证明题:

(1) f(x) 为凸集 $D \subset R^n$ 上的函数,上图 $epi(f) = \{(x, y) | x \in D, y \in R, y \ge f(x)\}$,证明 f(x) 为凸函数的充要条件是 epi(f) 为凸集。

证 明 : 充 分 性 : 对 于 任 意 的 $x_1, x_2 \in D, \alpha \in [0,1]$, 由 epi(f) 的 定 义 , $(x_1, f(x_1)), (x_2, f(x_2)) \in epi(f)$, 而 epi(f) 为凸集,得

$$\alpha(x_1, f(x_1)) + (1-\alpha)(x_2, f(x_2)) \in epi(f)$$
, \square

$$(\alpha x_1 + (1 - \alpha)x_2, \alpha f(x_1) + (1 - \alpha)f(x_2)) \in epi(f),$$

因此 $\alpha f(x_1) + (1-\alpha)f(x_2) \ge f(\alpha x_1 + (1-\alpha)x_2)$,从而f(x)为凸函数。

必要性: 对于任意的 $(x_1, y_1), (x_2, y_2) \in epi(f), \alpha \in [0,1]$, 有

$$y_1 \ge f(x_1), y_2 \ge f(x_2)$$

于 f(x) 为凸函数,有 $f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2) \le \alpha y_1 + (1-\alpha)y_2$,

所以
$$(\alpha x_1 + (1-\alpha)x_2, \alpha y_1 + (1-\alpha)y_2) \in epi(f)$$
,即

$$\alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2) \in epi(f)$$
,

epi(f)为凸集。

(2)考虑规划问题:
$$\frac{\min}{s.t.} \frac{f(x)}{c_i(x) \le 0}$$
, 其中, $f(x), c_i(x) (i=1,2,\cdots,m): R^n \to R$ 是凸函

数,证明:(1)该问题的可行域是凸集;(2)该问题的最优解的集合A是凸集。

证明: (1) 设
$$\mathbf{D}_i = \{x \mid c_i(x) \leq 0\}$$
,可行域 $\mathbf{D} = \bigcap_{i=1}^m \mathbf{D}_i$ 。

对于任意 $x_1, x_2 \in D_i = \{x \mid c_i(x) \le 0\}$,任意 $\alpha \in [0,1]$,有

$$c_i(x_1) \le 0, c_i(x_2) \le 0$$
,根据 $c_i(x)$ 是凸函数

$$c_i(\alpha x_1 + (1-\alpha)x_2) \leq \alpha c_i(x_1) + (1-\alpha)c_i(x_2) \leq 0,$$

因此 $\alpha x_1 + (1-\alpha)x_2 \in D_i$ 。

凸集的交集是凸集,因此 $D = \bigcap_{i=1}^{m} D_i$ 为凸集。

(2) 设 A 为最优解的集合,若 A 不是空集,任取 $x_1, x_2 \in A, \alpha \in [0,1]$,有 $x_1, x_2 \in D$ 。由于 D 是凸集, $\alpha x_1 + (1-\alpha)x_2 \in D$ 。 f(x) 是凸函数,

$$f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$$

 x_1, x_2 都是最优解,因此 $f(x_1) = f(x_2)$ 为最优函数值。得

$$f(\alpha x_1 + (1-\alpha)x_2) \le \alpha f(x_1) + (1-\alpha)f(x_2) = f(x_1)$$

 $f(\alpha x_1 + (1-\alpha)x_2) = f(x_1)$,因此 $\alpha x_1 + (1-\alpha)x_2$,也是最优解,从而 A 为凸集

$$\min c^T x$$
 $\min c^T x$

(3)设
$$z^*, s^*$$
分别为下列两个问题 (I) $s.t.$ $Ax = b$ (II) $s.t.$ $Ax = b + d$ 的最优值。 y^* 是 $x \ge 0$ $x \ge 0$

(I)的对偶问题的最优解,证明 $z^* + y^{*T} d \le s^*$

证明: (I) 与 (II) 的对偶规划分别为(
$$DI$$
) $\max_{s.t.} b^T y$ $s.t.$ $A^T y \le c$ (DII) $\max_{s.t.} (b+d)^T y$ $s.t.$ $A^T y \le c$

(I) 的最优值与(DI)的最优值相同,得 $z^* = b^T y^*$.

 y^* 是(DI)对偶规划的最优解,从而是(DII)的可行解。 y^* 在(DII)的目标函数值不大于最优值, $(b+d)^T y^* \le s^*$ 。因此 $z^* + y^{*T} d \le s^*$ 。

(4) 设 \bar{x} , \bar{y} 分别为下列两个问题

$$\min c^{T} x \qquad \max y^{T} b$$

$$(I) s.t. \quad Ax \ge b \qquad (II) s.t. \quad y^{T} A \le c^{T}$$

$$x \ge 0 \qquad y \ge 0$$

的可行解。证明 $c^T \overline{x} \ge \overline{y}^T b$ 。

证明: 由题意, $A\overline{x} \ge b, \overline{x} \ge 0, \overline{y}^T A \le c^T, \overline{y} \ge 0,$

由 $A\overline{x} - b \ge 0$, $\overline{y} \ge 0$ 得 $\overline{y}^T (A\overline{x} - b) \ge 0$, $\overline{y}^T A\overline{x} \ge \overline{y}^T b$,

由 $\overline{x} \ge 0$, $\overline{y}^T A - c^T \le 0$ 得 $(\overline{y}^T A - c^T) \overline{x} \le 0$, $\overline{y}^T A \overline{x} \le c^T \overline{x}$, 所以 $c^T \overline{x} \ge \overline{y}^T b$ 。

计算题

$$\min -3x_1 - 4x_2$$
一、(18%)(1) 用单纯形方法求解下面的线性规划 $x_1 + 3x_2 \le 3$
 $x_1, x_2 \ge 0$

- (2) 写出该线性规划的影子价格向量:
- (3) 若在上面的线性规划中要求变量为整数,在相应的整数规划中,请对变量 \mathbf{x}_1 写出对应的割平面方程。

以 p_3, p_4 为基, $(0,0,4,3)^T$ 为初始基可行解,单纯形表为

c_j			-3	-4	0	0	θ_{i}
cB	В	b	p1	p2	p3	p4	J
0	p3	4	2	1	1	0	4
0	p4	3	1	(3)	0	1	1
σj			-3	-4	0	0	
0	p3	3	(5/3)	0	1	-1/3	9/5
-4	p2	1	1/3	1	0	1/3	3
σj			-5/3	0	0	4/3	
-3	p1	9/5	1	0	3/5	-1/5	
-4	p2	2/5	0	1	-1/5	2/5	
σj			0	0	1	1	

原问题最优解为 $(\frac{9}{5},\frac{2}{5})^T$,最优值为-7。

(2) 影子价格向量为
$$(c_B^T B^{-1})^T = \left((-3, -4) \begin{pmatrix} \frac{3}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \right)^T = (-1, -1)^T$$

(3) 由单纯形表可以得到

$$x_1 + \frac{3}{5}x_3 - \frac{1}{5}x_4 = \frac{9}{5}$$
,
即 $x_1 - x_4 - 1 = \frac{4}{5} - \frac{3}{5}x_3 - \frac{4}{5}x_4$
割平面方程为 $\frac{4}{5} - \frac{3}{5}x_3 - \frac{4}{5}x_4 \le 0$ 。

二、解:(1)利用消元法,得到以 p_1, p_2 为基矩阵的规范式为:

min
$$2x_3 - x_4 + \frac{7}{2}$$

 $s.t. x_1 + x_3 - 3x_4 = \frac{5}{2}$
 $x_2 + 4x_4 = \frac{1}{2}$

$$x_1, x_2, x_3, x_4 \ge 0$$

(或者:以 $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ 为基矩阵,在约束方程组的两端同时左乘 B^{-1} ,得到约束方程组为

然后再将目标函数中基变量系数消为0。

约束等式交换两行,不影响后面的计算和结果)

以
$$p_1, p_2$$
 为基, $(\frac{5}{2}, \frac{1}{2}, 0, 0)^T$ 为初始基可行解,单纯形表为

c_j			0	0	2	-1	θ .
cB	В	b	p1	p2	p3	p4	J
0	P1	5/2	1	0	1	-3	
0	P2	1/2	0	1	0	(4)	1/8
σj			0	0	2	-1	
0	P1	23/8	1	3/4	1	0	
-1	P4	1/8	0	1/4	0	1	
σj			0	1/4	2	0	

原问题最优解为 $(\frac{23}{8},0,0,\frac{1}{8})^T$,最优函数值为 27/8。

(2) 影子价格向量为
$$(c_B^T B^{-1})^T = \left((1,4) \begin{pmatrix} 1 & 1 \\ 2 & -6 \end{pmatrix}^{-1} \right)^T$$
$$= \left((1,4) \begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{8} \end{pmatrix}^{-1} \right)^T = (\frac{7}{4}, -\frac{3}{8})^T$$

(3) 由单纯形表可以得到

因为
$$\frac{23}{8} = 2 + \frac{7}{8}$$
, 所以分枝后的两个线性规划为

$$\min 2x_3 - x_4 + \frac{7}{2} \qquad \min 2x_3 - x_4 + \frac{7}{2}$$

$$s.t. x_1 + x_3 - 3x_4 = \frac{5}{2} \qquad s.t. x_1 + x_3 - 3x_4 = \frac{5}{2}$$

$$x_2 + 4x_4 = \frac{1}{2} \qquad , \qquad x_2 + 4x_4 = \frac{1}{2}$$

$$x_1 \le 2$$
 $x_1 \ge 3$

$$x_1, x_2, x_3, x_4 \ge 0$$
 $x_1, x_2, x_3, x_4 \ge 0$

三、提示: 先处理 $|x_4| \le 2$ 这个约束,最基本的处理方法: 考虑两个约束: $x_4 \le 2, x_4 \ge -2$ 也可以令 $2+x_4$ (或 $2-x_4$)为一个新变量再处理。

然后必须用两阶段或者大 M 法来进行求解。

最优解是 $(3,0,0,2)^T$.

四、提示: 把 mn 个变量对应的矩阵写出来。

对偶规划:
$$\max \sum_{i=1}^m a_i y_i + \sum_{i=1}^n b_i z_i$$

s.t. $y_i + z_j \le c_{ij} (i = 1, 2, \dots, m, j = 1, 2, \dots, n)$

$$\min x_1 + 2x_2 + x_3$$

五、若线性规划 $\frac{s.t.\,3x_1+4x_2}{x_1}=5 \\ +2x_3=u \\ x_1,x_2,x_3\geq 0$ 的最优解为 $(a,b,c)^T$,其对偶规划的最优解为

 $(1/6,1/2)^T$ 。 a,b,c,u 四个常数中,你可以确定哪些? 如果有不能确定的常数,确定其范围。

解:
$$x^* = (a,b,c)^T, y^* = (\frac{1}{6},\frac{1}{2})^T$$
,

$$A^{T} y^{*} - \overline{c} = \begin{bmatrix} 3 & 1 \\ 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{6} \\ \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{4}{3} \\ 0 \end{bmatrix}$$

(注:字母c在题目中已用,我们将价格向量用 \bar{c} 表示)

由互补松弛性定理, $(A^T y^* - \overline{c})^T x^* = 0$,得 $-\frac{4}{3}b = 0$,b = 0.

$$x^* = (a,b,c)^T$$
 可行,由第一个等式约束得 $3a + 4b = 5$, $a = \frac{5}{3}$.

c的范围是 $c \ge 0$,由第二个约束等式, $\frac{5}{3} + 4c = u$, $u \ge \frac{5}{3}$.