The convex geometry of blind deconvolution and matrix completion

Dominik Stöger

USC

February 20, 2020

Joint work with Felix Krahmer (TUM)

Blind deconvolution in imaging

- Blind deconvolution ubiquituous in many applications:
 - Imaging: x signal, w blur

• (Circular) convolution of $\mathbf{w}, \mathbf{x} \in \mathbb{C}^L$:

$$(\boldsymbol{w} * \boldsymbol{x})_k := \sum_{\ell=1}^L \boldsymbol{w}_k \boldsymbol{x}_{(\ell-k) \mod L}.$$

Blind deconvolution in wireless communications

- Task: deliver message $m \in \mathbb{C}^N$ via unknown channel. Proposed approach: introduce redundancy before transmission.
- Linear encoding: $\mathbf{x} = \mathbf{Cm}$ with $\mathbf{C} \in \mathbb{C}^{L \times N}$ the signal \mathbf{x} is transmitted
- Channel model: only most direct paths are active $\mathbf{w} = \mathbf{B}\mathbf{h}$, where $\mathbf{B} \in \mathbb{C}^{L \times K}$
- Received signal: e noise

$$\mathbf{y} = \mathbf{w} * \mathbf{x} + \mathbf{e} \in \mathbb{C}^L$$

 Introduced by Ahmed, Recht, Romberg (IEEE IT '14)

Goal: recover **m** from **y**

Lifting

• Observation: w * x = Bh * Cm is bilinear in h and m \Rightarrow There is a unique linear map $\mathcal{A} : \mathbb{C}^{K \times N} \to \mathbb{C}^L$ such that

$$\textit{Bh}*\textit{Cm} = \mathcal{A}\left(\textit{hm}^*\right)$$

for arbitrary \boldsymbol{h} and \boldsymbol{m}

Lifting

• Observation: w * x = Bh * Cm is bilinear in h and m \Rightarrow There is a unique linear map $\mathcal{A} : \mathbb{C}^{K \times N} \to \mathbb{C}^L$ such that

$$\mathbf{Bh} * \mathbf{Cm} = \mathcal{A}(\mathbf{hm}^*)$$

for arbitrary \boldsymbol{h} and \boldsymbol{m}

• Thus, the rank 1 matrix $X = hm^*$ satisfies

$$y = A(X) + e$$

Finding X is a low rank matrix recovery problem

Lifting

• Observation: w * x = Bh * Cm is bilinear in h and m \Rightarrow There is a unique linear map $\mathcal{A} : \mathbb{C}^{K \times N} \to \mathbb{C}^L$ such that

$$\mathbf{Bh} * \mathbf{Cm} = \mathcal{A}(\mathbf{hm}^*)$$

for arbitrary \boldsymbol{h} and \boldsymbol{m}

• Thus, the rank 1 matrix $X = hm^*$ satisfies

$$y = A(X) + e$$

- Finding X is a low rank matrix recovery problem
- Ideally find

argmin rank
$${\pmb X}$$
 subject to $\|{\mathcal A}({\pmb X})-{\pmb y}\|_2 \le \eta$

A convex approach

SDP relaxation (Ahmed, Recht, Romberg '14)

Solve the semidefinite program (SDP)

$$\widetilde{\mathbf{X}} = \operatorname{argmin} \|\mathbf{X}\|_*$$
 subject to $\|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_2 \le \eta$. (SDP)

A convex approach

SDP relaxation (Ahmed, Recht, Romberg '14)

Solve the semidefinite program (SDP)

$$\widetilde{\boldsymbol{X}} = \operatorname{argmin} \|\boldsymbol{X}\|_* \quad \text{subject to } \|\mathcal{A}(\boldsymbol{X}) - \boldsymbol{y}\|_2 \le \eta.$$
 (SDP)

The *nuclear norm* $\|\mathbf{X}\|_* := \sum_{j=1}^{\operatorname{rank}(\mathbf{X})} \sigma_j(\mathbf{X})$ is the sum of all singular values.

Model assumptions

- y = Bh * Cm + e
- Adversarial noise: $\|\boldsymbol{e}\|_2 \leq \eta$
- $\mathbf{C} \in \mathbb{C}^{L \times N}$ has i.i.d. standard Gaussian entries
- $B \in \mathbb{C}^{L \times K}$ satisfies $B^*B = Id$ and is such that FB (for F the DFT) has rows of equal norm.

Theorem (Ahmed, Recht, Romberg '14)

Assume

$$rac{\mathit{L}}{\log^{3}\mathit{L}} \geq \mathit{C}\left(\mathit{K} + \mathit{N}\mu_{\mathit{h}}^{2}\right).$$

Then with high probability every minimizer $\widetilde{m{X}}$ of (SDP) satisfies

$$\|\widetilde{\boldsymbol{X}} - \boldsymbol{hm}^*\|_F \lesssim \sqrt{K + N} \, \eta.$$

• μ_h coherence parameter (typically small, see next slide)

Theorem (Ahmed, Recht, Romberg '14)

Assume

$$rac{\mathit{L}}{\log^{3}\mathit{L}} \geq \mathit{C}\left(\mathit{K} + \mathit{N}\mu_{\mathit{h}}^{2}\right).$$

Then with high probability every minimizer $\widetilde{m{X}}$ of (SDP) satisfies

$$\|\widetilde{\boldsymbol{X}} - \boldsymbol{hm}^*\|_F \lesssim \sqrt{K + N} \, \eta.$$

- μ_h coherence parameter (typically small, see next slide)
- Consequences:
 - No noise, i.e., $\eta = 0$:
 - \rightarrow Exact recovery with a near optimal-amount of measurements

Theorem (Ahmed, Recht, Romberg '14)

Assume

$$rac{\mathit{L}}{\log^{3}\mathit{L}} \geq \mathit{C}\left(\mathit{K} + \mathit{N}\mu_{\mathit{h}}^{2}\right).$$

Then with high probability every minimizer $\widetilde{\mathbf{X}}$ of (SDP) satisfies

$$\|\widetilde{\boldsymbol{X}} - \boldsymbol{hm}^*\|_F \lesssim \sqrt{K + N} \, \eta.$$

- μ_h coherence parameter (typically small, see next slide)
- Consequences:
 - No noise, i.e., $\eta = 0$:
 - ightarrow Exact recovery with a near optimal-amount of measurements
 - Noisy scenario, i.e., $\eta > 0$:
 - \rightarrow dimension factor $\sqrt{K+N}$ appears in the noise

... is given as

$$\mu_{\pmb{h}} = \max(\mu_1, \mu_2)$$

... is given as

$$\mu_{\pmb{h}} = \max(\mu_1, \mu_2)$$

... is given as

$$\mu_{\boldsymbol{h}} = \max(\mu_1, \mu_2)$$

- $m{\mu}_1 = rac{\sqrt{L}\|m{F}m{B}m{h}\|_{\infty}}{\|m{h}\|}$, where $m{F}$ is the discrete Fourier transform.
 - Intuition: If mass is concentrated in only few entries of FBh, it is more likely to get lost in the pointwise multiplication with FCm.
 - Range: typically between 1 (optimal) and \sqrt{K} (yields quadratic dependence on dimensions).
 - Numerical evidence by Ahmed et al.: μ_1 large \Rightarrow more measurements needed.

... is given as

$$\mu_{\boldsymbol{h}} = \max(\mu_1, \mu_2)$$

- $\pmb{0}$ $\mu_1 = rac{\sqrt{L} \| \pmb{F} \pmb{B} \pmb{h} \|_{\infty}}{\| \pmb{h} \|}$, where \pmb{F} is the discrete Fourier transform.
 - Intuition: If mass is concentrated in only few entries of FBh, it is more likely to get lost in the pointwise multiplication with FCm.
 - Range: typically between 1 (optimal) and \sqrt{K} (yields quadratic dependence on dimensions).
 - Numerical evidence by Ahmed et al.: μ_1 large \Rightarrow more measurements needed.
- μ_2 : technical term needed for golfing scheme.

Hope: Proof artifact, not necessary.

Noise robustness in low-rank matrix recovery

- Gaussian measurement matrices (implies RIP) √
- phase retrieval √
- blind deconvolution (this presentation) ?
- matrix completion (later in the talk) ?
- Robust PCA ?
- many more... ?

Noise robustness in low-rank matrix recovery

- Gaussian measurement matrices (implies RIP) √
- phase retrieval √
- blind deconvolution (this presentation) ?
- matrix completion (later in the talk) ?
- Robust PCA ?
- many more... ?
- ⇒ Despite the popularity of convex relaxations for low-rank matrix recovery in the literature, their noise robustness is not well-understood.

What is the problem?

- Proof technique for these models:
 - Golfing scheme originally developed by D. Gross.
 - Idea: Show existence of (approximate) dual certificate w.h.p.

D. Gross

What is the problem?

- Proof technique for these models:
 - Golfing scheme originally developed by D. Gross.
 - Idea: Show existence of (approximate) dual certificate w.h.p.

D. Gross

- ullet Works well in the noiseless case, where $oldsymbol{X}_0$ is expected to be the minimizer
- Problem: In the noisy setting we do not know the actual minimizer

Are the dimension factors necessary?

Recall: We are interested in the scenario $L \ll KN$ and we optimize

$$\widetilde{\mathbf{X}} = \operatorname{argmin} \|\mathbf{X}\|_*$$
 subject to $\|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_2 \le \eta$. (SDP)

Are the dimension factors necessary?

Recall: We are interested in the scenario $L \ll KN$ and we optimize

$$\widetilde{\mathbf{X}} = \operatorname{argmin} \|\mathbf{X}\|_*$$
 subject to $\|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_2 \le \eta$. (SDP)

Theorem (Krahmer, DS '19)

There exists an admissible **B** such that:

With high probability there is $\eta_0 > 0$ such that for all $\eta \leq \eta_0$ there exists an adversarial noise vector $\mathbf{e} \in \mathbb{C}^L$ with $\|\mathbf{e}\|_2 \leq \eta$ that admits an alternative solution $\widetilde{\mathbf{X}}$ with the following properties.

- $oldsymbol{ar{X}}$ is feasible, i.e., $\|\mathcal{A}\left(\widetilde{oldsymbol{X}}
 ight)-oldsymbol{y}\|_2=\eta$
- $\widetilde{\mathbf{X}}$ is preferred to \mathbf{hm}^* by (SDP) i.e., $\|\widetilde{\mathbf{X}}\|_* \leq \|\mathbf{hm}^*\|_*$, but
- \bullet $\widetilde{\mathbf{X}}$ is far from the true solution in Frobenius norm, i.e.,

$$\|\widetilde{m{X}} - m{hm}^*\|_{F} \geq rac{\eta}{C_3} \sqrt{rac{KN}{L}}.$$

What does this mean?

• Assume K = N and $L \approx CK$ up to log-factors

$$\Rightarrow \|\widetilde{\mathbf{X}} - \mathbf{hm}^*\|_F \gtrsim \eta \sqrt{\frac{KN}{L}} \approx \eta \sqrt{K + N}.$$

up to log-factors

- \rightarrow The factor $\sqrt{K+N}$ is not a pure proof artifact.
- Caution: $\widetilde{\mathbf{X}}$ might not be the minimizer of (SDP)!

Ideas of the analysis I

• Crucial geometric object: Descent cone for $\mathbf{X}_0 \in \mathbb{C}^{K \times N}$

$$\mathcal{K}_*\left(extbf{ extit{X}}_0
ight) = \left\{ extbf{ extit{Z}} \in \mathbb{C}^{K imes extit{N}} : \| extbf{ extit{X}}_0 + arepsilon extbf{ extit{Z}} \|_* \leq \| extbf{ extit{X}}_0 \|_* ext{ for some small } arepsilon > 0
ight\}$$

Ideas of the analysis II

Minimum conic singular value:

$$\lambda_{\min}\left(\mathcal{A},\mathcal{K}_{*}\left(oldsymbol{X}_{0}
ight)
ight):=\min_{oldsymbol{Z}\in\mathcal{K}_{*}\left(oldsymbol{X}_{0}
ight)}rac{\|\mathcal{A}\left(oldsymbol{Z}
ight)\|_{2}}{\|oldsymbol{Z}\|_{F}}$$

- Noiseless scenario, i.e., $\eta = 0$: Exact recovery $\iff \lambda_{\min} (\mathcal{A}, \mathcal{K}_* (\mathbf{X}_0)) > 0$
- Noisy scenario: Conic singular value controls stability [Chandrasekaran et al. '12]:

$$\|\widetilde{\boldsymbol{X}}-\boldsymbol{X}_0\|_{\mathcal{F}} \leq rac{2\eta}{\lambda_{\mathsf{min}}(\mathcal{A},\mathcal{K}_*(\boldsymbol{X}_0))}$$

(As \mathcal{A} is Gaussian, $\lambda_{\min}\left(\mathcal{A},\mathcal{K}_*\left(\mathbf{X}_0\right)\right) \asymp 1$ w.h.p., whenever $m \gtrsim rn$ and \mathbf{X}_0 has rank r)

Ideas of the analysis III

Lemma (Krahmer, DS '19)

There exists $\mathbf{B} \in \mathbb{C}^{L \times K}$ satisfying $\mathbf{B}^* \mathbf{B} = Id_K$ and $\mu_{\max}^2 = 1$, whose corresponding measurement operator \mathcal{A} satisfies the following: Let $\mathbf{m} \in \mathbb{C}^N \setminus \{0\}$ and let $\mathbf{h} \in \mathbb{C}^K \setminus \{0\}$ be incoherent. Then with high probability it holds that

$$\lambda_{\mathsf{min}}\left(\mathcal{A},\mathcal{K}_{*}\left(\textit{hm}^{*}
ight)
ight) \leq \mathit{C}_{3}\sqrt{\frac{\mathit{L}}{\mathit{KN}}}.$$

- Lemma can be used to prove the previous theorem.
- (Analogous result holds for matrix completion.)

All hope is lost?!

Recovery for high noise levels

Theorem (Krahmer, DS '19)

Let $\alpha > 0$. Assume that

$$L \ge C_1 \frac{\mu^2}{\alpha^2} (K + N) \log^2 L.$$

Then with high probability the following statement holds for all $\mathbf{h} \in S^{K-1}$ with $\mu_{\mathbf{h}} \leq \mu$, all $\mathbf{m} \in S^{N-1}$, all $\eta > 0$, and all $\mathbf{e} \in \mathbb{C}^L$ with $\|\mathbf{e}\|_2 \leq \eta$: Any minimizer $\widetilde{\mathbf{X}}$ of (SDP) satisfies

$$\|\widetilde{\boldsymbol{X}} - \boldsymbol{h}\boldsymbol{m}^*\|_F \leq \frac{C_3\mu^{2/3}\log^{2/3}L}{\alpha^{2/3}}\max\{\eta;\alpha\}.$$

→ Near-optimal recovery guarantees for high noise-levels.

Proof sketch I

- Descent cone local approximation to descent set near hm*.
- Geometric Intuition: Close to ker A, the descent set is not pointy.

- Consider the partition $\mathcal{K}_*\left(extbf{\emph{X}}_0\right)=\mathcal{K}_1\cup\mathcal{K}_2$, where
 - $m{\cdot}$ \mathcal{K}_1 contains all elements in \mathcal{K}_* ($m{X}_0$), which are near-orthogonal to $m{X}_0$
 - $\mathcal{K}_2 := \mathcal{K}_* \left(\boldsymbol{X}_0 \right) \setminus \mathcal{K}_1$

Proof sketch II

Geometric intution: No large error can occur in directions belonging to \mathcal{K}_1 due to the curved nature of the nuclear norm ball

- $\lambda_{\min}(\mathcal{A}, \mathcal{K}_2)$ can be bounded from below using *Mendelson's small-ball method*
- → No large error can occur in these directions

S. Mendelson

Combining these two ideas yields the result.

Matrix Completion

Low-rank matrix completion

$$m{X}_0 = \left(egin{array}{cccccc} 1 & ? & ? & ? & ? & ? \ ? & ? & 3 & 7 & ? \ ? & 2 & ? & ? & ? \ ? & ? & 4 & ? & 1 \ ? & 2 & ? & ? & ? \end{array}
ight)$$

Can one complete the matrix X_0 ?

Our model

- $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ rank-r matrix
- Measurement operator $A: \mathbb{R}^{n \times n} \to \mathbb{R}^m$:

$$A(\boldsymbol{X})(i) := \frac{n}{\sqrt{m}} \boldsymbol{X}_{a_i,b_i},$$

where (a_i, b_i) chosen uniformly at random for each $i \in [m]$ (i.i.d.)

• Observation vector:

$$\mathbf{y} = \mathcal{A}(\mathbf{X}_0) + \mathbf{e},$$

 \boldsymbol{e} noise with $\|\boldsymbol{e}\|_2 \leq \eta$

Recovery algorithm: We optimize

$$\widetilde{\mathbf{X}} = \operatorname{argmin} \|\mathbf{X}\|_*$$
 subject to $\|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_2 \le \eta$. (SDP)

Recovery algorithm: We optimize

$$\widetilde{\pmb{X}} = \operatorname{argmin} \| \pmb{X} \|_* \quad \text{subject to } \| \mathcal{A}(\pmb{X}) - \pmb{y} \|_2 \le \eta.$$
 (SDP)

Theorem (Candes, Plan '10)

Let $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ be an incoherent rank-r matrix. Assume that

$$m \geq Cn \ poly\log(n)$$
.

Then with high probability every minimizer $\widetilde{m{X}}$ of (SDP) satisfies

$$\|\widetilde{\boldsymbol{X}}-\boldsymbol{X}_0\|_F\lesssim \sqrt{n}\ \eta.$$

Our result

Theorem (Krahmer, DS '19)

Assume that $\mathbf{X}_0 \in \mathbb{R}^{n \times n} \setminus \{0\}$ is a rank-r matrix. Then w.h.p. there is $\eta_0 > 0$ such that for all $\eta \leq \eta_0$ there exists an adversarial noise vector $\mathbf{e} \in \mathbb{R}^m$ with $\|\mathbf{e}\|_2 \leq \eta$ that admits an alternative solution $\widetilde{\mathbf{X}} \in \mathbb{R}^{n \times n}$ with the following properties.

- $\widetilde{\mathbf{X}}$ is feasible, i.e., $\left\| \mathcal{A} \left(\widetilde{\mathbf{X}} \right) \mathbf{y} \right\|_2 = \eta$ for $\mathbf{y} = \mathcal{A} \left(\mathbf{X}_0 \right) + \mathbf{e}$ the noisy measurement vector
- $m{\bullet}$ $\widetilde{m{X}}$ is preferred to $m{X}_0$ by (SDP), i.e., $\|\widetilde{m{X}}\|_* \leq \|m{X}_0\|_*$, but
- X is far from the true solution in Frobenius norm, i.e.,

$$\|\widetilde{\boldsymbol{X}}-\boldsymbol{X}_0\|_F\geq \frac{\eta}{C}n\sqrt{\frac{r}{m}}.$$

$$\implies$$
 If $m \asymp n$ polylog (n_1) , then $n\sqrt{\frac{r}{m}} \asymp \sqrt{\frac{n}{\text{polylog }n}}$

Key lemma

Analogous to blind deconvolution, the result is a consequence of the following key lemma.

Lemma (Krahmer, DS '19)

Let $X_0 \in \mathbb{R}^{n \times n} \setminus \{0\}$ be an incoherent rank-r matrix. Then with high probability it holds that

$$\lambda_{\min}\left(\mathcal{A},\mathcal{K}_{\star}\left(\boldsymbol{X}_{0}
ight)
ight)\leq C_{3}\frac{1}{n}\sqrt{\frac{m}{r}}.$$

Proof sketch I

Our goal is to construct $Z \in \mathbb{R}^{n \times n}$ such that

$$\frac{\|\mathcal{A}(\boldsymbol{Z})\|_2}{\|\boldsymbol{Z}\|_F} \lesssim \frac{1}{n} \sqrt{\frac{m}{r}}$$

In the following, without loss of generality: $\| \textbf{\textit{X}}_0 \|_F = 1$

Proof sketch I

Our goal is to construct $\pmb{Z} \in \mathbb{R}^{n \times n}$ such that

$$\frac{\|\mathcal{A}(\boldsymbol{Z})\|_2}{\|\boldsymbol{Z}\|_F} \lesssim \frac{1}{n} \sqrt{\frac{m}{r}}$$

In the following, without loss of generality: $\|\boldsymbol{X}_0\|_F = 1$

• Step 1: Characterize the descent cone of the nuclear norm:

$$\overline{\mathcal{K}_{\star}\left(\boldsymbol{X}_{\!0}\right)} = \left\{\boldsymbol{Z} \in \mathbb{R}^{n \times n} : -\langle \boldsymbol{U}_{\!0} \, \boldsymbol{V}_{\!0}^{T}, \boldsymbol{Z} \rangle_{F} \geq \|\mathcal{P}_{T^{\perp}}\left(\boldsymbol{Z}\right)\|_{*}\right\}$$

ullet T denotes tangent space of $m{X}_0 = m{U}_0 m{\Sigma}_0 m{V}_0^{\mathcal{T}}$ (trunacted SVD)

$$\mathsf{T} := \left\{ \mathbf{\textit{U}}_{0} \mathbf{\textit{V}}^{\mathsf{T}} + \mathbf{\textit{U}} \mathbf{\textit{V}}_{0}^{\mathsf{T}} : \mathbf{\textit{U}}, \mathbf{\textit{V}} \in \mathbb{R}^{n \times r} \right\}$$

- \bullet T $^{\perp}$ orthogonal complement of T
- ullet $\mathcal{P}_{\mathsf{T}^{\perp}}$ orthogonal projection onto T^{\perp}

Proof sketch II

• Step 2: With high probability there is $\mathbf{W} \in \mathbb{R}^{n \times n}$ such that $\|\mathbf{W}\|_F \approx 1$,

$$A(W) = 0$$

and,

$$\|\mathcal{P}_{\mathsf{T}^{\perp}}\mathbf{W}\|_{*}\lesssim \frac{1}{n}\sqrt{\frac{m}{r}}$$

Step 3: Define

$$\mathbf{Z} := \mathbf{W} - \lambda \mathbf{X}_0$$

for
$$\lambda \approx \frac{1}{n} \sqrt{\frac{m}{r}}$$

Proof sketch III

- Step 5: Check $\emph{\textbf{Z}} = \emph{\textbf{W}} \lambda \emph{\textbf{X}}_0 \in \mathcal{K}_{\star}\left(\emph{\textbf{X}}_0\right)$
- Step 6: Show that

$$\|\mathcal{A}(\mathbf{Z})\|_2 \lesssim \frac{1}{n} \sqrt{\frac{m}{r}} \|\mathbf{Z}\|_F$$

Proof sketch III

- Step 5: Check $\mathbf{Z} = \mathbf{W} \lambda \mathbf{X}_0 \in \mathcal{K}_{\star} \left(\mathbf{X}_0 \right)$
- Step 6: Show that

$$\|\mathcal{A}(\mathbf{Z})\|_2 \lesssim \frac{1}{n} \sqrt{\frac{m}{r}} \|\mathbf{Z}\|_F$$

• Geometric consequence of the proof: The angle between $\ker \mathcal{A}$ and $\mathcal{K}_{\star}\left(\boldsymbol{X}_{0}\right)$ is rather small.

Outlook and open questions

- What can we say about the actual minimizer in the scenario of small noise?
- Stability of matrix completion?
- What if the ground truth is approximately low-rank?
- Random noise?!

Thank you for your attention!