ARTEFATOS DO PROJETO DE SOFTWARE

SUMÁRIO

DIÁRIO DE BORDO

O Diário de Bordo tem como objetivo facilitar a organização do andamento do projeto, por meio dos registros das atividades e tarefas.

Na Figura ?? é possível ver como foi feita a distribuição das atividades do projeto:

Figura 1 - Diário de Bordo

Ministério da Educação Faculdade de Tecnologia Campus Registro Desenvolvimento de Software Multiplataforma

DIÁRIO DE BORDO

Nome da Atividade	Data de início	Data de término	Responsável pela atividade	Descrição da atividade realizada
Metodologia	01/08/24	15/08/24	Isabela Chaves	Desenvolver metodologia
Mudança de Título	16/08/24	30/08/24	Ruth Mendonça	Alterar título do projeto
Site Web Responsivo	01/09/24	15/09/24	Daniel Mandira	Fazer site responsivo com Next.js
Fluxograma Metodologia	16/09/24	30/09/24	Isabela Chaves	Fazer fluxograma da metodologia
Estado da Arte	01/10/24	15/10/24	Caio Moraes	Pesquisar artigos correlatos
Introdução Refeita	16/10/24	30/10/24	Caio Moraes	Refazer a introdução
Treinamento IA	01/11/24	08/11/24	Ruth Mendonça	Treinar a IA
Integrar IA ao Sistema	09/11/24	15/11/24	Bruno Freitas	Conectar IA ao sistema
Integração Notificação	01/09/24	15/09/24	Bruno & Daniel	Integrar sistema de notificação
Logbook	16/09/24	30/09/24	Isabela Chaves	Atualizar o logbook do projeto
Diagrama Não Relacional	01/10/24	15/10/24	Isabela Chaves	Criar diagrama não relacional
Mudar para Python	16/10/24	30/10/24	Daniel Mandira	Migrar código para Python
Refazer Banner	01/11/24	08/11/24	Caio Moraes	Refazer o banner do projeto
Servidor - URL Completa	09/11/24	15/11/24	Mauricio Bertoldo	Configurar servidor
API MongoDB	01/10/24	15/10/24	Daniel Mandira	Criar API com MongoDB

Fonte: Autoria própria (2024)

DIAGRAMAS UML

Nesta seção serão apresentados os diagramas da UML utilizados para a modelagem do sistema desenvolvido. Dentre os diagramas utilizados, pode-se citar: Diagrama de Caso de Uso, Diagrama de Classe e Diagrama de Objetos.

DIAGRAMA DE CASO DE USO

A seguir na ??, os atores do sistema e suas devidas funções dentro do sistema:

1. Proxy/Squid: atua como intermediador das solicitações realizadas dos usuários à Internet, o qual efetua o gerenciamento dos sites bloqueados ou não, além do registro de informações de acesso.

2

- 2. Administrador: possui privilégios para gerenciar o sistema, as permissões de acesso de outros usuários, os bloqueios de forma manual, e sites que são exceção, obtém as estatísticas de bloqueios e seu histórico.
- 3. Aluno: este não ira interagir diretamente com o sistema, mas apenas visualizar a tela de bloqueio caso o site seja bloqueado.

Figura 2 - Diagrama de caso de uso

DIAGRAMA DE CLASSE

Esse é um exemplo de diagrama de classe, você deverá descrever os elementos presentes no diagrama (classes e relacionamentos).

Acessos Indexacoes - id: int - dataHora: DateTime - id: int - pathLocal: LongText - flag: boolean - urlWeb: LongText - ip_maquina: String - urlWeb: LongText - id_index: int + CriarIndexacao(): void + pesquisarIndexacao(): boolean + RegistrarAcesso(): void localArmazena: String - localAffilazeria: S - site: String - html: String - dataHora: String - ip: String - host: String + carregarSitePeloArquivo(): String + removerPorta(): String + extrairDataHora(): String + extrairHo(): String + extrairHtml(): String + armazenarSite(): void + mostrarHost(): String

Figura 3 – Diagrama de caso de uso

Figura 4 - Diagrama de caso de uso

Fonte: Autoria prória (2024)

Por meio destes diagramas é possível visualizar de maneira simplória as principais funcionalidades do sistema.

DIAGRAMAS DE ENTIDADES E RELACIONAMENTOS

O DER (Diagrama de Entidade-Relacionamento), é uma maneira de representar de forma visual e detelhada as entidades, atributos e conexões do banco de dados

DIAGRAMA DO MODELO CONCEITUAL

O banco de dados está dividido em duas partes principais, do sistema sendo a principal: acessos, responsável por guardar os dados necessários para geração de relatórios, quando o estudante

acessar um site, será extraído as seguintes informações: data e hora, o ip da máquina que foi acessada e a url do site. Indexações: foi criado com pensando na IA, o pathLocal, armazena o caminho para um arquivo txt, o qual contém o conteúdo do site em HTML, assim a Inteligência Artificíal poderá realizar a analise à procura por um termo de injuria racial.

A flag, vai ser o meio para identificar se o site está bloqueado ou não. Em urlWeb, como o próprio nome diz, é gravado a url do site.

A segunda parte é a do usuário, engloba informações da instiruição, pessoais e as permissões que o usuário possui dentro do sistema.

Figura 5 - Diagrama do Modelo Conceitual

O banco de dados está dividido em duas partes principais, do sistema sendo a principal: acessos, responsável por guardar os dados necessários para geração de relatórios, quando o estudante acessar um site, será extraído as seguintes informações: data e hora, o ip da máquina que foi acessada e a url do site. Indexações: foi criado com pensando na IA, o pathLocal, armazena o caminho para um arquivo txt, o qual contém o conteúdo do site em HTML, assim a Inteligência Artificíal poderá realizar a analise à procura por um termo de injuria racial.

A flag, vai ser o meio para identificar se o site está bloqueado ou não. Em urlWeb, como o próprio nome diz, é gravado a url do site.

A segunda parte é a do usuário, engloba informações da instiruição, pessoais e as permissões que o usuário possui dentro do sistema.

Figura 6 - Diagrama do Modelo lógico

A ??, representa o diagrama do modelo lógico do sistema. A diferença significativa deste para o conceitual, é a inclusão dos tipos de dados dos atributos, encarregados por definir o formato dos dados registrados das colunas da tabela.

Figura 7 - Diagrama do Modelo Físico

```
CREATE DATABASE if not exists resistBD;
USE resistBD;
CREATE TABLE if not exists indexacoes(
    id_index INT AUTO_INCREMENT,
   pathLocal LONGTEXT,
    flag BOOLEAN DEFAULT TRUE,
    urlWeb LONGTEXT,
    PRIMARY KEY(id_index)
);
CREATE TABLE if not exists termos(
    id_termo INT AUTO_INCREMENT,
    termo VARCHAR(50),
    PRIMARY KEY (id_termo)
);
CREATE TABLE if not exists indexXtermos(
    id_indexXtermo INT AUTO_INCREMENT,
    id_index INT,
    id_termo INT,
    PRIMARY KEY (id_indexXtermo),
    FOREIGN KEY (id_index) REFERENCES indexacoes(id_index),
    FOREIGN KEY (id_termo) REFERENCES termos(id_termo)
);
```

```
#-----
#Parte do Usuário
CREATE TABLE if not exists grupoPermissoes(
   idGrupo INT AUTO_INCREMENT,
   nomeGrupo VARCHAR(80),
   PRIMARY KEY (idGrupo)
);
CREATE TABLE if not exists permissoes(
   idPermissao INT AUTO_INCREMENT,
   nomePermissao VARCHAR(50),
   PRIMARY KEY (idPermissao)
);
CREATE TABLE if not exists grupoPerXpermissoes(
   idGrupoPerXpermissao INT AUTO_INCREMENT,
   idGrupo INT,
   idPermissao INT,
   PRIMARY KEY (idGrupoPerXpermissao),
   FOREIGN KEY (idGrupo) REFERENCES grupoPermissoes (idGrupo),
   FOREIGN KEY (idPermissao) REFERENCES permissoes (idPermissao)
);
CREATE TABLE if not exists funcionarios(
   idFuncionario INT AUTO_INCREMENT,
   foto LONGTEXT,
```

```
cpf VARCHAR(20),
    email VARCHAR (150),
    senha VARCHAR (250),
   rua VARCHAR(120),
   bairro VARCHAR(85),
   cidade VARCHAR(50),
    estado VARCHAR(2),
    idGrupo INT,
    PRIMARY KEY (idFuncionario),
   FOREIGN KEY (idGrupo) REFERENCES grupoPermissoes (idGrupo)
);
CREATE TABLE if not exists funcionariosXtelefones(
    idFuncXtelefone INT AUTO_INCREMENT,
    telefone VARCHAR (25),
    idFuncionario INT,
    PRIMARY KEY(idFuncXtelefone),
   FOREIGN KEY (idFuncionario) REFERENCES funcionarios (idFuncionario)
);
CREATE TABLE if not exists instituicoes(
    idInstituicao INT AUTO_INCREMENT,
    razaoSocial VARCHAR(200),
    cnpj VARCHAR(55),
    inscricaoEstadual VARCHAR(35),
    logradouro VARCHAR(220),
```

nome VARCHAR(200),

```
numero INT,
   bairro VARCHAR(85),
   cidade VARCHAR(50),
    estado VARCHAR(2),
   PRIMARY KEY (idInstituicao)
);
CREATE TABLE if not exists acessos(
    id_acesso INT AUTO_INCREMENT,
    data_hora DATETIME,
    ip_maquina VARCHAR(50),
    urlWeb LONGTEXT,
    id_index INT,
    idInstituicao INT,
    PRIMARY KEY (id_acesso),
    FOREIGN KEY(id_index) REFERENCES indexacoes(id_index),
    FOREIGN KEY (idInstituicao) REFERENCES instituicoes(idInstituicao)
);
CREATE TABLE if not exists funcXinstituicoes(
    idFuncXinstituicao INT AUTO_INCREMENT,
    idInstituicao INT,
    idFuncionario INT,
    PRIMARY KEY (idFuncXinstituicao),
    FOREIGN KEY (idInstituicao) REFERENCES instituicoes(idInstituicao),
    FOREIGN KEY (idFuncionario) REFERENCES funcionarios(idFuncionario)
);
```

```
CREATE TABLE if not exists instXtelefones(
    idInstXtelefone INT AUTO_INCREMENT,
    telefone VARCHAR (25),
    idInstituicao INT,
   PRIMARY KEY(idInstXtelefone),
   FOREIGN KEY (idInstituicao) REFERENCES instituicoes (idInstituicao)
);
CREATE TABLE if not exists instXemails(
    idInstXemail INT AUTO_INCREMENT,
   email VARCHAR (150),
    idInstituicao INT,
   PRIMARY KEY(idInstXemail),
   FOREIGN KEY (idInstituicao) REFERENCES instituicoes (idInstituicao)
);
INSERT INTO
   permissoes (nomePermissao)
VALUES
    ('Leitura'),
    ('Atualização'),
    ('Gerar Relatórios'),
    ('Exclusão de Usuários'),
    ('Inserção de Usuários'),
    ('Exclusão de Dados'),
    ('Configurar Permissões'),
```

```
('Gerar Exceções'),
    ('Visualização de Logs'),
    ('Exportação de Dados'),
    ('Importação de Dados');
INSERT INTO
    grupoPermissoes(nomeGrupo)
VALUES
    ('Super Administrador'),
    ('Analista de Dados Limitado'),
    ('Gerente de Dados'),
    ('Consultor de Dados');
-- Super Administrador
INSERT INTO grupoPerXpermissoes (idGrupo, idPermissao) VALUES
(1, 1),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(1, 6),
(1, 7),
(1, 8),
(1, 9),
(1, 10),
(1, 11);
```

O modelo físico garante maior eficiência no processamento de consultas e transações, ao alinhar a estrutura do banco às necessidades específicas da aplicação, minimizando redundâncias e maximizando a velocidade de acesso aos dados.

CANVAS

O modelo de negócio Canvas na **??**, visa criar o sistema ReSist, com o uso da Inteligência Artificial(IA) para detectar e auxiliar no combate à discriminação online em ambientes educacionais.

A proposta valor é centrada na identificação com precisão de injúria racial em textos diversos, o qual proporciona um ambiente mais inclusivo e seguro para a educação. A plataforma será divulgada por meio de website, redes sociais, email, marketing e telefone.

O relacionamento com os clientes ira ser preservado através de suporte técnico, treinamento na utilização do sistema, e feedback.

As atividades-chaves incluem desenvolver o sistema, o monitoramento do banco de dados, treinamento do sistema, marketing e vendas. Os recursos-chaves são a equipe de desenvolvimento e analistas de dados, algoritmos de IA e infraestrutura robusta de TI.

Parcerias serão estabelecidas com instituições de ensino, desenvolvedores de software e especialistas em direitos humanos e a dicriminação.

A estrutura de custos envolve desenvolvimento do sistema, custos operacionais, marketing e vendas, enquanto a receita será gerada por meio de assinaturas mensais ou anuais pagas pelas instituições de ensino e outras organizações que utilizarem a plataforma.

Fonte: Autoria prória (2024)

DIAGRAMA DE REDES

O diagrama de rede ?? é composto por um esquema que inclui uma rede interna, Firewall (IA), um servidor proxy (squid), um modem (roteador), e a rede externa (internet). A rede interna é formada por máquinas (computadores)utilizadas por usuários (discentes e/ ou docentes), sendo assim, para a rede interna realizar a sua comunicação com a rede externa (internet), ela deve passar por outros processos que irão proteger os dados dos usuários e manter outros quesitos de segurança para os mesmos.

O firewall é a etapa do diagrama de redes responsável por filtrar conteúdos indesejados, também sendo capaz de bloquear ataques direcionados a rede interna. O servidor é responsável por estabelecer a comunicação segura e mascarar o IP interno, para o acesso com a rede externa; além disso, o Proxy é utilizado para armazenar os acessos e informações gerais do usuário na rede externa.

O moden, também conhecido por Roteador, tem como serventia a passagem da internet, estabelecer sua conexão, como se fosse o "Porto" da internet.

Por fim a rede externa, também conhecida como internet, é a ferramenta aonde usuários tem a possibilidade de se conectar e estabelecer uma comunicação de forma remota com outro usuário.

Sendo assim, o diagrama de redes traça um caminho de como seria a comunicação entre a rede interna com a rede externa, passando por todos os processos necessários para essa conexão.

Figura 9 - Diagrama de redes

Fonte: Autoria prória (2024)

UI DE ALTA FIDELIDADE

DASHBOARD

A ??, ilustra a tela inicial, tratando-se de um *Dashboard* que proporciona um resumo das informações coletadas, como a atividade recente, que apresenta todas as atualizações do ambiente; visão geral dos bloqueios, trazendo a quantidade de bloqueios e a evolução em relação ao mês anterior; nível de incidência por laboratório (no exemplo, tratam-se de laboratórios de informática em um ambiente escolar); histórico por data, e os laboratórios que estão ativos no momento.

Figura 10 - Dashboard

Fonte: Autoria Própria (2024)

ESTATÍSTICAS

A ?? exibe a aba de estatísticas, onde há uma visualização aprofundada dos dados de bloqueio, exibindo a quantidade de bloqueios em dispositivos móveis e *Desktop*, uma comparação do aumento ou diminuição mês-a-mês, e alguns dos últimos bloqueios, realizando a distinção entre os automáticos e manuais.

Figura 11 – Estatísticas

BLOQUEIOS

A página bloqueios **??**, representada na figura 3, exibe uma visão aprofundada sobre cada bloqueio realizado. É exibida uma tabela com a URL bloqueada, a data do bloqueio e se foi manual ou automático. A página disponibiliza ainda uma funcionalidade para bloquear um *Website* manualmente, especificando o motivo e período do bloqueio. É possível editar os bloqueios já realizados, para caso seja necessário cancelá-los.

Figura 12 - Bloqueios

Fonte: Autoria Própria (2024)

USUÁRIOS

Na ??, a página de gerenciamento dos usuários exibe todos os perfis cadastrados no ambiente, com nome completo, cargos de cada um, email e disponibilidade. Além das opções de cadastrar e alterar informações dos usuários.

Figura 13 - Usuários

Portanto, por meio da exibição dos dados coletados, pode se proporcionar uma visão clara dos elementos centrais do sistema e uma compreensão visual fiel da funcionalidade e interatividade presente no sistema, a fim de reforçar seu papel como uma ferramenta para a identificação e combate a discriminação em ambientes educacionais, tanto no ambiente Web, como fora. Vale ressaltar que todas as telas foram criadas com o intuito de concentrar os mínimos detalhes de forma concisa para que o usuário possa ter acesso as informações necessárias de forma concentrada,

SCRUM E KANBAN

O Scrum é um framework ágil focado na gestão eficiente de projetos, especialmente no desenvolvimento de software. Ele organiza o trabalho em ciclos curtos chamados sprints, que variam de 2 a 4 semanas, onde a equipe entrega incrementos do produto de forma contínua. A flexibilidade do Scrum permite que a equipe se adapte rapidamente a mudanças, com foco em iterações rápidas, comunicação constante e envolvimento direto do cliente, garantindo que as soluções atendam às necessidades reais do projeto. O Scrum enfatiza a autogestão da equipe e a transparência do processo, o que facilita a identificação e correção de problemas rapidamente. A seguir três fases do kanban durante uma semana: Na ??, há quatro tarefas para começar; já na ??, a tarefa "Banner"está em progresso; na ?? já não há mais tarefas para serem iniciadas, todas foram finalizadas apenas "LaTex - artigo"esta em progresso.

Figura 14 - 1º visão

Figura 15 – 2º visão

Fonte: Autoria Própria (2024)

Figura 16 - 3º visão

