Ejercicios

- 1. Sea R una función racional en la cual aparecen sólo sen x y $\cos x$. Escribir la integral $\int R(\sin x, \cos x) dx$ usando el cambio de variable $u = \tan(x/2)$
- 2. Usando integración por partes calcule las siguientes primitivas

(a)
$$\int x \operatorname{sen}(x)$$

$$(\mathbf{f}) \int \frac{x}{1+x^2}.$$

(a)
$$\int x \operatorname{sen}(x)$$
. (f) $\int \frac{x}{1+x^2}$. (k) $\int x^2 \operatorname{senh}(x)$.

(b)
$$\int x \cos(x)$$

(b)
$$\int x \cos(x)$$
. (g) $\int \frac{x}{\sqrt{x^2 - 1}}$. (l) $\int x^2 \cosh(x)$.

(1)
$$\int x^2 \cosh(x).$$

(c)
$$\int xe^x$$
.

$$(h) \int x^2 \operatorname{sen}(x)$$

(m)
$$\int \frac{x^2}{1+x^2}$$

(d)
$$\int x \operatorname{senh}(x)$$

(c)
$$\int xe^x$$
. (h) $\int x^2 \operatorname{sen}(x)$. (m) $\int \frac{x^2}{1+x^2}$.

$$\int \frac{x^2}{x^2}$$

- (e) $\int x \cosh(x)$. (j) $\int x^2 e^x$. (n) $\int \frac{x^2}{\sqrt{x^2 1}}$.
- 3. Establezca fórmulas de recurrencia para la expresión I_n , dada por

(a)
$$I_n = \int x^n \operatorname{sen}(x)$$
.

(d)
$$I_n = \int \operatorname{sen}^n(x)$$
.

(b)
$$I_n = \int x^n \cos(x)$$
. **(e)** $I_n = \int \cos^n(x)$.

(e)
$$I_n = \int \cos^n(x)$$

(c)
$$I_n = \int x^n e^x$$
.

(f)
$$I_n = \int x^n \sinh(2x)$$
.

4. Utilizando integración de funciones racionales calcule las siguientes primitivas

(a)
$$\int \frac{1}{1+x}$$
.

(d)
$$\int \frac{1}{1-r^2}$$
.

(b)
$$\int \frac{1}{x^2 + 2x + 1}.$$

(e)
$$\int \frac{1}{(1+x^2)^2}$$
.

(c)
$$\int \frac{1}{1+x^2}$$
.

5. Aplique el cambio de variable $u = \tan(\frac{x}{2})$ para calcular las siguientes primi-

(a)
$$\int \frac{1}{\operatorname{sen}(x)}.$$

(d)
$$\int \frac{1}{1 - \cos(x)}.$$

(b)
$$\int \frac{1}{\cos(x)}.$$

(e)
$$\int \frac{1}{\sin(x) + \cos(x)}.$$

(c)
$$\int \frac{1}{1 + \operatorname{sen}(x)}$$

6. Calcule las siguientes primitivas

(a)
$$\int \frac{1}{\sqrt{x^2 - 1}}$$
.

(b)
$$\int \frac{1}{\sqrt{x^2+1}}$$
.

7. Calcule
$$\int \frac{g(x)g'(x)}{\sqrt{1+g(x)^2}}.$$

Problemas

P1. Calcular la siguiente integral

$$\int \frac{\operatorname{sen}(x)}{1 + \operatorname{sen}(x)} dx.$$

- **P2.** (a) Sea $I_n = \int \frac{\cos(nx)}{(\cos(x))^n} dx$.

 - (1) Calcular I_1, I_2 . (2) Calcular $\int \frac{\sin(x)}{(\cos(x))^{n+1}} dx$.
 - (3) Encontrar una relación de recurrencia para expresar I_{n+1} en fun-
 - **(b)** Calcular la primitiva $\int \frac{\sqrt{a^2 x^2}}{x^2} dx$.
- **P3.** (a) Calcule $\int \frac{dx}{x(\ln(x) + \ln^2(x))}.$
 - (b) Usando el cambio de variables $\tan(\frac{x}{2}) = u$, calcule $\int \frac{\cos(x)}{1 + \cos(x)} dx$.
 - (c) Sean $I = \int \cos(\ln(x)) dx$ y $J = \int \sin(\ln(x)) dx$. Usando integración por partes, plantee un sistema lineal que permita calcular I y J. Calcule I y J.
- **P4.** (a) Calcule $\int \frac{5x^2 + 12x + 1}{x^3 + 3x^2 4} dx.$
 - (b) Deducir una fórmula de recurrencia para $I_{m,n} = \int x^m (\ln(x))^n dx$. Use la fórmula para calcular $\int x^2 \ln x$.
- **P5.** (a) Calcule $\int \frac{x}{(1+x^2)(1+x)} dx$.
 - **(b)** Calcular $\int \frac{\sin(x)}{1 + \sin(x) + \cos(x)}.$
 - (c) Calcular $\int \arcsin\left(\sqrt{\frac{x}{1+x}}\right)$.