

Numerical Methods Exercise Sheet 4

HS 16 M. Chrzaszcz D. van Dyk

Issued: 17.10.2016

Due: 24.10.2016 16:00

I. Bezshyiko, A. Pattori

http://www.physik.uzh.ch/en/teaching/PHY233/

HS2016.html

Exercise 1: Numerical derivatives (40 Pts.)

In this exercise you will will produce different implementations of numerical derivatives.

Consider the function $d(x) = x \cdot e^{-x^2}$.

- a) Implement a forward difference quotient and compute $\partial_x d(x)$ at x=1, for three different increments $h=\{10^{-1},10^{-2},10^{-3}\}$. (10 points)
- b) Implement a central difference quotient and compute $\partial_x d(x)$ at x = 1, for three different increments $h = \{10^{-1}, 10^{-2}, 10^{-3}\}$. (10 points)
- c) Compare and comment on the results obtained in the two former tasks. (10 points)
- d) Optional: Compute $\partial_x d(x)|_{x=1}$ analytically. Then plot, as a function of h, the difference between analytical and numerical derivative for the two different algorithms. (10 points)

Exercise 2: Newton-Raphson method in D=1 (60 Pts.)

In this exercise you will be asked to implement the Newton-Raphson method to find the root of a simple one-dimensional equation: $\cos 3x + \frac{1}{3}\sin x = 0$.

- a) Calling $f(x) = \cos 3x + \frac{1}{3}\sin x$, implement the N = 1 iterative function $\Phi[f](x) = x \frac{f(x)}{f'(x)}$. Use the central difference quotient method to implement f'(x). (10 points)
- b) Implement the Newton-Raphson method and find a root x_1 of f(x) = 0, within an absolute precision $t = 10^{-8}$. Use x = 0.5 as starting point. (10 points)
- c) We are interested in finding other roots of f(x) = 0 in the domain $x \in (0, \pi)$. For this purpose, it would be preferable to get rid of the already-found x_1 root. The function $g(x) \equiv \frac{f(x)}{x-x_1}$ is what we are looking for, since the equation g(x) = 0 share all the roots with the former equation f(x) = 0, except for x_1 .

Find another root x_2 of f(x) = 0, exploiting the function g(x) defined above. Use x = 0.8 as starting point of the Newton-Raphson method. Again, the target precision is $t = 10^{-8}$.

(15 points)

- d) What happens if we use x = 0.8 as starting point in task (b)? Comment the result. (5 points)
- e) Optional: f(x) has also roots outside our domain of interest, $x \in (0, \pi)$. For example, performing task (c) starting from x = 0.5 would lead us to one of such unwanted solutions. Can you think of any solution to this problem? (20 points)

Exercise 3: Theory exercise: order of convergence of the Newton-Raphson method (40 Pts.)

In this exercise you will analyse the local order of convergence of the Newton-Raphson method for a degenerate case: $h(x) = (1-x)^2 e^{-x}$ around 1.

a) Compute analytically
$$\Phi[h](x) = x - \frac{h(x)}{h'(x)}$$
. (10 points)

b) Evaluate the local rate of convergence p of $\Phi[h](x)$ around 1, defined as the integer p for which $\exists C > 0 : |\Phi[h](x) - 1| \le C \cdot |x - 1|^n$.

(Hint: remember that $\Phi[h](1) = 1$, that is $|\Phi[h](x) - 1| = |\Phi[h](x) - \Phi[h](1)|$. The latter can be evaluated through a Taylor expansion). (20 points)

c) Optional: What is the analytical reason for p to have such value? (10 points)

Maximum number of points for mandatory tasks on 24.10: 100 Maximum possible number of points for tasks on 24.10: 140