David Sun CMPS 102 Homework 2

Problem 1: Design 3 algorithms based on binary min heaps that find the kth smallest # out of a set of n #'s in time:

- a) $O(n \log k)$
- b) $O(n + k \log n)$
- c) $O(n + k \log k)$

Note: For all problems, an array will be used to represent the heap.

a) For part a, we initially allocate an array of size k for our heap with all the elements initialized to $-\infty$ (according to CLRS, a heap containing all duplicate keys can still be classified as a valid min-heap). Then, we will make a pass through our array A from A[1...length[A]]. For each A_i where $i \in \{1...length[A]\}$, check if $-A_i$ is greater than the minimum of the heap. If such is the case, call remove on the heap, and insert $-A_i$ into the heap. We apply this operation for length[A] iterations. Once we've scanned through all the elements in A, the kth smallest element should be -1 * smallest(heap).

Correctness for a: If we want the kth smallest element, we would scan through the array and keep track of a k element list. If an element in the array A_i is less than the maximum element L_{max} in the list, replace L_{max} with A_i . Thus, by the end of one pass through the array, the k-element list will contain the k smallest elements in the array. However, the constraint in part a is that only the smallest element can be removed. In this case, we construct a heap using the negatives of the array elements. Thus if the negative of an array element is greater than the minimum heap value, then replace the minimum heap value with the negative of the array element. Since $\forall a,b \in \mathbb{R}$, if a > b then -b > -a, replacing the minimum value in the heap containing negatives is equivalent of replacing the maximums in a max-heap. By the end of one pass through the array, the min-heap would contain the negatives of the k-smallest values with the k-th smallest of the array as the smallest value of the heap.