English words like 'technology' stem from a Greek root beginning with the letters $\tau \varepsilon \chi ...$; and this same Greek word means art as well as technology.

Donald Knuth, *The T_EX Book*

TELE303/404 Mobile Systems Lecture 5 — Spread Spectrum

Jeremiah Deng TELE Programme / InfoSci University of Otago, 2016

Road Map

- Last Lecture:
 - o ASK, FSK, PSK
 - BFSK, BPSK, MFSK
 - o QAM
 - o PCM, DM
- This Lecture:
 - o Spread Spectrum
 - o Advantages
 - o Implementations
 - o CDMA

Spread Spectrum: Overview

Spread Spectrum - Diagram

Spread Spectrum

- Input is fed into a channel encoder
 - o Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - o aka spreading code or spreading sequence or chip
 - Generated by pseudo-noise, or pseudo-random number generator
- Effect of modulation is to increase bandwidth of signal to be transmitted

5

Spread Spectrum

- On receiving end, digit sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel decoder to recover data
- Two types of SS:
 - Frequency hopping (FHSS)
 - o Direct sequence (DSSS)

Waste of Spectrum?

- What can be gained from apparent waste of spectrum?
 - Immunity from various kinds of noise and multipath distortion
 - o Can be used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference
 - o Allows random access

Approach I: FHSS

Approach I – Frequency Hopping

- Frequency hopping spread spectrum (FHSS)
- Signal is broadcast over seemingly random series of radio frequencies
 - o A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - o Transmitter operates in one channel at a time
 - o Bits are transmitted using some encoding scheme
 - o At each successive interval, a new carrier frequency is selected

10

Frequency Hopping Spread Spectrum

Figure 7.2 Frequency Hopping Example

Frequency Hopping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
 - $\circ\,$ Eavesdroppers hear only unintelligible blips
 - Attempts to jam signal on one frequency succeed only at knocking out a few bits

9

BFSK + FHSS

BFSK restored:
$$[f_0 + 0.5(b_i + 1)\Delta f + f_i] - f_i$$
$$= f_0 + 0.5(b_i + 1)\Delta f$$

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- Compare T_c with T_s (duration of signal element)
 - $\circ T_c \ge T_s$ slow-frequency-hop spread spectrum
 - o $T_c < T_s$ fast-frequency-hop spread spectrum

Review: Multiple Frequencies (MFSK)

- More than two frequencies are used in FSK
- More bandwidth efficient
- Used for frequency hopping in spread spectrum

Fig. 6.4 MFSK Frequency Use (M=4)

Slow FHSS

Figure 7.4 Slow Frequency Hop Spread Spectrum Using MFSK (M = 4, k = 2)

Approach II: DSSS

Fast FHSS

Approach II - Direct Sequence

- Direct Sequence Spread Spectrum (DSSS)
- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - o Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code bit stream using **exclusive-OR** (Figure 7.6)

Figure 7.6 Example of Direct Sequence Spread Spectrum

21

DSSS Using BPSK

- Multiply BPSK signal $s_d(t) = Ad(t) \cos(2\pi f_c t)$ by c(t) [takes values +1, -1] to get $s(t) = A d(t) c(t) \cos(2\pi f_c t)$
 - A =amplitude of signal
 - f_c = carrier frequency
 - d(t) = discrete function [+1, -1]
- At receiver, incoming signal multiplied by c(t): s_d (t)= s(t) c(t)
 - \circ Since $c(t) \times c(t) = 1$, incoming signal is recovered

22

binary data Modulator (BPSK) $s_d(t)$ Spread spectrum signal c(t)Pseudonoise bit source (a) Transmitter

Figure 7.7

DSSS System

Coping with Jamming

Figure 7.11 CDMA in a DSSS Environment

26

Code-Division Multiple Access

- CDMA: a multiplexing technique used with spread spectrum
- Senders employ different spreading sequences in their SS
- SS can be FH or DS, or both (hybrid)
- Question: How to make good spreading sequences?
 - o Robust to eavesdropping / jamming
 - o Allowing multiple users with little interference
 - Allowing self-clocking

CDMA Example

- Code is a sequence of 1s and -1s, length=6
 - o For a '1' bit, A sends code as chip pattern
 - <c1, c2, c3, c4, c5, c6>
 - o For a '0' bit, A sends complement of code
 - <-c1, -c2, -c3, -c4, -c5, -c6>
- Receiver knows sender's code and performs electronic decode function

$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$

- \circ <d1, d2, d3, d4, d5, d6> = received chip pattern
- \circ <c1, c2, c3, c4, c5, c6> = sender's code

25

CDMA Example

- User A code = <1, -1, -1, 1, -1, 1>
 - o To send a 1 bit = <1, −1, −1, 1, −1, 1>
 - \circ To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 - \circ To send a 1 bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
 - o (A's code) x (received chip pattern)
 - User A '1' bit: $6 \rightarrow 1$
 - User A '0' bit: $-6 \to 0$
 - User B '1' bit: 0 → unwanted signal ignored

Spread Spectrum

- Frequency hopping
 - o Carrier frequency hopping according to chips
 - Potential frequency collisions; faster hardware required
- Direct sequence
 - o Signals multiplied by PN codes (chips)
 - Near-far effect: when interfering transmitter gets much closer to the receiver than the intended transmitter.
 - o Requires adaptive power control

Categories of Spreading Sequences

- Spreading Sequence Categories
 - o PN sequences
 - o Orthogonal codes
- For FHSS systems
 - o PN sequences most common
- For DSSS systems
 - o PN sequences
 - o Orthogonal codes

Recap

- Spread spectrum
- FHSS and DSSS
- CDMA
- Readings
 - o Chapter 9
 - o Piazza/ Resources/Readings
- Next Lecture:
 - o More on CDMA
 - o Medium Access Control