СВОЙСТВА ВАРИОГРАММЫ ВНУТРЕННЕ СТАЦИОНАРНЫХ СЛУЧАЙНЫХ ПРОЦЕССОВ

Т. В. Цеховая

Белорусский государственный университет г. Минск, Беларусь
Тsekhavaya@bsu.by

В данной статье вводятся понятия внутренне стационарных случайных процессов, вариограммы. Вариограмма играет важную роль при анализе временных рядов в экономике, финансах, геологии, экологии и многих других областях человеческой деятельности. Возникает задача исследования ее свойств.

Ключевые слова: вариограмма, внутренне стационарный случайный процесс.

В середине XX в. появилось новое направление статистического анализа временных рядов (случайных процессов) – вариограммный анализ. Стало возможным более глубокое и полное изучение явлений, встречающихся в различных областях человеческой деятельности, поскольку современные методы вариограммного анализа используют информацию о внутренней структуре экспериментальных данных и, следовательно, охватывают всю сложность изучаемых процессов. При этом, как правило, основной моделью исследуемых событий являются стационарные в широком смысле и внутренне стационарные случайные процессы.

Случайный процесс Y(s), $s \in Z = \{0, \pm 1, \pm 2,...\}(R = (-\infty, +\infty))$, называется внутренне стационарным, если справедливы следующие равенства:

$$M[Y(s_1) - Y(s_2)] = 0,$$

$$D[Y(s_1) - Y(s_2)] = 2\gamma(s_1 - s_2)$$
,

где 2ү (s_1-s_2) – вариограмма рассматриваемого процесса, $s_1,s_2\in Z(R)$.

£ in

ing

ing

nd).

al //

)ata

: In-

am-

'SA.

140.

Заметим, что функция $\gamma(s)$, $s \in Z(R)$, – называется семивариограммой. Нетрудно видеть, что $\gamma(s) \ge 0$, $\gamma(-s) = \gamma(s)$, $s \in Z(R)$, и $\gamma(0) = 0$.

Основоположником вариограммного анализа временных рядов является G. Matheron [1]. Дальнейшее развитие теоретических исследований по этой тематике продолжили ученые Д. Е. Мейерс [2], Дж. С. Дэвис [3], N. Cressie [4] и другие.

На практике часто оказывается, что процессы не обладают конечной дисперсией. В таких ситуациях делается предположение об их внутренней стационарности, и применяются методы вариограммного анализа, что позволяет существенно расширить круг решаемых проблем.

Вариограмма является основной характеристикой внутренне стационарных случайных процессов. Исследованию ее свойств посвящены работы А. Н. Колмогорова [5], А. С. Монина, А. М. Яглома [6], М. Давид [7], Н. Н. Труша, Т. В. Цеховой [8,9] и других. В данной статье приводятся некоторые свойства семивариограммы внутренне стационарных случайных процессов с дискретным и непрерывным временем.

Теорема 1. Для того чтобы функция $\gamma(s)$, $s \in Z(R)$, была семивариограммой некоторого случайного процесса Y(s), $s \in Z(R)$, необходимо и достаточно, чтобы она являлась четной и условно отрицательно определенной функцией, т. е. для любого действительного ненулевого вектора $(a_1,...,a_n)$, такого, что $\sum_{i=1}^n a_i = 0$, было справедливо неравенство

$$\sum_{i=1}^{n} a_i a_j \gamma(s_i - s_j) \le 0, \tag{1}$$

 $s_i \in Z(R), i = \overline{1,n}.$

Доказательство. Докажем сначала необходимость условия (1). Из определения вариограммы очевидно, что функция $\gamma(s)$, $s \in Z(R)$, является четной.

Применяя понятие условно отрицательно определенной функции [4, с. 60], определение вариограммы, свойства математического ожидания, имеем

$$\begin{split} \sum_{i,j=1}^n a_i a_j \gamma(s_i - s_j) &= M \sum_{i,j=1}^n a_i a_j \frac{1}{2} (Y(s_i) - Y(s_j))^2 = \\ &= \frac{1}{2} M \Bigg[\sum_{i=1}^n a_i Y^2(s_i) \sum_{j=1}^n a_j - 2 \sum_{i=1}^n a_i Y(s_i) \sum_{j=1}^n a_j Y(s_j) + \sum_{i=1}^n a_i \sum_{j=1}^n a_j Y^2(s_j) \Bigg]. \end{split}$$

Поскольку $\sum_{i=1}^{n} a_i = 0$, то

$$\sum_{i,j=1}^{n} a_i a_j \gamma(s_i - s_j) = -M \left[\sum_{i=1}^{n} a_i Y(s_i) \right]^2 \le 0,$$

что и требовалось доказать.

Обратно, пусть выполняется неравенство (1). Достаточность утверждения означает, что существует такой случайный процесс Y(s), $s \in Z(R)$, что $\gamma(s_i - s_j) = \frac{1}{2} M(Y(s_i) - Y(s_j))^2$, $s_i \in Z(R)$, $i = \overline{1,n}$.

Обозначим

$$Q(s_{i}-s_{j}) = -\sum_{i,j=1}^{n} a_{i}a_{j}\gamma(s_{i}-s_{j}) \ge 0.$$

Из монографии М. Лоэва [10, с. 488] следует, что функция $e^{-Q(s_i-s_j)/2}$ является характеристической функцией n гауссовских случайных величин с нулевым математическим ожиданием и ковариацией $M(s_i)Y(s_j) = -\gamma(s_i-s_j)$, $s_i \in Z(R)$, $i=\overline{1,n}$. Тогда,

учитывая условие $\sum_{i=1}^{n} a_{i} = 0$ и определение вариограммы, запишем

$$\frac{1}{2} \sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} a_{j} M Y^{2}(s_{j}) - \sum_{i,j=1}^{n} a_{i} a_{j} M Y(s_{i}) Y(s_{j}) + \frac{1}{2} \sum_{j=1}^{n} a_{j} \sum_{i=1}^{n} a_{i} M Y^{2}(s_{i}) =$$

$$= \sum_{i,j=1}^{n} a_{i} a_{j} \frac{1}{2} M (Y(s_{i}) - Y(s_{j}))^{2} = \sum_{i,j=1}^{n} a_{i} a_{j} \gamma(s_{i} - s_{j}).$$

Таким образом, характеристическая функция $e^{-Q(s_i-s_s_i)/2}$ полностью определяет закон распределения гауссовского случайного процесса Y(s) для которого $\gamma(s)$ является семивариограммой. Теорема доказана.

Теорема 2. Пусть $\gamma_1(s)$, $\gamma_2(s)$, $s \in Z(R)$, – семивариограммы стационарных случайных процессов $Y_1(s)$, $Y_2(s)$, $s \in Z(R)$, соответственно. Тогда функция $\gamma(s) = \gamma_1(s) + \gamma_2(s)$, $s \in Z(R)$, также является семивариограммой некоторого стационарного случайного процесса.

Доказательство. Для доказательства теоремы 2 достаточно показать, что функция $\gamma(s)$, $s \in Z(R)$, является четной и условно отрицательно определенной.

Очевидно, что $\gamma(s) = \gamma(-s)$, $s \in Z(R)$. Используя определение вариограммы, свойства математического ожидания, имеем

$$\begin{split} \sum_{i,j=1}^{n} a_i a_j \gamma(s_i - s_j) &= \frac{1}{2} \sum_{i,j=1}^{n} a_i a_j \Big[M(Y_1(s_i) - Y_1(s_j))^2 + M(Y_2(s_i) - Y_2(s_j))^2 \Big] = \\ &= -M \Bigg[\sum_{i=1}^{n} a_i Y_1(s_i) \Bigg]^2 - M \Bigg[\sum_{i=1}^{n} a_i Y_2(s_i) \Bigg]^2 \le 0 \,. \end{split}$$

Теорема доказана.

I)

R

e-

Iато

(A-

лa.

Теорема 3. Пусть $\gamma(s)$, $s \in Z(R)$,— семивариограмма стационарного случайного процесса Y(s), $s \in Z(R)$. Тогда для любого b>0 функция $b\gamma(s)$, $s \in Z(R)$, является семивариограммой стационарного случайного процесса bY(s), $s \in Z(R)$.

Доказательство. Нетрудно видеть, что $b\gamma(s) = b\gamma(-s)$, $s \in Z(R)$, и справедливо неравенство

$$\int_{i,j=1}^{n} a_i a_j \gamma(s_i - s_j) \le 0$$

для любого действительного ненулевого вектора $(a_1,...,a_n)$, такого, что $\sum_{i=1}^n a_i = 0$, $s_i \in Z(R)$, $i = \overline{1,n}$. Тогда в силу теоремы 1 получаем требуемый результат.

В работе [6] показано, что семивариограмма $\gamma(s)$, $s \in Z(R)$, удовлетворяет соотношению

$$\gamma(s) = \int_{\Pi(R)} (1 - \cos \lambda \, s) dF(\lambda), \tag{2}$$

где $F(\lambda)$, $\lambda \in \Pi(R)$, $\Pi = [-\pi, \pi]$, – спектральная функция процесса Y(s), $s \in Z(R)$, удовлетворяющая условиям:

$$F(\lambda) \ge 0,$$

$$\int_{\Pi(R)} \lambda^2 dF(\lambda) < \infty.$$
 (3)

Это спектральное представление будет использовано для доказательства следующего результата.

Теорема 4. Пусть $\gamma_1(s)$, $\gamma_2(s)$, $s \in Z(R)$ – соответственно семивариограммы стационарных случайных процессов $Y_1(s)$, $Y_2(s)$, $s \in Z(R)$. Тогда функция $\gamma(s) = \gamma_1(s) \cdot \gamma_2(s)$, $s \in Z(R)$, также является семивариограммой.

Доказательство. Легко заметить, что функция $\gamma(s)$, $s \in Z(R)$, является четной.

Покажем, что $\gamma(s)$, $s \in Z(R)$, удовлетворяет условию (1) для любого действительного ненулевого вектора $(a_1,...,a_n)$, такого, что $\sum_{i=1}^n a_i = 0$. Используя спектральное представление семивариограммы (2), запишем

$$\sum_{i,j=1}^{n} a_i a_j \gamma(s_i - s_j) =$$

$$= \sum_{i,j=1}^{n} a_i a_j \iint_{\Pi^2(R^2)} (1 - \cos \lambda_1(s_i - s_j)) (1 - \cos \lambda_2(s_i - s_j)) dF_1(\lambda_1) dF_2(\lambda_2),$$

где $F_1(\lambda_1)$, $F_2(\lambda_2)$ – спектральные функции процессов $Y_1(s)$, $Y_2(s)$, соответственно, удовлетворяющие условиям (3), $\lambda_1, \lambda_2 \in \Pi(R)$, $s \in Z(R)$.

Применяя элементарное равенство $\cos \lambda = \frac{e^{i\lambda} + e^{-i\lambda}}{2}$ и учитывая, что $\sum_{i=1}^{n} a_i = 0$, получим

$$\begin{split} \sum_{i,j=1}^{n} a_{i} a_{j} \gamma(s_{i} - s_{j}) &= - \iint_{\Pi^{2}(R^{2})} \left| \sum_{i=1}^{n} a_{i} e^{i\lambda_{1} s_{i}} \right|^{2} dF_{1}(\lambda_{1}) dF_{2}(\lambda_{2}) - \\ &- \iint_{\Pi^{2}(R^{2})} \left| \sum_{i=1}^{n} a_{i} e^{i\lambda_{2} s_{i}} \right|^{2} dF_{1}(\lambda_{1}) dF_{2}(\lambda_{2}) + \frac{1}{2} \iint_{\Pi^{2}(R^{2})} \left| \sum_{i=1}^{n} a_{i} e^{i(\lambda_{1} + \lambda_{2}) s_{i}} \right|^{2} dF_{1}(\lambda_{1}) dF_{2}(\lambda_{2}) + \\ &+ \frac{1}{2} \iint_{\Pi^{2}(R^{2})} \left| \sum_{i=1}^{n} a_{i} e^{i(\lambda_{1} - \lambda_{2}) s_{i}} \right|^{2} dF_{1}(\lambda_{1}) dF_{2}(\lambda_{2}). \end{split}$$

В третьем слагаемом правой части последнего равенства сделаем замену переменных интегрирования $\lambda_1 = \mu$, $\lambda_1 + \lambda_2 = \lambda$, а в четвертом $-\lambda_1 = \mu$, $\lambda_1 - \lambda_2 = \lambda$. Тогда,

$$\sum_{i,j=1}^{n} a_i a_j \gamma(s_i - s_j) = -\iint_{\Pi^2(\mathbb{R}^2)} \left| \sum_{i=1}^{n} a_i e^{i\lambda_2 s_i} \right|^2 dF_1(\lambda_1) dF_2(\lambda_2) \le 0.$$

В силу теоремы 1 получаем требуемый результат.

Далее рассмотрим некоторые примеры вариограмм $2\gamma(s)$, $s \in R_+ = [0, +\infty)$, и исследуем их поведение при $s \to 0$ для процессов Y(s), $s \in R_+$.

Степенная функция $2\gamma(s) = \omega^2 s^\lambda$, $0 \le \lambda \le 2$, $s \in R_+$, определяет важный класс вариограмм случайных процессов, для которых $\omega^2 = M(Y(s+1)-Y(s))^2$, $s \in R_+$. Если $\lambda = 0$, то соответствующий случайный процесс — нормированный процесс «белый шум», если $\lambda = 1$ — винеровский процесс. Случайному процессу вида $Y(s) = Y_1 s + Y_0$, где $s \in R_+$, Y_1 , Y_0 — некоторые случайные величины [6], соответствует $\lambda = 2$. Случай дроб-

та-(s),

ль-

ное

(HO,

П0-

4eH-

ис-

: ва-Эсли

лый

, где ~

роб-

ного параметра λ , $0 < \lambda < 2$, рассматривался Мониным, Ягломом [6] для анализа локальной изменчивости изучаемого процесса.

По поведению вариограммы в окрестности нуля можно судить о свойствах рассматриваемого процесса.

Л е м м а. Пусть вариограмма $2\gamma(s)$, $s \in R_+$, стационарного случайного процесса Y(s), $s \in R_+$, Y(0) = 0, убывает при $s \to 0$, как s^{λ} , $\lambda \ge 0$. Тогда параметр λ определяет характер траектории процесса:

- 1) при $\lambda = 0$ рассматриваемый процесс всюду разрывный;
- 2) при $0 \le \lambda \le 2$ процесс Y(s) непрерывный недифференцируемый в среднеквадратическом смысле;
- 3) при $\lambda = 2$ рассматриваемый процесс непрерывный дифференцируемый в среднеквадратическом смысле;
 - 4) при $\lambda > 2$ процесс не существует.

Доказательство. Пусть t_1, t_2 — длины двух непересекающихся отрезков, расположенных на расстоянии ε друг от друга. Предположим далее, что левый консц интервала длиной t_1 совмещен с точкой s=0.

Рассмотрим ковариацию приращений процесса на этих отрезках.

$$\begin{aligned} & \operatorname{cov}\{Y(t_1) - Y(0), Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon)\} = \\ & = M\{(Y(t_1) - Y(0)) - M(Y(t_1) - Y(0))\} \times \\ & \times \{(Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon)) - M(Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon))\}. \end{aligned}$$

Учитывая стационарность рассматриваемого процесса, правую часть последнего равенства запишем

$$M\{(Y(t_1) - Y(0))\}\{(Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon))\} =$$

$$= M\{Y(t_1)(Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon))\}.$$

Найдем коэффициент корреляции приращений процесса:

$$\rho(t_1, t_2) = \frac{\text{cov}\{Y(t_1) - Y(0), Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon)\}}{\sqrt{M(Y(t_1) - Y(0))^2} \sqrt{M(Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon))^2}}.$$

Используя выражение для ковариации приращений, полученное выше, определение вариограммы, имеем

$$\begin{split} \rho(t_1, t_2) &= \frac{M \, \mathbb{Y}(t_1) [\, Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon)\,]}{\sqrt{M[\, Y(t_1)]^2 \, M[\, Y(t_1 + \varepsilon + t_2) - Y(t_1 + \varepsilon)\,]^2}} = \\ &= \frac{\text{cov} \{ Y(t_1), Y(t_1 + \varepsilon + t_2) \} - \text{cov} \{ Y(t_1), Y(t_1 + \varepsilon) \}}{2\sqrt{\gamma(t_1)\gamma(t_2)}} = \\ &= \frac{\gamma(\varepsilon) - \gamma(t_1 + \varepsilon) - \gamma(t_2 + \varepsilon) + \gamma(t_1 + \varepsilon + t_2)}{2\sqrt{\gamma(t_1)\gamma(t_2)}} \,. \end{split}$$

Условие $\lim_{t_1,t_2\to 0} \rho(t_1,t_2)\to 1$ является необходимым и достаточным для дифференцируемости процесса в среднеквадратическом смысле [1]. Полагая $\varepsilon=0$ и учитывая тот факт, что $2\gamma(s)\sim s^\lambda$ при малых значениях аргумента, т. е. $\lim_{s\to 0} (2\gamma(s)-s^\lambda)=0$, получим

$$\lim_{t_1,t_2\to 0}\frac{(t_1+t_2)^{\lambda}-t_1^{\lambda}-t_2^{\lambda}}{2\sqrt{t_1^{\lambda}t_2^{\lambda}}}\to 1.$$

Пусть $t_1 = t_2 = t$, тогда $\lim_{t\to 0} \rho(t,t) = 2^{\lambda-1} - 1$. Этот предел будет равен единице при $\lambda = 2$, откуда следует условие дифференцируемости процесса.

Поскольку $|\rho(t,t)| \le 1$, то должно выполняться неравенство $|2^{\lambda-1}-1| \le 1$. Оно справедливо при $0 < \lambda \le 2$. Отсюда вытекает невозможность существования случайного процесса при $\lambda > 2$.

Рассмотрим $\lim_{s_2 \to s_1} 2\gamma(s_1 - s_2)$ для произвольных $s_1, s_2 \in R_+$ и параметра $\lambda, 0 \le \lambda \le 2$.

Этот предел равен нулю при $0 < \lambda \le 2$, т. е. Y(s), $s \in R_+$, – непрерывный в среднеквадратическом смысле процесс. Если $\lambda = 0$, то предел больше нуля и рассматриваемый процесс является всюду разрывным. Лемма доказана.

ЛИТЕРАТУРА

- 1. Matheron G. Principles of Geostatistics // Economic Geology, 1963, Vol. 58, P. 1246–1266.
- 2. *Мейерс Д. Е.* Перекрестное подтверждение и оценивание вариограмм // Теория вероятностей и ее применение. 1992. Т. 37(2). С. 377–380.
 - 3. Дэвис Джс. С. Статистический анализ данных в геологии. М., 1990. Т. 1. 318 с.
 - 4. Cressie N. Statistics for Spatial Data. N. Y., Wiley. 1991. 900 p.
- 5. Колмогоров А. Н. Локальная структура турбулентности в несжимаемой вязкой жидкости при очень больших числах Рейнольдса // Докл. АН СССР. 1941. Т. 30(4). С. 299–303.
- 6. Монин А. С., Яглом А. М. Статистическая гидромеханика. Механика турбулентности: В 2 т. М., 1967. Т. 2. 720 с.
 - 7. Давид М. Геостатистические методы при оценке запасов руд. Л., 1980. 360 с.
- 8. Труш Н. Н., Цеховая Т. В. Исследование статистических свойств оценок вариограммы и ковариационной функции // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2001. № 2. С. 24–29.
- 9. Troush N. N., Tsekhovaya T. V. Estimation of the variogram // Remote sensing techniques for subsurface resources exploration and management: 13-th International Symposium, Damascus, Siria, 9-12 december, 2002. The international and arab cooperation in remote sensing and space sciences. Damascus, 2002.
 - 10. *Лоэв М.* Теория вероятностей. М., 1962. 719 с.
 - 11. Леви П. Стохастические процессы и броуновское движение. М., 1972. 375 с.