A Comparison of Antenna Placement Algorithms

Abhinav Jauhri, Jason D. Lohn, Derek S. Linden

Antenna Placement Example

- ► A₁ has 24 possible antenna placements
- ► A₂ has 33 possible antenna placements
- A_3 has 136 possible antenna placements

Size of search space $= m^n$

Goal: Find a placement for each of three antennas.

The Problem

Given:

- platform P with its surface gridded so that grid points represent possible antenna placement
- set of m(m > 1) antennas $A = A_1, A_2, \dots, A_m$
- for each A_i , a set of n possible placement locations (n > 1); $A_i = \{(x_{i1}, y_{i1}, z_{i1}), (x_{i2}, y_{i2}, z_{i2}) \dots (x_{in}, y_{in}, z_{in})\}$

Find: A set of m optimal antenna locations on P

Antenna Placement Objectives

Antenna Placement Issues

- → Coupling among antennas
- → Parasitic effects and reflections from the host platform
- → Loss of efficiency
- → Difficulty conforming to aerodynamic, thermal, other enovironment factors

Desired Antenna Placement Objectives

- → Gain in radiation pattern
- → Minimize coupling

Fitness Functions - I

To minimize difference in gain:

$$F_{RP}(A_i) = \sum_{\theta} \sum_{\phi} \|ISG_i(\theta, \phi) - FSG_i(\theta, \phi)\|^2, \qquad (1)$$

where

- θ, ϕ spherical and cylindrical coordinates
- $ISG(\cdot)$ returns in-situ gain pattern
- ► *FSG*(·) returns free-space gain pattern

Fitness Functions - II

To minimize coupling:

$$F_{MC} = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} CP(A_i, A_j),$$
 (2)

where

• $CP(\cdot)$ computes the coupling between two antennas

Overall Fitness Function

For an individual/hypothesis, fitness is defined as:

$$F = \alpha F_{MC} + \beta \sum_{i} F_{RP}(A_i), \qquad (3)$$

where $\alpha + \beta = 1$

Experimental Setup

- Create individual(s) such that each individual is defined by a placement for each of the m antennas
- ► Run all individuals through *NEC* simulator * to get fitness parameters
- Apply EA operators
- ▶ Repeat...

Algorithms explored: Simple GA, Simulated Annealing, Evolutionary Strategy, and Hill Climber †

^{*}http://www.nec2.org

[†]https://github.com/ajauhri/evol-ant-placement

Experiments: Test Cases

ID	Antennas	Total allowable placements
tc1	2	7,056 (83×83)
tc2	3	50,625 (45×45×25)
tc3	3	126,025 (71×71×25)
tc4	4	20,736 (12×12×12×12)

^{*}Allowable placements for each antenna are provided within parenthesis

Results: Mean Evaluations

Mean number of evaluations to reach the best solution (over 10 runs):

method test case	GA	ES	SA	НС
tc1(7056) [‡]	2350	1728	667	164
tc2(50,625)	31 680	11 165	1653	174
tc3(126,025)	45 900	26 880	4809	227
tc4(20,736)	6150	4466	423	90

- ► Simulated Annealing was the fastest
- Evolutionary Strategy always found optimal, but was relatively slow

[‡]Total number of possible evaluations within parenthesis

Results - Mean Best Fitness

- Lower fitness is better
- Mean taken over 10 runs
- In all test cases, antennas were subjected to same frequency

method test case	Exhaustive (H^*)	GA	ES	SA	НС
test case 1	0.4968	0.4993	0.4968	0.4994	0.5015
test case 2	0.4968	0.4979	0.4968	0.5042	0.5138
test case 3	0.4974	0.4976	0.4974	0.4974	0.4987§
test case 4	0.4992	0.4992	0.4992	0.4992	0.4992

[§]Best performing individuals lie within a small fitness range

Equivalence of fitness to efficiency

For a particular test case, fitness change of 0.01 is equivalent to either the corresponding value under expected gain (\mathbb{E}_g) column, or difference in coupling (Δ_c) .

ID	\mathbb{E}_{g}	Δ_c (dB)
tc1	872.277	0.5474
tc2	862.082	1.3034
tc3	861.845	1.5180
tc4	871.049	0.5693

$$\mathbb{E}_{g} = \frac{1}{N \cdot m} \sum_{i}^{m} F_{RP}(A_{i}), \text{ where } N = |\theta| \cdot |\phi|$$

Thanks!