

Lexical analysis is the process of identifying the tokens which are basic building blocks of a given language.

Usual Scheme

- No Context
- One Pass Analysis
- Buffer Management
- Buffer Size I/O Trade Off
- Unusual Schemes?

- String
- Prefix
- Suffix
- Substring
- Subsequence
- Proper Versions

Sample Patterns Informally Described

- An id is a string of characters starting with starters character may continue with string of id-continuation characters. Valid starter character must be in set a..z, A..Z, or underscore. Idcontinuation character must be in set a..z, A..Z, 0..9 or underscore.
- A simple number starts with nonzero decimal digit which may be followed by zero or more decimal digits.

Sample Patterns Formally Described

- Id: [A-Za-z_][A-Za-z_0-9]*
- SimpleNumber: [1-9][0-9]*

Scanning

Patterns, Lexemes, Tokens

Sample Input and Lexemes Identified

```
memberNo_1 = 1340;
```

Sample Tokens Allocated and Streamed

Scanning Related Side Processing

- Comment Processing
 - With Lexical Analyzer
 - With Preprocessor
 - Other
- Preprocessors
 - As First Instance Scanners
 - Preprocessor / Lexer Source Flow
- Documentation Processors
 - Comments as Language Containers

Regular Expressions

Definition, Applicability

Regular Languages, Finite State Automata.

Ease of Specification and Maintenance.

 Ad-hoc Recognition or Automatic Generation of Efficient Recognizers.

Regular Expressions

Rule Based Definition

Epsilon

R: **ε**

Symbol / Set

R: α , $\alpha \in A$

R: $\{\alpha : \alpha \in A\}$

Concatenation

 $R: R_1R_2$

Alternation

 $R: R_1 \mid R_2$

Kleene Closure

R: R1*

Precedence control

 $R: (R_1)$

Practical notations

 $R: R_1+$

 $R: R_1$?

Operations out of notations

Intersection

Negation

- Tools (Lex, Flex, Antlr, ...)
- Code Generation
- Conventions and Toolchains

Regular Expressions

6 Patterns

The patterns in the input (see Section 5.2 [Rules Section], page 7) are written using an extended set of regular expressions. These are:

```
٠́x'
            match the character 'x'
٠,
            any character (byte) except newline
            a character class; in this case, the pattern matches either an 'x', a 'y', or a 'z'
'[xyz]'
'[abj-oZ]'
            a "character class" with a range in it; matches an 'a', a 'b', any letter from 'j'
            through 'o', or a 'Z'
'[^A-Z]'
            a "negated character class", i.e., any character but those in the class. In this
            case, any character EXCEPT an uppercase letter.
'[^A-Z\n]'
            any character EXCEPT an uppercase letter or a newline
'[a-z]{-}[aeiou]'
            the lowercase consonants
            zero or more r's, where r is any regular expression
'r*'
'r+'
            one or more r's
'r?'
            zero or one r's (that is, "an optional r")
r{2,5}
            anywhere from two to five r's
'r{2,}'
            two or more r's
'r{4}'
            exactly 4 r's
```

Excerpt from flex manual. https://epaperpress.com/lexandyacc/download/flex.pdf

Look Ahead!

C++ template syntax:

Foo<Bar>

C++ stream syntax:

cin >> var;

But there is a conflict with nested templates:

Foo<Bar<Bazz>>

Closing templates, not stream

Excerpt from https://web.stanford.edu/class/cs143/lectures/lecture03.pdf

Look Ahead!

IO / Buffering Techniques

Diagram from "Cooper, K.D., Torczon, L.; Engineering A Compiler"

FSA Based Recognition

A Reminder on Finite State Automata

 $(S, \Sigma, \delta, s_0, S_A)$

S: Set of States

Σ: Alphabet

δ: Transition Function

s₀: Start State

S_A: Set of Accepting States

 $\delta: S \times \Sigma \to S$

FSA Based Recognition

Nondeterministic Finite Automata - NFA

 $(S, \Sigma, \delta, s_0, S_A)$

S: Set of States

Σ: Alphabet

δ: Transition Function

s₀: Start State

S_A: Set of Accepting States

 δ : S x (Σ U ε) \rightarrow P(S)

or

 $δ: S x (Σ U ε) \rightarrow 2^S$

SimpleNumber: [1-9][0-9]*

Epsilon

R: **E**

Symbol / Set

R: α , $\alpha \in A$

R: $\{\alpha : \alpha \in A\}$

Concatenation

 $R: R_1R_2$

Alternation

 $R: R_1 \mid R_2$

Kleene Closure

R: R1*

Practical notations

R: R₁+

R: R₁?

NFA As a recognizer

- Describe S and F?
- What is ε-closure?
- What is equivalent of move in formal definition?
- What is the significance of final check?

```
    S = ε-closure(s<sub>0</sub>);
    c = nextChar();
    while (c!= eof) {
    S = ε-closure(move(S, c));
    c = nextChar();
    }
    if (S ∩ F!= ∅) return "yes";
    else return "no";
```


end:

From NFA – Subset Construction

```
initially, \epsilon-closure(s_0) is the only state in Dstates, and it is unmarked; while ( there is an unmarked state T in Dstates ) {

mark T;

for ( each input symbol a ) {

U = \epsilon-closure(move(T, a));

if ( U is not in Dstates )

add U as an unmarked state to Dstates;

Dtran[T, a] = U;
}
```

Your thoughts on complexity of construction and complexity?

What should a DFA based recognizer look like?

Algorithms from "Cooper, K.D., Torczon, L.; Engineering A Compiler" on the left "Aho, A.V, Ullman J.D, Sethi R., Lam M.S; Dragon Book" on the right


```
initialize Dstates to contain only the unmarked state firstpos(n_0), where n_0 is the root of syntax tree T for (r)\#;

while ( there is an unmarked state S in Dstates ) {
	mark S;
	for ( each input symbol a ) {
	let U be the union of followpos(p) for all p
	in S that correspond to a;
	if ( U is not in Dstates )
	add U as an unmarked state to Dstates;
	Dtran[S, a] = U;
}
```

$\overline{\hspace{1cm}}$ Node n	nullable(n)	firstpos(n)
A leaf labeled ϵ	true	Ø
A leaf with position i	false	<i>{i}</i>
An or-node $n = c_1 c_2$	$nullable(c_1)$ or	$firstpos(c_1) \cup firstpos(c_2)$
	$nullable(c_2)$	
A cat-node $n = c_1 c_2$	$nullable(c_1)$ and	$\mathbf{if} \ (\ nullable(c_1) \)$
	$nullable(c_2)$	$firstpos(c_1) \cup firstpos(c_2)$
		else $firstpos(c_1)$
A star-node $n = c_1^*$	true	$\mathit{firstpos}(c_1)$

Algorithm from "Aho, A.V, Ullman J.D, Sethi R., Lam M.S; Dragon Book"

Construction Without NFA

(a|b)*abb#

Node n	$\overline{followpos(n)}$
1	$\{1, 2, 3\}$
2	$\{1, 2, 3\}$
3	{4}
4	$\{5\}$
5	{6}
6	Ø

Hopcroft's Algorithm

```
T \leftarrow \{D_A, \{D-D_A\}\}; Split(S) { for each \ c \in \Sigma \ do if \ c \ splits \ S \ into \ s_1 \ and \ s_2 p \leftarrow T; then \ return \ \{s_1, s_2\}; end; for each \ set \ p \in P \ do T \leftarrow T \cup Split(p); end; end;
```

What makes two DFA state equivalent? Is there another dimension for minimization?

a(b|c)*

(a) Original DFA

(b) Initial Partition

Accept	State	а	b	С
	d _o	1	-	-
*	d ₁	-	2	3
*	d ₂	-	2	3
*	d _a	_	2	3

Applying Hopcroft's algorithm	$g_0 = \{d_0\}, g_1 = \{d_1, d_2, d_3\}$

Group	Accept	State	а	b		С	
0		\mathbf{g}_{0}	1	-		-	
1	*	g_1	-	1		1	

Group	Accept	State	а	b		С		
0		d₀	1	-		1		
1	*	d ₁	-	2		3		
1	*	d ₂	_	2		3		
1	*	d ₃	-	2		3		
							\Box	

Applying Symbol Minimization

m0={a}, m1={b, c}

Group	Accept	State	m0	m1
0		g_0	1	-
1	*	g_1	1	1

Complexities

Build and Recognition

AUTOMATON	INITIAL	PER STRING			
NFA	O(r)	$O(r \times x)$			
DFA typical case	$O(r ^3)$	O(x)			
DFA worst case	$O(r ^2 2^{ r })$	O(x)			

Elementary structures and Algorithms

- Set
 - Symbols, States
- Stack / Queue / List / Array ... **States**
- Graph, Matrix **Transition Functions, Symbols, Sets**
- What about symbols?
 - **ANSI Characters**
 - Unicode
 - **Case Sensitivity!**