Métodos Numéricos - Clase 6

Ulises Bussi- Javier Portillo

1° cuatrimestre 2020

Regresión Lineal
Cuadrados Mínimos
Ejemplo
Coeficiente de determinación

Linealización y ajuste

Ajuste Polinomial

Introducción Ajustes de curvas

Interpolación Polinómica Interpolación de Newton

Ajustes de Curvas

Introducción Ajustes de curvas

Introducción Ajustes de curvas

Linealización y ajuste

Interpolación de Newton

Modelado y Datos experimentales.

Predecir comportamiento Dado un conjunto de datos, predecir nuevos valores.

¿Por qué? Es imposible medir todos los posibles valores de un modelo físico → Modelamos y predecimos.

Modelado y Datos experimentales.

Predecir comportamiento Dado un conjunto de datos, predecir nuevos valores.

¿Por qué? Es imposible medir todos los posibles valores de un modelo físico → Modelamos y predecimos.

Modelado y Datos experimentales.

Predecir comportamiento Dado un conjunto de datos, predecir nuevos valores.

¿Por qué? Es imposible medir todos los posibles valores de un modelo físico \rightarrow Modelamos y predecimos.

Regresión Lineal Cuadrados Mínimos

Linealización y ajuste

Interpolación de Newton

Regresión Lineal

Introducción Ajustes de curvas

Dado un conjunto de pares ordenados \rightarrow Encontrar la recta que mejor los representa.

Dado un conjunto de pares ordenados → Encontrar la recta que mejor los representa.

Dado un conjunto de pares ordenados → Encontrar la recta que mejor los representa.

Dado un conjunto de pares ordenados → Encontrar la recta que mejor los representa.

Dado un conjunto de pares ordenados \rightarrow Encontrar la recta que mejor los representa.

Hay que definir un criterio

Regresión Lineal

Podemos usar el Residual:

$$S = \sum_{i=1}^{n} y_i - \hat{y}_i = \sum_{i=1}^{n} y_i - (a * x_i + b)$$

Regresión Lineal

Podemos usar el Residual:

Dado $\{x_i, y_i\}$, i = 1, 2, ..., 3 y la recta $\hat{y} = ax + b$ el residual S se calcula cómo:

$$S = \sum_{i=1}^{n} y_i - \hat{y}_i = \sum_{i=1}^{n} y_i - (a * x_i + b)$$

E intentar minimizarlo \rightarrow Encontrar $\{a, b\}$ para que el " error " sea lo más pequeño posible (S cercano a cero).

No es buena idea

Regresión Lineal

Podemos usar el Residual:

Dado $\{x_i, y_i\}$, i = 1, 2, ..., 3 y la recta $\hat{y} = ax + b$ el residual S se calcula cómo:

$$S = \sum_{i=1}^{n} y_i - \hat{y}_i = \sum_{i=1}^{n} y_i - (a * x_i + b)$$

E intentar minimizarlo \rightarrow Encontrar $\{a, b\}$ para que el " error " sea lo más pequeño posible (S cercano a cero).

No es buena idea!

Regresión Lineal

Podemos usar el Residual:

Dado $\{x_i, y_i\}$, i = 1, 2, ..., 3 y la recta $\hat{y} = ax + b$ el residual S se calcula cómo:

$$S = \sum_{i=1}^{n} y_i - \hat{y}_i = \sum_{i=1}^{n} y_i - (a * x_i + b)$$

E intentar minimizarlo \rightarrow Encontrar $\{a, b\}$ para que el " error " sea lo más pequeño posible (S cercano a cero).

No es buena idea!

Para la recta y_1 :

$$S = (2-2*1)+(4-2*2) = 0$$

Para la recta y₂:

$$S = (2-3)+(4-3) = 0$$

Cuadrados Mínimos

Propuesta: minimizar

$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2$$

O sea, encontrar a y b que hagan a S lo más chico posible ¿Cómo? Busco donde:

$$\frac{\partial S}{\partial b} = 0 \leftarrow \text{valor de } b \text{ que minimiza } S$$

$$\frac{\partial S}{\partial a} = 0 \leftarrow \text{valor de } a \text{ que minimiza } S$$

Propuesta: minimizar

$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2$$

O sea, encontrar a y b que hagan a S lo más chico posible.

$$\frac{\partial S}{\partial b} = 0 \leftarrow \text{valor de } b \text{ que minimiza } S$$

$$\frac{\partial S}{\partial a} = 0 \leftarrow \text{valor de } a \text{ que minimiza } S$$

Cuadrados Mínimos

Propuesta: minimizar

$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2$$

O sea, encontrar a y b que hagan a S lo más chico posible. **¿Cómo?** Busco donde:

$$\frac{\partial S}{\partial b} = 0 \leftarrow \text{valor de } b \text{ que minimiza } S$$

$$\frac{\partial S}{\partial a} = 0 \leftarrow \text{valor de } a \text{ que minimiza } S$$

Cuadrados Mínimos

$$\frac{\partial S}{\partial b} = \frac{\partial \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2}{\partial b}$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{n} [y_i - (a * x_i + b)] = 0$$

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} (a * x_i) - \sum_{i=1}^{n} b = 0$$

$$nb + [\sum_{i=1}^{n} x_i]a = [\sum_{i=1}^{n} y_i]$$

$$\frac{\partial S}{\partial b} = \frac{\partial \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2}{\partial b} \qquad \frac{\partial S}{\partial a} = \frac{\partial \sum_{i=1}^{n} [y_i - (a * x_i + b)]^2}{\partial a}$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{n} [y_i - (a * x_i + b)] = 0 \quad \frac{\partial S}{\partial a} = -2\sum_{i=1}^{n} [(y_i - (a * x_i + b))(x_i)] = 0$$

$$\sum_{i=1}^{n} x_i * y_i - \sum_{i=1}^{n} a * x_i^2 - \sum_{i=1}^{n} x_i * b = 0$$

$$\left[\sum_{i=1}^{n} x_i \right] b + \left[\sum_{i=1}^{n} x_i^2 \right] a = \left[\sum_{i=1}^{n} x_i * y_i \right]$$

Cuadrados mínimos

Ahora tenemos este sistema de 2 ecuaciones con 2 incógnitas que se puede resolver:

$$a = \frac{n \sum (x_i * y_i) - \sum x_i * \sum y_i}{n * \sum x_i^2 - (\sum x_i)^2}$$

$$b = \bar{y} - a * \bar{x}$$

Dado x = [1, 2, 3, 4, 5, 6, 7] e y = [3,93, 4,58, 8,25, 9,36, 8,94, 14,89, 15,61] encontrar la recta que mejor ajusta por cuadrados mínimos.

Dado x = [1, 2, 3, 4, 5, 6, 7] e y = [3,93, 4,58, 8,25, 9,36, 8,94, 14,89, 15,61] encontrar la recta que mejor ajusta por cuadrados mínimos.

Calculemos valores que necesitamos:

$$\sum x_{i} = 28 \sum y_{i} = 65,56$$

$$\sum x_{i} * y_{i} = 318,59 \sum x_{i}^{2} = 140$$

$$\bar{x} = \frac{\sum x_{i}}{n} = 4 \quad \bar{y} = \frac{\sum y_{i}}{n} = 9,37$$

Dado x = [1, 2, 3, 4, 5, 6, 7] **e** y = [3, 93, 4, 58, 8, 25, 9, 36, 9, 9, 1]8,94,14,89,15,61] encontrar la recta que mejor ajusta por cuadrados mínimos.

$$a = \frac{7 * 318,59 - 28 * 65,56}{7 * 140 - 28^2} = 2,0125$$

$$b = 9.37 - 2.0125 * 4 = 1.32$$

$$\hat{y} = 2,0125x + 1,32$$

$$a = \frac{7 * 318,59 - 28 * 65,56}{7 * 140 - 28^2} = 2,0125$$

$$b = 9.37 - 2.0125 * 4 = 1.32$$

$$\hat{y} = 2,0125x + 1,32$$

Dado x = [1, 2, 3, 4, 5, 6, 7] **e** y = [3, 93, 4, 58, 8, 25, 9, 36, 9, 9, 1]8,94,14,89,15,61] encontrar la recta que mejor ajusta por cuadrados mínimos.

$$a = \frac{7 * 318,59 - 28 * 65,56}{7 * 140 - 28^2} = 2,0125$$

$$b = 9.37 - 2.0125 * 4 = 1.32$$

$$\hat{y} = 2,0125x + 1,32$$

Dado x = [1, 2, 3, 4, 5, 6, 7] e y = [3,93, 4,58, 8,25, 9,36, 8,94, 14,89, 15,61] encontrar la recta que mejor ajusta por cuadrados mínimos.

Una vez realizado el ajuste podemos calcular: El cuadrado de residual para Y el residual respecto de la todos los puntos:

$$S_r = \sum_{i=1}^n (y_i - a * x_i - b)^2$$

$$S_t = \sum_{i=1}^n (y_i - \bar{y})^2$$

Coeficiente de Determinación.

Se llama coeficiente de determinación a la variable $r \in [0, 1]$ que se calcula cómo:

$$r^2 = \frac{S_t - S_r}{S_t}$$

Se llama coeficiente de determinación a la variable $r \in [0, 1]$ que se calcula cómo:

$$r^2 = \frac{S_t - S_r}{S_t}$$

Nos dice cuanto mejor es ajustar la recta a los datos que simplemente usar el promedio.

Introducción Ajustes de curvas

Regresión Lineal
Cuadrados Mínimos
Ejemplo
Coeficiente de determinación

Linealización y ajuste

Ajuste Polinomia

Interpolación Polinómica Interpolación de Newton

Muchas veces, nos encontramos con relaciones No Lineales:

$$v = a * e^{b*x}$$

$$y = a * x^{k}$$

$$y = a * \frac{x}{x + t}$$

Muchas veces, nos encontramos con relaciones No Lineales:

$$y = a * e^{b*x}$$

Modelo Exponencial

Muchas veces, nos encontramos con relaciones No Lineales:

$$y = a * e^{b*x}$$

$$y = a * x^b$$

$$y = a * \frac{x}{x + b}$$

Modelo Exponencial Modelo de potencia

Muchas veces, nos encontramos con relaciones No Lineales:

$$y = a * e^{b*x}$$

$$y = a * x^b$$

$$y = a * \frac{x}{x + b}$$

Modelo Exponencial Modelo de potencia

Modelo de crecimiento con saturación

Relaciones no lineales.

Muchas veces, nos encontramos con relaciones No Lineales:

$$y = a * e^{b*x}$$
 $y = a * x^b$ $y = a * \frac{x}{x+b}$

Modelo de potencia $y = a * \frac{x}{x+b}$

Exponencial $y = a * \frac{x}{x+b}$

Es posible encontrar una transformación tal que se pueda expresar como un modelo lineal!

Linealización y ajuste

Tomemos el modelo exponencial. Si trabajamos con el ln *y*:

$$\underbrace{\ln y}_{y^*} = \ln(a * e^{b*x})$$

$$y^* = \ln(a) + \ln(e^{b*x})$$

$$y^* = \ln(a) + b * x$$

Tomemos el modelo exponencial. Si trabajamos con el ln y:

$$\underbrace{\ln y}_{y^*} = \ln(a * e^{b * x})$$

$$y^* = \ln(a) + \ln(e^{b*x})$$

$$y^* = \ln(a) + b * x$$

Tomemos el modelo de potencia. Si trabajamos con el ln y:

$$\underbrace{\ln y}_{y*} = \ln(a * x^b)$$

$$y^* = \ln(a) + \ln(x^b)$$

$$y^* = \ln(a) + b * \underbrace{\ln(x)}_{x^*}$$

$$y^* = \ln(a) + bx^*$$

Tomemos el modelo de potencia. Si trabajamos con el ln y:

$$\underbrace{\ln y}_{y*} = \ln(a * x^b)$$

$$y^* = \ln(a) + \ln(x^b)$$

$$y^* = \ln(a) + b * \underbrace{\ln(x)}_{x^*}$$

$$y^* = \ln(a) + bx^*$$

Ajustes de Curvas

Introducción Ajustes de curvas

Introducción Ajustes de curvas

Regresión Lineal
Cuadrados Mínimos
Ejemplo
Coeficiente de determinación

Linealización y ajuste

Ajuste Polinomial

Interpolación Polinómica Interpolación de Newton

¿Que sucede si quisieramos ajustar por ejemplo un polinomio de grado 2?

El mismo procedimiento de cuadrados mínimos podría ajustarse con un polinomio de la forma:

$$f(x) = a_0 + a_1 x + a_2 x^2$$

A la hora de plantear el residual tendríamos:

$$S = \sum_{i=1}^{n} (y_i - a_0 - a_1 * x_i - a_2 x_i^2)^2$$

¿Que sucede si quisieramos ajustar por ejemplo un polinomio de grado 2?

El mismo procedimiento de cuadrados mínimos podría ajustarse con un polinomio de la forma:

$$f(x) = a_0 + a_1 x + a_2 x^2$$

A la hora de plantear el residual tendríamos:

$$S = \sum_{i=1}^{n} (y_i - a_0 - a_1 * x_i - a_2 x_i^2)^2$$

Debemos ahora derivar respecto a los 3 coeficientes para minimizar:

$$\frac{\partial S}{\partial a_0} = -2\sum_{i=1}^n (y_i + a_0 + a_1 x_i + a_2 x_i^2)$$

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=1}^n \left[\left(y_i + a_0 + a_1 x_i + a_2 x_i^2 \right) x_i \right]$$

$$\frac{\partial S}{\partial a_2} = -2\sum_{i=1}^n \left[\left(y_i + a_0 + a_1 x_i + a_2 x_i^2 \right) x_i^2 \right]$$

Operando y despejando como se realizó antes:

$$n * a_0 + a_1 * \sum x_i + a_2 * \sum x_i^2 = \sum y_i$$

$$a_0 * \sum x_i + a_1 * \sum x_i^2 + a_2 * \sum x_i^3 = \sum y_i * x_i$$

$$a_0 * \sum x_i^2 + a_1 * \sum x_i^3 + a_2 * \sum x_i^4 = \sum y_i * x_i^2$$

Un sistema de 3 ecuaciones con 3 incógnitas!!

Ajuste Polinomial

Operando y despejando como se realizó antes:

$$n * a_0 + a_1 * \sum x_i + a_2 * \sum x_i^2 = \sum y_i$$

$$a_0 * \sum x_i + a_1 * \sum x_i^2 + a_2 * \sum x_i^3 = \sum y_i * x_i$$

$$a_0 * \sum x_i^2 + a_1 * \sum x_i^3 + a_2 * \sum x_i^4 = \sum y_i * x_i^2$$

Un sistema de 3 ecuaciones con 3 incógnitas!!!

En general, este método puede aplicarse a:

• sistemas con varias variables:

$$S = \sum_{i=1}^{n} z_i - a_0 - a_1 * x_i - a_2 * y_i$$

• sistemas no lineales: $S = \sum_{i=1}^{n} y_i - f(x_i)$

En el último caso hay que tener cuidado, el problema puede convertirse en un sistema de ecuaciones no lineal.

En general, este método puede aplicarse a:

• sistemas con varias variables:

$$S = \sum_{i=1}^{n} z_i - a_0 - a_1 * x_i - a_2 * y_i$$

• sistemas no lineales: $S = \sum_{i=1}^{n} y_i - f(x_i)$

En el último caso hay que tener cuidado, el problema puede convertirse en un sistema de ecuaciones no lineal.

Introducción Aiustos do curvas

Regresión Lineal
Cuadrados Mínimos
Ejemplo
Coeficiente de determinación

Linealización y ajuste

Ajuste Polinomia

Interpolación Polinómica Interpolación de Newton

En general, si queremos predecir valores intermedios a valores dados, proponemos interpolar.

Aproximar el valor utilizando los valores conocidos.

Para un conjuntos de n puntos existe un único polinomio de orden n-1 que pase por todos esos puntos.

En general, si queremos predecir valores intermedios a valores dados, proponemos interpolar.

Aproximar el valor utilizando los valores conocidos.

Para un conjuntos de n puntos existe un único polinomio de orden n-1 que pase por todos esos puntos.

Interpolación Polinómica

En general, si queremos predecir valores intermedios a valores dados, proponemos interpolar.

Aproximar el valor utilizando los valores conocidos.

Para un conjuntos de n puntos existe un único polinomio de orden n-1 que pase por todos esos puntos.

Supongamos que tenemos 3 puntos conocidos (x_i, y_i) . Si queremos ajustar una parábola tenemos que buscar los 3 coeficientes a_0 , a_1 , a_2 que cumplen

$$a_0 + a_1 * x_i + a_2 * x_i^2 = y_i, \forall i \in [1, 2, 3]$$

Es posible llevar esto a la forma matricial:

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Esta matriz A se conoce como matriz de Vandermonde. y son conocidas por ser muy mal condicionadas. \rightarrow El sistema será muy sensible.

Supongamos que tenemos 3 puntos conocidos (x_i, y_i) . Si queremos ajustar una parábola tenemos que buscar los 3 coeficientes a_0 , a_1 , a_2 que cumplen

$$a_0 + a_1 * x_i + a_2 * x_i^2 = y_i, \forall i \in [1, 2, 3]$$

Es posible llevar esto a la forma matricial:

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Esta matriz A se conoce como matriz de Vandermonde. y son conocidas por ser muy mal condicionadas. \rightarrow El sistema será muy sensible

Supongamos que tenemos 3 puntos conocidos (x_i, y_i) . Si queremos ajustar una parábola tenemos que buscar los 3 coeficientes a_0 , a_1 , a_2 que cumplen

$$a_0 + a_1 * x_i + a_2 * x_i^2 = y_i, \forall i \in [1, 2, 3]$$

Es posible llevar esto a la forma matricial:

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Esta matriz A se conoce como matriz de Vandermonde. y son conocidas por ser muy mal condicionadas. \rightarrow El sistema será muy sensible.

Supongamos que tenemos 3 puntos conocidos (x_i, y_i) . Si queremos ajustar una parábola tenemos que buscar los 3 coeficientes a_0 , a_1 , a_2 que cumplen

$$a_0 + a_1 * x_i + a_2 * x_i^2 = y_i, \forall i \in [1, 2, 3]$$

Es posible llevar esto a la forma matricial:

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Esta matriz A se conoce como matriz de Vandermonde. y son conocidas por ser muy mal condicionadas. \rightarrow El sistema será muy sensible.

Interpolación de Newton

Si queremos interpolar utilizando 2 puntos, los unimos con una recta y buscamos el valor que nos interesa relacionando las pendientes:

$$\frac{f(x) - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

Si queremos interpolar utilizando 2 puntos, los unimos con una recta y buscamos el valor que nos interesa relacionando las pendientes:

$$\frac{f(x) - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

Despejando:

Introducción Aiustes de curvas

$$f(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Polinomio interpolador de Newton de grado 1

Interpolación de Newton

Si gueremos interpolar utilizando 3 puntos proponemos el polinomio de grado 3:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Si reemplazamos por los puntos conocidos tendremos:

$$f(x_1) = b_0 + b_1 \underbrace{(x_1 - x_1)}_{0} + b_2 \underbrace{(x_1 - x_1)}_{0} (x_1 - x_2) = b_0$$

Con lo que
$$b_0 = f(x_1) = y_1$$

Si queremos interpolar utilizando 3 puntos proponemos el polinomio de grado 3:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Si reemplazamos por los puntos conocidos tendremos:

$$f(x_1) = b_0 + b_1 \underbrace{(x_1 - x_1)}_{0} + b_2 \underbrace{(x_1 - x_1)}_{0} (x_1 - x_2) = b_0$$

Con lo que
$$b_0 = f(x_1) = y_1$$

Si queremos interpolar utilizando 3 puntos proponemos el polinomio de grado 3:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Si reemplazamos por los puntos conocidos tendremos:

$$f(x_2) = b_0 + b_1(x_2 - x_1) + b_2(x_2 - x_1) \underbrace{(x_2 - x_2)}_{0}$$

con lo que si a $f(x_2)$ le restamos b_0 y dividimos por $(x_2 - x_1)$:

$$b_1 = \frac{f(x_2) - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

Si queremos interpolar utilizando 3 puntos proponemos el polinomio de grado 3:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Si reemplazamos por los puntos conocidos tendremos:

$$f(x_2) = b_0 + b_1(x_2 - x_1) + b_2(x_2 - x_1) \underbrace{(x_2 - x_2)}_{0}$$

con lo que si a $f(x_2)$ le restamos b_0 y dividimos por $(x_2 - x_1)$:

$$b_1 = \frac{f(x_2) - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

Si queremos interpolar utilizando 3 puntos proponemos el polinomio de grado 3:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

Si reemplazamos por los puntos conocidos tendremos:

$$f(x_2) = b_0 + b_1(x_2 - x_1) + b_2(x_2 - x_1) \underbrace{(x_2 - x_2)}_{0}$$

con lo que si a $f(x_2)$ le restamos b_0 y dividimos por $(x_2 - x_1)$:

$$b_1 = \frac{f(x_2) - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

Por último:

Introducción Ajustes de curvas

$$f(x_3) = b_0 + b_1(x_3 - x_1) + b_2(x_3 - x_1)(x_3 - x_2)$$

Restando b_0 , dividiendo por $(x_3 - x_1)$:

$$\frac{f(x_3) - b_0}{x_3 - x_1} = b_1 + b_2(x_3 - x_2)$$

Si restamos el valor hallado de b_1 y dividimos por (x_3-x_2) :

$$\frac{\frac{f(x_3) - b_0}{x_3 - x_1} - b_1}{x_3 - x_2} = b_2 \qquad \Rightarrow \qquad b_2 = \frac{\frac{y_3 - y_1}{x_3 - x_1} - \frac{y_2 - y_1}{x_2 - x_1}}{x_3 - x_2}$$

Por último:

Introducción Ajustes de curvas

$$f(x_3) = b_0 + b_1(x_3 - x_1) + b_2(x_3 - x_1)(x_3 - x_2)$$

Restando b_0 , dividiendo por $(x_3 - x_1)$:

$$\frac{f(x_3) - b_0}{x_3 - x_1} = b_1 + b_2(x_3 - x_2)$$

Si restamos el valor hallado de b_1 y dividimos por $(x_3 - x_2)$:

$$\frac{\frac{f(x_3) - b_0}{x_3 - x_1} - b_1}{x_3 - x_2} = b_2 \qquad \to$$

$$b_2 = \frac{\frac{y_3 - y_1}{x_3 - x_1} - \frac{y_2 - y_1}{x_2 - x_1}}{x_3 - x_2}$$

D (11)

Introducción Ajustes de curvas

Por último:

$$f(x_3) = b_0 + b_1(x_3 - x_1) + b_2(x_3 - x_1)(x_3 - x_2)$$

Restando b_0 , dividiendo por $(x_3 - x_1)$:

$$\frac{f(x_3) - b_0}{x_3 - x_1} = b_1 + b_2(x_3 - x_2)$$

Si restamos el valor hallado de b_1 y dividimos por $(x_3 - x_2)$:

$$\frac{\frac{f(x_3)-b_0}{x_3-x_1}-b_1}{x_3-x_2}=b_2 \qquad \Rightarrow \qquad b_2=\frac{\frac{y_3-y_1}{x_3-x_1}-\frac{y_2-y_1}{x_2-x_1}}{x_3-x_2}$$

Por último:

Introducción Ajustes de curvas

$$f(x_3) = b_0 + b_1(x_3 - x_1) + b_2(x_3 - x_1)(x_3 - x_2)$$

Restando b_0 , dividiendo por $(x_3 - x_1)$:

$$\frac{f(x_3) - b_0}{x_3 - x_1} = b_1 + b_2(x_3 - x_2)$$

Si restamos el valor hallado de b_1 y dividimos por $(x_3 - x_2)$:

$$\frac{\frac{f(x_3) - b_0}{x_3 - x_1} - b_1}{\frac{f(x_3) - b_0}{x_3 - x_2}} = b_2$$

$$b_2 = \frac{\frac{y_3 - y_1}{x_3 - x_1} - \frac{y_2 - y_1}{x_2 - x_1}}{x_3 - x_2}$$

Interpolación de Newton

Resumiendo el de orden 2:

$$f(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2)$$

donde:

$$b_0=y_1$$

$$b_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

Ajuste Polinomial

$$b_2 = \frac{\frac{y_3 - y_1}{x_3 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_2}$$