

Investigate several dimensions

- A process depends on the factors $X_1...X_p$ where p>3
- It is impossible to produce p-dimensional plot (recall: it was not even possible to understand static 3D-scatterplot)
- Conclusion: More advenced methods are needed
- Investigating:
 - Important factors
 - Connection between factors
 - Outliers
 - Clusters

Tools

There are special tools to create interactive and dynamic plots.

Commercial:

- Spotfire Many static and interactive visualization tools
- Tableau

 Many static and interactive visualization tools
- SAS JMP® diagrams with rotations, linked diagrams, brushing, good user interface

Free

- GGobi: diagrams with rotations, linked diagrams, brushing, (badly documented, a few plot types)
- Manet: focus on the analysis of missing data, qualitative data
- Shiny: some interaction tools, requires programming skills.

GGobi

Link

http://www.ggobi.org/

Documentation:

http://www.ggobi.org/docs/

Principles:

http://www.ggobi.org/book/

Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi. Dianne Cook and Deborah F. Swayne

Example 1

Australian crabs

Variables:

- Qualitative:
 - Species
 - Sex
- Quantitative:
 - Frontal lobe
 - Rear width
 - Carapace length
 - Carapace width
 - Body depth

Introduction to GGobi

Open data:

- Format is "csv" or xml
- File → Open ...
- Tools → Data viewer

🏶 ggobi data viewer 🕒								
Row Label ◀	species •	l sex ◀	index •	FL ◀	RW ◀	CL ◀	cw ∢	BD
0	Blue	Male	1,000000	8,100000	6,700000	16,100000	19,000000	7,000000
1	Blue	Male	2,000000	8,800000	7,700000	18,100000	20,799999	7,400000
2	Blue	Male	3,000000	9,200000	7,800000	19,000000	22,400000	7,700000
3	Blue	Male	4,000000	9,600000	7,900000	20,100000	23,100000	8,200000
4	Blue	Male	5,000000	9,800000	8,000000	20,299999	23,000000	8,200000
5	Blue	Male	6,000000	10,800000	9,000000	23,000000	26,500000	9,800000
6	Blue	Male	7,000000	11,100000	9,900000	23,799999	27,100000	9,800000
7	Blue	Male	8,000000	11,600000	9,100000	24,500000	28,400000	10,400000
8	Blue	Male	9,000000	11,800000	9,600000	24,200001	27,799999	9,700000
9	Blue	Male	10,000000	11,800000	10,500000	25,200001	29,299999	10,300000
10	Blue	Male	11,000000	12,200000	10,800000	27,299999	31,600000	10,900000
11	Blue	Male	12,000000	12,300000	11,000000	26,799999	31,500000	11,400000
12	Phia	Mala	12 000000	17,500A90	s voscance	1000001	21 700001	11 400000

• Histogram:

- Display -> New barchart
- Choose variable
- Vary bin width directly at the plot

- Scatterplot
- Choose X and Y
- ..or see all by using "Cycle"

Interesting: CW vs RW

- Two clusters are seen

- Alternative: scatterplot matrix
 - Display → New scatterplot matrix
 - Choose variables that should be used

- Time series plot
 - Choose time axis X
 - Choose one or more Y

- Benefit: plot is interactive
 - each trace line can be identified
 - a group of trace lines can be selected and brushed

Linked plots & Brushing

- All plots created in one Ggobi sessions are linked, i.e.
 - Each element (observation) in one plot corresponds to one or more elements in the other plot

Example: 2 scatterplots FR vs RW and CL vs CW

1 one observation (FL,RW) corresponds 1 observation (CL,CW)

Linked plots & Brushing

Linked plots & Brushing

Example: 1 scatterplot FR vs RW and 1 histogram sex

1 bar sex corresponds several observations (CL,RW) -

Brushing

 Brushing implies that the process of the coloring of items in one plot leads to the automatic coloring of the corresponding items in the linked plots

Notions:

- 1. Active window (white borders) all operations here
- Brush
- 3. Persistent and transient brushing (to fix clusters)

GGobi: Interaction -> brush

Brushing

Example: 1 scatterplot CL vs RW and 1 histogram (different vars)

- Choose green brush, normal size
- Color one cluster and see how histograms change
- See where extreme cases of FL are located in (CL, RW)
- Conclusions?

Example 2

Flea beetles (flea.csv)

- 6 variables
- Aim is to identify different arts based on beetle measurements

Example 2: one cluster detected

Identification

- Aim is to identify the item on the plot, for ex. ID or the value of an outlier
- Interaction -> Identify
- What can be seen:
 - Record Number or Record Label ID in the database
 - Choose a parameter to see its value
- Click on the observation to make the label permanent
- Identification is done in the linked plots too

3D-rotation

- For a scatterplot, choose View→ Rotation
- Choose X, Y,Z
- Click "Scramble" to change projection randomly
- Variable circle shows angle between axis and projection plane

2D tour

- View → 2D tour
- Data is projected into two dimensions
- Sometimes, clusters are seen

Example:

- 1. Use Flea.csv with colored observations
- 2. Try to see clusters

Distance between objects

- Meaning of "two objects are close"?
 - Measure of proximity (ex: quantitative vars, Euclidian distance)
- Similarity measure s_{rs} (=1 if same object, <1 otherwise)
 - Ex: correlation
- Dissimilarity measure δ_{rs} (=0 if same object, >0 otherwise)
 - Ex: euclidian distance

Problem of cosntructing the measures of proximity:

- What if the variable is qualitative?
- What if the object is a text document?

Multidimensional scaling

Given n object with known matrix of similarities of dissimilarities. Each object i is characterized by p-dimensional vector X_i

The aim:

Present these objects in lower dimensions (p'=2 or 3) such that the distance between the new points would reflect the matrix of similarities (or dissimilarities)

- See neighbour observations
- See clusters and outliers
- Have a "map " of your data

Two types:

- Metric MDS
- Non-metric MDS

Multidimensional scaling

Metric MDS (algorithm is not discussed here)

Seaching for points χ_1 ... χ_n , such that: If $\delta_{rs} \le \delta_{qt} \rightarrow d_{is} <= d_{qt}$ (ranks are preserved)

Non-metric MDS

Given n objects X_1 , ..., X_n with known matrix of similarities $||\delta_{rs}||$ of dissimilarities.

Step 1: For some configuration $\chi_1...\chi_n$ (in lower dimension) with matrix $||d_{rs}||$, define primary monotonic regression $\chi'_1...\chi'_n$ with matrix $||d'_{rs}||$ such that $\chi'_1...\chi'_n$ as close as possible to $\chi_1...\chi_n$ and if $\delta_{rs} \leq \delta_{qt} \rightarrow d'_{rs} \leq d'_{qt}$

(Meaning: MR gives points close to the configuration χ_1 ... χ_n , and reflecting original dissimilarities)

Multimensional scaling

Non-metric MDS

Step 2: For each configuration χ_1 ... χ_n with matrix $||d_{rs}||$, define stress:

$$S = \sqrt{\frac{\sum_{r,s} (d_{rs} - d_{rs}')^2}{\sum_{rs} d_{rs}^2}}$$

Step 3. Consider $S=S(\chi_1...\chi_n)$ and minimize it using optimization methods (e.g. steepest descend) \rightarrow Find best configuration

Metric multidimensional scaling

- 1. Compute dissimilarity (distance)matrix
- 2. Use function cmdscale(d,k)
 - d is distance matrix
 - k is number of desired dimensions

Music data

- Artist (abba. Beatles. Wiwaldi, Mozart, Beethoven, Enya)
- Type (rock, classical, new wave)
- Ivar, lave, Imax, Ifener, Ifreq parameters of the music signal

Metric multidimensional scaling

Codes:

```
setwd("Z:/732A39/2014/Lecture 4")
music = read.csv("music-sub.csv", row.names=1)
music.numeric= scale(music[,4:7])
d=dist(music.numeric)
coords=cmdscale(d,2)
plot(coords)
```

#or?
library(rggobi)
ggobi(coords)

Metric multidimensional scaling

- Brushing by artist:
 - We can see yellow cluster=Abba

Shepard plot

- Y=distance between resulting points
- X: distance between original points
- Shows how good MDS reflects original points
 - Best: a monotonic line (seldom in practice)

#Shepard plot plot(d,dist(coords))

Nonmetric MDS

- 1. Compute dissimilarity (distance)matrix
- 2. Use function **isoMDS(d,y,k,p)** in library MASS
 - d is distance matrix
 - y: starting points (not necessary, but the result is sensitive to this choice!)
 - k is number of desired dimensions
 - p power of the Minkowski distance
 - p=2 Euclidian

```
library(MASS)
music = read.csv("music-sub.csv",
row.names=1)
music.numeric= scale(music[,4:7])
d=dist(music.numeric)
res=isoMDS(d,k=2)
coords=res$points
plot(coords)
```

Nonmetric MDS


```
> res=isoMDS(d,k=2)
initial value 21.040048
iter 5 value 14.342233
final value 14.255305
converged
```

Stress values

Shepard plot

• In non-metric MDS, we also add fitted values of the monotonic configurations (χ'_1 ... χ'_n)

sh <- Shepard(d, coords)
plot(d,dist(coords)
lines(sh\$x, sh\$yf, type = "S")</pre>

To read at home

Corresponding parts in Ggobi manual

http://www.ggobi.org/docs/manual.pdf

Paper on MDS (see LISAM)