Dummit & Foote Ch. 1: Groups

Scott Donaldson

2022

1. (11/14/22)

Let G be a group. Determine which of the following binary operations are associative:

- a) The operation \star on $\mathbb Z$ defined by $a \star b = a b$: Not associative. $3 \star (2 \star 1) = 3 - 1 = 2$ but $(3 \star 2) \star 1 = 3 - 2 = 1$.
- b) The operation \star on $\mathbb R$ defined by $a\star b=a+b+ab$: Associative.

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + ab + ac + abc = (a + b + ab) \star c = (a \star b) \star c$$

- c) The operation \star on $\mathbb Q$ defined by $a\star b=\frac{a+b}{5}$: Not associative. $0\star (1\star 1)=0+2/5=2/5$ but $(0\star 1)\star 1=1/5\star 1=6/5*1/5=6/25$.
- d) The operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b) \star (c,d) = (ad+bc,bd)$: Associative.

$$((a,b) \star (c,d)) \star (e,f) = (ad + bc,bd) \star (e,f) =$$

 $(adf + bcf + bde,bdf) = (a,b) \star (cf + de,df) = (a,b) \star ((c,d) \star (e,f)).$

e) The operation \star on $\mathbb{Q} - \{0\}$ defined by $a \star b = a/b$: Not associative. $(1 \star 2) \star 3 = 1/6$ but $1 \star (2 \star 3) = 3/2$.

2. (11/14/22)

Decide which of the binary operations in the preceding exercise are commutative.

- a) Not commutative. 1-2=-1 but 2-1=1.
- b) Commutative. $a \star b = a + b + ab = b + a + ba = b \star a$.
- c) Commutative. $a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a$.
- d) Commutative. $(a, b) \star (c, d) = (ad + bc, bd) = (cb + da, db) = (c, d) \star (a, b)$.
- e) Not commutative. 1/2 = 1/2 but 2/1 = 2.

3. (11/16/22)

Prove that addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative.

Proof. First, we will show that subtraction in $\mathbb{Z}/n\mathbb{Z}$ is well-defined. Given a representative element \bar{a} , $1 \leq \bar{a} \leq n-1$, the element $n-\bar{a}$ is \bar{a} 's inverse. $1 \leq n-\bar{a} \leq n-1$, so $n-\bar{a}$ is also a representative element. Also, $\bar{a}+(n-\bar{a})=n\sim 0$. Thus, subtracting an element \bar{a} from \bar{b} is the same as adding $n-\bar{a}$ to \bar{b} , and so subtraction is well-defined.

Now, to show that addition is associative, let $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}/n\mathbb{Z}$. Suppose that $(\bar{a} + \bar{b}) + \bar{c} = \bar{d}$ and $\bar{a} + (\bar{b} + \bar{c}) = \bar{e}$. Then:

$$\bar{d} - \bar{c} = \bar{a} + \bar{b} \Rightarrow \bar{a} = (\bar{d} - \bar{c}) - \bar{b}$$

And:

$$\bar{e} - \bar{a} = \bar{b} + \bar{c} \Rightarrow \bar{e} = ((\bar{d} - \bar{c}) - \bar{b}) + \bar{b} + \bar{c} = \bar{d} - \bar{c} + \bar{c} = \bar{d}$$
Therefore $\bar{d} = \bar{e}$, so $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$.

4. (11/16/22)

Prove that multiplication of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative.

Proof. Let $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}/n\mathbb{Z}$. Then:

$$\overline{a}(\overline{b}\overline{c}) = \overline{a}(\overline{bc}) = \overline{a(bc)}$$

Since the latter expression involves arbitrary integers a,b,c whose representative elements in $\mathbb{Z}/n\mathbb{Z}$ are $\overline{a},\overline{b},\overline{c}$, we can use the associative property of standard multiplication:

$$\overline{a(bc)} = \overline{(ab)c} = (\overline{ab})\overline{c} = (\overline{a}\overline{b})\overline{c}$$

Therefore multiplication of residue classes is associative.

5. (11/16/22)

Prove for all n > 1 that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes.

Proof. Let $\mathbb{Z}/n\mathbb{Z}$ with n > 1. The element 1 is the identity element, since (by multiplication of standard integers), $1 \cdot \bar{a} = \bar{a}$ for all $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$. However, the element 0 has no inverse, since (again by standard multiplication), there is no element \bar{a} such that $0 \cdot \bar{a} = 1$. Thus, $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication.