2024/9/26 CQYC NOIp 模拟赛 题解

题解:龙猫(totoro)

P10580

首先 $x \nmid y$ 一定无解,考虑 $t = \frac{y}{x}$,将其分解质因数 $t = \prod_k p_k^{\beta_k}$ 。

每个质因子之间的贡献时独立的,对于每个质因子 p,那么问题变成了每个数为 p^0,p^1,\cdots,p^β 中的一个,要求 n 个数中钦定选择 p^0,p^β 的方案数。

直接求不是很好求,考虑容斥,求出没有限制的方案数,减去钦定 p^0 或 p^β 没有在 n 个数中出现的方案数,加上 p^0, p^β 都没有在数列中的方案数。

那么答案就是 $\prod_k ((\beta+1)^n - 2\beta^n + (\beta-1)^n)$

时间复杂度 $\mathcal{O}(T\sqrt{n})$ 。

题解: 悠然 (youran)

P10634

 $s_i>s_j\wedge t_i>t_j,\ s_i=s_j\wedge t_i=t_j,\ s_i< s_j\wedge t_i< t_j$ 条件太麻烦了,不妨用广义 KMP 求出仅满足 $s_i=s_j\wedge t_i=t_j$ 的子串(其实就是记录了 S 中每个位置该字符的上一个出现位置,特判一下首次出现的情况,然后直接 KMP),接下来我们只需考虑字母在这个字串的排名,扫一遍,看是否与其在 T 中对应的字母所在的排名相等即可。

时间复杂度 $\mathcal{O}(n|\Sigma|)$ 。

题解:拆除炸弹(youyou)

CF687D

本题为区间版本的 [NOIP2010 提高组] 关押罪犯。这个削弱版的做法,就是把所有边从大到小排序,依次遍历这些边。遍历到一条边时,如果可以把两个端点已经在同一集合,答案就是这条边的权值,否则将 (u,v+n),(u+n,v) 合并。

直接将询问区间提出来按原题做可以获得 25 分,快一点的就是先排好序在去枚举判断,少个 $\log m$ 获得 35 分,时间复杂度 $O(mg\alpha(n))$ 。

然后是一个搬题人认为比较启示正解的一个 Subtask。

因为 $l_i=1$,所以考虑从左到右扫描右端点去维护答案。我们发现真正有用的边最多是 n-1 条合并成功的边,和一条合并失败(即答案)的边。直接维护这些边,扫描即可。时间复杂度 $O(nm\alpha(n))$,常数较小。

最后正解做法。我们可以建一棵线段树维护其区间内的边按权值排序后的状态,合并信息时使用归并排序,则建树是 $O(m\log m)$ 的。为了查询控制量级,只保留有用的边,虽多一个 $\alpha(n)$,但是常数小很多。查询时直接线段树里查询合并即可。

建树的复杂度为的 $O(m\log m\,\alpha(n))$,查询为的 $O(nq\log m\,\alpha(n))$,如果实现不烂已经可以通过了,即使常数写得大也给了 90 分。

最后一个小优化: 因为查询只有 3000 个,有用的端点只有 6000 个,离散化后再建线段树,可以将 $\log m$ 优化成 $\log q$,优化后 std 在 0.7s 左右,可以通过。

(原题暴力就能过,搬题人使用了缩小时限的方法解决了这个问题)

题解:赖教(lai)

AT_joisc2020_q

首先把每个计划看成一个在二维平面上左端点为 (t_i, l_i) , 右端点为 (t_i, r_i) 的线段 P_i .

显然一定要选一个 $l_i = 1$ 的线段和一个 $r_i = n$ 的线段。

子任务3(每个军队都满足 $l_i=1$ 或 $r_i=n$):

此时最多只会选两条线段,假设有 (t_i, l_i, r_i) 和 (t_i, l_i, r_i) 两条线段,且 $l_i = 1, r_i = n$ 。

- 如果 $t_i \le t_i$,那么要满足 $r_i (t_i t_i) \ge l_i 1$ 。
- 如果 $t_i > t_j$, 那么要满足 $l_j + (t_i t_j) \le r_i + 1$.

做法就很明显了,将 t 排序,动态开点线段树维护。

正解:

结论题

考虑将子任务 3 的做法扩展一下,如下图所示,定义两条线段 i,j 存在单向边 $i\to j$ 的条件为(其实和子任务 3 一样):

- 如果 $t_i \le t_i$, 那么 $r_i (t_i t_i) \ge l_i 1$.
- 如果 $t_i > t_i$, 那么 $l_i + (t_i t_i) < r_i + 1$.

猜测一种方案是合法的当且仅当:**所选的方案中存在一个** $l_i=1$ **的点能到达所选的方案中任意一个** $r_i=n$ **的点。**

画下图就可以发现这个结论是正确的。

那么这就是个最短路模型了,归纳一下 i 和 j 有边当且仅当 $|t_i-t_j|\le r_i-l_j+1$ 。边权为 c_j 。 起点为所有 $l_i=1$ 的点,终点为所有 $r_i=n$ 的点。但边数是 $O(m^2)$ 的。

注意到边权是在附在点上的,熟悉 Dijkstra 的同学应该知道这样的图在一个点**入堆后就不用再入堆了**,因为第一次入堆一定就是最小值。

因此我们只需要支持对于堆顶 x,快速得到它能扩展的没有入过堆的点 y 即可。明显可以用线段树维护。

具体的维护方法很简单,实在不会可以看代码。时间复杂度 $O(m \log m)$ 。

