CS 162: Natural Language Processing — Winter 2024 Prof. Nanyun (Violet) Peng

Announcements | Course Information | Schedule

Announcements

- 1/5/24 Welcome! Please bookmark this page.
 - Start of class is Monday, 1/8, 8:00 am.
 - The main classroom is **BUNCHE 1209B**.

Course Information

Course objectives: Welcome! This course is designed to introduce you to some of the problems and solutions of NLP, and their relation to machine learning, statistics, linguistics, and social sciences. You need to know how to program and use common data structures.

It might also be nice—though it's not required—to have some previous familiarity with linear algebra and probabilities.

At the end you should agree (I hope!) that language is subtle and interesting, feel some ownership over some of NLP's techniques, and be able to understand research papers in the field.

Lectures:	M/W 08:00 - 10:00 am			
Location:	BUNCHE 1209B.			
Prof:	Nanyun (Violet) Peng Email: violetpeng@cs.ucla.edu			
TAs:	Christina Chance Email: cchance@cs.ucla.edu Rohan Wadhawan Email: rwadhawan7@g.ucla.edu			
Office hrs:	Prof: Mon. 10:00am - 11:00am at Eng VI 397A; or zoom: link TAs: Christina: Tuesday and Thursday 11:30am - 12:30pm, Boelter Hall, Room 3256S; or zoom: link Rohan: Friday 4:00pm - 5:00pm, Eng VI 389; or zoom: link			
TA discussion sessions:	Sec 1A: Friday 2:00pm - 3:50pm, Public Affairs Building 2232 (Christina Chance) Sec 1B: Friday 12:00pm - 1:50pm, Public Affairs Building 2232 (Christina Chance) Sec 1C: Friday 2:00pm - 3:50pm, Dodd Hall 170 (Rohan Wadhawan)			
Discussion site:	Piazza https://piazza.com/ucla/winter2024/cs162 public questions, discussion, announcements			
Web page:	https://vnpeng.net/cs162_win24.html			
Textbook:	Jurafsky & Martin, 3rd ed. (recommended) Manning & Schütze (recommended)			
Policies:	Grading: homework 35%, project 15%, midterm 20%, final 25%, participation 5% Honesty: UCLA Student Conduct Code			

Schedule

https://vnpeng.net/cs162_win24.html

Warning: The schedule below may change. Links to future lectures and assignments are just placeholders and will not be available until shortly before or after the actual lecture.

Project description out

Week	Monday	Wednesday	Friday (TA sessions)	Suggested Reading
1/8	 Introduction Why is NLP hard? What's important? Levels of language NLP applications 	Text classification and lexical semantics Text classification Naive Bayes classifier Logistic Regression	 Review of linear algebra and calculus Intro to google cloud computing Intro to colab 	 Intro: J&M chapter 1 Chomsky hierarchy: J&M 16 Prob/Bayes: M&S
1/15	No lecture (MLK holiday)	Assignment 1 release Lexical semantics • Semantic phenomena and representations • WordNet • Thesaurus-based semantic similarity	 Data preparation and ML practice Overview of ML system components Project Milestone 1 Discussion 	• Language models: J&M <u>3</u>
1/22	Distributional semantics • Word-Document Matrix • LSA • Semantic Similarity • Word Vectors	 N-gram language models How to model language? What's wrong with n-grams? What do language models model? 	Neural network basicsPyTorch Part (1)	• Smoothing: J&M 3; Rosenfeld (2000)
1/29	 Project planning report due Smoothing n-grams Add-one or add-λ smoothing Cross-validation Smoothing with backoff 	Assignment 1 due Log-linear models and neural language models Log-linear models Neural network basics (recap) Feedforward neural language Models	Deep learning workshopPyTorch Part (2)	 Neural language models: J&M 7 OpenAI blog post GPT-2 (with paper)
2/5	Assignment 2 release Assignment 1 answer keys release RNN language models • Recurrent neural networks (RNNs) • Long short-term memory networks (LSTMs)	 Transformers Long-short term memory networks (LSTMs) The transformer model 	 Review session (Language Models) Project Milestone 2 Discussion 	• <u>Transformer paper</u> ; <u>BERT paper</u>

1/8/24, 2:16 PM	CS	162 - Natural Language Processing	- Winter 2024 course page - UCLA	CS
2/12	Midterm exam (12:00-1:50pm in class) Return assignment 1 gradings	Pre-Trained Large Language Models ELMo BERT GPT-(2,3)	• Intro to Huggingface	
2/19	Assignment 2 due No lecture (Presidents' Day)	Project midterm report due Syntax Part-of-speech tagging NP Chunking Shallow Parsing	 Return midterm exam gradings Midterm Solutions Discussion Project Milestone 3 Discussion 	• John Lafferty's paper on CRF
2/26	Assignment 3 release Sequence tagging models POS-tagging leftovers Hidden Markov Models (HMMs) The Viterbi Algorithm	Sequence tagging models (cont.) • The Viterbi Algorithm leftovers • Maximum Entropy Markov Models (MEMMs)	• Review session (Syntax + Seq Tagging)	 The Viterbi Algorithm: J&M <u>8</u> Hidden Markov Models: J&M <u>Appendix A</u>;
3/4	Named Entity Recognition MEMM leftovers Intro to NER Nested NERs	 Probabilistic parsing What is parsing? Why is it useful? Brute-force algorithm CKY algorithms PCFG parsing 	• NLP Application Case Study	 Attributes: J&M 12 Parsing: J&M 13
3/11	Assignment 3 due Dependency Parser Dependency grammar Dependency trees	Dependency Parser (Cont.) • Shift-reduce parser	• Final exam recitation	 CCG: <u>Steedman & Baldridge</u>; more TAG/TSG: <u>Van Noord</u>, Guo, Zhang <u>1/2/3</u> Prob. parsing: J&M <u>14</u>