Todoy's Quote

Consistency is one of the biggest factors to accomplishment and success.

Content - Basics of Bit Manipulation.

Number System

- Decimal number system =
$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 & $80x - 10$.

TU3 - (7×100) + (4×10) + 3

- (7×10^2) + (4×10^1) + (3×10^0)

& 3564 - (2×10^3) + (5×10^2) + (6×10^1) + (4×10^0)

- Binary Number System - $\{0,1\}$ & $80x - 2$.

110 = (1×2) + (1×2) + (0×2^0) = 6

1 011 = (1×2^3) + (0×2^2) + (1×2^1) + (1×2^0) = 11

Binary To Decimal

int btod (n.)
$$\leq$$

ans = 0

power = 1 // 1 = 2°

while (n > 0) \leq
 $r = n // 10$
 $r = n / 10$
 r

$$(20)_{10} = (10100)_{2}$$

$$(45)_{10} = (101101)_{2}$$

[Hodo - decimal to binary.]

Addition.

$$\begin{bmatrix}
0+0 \to 0 \\
0+1 \to 1 \\
1+0 \to 1 \\
1+1 \to 10
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}$$

Bitwise Operators

inf
$$\rightarrow$$
 H Bytes \rightarrow [32 bits].
 $(42)_{10} = (101010)_{2}$

$$\frac{1}{3!} = \frac{0}{3!} = \frac{0}{3!}$$

A	B	ALB	AB	A ¹ B
0	0	O	O	0
0	1	0	1	1 $1 \rightarrow \text{set}$
1	0	0	1	1
	1	1	1	0
		1		Los some some z

Bitwise operations on numbers

$$5 \rightarrow 101$$

$$6 \rightarrow 110$$

$$4 \rightarrow 100$$

$$2^5 + 2^4 + 2^3 + 2^0 = 57$$

$$\begin{array}{ccc}
 & A = 20 \\
 & B = 45 \\
 & A \mid B = ?
\end{array}$$

$$A \rightarrow 010100$$

$$B \rightarrow 101101$$

$$111101$$

$$5 7 3 2 7 6$$

$$2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{6} = 61$$

Properties

$$\begin{pmatrix}
 A = 10 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 0
 \end{pmatrix}
 = 1001
 \begin{cases}
 A = 9 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 & 1
 \end{cases}$$

$$(A-9) = 1001$$
 0001

Conclusion

$$A \& 1 - \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies A \text{ is an even no.}$$

$$A \& 1 - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies A \text{ is an odd no.}$$

$$\frac{1}{5} \circ \frac{1}{3} \cdot \frac{1}{2} \circ \frac{1}{3} \circ \frac{1$$

(3)
$$A \& A = A$$

$$A = \begin{cases} A & |0| \\ A = |0| \\ A = |0| \end{cases}$$

$$\bigcirc$$
 $A \mid A = A$

$$A^{\wedge}A = 0$$

[xor of two = 0]

Commutative Property

$$a & b = b & a$$
 $a & b = b & a$
 $a & b = b & a$
 $a & b = b & a$

$$akb = bka$$

$$(akb)kc = ck(bko)$$

$$\times$$

$$\times kc = ckx$$

$$\frac{a \cdot b}{a \cdot b} \cdot \frac{d \cdot b}{c \cdot c} \cdot \frac{c}{a} = \frac{a \cdot a}{b \cdot b} \cdot \frac{c}{c} \cdot \frac{c}{a} = 0 \cdot d = \underline{d}.$$

(a) Civen an integer arr [N]. All the nois are present twice in the array except only one. Find the no. which is only present once.

$$= \frac{6^{3} + 3^{3} + 3^{9} + 9^{6}}{6^{6} + 3^{3} + 3^{9} + 9^{7} + 3^{6}}$$

$$= \frac{6^{6} + 3^{3} + 3^{9} + 9^{7} + 3^{6}}{6^{6} + 3^{6}$$

sudo-code.

int fun (au, N)
$$\beta$$

ans = 0

for (i = 0; i < N; i++) β

ans = ans ^ arr[i]

return ans

and
$$\begin{bmatrix} 6, 7, 7, 7, 9, 6 \end{bmatrix}$$

$$\begin{bmatrix} ans = 0 \end{bmatrix} \qquad ans = 0^{6} = 6 \qquad f \to 0$$

$$ans = 6^{7} = 1 \qquad g \to 1001$$

$$ans = 6^{9} = 15$$

$$ans = 6^{9} = 15$$

$$ans = 15^{6} = 9$$

left-shift int - 4 bytes - 32 bits

// Assumption - int - 1 byte - 8 bits. [just for explanation]

$$0 = 45$$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 $0 = 45$
 0

Maxm no. that can be shored in 8-bik=

:. 360 is too large to be stored in 8-bits.

= 0 verflow condition

Capacity = 10 lt.

Right Shift Operator

$$A = 20$$
 $O = 0$
 $O =$

$$a \gg n = \frac{a}{2^n}$$

.. No overflow condition.

