Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа № 3.4.4

Петля гистерезиса (статический метод)

Студент Ришат ИСХАКОВ 513 группа

Преподаватель Александр Александрович Казимиров

Цель работы: Исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра.

В работе используются: генератор тока с блоком питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметры, магазин сопротивлений, лабораторный автотрансформатор (ЛАТР), разделительный трансформатор.

1. Теория

Магнитная индукция ${\bf B}$ и напряженность магнитного поля ${\bf H}$ в ферромагнетиках связаны между собой сложным нелинейным образом: индукция зависит не только от напряженности, но и от предыстории образца. Кривую намагничивания можно наблюдать на рис. 1. Выходящая из начала координат основная кривая намагничивания OACD возникает при намагничивании размагниченного образца.

Зададимся целью определить коэрцитивную силу и индукцию насыщения предоставленного образца (материал — сталь).

Рис. 1: Гистерезис ферромагнетика

1.1. Предельная петля

Индукция в образце складывается из напряжённости внешнего поля ${\bf H}$ и намагниченности образца: ${\bf B}=\mu_0({\bf H}+{\bf M}),$ где намагниченность ${\bf M}-$ магнитный момент единицы объема образца, а μ_0- магнитная постоянная.

Сначала намагнитим образец до насыщения (точка D). Соответствующее значение индукции B_s называют индукцией насыщения. Потом будем постепенно уменьшать внешнее поле. Явление гистерезиса состоит в том, что при нулевом значении внешнего поля индукция остаётся некоторая остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить «обратное» магнитное поле H_c , которое называют коэрцитивной силой.

Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется предельной петлей гистерезиса.

1.2. Формальное описание

Необходимо выразить H и B через параметры, измеряемые в эксперименте. На тороидальный образец намотаны две обмотки — намагничивающая с числом витков N_{T0} и измерительная с числом витков N_{T1} , подключенная к гальванометру, работающему в баллистическом режиме. Напряженность магнитного поля в H в тороиде зависит от тока, текущего в обмотке:

$$H = \frac{N_{T0}}{\pi D}I,$$

где D — средний диаметр тора.

При скачкообразном изменении тока на величину ΔI поле в тороиде меняется: $\Delta H \sim \Delta I$. Изменение ΔH приводит к изменению потока магнитной индукции Φ в сердечнике, и в измерительной обмотке сечения S_T с числом витков H_{T1} возникает ЭДС индукции:

$$\mathscr{E} = -\frac{d\Phi}{dt} = -S_T N_{T1} \frac{dB}{dt}.$$

Через гальванометр протекает импульс тока; первый отброс зайчика гальванометра, работающего в баллистическом режиме, пропорционален величине прошедшего через гальванометр заряда q:

 $\varphi = \frac{q}{b},$

где b — баллистическая постоянная гальванометра.

Дополнительно для получения баллистической постоянной необходимо использовать вместо тороида пустотелый соленоид с числом витков N_{T0} , с N_{T1} витками на измерительной катушке, длиной l_c . Тогда исключив баллистическую постоянную и выразив ΔB получим выражение:

$$\Delta B = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{R}{R_1} \frac{N_{C0}}{N_{T1}} \frac{N_{C1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}.$$

2. Описание установки

Рис. 2: Схема экспериментальной установки для исследования петли гистерезиса

Измерение предельной петли гистерезиса начинаем с максимального значения магнитного поля, что соответствует точке D на рис. 1. Специальный генератор позволяет скачками менять токи в намагничивающей обмотке. Он работает неравномерно, так как разные скачки на разных участках петли вызывают разные отклонения зайчика гальванометра (большие скачки делаются вблизи насыщения и малые вблизи нуля). Дойдя до нулевого значения тока (E), меняем направление магнитного поля и снова увеличиваем ток в намагничивающей обмотке (D'). Затем снова меняем направление магнитного поля и возвращаемся в точку D.

Сопротивления измерительных цепей R и R_1 подбираются одинаковыми, чтобы можно было считать постоянную гальванометра deŭcmвительно постоянной (она зависит от полного сопротивления в цепи).

Измерение начальной кривой намагничивания (участок OAC) производится по той же схеме, но с предварительно размагниченным образцом.

3. Измерения

Измеренные значения ΔB откладываем по одной стороне петли от максимального значения индукции. Ось H(I) проводится посередине петли.

Рис. 3: Полученная петля гистерезиса

Из графика получим значения коэрцитивную силу H_c и индукцию насыщения B_s и максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}}$:

$$H_c = 2.4 \pm 0.3 \; \mathrm{A/M}$$
 $B_s = 150 \pm 16 \; T$ $\mu_{\mathrm{диф}} = \frac{1}{\mu_0} \frac{dB}{dH} = 6000 \pm 500$

	Эксперимент	Теория
H_c , A/M	150 ± 16	140
B_s, T	2.4 ± 0.3	2.12
$\mu_{ extsf{диф}}$	6000 ± 500	4000

Таблица 1: Сравнение теории с практикой

4. Вывод

Было исследовано явление гистерезиса на примере образца стали (см. рис. 1). Она имеет две оси симметрии, выглядит вполне гладко и красиво, вписываясь в наше представление о природе вещей. Были оценены значения коэрцитивной силы H_c и индукции насыщения B_s и максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}}$. Значения с учетом погрешности совпадают с действительными.