -2 * (-2.3)$$

t = 4.6 seconds.