Introdução a Machine Learning e Deep Learning

Guilherme Campos

Comunidades de desenvolvimento

http://devmt.herokuapp.com/

Agenda

Conceitos

- Machine Learning
- Tipos de aprendizado
- Redes Neurais
- Deep Learning

Conceitos

Machine Learning

• Como classificar uma imagem como Maçã ou Laranja?

Novo problema? Comece tudo de novo!

Machine Learning

Machine Learning – Aprendizagem de Máquina

- Aprendizagem Supervisionado
- Aprendizagem Semi-supervisionada
- Aprendizagem Não-supervisionado
- Aprendizagem por Reforço

Aprendizagem supervisionada

Caracteristicas	Rotulo
1.jpg	Maçã
2.jpg	Laranja

Conjunto de dados

Aprendizagem supervisionada

- Árvores de decisão
- Regressão Linear/Logística
- Support Vector Machines
- Redes Neurais
- K- Vizinhos mais próximos


```
from sklearn import datasets, svm, metrics
import matplotlib.pyplot as plt
# Carrega o dataset
digits = datasets.load_digits()
# transforma a imagem em vetor
n samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
x train = data[:n_samples / 2]
y_train = digits.target[:n_samples / 2]
# cria um classificador SVM
classifier = svm.SVC(gamma=0.001)
# realiza o ajuste dos dados
classifier.fit(x_train, y_train)
esperado = digits.target[n_samples / 2:]
predito = classifier.predict(data[n_samples / 2:])
```


Aprendizagem não supervisionada

Caracteristicas	Rotulo
1.jpg	?
2.jpg	?
	???

Conjunto de dados

Aprendizagem não supervisionada

DBSCAN

K-means

• t-SNE

• PCA

Principal Component 1

2 Component PCA

Principal Component 2

Iris-versicolor

```
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
n samples = 1500
random state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)
y pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X)
plt.subplot(211)
plt.scatter(X[:, 0], X[:, 1], c=y pred)
plt.title("Iniciado com 3 centroides")
y pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)
plt.subplot(212)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Iniciado com 2 centroides")
plt.show()
```


Aprendizagem semi-supervisionada

Caracteristicas	Rotulo
1.jpg	Maçã
2.jpg	???
3.jpg	Laranja
4.jpg	???

Generative Adversarial Network

Aprendizagem por reforço

Conjunto de estados

Conjunto de estados

Aprendizagem por reforço

Better than human-level control of classic Atari games through Deep Reinforcement Learning.

Redes Neurais

Redes Neurais Artificiais

 Inicialmente foram inspiradas no sistema nervoso.

Uma rede de unidades ou nós interconectados.

Os nós são chamados de neurônios artificiais.

Perceptron

Modelo mais simples de rede neural,

 Possui apenas uma camada e um único nó.

- Esse modelo foi proposto em 1958.
- É um classificador binário.

Perceptron

$$x = \sum_{i=1}^{n} w_i y_i + \theta$$

Unit step (threshold)

Perceptron - Exemplo

_		
	OR	
$I_{1} =$	l ₂	out
0	0	0
0	1	1
1	0	1
1	1	1

Multilayer Perceptron (MLP)

- Perceptron com mais de uma camada.
- Aprendizado por backpropagation.
- Uma rede de perceptrons.
- Diferentes funções de ativação.

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Curto histórico

Deep Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

O você vê.

O que o computador "vê".

50	68	78	95	
67	21	23	42	
71	59	58	31	•••
47	19	29	39	

pixels


```
Today Integrated Video Indicise Uses Main Configuration Fernances
```

```
import numpy as np
import keras
from keras.preprocessing import image
from keras.applications.inception_v3 import preprocess_input,
decode_predictions
model = keras.applications.InceptionV3(weights='imagenet')
img path = 'aracari_castanho.jpg'
img = image.load_img(img_path, target_size=(299,299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
# decode
print('Predicted:', decode_predictions(preds, top=3)[0])
```

Predicted: [('n01843383', 'toucan', 0.71278381), ('n01829413', 'hornbill', 0.16843531), ('n04146614', 'school_bus', 0.01657751)]

Toucan	71,27%
Hornbill	16,84%
School Bus	1,65%


```
import numpy as np
import keras
from keras.preprocessing import image
from keras.applications.inception_v3 import preprocess_input,
decode_predictions
model = keras.applications.InceptionV3(weights='imagenet')
img path = 'arvore.jpg'
img = image.load_img(img_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
# decode
print('Predicted:', decode_predictions(preds, top=3)[0])
```

Predicted: [('n09332890', 'lakeside', 0.21762265), ('n03028079', 'church', 0.080397919), ('n09468604', 'valley', 0.078168809)]

Lakeside	21,76%
Church	8,03%
Valley	7,81%


```
import numpy as np
import keras
from keras.preprocessing import image
from keras.applications.inception_v3 import preprocess_input,
decode_predictions
model = keras.applications.InceptionV3(weights='imagenet')
img path = 'alvaro.jpg'
img = image.load_img(img_path, target_size=(299, 299))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
# decode
print('Predicted:', decode_predictions(preds, top=3)[0])
```

Predicted: [('n03595614', 'jersey', 0.51262307), ('n04584207', 'wig', 0.025850503), ('n03250847', 'drumstick', 0.021243958)]

Jersey	51,26%
Wig	2,58%
Drumstick	2,12%

O que é deep learning?

Aprendizagem de representação dos dados.

Utiliza algoritmos hierárquicos com varias camadas.

Se alimentado com muitos dados consegue generalizar o problema.

Método de como as redes neurais aprendem.

Curto histórico

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Deep Learning

MNIST

0123456789 0123456789 0123456789 0123456789 0123456789

YouTube-8M

AvgPool
MaxPool

Deep Learning - Aplicações

• Reconhecimento de voz

Sound wave of me saying "Hello"

Neural Network

Plain text

Input

Visão computacional

Processamento de linguagem natural

Output

Reconhecimento de voz

Visão Computacional

Processamento de linguagem natural

Model Zoo

Utilização - **kaggle**

- Competição
- https://www.kaggle.com/c/data-science-bowl-2018

Utilização - kaggle

Modelo utilizado – Mask R-CNN

Mask R-CNN

Utilização - kaggle

Competitions Expert			
Current Rank 1290 of 92,986		Highest Rank 1116	
0	1		2
TrackML Particle Tracking 89 th			
2018 Data Science Bowl			207 th of 3634

Perguntas?

