# **Assignment 1**

Name: Gautam Kumar

Roll Number: 21CS30020

```
In [1]:
                                                                                       M
# import all the necessary libraries here
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from numpy.linalg import inv
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay
In [2]:
df = pd.read_excel('../../dataset/logistic-regression/Pumpkin_Seeds_Dataset.xlsx')
print(df.shape)
(2500, 13)
In [3]:
                                                                                       M
df.head()
```

## Out[3]:

|   | Area  | Perimeter | Major_Axis_Length | Minor_Axis_Length | Convex_Area | Equiv_Diameter |
|---|-------|-----------|-------------------|-------------------|-------------|----------------|
| 0 | 56276 | 888.242   | 326.1485          | 220.2388          | 56831       | 267.6805       |
| 1 | 76631 | 1068.146  | 417.1932          | 234.2289          | 77280       | 312.3614       |
| 2 | 71623 | 1082.987  | 435.8328          | 211.0457          | 72663       | 301.9822       |
| 3 | 66458 | 992.051   | 381.5638          | 222.5322          | 67118       | 290.8899       |
| 4 | 66107 | 998.146   | 383.8883          | 220.4545          | 67117       | 290.1207       |
| 4 |       |           |                   |                   |             | •              |

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2500 entries, 0 to 2499
Data columns (total 13 columns):

| #  | Column            | Non-Null Count | Dtype   |
|----|-------------------|----------------|---------|
|    |                   |                |         |
| 0  | Area              | 2500 non-null  | int64   |
| 1  | Perimeter         | 2500 non-null  | float64 |
| 2  | Major_Axis_Length | 2500 non-null  | float64 |
| 3  | Minor_Axis_Length | 2500 non-null  | float64 |
| 4  | Convex_Area       | 2500 non-null  | int64   |
| 5  | Equiv_Diameter    | 2500 non-null  | float64 |
| 6  | Eccentricity      | 2500 non-null  | float64 |
| 7  | Solidity          | 2500 non-null  | float64 |
| 8  | Extent            | 2500 non-null  | float64 |
| 9  | Roundness         | 2500 non-null  | float64 |
| 10 | Aspect_Ration     | 2500 non-null  | float64 |
| 11 | Compactness       | 2500 non-null  | float64 |
| 12 | Class             | 2500 non-null  | obiect  |

dtypes: float64(10), int64(2), object(1)

memory usage: 254.0+ KB

In [5]: 
▶

df.describe()

#### Out[5]:

|       | Area          | Perimeter   | Major_Axis_Length | Minor_Axis_Length | Convex_Area I |
|-------|---------------|-------------|-------------------|-------------------|---------------|
| count | 2500.000000   | 2500.000000 | 2500.000000       | 2500.000000       | 2500.000000   |
| mean  | 80658.220800  | 1130.279015 | 456.601840        | 225.794921        | 81508.084400  |
| std   | 13664.510228  | 109.256418  | 56.235704         | 23.297245         | 13764.092788  |
| min   | 47939.000000  | 868.485000  | 320.844600        | 152.171800        | 48366.000000  |
| 25%   | 70765.000000  | 1048.829750 | 414.957850        | 211.245925        | 71512.000000  |
| 50%   | 79076.000000  | 1123.672000 | 449.496600        | 224.703100        | 79872.000000  |
| 75%   | 89757.500000  | 1203.340500 | 492.737650        | 240.672875        | 90797.750000  |
| max   | 136574.000000 | 1559.450000 | 661.911300        | 305.818000        | 138384.000000 |
| 4     |               |             |                   |                   | •             |

In [6]: ▶

print(df["Class"].unique())

['Çerçevelik' 'Ürgüp Sivrisi']

```
In [7]: ▶
```

```
mapping = {'Çerçevelik': 0 , 'Ürgüp Sivrisi' : 1}
df.replace({'Class': mapping} , inplace=True)
df.head()
```

#### Out[7]:

|   | Area  | Perimeter | Major_Axis_Length | Minor_Axis_Length | Convex_Area | Equiv_Diameter |
|---|-------|-----------|-------------------|-------------------|-------------|----------------|
| 0 | 56276 | 888.242   | 326.1485          | 220.2388          | 56831       | 267.6805       |
| 1 | 76631 | 1068.146  | 417.1932          | 234.2289          | 77280       | 312.3614       |
| 2 | 71623 | 1082.987  | 435.8328          | 211.0457          | 72663       | 301.9822       |
| 3 | 66458 | 992.051   | 381.5638          | 222.5322          | 67118       | 290.8899       |
| 4 | 66107 | 998.146   | 383.8883          | 220.4545          | 67117       | 290.1207       |
| 4 |       |           |                   |                   |             | •              |

```
In [8]:
```

```
X = df.iloc[:,:-1].values
Y = df.iloc[:,-1].values
X_train , X,Y_train,Y = train_test_split(X,Y,test_size=0.5,random_state=0)
X_val,X_test,Y_val,Y_test = train_test_split(X,Y,test_size = 0.4,random_state = 0)
```

#### In [9]: ▶

```
from sklearn.preprocessing import StandardScaler
st_x= StandardScaler()
X_train= st_x.fit_transform(X_train)
X_test= st_x.transform(X_test)
```

#### In [10]:

```
print(X_train.shape, Y_train.shape)
print(X_val.shape, Y_val.shape)
print(X_test.shape, Y_test.shape)
```

```
(1250, 12) (1250,)
(750, 12) (750,)
(500, 12) (500,)
```

In [11]:

```
class logistic regression():
    def init (self, epoch= 15000, learning rate = 0.001 ):
        self.epoch = epoch
        self.learning_rate = learning_rate
        self.cost = []
        self.init_weight = None
        self.final_weight = None
   def initialize_weight(self,n_feature):
        limit = np.sqrt(1/n_feature)
        weight = np.random.uniform(-limit,limit,(n_feature,1))
        b = 0
        self.init_weight = np.insert(weight,0,b,axis = 0)
   def train(self, X,Y,X_val,Y_val):
        n_sample ,n_feature = X.shape
        X = np.insert(X, 0, 1, axis = 1)
        Y = np.reshape(Y,(n_sample,1))
        nv sample = X val.shape[0];
        X_val = np.insert(X_val,0,1,axis = 1);
        Y_val = np.reshape(Y_val,(nv_sample,1));
        self.initialize_weight(n_feature)
        self.fit(X,Y,X_val,Y_val)
   def fit(self,X,Y,X_val,Y_val):
        _weight = self.init_weight.copy()
        y_pred = self.sigmoid(np.dot(X,_weight))
        self.cost.append(self.gradient_cost(X,Y,_weight))
        for iter in range(self.epoch):
            y_pred = self.sigmoid(np.dot(X,_weight))
            grad = np.dot(X.T, y_pred - Y)
            _weight = _weight - self.learning_rate*grad
            self.cost.append(self.gradient_cost(X,Y,_weight))
            if iter%100 ==0:
                print(f"The training cost for iteration ::{iter} is
        self.final_weight = _weight
        return
   def predict(self,X):
        out = np.dot(X,self.final weight)
        out = self.sigmoid(out)
        out = (out >= 0.5)*1
        return out
   def sigmoid(self,Y):
        sig = 1 + np.exp(-1*Y)
        sig = 1/sig
        return sig
   def gradient cost(self,X,Y, weight):
        y_pred = self.sigmoid(np.dot(X,_weight))
        return np.mean(-1*(Y*np.log(y_pred) + (1-Y)*np.log(1 - y_pred)))
   def viswalize_loss(self):
        figure, ax = plt.subplots()
```

```
nums = np.arange(len(self.cost))
       ax.plot(nums, np.array(self.cost).reshape((len(self.cost,))))
       ax.set xlabel('Epoch')
       ax.set ylabel('Cost')
       plt.show()
   def metrics_loss(self,X,Y):
       n_sample,n_feature = X.shape
       X = np.insert(X, 0, 1, axis = 1)
       Y = np.reshape(Y,(n_sample,1))
       y_pred = self.sigmoid(np.dot(X,self.final_weight))
       y_pred = (y_pred >= 0.5)
       con_matrix = confusion_matrix(Y,y_pred)
       cm_display = ConfusionMatrixDisplay(confusion_matrix = con_matrix, display_label
       cm_display.plot()
       plt.show()
       recall = con_matrix[1][1]/(con_matrix[1][0] + con_matrix[1][1])
       precison = con_matrix[1][1] /(con_matrix[1][1] + con_matrix[0][1])
       accuracy = (con_matrix[0][0] + con_matrix[1][1])/(con_matrix[0][0] + con_matrix[
       df = pd.DataFrame([[recall, precison, accuracy]], columns=['Recall', 'Precision',
       return df
   def print_loss(self):
       print(self.cost)
                                                                               M
In [12]:
logistic_regressor = logistic_regression()
In [13]:
                                                                               M
logistic_regressor.train(X_train,Y_train,X_val,Y_val)
The training cost for iteration ::0 is ______
        ____0.3461075834614365
The training cost for iteration ::100 is ______
            ____0.3145598695236912
The training cost for iteration ::200 is
         0.31320452265407783
The training cost for iteration ::300 is ______
          0.31195386603362807
The training cost for iteration ::400 is ______
          _____0.3107977525253971
The training cost for iteration ::500 is ______
          _____0.30972757178894045
The training cost for iteration ::600 is
```

In [14]: ▶

logistic\_regressor.viswalize\_loss()



In [15]: ▶

mat\_loss\_df = logistic\_regressor.metrics\_loss(X\_train,Y\_train)
mat\_loss\_df.rename(index={0:'Train\_data'},inplace=True)



In [16]:

mat\_loss\_df

Out[16]:

|            | Recall   | Precision | Mean Accuracy |
|------------|----------|-----------|---------------|
| Train_data | 0.855263 | 0.8981    | 0.8824        |

In [17]: ▶

mat\_loss\_df = logistic\_regressor.metrics\_loss(X\_val,Y\_val)
mat\_loss\_df.rename(index={0:'Validation\_data'},inplace=True)



In [18]: ▶

mat\_loss\_df

## Out[18]:

|                 | Recall | Precision | Mean Accuracy |
|-----------------|--------|-----------|---------------|
| Validation data | 1.0    | 0.478667  | 0.478667      |



mat\_loss\_df = logistic\_regressor.metrics\_loss(X\_test,Y\_test)
mat\_loss\_df.rename(index={0:'Test\_data'},inplace=True)



## In [20]: ▶

mat\_loss\_df

#### Out[20]:

## Recall Precision Mean Accuracy

**Test\_data** 0.849785 0.883929 0.878

In [ ]: ▶