Contrôle d'attitude des satellites

Automne 2025 – Politech' Sophia – MAM5 Partie 1b – Contrôle : exemple introductif Damiana Losa – Thales Alenia Space

Exemple : contrôle de la température d'un four

Equation de l'évolution de la température à l'intérieur d'un four

$$\frac{d\theta(t)}{dt} = -K[\theta(t) - \theta_{ext}] + u$$

u(t): action de chauffage (la commande du système);

 $\theta(t)$: écart de température par rapport à une température de référence (20°C par exemple);

 θ_{ext} : écart de température externe par rapport à la température de référence

- **Objectif** : réguler la température à une température de consigne constante θ_C .
- Condition de « steady-state » avec température constante : $0 = -K[\theta(t) \theta_{ext}] + u$.
- Si $\theta_{ext} = 0$, avec $u = K\theta_C$ on assure $\theta(t) = \theta_C$.

Contrôle avec commande en boucle ouverte (1/2)

Si $\theta_{ext} = 0$, avec $u = K\theta_C$ on assure $\theta(t) = \theta_C \Rightarrow$ commande en boucle ouverte car dépendant seulement de la consigne et pas de la sortie du système (l'évolution de température).

- Performances de la commande en boucle ouverte :
- 1. À t = 0, avec $\theta = 0$ et $\theta_{ext} = 0$, si on applique $u = K\theta_C$ on a $\theta(t) = \theta_C(1 e^{-Kt})$ \rightarrow la montée en température ce fait avec une constante de temps 1/K.
- 2. On ne peut rien faire pour rendre plus rapide la réponse en température.

Contrôle avec commande en boucle ouverte (2/2)

Performances de la commande en boucle ouverte :

3. Si
$$\theta_{ext} \neq 0$$
, alors $\dot{\theta} = -K[\theta(t) - \theta_{ext}] + K\theta_C \rightarrow \theta \rightarrow \theta_{ext} + \theta_C$

On assure plus l'objectif fixé!

4. Si
$$\theta_{ext} = 0$$
 mais K devient $K' \Rightarrow \dot{\theta} = -K'\theta + K\theta_C \rightarrow 0 \Rightarrow \theta \rightarrow \frac{K}{K'}\theta_C$

On assure plus l'objectif fixé!

Conclusion:

- La commande en boucle ouverte est très sensible
 - Aux perturbations;
 - Aux variations de paramètres.
- Elle ne permet pas d'agir sur la dynamique du système : à éviter si possible !

Contrôle avec commande en boucle fermée (1/2)

Si
$$u = \bar{K}(\theta_C - \theta)$$
 avec $\bar{K} \gg K$ \Rightarrow $\dot{\theta} = -K[\theta(t) - \theta_{ext}] + \bar{K}(\theta_C - \theta)$ $\dot{\theta} = -(K + \bar{K})\theta + \bar{K}\theta_C + K\theta_{ext}$

- Performance e la commande en boucle fermée:
- 1. Si $\theta_{ext} = 0$ alors $\theta(t) = \frac{\overline{K}}{\overline{K} + K} \theta_C (1 e^{-(\overline{K} + K)t})$ \Rightarrow la dynamique est plus rapide et $\theta \approx \theta_C$ en régime permanent (« steady state »).

Contrôle avec commande en boucle fermée (2/2)

- 2. Si $\theta_{ext} \neq 0$ alors $\theta \to \frac{\overline{K}}{\overline{K} + K} \theta_C + \frac{K}{\overline{K} + K} \theta_{ext}$ \Rightarrow réduction de l'influence de θ_{ext} , en régime permanent $\theta \approx \theta_C$.
- 3. Si K devient $K' \theta \frac{\overline{K}}{\overline{K} + K'} \theta_C + \frac{K'}{\overline{K} + K'} \theta_{ext}$ et il y a peu d'influence au changement des paramètres.

Conclusion:

- La commande en boucle fermée est beaucoup moins sensible
 - Aux perturbations;
 - Aux variations de paramètres.
- Elle permet d'agir sur la dynamique du système : à utiliser plutôt que la boucle ouverte si possible !
- Attention :
 - La valeur de \bar{K} ne peut pas être arbitrairement grande : une étude mathématique est nécessaire.
 - Pour étudier un système en boucle fermée, on étudie les transmittances (grâce au transformées de Laplace) : c'est une simplification mathématique.