ANALISIS PERBANDINGAN KINERJA PADA PERENCANAAN JARINGAN 4G LTE MENGGUNAKAN METODE CELL SPLITTING UNTUK MICROCELL DENGAN METODE INTER-BAND CARRIER AGGREGATION

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

VANESA AGELLIZA 6705181037

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Seiring dengan perkembangan teknologi yang semakin pesat mengharuskan setiap orang untuk tetap dapat saling berkomunikasi dengan cepat, akibatnya tuntutan permintaan kebutuhan akan akses layanan komunikasi seluler dengan kecepatan yang tinggi juga meningkat. Sehingga, perlu dilakukan perencanaan yang tepat untuk meningkatkan kinerja dan kapasitas jaringan seluler.

Metode perluasan kapasitas terbagi ke dalam tiga kategori umum: penyebaran spektrum radio yang lebih banyak, penggunaan kembali spektrum geografis yang lebih intensif, dan peningkatan kapasitas *throughput* dari setiap spektrum MHz dalam suatu area geografis [1]. Adapun dalam buku *An Introduction to LTE* yang ditulis oleh Christopher Cox, terdapat tiga langkah dalam meningkatkan kapasitas jaringan seluler, yaitu dengan menerapkan sel dengan ukuran yang lebih kecil dengan membangun *base station* baru, meningkatkan *bandwidth*, dan meningkatkan atau memperbarui teknologi komunikasi yang sedang digunakan [2].

Pada proyek tingkat ini, digunakan metode *cell splitting* dan *inter-band carrier aggregation*. Berdasarkan hasil studi literatur mengenai metode *cell splitting* dan *carrier aggregation*, ditemukan bahwa kedua metode ini dapat diterapkan untuk meningkatkan kapasitas. Adapun *carrier aggregation* memungkinkan *provider* jaringan untuk menggunakan lebih dari satu *carrier* secara bersamaan untuk meningkatkan kapasitas [3]. Sedangkan metode *cell splitting* melalui pemecahan sel makro menjadi sel yang lebih kecil dapat menambah jumlah kanal yang mengakibatkan bertambahnya pula kapasitas trafik [4]. Sehingga, dari kesamaan kelebihan yang dimiliki oleh kedua metode ini dalam hal meningkatkan kapasitas, maka analisis perbandingan dari kedua metode ini perlu dilakukan untuk melihat metode mana yang memiliki kinerja paling baik dalam perencanaan jaringan seluler LTE.

Pada proyek tingkat ini terlebih dahulu dilakukan perencanaan jaringan LTE secara terpisah menggunakan konsep *coverage planning* dan *capacity planning* untuk masing – masing metode. Adapun untuk metode *cell splitting* digunakan dalam perencanaan *microcell* pada FDD LTE 1800 MHz dengan *bandwidth* 10 MHz, sedangkan untuk metode *carrier aggregation* menggunakan jenis *band inter-band carrier aggregation* dengan menggabungkan 10 MHz di *band* 1800 MHz dan 10

MHz pada *band* 2100 MHz. Kemudian dilakukan simulasi menggunakan *software Atoll* 3.3. dan melakukan analisis perbandingan hasil perancangan dari masingmasing metode yang diterapkan dalam simulasi dengan memperhatikan nilai parameter radio RSRP, SINR, RSSI, BLER, dan *throughput*.

Hasil dari pengerjaan proyek tingkat ini adalah dapat mengetahui metode mana yang memiliki kinerja yang lebih baik dalam peningkatan kapasitas yang dianalisis dari segi nilai parameter radio yang dihasilkan sehingga dapat dipilih metode mana yang lebih direkomendasikan untuk diterapkan dalam perencanaan jaringan seluler LTE.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1	Expanding Mobile Wireless Capacity:	2013	Dalam jurnal ini membahas metode yang dapat digunakan untuk menambah
1.	The Challenges Presented by Technology		kapasitas dalam jaringan seluler yang terbagi ke dalam tiga kategori umum :
	and Economics[1]		penyebaran spektrum radio yang lebih banyak; penggunaan kembali
			spektrum geografis yang lebih intensif; dan peningkatan kapasitas
			throughput dari setiap spektrum MHz dalam suatu area geografis. Adapun
			dalam jurnal ini disebutkan bahwa metode cell splitting dapat meningkatkan
			jumlah data yang dibawa dengan membagi atau memecah sel untuk
			mengurangi ukuran sel sehingga meningatkan jumlah sel yang melayani
			suatu area.
2.	Carrier Aggregation Technique to	2016	Dalam jurnal ini dilakukan perencanaan jaringan LTE-A melalui coverage
	Improve Capacity in LTE-Advanced		dimensioning dan capacity dimensioning, dari hasil simulasi jurnal ini
	Network [3]		diperoleh nilai RSRP, CINR, BLER, dan throughput. Adapun kombinasi
			carrier aggregation yang menghasilkan throughput yang lebih tinggi dalam
			perancangan di jurnal ini adalah dengan menggunakan kombinasi inter-band
			non contiguous carrier aggregation.

2	Evaluasi Penerapan Metode Cell Splitting	2019	Dalam jurnal ini membahas penerapan metode cell splitting dalam
3.	terhadap Peningkatan Kapasitas dan		perencanaan microcell untuk meningkatkan kapasitas dan kualitas jaringan
	Kualitas Jaringan LTE[4]		LTE, dimana dilakukan identifikasi wilayah objek permasalahan, melakukan
			perhitungan dengan konsep coverage planning dan capacity planning, serta
			melakukan simulasi menggunakan software Atoll 3.3.
4.	LTE Evolution towards Carrier	2016	Dalam jurnal ini dilakukan implementasi carrier aggregation yang berfokus
4.	Aggregation[5]		pada sisi downlink dan melakukan simulasi terhadap lima skenario yang
			berbeda untuk penggabungan Component Carrier 1 (CC1) dengan
			Component Carrier 2 (CC2). Hasilnya ialah dihasilkan throughput yang
			lebih tinggi pada lingkungan carrier aggregation daripada non-carrier
			aggregation.
5.	Performance Analysis of 4G LTE –	2018	Pada jurnal ini dilakukan simulasi carrier aggregation menggunakan
	Advanced Carrier Aggregation[6]		software MATLAB dengan konfigurasi carrier aggregation yang dilakukan
			ialah secara contiguous dengan kombinasi component carrier dari 20 MHz
			untuk bandwidth 40, 60, 80, dan 100 MHz. Hasil yang didapatkan ialah
			semakin meningkat bandwidth, semakin meningkat pula throughput yang
			dihasilkan.
6.	Throughput Performance Evaluation of	2020	Pada jurnal ini menggunakan band frekuensi E – UTRA CA band CA_7-20
	LTE – Advanced with Inter – band		pada 800 MHz dan 2.6 GHz serta menggunakan kanal model <i>Enhanced</i> 3D
	Carrier Aggregation[7]		ITU-R. Hasil yang didapatkan yaitu band 800 MHz lebih sesuai untuk
			pengguna dengan mobilitas yang lebih tinggi (seperti kendaraan) karena
			radius sel yang lebih luas, sementara band 2.6 GHz lebih sesuai untuk
			mendukung picocell.

7.	Performance Analysis of Carrier	2017	Penelitian dalam jurnal ini dilakukan dengan membandingkan kinerja dari
	Aggregation for Various Mobile Network		three inter-band component carrier aggregation (3CC) dengan 2CC
	Implementations Scenario Based on		menggunakan simulator Vienna LTE System Level serta radio frekuensi yang
	Spectrum Allocated[8]		digunakan yaitu dari segi band 900 MHz, 1800 MHz, dan 2100 MHz. Hasil
			simulasi menunjukkan terdapat peningkatan throughput pada implementasi
			3CC CA dibanding 2CC CA. Selain itu, kombinasi CC yang paling baik
			dalam inter-band 2CC CA adalah ketika menggunakam kombinasi
			component carrier dari frekuensi 1800 MHz dengan 2100 MHz.
8.	Cell Association and Interference	2010	Dalam jurnal ini dijelaskan paradigma jaringan seluler heterogen. Secara
	Coordination in Heterogeneous LTE – A		spesifik jurnal ini fokus dengan cell splitting, perluasan jangkauan, serta
	Cellular Networks[9]		pengelolaan interferensi yang dinamis untuk QoS melalui pensinyalan udara.
9.	Cell Splitting Based on Active Antennas :	2012	Dalam jurnal ini membahas metode cell splitting pada teknik beamforming
9.	Performnace Assessment for LTE		active antenna, dimana pada beamforming vertikal sel tunggal dibagi ke
	System[10]		dalam pemecahan dua sel baru dan beamforming horizontal membagi sel
			tunggal menjadi enam sektor, simulasi dilakukan menggunakan <i>LTE dynamic</i>
			sysytem level simulator.
10.	Analisis Perancangan Jaringan 4G LTE	2018	Dalam jurnal ini melakukan perancangan jaringan microcell menggunakan
10.	Microcell 1800 MHz di Jalur Busway		konsep capacity planning dan coverage planning dengan memperhatikan
	Koridor 12 (Pluit – Tanjung Priok) [11]		konsep frequency reuse dan microcell. Hasil dari perancangan ini didapatkan
			nilai RSRP yang lebih baik dan teknik frequency reuse dapat berguna untuk
			mengurangi Inter-Cell Interference (ICI).

Rancangan Sistem

Gambar 1 Diagram Alir Pengerjaan Proyek Tingkat

Rancangan sistem pada proyek tingkat ini ialah perancangan jaringan seluler LTE dengan menggunakan metode *cell splitting* untuk perencanaan jaringan *microcell* pada FDD LTE 1800 MHz dengan *bandwidth* 10 MHz, dan metode *interband carrier aggregation* dengan menggabungkan 10 MHz di *band* 1800 MHz dan 10 MHz pada *band* 2100 MHz.

Pengerjaan proyek tingkat ini dilakukan secara sistematis sesuai dengan diagram alir pengerjaan. Identifikasi wilayah perencanaan dilakukan untuk mengumpulkan data pendukung seperti *engineer parameter site existing*, data OSS, dan data penduduk di wilayah perencanaan. Simulasi dilakukan menggunakan *software Atoll 3.3*. dengan memperhatikan pendekatan *coverage dimensioning* dan *capacity dimensioning*. Perencanaan untuk masing – masing metode diterapkan secara terpisah dan dilakukan analisis perbandingan kinerja dari kedua metode dengan memperhatikan parameter RF LTE, yaitu RSRP, SINR, RSSI, BLER, dan *throughput*.

Referensi

- [1] R. N. Clarke, "Expanding mobile wireless capacity: The challenges presented by Technology and Economics," *Telecommunications Policy*, 2013.
- [2] C. Cox, An Introduction to LTE, John Wiley & Sons, Ltd, 2014.
- [3] R. G. Iskandar*, "Carrier Aggregation Technique to Improve Capacity in LTE-Advanced Network," *TELKOMNIKA*, vol. 14, no. 1, pp. 119-128, Maret 2016.
- [4] F. N. W. F. A. A. R. A. d. D. A. S. Hasanah Putri, "Evaluasi Penerapan Metode Cell Splitting Terhadap Peningkatan Kapasitas dan Kualitas Jaringan LTE," *Jurnal Rekayasa Elektrik*, vol. 15, no. 3, pp. 169-176, Desember 2019.
- [5] E. G. a. J. S. Jadon, "LTE Evolution towards Carrier Aggregation (LTE-advanced)," *J Telecommun Syst Manage*, vol. 5, 2016.
- [6] J. KHAN, A. BASIT, M. ADIL dan M. A. IRFAN, "Performance Analysis of 4G LTE-Advanced Carrier Aggregation," *SI NDH UNIVERSITYRESEARCH JOURNAL* (SCIENCESERIES), vol. 50, pp. 609-612, 2018.
- [7] S. Q. M. &. D. S. Abdalla, "Throughput Performance Evaluation of LTE-Advanced with Inter-band Carrier Aggregation," *Journal of Zankoy Sulaimani*, vol. 22, no. 1, 2020.
- [8] A. S. a. E. M. Liston Kiwoli, "Performance Analysis of Carrier Aggregation for Various Mobile Network Implementations Scenario Based on Spectrum Allocated," *International Journal of Wireless & Mobile Networks (IJWMN)*, vol. 9, no. 5, October 2017.
- [9] J. B. A. S. N. B. A. K. a. T. J. Ritesh Madan, "Cell Association and Interference Coordination in Heterogeneous LTE-A Cellular Networks," *IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS*, vol. 28, no. 9, pp. 1479 - 1489, 2010.

- [10] M. G. D. A. M.Caretti, "Cell Splitting Based on Active Antennas: Performance Assessment for LTE System," *IEEE*, 2012.
- [11] U. K. U. H. V. M. Abid Irwan, "Analisis Perancangan Jaringan 4G LTE Microcell 1800 Mhz Di Jalur Busway Koridor 12 (Pluit-Tanjung Priok)," SENTER 2018: Seminar Nasional Teknik Elektro 2018, pp. 45-57, December 2018.

Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 2020/2021

Tanggal : 10 Desemb	er 2020	
Kami yang bertanda ta	ngan dibawah in i:	
CALON PEMBIMBING 1		
Kode : HPT		
Nama : Hasanah Pu	utri, S.T., M.T.	
CALON PEMBIMBING 2		
Kode :		
Nama :		
Menyatakan bersedia ı	menjadi dosen pembimbing Proyek Tingk	kat bagi mahasiswa berikut,
NIM	: 6705181037	
Nama	: Vanesa Agelliza	
Prodi / Peminatan	: D3TT / Transmisi Telekomunikasi	
Calon Judul PA	: Analisis Perbandingan Kinerja pada Perer Metode <i>Cell Splitting</i> untuk <i>Microcell</i> dengan	ncanaan Jaringan 4G LTE Menggunakan Metode <i>Inter-band Carrier Aggregation</i>
Dengan ini akan meme Aturan Proyek Tingkat	enuhi segala hak dan kewajiban sebagai yang berlaku.	dosen pembimbing sesuai dengan
Calon F	Pembimbing 1	Calon Pembimbing 2
(Hasan	ah Putri, S.T., M.T.)	()

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk Mahasiswa)

: 6705181037

Dosen Wali Program Studi : DUM / DADAN NUR RAMADAN : D3 Teknologi Telekomunikasi

Nama

: VANESA AGELLIZA

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	В
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	А
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
2	DMH1A2	OLAH RAGA	SPORT	2	AB
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	А
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	А
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	А
	·	Jumlah SKS		83	3.81

Semester	Kode Mata Kuliah	Mata Kuliah B. Inggris		SKS	Nilai
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	А
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	А
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	АВ
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	А
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
5	DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А
			83	3.81	

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
	Jumlal	13			

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	UWI3E1	HEI	HEI	1	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
	Jumlal	13			

Jumlah SKS	: 83 SKS		IPK : 3.81
Tingkat III	: 83 SKS	Belum Lulus	IPK : 3.81
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.8
Tingkat I	: 41 SKS	Belum Lulus	IPK : 3.76

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 10 Desember 2020 09:46:10 oleh VANESA AGELLIZA