Bài số 8 TÍCH PHÂN SUY RỘNG

Chúng ta đã biết một tích phân

$$\int_{a}^{b} f(x)dx$$

xác định khi hàm f(x) là liên tục trên miền xác định $a \le x \le b$, trong đó a,b là hữu hạn.

I. Trường hợp cận lấy tích phân là vô cùng

<u>1. Đinh nghĩa:</u> Cho hàm số f(x) xác định trong khoảng $[a;+\infty]$, khả tích trong mọi đoạn [a;A] với mọi số hữu han A>a.

Ta gọi giới hạn :
$$\lim_{A \to +\infty} \int_{a}^{A} f(x) dx \tag{1}$$

là tích phân suy rộng của hàm số f(x) trong $[a;+\infty]$ và kí hiệu:

$$\int_{a}^{+\infty} f(x)dx \tag{2}$$

◆ Nếu giới hạn (1) tồn tại (hữu hạn) ta nói tích phân (2) hội tụ và viết

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx \tag{3}$$

- Nếu giới han (1) không tồn tai hoặc bằng vô cùng thì ta nói tích phân (2) phân kì.
- ullet Tương tự ta cũng định nghĩa được tích phân của hàm số f(x) trong khoảng $(-\infty,a]$ là:

$$\int_{-\infty}^{a} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx \quad (\text{ v\'oi } B < a)$$
(4)

ullet Tích phân của hàm số f(x) trên khoảng $\left(-\infty,+\infty\right)$

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx \quad \forall a$$

tích phân suy rộng ở vế trái hội tụ khi và chỉ khi cả hai tích phân ở vế phải hội tụ.

Hoặc có thể tính
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int_{B}^{A} f(x)dx$$
 (5)

với giả thiết f(x) khả tích trên bất kì khoảng hữu hạn [B; A].

2. Cách tính: Xét
$$I = \int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

+ Dùng công thức Newton — Leibniz để tính $\int\limits_a^A f(x)dx = F(A) - F(a)$

+ Tính
$$\lim_{A \to +\infty} \int\limits_a^A f(x) dx = \lim_{A \to +\infty} \left(F(A) - F(a) \right) = \lim_{A \to +\infty} F(A) - F(a)$$

Tích phân I hội tụ khi $\lim_{A \to +\infty} F(A)$ hữu hạn và ta có thể viết:

$$\lim_{A \to +\infty} F(A) - F(a) = F(+\infty) - F(a) = F(x) \Big|_{a}^{+\infty}$$

◆ Với các tích phân dạng (4), (5) cũng tính tương tự.

3. Một số ví dụ

Ví dụ 1:
$$I = \int_{0}^{+\infty} \frac{dx}{1+x^2} = ?$$

Ví dụ 2:
$$I = \int_{-1}^{0} \frac{dx}{1+x^2} = ?$$

Ví dụ 3:
$$I = \int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = ?$$

Ví dụ 4:
$$I = \int_{a}^{+\infty} \frac{dx}{x^{\alpha}}$$
 $(a > 0)$

+ Với
$$\alpha \neq 1$$
, ta có: $I = \int\limits_{a}^{+\infty} \frac{dx}{x^{\alpha}} = \int\limits_{a}^{+\infty} x^{-\alpha} dx = \frac{1}{1-\alpha} x^{1-\alpha} \bigg|_{0}^{+\infty}$

$$\text{Suy ra: } I = \int\limits_a^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{\stackrel{A \to +\infty}{}} \frac{1}{1-\alpha} \, x^{1-\alpha} \bigg|_a^A = \frac{1}{1-\alpha} \lim_{\stackrel{A \to +\infty}{}} \left(A^{1-\alpha} - a^{1-\alpha}\right)$$

$$= \frac{1}{1-\alpha} \left(\lim_{A \to +\infty} A^{1-\alpha} - a^{1-\alpha} \right)$$

+ Nếu
$$\alpha < 1$$
 thì $\lim_{A \to +\infty} A^{1-\alpha} = +\infty \to \int\limits_{x}^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$

+ Nếu
$$\alpha>1$$
 thì $\lim_{A\to +\infty}A^{1-\alpha}=0\to \int\limits_{-\infty}^{+\infty}\frac{dx}{x^{\alpha}}=\frac{a^{1-\alpha}}{\alpha-1}$

+ Với $\alpha = 1$, ta có:

$$\int_{a}^{+\infty} \frac{dx}{x^{\alpha}} = \int_{a}^{+\infty} \frac{dx}{x} = \lim_{A \to +\infty} \left(\ln |x| \right) \Big|_{a}^{A} = \lim_{A \to +\infty} \ln A - \ln a = +\infty$$

• Tích phân $I = \int_{a}^{+\infty} \frac{dx}{x^{\alpha}}$; (a > 0) (*Tích phân suy rộng Riemann lọai 1*)

Với $\alpha \leq 1$: phân kỳ

với
$$\alpha>1$$
 : hội tụ và $I=\int\limits_a^{+\infty} \frac{dx}{x^{\alpha}}=\frac{a^{1-\alpha}}{\alpha-1}$

◆ Đặc biệt: Nếu p là một hằng dương, ta có:

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{t \to \infty} \int_{1}^{t} \frac{dx}{x^{p}} = \lim_{t \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{1}^{t} = \lim_{t \to \infty} \left[\left[\frac{t^{1-p}-1}{1-p} \right] \right] = \begin{cases} \frac{1}{p-1} & khi & p > 1\\ \infty & khi & p \leq 1 \end{cases}$$

Ví dụ 5:
$$I = \int_{0}^{+\infty} e^{-ax} \sin bx dx = ?; \quad J = \int_{0}^{+\infty} e^{-ax} \cos bx dx = ? \quad (a > 0)$$

Ví dụ 6.
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = ?$$

Ví dụ 7: Các tích phân:
$$\int_{0}^{+\infty} \sin x dx; \qquad \int_{0}^{+\infty} \cos x dx$$

phân kì vì sinx, cosx không xác định khi $x \to +\infty$

II. Trường hợp hàm dưới dấu tích phân không bị chặn

1. Định nghĩa: Cho hàm số f(x) không bị chặn trên đoạn hữu hạn [a;b]. Giả sử f(x) bị chặn, khả tích trong đoạn $[a;b-\varepsilon]$] với $\varepsilon>0$ bé tuỳ ý và không giới nội khi $x\to b^-$ (x=b gọi là điểm bất thường). Ta gọi

giới hạn:
$$\lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx$$
 (6)

là tích phân suy rộng của f(x) trên [a;b] và kí hiệu là: $\int_a^b f(x)dx \tag{7}$

◆ Trong trường hợp giới hạn (6) là hữu hạn ta nói tích phân suy rộng (7) <u>hôi tu</u> và giới hạn (7) là trị của nó,

tức là:
$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx \tag{8}$$

- ♦ Nếu gới hạn (6) là vô cùng hoặc không tồn tại, ta nói tích phân suy rộng (7) *phân kì*.
- Tương tư, ta định nghĩa cho tích phân suy rộng với x = a là điểm bất thường

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx \tag{9}$$

• Và nếu f(x) không bị chặn tại c, a : a < c < b, x = c là điểm bất thường:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

khi đó TPSR ở vế trái hôi tu khi và chỉ khi cả hai TPSR ở vế phải hôi tu.

2. Cách tính: Xét:
$$I = \int_a^b f(x)dx = \lim_{\varepsilon \to 0} \int_a^{b-\varepsilon} f(x)dx$$

+ Dùng công thức Newton — Leibnitz để tính: $\int\limits_a^{b-\varepsilon} f(x)dx = F(b-\varepsilon) - F(a) \ \text{với} \ \varepsilon > 0$

$$+ \operatorname{Tính} \, \lim_{\varepsilon \to 0} \int\limits_a^{b-\varepsilon} f(x) dx = \lim_{\varepsilon \to 0} \left(F(b-\varepsilon) - F(a) \right) = \lim_{\varepsilon \to 0} F(b-\varepsilon) - F(a)$$

Tích phân I hội tụ khi $\lim_{\varepsilon \to 0} F(b-\varepsilon)$ hữu hạn .

3. Một số ví du: Tính các tích phân suy rộng sau

Ví dụ 1:
$$\int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}} = ?$$

Ví dụ 2:
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = ?$$

Ví dụ 3:
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = ?$$

Ví dụ 4:
$$I = \int_a^b \frac{dx}{(b-x)^{\alpha}}$$
 $(a < b, \alpha > 0)$ ($x = b$ là điểm bất thường)

Với
$$\alpha \neq 1$$
, ta có: $I = \int_a^b \frac{dx}{(b-x)^{\alpha}} = \lim_{\varepsilon \to 0} \left[-\int_a^b (b-x)^{-\alpha} d(b-x) \right]$
$$= \lim_{\varepsilon \to 0} \left[\frac{(b-x)^{1-\alpha}}{\alpha - 1} \Big|_a^{b-\varepsilon} \right] = \lim_{\varepsilon \to 0} \left[\frac{\varepsilon^{1-\alpha}}{\alpha - 1} - \frac{(b-a)^{1-\alpha}}{\alpha - 1} \right]$$
$$= \frac{(b-a)^{1-\alpha}}{1-\alpha} + \frac{1}{\alpha - 1} \lim_{\varepsilon \to 0} \varepsilon^{1-\alpha}$$

+ Nếu $1-\alpha>0 \leftrightarrow \alpha<1 \rightarrow \lim_{\varepsilon \to 0} \varepsilon^{1-\alpha}=0$

Khi đó:
$$I=\int\limits_a^b \frac{dx}{(b-x)^\alpha}$$
 hội tụ và $I=\int\limits_a^b \frac{dx}{(b-x)^\alpha}=\frac{(b-a)^{1-\alpha}}{1-\alpha}$

$$+ \ \mathrm{N\'eu} \ \ \alpha > 1 \to \lim_{\varepsilon \to 0} \varepsilon^{1-\alpha} = +\infty \ . \quad \mathrm{Khi} \ \mathrm{d\'eo} \ \ I = \int\limits_a^b \frac{dx}{\left(b-x\right)^\alpha} \ \mathrm{phân} \ \mathrm{kì}.$$

+ Với $\alpha = 1$, ta có:

$$I = \int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} = \int_{a}^{b} \frac{dx}{(b-x)} = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} \frac{-d(b-x)}{(b-x)} = \lim_{\varepsilon \to 0} \left[-\ln \left| b - x \right| \right]_{a}^{b-\varepsilon}$$
$$= \lim_{\varepsilon \to 0} \left[-\ln \varepsilon + \ln(b-a) \right] = +\infty.$$

- Tích phân suy rộng $I = \int_a^b \frac{dx}{(b-x)^{\alpha}}$ (Tích phân suy rộng Riemann loại 2)
 - + phân kì nếu $\alpha \geq 1$,
 - + hội tụ nếu $\alpha < 1$ và khi đó $I = \int\limits_a^b \frac{dx}{(b-x)^{\alpha}} = \frac{(b-a)^{1-\alpha}}{1-\alpha}$.

Ví dụ 5:
$$I = \int_{0}^{1} \frac{dx}{\sqrt{1-x}} = ?$$

◆ Chú ý: Cũng như đối với tích phân xác định thông thường, với tích phân suy rộng cũng có thể thực hiện phép đổi biến và phép lấy tích phân từng phần.

Ví dụ 6: Tính $I = \int_a^b \frac{dx}{\sqrt{(x-a)(x-b)}}$ (x = a và x = b là điểm bất thường)

+ Đặt $x=a\cos^2\varphi+b\sin^2\varphi\to dx=\sin2\varphi(b-a)d\varphi$

$$\sqrt{(x-a)(x-b)} = \sqrt{(b-a)^2 \sin^2 \varphi \cos^2 \varphi} = (b-a)\cos \varphi \sin \varphi$$

+ Với $\,x=a \rightarrow \varphi=0; x=b \rightarrow \varphi=\pi\,/\,2$.

+ Khi đó:
$$\int\limits_a^b \frac{dx}{\sqrt{(x-a)(x-b)}} = 2 \int\limits_0^{\pi/2} d\varphi = 2\varphi \Big|_0^{\pi/2} = \pi \,.$$

III. Khảo sát sư hội tu của tích phân suy rộng (tư đọc)

- ♦ Cách 1 : Dưa vào định nghĩa của tích phân suy rộng để khẳng định sư hội tu hay phân kỳ của TPSR.
- ♦ Cách 2 : Dựa vào các tiêu chuẩn so sánh (So sánh với các Tích phân Riemann)

1. Trường hợp hàm dưới dấu tích phân là hàm không âm

a. Tiêu chuẩn so sánh 1:

i) Cho hàm f(x) xác định trên [a,b] (điểm bất thường là b, điểm b có thể là vô cực),

$$f(x) \geq 0, \quad \forall x \in \left[a,b\right)$$
. Đặt $F(x) = \int\limits_a^x f(t)dt$: đây là hàm tăng trên $\left[a,b\right)$.

Khi đó TPSR $\int\limits_a^b f(x)dx\,$ hội tụ khi và chỉ khi hàm $F(x)=\int\limits_a^x f(t)dt\,$ bị chặn trên tức là

$$\exists M: \quad F(x) \leq M, \quad \forall x \in [a,b)$$
.

ii) Nếu $0 \le f(x) \le g(x), \, \forall x \,$ trong lân cận của điểm bất thường b . Khi đó

+ Nếu
$$\int\limits_a^b f(x)dx$$
 phân kỳ thì $\int\limits_a^b g(x)dx$ cũng **phân kỳ**

+ Nếu
$$\int_a^b g(x)dx$$
 hội tụ thì $\int_a^b f(x)dx$ cũng hội tụ.

<u>Ví du:</u> Xét tích phân : $I = \int_0^{+\infty} e^{-x^2} dx$

+ Ta có thể viết
$$\int\limits_0^{+\infty} e^{-x^2} dx = \int\limits_0^1 e^{-x^2} dx + \int\limits_1^{+\infty} e^{-x^2} dx =: A + B$$

+ Tích phân
$$I=\int\limits_0^1 e^{-x^2} dx$$
 : hội tụ

+ Nhận thấy: với $\forall x \geq 1: 0 < e^{-x^2} \leq e^{-x}$ và

$$\int\limits_{1}^{+\infty}e^{-x}\;dx=\lim_{t\to+\infty}\int\limits_{1}^{t}e^{-x}\;dx=\lim_{t\to+\infty}\Bigl(e^{-1}-e^{-t}\Bigr)=e^{-1}\;\colon\text{ suy ra B hội tụ}$$

+ Do đó tích phân đã cho hội tụ.

<u>b.Tiêu chuẩn so sánh 2:</u> Cho $f(x) \ge 0, g(x) \ge 0, \forall x \in [a,b]$ tức là b là điểm bất thường (b có thể bằng vô

cùng) sao cho: $\lim_{x \to b^-} \frac{f(x)}{g(x)} = k$, $0 < k < +\infty$. Khi đó các tích phân suy rộng: $\int\limits_a^b f(x) dx$ và $\int\limits_a^b g(x) dx$

cùng hội tu hoặc cùng phân kỳ.

Ví du: Xét
$$I = \int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}}$$
.

+ Ta có
$$\lim_{x \to +\infty} \frac{x\sqrt{1+x^2}}{x^2} = 1$$

+ Mà
$$\int\limits_{1}^{+\infty} \frac{dx}{x^2}$$
 : là tích phân Riemann loại 1 với $\,\alpha=2>1\,$ nên hội tụ

+ Theo tiêu chuẩn so sánh suy ra tích phân đã cho hội tụ.

2. Trường hợp hàm dưới dấu tích phân có dấu bất kỳ

Xét tích phân suy rộng: $I = \int_a^b f(x) dx$ (ở đây b là điểm bất thường và b có thể bằng vô cùng), với hàm dưới dấu tích phân f(x) có thể đổi dấu trong miền đang xét.

- Khi đó: Nếu $\int_{a}^{b} |f(x)| dx$ hội tụ ta nói rằng I hội tụ tuyết đối.
- ◆ Nếu I hội tụ tuyết đối thì I hội tụ.
- Nếu $\int\limits_a^b |f(x)| \, dx$ phân kỳ nhưng $I = \int\limits_a^b f(x) dx$ hội tụ thì ta nói rằng $I = \int\limits_a^b f(x) dx$ là bán hội tụ.

Ví du 1: + TPSR
$$\int_{1}^{+\infty} \frac{\cos x}{x^{3/2}} dx : hội tụ tuyệt đối$$

$$\underline{\mathbf{Vi} \ \mathbf{du} \ \mathbf{2:}} \ + \text{TPSR} \ \int_{1}^{+\infty} \frac{\cos x}{x} dx = \left(\frac{\sin x}{x} \right) \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{\sin x}{x^2} dx \ : \text{hội tụ.}$$

Bài tập về nhà: Các bài Tr. 372; 377

Ôn tập chuẩn bị Kiểm tra giữa kỳ

Đọc trước các mục: 17.1, 16.1, 16.2, 16.3, 17.2 chuẩn bị cho Bài số 9

Phương trình tham số. Hệ tọa độ cực