Obliczenia naukowe Lista 3

Dominik Kaczmarek, nr albumu 261757

20 kwietnia 2023

1 Zadanie 1

1.1 Opis problemu

Mamy 4 lotniska oraz 3 firmy paliwowe. Każda firma paliwowa ma liczbe galonów, które ma na sprzedaż, a każde lotnisko ma minimalne zapotrzebowanie paliwa. Dodatkowo posiadamy koszt przetrasportowania 1 galonu paliwa z każdej firm na każde lotnisko. Naszym zadaniem jest wyznaczenie planu zakupów i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedzieć na ponizsze pytania:

- 1. Jaki jest minimalny łączny koszt dostaw wymaganych ilosci paliwa na wszystkie lotniska?
- 2. Czy wszystkie firmy dostarczają paliwo?
- 3. Czy mozliwości dostaw paliwa przez firmy są wyczerpane?

1.2 Dane

Tabela 1: Liczba galonów w magazynie firmy

Firma	Liczba galonów
1	275000
2	550000
3	660000

Tabela 2: Liczba galonów potrzebna na lotniska

Lotnisko	Liczba galonów
1	110000
2	220000
3	330000
4	440000

Tabela 3: Koszt transportu 1 galonu paliwa z firmy na lotnisko

	Lotnisko 1	Lotnisko 2	Lotnisko 3	Lotnisko 4
Firma 1	10	10	9	11
Firma 2	7	11	12	13
Firma 3	8	14	4	9

Zmienne decyzyjne:

$$x_{c,a} \geqslant 0 \qquad \forall c \in 1, 2, 3 \qquad a \in 1, 2, 3, 4$$

Minimalizacja kosztów dostaw:

$$\min \sum_{c=1}^{3} \sum_{a=1}^{4} x_{c,a} \cdot t_{c,a}$$

Ograniczenie na maksymalną ilość paliwa wysłaną z firmy:

subject to:
$$\sum_{a=1}^{4} x_{c,a} \leqslant f_c \qquad \forall c \in \{1, 2, 3\}$$

Ograniczenie na minimalną ilość paliwa dostarczoną na lotnisko:

subject to:
$$\sum_{c=1}^{3} x_{c,a} \geqslant d_a \qquad \forall a \in \{1, 2, 3, 4\}$$

gdzie $x_{c,a}$ oznacza ilość paliwa przesłaną z firmy c na lotnisko a, $t_{c,a}$ to koszt transportu jednego galonu paliwa z firmy c na lotnisko a, f_c to ilość paliwa w magazynie firmy c, a d_a to ilość paliwa potrzebna na lotnisku a.

1.4 Wyniki

- 1. Minimalny koszt dostaw wyniósł: $8.525 \cdot 10^6$ dolarów,
- 2. Wszytskie firmy dostarczają paliwo. Jest to odpowiednio 275000.0, 165000.0, 660000.0,
- 3. Możliwości dostaw paliwa zostały wyczerpane tylko przez firmy 1 i 3

2 Zadanie 2

2.1 Opis problemu

Mamy graf G = (N, A), gdzie N jest zbiorem wierzchołków i |N| = n, a A jest zbiorem łuków |A| = m. Symbolizuje on miasta (wierzchołki) oraz drogi (łuki). Każdy droga $(i, j) \in A$ posiada koszt przejazdu $c_{i,j}$ oraz czas przejazdu $t_{i,j}$. Naszym zadaniem jest znalezienie połącznia z miasta A do miasta B takiego o minimalnym całkowitym koszcie z uwzględnieniem, że całkowity czas przejazdu jest mniejszy od ustalonego T.

Dodatkowo odpowiedzieć na pytania:

- 1. Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Sprawdź, jakie będą wartości zmiennych decyzyjnych, jeśli usuniemy ograniczenie na ich całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego).
- 2. Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczen na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie jest akceptowalnym rozwiązaniem?

2.2 Dane

Samodzielnie zamodelowany graf z nadanymi kosztami i czasami krawędzi, maksymalny dopuszczalny czasT, oraz wierzchołek startowy oraz docelowy.

Rozważany problem jest wariantem problemu najkrótszej ścieżki.

Zmienne decyzyjne:

 $x_{i,j}$ zmienna binarna, 1 - krawędź (i,j) jest częścią ścieżki, 0 -w.p.p.

Minimalizacja kosztu trasy:

$$\min \sum_{(j,i)\in A} c_{i,j} x_{i,j}$$

Ograniczenie czasu podróży:

subject to:
$$\sum_{(i,j)\in A} t_{i,j} x_{i,j} \leqslant T$$

Ograniczenie zachowania przepływu:

subject to:
$$\sum_{j:(i,j)\in A} x_{i,j} - \sum_{j:(i,j)\in A} x_{j,i} = b_i$$

2.4 Wyniki

- 1. ograniczenie na całkowitoliczbowość zmiennych decyzyjnych nie jest potrzebne
- 2. Tak, ponieważ problem skraca się wtedy do problemu znaleźenia najkrótszej ścieżki

3 Zadanie 3

3.1 Opis problemu

Policja chce obsadzić 3 dzielnice swoimi radiowozami na 3 zmianach. Mamy ustalone minimalne i maksymalne liczby radiowozów dla kazdej zmiany i dzielinicy, a także ograniczenia na minimalną ilość radiowozów na każdą zmianę i na każdą dzielnicę. Policja musi wyznaczyc przydział radiowozów spełniający powyższe wymagania i minimalizujący ich całkowitą liczbę.

3.2 Dane

Tabela 4: Minimalna liczba radiowozów wymagana na dzielnicach podczas zmiany

	s_1	s_2	s_3
p_1	2	4	3
p_2	3	6	5
p_3	5	7	6

Tabela 5: Maksymalna liczba radiowozów wymagana na dzielnicy podczas zmiany

	s_1	s_2	s_3
p_1	3	7	5
p_2	5	7	10
p_3	8	12	10

Tabela 6: Minimalna liczba radiowozów wymagana na zmianie (shiftmin)

Zmiana	Liczba radiowozów
p_1	10
p_2	20
p_3	18

Tabela 7: Minimalna liczba radiowozów wymagana na dzielnicy (pmin)

Dzielnica	Liczba radiowozów
s_1	10
s_2	14
s_3	13

Zmienne decyzyjne:

 $x_{p,s}$ liczba radiowozów na dzielnicy p podczas zmiany s

Minimalizacja liczby radiowozów:

$$\min \sum_{p=1}^{3} \sum_{s=1}^{3} x_{p,s}$$

Ograniczenie minimalnej liczby radiowozów na zmianie s:

subject to:
$$\sum_{p=1}^{3} x_{p,s} \geqslant shiftmin_{s}, \quad \forall s \in \{1,2,3\}$$

Ograniczenie minimalnej liczby radiowozów na dzielnicy p:

subject to:
$$\sum_{s=1}^{3} x_{p,s} \geqslant pmin_{p}, \quad \forall p \in \{1, 2, 3\}$$

Ograniczenie dolne i górne liczby radiowozów na dzielnicy p podczas zmiany s:

subject to:
$$mincars_{p,s} \leq x_{p,s} \leq maxcars_{p,s}, \quad \forall p,s \in \{1,2,3\}$$

3.4 Wyniki

Najmiejsza liczba radiowozów spełniająca zadanie: 48

Rozłożenie radiowozów na dzielnicach i zmianach wyglądą następująco:

Tabela 8: Optymalna liczba radiowozów przypisanych do dzielnic na każdej zmianie

	s_1	s_2	s_3
p_1	2	7	5
p_2	3	6	7
p_3	5	7	6

4 Zadanie 4

4.1 Opis problemu

Firma przeładunkowa ma teren $m \times n$ kwadratów i porozstawiane na nim kontenery Naszym zadaniem jest rozmieścić kamery na terenie w ten sposób, żeby każdy kontener był pilnowany przez conajmniej jedną kamerę. Kamera może spoglądać na k - pól na prawo, lewo, północ, południe i nie może stać na polu z kontenerem. Chcemy użyć do tego jak najmniej kamer.

4.2 Dane

- Conteiners zbiór pól na których znajdują się kontenery
- \bullet m, n rozmiar terenu
- \bullet k widoczność kamery

4.3 Zapis problemu

Zmienne decyzyjne:

 $x_{i,j}$ – zmienna binarna, 1 - kamera stoi na polu (i,j), 0 - w.p.p.

Minimalizacja liczby postawionych kamer:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i,j}$$

Ograniczenia na postawienie kamery:

subject to:
$$x_{a,b} = 0$$
 $\forall (a,b) \in Conteiners$

subject to:
$$\sum_{i=1}^{k} x_{(a-i),b} + x_{(a+i),b} + x_{a,(b-i)} + x_{a,(b+i)} \ge 1$$
 $\forall (a,b) \in Conteiners$

4.4 Wyniki

Przykład i wyniki przedstawione na laboratoriach.

5 Zadanie 5

5.1 Opis problemu

Mamy fabrykę, która produkuje 4 produkty p_1, p_2, p_3, p_4 . Każdy produkt ma swoją cenę sprzedaży, cenę wytworzenia oraz tygodniowy popyt. Każdy z wyrobów wymaga pewnego czasu obróbki na kazdej z trzech maszyn m_1, m_2, m_3 . Każda maszyna ma koszt pracy na godzinę i może pracować maksymalnie 60 godzin w tygodniu. Naszym zadaniem jest znalezienie takiej produkcji wyrobów p_1, p_2, p_3, p_4 , żeby zmaksymalizować zysk z ich sprzedaży.

5.2 Dane

Produkt	Maszyna		ıa	Maksymalny popyt
Flouukt	$\overline{M_1}$	M_2	M_3	tygodniowy
P_1	5	10	6	400
P_2	3	6	4	100
P_3	4	5	3	150
P_4	4	2	1	500

 $\mathbf{t}_{i,j}$ - czas obróbki wyrobu p_1 przez maszynę m_j , Inne dane z zadania:

- każda maszyna jest dostępna przez 60 godzin w tygodniu,
- $\mathbf{c} = [9, 7, 6, 5]$ cena sprzedaży każdego z produktów,
- $\bullet \ \mathbf{m} = [4,1,1,1]$ koszt materiału potrzebnego na wyrób jednego produktu
- $\mathbf{w} = [2, 2, 3]$ koszt pracy maszyny przez 60 minut,
- $\mathbf{r} = [400, 100, 150, 500]$ popyt na produkt w tygodniu.

Wprowadźmy nowy wektor:

 ${\bf z}$ - zysk sprzedaży jednego k
g produktu kolejno p_1,p_2,p_3,p_4

$$z = c - m = [5, 6, 5, 4]$$

Zmienne decyzyjne:

 x_i - ile kg produktu p_i produkujemy

Maksymalizacja zysku:

$$\max \sum_{i=1}^{4} x_i z_i - \sum_{i=1}^{4} \sum_{j=1}^{3} x_i t_{i,j} \frac{w_j}{60}$$

Ograniczenie czasu działania maszyn:

subject to:
$$\sum_{i=1}^{4} x_i t_{i,j} \leq 3600, \ \forall j \in \{1, 2, 3\}$$

Ograniczenie produkcji ze względu na popyt:

subject to:
$$x_i \in [0, r_i]$$
 $\forall i \in \{1, 2, 3, 4\}$

5.4 Wyniki

Maksymalny możliwy zysk: 3632.5

Tabela 9: Ile kg każdego produktu należy wyprodukować

Produkt	kg
p_1	125
p_2	100
p_3	150
p_4	500