Pflichtenheft

PROJEKT 5E 9. Januar 2020

Dozent: Prof. Dr. Schleuniger, Pascal

Team: Aebi, Robin

Schenk, Kim

Studiengang: Elektro- und Informationstechnik

Semester: Herbstsemester 2019

Inhaltsverzeichnis

1	Ein	leitung	1
	1.1	Ausgangslage	1
	1.2	Projektziele	2
		1.2.1 Pflichtziele	2
		1.2.2 Wunschziele	3
	1.3	Lieferobjekte	3
2	Pro	jektstrukturplan	4
	2.1	Arbeitspakete und Zeitplan	4
	2.2	Meilensteine	6
3	Pro	iektvereinbarung	7

1 Einleitung

Das Organisatorische Pflichtenheft beinhaltet viele verschiedene Teilschritte, welche die Rahmenbedingungen definieren. In diesem werden die Projektziele, Lieferobjekte sowie die die Meilensteine festgelegt. Ausserdem beinhaltet es einen detaillierten Projektstrukturplan, welcher Arbeitspakete und den Zeitplan enthält.

1.1 Ausgangslage

Automatisierte Flüssigkeitssysteme sind heutzutage nicht mehr wegzudenken. Sei es in Kaffeemaschinen, automatischen Düngermischbecken oder in der Herstellung von Medikamenten.

In diesem Projekt soll eine Cocktailmaschine realisiert werden, welche im Heimanwendungsbereich zum Einsatz kommen kann.

1.2 Projektziele 2

1.2 Projektziele

1.2.1 Pflichtziele

Nummer	Pflichtziele	Anforderungen	
1	Recherche		schreibung drei verschiedener Cocktailma-
		schen enthalten. Damit eine	e Entscheidung für den Aufbau gefällt wer-
		den kann, müssen diese ver	rglichen werden.
2	Konzept		omplett auf die Recherche abstützen und
			nhalten, welche sich mit den Projektzielen
		auseinandersetzen. Diese si	
			ne Aufbau der Maschine aus?
			für die Flüssigkeitsbeförderung verwendet?
			durchfliessenden Flüssigkeit gemessen?
		Welcher Umfang umfasst	
			ist weshalb für die Anwendung geeignet?
		• Wie ist es möglich, die M	
9	T: 1 / 1 /1	I .	n, dass die Gläser nicht überlaufen?
3	Fördertechnik		ertechnik muss so geschehen, dass der In-
			n Schlitten nicht überlauft. Ein Brushless
			otor ist erwünscht. Die Dimensionen des
		Förderbands soll folgende	90 \pm 10cm (Unter Annahme 10cm pro
		• Länge:	Flasche)
		• Geschwindigkeit:	min. 6cm/sek
		• Belastbarkeit:	9.81N (1kg auf Schlitten)
		Oberfläche:	Rutschfest
		• Führungen:	2 Führungsstangen mit Gewinde-
		1 am angon	stange um den Schlitten zu bewegen
		• Schlitten:	3D-Druck
4	Pumpen	Für die Flüssigkeitsbeförde	rung sollen Pumpen verwendet werden. Die
		_	regelt die Menge der durchfliessenden Flüs-
			it von 10ml bei einem Inhalt von 3dl. Die
			ne Toleranz von 3.3% aufweisen.
			e von einer Menge von 3dl in unter einer
			n. Daraus folgt eine Mindestdurchflussrate
	3.6: 1 11	von 0.6l pro Minute	11 77
5	Microkontroller		alle Komponenten ansteuern können, da-
		-	chieberegister verzichtet werden kann. Da-
			wie die Flüssigkeitsmessung. Zudem soll er
		0	len (SPI, UART) unterstützen, damit eine
			Komponenten stattfinden kann. Dies um- Iotors (SPI) und das Display (SPI) und zu
			den Bluetooth- oder WiFi-Chip (UART).
6	Display		angesteuert werden. Der Benutzer soll mit-
U	Dispiay		rät bedienen können und sämtliche Einga-
			asst das Auslösen der Getränkezubereitung,
		den Reinigungsmodus und	
7	Software		ocontroller soll in C geschrieben sein.
	1 2010110110	210 DOIOMAIO INI GOII WIIKI	commence bon in a Papaninapan pani.

1.2.2 Wunschziele

Nummer	Wunschziele	Anforderungen
1	Reinigung	Das System soll einen Selbstreinigungsmodus haben, der jedoch
		nur unter Aufsicht des Benutzers geschehen kann. Die Aufsicht
		verhindert unkontrolliertes Reinigen.
2	Durchflussmessung	Die Menge der durchfliessenden Flüssigkeit muss auf 1ml genau
		sein bei einem Inhalt von 3dl. Dies entspricht einer Toleranz von
		0.33%. Weiter soll ein Getränk mit einer Menge von 3dl in un-
		ter einer halben Minute fertiggestellt sein. Dies entspricht unter
		Berücksichtigung der Bewegung zwischen den Getränken einer
		Mindestdurchflussrate von 1.2l pro Minute.
4	Messstation	Das System soll den Füllstand im Glas erkennen, um ein Über-
		laufen zu verhindern.
5	Software	Die Software soll nach dem MVC-Prinzip funktionieren.

1.3 Lieferobjekte

Objekt	Form	Empfänger	Termin
Projektvereinbarung	Als PDF und per E-Mail	Dozent	01.10.2019
Fachbericht	Elektronische Abgabe	Dozent	19.01.2020
Factsheet	Elektronische Abgabe	Dozent	19.01.2020
Produkt	Hardware	Dozent	gemäss
			Projekthandbuch
Projektdaten	USB-Stick	Dozent	gemäss
			Projekthandbuch

2 Projektstrukturplan

In Projektstrukturplan sind die verschiedenen Meilensteine und die genaue Einteilung der Personenstunden im Verlauf des Semesters ersichtlich.

2.1 Arbeitspakete und Zeitplan

														Pr	ojektwoo	he									
			KW38	KW39	KW40	KW41	KW42	KW43	KW44	KW45	KW46	KW47	KW48	KW48	KW48	KW48	KW48	KW49	KW50	KW51	KW52	KW1	KW2	KW3	KW4
			17.9.19	24.9.19	1.10.19	8.10.19	15.10.19	22.10.19	29.10.19	5.11.19	12.11.19	19.11.19	25.11.19	26.11.19	27.11.19	28.11.19	29.11.19	3.12.19	10.12.19	17.12.19	24.12.19	31.12.19	7.1.20	14.1.20	21.1.2
1 Analyse		Verwantv																							
1.1 Projektdefinition	1.1.1 Absprache mit Fachcoach	Beide																							
1.2 Recherche	1.2.1 Gesamtsystem	Aebi																							
	1.2.2 Flüssigkeitsbeförderung	Schenk																							
	1.2.3 Pumpen	Aebi																							
	1.2.4 Display	Schenk																							
	1.2.4 CPU	Schenk																							
1.3 Problemdefinierung	1.3.1 Produktauswahl	Aebi																			Frei	Frei			
	1.3.2 Problemerkennung	Schenk																							
	1.3.3 Problemdefinierung	Aebi																							
1.4 Ziel-Definierung	1.4.1 Pflichtziele	Schenk																							
	1.4.2 Wunschziele	Aebi																							
	1.4.3 Nichtziele	Schenk																							

2 Entwurf		Verantw.													
2.1 Grobkonzept	2.1.1 Ideensuche	Aebi													
	2.1.2 Ideenselektion	Schenk													
2.2 Detailkonzept	2.2.1 Ideen ausarbeiten	Aebi										Frei	Frei		
	2.2.2 Bewertung	Schenk													
	2.2.3 Entscheidung	Aebi													

3 Projektmanagement		Ve	erantw.														
3.1 Projektorganisation	3.1.1 Ordnerstruktur	Sc	chenk								Or./Ge.	Phase					
	3.1.2 Kommunikation	Ae	ebi								Grau	Arbeitsp	aket				
3.2 Projektstrukturplan	3.2.1 Definition Arbeitspakete	Sc	chenk								Rot	Meilenst	ilenstein				
	3.2.2 Zuständigkeiten	Ae	ebi											Frei	Frei		
	3.2.3 Schätzung Arbeitsaufwand	Sc	chenk														
3.3 Terminplan	3.3.1 Terminplan erstellen	A	ebi														
	3.3.2 TP ergänzen, nachführen	Sc	chenk														

4 Realisierung			Verantw.														
4.1 CPU	4.1.1 Schema		Aebi								Or./Ge.	Phase					
	4.1.2 Material bestellen		Schenk								Grau	Arbeitsp	aket				
	4.1.3 Versuchsschaltung		Aebi								Rot	Meilenst	ein				
	4.1.4 Validierung Versuchssch.		Schenk														
	4.1.5 Print		Aebi														
	4.1.6 Validierung Print		Schenk														
4.2 Fördertechnik	4.2.1 Schema		Aebi														
	4.2.2 Material bestellen		Schenk														
	4.2.3 Versuchsschaltung		Aebi														
	4.2.4 Validierung Versuchssch.		Schenk														
	4.2.5 Print		Aebi														
	4.2.6 Validierung Print		Schenk														
4.3 Pumpen	4.3.1 Schema		Aebi														
	4.3.2 Material bestellen		Schenk														
	4.3.3 Versuchsschaltung		Aebi											Frei	Frei		
	4.3.4 Validierung Versuchssch.		Schenk														
	4.3.5 Print		Aebi														
	4.3.6 Validierung Print		Schenk														
4.4 Display	4.4.1 Schema		Aebi														
	4.4.2 Material bestellen	P6	Schenk														
	4.4.3 Versuchsschaltung		Aebi														
	4.4.4 Validierung Versuchssch.		Schenk														
	4.4.5 Print	_	Aebi														
	4.4.6 Validierung Print	P6	Schenk														
4.4 Software	4.4.1 Konzept		Aebi														
	4.4.2 CPU		Schenk														
	4.4.3 Fördertechnik		Aebi														
	4.4.4 Pumpe		Schenk														
	4.4.5 Display		Aebi														

2.2 Meilensteine

	KW38	KW39	KW40	KW41	KW42	KW43	KW44	KW45	KW46	KW47	KW48	KW48	KW48	KW48	KW48	KW49	KW50	KW51	KW52	KW1	KW2	KW3	KW4
	17.9.19	24.9.19	1.10.19	8.10.19	15.10.19	22.10.19	29.10.19	5.11.19	12.11.19	19.11.19	25.11.19	26.11.19	27.11.19	28.11.19	29.11.19	3.12.19	10.12.19	17.12.19	24.12.19	31.12.19	7.1.20	14.1.20	21.1.20
Meilensteine																							
01.10.2019 Erste Abgabe Projektvereinbarung																							
27.11.2019 Testaufbauten laufen																							
03.12.2019 Prints laufen																							
19.01.2020 Abgabe Factsheet und Fachbericht																							
Präsentation																							

3 Projektvereinbarung

Betreuender Dozent	
Prof. Dr. Schleuniger, Pascal	
Ort, Datum:	Unterschrift:
Student	
Aebi, Robin	
Ort, Datum:	Unterschrift:
Student	
Schenk, Kim	
Ort, Datum:	Unterschrift: