Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

General Finite Volumes Schemes of First Order

Monotone schemes

lonotone Schemes roperties

SF2521

Consistent Methods

Consistent numerical flux

Definition

Let $f \in C^1(\mathbb{R})$ be a physical flux and $g \in C^{0,1}(\mathbb{R} \times \mathbb{R})$ be a Lipschitz continuous numerical flux.

We say that q is consistent with f if and only if

$$g(u, u) = f(u)$$
 for all $u \in \mathbb{R}$.

Monotone Schemes
Properties
Godunov Scheme

Consistent numerical scheme

Definition (Consistent Numerical Scheme)

Let $f \in C^1(\mathbb{R})$ and $g \in C^{0,1}(\mathbb{R} \times \mathbb{R})$ a numerical flux.

Let $x_j = \frac{\Delta x}{2} + j\Delta x$ for $j \in \mathbb{Z}$ define a <u>spatial mesh</u> and $t_n = n\Delta t$ for $n \in \mathbb{N}_0$ define a time mesh.

The <u>discrete initial value</u> is given by $\mathbf{v_0}(x_j) \approx Q_i^0 \in \mathbb{R}$. The scheme

$$Q_{j}^{n+1} = Q_{j}^{n} - \frac{\Delta t}{\Delta x} (g_{i+\frac{1}{2}}^{n} - g_{i-\frac{1}{2}}^{n})$$

with

$$g_{j+\frac{1}{2}}^n := g(Q_j^n, Q_{j+1}^n), \qquad g_{j-\frac{1}{2}}^n := g(Q_{j-1}^n, Q_j^n)$$

is an (explicit) scheme in conservation form with numerical flux q.

The scheme is called consistent if q is consistent with f.

Reminder - Consistency

A scheme is consistent if the exact solution fits the scheme well.

More precisely, we define the local truncation error τ^n such that

$$\mathbf{u}^{n+1} = \mathbf{\Phi}(\mathbf{u}^n) + \Delta t \, \boldsymbol{\tau}^n, \quad \text{where } u_j^n = \frac{1}{\Delta x} \int_{x_i}^{x_{j+1}} u(t_n, x) dx$$

► Local truncation error \simeq error performed in one time step, scaled by Δt :

$$\frac{\mathbf{u}^{n+1}-\mathbf{\Phi}(\mathbf{u}^n)}{\mathbf{\Lambda}t}=\boldsymbol{\tau}^n.$$

Ionotone Schemes roperties

Reminder - Consistency

- For convergence we need a small τ^n .
- We say that the method is consistent if

$$\max_{0 \le n \Delta t \le T} \| \boldsymbol{\tau}^n \|_{\Delta x} \to \text{o} \qquad \text{as } \Delta t, \Delta x \to \text{o}, \text{ for a fixed } T.$$

▶ If there is a number C independent of Δt and Δx such that

$$\max_{0 \le n\Delta t \le T} \|\boldsymbol{\tau}^n\|_{\Delta x} \le C(\Delta x^p + \Delta t^r)$$

we say that the method is of order p in space and r in time.

▶ If $\lambda_{CFL} = \Delta t/\Delta x$ is constant, with $\lambda_{CFL} = \mathcal{O}(1)$, then

$$\|\boldsymbol{\tau}^n\|_{\Delta x} = \mathcal{O}(\Delta x^p + \Delta x^r) = \mathcal{O}(\Delta x^q), \quad \text{where } q = \min(p, r)$$

and we simply say the method is of order q.

Consistency in our case

Definition (Consistency order)

For a numerical flux $g \in C^{0,1}(\mathbb{R} \times \mathbb{R})$, the scheme is characterized by

$$\Phi(v,w,z) := w - \frac{\Delta t}{\Delta x} [g(w,z) - g(v,w)].$$

For the <u>cell averages of the exact solution</u> u_j^n the <u>local truncation error</u> τ^n is defined by

$$\tau_j^n := \frac{u_j^{n+1} - \Phi(u_{j-1}^n, u_j^n, u_{j+1}^n)}{\Delta t} \quad \text{for } j \in \mathbb{Z}, \ n \in \mathbb{N}.$$

The scheme is **consistent** of order *p* if

$$\tau_j^n \leq C(\Delta x^p + \Delta t^p)$$
 for $j \in \mathbb{Z}, \ n \in \mathbb{N}$.

< □ > < □ ! !

Monotone Schemes
Properties
Godunov Scheme

Remark on scheme

For a numerical flux $q \in C^{0,1}(\mathbb{R} \times \mathbb{R})$ and with

$$\Phi(v,w,z) := w - \frac{\Delta t}{\Delta x} [g(w,z) - g(v,w)],$$

we can write the scheme in conservation form as:

$$Q_j^{n+1} = \Phi(Q_{j-1}^n, Q_j^n, Q_{j+1}^n).$$

Recall that

$$Q_j^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} (g_{i+\frac{1}{2}}^n - g_{i-\frac{1}{2}}^n)$$

with

$$g_{i+\frac{1}{2}}^n := g(Q_j^n, Q_{j+1}^n), \qquad g_{i-\frac{1}{2}}^n := g(Q_{j-1}^n, Q_j^n)$$

Monotone Schemes
Properties
Godunov Scheme

Consistency

Consistent numerical schemes have always at least consistency order 1.

Theorem

Let $f \in C^2(\mathbb{R})$ and $u \in C^2(\mathbb{R} \times \mathbb{R}^+)$ a classical solution to

$$\partial_t \mathbf{u} + \partial_{\mathbf{x}} \mathbf{f}(\mathbf{u}) = \mathbf{0}.$$

If $g \in C^2(\mathbb{R} \times \mathbb{R})$ is a numerical flux that is consistent with f. Then for fixed $\frac{\Delta t}{\Delta x} = \text{const}$ the scheme

$$Q_{j}^{n+1} = Q_{j}^{n} - \frac{\Delta t}{\Delta x} (g_{i+\frac{1}{2}}^{n} - g_{i-\frac{1}{2}}^{n})$$

is consistent of order 1, i.e. $\tau_i^n \leq C(\Delta x + \Delta t)$ for $j \in \mathbb{Z}, n \in \mathbb{N}$.

(proof: Taylor expansion)

Intermezzo

Question: Is a consistent scheme enough for convergence?

Answer: No, it is not enough. Consistency is only a necessary condition. For convergence we require additionally that the scheme is stable.

Monotone Schemes Properties Godunov Scheme

Examples of consistent numerical fluxes

Recall
$$g^n_{j+\frac{1}{2}} = g(Q^n_j, Q^n_{j+1})$$
 and $g^n_{j-\frac{1}{2}} = g(Q^n_{j-1}, Q^n_j)$. Let $\partial f^n_j := \frac{g^n_{j+\frac{1}{2}} - g^n_{j-\frac{1}{2}}}{\Delta x} \quad \Rightarrow \quad \partial f^n_j \approx \partial_x f(u(x_j, t_n)).$

Backwards differences

$$g(v,w) := f(v)$$
 \Rightarrow $\partial f_j^n = \frac{f(Q_j^n) - f(Q_{j-1}^n)}{\Delta x}.$

Forward differences

$$g(v,w) := f(w)$$
 \Rightarrow $\partial f_j^n = \frac{f(Q_{j+1}^n) - f(Q_j^n)}{\Delta x}.$

Central differences

$$g(v,w):=\frac{f(v)+f(w)}{2} \qquad \Rightarrow \qquad \partial f_j^n=\frac{f(Q_{j+1}^n)-f(Q_{j-1}^n)}{2\Delta x}.$$

< □ > < ⊡

Monotone Schemes Properties

Examples of consistent numerical fluxes

Let

$$\partial f_j^n := \frac{g(Q_j^n, Q_{j+1}^n) - g(Q_{j-1}^n, Q_j^n)}{\Delta x} \qquad \Rightarrow \qquad \partial f_j^n \approx \partial_x f(u(x_j, t_n)).$$

Lax-Friedrich flux

$$g(v,w) := \frac{f(v) + f(w)}{2} + \frac{1}{2\lambda}(v - w), \qquad \lambda = \frac{\Delta t}{\Delta x}.$$

Then

$$\partial f_j^n = \underbrace{\frac{f(Q_{j+1}^n) - f(Q_{j-1}^n)}{2\Delta x}}_{\approx \partial_x f(u)} - \underbrace{\frac{Q_{j+1}^n - 2Q_j^n + Q_{j-1}^n}{2\Delta t}}_{\approx (2\lambda)^{-1}\Delta x \ \partial_{xx} u}$$

which gives the Lax-Friedrich scheme:

$$Q_{j}^{n+1} = Q_{j}^{n} - \frac{\Delta t}{2\Delta x}(f(Q_{j+1}^{n}) - f(Q_{j-1}^{n})) + \frac{1}{2}(Q_{j+1}^{n} - 2Q_{j}^{n} + Q_{j-1}^{n}).$$

Monotone Schemes Properties

Examples of consistent numerical fluxes

Lax-Friedrich flux

$$g(v,w) := \frac{f(v) + f(w)}{2} + \frac{1}{2\lambda}(v - w), \qquad \lambda = \frac{\Delta t}{\Delta x}.$$

Then

$$\partial f_j^n = \underbrace{\frac{f(Q_{j+1}^n) - f(Q_{j-1}^n)}{2\Delta x}}_{\approx \partial_x f(u)} - \underbrace{\frac{Q_{j+1}^n - 2Q_j^n + Q_{j-1}^n}{2\Delta t}}_{\approx (2\lambda)^{-1}\Delta x \partial_{xx} u}.$$

The scheme can be considered as an approximation of

$$\partial_t \mathbf{u} + \partial_{\mathbf{x}} f(\mathbf{u}) = \frac{\Delta \mathbf{x}}{2\lambda} \, \partial_{\mathbf{x}\mathbf{x}} \mathbf{u}.$$

Hence, we can interpret $\varepsilon = \frac{\Delta x}{2\lambda}$ as an artifical viscosity term!

The numerical flux g is consistent and Lipschitz continuous, if f is Lipschitz continuous.

Examples of consistent numerical fluxes

► Engquist-Osher flux. **Idea:** following the direction of characteristics, we use

$$\partial f_j^n = \frac{1}{\Delta x} (f(Q_j^n) - f(Q_{j-1}^n)),$$
 if $f' > 0$, $\partial f_j^n = \frac{1}{\Delta x} (f(Q_{j+1}^n) - f(Q_j^n)),$ if $f' < 0$.

We define

$$f^+(v) := f(o) + \int_o^v \max(f'(s), o) ds, \qquad f^-(v) := \int_o^v \min(f'(s), o) ds.$$

Then $f(v) = f^+(v) + f^-(v)$ and we define the Engquist-Osher flux by $g(v, w) := f^+(v) + f^-(w)$.

Hence

$$\partial f_j^n := rac{1}{\Delta x} (f^+(Q_j^n) - f^+(Q_{j-1}^n) + f^-(Q_{j+1}^n) - f^-(Q_j^n))$$

and we obtain the Engquist-Osher scheme

$$Q_j^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} (f^+(Q_j^n) - f^+(Q_{j-1}^n) + f^-(Q_{j+1}^n) - f^-(Q_j^n)).$$

Consistent numerical schemes

Issue: How do we ensure convergence to the entropy solution?

Motivation:

Theorem

Let $g \in C^2(\mathbb{R} \times \mathbb{R})$ be consistent with f and let Q_j^n be the corresponding numerical approximation obtained with the scheme in conservation form.

Then, the local truncation error for smooth solutions to

$$\partial_t u + \partial_x f(u) = \frac{\Delta x}{2} \, \partial_x (b(u) \partial_x u)$$

with

$$b(u) = \partial_1 g(u, u) - \partial_2 g(u, u) - \lambda (f'(u))^2, \quad \lambda = \frac{\Delta t}{\Delta x}$$

is of order 2.

Proof: Taylor expansion.