Electric Force

This activity covers topics in Section 21.3 of Young and Freedman 2015, 14th Edition. If you need to review vectors, see sections 1.6-1.8 of Young and Freedman 2015, 14th Edition and Vectors at Khan Academy.

1 Coulomb's Law

Magnitude

$$F_{1 ext{ on } 2} = F_{2 ext{ on } 1} = k rac{|q_1 q_2|}{r^2}$$

where r is the distance between q_1 and q_2 . To simplify notation, we are using k in place of $1/4\pi\epsilon_o$. Note that by definition, the magnitude of a vector is positive, which is the reason for the use of the absolute value.

Direction: Along line that connects q_1 and q_2 . Direction depends on signs of q_1 and q_2 . (Likes repel, opposites attract.).

2 Example

Charge q_1 is at (x,y)=(-a,-a) and charge q_2 is at (a,a). Both charges have a charge of q.

- 1. Find the magnitude and direction of the force of q_1 on q_2 .
- 2. Write the force of q_1 on q_2 in the form $\vec{\mathbf{F}} = F_x \hat{\boldsymbol{\imath}} + F_y \hat{\boldsymbol{\jmath}}$.
- 3. If the charges have opposite signs, how will your answers to 1. and 2. change?

Solution

1. The distance between the charges is $r = \sqrt{(2a)^2 + (2a)^2} = \sqrt{8a^2}$, so

$$F_{1 ext{ on } 2} = k rac{|q_1 q_2|}{r^2} = rac{k |qq|}{(\sqrt{8a^2})^2} = rac{kq^2}{8a^2}$$

The charges will repel each other, so the direction of forces of one on the other will be as shown in the left part of the following diagram.

- 2. Let $F = F_{1 \text{ on } 2}$ from part 1. to simplify notation. The right part of the above diagram shows the calculation of the components F_x and F_y , from which it follows that $\vec{\mathbf{F}} = F \cos 45^{\circ} \hat{\imath} + F \sin 45^{\circ} \hat{\jmath}$.
- 3. The magnitude will not change (it is by definition a positive number). The force vectors will reverse direction as shown on the left in the following diagram. The diagram on the right shows the calculation of $\vec{\mathbf{F}}_{1 \text{ on } 2}$, from which it follows that $\vec{\mathbf{F}}_{1 \text{ on } 2} = -F \cos 45^{\circ} \hat{\imath} F \sin 45^{\circ} \hat{\jmath}$. Note that reversing the direction of a vector is the same as multiplying each of its components by -1.

3 Problem I

Charge q_1 is at (x, y) = (-a, a) and charge q_2 is at (a, -a). Both charges have a charge of q. Draw this charge configuration and then using the steps in the previous example,

- 1. Find the magnitude and direction of the force of q_1 on q_2 .
- 2. Write the force of q_1 on q_2 in the form $\vec{\mathbf{F}} = F_x \hat{\boldsymbol{\imath}} + F_y \hat{\boldsymbol{\jmath}}$.
- 3. If the charges have opposite signs, how will your answers to 1. and 2. change?

Solution

1.
$$F_{1 \text{ on } 2} = k \frac{|q_1 q_2|}{r^2} = \frac{k|qq|}{(\sqrt{8a^2})^2} = \frac{kq^2}{8a^2}$$

2.
$$\vec{\mathbf{F}}_{1 \text{ on } 2} = F_{1 \text{ on } 2} (\cos 45^{\circ} \hat{\boldsymbol{\imath}} - \sin 45^{\circ} \hat{\boldsymbol{\jmath}})$$

3. 1.: No change; 2. $\vec{\mathbf{F}}_{1 \text{ on } 2} = F_{1 \text{ on } 2} (-\cos 45^{\circ} \hat{\imath} + \sin 45^{\circ} \hat{\jmath})$

4 Problem II

Charge q_1 is at (x, y) = (-a, a) and charge q_2 is at (a, 0). Charge q_1 has a charge of +q. Charge q_2 has a charge of +q, where q is a positive number. Draw this charge configuration and then using the steps in the previous example,

- 1. Find the magnitude and direction of the force of q_1 on q_2 .
- 2. Write the force of q_1 on q_2 in the form $\vec{\mathbf{F}} = F_x \hat{\boldsymbol{\imath}} + F_y \hat{\boldsymbol{\jmath}}$.
- 3. If the charges have opposite signs, how will your answers to 1. and 2. change?

Solution

$$a \qquad \theta \qquad a$$

$$\theta = \tan^{-1}\left(\frac{2a}{a}\right) \qquad 2a$$

$$F_y = F\cos(\theta) \qquad \theta \qquad F_x = F\sin(\theta)$$

$$1.\ F_{1\ {
m on}\ 2} = krac{|q_1q_2|}{r^2} = rac{k|qq|}{\sqrt{(2a)^2+a^2}} = rac{kq^2}{\sqrt{5}a^2}$$

2.
$$\vec{\mathbf{F}}_{1 \text{ on } 2} = F_{1 \text{ on } 2}(\sin \theta^{\circ} \hat{\boldsymbol{\imath}} - \cos \theta \hat{\boldsymbol{\jmath}})$$
, where $\theta = \tan^{-1}(2) = 63.4^{\circ}$.

3. 1.: No change; 2.
$$\vec{\mathbf{F}}_{1 \text{ on } 2} = F_{1 \text{ on } 2} (-\sin \theta^{\circ} \hat{\imath} + \cos \theta \hat{\jmath}); \theta = 63.4^{\circ}$$

5 Problem III

Charge q_1 is at (x, y) = (-a, 0) and charge q_2 is at (0, 3a). Charge q_1 has a charge of -q. Charge q_2 has a charge of +q, where q is a positive number. Draw this charge configuration and then using the steps in the previous example,

- 1. Find the magnitude and direction of the force of q_1 on q_2 .
- 2. Write the force of q_1 on q_2 in the form $\vec{\mathbf{F}} = F_x \hat{\boldsymbol{\imath}} + F_y \hat{\boldsymbol{\jmath}}$.
- 3. If the charges have opposite signs, how will your answers to 1. and 2. change?

Solution

1.
$$r = \sqrt{a^2 + (3a)^2}$$
, $F = k|q(-q)|/r^2 = kq^2/10a^2$

2.
$$\vec{\mathbf{F}} = -F \sin \theta \hat{\imath} - F \cos \theta \hat{\jmath}$$
, where $\theta = \tan^{-1}(1/3) = 18.4^{\circ}$

3. 1.: No change; 2.:
$$\vec{\mathbf{F}} = +F\sin\theta\hat{\imath} + F\cos\theta\hat{\jmath}$$