Probability Basics

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Sample Space

Sample Space S: Set of all possible outcomes

Probability

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1 eg. P(H) + P(T) = 1

Probability

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1 eg. P(H) + P(T) = 1

Mutually Exclusive Events

Sample Space S: Set of all possible outcomes

Probability P(A): Likelihood of event A

- $0 \le P(A) \le 1$
- P(S) = 1
 - P(H) + P(T) = 1
- ullet For mutually exclusive events A and B:
 - $\circ P(A \cap B) = 0$
 - $\circ P(A \cup B) = P(A) + P(B)$

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Using Simulation for Probability Estimation

Steps for Estimating Probability:

- 1. Construct sample space or population.
- 2. Determine how to simulate one outcome.
- 3. Determine rule for success.
- 4. Sample repeatedly and count successes.
- 5. Calculate frequency of successes as an estimate of probability.

Let's practice!

STATISTICAL SIMULATION IN PYTHON

More Probability Concepts

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Conditional Probability

• Conditional Probability

$$\circ \ P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

Conditional Probability

$$\circ \ P(A|B) = rac{P(A\cap B)}{P(B)}$$

$$\circ \ P(B|A) = rac{P(B\cap A)}{P(A)}$$

$$\circ P(A \cap B) = P(B \cap A)$$

Of we assume that neither p(A) nor P(B) is zero then we can drive pay's role

Bayes Rule

Conditional Probability

$$\circ \ P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\circ \ \ \text{Bayes' rule:} \ P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Independent Events

- Independent Events
 - $\circ P(A \cap B) = P(A)P(B)$
 - $\circ \;\;$ Conditional Probability: $P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = \underline{P(A)}$

Solar Panels & Clean Vehicles

• Number of houses = 150

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	⁵⁰ / ₁₅₀	
No Hybrid / EV	¹⁰ / ₁₅₀	60/ ₁₅₀	
			150

Solar Panels & Clean Vehicles

$$P(\mathrm{Solar}) = P(\mathrm{Solar} \cap \mathrm{Hybrid}, \mathrm{EV}) + P(\mathrm{Solar} \cap \mathrm{No} \ \mathrm{Hybrid}, \mathrm{EV}) = \frac{30}{150} + \frac{10}{150} = \frac{40}{150}$$

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	50/ ₁₅₀	80/150
No Hybrid / EV	¹⁰ / ₁₅₀	⁶⁰ / ₁₅₀	⁷⁰ / ₁₅₀
	40/150	110/150	150/150

Solar Panels & Clean Vehicles

$$P(ext{Solar}| ext{Hybrid}, ext{EV}) = rac{P(ext{Solar}\cap ext{Hybrid}, ext{EV})}{P(ext{Hybrid}, ext{EV})} = rac{30}{80} = 0.375$$

	Solar Panels	No Solar Panels	
Hybrid / EV	³⁰ / ₁₅₀	⁵⁰ / ₁₅₀	80/ ₁₅₀
No Hybrid / EV	¹⁰ / ₁₅₀	⁶⁰ / ₁₅₀	70/ ₁₅₀
	⁴⁰ / ₁₅₀	110/ ₁₅₀	150/150

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Data Generating Process

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Simulation Steps

- 1. Define Possible Outcomes for Random Variables.
- 2. Assign Probabilities.
- 3. Define Relationships between Random Variables.

Data Generating Process

Cricket

¹ Source: Wikipedia

Cricket

Cricket

Let's practice!

STATISTICAL SIMULATION IN PYTHON

eCommerce Ad Simulation

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

eCommerce Funnel

Signup Flow

Purchase Flow

Let's practice!

STATISTICAL SIMULATION IN PYTHON

