

实验目的

熟悉旋光计的结构,原理和使用方法,测量旋光溶液的浓度

实验仪器

旋光计, 烧杯, 短测试管 (L=10cm), 长测试管 (L=20cm), 5%和x%葡萄糖溶液, 吸管

旋光计的结构图:

图 9-2 旋光计的结构图

- 1. 光源 2. 毛玻璃 3. 聚光镜 4. 滤色镜 5. 起偏镜 6. 半波片 7. 试管
- 8. 检偏镜 9. 物目镜组 10. 调焦手轮 11. 读数放大镜 12. 刻度盘及游标 13. 刻度盘转动手轮

刻度盘读数:

为了便于操作,仪器的光学系统倾斜 20°安装在基座上。光源采用 20 W 钠光灯 (λ = 589.3 nm)。为了消除偏心差,采用双游标读数。当左右两游标读数分别为 A 和 B 时,则旋光度 Φ 应取其平均值,即

$$\Phi = \frac{A+B}{2} \tag{9-2}$$

游标的精度为 0.05°,游标窗的前方装有两块放大镜,用来观察刻度。如图 9-5 所示。

【实验步骤】

度盘分360格,每格1°,游标分20格,等于度盘19格,用游标直接读数到0.05°校零时,游尺零刻度往有测量读数方向偏,则零点读数为+,反之为-

实验原理:

旋光现象: 当平面偏振光通过某些物质后,振动面发生

旋转

旋光度: 振动面被旋转的角度

旋光物质: 具有旋光性的物质

目标:通过对旋光角的测定可检验溶液的浓度或纯度—

间接测量

已知浓度为C=5%的葡萄糖溶液,其厚度为 $L_1=1dm$,可测出其旋光角(或叫旋光度) Φ ,要测同种未知浓度 C_x 的溶液,只要测定该溶液在厚度为 $L_2=2dm$ 的旋光角 Φ_x 即

可

当平面偏振光通过某种透明物质时,偏振光的振动面会发生旋转叫旋光现象,能使偏振光振动面发生旋转的物质叫旋光物质。

对于透明液体,旋光角Φ与光通过物质的厚度L,溶液的浓度C,溶液的温度T以及光的波长λ有关。实验证明:在给定波长(单色光)和一定温度下,如旋光物质为溶液,旋光角由下式表示:

$$\phi = \left[\alpha\right]_{\lambda}^{T} CL$$

$$\phi = \left[\alpha\right]_{\lambda}^{T} CL$$

[α]^T 为旋光率(或叫比旋律),随不同溶液而异,同一种溶液,随波长而异,对大多数物质,温度升高1°C,旋光率减小千分之几。

C 为溶液浓度

L 为溶液厚度,以分米为单位

比較法:

$$\phi = \left[\alpha\right]_{\lambda}^{T} CL \qquad \phi_{x} = \left[\alpha\right]_{\lambda}^{T} C_{x} L_{x}$$

$$C_{x} = \frac{\phi_{x}L}{\phi L_{x}}C$$

 L_1 : 5%葡糖溶液试管长度,1dm

 L_2 :未知浓度 (C_x) 葡糖溶液试管长度, 2dm

Φ: 5%葡糖溶液旋光度

Φ_x: x%葡糖溶液旋光度

零度视场:

由于人眼对光强度最小的判别比较敏感, 所以要找亮度较弱的亮斑

从光源1射出的光线,通过聚光镜3、滤色镜4经起偏镜5成为半面偏振光,在半波片6处产生三分视场,通过检偏镜及物目镜组可以观察到如图9-3所示的三种情况。转动检偏镜,只有在零度时视场中三部分的亮度才一致,如图9-3b所示。

(a) 大于(或小于) 零度视场

(b) 零度视场

(c) 小于(或大于)零度视场

图 9-3 三分视场

不同视场:

将装有一定浓度的某种溶液的试管放入旋光仪后,由于溶液具有旋光性,使平面偏振光旋转了一个角度,零度视场便发生了变化,转动度盘调节手轮,使再次出现亮度一致的零度视场,这时检偏片转过的角度就是溶液的旋光度,从视窗中的读数可求出其数值。

零点读数:

		刻度盘	
		A_0	${ m B}_0$
次数	1		
	2		
	3		
	4		
平均值			

零点读数
$$\overline{\phi_0} = \frac{1}{2} \left(\overline{A_0} + \overline{B_0} \right)$$

标准溶液旋光度:

$L_1=1dm$		标准溶液旋光度	
		A_1	B_1
次数	1		
	2		
	3		
	4		
平均值			

5%葡糖溶液旋光度

$$\overline{\phi_1} = \frac{1}{2} \left(\overline{A_1} + \overline{B_1} \right), \overline{\phi} = \overline{\phi_1} - \overline{\phi_0}$$

待测溶液旋光度:

$L_2=2dm$		待测溶液旋光度	
		A_2	B_2
次数	1		
	2		
	3		
	4		
平均值			

x%葡糖溶液旋光度 $\overline{\phi_2} = \frac{1}{2} \left(\overline{A_2} + \overline{B_2} \right), \overline{\phi_x} = \overline{\phi_2} - \overline{\phi_0}$

实验步骤:

- 1、观察旋光仪的结构,刻度盘,练习游标读数,旋转检偏器观察视野亮度变化情况。
- 2、零点校正:未放试管时,观察零度三分视场的暗度是否一致,若不一致,说明有零点误差,转动检偏器(与刻度盘手轮连在一起),使三分视场暗度相等,从刻度盘上分别读出左、右的刻度值,重复4次,取平均值作为零点读数。
- 3、标准溶液的旋光度测量:将盛有一定浓度C₀葡萄糖溶液的玻璃管放入旋光仪镜筒内,转动检偏器,找出零度视场的新位置,从左右刻度盘上读出刻度值,重复三次,求平均值,作为所测角度。
- 4、待测浓度溶液的旋光度测量:将盛有未知浓度C_x葡萄糖溶液玻璃管放入镜筒内,重复刚才的步骤,测出角度,根据公式,得到浓度。

注意事项:

- 1、电源使用请务必注意用电安全
- 2、使用仪器前先预热5分钟
- 3、刻度盘读数方法类似于游标卡尺
- 4、读数前先要对刻度盘"校零"
- 5、为了消除仪器的偏心差采用双游标读数
- 6、将溶液倒满试管后,小心旋上盖子,尽量不要让试管中留有气泡(影响光路→影响数据),如有气泡,要尽量使气泡进入试管的凸起部分,也不要使劲旋转管盖,防止玻璃片变形。