مجتبی کنعانی – ۹۶۲۲۲۰۷۱

در این پروژه قصد داریم مدل یادگیری stdp را پیاده سازی کنیم.

برای سوال اول از دو نورون استفاده میکنیم که به هر دو نورون جریان ورودی پالسی وارد میکنیم تا به پتانسیلشان به حد آستانه برسد و سپس بر اساس زمان spike زدن نورون ها وزن اتصال بین آن ها را تنظیم میکنیم

برای اینکار از مدل نورونی LIF استفاده کردیم و پتانسیل نورون pre و post در بخش اول نمودار ها قابل مشاهده است که در آن پتانسیل نورون pre با رنگ آبی در بالا و پتانسیل نورون post با رنگ نارنجی و برعکس در پایین قرار دارد و این نمایش به این دلیل است که در یادگیری stdp در زمان spike زدن نورون pre باید به اندازه پتانسیل نورون post ضربدر یک ضریب تابت - A مقدار w را کاهش دهیم، همینطور در زمان spike زدن نورون post به اندازه پتانسیل نورون pre ضربدر ضریب تابت + A مقدار w را افزایش دهیم که از رابطه زیر پیروی میکند.

در بخش دوم نمودار نیز تغیرات وزن را مشاهده میکنید و در بخش سوم نمودار نیز تغییرات w نسبت به فاصله بین اسپایک نورون pre و post را مشاهده میکنید.

متاسفانه موفق به پیاده سازی درست تمرین شماره ۲ و ۳ نشدم، توضیح مختصری از کد تمرین دوم در زیر موجود است.

کد شامل ۳ تابع است:

: Make_poisson_pattern_current

ورودی ها:

ne : تعداد نورون های Pre

Patterns : الگو های موجود برای این نورون ها

Duration : زمان شبیه سازی

Delta_time : کوچک ترین بازه زمانی

Possibility : احتمال وجود pattern در زمان اسپایک های نورون های pre

از خروجی این تابع در SpikeGeneratorGroup استفاده میشود و قصد داریم زمان تمام اسپیگ های نورون های اورون های pre در طول آزمایش را در این تابع مشخص کنیم. برای اینکار ابتدا بزرگترین عدد موجود در الگو ها را پیدا میکنیم و آن را L مینامیم. سپس کل بازه مورد نظرمان را با گام هایی به طول L پیشروی میکنیم و در هر گام با توجه به مقدار possibility تصمیم میگیریم که آیا باید در این گام از الگو ها استفاده بکنیم یا از نویز ، اگر قرار شد از یک الگو استفاده کنیم باز هم بین الگو هایی که در patterns وجود داد یکی را به صورت تصادفی انتخاب میکنیم و زمان اسپایک ها را با توجه به آن محاسبه و ذخیره میکنیم و اگر قرار شد از نویز استفاده کنیم

مقداری random برای هر یک از نورون ها در بازه مربوطه مشخص میکنیم به صورتی که وارد گام بعدی نشود.

از ٤٠٠ ثانیه آخر برای مرحله test استفاده میکنیم ، در ثانیه duration – 300 الگوی اول را وارد میکنیم، در ثانیه duration – 200 الگوی دوم را وارد میکنیم و در ثانیه duration – 100 نویز وارد میکنیم تا در آخر بتوانیم از روی این سه مرحله درستی یادگیری را بررسی کنیم.

:pulse_input_current_generator

ورود*ی ها*:

Max I : مقدار جریان در زمان پالس زدن

Duration : زمان شبیه سازی

Delta_time : کوچک ترین بازه زمانی

Possibility : احتمال وجود جريان پالسي

این تابع به ازای تمام لحظات شبیه سازی یکی از دو مقدار • و max_i را به عنوان جریان ورودی در آن لحظه انتخاب میکند که احتمال انتخاب ۱-possibility برابر ۱-possibility است

از این تابع برای تولید جریان ورودی در نورون های post استفاده میشود و در آن max_i برابر ۰ در نظر گرفته میشود یعنی عملاً به ازای تمام لحظات جریان ۰ وارد نورون های post میشود و یعنی تنها عامل افزاینده پتانسیل در این نورون ها اسپایک زدن نورون های pre میباشد.

Simulate

ورودي ها:

Coef : در این شبیه سازی وزن ها بین ۰ تا ۱ قرار دارند و چون مقدار کوچکی است، در زمان اسپایک زدن نورون های pre ضریب ثابت coef ابتدا در w ضرب میشود و سپس مقدار آن به پتانسیل نورون post اضافه میشود.

Duration : زمان شبیه سازی

Apre : ضریب +A در فرمول Apre

pulse_input_current_generator در تابع post : مقادیری که برای دو نورون ایای ایای : I_1 , I_2 , I_2 , I_3 , I_4 , I_5 , I_5 استفاده میشود و همانطور که گفته شد همه برابر I_6 در نظر گرفته میشوند.

P_pattern در تابع possibility : مقدار P_pattern

pre synaptic : ثابت زمانی نورون های Tau_pre

اندیس ۱ و ۲ اشاره به نورون post synaptic اول و دوم دارد.

rest_post : پتانسل U_rest_post

Tau_post : ثابت زمانی نورون مربوطه

Threshold_post : پتاسیل آستانه نورون مربوطه

Resistance_post : مقاومت نورون مربوطه – از آن جا که مقدار جریان ورودی در این دو نورون برابر • است و مقدار مقاومت در آن ضرب میشود این مقدار اهمیتی ندارد

در این تابع پس از فراخوانی توابع بالایی و ابتدایی از خروجی تابع اول یک spikegeneratorgroup برای نورون های post را نیز با یک مدل lif و به کمک مقادیر ورودی میسازیم و این نورون های stdp را در بخش synapses پیاده سازی میکنیم.

نمو دار ها شامل ۸ بخش است:

۱ : مقدار پتانسیل نورون pre و post برای یکی از سیناپس های دلخواه.

۲: مقدار یتاسیل نورون اول در طول کل زمان آموزش و تست

٣: مقدار بتاسیل نورون دوم در طول کل زمان آموزش و تست

٤: مقدار بتاسيل نورون اول در زمان تست

٥: مقدار پتاسيل نورون دوم در زمان تست

٦: تغییرات وزن ها در زمان آزمایش

۷: زمان اسپایک نورون های post

۸: زمان اسپایک نورون های pre

در این نمودار ها خطوط عمودی قرمز نشاندهنده حضور الگوی ۱، خطوط آبی نشان دهنده حضور الگوی ۲ و آخرین خطی که به رنگ نارنجی علامت گذاری شده است نشاندهنده حضور نویز است، نویز در زمان آموزش نیز وجود دارد اما در آن جا با خطوط رنگی مشخص نشده است و هر جایی که آبی یا قرمز نباشد نویز قرار دارد. انتظار داریم در نمودار های t و t مقدار پتانسیل در حضور الگوی یک و دو خیلی بیشتر از حضور نویز باشد اما چنین نیست و تقریبا در یک سطح قرار دارند.

برای کد شماره ۳ نیز از همین شیوه استفاده کردم با این تفاوت که نورون سومی در لایه آخر وجود دارد که وظیفه inhibit کردن را به عهده دارد و delay ها به شکلی که در صورت سوال مطرح شده تنظیم شده اند اما در این سوال هم موفق به گرفتن نتیجه درست نشدم.