

About Me

eric.boyd@responsiveX.com
responsiveX

١...

speak at lots of conferences

write occasionally

try to be social on twitter

@EricDBoyd

Agenda

- → Data Science and Machine Learning
- → Azure Machine Learning
- → Let's Model and Predict
- → Questions

The Analytics Spectrum

The Value of Data

Companies that use data and business analytics to guide decision making are more productive and experience higher returns on equity than competitors that don't.

- Brad Brown, McKinsey Global Institute

By 2015, organizations integrating high-value, diverse new information types and sources into a coherent information management infrastructure will outperform their industry peers financially by more than 20%.

- Regina Casonato, Gartner

The Size of Data

35,000,000,000,000,000,000,000

According to IDC, the digital universe will grow to 35 zetabyes (35 trillion terabytes) globally by 2020.

Why is Big Data Valuable?

Statistically, big data is important because of the confidence interval (margin of error)

The Confidenence Interval has an inverse relationship with the sample size

DEMO

AZURE ML STUDIO

Types of Algorithms

Classification Categorize data

Clustering Discover natural groupings and patterns

Regression Predict numerical values

Recommendations Suggestions from associations

Ensembles Multiple models and algorithms together

Do we train?

- Supervised learning
 - Trained
 - Model created from known datasets
 - Examples include classification and regression
- Unsupervised learning
 - Untrained
 - Model created by self-analyzing data and inferring patterns and structure
 - Examples include clustering

Ensemble Models

Ensemble Strategies

- Bagging
 - different subsets of the data to train each model
- Boosting
 - Additional models focus on misclassified data

Azure Machine Learning Studio

Grouping of machine learning assets

Build models with experiments

Experiments published as web services

IPython Jupyter Notebook

Uploaded data for the experiments

Experiments that have been trained and converted to models

Where you add users and auth tokens

Creating and Training the Model

- Clean Data
- Select Columns
- Split Data for training
- Choose an Algorithm

Model Evaluation

- **Mean Absolute Error** (MAE): The average of absolute errors (an *error* is the difference between the predicted value and the actual value).
- **Root Mean Squared Error** (RMSE): The square root of the average of squared errors of predictions made on the test dataset.
- Relative Absolute Error: The average of absolute errors relative to the absolute difference between actual values and the average of all actual values.
- **Relative Squared Error**: The average of squared errors relative to the squared difference between the actual values and the average of all actual values.
- Coefficient of Determination: Also known as the R squared value, this is a statistical metric indicating how well a model fits the data.

Resources

- Azure Machine Learning eBook
 - https://mva.microsoft.com/ebooks
- https://azure.microsoft.com/enus/documentation/services/machine-learning/
- https://azure.microsoft.com/enus/documentation/articles/machine-learning-createexperiment/

Q&A

eric.boyd@responsiveX.com

