Homework 4

Question 1

Use induction to prove that $n^2 - 5n$ is even, for every $n \in \mathbb{N}$.

Try base case first:

For n = 1,

$$1 - 5 = -4$$

which is even.

Let $k \in \mathbb{N}$ and suppose the expression is true for n = k. Then,

$$k^2 - 5k$$
 is even.

We must prove that $(k+1)^2 - 5(k+1)$ is even as well.

$$k^{2} + 2k + 1 - 5k - 5 = k^{2} - 3k - 4$$

= $(k^{2} - 5k) + (2k - 4)$

Since 2k-4 always ends in an even number, and adding two even numbers always results in an even number, the expression works for (k+1). Therefore, the expression is true.

Define a sequence $\{a_n\}_{n\in\mathbb{N}}$ by

$$a_0=0 ext{ and } a_n=a_{n-1}+n^3 ext{ for } n\geq 1$$

Prove that for each $n \in \mathbb{N}$,

$$a_n = \left(rac{n(n+1)}{2}
ight)$$

Try base case first:

$$a_0 = \left(\frac{0(0+1)}{2}\right) = 0 \ \checkmark$$

Let $a_k \in \{a_n\}$ and assume the expression is true for a_k . We must prove that

$$a_{k+1} = \left(\frac{(k+1)(k+2)}{2}\right)$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{k^2 + k + 2k + 2}{2}$$

$$= \frac{k(k+1)}{2} + k + 1$$
 $a_{k+1} = a_k + k + 1$

(a) For each positive integer $n \leq 4$, compute whether $n! \geq n^2$ or not.

For $n = 4, 4! \ge 4^2$.

For
$$n = 3$$
, $3! < 3^2$.

For
$$n = 2, 2! < 2^2$$
.

For
$$n = 1, 1! = 1^2$$
.

(b) Prove that for all integers $n \ge 4$, we have $n! \ge n^2$.

We have already proved the base case for n=4 above.

Assume that k = n, and $k! \ge k^2$.

We must prove that $(k+1)! \ge (k+1)^2$.

$$(k+1) imes k! \geq (k+1)(k+1)$$
 $k! \geq (k+1)$

Since this is true, the expression is true as well.

The post office sells an unlimited amount of 2-cent stamps and 5-cent stamps. Prove that for any integer $n \ge 4$, we can buy exactly n cents worth of stamps.

For base case n=4,

$$5(2) - 3(2) = 4$$
 \checkmark

Inductive hypothesis:

Any value j $(k \ge j \ge 4)$ can be expressed as j = 2a + 5b with a and b being non-negative integers.

We must prove that we can express k+1 as 2a+5b. We can use k-1 since k works for the inductive hypothesis.

$$k-1 = 2a + 5b$$

 $k-1+2 = 2a + 5b + 2$
 $k+1 = 2(a+1) + 5b$ \checkmark

By the principle of strong induction, the statement is true for every n greater than 4.

Let k = 1. $4 \times 1 + 1$ is 5.

Given that A starts,

5 A - 2 --> 3 B - 2 --> 1 A - 1 = 0, so B won the game. Let it be true for some n that 4n + 1. Therefore, we have to show that n + 1 is true.

$$4(n+1)+1=4n+1+4$$

We know that if B removes the stone the last stone is 1 for 4n stones are left after B remove the stone.

$$1 + 4 = 5$$

Now we have already shown if 5 is the number that B will win.

Therefore, we show that for 4k+1, $k \in \mathbb{N}$, B will always win the game.