Predição de Estrelas Pulsares: como Data Science nos ajuda a entender o Universo

07 de Dezembro de 2018

Embasamento Teórico

Estrela Pulsar

- → Feixe estreito de radiação emitido dos polos magnéticos;
- → Direções variam consoante sua rotação;
- → Produz um sinal detectável por radiotelescópios aqui na terra;
- → Cada pulsar possui um único fingerprint (pulse profile).

Estrela Pulsar

Possui um considerável interesse científico:

- Características das galáxias
- Sondas de espaço-tempo
- Meio interestelar
- Estados da matéria

Objetivo do projeto: Desenvolver um algoritmo eficiente para predição de estrelas pulsares

Dados

Estatisticamente obtidos do High Time Resolution Universe Survey

Cálculos estatísticos em cima de um conjunto de sinais captados.

- Média
- Desvio Padrão
- Curtose
- Assimetria

Atributos do sinal

- Perfil integrado do pulso
- Curva DM-SNR

Exemplo

102.507812

103.015625

136,750000

88.726562

2

3

4

58.882430

39.341649

57.178449

40.672225

0.465318

0.323328

-0.068415

0.600866

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve	Skewness of the DM- SNR curve	target_class
0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532	74.242225	0

1.677258

3.121237

3.642977

1.178930

14.860146

21.744669

20.959280

11.468720

-0.515088

1.051164

-0.636238

1.123492

127.393580

63.171909

53.593661

252.567306

0

0

0

0

10.576487

7.735822

6.896499

14.269573

Problema: Dados desbalanceados

Modelo

Rede Neural

Resultados

	precision	recall	f1-score	support
Non-pulsar Star	0.99	0.99	0.99	4077
Pulsar Star	0.92	0.89	0.91	398
micro avg	0.98	0.98	0.98	4475
macro avg	0.96	0.94	0.95	4475
weighted avg	0.98	0.98	0.98	4475

Análise de Recall

Comparando com outros algoritmos

Modelo	Ocorrência de Falsos Negativos	Recall	Acurácia (%)
Rede Neural	45	0.89	98.34
Gradient Boosting	78	0.85	97.50
Random Forest	82	0.84	97.82
Gaussian Naive Bayes	86	0.83	93.79
Decision Tree	92	0.82	96.46
Ada Boost	93	0.82	97.63

Dúvidas?