§4 Turan's Thm & Extremal Graphs

BY YUEJIAN MO

April 26, 2018

How many edges must a simple graph on n vertices have to gurantee the graph to have a triangle? or what's the maximum # of edges of a simple graph on n vertices s.t. there is no Δ ?

Thm: Let G be a simple graph on n vertices. If G has no Δ , then

$$e \leqslant \lfloor \frac{n^2}{4} \rfloor$$

In other words. if $e(G) > \lfloor \frac{n^2}{4} \rfloor + 1$, G must have a Δ .

Proof. (1) Any $xy \in E(G)$,

 \sum

THe indpendence number of a simple graph G= The size of a largest coclique(or indep set) in G.

Proof. Let α = the indep number of G, and let A be a coclique of size α , $\beta = V(G)\langle \backslash \rangle A$

Claim: $\forall x \in V(G), d(x < \alpha)$

Claim: $\forall e \in E(G)$, at least one end of e in β

Clear Maximal(极大) and maximum(最大)

Extremal graphs:

 $\begin{array}{ll} \operatorname{ex}(H, & n) & = \\ \operatorname{the largest number of edges in } a \operatorname{simple graph on } n \operatorname{vertrices which doesn'} t \operatorname{contauin } H \operatorname{as } a \operatorname{subgraph.} \\ \operatorname{exclude} \end{array}$

Turan's thm

If a simple G on n vertice contains no copy of K_{v+1} , then it has at most $\left(1-\frac{1}{r}\right)\frac{n^2}{2}$ edges.

$$e(G) = e(A) + e(B) + e(A, B)$$

Proof. Use strong induction on n = r.

Assumet that the thm is true for graph on <n vetices

Let G be a graph on n vercties without K_{r+1} with maximum # of edges,

claim: G has a copy(subset) of

 K_r (otherwise we could add eges to G so that G has aK_r and still has no K_{r+1})

Let A be the set of vertices of this K_r , let $\beta = V(G) \langle \backslash \rangle A$

Complete

Y= partitie graphs, $K_{n_1,n_2,...,n_r}$

 $n_1 + n_2 + \ldots + n_r = n$

#of eges = $\sum_{1 \leq i \leq j \leq r} n_o n_j$

 $|n_i - n_j| \leq 1, \forall i \neq j$

The girth of a graph G = the size of a smallest cycle(polygon P_n) in G. (If G has no cycles then we say that girth of G is ∞ , such as forest)

Girth >= 3 <=> G is simple

Girth >=4<=> G is simple and no Δ

G has girth >=5 <=>

Theorem 4.2. If a graph G on n vertices has more than $\frac{1}{2}n\sqrt{n-1}$ edges, then G has girth ≤ 4 . That is, G is not simple or contains a P_3 or a P_4 (a triangle or a quadrilateral).

Proof. $\forall x \in V(G)$,

Claim 1: no two of $y_1, y_2, ..., y_n$ are adjacent

Claim 2: no vertex other than x can be adjacent to more than one of $y_1, y_2, ..., y_d$

$$(\deg(y_1) - 1) + (\deg(y_2) - 1) + \dots + (\deg(y_d) - 1) + d + 1 \le n$$

Then

$$\frac{1}{n}(2|E(G)|)^2 = \frac{1}{n} \left(\sum_{y \in V(G)} \deg(y) \right)^2 \leqslant \sum_{y \in V(G)} \deg(y)^2 = \sum_{x \in V(G)} \sum_{y \text{ adjacent to } x} \deg(y) \leqslant n(n-1)$$

$$\frac{1}{n} + 4E(G)^2 = n(n-1)??$$

- i. $n = 1 + d^2$, d: a positive interger
- ii. The grith is regular(The equality in c-s inqualigty holds four situation)
- iii. no $\Delta(\text{girth} \ge 5)$
- iv. $\forall x, y, xy \in E(G) \exists !z, xz, yz \in E(G)$

A=the adjectcy matrix of G

 $(A^2)_{xy}$ = the #of walks of lenth 2 between x and d

$$Vx \in V(G), \sum_{y \sim x} \deg(y) \leq -1$$

$$A^2 = dI, +0.A_{+1(J-I-A)}$$

$$AJ = dJ$$

eigenvalues s of A

- (1) For adj martix A odf G trhe eighenvals are real $\exists \alpha$ basis of \mathbb{R}^n consosting eigenvector of A.
- (2) A d-regualr gra; phn G has d as an eigenval . In fact d is the larigest eigencal. The mulitip of d as an eigenval = #connected comps of G

i.
$$1+f+g=n=1+d^2$$

ii.
$$d + f_r + g = 0$$

iii.

iv.

*
$$d + f_r + g = 0$$