EME5943 현대제어시스템

김종현 교수

What is your expectation?

Course description

- Basic principles of feedback and its use as a tool for altering the dynamics of systems and managing uncertainty
- Concepts and tools of control theory and the robust control schemes for dynamic systems (i.e. robot, vehicle)

Key themes

- input/output response
- (modeling) and model reduction
- linear versus nonlinear models
- feedback principles
- nonlinear/force control

Lecture plan

- Introduction
- Modeling / State-space representation
- Dynamic behavior (including Lyapunov stability for nonlinear system)
- Linear systems (with reviewing linear algebra)
- Transfer function / feedback principles
- State feedback (including controllability)
- Output feedback (including observability)
- Robust control schemes (including sliding mode and feedback linearization)
- Force control
 (including impedance control)

Textbook

- Karl J. Åström and Richard M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, 2nd Edition, Princeton University Press
- e-book available!

Rating

- 5% Attendance
- 20% Homework
- 35% Midterm exam
- 40% Final exam

현대제어시스템

Introduction

Control

• To design engineered systems with desired behaviors

Control

- To design engineered systems with desired behaviors
- Using algorithms & feedback in engineered systems with the information in both analogue & digital representations

Control = Sensing + Computation + Actuation

Control = Sensing + Computation + Actuation

In Control Loop (feedback)

Modeling for plant/process

- What?
 - ✓ The process by which a physical system (plant / process) is simplified
 to obtain a mathematically expressible form
 - ✓ Mathematical model
 - The resulting simplified version of real system
- Why?
 - ✓ Cost, time, risk ...
- How?
 - ✓ By using physical laws
 - Newton's law, Kirchhof's laws, ...
 - ✓ By experimentally...

What is feedback?

- Feedback = mutual interconnection of two (or more) systems
 - System 1 affects system 2
 - System 2 affects system 1
 - Cause and effect is tricky;
 systems are mutually dependent

What is feedback?

Many examples

Centrifugal governor

Supply chain

What is feedback?

Many interesting properties

- Resilient toward external influences
- Linear behavior out of nonlinear components
- Insensitive both to external disturbances
 & to variation in its individual elements

Potential disadvantages

- Dynamic instabilities
- Unwanted sensor noise

What is feedforward?

Feedback: reactive

There must be an error before corrective actions are taken.

Feedforward

- Possible to measure a disturbance before it enters the system
- Taking corrective action before the disturbance has influenced
- Reducing the effect of the disturbance

Feedback	Feedforward
Closed loop	Open loop
Acts on deviations	Acts on plans
Robust to model uncertainty	Sensitive to model uncertainty
Risk for instability	No risk for instability

Feedback properties

Robustness to uncertainty

 Making system insensitive to variation ex) Cruise control

Feedback properties

Design of dynamics

Changing dynamics of system

Wright Flyer (1903)
Unstable

Sperry autopilot (1914)
Stable!

Negative feedback

c.f) Positive feedback
Spreading panic → Stampede

Simple forms of feedback

On-Off control

$$u = \begin{cases} u_{\text{max}} & \text{if } e > 0 \\ u_{\text{min}} & \text{if } e < 0, \end{cases} \qquad e = r - y$$

Simple; no parameters to be tune

- Problems
 - ✓ Oscillation

✓ No definition at zero

Simple forms of feedback

PID control

$$u = \begin{cases} u_{\text{max}} & \text{if } e \ge e_{\text{max}} \\ k_p e & \text{if } e_{\text{min}} < e < e_{\text{max}} \\ u_{\text{min}} & \text{if } e \le e_{\text{min}}, \end{cases}$$

$$u(t) = k_i \int_0^t e(\tau) d\tau.$$

$$e(t + T_d) \approx e(t) + T_d \frac{de(t)}{dt}$$

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) d\tau + k_d \frac{de(t)}{dt}$$

현대제어시스템

System modeling

Model

- A mathematical representation of a system
- To reason about a system
- To make predictions about how a system will behave

$$m\ddot{q} + c(\dot{q}) + kq = 0$$

- Ordinary differential equations (ODEs)

$$m\ddot{q} + c(\dot{q}) + kq = 0$$

Input

 A system variable that is independently prescribed, or defined by the environment

Output

Any system variable of interest

State variables

 A minimum set of system variable that completely characterizes the motion of a system for the purpose of predicting future motion

State vector

 A vector whose elements consists of state variables

State equation

 The relationship among the change of state, present state, and input

State-space model (representation)

- A mathematical model of a system using a state equation
- It determines the system behavior for all time, given
 - ✓ The initial values of state variables
 - ✓ The specification of the inputs to the system for all times

Representations of system behavior

Time plot

Phase portrait

Input-output view

- Heritage of electrical engineering
- Useful for Linear Time-Invariant (LTI) system

Transfer function

 Transfer ratio of the Laplace transform of the output to the Laplace transform of the input

$$\frac{Y(s)}{U(s)} = H(s), \qquad \dot{y}(t) + ky(t) = u(t)$$

Ordinary differential equations

State space model: a form of differential equation

$$\frac{dx}{dt} = f(x,u) \qquad y = h(x,u)$$

$$x \in \mathbb{R}^n \text{ state vector } u \in \mathbb{R}^p \text{ input (vector)}$$

$$y \in \mathbb{R}^q \text{ output (vector)}$$

Linear state space system

$$\frac{dx}{dt} = Ax + Bu \qquad y = Cx + Du$$

$$\begin{array}{cccc} \text{dynamic} & \text{control} & \text{sensor direct} \\ \text{matrix} & \text{matrix} & \text{matrix} & \text{term} \end{array}$$

A simple example

Ordinary differential equations

Another form of linear differential equations

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{n}y = u$$

$$x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{pmatrix} = \begin{pmatrix} d^{n-1}y/dt^{n-1} \\ d^{n-2}y/dt^{n-2} \\ \vdots \\ dy/dt \\ y \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} u$$

$$y = x_n$$

Ordinary differential equations

• Example: Balance systems

Dynamics of system

$$\begin{pmatrix} (M+m) & -ml\cos\theta \\ -ml\cos\theta & (J+ml^2) \end{pmatrix} \begin{pmatrix} \ddot{p} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} c\dot{p}+ml\sin\theta\,\dot{\theta}^2 \\ \gamma\dot{\theta}-mgl\sin\theta \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$

$$M_t = M + m$$
 $J_t = J + ml^2$
 $c_\theta = \cos \theta$ $s_\theta = \sin \theta$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \dot{p} \\ \frac{\dot{\theta}}{\dot{\theta}} \\ \frac{-mls_{\theta}\dot{\theta}^{2} + mg(ml^{2}/J_{t})s_{\theta}c_{\theta} - c\dot{p} - (\gamma/J_{t})mlc_{\theta}\dot{\theta} + u}{M_{t} - m(ml^{2}/J_{t})c_{\theta}^{2}} \\ \frac{-ml^{2}s_{\theta}c_{\theta}\dot{\theta}^{2} + M_{t}gls_{\theta} - clc_{\theta}\dot{p} - \gamma(M_{t}/m)\dot{\theta} + lc_{\theta}u}{J_{t}(M_{t}/m) - m(lc_{\theta})^{2}} \end{pmatrix} \quad y = \begin{pmatrix} p \\ \theta \end{pmatrix}$$

$$y = \begin{pmatrix} p \\ \theta \end{pmatrix}$$

$$\frac{dx}{dt} = f(x, u)$$

$$y = h(x, u)$$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \dot{p} \\ \dot{\theta} \\ -mls_{\theta}\dot{\theta}^{2} + mg(ml^{2}/J_{t})s_{\theta}c_{\theta} - c\dot{p} - (\gamma/J_{t})mlc_{\theta}\dot{\theta} + u \\ M_{t} - m(ml^{2}/J_{t})c_{\theta}^{2} \\ -ml^{2}s_{\theta}c_{\theta}\dot{\theta}^{2} + M_{t}gls_{\theta} - clc_{\theta}\dot{p} - \gamma(M_{t}/m)\dot{\theta} + lc_{\theta}u \\ \frac{-ml^{2}s_{\theta}c_{\theta}\dot{\theta}^{2} + M_{t}gls_{\theta} - clc_{\theta}\dot{p} - \gamma(M_{t}/m)\dot{\theta} + lc_{\theta}u}{J_{t}(M_{t}/m) - m(lc_{\theta})^{2}} \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & m^2 l^2 g/\mu & -cJ_t/\mu & -\gamma l m/\mu \\ 0 & M_t m g l/\mu & -c l m/\mu & -\gamma M_t/\mu \end{pmatrix} \begin{pmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ J_t/\mu \\ l m/\mu \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} x$$

$$\frac{dx}{dt} = Ax + Bu \qquad y = Cx + Du$$

Difference equations

- Not continuously in time, but discrete instants of time
 - → Discrete-time system

$$\frac{dx}{dt} = f(x, u) \qquad \Rightarrow \qquad x[k+1] = f(x[k], u[k])$$

$$y = h(x, u)$$

$$y = h(x, u)$$
 \Rightarrow $y[k] = h(x[k], u[k])$

difference equation

Linear cases

$$x[k+1] = Ax[k] + Bu[k]$$
 $y[k] = Cx[k] + Du[k]$

$$x[k+1] = Ax[k] + Bu[k]$$
 $y[k] = Cx[k] + Du[k]$

Solution?

$$x[k] = A^{k}x[0] + \sum_{j=0}^{k-1} A^{k-j-1}Bu[j],$$

$$y[k] = CA^{k}x[0] + \sum_{j=0}^{k-1} CA^{k-j-1}Bu[j] + Du[k],$$

$$k > 0.$$

Difference equations

- Example: Predator-prey
 - ✓ Ecological system with two species, one of which feeds on the other

Canadian lynx vs Snowshoe hare

A discrete data

Model as a difference equation by keeping track of rate of births and deaths of each species

$$H[k+1] = H[k] + b_r(u)H[k] - aL[k]H[k]$$

$$L[k+1] = L[k] + cL[k]H[k] - d_fL[k],$$

H population of hares

L population of lynxes

 $b_r(u)$ hare birth rate

 d_f lynx mortality rate

with many simplifying assumptions....

