Todennäköisyyslaskenta, lopputentti/MV

28.2.2003

- 1. Heitetään kahta noppaa. Laske todennäköisyys, että
 - a) Ainakin toinen pisteluvuista on vähintään 4.
 - b) Suuremman ja pienemmän pisteluvun erotus on tasan 3.
- 2. Laatikko sisältää värillisiä palloja seuraavan taulukon mukaisesti

Laatikko	Punainen	Valkoinen	Sininen
1	3	4	1
2	1	2	3
3	4	3	2

Valitaan satunnaisesti yksi laatikko. Valitusta laatikosta nostetaan satunnaisesti yksi pallo. Havaitaan, että nostettu pallo on punainen. Millä todennäköisyydellä nostettu pallo on peräisin laatikosta numero 2?

- a) Rokote tuottaa immuniteetin 99.99%:n varmuudella. Millä todennäköisyydellä 10000:n rokotetun joukossa korkeintaan kahdella ei ole immuniteettia?
 - b) Heitetään noppaa, kunnes tulee silmäluluku 6. Laske todennäköisyys, että tarvittavien heittokertojen lukumäärä ≥ 3.
- 4. Olkoon $D^2(\mathbf{x})$ satunnaismuuttujan \mathbf{x} varianssi. Olkoon $\mathbf{z} = a\mathbf{x} + b$, missä a ja b ovat vakioita.
 - a) Määrää z:n varianssi.
 - b) Olkoon $\mathbf{x} \sim \text{Tas}(1, 2)$. Määrää $D^2(\mathbf{x})$.
- Olkoon satunnaismuuttujien x ja y yhteistiheys muotoa

$$f(x,y) = \begin{cases} k, & 0 < x < y < 1 \\ 0, & \text{muulloin} \end{cases}$$

Määrää ehdolliset tiheydet $f(\mathbf{x} | \mathbf{y} = y)$ ja $f(\mathbf{y} | \mathbf{x} = x)$ sekä ehdolliset odotusarvot $E(\mathbf{x} | \mathbf{y} = y)$ ja $E(\mathbf{y} | \mathbf{x} = x)$. Piirrä reunatiheyksien kuvaajat. Ovatko satunnaismuuttujat riippumattomia?

Joitakin jakaumia

 $x \sim Poisson(\lambda) (\lambda > 0)$

$$P\{\mathbf{x}=k\}=e^{-\lambda}\frac{\lambda^k}{k!}, \ E(\mathbf{x})=\lambda$$

 $x \sim \text{Geom}(p) \ (0$

$$P\{\mathbf{x}=k\}=pq^k, \ E(\mathbf{x})=\frac{p}{q}$$

$$\mathbf{x} \sim \mathrm{Bin}(n,p) \ (n \in \mathbf{N}_+, 0 \leq p \leq 1, \ q = 1-p)$$

$$P\{\mathbf{x} = k\} = \binom{n}{k} p^k q^{n-k}, \quad (k = 0, 1, ..., n), \quad E(\mathbf{x}) = np$$

 $\mathbf{x} \sim \text{Tas}(a, b) \ (a < b)$

$$f(x) = \frac{1}{b-a}$$
, $(a < x < b)$, $F(x) = \frac{x-a}{b-a}$

 $\mathbf{x} \sim \text{Exp}(\lambda) \ (\lambda > 0)$

$$f(x) = \lambda e^{-\lambda x}, F(x) = 1 - e^{-\lambda x}, (x > 0)$$