3주차 정규세션

K-최근접 이웃 회귀

진도 세션 개요

K-최근접 이웃회귀

- 회귀(Regression)
- -회귀 개념
- -다양한 회귀모델

- -KNN 이해하기
- -교과서 예제 진행
- -과대적합 & 과소적합

실습

-간단한 KNN 실습

회귀:

[사전적 의미] 하나의 종속 변수와 두 개 이상의 독립 변수 사이에 나 타나는 관계를 최소 제곱법으로 추정하는 방법.

교과서: 임의의 어떤 숫자를 예측하는 것.

회귀와 분류 차이:

분류(classify) 다른 그룹으로 구분 해 놓는 것 클래스가 target

회귀(regression) 이웃 값을 기준으로 수치를 예측 임의의 값이 target

여러가지 회귀모델

선형성, 비선형성에 따른 차이 종속 변수의 개수, 독립 변수의 개수에 따라서 종류 상이

여러가지 회귀모델

데이터의 특징, 모델링 목적에 따라 적절한 회귀 모델을 선택 탐사 분석 과정을 통해 데이터 특성 파악

만든 모델과 결과가 잘 맞는지 검정

All models are wrong, but some are useful

여러가지 회귀모델: 비선형 모델

RNN(Recurrent Neural Network) 과거의 데이터를 기억하고 새로운 데이터 처리에 이를 이용 ex)주식 가격 예측

K-최근접 이웃 회귀 = K-Nearest Neighbor Regression

지도학습 기반으로 거리를 기준으로 결과값(예측값)을 도출 - 주변의 K개의 샘플을 통해 값을 반환

사용 분야: 이미지 처리, 음악 또는 상품 추천 알고리즘

가중회귀:

단순히 평균만을 도출해내는 것으로는 유의미한 정보를 얻기 어려움 따라서 거리가 가까운 데이터에 가중치를 더욱 두는 방안

Ex) 영화 Y의 등급 예측하기 영화 A / [등급 5.0] / 거리 3.2 영화 B / [등급 6.8] / 거리 11.5 영화 C / [등급 9.0] / 거리 1.1

단순 평균 => 6.93 등급

Y는 C와 가장 유사하다고 판단 되기에 C의 값에 가중치를 부여분자: 점수 / 거리 분모: 1 / 거리

$$\frac{\frac{5.0}{3.2} + \frac{6.8}{11.5} + \frac{9.0}{1.1}}{\frac{1}{3.2} + \frac{1}{11.5} + \frac{1}{1.1}} = 7.9$$

데이터 준비:

농어의 길이를 통해 무게를 예측 할 수 있다고 가정 농어의 길이: feature 농어의 무게: target

```
import numpy as np

perch_length = np.array([8.4, 13.7, 15.0, 16.2, 17.4, 18.0, 18.7, 19.0, 19.6, 20.0, 21.0, 21.0, 21.0, 21.3, 22.0, 22.0, 22.0, 22.0, 22.0, 22.5, 22.5, 22.7, 23.0, 23.5, 24.0, 24.0, 24.6, 25.0, 25.6, 26.5, 27.3, 27.5, 27.5, 27.5, 28.0, 28.7, 30.0, 32.8, 34.5, 35.0, 36.5, 36.0, 37.0, 37.0, 39.0, 39.0, 39.0, 40.0, 40.0, 40.0, 40.0, 42.0, 43.0, 43.0, 43.5, 44.0])

perch_weight = np.array([5.9, 32.0, 40.0, 51.5, 70.0, 100.0, 78.0, 80.0, 85.0, 85.0, 110.0, 115.0, 125.0, 130.0, 120.0, 120.0, 130.0, 135.0, 110.0, 130.0, 150.0, 145.0, 150.0, 170.0, 225.0, 145.0, 188.0, 180.0, 197.0, 218.0, 300.0, 260.0, 265.0, 250.0, 250.0, 300.0, 320.0, 514.0, 556.0, 840.0, 685.0, 700.0, 700.0, 690.0, 900.0, 650.0, 820.0, 850.0, 900.0, 1015.0, 820.0, 1100.0, 1000.0, 1100.0, 1000.0, 1000.0, 1000.0]
```

데이터 개요:

농어의 길이와 무게가 서로 어떤 연관성이 있는지 그래프 통해 확인

```
import matplotlib.pyplot as plt
plt.scatter(perch_length, perch_weight)
plt.xlabel('length')
plt.ylabel('weight')
plt.show()
```


훈련 세트와 테스트 세트 나누기:

사이킷런을 이용해 세트 만들어 주기 단, 이때 세트는 2차원 데이터를 인식하기 때문에 reshape 함수 이용

```
from sklearn.model_selection import train_test_split train_input, test_input, train_target, test_target = train_test_split(perch_length, perch_weight, random_state = 42)

# data를 2차원으로 변환 train_input = train_input.reshape(-1,1) 
test_input = test_input.reshape(-1,1) 
print(train_input.shape, test_input.shape)

(42, 1) (14, 1)
```

함수 reshape(-1, 1)에서 -1은 모든 원소의 개수를 의미

훈련 세트와 테스트 세트 나누기:

random_state는 똑같은 값이 나올 수 있도록 지정해주는 값 무작위로 추출한 여러가지 경우의 수 중 하나를 지정해주는 것 => seed값

결정계수(R):

사이킷런의 KNeighborsRegressor을 사용 Fit 함수를 통해 데이터를 학습 시키고 결과값 score을 확인(1보다 작게 나온다)

from sklearn.neighbors import KNeighborsRegressor
knr = KNeighborsRegressor()
knr.fit(train_input, train_target)
knr.score(test_input, test_target)

0.992809406101064

$$R^2 = 1 - \frac{(F - \sqrt{12} - 6)^2 \circ 1}{(F - 7)^2 \circ 1}$$
 합

회귀에서는 정확한 수치를 맞추기는 힘듦 예측하는 값과 타깃 모두 임의의 수치이기 때문

절댓값 오차:

Score 함수 이외에도 mean_absolute_error을 통해 직관적으로 오차 범위를 파악 할 수 있다

```
from sklearn.metrics import mean_absolute_error

test_prediction = knr.predict(test_input)
mae = mean_absolute_error(test_target, test_prediction)
print(mae)

19.157142857142862
```

이는 대략적으로 예측값이 19g 정도 타깃값과 다르다는 것을 의미

데이터 예측:

Predict 함수를 이용해 길이를 입력하여 예상되는 무게를 출력

print(knr.predict([[38]]))
[720.]

38cm 에 해당하는 무게는 720g으로 출력

과대적합 vs 과소적합:

과대적합(overfitting): 학습 데이터에 지나치게 최적화되어 발생됨 새로운 데이터에 정확한 분류나 예측을 진행하지 못함

과소적합(underfitting): 머신러닝 모델이 충분히 복잡하지 않아 학습 데이터의 구조와 패턴을 제대로 반영하지 못함

과대적합 vs 과소적합:

과대적합(overfitting): 학습 데이터에 지나치게 최적화되어 발생됨 새로운 데이터에 정확한 분류나 예측을 진행하지 못함

과소적합(underfitting): 머신러닝 모델이 충분히 복잡하지 않아 학습 데이터의 구조와 패턴을 제대로 반영하지 못함

과대적합 vs 과소적합:

```
      knr.score(test_input, test_target)
      print(knr.score(train_input, train_target))

      0.992809406101064
      0.9698823289099254
```

테스트 세트가 오히려 훈련 세트보다 점수가 더 높게 나옴 주로 훈련 세트로 모델을 만들기 때문에 훈련 세트에서 더 높은 점수가 나오는 것이 일반적

위와 같은 경우는 과소적합 : [테스트 세트] > [훈련 세트]

- 모델이 너무 단순
- 데이터가 적음

과소적합 해결:

모델을 좀 더 복잡하게 만들기

- k 값(이웃의 개수)을 조절
- 국지적인 패턴에 민감

```
knr.n_neighbors = 3
knr.fit(train_input, train_target)
print(knr.score(train_input, train_target))
print(knr.score(test_input,test_target))
```

0.9804899950518966

0.9746459963987609

knr3 = KNeighborsRegressor(n_neighbors=3)

* 이러한 방식으로도 k값 조정 가능

K-최근접 이웃 알고리즘 default 값은 5 -> 3으로 낮춤

과대적합 해결:

학습 조기 종료(Early Stopping) 훈련된 모델이 validation loss가 증가 할 때 학습 종료(점선 구간)

* Validation = 검증용 데이터셋, 가장 좋은 모델을 고르기 위한 데이터셋

K-NN 모델의 한계:

입력된 수치들 보다 훨씬 크거나 작은 수치를 예측해야 한다면? 주변에 outlier이 많다면?

