

12-BIT SERIAL IN-PARALLEL OUT

ADVANCE Sept., 1966

MEM 3012SP

DESCRIPTION

The MEM 3012SP is a 12-Bit d.c. serial input parallel output shift register constructed on a single monolithic chip with MOS P-channel enhancement mode transistors. This unit will operate from d.c. to $100\ \text{kHz}$.

MAXIMUM RATINGS

Drain Voltage (-V _{dd})30V to -	+.3V
Clock and Input Voltages —30V to -	⊦.3V
Storage Temperature	50°C
Operating Temperature Range55°C to +85	5°C

ELECTRICAL CHARACTERISTICS

STANDARD CONDITIONS (unless otherwise specified): $V_{dd}=-27$ Volts ± 1 Volt, Load $=~10 M\Omega$ and 10pF.

 $T_A = -55^{\circ}C \text{ to } +85^{\circ}C.$

CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Clock Repetition Rate	dc		100	kHz	
Clock Pulse Width (ϕ_{pw})	0.4	-	30	μsec.	SEE FIG. 1
Clock Pulse Rise and Fall Time (10% to 90%)	_	_	10	μsec.	
Clock & Data Input Logic Levels Logic "O" Logic "1"	_ 	_	-2.0 -	Volts Volts	
Clock Fan-In		-	3	Addresses restricted and Addresses and Addre	
Data Input Pulse Width (D _{pw})	0.3	_	Annaturi returni del su del	μsec.	$\phi_{\rm pw}=0.4~\mu{ m sec}$ SEE FIG. 1
Data Fan-In	_	_	1	Marine addition of the contract of the contrac	
Input Leakage Current			1.0	μΑ	$V_{in} = -20 \text{ Volt}$
Output Logic Levels Logic "O" Logic "1"	_ 	-0.5 -12	-1.0	Volt Volts	d.c. to 100 kHz
Propagation Delay Plus Fall Time (_{tpd1})		_	5.0	μsec.	SEE FIG. 1
Propagation Delay Plus Rise Time (_{tpd2})		_	2.0	μsec.	SEE FIG. 1
Fan-Out	-	_	5		
Output Impedance to Ground (Output a Logic "0")	_	_	3000	Ohms	
Supply Current Drain	_	_	6.0	mA	

Note: All dimensions in inches.

TERMINALS

P/N	Function
1	Ground
2	Output 6
3	Output 5
4	Output 4
5	Output 3
6	Output 2
7	Output 1
8	Data Input
9	$-V_{dd}$
10	Clock (ϕ)
11	Output 12
12	Output 11
13	Output 10
14	Output 9
15	Output 8
16	Output 7

GENERAL INSTRUMENT CORPORATION

MICROELECTRONIC DIVISION

EASTERN AREA SALES HEADQUARTERS, 256 Passaic St., Newark, N. J. 07104, (201) HU 5-0072 CENTRAL AREA SALES HEADQUARTERS, 6054 West Touhy Ave., Chicago, III. 60648, (312) 774-7800 WESTERN AREA SALES HEADQUARTERS, 18455 Burbank Blvd., Tarzana, Calif. 91356, (213) 873-6500

20-BIT SHIFT REGISTER

ADVANCE Sept., 1966

MEM 3020

DESCRIPTION

The MEM 3020 is a 20-bit static shift register constructed on a single monolithic chip utilizing MOS P-channel enhancement mode transistors. Each bit of delay has a cross-coupled flip-flop, in order that data might be stored indefinitely between clock pulses. For long term data storage, it is necessary for $\phi 2$ to be a logic "1" and $\phi 1$ a logic "0". To shift data one bit, $\phi 1$ is pulsed momentarily to a logic "1" and $\phi 2$ to a logic "0", note that it is important that $\phi 1$ and $\phi 2$ are not at a logic "1" simultaneously. The output data shall change on the negative edge of the $\phi 2$ clock pulse.

MAXIMUM RATINGS

Drain Voltage (-V _{DD})30	Volts to $+0.3$ Volt
Gate Voltage (—V _{GG})—30	Volts to $+0.3$ Volt
Clock and Data Input Voltages	
Storage Temperature	-55°C to +150°C
Operating Temperature Range	

ELECTRICAL CHARACTERISTICS

A. Standard Conditions (unless otherwise specified) $\begin{array}{l} {\rm V_{DD}}=-13 \ {\rm Volts} \ \pm 1 \ {\rm Volt,} \ {\rm V_{GG}}=-27 \ {\rm Volts} \ \pm 1 \ {\rm Volt,} \\ {\rm Load}=10 \ {\rm M}\Omega \ {\rm and} \ 10 \ {\rm pF.,} \ {\rm T_A}=-55^{\circ}{\rm C} \ {\rm to} \ +85^{\circ}{\rm C}. \end{array}$

CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Clock Repetition Rate	d.c.	_	1.0	Mc/s	
Clock Pulse Widths					
$\phi 1_{pw}$	0.4	_	10	μS	SEE FIGURE 1
$\phi 2_{pw}$	0.4		_	μS	SEE FIGURE 1
Clock Delay (φd)	0.1	-	10	μS	SEE FIGURE 1
Clock Pulse Rise and Fall Time (10% to 90%)		_	5.0	μS	
Clock Pulse Logic Levels (\phi 1 & \phi 2)	and the second s				
Logic "0"	_		-2.0	Volts	
Logic "1"	-26		—28	Volts	
Clock Pulse Input Capacitance $(\phi 1 \& \phi 2)$		4.0	6.0	pF	$\phi 1 = \phi 2 = 0$ Volts
Data Pulse Width (Dpw)	0.4	_	_	μS	SEE FIGURE 1
Data Input Capacitance	_	2.0	3.0	pF	$V_{IN} = 0$ Volts
Data Input Logic Levels					
Logic "0"		_	-2.0	Volts	
Logic "1"	-10			Volts	
Data Fan-in	_		1.0		
Data Input Leakage Current			1.0	μΑ	$V_{in} = -20 \text{ Volts}$
Clock Input Leakage Current			100	μΑ	$\phi 1 - \phi 2 = -26 \text{ Vo}$
Clock (ϕ 2) Input Impedance	60	-	-	ΚΩ	$ \phi 1 = -26 \text{ Volts} $ $ \phi 2 = 0 \text{ Volts} $
Output Logic Levels	approximation of the control of the	0.5			
Logic "0"		0.5 —12	1.0	Volts Volts	d.c.
Logic "1"	-11		-	VOILS	u.c.
Fan-Out	_	_	5.0	Vo	Output a Lagia (10)
Output Impedance to Ground	10	2.0	3.0	ΚΩ	Output a Logic "O"
Output Drive Capability	-10	-11	_	Volts	$R_L = 17 \text{ K}\Omega$
Output Drive Capability	-5.0	_	_	Volts	$R_L = 2 \text{ K}\Omega$
Supply Current Drain		_	6.0	mA	

NOTE: All dimensions in inches

TERMINALS

P/N	FUNCTION	
1	Output	
2	Input	
3	Ground	
4	Gate Voltage (—V _{GG})	
5	Clock $(\phi 1)$	
6	No Connection	
7	Clock $(\phi 2)$	
8	Drain Voltage (—V _{DD})	

GENERAL INSTRUMENT CORPORATION

MICADELECTRONIC DIVISION

EASTERN AREA SALES HEADQUARTERS, 256 Passaic St., Newark, N. J. 07104, (201) HU 5-0072 CENTRAL AREA SALES HEADQUARTERS, 6054 West Touhy Ave., Chicago, III. 60648, (312) 774-7800 WESTERN AREA SALES HEADQUARTERS, 18455 Burbank Blvd., Tarzana, Calif. 91356, (213) 873-6500

21-BIT SHIFT REGISTER

ADVANCE Sept., 1966

MEM 3021

DESCRIPTION

The MEM 3021 is a 1, 4 and 16 bit static shift register constructed on a single monolithic chip utilizing MOS P-channel enhancement mode transistors. Each bit of delay has a cross-coupled flip-flop, in order that data might be stored indefinitely between clock pulses. Only a single phase clock pulse (ϕ) has to be supplied; the additional 180° out of phase clock pulse $(\overline{\phi})$ is generated in the chip.

The outputs will change on the positive edge of the clock pulse. The supply voltage $(-V_{\odot})$ for the output stages can have any value between ground and -28 volts. By letting $-V_{\odot}$ be just a few volts it is possible to have the shift register drive other types of low voltage NPN transistor logic.

LOGIC DIAGRAM

MAXIMUM RATINGS

Drain Voltage	-30 Volts to	⊦.3 Volt
Clock and Input Voltages	-30 Volts to -	+.3 Volt
Storage Temperature	_55°C to	+150°C
Operating Temperature Range	55°C to	+85°C

ELECTRICAL CHARACTERISTICS

Standard Conditions (unless otherwise specified) $V_{dd}\!=\!V_O\!=\!27$ Volts ± 1 Volt, Load $=10 M\Omega$ and 10pF. $T_A\!=\!-55^\circ C$ to $+85^\circ C$

CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Clock Repetition Rate	dc	_	500	kHz	
Clock Pulse Width (φ _{pw})	1.0		10	μsec	SEE FIG. 1
Clock Pulse Rise and Fall Time (10% to 90%)		_	4.0	μsec	
Clock Input Capacitance	-		6.0	pF	V _{in} = 0 Volts
Clock & Data Input Logic Levels Logic "0" Logic "1"	_ _10		-2.0	Volts Volts	
Data Input Pulse Width (D _{pw})	1.0		-	μsec	SEE FIG. 1 $\phi_{\rm pw}=1.0~\mu{ m sec}$
Data Fan-In		_	1.0		
Clock & Data Input Leakage Current	_		1.0	μΑ	$V_{in} = -20 \text{ Volts}$
Output Logic Levels Logic ''0'' Logic ''1''	<u> </u>	-0.5 -12	-1.0	Volt Volts	$\phi=$ dc to 500 kHz
Fan-Out	_	-	5.0		
Output Impedance to Ground	_		5.0	ΚΩ	(output A Logic "O"
Output Drive Capability	-10	-11		Volts	$R_{\rm L}=17{\rm K~Ohms}$
Output Drive Capability	-5.0	-	-	Volts	R _L = 4K Ohms
Supply Current Drain			5.4	mA	

LOW PROFILE 10 LEAD TO-74

Bottom view
NOTE: All dimensions in inches

TERMINALS

P/N Function 1 Input (16 Bit) 2 Clock (ϕ) 3 Output Supply Voltage $(-V_{\odot})$ Output (16 Bit) Ground 5 Output (4 Bit) Output (1 Bit) Input (1 Bit) 9 Input (4 Bit)

Drain Voltage (-V_{dd})

10

TYPICAL TIMING DIAGRAM

APPLICATIONS

The shift pulse can be supplied from a clock generator as shown below. The shift pulse amplitude requirement is the same as the logic swing required.

The shift register may be interfaced with low level NPN transistor logic, if desired, by using the circuit below.

GENERAL INSTRUMENT CORPORATION

MICROELECTRONIC DIVISION

EASTERN AREA SALES HEADQUARTERS, 256 Passaic St., Newark, N. J. 07104, (201) HU 5-0072 CENTRAL AREA SALES HEADQUARTERS, 6054 West Touhy Ave., Chicago, III. 60648, (312) 774-7800 WESTERN AREA SALES HEADQUARTERS, 18455 Burbank Blvd., Tarzana, Calif. 91356, (213) 873-6500

21-BIT SHIFT REGISTER

ADVANCE Sept., 1966

MEM 3021B

DESCRIPTION

The MEM 3021B is a 1, 4 and 16 bit static shift register constructed on a single monolithic chip utilizing MOS P-channel enhancement mode transistors. Each bit of delay has a cross-coupled flip-flop, in order that data might be stored indefinitely between clock pulses. Only a single phase clock pulse (ϕ) has to be supplied; the additional 180° out of phase clock pulse $\overline{(\phi)}$ is generated in the chip.

The outputs will change on the positive edge of the clock pulse. The supply voltage $(-V_{\rm O})$ for the output stages can have any value between ground and -28 volts. By letting $-V_{\rm O}$ be just a few volts it is possible to have the shift register drive other types of low voltage NPN transistor logic.

LOGIC DIAGRAM

MAXIMUM RATINGS

Drain Voltage	-30 Volts to +.3 Volt
Clock and Input Voltages	-30 Volts to +.3 Volt
Storage Temperature	
Operating Temperature Range	

ELECTRICAL CHARACTERISTICS

Standard Conditions (unless otherwise specified) $V_{dd}\!=\!V_O\!=\!27 \text{ Volts }\pm 1 \text{ Volt, Load} = 10 \text{M}\Omega \text{ and } 10 \text{pF. T}_A\!=\!-55^\circ\text{C to }+85^\circ\text{C}$

CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Clock Repetition Rate	dc	_	250	kHz	
Clock Pulse Width (ϕ_{pw})	1.0	_	10	μsec	SEE FIG. 1
Clock Pulse Rise and Fall Time (10% to 90%)	_		4.0	μsec	
Clock Input Capacitance	_	_	6.0	pF	V _{in} = 0 Volts
Clock & Data Input Logic Levels Logic "0" Logic "1"	_ _10		-2.0 -	Volts Volts	
Data Input Pulse Width (D _{pw})	1.0	_		μsec	SEE FIG. 1 $\phi_{\rm pw}=1.0~\mu{ m sec}$
Data Fan-In	_		1.0		
Clock & Data Input Leakage Current	_	_	1.0	μΑ	$V_{in} = -20 \text{ Volts}$
Output Logic Levels Logic "0" Logic "1"	<u>_</u>	-0.5 -12	-1.0 -	Volt Volts	$\phi=$ dc to 250 kHz
Fan-Out		_	5.0		
Output Impedance to Ground		_	5.0	ΚΩ	(output A Logic "0")
Output Drive Capability	-10	-11	_	Volts	$R_{\rm L}=17{\rm K~Ohms}$
Output Drive Capability	-5.0	_	_	Volts	R _L = 4K Ohms
Supply Current Drain	_	_	5.4	mA	

LOW PROFILE 10 LEAD TO-74

TERMINALS

P/N **Function** 1 Input (16 Bit) 2 Clock (\phi) 3 Output Supply Voltage (-V_) Output (16 Bit) 4 5 Ground 6 Output (4 Bit) 7 Output (1 Bit) 8 Input (1 Bit) 9 Input (4 Bit)

Drain Voltage (-V,d)

10

TYPICAL TIMING DIAGRAM

APPLICATIONS

The shift pulse can be supplied from a clock generator as shown below. The shift pulse amplitude requirement is the same as the logic swing required.

The shift register may be interfaced with low level NPN transistor logic, if desired, by using the circuit below.

GENERAL INSTRUMENT CORPORATION

MICROELECTRONIC DIVISION

EASTERN AREA SALES HEADQUARTERS, 256 Passaíc St., Newark, N. J. 07104, (201) HU 5-0072 CENTRAL AREA SALES HEADQUARTERS, 6054 West Touhy Ave., Chicago, III. 60648, (312) 774-7800 WESTERN AREA SALES HEADQUARTERS, 18455 Burbank Blvd., Tarzana, Calif. 91356, (213) 873-6500

DUAL 25-BIT SHIFT REGISTER

ADVANCE Sept., 1966

MEM 3050

DESCRIPTION

The MEM 3050 is a dual 25-Bit dynamic shift register constructed on a single monolithic chip utilizing MOS P-channel enhancement mode transistors.

MAXIMUM RATINGS

Clock Voltages (ϕ 1 and ϕ 2)	to +.3V
Data Input Voltage ————————————————————————————————————	to +.3V
Supply Voltage (V,) ————————————————————————————————————	to +.3V
Storage Temperature — 55°C to	
Operating Temperature	

ELECTRICAL CHARACTERISTICS

STANDARD CONDITIONS (unless otherwise specified):

Load = $10M\Omega$ and 10pF.

 $V_s = -27$ Volts ± 1 Volt, $\phi 1$ and $\phi 2 = -27$ Volts ± 1 Volt.

 $R1 = 20K\Omega$, $T_A = -55^{\circ}C$ to $+85^{\circ}C$.

CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Clock Repetition Rate	10	_		kHz	$\phi 1_{pw} = 45 \mu sec.$ $\phi 2_{pw} = 45 \mu sec.$
Clock Repetition Rate		_	500	kHz	$\phi 1_{pw} = 0.4 \ \mu sec$ $\phi 2_{pw} = 0.4 \ \mu sec$
Clock Pulse Width $(\phi 1_{pw} \text{ and } \phi 2_{pw})$	400	_		nsec.	SEE FIG. 1
Clock Delay (ød)	400			nsec.	SEE FIG. 1
Clock Logic Levels Logic ''0'' Logic ''1''	0 -26	=	-0.5 -28	Volts Volts	
Clock Pulse Rise and Fall Time (10% to 90%)	_	_	100	nsec.	$\phi 1_{pw} = 0.4 \ \mu sec$ $\phi 2_{pw} = 0.4 \ \mu sec$
Data Input Logic Levels Logic "0" Logic "1"	0 -11	_	-2.0 <u>-</u>	Volts Volts	$\phi 1_{pw} = 0.4 \ \mu sec$ $\phi 2_{pw} = 0.4 \ \mu sec$
Data Pulse Width (D _{pw})	200	_		nsec.	$\phi d = 0.4 \mu sec.$ SEE FIG. 1
Output Logic Levels Logic ''0'' Logic ''1''	_ 	=	-1.0 -	Volt Volts	$\phi 1_{pw} = 0.4 \ \mu sec$ $\phi 2_{pw} = 0.4 \ \mu sec$
Output Fall time (_{tf})		_	550	nsec.	$\phi 1_{pw} = 0.4 \mu sec$ $\phi 2_{pw} = 0.4 \mu sec$ SEE FIG. 1
Fan-In	_	_	1.0		SEE FIG. 1
Fan-Out	_		5.0		
Output Pulse Width (O _{pw})	1.0			μsec.	$\phi 1_{pw} = 0.4 \mu sec$ $\phi 2_{pw} = 0.4 \mu sec$ SEE FIG. 1
Output Impedance to Ground	_	_	1000	Ohms	Output a Logic "C
Clock Input Leakage Current	_		100	μΑ	$V_{in} = -26 \text{ Volt}$
Data Input Capacitance	_	4.0		pF	V _{in} = 0 Volts
Clock Input Capacitance	_	10.0		pF	V _{in} = 0 Volts

Bottom view NOTE: All dimensions in inches

TERMINALS

P/N	Function
1	Data Input 1
2	Output 1A
3	Output 1B
4	Clock $\phi2$
5	Ground
6	Clock $\phi1$
7	Output 2B
8	Output 2A
9	Data Input 2
10	No Connection

GENERAL INSTRUMENT CORPORATION

MICROELECTRONIC DIVISION

OUTPUT OF 50th BIT

EASTERN AREA SALES HEADQUARTERS, 256 Passaic St., Newark, N. J. 07104, (201) HU 5-0072 CENTRAL AREA SALES HEADQUARTERS, 6054 West Touhy Ave., Chicago, III. 60648, (312) 774-7800 WESTERN AREA SALES HEADQUARTERS, 18455 Burbank Blvd., Tarzana, Calif. 91356, (213) 873-6500

600 West John Street Hicksville, L. I., N. Y. 11802 (516) 0V 1-8000

-14V

GENERAL INSTRUMENT MOS TRANSISTOR

P CHANNEL-ENHANCEMENT MODE SILICON INSULATED GATE FIELD EFFECT TRANSISTOR TECHNICAL SPECIFICATIONS
Sept., 1966

2N4353

FEATURES

• 1012 ohms input resistance • Normally off with zero gate voltage • Square Law transfer characteristics

APPLICATIONS

- Very high input impedance amplifiers
- Series and shunt choppers
- Operational amplifiers
- Logic circuits
- Linear RF and IF amplifiers
- Multiplexers
- Analog switches

MAXIMUM RATINGS:

Temperature

	reinperature	
	Storage Temperature Range, T _{stg}	60°C to 125°C
	Lead (Terminal) Temperature, 1/6" from	
	the seated surface (or case) for 10 seconds	230°C
	Voltage at 25°C Free-Air Temperature	
	Forward Gate-Source Voltage	
	Drain-Source Voltage	
	Drain-Gate Voltage	
, è	Current	
	Reverse Gate Current	+1 mA
	Forward Gate Current	
	Drain Current	100 mA
	Power	
	rower	
	Continuous Device Dissipation at or below 25°C Free-Air Tempera	ture 250 mW

Linear Derating Factor ________2 mW/°C

SYMBOL	CHARACTERISTIC	MIN	MAX	UNITS	CONDITIONS
I _{G(f)}	Gate Forward Current		-1.0	nA	$V_{GS} = -20V, V_{DS} = 0V$
I _{G(f)}	Gate Forward Current		-100	nA	$V_{GS} = -20V$, $V_{DS} = 0V$, $T_{A} = 85^{\circ}C$
V _{(BR)GSS}	Gate-Source Reverse Breakdown Voltage		+3.0	٧	$I_G=1$ mA, $V_{DS}=0$ V
V _{GS(f)}	Gate-Source Forward Voltage	-30	60	٧	$I_G =01 \text{ mA, } V_{DS} = 0 \text{V}$
I _{D(on)}	"ON" Drain Current	-30		mA	$V_{DS}=-10V$, $V_{GS}=-20V$ Pulse Test: 300 μ s pw, 2% Duty Cycl
Ves	Gate-Source Voltage	5.0	—10	٧	$V_{DS} = -10V$, $I_{D} = -10$ mA
V _{GS(th)}	Gate-Source Threshold Voltage	-2.5	-5.0	٧	$V_{DS}=-10V$, $I_{D}=-10~\mu A$
l _{DSS}	Zero-Gate-Voltage Drain Current		— 5	nA	$V_{DS} = -10 V$, $V_{GS} = 0 V$
r _{DS(on)}	Static Drain-Source "ON" Resistance		300	Ohms	$I_D=-0.1$ mA, $V_{GS}=-20$ V
Yfs	Transadmittance	1000	4000	μmhos	$V_{DS} = -10V$, $I_{D} = -10$ mA
Yos	Output Admittance		350	μmhos	1 kHz $V_{DS} = -10V$, $I_D = -10$ mA
Ciss	Input Capacitance		12	pF	1 MHz $V_{DS} = -10V$, $I_{D} = -10$ mA
Crss	Reverse Transfer Capacitance		4	pF	$1~\mathrm{MHz~V_{DS}} = -10\mathrm{V},~\mathrm{I_D} = -10~\mathrm{mA}$
CDGO	Drain-Gate Capacitance		4	pF	1 MHz $V_{DG} = -10V$, $I_S = 0$ mA
R _{e(Yfs)}	Forward Transconductance	900		μmhos	30 MHz $V_{DS}=-10V$, $I_{D}=-10$ mA

TERMINALS

P/N	FUNCTION
1	Drain
2	Gate
3	Body (Case)
4	Source

NOTE: Case Material — Metallic (Electrically Non-insulated)

TERMINAL DIAGRAM

TYPICAL ELECTRICAL CHARACTERISTICS G

DRAIN LEAKAGE VS DRAIN VOLTAGE

SOURCE LEAKAGE VS SOURCE VOLTAGE

GATE LEAKAGE VS GATE VOLTAGE

LEAKAGE CURRENT VS TEMPERATURE

OUTPUT ADMITTANCE VS DRAIN VOLTAGE

FORWARD TRANSADMITTANCE VS DRAIN VOLTAGE

DRAIN CURRENT (PULSED) VS GATE VOLTAGE (PULSED)

GATE VOLTAGE VS BODY TO SOURCE VOLTAGE

FORWARD TRANSADMITTANCE VS DRAIN CURRENT

GATE VOLTAGE VS BODY TO SOURCE VOLTAGE

DRAIN CURRENT VS GATE VOLTAGE

DRAIN TO GATE CAPACITANCE VS DRAIN CURRENT

-I_D (mA)

3.1

3.0

2.9

2.8

2.7

2.6

2.5

Coe (pf)

TYPICAL ELECTRICAL CHARACTERISTICS

DYNAMIC DRAIN RESISTANCE VS TEMPERATURE

DYNAMIC DRAIN RESISTANCE VS TEMPERATURE

APPLICATIONS

30 MHz Amplifier Utilizing a 2N4353

TYPICAL CHARACTERISTIC CURVES

All curves have been plotted from photographs taken with a Tektronix Curve Tracer, Model 575

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT 25°C

DRAIN CHARACTERISTICS AT 125°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT 25°C

DRAIN CHARACTERISTICS AT 125°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT 25°C

DRAIN CHARACTERISTICS AT 125°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT 25°C

DRAIN CHARACTERISTICS AT 125°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT -55°C

DRAIN CHARACTERISTICS AT 25°C

DRAIN CHARACTERISTICS AT 25°C

−V_D (Volts) .20 .18 .16 .14 .12 .10 .08 .06 .04 .02 0

DRAIN CHARACTERISTICS AT 125°C

-Vo (Volts)

DRAIN CHARACTERISTICS AT 25°C

-Vo (Volts)

DRAIN CHARACTERISTICS AT 125°C

DRAIN CHARACTERISTICS AT 25°C

−V_D (Volts)

DRAIN CHARACTERISTICS AT 125°C

−V_D (Volts)

EASTERN AREA SALES OFFICES

AREA HEADQUARTERS

GENERAL INSTRUMENT CORPORATION

2435 VIRGINIA AVE., N.W., WASH., D.C. 20037

TEL: (202) 965-3712 • TWX: 202-965-0474

GENERAL INSTRUMENT CORPORATION

2021 CLINTON AVENUE, W.

HUNTSVILLE, ALA. 35805 • TEL: (205) 536-9671

GENERAL INSTRUMENT CORPORATION
608 FERRY BLVD., STRATFORD, CONN. 06497

TEL: (203) 378-2992

G & H SALES

16815 JAMES COUZEN HIGHWAY

DETROIT, MICH. 48235 • TEL: (313) 342-4747

HAMILTON, GRAYDEN, FLEMMER INC.

HAMILTON ROAD, HOPKINS, MINN.

TEL: (612) 941-1120 • TWX: 612-292-4013

JERRY VRBIK COMPANY

2818 "A" AVE., N.E., CEDAR RAPIDS, IOWA 52402

TEL: (319) 365-0461 • TWX: 319-552-7118

G & H SALES

P.O. BOX 37416, CINCINNATI, OHIO 45237

TEL: (513) 761-6185 • TWX: 513-577-1239

GENERAL INSTRUMENT CORPORATION

647 VETERANS BLVD., REDW'D CITY, CAL. 94063

TEL: (415) 365-1920 • SUITE NO. 1

GENERAL INSTRUMENT CORPORATION
235 PASSAIC ST., NEWARK, N. J. 07104
TEL: (201) 485-0072 • TWX: 201-621-8041

COMPONENT SALES INCORPORATED
2435 VIRGINIA AVE., N.W., WASH., D.C. 20037
TEL: (202) 337-1888

GENERAL CORPORATION
1520 EDGEWATER DRIVE, ORLANDO, FLORIDA
TEL: (305) 241-3384 • TWX: 305-275-0424

GENERAL INSTRUMENT CORPORATION
SOUTHWEST PARK, WESTWOOD, MASS. 02181
TEL: (617) 329-1480 • TWX: 617-326-9332

HENRY REID ASSOCIATES, INC. 530 MAIN STREET, FORT LEE, N. J. TEL: (201) 944-9323

HARRIES-KERSHAW 15 CANTERBURY LANE, E. AURORA, N. Y. 14052 TEL: (716) 652-1221

C. H. NEWSON ASSOCIATES, INC. 627 BETHLEHEM PIKE, PHILA., PA. 19118 TEL: (215) 248-3377

CENTRAL AREA SALES OFFICES

AREA HEADQUARTERS

GENERAL INSTRUMENT CORPORATION
6054 W. TOUHY AVE., CHICAGO, ILL. 60648
TEL: (312) 774-7800 • TWX: 910-221-3125

G & H SALES
P.O. BOX 7013, CRANWOOD STATION
CLEVELAND 28, OHIO • TEL: (216) 991-1020

G & H SALES 137 LAKEVIEW AVE., DAYTON 59; OHIO TEL: (513) 885-3181

HYDE ELECTRONICS CO. 5206 CONSTITUTION AVENUE, N.E. ALBUQUERQUE, N. M. • TEL: (505) 265-8895

IMPALA, INC. 6917 W. 76th ST., OVERLAND PK., KANS 66204 TEL: (913) 648-6901 • TWX: 913-642-8371 IMPALA, INC.
47 VILLAGE SQ. SHP. CTR., HAZELW'D, MO. 63042
TEL: (314) 522-1600 • TWX: 314-921-3852

AMMON & CHAMPION
P.O. BOX 35263, BLANTON TOWER 628
DALLAS, TEXAS 75235
TEL: (214) 357-8441 • TWX: 214-899-8306

AMMON & CHAMPION 115-14 BURDINE, HOUSTON, TEXAS 77035 TEL: (713) 729-1233 • TWX: 713-571-3133

AMMON & CHAMPION
P.O. BOX 12274, OKLAHOMA CITY, OKLA. 73112
TEL: (405) 942-8222

WESTERN AREA SALES OFFICES

AREA HEADQUARTERS

GENERAL INSTRUMENT CORPORATION
18455 BURBANK BLVD., TARZANA, CALIF. 91356
TEL: (213) 873-6500 • TWX: 910-493-1243

ELECTRONIC COMPONENTS SALES INC. 2340 W. MAIN ST., LITTLETON, COLO. 80120 TEL: (303) 798-8481 • TWX: 303-798-8114 BILL WADDELL CO.
10211 N.E. 31st PL., BELLEVUE, WASHINGTON
TEL: (206) 822-9629 • TWX: 206-999-1875

GENERAL INSTRUMENT CORPORATION MICROELECTRONIC DIVISION