Module1

Complex function: Cartesian form: w = f(z) = u(x, y) + i v(x, y).

Polar form: $w = f(z) = u(r, \theta) + i v(r, \theta)$.

Cartesian form

If f(z) = u(x, y) + i v(x, y) is analytic then

1.
$$u_x = v_y$$
, $u_y = -v_x$ (C-R equations)

2.
$$u_{xx} + u_{yy} = 0$$
, and $v_{xx} + v_{yy} = 0$.

3.
$$f'(z) = u_x + iv_x = v_y - iu_y$$

= $u_x - iu_y = v_y + iv_x$

If u or v are given then find f'(z) by substituting x = z and y = 0 in f'(z) and find f(z) by integrating f'(z).

Polar form

If
$$f(z) = u(r, \theta) + i v(r, \theta)$$
 is analytic then

1.
$$ru_r = v_\theta$$
, $rv_r = -u_\theta$ (C-R equations)

2.
$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
, and $v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = 0$

3.
$$f'(z) = \frac{ru_r + i rv_r}{z} = \frac{v_\theta - i u_\theta}{z}$$
$$= \frac{ru_r - i u_\theta}{z} = \frac{v_\theta + i rv_r}{z}.$$

If u or v are given then find f'(z) by substituting r = z and $\theta = 0$ in f'(z) and find f(z) by integrating f'(z).

Module2:

1. Transformation of $w = e^z$

Here,
$$w = u + iv = e^{x+iy} = e^x e^{iy} = \rho e^{i\varphi}$$

 $\Rightarrow \rho = e^x \& \varphi = y.$

2. Transformation $w = z^2$.

Here,
$$w = u + iv = (x + iy)^2 = (x^2 - y^2) + i 2xy$$

 $\Rightarrow u = x^2 - y^2 \& v = 2xy$

3. Transformation of $w = Z + \frac{1}{7}, z \neq 0$

Here
$$w = \left(r + \frac{1}{r}\right) cos\theta + i\left(r - \frac{1}{r}\right) sin\theta$$
, $\therefore u = \left(r + \frac{1}{r}\right) cos\theta$ & $v = \left(r - \frac{1}{r}\right) sin\theta$
$$\frac{u^2}{\left(r + \frac{1}{r}\right)^2} + \frac{v^2}{\left(r - \frac{1}{r}\right)^2} = 1 \text{ , } r \neq 1 \text{ , and } \frac{u^2}{(2cos\theta)^2} - \frac{v^2}{(2sin\theta)^2} = 1$$

Bilinear Transformation (BLT):

The transformation $w = \frac{az+b}{cz+d}$ where a, b, c, d are real or complex constants such that $ad - bc \neq 0$ is called a BLT. If $w = \frac{az+b}{cz+d}$, then $z = \frac{dw-b}{-cw+d}$.

Cauchy's Theorem:

Statement: If f(z) is an analytic function and f'(z) is continuous at each point within and on a closed curve C, then $\int_C f(z)dz = 0$.

Cauchy's Integral Formula:

Statement: If f(z) is analytic inside and on a simple closed curve C and if 'a' is any point within C then $f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz$.

Note: i)
$$\int_C \frac{f(z)}{z-a} dz = \begin{cases} 0 & \text{if } z = a \text{ lies outside } C \text{ (by Cauchy's Theorem)} \\ 2\pi i f(a) & \text{if } z = a \text{ lies inside } C \text{ (by Cauchy Integral formula)} \end{cases}$$

ii)
$$\int_C \frac{f(z)}{(z-a)^{n+1}} dz = \begin{cases} 0 & \text{if } z = a \text{ lies outside } C \text{ (by Cauchy's Theorem)} \\ \frac{2\pi i}{n!} f^n(a) & \text{if } z = a \text{ lies inside } C \text{ (by Cauchy Integral formula)} \end{cases}$$

Module3:

Discrete Random Variable	Continuous Random Variable
P(x) is called probability function for a discrete	f(x) is called probability density function (p.d.f.) for a
random variable X, If	continuous random variable X, If
(i) $P(x) \ge 0$ and (ii) $\sum_{x} P(x) = 1$.	(i) $f(x) \ge 0$ and (ii) $\int_{-\infty}^{\infty} f(x) dx = 1$.
$Mean = \mu = \sum_{x} x P(x) .$	Mean= $\mu = \int_{-\infty}^{\infty} x f(x) dx$
Variance = $V = \sum_{x} x^2 P(x) - \mu^2$.	Variance = $V = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$.
Standard deviation = $\sigma = \sqrt{V}$	Standard deviation= $\sigma = \sqrt{V}$
Cumulative distributive function: $F(x) = P(X \le x)$	Cumulative distributive function (c.d.f.):
$\therefore F(x_0) = \sum_{x} P(X \le x_0).$	$F(x) = \int_{-\infty}^{x} f(x) dx .$
(c.d.f. is defined for all real values of x)	Therefore p.d.f. $f(x) = \frac{d}{dx} [F(x)]$.
(c.d.). Is defined for all fear values of χ)	$P(a < X < b) = \int_{a}^{b} f(x)dx = F(b) - F(a).$
Expectation of $h(X) = E[h(X)] = \sum_{x} h(x)P(x)$.	Expectation of $h(x) = E[h(x)] = \int_{-\infty}^{\infty} h(x)f(x)dx$.
Therefore $\mu = E[X]$ and $V = E[X^2] - \{E[X]\}^2$.	
Binomial Distribution : If a Bernoulli's trail is	Exponential distribution : Probability density
conducted n times, Probability of x successes in n	function is $f(x) = \begin{cases} \propto e^{-\alpha x}, & \text{for } x \ge 0 \\ 0, & \text{for } x < 0 \end{cases}$.
trail is given by $P(x) = {}^{n}c_{x}p^{x}q^{n-x}$. $p+q=1$.	$\int \frac{1}{x} dx = \int $
	1 1
Mean= $\mu = np$. Variance = $V = npq$.	Mean= $\mu = \frac{1}{\alpha}$. Variance = $V = \frac{1}{\alpha^2}$.
Standard deviation = $\sigma = \sqrt{V} = \sqrt{npq}$.	Standard deviation = $\sigma = \sqrt{V} = \frac{1}{\alpha}$.
	Mean and standard deviation of an exponential
	distribution are same.
Poisson distribution: The limiting case of the	Normal distribution: A continuous random variable
binomial distribution by making n very large and p	
very small, and keeping np fixed $(np = m)$ is Poisson	<i>X</i> from $-\infty$ to ∞ is said to have normal distribution
	with parameter μ and σ^2 if its p.d.f. is
distribution.	$1(r-u)^2$
Probability function is $P(x) = \frac{m^x e^{-m}}{x!}$.	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \text{for} -\infty < x < \infty ,$
$\mathbf{Mean} = \mu = m. \mathbf{Variance} = V = m.$	mean= $E(X) = \mu$, and variance = $V(X) = \sigma^2$.
Standard deviation = $\sigma = \sqrt{V} = \sqrt{m}$.	If $\mu = 0$ and $\sigma = 1$ then the normal distribution is
Mean and variance of a Poisson distribution are	called standard normal distribution.
same.	Let x be a normal variable with mean μ and standard
	deviation σ , then $z = \frac{x-\mu}{\sigma}$.
	σ

Module4: Co-efficient of correlation: The numerical measure of correlation is called co-efficient of correlation r. Let $X = x - \overline{x}$, $Y = y - \overline{y}$ where \overline{x} and \overline{y} are means of x and y respectively.

Standard deviations of x is $\sigma_x = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$

Then the co-efficient of correlation, $r = \frac{\sum [(x-\overline{x})(y-\overline{y})]}{n\sigma_x\sigma_y} = \frac{\sum XY}{\sqrt{\sum X^2 \sum Y^2}}$.

Line of regression of y on x is, $y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x})$.

Line of regression of x on y is, $x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$.

 $r\frac{\sigma_y}{\sigma_x}$ is called regression coefficient of y on x, and $r\frac{\sigma_x}{\sigma_y}$ is called regression coefficient of x on y.

If θ is the angle between the regression lines, then $\tan \theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$.

Note: 1. $r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$

2. Line of regression of y on x is $y - \overline{y} = \frac{n \sum xy - \sum x \sum y}{[n \sum x^2 - (\sum x)^2]} (x - \overline{x})$.

Similarly the line of regression of x on y is,

$$x - \overline{x} = \frac{n \sum xy - \sum x \sum y}{[n \sum y^2 - (\sum y)^2]} (y - \overline{y}) .$$

3.
$$\sigma_x = \frac{\sqrt{n \sum x^2 - (\sum x)^2}}{n}$$

Rank correlation between x and y is $\rho = \frac{\sum XY}{\sqrt{\sum X^2 \sum Y^2}} = 1 - \frac{6 \sum d_i^2}{(n^3 - n)}$ where $d_i = x_i - y_i$.

Curve fitting: For the curve $y = a + bx + cx^2$ normal equations are

$$na + b \sum x + c \sum x^2 = \sum y$$

$$a \sum x + b \sum x^2 + c \sum x^3 = \sum xy$$

$$a \sum x^2 + b \sum x^3 + c \sum x^4 = \sum x^2y$$

For the curve y = a + bx, normal equations are $na + b\sum x = \sum y$ and $a\sum x + b\sum x^2 = \sum xy$.

For the curve $y = ax^b$, first taking $\log y$, i.e. $\log y = \log a + b \log x$

Or Y = A + bX. Where $Y = \log y$, $A = \log a$, $X = \log x$ Normal equations are, $nA + b\sum X = \sum Y$ and $A\sum X + b\sum X^2 = \sum xY$. And $a = e^A$.

Module 5

Joint probability distribution: P(x, y) is called joint Probability function for two discrete random variables

X and *Y* If i)
$$P(x, y) \ge 0$$
 for all x, y ii) $\sum_{x} \sum_{y} P(x, y) = 1$.

Then [(x, y), P(x, y)] is called joint probability distribution.

Marginal distribution of X : [x, f(x)] where $f(x) = \sum_{y} P(x, y)$.

Marginal distribution of Y : [y, g(y)] where $g(y) = \sum_{x} P(x, y)$.

$$E(X) = \mu_X = \sum x f(x)$$
, $E(Y) = \mu_Y = \sum y g(y)$.

$$V(X) = \sum x^2 f(x) - (\mu_X)^2, \qquad V(Y) = \sum y^2 f(y) - (\mu_Y)^2.$$

$$\sigma_X = \sqrt{V(X)}$$
 $\sigma_Y = \sqrt{V(Y)}$

$$E(XY) = \sum_{x} \sum_{y} xy P(x, y)$$

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Correlation
$$\rho(X, Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$
.

If P(x, y) = f(x)g(y) for all x, y then X and Y are independent.

Simple sampling of attributes: The expected value of success in a sample of size n is np,

and standard deviation is \sqrt{npq} .

Mean proportion of successes $=\frac{np}{n}=p$.

Standard error of proportion of successes = $\sqrt{\frac{pq}{n}}$.

Precision of the proportion of successes = $\sqrt{\frac{n}{pq}}$.

Test of significance for large samples: If x be the observed number of successes in the large sample and z is the standard normal variate then $z = \frac{x - \mu}{\sigma}$.

- 1. If |z| < 1.96, difference between the observed and expected number of successes is not significant.
- 2. If |z| > 1.96, difference is significant at 5% level of significance.
- 3. If |z| > 2.58, difference is significant at 1% level of significance.

Sampling distribution of the mean: If a population is distributed normally with mean μ and standard deviation σ , then the means of all positive random samples of size n, are also distributed normally with mean μ and standard error $\frac{\sigma}{\sqrt{n}}$. $\dot{z} = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$.

Student's t – **Distribution**: Consider a small sample of size n, drawn from a normal population with mean μ and S.D. σ . If \overline{x} and σ_s be the sample mean and S.D. Then the statistic, t is defined as

$$t = \frac{\overline{x} - \mu}{\sigma_c} \sqrt{n-1}$$
, where $v = n-1$ denotes the degree of freedom of t.

Significance test of a sample mean: Given a random sample $x_1, x_2, x_3, \dots x_n$ from a normal population, we have to test the hypothesis that the mean of the population is μ . for this, we first calculate $t = \frac{\overline{x} - \mu}{\sigma_s} \sqrt{n}$

Where
$$\overline{x} = \frac{\sum_{1}^{n} x_i}{n}$$
, $\sigma_s^2 = \frac{1}{n-1} \sum_{1}^{n} (x_i - \overline{x})^2$.

Then find the value of P for the given d.f. from the table.

If the calculated $> t_{0.05}$, the difference between \overline{x} and μ is said to be significant at 5% level of significance.

If $> t_{0.01}$, the difference between \overline{x} and μ is said to be significant at 1% level of significance.

If $< t_{0.05}$, the data is said to be consistent with the hypothesis.

CHI-SQUARE (χ^2) **TEST**: If O_i and E_i are observed and expected frequencies for $i = 1, 2 \cdots n$.

Then $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$ with n - 1 degrees of freedom.

The equation of χ^2 curve is $y=y_0e^{-\frac{\chi^2}{2}}(\chi^2)^{\frac{\gamma-1}{2}}$, where $\gamma=n-1$.

Goodness of fit: The value of χ^2 is used to test whether the deviations of the observed frequencies from theoretical frequencies are significant or not.