## **Implementation of CNN**

**ID:** 17107584.

## Dataset: Sign Language MNIST (American Sign Language).

American Sign Language (ASL) is a complete, natural language with linguistic properties like spoken languages and a grammar distinct from English. Hand and face gestures are used to convey ASL. It is the predominant language of many deaf and hard-of-hearing people in North America, as well as many hearing people. The dataset format is designed to closely resemble the classic MNIST format. Every training and test case represents a label (0-25) as a one-to-one map for each alphabetic letter A-Z (due to gesture movements, there are no cases for 9=J or 25=Z). The training data (27,455 cases) and test data (7172 cases) are around half the size of the regular MNIST, but they are otherwise identical, with a header row of label, pixel1, pixel2...pixel784 representing a single 28x28 pixel image with grayscale values ranging from 0-255. Multiple users repeating the gesture against various backgrounds were reflected in the original hand gesture image data. The Sign Language MNIST data was derived by greatly expanding the limited number (1704) of color images included in the study that were not cropped around the hand region of interest.



Dataset: https://www.kaggle.com/datamunge/sign-language-mnist.

## **Code:**

The first part of the code simply includes all the imports that we will use in the code.

Then we load the dataset and show an example of what the data looks like

| - Lo | adi                                                                                                                                                                                                           | ng T     | he Da     | atase  | t      |        |        |        |        |        |        |         |         |         |         |         |         |            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|------------|
| 0    | <pre>train_df = pd.read_csv("/content/sign_mnist_train.csv") test_df = pd.read_csv("/content/sign_mnist_test.csv") test = pd.read_csv("/content/sign_mnist_test.csv") y = test['label'] train_df.head()</pre> |          |           |        |        |        |        |        |        |        |        |         |         |         |         |         |         |            |
| C+   |                                                                                                                                                                                                               | label    | pixel1    | pixel2 | pixel3 | pixel4 | pixel5 | pixel6 | pixel7 | pixel8 | pixel9 | pixel10 | pixel11 | pixel12 | pixel13 | pixel14 | pixel15 | pixel16 pi |
|      | 0                                                                                                                                                                                                             |          | 107       | 118    | 127    | 134    | 139    | 143    | 146    | 150    | 153    | 156     | 158     | 160     | 163     | 165     | 159     | 166        |
|      | 1                                                                                                                                                                                                             |          | 155       | 157    | 156    | 156    | 156    | 157    | 156    | 158    | 158    | 157     | 158     | 156     | 154     | 154     | 153     | 152        |
|      | 2                                                                                                                                                                                                             |          | 187       | 188    | 188    | 187    | 187    | 186    | 187    | 188    | 187    | 186     | 185     | 185     | 185     | 184     | 184     | 184        |
|      | 3                                                                                                                                                                                                             |          | 211       | 211    | 212    | 212    | 211    | 210    | 211    | 210    | 210    | 211     | 209     | 207     | 208     | 207     | 206     | 203        |
|      | 4                                                                                                                                                                                                             | 13       | 164       | 167    | 170    | 172    | 176    | 179    | 180    | 184    | 185    | 186     | 188     | 189     | 189     | 190     | 191     | 189        |
|      | 5 rov                                                                                                                                                                                                         | ws × 785 | 5 columns |        |        |        |        |        |        |        |        |         |         |         |         |         |         |            |

And as we mentioned before the training data (27,455 cases) and test data (7172 cases) with a header row of label, pixel1, pixel2...pixel784 representing a single 28x28 pixel image with grayscale values ranging from 0-255. Then we label the data. Every training and test case represents a label (0-25) as a one-to-one map for each alphabetic letter A-Z.

```
Labeling Data

[>] y_train = train_df['label']
    y_test = test_df['label']
    del train_df['label']

[ ] from sklearn.preprocessing import LabelBinarizer
    label_binarizer = LabelBinarizer()
    y_train = label_binarizer.fit_transform(y_train)
    y_test = label_binarizer.fit_transform(y_test)

[ ] x_train = train_df.values
    x_test = test_df.values
```

The next step is data normalization which helps the CNN to converge faster by preforming grayscale normalization to reduce the illumination differences and it will also converge faster since we normalize it to [0...1] data instead of [0...255].



Next to avoid overfitting we will do some data augmentation and some of the approaches that will help with this are flipping the image randomly (horizontally or vertically), random crops, random translations, rotations, and color jitters. By applying these approaches, we will easily increase the size of the dataset which will improve the results.

Next, we will create our CNN model with our different convolution, pooling, dropout layers. To get the best results from our datasets

```
Creating the Model With CNN
   learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience = 2, verbose=1,factor=0.5, min_lr=0.00001)
    model = Sequential()
    model.add(Conv2D(75, (3,3), strides = 1, padding = 'same', activation = 'relu', input_shape = (28,28,1)))
    model.add(BatchNormalization())
    model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
    model.add(Conv2D(50 , (3,3) , strides = 1 , padding = 'same' , activation = 'relu'))
    model.add(Dropout(0.2))
    model.add(BatchNormalization())
    model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
    model.add(Conv2D(25, (3,3), strides = 1, padding = 'same', activation = 'relu'))
    model.add(BatchNormalization())
    model.add(MaxPool2D((2,2) , strides = 2 , padding = 'same'))
    model.add(Flatten())
    model.add(Dense(units = 512 , activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(units = 24 , activation = 'softmax'))
    model.compile(optimizer = 'adam' , loss = 'categorical_crossentropy' , metrics = ['accuracy'])
    model.summary()
```

| Model: "sequential"                                                       |        |                 |         |
|---------------------------------------------------------------------------|--------|-----------------|---------|
| Layer (type)                                                              | Output | Shape           | Param # |
| conv2d (Conv2D)                                                           | (None. | <br>28, 28, 75) | <br>750 |
| batch normalization (BatchNo                                              |        |                 | 300     |
|                                                                           |        |                 |         |
| max_pooling2d (MaxPooling2D)                                              |        |                 | 0<br>   |
| conv2d_1 (Conv2D)                                                         | (None, | 14, 14, 50)     | 33800   |
| dropout (Dropout)                                                         | (None, | 14, 14, 50)     | 0       |
| batch_normalization_1 (Batch                                              | (None, | 14, 14, 50)     | 200     |
| max_pooling2d_1 (MaxPooling2                                              | (None, | 7, 7, 50)       | 0       |
| conv2d_2 (Conv2D)                                                         | (None, | 7, 7, 25)       | 11275   |
| batch_normalization_2 (Batch                                              | (None, | 7, 7, 25)       | 100     |
| max_pooling2d_2 (MaxPooling2                                              | (None, | 4, 4, 25)       | 9       |
| flatten (Flatten)                                                         | (None, | 400)            | 9       |
| dense (Dense)                                                             | (None, | 512)            | 205312  |
| dropout_1 (Dropout)                                                       | (None, | 512)            | 0       |
| dense_1 (Dense)                                                           | (None, | 24)             | 12312   |
| Total params: 264,049 Trainable params: 263,749 Non-trainable params: 300 |        |                 |         |

Next, we train our model using the model. Fit () function

```
Epoch 1/20
215/215 [=:
                                 ==] - 41s 38ms/step - loss: 1.8520 - accuracy: 0.4557 - val loss: 3.5759 - val accuracy: 0.0976
Epoch 2/20
                         ========] - 8s 37ms/step - loss: 0.2526 - accuracy: 0.9156 - val loss: 2.2791 - val accuracy: 0.3622
Epoch 3/20
215/215 [==
                                ===] - 8s 37ms/step - loss: 0.1146 - accuracy: 0.9628 - val_loss: 0.1992 - val_accuracy: 0.9282
Fnoch 4/20
                              =====] - 8s 36ms/step - loss: 0.0684 - accuracy: 0.9779 - val_loss: 0.0524 - val_accuracy: 0.9886
215/215 [==
Epoch 5/20
                      =========] - 8s 37ms/step - loss: 0.0449 - accuracy: 0.9858 - val_loss: 0.0983 - val_accuracy: 0.9689
215/215 [==
Epoch 6/20
                        =========] - 8s 37ms/step - loss: 0.0381 - accuracy: 0.9890 - val_loss: 0.1398 - val_accuracy: 0.9520
215/215 [==
Epoch 00006: ReduceLROnPlateau reducing learning rate to 0.00050000000237487257.
Epoch 7/20
215/215 [==
                         ========] - 8s 37ms/step - loss: 0.0252 - accuracy: 0.9918 - val_loss: 0.0154 - val_accuracy: 0.9954
Epoch 8/20
215/215 [==
                                :==] - 8s 37ms/step - loss: 0.0157 - accuracy: 0.9954 - val_loss: 0.1036 - val_accuracy: 0.9625
Epoch 9/20
215/215 [==:
                              =====] - 8s 37ms/step - loss: 0.0154 - accuracy: 0.9954 - val_loss: 0.0062 - val_accuracy: 0.9978
Epoch 10/20
                                 ≔] - 8s 37ms/step - loss: 0.0091 - accuracy: 0.9976 - val_loss: 0.0102 - val_accuracy: 0.9962
Epoch 11/20
215/215 [==:
                              =====] - 8s 37ms/step - loss: 0.0106 - accuracy: 0.9970 - val_loss: 0.0467 - val_accuracy: 0.9808
Epoch 00011: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
Epoch 12/20
215/215 [==
                                ===] - 8s 37ms/step - loss: 0.0088 - accuracy: 0.9975 - val_loss: 0.0020 - val_accuracy: 1.0000
Epoch 13/20
215/215 [==
                                :===] - 8s 37ms/step - loss: 0.0064 - accuracy: 0.9983 - val_loss: 0.0027 - val_accuracy: 1.0000
Epoch 14/20
215/215 [======
                Epoch 00014: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
Epoch 15/20
                    215/215 [===
Epoch 16/20
                 Epoch 00016: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
Epoch 17/20
215/215 [===
                   ==========] - 8s 37ms/step - loss: 0.0040 - accuracy: 0.9990 - val_loss: 6.6606e-04 - val_accuracy: 0.9999
Epoch 18/20
                   :=========] - 8s 36ms/step - loss: 0.0041 - accuracy: 0.9992 - val_loss: 4.8597e-04 - val_accuracy: 0.9999
Epoch 00018: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
Epoch 19/20
                    =========] - 8s 37ms/step - loss: 0.0030 - accuracy: 0.9995 - val_loss: 4.3281e-04 - val_accuracy: 1.0000
Epoch 20/20
215/215 [===
                            ======] - 8s 37ms/step - loss: 0.0048 - accuracy: 0.9983 - val_loss: 5.7071e-04 - val_accuracy: 1.0000
Epoch 00020: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
```

Next, we print the accuracy of our model.

Lastly, we visualize the results to see the model accuracy.

```
Analysis & Visualization
      epochs = [i for i in range(20)]
       fig , ax = plt.subplots(1,2)
       train_acc = history.history['accuracy']
       train_loss = history.history['loss']
       val_acc = history.history['val_accuracy']
val_loss = history.history['val_loss']
       fig.set_size_inches(16,9)
      ax[0].plot(epochs , train_acc , 'go-' , label = 'Training Accuracy')
ax[0].plot(epochs , val_acc , 'ro-' , label = 'Testing Accuracy')
ax[0].set_title('Training & Validation Accuracy')
       ax[0].legend()
       ax[0].set_xlabel("Epochs")
       ax[0].set_ylabel("Accuracy")
      ax[1].plot(epochs , train_loss , 'g-o' , label = 'Training Loss')
ax[1].plot(epochs , val_loss , 'r-o' , label = 'Testing Loss')
ax[1].set_title('Testing Accuracy & Loss')
       ax[1].legend()
       ax[1].set_xlabel("Epochs")
       ax[1].set_ylabel("Loss")
       plt.show()
```



And with the confusion matrix we can see that all the predictions were correct, and the model accuracy is 100%.

