

	Turmas A e C	Turmas B e D
Pré Relatório	29/09/2015	01/10/2015
	29/09/2015	01/10/2015
Visto	06/10/2015	08/10/2015
Relatório	13/10/2015	15/10/2015

Experimento 5 CONTROLADOR DE DISQUETES

Figura 1 – Modelo do controlador de leitor de disquetes

I. OBJETIVO

Projetar e implementar um controlador de leitor de disquetes utilizando um registrador de deslocamento (74194).

II. DESCRIÇÃO DO PROBLEMA

Os dados em um disquete são arrumados em trilhas concêntricas e cada trilha é composta por uma certa quantidade de setores. O usuário especifica ao sistema o número da trilha e o número do setor que deseja ler. O modelo proposto (Figura 1) está bastante simplificado, mas tem sua inspiração nos sistemas reais.

A interface com o usuário é o registrador de **Pedido de Leitura**, onde ficam registrados o número do setor desejado e da trilha a que pertence o setor. A chegada de um novo pedido é indicada pela entrada **HP**.

O Motor do Acionador representa o motor que gira o disquete. Ele pode ser ligado ou desligado através da saída MT. O subsistema de Carregar a Cabeça, controlado através da saída LDHD ("load head') encosta a cabeça de leitura na superfície do disquete, permitindo a leitura das informações magnéticas.

É necessário algum tempo para que o motor atinja a velocidade correta e a leitura de dados possa começar de fato, o que é assinalado através da entrada **MOK**.

O subsistema **Ler Número da Trilha** é responsável por ler o número da trilha sobre a qual a cabeça de leitura está posicionada. O **Comparador de Número de Trilha** verifica se a trilha sobre a qual a cabeça está posicionada tem número maior (**T**>), menor (**T**<) ou igual (**TOK**) ao número de trilha solicitado.

Dependendo do número da trilha sobre a qual a cabeça de leitura está posicionada, o subsistema **Posição da Cabeça** pode alterar a trilha de leitura. Com o uso de um motor de passo, esse sistema permite avançar (representado pela saída **AVÇ**) a cabeça em direção às trilhas de maior número ou retrocede-la (representado pela saída **RETR**) em direção às trilhas de menor número.

Todo disquete possui um furo de indexação que serve para indicar, dentro de cada trilha, o setor de número zero. No modelo proposto, este furo é detectado pelo **Furo Índice** e a informação enviada através da entrada **S0**.

O número do setor é obtido pelo bloco Ler Número de Setor, que indica através da entrada (SOK) o momento em que o setor desejado vai passar sob a cabeça de leitura. Quando o setor correto está sob a cabeça de leitura, o controlador através da saída LER ativa o Leitor de Dados, que detecta e monta os bytes, entregando-os ao sistema. O final da leitura de dados é indicado através da entrada LEU.

Um resumo das entradas e saídas do controlador é apresentado na Tabela 1.

Tabela 1 - Resumo das entradas e saídas do controlador do leitor de disquetes

Entradas				
$\mathbf{HP} = 1$	Há um pedido de leitura, recebe número da trilha e do setor.			
T>=1	Cabeça posicionada sobre trilha com número superior ao solicitado.			
T<=1	Cabeça posicionada sobre trilha com número inferior ao solicitado.			
TOK = 1	Cabeça posicionada sobre trilha solicitada.			
SOK = 1	Vai passar sob a cabeça de leitura o setor solicitado.			
S0 = 1	Passou o setor 0.			
MOK = 1	Servo-motor na velocidade correta.			
LEU = 1	Terminou a leitura dos dados presentes no setor desejado.			
Saídas				
MT = 1	Motor ligado.			
LDHD = 1	Encostar a cabeça de leitura sobre a superfície do disquete.			
AVÇ = 1	Cabeça de leitura avança para a trilha seguinte (maior número)			
RETR = 1	Cabeça de leitura retrocede para a trilha anterior (menor número)			
LT = 1	Solicitação para ler o número da trilha sobre a qual a cabeça está posicionada.			
LS = 1	Solicitação para ler o número do setor que está passando sob a cabeça de leitura.			
LER = 1	Habilitação do detetor de dados.			

O diagrama de estados (Figura 2) detalha o funcionamento esperado deste controlador.

O estado A é o estado de partida onde o controlador fica aguardando a solicitação de leitura, com o motor desligado ($\mathbf{M} \downarrow$) e a cabeça de leitura afastada ($\mathbf{LDHD} \downarrow$) da superfície do disquete. Quando chega uma solicitação ($\mathbf{HP} = 1$), o controlador liga o motor ($\mathbf{M}\uparrow$) e encosta a cabeça ($\mathbf{LDHD}\uparrow$) na superfície do disquete.

Quando motor atinge a velocidade correta ($\mathbf{MOK} = 1$) o controlador avança para o estado C onde solicita a leitura da trilha ($\mathbf{LT} \parallel$) sobre a qual encontra-se a cabeça de leitura.

Com a ajuda do Comparador do Número de Trilha o controlador solicita: o avançado da cabeça ($\mathbf{AV}\mathbf{C}^{\parallel}$) se o número lido for inferior (\mathbf{T} < = 1) ao solicitado, ou retrocesso ($\mathbf{RETR}^{\parallel}$) se o número lido for superior (\mathbf{T} > = 1) ao solicitado. Esse processo se repete até que a cabeça esteja posicionada sobre a trilha deseja (\mathbf{TOK} = 1).

Uma vez posicionada sobre a trilha desejada o controlador aguarda a passagem do furo indexador ($\mathbf{S0} = 1$).

Quando isso acontece, ele dá início à leitura do número dos setores e fica aguardando o setor desejado passar sob a cabeça de leitura. Caso o furo indexador passe uma segunda vez, é indicação que o setor desejado não foi encontrado, e por isso o sistema reposiciona a cabeça.

Uma vez encontrado o setor desejado ($\mathbf{SOK} = 1$), o controlador habilita o detector das informações magnéticas e espera até que este termine seu trabalho, o que é sinalizado pela entrada $\mathbf{LEU} = 1$.

Figura 2 - Diagrama de estados do controlador de leitor de disquete.

III. INSTRUÇÕES PARA A REALIZAÇÃO DO EXPERIMENTO

3.1 Dicas para o projeto

Em circuitos com muitas entradas, pode ser difícil realizar a simplificação utilizando mapas de Karnaugh. Portanto, pode ser mais interessante utilizar multiplexadores para implementar o circuito. Além disso, o circuito tem diversas saídas que dependem apenas do estado atual. Da mesma forma, pode ser interessante utilizar um decodificador para implementar o circuito de saída.

O subsistema Comparador do número de Trilha possui três saídas **T**<, **T**> e **TOK**, sendo que apenas uma pode estar ativa a cada momento, e com certeza uma delas estará ativa em cada momento (isto é, existem três opções: 100, 010 e 001). Leve isso em consideração no seu projeto para diminuir o número de entradas.

3.2 Pré-relatório

Apresente o projeto do controlador de leitor de disquete descrito na seção 2, usando um registrador de deslocamentos (74194) para realizar a máquina de estados.

No projeto, deverão ser apresentados:

- 1. O diagrama de estados que representa o controlador;
- 2. Os mapas de Karnaugh para as entradas (S0, S1, L, R, A, B, C e D) do registrador de deslocamento (ver Figura 3 e Tabela 2);
- 3. As equações de excitação, obtidas a partir dos mapas de Karnaugh; e
- 4. O esquemático completo do circuito, com as pinagens das portas lógicas e demais circuitos integrados devidamente indicados.

3.3 Realização do experimento

O experimento será realizado em duas aulas e terá somente um visto. No Kit Lógico disponível no laboratório existem apenas 8 LEDs de usuário, portanto, utilize-os para exibir a transição de estados. O visto consiste na visualização da transição correta de todos os estados da máquina. De forma opcional, o grupo pode utilizar o display de 7 segmentos disponível no material do laboratório junto ao CI 7448 e as resistências para exibir a transição de estados e utilizar os LEDs para exibir as saídas.

3.4 Relatório

O relatório é individual, deve ser feito à mão. Consiste em responder as seguintes questões:

- Explique com detalhes como o registrador de deslocamentos pode ser utilizado para realizar uma máquina de estados, indicando claramente que tipo de ação deve ser tomada em cada mudança de estados. (2 pontos)
- 2) Apresente o projeto completo do sistema (diagrama de estados, mapas de Karnaugh, equações booleanas, além do esquemático utilizado). Apresente também uma explicação descritiva e detalhada do comportamento do circuito. (8 pontos). A não apresentação do esquemático, mapas de Karnaugh, equações ou explicação do comportamento do circuito implicará em nota zero para esta questão.

PINAGEM DO 74194 – REGISTRADOR DE DESLOCAMENTO

TABELA DE FUNCIONAMENTO DO 74194 - REGISTRADOR DE DESLOCAMENTO

	entradas				saídas				
	S1	S0	R	L	ABCD	$\mathbf{Q}_{\mathbf{A}}$	Q_B	Qc	Q_D
segurar	0	0	X	X	X	\mathbf{q}_{A}	q_B	qc	q_D
deslocar p/	1	0	X	0	X	q_B	$\mathbf{q}_{\mathbf{C}}$	q_D	0
esquerda	1	0	X	1	X	q_B	\mathbf{q}_{C}	q_D	1
deslocar p/	0	1	0	X	X	0	\mathbf{q}_{A}	q_B	qc
direita	0	1	1	X	X	1	\mathbf{q}_{A}	q_B	qc
carregar	1	1	X	X	abcd	a	b	c	d
paralelamente									