Lista de Exercícios 5

Descubra qual o teste e calcule o tamanho da amostra (com uso do Gpower) para as seguintes perguntas de pesquisa:

- Considere todos os tamanhos de efeito mínimo como 10%, 80% de poder e índice de significância de 5%
- Descreva os testes adequadamente dizendo quais são as VDs e VIs

Caso haja interação, calcule o N para cada um dos efeitos principais e a interação!

a) Efeito de 3 tipos de embalagens sobre a venda de um produto

Anova one-way

VI - tipos de embalagens

VD - Venda de um produto

N = 969

F tests - ANOVA: Fixed effects, omnibus, one-way

Analysis: A priori: Compute required sample size

Input: Effect size f = 0.1

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of groups = 3

Output: Noncentrality parameter λ = 9.6900000

Critical F = 3.0050418

Numerator df = 2

Denominator df = 966

Total sample size = 969

Actual power = 0.8011010

b) Comparação do efeito da espécie do rato (Wistar, não Wistar), tipo de protocolo experimental (Exercício, Controle) e tempo (3 períodos de tempo) sobre a taxa de freezing por minuto.

Manova

VI - espécie do rato, tipo de protocolo experimental e tempo

VD - taxa de freezing por minuto

N Especie - 264

F tests - MANOVA: Repeated measures, between factors

Options: Pillai V, O'Brien-Shieh Algorithm

Analysis: A priori: Compute required sample size

Input: Effect size f = 0.1

 $\alpha \text{ err prob} = 0.05$

		rower (± p err proc	,, – 0.8
		Number of groups	s = 2
		Number of measurements	s = 3
		Corr among rep measures	s = 0
	Output:	Noncentrality parameter λ =	7.9200000
	•	Critical F =	3.8771962
		Numerator df =	1.0000000
		Denominato	
		Total sample size	= 264
		Actual power =	0.8006538
		Pillai V =	0.0291262
		i mai v –	0.0231202
N Protocolo - 264			
	Ft	ests - MANOVA: Repeated measures,	
		Options: Pillai V, O'Brien-	Shieh Algorithm
		Analysis: A priori: Compute requ	ired sample size
		Input: Effect size f	= 0.1
		α err prob	= 0.05
		Power (1-β err prob	0.8
		Number of groups	s = 2
		Number of measurements	s = 3
		Corr among rep measures	= 0
	Output:	Noncentrality parameter λ =	7.9200000
		Critical F =	3.8771962
		Numerator df =	1.0000000
		Denominato	or df = 262
		Total sample size	= 264
		Actual power =	0.8006538
		Pillai V =	0.0291262
Tempo - 325			
		F tests - MANOVA: Repeated measure	s. within factors
		Options: Pillai V, O'Brien-	
		Analysis: A priori: Compute requ	_
		Input: Effect size f	
		α err prob	= 0.05
		Power (1-β err prob)	
		Number of group	
		•	
		Number of measurements	
	0.1.	Corr among rep measures	
	Output:	Noncentrality parameter λ =	9.7500000
		Critical F =	3.0236894

Power (1- β err prob) =

8.0

Numerator df = 2.0000000

Denominator df = 323

Total sample size = 325

Actual power = 0.8010951

Pillai V = 0.0291262

N Interação - 685

F tests - MANOVA: Repeated measures, within-between interaction

Options: Pillai V, O'Brien-Shieh Algorithm

Analysis: A priori: Compute required sample size

Input: Effect size f(V) = 0.1

 $\alpha \, \text{err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of groups = 4

Number of measurements = 3

Output: Noncentrality parameter λ = 13.7000000

Critical F = 2.1052267Numerator df = 6.0000000

Denominator df = 1362

Total sample size = 685

Actual power = 0.8004311

Pillai V = 0.0198020

c) Associação entre Sexo e Níveis de Escolaridade (6 níveis)

Qui-quadrado

N = 1283

χ² tests - Goodness-of-fit tests: Contingency tables

Analysis: A priori: Compute required sample size

Input: Effect size w = 0.1

 $\alpha \, \text{err prob} = 0.05$

Power $(1-\beta \text{ err prob}) = 0.8$

Df = 5

Output: Noncentrality parameter λ = 12.8300000

Critical χ^2 = 11.0704977

Total sample size = 1283

Actual power = 0.8000857

d) Efeito do tipo de candidato sobre a quantidade de votos recebidos (5 candidatos)

Anova one-way

VI - tipos de candidato

VD - quantidade de votos recebidos

N = 1200

F tests - ANOVA: Fixed effects, omnibus, one-way

Analysis: A priori: Compute required sample size

Input: Effect size f = 0.1

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of groups = 5

Output: Noncentrality parameter λ = 12.0000000

Critical F = 2.3793764

Numerator df =

Denominator df = 1195

Total sample size = 1200

Actual power = 0.8006464

e) Associação entre a idade da primeira menstruação (menarca) com a idade da primeira menstruação da mãe.

Regressão Linear

VI - Mãe

VD - Filha

N = 614

t tests - Linear bivariate regression: One group, size of slope

Analysis: A priori: Compute required sample size

Input: Tail(s) = One

Slope H1 = 0.10

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.80

Slope H0 = 0

Std dev $\sigma_x = 1$

 $Std \ dev \ \sigma_y = 1$ Output: Noncentrality parameter δ = 2.4903856

Critical t = 1.6473472

Df = 612

Total sample size = 614

Actual power = 0.8003237

f) Fatores associados (3 variáveis) com a presença de depressão

Regressão logística

VI - Fatores associados

VD - presença de depressão

N = 4260

z tests - Logistic regression

Options: Large sample z-Test, Demidenko (2007) with var corr

Analysis: A priori: Compute required sample size

Input: Tail(s) = One

Odds ratio = 1.1

Pr(Y=1|X=1) H0 = 0.2

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

 R^2 other X = 0

X distribution = Normal

 $X \ parm \ \mu \qquad = \qquad 0$

 $X \text{ parm } \sigma = 1$

Output: Critical z = 1.6448536

Total sample size = 4260

Actual power = 0.8000741

- g) Fatores preditores (5 variáveis) para o peso ao nascer das crianças Regressão Linear
 - VI Fatores preditores
 - VD peso ao nascer das crianças

N = 64

t tests - Linear multiple regression: Fixed model, single regression coefficient

Analysis: A priori: Compute required sample size

Input: Tail(s) = One

Effect size $f^2 = 0.10$

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of predictors = 5

Output: Noncentrality parameter δ = 2.5298221

Critical t = 1.6715528

Df = 58

Total sample size = 64

Actual power = 0.8038016

h) Nível de satisfação com o transporte público (0 a 10) afeta o número de viagens de ônibus e o tempo de deslocamento (em minutos)?

Regressão Linear

VI - número de viagens de ônibus e o tempo de deslocamento

VD - Nível de satisfação com o transporte público

N = 64

t tests - Linear multiple regression: Fixed model, single regression coefficient

Analysis: A priori: Compute required sample size

Input: Tail(s) = One

Effect size $f^2 = 0.10$ $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of predictors = 2

Output: Noncentrality parameter δ = 2.5298221

Critical t = 1.6702195

Df = 61

Total sample size = 64

Actual power = 0.8042077

i) Quais são as variáveis (dentre 5 possíveis) que aumentam o risco de sofrer um acidente vascular cerebral?

Regressão logística

VI - 5 variáveis possíveis

VD - Risco de sofrer um acidente vascular cerebral

N = 4260

z tests - Logistic regression

Options: Large sample z-Test, Demidenko (2007) with var corr

Analysis: A priori: Compute required sample size

Input: Tail(s) = One Odds ratio = 1.1

Pr(Y=1|X=1) H0 = 0.2

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

 R^2 other X = 0

X distribution = Normal

 $X \text{ parm } \mu = 0$

 $X \text{ parm } \sigma = 1$

Output: Critical z = 1.6448536 Total sample size = 4260

Actual power = 0.8000741

j) Quais são as variáveis (dentre 4 possíveis) que podem predizer minha renda atual (em reais)?

Regressão Linear

VI - 4 variáveis possíveis

VD - renda atual

N = 64

t tests - Linear multiple regression: Fixed model, single regression coefficient

Analysis: A priori: Compute required sample size

Input: Tail(s) = One Effect size f^2 = 0.10

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8 Number of predictors = 4

Output: Noncentrality parameter δ = 2.5298221

Critical t = 1.6710930

Df = 59

Total sample size = 64

Actual power = 0.8039416

k) Existe diferença entre as regiões de SP (N, S, L, O) em função da taxa de homicídios?

Anova one-way

VI - regiões de SP

VD - taxa de homicídios

N = 1096

F tests - ANOVA: Fixed effects, omnibus, one-way

Analysis: A priori: Compute required sample size

Input: Effect size f = 0.1

 $\alpha \, \text{err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of groups = 4

Output: Noncentrality parameter λ = 10.9600000

Critical F = 2.6130528

Numerator df = 3

Denominator df = 1092

Total sample size = 1096

Actual power = 0.8007324

 Qual a relação entre o número de palavras lembradas em crianças normais, com dislexia e com autismo?

Anova one-way

VI - crianças normais, com dislexia e com autismo

VD - número de palavras lembradas

N = 969

F tests - ANOVA: Fixed effects, omnibus, one-way

Analysis: A priori: Compute required sample size

Input: Effect size f = 0.1

 $\alpha \text{ err prob} = 0.05$

Power (1- β err prob) = 0.8

Number of groups = 3

Output: Noncentrality parameter λ = 9.6900000

Critical F = 3.0050418

Numerator df = 2

Denominator df = 966

Total sample size = 969

Actual power = 0.8011010

m) Qual a relação entre o número de palavras lembradas em crianças normais, com dislexia e com autismo, controlado pela idade?

Ancova

VI - crianças normais, com dislexia e com autismo VD - número de palavras lembradas Cavariante - idade N = 967

F tests - ANCOVA: Fixed effects, main effects and interactions

Analysis: A priori: Compute required sample size

Effect size f Input: 0.10

> α err prob 0.05 0.80

Power (1- β err prob) 2

Numerator df =

Number of groups 3

Number of covariates = 1

Output: Noncentrality parameter λ 9.6700000

> Critical F 3.0050709 =

> > Denominator df= 963

967 Total sample size

Actual power = 0.8002294