## Inhaltsverzeichnis

| Gruppenmitglieder: | 1 |
|--------------------|---|
| Protokoll:         | 2 |
| Aufgabe 9:         |   |
| Aufgabe 10:        |   |
| Aufgabe 11:        |   |

# Gruppenmitglieder:

Florian Eichhorn Danial Hezarkhani Kholoud Ghlissi Hossein Omid Beiki

### Protokoll:

### Aufgabe 9:

- 1. Regelkreisstruktur, sodass keine stationäre Regelabweichung auftritt: Kaskadenregelung mit PI-Reglern R1 und R2.
- 2. Simulinkmodell mit Kaskadenregelung. Unterlagerte Volumenstromregelung mit Ausgang  $Q_{\text{P101}}$ :



- 3. PI-Reglerauslegung:
  - a. unterlagerter Regelkreis:
    - i.  $T_{n2} = 50$  aus Nullstellenvorgabe bei 0,02
    - ii. K<sub>R2</sub> = 469 mit Wurzelortskurvenverfahren/Sisotool und Dämpfung D = 0,66
  - b. äußerer Regelkreis:
    - i. Bedingung  $T_{n1} > T_{n2}$
    - ii.  $T_{n1}$  = 60 gewählt
    - iii. K<sub>R1</sub> = 1 gewählt

### 4. Ergebnisse:

- a.  $f \ddot{u} r V_{4, soll} = 6*10^{-3} \text{ m}^3$ :
- b. ohne Anti-Wind-Up und ohne Sicherheitsabschaltung der Pumpe.
- c. V<sub>2</sub>(t): gelb
- d. V<sub>3</sub>(t): blau
- e. V<sub>4</sub>(t): rot



## Aufgabe 10:

1. Simulinkmodell mit Sicherheitsabschaltung und Anti-Wind-Up (Clamping oder Backcalculation):



2. Ergebnisse mit Sicherheitsabschaltung und Anti-Wind-Up (Clamping):



3. Ergebnisse mit Sicherheitsabschaltung und ohne Anti-Wind-Up:



#### 4. Ergebnisdiskussion:

- a. Anti-Wind-Up Verfahren hat keinen Einfluss auf  $V_2(t)$ ,  $V_3(t)$  und  $V_4(t)$  für verwendete Beispielwerte.
- b. Sicherheitsabschaltung der Pumpe sorgt für Schwingung von  $V_2$  um den Wert, bei dem die Pumpe abgeschaltet wird.

## Aufgabe 11:

1. Dreitank als MIMO-System ohne Entkopplungsregler. Regelkreisstruktur in Simulink:

