

Eine Kantenmenge $M \subseteq E$ heisst **Matching** in einem Graphen G = (V, E), falls kein Knoten des Graphen zu mehr als einer Kante aus M inzident ist.

Ein Knoten v wird von M **überdeckt**, falls es eine Kante e ∈ M gibt, die v enthält.

Ein Matching M heisst **perfektes Matching**, wenn jeder Knoten durch genau eine Kante aus M überdeckt wird, oder, anders ausgedrückt, wenn |M| = |V|/2.

Ein Matching $M \subseteq E$ ist ein **inklusionsmaximales Matching**, wenn es kein Matching M' gibt mit $M \subseteq M'$ und |M'| > |M|.

Ein Matching $M \subseteq E$ ist ein **(kardinalitäts-)maximales Matching**, wenn es kein Matching M' gibt mit |M'| > |M|.

inklusionsmaximales Matching (aber <u>nicht</u> kardinalitätsmaximal)

kardinalitätsmaximales Matching (auch inklusionsmaximal!)

Ein Matching $M \subseteq E$ ist ein **inklusionsmaximales Matching**, wenn es kein Matching M' gibt mit $M \subseteq M'$ und |M'| > |M|.

Ein Matching $M \subseteq E$ ist ein **(kardinalitäts-)maximales Matching**, wenn es kein Matching M' gibt mit |M'| > |M|.

Satz: Mit dem Greedy-Algorithmus kann man in Zeit O(|E|) ein inklusionsmaximales Matching M_{Greedy} bestimmen mit

$$|M_{Greedy}| \ge |M_{max}| / 2$$
,

wobei M_{max} ein kardinalitätsmaximales Matching ist.

Greedy-Algorithmus

GREEDY-MATCHING (G)

- 1: $M \leftarrow \emptyset$
- 2: while $E \neq \emptyset$ do
- 3: wähle eine beliebige Kante $e \in E$
- 4: $M \leftarrow M \cup \{e\}$
- 5: lösche e und alle inzidenten Kanten in G

Satz: Mit dem Greedy-Algorithmus kann man in Zeit O(|E|) ein inklusionsmaximales Matching M_{Greedy} bestimmen mit

$$|M_{Greedy}| \ge |M_{max}| / 2$$
,

wobei M_{max} ein kardinalitätsmaximales Matching ist.

Greedy-Algorithmus

MGreedy

M_{max}

Beobachtung:

- für jede Kante in M_{max} gilt: mindestens einer der beiden Endpunkte wird von einer Kante aus M_{Greedy} überdeckt (denn sonst könnten wir die Kante zu M_{Greedy} hinzufügen)
- jede Kante in M_{Greedy} kann höchstens zwei Kanten aus M_{max} überdecken

augmentierende Pfade

Ein M-augmentierender Pfad ist ein Pfad, der abwechselnd Kanten aus M und nicht aus M enthält und der in von M nicht überdeckten Knoten beginnt und endet.

⇒ durch *tauschen* entlang M können wir das Matching vergrössern

augmentierende Pfade

Ein M-augmentierender Pfad ist ein Pfad, der abwechselnd Kanten aus M und nicht aus M enthält und der in von M nicht überdeckten Knoten beginnt und endet.

⇒ durch *tauschen* entlang M können wir das Matching vergrössern

Matching-Algorithmen

Konzept der augmentierenden Pfade:

$$\Rightarrow$$
 O($|V| \cdot |E|$) für bipartite Graphen

State of the Art Matching:

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊎B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

∀ X⊆A : |X| ≤ |N(X)|

Philip Hall (1904-1982)

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

∀ X⊆A : |X| ≤ |N(X)|

Philip Hall (1904-1982)

Beweis: Induktion über a = IAI

Induktionsverankerung: a = 1:

Induktionsschritt: Wir müssen zeigen:

Satz gilt für alle bipartiten \Rightarrow Satz gilt für alle bipartiten Graphen mit $|A| \le a-1$ \Rightarrow Graphen mit |A| = a

"a-1 \Rightarrow a"

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

 $\forall X \subseteq A : |X| \leq |N(X)| \qquad (*)$

Philip Hall (1904-1982)

Beweis: "a-1 \Rightarrow a" Betrachte *beliebigen* Graphen mit |A|=a:

1.Fall: $\forall \varnothing \neq X \subseteq A$: |X| < |N(X)| 2.Fall: $\exists \varnothing \neq X_0 \subseteq A$: $|X_0| = |N(X_0)|$

- Wähle beliebige Kante {x,y} und lösche x, y und alle inzidenten Kanten.
- Zeige dass der verbleibende Graph die Bedingung (*) erfüllt.

- - Betrachte die beiden durch $X_0 \cup N(X_0)$ bzw $A \setminus X_0 \cup B \setminus N(X_0)$ induzierten Graphen
 - Zeige dass beide Graphen die Bedingung (*) erfüllen.