

Developing Spidey Senses

Anomaly Detection for apps

RON DAGDAG

Spidey Sense?

- tingling sensation on the back of Peter Parker's skull
- ability to sense / react to danger

Uses

- Increases his ability to detect evil (and even clones)
- Helps him navigate if he is impaired (disoriented or unable to see/hear)
- Aids him in discovering secret passageways and find hidden/lost objects
- Helps fire his Web Shooters and swing instinctively

This Photo by Unknown Author is licensed under CC BY-SA

Real Spider Sense

"hyper-awareness"

long, thin hairs, trichobothria

- low-level vibrations through their web
- can detect the vibrations of faint sounds
- small insects moving up to 3 meters away

Any new web developers here?

Spidey Sense?

Gut feeling

Vibe

Feeling

Intuition

Discover Blind Spots

Learning from the past

IDE

Agenda

What is Anomaly Detection?

Time Series Anomaly Detection

Demo

Takeaways

Anomaly Detection

Identifying unexpected items or events in data sets, which differ from the norm

An Outlier

Assumptions:

- •Anomalies only occur very rarely in the data.
- •Their features differ from the normal instances significantly.

Causes of Outliers

Artificial (Error) / Non-natural

Natural

Causes of Outliers

- Data Entry Errors: 100,000 vs 1,000,000 fat fingered
- Measurement Error: common
- Experimental Error: start late in sprint
- Intentional Outlier: underreporting alcohol consumption
- Data Processing Error: extraction errors
- Sampling Error: reporting height for all athletes and included most basketball players
- Natural Outlier: When it's not artificial

Rule-based Systems

Methods

Statistical Techniques

Machine Learning

Rule-based Systems

Specific Rules

Assign Threshold and limits

Experience of Industry
Experts to detect
"known anomalies"

Doesn't Adapt as patterns change

Data Labeling

Statistical Techniques

- flags the data points => deviate from common statistical properties (mean, median, mode, quantiles)
- □ a rolling average or a moving average
- n-period simple moving average "low pass filter." e.g. Kalman Filters
- Histogram-based Outlier Detection (HBOS)
- More Interpretable and sometimes more useful than ML methods

Supervised (e.g. Decision Tree, SVM, LSTM Forecasting)

Unsupervised (e.g. K-Means, Hierarchical Clustering, DBSCAN)

Self-Supervised (e.g. LSTM Autoencoder)

Machine Learning Methods

ANOMALY DETECTION

- •Very small number of positive examples
- Large number of negative examples
- Many different "types" of anomalies. Hard to learn from positive examples
- •Future anomalies may not be discovered yet.

SUPERVISED LEARNING

- Large number of positive and negative examples
- Enough positive examples for algorithm to learn.
- Future positive examples likely to be similar to training set

ANOMALY DETECTION

- Fraud Detection
- •Manufacturing (engines/machineries)
- Monitoring Data Center
- Internet of Things

SUPERVISED LEARNING

- Email spam classification
- Weather prediction
- Cancer classification

Machine Learning

Density-Based Anomaly Detection

- based on the k-nearest neighbors algorithm.
- Assumption: Normal data points occur around a dense neighborhood and abnormalities are far away.

Clustering-Based Anomaly Detection

- Assumption: Data points that are similar tend to belong to clusters --> distance from local centroids.
- K-means

Machine Learning

Gaussian Distribution

- Gaussian Distribution and given a new data-point,
- Compute the probability of the data-point
- If the probability is below a threshold => outlier or anomalous.

Machine Learning

Support Vector Machine-Based Anomaly Detection

- OneClassSVM
- >100 features, aggressive boundary
- find a function that is positive for regions with high density of points,
 and negative for small densities

PCA-Based Anomaly Detection

- analyzing available features to determine what constitutes a "normal" class
- applying distance metrics
- Fast training

Time Series Data

Series of data points indexed in time order

Examples:

- Stock Market
- Sales Data
- Sensors
- Any data captured with Time Stamp

Internet of Things

Increasing Data Volume (sensors are cheaper)

Increased Data Speed (improved networking)

Risk environment that are moving very fast but failures are not tolerated.

Internet of Broken Things

Artificial Intelligence of Things

Time Series Anomaly Types

OUTLIER

SPIKE AND LEVEL SHIFT

PATTERN CHANGE

SEASONALITY

Outlier

Spike and Level Shift

Pattern Change

Seasonality

Production Issues?

Intelligent Kiosk

https://github.com/microsoft/Cognitive-Samples-IntelligentKiosk

Time Series Anomaly Detection

Spikes

temporary bursts of anomalous behavior in the system.

Change points

- indicate the beginning of persistent changes over time in the system.
- level changes and trends

Anomaly Detection in IoT

Built for

.NET Developers

Use Existing C# and F# skills

ML into .NET apps

Data science & ML experience not required

ML.NET Time Series Catalog

DetectAnomalyBySrCnn

- detects anomalies with the Spectral Residual Convolutional Neural Network (SRCNN) algorithm

DetectEntireAnomalyBySrCnn

- detects timeseries anomalies for entire input using SRCNN algorithm.

DetectChangePointBySsa

- detects anomalies with the Singular Spectrum Analysis (SSA) algorithm in an independent identically distributed (i.i.d.) time series-based algorithm.

ML.NET Time Series Catalog

DetectlidSpike

 detects changes with an i.i.d. algorithm but predicts spikes instead of change points

DetectSpikeBySsa

- detects spikes in time series using Singular Spectrum Analysis (SSA).

ForecastBySsa

 Uses Singular Spectrum Analysis (SSA) model for singular variable (univariate) based time-series

ML.NET DEMO

Azure Stream Analytics

Spike and Dips

```
WITH AnomalyDetectionStep AS
                                                                                  V Dip
    SELECT
                                                                 Examples of Spike and Dip anomalies
        EVENTENQUEUEDUTCTIME AS time,
        CAST(temperature AS float) AS temp,
        AnomalyDetection SpikeAndDip(CAST(temperature AS float), 95, 120, 'spikesanddips')
            OVER(LIMIT DURATION(second, 120)) AS SpikeAndDipScores
    FROM input
SELECT
    time,
    temp,
    CAST(GetRecordPropertyValue(SpikeAndDipScores, 'Score') AS float) AS
    SpikeAndDipScore,
    CAST(GetRecordPropertyValue(SpikeAndDipScores, 'IsAnomaly') AS bigint) AS
    IsSpikeAndDipAnomaly
INTO output
FROM AnomalyDetectionStep
```

Spike

Change Point

```
WITH AnomalyDetectionStep AS
    SELECT
        EVENTENQUEUEDUTCTIME AS time,
        CAST(temperature AS float) AS temp,
        AnomalyDetection_ChangePoint(CAST(temperature AS float), 80, 1200)
        OVER(LIMIT DURATION(minute, 20)) AS ChangePointScores
    FROM input
SELECT
    time,
    temp,
    CAST(GetRecordPropertyValue(ChangePointScores, 'Score') AS float) AS
    ChangePointScore,
    CAST(GetRecordPropertyValue(ChangePointScores, 'IsAnomaly') AS bigint) AS
    IsChangePointAnomaly
INTO output
FROM AnomalyDetectionStep
```

```
100
80
60
40
20
20
40
60
80
```


Azure Cognitive Services

- Al for every developer— w/o requirement ML expertise.
- Just an API call

Anomaly Detector Features

Detect anomalies as they occur in realtime.

Detect anomalies as a batch.

Automatically adapts and learns from new data

Fine Tune Sensitivity

Anomaly Detector Features

REST API

No machine learning expertise needed

Eliminate need for labeled training data

Automatically identify and apply best-fitting model

Gallery of Algorithms

Fourier Transformation

Extreme Studentized Deviate (ESD)

STL Decomposition

Dynamic Threshold

Z-score detector

SR-CNN

Limitations

Data Granularity - Daily, Hourly, Minutely, Monthly, Weekly, Yearly

Series Data Points – 12 to 8640 entries

```
{
    "granularity" : "minutely",
    "customInterval" : 5
}
```

Calling the Anomaly Detector API

Client SDK
C#, Python, Node

REST API

Any language supporting HTTP calls

Anomaly Detector Demo

Where can you use this?

C#, Javascript, Python

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/quickstarts/client-libraries?pivots=programming-language-csharp&tabs=linux

Docker Containers

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/anomaly-detector-container-howto

Power BI

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/tutorials/batch-anomaly-detection-powerbi

Azure Databricks for streaming data

https://docs.microsoft.com/en-us/azure/cognitive-services/anomaly-detector/tutorials/anomaly-detection-streaming-databricks

Metrics Advisor

- Part of Azure Cognitive Services
- Performs data monitoring, anomaly detection in time series data
- Automates applying models
- Analyzes multi-dimensional data from multiple data sources
- Identify and correlate anomalies
- Configure and fine-tune the anomaly detection model
- Diagnose anomalies and help with root cause analysis
- REST API and Web Portal
- Currently in preview

Detect anomalies

Send incident alerts

Analyze root cause

The best superpower you can give to your project is a "spidey-sense".

https://bit.ly/spideysense-anomaly

About Me

Ron Dagdag

Lead Software Engineer / AI Edge Specialist

4th year Microsoft MVP awardee

Personal Projects www.dagdag.net

Email: ron@dagdag.net Twitter @rondagdag

Connect me via Linked In www.linkedin.com/in/rondagdag/

Thanks for geeking out with me about Spidey Senses and Anomaly Detection