Embodied Artificial Evolution: the Next BIG Thing? Gusz Eiben VU University Amsterdam

Past, Present

19th century:

evolution is a theory, a passive, explanatory concept that helps us understand things

• 20th century:

evolution is a tool, an active, creative concept that helps us produce things (solutions for problems) in digital spaces

Biosphere

Evolutionary Computing

Learnt through Evolutionary Computing

Engineering / mastering evolutionary processes by

- designing evolvable objects (pieces of code, blueprints)
- designing mutation and crossover operators
- designing selection operators
- specifying fitness functions, reward mechanisms
- putting this all together and tuning it (DIVERSITY of alg's!)

for problem solving and simulation

Learnt through Evol Comp (cont'd)

- Evolution can solve problems we don't fully understand and cannot clearly specify
- Evolution can cope with changing situations
- Evolution can come up with original, unexpected solutions (that can be reverse-engineered)

- Designing good EAs can be difficult (representation, parameters)
- No good theory
- Could take too long (can change with new hardware)

Evolutionary computing and embodiment

- Evolution in digital space, result in digital space e.g., time tables, consumer models, robot controllers evolutionary optimization
- Evolution in digital space, result in physical space
 e.g., jet nozzle, satellite boom, Peter Bentley's coffee table
 evolutionary design / art
- Evolution in physical space, result in physical space embodied artificial evolution

Past, Present, Future

• 19th century:

evolution is a theory, an explanatory concept that helps us understand things

• 20th century:

evolution is a tool, an active, creative concept that helps us produce things (solutions for problems) in digital spaces

• 21st century:

evolution is a tool, an active, creative concept that helps us produce things (solutions for problems) in physical spaces

Biosphere

Evolutionary Computing

Embodied Artificial Evolution

Embodied Artificial Evolution

Old: Evolution of code (blueprint)

New: Evolution of things

- 1. Takes place in **physical objects**
- Reproduction = <u>real birth</u> = new object made, survivor selection = <u>real death</u> = object gone
- Reproduction and selection are <u>autonomous and</u> <u>asynchronous</u> (→ population size is inherently variable)
- 4. Fitness can be **task-based** and/or **open-endend**

Application examples

 Artificial pets, robot companions, servants, explorers, ...

 Functional organisms, medical nanorobots, personal virus scanners

 Personal replicators (networked, evolutionary)

Note the difference: artifacts with or without inner controller, Body vs. Body + mind

Motivation, benefits, impact

- 1. EAE / EoT is a **game changer in design & manufacturing**:
 - Old: design ends with manufacturing
 - New: design & manufacturing are one, intertwined continuous process, evolution → unexpected solutions
- 2. New experimentalism for biology: study evolution in a different medium by controllable and repeatable experiments → generalization, preconditions for evolution? Taxonomy? ...
- 3. <u>Redefines evolutionary computing</u> switch from digital to physical changes everything: MATTER MATTERS
- 4. EAE / EoT is a game changer in computing & programming:
 - Old: van Neumann architecture + computing and software (engineering) as we know it
 - New: HW = morphology, SW = control mechanisms, ???

Physical medium?

Huge diversity of approaches, under different umbrellas

- Hardware, mechatronics, plastics,
- Wetware bottom-up, chemistry
- Wetware top-down, biology
- Hybrids
- Functional fluids, programmable matter, microfluidics,
- ???

A new game for "passive" stuff

A new game for "active" stuff

WETWARE HARDWARE Cells **Robots** very small to big very small self-replicating • programmable self-repairing • controllable • self- ... • sensors/actuators/controllers **Sweet spot**

Grand challenges

Body type

Combine wetware with hardware (+software): self-* and programmable

Reproduction - how to start

Implement "birth" for human engineered physical devices (robots), artifacts (and "death" too, under selection)

• Kill switch - how to stop

Guarantee that human supervisors can shut down the system, if needed.

Grand challenges cont'd

- On-line in vivo design UI & control
 - On-the-fly monitoring and steering by user preferences selection
 - Combination of autonomous and directed evolution. Freeze switch?

Evolvability & evolution speed

Essential assessment criterion for the feasibility of potential applications.

- Co-evolution of morphology & control ("body & mind")
 - We cannot program these new guys the way we used to
 - New HW, new SW, thus new computer, computing, etc. →
 - New principles & methodology for development, testing, validation...
 - Lifetime adaptation, learning, development, Lamarckism, ...

Conclusions Closing remarks

- Evolution in the real world is different
- Computation in this new paradigm is different
 - new architecture for information processing / computing
 - redefines "program", "programming", software engineering, testing, validation, ect.
- Big Q's are implied:
 - Scientific (fundamental issues regarding evolution, notion of Life)
 - Technological (feasibility)
 - Applicability (remember IBM in the 1940ies)
 - Desirability (ethics, think of GMOs)
- Different communities → unifying vision / umbrella needed
- Next BIG thing?