Claims

[c1] What is claimed is:

1.A nonlinear overlap method for time scaling to synthesize an $S_3[n]$ signal from an $S_1[n]$ signal and an $S_2[n]$ signal, the $S_1[n]$ signal having N_1 elements and the $S_2[n]$ signal having N_2 elements, the method comprising: (a)delaying the $S_2[n]$ signal by a predetermined number of elements and forming an $S_{\xi}[n]$ signal; (b)establishing a cross-correlogram of a cross-correlation function of the $S_1[n]$ signal and the $S_5[n]$ signal, the cross-correlogram including a plurality of magnitudes, each of the magnitudes corresponding to an index; and (c)setting the $S_3[n]$ signal as values of the elements of: $S_1[n]$, where $0 \le n \le \infty$ (the predetermined number + a first threshold value + a maximum index), the maximum index corresponding a largest magnitude among all of the magnitudes of the cross-corrolegram;

 $S_1[n]$ weighted and added to an $S_4[n]$ signal that lags the $S_5[n]$ signal by the maximum index, where (the predetermined number + the first threshold value + the maximum index) <= n < (N_1 a second threshold value); and $N_4[n]$ = (the predetermined number + the maximum in-

dex)], where $(N_1 - the second threshold value) <= n <= (N_2 + the predetermined number + the maximum index); wherein the first and second threshold values are not equal to zero at the same time.$

- [c2] 2.The method of claim 1 wherein the $S_3[n]$ signal is equal to $(N_1$ the second threshold value $n)/(N_1$ (the predetermined number + the maximum index + the first threshold value + the second threshold value)) * $S_1[n]$ + (n (the predetermined number + the maximum index + the first threshold value))/ $(N_1$ (the predetermined number + the maximum index + the first threshold value + the second threshold value)) * $S_4[n$ (the predetermined number + the maximum index)] while (the predetermined number + the maximum index + the first threshold value) <= n < $(N_1$ the second threshold value).
- [c3] 3.The method of claim 1 wherein the $S_3[n]$ signal is equal to $(N_1 n)/(N_1 (\text{the predetermined number} + \text{the maximum index})) * <math>S_1[n] + (n (\text{the predetermined number} + \text{the maximum index})) / (N_1 (\text{the predetermined number} + \text{the maximum index})) * <math>S_4[n (\text{the predetermined number} + \text{the maximum index})]$.
- [c4] 4.The method of claim 1 wherein the $S_1[n]$ signal and the $S_2[n]$ signal are sampled from an $S_1(t)$ signal and an $S_2(t)$ signal respectively.

- [c5] 5.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are both derived from an original signal.
- [06] 6.The method of claim 5 wherein the original signal is an audio signal.
- [c7] 7.The method of claim 5 wherein the original signal is a video signal.
- [c8] 8.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are identical.
- [c9] 9.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are different from each other.
- [c10] 10.The method of claim 1 wherein the predetermined number is equal to $[N_1 / 3]$.
- thesize an S₃[n] signal from an S₁[n] signal and an S₂[n] signal, the S₁[n] signal having N₁ elements and the S₂[n] signal having N₂ elements, the method comprising:

 (a)establishing a cross-correlogram of a cross-correlation function of the S₁[n] signal and the S₂[n] signal, the cross-correlogram including a plurality of magnitudes, each of the magnitudes corresponding to an index; and
 - (b)setting the $S_3[n]$ signal as values of the elements of:

S₁[n], where 0 <= n < (a first threshold value + a maximum index), the maximum index corresponding a largest magnitude among all of the magnitudes of the cross-corrolegram;

 $S_1[n]$ weighted and added to an $S_4[n]$ signal that lags the $S_2[n]$ signal by the maximum index, where (the first threshold value + the maximum index) <= $n < (N_1 - a)$ second threshold value); and

 $S_4[n - the maximum index]$, where $(N_1 - the second threshold value) <= n <= <math>(N_2 + the maximum index)$; wherein the first and second threshold values are not equal to zero at the same time.

- [c12] 12.The method of claim 11 wherein the S_3 [n] signal is equal to $(N_1$ the second threshold value n)/ $(N_1$ (the maximum index + the first threshold value + the second threshold value)) * S_1 [n] + (n (the maximum index + the first threshold value))/ $(N_1$ (the maximum index + the first threshold value + the second threshold value)) * S_4 [n (the maximum index)] while (the maximum index + the first threshold value) <= n < $(N_1$ the second threshold value).
- [c13] 13.The method of claim 11 wherein the $S_3[n]$ signal is equal to $(N_1 n)/(N_1 the maximum index) * <math>S_1[n] + (n the maximum index) / (N_1 the maximum index) * <math>S_4[n] the maximum index]$.

- [c14] 14. The method of claim 11 wherein the $S_1[n]$ signal and the $S_2[n]$ signal are sampled from an $S_1(t)$ signal and an $S_2(t)$ signal respectively.
- [c15] 15. The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are both derived from an original signal.
- [c16] 16.The method of claim 15 wherein the original signal is an audio signal.
- [c17] 17. The method of claim 15 wherein the original signal is a video signal.
- [c18] 18.The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are identical.
- [c19] 19. The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are different from each other.