

TFG del Grado en Ingeniería Informática

título del TFG Documentación Técnica

Presentado por nombre alumno en Universidad de Burgos — 29 de junio de 2017 Tutor: nombre tutor Copyright (C) 2017 Javier Martínez Riberas. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included as a pdf file titled "LICENSE.pdf".

Índice general

Indice general	Ι
Índice de figuras	III
Índice de tablas	IV
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	1
A.3. Estudio de viabilidad	2
Apéndice B Especificación de Requisitos	4
B.1. Introducción	4
B.2. Objetivos generales	4
B.3. Catalogo de requisitos	4
B.4. Especificación de requisitos	5
Apéndice C Especificación de diseño	10
C.1. Introducción	10
C.2. Diseño de datos	10
C.3. Diseño arquitectónico	11
C.4. Diseño procedimental	13
C.5. Diseño de paquetes	13
Apéndice D Documentación técnica de programación	15
D.1. Introducción	15
D.2. Estructura de directorios	15
D.3. Manual del programador	17
D.4. Compilación, instalación y ejecución del proyecto	17
D.5. Pruebas del sistema	18

ÍNDICE GENERAL	II

Apéndice E Documentación de usuario	19
E.1. Introducción	19
E.2. Requisitos de usuarios	19
E.3. Instalación	19
E.4. Manual del usuario	19

Índice de figuras

B.1.	Diagrama de casos de uso	(
C.1.	Diagrama entidad relacción	11
C.2.	Arquitectura de la aplicación	12
C.3.	Diagrama de secuencia	13

Índice de tablas

A.1.	Costes de personal	2
A.2.	Costes de material al mes	2
B.1.	CU-01 Registro de usuario.	7
B.2.	CU-02 Login	7
B.3.	CU-03 Logout.	8
B.4.	CU-04 Clasificación de imagen	8
B.5.	CU-05 Re-entrenado de modelos	9

Apéndice A

Plan de Proyecto Software

A.1. Introducción

La planificación es un punto importante en cualquier proyecto. Estimar el trabajo, el tiempo y el dinero que va a suponer la realización del proyecto aunque vaya a cambiar más tarde es interesante para saber si puede haber posibilidades de que sea viable. Para ello, debemos analizar cuidadosamente los componentes del proyecto. Con este análisis pretendemos conocer los requisitos del proyecto y pretendemos que mediante modificaciones siga sirviendo en un futuro.

A.2. Planificación temporal

En un principio se planteo seguir una metodología ágil, esta sería scrum ya que existía experiencia anterior. Por supuesto no se pudo usar completamente ya que no se tenía un equipo, no se hicieron reuniones diarias...

Se empezó a usar ZenHub como tablero kanban donde se situarían las tareas con sus costes. Este tipo de planificación con milestones e issues no ha sido seguido la mayor parte del tiempo ya que no era la metodología más adecuada. En labores de investigación que no se sabían si iban a ser usables más adelante las cuales no tenían ningún entregable claro se decidió no incluirlas a partir de cierto punto para no acumular demasiada información innecesaria en el repositorio.

En retrospectiva se ha deducido que una forma mejor de hacer este tipo de trabajos es llevar varios tableros kanban en varios repositorios: uno para todo el proyecto y otro para todo el informe del proyecto en vez de todo junto.

Tabla A.1: Costes de personal

Concepto	Coste
Salario neto	1000
Retención IRPF (19%)	360.53
Seguridad social $(28,30\%)$	537.00
Salario bruto	1897.53
$\overline{4}$ meses tiempo parcial $(3/4)$	5692.59

Tabla A.2: Costes de material al mes

Concepto	Coste
Ordenador portátil	25
Alquiler de oficina	99
1 mes	124
4 meses	496

A.3. Estudio de viabilidad

En este apartado se estudiaran los costes en los que se incurren al desarrollar este proyecto.

Viabilidad económica

El proyecto incurre en distintos tipos de costes

Costes de personal

El proyecto se lleva a cabo por un desarrollador junior empleado a tiempo parcial (30h/semana) durante cuatro meses. Se considera el siguiente salario:

Costes de material: hardware y software

Como material podemos considerar lo mínimo necesario para llevar un proyecto así:

Un único coste puntual (ordenador portátil) que aproximamos en 600 y en la tabla se pondrá su coste amortizado contando con una amortización a 4 años. Se ha comprobado que internet está incluido en el alquiler de la oficina.

Costes totales

El sumatorio de todos los costes es de 6188,59. Podríamos recortar más en ciertos puntos pero debido a que no se va a llevar a cabo como esta planteado

aquí, esto solo es una aproximación del coste de oportunidad.

Beneficios

Si nuestro interés fuese vender el proyecto este no sería el proyecto que venderíamos, tendríamos que añadir medidas de tiempo computacional en cada operación.

Una vez consigamos calcular tiempos de computación podemos restringir a cada usuario una cantidad de tiempo. De esta manera podemos crear planes para cada usuario, podemos plantearnos hacer un plan gratuito y varios planes de pago según cantidad de tiempo computacional que se le permita usar al cliente.

Viabilidad legal

La licencia necesaria para nuestro proyecto debido a las dependencias que tiene tendrá que ser compatible con aquellas de las bibliotecas que hemos usado, la licencia más restrictiva que hemos usado es la de paramiko siendo LGPL (2.1 y 3.0)[?], esta licencia esta pensada para librerías e incluye el siguiente párrafo:

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

Por lo que las restricciones de esa licencia no se nos aplican. Esto quiere decir que podemos publicar nuestro codigo bajo la licencia que mejor nos parezca o incluso podríamos mantenerlo privado como un Secreto de negocio (Trade Secret) ya que proporcionamos SaaS (Software as a Service). Basandome en las licencias más comunes open source, ya que me parece interesante el hecho de que otras personas puedan usar el código, y con ayuda de las recomendaciones de gnu[?], se ha decidido usar la GNU GPL 3.0.

Para la documentación se ha decidido que la mejor licencia para las necesidades era la GNU FDL (GNU Free Documentation License). La otra alternativa más interesante era Creative Commons.

Apéndice B

Especificación de Requisitos

B.1. Introducción

Este apartado consistirá en una descripción de los propósitos y requerimientos de la aplicación.

B.2. Objetivos generales

El objetivo principal del proyecto es el crear una aplicación web, esta debe tener control de usuarios y capacidad de clasificar imágenes mediante una red neuronal. Por último debe ser capaz de re-entrenar el modelo de clasificación de imágenes.

La red neuronal a usar es inception v3 y el conjunto de datos es Imagenet.

Además se pide que todo esto se haga de una manera escalable, desplegable y con un enfoque que reduzca la deuda técnica.

B.3. Catalogo de requisitos

Requisitos funcionales

- RF-1 Control de usuarios: la aplicación tiene que tener capacidades para controlar usuarios.
 - RF-1.1 Registro de usuarios: el usuario debe poder registrarse en la aplicación con su correo.
 - RF-1.2 Login: el usuario debe poder entrar a la aplicación una vez esté registrado.
 - RF-1.3 Logout: el usuario debe poder finalizar una sesión.

- RF-1.4 Integración con Google: en caso de que el usuario tenga cuenta de google podrá usarla para hacer el login.
- RF-2 Uso de aprendizaje automático: se debe permitir el uso de un sistema de aprendizaje automático basado en una red neuronal.
 - RF-2.1 Clasificación de imágenes: el usuario podrá clasificar imágenes individuales.
 - RF-2.2 Re-entrenamiento del modelo: se deberá permitir el reentrenamiento de la red neuronal con distintos conjuntos de datos.
- RF-3 Manejo de imágenes: el usuario podrá subir imágenes para ser usadas por los algoritmos de aprendizaje automático.
 - RF-3.1 Subir imagen individual: se necesita poder subir imágenes individuales para su posterior clasificación.
 - RF-3.2 Subir conjunto de imágenes: se podrá subir un conjunto de imágenes con un formato determinado para poder re-entrenar los modelos.

Requisitos no funcionales

- RNF-1 Usabilidad: la aplicación debe ser intuitiva y con una interfaz sencilla
- RNF-2 Responsividad: la interfaz tiene que cambiar de tamaño y dimensiones con respecto a la pantalla y su tamaño.
- RNF-3 Escalabilidad: la aplicación debe poder aumentar su rendimiento con el incremento de recursos hardware.
- RNF-4 Seguridad: Los datos sensibles, como las contraseñas, deben tratarse de forma segura. También se tendrá que tener las medidas básicas de seguridad contra los ataques a web más comunes.
- RNF-5 Mantenibilidad: la aplicación debe ser desarrollada de manera que permita escalabilidad a la hora de añadir características.
- RNF-6 Internacionalización: la aplicación deberá estar preparada para soportar varios idiomas.
- RNF-7 Facilidad de despliegue: se debe poder desplegar la aplicación en poco tiempo.

B.4. Especificación de requisitos

En esta sección se desarrollarán los casos de uso de la aplicación, cabe destacar que los actores del sistema corresponden a la misma persona en distintos momentos de su uso de la aplicación.

Figura B.1: Diagrama de casos de uso

CU-01	Registro de usuario
Autor Requisitos	Javier Martínez Riberas RF-1.1
asociados	TCF -1.1
Descripción	Permite al usuario registrarse.
Precondición	Ninguna.
Acciones	
	 El usuario rellena el formulario de registro (email y contraseña). Si esta configurada la confirmación por email se necesita confirmar para terminar el registro.
Postcondición Excepciones	El usuario se registra en la base de datos.
	 Fallo de la configuración de email. (Si no hay no se da)

Importancia

Alta

CU-01 Registro de usuario

Tabla B.1: CU-01 Registro de usuario.

CU-02	Login
Autor	Javier Martínez Riberas
Requisitos	RF-1.2, RF-1.4
asociados	
Descripción	Permite al usuario autenticarse.
Precondición	El usuario debe de estar registrado.
Acciones	
	 El usuario rellena el formulario de login (email y contraseña). O el equivalente en google.
Postcondición Excepciones	El usuario consigue una sesión.
	■ Fallo de rellenado del formulario.
Importancia	Alta
	Tabla B.2: CU-02 Login.

CU-03	Logout
Autor	Javier Martínez Riberas
Requisitos	RF-1.3
asociados	
Descripción	El usuario se des-autentica.
Precondición	El usuario debe de estar autenticado.
Acciones	
	1. El usuario hace click el botón de logout.
Postcondición	El usuario cierra una sesión, la cual se elimina.
Excepciones	Ninguna.
Importancia	Alta

CU-03	Logout
	Tabla B.3: CU-03 Logout.

CU-04	Clasificar imagen
Autor	Javier Martínez Riberas
Requisitos	RF-2.1, RF-3.1
asociados	
Descripción	Permite al usuario obtener la clase de una imagen.
Precondición Acciones	El usuario debe de estar autenticado.
Acciones	
	 El usuario sube una foto. Opcional. El usuario elige un re-entrenamiento específico.
Postcondición	El usuario ve la clase más probable y otras dos probables.
Excepciones	
	■ Fallo de formato de imagen.
Importancia	Alta

Tabla B.4: CU-04 Clasificación de imagen.

CU-05	Re-entrenado de modelos
Autor	Javier Martínez Riberas
Requisitos	RF-2.2, RF-3.2
asociados	
Descripción	Permite al usuario re-entrenar la red neuronal.
Precondición	El usuario debe de estar autenticado y haber subido
	un dataset.

CU-05	Re-entrenado de modelos
Acciones	
	 El usuario elige un dataset. El usuario debe esperar una cantidad decente de tiempo y tendrá el modelo disponible.
Postcondición Excepciones	El usuario tras un periodo de tiempo tiene disponible un modelo.
	 Fallo del formato de las imágenes o de la estructura de archivos.
Importancia	Media-Alta

Tabla B.5: CU-05 Re-entrenado de modelos.

Apéndice C

Especificación de diseño

C.1. Introducción

En este anexo se expone el diseño que se ha usado para llevar a cavo los objetivos anteriores. Como se manejan los datos, la arquitectura y modelos.

C.2. Diseño de datos

La aplicación cuenta con el modelado de los siguientes:

- Usuario: la entidad del usuario es una entidad simple la cual tiene un id auto-generado para poder identificar a cualquier usuario. También dispone de email, contraseña y confirmación del email. Por último dispone de un campo para posibles tokenes de oauth de manera que se puedan añadir distintas maneras de registrar usuarios sin tener que cambiar constantemente el modelo de la base de datos.
- Red neuronal: la red neuronal solo tiene lo que podríamos considerar primary key en una base de datos y el objeto de bytes. Su identificador se compone de el nombre del usuario y de el nombre del conjunto de datos que se ha usado para entrenarlo.
- Conjunto de datos: el conjunto de datos se identifica mediante su nombre y del usuario que lo ha subido. Tiene un objeto de bytes asociado que guardamos debido a la lentitud del entrenamiento de una red neuronal y si este entrenamiento se interrumpe no queremos repetir la subida del conjunto de datos al servidor.

Dentro de esta configuración tentemos que tener en cuenta que sólo el modelo del usuario esta dentro de la base de datos de manera que el resto se controla por software y se guarda dentro de los volúmenes de *docker*

Figura C.1: Diagrama entidad relacción

Paso de datos

El paso de datos entre los servicios ahora mismo se hace a través de SSH, esto se hace ya que nos proporciona seguridad. Otra opción es tener micro servidores de flask para exponer una *API Rest* que nos permita hacer las operaciones de una forma más elegante. Esto dificulta algo la configuración interna poniendo más peso en el equipo de *devops* pero nos permite tener un sistema mucho más desacoplado lo cual facilita el mantenimiento de ambas partes por separado.

C.3. Diseño arquitectónico

El diseño arquitectónico de la aplicación es uno reconocido ya que se usa en muchas páginas web para permitir mayor escalabilidad. Simplemente se basa en permitir ejecutar múltiples instancias de los mismos objetos. Se podría ampliar la escalabilidad mediante reverse proxies en distintos puntos de la arquitectura y con un servicio de caché como *Redis* antes de las bases de datos para permitir mayor velocidad de acceso. Si quisiésemos replicar micro servicios deberíamos poner un reverse proxy o unirlos desde el que ya está.

Model View Controller (MVC)

La parte de la aplicación tiene algo más de diseño en su interior. Para facilitar el desarrollo de futuros desarrolladores se ha decidido seguir la arquitectura ampliamente conocida como Modelo Vista Controlador o MVC.

Figura C.2: Arquitectura de la aplicación

De esta manera logramos separar la vista con la cual interaccionará el usuario, con la lógica de interacción con la aplicación y del modelo de nuestro negocio. Gracias a esta abstracción podemos ocultar toda la complejidad de cada capa a los desarrolladores de las otras dos en caso de que nuestro negocio crezca hasta ese punto.

Factory Method

En la aplicación que hemos creado se ha usado un factory method para permitir la creación de varias instancias de la aplicación de manera que se pueda escalar verticalmente (añadiendo más recursos en la misma máquina).

Esto también facilita la creación de la aplicación para programadores nuevos que desconozcan nuestro proyecto. Esto se debe a que las partes del factory method están bien establecidas y un programador que no conozca toda la aplicación puede solo añadir un par de líneas en el método que corresponda.

Figura C.3: Diagrama de secuencia

C.4. Diseño procedimental

En este apartado se expondrá que flujo sigue la información de forma general cuando se usa la aplicación.

Como se puede observar la secuencia pasa por nginx para poder servir archivos estáticos a gran velocidad y para poder si se quisiese balancear la carga entre varios servidores de aplicación (uWSGI).

C.5. Diseño de paquetes

Aplicación

La aplicación esta descompuesta en el factory method ("app.py"), extensiones, formularios, modelo, utilidades y controladores.

Los controladores están en la carpeta blueprints pero se incluyen dentro de "controllers.py" para reducir el acoplamiento con el factory method.

Las utilidades tienen una configuración parecida a los controladores, las utilidades están el "utils" y se importan con "util.py".

Configuración

La configuración en general se implementa en la carpeta "config", de momento solo se dispone de una configuración (default) esto se debe a que gracias al uso de *docker* y *docker compose* podemos cambiar la configuración mediante las variables de entorno que estos pueden modificar, esto simplifica las configuraciones situacionales, ya que de esta manera toda la configuración que debamos cambiar podemos cambiarla en el archivo "docker-compose.yml".

Tensorflow

En el microservicio de tensorflow no necesitamos una estructura compleja ya que la biblioteca es suficientemente completa como para poder usarla con scripts sencillos.

Apéndice D

Documentación técnica de programación

D.1. Introducción

El proyecto al estar descompuesto en microservicios tiene varias partes bien diferenciadas. Esto se refleja en todas las partes del proyecto.

D.2. Estructura de directorios

La estructura de directorios depende del proyecto, en el proyecto web la estructura es:

- alembic: carpeta autogenerada por alembic, control de versiones de la base de datos.
- babel: carpeta que guarda las traducciones generadas por babel.
- config: carpeta con los archivos de configuración, algunos son fuentes en python.
- docs: carpeta donde se guarda lo necesario para ejecutar sphinx (generación de documentacion incode).
- report: carpeta donde reside la documentación out of code.
- tests: tests para la aplicación.
- WhatAClass: carpeta donde se mantienen la mayoría de los fuentes, estos fuentes sirven para contener todas las partes del proyecto, algunos solo direccionan a las carpetas donde están los fuentes .

APÉNDICE D. DOCUMENTACIÓN TÉCNICA DE PROGRAMACIÓN16

- WhatAClass/translations: carpeta para las traducciones ya compiladas para no tener que incluirlo en cada ejecución o despliegue.
- WhatAClass/static: para tener archivos que se pueden servir independientemente de manera estática.
- WhatAClass/templates: plantillas a ser interpretadas con jinja2.
- WhatAClass/** : el resto de carpetas se usan para guardar código de una manera más organizada que simplemente no tener carpetas.
- El resto de archivos que se extienden a partir de la raiz del microservicio son para control de versiones, integración continua, despliegue, instalación, tests...
- * .coveragerc: recubrimiento de los test.
- * .gitignore: control de versiones.
- * .travis.yml: integración continua.
- * Dockerfile: docker y contenerización.
- * Procfile: despliegue en heroku.
- * README.md: documentación.
- * babel.cfg: configuración de la traducción.
- * create_db.py: script para crear la base de datos posiblemente sea eliminado.
- * docker-compose.yml: docker compose para despliegue con la base de datos directamente.
- * requirements-prod.txt: para instalación.
- * requirements.txt: para instalación.
- * run.py: ejecución con el servidor que proporciona flask, solo para debug, no usar en producción.
- * runtime.txt: heroku, especificación de la versión.
- * setup.cfg: instalación con pip, más automática y transparente al usuario.
- * setup.py: instalación con pip, más automática y transparente al usuario.
- * start.py: script para generar la app, no genera base de datos.

APÉNDICE D. DOCUMENTACIÓN TÉCNICA DE PROGRAMACIÓN17

- * test.py: script para testear la app.
- * uwsgi.ini: configuración para que uwsgi conozca donde esta el script de ejecución en producción.
- * wsgi.py: script que genera la aplicación y la base de datos, esta preparado para ser llamado por uwsgi en producción.

D.3. Manual del programador

Se recomienda usar un IDE aunque no es necesario. Con el script run.py podemos ejecutar la aplicación para debug.

Para añadir cosas a la página web necesitaremos de conocimientos de flask o de un framework web similar, Spring (Java) es similar a como funciona flask, aunque como cabe esperar tiene diferencias considerables.

Tras conocer flask debemos conocer sus blueprints. Estas son una herramienta que principalmente nos deja descomponer el código en varios apartados permitiendo mantener distintas partes de la aplicación por distintas personas.

Para añadir la blueprint a la aplicación nos debemos dirigir a WhatA-Class/app.py ya que es el archivo donde esta la factoría de la aplicación. Ya hay ejemplos codificados de esto en app.py y solo tenemos que verlos y los lugares de donde hemos importado esas blueprints para saber cómo seguir desarrollando sistemas similares.

D.4. Compilación, instalación y ejecución del proyecto

Se recomienda usar un gestor de entornos virtuales como ven
v, pyenv, conda...

Para este ejemplo usaremos el recomendado por la documentación oficial de python venv: Para crearlo: python3 -m venv ./venv

Para activarlo: source venv/bin/activate

Para desactivarlo deactivate

Los pasos para instalar el servicio web son:

- sudo apt install git python3-pip
- git clone https://github.com/Jazriel/WhatAClass.git
- cd WhatAClass

APÉNDICE D. DOCUMENTACIÓN TÉCNICA DE PROGRAMACIÓN18

- sudo pip3 install -r requirements.txt

La instalación se puede hacer desde los fuentes con 'sudo pip3 install -r requirements.txt' o con 'sudo pip3 install -editable .'. Esto usa o requirements.txt o setup.py para instalar las dependencias, ahora mismo se favorece la instalación con el primer comando. Al ser python un lenguaje interpretado no necesitamos compilarlo manualmente, se compilará JIT (just in time).

Para ejecutar en desarrollo lo mejor sería usar el script run.py (script específico para desarrollo, no se puede usar en producción), aunque se puede usar un script listo para producción no se recomienda ya que los errores son menos descriptivos y mucho más difíciles de solventar.

Para desplegar esta preparado para ser desplegado con docker cuya instalación se puede encontrar en el siguiente enlace: https://docs.docker.com/engine/installation/linux/ubun install-using-the-repository

Se puede ejecutar con docker pero se recomienda usar docker-compose:

user@machine: /folder\$ docker-compose build & & docker-compose up

D.5. Pruebas del sistema

Las pruebas se pueden ejecutar con test.py que lanza los tests de la carpeta tests/. si queremos ver el recubrimiento de el codigo podemos usar una herramienta como coverage y ejecutar test.py a traves de esa herramienta.

Apéndice ${\cal E}$

Documentación de usuario

- E.1. Introducción
- E.2. Requisitos de usuarios
- E.3. Instalación
- E.4. Manual del usuario