

Dora Blanco Heras

Centro de Investigación en Tecnoloxías da Información (CITIUS)

Universidade de Santiago de Compostela

Arquitectura de Computadores

¿Qué es Arquitectura de Computadores?

"Computer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance, and cost goals." *

* G. Sohi, University of Winsconsin

Objetivos

- Dar a conocer los principios básicos relacionados con la arquitectura de los microprocesadores actuales y mostrar las tendencias de evolución.
- Analizar y comprender la relación entre los diferentes elementos de la arquitectura del procesador y el rendimiento que es posible conseguir mediante una programación adecuada.

Contenidos

- TEMA 1: Fundamentos del diseño de computadores: sistemas multinúcleo.
 - Primera aproximación a los microprocesadores multinúcleo y al concepto de paralelismo.
 Evaluación de rendimiento.
- TEMA 2: Segmentación
 - Conceptos básicos para entender la técnica básica para explotar el paralelismo a nivel de instrucción: la segmentación o *pipelining*.
- TEMA 3: Paralelismo a Nivel de Instrucción.
- Conceptos de paralelismo avanzados que incorporan los procesadores comerciales actuales.
- TEMA 4: Subsistema de Memoria Compartida en Procesadores Multinúcleo
 - Mecanismos de coherencia.

Otros tópicos se introducirán y repasarán en prácticas.

Contenidos

• Prácticas y ejercicios:

Comienzan el día 3 de febrero

- PRÁCTICA 1 (4 sesiones): Estudio del efecto de la jerarquía de memoria y la localidad en los accesos sobre las prestaciones de un programa
- PRÁCTICA 2 (5 sesiones): Mejora de prestaciones en programación Multinúcleo y usando extensiones SIMD
- RESOLUCIÓN DE PROBLEMAS (2 sesiones): Ejercicios del tipo de los del examen que se resolverán y evaluarán durante las sesiones
- No es obligatoria la asistencia a todas las sesiones interactivas SALVO A LA ÚLTIMA DE CADA
 PRÁCTICA Y A LAS DE EJERCICIOS, pero SÍ ES RECOMENDABLE PARA APROVECHAR LA AYUDA DEL
 PROFESOR E IR ENTREGANDO LA PRÁCTICA 1 POR APARTADOS

• Profesores:

Teoría: Dora Blanco

Prácticas: Natalia Seoane, César Piñeiro

Horarios de prácticas

ARQUITECTURA DE COMPUTADORES 24/25

	Lunes	Martes	Miércoles	Jueves	Viernes
03/02-07/02	1	1	1	1	1
10/02-14/02	1	1	1	1	1
17/02-21/02	1	1	1	1	1
24/02-28/02	1	1	1	1	1
03/03-07/03	CARN	IAVAL			
10/03-14/03	2	2	2	2	2
17/03-21/03	2	2	2	2	2
24/03-28/03	2	2	2	2	2
31/03-04/04	2	2	2	2	2
07/04-11/04	2	2	2	2	2
14/04-18/04	SEMANA SANTA				
21/04-25/04	DÍA ETSE	E1	E1	E1	E1
28/04-02/05	E1	E2	E2	1 DE MAYO	E2
05/05-09/05	E2			E2	
12/05-16/05					

Teoría los jueves de 5 a 6 y media, aula A2.

Comenzamos la teoría una semana antes que las prácticas

1 - práctica 1 - 4 sesiones

2 - práctica 2 - 5 sesiones

Taller de ejercicios - 2 sesiones (E1 y E2)

GRUPOS	
G4	17: 11:30-13:30
G1	17: 9:00-11:00
G3	l6: 12:00-14:00
G5	I5: 10:00-12:00
G2	IA.14: 12:00-14:00

Natalia -> G5 y G2 César -> G1, G4 y G3

Evaluación de la materia

- Examen sobre los contenidos de las clases expositivas (50% de la nota final)
- Prácticas (50% puntos de la nota final): P1 (4 puntos sobre 10 de las prácticas), P2 (5 puntos sobre 10), resolución de ejercicios en grupo de las últimas sesiones de prácticas (1 punto sobre 10)
- Para poder aprobar la materia habrá que obtener como mínimo un 5 sobre 10 en las prácticas y un 5 sobre 10 en el examen.
- Para poder aprobar las prácticas hay que tener al menos un 4 sobre 10 en cada práctica y en el taller de ejercicios.
- Para superar la materia debe alcanzarse una puntuación total de 5 sobre 10 o superior.
- En caso de haber superado las prácticas en la edición anterior con una nota de **al menos 5 sobre 10**, no será necesario repetirlas este curso.
- En la convocatoria de segunda oportunidad se mantienen los mismos criterios.
- OJO: No hay examen de prácticas en ninguno de los casos. Solo se pueden aprobar las prácticas en la evaluación continua.

Evaluación de la materia

- Examen sobre los contenidos de las clases expositivas (5 puntos de la nota final)
- Prácticas (5 puntos de la nota final): P1 (1.6 puntos) e P2 (2.4 puntos)
- Para poder superar la materia habrá que obtener como mínimo un 3 sobre 10 en las prácticas y un 3 sobre 10 en el examen.
- Para superar la materia debe alcanzarse una puntuación total de 5 o superior.
- En caso de haber superado las prácticas en la edición anterior con una nota de al menos 5 sobre 10, no será necesario repetirlas este curso.

¿Qué se espera de ti?

- Que hagas todas las prácticas con el mayor grado de autonomía y aprovechamiento posibles y trabajando en grupos de dos estudiantes.
- Que tomes notas de lo que se explica durante las clases. NO ESTÁ
 TODO EN LAS DIAPOSITIVAS NI HAY APUNTES DE LA ASIGNATURA QUE
 ABARQUEN TODO LO QUE SE VA A EXPLICAR.
- Que prestes atención a las clases.
- Que trabajes en los ejercicios que se propongan.
- Que si tienes algún problema del tipo que sea con la asignatura lo comentes con alguno de los profesores para poder arreglarlo.

Bibliografía

Básica y complementaria por orden de relevancia:

- Hennessy, John .L. y Patterson, David. A., Computer Architecture: A Quantitative Approach,
 5ª Edición, USA, Morgan Kaufmann, 2011, 978-0123838728.
 - La 6ª Edición también es adecuada.
- Patterson, David. A. y Hennessy, John .L., Computer Organization and Design ARM Edition: The Hardware Software Interface, 4 Edición, USA, Morgan Kaufmann, 2017, 978-0128017333.
 - La 5ª edición también es adecuada.
- Shen, J.P. Y Lipasti, M.H., Modern Processor Design: Fundamentals of Superscalar Processors, 3 Edición, USA, Waveland Press, 2013, 9781478610762.
- Se proporcionará material complementario a través del campus virtual. Incluirá las presentaciones usadas durante las clases y recomendaciones de un capítulo de libro por cada tema. No hay apuntes redactados de la asignatura.