

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

| ФАКУЛЬТЕТ  | «Информатика и системы управления (ИУ)»                    |       |          |
|------------|------------------------------------------------------------|-------|----------|
| КАФЕДРА «Г | Ірограммное обеспечение ЭВМ и информационные технологии (I | ИУ7): | <b>»</b> |

#### ОТЧЕТ

по Лабораторной работе №6 по курсу «Моделирование»

на тему: «Моделирование работы электронной очереди»

| Студент       | ИУ7-73Б  |                 | К.Э. Ковалец    |
|---------------|----------|-----------------|-----------------|
|               | (Группа) | (Подпись, дата) | (И. О. Фамилия) |
| Преподаватель |          |                 | И.В. Рудаков    |
|               |          | (Подпись, дата) | (И. О. Фамилия) |

## Содержание

| 1        | Mo, | делируемая модель             | •  |
|----------|-----|-------------------------------|----|
|          | 1.1 | Задание                       | ٠  |
|          | 1.2 | Схема модели                  | ٩  |
| <b>2</b> | Рез | ультаты работы                | Ż, |
|          | 2.1 | Листинги программы            | 4  |
|          | 2.2 | Демонстрация работы программы | 7  |

#### 1 Моделируемая модель

#### 1.1 Задание

В данной лабораторной работе моделируется следующая система. В пункт получения документов приходят клиенты с заданным интервалом времени, которые сначала подходят к терминалу выдачи талонов. У каждого терминала формируется своя очередь. Клиент выбирает очередь с минимальной длиной. Терминалы обслуживают клиентов за заданный интервал времени. Далее клиент отправляется к окну, в котором его обслужат. У каждого окна формируется своя очередь. Клиента отправляют к окну с минимальной очередью. В окне клиента обслуживают за заданный интервал времени. Количество клиентов задается.

#### 1.2 Схема модели

На рисунке 1.1 представлена структурная схема модели.



Рисунок 1.1 – Структурная схема модели

#### 2 Результаты работы

#### 2.1 Листинги программы

В листинге 2.1 представлена реализация генератора.

Листинг 2.1 — Реализация генератора

```
class Generator:
          def __init__(self, distribution, countClients):
2
              self.distribution = distribution
3
              self.receivers = []
              self.numbRequests = countClients
5
              self.next = 0
6
          def nextTime(self):
8
              return self.distribution.generate()
9
10
          def generateRequest(self):
11
              self.numbRequests -= 1
12
              receiverMin = self.receivers[0]
13
14
              for receiver in self.receivers:
15
                  if receiver.currentQueueSize < receiverMin.currentQueueSize:</pre>
                      receiverMin = receiver
17
18
              receiverMin.receiveRequest()
19
              return receiverMin
20
21
          def setReceivers(self, receivers):
              self.receivers = receivers
23
```

В листинге 2.2 представлена реализация канала обслуживания.

#### Листинг 2.2 — Реализация канала обслуживания

```
from generator import Generator

class Processor(Generator):

def __init__(self, distribution):

self.distribution = distribution

self.maxQueueSize = 0

self.currentQueueSize = 0

self.processedRequests = 0

self.receivedRequests = 0

self.next = 0

self.receivers = []
```

```
12
          # Обработка запроса при его наличии
13
          def processRequest(self):
14
              if self.currentQueueSize > 0:
15
                  self.processedRequests += 1
16
                  self.currentQueueSize -= 1
17
18
              if len(self.receivers) != 0:
19
                  receiverMin = self.receivers[0]
                  for receiver in self.receivers:
21
                       if receiver.currentQueueSize < receiverMin.currentQueueSize:</pre>
22
                           receiverMin = receiver
23
24
                  receiverMin.receiveRequest()
25
                  receiverMin.next = self.next + receiverMin.nextTime()
26
27
          # Добавление реквеста в очередь
28
          def receiveRequest(self):
29
              self.currentQueueSize += 1
30
              self.receivedRequests += 1
31
32
              if self.maxQueueSize < self.currentQueueSize:</pre>
33
                  self.maxQueueSize = self.currentQueueSize
34
35
          def nextTime(self):
36
              return self.distribution.generate()
37
38
          def setReceivers(self, receivers):
39
              self.receivers = receivers
40
```

В листинге 2.3 представлена реализация моделирования работы электронной очереди.

Листинг 2.3 — Реализация моделирования работы электронной очереди

```
from processor import Processor
1
2
     class EventModel:
3
         def __init__(self, generator, terminals, windows):
             self.generator = generator
5
             self.terminals = terminals
             self.windows = windows
8
         def run(self):
             generator = self.generator
10
             generator.next = generator.nextTime()
11
```

```
self.terminals[0].next = self.terminals[0].nextTime()
12
13
              blocks = [generator] + self.windows + self.terminals
14
15
16
              numbRequests = generator.numbRequests
              count = 0
17
              while count < numbRequests:</pre>
18
19
                  # Находим наименьшее время
                  currentTime = generator.next
20
                  for block in blocks:
21
                      if 0 < block.next < currentTime:</pre>
22
                           currentTime = block.next
23
24
                  for block in blocks:
25
                       # Событие наступило для этого блока
26
                       if currentTime == block.next:
27
                           if not isinstance(block, Processor): # для генератора
28
                               # Проверяем, может ли оператор обработать
29
                               nextGenerator = generator.generateRequest()
30
                               if nextGenerator is not None:
31
                                   nextGenerator.next = currentTime +
32
                                    → nextGenerator.nextTime()
33
                               generator.next = currentTime + generator.nextTime()
34
                           else:
35
                               block.processRequest()
36
                               if block.currentQueueSize == 0:
37
                                   block.next = 0
38
                               else:
39
                                   block.next = currentTime + block.nextTime()
40
41
                  count = 0
42
                  for computer in self.windows:
43
                       count += computer.processedRequests
44
45
              data = []
46
              for i in range(len(self.terminals)):
47
                  data.append(["Терминал " + str(i + 1),
48
                      self.terminals[i].maxQueueSize,
49
                       self.terminals[i].processedRequests])
50
51
              for i in range(len(self.windows)):
52
                  data.append(["Окно обслуживания " + str(i + 1),
53
                       self.windows[i].maxQueueSize,
54
                       self.windows[i].processedRequests])
55
56
57
              return currentTime, data
```

### 2.2 Демонстрация работы программы

На рисунке 2.1 представлен пример работы программы.

| Лаборат      | орная работа №              | 6 (Ковал  | ец Кирі | илл ИУ | 7-73Б)     |
|--------------|-----------------------------|-----------|---------|--------|------------|
|              | ПАРА                        | METP      | ol      |        |            |
| Количеств    | во клиентов                 | 100       |         |        |            |
| Интервал пр  | ихода клиента               | 1         | +/-     | 1      | минут(ы)   |
| ТЕРМИНАЛЫ    |                             |           |         |        |            |
| Терм         | инал 1                      | 3         | +/-     | 1      | минут(ы)   |
| Терм         | инал 2                      | 3         | +/-     | 1      | минут(ы)   |
| Терм         | инал 3                      | 3         | +/-     | 1      | минут(ы)   |
|              | ОКНА ОБС                    | ЛУЖИЕ     | ВАНИЯ   |        |            |
| Окно обсл    | уживания 1                  | 4         | +/-     | 2      | минут(ы)   |
| Окно обсл    | уживания 2                  | 4         | +/-     | 2      | минут(ы)   |
|              | PE3                         | /ЛЬТАТ    |         |        |            |
| Время раб    | Время работы системы 570.13 |           |         |        |            |
| Элемент      | ы Макси                     | мальная о | чередь  | C      | Обработано |
| Термина      | п 1                         | 73        |         |        | 115        |
| Термина      | п 2                         | 72        |         | 121    |            |
| Термина      | п 3                         | 72        |         | 117    |            |
| Окно обслужи | вания 1                     | 129       |         | 49     |            |
| Окно обслужи | вания 2                     | 128       |         | 51     |            |
|              | Pe                          | ешить     |         |        |            |
|              | о про                       | ГРАМ      | ΛE      |        |            |
|              | Информаци                   | я о про   | грамм   | е      |            |
|              |                             |           |         |        |            |

Рисунок 2.1 – Результат работы программы