EXTREMAL EFFECTIVE DIVISORS ON $\overline{\mathcal{M}}_{1,n}$

DAWEI CHEN AND IZZET COSKUN

ABSTRACT. For every $n \geq 3$, we exhibit infinitely many extremal effective divisors on the moduli space of genus one curves with n marked points.

Contents

1. Introduction	1
2. Preliminaries on $\overline{\mathcal{M}}_{1,n}$	3
3. Geometry of $D_{\mathbf{a}}$	3
4. Extremality of $D_{\mathbf{a}}$	7
5. Effective divisors on $\widetilde{\mathcal{M}}_{1,n}$	13
Appendix A. Singularities of $\overline{\mathcal{M}}_{1,n}$	14
References	16

1. Introduction

Let $\overline{\mathcal{M}}_{g,n}$ denote the moduli space of stable genus g curves with n ordered marked points. Understanding the cone of pseudo-effective divisors $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{g,n})$ is a central problem in the birational geometry of $\overline{\mathcal{M}}_{g,n}$. Since the 1980s, motivated by the problem of determining the Kodaira dimension of $\overline{\mathcal{M}}_{g,n}$, many authors have constructed families of effective divisors on $\overline{\mathcal{M}}_{g,n}$. For example, Harris, Mumford and Eisenbud [HM, H, EH], using Brill-Noether and Gieseker-Petri divisors showed that $\overline{\mathcal{M}}_g$ is of general type for g > 23. Using Kozsul divisors, Farkas [F] extended this result to $g \geq 22$. Logan [Lo], using generalized Brill-Noether divisors, obtained similar results for the Kodaira dimension of $\overline{\mathcal{M}}_{g,n}$ when n > 0.

Although we know many examples of effective divisors on $\overline{\mathcal{M}}_{g,n}$, the structure of the pseudo-effective cone $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{g,n})$ remains mysterious in general. Recently, inspired by the work of Keel and Vermeire [V] on $\overline{\mathcal{M}}_{0,6}$, Castravet and Tevelev [CT] constructed a sequence of non-boundary extremal effective divisors on $\overline{\mathcal{M}}_{0,n}$ for $n \geq 6$. For higher genera, Farkas and Verra [FV1, FV2] showed that certain variations of pointed Brill-Noether divisors are extremal on $\overline{\mathcal{M}}_{g,n}$ for $g-2 \leq n \leq g$. However, for fixed g and n, these constructions yield only finitely many extremal divisors. This raises the question whether there exist g and g such that $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{g,n})$ is not finitely generated.

Motivated by this question, in this paper we study the moduli space of genus one curves with n marked points. Let $\mathbf{a} = (a_1, \dots, a_n)$ be a collection of n integers

1

During the preparation of this article the first author was partially supported by NSF grant DMS-1200329 and the second author was partially supported by NSF CAREER grant DMS-0950951535 and an Alfred P. Sloan Foundation Fellowship.

satisfying $\sum_{i=1}^{n} a_i = 0$, not all equal to zero. Define $D_{\mathbf{a}}$ in $\overline{\mathcal{M}}_{1,n}$ as the closure of the divisorial locus parameterizing smooth genus one curves with n marked points $(E; p_1, \ldots, p_n)$ such that $\sum_{i=1}^{n} a_i p_i = 0$ in the Jacobian of E.

Our main theorem is as follows.

Theorem 1.1. Suppose that $n \geq 3$ and $gcd(a_1, ..., a_n) = 1$. Then $D_{\mathbf{a}}$ is an extremal and rigid effective divisor on $\overline{\mathcal{M}}_{1,n}$. Moreover, these $D_{\mathbf{a}}$'s yield infinitely many extremal rays for $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n})$. Consequently, $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n})$ is not finite polyhedral and $\overline{\mathcal{M}}_{1,n}$ is not a Mori dream space.

The assumption $\gcd(a_1,\ldots,a_n)=1$ is necessary to ensure that $D_{\bf a}$ is irreducible, see Section 3.2. Our strategy for proving the extremality of $D_{\bf a}$ is to exhibit irreducible curves C Zariski dense in $D_{\bf a}$ such that $C \cdot D_{\bf a} < 0$.

By exhibiting nef line bundles that are not semi-ample, Keel [K, Corollary 3.1] had already observed that $\overline{\mathcal{M}}_{g,n}$ cannot be a Mori dream space if $g \geq 3$ and $n \geq 1$.

The divisor class of $D_{\mathbf{a}}$ was first calculated by Hain [Ha, Theorem 12.1] using normal functions. The restriction of this class to the locus of curves with rational tails was worked out by Cavalieri, Marcus and Wise [CMW] using Gromov-Witten theory. Two other proofs were recently obtained by Grushevsky and Zakharov [GZ] and by Müller [M]. We remark that all of them considered more general cycle classes in $\mathcal{M}_{g,n}$ for $g \geq 1$, by pulling back the zero section of the universal Jacobian or the Theta divisor of the universal Picard variety of degree g-1.

The symmetric group \mathfrak{S}_n acts on $\overline{\mathcal{M}}_{1,n}$ by permuting the labeling of the marked points. Denote the quotient by $\widetilde{\mathcal{M}}_{1,n} = \overline{\mathcal{M}}_{1,n}/\mathfrak{S}_n$. In contrast to Theorem 1.1, in the last section, we show that $\overline{\mathrm{Eff}}(\widetilde{\mathcal{M}}_{1,n})$ is finitely generated. In fact, following an argument of Keel and M^cKernan [KM], we prove that the boundary divisors generate $\overline{\mathrm{Eff}}(\widetilde{\mathcal{M}}_{1,n})$.

Note that for a subgroup $G \subset \mathfrak{S}_n$, if infinitely many irreducible divisors $D_{\mathbf{a}}$ in the above can be directly defined on $\overline{\mathcal{M}}_{1,n}/G$, then $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n}/G)$ is not finitely generated. For instance, consider n=6 and G the subgroup of \mathfrak{S}_6 generated by three simple transpositions (12), (34) and (56). Then $D_{(a,a,b,b,c,c)}$ is well-defined on $\overline{\mathcal{M}}_{1,6}/G$ for a+b+c=0. Moreover, if $\gcd(a,b,c)=1$, then $D_{(a,a,b,b,c,c)}$ is irreducible and extremal on $\overline{\mathcal{M}}_{1,6}/G$ as well. It would be interesting to classify all subgroups $G \subset \mathfrak{S}_n$ for which $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n}/G)$ is not finitely generated.

This paper is organized as follows. In Section 2, we review the divisor theory of $\overline{\mathcal{M}}_{1,n}$. In Section 3, we discuss the geometry of $D_{\mathbf{a}}$, including its divisor class and irreducible components. In Section 4, we prove our main results and describe a conceptual understanding from the viewpoint of birational automorphisms of $\overline{\mathcal{M}}_{1,3}$. In Section 5, we study the moduli space $\widetilde{\mathcal{M}}_{1,n}$ of genus one curves with n unordered marked points and show that its effective cone is generated by boundary divisors. Finally, in the appendix, we analyze the singularities of $\overline{\mathcal{M}}_{1,n}$ and show that a canonical form defined on its smooth locus extends holomorphically to an arbitrary resolution.

Acknowledgements: We would like to thank Gabi Farkas, Sam Grushevsky, Dick Hain, Joe Harris, Ian Morrison, Martin Möller and Anand Patel for many valuable discussions about this paper.

2. Preliminaries on $\overline{\mathcal{M}}_{1,n}$

In this section, we recall basic facts concerning the geometry of $\overline{\mathcal{M}}_{1,n}$. We refer the reader to [AC, BF, S] for the facts quoted below.

Let λ be the first Chern class of the Hodge bundle on $\overline{\mathcal{M}}_{1,n}$. Let δ_{irr} be the divisor class of the locus in $\overline{\mathcal{M}}_{1,n}$ that parameterizes curves with a non-separating node. The general point of δ_{irr} parameterizes a rational nodal curve with n marked points. Let S be a subset of $\{1,\ldots,n\}$ with cardinality $|S| \geq 2$ and let S^c denote its complement. Let $\delta_{0;S}$ denote the divisor class of the locus in $\overline{\mathcal{M}}_{1,n}$ parameterizing curves with a node that separates the curve into a stable genus zero curve marked by S and a stable genus one curve marked by S^c . In addition, let ψ_i be the first Chern class of the cotangent bundle associated to the ith marked point for $1 \leq i \leq n$. Here we consider the divisor classes in the moduli stack instead of the coarse moduli scheme, see e.g. [HMo, Section 3.D] for more details.

The rational Picard group of $\overline{\mathcal{M}}_{1,n}$ is generated by λ and $\delta_{0;S}$ for all $|S| \geq 2$. The divisor classes δ_{irr} and ψ_i can be expressed in terms of the generators as

$$\delta_{\text{irr}} = 12\lambda,$$

$$\psi_i = \lambda + \sum_{i \in S} \delta_{0;S}.$$

The canonical class of $\overline{\mathcal{M}}_{1,n}$ is

$$K_{\overline{\mathcal{M}}_{1,n}} = (n-11)\lambda + \sum_{|S|>2} (|S|-2)\delta_{0;S}.$$

For $n \leq 10$, $\overline{\mathcal{M}}_{1,n}$ is rational [B, Theorem 1.0.1]. Moreover, the Kodaira dimension of $\overline{\mathcal{M}}_{1,11}$ is zero and the Kodaira dimension of $\overline{\mathcal{M}}_{1,n}$ for $n \geq 12$ is one [BF, Theorem 3].

3. Geometry of $D_{\mathbf{a}}$

Let $\mathbf{a} = (a_1, \dots, a_n)$ be a sequence of integers, not all equal to zero, such that $\sum_{i=1}^n a_i = 0$. The divisor $D_{\mathbf{a}}$ in $\overline{\mathcal{M}}_{1,n}$ is defined as the closure of the locus parameterizing smooth genus one curves E with n distinct marked points p_1, \dots, p_n satisfying $\sum_{i=1}^n a_i p_i = 0$ in $\operatorname{Jac}(E)$. Equivalently, let \mathcal{J} denote the universal Jacobian. We have a map $\mathcal{M}_{1,n} \to \mathcal{J}$ induced by

$$(E; p_1, \ldots, p_n) \mapsto \mathcal{O}_E\left(\sum_{i=1}^n a_i p_i\right).$$

Then $D_{\mathbf{a}}$ is the closure of the pullback of the zero section of \mathcal{J} .

The divisor class of $D_{\mathbf{a}}$ was first calculated by Hain [Ha, Theorem 12.1]. We point out that the setting of [Ha] is slightly different from ours. There the map $\mathcal{M}_{1,n} \to \mathcal{J}$, denoted by $F_{\mathbf{d}}$, extends to $\overline{\mathcal{M}}_{1,n}$ as a morphism in codimension one. Hence the pullback of the zero section of \mathcal{J} , denoted by $F_{\mathbf{d}}^*\eta_1$, may contain boundary divisors. In particular, if the marked points p_1, \ldots, p_n coincide on E, the condition

¹In order to study the Kodiara dimension of a singular variety, one needs to ensure that a canonical form defined in its smooth locus extends holomorphically to a resolution. Farkas informed the authors that such a verification for $\overline{\mathcal{M}}_{1,n}$ seems not to be easily accessible in the literature. Although the Kodaira dimension of $\overline{\mathcal{M}}_{1,n}$ is irrelevant for our results, we will treat this issue in the appendix by a standard argument based on the Reid-Tai criterion.

 $\sum_{i=1}^{n} a_i p_i = 0$ automatically holds by the assumption $\sum_{i=1}^{n} a_i = 0$. In other words, $F_{\mathbf{d}}^* \eta_1$ contains the boundary divisor $\delta_{0;\{1,\ldots,n\}}$. In contrast, in our setting $D_{\mathbf{a}}$ does not contain any boundary divisors. This was already observed by Cautis [Ca, Proposition 3.4.7] for the case n=2. In order to clarify this distinction, we will first carry out a direct calculation for the class of $D_{\mathbf{a}}$ and confirm that it matches with [Ha] after adding $\delta_{0;\{1,\ldots,n\}}$.

3.1. Divisor class of $D_{\mathbf{a}}$. Take a general one-dimensional family $\pi: \mathcal{C} \to B$ of genus one curves with n sections $\sigma_1, \ldots, \sigma_n$ such that every fiber contains at most one node and the total space of the family is smooth. Suppose there are d_S fibers in which the sections labeled by S intersect simultaneously and pairwise transversally. Let d_{irr} be the number of rational nodal fibers. Let ω be the first Chern class of the relative dualizing sheaf associated to π and η the locus of nodes in \mathcal{C} . Then the following formulae are standard [HMo]:

$$\pi_* \eta = d_{\text{irr}} + \sum_S d_S,$$

$$\omega^2 = -\sum_S d_S,$$

$$\sigma_i \cdot \sigma_j = \sum_{\{i,j\} \subset S} d_S,$$

$$\omega \cdot \sigma_i = -\sigma_i^2 = B \cdot \psi_i - \sum_{i \in S} d_S = \frac{1}{12} d_{\text{irr}}.$$

Suppose $D_{\mathbf{a}}$ has class

$$D_{\mathbf{a}} = c_{\operatorname{irr}} \delta_{\operatorname{irr}} + \sum_{|S| \ge 2} c_S \delta_{0;\{S\}}$$

with unknown coefficients c_{irr} and c_S . By [GZ, page 11], the zero section of \mathcal{J} vanishes along the boundary divisor $\delta_{0;\{1,\ldots,n\}}$ with multiplicity one. Applying the Grothendieck-Riemann-Roch formula to the push-forward of the section $\sum_{i=1}^{n} a_i \sigma_i$, we conclude that

$$B \cdot D_{\mathbf{a}} + d_{\{1,\dots,n\}} = c_1 \left(R^1 \pi_* \sum_{i=1}^n a_i \sigma_i \right)$$

$$= -\pi_* \left(\left(1 + \sum_{i=1}^n a_i \sigma_i + \frac{1}{2} \left(\sum_{i=1}^n a_i \sigma_i \right)^2 \right) \left(1 - \frac{\omega}{2} + \frac{\omega^2 + \eta}{12} \right) \right)$$

$$= -\frac{1}{12} d_{\text{irr}} + \frac{1}{24} \left(\sum_{i=1}^n a_i^2 \right) d_{\text{irr}} - \sum_{S} \sum_{\{i,j\} \in S} a_i a_j d_S.$$

By comparing coefficients on the two sides of the equation, we obtain that

$$12c_{\text{irr}} = -1 + \frac{1}{2} \sum_{i=1}^{n} a_i^2,$$

$$c_S = -\sum_{\{i,j\} \subset S} a_i a_j, \ S \neq \{1, \dots, n\},$$

$$c_{\{1,\dots,n\}} = -\sum_{1 \le i < j \le n} a_i a_j - 1 = -1 + \frac{1}{2} \sum_{i=1}^{n} a_i^2,$$

where the last equality uses the assumption $\sum_{i=1}^{n} a_i = 0$. Hence, we conclude the following.

Proposition 3.1. The divisor class of $D_{\mathbf{a}}$ is given by

$$D_{\mathbf{a}} = \left(-1 + \frac{1}{2} \sum_{i=1}^{n} a_i^2\right) (\lambda + \delta_{0;\{1,\dots,n\}}) - \sum_{2 \le |S| < n} \left(\sum_{\{i,j\} \subset S} a_i a_j\right) \delta_{0;S}.$$

Therefore, adding $\delta_{0;\{1,...,n\}}$ to $D_{\mathbf{a}}$, we recover the divisor class calculated in [Ha, Theorem 12.1].

3.2. Irreducible components of $D_{\bf a}$. The divisor $D_{\bf a}$ is not always irreducible. For instance for $D_{(4,-4)}$ on $\overline{\mathcal{M}}_{1,2}$, the condition is $4p_1-4p_2=0$. There are two possibilities, $2p_1-2p_2=0$ and $2p_1-2p_2\neq 0$, each yielding a component for $D_{(4,-4)}$. In general for $n\geq 3$, if $\gcd(a_1,\ldots,a_n)=1$, then $D_{\bf a}$ is irreducible. If $\gcd(a_1,\ldots,a_n)>1$, then $D_{\bf a}$ contains more than one component. Below we will prove this statement and calculate the divisor class of each irreducible component.

First, consider the special case n=2. Let $\eta(d)$ denote the number of positive integers that divide d.

Proposition 3.2. Suppose a is an integer bigger than one. Then the divisor $D_{(a,-a)}$ in $\overline{\mathcal{M}}_{1,2}$ consists of $\eta(a)-1$ irreducible components.

Proof. By definition, $D_{(a,-a)}$ is the closure of the locus parameterizing $(E; p_1, p_2)$ such that $p_2 - p_1$ is a non-zero a-torsion. Take the square $[0, a] \times [0, ai]$ and glue its parallel edges to form a torus E. Fix p_1 as the origin of E. The number of a-torsion points p_2 is equal to a^2 and the coordinates (x, y) of each a-torsion point satisfy $x, y \in \mathbb{Z}/a$.

When varying the lattice structure of E, the monodromy group acts on (x,y). Suppose we fix the horizontal edge and shift the vertical edge to the right until we obtain a parallelogram spanned by $[0,a] \times [0,a(1+i)]$. The resulting torus is isomorphic to E. Consequently the monodromy action sends an a-torsion point (x,y) to (x+y,y). Similarly, we may also obtain the action sending (x,y) to (x,x+y). Then each orbit of the monodromy action is uniquely determined by $k=\gcd(x,y,a)$. In other words, the monodromy is transitive on the primitive a'-torsion points for each divisor a' of a, where a'=a/k. Hence, the number of its orbits is $\eta(a)$. Each orbit gives rise to an irreducible component of $D_{(a,-a)}$ parameterizing (E,p_1,p_2) such that p_2-p_1 is a primitive a'-torsion, where a is divisible by a'. Moreover, when a'=1, i.e. $p_2=p_1$, the corresponding component is $\delta_{0:\{1,2\}}$, hence we need to exclude it by our setting.

Next, we consider the case $n \geq 3$. If m entries of \mathbf{a} are zero, drop them and denote by \mathbf{a}' the resulting (n-m)-tuple. Then we have $D_{\mathbf{a}} = \pi^* D_{\mathbf{a}'}$, where $\pi: \overline{\mathcal{M}}_{1,n} \to \overline{\mathcal{M}}_{1,n-m}$ is the map forgetting the corresponding marked points. Since the fiber of π over a general point in $D_{\mathbf{a}'}$ is irreducible, we conclude that $D_{\mathbf{a}}$ and $D_{\mathbf{a}'}$ possess the same number of irreducible components. It remains to consider the case when all entries of \mathbf{a} are non-zero.

Proposition 3.3. Suppose $n \geq 3$ and all entries of **a** are non-zero. Let $d = \gcd(a_1, \ldots, a_n)$. Then $D_{\mathbf{a}}$ consists of $\eta(d)$ irreducible components.

Proof. If an entry of **a** equals 1 or -1, say $a_n = 1$, then we can freely choose p_1, \ldots, p_{n-1} and a general choice uniquely determines p_n . In other words, $D_{\mathbf{a}}$ is birational to $\mathcal{M}_{1,n-1}$ which is irreducible.

Suppose all the entries are different from 1 and -1. Fix p_1, \ldots, p_{n-1} and replace p_n by $p'_n = 2p_1 - p_n$, then $\mathbf{a} = (a_1, \ldots, a_n)$ becomes $\mathbf{a}' = (a_1 + 2a_n, a_2, \ldots, a_{n-1}, -a_n)$. Note that p_n and p'_n uniquely determine each other, and for general points in $D_{\mathbf{a}}$ we have $p'_n \neq p_i$ for $1 \leq i < n$, otherwise we would have $|a_i| = |a_n| = 1$. Hence the components of $D_{\mathbf{a}}$ and $D_{\mathbf{a}'}$ have a one to one correspondence. Using such transformations, we can decrease $\min\{|a_1|, \ldots, |a_n|\}$ until one of the entries is equal to d, say $a_n = d$.

Now fix p_1, \ldots, p_{n-1} and set $\sum_{i=1}^{n-1} a_i p_i$ to be the origin of E. Then p_n is a d-torsion. Analyzing the monodromy associated to $D_{\mathbf{a}} \dashrightarrow \mathcal{M}_{1,n-1}$ as in the proof of Proposition 3.2, we see that $D_{\mathbf{a}}$ has at most $\eta(d)$ irreducible components. On the other hand for each positive factor s of d, the locus parameterizing $\sum_{i=1}^{n} b_i p_i = 0$ where $b_i = a_i/s$ gives rise to at least one component of $D_{\mathbf{a}}$. Hence $D_{\mathbf{a}}$ contains exactly $\eta(d)$ irreducible components. Since $n \geq 3$, none of these components is a boundary divisor of $\overline{\mathcal{M}}_{1,n}$.

Let us calculate the divisor class of each component of $D_{\mathbf{a}}$. As in the proof of Proposition 3.3, let $D'_{\mathbf{a}}$ be the irreducible component of $D_{\mathbf{a}}$ such that $\sum_{i=1}^{n} a_i p_i = 0$ but $\sum_{i=1}^{n} (a_i/s) p_i \neq 0$ for general points in $D'_{\mathbf{a}}$ and any s dividing $\gcd(a_1, \ldots, a_n)$.

Proposition 3.4. Suppose $gcd(a_1, ..., a_n) = d > 1$. Then the divisor D'_a has class

$$D'_{\mathbf{a}} = \prod_{p|d} \left(1 - \frac{1}{p^2} \right) (D_{\mathbf{a}} + \lambda + \delta_{0;\{1,\dots,n\}}),$$

where the product ranges over all primes p dividing d.

We remark that for n=2 the above divisor class was calculated by Cautis [Ca, Proposition 3.4.7] and also communicated personally to the authors by Hain.

Proof. Let $b_i = a_i/d$ and $\mathbf{b} = (b_1, \dots, b_n)$. For an integer m, use the notation $m\mathbf{b} = (mb_1, \dots, mb_n)$. Note that

$$D_{\mathbf{a}} = D_{d\mathbf{b}} = \sum_{t|d} D'_{t\mathbf{b}},$$

where t ranges over all positive integers dividing d. By Proposition 3.1, we have

$$D_{\mathbf{a}} + \lambda + \delta_{0;\{1,\dots,n\}} = d^2(D_{\mathbf{b}} + \lambda + \delta_{0;\{1,\dots,n\}}).$$

For an integer $t \geq 2$, define

$$\sigma(t) = t^2 \prod_{p|t} \left(1 - \frac{1}{p^2} \right),$$

where the product ranges over all primes p dividing t. We also set $\sigma(1) = 1$. Using the above observation, it suffices to prove that

$$\sum_{t|d} \sigma(t) = d^2$$

for all d.

In order to prove the above equality, do induction on d. Write d as

$$d = q^m e$$
,

where q is a prime and e is not divisible by q. Let S_i be the set of positive integers t dividing d, such that t is divisible by q^i but not by q^{i+1} for any $1 \le i \le m$. By induction, we have

$$\sum_{t \in S_i} \sigma(t) = q^{2i} \left(1 - \frac{1}{q^2} \right) e^2.$$

Summing over all i, we thus obtain that

$$\sum_{t|d} \sigma(t) = q^{2m}e^2 = d^2.$$

Corollary 3.5. If $gcd(a_1, ..., a_n) > 1$, the divisor class $D'_{\mathbf{a}}$ is not extremal.

Proof. By Proposition 3.4, $D_{\bf a}'$ is a positive linear combination of effective divisor classes, not all proportional.

4. Extremality of $D_{\mathbf{a}}$

In this section, we will prove Theorem 1.1. Recall that an effective divisor D in a projective variety X is called extremal, if for any linear combination $D = a_1D_1 + a_2D_2$ with $a_i > 0$ and D_i pseudo-effective, D and D_i are proportional. In this case, we say that D spans an extremal ray of the pseudo-effective cone $\overline{\mathrm{Eff}}(X)$. Furthermore, we say that D is rigid, if for every positive integer m the linear system |mD| consists of the single element mD. An irreducible effective curve contained in D is called a moving curve in D, if its deformations cover a dense subset of D.

Let us first give a method to test the extremality and rigidity for an effective divisor.

Lemma 4.1. Suppose that C is a moving curve in an irreducible effective divisor D satisfying $C \cdot D < 0$. Then D is extremal and rigid.

Proof. Let us first prove the extremality of D. Suppose that $D = a_1D_1 + a_2D_2$ with $a_i > 0$ and D_i pseudo-effective. If D_1 and D_2 are not proportional to D, we can assume that they lie in the boundary of $\overline{\mathrm{Eff}}(X)$ and moreover that $D_i - \epsilon D$ is not pseudo-effective for any $\epsilon > 0$. Otherwise, we can replace D_1 and D_2 by the intersections of their linear span with the boundary of $\overline{\mathrm{Eff}}(X)$.

Since $C \cdot D < 0$, at least for one of the D_i 's, say D_1 , we have $C \cdot D_1 < 0$. Without loss of generality, rescale the class of D_1 such that $C \cdot D_1 = -1$. Take a very ample divisor class A and consider the class $F_n = nD_1 + A$ for n sufficiently large. Then F_n can be represented by an effective divisor. Suppose $C \cdot A = a$ and $C \cdot D = -b$ for some a, b > 0. Note that if C has negative intersection with an effective divisor, then it is contained in that divisor. Since C is moving in D, it further implies that D is contained in that divisor. It is easy to check that $C \cdot (F_n - kD) < 0$ for any k < (n-a)/b. Moreover, the multiplicity of D in the base locus of F_n is at least equal to (n-a)/b. Consequently $E_n = F_n - (n-a)D/b$ is a pseudo-effective divisor class. As n goes to infinity, the limit of E_n/n has class $D_1 - D/b$. Since E_n is pseudo-effective, we conclude that $D_1 - D/b$ is also pseudo-effective, contradicting the assumption that $D_1 - \epsilon D$ is not pseudo-effective for any $\epsilon > 0$.

Next, we prove the rigidity. Suppose for some integer m there exists another effective divisor D' such that $D' \sim mD$. Without loss of generality, assume that D' does not contain D, for otherwise we just subtract D from both sides. Since

 $C \cdot D < 0$, we have $C \cdot D' < 0$, and hence D' contains C. But C is moving in D, hence D' has to contain D, contradicting the assumption.

Although we can give a uniform proof of Theorem 1.1 as in Section 4.2, for the reader to get a feel, let us first discuss the case n=3 in detail.

4.1. **Geometry of** $\overline{\mathcal{M}}_{1,3}$. Let $\mathbf{a} = (a_1, a_2, a_3)$. If $a_3 = 0$, then $a_2 = -a_1$ are not relatively prime unless they are 1 and -1. But then $p_1 = p_2$, hence the locus corresponds to the boundary divisor $\delta_{0;\{1,2\}}$. Therefore, below we assume that $\gcd(a_1, a_2, a_3) = 1$ and none of the a_i 's is zero.

Fix a smooth genus one curve E with a marked point p_1 . Vary two points p_2, p_3 on E such that $\sum_{i=1}^3 a_i p_i = 0$ in the Jacobian of E. Let X be the curve induced in $\overline{\mathcal{M}}_{1,n}$ by this one parameter family of three pointed genus one curves. We obtain deformations of X by varying the complex structure on E. Since these deformations cover a Zariski dense subset of $D_{\mathbf{a}}$, we obtain a moving curve in the divisor $D_{\mathbf{a}}$. We have the following intersection numbers:

$$\begin{split} X \cdot \delta_{\text{irr}} &= 0, \\ X \cdot \delta_{0;\{i,j\}} &= a_k^2 - 1 \text{ for } k \neq i, j, \\ X \cdot \delta_{0;\{1,2,3\}} &= 1. \end{split}$$

The intersection numbers $X \cdot \delta_{\text{irr}}$ and $X \cdot \delta_{0;\{i,j\}}$ are straightforward. At the intersection with $\delta_{0;\{1,2,3\}}$, p_1, p_2, p_3 coincide at the same point t in E. Blow up t and we obtain a rational tail $R \cong \mathbb{P}^1$ that contains the three marked points. Without loss of generality, suppose $a_1 > 0$ and $a_2, a_3 < 0$. The pencil induced by $a_1p_1 \sim (-a_2)p_2 + (-a_3)p_3$ degenerates to an admissible cover π of degree a_1 . By the Riemann-Hurwitz formula, π is totally ramified at p_1 , has ramification order $(-a_i)$ at p_i for i = 2, 3, and is simply ramified at t. Suppose $\pi(p_1) = 0$, $\pi(p_2) = \pi(p_3) = \infty$ and $\pi(t) = 1$ in the target \mathbb{P}^1 . Then in affine coordinates π is given by

$$\pi(x) = \prod_{i=1}^{3} (x - p_i)^{a_i}.$$

The condition imposed on t is that

$$(x-p_1)^{a_1}-(x-p_2)^{-a_2}(x-p_3)^{-a_3}$$

has a critical point at t and $\pi(t) = 1$. Solving for t, we easily see that t exists and is uniquely determined by p_1, p_2, p_3 , namely, the four points t, p_1, p_2, p_3 have unique moduli in R.

Now we can prove Theorem 1.1 for the case n = 3.

Proof. Using the divisor class $D_{\mathbf{a}}$ in Proposition 3.1 and the above intersection numbers, we see that

$$X \cdot D_{\mathbf{a}} = -1.$$

By assumption both X and $D_{\bf a}$ are irreducible. Moreover, X is a moving curve inside $D_{\bf a}$. Therefore, by Lemma 4.1 $D_{\bf a}$ is an extremal and rigid divisor.

To see that we obtain infinitely many extremal rays of $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,3})$ this way, let us take $\mathbf{a} = (n+1, -n, -1)$. Then $D_{(n+1, -n, -1)}$ is irreducible and its divisor class lies on the ray

$$c\left(\lambda+\delta_{0,\{1,2,3\}}+\delta_{0,\{1,2\}}+\frac{1}{n}\delta_{0,\{1,3\}}-\frac{1}{n+1}\delta_{0,\{2,3\}}\right), \quad c>0.$$

As n varies, we obtain infinitely many extremal rays.

Next we give a conceptual explanation of the extremality in terms of birational automorphisms of $\overline{\mathcal{M}}_{1,3}$. The idea is as follows. We want to find a birational map

$$f: \overline{\mathcal{M}}_{1,3} \dashrightarrow \overline{\mathcal{M}}_{1,3}$$

such that f and its inverse do not contract any divisor, then f preserves the structure of $\text{Eff}(\overline{\mathcal{M}}_{1,3})$, i.e. a divisor D is extremal if and only if $f_*(D)$ is extremal. Moreover, if f sends D to a boundary divisor $\delta_{0;S}$, then D is extremal, since we know $\delta_{0;S}$ is extremal.

A prototype of such birational automorphisms can be defined as

$$f: (E; p_1, p_2, p_3) \mapsto (E; q_1, q_2, q_3)$$

such that

$$q_1 = p_1,$$

 $q_2 = p_2,$
 $q_3 = p_2 + p_3 - p_1,$

where E is a smooth genus one curve with three marked points in general position. Then f^{-1} is accordingly given by

$$p_1 = q_1,$$

 $p_2 = q_2,$
 $p_3 = q_1 + q_3 - q_2.$

Note that f does not extend to a regular map on $\overline{\mathcal{M}}_{1,3}$, see Remark 4.5. But one can extend f to a regular map in codimension-one, which we still denote by f.

Proposition 4.2. Away from $D_{(2,-1,-1)}$ and the boundary of $\overline{\mathcal{M}}_{1,3}$, f is injective with image contained in $\mathcal{M}_{1,3}$. For general points in each boundary component of $\overline{\mathcal{M}}_{1,3}$, f induces the following action:

$$\begin{split} \delta_{\text{irr}} &\mapsto \delta_{\text{irr}}, \\ \delta_{0;\{1,2\}} &\mapsto \delta_{0;\{1,2\}}, \\ \delta_{0;\{1,3\}} &\mapsto \delta_{0;\{2,3\}}, \\ \delta_{0;\{2,3\}} &\mapsto D_{(-1,2,-1)}, \\ \delta_{0;\{1,2,3\}} &\mapsto \delta_{0;\{1,2,3\}}. \end{split}$$

For general points in $D_{(2,-1,-1)}$, the action induced by f is:

$$D_{(2,-1,-1)} \mapsto \delta_{0;\{1,3\}}.$$

Proof. Take a smooth genus one curve E with three distinct marked points p_1, p_2, p_3 . By definition, we know $q_1 \neq q_2$. If $q_2 = q_3$, we get $p_3 = p_1$, contradicting the assumption. If $q_1 = q_3$, we get $2p_1 = p_2 + p_3$, i.e. $(E; p_1, p_2, p_3)$ is contained in $D_{(2,-1,-1)}$. In the complement $\mathcal{M}_{1,3} \setminus D_{(2,-1,-1)}$, it is clear that f is an injection.

Now let us study the extension of f at the boundary. Note that p_3 is sent to its conjugate q_3 under the double cover $E \to \mathbb{P}^1$ induced by the pencil $|p_1 + p_2|$. Using admissible covers, the conjugate q_3 is uniquely determined on a rational one-nodal curve when p_1, p_2, p_3 are fixed, distinct and away from the node. Therefore, we conclude that f can be extended to a birational map from δ_{irr} to itself.

Next, consider $\delta_{0;\{1,2\}}$. Take a general point $x = (E \cup_t R; p_1, p_2, p_3)$ in $\delta_{0;\{1,2\}}$, where t is the node, E contains p_3 and the rational tail R contains p_1, p_2 . Blow

down R and p_1, p_2 stabilize to t. By definition, $q_3 = t + p_3 - t = p_3$ is contained in E. The rational tail R is still stable containing $q_1 = p_1$ and $q_2 = p_2$. Hence we conclude that $f(x) = (E \cup_t R; q_1, q_2, q_3) \in \delta_{0;\{1,2\}}$, where E contains q_3 only. The same argument can be applied to $\delta_{0;\{1,3\}}$ and we leave it to the reader.

Take a general point $y = (E \cup_t R; p_1, p_2, p_3)$ in $\delta_{0;\{2,3\}}$, where t is the node, E contains p_1 and the rational tail R contains p_2, p_3 . Blow down R and p_2, p_3 stabilize to t. By definition, $q_3 = t + t - p_1 = 2q_2 - q_1$, i.e. $q_1 - 2q_2 + q_3 = 0$. Therefore, we conclude that f(y) is contained in $D_{(1,-2,1)}$, where $q_2 = t$ in E.

For $\delta_{0;\{1,2,3\}}$, take a one-dimensional family of genus one curves with sections $P_1 = Q_1, P_2 = Q_2, P_3$ and Q_3 such that in a generic fiber $p_2 + p_3 = p_1 + q_3$ and all the sections meet at the central fiber. Suppose t is the base parameter and z is the vertical parameter. Let c = (0,0) be the common point of the sections in the central fiber E defined by t=0. Without loss of generality, around c we can parameterize the tangent directions of P_i by z = 0, $z = tz_2$ and $z = tz_3$ for i = 1, 2, 3, respectively, and $z = t(z_2 + z_3)$ for Q_3 , where z_2, z_3 are fixed in $E \cong \mathbb{C}/\mathbb{Z}^2$. Blow up c and for the resulting surface, use (t, z, [u, v]) as the new coordinates such that tu = zv. Then the exceptional curve R is defined by t = z = 0 and the proper transform of E, still denoted by E, is parameterized by (0, z, [1, 0]). In particular, R and E meet at r = (0, 0, [1, 0]). The proper transforms of the four sections meet R at $p_1 = [0, 1], p_2 = [z_2, 1], p_3 = [z_3, 1] \text{ and } q_3 = [z_2 + z_3, 1].$ Let x = u/v be the affine coordinate of $R \setminus s$, where s corresponds to $x = \infty$. Then there exists a unique double cover $\pi: R \to \mathbb{P}^1$ by $x \mapsto (x-z_2)(x-z_3)$ (modulo isomorphisms of \mathbb{P}^1) such that $\pi(p_2) = \pi(p_3)$, $\pi(p_1) = \pi(q_3)$ and π is ramified at r. In other words, using the pencil |2q| on E and π on R, one can construct an admissible double cover $E \cup_r R \to \mathbb{P}^1 \cup \mathbb{P}^1$ such that up to isomorphism q_3 in the rational tail R is uniquely determined by p_1, p_2 and p_3 .

Finally, take a general point $(E; p_1, p_2, p_3)$ in $D_{(2,-1,-1)}$, i.e. $2p_1 - p_2 - p_3 = 0$. Then we conclude that

$$q_3 = p_2 + p_3 - p_1 = p_1 = q_1$$
.

Blow up the point where q_1 and q_3 meet. We end up with a general point in $\delta_{0;\{1,3\}}$, since three special points in \mathbb{P}^1 have unique moduli.

By the same token, one can prove the following for f^{-1} .

Proposition 4.3. Away from $D_{(-1,2,-1)}$ and the boundary of $\overline{\mathcal{M}}_{1,3}$, f^{-1} is injective with image contained in $\mathcal{M}_{1,3}$. For general points in each boundary component of $\overline{\mathcal{M}}_{1,3}$, f^{-1} induces the following action:

$$\begin{split} \delta_{\text{irr}} &\mapsto \delta_{\text{irr}}, \\ \delta_{0;\{1,2\}} &\mapsto \delta_{0;\{1,2\}}, \\ \delta_{0;\{1,3\}} &\mapsto D_{(2,-1,-1)}, \\ \delta_{0;\{2,3\}} &\mapsto \delta_{0;\{1,3\}}, \\ \delta_{0;\{1,2,3\}} &\mapsto \delta_{0;\{1,2,3\}}. \end{split}$$

For general points in $D_{(-1,2,-1)}$, the action induced by f is:

$$D_{(-1,2,-1)} \mapsto \delta_{0;\{2,3\}}.$$

Corollary 4.4. The maps f and f^{-1} induce isomorphisms in codimension-one. In particular, they preserve the structure of $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,3})$. As a consequence $D_{(2,-1,-1)}$ is an extremal effective divisor.

Proof. The statement about f and f^{-1} is obvious by Propositions 4.2 and 4.3. Since $f_*D_{(2,-1,-1)} = \delta_{0;\{1,3\}}$ is extremal and rigid, we thus conclude the extremality and rigidity for $D_{(2,-1,-1)}$.

Remark 4.5. The map f is not regular at the locus parameterizing two rational curves X and Y intersecting at two nodes s and t, where p_2, p_3 are contained in X and p_1 is contained in Y. Using admissible covers, the point q_3 in Y satisfies $p_1 + q_3 \sim s + t$, but any point in Y (away from s and t) can be such q_3 because Y is rational. The resulting covering curve still keep $q_1 = p_1$ and q_3 in Y, but along with s,t the four special points in Y have varying moduli. Therefore, its image under f cannot be uniquely determined.

Using f and the action of \mathfrak{S}_3 permuting the marked points, the signature (a_1, a_2, a_3) can be sent to

$$(a'_1, a'_2, a'_3) = (a_1 - a_3, a_2 + a_3, a_3).$$

Given $a_1 + a_2 + a_3 = 0$ and $\gcd(a_1, a_2, a_3) = 1$, without loss of generality we can assume that $a_1 > a_3 > 0$ (unless $a_1 = a_3 = 1$) and $a_2 < 0$. Then $-a_2 = a_1 + a_3$ and $|a_3| < |a_1| < |a_2|$. The new signature satisfies $|a_i'| < |a_2|$ for $1 \le i \le 3$. Keep using such actions and eventually we can reduce the signature to $\mathbf{a} = (1, 1, -2)$. By Corollary 4.4 we thus obtain another proof for Theorem 1.1 in the case of n = 3.

4.2. Geometry of $\overline{\mathcal{M}}_{1,n}$ for $n \geq 4$. In this section suppose $n \geq 4$. First, let us consider pulling back divisors from $\overline{\mathcal{M}}_{1,3}$.

Let $\pi: \overline{\mathcal{M}}_{1,n} \to \overline{\mathcal{M}}_{1,3}$ be the forgetful map forgetting p_4, \ldots, p_n . Assume that $\gcd(a_1,a_2)=1$. In Section 4.1 we have shown that $D_{(a_1,a_2,-a_1-a_2)}$ is extremal. Now fix a smooth genus one curve E with fixed p_3,p_4,\ldots,p_n in general position. Varying p_1,p_2 in E such that $\sum_{i=1}^3 a_i p_i = 0$, we obtain a curve X moving inside $\pi^*D_{(a_1,a_2,-a_1-a_2)}$. We have also seen that $(\pi_*X)\cdot D_{(a_1,a_2,-a_1-a_2)}<0$ on $\overline{\mathcal{M}}_{1,3}$, hence by the projection formula, we have $X\cdot(\pi^*D_{(a_1,a_2,-a_1-a_2)})<0$. Since $\pi^*D_{(a_1,a_2,-a_1-a_2)}$ is irreducible, we conclude the following.

Proposition 4.6. Let $\mathbf{a} = (a_1, a_2, -a_1 - a_2, 0, \dots, 0)$ for $\gcd(a_1, a_2) = 1$. Then the divisor class $D_{\mathbf{a}}$ is extremal in $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n})$.

Corollary 4.7. For $n \geq 4$, the cone $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n})$ is not finite polyhedral.

Proof. We have

$$\pi^* \lambda = \lambda,$$

$$\pi^* \delta_{0;\{1,2\}} = \sum_{\substack{\{1,2\} \subset S \\ 3 \notin S}} \delta_{0;S},$$

$$\pi^* \delta_{0;\{1,2,3\}} = \sum_{\{1,2,3\} \subset S} \delta_{0;S}.$$

Then for $gcd(a_1, a_2) = 1$, we obtain that

$$\pi^* D_{(a_1, a_2, -a_1 - a_2)} = (-1 + a_1^2 + a_2^2 + a_1 a_2) \left(\lambda + \sum_{\{1, 2, 3\} \subset S} \delta_{0; S}\right)$$

$$-a_1 a_2 \left(\sum_{\substack{\{1,2\} \subset S \\ 2\sigma \neq S}} \delta_{0;S} \right) + a_1 (a_1 + a_2) \left(\sum_{\substack{\{1,3\} \subset S \\ 2\sigma \neq S}} \delta_{0;S} \right) + a_2 (a_1 + a_2) \left(\sum_{\substack{\{2,3\} \subset S \\ 2\sigma \neq S}} \delta_{0;S} \right).$$

By varying a_1, a_2 , we obtain infinitely many extremal rays.

Next we consider $D_{\mathbf{a}}$ when at least four entries are non-zero and $\gcd(a_1,\ldots,a_n)=1$. Let $D_{\mathbf{a}}(E,\eta)$ be the closure of the locus parameterizing $(E;p_1,\ldots,p_n)$ such that $\sum_{i=1}^n a_i p_i = \eta$ for fixed $\eta \in \operatorname{Jac}(E)$ on a fixed genus one curve E.

For $S = \{i_1, \ldots, i_k\}$, consider the locus $\delta_{0;S}(E)$ of curves parameterized in $\delta_{0;S}$ whose genus one component is E. Blow down the rational tails and p_{i_1}, \ldots, p_{i_k} reduce to the same point q in E. For $\eta \neq 0$, the condition

$$\left(\sum_{j=1}^{k} a_{i_j}\right) q + \sum_{j \notin S} a_j p_j = \eta$$

does not hold for q and p_j in general position in E. Therefore, $\delta_{0;S}(E)$ is not contained in $D_{\mathbf{a}}(E,\eta)$ for $\eta \neq 0$, and $D_{\mathbf{a}}(E,\eta)$ is irreducible of codimension-two in $\overline{\mathcal{M}}_{1,n}$.

If $\eta=0$, the above argument still goes through with only one exception when $S=\{1,\ldots,n\}$, because the condition $\sum_{i=1}^n a_i p_i=0$ automatically holds if all the marked points coincide due to the assumption $\sum_{i=1}^n a_i=0$. In other words, $D_{\mathbf{a}}(E,0)$ consists of two components. One is $D_{\mathbf{a}}(E)$ whose general points parameterize n distinct points p_1,\ldots,p_n in E such that $\sum_{i=1}^n a_i p_i=0$ and the other is $\delta_{0;\{1,\ldots,n\}}(E)$ whose general points parameterize E attached to a rational tail that contains all the marked points.

Now let us prove Theorem 1.1 for the case $n \geq 4$.

Proof. Note that for $\eta \neq 0$, $D_{\mathbf{a}}(E, \eta)$ is disjoint from $D_{\mathbf{a}}$. This is clear in the interior of $\overline{\mathcal{M}}_{1,n}$. At the boundary, if k marked points coincide, say $p_1 = \cdots = p_k = q$ in E, then

$$\left(\sum_{i=1}^{k} a_i\right) q + \sum_{j=k+1}^{n} a_j p_j$$

has to be η for $D_{\mathbf{a}}(E,\eta)$ and 0 for $D_{\mathbf{a}}$, which cannot hold simultaneously for $\eta \neq 0$. Since $n \geq 4$, take n-3 very ample divisors on $\overline{\mathcal{M}}_{1,n}$ and consider their intersection restricted to $D_{\mathbf{a}}(E,\eta)$, which gives rise to an irreducible curve $C_{\mathbf{a}}(E,\eta)$ moving in $D_{\mathbf{a}}(E,\eta)$. Restricting to $D_{\mathbf{a}}(E,0)$, we see that $C_{\mathbf{a}}(E,\eta)$ specializes to $C_{\mathbf{a}}(E,0)$ which consists of two components $C_{\mathbf{a}}(E)$ and $C_{0;\{1,\dots,n\}}(E)$, contained in $D_{\mathbf{a}}(E)$ and $C_{0;\{1,\dots,n\}}(E)$, respectively. Moreover, $C_{\mathbf{a}}(E,0)$ is connected, hence $C_{\mathbf{a}}(E)$ and $C_{0;\{1,\dots,n\}}(E)$ intersect each other. Therefore, we conclude that

$$\begin{split} (C_{\mathbf{a}}(E) + C_{0;\{1,\dots,n\}}(E)) \cdot D_{\mathbf{a}} &= C_{\mathbf{a}}(E,\eta) \cdot D_{\mathbf{a}} = 0, \\ C_{0;\{1,\dots,n\}}(E) \cdot D_{\mathbf{a}} &> 0, \\ C_{\mathbf{a}}(E) \cdot D_{\mathbf{a}} &< 0. \end{split}$$

The curve $C_{\mathbf{a}}(E)$ is not only moving in $D_{\mathbf{a}}(E)$ but also varies with the complex structure of E, hence it is moving in $D_{\mathbf{a}}$. Since it has negative intersection with $D_{\mathbf{a}}$ and $D_{\mathbf{a}}$ is irreducible, by Lemma 4.1 we thus conclude that $D_{\mathbf{a}}$ is extremal and rigid.

Corollary 4.8. For $n \geq 3$ the moduli space $\overline{\mathcal{M}}_{1,n}$ is not a Mori dream space.

Proof. By [HK, 1.11 (2)], if $\overline{\mathcal{M}}_{1,n}$ is a Mori dream space, its effective cone would be the affine hull spanned by finitely many effective divisors, which contradicts the fact that $\overline{\mathrm{Eff}}(\overline{\mathcal{M}}_{1,n})$ has infinitely many extremal rays.

5. Effective divisors on $\widetilde{\mathcal{M}}_{1,n}$

In this section, we study the moduli space $\widetilde{\mathcal{M}}_{1,n}$ of stable genus one curves with n unordered marked points. The symmetric group \mathfrak{S}_n acts by permuting the labeling of the points on $\overline{\mathcal{M}}_{1,n}$. We denote the quotient $\overline{\mathcal{M}}_{1,n}/\mathfrak{S}_n$ by $\widetilde{\mathcal{M}}_{1,n}$. The rational Picard group of $\widetilde{\mathcal{M}}_{1,n}$ is generated by $\widetilde{\delta}_{irr}$ and $\widetilde{\delta}_{0;k}$ for $2 \leq k \leq n$, where $\widetilde{\delta}_{irr}$ is the image of δ_{irr} and $\widetilde{\delta}_{0;k}$ is the image of the union of $\delta_{0;S}$ for all |S| = k.

In the case of genus zero, Keel and M^cKernan [KM] showed that the effective cone of $\widetilde{\mathcal{M}}_{0,n}$ is spanned by the boundary divisors. Here we establish a similar result for $\widetilde{\mathcal{M}}_{1,n}$.

Theorem 5.1. The effective cone of $\widetilde{\mathcal{M}}_{1,n}$ is the cone spanned by the boundary divisors $\widetilde{\delta}_{irr}$ and $\widetilde{\delta}_{0:k}$ for $2 \le k \le n$.

Proof. It suffices to show that any irreducible effective divisor is a nonnegative linear combination of boundary divisors. Suppose D is an effective divisor different from any boundary divisor and has class

$$D = a\widetilde{\delta}_{irr} + \sum_{k=2}^{n} b_k \widetilde{\delta}_{0;k}.$$

If C is a curve class whose irreducible representatives form a Zariski dense subset of a boundary divisor $\widetilde{\delta}_{0;k}$, then $C \cdot D \geq 0$. Otherwise, the curves in the class C and, consequently, the divisor $\widetilde{\delta}_{0;k}$ would be contained in D, contradicting the irreducibility of D. We first show that $b_k \geq 0$ by induction on k. Here the argument is exactly as in Keel and M^cKernan and does not depend on the genus g.

Let C be the curve class in $\widetilde{\mathcal{M}}_{1,n}$ induced by fixing a genus one curve E with n-1 fixed marked points and letting an n-th point vary along E. Since the general n-pointed genus one curve occurs on a representative of C, C is a moving curve class. We conclude that $C \cdot D \geq 0$ for any effective divisor. On the other hand, since $C \cdot \widetilde{\delta}_{0;2} = n-1$ and $C \cdot \widetilde{\delta}_{irr} = C \cdot \widetilde{\delta}_{0;k} = 0$, for $2 < k \leq n$, we conclude that $b_2 \geq 0$.

By induction assume that $b_k \geq 0$ for $k \leq j$. We would like to show that $b_{j+1} \geq 0$. Let E be a genus one curve with n-j fixed points. Let R be a rational curve with j+1 fixed points p_1, \ldots, p_{j+1} . Let C_j be the curve class in $\widetilde{\mathcal{M}}_{1,n}$ induced by attaching R at p_{j+1} to a varying point on E. Since the general point on $\widetilde{\delta}_{0;j}$ is contained on a representative of the class C_j , we conclude that C_j is a moving curve in $\widetilde{\delta}_{0;j}$. Hence, $C_j \cdot D \geq 0$. On the other hand, C_j has the following intersection numbers with the boundary divisors:

$$\begin{split} C_j \cdot \widetilde{\delta}_{\mathrm{irr}} &= 0, \\ C_j \cdot \widetilde{\delta}_{0;i} &= 0 \text{ for } i \neq j, j+1, \\ C_j \cdot \widetilde{\delta}_{0;j+1} &= n-j, \\ C_j \cdot \widetilde{\delta}_{0;j} &= -(n-j). \end{split}$$

Hence, we conclude that $b_{j+1} \geq b_j \geq 0$ by induction. Note that by replacing E by a curve B of genus g, we would get the inequalities $b_2 \geq 0$ and $(n-j)b_{j+1} \geq (2g-2+(n-j))b_j$ for the coefficients of $\widetilde{\delta}_{0;k}$ on any non-boundary, irreducible effective divisor on $\widetilde{\mathcal{M}}_{g,n}$.

There remains to show that the coefficient a is non-negative. Fix a general pencil of plane cubics and a rational curve R with n+1 fixed marked points p_1,\ldots,p_{n+1} . Let C_n be the curve class in $\widetilde{\mathcal{M}}_{1,n}$ induced by attaching R at p_{n+1} to a base-point of the pencil of cubics. The class C_n is a moving curve class in the divisor $\widetilde{\delta}_{0;n}$. Consequently, $C_n \cdot D \geq 0$. Since $C_n \cdot \widetilde{\delta}_{\text{irr}} = 12$, $C_n \cdot \widetilde{\delta}_{0;k} = 0$ for k < n and $C_n \cdot \widetilde{\delta}_{0;n} = -1$, we conclude that $12a \geq b_n \geq 0$. This concludes the proof that the effective cone of $\widetilde{\mathcal{M}}_{1,n}$ is generated by boundary divisors.

APPENDIX A. SINGULARITIES OF $\overline{\mathcal{M}}_{1,n}$

Let $\overline{M}_{1,n}$ be the underlying course moduli scheme of $\overline{\mathcal{M}}_{1,n}$. Denote by $\overline{M}_{1,n}^{\text{reg}}$ its smooth locus. Below we will show that a canonical form defined on $\overline{M}_{1,n}^{\text{reg}}$ extends holomorphically to any resolution of $\overline{M}_{1,n}$.

Since $\overline{M}_{1,n}$ is rational when $n \leq 10$ [B], in this case there are no non-zero holomorphic forms on any resolution. We may, therefore, assume that $n \geq 11$ as needed. The standard reference on the singularities of $\overline{M}_{g,n}$ dates back to [HM] and some recent generalizations include [Lo, Lu, FV1, CF, BFV].

Let $(C; \overline{x}) = (C; x_1, \ldots, x_n)$ be a stable curve with n ordered marked points. Let ϕ be a non-trivial automorphism of C such that $\phi(x_i) = x_i$ for all i, and suppose that the order of ϕ is k. If the eigenvalues of the induced action of ϕ on $H^0(C, \omega_C \otimes \Omega^1_C(x_1 + \cdots x_n))^\vee$ are $e^{2\pi i k_j/k}$ with $0 \le k_j < k$, then the age of ϕ is defined as

$$age(\phi) = \sum_{j} \frac{k_j}{k}.$$

If ϕ acts trivially on a codimension-one subspace of the deformation space of $(C; \overline{x})$, we say that ϕ is a quasi-reflection. For a quasi-reflection, all but one of the eigenvalues of ϕ are equal to one and $\operatorname{age}(\phi) = 1/k$. By the Reid-Tai Criterion, see e.g. [HM, p. 27], if $\operatorname{age}(\phi) \geq 1$ for any $\phi \in \operatorname{Aut}(C; \overline{x})$, then a canonical form defined on the smooth locus of the moduli space extends holomorphically to any resolution. Moreover, suppose that $\operatorname{Aut}(C; \overline{x})$ does not contain any quasi-reflections, then the resulting singularity is canonical if and only if $\operatorname{age}(\phi) \geq 1$ for any $\phi \in \operatorname{Aut}(C, \overline{x})$, see e.g. [Lu, Theorem 3.4]. The quasi-reflections form a normal subgroup of $\operatorname{Aut}(C, \overline{x})$. One can consider the action modulo this subgroup and use the Reid-Tai Criterion, see [Lu, Proposition 3.5]. In particular, no singularities arise if and only if $\operatorname{Aut}(C, \overline{x})$ is generated by quasi-reflections.

The automorphism ϕ induces an action on $H^0(C, \omega_C \otimes \Omega^1_C(x_1 + \cdots + x_n))^{\vee}$. We have an exact sequence:

$$0 \to \bigoplus_{p \in C_{\text{sing}}} \operatorname{tor}_p \to H^0(C, \omega_C \otimes \Omega^1_C(x_1 + \dots + x_n)) \to \bigoplus_{\alpha} H^0(C_\alpha, \omega_{C_\alpha}^{\otimes 2}(\sum_\beta p_{\alpha\beta})) \to 0,$$

where C_{α} 's are the components of the normalization of C and $p_{\alpha\beta}$'s are the inverse images of nodes in C_{α} .

First, we show that for an irreducible elliptic curve E with n distinct marked points, we have $age(\phi) \ge 1$. The automorphism group of E has order 2 if $j(E) \ne 0$

0,1728, has order 4 if j(E)=1728, and has order 6 if j(E)=0. Since ϕ fixes all x_1,\ldots,x_n , if $n\geq 3$, then ϕ has order k=2 or 3. If k=2, then n=3 or 4, and hence by [HM, p. 37, Case c2)] we have $age(\phi)=\frac{n-1}{2}\geq 1$. If k=3, then n=3, and hence [HM, p. 38, Case c3)] implies that $age(\phi)\geq 1$.

Next, consider a stable nodal genus one curve $(C; \overline{x})$ with n ordered marked points. Let C_0 be its core curve of genus one. Then C_0 is either irreducible elliptic, or consists of a circle of \mathbb{P}^1 s. It is easy to see that ϕ acts trivially on every component of $C \setminus C_0$. Let C_0 be a circle of l copies of \mathbb{P}^1 , i.e. B_1, \ldots, B_l are glued successively at the nodes p_1, \ldots, p_l , where $B_i \cong \mathbb{P}^1$, $B_i \cap B_{i+1} = p_{i+1}$ and $p_{l+1} = p_1$. By the stability of $(C; \overline{x})$, each B_i contains at least one more node or marked point, which has to be fixed by ϕ . Therefore, ϕ acts non-trivially on B_i only if it acts as an involution, switching p_i and p_{i+1} and fixing the other nodes and marked points on B_i . This implies that l=2 and k=2. By [HM, p. 34], either $\operatorname{age}(\phi) \geq 1$ or $\operatorname{Aut}(C, \overline{x})$ is generated by this elliptic involution, which is a quasi-inflection and does not induce a singularity. Thus, we are left with the case when C_0 is an irreducible elliptic curve E and ϕ is induced by a non-trivial automorphism of E fixing all marked points and acting trivially on the other components of C.

If E contains at least one marked point x, [FV1, proof of Theorem 1.1 (ii)] says that $age(\phi) \ge 1$. We can also see this directly using [HM, p. 37-39, Case c)] as follows. If the order n of ϕ is 2, then the action restricted to $H^0(K_E^{\otimes 2}(x))$ contributes 1/2 to age (ϕ) . At a node p of E, suppose that the two branches have coordinates y and z. Then tor_p is generated by $ydz^{\otimes 2}/z = zdy^{\otimes 2}/y$, see [HM, p. 33]. The action of ϕ locally is given by $y \to -y$ and $z \to z$, hence tor_p also contributes 1/2. Consequently we get age $(\phi) \geq 1$. If k=3, at p the action is locally given by $y \to \zeta y$ and $z \to z$, where ζ is a cube root of unity, hence tor_p contributes 1/3. At x, take a translation invariant differential dz. Then locally $dz^{\otimes 2}$ is an eigenvector of $H^0(K_E^{\otimes 2}(x+p))$. The action ϕ is locally given by $x \to \zeta x$, hence it contributes 2/3. We still get age $(\phi) \ge 1/3 + 2/3 = 1$. If k = 4, similarly tor_p contributes 1/4. Locally take $dz^{\otimes 2}$ and $dz^{\otimes 2}/z$ as eigenvectors of $H^0(K_E^{\otimes 2}(x+p))$. We get an additional contribution equal to 2/4 + 1/4. In total we still have age $(\phi) \ge 1$. Finally, since ϕ cannot fix both x and p, the case k=6 does not occur. Similarly, if E contains more than one node, ϕ fixes all the nodes, and hence the same analysis implies that $age(\phi) \geq 1$.

Based on the above analysis, we conclude that the locus of non-canonical singularities of $\overline{M}_{1,n}$ is contained in the locus of curves (C, \overline{x}) where the core curve of C is an unmarked irreducible elliptic tail E attached to the rest of C at a node p. Moreover, $G = \operatorname{Aut}(C, \overline{x}) = \operatorname{Aut}(E, p)$ fixes all marked points and acts trivially on the other components of C. Harris and Mumford [HM, p. 40-42] proved that any canonical form defined in $\overline{M}_{g,n}^{\text{reg}}$ extends holomorphically to any resolution over the locus of curves of this type. Strictly speaking, Harris and Mumford discussed the case \overline{M}_g . They constructed a suitable neighborhood of a point in \overline{M}_g parameterizing an elliptic curve attached to a curve C_1 of genus g-1 without any automorphisms. In their construction, the only property of C_1 they need is that C_1 does not have any non-trivial automorphisms. Hence, their construction is applicable to the case when C_1 is replaced by an arithmetic genus zero curve with n marked points for $n \geq 2$. Therefore, there is a neighborhood of (C, \overline{x}) in $\overline{M}_{1,n}$ such that any canonical form defined in the smooth locus of this neighborhood extends

holomorphically to a desingularization of the neighborhood. This thus completes the proof.

References

- [AC] E. Arbarello, and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology, 26 no. 2 (1987), 153–171.
- [B] P. Belorousski, Chow rings of moduli spaces of pointed elliptic curves, Thesis—The University of Chicago, 1998.
- [BF] G. Bini, and C. Fontanari, Moduli of curves and spin structures via algebraic geometry, Trans. Amer. Math. Soc., 358 no. 7 (2006), 3207–3217.
- [BFV] G. Bini, C. Fontanari, and F. Viviani, Moduli of curves and spin structures via algebraic geometry, Int. Math. Res. Not. IMRN, no. 4 (2012), 740–780.
- [CT] A.-M. Castravet, and J. Tevelev, Hypertrees, projections and moduli of stable rational curves, to appear in J. Reine Angew. Math.
- [Ca] S. Cautis, Extending families of curves: Monodromy and applications, Thesis—Harvard University, 2006.
- [CMW] R. Cavalieri, S. Marcus, and J. Wise, Polynomial families of tautological classes on $\mathcal{M}_{g,n}^{rt}$, J. Pure and Appl. Algebra, **216** no. 4 (2012), 950–981.
- [CF] A. Chiodo, and G. Farkas, Singularities of the moduli space of level curves, preprint, arXiv:1205.0201.
- [EH] D. Eisenbud, and J. Harris, The Kodaira dimension of the moduli space of curves of genus ≥ 23, Invent. Math., 90 no. 2 (1987), 359–387.
- [F] G. Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math., 131 no. 3 (2009), 819–867.
- [FV1] G. Farkas, and A. Verra, The classification of universal Jacobians over the moduli space of curves, to appear in Comm. Math. Helv.
- [FV2] G. Farkas, and A. Verra, The universal theta divisor over the moduli space of curves, to appear in J. Math. Pures Appl.
- [GZ] S. Grushevsky, and D. Zakharov, The double ramification cycle and the theta divisor, preprint, arXiv:1206.7001.
- [Ha] R. Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of Moduli, vol. I (2013), 527–578.
- [H] J. Harris, On the Kodaira dimension of the moduli space of curves II. The even-genus case, *Invent. Math.*, 75 no. 3 (1984), 437–466.
- [HMo] J. Harris, and I. Morrison, The moduli of curves, Graduate Texts in Mathematics 187, Springer, New York, 1998.
- [HM] J. Harris, and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math., 67 no. 1 (1982), 23–88.
- [HK] Y. Hu, and S. Keel, Mori dream spaces and GIT, Michigan Math. J., 48 (2000), 331–348.
- [K] S. Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2), 149 no. 1 (1999), 253–286.
- [KM] S. Keel, and J. McKernan, Contractible Extremal Rays on $\overline{M}_{0,n}$, Handbook of Moduli, vol. II (2013), 115–130.
- [Lo] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math., 125 no. 1 (2003), 105–138.
- [Lu] K. Ludwig, On the geometry of the moduli space of spin curves, J. Algebraic Geom., 19 no. 1 (2010), 133–171.
- [M] F. Müller, The pullback of a theta divisor to $\overline{\mathcal{M}}_{g,n}$, to appear in Math. Nachr.
- [S] D.I. Smyth, Modular compactifications of the space of pointed elliptic curves II, Compos. Math., 147 no. 6 (2011), 1843–1884.
- [V] P. Vermeire, A counterexample to Fulton's conjecture on $\overline{M}_{0,n}$, J. Algebra, 248 no. 2 (2002), 780–784.

Department of Mathematics, Boston College, Chestnut Hill, MA 02467 $E\text{-}mail\ address: \\ {\tt dawei.chen@bc.edu}$

University of Illinois at Chicago, Department of Mathematics, Statistics, and Com-

PUTER SCIENCE, CHICAGO, IL 60607

 $E\text{-}mail\ address{:}\ \mathtt{coskun@math.uic.edu}$