MATH 220 HANDOUT 2 - DIVISIBILITY

- (1) Show that if $d \neq 0$ and $d \mid a$, then $d \mid (-a)$ and $-d \mid a$.
- (2) Show that if $a \mid b$ and $b \mid a$, then a = b or a = -b.
- (3) Suppose that n is an integer such that $5 \mid (n+2)$. Which of the following are divisible by 5?
 - (a) $n^2 4$
 - (b) $n^2 + 8n + 7$
 - (c) $n^4 1$
 - (d) $n^2 2n$
- (4) Prove that the square of any integer of the form 5k + 1 for $k \in \mathbf{Z}$ is of the form 5k' + 1 for some $k' \in \mathbf{Z}$.
- (5) Show that if $ac \mid bc$ and $c \neq 0$, then $a \mid b$.
- (6) (a) Prove that the product of three consecutive integers is divisible by 6.
 - (b) Prove that the product of four consecutive integers is divisible by 24.
 - (c) Prove that the product of n consecutive integers is divisible by n(n-1).
 - (d) (Challenge problem) Prove that the product of n consecutive integers is divisible by n!.
- (7) Find all integers $n \ge 1$ so that $n^3 1$ is prime. Hint: $n^3 1 = (n^2 + n + 1)(n 1)$.
- (8) Show that for all integers a and b,

$$a^2b^2(a^2-b^2)$$

is divisible by 12.

- (9) Suppose that a is an integer greater than 1 and that n is a positive integer. Prove that if $a^n + 1$ is prime, then a is even and n is a power of 2. Primes of the form $2^{2^k} + 1$ are called Fermat primes.
- (10) Suppose that a and n are integers that are both at least 2. Prove that if $a^n 1$ is prime, then a = 2 and n is a prime. (Primes of the form $2^n 1$ are called Mersenne primes.)
- (11) Let n be an integer greater than 1. Prove that if one of the numbers $2^n 1, 2^n + 1$ is prime, then the other is composite.
- (12) Show that every integer of the form $4 \cdot 14^k + 1$, $k \ge 1$ is composite. Hint: show that there is a factor of 3 when k is odd and a factor of 5 when k is even.
- (13) Can you find an integer n > 1 such that the sum

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

is an integer?