Real Analysis

Assignment №5

Instructor: Dr. Eric Westlund

David Oniani Luther College

oniada01@luther.edu

December 14, 2020

3.2.2 (a) The limit points of A are 1 and -1. The limit points of B are all numbers in the closed interval [0,1].

Limit points of A are 1, -1 as $\lim_{n\to\infty} A = 1, -1$.

Limit points of B are all numbers in the closed interval [0,1] since between any two rationals there are infinitely many irrationals, vice versa. Hence, the limit points of B form the closed interval [0,1].

- (b) A is neither closed nor open. B is neither closed nor open. This is due to the fact that between any two rational numbers, there exists infinitely many irrational numbers.
- (c) All points in A except for 1 and -1 are isolated. Due to the fact that between any two rational numbers, there exists infinitely many rational numbers, **B** has no isolated points.
- $\begin{aligned} (\mathrm{d}) \ \ \overline{A} &= A \cup \{1, -1\} = \left\{ (-1)^n + \frac{2}{n} \mid n = 1, 2, 3, \dots \right\} \cup \{-1\}. \\ \overline{B} &= A \cup [0, 1] = \{x \in \mathbb{Q} \mid 0 < x < 1\} \cup [0, 1] = [0, 1]. \end{aligned}$

3.2.6 (a) This is false.

Let $S = (-\infty, \sqrt{3}) \cup (\sqrt{3}, +\infty)$. Then the union of two open sets $(-\infty, \sqrt{3})$ and $(\sqrt{3}, +\infty)$ is also open. Notice that S contains all numbers in \mathbb{R} except for $\sqrt{3}$ which is irrational. Hence, S contains all rational numbers. However, it does not contain $\sqrt{3}$ which means that it does not contain all real numbers.

(b) This is false.

Let us define $S_n = [n, \infty)$. Then we get $\bigcap_n S_n = \emptyset$.

(c) This is true.

Let S be a nonempty open set. Then, as S is not empty, $\exists x \text{ s.t. } x \in S$. Now, since S is also open, $\exists \epsilon > 0 \text{ s.t. } V_{\epsilon}(x) \subseteq S$. Since \mathbb{Q} is dense in \mathbb{R} , $\exists r \in \mathbb{Q} \text{ s.t. } x - \epsilon < r < x + \epsilon$. Finally, we get $r \in V_{\epsilon}(x) \subseteq S$.

(d) This is false.

Consider $S = \{\frac{1}{n} + \sqrt{3} \mid n \in \mathbb{N}\} \cup \{\sqrt{3}\}$. Then, S is a bounded infinite closed set, however, every number in S is irrational.

(e) This is true.

The Cantor set is the intersection of closed sets. Now, since the arbitrary intersection of closed sets is closed, the Cantor set must be closed.

3.2.8 (a) $\overline{A \cup B}$ is sometimes open. If we set $A = B = \mathbb{R}$, then $A \cup B$ is open. On the other hand, if A = B = [0, 1], then $\overline{A \cup B} = [0, 1]$ which means that $\overline{A \cup B}$ is not open.

 $\overline{A \cup B}$ is definitely closed since for any set S, \overline{S} is definitely closed.

 $\overline{A \cup B}$ is sometimes both open and closed (aka *clopen*). If $A = B = \mathbb{R}$, then $\overline{A \cup B} = \mathbb{R}$ which is both open and closed. However, if we set A = B = [0, 1], then $\overline{A \cup B} = [0, 1]$ which is not open and thus, $\overline{A \cup B}$ is not both open and closed.

 $\overline{A \cup B}$ can never be neither open nor closed as $\overline{A \cup B}$ is always closed.

(b) $\overline{A \setminus B}$ is definitely open since $\overline{A \setminus B} = \overline{A \cap B^c}$. Then, since B is closed, its complement is open. Finally, as both A and B^c are open, $\overline{A \setminus B}$ is open too.

 $\overline{A \setminus B}$ is sometimes closed. If we let $A = \mathbb{R}$ and $B = \emptyset$, then $A \setminus B = \mathbb{R}$ is closed. However, if we let A = (0,5) and B = [1,6], then $A \setminus B = (0,1)$ which is not closed.

 $\overline{A \setminus B}$ is sometimes both open and closed (aka *clopen*). If we let $A = \mathbb{R}$ and $B = \emptyset$, then $A \setminus B = \mathbb{R}$ is closed. Hence, in this case, $\overline{A \setminus B}$ is both open and closed (open since we showed in (a) that it is always open). However, if we let A = (0,5) and B = [1,6], then $A \setminus B = (0,1)$ is not closed.

 $\overline{A \setminus B}$ can never be neither open nor closed as $\overline{A \setminus B}$ is always open.

(c) $(A^c \cup B)^c$ is definitely open. This is the case since if A is open, A^c is closed. Now, as B is closed $A^c \cup B$ is also closed. Hence, $(A^c \cup B)^c$ is open.

 $(A^c \cup B)^c$ is sometimes closed. If we let $A = B = \mathbb{R}$, then $(A^c \cup B)^c = \emptyset$ which is closed. On the other hand, if we let A = (0,1) and $B = \emptyset$, then $(A^c \cup B) = (0,1)$ which is not closed.

 $(A^c \cup B)^c$ is sometimes both open and closed (aka *clopen*). If we let $A = \mathbb{R}$ and $B = \emptyset$, then $A \setminus B = \mathbb{R}$ is closed. Hence, in this case, $\overline{A \setminus B}$ is both open and closed (open since we showed in (a) that it is always open). However, if we let A = (0,5) and

B = [1, 6], then $A \setminus B = (0, 1)$ is not closed.

 $(A^c \cup B)^c$ can never be neither open nor closed as $(A^c \cup B)^c$ always open.

(d) Notice that $(A \cap B) \cup (A^c \cap B) = B$.

 $(A \cap B) \cup (A^c \cap B) = B$ is sometimes open. If $B = \mathbb{R}$ then it is open. However, if B = [0, 1], it is not open.

 $(A \cap B) \cup (A^c \cap B) = B$, by definition, is definitely closed.

 $(A \cap B) \cup (A^c \cap B) = B$ is sometimes both open and closed (aka *clopen*). If $B = \mathbb{R}$, then it is both open and closed. However, if B = [0, 1], then it is not open (but it is still open as it is always open).

 $(A \cap B) \cup (A^c \cap B) = B$ can never be neither open nor closed as $(A^c \cup B)^c$ always open.

(e) Notice that since A is open, A^c is closed and thus, $\overline{A^c} = A^c$. Hence, we get $\overline{A}^c \cap A^c = \overline{A}^c$.

 $\overline{A}^c \cap A^c = \overline{A}^c$ is definitely open. This is by definition. As A is open, \overline{A} is closed and its complement \overline{A}^c must be open.

 $\overline{A}^c \cap A^c = \overline{A}^c$ is sometimes closed. If we let $A = \emptyset$, then $\overline{A}^c = \mathbb{R}$ is closed (and open as well). However, if A = (0,1), then $\overline{A}^c = (-\infty,0) \cup (1,+\infty)$ which is not closed.

 $\overline{A}^c \cap A^c = \overline{A}^c$ is sometimes both open and closed (aka *clopen*). If we let $A = \emptyset$, then $\overline{A}^c = \mathbb{R}$ which is both open and closed. However, if A = (0,1), then $\overline{A}^c = (-\infty, 0) \cup (1, +\infty)$ which is not closed.

 $\overline{A}^c \cap A^c = \overline{A}^c$ can never be neither open nor closed as $(A^c \cup B)^c$ always open.

3.2.14 (a) Let us first show that E is closed if and only if $\overline{E} = E$. We will first prove this directly and then prove its converse.

Suppose that E is closed. Then E must contain all of its limit points. Let us denote the set of all limit points of E as L. Then it follows that $L \subseteq E$ but $\overline{E} = E \cup L$. Thus, $\overline{E} = E$.

Conversely, suppose that $\overline{E} = E$. Then it follows that E contains all of its limit points since \overline{E} contains all of the limit points of E. Hence, E must be closed.

Finally, we have shown that E is closed if and only if $\overline{E} = E$.

Let us now show that E is open if and only if $E^{\circ} = E$. Similarly, we will first prove this statement directly and then prove its convers.

Suppose E is open. Then $\forall x \in E, \exists V_{\epsilon}(x) \subseteq E$. It follows that $x \in E^{\circ}$ and thus, $E \subseteq E^{\circ}$. On the other hand, by definition, $E^{\circ} \subseteq E$. Hence, $E^{\circ} = E$

Conversely suppose $E^{\circ} = E$. Then, by definition, since E° is open, E must be too.

 \Box

Finally, we have shown that E is open if and only if $E^{\circ} = E$.

(b) Let us first show that $\overline{E}^c = (E^c)^{\circ}$. In order to prove this, we first show that $\overline{E}^c \subseteq (E^c)^{\circ}$ and then show that $(E^c)^{\circ} \subseteq \overline{E}^c$.

Let $x \in \overline{E}^c$. Then, as \overline{E}^c is open, $\exists V_{\epsilon}(x) \subseteq \overline{E}^c$. Now, since $E \subseteq \overline{E}$, it follows that $\overline{E}^c \subset \overline{E}^c$.

Now, let $x \in (E^c)^{\circ}$. Then $\exists V_{\epsilon}(x) \subseteq \overline{E}^c \subseteq E^c$. It follows that $V_{\epsilon}(x) \cap E = \emptyset$.

Now, notice that we $V_{\epsilon}(x) \cap \overline{E} = \emptyset$. To prove this, suppose, for the sake of contradiction, that $V_{\epsilon}(x) \cap \overline{E} \neq \emptyset$. Then $\exists y \in \overline{E}$ s.t. $y \in V_{\epsilon}(x)$ (with $V_{\epsilon}(x)$ being open). Then there must exists some ϵ -neighborhood of y that is contained in $V_{\epsilon}(x)$. However, ϵ -neighborhood of y contains points of E which contradicts $V_{\epsilon}(x) \cap E = \emptyset$ (which we have already shown). Therefore, $V_{\epsilon}(x) \cap \overline{E} = \emptyset$. Hence, $V_{\epsilon}(x) \subseteq \overline{E}^c$ and it follows that $(E^c)^{\circ} \subseteq \overline{E}^c$.

Finally, we have shown both $\overline{E}^c \subseteq (E^c)^\circ$ and then show that $(E^c)^\circ \subseteq \overline{E}^c$. Hence, $\overline{E}^c = (E^c)^\circ$.

Let us now show that $\overline{E}^c = (E^c)^{\circ}$. Recall that we have already shown $\overline{E}^c = (E^c)^{\circ}$. If we simply substitute E with E^c in this equality, we get $\overline{E^c}^c = ((E^c)^c)^{\circ} = E^{\circ}$. Taking the complement of both sides gives us $\overline{E^c} = \overline{E^{\circ}}^c$.