VITMO

Sparkling: открытая библиотека для автоматического решения задачи кластеризации табличных и мультимодальных данных

Шпинева Полина polina.shpineva@itmo.ru

Кластеризация — задача разбиения заданной выборки объектов на непересекающиеся подмножества (кластеры), так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались.

Задача *выбора* и *настройки* алгоритма кластеризации на сегодняшний день является **экспертной**

Сферы применения:

- Археология
- Медицина
- Компьютерные науки
- Бизнес-задачи
- Социология
- Лингвистика
- Маркетинг
- Обработка изображений
- Геология
- итд

Гиперпараметры

Пример: алгоритм DBSCAN и его гиперпараметры:

- радиус шара «плотности», выстраиваемого около каждого элемента;
- минимальное число элементов, входящих в радиусе;

Внешние меры

 Функции оценки, которые используют сторонние данные о решаемой задаче, например разметка набора данных на классы.

Внутренние меры (*CVI* — clustering validity index)

- Функции оценки, которые используют данные о структуре самого разбиения.
- Существует более 30 таких мер, среди которых не установлено универсальной.

Существующие реализации

Для задач обучения с учителем:

- Библиотека ТРОТ
- Библиотека Auto-Sklearn
- Библиотека AutoWeka
- Библиотека HyperOpt

Для задачи кластеризации:

• AutoCluster выбор алгоритма на основе мета-обучения

Проблема:

Для задач кластеризации **не существует** инструмента для автоматической настройки и выбора соответствующего задаче алгоритма, который поддерживал бы мультимодальность и работу с большими наборами данных.

Задачи:

- 1. Рекомендация меры оценки качества задачи кластеризации
- 2. Выбор и настройка алгоритма кластеризации

Мета-обучение

Мета-обучение

Перенос знаний о решении одних задач на ускорение поиска решения других задач

Мета-модели

Алгоритмы машинного обучения применяются к **мета-данным** < предыдущих экспериментов машинного обучения

Мета-признак описывает свойство задачи.

Примеры:

- Разреженность набора данных
- Число категориальных признаков объектов в наборе данных
- Число возможных меток
- Размер набора данных

Мета-признаковое описание задается вещественными скалярными значениями.

Рекомендация меры оценки

34(13) SERVINE BA

- 1. Для каждого набора данных из OpenML:
 - а. вычисление 19 мета-признаков
 - b. определение лучшей меры качества для каждого
- 2. Формирование набора данных *DatasetOfDatasets*, где в качестве целевого признака выступают меры качества.
- 3. Обучение классификатора *CVI_Predictor* на наборе данных из предыдущего пункта

Этап рекомендации для нового набора данных D:

- 1. Вычисление 19 мета-признаков для набора данных D
- 2. Формирование вектора, являющегося новой записью для CVI_Predictor (по аналогии с наборами из DatasetOfDatasets).
- 3. Предсказание меры качества при помощи обученного мета-классификатора *CVI_Predictor*

Выбранные внутренние меры качества:

- Индекс Калински-Харабаса
- Обобщенный индекс Данна
- Силуэтный индекс

- Мера Дэвиса Болдина
Классификатор

К Nearest Neighbors 0,58

Random Forest 0,83

Decision Tree 0,79

Naïve Bayesian 0,68

XGBoost Classifier 0,86

Выбор и настройка алгоритма кластеризации

Дано **множество алгоритмов** с соответствующим пространствами гиперпараметров, фиксированное **время** T для поиска оптимального алгоритма.

Необходимо найти компромисс между двумя крайними случаями (exploration-exploitation tradeoff):

- 1. Однородное разделение временного бюджета между алгоритмами может привести к трате значительной части времени на неэффективные алгоритмы.
- **2.** Предоставление приоритетов алгоритмам может привести к потере информации о качестве работы других алгоритмов.

Схема работы алгоритма настройки моделей

Алгоритм на основе обучения с подкреплением, а именно на основе решения задачи о многоруком бандите.

Агент итеративно нажимает на различные ручки, получает награду после каждой итерации. Цель агента – разработать стратегию последовательности активации ручек для максимизации награды, а в общем случае для оптимизации заданной агенту целевой функции.

VITMO

Модули библиотеки

Sparkling

- Препроцессинг, процесс оптимизации и взаимодействие с пользователем.
- Необходимы сторонние модули python в зависимости от конкретной задачи.

Heaven

- Реализации алгоритмов и мер качества.
- Написаны на Scala 2.11.12.
- Не требуют дополнительных зависимостей, помимо Apache Spark.

Мультимодальные данные

- Различные комбинации модальностей:
 - о Текст
 - Изображения
 - Табличные данные
- Поддержка двух фреймворков:
 - Pytorch
 - Tensorflow
- Препроцессинг производится при помощи различных моделей HuggingFace.

Подсчет расстояний между модальностями (Heaven)

$$L = \sqrt{\sum_{i=1}^{N} w_i (A_i - B_i)^2}$$

В библиотеке реализованы метрики расстояния:

- Косинусное расстояние
- Канберрское расстояние
- Расстояние Минковского

N — количество модальностей;

 w_i — некоторые нормировочные коэффициенты;

 $(A_i - B_i)$ – расстояния между модальностями объектов A и B.

Распределенные алгоритмы кластеризации (Heaven)

- K-Means
- MeanShift
- DBSCAN
- Спектральный алгоритм
- BIRCH
- Bisecting K-Means

Spark обрабатывает данные в парадигме MapReduce.

Рекомендация меры качества для реальных наборов данных (Sparkling)

Набор данных	Время, с	Рекомендованная мера
arrhythmia	26	GD41
balance-scale	21	CALINSKI_HARABASZ
cpu	7	GD41
dermatology	17	CALINSKI_HARABASZ
ecoli	10	SCORE Function
german	33	GD41
glass	7	SCORE Function
haberman	8	SCORE Function
heart-statlog	7	CALINSKI_HARABASZ
iono	10	SCORE Function

Результат работы библиотеки на мультимодальных наборах данных. (Sparkling)

Внутренняя мера	Лучший алгоритм по выбранной мере	Время работы, мин
Мера Дэвиса Болдина	Birch	33
Mepa Calinski-Harabasz	Birch	35
Мера Данна	MeanShift	66
Силуэтный индекс	Birch	34
Score function	BisectingKMeans	36

Flick dataset – набор данных, содержащий изображения различных ситуаций из жизни людей и по пять предложений-описаний.

Процесс настройки

wine-quality-white-local

Работа алгоритмов на наборе данных, описывающих белое вино; кумулятивный минимум меры Calinski-Harabasz; временной ресурс 20 минут; оптимизатор Optuna; стратегия выбора алгоритма Softmax.

Кейсы реального применения

 Рекомендательная система научных сотрудников для абитуриентов университета ИТМО.

 Построение разбиения археологических артефактов в регионе раскопок Изюк (Тюменская область)

Sparkling

https://gitlab.com/rainifmo/sparkling

Спасибо за внимание!

ITSMOre than a UNIVERSITY