IMPROVED METHODS FOR STATIC MODEL PRUNING

Anonymous authors

 Paper under double-blind review

ABSTRACT

Static model pruning is presented as a performance optimization technique for large language and vision models. The approach aims to identify and remove neurons, connections unlikely to lead to expected generation results for typical user queries. The goal is to obtain a much smaller model that can quickly return results almost as good as those of the unpruned ones. Through careful analysis of pretrained weights, bias, activations and user queries, an initial mathematical model based on certain probabilities obtained from the environment is developed to improve on previous results for pruned model size, achieving significant improvement in most cases. This paper explores and compares to previously proposed approaches that perform pruning based on other factors.

1 SUBMISSION OF CONFERENCE PAPERS TO ICLR 2025

ICLR requires electronic submissions, processed by https://openreview.net/. See ICLR's website for more instructions.

If your paper is ultimately accepted, the statement \iclrsinalcopy should be inserted to adjust the format to the camera ready requirements.

The format for the submissions is a variant of the NeurIPS format. Please read carefully the instructions below, and follow them faithfully.

1.1 STYLE

Papers to be submitted to ICLR 2025 must be prepared according to the instructions presented here.

Authors are required to use the ICLR LATEX style files obtainable at the ICLR website. Please make sure you use the current files and not previous versions. Tweaking the style files may be grounds for rejection.

1.2 RETRIEVAL OF STYLE FILES

The style files for ICLR and other conference information are available online at:

http://www.iclr.cc/

The file iclr2025_conference.pdf contains these instructions and illustrates the various formatting requirements your ICLR paper must satisfy. Submissions must be made using LATEX and the style files iclr2025_conference.sty and iclr2025_conference.bst (to be used with LATEX2e). The file iclr2025_conference.tex may be used as a "shell" for writing your paper. All you have to do is replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in sections 2, 3, and 4 below.

2 General formatting instructions

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long. The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing of 11 points. Times

New Roman is the preferred typeface throughout. Paragraphs are separated by 1/2 line space, with no indentation.

Paper title is 17 point, in small caps and left-aligned. All pages should start at 1 inch (6 picas) from the top of the page.

Authors' names are set in boldface, and each name is placed above its corresponding address. The lead author's name is to be listed first, and the co-authors' names are set to follow. Authors sharing the same address can be on the same line.

Please pay special attention to the instructions in section 4 regarding figures, tables, acknowledgments, and references.

There will be a strict upper limit of 10 pages for the main text of the initial submission, with unlimited additional pages for citations.

3 HEADINGS: FIRST LEVEL

First level headings are in small caps, flush left and in point size 12. One line space before the first level heading and 1/2 line space after the first level heading.

3.1 HEADINGS: SECOND LEVEL

Second level headings are in small caps, flush left and in point size 10. One line space before the second level heading and 1/2 line space after the second level heading.

3.1.1 HEADINGS: THIRD LEVEL

Third level headings are in small caps, flush left and in point size 10. One line space before the third level heading and 1/2 line space after the third level heading.

4 CITATIONS, FIGURES, TABLES, REFERENCES

These instructions apply to everyone, regardless of the formatter being used.

4.1 CITATIONS WITHIN THE TEXT

Citations within the text should be based on the natbib package and include the authors' last names and year (with the "et al." construct for more than two authors). When the authors or the publication are included in the sentence, the citation should not be in parenthesis using \citet{} (as in "See ? for more information."). Otherwise, the citation should be in parenthesis using \citep{} (as in "Deep learning shows promise to make progress towards AI (?).").

The corresponding references are to be listed in alphabetical order of authors, in the REFERENCES section. As to the format of the references themselves, any style is acceptable as long as it is used consistently.

4.2 FOOTNOTES

Indicate footnotes with a number¹ in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote with a horizontal rule of 2 inches (12 picas).²

4.3 FIGURES

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.

¹Sample of the first footnote

²Sample of the second footnote

Figure 3: Sample figure caption c.

Table 1: Perplexity on pruned model (Llama-7B) from human domain experts

Pruned Level	Wanda
0.01	NA
0.05	NA
0.10	5.696
0.20	5.817
0.30	5.999
0.40	6.387
0.50	7.257
0.60	10.691
0.70	84.905
0.80	5782.432
0.90	19676.668
0.95	28309.178
0.99	108234.484

199	a	A scalar (integer or real)
200	a	A vector
202	\boldsymbol{A}	A matrix
203	_	
204	A	A tensor
205	I_n	Identity matrix with n rows and n columns
206 207	I	Identity matrix with dimensionality implied by context
208	$oldsymbol{e}^{(i)}$	Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at po-
209		sition i
210	$\operatorname{diag}(\boldsymbol{a})$	A square, diagonal matrix with diagonal entries given by $oldsymbol{a}$
211	a	A scalar random variable
213	a	A vector-valued random variable
214	\mathbf{A}	A matrix-valued random variable

Sets and Graphs

216			
217	Table 2: Effectiveness of the v	veights as a major pruning measu	ıre
218	Pruned Level	Prune by Weights	
219		<u>, </u>	
220	0.01	NA	
221	0.05	NA	
222	0.10	5.806	
223	0.20	6.020	
224	0.30	6.669	
225	0.40	8.601	
226	0.50	17.285	
227	0.60	559.987	
228	0.70	48414.551	
	0.80	132175.578	
229	0.90	317879.250	
230	0.95	273552.281	
231	0.99	222543.047	
232			

Table 3: Effectiveness of the bias as a major pruning indicator

Pruned Level	Prune by Bias
0.01	NA
0.05	NA
0.10	NA
0.20	NA
0.30	NA
0.40	NA
0.50	NA
0.60	NA
0.70	NA
0.80	NA
0.90	NA
0.95	NA
0.99	NA

207		
255		
256	\mathbb{A}	A set
257	\mathbb{R}	The set of real numbers
258 259	$\{0, 1\}$	The set containing 0 and 1
260	$\{0,1,\ldots,n\}$	The set of all integers between 0 and n
261 262	[a,b]	The real interval including a and b
263	(a,b]	The real interval excluding a but including b
264 265	$\mathbb{A}\backslash\mathbb{B}$	Set subtraction, i.e., the set containing the elements of $\mathbb A$ that are not in $\mathbb B$
266 267	${\cal G}$	A graph
268	$Pa_{\mathcal{G}}(\mathbf{x}_i)$	The parents of x_i in \mathcal{G}
269		

Table 4: One pass code generation and effectiveness evaluation

Number	Core Idea
01	Cradient Consitive Drawing
01	Gradient Sensitive Pruning
02	L1 Norm Pruning
03	Structured Pruning
04	K-means Clustering Pruning
05	Random Pruning
06	Random Pattern Pruning
07	Variational Dropout Pruning
08	Gradient based Pruning
09	Elastic Weight Consolidation Pruning
10	Dynamic Pruning with Reinforcement Learning

Table 5: Perplexity on pruned model (llama-7B) from AIGC domain expert (o1)

Pruned Level	aigc algorithm 2
	100=10.105
0.50	193740.406
0.60	110879.422
0.70	174815.859
0.80	287734.844
0.90	157028.844
0.95	90220.781
0.99	991519.125

311		
312	a_i	Element i of vector a , with indexing starting at 1
313	a_{-i}	All elements of vector \boldsymbol{a} except for element i
314 315	-	Ī
316	$A_{i,j}$	Element i, j of matrix \boldsymbol{A}
317	$oldsymbol{A}_{i,:}$	Row i of matrix \boldsymbol{A}
318	$oldsymbol{A}_{:,i}$	Column i of matrix \boldsymbol{A}
319	${\mathcal A}_{i,j,k}$	Element (i, j, k) of a 3-D tensor A
320	$oldsymbol{A}_{:,:,i}$	2-D slice of a 3-D tensor
321	21:,:,1	
322	\mathbf{a}_i	Element i of the random vector \mathbf{a}
323		

Calculus

Table 6: Effect of pruned model (OPT-1.3B) applying to downstream task - text generation

Pruned Level	Perplexity
0.00	NA
0.50	19.191
0.60	23.205
0.70	44.246
0.80	364.304
0.90	3772.829
0.95	8892.167
0.99	22548.809

Table 7: (TODO: Running Time for each pruning algorithm)

Number	Running Time
01	TBA
02	TBA
03	TBA
04	TBA
05	TBA
06	TBA
07	TBA
08	TBA
09	TBA
10	TBA

361		
362	dy	Deliver of the second of
363	$\frac{dy}{dx}$	Derivative of y with respect to x
364	∂u	
365	$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
366	$\nabla_{\boldsymbol{x}} y$	Gradient of y with respect to x
367		•
368	$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to X
369	$ abla_{\mathbf{X}} y$	Tensor containing derivatives of y with respect to \mathbf{X}
370	∂f	T 1'
371	$\frac{\dot{\overline{\partial x}}}{\partial x}$	Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$
372	$ abla_{m{x}}^2 f(m{x}) ext{ or } m{H}(f)(m{x})$	The Hessian matrix of f at input point x
373		v 1 1
374	$\int f(\boldsymbol{x})d\boldsymbol{x}$	Definite integral over the entire domain of x
375	f	
376	$ abla_{m{x}}^2 f(m{x}) ext{ or } m{H}(f)(m{x}) \ \int f(m{x}) dm{x} \ \int_{\mathbb{S}} f(m{x}) dm{x}$	Definite integral with respect to x over the set $\mathbb S$

Probability and Information Theory

378			
379		Table 8: (TODO: H	End-to-end model evaluation)
380		Number	Inspiration Score
381			
382		01	TBA
383		02 03	TBA TBA
384 385		04	TBA
386		05	TBA
387		06	TBA
388		07 08	TBA TBA
389		08	TBA
390		10	TBA
391			
392 393			
394	P(a)	A probability dist	ribution over a discrete variable
395 396 397	$p(\mathbf{a})$		stribution over a continuous variable, or hose type has not been specified
398	$a \sim P$	Random variable	a has distribution P
399	$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of f	f(x) with respect to $P(x)$
400 401	Var(f(x))	Variance of $f(x)$	under $P(\mathbf{x})$
402	Cov(f(x), g(x))	Covariance of $f(x)$	f(x) and $f(x)$ under $f(x)$
403 404	$H(\mathbf{x})$	Shannon entropy	of the random variable x
405	$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler	divergence of P and Q
406 407	$\mathcal{N}(oldsymbol{x};oldsymbol{\mu},oldsymbol{\Sigma})$	Gaussian distribu Σ	tion over x with mean μ and covariance
408 409			Functions
410	$f:\mathbb{A} o \mathbb{B}$	The function f w	ith domain $\mathbb A$ and range $\mathbb B$
411 412	$f\circ g$	Composition of the	ne functions f and g
413 414	$f(oldsymbol{x};oldsymbol{ heta})$		parametrized by θ . (Sometimes we write a argument θ to lighten notation)
415	$\log x$	Natural logarithm	
416 417	$\sigma(x)$	Logistic sigmoid,	$\frac{1}{1 + \exp(-x)}$
418 419	$\zeta(x)$	Softplus, $\log(1 +$	$\exp(x)$)
420	$ oldsymbol{x} _p$	L^p norm of $oldsymbol{x}$	
421 422	x	L^2 norm of $oldsymbol{x}$	
423	x^+	Positive part of x	, i.e., $\max(0, x)$
424 425	$1_{ ext{condition}}$	is 1 if the condition	on is true, 0 otherwise

6 FINAL INSTRUCTIONS

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify the width or length of the rectangle the text should fit into, and do not change font sizes (except perhaps in the REFERENCES section; see below). Please note that pages should be numbered.

7 PREPARING POSTSCRIPT OR PDF FILES Please prepare PostScript or PDF files with paper size "US Letter", and not, for example, "A4". The tletter option on dvips will produce US Letter files. Consider directly generating PDF files using pdflatex (especially if you are a MiKTeX user). PDF figures must be substituted for EPS figures, however.

Otherwise, please generate your PostScript and PDF files with the following commands:

```
dvips mypaper.dvi -t letter -Ppdf -G0 -o mypaper.ps
ps2pdf mypaper.ps mypaper.pdf
```

7.1 MARGINS IN LATEX

or

Most of the margin problems come from figures positioned by hand using \special or other commands. We suggest using the command \includegraphics from the graphicx package. Always specify the figure width as a multiple of the line width as in the example below using .eps graphics

```
\usepackage[dvips]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.eps}

\usepackage[pdftex]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.pdf}
```

for .pdf graphics. See section 4.4 in the graphics bundle documentation (http://www.ctan.org/tex-archive/macros/latex/required/graphics/grfguide.ps)

A number of width problems arise when LaTeX cannot properly hyphenate a line. Please give LaTeX hyphenation hints using the \-command.

AUTHOR CONTRIBUTIONS

If you'd like to, you may include a section for author contributions as is done in many journals. This is optional and at the discretion of the authors.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including those to funding agencies, go at the end of the paper.

A APPENDIX

You may include other additional sections here.