HW2

Shane Drafahl

30 August, 2017

1. Prove or disprove the following

(a)
$$5n^2 - 2n + 26 \in O(n^2)$$

We will prove this with the def of big oh. The def of $O(n^2)$ is there exists positive constants c and n_0 such that $0 \le f(n) \le c * g(n)$ for all $n_0 \le n$. In this case $f(n) = 5n^2 - 2n + 26$ and $g(n) = n^2$. We can divide both sides by n^2 and we can go from $0 \le 5n^2 - 2n + 26 \le c * n^2$ to $0 \le \frac{24}{n} + 5 \le c$. $\frac{24}{n-1} + 5 = 29$ and if $f_1(n) = \frac{24}{n} + 5$ then $f_1(n+1) \le f_1(n)$ because as natural number n increases it increases the denominator. C could be 29 or greater and $0 \le 5n^2 - 2n + 26 \le c * n^2$ would be true so therefore $5n^2 - 2n + 26 \in O(n^2)$ because the property is true.

(b)
$$\forall_a \geq 1 : a^n \in O(n!)$$

We will prove this with def of big oh. So the given statement is equivalent to $0 \le a^n \le c * n!$. Using induction we can prove it.

Basis: Starting at n = 1 because the performance of an algorithm with n = 0 is irrelevent. $0 \ leq a \le c$ is true because for any a c can be a constant of c = (a + 1). Inductive Hypothesis: Suppose $0 \le a^n \le c * n!$ is true.

Inductive Step: We need to prove $0 \le a^{n+1} \le c * n! * (n+1)$. a^{n+1} increases by some a multiplied by $a * a^n$ from the IH. While the right side c*n!*(n+1) from the IH is multiplied by (n+1) for c*n!*(n+1). In this case of a, n increases meaning at some point it will increase by more when a < n. So the right side is increasing at a faster rate then the left side of the comparison. This means that there is a point where $n! \le a^n$ for some a for a given range of n. We can just say $c = a^n = n!$ for the n where they equal. So for $0 \le a^{n+1} \le c * n! * (n+1)$ if $a^n > n!$ then the constant c multiplied

by n!*c will be greater than or equal to a^n because c is equal to the the value at which n! overtakes a^n so if for n! n is beyond the point where n! overtakes than it will already overtake and be a greater value. The other case is that $a^n \leq n!$ for some n then it wont matter what c is because n! will be increasing at a greater rate. So $0 \leq a^{n+1} \leq c*n!*(n+1)$. a^{n+1} is true and therefore $\forall_a \geq 1: a^n \in O(n!)$ is true.

(c)
$$\forall_a \geq : 2^{n+a} \in O(2^n)$$

To prove for big oh We must prove for $0 \le 2^{n+a} \le c * 2^n$. We can reduce this to $0 \le 2^n 2^a \le c * 2^n$. Because for whatever a is we can say that $c = 2^a$ for this value of a so $0 \le 2^n 2^a \le 2^a 2^n$. So obviously this is true You cannot produce a negative number from the exponents either. So therefore $\forall_a \ge : 2^{n+a} \in O(2^n)$ is true for all a and n.

(d)
$$\forall_a > 1 : (f(n) \in O(\log_2 n)) => (f(n) \in O(\log_a n))$$

To prove that this is wrong I will use proof of contradiction. Assuming that $\forall_a > 1: (f(n) \in O(\log_2 n)) => (f(n) \in O(\log_a n))$ Then either $f(n) \leq \log_a(n) \leq \log_2(n)$ or $f(n) \leq \log_2(n) \leq \log_a(n)$. For $f(n) \leq \log_2(n) \leq \log_a(n)$ a could equal a number greater than 2 and that would be a contradiction $\log_2(n) \leq \log_3(n)$ if n is greater than 1. Otherwise $f(n) \leq \log_1(n) \leq \log_2(n)$. For this case if $f(n) = \log_3(n)$ then for $\log_a(n)$, a would have to be between 3 and 2 and a contradiction because it cannot be all values. So therefore $\forall_a > 1: (f(n) \in O(\log_2 n)) => (f(n) \in O(\log_a n))$ is not true.

(e)
$$2^n \in O(n^{\log^2 n})$$

To disprove this we will use proof of contradiction we will assume that $2^n \in O(n^{\log^2 n})$ is true so $0 \le 2^n \le c * n^{\log(n)^2}$. If n=5 then $2^5=32$, and $5^{\log(5)^2}=2.19527...$ So C would need to be 14.5767 or greater for this case. Since we assume it is true we also assume that there is some C for that multiplied by $n^{\log(n)^2}$ that would be greater than 2^n for all values of n. We will assume that $0 \le 2^n \le c_1 * n^{\log(n)^2}$ is true where c_1 would not need to be increased because its true for all values of n. If we increase n by 1 then $2^{n+1}=2^n*2$ would increase 2 multiplied by 2^n . On the right side $(n+1)^{\log(n+1)^2}$. For an increase of 1 for $\log(n)$ n would have to be increase by $\log(n*10)$ so $\log(n+1)$ would increase less than 1 from $\log(n)$. So $(n+1)^{\log(n+1)^2}$ would not double in size meaning that C would have to

increase but by contradiction because we assumed that C was the greatest value it needed to be $2^n \in O(n^{\log^2 n})$ is not true.

(f)
$$2^{2^{n+1}} \in O(2^{2^n})$$

To disprove this $0 \le 2^{2^{n+1}} \le 2^{2^n} * C$ we will use proof by contradiction and assume this is true and that C is as larg as it needs to be. If we increase n by 1 we get $0 \le 2^{2^n*4} \le 2^{2^n*2} * C$. 2^{2^n*4} increases by more than $2^{2^n*2} * C$ so C would need to be increased but this is a contradiction so therefore by proof of contradiction $2^{2^{n+1}} \in O(2^{2^n})$ is not true.

2. With respect to the input n, what is the worst-case time complexity of the following algorithm?

First we will find in terms of n how many times the outer loop will go. Its going to start with 1 and go to n^2 so we know the outer loop is n^2 time complexity. The inner loop Takes the value of j and takes the ceil of it. We know that every time it id dividing by 2 untill it reaches 1. We know that then $\frac{j}{2^y}$ where y is the total number of times the iner loop loops. This is also approximate to $2^y = j$ or $log_2(j) = y$. So we know that the loop will go for $n^2 * log_2(j)$. We also know that j will reach n so the worst-case time complexity is $O(n^2 log_2(n))$.