

Deep Reinforcement Learning for Double Auction Processes

Batuhan Yardim
Aleksei Khudorozhkov
Ka Rin Sim
Neri Passaleva

Goals

- Simulate double auction processes
- Intelligent & non-intelligent agents
- Implement reinforcement learning for intelligent agents

Each agent wants to maximize the reward

For this they can choose different strategies

Market environment

Each round consists of time steps

Round terminates when T_{max} is reached or no more deals can be made

Each game consists of rounds

- Agents can have memory about the previous rounds
- Between the games agents can learn and adjust their strategy

Observations of agents

- After each time step an agent receives observations from the market environment.
- Core observations are:
 - The last offer of the agent
 - Current time step
 - if the agent managed to make a deal in the previous round
- Other observations might be included.

Reward Mechanism

 The agent's reward is the absolute difference between the reservation price and the agent's deal offer.

$$r_i = |p_i - a_i|$$
 reward for round i

Reward is cumulative throughout the rounds

Zero-Intelligence Agent (ZIA)

The agent randomly chooses the next offer according to the exponential distribution around the reservation price

No observations are needed in order to decide on a new offer

Linear Markov Decision Agent (LMDA)

The new demand is a linear combination of the agent's observations

Demand at current time step

Demand at previous time step

$$d_i = \alpha d_{i-1} + \beta s + n_i$$

Boolean indicator of previous round outcome

$$s = \begin{cases} 0 & if \ unsuccessful \\ 1 & if \ successful \end{cases}$$

Noise

Results: LMDA vs real people

LMDA is a first-order approximation of real people

Price Aggressive Agents (PAA)

s is used as an indicator for whether the agent should be aggressive or not

If **s** is **TRUE**:

$$d_i = \alpha d_{i-1} + n_i$$

If s is FALSE

$$d_i = (\alpha + \varepsilon)d_{i-1} + n_i$$

E is the agent's level of aggressiveness

The agent becomes aggressive after an unsuccessful round and tries to make a deal even with low reward

PAA with zero aggressiveness is equal to LMDA

- average demand of LMDA agents
- demand of one PAA agent

- average demand of LMDA agents
- demand of one PAA agent

- average demand of LMDA agents
- demand of one PAA agent

- average demand of LMDA agents
- demand of one PAA agent

- average demand of LMDA agents
- demand of one PAA agent

- average demand of LMDA agents
- demand of one PAA agent

Deep RL Agents

The new offer decision mechanism is a neural network with weights θ_i

$$d_i = \pi_{\theta_i}(o_i) + \mathcal{N}(0, \sigma_i)$$

arametrized Agent's Policy

Gaussian noise

Parametrized Agent's Policy

Reinforcement learning through Deep Deterministic Policy Gradient (DDPG) framework

Deep RL Agents

- 2 different exploration policies:
 - Gaussian
 - Ornstein-Uhlenbeck (OU)
- 1 intelligent agent + a pool of non-intelligent agents (e.g. ZIA, LMDA)
- No structural assumptions about game

Effect of Exploration Policy

Deep RL Agent vs ZIA

Gaussian-exploration

OU-exploration

Deep RL Agent

Gaussian and OU exploration policy

Earnings Performance

Agent Pool	Pool Earnings	RLA Earnings	Learning Agent
ZIA	5.23	9.27	RLA+Gaussian
ZIA	7.01	8.39	RLA+OU
ZIA	5.27	12.32	RLA+OU+anneal
LMDA	7.19	10.46	RLA+Gaussian
LMDA	7.42	10.72	RLA+OU
PAA	3.71	6.91	RLA+OU

Conclusion & Outlook

- RL agent outperformed the pool (ZIA, LMDA, PAA)
- Humans (at least their first order approximation) are much more conservative than RL

Future work:

- Include more information into observation space (currently using black box setting)
- Training adversarial RL agents