

SRG Market microstructure

Optimal execution problem in Obizhaeva-Wang framework

Vsevolod Zaostrovsky, Peter Shkenev Supervisors: Anton Belyakov, Alexey Savin

Vega Institute Foundation

December 11, 2023

Optimal execution problem

Task: we want to buy or sell a big amount of asset.

Figure: The difference between market order and limit order

So, let's go to the exange and just buy as many assets as needed!

The structure of LOB and problems of such approach

Figure: The structure of LOB

Figure: TWAP strategy

Resilency

Figure: The demonstration of resiliency

Formalization of the problem

$$J_0 = \min_{\{x_0 \cdots x_N\}} E_0 \left[\sum_{n=0}^N [A_{t_n} + x_n/(2q)] x_n \right], \tag{1}$$

where:

- The trader has to buy X_0 units of a security over a fixed time period [0, T];
- x_n is the trade size at $t_n = \tau n$, where $\tau = T/N$ and $\sum x_n = X_0$;
- A_{t_n} is an ask price at t_n ;
- q is a LOB density.

The limit of the optimal execution strategy in OW framework

Theorem 1

As $N \to \infty$, the optimal execution strategy becomes:

$$\lim_{N \to \infty} x_0 = x_{t=0} = \frac{X_0}{\rho T + 2},$$

$$\lim_{N \to \infty} x_n / (T/N) = \dot{X}_t = \frac{\rho X_0}{\rho T + 2}, \quad t \in (0, T),$$

$$\lim_{N \to \infty} x_n / (T/N) = x_{t=T} = \frac{X_0}{\rho T + 2},$$

where x_0 is the trade at the beginning of trading period, x_N is the trade at the end of trading period, and \dot{X}_t is the speed of trading in between these trades.

How to find ρ ?

We provide our methodology to find ρ . We find it, considering the time series of elements of the model that can be calculated from market data. As an example, we are going to consider the regression:

$$\frac{\Delta A_{k+2}}{\Delta t_{k+2}} - \frac{\Delta A_{k+1}}{\Delta t_{k+1}} = -\rho \Delta A_{k+1} + \rho \lambda x_{k+1} + (\kappa + \lambda)(\frac{x_{k+2}}{\Delta t_{k+2}} - \frac{x_{k+1}}{\Delta t_{k+1}}).$$

Where all the information needed can be extracted from the 13 data:

- ΔA_k is an ask change after execution of the limit order with the depth x_k .
- Δt_k is a time between k and k+1 orders of dataset.

Research plan

- Develop methodology for fitting OWM paramete rs and use it to get optimal execution strategy.
- Help to parse l3 data.
- Compare different approaches of measuring resiliency on l3 data.
- Compare discrete and limit OW execution strategies.
- Propose a backtest procedure for the optimal execution algorithm, implement it, and compare the algorithm with TWAP on real market data.

