RAISONNEMENT PAR RÉCURRENCE

Résumé

Nous présentons dans ce chapitre une méthode de démonstration *magique* : le raisonnement par récurrence. Le concept peut être déroutant au premier abord mais il étendra le champ des possibles pour de nombreuses preuves au cours de l'année.

1 Principe de récurrence

Exemples 1 Considérons (\mathcal{P}_n) une suite de propriétés indexées par n entier.

- ▶ Si \mathscr{P}_n est la propriété "n est un multiple de 2", alors \mathscr{P}_n est vraie pour n un entier pair mais fausse pour n impair.
- ▶ Si \mathscr{P}_n : "4n-28>0", alors \mathscr{P}_n est vraie pour n>7 mais fausse pour $n\leqslant 7$.

Propriété 2 | Récurrence

Soit (\mathcal{P}_n) une suite de propriétés indexées par n entier telle que :

- $\triangleright \mathscr{P}_{n_0}$ est vraie;
- ▶ pour tout entier $k \ge n_0$, si \mathscr{P}_k est vraie alors \mathscr{P}_{k+1} est vraie.

Alors \mathscr{P}_n est vraie pout tout $n \ge n_0$.

Remarque 3 Le premier point à vérifier est appelé **initialisation** tandis que le deuxième est l'**hérédité**.

2 Applications

Théorème 4 | Somme des premiers termes

▶ Soit (u_n) une suite arithmétique de premier terme u_0 .

$$\forall n \in \mathbb{N}, \sum_{i=0}^{n} u_i = \frac{u_0 + u_n}{2} \times (n+1)$$

▶ Soit (u_n) une suite géométrique de raison $q \neq 0$ et de premier terme u_0 .

$$\forall n \in \mathbb{N}, \sum_{i=0}^{n} u_i = u_0 \frac{1 - q^{n+1}}{1 - q}$$

Démonstration. Appelons r la raison de la suite (u_n) .

▶ Démontrons pour tout $n \ge 0$, par récurrence, que la propriété \mathcal{P}_n est vraie pour :

$$\mathscr{P}_n: "\sum_{i=0}^n u_i = \frac{u_0 + u_n}{2} \times (n+1)".$$

Initialisation : Vérifions que \mathcal{P}_0 est vraie.

$$\sum_{k=0}^{0} u_n = u_0 = \frac{u_0 + u_0}{2} \times (0+1)$$
 donc \mathcal{P}_0 est vraie.

Hérédité : Supposons que \mathcal{P}_k est vraie pour $k \ge 0$ fixé et montrons que \mathcal{P}_{k+1} est vraie.

$$\begin{split} \sum_{i=0}^{k+1} u_i &= \sum_{i=0}^k u_i + u_{k+1} \\ &= \frac{u_0 + u_k}{2} \times (k+1) + u_{k+1} \text{ par hypothèse de récurrence} \\ &= \frac{u_0 + u_{k+1} - r}{2} \times (k+1) + \frac{u_{k+1}}{2} + \frac{u_{k+1}}{2} \\ &= \frac{u_0 + u_{k+1}}{2} \times (k+1) - \frac{r}{2}(k+1) + \frac{u_0 + r(k+1)}{2} + \frac{u_{k+1}}{2} \\ &= \frac{u_0 + u_{k+1}}{2} \times (k+1) + \frac{u_0 + u_{k+1}}{2} \\ &= \frac{u_0 + u_{k+1}}{2} \times (k+2) \end{split}$$

Nous venons de prouver que \mathcal{P}_{k+1} est vraie.

Nous avons bien démontré par récurrence que \mathscr{P}_n est vraie pour tout $n \ge 0$.

▶ Démontrons pour tout $n \ge 0$, par récurrence, que la propriété \mathcal{P}_n est vraie pour :

$$\mathscr{P}_n$$
: " $\sum_{i=0}^n u_i = u_0 \frac{1 - q^{n+1}}{1 - q}$ ".

Initialisation : Vérifions que \mathcal{P}_0 est vraie.

$$\sum_{k=0}^{0} u_n = u_0 = u_0 \frac{1 - q^{0+1}}{1 - q}$$
 donc \mathcal{P}_0 est vraie.

Hérédité : Supposons que \mathscr{P}_k est vraie pour $k \ge 0$ fixé et montrons que \mathscr{P}_{k+1} est vraie.

$$\sum_{i=0}^{k+1} u_i = \sum_{i=0}^{k} u_i + u_{k+1}$$

$$= u_0 \frac{1 - q^{k+1}}{1 - q} + u_{k+1} \text{ par hypothèse de récurrence}$$

$$= \frac{u_0}{1 - q} - \frac{u_0 q^{k+1}}{1 - q} + u_{k+1}$$

$$= \frac{u_0}{1 - q} - \frac{u_0 q^{k+1}}{1 - q} + u_0 q^{k+1}$$

$$= \frac{u_0}{1 - q} - \frac{u_0 q^{k+1}}{1 - q} + u_0 q^{k+1} \frac{1 - q}{1 - q}$$

$$= \frac{u_0}{1 - q} - \frac{u_0 q^{k+2}}{1 - q}$$

$$= u_0 \frac{1 - q^{k+2}}{1 - q}$$

Nous venons de prouver que \mathcal{P}_{k+1} est vraie.

Nous avons bien démontré par récurrence que \mathscr{P}_n est vraie pour tout $n \ge 0$.

Propriété 5

Soit $n \in \mathbb{N}$.

$$\forall x > 0, (1+x)^n \geqslant 1 + nx$$

Démonstration. Démontrons pour tout $n \ge 0$, par récurrence, que la propriété \mathcal{P}_n est vraie pour :

$$\mathscr{P}_n$$
: " $\forall x > 0, (1+x)^n \geqslant 1 + nx$ ".

Initialisation : Vérifions que \mathcal{P}_0 est vraie.

Soit x > 0.

On a $(1+x)^0 = 1$ et $1+0 \times x = 1$, c'est-à-dire que $(1+x)^0 \ge 1+0 \times x$ et donc \mathcal{P}_0 est vraie.

Hérédité : Supposons que \mathcal{P}_k est vraie pour $k \ge 0$ fixé et montrons que \mathcal{P}_{k+1} est vraie. Soit x > 0.

Si \mathcal{P}_k est vraie, alors $(1+x)^k \ge 1 + kx$ donc:

$$(1+x)^{k+1} \ge (1+x)(1+kx)$$

$$(1+x)^{k+1} \ge 1+kx+x+kx^2$$

$$(1+x)^{k+1} \ge 1+(k+1)x+kx^2$$

$$(1+x)^{k+1} \ge 1+(k+1)x \operatorname{car} kx^2 \ge 0.$$

Nous venons de prouver que \mathcal{P}_{k+1} est vraie.

Nous avons bien démontré par récurrence que \mathscr{P}_n est vraie pour tout $n \ge 0$.

Propriété 6 | Dérivations successives

Soit $n \in \mathbb{N}$.

Si f est une fonction polynomiale de degré n alors sa dérivée $(n+1)^e$, $f^{(n+1)}$, est nulle.

Démonstration. Notons, $\forall x \in \mathbf{R}$, $f(x) = \sum_{k=0}^{n} a_k x^k$ avec $a_n \neq 0$. Démontrons pour tout $n \geqslant 0$, par récurrence, que la propriété \mathcal{P}_n est vraie pour :

$$\mathscr{P}_n$$
: " $\forall x \in \mathbf{R}, f(x) = \sum_{k=0}^n a_k x^k \Rightarrow f^{(n+1)} = 0$ ".

Initialisation : Vérifions que \mathcal{P}_0 est vraie.

Si n = 0, alors f est constante et sa dérivée est nulle.

Hérédité : Supposons que \mathscr{P}_k est vraie pour $k \ge 0$ fixé et montrons que \mathscr{P}_{k+1} est vraie. Soit f de degré k+1. Ainsi, sa dérivée f' est de degré k et on peut y appliquer l'hypothèse de récurrence : $0 = f'^{(k)} = f^{(k+1)}$.

Nous avons bien démontré par récurrence que \mathscr{P}_n est vraie pour tout $n \geqslant 0$.