Introduction to Machine Learning

전 재 욱

Embedded System 연구실 성균관대학교

A Few Quotes

- "A breakthrough in machine learning would be worth ten Microsofts"
 - Bill Gates, Chairman, Microsoft
- "Machine learning is the next Internet"
 - Tony Tether, Director, DARPA
- "Machine learning is the hot new thing"
 - John Hennessy, President, Stanford
- "Web rankings today are mostly a matter of machine learning"
 - Prabhakar Raghavan, Dir. Research, Yahoo
- "Machine learning is going to result in a real revolution"
 - Greg Papadopoulos, Former CTO, Sun
- "Machine learning is today's discontinuity"
 - Jerry Yang, Founder, Yahoo
- "Machine learning today is one of the hottest aspects of computer science"
 - Steve Ballmer, CEO, Microsoft

What is Machine Learning?

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

Traditional Program vs Machine Learning

Traditional program

Machine learning

When Do We Use Machine Learning?

- ML is used when
 - Human expertise does not exist
 - Navigating on Mars
 - Humans cannot explain their expertise
 - Walking, Speech recognition
 - Models must be customized
 - Personalized medicine
 - Models are based on huge amounts of data
 - Genomics
 - Solution changes in time
 - Routing on a computer network

More Examples of ML

- Recognition of patterns
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generation of patterns
 - Generating images or motion sequences
- Recognition of anomalies
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction
 - Future stock prices or currency exchange rates

Application Areas

- Computer vision
- Speech recognition
- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- ...

Machine Learning

- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- **...**

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- ...

Optimization

- Combinatorial optimization
 - Greedy search
- Convex optimization
 - Gradient descent
- Constrained optimization
 - Linear programming

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Inductive Learning

- **Given** examples of a function (x, f(x))
 - **Predict** function $f(x_{new})$ for a new example x_{new}
 - Discrete f(x): Classification
 - Continuous f(x): Regression
 - f(x) = Probability(x): Probability estimation

Supervised Learning: Regression

Supervised Learning

- "right answers" given
 - Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - \triangleright Learn a function f(x) to predict y given x
 - $\triangleright y$ is real-valued \rightarrow regression

Regression

Predict continuous valued output (price)

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - Learn a function f(x) to predict y given x
 - y is categorical \rightarrow classification
- Classification
 - Discrete valued output (0 or 1)

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - Learn a function f(x) to predict y given x
 - y is categorical \rightarrow classification
- Classification
 - Discrete valued output (0 or 1)

Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
 - Output hidden structure behind the *x*'s
 - clustering

Unsupervised Learning

Organize computing clusters

Market segmentation

Image credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison)

Astronomical data analysis

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells us what to do in a given state

Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

Machine Learning Definition

- Arthur Samuel (1959)
 - Machine Learning
 - Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998)
 - Well-posed Learning Problem:
 - A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
 - Machine Learning
 - Study of algorithms that
 - improve their performance P
 - at some task T
 - with experience E.

Machine Learning Definition

- Suppose our email program watches which emails we do or do not mark as spam, and based on that learns how to better filter spam.
 - Task T
 - Classifying emails as spam or not spam
 - Experience E
 - Watching that we label emails as spam or not spam.
 - Performance P
 - The number (or fraction) of emails correctly classified as spam/not spam.

Machine Learning Definition

- Improve on task T, wrt performance metric P, based on experience E
 - T: Playing checkers
 - P: Percentage of games won against an arbitrary opponent
 - E: Playing practice games against itself
 - T: Recognizing hand-written words
 - P: Percentage of words correctly classified
 - E: Database of human-labeled images of handwritten words
 - T: Driving on four-lane highways using vision sensors
 - P: Average distance traveled before a human-judged error
 - E: A sequence of images and steering commands recorded while observing a human driver

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- Eric Eaton, https://www.seas.upenn.edu/~cis519
- Pedro Domingos, https://courses.cs.washington.edu/courses/cse446/14wi/