Rev. Lev	vel ECO	Approved By	Date	Revision Description
Rev 9		ECO	09/17/2019	

System Level Indiana-C

Engineering Requirements Specification

Document 099-16082 Revision 9 September 17, 2019

Authors:

Likai Li

likai_li@apple.com

Table of Contents

Change History

About This Document	
Audience	5
Related Documents	6
Part Identification	
Part Numbers	7
Mechanical and Cosmetic IQC	
IQC Cosmetic Inspection Criteria	8
System Factory Functional Test Specifications	
IQC/FATP/DQE Test Parameters	10
IQC/FATP/DQE Imaging Test Coverage	11
Black Level Offset Calculation for IN Sensor	14
Sensor NVM Specification	
Overview	15
Indiana-A NVM Map	15
BCMS (Unique Serial Number) from NVM contents	18
BCMB Definition	18
NVM Integrity Check	20

Appendix A - Base-34 Conversion

Appendix B - Serial Number Checksum Code

Appendix C - Cosmetic Defect Classification

Change History

Version	Description	Date	Ву
1	- Copied from IN-A - Added GCOL testing	04/05/19	Likai Li
2	- Update GCOL PFL trends	04/05/19	Likai Li
3	- Updated NVM plant code	04/25/19	Likai Li
4	Updated black level offset commandUpdated Grayspot image region	05/02/19	Likai Li
5	 Cleaned up unused ERS trends Added notes for SFR delta Added PFL trends Added GCOL trends Update EEEER table and NVM check 	06/18/19	Likai Li
6	- Added PFL testing coverage	06/21/19	Likai Li
7	Updated GCOL AF pos specUpdated EEEER table for new configs	06/28/19	Likai Li
8	Updated rotation spec in IQCUpdated PFL spec in CCB	07/11/19	Likai Li
9	 Update AF Pos spec Updated grayspot crop region Rolled back PFL spec in CCB Updated EEEER table and NVM check for EVT 	09/17/19	Likai Li

About This Document

This document describes the Rear Camera System used in the Apple Indiana-A project. The contents of this Engineering Requirements Specification, including any Apple-Vendor project-specific information, are **Apple Confidential Information** subject to the non- disclosure and use restrictions set forth in the Confidentiality Agreement between Vendor and Apple.

No part of this specification and its contents may be shared, distributed or disclosed, in any form, to any third party without explicit written agreement from the Apple DRI. This restriction includes the sharing of information by Vendor to its suppliers or customers without the prior written consent by Apple. Where possible, Apple will always try to directly distribute the specifications to the Vendor's customers or suppliers who need them as this is the preferred means of document distribution.

Additionally, requests from a Vendor's customers for information or for changes related to any specifications or process items should be referred to the appropriate Apple DRI for a response. Any audit access requests by the Vendor's customers in the Apple supply chain related to project-specific specifications or processes should be refused to ensure protection of Apple Confidential Information. However, the Vendor's customers can request, through the Apple DRI, that these specifications or process be audited by Apple personnel.

If any request is made by a third party contrary to the above requirements, such request should be immediately escalated to the appropriate Apple DRI for review and resolution. For the purposes of this specification, Vendor is defined as the company supplying the part/ service specified by this document.

Audience

This guide is for Apple internal use only. The people who benefit from this guide are:

- · Engineers who are designing components of the camera system.
- Engineers who are designing electrical or mechanical parts interfacing to or related to the camera system.
- · Engineers who are responsible for the testing and validation of the camera system.

Related Documents

Table 1: Related Documents

Specification	Description
Indiana Camera Documents	613-11183: IN Module MCO
	056-08304: MCO, FLEX, IN-C
	12.0cm Matrix SFR Target Ver.K.1.3 - 73.03° DFOV
	55.0cm Matrix SFR Target Ver.K.1.2 - 73.926° DFOV
	12.0cm Circle SFR Target Ver.IN-A C5.0 - 73.03° DFOV
	55.0cm Circle SFR Target Ver.IN-A C5.0 - 73.926° DFOV
	099-12589: ERS,Cosmetic Criteria,RCAM,IN

Part Identification

Part Numbers

APN	Integ	Plant Code	Substrate-Actua- tor-Lens-Flex	NVM Substrate [0x07]	NVM Actuator [0x09]	NVM Lens [0x0A]	NVM Flex [0x0E]	EEEER	Config
651-0	0 . 0.7	Kyocera-ALPS- Largan-Fujikura	1	2	1	8	LV401	C3001 C3003 C3091 C3092 C3093 C3094	
0202	LGIT	DN8	Kyocera-ALPS- Largan-Mektec	1	2	1	2	LV402	C3002 C3040 C3095 C3096 C3097 C3098

If for any reason, vendor ships parts that come out of a new location, or a configuration different from that listed above, a new Plant Code and EEEER config code will need to be provided by Apple. Changes may not be made without these new codes.

The Plant Code and EEEER code shall be used to determine a unique serial number for each part, which shall be in the form:

PPPYWWDSSSSEEERV

Where PPP is the plant code, YWWD is the date of manufacture at supplier, SSSS is the sequence number, and EEEER is the config code, and V is the SN checksum.

Mechanical and Cosmetic IQC

IQC Cosmetic Inspection Criteria

No cosmetic defects that could affect functionality or exceed MCO dimensions are allowed.

Examples:

- a. Contamination on lens
- b. Digs or nicks in FPC that could have caused a crack in a trace
- c. B2B pin or connector deformation which could prevent good electrical connection.
- d. Gap between FPC and Stiffener

Detailed cosmetic specs are in cosmetic inspection criteria document.

System Factory Functional Test Specifications

The following are system level factory test specifications for the Indiana-A Rear Camera. All test items below must be performed on 100% of systems.

There are two types of tests required: NVM integrity check, imaging tests. The NVM integrity check should be performed at IQC and FATP to confirm values programmed in the NVM are within acceptable limits. The imaging tests should be performed at IQC and FATP in order to exercise the imaging performance of the camera module in system.

For imaging tests, the hxisp command line tool should be used to capture images. Images should be captured in 420 format, with ISP sharpening disabled. Temporal Noise Reduction through frame averaging may be applied for SFR image

IQC/FATP/DQE Test Parameters

Test Type	Input	Value	Notes
	ROI Size	40 x 30	W x H, Pixels
Dlamiak	Inner [W H]	[50% 50%]	Inner %
Blemish	Normalization	N/A	
	Normalization Target	N/A	
	Subsample Rate	16, 16	Row, Col
Cravanat	Filter Width	20 x 20	Pixels
Grayspot	Col/Row MaxRateDiff	Max 0.7	
	Col/Row MaxRate	Max 1.0	
Color	ROI Size	108 x 108	W x H, Pixels
Uniformity	Border Size	TBD	Pixels
	Block Size	12 x 9	W x H, Pixels
Relative Uniformity	Border Size	5	Blocks
	Crop ROIs	0	
Relative Illumination	Block Size	40 x 30	W x H, Pixels
MTF	ROI Size	101 x 101	W x H, Pixels
IVIIF	Frame Averaging	10 frames	TNR
LCB	ROI Size	N/A	W x H, Pixels
LOD	Filter Width	N/A	Pixels
CTF	ROI Size	101 x 101	W x H, Pixels
Row Noise	Periodicity Weighting	0.5	-

IQC/FATP/DQE Imaging Test Coverage

140/17111	1031	Coverage							
Test Type	Test Item	Units	IC			TP	DC		Notes
1001 1750			Min	Max	Min	Max	Min	Max	110100
	Max Ratio	%	0	23	0	24	0	24	
	Count	Count	0	2	0	2	0	2	
	Region_Center	Count	0	0	0	0	0	0	
Blemish	Region_Outer	Count	0	2	0	2	0	2	
	MaxSizeCenter	Count	0	0	0	0	0	0	
	MaxSizeOuter	Pixels	0	1	0	1	0	1	
	Luminance	DN	50	200	50	200	50	200	
Grayspot	Gray Spot Cluster Count	Count	0	0	0	0	0	0	IQC crop to 4096x3072 FATP crop to 4032x3024
Color Uniformity	CU	%	0	8.5	0	9	0	9	
	Group Count	Count	0	0	0	0	0	0	
Relative	RU Center	%	0	10	0	10	0	10	
Uniformity	RU Edge	%	0	10	0	10	0	10	
	RU Corner	%	0	10	0	10	0	10	
Relative	Relative Illumination	-	8.0	1	0.78	1	0.78	1	
Illumination	RI Center X	-	-1	1	-1	1	-1	1	
mummation	RI Center Y	-	-1	1	-1	1	-1	1	
	Max Rate Row Y	DN	0	0.2	0	0.2	0	0.2	
	Max Rate Col Y	DN	0	0.2	0	0.2	0	0.2	
Defective	Max Rate Row Cr	DN	0	0.2	0	0.2	0	0.2	
Line	Max Rate Col Cr	DN	0	0.2	0	0.2	0	0.2	
"linetest"	Max Rate Row Cb	DN	0	0.2	0	0.2	0	0.2	
	Max Rate Col Cb	DN	0	0.2	0	0.2	0	0.2	
	Max Rate Row Y	DN	0	6	0	6	0	6	
	Max Rate Col Y	DN	0	4	0	4	0	4	
Defective	Max Rate Row Cr	DN	0	0.6	0	0.6	0	0.6	
Line (DARK)	Max Rate Col Cr	DN	0	0.2	0	0.2	0	0.2	
,	Max Rate Row Cb	DN	0	0.6	0	0.6	0	0.6	
	Max Rate Col Cb	DN	0	0.2	0	0.2	0	0.2	
	TempRrR_Total	ratio	14	-	16	-	16	_	Apply settings: LCD
Row Noise	RnR Summation	ratio	13		15	_	15	_	On, PSRR On. RnR
Ratio	RnR_Periodicity	ratio	-	-	-	-	-	_	calculated on Gr (G1) channel only.
	Luminance	DN	50	200	50	200	50	200	(0.1) 0.10.11.01
	X Tilt	Deg.	-1.4	1.4	-2.3	2.3	-2.3	2.3	
	Y Tilt	Deg.	-1.4	1.4	-2.5	2.5	-2.5	2.5	
	Total Tilt	Deg.	_	2.5	_	3.3	_	3.3	
	Rotation	Deg.	-1.0	1.0	-2.5	2.5	-2.5	2.5	
	DFOV	Deg.	71	75	71	75	71	75	
	12cm AFPos GCOL		158	238	156	240	148	250	
	12cm zPos	um			ata co				GCOL
SFR 12cm	12cm zDeltaPos	um			ata co	llectio	n		
(70lp/mm)	Circle Center SFR	N/A	0.70	1	0.68	1	0.58	1	
	Circle 0.3F SFR sag/tan	N/A	0.60	1	0.58	1	0.49	1	15% Degradation
	Circle 0.6F SFR sag/tan	N/A	0.36	1	0.34	1	0.29	1	
	Circle 0.85F SFR tan	N/A	0.32	1	0.3	1	-	1	
	Circle SFR 0.3F Delta	N/A	-	-	-	-	-	_	
	Circle SFR 0.6F Delta	N/A	-	-	-	-	-	-	

Toot Twee	Toot Item	Lloite	IC	C	FA	TP	DC	QE _	Notes
Test Type	Test Item	Units	Min	Max	Min	Max	Min	Max	Notes
	Circle SFR 0.85F Delta	N/A	-	-	-	-	-	-	
	Luminance	DN	50	200	50	200	50	200	
	X Tilt	Deg.	-1.3	1.3	-1.7	1.7	-1.7	1.7	
	Y Tilt	Deg.	-1.5	1.5	-2.2	2.2	-2.2	2.2	
	Total Tilt	Deg.	-	2.4	-	3.1	-	3.1	
	Rotation	Deg.	-1.0	1.0	-2.0	2.0	-2.0	2.0	
	DFOV	Deg.	72	76	72	76	72	76	
SFR 55cm	55cm AFPos GCOL	-	65	125	63	127	50	150	GCOL
(70lp/mm)	55cm zPos	um			ata co	llectio	n		GCOL
(7 OID/11111)	Circle Center SFR	N/A	0.72	1	0.7	1	0.60	1	
	Circle 0.3F SFR sag/tan	N/A	0.56	1	0.54	1	0.46	1	15% Degradation
	Circle 0.6F SFR sag/tan	N/A	0.47	1	0.45	1	0.38	1	1070 Degradation
	Circle 0.85F SFR tan	N/A	0.38	1	0.36	1	0.31	1	
	Circle SFR 0.3F Delta	N/A	-	0.2	-	0.23	-	0.27	Delta is based only
	Circle SFR 0.6F Delta	N/A	-	0.20	-	0.23	-	0.33	defined ROI listed
	Circle SFR 0.85F Delta	N/A	-	0.35	-	0.38	-	0.48	in chart below
Midgard	12cm zPos_FaceUp	um	-	-	Data collection		n	GCOL	
iviiagara	12cm zDeltaPos_FaceUp	um	-	-	Data collection		4002		
	PFL_error_um_12cm	um	-	-	-20	20	-27	27	
	PFL_error_um_55cm	um	-	-	-20	20	-27	27	
	GCOL_12cm_temp	С	-	-	18	55	18	55	
	GCOL_55cm_temp	С	-	-	18	55	18	55	
	12cm_Ze_top_linear_margin	um	-	-	5	-	5	-	
	55cm_Ze_linear_margin	um	-	-		ata co	llectio	n	
	12cm_EFL	mm	-	-		ata co			Temperate
	55cm_EFL	mm	-	-		ata co			corrected
	12cm_Bz	DAC	-	-		ata co			
PFL	55cm_Bz	DAC	-	-		ata co	llectio	n	
	12cm_PFL_expected	mm	-	-		ata co			
	55cm_PFL_expected	mm	-	-	С	ata co	llectio	n	
	12cm_di	mm	-	-		ata co	llectio	n	
	55cm_di	mm	-	-		ata co	llectio	n	
	12cm_do	mm	-	-		ata co			GCOL
	55cm_do	mm	-	-		ata co			GOOL
	12cm_do_inverse	1/mm	-	-		ata co			
	55cm_do_inverse	1/mm	-	-		ata co			
	12cm_do_inverse_err	mm	-	-		ata co			GCOL vs expected
	55cm_do_inverse_err	mm	-	-		ata co	llectio	n	•
Black Level Offset	blackLevelOffset back	-	> -1	< 1	> -1	< 1	> -1	< 1	see section "Black Level Offset"

	F1	F2	F3	F4
Center	137	139	140	138
30F tan	79	87	187	195
30F sag	82	89	189	198
60F tan	46	66	210	230
60F sag	48	67	211	232
85F tan	1	14	263	276

 $0.3F \ Delta = Diff((30F1_tan+30F1_sag)/2, (30F2_tan+30F2_sag)/2, (30F3_tan+30F3_sag)/2, (30F4_tan+30F4_sag)/2) \\ 0.6F \ Delta = Diff((60F1_tan+60F1_sag)/2, (60F2_tan+60F2_sag)/2, (60F3_tan+60F3_sag)/2, (60F4_tan+60F4_sag)/2) \\ 0.85F \ Delta = Diff(85F1_tan, 85F2_tan, 85F3_tan, 85F4_tan)$

Black Level Offset Calculation for IN Sensor

Excerpt from Ashirwad B on test sequence:

The suggested sequence of events to implement Black Level Offset Test

- turn on camera
- enable streaming
- do 2-byte read of 0x0400 for IN sensor

A sample code in h11isp is:

```
on
v
start 0 119 0
msecdelay 200
i2cread 4 0x10 0x0400 2 2
q
```

Once the 0x0400 2-byte value is available, do the following:

```
signBit = 0x0400[15]
msb = 0x0400[14:8]
lsb = 0x0400[7:0]
```

BlackLevelOffset = [-1*signBit*2^15 + hex2dec(msb)*2^8 + hex2dec(lsb)]/32

Any unit which violates -1 < BlackLevelOffset < 1 range should be screened.

Sensor NVM Specification

Overview

This section outlines the Sensor NVM map, component parameters, checksums, and integrity check requirements.

Indiana-A NVM Map

C2.0_IN_NVM_Map

NVM Component Parameters:

Actuator:

NVM version: Defined by Apple, when this NVM table changed, increase the version by

1. See VSR (Vendor Specific Requirements) for details.

Camera Project: Unique project identifier. See VSR for details.

Integrator: Integrator ID. Assigned by Apple. See VSR details.

Day: Day of week as digital value of 1 through 7 with 1 being Monday, 7 being

Sunday.

Work Week: Digital value of 1 through 53.

Year: Last digit of calendar year (9 for 2009, 0 for 2010, ...)

Sequence Number: Module Sequence Number. Each day the number will start at 0 and

increment by 1 digital count for each module. At the exact time the day field changes the sequence number will reset to 0. So a combination of day, week, year, and Sequence Number results in a uniquely identifiable module. The Sequence Number is synchronized with the serial number in the barcode by the method of translation from 4 digit base 34 number to a 3 byte number based on the example in Table 18. Base 34 consists of the digits 0 through 9 and the letters "A" through "Z," excluding the letters "I" and "O" because of their similarity to the digits 1 and 0.

Actuator ID. Assigned by Apple. See VSR (vendor specific requirement)

document for details.

Lens: Lens ID. Assigned by Apple. See VSR (vendor specific requirement)

document for details.

Driver: AF driver ASIC. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

IRCF: IR-cut filter configs. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

Substrate: Substrate design ID. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

Sensor: Sensor ID. Assigned by Apple. See VSR (vendor specific requirement)

document for details.

Flex: Flex design ID. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

Stiffener: Stiffener design ID. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

Trim: Alignment Trim ID. Assigned by Apple. See VSR (vendor specific

requirement) document for details.

DoE Lookup: Design of Experiment tracking. Assigned by Apple. See VSR (vendor

specific requirement) document for details.

Process Control Plan Revision: Control plan revision tracking. Any updates to process control plan made

to a config to be updated. Control plan revision tracking required

Camera Build: Module camera build stage. Used for tracking module maturity. Assigned

by Apple. See VSR (vendor specific requirement) document for details.

Config Number: Module build config number. Assigned by Apple. See build matrix for

details

Test Station 1-5 ID: Integrator test station ID tracking. The test station ID of all stations used

to test a module shall be programmed. See VSR (vendor specific re-

quirement) document for details.

Test Software Revision: Test software revision tracking. Any updates to process control plan

made to a config to be updated. Control plan revision tracking required

Integrator NVM Checksum: Checksum to ensure Integrator NVM is intact. Checksum = (256 -

(sum(0x00~0x17) & 0x0FF)) & 0x0FF Full byte.

AF Cal Checksum: Checksum to ensure AF calibration NVM is intact. Checksum = (256 -

(sum(0x20~0x2E) & 0x0FF)) & 0x0FF Full byte.

Color Cal R/G, B/G

Light Source 1/2: 12-bit R/G, B/G color ratios for light source 1 and 2. (lower 11 bits of

fraction). Refer to Appendix F for color calibration details.

Color Calibration Checksum: Checksum to ensure color calibration is intact. Checksum = (256 -

(sum(0x30~0x3E) & 0x0FF)) & 0x0FF Full byte.

VCM Barcode: 16-digit barcode shall be scanned and decoded into ASCII format

according to the table 22.

Waiver Field: Reserved for designating property not meeting full spec. Assigned by

Apple. See VSR (vendor specific requirement) document for details.

X, Y center offset: OCX and OCY programmed. Negative numbers are programmed as

two's complement.

Color Shading Valid: To indicate whether Color Shading Calibration is present and verified. See

VSR for details.

Color Shading Checksum: Checksum to ensure Color Shading NVM is intact. Checksum = (256 -

(sum(0x63~0x2F6) & 0x0FF)) & 0x0FF. Full byte.

BCMS (Unique Serial Number) from NVM contents

INFO TYPE	Plant Code	Date Code of Manufacture at Supplier	Sequence Number	Config Code	Checksum
Format	PPP	YWWD	SSSS	EEEER	X
Number of Character s	3	4	4	5	1
	PPP = Vendor and Plant/Factory Location: The code indicating the Image Sensor	Y = Year: 2 = 2012 3 = 2013 5 = 2015 etc	SSSS = 4 character Sequence Number (base-34)	EEEE = Module Config Codes The code indicating the Image Sensor Module Lens, and	X = Checksum See Appendix N for checksum calculation
Explanatio n	Module vendor and where it is manufactured. This code will be assigned to the Image Module vendor by Apple.	WW = Week of Manufacture: 01 to 53 weeks	Each module must have a unique sequence number for each plant and day	Sensor This code will be assigned to the Vendor by Apple.	method
		D = Day Days 1 to 7 with 1 = Monday	This allows for 34 ⁴ = 1,336,336 units per day per plant	R is revision assigned by Apple in VSR.	
Example	XYZ605200Z3A2341V				
	XYZ	1052	00Z3	A2341	v
Example Meaning	Built at Vendor XYZ Inc. Singapore Plant	Manufactured on Tuesday of the 5 th week of 2011	Sequence # 00Z3	Apple provided	SN checksum

BCMB Definition

BCMB is composed of the Bytes 0/0x00 to 0/0x17 inclusive of the NVM.

ВСМВ	Starting	Ending	Character Length
Byte Index	0	23	
Byte Address	0x00	0x17	48

NVM Checksums

The following calculations should be used to generate and verify NVM checksums. Checksums should be verified at the final test station on the production line as well as at OQC.

Integrator NVM Checksum [7:0]

checksum = (256 - (sum(0x00~0x17) & 0xFF)) & 0xFF	generate checksum
$sum(0x00\sim0x17) != 0$	verify nvm exists
(sum(0x00~0x17, 0x1F)) && 0xFF == 0	verify checksum

Color Cal Checksum [7:0]

Color Shading Checksum [7:0]

```
checksum = (256 - (sum(0x63\sim0x2F6) \& 0x0FF)) \& 0x0FF generate

sum(0x63\sim0x2F7) != 0 verify nvm exists

(sum(0x63\sim0x2F7) \& 0x0FF) \& 0x0FF == 0 verify checksum
```

Process Checksum [7:0]

checksum = (256 - (sum(0x3FA~0x45D) & 0x0FF)) & 0x0FF	generate checksum
sum(0x3FA~0x45D) != 0	verify nvm exists
(sum(0x3FA~0x45D) & 0x0FF) & 0x0FF == 0	verify checksum

Override (AF/Color Cal) Checksum [7:0]

```
 checksum = (256 - (sum(0x40~0x4E) \& 0x0FF)) \& 0x0FF \qquad generate \\ sum(0x40~0x4F) != 0 \qquad verify nvm exists \\ (sum(0x40~0x4F) \& 0x0FF) \& 0x0FF == 0 \qquad verify checksum
```

NVM Override for AF Cal/Color Cal

In the event NVM data for AF calibration and/or color cal requires reprogramming, an additional bank of NVM registers is available. Approval to apply override on any finished goods requires approval by Apple and will be evaluated on a case-by-case basis.

Override is enabled if the Override Color Cal/AF status register is set to the following:

Override Color Cal/AF [1:0]	Value (bin)	Value (hex)
[0] Override Color Cal Fields, use 0x41-48 (logical OR mask)	0000 0001	0x01
[1] Override AF Cal parameters, use 0x49-4E (logical OR mask)	0000 0010	0x02

NVM Integrity Check

NVM Address	bits	Parameter	Min	Max	Notes	
0x22	[7:0]	Camera Project	34	34	Indiana	
0x23	[7:0]	Project Version	3	3	3: IN-C	
	[7:3]	Integrator	1	1		
0x24	[2:0]	Plant Code	0	0		
0x25	[7:0]	Camera Build	30	30		
0x26	[7:0]	Config Number	1	255		
	[7:5]	IRCF vendor	1	1		
0x32	[4:2]	IRCF Revision	1	1		
	[1:0]	IRCF Variant	0	0		
	[7:5]	Substrate vendor	1	1		
0x33	[4:2]	Substrate Revision	1	1		
	[1:0]	Substrate Variant	0	0		
	[7:5]	Sensor vendor	1	1		
0x34	[4:2]	Sensor Revision	1	1		
	[1:0]	Sensor Variant	0	0		
	[7:5]	Actuator vendor	2	2		
0x35	[4:2]	Actuator Revision	1	1		
	[1:0]	Actuator Variant	0	3		
	[7:5]	Lens vendor	1	1		
0x36	[4:2]	Lens Revision	1	1		
	[1:0]	Lens Variant	0	0		
	[7:5]	AF Driver vendor	2	2		
0x37	[4:2]	AF Driver Revision	1	1		
	[1:0]	AF Driver Variant	0	0		
0x38	[7:0]	Sphere Sensor	0	0	Not used	
0x39	[7:0]	APS Sensor	0	0	Not used	
0x3A	[7:3]	Flex vendor	2	8		
UNUM	[2:0]	Flex Variant	3	7		
0x3B	[7:3]	Stiffener vendor	6	6		
OXOD	[2:0]	Stiffener Variant	1	1		
0x3C	[7:0]	Trim vendor	0	0	Not used	
	Sensor NVM					
0x17DB-0x17DC	[15:0]	NVM_Sensor_SlaveAdd	> 0	-		
0x17E0 - 0x17E1	[15:0]	NVM_Sensor_Model	> 0	-		
0x17E2		NVM_Sensor_TOP	> 0	-	Data collect and record in test log	
0x17E8		NVM_Sensor_BOT	> 0	-	· · · · · · · · · · · · · · · · · · ·	
0x17EF		NVM_Sensor_TestRev	> 0	-		

Appendix A - Base-34 Conversion

The integer ID number from the NVM is synchronized with the serial number in the barcode by the method of translation from a 3 byte integer to a 4 digit base 34 number based on the example in the table below. Base 34 consists of the digits 0 through 9 and the letters "A" through "Z," excluding the letters "I" and "O" because of their similarity to the digits 1 and 0.

Table: NVM values for SN 'XSW341200Z3A2341'

Bank (dec)	Index	Byte (Hex)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0x000		0x56						
0	1	0x001		0x18						
0	2	0x002		0x2F						
0	3	0x003				0x	85			
0	4	0x004		0x28						
0	5	0x005		0xCC						
0	6	0x006		0x85						
0	7	0x007		0x1B						
0	8	0x008	0x3F							
0	9	0x009	0x8C							
0	10	0x00A	0x4B							

Table: Base-34 Conversion Example

Hex Value			Base-34 Value			
1015A0			STVA			
Digit Position	Digit	Value	Character Position	Character	Value	
1	1	1048576	1	S	1021904	
2	0	0	2	Т	31212	
3	1	4096	3	V	986	
4	5	1280	4	А	10	
5	Α	160				
6	0	0				
Sum in Decimal	1054112		Sum in Decimal	1054112		

```
% Base-34 SN conversion, from a 11-byte NVM value string to a 17-byte SN.
% Also verify the checksum in parallel.
% Matlab function
function [SN, CS] = NVM2SN(NVM_value_hex)
%input:
% 'NVM_value' 11 bytes hex string, 3 sets of base-34 numbers for
% PPPYWW, DSSSS and EEEERX separatedly (X is the checksum digit).
% output: 'SN' 17 bytes SN (PPPYWWDSSSSEEEERX) string. % CS: checksum. 'true' if checksum is correct, otherwise 'false'.
% Initial Author: Shizhe Shen
% Questions to: ryan_j_dunn@apple.com
% last update: Sep. 29, 2014 to reflect updated contact information
NVM length = length(NVM value hex);
% check the input string
if NVM_length ~= 22
  error('Please input an NVM Hex values of 22 digits (combining of 0 ~ 9, A ~ F)');
base34digits = '0123456789ABCDEFGHJKLMNPQRSTUVWXYZ';
% convert NVM value string to SN
dec_PPPYWW = hex2dec(NVM_value_hex(1:8));
dec_DSSSS = hex2dec(NVM_value_hex(9:14));
dec_EEEERX = hex2dec(NVM_value_hex(15:22));
SN = [];
for ii = 6:-1:1
  SN_temp = floor(dec_PPPYWW/34^(ii-1));
  dec_PPPYWW = dec_PPPYWW - SN_temp*34^(ii-1);
SN = [SN,base34digits(SN_temp+1)];
end
for ii = 5:-1:1
  SN_temp = floor(dec_DSSSS/34^(ii-1));
  dec_DSSSS = dec_DSSSS - SN_temp*34^(ii-1);
  SN = [SN,base34digits(SN temp+1)];
end
for ii = 6:-1:1
  SN_temp = floor(dec_EEEERX/34^(ii-1));
dec_EEEERX = dec_EEEERX - SN_temp*34^(ii-1);
  SN = [SN,base34digits(SN_temp+1)];
end
total = 0;
% calculate checksum and verify
for ii = 1:16
   % convert to base-34
  digit = SN(17-ii);
  foundDigit = strfind(base34digits,digit)-1;
   % checksum calculation
  value = 34 - foundDigit;
  if mod(ii,2) == 0
     total = total + value;
  else
     total = total + 3*value;
  end
X = base34 digits(mod(total,34)+1);
CS = (strcmp(X,upper(SN(17))));
```

Appendix B - Serial Number Checksum Code

The following code is written in C and consists of three (3) parts:

- a) Main.c is the parent level file for checksum script
- b) CheckDigitTest.h is a subroutine
- c) CheckDigitTest.c is the logic in C

Main.c

```
#include <stdio.h>
#include "CheckDigitTest.h"

int main (int argc, const char * argv[]) {
    if (argc == 1) {
        // No parameters, nothing to test
        puts("No serial numbers to verify");
    } while (--argc > 0) {
        char serialNumber[20]; // storage space for serial number
        if (strlen(*++argv) > 18) {
            printf("'%s' is too long to test", *argv);
            continue;
        }
        int sourceValid = verifyCheckDigit(*argv); // Test just verify routine
        strcpy(serialNumber, *argv);
        int destGenerated = addCheckDigit(serialNumber); // Add check digit
        int destValid = verifyCheckDigit(serialNumber); // This test should always succeed
        printf("%s (%d): %s (%d,%d)\n", *argv, sourceValid, serialNumber, destGenerated, destValid);
    }
    return 0;
}
```

CheckDigitTest.h

```
/*
 * CheckDigitTest.h * CheckDigitTest
 *
 * Copyright (c) 2005 Apple Computer Inc. All rights reserved.
 *
 */
#include <strings.h>
```

CheckDigitTest.c

```
/*
    * CheckDigitTest.c
    * CheckDigitTest
    *
    * Copyright (c) 2005 Apple Computer Inc. All rights reserved.
    *
    * */
#include "CheckDigitTest.h"
/*
    * Compute check digit for Apple serial number. Check digit is appended to end of passed in string.
    * @param serialNumber null terminated serial number to add check digit to. Must contain enough room to append another character.
    * @return true if serialNumber now has a valid check digit, false if check digit cannot be computed
    */
int addCheckDigit(char *serialNumber) {
        static char digits[] = "0123456789ABCDEFGHJKLMNPQRSTUVWXYZ";
        int length = strlen(serialNumber);
```

```
int radix = 34; // always base 34
int total = 0; // Start total at 0
int index; // loop counter
    // Loop over characters from right to left with the rightmost character being odd
    for (index = 1; index <= length; ++index) {</pre>
        char digit = serialNumber[length - index];
        char *foundDigit = strchr(digits, digit);
if (!foundDigit) { // Invalid digit, check digit can't be calculated
        int value = foundDigit - digits;
        if ((index & 1) == 1) { // odd digit, add 3 times value
            total += 3*value;
        } else { // even digit, just add value
            total += value;
    }
    // Compute and append check digit
    int checkValue = total % radix;
    char checkDigit = (checkValue > 0) ? digits[radix - checkValue] : '0';
    serialNumber[length] = checkDigit;
    serialNumber[length+1] = '\0';
    return 1;
}
* Verify check digit for Apple serial number.
 * @param serialNumber serial number to verify
 * @return true if serialNumber has a valid check digit, false otherwise
int verifyCheckDigit(const char *serialNumber) {
   static char digits[] = "0123456789ABCDEFGHJKLMNPQRSTUVWXYZ";
    int length = strlen(serialNumber);
    int radix = 34; // always base 34
    int total = 0; // Start total at 0
int index; // loop counter
    // Loop over characters from right to left with the rightmost character being even
    for (index = 0; index < length; ++index) {</pre>
        char digit = serialNumber[length - index - 1];
        char *foundDigit = strchr(digits, digit);
        if (!foundDigit) {
            // Invalid digit, check digit can't be calculated
        int value = foundDigit - digits;
        if ((index & 1) == 1) {
        // odd digit, add 3 times value
        total += 3*value;
        } else { // even digit, just add value
            total += value;
    // verify that total is an even multiple of radix
    return (total % radix) == 0;
}
```

Appendix C - Cosmetic Defect Classification

SIZE (mm ²)	DEFECT SHAPE	A+	Α	В	С	
0.02		2	2			
0.05		1		OK	ОК	
0.08		NG	1		OK	
0.1			NG	NG		
0.2					NG	
0.3						
0.5						
0.7						
1.0	•••••					
1.5	•••••					
2.0	•••••					
2.5	••••••					
3.0	•••••					
1. Inspection Methods (condition) 1.1 Light source: 500Lux - 700Lux across entire inspection area. 1.2 Viewing distance: 30cm +/- 2cm 1.3 Part rotation angle during inspection 1.3.1 Vertical rotatation angle: +/- 75' from normal (top to bottom) 1.3.2 Horizontal rotation angle: +/- 75' from normal (left to right) 1.4 Viewing time: For front and back surfaces: 4 to 5 seconds (each side 2 seconds) 2. Cosmetic 2.1 Defect types: scratch, molded internal contamination, black dot/line, air hole, pit, dent, crack, particle. 2.2 Defect count: parts classified as Class A+ are allowed up to have 2 defects of size 0.02mm maxOR 1 defect of size 0.05mm max, assuming defects spacing conforms with spacing prescribed in 2.3. the same 'OR' rule applies for Class A defects 2 accordingly. 2.3 Defect spacing 2.3.1 10mm minimum spacing between one black spot and one spot of another color OR two defects of similar appearance equal to or less than 0.02mm max for Class A+. Similar rule applies to Class A. 2.3.2 30mm minimum spacing between two black spots or two hairline scratches, or two other defects of similar appearance. 2.3.3 2.3.1 and 2.3.2 needs to meet Class A for each side (surface). 2.4 Unless otherwise specified in cosmetic part drawing, use 25% contrast standard for inspection of visible hairline scratch (<0.01mm depth), knit lines, gate blush, and stress whitening. Do not use 25% contrast standard for inspection of LCD area. 2.5 If surface contamination on parts cannot be cleaned, then part must be rejected. Clean with soft lint-free cloth and water only. 99% ethyl alcohol, isopropyl alcohol, and n-Heptane can be used on cosmetic surfaces if approved by Apple PD Engineering. Other cleaning agents must be approved by Apple PD Engineering. 3. All cosmetic surfaces must be completely free of any fingerprints, smudge, dirt, adhesive residue, water spots, water marks, streaks or any remnant of incomplete cleaning. Cosmetic surface cleanliness must be maintained in packout. 3. 25' cosmetic surface cleanliness must be maintained						
STA	NTRAST NDARD 5%	SCAL 20 3	E 0 40	50 (mi	m)	