Ex1

Siwei Tang

May 2020

1. We want to prove: $\forall n \in \mathbb{N}, (x^n + \frac{1}{x^n}) \in \mathbb{Z}$. Let $\mathbf{x} \in \mathbb{R}$, assume $(x^n + \frac{1}{x^n}) \in \mathbb{Z}$, let $\mathbf{n} \in \mathbb{N}$, prove by strong induction on n. Define $\mathbf{P}(\mathbf{n})$ as $(x^n + \frac{1}{x^n})$

Base Case: Let k = 0. $P(0) = (x^0 + \frac{1}{x^0}) = 1 + 1 = 2$ Since $2 \in \mathbb{Z}$ $\Rightarrow P(0) \text{ holds}$ Let k = 1, $P(1) = (x^1 + \frac{1}{x^1}) \in \mathbb{Z}$ (by assumption) $\Rightarrow P(1) \text{ holds}$

Inductive Step: Let $\mathbf{k} \in \mathbb{N}$, suppose for all $\mathbf{j} \in \mathbb{N}, 0 \le j \le k$, $P(\mathbf{j})$ is true, i.e., $(x^j + \frac{1}{x^j}) \in \mathbb{Z}$ Also assume that $k \geq 1$.

WTP: P(k+1) holds, i.e., $(x^{k+1} + \frac{1}{x^{k+1}}) \in \mathbb{Z}$

By induction hypothesis, since 1, k-1 and k are all natural numbers and they are smaller than k So P(1), P(k-1) and P(k) holds, so P(1), P(k-1) and P(k) are all integers

Since \mathbb{Z} (the integer set) is a closed set, so $P(k) \times P(1)$ is integer. $\Rightarrow P(k) \times P(1) = (x^k + \frac{1}{x^k}) + (x^1 + \frac{1}{x^1}) = x^{k+1} + x^{k-1} + \frac{1}{x^{k+1}} = (x^{k+1} + \frac{1}{x^{k+1}}) + (x^{k-1} + \frac{1}{x^{k-1}})$ $\Rightarrow P(k) \times P(1) = P(k+1) + P(k-1) \Rightarrow P(k+1) = P(k) \times P(1) - P(k-1)$ Since $P(k) \times P(1)$ and P(k-1) are integers, therefore P(k+1) is integer.

Therefore, P(k+1) holds