WHAT IS CLAIMED IS:

	1	1. A method for reducing a condition associated with fetal alcohol				
	2	syndrome in a subject who is exposed to alcohol in utero, the method comprising				
	3	administering to the subject an ADNF polypeptide in an amount sufficient to reduce the				
	4	condition associated with fetal alcohol syndrome.				
	•					
	1	2. The method of claim 1, wherein the ADNF polypeptide is a				
	2	member selected from the group consisting of a full length ADNF I polypeptide, a full				
	3	length ADNF III polypeptide and a combination of a full length ADNF I polypeptide and				
	4	a full length ADNF III polypertide.				
	1	3. The method of claim 1, wherein the ADNF polypeptide is a				
	2	member selected from the group consisting of:				
	3	(a) an ADNF I polypeptide having the following amino acid sequence:				
· "Ū	4	(R ¹) _x -Ser-Ala-Leu-Heu-Arg-Ser-Ile-Pro-Ala-(R ²) _y (SEQ ID NO:3);				
	> 5	(b) an ADNF III polypeptide having the following amino acid sequence:				
	6	(R ³) _w -Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln-(R ⁴) _z (SEQ ID NO:4); and				
	7	(c) a combination of the ADNF I polypeptide of part (a) and the ADNF III				
	8	polypeptide of part (b);				
	9	wherein R^1 , R^2 , R^3 , and R^4 are independently selected and are an amino				
	10	acid sequence comprising from 1 to about 40 amino acids wherein each amino acid is				
	11	independently selected; and				
	12	x, y, w, and z are independently selected and are equal to zero or one.				
	1	4. The method of claim 3, wherein for the ADNF I polypeptide x and				
A A	-3	y are both zero Seg Ta No: 1				
	$\frac{1}{1}$	5. The method of claim 3, wherein for the ADNF I polypeptide:				
	/ ₂	x is one;				
	3	R ¹ is Val-Leu-Gly-Gly-Gly (SEQ ID NO:5); and				
	4	y is zero. No. 21)				
	1	6. The method of claim 3, wherein for the ADNF I polypeptide:				
	2	x is one;				

,0	ペフ	
July .	1	14. The method of claim 3, wherein at least one of the ADNF
Johnson De Marie	2	polypeptide is encoded by a nucleic acid which is administered to the subject.
	1	15. The method of claim 1, wherein the condition is a decreased body
	2	weight of the subject.
	1	16. The method of claim 1, wherein the condition is a decreased brain
	1 2	weight of the subject.
	2	weight of the subject.
	1	17. The method of claim 1, wherein the condition is a decreased level
	2	of VIP mRNA of the subject.
	1	18. The method of claim 1, wherein the condition is death of the
	2	subject in utero.
	_	
ji V	1	A method for reducing neuronal cell death, the method comprising
<u>.</u>	2	contacting a neuronal cell with a combination of an ADNF I polypeptide and an ADNF
	3	III polypeptide in an amount sufficient to reduce neuronal cell death.
ı	1	20. The method of claim 19, wherein the ADNF I polypeptide is a full
u	2	length ADNF I polypeptide and the ADNF IIII polypeptide is a full length ADNF III
	3	polypeptide.
u I		
	1	21. The method of claim 19 wherein:
	2	(a) the ADNF I polypeptide has the following amino acid sequence:
	3	(R ¹) _x -Ser-Ala-Leu-Leu-Arg-Ser-Ile-Pro-Ala-(R ²) _y (SEQ ID NO:3); and
	4	(b) the ADNF III polypeptide has the following amino acid sequence:
	5	$(R^3)_w$ -Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln- $(R^4)_z$ (SEQ ID NO:4);
	6	wherein R ¹ , R ² , R ³ , and R ⁴ are independently selected and are an amino
	7	acid sequence comprising from 1 to about 40 amino acids wherein each amino acid is
	8	independently selected; and
	9	x, y, w, and z are independently selected and are equal to zero or one.
•	1	22. The method of claim 21, wherein for the ADNF I polypeptide x
) .	2	and y are both zerog
	1	The method of claim 21, wherein for the ADNF I polypeptide:
	1	

A

				,
	2		·	x is one;
	3			R ¹ is Val-Leu-Gly-Gly-Gly (SEQ ID NO:5); and
Λ	4			y is zero.
M				~
	1		24.	The method of claim 21, wherein for the ADNF I polypeptide:
	2			x is one;
	3			R ¹ is Val-Glu-Glu-Gly-Ile-Val-Leu-Gly-Gly (SEQ ID NO:6);
	4		and	
	5			y is zerq. (St D) NO: 2Z)
Λ.	•			
Н	1		25.	The method of claim 21, wherein for the ADNF III w and z are
Λ.	2	(SAO ID both zero.	NO:2)	
A		~		
	1		26.	The method of claim 21, wherein for the ADNF III polypeptide:
w Tj	2			w is one;
	3			R ³ is Gly-Gly; and
	4			R ³ is Gly-Gly; and (SCO 23) z is zero.
A =	7			2 10 2010
	1		27.	The method of claim 21, wherein for the ADNF III polypeptide:
	2			w is one;
	3			R ³ is Leu-Gly-Gly;
	4			g is any and
<u>4</u> .1	5			R ⁴ is Gln-Set.
4)			R is dili-set.
	1	•	28.	The method of claim 21, wherein for the ADNF III polypeptide:
	2			w is one;
	3	2	•	R ³ is Leu-Gly-Leu-Gly-Gly (SEQ/ID NO:7);
	4			
A	5			z is one; and (SCO) II) NO: 25) R ⁴ is Gln-Ser.
A	,			N IS SIN SOA
	1		29.	The method of claim 21, wherein for the ADNF III polypeptide:
	2			w is one;
	3			R ³ is Ser-Val-Arg-Leu-Gly-Leu-Gly-Gly (SEQ ID NO:8);
	4			- i
14	5			2 is one; and (SEQ TO No. 26) R ⁴ is Gln-Ser.
A	5			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				\

		(SER ID NOSIland 2)						
1	1	30. The method of claim 21, wherein x, y, w, and z are all zero.						
	1	31. The method of claim 21, wherein at least one of the ADNF						
	2	polypeptide is encoded by a nucleic acid.						
	1	32. A pharmaceutical composition comprising a pharmaceutically						
	2	acceptable excipient and a combination of an ADNF I polypeptide and an ADNF III						
	3	polypeptide.						
	1	33. The pharmaceutical composition of claim 32, wherein the ADNF I						
	2	polypeptide is a full length ADNF I polypeptide and the ADNF IIII polypeptide is a full						
	3	length ADNF III polypeptide.						
	1	34. The pharmaceutical composition of claim 32 wherein:						
T.	2	(a) the ADNF I polypeptide has the following amino acid sequence:						
	3	(R ¹) _x -Ser-Ala-Leu-Leu-Arg-Ser-Ile-Pro-Ala-(R ²) _y (SEQ ID NO:3); and						
Ī	4	(b) the ADNF III polypeptide has the following amino acid sequence:						
	5	$(R^3)_{w}$ -Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln- $(R^4)_z$ (SEQ ID NO:4);						
	6	wherein R^1 , R^2 , R^3 , and R^4 are independently selected and are an amino						
	7	acid sequence comprising from 1 to about 40 amino acids wherein each amino acid is						
	8	independently selected; and						
	9	x, y, w, and z are independently selected and are equal to zero or one.						
	1	35. The pharmaceutical composition of claim 34, wherein for the						
1	2	ADNF I polypeptide x and y are both zero.						
	1	36. The pharmaceutical composition of claim 34, wherein for the						
	2	ADNF I polypeptide:						
	3	x is one;						
	4	R ¹ is Val-Leu-Gly-Gly (SEQ ID NO:5); and						
A	5	y is zero.						
	1	37. The pharmaceutical composition of claim 34, wherein for the						
	2	ADNF I polypeptide:						
A	3	(SFO ID NO: 22) x is one;						

```
R<sup>1</sup> is Val-Glu-Glu-Gly-Ile-Val-Leu-Gly-Gly-Gly (SEQ ID NO:6);
        4
        5
                             and
        6
A
                                    The pharmaceutical composition of claim 34, wherein for the
                             38.
        1
             ADNF III polypeptide w and z are both zero
        2
                                    The pharmaceutical composition of claim 34, wherein for the
                             39.
        1
        2
             ADNF III polypeptide:
                                    w is one;
        3
                                    R<sup>3</sup> is Gly-Gly; and (SEO) ID NO: 23) z is zero.
        4
        5
40.
                                    The pharmaceutical composition of claim 34, wherein for the
        1
             ADNF III polypeptide:
        2
                                    w is one;
        3
                                    R<sup>3</sup> is Leu-Gly-Gly;
        4
                                    z is one; and
        5
                                                   (SETO ZD) NO:24)
                                    R<sup>4</sup> is Gln-Ser.
        6
                            41.
                                    The pharmaceutical composition of claim 34, wherein for the
        1
        2
             ADNF III polypeptide:
        3
                                    w is one;
                                    R<sup>3</sup> is Leu-Gly-Yeu-Gly-Gly (SEQ ID NO:7);
        4
                                    z is one; and
        5
        6
                            42.
                                    The pharmaceutical composition of claim 34, wherein for the
        1
        2
             ADNF III polypeptide:
        3
                                    w is one;
                                    R<sup>3</sup> is Ser-Val-Arg-Leu-Gly-Leu-Gly-Gly (SEQ ID NO:8);
        4
                                    z is one; and
        5
                                    R<sup>4</sup> is Gln-Ser. (Sさい たか No: 26)
        6
                                    The pharmaceutical composition of claim 34, wherein x, y, w, and
        1
             z are all zero.
        2
```

1 44. The pharmaceutical composition of claim 34, wherein at least one

2 of the ADNF polypeptide is encoded by a nucleic acid.