I EG-X Model with interactions

I.1 BDG

I.1.1 BdG Hamiltonian

Define sublattice index

$$\alpha = 1, 2, 3 \tag{I.1}$$

with $1 \cong Gr_1, 2 \cong Gr_2, 3 \cong X$. Then we can write the non-interacting term as

$$H_0 = -\sum_{\langle i,j\rangle,\alpha,\beta,\sigma} [\mathbf{t}]_{i\alpha,j\beta} c_{i\alpha}^{\dagger} c_{j\beta}$$
 (I.2)

with the matrix

$$\mathbf{t} = \begin{pmatrix} 0 & t_{Gr} & 0 \\ t_{Gr} & 0 & -V\delta_{ij} \\ 0 & -V\delta_{ij} & t_{\chi} \end{pmatrix}$$
 (I.3)

Add chemical potential:

$$-\mu \sum_{i\alpha\sigma} n_{i\alpha\sigma} \tag{I.4}$$

Also write the interaction part with α (with changed signs compared to Niklas, to keep in line with papers about the attractive Hubbard model):

$$H_{int} = -\sum_{i\alpha} U_{\alpha} c_{i\alpha\uparrow}^{\dagger} c_{i\alpha\downarrow}^{\dagger} c_{i\alpha\downarrow} c_{i\alpha\uparrow}$$
 (I.5)

Fourier transformation:

$$H_{int} = -\frac{1}{N^2} \sum_{\alpha, \mathbf{k}_{1,2,3,4}} U_{\alpha} e^{i(\mathbf{k}_1 + \mathbf{k}_4 - \mathbf{k}_1 - \mathbf{k}_3) r_{i\alpha}} c^{\dagger}_{\mathbf{k}_1 \alpha \uparrow} c^{\dagger}_{\mathbf{k}_3 \alpha \downarrow} c_{\mathbf{k}_2 \alpha \downarrow} c_{\mathbf{k}_4 \alpha \uparrow}$$
(I.6)

Impose zero-momentum pairing: $\mathbf{k}_1 + \mathbf{k}_3 = 0$ and $\mathbf{k}_2 + \mathbf{k}_4 = 0$:

$$H_{int} = -\sum_{\alpha, \mathbf{k}, \mathbf{k}'} U_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow}$$
(I.7)

Mean-field approximation:

$$H_{int} \approx \sum_{\alpha, \mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
 (I.8)

with

2

$$\Delta_{\alpha} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow} \rangle \tag{I.9}$$

$$\Delta_{\alpha}^{*} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{\mathbf{k}'\alpha\uparrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow}^{\dagger} \rangle \tag{I.10}$$

This gives the BCS mean field Hamiltonian:

$$H_{BCS} = \sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} c_{\mathbf{k}\alpha\sigma}^{\dagger} c_{\mathbf{k}\beta\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{\mathbf{k}\alpha\sigma} + \sum_{\alpha,\mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$

$$(I.11)$$

with Nambu spinor

$$\Psi_{\mathbf{k}} = \begin{pmatrix} c_{1,\mathbf{k}\uparrow} \\ c_{2,\mathbf{k}\uparrow} \\ c_{3,\mathbf{k}\uparrow} \\ c_{1,-\mathbf{k}\downarrow}^{\dagger} \\ c_{2,-\mathbf{k}\downarrow}^{\dagger} \\ c_{3,-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix}$$
(I.12)

we have:

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}$$
 (I.13)

with

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} H_{0,\uparrow}(\mathbf{k}) - \mu & \Delta \\ \Delta^{\dagger} & -H_{0,\downarrow}^{*}(-\mathbf{k}) + \mu \end{pmatrix}$$
(I.14)

with $H_{0,\sigma}$ being the F.T. of the kinetic term and $\Delta = diag(\Delta_1, \Delta_2, \Delta_3)$.

I.1.2 Derivative of the normal state Hamiltonian

For calculation of quantum metric: need derivative of the BdG and normal state Hamiltonian w.r.t. k_x and k_y .

$$H_0 = \begin{pmatrix} 0 & f_{Gr}(\mathbf{k}) & V \\ f_{Gr}^*(\mathbf{k}) & 0 & 0 \\ V & 0 & f_X(\mathbf{k}) \end{pmatrix}$$
(I.15)

So need derivatives of f_{Gr} and f_X :

$$\partial_{k_x} f_{Gr}(\mathbf{k}) = -t_{Gr} 2e^{-i\frac{a}{2\sqrt{3}k_y}} \left(-\frac{a}{2}\sin\left(\frac{a}{2}k_x\right) \right) = t_{Gr} e^{-i\frac{a}{2\sqrt{3}k_y}} \sin\left(\frac{a}{2}k_x\right)$$
 (I.16)

$$\partial_{k_y} f_{Gr}(\mathbf{k}) = -t_{Gr} \left(i \frac{a}{\sqrt{3}} e^{i \frac{a}{\sqrt{3}k_y}} - 2i \frac{a}{2\sqrt{3}} e^{-i \frac{a}{2\sqrt{3}k_y}} \cos\left(\frac{a}{2}k_x\right) \right)$$
(I.17)

$$= -t_{Gr} i \frac{a}{\sqrt{3}} \left(e^{i \frac{a}{\sqrt{3}k_y}} - e^{-i \frac{a}{2\sqrt{3}k_y}} \cos\left(\frac{a}{2}k_x\right) \right)$$
 (I.18)

$$\partial_{k_x} f_X(\mathbf{k}) = -2t_X(-a\sin{(ak_x)} - 2\frac{a}{2}\sin{(\frac{a}{2})}\cos{(\sqrt{3}\frac{a}{2}k_y)}) \tag{I.19}$$

$$=2at_X(\sin{(ak_x)}+\sin{(\frac{a}{2})}\cos{(\sqrt{3}\frac{a}{2}k_y)}) \tag{I.20}$$

$$\partial_{k_{y}} f_{X}(\mathbf{k}) = -2t_{X}(-\sqrt{3}\frac{a}{2}\sin(\sqrt{3}\frac{a}{2}k_{y})) = \sqrt{3}t_{X}a\sin(\sqrt{3}\frac{a}{2}k_{y})$$
 (I.21)

I.1.3 BdG Hamiltonian in band basis

Use transformation

$$c_{\mathbf{k}\alpha\sigma}^{\dagger} = \sum_{n} [\mathbf{G}]_{\alpha n}^{*} d_{n\mathbf{k}\sigma}^{\dagger}$$
 (I.22)

where the columns are made up of the eigenvectors of $\mathbf{H}_{0,\sigma}$ for a given \mathbf{k} :

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}_1 & \mathbf{G}_2 & \mathbf{G}_3 \end{pmatrix} \tag{I.23}$$

with that:

$$\mathbf{G}_{\sigma}^{\dagger}(\mathbf{k})\mathbf{H}_{0,\sigma}(\mathbf{k})\mathbf{G}_{\sigma}(\mathbf{k}) = \begin{pmatrix} \epsilon_{1} & 0 & 0\\ 0 & \epsilon_{2} & 0\\ 0 & 0 & \epsilon_{3} \end{pmatrix}$$
(I.24)

4

So the kinetic part of the BdG Hamiltonian becomes:

$$\sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} \sum_{n} [\mathbf{G}(\mathbf{k})]_{\alpha n}^* d_{n\mathbf{k}\sigma}^{\dagger} \sum_{m} [\mathbf{G}(\mathbf{k})]_{\beta m} d_{m\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma}$$
 (I.25)

$$= \sum_{mn\mathbf{k}\sigma} d_{n\mathbf{k}\sigma}^{\dagger} d_{m\mathbf{k}\sigma} \sum_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\alpha n}^{*} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\beta m} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma}$$
(I.26)

$$= \sum_{mn\mathbf{k}\sigma} d_{n\mathbf{k}\sigma}^{\dagger} d_{m\mathbf{k}\sigma} \epsilon_n \delta_{nm} - \mu \sum_{\mathbf{k}\sigma\sigma} n_{n\mathbf{k}\sigma}$$
 (I.27)

$$= \sum_{n\mathbf{k}\sigma} \epsilon_n d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma}$$
 (I.28)

$$=: \sum_{n\mathbf{k}\sigma} \xi_{\mathbf{k}} d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} \tag{I.29}$$

with $\xi_{\mathbf{k}} \coloneqq \epsilon_{\mathbf{k}} - \mu$. The pairing terms become:

$$\sum_{\mathbf{k}\alpha} \Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} = \sum_{\mathbf{k}\alpha} \Delta_{\alpha} \sum_{n} [\mathbf{G}_{\uparrow}(\mathbf{k})]_{\alpha n}^{*} d_{n\mathbf{k}\uparrow}^{\dagger} \sum_{m} [\mathbf{G}_{\downarrow}(-\mathbf{k})]_{\beta m}^{*} d_{m-\mathbf{k}\downarrow}^{\dagger}$$
(I.30)

$$= (I.31)$$

So that:

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} \epsilon_{\mathbf{k}} - \mu & G^{\dagger} \Delta G \\ G^{\dagger} \Delta^{\dagger} G & -\epsilon_{\mathbf{k}} + \mu \end{pmatrix}$$
 (I.32)

with

$$\epsilon_{\mathbf{k}} = \begin{pmatrix} \epsilon_1(\mathbf{k}) & 0 & 0 \\ 0 & \epsilon_2(\mathbf{k}) & 0 \\ 0 & 0 & \epsilon_3(\mathbf{k}) \end{pmatrix}$$
 (I.33)

Concrete example for transformation of gaps from orbital to band basis at $K = \frac{4\pi}{3a} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. There, the non-interacting part becomes simply:

$$\mathcal{H}_0 = \begin{pmatrix} 0 & 0 & V \\ 0 & 0 & 0 \\ V & 0 & 3t_X \end{pmatrix} \tag{I.34}$$

The eigenvalue problem can be solved e.g. via sympy:

$$G = \begin{pmatrix} \frac{-3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}}{\sqrt{4V^{2} + \left(3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} & 0 & \frac{-3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}}{\sqrt{4V^{2} + \left(3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} \\ 0 & 1 & 0 \\ \frac{2V}{\sqrt{4V^{2} + \left(3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} & 0 & \frac{2V}{\sqrt{4V^{2} + \left(3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} \end{pmatrix}$$
 (I.35)

So for $V \rightarrow 0$:

$$G = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{I.36}$$

but for V > 0, there are off-diagonal elements, e.g. V = 0.1:

$$G = \begin{pmatrix} -0.7578 & 0 & 0.6526 \\ 0 & 1 & 0 \\ 0.6526 & 0 & 0.7578 \end{pmatrix}$$
 (I.37)

So the transformation of the gap from orbital to band space reads:

$$G^{\dagger}\Delta G = \begin{pmatrix} \frac{3\Delta_{1}t_{X} - 3\Delta_{3}t_{X} + (\Delta_{1} + \Delta_{3})\sqrt{4V^{2} + 9t_{X}^{2}}}{2\sqrt{4V^{2} + 9t_{X}^{2}}} & 0 & \frac{V(-\Delta_{1} + \Delta_{3})}{\sqrt{4V^{2} + 9t_{X}^{2}}} \\ 0 & \Delta_{2} & 0 \\ \frac{V(-\Delta_{1} + \Delta_{3})}{\sqrt{4V^{2} + 9t_{X}^{2}}} & 0 & \frac{-3\Delta_{1}t_{X} + 3\Delta_{3}t_{X} + (\Delta_{1} + \Delta_{3})\sqrt{4V^{2} + 9t_{X}^{2}}}{2\sqrt{4V^{2} + 9t_{X}^{2}}} \end{pmatrix}$$
(I.38)

So in particular there is no interband pairing for $V \rightarrow 0$:

$$G^{\dagger}\Delta G = \begin{pmatrix} \Delta_1 & 0 & 0 \\ 0 & \Delta_2 & 0 \\ 0 & 0 & \Delta_3 \end{pmatrix}$$
 (I.39)

But for V > 0, there is interband pairing (e.g. V = 0.1):

$$G^{\dagger}\Delta G = \begin{pmatrix} 0.5742\Delta_1 + 0.4258\Delta_3 & 0 & -0.4945\Delta_1 + 0.4945\Delta_3 \\ 0 & \Delta_2 & 0 \\ -0.4945\Delta_1 + 0.4945\Delta_3 & 0 & 0.4258\Delta_1 + 0.5742\Delta_3 \end{pmatrix}$$
 (I.40)

I.2 Grand Potential

See [peottaSuperfluidityTopologicallyNontrivial2015], especially supplementary material, notes 1 and 3.

Mean-Field Hamiltonian (with the last two terms due to exchange of anticommuting fermion operators and the term quadratic in the expectation value from the mean-field decoupling respectively):

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}} + \sum_{\mathbf{k}} \text{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^2}{U}$$
(I.41)

The second term is the trace of the non-interacting Hamiltonian.

Thermodynamic grand potential (which at zero temperature is equivalent to the mean-field energy):

$$\Omega(T,\Delta) = -\frac{1}{\beta} \ln Z_{\Omega} = -\frac{1}{\beta} \ln \text{Tr}(e^{-\beta H_{MF}})$$
 (I.42)

$$= \sum_{\mathbf{k}} \operatorname{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^{2}}{U} - \frac{1}{\beta} \ln \operatorname{Tr}(e^{-\beta \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}})$$
(I.43)

Zero temperature limit:

$$\Omega(\Delta) = \sum_{\mathbf{k}} \operatorname{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^2}{U} - \frac{1}{2} \sum_{\mathbf{k}} \operatorname{Tr}([|\mathcal{H}_{\mathbf{k}}|])$$
 (I.44)

where a function of a matrix H (such as taking the absolute value of the BdG Hamiltonian $\mathcal{H}_{\mathbf{k}}$) is defined for the diagonal matrix of eigenvalues D and the unitary matrix U that diagonalizes H:

$$f(H) = Uf(D)U^{\dagger} \tag{I.45}$$

The route to finding the value of the order parameter for a fixed interaction U is minimizing the grand potential with respect to Δ .