To-do list 1. Section X 13 27 28 30 Contents 4 Regression modelling using I-priors 4.1.2 5 4.1.36 4.1.4 8 4.1.58 4.2.1 10 4.2.2 4.2.34.2.4 4.2.515 4.3

	4.3.1	The Nystrom approximation	17		
	4.3.2	An efficient EM algorithm	19		
	4.3.3	The exponential family EM algorithm	21		
	4.3.4	Accelerating the EM algorithm	25		
4.4	Post-es	stimation	25		
4.5	Examples				
4.6	Conclusion				
4.7	Miscel	lanea	27		
	4.7.1	Similarity to the g -prior	27		
	4.7.2	Multilevel models	28		
	4.7.3	A primer on Hamiltonian Monte Carlo	30		
4.8	Derivi	ng the posterior distribution for w	31		
4.9	A reca	p on the exponential family EM algorithm	32		
4.10	Derivi	ng the posterior predictive distribution	34		
4.11	Deriva	tion of the Fisher information for multivariate normal distributions	35		
					
Bibliog	raphy		39		

Haziq Jamil

Department of Statistics
London School of Economics and Political Science
March 20, 2018

Chapter 4

Regression modelling using I-priors

In the previous chapter, we defined an I-prior for the normal regression model (1.1) subject to (1.2) and f belonging to a reproducing kernel Hilbert or Krein space of functions \mathcal{F} , as a Gaussian distribution on f with covariance function equal to the Fisher information for f. We also saw how new function spaces can be constructed via the polynomial and ANOVA RKKS. In this chapter, we shall describe various regression models, and identify them with appropriate RKKSs, so that an I-prior may be defined on it.

Methods for estimating I-prior models are described in Section 4.2. Estimation here refers to obtaining the posterior distribution of the regression function under an I-prior, while optimising the kernel parameters of \mathcal{F} and the error precision Ψ . Likelihood based methods, namely direct optimisation of the likelihood and the expectation-maximisation (EM) algorithm, are the preferred estimation methods of choice. Having said this, it is also possible to estimate I-prior models under a full Bayesian paradigm by employing Markov chain Monte Carlo methods to sample from the relevant posterior densities.

Careful considerations of the computational aspects are required to ensure efficient estimation of I-prior models, and these are discussed in Section 4.3. The culmination of the computational work of I-prior estimation is the **iprior** package (Jamil and Bergsma, 2017), which is a publicly available R package that has been published to CRAN.

Finally, several examples of I-prior modelling are presented in Section 4.5: in particular, a multilevel data set, a longitudinal data set, and a data set involving a functional covariate, are analysed using the I-prior methodology.

4.1 Various regression models

In the introductory chapter (Section 1.1), we described several interesting regression models. The goal of this section is to formulate the I-prior model that describes each of these models. This is done by carefully choosing the RKHS/RKKS \mathcal{F} of real functions over a set \mathcal{X} to which the regression function f belongs. Without loss of generality and for simplicity, assume a prior mean of zero for the I-prior distribution.

4.1.1 Multiple linear regression

Let $\mathcal{X} \equiv \mathbb{R}^p$ be equipped with the regular Euclidean dot product, and \mathcal{F}_{λ} be the scaled canonical RKHS of functions over \mathcal{X} with kernel $h_{\lambda}(\mathbf{x}, \mathbf{x}') = \lambda \mathbf{x}^{\top} \mathbf{x}'$, for any two $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^p$. Then, an I-prior on f implies that

$$f(\mathbf{x}_i) = \sum_{j=1}^n \lambda \mathbf{x}_i^{\top} \mathbf{x}_j w_j$$
$$= \sum_{j=1}^n \lambda \left(\sum_{k=1}^p x_{ik} x_{jk} \right) w_j$$
$$= \beta_1 x_{i1} + \dots + \beta_p x_{ip},$$

where each $\beta_k := \lambda \sum_{j=1}^n x_{jk} w_j$. This implies a multivariate normal prior distribution for the regression coefficients

$$\boldsymbol{\beta} := (\beta_1, \dots, \beta_p) \sim N_p(\mathbf{0}, \lambda^2 \mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X}), \tag{4.1}$$

where **X** is the $n \times p$ design matrix for the covariates, excluding the column of ones at the beginning typically reserved for the intercept. As expected, the covariance matrix for β is recognised as the scaled Fisher information matrix for the regression coefficients.

If the covariates are not scaled similarly, then the values of f are incoherent—if x_1 measures weight in kilograms and x_2 height in centimetres, what measurement does $\beta_1 x_1 + \beta_2 x_2$ represent? To overcome this, one could decompose the regression function into

$$f(\mathbf{x}_i) = f_1(x_{i1}) + \dots + f_p(x_{ip})$$

for which $f \in \mathcal{F}_{\lambda} \equiv \mathcal{F}_{\lambda_1} \oplus \cdots \oplus \mathcal{F}_{\lambda_p}$, and \mathcal{F}_{λ_k} , $k = 1, \ldots, p$ are unidimensional canonical RKHSs with kernels $h_{\lambda_k}(x_{ik}, x_{jk}) = \lambda_k x_{ik} x_{jk}$. In effect, we now have p scale parameters,

one for each of the RKKSs associated with the p covariates. The RKKS \mathcal{F}_{λ} therefore has kernel

$$h(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^p \lambda_k x_{ik} x_{jk},$$

and hence each regression coefficient can now be written as $\beta_k = \sum_{j=1}^n \lambda_k x_{jk} w_j$. Thus, the corresponding I-prior for β is

$$\boldsymbol{\beta} \sim N_p(\mathbf{0}, \lambda^2 \mathbf{X}^{\top} \boldsymbol{\Lambda} \boldsymbol{\Psi} \boldsymbol{\Lambda} \mathbf{X}),$$

with $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$. Note that \mathcal{F}_{λ} can be seen as a special case of the ANOVA RKKS, in which only the main effects are considered, in which case the *centred canonical RKHSs* should be considered instead. This approach is disadvantageous when p is large, in which case there would be numerous scale parameters to estimate.

Remark 4.1. The I-prior for β in (4.1) bears resemblance to the g-prior (Zellner, 1986), and in fact, the g-prior can be interpreted as an I-prior if the inner product of \mathcal{X} is the Mahalonobis inner product. See Miscellanea 4.7.1 for a discussion.

4.1.2 Multilevel linear modelling

Let $\mathcal{X} \equiv \mathbb{R}^p$, and suppose that alongside the covariates, there is information on group levels $\mathcal{M} = \{1, \ldots, m\}$ for each unit i. That is, every observation for unit i is known to belong to a specific group j, and we write $\mathbf{x}_i^{(j)}$ to indicate this. Let n_j denote the sample size for cluster j, and the overall sample size be $n = \sum_{j=1}^m n_j$. When modelled linearly with the responses $y_i^{(j)}$, the model is known as a multilevel (linear) model, although it is known by many other names: random-effects models, random coefficient models, hierarchical models, and so on. As this model is seen as an extension of linear models, applications are plenty, especially in research designs for which the data varies at more than one level.

Consider a functional ANOVA decomposition of the regression function as follows:

$$f(\mathbf{x}_i^{(j)}, j) = \alpha + f_1(\mathbf{x}_i^{(j)}) + f_2(j) + f_{12}(\mathbf{x}_i^{(j)}, j).$$
(4.2)

To mimic the multilevel model, assume $f_1 \in \mathcal{F}_1$ the Pearson RKHS, $f_2 \in \mathcal{F}_2$ the centred canonical RKHS, and $f_{12} \in \mathcal{F}_{12} = \mathcal{F}_1 \otimes \mathcal{F}_2$, the tensor product space of \mathcal{F}_1 and \mathcal{F}_2 . As we know, α is the overall intercept, and the varying intercepts are given by the function

 f_2 . While f_1 is the (main) linear effect of the covariates, f_{12} provides the varying linear effect of the covariates by each group. The I-prior for $f - \alpha$ is assumed to lie in the function space $\mathcal{F} - \alpha$, which is an ANOVA RKKS with kernel

$$h_{\lambda}((\mathbf{x}_{i}^{(j)}, j), (\mathbf{x}_{i}^{(j')}, j')) = \lambda_{1}h_{1}(\mathbf{x}_{i}^{(j)}, \mathbf{x}_{i'}^{(j')}) + \lambda_{2}h_{2}(j, j') + \lambda_{1}\lambda_{2}h_{1}(\mathbf{x}_{i}^{(j)}, \mathbf{x}_{i'}^{(j')})h_{2}(j, j'),$$

with h_1 the centred canonical kernel and h_2 the Pearson kernel. The reason for not including an RKHS of constant functions in \mathcal{F} is because the overall intercept is usually simpler to estimate as an external parameter (see Section X).

We can show that the regression function (4.2) corresponds to the standard way of writing the multilevel model,

$$f(\mathbf{x}_i^{(j)}, j) = \beta_0 + \mathbf{x}_i^{(j)\top} \boldsymbol{\beta}_1 + \beta_{0j} + \mathbf{x}_i^{(j)\top} \boldsymbol{\beta}_{1j}.$$

and determine the prior distributions on $(\beta_{0j}, \beta_{1j}^{\top})^{\top} \in \mathbb{R}^{p+1}$. For the interested reader, the details are in Miscellanea 4.7.2. The standard multilevel random effects assumption is that $(\beta_{0j}, \beta_{1j}^{\top})^{\top}$ is normally distributed with mean zero and covariance matrix Φ . In total, there are p+1 regression coefficients and (p+1)(p+2)/2 covariance parameters in Φ to be estimated. In contrast, the I-prior model is parameterised by only two RKKS scale parameters—one for \mathcal{F}_1 and one for \mathcal{F}_2 —and the error precision ψ . While the estimation procedure for Φ in the standard multilevel model can result in non-positive covariance matrices, the I-prior model has the advantage that positive definiteness is taken care of automatically¹.

As a remark, the following regression functions are nested

- $f(\mathbf{x}_i^{(j)}, j) = f_0 + f_1(\mathbf{x}_i^{(j)}) + f_2(j)$ (random intercept model);
- $f(\mathbf{x}_i^{(j)}, j) = f_0 + f_1(\mathbf{x}_i^{(j)})$ (linear regression model);
- $f(\mathbf{x}_i^{(j)}, j) = f_0 + f_2(j)$ (ANOVA model);
- $f(\mathbf{x}_i^{(j)}, j) = f_0$ (intercept only model),

and thus one may compare likelihoods to ascertain the best fitting model. In addition, one may add flexibility to the model in two possible ways:

1. More than two levels. The model can be easily adjusted to reflect the fact that

¹By virtue of the estimate of the regression function belonging to \mathcal{F}_n , an RKHS with a positive definite kernel equal to the Fisher information for f.

that the data is structured in a hierarchy containing three or more levels. For the three level case, let the indices $j \in \{1, ..., m_1\}$ and $k \in \{1, ..., m_2\}$ denote the two levels, and simply decompose the regression function accordingly:

$$f(\mathbf{x}_{i}^{(j,k)}, j, k) = f_0 + f_1(\mathbf{x}_{i}^{(j,k)}) + f_2(j) + f_3(k) + f_{12}(\mathbf{x}_{i}^{(j,k)}, j) + f_{13}(\mathbf{x}_{i}^{(j,k)}, k) + f_{23}(j, k) + f_{123}(\mathbf{x}_{i}^{(j,k)}, j, k).$$

2. Covariates not varying with levels. Suppose now we would like to add covariates with a fixed effect to the model, i.e., covariates $\mathbf{z}_i^{(j)}$ which are not assumed to affect the responses differently in each group. The regression function would be:

$$f(\mathbf{x}_i^{(j)}, j, \mathbf{z}_j) = f_0 + f_1(\mathbf{x}_i^{(j)}) + f_2(j) + f_3(\mathbf{z}_i^{(j)}) + f_{12}(\mathbf{x}_i^{(j)}, j).$$

This can be seen as a limited functional ANOVA decomposition of f.

Remark 4.2. Indexing can be tricky, but we find the following helpful. Supposing m = 2, and $n_1 = n_2 = 3$, then a typical panel data set looks like this:

\overline{y}	x	z	i	j	k
y_{11}	x_{11}	z_1	1	1	1
y_{21}	x_{21}	z_1	2	1	2
y_{31}	x_{31}	z_1	3	1	3
y_{12}	x_{12}	z_2	1	2	4
y_{22}	x_{22}	z_2	2	2	5
y_{32}	x_{32}	z_2	3	2	6

The y's are the responses, x's covariates, and z's group-level covariates. If $\iota:(i,j)\mapsto k$ is a function which maps the dual index set (i,j) to the single index set $k\in\{1,\ldots,n\}$, then the multilevel regression function can be expressed as the regression function in model (1.1).

4.1.3 Longitudinal modelling

Longitudinal or panel data observes covariate measurements $x_i \in \mathcal{X}$ and responses $y_i(t) \in \mathbb{R}$ for individuals i = 1, ..., n across a time period $t \in \{1, ..., T\} =: \mathcal{T}$. Often, the time indexing set \mathcal{T} may be unique to each individual i, so measurements for unit i happens across a time period $\{t_{i1}, ..., t_{iT_i}\} =: \mathcal{T}_i$ —this is known as an unbalanced panel. It is also possible that covariate measurements vary across time too, so appropriately they are denoted $x_i(t)$. For example, $x_i(t)$ could be repeated measurements of the variable x_i

at time point $t \in \mathcal{T}_i$. The relationship between the response variables $y_i(t)$ at time $t \in \mathcal{T}_i$ is captured through the equation

$$y_i(t) = f(x_i, t) + \epsilon_i(t)$$

where the distribution of $\epsilon_i = (\epsilon_i(t_{i1}), \dots, \epsilon_i(t_{iT_i}))^{\top}$ is Gaussian with mean zero and covariance matrix Ψ_i . Assuming $\Psi_i = \psi_i \mathbf{I}_{T_i}$ or even $\Psi_i = \psi \mathbf{I}_{T_i}$ are perfectly valid choices, even though this seemingly ignores any time dependence between the observations. In reality, the I-prior induces time dependence of the observations via the kernels in the prior covariance matrix for f. Additionally, the random vectors ϵ_i and $\epsilon_{i'}$ are assumed to be independent for any two distinct $i, i' \in \{1, \dots, n\}$.

Using the functional ANOVA decomposition on the regression function, we obtain

$$f(x_i, t) = f_0 + f_1(x_i) + f_2(t) + f_{12}(x_i, t), \tag{4.3}$$

where f_0 is an overall constant, $f_1 \in \mathcal{F}_1$, $f_2 \in \mathcal{F}_2$, and $f_{12} \in \mathcal{F}_1 \otimes \mathcal{F}_2$. Choices for \mathcal{F}_1 and \mathcal{F}_2 are plentiful. In fact, any of the RKHS/RKKS described in Chapter 3 can be used to either model a linear dependence (canonical RKHS), nominal dependence (Pearson RKHS), polynomial dependence (polynomial RKKS) or smooth dependence (fBm or SE RKHS) on the x_i 's and t's on f.

Remark 4.3. Although (4.3) is a special case of the multilevel model decomposition (4.2) for which $x_i = x_i(t)$ (time-varying covariates), it is different to how longitudinal models are normally treated using a mixed effects model. As a multilevel model, longitudinal models treat the individuals as the groups or clusters (level two), and the time points as the various measurements within the clusters (level one).

4.1.4 Smoothing models

Single- and multi-variable smoothing models can be fitted under the I-prior methodology using the fBm RKHS. In standard kernel based smoothing methods, the squared exponential kernel is often used, and the corresponding RKHS contains analytic functions. There are several attractive properties of using the fBm RKHS, and for one-dimensional smoothing, these are discussed below.

Assume that, up to a constant, the regression function lies in the scaled, centred fBm RKHS \mathcal{F} of functions over $\mathcal{X} \equiv \mathbb{R}$ with Hurst index 1/2. Thus, with a centring with

respect to the empirical distribution P_n of $\{x_1, \ldots, x_n\}$ and using the absolute norm on \mathbb{R} , \mathcal{F} has kernel

$$h_{\lambda}(x, x') = \frac{\lambda}{2n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} (|x - x_i| + |x' - x_j| - |x - x'| - |x_i - x_j|).$$

According to van der Vaart and van Zanten (2008, Section 10), \mathcal{F} contains absolutely continuous functions possessing a square integrable weak derivative satisfying f(0) = 0. The norm is given by $||f||_{\mathcal{F}}^2 = \int \dot{f}^2 dx$. The posterior mean of f based on an I-prior is then a (one-dimensional) smoother for the data. For f of the form $f = \sum_{i=1}^n h(\cdot, x_i)w_i$, i.e., $f \in \mathcal{F}_n$, the finite subspace of \mathcal{F} as in Section, then Bergsma (2017) shows that f can be represented as

$$f(x) = \int_{-\infty}^{x} \beta(t) \, \mathrm{d}t \tag{4.4}$$

where

$$\beta(t) = \sum_{i:x_i \le t} w_i = \frac{f(x_{i_t+1}) - f(x_{i_t})}{x_{i_t+1} - x_{i_t}}$$

$$\tag{4.5}$$

with $i_t = \max_{x_i \leq t} i$. Under the I-prior with an iid assumption on the errors, the w_i 's are zero mean normal random variables with variance ψ , so that β as defined above is an ordinary Brownian bridge with respect to the empirical distribution P_n . The I-prior for f is piecewise linear with knots at x_1, \ldots, x_n , and the same holds true for the posterior mean. The implication is that the I-prior automatically adapts to irregularly spaced x_i : in any region where there are no observations, the resulting smoother is linear. This is explained by the reduced Fisher information about the derivative of the regression curve in regions with no observation.

In (Bergsma, 2017), it is stated that the covariance function for β is

$$\operatorname{Cov}\left(\beta(x),\beta(x')\right) = n\left(\min\{\operatorname{P}_n(X < x),\operatorname{P}_n(X_n < x')\} - \operatorname{P}_n(X < x)\operatorname{P}_n(X_n < x')\right)$$

From this, notice that $\operatorname{Var} \beta(x) = \operatorname{P}_n(X_n < x) (1 - \operatorname{P}_n(X_n < x))$, which shows an automatic boundary correction: close to the boundary there is little Fisher information on the derivative of the regression function $\beta(x)$, so the prior variance is small. This will lead to more shrinkage of the posterior derivative of f towards the derivative of the prior mean f_0 .

Another advantage of the I-prior methodology is the ability to fit single or multidimensional smoothing models with just two parameters to be estimated: the RKHS scale parameter λ and the error precision Ψ . The Hurst parameter $\gamma \in (0,1)$ of the fBm RKHS can also be treated as a free parameter for added flexibility, but for most practical applications, we find that the default setting of $\gamma = 1/2$ performs sufficiently well.

Remark 4.4. From (4.4), the prior process for f is thus an integrated Brownian bridge. This shows a close relation with cubic spline smoothers, which can be interpreted as the posterior mean when the prior is an integrated Wiener process (Wahba, 1990). Unlike I-priors however, cubic spline smoothers do not have automatic boundary corrections, and typically the additional assumption is made that the smoothing curve is linear at the boundary knots.

4.1.5 Regression with functional covariates

Suppose that we have functional covariates x in the real domain, and that \mathcal{X} is a set of differentiable functions. If so, it is reasonable to assume that \mathcal{X} is a Hilbert-Sobolev space with inner product

$$\langle x, x' \rangle_{\mathcal{X}} = \int \dot{x}(t)\dot{x}'(t) dt,$$

so that we may apply the linear, fBm or any other kernels which make use of inner products by making use of the polarisation identity. Furthermore, let $z \in \mathbb{R}^T$ be the discretised realisation of the function $x \in \mathcal{X}$ at regular intervals t = 1, ..., T. Then

$$\langle x, x' \rangle_{\mathcal{X}} \approx \sum_{t=1}^{T-1} (z_{t+1} - z_t)(z'_{t+1} - z'_t).$$

For discretised observations at non-regular intervals $\{t_1, \ldots, t_T\}$ then a more general formula to the above one might be used, for instance,

$$\langle x, x' \rangle_{\mathcal{X}} \approx \sum_{i=1}^{T-1} \frac{(z_{t_{i+1}} - z_{t_i})(z'_{t_{i+1}} - z'_{t_i})}{t_{i+1} - t_i}.$$

4.2 Estimation

After selecting a RKHS/RKKS \mathcal{F} of functions over \mathcal{X} suitable for the regression problem at hand, one then proceeds to estimate the posterior distribution of the regression func-

tion. The I-prior model (1.1) subject to (1.2) and $f \in \mathcal{F}$ has the simple and convenient representation

$$y_i = \alpha + f_0(x_i) + \sum_{k=1}^{n} h_{\eta}(x_i, x_k) w_k + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^{\top} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{\Psi}^{-1})$$

$$(w_1, \dots, w_n)^{\top} \sim \mathcal{N}_n(\mathbf{0}, \mathbf{\Psi}),$$

$$(4.6)$$

where $f_0: \mathcal{X} \to \mathbb{R}$ is a function chosen a priori representing the 'best guess' of f, and the dependence of the kernel of \mathcal{F} on parameters η is emphasised through the subscript in $h_{\eta}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

The parameters of the I-prior model are collectively denoted by $\theta = \{\alpha, \eta, \Psi\}$. Given θ and a prior choice for f_0 , the posterior regression function is determined solely by the posterior distribution of the w_i 's. Using standard multivariate normal results, one finds that the posterior distribution for $\mathbf{w} := (w_1, \dots, w_n)^{\top}$ is $\mathbf{w} | \mathbf{y} \sim N_n(\tilde{\mathbf{w}}, \tilde{\mathbf{V}}_w)$, where

$$\tilde{\mathbf{w}} = \mathbf{\Psi} \mathbf{H}_{\eta} \mathbf{V}_{\eta}^{-1} (\mathbf{y} - \alpha \mathbf{1}_{n} - \mathbf{f}_{0}) \quad \text{and} \quad \tilde{\mathbf{V}}_{w} = (\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1})^{-1} = \mathbf{V}_{\eta}^{-1}, \quad (4.7)$$

using the familiar notation that we introduced in Section 1.4. See section 4.8 for a derivation. By linearity, the posterior distribution for f is also normal.

In each modelling scenario, there are a number of kernel parameters η that need to be estimated from the data. Assuming that the covariate space is $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_p$, and there is an ANOVA like decomposition of the function space \mathcal{F} into its constituents spaces $\mathcal{F}_1, \ldots, \mathcal{F}_p$, then at the very least, there are p scale parameters $\lambda_1, \ldots, \lambda_p$ for each of the RKHSs. Depending on the RKHS used, there could be more kernel parameters that need to be optimised, for instance, the Hurst index for the fBm RKHS, the lengthscale for the SE RKHS, and/or the offset for the polynomial RKKS. However, these may be treated as fixed parameters as well.

The following subsections describe possible estimation procedures for the hyperparameters of the model. Henceforth, for simplicity, the following additional standing assumptions are imposed on the I-prior model (4.6):

A1 **Centred responses**. Set $\alpha = 0$ and replace the responses by their centred versions $y_i \mapsto \tilde{y}_i = y_i - \frac{1}{n} \sum_{i=1}^n$.

- A2 **Zero prior mean**. Assume a zero prior mean $f_0(x) = 0$ for all $x \in \mathcal{X}$.
- A3 **Iid errors**. Assume identical and independent (iid) errors random variables, i.e., $\Psi = \psi \mathbf{I}_n$.

Assumptions A1 and A2 are motivated by the discussion in subsection 4.2.1. Although assumption A3 is not strictly necessary, it is often a reasonable one and one that simplifies the estimation procedure greatly.

4.2.1 The intercept and the prior mean

In most statistical models, an intercept is a necessary inclusion which aids interpretation. In the context of the I-prior model (4.6), a lack of an intercept would fail to account for the correct locational shift of the regression function along the y-axis. Further, when zero-mean functions are considered, the intercept serves as being the 'grand mean' value of the responses.

The addition of an intercept to the regression model may be viewed in one of two ways. The first is to view it as a function belonging to the RKHS of constant functions \mathcal{F}_0 , and thereby tensor summing this space to \mathcal{F} . In the polynomial and ANOVA RKKSs, we saw that an intercept is naturally induced by the inclusion of a RKHS of constant functions in their construction. The second is to simply treat the intercept as a parameter of the model to be estimated. In any of the other RKHSs described in Chapter 2, an intercept would need to be added separately.

These two methods convey the same mathematical model, and there is very little difference in the way of interpretation, although estimation is entirely different. In the first method, the intercept-less RKHS/RKKS \mathcal{F} with kernel h is made to include an intercept by modifying the kernel to be h+1. The intercept will then be implicitly taken care of without having dealt with it explicitly. However, it can be obtained by realising that for $\alpha \in \mathcal{F}_0$ the RKHS of constant functions, then $\alpha = \sum_{i=1}^n w_i$.

On the other hand, consider the intercept as a parameter α to be estimated. Obtaining an estimate α using a likelihood-based argument is rather simple. From (4.6), $\mathbf{E} y_i = \alpha + f_0(x_i)$ for all $i = 1, \ldots, n$, so the maximum likelihood estimate for $\mathbf{E} y$ is its sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, and hence the ML estimate for α is $\hat{\alpha} = \bar{y} - \frac{1}{n} \sum_{i=1}^{n} f_0(x_i)$. Alternatively, the estimation of α under a fully Bayesian treatment is possible by assuming an appropriate hyperprior on it, such as a conjugate normal prior $\mathbf{N}(a, A^{-1})$. If

so, the conditional posterior of α given \mathbf{w} , η , $\mathbf{\Psi}$ and f_0 is also normal with mean \tilde{a} and variance \tilde{A} , where

$$\tilde{A} = \sum_{i,j=1}^{n} \psi_{ij} + A$$
 and $\tilde{a} = \tilde{A}^{-1} \left(\sum_{i=1}^{n} [(\mathbf{y} - \mathbf{f}_0 - \mathbf{H}_{\eta} \mathbf{w}) \mathbf{\Psi}]_i + Aa \right)$.

This fact can be used, say, in conjunction with a Gibbs sampling procedure treating the rest of the unknowns as random. Note that the posterior mean for α is

$$E[\alpha|\mathbf{y}] = E_{\mathbf{w}} \left[E[\alpha|\mathbf{y}, \mathbf{w}] \right] = \frac{\sum_{i,j=1}^{n} \psi_{ij} (y_i - f_0(x_i)) + Aa}{\sum_{i,j=1}^{n} \psi_{ij} + A},$$

which, in the iid errors case, is seen to be a weighted sum of the ML estimate $\hat{\alpha}$ and the prior mean a. Unless there is a strong reason to add prior information to the intercept, the ML estimate seems to be the simplest approach. Assumption A1 implies a ML estimation of the intercept parameter.

Now, a note on the prior mean f_0 . For kernels with the property that $h(x, x^*) \to 0$ as $D(x, x^*) \to \infty$ for $x \in \mathcal{X}_{\text{train}}$ and $x^* \in \mathcal{X}_{\text{new}}$ such as the SE kernel, this means that predictions outside the training set will be zero and thus rely on the prior mean f_0 . However, all of the other kernels in this thesis, namely the fBm, canonical, and polynomial kernels, do not have this property—they instead use information provided by the training data to extrapolate predictions far away from the data set. A prior mean of zero seems reasonable and safe in the absence of any prior information, so long as the global and local properties of the regression function are understood with respect to the kernel chosen. $f_0 = 0$ also implies a complete reliance on the data rather than subjective prior belief of a suitable choice for f.

Of course, should it be felt appropriate, a non-zero function f_0 may be imposed as the prior mean. If $f_0(x) = \mu_0 \in \mathbb{R}$ for all $x \in \mathcal{X}$, then this basically implies another intercept in the model, if it is not already present. Note that when treating μ_0 as a hyperparameter to be estimated, then this does not yield a fully identified model, and only $\alpha + \mu_0$ may be estimated.

4.2.2 Direct optimisation

Under assumptions A1 and A2, a direct optimisation of the parameters $\theta = \{\eta, \Psi\}$ using the log-likelihood of θ is straightforward to implement. Denote $\Sigma_{\theta} := \mathbf{H}_{\eta} \Psi \mathbf{H}_{\eta} + \Psi^{-1} = \mathbf{H}_{\eta} \Psi \mathbf{H}_{\eta}$

 \mathbf{V}_{y} . From (4.6), the (marginal) log-likelihood of θ is given by

$$L(\theta) = \log \int p(\mathbf{y}|\mathbf{w})p(\mathbf{w}) d\mathbf{w}$$
$$= -\frac{n}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{\Sigma}_{\theta}| - \frac{1}{2}\tilde{\mathbf{y}}^{\top}\mathbf{\Sigma}_{\theta}^{-1}\tilde{\mathbf{y}}. \tag{4.8}$$

The term marginal refers to the fact that we are averaging out the random function represented by \mathbf{w} . Direct optimisation is typically done using conjugate gradients with a Cholesky decomposition on the covariance kernel to maintain stability, but we opt for an eigendecomposition of the kernel matrix $\mathbf{H}_{\eta} = \mathbf{V} \cdot \operatorname{diag}(u_1, \dots, u_n) \cdot \mathbf{V}^{\top}$ instead. Further, under assumption A3 and since \mathbf{H}_{η} is a symmetric matrix, we have that $\mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_n$, and thus

$$\mathbf{V}_y = \mathbf{V} \cdot \operatorname{diag}(\psi u_1^2 + \psi^{-1}, \dots, \psi u_n^2 + \psi^{-1}) \cdot \mathbf{V}^{\top}$$

for which the inverse and log-determinant is easily obtainable. This method is relatively robust to numerical instabilities and is better at ensuring positive definiteness of the covariance kernel. The eigendecomposition is performed using the Eigen C++ template library and linked to iprior using Rcpp (Eddelbuettel and Francois, 2011). The hyperparameters are transformed by the iprior package so that an unrestricted optimisation using the quasi-Newton L-BFGS algorithm provided by optim() in R. Note that minimisation is done on the deviance scale, i.e., minus twice the log-likelihood. The direct optimisation method can be prone to local optima, in which case repeating the optimisation at different starting points and choosing the one which yields the highest likelihood is one way around this.

Let **U** be the Fisher information matrix for $\theta \in \mathbb{R}^q$. Standard calculations (section 4.11) show that under the marginal distribution $\tilde{\mathbf{y}} \sim N_n(\mathbf{0}, \boldsymbol{\Sigma}_{\theta})$, the (i, j)th coordinate of **U** is

$$u_{ij} = \frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}_{\theta}^{-1} \frac{\partial \mathbf{\Sigma}_{\theta}}{\partial \theta_{i}} \mathbf{\Sigma}_{\theta}^{-1} \frac{\partial \mathbf{\Sigma}_{\theta}}{\partial \theta_{i}} \right)$$

where the derivative of a matrix with respect to a scalar is the element-wise derivative of the matrix. With $\hat{\theta}$ denoting the ML estimate for θ , under suitable conditions, $\sqrt{n}(\hat{\theta} - \theta)$ has an asymptotic multivariate normal distribution with mean zero and covariance matrix \mathbf{U}^{-1} (Casella and R. L. Berger, 2002). In particular, the standard errors for θ_k are the diagonal elements of $\mathbf{U}^{-1/2}$.

4. Show ridge in the log-likelihood plot.

4.2.3 Expectation-maximisation algorithm

Evidently, (4.6) lends itself to resembling a random-effects model, for which the EM algorithm can easily be employed to estimate its hyperparameters. Assume A1 and A2 holds. By treating the complete data as $\{\mathbf{y}, \mathbf{w}\}$ and the w_i 's as "missing", the tth iteration of the E-step entails computing

$$Q(\theta) = \mathbf{E}_{\mathbf{w}} \left[\log p(\mathbf{y}, \mathbf{w} | \theta) | \mathbf{y}, \theta^{(t)} \right]$$

$$= \mathbf{E}_{\mathbf{w}} \left[\operatorname{const.} - \frac{1}{2} (\tilde{\mathbf{y}} - \mathbf{H}_{\eta} \mathbf{w})^{\top} \mathbf{\Psi} (\tilde{\mathbf{y}} - \mathbf{H}_{\eta} \mathbf{w}) - \frac{1}{2} \mathbf{w}^{\top} \mathbf{\Psi}^{-1} \mathbf{w} | \mathbf{y}, \theta^{(t)} \right]$$

$$= \operatorname{const.} - \frac{1}{2} \tilde{\mathbf{y}}^{\top} \mathbf{\Psi} \tilde{\mathbf{y}} - \frac{1}{2} \operatorname{tr} \left((\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1}) \tilde{\mathbf{W}}^{(t)} \right) + \tilde{\mathbf{y}}^{\top} \mathbf{\Psi} \mathbf{H}_{\eta} \tilde{\mathbf{w}}^{(t)},$$

$$(4.9)$$

where $\tilde{\mathbf{w}}^{(t)} = \mathrm{E}[\mathbf{w}|\mathbf{y}, \theta^{(t)}]$ and $\tilde{\mathbf{W}}^{(t)} = \mathrm{E}[\mathbf{w}\mathbf{w}^{\top}|\mathbf{y}, \theta^{(t)}]$ are the first and second posterior moments of \mathbf{w} calculated at the tth EM iteration. These can be computed directly from (4.7), substituting for $\theta^{(t)} = \{\eta^{(t)}, \mathbf{\Psi}^{(t)}\}$ as appropriate. Note that (4.9) follows as a direct consequence of the results in section 4.8.

Now, assume that A3 holds. The M-step then assigns $\theta^{(t+1)}$ the value of θ which maximises the Q function above. This boils down to solving the first order conditions

$$\frac{\partial Q}{\partial \eta} = -\frac{1}{2} \operatorname{tr} \left(\frac{\partial \mathbf{\Sigma}_{\theta}}{\partial \eta} \tilde{\mathbf{W}}^{(t)} \right) + \psi \cdot \tilde{\mathbf{y}}^{\top} \frac{\partial \mathbf{H}_{\eta}}{\partial \eta} \tilde{\mathbf{w}}^{(t)}$$
(4.10)

$$\frac{\partial Q}{\partial \psi} = -\frac{1}{2} \tilde{\mathbf{y}}^{\top} \tilde{\mathbf{y}} - \operatorname{tr} \left(\frac{\partial \mathbf{\Sigma}_{\theta}}{\partial \psi} \tilde{\mathbf{W}}^{(t)} \right) + \tilde{\mathbf{y}}^{\top} \mathbf{H}_{\eta} \tilde{\mathbf{w}}^{(t)}$$
(4.11)

equated to zero. As $\partial \Sigma_{\theta}/\partial \psi = \mathbf{H}_{\eta}^2 - \psi^{-2}\mathbf{I}_n$, the solution to (4.11) is obtained as

$$\psi^{(t+1)} = \left\{ \frac{\operatorname{tr} \tilde{\mathbf{W}}^{(t)}}{\tilde{\mathbf{y}}^{\top} \tilde{\mathbf{y}} + \operatorname{tr}(\mathbf{H}_{\eta}^{2} \tilde{\mathbf{W}}^{(t)}) - 2\tilde{\mathbf{y}}^{\top} \mathbf{H}_{\eta} \tilde{\mathbf{w}}^{(t)}} \right\}^{1/2}.$$
 (4.12)

The solution to (4.10) can also be found in closed-form, but only in cases where the full-data likelihood in η emits itself as belonging to an exponential family likelihood. Such cases are described in further detail in Section X. In cases where closed-form solutions do exist for η , then it is just a matter of iterating the update equations until a suitable convergence criterion is met (e.g. no more sizeable increase in successive log-likelihood values). In cases where closed-form solutions do not exist for η , the Q function is again optimised with respect to η using the L-BFGS algorithm.

In our experience, the EM algorithm is more stable than direct maximisation, in the sense that the EM steps increase the likelihood in a gentle manner that prevents sudden explosions of the likelihood. The reason for this is that the Q function is generally convex in the parameters (at the very least, it is convex in each coordinate of θ , in most cases anyway). As such, the EM is especially suitable if there are many scale parameters to estimate, but on the flip side, it is typically slow to converge. The **iprior** package provides a method to automatically switch to the direct optimisation method after running several EM iterations. This then combines the stability of the EM with the speed of direct optimisation.

4.2.4 Markov chain Monte Carlo methods

For completeness, it should be mentioned that a full Bayesian treatment of the model is possible, with additional priors on the set of hyperparameters. Markov chain Monte Carlo (MCMC) methods can then be employed to sample from the posteriors of the hyperparameters, with point estimates obtained using the posterior mean or mode, for instance. Additionally, the posterior distribution encapsulates the uncertainty about the parameter, for which inference can be made. Posterior sampling can be done using Gibbs-based methods in **WinBUGS** (Lunn et al., 2000) or **JAGS** (Plummer, 2003), and both have interfaces to R via **R2WinBUGS** (Sturtz et al., 2005) and **runjags** (Denwood, 2016) respectively. Hamiltonian Monte Carlo (HMC) sampling is also a possibility, and the **Stan** project (Carpenter et al., 2017) together with the package **rstan** (Stan Development Team, 2016) makes this possible in R.

On the software side, all of these MCMC packages require the user to code the model individually, and we are not aware of the existence of MCMC-based packages which are able to estimate GPR models. This makes it inconvenient for GPR and I-prior models, because in addition to the model itself, the kernel functions need to be coded as well and ensuring computational efficiency would be a difficult task.

Speaking of efficiency, it is more advantageous to marginalise the I-prior and work with the marginal model (4.8), rather than the hierarchical specification (4.6). The reason for this is that the latter model has a parameter space whose dimension is O(n), while the former only samples the hyperparameters. The posterior sampling for the w_i 's in (equivalently, the posterior Gaussian process $f(x) = \sum_{i=1}^{n} h_{\lambda}(x, x_i)w_i$) is performed using the normal posterior distribution in (4.7).

4.2.5 Comparison of estimation methods

Consider a one-dimensional smoothing example. n = 150 data pairs (y_i, x_i) have been randomly sampled according to the true relationship

$$r_{i} = \text{const.} + \overbrace{0.35 \cdot \phi(x_{i}|1, 0.8^{2}) + 0.65 \cdot \phi(x_{i}|4, 1.5^{2}) + \mathbb{1}(x_{i} > 4.5) \cdot e^{1.25(x_{i} - 4.5)}}^{f_{\text{true}}(x_{i})},$$

$$(4.13)$$

where $\phi(\cdot|\mu, \sigma^2)$ is the probability density function of the normal distribution with mean μ and variance σ^2 . The observed y_i 's are thought to be noisy versions of the true points, i.e. $y_i = r_i + \epsilon_i$, with ϵ_i following an indescript, not necessarily normal, distribution. The predictors x_1, \ldots, x_n have been sampled roughly from the interval (-1, 6), and the sampling was intentionally not uniform so that there is slight sparsity in the middle. Figure 4.1 plots the sampled points and the true regression function.

Figure 4.1: A plot of the sampled data points according to equation (4.13), with the true regression function superimposed.

We attempt to estimate f_{true} by a function f belonging to the fBm-0.5 RKHS \mathcal{F}_{λ} , with an I-prior on f. There are two parameters that need to be estimated: the scale parameter λ for the fBm-0.5 RKHS, and the error precision ψ . These can be estimated using the maximum likelihood methods described above, namely by direct optimisation and the EM algorithm. These two methods are implemented in the **iprior** package. A full

Bayesian treatment is possible, and we use the **rstan** implementation of **Stan** to perform Hamiltonian Monte Carlo sampling of the posterior densities. A vague prior choice for λ and ψ are prescribed, namely

$$\lambda, \psi \stackrel{\text{iid}}{\sim} N_{+}(0, 100),$$

where $N_{+}(\mu, \sigma^2)$ represents the half-normal distribution². We have also set an improper prior density $p(\alpha) \propto \text{const.}$ for the intercept. The advantage of HMC is that efficiency is not dictated by conjugacy, so there is freedom to choose any appropriate prior choice on the parameters.

Table 4.1: Table comparing the estimated parameter values, (marginal) log-likelihood values, and also time taken for the three estimation methods.

	Direct optimisation	EM algorithm	Hamiltonian MC
Intercept (α)	16.1 (NA)	16.1 (NA)	16.1 (0.17)
Scale (λ)	5.01 (1.23)	5.01 (1.26)	5.61 (1.42)
Precision (ψ)	0.236 (0.03)	0.236 (0.03)	0.237 (0.03)
Log density Predictive RMSE	-339.7	-339.7	-341.1
	0.574	0.575	0.582
Iterations Time taken (s)	12	266	2000
	0.96	3.65	232

Table 4.1 tabulates the estimated parameter values, (marginal) log-likelihood values, and also time taken for the three estimation methods. The three methods concur on the estimated parameter values, although the scale parameter has been estimated slightly differently, which is possibly attributed to the effect of the prior for λ . The resulting log-likelihood value for the Bayesian method is lower than the ML methods, which also took the longest to compute. Although the EM algorithm took longer than the direct optimisation method to compute, the time taken per iteration is significantly shorter than one Newton iteration.

4.3 Computational considerations

Computational complexity for estimating I-prior models (and in fact, for GPR in general) is dominated by the inversion of the $n \times n$ matrix $\Sigma_{\theta} = \mathbf{H}_{\eta} \Psi \mathbf{H}_{\eta} + \Psi^{-1}$, which scales as $O(n^3)$ in time. As mentioned earlier, the **iprior** package inverts this by way of the

The random variable $X \sim N_+(\mu, \sigma^2)$ has the density $p(x) = \phi(x|\mu, \sigma^2) \mathbb{1}(x \ge 0)$.

eigendecomposition of \mathbf{H}_{η} , but this operation is also $O(n^3)$. For the direct optimisation method, this matrix inversion is called when computing the log-likelihood, and thus must be computed at each Newton step. For the EM algorithm, this matrix inversion appears when calculating $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{W}}$, the first and second posterior moments of the I-prior random effects. Furthermore, storage requirements for I-priors models are similar to that of GPR models, which is $O(n^2)$. In what follows, assumptions A1–A3 hold.

4.3.1 The Nyström approximation

The shared computational issues of I-prior and GPR models allow us to delve into machine learning literature, which is rich in ways to resolve these issue, as summarised by Quiñonero-Candela and Rasmussen (2005). One such method is to use low-rank matrix approximations. The idea is as follows. Let \mathbf{Q} be a matrix with rank q < n, and suppose that $\mathbf{Q}\mathbf{Q}^{\top}$ can be used sufficiently well to represent the kernel matrix \mathbf{H}_{η} . Then

$$(\psi \mathbf{H}_{\eta}^{2} + \psi^{-1} \mathbf{I}_{n})^{-1} \approx \psi \left[\mathbf{I}_{n} - \mathbf{Q} \left(\left(\psi^{2} \mathbf{Q}^{\top} \mathbf{Q} \right)^{-1} + \mathbf{Q}^{\top} \mathbf{Q} \right)^{-1} \mathbf{Q}^{\top} \right],$$

obtained via the Woodbury matrix identity, is a potentially much cheaper operation which scales $O(nq^2)$ — $O(q^3)$ to do the inversion, and O(nq) to do the multiplication (because typically the inverse is premultiplied to a vector). When the kernel matrix itself is sufficiently low ranked (for instance, when using the linear kernel for a low-dimensional covariate) then the above method is exact. This fact is clearly demonstrated by the equivalence of the p-dimensional linear model reference with the n-dimensional I-prior model using the canonical RKHS. If $p \ll n$ then certainly using the linear representation is much more efficient.

However, other interesting kernels such as the fractional Brownian motion (fBm) kernel or the squared exponential kernel results in kernel matrices which are full rank. An approximation to the kernel matrix using a low-rank matrix is the Nyström method (Williams and Seeger, 2001). The theory has its roots in approximating eigenfunctions, but this has since been adopted to speed up kernel machines. The main idea is to obtain an (approximation to the true) eigendecomposition of \mathbf{H}_{η} based on a small subset $m \ll n$ of the data points.

Let $\mathbf{H}_{\eta} = \mathbf{V}\mathbf{U}\mathbf{V}^{\top} = \sum_{i=1}^{n} u_{i}\mathbf{v}_{i}\mathbf{v}_{i}^{\top}$ be the (orthogonal) decomposition of the symmetric matrix \mathbf{H}_{η} . As mentioned, avoiding this expensive $O(n^{3})$ eigendecomposition is desired, and this is achieved by selecting a subset \mathcal{M} of size m of the n data points

 $\{1,\ldots,n\}$, so that \mathbf{H}_{η} may be approximated using the rank m matrix $\mathbf{H}_{\eta} \approx \sum_{i \in \mathcal{M}} \tilde{u}_i \tilde{\mathbf{v}}_i \tilde{\mathbf{v}}_i^{\mathsf{T}}$ Without loss of generality, reorder the rows and columns of \mathbf{H}_{η} so that the data points indexed by \mathcal{M} are used first:

$$\mathbf{H}_{\eta} = \begin{pmatrix} \mathbf{A}_{m \times m} & \mathbf{B}_{m \times (n-m)} \\ \mathbf{B}_{m \times (n-m)}^{\top} & \mathbf{C}_{(n-m) \times (n-m)} \end{pmatrix}.$$

In other words, the data points indexed by \mathcal{M} forms the smaller $m \times m$ kernel matrix \mathbf{A} . Let $\mathbf{A} = \mathbf{V}_m \mathbf{U}_m \mathbf{V}_m^{\top} = \sum_{i=1}^m u_i^{(m)} \mathbf{v}_i^{(m)} \mathbf{v}_i^{(m)\top}$ be the eigendeceomposition of \mathbf{A} . The Nyström method provides the formulae for \tilde{u}_i and $\tilde{\mathbf{v}}_i$ as

$$\tilde{u}_i := \frac{n}{m} u_i^{(m)} \in \mathbb{R}$$

$$\tilde{\mathbf{v}}_i := \sqrt{\frac{m}{n}} \frac{1}{u_i^{(m)}} \begin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix}^\top \mathbf{v}_i^{(m)} \in \mathbb{R}^n.$$

Denoting \mathbf{U}_m as the diagonal matrix of eigenvalues $u_1^{(m)}, \dots, u_m^{(m)}$, and \mathbf{V}_m the corresponding matrix of eigenvectors $\mathbf{v}_i^{(m)}$, we have

$$\mathbf{H}_{\eta}pprox \overbrace{\begin{pmatrix} \mathbf{V}_{m} & ar{\mathbf{V}}^{ op} \\ \mathbf{B}^{ op}\mathbf{V}_{m}\mathbf{U}_{m}^{-1} \end{pmatrix}}^{ar{\mathbf{V}}_{m}} \mathbf{U}_{m} \overbrace{\begin{pmatrix} \mathbf{V}_{m}^{ op} & \mathbf{U}_{m}^{-1}\mathbf{V}_{m}^{ op}\mathbf{B} \end{pmatrix}}^{ar{\mathbf{V}}^{ op}}$$

Unfortunately, it may be the case that $\bar{\mathbf{V}}\bar{\mathbf{V}}^{\top} \neq \mathbf{I}_n$, while orthogonality crucial in order to easily calculate the inverse of Σ_{θ} . An additional step is required to obtain an orthogonal version of the Nyström decomposition, as studied by Fowlkes et al. (2001). Let $\mathbf{K} = \mathbf{A} + \mathbf{A}^{-\frac{1}{2}}\mathbf{B}^{\top}\mathbf{B}\mathbf{A}^{-\frac{1}{2}}$, where $\mathbf{A}^{-\frac{1}{2}} = \mathbf{V}_m\mathbf{U}_m^{-\frac{1}{2}}\mathbf{V}_m$, and obtain the eigendecomposition of this $m \times m$ matrix $\mathbf{K} = \mathbf{R}\hat{\mathbf{U}}\mathbf{R}^{\top}$. Defining

$$\hat{\mathbf{V}} = egin{pmatrix} \mathbf{A} \ \mathbf{B}^{ op} \end{pmatrix} \mathbf{A}^{-rac{1}{2}} \mathbf{R} \hat{\mathbf{U}}^{-rac{1}{2}} \in \mathbb{R}^n imes \mathbb{R}^m,$$

then we have that $\mathbf{H}_{\eta} \approx \hat{\mathbf{V}}\hat{\mathbf{U}}\hat{\mathbf{V}}^{\top}$ such that $\hat{\mathbf{V}}\hat{\mathbf{V}}^{\top} = \mathbf{I}_n$. Estimating I-prior models with the Nyström method including the orthogonalisation step takes roughly $O(nm^2)$ time and O(nm) storage.

There is the issue of selecting the subset \mathcal{M} . The simplest method and that which is implemented in the **iprior** package, would be to uniformly sample a subset of size m from the n points. Although this works well in practice, the quality of approximation might

suffer if the points do not sufficiently represent the training set. In this light, greedy approximations have been suggested to select the m points, so as to reduce some error criterion relating to the quality of approximation. For a brief review of more sophisticated methods of selecting \mathcal{M} , see Rasmussen and Williams (2006, §8.1, pp. 173–174).

4.3.2 An efficient EM algorithm

The evaluation of the Q function in (4.9) is $O(n^3)$, because a change in the values of θ requires evaluating $\Sigma_{\theta} = \psi \mathbf{H}_{\eta}^2 + \psi^{-1} \mathbf{I}_n$, for which squaring \mathbf{H}_{η} takes the bulk of the computational time. In this section, we describe an efficient method of evaluating Q if the I-prior model only involves estimating the RKHS scale parameters $\lambda = \{\lambda_1, \ldots, \lambda_p\}$ and the iid error precision ψ under assumptions A1–A3.

Assume that any other kernel parameters are fixed and need not be estimated, and that there are p scale parameters corresponding to p RKHS $\mathcal{F}_1, \ldots, \mathcal{F}_p$ of functions over $\mathcal{X}_1, \ldots, \mathcal{X}_p$. Write $\theta = \{\lambda_1, \ldots, \lambda_p, \psi\}$. The most common modelling scenarios that will be encountered are listed below:

1. Single scale parameter. With p = 1, $f \in \mathcal{F} \equiv \lambda_1 \mathcal{F}_1$ of functions over a set \mathcal{X} . \mathcal{F} may be any of the building block RKHSs. Note that \mathcal{X} itself may be more than one-dimensional. The kernel over $\mathcal{X} \times \mathcal{X}$ is therefore

$$h_{\eta} = \lambda_1 h_1.$$

2. Multiple scale parameters. Here, \mathcal{F} is a RKKS of functions $f: \mathcal{X}_1 \times \cdots \times \mathcal{X}_p \to \mathbb{R}$, and thus $\mathcal{F} \equiv \lambda_1 \mathcal{F}_1 \oplus \cdots \oplus \lambda_p \mathcal{F}_p$, where each \mathcal{F}_k is one of the building block RKHSs. The kernel is

$$h_{\eta} = \lambda_1 h_1 + \dots + \lambda_p h_p.$$

3. Multiple scale parameters with level-2 interactions. This occurs commonly with multilevel and longitudinal models. Suppose that \mathcal{X}_1 is the set of 'levels' and there are p-1 covariate sets \mathcal{X}_k , $k=2,\cdots,p$. The function space \mathcal{F} is a special case of the ANOVA RKKS, and its kernel is

$$h_{\eta} = \sum_{j=1}^{p} \lambda_j h_j + \sum_{j < k} \lambda_j \lambda_k h_j h_k,$$

where \mathcal{F}_1 is the Pearson RKHS, and the remaining are any of the building block RKHSs.

4. **Polynomial RKKS**. When using the polynomial RKKS of degree d to incite a polynomial relationship of the covariate set \mathcal{X}_1 on the function $(f - \alpha) \in \mathcal{F}$, then the kernel of \mathcal{F} is

$$h_{\eta} = \sum_{k=1}^{d} b_k \lambda_1^k h_1^k.$$

Of course, many other models are possible, such as the ANOVA RKKS with all p levels of interactions. What we realise is that any of these scenarios are simply a sum-product of a manipulation of the set of scale parameters $\lambda = \{\lambda_1, \ldots, \lambda_p\}$ and the set of kernel functions $h = \{h_1, \ldots, h_p\}$. Furthermore, scenarios 1–3 are special cases of the ANOVA RKKS excluding the grand mean³: in 1. and 2., \mathcal{F} is the ANOVA RKKS of main effects only, and in 3., \mathcal{F} is the ANOVA RKKS of main effects and level-two interactions.

Let us be more concrete about what we mean by 'manipulation' of the sets λ and h. Define an 'instruction' operator ι which expands out both sets identically as required by the modelling scenario. Computationally speaking, this instruction could be as simple as a list containing the indices to multiply. For the four scenarios above, the list \mathcal{Q} is

- 1. $Q = \{\{1\}\}.$
- 2. $Q = \{\{1\}, \dots, \{p\}\}.$
- 3. $Q = \{\{1\}, \dots, \{p\}, \{1, 2\}, \dots, \{p-1, p\}\}.$
- 4. $Q = \{\{1\}, \{1, 1\}, \dots, \{1, \dots, 1\}\}.$

For the polynomial RKKS in the fourth example, then one must also multiply the constants b_k as appropriate. Let q be the cardinality of the set \mathcal{Q} , that is, the number of summands required to construct the kernel for \mathcal{F} . Denote the instructed sets as $\xi = \{\xi_1, \ldots, \xi_q\}$ for λ and $a = \{a_1, \ldots, a_q\}$ for h. Therefore, this allows us to write the kernel h_{η} as a linear combination of ξ and a,

$$h_{\eta} = \xi_1 a_1 + \dots + \xi_q a_q.$$

The reason this is important is because changes in λ for h_{η} only changes the ξ_k 's, but the instructed kernels a_1, \ldots, a_q do not. This allows us to compute and store all of the

³As discussed, for simplicity the RKHS of constant functions is ignored and the model includes an intercept to be estimated instead.

required $n \times n$ kernel matrices $\mathbf{A}_1, \dots, \mathbf{A}_q$ from the application of instruction set on h evaluated at all pairs of data points $(x_i, x_j) \in \mathcal{X} \times \mathcal{X}$. This process of initialisation need only be done once prior to commencing the EM algorithm—a step we refer to as 'kernel loading'. In the **iprior** package, kernel loading is performed using the **kernl()** command. The application of the instruction set \mathcal{Q} to λ to obtain ξ is computationally effortless.

Notice that

$$\operatorname{tr}\left(\mathbf{\Sigma}_{\theta}\tilde{\mathbf{W}}^{(t)}\right) = \operatorname{tr}\left(\left(\psi\mathbf{H}_{\eta}^{2} + \psi^{-1}\mathbf{I}_{n}\right)\tilde{\mathbf{W}}^{(t)}\right)$$

$$= \psi \operatorname{tr}(\mathbf{H}_{\eta}^{2}\tilde{\mathbf{W}}^{(t)}) + \psi^{-1} \operatorname{tr}\tilde{\mathbf{W}}^{(t)}$$

$$= \psi \operatorname{tr}\left(\sum_{j,k=1}^{q} \xi_{j}\xi_{k}\left(\mathbf{A}_{j}\mathbf{A}_{k} + (\mathbf{A}_{j}\mathbf{A}_{k})^{\top}\right)\tilde{\mathbf{W}}^{(t)}\right) + \psi^{-1} \operatorname{tr}\tilde{\mathbf{W}}^{(t)}$$

$$= 2\psi \sum_{j,k=1}^{q} \xi_{j}\xi_{k} \operatorname{tr}\left(\mathbf{A}_{j}\mathbf{A}_{k}\tilde{\mathbf{W}}^{(t)}\right) + \psi^{-1} \operatorname{tr}\tilde{\mathbf{W}}^{(t)}$$

Provided that we have the matrices $\mathbf{A}_{jk} = \mathbf{A}_{j}\mathbf{A}_{k}$, $j, k = 1, \dots, q$ in addition to $\mathbf{A}_{1}, \dots, \mathbf{A}_{q}$ pre-calculated and stored, then evaluating $\operatorname{tr}\left(\mathbf{A}_{jk}\tilde{\mathbf{W}}^{(t)}\right) = \operatorname{vec}(\mathbf{A}_{jk})^{\top} \operatorname{vec}(\tilde{\mathbf{W}}^{(t)})$ is $O(n^{2})$, although this only need to be done once per EM iteration. Thus, with the kernels loaded, the overall time complexity to evaluate Q is $O(n^{2})$ at the beginning of each iteration, but roughly linear in ξ thereafter.

As a remark, we have achieved efficiency at the expense of storage and a potentially long initialisation phase of kernel loading. The storing of the kernel matrices a can be very expensive, especially if the sample size is very large. On the bright side, once the kernel matrices are stored in memory, the **iprior** package allows them to be reused again and again. A practical situation where this might be useful is when we would like to repeat the EM at various initial values.

4.3.3 The exponential family EM algorithm

In the original EM paper by Dempster et al. (1977), the EM algorithm was demonstrated to be easily administered to complete data likelihoods belonging to the exponential family for which the maximum likelihood estimates are easily computed. If this is the case, then the M-step simply involves replacing the unknown sufficient statistics in the ML estimates with their conditional expectations (see Appendix 4.9 for details). Certain I-prior models emit this property, namely regression functions belonging to the full or non-full ANOVA

RKKS, and we describe its estimation below.

Assume A1–A3 applies, and that only the error precision ψ and the RKHS scale parameters $\lambda_1, \ldots, \lambda_p$ need to be estimated, i.e. all other kernel parameters are fixed. For the full ANOVA RKKS, the kernel is

$$h_{\lambda} = \sum_{i=1}^{p} \lambda_{i} h_{i} + \sum_{i < j} \lambda_{i} \lambda_{j} h_{i} h_{j} + \dots + \prod_{i=1}^{p} \lambda_{i} h_{i}$$

$$= \lambda_{k} \left(h_{k} + \sum_{i} \lambda_{i} h_{i} h_{k} + \dots + h_{k} \prod_{i \neq k} \lambda_{i} h_{i} \right) + \sum_{i \neq k} \lambda_{i} h_{i} + \sum_{i, j \neq k} \lambda_{i} \lambda_{j} h_{i} h_{j} + \dots + 0$$

$$= \lambda_{k} r_{k} + s_{k}$$

where r_k and s_k are both functions over $\mathcal{X} \times \mathcal{X}$, defined as the terms of the ANOVA kernel involving λ_k , and the terms not involving λ_k , respectively. The reason for splitting h_{λ} like this will become apparently momentarily.

Programmatically this looks complicated to implement in software, but in fact it is not. Consider again the instruction list \mathcal{Q} for the ANOVA RKKS (Example 3, Section 4.3.2). We can split this list into two: \mathcal{R}_k as those elements of \mathcal{Q} which involve the index k, and \mathcal{S}_k as those elements of \mathcal{Q} which do not involve the index k. Let ζ_k , e_k be the sets of λ and h after applying the instructions of \mathcal{R}_k^{λ} , and let ξ_k and a_k be the sets of λ and h after applying the instructions of \mathcal{S}_k . Now, we have

$$r_k = \frac{1}{\lambda_k} \sum_{i=1}^{|\mathcal{R}_k|} \zeta_{ik} e_{ik}$$
 and $s_k = \sum_{i=1}^{|\mathcal{S}_k|} \xi_{ik} a_{ik}$.

Defining \mathbf{R}_k and \mathbf{S}_k as the kernel matrices with (i,j) entries $r_k(x_i,x_j)$ and $s_k(x_i,x_j)$ respectively, we have that

$$\mathbf{H}_n^2 = \lambda_k^2 \mathbf{R}_k^2 + \lambda_k \widehat{\left(\mathbf{R}_k \mathbf{S}_k + (\mathbf{R}_k \mathbf{S}_k)^{ op}
ight)} + \mathbf{S}_k^2.$$

Consider the full data log-likelihood for λ_k , $k=1,\ldots,p$, conditionally dependent on the

rest of the unknown parameters ψ and $\lambda_{-k} = \{\lambda_1, \dots, \lambda_p\} \setminus \{\lambda_k\}$:

$$L(\lambda_{k}|\mathbf{y}, \mathbf{w}, \lambda_{-k}, \psi) = \text{const.} - \frac{1}{2} \operatorname{tr} \left((\psi \mathbf{H}_{\eta}^{2} + \psi^{-1} \mathbf{I}_{n}) \mathbf{w} \mathbf{w}^{\top} \right) + \psi \tilde{\mathbf{y}}^{\top} \mathbf{H}_{\eta} \mathbf{w}$$

$$= \text{const.} - \lambda_{k}^{2} \cdot \frac{\psi}{2} \operatorname{tr} (\mathbf{R}_{k}^{2} \mathbf{w} \mathbf{w}^{\top}) + \lambda_{k} \cdot \left(\psi \tilde{\mathbf{y}}^{\top} \mathbf{R}_{k} \mathbf{w} - \frac{\psi}{2} \operatorname{tr} (\mathbf{U}_{k} \mathbf{w} \mathbf{w}^{\top}) \right).$$

$$(4.14)$$

Notice that the above likelihood is an exponential family distribution with the natural parameterisation $\beta = (-\lambda_k^2, \lambda_k)$ and sufficient statistics T_1 and T_2 defined by

$$T_1 = \frac{\psi}{2} \operatorname{tr}(\mathbf{R}_k^2 \mathbf{w} \mathbf{w}^{\top})$$
 and $T_2 = \psi \tilde{\mathbf{y}}^{\top} \mathbf{R}_k \mathbf{w} - \frac{\psi}{2} \operatorname{tr}(\mathbf{U}_k^2 \mathbf{w} \mathbf{w}^{\top}).$

This likelihood is maximised at $\hat{\lambda}_k = T_2/2T_1$, but of course, the variables w_1, \ldots, w_n are never observed. As per the exponential family EM routine, replace occurrences of \mathbf{w} and $\mathbf{w}\mathbf{w}^{\top}$ with their respective conditional expectations, i.e. $\mathbf{w} \mapsto \mathrm{E}[\mathbf{w}|\mathbf{y}] = \tilde{\mathbf{w}}$ and $\mathbf{w}\mathbf{w}^{\top} \mapsto \mathrm{E}[\mathbf{w}\mathbf{w}^{\top}|\mathbf{y}] = \tilde{\mathbf{V}}_w + \tilde{\mathbf{w}}\tilde{\mathbf{w}}^{\top}$ as defined in (4.7). That the λ_k 's have closed-form expressions, together with the closed-form expression for ψ in (4.12), greatly simplifies the EM algorithm. At the M-step, one simply updates the parameters in turn, and as such, there is no maximisation per se. This form of the EM algorithm is known as the conditional expectation-maximisation algorithm (Meng and Rubin, 1993).

The algorithm is summarised in Algorithm 1. The exponential family EM for ANOVAtype I-prior models require $O(n^3)$ computational time at each step, which is spent on computing the matrix inverse in the E-step. The M-step takes at most $O(n^2)$ time to compute. As a remark, it is not necessary that h_{λ} is the full ANOVA RKKS; any of the examples 1–3 in Section 4.3.2, or in fact dropping any of the terms in the ANOVA kernel, can be used by this method.

While the exponential family EM algorithm takes similar computational time as the efficient EM algorithm described in (4.3.2), there is one compelling reason to consider Algorithm 1: conjugacy of the exponential family of distributions. Realise that $\lambda_k|(\mathbf{y},\mathbf{w},\lambda_{-k},\psi)$ is in fact normally distributed, with mean and variance given by $T_2/2T_1$ and $1/2T_1$ respectively. If we were so compelled to assign a normal prior on each of the λ_k 's, then the conditionally dependent log-likelihood of λ_k , $L(\lambda_k|\mathbf{y},\mathbf{w},\lambda_{-k},\psi)$, would have a normal log-likelihood prior involving λ_k added on. Importantly, viewed as a posterior log-density for λ_k , the posterior density for λ_k would also be a normal distribution. The EM as a whole would then generate maximum a posteriori (MAP) estimates for the parameters. Although not shown here, a similar conjugacy argument for the ψ parame-

Algorithm 1 Exponential family EM for ANOVA-type I-prior models

```
1: procedure Initialisation
                   Initialise \lambda_1^{(0)}, \dots, \lambda_p^{(0)}, \psi^{(0)}
   2:
                   Compute and store matrices as per \mathcal{R}_k and \mathcal{S}_k.
  3:
   4:
  5: end procedure
  6: while not converged do
                   procedure E-STEP
  7:
                            \tilde{\mathbf{w}} \leftarrow \psi^{(t)} \mathbf{H}_{\eta^{(t)}} (\psi^{(t)} \mathbf{H}_{\eta^{(t)}}^2 + \psi^{-(t)} \mathbf{I}_n)^{-1} \tilde{\mathbf{y}}\tilde{\mathbf{W}} \leftarrow (\psi^{(t)} \mathbf{H}_{\eta^{(t)}}^2 + \psi^{-(t)} \mathbf{I}_n)^{-1} + \tilde{\mathbf{w}} \tilde{\mathbf{w}}^{\top}
  8:
                   end procedure
10:
                   procedure M-STEP
11:
                             for k = 1, \ldots, p do
12:
                                     T_{1k} \leftarrow \frac{1}{2} \operatorname{tr}(\mathbf{R}_{k}^{2} \tilde{\mathbf{W}})
T_{2k} \leftarrow \tilde{\mathbf{y}}^{\top} \mathbf{R}_{k} \tilde{\mathbf{w}} - \frac{1}{2} \operatorname{tr}(\mathbf{U}_{k}^{2} \tilde{\mathbf{W}}^{\top})
\lambda_{k}^{(t+1)} \leftarrow T_{2k}/2T_{1k}
13:
14:
15:
                             end for
16:
                            T_3 \leftarrow \tilde{\mathbf{y}}^{\top} \tilde{\mathbf{y}} + \operatorname{tr}(\mathbf{H}_{\eta^{(t)}}^2 \tilde{\mathbf{W}}^{(t)}) - 2\tilde{\mathbf{y}}^{\top} \mathbf{H}_{\eta^{(t)}} \tilde{\mathbf{w}}^{(t)}
17:
                             \psi^{(t+1)} \leftarrow \operatorname{tr} \tilde{\mathbf{W}}^{(t)} / T_3
18:
                   end procedure
19:
20:
                   t \leftarrow t + 1
21: end while
```

ter can be done, whereby the gamma distribution is the density in question. The usual EM algorithm without using any priors can be viewed as using improper priors for the parameters, i.e. $p(\lambda_k) \propto \text{const.}$ and $p(\psi) \propto \text{const.}$.

In the next chapter on binary and multinomial regression using I-priors, the exponential family EM algorithm described here is especially relevant, as it is connected to the variational Bayesian algorithm (Bernardo et al., 2003) that will be used for estimating the models described therein.

Remark 4.5. Earlier, we restricted attention to ANOVA RKKS. Hopefully, it is now apparent that ANOVA kernels are a requirement for Algorithm 1 to work easily. As soon as higher degrees of the λ_k 's come into play, e.g. using the polynomial kernel, then the ML estimate for λ_k involve solving a polynomial of degree 2d-1 the FOC equations. Although this is not in itself hard to do, the elegance of the algorithm, especially viewed as having the normal conjugacy property for the $\lambda'_k s$, is lost.

4.3.4 Accelerating the EM algorithm

A criticism of the EM algorithm is that it may take many iterations to converge. Several novel ideas have been looked at in a bid to 'accelerate the EM algorithm', as it were. One such approach, which does not require any amendment to the particular EM algorithm at hand, is called the *monotonically over-relaxed EM algorithm* (MOEM) by Yu (2012).

The idea of MOEM is as follows. At every iteration of the MOEM, perform as usual the E-step and M-step to obtain an updated parameter value $\theta_{\text{EM}}^{(t+1)}$. Instead of using this update value of the parameter, modify it instead, and use

$$\theta^{(t+1)} = (1+\omega)\theta_{\mathrm{EM}}^{(t+1)} - \omega\theta^{(t)},$$

where ω is an over-relaxation parameter. Under mild conditions, among them that $Q(\theta^{(t+1)}) > Q(\theta^{(t)})$, the MOEM estimate does not decrease the log-likelihood at each step. This condition is a slight inconvenience to check under the usual EM algorithm, but is a great companion to exponential family EM algorithm. From (1), we see that $Q(\lambda_k)$ is quadratic in λ_k , therefore any $\omega \in [0,1]$ will maintain monotonicity of the EM algorithm.

1d02f89

4.4 Post-estimation

4.5 Examples

4.6 Conclusion

The steps for I-prior modelling are basically three-fold:

- Select an appropriate function space; equivalently, the kernels for which a specific effect is desired on the covariates. Several modelling examples are described in Section 4.1.
- 2. Estimate the hyperparameters (these included the RKHS scale parameter(s), error precision, and any other kernel parameters such as the Hurst index of fBm) of the I-prior model and obtain the posterior regression function.

3. Post-estimation procedures include

- Posterior predictive checks;
- Model comparison via log-likelihood ratio tests/empirical Bayes factors; and
- Prediction of new data point.

The main sticking point with the estimation procedure is the involvement of the $n \times n$ kernel matrix, for which its inverse is needed. This requires $O(n^2)$ storage and $O(n^3)$ computational time. The Nyström method of approximating the kernel matrix reduces complexity to O(nm) storage and approximately $O(nm^2)$, and is highly advantageous if $m \ll n$. The computational issue faced by I-priors are mirrored in Gaussian process regression, so the methods to overcome these computational challenges in GPR can be explored further. However, most efficient computational solutions exploit the nature of the SE kernel structure, which is the most common kernel used in GPR.

Several avenues have been discussed to make the estimation procedure more efficient, but improvements can be had. One promising avenue to achieve efficient estimation for I-prior models is by using variational methods. A sparse variational approximation (typically by using inducing points) or stochastic variational inference can greatly reduce computational storage and speed requirements. A recent paper by Cheng and Boots (2017) suggested a variational algorithm with linear complexity for GPR-type models.

On the topic of accelerating the EM algorithm, besides the MOEM procedure, there are two other algorithms that could be explored. The first is called parameter-expansion EM algorithm (PXEM) by (Liu et al., 1998), which has been shown to be promising for random-effects type models. It involves correcting the M-step by a 'covariance adjustment', so that extra information can be capitalised on to improve convergence rates. The second is a quasi-Newton acceleration of the EM algorithm as proposed by Lange (1995). A slight change to the EM gradient algorithm in the M-step steers the EM algorithm to the Newton-Raphson algorithm, thus exploiting the benefits of the EM algorithm in the early stages (monotonic increase in likelihood) and avoiding the pitfalls of Newton-Raphson (getting stuck in local optima). The PXEM and quasi-Newton EM algorithms require an in-depth reassessment of the EM algorithm to specifically tailor them to I-prior models, which we leave as future work.

4.7 Miscellanea

4.7.1 Similarity to the g-prior

The I-prior for β resembles the objective g-prior (Zellner, 1986) for regression coefficients,

$$\boldsymbol{\beta} \sim \mathrm{N}_p \left(\mathbf{0}, g(\mathbf{X}^{\top} \boldsymbol{\Psi} \mathbf{X})^{-1} \right),$$

although they are quite different objects. The g-prior for β has the *inverse* (scaled) Fisher information matrix as its covariance matrix. This, in itself, has a much different and arguably counterintuitive meaning: large amounts of Fisher information about β corresponds to a small prior variance, and hence less deviation away from the prior mean of zero in estimating β . The choice of the hyperparameter g has been the subject of much debate, with choices ranging from fixing g = n (corresponding to the concept of unit Fisher information), to fully Bayesian and empirical Bayesian methods of estimating g from the data.

On the other hand, we note that the g-prior has an I-prior interpretation when argues as follows. Assume that the regression function f lies in the continual dual space of \mathbb{R}^p equipped with the inner product $\langle \mathbf{x}, \mathbf{x}' \rangle_{\mathcal{X}} = \mathbf{x}^{\top} (\mathbf{X}^{\top} \mathbf{\Psi} \mathbf{X})^{-1} \mathbf{x}$. With this inner product and from (3.3), the Fisher information for β is

$$\mathcal{I}_g(\boldsymbol{\beta}) = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X})^{-1} \mathbf{x}_i \otimes (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X})^{-1} \mathbf{x}_j$$
$$= (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X})^{-1} (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X}) (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X})^{-1}$$
$$= (\mathbf{X}^\top \boldsymbol{\Psi} \mathbf{X})^{-1},$$

and this, rather than the usual $\mathbf{X}^{\top} \mathbf{\Psi} \mathbf{X}$ as the prior covariance matrix for $\boldsymbol{\beta}$, means that the I-prior is in fact the standard q-prior.

The metric induced by the inner product is actually the *Mahalanobis distance*, a scale-invariant natural distance if the covariates are measured on different scales. To expand on this idea, circle back to the regression function and write it as $f(\mathbf{x}) = \langle \mathbf{x}, \boldsymbol{\beta} \rangle_{\mathcal{X}}$. In usual least squares regression, the choice of inner product is irrelevant, so the usual dot product is commonly used (however, as we have seen above, the choice of inner product determines the form of the Fisher information for $\boldsymbol{\beta}$). In particular, suppose that all the x_{ik} 's, $k = 1, \ldots, p$ for each unit $i = 1, \ldots, n$ are measured on the same scale; for

instance, these could be measurements in centimetres. In this case, the dot product is reasonable, because $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = \sum_{k=1}^p x_{ik} x_{jk}$ and the inner product has a coherent unit, namely the squared unit of the x_{ik} 's. However, if they were a mix of various scaled measurements, then obviously the inner product's unit is incoherent—one would be resorted to adding measurements in different units, for example, cm² and kg² and so on. In such a case, a unitless inner product is appropriate, like the Mahalonobis inner product, which technically rescales the x_{ik} 's to unity. In summary, if the covariates are all measured on the same scale, then the I-prior is appropriate, and if not, the g-prior is appropriate.

4.7.2 Multilevel models

Write $\alpha = \beta_0$, and for simplicity, assume iid errors, i.e., $\mathbf{\Psi} = \psi \mathbf{I}_n$. The form of $f \in \mathcal{F}$ is now $f(\mathbf{x}_i^{(j)}, j) = \sum_{i'=1}^{n_{j'}} \sum_{j'=1}^{m} h_{\lambda}((\mathbf{x}_i^{(j)}, j), (\mathbf{x}_{i'}^{(j')}, j')) w_{i'j'}$, where each $w_{i'j'} \sim N(0, \psi^{-1})$.

Now, functions in the scaled RKHS \mathcal{F}_2 have the form

$$f_2(j) = \sum_{i=1}^{n_{j'}} \sum_{j'=1}^{m} \lambda_2 \left(\frac{\delta_{jj'}}{p_j} - 1 \right) w_{ij'}$$
$$= \lambda_2 \left(\frac{w_{+j}}{p_j} - w_{++} \right),$$

where a '+' in the index of w_{ik} indicates a summation over that index, and p_j is the empirical distribution over \mathcal{M} , i.e. $p_j = n_j/n$. Clearly $f_2(j)$ is a variable depending on j, so write $f_2(j) = \beta_{0j}$. The distribution of β_{0j} is normal with zero mean and variance

$$\operatorname{Var} \beta_{0j} = \lambda_2^2 \left(\frac{n_j \psi}{n_j^2 / n^2} + n \psi \right)$$
$$= n \psi \lambda_2^2 \left(\frac{1}{p_j} + 1 \right).$$

8. Can I just standardise x?

The covariance between any two random intercepts β_{0j} and $\beta_{0j'}$ is

$$Cov(\beta_{0j}, \beta_{0j'}) = Cov\left(\lambda_{2}\left(\frac{w_{+j}}{p_{j}} - w_{++}\right), \lambda_{2}\left(\frac{w_{+j'}}{p_{j'}} - w_{++}\right)\right)$$

$$= \frac{\lambda_{2}^{2}}{p_{j}p_{j'}} \underbrace{Cov(w_{+j}, w_{+j'})}^{0} - \frac{\lambda_{2}^{2}}{p_{j}} \underbrace{Cov(w_{+j}, w_{++})}^{0} - \frac{\lambda_{2}^{2}}{p_{j'}} \underbrace{Cov(w_{+j}, w_{++})}^{0} - \frac{\lambda_{2}^{2}}{p_{j'}} \underbrace{Cov(w_{+j}, w_{+j'})}^{0}$$

$$= -\frac{\lambda_{2}^{2}}{p_{j}/n} p_{j} \psi - \frac{\lambda_{2}^{2}}{p_{j'}/n} p_{j'} \psi + \lambda_{2}^{2} n \psi$$

$$= -n\psi \lambda_{2}^{2}.$$

Functions in \mathcal{F}_{12} , on the other hand, have the form

$$f_{12}(\mathbf{x}_{i}, j) = \sum_{i'=1}^{n_{j'}} \sum_{j'=1}^{m} \lambda_{1} \lambda_{2} \cdot \tilde{\mathbf{x}}_{i}^{(j)\top} \tilde{\mathbf{x}}_{i'}^{(j')} \cdot \left(\frac{\delta_{jj'}}{p_{j}} - 1\right) w_{i'j'}$$

$$= \tilde{\mathbf{x}}_{i}^{(j)\top} \underbrace{\left(\frac{\lambda_{1} \lambda_{2}}{p_{j}} \sum_{i'=1}^{n_{j}} \tilde{\mathbf{x}}_{i'}^{(j)} w_{i'j} - \lambda_{1} \lambda_{2} \sum_{i'=1}^{n_{j'}} \sum_{j'=1}^{m} \tilde{\mathbf{x}}_{i'}^{(j')} w_{i'j'}\right)}_{\beta_{1,j}},$$

and this is, as expected, a linear form dependent on cluster j. We can calculate the variance for β_{1j} to be

$$\operatorname{Var} \boldsymbol{\beta}_{1j} = \lambda_1^2 \lambda_2^2 \operatorname{Var} \left(\frac{1}{p_j} \tilde{\mathbf{X}}_j^{\top} \mathbf{w}_j - \tilde{\mathbf{X}}^{\top} \mathbf{w} \right)$$

$$= \lambda_1^2 \lambda_2^2 \left(\frac{\psi}{n_j^2 / n^2} \tilde{\mathbf{X}}_j^{\top} \tilde{\mathbf{X}}_j + \psi \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} - \frac{1}{p_j} \tilde{\mathbf{X}}_j^{\top} \operatorname{Cov}(\mathbf{w}_j, \mathbf{w}) \tilde{\mathbf{X}}^{\top} \right)$$

$$= n \psi \lambda_1^2 \lambda_2^2 \left(\frac{1}{p_j} \mathbf{S}_j + \mathbf{S} - \mathbf{S}_j \right)$$

$$= n \psi \lambda_1^2 \lambda_2^2 \left(\left(\frac{1}{p_j} - 1 \right) \mathbf{S}_j + \mathbf{S} \right)$$

where
$$\mathbf{S}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} (\mathbf{x}_{i}^{(j)} - \bar{\mathbf{x}})^{\top} (\mathbf{x}_{i}^{(j)} - \bar{\mathbf{x}}), \ \mathbf{S} = \frac{1}{n} \sum_{i=1}^{n_{j}} \sum_{j=1}^{m} (\mathbf{x}_{i}^{(j)} - \bar{\mathbf{x}})^{\top} (\mathbf{x}_{i}^{(j)} - \bar{\mathbf{x}}), \ \text{and}$$

 $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n_j} \sum_{j=1}^m \mathbf{x}_i^{(j)}$. The covariance between two vectors of the random slopes is

$$\operatorname{Cov}(\boldsymbol{\beta}_{1j}, \boldsymbol{\beta}_{1j'}) = \lambda_1^2 \lambda_2^2 \operatorname{Cov}\left(\frac{1}{p_j} \tilde{\mathbf{X}}_j^{\top} \mathbf{w}_j - \tilde{\mathbf{X}}^{\top} \mathbf{w}, \frac{1}{p_{j'}} \tilde{\mathbf{X}}_{j'}^{\top} \mathbf{w}_{j'} - \tilde{\mathbf{X}}^{\top} \mathbf{w}\right) \\
= \psi \lambda_1^2 \lambda_2^2 \left(\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} - \frac{1}{p_j} \tilde{\mathbf{X}}_j^{\top} \tilde{\mathbf{X}}_j - \frac{1}{p_{j'}} \tilde{\mathbf{X}}_{j'}^{\top} \tilde{\mathbf{X}}_{j'}\right) \\
= n \psi \lambda_1^2 \lambda_2^2 \left(\mathbf{S} - \mathbf{S}_j - \mathbf{S}_{j'}\right).$$

Another quantity of interest is the covariance between the random intercepts and random slopes:

$$\operatorname{Cov}(\beta_{0j}, \boldsymbol{\beta}_{1j}) = \lambda_1 \lambda_2^2 \operatorname{Cov} \left(\frac{1}{p_j} \mathbf{1}_{n_j}^{\top} \mathbf{w}_j - \mathbf{1}_n^{\top} \mathbf{w}, \frac{1}{p_j} \tilde{\mathbf{X}}_j^{\top} \mathbf{w}_j - \tilde{\mathbf{X}}^{\top} \mathbf{w} \right)$$

$$= \psi \lambda_1 \lambda_2^2 \left(\mathbf{1}_n^{\top} \tilde{\mathbf{X}}^{*0} + \frac{1}{p_j^2} \mathbf{1}_{n_j}^{\top} \tilde{\mathbf{X}}_j - \frac{2}{p_j} \mathbf{1}_{n_j}^{\top} \tilde{\mathbf{X}}_j \right)$$

$$= n \psi \lambda_1 \lambda_2^2 \left(\left(\frac{1}{p_j} - 2 \right) \frac{1}{n_j} \sum_{i=1}^{n_j} (\mathbf{x}_i^{(j)} - \bar{\mathbf{x}}) \right)$$

$$= n \psi \lambda_1 \lambda_2^2 \left(\frac{1}{p_j} - 2 \right) (\bar{\mathbf{x}}^{(j)} - \bar{\mathbf{x}})$$

and

$$\operatorname{Cov}(\beta_{0j}, \boldsymbol{\beta}_{1j'}) = \lambda_{1} \lambda_{2}^{2} \operatorname{Cov}\left(\frac{1}{p_{j}} \mathbf{1}_{n_{j}}^{\top} \mathbf{w}_{j} - \mathbf{1}_{n}^{\top} \mathbf{w}, \frac{1}{p_{j'}} \tilde{\mathbf{X}}_{j'}^{\top} \mathbf{w}_{j'} - \tilde{\mathbf{X}}^{\top} \mathbf{w}\right) \\
= \psi \lambda_{1} \lambda_{2}^{2} \left(\mathbf{1}_{n}^{\top} \tilde{\mathbf{X}}^{\bullet}\right) + \frac{1}{p_{j} p_{j'}} \mathbf{1}_{n_{j}}^{\top} \operatorname{Cov}(\mathbf{w}_{j}, \tilde{\mathbf{w}}_{j'}) \tilde{\mathbf{X}}_{j'} - \frac{1}{p_{j}} \mathbf{1}_{n_{j}}^{\top} \tilde{\mathbf{X}}_{j} - \frac{1}{p_{j'}} \mathbf{1}_{n_{j'}}^{\top} \tilde{\mathbf{X}}_{j'}\right) \\
= n \psi \lambda_{1} \lambda_{2}^{2} \left(-\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} (\mathbf{x}_{i}^{(j)} - \bar{\mathbf{x}}) - \frac{1}{n_{j'}} \sum_{i=1}^{n_{j'}} (\mathbf{x}_{i}^{(j')} - \bar{\mathbf{x}})\right) \\
= n \psi \lambda_{1} \lambda_{2}^{2} \left(2\bar{\mathbf{x}} - \bar{\mathbf{x}}^{(j)} - \bar{\mathbf{x}}^{(j')}\right).$$

4.7.3 A primer on Hamiltonian Monte Carlo

Fill up section with a short introduction to HMC.

Appendix

4.8 Deriving the posterior distribution for w

In the following derivation, we implicitly assume the dependence on \mathbf{f}_0 and θ . The distribution of $\mathbf{y}|\mathbf{w}$ is $N_n(\boldsymbol{\alpha}+\mathbf{f}_0+\mathbf{H}_{\eta}\mathbf{w},\boldsymbol{\Psi}^{-1})$, where $\boldsymbol{\alpha}=\alpha\mathbf{1}_n$, while the prior distribution for \mathbf{w} is $N_n(\mathbf{0},\boldsymbol{\Psi})$. Since $p(\mathbf{w}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{w})p(\mathbf{w})$, we have that

$$\log p(\mathbf{w}|\mathbf{y}) = \log p(\mathbf{y}|\mathbf{w}) + \log p(\mathbf{w})$$

$$= \text{const.} + \frac{1}{2} \log |\mathbf{\Psi}| - \frac{1}{2} (\mathbf{y} - \boldsymbol{\alpha} - \mathbf{f}_0 - \mathbf{H}_{\eta} \mathbf{w})^{\top} \mathbf{\Psi} (\mathbf{y} - \boldsymbol{\alpha} - \mathbf{f}_0 - \mathbf{H}_{\eta} \mathbf{w})$$

$$- \frac{1}{2} \log |\mathbf{\Psi}| - \frac{1}{2} \mathbf{w}^{\top} \mathbf{\Psi}^{-1} \mathbf{w}$$

$$= \text{const.} - \frac{1}{2} \mathbf{w}^{\top} (\mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1}) \mathbf{w} + (\mathbf{y} - \boldsymbol{\alpha} - \mathbf{f}_0)^{\top} \mathbf{\Psi} \mathbf{H}_{\eta} \mathbf{w}.$$

Setting $\mathbf{A} = \mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta} + \mathbf{\Psi}^{-1}$, $\mathbf{a}^{\top} = (\mathbf{y} - \boldsymbol{\alpha} - \mathbf{f}_0)^{\top} \mathbf{\Psi} \mathbf{H}_{\eta}$, and using the fact that

$$\mathbf{w}^{\top} \mathbf{A} \mathbf{w} - 2 \mathbf{a}^{\top} \mathbf{w} = (\mathbf{w} - \mathbf{A}^{-1} \mathbf{a})^{\top} \mathbf{A} (\mathbf{w} - \mathbf{A}^{-1} \mathbf{a}),$$

we have that $\mathbf{w}|\mathbf{y}$ is normally distributed with the required mean and variance.

Alternatively, one could have shown this using standard results of multivariate normal distributions. Noting that the covariance between \mathbf{y} and \mathbf{w} is

$$\begin{aligned} \operatorname{Cov}(\mathbf{y}, \mathbf{w}) &= \operatorname{Cov}(\boldsymbol{\alpha} + \mathbf{f}_0 + \mathbf{H}_{\eta} \mathbf{w} + \boldsymbol{\epsilon}, \mathbf{w}) \\ &= \mathbf{H}_{\eta} \operatorname{Cov}(\mathbf{w}, \mathbf{w}) \\ &= \mathbf{H}_{\eta} \boldsymbol{\Psi} \end{aligned}$$

and that $Cov(\mathbf{w}, \mathbf{y}) = \mathbf{\Psi}\mathbf{H}_{\eta} = \mathbf{H}_{\eta}\mathbf{\Psi} = Cov(\mathbf{y}, \mathbf{w})$ by symmetry, the joint distribution (\mathbf{y}, \mathbf{w}) is

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{w} \end{pmatrix} \sim \mathrm{N}_{n+n} \left(\begin{pmatrix} \boldsymbol{\alpha} + \mathbf{f}_0 \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \mathbf{V}_y & \mathbf{H}_{\eta} \mathbf{\Psi} \\ \mathbf{H}_{\eta} \mathbf{\Psi} & \mathbf{\Psi} \end{pmatrix} \right).$$

Thus,

$$E[\mathbf{w}|\mathbf{y}] = E\mathbf{w} + Cov(\mathbf{w}, \mathbf{y})(Var\mathbf{y})^{-1}(\mathbf{y} - E\mathbf{y})$$
$$= \mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{V}_{\eta}^{-1}(\mathbf{y} - \boldsymbol{\alpha} - \mathbf{f}_{0}),$$

and

$$Var[\mathbf{w}|\mathbf{y}] = Var \mathbf{w} - Cov(\mathbf{w}, \mathbf{y})(Var \mathbf{y})^{-1} Cov(\mathbf{y}, \mathbf{w})$$

$$= \mathbf{\Psi} - \mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{V}_{y}^{-1} \mathbf{H}_{\eta} \mathbf{\Psi}$$

$$= \mathbf{\Psi} - \mathbf{\Psi} \mathbf{H}_{\eta} (\mathbf{\Psi}^{-1} + \mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta})^{-1} \mathbf{H}_{\eta} \mathbf{\Psi}$$

$$= (\mathbf{\Psi}^{-1} + \mathbf{H}_{\eta} \mathbf{\Psi} \mathbf{H}_{\eta})^{-1}$$

$$= \mathbf{V}_{y}^{-1}$$

as a direct consequence of the Woodbury matrix identity.

4.9 A recap on the exponential family EM algorithm

Consider the density function $p(\cdot|\boldsymbol{\theta})$ of the complete data $\mathbf{z} = \{\mathbf{y}, \mathbf{w}\}$, which depends on parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_s)^{\top} \in \Theta \subseteq \mathbb{R}^s$, belonging to an exponential family of distributions. This density takes the form $p(\mathbf{z}|\boldsymbol{\theta}) = B(\mathbf{z}) \exp(\langle \boldsymbol{\eta}(\boldsymbol{\theta}), \mathbf{T}(\mathbf{z}) \rangle - A(\boldsymbol{\theta}))$, where $\boldsymbol{\eta} : \mathbb{R}^s \mapsto \mathbb{R}$ is a link function, $\mathbf{T}(\mathbf{z}) = (T_1(\mathbf{z}), \dots, T_s(\mathbf{z}))^{\top} \in \mathbb{R}^s$ are the sufficient statistics of the distribution, and $\langle \cdot, \cdot \rangle$ is the usual Euclidean dot product. It is often easier to work in the natural parameterisation of the exponential family distribution

$$p(\mathbf{z}|\boldsymbol{\eta}) = B(\mathbf{z}) \exp\left(\langle \boldsymbol{\eta}, \mathbf{T}(\mathbf{z}) \rangle - A^*(\boldsymbol{\eta})\right)$$
(4.15)

by defining $\eta := (\eta_1(\boldsymbol{\theta}), \dots, \eta_r(\boldsymbol{\theta})) \in \mathcal{E}$, and $\exp A^*(\boldsymbol{\eta}) = \int B(\mathbf{z}) \exp \langle \boldsymbol{\eta}, \mathbf{T}(\mathbf{z}) \rangle d\mathbf{z}$ to ensure the density function normalises to one. As an aside, the set $\mathcal{E} := \{ \boldsymbol{\eta} = (\eta_1, \dots, \eta_s) \mid \int \exp A^*(\boldsymbol{\eta}) < \infty \}$ is called the *natural parameter space*. If dim $\mathcal{E} = r < s = \dim \Theta$, then the pdf belongs to the *curved exponential family* of distributions. If dim $\mathcal{E} = r = s = \dim \Theta$, then the family is a *full exponential family*.

Assuming the latent **w** variables are observed and working with the natural parameterisation, then the complete maximum likelihood (ML) estimate for η is obtained by solving

$$\frac{\partial}{\partial \boldsymbol{\eta}} \log p(\mathbf{z}|\boldsymbol{\eta}) = \mathbf{T}(\mathbf{z}) - \frac{\partial}{\partial \boldsymbol{\eta}} A^*(\boldsymbol{\eta}) = 0.$$
 (4.16)

Of course, the variable **w** are never observed, so the ML estimate for η can only be informed from what is observed. Let $p(\mathbf{y}|\eta) = \int p(\mathbf{y}, \mathbf{w}|\eta) d\mathbf{w}$ represent the marginal

density of the observations y. Now, the ML estimate for η is obtained by solving

$$\frac{\partial}{\partial \boldsymbol{\eta}} \log p(\mathbf{y}|\boldsymbol{\eta}) = \frac{1}{p(\mathbf{y}|\boldsymbol{\eta})} \cdot \frac{\partial}{\partial \boldsymbol{\eta}} p(\mathbf{y}|\boldsymbol{\eta})
= \frac{1}{p(\mathbf{y}|\boldsymbol{\eta})} \cdot \frac{\partial}{\partial \boldsymbol{\eta}} \left(\int p(\mathbf{y}, \mathbf{w}|\boldsymbol{\eta}) \, d\mathbf{w} \right)
= \frac{1}{p(\mathbf{y}|\boldsymbol{\eta})} \cdot \int \left(\frac{\partial}{\partial \boldsymbol{\eta}} p(\mathbf{y}, \mathbf{w}|\boldsymbol{\eta}) \right) d\mathbf{w}
= \frac{1}{p(\mathbf{y}|\boldsymbol{\eta})} \cdot \int \left(p(\mathbf{y}, \mathbf{w}|\boldsymbol{\eta}) \frac{\partial}{\partial \boldsymbol{\eta}} \log p(\mathbf{y}, \mathbf{w}|\boldsymbol{\eta}) \right) d\mathbf{w}
= \int \left(\mathbf{T}(\mathbf{y}, \mathbf{w}) - \frac{\partial}{\partial \boldsymbol{\eta}} A^*(\boldsymbol{\eta}) \right) p(\mathbf{w}|\mathbf{y}, \boldsymbol{\eta}) d\mathbf{w}
= \mathbf{E}_{\mathbf{w}} \left[\mathbf{T}(\mathbf{y}, \mathbf{w}) |\mathbf{y} \right] - \frac{\partial}{\partial \boldsymbol{\eta}} A^*(\boldsymbol{\eta}) \tag{4.17}$$

equated to zero. Note that we are allowed to change the order of integration and differentiation provided the integrand is continuously differentiable. So the only difference between the first order condition of (4.16) and that of (4.17) is that the sufficient statistics involving the unknown \mathbf{w} are replaced by their conditional or posterior expectations.

A useful identity to know is that $\frac{\partial}{\partial \eta} A^*(\eta) = E_{\mathbf{z}} \mathbf{T}(\mathbf{z})$ (Casella and R. L. Berger, 2002, Theorem 3.4.2 & Exercise 3.32(a)), which can be expressed in terms of the original parameters $\boldsymbol{\theta}$. As a consequence, solving for the ML estimate for $\boldsymbol{\theta}$ from the FOC equations (4.17) is possible without having to deal with the derivative of A^* with respect to the natural parameters. Having said this, an analytical solution in $\boldsymbol{\theta}$ may not exist, because the relationship of $\boldsymbol{\theta}$ could be implicit in the set of equations $E_{\mathbf{w}}\left[\mathbf{T}(\mathbf{w},\mathbf{y})|\mathbf{y},\boldsymbol{\theta}\right] = E_{\mathbf{y},\mathbf{w}}\left[\mathbf{T}(\mathbf{y},\mathbf{w})|\boldsymbol{\theta}\right]$. One way around this is to employ an iterative procedure, as detailed in Algorithm 2.

Algorithm 2 Exponential family EM

- 1: **initialise** $\boldsymbol{\theta}^{(0)}$ and $t \leftarrow 0$
- 2: while not converged do
- 3: E-step: $\tilde{\mathbf{T}}^{(t+1)}(\mathbf{y}, \mathbf{w}) \leftarrow \mathrm{E}_{\mathbf{w}} \left[\mathbf{T}(\mathbf{w}, \mathbf{y}) | \mathbf{y}, \boldsymbol{\theta}^{(t)} \right]$
- 4: M-step: $\boldsymbol{\theta}^{(t+1)} \leftarrow \text{solution to } \tilde{\mathbf{T}}^{(t+1)}(\mathbf{y}, \mathbf{w}) = \mathrm{E}_{\mathbf{v}, \mathbf{w}} [\mathbf{T}(\mathbf{y}, \mathbf{w}) | \boldsymbol{\theta}]$
- 5: $t \leftarrow t + 1$
- 6: end while

To see how Algorithm 2 motivates the EM algorithm, consider the following argument. Recall that for the EM algorithm, the function $Q_t(\eta) = \mathbb{E}_{\mathbf{w}}[\log p(\mathbf{y}, \mathbf{w}|\eta)|\mathbf{y}, \eta^{(t)}]$ is maximised at each iteration t. For exponential families of the form (4.15), the Q_t

function turns out to be

$$Q_t(\boldsymbol{\eta}) = \mathrm{E}_{\mathbf{w}} \left[\langle \boldsymbol{\eta}, \mathbf{T}(\mathbf{z}) \rangle | \mathbf{y}, \boldsymbol{\eta}^{(t)} \right] - A^*(\boldsymbol{\eta}) + \log B(\mathbf{z}),$$

and this is maximised at the value of η satisfying

$$\frac{\partial}{\partial \boldsymbol{\eta}} Q_t(\boldsymbol{\eta}) = \mathbf{E}_{\mathbf{w}} \left[\mathbf{T}(\mathbf{y}, \mathbf{w}) | \mathbf{y}, \boldsymbol{\eta}^{(t)} \right] - \frac{\partial}{\partial \boldsymbol{\eta}} A^*(\boldsymbol{\eta}) = 0,$$

a similar condition to (4.17) when obtaining ML estimate of η . Thus, Q_t is maximised by the solution to line 4 in Algorithm (2).

4.10 Deriving the posterior predictive distribution

A priori, assume that $y_{\text{new}} \sim N(\hat{\alpha}, v_{\text{new}})$, where $v_{\text{new}} = \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{h}_{\hat{\eta}}(x_{\text{new}}) + \psi_{\text{new}}^{-1}$. Consider the joint distribution of $(y_{\text{new}}, \mathbf{y}^{\top})^{\top}$, which is multivariate normal (since both y_{new} and \mathbf{y} are. Write

$$\begin{pmatrix} y_{\text{new}} \\ \mathbf{y} \end{pmatrix} \sim \mathcal{N}_{n+1} \begin{pmatrix} \hat{\alpha} \\ \hat{\alpha} \mathbf{1}_n \end{pmatrix}, \begin{pmatrix} v_{\text{new}} & \text{Cov}(y_{\text{new}}, \mathbf{y}) \\ \text{Cov}(y_{\text{new}}, \mathbf{y})^\top & \tilde{\mathbf{V}}_y \end{pmatrix} \end{pmatrix},$$

where

$$Cov(y_{\text{new}}, \mathbf{y}) = Cov(f_{\text{new}} + \epsilon_{\text{new}}, \mathbf{f} + \boldsymbol{\epsilon})$$

$$= Cov(f_{\text{new}}, \mathbf{f}) + Cov(\epsilon_{\text{new}}, \boldsymbol{\epsilon})$$

$$= Cov\left(\mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \tilde{\mathbf{w}}, \mathbf{H}_{\tilde{\eta}} \tilde{\mathbf{w}}\right) + (\sigma_{\text{new},1}, \dots, \sigma_{\text{new},n})$$

$$= \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} + \sigma_{\text{new}}.$$

The vector of covariances $\boldsymbol{\sigma}_{\text{new}}$ between observations y_1, \ldots, y_n and the predicted point y_{new} would need to be prescribed a priori (treated as extra parameters), or estimated again, which seems excessive. Assuming $\boldsymbol{\sigma}_{\text{new}} = \mathbf{0}$ would be acceptable, especially under an iid assumption the error precisions. In any case, using standard multivariate normal

results, we get that $y_{\text{new}}|\mathbf{y}$ is also normally distributed with mean

$$E[y_{\text{new}}|\mathbf{y}] = \hat{\alpha} + (\mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} + \boldsymbol{\sigma}_{\text{new}}) \tilde{\mathbf{V}}_{y}^{-1} \tilde{\mathbf{y}}$$

$$= \hat{\alpha} + \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} \tilde{\mathbf{V}}_{y}^{-1} \tilde{\mathbf{y}} + \boldsymbol{\sigma}_{\text{new}} \tilde{\mathbf{V}}_{y}^{-1} \tilde{\mathbf{y}}$$

$$= \hat{\alpha} + \mathbb{E}\left[f(x_{\text{new}})|\mathbf{y}\right] + \text{mean correction term}$$

and variance

$$Var[y_{\text{new}}|\mathbf{y}] = v_{\text{new}} - (\mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} + \boldsymbol{\sigma}_{\text{new}}) \tilde{\mathbf{V}}_{y}^{-1} (\mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} + \boldsymbol{\sigma}_{\text{new}})^{\top}$$

$$= \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \hat{\mathbf{h}}_{\hat{\eta}}(x_{\text{new}}) + \psi_{\text{new}}^{-1} - \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} \tilde{\mathbf{V}}_{y}^{-1} \mathbf{H}_{\tilde{\eta}} \hat{\mathbf{\Psi}} \mathbf{h}_{\hat{\eta}}(x_{\text{new}})$$

$$+ \text{variance correction term}$$

$$= \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} (\hat{\mathbf{\Psi}} - \hat{\mathbf{\Psi}} \mathbf{H}_{\tilde{\eta}} \tilde{\mathbf{V}}_{y}^{-1} \mathbf{H}_{\tilde{\eta}} \hat{\mathbf{\Psi}}) \mathbf{h}_{\hat{\eta}}(x_{\text{new}}) + \psi_{\text{new}}^{-1}$$

$$+ \text{variance correction term}$$

$$= \mathbf{h}_{\hat{\eta}}(x_{\text{new}})^{\top} \hat{\mathbf{V}}_{y}^{-1} \mathbf{h}_{\hat{\eta}}(x_{\text{new}}) + \psi_{\text{new}}^{-1} + \text{variance correction term}$$

$$= \text{Var} \left[f(x_{\text{new}}) | \mathbf{y} \right] + \psi_{\text{new}}^{-1} + \text{variance correction term}.$$

4.11 Derivation of the Fisher information for multivariate normal distributions

Let $X \sim N_p(0, \Sigma_\theta)$, that is, the covariance matrix Σ_θ depends on a real, q-dimensional vector θ . Define the derivative of a matrix $\Sigma \in \mathbb{R}^{p \times p}$ with respect to a scalar z, denoted $\partial \Sigma / \partial z \in \mathbb{R}^{p \times p}$, by $(\partial \Sigma / \partial z)_{ij} = \partial \Sigma_{ij} / \partial z$, i.e. derivatives are taken elementwise. The two identities below are useful:

$$\frac{\partial}{\partial z}\operatorname{tr}\Sigma = \operatorname{tr}\frac{\partial\Sigma}{\partial z} \tag{4.18}$$

$$\frac{\partial}{\partial z} \log |\Sigma| = \operatorname{tr}\left(\Sigma^{-1} \frac{\partial \Sigma}{\partial z}\right) \tag{4.19}$$

$$\frac{\partial \Sigma^{-1}}{\partial z} = -\Sigma^{-1} \frac{\partial \Sigma}{\partial z} \Sigma^{-1} \tag{4.20}$$

A useful reference for these identities is Petersen, Pedersen, et al. (2008).

Taking derivative of the log-likelihood for θ with respect to the i'th component yields

$$\begin{split} \frac{\partial}{\partial \theta_i} L(\theta|X) &= -\frac{1}{2} \frac{\partial}{\partial \theta_i} \log \lvert \Sigma_\theta \rvert - \frac{1}{2} \frac{\partial}{\partial \theta_i} \operatorname{tr}(\Sigma_\theta^{-1} X X^\top) \\ &= -\frac{1}{2} \operatorname{tr} \left(\Sigma_\theta^{-1} \frac{\partial \Sigma_\theta}{\partial \theta_i} \right) - \frac{1}{2} \operatorname{tr} \left(\frac{\partial \Sigma_\theta^{-1}}{\partial \theta_i} X X^\top \right) \\ &= -\frac{1}{2} \operatorname{tr} \left(\Sigma_\theta^{-1} \frac{\partial \Sigma_\theta}{\partial \theta_i} - \Sigma_\theta^{-1} \frac{\partial \Sigma_\theta}{\partial \theta_i} \Sigma_\theta^{-1} X X^\top \right). \end{split}$$

Taking derivatives again, this time with respect to θ_j , we get

$$\begin{split} \frac{\partial^2}{\partial \theta_i \theta_j} L(\theta|X) &= -\frac{1}{2} \frac{\partial}{\partial \theta_j} \operatorname{tr} \left(\Sigma_{\theta}^{-1} \frac{\partial \Sigma_{\theta}}{\partial \theta_i} - \Sigma_{\theta}^{-1} \frac{\partial \Sigma_{\theta}}{\partial \theta_i} \Sigma_{\theta}^{-1} X X^{\top} \right) \\ &= -\frac{1}{2} \operatorname{tr} \left(\frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_j} \frac{\partial \Sigma_{\theta}}{\partial \theta_i} + \Sigma_{\theta}^{-1} \frac{\partial^2 \Sigma_{\theta}}{\partial \theta_i \theta_j} - \frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_j} \frac{\partial \Sigma_{\theta}}{\partial \theta_i} \Sigma_{\theta}^{-1} X X^{\top} \right. \\ &\qquad \qquad \left. - \Sigma_{\theta}^{-1} \frac{\partial^2 \Sigma_{\theta}}{\partial \theta_i \theta_i} \Sigma_{\theta}^{-1} X X^{\top} - \Sigma_{\theta}^{-1} \frac{\partial \Sigma_{\theta}}{\partial \theta_i} \frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_i} X X^{\top} \right). \end{split}$$

The Fisher information matrix U contains (i, j) entries equal to the expectation of $-\frac{\partial^2}{\partial \theta_i \theta_j} L(\theta|X)$. Using the fact that 1) $\mathrm{E}[\mathrm{tr}\,\Sigma] = \mathrm{tr}(\mathrm{E}\,\Sigma)$, 2) $\mathrm{E}[XX^{\top}] = \Sigma_{\theta}$; and 3) the trace is invariant under cyclic permutations, we get

$$U_{ij} = \frac{1}{2} \operatorname{tr} \left(\frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_{j}} \frac{\partial \Sigma_{\theta}}{\partial \theta_{i}} + \Sigma_{\theta}^{-1} \frac{\partial^{2} \Sigma_{\theta}}{\partial \theta_{i} \theta_{j}} - \frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_{j}} \frac{\partial \Sigma_{\theta}}{\partial \theta_{i}} - \Sigma_{\theta}^{-1} \frac{\partial^{2} \Sigma_{\theta}}{\partial \theta_{i} \theta_{j}} - \frac{\partial \Sigma_{\theta}}{\partial \theta_{i}} \frac{\partial \Sigma_{\theta}^{-1}}{\partial \theta_{j}} \right)$$

$$= \frac{1}{2} \operatorname{tr} \left(\Sigma_{\theta}^{-1} \frac{\partial \Sigma_{\theta}}{\partial \theta_{i}} \Sigma_{\theta}^{-1} \frac{\partial \Sigma_{\theta}}{\partial \theta_{j}} \right)$$

as required.

Bibliography

- Bergsma, W. (2017). "Regression with I-priors". In: Unpublished manuscript.
- Bernardo, J., M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West, et al. (2003). "The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures". In: *Bayesian statistics* 7, pp. 453–464.
- Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell (2017). "Stan: A Probabilistic Programming Language". In: Journal of Statistical Software, Articles 76.1, pp. 1–32. DOI: 10.18637/jss.v076.io1.
- Casella, G. and R. L. Berger (2002). *Statistical inference*. Vol. 2. Duxbury Pacific Grove, CA.
- Cheng, C.-A. and B. Boots (2017). "Variational Inference for Gaussian Process Models with Linear Complexity". In: Advances in Neural Information Processing Systems, pp. 5190–5200.
- Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). "Maximum likelihood from incomplete data via the EM algorithm". In: *Journal of the royal statistical society*. Series B (methodological), pp. 1–38.
- Denwood, M. (2016). "**runjags**: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS". In: *Journal of Statistical Software* 71.9, pp. 1–25. DOI: 10.18637/jss.v071.i09.
- Eddelbuettel, D. and R. Francois (2011). "Rcpp: Seamless R and C++ Integration". In: Journal of Statistical Software 40.8, pp. 1–18. DOI: 10.18637/jss.v040.i08.

- Fowlkes, C., S. Belongie, and J. Malik (2001). "Efficient Spatiotemporal Grouping Using the Nyström Method". In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001). Vol. 1, pp. 231–238. DOI: 10.1109/CVPR.2001.990481.
- Jamil, H. and W. Bergsma (2017). "iprior: An R Package for Regression Modelling using I-priors". In: Manuscript in submission.
- Lange, K. (1995). "A quasi-Newton acceleration of the EM algorithm". In: *Statistica* sinica, pp. 1–18.
- Liu, C., D. B. Rubin, and Y. N. Wu (1998). "Parameter expansion to accelerate EM: The PX-EM algorithm". In: *Biometrika* 85.4, pp. 755–770.
- Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter (Oct. 2000). "WinBUGS A Bayesian modelling framework: Concepts, structure, and extensibility". In: Statistics and Computing 10.4, pp. 325–337. DOI: 10.1023/A:1008929526011.
- Meng, X.-L. and D. B. Rubin (1993). "Maximum likelihood estimation via the ECM algorithm: A general framework". In: *Biometrika* 80.2, pp. 267–278.
- Petersen, K. B., M. S. Pedersen, et al. (2008). "The matrix cookbook". In: *Technical University of Denmark* 7.15, p. 510.
- Plummer, M. (2003). "JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling". In: *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*. Vol. 124. Vienna, Austria, p. 125.
- Quiñonero-Candela, J. and C. E. Rasmussen (Dec. 2005). "A Unifying View of Sparse Approximate Gaussian Process Regression". In: Journal of Machine Learning Research 6, pp. 1939–1959.
- Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine Learning.

 The MIT Press.
- Stan Development Team (2016). **RStan**: The R Interface to Stan. R package version 2.14.1. URL: http://mc-stan.org/.
- Sturtz, S., U. Ligges, and A. Gelman (2005). "R2WinBUGS: A Package for Running WinBUGS from R". In: *Journal of Statistical Software* 12.3, pp. 1–16. DOI: 10.18637/jss.v012.i03.

- van der Vaart, A. W. and van Zanten (2008). "Reproducing kernel Hilbert spaces of Gaussian priors". In: Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh. Institute of Mathematical Statistics, pp. 200–222.
- Wahba, G. (1990). Spline models for observational data. Vol. 59. Siam.
- Williams, C. K. I. and M. Seeger (2001). "Using the Nyström Method to Speed Up Kernel Machines". In: *Advances in Neural Information Processing Systems* 13. The MIT Press, pp. 682–688.
- Yu, Y. (2012). "Monotonically overrelaxed EM algorithms". In: Journal of Computational and Graphical Statistics 21.2, pp. 518–537.
- Zellner, A. (1986). "On assessing prior distributions and Bayesian regression analysis with g-prior distributions". In: *Bayesian inference and decision techniques*.