Assignement2 CIFAR-10 CNN Classification Example

Index

- Project 2-1
- Project 2-2
- Report
- Submission

- Goal : Implement the model structure with keras
 → Make model
- Model implementation
 - Convolution1
 - Pooling1
 - Convolution2
 - Pooling2
 - Convolution3
 - Convolution4
 - Convolution5
 - Fully_Connected

Convolution1

- 64filters
- 5x5 kernels size
- "same" padding
- (1,1) strides
- ReLU activation

Pooling 1

- 2x2 Pooling size
- (2,2) strides
- "same" padding

Convolution2

- 64filters
- 5x5 kernels size
- "same" padding
- (1,1) strides
- ReLU activation

Pooling 2

- 2x2 Pooling size
- (2,2) strides
- "same" padding

Convolution3

- 64filters
- 5x5 kernels size
- "same" padding
- (1,1) strides
- ReLU activation

Convolution4

- 128filters
- 3x3 kernels size
- "same" padding
- (1,1) strides
- ReLU activation

Convolution5

- 128filters
- 3x3 kernels size
- "same" padding
- (1,1) strides
- ReLU activation

Fully connected

- Flat layer
- 1024 dense layer with ReLU activation
- dropout layer(0.5 rate)
- 10 softmax layers

 Goal: Implement a CNN model that satisfies the requirements, and get the test accuracy of the results at least 80%

- Requirements
 - 4 Convolution layers
 - 2 Pooling layers
 - Fully connected layer
- You can freely select and implement the order of layers, kernel size, stride, types of pooling, drop out, normalization, etc.

Report

Report format

- Introduction
- Result

For Project 2-1 : model result(test accuracy)

For Project 2-2: Model summary capture₁₎, training process₂₎,

Capture of Top3 accuracy of your CNN model

- Consideration: Improvement method, Problem solution, etc.
- Reference

Model: "sequential_1"		
Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 32, 32, 32)	2432
max_pooling2d_2 (MaxPooling2	(None, 16, 16, 32)	0
conv2d_3 (Conv2D)	(None, 16, 16, 64)	8256
max_pooling2d_3 (MaxPooling2	(None, 8, 8, 64)	0
flatten_1 (Flatten)	(None, 4096)	0
dense_2 (Dense)	(None, 1000)	4097000
dense_3 (Dense)	(None, 10)	10010
dropout_1 (Dropout)	(None, 10)	0
Total params: 4,117,698 Trainable params: 4,117,698 Non-trainable params: 0		

1) example

```
Train on 60000 samples
Epoch 1/5
WARNING:tensorflow:Entity <function Function._init
WARNING: Entity <function Function._initialize_uni
60000/60000 [=======] - 23s
Epoch 2/5
60000/60000 [======] - 23s
Epoch 3/5
60000/60000 [=======] - 23s
Epoch 4/5
60000/60000 [=======] - 23s
Epoch 5/5
60000/60000 [=======] - 23s
```

2) example

Submissions

- Submit your code and report at klas (make zip file)
 - Name format : Ass2_StudentID_Name.zip
- zip file format
 - StudentID_Name.pdf (Report name format)
 - Project2-1 folder
 - Proj2_1.py
 - model1.h5 (keras model save)
 - Project2-2 folder
 - Proj2_2.py
 - model2.h5 (keras model save)
- Due date
 - 12/4(Sun) 23:59:59

