Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques

1. Introduction:

Project Title: Revolutionizing Liver Care: Predicting Liver Cirrhosis using Advanced Machine Learning.

Team Members:

- Durga Bhavani Mirla
- Nalabotu Pardha Naga Venkata Sai
- Navya
- Chakadhar

2. Project Overview:

The project aims to predict liver cirrhosis using clinical data, enabling early diagnosis and timely medical intervention. A machine learning model is integrated with a Flask web interface for user-friendly predictions.

2.1 Purpose:

- Interactive UI with real-time prediction
- Pre-trained ML model integration
- Default values pre-filled based on healthy patient record
- Emojis for easy prediction output display

2.2 Features:

- Error handling for missing or invalid data.
- Instantly returns a prediction label "Cirrhosis" or "No Cirrhosis" after form submission.
- User input form with 41 clinical features
- Prediction using a trained KNN model.
- Result displayed in a user-friendly web interface

3. Architecture:

3.1. Frontend

- Developed using HTML5, CSS3, and Jinja2 templates.
- HTML form (index.html) for inputting 41 patient features
- Styled using embedded CSS and images served from the /static directory

• Features a clean, responsive UI with gradient backgrounds and conditionally rendered prediction results.

3.2. Backend

- Backend logic implemented using Python and Flask
- Model Training Pipeline:
- Model training, evaluation, and export handled in Google Colab.
- Scripts for data cleaning, feature engineering, and training were executed in Colab.
- Final .pkl files (model + tools) were trained and exported in Colab, then used in the Flask backend for real-time predictions.

Model:

A KNN trained on a liver health dataset.

Model artifacts include:

liver prediction.pkl: Trained model

3.3. Data Preprocessing:

- Normalization with MinMaxScaler
- Label Encoding for categorical variables
- Encoders and scalers saved as .pkl files

3.4. Database:

- No persistent database is used
- Prediction is done entirely in-memory based on form input.

4. SetUp Requirements:

4.1.Prerequisites:

- Python 3.10+
- Flask
- scikit-learn
- pandas, numpy
- Google Colob (or Jupyter Notebook)

4.2.Installation:

https://github.com/Pnvsai888/Revolutionizing-Liver-Care-Predicting-Liver-Cirrhosis-using-Advanced-Machine-Learning-Techniques/tree/main

5. Folder Structure:

6. API Documentation:

Accepts form data and returns a prediction result (No Cirrhosis or Cirrhosis Detected).

7. User Interface:

- Responsive layout and clean inputs
- Results shown using intuitive emojis
- Modern design with liver-themed background.

8. Testing:

- Manual testing via web interface
- Model evaluated using accuracy and confusion matrix
- Verified prediction correctness using known data samples

9. Screenshots or Demo

Below are screenshots and visual outputs demonstrating the application's functionality and analysis results

9.1 Home Page - About Liver Cirrhosis Section

AGE	Gender	Place(location where the	Duration of alcohol
52	Male ~	patient lives)	consumption(years)
			13
Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Blood pressure (mmhg)	Obesity
2	Country Liquor 🗸	32	Yes
Family history of cirrhosis/	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)
hereditary	2	1 \$	2
Yes			
MCV (femtoliters/cell)	MCH (picograms/cell)	MCHC (grams/deciliter)	Total Count
1	5	3	12000
Polymorphs (%)	Lymphocytes (%)	Monocytes (%)	Eosinophils (%)
6	4	2	23
Basophils (%)	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)
6	6	32	2
Total Protein (g/dl)	Albumin (g/dl)	Globulin (g/dl)	AL.Phosphatase (U/L)
6	8	7	2
SGOT/AST (U/L)	USG Abdomen (diffuse liver or	Lymphocytes (%)	Hemoglobin (g/dl)
6	not)	5	8

9.2 Prediction Form with Default Values

9.3 Prediction Result - Cirrhosis Detected

9.4 Other input Values

9.5 No cirrhosis Detected

9.6. EDA - Categorical Feature Distributions

```
Train score with tuned model: 0.9169960474308301
Test score with tuned model: 0.8631578947368421
Optimal hyperparameters for KNN: {'n neighbors': np.int64(5)}
Accuracy on test set: 0.86
Confusion Matrix (KNN):
[[ 49 19]
[ 7 115]]
Classification Report (KNN):
              precision recall f1-score
                                               support
          0
                  0.88
                            0.72
                                      0.79
                                                   68
          1
                  0.86
                            0.94
                                       0.90
                                                  122
                                       0.86
                                                  190
   accuracy
  macro avg
                  0.87
                            0.83
                                       0.84
                                                  190
weighted avg
                  0.86
                            0.86
                                      0.86
                                                  190
```

9.7. Model Evaluation Report and Confusion Matrix

10. Known Issues

- No authentication system implemented
- Lacks database storage
- Only form inputs accepted (no file upload or image data)

11. Future Enhancements

- Add login and session management
- Host on Render/Heroku with database integration
- Enable file uploads for batch prediction
- Use React or Vue for frontend enhancement