Op-Amp

1. Observe the following circuit.

Calculate the value of Vo. Repeat the problem with V+=1 mV and V-=0.2 mV. Consider A=2105.

2. Draw output Vo for the following op-amp circuit.

VCC = 15V = -VEE, Vref = 1.5V, Vi is a 6V p-p triangular signal as shown below.

3. Design a circuit using **op-amp** that has the voltage transfer characteristics as shown in the figure below. $v_O(V)$ is the **output** voltage and $v_I(V)$ is the **input voltage**.

5.

A valve is used to release (when valve is OPEN,) or maintain (when valve is CLOSED,) water pressure in a water tank. The valve operates on **ACTIVE LOW** logic. (i.e., the valve is OPENED when given a LOW voltage of 1 V, but remains CLOSED when provided a HIGH voltage of 6 V.)

A pressure sensor is installed in the water tank that outputs a voltage linearly proportional to pressure, as shown in the table below.

At 0.5 atm	At 1 atm	At 1.5 atm
pressure	pressure	pressure
$v_{0.5 atm} = 0.5 V$	$v_{1 atm} = 3 V$	$v_{1.5 atm} = 5.5 V$

The pressure in the water tank can be measured by the formula $P = h\rho g$, where P, (in **Pascals (Pa)** unit) is the water pressure, h is the height of water in the tank (in *metres*), $\rho (= 1000 \ kgm^{-3})$ is the density of water and g is the acceleration due to gravity (in ms^{-2}).

[1 atm = 101325 Pa]

- i.**Design** a circuit using Op-Amp comparator to automatically turn OPEN the valve if water level exceeds 10 m.
- ii. Draw the voltage transfer characteristics (VTC) of the designed Op-Amp.

Figure 1 (a) Figure 1 (b)

- (a) Analyze the circuit drawn in Fig. 1(a) and determine the voltage values at the inverting and non-inverting nodes (V_- and V_+). [0.5+0.5]
- (b) **Identify** the relation between I_1 and I_2 . [1]
- (c) Analyze the circuit to derive the expression of output voltage V_0 . You have to **show** all the steps. [3]
- (d) Now consider the input wave v_1 given in Fig. 1(b). For circuit parameters $R = 10 \text{ k}\Omega$ and $C = 0.1 \mu\text{F}$, **determine** the output voltage at t = 1 ms. [1]
- (e) **Design** a circuit using Op-Amps to implement the following expression: $f = \frac{1}{4}x + 7y \frac{d}{dt}z$ [4]

7.

Figure 1

- (a) Analyze the circuit drawn in Fig. 1 and determine the voltage values at the inverting and non-inverting nodes (V_{-} and V_{+}). [0.5+0.5]
- (b) **Identify** and briefly explain the relation between i_2 and i_D . [1.5]
- (c) Analyze the circuit to derive the expression of output voltage V_0 . You have to **show** all the steps. [3.5]
- (d) **Design** a circuit using Op-Amps to implement the following expression: [4]

- (a) Analyze the circuit above to find an expression of f in terms of inputs x and y. Also, determine the intermediate outputs v_{I_1} , v_{I_2} , and v_{I_3} as denoted in the circuit. [4]
- (b) Draw the circuit of an inverting amplifier and design it in such a way that the voltage gain, k = −4. (i.e., find the values of R₁ and R₂).
 [3]
- (c) **Show** the input and output waveforms of the inverting amplifier of part (b) assuming a sinusoidal input of 0.5 V amplitude. **Calculate** the amplitude of the output. [2]
- (d) Consider the inverting amplifier of part (b) again. Assume the input voltage can provide a <u>maximum</u> current of 0.5 μA. Determine the design changes required, if any, for the circuit to work. [1]

(a) **Design** a circuit using **Op-Amp comparator** to automatically turn ON (or OFF) the street lights. For this, you have a lux sensor installed on top of the street lights (facing above) that outputs a voltage proportional to amount of natural light, as listed below:

$$v_{\text{night, 0 lux}} = 1 \text{ V} \quad v_{\text{dusk, 20 lux}} = 2 \text{ V} \quad v_{\text{dawn, 80 lux}} = 3 \text{ V}$$

The lights require 20 V and should be ON if the amount of light goes below 20 lux (at dusk). [3]

- (b) **Design** a circuit using Op-Amp to implement the expression: $f = -3\frac{dx}{dt} + 2\exp y + 4z$ [4]
- (c) Analyze the circuit below to find y as a function of x. For the diode, $I_SR=1$ and $V_T=1$. [3]

10. **Deduce** the expression for output, V_o from the circuit above

- 11. Design a circuit using op-amps to implement y=7x by an
 - (a) Inverting amplifier
 - (b) Non-inverting amplifier

- (a) **Design** an inverting amplifier (i.e., find the values of R_1 and R_2 of the circuit shown in the Figure above) in such a way that the voltage gain is -5.
- (b) Consider the circuit you drew in (a) again. Assume the input $v_i = 0.1 \sin \omega t$ (V) has a maximum current rating of 5 μ A. What design changes, if any, are required for this input, if the voltage gain remains the same?
- (c) **Draw** the input and output waveforms of the circuit you designed in (c).
 - Analyze the following circuit and derive the expression for the output voltage (V_{out}) in terms of the inputs. If V_1 =1 V, V_2 = 2V, and V_3 = 1.5 V, and all the resistors have equal values, calculate V_{out} .

13. **Analyze** the following circuit to find an expression of f in terms of x, y, and z.

14. Consider the Ideal Op-Amp and find the value of Vo.

(a) Analyze the circuit in Fig 3(a) to find an expression of f in terms of x, y, and z. [4]

- (b) **Design** an inverting amplifier (i.e., find the values of R_1 and R_2 of the circuit shown in Fig. 3(b)) in such a way that the voltage gain is -4.
- (c) **Draw** the input and output waveforms of the circuit you designed in (b). [2]
- (d) Consider the circuit in Figure 3(b) again. Assume the inpurt $v_i = 0.1 \sin \omega t$ (V) has a maximum current rating of 4 μ A. What design changes, if any, is required for this input, if the voltage gain remains the same?