Examining the importance of mass-matching

set up the polygon which defines the 'quenched' group

```
10.0194];
       10.1379
                   9.8269
                            9.9108
                                     10.3255
                                               11.6090
                                                         11.0018
                                                                   10.0194
                                 -0.2410
%y=[ 2.3425 1.3433
                         0.0921
                                             2.1714
                                                       2.3425
                                                                 2.3785
                                                                           2.3785];
                             10.5476
                                                           10.0737
                                                                     10.1626 11.1202 ];
% X =[
         11.1202
                   11.0018
                                       10.3057
                                                 10.0293
                                       0.0291
        2.1624
                    0.9922
                             0.3531
                                                  0.3351
                                                         1.7034
                                                                     2.3695 2.1624 ];
% y =[
                       10.0046
                                                     11.1252];
x=[11.1499]
             10.0046
                                 10.1872
                                           11.1005
y = [2.2345]
             2.2975
                       0.2811
                                -0.1600
                                           1.0822
                                                     2.2345];
% define important parameters
galMass=tCoolStruct.galMass; % galaxy stellar mass
gasMass=tCoolStruct.inGal.gasMass(1,:);
gasEnt=tCoolStruct.inGal.meanEntMW(1,:);
%centralMask= subsInfo.isCentral(tCoolStruct.galMask);
sfr=subs.SubhaloSFRinRad; % sfr in galaxy
ssfr=sfr./galMass; % + 10^0.5*1e-17.*10.^(0.5.*rand(size(sfr)));
% plot the polygon
```


get mask from polygon

define the mass range according to the selcted group (via polygon) find the rest of the popultion in the mass range , thus defining two distinct groups in the same mass range

```
polyMask=inpolygon(log10(galMass),log10(gasEnt),x,y);
groupMask=polyMask & subsInfo.isCentral & tCoolStruct.galMask;
qGroupInd=find(groupMask);

massRange=[min(galMass(groupMask)) max(galMass(groupMask))];
massMask=galMass>= massRange(1) & galMass<=massRange(2);

oGroupMask=massMask & subsInfo.isCentral & tCoolStruct.galMask & ~groupMask;
oGroupInd=find(oGroupMask);</pre>
```

show the distribution of host masses for the two groups

Here we show the distribution of the host masses for the galaxies in each gorup

```
qFofMass=fofs.Group_M_Crit200(subsInfo.hostFof(qGroupInd)+1).*illUnits.massUnit;
oFofMass=fofs.Group_M_Crit200(subsInfo.hostFof(oGroupInd)+1).*illUnits.massUnit;
nb=50;
binEdge=linspace(11,13.5,nb+1);
bins=binEdge(1:end-1)+0.5.*diff(binEdge);
qh=histcounts(log10(qFofMass),binEdge);
oh=histcounts(log10(oFofMass),binEdge);
figure
h(1)=stairs(bins,qh,'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,oh,'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{200,c}}\\,[\mathrm{M_\odot}]$')
ylabelmine('$\log M_{\mathrm{200,c}}\\,[\mathrm{M_\odot}]$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```


host-mass histogram for the two group which make up the mass range.

Since there is a different number of galaxies the histogram needs to be noramlized, as in the next figure.

```
figure
h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
```

```
hold on
h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{200,c}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N / N_{\mathrm{total}}$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')
```



```
figure
h(1)=stairs(bins,cumsum(qh)./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,cumsum(oh)./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{200,c}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N(<M)$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')</pre>
```


The cumulative function is also a good way to compare the distributions.

Sum-up: It appears that there is a distinct difference between the two distributions though, one must be carefule - the two groups do not sample the same mass range as can be seen in the next figure:

```
nb=50;
binEdge=linspace(9.9,11.3,nb+1);
bins=binEdge(1:end-1)+0.5.*diff(binEdge);
qh=histcounts(log10(galMass(qGroupInd)),binEdge);
oh=histcounts(log10(galMass(oGroupInd)),binEdge);

figure
h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{gal}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N / N_{\mathrm{total}}\$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```


It is this difference which may be responsible for the different host mass distributions (since they are known to be correlated). To examine this further we examine the mass-matched sample.

examine mass-matching

```
matched=create_matched_sample(qGroupInd,oGroupInd,galMass,'range');

nb=50;
binEdge=linspace(9.9,11.3,nb+1);
bins=binEdge(1:end-1)+0.5.*diff(binEdge);

qh=histcounts(log10(galMass(qGroupInd)),binEdge);
oh=histcounts(log10(galMass(matched)),binEdge);

figure
h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{gal}}\,[\mathrm{M_\odot}]$')
ylabelmine('$\N / N_{\mathrm{total}}$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```



```
figure
h(1)=stairs(bins,cumsum(qh)./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,cumsum(oh)./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{gal}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N(<M)$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')</pre>
```


Show host mass distributions from matched mass sample

We perform mass matching 100 times and then average the resulting histogram.

```
nb=50;
binEdge=linspace(11,13.5,nb+1);
bins=binEdge(1:end-1)+0.5.*diff(binEdge);
qh=histcounts(log10(qFofMass),binEdge);

clear ohTemp
for i=1:100
    matched=create_matched_sample(qGroupInd,oGroupInd,galMass,'range');
    oFofMass=fofs.Group_M_Crit200(subsInfo.hostFof(matched)+1).*illUnits.massUnit;
    ohTemp(i,:)=histcounts(log10(oFofMass),binEdge);
end

oh=mean(ohTemp,1);
figure
h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
```

```
h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{200,c}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N / N_{\mathrm{total}}$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```



```
figure
h(1)=stairs(bins,cumsum(qh)./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,cumsum(oh)./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log M_{\mathrm{200,c}}\,[\mathrm{M_\odot}]$')
ylabelmine('$N(<M)$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')</pre>
```



```
%oh=
```

In the mass matched sample the difference between the host-mass distribution has become much smaller, and is probably not very significant.

Show the distribution of BH masses for the two groups

Here we examine the difference in the BH mass distribution between the two groups. again, we begin with 2 groups which span the entire mass range, but are not mass-matched and then repear the analysis for a mass-matched sample.

```
qBHMass=subs.SubhaloMassInRadType(illustris.partTypeNum('bh')+1,qGroupInd).*illUnits.massUnit;
oBHMass=subs.SubhaloMassInRadType(illustris.partTypeNum('bh')+1,oGroupInd).*illUnits.massUnit;

nb=50;
binEdge=linspace(7,9.5,nb+1);
bins=binEdge(1:end-1)+0.5.*diff(binEdge);

qh=histcounts(log10(qBHMass),binEdge);
oh=histcounts(log10(oBHMass),binEdge);

figure
h(1)=stairs(bins,qh,'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,oh,'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log \Sigma M_{\text{Mathrm}{BH,Gal}}\,[\mathrm{M_\odot}]$')
```

```
ylabelmine('$N$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')
```



```
figure
h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log \Sigma M_{\mathrm{BH,Gal}}\,[\mathrm{M_\odot}]$')
ylabelmine('$\ / \N_{\mathrm{total}}$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```



```
figure
h(1)=stairs(bins,cumsum(qh)./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,cumsum(oh)./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log \Sigma M_{\mathrm{BH,Gal}}\,[\mathrm{M_\odot}]$')

ylabelmine('$N(<M)$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')</pre>
```


Comparing the distributions shows a marked difference of the BH masses in the two groups. However, one must be cautious as we've seen before.

compare with mass-matched sample

```
for i=1:100

    matched=create_matched_sample(qGroupInd,oGroupInd,galMass,'range');
    oBHMass=subs.SubhaloMassInRadType(illustris.partTypeNum('bh')+1,matched).*illUnits.massUniohTemp(i,:)=histcounts(log10(oBHMass),binEdge);
end

oh=mean(ohTemp,1);

figure
    h(1)=stairs(bins,qh./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
    h(2)=stairs(bins,oh./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log \Sigma M_{\{\mathrm{BH,Gal}}\,[\mathrm{M_\odot}]$')
ylabelmine('$\N / N_{\mathrm{total}}$')
grid
    hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthEast')
```



```
figure
h(1)=stairs(bins,cumsum(qh)./sum(qh),'r','DisplayName','quenched','linewidth',2);
hold on
h(2)=stairs(bins,cumsum(oh)./sum(oh),'b','DisplayName','not-quenched','linewidth',2);
xlabelmine('$\log \Sigma M_{\mathrm{BH,Gal}}\,[\mathrm{M_\odot}]$')

ylabelmine('$N(<M)$')
grid
hl=legend(h);
set(hl,'interpreter','latex','fontsize',12,'location','NorthWest')</pre>
```


Once again, comparing a mass-matched sample shows a smaller difference between the two distributions, but that difference is still there - though it may require some more rigorous analysis, it seems there is a significantly higher BH mass in the quenched galaxies versus a mass-matched sample.