

# دوره دیتا ساینس کاربردی

Space X

XX

XX

XX

Project

dataroadmap

مدرس: مونا حاتمی

جلسه دهم

## Space X Project

dataroadmar

-aroadmap

# Import Libraries

```
In [1]:
        # Pandas is a software library written for the Python programming language for data manipulation and a
            import pandas as pd
            # NumPy is a library for the Python programming language, adding support for large, multi-dimensional
            import numpy as np
            # Matplotlib is a plotting library for python and pyplot gives us a MatLab like plotting framework. We
            import matplotlib.pyplot as plt
            #Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interfac
            import seaborn as sns
            # Preprocessing allows us to standarsize our data
            from sklearn import preprocessing
            # Allows us to split our data into training and testing data
            from sklearn.model_selection import train_test_split
            # Allows us to test parameters of classification algorithms and find the best one
            from sklearn.model_selection import GridSearchCV
            # Logistic Regression classification algorithm
            from sklearn.linear_model import LogisticRegression
            # Support Vector Machine classification algorithm
            from sklearn.svm import SVC
            # Decision Tree classification algorithm
            from sklearn.tree import DecisionTreeClassifier
            # K Nearest Neighbors classification algorithm
            from sklearn.neighbors import KNeighborsClassifier
```

# Function in Python

```
def add(a):
    """ for add"""
    b=a+3
    c=a+b
    print(c)

Add(2)
```

7

```
M def my_func():
    x = 10
    print("Value inside function:",x)
```

```
My_func()
```

Value inside function: 10

#### Function for Plot

-20

```
def plot_confusion_matrix(y,y_predict):
    "this function plots the confusion matrix"
    from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y, y_predict)
    ax= plt.subplot()
    sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells
    ax.set_xlabel('Predicted labels')
    ax.set_ylabel('True labels')
    ax.set_ylabel('True labels')
    ax.set_title('Confusion Matrix');
    ax.xaxis.set_ticklabels(['did not land', 'land']); ax.yaxis.set_ticklabels(['did not land', 'landed'])
```

#### Read Data

data.head(100) CCAFS SLC 40 5 2013-12-03 None None 3170.000000 GTO False False 4 False KSC LC True Falcon 9 15400.000000 VLEO True 5e9e3032383ecb6bb2 85 True ASDS KSC LC 39A True ASDS 86 Falcon 9 15400.000000 VLEO 3 True True True 5e9e3032383ecb6bb2 KSC LC True Falcon 9 15400.000000 VLEO True True 5e9e3032383ecb6bb2 87 True ASDS

> CCAFS SLC 40

CCAFS

SLC 40

True ASDS

True

ASDS

True

True True 5e9e3033383edbb9e5

False True 5e9e3032383ecb6bb2

90 rows x 18 columns

88

89

data = pd.read\_csv('dataset\_falcon9.csv')



Falcon 9 15400.000000 VLEO

3681.000000

# Preprocessing

Preprocessed = pd.read\_csv('preprocessed\_dataset.csv')
Preprocessed.head(100)

|  | - |  |
|--|---|--|
|  | - |  |
|  |   |  |

|    | Unnamed:<br>0 | PayloadMass  | Flights | GridFins | Reused | Legs | Block | ReusedCount | Class | Orbit_ES-<br>L1 | <br>Serial_B1048 | Serial_B1049 | Serial_ |
|----|---------------|--------------|---------|----------|--------|------|-------|-------------|-------|-----------------|------------------|--------------|---------|
| 0  | 0             | 6104.959412  | 1       | 0        | 0      | 0    | 1.0   | 0           | 0     | 0               | <br>0            | 0            |         |
| 1  | .1            | 525.000000   | 1       | 0        | 0      | 0    | 1.0   | 0           | 0     | 0               | <br>0            | 0            |         |
| 2  | 2             | 677.000000   | 1       | 0        | 0      | 0    | 1.0   | 0           | 0     | 0               | <br>0            | 0            |         |
| 3  | 3             | 500.000000   | 1       | 0        | 0      | 0    | 1.0   | 0           | 0     | 0               | <br>0            | 0            |         |
| 4  | 4             | 3170.000000  | 1       | 0        | 0      | 0    | 1.0   | 0           | 0     | 0               | 0                | 0            |         |
|    | ***           | ***          | 0.77    |          |        |      |       |             | - 123 | ***             |                  |              |         |
| 85 | 85            | 15400.000000 | 2       | 1        | 1      | 1    | 5.0   | 2           | 1     | 0               | <br>0            | 0            |         |
| 86 | 88            | 15400.000000 | 3       | 1        | 1      | 1    | 5.0   | 2           | 1     | 0               | <br>0            | 0            |         |
| 87 | 87            | 15400.000000 | 6       | 1        | 1      | 1    | 5.0   | 5           | 1     | 0               | <br>0            | 0            |         |
| 88 | 88            | 15400.000000 | 3       | 1        | 1      | 1    | 5.0   | 2           | 1     | 0               | <br>0            | 0            |         |
| 89 | 89            | 3681.000000  | 1       | 1        | 0      | 1    | 5.0   | 0           | 1     | 0               | <br>0            | 0            |         |

90 rows x 89 columns

# Preprocessing- Standardize

```
X['PayloadMass'].mean()
  6104.959411764707
M X['PayloadMass'].std()
  4694.671719712728
  X['Flights'].mean()
  1.788888888888889
  X['Flights'].std()
  1.2131715741866367
```



#### Standardize Formula



#### Standardize in Scikit learn

# Preprocessing allows us to standarsize our data from sklearn import preprocessing

```
h transform = preprocessing.StandardScaler()
  x scaled = transform.fit transform(X)
  x scaled
 array([[-1.71291154e+00, -1.94814463e-16, -6.53912840e-01, ...,
          -2.15665546e-01, -1.85695338e-01, -1.05999788e-01],
         [-1.67441914e+00, -1.19523159e+00, -6.53912840e-01, ...,
          -2.15665546e-01, -1.85695338e-01, -1.05999788e-01],
         [-1.63592675e+00, -1.16267307e+00, -6.53912840e-01, ...,
          -2.15665546e-01, -1.85695338e-01, -1.05999788e-01],
          [ 1.63592675e+00, 1.99100483e+00, 3.49060516e+00, ...,
          -2.15665546e-01, -1.85695338e-01, -1.05999788e-01],
```

# Array to Dataframe

```
[24]: M col=X.columns

X = pd.DataFrame(x_scaled, columns=col)

X
```

#### Out[24]:

|    | Unnamed:<br>0 | PayloadMass   | Flights   | GridFins  | Reused    | Legs      | Block     | ReusedCount | Orbit_ES-<br>L1 | Ort |
|----|---------------|---------------|-----------|-----------|-----------|-----------|-----------|-------------|-----------------|-----|
| 0  | -1.712912     | -1.948145e-16 | -0.653913 | -1.870829 | -0.835532 | -1.933091 | -1.575895 | -0.973440   | -0.108          |     |
| 1  | -1.674419     | -1.195232e+00 | -0.653913 | -1.870829 | -0.835532 | -1.933091 | -1.575895 | -0.973440   | -0.108          |     |
| 2  | -1.635927     | -1.162673e+00 | -0.653913 | -1.870829 | -0.835532 | -1.933091 | -1.575895 | -0.973440   | -0.108          |     |
| 3  | -1.597434     | -1.200587e+00 | -0.653913 | -1.870829 | -0.835532 | -1.933091 | -1.575895 | -0.973440   | -0.108          |     |
| 4  | -1.558942     | -6.286706e-01 | -0.653913 | -1.870829 | -0.835532 | -1.933091 | -1.575895 | -0.973440   | -0.108          |     |
|    |               |               | 2200      | ***       |           | -         |           |             | 124             |     |
| 85 | 1.558942      | 1.991005e+00  | 0.174991  | 0.534522  | 1.198843  | 0.517308  | 0.945537  | 0.202528    | -0.108          |     |
| 86 | 1.597434      | 1.991005e+00  | 1.003894  | 0.534522  | 1.198843  | 0.517308  | 0.945537  | 0.202528    | -0.108          |     |
| 87 | 1.635927      | 1.991005e+00  | 3.490605  | 0.534522  | 1.198843  | 0.517308  | 0.945537  | 1.966480    | -0.108          |     |

```
X['PayloadMass'].mean()
   -5.304398895431304e-17
 M X['PayloadMass'].std()
    1.0056022847309865
    sns.displot(data=X, x="PayloadMass")
7]: <seaborn.axisgrid.FacetGrid at 0x1dc10e4ccd0>
```



# Train - Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.30, random_state=101)
```

# Logistic Regression

```
► Ir=LogisticRegression()

   parameters ={"C":[0.01,0.1,1], 'penalty':['l2'], 'solver':['lbfgs']}
   logreg_cv = GridSearchCV(lr, parameters,cv=4)
   logreg_cv.fit(X_train, Y_train)
GridSearchCV(cv=4, estimator=LogisticRegression(),
                 param_grid={'C': [0.01, 0.1, 1], 'penalty': ['12'],
                              'solver': ['lbfgs']})
 print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
   print("accuracy :",logreg_cv.best_score_)
   tuned hpyerparameters :(best parameters) {'C': 1, 'penalty': '12', 'solver': 'lbfgs'}
   accuracy: 0.875
```

### Create List for collecting results

```
d accu=[]
methods=[]
accu.append(logreg_cv.score(X_test,Y_test))
methods.append('logistic regression')
logreg_cv.score(X_test,Y_test)
```

. 0.8888888888888888

#### **Confusion Matrix**





|                    | Predicted<br><b>O</b> | Predicted<br><b>1</b> |
|--------------------|-----------------------|-----------------------|
| Actual <b>O</b>    | TN                    | FP                    |
| Actual<br><b>1</b> | FN                    | TP                    |

# Support Vector Machine

```
In [27]:
          M parameters = {'kernel':('linear', 'rbf', 'poly', 'rbf', 'sigmoid'),
                           'C': (0.5, 1, 1.5)}
             svm = SVC()
          www. svm cv = GridSearchCV(svm, parameters, cv = 10)
In [28]:
             svm_cv.fit(X_train, Y_train)
   Out[28]: GridSearchCV(cv=10, estimator=SVC(),
                          param grid={'C': (0.5, 1, 1.5),
                                      'kernel': ('linear', 'rbf', 'poly', 'rbf', 'sigmoid')})
          print("tuned hpyerparameters :(best parameters) ",svm cv.best params )
In [29]:
             print("accuracy :",svm_cv.best_score_)
             tuned hpyerparameters :(best parameters) {'C': 1, 'kernel': 'sigmoid'}
             accuracy: 0.9380952380952381
```

#### **Confusion Matrix**

```
In [30]: M accu.append(svm_cv.score(X_test,Y_test))
   methods.append('support vector machine')
   svm_cv.score(X_test,Y_test)
```

Out[30]: 0.888888888888888

#### **Confusion Matrix**



#### **Decission Trees**

```
In [32]:
          parameters = {'criterion': ['gini', 'entropy'],
                  'splitter': ['best', 'random'],
                  'max_depth': [2*n for n in range(1,10)],
                  'max_features': ['auto', 'sqrt'],
                  'min samples_leaf': [1, 2, 4],
                  'min samples split': [2, 5, 10]}
             tree = DecisionTreeClassifier()
In [33]: M tree_cv = GridSearchCV(tree, parameters, cv = 10)
             tree_cv.fit(X_train, Y_train)
   Out[33]: GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
                          param_grid={'criterion': ['gini', 'entropy'],
                                      'max_depth': [2, 4, 6, 8, 10, 12, 14, 16, 18],
                                      'max features': ['auto', 'sqrt'],
                                      'min_samples_leaf': [1, 2, 4],
                                      'min_samples_split': [2, 5, 10],
                                      'splitter': ['best', 'random']})
In [34]: M print("tuned hpyerparameters :(best parameters) ",tree cv.best params )
             print("accuracy :",tree_cv.best_score_)
             tuned hpyerparameters :(best parameters) {'criterion': 'entropy', 'max depth': 16, 'max f
             af': 2, 'min samples split': 2, 'splitter': 'best'}
             accuracy: 0.9547619047619047
```

#### **Confusion Matrix**

```
In [35]: 
Maccu.append(tree_cv.score(X_test,Y_test))
methods.append('decision tree classifier')
tree_cv.score(X_test,Y_test)
```

Out[35]: 0.666666666666666

#### Confusion Matrix

```
In [36]: M yhat = svm_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



# K Nearest Neighbor

```
In [37]: M parameters = {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                           'algorithm': ['auto', 'ball tree', 'kd tree', 'brute'],
                           'p': [1,2]}
             KNN = KNeighborsClassifier()
In [38]: M knn cv = GridSearchCV(KNN, parameters, cv = 10)
             knn cv.fit(X train, Y train)
   Out[38]: GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
                          param grid={'algorithm': ['auto', 'ball tree', 'kd tree', 'brute'],
                                      'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
In [39]: | print("tuned hpyerparameters :(best parameters) ",knn cv.best params )
             print("accuracy :",knn cv.best score )
             tuned hpyerparameters :(best parameters) { 'algorithm': 'auto', 'n neighbors': 4, 'p': 1}
             accuracy: 0.8928571428571429
```

#### **Confusion Matrix**

```
In [40]: M accu.append(knn_cv.score(X_test,Y_test))
   methods.append('k nearest neighbors')
   knn_cv.score(X_test,Y_test)
```

Out[40]: 0.8518518518518519

#### **Confusion Matrix**

```
In [42]: M yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)
```



# The Best Performed Model



#### Receiver Operating Characteristic Curve (ROC Curve)



# ROC Curve in sklearn



# Imbalance

#### Data

```
In [71]:
          M sns.countplot(x = 'Class', data = data)
   Out[71]: <AxesSubplot:xlabel='Class', ylabel='count'>
                 50
              count
                 30
                 20
                 10
                                         Class
```

# Assignment:

تمرین:

کدهای ارائه شده در درس را بررسی کرده و پروژه خود را در گیت هاب آپلود کنید.