Výroková a predikátová logika - XII

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- ullet teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci.

Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

2/24

Důsledek kompaktnosti

Věta *Má-li teorie* T *pro každé* $n \in \mathbb{N}$ *alespoň* n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

extstyle ext

- Nechť T, S jsou teorie jazyka L takové, že M(T) = K, $M(S) = \overline{K}$.
- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- *charakteristiky* 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1+1+\cdots+1$ (+ aplikováno (p-1)-krát).
- charakteristiky p, kde p je prvočíslo, je-li p je nejmenší t.ž. $A \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{ p1 \neq 0 \mid p \in \mathbb{N}^+ \}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné.

Otevřená axiomatizovatelnost

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

Důkaz Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

Rekurzivní axiomatizace a rozhodnutelnost

- Intuitivní pojem "algoritmus" lze přesně formalizovat (např. pomocí TS).
- Teorie T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda φ ∈ T.
- Teorie T je *rozhodnutelná*, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí a oznámí, zda $\varphi \in Thm(T)$.
- Teorie T je částečně rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ skončí, právě když φ ∈ Thm(T).

Tvrzení Pro každou rekurzivně axiomatizovanou teorii T,

- (i) T je částečně rozhodnutelná,
- (ii) je-li navíc T kompletní, je T rozhodnutelná.

Důkaz Konstrukce systematického tabla z T s $F\varphi$ v kořeni poskytuje algoritmus, který rozpoznává $T \vdash \varphi$. Je-li navíc T kompletní, paralelní konstrukce pro $F\varphi$ resp. $T\varphi$ v kořeni rozhoduje, zda $T \vdash \varphi$ či $T \vdash \neg \varphi$.

Rekurzivně spočetná kompletace

Co když efektivně popíšeme všechny jednoduché kompletní extenze?

Řekneme, že množina všech (až na ekvivalenci) jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, existuje-li algoritmus $\alpha(i,j)$, který generuje i-tý axiom j-té extenze (při nějakém očíslování), případně oznámí, že (takový axiom či extenze) neexistuje.

Tvrzení Je-li teorie T rekurzivně axiomatizovaná a množina všech (až na ekvivalenci) jejích jednoduchých kompletních extenzí je rekurzivně spočetná, je T rozhodnutelná.

Důkaz Díky rek. axiomatizaci poskytuje konstrukce systematického tabla z T s $F\varphi$ v kořeni algoritmus pro rozpoznání $T \vdash \varphi$. Pokud ale $T \not\vdash \varphi$, pak $T' \vdash \neg \varphi$ v nějaké jednoduché kompletní extenzi T' teorie T. To lze rozpoznat paralelní postupnou konstrukcí systematických tabel pro $T\varphi$ z jednotlivých extenzí. V i-tém stupni se sestrojí tabla do i kroků pro prvních i extenzí. \Box

Příklady rozhodnutelných teorií

Následující teorie jsou rozhodnutelné, ačkoliv jsou nekompletní.

- teorie čisté rovnosti; bez axiomů v jazyce $L=\langle \rangle$ s rovností,
- ullet teorie unárního predikátu; bez axiomů v jazyce $L=\langle U \rangle$ s rovností, kde U je unární relační symbol,
- teorie hustých lineárních uspořádání DeLO*,
- teorie algebraicky uzavřených těles v jazyce $L=\langle +,-,\cdot,0,1\rangle$ s rovností, s axiomy teorie těles a navíc axiomy pro každé $n\geq 1$,

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0),$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

- teorie komutativních grup,
- teorie Booleových algeber.

9/24

Rekurzivní axiomatizovatelnost

Dají se matematické struktury "efektivně" popsat?

- Třída $K \subseteq M(L)$ je *rekurzivně axiomatizovatelná*, pokud existuje rekurzivně axiomatizovaná teorie T jazyka L s M(T) = K.
- Teorie T je rekurzivně axiomatizovatelná, pokud M(T) je rekurzivně axiomatizovatelná.

Tvrzení Pro každou konečnou strukturu A v konečném jazyce s rovností je Th(A) rekurzivně axiomatizovatelná. Tedy, Th(A) je rozhodnutelná.

Důkaz Nechť $A = \{a_1, \ldots, a_n\}$. Teorii $\operatorname{Th}(\mathcal{A})$ axiomatizujeme jednou sentencí (tedy rekurzivně) kompletně popisující \mathcal{A} . Bude tvaru "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí ve struktuře \mathcal{A} ."

Příklady rekurzivní axiomatizovatelnosti

Následující struktury A mají rekurzivně axiomatizovatelnou teorii Th(A).

- $\langle \mathbb{Z}, \leq \rangle$, teorií diskrétních lineárních uspořádání,
- ⟨ℚ, ≤⟩, teorií hustých lineárních uspořádání bez konců (DeLO),
- $\langle \mathbb{N}, S, 0 \rangle$, teorií následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$, tzv. Presburgerovou aritmetikou,
- \bullet $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorií reálně uzavřených těles,
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorií algebraicky uzavřených těles charakteristiky 0.

Důsledek Pro uvedené struktury je Th(A) rozhodnutelná.

Poznámka Uvidíme, že ale $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ *rekurzivně axiomatizovat nelze.* (Vyplývá to z první Gödelovy věty o neúplnosti).

Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$? Jazyk aritmetiky je $L=\langle S,+,\cdot,0,\leq\rangle$ s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0 \qquad x \cdot 0 = 0$$

$$S(x) = S(y) \rightarrow x = y \qquad x \cdot S(y) = x \cdot y + x$$

$$x + 0 = x \qquad x \neq 0 \rightarrow (\exists y)(x = S(y))$$

$$x + S(y) = S(x + y) \qquad x \leq y \leftrightarrow (\exists z)(z + x = y)$$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani tranzitivitu \leq . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$.

Např. pro
$$\varphi(x,y)$$
 tvaru $(\exists z)(x+z=y)$ je
$$Q \vdash \varphi(\underline{1},\underline{2}), \quad \textit{kde } \underline{1} = S(0) \textit{ a } \underline{2} = S(S(0)).$$

Peanova aritmetika

Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \wedge (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti platné v $\underline{\mathbb{N}}$ (např. komutativitu +). Na druhou stranu existují sentence pravdivé v $\underline{\mathbb{N}}$ ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) \ ((X(0) \land (\forall x)(X(x) \to X(S(x)))) \to (\forall x) \ X(x)).$$

Hilbertův 10. problém

- Nechť p(x₁,...,x_n) je polynom s celočíselnými koeficienty.
 Má Diofantická rovnice p(x₁,...,x_n) = 0 celočíselné řešení?
- Hilbert (1900) "Nalezněte algoritmus, který po konečně mnoha krocích určí, zda daná Diofantická rovnice s libovolným počtem proměnných a celočíselnými koeficienty má celočíselné řešení."

Poznámka Ekvivalentně lze požadovat algoritmus rozhodující, zda existuje řešení v přirozených číslech.

Věta (DPRM, 1970) Problém existence celočíselného řešení dané Diofantické rovnice s celočíselnými koeficienty je alg. nerozhodnutelný.

Důsledek Neexistuje algoritmus rozhodující pro dané polynomy $p(x_1,...,x_n)$, $q(x_1,...,x_n)$ s přirozenými koeficienty, zda $\mathbb{N} \models (\exists x_1) ... (\exists x_n) (p(x_1,...,x_n) = q(x_1,...,x_n)).$

Nerozhodutelnost predikátové logiky

Existuje algoritmus, rozhodující o dané sentenci, zda je logicky pravdivá?

- Víme, že Robinsonova aritmetika Q má konečně axiomů, má za model $\underline{\mathbb{N}}$ a stačí k důkazu existenčních tvrzení o numerálech, která platí v $\underline{\mathbb{N}}$.
- Přesněji, pro každou existenční formuli $\varphi(x_1,\ldots,x_n)$ jazyka aritmetiky $Q \vdash \varphi(x_1/\underline{a_1},\ldots,x_n/\underline{a_n}) \;\;\Leftrightarrow\;\; \underline{\mathbb{N}} \models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]$ pro každé $a_1,\ldots,a_n \in \mathbb{N}$, kde a_i značí a_i -tý numerál.
- Speciálně, pro φ tvaru $(\exists x_1) \dots (\exists x_n) (p(x_1, \dots, x_n) = q(x_1, \dots, x_n))$, kde p, q jsou polynomy s přirozenými koeficienty (numerály), platí $\underline{\mathbb{N}} \models \varphi \quad \Leftrightarrow \quad Q \vdash \varphi \quad \Leftrightarrow \quad \vdash \psi \rightarrow \varphi \quad \Leftrightarrow \quad \models \psi \rightarrow \varphi,$ kde ψ je konjunkce (uzávěrů) všech axiomů Q.
- Tedy, pokud by existoval algoritmus rozhodující logickou pravdivost, existoval by i algoritmus rozhodující, zda $\mathbb{N} \models \varphi$, což není možné.

Úvod

Gödelova 1. věta o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

Poznámky

- "Rekurzivně axiomatizovaná" znamená, že je "efektivně zadaná".
- "Extenze R. aritmetiky" znamená, že je "základní aritmetické síly".
- Je-li navíc $\mathbb{N} \models T$, je teorie T nekompletní.
- V důkazu sestrojená sentence vyjadřuje "nejsem dokazatelná v T".
- Důkaz je založen na dvou principech:
 - (a) aritmetizaci syntaxe,
 - (b) self-referenci.

Aritmetizace - predikát dokazatelnosti

- Konečné objekty syntaxe (symboly jazyka, termy, formule, konečná tabla, tablo důkazy) lze vhodně zakódovat přirozenými čísly.
- Nechť $\lceil \varphi \rceil$ značí kód formule φ a nechť $\underline{\varphi}$ značí numerál (term jazyka aritmetiky) reprezentující $\lceil \varphi \rceil$.
- Je-li T rekurzivně axiomatizovaná, je relace $\mathrm{Prf}_T \subseteq \mathbb{N}^2$ rekurzivní.

$$Prf_T(x,y) \Leftrightarrow (tablo) \ y \ je \ důkazem (sentence) \ x \ v \ T.$$

• Je-li T navíc extenze Robinsonovy aritmetiky Q, dá se dokázat, že Prf_T je reprezentovatelná nějakou formulí $\operatorname{Prf}_T(x,y)$ tak, že pro každé $x,y\in\mathbb{N}$

$$Q \vdash Prf_T(\underline{x}, \underline{y}), \quad \textit{je-li} \quad \Prf_T(x, y),$$

 $Q \vdash \neg Prf_T(\underline{x}, \underline{y}), \quad \textit{jinak}.$

- $Prf_T(x, y)$ vyjadřuje "y je důkaz $x \vee T$ ".
- $(\exists y) Prf_T(x, y)$ vyjadřuje "x je dokazatelná v T".
- Je-li $T \vdash \varphi$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\varphi}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\varphi}, y)$.

Princip self-reference

- Tato věta má 16 písmen.
 Self-reference ve formálních systémech většinou není přímo k dispozici.
- Následující věta má 24 písmen "Následující věta má 24 písmen".
 Přímá reference obvykle je k dispozici, stačí, když umíme "mluvit" o posloupnostech symbolů. Uvedená věta ale není self-referenční.
- Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen "Následující věta zapsaná jednou a ještě jednou v uvozovkách má 116 písmen".
 - Pomocí přímé reference lze dosáhnout self-reference. Namísto "má x písmen" může být jiná vlastnost.

Věta o pevném bodě

Věta Nechť T je bezesporné rozšíření Robinsonovy aritmetiky. Pro každou formuli $\varphi(x)$ jazyka teorie T existuje sentence ψ taková, že $T \vdash \psi \leftrightarrow \varphi(\psi)$.

Poznámka Sentence ψ je self-referenční, říká "splňuji podmínku φ ".

 ${\it Důkaz}$ (idea) Uvažme ${\it zdvojujíci}$ funkci d takovou, že pro každou formuli $\chi(x)$

$$d(\lceil \chi(x) \rceil) = \lceil \chi(\underline{\chi(x)}) \rceil$$

- Platí, že d je reprezentovatelná v T. Předpokládejme (pro jednoduchost),
 že nějakým termem, který si označme d, stejně jako funkci d.
- Pak pro každou formuli $\chi(x)$ jazyka teorie T platí

$$T \vdash d(\underline{\chi(x)}) = \underline{\chi(\underline{\chi(x)})} \tag{1}$$

- Za ψ vezměme sentenci $\varphi(d(\varphi(d(x))))$. Stačí ověřit $T \vdash d(\varphi(d(x))) = \underline{\psi}$.
- To plyne z (1) pro $\chi(x)$ tvaru $\varphi(d(x))$, neboť v tom případě

$$T \vdash d(\varphi(d(x))) = \varphi(d(\varphi(d(x)))) \quad \Box$$

Nedefinovatelnost pravdy

Řekneme, že formule $\tau(x)$ *definuje pravdu* v aritmetické teorii T, pokud pro každou sentenci φ platí $T \vdash \varphi \leftrightarrow \tau(\varphi)$.

Věta V žádném bezesporném rozšíření Robinsonovy aritmetiky neexistuje definice pravdy.

Důkaz Dle věty o pevném bodě pro $\neg \tau(x)$ existuje sentence φ taková, že

$$T \vdash \varphi \leftrightarrow \neg \tau(\underline{\varphi}).$$

Kdyby formule $\tau(x)$ definovala pravdu v T, bylo by

$$T \vdash \varphi \leftrightarrow \neg \varphi$$
,

což v bezesporné teorii není možné.

Poznámka Důkaz je založen na paradoxu lháře, sentence φ by vyjadřovala "nejsem pravdivá v T".

Důkaz 1. věty o neúplnosti

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje sentence pravdivá v $\underline{\mathbb{N}}$ a nedokazatelná v T.

Důkaz Nechť $\varphi(x)$ je $\neg(\exists y)Prf_T(x,y)$, vyjadřuje "x není dokazatelná v T".

• Dle věty o pevném bodě pro $\varphi(x)$ existuje sentence ψ_T taková, že

$$T \vdash \psi_T \leftrightarrow \neg(\exists y) Prf_T(\underline{\psi_T}, y). \tag{2}$$

 ψ_T říká "nejsem dokazatelná v T". Přesněji, ψ_T je ekvivalentní sentenci vyjadřující, že ψ_T není dokazatelná v T. (Ekvivalence platí v $\underline{\mathbb{N}}$ i v T).

- Nejprve ukážeme, že ψ_T není dokazatelná v T. Kdyby $T \vdash \psi_T$, tj. ψ_T je lživá v $\underline{\mathbb{N}}$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\underline{\psi_T}, y)$ a navíc $T \vdash (\exists y) Prf_T(\underline{\psi_T}, y)$. Tedy z (2) plyne $T \vdash \neg \psi_T$, což ale není možné, neboť T je bezesporná.
- Zbývá dokázat, že ψ_T je pravdivá v $\underline{\mathbb{N}}$. Kdyby ne, tj. $\underline{\mathbb{N}} \models \neg \psi_T$, pak $\underline{\mathbb{N}} \models (\exists y) Prf_T(\psi_T, y)$. Tedy $T \vdash \psi_T$, což jsme již dokázali, že neplatí.

Důsledky a zesílení 1. věty

Důsledek Je-li navíc $\underline{\mathbb{N}} \models T$, je teorie T nekompletní.

Důkaz Kdyby byla T kompletní, pak $T \vdash \neg \psi_T$ a tedy $\underline{\mathbb{N}} \models \neg \psi_T$, což je ve sporu s $\underline{\mathbb{N}} \models \psi_T$. \Box

Důsledek Th($\underline{\mathbb{N}}$) není rekurzivně axiomatizovatelná.

 $D\mathring{u}kaz$ $\operatorname{Th}(\underline{\mathbb{N}})$ je bezesporná extenze Robinsonovy aritmetiky a má model $\underline{\mathbb{N}}$. Kdyby byla rekurzivně axiomatizovatelná, dle předchozího důsledku by byla nekompletní, ale $\operatorname{Th}(\mathbb{N})$ je kompletní. \square

Gödelovu 1. větu o neúplnosti lze následovně zesílit.

Věta (Rosser) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Robinsonovy aritmetiky existuje nezávislá sentence. Tedy T je nekompletní.

Poznámka Tedy předpoklad, že $\underline{\mathbb{N}} \models T$, je v prvním důsledku nadbytečný.

Gödelova 2. věta o neúplnosti

Označme Con_T sentenci $\neg(\exists y)Prf_T(\underline{0=1},y)$. Platí $\underline{\mathbb{N}} \models Con_T \Leftrightarrow T \not\vdash 0 = \underline{1}$. Tedy Con_T vyjadřuje, že "T je bezesporná".

Věta (Gödel) Pro každou bezespornou rekurzivně axiomatizovanou extenzi T Peanovy aritmetiky platí, že Con_T není dokazatelná v T.

Důkaz (náznak) Nechť ψ_T je Gödelova sentence "nejsem dokazatelná v T".

- V první části důkazu 1. věty o neúplnosti jsme ukázali, že "Je-li T bezesporná, pak ψ_T není dokazatelná v T." (3) Jinak vyjádřeno, platí $Con_T \to \psi_T$.
- Je-li T extenze Peanovy aritmetiky, důkaz tvrzení (3) lze formalizovat v rámci T. Tedy $T \vdash Con_T \rightarrow \psi_T$.
- Jelikož T je bezesporná dle předpokladu věty, podle (3) je T ∀ ψ_T.
- Z předchozích dvou bodů vyplývá, že $T \nvdash Con_T$.

Poznámka Taková teorie T tedy neumí dokázat vlastní bezespornost.

Důsledky 2. věty

Důsledek Existuje model \mathcal{A} Peanovy aritmetiky t.ž. $\mathcal{A} \models (\exists y) Prf_{PA}(\underline{0=1},y)$.

Poznámka A musí být nestandardní model PA, svědkem musí být nestandardní prvek (jiný než hodnoty numerálů).

Důsledek Existuje bezesporná rekurzivně axiomatizovaná extenze T Peanovy aritmetiky taková, že $T \vdash \neg Con_T$.

Důkaz Nechť $T = PA \cup \{\neg Con_{PA}\}$. Pak T je bezesporná, neboť $PA \not\vdash Con_{PA}$.

Navíc $T \vdash \neg Con_{PA}$, tj. T dokazuje spornost $PA \subseteq T$, tedy i $T \vdash \neg Con_T$.

Poznámka $\underline{\mathbb{N}}$ nemůže být modelem teorie T.

Důsledek Je-li teorie množin ZFC bezesporná, není Con_{ZFC} dokazatelná v ZFC.

24 / 24