Bài 1: Ước lượng khoảng cho kỳ vọng của biến ngẫu nhiên

Bài 1: Ước lượng khoảng cho kỳ vọng của biến ngẫu nhiên

1) Tổng thể và mẫu

Bài 1: Ước lượng khoảng cho kỳ vọng của biến ngẫu nhiên

1) Tổng thể và mẫu

• Tổng thể là tập hợp các phần tử cùng mang một dấu hiệu nào đó, dấu hiệu này phụ thuộc vào mục đích nghiên cứu.

Bài 1: Ước lượng khoảng cho kỳ vọng của biến ngẫu nhiên

1) Tổng thể và mẫu

- Tổng thể là tập hợp các phần tử cùng mang một dấu hiệu nào đó, dấu hiệu này phụ thuộc vào mục đích nghiên cứu.
- \bullet Từ tổng thể lấy ra n phần tử, khi đó n phần tử này lập nên một mẫu. Mẫu này có kích thước là n.

Cách tính các đặc trưng của mẫu số liệu

Cách tính các đặc trưng của mẫu số liệu

Giả sử mẫu số liệu có kích thước n và nhận các giá trị có thể x_1, x_2, \ldots, x_k với số lần lặp lại (tần số) r_1, r_2, \ldots, r_k và được cho dưới dạng bảng sau

x_i	x_1	x_2	 $ x_k $
r_i	r_1	r_2	 r_k

Ta lập bảng tính như sau

x_i	$ r_i $	$r_i x_i$	$r_i x_i^2$
x_1	r_1	r_1x_1	$r_1x_1^2$
x_2	r_2	r_2x_2	$r_2x_2^2$
:	•	:	:
x_k	r_k	$r_k x_k$	$r_k x_k^2$
\sum	n	$r_1x_1 + r_2x_2 + \cdots + r_kx_k$	$r_1x_1^2 + r_2x_2^2 + \cdots + r_kx_k^2$

Trung bình của mẫu số liệu

$$\overline{x} = \frac{r_1 x_1 + r_2 x_2 + \dots + r_k x_k}{n},$$

Trung bình của mẫu số liệu

$$\overline{x} = \frac{r_1 x_1 + r_2 x_2 + \dots + r_k x_k}{n},$$

Phương sai của mẫu số liệu

$$s^{2} = \frac{1}{n-1} \left[r_{1}x_{1}^{2} + r_{2}x_{2}^{2} + \dots + r_{k}x_{k}^{2} - \frac{\left(r_{1}x_{1} + r_{2}x_{2} + \dots + r_{k}x_{k} \right)^{2}}{n} \right].$$

 $s=\sqrt{s^2}$ là độ lệch tiêu chuẩn của mẫu số liệu.

Meo nhớ:

$$\overline{x} = \frac{\text{Cot } 5}{\text{Cot } 2}.$$

$$\overline{x} = \frac{\text{Cột } 3}{\text{Cột } 2}.$$

$$s^2 = \frac{1}{\text{Cột } 2 - 1} \left[\text{Cột } 4 - \frac{(\text{Cột } 3)^2}{\text{Cột } 2} \right].$$

Trường hợp mẫu số liệu được cho dưới dạng bảng

Khoảng $x_i - x_{i+1}$	$x_1 - x_2$	$x_2 - x_3$	 $x_k - x_{k+1}$	
Tần số r_i	r_1			•

Các khoảng $x_i - x_{i+1}$ thường có độ dài bằng nhau. Ta có thể tính theo phương pháp đổi biến như sau:

Trường hợp mẫu số liệu được cho dưới dạng bảng

Khoảng $x_i - x_{i+1}$	$x_1 - x_2$	$x_2 - x_3$		$x_k - x_{k+1}$	
Tần số r_i	r_1	r_2	• • •	r_k	•

Các khoảng $x_i - x_{i+1}$ thường có độ dài bằng nhau. Ta có thể tính theo phương pháp đổi biến như sau:

Đặt $u_i = \frac{x_i^0 - x_0}{h}$, trong đó x_i^0 là giá trị trung tâm của khoảng $x_i - x_{i+1}$, x_0 là giá trị bất kỳ nhưng cách chọn tốt nhất là x_0 là giá trị x_i^0 ứng với tần số lớn nhất, h là giá trị bất kỳ nhưng cách chọn tốt nhất là h là độ dài của khoảng.

$$\overline{u} = \frac{r_1 u_1 + r_2 u_2 + \dots + r_k u_k}{n},$$

Ta có
$$\overline{u} = \frac{r_1 u_1 + r_2 u_2 + \dots + r_k u_k}{n},$$

$$\overline{x} = x_0 + h \overline{u},$$

$$s_u^2 = \frac{1}{n-1} \left[r_1 u_1^2 + r_2 u_2^2 + \dots + r_k u_k^2 - \frac{\left(r_1 u_1 + r_2 u_2 + \dots + r_k u_k \right)^2}{n} \right].$$

$$s^2 = h^2 s_u^2.$$

Meo nhớ:

$$\overline{u} = \frac{\text{Cot } 3}{\text{Cot } 3}.$$

$$\overline{u} = \frac{\text{Cột 5}}{\text{Cột 3}}.$$

$$s_u^2 = \frac{1}{\text{Cột 3} - 1} \left[\text{Cột 6} - \frac{(\text{Cột 5})^2}{\text{Cột 3}} \right].$$

Giả sử biến ngẫu nhiên X có phân bố chuẩn nhưng ta chưa biết kỳ vọng $\mathbb{E}(X) = \mu$ của X. Ta tìm khoảng tin cậy của μ .

Trường hợp 1: Biết phương sai σ^2 hay biết độ lệch tiêu chuẩn σ

Giả sử biến ngẫu nhiên X có phân bố chuẩn nhưng ta chưa biết kỳ vọng $\mathbb{E}(X) = \mu$ của X. Ta tìm khoảng tin cậy của μ .

Trường hợp 1: Biết phương sai σ^2 hay biết độ lệch tiêu chuẩn σ

Khoảng tin cậy của μ với độ tin cậy $\beta = 1 - \alpha$ là

$$(\overline{x}-\varepsilon,\overline{x}+\varepsilon),$$

trong đó $u_{\frac{\alpha}{2}}$ là giá trị tới hạn chuẩn mức $\frac{\alpha}{2}$ của phân bố chuẩn tắc,

$$\varepsilon = u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 là độ chính xác.

Ví dụ 1

Khối lượng sản phẩm là biến ngẫu nhiên có phân bố chuẩn với độ lệch tiêu chuẩn $\sigma=1$. Cân thử 25 sản phẩm ta thu được kết quả sau

Ví dụ 1

Khối lượng sản phẩm là biến ngẫu nhiên có phân bố chuẩn với độ lệch tiêu chuẩn $\sigma=1$. Cân thử 25 sản phẩm ta thu được kết quả sau

Khối lượng					
Số sản phẩm	3	5	15	2	•

Ví dụ 1

Khối lượng sản phẩm là biến ngẫu nhiên có phân bố chuẩn với độ lệch tiêu chuẩn $\sigma=1$. Cân thử 25 sản phẩm ta thu được kết quả sau

Khối lượng					1
Số sản phẩm	3	5	15	2	•

Hãy ước lượng khối lượng trung bình của sản phẩm bằng khoảng tin cậy với độ tin cậy $\beta=95\%$.

Lời giải

Ta lập bảng

x_i	r_i	$r_i x_i$
18	3	54
19	5	95
20	15	300
21	2	42
\sum	25	491

Ta có
$$\overline{x} = \frac{491}{25} = 19,64.$$

Ta có
$$\overline{x} = \frac{491}{25} = 19,64.$$

Độ tin cậy $1-\alpha=0,95$, suy ra $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$. Tra bảng ta được $u_{\frac{\alpha}{2}}=1,96$.

Ta có
$$\overline{x} = \frac{491}{25} = 19,64.$$

Độ tin cậy $1-\alpha=0,95$, suy ra $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$. Tra bảng ta được $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

Ta có
$$\overline{x} = \frac{491}{25} = 19,64.$$

Độ tin cậy $1-\alpha=0,95$, suy ra $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$. Tra bảng ta được $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 1,96 \cdot \frac{1}{\sqrt{25}} = \frac{1,96}{5} = 0,392.$$

Ta có
$$\bar{x} = \frac{491}{25} = 19,64.$$

Độ tin cậy $1-\alpha=0,95$, suy ra $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$. Tra bảng ta được $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 1,96 \cdot \frac{1}{\sqrt{25}} = \frac{1,96}{5} = 0,392.$$

Khoảng tin cậy cho khối lượng trung bình của sản phẩm

$$(\overline{x} - \varepsilon, \overline{x} + \varepsilon) = (19, 64 - 0, 392; 19, 64 + 0, 392)$$

= (19, 248; 20, 032).

Trường hợp 2: $n \ge 30$, phương sai chưa biết

Khoảng tin cậy của μ với độ tin cậy $\beta=1-\alpha$ là

$$(\overline{x} - \varepsilon, \overline{x} + \varepsilon),$$

trong đó $\varepsilon = u_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ là độ chính xác.

Ví dụ 2

Trọng lượng của một loại sản phẩm là một biến ngẫu nhiên có phân bố chuẩn. Cân thử 100 sản phẩm loại này ta thu được kết quả

Trọng lượng (g)	40 - 42	42 - 44	44 - 46	46 - 48	48 - 50	50 - 52
Số sản phẩm	7	13	25	35	15	5

Với độ tin cậy 95%, hãy tìm khoảng tin cậy của trọng lượng trung bình của loại sản phẩm trên.

Lời giải

Thực hiện phép đổi biến
$$u_i = \frac{x_i^0 - 47}{2}$$
 với $x_0 = 47$ và $h = 2$.

Lời giải

Thực hiện phép đổi biến $u_i = \frac{x_i^0 - 47}{2}$ với $x_0 = 47$ và h = 2. Ta có bảng tính sau

$x_i - x_{i+1}$	x_i^0	r_i	u_i	$r_i u_i$	$oxed{r_i u_i^2}$
40 - 42	41	7	-3	-21	63
42 - 44	43	13	-2	-26	52
44 - 46	45	25	-1	-25	25
46 - 48	47	35	0	0	0
48 - 50	49	15	1	15	15
50 - 52	51	5	2	10	20
\sum		100		$\boxed{-47}$	175

$$\overline{u} = \frac{-47}{100} = -0,47,$$

$$\overline{u} = \frac{-47}{100} = -0,47,$$

$$\overline{x} = x_0 + h\overline{u} = 47 + 2 \cdot (-0,47) = 46,06,$$

Ta có

$$\overline{u} = \frac{-47}{100} = -0,47,$$

$$\overline{x} = x_0 + h\overline{u} = 47 + 2 \cdot (-0,47) = 46,06,$$

$$s_u^2 = \frac{1}{99} \left(175 - \frac{(-47)^2}{100} \right) = \frac{15291}{9900},$$

$$\overline{u} = \frac{-47}{100} = -0,47,$$

$$\overline{x} = x_0 + h\overline{u} = 47 + 2 \cdot (-0,47) = 46,06,$$

$$s_u^2 = \frac{1}{99} \left(175 - \frac{(-47)^2}{100} \right) = \frac{15291}{9900},$$

$$s^2 = h^2 s_u^2 = 2^2 \cdot \frac{15291}{9900} = \frac{15291}{2475},$$

$$\overline{u} = \frac{-47}{100} = -0,47,$$

$$\overline{x} = x_0 + h\overline{u} = 47 + 2 \cdot (-0,47) = 46,06,$$

$$s_u^2 = \frac{1}{99} \left(175 - \frac{(-47)^2}{100} \right) = \frac{15291}{9900},$$

$$s^2 = h^2 s_u^2 = 2^2 \cdot \frac{15291}{9900} = \frac{15291}{2475},$$

$$s = \sqrt{\frac{15291}{2475}} \approx 2,49.$$

Độ tin cậy 95%, suy ra $1-\alpha=0,95$ hay $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$, do đó $u_{\frac{\alpha}{2}}=1,96$.

Độ tin cậy 95%, suy ra $1-\alpha=0,95$ hay $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$, do đó $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

Độ tin cậy 95%, suy ra $1-\alpha=0,95$ hay $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$, do đó $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} = 1,96 \cdot \frac{2,49}{\sqrt{100}} \approx 0,49.$$

Khoảng tin cậy của trọng lượng trung bình của loại sản phẩm

Độ tin cậy 95%, suy ra $1-\alpha=0,95$ hay $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$, do đó $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} = 1,96 \cdot \frac{2,49}{\sqrt{100}} \approx 0,49.$$

Khoảng tin cậy của trọng lượng trung bình của loại sản phẩm $(\overline{x} - \varepsilon, \overline{x} + \varepsilon) = (46, 06 - 0, 49; 46, 06 + 0, 49)$ = (45, 57; 46, 55).

Trường hợp 3: n < 30, phương sai chưa biết

$$(\overline{x} - \varepsilon, \overline{x} + \varepsilon),$$

 $(\overline{x}-\varepsilon,\overline{x}+\varepsilon),$ trong đó $\varepsilon=t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}},\,t_{\frac{\alpha}{2}}(n-1)$ là giá trị tới hạn Student với n-1 bậc tự do mức $\frac{\alpha}{2}.$

$$n-1$$
 bậc tự do mức $\frac{\alpha}{2}$.

Ví dụ 3

Để ước lượng tuổi thọ trung bình một loại sản phẩm, người ta chọn ra 26 sản phẩm và thu được kết quả sau:

Tuổi thọ (giờ)	190	195	198	200	204	205	
Số sản phẩm	5	4	2	8	6	1	•

Giả sử tuổi thọ sản phẩm tuân theo phân phối chuẩn, hãy ước lượng tuổi thọ trung bình của sản phẩm trên với độ tin cậy 95%.

Lời giải

Ta lập bảng tính như sau:

x_i	r_i	$r_i x_i$	$r_i x_i^2$
190	5	950	180500
195	4	780	152100
198	2	396	78408
200	8	1600	320000
204	6	1224	249696
205	1	205	42025
\sum	n = 26	5155	1022729

$$\overline{x} = \frac{5155}{26} \approx 198, 27,$$

$$s^2 = \frac{1}{25} \left(1022729 - \frac{5155^2}{26} \right)$$

$$\overline{x} = \frac{5155}{26} \approx 198, 27,$$

$$s^2 = \frac{1}{25} \left(1022729 - \frac{5155^2}{26} \right)$$

$$= \frac{16929}{650},$$

$$\overline{x} = \frac{5155}{26} \approx 198, 27,$$

$$s^2 = \frac{1}{25} \left(1022729 - \frac{5155^2}{26} \right)$$

$$= \frac{16929}{650},$$

$$s = \sqrt{\frac{16929}{650}}$$

$$\overline{x} = \frac{5155}{26} \approx 198, 27,$$

$$s^2 = \frac{1}{25} \left(1022729 - \frac{5155^2}{26} \right)$$

$$= \frac{16929}{650},$$

$$s = \sqrt{\frac{16929}{650}}$$

$$\approx 5, 103.$$

Độ tin cậy $1 - \alpha = 0,95$, suy ra $\alpha = 0,05$. Tra bảng ta được $t_{\frac{\alpha}{2}}(n-1) = t_{0,025}(25) = 2,060$.

Độ tin cậy $1 - \alpha = 0,95$, suy ra $\alpha = 0,05$. Tra bảng ta được $t_{\frac{\alpha}{2}}(n-1) = t_{0,025}(25) = 2,060$.

Độ chính xác của ước lượng

Độ tin cậy $1 - \alpha = 0,95$, suy ra $\alpha = 0,05$. Tra bảng ta được $t_{\frac{\alpha}{2}}(n-1) = t_{0,025}(25) = 2,060$.

Độ chính xác của ước lượng

$$\varepsilon = t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} = 2,060 \cdot \frac{5,103}{\sqrt{26}} \approx 2,06.$$

Vậy khoảng tin cậy về tuổi thọ trung bình của sản phẩm

$$(\overline{x} - \varepsilon, \overline{x} + \varepsilon) = (198, 27 - 2, 06; 198, 27 + 2, 06)$$

= $(196, 21; 200, 33).$

Bài 2: Ước lượng tỷ lệ

Bài 2: Ước lượng tỷ lệ

• Giả sử tổng thể ta đang nghiên cứu gồm N phần tử, trong đó có M phần tử có tính chất A nào đó. Khi đó $p = \frac{M}{N}$ là tỷ lệ các phần tử có tính chất A của tổng thể. Thông thường p chưa biết, cần ước lượng p.

 \bullet Gọi f là tỷ lệ phần tử mang tính chất A trong mẫu kích thước n chọn ra từ tổng thể.

 \bullet Gọi f là tỷ lệ phần tử mang tính chất A trong mẫu kích thước n chọn ra từ tổng thể.

Đặt

$$\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}}.$$

Khoảng tin cậy cho tỷ lệ phần tử mang tính chất A với độ tin cậy $\beta = 1 - \alpha$ là $(f - \varepsilon, f + \varepsilon)$.

 \bullet Gọi f là tỷ lệ phần tử mang tính chất A trong mẫu kích thước n chọn ra từ tổng thể.

Đặt

$$\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}}.$$

Khoảng tin cậy cho tỷ lệ phần tử mang tính chất A với độ tin cậy $\beta = 1 - \alpha$ là $(f - \varepsilon, f + \varepsilon)$.

Điều kiện của n và f

$$\begin{cases} nf > 10 \\ n(1-f) > 10 \end{cases}$$

Ví du 1

Người ta lấy ngẫu nhiên từ lô hàng ra 200 sản phẩm thì thấy có 182 sản phẩm đạt yêu cầu chất lượng.

- a) Với độ tin cậy 95%, hãy ước lượng tỷ lệ sản phẩm đạt yêu cầu chất lượng của lô hàng.
- b) Giả sử lô hàng có 6000 sản phẩm, với độ tin cậy 95% hãy ước lượng số sản phẩm đạt yêu cầu của cả lô hàng.

Lời giải

a) Ta có $n = 200, f = \frac{182}{200} = 0,91.$

Lời giải

a) Ta có
$$n = 200, f = \frac{182}{200} = 0,91.$$

Ta thấy

$$\begin{cases} nf = 182 > 10 \\ n(1 - f) = 18 > 10 \end{cases}$$

Độ tin cậy $1-\alpha=0,95$, suy ra $\alpha=0,05$. Khi đó $\frac{\alpha}{2}=0,025$. Tra bảng ta được $u_{\frac{\alpha}{2}}=1,96$.

Độ chính xác của ước lượng

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}} = 1,96 \cdot \sqrt{\frac{0,91(1-0,91)}{200}} \approx 0,04.$$

Khoảng tin cậy cho tỷ lệ sản phẩm đạt yêu cầu chất lượng của lô hàng

Độ chính xác của ước lượng

$$\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}} = 1,96 \cdot \sqrt{\frac{0,91(1-0,91)}{200}} \approx 0,04.$$

Khoảng tin cậy cho tỷ lệ sản phẩm đạt yêu cầu chất lượng của lô hàng

$$(f - \varepsilon; f + \varepsilon) = (0, 91 - 0, 04; 0, 91 + 0, 04) = (0, 87; 0, 95).$$

b) Gọi M là số sản phẩm đạt yêu cầu của cả lô hàng. Khi đó tỷ lệ sản phẩm đạt yêu cầu chất lượng của lô hàng là $\frac{M}{6000}$.

b) Gọi M là số sản phẩm đạt yêu cầu của cả lô hàng. Khi đó tỷ lệ sản phẩm đạt yêu cầu chất lượng của lô hàng là $\frac{M}{6000}$.

Theo câu a) ta có

$$0,87 < \frac{M}{6000} < 0,95 \iff 5220 < M < 5700.$$