Técnicas de Inteligencia Artificial

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital (DSIC-UPV)

Prácticas de Laboratorio

Teoría. Lunes (15:00-17:30)		Laboratorio. Jueves (15:00 -17:30 , 17:30-20:00) (PL-2: Lab DSIC-3, PL-1: Sem 0S02)	
Presentación. Búsqueda de Soluciones en IA Tipología de la búsqueda Heurísticos y Metaheurísticos	14-IX	Presentación. Propuestas de trabajos y entornos	
Metaheurísticas Poblacionales (Evolutivas) Algoritmos Genéticos Algoritmos meméticos. Búsqueda dispersa	21-IX	Algoritmos genéticos. Diseño e implementación	
Metaheurísticos de Mejora Iterativa Búsqueda Tabú. Enfriamiento Simulado Búsqueda en Haz	28-IX	Implementación y evaluación	
Metaheurísticas Constructivas GRASP Variantes	5-X	Enfriamiento simulado. Diseño e implementación	
Inteligencia Social y Colectiva de Enjambre Alg. Hormigas. Colonia de Abejas Enjambre de Partículas (PSO) Otras variantes	19-X	Implementación y evaluación	
Prueba escrita / evaluación teoría	26-X	Presentación de trabajos y discusión de resultados	

Objetivo de las prácticas

1) Diseñar y desarrollar soluciones metaheurísticas para resolver problemas propuestos

- > Algoritmo Genético
- > Enfriamiento Simulado
- Otras técnicas y/o problemas (a elección del alumnado)

2) Evaluar y contrastar la utilidad de los métodos desarrollados

- Diseño. Contraste y evaluación de parámetros
- Escalabilidad : Evaluación soluciones frente a tamaños del problema.
- Evaluación: nº de soluciones generadas vs. calidad solución, Otras medidas.

Poliformat:

- · Presentación.
- Propuestas
- Opt4J: Entorno, Boletín, Docs

Opciones. Diseño y desarrollo soluciones metaheurísticas para resolver problemas

1) Diseño y codificación metaheurística (lenguaje de elección como Java, C#, Python, etc.)

¡La implementación de los algoritmos no es compleja!

Ventaja: mayor conocimiento y control;

Desventaja: Hay que implementar los procesos

2) Entornos Generalistas

Nos centramos en el modelado del problema, no en la implementación del algoritmo

Ventaja: utilización de las facilidades del entorno que no hay que implementar;

Desventaja: ¡hay que conocerlo!, limitaciones del entorno, menor control y conocimiento

3) Librerías. Requiere conocer el diseño realizado de la metaheurística e integrarlo con el fragmento de código que implementamos

Nos centraremos en el modelado del problema, pero hemos de integrarlo y utilizar la API que nos ofrece.

Ventaja: tenemos APIs que nos permiten personalizar nuestro proceso de resolución;

Desventaja: ¡hay que conocerlo!

Entornos para la Evaluación de Metaheurísticas (LIBRES)

Opt4J. Entorno libre

A Modular Framework for Meta-heuristic Optimization

Formulación sencilla de problemas utilizando librerías implementadas en Java

Existe un boletín que explica su instalación, uso e integración en ECLIPSE (java).

Otros entornos libres:

HeuristicLab http://dev.heuristiclab.com/

HeuristicLab

A Paradigm-Independent and Extensib

Entorno generalista en C#

PARADISEO https://nojhan.github.io/paradiseo/

API de programación en C++

jMetal https://jmetal.sourceforge.net/

Framework de optimización multi-objetivo en Java

Etc.

Entornos para la Evaluación de Metaheurísticas (COMERCIALES)

MATLAB & Global Optimization Toolbox. Sistema Comercial MatLaB

Enlaces:

http://es.mathworks.com/products/global-optimization/

http://es.mathworks.com/help/gads/index.html

https://es.mathworks.com/help/gads/genetic-algorithm.html

MATLAB (toolBox disponibles). Sistema Comercial. Lenguaje MatLaB

Toolbox libres sobre Genetic Algorithms:

GPLAB: http://gplab.sourceforge.net/

GA_framework: https://sourceforge.net/projects/gatoolbox/

Toolbox libres sobre Simulated Annealing:

http://es.mathworks.com/matlabcentral/fileexchange/10548-general-simulated-annealing-algorithm

Toolbox libres sobre Particle Swarm Optimization:

http://psotoolbox.sourceforge.net/

In: JCLEC-MO: A Java suite for solving many-objective optimization engineering problems, A. Ramírez, J. Romero, C. García, S. Ventura. Engineering App. of Artificial Intelligence 81 (2019).

https://doi.org/10.1016 /j.engappai.2019.02.00

Table 1
Summary of the characteristics of general-purpose MOFs.

Characteristic	teristic ECJ v25 (2017) HeuristicLab v3.3.15 (2018)		EvA v2.2 (2015)	
Metaheuristics	DE, EDA, ES, GA, GE, GP, PSO	ES, GA, GE, GP, LS, PSO, SS, TS, SA, VNS	DE, EP, ES, GA, GP, HC, PSO, SS, SA	
Encodings	Binary, integer, real, tree	Binary, integer, real, tree	Binary, integer, real, tree	
Optimization problems	c/u, min/max	u, min/max	c/u, min	
MOO algorithms	NSGA-II, SPEA2	MO-CMAES, NSGA-II MO-CMAES, MOGA NSGA, NSGA-II, PESA, PESA-II, Random Weight GA SPEA, SPEA2, VEG.		
MOO benchmarks	Fons.&Flem., Kursawe, Poloni, Quagli.&Vicini, Schaffer, Sphere, ZDT	Fonseca, Kursawe, TF Schaffer, DTLZ, ZDT		
Quality indicators		GD, HV, Spacing	ER, GD, HV, Max. PF error, ONVG	
Characteristic	Opt4J v3.1.4 (2015)	PaGMO v2.6 (2017) JCLEC v4 (20		
Metaheuristics	DE, GA, PSO, SA	ABC, DE, ES, GA, GA, GP PSO, SA		
Encodings	Binary, integer, real	Integer, real, mixed Binary, integer, retree		
Optimization problems	c/u, min/max	c/u, min min/max		
MOO algorithms	NSGA-II, SPEA2, SMS-EMOA, OMOPSO	MOEA/D, NSGA-II NSGA-II, SPEA2		
MOO benchmarks	DTLZ, Knapsack, LOTZ, Queens, WFG, ZDT	DTLZ, ZDT		
Quality indicators	HV	HV		

ABC: Artificial bee colony, DE: Differential evolution, EDA: Estimation of distribution algorithms, EP: Evolutionary programming, ES: Evolution strategy, GA: Genetic algorithm, GE: Grammatical evolution, GP: Genetic programming, HC: Hill climbing, LS: Local search, SS: Scatter search, SA: Simulated annealing, TS: Tabu search, VNS: Variable neighborhood search, c: Constrained, u: Unconstrained, min: Minimization, max: Maximization.

Otros Frameworks / Librerías

Java	
C++	ECJ (Java-based Evolutionary Computation Research System) http://cs.gmu.edu/~eclab/projects/ecj/
	MOEA (Free and Open Source Java Framework for Multiobjective Optimization) http://moeaframework.org/
	ECF - Evolutionary Computation Framework http://ecf.zemris.fer.hr/
	GAlib (C++ Library of Genetic Algorithms) http://lancet.mit.edu/ga/
Python	Open BEAGLE: A Generic Evolutionary Computation Framework in C++ http://chgagne.github.io/beagle/
	METSlib - metaheuristics optimization framework https://github.com/coin-or/metslib y https://github.com/coin-or/metslib y https://www.coin-or.org/Doxygen/metslib/index.htm
	Distributed Evolutionary Algorithms (DEAP) https://github.com/deap
	Pyevolve http://pyevolve.sourceforge.net/

Desarrollo de las prácticas

1. Algoritmos Genéticos

Diseño Algoritmo Genético

- Diseño del individuo. Codificación y decodificación de soluciones.
- Función de evaluación (fitness)
- Generación población inicial.
- Procesos: Selección. Cruce (individuos inválidos). Mutación. Reemplazo.

Evaluación algoritmo genético

- Criterios de evaluación: Fitness versus Soluciones generadas, Tiempo cómputo.
- Tamaños del problema. Convergencia.
- Parámetros de evaluación: Población, Selección, Cruce, Mutación, etc.

Conclusiones Algoritmo Genético

2. Enfriamiento simulado

Diseño algoritmo enfriamiento simulado

Generación de soluciones vecinas. Solución inicial.

Evaluación enfriamiento simulado

- Criterios de evaluación: Fitness versus Soluciones generadas, Tiempo cómputo.
- Tamaños del problema. Convergencia.
- Parámetros de evaluación: Temperatura inicial, Función decremento.

Conclusiones Enfriamiento Simulado

> Comparativa de ambos métodos de optimización. Presentación y discusión de resultados.

Resultados

Calidad Solución vs {Tiempo de Cómputo, Soluciones probadas (fitness) }
Parametrizado con los diferentes parámetros de la metaheurística

Parte 1. Algoritmos genéticos.

1. Algoritmos Genéticos

Diseño algoritmo genético

- Diseño del individuo. Codificación y decodificación.
- Función de evaluación (fitness)
- Generación población inicial.
- Selección. Cruce (individuos inválidos). Mutación. Reemplazo.

Evaluación algoritmo genético

- Criterios de evaluación: Fitness versus Soluciones generadas, Tiempo cómputo.
- Tamaños del problema. Convergencia.
- Parámetros de evaluación: Población, Selección, Cruce, Mutación, etc.

Conclusiones Algoritmo Genético

Trabajo:

- Cada persona elegirá una de las propuestas del boletín o propondrá una en particular.
- Se podrá implementar el algoritmo mediante cualquier lenguaje de programación, utilizar un entorno generalista o librerías existentes. Se deja a elección del alumno.

Calendario:

21/09	Algoritmos genéticos
28/09	Algoritmos genéticos

Recomendación: borrador provisional de la memoria

(1º parte) para el 5/10

Parte 2. Enfriamiento simulado.

2. Enfriamiento simulado

Diseño algoritmo enfriamiento simulado

Soluciones vecinas. Solución inicial.

Evaluación enfriamiento simulado

- Criterios de evaluación: Fitness versus Soluciones generadas, Tiempo cómputo.
- Tamaños del problema. Convergencia.
- Parámetros de evaluación: Temperatura inicial, Función decremento.

Conclusiones enfriamiento simulado

Trabajo:

- Se seguirá con el problema elegido para el AG.
 - Parte del trabajo realizado en el diseño del AG es reutilizable en el diseño del ES.
 - Evaluación Comparativa
- Se podrá implementar el algoritmo mediante cualquier lenguaje de programación, utilizar un entorno generalista o librerías existentes. Se deja a elección del alumno

Calendario:

5/10	Enfriamiento simulado
19/10	Enfriamiento simulado

Comparativa. Presentación y discusión de resultados.

Fecha	Laboratorio	Fecha	Laboratorio
21/09	Algoritmos genéticos	5/10	Enfriamiento simulado
28/09	Algoritmos genéticos	19/10	Enfriamiento simulado

Trabajo:

- Entrega Memoria:
 - Algoritmo Genético, Enfriamiento Simulado
 - Diseño, Evaluación, Escalabilidad y Comparativa
- Presentación Individual (se detallarán recomendaciones)
- Alternativas de Presentación: Presencial / Vídeo
- Evaluación (por pares) comparativa de otros trabajos

Calendario:

Fecha	Laboratorio
26/10	Memoria + Presentación oral (presencial/vídeo)
Semana siguiente	Finalización de las evaluaciones comparativas

Ejemplos de Aplicaciones