Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Introducción

Hasta el momento hemos resuelto una familia de límites, los cuales hacen uso de propiedades algebraicas, pero, como resolver

$$\lim_{x\to 1}\frac{x-1}{\ln(x)}$$

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Introducción

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Teorema

Teorema

(Regla de L'Hôpital). Sean f, g funciones reales de dominio real, derivables en x = a y

tales que

$$f(x), g(x) \xrightarrow[x \to a]{} 0 \quad \lor \quad f(x), g(x) \xrightarrow[x \to a]{} \infty$$

entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

La misma propiedad se cumple si cambiamos el límite " $x \rightarrow a$ " por límites laterales o por límites infinitos:

$$f, g \xrightarrow[x \to a^{+}]{} 0 \lor f, g \xrightarrow[x \to a^{+}]{} \infty \implies \lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$

$$f, g \xrightarrow[x \to a^{-}]{} 0 \lor f, g \xrightarrow[x \to a^{-}]{} \infty \implies \lim_{x \to a^{-}} \frac{f(x)}{g(x)} = \lim_{x \to a^{-}} \frac{f'(x)}{g'(x)}$$

$$f, g \xrightarrow[x \to +\infty]{} 0 \lor f, g \xrightarrow[x \to +\infty]{} \infty \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

$$f, g \xrightarrow[x \to +\infty]{} 0 \lor f, g \xrightarrow[x \to +\infty]{} \infty \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

$$f, g \xrightarrow[x \to +\infty]{} 0 \lor f, g \xrightarrow[x \to +\infty]{} \infty \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Ejemplo 29

Determine el valor de los siguientes límites

$$\lim_{x \to 0} \frac{e^{2x} - 1}{3x}$$

$$\lim_{x\to+\infty}\frac{e^x+x-1}{e^{2x}+x}$$

$$\lim_{x\to 0} \frac{\tan(x)-x}{x-\sin(x)}$$

$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$

$$\lim_{x\to+\infty} \left(e^{-x}\sqrt{x}\right)$$

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Ejemplo 29

Regla de L' Hôpital

Formas indeterminadas $1^{\infty}, \infty^{0}, 0^{0}$

Ahora que estudiamos límites que involucran funciones exponenciales y logarítmicas es posible que aparezcan estas nuevas formas indeterminadas: 1^{∞} , ∞^{0} , 0^{0} .

Para poder resolver límites en estos casos tenemos la siguiente propiedad:

Si f es una función continua se cumple que

$$\lim_{x\to c} f(x) = f(c) = f\left(\lim_{x\to c} x\right)$$

En particular, esto ocurre para la función logaritmo natural, de modo que

$$\lim_{x\to c} \ln(x) = \ln\left(\lim_{x\to c} x\right)$$

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital

Formas indeterminadas 1^{∞} , ∞^{0} , 0^{0}

De lo anterior se puede desglosar un procedimiento para calcular límites de estas formas indeterminadas.

Procedimiento

- Llamamos y al límite que deseamos calcular.
- Aplicamos logaritmo natural a ambos lados de la igualdad.
- Aplicamos la propiedad de intercambio entre ln y lim.
- Usamos propiedad de logaritmos.
- Acomodamos la expresión para poder aplicar la regla de L' Hôpital.
- Despejamos y.

Problemas sobre recta tangente y normal.

Tasas de Cambio Relacionadas

Regla de L' Hôpital

Regla de L'Hopital

es derivadas (i) (i)

Ejemplo 30

Determine el valor de los siguientes límites

$$\lim_{x \to +\infty} \left(\ln(x) \right)^{\frac{2}{x}}$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x$$

$$\lim_{\theta \to \left(\frac{\pi}{2}\right)^{-}} \left(\sin\left(\theta\right)\right)^{\sec(\theta)}$$

$$ln(L) = \lim_{x \to +\infty} \left(\frac{2}{x} \cdot ln((x)) \right)$$

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas

Regla de L' Hôpital

Regla de L' Hôpital

Ejemplo 30

A partir de acá aplicamos la regla de L' Hopital...!!!

$$ln(L) = li - \left(\frac{2 \cdot in(x)}{x}\right)$$

Tasas de Cambio Relacionadas

Regla de L' Hôpital

Ejemplo 30

Regla de L' Hôpital

$$f: 1$$

$$se(\theta)$$

$$ln(2) = ln(\frac{1}{2})$$

Sen(B)

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Regla de L' Hôpital,

Ejemplo 30

Com JE

Problemas sobre recta tangente y normal Tasas de Cambio Relacionadas Regla de L' Hôpital

Ejercicios recomendados

- Del libro de Marco Alfaro
 - Pág 49 en adelante: no hay ejercicios recomendados.
- Libro de ejercicios del TEC
 - Pág 32 en adelante, ejercicios 4.3.1 (1,3,6,7,10,11,12,14,15,18,19,20,21)

Favor considerar que en ambos documentos vienen las respuestas de los ejercicios.

