分子空间结构与物质性质・一・「价层电子对互斥模型」

- 价层电子对互斥模型(Valence Shell Electron Pair Repulsion)可以用来预测分子的立体模型
- 理论认为,分子的空间构型是中心原子周围的「价层电子对」相互排斥的结果。价层电子对是指分子中的中心原子与结合原子间的 σ 键电子对和中心原子上的孤电子对,由于相互排斥作用,尽可能趋向彼此远离,排斥力最小
- 多重键只计其中的 σ 键电子对,不计 π 键电子对

判断分子中中心原子上的价层电子对数

情况一 题目给定分子式

价层电子对数 = 孤电子对数 + 成键电子对数
$$\text{价层电子对数} = \frac{1}{2}(a-xb)$$

a是中心原子的价电子数(阳离子要减去电荷数、阴离子要加上电荷数);x是与中心原子结合的原子数;b是与中心原子结合的原子最多能接受的电子数(H、F、Cl、Br、I为1;O、S为2;N、P为3;S、C为4)

分子或离子	中心原子	a	x	b	孤电子对数	价层电子对数	说明	VSEPR 模型
SO_2	S	6	2	2	$rac{1}{2}(6-2 imes2)=1$	2+1=3	$2\sigma+1$ 孤电子对	平面三角形
NH_4^+	N	5 - 1 = 4	4	1	$rac{1}{2}(4-4 imes1)=0$	4 + 0 = 4	$4\sigma+0$ 孤电子对	正四面体形
CO_3^{2-}	C	4 + 2 = 6	3	0	$rac{1}{2}(6-3 imes2)=1$	3 + 0 = 3	$3\sigma+0$ 孤电子对	平面三角形

情况二 题目给定结构式

看最外层电子数可以形成几个共价键(包含 σ 键和 π 键),剩余的电子数/2,即为孤电子对数。如果是阳离子(或阴离子),则最外层电子数减去(或加上)其电荷的绝对值

1. [2020 全国卷 III] B₃H₆^{3−} 的结构为:

,B原子的杂化轨道类型为: sp^2

B原子最外层有3个电子,有3个电子形成共价键,无孤电子对,因此 B原子的杂化轨道类型为: sp^2

2. N—H 中的 N 最外层有5个电子,由3个电子形成共价键,因此,还剩下2个电子未形成共价键,

因此, N 原子含一个孤电子对,杂化轨道类型为: sp^3

VSEPR 模型与分子空间结构

分子	价层电子对数	σ键电子对数	孤电子对数	VSEPR 模型	分子立体构型
CO_2	2	2	0	直线形	直线形
BF_3	3	3	0	平面三角形	平面三角形
SO_2	3	2	1	平面三角形	V形
CH_4	4	4	0	正四面体形	正四面体形
NH_3	4	3	1	四面体	三角锥
H_2O	4	2	2	四面体	V形

电子间排斥力大小: 孤电阻对-孤电阻对 > 孤电阻对-成键电子对 > 成键电子对-成键电子对