Density Estimation and Mode Finding

Clustering baseball pitches

Inferred meaning of clusters: black – fastball, red – sinker, green – changeup, blue – slider, light blue – curveball

Probabilistic Interpretation: Density Estimation

The data points are sampled from an underlying PDF

Parametric Density Estimation

Just fit a Gaussian!

Assumed Underlying PDF

Data Samples

Parametric Density Estimation

Mixture of Gaussians or Gaussian Mixture Model (GMM)

Assumed Underlying PDF

Data Samples

Non-parametric Density Estimation

Non-parametric Density Estimation

Non-parametric Density Estimation

- 1. Histogram
- 2. Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE)

Parzen Windows - General Framework

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

A function of some finite number of data points $x_1...x_n$

Kernel Properties:

- Normalized
- Symmetric
- Exponential weight decay

$$\int_{R^d} K(\mathbf{x}) d\mathbf{x} = 1$$

$$\int_{R^d} \mathbf{x} K(\mathbf{x}) d\mathbf{x} = 0$$

$$\lim_{\|\mathbf{x}\| \to \infty} \|\mathbf{x}\| K(\mathbf{x}) = 0$$

Data

Kernel Density Estimation

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

A function of some finite number of data points

 $X_1...X_n$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1 - |\mathbf{x}|^2) & ||\mathbf{x}|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform Kernel

$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2} \|\mathbf{x}\|^2\right)$$

Bandwidth

$$\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K_{\mathbf{H}}(\mathbf{x} - \mathbf{x}_i)$$

Mode Seeking or "Bump Finding"

Definition of "Mode"

The **mode** is the value that appears most often in a set of data. The mode of a discrete probability distribution is the value x at which its probability mass function takes its maximum value. In other words, it is the value that is most likely to be sampled. The mode of a continuous probability distribution is the value x at which its probability density function has its maximum value, so, informally speaking, the mode is at the peak.

When a probability density function has multiple <u>local maxima</u> it is common to refer to all of the local maxima as modes of the distribution. Such a continuous distribution is called <u>multimodal</u> (as opposed to <u>unimodal</u>).

Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Туре	Description	Example	Result
Arithmetic mean	Sum of values of a data set divided by number of values: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	(1+2+2+3+4+7+9) / 7	4
Median	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3
Mode	Most frequent value in a data set	1, 2 , 2 , 3, 4, 7, 9	2

Mode Seeking in Ordinal Data

- Lots of work in database community:
 - "Association Rules"
 - "Frequent Itemtsets"
 - "Basket Analysis"
- Sometimes called "Data Mining"

 Basic Idea: discover "interesting" modes in the data

Association Rules

- Rule X→Y
 - Rule form: "Body → Head [support, confidence]"
 - e.g. {butter,bread} → {milk}
- support
 - supp(X) = frequency, i.e. P(X)
 - supp({milk,bread,butter})=20%
- Confidence

$$-\operatorname{conf}(X \rightarrow Y) = \frac{\sup_{x \in P(X \cup Y)} \operatorname{supp}(X)}{\sup_{x \in Y} \operatorname{supp}(X)}$$
, i.e. $P(Y|X)$

- $conf(\{butter,bread\}\rightarrow \{milk\}) = 100\%$
- Lift

$$- \operatorname{Lift}(X \to Y) = \frac{supp(X \cup Y)}{supp(X) * supp(Y)}$$

Example database with 4 items and 5 transactions

transaction ID	milk	bread	butter	beer
1	1	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	1	1	0

0

5

Examples

- Rule form: "Body → Head [support, confidence]".
- buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
- major(x, "EECS") ^ takes(x, "ML") → GPA(x, "A-") [5%, 75%]

If		Then	confidence	
Prohibiting Federal Funding of National Public Radio Yea	\rightarrow	Republican	99.6%	
Prohibiting Use of Federal Funds For Planned Parenthood Nay	\rightarrow	Democrat	95.1%	
Prohibiting the Use of Federal Funds for NASCAR Sponsorships – Nay And Repealing the Health Care Bill Yea	→	Republican And Terminating the Home Affordable Modification Program Yea		Figure 11.6 Association rules $\{3\} \rightarrow \{0\}, \{22\} \rightarrow \{1\},$ and $\{9,26\} \rightarrow \{0,7\}$ with their meanings and confidence levels

Data from Project Vote Smart (http://www.votesmart.org)

Real-world Example from OKCupid

http://oktrends.okcupid.com/

Does a date have long-term potential?

- % of long-term couples who agree on all three questions
- 38 % agreement expected from pure chance

top 3 user-rated match questions

Q: Is sex the most important part of a relationship?

Q: Does smoking disgust you?

Spurious Rules

- For 10,000 items, there are ~10^12 "(a,b)=>c" rules
 - For p-value 0.05 (5%), we expect 10^10 spurious rules!

http://www.tylervigen.com/