EECSIGA DIS 12A

Op amps with superposition

In new products (how to compute, properties) Correlation: shifted inner products, how to compute, Interpretation

MUSIC (bitily/Ibajukelox)

1) Marcon S Don't wanva know

(2) G-Drugon-Black

(Suggested by) lchchitaa

Terms / Definitions/Notation

O Standard inner product/Dot product/Euclidean inner product

\[
\frac{1}{2}\times \frac{1}{2} \frac{

(2) signals

signal

signal: a function
a quantity that varies (with time/)

EECS 16A Designing Information Devices and Systems I Fall 2020 Discussion 12A

1. Amplifier with Multiple Inputs

In this problem we will use superposition and the Golden Rules to find the output of the following op amp circuit with multiple inputs:

(a) First, let's turn off v_{s2} . Use the **Golden Rules** to find v_{o1} for the circuit below.

(b) Now let's turn off v_{o1} . Use the **Golden Rules** to find v_{o2} for the circuit below.

(c) Use superposition to find the output voltage v_o for the circuit shown below.

Let \vec{x} , \vec{y} , and \vec{z} be vectors in real vector space \mathbb{V} . A mapping $\langle \cdot, \cdot \rangle$ is said to be an inner product on \mathbb{V} if it satisfies the following three properties:

- $\begin{cases} \text{ (a) Symmetry: } \langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle \\ \text{ (b) Linearity: } \langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle \text{ and } \langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle \end{cases}$
- \sim (c) Non-negativeness: $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

We define the norm of $\vec{x} = [x_1, x_2, ..., x_n]^T$ as $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$

2. Mechanical Inner Products

For the following pairs of vectors, find the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

(a)

$$\left\langle \overrightarrow{X}, \overrightarrow{y} \right\rangle = \overrightarrow{X}^{7} \overrightarrow{y}$$

$$\frac{1}{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$2\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$

$$\left\langle \begin{bmatrix} 2\\4\\6 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\rangle = \begin{bmatrix} 2\\4\\6 \end{bmatrix}$$

$$\left\langle 2\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\rangle = 2\left\langle \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\rangle$$

$$= 2 \cdot 4$$

$$\begin{bmatrix}
1 \\ 0 \\ 3
\end{bmatrix}, \begin{bmatrix}
-3 \\ 2 \\ 1
\end{bmatrix} = (+1)(-3) + (3)(1)$$

$$= 0 \quad (inner product)$$

$$15 zero so$$

$$vectors are$$

$$outhogonal$$

Q: Norm vs. May.

[|x|| - length of a vector

S norm = magnitude

 $\langle \dot{\chi}, \dot{\chi} \rangle = ||\dot{\chi}||^2 \text{ (norm squared)}$ $\chi_3 \qquad \chi_2 \qquad \text{magnitude squared}$ $\sqrt{\chi_1^2 + \chi_2^2 + \chi_2^2}$

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals s[n] and s[n]. Recall

\vec{s}_1	0	0		1	2	3		0	0	
$\vec{s}_2[n]$										
$\langle \vec{s}_1, \vec{s}_2[n] \rangle$	-	+	+	+		+	+	+	=	=

$$\operatorname{corr}_{\vec{s_2}}(\vec{s_1})[k]$$

\vec{s}_2	0	0		2	4	3	0	1	0
$\vec{s}_1[n+2]$									
$\langle \vec{s}_2, \vec{s}_1[n+2] \rangle$	+	-	+	+		+	+	+	=

\vec{s}_2	0		0	2		4	3	0		0	
$\vec{s}_1[n-2]$											
$\overline{\langle \vec{s}_2, \vec{s}_1[n-2] \rangle}$	2]>	+	-	+	+	+		+	+	=	=