Assignment 2 - Neural Networks

Ngày 21 tháng 12 năm 2018

Tóm tắt nội dung

Trong bài tập này, các bạn sẽ sử dụng kiến thức đã học về neural networks để giải quyết bài toán phân lớp (classification).

1 Giới thiệu

Để có thể hoàn tất bài tập này, các bạn cần nắm rõ những kiến thức sau:

- Neural Networks Fully connected networks là gì, nguyên tắc hoạt động ra sao.
- Giải thuật Feedforward và BackPropagation trong bài toán NN.
- Giải thuật gradient descent Batch and Mini-batch.
- Regularization để tránh overfitting trong NN.

Các bạn có thể tham khảo lại bài giảng của lớp để nắm vững các nội dung này. Ngoài ra, các bạn có thể đặt câu hỏi cho đội ngũ giảng dạy nếu có thắc mắc.

Bài tập này sẽ gồm có hai bài chính:

- Bài 1: phân loại dữ liệu ba lớp dùng neural networks.
- Bài 2: phân loại tập fashion MNIST.

Yêu cầu dành cho các bạn trong là giải quyết hai bài trên bằng numpy và TensorFlow.

Mục tiêu của bài tập lần này là hiện thực Neural Networks mạng Fully Connected một cách cơ bản trên Numpy và Tensorflow. Một mạng cơ bản sẽ gồm nhiều hidden layers và một lớp softmax tại layer cuối cùng phù hợp cho việc phân loại dữ liệu.

Khi thiết kế một mạng cơ bản thì người dùng có thể quyết định số input feature cho tầng input. Số output sẽ là số lớp mà người đó muốn phân loại. Ví dụ như bài toán fashion MNIST thì số feature đầu vào chính bằng số pixel của mỗi ảnh, số nút đầu ra sẽ bằng số lớp cần phân loại (10). Đối với số lượng hidden layer và số lượng nodes tương ứng, ta có thể tùy chọn.

Một chú ý rất quan trọng là số nodes đầu ra của layer trước sẽ là số inputs đầu vào của layers sau đó.

Hình 1: Mạng neural network. Nguồn: graphicsminer.com/neuralnetwork

2 Hướng dẫn làm bài và nộp bài

2.1 Cấu trúc file

Bài tập lớn này được đi kèm với cấu trúc file và thư mục như sau:

- ./: thư mục gốc của bài tập lớn
- ./data/bat.dat: dữ liệu của bài 1.
- ./data/fashion-mnist/*.gz: dữ liệu của bài 2. Dữ liệu này chính là bộ dữ liệu Fashion MNIST được sử dụng trong Assignment 1.
- ./util.py: cung cấp các hàm để đọc dữ liệu trong thực mục data thành các ma trận numpy. Bạn không cần chính sửa file này.
- ./activation_np.py: các hàm activation cơ bản sẽ cần người học thực thi
- ./dnn_np.py: cung cấp các hàm dựng sẵn để giải quyết bài 1 và bài 2, dùng numpy.
- ./dnn tf.py: sử dụng Tensorflow để giải quyết bài 1 và 2.

2.2 Hướng dẫn nộp bài

Sau khi hoàn tất các bài tập, bạn có thể nén lại dưới định dạng zip và gửi về email teaching@vietai.org. Thời hạn cuối để nộp bài là 23h59 ngày 4/1/2019.

3 Hiện thực neural network bằng Numpy

3.1 Dữ liệu bat

Tập dữ liệu bat là tập gồm có 3 lớp, được gán nhãn lớp 0, 1 và 2. Ta có thể đọc tập dữ liệu này bằng hàm get bat data():

```
# Make sure that bat.dat is in data/
train_x, train_y, test_x, test_y = get_bat_data()
```

Để hiển thị các điểm dữ liệu huấn luyện, ta có thể dùng đoạn code sau:

```
visualize_point(train_x, train_y, y_hat)

# Hoặc visualize_point(train_x, train_y, train_y)

# nếu chưa tính được y_hat
```

Tập dữ liệu được phân bố như trong Hình 2.

Hình 2: Các điểm dữ liệu trong tập bat. Đen: lớp 0, vàng: lớp 1, xanh: lớp 2.

3.2 Dữ liệu fashion MNIST

Dữ liệu này giống với dữ liệu trong bài tập softmax regression. Bạn có thể sử dụng hàm get data tương ứng để lấy dữ liệu.

3.3 Class Layer và Neural Network

Để tiện cho việc lập trình, trong file có cung cấp sẵn (python) class NeuralNet và class Layer. (Lưu ý: để tiện cho việc phân biệt giữa lớp python và lớp trong

bài toán phân loại, người viết sẽ qui ước rằng khi viết **class** nghĩa là đang nói về python class, khi viết **lớp** nghĩa là đang ám chỉ lớp của dữ liệu cần phân loại).

Class NeuralNet chứa một list các phần tử kiểu Layer. Trong đó mỗi từng layer là hidden layer với biến w, chứa tham số mà ta cần tìm khi huấn luyện. Tham số này là một mảng $D^{(l-1)} \times D^{(l)}$, được khởi tạo ngẫu nhiên trong hàm __init__(w_shape, reg). Trong đó $D^{(l-1)}$ là số lượng input từ tầng trước đó và $D^{(l)}$ là số lượng node tại tầng ẩn của ta đang có.

3.4 Các nội dung cần hiện thực

Trong phần này, bạn thực hiện các bước trình bày bên dưới vào trong file tạo sẵn dnn np.py.

OKE 3.4.1 Hiện thực các activation functions cơ bản [TODO 1.1]

Hiện thực các hàm activation cơ bản trong mạng Neural Networks tại file activation_function.py. Trong file có sẵn hàm sigmoid, relu, tanh và softmax, ta nên thực hiện code trong hàm này. Ngoài ra ta sẽ hiện thực các hàm cơ bản tính gradient của các hàm trên với input của các hàm - sigmoid_grad, reLU_grad, và tanh grad.

Công thức tính cho các hàm trên đã có trong file giảng dạy của khóa học. Với các hàm tính gradient cơ bản thì người học có thể tự chứng minh lại và thực thi code và hàm tương ứng.

Lưu ý về numerical stability của hàm softmax: Hàm softmax (z_d) có chứa các hạng tử $e^{z_{d'}}$. Những hạng tử cấp số mũ này có giá trị rất lớn (hoặc rất nhỏ) nên dễ gây ra hiện tượng overflow (hoặc underflow) khi tính toán trên máy tính. Vì thế để đảm bảo độ ổn định khi tính toán (numerical stability), ta thường thay tất cả z_d bằng $z_d - \max_{d'} z_{d'}$ trước khi tính softmax. Trong bài tập này, bạn sẽ triển khai hàm $softmax_minus_max$ để tránh gặp hiện tượng overflow/underflow.

OKE 3.4.2 Hiện thực giải thuật Feedforward và Backpropagation cho từng layer [TODO 1.2]

Một số ký hiệu cần chú ý:

- L: tổng số layer (chưa tính input layer).
- l: số thứ tự của layer. l = 1, 2, ...L.
- $a^{(l-1)}$: output của layer thứ l-1, input của layer thứ l.
- $a^{(0)} = x$: input đầu vào của mạng, và cũng là output của lớp thứ 0.
- $a^{(L)} = s$: output của lớp cuối L.
- j: chỉ mục cho các input feature tại layer thứ l: $a_j^{(l-1)}$. Trong đó $j=0,1,...D^{(l-1)}-1$.

• k: chỉ mục cho các output feature tại layer thứ l: $a_k^{(l)}$. Trong đó $k=0,1,...D^{(l)}-1$.

Như vậy, tại layer thứ l, trọng số w sẽ có dạng $D^{(l-1)} \times D^{(l)}$. Ví dụ, nếu ta ký hiệu $w_{jk}^{(l)}$ thì nghĩa là trọng số này được nhân với input feature thứ j để sinh ra output thứ k.

Hình 3: Cách tiếp cận modular back propagation. Minh họa tại layer thứ l.

Với mỗi layer thì ta có thể coi như 1 module như trong Hình 3. Khi hiện thực feedfoward, ta cần tính output của layer thứ l từ output của layer trước $a^{(l-1)}$ theo công thức như sau:

$$z^{(l)} = a^{(l-1)}w (1)$$

$$a^{(l)} = \sigma(z^{(l)}) \tag{2}$$

Trong đó, $\sigma(z)$ là một trong các hàm activation kể trên.

Sau khi đã tính được các output cho tất cả các layer và giá trị hàm loss J, ta cần tính đạo hàm sau cho layer cuối cùng:

$$\delta^{(L)} = \frac{\partial J}{\partial a^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} = \nabla_{a^{(L)}} J \odot \sigma'(z^{(L)})$$
 (3)

⊙ là tích Hadamard.

Sau đó, ta sẽ tiến hành lặp qua từng layer, từ L
 đến 1 để tính các đạo hàm sau:

- Tính $\delta^{(l)} = (\delta^{(l+1)} w^{(l+1)T}) \odot \sigma'(z^{(l)})$ (Bỏ bước này nếu đang ở layer L).
- Dựa vào $\delta_k^{(l)}$ để tính đạo hàm của J theo $w_{jk}^{(l)}$:

$$\frac{\partial J}{\partial w_{ik}^{(l)}} = a_j^{(l-1)} \delta_k^{(l)} \tag{4}$$

Viết dưới dạng ma trận:

$$\frac{\partial J}{\partial w^{(l)}} = a^{(l-1)T} \delta^{(l)} \tag{5}$$

Sau khi thực thi xong các hàm forward và backward của class Layer. Người học có thể chạy unit_test của nhằm kiểm tra kết quả của đoạn mã mình đã lập trình với giá trị của gradient thông qua phương pháp số. Giải thuật numerical gradient đã được lập trình trước theo công thức sau:

$$\frac{\partial J}{\partial w_{jk}} = \frac{J(w_{jk} + \epsilon) - J(w_{jk} - \epsilon)}{2 \times \epsilon} \tag{6}$$

Nếu kết quả của relative error giữa đoạn chương trình của người học với numerical gradient kể trên $\leq 1e-4$ thì người học đã thực thi đúng giải thuật back propagation cho một layer. Trong trường hợp relative error > 1e-2 thì giải thuật thực thi chưa đúng và người học nhiều khả năng sẽ không chạy được toàn mạng NN cho bài toán của mình. Bước kiểm thử này người học chỉ cần thực hiện giải thuật, dữ liệu sẽ tự động sinh và giải thuật gradient checking sẽ đưa ra con số về relative error cho người học.

Trong phần code của chương trình đoạn code sau thực thi quá trình check kể trên:

```
your_layer = Layer((60, 100), sigmoid)
unit_test_layer(your_layer)
```

Người học có thể thay tham số (60, 100) và 'sigmoid' vào tùy ý theo mong muốn tạo ra 1 hidden layer cơ bản. Sau khi chạy hàm unit_test_layer - kết quả nên nhỏ hơn 1e-4.

3.4.3 Tính độ lỗi trong hàm compute loss [TODO 1.3]

Các giá trị label score s sẽ được tính trong hàm feed_forward của class Neural-Net. Công thức tính như sau:

$$J = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} (y^{(i)} = k) \log s_k^{(i)}$$
 (7)

Trong đó:

- $y^{(i)}$ là nhãn của mẫu thứ i, mẫu thuộc lớp 0 sẽ có $y^{(i)}=0$, mẫu thuộc lớp 1 sẽ có $y^{(i)}=1$. Ta có thể truy cập các nhãn này tông qua biến train_y và test_y.
- $s_k^{(i)}$ là phần tử thứ k trong hàng thứ i của ma trận s.
- m là tổng số mẫu huấn luyện.

• K là số lớp phân loại

Khi sử dụng hàm lỗi này, thì giá trị $\delta^{(L)}$ cần tính là:

$$\delta^{(L)} = s - y \tag{8}$$

Để tính trung bình trên ma trận theo hàng hoặc cột, ta có thể sử dụng hàm np.mean() với tham số axis tương ứng.

Trong file chương trình thì hàm compute_loss() tại class NeuralNet sẽ thực thi công thức toán ở phía trên.

3.4.4 Áp dụng regularization vào mạng NN [TODO 1.4]

Trong thực tế khi train mạng NN chúng ta thường hay gặp phải trường hợp mạng học quá tốt nhưng lại không có khả năng phân loại những mẫu test. Như vậy chúng ta cần có phương pháp nhằm tránh hiện tượng này. Và L2 regularization là một trong số phương pháp hay dùng trong NN. Để sử dụng L2 regularization, ta sửa hàm lỗi thành như sau:

$$J(w) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} (y^{(i)} = k) \log s_k^{(i)} + \frac{1}{2} \lambda \sum_{l=1}^{L} w^{(l)2}$$
 (9)

Trong đó λ là giá trị của thông số regularization. Người học sẽ thiết lập hyperparameter này thông qua biến **reg** cho mỗi layer, dựa trên kinh nghiệm với những giá trị như sau: 1e-5, ...,1e-3, ...,1e-1. etc.

Việc thay đổi hàm loss cũng sẽ dẫn đến sự thay đổi giá trị gradient của hàm loss với tham số từng hàm. Quá trình update w của từng layers sẽ có thêm thành phần regularization như sau:

oke
$$w = w - \alpha \times (\frac{\partial J(w)}{\partial w} + \lambda w)$$
 (10)

3.5 Hiện thực giải thuật backpropagation cho class NeuralNet [TODO 1.5]

Sau khi đã thực thi forward và backward cho từng layer tại class Layer. Mục tiêu của người học là ghép các layer đó vào trong class NeuralNet nhằm thực hiện đầy đủ giải thuật backpropagation cho quá trình chạy cho toàn mạng. Quá trình forward cho mạng NN đã được thực thi tại class NeuralNet với hàm forward. Nhiệm vụ của người học là thực hiện hàm backward của class NeuralNet để tính gradient của loss tương ứng với weight của từng layers. Đoạn code sau thực hiện mẫu trước việc đó và người học sẽ implement code vào mục tương ứng.

```
def backward(self, y, all_x):
    """backward
    :param y: one-hot label
```

```
:param all_x: input data and activation from every layer
# [TODO 1.5] Compute delta_last factor from the output
delta last = 0
delta_last /= y.shape[0]
# [TODO 1.5] Compute gradient of the loss function
# with respect to w of softmax layer, use delta_last
grad_last = 0
grad_list = []
grad_list.append(grad_last)
for i in range(len(self.layers) - 1)[::-1]:
        prev_layer = self.layers[i+1]
        layer = self.layers[i]
        x = all_x[i]
        # [TODO 1.5] Compute delta for previous layer
        delta_prev = 0
        grad_w, delta = layer.backward(x, delta_prev)
        grad_list.append(grad_w.copy())
grad_list = grad_list[::-1]
return grad_list
```

3.5.1 Cập nhật w theo Batch Gradient Descent và Mini-batch Gradient Descent [TODO 1.6]

OKE

Trước tiên, để cập nhật được w sau khi có gradient, ta cần hiện thực lại các hàm update_weight và update_weight_momentum. Công thức hiện thực tương tự bài tập về nhà 1.

Kế đến, mục tiêu chính của phần này là hiện thực hàm train NN với một trong hai cách: Batch GD và Mini-batch GD.

- Với Batch Gradient Descent, việc tính toán hàm loss cũng như update giá trị w theo gradient sẽ cần với tất cả m điểm dữ liệu.
- Với giải thuật Mini-batch GD thì số điểm dữ liệu tham gia vào quá trình tính toán kể trên sẽ nhỏ hơn 100, 200 hoặc 500. Đây là 1 hyperparameter người học có thể tweak nhằm tạo quá trình train tốt nhất (lưu trong biến batch_size).

Một số định nghĩa thường gặp khi huấn luyện bằng mini-batch:

• Batch: một tập các mẫu huấn luyện.

- Batch size: số lượng mẫu được dùng để tính feedforward, backpropagation và cập nhật mạng trong mỗi vòng lặp.
- \bullet Iteration: một lần feedforward, backpropagation và cập nhật trọng số w trên một batch.
- Epoch: vòng lặp lớn. Mỗi epoch bao gồm các iteration nhỏ, mỗi iteration sẽ cho NN học qua các batch khác nhau. Khi tất cả các iteration đã phủ hết toàn bộ tất cả các mẫu trong tập huấn luyện m thì coi như kết thúc một epoch.

Ví dụ trong data bat có tất cả m = 12000:

- N\u00e9u chon batch_size=12000, th\u00e0 m\u00f3t epoch bao g\u00f3m 1 iteration duy nh\u00e1t.
- Nếu chọn batch_size=120, thì một epoch bao gồm 12000/120 = 100 iteration.

3.5.2 Đánh giá mô hình phân loại

Để đánh giá NN đã huấn luyện, ta có thể sử dụng confusion matrix như bài tập softmax regression.

3.5.3 Huấn luyện neural network

Code load data và khởi tạo neural network cho data bat được đặt trong hàm bat_classification. Tương tự, code cho data mnist được đặt trong mnist_c lassification.

Để điều chỉnh quá trình huấn luyện, bạn có thể thay đổi các thuộc tính của biến cfg:

- num_epoch: số lượng vòng lặp cho quá trình huấn luyện.
- batch_size: số lượng mẫu trong một batch.
- learning_rate: hệ số học.
- momentum_rate: hệ số quán tính γ .
- num_train: số lượng mẫu sẽ dùng để train trong train_x.
- ullet reg: hệ số λ cho regularization.
- visualize: True hoặc False, xác định xem có vẽ đồ thị lúc huấn luyện hay không.
- epochs_to_draw: số epoch cần trải qua để vẽ đồ thị.

Bạn có thể đặt các tham số trên ngay lúc khỏi tạo cfg:

```
# Các tham số khác sẽ được gán giá trị mặc định
# Tham khảo class Config để biết thêm chi tiết
cfg= Config(learning_rate=0.001, batch_size = 120)
```

Hoặc chỉnh sửa tham số sau khi khởi tạo:

```
cfg.num_train = 1000
```

3.5.4 Các hàm hỗ trợ

Nhằm hỗ trợ việc lập trình, hai hàm hỗ trợ đã được hoàn tất sẵn gồm có:

Hình 4: Hiển thị dữ liệu dựa theo nhãn bằng hàm visualize_point. Dữ liệu test cho bài tập 1

visualize_point: ta có thể truyền vào hàm này train_x, train_y và y_hat để quan sát khả năng hoạt động của bộ phân loại trên chính tập dữ liệu huấn luyện (Hình 2). Bạn có thể điều khiển tần số hiển thị bằng biến epochs_to_draw.

4 Sử dụng Tensorflow để huấn luyện mạng NN [TODO 1.7]

Trong bài tập này, thay vì sử tự xây dựng lại Tensorflow graph, ta có thể sử dụng estimator của Tensorflow. Ngoài việc giúp xây dựng đồ thị, nó còn hỗ trợ việc huấn luyện NN bằng vòng lặp, tự tạo giúp session khi tính toán, v.v. Để

hiện thực phần này, bạn tham khảo file d
nn_tf.py để xem hướng dẫn cụ thể cách dùng estimator.

5 Chấm điểm

Việc chấm điểm cho các bạn sẽ dựa vào thang sau:

Hiện thực NN bằng Numpy	
TODO 1.1 - Hiện thực activation functions	10
TODO 1.2 - Hiện thực feedforward và backpropagation cho Layer	20
class	
TODO 1.3 - Hiện thực feedforward and backpropagation cho NN	20
class	
TODO 1.4 - Hiện thực hàm compute loss tính độ lỗi cho đồng	20
thời phân loại 2 lớp và nhiều lớp	
TODO 1.5 - Hiện thực MiniBatchTraining để train NN với số	20
batchs tùy ý	
TODO 1.6 - Hiện thực Regularization cho hàm loss và update cho	10
từng weight layer	
Hiện thực NN bằng Tensorflow)	
TODO 1.7 - Hiện thực được các bước chính bằng TF	20
Tổng điểm	120