

Universidade do Minho

Escola de Engenharia Departamento de Engenharia Mecânica

LABORATÓRIOS INTEGRADOS EM ENGENHARIA BIOMÉDICA

TRABALHO PRÁTICO MF2

DETERMINAÇÃO DA CURVA CARACTERISTICA DE UMA BOMBA CENTRÍFUGA (GILKES)

1. Objetivos

Determinação experimental da:

- Curva característica de uma bomba
- Curva do rendimento
- Curva de potência
- Curvas dos respetivos parâmetros adimensionais (altura de carga, potência e caudal) Utilização do estroboscópio.

Figura 1 – Vista geral da instalação para o ensaio da bomba de Gilkes.

2. Materiais e Métodos

2.1. Descrição da instalação experimental

O trabalho prático é realizado na instalação representada na figura 1, recorrendo-se ainda a um taquímetro mecânico e a um estroboscópio (figura 3).

1 - Bomba 8 - Medidor de caudal

2 - Motor eléctrico 9 - Redes estabilizadoras

3 - Depósito inferior
 10 - Unidade alimentação

4 - Depósito superior 11 - Célula de carga

5 - Manómetro 12 - Dinamómetro

6 - Válvula de carga 13 - Dreno

7 - Difusor 14 - Descarregador em "V"

Figura 2 - Representação esquemática da instalação da bomba Gilkes.

A instalação experimental, representada esquematicamente na figura 2, é composta essencialmente por uma bomba centrífuga que movimenta água entre dois depósitos desnivelados. A bomba é acionada por um motor elétrico cuja velocidade de rotação pode ser ajustada, com recurso à betoneira da unidade de alimentação (figura 3). Um conjunto de sensores e equipamentos de medida são utilizados para leitura dos parâmetros de interesse para determinação da curva característica, da curva de potência e da curva de rendimento: manómetro de pressão (figura 5), medidor de caudal (figura 6), dinamómetro (figura 5) e célula de carga (figura 7).

A bomba centrífuga possui um rotor com 14,7 cm de diâmetro.

Figura 3 - estroboscópio.

Figura 5 – Manómetros de pressão e força.

Figura 7 – Célula de carga.

Figura 4 – Unidade de alimentação.

Figura 6 – Medidor de caudal e válvula reguladora de caudal.

Figura 8 – Bomba de Gilkes.

2.2. Parâmetros adimensionais

De seguida são apresentados os coeficientes adimensionais necessários para a realização do presente trabalho:

Coeficiente de altura:
$$\frac{gH}{N^2D^2}$$
 (1)

Coeficiente de potência:
$$\frac{P}{\rho N^3 D^5}$$
 (2)

Coeficiente de potência:
$$\frac{P}{\rho N^3 D^5}$$
 (2)
Coeficiente de caudal: $\frac{Q}{N D^3}$

g – aceleração da gravidade [m.s⁻²] Em que,

H – altura de carga, em metros de coluna de água [m]

N – velocidade de rotação [s⁻¹]

D – diâmetro [m]

P – potência [W]

Q – caudal volúmico [m³.s⁻¹]

2.3. Procedimento experimental

Cada grupo realizará apenas um conjunto de ensaios relativos a uma velocidade de rotação.

O grupo, preferencialmente composto por três elementos, deverá dividir tarefas entre os seus membros, que deverão mudar de posição ao fim de cada conjunto de 3 ou 4 ensaios, para que todos tenham oportunidade de executar todas as tarefas. Na tabela 1 é apresentada uma sugestão da forma como o grupo pode dividir as tarefas entre si.

Tabela 1 – Distribuição de tarefas pelo grupo

	Elemento 1	Elemento 2	Elemento 3		
Função	- Regular velocidade de				
	rotação e caudal	Varificação do			
	- Leitura da pressão,	 Verificação da velocidade de rotação 	- Regista os valores		
	voltagem, amperagem e				
	caudal				

Alguns cuidados básicos deverão ser observados pelos elementos do grupo durante a realização do trabalho, sob pena de tornarem o mesmo inútil, assim:

• Uma vez conhecida a velocidade de rotação para a qual vão executar o trabalho, devem consultar a tabela 2 relativa à gama de caudais para cada velocidade de rotação do rotor, que para além de fornecer o valor do caudal máximo expectável,

também indica os valores dos caudais intermédios para os quais deverão fazer os ensaios, admitindo uma série de 10 ensaios.

- Sempre que a válvula reguladora de caudal for mexida devem aguardar que o caudal estabilize antes efetuar qualquer leitura, ou mesmo aceitar aquela posição da válvula como válida para a próxima leitura. Isso pode demorar mais de 1 minuto.
- Deve-se confirmar a manutenção da velocidade de rotação do rotor com o auxílio do estroboscópio, em particular quando se mexer na válvula reguladora de caudal.
- Ter o máximo cuidado com os erros de paralaxe e escala, na leitura dos diferentes manómetros.
- Evitar os arredondamentos, pois por muito ligeiros que pareçam, podem gerar erros grosseiros.
- É importante que os elementos do grupo, em particular o que estiver a registar as leituras dos diferentes manómetros, tenham a perceção do rumo que as variáveis deverão tomar. Isso pode permitir a deteção de algum erro de leitura de forma precoce.
- Sempre que duvidarem de algum resultado, repitam o ensaio.

Tabela 2 – Gamas de caudais associados às velocidades de rotação

N	Qmáx	Caudais indicativos para os pontos a medir (L/min)									
(rpm)	(L/min)	1	2	3	4	5	6	7	8	9	10
1000	150	0	20	35	50	70	90	115	130	140	toda aberta
1250	200	0	20	35	55	75	90	110	140	170	toda aberta
1300	210	0	20	40	60	80	100	120	145	175	toda aberta
1400	220	0	25	50	75	100	115	135	155	180	toda aberta
1500	230	0	25	50	80	105	125	145	170	200	toda aberta
1750	260	0	30	60	85	105	115	140	180	220	toda aberta
2000	280	0	30	60	90	115	160	190	220	260	toda aberta
2250	290	0	30	60	75	100	120	150	200	250	toda aberta
2500	300	0	40	80	120	150	180	220	250	280	toda aberta
2750	300	0	45	90	135	170	190	220	250	280	toda aberta
3000	300	0	60	100	150	180	200	220	250	280	toda aberta

De seguida são apresentados, de uma forma sequencial, os passos necessários para a elaboração do trabalho experimental.

- 1. Ligar c/ o regulador de velocidade em 1 e armar.
- 2. Fechar válvula de caudal completamente
- 3. Verificar o zero do caudal.
- 4. Arrancar e ajustar a velocidade de rotação da bomba para a velocidade de ensaio.
- 5. Ajustar estroboscópio para a velocidade de ensaio e manter sempre constante.
- 6. Iniciar o ensaio, varrendo a gama de caudais indicada para a velocidade do grupo.
 - A. Ajustar a válvula para cada valor próximo do caudal pretendido;
 - B. Verificar a velocidade de rotação e medir e registar:
 - Caudal **Q** (m3.min-1);
 - Altura de elevação **H** (m H₂O);
 - Voltagem no gerador, V (volts);
 - Corrente no gerador, I (amperes).
 - C. Verificar o ponto obtido e repetir leituras, se necessário;
 - D. Repetir de A a C, até à posição da válvula toda aberta (mínimo de 10 pontos).
- 7. Reduzir a velocidade a zero, desligar o equipamento e fechar a válvula de caudal.
- 8. Construir a folha de cálculo e elaborar os respetivos gráficos (TPC).

NOTA - Rodar os postos de trabalho, para que cada aluno faça pelo menos duas medições.

O registo dos valores das diferentes variáveis deverá ser efetuado nas unidades apresentadas pelos diferentes manómetros. Não é necessário ter um computador presente durante o ensaio, podendo fazer o registo por escrito e transcrever os valores posteriormente para a folha de cálculo. Poderão utilizar uma grelha do tipo da que é apresentada na tabela 3.

Tabela 3 – Modelo de tabela para o registo das leituras dos ensaios.

N (rpm):		Grupo:		Data:	
Ensaio	Q (m ³ .min ⁻¹)	H (m H ₂ O)	V (volts)	I (amperes)	Obs.
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					

Embora a tabela 2 aponte para 10 ensaios para cada velocidade de rotação, ou seja, por cada trabalho, não têm que obrigatoriamente fazer 10 ensaios, não devem é fazer menos.

A última etapa do presente trabalho consiste na transposição dos valores registados para a folha de cálculo e consequente obtenção dos gráficos pretendidos, que são:

- curva característica da bomba (altura de elevação [m H₂O] *versus* caudal [L.min⁻¹])
- curva de potência (potência [kW] *versus* caudal [L.min⁻¹])
- curva de rendimento
- curvas dos parâmetros adimensionais, com a representação dos coeficientes de altura e potência *versus* o coeficiente de caudal.

para tal é necessário o cálculo dos coeficientes adimensionais de altura, potência e caudal, já anteriormente apresentados, assim como o valor do rendimento em cada ponto.

Relativamente às curvas dos parâmetros adimensionais, cada grupo deve solicitar a um outro grupo que tenha efetuado o trabalho para uma velocidade de rotação diferente, as suas curvas adimensionais e confrontá-las com as que obtiveram.

Comentem os resultados obtidos.

3. ANEXO – CONSIDERAÇÕES À ATIVIDADE EXPERIMENTAL

A determinação das curvas de potência da bomba deveria basear-se no recurso da potência de eixo da bomba. Em todo o caso, face ao não funcionamento do dinamómetro para ler os valores de carga, recorre-se à determinação da potência instantânea elétrica fornecida à bomba.

P = V.I

Em que, P – Potência [Watts]

V- Voltagem [volts]

I – Intensidade de Corrente [amperes]

Não obstante, o procedimento correto para a determinação do rendimento mecânico da bomba, passaria pelo cálculo da potência de eixo, a qual mede a carga efetiva a que a bomba está sujeita, ou seja, a potência efetiva fornecida à bomba. Caso fosse possível medir a carga através do dinamómetro (obtenção do valor da força, F) localizado junto à bomba (figura 7), o procedimento de cálculo seria:

Cálculo da potência de $P_{eixo} = T \cdot \omega$

Em que, P_{eixo} – Potência [Watts]

T – Torque [N.m]

 ω – Velocidade angular [rad.s⁻¹]

Em que,

Velocidade angular pode ser calculada a partir de:

$$\omega = \frac{2\pi N}{60}$$

O torque, T, é definido a partir da componente perpendicular ao eixo de rotação da força aplicada sobre um objeto que é efetivamente utilizada para fazê-lo rodar em torno de um eixo de rotação. A distância do ponto onde atua uma força F é chamada braço do momento e é denotada por b.

$$T = F \cdot b$$