Криптосистеми на еліптичних кривих

Lecture 11: Isogenies

Грубіян Євген Олександрович

Поняття ізогенії

Definition

Нехай E_1 та E_2 - еліптичні криві над полем К. Ізогенія $\phi: E_1 \to E_2$ - це скінченний морфізм кривих, що є також груповим гомоморфізмом, тобто $\phi(P+Q) = \phi(P) + \phi(Q)$ для всіх $P, Q \in E_1(\bar{K})$

- Якщо ϕ не нульовий морфізм (тобто не відображає всі точки в $\mathcal{O}_{\mathbf{E}_2}$), то ϕ є сюр'єктивним відображенням.
- Ядро ізогенії: $\ker(\phi) = \{P \in E_1(\bar{K}) \mid \phi(P) = \mathcal{O}_{E_2}\}$. Ядро завжди є скінченною підгрупою E_1 .
- Степінь ізогенії $\deg(\phi)$:
 - Якщо ϕ сепарабельна, $\deg(\phi) = |\ker(\phi)|$.
 - Нульовий морфізм має степінь 0.
- Якщо існує ненульова ізогенія φ : E₁ → E₂, криві E₁ та E₂ називаються ізогенними.
- Існує дуальна ізогенія $\hat{\phi} : E_2 \to E_1$ така, що $\hat{\phi} \circ \phi = [\deg(\phi)]_{E_1}$ та $\phi \circ \hat{\phi} = [\deg(\phi)]_{E_2}$, де [m] множення на m. Має той самий степінь: $\deg(\hat{\phi}) = \deg(\phi)$.

Теорема Тейта

Теорема Тейта

Еліптичні криві Е/ \mathbb{F}_q та Е'/ \mathbb{F}_q є ізогенними тоді і тільки тоді коли #Е(\mathbb{F}_q) = #Е'(\mathbb{F}_q)

Ізогенії суперсингулярних кривих

Якщо Е/ \mathbb{F}_{p} - суперсингулярна, тоді $\mathbf{j}(\mathrm{E})$ визначений в \mathbb{F}_{p^2}

Суперсингуляні криві мають ще одну дуже важливу особливість - кільце ендоморфізмів кривої E/\mathbb{F}_q : End(E) ізоморфие деякому ідеалу в алгебрі кватерніонів, тобто поза скалярним добутком $[m]: P \mapsto [m]P$ та ендоморфізмом Фробеніуса $\pi_q: (x,y) \mapsto (x^q, y^q)$ існують ще деякі 2 нетривіальні ендоморфізми («розмірність алгебри кватерніонів» - 4). Тоді як в ординарному випадку π_q , [m] - всі лінійно незалежні ендоморфізми що породжують End(E)

Приклади ізогеній

- Множення на ціле число [m]:
 - Для будь-якого цілого т ≠ 0, відображення φ = [т] : Е → Е, що визначається як Р → Р + ··· + Р (т разів), є ізогенією (ендоморфізмом).
 - ker([m]) = E[m] група точок m-кручення.
 - $deg([m]) = m^2.$
- Ендоморфізм Фробеніуса $\pi_{\rm q}$ (над $\mathbb{F}_{\rm q}$):
 - Для E над \mathbb{F}_q , відображення $\pi_q : (x, y) \mapsto (x^q, y^q) \in \text{ендоморфізмом.}$
 - $\ker(\pi_{\mathbf{q}} [1]) = \mathrm{E}(\mathbb{F}_{\mathbf{q}}).$
 - deg(π_{q}) = q.
 - π_q є чисто несепарабельним.
- Ізогенія факторизації за підгрупою Е → Е/G:
 - Нехай G скінченна підгрупа E. Існує (з точністю до ізоморфізму) єдина еліптична крива E' та сепарабельна ізогенія ϕ : E \rightarrow E' така, що $\ker(\phi)$ = G.
 - Криву E' позначають як E/G.
 - $\deg(\phi) = |G|.$

Обчислення ізогеній: Формули Велу (Vélu)

Формули Велу (1971) надають явний алгоритм для обчислення ізогенії $\phi : E \to E/G$ та рівняння кривої E/G, коли задано криву E та її скінченну підгрупу G.

Формули Велу

Нехай $G \subset E(\overline{\mathbb{F}_q})$ - підгрупа $E. E/\mathbb{F}_q : y^2 = x^3 + ax + b,$ (E/G)/ $\mathbb{F}_q : y^2 = x^3 + a'x + b'$ - еліптичні криві із сепарабельною ізогенією $\phi : E \to E/G$.

$$\phi(Q) = (x(Q) + \sum_{P \in G \setminus \{\emptyset\}} (x(Q+P) - x(P)), y(Q) + \sum_{P \in G \setminus \{\emptyset\}} (y(Q+P) - y(P))$$

$$a' = a - 5 \sum_{P \in G \setminus \{\emptyset\}} (3x(P)^2 + a), \quad b' = b - 7 \sum_{P \in G \setminus \{\emptyset\}} (5x(P)^3 + 3ax(P) + b)$$

де х(Р), у(Р) - координати точки Р.

Важливо: Формули Велу застосовні для будь-якої скінченної підгрупи G, але обчислення стають складними при зростанні |G|, тому зручно обчислювати ізогенії гладких порядків $|G|=1^{e}$ ітеративно

4/21

Граф суперсингулярних І-ізогеній

Важливим об'єктом у сучасній криптографії на основі ізогеній є граф суперсингулярних ізогеній.

- Вершини: Множина класів ізоморфізму суперсингулярних еліптичних кривих, визначених над скінченним полем F_p². Кожен клас ідентифікується своїм ј-інваріантом. Кількість таких класів приблизно p/12.
- Ребра: Ізогенії малого простого порядку l (наприклад, l = 2 або l = 3), що з'єднують ці криві. Якщо існує l-ізогенія $\phi : E_1 \to E_2$, то існує і дуальна l-ізогенія $\hat{\phi} : E_2 \to E_1$.

Властивості графу:

- Зв'язність: наслідок теореми Тейта.
- Регулярність: Граф є (l + 1)-регулярним (l ≠ p)
- Експандер (Expander graph): Для більшості параметрів р та l ці графи є експандерами. Це означає, що вони «добре перемішані», і випадкові блукання швидко покривають граф.
- Великий розмір: Кількість вершин значна, що ускладнює повний перебір в задачі пошуку шляху(ізогенії) між двома вершинами (кривими)

Приклад: Локальна структура графу 3-ізогеній

Крива E_0 має 4 різні 3-ізогенії (ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4) до кривих E_1 , E_2 , E_3 , E_4 . Крива E_1 також має 4 різні 3-ізогенії: одна ($\dot{\phi}_1$) є дуальною до ϕ_1 і веде назад до E_0 , а інші (ψ_1 , ψ_2 , ψ_3) ведуть до нових кривих E_{11} , E_{12} , E_{13} . Аналогічна структура продовжується для всіх вершин графу.

Складні обчислювальні задачі на основі ізогеній

Припускається, що наступні задачі є обчислювально складними (в тому числі для квантових комп'ютерів):

- Задача знаходження ізогенії (Isogeny Finding Problem): Дано дві ізогенні еліптичні криві E_1 , E_2 . Знайти явну ізогенію $\phi: E_1 \to E_2$.
- Задача обчислення ендоморфного кільця (Endomorphism Ring Computation): Дано еліптичну криву Е. Обчислити її кільце ендоморфізмів End(E).
- Задача обчислення шляху в графі ізогеній (Supersingular Isogeny Path Problem): Дано дві суперсингулярні еліптичні криві E₀, E₁ та максимальний степінь d. Знайти послідовність ізогеній малих степенів φ₁,..., φ_k, що сполучає E₀ та E₁, де deg(φ_i) ≤ d.
- Суперсингулярна задача Діффі-Хеллмана (CSIDH/SSIDH Problem): Дано суперсингулярну криву E₀ та образи E_A = φ_A(E₀), E_B = φ_B(E₀), де φ_A, φ_B невідомі (секретні) ізогенії з певними властивостями. Обчислити ј-інваріант спільної кривої E_{AB} ≅ φ_B(E_A) ≅ φ_A(E_B). (Примітка: задача для SIDH виявилася легшою через додаткові точки).

Ці задачі є основою для побудови постквантових криптосистем.

Криптографія на основі ізогеній

- Мотивація: Пошук криптографічних систем, стійких до атак з використанням квантових комп'ютерів (постквантова криптографія, PQC).
- Алгоритм Шора (квантовий) ефективно розв'язує задачі факторизації та дискретного логарифмування (включаючи еліптичні криві), що робить RSA, DH, ECDH вразливими.
- Задачі, пов'язані з ізогеніями (особливо на суперсингулярних кривих), вважаються складними навіть для квантових комп'ютерів (хоча конкретні реалізації, як SIDH, можуть мати вразливості).
- Переваги (потенційні):
 - Стійкість до квантових атак (для певних задач).
 - Відносно малі розміри ключів та шифротекстів порівняно з іншими PQC кандидатами (наприклад, на основі решіток або кодів).
- Недоліки/Виклики:
 - Вища обчислювальна складність порівняно з класичною ЕСС.
 - Менш досліджена безпека, недавні атаки на основні протоколи (SIDH).

Протокол SIDH: Налаштування (Setup)

Публічні параметри:

- Велике просте число р спеціального вигляду: $p = l_A^{eA} l_B^{eB} f \pm 1$, де l_A , l_B малі різні прості числа, e_A , e_B великі показники, f малий кофактор.
- Поле F_{p²}.
- Стартова суперсингулярна еліптична крива E_0 , визначена над \mathbb{F}_{p^2} . Структура групи: $E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/l_A^{e_A}\mathbb{Z})^2 \oplus (\mathbb{Z}/l_B^{e_B}\mathbb{Z})^2 \oplus (\mathbb{Z}/f\mathbb{Z})^2$
- Базисні точки для підгруп кручення:
 - $-\{P_A,Q_A\}$ базис для $E_0[l_A^{e_A}]=\{P\in E_0(\mathbb{F}_{p^2})\,|\,[l_A^{e_A}]P=\mathscr{O}\}.$
 - $-\{P_{\mathrm{B}},Q_{\mathrm{B}}\}$ базис для $\mathrm{E}_{0}[\mathrm{l}_{\mathrm{B}}^{\stackrel{\circ}{\mathrm{E}}}]=\{\mathrm{P}\in\mathrm{E}_{0}(\mathbb{F}_{\mathrm{p}^{2}})\,|\,[\mathrm{l}_{\mathrm{B}}^{\stackrel{\circ}{\mathrm{E}}}]\mathrm{P}=\mathbf{0}\}.$

Ці параметри є спільними та відомими всім учасникам.

Протокол SIDH: Ідея обміну ключами

- Мета: Аліса та Боб хочуть встановити спільний секретний ключ.
- Секрети:
- Аліса обирає секретну підгрупу $G_A \subset E_0[l_A^{e_A}]$ порядку $l_A^{e_A}$.
- Боб обирає секретну підгрупу $G_B \subset E_0[l_B^{e_B}]$ порядку $l_B^{e_B}$.
- Ізогенії:
- Аліса обчислює ізогенію $\phi_{A} : E_{0} \to E_{A} = E_{0}/G_{A}$.
- Боб обчислює ізогенію $\phi_{\rm B}$: ${\rm E}_0$ → ${\rm E}_{\rm B}$ = ${\rm E}_0/{\rm G}_{\rm B}$.
- Обмін: Вони обмінюються інформацією, яка дозволяє кожному обчислити образ секретної підгрупи іншого учасника на своїй кривій.
- Спільний секрет: Обидва обчислюють ј-інваріант кривої
 Е_{АВ} ≅ Е₀/(G_A, G_B). Завдяки властивостям ізогеній (комутативна діаграма), вони отримають однаковий результат:

$$j(\phi_B(E_A)) = j(\phi_A(E_B)).$$

Протокол SIDH: Крок 1 (Секрет та дія Аліси)

- 1. Вибір секрету: Аліса обирає два випадкових цілих числа s_A , r_A (mod $l_A^{e_A}$) (не обидва нулі, часто $r_A=1$ і s_A секрет).
- 2. Формування ядра: Аліса формує секретну точку (генератор ядра):

$$S_A = P_A + [s_A]Q_A \in E_0[l_A^{e_A}]$$

Її секретна підгрупа $G_A = \langle S_A \rangle$. Це циклічна підгрупа порядку $l_A^{e_A}$. (Примітка: часто використовують випадкову точку $P_A + [s_A]Q_A$ як генератор)

- 3. Обчислення ізогенії: Аліса обчислює (за допомогою формул Велу) ізогенію $\phi_A: E_0 \to E_A = E_0/G_A$ гладкого порядку $\deg(\phi_A) = l_A^{eA}$.
- 4. Обчислення образів точок Боба: Аліса обчислює образи базисних точок Боба під дією своєї ізогенії: $\phi_{\Lambda}(P_B)$ та $\phi_{\Lambda}(Q_B)$. Ці точки лежать на кривій E_{Λ} і мають порядок I_{P}^{B} .
- 5. Надсилання даних: Аліса надсилає Бобу публічний ключ: $(j(E_A), \phi_A(P_B), \phi_A(Q_B))$.

Протокол SIDH: Крок 2 (Секрет та дія Боба)

Аналогічно до Аліси:

- 1. Вибір секрету: Боб обирає два випадкових цілих числа s_B , r_B (mod $l_B^{\rm eB}$) (не обидва нулі, часто $r_B=1$ і s_B секрет).
- 2. Формування ядра: Боб формує секретну точку (генератор ядра):

$$S_B = P_B + [s_B]Q_B \in E_0[l_B^{e_B}]$$

Його секретна підгрупа $G_B = \overline{\langle S_B \rangle}$ - циклічна порядку l_B^{eB} .

- 3. Обчислення ізогенії: Боб обчислює ізогенію $\phi_{\rm B}: {\rm E}_0 \to {\rm E}_{\rm B} = {\rm E}_0/{\rm G}_{\rm B}$ гладкого порядку $\deg(\phi_{\rm B}) = {\rm l}_{\rm B}^{\rm e_B}$.
- Обчислення образів точок Аліси: Боб обчислює образи базисних точок Аліси:

$$\phi_{\mathrm{B}}(\mathrm{P}_{\mathrm{A}})$$
 ra $\phi_{\mathrm{B}}(\mathrm{Q}_{\mathrm{A}})$

Ці точки лежать на кривій E_{B} і мають порядок l_{A}^{eA} .

5. Надсилання даних: Боб надсилає Алісі публічний ключ: $(j(E_B), \phi_B(P_A), \phi_B(Q_A))$.

Протокол SIDH: Крок 3 (Обчислення секрету Алісою)

Аліса отримала ($E_{\rm B}$, $\phi_{\rm B}$ ($P_{\rm A}$), $\phi_{\rm B}$ ($Q_{\rm A}$)) від Боба.

1. Обчислення образу свого ядра на кривій Боба: Аліса використовує свій секрет s_A (або $S_A = P_A + [s_A]Q_A$) та отримані точки $\phi_B(P_A)$, $\phi_B(Q_A)$, щоб обчислити точку на кривій E_B :

$$S'_{A} = \phi_{B}(S_{A}) = \phi_{B}(P_{A} + [s_{A}]Q_{A}) = \phi_{B}(P_{A}) + [s_{A}]\phi_{B}(Q_{A})$$

Ця точка $S_{_{A}}^{\prime}$ генерує підгрупу $\phi_{\mathrm{B}}(G_{\mathrm{A}})$ порядку $l_{_{A}}^{\mathrm{e}_{\mathrm{A}}}$ на кривій $E_{\mathrm{B}}.$

2. Обчислення фінальної ізогенії: Аліса обчислює ізогенію $\psi_{A} : E_{B} \to E_{BA}$, ядром якої є $\langle S'_{A} \rangle = \phi_{B}(G_{A})$:

$$E_{BA} = E_B / \langle S'_A \rangle = E_B / \phi_B (G_A)$$

3. Спільний секрет: Аліса обчислює j-інваріант кривої E_{BA}.

$$k_A = j(E_{BA})$$

Це її версія спільного секрету.

Протокол SIDH: Крок 4 (Обчислення секрету Бобом)

Боб отримав (E_A , $\phi_A(P_B)$, $\phi_A(Q_B)$) від Аліси.

1. Обчислення образу свого ядра на кривій Аліси: Боб використовує свій секрет s_B (або $S_B = P_B + [s_B]Q_B$) та отримані точки $\phi_A(P_B)$, $\phi_A(Q_B)$, щоб обчислити точку на кривій E_A :

$$S'_{B} = \phi_{A}(S_{B}) = \phi_{A}(P_{B} + [s_{B}]Q_{B}) = \phi_{A}(P_{B}) + [s_{B}]\phi_{A}(Q_{B})$$

Ця точка S'_{B} генерує підгрупу $\phi_{A}(G_{B})$ порядку $l_{B}^{e_{B}}$ на кривій E_{A} .

2. Обчислення фінальної ізогенії: Боб обчислює ізогенію $\psi_{\rm B}: {\rm E_A} \to {\rm E_{AB}}, \;$ ядром якої є $\langle {\rm S'_R} \rangle = \phi_{\rm A}({\rm G_B}):$

$$E_{AB} = E_A / \langle S'_B \rangle = E_A / \phi_A (G_B)$$

3. Спільний секрет: Боб обчислює ј-інваріант кривої Е_{АВ}.

$$k_B = j(E_{AB})$$

Це його версія спільного секрету.

Протокол SIDH: Комутативність та Спільний Секрет

• Ключова властивість: Ізогенії ϕ_A та ϕ_B мають ядра з порядками, що є взаємно простими ($l_A^{e_A}$ та $l_B^{e_B}$). Це призводить до "комутативності"діаграми (з точністю до ізоморфізму):

$$E_{BA} = E_B/\phi_B(G_A) \cong E_0/\langle G_A, G_B \rangle$$

$$E_{AB} = E_A/\phi_A(G_B) \cong E_0/\langle G_A, G_B \rangle$$

Тому E_{AB} , E_{BA} ϵ ізоморфними над \mathbb{F}_{p^2} .

Спільний секрет: Ізоморфні криві мають однаковий ј-інваріант.
 Отже, Аліса та Боб обчислюють спільний секрет:

$$k_A = j(E_{BA}) = j(E_{AB}) = k_B$$

Навіщо потрібні φ(P), φ(Q)? Обчислення φ_A(P_B), φ_A(Q_B) (і аналогічно для Боба) є критичним. Воно дозволяє стороні обчислити образ ядра іншої сторони на своїй проміжній кривій (E_A або E_B), не знаючи секретної ізогенії іншої сторони. Саме ці "додаткові точки" (auxiliary points) стали вектором атаки Кастрика-Лекру.

15/21

Протокол SIDH: Візуалізація

Протокол SIKE (Supersingular Isogeny Key Encapsulation)

- Механізм інкапсуляції ключів (КЕМ), побудований на основі SIDH.
- Був кандидатом у 3-му та фінальному (4-му) раундах конкурсу постквантової криптографії NIST PQC.
- Використовував перетворення типу Фудзісакі-Окамото для перетворення схеми обміну ключами SIDH (типу РКЕ) на безпечний КЕМ (стійкий до атак типу ССА2).
- Основна ідея КЕМ:
 - КеуGen: Генерує пару ключів (відкритий рк, секретний sk), аналогічно до SIDH.
 - Епсарѕ: Бере відкритий ключ рк отримувача. Генерує випадковий спільний секрет К та його інкапсуляцію (шифротекст) С. Надсилає С отримувачу.
 - Decaps: Отримувач використовує свій секретний ключ sk та отриманий шифротекст С для відновлення того ж спільного секрету К.
- Розглядався як один із найперспективніших кандидатів РQС через малі розміри ключів.
- Став вразливим через атаку на базовий протокол SIDH.

Атака на SIDH/SIKE (Castryck-Decru, 2022)

- У серпні 2022 року Воутер Кастрик (Wouter Castryck) та Тома Декру (Thomas Decru) представили ефективну атаку на протокол SIDH та, як наслідок, на SIKE.
- Ключовий момент: Атака використовує саме ті додаткові точки кручення ($\phi_A(P_B)$, $\phi_A(Q_B)$ та $\phi_B(P_A)$, $\phi_B(Q_A)$), які передаються в протоколі SIDH.
- Ідея атаки (дуже спрощено):
 - Використовує зв'язок між ізогеніями еліптичних кривих та ізогеніями абелевих многовидів вищих розмірностей (зокрема, поверхнями Куммера, пов'язаними з якобіанами гіпереліптичних кривих роду 2).
 - Знання образів додаткових точок дозволяє ефективно відновити інформацію про секретну ізогенію (її ядро, або еквівалентно, секретний скаляр s_A чи s_B).
 - Алгоритм використовує так звані ізогенії Рішело (Richelot isogenies) між якобіанами кривих роду 2, які можна побудувати за допомогою інформації з SIDH.
- Результат: Атака дозволяє відновити секретний ключ Аліси або Боба за поліноміальний час на класичному комп'ютері.
- Це повністю зламало безпеку SIDH та SIKE у їхній відомій формі.

Наслідки атаки та сучасний стан

- SIKE відкликано: NIST відкликав SIKE зі списку кандидатів PQC для стандартизації невдовзі після публікації атаки.
- Пошук нових підходів: Атака стимулювала пошук нових криптографічних схем на основі ізогеній, які б не використовували додаткові точки кручення у такий самий спосіб, або базувалися б на інших варіантах задачі ізогеній (наприклад, CSIDH, яке не використовує Г_{р2} та додаткові точки).
- Активна область досліджень: Криптографія на основі ізогеній залишається активною, хоча й складнішою, областю досліджень.
- Альтернативні задачі: Розглядаються схеми, що базуються на:
 - Задачі знаходження шляху в графі суперсингулярних ізогеній (без додаткових точок, як у CSIDH).
 - Задачі обчислення ендоморфного кільця.
 - Інших варіантах задачі обчислення ізогеній.

Сучасні алгоритми: SKISign та SQISign

- SKISign (Small Key Isogeny Signature) / SQISign (Short Quaternion Isogeny Signature): Схеми цифрового підпису на основі ізогеній. SQISign є новішою та ефективнішою версією.
- Інша базова задача: Безпека базується на складності задачі знаходження ізогенійного шляху між двома заданими суперсингулярними кривими (Supersingular Isogeny Path Problem) та пов'язаних задачах у графі ізогеній. SQISign також використовує структуру кватерніонних алгебр.
- Не використовує SIDH-структуру: Схеми побудовані інакше і не використовують обмін додатковими точками, як у SIDH. Тому атака Кастрика-Декру на них безпосередньо не застосовується.
- Ідея підпису (GPS/Fiat-Shamir): Схема використовує підхід типу доказу з нульовим розголошенням (перетворений на підпис за допомогою Fiat-Shamir), де доказом знання секрету (секретного шляху ізогеній) є здатність відповісти на криптографічний виклик.
- Переваги: Постквантова стійкість, дуже малі розміри підписів (особливо SQISign) порівняно з іншими PQC підписами.
- Недоліки: Досить повільна генерація та перевірка підпису.

Висновки

- Ізогенії є фундаментальними об'єктами в теорії еліптичних кривих, що описують структурні зв'язки між ними.
- Формули Велу дозволяють явно обчислювати ізогенії за їхніми ядрами.
- Складність обчислення ізогеній (особливо між суперсингулярними кривими) стала основою для розробки постквантових криптосистем.
- Протоколи SIDH/SIKE були перспективними, але виявилися вразливими через використання додаткової інформації (точок кручення).
- Атака 2022 року стала важливим уроком для спільноти PQC.
- Дослідження продовжуються, фокусуючись на альтернативних задачах та конструкціях (CSIDH, SQISign), що демонструє життєздатність напрямку, хоч і з новими викликами.