CSC484 Assignment #1

Andrii Osipa

January 2017

Problem 1.1

Solution. Let X_i be random variable with the following definition:

$$X_i = \begin{cases} 1, \text{there is no balls in } i^{th} \text{ bin} \\ 0, \text{otherwise} \end{cases}$$

. Then $\sum_{i=1}^n X_i$ is the number of empty bins. If we have no balls in i^{th} bin then on each ball it was put into any other bin and this event has probability $\frac{n-1}{n}$. We have m balls therefore $P(X_i=1)=\left(\frac{n-1}{n}\right)^m$. So $E[X_i]=\left(\frac{n-1}{n}\right)^m$. Therefore $E[X]=\sum_{i=1}^n E[X_i]=\sum_{i=1}^n \left(\frac{n-1}{n}\right)^m=n\left(\frac{n-1}{n}\right)^m=\frac{(n-1)^m}{n^{m-1}}$.

Problem 1.2

Solution. Probability that i^{th} and j^{th} elements are compared:

$$X_{ij} = \begin{cases} 1, i^{th} \text{ and } j^{th} \text{ elements were compared} \\ 0, \text{ otherwise} \end{cases}$$

Lets take a look at three cases:

- 1. i < k' < j: in this case two elements will be compared if one of them is chosen as pivot. Therefore $P(X_{ij}=1)=\frac{2}{j-i+1}$.
- 2. i < j < k': in this case we have the following: if pivot is between i^{th} and j^{th} elements it is obvious that they never will be compared as they will be in the different partitions.

If pivot is between j^{th} and k^{th} elements then they also will not be compared as after partition algorithm will not run Select(...) for subarray where both i^{th} and j^{th} elements are.

If pivot is k^{th} element then those two also will not be compared as algorithm will just return pivot.

If pivot is i^{th} or j^{th} element then they will be compared. Therefore

$$P(X_{ij} = 1) = \frac{2}{k - i + 1}.$$

3. k < i < j: this case is similar to previous one. Here we have

$$P(X_{ij} = 1) = \frac{2}{j - k + 1}.$$

Then for total number of comparations we have

$$X = \sum_{i < j} X_{ij} = \sum_{k \le i < j} X_{ij} + \sum_{i < k < j} X_{ij} + \sum_{i < j \le k} X_{ij}.$$

Lets calculate each of the sums:

$$\sum_{k \le i < j} E[X_{ij}] = \sum_{i=k}^{n} \sum_{j=i+1}^{n} \frac{2}{j-k+1} = \sum_{j=k+1}^{n} \sum_{i=k}^{j-1} \frac{2}{j-k+1} = \sum_{j=k+1}^{n} \frac{2(j-k)}{j-k+1} = \sum_{j=k+1}^{n} \frac{2(j-k)$$

$$=\sum_{j=1}^{n-k}\frac{2j}{j+1}=\sum_{j=1}^{n-k}\left(2-2\frac{1}{j+1}\right)=2(n-k+1)-2\sum_{j=1}^{n-k+1}\frac{1}{j}=O(n)-O(\ln n)=O(n)$$

 $\sum_{i < j \le k} E[X_{ij}] = O(n) \text{ and proof is very similar to the previous one.}$

$$\sum_{i < k < j} E[X_{ij}] = \sum_{i=1}^{k-1} \sum_{j=k+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{k-1} \sum_{j=k+1-i}^{n-i} \frac{2}{j+1} \le \sum_{i=1}^{k-1} \sum_{j=2}^{n-1} \frac{2}{j+1} \le \sum_{i=1}^{k-1} \sum_{j=2}^{n-i} \frac{2}{j+1} \le \sum_{i=1}^{k-1$$

$$\leq (k-1)\ln(n-1) = O(\ln n).$$

Therefore for X we have $E[X] = O(n) + O(n) + O(\ln n) = O(n)$.

Problem 1.3

Solution. Let A_i be event that i was chosen during step of updating X.

$$A_i = \begin{cases} 1, \text{i was selected on some step} \\ 0, \text{ otherwise} \end{cases}$$

It is easy to see that each value for X can be selected only once. If some $k \in \{0, ..., n-1\}$ was selected then on every following step randomly selected number will be smaller than k. We have i from 0 to n-1. Number of steps in our algorithm is 1 plus number of updates of X. $A = \sum_{i=0}^{n-1} A_i$ is total number of updates of X.

 $P(A_i = 1) = \frac{1}{i+1}$: if was selected any number smaller that i then i will never be selected. Therefore $E[A_i] = \frac{1}{i+1}$. And $E[A] = \sum_{i=0}^{n-1} E[A_i] = \sum_{i=0}^{n-1} \frac{1}{i+1} = O(\ln n)$.

Problem 1.4. Bonus.

Solution. Let A_i be event that i was chosen during step of updating X.

$$A_i = \begin{cases} 1, \text{i was selected on some step} \\ 0, \text{ otherwise} \end{cases}$$

Each X can be chosen many times during algorithm, therefore $\sum_{i=0}^{\infty} E[A_i]$ is much less then algorithm runtime. The only possibility that some specific value of X was not chosen at all means that 0 was chosen. Because in all other cases it is still possibility to select X in further steps. Therefore $P(A_i = 1) = \frac{i}{i+1}$.

Then
$$E[A] = \sum_{i=1}^{\infty} E[A_i] = \sum_{i=1}^{\infty} \frac{i}{i+1} = \infty$$
 < runtime.

Problem 1.5

Solution. $a_0, ..., a_{k-1} \in \{0, ..., p-1\}$ $X_g = a_0 + a_1 g + a_2 g^2 + ... + a_{k-1} g^{k-1} \mod p, g \text{ from } 0 \text{ to } n-1.$ $P(X_0 = t_0, ..., X_{n-1} = t_{n-1}) = P(X_0 = t_0)...P(X_{n-1} = t_{n-1})?$

Obvious fact that $P(X_0 = t_0) = P(a_0 = t_0) = \frac{1}{p}$. For any i > 0 also

holds that $P(X_i = t_i) = \frac{1}{p}$. We have $X_i = a_0 + a_1 i + a_2 i^2 + ... + a_{k-1} i^{k-1}$

mod p. Suppose $a_0, ..., a_{r-1}, a_{r+1}, ..., a_{k-1}$ are fixed. Then only for $a_r * r^i = t_i - a_1 i - a_2 i^2 - ... - a_{k-1} i^{k-1} \mod p$ we have that $X_i = t_i$. And here exists only one solution for a_r .

Proof: suppose there are no solution $\Leftrightarrow \exists l \in \{0,...,p-1\}: xr^i \neq l \mod p \Rightarrow \exists y: xr^i = yr^i \mod p \Rightarrow (x-y)r^i = 0 \mod p \text{ and } p \text{ is not divisible by any } r: r \neq 1 \text{ and we have that } r \leq p \text{ therefore } x = y \text{ and we have contradiction.}$ Now we proved that solution exists. From same proof it easy to see that solution is the only one.

Therefore same fact holds for any index: we can have randomly selected k-2 indexes and the last one can be picked in the only way that $X_i = t_i$ holds. So

we have
$$P(X_i = t_i) = \frac{1}{p}$$
.

Now suppose $X_0 = t_0, \dots, X_{n-1} = t_{n-1}$. $\begin{bmatrix} 1 & 0 & 0^2 & \dots & 0^{k-1} \\ 1 & 1 & 1^2 & \dots & 1^{k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & n-1 & (n-1)^2 & \dots & (n-1)^{k-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_{n-1} \end{bmatrix} = \begin{bmatrix} t_0 \\ t_1 \\ \vdots \\ t_{n-1} \end{bmatrix}$ Lets look at this as a system for a_0, \dots, a_{k-1} .

First matrix is Vandermonde matrix. Determinant of this matrix nonzero as every row contains powers of different numbers from 0 to n-1 and if $\exists k,l \in \{0,...,n-1\}: k=l \mod p \Rightarrow k=l$ as both k and l are less then p.

Det is nonzero \Rightarrow system is defined and has only one solution $a'_0,...,a'_{k-1}$. Therefore $X_0=t_0,...,X_{n-1}-t_{n-1}\Leftrightarrow a_0=a'_0,...,a_{k-1}=a'_{k-1}$. And $P(a_0=t_0,...,a_{k-1})$ $a'_0, ..., a_{k-1} = a'_{k-1} = \left(\frac{1}{n}\right)^k$.

As we showed before $\prod_{i=0}^{n} n - 1P(X_i = t_i) = \left(\frac{1}{p}\right)^k$. Therefore $X_0,...,X_{n-1}$ are k-wise independent.

Problem 2.1

Solution. $A, B \subseteq U, |A| = \Theta(n), |B| = \Theta(n)$ and $A \cap B = \emptyset$. Let's denote by c_A and c_B constants such that $|A| \leq c_A n$ and $|B| \leq c_B n$. $P(x \in R) = \Theta(\frac{1}{n})$ and

and
$$c_B$$
 constants such that $|A| \leq c_A n$ and $|B| \leq c_B n$. $P(x \in R) = \Theta(\frac{\pi}{n})$ and let c_R be constant s.t. $P(x \in R) \geq \frac{c_R}{n}$.
$$P(A \cap R = \emptyset \land B \cap R = \emptyset) = \prod_{x \in A \cup B} P(x \notin R) = \prod_{x \in A \cup B} (1 - P(x \in R)) \geq \prod_{x \in A \cup B} \left(1 - \frac{c_R}{n}\right) = \left(1 - \frac{c_R}{n}\right)^{|A| + |B|} \geq \left(1 - \frac{c_R}{n}\right)^{c_A n + c_B n} = \left(1 - \frac{c_R}{n}\right)^{n(c_A + c_B)}$$
.

The latter is strictly decreasing with the following property, known from calcu-

$$\lim_{n \to \infty} \left(1 - \frac{c_R}{n} \right)^{n(c_A + c_B)} = e^{-c_R(c_A + c_B)} =: c.$$

Therefore we showed that exists some constant c > 0 which is lower bound for $P(A \cap R = \emptyset \land B \cap R = \emptyset).$

Problem 2.2 X_1, X_2, \dots random variables. $P(X_i = 1) = p$ and $P(X_i = -1) = p$ 1-p. T is smallest t s.t. $\sum_{i=1}^{t} X_i < 0$. E[T] = ?

Solution. It is easy to see that T can not be even. Suppose T=2k for some k. $\sum_{i=1}^{L} X_i < 0$ therefore there must be at least k+1 negative ones and k positive

ones and so
$$\sum_{i=1}^{T} X_i = -2m$$
 for some m . If X_T is -1 then $\sum_{i=1}^{T-1} X_i = -2m+1 < 0$

therefore T is not the smallest one. If X_T is 1 then $\sum_{i=1}^{T-1} X_i = -2m-1 < 0$ therefore T is not the smallest one. This gives us next fact: P(T=2k)=0.

For odd Ts we have: obviously, that X_T is -1, otherwise T is not the smallest.

Therefore $\sum_{i=1}^{T-1} X_i = 0$, otherwise T also not the smallest one.

 $E[T] = \sum_{k=0}^{\infty} c_k p^{k-1} (1-p)^k$, where c_k is number of sequences of 1 and -1 of length 2k-1 and such that at each point < 2k-1 sum of sequence is ≥ 0 and total sum is -1. $c_1 = 1$, $c_2 = 1$, $c_3 = 2$, $c_4 = 5$, etc. $c_k = ?$