5 Papers

Title	Publication source	Year
Topic Modeling for Feature Location in Software Models: Studying Both Code Generation and Interpreted Models	IST	2021
Changeset-Based Topic Modeling of Software Repositories	TSE	2020
DeepFL: Integrating Multiple Fault Diagnosis Dimensions for Deep Fault Localization	ISSTA	2019
On Combining IR Methods to Improve Bug Localization	ICPC	2020
Bug Localization Using Latent Dirichlet Allocation	IST	2010

Bug Localization Using Latent Dirichlet Allocation

汇报人: 王昭丹

INTRODUCTION

Static bug localization

 gather information from the source code (or a model of the code)

Dynamic bug localization

gather information from execution traces of the system

1

Advantages

Do not require a working subject software system

Can be applied at any stage of the software development or maintenance processes

INTRODUCTION

LDA-based static technique

- Latent Dirichlet Allocation (LDA)
- Modularity and extensibility
- Provide advantages over both LSI and pLSI
- Stability of the software

RELATED WORK —— IR models for source code retrieval

LSI

- An algebraic model
- Similarity cosine of angle between vectors
- User query is first transformed into a document
- dimensionality reduction parameter
- does not do well when representing polysemy,

pLSI

- A generative topic model
- each term in a document is modeled as a mixture over a set of multinomial random variables (topics)
- pLSI is susceptible to overfitting
- pLSI is not able to predict appropriate topic distributions for new documents

RELATED WORK —— IR models for source code retrieval

Latent Dirichlet allocation (LDA)

A probabilistic and fully generative topic model

- Each topic in this set is a probability distribution over the set of terms that make up the vocabulary of the document collection.
- Similarity between a document **di** and a query **Q** is computed as the conditional probability of the query given the document:

$$Sim(Q,d_i) = P(Q|d_i) = \Pi_{q_k \in Q} P(q_k|d_i)$$
 and q_k is the kth word in the query

RELATED WORK —— IR models for source code retrieval

Latent Dirichlet allocation (LDA)

- In the results returned by LDA, the most likely terms in each topic the terms with the highest probability can be examined to determine the likely meaning of the topic.
- Approximation techniques; Gibbs sampling
- Choosing the number of topics in LDA modeling

Table 1
Top 10 terms in Topic 0 extracted from Mozilla.

Topic 0 —— print settings for a page

RELATED WORK —— Source code stability

Stability metric SDI_{inh}

- compute the percentage of change from the design in **iteration t** (D_t) to the design in **iteration t+1** (D_{t+1}) of a software system
- a the number of classes whose names were modified from Dt to Dt+1,
- b the number of new classes added to Dt+1,
- > c the number of classes removed from Dt,
- d the number of classes whose inheritance hierarchies were modified from Dt to Dt+1,
- > m the total number of classes in Dt

$$SDI = \frac{(a+b+c)}{m} \times 100$$

$$SDI_{inh} = \frac{(a+b+c+d)}{m} \times 100$$

SDIe metric

- Newly created: Classes that were added to iteration t
 + 1 of the software.
- Removed: Classes removed from iteration t of the software.
- Changed: Classes with internal changes from iteration t to t + 1.
- Unchanged: Classes that remained the same from iteration t to iteration t + 1. j is the number of categories, value 1, 2, ...

$$SDI_e = -\sum_{i=1}^{j} \frac{C - i}{N} \log_2 \frac{C_i}{N}$$

Ci represents the number of classes that belong to category i

N is the total number of classes in iteration t + 1

RELATED WORK —— CK object-oriented metrics suite

 $SDI_{e,ck}$

- SDIe,ck is a simpler version of the SDIe metric
- Use only the Chidamber and Kemerer (CK) suite of object-oriented class metrics
- The Chidamber and Kemerer (CK) suite of OO metrics is defined as follows: (collected these
 metrics using Understand for Java™)
 - WMC (Weighted Methods Per Class)
 - DIT (Depth of Inheritance Tree)
 - NOC (Number of Children)
 - CBO (Coupling Between Object Classes)
 - > RFC (Response for a Class)
 - LCOM (Lack of Cohesion in Methods)

LDA-based bug localization approach

Two steps are necessary to construct an LDA model of a software system:

- build a document collection from the source code;
- ② perform an LDA analysis on the document collection.

Preprocess the semantic information

Step 1: Build a document collection from the source code

- at the method level of granularity
- extract string-literals in addition to comments and identifiers

Store the preprocessed data extracted from each source element as a separate document in the collection

Preprocess

Multi-word identifiers are split into separate words based on common coding practices, e.g. printFile → print + file

Each word is stemmed using a Porter stemming algorithm

Step 2: Generate an LDA model

- an open-source software tool for LDA analysis
 called GibbsLDA++
- estimate topics from the document collection, estimate the word-topic and topic-document probability distributions

Parameters

Process used to create queries

bug title and description

Words added

Common abbreviations or whole words when an abbreviation was used, e.g., eol for end-of-line, management for mgmt

Variants of words already in the query, e.g., parse for parser

Synonyms of words in the query, e.g., quit for kill [process]

Sub-words of words in the query, e.g., name for rename

Form an **initial query** by manually extracting **keywords from the bug title**; Words not related to the bug domain were ignored.

Form a **second query** by manually adding keywords from the summary of the initial bug report to the first query

Form a third query by adding words related to the bug and/or removing words from query 1 or 2 that were less applicable to the bug domain

Data examined in the case studies

Table 2
Software used in case studies.

Case study	Software	Versions analyzed
1	Mozilla	1.5.1, 1.6, 1.6a
	Eclipse	2.0, 2.1.3, 3.0.2
2	Rhino	1.5R5
3, 4, 5	Rhino	1.4R3, 1.5R1, 1.5R2, 1.5R3, 1.5R4, 1.5R5, 1.6R1, 1.6R2,
		1.6R3, 1.6R4, 1.6R6, 1.6R7
	Eclipse	3.0, 3.0.1, 3.0.2, 3.1, 3.1.1, 3.1.2, 3.2, 3.2.1, 3.2.2, 3.3,
		3.3.1, 3.3.2, 3.4

Design of the case studies

- Comments, identifiers, and string-literals
- At the method level of granularity
- Minimal preprocessing —— all words were stemmed before being added to the collection
- Initial simple tests —— stop word removal was not found to substantially improve the results
- Did not remove stop word
- Rhino: 100 topics; Eclipse: 500 topics; Mozilla: 200 topics
- $\alpha = 50/K$, $\beta = 0.01$
- Accuracy: the rank of the first relevant method returned by each query; average of the ranks
 of the first relevant method returned for all bugs

Case Study 1

Goal: To examine whether the accuracy of LDA-based bug localization is better than LSI, over the same data used in previous LSI studies.

Metric: Rank of first relevant method returned for individual queries.

Case Study 2

Goal: To examine whether LDA is sufficiently accurate over all bugs in a single software system.

Metric: Percentage of bug queries with first relevant method in top 10 results.

1

Case Study 3

Goal: To examine whether LDA is sufficiently accurate over all bugs in the given software system (Rhino or Eclipse).

Metric: Percentage of bug queries with first relevant method in top 10 results (Rhino); percentage of bug queries with first relevant method in top 1000 results (Eclipse).

Case Study 4

Goal: To assess the impact of software size on the accuracy of bug localization.

Metric: A correlation between the average of the ranks of the first relevant method returned for each bug in each software iteration, and the Lines of Code, Number of Classes, and Number of Methods size metrics.

Case Study 5

Goal 1: To assess the impact of stability on the accuracy of bug localization.

Metric 1: A correlation between the average of the ranks of the first relevant method returned for each bug in each software iteration, and the SDI, SDIinh, and SDIe,ck stability metrics.

Goal 2: To assess the impact of complexity on the accuracy of bug localization.

Metric 2: A correlation between the average of the ranks of the first relevant methods returned for each bug in each software iteration, and the CK metrics.

Table 4 Eclipse bugs analyzed with LDA/LSI query.

Software version	Bug no.	Bug title	LDA/LSI query [28] NOTE: same query used as in Poshyvanyk et al. [28]
2.1.3	5138	Double-click-drag to select multiple words does not work	Double click drag select mouse up down release text offset document position
2.0.0	31779	UnifiedTree should ensure file/folder exists	Unified tree file folder node system location
3.0.2	74149	The search words after ''' will be ignored	Search query quoted token

- LDA-based approach performed as well as or better than LSI when **100** topics were used.
- LDA-based approach outperformed LSI for all bugs when **500** topics were used.

LDA does perform better than LSI over the same corpus previously used by Poshyvanyk et al., using the same queries previously published by Poshyvanyk et al.

Table 5Comparison of LDA to LSI over Eclipse. *Note*: same queries were used as in Poshyvanyk et al. [28].

Bug no.	First relevant method	LDA rank (100 topics)	LDA rank (500 topics)	LSI rank
5138	$TextDoubleClickStrategyConnector.mouseUp(LDA)/JavaStringDoubleClickSelector.doubleClicked \\ (LSI)$	2	2	7
31779	UnifiedTree.createChildNodeFromFileSystem (both LDA and LSI)	2	1	2
74149	QueryBuilder.tokenizeUserQuery (both LDA and LSI)	1	1	5

Fig. 2. Rank of first relevant method returned for Rhino 1.5R5 bugs.

- □ For **77**% (27/35) of the bugs analyzed the first relevant method was returned in the top 10 results
- For **63%** (22/35) of the bugs the first relevant method was returned in the top five results.

LDA-based bug localization technique does possess sufficient accuracy over **all the bugs** available in **one** complete software system.

Table 10Accuracy of LDA-based bug localization per iteration of Rhino.

Version	No. bugs	Percentage of bugs		Average	Stdev of rank	
		Rank 1	Top 5	Top 10	rank	
1.4R3	4	25	25	25	291	474.08
1.5R1	7	43	57	57	39	52.24
1.5R2	3	0	0	33	44	40.67
1.5R3	11	27	40	50	40	61.69
1.5R4	13	23	46	62	176	517.13
1.5R5	35	23	63	77	17	46.39
1.6R1	11	9	27	36	99	233.17
1.6R2	6	33	50	50	290	654.20
1.6R3	1	100	100	100	1	0
1.6R4	12	17	25	25	1062	1107.67
1.6R6	1	0	0	0	104	0
1.6R7	2	0	0	50	252	345.07

Fig. 3. Accuracy of LDA-based bug localization across 12 versions of Rhino.

- Over one-half (55%) of the bugs in Rhino resulted in the top ranked method in the top 10 results returned.
- Almost one-quarter (23%) resulted in the first relevant method being returned with a rank of one.

LDA-based bug localization technique does possess sufficient accuracy over **all the bugs** available in the given software system.

Table 15Software size measures vs. average rank in Rhino.

Software size measures (Rhino)	Rhino average rank	
	r_s	<i>p</i> -Value
Lines of Code	0.203	0.527
Number of Classes	0.151	0.639
Number of Methods	0.196	0.541

- This test using Spearman's r_s is performed at the 95% significance level ($\alpha = 0.05$).
- \Box The correlations all have **p-values** > α.

Table 16Software size metrics vs. average rank in Eclipse.

Software size measures (Eclipse)	Eclipse average rank				
	100 Topics		500 Topics		
	r_s	p-Value	r_s	p-Value	
Lines of Code	0.038	0.900	0.269	0.374	
Number of Classes	0.080	0.796	0.237	0.436	
Number of Methods	0.159	0.603	0.308	0.306	

There is no significant relationship between the software size measures and the accuracy of LDA-based bug localization as measured by average rank in Rhino and Eclipse

Table 17Stability metrics vs. average rank in Rhino.

Stability metrics	Average rank	Average rank	
	r_s	p-Value	
SDI	-0.437	0.179	
SDI_{inh}	-0.309	0.355	
$SDI_{e,ck}$	-0.391	0.235	

- This test using Spearman's r_s is performed at the 95% significance level ($\alpha = 0.05$).
- \Box The correlations all have **p-values** > α.
- □ In both Rhino and Eclipse, no significant relationship was found between the SDI metrics and the accuracy of the LDA-based bug localization technique.

Table 18Stability metrics vs. average rank in Eclipse.

Stability metrics	Eclipse average rank				
	100 Topics		500 Topics		
	r_s	p-Value	r_s	<i>p</i> -Value	
SDI	-0.104	0.746	-0.056	0.863	
SDI_{inh}	-0.077	0.812	-0.084	0.795	
$SDI_{e,ck}$	-0.126	0.697	-0.084	0.795	

The accuracy of the approach is not affected by the stability of the system design.

Table 19 Average CK metrics vs. average rank in Rhino.

Average CK metrics	Average rank		
	r_s	<i>p</i> -Value	
WMC	0.147	0.649	
DIT	0.133	0.681	
NOC	-0.233	0.466	
CBO	0.228	0.477	
RFC	0.113	0.727	
LCOM	0.308	0.330	

- This test using Spearman's r_s is performed at the 95% significance level (α = 0.05).
- \Box The correlations all have **p-values** > α.
- ☐ The CK metrics were not significantly correlated with average rank.

Table 20Stability metrics vs. average rank in Eclipse.

Average CK metrics	Eclipse ave	Eclipse average rank				
	100 Topics		500 Topics	5		
	r_s	p-Value	r_s	p-Value		
WMC	-0.297	0.324	0.028	0.929		
DIT	0.115	0.707	0.220	0.471		
NOC	0.198	0.517	0.275	0.363		
CBO	-0.231	0.448	0.077	0.803		
RFC	-0.258	0.394	0.027	0.929		
LCOM	-0.308	0.306	-0.281	0.353		

CK metrics would not be good indicators of the accuracy of the technique.

论 文 汇 报 展 示

感谢您的聆听

汇报人: 王昭丹

