1 Constants

Symbol	Unit		Value	Expla	nation				
Δt	S		0.01 - 0.0	001 Times	Timestep				
τ_{adj}	s		0.5	Chara	acteristic	time in wh	which agent adjusts its movement.		
k	N		1.5	Socia	Social force scaling constant.				
$ au_0$	S		3.0	Intera	Interaction time horizon.				
μ	${\rm kg~s^{-2}}$		1.2e + 05	Comp	Compression counteraction constant.				
κ	${\rm kg} \ {\rm m}^{-1} {\rm s}^{-1}$		2.4e + 05	Slidin	Sliding friction constant.				
A	N		2.0e + 03	Scalir	Scaling coefficient for social force.				
B	\mathbf{m}		0.08	Coeff	icient for	social force	ce.		
$\ \mathbf{f}_{max}\ $	N			Force	magnitu	de limit.			
	Total		Torso	Shoulder		Velocity	ÿ		
	r (m)	±	$r_{ m t}/r$	$r_{ m s}/r$	r_{t-s}/r	v (m/s)) ±		
adult	0.255	0.035	0.5882	0.3725	0.6275	1.25	0.3		
child	0.210	0.015	0.5714	0.3333	0.6667	0.90	0.3		
eldery	0.250	0.020	0.6000	0.3600	0.6400	0.80	0.3		
female	0.240	0.020	0.5833	0.3750	0.6250	1.15	0.2		
$_{\mathrm{male}}$	0.270	0.020	0.5926	0.3704	0.6296	1.35	0.2		

 $\textbf{Figure 1:} \ \, \textbf{Circle}, \, \textbf{ellipse} \, \, \textbf{and} \, \, \textbf{three} \, \, \textbf{circle} \, \, \textbf{representations} \, \, \textbf{of} \, \, \textbf{an} \, \, \textbf{agent}. \, \,$

2 Agents

and from social forces

2.1 Properties

\overline{r}	m		Radius
m	kg	80	Mass
I	${\rm kg} {\rm m}^2$	4.0	Moment of inertia
\mathbf{x}			Position
\mathbf{v}			Velocity
v_0			Goal velocity
$\hat{\mathbf{e}}_0$			Goal direction
$\hat{\mathbf{e}}$			Target direction
$\overline{\varphi}$			Body angle
ω			Angular velocity
$arphi_0$			Target angle
ω_0	s^{-1}	4π	Max angular velocity
\overline{p}		0 - 1	Herding tendency
$\tilde{\mathbf{x}} =$	$\mathbf{x}_i - \mathbf{x}_j$	R	elative position
	$\mathbf{v}_i - \mathbf{v}_j$	R	elative velocity
d =	$\ ilde{\mathbf{x}}\ $	D	istance
$\hat{\mathbf{n}} =$	$\tilde{\mathbf{x}}/d$	N	ormal vector
$\hat{\mathbf{t}} =$	$R(-90^{\circ})$	$\cdot \hat{\mathbf{n}}$ Ta	angent vector

2.2 Circular agent

Total radius and relative distance

$$\tilde{r} = r_i + r_j$$
$$h = \tilde{r} - d$$

2.3 Three circles

2.4 Rotational equation

Rotational equation of motion

$$I\frac{d^2}{dt^2}\varphi(t) = M(t) + \eta(t),$$

where $\eta(t)$ is small random fluctuation torque, and M(t) is total torque, which is the sum of contact, social and motivational torque

$$M_i(t) = M_i^c + M_i^{soc} + M_i^{\tau}$$

Torque from contact forces

$$\mathbf{M}_{i}^{c} = \sum_{j \neq i} \left(\mathbf{R}_{i}^{c} imes \mathbf{f}_{ij}^{c}
ight)$$

Motivational torque

$$M_i^{\tau} = \frac{I_i}{\tau_i} \left((\varphi_i(t) - \varphi_i^0) \omega^0 - \omega(t) \right)$$

3 Linear wall

3.1 Properties

 \mathbf{p}_0 Start point \mathbf{p}_1 End point

Relative

$$h_{iw} = r_i - d_{iw}$$

$$l_w = \|\mathbf{p}_1 - \mathbf{p}_0\|$$

$$\hat{\mathbf{t}}_w = (\mathbf{p}_1 - \mathbf{p}_0) / l_w$$

$$\hat{\mathbf{n}}_w = R(90^\circ) \cdot \hat{\mathbf{t}}_w$$

3.2 Absolute distance

Solving linear system of equations determining the position of the agent \mathbf{x}_i in relation to wall

$$\begin{cases} \mathbf{p}_0 + l_{n_0} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_0} \hat{\mathbf{t}}_w \\ \mathbf{p}_1 + l_{n_1} \hat{\mathbf{n}}_w = \mathbf{x}_i + l_{t_1} \hat{\mathbf{t}}_w \end{cases}$$
$$\begin{cases} l_{n_0} \hat{\mathbf{n}}_w - l_{t_0} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_0 = \mathbf{q}_0 \\ l_{n_1} \hat{\mathbf{n}}_w - l_{t_1} \hat{\mathbf{t}}_w = \mathbf{x}_i - \mathbf{p}_1 = \mathbf{q}_1 \end{cases}$$

In matrix form

$$\begin{bmatrix} l_{n_0} & l_{n_1} \\ l_{t_0} & l_{t_1} \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \hat{\mathbf{n}}_w & -\hat{\mathbf{t}}_w \end{bmatrix} = \begin{bmatrix} -t_1 & -t_0 \\ t_0 & -t_1 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{t_0^2 + t_1^2} \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix} = \begin{bmatrix} -t_1 & t_0 \\ -t_0 & -t_1 \end{bmatrix}$$

$$= \begin{bmatrix} \hat{\mathbf{n}}_w \\ -\hat{\mathbf{t}}_w \end{bmatrix} = \mathbf{A}^T$$

Conditions

$$l_n = l_{n_0} \vee l_{n_1} = \hat{\mathbf{n}}_w \cdot \mathbf{q}_0 \vee \hat{\mathbf{n}}_w \cdot \mathbf{q}_1$$

$$l_t = l_{t_1} + l_{t_0} = -\hat{\mathbf{t}}_w \cdot \mathbf{q}_1 - \hat{\mathbf{t}}_w \cdot \mathbf{q}_0$$

Distance between agent and linear wall

$$d_{iw} = \begin{cases} \|\mathbf{q}_0\| & l_t > l_w \\ |l_n| & \text{otherwise} \\ \|\mathbf{q}_1\| & l_t < -l_w \end{cases}$$

Normal vector away from the wall

$$\hat{\mathbf{n}}_{iw} = \begin{cases} \hat{\mathbf{q}}_0 & l_t > l_w \\ \operatorname{sign}(l_n)\hat{\mathbf{n}}_w & \text{otherwise} \\ \hat{\mathbf{q}}_1 & l_t < -l_w \end{cases}$$

3.3 Velocity relative distance

 $\tilde{\mathbf{x}} = \mathbf{x}_{iw}$ Relative position $\tilde{\mathbf{v}} = \mathbf{v}_{iw} = \mathbf{v}_i$ Relative velocity $\tilde{r} = r_{iw}$ Total radius $d = ||\tilde{\mathbf{x}}||$ Distance $h = \tilde{r} - d$ Relative distance

Dividing vectors

$$\begin{aligned} \mathbf{q}_0 &= \mathbf{p}_0 - \mathbf{x} \\ \mathbf{q}_1 &= \mathbf{p}_1 - \mathbf{x} \\ \hat{\mathbf{n}}_{iw} &= -\operatorname{sign}(\hat{\mathbf{n}}_w \cdot \mathbf{q}_0) \hat{\mathbf{n}}_w \end{aligned}$$

Angle of 2D vector is found using https://en.wikipedia.org/wiki/Atan2 where angle is between $[-\pi, \pi]$

$$\boldsymbol{\alpha} = [\text{angle}(\mathbf{q}_0), \text{angle}(\mathbf{q}_1), \text{angle}(\hat{\mathbf{n}}_{iw})]$$

$$\varphi = \text{angle}(\mathbf{v})$$

Figure 2: Absolute distance from a linear wall.

4 Crowd dynamics

4.1 Social force model

Total force exerted on the agent is the sum of movement adjusting, social and contact forces between other agents and wall.

$$\mathbf{f}_{i}(t) = \mathbf{f}_{i}^{adj} + \sum_{j \neq i} \left(\mathbf{f}_{ij}^{soc} + \mathbf{f}_{ij}^{c}\right) + \sum_{w} \left(\mathbf{f}_{iw}^{soc} + \mathbf{f}_{iw}^{c}\right) + \boldsymbol{\xi}_{i}$$

4.2 Adjusting force

Force adjusting agent's movement towards desired in some characteristic time

$$\mathbf{f}^{adj} = \frac{m}{\tau^{adj}} (v_0 \cdot \hat{\mathbf{e}} - \mathbf{v})$$

4.3 Social force

Psychological force for collision avoidance

4.3.1 Velocity independent

$$\mathbf{f}^{soc} = A \exp\left(\frac{h}{B}\right) \hat{\mathbf{n}}$$

4.3.2 Velocity dependent

$$\begin{split} \mathbf{f}^{soc} &= -\nabla_{\tilde{\mathbf{x}}} E(\tau) \\ &= -\nabla_{\tilde{\mathbf{x}}} \left(\frac{k}{\tau^2} \exp\left(-\frac{\tau}{\tau_0} \right) \right) \\ &= -\left(\frac{k}{a\tau^2} \right) \left(\frac{2}{\tau} + \frac{1}{\tau_0} \right) \exp\left(-\frac{\tau}{\tau_0} \right) \left(\tilde{\mathbf{v}} - \frac{a\tilde{\mathbf{x}} + b\tilde{\mathbf{v}}}{d} \right), \end{split}$$

where

$$a = \tilde{\mathbf{v}} \cdot \tilde{\mathbf{v}}$$

$$b = -\tilde{\mathbf{x}} \cdot \tilde{\mathbf{v}}$$

$$c = \tilde{\mathbf{x}} \cdot \tilde{\mathbf{x}} - \tilde{r}^2$$

$$d = \sqrt{b^2 - ac}, \quad b^2 - ac > 0$$

$$\tau = \frac{b - d}{a} > 0.$$

Figure 3: Velocity dependent distance from a linear wall.

4.4 Contact force

Physical contact force

$$\mathbf{f}^c = h \cdot (\mu \cdot \hat{\mathbf{n}} - \kappa \cdot (\mathbf{v} \cdot \hat{\mathbf{t}}) \hat{\mathbf{t}}), \quad h > 0$$

4.5 Random Fluctuation

Uniformly distributed random fluctuation force

$$\boldsymbol{\xi} = f \cdot [\cos(\varphi), \sin(\varphi)],$$

where

$$f \in [0, f_{max}], \quad \varphi \in [0, 2\pi)$$

4.6 Target direction

Herding behavior

$$\mathbf{e}_i = (1 - p_i)\hat{\mathbf{e}}_i^0 + p_i \left\langle \hat{\mathbf{e}}_j^0 \right\rangle_i$$

5 Integrators

5.1 Differential systems

Angle and angular velocity

$$I\frac{d^2}{dt^2}\varphi(t) = M(t)$$

Position and velocity

$$m\frac{d^2}{dt^2}\mathbf{x}(t) = \mathbf{f}(t)$$

5.2 Numerical methods

Updating using discrete time step Δt

$$t_0 = 0$$

$$t_1 = t_0 + \Delta t$$

$$\vdots$$

$$t_k = t_{k-1} + \Delta t$$

5.3 Excelicit Euler Method

Angular acceleration

$$\begin{aligned} \alpha_k &= M_k/I \\ \omega_{k+1} &= \omega_k + \alpha_k \Delta t \\ \varphi_{k+1} &= \varphi_k + \omega_{k+1} \Delta t \end{aligned}$$

Acceleration on an agent

$$\begin{aligned} a_k &= \mathbf{f}_k/m \\ \mathbf{v}_{k+1} &= \mathbf{v}_k + a_k \Delta t \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \mathbf{v}_{k+1} \Delta t \end{aligned}$$

5.4 Velocity verlet

Velocity verlet algorithm

$$\begin{aligned} \mathbf{v}_{k+\frac{1}{2}} &= \mathbf{v}_k + \frac{1}{2} a_k \Delta t \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \mathbf{v}_{k+\frac{1}{2}} \Delta t \\ \mathbf{v}_{k+1} &= \mathbf{v}_{k+\frac{1}{2}} + \frac{1}{2} a_{k+1} \Delta t \end{aligned}$$

or more simply

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_k \Delta t + \frac{1}{2} a_k \Delta t^2$$
$$\mathbf{v}_{k+1} = \mathbf{v}_k + \frac{1}{2} (a_k + a_{k+1}) \Delta t$$