1 Problem Statement

• Angenommen die Konfiguration / Pose des Roboters $\rho = [\alpha, p_1, \varepsilon]$ ist vollständig bekannt, wobei α die Gelenkkoordinaten / Biegewinkel der einzelnen Glieder sind, p_1 die Position des vorderen Torsoendes und ε die Orientierung des Roboters. Siehe Bild:

- Für die Pfadplanung, wäre eine Funktion hilfreich, die zu einer gegebenen Wunschdrehung $\Delta \varepsilon$, eine entsprechende Abfolge von Roboter-Konfigurationen / Posen ausgibt, sodass sich der Roboter entsprechend dreht.
- So könnte zB die Richtung des Roboters so justiert werden, dass er sich auf ein gegebenes Ziel zu bewegt.
- Für den geraden Gang ist eine analytische Funktion bekannt, die die Geschwindigkeit des Roboters einstellt. Geschwindigkeit im Sinne von Schrittweite, bzw. Vorschub pro Zyklus:

$$\alpha = \begin{bmatrix} 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \\ x_1 \\ 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \end{bmatrix}$$
 (1)

Die Schrittweite ist hier als x_1 beschrieben.

2 Approach: Guess structure for a analytic model for walking curves

- Src can be found: analytic_model.py
- Model:

$$\boldsymbol{\alpha} = \begin{bmatrix} 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \\ x_1 + x_2 \\ 45 - \frac{x_1}{2} \\ 45 + \frac{x_1}{2} \end{bmatrix}$$
 (2)

• Method:

Simulate for different x_1 and x_2 (in der Abbildung unten ist $x_1 = \mathsf{gam}$ und $x_2 = \mathsf{x}$)

• Results für 2 Zyklen:

- Observations:
 - Es funktioniert. Der Roboter läuft eine Kurve.
 - Kurve ist unsymmetrisch. Rechts klappt besser als links.
 - Startpose ist besser für Rechtskurve geeignet.
 - Noch nichts über die innere SPannung des Roboters herausgefunden

3 Approach: Try another structure

- Src can be found: analytic_model_2.py
- Model:

$$\alpha = \begin{bmatrix} 45 - \frac{x_1}{2} + \bar{f}_0 | x_1 x_2 | + f_0 | x_1 | x_2 \\ 45 + \frac{x_1}{2} + \bar{f}_1 | x_1 x_2 | + f_1 | x_1 | x_2 \\ x_1 + | x_1 | x_2 \\ 45 - \frac{x_1}{2} + \bar{f}_2 | x_1 x_2 | + f_2 | x_1 | x_2 \\ 45 + \frac{x_1}{2} + \bar{f}_3 | x_1 x_2 | + f_3 | x_1 | x_2 \end{bmatrix}$$
(3)

• Results

4 Approach: Optimize Extra leg bending Angle for given extra torso bending

- Src can be found: analytic_model_3.py
- Model:

$$\boldsymbol{\alpha} = \begin{bmatrix} 45 - \frac{x_1}{2} + \bar{f}_0 x_3 + f_0 x_4 \\ 45 + \frac{x_1}{2} + \bar{f}_1 x_3 + f_1 x_4 \\ x_1 + x_2 \\ 45 - \frac{x_1}{2} + \bar{f}_2 x_4 + f_3 x_3 \\ 45 + \frac{x_1}{2} + \bar{f}_3 x_4 + f_4 x_3 \end{bmatrix}$$
(4)

• Annahme:

Die Extra Biegung x_3 für freie Beine und die Extra Biegung x_4 für fixierte Beine sind abhängig von der Extra Biegung x_2 für den Torso.

• Methode:

Für gegebenes Extra Torso Bending x_2 und gegebenene Torso Biegung x_1 minimiere die Innere Spannung über den Gang mit n Zyklen aufsummiert:

Gegeben: x_1 Torsobiegung

 x_2 Extra Torsobiegung

Gesucht: x_3 Extra Beinbiegung fixiert vorn

 x_4 Extra Beinbiegung fixiert hinten

$$cost(\mathbf{x}) = \sum gait(\mathbf{x}).stress$$
 (5)

• Observations:

Hinter- und Vorderbeine sind nicht symmetrisch, aber kreuzweise symmetrisch: Die Extrabiegung für ein nicht fixiertes Vorderbein entspricht der Extrabiegung eines fixierten Hinterbeins und anderesherum.