Lecture 2b. Statistical Schools of Thought: Statistical Decision Theory

COMP90051 Statistical Machine Learning

Semester 2, 2020 Lecturer: Ben Rubinstein

This lecture

How do learning algorithms come about?

- Frequentist statistics
- Statistical decision theory
- Extremum estimators
- Bayesian statistics

Types of probabilistic models

- Parametric vs. Non-parametric
- Generative vs. Discriminative

Statistical Decision Theory

Branch within statistics, optimisation, economics, control, emphasising utility maximisation.

Decision theory

- Act to maximise utility connected to economics and operations research
- Decision rule $\delta(x) \in A$ an action space
 - * E.g. Point estimate $\hat{\theta}(x_1, ..., x_n)$

Wald

- * E.g. Out-of-sample prediction $\widehat{Y}_{n+1}|X_1,Y_1,\ldots,X_n,Y_n,X_{n+1}|$
- Loss function $l(a, \theta)$: economic cost, error metric
 - * E.g. square loss of estimate $(\hat{\theta} \theta)^2$
 - * E.g. 0-1 loss of classifier predictions $1[y \neq \hat{y}]$

Risk & Empirical Risk Minimisation (ERM)

- In decision theory, really care about expected loss
- Risk $R_{\theta}[\delta] = E_{X \sim \theta}[l(\delta(X), \theta)]$
 - * E.g. true test error
 - * aka generalization error
- Want: Choose δ to minimise $R_{\theta}[\delta]$
- Can't directly! Why?
- ERM: Use training set X to approximate p_{θ}
 - * Minimise empirical risk $\hat{R}_{\theta}[\delta] = \frac{1}{n} \sum_{i=1}^{n} l(\delta(X_i), \theta)$

Decision theory vs. Bias-variance

We've already seen

- Bias: $B_{\theta}(\hat{\theta}) = E_{\theta}[\hat{\theta}(X_1, ..., X_n)] \theta$
- Variance: $Var_{\theta}(\hat{\theta}) = E_{\theta}[(\hat{\theta} E_{\theta}[\hat{\theta}])^2]$

But are they equally important? How related?

Bias-variance decomposition of square-loss risk

$$E_{\theta} \left[\left(\theta - \hat{\theta} \right)^{2} \right] = [B(\hat{\theta})]^{2} + Var_{\theta}(\hat{\theta})$$

Extremum estimators

Very general framework that covers elements of major statistical learning frameworks; enjoys good asymptotic behaviour in general!!

Extremum estimators

- $\hat{\theta}_n(X) \in \underset{\theta \in \Theta}{\operatorname{argmin}} Q_n(X, \theta)$ for any objective $Q_n()$
- Generalises bits of all statistical frameworks. Woot!
 - * MLE and ERM seen earlier this lecture; and
 - * MAP seen later in this lecture.
 - * These are all *M*-estimators, with *Q* as a sum over data (i.e. of log-likelihood, loss, or log-likelihood plus log prior)
- And it generalises other frameworks too!

Consistency of Extremum Estimators

MLE

- Recall consistency: stochastic convergence to 0 bias
- Theorem for extremum estimators: $\widehat{\theta}_n \to \theta$ in prob, if there's a ("limiting") function Q() such that:
 - 1. Q() is uniquely maximised by θ . That is, no other parameters make Q() as large as $Q(\theta)$.
 - 2. The parameter family Θ is "compact" (a generalisation of the familiar "closed" & "bounded" set, like [0,1])
 - 3. Q() is a continuous function
 - 4. Uniform convergence: $\sup_{\theta \in \Theta} |Q_n(\theta) Q(\theta)| \to 0$ in probability.

A game changer

- Frequentists: estimators that aren't even correct with infinite data (inconsistent), aren't adequate in practice
- Proving consistency for every new estimator? Ouch!
- So many estimators are extremum estimators – general guarantees make it much easy (but not easy!) to prove

- Asymptotic normality
 - Extremum estimators converge to Gaussian in distribution
 - Asymptotic efficiency: the variance of that limiting Gaussian
- Practical: Confidence intervals think error bars!!
- → Frequentists like to have this asymptotic theory for their algorithms

Summary

- Decision theory: Utility-based, Minimise risk
- Many familiar learners minimise loss over data (ERM)
- Extremum estimators generalise ERM, MLE, (later: MAP)
 - Amazingly, consistent: Gives us confidence that they work (eventually)
 - Amazingly, asymptotically normal: Helps make confidence intervals

Next time: Last but not least, the Bayesian paradigm

Workshops week #2: learning Bayes one coin flip at a time!