



# Resumo da Apresentação

□ Lógica Proposicional

✓ Outras Regras de Inferência;

✓ Regras de Substituição;

✓ Provas por Refutação.

# Outras Regras de Inferência

| Regra                   | Sigla | Fórmulas Atômicas                                                                                          |  |  |
|-------------------------|-------|------------------------------------------------------------------------------------------------------------|--|--|
| 1) Modus Ponnens        | MP    | $\{\alpha \to \beta, \alpha\} \vdash \beta$                                                                |  |  |
| 2) Modus Tollens        | MT    | $\{\alpha \to \beta , \sim \beta\} \vdash \sim \alpha$                                                     |  |  |
| 3) Silogismo Hipotético | SH    | $\{\alpha \to \beta, \beta \to \gamma\} \vdash \alpha \to \gamma$                                          |  |  |
| 4) Silogismo Disjuntivo | SD    | {α∨β, ~α}⊢ β                                                                                               |  |  |
| 5) Simplificação        | SIMP  | $\{\alpha \wedge \beta\} \vdash \alpha$                                                                    |  |  |
| 6) Adição               | AD    | $\{\alpha\} \vdash \alpha \lor \beta$                                                                      |  |  |
| 7) Conjunção            | CONJ  | $\{\alpha, \beta\} \vdash \alpha \land \beta$                                                              |  |  |
| 8) Absorção             | ABS   | $\{\alpha \to \beta\} \vdash \alpha \to (\alpha \land \beta)$                                              |  |  |
| 9) Dilema Construtivo   | DC    | $\{\alpha \to \beta, \gamma \to \theta, \alpha \lor \gamma\} \vdash \beta \lor \theta$                     |  |  |
| 10) Dilema Destrutivo   | DD    | $\{\alpha \to \beta, \gamma \to \theta, \sim \beta \lor \sim \theta\} \vdash \sim \alpha \lor \sim \gamma$ |  |  |



#### 4. Silogismo Disjuntivo (SD)

Validação da regra SD utilizando a Tabela Verdade

| α | β | α∨β | ~a | (α ∨ β) ∧ ~α β |   | $((\alpha \lor \beta) \land \neg \alpha) \to \beta$ |
|---|---|-----|----|----------------|---|-----------------------------------------------------|
| F | F | F   | V  | F              | F | V                                                   |
| F | V | V   | V  | V              | V | V                                                   |
| V | F | V   | F  | F              | F | V                                                   |
| V | V | V   | F  | F              | V | V                                                   |

Se uma disjunção é verdadeira e uma das proposições componentes se revela falsa, então a outra proposição é necessariamente verdadeira, conforme mostra a Tabela Verdade acima.



### 5. Simplificação (SIMP)

Validação da regra SIMP utilizando a Tabela Verdade

| α | β | α∧β | α | $(\alpha \wedge \beta) \rightarrow \alpha$ |
|---|---|-----|---|--------------------------------------------|
| F | F | F   | F | V                                          |
| F | V | F   | F | V                                          |
| V | F | F   | V | V                                          |
| V | V | V   | V | V                                          |

Em uma conjunção verdadeira, pode-se concluir que cada um dos seus componentes é verdadeiro de forma independente conforme mostra a Tabela Verdade acima.



#### 6. Adição (AD)

Validação da regra AD utilizando a Tabela Verdade

| α | β | α∨β | $\alpha \rightarrow \alpha \vee \beta$ |
|---|---|-----|----------------------------------------|
| F | F | F   | V                                      |
| F | V | V   | V                                      |
| V | F | V   | V                                      |
| V | V | V   | V                                      |

Dada uma proposição verdadeira, a partir dele pode-se deduzir uma disjunção verdadeira com qualquer outro enunciado que escolhermos, como mostra a Tabela Verdade acima.



#### 7. Conjunção (CONJ)

Validação da regra CONJ utilizando a Tabela Verdade

| α | β | α ^ β | α∧β | $(\alpha \wedge \beta) \rightarrow (\alpha \wedge \beta)$ |
|---|---|-------|-----|-----------------------------------------------------------|
| F | F | F     | F   | V                                                         |
| F | ٧ | F     | F   | V                                                         |
| V | F | F     | F   | V                                                         |
| V | V | V     | V   | V                                                         |

Se dois enunciados são verdadeiros independentemente, isso é condição suficiente para que juntos formem uma conjunção verdadeira.



### 8. Absorção (ABS)

Validação da regra ABS utilizando a Tabela Verdade

| α | β | $\alpha \rightarrow \beta$ | α | α Λ β | $\alpha \rightarrow (\alpha \wedge \beta)$ | $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow (\alpha \land \beta))$ |
|---|---|----------------------------|---|-------|--------------------------------------------|------------------------------------------------------------------------------------|
| F | F | V                          | F | F     | V                                          | V                                                                                  |
| F | V | V                          | F | F     | V                                          | V                                                                                  |
| V | F | F                          | V | F     | F                                          | V                                                                                  |
| V | V | V                          | V | V     | V                                          | V                                                                                  |

Dada uma condicional, pode-se deduzir dela uma condicional que tem como antecedente o mesmo antecedente da primeira e como consequente uma conjunção das duas proposições que figuravam na primeira condicional. Uma reflexão sobre a Tabela Verdade das condicionais é capaz de mostrar como esta inferência é válida.



#### 9. Dilema Construtivo (DC)

$$\{\alpha \to \beta, \gamma \to \theta, \alpha \lor \gamma\} \vdash \beta \lor \theta$$

Fica como exercício provar a regra de inferência DC, pois serão utilizadas 16 linhas de Tabela Verdade, já que temos 4 proposições;

Esta regra de inferência se baseia na regra Modus Ponens (MP). Seja a primeira premissa  $\alpha \to \beta$ , se afirmamos  $\alpha$ , podemos concluir pela regra MP  $\beta$ . Fazendo o mesmo procedimento com a segunda premissa, concluímos pela regra MP  $\theta$ . Então, o dilema consiste em que, ao afirmarmos  $\alpha$  ou  $\gamma$ , somos obrigados a concluir  $\beta$  ou  $\theta$ .



#### 10. Dilema Destrutivo (DD)

$$\{\alpha \to \beta, \gamma \to \theta, \sim \beta \lor \sim \theta\} \vdash \sim \alpha \lor \sim \gamma$$

Fica como exercício provar a regra de inferência DD, pois serão utilizadas 16 linhas de Tabela Verdade, já que temos 4 proposições;

É exatamente o oposto do Dilema Construtivo e se baseia na regra Modus Tollens.



# Regras de Substituição

Dupla Negação ou Involução

$$\sim \sim P \iff P$$

Idempotência

1) 
$$P \Leftrightarrow (P \land P)$$

2) 
$$P \Leftrightarrow (P \lor P)$$

Comutação

1) 
$$(P \land Q) \Leftrightarrow (Q \land P)$$

$$2) (P \lor Q) \Leftrightarrow (Q \lor P)$$

$$3) (P \leftrightarrow Q) \Leftrightarrow (Q \leftrightarrow P)$$

Associação

1) 
$$P \land (Q \land R) \Leftrightarrow (P \land Q) \land R \Leftrightarrow (P \land R) \land Q$$

2) 
$$P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R \Leftrightarrow (P \lor R) \lor Q$$

Distribuição

1) 
$$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$$

2) 
$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$$

 Transposição ou Contrapositiva

$$P \to Q \Leftrightarrow \neg Q \to \neg P$$



# Regras de Substituição

Implicação Material

$$P \to Q \Leftrightarrow \neg P \vee Q$$

Equivalência Material

$$P \leftrightarrow Q \Leftrightarrow (P \to Q) \land (Q \to P)$$

Absorção

$$P \lor (P \land Q) \leftrightarrow P$$

$$P \land (P \lor Q) \leftrightarrow P$$

 Exportação / Importação

$$(P \land Q) \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$$

De Morgan

$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

$$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$$



### Prova por Refutação

Embora a prova por dedução seja um método mais prático que a tabelaverdade, ainda é muito difícil obter algoritmos eficientes para validação de argumentos com base neste método.

#### Refutação

- Refutação é um processo em que se demonstra que uma determinada hipótese contradiz uma base de conhecimento.
- Uma base de conhecimento Δ = {α<sub>1</sub>, ..., α<sub>n</sub>} é consistente se a fórmula correspondente α<sub>1</sub> ∧ ... ∧ α<sub>n</sub> é satisfatível.
- Se Δ = {α<sub>1</sub>, ..., α<sub>n</sub>} é consistente, provar Δ ⊧ γ equivale a mostrar que o conjunto de fórmulas {α<sub>1</sub>, ..., α<sub>n</sub>, ¬γ} é inconsistente.



# Prova de Argumentos

### Argumento

- (1) Se o time joga bem, então ganha o campeonato.  $j \rightarrow g$
- (2) Se o time não joga bem, então o técnico é culpado.  $\sim j \rightarrow t$
- (3) Se o time ganha o campeonato, então os torcedores ficam contentes.
- (4) Os torcedores não estão contentes. ~ c
- (5) Logo, o técnico é culpado. ⊢ t

(1) 
$$j \rightarrow g$$
  $\Delta$   
(2)  $\neg j \rightarrow t$   $\Delta$   
(3)  $g \rightarrow c$   $\Delta$   
(4)  $\neg c$   $\Delta$ 

$$\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \models t$$



### Prova de Argumentos

validar o argumento  $\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \models t$ 

(1) 
$$j \rightarrow g \quad \Delta$$

(2) 
$$\neg j \rightarrow t \Delta$$

(3) 
$$g \rightarrow c \Delta$$

### Por Dedução Por Refutação

(1) 
$$j \rightarrow g \quad \Delta$$

(2) 
$$\neg j \rightarrow t \Delta$$

(3) 
$$g \rightarrow c$$
  $\Delta$ 

$$(4) \neg c \Delta$$

(6) 
$$\sim j$$
 MT(1,5) (6) j MT(5,2)

(7) t 
$$MP(2,6)$$
 (7) g  $MP(6,1)$ 

Argumento Válido! (8) c MP(7,3)

**(9) CONTRADIÇÃO!!!** (8, 4)



### Prova por Refutação: Exercício 1

Usando refutação, mostre que o argumento é válido.

- (1) Se Ana sente dor de estômago ela fica irritada. d 
  ightarrow i
- (2) Se Ana toma remédio para dor de cabeça ela fica com dor de estômago.
- (3) Ana não está irritada. ~ i
- (1)  $d \rightarrow i$
- (2)  $r \rightarrow d$
- $(3) \sim i$
- $(4) \sim (\sim r)$  hipótese
- (5) r hipótese (Dupla Negação)
- (6) d MP(5,2)
- (7) i MP(6,1)
- (8) Contradição! (7,3)



### Prova por Refutação: Exercício 2

$$\{p \rightarrow q, \neg q, \neg p \rightarrow r\} \vdash r$$

$$(1) p \rightarrow q$$

$$(2) \sim q$$

$$(3) \ \underline{\sim p \rightarrow r}$$

(4) ~r hipótese

(5) p MT(3,4)

(6) q MP(5,1)

(7) Contradição! (6,2)



# Prova por Refutação: Exercício 3

$$\{p \rightarrow q, q \rightarrow r, \neg r, \neg p \rightarrow s\} \vdash s$$

$$(1) p \rightarrow q$$

(2) 
$$q \rightarrow r$$

$$(3) \sim r$$

$$(4) \ \underline{\sim p \to s}$$

 $(5) \sim s$  hipótese

(6) p MT(4,5)

(7) q MP(6,1)

(8) r MP(7,2)

(9) Contradição! (8,3)



### Referências

- FIGUEIREDO, Luiz Manoel; SILVA, Mário Oliveira da; CUNHA, Marisa Ortegoza da Cunha. Matemática Discreta. 2. ed. Rio de Janeiro: Fundação CECIERJ, 2009. v. 3.
- GERSTING, Judith L. Fundamentos
   Matemáticos para a Ciência da Computação.
   4. ed. Rio de Janeiro: LTC, 2001.
- MENEZES, Paulo Blauth. Matemática Discreta para Computação e Informática. 4. ed. Porto Alegre: Bookman, 2013.